diff --git a/face-generation/dlnd_face_generation.html b/face-generation/dlnd_face_generation.html new file mode 100644 index 0000000..b3dc1c4 --- /dev/null +++ b/face-generation/dlnd_face_generation.html @@ -0,0 +1,58623 @@ + + + +dlnd_face_generation + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+
+
+

人脸生成(Face Generation)

在该项目中,你将使用生成式对抗网络(Generative Adversarial Nets)来生成新的人脸图像。

+

获取数据

该项目将使用以下数据集:

+
    +
  • MNIST
  • +
  • CelebA
  • +
+

由于 CelebA 数据集比较复杂,而且这是你第一次使用 GANs。我们想让你先在 MNIST 数据集上测试你的 GANs 模型,以让你更快的评估所建立模型的性能。

+

如果你在使用 FloydHub, 请将 data_dir 设置为 "/input" 并使用 FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".

+ +
+
+
+
+
+
In [1]:
+
+
+
#data_dir = './data'
+
+# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
+data_dir = '/input'
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+import helper
+
+helper.download_extract('mnist', data_dir)
+helper.download_extract('celeba', data_dir)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Found mnist Data
+Found celeba Data
+
+
+
+ +
+
+ +
+
+
+
+
+

探索数据(Explore the Data)

MNIST

MNIST 是一个手写数字的图像数据集。你可以更改 show_n_images 探索此数据集。

+ +
+
+
+
+
+
In [2]:
+
+
+
show_n_images = 25
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+%matplotlib inline
+import os
+from glob import glob
+from matplotlib import pyplot
+
+mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
+pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')
+
+ +
+
+
+ +
+
+ + +
+ +
Out[2]:
+ + + + +
+
<matplotlib.image.AxesImage at 0x7f56d19e85f8>
+
+ +
+ +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

CelebA

CelebFaces Attributes Dataset (CelebA) 是一个包含 20 多万张名人图片及相关图片说明的数据集。你将用此数据集生成人脸,不会用不到相关说明。你可以更改 show_n_images 探索此数据集。

+ +
+
+
+
+
+
In [3]:
+
+
+
show_n_images = 25
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
+pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))
+
+ +
+
+
+ +
+
+ + +
+ +
Out[3]:
+ + + + +
+
<matplotlib.image.AxesImage at 0x7f56d19266d8>
+
+ +
+ +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+

预处理数据(Preprocess the Data)

由于该项目的重点是建立 GANs 模型,我们将为你预处理数据。

+

经过数据预处理,MNIST 和 CelebA 数据集的值在 28×28 维度图像的 [-0.5, 0.5] 范围内。CelebA 数据集中的图像裁剪了非脸部的图像部分,然后调整到 28x28 维度。

+

MNIST 数据集中的图像是单通道的黑白图像,CelebA 数据集中的图像是 三通道的 RGB 彩色图像

+

建立神经网络(Build the Neural Network)

你将通过部署以下函数来建立 GANs 的主要组成部分:

+
    +
  • model_inputs
  • +
  • discriminator
  • +
  • generator
  • +
  • model_loss
  • +
  • model_opt
  • +
  • train
  • +
+

检查 TensorFlow 版本并获取 GPU 型号

检查你是否使用正确的 TensorFlow 版本,并获取 GPU 型号

+ +
+
+
+
+
+
In [4]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+from distutils.version import LooseVersion
+import warnings
+import tensorflow as tf
+
+# Check TensorFlow Version
+assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
+print('TensorFlow Version: {}'.format(tf.__version__))
+
+# Check for a GPU
+if not tf.test.gpu_device_name():
+    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
+else:
+    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
TensorFlow Version: 1.0.1
+Default GPU Device: /gpu:0
+
+
+
+ +
+
+ +
+
+
+
+
+

输入(Input)

部署 model_inputs 函数以创建用于神经网络的 占位符 (TF Placeholders)。请创建以下占位符:

+
    +
  • 输入图像占位符: 使用 image_widthimage_heightimage_channels 设置为 rank 4。
  • +
  • 输入 Z 占位符: 设置为 rank 2,并命名为 z_dim
  • +
  • 学习速率占位符: 设置为 rank 0。
  • +
+

返回占位符元组的形状为 (tensor of real input images, tensor of z data, learning rate)。

+ +
+
+
+
+
+
In [5]:
+
+
+
import problem_unittests as tests
+
+def model_inputs(image_width, image_height, image_channels, z_dim):
+    """
+    Create the model inputs
+    :param image_width: The input image width
+    :param image_height: The input image height
+    :param image_channels: The number of image channels
+    :param z_dim: The dimension of Z
+    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
+    """
+    # TODO: Implement Function
+    input_real = tf.placeholder(tf.float32, (None, image_width, image_height, image_channels), name='input_real')
+    input_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')
+    learning_rate = tf.placeholder(tf.float32, name='learning_rate')
+
+    return input_real, input_z, learning_rate
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_model_inputs(model_inputs)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

辨别器(Discriminator)

部署 discriminator 函数创建辨别器神经网络以辨别 images。该函数应能够重复使用神经网络中的各种变量。 在 tf.variable_scope 中使用 "discriminator" 的变量空间名来重复使用该函数中的变量。

+

该函数应返回形如 (tensor output of the discriminator, tensor logits of the discriminator) 的元组。

+ +
+
+
+
+
+
In [6]:
+
+
+
def discriminator(images, reuse=False):
+    """
+    Create the discriminator network
+    :param image: Tensor of input image(s)
+    :param reuse: Boolean if the weights should be reused
+    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
+    """
+    # TODO: Implement Function
+    with tf.variable_scope('discriminator', reuse=reuse):
+        # alpha is the param for leaky relu
+        alpha = 0.2
+        
+        # Input layer is 28x28x3
+        x1 = tf.layers.conv2d(images, 64, 5, strides=2, padding='same')
+        relu1 = tf.maximum(alpha * x1, x1)
+        # 14x14x64 now
+        
+        x2 = tf.layers.conv2d(relu1, 128, 5, strides=2, padding='same')
+        bn2 = tf.layers.batch_normalization(x2, training=True)
+        relu2 = tf.maximum(alpha * bn2, bn2)
+        # 7x7x128 now
+        
+        x3 = tf.layers.conv2d(relu2, 256, 5, strides=2, padding='same')
+        bn3 = tf.layers.batch_normalization(x3, training=True)
+        relu3 = tf.maximum(alpha * bn3, bn3)
+        # 4x4x256 now
+
+        # Flatten it
+        flat = tf.reshape(relu3, (-1, 4*4*256))
+        logits = tf.layers.dense(flat, 1)
+        out = tf.sigmoid(logits)
+        
+        return out, logits
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_discriminator(discriminator, tf)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

生成器(Generator)

部署 generator 函数以使用 z 生成图像。该函数应能够重复使用神经网络中的各种变量。 +在 tf.variable_scope 中使用 "generator" 的变量空间名来重复使用该函数中的变量。

+

该函数应返回所生成的 28 x 28 x out_channel_dim 维度图像。

+ +
+
+
+
+
+
In [7]:
+
+
+
def generator(z, out_channel_dim, is_train=True):
+    """
+    Create the generator network
+    :param z: Input z
+    :param out_channel_dim: The number of channels in the output image
+    :param is_train: Boolean if generator is being used for training
+    :return: The tensor output of the generator
+    """
+    # TODO: Implement Function
+    with tf.variable_scope('generator', reuse=not is_train):
+        # alpha is the param for leaky relu
+        alpha = 0.2
+        
+        # First fully connected layer
+        x1 = tf.layers.dense(z, 7 * 7 * 512, activation=None)
+        x1 = tf.reshape(x1, (-1, 7, 7, 512)) # Reshape it to start the convolutional stack
+        x1 = tf.layers.batch_normalization(x1, training=is_train)
+        x1 = tf.maximum(alpha * x1, x1)
+        # 7x7x512 now
+        
+        x2 = tf.layers.conv2d_transpose(x1, 256, 5, strides=2, padding='same')
+        x2 = tf.layers.batch_normalization(x2, training=is_train)
+        x2 = tf.maximum(alpha * x2, x2)
+        # 14x14x256 now
+        
+        x3 = tf.layers.conv2d_transpose(x2, 128, 5, strides=2, padding='same')
+        x3 = tf.layers.batch_normalization(x3, training=is_train)
+        x3 = tf.maximum(alpha * x3, x3)
+        # 28x28x128 now
+        
+        # Output layer
+        logits = tf.layers.conv2d_transpose(x3, out_channel_dim, 5, strides=1, padding='same')
+        out = tf.tanh(logits)
+        # 28x28x3 now
+        
+        return out
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_generator(generator, tf)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

损失函数(Loss)

部署 model_loss 函数训练并计算 GANs 的损失。该函数应返回形如 (discriminator loss, generator loss) 的元组。

+

使用你已实现的函数:

+
    +
  • discriminator(images, reuse=False)
  • +
  • generator(z, out_channel_dim, is_train=True)
  • +
+ +
+
+
+
+
+
In [8]:
+
+
+
def model_loss(input_real, input_z, out_channel_dim):
+    """
+    Get the loss for the discriminator and generator
+    :param input_real: Images from the real dataset
+    :param input_z: Z input
+    :param out_channel_dim: The number of channels in the output image
+    :return: A tuple of (discriminator loss, generator loss)
+    """
+    # TODO: Implement Function
+    # Generator network here
+    g_model = generator(input_z, out_channel_dim)
+
+    # Disriminator network here
+    d_model_real, d_logits_real = discriminator(input_real)
+    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)
+    
+    # Calculate losses
+    smooth = 0.1
+    d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_logits_real) * (1 - smooth)))
+
+    d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_logits_fake)))
+
+    d_loss = d_loss_real + d_loss_fake
+
+    g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_logits_fake)))
+
+    return d_loss, g_loss
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_model_loss(model_loss)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

优化(Optimization)

部署 model_opt 函数实现对 GANs 的优化。使用 tf.trainable_variables 获取可训练的所有变量。通过变量空间名 discriminatorgenerator 来过滤变量。该函数应返回形如 (discriminator training operation, generator training operation) 的元组。

+ +
+
+
+
+
+
In [9]:
+
+
+
def model_opt(d_loss, g_loss, learning_rate, beta1):
+    """
+    Get optimization operations
+    :param d_loss: Discriminator loss Tensor
+    :param g_loss: Generator loss Tensor
+    :param learning_rate: Learning Rate Placeholder
+    :param beta1: The exponential decay rate for the 1st moment in the optimizer
+    :return: A tuple of (discriminator training operation, generator training operation)
+    """
+    # TODO: Implement Function
+    # Get weights and bias to update
+    t_vars = tf.trainable_variables()
+    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
+    g_vars = [var for var in t_vars if var.name.startswith('generator')]
+
+    # Optimize
+    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
+        d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
+        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)
+
+    return d_train_opt, g_train_opt
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_model_opt(model_opt, tf)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

训练神经网络(Neural Network Training)

输出显示

使用该函数可以显示生成器 (Generator) 在训练过程中的当前输出,这会帮你评估 GANs 模型的训练程度。

+ +
+
+
+
+
+
In [10]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+import numpy as np
+
+def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
+    """
+    Show example output for the generator
+    :param sess: TensorFlow session
+    :param n_images: Number of Images to display
+    :param input_z: Input Z Tensor
+    :param out_channel_dim: The number of channels in the output image
+    :param image_mode: The mode to use for images ("RGB" or "L")
+    """
+    cmap = None if image_mode == 'RGB' else 'gray'
+    z_dim = input_z.get_shape().as_list()[-1]
+    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])
+
+    samples = sess.run(
+        generator(input_z, out_channel_dim, False),
+        feed_dict={input_z: example_z})
+
+    images_grid = helper.images_square_grid(samples, image_mode)
+    pyplot.imshow(images_grid, cmap=cmap)
+    pyplot.show()
+
+ +
+
+
+ +
+
+
+
+
+

训练

部署 train 函数以建立并训练 GANs 模型。记得使用以下你已完成的函数:

+
    +
  • model_inputs(image_width, image_height, image_channels, z_dim)
  • +
  • model_loss(input_real, input_z, out_channel_dim)
  • +
  • model_opt(d_loss, g_loss, learning_rate, beta1)
  • +
+

使用 show_generator_output 函数显示 generator 在训练过程中的输出。

+

注意:在每个批次 (batch) 中运行 show_generator_output 函数会显著增加训练时间与该 notebook 的体积。推荐每 100 批次输出一次 generator 的输出。

+ +
+
+
+
+
+
In [11]:
+
+
+
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
+    """
+    Train the GAN
+    :param epoch_count: Number of epochs
+    :param batch_size: Batch Size
+    :param z_dim: Z dimension
+    :param learning_rate: Learning Rate
+    :param beta1: The exponential decay rate for the 1st moment in the optimizer
+    :param get_batches: Function to get batches
+    :param data_shape: Shape of the data
+    :param data_image_mode: The image mode to use for images ("RGB" or "L")
+    """
+    # TODO: Build Model
+    _, image_width, image_height, image_channels = data_shape
+    input_real, input_z, lr = model_inputs(image_width, image_height, image_channels, z_dim)
+    d_loss, g_loss = model_loss(input_real, input_z, image_channels)
+    d_opt, g_opt = model_opt(d_loss, g_loss, lr, beta1)
+    
+    steps = 0
+    with tf.Session() as sess:
+        sess.run(tf.global_variables_initializer())
+        for epoch_i in range(epoch_count):
+            for batch_images in get_batches(batch_size):
+                # TODO: Train Model
+                steps += 1
+                batch_images *= 2
+                
+                # Sample random noise for G
+                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))
+
+                # Run optimizers
+                _ = sess.run(d_opt, feed_dict={input_z: batch_z, input_real: batch_images, lr: learning_rate})
+                _ = sess.run(g_opt, feed_dict={input_z: batch_z, input_real: batch_images, lr: learning_rate})
+
+                if steps % 10 == 0:
+                    # At the end of each epoch, get the losses and print them out
+                    train_loss_d = d_loss.eval({input_z: batch_z, input_real: batch_images})
+                    train_loss_g = g_loss.eval({input_z: batch_z})
+
+                    print("Epoch {}/{}...".format(epoch_i + 1, epoch_count), 
+                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
+                          "Generator Loss: {:.4f}".format(train_loss_g))
+                
+                if steps % 100 == 0:
+                    gen_samples = sess.run(generator(input_z, image_channels, is_train=False), feed_dict={input_z: batch_z})
+                    _ = show_generator_output(sess, 25, input_z, image_channels, data_image_mode)
+
+ +
+
+
+ +
+
+
+
+
+

MNIST

在 MNIST 上测试你的 GANs 模型。经过 2 次迭代,GANs 应该能够生成类似手写数字的图像。确保生成器 (generator) 低于辨别器 (discriminator) 的损失,或接近 0。

+ +
+
+
+
+
+
In [12]:
+
+
+
batch_size = 64
+z_dim = 100
+learning_rate = 0.0002
+beta1 = 0.5
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+epochs = 2
+
+mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
+with tf.Graph().as_default():
+    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
+          mnist_dataset.shape, mnist_dataset.image_mode)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Epoch 1/2... Discriminator Loss: 0.4204... Generator Loss: 3.1223
+Epoch 1/2... Discriminator Loss: 0.4827... Generator Loss: 2.2592
+Epoch 1/2... Discriminator Loss: 0.4310... Generator Loss: 4.2485
+Epoch 1/2... Discriminator Loss: 1.2898... Generator Loss: 2.9953
+Epoch 1/2... Discriminator Loss: 1.3641... Generator Loss: 1.3200
+Epoch 1/2... Discriminator Loss: 1.3577... Generator Loss: 0.6340
+Epoch 1/2... Discriminator Loss: 1.5244... Generator Loss: 0.5115
+Epoch 1/2... Discriminator Loss: 1.2379... Generator Loss: 0.8513
+Epoch 1/2... Discriminator Loss: 1.3270... Generator Loss: 0.8379
+Epoch 1/2... Discriminator Loss: 1.6648... Generator Loss: 0.4169
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/2... Discriminator Loss: 1.2459... Generator Loss: 0.9999
+Epoch 1/2... Discriminator Loss: 1.4056... Generator Loss: 1.7060
+Epoch 1/2... Discriminator Loss: 1.3388... Generator Loss: 0.7322
+Epoch 1/2... Discriminator Loss: 1.1195... Generator Loss: 1.1036
+Epoch 1/2... Discriminator Loss: 1.1910... Generator Loss: 0.7477
+Epoch 1/2... Discriminator Loss: 1.2023... Generator Loss: 1.2572
+Epoch 1/2... Discriminator Loss: 1.2410... Generator Loss: 1.6392
+Epoch 1/2... Discriminator Loss: 1.2184... Generator Loss: 0.7372
+Epoch 1/2... Discriminator Loss: 1.2382... Generator Loss: 0.6883
+Epoch 1/2... Discriminator Loss: 1.3832... Generator Loss: 0.4813
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/2... Discriminator Loss: 1.0094... Generator Loss: 0.9240
+Epoch 1/2... Discriminator Loss: 1.1167... Generator Loss: 1.6473
+Epoch 1/2... Discriminator Loss: 1.4142... Generator Loss: 0.5206
+Epoch 1/2... Discriminator Loss: 0.9967... Generator Loss: 1.5393
+Epoch 1/2... Discriminator Loss: 1.3248... Generator Loss: 0.5312
+Epoch 1/2... Discriminator Loss: 1.0156... Generator Loss: 1.1135
+Epoch 1/2... Discriminator Loss: 0.9628... Generator Loss: 1.9009
+Epoch 1/2... Discriminator Loss: 1.0585... Generator Loss: 1.5717
+Epoch 1/2... Discriminator Loss: 1.0929... Generator Loss: 0.7814
+Epoch 1/2... Discriminator Loss: 1.0840... Generator Loss: 1.0624
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/2... Discriminator Loss: 1.0431... Generator Loss: 1.1230
+Epoch 1/2... Discriminator Loss: 1.0236... Generator Loss: 1.0033
+Epoch 1/2... Discriminator Loss: 1.1009... Generator Loss: 0.8963
+Epoch 1/2... Discriminator Loss: 1.0246... Generator Loss: 1.5232
+Epoch 1/2... Discriminator Loss: 1.2980... Generator Loss: 0.6295
+Epoch 1/2... Discriminator Loss: 1.0272... Generator Loss: 1.3369
+Epoch 1/2... Discriminator Loss: 1.1724... Generator Loss: 0.7514
+Epoch 1/2... Discriminator Loss: 1.0532... Generator Loss: 1.2344
+Epoch 1/2... Discriminator Loss: 1.1428... Generator Loss: 0.8638
+Epoch 1/2... Discriminator Loss: 1.1750... Generator Loss: 1.1432
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/2... Discriminator Loss: 1.2411... Generator Loss: 1.8333
+Epoch 1/2... Discriminator Loss: 1.0503... Generator Loss: 1.0242
+Epoch 1/2... Discriminator Loss: 1.1395... Generator Loss: 1.0762
+Epoch 1/2... Discriminator Loss: 1.3215... Generator Loss: 0.5722
+Epoch 1/2... Discriminator Loss: 1.1445... Generator Loss: 0.7874
+Epoch 1/2... Discriminator Loss: 1.2529... Generator Loss: 0.6156
+Epoch 1/2... Discriminator Loss: 1.0842... Generator Loss: 0.9782
+Epoch 1/2... Discriminator Loss: 1.1459... Generator Loss: 0.7799
+Epoch 1/2... Discriminator Loss: 1.1442... Generator Loss: 1.4652
+Epoch 1/2... Discriminator Loss: 1.0300... Generator Loss: 1.2469
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/2... Discriminator Loss: 1.2653... Generator Loss: 0.6031
+Epoch 1/2... Discriminator Loss: 1.0865... Generator Loss: 1.2273
+Epoch 1/2... Discriminator Loss: 1.2002... Generator Loss: 0.6592
+Epoch 1/2... Discriminator Loss: 1.2886... Generator Loss: 0.6356
+Epoch 1/2... Discriminator Loss: 1.4369... Generator Loss: 0.4941
+Epoch 1/2... Discriminator Loss: 1.1444... Generator Loss: 0.9019
+Epoch 1/2... Discriminator Loss: 1.1936... Generator Loss: 0.6823
+Epoch 1/2... Discriminator Loss: 1.1784... Generator Loss: 1.4153
+Epoch 1/2... Discriminator Loss: 1.5582... Generator Loss: 0.4257
+Epoch 1/2... Discriminator Loss: 1.0860... Generator Loss: 1.3010
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/2... Discriminator Loss: 1.0424... Generator Loss: 1.1105
+Epoch 1/2... Discriminator Loss: 1.0549... Generator Loss: 0.9376
+Epoch 1/2... Discriminator Loss: 1.1714... Generator Loss: 1.1036
+Epoch 1/2... Discriminator Loss: 1.1158... Generator Loss: 1.0531
+Epoch 1/2... Discriminator Loss: 1.0498... Generator Loss: 0.9878
+Epoch 1/2... Discriminator Loss: 1.2111... Generator Loss: 0.8901
+Epoch 1/2... Discriminator Loss: 1.4104... Generator Loss: 0.4942
+Epoch 1/2... Discriminator Loss: 1.0527... Generator Loss: 1.3645
+Epoch 1/2... Discriminator Loss: 1.0832... Generator Loss: 0.8888
+Epoch 1/2... Discriminator Loss: 1.1123... Generator Loss: 0.8392
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/2... Discriminator Loss: 0.9938... Generator Loss: 1.1336
+Epoch 1/2... Discriminator Loss: 1.2817... Generator Loss: 1.7325
+Epoch 1/2... Discriminator Loss: 1.0349... Generator Loss: 0.8968
+Epoch 1/2... Discriminator Loss: 1.0611... Generator Loss: 1.3221
+Epoch 1/2... Discriminator Loss: 1.0041... Generator Loss: 1.2203
+Epoch 1/2... Discriminator Loss: 1.0210... Generator Loss: 1.1737
+Epoch 1/2... Discriminator Loss: 1.0761... Generator Loss: 1.2211
+Epoch 1/2... Discriminator Loss: 0.9741... Generator Loss: 1.1375
+Epoch 1/2... Discriminator Loss: 1.0377... Generator Loss: 0.8915
+Epoch 1/2... Discriminator Loss: 1.0852... Generator Loss: 0.9029
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/2... Discriminator Loss: 1.3093... Generator Loss: 2.5877
+Epoch 1/2... Discriminator Loss: 0.9853... Generator Loss: 1.1730
+Epoch 1/2... Discriminator Loss: 1.0564... Generator Loss: 0.8760
+Epoch 1/2... Discriminator Loss: 1.0396... Generator Loss: 1.4255
+Epoch 1/2... Discriminator Loss: 1.0599... Generator Loss: 0.9275
+Epoch 1/2... Discriminator Loss: 0.9641... Generator Loss: 1.3584
+Epoch 1/2... Discriminator Loss: 1.1231... Generator Loss: 0.8175
+Epoch 1/2... Discriminator Loss: 1.0010... Generator Loss: 1.1018
+Epoch 1/2... Discriminator Loss: 1.3737... Generator Loss: 0.5330
+Epoch 1/2... Discriminator Loss: 1.0614... Generator Loss: 0.9055
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/2... Discriminator Loss: 1.0209... Generator Loss: 1.0810
+Epoch 1/2... Discriminator Loss: 0.9956... Generator Loss: 0.9358
+Epoch 1/2... Discriminator Loss: 1.2294... Generator Loss: 0.6367
+Epoch 2/2... Discriminator Loss: 1.0491... Generator Loss: 0.8156
+Epoch 2/2... Discriminator Loss: 1.9660... Generator Loss: 0.3475
+Epoch 2/2... Discriminator Loss: 1.0618... Generator Loss: 1.2255
+Epoch 2/2... Discriminator Loss: 0.9658... Generator Loss: 1.0057
+Epoch 2/2... Discriminator Loss: 0.8519... Generator Loss: 1.6786
+Epoch 2/2... Discriminator Loss: 1.0465... Generator Loss: 0.9361
+Epoch 2/2... Discriminator Loss: 1.0060... Generator Loss: 1.0238
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 2/2... Discriminator Loss: 1.2068... Generator Loss: 0.6641
+Epoch 2/2... Discriminator Loss: 0.8739... Generator Loss: 1.2788
+Epoch 2/2... Discriminator Loss: 1.2420... Generator Loss: 0.5994
+Epoch 2/2... Discriminator Loss: 1.0455... Generator Loss: 1.3188
+Epoch 2/2... Discriminator Loss: 1.5271... Generator Loss: 0.4801
+Epoch 2/2... Discriminator Loss: 0.9442... Generator Loss: 0.9758
+Epoch 2/2... Discriminator Loss: 1.1125... Generator Loss: 0.8582
+Epoch 2/2... Discriminator Loss: 0.9858... Generator Loss: 0.8610
+Epoch 2/2... Discriminator Loss: 1.7708... Generator Loss: 0.3445
+Epoch 2/2... Discriminator Loss: 1.0218... Generator Loss: 0.9825
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 2/2... Discriminator Loss: 0.9482... Generator Loss: 1.3030
+Epoch 2/2... Discriminator Loss: 1.3452... Generator Loss: 1.9974
+Epoch 2/2... Discriminator Loss: 1.0928... Generator Loss: 0.7811
+Epoch 2/2... Discriminator Loss: 0.8769... Generator Loss: 1.3478
+Epoch 2/2... Discriminator Loss: 1.2244... Generator Loss: 0.6451
+Epoch 2/2... Discriminator Loss: 1.0969... Generator Loss: 2.4311
+Epoch 2/2... Discriminator Loss: 1.0368... Generator Loss: 0.8528
+Epoch 2/2... Discriminator Loss: 0.9872... Generator Loss: 1.3598
+Epoch 2/2... Discriminator Loss: 1.1426... Generator Loss: 1.1906
+Epoch 2/2... Discriminator Loss: 0.9564... Generator Loss: 1.2773
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 2/2... Discriminator Loss: 0.9182... Generator Loss: 1.0495
+Epoch 2/2... Discriminator Loss: 1.1554... Generator Loss: 0.6664
+Epoch 2/2... Discriminator Loss: 1.0098... Generator Loss: 0.9703
+Epoch 2/2... Discriminator Loss: 1.0875... Generator Loss: 0.7549
+Epoch 2/2... Discriminator Loss: 0.8910... Generator Loss: 1.1223
+Epoch 2/2... Discriminator Loss: 0.9773... Generator Loss: 2.6783
+Epoch 2/2... Discriminator Loss: 1.0080... Generator Loss: 0.8345
+Epoch 2/2... Discriminator Loss: 0.9571... Generator Loss: 1.3360
+Epoch 2/2... Discriminator Loss: 0.9197... Generator Loss: 1.3654
+Epoch 2/2... Discriminator Loss: 0.8306... Generator Loss: 1.2653
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 2/2... Discriminator Loss: 0.9596... Generator Loss: 1.1294
+Epoch 2/2... Discriminator Loss: 0.9953... Generator Loss: 0.8804
+Epoch 2/2... Discriminator Loss: 0.9510... Generator Loss: 1.1515
+Epoch 2/2... Discriminator Loss: 1.3993... Generator Loss: 2.3715
+Epoch 2/2... Discriminator Loss: 0.9080... Generator Loss: 1.4359
+Epoch 2/2... Discriminator Loss: 0.8572... Generator Loss: 1.2590
+Epoch 2/2... Discriminator Loss: 0.8892... Generator Loss: 1.4629
+Epoch 2/2... Discriminator Loss: 1.5488... Generator Loss: 2.5772
+Epoch 2/2... Discriminator Loss: 0.9225... Generator Loss: 1.1753
+Epoch 2/2... Discriminator Loss: 1.0175... Generator Loss: 1.2177
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 2/2... Discriminator Loss: 1.1387... Generator Loss: 2.3912
+Epoch 2/2... Discriminator Loss: 1.1287... Generator Loss: 0.7842
+Epoch 2/2... Discriminator Loss: 1.0247... Generator Loss: 1.9585
+Epoch 2/2... Discriminator Loss: 0.9418... Generator Loss: 1.0972
+Epoch 2/2... Discriminator Loss: 0.8407... Generator Loss: 1.2381
+Epoch 2/2... Discriminator Loss: 0.8819... Generator Loss: 1.0197
+Epoch 2/2... Discriminator Loss: 1.0199... Generator Loss: 0.8055
+Epoch 2/2... Discriminator Loss: 0.9692... Generator Loss: 1.6409
+Epoch 2/2... Discriminator Loss: 1.2472... Generator Loss: 0.7956
+Epoch 2/2... Discriminator Loss: 0.9436... Generator Loss: 0.9713
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 2/2... Discriminator Loss: 0.9250... Generator Loss: 1.0925
+Epoch 2/2... Discriminator Loss: 0.9684... Generator Loss: 0.9028
+Epoch 2/2... Discriminator Loss: 0.9477... Generator Loss: 0.9569
+Epoch 2/2... Discriminator Loss: 1.2281... Generator Loss: 0.6713
+Epoch 2/2... Discriminator Loss: 0.8281... Generator Loss: 1.1973
+Epoch 2/2... Discriminator Loss: 1.0442... Generator Loss: 0.7927
+Epoch 2/2... Discriminator Loss: 0.9155... Generator Loss: 1.0041
+Epoch 2/2... Discriminator Loss: 0.8651... Generator Loss: 1.6100
+Epoch 2/2... Discriminator Loss: 1.1178... Generator Loss: 0.7747
+Epoch 2/2... Discriminator Loss: 1.6798... Generator Loss: 3.0678
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 2/2... Discriminator Loss: 0.8941... Generator Loss: 1.0698
+Epoch 2/2... Discriminator Loss: 1.0571... Generator Loss: 0.8698
+Epoch 2/2... Discriminator Loss: 0.8889... Generator Loss: 1.0698
+Epoch 2/2... Discriminator Loss: 1.2752... Generator Loss: 2.7747
+Epoch 2/2... Discriminator Loss: 1.1641... Generator Loss: 0.7411
+Epoch 2/2... Discriminator Loss: 0.8820... Generator Loss: 1.0839
+Epoch 2/2... Discriminator Loss: 0.8707... Generator Loss: 1.0716
+Epoch 2/2... Discriminator Loss: 0.8608... Generator Loss: 1.2287
+Epoch 2/2... Discriminator Loss: 0.9702... Generator Loss: 1.0217
+Epoch 2/2... Discriminator Loss: 1.1194... Generator Loss: 0.8550
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 2/2... Discriminator Loss: 1.1537... Generator Loss: 0.7651
+Epoch 2/2... Discriminator Loss: 1.0387... Generator Loss: 1.4510
+Epoch 2/2... Discriminator Loss: 0.8105... Generator Loss: 1.4478
+Epoch 2/2... Discriminator Loss: 0.8504... Generator Loss: 1.3711
+Epoch 2/2... Discriminator Loss: 0.8881... Generator Loss: 1.4892
+Epoch 2/2... Discriminator Loss: 1.0879... Generator Loss: 0.7779
+Epoch 2/2... Discriminator Loss: 0.8741... Generator Loss: 1.2485
+Epoch 2/2... Discriminator Loss: 0.9110... Generator Loss: 1.7616
+Epoch 2/2... Discriminator Loss: 0.8936... Generator Loss: 1.5694
+Epoch 2/2... Discriminator Loss: 0.8861... Generator Loss: 1.0268
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 2/2... Discriminator Loss: 0.9276... Generator Loss: 0.9687
+Epoch 2/2... Discriminator Loss: 0.9666... Generator Loss: 1.0320
+Epoch 2/2... Discriminator Loss: 0.9749... Generator Loss: 0.8926
+Epoch 2/2... Discriminator Loss: 0.7613... Generator Loss: 1.6372
+Epoch 2/2... Discriminator Loss: 1.5822... Generator Loss: 0.4344
+Epoch 2/2... Discriminator Loss: 1.1882... Generator Loss: 0.8438
+Epoch 2/2... Discriminator Loss: 0.9924... Generator Loss: 1.1633
+
+
+
+ +
+
+ +
+
+
+
+
+

CelebA

在 CelebA 上运行你的 GANs 模型。在一般的GPU上运行每次迭代大约需要 20 分钟。你可以运行整个迭代,或者当 GANs 开始产生真实人脸图像时停止它。

+ +
+
+
+
+
+
In [13]:
+
+
+
batch_size = 64
+z_dim = 100
+learning_rate = 0.001
+beta1 = 0.5
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+epochs = 1
+
+celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
+with tf.Graph().as_default():
+    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
+          celeba_dataset.shape, celeba_dataset.image_mode)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 0.6635... Generator Loss: 2.6208
+Epoch 1/1... Discriminator Loss: 0.5171... Generator Loss: 5.9576
+Epoch 1/1... Discriminator Loss: 0.9434... Generator Loss: 4.5532
+Epoch 1/1... Discriminator Loss: 0.9883... Generator Loss: 1.3031
+Epoch 1/1... Discriminator Loss: 0.4266... Generator Loss: 3.6278
+Epoch 1/1... Discriminator Loss: 0.6535... Generator Loss: 1.7355
+Epoch 1/1... Discriminator Loss: 0.6394... Generator Loss: 3.2757
+Epoch 1/1... Discriminator Loss: 0.5272... Generator Loss: 2.5773
+Epoch 1/1... Discriminator Loss: 0.4938... Generator Loss: 2.2639
+Epoch 1/1... Discriminator Loss: 0.6107... Generator Loss: 2.0199
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 0.4906... Generator Loss: 4.7177
+Epoch 1/1... Discriminator Loss: 6.6824... Generator Loss: 12.1958
+Epoch 1/1... Discriminator Loss: 1.2869... Generator Loss: 1.1015
+Epoch 1/1... Discriminator Loss: 0.8712... Generator Loss: 1.2599
+Epoch 1/1... Discriminator Loss: 0.9868... Generator Loss: 2.0520
+Epoch 1/1... Discriminator Loss: 1.0734... Generator Loss: 1.9953
+Epoch 1/1... Discriminator Loss: 1.7425... Generator Loss: 0.3826
+Epoch 1/1... Discriminator Loss: 1.1829... Generator Loss: 1.2268
+Epoch 1/1... Discriminator Loss: 1.4086... Generator Loss: 0.8518
+Epoch 1/1... Discriminator Loss: 1.2163... Generator Loss: 0.7233
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.2762... Generator Loss: 0.8202
+Epoch 1/1... Discriminator Loss: 1.0826... Generator Loss: 1.4488
+Epoch 1/1... Discriminator Loss: 1.5480... Generator Loss: 1.4554
+Epoch 1/1... Discriminator Loss: 1.1184... Generator Loss: 0.7442
+Epoch 1/1... Discriminator Loss: 1.3038... Generator Loss: 0.8651
+Epoch 1/1... Discriminator Loss: 1.2226... Generator Loss: 1.0445
+Epoch 1/1... Discriminator Loss: 1.2978... Generator Loss: 0.7549
+Epoch 1/1... Discriminator Loss: 1.2956... Generator Loss: 0.8022
+Epoch 1/1... Discriminator Loss: 1.3636... Generator Loss: 0.6897
+Epoch 1/1... Discriminator Loss: 1.0502... Generator Loss: 1.4712
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 0.9124... Generator Loss: 1.4509
+Epoch 1/1... Discriminator Loss: 1.0586... Generator Loss: 0.9160
+Epoch 1/1... Discriminator Loss: 1.4511... Generator Loss: 0.4657
+Epoch 1/1... Discriminator Loss: 1.2195... Generator Loss: 1.5226
+Epoch 1/1... Discriminator Loss: 1.1125... Generator Loss: 1.1325
+Epoch 1/1... Discriminator Loss: 1.2902... Generator Loss: 0.7191
+Epoch 1/1... Discriminator Loss: 1.1498... Generator Loss: 0.8416
+Epoch 1/1... Discriminator Loss: 1.2848... Generator Loss: 0.7776
+Epoch 1/1... Discriminator Loss: 1.9145... Generator Loss: 0.2802
+Epoch 1/1... Discriminator Loss: 1.1082... Generator Loss: 1.2230
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.4833... Generator Loss: 2.0466
+Epoch 1/1... Discriminator Loss: 0.8034... Generator Loss: 1.5415
+Epoch 1/1... Discriminator Loss: 1.1546... Generator Loss: 0.6480
+Epoch 1/1... Discriminator Loss: 1.1812... Generator Loss: 0.8394
+Epoch 1/1... Discriminator Loss: 0.9518... Generator Loss: 1.0477
+Epoch 1/1... Discriminator Loss: 1.2184... Generator Loss: 0.9924
+Epoch 1/1... Discriminator Loss: 1.2908... Generator Loss: 0.8527
+Epoch 1/1... Discriminator Loss: 1.2357... Generator Loss: 0.9712
+Epoch 1/1... Discriminator Loss: 1.3955... Generator Loss: 0.6073
+Epoch 1/1... Discriminator Loss: 1.0635... Generator Loss: 1.1717
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.5523... Generator Loss: 0.5931
+Epoch 1/1... Discriminator Loss: 1.5956... Generator Loss: 0.4272
+Epoch 1/1... Discriminator Loss: 1.2407... Generator Loss: 0.6906
+Epoch 1/1... Discriminator Loss: 1.5402... Generator Loss: 0.6955
+Epoch 1/1... Discriminator Loss: 1.0282... Generator Loss: 1.7090
+Epoch 1/1... Discriminator Loss: 2.0579... Generator Loss: 0.2622
+Epoch 1/1... Discriminator Loss: 1.1844... Generator Loss: 1.0045
+Epoch 1/1... Discriminator Loss: 1.5009... Generator Loss: 0.7875
+Epoch 1/1... Discriminator Loss: 1.2890... Generator Loss: 0.6643
+Epoch 1/1... Discriminator Loss: 1.2547... Generator Loss: 1.2426
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.3409... Generator Loss: 0.6901
+Epoch 1/1... Discriminator Loss: 1.3804... Generator Loss: 0.5383
+Epoch 1/1... Discriminator Loss: 1.4042... Generator Loss: 0.7307
+Epoch 1/1... Discriminator Loss: 1.5044... Generator Loss: 1.7383
+Epoch 1/1... Discriminator Loss: 1.4054... Generator Loss: 0.5633
+Epoch 1/1... Discriminator Loss: 0.8011... Generator Loss: 2.2206
+Epoch 1/1... Discriminator Loss: 1.2483... Generator Loss: 0.5992
+Epoch 1/1... Discriminator Loss: 1.3313... Generator Loss: 0.5899
+Epoch 1/1... Discriminator Loss: 1.2300... Generator Loss: 0.9554
+Epoch 1/1... Discriminator Loss: 1.3818... Generator Loss: 1.0496
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.3802... Generator Loss: 0.7881
+Epoch 1/1... Discriminator Loss: 1.3059... Generator Loss: 1.2800
+Epoch 1/1... Discriminator Loss: 1.2707... Generator Loss: 0.8262
+Epoch 1/1... Discriminator Loss: 1.3435... Generator Loss: 0.7216
+Epoch 1/1... Discriminator Loss: 1.1423... Generator Loss: 1.5386
+Epoch 1/1... Discriminator Loss: 1.3705... Generator Loss: 1.4615
+Epoch 1/1... Discriminator Loss: 1.3879... Generator Loss: 0.5866
+Epoch 1/1... Discriminator Loss: 1.2942... Generator Loss: 1.0528
+Epoch 1/1... Discriminator Loss: 1.2455... Generator Loss: 0.7173
+Epoch 1/1... Discriminator Loss: 1.4368... Generator Loss: 0.5770
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.3614... Generator Loss: 1.5139
+Epoch 1/1... Discriminator Loss: 1.3375... Generator Loss: 1.1554
+Epoch 1/1... Discriminator Loss: 1.5048... Generator Loss: 0.8155
+Epoch 1/1... Discriminator Loss: 1.3531... Generator Loss: 0.7889
+Epoch 1/1... Discriminator Loss: 1.2752... Generator Loss: 0.8632
+Epoch 1/1... Discriminator Loss: 1.3345... Generator Loss: 0.6996
+Epoch 1/1... Discriminator Loss: 1.5458... Generator Loss: 1.1624
+Epoch 1/1... Discriminator Loss: 1.8949... Generator Loss: 2.2906
+Epoch 1/1... Discriminator Loss: 1.5799... Generator Loss: 0.3830
+Epoch 1/1... Discriminator Loss: 1.3848... Generator Loss: 0.7840
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.1885... Generator Loss: 0.7337
+Epoch 1/1... Discriminator Loss: 1.4297... Generator Loss: 0.9953
+Epoch 1/1... Discriminator Loss: 1.1458... Generator Loss: 0.9505
+Epoch 1/1... Discriminator Loss: 1.3446... Generator Loss: 0.7885
+Epoch 1/1... Discriminator Loss: 1.2624... Generator Loss: 0.8597
+Epoch 1/1... Discriminator Loss: 1.4662... Generator Loss: 0.5536
+Epoch 1/1... Discriminator Loss: 1.1388... Generator Loss: 0.7493
+Epoch 1/1... Discriminator Loss: 1.4432... Generator Loss: 0.4454
+Epoch 1/1... Discriminator Loss: 1.4186... Generator Loss: 1.0688
+Epoch 1/1... Discriminator Loss: 1.4904... Generator Loss: 0.4468
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.3577... Generator Loss: 0.9579
+Epoch 1/1... Discriminator Loss: 1.4756... Generator Loss: 0.6143
+Epoch 1/1... Discriminator Loss: 1.2961... Generator Loss: 0.8042
+Epoch 1/1... Discriminator Loss: 0.9653... Generator Loss: 1.3168
+Epoch 1/1... Discriminator Loss: 1.4968... Generator Loss: 0.7849
+Epoch 1/1... Discriminator Loss: 1.3341... Generator Loss: 0.8891
+Epoch 1/1... Discriminator Loss: 1.3685... Generator Loss: 0.7253
+Epoch 1/1... Discriminator Loss: 1.3404... Generator Loss: 0.9025
+Epoch 1/1... Discriminator Loss: 1.2645... Generator Loss: 0.8479
+Epoch 1/1... Discriminator Loss: 1.6065... Generator Loss: 0.4065
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.6008... Generator Loss: 0.3544
+Epoch 1/1... Discriminator Loss: 1.2181... Generator Loss: 1.1289
+Epoch 1/1... Discriminator Loss: 1.2560... Generator Loss: 0.9682
+Epoch 1/1... Discriminator Loss: 1.3160... Generator Loss: 1.1959
+Epoch 1/1... Discriminator Loss: 1.2201... Generator Loss: 0.7981
+Epoch 1/1... Discriminator Loss: 1.2491... Generator Loss: 1.1460
+Epoch 1/1... Discriminator Loss: 1.2200... Generator Loss: 0.7130
+Epoch 1/1... Discriminator Loss: 1.4682... Generator Loss: 0.8232
+Epoch 1/1... Discriminator Loss: 1.4792... Generator Loss: 0.9793
+Epoch 1/1... Discriminator Loss: 1.3934... Generator Loss: 0.6182
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.2531... Generator Loss: 0.8170
+Epoch 1/1... Discriminator Loss: 1.4623... Generator Loss: 1.2401
+Epoch 1/1... Discriminator Loss: 1.2366... Generator Loss: 0.9501
+Epoch 1/1... Discriminator Loss: 1.3075... Generator Loss: 1.3609
+Epoch 1/1... Discriminator Loss: 1.4270... Generator Loss: 0.9645
+Epoch 1/1... Discriminator Loss: 1.4111... Generator Loss: 0.8603
+Epoch 1/1... Discriminator Loss: 1.2284... Generator Loss: 0.7865
+Epoch 1/1... Discriminator Loss: 1.4061... Generator Loss: 0.6807
+Epoch 1/1... Discriminator Loss: 1.2659... Generator Loss: 1.0759
+Epoch 1/1... Discriminator Loss: 1.4578... Generator Loss: 0.7154
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.3840... Generator Loss: 0.7229
+Epoch 1/1... Discriminator Loss: 1.3608... Generator Loss: 0.7311
+Epoch 1/1... Discriminator Loss: 1.4321... Generator Loss: 0.7518
+Epoch 1/1... Discriminator Loss: 1.2556... Generator Loss: 0.9692
+Epoch 1/1... Discriminator Loss: 1.2830... Generator Loss: 0.7561
+Epoch 1/1... Discriminator Loss: 1.3029... Generator Loss: 0.9397
+Epoch 1/1... Discriminator Loss: 1.5198... Generator Loss: 0.4745
+Epoch 1/1... Discriminator Loss: 1.2650... Generator Loss: 1.0075
+Epoch 1/1... Discriminator Loss: 1.3682... Generator Loss: 0.6288
+Epoch 1/1... Discriminator Loss: 1.3223... Generator Loss: 0.6662
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.3569... Generator Loss: 0.8252
+Epoch 1/1... Discriminator Loss: 1.3871... Generator Loss: 0.7830
+Epoch 1/1... Discriminator Loss: 1.8022... Generator Loss: 0.2896
+Epoch 1/1... Discriminator Loss: 1.3923... Generator Loss: 0.6645
+Epoch 1/1... Discriminator Loss: 1.4469... Generator Loss: 1.4170
+Epoch 1/1... Discriminator Loss: 1.3721... Generator Loss: 0.7974
+Epoch 1/1... Discriminator Loss: 1.1933... Generator Loss: 1.0238
+Epoch 1/1... Discriminator Loss: 1.2738... Generator Loss: 0.9327
+Epoch 1/1... Discriminator Loss: 1.4144... Generator Loss: 0.9993
+Epoch 1/1... Discriminator Loss: 1.3502... Generator Loss: 0.6667
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.4132... Generator Loss: 0.5582
+Epoch 1/1... Discriminator Loss: 1.3437... Generator Loss: 0.7727
+Epoch 1/1... Discriminator Loss: 1.3675... Generator Loss: 0.7321
+Epoch 1/1... Discriminator Loss: 1.3730... Generator Loss: 0.9555
+Epoch 1/1... Discriminator Loss: 1.4001... Generator Loss: 0.6890
+Epoch 1/1... Discriminator Loss: 1.4468... Generator Loss: 0.4802
+Epoch 1/1... Discriminator Loss: 1.4452... Generator Loss: 0.6017
+Epoch 1/1... Discriminator Loss: 1.2895... Generator Loss: 0.9879
+Epoch 1/1... Discriminator Loss: 1.3213... Generator Loss: 0.7545
+Epoch 1/1... Discriminator Loss: 1.4087... Generator Loss: 0.7632
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.4724... Generator Loss: 0.4925
+Epoch 1/1... Discriminator Loss: 1.3801... Generator Loss: 0.7973
+Epoch 1/1... Discriminator Loss: 1.5132... Generator Loss: 0.9511
+Epoch 1/1... Discriminator Loss: 1.3006... Generator Loss: 0.9248
+Epoch 1/1... Discriminator Loss: 1.4002... Generator Loss: 0.7541
+Epoch 1/1... Discriminator Loss: 1.3821... Generator Loss: 0.6088
+Epoch 1/1... Discriminator Loss: 1.6036... Generator Loss: 1.3762
+Epoch 1/1... Discriminator Loss: 1.2994... Generator Loss: 1.0744
+Epoch 1/1... Discriminator Loss: 1.4678... Generator Loss: 0.6439
+Epoch 1/1... Discriminator Loss: 1.5260... Generator Loss: 0.4740
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.3717... Generator Loss: 0.6639
+Epoch 1/1... Discriminator Loss: 1.3463... Generator Loss: 0.7220
+Epoch 1/1... Discriminator Loss: 1.3487... Generator Loss: 0.9054
+Epoch 1/1... Discriminator Loss: 1.3769... Generator Loss: 0.7837
+Epoch 1/1... Discriminator Loss: 1.5438... Generator Loss: 0.5937
+Epoch 1/1... Discriminator Loss: 1.1925... Generator Loss: 0.8585
+Epoch 1/1... Discriminator Loss: 1.5108... Generator Loss: 0.8107
+Epoch 1/1... Discriminator Loss: 1.3479... Generator Loss: 0.8114
+Epoch 1/1... Discriminator Loss: 1.2299... Generator Loss: 0.8803
+Epoch 1/1... Discriminator Loss: 1.2651... Generator Loss: 0.7570
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.4447... Generator Loss: 0.6179
+Epoch 1/1... Discriminator Loss: 1.3410... Generator Loss: 0.9721
+Epoch 1/1... Discriminator Loss: 1.2921... Generator Loss: 1.2052
+Epoch 1/1... Discriminator Loss: 1.3283... Generator Loss: 0.9427
+Epoch 1/1... Discriminator Loss: 1.3041... Generator Loss: 0.7806
+Epoch 1/1... Discriminator Loss: 1.4502... Generator Loss: 0.6852
+Epoch 1/1... Discriminator Loss: 1.3364... Generator Loss: 1.0475
+Epoch 1/1... Discriminator Loss: 1.3068... Generator Loss: 0.9476
+Epoch 1/1... Discriminator Loss: 1.2938... Generator Loss: 0.9685
+Epoch 1/1... Discriminator Loss: 1.4735... Generator Loss: 0.5542
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.3093... Generator Loss: 0.8099
+Epoch 1/1... Discriminator Loss: 1.3734... Generator Loss: 0.6992
+Epoch 1/1... Discriminator Loss: 1.4837... Generator Loss: 0.5886
+Epoch 1/1... Discriminator Loss: 1.3110... Generator Loss: 0.9667
+Epoch 1/1... Discriminator Loss: 1.4147... Generator Loss: 0.9200
+Epoch 1/1... Discriminator Loss: 1.3674... Generator Loss: 0.6883
+Epoch 1/1... Discriminator Loss: 1.2852... Generator Loss: 1.0330
+Epoch 1/1... Discriminator Loss: 1.2894... Generator Loss: 0.9344
+Epoch 1/1... Discriminator Loss: 1.1895... Generator Loss: 0.8798
+Epoch 1/1... Discriminator Loss: 1.4130... Generator Loss: 0.7914
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.3060... Generator Loss: 0.7511
+Epoch 1/1... Discriminator Loss: 1.4302... Generator Loss: 0.6394
+Epoch 1/1... Discriminator Loss: 1.3354... Generator Loss: 0.7412
+Epoch 1/1... Discriminator Loss: 1.5316... Generator Loss: 0.4699
+Epoch 1/1... Discriminator Loss: 1.3360... Generator Loss: 0.7564
+Epoch 1/1... Discriminator Loss: 1.3748... Generator Loss: 0.9328
+Epoch 1/1... Discriminator Loss: 1.3011... Generator Loss: 0.7149
+Epoch 1/1... Discriminator Loss: 1.3411... Generator Loss: 0.7330
+Epoch 1/1... Discriminator Loss: 1.3431... Generator Loss: 0.7667
+Epoch 1/1... Discriminator Loss: 1.5367... Generator Loss: 0.6442
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.3587... Generator Loss: 0.7105
+Epoch 1/1... Discriminator Loss: 1.4629... Generator Loss: 0.6467
+Epoch 1/1... Discriminator Loss: 1.5333... Generator Loss: 0.8289
+Epoch 1/1... Discriminator Loss: 1.4835... Generator Loss: 0.4824
+Epoch 1/1... Discriminator Loss: 1.3330... Generator Loss: 0.9264
+Epoch 1/1... Discriminator Loss: 1.4501... Generator Loss: 0.7557
+Epoch 1/1... Discriminator Loss: 1.3579... Generator Loss: 0.8731
+Epoch 1/1... Discriminator Loss: 1.4515... Generator Loss: 0.9340
+Epoch 1/1... Discriminator Loss: 1.3060... Generator Loss: 0.8987
+Epoch 1/1... Discriminator Loss: 1.3188... Generator Loss: 0.6393
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.4152... Generator Loss: 0.6163
+Epoch 1/1... Discriminator Loss: 1.4929... Generator Loss: 0.6064
+Epoch 1/1... Discriminator Loss: 1.5524... Generator Loss: 0.4964
+Epoch 1/1... Discriminator Loss: 1.4786... Generator Loss: 0.7433
+Epoch 1/1... Discriminator Loss: 1.4437... Generator Loss: 0.6628
+Epoch 1/1... Discriminator Loss: 1.4178... Generator Loss: 0.7201
+Epoch 1/1... Discriminator Loss: 1.2742... Generator Loss: 0.8131
+Epoch 1/1... Discriminator Loss: 1.3555... Generator Loss: 0.7472
+Epoch 1/1... Discriminator Loss: 1.2990... Generator Loss: 0.8521
+Epoch 1/1... Discriminator Loss: 0.8481... Generator Loss: 1.3975
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.3439... Generator Loss: 0.6907
+Epoch 1/1... Discriminator Loss: 1.3787... Generator Loss: 0.7232
+Epoch 1/1... Discriminator Loss: 1.3393... Generator Loss: 1.2362
+Epoch 1/1... Discriminator Loss: 1.4625... Generator Loss: 0.6389
+Epoch 1/1... Discriminator Loss: 1.2682... Generator Loss: 0.9903
+Epoch 1/1... Discriminator Loss: 1.3393... Generator Loss: 0.6646
+Epoch 1/1... Discriminator Loss: 1.5688... Generator Loss: 0.5454
+Epoch 1/1... Discriminator Loss: 1.1573... Generator Loss: 1.0297
+Epoch 1/1... Discriminator Loss: 1.1199... Generator Loss: 1.0091
+Epoch 1/1... Discriminator Loss: 1.0635... Generator Loss: 1.0411
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.9337... Generator Loss: 0.2622
+Epoch 1/1... Discriminator Loss: 1.2560... Generator Loss: 0.8398
+Epoch 1/1... Discriminator Loss: 1.2232... Generator Loss: 0.7815
+Epoch 1/1... Discriminator Loss: 1.4801... Generator Loss: 0.6008
+Epoch 1/1... Discriminator Loss: 1.3070... Generator Loss: 0.6860
+Epoch 1/1... Discriminator Loss: 1.3470... Generator Loss: 0.7634
+Epoch 1/1... Discriminator Loss: 1.5236... Generator Loss: 0.6591
+Epoch 1/1... Discriminator Loss: 1.3827... Generator Loss: 0.9191
+Epoch 1/1... Discriminator Loss: 1.2797... Generator Loss: 0.8605
+Epoch 1/1... Discriminator Loss: 1.3069... Generator Loss: 1.0828
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.4493... Generator Loss: 0.9787
+Epoch 1/1... Discriminator Loss: 1.3226... Generator Loss: 0.8376
+Epoch 1/1... Discriminator Loss: 1.3657... Generator Loss: 0.7043
+Epoch 1/1... Discriminator Loss: 2.0819... Generator Loss: 0.2141
+Epoch 1/1... Discriminator Loss: 1.4158... Generator Loss: 0.5562
+Epoch 1/1... Discriminator Loss: 1.2893... Generator Loss: 0.7726
+Epoch 1/1... Discriminator Loss: 1.3175... Generator Loss: 0.7764
+Epoch 1/1... Discriminator Loss: 1.3040... Generator Loss: 0.9346
+Epoch 1/1... Discriminator Loss: 1.5212... Generator Loss: 0.6124
+Epoch 1/1... Discriminator Loss: 1.3328... Generator Loss: 1.0946
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.3074... Generator Loss: 0.8244
+Epoch 1/1... Discriminator Loss: 1.5227... Generator Loss: 0.6513
+Epoch 1/1... Discriminator Loss: 1.3824... Generator Loss: 0.5856
+Epoch 1/1... Discriminator Loss: 1.5399... Generator Loss: 0.5881
+Epoch 1/1... Discriminator Loss: 1.3308... Generator Loss: 0.8962
+Epoch 1/1... Discriminator Loss: 1.4280... Generator Loss: 0.7422
+Epoch 1/1... Discriminator Loss: 1.2792... Generator Loss: 0.9444
+Epoch 1/1... Discriminator Loss: 1.3914... Generator Loss: 0.9070
+Epoch 1/1... Discriminator Loss: 1.3808... Generator Loss: 0.7781
+Epoch 1/1... Discriminator Loss: 1.4229... Generator Loss: 0.7619
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.3483... Generator Loss: 1.0495
+Epoch 1/1... Discriminator Loss: 1.3219... Generator Loss: 0.8450
+Epoch 1/1... Discriminator Loss: 1.3759... Generator Loss: 0.8250
+Epoch 1/1... Discriminator Loss: 1.4419... Generator Loss: 0.6523
+Epoch 1/1... Discriminator Loss: 1.2803... Generator Loss: 0.8917
+Epoch 1/1... Discriminator Loss: 1.3013... Generator Loss: 0.7574
+Epoch 1/1... Discriminator Loss: 1.3968... Generator Loss: 0.7108
+Epoch 1/1... Discriminator Loss: 1.3129... Generator Loss: 0.9058
+Epoch 1/1... Discriminator Loss: 1.4153... Generator Loss: 0.8783
+Epoch 1/1... Discriminator Loss: 1.3831... Generator Loss: 0.7992
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.4230... Generator Loss: 0.5748
+Epoch 1/1... Discriminator Loss: 1.3313... Generator Loss: 0.9232
+Epoch 1/1... Discriminator Loss: 1.2939... Generator Loss: 0.8525
+Epoch 1/1... Discriminator Loss: 1.3392... Generator Loss: 1.0006
+Epoch 1/1... Discriminator Loss: 1.4827... Generator Loss: 0.5120
+Epoch 1/1... Discriminator Loss: 1.2983... Generator Loss: 0.8530
+Epoch 1/1... Discriminator Loss: 1.4825... Generator Loss: 0.6011
+Epoch 1/1... Discriminator Loss: 1.3184... Generator Loss: 0.8947
+Epoch 1/1... Discriminator Loss: 1.2802... Generator Loss: 0.8693
+Epoch 1/1... Discriminator Loss: 1.4412... Generator Loss: 0.7739
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.3356... Generator Loss: 0.7553
+Epoch 1/1... Discriminator Loss: 1.4345... Generator Loss: 0.7667
+Epoch 1/1... Discriminator Loss: 1.3151... Generator Loss: 0.8760
+Epoch 1/1... Discriminator Loss: 1.4366... Generator Loss: 0.7039
+Epoch 1/1... Discriminator Loss: 1.3346... Generator Loss: 0.9874
+Epoch 1/1... Discriminator Loss: 1.3435... Generator Loss: 0.7690
+Epoch 1/1... Discriminator Loss: 1.3227... Generator Loss: 0.7796
+Epoch 1/1... Discriminator Loss: 1.4459... Generator Loss: 0.7080
+Epoch 1/1... Discriminator Loss: 1.3379... Generator Loss: 0.6979
+Epoch 1/1... Discriminator Loss: 1.6802... Generator Loss: 0.5041
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.2873... Generator Loss: 0.8386
+Epoch 1/1... Discriminator Loss: 1.3842... Generator Loss: 0.7583
+Epoch 1/1... Discriminator Loss: 1.4189... Generator Loss: 0.7991
+Epoch 1/1... Discriminator Loss: 1.3378... Generator Loss: 0.8856
+Epoch 1/1... Discriminator Loss: 1.3755... Generator Loss: 0.8002
+Epoch 1/1... Discriminator Loss: 1.3075... Generator Loss: 0.8532
+Epoch 1/1... Discriminator Loss: 1.3158... Generator Loss: 0.9599
+Epoch 1/1... Discriminator Loss: 1.4263... Generator Loss: 0.6772
+Epoch 1/1... Discriminator Loss: 1.3762... Generator Loss: 0.8854
+Epoch 1/1... Discriminator Loss: 1.4065... Generator Loss: 0.7769
+
+
+
+ +
+ +
+ + + + +
+ +
+ +
+ +
+ +
+ + +
+
Epoch 1/1... Discriminator Loss: 1.4026... Generator Loss: 0.5969
+Epoch 1/1... Discriminator Loss: 1.2856... Generator Loss: 0.8660
+Epoch 1/1... Discriminator Loss: 1.3118... Generator Loss: 0.7520
+Epoch 1/1... Discriminator Loss: 1.2754... Generator Loss: 0.7607
+Epoch 1/1... Discriminator Loss: 1.3532... Generator Loss: 1.0381
+Epoch 1/1... Discriminator Loss: 1.3217... Generator Loss: 0.8141
+
+
+
+ +
+
+ +
+
+
+
+
+

提交项目

提交本项目前,确保运行所有 cells 后保存该文件。

+

保存该文件为 "dlnd_face_generation.ipynb", 并另存为 HTML 格式 "File" -> "Download as"。提交项目时请附带 "helper.py" 和 "problem_unittests.py" 文件。

+ +
+
+
+
+
+ + + + + + diff --git a/face-generation/dlnd_face_generation.ipynb b/face-generation/dlnd_face_generation.ipynb old mode 100755 new mode 100644 index 59bd77f..4028440 --- a/face-generation/dlnd_face_generation.ipynb +++ b/face-generation/dlnd_face_generation.ipynb @@ -2,37 +2,41 @@ "cells": [ { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ - "# Face Generation\n", - "In this project, you'll use generative adversarial networks to generate new images of faces.\n", - "### Get the Data\n", - "You'll be using two datasets in this project:\n", + "# 人脸生成(Face Generation)\n", + "在该项目中,你将使用生成式对抗网络(Generative Adversarial Nets)来生成新的人脸图像。\n", + "### 获取数据\n", + "该项目将使用以下数据集:\n", "- MNIST\n", "- CelebA\n", "\n", - "Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.\n", + "由于 CelebA 数据集比较复杂,而且这是你第一次使用 GANs。我们想让你先在 MNIST 数据集上测试你的 GANs 模型,以让你更快的评估所建立模型的性能。\n", "\n", - "If you're using [FloydHub](https://www.floydhub.com/), set `data_dir` to \"/input\" and use the [FloydHub data ID](http://docs.floydhub.com/home/using_datasets/) \"R5KrjnANiKVhLWAkpXhNBe\"." + "如果你在使用 [FloydHub](https://www.floydhub.com/), 请将 `data_dir` 设置为 \"/input\" 并使用 [FloydHub data ID](http://docs.floydhub.com/home/using_datasets/) \"R5KrjnANiKVhLWAkpXhNBe\"." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found mnist Data\n", + "Found celeba Data\n" + ] + } + ], "source": [ - "data_dir = './data'\n", + "#data_dir = './data'\n", "\n", "# FloydHub - Use with data ID \"R5KrjnANiKVhLWAkpXhNBe\"\n", - "#data_dir = '/input'\n", + "data_dir = '/input'\n", "\n", "\n", "\"\"\"\n", @@ -46,25 +50,41 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ - "## Explore the Data\n", + "## 探索数据(Explore the Data)\n", "### MNIST\n", - "As you're aware, the [MNIST](http://yann.lecun.com/exdb/mnist/) dataset contains images of handwritten digits. You can view the first number of examples by changing `show_n_images`. " + "[MNIST](http://yann.lecun.com/exdb/mnist/) 是一个手写数字的图像数据集。你可以更改 `show_n_images` 探索此数据集。" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsfXd4VGX2/+ed3hKS0IIQZCkLKmtXsIJlVZQVFERZ+Yrd\ntYFdsCvi2lARRUWXRd21Y8PdVQQUy+6KKKAioogigtSQnsm09/fH5Zyce3MnM0kmkuzvfp5nnkzu\n3PK2e97Tj9Jaw4EDBw4Irl3dAAcOHLQtOETBgQMHJjhEwYEDByY4RMGBAwcmOETBgQMHJjhEwYED\nBya0GlFQSp2glFqtlFqjlJrUWs9x4MBBbqFaw09BKeUG8C2A3wP4GcCnAMZqrb/O+cMcOHCQU7QW\np3AwgDVa67Va6xiAFwCMaKVnOXDgIIfwtNJ9uwNYL/7/GcCgdCcrpbRSCtlwLZnOy/Y+8nwATbqm\nJUj3POtxaz+yvW5Xw+Uy9plUKmX6TthV42195q4aN7v16XK5TGNkN27W8xv7vRFs01p3znTSLlM0\nKqUuVEotVUotBQCfz2f63eVy8UfC42mcjnk8HiileNLlPdxuN9xuN//udrsRCAQQCATgdrtz1rfG\nQM+jtlJ/vF4vvF6vqR8S8lyCUsr2+K6CUgqRSASRSAQAEAwGEQwG+TelFPx+P/x+f6P3aAwul4v7\n7PF4eE4bWy8ej6fB+pLzIO/d2rC2AwBCoVCD/63HJGhc5VgppWz7b8G6bNrYWqtpA4AS8X+PnccY\nWutZAGYBBqdQV1cHoH7QXC4X6JhEPB7nyYxGo3ycFprW2kSJ5c5r3R2SySRqa2v5XHp2MplEMpls\nWo+zQDgcRnV1Nf+fSCQAGAs3FosBgG3fqP30V/YpHo/nvJ3NhcvlQkVFBf9PfQ0Gg9w/a7+skHPn\ncrn4f/qbSqVsd0jrbktzSWNsHSea92AwaFoDrY26ujoUFRUBAMrKygAAVVVVTARisRiqqqoaXCfn\nXa4h2szcbjePcUvRWkThUwD9lFK/gUEMzgDwx3QnK6Xg9XqRSCRsO2bdRWmCaUC01iYCQtQyGAzy\nIkwmk7xA5A5Bz/N6vXxdrgbX2h45mQUFBbwYZdtp4uUiV0oxkdJamziDZrCQOQfNQzKZ5O+BQIBf\nzB07djTrvpKQZyLS4XAYlZWV/D+tEUlkunTpAsB4GeW80zzYsfBy7HOF8vJy0zNSqRRqamq4H7TB\nxWIx7kckEuGxoHUkN8BcrtlWIQpa64RS6jIA7wBwA5ittV7ZGs9y4MBBbtEqJskmN0IpDZhlulQq\nxbuOUop3eTuQbAkYuy7tUEop3oXt2ES/328rorQW5A4v++P1ern9xNn4fD7TDiW/0zh5vd5ftf3p\nIEWedOKPlZ1Px+G43e6MOzP1X46n3CmJ8wTqx03es2PHjti+fXujz6DrE4lETpWRUoQkjiAcDrPY\n1dg6t8LtdvM4aq2Rl5cHACaOyYLPtNYHZrpv29BQ7UQqleLFo7U2TaTUNdCEUecTiYRJmSgXCC1S\nO7lREh66lpBrEQIw6wCkgjAajfLx/Px8ADDJ5lblkVwIbQFEAGbOnIlTTz0VAPDaa6/h6quvBgDU\n1NRwX7N54e3OoeulTiEej5sIQ0FBAQCDPbeKD8XFxUwIrAShsLAQgFnMaS1dTXV1dYOXVxJ2uVFJ\npaxcD4RkMslK3aqqKpN42hI4bs4OHDgwoU1wCkopBAIB1NbWpt2h5e5BO5NUcNkpDOPxuIkK045A\nSh35m7QA5Bpklksmkxg7diwAYM6cOax9Vkph5syZAIAHHnigwfWpVIq5I7mDNYXVbE2cc845AIDz\nzjuPObqBAwfyOOfn59vudHawcgnUb5pT2WetNY9Hx44dWWs/a9YsrFixAgDw4IMPAgB++ukn3qE7\nd+6MhQsXAgAmTZqEpUuX8j3D4bDp+bnafQmRSKSBaBUMBnkt19TUMHdQV1dnWqOdOnUCUG+1sM5/\nzpTOpMHclR+llA4EAhoAf7xer/b7/drv92sAeqeDkw6Hw3xOOBw2/U/H6Fy6j9fr1QC0z+fTPp/P\ndH5hYaEuLCzUoVCIj8nvufiEQiEdCoX0pEmTdDwe1/F4XFdXV+uHH35YP/zww3rNmjWaMH/+fD1/\n/nzdo0cP7XK5tMvlMvXD4/HktG25+EybNk1PmzZNl5eX62g0qqPRqP744495HtxuN5+bl5en8/Ly\n0t6L5k2uA6/XaxoL+p6fn6+7d++uu3fvridPnqxXr16tV69erbXWuq6uTtfV1emamhpdU1OjJeLx\nuK6oqNAVFRX6/fff5zVg155IJJLz8QoGgzoYDPL/LpdLFxcX6+LiYj1jxgxdVlamy8rK9F133aVL\nSkp0SUmJ6Xo5Fm63m8dXrvU0n6XZvI+O+ODAgQMT2pT1AbBXKPXt2xcXXXQRAINFJTFg7ty5AIBn\nn32WWf8uXbpg3TrDcWuPPfbAlClTABjsJUEqckgBecstt+D+++9vlf6RaHDOOedw/4YMGcJsq1IK\nDz/8MADgwgsvBAAcffTR+PLLLwEA27ZtM3loSha7Lbg5f//99wCA3r1787GZM2di4sSJAAw2V7LE\njcHj8WQUi0ih2KNHD8yZMwcAcMABB/B15LVKzwaAd999l/0DzjjjDL5XPB43eRmSExGJPk11m8+E\nUCjE96Y1OXfuXAwZMgSAoTAk5WFNTQ2+++47AMDo0aOxZs0aAPXviFSwpxMxLWhf1gfrJLpcLuy7\n774AjJe+V69eAAyZjIjFyJEjAQAjRtTHWjXm6kmynHSzpXPvuOMOJiz0gqaD1XvODsFgkOXTwYMH\nAwC+/fZbjB8/HgCwfPly0yTOmDEDgEH0AGPhb9u2DQBw4IEHYujQoQCAt956i1/CeDzeKkSBXMCB\nhqZT64K7/fbbUVxcDMDQB5SWlgIAHnvsMZPHJhGDTAs3kUiwDkZajKRVhvp69NFH44ADDgBgvED0\nQj/wwAN4++23AQBfffUVAOCXX37hPnXp0gWHHHIIAGOejjzySADABx98YHIiAnKvU5DtnDBhAgDg\niCOOwKZNmwAAX3/9NTp06ADAIHQDBgwAYLaGyTmR6zBXFhNHfHDgwIEJbYZTsO504XAYffv2BWBo\nsgmS0soYBtrxJZcQi8WYwiaTSabARF2TySTvtMFgEL/73e8AAH369OHd2A5Wd1j63+VyMWtbWlqK\n119/HQCw3377ATBEg+XLl/O10mfh0EMPBWDsaADwww8/4PDDDwcA/PWvf0XPnj0BAKtXr8Y333zT\n4Nm5hHSlTiaTPM4UQAbU29gvvfRSk4/Iiy++CADYuHEj30+yuc3dzeR1JAa89tprzIG4XC5s2GCE\n1yxYsMDE/hOo7Z06dTKJYLvtthsAwxeG1gtxCHl5eY05AzUZgUCA23b22Wdz2++++24AwOOPP87r\nvqCggNfT+vX1QcfSN0FCihUtgcMpOHDgwIQ2oWh0uVyaAqLkzrfnnnsCAJ566inss88+AMxhprR7\nyEAcr9fLu0B1dTVT5Yceeoh1CuR1d8QRR7DcWltby4qfkSNH4o033siq7VY5m2Rmv9/POwzZlY8/\n/njmFBKJBHMuZWVltjoBUog9//zzfOz000/HSy+9xM+gZ+eaY6Ad1uv18u4pXZBJx7NixQrmAiKR\nCA466CAAMNn+6Teg4e5mBzu9A+2CVk9X+btUNFrPKSoqwiWXXAIAuPLKKzlSETB0EwCwePFiUxAa\nPS/XIIUsKZKrqqpYLyOf179/f5SU1AcbL1iwoMG9pKIxC06h/Sgatda88EjJ5PV68fXXRva2MWPG\n8ALJy8vjTssBJKLg8Xh4YqXzx/bt23mhzJo1C4DBilPkXMeOHfHzzz8DACt90kFqpKUIIp1pJkyY\nwH165ZVXAADLli0zLXS7SD5ysCkqKmKiEI1G+WWSrth1dXUZ8w80B5JllgquZDKJrl27AgBmz54N\noF4BCBgOQkQAQ6EQE+FUKsXEN5uXjeZXElx5jKwF0WiUX4R4PM5rJ5FI8FxT+zp16sSKPUkQFi5c\niP/85z/cTgJdR6JKruB2u5lwEvF79tlneTxknoQBAwawCFpZWYnOnc35UVKpFJ8bi8Vy5szmiA8O\nHDgwoU1wCm63G3l5eSgrKzOx84QNGzYwJd2xY0ez3JH9fj/vBGTGktGJQD17RmxdOkhFnLTBx2Ix\nZg0vu+wybue7774LwBzAk0qlePeXnAft0NOnT2dTaywWY4WT1dzaGuytVKxRZiPA6Ou4ceMAAEcd\ndRQAg3sg7uDuu+/Gli1bABjzJxWUtHPTLp9uDuW5MmCNjkkzrMvl4l138uTJuO+++wAYyjwSzchE\n+tBDD/EYAsB7770HwFD+EkcjFbfEIdiZYVsCpRSbqGUkJvVTrvva2lpuTzAYtPXxkJyi1ceiuWgT\nRCGZTDbKpgUCAV5EsViMB1BaHGjRSBbK7XbzwEejUZaD33nnHQDGpEj289tvvwWQ3aCSJruqqsoU\ntXjwwQcDALp3787P3rp1KwAjUs9ONFFK8YSSRpr8GajPJJPTCwgAHTp0yDl7S6D+ybiSoqIi/OEP\nfwBQz2pXV1fj1VdfBWD4JtghEolwOzPpPjwejync2WpVkqImAOy+++4AgGHDhmH48OEADLHKLuUb\nXZdIJNi6sHbtWpNjlVX34fP5ckoUEokETjnlFP4OGHNKfZZh3d26dTNZtshKQoQuGo3yuCSTyRYT\nA4IjPjhw4MCENsEpAPVssF2m2mg0yh5mVVVVtokz7GDNtXjVVVcBqHe1raurY5fpzZs3sztyJiil\nTO2T3AntOtFolN2tP/zwwwbnFRUV8Q5UWVnJPhL33nsvAGNXo+uIVQdgSkuXjSa/OQgEAsyWyl1y\nxIgR7HNB85Sfn48lS5bwMckSExeWzhvPDlYWmcZZ5tOQVqfu3bsDMPuv+P1+HhuZ45GUh4lEAgce\naCjhzzvvPPztb3/j58nxBXLv0ehyuVg8o/HZvn0794N8LQBgr7324t1/yZIlzHHKOaH+SR+LlqJN\nEAUZOk2LwOv1mpyMSNayS+YpIf3egfpFddlll3GIL4kfUk574IEHTLnzGmNztdY8WVLG93g8zPrl\n5eXh8ccfB2B+EWhxEwsIABMnTsRdd90FoF4uvO2229jX/dhjj+XQ486dO5tYRjKjZsok1BTI0F63\n283OY3/+859N1gbAWKzksJRKpXg8ZdYriSz8802iC52XbsGTZeeAAw5gUeKQQw7hF4h0HEuWLGHL\nztlnn80mwGuvvRZ/+ctfABhzSYlW0qWGbylSqRSPV//+/QEYc02EdcOGDbxGhgwZwuO9cuXKBmMm\nCUEikcior8kWjvjgwIEDE9oEpwA0FAWklln+buUgADPFTCaTJsXRPffcAwC47rrrmG0je/amTZtY\nC03Kx6ZCFj2Jx+Mmawb5PRACgQDvwh6PB5dffjkA4NZbb+XdkSwg999/P4477jgAZuuEVGx6vd6c\ncggEl8vF/YjH4xy5STstAA7WGjNmjK0bcLrdNZPSzuv18hiFQiE+X1ocpGL3xx9/BACceeaZfM7A\ngQPxww8/AKhPYxYIBJgLO/roozlhSZ8+fXDLLbcAMILiCKRwzKWLM+G5554DAAwaZNRHOuGEE9ip\n7e2332Z/hO7du9vmtLTLxejz+TKmz88WbYIokNOPjM6Tky/ZbyuxAAx2SUbREdt6xRVX8IKuqKjg\nc+j36upq9nIrKytrUmQcER6Xy2UyI8nJO/HEEwHUhxZ/+umnvACvv/56k0nyzTffBADWTEsTqozb\nsDo/5crfXULK7SNGjMCYMWMAGC8pEWJakM1N354O1sxKBGkWlZYIq8kSMLwsJREBzCLRlClT8OST\nT/Lxiy++GIAhHtHzqX+5Dp0GDIsHANx4440AgFdffZU3iOOOO86UZYrmV65JWr/SizOVSqVNmttU\nOOKDAwcOTGgTnALQkN2Mx+NpKTQdJ8XSxo0bmU0MhUK46aabABgOLSRWyB2clFDkU0AgapzJYcXv\n9/N9ZRuVUrzDlJeX4/jjjzc9p7CwkCl7IpHgdtx///2s7CJFXCwWY25EiiXbt2+3TayRS04hkUiw\n+/e4ceNM8SYkNlC8QLa5F5uDeDzO/ZPzR8fq6uqYQ+jZsyePwcaNG3leqO3V1dU8ZyeddJIptwZx\nkIcccgg++OADUxtIAZ4rSOesVatWAQC++OILPP300wAMkeGwww4DAEybNo3dyiORSKPFinKZX7TZ\nnIJSqkQp9Z5S6mul1Eql1MSdx4uUUu8qpb7b+bcwZ6114MBBq6MlnEICwNVa68+VUnkAPlNKvQvg\nbAALtdZ3K6UmAZgE4Pqsb5pmx5O7I1F/8gMA6nfjiy66CKNHjwZg7OIy1RaltqKMTdFolE2LRUVF\nzClkShkmf+/QoQNT6draWlZc3nPPPbjiiisA1JcrKy0t5Z110aJFuO222wDYx8rLNGFS+VZbW8tc\nQyqVyplyyQqKSj344INNY0jBQ6Tgy3W+AamotaYbI0gzMCmNf/rpJ9N9SL6Wsvhll10GoH7+CbSe\nfvvb37JpkI5J03EuIAu/EDfqcrl4jNevX49//OMfAIBLLrmETacHH3wwB3KRHieZTPJ1qVQqZ9xi\ns4mC1voXAL/s/F6plFoFowT9CABDd572NID3kQVRcLvd0Frbli2XFgdZd48WUHFxMc4880wAwMkn\nn8zsoGQ/v/32WxxzzDEADEclwLy4SktL+dxMVYqKiop4sUg3486dO7NI8Oc//5lzSNI5NTU1vFjr\n6upMrLddaDEtaKmAJa05oTViHwYPHozp06cDACd3AQxl7LXXXgugfuxzrZ2X1iMZSi+Vy9b4AMAc\nMu/z+RrEiCilWKuvteaxjUQirIx+6qmn+DmyUlcuWfOKigqT4xf1QcZf0JguXLgQRxxxBAAjYpKO\n2xFI6erf0jWRE52CUqoXgP0AfAKg606CAQCbAHRNc82FAC7MxfMdOHCQO7SYKCilIgDmArhCa11h\n8QSjPP4NoC2l6K07s9vtNtn/7agf2fEHDRrErKHL5WKqGwgEmN295JJLeFchts3r9Zoiy7KtcFxa\nWsq7mc/nYwpOSjgCBVgRF1BdXW3aWYkz8fl8DUQWpRT3Ix6P8/Py8vJMO0VrmCSDwSD22GMPAOZo\nx4cffpjNq7Kydy4VcVZukWCXHq53796sbJ46dSoHDD344IPM6ZCZ+dxzz2UuR2vN7V+xYgWeffZZ\nAMaao0hK8v/Idfk46SIvg9sIhYWFzC2SIhIwuFPiLIgbBVpufrRDi4iCUsoLgyD8XWv96s7Dm5VS\n3bTWvyilugHY0sx727JDHTp04NDThx56CICRBYgmWabI/uabb9j+K3MjSucPWWGoOaywZPelfz1Q\nrxGmc2QEoEzIIhceuS3v2LGDZUitNRONtWvXtno69xNPPJFf9GAwyHb1W2+9tYGYk0uCQKBxk74q\nRLAlwRg/fjy/6KRbAIA777wT5557LoB6t/KuXbuaIidJv3TAAQeYNgHppg7kXjxyu91MwGlD8ng8\nLEpKZ7T33nuP29mvXz+cfvrpAOoT3ESjUb5HVVVV1mn0M6El1gcF4C8AVmmtZa2zNwFQ3O94ANnl\nNXPgwEGbQEs4hcMA/B+AL5VStA3fAOBuAC8ppc4DsA7AmEw3UkrB7/ebWCFrJCJFM/bu3ZvTqUkl\nGO22kUgEn3/+OQDg4osvxmeffQbAHEglqT9RV0mhZbnwdJDUWAaiNGa3TyQSJuWp1D7TcWqHUor7\n53a72UKxdOlSk9KtNepJynkoLy/nTMNAQ84gm+ItTYG8n+SI5DOIKzjzzDNNUY2kgI5EIhxsRGPl\n8/n496+++oojT30+n4kror7TGsmkdG4qZD+sCnNqL63Jbdu24a9//SsA4IYbbsDvf/97AMAjjzxi\nOp+Qq3a2icStpHeIRCImdpwmPxaLcYcfe+yxBqwhUG+efP7553kgv/3225xFju0KUFTnrFmz8PLL\nLwMALrjgAhPBas/9s4M1QtUuqpIcegYMGMAsdV5eHr/cvXv35rgCEnc2btzICW8nT55sCr9vjTT5\nuQKJMXPnzmWiQEVz58yZgy+++AKAMW5k2Wok2UpWiVsdN2cHDhyY0KY4hcaCTyiV2ttvv83OQCRS\nbNmyBddfb7hCUG1BIPes368JyTUVFhaaAo8oOKq6urrNlKPPFaycQmPWlYKCAtbg+/1+Uy4H4jCI\nvQ4EAuwv4vP5TH4vbZlTkD4bVJrgmWeeAWBwSsQVSItEI8iKU9jlZeh3EoEGZbOp1DZ9CgoKdEFB\ngf7zn/+sCS+88IJ+4YUX9OGHH649Hg+XaacS9hnKcrfpj8/n4+8ej0eHw2EdDoe1y+XiEu+wlCL/\nX/zIsut2H5p3mnu7tWO9l8fj4e80juk+mX7fFf2PRCI6EomkfUcauZ9Tit6BAwdNR5sRH+xYfWL9\nPB4PK5rSiQSkcLPmZWyt6sG/BlrDr72tI1MaNJluL5lMmqJKCX6/n5XUZE2QBWLS3duuHVYr2K5C\nIBBg8UhGgMqCO1nAUTQ6cOCg6Wgz+RTsdn+iiNIclUwmGxS9kJmC6H/AoJ52pjoZLEMU1u12886c\nyUtPKkStdnppIrSaC61KNLt6jXb9l7untGknk8mM2XakSU9yTbSTyszIMqM2tdPqs2H1mvN4PKYS\neqQYdLvdJl8Ou2hHO8jIVrvkr6lUyrTLy3VD18lygbJMnV0eCq11o1xYU7kEqdiUKQIbO9fn89nW\nLZGggEEJaXp0u92mNHUtQZsRH3J1L6/Xy5MvF5TH4zEVKQXMkyUnoykOOU0hCvLlTseWkmWhvLzc\n1kbvdrtNrHFTxAr5glhrOrpcLlNJeblIG3uBMmW+JmQbo5EpKlE6K6VSKdMc2hFPep4kbumsXHl5\neQ1Sw2cD6pt8XjpIBym7dHNybtxut+1Y0EYAmDeDLHxWHPHBgQMHTUebER+aA2Jlk8kkU+h0UW0y\nNl/ubESh5e7h9XpzotijXcwuuajH42ExSO74ZEuXdnegnoOoq6szeX1mCoKhZ8jkLID9jiZTxdm5\nUmutG6RHk8q+dGMv3bibCtlmel66zMZSAUesNXFVUgSS2arD4TCPuV3wUzZRoNZShfQMKQbR8+W9\npBhrJ2K4XC7b+pA0116v17bieUvRLsUHK5tktUjQQErWt7q6midBssNSlGiOltnj8ZiIjcw0LFlz\n+mtXeUn2SWYfTieH04vgcrmaVUtSLiYaw/z8fF64gUDAlCVYttVqzZH3sqa4t3tZmuJMJgsAWwvU\n2N2LCGQ4HOYkOHI+CI2teUrEQv1rrD4jhVnLEOhMBNLn89mmbZcEgtpnbaedeGC3MTYCR3xw4MBB\n09EuOQUrGssTSJQ7Eok0qFEQiUR4R7BqpzO018QF2CVnkQozu91D7hjpnknXBQKBtP0j9jgTi2sV\nR2SeR6Dx3ZN2xJqamqwDr2RJvqZyYFYLi4TL5TJZTmRFbJlPkdLWUUDUAw88gF9+MRKCFRcXs1vw\nO++8w8lwVq5c2aAtjWX2tnIs6XwsXC4Xc1hyHu2sYNa+yuM0DzTXdol5rM+2ICtOoV0SBVoUNKiH\nHnoo57IbOXIkF2sF6l/EZ555huMiPvroI7s2mOTlxlgxq/ba7qWXZeLt5MJAIMDna60b6AbkYpCa\n82AwyAts27ZttrkdJei+oVCI75Huxe7RowcA4LDDDuOiNKlUCsOGDQNgJHh59913AQCffPIJAOC1\n117jqEXKfQkYRI8WaVOTftixyY0RCgIlpfF6vZy8lxLxSGuPLDmfSqWYQDz66KOYP3++qX9WYmoH\nmWaf1kUgEGCrhJybQCDAzx4wYAAAYPjw4dzePn368LmlpaUYP348AOCf//ynyXxO4yC/Z2HhccQH\nBw4cNB3tklOgPAOUwXnQoEFMfWOxGCul8vPzmWp6PB58+eWXAIxMy4CRe4GQTWKVdJA7G+2Ou+22\nG5cVl7Z1+i65hr322ot3CkqscsMNN5h2XsKVV17JCUKuvPJKzpnYVFA75O5y7733AjDyWdLvy5cv\nN1W27tatG4B6haPH4+F8iHPnzsXSpUv5Gc3N9WBnUZH+G4SuXbuyku+CCy7g+pGPPvoo526kcV60\naBFmzJgBwNiB9913XwBGWTwq7+dyubhK9bRp0wAATzzxREZlrh23ZhU7iFu85557cNBBBwGoL0sg\nxY6qqiqek0AggFtvvZXbY12f1hwKuRIf2qVJkkJIKWW7XHRaa5Ydt27dir///e8AgN/97nfMElNi\njrfffpv1DFYHpKYsZDunmWAwaLu45UI58sgjARgJUanOAmVuWrNmDROvbt26MQG8+eabsWzZMgBG\njcpMHo0y4amME7Dmh1RKYciQIQCAl156iWtSrF27lvsRjUa5LD3hwQcfxKRJkwAYGnuSzysqKmzZ\n2Gz0NlYzJGCeHwqZ/+Mf/4gHHniAf6e+yo3hoosuAgC88cYbpgLDRLyee+45FjumT5/Oa4SKzZaU\nlHCez3Sw0znINbH33ntzoeMTTjihwXWyfgMRGPr9008/BWA2qUqRoTViYhzxwYEDBya0S/GBysaT\nQrGqqopZ7c8//xwTJ04EYLZKdOrUCV999RWAeta5Y8eOJmcTu9yAuYTkQLp06YLFixcDMBROlCqM\nWNlIJIJDDjkEAHDNNddg1KhRAIzy9hMmTABgKPmytf9buR8ra9+hQwdMnjwZgJGo5ptvvgFg7Hhy\n16MdXjoNUabs8vJy5jas5xBkdXA7WN3GibMg7mD79u1ceevee+/luZRVxVetWoUzzjgDADhdWdeu\nXU1FgKgf8nskEmGu4K677uK2//a3vwUAbNq0ydQuK7cjoxbdbjeXHbj22mvZ/4H6CADvv/8+AEOk\noPH4+OOP+R5bt27F3nvvDcDsC2GX7l4pxVxjI5YoR9HowIGDpqNd6hSomvNee+0FwEjQSqYbqnEI\nGDIw2Xal6YmuA8yRmLKOY0tz59shFouxgmvu3LmsPPv973+PBQsWAACefPJJAMCoUaO4kE1tbS0r\nzN59910bo0WAAAAgAElEQVS89tprfM9sPQStbsa0q1D/y8vLcd999wEwdl2pq5BmNtIvkPLt/PPP\nZ33INddcY3qGLIUmd/TGkEgkWImZSqV416Ms1926dWOuyev1spJz4sSJrEu68MILmUMgbN682Vb/\nEgwGeQyrqqq4MAzpTkaPHo0RI0YAAF544QXudyqVanA/qTzu1KkT+vbtC8DgSOU6u+GGGwAYSkzA\n0BdIpTdxfwsXLmQOQZrBiZNSSvFYxWKxnNXgaJdEgdhSYnGTySRrm59//nmTKy4N6i233MK5HSld\nut/vN9UOlAk5cglaPPF4HGPGGBnve/fujRdeeAEAsGDBAmZ9L7jgAgDA4sWLcdNNNwEAdt99d36Z\nKJM13ZfY/6Y6CJGmXFpG6MXz+Xw8FuFwmO8tax6S4vPee+/FzJkzARhZp2V9RKmAk2OQqb30cmmt\n+QUh7f3ZZ5+Nww8/HADw8ssvsygxe/Zs/PzzzwAM64JU2FF/qe1SRKmurjYViaF7vPXWWwCAsWPH\nsj+B1fHIqtyNRCJ8ry1btuDKK68EYBBy2simT5/O65aw7777ckUu6SND1wNmMU7OWWNh7c1Fi8UH\npZRbKbVMKfXWzv9/o5T6RCm1Rin1olLKl+keDhw4aDvIBacwEcAqAFQv7R4AD2qtX1BKPQ7gPACP\n5eA5DKLYMo5948aNAAzKSR52gUAAl156KQDDlEc7EJUakxQ1EAi0Wll3um/nzp3ZJLVw4UKMHTsW\ngLk8OVH79957j3fjPn36sNlPnhONRnkMMnEKdXV1pgzHxGHQGLhcLt5dJYsfi8VMnnTEupOYs3jx\nYkydOhWAMS+0o8fjcRN7TWx3pvbK6tFS5KE5p3qRgCHC0PO++OIL5ioCgYCpVB9gjnaU0Z5SVHS7\n3dxm8lcAwL4Zss2BQIDbSdxPVVWVyVeB2v/666/j9ddf5+OkNCXO9e9//zv23HNPAMZ4/+EPfwCA\nBgpX+t+uEJHWOmeZy1taS7IHgJMATAVw1c5SckcD+OPOU54GcBtyTBSsmvMzzjgDf/rTnwAYrHbv\n3r0BAEOHDmWXaK01uzdTimwpp1kzIrWGBWKPPfbg6laPP/64qT9EOGjCp06dygRk3rx5XAwGqO93\nx44dTZWt7CBfTFlFi/orI/aIGCilWBezY8cOZtfPPfdcdhwjFnjYsGG8+P1+v21mKYlMrrhWhx9r\nlOLuu+/OBGLr1q2m7FsywpQgLUrSyUhG0spIWSIcdA+lFFuBpMtzNBrlvtK9ZIg0YCa4RMg9Hg+3\ng6xopFsCDMsJibxFRUUcw1FaWmqKYgUMIpZJR9MctFR8eAjAdQBoJXQEUKa1phn/GUB3uwuVUhcq\npZYqpZba/e7AgYNdhBbUahgOYObO70MBvAWgE4A14pwSAF81p+5DNp9AIKADgYBeuXKlrqmp0TU1\nNVpi+/btpv/nzZun582bZ7pHhw4ddIcOHdLm2M/Fh54h752uJsWcOXP0nDlztNZaV1RU6IqKCt2n\nTx/+fWfma671kJ+fr/Pz89M+21oTge5hPU8ec7lcfN/JkydzO2pqavSMGTP0jBkzdK9evXSvXr20\n3++3fW6641SzIJtxk23q1KmT7tSpk66trdXr1q3T69at0/3797cd20gkort27aq7du1qqpFhvTcd\n93q92uv1mu4xYsQIPWLECK211jt27NA7duzgdUIfn89nqs+RTf8B6O+++05/9913OhPKy8v5+4wZ\nM3Tfvn113759Tfeitufl5aXtq/hkVfeh2c5LSqk/wygwmwAQgKFTeA3A8QCKtdYJpdQhAG7TWh+f\n4V4t4tXj8TizpbW1taZwYmK1qqurmf0i09ujjz5qYjVJcx6Px1ulxLqElHGVUnj11VcBgKM9/X4/\n1w786quvWGSQDkjWpKmNQWqs7dxyfT6fif0mK8mLL77ILLhk0QkLFixgV/KvvvoKq1atAmCwznRd\nfn4+s/yZ1ps0X9J9JMrKylgs2W+//bB27VrTtYC9vqKgoIBZbSmuAWY9B7H5pMO55ZZb8N577wEw\nTMc0ztKCIaNr5TyQ7qCuro7FnFAoxLoEMqcOGTKERWKv14tt27YBMEK8SUcRiUR47qdMmQIAuPPO\nO039kw5OadC6zkta68la6x5a614AzgCwSGt9JoD3AIzeedp4OKXoHThoV2gNP4XrAbyglLoTwDIA\nf8n1A0jLTBR6woQJOP/88wEA+++/P/773/8CMHYusj6cdtppTFkp2Gf9+vV44w2DZmUqI98S0O4T\ni8UaOKAAwKWXXopjjz0WQH1AzAUXXMD9AMwJOWhXkXknM0FyB0qpBsVSrC7QixYtAmBEEQ4fPhyA\noXQkpVq/fv0AGC7aVOU7Fovxdbfffju3v6qqivudKSmMNa27NTqysrKS8z507tyZIyO11rZKTvor\nd1FrMhz6X15PjkcAOMhLcjkej4fnQSpDpSJVJvWhfiul2MGOnKJksp+OHTtyUFbPnj3ZUrZ161Z2\nlaa1/u2337J7fFlZWc78FHJCFLTW7wN4f+f3tQAOzsV9HThwsAvQXEVjLj/YqQgJh8NplSSkXHO7\n3Q2UZ263WxcVFemioiIdCARY4SIVR0opXVJSoktKSvTKlSv1ypUrdXl5ue7Ro4fu0aOH6VmNtcP6\nSadoAuoVoenOPfDAA/WBBx6otda6urpaV1dX6wkTJugJEyZk/fzW+FgL1tJ4SiUWzUEgENBnnXWW\nPuuss/TLL7+sU6mUTqVSevny5awclPfIVBDXqiizPvepp55i5dvhhx/O9yNFoVVRTNdbla30KSws\nNP3fpUsX3aVLF11XV6fr6up0ZWWlHjVqlB41apQuLi7O+djSWNopLQOBgB46dKgeOnSo3rBhQwNF\n5Keffsr9k+uskU9WisY24eZMqdCkjdfj8dgqjiTbLXMjyvx80q9futWSTZ9i2+fMmcOpxubMmcPn\nZkq2IiMOZWIVl8tlYk2JNZe+AnRuSUkJXnzxRT730UcfBWDkVtjVSCaTJlbULomITAdPjjnPPPMM\nbr/9dgCGgo7iUWbMmJF1fgq3222aY6ti0qrIo/9lajKfz9cgI7I1rT85uJHTG2A4RtE8kGj60Ucf\ncYq2dHkym4JkMsnr2i5vo9/vZxFtx44dHEm5aNEijBs3DkC9KHXggQdyBOfq1avbjpuzAwcO/rfQ\nJjgFCekdJ8t8SeUaUVqpLLPboSVkbgXaNWQBEb/fb9qVmhIUJRN3EqTJSnIMtEPNnTuXPS+XLl2K\nm2++Oevn/RqQO6vcyUiRRn+j0ahJQUuRqFVVVazci8VibJ6TLsF2kIVoZLJV2lW9Xi/vhJFIhLmY\nRCJha7aVkK7N0o2ZcOyxx2LkyJGmY4899liDnZye1xy3YulOb2cOr6iosN3pFy9ezDkipOmc1tDq\n1aub3JZ0aBNEQWuNWCxmimWQGl2Xy2VyGaWXV7L55A4ajUZNC46IiZxYSr/l8Xjwz3/+E0D6RWoH\n66KzqzwVDAa5fXR84MCBHBnZp08fjsgbOXIk989abGVXgSJRq6qq2OV5y5YtJrGBIMWnQw89FIDx\nwtKYKqUapNdvDCRu2VlXYrEYv5jHHnssi2DWwiqySApgvEBEkILBILc/FAqxNYNEBwD4y18Mo9nC\nhQtNG1W2fiHpIAkB5eV85513WPx1u90m93CZYk7mGwUMAkLj6vP5chbu74gPDhw4MGNXWx6k9SEU\nCjWwAoTDYdPxAw88UPfp08fk+mv9+P1+7ff7defOnfmY1+vVhx56qD700EP13Xffre+++26ttdah\nUEiHQiEdDAabpEXO5BIttd3k2vvcc8+x5njlypWsWVZKsbtqU9rQWh+Px5PWStCYa29+fj67my9d\nupTHSPZLupXbfdxud6PPGD9+vN6yZYvesmWL1lrrwYMH68GDB+uSkpK0faH+SEsGzcnll1+uS0tL\ndWlpqU4mk+xmvvvuu+vdd9/ddI9cjG3Xrl3ZKlNZWakrKyv1K6+8YnqG1WoFQM+YMYPXTjKZ1Mlk\nkl2vGxtPy6f9WB8I1qg6YtVqampYHrz55pv5OyWhWL16NcuWsqhLv379OMLvxBNPxEknnQSgPhT2\nrbfeMmUOTmdFsMJau5JgrX1IbN71118PADjppJPYEWbSpEmsWZYZdLJwVW11aF0fhisjA71er8kR\ni45RVuo77riD+z9r1qwGxUsAZEyXbnUVtjo7vfrqq+jfvz8Aw4mHslNt3LiRMx9/9913phqZgOEE\nJdPakzt5MBjkc7744gt89tlnAIB169YBSJ/Zu7HKUY1h8+bN2H///QHUR1cOHz4cs2fPBmBkY/r4\n448BGCIYFYehJC1AvSPbE0880SajJB04cPA/hjaVzVnGz1t3Y3J3nT9/PhfRIBvzv//9b64D2K1b\nN86I3KNHD1NACVF2uu7EE0/E119/3eT2yt3D+l3mKaD6EqRcrKqq4hRrM2fOtHWvzaL016+KYcOG\n4cMPPwRgVsaScu78889ny4nL5WLt/RtvvGHa5YnDyCYdm4RdRuiSkhIAhqKRgtsKCgqYI4nFYiZO\nh9pG8+RyuXicf/rpJ04YM2PGjIycDF0n79dUkOKWuINTTjmF130ymeSAqKeffprzX55yyimcjZqK\nGp188smmfBhZ1AVtf7UkJUsmTXqSWPzf//0fa4lpwdTV1ZkSiBBk2u8ffviBo/loERcUFPB9Y7FY\n1pp/md5b1oyUyM/PZ804sX6vvPIKzj77bACGSCRrYspakUDmgrGtDSLCr7/+OltwOnfuzISB/h5x\nxBEcGXn11Vdj4cKFAJofzWmtekSQREUSFEqEO2jQIP4eCoUaaOq11qz5f/HFF3l8v/zyS1MOSmvM\nRCqVyjqNfrawJgm68cYbccstt3B7ZZyLjFClmAkSg625HnNVIcoRHxw4cGBCm+IUsgWJD1Rnj8QF\nwCjYQeLB9u3buXpwLp2D0imZfD4f70ydOnXCd999x8cBIzqT2N2amppftRBNUyGdhYjjOe644/Cv\nf/0LQL0i7rXXXmM3YAeZEQ6HmUuR6dwoR+NRRx2Fo48+GgCw5557Mhf61FNPcfp56Ztg5+bdCEfj\ncAoOHDhoOtolp0Cw0wHI/Pj5+flssmlqXYRMINnf6/XamoV23313vP322wDAMvecOXPYgzKdIrGt\nKBplcA2ZztxuNyv87IKkHOQGxFlKZbvU0ZBpVWvd1HXS/hSN2cKu0g8RAo/H0yz7cVNhF8EZDod5\nEqPRKPv70zFJPILBILN71dXVbUZsINDCC4fDjfpOtFbm6/9VeDwenncpPtI6ku7MEkop3jDs1rd0\nj26EUDjigwMHDpqONuXRmC2IQyAW1+/3824sTXl2lYFzBel9SVxDMpk0KXnsgoCkqcvO7Jhr81dz\n4Ha7eTeyVjumMSeRzeESmoZEIpGR5af1JE25UhlNkGn1ZMBXS9EuiQKBBkyGQAP1MlmmF0u68AL2\njjLpIO9NhCebClPUznQRbXRf6gOQPhRYug/nkohY3bwlWyrt5oDRd/mdzpXysJwbGb6cCzRFByNd\ntGU7W2r5of7LTSjdZiQ3E7vnyXBxOe+RSKTBmunUqROHqgNtqJakAwcO/rfQLhWNNtebvLnSUWDJ\natFf8tzLy8vj/AZtDR6Ph3dEr9fLO9uv4fUoS7XLnYssEi6Xiy0Q6epxpgsgyzXkTkm7Nymla2tr\n03ICxJVJV2FCuvUENKyLab1WBtjZpYWT97FTErrdbuYG6+rqOJCPEsTIMc2yFur/rvXBTvNvdR21\nQib9oIXi8XhsTWrdunXDL7/80pQm5RzBYJD7EggE0rpeN0XkyRbSxVy+0OlcuiXkCyYXOJmPpXUm\nFyDiJF2i01lE6AXLz89nfY/L5WJXeKk/sbuvFZlEITu3Y7u2eTweW1FL6hQGDhyIBQsWAADH68ha\nqY0RPYHWtz4opQqUUq8opb5RSq1SSh2ilCpSSr2rlPpu59/CljzDgQMHvzJamBzlaQDn7/zuA1AA\n4F4Ak3YemwTgnmyTrGT7sUtIYldHz+/3m45TQhX63eVycUIWu9/b4idDrcCcPUMmWSksLORU6NaE\nI8XFxaYxlLUi5T2CwWCTE9k05RMIBLgddslvgsGgqT12cx2JRBr0r7EU/nYfSiyTLo29x+PJumap\ny+Ximpg7duzg5Co//vij/vHHH/Vvf/tbPtftduu8vDydl5fX2D1bvZZkBwDLAfTW4iZKqdUAhmqt\nf1FKdQPwvta6f4Z7NasRdgk+AXNknGR9KQ6C/Pevvvpqvk6G0wLpxZBfCzJaLhaL8XfZ14KCgibl\nPswWdiXgGzsu2yxFBgoRrqurazX9h51Xq8vlYvY/nccliRJFRUXcNnmunYNcJiil+L5SP+F2u5nN\nr6qqalCPU65d0osAxrgNGDAAAPDxxx9zblF63fbbbz+e/40bN2ZjgWl18eE3ALYC+KtSaplS6iml\nVBhAV601CeSbAHS1u9gpRe/AQdtES/wUPAD2B3C51voTpdR0GOICQ2ut03EBWutZAGYBzecUJEcg\nqbKd0ubhhx/mNF6/+c1vABhUm6InlVK7nDuQkFR/t912w9VXXw0AGDduHLtPP/PMM1xXMJeoqakx\nFa356aef+DilB3vooYcAgOtMAsCaNWvw0UcfATDqeE6bNo1/o52X/uYq7RxxCD6fjxV+fr+/AYdw\n2mmncWq+CRMmsMt5LBbjGJXbb78da9asAYAGtTazgeRM5doLhULo2LEjAHNdTbl+6Zg1XwSt1aKi\nIl6f77zzDgBjvFsj63dLOIWfAfystf5k5/+vwCASm3eKDdj5t2GCfQcOHLRZtMgkqZT6EIaicbVS\n6jYA4Z0/bdda362UmgSgSGt9XYb7NKsRdnKfVe4dOHAgAODzzz/n88iMl0qluOzW999/byo3l6sc\n+i0B1bKYPn06Ro0aBcAsc06fPp05iFz7AVCF461bt/J4hUIhPP/88wCMkmWAMZa0QyeTSdMYnnvu\nuQAMHQ6lEmsthMNh3jW7du2KsWPHAjAydQFGNXLiHqLRKI+t3N09Hg9X0J48eTIANNpuO5d0OzNk\nIBBg/cqmTZsanJsuiK+oqIiT0Xbp0oUjUy+//HIAwCOPPMJcY21tbc78FFrq5nw5gL8rpXwA1gI4\nBwb38ZJS6jwA6wCMaeEz0sKqsLEeCwQCOOiggwAYBIAWNyWx2LhxI77//nsA5kXVVkAKsH79+jEx\nqKqq4sVRXl7eIAN2LuDxeEzus+QDce+99+Koo44yte3CCy/kQiYXXHABhg4dCsBQktELNnHiRDzy\nyCMA6olarhSPRISqq6uZ5X/44YcxZoyx7GiDSKVSPG7RaJSJxpdffski2HnnnYdzzjkHQP1LfcUV\nV6T1AbHbUKVIICuEETGQrvUyrkGCqojtv//+6NKlCwDDz4aS9rzyyiv8LFI0ks9ELtAioqC1Xg7A\njvIc05L7OnDgYBeiJX4KufqgiTZpq5+CLIbh9XrZN6GgoEB/+eWX+ssvv9Raa71o0SK9aNEiLlsv\n7xkKhTKWSZcf6f9AxUtkm+zs0FbfCln0g+z41AZZIGbu3Lk6FovpWCymU6mU/uyzz/Rnn32mw+Fw\nq9n9ZZup+E4ikdCEE044QZ9wwglseyfb/oIFC/SCBQt0KpXic5ctW2brR2L3sfoF0L3t/AqsRWto\nvFasWMHjRaDiMVpr/fnnn5v8Kehzyy238Dlbt27VW7du1WeffXZOx9NufclxiUQiesSIEXrEiBFa\na80FY7TW+sgjj9RHHnkkrxurH04WRWvaXzGYbGFNNlFeXs6uqlK7O3DgQC7AmUwmOZU3sbter5fd\ncmWR2mxCriXrSOxfNBplNk5eTyz+IYccwnLtbrvtxrkku3btyhpl6TdB/QuFQnzfsrIyTJkypcG9\nW6IbsoOsxfinP/2Jj5PcSmnfZZRhKBTi3I2JRILbPH/+/KzbF4vFWCSQz5PZmWVmZ2mlofEqKiri\n62i8SUcCAO+//z4fl2XrH330UdaDUBr5vffeO6t2ZwuZS5Hmzuv1cnv79u2L119/nc8lkeeSSy5h\nPxup75Lu2LkSJZ0oSQcOHJjQLjkFUlLJWHqitKlUiiMfzz33XBMl/cc//mG6jyxrLzXIbre7UU5B\neu6l86asra3l3WbWrFkADM6FiqgAZq9J2h2p7TU1NXjuuecAGEVPKDLuo48+4jyPreVXUVhYaPKU\npFoOV199NT9zjz32AAAuswYYY0hVp6PRKO/cTzzxRMaANYLcNYGGpQRTqZStQtjj8XAUYSKRYKUy\noba2FtOnTwdgri6dTCZZQbnHHnuwNp/a3hpWKGtEZDKZZP8PaiNg9HXq1KkADAsOtUVWwaaxkpxl\nS9EuiQKBBlVGQALA7373OwBGVR3Cv/71L3ZYkdFtctKzTQAik4kAZoIiv1988cUAgBNOOIGP0Uu0\ndu1aDB48GIDB4tJLQ/24+OKLucJUZWUlVw0aP348E5BYLJZVNF9TsWPHDu5fx44dTe7kJKZR4ZWl\nS5dye44//nh2ywWAG264AYCRDl6KZkD6JCRWAktzQhuB1prFh/z8fGzfvh2A8YJQJa5evXrxeNC4\n3njjjfz7L7/8YtoMSHy4+uqruX+Er776KtNwNQl+v5/7RHOttcYDDzwAADjyyCN5Xb/77rtcxkAm\n1KH2SuJZWFjI/7fUsuOIDw4cODChXXIKxGJTbH9VVRVT0mAwiGOOMSyiBQUF7E4rlXMEaTP2eDxZ\n53O0piAjSGreqVMnXHvttQDAuRmmT5+OZ555httM9u+ePXvyTvqXv/wFgMERUP+8Xi8uvPBCvk6y\nxq3B3kpF67Zt29h1ee3atez0s9tuuwEwxvDMM88EYHAGtEt9/PHHePnllwEYuzEF85CSNx2SyaQp\n+Mu66/l8Pu7z1q1bUVxcDAB4+eWXWXTZsWMHiwFPPfUUAODBBx/ke8iycrFYjDlL8sEA6n0zKHgu\nV5AJYAjXX389/vCHP/Dv5DB1ySWXmPJlEFdIxzZv3sxcXC4D49olUbDz3CIWNhwOs+MKUC8Pr1ix\ngieDxAOSJQFzrIE1d6MdpDZd5lWUMjN9f+uttwAA9913H7OOdXV1HOH3008/cZ3LP/7xjwDMhO74\n449nzbPP5+MFK4leLiH75vf7+XllZWVszTnjjDMAAOvXr+cXj9oNAGPGjOHvxcXF7LyTSUST+hop\nptELIfUJnTt3ZqtNv379mIgWFhayqHDBBRc0eEZNTY3J2YfiCzp06MDzTusmExFrKvx+PxM6KjYs\nN6xPP/2UvSnJkgOY9TwkGgUCAVPOz1wl/XXEBwcOHJjQLjkFouZkw62treUdZN999+W6fEC9SyhQ\nH3tPO186hYxkUdP9TlxAuio+ZWVluOOOOwDU70SzZ8/mqtN5eXn8/CeeeII5BEq5tWzZMlx3XaMh\nIygrK2uVdGxaa2a/JSv+6quvYv/99wdQb3144oknWNSIx+M4+eSTARiFb2hcZPxAJiVuIpEw7Xi0\no0sO4dhjjwUAPPfcc6wY9Pv9zPmdc845mDNnDh8HjDUjrVXENXbo0IGVo1VVVXw+RUtaub+WQmvN\nXA/Nb11dHecHvfPOO1lcGzFiBI/ncccdhxkzZgAw3M3pXnKdUttbqnR2OAUHDhyY0C45BYL0SqNd\n6dBDD2WdQyAQ4CSXgDn2HjDn/49EIrzbZtp1paJIJt0EzLUFHn74YQBGhCYA9OnTB+PHjwcAPP30\n08zpjBo1CsOGDQNQn2fgv//9L99TZnCWEXWytmMukZeXx/JrKBTiIKeLLrqIdyYaA6/Xy34Tjzzy\nCN57770G95Nej9n4KxB3kEwm+Ty6zuVyoVevXgDMXooVFRUcMfr88883mjnJ7XZzP2688Ubesf1+\nP8votJvn2hfE7/ezvwxxNm63m70YV6xYgcWLFwMwzJOEVCqFa665BgBY/7RhwwZTTc+cmaV3ddxD\nc2IfrB+Px8O+7DU1Ney/Xl1drffee2+999575zwmgPLsWf35yRdd+rhTnr17771X2yGVSrGvPl0v\nYwCsuSTpk03+QLvr5IdiB2R7Q6GQvv766/X111+vtdamuItoNKqj0aip/TIOgmI45LjIOJBMMRDp\n4keoH7169dKJRILjMOLxuI7H4/ruu++2nQf635q7MD8/X+fn5+vFixeb4iS2b9+ut2/fro855hh9\nzDHHZJVLsSmf008/XVdXV+vq6moevzfeeEMPHDhQDxw4UH/77bemMaa+1tXV8fmTJk3SkyZN0kop\nU+5Lu9yllk9WsQ+O+ODAgQMT2rX4QCxeNBrFAQccAMBsZpw9ezZWr17dKs+WgUuyPiSxn1KkIEVb\nfn4+m81KS0vZ36JDhw7MXp966qkAgLlz5/L1VoUSQSZ0TedjIa+Tnol27SSWe8iQIbjzzjv5ehK7\nPvroIyxatAiAkboMMNh6ykHw4Ycf8rlKKdu2kWiQji2Px+OmWgbWkvdXXXUVKyKj0SiWLFkCALj1\n1lt5PCsqKvgcel5lZaVJ7CMfkgEDBpjadNZZZwEAVq5c2aDtucBNN93E65Y8bEtKSvDmm28CMJTS\nJBL6/f4GFaoBw7QNGOtCKstzlltjV4sOzREfiHWnTzgcNoXsbtu2TW/btk0XFxfnXGyw+1DIqpUt\nDofDOhwO6xtvvFHfeOONev78+XrDhg16w4YN+pRTTuHzpk2bxiGyK1as0CtWrDCFg1tZ2CaGyzJr\nKa+zigwej0f3799f9+/fn0N1tdb6+++/53MozBuAnjdvnp43b57WWuuysjJdVlame/XqZTtHdmPV\nWFtlmLT1/E2bNnHbli1bpnv37q179+5teqbdPfPy8rj/gwYNMok/NTU1uqamRk+ePNk2pDqXnxUr\nVjQQH3/55RedSqV0KpXS8Xjc1C7C9u3b9X333afvu+8+bqNsZ5alCRzxwYEDB01HuxQfiA0klrtz\n58tWmJ0AACAASURBVM7s2lxeXs5pwDKVOGsurPUN7DL4hsNh1o6TVvz777/HPvvsAwAc4AQATz75\nJAdPkc183LhxeOyxx/gcuyrPyWQyq2rL1GbpI2CNDg0EAuy6LOsSrl27ltnSaDTKtv53330XAHDE\nEUewZUDmj1RKmYKgrHPWWDulFp3OpyjCwsJCHrunnnoKP/74IwBDTLBj9WUZO/IgvPrqqzm1Wb9+\n/TgaddasWQ00+B07duSgq1xgy5YtPA8kthQXF/NYJRIJHmMpChcVFbHPDYlSXq/Xtu5FS9EuiYJ1\nYZ100kk8UB06dGAZfvDgwWzeybVs2BSQ84/Wmhe0lOu/+eYbfqHo5bnooovwxBNPADD6K51w6CXN\npqhoOp0Dyaiy2C7JsrIozvfff88OUhUVFTz2tKA7dOjA/ciFTGutP0kvC8Ul+Hw+fkllCHSXLl1M\nSVGpf2S+HDlyJG677Tb+nXQVF1xwAetvqqureZzo91wSBMDIV/n+++8DqDepygjfSCTC+pZYLIbl\ny5cDAK688krOJyohiUGuImYd8cGBAwcmtEtOgUAurtdddx3vmJFIhDXjBx98cKtkO7ZyKtItl3ZN\nScHnzZsHwHBGGTduHADgb3/7G+9G1dXV7OhE0ZB77LGHbaqxpkK6IBOUUg3Gpa6ujneixx57jMWZ\noUOH4rDDDgMALFq0iK0ZQ4YMAWCIaKT1tz5XBj9RO6SrsR1k2faamhrmdGg3TSQSvCP6fD7+LrmE\nSCSCq666CgBw2WWXATB2ZXpmaWkpWxneeecddO/eHYDh0m3NdZBNar6m4Ouvv+Y8EzTXlHEcMNzc\nyeEuPz+fA7oSiQSLCgSXy2Wy1OTKealdl6KnBSG9+mpra3lCu3btaptZKZeQZq50i4cSkkyYMIHZ\n0RNPPBHffPMNAMMTkJJs0Lk//PADRyRay5fLl605kXGyxLnddW63m0WwDh06cB9vuukmFn8om5TW\nmhPHDB8+3BTnYOe9KMUgO/j9fiZgcjxJ3/Hmm29ybMtDDz2EVatWcZ9okxgzZgyHUdN4d+zYkWMK\nHn30Ubz44osAzJmzZJwDpVanjFe5goxsTVeqXppIrWkCADAR27BhAx+zZstKg1+lFP2VSqmVSqmv\nlFLPK6UCSqnfKKU+UUqtUUq9uLMmhAMHDtoLWuBb0B3ADwCCO/9/CcDZO/+esfPY4wAuzrWfAqVU\nJxfPxYsXm+zqJSUluqSkRHfr1q3V7M1NcXOW/gHkrivTkP/www/cfnKBnTdvnsnGLvsu3VntUp/b\ntbOxNgPm1OPBYFB369ZNd+vWTX/++efsSixB7sBaa33FFVfoK664Iq0fQrqxsPvIc/Pz8xv8/vjj\nj3MbZBr52tpa/i79LAgjRozQHTp0YP8Paqd0AXe73VmXiW/Jh55N65jGRCll8k/JlMJfKcW+MFk+\n+1fxU/AACCqlPABCAH4BcDSMupIA8DSAkS18hgMHDn5FtLSW5EQAUwHUApgPYCKA/2qt++78vQTA\nv7TWA22uvRDAhTv/PaDZjWin6Nq1K2d7PuusszhbFNnPjzjiiF3WNqBe3nW73awcHTRoENfepBwR\nM2fOxP33398qbbD6gwCGiXHixIkAgEsvvZT1AdJHYvHixWzOpYjEioqKRiMn/z9BVjqFlogPhQAW\nAegMwAvgdQDjAKwR55QA+CrX4kN7+2QRvaY7d+6sO3fuvMvbSh/J5stIPPpQ1ahcP9fKulM1JGK1\nZdskq229h90nW5fw/+FPq4sPxwL4QWu9VWsdB/AqgMMAFOwUJwCgB4AN6W7gwIGDtoeW+Cn8BGCw\nUioEQ3w4BsBSAO8BGA3gBQDjAbzR0ka2d9i5F+fl5bFdWXoTtgUEAgE2dcZiMVtT6/r161vl2dZC\nPHasPom85eXlbLuPxWImU6aMCKVju9KrtT2hpTqF2wGcDiABYBmA82FYJV4AULTz2DitdaOpkZvq\np9DeQIRAiEtpkauMvK2BUCjEL1kufe2tkFmd7HwWyP/B5/OxT4pSisfOjgC43e6c5TBsx8hKp9DS\nUvS3ArjVcngtgINbcl8HDhzsOrRrN2eC9ETzer28I8jsvLFYrEG1agANkngADT0IW4p0bCt5q0Wj\nUfbwy8TiyuzRuc40TJCBVi6Xi7X2srKx5GhoXGXuQ+s5ssALHbOD9DCUGZjlvWTAEEFrzefYuVDL\n6EvJgdD/QENXcGt7MkGWLwwGg7yGrCJYY9ygHHtZoChdG2hu7ArnNBft0s2ZIKPCaGK11qZFQYvR\n5/M1kE+lyas1WWO6bzgc5oUcj8dNhMdKnCRhsi5iQjAYzNlCsIJchmUWo2QymdGsl209znSwxhrI\njEPUBvkbiRLRaNSWkNP1MnQ8lUrxdYlEwhQZSfegcW2MINiNRbrYDhmtao1mzM/P59/Ly8u5DXJ9\nut1uk34kU9vSoPXdnB04cPC/h3YtPsiS9LRDSSWSDD6JRqMNgnEkNZfXderUyZQEpaUgyi9FFMAc\nEEO/EccQjUZN5dOof7LkuMx7kEtYxSe5O9txCLJOJPVJ7vjhcJivs5Zht8K6+9H/6ThaGgv5uxwX\nWe5dQu7cN954IwAj2vaLL74AAIwdOxYAuEiLHeyCuqQIQxyBTMXvcrkaKDrr6upM9+rYsSMAcy4H\nmf9T9sFOAdtSkbJdEgW7l5sWW0FBAZ9nrbNIYaaydgFNXF1dnamoai5Bz41Go8yWV1VV8ULt1q0b\nF6El4uD3+3lBy3BiGYZcWVnZKl56WmtexG63m9vv8/m4tiJltxo3bhwuv/xyAEYtC5lViMa5rq6O\n+2oVBxqDx+NpkAxGvgRKKVvikk5fYWfV6N69O3ts5ufnc/9ktGc6WMPPtdamF5LaUVNTw9GvH374\nIRP+mTNnAjCqmH366acAjPmXEZHUf7kZWH8DjHHJNgtXJjjigwMHDsxorptzLj9optsmZbSVLrjS\nTXbMmDF606ZNetOmTXrfffc1ucrSh1xm9957bz116lQ9derURqP4mvORkXcHHHCAPuCAA/R//vMf\nU/RhbW2tKdLvxx9/1DNnztQzZ87UgwcP5nu53W4uLpPLNsqPHE+re3PPnj11z5499bp16/S6deu0\n1lqPHTtWjx07Nu39pIs3uS039nzKNB0KhbhoC0WDUpQnFcyhsbW2k86Rmbbls4866ih91FFH6TVr\n1nC06pQpUxo8rzH3dDv3dXIJt7pTv//++/r999/X8XhcJ5NJnUwmOYOz1lpfc801+pprrtFut9t2\nnbrdbn4e9bkZUZ1ONmcHDhw0He3aJCnNPyRf+Xw+9OvXD4CRPoyUNsOHD+eIOZLDx48fj0mTJgEw\nlGUk75966ql47bXXmtudBiBZ9rvvvjPZsQkVFRWsrCOZ1O/3c9LRqqoqPPTQQwCAm2++2XTvrl27\nAshOBm4pwuEwXnjhBQDGeAJGBqYrrrgCQPoq3tIUS2PRWFVvgtfrNdWVtF4nZXq/32/Sq8g0ZVb0\n6dOHa16WlJRwItWjjjqqRVW8pQkxLy/PlAiXUvIdd9xxPAakv6C5B4DVq1ezvmbOnDmmeaX+2vnb\nSP+VRpCVSbJdEgWrssrv95s0upTKe8qUKeyjf9VVV6F///4AwGXfBwwYwAM9depUvP322wCAjz/+\nuDndSAtSZt5xxx1c3Wfz5s2sLbamNQcMC8jkyZO57URMevbsyYstV4qlxtoslYR9+vTBv//9bwD1\nfgynnHIKj5vf7+c+yczILYFdyjI7SE289F8gohCJRHD44YcDMAq00ov44osv4owzzgBgdhySodiZ\nCJgsRptuToh4H3zwwVi6dCmA+tyMDz74IKfeSyQSnFZt+/btnIF6/vz5fNzOFyQYDGbjAOf4KThw\n4KAZ2NVKxuYoGhvLTzBq1ChW1m3btk1LkIKHMGXKFN2rVy/dq1cvk7ImkyKsqR875VqnTp1sn0eK\nI6/Xq0eOHKlHjhypS0tLuc0yjZfP52uVHAHWsaU0ZldeeSW3Y8mSJXrJkiUmZZedcozSq9H3TO1N\nV0lb5neQSkQ5Xo316bTTTtNr167Va9euZaXilClTGpSIa046Nrv1KFPJSaWwXeq0gQMHciXp8vJy\nHuPy8nK9atUqvWrVKj1s2DA+3y6/RS7LxrVL8cHOaYdkwbVr17Kvwp133oni4mIABvtIFXbmz58P\nwCw3SnkwmyIrzW2vHXtpF2sxatQoPPvsswAMdvjBBx8EAEyaNIlZ40AgwEVK0yFT9uR0kDI5jeeG\nDRtYHzNq1CgAwOuvv25bcCYcDpvcxaXbdGsgFAqZRDDq94EHGtzy008/zVWm5s2bh5NPPhmAOboy\nEAiwmNYU/w+7vsk5lTEqcm2RaJSXl8fXHnfccbjmmmsAAMcccwyLbvF4HKNHjwYA/Otf/+LnUDu9\nXm82ehBHfHDgwEHT0S49Gmm3lW6dVHcxLy+PvcOsmnqyRNgFsEjkmnuS3AHtwAUFBezFqLXmtpEy\ndM6cOXzNBx98wMpToN5CkUgkMgYg2XEIHo+nQbSi1tpUI0NeRx5/oVCIa0i+/vrrAMwcgcvl4vGs\nrq42lcKjnbC18kVYE6sQd0O1HrTWePnllwEA55xzDo9bQUEBtm7dCsDsht4UTlFyRNR/r9dra/mw\nc7eXHM78+fOxevVqAAZXSAVjtNYYPHgwgHpFeEVFBbczl5xtuxQfrBrpqVOn4rrrruPfSWO7adMm\nHsDy8nI278hqRenCbHOp2Zfh23K8SeQZPHgwzj77bAD1lpGqqiouuEIFagmyqGhT/N1pwWbKQiSj\nL/fZZx8sWbIEgGExoYSy69ata3Bd586dmahprfllWb9+PfvxyziJXMDOOrHnnnuy+blbt24ADPM0\niTzxeJyvk8S0qKiI70OafqtYImFH4KQrfbqCt/QM6RIurTaEzp07cz8OOuggtqSRtWTVqlUmS1QW\na8ERHxw4cNB0tEtOoVOnTgDA7NQbb7zBrO/27duZFQfqlT8bN27kUmHE+lJFX0JLHFeyBe1cJ598\nMs4991wAxi5A80DPHjduHLPqHo/HNr6/qKgo6x03m4QdEsR+f/LJJ5zW/fe//z3b2CloJxQK4ckn\nnwQAHHLIIZy23u128441Y8YM5t6skaIthVQIUjm1N998E/vvvz8AsMgwbtw40w4t82/QPayJduj3\ndLCe4/F4mBuT7LzMhSA50HQ5QGRaudNOOw0A8MwzzzDHOXKkUUrljTfq05/6fD7biFELWj8d264C\nveg0KGVlZcyWejwe/O1vfwMAbN26lQd73333xbXXXgvA0OoCRvFUmphoNNpqCUvIuWXixIm46KKL\nABjRecR2yoKv9Hfs2LF46623AJgjI0tKSpiNlKHKmYh7OnGIFrHMMBQKhbgAa3FxMf773/8CMORz\nq+z65JNP4tRTTwVgiElkMZk7dy6mT58OwBB/yIOQRBGS41sKak/v3r3x+OOPAwD2339/1iuROGZ9\nGaXYYDfvtLGUlpamJaLWMVdKmXQxxM5bn289prU26YZoXQSDQfz0008AzA570huWICNpWwpHfHDg\nwIEJ7ZJTICpO1ZTKy8sxbNgwAAZ1JsouKwaXlJTwznXKKacAAI499lhm0YF6hWCu3YepotENN9zA\nsfSVlZW8y7355pu8c9K5w4cP52rOgwYN4j6tX7/elLqN2twU7bNMo27X13322YfHKh6Pc2xDNBpl\nVps4gtGjR3Pp9JNPPpnL2RcVFeHLL78EYHAbpLiz5rhoKUjMefnll1lkoHYDwOmnnw4AOO+88/Dj\njz8CMBRx5Jr9wQcf2Ipg2eTUsPpnSO7D5/MxFyYVlZFIhOeMYlu8Xi+Pq9vtZqXs8uXLMX78eAAG\nR0ftlCkE5b1zZdlxOAUHDhyYkYUL8mwAWyDKv8Go6fAugO92/i3ceVwBeBjAGgBfANi/Nd2cZUkw\n+s3tdptcYqUL6uGHH64PP/xwdiN9/PHHTffNy8szVXjO1ad37966d+/e+vPPP9ezZ8/Ws2fPNlVX\n9vv93M4RI0boESNGmNyzBw0aZOs+m407rl2V53QuwR07dtQdO3bUS5Ys0XV1dbqurk5/+OGHJnfd\nm266Sd900006Go3qaDSqV6xYweMmq3wXFBTobdu26W3btul4PM73zvXYUvm66upqHq+tW7dqKzZv\n3mz6v7KyUldWVuqvv/5aX3rppfrSSy81uRDbuRJbP+SybecabXVr32uvvfRee+2l33zzTb1s2TK9\nbNkybks8HtebN2/Wmzdv1tXV1ZzfYd68eXrDhg16w4YNWmutly9frpcvX6779u2r+/bt2xz39qzc\nnLMRH+YAeATAM+LYJAALtdZ3K6Um7fz/egDDAPTb+RkE4LGdf3MKa45CrbWtjVam3I5EIqach4DB\nvkmRQebRy2U1obVr1wIwFGDE4smw37q6OmZFia2dO3cuBg0axMd69uwJwFCyUmr48vJyWxfj5mC3\n3XbDHnvsAcCwhpA486c//YnHeciQIZgyZQqAeivJkCFD+HtlZSX366677mIxb9q0aa1WPIbclb1e\nLx555BEAwPPPP8+sNrHliUSCi+KedtppvIbOOecc3H777QCMiMmmpOKT6fKoDXRfqRgsKChg34IT\nTjiBlYrkvLZp0ybst99+AMz+HcOHD2dRIJlM8vc1a9bwvaXI8KuJD1rrDwBYha4RMMrMA+Zy8yMA\nPLOTAP4XRl3Jbi1qoQMHDn5dZMne94JZfCgT3xX9D+AtAIeL3xYCODDNPS+EUXtyKXayuVYxAIL1\nsYtEk2mrKH2WvE5Gjrndbj1w4EA9cOBATn326aefmn73+/3a7/dnZMNkO6nddEyKINTmgoICXVBQ\nYLpHYWGh7f2IJT3ppJM4qnP9+vW6S5cuukuXLnw+XSMjETN9aIzkc2Rqs4svvlhffPHFurq6Ws+f\nP1/Pnz/f9LxEIsEsr0zBRlGgXbp00XPmzNFz5szR0WhUr1y5Uq9cubLBszN9ZJ/s5oTafthhh+nS\n0lJdWlqqa2tr9YABA/SAAQNM58r5kNGqlMpv2rRp3KcRI0Y0eEY2qfkyrZszzzyTU+/V1dWx6DJ5\n8mQ9efJkDUAfc8wx+phjjtH3338//y5RU1PDx0ePHq1Hjx5tGispxsjIT8s7kzPxoVForXVTnY92\nXjcLwCzAcF7aSShMPvmSHSJWrbi4GJs2bQJQH522bds21sLKZBOySEw8HueMusQOz5s3z+T8QmxX\nJvFBsv5aaxZBtK7Pgiw1w6Rx79KlC1tEduzYwSJPfn4+s6107LjjjmON/YYNG0yWFDonm6pAUqyS\nbKXV6iDFrlAohJUrV/IzKEFILBZj1vaTTz4BYLDGAwYMAAC89NJL6NGjB7d5r7324ns2pX6jrL0p\ni6HQX1or559/PgoLCwEAkydPxjfffMPXywK5BGLti4uLeSwGDx7MosaSJUvYhZx8AbIRJ+zWitfr\nZf8UaiNgzAdZSejekUgEGzYYxdn9fj9bl+rq6nj+4vE4r3eK84nH4/jnP//J32mtSyeseDyetkBN\nOjTX+rCZxIKdf2nFbgBQIs5zStE7cNDO0FxO4U0YZebvhrnc/JsALlNKvQBDwViutf4lmxva7c7S\nHk+UvXv37pgwYQKA+khCt9vNirHa2lp2g962bRvvDn379mX3UHqO1+s1pfCS5cMai/tPJpMmZZ/0\nEejSpQsAw0eCUmyRgqu2tpbPrays5F1M7ka0ow4cOJD7TynQqJ12KcOyAY2FzCEgc0jIfIgU8KSF\nt93333/PCk8qljJmzBjsvvvuAIzamJTDcerUqbzju1wunr9s/Cokx2ZV5rndbuaORo8ejY0bNwIA\n7r//fr4+HA43cFXfbbfd2KfhlFNOYbfr7du348477wRQr/gD6gOTsinNR5wLAFOgFd3D7/ebonFp\n/dL8p1Ip9golTouuI2/SWCzGbv20vh955BGcd955AIzoSlljlDx8N23a1GS/m4xEQSn1PIChADop\npX6GUWX6bgAvKaXOA7AOwJidp/8TwIkwTJI1AM7JtiFUBUkWh/1/7X19dFTltffvIZOZSTKQhISl\nEVDJqsVCfK8fWRSxLK4ICkrtoiBC1RpsC7ZQ7WtXLUitX1hrpRahcr2uBls/qtQPWtD2VeQi0Fa5\nCLYEAblSCuGCLwQhHySZZGb2/ePM3tlnciaZJDOEeJ/fWrMyOXPOeT7Oc55nP3v/9t46KcbEiRMB\nOI3nQJtMmnn++eddHoD6JeOXd+zYseIlp8Ed5vP5pFNTCQTCA8UYIy9NJBIR4sn5558vATg5kOzX\nvvY1ubfP53MNJhY12QJQVlYmffHKK69IGdnZ2TJxhMPhToOoeA0IImqXyKRfv35Cn25qapKXJisr\nS2IJlpWVyflMGc/PzxeLyfz584W8BHhnLOoKyUrXnSdsfX1DQ4Oc87nPfU7Ea/0cxowZA8ChWnPf\nBoNBbNy4EQDwrW99S6jEmj7Mde5oQvByW9eTHtetqqpK3KFLS0vlRdYWCr5HQ0OD3Hfx4sXip1Nd\nXS1+J/zCDxkyRJ5DMBiU96Kurk622EB7klVn6HRSIKJZSX66yuNcAjAvpZItLCzOTKSijcz0Bx7W\nBgCitc/JyXERj7Zt20bbtm0TQoi+Jisri4qLi10xEAHQxIkTKRKJUCQSoa1bt9LWrVspGAy6yD1a\nk5tYl1Q+Wru+fft2l1Zba7a92lteXk7l5eUuYsuGDRtow4YN7crRcQ5TjSnI13TUNrZwnDp1Svqq\nublZEuoQEdXV1VFdXR2NGTOGxowZk/Qeun36WXiRqRL7RVuaOkrg84tf/EL6eM+ePXT48GE6fPgw\n1dTUSJ25vkQkvy9YsKDTMvjTEZnN6zq2ROix4Pf7ady4cTRu3Dh64YUXpM779u2jffv2UXV1NTU2\nNlJjYyMtXbqUpk6dSlOnTnU917y8PKkzx5cMh8NUW1srcR3ZqjZt2jRXfyoLTN+K0cg6hWQEjMsu\nuwyAE56b3XNZBH7vvfckrt3evXtd2tfly5cDcJNwfvzjHwOA7CWBNhHLq2yP+rbbkzN43/raa69J\nnbme8+bNw969e6UMjrl3++23i+jKZb/++uuSk+Kf//ynS/RjEVV7T3YG7ROi6+ylmc7Pz5f8kPn5\n+Zg0aRIAZ/vA2x/u47feekt+/+IXvyiieCJSdUtP9GBMTNuu76XzN+gcokBbkBTO37Fq1SoRr1ta\nWsTKEA6HXRYOLq8r7vPJXKBThTFGyk0keent4aBBgwC0eZhOmDBByGSjR4+WZ7Ju3TrR+bS2tsrY\nOnXqlA2yYmFh0XWcEZJCPER3uzBSXoqcwsJCUYKxFvfkyZOyUhw+fFgUMlOmTJEVpqGhQSIi899A\nINDlwBqJ8Pl8QufV2XwCgYDEQ5gwYQIAt5dhY2OjtMvv98sKy0FBnnnmGaFHBwIBqVti8I5UKa2J\n57KEwBIPUVvG5MTwYGxFmTFjhoRbYy35X//6V/GYPH78uCiHddZprcHvLEpyYj29nokOR8dIlDC8\nJCCt+NRjS/NMuA9YGmloaOh0PPB9tWVEIzs7W9oUDAZlTLLC8NSpU9JXOlCLVn43NTW1UxgWFRVJ\n3ebOnYv77rsPgGNd0RGfVbutpGBhYdF1nBGSAjMiddgqwO1wwrO5nol5lbvttttw0003AXD2vbxy\n79y5E7/73e8AACtXrhTWmIbes3qtQF2FzgHA9mTWHVRUVMi9Dxw4IEy3P/zhD2KPZlYeAOEEHDx4\nUPpFS1Qd6TYY2gErZUab4ozk5+e7TMO80vO40aw7Lelp3oceY52Zx3SOBB0pWq/8WtrQz09LFYm5\nJPV9db+EQiFX+xKv6yiIr5c0onOacnla8tERknS/8L1CoZBnzInCwkLRk3jlydQm7mg0miw3yGc3\nl6SFhUW3YLcPFhYWXYedFCwsLFywk4KFhYULdlKwsLBwwU4KFhYWLvTpSSErK0tMQLm5uWKe8kJu\nbq4r6QrgmI3y8vLEFBkKhRAKhVzea+lAMBgUMxqDy+S6MbKzs4VY4/W7MUbqCTgmrn79+nlex+bR\nrkJ7C4ZCIRehxu/3u5KcZGVlucoOBAJiPtbncj35k0mwqZZN3F4eofrjdU6mkMrY4rrrMZOdne1Z\nT/0OpKsdfXpSsLCwSD/6NE8hGWXWi7BjjBFyh9d1RUVF4oOfKeTm5kodNPEkNzdX6qmpxryi6lgJ\nyULF8bl5eXlCo+1JVN9kGYyZGMaEGE0tLikpcQUqYWgCUHeo5B1BR/T2IksxsrKy5NxksSc0dICY\ndCcH4nvruus6d1YeS3LGGBnDsVgslb61PAULC4uuo09LCjokGs+eLS0tnkE7gTYJgVe33Nxcl4us\nDoiaymrSE+Tk5MjeO1kqNe20w3qFaDQqdcvNzZU2ejn+tLa2dmtFZn0F4DgE6fB2DF7t/H6/S+LS\nNGbt9qufVSagg7V25sLs8/lce2+djTuxv7SEma56soSQLEu0XvE7i6zFYJ0D0H7cK3x2ac6J3O9g\nMCiDIHEw6GQvienA8/LyPFO8ZwpnnXWWy5OSEQwGpW5cH600bG1tlRc9EolIXfWA5diQtbW1aZ3Q\nBgwYILEtN23aJPkY9RZMf+dJoaioSHw79u/fL/VMtyiuwX3IykOg7YXzeuG9kKgETRTt0wkdd1JH\nsOZtnx6T2nOVJ+FIJCLjxBjT0WTAsNsHCwuLrqNPSgoMXonYewxwVn9ejd588028/fbbAJzVdsWK\nFQDaxKtwOCwzrd/vF4+8IUOG4NChQ92pUsooKCiQbYNe8b2UpImeevoc/q6lAy8vuq5A56zIzs6W\niD+HDx+WFVjnYeBjX/nKVyST8s033ywRso4cOYIvf/nLANqiBqVrG9FZToPEuBGAu28T+zVRmkw3\ngsFgO8W4jireVeUwj1+fzydjoAOp97O7fUhEouWAowtfc801coxUBGPeG8+YMUPCefn9fnkxkptM\nVQAAF1hJREFUtUY9HWCN/fHjxyU4yezZs132fv0yAcCKFSvk4V599dX4/Oc/L+fywLn//vvx5JNP\nAmgb/MeOHZNJIRaLdXsr4TWxeLkyX3fddbj33nsBABdddJErTbrGd77zHQBtiUzSBX7ZU90e9Da8\ndBRaHxKLxaRvg8GgPOtIJCKTiXbP1s8nmcVIwW4fLCwsuo5OJQVjzEoAUwAcJaKy+LHHAHwZQAuA\nfQBmE9HJ+G8LAXwDQBTAHUT0ZqeV6KakoG3JPLs2NzeLDb25uVm2GKRSunEYLMAJsAoA99xzj8Tm\nTwwski6cd955WLVqFQBIRmnAkUx4RdehwbQSifHJJ59IGjctBr/xxhsAnBWZE6R0F8mCt4RCIVmZ\nOCTeggULXCI8f29qapIVMScnRxSsHDgm3dIY4FbOJorQmnVZX18v7QsEArIaa6mK+zwnJ6dLKe+6\nUs+uKF+9ktJoK4oOK9eBdJiSpNDdVPTrACwkoogx5lEACwH80BgzAsBMACMBnAPgbWPM54moZ7mx\nk0BHY+KOnTZtmuzVhw4dKh2/Y8cOVFZWAoDk8quoqJDMPM3NzbjlllsAZM5sFgqFJLGKJtucPHlS\naM86ZiQP1vr6ejETZmdnyzk1NTV49tlnXdfpCSGV7EZe0ISdrKwsV4IenpC4r/ReVse81GbNWCwm\nMTQzMRkwvO7NVpkLL7xQMlkRkStFPeuPdu3aJf3nRTJLF/SLzOAxOWfOHBmTgwYNknoYY7By5UoA\nwKJFiwA4C4Q2s6fL6tStVPRE9BYR8fT2HpyckYCTiv4lIgoT0X44maJGpaWmFhYWpwU9zjoN4DYA\nq+LfB8OZJBiH4scyAi1Ws9j6zW9+U7Tex44dw/r16wE4MzCveM8//zwAJx7iI488AsBZlXnl7igu\nX0/w3e9+10U24hVq2rRpkgJP571gZV9zc7OsGKFQyCVNdBRX0kvcBNy2cIYxRhRV4XDYxT3Q4jP3\nbUlJidyLsXHjRpdCVDttpbqKJWrnWWGp+423hBdddBEuv/xyAM62hKWRq6++WghXLPUxeYrvpZW8\nvGLX1tZizpw5ANryRfTv31+2o6FQyBVduTvQMRqvvPJKAA5lnJXjxcXFojTfvn27PNexY8eKEnrK\nlCkAnCzZHPH7vPPOw/e+9z0AEC5Jd9GjScEYswhABMAL3bh2DoA5PSlfv7icvGTSpEliXaivr5fj\nfr+/XVrxN954Az/96U8BOGJ5OgK3eoHv29ra6vJ84wQ2u3btkslAJ3nVA4+v0xOCTm2fDJoV2dFE\nR0SuF1e/mPyynTp1SsrjVPWXXHKJTKyLFy/G5MmTAQBr166V8pqbm/GjH/0IQOfm0sQJIZGxefbZ\nZ+P73/8+ACc/JPfHyZMn8atf/QoAsGbNGlkA/v73vwNwXni28DQ0NMhYiEajIrpfccUVoit56qmn\nADg6E35hvfw6uopYLIZrr70WgBOwF3Ano501a5akBmhoaJAJcPTo0VIn1stMnjxZxs2xY8dksvjl\nL3/Zozp2e1IwxlTAUUBeRW3LRcqp6InoaQBPx+915tuSLCz+l6Bbk4IxZhKAuwGMIyKtml0D4LfG\nmMfhKBovAPCfPa5lEmjRlTkJJ06cENGxsrJSLA56FeRVpKWlRcg02g6cmFikp+BVIBqNihI0FAqJ\nCKvt/yye6gzcgFtC6MxnQsOrHT6fr13shURJQm9juOxIJCJJa770pS8BcKdzu/DCC/H1r39dztVe\niZwFuTOxOzc3V56Vl9b/k08+wbJlywAAf/zjH+X57ty5U55fYjh3wOljLVbzClxfX4+1a9cCcFbu\nu+++G4CTyg8AFi5ciBkznKTqs2bNSqnPO0J+fj7uuusuAG3Ws0AgIGWsWbNGzvX5fELM+9Of/oTH\nHnsMAKT9xhj8+c9/BgBs3ry5xxKClNvZCUlS0S8EEACwLr6vf4+IbieiD40xvwOwC862Yl6mLA8W\nFhYZQipZaDP9QRezO+fn51N+fr4rC/GyZcto2bJlpFFaWurKvqvPN8bQyJEjqb6+nurr62n16tVd\nqkN3Pr/+9a8pFotRLBajlpYW2rJlC23ZsoVmz55NgwcPpsGDB3teFwwGXf/n5eVRXl4eAaCBAwfS\nwIEDk5bJbdXZnFPJUs3Zk3WGaL/fT8FgkILBIA0YMIAGDBjgyq5cWVkp7autraXjx4/T8ePHafr0\n6XJdV/qrX79+cl1ubi7l5uZSTk6O1E1nDU/MZJ2Tk0M5OTmuY8kyb3eUCfuhhx6SzM6BQMB1r+6M\ngYsvvljGXDQapWg0Sps2bZLnmFhHzoR+xRVXuDJoExE9+eSTknVc162DT0pZp9NhfTjtYI0yK8Bq\na2tFCx2JRLBt2zYAwD/+8Q8XZZTFYBbbSktLRUOuxfN0g7cJ+/btc7npjhgxAgDw6KOPiuj31ltv\nAQBeffVVEWtra2tdxBQWwbOysvDppy5rcTuwhSYWi3XIq/f7/bKlaG5ulnP1Fk3nSmRRPRQK4Ykn\nngDgULS5fQMGDJDsXGvXrpUtAT+zjsRw7TGYLOdkZ/Dapmhugpf3pFewm5ycHNli6i1od71q77zz\nThlzvDW44447PJ+j3ga99NJL8nxY2fvwww+7fCZSoDmnBEtztrCwcKFPSgoMXm3uv/9+yYzs8/nw\nk5/8BIDbE1FLAkxz/sEPfiDHdLBSrfhLB3i1fuihh4Tuu2LFCpcikcGxCyZMmICJEycCAObNmyf1\n13UbMGCAzhPoiWSh23hV4VUyHA67VhjOulxfXy8BYM855xxR4vKqO2zYMMyePRsAXLb/Z599Vhyl\ndOAbHdTGC8kyaXN5Pp9PpIBoNOqZmXzQoEGyurOkOGDAANdqrIO+sGTS2toq9ykrKwPgcCH+8pe/\nSPt6yl/RAXuZjfq3v/3NRRXX0uuNN94o7eA+YH6DZq+mk1fTJyeFRFv3VVddJS96OBwWS0RTU5N4\nQUYiEXkJBw92+FRjx46Ve2pxNt08BRY7s7Oz8dvf/haAs7UZP348AGD8+PE4++yzAUCouKFQCDNn\nzgTgaNnZZ0I//Lq6OtfL2xF04JFoNOoplvPAHDJkCO68804AwIgRI8SzMycnR9yoeXBrAtmRI0eE\n1PTiiy+KpQJos5h05kcQi8VkAunXr59MELq+XGYwGJS+1Z6yPCEAbf316aefuu7LW1Dtodja2irW\nkyVLlgBw+Bic4l1PmtrduStYv349vvCFLwBo40JoV3Wgbfz1798fDz74IACHn7F48WIAwJYtWwA4\nz4AnMb/fn7YtsN0+WFhYuNCn4ynwlmHz5s0iKZBKQw5AJAVelQHggQceAOCI5WyvHj58uIhj4XC4\nR5GQE+EVZTcxoAez6piqOnPmTBGNDx48iIqKCmmPZl5qPkFHSPSoYzA7bvz48Rg1ynFTGTt2rIjP\nJ06ckD7SbdAhw/QKzL9feuml4nVKKmZiZ/VMjDegQ6x1dL0uu6SkRFZblmymTp0qUkU0GhWpSHtw\nXnnllcLIZCbk7NmzUV1dDcA7QEpXYYwR6raXRBoIBKSea9euxXXXXQfAkVJGjhwJwAlvB7TfGqYr\nmnOf3D4w5s6dC8DZ63IHHTx4UAZOTk6OSxzn/fD1118PwBE5b731Vrmus4GnwQ9AE52IyOXO3VHI\ncV2GMQYffPABgDa69iWXXCJ+Bueee65LTOzK9sYrMlFWVpZsndhztLS01FO7XlhY6Bp8Oq4gt42/\n19bWyl79q1/9qojd2hXbSwegoftK+3lwfxUWFsqxgoICcUHPzc1Febkz3ufPny8Lg/Yy3LlzJwBg\n7969MgEWFxe7qOfLly8H0EZB11uGnk4IXB/eKrCupq6uzkWoY3LSpEmTZJzdcsst2LdvH4C27bMm\nnKWTcGe3DxYWFi70SUmBFYXTpk2TY+vWrQMATJ8+XVaMwsJCUdREo1EsXboUAHDxxRcDAF5++WXx\notQrghdNViMUCslqnXie5iEweCUKh8Oycmklkb7HBRdcAMARe3nV3bJli4iMnKYNcFaHzhR3OgkL\nr0w33nijOBUNGzYMAFzhxHX9w+Gwy6rAqyWvYIFAQJS0BQUFIm3cddddsqL98Ic/7FJAES5PK860\nbZ8dicaNGyd1fv/994UDcd9990l5zJWoq6uTNmVnZ4vH4dKlS0U6WLRokStVAJCahaer4DrzfbUX\n6ZAhQySepc/nE4Xn9u3b5XqvWIzp3O72OpuxO4zGUaNG0ahRo1zsxcrKSqqsrCQANHz4cBo+fDiF\nw2FqamqipqYmWrVqlZxbVVVFVVVVNHToULlnUVFRtxhqxhjq378/9e/fn0KhkDDQsrKy5Dife+65\n5yZl7jFLb/Xq1bR69Wo6ceKE1PeGG25wMQ27Ur9QKEShUMh1zAtNTU3U2NhIjY2NVFNTQ62trdTa\n2kpEROFwmMLhMMViMTmf2XVVVVVUVlZGZWVl9N577wmjkYho+/bttH37dgLQri+SfRLPSaz/unXr\npA6PPfYYlZaWUmlpKeXn5wvrUbMTi4uLqbi4mAoKCqi8vJzKy8vp3XffperqaqqurqbJkye7yuJn\n152xkMpHMyG5bVlZWcJifO6556Tv9+3bRyUlJVRSUpKUcclszBQZlikxGu32wcLCwoU+uX1gjSyj\ntrYWv//97wE4MQb27NkDwBHPWGSeMWMG3nnnHQDAb37zGwAQrTLgRFpOFiU3EYFAQET/WCyWlCPA\nojZvA7QyU4t+sVjMRRACHFGcy6iqqvK0MqQSGpxF8MLCQhGJjxw5IhYFro9OqMPRpwFHmcXnGGMk\nDgGHy3/iiSeEFFRZWSmKv9raWpcCj/uI+RjsNZmIxL5MtL1PmDBBYh6w3T6x/VqxOXz4cADA448/\nLlr/p556SqJgDxw4ULYMDQ0N7WJqpMPioBGJRFzRvbm+bF264YYbRDn8yCOPSAwHr8xSGtoK1NOt\nhJUULCwsXOiTkgIr4xj5+fliV//Zz34mYc7OOeccUTht3rxZ6Ljar56VU/X19e1StyWDTt0GtCnd\nQqGQzNaNjY2yMjN7Tiut+vfvL6vi0KFDJRybVvaxnV+zMRsbG11U2VTNkydOnJCVJj8/X1Zxvaro\ncG2szNKr/f79+yWU3XPPPQfAYQqyYnDDhg2iEB08eLCs0nPmzMHTTz8NILmEkFgHwOkLfhasaHzn\nnXeE01FUVCR9G41GxY5fUVGB0aNHA2hjXh44cEBo1/r5a+pzIBBo15+Z4PEkZjc/66yz8PDDD0t5\nrDRPjK3gpaTl+mnTcE/RJycFpvYyIpGIhPvKzc0V8apfv37yYs6YMUNIKjzQ+/Xr5+mtl0g7TYRO\n+61JM4miL084TBk+cOCA1O3FF18U34YHH3xQBj2/pIcOHRKt+Mcff+xKrtIVnoJODqstEUxBZi6E\ntoz4fD550WtqarBp0yYAwMqVKyWUPEOL159++qnQse+44w6xktx8881i5WFbezJEIhEpW7eT7zV3\n7lzpzz179mDHjh0AnO0RLxbLly+XyMdsfUjsMy4jGo26tkeJk2W6Ew3rl5sjY69atUrId0ePHpWA\nK9oqlbgQAe39RNI1gdntg4WFhQt9kubMbDRefbKzs0XsjMVisqrcdtttePnllwE4SiQ+zjO1brv2\nqOwKtKRARDLjf/vb35YVjUX/7OxsUWpVV1fLSqFDnjEt99577xVJoba2VhSR0WjUtep55dP0QiL3\ngsOpXXbZZQAc6YhF9YKCAqnPhx9+KF6C2l7PbWptbfV0DOKoyIn36Mzn3xgjK7fP55N7J2PrTZ8+\nHYDzTN99910AcGX25rwPR48eFYVvJBKRPkzmlcmSoDEm7RnJuQ+Y8XnPPffIb+Xl5bKVbGpqclGX\nEynfum56LHfwTqdEc+51jkJ3eAp+v5/8fj9VVFRQRUUFHT9+nHbv3k27d++mBx54wBWNSEfV4Sg1\n+j78Xdt5OapRR+Xr/9k+DkCiGy1YsEDs6dp2f+LECeEgtLS0UEtLC0WjUaqpqaGamhoaOXIkjRw5\n0mUrT1af7OzslPtK103Xv6CggAoKClLqd7aH+3w+T3t+UVGRq485apLuW+ZjdFSOjjzE3zVfIRXb\nfGJEqsToVJo3wW1JjNTEbejq+Ez1mTCPg4hoyZIltGTJElebEvtXR85KjJ6VIrfC8hQsLCy6jj65\nfTgT4JW/QIui06ZNwzPPPAOgTTFKRKJ5/uCDDyT02oYNG7B7924AnccbsOj7mD9/PgDg5z//OQBn\nO8HU+6qqKlc6xDTjs+8l2Zvwmkw16enVV1/Fxo0bAcCVhEYnkPXaV3fmRWjR9zFhwgQAbWNo69at\nsljEYjEZQ8XFxe0SGJ0O2O2DhYWFC1ZS6CZ0GDJGc3Oza1vBszwTaCKRiIse7QUrIXz2wV6+LDXe\nfvvtQrgD3NyS3oDVKfQQxhiXeY51Cpp/n8xdmH/PyspymTU7usbiswkdwl+b19NsDk1Jp2C3DxYW\nFi6cKZLCMQCnAPSOvAQU27Jt2f8Lyj6PiAZ1dtIZMSkAgDHm/ZTYVrZsW7YtO6Ow2wcLCwsX7KRg\nYWHhwpk0KTxty7Zl27J7H2eMTsHCwuLMwJkkKVhYWJwB6PVJwRgzyRjzkTHmY2PMggyXNdQYs8EY\ns8sY86Ex5s748YHGmHXGmP+K/y3s7F49qEOWMeYDY8zr8f+HGWO2xNu/yhjj7+wePSi7wBjzijFm\njzFmtzHm8tPVdmPM/433+U5jzIvGmGCm2m6MWWmMOWqM2amOebbTOFgWr8MOY8ylGSj7sXif7zDG\nrDbGFKjfFsbL/sgYc01Pyk4XenVSMMZkAXgSwGQAIwDMMsaMyGCREQDfJ6IRAEYDmBcvbwGA9UR0\nAYD18f8zhTsB7Fb/PwrgF0T0OQAnAHwjg2U/AeD/EdGFAP4lXo+Mt90YMxjAHQDKiagMQBaAmchc\n238NYFLCsWTtnAzggvhnDoB/y0DZ6wCUEdH/AbAXwEIAiI+9mQBGxq9ZEX8nehe9HFzlcgBvqv8X\nAlh4Gsv/A4CJAD4CUBI/VgLgowyVNwTOgBwP4HUABg6RxefVH2kuOx/AfsT1SOp4xtsOYDCAagAD\n4fjbvA7gmky2HcD5AHZ21k4A/w5gltd56So74bepAF6If3eNdwBvArg8E8+/K5/e3j7wYGEcih/L\nOIwx5wO4BMAWAGcR0ZH4T58AOCtDxS4FcDcAJrQXAThJROzokMn2DwNwDMAz8e3Lr4wxeTgNbSei\n/wawBMBBAEcA1ALYhtPXdiB5O0/3GLwNwJ96qeyU0NuTQq/AGBMC8CqA7xGRK1EgOVN22k0yxpgp\nAI4S0bZ03ztF+ABcCuDfiOgSOLRy11Yhg20vBPAVOBPTOQDy0F7EPm3IVDs7gzFmEZwt7Aunu+yu\noLcnhf8GMFT9PyR+LGMwxmTDmRBeIKLX4of/vzGmJP57CYCjGSj6CgDXG2P+CeAlOFuIJwAUGGPY\nhT2T7T8E4BARbYn//wqcSeJ0tH0CgP1EdIyIWgG8Bqc/TlfbgeTtPC1j0BhTAWAKgJvik9JpK7ur\n6O1JYSuAC+JaaD8cpcuaTq7pNowTBKESwG4ielz9tAbArfHvt8LRNaQVRLSQiIYQ0flw2vkfRHQT\ngA0Apmey7Hj5nwCoNsYMjx+6CsAunIa2w9k2jDbG5MafAZd9WtoeR7J2rgHw9bgVYjSAWrXNSAuM\nMZPgbBuvJyIdb28NgJnGmIAxZhgcZed/prPsbqG3lRoAroWjkd0HYFGGy/oSHLFxB4C/xT/Xwtnb\nrwfwXwDeBjAww/X4VwCvx7+XwhkIHwN4GUAgg+VeDOD9ePt/D6DwdLUdwAMA9gDYCeA5AIFMtR3A\ni3B0F61wJKRvJGsnHGXvk/HxVwXHQpLusj+GozvgMfeUOn9RvOyPAEzO5LhL9WMZjRYWFi709vbB\nwsLiDIOdFCwsLFywk4KFhYULdlKwsLBwwU4KFhYWLthJwcLCwgU7KVhYWLhgJwULCwsX/geTBSdf\nFmBaZwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "show_n_images = 25\n", "\n", @@ -82,24 +102,40 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### CelebA\n", - "The [CelebFaces Attributes Dataset (CelebA)](http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing `show_n_images`." + "[CelebFaces Attributes Dataset (CelebA)](http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) 是一个包含 20 多万张名人图片及相关图片说明的数据集。你将用此数据集生成人脸,不会用不到相关说明。你可以更改 `show_n_images` 探索此数据集。" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVmsZUl2HbZiOOOd333zy3w51tBV1erq7mo2LZo0bZqE\n4QGSP2zQhmkRksEvGzLgDxP+sH9sWPKH/SFANgjYgG1YlgVIsjxIoptEUyRbze4u1lxdQ1ZWVVYO\nL/PNdz5TRPhj74j7khDVWewuMT/uBhLv5h3OiRMnzo49rL22cM5hJStZyUq8yD/tAaxkJSt5umSl\nFFaykpU8JiulsJKVrOQxWSmFlaxkJY/JSimsZCUreUxWSmElK1nJY/KFKQUhxL8ihPhACPGREOLX\nv6jzrGQlK/nJivgicApCCAXgQwC/COAegB8A+Heccz/8iZ9sJStZyU9UvihL4acAfOSc+9g5VwH4\nmwD+3Bd0rpWsZCU/QdFf0HH3ANy98P97AL75x31ZSeGUlBBCwHrDxTlIIei1EPAGjXMWDv5L9Lnj\nfwAghYC6+CkfwgKwfHB34Xe4aCldeCkE/SfPEgzX+gCANI4AAOViHo4Bt/yZcw5a05RKKRHx95Wi\nERXzBRpj+Ph0vXx5QayzAABjLEzT0HumCeO0xvozQ0UKNX0d00XFv3/c8tvfWQcA6DhCnKY0Tmvh\nDB17MhkDAM5OJ5BC8hwCsdJhPo2lMTfGwtjHxwkhICSNSGsNdeGaGkNjMdZASvnYtQoh0DQX5oI/\nX9/ZQ1EsAACnJydo/BxYOp+AgJ9xKWV4X8rlMZq6huF5cH5BCf/bx+dbhHcBJ5afKT6WtQ6G75m9\nML8CAjevXqXf+XM5d+G1gTV0T5SWyPI2z5tAU9P7kudYSQVjagDAfLEI87JYFGi1WmG+BK8jv25M\n04QHuN3KoDR9LoWE4HsJIQC+ltfefOfYObeBHyFflFL4kSKE+DUAvwYASghsd3IInaCiuYE1NdKE\nHyqtw0QVdYnK0kKBpOHXxoVnO4sUupImJ5IOluemdBbTBf2uFvS7xkoIR++ZxtBdBwCnkcZ04776\npev41V/+8wCAZ67uAAA+eut1WMeLxgANn7usGmxubgIA0jTFzuVdAMBgrQcAeO+Nd3Bycg4A0HGC\nOInpMuRSCRUVnXc0nuP86BG9Nz2Hq0sAwHwyR8TnHmx3cDCjBfKP3r5D321MeFAA4K/9538RALB+\naRdXn3+Wrnsxx2J8DAD43d/6bQDA3/lbv4NE0QJsx8BedwAA6CQJTicjAMDRbIHJlOZrxuNUaQSd\n0n1aXxugkyUAgFgJnIxpzOPpGHmL3ud1DRUnOOa5iOIWooTO/R/8F/8lbr1HXubf+F//F5wcHgEA\nFvM5/U7KoNxbrQyLBb2fpRnSjJTew6MjjBcFAKDicUopoPkhTLQOSjaSCpLVghUWcaT52DnN52KB\n0WRG19w0KFlBaKnx1//qf0Pz2dA56rpB3dACNvU5pud0TwZrHbz49Z8BAJSVwPHBfQBA3lmjc3X7\nmJwfAADefPMtHJ9MAABvv3sLX3/lazSfWYq0Q4olSjIAwNnRMdZZQf7sK19Gb4PmMIlb0DGNH1EC\nyd+PN2/SgH6EfFFK4T6Ayxf+f4nfC+Kc+w0AvwEASaRdlCQoyhJ+F8iyDGVFC3AxL+FYATgoSF5Z\nmp/iTqrA+gPreYTdlBZgvx3BSbqJBhL3z+nm3TqkmzyqBAD6oREOTe13aWDe0AP7xg/v4O/+398C\nAPzKv/WvAwCKYoGS9ZITGvM5Lf7NrW041uIWAmlMx7j11jsAgGY6x86AHrZ2b4CioN+dn5+E3VEo\nfuDbGWRNyuQcFuenJ3Q+61Dz7yanFVotOl4rpwdiMZo+diPGR/Tw71+7huKcHrBiOsHbP3gXAPA7\n/+9rAABpNLpdmoudbht7A16waYxOj47dPp9iktIcHo5IUZwtJpjxAzsdTbG5QWPeWe9irU8Ls3El\nFgU9pDHbcdq5MObxZAFj6Lrrusbbb79N748nmJc0LyXvronS0Kz0m7JCxPM1Gp0Bjs691u2G78x4\nHpxzyFlp7G4OEfHnsdaYTelb1jQY9DoAgMu7tAGYusIHdx4CAD68dx+OrR8tFQyvQ8ubjI4lOo7W\n24dvv4P1Ia3Dva0NRKx4zo7vYfzgNs1XQud65sWv4PZ7rwMADm7fgk66AICNXhvS0Lw9vHMQrDSv\nTGeLEnlG556WY/z5X/oFAEAkHKxii0XhMQv4SeSLUgo/APCMEOIaSBn8MoB/94/9tnVoFhWkUuGh\nGk/nqAx/LBTSiG5+KiP0NH1nf0B/r2y1sDkgbTjMNNZYyyeRCFrcNgazho7xvds0qd//eIzDkh4w\nJQQ0m1yLysJZOnZRKvzBH34IAOi2vk3n61jEHXIpnIix1qPF2EkTTM7pYdm7uYHDO5/Rd/gca2t9\npCmPLUvDQ6GlxdkJ3fGzM3r4hbRY69DicMbg7OQMAFAuSoiCd6aqQcvRg9wj/YNTADUrOuUMdETn\n63bbuMM7MIzEb3/r9wEABw/pfP1Wit0uXceVzS0MOn5sArlXsq0W6gGde3dCx314nuLojB7ck2mJ\n0THtcmmksL1DO9fGWgf37tN3pqxAVVWh06ZjaFujKUiZHR48whtvvEHHOzmBlN7/o/nJshgJWyZx\nrBCxaZxGEsbQsY2R0GwJtGNa4v1OG1f3LwEAnrtyCdeuXgFAVtrJMSnLpizR7dCD2mnT2Ju6ws4G\nKd5ZOcfHh3QfBATSFu3cpaDzJqjw/ne+AwB49NlnyNRuuKZ33yBFV05O0e3T2ulv0tgO799Ch6/p\nyv4O4pTGcPWaxvkZja2tFrj/gKyJs4ek6CdG4oDv9Se3P8W1PdqHv/G1l8nyBQBhoBS/fkL5QpSC\nc64RQvyHAH4TgALwPznn3v0izrWSlazkJytfWEzBOff3Afz9J/quEHCRRlk7zEofWJIh6NOJJdYz\n2im+tJXg5WsUK/nSVTJxdzdbiHyQRSWI2WwHEIJ15WyGkk3Rdps0fKwe4Q/ukNY9HM1RsWkrYCBE\nzWOLMC1p1/n2d8jU/tVf+hqqgj6P4gjrA9L8o9NjpDHtqhoWDe9W/S7t+CpKoNhnhUDYBbMsg1hb\n49/Re5PzYxTntCsN8xTTNh13er9GXRY8xwZW0Hd6MV2TdjbEOADghZe/AgB474MfQrLV9O3f/AN8\ndIvcyzQhi2B/ew/PXLsJABh0Wshimm/lHAybzNYa2DbNZ6dLu3yaKrQ1WV55HOFwRmM7Phmjwz5w\nt9dGl19PJ2SZVLWD5GClEsDp+SkA4PXXX8Pdz8jCEgIhyNfN6XxffuYKhgM6VitL0GvTrqq1xmLB\nAcqzEc7G83BsALh+7Qpeev55AMBGp+tjbzC2xpXNIQCgrMsQKPYBw/l8hobjOTf2d/GQjztfFNi9\nRPGjSU3n/fD1H+AH3/0+AODqbh8P79wDALzx6qtwlubl2v4etp69DgDY2d/nMQAoWzzfBiIEKysM\nt8l6MxtdxA25OfWc5vDs7hEqSxYyZIS/9y2yZJ994QXkimM40iH6fIbCn16g8aIYZ3G2KFDVgHU0\nJCFIGQDAXkfja5fo5v/Mi7t4/voWAKA3pIcxijWsTwYoDa3IpLJOhuBh2ukCFU1qntONdWUVotuv\n1Qb3Z/Rl5wz8D50wMKwsJiWdRIoIHE9Ct5+gKel4s+kYm1eu0jVVFWL2OX0gSzjA8iJvXAVvGQvn\nEPOYB2zC96IE8zk9bItihK0OKbpJp4UJm4aT2Qx1zRH8mszvXFg07Nc6OJydHAIA7n76CRJNC+X7\n338bhoOu+5dpDq9euoz1ISlb6UpI9kmFdYgE+85Ww7D/nLGrNehU0JYmI9EKKqLv3juf4Oghmb6R\nVsgTDkDy59PZAvM5Kam8lYcMzUe3PsJ8Tg9ZK0ug+ane5GDt1a0hLm2Qku22cww4IJrnOSJWuE4o\nGD/n/PRnWYZY0xyLxoVovxUKWtD7OtZhPfi/SiqkPPbttT667I6UBbA2pAdZzmmu3nn9dXTaNLY7\nd+6hG9O6KBfn2LlEimd/fxNr3TbfM46T6ARDfq+tEdaTVnKZMYLCsEvnu3GNlMnVDz/GWx98AgC4\ne7zA998gY/yTu4e4dp03CeFQi88XVFjBnFeykpU8Jk+FpeCsQFnRfqqkTxU59FMa3uV+iuc2SPNd\nHnbQGVLuPRmQ+RZnGSwHmZy0UIJ2VWsVnGNMgquDpdCNaVe9UVocndHr0aKDk3uUs59UBo4DeE4I\ncAYQbBygqR1UTDtbK44wPiMXRAkRrAPbVFDC5+bprzMGgsdjYOFCEM0t8/vefI0TtEC7TqwUFEfn\n93cbfLqga60agwm/9oGxYZagWNAcVtbi/dfJ5dm7uoNv/ebv0vWNZtjmYNfekM4x6GSwTckXWKD2\nKUdnISyNycoYgndKFdF4lUwQRXTuXgIUEVlYU51gzGM7PzlDq7M0+QFgPitCvn4yHqPNgdu6qYMJ\nLyCQsGWxxcG+TqsNrb3VkSBJ2HLJYuiIA6xCQnB2QUf0XSi9hKQIC6F8WtpBGW8JLXdUj6tw1obx\nZEqgzfd9rDWyjNbZCbsU64MEt18n076cl5AZXf+V3TV86blnAACb65sQbFmJmi1WU4EPi6SVo+HA\nrrMWMWdXjBBQCc8BZ7D6gyE0B+Cbdz/Fq+9RluR7r76BjW2yJpRtEBm/cp9Mng6lAIohKGHhowGJ\nBAYcNX1umGF/k9yHja01dLq0gLIu+eFJ3kJZkcnZoIFkc9c1EoIv0Ygals1Apeks/bLB9Us0wccT\nhw9O6RjH0wJOeKBIgCkBoPEkrRQpm6LVYor5jJTJxsYWnPW4hxqCtYnidCq0BFuq0FEUYibOWVjG\nS3j0lhQyLH44oNPzoKgIBZvXxf0DnJ/SwtP84LYih7SmY0mkqCv63J5Pcf8TWjRCxtgd0txtMDBL\nKYFqxn54U4TxGOEgWVGrNAbcEtTkr82P0+oKLTbhO5HChNNH0/EUjk3YiJWKk0DlL7lp0Ewoa7H/\n8hYiftCdNegz6GejxwCyJIbiuY+SFFLFPEUKuABbU8IrBcaCKL2MjUgD64PztoFiBWKcCUAfD2mK\nogiaFZOSDp0W+fBZZeD4WqsJzdtHP/wQ735Mmff1lsRL12ltPfvC5RBTaaoCpRiH66YxJoi8QtMp\nbOP9Sr0EYQkZ1rVkJbW1s4OvvPxVAMBkbvDBJxSX+c4PXsUr//zP0X3oKUTWz8uTycp9WMlKVvKY\nPBWWAkBoZCkFYt6BBqnGly/RbvbKzR3cvE4uQ95thQi+5d2ndg6Cd38JhN3aCQfpgSUihuON17L5\nlmYpdjfoHC+cC7x1TO7FZ8dTFB4+CwEt/Y5Pv0+yCJlHSk4nEBxFb+cZLG9BzpgQYPTgESGXQUcl\nFRwHM4WQ9CEAewFq7HctqRQk56PTdhvbl/YAAOezOSacrZnMyHpwOoblLIOBwPomzduDuwc4OaUd\nbW04wM4avd/KGH5rAOvnrTHBYrEKkMJjm7GEb3rUpHNhZ3HC+ctArAU0/25RlBCMLdEcOEvTFEVJ\n42wMsBiRpfDcjRv4/e/wjmgkei2yEFPt7yOQsMmshYBkd0xY+kfzLKB9UNFDg6WE8t6BFeHLCipA\n65VEgHobtgqNkAEX0W63kKa0znQkIXgcC3Yf7tx+gMMxZRl2Bgmef5YRrf1OWNfOlGgYL+Pvv3UN\nhGjxdApY/lxH8RKuDHIn6C+tXx0nuHz5KgDgqy8s8HuvfQoA+PTeQxRsFfWTCElrmY17EnkqlIIA\nmaPSAYJv1qW2xtdvUMzg5pUNtBlM44RF6Rc9/5XIgo9rrFj6gxeQ7dZJwLsVARcu0Wb/bW8zx1d2\nydx74+4jFOXyZnhsv9SsHLSE4/RDNZuiw/65gHisDgL8fQ/IEkpeqAEQBLYHZQncBUy9/9wvCPJp\n2YzUEdoccd/Z3cWIze6SYwDGVCENV9saqaL5vPfoGJqBUztrPXQ5BpGyeR5FMRRfk1QC0QX/Gz7d\nqxXM43oOMtLQNUfvlYTm+5DEEimb3YuyQOlrM/geRFqH2bJAyBaMDx9BMXQvb7XR5XRuxGlmpXTI\nVAj5R+aTxToE9J+fYyn10iwWTUCv4uLci2W2InxVCGhJ506iBDkrtVaaQDiO7TDw6mw8x5zTxVmW\nB3BarCLE7KJwNCGM0/8NsS/rlsrCNpAc74DUnBUDvBpW1oUU9nDQxYCzE2d1g/19AmftXlq6Y08q\nK/dhJStZyWPyVFgKAGsnCyjWklfWWri2RbuEUAY179ZxlEFp0sBKU9BHqjSYrVIIwAV8NMChy4vV\nflL5vHQKzVDifFHgao920vW8jWOOxEsplpWWvKNoLVBNyWRsygKtjMbRNDVySdo6iqMQEPPnE0It\ndzYsdyVrXXjtC4YkRCiSMkZAKW/9RIhYl69vbmPnlAuGKm+5NHhun+Cur9+5GyyF0ayE4qKjdqaw\nvk2YhOEeQX/n8zmSms1SGCi7xGx4DIiMIgiOlDrjzfYEyu+0rkQDrlexDboV3afpfI4ZQ72t9laF\nDZiFsjEhsHvwycdIeAeVUv6RelhAKXmhElVcqDQVoRBMawXp5967EVIHUJAQNoCihHNLy1Isqz9t\nuH6HiC2FWMfI2GLp9zowNVlpZ8eP+B40kHyOjV4LQwa1SaXguDJPQUPJlC+Kx+bi4OZKqeAxMgJ2\nGRB1gj9DcDXRuODaxRJQPPfOlejyWh6sDSDV59v7V5bCSlayksfkqbAUBAAJBy0l9rqkRV/a30In\n8ekvCRXRbqzjHtKUfOqIq8m0ziB08HKXfrmSkJxCs6jD7tBYtjTaaz7LiPJshIwhv3mcQMo6DM67\nqx5WoKXAgn34OIqQcDppsSjQGSx9QB9TEBwYjUUciq7oA596WvrovkqS9ki2JLBMKSkpEHOKs91u\nYcDxjIgLmyLZ4Ke/Tmmqg8kU5+e8m81m8BtNK8uwzWXda7sUtzl8dATH8QnbWFjjEY02xFQMGrho\nOWYA0EqFOn6XpUjZSmsZh05Jr/P5ApMxHduDBcazGVo53dN5USBm7onRySHAsaKqqjCd+SpJRiAC\naDgcUBkXsCOxVIi8VSBkKKv3sQUVKRgOpAqhQlq6LucBvWisCRab8dwbVgRLb2d7G8MHlNY9KUsY\nhlXPp5RiVFrh+qVtAMC1S1uIc4pXtde2UDHqEY2A5XiGD2pa52A5fStjB+c5NQD4SIhQIoy58WX7\njnA5ABArYGednot37n+K+ZwK85RUwbp7UnkqlAIACDhstjT+ja+Q6fvybht+/R2cVrj94QcAgMrd\nQislM7jV4aq+6/u4fJWgz3kngeD6AwEN67iGwRmcHlEe99YtgobeuXuIIy4tHo/OMVAcGU8UFEfL\npVKI2JzzQR1ZGfinQicZpOOnzRhMzgmaPD46geWHvmHgUaoydPlBGPRaaHGVINX0+0XIWso1AINO\nTFlhyuXJZ+Mp5swVYJzBxNAtPBrR53VTY32NIvZff+E5jBY0hhICWtCx13ubAex0dPdjAMCH79/C\nOVd4NsYiYyW83sox4JLjJEvhfPDUZyfKCpMFPfCnxRwTLpGejKc44erJ8cKgrFnJMCy7bBrE/PB3\nsgjThb9uC60t/26Bok3vj/n6b33yCUp+GPOshY01ehCu7V/BpV3KyuR5CggPgFoGIid8jGpR4OSQ\nTP7R2TFs7cN/FtpvDIyFSfNWUNStThsdvn/FYoHRAd3ru3cJSp53urANjW1/fxsdLj9f37uJw0ek\nOF579U08uEPVjms92tR2NgYY5JxdakUQ7EoZI1CUTL5SOBwc0f2ZzCmwubXZw5CVekc6XLlEil69\ndRcN43aWW+STy8p9WMlKVvKYPBWWghACUaTw8uU2Xr7EhRzS4IgJQ+6cFdi+TLvA2mCA6YK05/kJ\nac6D99+CGtOOsXfjOhKGgTqdhLyPmY5x9933AABn98k66KkEe9euAQAqZ/HRO2SNpFkGgDR7U9eh\n0CYEn4wJOWMpL8Bn6waO6c16rS7ylK5lzsVHxyenOD7i1Fy/DbFNRB7dbicE67yLA9vAFLSzHd79\nDA/uE1LOGoHBFllFKs9wzrRqdb10nxreEXcGXSj2j9KkC8Wm/d7+5VCYdecjIvwYn5xhNKFd/mxa\nYDaj82XS4gbvRtd395BxUNVf9GQ8xXvMG/Hp8RFKny7TMXJmlup0uiFl2szonkZa4ZTv3/pwiDSi\nezrc3MRnR1RdOD2fYdyiHe/hMd2zLiwuXyZrMo1TlFxUdevD2zCMoXjm2WcQeSQgF4+Nzs7x8IB2\n6Mn5CKd8vHK+QMbjVFrCzcnqecT8FYPdbWwwpgOQaLMFEScZpKXfGcaQHByfIZc0nkF/DVlK373/\n8R28z3wKn905xOs/fAAAODmmtXLzUh8//Q2qnLy8t4U8pjlezCrc+oTm9ruv3sZiTnP04rO0bva6\n15EUtMaqRKHVJQux3++ix2QxEBfJCp9MnhqlkMQxntnIMczY5E5aSLnm86vrA9S82D65cw+PJlzB\nxmHx5zZzDBlUUo1OoLm6Mso7WPBDunh4F47N7llBk3RWjCGOyPTrdtrYHJI70h9fmEixVAae5UdY\nhEi2FhKCHzZhCkQg12Uxr3B6QibqbEEPQllW2OnQDW9JB/ADbapqmWf3MGlTBUajo/EMh2M2B51D\nLcmv3dhYw4ABWYweRgOBe7z4j6YFnv8GUbA9//wLqDgDcPPFm/jkg/cBALfu0AL95OAURwy8aRqL\nhMeznmmcjQnUNVkvkLNS8EZpXTfwnHdKpih96XvjMOIqzyQSEOz7OoZdZ3kb5yNa5KPxDD3mIrx0\n9SrevkVkMKYpgvnsGjrvV158CZublDlZCBvo60xZYcIw7ZPjUwx67KNzpmJRFiEzkEcRaq5GjVpt\nOI4jdDst9GJflchZm2aBimMOkVBIMhpnnOXI+1T5uL1HcYRBHuGlm7R5feUrXwLYdf34/T/EZ+/T\nhvTR3RkmXIrfyhlUVC9wwtR7w0ELGWMh6nKK2UNSzg+Pz1Gym7rPc3h2dIy9AY1B9tpo8+F2Nofo\n9UkpELZhlX1YyUpW8mPIU2IpUES/G2vETDIZ9bsYCNLQhydT/H9vkSa9PTIYM5HHOptyQsaQEQUR\nb94Yht0ozjuYcvHQ6XmJDx6QufrdD8k6ODESOZuG5z+8hV+6QTvQXksFOq/SEG8gAKSMfryINhRw\nkJwfrqs5HnEQ6M3338b9U3o9591/e2MDL+6Q6V8JjR0O9uk0QsLFWmBswmw+xZ1HZOJ+952PcDQi\ni2d7/xqO3vsUAHB9NMELNwi5xhsirBV4831ygx7OavzUM2T6X7m8i719Mjt3r1zCP/wH/wAA8Pr7\nFGj8bNRgzgeJY4kdRhIWyqFkC6lyDglTkAkOglauwZzv00xa3OfisEokWHBQ0VQL5Dy+Hl/nphWh\nGOv0bIyYrztp95BxoDjRKgQ0+y3GrNQW779Du+4oljiekxWzN1jDlTWyXu7d+QyKsRqDIe2kiuil\n6X6MxpgxevO4bvDDT2k+17Icl/mePLvv3dUejMeZOATsyWK+gLG0zn7uZXJBD37+m7i0T7v8cKOH\njz4gi+f86B6OjslqejTRuDehNfnL/+q/CAA4+eAHABO5tFs5Bms05sVkitNzWkOTRuKUC5taV56j\nz4vDwN3ZH0ZYZyKezDV48D5xK7Rf7kBmNM9PKk+FUpAAcuWQigyaGWN0WyGNyQTKqgR7fZqc/ctD\n3Dmgh/rSDi3yV158Bkf3iEfR1IAtPHuThqm8+SnxJWa80S2apPGswuY6RYhv5xWubXLJ9aMCmk21\nebksd+b1ACFFgC47YbAsDYiRckR583KMqM8EsVPyU69evY7NTTpfZRZYsFsSWxPiFg3n284WJSpF\nCvLqzeeh7lHGZHt9gI0OzdGljQHyFqdX/RiVxqKiYzw6HSOXNOh+K8P1XVKAkZRYa9M4bl6mOYk7\nM8zYDcoiiZt7FMlOTIU1NnNj2UKcMzdlSQrLVQXW+ZpNnKJhFuHDaYGtlN4/OLgLV9L9a3GVYaJS\n5Ckpm3YsccyMye3hFjqsFIbtCL7Ab5PTbSrRKDgRORxeRtRihbs5wDoTlZjJBKcnHIPg6kRX17Ds\nPrWzFGmLlYW1+PiYNpStzW3oBcUSGs6oRO0ONGeinJQh8xVJCdyne1K+/ncBANf7AjuX+H5EEdp8\n7q2NdXS+ygxX5w0eTWgcw4Y2ulZPIWbEVqQ1YkW/SyKJy9v0u58VEjIjl+elNa6S7F1HzOQ7aZyj\nFdNxe9MTfO83/hrdy79YYutn/iV8Hlm5DytZyUoek6fGUkghURuHmivnotoiatMut39tG2vbbFLN\na/z0C0QgkTBrc54qXNn6EgDA1eNQzejgQiHN9s4QMe9ou/u0280mU2BOrshX9l9CvCBT7N7JfRjj\ngS4CyqOW4CngTaCZp6gjFwFpjY0B7SS7G+swvM3VvIuXpgm1+Xk+DGCbSirUvKMbxgEg7WBjm3eE\nrQ08f2XIF+UQM1hKSonZbBauFQCSNILxPJCw6HMhWVTPIBnQIoXCz/7ZnwYArOe0+zw6PcaYg7LS\nOmQZnaPVGoRxatWF5Dx+xcGyOFbY4WseIsIGB0RnVYNFRYG/q/kGUNFOn3kAjhCBQNHpFDlH8vub\nW4FEJD8/Q9LLeL7omoZrLQyGRFiSttvIGDegtF5yXLQizEY0L56X0xiDlK2UNF9bFi5JYPMbL9F3\n6gaZJOs0D+QsUSDZMQAyLnIatNrQjN+wjo7VmT9AJ30FACBUjPUdssL2n3O4f5ssWR2fYi32OAS2\nGPY3kbVpbJ1WBzricww3cfNZutb+YBwqbDcimtd2fxMJBxSjJEXEvUq++cIlTO9SL6bJ+x9g+2sv\n4/PIU6EU0kjhhY0+YA1mHEFOxxkcm4YqExjkvPC2IsCTj8S+wYgILDZmNA+LTUmJhG9uVS6Qc71z\nZ8jpmt0u6jm9VyxqFEd0vvP6AA0/ZEqJC+bUssmKT0lCLUlYBCxMRQskkhoxjy+/QCpr+aEQUfJY\ntyQTWhOGMS3TAAAgAElEQVSxX5/m0L4TkjHIBI+5qQNZiHE2JEl8ExMVR2h8CtUZCFYy1XSExSmZ\nybFKMOyTgtzbZtCXMihZCTe1gWKEoU4TNDwDOt+Alb7XAZ233cogGXmadwbYYLr7eVHAWHogtd0I\nKD6fLTgez/HwnB7cuZFwTAzTWVvHcJdcl5NH99Fhkl3t0aES2OGof5xGYQOQSocmQePpGBnHLnzR\no5QKjfVkvBYdfrhdU6MfXciocCypYSgkVXD61y4cL9caYpPG2XAtw87sBB2m1Ddu2VNkfbiLYkoK\nYJZ1kLVnfA7OakgLBvIijlMIJo5JepsY3KDX2XAEy2sr99WXWRta0fkkJCImxtnvW3SvvQgA2Opn\nKO7ewueRlfuwkpWs5DF5KiyFVhzhletbiOwMYyasGOQ5XJ/hp30FwWarjmMIbylI+hsJBEhwKV3Q\nwEqp0CpsUTeBF0Ty751WiNhsd5iicQywKYuwYzhnQ0bA07cnUQTfh8kYC+s58GwDr2dV3ELMMOyA\nTxcCkncSKxQM037rSEPyObyJmEYSJR83jtNwza5uUPGOYcoFtbMCELFbkuYZGp4XrRXOObi2nqYY\nn1HwrDMYoq68mULjzbN2yI83xob6fkgJzTTqsjWEZPisZRem1W4te1A6F/gpWlkCaelalTFwfC2T\nwsNvHebM4TiaTaF5l1dJgi5zcEo4cJEnMp43hQgJc3DGKg8FKUoA85K5JYoCPXZp/L1zQHADIwe0\nmbylsQ4VZ5dUvbQEYWktONcE18w4izlnl0yxQN6lQLdbu0rH3b6PqEcZrOmsxPkjCojPHx4h5nsm\nsxgZQ5oVZ2eq8/OlRSNUyHAIlyDle5KtidAZLFyzkxAMoYd16DAIa2EnyHbIxRapwPmH7+HzyJ/Y\nUhBCXBZCfFsI8UMhxLtCiL/M768JIb4lhLjFfwd/0nOsZCUr+WcvP46l0AD4T5xzrwkhOgD+UAjx\nLQC/CuC3nXN/RQjx6wB+HcB/+k87UBRL7OxlOB9L7icJVIsFGm4eausmdHCOWhkEowad5MaZwqAu\nuZ1XY+E8uahS0AkTZtoq+N+RZL8vShHiBGKOmrX5yWjZ21AphZSJS1u8O3aTFCPeoSu3bCrqmgY6\nkLXGIWCkmM5LCrmMP1gTauid1qF4ylP0Cx2F10roYAlYVwc6LtOIQP+W8Q5tIADOq0dKYcbBvmG/\nh4rTnUJnYCqKkG6rmjpwOehIhWmZXUAKdtsDBBIfzXOYFTCN5yBwSH0H6iiC1kwxVs7RcM+MlKtZ\nVWQRpdzp0ZbotXwMwAakYAMdipUUw7gzKGiugEziOFDzVU2DBaMfY5Wixa3XPJlrWVVLBjljQ6FU\nnKRQzEDtygUst+Tz7FyNjNBwztlUBjOG3m+v9SCZym7zG/8aAKC4fAWOsQuL2uCcWb4XZ3cheRxZ\n3gnWT8NWR1lNkWaEJ3FOoDFk8cgmgZ3Qd5wEYkbterwFUKEqPDuXBLjgbXj9ecQpWTG1BcT08f6i\nP0r+xErBOXcA4IBfT4QQ74Fa0P85AD/PX/ufAfwOfoRSSOIIN/a38P7tg9BUdjyt0JrxDSqrQN0l\noxRSsCvBJq5dzFDNKLLuqhrwUNU0QgSuRISDYYUTqLqgA6WWLSscnDGO/uHpYy3MfaenGS86FUdB\nSY3Hs9A81VVVgNJq4RBxCWwUaJvtsiO0tah9i3OBJa154IPUcJ623tWQnjjG1NDc4lxbE0xbHxis\nTQ2A89WtNhxH3yezM7SYUMY6g/ExzdcpQ6Kr8/NAeiK0DiXLp+UCm9du0Nw3VShrVvCkNwkmBQcM\n57OAs+h2OhC+VH1ewjA4x+MpkjgKiiyN08AIraTG3mUCZPWG6yiYu7Fm0pso1lAMY5eRDpTzZVVg\nXngqtAw5Z6a8e+ScCzUos7JAi11MjRIJm+suiVHzA+ezTw7BQ4OzDoLvycsv3EDDmlV3CeY8euM3\nYWeEPdh59qsw7GoBLrAyL6bj0Py24Ma2k9EC77xP2Ym9K2P0mXb/0f05LjGOPenmcKH36AV2Zm6g\nLIQLGbHe1ZfwaMTzZRUirsF5UvmJBBqFEFcBfBXA9wBsscIAgIcAtv6Y3/yaEOJVIcSr54xQXMlK\nVvKnLz92oFEI0QbwtwH8x8658UUCTeecE+Kf3LPqYiv6F/e3XN7pYW04x6MpNwgxDj2ugOstFsCM\nd/SsgdSeeoybadRzcEYLdQM4ht028xksK5yybCDZNASTiajGQbLmL0YjfHCPNPeHx5Plji4l5oyK\n9FWGiBRS7m14fnaCGe+qiXDBBZGmAninCMVA1qHhlFzZNHCModA6C4FNP1taqXBzzGKGkPg0NRS3\nFZP1sq+k9hDsxSKkprbW16G73JMhbeC6nH61BUanZNpORwS/dfMZCnZFZkWF8zFhFkyaIO2f8Dw3\nyNn68a3iiqJCzdbdZDzDyTFXF/b66DNkXbkKFe/0dSAWEcsCM9RhXoRQGG7QPnL5+g28+wPqzViy\npQFFKUUAaGwDbvmJyfkINUPaTVGiWaeAX833rq5rJGyNVXUVzudUDcPsyVJGj9GwAUS8YozHpzhs\nbDFUfKMbCFQ9yjPt7eD4hAqY6qYJx6jrGp5K2joTugr5XhiNE5iNaN4e3S3RLMj1mZ06zDQhT7N+\nO8DtLbsJSikIdk1roSE1jWMRDdHdomstZrNAhvyk8mMpBUGULn8bwP/mnPs7/PYjIcSOc+5ACLED\n4PBHHac2Dg/HDRqhcco3NmulGPPrzskpFDMRQyWoPeiFgU5xliEf0M2qojZKNsvOPvkEhl+LpAXl\nMQsMO5bFsunJ5OQUt+6TSX1SWVi/EFwTHtQFs+MUVRVKiCMdY86kHyJS4SE11QKWF2Ht2aeNoapC\nEN+htRxrgAv049ozTsNC+AValaH0WKIJPQjrRYkpX0vE2RlZzBD7PpCVwU6fMiCjkwMYjok0vQoF\nuyBF4xmJZyh57KPxLIyjpds4vUeG37E4QI8j3B5DMS/mKPnBy7IslJE/fHSIhusksligZiVSs3tU\nQyFngNTVq5soS+/3inAtvbW1gD045YdmURVoPBV9VaDhe2IWBWqGSjfW4IMPPuRzs1siBCKORbTy\nHA1XzNpEhnNEMoXv2u4zWI1pwHoQxgkccEex7731Nr7xK/8RHZvXVffaNxAxmMooB8ExpaZpYENv\n0iawOKfc9n6n3QmdoOqyDl2xrrx4FQnjSRBJVHx/vP8rBLjqBog6a0g6FJfQeTsQ6qSxDoQrTyo/\nTvZBAPgfAbznnPtvL3z0fwH4C/z6LwD4e3/Sc6xkJSv5Zy8/jqXwMwB+BcDbQog3+L3/DMBfAfC3\nhBB/CcAdAP/2jzrQ4ekUf/1//300cYW8IW3YvrGLYZ80cFkWKJn8Qk6i0MI9YiSa1BEE79xJlkEN\neFeazSG63uRqYBmGV/PuUpYVBKPuJosCd7kirTE6NAOBE0uqNJ+vroGEkYmttIXZhHaxeVlhxsQo\n3dkEdU3X4isqJTRiDvbJNEbD1F3F6WxZ0MTITeEc7IytADhUXPlZFlNIjnCPygqnbKU0zDhsrINk\nS6qo5hhwFH5S3Mf9T+4AADbXbwQORsPWyPmswJh3WusM1gYML24naHGR07SqMeHApc8KxFqj22dM\nQGRh2FWajuc4mBKCstvOIWPmydC8t8VxaFU/MVPMah88s0suzCQOGNLTMfdWmFXo95mopikwZ7fS\nFCW63KIeQkIxxDxhq6PT7QbXQAmFivtQCKeAjIvfFnPEAdLM/TgdcVQAQONqfHxA7sFvffc1/NeM\nvahL3xPSIMspc1JXD0IQu24a8OaPxgGlvyguukLTIEnoCx2dB6i7SS0KNlNjmGWTo+CQy8AFodt9\nyD7jO/TSkhNKQXGR4ZPKj5N9+H3gj6V/+4XPc6xFWeH1Tx9A5Q5b7CPdPy+xv03+lIziZY8/RQQk\nADA5pIWSTirEXL1mlILg1E3TODQccS4mY8w5Sh6z2drpdWC4GnJUC9xhJhwhdWj4CikDe5E3yaQU\nsGxedtptlHP6nbMmcClO5lPEje9dyfx7WRzgzM66kL60jUHBaaPilMcQKajME3Ua1H6mtYLhBiHH\n43HIYPhHKlUxKrZ3x5MxbMIP9HwByVj9yWQCYT0ZCsdnmjp0bHJKYsFLQ4kodGdKIiDhB8inRZW1\noezZCBE6MlUSmFYMJpqW6PmSax6pyiM0bDIXwqF/6RK8CDbzB8NNpJxJKjgedDwa4+olZp6CxHzM\nMZFFhT6DrPK8jQ7XubgLrLuNz4aUNSp+XTRzKK67yOM0dMkyAbAkQkyhMQ1GXB/ihCSQG4DZlMaA\npsKYyVI6rQUS5anaHezMZ19kgFuf8z0/fzTF7BFnrSqHjAlf1/YGGO7QdSxSBbALbTjVCx3B+rR3\n1oaOPWgNkM4rQAknVs1gVrKSlfwY8lTAnI0QGEuBjbyDBWvqNw9GEBwwGwyeRerxGogAxikcPCD+\nuoPbHyNWXDB16TJ6e0xkYhvMmUrs3e+9BpmQ9vzmv/A1AIBAjIKDMPfGNR7OePfDshW5ERcYgeF5\nGYGaA1V5K0XOO/BsWqHinbcWLuThz3kMxfkUawO2MHp9SLYp4yhGkrKLUvtIl8X5KQU+56ZEj1uC\nxSrBdEHjOBxNA4Cmx+3fTDEKOIxMakzZZBZpih5X7T0a12ix++NbwvV7bURstp5P5rjN3ZM39zV2\ndhjmXFg4f3B2xYxzqCRd03xa4lPmFJQa2OpzMU+SQDPIyDdn0dJgcka7aqQaPP88EZUAIrSWy3tr\nyDPaHQvOGB2Px1gwF+Nmv4d2m3bgjz5+FycFcTtudgeY+MCrx38oGVrNl2WFKbtgyVoLl29epblN\nEhgGSdUMwW6cDHTvVVWhYCzEfD7H+OEdvlV0f4/ufIyPXv0OAOCVV/YABo7FEVAafzzAZ+Bvf0i/\ne/X7nyDvcIfqa/swbBU9+L33kWe0hv7MV7Zx7TplVHqcRbI6h2xRIDnpDqHZqhLSBlcDQuKfnP/7\n4+WpUAoODpWkEmRvft4pG8zvEBfh8ze20WrzohqdQXP8YGufoq2iVigntFjTdh5AHK6u4Jhfr9fP\nsXWFvp9xSdqiWWDBnIKvfnAHJ3OuI9AqxBSsE6EVu29mOh6fo8M+IJxFi4Eyi/k08PmNZlOk3JOh\ns83jHM1w/1NauLF5EDpLtbMcwmc7GCBVmwZT7j2xtr+NFnMDzicl7h1SirB0Ai1Oaw652nE6OSYY\nG4AXr96E9QjDdhtXv/zP0TiydYxuf0TX9Ak9/Lmpkcd0nd12hq0NYi6qnA59ELdefDb0R1Q++zAd\n44RJZcflMVq7tHBbXe31DZRVcOwq1VyLMjMxbh/Q/X3pz34NpnUBzsIxmKzTR4/Zte4cUhJrPF/g\nATNStdMEit2Z7Ss7WNyj78RwyLnScNmgVaDiTFPc6aC/Ttmq9vYAEbubRgClz+xwetZChEyEMQY1\nZ4Gsc6jP6Lonc7ofb37n25g++BQAcLRZYjohpV5VZVBIUkpoQVphs0sK8uagFbIhOH6InN2ETZVD\nc5l1O1WwnMsssXRjuwOKI6isAyV8OX/tW2gCwsKpz5eSXLkPK1nJSh6Tp8JSAIirpFgUWO9zQxah\ncJ9x5q/dOsJzm2RezcUZNAOEEjadh3ttjA/ou8l8gjYzA6eNg2TQy+ZOG4M9ClyW3nSsanz2iMzS\n7773IAQz0yTCgn/nrIVlzeyr7B4+OkHDrMzr/TYSNvHSPMN0QSbheDpBzhHz/haZ372dTUQcCS4e\nTSkaB8C5JODWHWcOYhmj22O6sm4OU5Obc3Q+w++9RwQal7dayLg/ZMpmpIoi7Kxzl6IvvQLPFbKx\nfx2dzW2er2dwxq7LwQ/fonkt56HNeiwcMnBmp05Qn1NwrXjjLT9kKJ6rYr6AYuxFPxbQ2zwObQJU\nvKo0Gs5WgN0B1+mjz7iJn/83/z384x+8DgDoOgcfv06zNhLeCRvzDgDg+OQIB2dkVXRaESLflr6V\noccBSFk2kBx0i9m1E0oi8WCpdg7d8gQGAgXjSOq6Dp2oarZsitpgwvc0SSMkDCff2rmE1373HwIA\n7h/RGpqezcAJB5wdHGAyesCTlTO/Aqiyl12U4ZDuwYvPd7G4zXR0RiDxdTc7a8ifIUtJrasl1wOj\nE+JYIduge4okguT+ngo2rCcLARdxYPIJZWUprGQlK3lMhHOfMwrxBYhW0vWzCJFKsMZtwKxtMOWU\nTRItKwaLug5pJs2xg6ZeFkxpKSCkh5dWITctkwQpMxSXTOxqygaWYwC5aLC/wVRqOx0c1OTv9q7n\nuPF1SpelHTrff/Vrb4agXKYUrj9HzL+/+AvfwOhT2sXtSEM0tPO2Fe1ENzdyXNqgnXR3cxMdTtNF\ncQTNSEHD45mPRqgqLqIpF5gXtFvDOZR8TaUTKNhdnDsOatYGt++Tb310NMLw5/59AMD3/tH/iU9v\nvUZz5Gq0uU7fX0esJMrGo/hqdHiHlbCh+/W0aHBecFqPU3q5FqGtXlWbgLBzQgWWJiEkYo59+PtR\nVyVqTi1LqaAjmot/OY/wtXW6Tx1bo+bAXsRxm3lRQvlzZzlO2Nh9Y1zgvjdjdAylfL9GWiv9tAXL\n8YC7Jw8w4gpcqXXoITrMcnQ8SStbPzrOYdlKg7OPQZdf+abv2E2xg9JWoc+lgcacsReHZwuUvItb\nKREp3yOVvttKY6x3aO11WwmGTEDbbeUhJRtHOrQy9GESrSMsmJ9iMV8EWsCiNBjPyWQ5mc5xzvGK\nv/Fbr/6hc+4V/Ah5KtwHAUALgW43RcZcfEXlQq653+1hdEoAoaKsoVgZSLNs7tFh7EE711iWQ1ss\nOIo8r2UonS1KrxRMCMgUVuLhCZlwaarh24Qf3Rmhs0U36dIzy2CYDaacC81eJukcV37xJgDg4Luf\nwd6lhXeJQTWXBxkubxC4pd3vI2JMRhRHgQzG4/AjtFEyK7MqgAa8MGsHy5V8Qkn4XuWJ863qHYY9\nOt+DB4e49e4f0uvP3oPkLEGv1UHO5rWHZU8nE7Aljs08xXrmWYJlgESPpEISjkHjvbrRgWI34WRa\n4C7T2p8XNWacJRBSLhvqsMugpIasmSquLCG52u+ZdgddBkBN5kVoxX42Lfi4JTpcGXlSGHxQkLn/\nw8kEbSa1aUkDy2ukYHfgztEBEp7jKM3QDxT9QJ83i721HiKPPeDaj1k9x5Tfk1IEAFtjGjSOrpVj\nmsihYdn4roxE6a/fuoBH1kqCcVzotLwL2sEmr5G1Xhs7vEaGvW4IMCstgnK2XIMzXyxQFOwfDvso\nmIRlMi7Q9k1r8gwJ1wg9qazch5WsZCWPyVNhKUgpkKUJkXTyDtzK0tBKLUkUZORpzhRy3j6GTDS6\nu7OBDW7iYV0BxbtArFUgbRmXFR6d0+tPpwwvdiZoRSME5hzgeXRWotXi6rMTgUfvkwWxvsk+jHOQ\nbBorrTE7pc8/ePMj7O1+EwDQG3aQcYBqlwlENtcGaHfIDE5bMVTYNWXARThGWNo0QxQzjVsMpFwO\n2Izm0IFI1CBhk1IxsYoRGp2IzXIl8MM3KW9u6llAFeZxGlK1Pu+epzH2uXb/yzsD7DC7sIPBhNOk\ns0pgyhWRl9nVuraewTA243Ba4vYpBVXfvX+OW0dcoSpiaDbnvbMaJUloDR8nMoxjPU0wZ9P+vDbI\nuK+iL7pScQrL7x1agdvnhzyHgOZrKq1Bab1FQ/O9szFA5sltpQz9I1t5Gtr+9ZIUNSMWx3y+u/MF\nJj4NqWS4AlcbxIGVxuNJXVhPs8rBckBbSiBnzIpWAj3uNr41pCDipZ0NbPT4vfU1DHgtt5IkuMVV\nVYciPe8SqSRBJ1k2KCpTOt9Gd4CSLazOZIaU+2I+qTwVSoGAoALzeRF8z6qaBwWRxHEADvUyheeH\nlEV48Qb5dFkWIfFsNs0CsfbMQxo1ZxHmVYm9HpvjfBPfuvMAFZvoUsWBin2yqCE4Oq+VwOg+mYkH\nnxwvh+w5WIRAw77/8cdnOHiDctfbiNHncfib3+v1gyKIYw3tmZ2FCOZ1zOkCCYuGzfYkisPDUcR1\nqLir6zKUH4PjKGmk0eZ4wP7+JXz79g8AAHmig7JsmibUc2z0SVFstCRe2CUz+oWdLtaSKFzqlJWC\njjI4Vob9nGMqbgFraBn1sxhrXPnXTRNMqiOat4WEVvzAsuvjmhoX6KwR8flkWcB3pS+tRqzoWhL2\nsyFVWPCj2RyWIcN7rRYyH0uCQZfjEjs7xLi8tbODbcZytNIYjucWrsYpQ5MXx8ehz2jNDr+1Fg2v\ni+miCBgYDYE2r1Ufw5JawjK82EgDsMunpEbMIKpWLHBpg9bDZe4WtjnsocfZkE4cIfYT39SwPpjm\nLNSFGA0AtLxSApV6J55v1AlUnpPHCjy8d4DPIyv3YSUrWclj8lRYCs46VFWDOHZYcNDOmhJp7l0C\niQG32V5TNX7uRQrm7TJtFbRE3HiN2gRtXTc1Go5IN5VGm5tllI4CUtP5FLcfUjGL1QKWd4R5U0Mz\np2A7k3Ac4n/08emFQXu2ZxegtLrR6JTM4+iAnQutwQGg1Woh5qi/VvEyYCrlHz0stNAoC08NRrgN\nADBJDPYwUDQVDO+8SYuhrwLodckUvZomaHPLN2GLZZMcW6PHO+8OI0WvDyLcZJdgrRUj99RsUiPh\nHbHf7VJwE4B0vtuzhbWeJ7BGpDk/3qT4cJ3GMTqsUbNp77MrIhJLIhNjAh0dmhpg5uZEa5ScaSgZ\n8n44XwT6u1ld4gZD2p/b3sCQ8SlRpJFzsLW7TdbkxtVn0OEejTEqVNwRW9oyVOPeNTPMzsgdmXEF\nY7EoAsy5ccu+orFU0AE/zJaCcCGlIJQM16eFRovnbafXwj5bjpvsorWVRAw/ryJUGTqIwBWpYw3B\nhU3eUtBSBRfbWhvWkYAGd6FD2Vj02HJ8Unk6lAIoiD6dTIPPqaUL0NgsayPjJ+FL2x1c4f6PXabK\ntkojMZ4HsUHDSqGoK5ScDjS6guWFtVHQIr8yGOARt1+fWxXIMor5FFNOW7ZSGVreTw6XZBU+Cm2N\nQcLQ381+HxvcCLVTzTDg8uMWm4Y60ogiOreSyxJwrfXy5nrdpiW0r840FRSnt1QcwTHYRl5wO8Bm\ndFU2qKslk1DGGQ5TNog5/Ri5Gp2Yrm+Tayr2BjmGPM4k0og5Mq51HgBXrTyG5sXdeEr9soAwvuKy\nhOVKy7RssMvX/+lM4WzK16I9RFfCM8WWZblkFdIxNGed0sbi+AHBwk/4Ubk7r+B4XnpZipefpQ3i\nS89cQ86NY7J2F5pZnzrr5D5ka1tUkAEA1cj3C4ItRxhwO3f14pehYpqP0SmBqfR0ESDK1snQJKg2\nFs4fz7OsSwHwg6sjQClSLGkMrHGnq81hF93cV2VyzCySiDjGEaUxVLp0Kz0fo9ZxiBuJ0JBHBBeM\n3DEfS0tDZecgUthbfD7i1pX7sJKVrOQxeSosBTgHaw2cE8FSkHaZj7//2T3sd2ioe8/toc0R5S6b\nwDJOIbkIyDUVMxoDqiqgODdd1hFy3h16Ke1sw3aMDTa1Pz2ZQnN0PrYxKiZLKRqF3KvOajnkQCTh\nXAAA7W5sIGUTLkk0Uk/ZFurco2XVnlahYlBGUTA7pbcUIAOnYGMMNM9FZJpQtal1BPCuYXhEKtJI\n+L1UZpgxACyLo4BpaCcSu10a2zARPCdJCKLFaYrM58ejFDEX6KgoCe6DZ6qWSQHHZDFNEyONaO77\njcROj4Fhjyqc+gY+XAHYVHWonIzjGCVniWQao+bMwaKqUPKYPTHJtCoD7LzbSrCxSbt8f2OIhIun\nVN5GwgzGOmOqd6kvFEfJEMFvaoOKYccibWHvWWrzDkHjPfndf4zDexRgHhsTgtHSWl93hrryTVrM\nkivUJeFedvIEA4bF99s5WgyLD2zWaYqITfwoSyB8lkQrJMoHphMo+TjjdyOW+A/Uy/1dRFGg94u1\nwhrD259Ung6lIOifjwUAgJUaMwZjNOUc/SFV3211ciR+MvMlqYYn4qzmM0izbP7qnOezE3DGd3pi\ndqdUYsg362C0QMm+aitLA6inrCyy2JtoSx9SBKLVZQ+B9cEgAKqyLEPCD1OgL48iqGiZxpLsrjil\nQv9L7z4oyACsUjoOyi1Ls7AQGmtR88NUe2WiFGLOVGibBMp1lUWQjIdfa7fQT2kcG5zWzWLC9gNA\nmiahc5ZOIiRM+hGn7UCA4jirY6SB5VWkmhiOmay6aY1hmxc6mmXlY0pjm0xHIRbR6XSC/y2TFKfM\nq3l/NIPh+zrjOV44wLDSmzuJFgOWsjyDjjziz0L5WhLDZK4l4A1jVy9gmHDH1NWyQbCK0LBi3OVy\n6i+fnOCU0YHTw1OUzbItfQTPAOYfYo2SQVjTakmi04rTkA7utdrIeQ5izj5ppUN8SQgFIZbxHO/y\nOCFgPZuS3zrdso+pvpCJEAJBwSuIAKh6Ulm5DytZyUoek6fCUnCOoqdCiKAxG6GWoJIM+PINChj1\n8yTk270JCOsuEEm4sOsopUI1nxIyQIk99jyNYgw4uNaKdeD7c4kO2rquSzjn+00u2ecUm9FKa6Rs\n+impgmWioyX4yv9KCrFMzctldJquw393CWV1dlk37y1fBxewDkmWhaCqj5ALnUIn3J68Xo7XuWV0\nOtEOHbYU8tTvdgYJW0SRVAGOrOMcipueSJXA+V1MeX6AJECRnV3m0uNIotfirEUWI54yWOpCn8/G\ng43KMpyvulAd+6hcoMu7v8+7V0qG2pckz9FhXEQUKXg6AYhlvYbgnpC2NMFasXbZlEdKiaVJJgHn\nOSTpuzdvXEbEazJ54x28eodwKGdWQHo31Vt51ZL5++KajHUUsDPWAQ27gv6vMs4XNUJZ6iBN87m0\nDhrY0G/Sw5ydEMuMgxDL9SYQOocZ02DBVtGTyspSWMlKVvKYPBWWAkD5fq116KdQzAvkmrT5l69c\nxkA8h20AACAASURBVPOXKd+cRxEiDwlmTWtls2ymIpb5b+dcsDwSLWAbH1MgH7mdpRjktDO0kxhH\nY98DoQ4w5qZ2cJySlAHOWsPv7FII5Mz1Xzc1jPG5ZAHj28K5ZYMRnyqSdRNar7nGBqJQH3B0GqHV\nWt2USwtDqRAwjJIYmiHG0kNxhYaVHmlnljuJlMEKSaRCyrtm6oOLSkH76lMpQ59LIWNYLg4zVkJ5\nFB/PhK0qiBC3MYBYQqy9pbDWSqEeES4g5SCbsU2AWldVFe7T+WyMghmq+0oCbNWNubDNWqCd0ntf\n/fJzGKxx/CSSEL4yKW5BcLzGF64puICFMMaFgilEOvR1aIyFr5rzXbLTWOLSFqVIX3n2Mg7PCDI8\nOZtDKA83X8aDXMgQN+FYCgIN0+zVlYHLPJ7A41RUsFacE2HuldJhHUopgyXg77+90IaQPmPrzS6t\nImJ98rWrTyZPhVKQQiDTEbqdLqZMlx3B4Pldipr+zMt/JjRrnVsNzTffNzdRaQLnewNaHSZBWh2w\nAE4YWA66xVwqa5McC9/MU4jgHtRNjZgVQFUtTbgLGCMY63v4KSSsZJqmgfRt0nUcwFBML4JakGkO\nAAp6+QFccHMER5sL16BhZVTUJvTYrJs6dBbiC6P3ufLTtTUkzxWqRXBn6rqB5AdaQYYFaR2XNLsI\nhs/XQCDxJbvtNWjORDhrAQ5A+nx81JKIMlZIVQV7zg+IKRBJen+j00EkSClEDEhbLIrQ0FYIGyjs\nT84PsctELFZovDemsuQpB3A7WYpf/NlvAAB+6usvIUq98lpS+SkdLzEE/NBYZ4OCEFhyNzqnl9Rl\ntgpPtS+dNk0NzZvT5a1h2Jw+HX2MinkXvcbWSi/LoksDF3wCAc01Cq1OB622r3+hv3HWguA1lKRp\naD+PC5sIudfMG8quorMNhPabkwybnrHLEu/5bBaUyJPKj+0+CCGUEOJ1IcT/w/+/JoT4nhDiIyHE\n/yGEiH/UMVaykpU8PfKTsBT+MoD3ADDmGH8VwH/nnPubQoj/AcBfAvDf/9MOoJREv9dFWSxQMz7g\n8uY6XmKG36qc4sE5565rCfeAdp31baLqunopRo9TfZmMEGnfuxFoWO/NIHAypzTjO0z8+dade4EU\nQ1gTXispvNUKC4na07H5AV/YlWItseDWbYv5HGJIqadF49Di6W14929khJTThcKpkG+HRMhNF6zt\nH52d4+SQCnVGZyeUOgP+f/beLNay7DwP+9a0pzOfO9dcXVU9sLs5qUlF1hBKlAOBMeQEMAIjfnAS\nA86TAyQPsZM8JA8J4IcgiYAACYIEgREEcRQbCJARsiSLMg2RFClKJJs9VndNt6rufM+4pzXkYf1r\nndsBEVarFKoMnAU07+WtM+y99t5r/f/3f//3oWnraLc2GgzAyPSEU4ivjYvddFo7iODK3Dao2tBR\nmaKk0P3ukQf1imUHeYfmcL7AeOl/v5X2MAiGI0kWzzvkDwxJnLfTcol3H3ia8On5eYzMWitiCdO2\nVKMvCiyo9Mg5Q5oGG74G22Rg88PjKR5TBKgoyvn5n/kc/sIXXwcAjIfDCII6Z1Yuz0xApp+UILPG\nRGYisysmIBdJbJCzwkFQxMVCpGhdPA/OJboEbCapwlkb7gHihagEzFGKIhmcJDvBREbfjhYWPLhm\nF0GIIYOi8rVSKkYC1bJEGezt7CoVDJEph4FTAdhWcG1IQVy8PtViEb0xnnU8r5fkFQD/IoD/BMC/\nQ1ZyvwLgX6WX/D0A/xF+wqLg4FCjxbxZ4PamVz5+65Ub2CaE/MbmFjZId7B2Encfeu27d9//AADw\ng3fewR4pNn322jVcpl4D6Wz0bnxwMsPvv3cXAHAy8RN9ZfMqxht+gp+OD/Hw/F0AgJESPMpla4jQ\n4hvDTxbrwlmaRjqyNTWeHvsFZzaZ4MmR/4zrU39Oe9vbsGN/EQuVRsMZ3ViUC9+yu3/glYHvPdpH\nSS3EaSqRUhchSxIckyksOEdBlYZgOMNsi6bxD9v5YhHl3qWQOD3z75tt5SipNXhrRB2VV3fRHZLq\nlbOoyZ3q8OGHEMTVT4o+UqJxh8qQqZZRyObp4QFk4v9+8+UrENSKnj4+wzv3/U3/wdSfk2Wr2vxF\n9a9+kkCRsU8rSwh6ADbo+ibW4OH7/joedrvokobjzqiPDs2RbVw0lg1VDWsdDHUtOu0wJ8WixWwO\nTW5RjSmhSOCFk8dmtVhGFW/DBDRd6zTh+K3v+fuwIN3GQTdDn+ZHSgXOaAFhSUwbF43GEQnGGLrH\nclGDUXoBzWDo2Ku6ih6iRmtk9D2GFgeeFxC0AVqjoeleZ1jxc7JERkr3s47nTR/+CwD/LqLUETYA\nnDsX6jp4BODyj3vjRSv6sDKux3qsx5//+FNHCoyxvwTg0Dn3XcbYVz7t+y9a0aeCOzOb4vNXdvHV\nn/ksAGCvn2NMLDABhUf7PpSumIg05n6QDJMJemkA5eZwwq/WmilMyUTk8ZNj9HKSQqPutHsfvI9H\nTz2QNeoV6NHnnWkLTeF6oSS2uv7vtKmCubNYdy7SDJb4rrpqMXeEWvd6SKkrL1iwHU1maKjxZ1QU\n2CAtA+sMFku/u+cEnL32yh3MCFwsIXBO58GWZ8jJj1KkeUyPEgJUE6MD8xmJEGgo9GVKoGlXlOHR\nwO9iL5HS9Dg3cNZ/h0k6KLZ8dKNMjRlFDWlbx/p/oHYvF6eYVv7fe90Uw8QzT+vGwMFHP5cHDDe2\n/bm+c+LTi7Jtojr2xYoRqzimILZkliMlsG57y39uaSy+c9fv0KeLZaSK746HeO2q93K4fXUPI4pu\nXBr8SGssSJbsydMzvEP304PDk5gW9pIEY5r/MfEjOsxiRGkqBENOaczlIscDEn44KUlk5qwGZ/6c\nJQc+Q6zI8dYORhSFVcbi4Ny//mzho8LtjRbXKK1UhVqpYC8rnM/IQ3MyQ033WQBJ+4MuLpFuxHjQ\nQUJNVU05j5WmRAmMBiGzf7bxvAazv84Y+xqADB5T+A0AQ8aYpGjhCoD9n/RB3SzBz925jq989mXs\nblFulSYwRCl99/4+fnTgL+Loyi08JAOT2bG/Od64fgk7r14DAIyHKRIyCKkrh0Pi/reK484Nz2v/\n4V3v7PPe04eRDptIiSEZnh49PYQkm/ieUriUU+szC8IcWBGowCCpBKhkgu2RD32HeRoR8GO6aYwQ\nyCmoenL4BP3uDQAAk25VLqQQcTZbYkadmvuzBu/d885L13scl0n8Nc9z5OQVKYKJzGSKsg1l1nTl\nFekQS3KDjKNHZbH9c/+gfPOjc8yoEvHBg8d47bbHc375zWvYJFNYXWp0BgGE8XM8ny/QEO/+3Ap8\n87s/AgC8ffcBdnf9oridi1UNkyzn62ZFVEuSJJZvGw7UVLVYaoOCKh+3rnlzmulsincf+oWlv72D\nx9RFea4dCvKSbM1DvEFKXcWWf6Cr5QL7+/5+eXQ4xTkJ4xxphwf7fm5H400ktV+cX9v0c/wzt24g\n7/vfTd1gp+8f7i/eeQX1XS87X1HVprEiSqtzZmJ5+WS+wPnMpyvn0yoa1gYtzfn5FFsD/x1bgxFY\nqDSVFWYTv8gIlWP/qT/vQ3IOu7o7QDv388Mv72C44ee7yLNYjWtb7Vu6P8X4U6cPzrl/zzl3xTl3\nA8BfBfC7zrm/BuAfA/gr9LK/jrUV/Xqsxz9T4/8PnsLfBvD3GWP/MYDvAfjvftIbenmKX/78bez1\nEuRBBk3yqLMnuMHGwIeDd27dxJRs0+TS7+BFmsEGolBrvCoJADiDakH28lUNXfswd5f6/G9uDcGZ\n3/n2NkcoKTz7YN+gpS6fpqlQ7/sdlJN0m2MrmW1nGZKACncUNmiHqc/m6JG/45wqCk4qtEELwTSR\nustbg+WEkHiKFCQkBgSSFVsd3Nz2O17KHRSBYIK3UKSmUZFBDnMmEl62xxsQxv+9NRpj0gHcGA3Q\np1r5lM4pK1KMyFynnC9w5+YNAJ7TYQJEpBtoQudl4Ee0bdQg0G2K8dgf58bjJ7hOIji6bZFQOJ5T\nFHe8rCPNWQgRI4W5vABiWo2MorSrGz4K6NzcwxlFUDzJwEp/X2xubGD3kj9mYVssKcoM1R6pFsgp\nhO+2Dlfq4HOZgy1DNesSlide2v8ScWRu3LmBgq7vyf5TZESKunR9hN7+e/6zg/+kW1U1AA5Qmjtb\nzNGh5j2VcZD0JjKqDJV1icnE35vNdhNTqSxRUKEJigEvXfbHdPWSh+l2Nobocx+BpACEW1kfBG5N\n0zSeX/Ipxp/JouCc+z0Av0e/fwTgy38Wn7se67EeP/3xYjAaOZDngFAWCTG0ciXQI5Wiz790Fbtk\n1VsvDvH5W37FrIJ8WG+Vywtr0VD92zr//wGgJxSSikBF8vb6yuduoaadNFUpZlRa44yjoZ3LCAdN\nOZ67wBY1kQugURMwdD5bIk/8DnzzxhhFn1hqxKAUSYKSLNicLGITTL2so+WXpIwu63bQRYhAelGl\nyNQ1mopwktZFirGmVu+2LIGcOAHLWWRKtgYoCmrlThU6VO4N83ZjJ41ScJ+78xZSYh4WikFpcn4+\nb1HPaG6DBZtxSAmgvdTtoEdg15t7A3DnX9tq4PGB/767ZNO3f/IYhr7QXmDg5ZwBWRBHdQiGCSSy\nhasbI/zqz34BAPDBOx/g2lWPJfXGQ1we+6ii380BS14HFHklRY5N4hPs7FzC3Q89vsDKEm9due7n\n1ja4+cU3AACffeNlfzwJx+LYR6Zl1cRrnWYKfWrhT1Uw7dFo487O/LkA6CUCg8zP18bONjiFmfWS\nVMVbDUU4UDOZxfLzsMhQ0om3zmCLSu0F4RpcSnQk+TtwE7kujJkoE8AYW0ndPeN4IRYFBwdrWxgr\nwejhUBDoUN95N+NRd7C0DnZED4j2wIpSDkF8mDcaIMqsYBJdQp/LWmMkAtHDn3abdFBbMkXRFr0g\nw805SkLqDV9p5oVeBThAE4BnjcGS6sp3HzyGe+M1AEBfCSjtb0zpqC69YGgnVDnpjcFokTGljr31\n0TnYNLG2rZrFygJea3TI8boEx5IWQE1aELpcYHniVZRn1dNIeFFcIaUHFowjpUVmizo8084gOhAZ\nrACzpi4xJ2MU0xhUQZ+Aqg9NVYNN/GI7GCUY9KijtJtFCjZzEhnZsr+646/ZN997gtKsQtzA6x/z\nDJyqQyNusT8lrUQKr9Mdh88S6Hh7exNVYBJ3MqRED15MzqBL6h6leROMIaHOzsHeJjrEe5ieL2Ho\ngcxToEdds4IuTr2YoglmP4slkq5PVy7fuAr7T8gpOugrcgeJ0D/CkNN8DjMR9SuGqYgSa6czoknD\nRnEep1tomvs0U7hCCtStsZECL2XQnuCQtNAJsZIINMbG1MwY8wkN0GcZ6y7J9ViP9fjEeCEiBTjA\nagdt3Iq2CwVGh1ckKsp/JY2OCrcihuUCXIQa/AKsDf4OFkU0ADEoEv/ZHQKLmtbTfwFg2syjko6U\nHGhCI81KnyEw28AYQvzAGEMbmo4WNaql/zxXiMimZNEPMIUKmv1ZJ36eYCKy0YJVXlqomBKYxSyy\nH1Mu0IRQsyqj8lKQroMzsET35Rf6YBgDalKyapsWjIDUjGjCWdYHC14HuoamHnxXV+ioUFqtIUOw\nQSCoMRacJNZkWyJo1jGVQGbEp9BAj1Sddroh5BaoL3SPhvLkTm+IRShVWg1OaOz83B/P/HACQVJp\nw0EBTikRTxOUBCrPZ5PYSWsp9UvAo7KWns4wHHrx32HRjxaBglk0U98FWZ+TyvfkPEYprXV46YZP\nV/qDHII4DSboslkbAdhEiOhynQAxErBti5oaqaYUYfW6vRjlyEQiaKlZ5i7Yy6xUv4N4bqI4xAXp\nNk0gdlPraK5jjImiuM86XoxFAQAcg9E6qgSbtl09/EwhpXq8yr3UNrCyhpdSwpEgXsVqWCLhKGtB\nlofInImU1z7VnVFbzOhBaXQdhVO4zJCIkB6UMPh/o7cu5t8XJd9022JO4a7ppxiPyBil50PVg5Mz\npJQSpXkKRb83rYWmduH5OdFvpzOMxz5UzXKFpqaw3Zp4wa3WYNSkESS3ZJ5DUepTMQOQmYq0BtXS\nPzRl1WJOC0tN5qlp20AQ0s+kg8gIAe8M8GjfI/IwAh3KZwvCHIxlWMx8zj1SWZQac8ZBCGqDr8q4\nQAZTWVwQCBEXpMRmvTGOaS4eHOyjpNc8PfLy+tf7Z0gJtxFJiowWeq4y6Ma/RpsSivvji7J5cNC0\neNWzGbo90nOUEpz6FXS1RE1emOFnOV9gdurvkVo7nC98apYuOXLqRk0pLVWsjmke44gVFeM4LFG+\nTeti6UrQQpB2+8h7fpFKixytoQXZtrBEu2ZCQCg/n4L6RLjksdphjIWhdKzV+hPpw2KxFllZj/VY\nj+cYL0ak4Lw6rmktGgrF6sYiDZ1lgkESktjt9qMMQUO73LJZRGGO5WyBNCDAUqLToWaebIFD8tTb\nGHqwK80lckKTBVdgFEZKxmM455ZllP+6yAsLwJhUMobl0BoVNdoopdDr+EiBFnu41sRqhxcy8Wty\ntViioW44RzX6bj9DRUh/lkikVIlZ1OUqNGSrbrgoPpqmWDQrl+FQcWirEopAqdZaLAgcDdRZOBcB\nWLAcQSrg+HQSbdry3ig2II2IjwCmMJn5MPjw8BR7BIzleQ5OO6WryqhsXAZZZrAYYVlrY7TwYF7i\niFD5s8aiJcDv3Y896/BafxM9Umgu8gyGaM5G66iBoLiMNHQZrNSMgQtWalWDeuojAc41JKWsZr6A\nOaVIjxiIi/M55sHxuqzxh//X7wAA/uVf/0XM64DwE+hqBVwAVy3gqJq1KGuMyfUuTdNoCLSge6Xo\ndFCQuBADB4hjobVFHVJQwZDkIZIlUJLZSIk2xqIOFai2/USkYP88eArPOxyAyvqD0UEUAw4mhOVW\nx9yfmzY+kCXdPIu6ikayaZKCEenJyhySUgbIU2haRBZE9AGXaIgOWjkejVSZ5FEsw9Qi0lVtICw5\nF1MNXHANSi+QcJwDJJXDND1VSZbhmIhX9x7cj8SauqqQRLVmqoAkKhqEaKsj/mCtjdqUjTGeZI+V\nXiVXK2OZi7kkYyz6dDKlsAyYCWELbduCBYVj08YuSaPb2BGqtcbTpz6VOKfS6nwyiUrTCgyaOjun\nukRK2E1bzaM0/DktCknegaAwWWsdj/nRbIoH1AW6BItt4E+I7vvek6cYkelL1lEgNjqcTmIKyZiM\nqWWQx25Kg3Lu7yGhMrg2mNnUaMNCNV1ELGFOxzCbz2PPfGU0DolkVvMcHz3xHbFhXvMsj9WOJBVR\nSbtxLgr7FEURN5nw4GZJAt0EM58WmshpUl0wKGoacLpvJeEzsDY6bjVNE6932zYX7kP3ifTsWcY6\nfViP9ViPT4wXIlIwDpgYIOUMjNyJrauhEcLdGi7Ywi01XPAXpD74PO9Fw5X5/Czq4R3Oj7GgXbo1\nQJeo0vOAQjufpgDAedPgaOl3uZY5cNrZnBIrGS+2WnED0Ki18dp+ADpJsiI1mZV93ZJYTw1zSMiK\nvoGJbKjB9kZMD2xAkJmBQHCiFjBRydfG6IdZjYZ2mKjfh5U+Qds0aIlP4evZFG0wDmIKx/ShbRu0\nMw/U1YsZBDXRSC7QITouFynawF9Y+J20SAQUgcC5MTCl39GrxqCU5PvALJYEMB4QCU0mCRjz8y3E\nyhPxeD7BGTUlaesiN6SmEH0pBZ4SLblfdmBK0uDMB+B0D0DKyN94eO4bppbTORx1sOYXPBTqpkRL\n6tHsdI4FRSRzAmWdFODUEHZwdoRzukcmVY0lBWIN5SWLZoll6b+3U6ToheoEWIz60jRFGxStKZ17\n+vRpTGGGo0HUsUxUioz4DXYxRx0ihZrEcJSAps/SZnWt27aNKcNFrYpnHS/EoqCNxclkga1iA0wE\n45R0RbpgDpYeoGWjYcIJE/KsEo6Ebqok30JJZSx9doqe8hOZVAYzCo8r8locJDk0eTCWpsGMVJ+M\nNRCg9yUCzgZiiT8cjhXFvdQGJV2YMcujidQCDUpKzENOXjV1DGu7RY6CFIaYSpGRd2NdBvlvhqYN\nsu8WjOqLmtmYVimu0FT00NOCNTMNBAvEnRaGUimVZVhSCvLBo1Pc2vRVhJIelFkzh6XP4tZ6dSIA\nUmjk1F+hlEJC1YfgVqvrEi1hH6ZpsKQbt1EMhuTVc2lQUp4cHqRlVceFoNvtoiRM6HRZRZclawXA\nqWoRW4E50pQYgcohpXlR0oGR4EjaSdGSCmA5pyrKYIyUziPpJtHCXjKHio7ToELF/DVjRMKSCqgI\nX3j34Agbu76Fe2tnBEWS+OE2VUqAwd+/o9EQVgfDHI6WHs75YoGKyHVh02DgMQ2YzWYwdE00DJSl\nvhvG4n0/n1HnZK8T+xqsc5G8pJ1FS7qMkvNYwnzWsU4f1mM91uMT48WIFKzB6WyOemsYQRgmREwJ\nAESePByHC8AW/XtVlmgpOrBJjpJi43aq0RDxZHJ2giOiHWfEH8i2k6iyu9RznBGIxJz1Et3wYbcg\nMM5SWuLg/R0BoHUyruBSyJWCs3MRHA1mMpN5ienC/63XdegX/n15B6hib4ffBRqjkVHIubnRi8rH\nQsmI6jMuwCh8DmFk0zSQBGo1TEWQSQgBSfM1WVYodejsow5O7uK8np4v0c7IdVskqCmEVR2DYTCJ\noc9dHp+jIhLO1JRYkK9klmfIB5R2KImGdq6g59g0TQxxrbWRQ9I2VXR21swhSulTCed4Ngd7yWs9\niKwHS5yF09M5RqS9kKkUgtD8lIR6XNtAOX9swtaYk2jNfDaLLK9knIJZfw90iVI8q2p8cOTP7+B8\ngoIo9qNCIA+Eo+D5qXWMIJeLOdKg86lrlJRWCJ3ESC/koFJKWOIYaG1QVSFycQCpm7emifZ9kZtw\nITpwjMVnRBsd1bFVUUTZ+Wcd60hhPdZjPT4xXohIoWkNHh6d4ZUrW2gJtLHMRdNVBg5GpTfLOara\nr6SHxLQ7fXIEpYnCnAx9Lgqgmc3gCEeYVFOcwf/+0hXfZZn3OpjQzr1/MsXZjHAELlYRywXlZhME\nEBiLpUxUNtq7ZcnK0FVbDhnwEeIGK6FwcnJAn6vQH3lmpZUCCwKw6gB21gvYnMqFA4mO9K91HNBU\nilVSRc+CUP9vLZCSb4IYbse8PUkSLOmzmTM4XQauA3VDdjpQtONxl+JtUrX6oC5xnai9404fU5qD\nAEQi78GQPNzjR/cwPfQg4Bsv7WE88Lu1ZgZnBEwuqJZ+0QCmaS6U0C6UnC1cNLrdHvg5PJqf4/HM\nX7NRYzGiBqX67AzvfecdPy/LFtnAMwS7W1fo2jUwM89Tcc5iwqkxbXeEMeErppmAyI2Run44L/Ht\nD7xSl3QOr1CH7pP338WcwCIRnKbb5gIYzUHiT5hMz7Es/XeM+/0IgpZzfz2cMFEZuugVaLQ/Z6Ul\nBHVgcsXjfZ13yIeDuWhI7Ji74E/CkVAELIVciX8843ghFgXjHCZVg8oYlG0QBcljOMQvlFm1dWiJ\n5z8c+IlWmqM58xOccwVBctlL5mDoweJTgx5NVNC4m5dLPCVO/Q8+vBcBwSxT0XCFWRNNVNgFkZVw\nAVpjIMPzkWZoCc0vaxN9FwORZtwrcJlalcdFggE9YEXOoYb+oW8IRHMuB7UlQCQ2ysFbtgKoTNti\nSfyMOTkjd0ZdVBQAjq+8hLL83wH4EDXSo53DfVpQq5tDmleDIg0IeIrrO56cJJ+cISMRkfFoiN6W\nfyhCRMpNi/KRX0Da6RJb5OK9sZ1HQHC+qDCnhXxKD4RzFhmpNjdNg4ZUi/sqQUMoumHAiBbUN696\nzcgTw/Cd97zq9qVRisHIH3+v24UgHUc8PYuOz0tSsIYx6IQFuyyxc8UvZL2tPjhdwOOnM0iqeB0v\n/ML7T979EIdnPqV7aXMDv/rzXirkG//r/4GHlFYEh2cpBFLqOjXlEps9f+ynsyWOideRpxkSuqFH\nJME26o7Qy/15yFQhpy7RvJNCpHTdYbAIQDkB4lzI+N3GmAhgWuei0xqzLi4QzzrW6cN6rMd6fGK8\nEJGCsw5VpaGcQ0XU0GXaokgIqONpZKZpa5CSZFuwDOuoDWgKxevarSzWnAORFCHSDnq0+wd7rZN5\nhR/cewIA+HD/EIwagkSSewoxvOFGG7wDQnH/AsDDHJAFNmLaQa39Ont2XmJJ1GXZod0fFl3aSYbD\nAikx07hyUBTRMGpgclUTgShuGRBq0LqNdFbDEIE9TuXZohhgTqKkNz7zJpaUJmhtYs1aCY57Tzyz\n8v6Z//fdoUKfdjYrObo9f8z9Y4vqga/1z5cO+R2/6wT7N31+guk7b/tjm5xieHOTjk2jNIHGrXFG\n2gGHBPwa6yKj7yKjcTNjmM5X/ombZJjy+LHflSfO4Wziz/mjw8sY0m6bXd6CJNEd7hwUMb37XUq7\nbIuq9DwMudkH3/Tn4ViFZkElwGoRrQPvf+yjn4cHJyiIQ/L61gb4U/8Zo24PmfRCqhRIwTqGmiIi\nYzVmJYnjnsyQZ/59Is9wdcPP0ZiEZgd5B0ngnggRacxCqcjobGwTweRQvhVpGuetbpoIbKdJiiTw\nTBQDD6zeZxzsT0Nu+LMejDEHLiCYwOs/9+sAgFe/9DUsKNydL6ZoiHbbzEswotLqs4cAALk8xkaX\nQuYux4ByrtmyXuXaTYMZcdWXlrrM0i1sX/88AGDz0nVcue3Vnh8fn+GPfvRd//vTx7EtOczVb/8P\n/2Y8dm9rTlTaqkFDaPHTx4/xJ3/0hwCA7//x9wAAdd3EjslGNyipxbltdQyfecyVGAx9r5Qi/t02\nOubiSqloXpvSwtMfFpGLP500+A//g7/t36cNvvH13wcA/Gf/5X+Dsxl5dtL7r4w6uLyxkgKfUJi/\nrBuErmwlFSQlDsMOeSOmCThxIQb9DP0+VXayXkx5qsUM9+lhejj1rz2bz7BJepa/9rWvYmvTw8og\nQwAAIABJREFU96P0vsDxvW/5Poff+9++j2ZJVR5aFJMkifwVo20kb1lrIy6RZSl293ZoPolefX6O\n01PqotQ6vpZzjvGI8v3RKFKWL1265M+v08XkzN97B0cHMbSXSiF95I/z4LHvnDSsQJ96Qz738svo\nEF9kOj2DpIWlyDuoaeM7OPD377KcICfXryuX97AxpoUuU5HgND2f4ejgjD7DXycrOCZTfw/l3RFA\n6uHLusLRkV+w5otJVHL6hz/8wXedc2/hJ4x1+rAe67EenxgvRPrghwMXCoORX+HLZY2GAJXlbIJy\n6lf5op5jw/hQsp/7n5tjhcvbfqeRTMce+mUmcbbwO8LZRIC1nroqyGzEmnMsH3vt/pNqEq3Rt66+\njF/9uV8BAPzuN76OBwcEpAVRkAuOVs662O0nJIMi+LpulqiIrsvFqklGEKiVCIUFhYHWAglxCALj\nUViLpCBbsTyL0cjp+SSKabhGg4nACvTn3x90MDkn4xjIFStUOJyc+JShqRtImqM+qSy/dmmE61uE\n5DcNzsj4ZloK1BTCZipBTse/0fMv2NsYYdAlr4vtEXau+EpFZ7AV5+XoySN867t/4j/7A+/ZYViB\nGRmdHB2eYJvUqlu9xGPydVjMKugm6C+stBdCVAXn7dkAD7RFenfboiYANvAGGGMYUURQliWmJDEn\npYyVn3K5RI+8IufkFyKFjNem1iVa2pkZT9A89g1RAHEiVIGMFLF122BOWpp13UQdita4aAUXrvXu\nuIfb1zyQ+sUvfSnS8bM8i76obTPFwWOf6r79g/cBAB88OEWWb9G/t0DwUHU2Xve2XXEnnnW8MIsC\ng0OS9qBILnxydogpLQTzusSo9Q/YdRzjet9P6mVybhrnDIM+VRlYjobclmpp0BCR5wAW+9xf3AWV\ndhh3yKS/cNadYX7ow8HzpIPxjl+cvvZLv4x//O1vAwDe2felKWNdDD/btoWhh1RKHkVijg8PcUat\n2kHqfdztI0mClTtgidAysy0yClsLwhl6qcQGuTh1u11UVNX4mFtMA61YOyQkuNEhwQ/XIJqcgq9y\ndc54JFkBFqHR7vqW/47PXN3EgDCaRSOQEKGnoxhaWhRSITCgMHdvx9+4e5e3MdjyN/xweweDbS8/\nLrM+FPU+XLpyBaDja6yfS/noFHcf+Zv85OQsKlm1dY1zMjtpahOf6kHfh8zDXi+K1fbzNOJLp5M5\nzoNepbGYnZMNAFWahBAY08PW2dmK12+5XGJGRCaVKnTIHj60nC8WS5wc+0UKYtX5ymULS9TtNJg1\nOgcg+ECWMJSibW9uQYTQfjmDo3Rri67vzjjD5970QrEvvXQd3U1/76V5Dkv3vdVT7Oz611+/4RfQ\nb/3BO/iDP/zIf3W2jSVtaolcEeosGBb1qlv2WcZzpQ+MsSFj7B8wxt5ljL3DGPs5xtiYMfaPGGMf\n0M/R83zHeqzHevx0x/NGCr8B4P92zv0VxlgCoADw7wP4Hefc32WM/R0AfwfeIOYnjiTrY0Kr67Qp\nwSnc3+swvNbxK9+1eoa9wq+I1zd8VLEzLlDkZP6hAN0S+YN14mp+PjM4mdGucu4BTH6Bb3BuFrjX\n+tr9/v4SE+tBx8s3XsNXf+GXAADz3/tHAHx4HULVxXIJhKYjJTClPvwnj/YBChNv7vra/kanGz0Y\nZSIgyB364ePD6CF5bc+nAbubAwy71GWoEpyR0Ifi2zgnOnZZG1iqq4eEZnY2j7ZxZVnFSMEBOD/z\nkYvkDh2qVty55neljUEPjJqEuDbIAhqerxpx8kRiRFTbfkgZxiNsUHSQ9YYQ0u+wSdqBpO7JrOjh\nzS94fGtOdO4PHvxW9O501kSUnRlELcU0S2OIff2KJyH18hw7G56Y1EkkHEVp80WJCaUjZV1hQYBv\noGNvbG5ie3OLziONepRt06Kiao6TIgJ7IcSfTCaoqFHsbDJFQ6irkDraBwSn6sY0qEk27+TUYpMM\nYLhMoiRa05ToEX9jl8R+djYK7Fzy10F2OkgJrFTdPkzjoyazEEjoewZ0v/1zX3oZmrgz3/jufbjc\nz0trzQV6u8SStCufdTyPwewAwC8B+NcAwDnXAGgYY38ZwFfoZX8P3iTmJy8KTECkfUyJNGJEjmuF\nn7yf2wGulh7hfetqhqtbPmTud4NoJWBJ7FJ0ckBS9yE4QsvdeFbj+oLyrA0qETYMU7pJz2qH/sLn\nocPmHG3izUpPD+6iuOxDu6+89UX//raNi0Jd15BBVogZHB/6haVezLFBIegeIfI7gyGG9PvJ2RH2\n+v7B6vCdKCobfCI3Bhl6HeqQSxJkksL5fBcntCicTheYLIL6lD8EJSSmxJSzeiXvXesaR0dHdJgG\n1/b8A3Lrql+wkkyhJb10DkBQtSNVPD5AUjgIoulJFRYjBx47W3NwTgtZ0oEiAo01Bv2Rv2Fv3L4N\nANgc/lM46t5rqwUspV25yuIxN22Jy9v++F65dcvP4cYoCqSYpoXifj5HfYvLW+TPwRw0VUlSEq0p\n8iJ+rm6a2OKOLIVM/LHxoohkoCU9xKdFBwdEUlqUFarW3yNO61j5aaiKpKyB8FAFisEIir67Nhrz\nOvRdNNgm0djNMWl4Dgt0qaWeKQlB1TPe7cE1Qf+zhKhpbikNzjOOL7zuF8v9/WP8iMq2WaeHhK5T\nIjnkp/Sif5704SaAIwD/PWPse4yx/5Yx1gGw45x7Qq95CmDnx735ohX9cxzDeqzHevwZj+dJHySA\nLwL4W865bzHGfgM+VYjDOecY+/GWtxet6BkXjvMUaXeMoCE+zix+6aYH6F61D3G98LvDjT5HgbAy\nk4iFk3DSr546yWFJww/ORU6DSGtICikd9c/XrYtSYpmwGMIDTjzT0M5XHBKu8OTIk3defvVNAECn\nM43SV56AQ+BSuQKRbF2tgC1S4b20tRvdgHOVYnvD79Z7WxxDIukUJFUvbAvehl4LDU6hauoEeqGj\nMM9Wkl8EMknGIWlHZBc4KFVVRkCtUAqvXPch/1Y/qC+3URE6EcrrkgNomY2RAhfGy9/Dg7QAYJ1G\nS2lHzhGly5hkwEXSDF3XrR2/82+Negi6OTOD6LothIodk1mWYHvLh9hjAuWyi25HnK3s7IWKtvSM\n89VxXoDeQ1cmg4jzCSB+n1BJfL2ifg7BBXYJdD44PsaSdBXhHDRd65Cuoaog6G9yYzPStau2iRFG\nTxqMerTTU3QoE+V7fQAkCQPaIK/PV6mp5HB0rjr0hrAEXZLMv3plgG++44FwLmWU7uTMQf60XKcB\nPALwyDn3Lfr//wB+kThgjO0BAP08fI7vWI/1WI+f8vhTRwrOuaeMsYeMsVecc+8B+CqAH9F/fx3A\n38UzWtEzxiGTAvloO/oivLqp8fqI6rizBbYE1XYNIIWPICztPjYv4KiUKZIETgUZaONJAABgRAQd\nWQDnnInOz9oIcJJWKliN8tyzzfo727DE3qMKKLI0jTtbLThK6n9fLpexy9G2OpYiA5utalpoalpx\nELEhSHGAFM+g21CXF1H9yFQWhtiYrmnJYxHIlcSC+v4Ju0IjJFJB3xfMKuFLfcGBe2dUYG/bRzGc\ndhEDgEVqLIejW8Pb+QX2H4vNZGE/0Y3BfOpz2bw/QkY5OWM8lg7hXGww61ED08svv4T27bfp4MTK\n71BaqHSl2ZCTNBmnyMTpJro5MxhwivRkkq4cu0UaS78hOvAYgv+dCw4TPoN5+jngdQ8CGzREHd1u\nF5f2fHTzwccfY0bX15gaS4oWg1yfYgwybNHOoayDp0gbd+vxMMWQIoVA8+bSoSQF7g1pwbSP6Ny8\niveZrUtokrQLWAbjEoqO8/LeONrUnZ2dYkCmQg42dhg/63je6sPfAvA/UuXhIwD/Ovzd8puMsb8B\n4D6Af+UnfQjnAkV3iKIzQIeIPm/upthinqcwEHU0Z5EiASfgxNBPkaRw9HCgbeONjlaDB4lsx2Ep\nJtaa1JwZA6dWbWcdMuomM8Z4kBJAp9sFiNoaW4HbWVRPTpRCVQelZRe57xvjDXQIMLIU9h1PzsEv\nPGAh9Le2hiGEO9iwJ0pCIViyO5SkR2mMA5ehTTxDQwIomrpLdeuQ0gIqeRvDSK3b2D+x0c+RJUHq\nLk5FlBVzgoEFNRRmEB4mo2MLClLiR8AygEA77licN2sd3AWSTpgDSXyM2y/fwfmRT9Hq0xYs0LtF\njZwAVmcMHALFPPSdWDD6G2M2/jucBg8Pi9PQJrr10HyvzFngGgTjWmt1BI2t4XGRifMiFQpK7brd\nDk5Jzt4uq2hWFEL8TMq4CZ2cneCMqj3D/gCKSF9bwz4yknE7pc7WZTkDYz6VNM6gDV6oaKJsnLUO\nhibfxlqTBSf+w+bGEJeoBfz7Hx+i36NNkvMIuj7reK5FwTn3xwB+HJf6q8/zueuxHuvx5zdeCEaj\nEBK9wRY451Ctr+kMZReq9pFCZhegKAkiTaP4Cr/wM1CQuWNB6xNoHVxNZaqqhaHmGSGDyq6LFvBC\nMQgKu81So5E+9L9y5w6q3g0AQC1WNNqw6zDGMOj5MqLkHJYihYHM0MxXNFcAWBodQ3/uXNxVODTg\nPhkpcFZCsRAmcixJ7IFZgBOdNSkKDEgSzJJQqZMKE0pn9Pk0MgLbto2/9zophAsRVNhJORSlOa2t\nV+K4DtG0hsPFUCEKhrYaNkRbMPGaOGcAFqzRL5TEaFcejsYYUGlOLSbR/o5xix4JqnCh4SiqcxQJ\nQaZYWXpyhDTGWICZIGKqgx1GFI5xcPH6N227CsvdyvYPjEXvCEuRhDMa1pEzDmthTOiCXNGqw2Cc\noaLo6GwyQUFR0XjQhSSG6Oa4G9OVJJR12waK/B2cY1Ep3FgHkCaHhV35StLfHOMwoXRcZLj9ki+j\nv33/cVSuTpVahXfPOF6IRYFxAZUPcb5oIUhNt6wy1JSzKcGRBLpq2gEoxwehtwYSlmi0vDOAC6Yu\nQoLlNIEWYITmK5pUpp2XWgcgoeEqMlnRAgtH2o2MIaioyFD7TZLIrbfWom0D5dmgT8IvdlGhovxT\n0MNmrEVdBfNXAxUj3JVqTnjYmGvig8u5iAIwkrOIDnPjIn1WqaB2bFAUPrQvijymD2maRk3BIuHI\nVKA/B40/CRdTTxffJwRHmoT6OEORB4MbSlEEB0IIDxvDfAe7CssvOhQFdD/NUNbBnCX9hM36aEw1\ne2HQIT62iGmCAeNhseHgdC39PITuyZUte+hTYYzDGEpRbBIfTEDEOWArFfx4HsYZ1E2QrZ/BIVyT\nVedmQVqacIgqyqxxGFDaKZhBRgv53u4Imjp3U+IgKGmR0KLgry5VJeTKbBbGRpMj14aW+wSa2tMl\nGrx001dJht9J4QgzUSrz1aRPMdZdkuuxHuvxifFCRAqOcTiZotIGU1qpn0w0bhF6zjoMKjjtFhkQ\nQkJquGH5CLLwoahVCgbkE+g0lAjhl0FNQh/B9r3WGrPghtxYmDZ4E1hMaWO6xBI0JNpSUtfbzi5Q\nUAcjYFFRhMEY0FZ+VX6wWGJOWoo9ElZprY2RHGcshsEAi9p+NgJ1NuogGoco7WY5iwh5ay0kgVYp\n8TQGUqGlD9YG0dvQcAZLu+N4OEROCD+7YC0XqMbO2tVOCwtFEVInSX3aA+rKA5B10wiGGV2jIcpw\nnnVjCMu4jNBY6OqUSYKaGJT90TD6SAgB9PuBsZpjl8CzwL2wTELwIKvH4+cJqeIcMjA48pNzmu4V\nDjhqhJM8iTwLxxAt7ZxrYChlCwAmsxopzXGnSIELqUbAs8NPbTUUhRoqEehS5SQTDNsbPh3d3R1j\nSjR7mCCWwpCR76g/j3BsLkZWMkljasNZEB9yYIK8RZYlBpR2DbopplOKFGQWVcGfdbwQiwLAfG5k\nK1QUIj06rVCO6Aa0AjMK5x8dV1HFJzgl7V5S2NomsVI1h6RQrZq1OCf58Y/3J7j/yGMUJ2fU0ixF\nbF/e7ozRp7C7ZkBLxKhy2sCIGLsDAKazKbI0hK0u5tSCGzTExT89PcbDex/7t9FZpmmCMVUk+kkS\nCSvW2kgr5hTqMckgWAj7GBzF9gpuFa0bRPfa0JGY5gm6JGa6MdiEozRncXoMSSSrokgR4uSAaE/n\nczQ6LAQu5q8OFk2gIEPCNKFNfIWvTI79vDKWYEDpd74o4YJRS1ZgTNqOLOA2dnUeW5t9sGC5DocO\nlWr7RR85+W1qmsXaKdgyVIyWCMWCXhco0rBQr0JgHnANcSGNsQaWgKfGAi1Vj5izYIQDhDKyMy16\ndM0u7+zg3n1PY7eNWRkQ0XcxAIrC/X6eYkgGPwksLu35fL/T30DdkNjL2YTmp79SR3ImCvUwwSP+\nxWW+KlGTsOtiKXBy6MuXtjZoWv/aQbeDyREpXMkaRf7pFoV1+rAe67EenxgvRKTgzVU8qMNoNT9b\n1FiO/Eq7P5vjwQe+b/zxdIE6hOBEGb65/QBffuMOAGBnO4WkbrG7783x/ke+DeOdB4dYZn6lvbLn\nBS02VYGEjN4eLDV6tCvtdTaw2yG7elji7wKK3I6fPvljdIPibirACHyqlkucHfk+/mE/wzGt0NMp\nybcbDQTJsPEGKCqFsTYq8c5Jdq7VbWzasUCs4/fzHNsjf2x53onGL5ak0MElcqJVD/pjLEiq/cHX\nv46EQE5tWhAehsNznxJ9/PgEZ9RI1bQagsCuXpJga+h3ympQI6eIpUPNPtWsxfmRB+Lu3jvBsvIy\ndp1Ojuu3vGnL7pXrkHSrDTf93M8nE2xt+KrNZ27fxnukqm0sgyRSGucSoGsyIdD2/v0PUZU+cnGw\ncJRiDvs9jIc+QtoaDdAjElxCZjG2sZiXfm5niyVmlNpNlnUkarnGxgaqnV0/x6NhAUmy2klaBBY3\nxlkKJBQW0TVNOMMWRRXb/T6EDZGuw/2HPjr47W+8jTwj0h1FBHvdPHJITOMVwgGf8gaC09HxAkeP\nPe9hQveYtjYC09Ozc5SkI5IlOVrjv487IGWfTs35xVgUHNBoTyQJKPxiXkbNubPzSVTN+dwX3gSj\nqsODB175Zn5wjI/evQsA2Oy/Ck3trY+fLHB46i/+a9e2sHXdt6SOBsQ0LC3mZ4ToHpeYBEvyjkBK\nzEJplugOw41JRqLLBRSh96nKwegiltMZ6qDpP51hn6TPZ8GjUQCc2ndrbZCGcqLVqKnktiTcYlG2\nmAShWJEgJYZe3QBa+5tjVGuMSXEqmJIyLqKkfJKmaBnpQJ6d4EqXNBjtqpTHKFcfDHsw9AA9OVlJ\n3/ekhlBU3pIsuhQllGrJNIde+nl7fDbDgrCGV8ab2B77Y7uytxN1AiMRqq7w6p3rAIDqyT4cCx4Z\nFgVVl1TCY8omqbqyt9XFfE6kn9pG2fqTo2OcUofqZNTD1V2PxG9u+bDdcYcnj3069/joCHM65kVl\nYuheCIUQaevS+3O4a1dweY+8IyyLi+GXbt/G7z7ygjEh3E44i2a8gjnv8ARA5TlExy9Y3/nhA0xm\nvr1+qPw99otf/gxmZ/4hTvM8Svgv5kt89zteGezbf/I+uPILzmuvvurn9fJlcMJzOlmK4yde1aqp\nc8g0SL9XWCVVzzbW6cN6rMd6fGK8IJGCg7YO3DJkhAS/tj3EZu53q8EwR4cEKx4fnuLDE7ILJy3C\nWznHTthdmgXI7BddvsBbb/odwzXHMK0P137rn/pU5HCpsKH87qlUht0hKRTb4yhSkUgXgZq337nn\n/9YVkRQjBKed10vHK+5f28v7uHndh8/3D72OgUxE1Bg4PjtDjxSDhRKQdlV7BoByWuGQLNItU9ga\n+0ipyBJw4g0wqSLxRhOgyCWDo12VgUOSpkNn2MdwSrJjTEQeQpCcb9sWjw/8DnZ0MsfhxM/VmQQk\nod17/R3kBJ7dft3vVpNFg69/1/cwfHQ4Ja9uH0mM7vv+kd7WJnYp0gsVF8Es+mQcc+/JEVzPRxVw\nDTqkLbCx2YGiO7RD2hNdDuiKwNO5RrskEpYFOgHtVxIFRWEJzadlDmOyAZjPppC0H0oBtASk9jsK\nuxv+uzdJ16Iz6kbPUuYctof+fvnsy7fxB7/tVboDdb1IEshA55YMc+rQPa8bzAkkPJvMolFLn0Ro\n3n/vHna2fBR77da16AP54ON9nD7x90BebOKIotBv/uBH/ni+9z5S56/Nq1c38eXP+WtyOl3gw3s+\n0jk4n0ZOyrOOdaSwHuuxHp8YL0SkAMbgmAB3Ej3tyzQ37QKbVN4Zb27g47uk8AuO3V2fn41e9zvt\nbaHRRwB9ajS0e+RsietX/Q6UdK/BggRUd3yeuX+wxOSEZLsShztbVG5zKQ5Ck09aREXdknLBYsBW\nsmqCx8Ymxh0x/Lzy8SXCDzRtj0trYKivnguHMQGpugLOg5cilV5nlYkOzZw7jAb+PKqmxAPKnau6\nA+v88ffIC6Do8Kj8bJ2IVnkbOzv4+EOvAjwU3eh/6agMyQ3DjV1/vL3eCI/Jp2FZLdEtQrOSAaet\ne+vKVX/+ZYmrNMcbgx42d/3cvvULP4vtSz4XzzoKKTlCBwYiaxeYkh2b2NpA0xKYax0kYRiv3rmB\nhIXGK8IiuIMiILXfy5CnXfpcjYTUqfJkFb0Z8mh0ksE5quPn/ahqNdAMc8J88pRBEPU4IVVmlXVi\nk9Swo7B51Z9fT8nYuZmIgCMAOXECpKmxQY1U6cZlvPz6GwCAjz/6ANcuey2LDpW6D+6+hwXJ7XWG\nPSR1iDYL7Oz579gd7GJC5kLvfP+PAADXX76BfsdHmK/cuoQrex5gl49OsElR2OMjC8b+WeQpOM/m\nZLbCnCilU5sgJdBmZzPFYHADACBzBUHGL5KIN2yywJIetqwYQBOKzuoGjlDmzpXteINcNf5zd6WE\nvkSS3LZFlzjuJ5MWLU1kknagqCsxyMwzziOBSAgRxULSNI1+kxXn6JKn5dVNX6M/ns6grV9YbmyO\n8IVb/sF6+vgAFRFautRzMcg7MWzlUkJShUPkChnV+h1azEjZOSUF5yLrRfktLhgYVSUWVYuGeiJy\nKX0fA1Yy490iR4+qOuPEYFv6B302T+CI39BVKWSgGNOx7e3u4Vf+4j/vv2MyR5fESbb2xuhu+9RN\nKAUeeP5EfsrSDI8nvjJktwYRqdfMQhE/Y9wdQFfU2UopjOooXL3q57WuGzgCNk3boiXaNHMWlmr5\n1tADwRgAkmbrjSIpaJSlEATipkohy4OcHD3cSYaE5uja3iWkKQn4zBukdF8EtbMkVVGQJpMMn33V\ny91fv/MKOn2fjnz59s8jDXJrzF/T/bHC3hW/2PR39mJFIe8McJnu5WkJaFL0fvOqT8XyIsWQ0plO\nJ4n9M52uQK/v56hpDXQdmoGebazTh/VYj/X4xHghIgXmDFQ7Ba8rVLUHw+5PEkiSd8yERdKlhhkn\no5eiIHBNaAHJiNGYdZGQVsCgm0KTGUwzb5CSdJWVPnpIM4uWB9quQz3xK+15kyAlheKGpR5MBDA/\n9eAN5zvgPGgo2OhZUHQKgMqaQohYRjTEjtzsZ8gG/jhfvzpAl757lGcoKB3p0g61MxxhQi7DSZZA\nkc6EyjLkQZGl5kgpYslCt5wQSMIOJhks8Ri2XrqN9Hvexs6ZFox4eAEYc5xFz4pGl5EG3O1lyDK/\nO3aSBLFjCFTG62/h8uu+e35ydLDqPky7K4quTKM4S6PJHbzbxYDSi/1WIPpYOwttA2O1QBsaFHkA\ndlm0ZFdyJZgDmcGpYJxSQwRpNgRxX4UsDeI8CoqujRBsJccmRPSnCE1sgjsYoiNXTQNGPI1ESVTB\nJCe4OmdZFG/ZHPXxxiseaH7ljdtQ0T6eQUc6dijPbkYhXCELGAKPs75DTpTvYtlAxmu2S/PKAjsc\nzjSoKCqWrkVKAHPFUzwmod9nHS/MoiCqM6CuYWjSD8sMsxmp+3RKgGi8PEl9+zQARmSkejJFIklp\nxmZRGbiuGiwPfDrS2RwgH1CFYhC+eQkxI7rr1MFM/IWZnTKUYz813bSIAifBqEUIEZWBrbXICE12\nUsERn//0Qh9eECTJOxm6wv++OerAEWElTRV6tFjMjX9oNtUQsqRas2uRqdBa7CApZE65jCSdPuXs\neZoEMyXUTYWWqijXP/sG7v6JV0TW5TGcCdTs1aJgKuL9Vw6MWiISlaBDaZCDjlRbSfRhyVRUmNLZ\nKWzATEwLGPrdrbgcoTTkJMeSHrxpbeBoPp1u0Rp/E4teF6Kl6gFJIzLH4twrVQCxG9LAsaDmjFg9\nCtotXDIUJDzS1iKmQRwcjBZtLgQYC3wP/z6jFzAm6Hwm6A9IDMUuMdz1PIvpxJOJZpphRA/jzuYG\nLl32D2/W7yIhFe+WWTDCcQxVGVQiYCgVFlyipfbrtjXIUkpHMhVVs4N0vhTSA1IA9LyGJnJaM1+g\nou94MFlA8U+XEKzTh/VYj/X4xHghIgUHhVbsoSlSuA2/m803B3hQ+fr3a9NTiNDBt82geh5lNeR5\nUNYOfTLWcEkfNdmzWyGg4VfVe+8f45WhB2gSsphDw1ATS7FaMiyI5VY2Lnor6ONT9Pb8Ku9YsKYT\nK1t3JZATb0CjgaY6vsoTVAQCBnSa6wp5XPml57QCYE4hI2t3NfUrf2Ur/xoAcCICcdz5/wBfFy/o\nuyWxEV2Sow5IvWuQEArKhn3svubr2A++9Q04QueDMAnXFhxBcIbHYzMOUdciZQ4iqEcHyjS3aCls\nta6NLYNcyChEo9sKLGBdlBpoZ3FC3aeaqciFMDZFUMlxgxKsIvGRYGwBCU7RpOAi6hswNLBBWUWk\nELSrRmUIziNDlhtAECjnDIOLTt8cnOr+wVfUooGm+UyEgxpRGtvj2L7lKwqT7/8BAKA/3sGIqNuD\nQYIk6EtmCimlLikAzfw1npIIDwOihqVhPKZdrm2g6fqoJIueFKHzF1JFdXBrbOSqVIsFlhSFzIxG\nE5i6zzheiEVB9DYx+oV/AwtToNelsli6wOnCo9PT5j42KF90iwqcSk+zj31qcO9hDUO03cO9AAAg\nAElEQVQ3Zus4PrzvL+zBaR3FR64kDfYeeBro5hW/qMAW8eEu6wpLqhxYmYARpfT0tER/EnoCyNfP\njuOxJ2pljS6UQkKkmf5wgOkhGbpW/jhda5D2/fk5x2EoRzSwUW2nooetqkoYzuJ3qKAIai141O9e\nyX4HYxUmRUz7pZQINCUmEtx8+TUAwMM//GZsfeYRI1iF3FJJOCIIleUSOYXdeSePxxkWBWU0LM39\n2eN99MhGXXV68YZt6yrqP4I6J2dlgya4QgGxtZrzFEz4h4apBrJDno/HJMgC5plKIFFSHpSqDAzR\n25vWW74DgBJB+FXFMkGrFzHVEMIhTiiL/xNFViwzaLmfi3xgYIaeiIZiiS6VnLskrLNz+Toq6mdA\n2ok6kbZtAeqe5ZxHM5uKyEimMeiRWQ7jfHU4zqJe0lw4FjcGQReBKQNL+JquV9WltjWwlP/UDKg+\nHXdpnT6sx3qsxyfHCxEp9Pt9/PKv/UUczcoYnqZVBTz01YeqlKiXQV7KoF76CsX00DcGNVD4zd/x\nRlNH4jqe1j6ELxcVrmR+F/trn98EBRiYH3qCVJLmaBriIFRARSCaS1OExrLa1pgtyDZs6RuwhLwR\nJckZX4mlMClizXu0sYGjjo90Zieem8DbFjPaHe7va6QyCHKkKDoroBDwxiOCuukkW4W+jLGVZRtn\naAipVhR+CuYiaKeEjKrTYBIZ2aFDqmjnHlIb5twFh+rV1tLqFlPyaGyaBlskHT4793P/8P33Ieiz\nTNPEBqXMuZWqtjWRjm0IaJw3K80GDhfFYKQs4ILZCQCWUUWB006rY70BnAGSKk22aWDpM9I0haTX\nBwk6KIOGooMiS9GSLZzjGgnZEzJlohBNqIY4Z9ESMW60aWE6ZGvILTp7nwEA9Ehrsq0rOOePbtow\nTKg7tpjNkISKgxCoiIRUU/oruERBOp+Msch7ELCxY3J2fu71FgGYNNgJ5j4KAVAvl6gpuqvbFkHM\n2joGSZySVj8bX+GFWBS6HeAX35J4+CTFoyd+8hZPHHIqhZkFR0U6iEWr4oPV2fIP0pubIzwilts/\n/PYjcO0n4S/c2sRf+txL/jWX+kipxDelFlpnFmgqCrNaBk25qmYcmgg0TZugqchGvSG8QKqYMngt\nU0LAnYsqPkW3g/6G57MfH/sHSIHhjHLj48kcgqokzun4AJVkT88cYIIqFJpotiQEhyU8QHMLTjev\nppC6tSZ6D3DOY7kUjiEJhqdJinLqUxoeWozFCidxWFm4Z2kWpcrzTgc5LXqnJ36B3LvxEmQv9AkU\nKBvqfrACIqRVjEXFKU1py6K5IETq7EpSHRKW+vocOByxSQ090MYK8OBnwQFLC7l1Ji6cxi5RNf4a\nJwmJ2FqHc7ruCTKooOrFABtk99GsekkoFdHOgNEx8ERDU6u9bRL0d31JNXgvKGaQjT0JqbIlDp76\nOcpTDpBuqJM8PrxTElk5ODxGTvbzTVWjofb5B3fvoiG25dUrl2MnZXD+UkU3yusvZlMcU0v1Yllh\nsQyelw7Sfbr84Xmt6P9txtjbjLEfMsb+J8ZYxhi7yRj7FmPsQ8bY/8w+LcdyPdZjPf5cx/O4Tl8G\n8G8B+IxzrmSM/SaAvwrgawD+c+fc32eM/dcA/gaA/+r/67OUBC5vAuezDK0OyGyFB8L3Nrwmhxhp\nsvIWRQSfik3SLXQlvvaWjwhev3MbMwJnrl7ahiJ5N710WBIC3Ak985MamhH/QQigDXLoAtoEgkmC\nqvQr85u/+mv+eMUhRNTLY1FyG1iF4FAc4x0PRH38ke/K1I7BEO3YKYnjme/naOZzGFvRcfj39/s9\nlAQiWWtgguKwc1GIhlse9QENwo7pIg/IGLNy48ZKMbi7uYOjM7+rZEHDUbDY/8+khKTUhVsDSdEU\n1w697oCuj08pDDMAaStwlqGI4bdDE0xSBI/ahiVFCmUDWIrM2AV7E4cyEoQk47BpICiQ7mRjAB7M\nfNIomdhoF6sEjbEwpE9R1h4YbOFWaYlg0FErkkPRh6TQkV2idYgwLJIsUK157BmBM9BPH/jPIG/S\n7PIb6N3wFQk8/j6OD/bpmjGcZOT4LTnGe753J+/6e2/24QK//3/+NgDgxksfQpNbVFUtcOv1VwB4\nTYZATnrw0X0/9xpIyQyoLJcxqmBQuEedxHAGzPx0ac4SQM4YkwAKAE8A/Aq8ryTgrej/pef8jvVY\nj/X4KY7n8ZLcZ4z9pwAeACgB/BaA7wI4d9HjC48AXP5x72eM/U0AfxMAti9fw7IGZnODwyMCsI4O\nIYhv8HmT4yViAoJppMT+O134FfrouIVtvMpRmqbIjN8R33/wACUBPyXn6JLi8auX/GmPcsSSXVqk\nqGh3KBuNkqKDOTuFmfq1c/yZLwAAOD+OYBxnq+YoC7uqMcOh1/M5/HjsgaiDe/uo9MrZmZFmfybT\nqNbM1er9PFqmOZRBxx8MygUxUh7LaYGBJxiLu7I2LS6mk4wAymt37uD+uz8AAEiqbRciiXRuxwAb\n5iXvoAkdX5YjYFWSqMb1ZIFujxSXUxU9EfM8D9VHaNOiIS2LWUkRhv3xtXPGSiBGECyeV1L419fn\nDFYHT0iLhpp9ZrMaivv7IoGCcMQypfPI+Kp71GgGHYgTjseOV6M1TIgUCOBrjUE3Cb6MJYwOGI3F\nWe3PZeNn/wUAwODWZ7EkcFGML6NqPMB8XrdQXaIxC2C28J+xMfSR6+uvvYK7d732xL33P8SVqz5C\nfutnvoyCaM6mqVA1BPhSpNTqFiCx1iQRUTZu/3SBDw88Jd9yBhaim2ccz5M+jAD8ZQA3AZwD+F8A\n/Nqzvv+iFf2tN99y0yXDZGbx5KkPaz/66F1Mmw8AAF8eNHhjSC2t3EATweQHP/T/fv/+Cc5P/cXI\n8g4MgWQVHBZ000uZR4mu3aEPgbf2xmANpQzWoQ4tzoahpFBMqxpLUnze/8AvPNsvrxx3HHCh0s9i\n+sA4Bwtdnpc8+PTooweYnFMlQgMtIfWmXEKSOnJG3W0sF/HBmc3nkUr9/7D3pjGSJfl92C/i3fny\nrKqsq4/q7pmea1d7abm8RJoWRdMELPOLIFiQYesABAOS/cEGvCIMWF8sgIYFA7YlwzAgwRZgm5IN\nw6Rs0SZNr0GK13LJXc5ydnZ2eo6ePuvOrMx8Z7wIf4hfRHYPyZ2eXZlsARXAbtdkZWW+F++9iP/x\nO6IgXPfVpfCFTcd61J2CEOuevjseI+HZnNPrV2FYwV46cZY4QEbOhDKdN2qpW4MVodtNXaG9876d\no4spX9PYO7BpUDbIUHNhfeWTryEkIKvRDQouFnOmdsYIPNHkWM+nrtevG+MBO8OpPc9Hxwohu0vG\ndP4hnl0s0J7buZ32NtAf2gc57BMSHAbeLWy+uMDhub2W06ubGI4J/BIaqnEFzfWC7JSyYVrAOECZ\nxvCzP2Ln3C3o6LBJRmkxDzGgBF0/rDGdWnBdkCT45tdtWvH4HUuBH8cxJsLO1f7BjjfhPX33Ao/I\nJF0tzxDxGTi4bTkVSR6iZmF6cb7Aam7n/r37j3E8X/C8Y6Qs+M6LtZz/txvfTfrwZwC8Z4w5Nlbg\n/38F8IMAxkwnAOAqgAffxXdcjstxOf6Ix3fTkvwAwPcJIXqw6cOPAvgKgC8B+HMAfgbPaEXfaYOL\nlcay0GiIKmzOH+Do3AptvrU6xmlOJqJq0SPn/ZO3bUvokze20bHN0x9swbjeexhhxoJLU8cYblNz\noM8ikopQOJhzLVE5Pf02QMmCZ1dnSFioeesb/wwA8KdvT/0urrVeI+zM2m5NCF+3REqU38buNpYU\nL0l0gAsKazSryn/fxcIer8ik1yBQde09A0U/9mKrQsp1G9HjABqnR4KqrNevQ/jUJhkOvTL1kgVD\nveg8flq1rU8fwjBBRrHSLDKYupRoy+58t15+GaM9wsfjyNvSF8s5YoboZXOB2cJGCqvKFUTXlupa\na+/JEBqxRj8Kg4B+EMmW/buLSYTykSvsakSEEl+5eg0lKJhTSmhJOTaHzdAGxdKmplJGuH7TwumH\nOz0gpnqy6qB4rd2/UZwgo+BKGzaQhEfDaGBoW84BC426Vaic4M70Bk5ntiC40ZWYzex7NqYhbl23\nf/fwG0RHFhEi7s9t2WHOlruQEkngtB4S7N20EWc0tZFSW1WolbMsNDg7tdHB8YMTRHy0u1B61iyn\n5yPHd1NT+E0hxP8C4Hdgfb2/CpsO/B8AfkYI8Z/wtb//UZ+ltUBZBDBKeypsmPRhAhtS/e6ZxPss\nOG8u5kjIGNzeYgjcKnQFw+5ogLJxph8JDJv2cdegx1J9SLGVomy9u1PVCByRkXdsEi8z3hTn2O/b\nB0Av7EXWZuqBMp1eW6MDwt/cuuuwpCx5SWXozYN9LJb2wqlKIyCVuyeGaGti6lPnmSmgXDcgijyd\nVmmN0KUEQviKetc6d6cKiqw+1ao1O1FIbyijRYKMC+sZOQ6tiRERQxECSBn6hnHq5eBN3aFlHn0+\nsw/NyekQYZ908c0JkgHnTZXomHadz5eYF8zbjWNcNt6FyqZDDl4s1iE6lKdRy8h+1uTqLhaHzihW\neKvFJImQ7tiH15wrhMT7C8qiG62RkCcRboRINu29pVOgcUItXYua89UR/dNPcySJTUUCU6MSpCGL\nyOMF3GOkwxgYUpU6SjE7tOW0B8dz5Nx84kXtcQ2jfbtgqbnA1o7tnk02dzwPolqe4dHDNwEA6bUE\nemRfr4m3MbVCU9pzuphVeHCfHQ4dYH9or++pCBAxNcHsDM8yvlsr+r8F4G996OV3AXzhu/ncy3E5\nLscf3xAfttP+4xj9/sB85lOfQRIF2N60lfpXbu5jkxz0KEphiFYrGoXDM9q/reyu9eu//pueS745\nHuCTn/gEAODFF17EBlWEk1AgYWV/wR28C2JISpvNLi58dRpBCBPb1VWJCMrZvPO9f+8//hsY9imG\nsjlCw4q6qgokznOhN8LhuX398MwWwIw2Xq4rkNJXuKUAYhYlaxY4OwMM2YM+2BnhYMfOy/7eFO8/\nYKX64QnK5glVaQBKAwtGSqUJEWmHmlxjKOp2DUd2jMtIBl6zAabz7Ly2Mw40hziJEPN7XEhqAG83\np4RBQRhzB4trsOetPULS2eM1jfKpzxe+8AV88YtfBAB874/9pMdeSMBHE65XIcSTBUrjcQVSA2/8\nhjWi+W/+zt/FzV2rZfCv//gPAQC2hoEP/YU2tskP6z/ROh2CpkFJUtExod1v3r+P19+zZbF7R0dY\nME1VEPjyf2+jnp//BYtX+K/+3hIFkbBRHPhr0nYGZ2cX/rwDCuZsDWxkk6UxHvD7isYg5BwN0hDM\nFLCdRxhmdg6dX8ij8wrzJY+9rHBlyz4vg9hgyEhvMCzwgz9m09d/+T/44LeNMZ/HR4znAuYcSoHN\nfoIbV67gGj33xqPMg3RUB8x54Y6WK9x5YC/SG79njTL0qsKElOWXbt3Ai9et9uFWP8eASkZ51kPI\n/HRIuC/iDBUXgjSOUdBhZz6fI2FdIurFWLBy3rJFKozCoGdDyq6pvLDIsN9DSkGSs0WNc1aAndNT\nHEe+HtC2T7YLjfM8QUSr96KoUBPmPFsW6BO/HokUeWovchxcYMmH0LU6szjCiJ8RdxJn5/YYgidg\nzEEg0SdceUgQz5WNITJ+x8VyhZqwcm0AyZt72M/Qd8a6zCnapvUgpFlV46yy87ZsNUoqtVRVhbZ1\nvcz1ObtU6/Hjx3jzTRsmf/7P/KSvfguBJ0BN7l/jodtiTYyGbjXu3bX3xfb2Nv6VH//TAICdLdrB\n6xKqc+1e5VM+I5WHMYedWEOzpRPmDRDACbSuQVhGCKwYxn/9d+y5FUrB0IQljmJoR2s2ARzxW2aR\nt7A/IbV+P5S4sWEXiEezCiUt0M7nBerKic9oL8ozYMc/DEIMqIlZyhjzBXUs+wFaap3WdYIv/7/n\n+DjjkiV5OS7H5XhqPBeRQj/v4Qc+92lMhkOv5Qch0HA3OitXuHPf7gK/9+abuPuBDZ9jypztbU7w\n8oFVzn31xgvYY2h/dZJ76exAdAgTx613PoOZdXGGnYiYu0M/TVCWdgcWpsKqsBV1xwwM0EFwh26a\nCr3EHvPVvW0cndGvcLFCx53Chbut6rzFuf2F/ScMIsSB01i0L+ZhjpYRSGACRImNDh6enqPh63Gc\nIefGfXZBb8Sy8orESZIhouSZEMbrSgZhhC1CbL/nwHo73tzd8mFrEiboiFJqm8YLpyRpjJgpVJ+R\n2c50w//d3QeH+NLX7I7/+sNjPOL510J40pg76SiK0FGu7fHjx/ilX/olAMC/+e9+0TP8DOD1ItZT\npr0OpHmCXdlUDU4I2PlTX/gM9rdZdOzYRVLKR56ma6Dc610D7eT1tYHgLhw53EgUeJ/HUAgvcGI6\ng7OH9u/uP2AXSRuMnAaGFJgRF5DFIYaRvbdWxqBxboAsqq9WNbYG9ueR1N6ar40MLiiW8uC8hO5o\nGMTiuRYS5ws6V4exx6o8PFthwBtjdlFj5cKUZxzPxaIQBgGmkwkCSDS8I0rT4WxhH7DZcomvfNW6\n8dx/cA8ROwM589rdQQ8HGzYluDbOsEXas1yeIHV4jQ6Q2iHemJaclz7H7UmJlLlapUJfIW61Ro/A\noTFTjSROfG4dJhGu7llQVFnVWDA3TNMYGQFAjqWmVOsfjlAGCOFuoAB90iA3Rva78jTy9uxN3aFc\n2bqE0sp/R9NpDEZ2sdiZ2jlZrEpUtQMbKc8A1FqtH24YTAmQ+cJLtjU3zTOkbD0O8x4SCr72ehk0\n/64FEDBnHvYpU44OioCkvUEfV8j3+N9//Sv4f96w/p5tXaPgdXWpVJKk65QCAp/61KfgxrqO8PvR\nTcLAn4cVZ7HvmZ3P0ZGh+cKNlyC44DifjaBtIcjF0KpFy5RQqxba3SNK+LQiYrGlF4cIeb+0deU7\nXxIGb/y2vT/nM6YlHZAnrO10Cu70ytUCWyOKvlQlBKnmPX5XqrWXDBj2IlxcOB+KEE4Ttio1Lvh0\nJ7wv9rYyjEm5f3Q8w5DpH8IQS3Yl0ijCo9Nn7EVyXKYPl+NyXI6nxnMRKQCAMUCtNEqGrY9Xc0x2\nbGj7u998C48eWkiogfSAnJg99qnscIvY8pFeoE8DENkJxM4zUCYQNHtxZipaSGt3DqBsNeYr+90S\ngXd6apRG6GzeuUvGUYKa/Pg4CrDiqnz46GgtDQ6FvW3bMVisyHorlVfWDQH0KScuAAyJWdjesNHM\ndCOH0k4nUQBkcxaFwrK0u/y7HzzCGTsbw7E9tvEoQ92wmKkkHp2xT28MAicjHzbYdt2Tvo1MJkmK\nmLtgHocYbZLJNxhBspLdAl5tO+IOLVXjuRERNG6yJ/5jr93EKY9tVVao6aDtip1VVfmfu07h9PT0\nqd+7IT7079ov275qGHkcPX6EIc8lS0NIsmq1U49WNTTTgLopoMiiNF2LzqHM9LqQGDHny6MIfSfU\nohqAYN1enOH3fpcYgQs7P2mooBjuizBBxvlcVjVK4lO2xz3s0cU8oMN4ZjqkxFDUSqNmhKkajXGP\njlx5gq51zFx7ON2qwCYFXupBjjn1PQe9AB2pAFWjIaVTL3i2POIyUrgcl+NyPDWei0jBGLsjz6sK\np1zBr7z0Atz+8O4H9+D6d7ITPscbsbe/N4gxCmiZhQYpEXFJkiIjnDdJBxAsYoZ0kUYYQGmHTDTo\nsXd/dHqGamW/Y36+QG/TRiyJEwoynWcLqjbC/ftWYSd8QpEpDDR2qez7kO3UURZjxAJQLA1yRhVK\nd+gTCdgnG3Cax8jYbpoXFc5mNtqQpkJA1aDt7SEeU9WpZeQiRYCIbNA4lj6Hl4FARNj0IA5xa89C\nbfvZmmWXUhk6SzNEbK3KfADJXDUOAoS5rd0ocvtlsYSrDFZoEDpLvskE3/PSDQDAB7MC5495nL6o\npz0uJAgE7ty5A8DiEJ6MFhyOYh0piPVrQnjF6McP72O6ZaObAMr7S0jtsAktwMgLuoNwrUXdeRCE\n0mtiWcC6RS+KPF4mlhJLyrhFQYT5zEYIZWvPLYngGZ5dozDgvTCZJCj4d+ViYS3eAOxt0OjFdD7i\nuViUGBhXEJb+/ARqDENX07JzbIxBcWHvvf3pxBY1ABTLyjuld6ZD+2w8KD+ei0WhVQqPzs7QZSlu\n/AkrUpH1B7jzpjVEbbtuDYmF8V2CEcPaXig8/jzolKckh4gQMT2ANF4sI6Z5SZz1sGyouddU6DtD\n13GOiCCiqm1RsYq+v2eLaHVbQ/CBXhXNurf9hPZhv5dAsPCVkvY86sXY3ybGQGgPFuqMRtnS85Id\nlaaqPDAnThKMCHTpVOcl14d5gDTd4nG6nvgaott1ytO60zjGkMzIV6/v4IAFwcBRwMMA5gnhmMDT\ns1MI4jqEEDChE4khyCoIAS42Ik4QsmAWBhc42LR/d3tnhPdObJX8zMOu1wxOrTW+9a1v8buBJ+mT\n7kcvBm3Euvxo1vJuFyenuHHdYlxMW6MjWzNgcRFawfBnadSaum3WACjzpLa1k1YPDLbItNwcDDGj\nzNliOcfKUNE6JPchSCFJ8Z+dnWOXKe3eMEbJRfZ8pdBwAV8t7fFMRqlf/fYHkceArDTQOPNaCA++\nIpIaurXpBgAUF3NssphpjPTds+EwRdF9vFXhMn24HJfjcjw1notIQUQhoukWrt+8AcFWWNtqXwTs\ntIHDtMlAePu2TRaWhmmCmKlBLCUi93MUeqSglB2Eh7k6oU7bOgSAtqs9AUk1rZfz6g+GCCK7SxfU\n9Ne6BRG8aLXwHgOtamFc2zKIsCQcO+NBTAY5djYt7LpezjEZuNQmxQnJKk3jxFo1igWlyKoOEedl\nMBx5W/eiqrFkGO92OyEDdA523GkE3GniIPK8+q1BD31GWd5GXcMj94xRazMUrT0Ks+s6BJyXyLXp\noD0pK5ChLYrChuFj7mi3d0b48h37GWcUBbGtUuN/XjG8lh8SWfhwoREG6wjDaJQUOTVViQFRmlAr\nGLYkHQZBqxYdozjTtj7lMZ3xxcVAGAjn1cD0Q+gam0z5rk6nOCQK8WR5gSULgimvbwvj8R0wQI9s\nrRS1F9EZZQnOeVmdZkeVdBiRCNfLBbLQfsZ5rXwRe9lKaO7hpfMr1evrW5fK29sN0hBdbb9vfrpA\nSnHeZx3PxaIQJgm2XngRnZSQzgkJwpuTNBQCAYBQAJsEd9zctezF6cYYIxpy9Ho9xLzhpTQQFL0I\nO+H1Gg1NbFu0CDhhQQDo2BUNlAfFKKUR5Y46bI8nSwLE1Isf5n0IR3ttGiQ8Zt0qX/vYGNswems8\nQsqLGCapd2HKwh6ub9tw3mkfLtvOs/BqpbCsiZ1vGyxWNADpAEhX+V4bqbbMPYuy9PG3NtoaogDQ\njYIm5daH0dr4B0V1Gg3Tscy0EKR1R2Hg82/JsDXo1gAjIYRP8sJA+vO/vr2BfXYz3mMODKw7DUII\nX1/4WKGrEJjPbYcjCICusQ9sVZ0hoOal4XmaroNxx2wEhKOiG+3vOd0pv3A4Lk2nWkhS4zdHKbYG\n9n6ZF0vMVvR/dB2nrsOci3QkBMYsQg0irOnsbYVYOIq6/Xe2UEhY28rCDv2YaaM0aDiHpwY44WMw\ncwzOnvRaodACgtD0MAK2R/aeK5rQLyzPOi7Th8txOS7HU+O5iBQMBJSIaIflqr/rQlTXdX7HS6MA\nG4wUpqzijnsZ+rndiYb9kdfsL8uSzsSAjEJIroEuAjFGI+BurVUN0zrpNmP9tgCkaQ9nK+fvyEJP\nmiPvOXKNwAXNPZTp0I/tTqLbGkNGHjd3bHFxkMXIuOvIXrK2LtMtEmInQqIKR4MQDXewi6JAwYKa\nSnNoV+1v4FFzGaFvUZqgMQ4RqJ+o5Auf2rSqRcmoqXDkGhMgpP6gUNqnWKZYeWkyHUpIdigcCaoz\nxtu1KaW8Y7LSGu0T+IUXKcTytQ8s53/RrUvHQkjEDP3dxufGhy0LhIUx8hg0Lpa2gNmpCqdH9wEA\nuSkQCQfTdrJq0v9dEEpP8jJCwPu5d8Jb2bkCXt0qKOIbslBjg3iSB2cRVudESzL0T4VBS8m3UGhQ\nFwjDOPIkrl4gIajj2PA+rJTAY7qfD3sCGY8nDSKYyM5nHmov4DJvGAm2QNpzxkCRDREAGBmgLIh7\naGqU1ceLFJ6LRQEQEFrACLOWGRdAQyCIahrvmpOnMTbYIgoIJFGthnBKMyZAyBu3aRWkZDstGXgQ\njmDVXxuNjhOtqgq1ExVVCobV91VRQbOiXPLhByRa5nVl3XijkziMbY4KoKlaXDmw6c2rV21qEMkA\nK+akYZJ6g5MoECCrGyOq/CCSaHhseRTgaG5v/sfnc8QMfS2YiIfE95bLpQeAyTD0xjBKad+y2pwM\nkJK70AbrfNjVDuIwRsAFVNfK5+dKCoQ5FwPegDKKIAUXXqUQuHpOnCLkuXSrChusn0wZfhez5bqf\nZDT6hE1/GNi8Fn/ne8WT7zE4PbHpyL1796AP7Xnf3hnBefOekrJ8Pl+goGR+KwxCsmfDIMCQUOHN\nwQARhX4b3k+tbuEMNGMJz8adjoagQr9v+alQgBkBemLt2hVL6VPeThlf2zki2GjRGO9OhtKgY41C\nhQKB2ywSjSFb0TF9VVsF1FyE53WFwvFAghCdpmJTqNFzosco8SzjMn24HJfjcjw1no9IwRho3UEI\n7SW9FQwe3LdsyK5p0GN43M9z1DRquXvKYpAOkU0IJW4U9qme3C46LEu7jJ9XpyDJDCHBH+PBAL0e\nWYRG+9C1qVpoTo3qFGbUTayYajRti5bQWGlCv8sLZSBZoNvbGOITL1jm5pQhZ97rQ1H0pVEtOuoN\nRNJ4Tb0+dRqyQc9HHY9Pz9ZEHKXwgIAl0wKCO4mku3IeSoQs/JVaIGS60mmBKd2jb2xNkBD6qqhL\n2cYhWoKUVJIhSUgeyweAY1rKtdiJxw0IAU0tB2lidEwZOhFAEB7cQfro5gqxC4hYsyQAACAASURB\nVI8uVn7HVzCe5KSfCBXMEzqOPtkQa61JtBoLCtksispb22/2EvRj+33v3LOqzQ+Pjr3yc9iLkQ9t\nSjcZbEAWjLKKU+RkmPac4IwIPNYjkiEGTO92Bjk0u2ArRo1dB18wzQODkNEU4j5SXh/EGqxboxdT\nI2S+8IVtoRSkdFgP4btnJg6QM7oZO4dxKbw/5KxQOGLh8+6yQ8X0LpYdQvwLmT64SrTxeZ9SCo8f\nWnlraO0txVdV7TXtj9nye/+khyNWfW9M+thlV6Kqljg6tTnsWw+PcHJh8fUxc/3rV3Y9P+G1m1d9\nzSEUERqmCqHsQ9X2swti1Y0xnhYdh9IbuupWIafIxvd98gauMY/uO/PYXh/aG7tKb9Ueo0PC84v4\nMOpwffNfTRNEBB4Ne30MhzZk/p137mLG8255I42DFBkZl6Y2EMy7gs4g5+uJjFCVNhQ9oefity7m\nSHgHjoYTjEa2RjPOM2yzjToYD9DjwtE5AM5qhVN6GD46PcNpZRfnk8UCZxd8YM9OIfiA7GzZzxqe\nLDFbkr0ngNh9Lp4ca2r0OtVY61Lq1qCgIOy7dx9CsHazvQGkFJrRXCBNGK3FaOMUGZGZaZah79Cb\nwnimZcUFJhbSd22EbH0Ld9jLcNGzf1ezM1S160UBYYRTphXH5zWaas1UlGxFZNyFNnoxMjjmpPAL\nYSUkzvgZs65D5ajffC0MEkxyewz9sEZApa6jpoaiUMtLwxCvvWRTt5//xQs8y7hMHy7H5bgcT43n\nIlIwWEcKrkKu6hozRgIBBBpq4w3SPq5csfp7it2Ck9kc1duWu5+/fAMB+/RX9rfwzV/+NQDA4cND\nKGcTv21VdqP+BpbcMb/51tu4vmc/VxqJJV2Z2yTEzraNPJrHa7xEQGBKFAsPDjk7PsZ4YrUVtGnw\n/mN6RUqq6QYz9Dnjm3mAQUqZsyDAkn31hloJlRY4ptT38Xzl+9xdvUSfxbqNjS28dWgVpheUst/d\nGGCbnIm66pAzwihKjTB0lusSD45ttPXNd+9xLpXHG3RB6rH4V/oxvuelAwDAi/v72Nm25+eYqifH\nJ/jGe+8BAL569x7endsdsQgiaIbVYVMh4GdndOLu9XIfKQRSona+mb9PM9RJrz0BY3JzoQ1WBACd\nzQv0GEG8euMGermdgxH/PZtXOJ3Z+bx/coityn7I9obGMLXfPRpk6LEj4EVm9FphPBBrHctRL8Nd\nXpSE91tZAiHfG4UJLmg1P182WDb29aUOvNv2mHHRjbzFK9v29+M0gOIcLAuN09K+ftZFOGcnpWC0\nmZgVNi7sOW31AoyHNiLYyhWcAdYVofD513jT/SKeaVxGCpfjclyOp8ZHRgpCiH8A4F8DcGSM+SRf\n2wDwjwDcAPA+gD9vjDkXFljwX8A6TxcA/pIx5nee6UgEAEg4G8qyKLG6sPkudOd9CvIowvzY1gmC\nyK3KIUKuruONMTIWmeIwwMGB9eU7nc3wgEKqr79hyTff+NY9/NCftIo/o1GC0zObG/fHY6Rc/c8X\n55hu2ghij/oOQgI588nxMEfLPj0kMGAh8aJR+IAkoA/ObW1Ea4FrYxs17AwFtjfsOV2fjDDMbT58\n/9Ce26OzJR4RifboooZhBW47B6bcEcfDMVpld/qTBWHOqLA5tHWSze0xrp/a6OY9NUPKCKOTBppb\nyd6OjYJkEOOcvg8P5gWmW/Z4XjrYxpDEnvPVDJuB3elDRiBnH8zRpyHLKzdfxOLuI37GCruUwLoy\n2Yei98Uh6wz9LETC9qUJJC7Ycn06UnB79HoYY1yHEK3WOGe00e9P8P1fsM4CL93aRaZs5DTK7e65\nOVE4YUf5YraEuHC+oWeQbLnuTwa4QeHgfuBcxwPfqg3DGFlMshkCnJ/bXXqc2wg0bzVi3gtX4gaD\nob1OhYjx/rGNaLSAbxkPByzmRg2Uk7AOAs9s7YyAoDK3UK1Xx05YRNxOAxxwjvNAIUupVj5KcIW2\neS9vtTi49c8f5vzfAfi7AP7hE6/9TQC/ZIz5aSHE3+R/fxHATwC4zf99L6wF/fd+9FcYuiutQ6um\nrtdahBHQoyx2rFtMN+2N7GTS1LJARmDRwc4UCavFQivcum5dpNqqxXRmb8iobx+aTgSoF3YhQH+K\niJV86A5XKIt2fDHH6YkVeIl4g40Ga9ek8XiEe/ft73tJiM2BfdA3JyPIwP48ok73qJ/hGn0sRVth\nUdgFIE4j5Oxj77DAtzvdw0FleAyV5wSoZoUxjT6CsMONfTsX7xzZh6CQCkvqUm5sDPBnv8cqev/P\nv/nrmO6weJjl2M7sDVkxxH00W2B79yYA4OU0x/bEnuvVnsCUTf/z83Pvf2kcakobbO/bOZ5mOXZf\nvA0AeHByhsWJPb/q/AgHZJj2CTg71RKLc7sQiCjDg1Obamm9lqKX0kMEnug++EYFWtVhwYV+nA3x\n2q0bAIC9zRCLI1uM7fHB25Qh9l1HSQjsbtvNIo0DFEubpvYDAQc0iNk5ydPUF4RV1XlKtTYCAfOY\nHgvXfdNBObp0rjFi1yk1KYbX7WZQS4mKC6Rh6hN0re80RWHqsRldW3isw34ucZMcjIjdM9F1GJAn\nkScxwA5PGgKvjOxCtf3CEG26TnufZXxk+mCM+WUAH7aW+UlYm3ngabv5nwTwD40dvwHrK7n3sY7o\nclyOy/HHOr7TQuOOMYb9QjwGsMOfrwC498T7nBX9I3xoPGlFP9ncgjACWhq4KtLh0X1UtCgbJAn2\n2WO/Nd3EiKgyZ5Um+z1M6HB8ML2OEDRyaQts0e8vvZ0gu2NdqjXxAaNxjuTA7o5luQI7doBW2Egc\nAq+HQyIBW6Y2qimQjuzvz87OoMmefHF7jOsMtfcHIfZ7Y54rPSTiCClVfUUyxHLlWqQRIorEZBmF\nQAJgk62wzSRB5PC+0QBhRGHWZoZXr9rI41esszyarvOouvl8iU++bKOiK5NN7G44ZKVAnzvaBu3Q\nr+xuIxjYz+pPNpGzZSeqFYpzu+tWVYMqpHiJtMfbNspDlLe2JrhKMd39foCLEZGXFxnc/tPSbGWY\nJEg54cum9QKsTwqsaL2GJOgn6oxGO0HbGopSdy/f2McVpjxdcehJTgOeRxB3kGQqDqMYaWwjiDyN\n0duzc9RPU0TEADhiWxwGaEobjZRdAaGdPkWAHeKYD6Z0175Y+MhmIw/RI7s2CgR6oY2wYgGwxonZ\nBaHmZYcUFLgJ+j4CyUUNE7MI2g+wMXKiv0yxu8QfTxBGqDnHkyTCFiO9s4sKp18+wscZ33X3wRhj\nhBAfLhk/y995K/prt16wj53RiIgzx2KGnA/jTr+Pl3fsw31re+JFKELYm6rTAlf3LVBob+saJJWH\ngAAh5ddH2318gtXZVWGZdV3XeGzCcJxDU9euLpaeZZfH0ncEHHBnnA+hmOvdv3+MEXEIiQww4kM/\nCCUiUpyd8rOBAlG0WLQKTeUYeUDDRcHhXZAFSMnb6MkYktyHRsErNHdFi8TxOfhQ1V3n7d4HWYKv\nvm0XwqjTyIRT7JFeK9L1ueM8R0yocS9LfD9+oQzaxknVB4DL8h3YRkhUpD3rqsKAgiRXBgNsOlnz\nOMTZzD5YTmZddi0SHsOsrRFG7pp9SKfR/fiEQ4zrROi6QcYuyBc+9Rpiip6Uq4UnhSROhSpaq39P\nkgTuQmRxiJw1gTRNEDozVrcRtA26xoGJDHjLQUPihRfIA2GHQKkOEWtfcRph2KMIkBSQTEGMMki0\no9IzvRwH6HG++8M1d2e77ZA3XFikRuBxLeTlSAO3k7Vh4kFUiHI8ZFp4tDiHPPqjEVk5dGkB/3VL\n0QMA155436UV/eW4HP+Cje80Uvg5WJv5n8bTdvM/B+BvCCF+BrbAOH8izfhDhwGghYCERsKwbzsI\nMWXhZKfXw8HUFtSubI8d9weC7tFniwIj9r+DqAfNgmFdrVCzNz0/OcfOvu0iuMq6ltoz5Gq1RLWw\nhbHIxJ5oIoRBS9Sg39kb4IxQ46YRWJF1dFF0KEqnWhxAcJfS7EcL3UFRm6AoWpQO0acjJJHdpefU\nG4g6BRGzYh0AIKtRCXgfyPmiwYxdh9bhO2AwI+lqM89x/+hdAMBnb96AdLblRkKT8GUISw5FgJQM\nT1NrFMRpCNUiZoQRhglCpx3AaxMGkde7qMsKGRGZQIwodnDcFWpnDOM1EzvcumHxDydvvOP1IKSU\nT2s0uh9cnVELLwZTzhe4ecUWDG/ub0JUhH83lddFAO+FOJJIeDy96dgXldMoRETbOGMUOsLUW0qY\naV3CEN4uTGc1He1v8G/9+7bA+vpv2ULzr/18gnfft78f3w6xndjPSNGDodu2ltrLwmVMUVQkkBD7\nHGaRlxMctyli6msEEPbiAwhddCgNBO89FQYoCdd+/6zCG0v72KW9GLF5Gif6UeNZWpL/E4AfAbAl\nhLgP6zL90wD+sRDirwK4C+DP8+3/FLYdeQe2JfmXn/1QDAS0zy13h31c50RdHfYwTB3rK0LOh+3w\nsc3JW9WiIlWt6loIrhrtqvCmHvfv3cfJka2XvvpZqwOZbuUQTpWmEuiYO6qmWHPzdAW9tIFQIOz3\nnq9W0A6TDoWisBdu1etjxbbRcnHhTUzz1D7woZHQTJIXsxnq0qkDaUTUZnQ019WywNh2lZD0BygI\n3iqKFbp23bY9XtIzkItCFMTQvHmqpsaIrdMf/+HP4/4jex41DFxA2TYOVy58BVzGkYczm67GRUF1\nI0TQ0nFFHK1dYsUHaRcSCY16GmOgKPohtfQpiAtxkyhBnzWO7ht3cGXXPtziQ8pL0mWmwqVg8IWG\npirwyRfsg5mUZ9DsIkDVENo9yO4hBwQfwiySiJkeouygnEmMadEZ1w50kOIWwpn+Ntob0FaqxfSq\nnaMfntpWdTVb4eFDu7GUbQ3T2dA/CCKn0A+0Ap1LTajuFMgQMZm9Ik4QadcBabCkv6nUHRJeE8Fr\nEEXSGwYJbdDwWgahwJjmSIlosDflzfoWnml85KJgjPkLf8ivfvQPeK8B8Nef7asvx+W4HM/jeC5g\nzjAW3mwEoBgabY5HuLVrU4JhnGDI7kKc9nDMHvSCodW8rPC1160NeXlxigll3Y/u3cXm2IKJrh3c\nxltvvGG/7iv2vS9/8gVkuwQkofXyZ52Gl35PpMDtPXYRGIHEUeAdoa25mbMc78DNEUVZeo9Fp/uQ\nBgEkC5+rZeGLg3mS+uJRxp12WbUwbCOYRqFjCqPKEjWLdbUATleOVORMbwQSgrrKYoWW0crRvPLM\nT5jOF02NK6wJYWl+AGJhEDDlOZ/PUVVu112nDUNCqaPDh77wOT8/w7hHeTsZQJTcpVWDJcP5hXJp\nUIjHjyzUOs1zfOoznwbw+9WcfUHTMRyNQeRMUVbniFt7L5ydH8FQDyONEkxY/C2Zap2dnXnBlqDf\ng+B5d01tNRth5fEd2UoZp1nQeuOfsixRMlUq6gqGDNSYUeyLrw6xf80WsZuqRcN7KA5LRMLJwilI\nkp+ceF0UZcgY0UXBWiIvTVNEJLSFWnltDDc/RoYWzAErBlMyzXlwtsSVHRt5DPsGN1/4MATs24/n\nY1EAfQAg0BCthWyI4dR2OuOqguSNfnhyhiMuCmM+8Ct0uChtmPVbb3wVr9x6EQDw8iuveAed/nAD\nGzSIffvN1/mdFa6RAZkPU9RsLTZKeQHVQAi8dN1yJQR1+6QAQodyEwIJgUB1o9A4CXOZehUfwYcq\nTDNoLiwnF0u0TpBFRGhIB1eaWotRD2ALzagOHQVnmrZBw/y7gkDBdCOUTqxWYDyyx5MKjdc/sACh\nf/Czv4Af+BOv2nnZHUE5K3nnE9kpxJWztW+heOzLRQWh3XG03j7eXQ+lgdUF06BGY8gFOY9jOHXb\nqq2xJGBHs3txXq7wxjtWKWn7+k3I0C2gTzeyvO28cO24Dk7V5u7dB5jdsx3wpF2gPLF5dNC1mJAa\nnVHwdnY+8/wLtT1Gn+AzqBaic0K+kUdUOn+KpmtRsyPWNI1XYWpVCy0dgIvt3T2NFz/BlvodiYIy\n80kILwgr0QGh876gI1c+RMLdJG4qKOWUs0L0eG8p3Xi+DQJXG+rQKfsZhQJKLjYGEZbn9l6ehi1y\ngu6edVxyHy7H5bgcT43nJlIQlFPouDsu4gGWrMhHqxUen9si0uHhMTYGNkIICZrZ3d/FFneuZVkD\nqV0Z+zt7GG7YSEEGBlsvWizDXWr5ff2d96G42u9f20YnHT5defx5FETIaR6T9W3xRsIg5vclcYjQ\noZ60huvjx1nPy4s3rPrXbQsE9r2NEfhgZouEv/nmHdwgByFmYfTalV2E3vFn7qv3bQB07P+3KwNX\nMczYFcjSdXcl6jQWH9jveP3+I2zSafr2zggtI4Wqc/gHhdipZiuATQk0dY3joznnEJizK/H+vQ8A\nAGfncxh6bFa6RUL/yJ3h0BcJK936OQh4fVdl4zUo4zT1xb7g6TrjWrORr3dCoeG8fOt4iaxnr2k/\nD3D3oT3O6vwxPjixx9knFD5PMgyJoTg+X2KV2HONxPohCLB2BXfFQKU1GqYXTdv40N6mu/yZqdt0\nP8SP/IQtnn7lSyWO3rKpS9YICLC7IOHP27BTc7gsIVlQvDrJYRgJPjq7QMNIMJGxd8R2IjoGGg3v\ni0oJSPIyXnohwJUxjX9uZfjc97tI4cPA5D94XEYKl+NyXI6nxvMTKfD/XO5YhhGW3IHEssKKCjsm\nChFM6GfIAk+W9zAiM/D2cIrEqf12wIq5eCAaSPajb3ziZQDA622NN+6RwRgLjAdczZMAhsXBWBgE\nDmXJVmiWD6Ccx9+qRMNaQxoCijURpQOPCmyYT5/WKwxYULr94gvQd60WwrJdoers7n5wxe58SRKj\nbu05L7sOFNJBF8i1H4SWPoKYkCQl4wrbdDUul4VXfpaQOCMhTGnhFZk6SnVVbW19HQC0QYjZkloA\nqwJhj7JqwkCEDtdBX4jJCA2t1FTX4uHJGd8rvPJxq/RamZvszDAyeOUlCzFPB3384J/6Efv6h4Ra\ntXT2boE/D6dEXQYxPv+9lvB1YzdHp+1xrB4+Qj2313VINaLxcICIUdrF6RlOSMYKpUbgCoaBXJOx\nfG3OeDUoLYTXtTBaInB9aXfMMbB9y0a3L60CHH3AuW0qJGxnF7rDWWt/vqCWx7xe+Pm8c77yhjrn\nFyViQlz7aYCd1H75DmsLWvawhI0wVipDTFTsZz/Tx60D+54XXhbIxh8PcPxcLAoCgHQhkXHFtwAB\n6Z81OkyGZPUp4O6xLRhGhKduFAm2FoTRXiwxINT0ZLWEJGClEQrG2PeHIeHDvREaQ9afEL74ZhQQ\nMESXwmCxsDf6aGRD/DCKnpICdwVDYYAFF4BGV4j5kNWuV94AKfUMd8fb2KYsfZYl3ia9Y8FpKVsv\nprHqNCRDykR0qBmCny4qLwXn/DWDQPjCWdsq1Fyw+knsFZOLqgFYnXfSX6VpETk79EWBGRfhCLG3\nYg/iGIIMPSd6EyiN2tj3Hs5OsVD2+6q2REm8RNE0a+/N1qYXqlMIyOE4enwfP/uzFv/2F/7tv4In\nh2OHrrMK6aHpO3s7uHHbFoH3hxFu37Bg2pNWoYntZ/dYlMuzxDssqUGCsrY/F0XjAUlx0CGOHVDL\nMTWFr/BDrqXgbAfg6VzHCHhXs5uvJvjmgZ23428YGALRThuFxwveD0wphBHg7YaqqfyGlPVSVEy7\nHtcFllwsnLrlXi9G2bFb1bXYspANvPaaxGBApuzOGF3w8RKCy/ThclyOy/HUeC4iBcBGCE+h2aTA\naMOG1ItegoMbdhmcLRq899Du3G981UK0vvfTr2DKIpoahYi27c9b/StwNKYHJ6f4tX9m9V7ufWBD\nyx/4wp/EdNe2PYeTPgS9+Ky3ANdLoZGP6BTNnbaua5wy/Cwa7Vf2clnj3SO7Ex5s99DLKNRBCa+6\n7XByYn8fqRliRhtFGCAhfqFwbbNQoAKLYbHEmGmHVsDx0kYmb7x/jIhIuDnbrdPNFOeHxHEo7V2l\nX7hxBRMqKb99/z6mY6t7kFFottIKESHIVbPCikjJ4niJnMSs8XSKlGxVVwAsyhr3L+z1uHvvXdyi\nqM04iyH42SvVQBFNeDK34W5re5kAgFsHL+CN92wq9WErekc79PbzUviQ+sXbL2JAe7Q47rzOwN33\n70LNLQZiEFOQZpAjIoaiMq33AAmN8Z5u0lTQwomo8OuxZmVqs7bIc//+vsFUJExb3P6cPbYHdzpI\nuIJu4LhW6DO93Epz5K4TH0kvMFsrgZW0UcWJ0igZORZMY1daYk417nl9jE/uUCBmFGI4tfeFigSE\n+HiEqOdmURBPOEIB1jVpOrHpw70khQtqtra3kEX2Id0QdtKNAd58aPHn4ugE5u07AIBBmnj2WbWo\nIBlq/cSPWjDmzetbaJc27YijDppVZiEARQn389ML5BMLcAoTezxFUWJBJmKlgH5mP7dc1Xj9jpUU\n3+xHSF+0D4iDsEaZ9KzGTAsMEvuADeRaJt6xKC/KC6/KnGQRBMP8R3WI33jL9uYfLzvPich4k+9P\ntyEdq9MA167aY9jf2URBcM9stcD0of3u/Lrlg+RJ4OPGwXiI3S37+gNzFxV73pGGl2p34B/ddsjJ\nBT7Y3Ma1AxvOh3noFYYqo3FMluQFMRud1uAzjLZYYTj49r30NXNaIOYiuzvdheaEdVIiop/o1sFN\nYGnvkfOHdrF5/+gUtdNdNDUcZmt7a4KU0ulohVeIMk5MBcZ3JLQRHv6s/kA+gQEEOzgmx/VX7FEP\nr1aYfcCFBRrgQ9p3wkFlAa2I+5DwGJG6MwiY/o76AUzzdG1gJQY45P2rRYDTu/b77mxfwfe/8Al7\nSvJ9hN39P3Re/6BxmT5cjstxOZ4az02k4MY6WhDoyGRTcYrjhQ3Xr46GyPrcFa/YjsP54ak329i7\nto+YFefRYIRE2l16dbzAxtTuJFcO7M6/LE9RExFm6g5ZYHcr1bVYSFsw+9U37uJI2te/MLGdgSAI\n0TkrcyE9KtcYjfnS7gJfvfMI0y1qQFCOTbRLKO60hQmhWcxrICCdLbvzaUhjBIFzhm5suA3grQ+W\neON9SwS7aLXXENgkAWZ7awcPl64b0OH7fvCHAQBhcYxqZglRrdB4+75ltA+op3B7e4CMBcow7SHm\n7jm9uotVZOd+GKYY9uyc14xQ4kTgIiVBR2qvlVZ1GitGU6fLGt96wEjOX1+FmH36pqnx2U98hvP5\npMfDOqXsXP5gAkjqZ2Z5iIp28CoOMBzZ+d7YvYZRahmYV6/YyOXs5BAnDuvy+D7OTu3xjPopJpmN\nKurO+GspXQqjjS8utrpFw1RCwUATn6AlPUh1B8HukzY9RCO7W1//bIs3vvlP+Xmd12+YUG9hZGLE\nlZ3DXAXQhETPTQ3NAvtRtEJAsxfV2O+4v1SYU4hodxgjIyr2+K7AvbnVHj3Y+2G05Zc5o+7fbz+E\n+X2S2n/048XbO+bv/Jd/Eb/1q4/x3tv2JAUS638IYLkskJBpOBqNkLC74CCwSinU1HM8m81wdmbz\n6/l8gc5Zp0cxlPNYdJV6KT2sNgxjSNYGgiDE4AnsfMW2ptPte/Orv+zFOF65dQ2ffvUGAGBnewM5\nATK7uzt46WWbtx89tjdgIgKsGEbfv/vIi7wW9RyLmWXXTXKn1tODZAvt8PSxrwdUVYs5BW2v3zjA\n9Ru2rZew3nF8coqarL7lssCXvvS/AQC++eZ9zC7oSBVn65CY1yBOEwzY7ZmMB5CsL5yczXE6s4tX\n12rvWJRzIehnMUa5M7KJcU4B1tniAi3p2QhTxFzgd5gSJqlEyPZkEgsUrV1A/smv3INbFuwhMt/n\ndZICHsSTxBGG1LbczxN89roFDr203cP1bTuPg4HjzIQ+BUOrsWDK87V7C/yfX7Hp5rvHZ6jYiXC1\nmlgGngKexamHns+LAv/1P/khAEBKhqvWls4OAO+8fYrf+RWbSr7/tRIBxVLG45FXkSrIy6ibGrpx\n6UhnUwxY1zLDZyCQEsORnbsV+S6rqlpfR63X93UQ+Z+frNG8/s57v22M+Tw+YlymD5fjclyOp8Zz\nkj5IQMdoG4mKsM6u7bws1dl8gSQjU61pPEPPyb7PZjPPO1+WBSrqFIRx4nUBIKy0FmAZjIBlxWn2\nfovVCimjEUCgJCsxiEIfSkcs/AVhgJCN5clk4F2LsyjxXpD7+wde+t2ZsEgtUVFp+dbBTURUNn58\nXCELbei7OSCBqzfGiISv6I5ElHL3HEkfjaRphprQ5P7YdlwGgyGa2obJSZLi4SMbVSwK7WXZZSA9\nMctV1uumQY/z0xUFKhLMVFEi8UVQiZzy+VsjOjUPc2yNyd1PU6wYCTw4PMTjuY36LpoGNQtzKxZ7\n0URw3Dfd6bU+hXna99CH847hKNdaDkkQYMiI7cWdDdzatse0v51jtGExJRnZtUmSrpWh2xJpZI/t\nk9dS3D20P5+uCmjiOhyILs9zGOJMokAiJsGqUg3OWju3gXZaFyVWc3tsJycrSE3GqNAYEW5vhEbF\ne6sunMhO5y3kZABELKRmWbYugponFK2Vs7aTHkpvpe9dhKV9lA0AQfDxWJKXkcLluByX46nxXEQK\nQgBhGMKYzudLVWWgHAlIK7SkNZtAIFPs2bOglvb6MCQohUmKM22xAEVRYekkz0yHhn1et+Nr1UGR\nnNJ1BiFrDmVZoabL9Wg8RkJSjdu2QqExJXZhZzJBjzBgIwJs05JuMBxjNreFvRFVkldnC+yz8NUf\nDjCj9NrOdAcxlZsjab93urXrCTfD8QR9wphboxHFdmfL+yMY1h0qKhr1+wM/h11X4d4jW5TUJkLI\nmkmrFBrmsJJIw36aeAg2WoXMCdqO+ug7Q5WNTcScuykxJNd3t9BnBKJhMCey9Hh3E/doPPv2g0d4\n5CDWhPNWRmJJq7i8FyGKiAqFBJ6COlOpySE3swQNSVx5HOL2no0IXt3bDVoXtQAAIABJREFUxPUt\nKnBPJ+gPbZTVc5FCmPrds+sqGEZ6O0mHF7bteT8838Ab9yy+AdS16MUhJIvDT5bf8qyH86bkEdr7\ncLkyOHxgsRfNMsHqwvAYxn6ey2IBoez1ubVvo4ftzRGmGzbCGk+GGG/YY9/c2vSt5rIocX5q6zWv\nv251Qb789bdxcmE/qzXw/hRar+tmxhh/3z/reC4WBRgB6BBRlEIQJtrpxnPaW9WiYnpQFguUF3Zy\nIsJEgzDw1elKdShZ9W4a5VMQQPvioAtJgyCCuwG7Tnsn6SxLEYTOir71vokdjyeNQlynucnWZOB7\n2r1BH9s79vW6KiBZCA3InEyiBJub9vdN1yJjbz6NUv/ApsQu9PtDlHS5HozHGFJSvqgqBIa6g2m2\ntnt3NbRWoUeQTttodIzRoyjxUPKmVR6661KjNAoQdnbe9iZj7NO0JosDHBA+vDndxoBYgI0hUyZp\nIPmwFWXp07i9rTE26IbVSyN037R4gYYcgDBOUTF8LqsSAQuRtni8xquwwO8Xo04pX2jcHWZ49apd\nFG5d3cDmhNiL0QgZF7KERcAoShDzOpgug6KbUrdc4sYV+xmPVy0OuXjVlDzLs9gLoCxXJcLYKTjX\nOOd95oR1VssAp7Sabg4FLs7J89AZNFOzfgx87tO2M3D7Bdsh2Z5uYYdq5ZPNDaT8viAKIJlOtbVC\nQT7KztS+tzUBfuW3ftd+X9t5QRpjNLonVrCP20y4TB8ux+W4HE+N5yJSUErj9KRAsRBefLJu67XK\njxEQnesPC5Ts3wuyxZoWXh2n60oE3F6SMEDCoo0RZv15nnylfB88CCTSlAW8JPNFnaZpvJpSzRbS\nZDzE/g51GkINxRV6a3sKQ/Wbplwz3JxvwObGFAm9ILSqvalNL+2hXNnP7jHV0IFEw7ZZr9/zUU4c\nRAjoVp1kOWq3C5D0onWLkN8rhEAUsV3WAZrYgk5rvwVrtnKzQYzr2zYKeOXaHvr8jK2NCa7Tjm1j\nZwc9mqskJAzpcgVTEglqOr+Lp2kAQwxF3bY4PrM/v/OA6Uwce2i37koPD/7wWF8r+99d1/n+/svb\nY9xgyjAepejT2KaX95HxWjo/iSCKEYSOgAQI9vqjTmBny879jfMC93ftdT0qmY4NBt5LcjAIPamq\nKGs8fEi1KKZ8TSXRzO1cHH+wQD23v+9FGgHhyp96+Rpee9FGXgfXLSx5Z/8KhhP7vUmW+mspAE/W\nkrL1aczBDZuCfu7Tn8Ab37Jq3UUzWxdSjYFmWiyl9KnEs47nYlGo6xbvv/sY9+8tETn/xVHgK+uL\n2RxDXuQ8C5ESHiokQR6V9jh7gdTLWSkor+BrhPGdBqczGIShxy6EQQiXv2qt/F3YlIU/Dpeb7e70\n0aO/Yl0rZAzt82Efy5WtZyQysJhVwFvV570+WrcIJRkS9vqV0hiMKbLi0gHRQdFfN81zCKc4rAyS\nyPkc5l6mrea/Go0PvqMoQsUHVsoAgqAYbdYgHWfesjnqY5/grs1RHxnD+en2tpe962d9SNY+DBdh\nAUA5sZFQQPI6oO2QshYzHA6wsWnn6M4DC5pqW+npyQJAFK0r5E/C3QU/26WBQgjsMbW5tjnCBr0i\nszRFygUwC3t+jkIeg4xjBCEllU0Awy5KZgw2uNhf28rx0oGFd4tjskvHG17n8fHRsV8U0yzD29+w\n+JPA0HBGpmge23mZHy4RVnQqMyVGW3YO93e2sLNtw/89ytMPJxsIXZdBig+1XMjWDIHQeVf27Tnd\nvLqHG9fsAnFyUXrOhBQCNUFdUkqE4cd7zC/Th8txOS7HU+M7taL/zwD8WQANgHcA/GVjzIy/+ykA\nfxWWaPbvGWP+r4/8DliJs6YpUDkBy1ii4Y4fRhEONuxq/LlrfUzp4Vcy1XgwUzgsySxDiK51KYhC\nQZJT3RlIJ2bMSLXTEobphdadhxLXXYeOYbVNI5yyhj226WTkV9/WSAydMGbbQpFp2ctyCBYuR4Qg\nd8YA/L4kibwIaBwlSHv2Pa4hr9qlF2eJpUBDReEgiBA5TwatvQp05URgtUFAplGSpSi4Y2RZ5q3i\ngs4gpZSdQwRujDLsTm0FfGOj73hWSHoZUlbwbYfIPDkVUJ0VEAUACO2lByCNRwUOsgw5U4X+wO6I\nJ6sK0ilQBwEaRjrOd9NOhfbsSMXvHfdy7LE6vzEZIuLxyzj0xcooTBA5bAnnKkgz763RKeMt3hFn\n0JTb296aYINpzibNW7Z293B2anEfjw5P4PbRSABjwtd1a7+rq+B1KNpl56HrMmixz0hpc9zH5rYt\nNsfEt5gwQMditdDKM3SFkd5hW0oBQXKfi8Am0zFevX0LAHDn/YcoGQmHYQgRFPw7icx5mzzj+E6t\n6H8RwE8ZY5QQ4j8F8FMAviiEeA3AvwHgEwD2AfzfQoiXjPn2FjUyEMjzEJvTHg7PbRtvWSjUXCAm\nqcDnrtkJ/L5bOaZUXlqt7A1/PFc4Iy5cG+Nv2FYbzCgGsqwBwfZOxbB+URkrkw1LyZ3T3enBeYFD\ngox0p9Dyho24EORxYrUgYR19UlIci4u5h/y2ZY0+L7pTfl42NSKqRWltvDloL8s9N7gjvHgxnyFl\nq880DVq2EHvpwD9MnVK+1hK4ha7V/qqGYeAfJo11mypLYmww5QlY3R5kMTYJQsrSiLZUQBQGCF0K\nBrNeUXm3GkgI5gGRDCF4IEoH6BLX1gsw5sPbZ2fkeDHz7eBACLSto/dKD1+XwnitTBdSTwYJ9sZO\nvjxEzNpGFBiE5ETI0EBy8XVheRinCNhmhOhgKABjghgNnbF6+QDSmchIdi1cWA+7IDs9ztEgx/Vr\n9pjP5wTFzRIYPpi60aCmD7I0xi5bjqN+D3HiAHWuXtI90YQVHo5tu14UmQkCCKZujpeRj4e4fYse\nqpsT3D2b89iF37SEEIjiCB9nfEdW9MaYXzBr6NlvwHpGAtaK/meMMbUx5j1Yp6gvfKwjuhyX43L8\nsY5/HoXGvwLgH/HnK7CLhBvOiv7bDiEkkiRDnJRwofqyLP2qOxjFuEpb880sQD+zK+2QhbpJsnIO\nbRBSrnv2nYGQNgwsigIis1DgLrXhZ751BSayu+P5bIZHx7ZI+NVvvY9fpYXc0dkKbrUOWMlWGt4S\nrZ9qaO4uVWWwSc+FclFjb4uiLK2zLusQtGvJt42xDSNhFDTTjiXFTVTbIGUHoKgrZDH77nHid9VO\nKRgHvlKuEKkB/j4UkY8q4jDEqGfnaxDBKxtXhbPKaxGzEJeFOYQDCKgOT4JkXfrQ+cKfRBh4K2Zv\nDKP1mmwlA4NB3362t6PTZg2wwROe80J4fIcMAnT0RmD2gb2NDHubvP55gNRBguOe96MMJCAZavuc\nUQS+c6CNXv8M4V3Ks16OEVmjiwcWWFYrYEaSVwfzlFnMS8PX7Ht7tqNyGnU4FvR+NIBh1CeDAIpR\noQgShExzQuF0JwH5ZEDkrfIEtIMoy2CdukmXRuSYTm3X4uDqDh5QSVup1pvnqLZFU/8Rdh+EEP8R\nAAXgf/gO/vavAfhrADAe91GuDN65cw/aOTMlPW/ymiYxElKKhaqxnFsWpLM1N/UCsdMGTwboyDUY\n9HvrfD8IEA9tCwi5rfQn4w0goWJTucTRY8tqi1DgAZFiRd1iWZCey0Wq7Tr/cx/GPuGwobRzU5Iy\n9DfQjCg/BCEEeRcbW9uecdi0DRYre05VxZpEr4+uJmNPxh7vX5bVGkzVtv7hdAYpQhvUpU19pNEI\nGHKmcYycYWQedpgyfThqaMB7PsMRvTbHvZEPOS+KpV/UkijyHAQH9AqDAHAW9+j89YOQ8EFxoJFl\nTL2Y31qJdON/flLHSLoHwXS+Uzlg2L496iMnuKcTEUrYzxtFG+gI/JJpiogchSByaEvhu04isOhT\nwFLfA352FCXYZr1ifvKm/fdojpLIyzgf4owKV2ko8Lm9PwcAWLQWBXksHuOd0M7nSTeDEXbelssl\nvvFNy8TsZRk2tuxmkDGlCgLhxXUAASGdPmTovUe16jzCV/tcI/Ddoyt7W4i/bpXIqqpCzNStKRsU\n3dN8ko8a33H3QQjxl2ALkH/RrCFTz2xFb4z5b40xnzfGfL6ff7xCyOW4HJfj/7/xHUUKQoh/FcB/\nCOBfMoZSvnb8HID/UQjxn8MWGm/jGZQdqqrG22/fxYMHJ+gPrWZiEkdonO9g08DBkbU2yBmu9sjI\na+seWur9QRok3Eny/ggZq/rB+BqCnu0Pa+4eLRTgJNCjAKO+ff3l/QmGiTU7sbuWfU9B5mCjYggW\ntSIhsKT8WRyN16FmDfjp5XaX5X0PmTVt4wUyqmWBquFuxJ10OS/w8K6NXC7OL3x1PgoMxuTV9/O+\nTw889MdoXMxtGGkGud/ZEwmM3G4tgA1XEC1yzmGJt+68xw8R2Nmy0ZQxGkenVuth2Ha+a+G2q1Vd\n+11et43vjyttvN17G8ZerbhPZquU0vf/+3nkQ2MhJDq/FRovZ58wHYjDGPOl43a00Ec2CrvzYI6X\nX7L6FTevpohdwMI2ipCh5wYYrbyvZKUlSkqhLSp4GX/TOT2JpZdx65vQd4S2NzcgFdMxbffBMN1E\nht/k9BgvlZeEEpvEVhSLBb7+NQtNFsba+F0/uIYwWXeUKkZ6i8USJ6f2vi6LChXxMs5iT4YxUuYd\n/SxFj9fm5OICPUoEJqHEOdmqzzq+Uyv6nwKQAPhFAk1+wxjz7xhj3hBC/GMA34BNK/76R3UeLsfl\nuBzP1/hOrej//rd5/98G8Lc/zkHIQCLNM7Q6wIIMvygyqNhLrmsNV+7q4g3Ivt3xwwF9EzYDa9wJ\nWEMZIttkGHnT2Kiee38G11VTbYWW8mK9ySYi9qs3RikOBnZr+zXVIevbnTkobBTQaoE+t+B+EqFg\na3Q0BJaVjSaOD8+8/NfeVRv9LMqVX+0HsxOv+hQj9PDnx/et0vS3vvktNFTx2d6e4spVKyGXSImz\nU5vXzpo5xoTHllQuKoolyoXdXUJpILkmZ6HBtjOMqReY9LjzEsX48JHC+bndUX739W8g584VpqE3\neDm4cg1X921dpkeD1qPjI6yo9HR+do4VCVF5mmBCwpcJtXd2durRMBqtg6abEJErDKJ+oj0nva+F\ncNBfpbBFKPjtq3tIqT9xWissV/b63P1gBaPtfLljiJMcjbC756IocXhi5/D+4zPPMJW6hGEheHNi\n/+4bjy9QsX3ZnJ55qHwv7aElS7Ij83NVLNfnFEj8f+2daYxk13Xff/dt9Wqv6n2Zpac5Qw453EUp\nkqxYymJIMgQZCfxBhoE4iIF8CRAnCBBY0Kd8DLI6geMkyAYEgp1E1gYFiWBTsiAjsRZaIjkkh5qF\nPWtP77W+qrfefLjnvZ5RJGgYs2cayDtAY6qrpuu+e999557lf/7Hk9jI2vIiF84bhqy5drdIjY77\nxsoJhiNqVl65G9LfN5bZzvYWvV7OueDgCtq1JgF2ZXtMR8YqDMNpEWhNU2nwC9QtRf9gzLuRYwFz\ndl2X1ROLOPaVwxqGLCIW/sRR4nC9J9VnjFF7UtbbNf+eWWpwWmjdK9U6Yd8s6mQ8YWNbHqDUIsvM\npsk3aLOa4dcNLmI1vcBMR8pX5zo8t2YUz1e+e4O+cN91pRzXcZ2CCCPLdIHk0Wlc1FqcWl0pAqXT\noTRIGYUkEsD0l5fwZXPbtkUgbsfkwESyF9s+tpicjWYTL+8jWHGZWzCmfThJsCSwl4iyGQ/7pDJu\nFE4KoheAhTlRIPtR0Y8wf7hnum1SwSZU/AYTwWGMR1OsuyYSb2eKrrguFTFVR6Mx79w0bs7u3j6R\nAMDarSYTUciJTrEzszFtKZFOkriAmGdZipOb7T9G9Z8bmkK7Sce1aWLGDg8CXMso0xNLiyDNbKJx\nn4Mtc011Je6oBdNQqOL2ekTCpTlb85g/YwJ/Nc9mJK7StetGOb/82o0ic5AmSeHmjMdjIm2UqGPn\nFac2FT9vOGThSZYgilLeeNu4ZkvzAWdOm+pIWyDoOzsHrPiyFzwbT9y8mU6NrgDHgsQikkPNlqB6\nZ7ZObVnwD80Gr79pxnjjxu2izf3c7Aw3N3d5N1LCnEsppZT75FhYChXP4vRqkyfPtbj0jjFV45gC\nSedZmjkJAtYrDrfH5vR47ZapELt6JeT9a0ZjPnn+HNW2ORGD/T30yHxff3PEBAm+SI/DTme+6GBt\nJ2FRXek2T/D0C2Zpnr/Y408vbciVSnqvUsHNI2foArE4DcaMBR7t2T4Iw/TOjjlRak4dLSSg4Sig\n3TQnfrPbIRB8wowQfA6ylFu75mTb2Dug1zPzaFR91lZNYKtZrR62i8v7FCQxmQTJ4nBaoAbD6ZRM\nzNzu7CxxnjeXoOvKyTlqLXNazS+fZn/PmLaj3hYqlYDodFKkQHN052g0IozMeDPzSzS7xsLCUrjS\n3+CgNyCQQrG8Q7NtH+bdFQo757rgUJRSRRfqBUEEohTvbBur49VpD7dlXp9LK5xaNNZiu9YhneQp\nXuNWdWZmSGWN3SygJg1utFfHkpTkeBoyEpiykrbbaZoVgU/PcYqiuH5/wB+9+d/N+1rSn7HPQNri\n2bbCES6Lg/1eEYw+dfpJNoTIpVETmj5LsbBsiqNqnSaTwFxPHMTcumks2ev7I/ripu5tmb9fX1vl\n2acMzLni+cwK0tdzFKkERDutVoEifVA5FkqhWq3w/NNn0H814/P/9Y8BePtaH1vMsvmGw0pTzHU9\nKXjrxmMB3ng2g54xkQ4OutROG1BJuzlHbd+8PxNOaKw+DcBr14yJ+Nr1hJcEi2/bKaEgWivNkyzO\nGPjoxz7SZyqKZUs6M7meU2ATUFaxkdMwYjwSkg4nobpoHrInf/5DAFx+4wpv3DEm3jPVE7TFfHYr\nFbJRbhoKPFVXOHnWzKNz6hRf+OLvA3D9ravEgXnYnr9wjlrVbITMzrn8UgJZl0zH2G4Od4XbN01T\nkPXH1lh//DwAw6F5aC5feYe9q1fNtX/vFZoC8Dox02SmIW5FtV7kyAv0seXQbpuH0fbrXBdXYnNr\nmzl5kG0s2kLnnufmT59eY3zlqnzJYYm0URF5nt6mI+bzusRllA0/uCEsyTsDArmej1bq9ITf8+xs\ng7aYz0MpSW8GAX25N7Fd41s/MKQvb93YY17iNU07ozIRH94z1zvTbnB3XzJbuEX5cpom9CrmgVWx\nuAxpHVU3C7O8MEu4Z8ZuNdtFReTP/fxH+fY3vgHAjRtmL6yfWSkqfr2KhycKaxpq9g6M6/ns83+O\nK9dNdv/aZXMfb1y5Q12U6ZNPnuXUSbNGvucwkQyG61jUhRnsQaV0H0oppZT75FhYCpay8CtVPvDi\nE6RTo6f+yb/8KtuSx2/6c9g5WQgx51eMRvREpzVUSMMXshDXhYkx4Ry/Sa1t6uO9YURNaIlfeNz8\nvW0rTp45Kd+lcJU0bfFcXDnZnlw7wd1T5sSfpuZEuBPH1Ny8R4RLTkvsaEW3Zk7N3fGExZZxY1aW\nzCmxu9VDj00gsVlvMBHm4HgyLaLeTcmAEIDbMFaAoyxOLxm0+JJf5cySOcW7nQaO4H+TQGi7okNr\nRVkw2zHzOLk8x/KsmZ9f94gNkIKDnlmr6XREtyGReq/OirSNq3k2riX9IhxFEgtRi1SwVv0acXpI\n87Y6b4J2vluhJ926x71tmqsmazG7aNbi5Cjj5l1jBlsqxs7LK/VhPw+dZrhyEi61jSX0+Mo8a4+Z\ne7a9u08gFbHr51c4tWxKcNTggFhQqEivxfFgwETch37ocfmWab13a3eEVRX0JhH7d83pXxc371Mf\nfprvXDRoxI1be4UlN7cwT71h7nUgbpmONevnzTxfeOkZ/vBL3wTg/Nl1moILGWxt8PwzBk9hPW8y\nEp2ZBhUx8S0NvgR/V9dPg8r7TyScWzbjdT/+EXMNtTqrpxblO9qEYry2KlWGgqyN4xjPvdcp+9ly\nLJQCAErjVz3WheXn7Ppp7vzwdQDatRUW2lLJ5vm4tvEjTz5lNlgwGtCwBQhjaZRsXLtRY2XNAET8\nRodMzPWaRIgbjRq2mG1pqkmFE9GatrAlRXhq7SQvfcBw6uXw2i/9ySWakhaaDIOinbvteqwJMetp\nt4ojD3i8ayLZz55ZwTptFEUSjAjG0skpTonjvMGJAIyqFWKh8mY65MMvPgNAFI5peQLoUVkBq55O\n8wyIi2PnHI2w3BTSmorF0pzZVH7FBoFVr0nTlLX5p1EC/W3WO9TEfFZZhO2a+U3DgKbEUuqy0Waa\nNdycntxyySRWcWK2RX9qlFeWrGBLKnIopKXXr17C9w7rD1ThPugC+58T+gK0pFPSfNfndN538mQH\nLW6TXa/SkjYAUaoYSpoxzwxkcVKYxb4T80sffZ/5xW7QbYkLFveKNGEqYDK/ovjIBeO3f/e1q3zr\n1csAbAYD/vzaLwCwsWPgxeNgm/knzP1/oX2Om69cBODptRVOCMGsU3NwxSXyJE4W65RaVWIcWVZQ\nss/NztESGP5wNEBLduXsmnF36vUWVXENlOWwsmRc3m67w2hiXGSyDIt3pxRK96GUUkq5T46JpaDR\npGit2dw0QRTH87ClSrDqV2jIyexXdYERiKUJR6ProGKJ6sdxAYnVtoMvefV5v0oyMqa7JacVaUIo\nVYJUKtjSVVo5Lpkr2nz2BE+8ZMy1mpySJ2+P2d82VFyu6zIJpMuz8gr6+M78Aq5AlqtSnON4HmTm\n81u9flGspLUqAFWOnBje3DyhnMDadfBzevmsih0JzHcSFNRzeau4NMuYmzMnSTAdMyuBPU+popBq\naW6Rua45gXLroFGbIUnyVmNu0ULPcWuMp8bstp06VYGY+zLPar1WVIy2mk3SKC/a0cx2cvBSylAK\nr3Y3TIAvCQe06mZdBuMJlvAimCYsOaQ9oe4IXVwjb7gDTcEs+J5TZA4ylZKK9UMcYufUc2LaW3hU\nBTRUsTM6Rd1WjEqMCxVbGb5gVWzbrI/OQnzbfO/7H18uuk5/+X+/ytmO6RW5VDXrvbN/FTc0611J\ndUEbWPNtTp40boXyHTIl2YUccJfERQFamsQFTsPxHKpCztLsNIqskpXzMLgeTl4oqBVdwbU06w2U\nNpZCFqd49rt7zI+JUgCFRuuMjhB9bN7dRIoEGYwDqvW804+NlYoJKxs+jAOGgiR0ul1sMc+0gjQV\n31LZeMLzqAXrHmcaJea62+7gNI0/rN0apMbfH+xug5jo4cC812w22N8Sl8G2iPOW62FMJA+FZzsF\nY1GuxGxU0b0qmiTUxb1QWIWCyI23Wr2Nk3MfAq6Vp8gSQkF9xiEEkp4NJnl1pU9NypT90GVe+lWm\n0YQwzensD/12VbB9UtC343hFlL0/OmAoc9JRRLOdV53K5m+0Gcq6BOMJXene5ToOmSicxEsLv9vJ\n40AVl2leJanTe3KR2WF5dhZTy4ltZP6OBs86JGyxCoYln5z0cePmBokgPC0lTYOjmKyI29RoyHVG\nqWYi7mbTdUglPpIT94aJJsx9ckvTEtfz8eVFfOGB9IQdoDPXoSdxEt+q0JSHNLEBKfd3G3XIhJtz\nbPasTg4JhNMsLbp2ZWlKWpGMl+tjadnXee9b28aSfpxZPMURN29uto37Tk7kmxUcow8qpftQSiml\n3CfHxFIw7oOyXB5bM2bWh15a520hunAsG1tM6UZnHkcisjkRyOTgLvWuicI2ltZxWkZzR9GUbGi+\nI0kyPDHN7ZrR4K5jo3L+wUqNVIradRIXUOHe7jYdYc+qCU33dDREJ9I/cDItKgOv7fZYnDFR+8VJ\nSM0/5FUEY/ZNhR5OaWhIhsPFLoBTsXwXWVq4IkmUFe6FjkMyCSomkSYSyPZE4MCteoOOdFq26xXW\n540ZfH1zRJpDotOMWMyweqUpc1bFdzUbraJ2/+7mXbK8SY5fIczrRsS9sByfVI75vc27BD3jaswu\nzFKX2pQ0g8kkb4Zi7t18u82u5NLRuqha1EoXvRvREZG4iHnQ1dMenrhxnl/Fl2yP6/vsCcnIZBwx\nO2OsvoawZFtJymRkXMWDNMIXgFujO4crLpgVTckkwDieDmXcyWFXqywt6P5//sWn6cc35VYJdiFK\n0VIZmXg+J8+ZLEOwv0smmTSreUjhnogbmCXBYV9NpQvgURIlIJ27napbNPApaCrUYR1PFEYk0syn\nu1ArnpdJmhLnhJsPKKWlUEoppdwnx8JS0AjhqqbwZZ98fJ2TCyb9E2eKkfj1La3Ico6EPPBiWTj5\ne7MrZILyu3x1g1kBc9Ucm9HAnCSdeRMYsl2/6MWYJppEcvfKyhgH5vWkv09VKgqvD0xwsbd/UHQM\nDqchfeFy2N3e4eZtg7Y7vXiiSJEJixvaVkWgyqp4+MKaU2nUUJIODUWrj6cTPMnRO76LLRDCaJoW\nWIFJMCGQ68iJe2zbIpMTpdcbcXLFpG3HwQgnt0YSzVQCk9WcB8zKUMLZ0L9zk50dsbBGYzLx/a/f\nuU1f4g6qkqfTNBs3zYkZ9geEEhDsT8bMdY3PnFqaSOaXybXPzs+zL2ullDqMbSgKp1mTMRBrYl+Q\nl8lcq8A02JZGloj+wR6bd0zqV6cZjZpgOeaM1RiOhlTFt+4P97klOIWFTDG/YnAPaaQIBEGo82Kt\nSUwi8OI4mJJGxoKoVVocTAwvwiAQaHOyxKq3Jmsc0ZSg5ZU33qQvcRevnWJ7ebxCyIZRJLL2xEnB\nwzCJElx5HhzHOaTnkPuoE0ikUjOcBIWF0aj5BYv1aDIt0rIPKsdCKYAxg5JME4uZ2e8NCrqyK1t9\ntkdmoVamfWyJ1E6F2mx3Z48Q82CutFaxpfHsYPMGjgTd5h47V5SZZkkexbXI9GE3npwlN4um9IXW\n2yPl+nUTPPq9L3/FjHF2nUjcAN91CwKRWq3Cjdsme3LnxBnD0gxFX0rlOhzsm++dTMKiN+V4PGac\nB53ENqw1QuIsrzOwccRED8Npgecfj8ckYvLb4j4Mhn1+cNHgOxoTmolYAAAPoElEQVRzXdpCttFs\ntQp6tEmq6eVs1JYoQttjOjDfO+j3icKcS1JzbWPDvB9PefOKeX1jRyjxNNy8ZuDKpxcW6QgzcjAd\nsSfXXK1VmYjyGgvdnO25JBJQU/fwMmZZVvBOWpbNUGj8b0gdyPmlDl15gOLQMbhnIA5D6gJC2rrT\n40ei1Hel9DiKJlScPEKnmRUI9nQ0YLhjlH3Ft4tGxvlDGk3DojQ+CEJy231hcRZXKjs9x8zDt2wq\nqVnvMBjTnTWKaWu/z40bBhTVnJuj6sl9zXtUHuyxsykKLQqLOphWp42TdxTTSYEBKQz8JCUKzTMQ\nhRNiWVtH6YJPdBIlNAWU9qBSug+llFLKfXI8LAVpJ6CzQwQbtksq0acbe1M2dsxJ+uxqu7AQLm4Y\n7fonr99he99oyZXL+9ICDqLJqOhvEMeKE1KglJ/yNMApUoEaJSmr6XiEJad0tVLhzo45pV69bcbt\nrkxoSNDSsm18QaBlvs/2rskPv3X9HWqS9iLPwaOKMUY7B1wNDBLOca0CztuWFvduprDkxAx6B+i8\nA3ecFqduzkcAhxwRw8mYodDGNdUcb2wYiG4axlSEC3OCJpE1cKRpCI5d0KMNx2N8CUAORmMCSdMl\nVgUkDXzxisEbTIbDwj3ypwGZuFJexWWwb3Ah7bhBIjn5kZi4o+khEhRtCGfBIPpy98GyFBPpd3Fr\n29yDg/6ImZb0ZLAyrDBnytZF38XVlUW0nKqZYAUWluZJo9wKsAsocRwlBANjvSVTi1AstrGs8TCY\nMBarYTiNcKrmnl6/vccT7qfNXF1D3ecnVdxIMDRAR7AgtWab1y+ae7165gSWWAg1QVIG0wnbm6bY\nqVXxqUh/EmxVtBa0bItU3Aqdp5bjpLAU0igijnOEbFyQ32ZkzMyY63hQORZKQWMi4jYaR6Km8+0q\nWrIB09RlczdnmJlnJGbS118xG/7S7QAkArwX3kXJ5ohTjWObzXTr7ogLTxq46gsvmOrDuTgiqx/m\n6acS4e4NDugJCUcyHDHtGfdhTqC2tUaTpvTzmwY9skyi6FnMVKCoO/0+u7vmofDEh6xXa0XXpNXl\nVbwchFOvUXNz2u88DJ2g8vRykjLIQVaZVSgZp+qY7rqASnOfPKMlNPN1v8JlYfFxUs1yLYcu20VG\nYSCb/yAI2JI1TjU0G9KjMhgzSsyDkmTQlxLgnH8xdV1SYYi8Ox2zv2+up1Wt4sg1deKYhijnRGI4\nYRgVD79S3FNGnZGb6BXfxxLFcftASF9ixWRkrsf1XBQSa8gUI8FvoKHZkgdS7pPn+kX3qUjHjIRF\ny7IUqSieMHKYyncHY6lLiaKiXLw31eCbefzg2ja/XDWxiK6Al+L+gFhaAyjl4MkB9+RTj/Ptl78N\nwMbVW1jS4akh7E7NVo2qK3zHaYwrLp/bqGH7ec0PROL25i5jkoRkSc4bGhJIamhnd0QYmve7s3PU\n8u5jDyil+1BKKaXcJ8fCUjDhNU2aptgSR19dXqAunZ230glXpIX5drBKLBgBS1q1v+/MCnVBfi12\nmjTFTN4fBPSl6MhCcfeOiXbvnTYR6e78IpZY4HEYEgs91mQYMJXqQSsK8VKjdWfrwmtY8Q6blwCO\nnPLTaMJB3m7u1h0+/Nz7AUhic51b+5t0JCperzbw8lOs6hc8BZG8iIIxE+E7jOIQ288Lg9qEUl2Z\n6aQwwdPc3fF9amKiZ1nGvtC8tSqVAnmZWYcM1UPJywdhzJsbJkgaRVlR8FX1PCxx4zzbZbkrHI1S\ntZrECZsHxpIa9gOmwl/Qy/aLE+fc+hn8vCeindPYZaRFoDHvumgCvjkfo2VZRXfrPaGxG8UGiQqQ\nOV7RSfzGxm12Ns0pfeLEqUOuxL4EjL0QJejWabiNFniw51q05OS2HZdULK9M3DVLqaLHxXZvyB2h\n+utFmkrFnPSubVw+J6sRSZA7IStcpmeeO8+1t4z7cOn1N6lKxeTCZK4Yy7ZkvX2PZJJ3VU+I9ETW\n6BBHkjNKp2lUNP6J04ye0P5t3Nw0ndOBdqvBNMpb8j2YHBOlYNpvaw7NyHarylzH3KxrNw549ZpJ\nkb21NeJ010Rkl9s5ln2MLTe868+gtFmEbqtKtZG3J3fYlcj//rbZxOmZdWyJwoejIeOBeYAG2zuM\n+iZaPFOrsiwNYjt18/e24xQ9DtM0LRqPTKIBd4Rl6dZ2wI1ts4FWT5gqy3g85dqlt+U628xKVLhW\nrRLnMYO85bxOCGVT1btN5jsmtYjjMJFVy4CpgKxyQIxrqyJeUFuqk1MXVapVhqJk2llGUx6Ecb7B\nsAjFTO602lQEJhz1hzgCK656Nm35u4qUkafaYizbKAximsJ+FFmau9LbENszddxQkJ3GcVx0tSrQ\nOPI6Z9xK07RQvvuBuZ6t4ZT1BXM97dRCCQ9ipTtLpW6AY40Lz3FaCEc8AXIpyyWVkvLenbtF6vjK\nOz+iWzMK59RsoyBbzSsVVaIY5XGNg4DLd8w9naaH6fNE1iLOXLRAnzPXZSxNZOYW5njqwhMAfOvl\nP+LuTeNujHbMQZeOp6TF4aVN91qgtTSLJS5rvd1kYVmaGeUeZhoXRLJRCleuG6V+d+8AxzlM2/ZG\n747ivXQfSimllPvkmFgK2lgIWhear17z+fD7nwPg2q2AzR2job//5i7z7zPaeP20RPeTBCsxp3nN\ntU0jP6DdbOIK1NZzKpw6ZYI5dwRLEPV3sSSwOTzYYyd3L7ZuU5FuIkuLp8gbVfo1Y60opYjCsHid\nMyZv7w/YH0oOPU3541f+FIATp4y7cnJ+nv1bJic+PujRkG7FluvhCegntXNwE3jCf1BfnkE1haIr\nSoo2bqNgzEQi4w2pBh329nHkBPP8CqfW1sz/3d1nb99gC1qNWdq+sBxL6mAcRCxJy7QLj61xpmOu\n52Cnz/aWAHacOvNSgZnl1ZnRlHbXjPeEWqG9YuDFl3fuMBCr1alUC/dmb8+sYRRFpmEK99sJruse\ntsVLk6Kj9ViKsq7c2uJ5ue+TKKLbNJbLYrNGJTQndjOzGYjFpuR+pFmCLdbYJAjxpTfnY6fX8S2B\nIGcTdJp3fBY3Lkm4LViHq9t9DoS8pdWooHVuuh+2B7SERh63wUiK1GbbLhdeeB6AwXjInVsm07C+\naEhhXCzmF6WVoeugxFLIKg6T/HnwfZRgUbICE36I6RgGE1594xJgOK2rUuindVIEhx9UjoVS0BqS\nNEFplXdkx3YyPvgBU5r6yhtX+ZZwLX7/8jYXzphN8fxZ45OpYIROjaJozs6hhB/fb1bxxNz1vDau\nmISdlpiUOuVgy6Q1b9/dYXvLuAzD/X0unDe49db8EtsHedcnAd7YFIonTjTiRrI3nhbIvCyNee1H\nph/hM5fOArDw4rMsr5mNMNrsgTT+jJVNjoByJErvLdTwhDXJb9eIZQNOxuMiJTscjfEF3FJvSW/I\n3U2qomBcxyv6CN7Y2ceV6rzaVo920yjRimRGpmlEIlkEZSv8plEWy/4CVaGiD4KYkeDrA4lF2DbU\npUS6WrPw5ZqzHZu8Q+Q0Ghd+8LbcR6/iFJ8rbRXrpizLlHFiuB3z9Fsm7ser1+/wkQtmDec6MYGg\nWm0F2ZZBKeo4prZmMk1+VSpfLdDiglSDgKy/JWsf0GpL9WHsEqYmpRqKLz8cR/zwunEb7+7v40oq\nM8s0V773QwDOnTN8l76bYflmXa00IplIGnYa01mSmp6/8DH+17cMI1NP3IfZRp2BPPxVt4En/U+r\nrSZz4v5U/MPsiZ23qs8yIjmQrlx7hxvXDedjs96mIlWl4WRSVkmWUkopfzZRh71hH+FFKLUDjIF3\n17XivZO5cuxy7P8Pxj6ttZ7/Wf/pWCgFAKXU97XWL5Vjl2OXYz9aKd2HUkop5T4plUIppZRynxwn\npfBvy7HLscuxH70cm5hCKaWUcjzkOFkKpZRSyjGQR64UlFKfUEq9rZS6opT6zSMe66RS6ptKqTeV\nUm8opX5D3p9RSv2BUuqy/Ns9wmuwlVI/UEp9TX4/o5T6jsz/vyiVQ+KOZOyOUuoLSqlLSqm3lFIf\nelhzV0r9XVnzi0qp31VK+Uc1d6XUf1BKbSulLt7z3k+cpzLyL+QaXlNKvXgEY/8jWfPXlFJfUkp1\n7vnsszL220qpj/9Zxn6v5JEqBWU6kfw28EngKeBXlFJPHeGQCfD3tNZPAR8E/paM95vAy1rrc8DL\n8vtRyW8Ab93z+z8E/pnW+ixwAPz6EY79W8D/1FqfB56T6zjyuSulVoG/DbyktX4aQyn5GY5u7v8J\n+MSPvffT5vlJ4Jz8/E3gd45g7D8AntZaPwv8CPgsgOy9zwAX5G/+lcq78zxK0Vo/sh/gQ8DX7/n9\ns8BnH+L4XwF+AXgbWJb3loG3j2i8E5gN+ReBr2EqhXcB5yetx3s8dht4B4kj3fP+kc8dWAVuAjMY\naP3XgI8f5dyBNeDiz5on8G+AX/lJ/++9GvvHPvsrwOfl9X37Hfg68KGjuP/v5udRuw/5Zsnllrx3\n5KKUWgNeAL4DLGqtN+Wju8DiEQ37z4G/D1JkALNAT2ud1xAf5fzPADvAfxT35d8ppeo8hLlrrW8D\n/xi4AWwCfeAVHt7c4afP82Hvwb8B/I9HNPYDyaNWCo9ElFIN4PeBv6O1Htz7mTYq+z1PySilPgVs\na61fea+/+wHFAV4Efkdr/QIGVn6fq3CEc+8Cv4RRTCtAnf/bxH5oclTz/FmilPocxoX9/MMe+93I\no1YKt4GT9/x+Qt47MlFKuRiF8Hmt9Rfl7S2l1LJ8vgxsH8HQPwd8Wim1AfwexoX4LaCj8vK3o53/\nLeCW1vo78vsXMEriYcz9LwPvaK13tKk3/iJmPR7W3OGnz/Oh7EGl1F8HPgX8qiilhzb2u5VHrRS+\nB5yTKLSHCbp89agGU6aL578H3tJa/9N7Pvoq8Gvy+tcwsYb3VLTWn9Van9Bar2Hm+Q2t9a8C3wR+\n+SjHlvHvAjeVUk/IW38JeJOHMHeM2/BBpVRN7kE+9kOZu8hPm+dXgb8mWYgPAv173Iz3RJRSn8C4\njZ/WWgc/dk2fUUpVlFJnMMHO776XY/8/yaMOagC/iInIXgU+d8RjfQRjNr4G/FB+fhHj278MXAb+\nEJg54uv4GPA1eb2O2QhXgP8GVI5w3OeB78v8vwx0H9bcgX8AXAIuAv8ZqBzV3IHfxcQuYoyF9Os/\nbZ6YYO9vy/57HZMhea/HvoKJHeR77l/f8/8/J2O/DXzyKPfdg/6UiMZSSinlPnnU7kMppZRyzKRU\nCqWUUsp9UiqFUkop5T4plUIppZRyn5RKoZRSSrlPSqVQSiml3CelUiillFLuk1IplFJKKffJ/wGA\nP7E6eb8E6wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "show_n_images = 25\n", "\n", @@ -112,17 +148,17 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ - "## Preprocess the Data\n", - "Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.\n", + "## 预处理数据(Preprocess the Data)\n", + "由于该项目的重点是建立 GANs 模型,我们将为你预处理数据。\n", "\n", - "The MNIST images are black and white images with a single [color channel](https://en.wikipedia.org/wiki/Channel_(digital_image%29) while the CelebA images have [3 color channels (RGB color channel)](https://en.wikipedia.org/wiki/Channel_(digital_image%29#RGB_Images).\n", - "## Build the Neural Network\n", - "You'll build the components necessary to build a GANs by implementing the following functions below:\n", + "经过数据预处理,MNIST 和 CelebA 数据集的值在 28×28 维度图像的 [-0.5, 0.5] 范围内。CelebA 数据集中的图像裁剪了非脸部的图像部分,然后调整到 28x28 维度。\n", + "\n", + "MNIST 数据集中的图像是单[通道](https://en.wikipedia.org/wiki/Channel_(digital_image%29)的黑白图像,CelebA 数据集中的图像是 [三通道的 RGB 彩色图像](https://en.wikipedia.org/wiki/Channel_(digital_image%29#RGB_Images)。\n", + "\n", + "## 建立神经网络(Build the Neural Network)\n", + "你将通过部署以下函数来建立 GANs 的主要组成部分:\n", "- `model_inputs`\n", "- `discriminator`\n", "- `generator`\n", @@ -130,19 +166,26 @@ "- `model_opt`\n", "- `train`\n", "\n", - "### Check the Version of TensorFlow and Access to GPU\n", - "This will check to make sure you have the correct version of TensorFlow and access to a GPU" + "### 检查 TensorFlow 版本并获取 GPU 型号\n", + "检查你是否使用正确的 TensorFlow 版本,并获取 GPU 型号" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TensorFlow Version: 1.0.1\n", + "Default GPU Device: /gpu:0\n" + ] + } + ], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", @@ -164,29 +207,32 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ - "### Input\n", - "Implement the `model_inputs` function to create TF Placeholders for the Neural Network. It should create the following placeholders:\n", - "- Real input images placeholder with rank 4 using `image_width`, `image_height`, and `image_channels`.\n", - "- Z input placeholder with rank 2 using `z_dim`.\n", - "- Learning rate placeholder with rank 0.\n", + "### 输入(Input)\n", + "部署 `model_inputs` 函数以创建用于神经网络的 [占位符 (TF Placeholders)](https://www.tensorflow.org/versions/r0.11/api_docs/python/io_ops/placeholders)。请创建以下占位符:\n", + "- 输入图像占位符: 使用 `image_width`,`image_height` 和 `image_channels` 设置为 rank 4。\n", + "- 输入 Z 占位符: 设置为 rank 2,并命名为 `z_dim`。\n", + "- 学习速率占位符: 设置为 rank 0。\n", "\n", - "Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)" + "返回占位符元组的形状为 (tensor of real input images, tensor of z data, learning rate)。\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "import problem_unittests as tests\n", "\n", @@ -200,8 +246,11 @@ " :return: Tuple of (tensor of real input images, tensor of z data, learning rate)\n", " \"\"\"\n", " # TODO: Implement Function\n", + " input_real = tf.placeholder(tf.float32, (None, image_width, image_height, image_channels), name='input_real')\n", + " input_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')\n", + " learning_rate = tf.placeholder(tf.float32, name='learning_rate')\n", "\n", - " return None, None, None\n", + " return input_real, input_z, learning_rate\n", "\n", "\n", "\"\"\"\n", @@ -212,24 +261,29 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ - "### Discriminator\n", - "Implement `discriminator` to create a discriminator neural network that discriminates on `images`. This function should be able to reuse the variabes in the neural network. Use [`tf.variable_scope`](https://www.tensorflow.org/api_docs/python/tf/variable_scope) with a scope name of \"discriminator\" to allow the variables to be reused. The function should return a tuple of (tensor output of the discriminator, tensor logits of the discriminator)." + "### 辨别器(Discriminator)\n", + "部署 `discriminator` 函数创建辨别器神经网络以辨别 `images`。该函数应能够重复使用神经网络中的各种变量。 在 [`tf.variable_scope`](https://www.tensorflow.org/api_docs/python/tf/variable_scope) 中使用 \"discriminator\" 的变量空间名来重复使用该函数中的变量。 \n", + "\n", + "该函数应返回形如 (tensor output of the discriminator, tensor logits of the discriminator) 的元组。" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def discriminator(images, reuse=False):\n", " \"\"\"\n", @@ -239,8 +293,31 @@ " :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)\n", " \"\"\"\n", " # TODO: Implement Function\n", + " with tf.variable_scope('discriminator', reuse=reuse):\n", + " # alpha is the param for leaky relu\n", + " alpha = 0.2\n", + " \n", + " # Input layer is 28x28x3\n", + " x1 = tf.layers.conv2d(images, 64, 5, strides=2, padding='same')\n", + " relu1 = tf.maximum(alpha * x1, x1)\n", + " # 14x14x64 now\n", + " \n", + " x2 = tf.layers.conv2d(relu1, 128, 5, strides=2, padding='same')\n", + " bn2 = tf.layers.batch_normalization(x2, training=True)\n", + " relu2 = tf.maximum(alpha * bn2, bn2)\n", + " # 7x7x128 now\n", + " \n", + " x3 = tf.layers.conv2d(relu2, 256, 5, strides=2, padding='same')\n", + " bn3 = tf.layers.batch_normalization(x3, training=True)\n", + " relu3 = tf.maximum(alpha * bn3, bn3)\n", + " # 4x4x256 now\n", "\n", - " return None, None\n", + " # Flatten it\n", + " flat = tf.reshape(relu3, (-1, 4*4*256))\n", + " logits = tf.layers.dense(flat, 1)\n", + " out = tf.sigmoid(logits)\n", + " \n", + " return out, logits\n", "\n", "\n", "\"\"\"\n", @@ -251,24 +328,30 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ - "### Generator\n", - "Implement `generator` to generate an image using `z`. This function should be able to reuse the variabes in the neural network. Use [`tf.variable_scope`](https://www.tensorflow.org/api_docs/python/tf/variable_scope) with a scope name of \"generator\" to allow the variables to be reused. The function should return the generated 28 x 28 x `out_channel_dim` images." + "### 生成器(Generator)\n", + "部署 `generator` 函数以使用 `z` 生成图像。该函数应能够重复使用神经网络中的各种变量。\n", + "在 [`tf.variable_scope`](https://www.tensorflow.org/api_docs/python/tf/variable_scope) 中使用 \"generator\" 的变量空间名来重复使用该函数中的变量。 \n", + "\n", + "该函数应返回所生成的 28 x 28 x `out_channel_dim` 维度图像。" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def generator(z, out_channel_dim, is_train=True):\n", " \"\"\"\n", @@ -279,8 +362,33 @@ " :return: The tensor output of the generator\n", " \"\"\"\n", " # TODO: Implement Function\n", - " \n", - " return None\n", + " with tf.variable_scope('generator', reuse=not is_train):\n", + " # alpha is the param for leaky relu\n", + " alpha = 0.2\n", + " \n", + " # First fully connected layer\n", + " x1 = tf.layers.dense(z, 7 * 7 * 512, activation=None)\n", + " x1 = tf.reshape(x1, (-1, 7, 7, 512)) # Reshape it to start the convolutional stack\n", + " x1 = tf.layers.batch_normalization(x1, training=is_train)\n", + " x1 = tf.maximum(alpha * x1, x1)\n", + " # 7x7x512 now\n", + " \n", + " x2 = tf.layers.conv2d_transpose(x1, 256, 5, strides=2, padding='same')\n", + " x2 = tf.layers.batch_normalization(x2, training=is_train)\n", + " x2 = tf.maximum(alpha * x2, x2)\n", + " # 14x14x256 now\n", + " \n", + " x3 = tf.layers.conv2d_transpose(x2, 128, 5, strides=2, padding='same')\n", + " x3 = tf.layers.batch_normalization(x3, training=is_train)\n", + " x3 = tf.maximum(alpha * x3, x3)\n", + " # 28x28x128 now\n", + " \n", + " # Output layer\n", + " logits = tf.layers.conv2d_transpose(x3, out_channel_dim, 5, strides=1, padding='same')\n", + " out = tf.tanh(logits)\n", + " # 28x28x3 now\n", + " \n", + " return out\n", "\n", "\n", "\"\"\"\n", @@ -291,26 +399,31 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ - "### Loss\n", - "Implement `model_loss` to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:\n", + "### 损失函数(Loss)\n", + "部署 `model_loss` 函数训练并计算 GANs 的损失。该函数应返回形如 (discriminator loss, generator loss) 的元组。\n", + "\n", + "使用你已实现的函数:\n", "- `discriminator(images, reuse=False)`\n", "- `generator(z, out_channel_dim, is_train=True)`" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def model_loss(input_real, input_z, out_channel_dim):\n", " \"\"\"\n", @@ -321,8 +434,24 @@ " :return: A tuple of (discriminator loss, generator loss)\n", " \"\"\"\n", " # TODO: Implement Function\n", + " # Generator network here\n", + " g_model = generator(input_z, out_channel_dim)\n", + "\n", + " # Disriminator network here\n", + " d_model_real, d_logits_real = discriminator(input_real)\n", + " d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)\n", " \n", - " return None, None\n", + " # Calculate losses\n", + " smooth = 0.1\n", + " d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_logits_real) * (1 - smooth)))\n", + "\n", + " d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_logits_fake)))\n", + "\n", + " d_loss = d_loss_real + d_loss_fake\n", + "\n", + " g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_logits_fake)))\n", + "\n", + " return d_loss, g_loss\n", "\n", "\n", "\"\"\"\n", @@ -333,24 +462,27 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ - "### Optimization\n", - "Implement `model_opt` to create the optimization operations for the GANs. Use [`tf.trainable_variables`](https://www.tensorflow.org/api_docs/python/tf/trainable_variables) to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation)." + "### 优化(Optimization)\n", + "部署 `model_opt` 函数实现对 GANs 的优化。使用 [`tf.trainable_variables`](https://www.tensorflow.org/api_docs/python/tf/trainable_variables) 获取可训练的所有变量。通过变量空间名 `discriminator` 和 `generator` 来过滤变量。该函数应返回形如 (discriminator training operation, generator training operation) 的元组。" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def model_opt(d_loss, g_loss, learning_rate, beta1):\n", " \"\"\"\n", @@ -362,8 +494,17 @@ " :return: A tuple of (discriminator training operation, generator training operation)\n", " \"\"\"\n", " # TODO: Implement Function\n", - " \n", - " return None, None\n", + " # Get weights and bias to update\n", + " t_vars = tf.trainable_variables()\n", + " d_vars = [var for var in t_vars if var.name.startswith('discriminator')]\n", + " g_vars = [var for var in t_vars if var.name.startswith('generator')]\n", + "\n", + " # Optimize\n", + " with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):\n", + " d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)\n", + " g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)\n", + "\n", + " return d_train_opt, g_train_opt\n", "\n", "\n", "\"\"\"\n", @@ -374,23 +515,18 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ - "## Neural Network Training\n", - "### Show Output\n", - "Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training." + "## 训练神经网络(Neural Network Training)\n", + "### 输出显示\n", + "使用该函数可以显示生成器 (Generator) 在训练过程中的当前输出,这会帮你评估 GANs 模型的训练程度。" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": { - "collapsed": true, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -423,27 +559,24 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ - "### Train\n", - "Implement `train` to build and train the GANs. Use the following functions you implemented:\n", + "### 训练\n", + "部署 `train` 函数以建立并训练 GANs 模型。记得使用以下你已完成的函数:\n", "- `model_inputs(image_width, image_height, image_channels, z_dim)`\n", "- `model_loss(input_real, input_z, out_channel_dim)`\n", "- `model_opt(d_loss, g_loss, learning_rate, beta1)`\n", "\n", - "Use the `show_generator_output` to show `generator` output while you train. Running `show_generator_output` for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the `generator` output every 100 batches." + "使用 `show_generator_output` 函数显示 `generator` 在训练过程中的输出。\n", + "\n", + "**注意**:在每个批次 (batch) 中运行 `show_generator_output` 函数会显著增加训练时间与该 notebook 的体积。推荐每 100 批次输出一次 `generator` 的输出。 " ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": { - "collapsed": true, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -460,43 +593,544 @@ " :param data_image_mode: The image mode to use for images (\"RGB\" or \"L\")\n", " \"\"\"\n", " # TODO: Build Model\n", + " _, image_width, image_height, image_channels = data_shape\n", + " input_real, input_z, lr = model_inputs(image_width, image_height, image_channels, z_dim)\n", + " d_loss, g_loss = model_loss(input_real, input_z, image_channels)\n", + " d_opt, g_opt = model_opt(d_loss, g_loss, lr, beta1)\n", " \n", - " \n", + " steps = 0\n", " with tf.Session() as sess:\n", " sess.run(tf.global_variables_initializer())\n", " for epoch_i in range(epoch_count):\n", " for batch_images in get_batches(batch_size):\n", " # TODO: Train Model\n", + " steps += 1\n", + " batch_images *= 2\n", " \n", - " " + " # Sample random noise for G\n", + " batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))\n", + "\n", + " # Run optimizers\n", + " _ = sess.run(d_opt, feed_dict={input_z: batch_z, input_real: batch_images, lr: learning_rate})\n", + " _ = sess.run(g_opt, feed_dict={input_z: batch_z, input_real: batch_images, lr: learning_rate})\n", + "\n", + " if steps % 10 == 0:\n", + " # At the end of each epoch, get the losses and print them out\n", + " train_loss_d = d_loss.eval({input_z: batch_z, input_real: batch_images})\n", + " train_loss_g = g_loss.eval({input_z: batch_z})\n", + "\n", + " print(\"Epoch {}/{}...\".format(epoch_i + 1, epoch_count), \n", + " \"Discriminator Loss: {:.4f}...\".format(train_loss_d),\n", + " \"Generator Loss: {:.4f}\".format(train_loss_g))\n", + " \n", + " if steps % 100 == 0:\n", + " gen_samples = sess.run(generator(input_z, image_channels, is_train=False), feed_dict={input_z: batch_z})\n", + " _ = show_generator_output(sess, 25, input_z, image_channels, data_image_mode)" ] }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### MNIST\n", - "Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0." + "在 MNIST 上测试你的 GANs 模型。经过 2 次迭代,GANs 应该能够生成类似手写数字的图像。确保生成器 (generator) 低于辨别器 (discriminator) 的损失,或接近 0。" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": { "collapsed": false, - "deletable": true, - "editable": true, "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/2... Discriminator Loss: 0.4204... Generator Loss: 3.1223\n", + "Epoch 1/2... Discriminator Loss: 0.4827... Generator Loss: 2.2592\n", + "Epoch 1/2... Discriminator Loss: 0.4310... Generator Loss: 4.2485\n", + "Epoch 1/2... Discriminator Loss: 1.2898... Generator Loss: 2.9953\n", + "Epoch 1/2... Discriminator Loss: 1.3641... Generator Loss: 1.3200\n", + "Epoch 1/2... Discriminator Loss: 1.3577... Generator Loss: 0.6340\n", + "Epoch 1/2... Discriminator Loss: 1.5244... Generator Loss: 0.5115\n", + "Epoch 1/2... Discriminator Loss: 1.2379... Generator Loss: 0.8513\n", + "Epoch 1/2... Discriminator Loss: 1.3270... Generator Loss: 0.8379\n", + "Epoch 1/2... Discriminator Loss: 1.6648... Generator Loss: 0.4169\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXuQZUd5J/jLe8991K17611d6uqW1BItBBJYEigQCgN2\nwLDGLEasAYcY5IFBoNiAZTyzG2HDOPCMiTGIlxkmgsWrwJ71bniNGcZjCHvXjLAkg7ARD72Q1Ja6\npRZ6oO6u7q6qW6/7zv3j1vf1d7Iyz8lzb1X3xc5fREefOjdPfl/myZP5vfJLpbVGQEBAACF3oRkI\nCAgYLYRJISAgIIYwKQQEBMQQJoWAgIAYwqQQEBAQQ5gUAgICYtizSUEp9Sal1ONKqWNKqY/sFZ2A\ngIDdhdqLOAWlVB7AEwDeCOA5AD8A8C6t9WO7TiwgIGBXsVeSwqsAHNNaP6W1bgH4CoCb9ohWQEDA\nLiLao3oPAHhW/P0cgBtchWdmZvSBAwfwk5/8hO9tbW0hivrsdbtdvu50OsjlcnwfAKIoQqfTAQAU\nCgW+zufzsWtZnurK5/Ncl+v6kksuiT1XLpfx9NNPAwC01mg2mwCAXC4Xo0HXVJekZ9KWPJnPR1GE\ndrvN171ebwc92ScXX3wxAKBYLKJcLgMAjh8/DqUUAGBzczNG2+wr2Z/yOp/PM+20dnS7Xeap1+tZ\n6dH1gQMHmM/x8XEcPXoUhK2trUR6RENrzffb7XaMj7R2JI0RSaPb7eLgwYP8+9jYGADwWOj1ejwW\nXDTMvjX57fV6MXrUJvO+yW+xWESr1eJ66f4ll1yCYrEIADhy5MhprfU8UrBXk0IqlFK3AbgNABYX\nF/H1r38d73//+/n3Rx99FDMzMwCA1dVVLCwsAABOnz6N8fFxAMDy8jIAYGZmhq8XFhawtLQEAJic\nnMTZs2cBALVaDevr6wCAubk5AMDJkycxNTUFAFhbW8Pk5CQAoF6vM42NjQ184hOf4LoB4KUvfSne\n+973AgCazSaefPJJAEC1WkW9XmeeVldXAQDT09PMe7VaZd5rtRoAYH19nfkgfmdmZpjfmZkZnDx5\nkuuiD6VWq3H5SqXCdX384x8HABw6dAgvfelLAQC33HILCoUCAOD+++9n2hsbGwD6H+PKygoAYGpq\nivtzfn6e+7NWq3F5ejdnzpzhvlpdXcW+ffv4mtq6trbG7ZM06Pp3f/d3ceWVVwIAbrjhBrz5zW8G\n0B/8jz3W1zgnJia4f6je1dVVbsfW1ha/v6WlJX7HRGN6eprbVKvVsLm5yfepbycnJ3eMkeXlZaZX\nr9e5b6enp3HttdcCAN73vvdxX9JYmJycxNraGl/L90o8zc7OAgBOnDjBY2Rzc5Pprays8P2NjQ3u\n5zNnzvDzNMYWFxfx3HPPAQD27dvHND772c/yInH99defW3UTsFc2hRsB/Hut9S9t//1RANBaf9JW\nvlar6euvvx4PPvggD7put8sr23Yd/D/NwPJ32Q55TWVs7ZTPm6DySil+eVdffTWA/gz9wAMPAOgP\neOLHVTfVZfIoebPxkva7LCN5oAF91VVX8Qr00EMP8YTVbrd31Gf2j2x/Gmz9nfasbNPMzAz3bblc\nxv333w+g/1HQimfr4yQktc98N7Z35eKdJsOXvvSlPMk++OCDAPpjgaQAkxfbOJTjQo7vLKA6SIow\n61tcXOSF4Zvf/OaPtNbXp9W5V5LCDwBcoZS6DMDzAG4G8M9dhdvtNn76059iY2ODO9V8WXLwmx2s\nlHJeywnEfOFmXa7rRqMBAHjmmWcA9FdVWgW63W5MnJf05H3Jbxo9IC4aKqViIqONhuwrWu2OHTvG\nq+fKyoq1b336ynWd1g7X+zP53draYpVBSimdTmdHeR96rvYNMkZcY+Ho0aM8QdBkK8dCWr9JyHEh\n1YSk8WnWK/tWjsP19XUcO3ZsB80k7MmkoLXuKKX+FwDfBJAH8Eda60f3glZAQMDuYk/Uh6yIokhP\nTEygXq/zijhKIBGcdD2lVGx1GDUQv5VKhQ1Vo9q3QF/6IUPj2NgYSwqjyC/159jYGBvwSK8fRX6L\nxSLbY06fPn1B1YdMUEqhVCrxNbBTx02yDSTVm2RL8KVBA5Y6V2vN6kMul3Pqhr56sFJqh4rhEnFN\n2NpH/E5NTbE1PKl9Jj1fnl11ucq6ypdKJVZzzD7crUVrt9pHE8H09DT/RpOCFNsHpZ1kf8jy/qhs\npVKRk4IXDyHMOSAgIIaRkBS01tja2oLW2jmjDrJiZK3LdZ9cgOQKKpVKXNZcGWyeBh8+zXqkkSmr\n5Z34PXXqFEtgaTxl7d+s7UtCo9Hgvh0bGxuoD4flwbc8xYucOXOGpQZCFmkuie4g34DLe+TyiCRh\nJCaFXC6H8fFxrK+ve4mlSVZY0wPguk/P+6gSpEeSq4983CaN3RTBpVqS5j406yJX2cGDB5lXs293\nqw9NvmS9UiVK6pcoitgfn8vlWDUbRn0w+TPrGrRe6tvFxUVWzcjb4+u1cb1v4ittfGYZb/l8nr0k\nxGcagvoQEBAQw0hICr1ej4OWfGZwm6iUFMdA923P+4hqJH6RoYYkB9+6fNphSgVZVQZZF4m4J0+e\n9Arwor9dtG33XauVj3HURKfT4VUsiqKBjMombPEG5m+DwBwLsj4XDR/arr5NCozzaUe322XVzBcj\nMSnkcjlUq1VsbGxkUh8IMqBHit2mNdh8Li04hGB6H7rdLovlw6gMSYEsPmK7LXhJa80x+RMTE1yH\n2be2PpS06fdcLheLqTfbKvuQyps00j6KQqHA4crDqA82PiQPWTw7aWNhbm6O+ZSeKNd4s6mCtoXM\npC37UwY1Eb20dpRKJQ4xp4U3DUF9CAgIiGEkJIVer5fqfZAwZ10ZNJIkstrq9hHtKLSV6MkVczdU\nhrRypmiZJM4DYAPYysoKG8ZctGUf2iSJTqfDZTudTqok5+IpCa1Wi339Ln59IMvLEPGkurLeJ8/O\n6dOnrR6jtDrS1ApzxU9qk4+HqtFocDCYL4KkEBAQEMNISAr5fB4U5uzjIjSj/1wuNNvzVB7YOdO6\naNPqRbslO50O62c+eq+Nd3k/zYAnr037ibnpqtfrcWzCRRddxHyura2l9iFdFwoFtiOYtg15TfRs\nem+S4dKEtCkopawuPhdcdhJfl6vrOm0szMzMsNHRNhaSxqHNvkBIGvdmeZk3wfUNlEoldqXThr40\njMSk0O12WXz0EefMF+cTc+4Sx33EXaqf9qiboc1ZaMsBIcVBmzfAdi3b6moTqTtLS0vO9pl9KMvJ\n0GgfD07W/jTR6XTYcJvL5TJZ1wfxfPi0w0VbBi8lqQs+4zhtAkkqDyAWlOSi3Wq1OJeDL4L6EBAQ\nEMNISAq5XA7lcnmHiCthEw3l3z4+celmA5L3rkuQyEibdnq9Hou4PptgpHtMrsxSlTDdTa72Jblc\nCeQ2m56e5lV/a2vL2lZJPy0XAP1t8ivrkmnTfFf8YrHIUXftdnsg1Uxe20Rtsw9lu13Slw00Fsy+\nTeLXpTL4uMNl2UFckmNjY7jooosAwDuvwkhMCr1eD41GI9H7kCRG+YqpVM41CFz1kH5NASvlcpnL\n+sS7p2VmyqI+yLpcapO0kNMg1loniseuulx8UV3m7zKRiy+kiOu7V8MsI/vQNoklqWNZeJXqg6l6\nZRm7SeVdddi8D2l1NRoNTjfni6A+BAQExDASkgJFNJreB9e1zHBLzw+SSkxeJ6kfRI/Uh1wux0lW\nfLwdBLMd0idPoqFcaW2ioUtklPXSakuRbAAS+5bqHdSDY8uunGWXZxRFnBS31WqxQdf2zny8UpI/\nm+fEZeT1UVeob/ft28cSWZq3JMnzAfilBTTLA3FPlK1vgLhqRpGXaRiJSaHb7fJA8BG1TDEKwI4U\n4oQk8dHXFkEfKnlIXHsfJHzuU722j9vHy+DqH9J119bWvFUlH1HUxYe0gmfRz+UzlDE6q6jt8qgk\nBfpIlSGrOC8Dw0iVSJv8snpqfMeqj9et2WwG70NAQMBwGAlJIZ/Po1qtYnNzM9FCTqD79L95oIeE\nTdSyeQCSVgzKeUhiWKvVSt0Q5SOKyrKm+uCj+piWc4LctEOibaPRSOxbU1rxoW2ry1dlkCiVSpz/\nstvtZvI+mG0A7N4H02sjJYUkVcmsi/g8cOAASzc+Y0Fem14pX/UhKSDLJfWWSiXeyOerPoxM4tZq\ntYr19fVMyS/NyQHY2ak2S7SET/vp5dHHls/neeBm3eJ8PkAT4/j4OLc5a98OgqwfMSGKItbV8/k8\nT2S72bfmGBkUlG2pUqlwnVmT+CZ5zXwnFno+rS3k7geAzc1Nr8StQX0ICAiIYSTUB1c6Nh+Rip53\nWXfpWp7h50NDgtQH2vugtU6Nd88SeGOjneQtcRmi6G/yalQqFebd1bey3qzeHEKa9yGtH6T3YX19\nPdPeBxds/Ukwg77S3pl8liSFhYUF5tPmiTLVBNv4tJ0T6brWWu84H1MeGORqh/Q+yDSCSRhYUlBK\nXayUulsp9ZhS6lGl1G9s359RSt2plDq6/f/0oDQCAgLOPwa2KSil9gPYr7W+XylVA/AjAG8D8F4A\nZ7XWtyulPgJgWmv9W0l15fN5PT4+jo2NjYH0SNuqB+w0Hg5rU5CZl863TSGLTkz81mo1Lru+vp7K\nq+/K7uJLrlBZ6igUCty3zWaTV7RRtCnIg4FolSZ+k2wKSVKaL09mNqler+clhZFNYX19fW8Pg9Fa\nvwDghe3rNaXUEfSPoL8JwC9uF/tjAPcASJwUyBiyubmZaWBSWVe6MjNgxXwZvoYhEhlp4LbbbafF\nOY0n+dHYAm9szySdH+mKdwf6hkaqd3Nz0/rB2viVQUCSJwnbdmmJLB/e2NgYb53O5/MDp7qTMN91\n0jbjLOnYqG9nZmZYbcjifZBp79KyXbtS3dnGiI1XoO99oEzZvtmcd8WmoJQ6BOA6APcBWNieMADg\nBIAFxzN8FL1tUAUEBFwYDD0pKKWqAP4rgH+tta4bq6JWSlmneq31HQDuAPrqA+UAyLIyUFnfKLpB\nxGPAP5uz/NtlyLKVNcvTb1TetWnH1Q7Zl9KYlVSHT3SdhGulHWRl39ra4ozDWSMMXTCflVGXWaM3\nJaTaSH2bpjLJ+zLtXZqR0PZsEh0bms0mRwv7YqhJQSlVQH9C+BOt9Z9v3z6plNqvtX5h2+5wKq2e\nfD6PWq3mnc3ZwofTUu/acgz466ykR+7btw9AP3jJ5X2QtOlv8ga0221WRdrtdixgybYt1iYmmuqD\nzftANObn5zksNy2bs2ktT/NEuLIMD/L+CoUC5ufnAfRFcZs47qrX977ZJpcHJ42ePEuSJhpfsVzW\nS3wA8QnGN5DJ5N2kIb0P5NnxDV4axvugAPwhgCNa698XP30DwHu2r98D4OuD0ggICDj/GMb78BoA\n3wHwYwC05P5b9O0KXwVwCYCfAPg1rXXijox8Pq8rlQq2trZG8jhvkhTIGCYNjUnShi2eQv5ma+sw\nIrONX9q0s7m5uSeekmGMgYQoitiI22q1ePfhbo8Fn5iUNNCKXqlU+NlhvSW70YcuyL49e/bsnnsf\n7gVg35wAvCFLXblcDmNjY5m9D2lwifYEXxoyGAjw2/tgs+abXogswUtpYqKN3/HxcVYf0vrWN/OS\npG27lu3zRaFQwPj4OID+R+eTychGI6k/XWdzurJXuUDqQ7Va5efS+HXBpcb6qkRJ74nKyqPofXdL\nBrN/QEBADCMR5qy1RrvddvqMh6nXdp0VtNpSPgWZcdjFr23ffBI/SX9ntZDL/A9yJRkkw3FW2oOg\n1WrxgSW7lavCLOOT68CXV6BvtPP1PriQlacsY0SqNln5GolJoVqt4jWveQ3uuusuHtAy7rvb7cbi\n62VyUCAe3BNFEevRMlDEtr1a1tVut2MWYFlmcXERAPDrv/7rAIBHH30U3/rWt/h3qteMa6drEufl\n3gCTtrxP7bDFuBcKBSs96eEgft/xjnfgxz/+MQDg3nvvjfWtmZRG9o/cJyK3Z7vaRCJ1q9WKvRvZ\nJlP0lXVdeumleOtb3woAeOSRR/C9732P6zD3qySNCymOm/sECoUCj4tiscjXsn1y7EgaVFev18OB\nAwe4b5944gkAwN133819L8eYLVhKvj/ZV7axoHV8vwNd0/OyTXK8yPd3+eWX421vexsA4NOf/jR8\nENSHgICAGEZCUigUClhYWMDll1/Op9h0u12eBQuFAs+Sudy5U5Apppvu03PyvpyN6T7N2qVSKbZ6\n0GokPQPy1F4KCiJeAeDZZ5/l+hqNBq+gxC/xRLzQ7/l8nuuTuRopjFauunJPfKfT4fKyX8jYVS6X\nOaxV+qivuuoqPPXUU1y3bDfRkKsS3VdK8XW322Xa8neqa3x8PLZySWmD+pZotNttrqtWq/H14cOH\nOXnJs88+y3VQX0VRxO/aXB2ld8eUaKIo4r5tNpvcn/JddzodbhehWCzG6qLTlsbHx3Hw4EEAwItf\n/GIAwJNPPsn8ttttzhEh2y/v071SqcQqqqQvpQqlFI8H+T5kjg/6XbavWq1yYhhfBEkhICAghpHI\nvPRzP/dz+q/+6q/wgQ98gI15x48fZzfV2toar34rKys8W5OLZW5uDqdO9QMnJyYmuI75+Xm+Pzs7\nyxFdFG+wsrLCq0e73eZszadOneLoxeXlZXzxi18EAD5UY9++fXj/+98PoG/IOX78OIB+tmeKdJR8\nUL1nz57l69OnTzMfGxsbvOedQlKnpqa4rvn5eZw4cYLbSmX27dvHOf2pr+r1Oj7+8Y8D6EsHV199\nNQDgXe96F6+2x44dY/cqSRiTk5Ns7JudnWXex8bGmN7ExATzRLwvLy8z7WazGWsrucK2tra4PNU7\nPj7O/PzO7/wO3vSmNwHor44f+MAHuF8ef/xxAOfSoK2urvL7P3PmDN/f3NzkNq2trfF9eucTExMc\neVipVPh6amqKw9fn5+e5PL3rEydO8NhbXl7Gpz71KQDAoUOH8MpXvhIA8M53vhNAX5ohficnJzl0\ne25ujqWfqakp7gNqx+nTp1kaXVtb4+uzZ89yv62trfEYoXopWxnx+/zzz3NbqW8///nP48orrwQA\nXHPNNV5xCiMxKUxMTOjrr78eDz30EL8UV1ZmF9L2F6Q9L8uYVl1KrnLVVVcB6IuZjzzyCADEtnub\nfmOzPp++dvFp4821VZn4ve6665i3Bx54wNm3hLR8lS7+0/rW5r+XsQRzc3O44YYbAPT788EHHwSw\nMxt1Em2TT1d/2dqRxL/JOy0W1157Ld/7wQ9+wPzazndMi/tIo2/j2bfs3NwcrrvuOgDAX//1X4d0\nbAEBAdkxEobGVquF559/HvV6nVc2n40haTNx0malLDQoepEMdZQQBojvYDQ3DJlnDyTRMOMesh5e\nIusi3h599FEW5+Uq5srmLN1xtvgGFz3X8fO2iD0b71tbW3j44Ye5b0mi6XQ6iSukT3/6tMO18QzY\n6eokcf2RRx7hvqW8Ci5+tdaJ78x3HNryKSSNN+rbo0ePOvvQhpFQH4bNvLTXoJdBOmsURami+IWE\njM+nax9R/EIhn89z3xaLRda5pSg+KpBhzgTidxT7t1AoMK/Ly8tBfQgICMiOkVAf5GEwWffN029p\n912ir8/OOfIry5RhJCn4HEXv0w6buCuRRaIjfqvVKtdjZnNO4teHtk1lkM+aKkMS7UqlwsZRikEx\neTJ5tdWVpX1Jhj9XXUoplmikp0KGv2cZCy5kUYkkbPfHx8fZa0HepTSMxKRAiVCl7mUiTbdMu5/1\nWoICS8gFSm5MYPj4ddf9YdQ6ckflcjmvvQTmbz60ffZ8uOo3sbm5yfaMsbGxVG/NsGPEp60u2wDZ\na1544YUdv+/W/gpfXn1439jYyKyGBfUhICAghpGQFEh98E3HluZ9kJDW2TT1QT4j71No7v79+wH0\nJQd5YImNXlZ1xeTDlTLMp08oxHVxcZEt42nqg1mXy6Ni5ogwreIuT0TSO4uiiIOFOp0Oi+XDiN22\n9Ha2dqR5Ikz1iMKm9+3bx2PAdniNj0rr4t2mjrnGSJpnJ5/Pxw7a8cFITAq9Xg/NZtN7ECSJUaYO\nKGnYPgofkY+syhSVVigUMom4Wa5tOrkPZF0kip86dSp1kGbh3bYdXLpLk55NemfyKPooilL71ofv\npES4rm3iPtvHqW9XVlZYrUyr18Wj675rXJjPurwdJr/Ut74I6kNAQEAMIyEp0C7Aer2eKaxTPu9S\nH1zlAXuabrovQSIjGRijKEo97zBL4JSNb7njT2vtfboTgJj6QHH9g2bKNtUYk54p7tpyKEjY6ioW\ni5zNudfr7cpR9GYKPDOfhuTNFhhm41cpxWNgcnKS942kHQzkaoctuMsl3QLYkSPCpfpIlEolHg+k\nSqYhSAoBAQExjISkQKtDkksy7XmCz/NSF0taJQjkO6cVrFwu77lNIauLUJahFezEiROxA0SG7VsX\nPUKSfSEJzWaTd7P69K0LNmlP9if9bssE5UNPa83u3rNnz1pp2Pgx75s2CF8bGdkzsvDeaDQy9+NI\nTAr5fB5TU1PeFnKzjHnWok2ksqkYSTHnEiS20ZbWYrFotZBnDZayWfClZZnQ6/Ws7XOB1J1qtcoD\nabcP2iFoHT+FynUwTJL3oVgssveh3W5zMNCg6gOw8yhCuTfA5X2Q40i2T/JOYc6zs7OsNqR5H0wP\njvmOfcehTcVMGxdRFHHwEm2tTsPQ6oNSKq+UekAp9Zfbf1+mlLpPKXVMKfVnSqliWh0BAQGjg92Q\nFH4DwBEAE9t/fwrA57XWX1FK/QGAWwF8KamCbrfLIZiDuCTlTJt0bXveRwQjAxVJBy6XZFY1Icm4\n2el0BlYlSN1ZXl62is9ZkEZ7N1ySzWaTDaJK7cxDMQivpmhP2cIB90YrHxcfuSFXVlZYlbCVc13L\n9yxVVx8XtK+aIdHpdLwNjIRhz5I8COB/BPB7AP5X1e/11wP459tF/hjAv0fKpJDL5fgsySznPNJL\njqIols15EMtyEkgcp62yvV4vNcAm6SxIW1mqw/ZM1gNLyNo8NTXFH8DW1pZTh80CaVGnutKSs5jl\nTYyNjXHfAhjY+2BTx4iuubXYNTmn8Uv7Sqampth2Q5PDoJ4o04NDMD0ZSYuEi3apVIptn/fBsOrD\nfwTwmzh3bNwsgBWtNU3FzwE4YHtQKXWbUuqHSqkfjuJ26YCAf6oYWFJQSr0FwCmt9Y+UUr+Y9Xkt\njqKPokjToRVZJgiaGU1xUK4Yg1qyJchYR7nxZPZlV71ZotvSRPusvNPKtby8zCtbr2c/ij4rbNLW\nICqfRKPRYPWB+E17Jo1GkvfBhy/XfTkWZEIg37qyqoK+z7nqarVa3sfFEYZRH34ewFuVUm8GUEbf\npvAFAFNKqWhbWjgIINXkmc/nOdFpmuU1zZItw2TNg0xMndGsK837QAE28oDZJNHQtk/AJnan7Q3w\nEXclyEJeq9X4emVlZWBdXbaJYDuEJUuSEfOdUe7Ddrs99N4HpVQslTwQHws+PLnGhdz7QHxm8T64\naLhUMBlcZ/azHGOuvioUCjxuf/KTnyS2nzCw+qC1/qjW+qDW+hCAmwHcpbV+N4C7Abxju9h7EI6i\nDwj4mcJexCn8FoCvKKX+A4AHAPxh2gOdTodF86wiGBAX1V2WZdf9LN4HSnUuyyaJhsN4PkzjU5ZV\nnrwPzWYz9XTsLLCtaD4rsKsuQqfT4diErIFotjq11rFkLVRvWh/6vBtSzU6dOrVjTPk87+OVIEhJ\nwKb++PRVu932Tq5C2JVJQWt9D4B7tq+fAvCq3ag3ICDg/GNkIhopHZvLJelrU5Aw3YKm28e1sie5\noQC3TcFsU5JL0myfuQJLfs3VOK3d5JKcmJjg59IiGpMi8AhRFLGuTv9vbm7uOKzWBl+XZLvdHsgl\naYv2k/SkTcll+3Hp+xLUt/v372fphlyTvuMwyW7hui9/d9Xl6luKFvWNVxiJbM5RFOlarTayGYdp\n0NPkUCwWuYN3y53qil8AsntRiN+xsTE2NK6urmY2BJrXSqnYadNAehp2H0RRFDsTkQx4u9G3Pobr\nLKDJcGxsjOuQ6f5HDVEUcV7Jer0esjkHBARkx8ioD3TWn0tN8HEdJsG1EcV1YImkQastnf3nkzLM\nR2UwoxZlmwqFQmwDjzx9OImedJtNT09zHaa7N0kFk30lQ7olT3ITFP2etLIn0SsUCrxpp9vt7ko6\nNt/2mWpeUjo2rc+l5puZmYmpZiaNrC5J17Wv29rsB7ovc1X4qg8jMSl0u13U6/UdFlbb9aBWdNc+\nCN+UVoD90I9BvCW2+3ICALDDep7WZtOaD/T957azDW31md4SupbHszcajR2TqM0qnsaf+Xer1YoN\nWNckmoVGEj3XWPDxEtF7qtfr1riX3b5O8jD4jKtWq8WePV8E9SEgICCGkZAUcrkcxsfHnfkUlFLO\njMGENDEql8vtMOa5UqKZ6bHICEbqw9bWVqrF2QWXxTnpnMCkutK8D/S7y7MjeZDSmNxQJFUGKXYD\nO3dzDmLYK5VKfLSZ1tpbNctCI2ksJIn2pthOfTs5OcnSXJonylaviwbxR/clj77tk6hUKpiY6G9g\nlnE2SRiJSYEO7nSJolrb90SkiZnmpJEmfrloU8AKZcW1DShfpImlWep1lSF+Sd0h2PrJ1Wab+86H\ndtb7QHzrNH10u03DpT64nnO9J1oMTp06xbzS74OqkrbFylbWt30StKcoC4L6EBAQEMNISAq5XM7b\n+6CUYsMXGQDNTL3ymmZdV6otn2ApuQkG6K8WadmcfZAUxuwKqnFBtoMyDs/NzXEda2triZZsky/b\n6uaT18HXS2RayKlvtdZsdPRRH1xqpfleZfCSbSy46Jl1UazK/Pz8jvB3H0+U7EOZnZmupTqWRX1w\ntaNYLPI5nb75FEZiUuh2uyzqpllhc7kci8e23IAyKafLy+Cy7krYvA8UQy49A4NOCOazSaKiDw3Z\nDhJxV1ZWYt4H330FPpbwrM8mlWs2m7H4/Cxqoc/BLvQ31evyOLnoyfvyXFHbIpPGrxyfkg8aY0l8\n+I410/sBOB/wAAAgAElEQVRgqpFpCOpDQEBADCMxKeRyOVQqFRaRbMYtuk8zPolIUryjcrJe130z\n26+kYaJQKKBQKKBcLqNcLjOvpgchKyQ9kyebamF73gbis1qtolQqscjral8aj1nLZ32mUqlgamoK\nU1NTsRO9k9pt/kb3zP6ke7JvzWv5Ls1/Nl4rlQpqtVqsb9P4tfEpx3Fa+5LuJ9GOoghjY2Oxfk3D\nSEwKAQEBo4ORsCn0ej1sbm7GjGsmbPpimo7ok2XYRUNCnp1A5QaNunPRS9JPs/JLNpfTp0+zASup\nvC+Pe1Ee6PNLKcPkkW5Z2i1dzjK2wjZGXPYFH97lGCAM6xr3xSAuSRmS74uRmBRqtRpe97rX4e67\n72YjnmkwlNZZ8j6QES2KIr4uFouxFFz0ogqFQuw+PS+DcGTqK2kZvvTSSwEAH/rQhwAAd911F+66\n6y4AfUOONIJKC7f0glBdNhpm+6hN0rsiLdbUR6ZFnWgsLi4CAN797nfjwQcfBADce++9XJ/Zbhvv\ntmtbH0reZfukRb3dbu/wBsgM3IcOHcJtt93GfFLfdjqdWB9QvTZvQKvVYi9Rp9Ph+/S85J0C5cz3\nVCqV2Egr6VG97XYbhw4dAgD8yq/8Ch577DEAwHe/+12mK9+fbSzI+9I4Lmm4aJtb1M13I8cb3T94\n8CDe9a53AQA++clPwgdBfQgICIhhJCSFYrGISy+9FC95yUvw5JNPAujPjOT+KRQKPKvKnXo0i+bz\neb5uNpt8ncvlYiswGVtohSqVSrzqFotFnonlKl0sFjm5CvmjDx48iMOHDwMAnn766dgKTFKMDIkl\nfqMo4naYs7yZs6HZbDK/0lDWarV4f3y3292xIhaLRZYUcrkcr2ynTp3C8ePHuQ7Zt0RDrrSyb4kP\nKWEQ7+Pj46yuyHbI91QsFlnqo9/b7TbzPjk5yfxcdtlluPrqqwEAR48e5ftyxZfGRKJRKpViY0SW\np/8plHpzc5PfqYwL2Nra4vdHdckxIg2Lk5OTuOKKKwCcixx94oknmJ9msxmrS8bWyGzg1D80JmVf\nVatVbr+UrKguKZnJnBSNRmNHaH4WjESSlWuvvVbfdddduOWWW9hfffz4cYyPjwPov0TKzLO6usrB\nGPSRTk1NcZjs/Pw866e1Wo3rm5qa4msKlFlaWuK48Hq9ztt3z5w5w/TW19dx++23A+hPBgDw2te+\nFjfddBOAfkAIfWyVSoUHyOzsLPNE9dbrdR6YZ8+ejd2nl0eh1JOTkyzizs7O4uTJkwD6+xlIR5yc\nnIy1D+jrvF/84hcBAFdddRXT++AHP8hljx07tuN48rm5OT7kdWZmhmlMT0/zLrtarcZx/tRva2tr\n/J7W19eZj9OnT3OZ9fV1fmfUJ9PT06yff+pTn8LLX/5yAMDll1+Om2++mes+evQoAPDEtL6+zu9m\nZWWF+21tbS02edPESWNkbm4uNi6I9szMDPfL/Pw880fPb2xscDuWl5fxuc99jut41av6WQdvvfVW\nAP1x88wzzwDof7jUV3IszM/Pc5/T+19aWuL+WV5ejt2n9q2urmJ6ehoA+D1RYiKg//6pfdVqldWg\nT37yk7jmmmsAAK985StDkpWAgIDsGAlJYWJiQt9www340Y9+xKuj6VEYJh4gCbYdcibdhYUFAGCx\nNooi3HfffQD6K1daGi5XH8vQbZuv2pbjEYhHd9pAktA111zDz/7gBz/gFarb7Q4ViWnymdY+IN7P\n9DddLyws4LrrrgPQF33JOFqv11MPWhl0XNj4sNExw4tpRb/yyitZNX3ooYcA+I0FF8/yXcoNVr6e\nGLMN9PfMzAyuvPJKAMC9997rJSmMhE2h3W7jxIkTWFtbi526k7YPQsL2cSddm3Ul0aOJ6siRIwDi\nIny3201NpJnWDlusvs8x4zLrkewT0oGfeOIJa47GQQ+fsbXJrMuV1cp028n2bW1tsS0piqLY5JWW\nCcnn2uTd7FvpDUibFEglkOqtzCnpMxbMSV2+R3NM2g4SShsjksbW1pb3ITCEodQHpdSUUuprSql/\nUEodUUrdqJSaUUrdqZQ6uv3/9DA0AgICzi+GUh+UUn8M4Dta6y8rpYoAKgD+LYCzWuvblVIfATCt\ntf6tpHqiKNKTk5OZMw6fL5CYSEa7XC5nTc02KiB+x8fH2To9qn0L9I1ytVoNQHyXpOsAnwsJWrkr\nlQp7EWwH2QyDJIknK/L5PEs0vtmchzlgdhLA6wC8FwC01i0ALaXUTQB+cbvYH6N/SEzipJDL5WLx\n+dv1ZeHFKka7tvq6ItBctIk3skib0WwuW4RvG2RMe9bdkTYQv9PT0+zSkm5N323DaTwTj2Zsv3nf\nph5J1Go17N+/H0DfK5Nl67R5z0bbrMvk12W7MWkA51ycExMTO57LOhZctgXXjt+kyEkXjXK5zBOu\nb+LWYdSHywAsAfjPSqkHlFJfVkqNA1jQWr+wXeYEgAXbwyocRR8QMJIYWH1QSl0P4HsAfl5rfZ9S\n6gsA6gA+rLWeEuWWtdaJdoXdPgzGZ8bPAjOwqFAoOL0kg2JYMVFCBt6QodHXMj4s0rwBttW9WCxy\n3EQul4sZGkcNMjiLxsNujAVXvw07HvL5PI+Bra2tPY9TeA7Ac1rr+7b//hqAVwA4qZTaDwDb/58a\ngkZAQMB5xsA2Ba31CaXUs0qpK7XWjwN4A4DHtv+9B8Dt8DyKPpfLoVqtOrM5m7DpiwSZcVjaFGy7\n05IMOfK+mY5Nuil9dHEXDVecAT2TJR2bBBkaFxYWOATZt2+T6Ln0clsGLGlHsGXDknUVi0UcOHAA\nQN+9Z7Mp+Lwn231Xm3xclVROXlPfHjx4kKMGbWPB51r2ldwo52tH8EEURTxufV2Tw3ofrgXwZQBF\nAE8B+JfoSx9fBXAJgJ8A+DWt9dmkevL5vB4fH8fm5ubAIlgWsTUr6IWRFVcpNdLqgzxLkq53W30w\nDXt0z3bfLGP+ViwWuW+11rEYkFGD9ETRhzroWZKuPpQYdjzQggucB+8DAGitHwRgI/KGYeoNCAi4\ncBiJiEY6DIYSrQDJYqIpdrtEbZ8jwF00JMgIRhtuut1uqvqQ5CYlGjYR1dWOLKsQGZaIXyD9KHoX\nTD6k+w2I5zeQ7ZMqgyxvoz02NsabjprNplff2upKGyMy8YpLtDfbZyaGpbFQq9V2JN/JOhZc/Jo7\nUW1tTaIhUS6XeSPVz9RZkpR5yab3E+T9JP1KlvM5J9LnPoUN26ziPnXZrrW2H3Ajy8kPLwuI3zNn\nzngdrpIEs99t4q3r3fjS29jYiCUhkX2UxlMSr4D743Zdp/FMNprl5eVYVitfvtKulVKxzM6+SBq7\ntEPTF2GXZEBAQAwjISnk83ne455FNJSzq89GFJv64HNN/mjaIbe+vs4bY5JUFNPKLKMKXedTEFzH\npdv6xtafQF99oOu1tbWB1QdZr/msbIdvf5ooFAqs6rg8Oz7jwqamyc1Dad4HV3yLzfuwb98+Vhts\nZ1/6qBKuw2uk+jCsAbpYLPIu36eeesrrmZGYFLrdLnfsIOpDFvFskGt5AAjxaxPtXc/LScP343ad\n4uQzOORR9LKOQQdWlrb6XJswj6LP8rzrQ/c9mzMrDRLtz549u2NvRta6bDs15f2kenwR1IeAgICh\nMRKSQj6fR7Va9fY+mBZiIH2TiO0o+iTRV4I2QpEYVq/XreqDi7Yvv+bzJEbmcjlelUxpwwbpfaAV\nKKv3gcq61Ji095Ql2KZSqXCAzdraWurR7mk8m6pEWl22+7ZcEMC5tHCzs7Os5lAQkw+/LhXHFbyU\nxK8PvbGxMU5f94/a+2CW8X3GVs5H5KNB+sIL/X1e8kPxzfWfRsMG+qCznk0gDz61ZfTxga19aXz4\nTFg2bG1tcW5KV/CTDwYZIy64RHiaAF544YVYkl5fGrKM7M80D5NtAvCh12g0vCcDQlAfAgICYhgJ\nSYGCl3wt5KZoKMValzfAJ9WW61ruoae6fPb8S7EbcKcos4m75uEeUn1IWyFoBVtYWGAjaZr64Oor\nV9itKyBLeld8US6XWX3IGrxk80pJcdy1f8RXzHd5ohYXF1lqSPM+uPrWla7O1bdmUJOrTfK+PIre\n9/TpICkEBATEMBKSgo9LUsIsY54NaFsRbfeTVg95bUY00rNJ/Np0Rx+XJNUro9o6nU4mnZj4JRdq\nEj3bb1l258k2uYyuaWg2m3y2xG5Ei5ohzUnPuJDmnj5x4kRiRGOaexrI5s6W176GSOLXHAdpGIlJ\nIZfLYWxszNtCblrz5WCUJ+nIelyx5a5suZIPEscpZLhUKmWKd5e05YlVtj0D8hnpB88yKdCOw+np\naZ5cVldXE/vWVK9kH7uCqwjSS0ID3Se/ItGoVqvs2VlZWUn1PtjembxvbuGm32xp18wJxFSPTPo0\nFiYmJphGmrqT1LeAXwCYmaZNtpdge09jY2Ocjo0OxklDUB8CAgJiGAlJQWvNG00GUR/k4SZJrkdb\nZJ7PRhkSGQmtVivVDWUTAV2Ra7bVWKoPWd1pcn8/reJp9SRFidogf88SQ2GrY3Nzk12SPuqDKy5E\nrvhJR9G72uGjYkjVjGIW0saCT9+m8SHPwMjCL7n6s2AkJoVcLodKpZKYHUjeNy3LNs+CjYbpDZDH\npcuDRk31gbwPdMbfbnkfqF7zyHGgL6bSAPSNqTf7Z3p6mvsoLfOSKVKnDTgpnttUIh9bBNVbKBRi\nZyb6ZnM2+UjyPsj3Lw+/Bew2H1df0Xuanp5meq5MUT7XRMPmRTGvTe+Dz4FBcl8JqTlpCOpDQEBA\nDCMhKVDSEpfoD7gjwWx/u2jYREmXmG4Tj8lDIkOms3ofJG2SBPL5/I499PRbEl8uepJf3801Wa3z\nsl7Jqy8kjUajwSc/k+8/iY+kseC6L6W0Vqu1wxBJZdJo03taX1+P7X41nxnm2qVWSjXN1kYbWq0W\n960vRmJSIPUh694H+VvaQFZK7bDWJnkfJMjrQBlsms2mNWAliTZBirXSskwiuE2szerqI113fHyc\nB1JS35rtSFIlJM9mO5ImFlsZujc2NsYibj6f9/LsUF3mWHDdl+qDdCUqdS6pSRbvw+TkJPdtFk+U\nTztc+y5o7JiTg2y3iVKpxOOW+ExDUB8CAgJiGAlJQWvNIqiPyGiW8fVY2FZbH7GZPCNkIS8Wi6kW\nZxcNWv1NcdFUH7KK8xIkgvd6vdimnUHUB9MIZrbDl78ki3uj0eC+9QmcyqpOmXUl5UFIq5fe08rK\nCkscWTxRrvtpfauUYr6zjIdms5k5n8JITAq5XA7lchn1ej1T8FJWSy9d2/RJH28HxZB3Oh2OI8+i\nPiTRMK32PvW6QBbyubk5HmBZMi+51AcZGGYTfV2qhA1SJSqXy7y910c1c1ntfTGMmE99u7CwkLj3\nwYe26/2nBdS56rLRjqII8/PzAIBnn302kTfCsEfR/xul1KNKqUeUUn+qlCorpS5TSt2nlDqmlPoz\n1T+NOiAg4GcEw5w6fQDAvwJwldZ6Syn1VQA3A3gzgM9rrb+ilPoDALcC+FJSXd1ul40gg4iig1p3\nfWmQ2EZWXKVUbAbPUpcvT4NKCcA5EXdzc9PpxUiCS33Iui8hCbK9jUaDfejNZnNX1IdBnvG5T/15\n6tTO0xCzjl3X+/cJqEv7jdDtdr13RxKGNTRGAMaUUhGACoAXALwe/XMlgf5R9G8bkkZAQMB5xDBn\nST6vlPosgGcAbAH47wB+BGBFa02WnOcAHLA9r5S6DcBtwLkNUWluMxd2wxWUpJ+STYFckz5uswsJ\nOiasXC4z71nyKdDfNtD9JF3XRcNVV7lcjvVt2oYoHxuN7Zk0W5NPXZRPoVqt8m9Z08cN2oe+tjSJ\nQqHALuo9T8emlJoGcBOAywCsAPgvAN7k+7zW+g4AdwD9o+gbjUaqhTyhroHv+4pgwLmXL/3cozYh\nAPFwVjnYfL0PaWXN3wc9/JTq2Nra2mHJT+JhENUl6zt33ad9MPV63fswGFfdWdWgQdSHTqfD3jNf\nDKM+/DMAx7XWS1rrNoA/B/DzAKa21QkAOAjg+SFoBAQEnGcM45J8BsCrlVIV9NWHNwD4IYC7AbwD\nwFfgeRT9+Pg4brzxRvzd3/0dz8Rm4hS5l9yM/ouiiI2BhUKBDW35fJ7LyPRm9Hy73bZu5jFpXHTR\nRQCAX/3VXwUAHD16FH//938PoL9yUL0yn4C8tuVv6PV6iRuJZJtMt6At0lHye+mllwIAbr75Zjz8\n8MMAgLvvvpv7pdPp7IiOkyntJG15v1gsWttEbrpGoxHrQ0nDfGdyU9Ill1yCW2+9FQDwve99D/fc\ncw+AvlFP9i31j6RBtFutVixaNGmDWbFY5PvyPcmxI/mlujqdDi6++GIAwE033YRjx44BAL797W8D\niI8FGdIu35OkLfmVY8HWb51OJ8YH8StD5eW7IXoHDx7EzTffDAC4/fbb4YNhbAr3KaW+BuB+AB0A\nD6CvDvwVgK8opf7D9r0/TKurVCrhRS96EU6dOsWn2HQ6He68UqkUE4PND0EpFRsEdJ3P51mfajab\nfF/+T51aKpX4wyuXyzw5lUoljk8gei960Ys42Obpp5/mOprNJgcLKaX4Wg5MGtC5XC7WPqItBwTx\naXo7ZPtMz0CxWIzp5/v37wcAHD58mPtW5nwkHnO5XOwDI91Z7vPo9Xp8n+5VKhX215fLZW6HHPzm\nfeKX3s2BAwf49xe96EU4efIkAODxxx/ndtH7kGdjyhBleT+Koh33yW4F9CcvuqbfzHbTu5Y2jmKx\nyM/lcjkcOnQIwLks38eOHWN+G40Gt5XqAfrvVY4R+k3yK8O/5UdPPFGbZDt6vR7fb7Va1kOGfTHs\nUfT/DsC/M24/BeBVw9QbEBBw4aBGwVD28pe/XP/FX/wFPvzhD3N02NGjRzmN1NraGl/X63XOa0Bl\np6amOJRzbm6O4wlmZmY499/8/DxfU13Ly8scSbeyssIbR86cOcPpwc6cOYNPfOITAICXvexlTIPE\n3a2tLRYjS6USG3VqtRpbeylXwNraGksdS0tLzMfGxkaMJ+Kd0mfNzs7G2kd+51qtxmUo0/TKygq+\n9KV+WMjY2Bhe/OIXAwA+/OEP82p05MgRbivVNTs7yyv0vn37+HphYYF98pOTk1ye6G1sbHD6t+Xl\nZSwuLgLor560iq2vr3O7id+pqSnunzvuuAOXXHIJAODyyy/HO9/5Tu7bJ598EsA5j8ry8nIsvRit\nhPJ6dXWV+SMaMzMz3IeTk5O8+k9OTnIOw1qtxmOKogDPnj3LtOv1Oj72sY8B6I+Fa665BgBYPF9f\nX8fx48e57+W7ke+SPFfE4/LycmxM03iRY2R9fT32jqkuGtNTU1N8v1qtcjs+/elPs0TzC7/wCz/S\nWl+PFIzEpDAxMaGvv/56PPjgg2w5dyVgdbnKCD4JVwi+lmd6YS9/+cv594ceeghA/2XZtrCm8ekq\nb7Mo28Jb6Xcz0EcpxR/84cOHWRx++OGHYxmZbO4tCVs+w2HaYYaWy3uzs7O47rrrAPTF6/vvvx+A\nu29lvWk7Js3yWdshn5N9SwsEgNhYoH5zeQpsPEr1MCvPSfUC/b69+uqrAQB3332316QQdkkGBATE\nMBIbotrtNl544YVYUhDXYSlmSjMgbt2VsQ5KxdOPm7Oqi4Z5TUauI0eOAOiLfSSe9Xq91KPo02iY\nPJn8mm1KokFH8AF9wxepQRsbG2xctGU7ln0l65V9a8uILFf8pP40ffPSOt9oNLhvpQgvc28Skt5T\nmtTg04dp74zUw6effprPGJXSbdpYMPkw+828n5S3Io136ltSb30xEupDFEWadPBBA2H2EmT1JR25\nUCiwbp3lJKTzBRpI5XKZ1Yd6vT6SvAJ9yzpZzovFItsBRpFfGgvVapU/vlHmN5/Ps82nXq8H9SEg\nICA7RkJ9UEql5lOwiXPyf9dBHy6RGNi5G81FW64O9HxaPoUs+y7kfR/xMw3Eb6VS4RU4LZ+CS/yU\n5V0iuc/+kSTalUqFvUC9Xs87m3MW9cE1FnzUBwladWdnZ1lNy5LZO60dZkwKIalvk1AoFGKeOx8E\nSSEgICCGkZAUer0eG2t83IRJM6WcXW1RkIDfwSASZKCjmVZGqg2zacd3hcpq9yF+pUtPGvt8+Uoq\ns1vPAv2NZjIic1B6SXxkfcZFm6SD06dP70gEvBv9liQRDGL/a7VaHMvgi5GYFPL5PKampryyOVN5\ns4xUDWydJ+PB5TM+IhmJ4wcO9HeBb25uDpTN2RRrbfH8rgNu0sRdG7/z8/PcV6ZqlhQDYnpqkrwP\nNk+Gee3qEyoTRREHN7XbbefhKlRv0pmRZltcYrttwfAR82nSWlhYiO2YtPHrq6Zpfe5AHXOM2lSJ\nLMjn8xxn89Of/tTrmaA+BAQExDASkoJMGZUmaimldmTjlbOv6/msKoME0aMwWXk0vM/zrhXfdUQ9\nMFwqMqq3Xq9nFo9N2nJVlZGQrvRhvpD0u90ub6pypWOT5ZPO4Ey6L+uyGU19+pxCxc+ePbvjEJys\napRtTJuSxLAu+l6vx1KtL0ZiUsjn86jVaonqg+t8PSCbqCavfTuc4hMoPn9packrO5BJ2xRZzROG\nJE9ShE86M9BGm2ITJicneeD6ZF4i5PN5VjuKxSK3NZ/PWz04tvZl8dlXKhXu4yiKEvtWKWU9UEd+\n6D6BPlJVMg+jlddmYBHxOTs7y/tUXPymecdcalBa+7J6H8hr5js5BPUhICAghpGQFHq9HouNrlkw\n6Zy/YazUPpChrfR8mvrgsixLJBm4TPE6i3Qjj0v3PYperkRyld/Y2Ehsq4/kkgZaaQHELPq2urTW\nO9RHW/k07wP9nVVNI14ph4L83UXTVZdLBRtG1TUhDbe+GIlJgQ6DWV1dzRSYktZJ5vmB5hl8vuoD\nWZxJDFNKWb0PrmvXcem2o9Ndx4wTZIYdlyWb1IcDBw6wqzcteEn2VbFYdGaTsvFEyVlch/imoVgs\nYt++fQD626WJZ1f7koKUbGVsddnUStuZnWZd5CXYt28f82lL4pumusrrpD0OSR4qH89XoVDgrdjh\nLMmAgICBMBKSQq/Xsx4GM6z4L402WT0GEqQ+yACrNAu5j5hoExnT6nUdyCKvSX04c+aM19HuRI9o\nuw6QsV3LtHI+K5cNrVaLE53IuocZC2nqg+3aR2yX3oekMynNa5vhMsvYsRkrffq63W7/bB9Fv76+\nPpCF1WVZzufzLHLJhKfUub4irsz1T8/TBOE6Jt4lPtpSmUu4XFO2umQ98j5t6Z2amoolVfVVH1zB\nSxIygIxo2D4eH1QqFU6OKycHn2Ai132zn5ImLFff2mjQWJiYmODJk+wMrrFg9q3Jb5LKID0YNvUh\niVfil/aVhL0PAQEBA2EkJIVer4fdOgzGZYiUInHWgBB6lgKsisViqkHNJQ7aJIEsz/uIy6SKmT72\nNPWB4EqFZyuvtc4kFdjQaDQ4D2Sz2czk2XHd9/W0ZFVLKbR5aWmJpQaCa1z57HZ0qZuDqryS36x7\nH4KkEBAQEEPqpKCU+iOl1Cml1CPi3oxS6k6l1NHt/6e37yul1H9S/WPoH1ZKvcKLiVyO96lLm4Av\nSN+iswsoIs/8J8tnoVEqlVAqlbCwsICFhQU+x8DlErPxJ3VDkhIkXyZPrms6h8FWnv4uFosoFouY\nn59HrVbj/fQ2Pmw0ZF/R2RJJ/1ztSOpneb9YLGJmZgYzMzOc0cj3HbnK0XhIa19Sn9vaQX27f/9+\nTExMcIZloplUF/WVjUe6lv2plEIURYiiaMd9+puec9GOogjT09OccNYHqenYlFKvA7AO4P/SWr9s\n+96nAZzVWt+ulPoIgGmt9W8ppd4M4MPoH0d/A4AvaK1vSGMiiiJdrVZjeQSzwvxwzPuD1guc88PT\nx9Vut9m4dD5ScGW16tPAq9Vq/FzWvs2y83EQ47BEFEVsxJVnHw7zzmywGSKz8iwT2FA/U8zKMGNX\n8uEyePoYQk3sSTo2rfW3AZw1bt+E/jHzQPy4+ZvQnzy01vp76J8ruT+NRkBAwOhgUEPjgtaa4jxP\nAFjYvj4A4FlRjo6ifwEGlDiKnmazQV2SpstHin1p0X8+IBcf7Uvf2NjIfPw4wced5nrGdt9m3JIu\nSd8NUWYfys1aLjcp1WUTwbNs5imXy+ySrNfrLCkkuXtt9SbRs2XzNmn4tI9W3fn5eR4DJCm4+HXx\nb4tWlL/7uCRtrmPZx2NjY1JSSOUN2AXvg9ZaK6Uyy43aOIqeOngQEdQnbtygnal+4o2SVPhkB8pK\n29cz4POM7EuZvCOL9yFLAJGrHl/LfrPZ5L0EcqBn3ZeQRG+36qK+PXXq1I7MS75eLarPtnVett/0\nxpnvRE5WLtpbW1uZvW2Deh9Oklqw/f+p7fvPA7hYlAtH0QcE/Ixh0EnhG+gfMw/Ej5v/BoB/se2F\neDWAVaFmOEHp2EhUy+p98IHLspxUnsqQBZgs5NLi7LJeu+oahN8kq7aNBlnI5+bmMD4+jvHx8VSL\nvss6L2lLz4fNWk5lpOrhQ69QKGBychKTk5OYmpqK0bC1T7bFRc+kbfanjUYaPdm3pmfHpOEDWa/N\ngyPbZ3qd0niXfTs3N8ebonyQqj4opf4UwC8CmFNKPYf+KdO3A/iqUupWAD8B8Gvbxf9f9D0PxwBs\nAviXPkxQ2LBLR94NZA1SsQU+2ZJUZA0s8kVaMEvSNfFrJhf1DZbKEpBl2hyStri76mo2m9y3w7Q7\n6V246iW+fenJvpWTho1mGlx9brMTSDrymTTe2+12LHTcB6mTgtb6XY6f3mApqwF8KBMHAQEBI4WR\nCHPO5XKoVqtYXV21WlB3A8NYyCkFF20saTQa1j3/Ej6WaJuK4JN2TT5no02GUFLJgHTvQxKPLqs9\n8WtL5OJajW3tGB8fZ5Ws2+169S3VZUtplybpuFLduTKBy/aTZ2dhYYG9JBRW7ut9ILg8HGlp2mR+\nC2B//u8AABmaSURBVFmXjXa5XGavGfVrGkZiUuh2u3y47G5PBgTZ8Vkt5LT9mMSwtI/SpJEG2+BP\nSzyaBBmfT+4on+fSaNnEXeVw+/rwTPdk5iXT+m6Dbfu5KVonuZ9d3qq0/tFa8wRw8uTJHbtDs6q+\naX1rtsOc7HzoNRqNsPchICBgOIyEpED5FFZWVrxEXDMEV6YMk2nXZA4FeW3br54069KKQPHj7Xbb\nKwWX5I/4ldcUQ9Dtdvl+2i7KpNWYQPVOT0+zyGmmuhsEkrZUGQimNJZET9YlRdxGo5F60I5pXSd6\n1O5Op8NlZFo5m2pmBjXZDJSyHaSaTU9P83haWVlJpOFqt0t1tam6cuwQDTmmqYyJKIpCOraAgIDh\nkLoh6nwgn8/r8fHx2JmCPpAuIdMIY5bJGhUoQTM0GZmUUgNtiDJ95y7X07AgfovFIu/5l+dK7gZk\n32d195qIooj9/a1Wi204WQ21NslxGL5soHFWrVZjRlxgbzfH2WIgfNqUz+d53K6trXltiBop9cHn\nLEkpXsngIhpA5oElNssyPWcmE3HRJpGROldrnekwGFs7iCfAnqnXBy4aMvs0ideDeh9cvMt3kFUd\nM+sql8u8S3Jzc5MnhbQ+lCK1tMTbPs4k1S5tf4UE9W25XOZ7NlXSh7ZLZSAkqRJJ9UoUCgX2noXD\nYAICAgbCSEgKWms2Dvm4tMwyZjowKQnYkNUlKXcayvqTnnG54Hwj/nyQxu/m5mYsUexe0Bu0XvlM\no9HgVHdp9Mz7trgWH9ei+bwvbRndap5+nnXs+vDsq2K6npe5P3wxEpNCtVrFjTfeiL/9279lH7sU\nRbvdbsxSLw8fAfoiHXVYqVTiOqIo4gljbGwsJvIDfcu0tPrLM/xkang6qOTtb387AOCxxx7D97//\nfeaBaEhRVB7aIvklHb/dbscyLRMfVFc+n4/VRdfyoJZCocDlqa5ms4kDBw4wvw8//DAA4L777uOy\nsj8l7zavjaRdKpW4DImkrVaLRen19fVYO2R/JlnODxw4gF/7tX6k/JEjR3DPPfdwHTbbgKyXaLfb\nbW5Ts9nk/qCPWH5ULq9UPp/n9tnGQrfbxcGDBwEAb3zjG3nX7He+8x0A/fdoi9kwx4JJQ45pOS46\nnQ6rK7J91KZCocDXroCsAwcO4I1vfCMA4Mtf/jJ8ENSHgICAGEZCUiiXy7jyyiuxtLSEo0ePAogf\nT14oFGJGRZoRaRbN5XJ83e12efWQYakbGxtcxrYCSwNluVxmaYNyMxJtAHjxi1/MUWJPP/00z/hy\nlqdn6T7xK9N5keFHto+eabVaXDaXy1nPWaB6qH1AfwWneIpSqcQnZZ85cwbPPfccgP6KJlcb6ivq\nn1arFetbKaVR3xI/U1NTHD5bLBat/n/KMSjpNZtNbuvCwgJfLy4u4vDhw9y3xKcpEVH7pARFfBYK\nBQ5Bln0opUJpKJSrMfEhDZjEQ7FYZIMo7eYE+uMBAJ544gmWCFqtFvMqx1an0+H7RKNQKHA7yuVy\nzHskJTMqQ56aZrPJvFNuUqAfgUv3Z2dnsX9/tuRnI+GSvPbaa/Wdd96JW265hV/+kSNHeK/B5uYm\nd0S9Xuf7FHY8OTnJH+nk5CTrp+Y1fehU19LSEte1sbHBH9PZs2cxNTXF15/5zGe4DgB47Wtfi1tu\nuQVAPyjo+PHjAPovjj6QWq3GmW6o3tXVVa5jeXmZQ5DX1tYwPz8PAJzqfGZmhuuam5vD6dOnAfQH\nI534Mzs7y/dpctjc3MTHPvYxAMDhw4fxilf0c+fefPPN3N9Hjx7lvQY0Mc3MzDDtiYkJ7rdqtcrB\nOXICoP5ZWVnh69OnT3MGpaWlJWd/Av39DjTpf/KTn8Rll10GALj22mvxgQ98AEA/lPipp54CcM7a\nv7a2xurcyZMnOeipXq9zm1ZXVzE7O8v9DPQnnqWlJa6L2jE5Ocntm5mZ4XZTXbJ99Xodn//85wEA\nV199NS6+uJ865B3veAeA/oR95MgRpkHqarVa5euJiQmmRzwuLS1xOyS9lZUVnoTM9hHvtBjIb6BW\nq/H93/u938Pll18OAHj961+/OzkaAwIC/mlhJCSFiYkJ/apXvQoPPPAAr1wuS6srFDXpd7pvlnft\nADTLUJjoS17yEgB9sfX+++8H0J/BbV4Okyfzng/MeAy6tvWN5JdWmiuuuILFyIcfftgacGULQpIe\nBZv/3AWXv13yZys7PT2NK6+8EkB/Vf3hD38IIJ6BOu2d+vJne841NuhveY8kuuuuu47F/Pvuuw8A\nYrt8B+HD9zkb32Y5+m12dhbXXHMNAODOO+8MkkJAQEB2jIShsd1u4/nnn8fa2hqvYq5NIrYjzXw2\nJdmkAjMCz0ZPHiZLRtCZmRm2F3Q6HWd2Xd+NL7ZoSvN5155/W5vIyHb8+HGWGjY2NmIH7NryN/i0\nY9A22dpH9BqNBtsOZmdnWVrsdrvWk5bT3plPf6ZJiy4aJG0dOXKEbUKk45v8DtKHJm1btGiWNjWb\nTR63vhiZSeHEiROJwT1JgR5Zg0OyXtNHJv8mPncrZVhSmyR8gm1kinS67vV61jwEu837IO2jc0SB\n/ljY7b7dTd7JOLq2tsYLw16OhaRgN5/nNzY2zls254CAgH+kGAlJgTZEycNggOHDgJPCprNAbjAC\n+r7vtANAhqWtVDybsE+aNpPfyclJNtSZB+0kiaK+/NnoZ70P9F255CaOoohddrv1/pLgI9rLsuT6\nnZycZKnBVpfPfbOMeZ3lQB0XisUiu8F9N0SNxKTQ6/WwtbUVs/TuBnarLopvIN2xUqlw3cNsyfaF\nKfanDQ6K9VheXo4ldRlEXXHBVT7rfSB+YMmw6eOywlf9oHtkU5Ah8knPJN3Pyscg/dFsNjmWxRdB\nfQgICIhh0KPoP6OU+gfVP27+vymlpsRvH1X9o+gfV0r9khcTuRzGxsZYZM7qvzX4jdVru84KOgxm\ndnYWs7OzGB8f55XXJvZl4VWqCPKf5DeKIg7TLRQKsQNCzH9AP+S1UChg//79fBiMSW8QuJ61tSON\nnrxfKpVw8OBBHDx4MCYpmH1rq8t133WAilLxI9xl38pj3l3toENb6FCgQQ4Gct2n3yTv5jHzPnVJ\nRFGEhYUFDtX3waBH0f8PAO7SWneUUp8CAN0/iv4qAH8K4FUAFgF8C8CLtdaJKWmiKNITExNYW1vb\nlePH5ct0iYFZQC9FngZEbsrdyLbj83LTdEt5TfH+MzMzLO5ubm7u2UE7wyKfz3PfKqV25Wh3gs3d\nKCE/OJ9s4rS/oFKpcJ27mXnJZeMYFLJvV1ZW9u4oeq31f9da0xv7HvpnRgL9o+i/orVuaq2Po39S\n1Kv8mxAQEHChsRuGxvcB+LPt6wPoTxIEOoo+EeR9qNfrmSysUtyi8qa4ZfPz0nO+Of9pMw7lEFDq\nXI7GYc6qkBmRbTzJcnKfPsHMHkwgEbxWq/HvW1tb3n3romE7LMWUXKTl3Fany/tAQVbtdjvRsyNV\nK9MzYMswLenKTNmEYrFozWHheh+0i7JWq3EZGgtJx9rbJBZbkBLxQbTTPEYStr4tl8vsfSCvThqG\nmhSUUr8NoAPgTwZ49jYAt21fY319PbP3QXoAqFO73W4mMc6HHnkfaLDKLcLDiHcy5XxSMJEUo33o\nycNr5N4BX15dH7qtDnlPuk5tdSbxSzsYC4VComdHa22dIAH3ATW2uug+vVuTR1c7aBv1yspK4mEw\ngwYpKaWcatMgHqNms8l964uBJwWl1HsBvAXAG/Q57ryPotda3wHgDqBvUxiUj4CAgN3FQJOCUupN\nAH4TwC9orWUCuG8A+H+UUr+PvqHxCgDfT6svl8uhVqthbW3NS8Q1M/hK8dpcdaVa4WgLgOTswxQM\nRLkCtra2Ug8s8YFMnGLuRUgSRSXv5v1er8f87tu3j0NxkzJlm3WRFR6IH65jS51unnfoCrxJQqFQ\n4HwCdISgrQ8kr1SvTHVno512AIyZDEamp7O1g97Zvn37WGqwnX3pc207JChtv4OEax+M7Ldyuczj\n9tixYzvqsGHQo+g/CqAE4M5tpr+ntf6ftdaPKqW+CuAx9NWKD6V5HgICAkYLI5FPIYoiXa1WvQ8s\nkS5H816W5wE/vYxWB+mSJDeUmUnaF67VPwtf8llZnlZPiqcAsh8GI/3yhDTDbNZ+JdCp4wRfF99u\nuO+k4TIpTwWB+mNsbIyvid/dcKEm0U561lU2n8+z4bler//sHAajlEK5XE48sMS0iMv/lVL8cSYN\nDnMyMYOPXM+R94HSgG1sbAx9/LjkX95PO0XZbIdtYiF+a7Ua/552GEySB8eWodimMsj73W7X+yOV\neSUbjYbVmi/bbhPns6grVA8Q9zhQwJCEOTHR5FWpVLitaWPBNSZt7z8prNnkTfaFNK7KZ8fGxtj7\nQKpkGkKYc0BAQAwjISlorXlPvWuWt7m9pFvQZ3WwlfF5jnISPP9835HisyEqjQfZDrmSZGmHqyyt\ntO12m6WGtD6S7ZDJQlx0XAYumSTHF41GgxO6ypXbJc7Lum1SjA+orEslctVFRkWZETptLLjqkuV9\nJFbf9yCxtbWVOdJyJCYFUh+StvfKTpMiI2C3ipuwBYfInW4+3gfKz6e15izBWQejS/Q1A3J8JjpX\nIAzxSxZ9ADs8O7ZAGJtF3qRnqitaaw6rpmeBuK0lrR1RFLHeWy6XM3kfZKBPlixFkl+bx8dVl/RE\nUYzDoFu9XW3y+QaAeOp4l/qQz+c5x+izzz7rxVdQHwICAmIYCUmh1+thc3Nzx+pou5YRXz4xBvL5\npLyESSB/NEkHks+sFm+X6JsU0ZhUl60P5HmHaf1p+9tHDLaVl0fPZemXTqfDKo9MXJKmwtCzQLon\nIo13wE+VoL6lMxZcNHzgo64klfEJ0+90Oqya+WIkJoW0o+il28gmRvl83MVikbPm0ECSuReTnicX\nHx3eIS3kWUVGm8oAnBNXs7i1pJgv+4RE8ampKRZxswQv+bj6JD154hGVbTab3v1SKpVYNdvc3LRa\n86WVXXo4ZACYTZWQz9n61hUk5lIraQzVajX+KG3BSxJJfUu8J6l2sh7X3y4VulAo7DhFLA1BfQgI\nCIhhJCSFNO+D1to6C/r4pamMPJKbZn/Tyu4CrTAyrdWg6oP0nNg28AxSlwl56ItcSZN49VUzbJAx\nIoO0o91u4+TJkwDcG6Jkf9tEflMSSGtrWrCbq29Jvel2u2x0TBsLPn2bVZVIKifRbrdZkvHFSEwK\nFNGW5H2Q6oMUEwE/EZe2vMr7vt4Hsq5TRGOv12NRzEd9cFmQXfHuvm1y6c7ycFH6UNKCl7JCiudE\nr9lsevWniSiK2ELebrc5yMZH1LaNC5etheoyj5+37ZtJozc3N8fP2fh1Iav6MOy5D1EUcWCYmWjW\nhaA+BAQExDASkkK32+XZ1sdKnMUYR7Nrs9ncIWGY9bpA4rFcEWw8upDV2p1Ur9k/ttWfjIum1Xk3\nJASzLqUUr0CD1t9ut1nyksZfH/FaruxyxbclVCF0Oh2rJOGTD4Fo2M6NzDoW0lQG147fLHV1Oh3v\n5CpMN1PpgICAf/QYCUkhl8uhXC4nus2SIrvMkGGC1B2jKNrhbvKVOEhnppRhPjYFX5uAiax12SQd\n4nd6eprbmCUdmwtyA47MYyBdhIOgWq1yVuR8Pp/atzb3tOTNFiFq2nKyGlMJ1LeUfRxAqns6bSxI\n2wEQd1ub0bsufl00ZDo24jMNIzEp9HrnDkUdJIjDJVLLnXpZwm5NyMNVgHMfhC+/SbwC6epIVhoy\nwEamDBtWfZDPy/4cNks0peIjpAWlpW1xdvWhrHfQCVKqkjK8O6murGPatX/E13sk0Ww2+RAjXwT1\nISAgIIaRkBTSIhpNJLlmzIy8ssygKxqJcBTRqLV2btqx8WRzPbpcaLbQZ9cGHrMP6G9yv1500UUs\nMvqeI5gEWwTmoKuu7J9SqcQpw+r1ujXVXZobUvJhbo6SzxPvtveUxCvRI+lgcXGRpVubupMlKjTJ\nVU0YVMqLoojzgDz99NN+zwxEaZdBex+A7BZc82+p1/qmcE8D1UODtd1uc30+FmubhTst0MdVr+sZ\nm/fh1KlTu+pxMD88G21fyGcajQZOnDjBfyfFGMj7sg9NHmyegSx7ZVy8ko1mZWWF1TRbOR+bhc8Y\nGfb9dTqdzNmcg/oQEBAQw0hIClnVBxNZrb5ZQRtKKD/B2tpaJouzTzSeuYqZXoosab6k98G2+9AG\nn3bYNmD5rrpJ71VuVut2uxyWm5TejOpyeR9sHipbO1w8uUCbzebm5tj/nyW6Na0dErsxdkulEkc0\n+m6IGolJwbV12hdZrb5ZQR8UxedLq3NWy7JLZPQNTHGVkSCx9uzZs87U9r51+fI7aP1An19SzegA\nXcCdFNenbwfpTx+QHeHMmTM7+BumT3ZTzZNotVoheCkgIGA4jISkUK1WceONN+Lee+9lw1G73baK\n2t1ul33vZPSRB5bk8/lYiCutbnLjC630MnVZq9WKhUHT/Xa7jcsuuwwA8MEPfhAA8K1vfQv33HMP\n/+46wIXoSRpEu9vt8nWn0+E20SpfLpdjB5OktVX2yaFDhwAAN910Ex599FEAwLe//W0ua7POy/4p\nFAoxelTGPHeR+JW8y3dmyx0h3wHRWFxcxFve8hYAwDPPPIPvfve7APqrsvnO2u12LPhMvif5/ih/\nIhldZTsKhQL3s9xd6RojMlDriiuuAAC8973vxXe+8x0AwN13383td409+Z4kPZNGq9Wy5ouwBYnJ\n4DxZr7w+ePAg3v72twMAPve5z8EHIzEpFAoFLC4u4oorrsBTTz0FoP8h0ACUwULFYpE7m1xvZJMA\n+lFbNFDkRy+jw+iF5/N5HhxjY2MxFxl1aqVS4TpIJ1tcXMRVV10FADh69Ci/mGazyTwpde7AUxqY\n5XKZ7+Xz+dh9euF0iG2j0eCBLdvabrf5Op/Pc7tJxSkWi5yG/PDhw7xf4/LLL8czzzwDoP8xUd/K\nvqB2ykkxl8vFBqZMqELPy/dEZeXHVigUYh8k8UDtm56e5mhRAGwtf/LJJ7lual+5XI69J+rDUqnE\ntOUkKnfHUl81m80dY4p4onbR74VCgXkolUoceZnL5XDJJZdw3wJ9lx+1s9FoxPpKLgayb+l/Oaap\nfcViMXY6F024csu2rIva2mq1Ynk6yZXui6A+BAQExDASJ0QppZYAbAA4nVZ2jzAXaAfa/wRoX6q1\nnk8rNBKTAgAopX6oPY60CrQD7UB7bxHUh4CAgBjCpBAQEBDDKE0KdwTagXagfeExMjaFgICA0cAo\nSQoBAQEjgAs+KSil3qSUelwpdUwp9ZE9pnWxUupupdRjSqlHlVK/sX1/Ril1p1Lq6Pb/03vIQ14p\n9YBS6i+3/75MKXXfdvv/TClV3EPaU0qpryml/kEpdUQpdeP5artS6t9s9/kjSqk/VUqV96rtSqk/\nUkqdUko9Iu5Z26n6+E/bPDyslHrFHtD+zHafP6yU+m9KqSnx20e3aT+ulPqlYWjvFi7opKCUygP4\nIoBfBnAVgHcppa7aQ5IdAP+b1voqAK8G8KFteh8B8Dda6ysA/M3233uF3wBwRPz9KQCf11ofBrAM\n4NY9pP0FAH+ttX4JgGu2+djztiulDgD4VwCu11q/DEAewM3Yu7b/nwDeZNxztfOXAVyx/e82AF/a\nA9p3AniZ1vrnADwB4KMAsD32bgZw9fYz//v2N3FhQTsTL8Q/ADcC+Kb4+6MAPnoe6X8dwBsBPA5g\n//a9/QAe3yN6B9EfkK8H8JcAFPqBLJGtP3aZ9iSA49i2I4n7e952AAcAPAtgBv3Q+r8E8Et72XYA\nhwA8ktZOAP8HgHfZyu0WbeO3/wnAn2xfx8Y7gG8CuHEv3n+WfxdafaDBQnhu+96eQyl1CMB1AO4D\nsKC1fmH7pxMAFvaI7H8E8JsAaA/yLIAVrTWlld7L9l8GYAnAf95WX76slBrHeWi71vp5AJ8F8AyA\nFwCsAvgRzl/bAXc7z/cYfB+A/+8C0fbChZ4ULgiUUlUA/xXAv9Za1+Vvuj9l77pLRin1FgCntNY/\n2u26PREBeAWAL2mtr0M/rDymKuxh26cB3IT+xLQIYBw7Rezzhr1qZxqUUr+Nvgr7J+ebdhZc6Enh\neQAXi78Pbt/bMyilCuhPCH+itf7z7dsnlVL7t3/fD+DUHpD+eQBvVUo9DeAr6KsQXwAwpZSi3ap7\n2f7nADyntb5v+++voT9JnI+2/zMAx7XWS1rrNoA/R78/zlfbAXc7z8sYVEq9F8BbALx7e1I6b7Sz\n4kJPCj8AcMW2FbqIvtHlG3tFTPX3nv4hgCNa698XP30DwHu2r9+Dvq1hV6G1/qjW+qDW+hD67bxL\na/1uAHcDeMde0t6mfwLAs0qpK7dvvQHAYzgPbUdfbXi1Uqqy/Q6I9nlp+zZc7fwGgH+x7YV4NYBV\noWbsCpRSb0JfbXyr1lqeyPINADcrpUpKqcvQN3Z+fzdpD4QLbdQA8Gb0LbJPAvjtPab1GvTFxocB\nPLj9783o6/Z/A+AogG8BmNljPn4RwF9uX1+O/kA4BuC/ACjtId1rAfxwu/1/AWD6fLUdwO8C+AcA\njwD4vwGU9qrtAP4UfdtFG30J6VZXO9E39n5xe/z9GH0PyW7TPoa+7YDG3B+I8r+9TftxAL+8l+PO\n91+IaAwICIjhQqsPAQEBI4YwKQQEBMQQJoWAgIAYwqQQEBAQQ5gUAgICYgiTQkBAQAxhUggICIgh\nTAoBAQEx/P/QKIxOKpbFdgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/2... Discriminator Loss: 1.2459... Generator Loss: 0.9999\n", + "Epoch 1/2... Discriminator Loss: 1.4056... Generator Loss: 1.7060\n", + "Epoch 1/2... Discriminator Loss: 1.3388... Generator Loss: 0.7322\n", + "Epoch 1/2... Discriminator Loss: 1.1195... Generator Loss: 1.1036\n", + "Epoch 1/2... Discriminator Loss: 1.1910... Generator Loss: 0.7477\n", + "Epoch 1/2... Discriminator Loss: 1.2023... Generator Loss: 1.2572\n", + "Epoch 1/2... Discriminator Loss: 1.2410... Generator Loss: 1.6392\n", + "Epoch 1/2... Discriminator Loss: 1.2184... Generator Loss: 0.7372\n", + "Epoch 1/2... Discriminator Loss: 1.2382... Generator Loss: 0.6883\n", + "Epoch 1/2... Discriminator Loss: 1.3832... Generator Loss: 0.4813\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnX2sXVd14H/rfr0vf70XJya242CIw0cju4BFA1RDRAqE\nFCUdFKEA0oQWFI2gA6UjQUL+GI34B+hAS1GbTgiUzCgiZGjaRKgtk3FBw4BwkxgSkjjGJh+1jR07\ndt5zbL93/d59a/44dx/vc32v7+e5Z5/r9ZOu3n3nfux19j1n7bXW3nstUVUMwzAchawFMAwjLEwp\nGIaRwJSCYRgJTCkYhpHAlIJhGAlMKRiGkSA1pSAi14nIHhHZJyK3pdWOYRiDRdJYpyAiReBXwLuB\nA8AjwIdU9emBN2YYxkBJy1J4K7BPVZ9V1TPAfcCNKbVlGMYAKaX0vRuA/d7/B4DfafVmEbFllUau\nEBFyuBr4JVW9uN2b0lIKbRGRW4Fb3f/FYpHl5eUgO7pQiAwqEYmP1Wq1rMRpi5MXzsocsryl0tnL\nUFWDlrVYLAJRHy8vLwPEf9O+dt1v2U07/jWrqi908pm0lMJB4DLv/431YzGqehdwF0SWQsgXgvvR\ne/lRssDJC8mLIlSWlpZyISecVa6qmujnYdDLddfLZ9KKKTwCbBGRzSJSAW4GHkqpraGhqsErhEby\nIrOTMw+yAkNXCMMkFUtBVZdE5I+BHwBF4Fuq+lQabRmGMVhSmZLsWggLNBrGMHhMVbe3e9MFs6Ix\nLz6rYWTNBaMUDMPojJFXCoVCITFFZ6SHWWOjQWbrFIZFCDGTUaZYLLJx40YAjh07xsmTJzOWyOgX\nG0INw0hglkJglMtlIFok41bPLS4uZinSeSkUCuzfH61oz1tfG80ZeaWQB4rFYnxDbdiwAYC5uTkm\nJiYAOHr0aLCKYXFxMTcrPV1sqVgsxjJXKpVgXZ5SqRSvoCwUCucs/05r/4W5D4ZhJDBLIQD85b2H\nDh0Cov0ACwsLQNibmSB8C8Hh5FxaWoqthlOnTmUp0nlZXl6ON4uJyDkbr9Lqd7MUDMNIcMFYCiHu\nf/d9cSdbtVqNX3eWQujkJabg5BOR4K0vIJFKoFAoDK1/R14puGDd/Px8xpIk8ZVUu0U/Id1sbnbE\nmbITExNx34Z+o+VFefk4WYfZt+Y+GIaRYCQtBTciFAoF1q5dC8CLL77ImTNnshQrgW8ptBq5QhnR\nnHWwZcsWbrjhBgBe+9rXArB161Y+9alPAbBz585sBDwP7lrwA3XG+RlJpeCnTzt4MEr4FNoFEZo8\n52N6ehqAm266iXe/+93A2aj9jh072L17d2aytcIpA+c++rGarHGL0gbtEgzKPTL3wTCMBLm2FFpp\nRvd/aIlgQ5wB6QQn8wMPPBBbCA8++CAAJ0+eDHKWxFmLLggayk7ZcrmcSs7PsbGxgVlDI5l5KY9R\nZiMd/Gshy+vCKSVVjZ83cx+6HTj8+FkHWaUt85JhGN2Ta/ehFWYhGA5/LUiW14XfdrsAowtE+p9p\nFZj2LYVBBS5HUikYRiNZDxSdtt+4crHTWapBzmSY+2AYRgKzFAJARM4bfDJGH+cGXHzxxVx++eUA\nPPnkk/HCsdnZ2aafCyqfgohcJiI/FJGnReQpEfl0/fiMiDwsInvrf6cHJ65hGGnT85SkiFwKXKqq\nu0RkJfAY8AfAR4HjqvpFEbkNmFbVz7X5rgsyMuhGh5UrV8bz/2YpXHhUKpX4+czMTHwNnDp1Kl57\nMKDrIt0pSVU9pKq76s9fAXYTlaC/Ebin/rZ7iBSF0QQRQUQolUq5qqNoDAb3+0O0+GhsbIxjx45R\nqVSoVCrxfo1hL4kfSExBRF4NvAnYCaxT1UP1lw4D61p8JlGK3jCMMOhbKYjICuDvgD9R1RN+bgBV\n1VauQWMp+gHI4b63368aCv4o4S99NS4c3LV65syZeAevv4kvq7UVfSkFESkTKYR7VfWB+uEXReRS\nVT1Ujzsc6VfIDuSIb7BisRj7XyErCH/Z7fHjxzOWpnOaJYTJsp99efylxI68KVtf9qz6tZ/ZBwG+\nCexW1a96Lz0E3FJ/fgvwYO/iGYYxbPqZffhd4MfALwGnjj9PFFe4H9gEvAB8UFXPOxQOwn1wo0Re\nRobGETdkq8YnazetVeq6crnM0tISgAVtW9PR7MNI7pI0Rg9/P4C/n6FxG7J7j9EU2yVpGEb32DJn\nIxc0W7wTQlBuFDFLYYRplzo+JPwZpDwQSianTui2b/NzZoZhDIVg3Iesk2B0QtaR927JY/AtjzKH\nTrfXrVkKhmEkCMZS8BNPwvm12rBHbL+OhGOQuxkHPTr68jbL0xDaCOzLqapBrzXxYwmuInQIfdvK\n0nZTud0QjFLoJh37sDu+2Vz4IBn0+fg3VR5cHlXNzZZx/1oIaTl9KxlqtVrX1625D4ZhJAjGUghB\n27YjDzI2kkeZ80Ce+rVbWc1SMAwjgSkFwzASmFIwDCNBMDEFwzCSNCaQ6aBW5EAwS8EwjARmKRgd\nIyLnLIZxiU2MwVAoFOICMBMTE/Hxq6++mp/+9KcAvPLKK0B6FoMphcBwN12Ii3n8RUbNLsg87F8J\nHVVNJHF1qyaff/55Tp8+Hb8nTcx9MAwjgaVjCwRnIUxPR1X2Zmdn4xEhRKshj7jAXeNekxDugXYU\ni8VYzj72hlg6NsMwusdiCgEgInFQyQWZ/PoV5qt3hm8BuOd+lu/x8XEAFhcXY4tsbm4urtcYMt1s\nGOyXXCuFPOwA7BSnAF588UUg2pZrbkN3+FvG3bXhAnULCwvMz88DUd1GdzwvKeCGeY337T6ISFFE\nfi4i36//v1lEdorIPhH5rohU2n2HYRjhMIiYwqeJKk47vgT8uapeAbwMfGwAbTQlb8k+W6GqzM/P\nMz8/H1cZXlxcTLxutKdWq8X5AwqFAoVCgWq1SrVajQOKqkq1WmV2dpbZ2VkWFhayFjs4+lIKIrIR\n+H3g7vr/ArwL+F79LamWou9EKbj39JKBJkv8izhr8qJ8nZxLS0uxMmhWyl1EWFxcTCjevJLGb9Ov\npfAXwGc5WzbuImBWVd0ytwPAhmYfFJFbReRREXm0TxkMwxgg/RSYfT9wRFUf6+XzqnqXqm7vZN60\nFc5cbMSZjk6L+qmz8oQ7jywREVatWsWqVavi/0O1GtpZVyH0Zx7oZ/bhHcANInI9MA6sAr4GrBGR\nUt1a2Agc7F/MzikUCkxOTgLRuny3ZNSf4ssDpVIpvrjL5XJs6jYmuE0bVWVubg6ASqUSKwS352GY\nU2XtOF+RYV+RlUqlTF2HQc6apdH3PatNVb1dVTeq6quBm4F/UdWPAD8Ebqq/zUrRG0bOSMOW+hzw\npyKyjyjG8M0U2jgH36z1I8+++1AqleL56WHL1C21Wo1yuUy5XI4j6n6V5WHi2j5z5kzch6GZ4n4/\nVypnZ8GdvP6I6qzHrAglgNyKgdwhqvoj4Ef1588Cbx3E9xqGMXxyvaKxGaoa7zeHsxuNyuUy27Zt\nA2DXrl0AqfiVbsSqVCpxDKOX+gBu2syR5cjit904rx/KiKeqiSXi7rmjXC7HsoY+UmfNyCiFdj9y\nrVbjiSeeAPraZdYW36T2L8JuCbVK0rBSgnVLuVyOFfLy8nIcCG2WnyI02UMjHKfQMIwgGBlLoRV+\nFhs3WqQ1CotIHOSanJzk2LFjqbSTJaGOssVikbGxMYA4Q5FPuVzOLMDY6y5X/3N+FiZnBaX1W1ww\nloIrXJqmWa6qcbT7+PHjqbVjnMsVV1zB0tISS0tLFIvFeHbEzeAsLy9nNmOiqom2zzcr5S+48xfg\nlUql+PzS5oJRCoZhdMbIuw/DxM3lQ5SJt5kZ2893Q7jme6ekdR5HjhzhoosuAuDo0aOsWbMGgM2b\nNwPwxBNPJNoeRj/6OR2c6e/vgPVl8GetnEVRLBbjHBDDDJSaUhggzn0AmJ+fP++y216+O3TK5XJb\nfzet8zh16hSnTp0CYN26dfGN95vf/CZuN21fvBX+7+/cGTgb+/BdiVqtlvkScnMfDMNIMNLZnIe9\neagT8uwGlEqluD9dpN9fE5DlhjM/Z8by8nJssfkzTln1uS/bhg0bYovGWQrz8/OJNRYp0lE255FU\nCs48czMOEHV2nm/IELAKUbnHUrwbhtE9IxNodFbA9PR0HHkGOHz4MBCZamYh9IcfrDNGF7MUDMNI\nMDKWgrMC5ubm4p181Wo1V9mWDCMERkYpuGjz+Ph4rAhcghLDMDrH3AfDMBIEYyn0Wy/RWQQnT548\nZzfZoMjblGZjdeU8kJe6mXmRE7q/boNQCv4uMEe3He6/v1dl0KrzmhWSCTXZCCTlbcy+HCL+zsVC\nodDTOv/z7Trs5nsa6eRaGKSLOmhF7uck7fQaMPfBMIwEQVgKbv4761G3Vft+Sfh27w2BZvKGjL/a\ntFar9dS37T6jqgNx//y+TeMaGPR3Li0tdX0dBKEUIOybzJEHGX3yJG9asvrfO8g2Rrlv+y0wu0ZE\nviciz4jIbhF5m4jMiMjDIrK3/ne6nzYMwxgu/cYUvgb8s6q+HthGVJL+NmCHqm4BdtT/NwwjJ/S8\nS1JEVgO/AF6j3peIyB7gGlU9JCKXAj9S1de1+a782GKGkSKN/r+bmRnQDEfquyQ3A0eBvxWRn4vI\n3SIyBaxT1UP19xwG1jX7sJWiN4ww6cdS2A78DHiHqu4Uka8BJ4D/pKprvPe9rKrnjSukaSlcfPHF\nQLRL0mnbxipHRue4kculsp+YmEhU5Ap5PUTe8K2GAdURTd1SOAAcUNWd9f+/B7wZeLHuNlD/e6SP\nNgzDGDI9T0mq6mER2S8ir1PVPcC1wNP1xy3AF8m4FP2qVat4+9vfDsDBgwfZs2cPcHY14uLiYq6m\nlkLA5apw/bpmzRqeeeYZIMplsXv3biBKmJplKjw3yg47g/MgSWs6tR19pWMTkd8G7gYqwLPAHxJZ\nH/cDm4AXgA+q6nkrowzafXBLO8fGxmL3Yf/+/bHp6zL95mn9eig0FlOZmpqK3bHp6WmOHj0avzbs\nvnUKYPXq1bFM7re23bJAh+5DX4uXVPUXQLNGru3new3DyI6RTNzqRrNSqdS08IYxeqxfv57XvOY1\nALzzne/kK1/5CmBB5QYsm7NTCMZoIiJxjOPDH/4wO3bsAGDv3r3mLjTHsjkbhtE9wWyIGhQiEs+V\nWyAxfQqFQpxjYNg7XYvFIm94wxsA+MlPfhLPLvWx9iZ1+V0laTgrZ6ezNM4tdp9LS9aRUwr+Flkg\ntSxM3eDkaUwgkkfcbI67QKenp7niiisAeOyxxzh06FDLzw4K1/brX//6uG8ff/zxnm8Sp9RqtdpA\n63/6+Iqg1y3tTqa0t8Sb+2AYRoKRsxQguXAlhAU0biQSkVykR2tFpVLh5ptvBuA973kPADMzM+zd\nuxeAH//4x0ORw43mzz///EDS4vmZwNOerRgbG+u59majhZCWuzOSSsH3ubKMKbi23Y85OTmZ2Cfg\naGYOhhgLKZfLrF27FoCtW7cCcNttt/Hgg9Gi1Wq1OhQ53M1UrVYHMsN05syZ+Pua5WAcBO57FxYW\nejb/G6+ntK4Rcx8Mw0gw0pZCKDkKt2zZAsDx48dbWgpuBH7ppZeAyEQOxeJxLC8vMzs7C8Bb3vIW\nIDqntKPhjfiBwUGsSfHlTsPdLBaLcRszMzO8/PLLXX/HMPODmqVgGEaCkVzRGAougLVy5UogqnPZ\nbCQqFouxn+xGQVWNR8Fh+ep5o1AotB3ZW8Vr0pp6bNa2iLBuXZRr6MSJE/HxkydPdvVdA7hX098Q\nZZwfF2V2Jne7FPJw9iItl8txAMxI4m4qPzW8qsZKWERiRbxixQogci/m5+eBKNg3jL51v/f09DQ3\n3HADAIcOHYpnaZopJv/mz8r9NffBMIwEZikMgW7MPjd6mJXQmmbJR3xXQkTiYJ4L7KpqbDUUi8Wh\njsInTpzgkUceASJLwQVF27ku/nn6Lmba5DKmkLdCr+1wtTR9hr3Dsx+fdRj+eSvarfFwr4+NjcV5\nJQuFAnNzc+e8N00ZnRylUqmpwnd9uHr16qazE8OMKZj7YBhGgty5D4VCITYDnTl16tSpLEXqm6mp\nqXj0yMpt8CPynayLcCPfunXrOHbsWMefGzSdtre0tMTk5CQQuRTDtDb9fmn1+zorxlkwWZIbpeB+\nxLVr1/LlL38ZgOeeew6Ar3/967HJ5f/InUxZhcCZM2cy2wvhm7WbN28Goqkyt9ux8aZx73/d66L6\nPp///Of56le/CsBTTz0VXGIbJ3+lUmFsbAyIZoNCuC6auT6t5BqmsjX3wTCMBLmxFPwos1vMs23b\nNgCuuuqqOLX4Sy+9FC8ACmE06IQsZxr8XA++6TozMwNEo6o/St1yyy0AbN++Pf68sypC7G9nHVSr\nVY4fj5KKhyZnoVAIKpdkbpSCY3Z2Nja1X3jhBQCuv/76WClMTU3FkfxqtRovWDGa426QarUap2ff\ntGlTvOBqamoq9ndvuukm7rzzToD4Bvv4xz8ex3RCTCDjBhB/MAkFfxFWSPRbiv4zIvKUiDwpIt8R\nkXER2SwiO0Vkn4h8V0QqgxLWMIz06aeW5Abg/wFvVNV5Ebkf+EfgeuABVb1PRP4GeFxV72zzXT0J\n4SwCP7rbuPTV6B/Xz1deeSVf+MIXALjjjjsA2LdvXy4TxlygDGWdQgmYEJESMAkcAt5FVFcS4B7g\nD/pswzCMYeJG2V4ewKeBk0Ql6e8F1gL7vNcvA55s8dlbgUfrD7VH+I9CoZC5DPbo6/FoJ/d1z5aC\niEwDNwKbgfXAFHBdp59X1btUdXsn5owRBqEFxIx06Md9+D3gOVU9qqqLwAPAO4A1dXcCYCNwsE8Z\nDcMYIv0ohX8DrhaRSYkie64U/Q+Bm+rvuYUMS9EbhtE9PSsFVd1JFFDcBfyy/l13AZ8D/lRE9gEX\nAd8cgJxB4Ha7+Y9uP9/N8X4JJUdlJ/Tap1mRN3m7IZdbp7Oi31Tsrba/ppW/P09l84aZmHQQ5E3e\nOvlKxzbMJBLd4hdzgegi6CXo1uriGfRF5XY7+hduqH0LyfqKIhLLGsrN5vejn0PT4V8Locjs8OtY\ndHoNBKMUQo5su87My+jgZyAKWU6Hv+AMwutbXx63UCsvO3BrtVrXLo7tkjQMI0EwlkJoo0Mz8iCj\nT57kzZOsELZl20i3fWuWgmEYCUwpGIaRwJSCYRgJTCkYhpHAlIIxMNz6CCPfBDP7YJxLHpLFlEql\nOAnL8vJynM05ZJmLxWI8exCinFn/7qbaDcNIYJZCTvBLs2U9kvgUi8V4KW2e0rKNj48DBJfYN4RV\nqCOtFAqFQmza5rlgq4gwMTEBRMtWQ0oHLiIdF0zNGnctrFq1inK5DERl6bO+CSF7l8HH3AfDMBKM\npKXgTO1SqZSLiHgrk9E/Nj09DcDBg2ElsgrJammHs2ReeeWVuG9DGJnhrBzmPqTMunXrOHz4cNZi\n9E2hUIgLtRjtabXj0imFxl2ZIZG1QgBzHwzDaGAklcLk5CSTk5OsXr06MY8eKu1GBzf/v7i4GMRI\nEiouPVqlUkkUCGpGu9cvZEZSKSwvL7O8vMzll1+eC6XQCe6c8oKIJKYrh8HY2FhcUHZU8ycOg5FU\nCoZh9E7+h9AmbNq0CYBf//rXwUbHQ4gyp4mfa3EY+OnRzM3qD7MUDMNI0FYpiMi3ROSIiDzpHZsR\nkYdFZG/973T9uIjIX9bL0D8hIm9OU/hmFItFTpw4wYkTJ9i2bVtwvrjzs1WVQqGQi3UUvTDsPi+V\nStRqNWq12shYCZnFRDooIvvvgDfjFYoFvgzcVn9+G/Cl+vPrgX8CBLga2Nlhodq+i2eKiNbrR2i5\nXNZyuRz/H8qjVCrFj8nJyfh4q8Kt/jnZo/3v3+49xWJRi8Vi5rJ2+iiVSoP+zsEUmFXV/wscbzh8\nI1GZeUiWm78R+B8a8TOiupKXtmvDMIxw6DXQuE5VD9WfHwbW1Z9vAPZ77ztQP3aIBkTkVqJy9APB\nNxndBp3Q8HPwLywsxFOlqhpv0HFTav7uveXl5ZExidOik/4JyY08H24aNyt5+559UFVnunX7ubuI\nak/mpmzcIPB/aPe8VCrFz50yqNVqCaURAv7cf2h7B1rhyxu6rHBuNaosFEOvUa4XnVtQ/3ukfvwg\ncJn3PitFbxg5o1dL4SGiMvNfJFlu/iHgj0XkPuB3gDnPzbjgaRyp/FHBWQXVajU+FkLSkkKhwMqV\nKwG4+OKL49mS/fsjLzGUfASt6CQBTEi5DF71qlfF1sGRI0favDsd2ioFEfkOcA2wVkQOAP+FSBnc\nLyIfA14APlh/+z8SzUDsA04Df5iCzCODu8FWrFjB7OxsxtIkbw5fYa1duxaIthw79ya0jEWNOPk7\nWUAVgjJwMaUNGzawa9cuIDu52ioFVf1Qi5eubfJeBT7Zr1CGYWTHSC5zDhV/9C2Xy/EIrKrMzc3F\nz7OQyQ8iFgqF2Nz2NzSdOnWK06dPD1W+XvCT6zhLoZXFEEL16PHx8Tjd3sGDB/M/+2B0jts5CJHL\nEEJk3MnjuwxLS0uJ588++2z8npBxMheLxVgJdLItPWsWFhaC2qMzmmtsDcPomZG0FFql48oKJ49v\n1p4+fToepU6cOJGZbE6GQqEQyzk+Ph7PgpRKpWAXgzXifutqtRrUjELeMEvBMIwEI2kphDY6OHka\nR9wQ/Mhm5dNqtRqrVq0CCGKqtBdCuwbyxEgqhVAJ+UL1ZVPV3CoDo3/MfTAMI4EpBcMwEphSMAwj\ngSkFwzASmFLoArcUOC/1BPIip0+eZM7LtdCtnMHMPrjEm44sIvWtdgm6pcDuWGMy2NBmFfz9Cv5y\n5UGQxqIgf+GUnxo+tH6F5ntFhpnKvhWtSgb410KncpqlYBhGgmAshRBSczfO1Tuchg1hA1Mn+PIO\nWs40zruxCnTIfRtqGrpW8tRqta7LCJilYBhGgmAshdA0r0+oo0M78iRvnmTNG91uDzdLwTCMBKYU\nDMNIEIz7YBhp4me9CiFLdsiYUjD6Io0ZjkHiZjUqlYophQ4x98EwjAS9lqL/MxF5pl5u/u9FZI33\n2u31UvR7ROS9aQneRubzPpq91+gOvz+LxWJi5VxIFAqFOGNztVpNFNsxmtOJpfBt4LqGYw8DV6nq\nVuBXwO0AIvJG4Gbgt+qf+WsRGcrV4l+kK1asYMWKFZTLZcbHxxkfH0+U2vZxx4alGJyMlUplJBSS\nu+EaFyCFQq1Wo1arsbi4GD8PnVKpRKlUYmxsLJNrpKdS9Kr6v1XVOWY/I6oZCVEp+vtUtaqqzxFV\ninrrAOU1DCNlBhFo/CPgu/XnG4iUhMOVoh8afnGPWq3GmTNnOvrcMIJlxWKR1atXAzA1NcXBg1Ht\n3UKh0HQpdR5oDNo1G9Xyci4hUCwW48IwvmXr1+JI29rpSymIyB3AEnBvD5+9Fbi1n/Z9XOfVarW4\nzmEIhT58JiYmuOSSSwB44YUXmsqXlxuolZzu+MqVK3nllVeGKVJT3Lr/0PerOFSVkydPAucWIO50\ngOuXnpWCiHwUeD9wrZ7t7Y5L0avqXcBd9e8K/9cyjAuEnqYkReQ64LPADarqFxd8CLhZRMZEZDOw\nBfjX/sU8P/4usGKxeE6+g6yZmppiamqKa665hsOHD3P48OHgqza3ol3gy72+sLAQxKyEsxAmJiZy\nEdhdXl6OZXbBW7cWxAUg06bXUvS3A2PAw/VO/pmq/kdVfUpE7geeJnIrPqmq4Yd7DcOIkRD8rF7d\nB79K8sqVKwGYm5sLxnccHx8HYNOmTQB84hOf4DOf+QzQX+wgy2CkG/lbBbucbBMTE0FUqHYjqxuB\nIT9xG0gWzR3ASszHVHV7uzflepnzihUrANi6dWvceUeOHGHfvn1A9oFGN9PwgQ98AIC777675VLb\nSqUCJKtItbp4s1IKY2Nj560rKSLxTRhKPcc0E84MA78O6bCWZ9syZ8MwEuTaUnCj7vj4OFdeeSUA\n3/jGN4IZEVww8Z577gEiy6WZtheRc46f7xyysoCaTYn5I7CIBFuhOmursVMa+9PJPcx+zbVSmJyc\nBKIiqN/+9reBMHI9AnEE3sfNPzeSpzl0f97f/wth3njt+nVycjK+4VQ1sx2UfpZon3YxnDQw98Ew\njAS5nn1wwTlVjTVpSKOVC7qN0v79EIKHg8TtooQwrEx/mf7ExERsbQ5IrtGffRjWss9eGaQyCCUF\netY3TSP99os/oISAqsZu8SWXXMLc3BwAL7/88tBkMPfBMIwEF7RSCH3Jq48zc0MbqbOm3yCtn2cj\nhL6dmZlh/fr1rF+/nu3btzM3NxdbC8Mi1+5Dr+RJGcBwF67klRBu6H5wcY3LLrssjkXt2rUrPj7M\nWNkFbSkYhnEuF6Sl4BjQevLUGHTFaCNMRCS2CEqlEo8//jgQ/e5ZWEBmKRiGkSB36xQGsbEl5Ll2\nP97hng/Ln2xVnTiktR+9MjY2Fv/ei4uLQf32vmyqmuaS5tFcp+DfNG5r8sLCQlc/ckgXhMPfDQfZ\nXLiuvXK5HOcJnJ+fj+fxa7Va0Aq1Gb5iDVX20NLOm/tgGEaC3FkKy8vLTE1NAWeXOV9++eUcOHAA\niIIzbqVjKHPPrfCtA2e6Z7nLsFwuA7B58+b4+dLSUpx1ulqtBrsLshV+2bi8psAbNrmOKbgdZP45\n+GvHQ1cKjkqlEs8wZJkdyN+pd9FFFwFw+vTpYLNjd0KoLkNGdBRTMPfBMIwEuXMffI3fbCNLHkez\nUDZ2+VbK0aNHM5ZmMJiF0D1mKRiGkcCUgmEYCUwpjDB52/iVJ/LUt90WwTGl0AV5qDCUV0axb/N6\nTqYUDMNIEMrsw0vAqfrfLFjbSdspRbI7arsXOpA3tbY7INH2kGcJ+j7vTuRt8Z6h97knx+WdvD+I\nxUsAIvJoJwsrrG1r29pOF3MfDMNIYErBMIwEISmFu6xta9vazp5gYgqGYYRBSJaCYRgBkLlSEJHr\nRGSPiOwTkdtSbusyEfmhiDwtIk+JyKfrx2dE5GER2Vv/O52iDEUR+bmIfL/+/2YR2Vk//++KSCXF\ntteIyPeaYRhLAAADl0lEQVRE5BkR2S0ibxvWuYvIZ+p9/qSIfEdExtM6dxH5logcEZEnvWNNz1Mi\n/rIuwxMi8uYU2v6zep8/ISJ/LyJrvNdur7e9R0Te20/bgyJTpSAiReCvgPcBbwQ+JCJvTLHJJeA/\nq+obgauBT9bbuw3YoapbgB31/9Pi08Bu7/8vAX+uqlcALwMfS7HtrwH/rKqvB7bV5Uj93EVkA/Ap\nYLuqXgUUgZtJ79y/DVzXcKzVeb4P2FJ/3ArcmULbDwNXqepW4FfA7QD1a+9m4Lfqn/nr+j2RLY0V\ncob5AN4G/MD7/3bg9iG2/yDwbmAPcGn92KXAnpTa20h0Qb4L+D4gRAtZSs36Y8Btrwaeox5H8o6n\nfu7ABmA/MEO0YO77wHvTPHfg1cCT7c4T+O/Ah5q9b1BtN7z274F7688T1zvwA+Btafz+3Tyydh/c\nxeI4UD+WOiLyauBNwE5gnaoeqr90GFiXUrN/AXwWcEkfLgJmVdUVdkjz/DcDR4G/rbsvd4vIFEM4\nd1U9CPw34N+AQ8Ac8BjDO3dofZ7Dvgb/CPinjNruiKyVQiaIyArg74A/UdUT/msaqeyBT8mIyPuB\nI6r62KC/u0NKwJuBO1X1TUTLyhOuQornPg3cSKSY1gNTnGtiD420zrMdInIHkQt777Db7oaslcJB\n4DLv/431Y6khImUihXCvqj5QP/yiiFxaf/1S4EgKTb8DuEFEngfuI3IhvgasERG3ByXN8z8AHFDV\nnfX/v0ekJIZx7r8HPKeqR1V1EXiAqD+Gde7Q+jyHcg2KyEeB9wMfqSulobXdLVkrhUeALfUodIUo\n6PJQWo1JtI/1m8BuVf2q99JDwC3157cQxRoGiqrerqobVfXVROf5L6r6EeCHwE1ptl1v/zCwX0Re\nVz90LfA0Qzh3IrfhahGZrP8Gru2hnHudVuf5EPAf6rMQVwNznpsxEETkOiK38QZVPd0g080iMiYi\nm4mCnf86yLZ7IuugBnA9UUT218AdKbf1u0Rm4xPAL+qP64l8+x3AXuD/ADMpy3EN8P3689cQXQj7\ngP8FjKXY7m8Dj9bP/x+A6WGdO/BfgWeAJ4H/CYylde7Ad4hiF4tEFtLHWp0nUbD3r+rX3y+JZkgG\n3fY+otiBu+b+xnv/HfW29wDvS/O66/RhKxoNw0iQtftgGEZgmFIwDCOBKQXDMBKYUjAMI4EpBcMw\nEphSMAwjgSkFwzASmFIwDCPB/wfZOLg8L5jSKgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/2... Discriminator Loss: 1.0094... Generator Loss: 0.9240\n", + "Epoch 1/2... Discriminator Loss: 1.1167... Generator Loss: 1.6473\n", + "Epoch 1/2... Discriminator Loss: 1.4142... Generator Loss: 0.5206\n", + "Epoch 1/2... Discriminator Loss: 0.9967... Generator Loss: 1.5393\n", + "Epoch 1/2... Discriminator Loss: 1.3248... Generator Loss: 0.5312\n", + "Epoch 1/2... Discriminator Loss: 1.0156... Generator Loss: 1.1135\n", + "Epoch 1/2... Discriminator Loss: 0.9628... Generator Loss: 1.9009\n", + "Epoch 1/2... Discriminator Loss: 1.0585... Generator Loss: 1.5717\n", + "Epoch 1/2... Discriminator Loss: 1.0929... Generator Loss: 0.7814\n", + "Epoch 1/2... Discriminator Loss: 1.0840... Generator Loss: 1.0624\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsfXmYE0X6/6eSTDIXwzAMA8PIKcghgiCC6Cqo67qKLF6A\nCiqCiq54oOu5i/ft1wMUUVZdxeXSxQtRRBCRVQFBEJFDkOG+GYZj7iT1+6Pnfae66STdnQTD/vrz\nPDxkku6q6uqqt977FVJKuHDhwgXB83sPwIULF6kFlyi4cOFCB5couHDhQgeXKLhw4UIHlyi4cOFC\nB5couHDhQoekEQUhxJ+FEGuFEOuFEPclqx8XLlwkFiIZfgpCCC+AXwGcB2ArgB8AXCmlXJXwzly4\ncJFQJItT6AFgvZRyg5SyGsBUAP2T1JcLFy4SCF+S2i0CsEX5eyuAnpEuFkKktFulEAIAQFyVEML0\ns114PB5du8bPTmEcb6ojnjlUnzXSZ7ttqTDeT+8sHA4nbZ4jtev0mZTr90opG8W6J1lEISaEEDcC\nuJH+9nq9CIVCMSdE/Rxpk4bDYTvj4LbMNikA+Hw+3fderxfBYBAAkJaWhurqagDagqHvVajtqv2l\np6cDAGpqavhaGns4HHa8oAOBALdL3weDwahESJ1Dj8fD4xBCcBtmmyYUCuk2SiQY+1bHEAgEdHMQ\nCoUsPasQgp+1urpaN460tDQAQGVlpen96nMT0tPT+f3R96FQSDfmrKwsAEBFRQX3R2M3EjezPiLB\n6/Ue8XzqfgiHw7wO1fkxW/fqOPx+Pz9TKBTaFHMgSB5R2AagmfL3cbXfMaSUEwBMAPScgtlGML5E\nehn0fzAYdEy1YxETIUTUjW5lMavtquOrqqoCoBEdIixm11mB+hzUrjrOWKexkWDRIjUuTNpsZoQs\nGiLNLQDds1t5bvVZ6d2kp6ejoqKC+4pGWCJxZpWVlabPp15TVlbG39H4aY7VuVKfz8oz0fz4fD4e\nu3rICCF0xMc4tkjPVF1dbXstJUvR6IOmaDwXGjH4AcBVUspfIlwv7bCQ0U6dowGPx5PQvuNhn2O1\nq27oeKFyEImGU6L+e4lKiZ5bY9tAbPHBwbpZKqXsHuuipHAKUsqgEGIkgC8AeAG8FYkguHDhIrWQ\nFE7B9iAscAokT/l8Ph2rVXu/jnWMYxwAjmSl69WrB6COdVSvjSX/2u1bhdN3k5GRAUATT1SOJtap\nSr/7/X5mVVWuSL2mYcOGAIA9e/bYmnOVy6N2VZY51TmF7OxsAEB5efkRfSZzDB6Ph3VQpCdR5zDS\n/jFwd78fp5AMkGwVDAZ50fv9fgD6xa8SDbsEItJLpX4OHTpkf+AWoCrM6NkqKipYN2B3sdWvXx8A\nsHPnTt33sdqJtMDoM8nbAHiBqvNtpnsxQlWGEQKBgI7gWoXKwqvjPBpIlhgVrT+jEtSOrsIOXDdn\nFy5c6JAy4oOZEsuMnVe/p9M1GAyisLAQgHaaDR48GADw8ssvo6CgAABQXFyMhx9+GEAdy19eXo73\n3nsPALB582adxpn6UFlbGp/X6+XPiVI05uXlAQBeeOEFAEDz5s3x+OOPAwDmzp1ruS2jEjSRNm9q\nX73P5/Px5wEDBuCTTz4BoHFvxpNNvd/v9/Mc1tTUxDzRqI20tDRuo0GDBvy5Xr16/K5PPfVUTJ48\nGYAm3gCRuZicnBwef69evfDzzz8DAEpLSwGYmzTp+c3m0ArnEm3u8/LyeL1VV1dH7D9WHxFw7IsP\nsZx61E2cn58PALj99tvRq1cvANrkT58+HQDQrVs3Nn1dc801ALSF++WXXwIAfvvtN13b9OLMCEWk\n8TiFlJLHtmbNGgDAOeecgxtv1Nw4vvnmG904osG4ucwWrCqL2oWxfdUX4vDhwzyf77zzDg4fPgwA\nmDlzJosHdH9ubi4OHDgAQHsPVolUOBxG27ZtAWgi1qhRowAAJ598Msv7HTp0wLPPPgugztwZDodx\n5513AgB2797NJtfbbrsNH374IQBg69atGDJkCADgtdde4/FYHZsVa0Cka/7whz8AANq1a8ei2aJF\ni1BcXAwAKCkpOWrikSs+uHDhQoeU4RSs2sCFEDjuuOMA1HmB5ebmomnTpgCAxYsXo1OnTgA0yk/s\n1+rVq/HQQw8BAFq0aAFAO0XOOOMMAMCSJUt0JwJZNoLBICvYaHwej4cVgtXV1Uc4HjkBiQ+5ubkA\ngAULFuCEE04AAPzpT3/CzJkzLbcVyWEpWcox1dOzW7duADQWfsOGDQCA1q1bY968eQDAHoFpaWlY\nsGABAE2jT0rVSBwRiYr169fHRRddBADo378/unTpAkAvxgB14gLdFw6H8eqrrwIA9u/fz9aqgoIC\nNGnSBABw4MAB3HPPPQCAnj01r/y5c+dGPKFpnml9pKWl6RSmZvOtrnNVBDv++OMBAHfffTev5XA4\nzCLkyy+/rHNKSyZShihYNe2pXmy0GQ8ePIhTTjkFgMZ+/fnPfwagvXzV1DV+/HgA2iajtt544w1u\n2+gJBmha9n79+gEA/vOf/wCoc8m2M+5Yz0Qs45YtWsjI+++/j4MHDwKoM4NZBbVVXl4e99jsYOnS\npUxMa2pqeA7z8vIwYsQIAHWy+ksvvYSWLVsCAAoLC1nsiATaEIcOHeLPxcXFaNy4MQBtjohQL1q0\niAn8tm2aI+2sWbNwxx13ANCIFJmZhRAsphUXF2Pz5s26fmN5gQJ1mz8WQaB7jG16vV5cfPHFAICm\nTZvy+66pqcFll10GAHjxxRcjjiManDjGueKDCxcudEgZTsHj8Vg6dcPhMPbt2wegTnxo1KgRpk6d\nCgCYOnUqs4xqMIvH48EVV1wBQBMrAOD666+PaR+vrKzE+++/r/sukgLUqbuyEILHsWPHDgDArl27\ncOKJJwKo4x6sQuUQjqZzT9OmTVkkmDVrFp5//nkAmshAIh+JcyUlJcwJrV+/PmbbNP7y8nKMGTOG\n2yVRsUGDBli6dCkATQwgMUQ9sYkbGTp0KB555BEAwIYNG7B//34AmgXKzjyp8SHGviIhUgzIpEmT\nAAAnnHACmjVrxs9MilTVCmYHTt67yym4cOFCh5ThFOwowYyKvc2bN/OJqMr7qseb1+tlmzXpBmLJ\nsdFgRrWdnsZSSjRv3hwA8NVXXwHQZGhSgP33v/91OErnYyIlWiAQYBk+1jtq06YNz+2rr77KfR84\ncIDNj3S6qqY+p56nhw8fZhNubm4u9u7dG7U94qD+9re/sXKwcePGWLt2ra5dq6B+1PXmZL6rqqow\na9YsAECXLl1w/fXXA9D8PohLlFJaClFPBFKGKAD2o/BokjIzM3HhhRcCAP7xj39g+fLlALRNv3r1\nagCa7Zo2nB1noFh9J+IFpaenY9y4cQDALHBmZiY70pxzzjnsFHS0kJmZCQA4/vjjdSHOxOqTsldK\nyYrdhg0bMhts3ByqNQfQNPW0mQwx/zHHpoYsk1hy8skn49NPPwWgKZ6N7tSFhYWsaGzUqC7PSFZW\nliX3bDPQM5IbvJSS27IqDgMaoRwwYAAAoG3btkzcCgsLWdRt1aoVXnrpJQDAwIEDASTP7d4VH1y4\ncKFDynAK8XjZrV69mlltj8fDfgjnn38+26ZnzpzJHITTk4FgNytSLHi9XuTk5AAAOnfuDADYtGkT\n28pJYXe0IITgKMi//OUvbDdfuHAhunbtCgCsUPT7/Tj99NMBaD4ipLQzgk5NMhv6fD4WS+rXr8+i\nnR00aNAAEyZMAKAp6O69914AwIcffsgiF5mq77jjDg4UE0LweNavXx/3eqC2fD4fc5B2UFBQwCbS\n8vJynqPvvvsOu3fvBgC89dZb/E7ofyucgpMcGClDFJwMnthA1R8+FAqxnf7jjz/GO++8A0DbZIna\nyKqjTLwLCtDGTL765II9a9YsrFixAsCROpRkgeTs+vXro2PHjgA0eZds6KeccgrHmFCMRpcuXXiR\nFhYWYsaMGVH7UMUOet979uyx9W7UaE6V2NB7HzhwIH9/1113AdA2G1l4Dh8+zOIMObQ5Ac2XGpdB\nzmfV1dURCSRBDb8na8mhQ4dw7bXX8jiJQEyaNImtZ3bgWh9cuHARN1KGU3ACYq3GjBmDxx57DIA+\naKmqqort/olk99UkJIlIpVZRUYFp06YBqGOvp06dilWrjl6ZDK/Xy6x2IBDgALNu3bqhQYMGADRN\nPZ3uTzzxBADtZCNF2yeffBLRL8KYvk7NHeh0/vbs2cPiw+jRo5lTKCsrw2233Qagzm36mWeeweef\nfw4AuPzyy9mtnLgcJzCOPxwOsxhkheslZW5JSQmP/amnnsKuXbt07QLA119/zZwHWXLsjNEOUjp0\n2ipOO+00PPfccwC0hUuuqiUlJSxbjhs3Lm6XZFrw6enpHKa7fft2yxGMkZCWloaxY8cCAC699FIA\nmrY5XjfltLQ0y2O7+eabOULwwIEDTHD79+/P8q4alk1iwLZt23hjzZ8/H5dffjmAI0UeY8i1qp2P\nJ/qUXIJbtmzJB8Pdd9+NDh06AKhzBtu4cSPHO6Snp7OVpFevXuwqHStM2Qgi4HT/jh07bMUnqNYz\naqukpIR/V82Qubm57Op80003AdAOE5t7xlLotCs+uHDhQoeU4RTiYcM9Hg+fGDfddBN++OEHAMDI\nkSPZznv//fc7PnmNLLGagiweqwmhYcOGHFFIJ2xBQYHjdsnN28qpRc9WUVHB/R08eBAPPvggAM1P\n4ZJLLgGgncbkLETIzs5mu/rixYvZ2rNq1SrL48/JyWGX53hgx6X77LPPBgDMnj0bf//73wGAczBY\nBTliRUrh7xRmCYXatm3LrtnkyzJ58mQO+LIIS5xCyhCFeMQHtRYEUGciUiMct2zZgmXLlgGwtlmM\n7QN6opAIqwON+YILLsDTTz8NoI6FPfXUU+Nu18p8tm/fHgCwYsUKdkzq2bMnJ0hRWdi0tDQ2/ZLc\n27JlSzannnHGGSzjmyU2NULNbhWvCGYXdIjs2rWLD4727dvb2tSkE6B3lghHNtU8nZOTw3k2s7Ky\nOBHLaaedBgB4/PHH7R50rvjgwoUL+0gZTiFZBVEI9erVY4oe76mU6LFmZ2ejT58+/BkAR30mG+R3\nsGzZMowcORIAMH369IjPRwoxlRshcSUvL4999WNVafq9QVzK3r172WHMJiueFPHB5/Ox63Z2dja2\nb98OAGjSpAlbKCgnBYmcNpBcTkEI0UwIMU8IsUoI8YsQ4vba7/OEEF8KIdbV/t/AaR8uXLg4+ojH\nTyEI4C4p5Y9CiHoAlgohvgQwFMBcKeXTQoj7ANwH4N5YjcVDYa0mzCQZkFBWVqazbUdqg04EOl3i\nqV1phrKyMixcuBAA2HswHqgBQ7GyThPXlJ6ezubEjz76SKczIa4gPT2dvUhJt7B161bOZDV79mx2\nJaacF1bHe7Q5VnqnVVVV7NVIGZisQo0kJcRrRg6Hw7wmPR4Pt7dr1y72T0iEPisaEiY+CCE+BvBK\n7b8+UsodQohCAF9LKdvFuNfRIIjNKisri+hSShukUaNGfD1p0xcuXMhZnDds2KBzwVXzDtJG/eCD\nD/j3RMNY4MaOg4oR1EakIqlA3bwQofz111+Z3R8/fjxmz54NAPjll1/YJbioqIgtDWRP93q97MdQ\nUVHBORMXLVpkebz169eP63mdoHt3jYv+/vvvccEFFwAA5syZE/M+szye6qFBc+5UdEpPT9c5xqlp\n8hOw7o5einchREsAXQEsAtBYSrmj9qedABpHuEdXit6FCxepgbg5BSFENoD5AJ6QUn4ghCiVUuYq\nv++XUkbVK9jlFIhFpUy3n332GebPnw9AYwfp9549e7IXW4sWLdjzjE78yspKPvHKy8v5FFCTs6il\n0khRmQx2l8xQt9xyCwDN3dUp1NPMzDzp8Xj4GuJQNm/ezGyrEAKLFy8GAKxdu5ZNuV999RXWrVtn\n2h715yRxitP5bNSoEWdBvvjii3HfffdZvpe4gpNPPhnDhg0DAMyYMcPWOGhtqMmB6Ts7QWzE2QGa\nQpzMwWpp+/r16zNHQtyDg1oQyecUhBBpAKYDmCSl/KD2611CiEJFfNgdTx9mOOmkkwDURRQOHjyY\nF2FGRoZuc7/yyisAtNBaymhDLHA0/3xqQ61TSUg0UfB4PLyxaJNmZmY6lk+j5ZAEtA1rZH1feukl\nLrJy7rnn4uSTTwagiWiUoWr79u2mmz1e7Xs8sQ/kZDV06FDWCTRr1ow3pZmlKT8/n60uCxYsYAJh\n972q4iaB+rXSFoWkz507l5PoTJ48GRs3bgSgiRLUxhlnnMEu2zT27du3M8FOZCRtPNYHAeBNAKul\nlC8oP30C4Nraz9cC+Nj58Fy4cHG0EQ+ncAaAqwH8LIRYXvvdAwCeBvCeEGI4gE0ABsY3RD3UoBzK\nsty7d2/OgKsGAVVXV7NNd/jw4ZyUwsppYCXfv50xE1QWUK2JSMEuJOLEY+M3CzAynlzUN83JmDFj\nmI3t2bMn97927Vq23ycrr4MqroXDYcuWHb/fzwFvQ4cOZRFsz549fNpeeeWVADTFLT1rkyZNeO0E\ng0EObjt8+DBzkfEi0tjVBDbnn38+AI0bve666wAAPXr04GQxrVq1YsVtSUkJc7rkEh4MBjF8+PCE\njFc3xlR2XlLlYbUwaZs2bQCAX3xubi4nt2jUqBG+++47vp/Y5GTls4sE9XlU+Z3k9pycHHZMSU9P\nx6BBgwCAn+3+++937DZLcq0dJ63fwywYb99er5czQe3YsYMraq1fv543OkXMZmZmokePHgA0/RFl\ntVq6dCnn7iwrK0tKUlSjjorYf1qzPp/PNPW9Gkmak5PDJmMSn1955RW2nsUqVVAL183ZhQsX9pEy\nnIJZQBS5/EZzLPo9EOlkM5aBN7vPjDVWrQSqeJGIZz5aacGPJfj9fl5bubm5HCBXUlLC1qpEQxUh\n1TRsdqDm8wA0DoM44Vip32pxbJWiN9PwH+1aiFYRiSikpaVFjcBUnaIiFX+NNxuRWZ/HEo6GGKPm\nRNy4caMuv6cd2PFqpffrtNKT2g8RrpycHKtigy244oMLFy50SBlOwev1QgjBFFVNo55qp53H4zF1\nbbWjnTf6DyTqWY0nrRrJl6rzqeJocAqqdUa1VtlNC2dMMWcl4U4iI0fVPJeJhMspuHDhQoeU4RQA\nzYRm5jJrRDTlmarME0KwIiYcDh8RXab2oXoVqu6loVCI7fdqf1ayOVMbdL/KSQghdEpFGqdqeqU+\n/H4/27bD4bDOI9PoVRcOh9krUj1JVPt/pLGqc2FWH9FYp1OdR7PPxnmI9J3qSh4KhXieVcWtmR8D\nXUPf0xyq74x0PMbxkixOHCp9pjlXa14S1D7UtRBLiavObXp6Oo+Jxi6E4HdWVlam4ybMnk/9jd6/\nWnpP5VjUGiVWuZSUsT54vd6EVV4i7WwwGOTJJn9ywHzhqgvQeI2RCKWlpZm6uBphjJ8Ih8Omocxm\nrshAXf1FI3GjyMbS0tIjyqEb4URkMG4gs6pHaq1GMwJhJOrRiIVx85s9SyylnnEcZuM1I0TqQSGE\nOCJ2IdqGt6NoVA8qlWgDmpWNlIfBYFAXS6HebySQgD4i1sLcu34KLly4sI+U4RQSpWBST4wGDRow\nNa6oqIg7OQW1azfRqBoFR/fZPbnpdCksLMSmTZsAaNyBUdkV7bOd/uLhLJzc5+R+p1A5n1j9JWM8\nqrhi/M6uFyohkjewYS0cW34K8UJ90S1btgQA3HvvvXj33XcBAN9++63ltoybgjY1EZVImZfU+3Jy\ncpgg0f1CCBZt7KQ09/l8vIAKCws5q9Gpp56Kn376CUBdpqNwOMzVnYzZj6wucDtEQdWNRBJhIl1D\nfWRlZbGcnaysQkIIrnSVl5eH4uJiAJrrObHuqqgQ6ZnsiAyRxkHroVOnTgC0AslOwvLVNR+p8E8g\nEOB1aFWn4IoPLly40CGlOAWnIoTH4+GUYN27d+dkG3369OEkKnY4hUiwo2Vu3rw511GgGg5er5eT\nl2RmZvIJFct6IYRgRenKlSuZ8u/Zs4dPGFXbriolrbo5O/WVUC0gdq9R2ehku2Efd9xxHBDVpUsX\nPPnkkwC0+TLrO1mZqD0eDyszqd5EIBDQWT2IS4lVFi4zM5Pn1ePx8LpQFY25ubmch8EqUkanQO6f\ndjS5aul0qh1YWFiIMWPGANAmm3L/tWvXLmYRmEghx2bfmY0zEAjwC/V6vWwloKi2++67DxMnTgSg\nRe9RJauTTjqJo90oa9SQIUOQlZUFQCNoM2fOBKCxvuTnrmqcVaiEwMx5SZVl402Q4pSQq5p+j8fD\n7ybR65EKyY4cORJXXXUVAOD111/HggULAGhRkvGIAoA9R6fs7GzOCUlmUTUyctq0abxufD4f/vGP\nf/A4qTAMFTjq2bMnHzwTJkzQiaSu9cGFCxcJQ8qID2QPV51tIsHIEpeUlGDJkiUAtBOWEm90796d\n2fW2bdvil19+4b4IsQp6mJ0CkU4GIydCJwFR8IYNG3KK9KKiIrRq1QoA0LdvX5xzzjkA6jgF1V7f\np08ffPyxlsBq9+7dMU8oM4WZKkrYeSYriKVoNIOUUmeJUUWJRLDulK35iy++AKCd0LNmzQKgpWCj\nNGbxPLede1X3fVoXxBGMGDGCRZv8/HzdKf/Pf/4TgJYdW83FAWicad++fQEcmVo+nudKGaIARHZc\nod8I9MCUst3r9XKGmvPPP5+Tnl544YX4+eefAWjZdnr16gUATBxWrlzJGumqqiqcccYZAIDPP/88\naoSmXZb5lFNOAaBVYaIy4ps2beK+O3TowC9cBW229u3bc22BmpoaW5uGZE6j1yDpHezW1SRQUdbT\nTjuNdTg0r3aheuo5Xcw+n4+1+VOmTOF8kyohpLT1paWlLNL9+uuvSY/GVU3KTZo04cxKNAYhBIdy\nG8209P5OPvlkU89aEiVKS0tZd2A8UO1aTFzxwYULFzqkDKcQy8WZflPTkxMVPeGEE3DnnXcCAG69\n9VbW6v7f//0fs6h5eXksSpCW1uv1okWLFgC0E4/iC9auXasTNZzapoliU2GUIUOGsHhw8OBBrFy5\nEgDQunVrU06B4PV6+aQna4NV0Jirq6t1p5BTDoEUd1QWffv27XEXLGnYsCFXsY7mqmyE3+9njmDm\nzJmcp1Ntg8ZWVlbGFbFDoRCXon/rrbdYcXvnnXfGTLLiZC1IWVc45uKLL+ZM2SQ+hMNhXVwMcYWH\nDh1isbG8vBznnXceAHCqOSklBgwYAEBLDf/YY48B0K8RJ+KYyym4cOFCh5ThFOxQXpK/iOK2b9+e\nlYsrV640tYnTSaTC6/WywmnAgAHs07Bu3bqoyka7J+KqVasAaHLf7bffDgBYvHgxmxy3bt3KSUcH\nDx7MY6PTvG/fvrpoPzt9qzK1Kms6OfGEEPj8888B1GX/6devH9auXWt6rVUXYtXz0sp9dOq2b9+e\nT/ymTZvqOARq89FHHwUArv8BaHNCY66oqMBFF10EQOPo3nnnHd3YIo3ZLki5uGPHDub6iENZunQp\nxo4dCwAoLi7m7NnGUnr0Lv/4xz8CALp164azzjoLgKaAbt68OQAtca2q2LSLlCEKViGlZMUQbegv\nv/ySCYGdSVD9IsaNG8elvWMlS7E70ZQ5WE3IsnnzZm5n+/btrESiYqfV1dXsrrxz504mhES47MI4\nZieLu3///syik+hDbtZG2GlfJeJW7iN2eNOmTWjXrh23QYrZyZMnMyEmYqC2GwqFeOM98cQT6NOn\nDwBNjEuW3w7N/8svv8xEjYrQXHXVVZbWFF1DCtNvvvmG98LPP/9s6q7tyBnQ9h0GCCG8QohlQohP\na/9uJYRYJIRYL4SYJoTwx2rDhQsXqYNEcAq3A1gNIKf272cAvCilnCqEeA3AcADj4+2EWMPLL7+c\nT9B//etfACJ79llps3379gA0ts4sb4AZzDJPR7oOAKZOncrjpFJhKoLBILOXpIisrq5mD7YmTZqw\n+JOdnc2ng5UxqMlCnLoSUy2K0aNH45tvvgFgv2x7NKju4VYUu6SUbdSoEc+n6qW5d+9ePPPMM1Hb\nIJx44ol8cg8aNIgVqIl2c77rrrsA1NV6AOrEAKfIzc1lP4WRI0eyb0a8iLeW5HEA+gJ4AsCdQnub\n5wC4qvaSdwA8jAQQBbISvPXWW0wM7GrijfB6vfj111+5LasRelY3Fy1UclgSQuDhhx8GALz99ttc\noObgwYPcpqr9pvvuv/9+nHjiiQCAd999l12ei4uLTeMV1E3lJFRbRU5ODldTEkLw4o4kYjnRVeTm\n5rJ8bZXgApqjj5qliUCuv9FA17/66qscV9K0adOkxDw0atSI3ZVVkJXB6bvx+/3o2LEjAI2Ime0H\nJxaheMWHlwDcA4DeYkMApVJK2l1bARSZ3SiEuFEIsUQIsSTOMbhw4SKBcMwpCCEuArBbSrlUCNHH\n7v1SygkAJtS2FZWUCSE4kMjv9+PHH3+0P2AFdILXq1ePXZDtpIKzepoR56H6RVAF565du3JAlFCy\nWKv+A6RUnDZtGv79738D0BSRxIK+8MILLEpECtaKN/4/Pz+fuakJEyawLwdp9wsKCnjsfr+fv7fj\nB6EWMomU30AF/b5kyRLmmtT6lzNnzoz5vBRAt3LlSnYxTqRIpEJKyVG89DcA9jtw+m7q1avH4uYT\nTzxhyuU4aTveArN/EUJcCCAdmk5hDIBcIYSvlls4DsC2OPoAoG1CYp+FEEeYaqxCdfUFLFfVOQJW\nJ5qumz9/PgCgV69eHO+wd+9eltV79+7NRI82Uzgc5vEuWLAADzzwAACgVatWKCrSmC8zHYiZ+TQe\nHDp0CEOHDgWgbUZqj1x058yZg++//x6AZhZ76aWXADh3eQ4EApbdjoPBIN58800A2lyQ7kYVwegA\n6NWrFye89Xg8uPnmmwFosj7pa/bs2eNozLFwww036P6m/hYuXBhXu+vWrWN9yJQpUxIm+jgWH6SU\n90spj5NStgRwBYCvpJSDAcwDcHntZdfCLUXvwsUxhWT4KdwLYKoQ4nEAywC8GW+DaWlpuuhBOwEs\ndLK1bt0xavcaAAAgAElEQVSa07RRcMqCBQtYfLDrtmqn76+//hqAZkUgJVibNm04iOvQoUM488wz\nAYBdsWtqaphryMvL41MlLy+PTxqV1SYYWW41jbiTVGehUIjdcYPBIEfokRUiEAiwBWDGjBm6HAlO\nrB0VFRVsXYiUAMUM//znP/nU9Hq9/I5IJHj++eeZaygrK8OkSZMAaO+EfC6ShQceeEAnxlGAXLyY\nO3cu5+FIpII0IURBSvk1gK9rP28A0CMR7bpw4eLoI2UyL0X7/ZJLLsH06dMBaJR2xYoVAMDBIJs3\nbzaNzb/ttttw6aWXAtBk8dLSUgB1cubu3btx2WWXAdBOQTIRGueE3JHtFvOkfsicWlFRwcrD6upq\n0wxJF198MQAt/wNxDQUFBVi3bh0ArX4FuUJPmTKFOQ9qq6qqijmh8vJyR7kOVAghdEVyCgsLAQBb\ntmzh7+655x4AwPjx41kJunfvXmcutg6Kl5iNmdogN+i5c+fqrqEgtTPPPDNpyWKJq6J1B2ieh127\ndgXgvBI4hYir3qQzZ85E//79AUTlZP93sjmrDj9qxBkpi0aPHs1sa0VFBU4//XQAmn2fovrWrFnD\nbDAt7LZt22LUqFEANBafFILGRWIkBlZYYzUX3/bt2wFohEC9T1301OdXX33Fv1HilUAggOuuuw6A\nxraT08trr73G96t+A6p4Re7TlZWVjjTRUkoep9/vx8CBA3W/P/nkk+xKHAqFsHv3btt9qFBzDTqF\n+pz0Tjdu3MjEORwOcwxHsggCoIkm1B8dVD/99JNjawMR5+XLlwPQE7+BAwcmzEXbjZJ04cKFHlLK\n3/0fABntX+/evWVVVZWsqqqSlZWV/HnAgAFywIAB0ufzyezsbJmdnS0bNmwoN27cKDdu3CiDwaAs\nLi6WxcXFctq0abJRo0ayUaNGcsaMGXLGjBkyFArJQ4cOyUOHDsnTTz9d1haliToWANLj8cS8pjYZ\nrfT5fDItLU2mpaXFvEf9d8opp8iMjAyZkZEhb731Vrl9+3a5fft2WV5eLmfNmiVnzZols7KyYo45\nKyuLr7PTv9k/r9crly1bJpctWyYrKytlZWWlbNeuXdzt2p1bJ/+uv/56WVpaKktLS2VxcbGjd2L3\nX8OGDWXDhg3l4sWLZVlZmSwrK5Nffvml9Hg8jp6zffv2sn379jIcDvM/eiaL7S2xsh+PCfHh2muv\nZZFBZZEo+nDevHnMct533326FGsUiXbLLbcwK/38888D0GQz8lXw+/2OsvMqhA1AnR7hlltuYZmS\nbPdWqv9Quxs2bEDjxo0BaGnnyPnl0KFDeP3117k91WmJxqPqKoj1z83NZf8Op7JsQUEBR2vSs5iF\npNtFWlqaLnGO1bT0dvDiiy+ybmjo0KG2KjGpULN1xxJzKKz55JNP5mf67bffWKyM5OBllnqwQYMG\nR/g1VFdXsyUjkXPlig8uXLjQ4ZjgFG677TZcffXVADTKSdSavmvUqBFn6t2+fTunpRo3bpzOjk9K\nJVI07tmzh0+PVq1asbY/lh+EkTsgqIqfq6++GmvWrAFQZ9MfNWoU1xswUnYaB3EETZo0QefOnQEA\n119/PStJMzIy2GejdevW3Ic6HvUkIk4hEQo1ta4FWUOcepcC+oAxUsYmqqYogbhGml/gSEuEVQQC\nAdx9990ANLfiaPB4PGyhUTFs2DCcdtppAMBK7v/+97/MuQghWDl+/PHHMycwevRo5jwJW7Zs4bwQ\nkdKuOfEXOSaIQnl5OWdovvnmm3lT0CRs27aNqzBNnDgRGzduBICIjj0ffPABAK1yEy3AL774gtnB\nWBPp9XpNN5lKLAYMGMDJO8gxacyYMbjjjjsAaBpk6q+wsJC1+pSTz+/3m7oxV1RUcPyBWTSgEELH\nlqrmRGJL7S4UIkhnn302uwJTBudIc2EH5H4MaATNScKcSCBiA9StFzI924XP5+MYFMA8tb06x/Rc\nW7ZsYVOt1+vl9UvOdOFwmEWDE088kX8fPHgwH2B5eXncD63vjz/+GN26dQOgxXCY1Sd1Moeu+ODC\nhQsdjgnnJRWdO3fGgw8+CACcl/HHH39kV9UDBw5Ydnrxer1Mwf1+P5+CVsvXWQWxi127dsXll2th\nIX//+985X+Ppp5/OJzoFSTVp0gTXXHMNAO1UVkUC4nSGDRsW81kpZj8cDvOJf/DgQT7lrJzy5Hac\nn5/PpxudbImeq/T09ISWkFNPSnp+u3k4aA6DwaBuvmMpRIlrKCgoYLFw3rx53N6nn34KQMvp8PTT\nTwPQ8mVQebv//Oc/nD/yD3/4g44LBYCOHTtyjdT169ezP83/F85LKlasWMGTRhslGAw6SlkeDof5\nhZaWlrKFw7hR4g0/pg20fPlyTlhyxRVXcOJZj8fDMjp54LVq1YqdX1SRoKamhvUI2dnZR8j0xjqR\nat1N9bMdb0HVW5K86GjeEq0DUAvVOLUQAOCMWomAKs7Q2KwQB5qXXbt2scjSu3dvDtsmPUezZs34\nMLj22mvZA7KmpobzkL799tvsOUoWoKZNm/LnYDDoOi+5cOEiOTjmxIckjoE/R8pJkMi5EkLg+OOP\nB6DVlaQTn/IQ5OXlsbv2xRdfzErJcePGcfowVbutliEndr+yslL3XKpijL63UqJevS8Z60XlNpxG\nVxpBSma13B59djI+QG/5SnTaNmpXLZ2ozrXf72dLCokJFRUVOu7WwpjcqtMuXLiwD5dTsIBkcArG\n9qNlTPL5fLqTnT7b8ZA0FoIxnnjG/um+Bg0acD+HDh1KOLdESCSnUFRUhE2bNunaXbx4MRcQ/l9B\nNO42Ao4tRWOi2MZkINmE06x9NQQ8HoVbpLZpriM9G/W9b9++pBNF9VkTgYyMDK4n+uGHHwIAOx39\nLyFZ78MVH1y4cKFDynAKQgj4fL6I7OzvMZ5I43DAtjlCrFPcTuCWsZRYNK6M3gXdH29V6UgwBnNR\nf2ofZgFf0cYNaLU5b7rpJgB13pLJqOegBsXFGtuxhJTRKZDvtpmGXGUvhRAc7ai6JdNLT0tL4++N\nmnf1GkBff1BN3mJMhkLX0HdqW+pnVQRSqx6prsbUt7GqlToO4/2qRlpNB69+NmqqjXOozm0wGLRM\n9IxjMtukkdoyEwnM2vL7/Ux4VLfpQCCgK6wL6HUqwJEb0zgmK9aVaHOg/iaEMHWAUt+NWVtGd3Xj\nHAohdLktyXpUVlamqyFqXIfqujeOk/7OzMzkOQyFQq71wYULF/aRMpyCmaLRjE2PZHe38hzRTkc1\nECdWW16v15STAKA7uY0npc/n053WZi7GKttOp5KaF0HlGtTTSh2Penqqz2z1XSdaPLIjdvh8viMs\nJeo41OdQRQ11/SRzTUfKW2H1PrPvPB4Pr4usrCzdWiefFHUNqPerXKiF5z62rA+RtOTRvrMbnRdt\n0uxo+I3VpGgcRsJm7C8cDkeU8WmBkOtr165dme376aef+LNaYNbn8+lCbtV+jLCzURK9qey0F2lx\nmxF0VZSwU+ErHpjpO+zcpxJI+t/obq++S1oPZpGdUsqk5JiMS3wQQuQKIf4jhFgjhFgthOglhMgT\nQnwphFhX+3+DRA3WhQsXyUe8OoUxAGZJKdsD6AKtJP19AOZKKdsCmFv79/8cSBGo/ot1cng8Hv6n\nngakPPX7/SgqKkJRUREuuugirFu3DuvWrUNNTQ2fJsROAkC3bt1Qr169I+oU+nw+FkOOBdB8qIo3\n9e9E9WE29/HAjkim3mMGer/ETXo8Hvj9fmRnZyM7OxsZGRlo2rQpmjZtCq/Xy/9onsxybwDmpQVj\nwbFOQQhRH8ByAK2l0ogQYi2APlLKHUKIQgBfSynbxWhL2pE7rZrk1I1hxpZGWhyx2k20aU6FnRyA\neXl5XEfCOD4gtU1k6twHAgHb4cxWoWrsI1l+UhUqAQuFQrzBaV1nZWVxPEdZWZmV5DFJtz60ArAH\nwL+EEMuEEG8IIbIANJZS7qi9ZieAxmY3C7cUvQsXKYl4OIXuABYCOENKuUgIMQbAQQC3Silzlev2\nSymj6hVUPwUrIIpJVLKoqAgdO3YEoGnkKbXZqaeeyjb7JUuWsIKOKhVv376dqe6mTZssnx5OXbKt\ncBhOtdtW2vs92yDQfKtJXyoqKmLa+q2OkUAcAtn5KysrOc1ZIjJQq30mOh6E1nV+fj67a5vB5/Pp\nclBSmrYoSDqnsBXAVinlotq//wOgG4BdtWIDav+Pr2SQCxcujioca6OklDuFEFuEEO2klGsBnAtg\nVe2/awE8DRul6K2ehkIIpv6UwWbQoEEYPnw4AOiUbiratWvH5ps//elPAIALLriAk5/aofY+n0/n\n02D1XivXGU1u8SIRpxmd7mqmJ7tjU2VjalPxtIubK1I5DJ/PxzUzyKRXUlLC6fZSGY0bN8aYMWMA\nAG+88QZ27NAkcTMuWq2RQdclAvGqqG8FMEkI4QewAcB10LiP94QQwwFsAjAwyv0Mq2y11+vltNcv\nvPACAC1vo5m9WmXz161bh7Vr1wIA1zvs2rUrNmzYYO1JFXg8HmbxrCjIVOcmQvfu3Xnhjho1ijce\n1Yc877zz+L41a9ZwDj+7Pvx2lLcqASFX20AgwPN92WWX8TiPO+44AMAdd9zBc6hubrWWpppVW3Xe\noj4yMjI4cYgx9sF4n+q6DdTlj+zUqRPOP/98AFqNUMq9SXNcXV3NYuM777yTEJY/UWKDEIKLzk6e\nPJlTs3Xs2JELDlPJeSNIFDJbY04RF1GQUi4HYCajnBtPuy5cuPj9cMwYs4kqB4NBfP/99wDqlEj0\nPaCVa5syZQoA7ZSjsnBCCD5VevXqBUBLvOEkVwH5DajjItAppp6w9N24ceO48rGxsAe1Q3n+W7Vq\npTsR//znPwPQErsm0ouN+jjxxBM5vdvBgwf5lL/11ls5geyll16K1atXA6irZfHee+9xTY758+fz\nCX3ttddi3LhxAMAFSwC9FyqJD40aNWJzWqT5JA4kNzeX+7700ktZediqVSuue+D3+5mjoZR3qmv6\ntGnTjqgJYhWJVC6SEvzNN9/EFVdcwe3Ts44YMQKbN2+21FYkDtKJ4jZlYh+c3NeyNt342LFjOVRW\nLf5h0g8Avf+CE6IQyfrg9/uZ4Dz77LNo2rQpAPDC9fl8TJiAug2yZs0aPPLIIwDAC/upp55C69at\nAWhxGbSBevfujV9//dXy2GNFMFIxESklfv75Z25X/Z1Ehd9++43nnMZTUVHBWY4yMjJw7rkak3j1\n1VdzKvIdO3aYzhf1oUa2quKD6v5NVZP69OnDmZqLior4YCgsLOS5/fHHH3ljtW3bFgDQpUsXDqO+\n+eabuTzA7wEaG83r+vXreT5//PFHJhClpaWOiVcEuFGSLly4sI9jmlOg0yMrK4vtufFGS8YL0nb3\n69cPN9xwA4A6jfqZZ57JbPnXX3/NbDUVfTGCOJoRI0awwikcDrMoEc+zqtmD6fdYSkyhJF+h+zIy\nMtjfYPjw4bjxxhsBAO+//z6nQLNjUYiV38Dn8zHb7fV6uZ5o8+bNMWHCBB4TcWl33nknAI3Dmjdv\nHgCNiyFP0N9j/dMcUq2Phg0bMtfXv39/fPfddwASW0m6FsdWlKQTEGtVUFDAZekXLVpk+qLz8/M5\nboDMlok2UQkh+OXm5uZyfkAq8HL48GEWJR566KGYLCyJF4sWLcLYsWMBaIs4IyMDQOxCuMaxqfNC\nG4vYVisLUEp5RFSmx+PhKkbXXHMNa/s//fTTpOTcrKmp4Vqa+/bt4+I6Ho9HZ34k0MGhJik5ePCg\nLs5CjWC0kpQFcE5MPB4PXn31VQAaIaO2RowYAUCrCUkiUU1NDa9xiocA6t5V8+bNj0hQmwi44oML\nFy50SBlOwYmWlFw8Bw4cyM5LK1asYGXj1KlTsWTJEm7/rrvuAqA5hdgdGxCbGqss+OHDh5n6k7Wk\nc+fOTOXtKLoWLVqkO9nslMiLFpWn/m8Xai4AUvzt27cPf/3rXwGAWXWn7Ub7nmzzUkpWHgoh2P+k\nUaNG7D8ybdo0AMCjjz6Kffv2AdCXWIuVh8KIeDmFrKwsdsMnXH/99Zg0aRIAjYN7+OGHAWgWJ/Kt\nyczMxEknnQQAzCn+6U9/suLabBspQxTsgF4MmbEmT56MUaNGAQCXfwc01pFYxpdffpkLvZKzDZku\nY8HOAqCFtW/fPiYGtEA3bdqEW265xXJbzZo1A6BfuCUlJbbGY7aIo4Xa2oXqNDNnzhzMmTMnrvas\nxJXE8vrcvXs3Ewuy1GzZsgUvvfTSEffb3dxOiSiJBDNmzODPVBP0s88+05ncyaNx1apVfP8VV1yh\nK4YMaHqSH3/80dF4osEVH1y4cKFDynAKahbfWCCqSopDr9fLbsAjR45kB6DevXvjm2++AQC88sor\nrARLBnU1jm3OnDlYuXIlAK2MOKCxtdGi3ozo3bv3Ed9t2LAhbgWelNJRlW4zZGdn49RTTwWguUGn\nAlQxbvny5QA0d2haL4nKh2FHlKDxnH766cylkfWBxB5A4xRojbz99tt8bVZWFivTaU0TJ5pouJyC\nCxcudEgZTgGwT8FJnm3SpAlHPk6fPp29Cjt27Mgedqo5kPQPb7zxhq5ycyLh9XrZxbZRo0YAtBOB\nuJXi4uKoz+r1ejFkyBD+m64lRZ5VqPZ9Oq3URKFOQWbWTz/9FDt37gRgz0QaCcZsQ4lCs2bN+GTt\n0qWLYwWdyh2oyl8gur6BTKNCCA7++vzzz6P2pXI8U6ZMwb333gtAc+kGIgdJxYuUIQpO/PnpZbz4\n4ouYPXs2AGDZsmXsH3DRRRdx/EHXrl11RUYAzbGFJjpW6jO7CIVCrOwiR5oRI0awa+vIkSN1LqzE\nJpIy9F//+hcTFaCu0lHDhg1thRkTMYmnHqUK6pvmWwjBittEsOSJzk7cvbvmq6OG3F922WV4/vnn\nHbWn+ojYIawUcr5mzRp2sqKoTSsoKytjonvppZcCQMJEQCNc8cGFCxc6pAyn4ET5Q6aZDz/8EP/+\n978BaNSTWK758+fzyTZo0CBWRlLUX25uruPUX7HuCwaDHDxE/hQ7duzA66+/zr8TfD4fK+meeOIJ\nABp3QZxQVVUVK5e+/vrruE2S8eDyyy/X/b1x48aEKhgTVX2c3vt1110HQC8yLV261HGbKndnZ27J\nLN2vXz8WWa2IR9TH/PnzUVpaCgC2AuIcgTIH/Z7/hBAyEAhIALb+paWlybS0NEvXNmjQQM6bN0/O\nmzdPbty4UW7cuFG2bNlS+nw+6fP5bPXr9XotXUdtz5o1S86aNUsGg0G5atUquWrVKun3+/n3Bx98\nUJaVlcmysjIZCoVkKBSS4XBYHjp0SB46dEi+8847sk2bNrJNmzaWnzdZ/3Jzc2Vubq4cPHiwHDx4\nsExPT09o+1bn1uq/0aNHy9GjR8tgMCgPHDggDxw4IFu3bp2Qtu2sP/rn8XhsXd+9e3fZvXt3uXHj\nRhkIBBztE+XfEiv70RUfXLhwoUPKiA9SSl0iDCssmR326cYbb2SlI0WpPffcc7j++usB6MtyxWJf\nw+EwtxFNMUasH/lFnH766Zxk5fXXX2fLSOPGjY+IPjx48CA6d+4MANi/f7+VnP5Rx5Ao8YFYXtLk\np6enJ6Rmg5lWP54xk/hw3nnn8Xc0x1YTl5hBfU+0TqysBXVcsdYXKcI7dOiAV155BYAmPiQjwMwM\nKUEUpJRcHj3Roay0wG6++WYO8aXvSktLeUGriT6sjNeKPEhE6/HHHwcAtGnThkOgBw0axElB1I1A\nUW8nnnhiQkx8iZ5PIk5OiZQZ2rVrx3IysbDxgkLUO3XqBEB754899hiAyJs3Vtg2APTt2xcA8Mkn\nn5j+Hgu0zgFwWYL9+/ezZaRz587417/+BUAzo5O147777ktoQqCo99juxYULF//TSAlOgRCpFH2s\nas7RQLb+goICvo9O4wceeIDbjZRF2Ax2ORo68QcOHIh27bQKevPnz+c2QqEQ+vfvD0CzLgCJO+ET\nUVDGrD1icQOBADvjqNGHdkDuvkBiXJA9Hg8neyFubNmyZezrEQkkwtJnGg9xhbm5uZg5c+YR19qd\nW2qboj0feughzhHRr18/5nIqKyvZsrNw4UJbfRj7soOUIQo0eFp0Ukr2QCwrK9NVECJTJBENNZGq\nysq9+OKLHGlWU1PDxIBkdaeLOB5QKGybNm3Y+YTEp1SHEIJFMHpPmZmZnAnqk08+cSTyUFFV+hwv\nwuEwiyMUov7ZZ59xRqNI1chUAmDmpUgmQSOcriEiUuPGjeMsVcFgkEWTW265JWKfVuFkbPGWoh8l\nhPhFCLFSCDFFCJEuhGglhFgkhFgvhJhWWxPChQsXxwgccwpCiCIAtwHoKKWsEEK8B+AKABcCeFFK\nOVUI8RqA4QDGW2kzLS1NR5kpbVp1dTUrWQKBAAYPHgwAzHJlZGRwEZWDBw9yFuGbbrqJFWLPPfcc\nu7YmzenDBg4fPpxw1p6gckt0UqhVrey2RZzZ2WefzVwWZYEuLS3lDNTLly/nE9rO6Z+ZmckndCJc\nd4UQfArTSVtTU8PPEUlJHE+KNcD5e9yzZw+7t7/44ot49tlnAVgrNGRlbPRcVp8vXkWjD0CGEMIH\nIBPADgDnQKsrCQDvALg4zj5cuHBxFBFXNmchxO0AngBQAWA2gNsBLJRStqn9vRmAz6WUnUzuvRHA\njbV/nkLfm2UEMpqpyC5MSqSqqirdiUgRaZ9++ilnTB4wYABzCImMvktFkBKwqqrKlGuwC3onBQUF\nnEqMckQcOnSIA3uWLFnCZl07CsO0tLSEcm9CCNZHqYlPaWyJev/x+lPQ/VlZWcz9TpkyhTmvJMBS\nNud4StE3ADAdwCAApQDeh8YhPGyFKBjakmaLKN5Jr1+/PrOjKuH4vaCy4n6/n7X2ibLNE1RnGlVx\nqypzaRwkUoRCoZhjUOtNqiniVbHkaDnYmIHGlp6erisATEi0Mletb+kENN4GDRrwe9q/f38yD62k\nF4P5I4BiKeUeKWUNgA8AnAEgt1acAIDjAGyL1IALFy5SD/GYJDcDOE0IkQlNfDgXwBIA8wBcDmAq\nbJSiN0O8pyfFsCcaTm3pHo+H2WT1/kRzMHQiqglLwuGwqShBJ5SVU1TlNlQTcCIVpvH4KdB9CS61\nZgtmvjWRnoe+r6ysTLhoEw/i1Sk8Ak18CAJYBuB6AEXQCEJe7XdDpJRRVcpCCKnGPQCJ2yjkCAJA\nl3koHth1HVUXivpcKmufjMWgbli1upOqa1CJhtM5VzM6x/scxjmKdx1EckFOxPoyOjoBMPWXidSX\nui4ISSYKydUpJBIuUXCJAsElCr8/UUgJj0YhBLxery4wSGV3I0XOqa6oalv0t6rVTk9PZxaNNkek\naEe1j1AoxISFXpjf7+e21M9er1dXVs1oHw6FQrrniGY/VgmP1+vlBahWoFbvVdl6CqJRA7yCwWDE\nZzTrm35Xvf/8fj+3QXOiJi8Jh8OswAyHw2wdqq6uNiXIqsVIfQ6jaANEzo1I86KKZsa1Y+xPPYDU\neTYTXYxrjwKXysvLj/B6VNee2o6RMJmtCxXqYWGmzFTnJ9J+oM+ZmZm8XqwSnJQgCupJafaC1DBV\n4/d0v9qWeiLSS6yoqOAFS04h6iJPT09nWdR4ahrNZVJKfnFVVVXcrvp9JE4i1kskhMNhU996dSNU\nV1ebbm7V6cVJ0ZdIfv2hUEi36el/encqUfT5fPx+8vLyjog7iGQVMOpBjNerz6POd5MmTUyT8Jqt\nkVAoFPE9mc2n+p1qMTJuduN7itZmNKjtRNP1ROKo1M8q8bIKN0rShQsXOqQEpwDUsY1mLLWVzypU\n7TsF6KSlpfEJSqdETU0NU9GysjJbFF2l4PG65kbqV9VeqyezmQ0+UntOZOdIhXlUjo24A/U69XMo\nFGIubdeuXZZdba0kuFFl8S5dugDQ8i4ag5mitWf2vZW5MtMfxOIukgWrfdgdS0oRBY/HkxBFCy2K\nzMxMnH766QC00FlKuEGL9eeff+Zy9BUVFSx2GMUFo1ynJspI5stXxQt1oZOsHg6HWW+gjoPk/Zqa\nGkfjM7LBRjNkNKisP4kMUkrWcxBhNuoOYhENdb5V5TF9btq0KSfkXbVqFRN+in1RxcNoY48mmhph\n59pkI9IcBgIB0zUSta3ED8+FCxfHMlKGUwCO1M47gcfj4Zj/O+64g0+rjIwMnYIR0ArE/PzzzwCi\n12ikU4c4haPlYEL++wcPHmTuIC0tjecoPz8fxcXFAPSsLMU+OOUUVERS4kaK4DNTIKp5ClQuJtJ9\nsdqlturVq4f27dsDAFasWIETTjiB+6WiO8QpWIk4dCp2pYJZH6jjWLxeL3/2+Xy2Cx25nIILFy50\nSBnnpWjurepvquyknjqUdu2yyy7j5KgHDhzAxx9rXtY//PAD+vXrBwBc+3DgwIEYPXo0AC0jErVb\nUlKis2MTotmzEwXVBk+nYOvWrTF8+HAAmkKNqg9XV1fj1ltvBVBXudjn8+miQRMh7xLnAYBzVbz/\n/vsAoitZ1exM1AYpfisqKkzNdsbvjOY0Vb/SrFkzXYZmMxfyZEL1JzAbb7LGQXNZXV2tU7rm5OQA\n0PYD5SIpKSlRM3wdO85LQOwJpInIyclBQUEBAK3iEqBNzrBhwwBoKaxIfJBS4qWXXgKgFXl99913\nAdS9zObNm6N169YAtKQnlLrN6CBzNMQF6o8Ucvn5+ZzDLyMjgz9LKVn8Wb58ObOG9BybNm1K+Hiz\nsrIAaASJ5o7S1q9evTqm9SQ/P5/Lq8dyoFKJvqp4VokbjWHTpk2mjlpWoHp6JjKUOpkESRUJAL2f\nihCCCW779u05jX1VVRUryq1GibrigwsXLnRIGfHBLJ6AqHlWVhazzz169GDlUdeuXQFoisOioiIA\nmnKOnqm0tBSrV68GAPz973/HmjVrAIBLeR8+fJiThnz//fc48cQTAWjVgOkE2r17d9JMTsTiXXDB\nBfeA6S0AACAASURBVJyCi1jg/Px8Pv1Wr17NotJ3333HKdF27tyJOXPmANBMroBWZ5DGq7KXdmM1\naGwZGRmcbTk9PR0lJSUA6iIR+/bty3NsnB/qu379+vwsdJ/RDZj+zs7OZiVhSUkJK4rV/A3qMzmJ\nZ/F4PLjnnnsAAMOGDWMFpV2oMR+A3p8kHq5BFQnIfH7DDTdwMaMXX3wRgMat0e+BQADNmjUDoK2r\nX375hb8nLrO6uvrYEh/MXip9V1lZiY0bNwLQcgNSbkbSKLdo0YK18wcPHsT8+fMBAB999BEWL14M\nQNvcZ511FgDw5E2fPh3PPPMMAG0zLlq0CIAmAxMr5vV62QpAGyIeEKGrV68e3nrrLQAaoaNy9arG\nnlBYWMjfd+rUidPAA8CCBQsAaMk56DnMAnXsQErJcui3337LcwsAjzzyCIC6uSeRywz0DGeffTZa\n1hbbpQWtQtWD1NTUMOurEic1G1G8m+2nn35iHRRVurLbhuqabwanY/R6vSzynnTSSejRowcAYOvW\nrfxOaOy7d+/m9ADZ2dksNofDYfzlL3/hNidOnGhrDK744MKFCx1SRnyIdQ0p1zIyMnDBBRcAABdW\nmT59OivahBB8epaUlOi833r16gWgrviIqpk9GhBC4KSTTgKgz9q7d+9eFmnWr18PQOMOSJHaqlUr\n5mjGjx/PdQE2btwYM5GH0wQoqtcncTFdunRhEcwK6J1Nnz4dDz/8MIA6MSdStmc1mtVs/PGEvdNa\n+OGHH3i9HHfccY5zIkYTK+2ID6pI1L59e7aStW7dGg0aNACgrftrr70WQF3yICHq6nAAdcr4wsJC\ntkRs2rQJ27dvBwCEQqFjS3yIBTUzzTfffAOgrtDH7t27uchKKBTSLRzVSYYWNIkGR5MgAJqegNjo\ngQMH8mKsqanB0qVLddcuX76cP2/duhUfffQRAGDq1KksI1rZIE43EbHGGzZswAMPPACgrpCNVZBp\neNWqVVi5cuUR4zEbm+pwFSkGwyloLfz0008s9iQrSardwzY3NxeAZl2jKlQlJSVMFHfv3m1qYTEb\n/4EDB3QmYLtjccUHFy5c6HDMiA+qJpu0xfTdzp07md1dt26dKfuZlpbGCji7SSeMWma7WYpoDEuX\nLuUxd+vWzfIpfv/99+Ovf/0rAI29pJj+ZEEIwWXMHn30URbTqOxeNNCz9u/fH2+//TYATQlKFpPD\nhw8D0HMJquUpLS2NLT+HDh1KqMWHTs/Nmzfj0UcfBaCVbHMK1SIC6BPOWBEfSJwpKChgRXEoFDJd\nl045poyMDOaQgsHgsZWOLdY1ZHFo27Yty1lkQuzXrx/LiM888wybvd59912dTEbEgiIjjf73kbzR\njP76ds1NVCNh3rx5LMKQbiEaaIOtXbuWF1uHDh2Snka9qKgIv/32GwD9Jo3lIOTxeJgtb9myJY/z\nD3/4A7+fGTNmANCLboFAgP9OpgPQ3/72NwBaQVcya5O+xAnMEtHYGTt5rALQ6WoiZW9yMi9qZjAc\nhRTvLly4+B/EMaNoJOWgz+djJRxR/mbNmqFx48YAgGeffZYVcd26deNTbseOHawoI4efPXv28O+t\nWrVizb+UkvtTE4sQrFJtUh59/vnnALSTdMKECZafmTTL5eXlbIlIJmdH9u9Fixax5UBNaWfmp+Hx\neNjt/Mknn+Tx/fDDD5g6dSoAzZIxa9YsAObchso1qCdbIp9VCIGHHnoIgMaZqDkvnVanimZ9iFTZ\nWr2PxBlyAaf7qL2MjAyd0pVELzuw6/4NuJyCCxcuDIjJKQgh3gJwEYDdsrb8mxAiD8A0AC0BbAQw\nUEq5X2gkcAy0ytPlAIZKKX+0MpBYpy950H333Xd8ctEJU1RUxIoYv9+P5s2bAwCuueYaTJs2DYBm\nAiTdAFVGLi8vR35+PgCgTZs2HGiyfv16nX3cLNuuFbmeFIKql+Jzzz0HAHj11Vd5PJFi/ck3IRAI\n4MorrwRg//S06qIthOBTJSsrS5dJmriprKwsdO+uiaR9+/YFoOlJ6H1MnDgRN910EwBnJxSQ+Irg\n9B7JJR7QFJiUhyInJwf79u1z1HY0RbUVJTYpbsvLy01L/QUCAfamnThxIq8Bqo+aLMRUNAohzgJw\nGMBEhSg8C6BESvm0EOI+AA2klPcKIS4EcCs0otATwBgpZc+Yg7CgaCT4fD6O2qOw5xtuuIEn0ufz\nse2WwokBYMKECejYsSOAukjE3r17Y+7cuQC0KEryFx87dixvot27d0f06Qdip0oHNAIAaASLXvKa\nNWvw3nvvAdBYWEr2QptxwYIF7OL7t7/9jUUQu7BKFHw+H4/nj3/8IxPcbdu2sWtymzZtcMcddwCo\nm8NQKIQPP/wQAHDllVfGzfL7fD52q3bCLhNo7ikdX+vWrXHeeecBAEaOHMniYTxEKFLqdqsgn5XO\nnTvjhx9+AKAXbZo1a8ZjHjVqFIu/KoGzicQoGqWU3wAwCpP9oZWZB/Tl5vtDIx5SSrkQWl3JQutj\nduHCxe8Np4rGxlLKHbWfdwJoXPu5CICafH9r7Xc7YIDQl6KPCVLKZGRk8GlKdvDVq1czpV2zZo1O\nUUPKvi5dunDmX2LDfD4fLr30UgDAtGnTmN2vqKjgz0IIPrnI1GmmfDQDXUMsdTTQyXbuuecCABo3\nbozLL78cQF3uAiewE+FJ0Y5nn302K7/WrVvHSsdvv/2WowvVBCPTp0+33EcsSCnj4hDUdgDN5RcA\n/vKXv7CbcKL8POJ9XooA/f7771FaWgpAW5OPP/44AM1jl0SM/fv3c12LZCeKjdv6IKWUdth/5b4J\nACYAkcUHWnh+v58z9e7cuZPtu7RZJ06caMoG1tTU6KwIV1xxha5dIerKqgHgWATVVVoIcUQWYFVD\nnKgXQ/2RPX/v3r06a4hTqAk5oiEYDOLBBx8EoFkOFi5cCECzOJCvx4gRI44YixrDkAgkKqN37969\nAQCTJ08GUBdFmkjEuzmJ+KlEMBQK4bHHHgOgiQkUMfrQQw9h3rx5cfVnFU7f5i4SC2r/J+F9G4Bm\nynVuKXoXLo4xOOUUPoFWZv5p6MvNfwJgpBBiKjRF4wFFzLANNTstRXoFAgE+QUkTHu2kIs1/aWkp\nGjVqpGs3FArh22+/BaApcsy4DTOqnAhPs0gglnLmzJkcDRcP7JQMoxP6o48+Yg4jOztbl6ORlLfk\nCRgOhzFkyBAAYEtPPEiEt6bH48GgQYP4M6AFDiXaPTwZbLxq7frpp59Yab5ixYqEW2YiwYpJcgqA\nPgDyhRBbATwEjRi8J4QYDmATgIG1l38GzfKwHppJ8jo7gzFuMHqhubm5bGmYPn06unXrBgCcoeeU\nU07hRBLkwmxs4/jjj2fTGWHhwoXMXtoxofn9fg5N3bt3b0Ii+cii8uabbwIA+vTp47gtdbGq5lA7\ni5fue/3119GmTRsAwJYtW7htEqnS09M5Ea5TqOKYURxxQiRuv/12jBgxQnc/5eeMF2ZE1ml4eiSQ\ng9sjjzzCYk88hMcu8YpJFKSUV0b46VyTayWAWyz17MKFi5RESrk5GykZKbj27t3L1oU9e/bgsssu\nAwA+werXr89Kx3feeYe5BTWicvTo0azEIzbsrrvuYv8AO5S4pqaGXX4jlT23C9Iyk6afxuUEavGa\neBWiX3/9NQd0zZ49GytWrAAA3HvvvQC0uXjjjTe4X7u5EgHgtNNOw3fffcfjjJcd37ZtG7dBPiKU\nRi5eqBGRZmnpEwHyBTHzkbELu+8ESDGioEI1+2VlZXEuvfLycnzwwQcAwN6Ibdu2ZVk8Pz8ft9yi\nMSs7duxg78ZNmzbxNXl5eQD09R3sTH4gEDAt8upUv5Cfn89WEsrPF48G3mnUnhnGjx+P1157DYD2\nfERkL7nkEgCa0xfpe2wn86glCsuWLUuIXE6bs3nz5qznmDJlStztqlDn1pgLMxHPUFBQwE52FMMT\nD5yING7sgwsXLnRImXwKdk5Z0ozTSUMut4CWp4BO3auvvhqTJk0CoLnuUm5G8h1Xi6nYYVvVSr50\nbzwYMmQIuzSPHz8+rraMSLSGnOacTrNmzZpxBKSxDzsKuESMk2JJzjnnHHzxxReO27EKWocqV+dk\n/EIIdOjQAYBWzIjiYyiDeQLh5lNw4cKFfaSUTiFaDLoKowlQPbW//fZb1jV88803nJPgq6++Yhs7\nZWwaPnw4x/zbiZQLhUJHVKK2ApUbEkKwC/bmzZvZXyIRMNY4NPYdD2g+b7xR81An/Y4ZVK/QaPOV\nCEVdVlYWK5spAjKZUOeT+q2urra1HojDfeihh3DbbbcBAObOnZsQXUI8SBmiEKu4hp12yPrw4Ycf\n6lg82oTkFOT1ejktlx049UuQSh3Ejh07si1969atHGuwYcMGR20ThBCcus7os5EIkKKR0rUtXbo0\nJrGJ9W7tujarFZTUZCn0XkhMTAbMlNQU+m6X6FK0Y48ePfg5li1bxvEadteCmQjmxPrgig8uXLjQ\nIWU4hWQl7FQ9+ohDoFJyCxcudHTqxzNW1XOPgrw2bNjAHItdhZvxepVTitSeWracXH+N9TIi9UWn\nFwXqOOG0jLDLIdKzqJ6PNTU1fIonq5YDAI5mVPu3O366jziaDz74gD1yp02bFjHpjhM4UnymivXB\nCZvzeyERBCwnJ4cX8a5du47IS5iouVD1C6o+Q60PCUAXCRrt+dQMQcmA3bkl9/DKysqElZS3Ap/P\n57hqlTELtGo9q6ioSGYUpGt9cOHChX2klPiQzJz/yWzbCcrLy/lkU5VkieaWSHxQPUSlUlU6VhSo\nCpWbS1aiDyPHGKt9ldVOdvIRYx/q3NrpVy18A2iiD62FRK1TM4tOwgKijgbIZBUKhSJOsKpxNrLY\nagUnIQRPsLrA1PvUyj7EDldVVZlW95FS8stTF6uVl6iGftP9xLaHQiHu+/Dhw6aOP2btqnK0WjxX\nFT/oezUJaE1NjakoYSafq9YANYIxEAjwJqRnCoVCuudTE9io7ykasfN4PLr3q/atfqa2CGphVlV0\nEEJEvN74/CpUwhmp0Iv6vfEa4zsz68Pr9fL1qqu8Kpap7tPq99E2upqqXn2+tLQ07s+qeOWKDy5c\nuNAhpRSNVlyN1dNBhXryRXKvNVL2zMxM3WmrapaNfap9WFWKGjmFQCCgc9FWNf+Wqbhim1dPYLM8\nFMbTzOjMFG3cdF8khaKqtFTnReXG6FkBRBVXVKgnqZW1qc6x2VjVuVDfo9McCOq8Gd2c1fmWUkZs\n20zsMONi1LWuck3q72bcX5RnchWNLly4sI+U4RSOpiKQqK/f72cZv7y83DQcOtL9dsZK1Fw9SX0+\nn6kMaAdmp70x07QT5VsizMNCCDYXlpWV2fK7SIU1aQWJzrhkBrMaI3EoES1xCimhaDxaoMkktq+g\noICLhaxZs4bzLezYsUP3oo22ebuLVm2rbdu2AIDt27fr2EHjC7ciThQUFPDCpLiOcDjMaeec5iSM\nZ5GTzT0cDnMui/Xr11tOd+eUIMQq0GOMO3HaXyRnMOBIpWa8xM3r9bIvS3l5OSfgoSjgYDCos2So\n4pMqxtl2ropr1C5cuPifQ8pwCkeDZVSDZwCgRYsW+Otf/wpAC+zp1KkTAODCCy/UUf1Eee+Fw2Gu\nY5mens4njKpcI5FCPWmMpjk6rQ4cOKBz4wb0wUe/BxtOCsWzzjqLOYXi4mKdCTMa4jlhzfpQuUNq\nNxgMmipK7cLo5mw0ZScClEl72LBh+OmnnwDUValeu3Yt9x0p07OTCNSUIQrGl6NqXp3K3CoCgQBH\nn5FvfIsWLXgRd+zYEbNnzwaQPBnR4/HwS87Ozmb2PhAIcFwGLbR69erxeKuqqrhgSIMGDXDmmWcC\n0DIUmxEA1WXZTDsNJN/RJzs7m/vo0KEDL+hYMNOyA5FZflU737ixVqgsPz+fRcGLLroIgCYSEkFW\nxUO71ajM+lbzNqq/OZlbn8/H4mr37t1ZFBwwYACHrffsqZVnHThwIN8XiSg4OdBc8cGFCxc6WKk6\nbVaK/jkA/QBUA/gNwHVSytLa3+4HMBxACMBtUsqYebFU60Mk261y7REsUaST/bTTTkNRUREAzeOP\nKkzTSZqZmckZoTMyMjiDcnl5eVJO0KysLLRr1w6Axq2Qwmj37t06L0z6X61TQVzFxIkTOf3Z9OnT\nY0YpmiVcieWBGe13UnZRXcYpU6bw2NT3kJaWxs+6efNmy5GLqijl9/uZk4sEVQSj8Xfs2BE333wz\ngDo36ObNm+PTTz8FADz88MNcB+KBBx6wNK5IYwXiT5QrhMDQoUMBaPNKlclHjRrFmcszMzM5OdD8\n+fMBaKn7bKZss2R9cFqK/k8AvpJSBoUQzwCA1ErRdwQwBUAPAE0BzAFwgpQyqiAZySSpyoiq+6yR\nXVNfisfjwTPPPANAm1Rin/bt24fOnTsDAKdnN/qvW9k4TkCy9aRJk7gO5gsvvIC33nqLx6O6pQIa\nG0lE46STTuIcfm+88QaHLV9wwQUxF4U6b4RwOMzmQhJn6tWrx9mnVPFDdZs+44wzOGU6EdPDhw/z\n8zmtaKXOfVpaGpuJi4qKuPw6jcGYtp5CwCsqKphg5efn8zgpPN3j8fBmy8/PZ8I6YMAAx2M2ElzV\nxT7StUBdEaOTTjoJADB06FBcfPHFfC2t2fnz5/NBdsIJJ3BG87POOgsAMGPGDMycORNAnUUiBpJX\nil5KOVtKScLKQmg1IwGtFP1UKWWVlLIYWqWoHlZG68KFi9RAIhSNwwBQEcEiaESCQKXoY8LsZDbL\nkuvz+dh2S8lEVNff8ePH46qrruLv6b6xY8fySWbGEUTjDOgEslNaTsXJJ58MQGNrSST47LPP2LdA\n7VtVDNEzbdu2jStCZ2RkcEq0m2++mYuyRILq+qpyC8QN0Bynp6fz2EKhkC7FGLHw+/btw6pVqwDU\n+VsEg8GEJjUJh8Msjqxbt45Ty6nvjnwhysrKuG8pJb+fsrIyPnnVYCBqa9KkSejSpUtc41TdmFXO\nVeUe6Pvs7GwubDR27FhWul5zzTUAgMLCQp0lg0TCQYMG8XPn5OSgRYsWAMCK5jfffBMvvPACAE1p\nPnz4cN0zO0VcREEI8XcAQQCTHNx7I4AbrV5PizsUCrFmmSa6tLQU//jHPwBodSfpZWzbtg1z5swB\nALz22muOJksI4biwJ2mRR40aBUAjLsOGDQMAS9p42rBlZWXo27fvEb/TBrUyBtUMB9QtHNpIO3fu\njGkuXL58OS+8U045BQAwZ86cuEUt4/0qIaMNQoS5srJS55Rl1rdKIFQQcWvatKltq4MZoplAhRAs\n8pSVlfE1zzzzDK67TiuxSsl6Tz31VC6afMUVV5gS2dLSUiYQY8eOBQB06tSJRYmamhq2TsT7bI6J\nghBiKDQF5Lmy7s1YLkUvpZwAYEJtW8eGX6sLF/8fwBFREEL8GcA9AHpLKVUNxycAJgshXoCmaGwL\nYHHco1SgRqJRVKPf72eRokePHsxJTJ06lescJsuiEA3UX/fu3flvSilvBx6Ph8UKNarzyy+/jHlv\nJEcmlfOyAzqt/vnPf1oegx0YazQSl0b/x8Mak/a+Q4cOrKCLB2bRnKojkxoZSorAdu3aHfEsQ4YM\nYeVxNFGM+vnxxx8BaLkdyVfh8OHDrDROOqcgzEvR3w8gAODLWnZpoZTyJinlL0KI9wCsgiZW3BLL\n8uDChYvUgtNS9G9Guf4JAE/YHUgsDzBSxKSnp6N3794AwB5sTzzxBMvOZWVl+O9//wsA+OWXX3Dh\nhRcCAF5//fWY7r+qIk41IZEpi05Jq6frU089BaCugMq8efMcJRe9++67+RRQ0bNnT3z44YdR76Vn\nSktL08X9OwVxaVQM5sYbb0SzZs2i3WIJxsxPgF4up//jUWr++9//5vaffPJJx+0QaB1F8hpVf6f1\n2aJFC+ZYqPRey5Yt0b9/f8v90jtYtWoVc8hpaWmsY9u/f39c7zhl3JythCsDWu3Ce+65B0DdpObl\n5XFxkvvvv59t2x6PB8cffzwAjf009qFuFKBustWw5nA4fESmZSto0aIF7rzzTt3YiYhZBRGTu+++\nW7dp6IVfeumlMYmC6suh5gR0KkrRvNB4srOz487wrKYSU0O/PR4PW0FU3wknKCwsRMuWLQFoyspF\nixY5asfM9T5S9CX9nZeXx67Jd955JytN6f/27duz30d1dTXWrFnDbajrUE1aA9TVRKVrr7xSO7/p\nMAI0PxS7c+e6Obtw4UKHlOEUYiVAJdv0ddddh1atWgGoY+c///xzvPbaawA02zbZ2+vVq4elS5cC\nODIdGaBPkpmdnc1cgzGBLCmJ7LBkTz31lO50B8AngFWQouq5555jd1z19CRTZzSoKcOcmlZVtG7d\nGgC4BJ9T3w0V6nyrSVwjJSu1A3q/n332GX93ySWXOG7PTMSMJJbStWVlZRg8eDAATfw1S3VHIkWv\nXr34/c6ePZu5O1UxSu02bNiQlYpbtmzRJTCmz07eecoQhVjsLP1eXFzMC5I2/Pjx49nuX11dzdr+\nG264AY8//jgALTLOrE01tTpNZFVVlW4ynbDaVCcQqHuJX331le12AODJJ5/kBXjTTTdxlab9+/fH\nvDeSHd8pyBGLFuvq1avjtuoYowsTme6ciOL333+PH374AQDYddgJVHfsWOKSGg7/xRdaCNCAAQN4\nbdGhdsIJJ7AT0siRI5nQ+v1+nd+DmqkLABYsWMDxHOvW/b/2zj+2qvKM45+nvb23UupKxw9Blukc\ngTgyfmSiZvtjsmFvDWEZmQlGnQvo/hmZw+m0IZgQ/3Fs2RDsHMsGi0vDCI4xJNmMMBv9q0zdworQ\nKSk/tSgJeAPS0sK7P855n77nctve255ze43vN7lp77n3nud93vOe5zy/33c1KjFt2jRN7HO7eBf7\nUPPmg4eHRwQVoykMBxHhrrvuAoIsrpaWFiDw5kOQfmsl6pw5c9QzvmzZMnXw3HvvvapZuFqAlaKN\njY2RhiVjVYut4wgGJXtHR8eQlYiFOj9bB5FbUNPd3a2FVMVIfuvMunr16ogVhyNBRLTQyD6Bu7u7\nx7xdm1sZWV1drZGWIot8hsXixYsBWLVqFW+88QYweodoVVWVakonTpzQwrqRUFNTo6ajmzlq82nq\n6+tZt24dEDhB7drI38rPrgE7P1u3blVT44YbblAT4+zZs3qOTCZT8lr+VAiFVCrFlClTgMCW3b59\nO1C4JXtXVxft7e1AIBQmT54MwJNPPskTTzwBBAsZoh7dXC6nF2ssAiH/5oZBm3PWrFm6OC5duqQ8\nXbp0SfPy7UJbt24da9euBQIhtmHDBiCwOW2VXVNTk1b7DQXLSxzdo2pqarRRiZ3X1atXj/m8rpkw\nMDAQi5/CCuXNmzcDgUn4/PPPA6PrWwhB6fsDDzwAwNNPP120Ot7b28v7778PwIYNG9S8tdGQ8+fP\nj9j/05jBtvRWMC9fvlwF5+nTp7XK1RX+c+fOpbOzs2gewZsPHh4eeagYTaGQU8lKxlQqxdSpU4Eg\nzjtc3f6VK1fYsmULANlsVlua7d27N9JJGYKnqJX27jnHog7bMff19en/jz/+OBDUv1vJXl1drerj\n9ddfrz0EbOHTggULNDGlp6dHC4Mee+wxTd6yzqtiEIfTrq6uTnND7NNotB2jXbhaTH6OyGjQ2Nio\njmdrPh04cEAdjKM9b21trZqupXj1jTHq6O7o6CCbzQKoczGVShWVmmznyUYyqqqqdN3Mnz8/omFZ\njfXQoUNFj9OiYoRCIbiVfHYCi7kYdnLWr1+v5cn9/f1641tbLb+jUxy1EVagrF69Wu1PK4xctc5d\nmBcuXNCIgl3EO3fupKenR7/jVg7u2LHjmvEPhVJ2WxoJuVyOl19+GRhsHBOHqu/CbVs+WjQ0NGhz\n0xdffBGA1tbWMTe0dW31/HDzSLC/O3z4sB6z66Kzs1OF/nAPJJvM5o7f3vSXL1+OrUmQNx88PDwi\nqChNwW2KYszgjrtu84pizwNBaqtNc+7u7tbYrY2xX758ObGuxrfffjtLliwB0AYpbiu5dDqtNBsb\nG/UJsXDhQgDmzZunadH9/f3aduzChQtD7nlZCIVanI/WPEqn01rNl5+4Mxa40Yf8Lt6lwP5u9uzZ\nPPLII8DgkzmXy+kcjjaqUVVVpc7hc+fOlRTNsWPLZrOqXdl1kclkePbZZ0c8h63jcfNpmpqagHjX\nr9cUPDw8IqgYTaHQ08F1QA23P2L+xik2jjt58mT1QUydOlVTdK292d/ff03v/nxaQ41tJD6y2aw2\nR7Vhu6VLl6rD6ZlnntHvNjQ00NzcDKDt1bq6ulRrWLNmjTqUHnzwwZKeUPl+Ewi0htHY1729vRoL\nt/spjDa852LmzJkcP34ciDZmLRU2TPr2229z5swZHR9EMyVTqVTBEO1IfiW36Gjjxo1FjyuTyWgW\nbl9fn3atstdx37591+xgXWhsra2twGDYur29XX1mcaIihIKIRFTIYmEv+KRJk/SGP3r0qLZ1nzFj\nhl6AXbt2RbZ+t3TdMRQSMoVy74dbPDbfIJVKaWKJrdVIpVLKY1tbm8bQFy1apILKpkJv27ZNW23V\n1dVpbPrKlStayl2MGeGWIVvaEydOVGFZiiptjNHKPDvO/Bu6FNixnTx5sqTfDQV7s7jryI6ppqaG\nu+++W4/bxLdcLqfjKLQXY/54ba6DWwXpftedb7sWFi1apCnIuVxOHch2S4G+vr7IQ61Qy/gpU6Zo\n9aO9/nb9xA1vPnh4eERQMVvRDyUhi0FtbW2kGUd9fT0QFJrYeLWIaNjHDUm6DsxiQzrDbdVuQ4r7\n9+9Xx5ZVHVOplNJ7+OGHNcRUW1urbc3c7sS2acbAwIBqBa56XYxmZc2OgYEBNWc++eQT3WSk1PZw\n1jSzuRInTpzQeXXr+ysNVVVVmvK8adMm3e/hyJEjkX06S9F2Cm0GY1FXV6d7Ttxyyy163nnzwP4C\ngQAABgdJREFU5mkLtd27dwNBA9e2tqD3cXNzs2qYbuVjdXW1ri0bWh9Fluqnayv6scTTe3t7dSLT\n6bRegI6ODlUZX3/99YJmQzFVhIV8GG7DEouamhr97qlTpzR6YJOU2tvbWb58ORAkJFlzpre3t6Bt\naO3iTCajdFx7uJjcCvvddDodSZCxvoFSKuhERAWuHU9zczMHDx5UnsbqX4grXyQft912m3r9V65c\nqXObXyZfzC5Z9nM7d1adz+VyOo/19fW6Q9aKFSs08jVx4kT1R1ghNWPGDBXemzdvVjPh+PHjOubq\n6mo19ZJ+kHvzwcPDI4KKMR+SOG9dXZ2mOR87dqysW7S7qqh9utTX1+uT5OLFi0W3oBtTdlqBzUni\n2FXbmj59fX2xZk0mBRHRVPlz585d05tgNMjXstxKxuuuu07PnU6nI1Wgtg9GIQele77heCl27Hkm\nUTx7SZYDQ+0lGcN5I+/jOn9SKm4+DYux0Cq0YYl7/jj4iPtcSc2tnQtjTCyCcTjTa8KECar6X716\nNRZ6FoUiYkXOWTx7SXp4eHy2UDGOxiSeDq7K/FnFcPX5SdOoNBRyNCeF/J2748RwOTRxoGKEQlxq\n41Bbyrt1FXHQGC4DMi4aSamclXwTl2Nu40J+PY6bNQnJz3NS5/fmg4eHRwSV4mj8CLgInB2nIUz2\ntD3tzwDtLxpjpoz0pYoQCgAi8mYxnlFP29P2tJOFNx88PDwi8ELBw8MjgkoSCr/ztD1tT3v8UTE+\nBQ8Pj8pAJWkKHh4eFYBxFwoikhWRLhF5T0SeSpjWF0TkNRF5R0QOicij4fFGEXlVRN4N/05KcAzV\nIvJvEdkbvr9ZRDpC/neISDpB2g0i8pKIHBGRwyJyZ7l4F5E14Zx3ish2EalNincR2SoiH4pIp3Os\nIJ8SYFM4hoMisjAB2r8I5/ygiPxVRBqcz1pC2l0i0jQW2nFhXIWCiFQDrUAzcCtwn4jcmiDJAeCn\nxphbgTuAH4X0ngL2G2NmAfvD90nhUeCw8/7nwK+NMV8GzgGrEqT9HPAPY8wcYF44jsR5F5EbgR8D\nXzPGzAWqgRUkx/sfgWzesaH4bAZmha8fAi8kQPtVYK4x5qvA/4AWgHDtrQC+Ev7mN+E9Mb4wxozb\nC7gTeMV53wK0lJH+34AlQBcwPTw2HehKiN5MggW5GNgLCEEiS6rQfMRM+3NAN6EfyTmeOO/AjcBJ\noJEgtX4v0JQk78BNQOdIfAJbgPsKfS8u2nmffRdoC/+PrHfgFeDOJK5/Ka/xNh/sYrE4FR5LHCJy\nE7AA6ACmGWM+CD/qAaYlRHYj8DPAJvR/HjhvjLF9tZLk/2bgI2BbaL78XkTqKAPvxpjTwC+BE8AH\nwMfAW5SPdxiaz3KvwZXA38eJdlEYb6EwLhCRicBfgJ8YY3LuZyYQ2bGHZERkKfChMeatuM9dJFLA\nQuAFY8wCgrTyiKmQIO+TgO8QCKYZQB3XqthlQ1J8jgQRWUtgwraVm3YpGG+hcBr4gvN+ZngsMYhI\nDYFAaDPG7AoPnxGR6eHn04H4m+nD14FlInIM+DOBCfEc0CAitlo1Sf5PAaeMMR3h+5cIhEQ5eP82\n0G2M+cgY0w/sIpiPcvEOQ/NZljUoIj8AlgL3h0KpbLRLxXgLhX8Bs0IvdJrA6bInKWIS1OT+AThs\njPmV89Ee4KHw/4cIfA2xwhjTYoyZaYy5iYDPfxpj7gdeA76XJO2Qfg9wUkRmh4e+BbxDGXgnMBvu\nEJEJ4TWwtMvCe4ih+NwDfD+MQtwBfOyYGbFARLIEZuMyY4y70cYeYIWIZETkZgJn54E4aY8K4+3U\nAO4h8MgeBdYmTOsbBGrjQeA/4eseAtt+P/AusA9oTHgc3wT2hv9/iWAhvAfsBDIJ0p0PvBnyvxuY\nVC7egfXAEaAT+BOQSYp3YDuB76KfQENaNRSfBM7e1nD9/ZcgQhI37fcIfAd2zf3W+f7akHYX0Jzk\nuiv25TMaPTw8Ihhv88HDw6PC4IWCh4dHBF4oeHh4ROCFgoeHRwReKHh4eETghYKHh0cEXih4eHhE\n4IWCh4dHBP8HGZVdkTHSHmEAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/2... Discriminator Loss: 1.0431... Generator Loss: 1.1230\n", + "Epoch 1/2... Discriminator Loss: 1.0236... Generator Loss: 1.0033\n", + "Epoch 1/2... Discriminator Loss: 1.1009... Generator Loss: 0.8963\n", + "Epoch 1/2... Discriminator Loss: 1.0246... Generator Loss: 1.5232\n", + "Epoch 1/2... Discriminator Loss: 1.2980... Generator Loss: 0.6295\n", + "Epoch 1/2... Discriminator Loss: 1.0272... Generator Loss: 1.3369\n", + "Epoch 1/2... Discriminator Loss: 1.1724... Generator Loss: 0.7514\n", + "Epoch 1/2... Discriminator Loss: 1.0532... Generator Loss: 1.2344\n", + "Epoch 1/2... Discriminator Loss: 1.1428... Generator Loss: 0.8638\n", + "Epoch 1/2... Discriminator Loss: 1.1750... Generator Loss: 1.1432\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsXXl8VNX1/97ZsyeEsAcCsomyWBQE2srihrivqIXaYtW6\nFNvaFlErlrbS1lq1WqkL4oqKK6hQUdSCLAqK7PseEiABsk1mMjN5vz8e58x5L2+SWRIafp/3/Xz8\nML7M3Hffvffde5bvOUdpmgYbNmzYIDj+1x2wYcNG64K9KdiwYcMAe1OwYcOGAfamYMOGDQPsTcGG\nDRsG2JuCDRs2DGixTUEpdaFSaotSartSakpL3ceGDRvNC9USPAWllBPAVgDnAdgP4GsA12uatrHZ\nb2bDho1mRUtJCkMAbNc0baemaXUAXgdwWQvdy4YNG80IVwu12xnAPvH/+wEMjfVlpZQmPvN1kmKU\nUjE/0/fk7+R1KQnRdYcjuhfW19cDADweD0KhEH8vEok06A99pt+YrzudTr5ffX09XC5Xg+/Ldpt6\nJgnqs6ZpSE9P57boHrW1tZbPTDCPkbnvEubnSwayXZ/Ph7q6ugb3MD9zonA4HIY2aGwdDgc/Q6x1\n4Xa7AehjSGNbX18Pp9MJAAiHw4a+NvaMVs+RrATudDr5fk6n03IdynvIvtNn+o1Fn8o0TStoqg8t\ntSk0CaXULQBu4Y64XIaHlJPscrl4kuRn+m44HIbH4+G2vV4vACAYDHIbciHQ310uF6qrqwEAhYWF\nOHDgAADA7XajqqqKP8uNAwACgQBPusPh4HYzMzN5YwkEAsjLywMA+P1+fqbKykq+N/XN7XbzS0N9\nky+RUoo3gkAggP79+wMAqqurkZubCwBYt24dACAUChleCBoruUnJjYPuR98H9A2G/m5+acyw2tBo\nrOh6nz59sGvXLh4veg4aK4fDwS9jJBIxjC2BrsnNLSsry9AGzZnX6+Xxk5spPWs4HEb79u0BABUV\nFcjKygIAVFZW8pyVlZXx72mNKKVibjKA8YWWm575u+bDRbabmZmJYDDIz3fs2LEG4ykPAup7bW0t\nP19VVZXhu/Q5FArtQRxoqU2hGECh+P8ux68xNE17BsAzgFFSkLv9oEGDAOgLffv27Tj+XX4R6GWr\nqanhxS9P60gkwovN5XLxANbU1ADQT7DLL78cALBlyxbeFPx+PzIzMwHoi1e+LARabA6Hg7/70EMP\n4bvvvgMAfPHFF+jSpQuA6ALbt2+fnCBulxYB3U+MET8zLczMzExs2LCBn2nv3r0Aoi+3w+HgNgKB\nAD+/+STt1q0bjwEAHD58GGlpaQD0RXXkyBHuR2OSg1z48nNdXR26du3KfaYNlZ61vr7e8ALR/Lnd\nbl70Sil07twZAHgj3LVrF4+n3+9Hhw4d+B47d+7k+xcW6stv9+7d3C6Nd9++fbm9rVu34uDBgwCA\nRx99FO+88w4A4NtvvwUAHD16lPtOGxCgry26Ts8RiUT4c8eOHXkM5QbvdDr5WeVGJzdLOgA8Hg/6\n9OnDv6NnofnNzs42bAr0PshDRvYpXrTUpvA1gF5Kqe7QN4PxAG5o7AdygOjfiooKAPqCpQfzer3I\nyMjg64Bx0Sql+OWtr6/nFyESifBA5eTk8HfbtWsHAHjvvfd4ssLhMJ/oSimeMCmB0MsGAL179wag\nLyRaYL1798bWrVsBAKWlpQD0RSxPiXhFTHmy02kIGE8BemapUpjFa4KUGuiZA4EAn0pyk0oFJEGF\nw2E+gffs2WO4L4H65/F4+LuhUIg3cNpsq6qqeD5qamr4BZHPHQqF+AUipKWl8Xf37t3Ln4cMGYIe\nPXoAAHr16sUv+qmnngoAWLt2LY4ePQpAHzfqp1KqwRiGw2H++4EDByzVTSnaS9B3wuEwRo4cCQDY\ntm0bb9oulwu9evUCEN1kdu/ejeLiYv47jUswGExJNWuRTUHTtLBS6k4A/wHgBDBL07QNLXEvGzZs\nNC9axCWZcCeU0kgfk7ql3OWkEcXKGCS/J6UKEvnkc55//vkAdEmDJILdu3fzySbVBAlpnKK+FRUV\n8W7tdrtZtVFKsToibSB0CgaDQVYJWgpmHbhNmzYAdFuEtCUA+glNkldzwOPxoF+/fny/iRMnAgCe\neuopALpKJQ1qUrohNaZDhw7Ytm0bABhUDRrj6upqnld5wpaUlLBaRSdzt27deD6UUvz8Dz74IJYt\nWwZAlyBJfaCxKi8v5zVilhCpz9I2FGvtxAun02lo48svvwSgqzHDhw8HAMyePRsA8Oc//5nXUHp6\nOqsPZslZSCyrNU07s6k+/M8MjRIkomuaZhCv5MPJz/SSWVnqpX4WiUQMRiTS/desWQMA6NevH9av\nX8+/a2pCpd5L9z506BDrzjt27GDRLhwONxAV27Vrh2uuuQYAMHjwYPzqV78CoIu21Dd6MaVOH+tZ\nm4KmaQb9nFSPgoICfrHIVkOqWqqgfo4bNw7XXnstAOCbb77B66+/DiCqgsmN1el08py1a9eOx2D7\n9u0N9G9prJV2CYfDwXOZn5/Ph0F2djYAXdWgzw6Hg9WSKVOm8L2rq6u5TzRWdXV1Ta5JqaKmiptu\nuslgHP38888BABs2bGCVh9ap3+/nPtTU1MT0OiV68Ns0Zxs2bBjQatQHuTvKf+OBy+VCx44dAQA3\n3ngjSwKFhYVYuXIlAH1XpZPiJz/5CQDgr3/9K59K0jjTFHw+n0GMlB4OOvGPHTvGVuQ77rgDAPCz\nn/2MxVI6wWNB0zQWB/ft24cLL7wQAFgsjhdkqPJ4PGxg9Xq9bJ0n0bm5jIs///nPAQD33nsvP/+r\nr76KadOmAQCLu5qmsRTncrn45HY4HGzsO3bsmOWcSAmDJB6Px8Mn6WmnncYSG3mAdu/ezWPetWtX\n7N+/H4DudaLTtqqqylIllbDiBSSzZs2gtVlWVsbtbtq0CWeeqUv7wWCwgWtYuoPjxMmjPiQCqSOT\n7llYWIiXX34ZADBo0CCUlJQAMIrwX375Jbuy6AUYMGAAPvzww4T7ILkAaWlp3KcRI0aw2Pr888/z\nRJPILDeSWM8lxWTysvTt2xebNm0CoOu9TS1cc18Bo62lT58+7AUgO0lzbApjx47FE088AcBIvMnI\nyDDwRQCjG1Ipxf2MRCK8QdDfZD89Hg9vBMOGDcN1110HQFfjRowYAQBo27Yti/+kagDgTejf//43\n36+8vJw3yy1btvDvrNx4sUhRzQGyE7hcLrajkNuUYO5TSx3otvpgw4YNA1qNpKCUMviBJfNL0zTD\nKUsieKdOnQAAf/zjH3HKKacAMJI1cnJy+LS96KKL8MwzzwCIitSffPJJwn0E9BOHTta6ujo+8TZs\n2MDiHqkzEmvXrsUXX3wBQLfCU3vFxcW44QadxkE+8/HjxzPrzuv1slQ0Z84cNlbGA2l0JfGa1BIg\narSSnId4DGZEfho/fjx7Frp06WKYJ3q+Dz/80EDDpn9JxA8Gg6wySDalZDS2bdsWgH6yf+973wMA\n3Hzzzdi3T2fTb926lceuW7duPF5kQD311FNZCpg6dSo2b94MQDe6fvDBB3y9MaKPVBkcDgc/nyQ1\nJQOv14vzzjsPgK7CnH766Sm1J5EM9bpVbAqSICSvyYeQHHBaYEQqWbVqFRYuXAhAJ6MQaei7777D\nnXfeCQA488wzWbefMGECgMRFZupPMBhk16J0Kx47doxFPrmAaNM444wzYk4MbViEKVOm4MUXXwSg\n20loci+55BLcdtttAICZM2c22WdpuyCxvLi4mIlKw4YNAwBs3ryZxzUcDqN79+4AgNzcXCZfVVZW\n4m9/+xsA4KqrrgKgb5CSpUnPGgqF+CU8duyY5YtD4y/VB5MLrQGff+TIkUxk2r59O4+3z+fjTb5L\nly5sSzjttNMAAPPnz8c555zDbQ0cOBCArsMTq3XatGkGEpEV6O+SNp8qZsyYwfaX7du3p7zJmNUc\n8zps8vcp3d2GDRv/79AqvA8Oh0Pzer0GsbWx3VJSTYGoOgAYjYsej4dP4Ouuu47bpFOEJI1E4Xa7\n2Xgo4xKcTifv+GeffTa2bNkCIErtTRSkiixdupRPJaUUG0wLCwublHZIfUpLSzMY88gIeujQIQD6\n6ULj5nQ6WUXr3bs3fvaznwEARo8ezbEG8sSkdlevXs1zMmDAAB6j6667DvPmzePvNwZ5yskAo4IC\nPbjv2LFjrKKkp6dj9OjRAHQ1gSTBUaNG8XOTofH+++/n5+vcuTNLGEeOHMH8+fMBAIsWLWLVKpZH\nQaq0ZppzoqDn2Lp1K3Ndtm7dytJNKiDpICsri9dnJBKJy/tgSwo2bNgwoFXYFDRNQzgcRlpamiHM\nONapYt7FpeFMIhQKYciQIQB03ZpOVdKnk4WURqRBNBwOsx798ccfp3SP9u3b49JLL21wDyBqdHvp\npZfYyBdLYiBjXl1dnSHElyi/VohEIixFHThwgCWWw4cPs/GT7A/BYBC/+MUv+LePP/44ADBfA9Al\nskQkUun/p9OU+CSynWAwyOP8+OOPG9ibxAgl+9HGjRs5WK2uro6/63a7eS7r6up4bEkyO3TokEES\nkPdPNe8E/X7fvn0cDfrVV18lxV6VtoNIJML9j/VuNIZWsSkA+gDU1NQ0q9985MiRLJYFg0H89a9/\nBZAcZdj8OxmvLv3tqapjJHJPnjwZY8eOBaBvbjJWge5x5ZVXsmry+9//HoBx3GSUpIzgi0fcpXZ2\n7NjBxKmZM2eyV4VE0gMHDhi4HpMmTQKgi/Dvv/8+AN0rk8iYW+WDsOIFOJ1O3HTTTQB0gyFZ8Hfv\n3o2HHnoIAPCf//zH8r6k8sgQ9vT0dPaqzJkzB4CuUtCmJ6nZydCHrfpP/f3qq68A6Bt+ImMlEwdJ\ntZqez+fzMT+DNsWmYKsPNmzYMKBVSApKKXg8HtTX1zeLhEA75m233cYn7PLly/HHP/4RQOpMMPMJ\nbI6WSwb33Xef4V+Hw8Ei8GeffcaGsW7duhloviTa5+fnA9BPAytxN1kpRtM0Ft3btWvHkhz5+R9+\n+GHmi9xwww0YPHgwAF3svvfeewHoxr5EckfECnQzQymFBx98EICRZTpt2jSOdoznvpKfsXTpUgDR\nLFvhcBhDh+qZBL/99lvmerRt25YNvqmiTZs2zD156623mGMhmZ1AdF2TIXLWrFl4+umnAQCvvPKK\nwTgv3eeJrstWsSkAMHgMADTI6ZcISGW48sor+dqVV16Z9GYgw3qBhvkFydLdq1cvrF69GkBiop/L\n5WKdksg2W7duxfXXXw9ADwWme8yaNYttDQ6HgzdRqXOTWGomgyVrLafvS9IUvYAVFRW8KYwdO5bn\nb8uWLQ3CnuNBrHGzyqN4xhlncNvBYJB5HUuWLElqrvv06cMbMdlO8vLy+JnkXCey0cUCtTVq1Cie\nP9qU6H6E3Nxc3H333QCisTS1tbVM+Y41p9I7FC9s9cGGDRsGtBqeAtFsk/X5SlAOw1NPPdVgcU8G\nUuyW2ZlJjA6FQsz+KykpYfEykdNR3qMpScntdmPjRr18hs/n41yCxDCUiU9le5L+bZUn0KpPgH5C\nU2qyzMxMzr8gE9BSmrAlS5bw6Td+/HjMnTs37jGwurfMjWGV5HTBggU499xzuT89e/YEoFOhE7kX\njVHnzp2ZJUqMR7/fz8liwuGwgR2YaoASqba/+tWv8NJLLwEA7rzzTvTt2xeAbsx99dVXAeiUbpIQ\npbpKEibxTZrAyRMlqZSC2+02JC1NFk6nk+MgAHAW4WQhxXEiJsnEG263mz0ABQUFTLLx+Xz8AjWl\n05kTnjaG/v37s/0gOzubx4yeec+ePYas03KTJV01EAg0UCXMqcWpT3fccQf3qaioCA8//DAAMD+/\nuLgYU6dOBWCkVC9ZsqTR52gMMvbB6sW74IILAADf//73eYOoq6tjLwm9SNQGoMe+0ItTVlbG9oD+\n/fszAWrSpEk8njt27AAA/Pe//zWoeaRWlJeXG3KBmvseD2js//GPf7AtRobX19fX83rKyclhGwNF\nddbV1cUVrZmot81WH2zYsGFAq5AUgKi0kKr3YeTIkQZVwRxolQzMO20kEuEMzjt37uSd+8ILL+Rg\npWPHjrEv/8Ybb+TfJRvsQrTkL774giWW+vp6PtnGjRsHAHj77bfZOr106VI+zTIyMvik6d69O4v/\ndFpVVVVxZmuXy8Wn8fnnn8/Gt8GDBzPNmfoTiUQMhk+6RyLqmrk4jwyIMo99Tk4Oq2uSu5GdnY03\n3ngDgJH2TirMiBEjWK1cu3Yt++w7dOiA8ePH8xiRNPHee+8B0BPxkKTkcrlYRQGiWbppPqqqqhKa\nX0mAo3mktUTPv3z5cgBAz549OTHMqFGjABjT3TeGRNWaVrEpkIU0lU2BROa5c+fyIisuLuYkrZJk\nlCjod9Q3p9PJKoPP58MZZ5wBQPcAkCW+e/fueOuttwDo9QQAnfxD3oWysrIGLqdY8Pl8+MMf/gAg\narEGdHsGZZailOb19fUcTlxdXW3IP0hibllZGasSFDm4bNkyg95OhKQvvviCN5lvvvmGXwAiKZH1\nG9AXOXkcDh8+HLfYap4b6dkxi8eRSISJWnIzCQQCrFaFQiFcdplepZAYrQ6Hg926u3fv5shImWwX\niHodKOKypqaG1aLMzExOdnP48GHuJ81jLHdqLFD/3W43LrroIgC6N4cicMPhMG9I77//PoeGkx3h\nb3/7W4skWrHVBxs2bBjQKiQFwChCJQOZVGPRokUA9B1YirmpQp5mdLoEg0FO8V5VVcV5HUaPHs3R\nhSS2DhkyhNOVLVq0iJ9XpqInI9OhQ4f41MnPz8ctt3CFPY7duP3227F48WIAUZ6Cy+Xiz/KZfT4f\nS1MyynPKlCkA9NwTJAXcddddrDJUVFSwhFRcXMzPR235fD7+7gMPPMCxCPHwTOj5zB6TWIl2ACNp\niIxwBMoY3bdv3wZl49LT0/nzoEGDDKexvDepFSR1AFFKdGVlpSGxioxcpXtQrEFjUil9n9ZsQUEB\nz6lSiucvEAiwwXP58uX8vNOnTwege19aAklLCkqpQqXUZ0qpjUqpDUqpycevt1FKLVJKbTv+b17z\nddeGDRstjVQkhTCAX2ua9o1SKgvAaqXUIgA3AfhU07QZSqkpAKYA+F1jDZGRMZVCGqQPP//883wK\nBgIB1tX27NnDuzEZweJlTVqVjaPdvFevXny6lJeX83eKiooMuQWojzfffDMAXQ8lf/qpp56Kxx57\nDEDUrbdo0SIO5pk4caIhUIxcbnPnzm0gAYVCIYNLT9YoJOmmrq6ObQJkMB04cCCP/8CBAzkh6sGD\nB9lOQslFgahtIxgMcnbsRE8uKz6FjOaURXhpXMvLyw0MQzqZ09LS2D4CGI141BbhtNNOYyNwWVkZ\np8ibN28eGxhJipNrRBo+ZQCSzCBFa0vWshg5ciS7aEOhEPeFajp06NCBozPlnK1fv96QvYraIIp5\nSyHpTUHTtBIAJcc/VymlNkEvQX8ZgJHHv/YigM/RxKagHS8CIxN9JAr63fXXX88i8aOPPsoW28su\nu4xjHz799FMA8Yu40hcO6CIzWbi3bdvG8QdOp5NfJiv/scPh4Ii1QCDAqejff/99nnxSHwCw//yU\nU04xkGYoXXqssZKp6yTHgjayDh06sAFOGi4lXZsqE91+++1MF5chxxSF+PXXX6csxtL802f5rLJw\nLqCHi1NYd2lpKb9McrwlDV1W57KKcLzvvvvw9ddfA9A3CNosGqMNE2gNUN+DwSCrYG3btmWSWVVV\nFacIvPvuuxvk2Gzbtq3Bk0IH3KJFi1gVVkpxe6mGbDeFZrEpKKWKAJwBYCWA9sc3DAAoBdA+xm8M\npeht2LDROpDypqCUygTwNoC7NU2rNGWP1ZQoMy+hiVL0DodDk5GHyYDEvRdffJHLsRUWFrLIvGLF\nCvax04kfT+SgpmkNduZwOMwibHp6OvvNs7KyuG0pPkpQKriuXbuyW9Pr9Tag85599tkGlxWdXEeO\nHOETKlb/ZRIa+p2kOVdUVHA0Jqklw4YNM5zKJDU888wznJCloqIC//znPwGAE7imWjuR+inHWCZZ\noX7QCXzLLbdwefbTTjsNF198MQDgrLPOYgli/fr1+Ne//gUgOp7V1dV8Wnfu3JkNeKkkSZVqA4Hm\n/5JLLuH6I126dMHZZ58NQM97Qeof8UIoOzX1h9ZTY4lwWhIpxT4opdwAPgDwH03THj1+bQuAkZqm\nlSilOgL4XNO0Po2143K5tKysLITDYYPPNxlkZWVhxowZAKKVoABdZbj99tsBROs0Zmdn88TFgpxw\nqU+SdTotLY1F2HXr1uG1114DoIc7P/LIIwCi+jIQXaRVVVVsR5AcAso+PWTIEPaZV1RU8Oa2d+9e\nHiO3282LsCnrfSyQOjBq1Ci2GbRv394yNfjGjRs5JiBZEVaGfUuVQUZ20mepSkjimOybDHGm70j1\noaVgxaGQNge3280xE1OmTOFxe+edd7hwEdm4xo4dy5vzs88+2+x9F+uhZXM0Kv1OzwPYRBvCccwD\n8OPjn38M4P1k72HDho0Tj6QlBaXU9wEsAbAOAB0bU6HbFd4E0BXAHgDXapp2xLKR43A4HJrP54Om\naSySJdsvn8/Hotq8efPYgFdVVcVGQLpWWlpqqFMQKzpPnkaAzmwj/sOQIUPYGnz06FH2KNx5553c\nHkUydu/enS3kM2bM4IApacBLRJw104MBY64+pZRlLsmmIiMHDhzIno+CggL+/uTJk/Hkk0/G3T8r\nSMMnqR5KKfbZy5yCubm5htqTgDEIqKUNbo0h1thbJbVxuVz83Lm5uYbS9uY2WgJ073izObeK0Gmn\n06mlpaUhGAw2S+g06cbdu3dnsXvKlCmcpYYs6+asNFauPFnunJCens5RiQ6Hg9WEGTNmcFr34uJi\nftFTSRjTGBwOh2VOS7qvtOonmnmJ+PUfffQRxwMUFRUlvVnLUvOAbgMyp2EHdBuFTEAqCU6EE7lm\npZogVRsJme4+nvYILagmGK6JA8dO8W7Dho3E0SpozhTt11wiFJ2a27ZtY0v1jBkzmCMgi6JY3VNa\nw61KjtfW1rJEc9ppp3FQ0tlnn42dO3cCMGbUbSlomtZACpHchPr6+gYknnhB2YVvv/12Vn9SOdlk\nnwB9Dsjg63a7WeKRQWIOh6OB5GiVeKUlYVYJ6Dms5jdeb5b8vtX1ZCGTr1B7breb1d9412OrUB+U\nUhol+WgswUYyIBFVuhFlRSe56KR3QY4L9UPqkcSd/+lPf8qbzezZsw21BVp6U5BZg6yiS2O5eZVS\nTY4tjYXP5+O2U/E4mJmF4XCYXzDZT5nVyuFwsKtZZtCympuWgkw+I2HllZKkqP/FeyUPL5kljPoX\nDodt9cGGDRuJo1WoD4DRyEf/n2gaKQL9ToliIoCRtAQYDUdS5CLKdax+OJ1OlgLmz5/PZBOlFEsN\ncebMSwmSumuVZt7cdyl202lMv5OShjzZg8GgJbcg3v4RzAY6+f+yTUnUkgZfq75ZeQCaC3Jcaa7N\nzy/Xjrk/ZiOvPLnN0kQqa132V657gtfrTTj62JYUbNiwYUCrsylYMfDkDi1zD8iTvZG2Aei7OPnC\n6XeFhYUcMOX1etnIlZGRwVyGWOND19PS0ix908FgkKUG8sd7PB5uNzMzk0+3du3acSQiMSxlpWpN\n05ja7Pf7DYYjOvFlyjDziUVjJE8j6VsnkCtX0zSmFctiN/LEkzU/qY28vDym5srgNp/Px3NGVPOS\nkhLLPkiJzcom4vP5+FmlVCFdx1Y2E/NpLE9VGk+Hw8HzQGNYW1vL9On6+noeo/r6ep5X6qMMagKi\n+RIikQjX1iwpKWkQpSv5JNKWFiuVoJR05fqm77tcLsPz0eeqqqqTJ5szEO28XBBE8z169CgPeFZW\nFqcUX7FiBYDGaa3yOonI0vhItQg//vhjQwFaGX5ttnY7HA6D2E159c455xx+ST/99FNOvUaLo76+\nnn8XCATwwx/+EIBeqIYiN2WyDWl8o5ewTZs2vIAikYhhM6BrkghFC8Lj8RgMn7RIJVmInv+MM85g\ng6nf7+d79OzZk9O+0XMGAgEOw/7ss88MFGVKClJRUcHfJyNvdna24WWTG6vkJtDYFxYWcr9p4wmF\nQkwxP3jwII+LWS0kyLUgRXd67tzcXD4YZA5L2tyrq6sbpOaTY69pGq+bs846i9fF9u3beV49Hk8D\nj5F8TrmZxWMMlmuEkJaWxuMcTztm2OqDDRs2DGg16oNV0Q9pjKLTVvqu4018agbt5pmZmYbkHjJv\nAu20UkST/ZHuNJJoTjnlFBb7y8rKDAlAAP1kI3p0RkYGZ3l2u938LFQZO9buHotKK/8u+2ilMkij\no5XqFcvfbuWGS09P55qR+/fvxwcffAAAnKIO0E9SUhsIBw8eNKRMk8xMKR6bmZCRSIRPafndYDCY\nshvQ7XZzG6SuuVwuVhOkKuX1enmNSHWOpNBBgwaxpNi3b19OhFtbW9ssqQHNkPT29PR0w9iSKlhe\nXn5yqQ+k58mKRnLw6CGbw/dPYm12djYnHqmpqeGX2+l0GsQvKR7Sv7QxZWVlsahdWVnJ/cvJyWlA\nGsnPz+dEL3369MHjjz8OQF+A9NI0FdVoJQLH+rsUS+WiMY9tY200dX3o0KGszoVCIdbJq6urWWSu\nq6vjMZIivuRCWBVHlZswEZ3MWZ/NxLJUINUtsthLu4XkIUgVgPreq1cvPhS2bt1qsC9Z2b9S9ThI\nSG5CIBCw5E7EC1t9sGHDhgGtQlJQx3M0SoOTZJK53W5Lum6iOy2dKpdccgkAPYkFJd6Q9RKoLwQz\n1VbyA2pqarhvgUCAVZODBw+yMY+iNn/yk5+gqKgIALBmzRr+bqdOnfg7jYn1icIsNTSnqkhtBQIB\nNgJ++OGHXBehqqrK0sgrIY2j9LxmxqJg4/F9zc/VnJCp4AA9hyUFuUnauKwrSf/u2bOH143kqRw5\ncsQy0K+5VXfplaOxdblcLLHFi1axKZC+m5mZyYsnJyeH3XdmfZHEcsmjtxK7peupXbt2XC2IXsDt\n27ezrifchnomAAAgAElEQVQ3gVgFaSRVV6oSUsenyc/Ly+NS8lT89bvvvuOcey6XizPunHPOOWxF\nJ122uSjS0jXVnIuQ+jlu3DgunAIgoSQ5UpWQXifpOTC7LRtrl37n8/kMojS1Jf9O16VadeWVV2LV\nqlUAotWfZMJbshFQn819Ms+ZXCPURk5ODrvBrSj2qcyRleciGbubrT7YsGHDgFYhKZBvOhgMsgGn\nurqaT5L09HTObej3+9lqT+nbJ02ahGeeeQaAHhk5ZswYAMCf/vQnPoHz8vI4gzGdIrm5uXHlbzDv\n3rFEcZmQRXolZMQlJS8pLy/HRx99BECPtJSl7oBorcZUYE6y0hy44oorAERLl+3bt4/Ti0njbFOQ\nXI9wOGzwOFh5XuQ1Ky9Ily5duLzd1KlTuX+rV68GACxevJj5FIcOHeKTu0ePHuwx+Pzzz/n6N998\nA0BPz0+Rr2vXrmWDp6QxSzVCSo2E3NxcTvBTV1eHd955BwA4IQ+11xicTqeBG9IUrAya8aJVbAqE\nSCTCluzy8nKDhZfqMu7fvx+nnnoqAHDxzblz57LLqm3btpwmferUqVylqba2Fj/60Y8ARFl1JMYl\nChn7ABgnlCYsFApxzUO54OlFyMrKwtKlSwEYk7TSAm0Ocd/tdjdrpObcuXPZHkPtdu7cOaHNgCBV\nMBk67ff7LRmNcgzJxauUQseOHQEAP/jBD3D//fcD0NVLsm3QZjJq1ChO5b548WJWJWbPnm1QK4gQ\n94Mf/ICvUT7Odu3acXuVlZUNNoWcnBwmZEkW7oQJEziZ8KxZswybQby4/fbb8Ze//AVAlMiVTDvx\nwFYfbNiwYUCrkRSUUkhPT2c/74033si79h/+8Ac+QUeMGME7MNVlXLZsGasXst7fsWPHDKetrBIE\ngE/qRJGZmcnEpFgpzmORgkj6CYfD6Nq1KwDrsu0dO3ZMOcW3y+VqllRw5DGhojAAOB2dTKUWD+SJ\nH8vjQFKDpBiTwUzOYWFhIaeq37FjB9eSXLBgAdavXw/AyG+hUz4SibChtLS0lHNj/PznP+fU72Rw\n9Hg8rGJKMby+vp4lUqIzh0IhrkC+adMmLuYzcOBAlmSJJp4oKKU+ENsQHgsJe+kSat2GDRv/79Fq\naM5EhSV93+v1smEwOzsbw4cPB6CfFCRNUCXmeJO9yvh2QC+AQqnUEkF6ejq3JWsfxgO6d1ZWFksI\na9asYaMknZITJ07koiGJgu6RmZnJbt1UIIOuXnzxRQDGmhrJ9M2c0Uima6MxABoGsdXU1PApn52d\nzRJLt27duLr30aNHuTK1OXMTgX63YcMGlkLatWuXEO9BlogDjFG3wWCQ1/JVV12FvXv3AtBrnSYS\noCQNusS+pbUSL4SkcHLRnOvr63H48GH2Bbdp04ZrLfp8PiaDrF69mn3IiUxgly5dGlhhaaISRV1d\nXdJWffq+FLt79uzJGx1RsGmBJwO6R3NUb1q3bp0hQQhZ8BMFvfTknQkEAgY+glU0Y11dHRvxpDFT\nWt9JxdqxYweP3SmnnMJrREao0uFRVFSEzz77DIC+CVOq/USJUPR9ellLS0tZ3amqqmKj4/Tp05NW\n4+QapUjaRHHCac5KKadS6lul1AfH/7+7UmqlUmq7UuoNpZSnqTZs2LDRetAcksJkAJsAkGP9LwD+\noWna60qpmQAmAXi6qUYcDgdCoRDv5n6/n8XII0eO4NlnnwWguxNJ3CPRqri4uMndkPImSJDPOVE0\nd1mySCTCJxqdnp9++imLpcmmo4tFD48HZHwj3z8AvPnmmwmJvlIyI5GXyqctXryY59rj8RhyREhD\nmtXpLSnWZPCNRCJcaGfgwIFs/CMR/tJLL8XDDz8MQHcL0omuaRrefffduJ9JQhou6TlkGT9zMqBE\n0bVrV4NhdsKECUm1k6ihMaVNQSnVBcA4AH8C8Cul3300gBuOf+VFANMQx6ZAdGFJa6XFIbMuHzhw\ngC3D5K+96qqr2KorxS2Hw8FU41//+tfc9vTp0wEkbsWVfW1O/OMf/+BFTMjJyWHdOVE1QEbkyaQn\nTYnHpCOPHj0ab7zxBl+n3/3ud78zEI4AfW7oWkFBAYYOHQpAp5CTCtSlSxdue+3atQB0m4pMskJ/\nr66ujnt8NU1jXn/v3r2Zxu5wONgrQQWANm7cyCSrDh06cJ8rKio4XD1ZyJcuFn8lGdDzADonJ9k4\njxOtPjwG4LeIlo3LB3BM0zSy/O0H0Nnqh0qpW5RSq5RSq1Lsgw0bNpoRSUsKSqmLARzSNG21Umpk\nor/XRCl6dbxcvWTxaVq0ErE5cIQiG4n9+OCDD7LPWKb+6tOnD1+XUsjMmTMT7a657yn9nkAnDPmz\nJWbNmpW0oZCMc2Zx1qq8GX13+PDhTL/NyckxjP2f//xnALoHgMaW6MCdOnXC22+/DUCXCKTKR7kj\nXn/9dTbGmbNGA7pR2VwzMl7Qib99+3aceaZuWB8zZgzTxc877zy+B6lE4XCYvQQ33nhj0pmgqa8U\nDdupUyc2iCfK35Agg+n3vvc9vgcxc5NBoupDKgVmHwYwAUAYgA+6TeFdABcA6KBpWlgpNQzANE3T\nLmiiLY0ILPHkpSNR+6yzzgIA3HbbbUy/1bRo1aS0tDRD8kuyWhNB5ayzzko4/XVLIBQKGcR8wJrQ\nlChkYVO5sUoxlMbH7XYbxH0i/5SXl+Ouu+4CoFOFqX/9+/cHAIwcOdKQP1FmryI1b8KECfwSShuH\nTDQqQ6MJiaxNn8+Hxx57DIBuP6K2yZslYyqOHj2Kiy++GIAe7pysWE6h73LuaLOkBLzJYOzYsQCA\n999/35AJqhkOo5YtBqNp2r2apnXRNK0IwHgAizVNuxHAZwCuPv61H8MuRW/DxkmFluAp/A7A60qp\nPwL4FsDz8fyILPpNiTrSuES5CQ4ePMhSQ6dOndgXLiUPmRq9b9++APRy8VQx+n8BOmGkVPDee++l\n3C6J1NnZ2eypkSneJWQEJ52e11xzDRYsWABANy7Onj0bgK5WUFq155/Xp/W5555Dv379AAA33HAD\nz4PP52Pjb9u2bVlSsOqDx+NhT0tJSUlCJ6JMSkPeB5lrkaRKqZoeOHAAAwYMAKBHTCYT0AVEpS+S\nTJ1OZ9IeLRoXr9fL9H3qn7n/ybZ9QrwPBE3TPgfw+fHPOwEMaY52bdiwceLRamjOqeyEUh/u1q0b\np8964IEH2B/90EMPcWCPTM5J9NkTPQ5KKWYH/vvf/zZkiALANN1kIA2NssJ2Ir+nfA7z58/HsGHD\n+DqdqlSzYu3atYZTjj4PHDiQjWPLli3DwoULAUQZiOY6BXS/gwcPJjUX7du351wPY8eOZWmQUuzl\n5eXx2Kanp7NBdNasWbj77rsTvh8QlfCoLRnWLbM0xQMat6eeeor5CF6vlw2WF1xwAeeGSBQiU3pc\nNoVWtykkk5bK6XSyTz8/P59FVZkqzeVysWhH1uL/xaZAEzRu3DgmzchqSrRwyYefDGgMYxnw4gHx\nBi677DJMnToVgG7BpzGkRDebN2+OSeGlXAdAtMiNjEWwIlklavSThlKrNuRz0wHx5JNPcm6Nw4cP\nMwku2XtLSO9ZvPB6vVi8eDEAPTU8bZjbtm3DrFmzAOjqWqreqHg3BTtK0oYNGwa0Gknh+L98TbIY\nmwvnn38+AOC1114DAHzyyScYP358s96jKZARsLi4mDP6yLwPlK1p5syZKRuWZMXkZOF2uznvQ35+\nPie9JR7AwoULky7KQ5D1E5P5LZBYabSCggJD1i1SjygFW7yQ40x9SCRlGuHaa6/lfAkdOnTgeX/q\nqaeYmu33+w0l/hJBopJCq4mSJPVBDrCs3tQcINIT6a+DBg1qlnbjhVKK77l161a2jB8+fJgt9V9+\n+SUA46aY6EtDY5ifn8/RgskiFApxjsKqqioOOb7zzjsB6Knkfvvb3wJIXgWTnAVzLkarNum7Xq/X\nYIuIF+Xl5Wyz6dChAx8WyW4KMglLU9R5mYaO5mn48OG8mWzatIn5HRkZGazqVlRUsJqTSJSwUspQ\nnDge2OqDDRs2DGhVkoJMy+X1eg1Gt1Roo4Qf//jHAKIn2ptvvplym4niu+++AwB89dVXHKz10Ucf\nMWuQUopR4lEg8arB9HypGCut2svOzmajI12rqKhgia45AszMVHdZt4JAkkKPHj2YulxWVha3oVDT\nNFbd4jnd44V5nmSf6cR/9tlnOXKTgsPGjx/Pat7y5cvx97//HYAupZFxsaCgAL179wYQ5V6UlJRw\nEp3GVO1EWbutalOQKoPX60WPHj0A6GL+Sy+9BEDXv5OhpZ5//vl44IEHAEQHMJmsS6lA0zT2dng8\nHlYZLr/8cl5A9Pdk7SmyuElzZXIm8XP+/PkswtKG88EHHxgyWqWiQlAbViDxWqqSXq8XEydOBADs\n2rXLUNS2MTzxxBMGNZUiaxPtf2PflSqfUopjcPr378+bwuDBgwHoY0mZqDds2MDqQUZGBr8PHo+H\nY33oWnZ2NrvfJTlNZtuS8S/xwlYfbNiwYUCrkRSo7LjMdvz5558D0KmetCuff/75TG+WFF0iksjS\nbUopzvNIhVeA6A5PabgSBRWvkX2IB5L8891337FIOXToUD7VSWVK5cSVz98c5ciI3NOjRw8WtSlP\ngdfrTUiqiYdDYaUqyNOOfrdmzRr8/Oc/BwDcddddWLJkCQBdrDZnwpY5FiZNmsTz8PXXX3P9ELMa\nY3WtqYAtq3WhaRp7O+69916OiqUENpFIhCWv2tpaliSOHTtmyPtAagPVkHjqqacMRksypMt6GbFK\nKjaGVuWSjAWn08m6I5U6B6KEmEmTJuGOO+6gtrBr1y7+Tp8+fbgNKp5B3PK///3vlvqrRf8aXJOi\nYVNjSNF0dXV1LEZmZmby5JaUlLAFn9hsVOMyGcgNMtUKUXl5ebx5ZmRkMGmJwqwTbVumQyd9OdbL\nJm1MNAexVMf09HT2HvTs2dOQaAbQXxpqIxgMYvLkyQCAd99917JSk2QpyntLL0ljzy2LwQDRzS0z\nM5NVxEsvvRSAHmY9atQoAMCSJUu46MuqVavY8/Pwww+je/fuAKLq3KZNm5hM5vF4LL0LLpeLiWgV\nFRU2ecmGDRuJ46SRFKQxi3ZdSvF+7NgxTrG2du1aLvlVXl7OVuaysjIWL6me43vvvRcz8Qhdl8VH\nzGXCgMTyNcoTUSnFBiM6OYCoAS/ReZHirqxtmCoBLCMjgyM3N2/ezF6SZCENfFaql7lOJFGTSdyP\nNd5yXZSUlPCY0qkKRAvK3HLLLUwxj5WiX0auxirsY5ZiGqPpS7XJ/Dev18un+aWXXop77rmHn5li\nKG6//XZOVEN9O3r0qOX6beQ5bEnBhg0biaNVSwpWO7DcoWXdADoZZIFSr9fLRpvc3FzWjemEPnr0\nKH/X4XA0qS/K/shTIpkxNJ+IydJ8rU4mmdEoWTYotZuXl4dp06YBAH75y18mnaWIYE782hhkZWqy\nyyRa3EZKemTYraqqalAYCNDXk3k8Y0k08rdW68LskqQ5kZKcLIAjx4PWbPv27dlgeuTIkQYMX9mv\nWH1MRlJoNZuC+eWS/2+uPkwDYE5hBjSkycrwVpmv0NwWAIM4T2K8jGCU7VohlViFVOMcrDbQVNQH\naiM9Pd2wiaaKprwhZrGcDH40B82VXt/8YtJnq0001gtnjpKU61Rm0pYcArfb3aA988YjN2Qypsu/\nS/XQau3LjcdkwLXVBxs2bCSOVsNToN2RTqVQKGQwSknRnoJgpPHJSr2Qp6bP5+Odm06DSCTCacBk\ntepQKGRwI1qdxgRpBDUHLjUHR6AxSImFTlTJYpTjkkgfpMitaRrTZM0G1mRgpXZZGe3oftKlCOhz\nJvkpycDr9bIqIUsAFhQUcPozKwlLjqe5r4AxiE2mhJO5HjIzM9ngacU8lZIQSQl0Lyk5A/qapvuF\nw2GDBCFVl0THqVWoDw6HQ3O5XIYS4bJalHxIj8fDEyqjDMnLcOTIESbY1NXVGbIZm18Qs9guF70U\nn82DGgqFLH3Qsp+apnEWHtqEHA4H902WOJcgPkZtbS333e/3sxXe7/cbsvuY6b9SZZKLVvrYaTzM\nz0wbsgwBrqurY8u4rP8oC/VYLf6srCy2nEs1Rm76BFlQVtaVlH2T1+T8yeuxStvTM0l1U4rX8rvS\nW2Fuq66ujuensrKSr1vNqTnRi5XKKYlH1DeXy2XIEk0xP06nk+8jN0haF7W1tZaEJfms4XDYVh9s\n2LCROFqFpKCOl6KX4pemacz+q62tNWTMpUQfVDRj27Zt7H1QSnGgUzgctrQGxwPajelko/aob1YG\npU6dOjGrrLa2lk+LLl26ANBj/mXRE2rbSmLIzc3lHb6mpoZP0/79+3Mg1aFDh/iZxGnQwKJOkM8v\nmYX0O3rmAQMGMJOuoKCAT6uMjAwOHpIqGOW+PHLkiKGuIj1fRUUFqyDSSGxFKzZ7geg69dfv93Mb\nUpqSagVg5EOYn93pdFoa5bxer4HJSNfoHtXV1Yb2pIhObUl+i9V6kZKO9KKR9CclnuzsbJYaDh8+\n3CDaUdbglO1RXVYzTrocjUTqkJMncynSxKWnp3PuP6Kn9unTh5Ns7Nu3z0D3TFavp0nKy8vjgaeB\nlvUO5cuUkZHBIp4U4ejviebYowWakZFhWPzyBbMqYipfMCv6sLwu3WKkJnTt2pWJMkA09DYcDhtE\ndPqdrM4lr9NYmERYbpfGRSnFdqIjR44Y2qBnofmorq5ukvKcKGicc3Jy2MNC95CbQjAYNPTZ7Bq0\nUlEThcPhYDrzwYMH+R5WMQyxSH2kigNGtTEUCrW8+qCUylVKvaWU2qyU2qSUGqaUaqOUWqSU2nb8\n37xU7mHDho0Ti1S9D48DWKhp2tVKKQ+AdABTAXyqadoMpdQUAFOgF4hpFJFIpAFNlE7WSCSCESNG\nAABWr17N4jPtxldccQW++uorALqYRaeRz+fjkzQQCDS5e8t70ylXWlrKxicrUdXr9fJuLlWGzMxM\nNrQlm9eAfufz+QzGU/qcn5/faCp4c6Se7L/5Ow6Hg4lBW7Zs4e+kp6fzPMg2KNIvEAhw4hgATDGX\npeaBKPlIlm+nccvOzjZkeabvdOrUiaMLqW/NLdnm5uZytOKWLVtYaiDpp6qqyqDyWakjUupKVXrR\nNI1zRFRXV+PJJ58EoEshlGRlz549fM2KpyDVDLfbbemZagyp1JLMAbAGQA9NNKKU2gJgpKZpJUqp\njgA+1zStTxNtNVn3wYqcQzrryy+/zJtGcXExqx0FBQW8GN9++22uQxAvmw5oaLU2w7yRJRNS3RSk\n7hhvXj7qTzKJTRsD2Q8oWnL8+PFcYPaVV15hN1p5eXkDFxoQjfOoqakxvEyyz7JyFm2ATXH8EwXd\nr7CwkMPVS0tL2V0o55zUVCVC0a1sA2ZPRjLw+XwcmzNo0CAukLt79+4GRXjly69pmuHlp346nU4Z\nft7i6kN3AIcBvKCU+lYp9ZxSKgNAe03TqLpmKYD2Vj9Wdil6GzZaJVKRFM4EsALACE3TViqlHgdQ\nCeAuTdNyxfeOaprWqF0hHkkhxu8AABMnTsS///1vALq4RIZGWSQGAFeRIu9FsqnJPR4P31uSRrxe\nr8G4lmqEIrXbv39/rgKdbMGS5pAUhgwZgpEjRwKI5n0oKipiaWzv3r1cfv61115jcVUpxUZMkuJk\nWj2ZC0CKu5FIhNtINcWcUoqNhAUFBYZEJ1QhOiMjg9cEndZ79+7le5op1tLoCKSWdZzauueee/Cn\nP/2Jr5N0cP/993O0Kqml0htiflZp5KZ1eCKKwewHsF/TNEp0+BaA7wE4eFxtwPF/D6VwDxs2bJxg\nJG1o1DStVCm1TynVR9O0LQDGANh4/L8fA5iBBErRp6KL3XzzzXxCf/vtt5zA89VXX+UiG506deKk\no1QZeenSpUmd5ubfyMrGPXv2BKAz3qgfyWQLbtOmDUs/qRSGaQ4JgU6d119/nceQ6MBA9BQvKiri\nlGeZmZl45pln+O9kuKMK1evWreNTULqcJZPV4/FYGijNury5n1IqoLmZNGkSF9rxeDz82w8++IB5\nLbt27eK8HKTLz58/H2+88QYAvVo5SZu1tbUGaTFV/PSnPwUAvj+gczIo9eD+/fvRrVs3AHr0JKBn\n55KSqZVty8xbiQcp8RSUUoMAPAfAA2AngJ9Alz7eBNAVwB4A12qa1mh9btVEkpWmsGPHDqafXnrp\npVi2bBkA3apNi6N9+/b4zW9+A0AvQAro2ZwpJVYikEYmj8fDRqkzzzyTaadTpkxhsZRE6p07dxoM\nVTK+gjYTSis3YcIEFq8XLFiAK6+8EkDzGjDjgVKKy9Kfd955/AKQ8S0YDBp4DFRNyu1249NPPwUA\nTJs2Dddccw2AqAq3bds2DmWX/HwZzp6ens7qH6kdpaWlBuq6NFZS+vmPPvqINxwyfK5Zs4Y3JiCq\nhsyYMYM3uKVLl/KcUFn7iy++mDe3lStXMo8hFAqxqpGqx8HtdmPHjh0A9DVLnIxbbrmFq5nV19fz\n2iIyXGlpKadji/UeOxwOGfPT8hWiNE1bA8DqJmNSadeGDRv/O7QaRmMyv6MdcPXq1YZScDJ6UoJE\n1y+++IL/TqJYIpCGxkgkwnRrWSxl//79vItffvnlAPSyZOvWrQOgi6qPPvooAF3EpZOCsk/LFG2X\nX3455s2bl3A/U8nTQFi+fDmGDh3K/79mzRoA0WzOc+fOZQNbz549MWaMfh7cf//93Oe1a9dyxmR6\nrs8//5ylOJ/PZ4gcpNO6traW55WMj2eeeSaXVevQoQOuvvpqAHp2bFID8vLyWCIhSeOVV17BxRdf\nDEBfN+TrP/300w3BZHQKU3+ysrIMqpKkLkuqdyp48MEHuSYJAJYw+/TpY1nIhaQmt9vNaz0UCjWZ\nDCbefAqtJnQ6GdDLSBmbAZ2MQi9CbW2tId051T8kVaOioiIpWqqMTktPT2dR2u/3MxfC7XazGEiL\n+JxzzmEd8eqrr8bMmTMB6DwLWmDvv6+bYM4//3zu+wcffBB33+hZAesEMfGCNoJBgwbx2Lz88su4\n6aabYv5mw4YN7JXw+/146623AOibMInrMtGNpAcTXC4XX8/JyWFbAy3+hQsXMj+ltraWs17v2LGD\nRfvi4mJD5CagzzmRsAKBAKZMmQJAf5moby6Xi2M+aAxljUrJt7CKxEwUtPn99re/5bYjkQj+9a9/\nAdBVM8l7oTVH697r9fIzNeb5SLSfdpSkDRs2DDipJQWqgCypxuPGjcO3334LQPcAUFSf2+3GuHHj\nDL/fsWNH0rs9+dVlTgPyHwP6zk0i6NKlSwHo2ZDpfitXruTiHZLdRz7q4cOHJ51MpDmSu3zyyScA\ndFVp48aNANColADoJylRcQ8fPoyFCxcCiC1ey0hTQiQSYbVC5tuMleiF1IBgMGh5n9NPPx2AXqKN\n1M1NmzYxC1NKKfKz1djFUxE7EVjV57j44ou5CJLkRcicE+eeey4AfSyobFxz4qTeFB5//HH+TAvp\nl7/8JSe+dLvdHCfh9/sbJPgwbxKJQIprTZFWaGLLysp4UX/55ZeWi4qs5WYxWm44TYHa9Xq9CRUX\npUU6e/ZsJhvV1NRwzcOm0LFjR1x44YUAdPJPMp4SKRLn5eXxc0sxmp5JKWUgFkkbBamU5HHyer1M\nAPvRj36UshuxOWxx5E48cOAAq6AjRozA6tWrAeiHGiUPcrlcHBNB6uSmTZuaLVJUwlYfbNiwYcBJ\nKSlQXsXvfe97fI12zPz8fDbwAWBxFoju7rRDJ3L6SiR6SshIxKZousRXkKm9KMlJvJC5JhPBmWfq\nhunx48fztQ0bNjQqCSmluAzfTTfdxPOwatWqpE7TcDiM3FydJZ+VldWA+CWLt8jUcxdddBFHa06f\nPp35J9KAN3/+fADJ566UaA5JgcbqoosuYnXm+uuv53whMj1hfn4+q5ZUwr6lPIcn5aYwadIkw//X\n1NRwKe+SkhIm+vTr14/dNx07dmT1gcTPgoKCuMuXS7QEu5AW73XXXcfXKGw4Ucjcf/GKl0opFBYW\nAtBVLZnJiqIIycUKRD0+//znPzkeQtM0Hk8i/CTTd9qEXC5Xoxt3fX09P19dXR3bMLp3794gMc7K\nlStZV+/fvz9vtDU1NUmpOc35Qh46dMjgJbnhhhsAGHNbPvfcc7zptTSNwFYfbNiwYcBJKSmYK+Xc\ne++97PMPh8OYO3cuAN1wRlWqn3rqKVYlyBD54osv4oILLgCQGAGlJXZqSsFFhrq6ujomNyV6Pyur\nfjy/IY5Ev379cP311wPQowg3b94MwBjBSJA5LIPBIHsDZGyAVWr4WM8kU65v27atyX6TerFo0SKD\nh4IkhOeeew4AsGLFCmzatAmAzr2gEvaXXHIJ81dkspgTicrKSn7WgoICQ4p9km6mTJmSVAxNMrAl\nBRs2bBhwUkoKRAWmk+Htt9+29DGHw2HmKVx99dVMc/373/8OANi+fTvTaJujJFo8oFPT7Xaz3v7C\nCy/g/PPPBxCl106dOpWln2SRaHQcndAzZ85knfuRRx5h5p3sP0HTNO7zI488wlRjsuUAul5Phr+P\nP/4YgG63kCefzL6cTF6Curo6jBo1CoBOxab0bcSE3LdvH1OY+/bty1GJHTt25MjEW2+9lSnGTaE5\neAqEtm3bshQbCoV4jAOBANOfU5ESEs2pcVJuCqeeeiqAqF9dZh6OBY/HwwNPg1RbW8ti+4naFGhi\nCgoKMHv2bAB6XkMSy4kotHTp0mZVU8yLWKbrAowhtm3atGHxWqajA6Ibh4yWJB/7WWedxVF9R44c\n4U07KyuLVRDJoZAp5shj5Pf7k/YMUD/GjBmDxx57DEA0ziUQCHA+y2HDhnE0p9frxQ9/+EMAejTn\nQw89BCAaf9CSRj0KhV6/fj0fEObs27S5Nucm1BRs9cGGDRsGnJSSwr59+wBEk000JhbRqXPllVey\nyF07qlYAACAASURBVPjll18C0MXklqCJxoOSkhIWu4uLi/mkpNOOqNqpItapS5IJXe/WrRuz5/r0\n6cNBN0eOHGF2o1KKqdkkih85coQDzGpqalhsl0zK6upqNvJZJUuh9uXfU8GuXbs4fwOpIl27dmVa\nfHl5ucGVSVJPXV0dR9KS5BirVkcqpzZJCMRcTEtLM5R8o3uvW7eOuTirV69OuG4IkJyEcVJuCuQ3\nJ3HQ4/E0KMxBIPHrnnvuYU/E8OHDAUT1zf8FIpEIrrjiCgC65+HZZ58FECVbpfJyWG0E0ksgi8jQ\n5qCUwsCBAwHo6dt37doFQM92TC/4jh07WBy/7LLLAOieHCIbzZo1izeW8vJyQ5hxYzqxrIMYq/+J\nQEY+Ult79uzh9gYNGsTPVFtby7amrVu38ndSybfYGPLy8jhqlg6CyspK9pg9/vjjTGDr3bs3qxUy\n1X4iSGYMbfXBhg0bBpyUkgIFDVG+wIsvvpgprPJEys/P5105NzeXT0uZJZkMSic6zRlgzTyUyVUS\ngax8TSdQeno6G2FDoZAh+zAZD0lSqKmp4e+WlZVx0M3dd9/NrMI2bdpg0KBBAIBevXoB0MebIkYX\nLVrE/vZEA46khTzVuZAis+RskKepsLCQn3vFihUcNBcMBuM+WROtTUr3mzNnDqtLdN/p06fjnXfe\nAaCP24EDBwDoOS9JGs7MzOR1nwj/xOFwJFxm76TcFIjgQ7rXnDlzWBe/4IILeGLvu+8+pu7KhUJJ\nLJYvX56UeGUuUJos6LcdOnRgqjAhUV2QFjwQTd5RUVFhSRySFZko3qG4uJhtNf369eMEKc8//zxz\n8c8991weT2o3LS2NN9vNmzcnlYJdFlFp6pnN9THlRkeLPysrq4E3yeFw4N577wWgjze9IDNmzEjI\n3Wd2ycYLsiP079+fN2RSGTZu3MibqMPh4E14zpw57GYdO3Ysk8vo2RrbxGQSW1mHMx7Y6oMNGzYM\nOCklBbIiSxotRU6uXLmSd3PpXy8uLsZf//pXADrlGYj/lDcbvtxud8wCIYmA+nf99dfzPWg3d7vd\nCRm7yOoPRC3m5vRhMrUZZTama+PHj8cll1wCQFcf6DRavXo1W/JzcnIalNALBAIcwCMDphJBrFTt\n8jr1U9M0Pvlyc3OZjn3KKadwurJevXrhkUceARCtCdm9e3dDjkaSFPLy8gwp4hrrg/z/RIlhMvKT\nxnDYsGEAdCMo8Sa2bdvGbY8cORK//vWvAehzSiobke+OHTtmqMEp+yYlhURVuZNyU6DkoST2+Xw+\nXjQej4evl5eX86CNHz8eX3/9NQDjhFqxvWRVHasX3ufzsV6YCumJ7t2rVy9emKWlpQASt37TIne7\n3dx3ufhlPEAkEuHcg2QP8Hg8bC+orq5ml2Rubi4vXpkhiMZr4sSJLNamAqtaklIHlgueNj2lFIcc\nv/766+y+czqdXKuB3L5KKQMzk2xJu3fvNqwHsxojbQeynkSidg9asw888ABXKCMv2hNPPGG4r3TR\n0hopKyvjqFmZl9FqIzMfWon2NdVS9L9USm1QSq1XSs1RSvmUUt2VUiuVUtuVUm8ovRq1DRs2ThKk\nUkuyM4ClAPppmlarlHoTwEcALgLwjqZpryulZgL4TtO0p5toK6FO0O5J8QIffPABX6upqeF8CwsW\nLGhQqdd0X8P/S0JPY5JCRkYG79ZOpzMp45rT6cRdd90FQC9gQ54U8v8TLTheyJOWTjNpEJWVnevq\n6hqcHkOHDmWD4p133onFixcDAEaNGmWQFJYsWQIATAdesWJFs3hupKon+9xU22TkzMjI4IpaF1xw\nAc8PkaZ69OjBnp2SkhKOxaisrGTDXigUMhSXAYzVliKRiKEidjJcBiltUFRmr169eP2Gw2FDJCo9\n/09+8hMmtNHacDgchvT01K7b7WYJOTMzk5+pqqqqxWtJArr6kaaUcgFIB1ACYDT0upIA8CKAy1O8\nhw0bNk4gUqklWayUegTAXgC1AD4GsBrAMU3TyLKxH0Bnq98rpW4BcEsy96bdmujKt956Kwfw/OUv\nf2Gfb1N+WbMUQLuu2e1lhmTgJWLEke22b9+e2Ysvv/wyn2hUFCZZKKUMVZvlc0h7gPn5VqxYwTr3\nf/7zH1x77bUA9DEi/sK2bdvY6Jhoijgr0Dya9V6ZQo1OP3mNnkMyJQOBAPdNBlvJZyc7SWVlpYFu\nbTWH9HtZ0k5+ljkPEoGmaSxZnnbaaQB0ty7VvJw6dSpnryosLGQa/rvvvsvPatVfOZ+yNmcgEGiQ\nA6MppKI+5AF4G8B1AI4BmAtdQpimaVrP498pBLBA07TTm2iryU5IIwrlraOJ8/l8nHF4+fLlBkt8\nSyERKq5UU+hzUVERW9HbtWvHaeDNhrymIK3yBFoE8mWTRkcpEssFL41rhPz8fE5vt2DBAjZ2Jasy\nWI2bvHcsqz6pCbJ+pLS4J3JvMxprw8wXkZ6tZNTGloJSit8Ll8tlMMaKA6zF1YdzAezSNO2wpmkh\nAO8AGAEg97g6AQBdACSeBNGGDRv/M6QiKQwFMAvAWdDVh9kAVgH4IYC3haFxraZp/2qirUY7IXc7\nj8fT4DR1Op18OgYCgRMWd54opP/Y4/Gw4cvpdBr4CUD8Je0a+45UV+QYNuVylUhLS2MXWWVlZYud\njlbSlKZpDRiEUkJJZZ6lhCXvZ8WZiGWkNo+9ua0TCSkpyLqSpvwMcUkKqZaifwi6+hAG8C2Am6Hb\nEF4H0Ob4tR9pmtYoj1QppdHgWy0I82eKxCO9NhKJ8MvkcDjY934iJiYeOrK0rEtSCT2TrHBF0DTN\n0gbgdDoN9TFjieN0Tb5sUocnWjSpWuZ70KJyu91MCnI4HMzFbw6Pg0z0YvWyy76TDm/OsJVUFKCI\nB5Bt+Hw+g3+f+ibVLit1Tfa3uWNorDgUBLN3icZI2i3k+qyvrz8hpegfBPCg6fJOAENSadeGDRv/\nO7QaRqO5iq/cdd1utyGNF0WLSV8y7ebBYJClhnA4zBb1cDhsKIUG6CI8+XMlC4zuT/cwG6jk/WRu\n/liSDn3X5XJZnvjUP3lf6ROXHgWllCFngdlgKK3i8pkikYjBSEbSlITMkk3jFgqFWJqQ4ykrNct7\nS/4GPbfH42mQ30AWZHE4HIYoT9m2VR/pfhkZGax2STqvz+fj71A+DSkdaZrG41laWspit6wLSvNU\nUFDAEqmcU1m+jp5TruFIJGJYC2RUdjqdrDZS3zMyMnhNer1e5k2kpaXxeKanp7P3gZ6joqKCPSrV\n1dX8HIcPH+Z+Sv5CvPkYUlIfmgtKKY1eGCmKUUYfSbaJRCJciIQowTKTTlpaGi+qcDjMEzBy5EhO\nHCLDpceMGQNAd8lRe5JAomkavwgypkAublkBysoNKtuS+idNolR5aCPw+XyW0XsXXnghvvrqKwA6\n952+I1UUgsyvaBbFaWyJph0KhQzh25JTT7/Nz8/n70j6MEVOHj16lJ8jFArxuMm07fTiytgOuYG4\n3W5Lfb9Hjx4A9BeBImLT0tL4paioqOCXLBwOszeK5mbnzp28Lrp168ZtHD58mO+dnZ3Nc0y/C4fD\nPIZer5efqaqqyuC5oe9S3/Pz8w25Q2neBw0axDEihw4d4naJov3ll18axoJiN2pqagwbIKBXSKMw\n69raWp6T3Nxcy3mN16ZgR0nasGHDgFYjKVgFJkn1wCooRRrimrL6ZmdnN9jZI5EIFwJ56qmn+CQx\nqxHUN1I/qqurDUE7yRiXpFXdymDmcrm4n7m5uXzCTpgwgYOAKioqGhhVYxkwpSphRWiS18xSh6T2\nUl4AIth4PB6mRx86dIjnprq6mgk5hw8f5ut0mpnvKVUJq4A1KuBz9OhRjjisqqoypDSjeejdu3cD\nrkpaWhonNTFXrrbyHlipOV6vl58jIyOD1VipMjRlMJVzIteAVDUlX0SqUGbPT2FhIQe2SU9TdnY2\nG4Tl9VAo1PLeh+aCdEkm49KR4meikC+ArDUp708LT+qeBFk6PRE05uoiSDsK3VtanCORCG8KkoFH\nz5SZmckiZ319vUGXjcfNCeibk5W+T5vD3r17WaSuqanhF7ampoZVlPLycmbvrVu3jvvT1HNLW4Q8\nIChM/ujRo/xMLpcLv//97wHokY/vvfcegGj6/8GDB3MWLrlhNDUP5r/JA4Lm3cpOFM/6JbXS5XIZ\nqluRzahLly6G+pG0BkhllHYU+fKbo2Opz/FuCrb6YMOGDQNanaTwv0Ss04FOQiGGGf5+ovgQ5nt5\nvV4+KaSkJE9Vq3Rsiao7VvTgWM9M35UEKUmsoXvLFPAS5vwFVmQi+UxkiLv55puxbNkyALqqQTkm\nSVQvKChgkTqVTM3Sqi/VDvlvopBei8LCQi5QFA6H2fOxfv365uBA2JKCDRs2Eker4SkkgkRr48UL\nq8AXaeiRNNITTWe1uk9dXV0DwxhglBqo/z6fz+BGNHMoJKQdQf49ntRz9HdZK1MmGJUSgpUdoSmq\nsPx7WloaFwTavXs3Z5LWNA1XX301gGhRncrKSmZmaprGLrtE50+yQptrDSiluHTdr371K3ZPZmZm\n8j2WLVuG6667DoDRptUSaFWbglys0ucvX37pfZgyZQoA4A9/+EOL9AUwvhSyUpL5e0Dii0O+0GYR\nPR7DqfRayI1StkVj5/f7WQ0aMGAA/47E7/79+7NRq2fPnszZ2LBhA3sXNm3axP79WAY1unfXrl3Z\nMu5yuVhkl3Rlq8jHpjZ6pRS/3DfddBP/rry8nA2IBw8eZK/SH//4RwC6t4Ce3+FwcOHhAQMGGPgg\n5tT3koQkiw5J0lqyoDkbMGAAxo0bB0DnHtAYeDwevveYMWM4QvWss84CkHginrj71SKt2rBh46RF\nq5IUHA4HZ6zdsWMH0zlra2t5x+zZsycn5Zw1axYAfaddu3Zts/bFii9BoqpMMJKRkcFuQemyk24h\nGahC7rTc3FwWpS+99FKMGDECANiNN2fOHBZ9NU3j5zP79q1OWOmaktRmOvHD4TCfpFQ7ccCAAdxG\neXk5sybPPPNM5ggcOnSIT6dPP/0UgO56pFPujTfeYCNZVlYWZ1T2+/0G/gKgn4LEhCwtLeV7ywQ2\nTeVZ2LlzJyelOXDgAJ/i/fr1w3nnncfPDejqk1QFaZ3t37+fy7RJrgOV0Bs6dCiPxZYtWxowM+V4\nJwqSRkaPHo2hQ4cC0NWE0aNHc9+l5Ezq2Pr16wHoaec+//xzAPq6seImOBwOlqyIV9EUWoX3weFw\naC6XC4WFhfyCdenShV+aiRMn8iKcN28eTy4tgo4dOxr46VbEk8GDB/NmQov1q6++4iKfEjJGQdKc\nacHv2rWLF1sgEEBRUREAPc04ce03bNiAc845BwDw/e9/HwBw9tlnG6pUkT86HA4zF4L04pycHF6g\nJSUlPPn333+/JQnJSn1wOp3cn6ysLP7dZZddxnU1x48fD0CnEZPffdWqVQZqN23OHTt2ZIo43SMQ\nCLA4a66aRO09+OCDnFafkJeXx3q9w+Hg8QyHwwZCldThzUhLS2P9e8WKFbwuBg8ejF/+8pcAomnU\nN27cyIVviFQF6KoGjYXVu5CWlmYgOsWy3SQC6idlCzv77LNZ1Tr33HOZY3HuuecyXdsqb6Pf78fG\njRsB6GSyV155BYBuRyH1z+v1on///gCApUuX2t4HGzZsJI5WoT4QjbmmpoZPz0AgwKLhiy++iJkz\nZwIwRkySOFRbW8uiVVZWFu+qhw8fxp///GcAwF133cW7/GOPPQYAmD17Nu6++26+H8EsqtLpTmXY\nnU4nqxJHjx5lsS0UCnGAzuTJk3HBBRcAiDIiZUCRFGWdTifThuk6GQABoG3btnx927ZteO211wDo\nJ5VVtW0pNdDfq6ureWwXLFjABXWo3Y4dO/K4TZ8+HTt37uQ2SFLo27cvqzE0Xu3bt+fnbN++PX7z\nm98A0CUBkkzovtRnAGywpP5Klp4cl8ZOY7/fz6K9x+PheXK73ZzRW1rq6VmrqqoMpfUak5YlW9WK\nlp0oMjIyOAv59OnTAeinOQU27d69Gy+++CIAYO3atTy255xzDrZv3w4gyibNyspi9a93797Ys2cP\nAH3t0Jqsra1N2CDZKjYFQF985eXlPAm5ubm8UHbv3s3uNCkeT5gwAYDu8qLv+v1+FgdPP/103Hjj\njQD0CaWFLMkrMlLPitwjE1aQKBsKhXgS6+vr+aU/ePAgf7eoqIhFOFJRunbtyptJ//79WS8tLi7m\nNqRHgii6+fn5rAMfPHgQ5557LgCdMkwiOC1+qU9qmsbjGQwG+TtOp5Mj9GgzGj58eINahQTafFes\nWAEzSkpKMHv2bAD64qYCJ5MnT+YXr7S0tMHLLV+wWGSweMRzmr9QKMTzu2LFCktyFI330aNH2U7y\nz3/+s8l7WCFRtVsW/nniiScARIsJOxwOjpwcN24cj8fevXvx7rvvAjCGjN9+++0AdMIWlQYAwOvi\nkUce4Y1n1apVCRcsstUHGzZsGNBqJAVKqkIi3r59+wxEmL59+/J3accna7o5AISMlcOHD+eTpLi4\nmAuckLX5vPPOYyv8s88+y6d1RUWFIXEI7eikGmzatIl3c5n3IDs7m+P+X3nlFRbhSMopLS3lAjBV\nVVUson/22Wec7p0kgjVr1nCpsXvuuYf79sILL/DpFolEsHLlSsM4aprG4n5NTQ2PlZSwwuEwS1Nk\niCwpKUk5bXswGOTSfFIloKjOxpCsOE6QJ3csCjWRz0hKAKJlAloaNH+fffYZewPomf1+P3ufpBQr\nJSXpgaN56tu3r4FA9eSTTwLQa3q++eabAIBLLrmEJcSFCxfG1ddWsSkQISk7O5tFVcmIGz9+PItJ\nmhatgPSPf/wDgO6Ooui7srIyFvNfeOEFXvS33norF/Gk73bu3JlZYoFAgL0TMuuT0+lkXZVeNhnS\n6vV6WT+///77eVLffPNNXgjLly8HoFvFqSZFeno6L96PP/6Y7y0rHpFlvaqqiheI3+/HT3/6UwDA\n008/bUiGQn2jvvt8PnYBSn69z+djtxf9e9dddyVtTSe4XC784he/4P+nZ7nqqqvw9NONFglrFmZo\nU21YMQFp421JOBwOPnyys7MbEONuvvnmhOIxaIzNnpAPP/yQP9NhsHLlyoST7drqgw0bNgxoFZIC\nEI3oIypxdnY2G1/eeustXH65Xn3uhz/8oSHRBaCL1xQVt2bNGvb5Hjp0iH23b731FifZ+MEPfgAA\nGDFiBFdarq2tZe/C6tWrWdro1KkT5wgg66+MUR80aBCuuuoqALroRz7mjIwMfPLJJwDAfuK//OUv\nBglk8uTJAIwWcGk4++KLLwDodFaqVJyWloaPP/4YgK4ekGoijXPSIyGjFsnw1759ex4LknJk0pBk\n0adPH/arA1GiEvnSTyTouUlS3Lx5s8HXT7kXmgOSYESQOTEHDx7MtSslIYvGJR71CojOMdH6SUUA\ngMWLFxu8YPT8svJ63M+T0Ldt2LDx/x5NSgpKqVkALgZwSDte/k0p1QbAGwCKAOwGcK2maUeVvj09\nDr3ytB/ATZqmfdPUPSiwp6KigqWAUChk0LPIfrBmzRr2hcvq08Rcu+OOOwxpssgos2/fPj4piCa6\nbNky1jM/+eQTrufYtm1bTvK6a9cuQ3AMYMzwvH//fjz//PMAdH2fGH+hUIj7R5JGx44dmeYcDofZ\n0Hh8TC3HBAAWLVrEkoLf78czzzwDQJcUzHq0dEMC0VwQSinuf2VlJdOpaayKioq4LXK3xgOXy8Wc\nitWrVxtOYxp7ynh0opCWloZ7770XgF6bETCe4o888ggHSiULyW6k+fV6vczJ2LFjB0499VQAuqRA\nn4HoiU/jds0112DOnDlN3pOkV+Iu1NXVMQP20UcfZZtXeXk538Pv9yccTRyP+jAbwJMAXhLXpgD4\nVNO0GUqpKcf//3cAxgLodfy/oQCePv5vk6CsyGScCwaDPJF1dXVsJR4xYgS/yDJqkYwpubm5HC3X\nrVs3Fqk6duzIn8l6X1dXx5FnTz/9tCEtuAwdprZllmGyrJeUlPDmJcOT3W43t0f3mDNnDm677Tbu\n82effQZAn2R6ln379gHQFxhN8rRp07gPCxcu5GQiTRnWpMG0vr7ekDaNVCUSLefNm8dl5idPnsyq\n24UXXsiqmaw89PDDDwPQjcDkyZCp7YLBIL+QtbW1TYa7y5yXyeL00/WSpX/605849kFuBuSv/+1v\nf5v0PQiSfEZr9oEHHmDPxquvvsrrYurUqTyXsk9kPH/hhRd4k/rFL36BW2+9FYDuqSBvzo4dOzBt\n2jQAwJAhelkVv9/PKuaaNWsMyWnofjJ9fLzqYZPqg6Zp/wVwxHT5Muhl5gFjufnLALyk6VgBva5k\nx7h6YsOGjVaBZA2N7TVNKzn+uRRA++OfOwPYJ75HpehLYIIylaKnlF3EMcjJyTEEydCJdvDgQTYw\nkkSwYsUKFtslhXfTpk245Rb9FqeccgrvsGRk69GjB5/MRUVFrD7s2rWrQXIRwDo7r9/v5/+vrq42\nqD/0mVyg9913H7P/CgoKmK46fPhwpv2OHDkSgB5ERLu9NBju378/qdM0KyuLxflBgwax9EJ9dLvd\nLAaPHj2ajVlPPvkkqxqHDh3CZZddBgAYO3YsAP20kxIUjdG+fftYJI5Vk4KglGL3ZTJJcAGdc0Jq\nVV5eHnMSZDTjFVdckVTbBCn9yahL4hjs2bOH1YcBAwZwwBPQOA/D4/FwsN38+fP5+rhx4wyJeWne\n6V2Q9UjHjBnDPITTTz+dpen8/HyWEEnCbAopex80TdOSybGoadozAJ4B9ChJSlpBC6isrIzF0pKS\nEh7UOXPm4PrrrwcQDWV++OGHeTEOHz6cw1AvuugibkNmBiZdbufOndxG9+7dmdcfS8SNFcYrk2LI\nvIRm33N9fX1MS3yXLl0AgD0Zubm5rJ/X1tayD3rDhg1xvziaFq2EFAgE+OXdvXs3R25Sxh8gGo+w\nZMkSXHPNNQD0+BEiiXXp0oWt6ES2MheApb4dOHCAIxWXLFnCi5ue3+v18nzk5eWxpyJR0Ev4/PPP\n80YgMy3TfEyZMoVjA2SylHggeQWyZim1QWrgxo0bOc5g2LBh/GLSGgSMGzyNiSxaZI73oI0nLS2N\n70cbaHV1Nc9fTU0NezG2b99uKJIj40ziQbLeh4OkFhz/99Dx68UACsX37FL0NmycZEhWUpgH4McA\nZhz/931x/U6l1OvQDYwVQs2ICRI76+vrDamxKFgHiPrvy8vLeXekk7t79+4YNWoUAH3XJe/CRRdd\nZKiRQCcT3aNHjx5sfLzmmmswb968uB5eFuyQ+RsSSStmBonzFOsvGYjBYBD//e9/Aei+6UTUB3Mw\nF/WT1C1Swdq3b88i7O7du9kD0a9fP2bjDR48mPtJv8vKyuK2ZdGXgv9r7+ujo6rOvX87M5lMBhIS\nCARCQGAV4gf4FrAU21ps9VVxKbbWtkbx9YNWbqnleluXirhcC5d0tWBtvfV6EWtLqQpaUSxZUl7E\n2yotil4uAqIhQsJXEj4STMIkmSQz+/5x5nnynJMzmY/MhLm9+7cWi8nJ5OyPs8/ez8fveZ6RIznP\nxOzZszlQiub7oYce4hMsEAikJCkopXDNNdfwmGjOQ6EQq2wy2QrltxgzZgyf6JFIhNt2S28nvTay\nkEt3dzdLDWTAa25uZm/Apk2bmFa/YsUKnov8/HxWWUkybW1t5fn50pe+xJGfo0ePxsqVKwEA06dP\nZ+MvSRWTJk3itTd37lxW1/bt28dzW1pamnROx0RckusAXA6gRCl1DFaV6Z8BeFkptQDAYQDfiX79\nDVjuyE9huSTvTLQjWuuEc945XwoZbkr3AqyQa1nklB7oww8/DAC46aabmPpcV1fHD4ZeGIJ0swGx\ny7Z7PJ6kKaUEWoS/+MUvAFgvIJGwOjo6OEIxkQ3BLUcj0CuKtre3s1uL7tfd3c2c/Ouvv57tHYsX\nL2b1oauri9WYFStWALA2BVrcx44d48358OHDHOfh8Xgwffp0AL0EsMcffxxbt24FYFnWyW5BeSIT\ngc/nY7uLjKptbW3FHXfcwWOlOSHvSmVlJatp3/zmN5lE9tlnn2HXrl18b/o7GV1L+nl+fj5vjNI7\nJaNu6eV+7bXXOJGs3+/njFpUx/TNN99klbe1tZVf/vvvv5/TB7z00ks2GxtgbbzXXXcd95MOy9ra\nWu6zjCdKVGWKuylorStj/OoKl+9qAD9MqGUDA4OsRFbRnFOFtMxKSMlDUj+ffPJJAJbxiaSAr3zl\nK+y1OHHihGuORllOXVrciUorPRGpZnYmA9GpU6f4VKquruYo0Y8//jiuiiI5ATQ+WdIsJyeHcxCS\nx0Fasu+77z6u7N3R0cGn++7du9lXHos6S6e/UoqNuF/+8pe5r6Q+7N69m709ra2tLHbHKuPmhu7u\nbiYFhcNhPuWrq6uZfCbVPPLX+/1+Ts123nnnYf369QAsYx2pI9Q3oFfdlHUuZU1Mt1R4SinO9/H6\n66+zcfurX/0q57QkaYQo/NTWLbfcAsCujspAN2qvpaWFn8OBAwdYKsrLy+u3oE48ZM2mAKQ2gGRA\n916+fDkAexanxsZGXkiSraaU4peT4KzGRJbu4uLipC29BPI+3HjjjQCsOAIi20ydOpVF35EjR7K+\nH8uKLueQ+lpeXs6Le9iwYeyW3bJlCwDLRkBW8ilTpuA3v/kNAODFF19kG00ydhKtNZYtWwYAuPPO\nO/nlJbfYunXr2EXa3t7uWug2HjweD6t6Z86c4TnctWsXb9Q0h4FAgDf1tWvXMhnutttuY0/Kxo0b\n2Y4lX0A3d2J3d7etRD1dIw/IhAkTODZhxIgRTJgbM2YM2xdoU/B4PPxs9u3b56qCyrmnz8FgkIll\n9fX1nMzns88+61PAOBmY2AcDAwMbsiKbs1JKD0bFJaKjkiEnLy+PT6hLL72UDUCSruz3+/uUJJDU\nhAAAH1BJREFUDpdZhuUp0t3dHbeuIH1fioMej4cTv9DJPWzYMFRXVwOwSEMU70H0ZMA6MfrLdgz0\nGknLyspshB4S4+lEjUQibFCsq6uz8UVSrcRF1O277rqL2yNL+NatW22FYejZtLW12ebZjR4t+SI0\npvnz5zOhqra2lvNwUrvnnXee7ZmQRPe5z32OVannnnuuz3Nzkqxkpmz6HY1T9k1WkgbA0aMHDx5k\nLxcZXyORCJPCNm/e7DqXsSDzb5Dnqq6uzhYdS33q6ekx2ZwNDAySR9bYFOjklKdHukEGHVlFmlhg\npDcDlhGNdmB5WtGp293dzRKG9GNLzkI8+4jMyRCJRNjgR/UdSktL2SUJ9KaQq6mpsaWekycTYM2b\nlLrkOCiJbV1dHSdppTZ8Pp9NeqCksQOR3EjCWrt2Lbt+pbGTdGev18uSiYxALSoqYslC1qGgzx6P\nh12LW7ZsYSPhnDlzODKTJK+lS5eyEfSyyy5ju1JnZye7WSkoD3Cv8i2fqbRH0fMYPnw4J8T1er1s\nJ/D5fNwfrTVT2QmXX355wqnSnJC5M2RRIimxJvtOZY36QItBLpp0FpCdMmUKG34uuugiAJYRihKu\nHDhwoA9xBbC/6PSChcNhXsTS0CfJL8lAcv9vv/12AMCoUaOYVLNz5062rDut/m5GMDfxurS0lDfF\n6upqTtQiPRnUh4GUanfrm4wZkL52mueSkhJ+0evr6/lzJBLhnJVEj45EIvwSOu9L9+vs7OxDSS8q\nKmIuhM/n41qSHR0dffz//Y1Hqg/O5CoyWlfWoJTrJZEivalAktOkIVwpJcdn1AcDA4PkkTWSQqbu\nTbt4QUEBJ2IhHD16lCmq9fX1tnJzElK0BWKfKDJ/QdK+4aiIR2rC2LFj2W149uxZdt91d3cnpVqR\nyjNs2DB22dXU1PCJli6pwA3SZUdzS+3J4DfJRgwGgyyxjB07lg2Q9JwaGxttYns6DNTJ3EOqkm61\nQuna0KFD+ZkNhOmaKKQU4ywMJCSWhCSFf/hNQUa1kVhKIrjf72eOgVPkcv5M9wDsJBWps4XDYf4s\n9VM3Ikms4qlEcuns7LRFSRKxKBgM2rwh/dGe5ULxer1MY9Za80uWThXNrX3qp9Mr4/TgyM2UrhcW\nFvJ8EIdEvmCDsXZj2YakiintSJJS7LZeBpoxOxZkf5zrU/TDqA8GBgbJI2skhUyxGUkUlT59KX6T\nIU6mGpMGw1inhDz9pTGLJA83Blo4HO7j96b7UTvEG/B4PGxN9vl8fN8hQ4awqN3V1dVHZHT2V0oh\ndIpJwyZJTZIGnq7nIE8vmnuSfqT6ICMcZX+lhZ+K7Jw5c4Yt/LKf6ZB43Nag05ArpQLn3Hs8Hqap\nBwIBlm5kX51SaDr6DPT1RNHn/Px85tz8j1IfqBS9dEk6J09mvHFCZjmSuQg7OztZJz179qwt/6Pz\nvrKcvdfrlRPJi5cWueSk5+fn8++dFZmc1mlpIfZ6vTY1gP6OcvydPHmSxyot5JFIhEXqnp4eHots\nl77rWBC2ezg3ESdRSH6W/abPUq+XC94tQtPr9fZJuS5rPzrds24JcmXciXwJ3VSz4uLiPnECANgt\nWl1dzVTjpqYmbqOxsbFP0hjpWpTjcLqi6fdy7JKERc9Sqhj0bHw+HxOP5DMFepPfOjdLwJ44R3qP\n5NzLOejs7DTqg4GBQfLICkmBeArSUqq15lRboVCIffYylyCdNLKqLkkc0fv2MRICvRZwKUbHInx0\ndnb2ESG11mz4o+QwgCXFEH1Wzqv0Y8vUbXTSyJM7HnJzc11FRopqlOQmp7Qir9Np4+RZAH1TgtF1\nn8/XJ0IzEomwAROwRw9Kr43keACWN4TmSqpVSinuW25uLktAlOvi+PHjNi4LSYVSEgqHwxwFSW2c\nPn2an+nYsWNtORAo1f7QoUP5+7I/NIdOD4JzbUmJLxAI2KJr6X5Tp07lIC76u46ODs6tsH37ds7T\nEAwGeXw9PT196PYyQ7nkZni9XlvuTaEiGknBwMAgeWSNpOD1em2nWU5ODtsAZEELeYrFCz5yc4W5\ntG37PtA3CIZ2fNL7WlpabK5D2omlLjgYUErxHNFJXF5ebpNGZF4AaWCNdfql2g8CBQc53aj0mdoN\nhUK2tiUVV9pwpHQD9OUmSB1f2oykbQqwuBLUB6/Xy/RpWXRIzg/9vaRjy+uSfSvXmJS2pDucns/5\n55/PRW3JzpCbm2uTcqi91tbWftdvLOO8lMz8fj/PXUtLS0KSQtbEPhD9kxZVe3s7qwxOo41zouSi\njGU9jrUpuOUecIImmERjpRSLbePGjeMswYMNrXurQUlRlcbU1dVliy+Qc5vO2BJnfABgLUaZH5JU\nvsbGRgB2Y61MACONmoFAgFVD2YbbZzkXMoUaYebMmZz05S9/+Qt/1+/382buNg6nF8lNrZJGTWmA\nlXRsGt/+/ft5XqR6LNVOOnDikZ5irelIJMLjz83N7WM8jQejPhgYGNiQNZIC7cwyq6+bHzqen9/r\n9bKY397ezidUQ0NDSv53rXtLxFHbQ4YM4Z3/6NGjg8Ks669/QK8Uc+TIEa47uXPnTp4jyQVINXAr\nFqR0QIlUy8rKmLK9Y8cOPqVJUnBKaJI+TKf4mTNnkuqnm7GWJI8zZ87YygxSn52Zjp2SpZRonG1J\nN3is9gG7iia5JZRBSxqgvV4vGxpTfUZSrWpvb09aUsiKTYH0djfRzO27ZJElne3iiy/G/PnzAVgZ\ncmlCampqODtwe3s7p/WWpdzjidHS2k/9kw/W4/G4iu7xUFhYiJ/85CcArDLpVLbeaf1OFFLnpuzK\nkkMA2HkWAwW9EB6Ph1+2rq4uvndFRQUnhtm7dy/ee+89AL3Rjs78g/Q5FAq5iu6x1MBY9gWqdUlR\nsMePH+fN8oUXXuCs2aFQyFUdiSW2ux1UyZK+3L4nc2USUYvSq6UC6RFxi6Tt929TbtXAwOAfEnG9\nD8q9FP1KANcD6AJwEMCdWuvPor9bAmABgDCAxVrrLfE6QYzGWKKaoz9cu4/ErBUrVnChD6UU04Pb\n2tr4RCsoKGDjC/1/zz33cPor5ykvsyA7/cPhcJgtx11dXSwyFxcX83caGhr6eCOWLFmCGTNmALBq\nK/Qn1oVCIZYeFixYkHDSk1gnQzzqdqIgqYgKxyxcuBBPPfUUAEtEpzFfe+21+PrXvw4AuPLKK9kz\n8MYbbwAA3nrrLU48Ul9fz6euTBIDuAejUf8DgQB/vuGGGzh93euvv86p5eRYSVU4c+YM16eg4jaJ\nQHIW0kmx9ng8XLPh8ssvZykmGAwmRYl2o7TLviVKc061FP1WAEu01j1KqZ8DWALgAaXUhQBuBnAR\ngDIAbyqlpmit445MipD9QWvNCUdowv785z8zhbW4uJgjAPfu3cs1E9vb29mSTQt0zpw5fG3Hjh1s\niygsLOR7FBYWck5HgnxYBQUFrM+PGzeO8/397ne/4++TjhwIBBIW5fLy8jgVeGNjI2cfvvfeezmX\npKRKE5yEJWkhT1aMdANlfKYKTFprVle2bt3KG3ZzczOnTj927BjuuusuAMD3vvc9ANamSAVufvnL\nX3Ia+VOnTtm8EpI4BVhzSfNyySWXcL3Knp4eTqIC9JKyaCM4dOgQXnrpJQBAVVWVTZ9PRezPzc1N\nW9i5JIXJalFEqkoU0htHm0FeXh5v5HSIxkNKpei11v9fa02K6buwakYCVin69VrrkNa6FlalqFkJ\n9cTAwCArkA5D410AXop+HgtrkyBQKfp+obVmsTGRXVuWAgOAX//611zm7Fvf+hYHkSxdupTLj//t\nb3/jJCt/+MMfAFinifQlU7DOzJkzOePu0KFDWRKQqghZ1o8dO8aGtnnz5uH+++8HYKdVu1GiN27c\nyIVVJkyYwAlVfvvb3/Lfk6oBWDUGAWDNmjW4/vrruW03wpU0gNEJGwqF0iLmfvTRR7a5CIfD3M9t\n27Zh+/btAOzGzGPHjvEzIzH5gw8+YMOvpGZLz0A4HGYDXElJCc8L/d2zzz5ro1iTWrhy5UquW0F1\nG9MFt0CwgSI/Px8LFy4EYGWdJgmBpCcnEuHe0LOOVbSnPwxoU1BKLQXQA+CFFP72bgB3y2vJTrJ0\nQ1IuvxEjRnAy0u9///vsaaivr2f7AXkv2tvbbeXQaSE3NDTYbAMEya4jC3FFRQVbiV9++WV897vf\n5evyxQGsoqqkL8oXVCaNnTXLEqxycnKwevVqAFbBEupPMBjkzSsnJ8eWiAWw65WSHSet86ku5l/9\n6le8wRE+/fRTLqTa1tbG7cnFePjwYbY7UFEU2Ve5EWiteUwybTltDpFIhGs/BgIBfmZHjhzB1KlT\n+7SdbmQiKc2oUaOYyFRcXMwh1zKOJxKJsNpLkPEOTkj7UbJqY8qbglLqDlgGyCt0b88SLkWvtV4N\nYHX0Xueea21gYAAgxU1BKXUNgPsBzNFat4tf/QnAi0qpJ2AZGicD2JnIPQciioVCIbz//vsArMgx\n2nWbm5s5Wq6+vp4t5mRkuuyyy9ga3tTUZKt3KOsHOmPzOzs7sW3bNu73uHHWPnjo0CHcfPPNAID1\n69ezYWfRokUAwJz3RKC1Zgu6pAEvWLCAreyJZB+ORQ9OBZWVvbWGqe09e/awyhAMBmOepG5tx/KG\nkLTR1tbWp7ZjYWEhn6R1dXU891/84heTkhDc8iomg3SSvyZOnGgraUdzW1xczEbuUaNGYd68eQDA\ndUWJB5LuvqZain4JgDwAW6Oiybta63/SWn+klHoZwH5YasUPE/E8GBgYZA9SLUX/XD/fXw5gebId\nGejOS3aE8vJy3mkXLVrETLpZs2axBEHVpXNycthguHz5cj4xJJtNRuWRLaKrq8uWKo0MQx0dHWzb\neOqpp9gFRu7NZOD3+/kU1Fpj3bp1AKz6FP1JCFKHjBXskywoV0M4HOZUaD/96U8BAE8//XRG0osB\n1nxTMRcKEjpx4gS+/e1v87WVK1cCsOwP8Yr70r3LysrYFd3T05Nw/yVPQeYpSBVkl1q7di0bFZub\nm/HEE08AsCRPWouXXHIJ25uodOCDDz6YkaJJWUFzHii01vxyFxQUsMW9ubmZIxj37t3LngEiAvX0\n9PDidhKn+jPOOBO2UF6+hx56iKm0VVVVKW0G5FN+++23uRpyS0sL7rnnHgCJhTrTODo6Omxiciob\ng8fjwapVqwBY4ixxJJ5//nkAmclOTHMfDAZttTABa45pc963bx8bHSsrK5mT4paJOz8/H3feeScA\nS90k3seHH35oKz7jRgWXyWLo3rNmzcLbb7+d0vjIULxp0yYAlpr0yiuvALBo+lRj8uKLL2bPVnd3\nN28GtNEns5kBiR8MhuZsYGBgwz+EpCCNgT6fjz+/8847WLJkCQBrl1y71iJl0snQn+9e7qoyAQb9\nTLt9V1cXLrzwQgCWe452eWLrJQviUkybNo3bXb16tS3NWTJI9SQn6vaBAweYYae15hObVDGZCi/d\n8Hg8bKwll+SGDRuwePFiAJZaRi7LESNGMMuyqKiIx03SWn5+Prv06urqWP0rLS1l3sPkyZO5nByN\ns7W1lanQzc3N7PYkNSpZ5ObmsqGYqPJVVVXM0m1ubmb1dvTo0bjlllsAWGuLJFwZSZwJZE3mJaK0\npuoHJg7C1VdfzfeYO3cuFxUdCEikpM0kJyfHlpWYdMNrr72WF+lVV13FG0QiXgISE2kBFhQUcCKX\nioqKPiG+iUJyJZJ51kRIevfdd21ZimksRBCbNWsWe3N6enoGrOM6OQtONc7j8fBLU1JSwraWQCBg\n8+NTBOp1110HwPKS0AtdUFDAhXzz8vK4tmhJSQlvCn//+98BWBG1JLbLwyfVqk8FBQV8YNC9du3a\nxVyVRYsW8Sa8atUqPPDAAwDcs0KlMNcmR6OBgUHyyCpJIdXagB6Phz0A5eXlLDLKzLkJ9gOAJWrK\n+H4KtqJajB9++CHv0oWFhbjhhhsAWFLD3XdbJM28vDwsXboUQK8U4wTt+DNnzmRfv0xHRgE3q1ev\nZpE5WQyUxThv3jw895zlbPrkk09YrCZvQFNTEx5//HEAwLp161i0TVVtkbUc3CqPO43B1I+WlhaW\n2I4ePcoMT/ldMlpOnz6deQ/bt2/ne06aNImlQeK9LFy4kKndWmtb9u9UvA85OTlYtmwZAMt7AFjz\nStLo6NGjmTU6Z84c7Ny5s8+45ZgSiSomKTQYDP7PKQZDiVtjlemOVzOxqKiIOe5Dhgzhh3X++eez\nOJgIaIEBvVZ+GSZNXoYjR45wJqGuri4mlTQ0NPALkpOTg4MHDwIAfvzjH/PvyW2mlOLN5v3332cd\nXhb0oLk4dOgQW85p80gUdD/pXUn2mbuF5JJ7bM2aNbygDxw4gLlz5yZ17/7aGoy1OWTIEI66fOaZ\nZ1gtpHVTUVHhKqbn5+f32XgSBXlwSJ2R67unp4ef2ebNmznOZSAQ6oZRHwwMDJJH1ngfZCw4/SzT\naZMRSVrh6ffvvPMOi0jhcJityWSoSxRXXnklfyYfdCgU4jZl7jyinwYCARbxKioqmAsxf/58Nh6R\nSrF+/XpWcy666CLu3w9+8ANOSEIi7hVXXMGSSUdHB58qgUCAjWRa636NXbFqXiYr2ssTm9ojQ1xn\nZyeXYCN1aaAYTOk1GAzyM/H7/dw28TACgQAbVYHeNTeQ1Pi0dkg9lOXxZIn7Tz75xFZWIBUkmqdE\nImvUB1q0bv3xer3sAmtra+OFfvvttwOwQmVp03j++ef5xWxubu5TIyIWfD4f2wza29vZ5SRr/7nV\nidRa23IUUj/mz5/fx301Y8YMPPPMMwAs8XPDhg18PzdQ2Pfs2bOZ715cXMwxFBdccAHuu+8+AOBE\nJxKyRmNOTg4vwnQ+8w8++IATy3zta19LWr3JBlAGqBkzZvABQPN94sQJm/owUBsNAFaxKAq2qKiI\n19jp06c55iUSiXDIuNyYBgCjPhgYGCSPrJEU3CzNEmSRraysxCOPPAKgt76gx+Nh3+9tt93G1GaZ\nlsrRHn8ma3N+fj4bD48ePcrkFhnfT54BmQFYUp6lqDZu3DjOKEyRmsFgkLNO19bWxiUk0b1ramrY\n+NTQ0MAxESNHjuR7/OxnPwNgGcvIaOn3+9nYKXMfpjMnQF1dHas5xcXFaUtRlmnQs1y8eDE/p927\nd3MaPaIdd3R0sLQpM03HM34n0jbxWKZNm8Yes0ceeYTJcGfPnuW5HcgzE4l4jKRgYGCQPLLG0Aj0\n73eVQSC0W9Pp2dnZyS47SmsGxNb7aKcuLS1lWnFTUxPXJGhvb7cZPun75JrsrzYB6YZNTU0c4feF\nL3wBADB+/Hhmz9XW1sbVT4lVSHkgAIt1J2tXUp8oO/GmTZvYFvH000/zvXNzc9k4NhB3GoEyTI0f\nP76PkTgVuLEYtdZ9sic754pciJFIxOZ+pfFJzgPZezZv3ozPf/7zAHprXwJW9OzGjRsB9D5rrbUr\nlXsggWA0BqI2nzx5kt3TVVVVLCkcP+6anyhpDFrmpXQjXhQfPYQ33niDjXX0/fr6eluik1iiFi2a\nCy64AIBFiSajzqpVq1yzCMsy8UTMkcVDZVvl5eWsunR0dLAIStTliooKNhh5vd5+x6uU4tBrOdbD\nhw9zgZsNGzaw+kALrLOzk1PQFRQUsNU6HA7zhpWOQri0mQK9VvRUVQfpGYllLZfxKgSte+tHDh8+\nnFXMZ599ljdACkkuKSlh7xIZ7wBrXl588UUAluGPng8ZF2MVrUkmC7QTzvV5/Phxrpx1xx13cNtT\npkxh7kyynjSCXMuJwqgPBgYGNmSVpNDf7kvXT58+jd///vcAgFtvvRWAlQ351VdfBWDlSiDD0Z49\ne1gsa2ho4JOeTopx48axQfH06dMsjcjahn6/3zU5KiUeKSwsZJdjbW2tzQVK7VFRl7feeovF0kcf\nfZTF2aVLl/J3qd2rr76aDalAb6m7b3zjG3wie71ePmHpmt/vZ55Gd3e3LVs1nZ7J1hZ0A6lBAPDY\nY4/xmJOBM/qUIJPZuHErZDt0/dSpUzyH+/fv5+hCYl76fD6WJCKRCLuDKysrXSVLmiMpeksVZSA8\nBSdkheo1a9awMTo3N5fL3r322msJ308WBEql3kfWeR/i6dmyluTYsVb2+Icffhg33XQTAHvsgMfj\nYVrxwYMHsWDBAgC9+mJ9fT0/jLa2Nv5b5+ZEi0mmIadIvXvvvZfVhLq6OhbtY4EW1fTp0/HHP/4R\nAGxFTGhhh0Ih/u5HH33EC4UyTDkhX3TSs8ePH2/j7afDx04gfsTy5cvZFkPW9P4g7UFS3aD+y3yU\nVDVM/r6/yED57K+66ioAvYSzZcuW8Qbxne98J2Y8irOfct5kynwlyt2nYz5pfCNHjuQclDk5OZz9\n+oEHHojrgYi12Ytap8b7YGBgkDyyRlKg3UzWcqBTQRoh4xl4cnNz2bc7efJkPrlbWloS3tG9Xq9N\nKpASBP2e1JIJEyZwgZPHHnssqRJdJPEcOHCgjyFt5MiRnDH6Rz/6EecskKerFAvJit7R0cHeivLy\ncvz1r39NaMzJgiSlHTt2sKRw44039imx54Tss6zNKcV1WcWbMNB1mpeXxyrf3r17U76fPI3Tyfeg\n+5aUlNgqc0+bNg1AbwrBZCGNuInyFLJuU6D/e3p60lo6PRk4CUmkPtAL2d3dzS9xQUEBT/rEiRNt\ndS6T0TvpHuSGzM/PR01NDd+LbB8dHR22RLLUBqkMeXl5LOLm5eXFrDI0UBBB6tFHH+UN8ODBg+wx\ncQtdBmDTyWXCEreNAEgvJVvaKga6KaSa8zIeCgoKWA0bMWIEqqqqACRmw3Drm7QvJFpg1qgPBgYG\nNmSNpEDBO1K8TKeFNxk4feXOUy4UCvHJ5vP5+JQeNWoUi3lNTU0JB2M52ybI3Z6u5+fns4GrrKyM\n+0HtdnZ22iIjU5lDp4rmZnQjzkNZWRlLCoWFhUy4GTFiBPdJnlxukqDWmq/HyqmRDetUIlN5H3Jz\nc9kQLklYiUDWFY1BBktbKfpBAS1EuTjciqdmug+ANbly8TrDZWWchqznN2nSJPYOOO0gdC0enC8P\nYCceFRYWcj9OnTrF5Ba5gVDfpK7unEM3d6Cb60pec+inPH658VCob1dXF38OBoPcjkw5T3DGvbgx\nJNOxFlJ5kZP5m4EQmmToNM2n3DhjxfDI9uizVCvlAZdo34z6YGBgYEO2qA+nAAQBpMblHDhKTNum\n7f8FbZ+ntR4Z70tZsSkAgFLqg0T0HdO2adu0nVkY9cHAwMAGsykYGBjYkE2bwmrTtmnbtH3ukTU2\nBQMDg+xANkkKBgYGWYBzvikopa5RSlUrpT5VSj2Y4bbGKaX+Qym1Xyn1kVLqn6PXhyultiqlaqL/\nF8e71wD64FFK/ZdSqir680Sl1HvR8b+klPLFu8cA2i5SSr2ilPpEKfWxUurSwRq7UupfonO+Tym1\nTinlz9TYlVK/VUqdVErtE9dcx6ks/Gu0D3uUUjMy0PbK6JzvUUq9ppQqEr9bEm27Wil19UDaThfO\n6aaglPIA+DcAcwFcCKBSKXVhBpvsAfATrfWFAGYD+GG0vQcBbNNaTwawLfpzpvDPAD4WP/8cwC+1\n1p8DcAbAggy2/SSAP2utzwfwf6L9yPjYlVJjASwGcInWeioAD4CbkbmxrwFwjeNarHHOBTA5+u9u\nAP+egba3Apiqtb4YwAEASwAguvZuBnBR9G+ejr4T5xZExz0X/wBcCmCL+HkJgCWD2P7rAP4vgGoA\nY6LXxgCozlB75bAW5NcBVAFQsIgsXrf5SHPbwwDUImpHEtczPnYAYwEcBTAcFrW+CsDVmRw7gAkA\n9sUbJ4BnAFS6fS9dbTt+900AL0Q/29Y7gC0ALs3E80/m37lWH2ixEI5Fr2UcSqkJAKYDeA9Aqdaa\nylM3AijNULO/AnA/ACKyjwDwmdaaYsMzOf6JAE4B+F1UffmNUmoIBmHsWuvjAB4HcARAA4AWAP+J\nwRs7EHucg70G7wJAaZ/O2frvD+d6UzgnUEoNBbABwL1aa1s9Lm1t2Wl3ySilrgNwUmv9n+m+d4Lw\nApgB4N+11tNh0cptqkIGx14M4AZYG1MZgCHoK2IPGjI1znhQSi2FpcK+MNhtJ4NzvSkcBzBO/Fwe\nvZYxKKVyYW0IL2itX41ePqGUGhP9/RgAJzPQ9JcBzFNK1QFYD0uFeBJAkVKKolUzOf5jAI5prd+L\n/vwKrE1iMMZ+JYBarfUprXU3gFdhzcdgjR2IPc5BWYNKqTsAXAfg1uimNGhtJ4tzvSm8D2By1Art\ng2V0+VOmGlNWfOpzAD7WWj8hfvUnALdHP98Oy9aQVmitl2ity7XWE2CN8y2t9a0A/gPATZlsO9p+\nI4CjSqmK6KUrAOzHIIwdltowWykViD4DantQxh5FrHH+CcD/i3ohZgNoEWpGWqCUugaW2jhPa93u\n6NPNSqk8pdREWMbOnelsOyWca6MGgGthWWQPAlia4ba+Akts3ANgd/TftbB0+20AagC8CWB4hvtx\nOYCq6OdJsBbCpwD+CCAvg+1+HsAH0fFvBFA8WGMHsAzAJwD2AfgDgLxMjR3AOli2i25YEtKCWOOE\nZez9t+j62wvLQ5Lutj+FZTugNbdKfH9ptO1qAHMzue4S/WcYjQYGBjaca/XBwMAgy2A2BQMDAxvM\npmBgYGCD2RQMDAxsMJuCgYGBDWZTMDAwsMFsCgYGBjaYTcHAwMCG/wYzcYtN28YfwgAAAABJRU5E\nrkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/2... Discriminator Loss: 1.2411... Generator Loss: 1.8333\n", + "Epoch 1/2... Discriminator Loss: 1.0503... Generator Loss: 1.0242\n", + "Epoch 1/2... Discriminator Loss: 1.1395... Generator Loss: 1.0762\n", + "Epoch 1/2... Discriminator Loss: 1.3215... Generator Loss: 0.5722\n", + "Epoch 1/2... Discriminator Loss: 1.1445... Generator Loss: 0.7874\n", + "Epoch 1/2... Discriminator Loss: 1.2529... Generator Loss: 0.6156\n", + "Epoch 1/2... Discriminator Loss: 1.0842... Generator Loss: 0.9782\n", + "Epoch 1/2... Discriminator Loss: 1.1459... Generator Loss: 0.7799\n", + "Epoch 1/2... Discriminator Loss: 1.1442... Generator Loss: 1.4652\n", + "Epoch 1/2... Discriminator Loss: 1.0300... Generator Loss: 1.2469\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsfXmYFNX19nur91lwZhgYFBEwCKIGNYKoGBWDKyJuwbgS\nxaCJS2LijomixiWYuCdqcI/iEjXuooIKKi4IRnaiLMoOIzMwMz293u+P4pw5VVM93dXdg+3vq/d5\n5pmemupbt27duvcs7zlHaa3hwYMHDwTj++6ABw8eSgveouDBgwcLvEXBgwcPFniLggcPHizwFgUP\nHjxY4C0KHjx4sKDTFgWl1NFKqSVKqa+UUld11nU8ePBQXKjO4CkopXwAlgI4AsAqAJ8BOE1rvbDo\nF/PgwUNR0VmSwv4AvtJaL9NaxwE8DWB0J13LgwcPRYS/k9rtCeBb8fcqAEMznayUciWuKKUAAMWU\ncpRS3G46nXb1vUL7oZRCVVUVACAWiwEAEokEEokEAMDn8yGVSmX8roS9L50xVpn60NE17OcYhuE4\nzsUYz1xA/ZH9UEq5evbfN/IYq01a627ZTuqsRSErlFLjAYynvzNNEif4/Wa35YtCgyMHSr5MhmHw\nZ5/PB8B8+emz3+9HIBAAADQ1NcEwDD6HPktQX/1+P5LJJF/bzaSiaweDQRx11FEAgP/9738AgA0b\nNmDt2rUAgB122AENDQ3tvi8XMmormUxaJjn1PZFI5LVAyPG0jy21FQqFAJgLmlPbWmseW+pbMBhE\na2srAOuzDwQCiMfjfA37YpjvgiEXT8MweFzKy8vR0tICAAiHw2hqarKcn0qlLOMm71ueY78PN33S\nWnN/5P1lWuDpt9/v541Dzj15r3KOpFKplbn0q7MWhdUAeom/d952jKG1fhDAg4ApKdCAZ9oRCUop\nnoQ0eeilJNAAp1Ipfog+n48Hma5hnyg0OeTLlE6nHQdb/l8+LKcXT/6fjsv/Dxo0iB/u7373OwDA\n1VdfjYqKCgBAQ0ODpQ3ZH1ognRbCdDpteaFlf5wkDKdz5eRXSvHLTf0F2qQb2YYdUuqxj4t8folE\nAmVlZQCAaDSaVXrLtNDZXyD7/8PhMACgpaWFn6XP50N5eTkA8OIgv6uUssxP+4Kcy4JgH1tCLt91\nugf6ntMGSZ/tzzobOmtR+AzAbkqpvjAXg18AOD3bl7ItCASaYPQ70+oqJyAtIIBVdJQv0I477ggA\nqK+v50nT2NhomTTUFr0ccrVOJBIW8dg+aVKplOWlqqysBABUV1fj4YcfBgC89tprAMxJuXXrVgDg\n79D9BYNBAMBBBx2E+vp6AOAFbcWKFZYFy2kRyiTR2BcOuj86Vy6Q8j6crmEHnU8LQDgc5mvEYjGL\ntEHHQ6GQ5bk5IdM17X2SC7K8j4EDB7LE0trayosCjWt9fb3jQiBBbeUqxRSqHtH3W1tbHe9PQinF\n82zLli05td8pi4LWOqmUugjAVAA+AA9rrRd0xrU8ePBQXHSKS9J1J1waGl22DSD76iz1TPuuInde\n+r88lk3CkXqo3MGojbq6OgwaNAgAcPjhhwMA/vznP7OkIHeniooKi/pE6gOdm0qlHHe2TPefTfyW\nKOZcCYVClh1W6udSsuosw5+U/g4++GAAQG1tLZYuXQoAWL58OQCgubk5oyRaqH2j0PH0+XwsgcXj\n8YxSoVDBPtdaD87W7vdmaLSjs6zOUteWLzpdkyZHMBhkNSASifD3pW5JYrtSCtFolD9nQ7ZFI5lM\n4sILLwRgLgaAVdST4yKPF3PMZFsdeQby8dA4QT4PwHqP0l7RWaBnPHDgQOy0004AgPvvv5/VsClT\npvCxFStWADBfPLnAu1UbAPO+7YtCrmqzHVprVq8CgQD3xz5+bueIR3P24MGDBSUjKXSGlBAIBFg0\nPPfcc7HbbrsBaNttm5ubcdtttwEA1q1bxyJ4Op1mgxiJ53ScfktVI5+V3u/345prrgEAjBo1Crvv\nvjsAYOFCk/Q5d+7cvI1sbs6h/wcCAd5hpBTg9/uxzz77AAAuvPBC7LzzzgCAPffcEwBwzTXX4N//\n/jcAq1SVCTRu8Xicjblaax5vqVZ1lupQUVGBiy66CAAwYcIElhrS6TSam5sBAOPGjQMAfPbZZ/jm\nm28AmGMk+2n31uTyPLp06cLeGvpea2trXnNIer4ikQi3W15eznOZznOD/3M2hWAwiFNPPRUA8OCD\nD7L+7QR577Nnz+YBfuqpp7BypenSfe2113jS0ISRVn3pwXCDwYMH49NPP213nCbdIYccgo8//th1\nu/lC2lTS6TS7BZcsWYLu3bsDsIr8TmpTc3Mzi9/nnXceZs+eDQDYvHkz+vXrBwDo1q0bHyNOhlwI\nWlpaOmUx6NevH2bNmgUAqKqqsizqhHQ6zZsIYfPmzfx8v/32W/6cTCZdLQY0D6+99lrMnDkTALBp\n0yYAwIIFC1g1lS+z9DpFIhH89Kc/BdDmocoVop852RQ89cGDBw8WlIz6UKjRrLa2FgDw+OOPMzsw\nmxFQXnPw4MH8uXv37njppZf4vEWLFgFokxRWr17dzmiZK6qrqwEAb7/9tuP/SV0577zztqukkE6n\n+dp77703Xn/9dQBtOzuhozEtLy9nP/9LL73E40WGOsDcbQHghhtu4HOVUo6MzWLgnHPOAQA89NBD\nluPSUr9q1SoAwGWXXcbSmxNhTUpKPp+v3bPPNIcNw8Dw4cMBAGPHjsWRRx4JAPj973/P/6frDB48\nGD169ABgkrcOO+wwAMDIkSOxYcMGAMAbb7xh6WOxUTKLQiELgmEYGDt2LADwgAOm3vrCCy8AMGnD\n9957L4A2fbiurg77778/AOCss85ica1Hjx4444wzAACPPfYYGhsbAYBJLpKK67bfJB5u3LiRSSWp\nVKodzXXfffe1uOa2B8imcNhhh+G7774DYOrfN998MwDgxRdf5Bdo5MiRAICDDz4Yv/jFLwCYdGx5\nH3QvTz31FC+CP/7xjwEAn3/+uUWEd3oJC8HixYsBAP379+djpHPff//9bM+RFnynl0w+XztzNlvc\niTxOc6579+5MX6d5lUwmmb06Z84cbreqqorHebfddsN//vOfjP3sCJ73wYMHD4WBVvTv8weALuRn\nxowZOpFI6EQiodPptP7uu+/0d999p0OhUNbv1tTU6JqaGr1+/XqdTqd1Op3W0WhUT548WU+ePFkH\nAgHt8/m0z+fTwWBQB4NB7fP5tN/v136/X28zkub8E4lEdCQS0XPnztVr1qzRa9as0UuXLtVbt27V\nW7du1alUSqdSKZ1MJvWJJ56oTzzxxILGxs2PYRjaMAz92GOP6blz5+q5c+fqM844I+fvffrpp/wc\n4vG4XrJkiV6yZImura3VSqkOx4racDueTj+TJk3iZ0k/sVhMDxs2TA8bNkwHAoGijBfdE80FOVcM\nw+Dzdt55Z71w4UK9cOFCnUgk9IoVK/SKFSu4P+Fw2HF8gsGgXr9+vV6/fr1OJpN63Lhxety4cYX0\neXYu76MnKXjw4MGCkrEp5APSSaX+nU6n2YVm1wGdsMsuuwBoi5oDTJsB+eYNw2B3kVM0oFsDKTEh\n99tvPza0TZgwgaMjZXTfueeeC8DU5fOFG7cZ6ap/+tOf2EhItoWOQG0PGDCAn0NTUxPbd8j1lsu1\nDcPI275ERtE//OEP7fq2xx574Ouvv86r3Wyw04rtGDlyJBsPlVJsMDz66KMBALNmzXK853322cdi\n6CUXb2fjB70oTJw4EQD45QJMv3IuiwGBFgU7NfSLL74AYE5SJwNToYaxdDrNRsepU6fi8ssvb3fO\n1VdfnVfbhWLlypWuwoHJu0CGU8A0oq1ZsybnaxaDsOT00tOxb7/9tugJZ+ztlZWVWchNdC8vv/wy\ndthhBwAmUW39+vUAgH/+858d9ofIdoQFC7ZPTKGnPnjw4MGCkpEU3Ijhd9xxBwBwEBHQttredNNN\nOV8zGAxyGrS5c+eyT3j16tWYO3cuAGveA8k2IxTDV3zttde2kzji8Tjmz59fULuFuPdydYNWVFSg\nV6+2fDrksuzdu7erHVlKXvns5IZhsAoon8mTTz4JwHTvkSpUXl6Ovn37AjAzXZGqlM81gbaxisVi\nlkxIhPXr1zMVfO7cuaxWZaOFjxo1ij83NDS4koALQcksCtkmApF+Vq5cyZRRmUSFvn/aaafhnnvu\nAZBbtp7Bg03W584778znz5gxA6+88gqfTw9Ppt0qBg466CAA4MVI4rLLLsu7Xdm/ziK40BiSKEzX\nIl5AviK6a5/6tnutra3lmBYZik1jXFtby4lThg0bxpThYDCICRMmAABuueUWV9emsZXz0Sk1n9Ya\ny5YtA2CqVUSuI0r17NmzsXHjRgDmJkQ2rIEDB/KcI0r49oCnPnjw4MGCkpEU7LRRrduSZD788MM4\n88wzAVjFS1qVA4EA7xhDhgzB6NFmNvmZM2dyG5s2bWLG4q9//WsAwIknnogDDjgAQFv6LcAU54l1\nlkmMLtRY9aMf/QgzZszge7KDDJ25QjIJ6bPboJ1sUEqhpqYGAPDMM88AsOaeKC8vZw+N23YJbvpp\nGAbT2w888ECeD5WVlaxKkKQwYsQI3q2rqqosUiblsLj66qvRpUuXnK9P84nmSDwezyqZbd68mSnd\n9913H7czZ84cAMDZZ5/NLMZAIMBjI6ninY2SiZK0R61prXHyyScDAJ544gkWqYC2h3D33XcDAE4+\n+WR2Q8bjcR70hoYG1NXVATAnL7VNlFIpZm7YsAFfffUVAOCoo45i12EmLnu+YjmFRvfv399RDaHr\n7bnnnliyZAkfc6IPBwKBdouWz+ezJALJl45tbxMwLfjkWpOgcZOUYjdQSlmyUbv5HonuP/nJTzBt\n2jQAsETG0n0nEgmmCd9yyy2sEk6ePBmHHHIIADNCc8yYMQDa4gs6AvVZJp7JZV5Q/ygku6qqir+3\ndOlStiUdd9xxPFebm5t57CkSNVd4UZIePHgoCCWhPvh8PlRUVKC5uZklgu7du+PGG28EAIuUEI1G\nOfPxddddBwB4/fXXce211wIwV+vevXsDMHcuSUrqKBfAxRdfjFdffRVAW+BTJuS768qdLZOxkkTc\n8vJyvo+xY8fiwAMPBGASWn7yk58AMJPF2Psq8xrKXStfER0ALrjgAgBmoJh9DNeuXYu99trLVXt2\naK3zCvrSWjNHZc2aNY5jSp6FUCjEKqiURoYPH84eqP/97398L7lICvbUdLmOK6lYlLCmZ8+ezFP5\n/e9/z+09/PDDHJhXVlaWtzfJ7fMuiUUhnU4jGo2ipqaGLcg777wz66+JRIIf5B/+8Ae8/PLLfBww\n7QG33347AFNnI9JPJBLhNtLpdLuU8H/84x85VNYp4UmxYRgGk6XsoJeCovtGjhyJjz76CICZBYgW\nk0suuYT1aJkAxOnB2ydRPiL66NGjceedd7brJ1nLJ0yYUJScivkutBTuPXr0aEs4O9mIiD34xRdf\ncHYru6uX1M199tmHSUa5kKlkYRsg+2ZiB43bihUrLO51wgcffIDTTz+d+7O9qld56oMHDx4sKAlJ\nAWhLtEFEoWXLlnG8eSQS4dVca82rP+1avXr1YgrogQceyCJj9+7dLcVe6Hu0i7z00ktYvdpSuKpT\nUVFRkTF1Ou1yffr0AWCSXMgDsmHDBkyaNAkAMG/ePDZABoPBDndYaUiVWYRl5upM3991110BAM8+\n+6zFyEnGPCIpZeLtZ4Pc+WS8g5u2lFJMBa6rq+PvNjU1YfLkyQDa+C01NTUYMGAAAJMu7HQd6T1x\nQ7vOlkszXzz00EP4xz/+AcAcF/KMkBG8s5C3pKCU6qWUelcptVAptUAp9dttx2uUUm8rpf637Xd1\n8brrwYOHzkYhkkISwB+01nOUUpUAPldKvQ3glwCmaa1vVUpdBeAqAFdma4ySodIuH4vF2NXV2trK\nO9f8+fPb+d7ffPNNpq0effTR6NmzJ3+PdM54PI6pU6cCAEsHmzZt2q5VhhsbGx0lhXg8zvooUXH3\n3ntvlmxGjx7Nn6X+nsuOIcu1yWvTuJB9Yccdd2Spql+/fuy+k7t4Q0MDzjvvPEv7uWRwpnYAcEJY\nv9/P9qNwOMy7bSqVylla0Fpz5OCXX37JdOvKyko22FK7hx9+OBsRKRuXHcuWLWNJlWw4mewvnVWn\nRCKZTFqyilN2sb/85S+det28FwWt9VoAa7d93qqUWgSzBP1oAIdtO+0xAO8hh0UBsFY3isVinObr\nsssuw7HHHgsAuPLKKzF+vFmset26dQDMwaOKPk888QT/H7BWdqb8gA888ACA/MWwQiYD8RQoPRf1\ng7wklK4sEAgwuSkSieTNe5diuZ0cRm0DwP77728RucmQ+Pnnn7PhdtasWe0KjsgCMZnGRaaJp8XP\n7/czISeZTPJL6DbduawDefbZZwMwQ7hpPGlRGDNmDN555x0AwEUXXcRzQFYNHzRoEL94RCwiwy9B\n1iHNR+VxCxoLWdOzs1EUm4JSqg+AfQF8AqBu24IBAOsA1GX4jqUUvQcPHkoDBS8KSqkKAM8D+J3W\neovNH04pptpB20rRU/JS6fOlqMSbbroJRxxxBACTrkqZeU877TQAJsOLVtSjjz4ahx56KABTBKT+\nzJs3jzM05yrydgacJIXKykrLDgSY/aV7WrlyZd67kQzQIUjDJhnWTjvtNHbfAm077IQJE1hikTsV\nqSWSnh4IBNjnr5TioLJ4PM7GXXJvNjc38y4fDAYt0oYTe9MNli1bhn333RcAmBU7ZMgQ7ufatWvx\n6KOPAjAlJKoHEYvFWFrKlERHchOcck4UW2qQz82JTdoZKGhRUEoFYC4IT2qtSVFbr5TaUWu9Vim1\nI4ANubZnFxtpsGOxGL788ksApmh4zDHHAACHN2/evJktszvvvDNPWCni+Xw+Lh6abyReoeG9QBsX\nX3oGqE2gjWwze/ZsDrd1qzo4tQvAkkGK+k+2hYaGBos3gOjhzz33HEdxrlmzhjkSJ554IgDzBaN2\nP/zwQ/a377HHHqyaJJNJtg/RM5OxJqFQKOeYCaUU91mmpZcl7CORCEcgnnXWWQBMT9Rxxx0HwJxn\nzz33HABzvhAZLBQK4YknngDQFiYviXOylmQymeTxyof/kSvkAkl2tc5GId4HBeAhAIu01n8T/3oZ\nwNhtn8cCeMn+XQ8ePJQuCpEUhgE4C8A8pRSF9F0D4FYAzyqlxgFYCWBMLo1l23kpsvHJJ5/EW2+9\nBQDscaDfBFrBW1pacOuttwIAbr311px3dzt7zP49aZxy61cn49qmTZvwox/9CIDplaCALjKQzZgx\ng419+UolUrQ3DIMlqEQiYWH/AaZXQOaLoHOrqqo4YjOZTLbz4y9btgzvvfceADNykujmzc3NfI7f\n72ePkKxXSX1oaWmxBBfRcTuXgUBi9MCBAznK9V//+hcbjocMGcJ8j65duwIwx5Ce2eOPP841QK67\n7jo2QNfV1fH1SMrp3r27hcvSkaEx3xKCmSDre/p8Pu6TUz0Qe1CZzPX5/0UtSXqBnnrqKQCmu0ni\n3XffBWCK4FTIhIhQefYPABwnq1uQuCsLwBS72It8geTLRgtOJBLhBYf6M3DgQKb4vvTSS5aIUrIv\nzJ49m1U3aqupqSkn0V/eN0HOvWx2BKkGDRo0CIDpnqYkOdFolKMOW1pa+AUi8tI111zDBWBySSQr\nXyr6bH8J7c+vWG5KemaHHHIIU/ojkQirv1TASNrGDMNgm5BUzaSa6kVJevDgIS/8ICUFOwYPHsyW\n7G+++YZX0OrqaiYDFXKfxc4CvD0hac4kSm/ZssVC/wZMwhKJydFo1LL7FcM/XswSeG6eB527ww47\nMFlqexLWcoW8JzKaK6Vw0kknATAlLfJYXXmlSfuJx+M8BuXl5fwO2MfYraTwf2JRCIfDjhFqoVDI\nosMWilJbHJzEVfsxqUqQeNnY2OgYXu3keivWvW4P950T6P4jkQgnJ3FrB8q3n04qkc/n43Bvenn7\n9u3L3hlpO9i8eTOfW11dzbYUUiNkUd6O7Fye+uDBg4eC8H9CUnBojz+TFb2QSLZSkxAImRKnSF6F\nNJiRcTCRSGTkhHQ2nMYy025cyC4t71v+Bqyej2IiU3+ltCYrjhHRq76+3sJxoOckafihUIjbIcOu\nPYmO3aPkAE9S8ODBg3uURD4FYqklEgmLHuZEfQWskX+AdUfUIgt0ZWUlM9PKysrYviBZcLJduZvQ\nai3dbXIFpp02GAyyFCJXa/tn+/ft17PvoB3tZNJXTm1Klp/MVCxZjB0lo812LbqePZBKRvLJ52B/\nJvb7kxwK6faTvv6OxifX+3A6X/r0a2pq2IWXiwTRUaSpve/yWcrPZNuQCVilRCOlBjou56rb5LaE\nXJ97SSwKeluOPjnppB/YfjMywy1gVQ3kA29ubmbjmmxb+qmdXkJJ8/3222/bJSSRVFsZymwYBr8s\nsVgsayZltxPcfm4qlXJcTGS8A32WhUryRSgU4kWGJrRUQzLxN+TY0zOVi4Ld+Oi0sEiVyI3XwYlj\nIBPOtLa2coRmPB7vML2d/biMYATav6xOi3dHqhKd60Qii8Vijl6FbGpXPmqSpz548ODBgpKQFIA2\nFUHufE6rts/nY/ejdMHIXZxE/yOPPJKTbYTDYf5MWZKlFOD3+9nwIxN9dOnShcVu6ls0GuUVPBgM\n8i4Qj8cttNTONlBm23UikQirP/n2QX4vFotxUA75zKdNm8YqWjgcZimtpaWFvxsIBDhpKjEpt27d\nis2bN7frMwBHFTIXKacjUVnuun6/nyW6fffdl0uyUfo7AFklBqfr2qUfJ/XXiach1Sf7M5OSlZQQ\n6XtO/evAJZn1XoASWhQAqz6cieSSSqU6DH1WSrHY/s477zAl2jAMpjpT/UM56VKplCUPpOQ32DkQ\nktDj9/stfaXPyWSy070VTqKsfDGk9boYfUmlUlxensZnzz33xMqVKwGYiyK96DvttBNnMQqHw5xX\nkvrX2NiYUd/PRIXOhmwvCF374YcfZrXyzTff5EUtGo3yhjFv3jy+z2wLkgz3d7qnbPcgN8CmpiZ+\nB/x+P2eqknEnbuH22XvqgwcPHiwoGUmBdt9CjWHpdJqNYK2trbz7d+nShXc3opFu2bLFsprT/wOB\ngKM0QqJcdXU174hKKUtqsmLUQCgETmIzUDweAt0f5Svo0aMHG+o++ugj/j+lx6M+2K+fafeyR0YW\nK1gsHA7z7t+3b1+WopLJJP76178CMHdmkiL79esHAPj6668ztukUEOV0H26gtWbpYPjw4fjvf/8L\nwDmIq9PU0lIg5CilNOlVhU5euxtLusDISkzZeBoaGvD5558DMPVlWXI+U3UlwJrRSWttEeu+r/Hc\nXgQrSpM+c+ZMAKYO/OSTTwIAfvOb3xT8/AzDcEzuWmi7wWAQr7/+OgBg6NChbHc69NBDueiOW5CY\nL5P6kKqZKdozFxC1ee3atZxo5/zzzy/GhuORlzx48OAeJaM+APnvBoZhcF0+rbXFikyrdXV1NXbc\ncUcA4FJcgwcPZvHwlFNO4etHo1EL98FOQpLSQSAQ6JTdWXpiamtrWayVoB0KyGwtL6YEEQqFuK6k\nLEEvS/MVCsMweGxJYnALpRTnUaBd94QTTrBIgqQ+kKSYD2gMaK6UlZXlRRCzg+57xYoVPBbbUy0t\nqUVBumZyEb+ISDNt2jQetJ///OcWhhm1EQwGOTRYlv0m28Cdd96Ju+66CwDw2WeftesX9cnez0wP\nq9Dafz179sTEiRMBmAlQKOns7bffzu1WVFSweN2ZagPpzs8++yz23ntvALBE+lFylmIgnU7z9TZu\n3Mifsy1uSik88sgjAEz1kOwcUrUjcV9GzxbysknVFDAXh3wYhHZQ8tgBAwZYEuQWOxlPJnjqgwcP\nHiwoGUmBiBqSt59pFScj0fTp0wGY1YIffPBBAG0VlgCrOCvz7FHiiv79+7ORaf78+VwR+pNPPmnX\nN6f+Ov3PKW+AG5D0M2PGDFZ3EokEZyWWu0VrayuPBVG+JeySV74gWvlhhx3W7r7i8Tg/h2LA7n0g\nNUCWlCfpSCnFauPUqVO5rqTcrf/85z8DMFWwX/3qVwBMjwPtwIVIc/Qs5DwthF5MIM+H3+/nz2PG\njMGUKVPybtMNPEnBgwcPFpSMpEC7moxglNmHafUvKyvD008/DQCs34ZCIXaR5eLbJptDdXU177S1\ntbVMg7a7IJ2+Tzt6Mpnk6/l8PoveSpABM3RPkiMhz6EaBDvuuCP346GHHuK+SRZmIpFw3OmK7Z6k\nQjwtLS3M/pP2Fao7WQxIVqtSiutk/O1vZhWBiooKNuZ99NFHTJ/u27cv81NmzpyJO+64AwC4kM3l\nl1/OYyyNmYWAJASaQ62trdx3yVJ0C5KKJLuTrrE9UDKLAk12afWnCV9dXc3FQz/55BN+IcmaHI/H\nWT3I5UEQ/XbKlCn8kq5evdqShKQjBAIBxwjIdDrN7Y0aNYo9G0cddRQAc6E45ZRTAJiVrIgyHAgE\ncMYZZwAwq2EB5iJB9/Tuu+86pjHLRPTKN/oyE0glk+oIjWFraysXnb388ssLvpbkk+y0007Mi6Co\n1VAoZKEB33jjjQDMhbOjZ3/bbbfh+uuv57+LaZil61ZUVPCczLd9pRTX3QTa1MnTTjuNN8OSLUVP\nUEr5lFJzlVKvbvu7r1LqE6XUV0qpZ5RSwWxtePDgoXRQDEnhtwAWAeiy7e/bANyhtX5aKXU/gHEA\n/pFLQ8lk0pL0hIq8/PjHP+ZVMhAI8MpMOfH/+te/clm5XPD+++8DMN1+tAOPHz+eRfRssBdZoT5L\nsfTZZ5/l47TTNjc3s6hdX1/P/99vv/24TDq5+urr6zFnzhwAwKuvvprzvRUbMup0xYoVvHMTcy8c\nDuPjjz/mcwvdgYPBoMVdOHXqVABgo+vxxx/PLtCDDjqIC7lkQyKRYJrzoEGDLOpdIX0F2qSCsrIy\nlt6KvZsPHDiQ+SDSaN4pID5APj8AdgYwDcDhAF4FoABsAuDf9v8DAUzNoR1tGIam3/TTo0cP3aNH\nDz19+nQY63SxAAAgAElEQVQdjUb55+6779Z333233kaP1gBy+olEIjoSiejm5mbd3NysU6mUjsfj\nOh6P8/Vz+QkGg3xtv9+f9Xw6V/bV7/frcDisw+GwHjlypF6zZo1es2aNXrx4sV68eLH+97//rbt2\n7aq7du2ac78640cppWtqanRNTY3+8ssv+RkkEgmdSCR0fX29rqur03V1dUW5XnV1tQ4EAjoQCOhu\n3brxXOjVq5fu1auXDgaD/H+3bVNbqVRKp9NpnU6nC+orzSe/36/9fr+uqKhwPSftP5WVlTy26XRa\nJ5NJnUwm9T333KN79uype/bsWUifZ+fyXheqPtwJ4AoApPB2BdCgtSZldxWAnk5fVEqNV0rNVkrN\nLrAPHjx4KCLyVh+UUscB2KC1/lwpdZjb72tbKXoAFo6CYRgYMWIEANPIRAacUCiEF154gdrI+Xo+\nn49z60tLLtVJlCpBNsiMvLkYNjMlQjn++OMBADfffDOrDYSpU6dakpB8X5Bp8Si6FGij9i5YsKCg\nknx2tLS0cI3NzZs3s2Fz1apVANw9cztk3gNq97HHHsPYsWML6TKPy9atWwtWnw444ADLe0BqSDqd\n3m7zodACs8crpY4FEIZpU7gLQJVSyr9NWtgZQFYFSCmFQCBgcfWlUinst99+AIC33nqLLdxffvkl\n05AlBZYeuCzK6ff7MXr0aADAxIkT2YJNE2L16tUWPny2XHv0wMvLy/kBuSW/kHfi5JNPxkMPPQTA\n1Hfpvumexo8fz/8vBMVwT1KfNmzYwBOWslRVVlYWtQS71pprQhbi1usI0uV81llnManJbRkAGhci\nUxWjr5J8J9ucMGFC3m5Ut3Mgb/VBa3211npnrXUfAL8AMF1rfQaAdwGcsu20sfBK0Xvw8INCZ/AU\nrgTwtFLqJgBzAWTd7mhHkDyFUCiEBx54AAAwadIk9unvsssu7NMnieCoo45iEovP5+PyWpWVlRbC\nCoFW3AsvvBBvvvlmu/9nsqLTOc3NzXnvvNTnhoYGtobPmDGDcx4SrXXZsmWWTL75olBJIZ1Oc4KP\n8ePH44033gDQFsknLfnFkBhSqZQlG3Ux8cQTTwCwqg+AqQIBwO677+5qt5ceKKA4929PpkIeKFnf\n0w18Ph9Lobl6RIqyKGit3wPw3rbPywDsX4x2PXjwsP1REpmXfD6fLisrQywWswT4kP7q8/lw3XXX\nAQDOPPNM3kHJOCdrGsg4f8l78Pl87WLoDz/88LwCYsLhcNGzLRFDkKSgiRMnYtCgQQDgmEshV8jC\nOcXo50UXXQQAHGaulMKQIUMAFJabgCBZk7k8GzLy9erVi4Onli5dymHnFDB1xBFHsNQIWGs20Pg2\nNDTgxz/+seX/HfXTHp5djPEdOnQoZs2axX/fcsstAEybQj4wDIPvOx6P55R5qWRozkopDB06FCtW\nrABgUpjpRU8kEvjHP0z+07BhwziakUTxiooKfkBffvklE2u6devGL9u6devwzDPPAADuvvtuAPlH\nyGmteUGSqcwLAS1YNEEvu+yygtsE2kRwMuQChUUG0hjeeeed3P6RRx4JoDiLAmCt/5ltbMnIN2LE\nCNx+++0ArF4sCWqrqamJxfLBgwczGaq+vp4jQrPlqdBaWwq8dHSuG0iimtaaYzjcwJ7Lw63a4UVJ\nevDgwYKSkBQovdncuXMtxySoiMjzzz/P/v0+ffoAMEVI2gUHDhyIDRs2ADBpqKSOlJWVcftSjMy3\nv9S/QCBQcMRdOBzmHZhW9XfffZdrHBYCmXnKqUxbvpCG2UsuuQRAm6hbCKRL2c3O+8QTT+CGG24A\nYEqOTkZKciM/8sgjzK045JBD2Ljds2fPdjU+OkIxx5Nc5127duVjF1xwgWMW50wgCWn48OHMv6mo\nqGCOR64oCZuCYRg6HA4jnU5birA4we/3MwmJRPiKigpeFILBIPu5u3fvbrEM/+tf/wIA5tPnG1MQ\nCAT4AUQikbz91KQD9+rVi+MxSI3YddddXU3QTCBxOBaL8ZgW4k+nSUuLNNDGxadI1nwg1Zx8FgWg\nbaG64oorWCWgZzNo0CC89957AMz09JRoJxKJ8Ny57rrrcOutt+Z0bZnqrxjvEC1SpO4C1qpQuYDu\nv1u3bpas0vQ5V5uCpz548ODBgpKRFGSOgmygaLGhQ4cCMJOtUDKNY445Bs899xwAM4krrZ7nnXce\nqw0UUTlmzBjLjpcrQqEQr+DpdLpdJeZcQd6FX/3qVxwlSV6WmTNnFrwDKaV452lubrbQfPMFqWPy\nXoshKRBkGb5izk1izQLAhx9+yGxZoM1g3b9/fy6Btz0hE/ACbUlWpNTgBsFg0JKIR0g0PyzvA+Vo\nzEU/IyooEWnoNwDMmjWLB2HZsmXsotxzzz1x6KGHAmgTKZPJZF6WY5lBqba2lm0KSinHXIlOCIVC\nGDZsGABgzZo1uOaaawC0TYhivBBKKX55c8mOnQuowKwEeUyKETptL8xaLGitedN55ZVXOMOVUopt\nUKR2bm8sXbrU8ve+++5bUHupVMqiIrolgXnqgwcPHiwoCUmBdrFiWHHl7tLU1MQBT7/85S/ZMEk0\naLmrd7TLydLodC4Zp+LxOHMk9tlnH7z77rsAMhtKiWxz6qmn4tRTTwVgZhymhDK0a8RisYJSetlR\nrFqSe+yxR7tjNBZu+msfbykdFJvebAcZeAlE2a6qqso5ErEYUhEZbWk+EijYzA1kJnR75e4fdCl6\nt2w2N2hoaGhXij4SiViSrsqX3ykHo1PfUqkU66RLly7N+GDoGFmCV65cyW4jpRS6d+9uucby5cvb\nJUntCJleJLmQFUMcHzhwYLtjmchCbiAL4WZaLIqF66+/npmZPp+PdfdRo0bhrbfeslxv48aNFpIS\n9cfp+boFbSASqVSKiyK7QTgc5jlrj8Fw7cVxfXUPHjz8n0ZJSQpA8SUECVoxaSXdunWrZfcn74RM\nM27/TL8lZVZG9dFxp91TSiBz5sxhX3o6nWZjl7R+u1nhpUQgUQyPg8R9990HABxbEI1GOUO1G0ij\nsn2s5L10hqSQSqVYYisvL8e4ceMAmAZo6QUArDkjpRFU5grNF1St+4orrmDD9amnnspZwN0gkUg4\nRpfmo4p5koIHDx4sKBlJYXsVzwScV09p6JQFZaQE4cRgcyoZRp+lnmxHU1MTXnvtNQBWYyW5N/Md\nD3ndYrkhJcj2Qfe0cuVKV648KZnJ8czEDuwMyfHiiy+2FPOhDNtNTU0WWjhgLRor+1ZI7gRq78or\nrwRgcjOI0TpjxgzmgrjJCC37Y5+HblEyi8L3BacUbHLCKqXaFYfJxWgnX2q5ONCEiMViFlFUGrCA\n9gZO+TLJc+0vTbEMiplAHJFFixYBMAliuSDTfdExJ4NoptyWhd5fKBRig2JFRYWFEkygZy43EJ/P\nx38XsonRgnPMMccAMKMzKc4lGo3ynHRzr8V85p764MGDBwtKguZM2Zy3F2TCVyd/rn0Htu9ycgXP\ntJp3dJz6QNfw+/3triGlE7u6k+3amRKrFMNoRz598q1/8803FlpyRypTpj7kQm2Wz0zu1m65EYDJ\nDyCOQHl5ObuGnZ65hORQFINDIitf03FpdE0mkzmrKbJdp2e+7XhONOeSWBQMw9B+vx/JZDJjRmUa\nLMrlCDjrTnZfMk0mp+/loq/K9kR/HT0OmT7LCS2vLXX/bOJ1JnS08MjPbujDfr/fEhpOHhO/399O\nrJbtZuqH02IhIwBlxCHQJprLxTkbD6Oja9M13NgnyMaTTqdRW1sLwOQsSNXGnptRXiPbpmC/B5r3\nlZWVOProowGYdVMpN2m2iFn7GEovmPBAeVGSHjx4cI+SMDRqbWZzlrkWAVhEKifDjtOqS3kZqF36\nHIlE2Jpr5x04QUob9hU/lUq1oz4TZPIRAl3PMAzedQ3DYPFRRrLJ6zut/LnseE47lJudUkZ+0nMB\nrMlppHojx1P2k6zoPp+vXaCXlJTsnojOYLW6bYuek9xpJQ2a5iyAjCpTJsnM6fnQGO63335Yt24d\nAOtczmZ0lO9CKBRiL5adIZoLSmJRANoSYUoePU08n8/HE0zm7ZP/p0kMtLnNvvvuO6awSpE/E6Tq\n4mQBd3L1SRVFPhj5QKndaDTKUZtyUslQbOqjFNXlCy1fJrmIOvVTHnc7MWQ/iItfX1/fjnBUU1PD\n9PFgMMiFYFtbWy1xBIcddhgAcDHaWCzGi2I4HObnSy+EHcVQq9yArlFbW8vJX1etWsX3bZ8DQDtR\nvV1bHYHmSGtrKx599FEAwL333ovFixfndD9+v5/bKCsr42vG43HX7tOC1AelVJVS6t9KqcVKqUVK\nqQOVUjVKqbeVUv/b9rs6e0sePHgoFRQqKdwF4E2t9SlKqSCAMgDXAJimtb5VKXUVgKtgFojJCNpt\nZWSgJA0lk0nLrunkQ6Zdt2vXrqwmHH/88dzexx9/zKt8pmQo2VZUJ6OX3DGkmiOzPMtS9bQ7VldX\n8/01NDRw2jTyVweDQd6B7d4Qu1Qh+yRVpnyhtba0Tf0IhUKWgjh0HyeeeCIAM0kJ5Zpcv34939NO\nO+3EFn5ZHo9E9Gg0aolYzbYrbg/jOI3hd999x9G1W7ZssUhm1I9Mqq18JmS4TCQSjpJOz55mHean\nnnqKx61v374532ssFuPxbGlpKUgFy9v7oJTaAcAXAHbVohGl1BIAh2mt1yqldgTwntZ6QJa22Psg\nB0yKZbJaUq432rt3bzzyyCMAzDoFxCAstJJPvgQapRS79I499liuCvXcc89ZrN0AsGLFCgvn3g27\nrZgwDAPdunUDAJx++un4+9//DqDNNVlWVsaxD9FoFN9++y0A4Ouvv8bIkSMBmGI3jb1MSOPkiUin\n053CYszksssGWTdBvvxOi7SEvCelFKuNffr04dgGOnbcccfhn//8J3+PFt5oNMph3m7rXGZAp3sf\n+gLYCOARpdRcpdRkpVQ5gDqt9dpt56wDUOf0ZeWVovfgoSRRiKQwGMDHAIZprT9RSt0FYAuAi7XW\nVeK8zVrrDu0KSiktDXZAe0t2vnUVSbS94YYbeDWmYjCFIB8Si2EYOOiggwAA//jHP/DKK68AMGtl\n0m5EorrWmu+5rKyMo/eKtGPkjPLycjZ2hUIh7j/ltpTl1+Uz3HHHHVm6aWpq4p2VJAytNeeLsEci\nymhVN3Ri+l6XLl1wzjnnADBVF8BMskO5JF944QVMnz4dgBmtSqqLUorVG2kcpucAwDHPhkSuvBHq\nJwDcf//9GDFiBADTwyEN2occcggAM69kEdDpksIqAKu01p9s+/vfAH4CYP02tQHbfm8o4BoePHjY\nziiI0aiUmgngPK31EqXU9QDKt/2rXhgaa7TWV2RpRxuGAaUUZ2pubGzkXULyAtzqm+SS3LRpE7t6\nzj//fFdtOPQ3b5vCCSecAAD49a9/zXULe/Xq1a6CcSAQYCbdyJEjWaqg3W574dlnn8XJJ5/M/ac+\nSX+9BI13z549uQSgZOPRrrvjjjtyBix7hF9Hu21Hz58yYp9xxhlcdo9cnFVVVdyPcDjMx8vKyrgu\n5p577smVqceMGQMAePzxxzF7tqnhyiA2Jw6JW1Bb5eXlPFZlZWXsngXaSvFRvc4C0fk0Z6XUPgAm\nAwgCWAbgHJjSx7MAdgGwEsAYrfV3WdrRFIFG4qVUE3KpKZgJ5HFIJBK8yEhxMB+QUTQfDB5sPpPx\n48fjxRdfBAC8//77fL9kWBo5ciSOOuooAKYK9Lvf/Q4A8MADD7i6XqFcfUkPTyQSOOKIIwCAU+rb\nF0gSiWOxWIeqXiQSYeNqa2urJfahoxe/o//RglpZWYnTTz8dALhwUM+ePXkhmDRpEvr378/9p35G\no1E8/fTTANrUhwULFvCYp1IpS51LO4Et3zE2DIPrcd54442W9PNyXhShOFDnp3jXWn8BwOkiPyuk\nXQ8ePHyPIHHt+/xRSulgMKiVUjoQCOhAIKBDoZDeZoDUAPL+oTbS6TT/RCIRHYlEXLfl9/u13+/X\nhmHk3R/DMLRhGLq8vFz36NFD9+jRw9JP+v+IESP0hg0b9IYNG3QsFtPhcFiHw+GCxiKfn0QiweOW\nTCZ1MBjUwWAw4/n0fzfPbVtAnPb7/Zbv0ZgUOgfoJxQK6VAopBcsWKBbW1v559JLL9WXXnqpDofD\nPP5u5lYx+kZzctq0aZa5Sj977bVXMa4zO5f3sSRozkSWkTTRZDLJluBCCriSjYKuA2SPOMsEGRmZ\nr1hO99fa2tohYaempobDe1tbW4tSVzIfyFDeRCLBxBpKtgK0ie1dunThcck1VTpg5SZID0axSUpk\n7+jfvz/fV1NTEx588EEA7udFMftHXo2PP/4Yw4cPb/f/0047DRMmTCja9TqCFyXpwYMHC0pCUgCc\nmWzF8Mk///zz/Jl2t2Ks8IUYlYD2+Q3oM+1md911Fx8jg1wpgCQA6pthGDjzzDMBmOnFxo8fX/A1\nJJOVpKVMgVK5wjAM9txItuHBBx+cc6m/TP0sxnwiQ2sm5ioxSbcHSmZRyNfNlw1E/gDcibQS9ii3\nQvqZyXpO4iylGydqMQDOJ7g9IaNOCa+++iqPBf2/pqYGv/3tbwEA99xzj+siu3bISkfdu3fnCMVN\nmzYByJ+i/vzzz1u8TpdeeimAtmLDpYIf/ehHjsepBMD2gKc+ePDgwYKSkRScdt9CJQcisxCkccwN\nqB8yMKbYUg21R+nSpeR03nnnFfVauUBWl6Z+XHDBBRZDKWCSzIjwY6+JmA9k7oiNGzc6EpzcgKSD\n0aNH87GvvvqqKFT3zpBsJUdBXsOeUbwzUTKLQmfg7LPPtvz90EMPFaXdzpgMVC2Kis5u2bKF1R2K\nEdiemDNnDn8mlcBJ/VJK4eWXXwYAjB07lslXFBvhFjLmAyjM85SpHwMGdBi0+72AbE0UOUv46KOP\ntn9ftvsVPXjwUNIoiWzOymWKd5nZ2QlkwaeIQ8DcgWTewXyQ7bpuIOP06+rq8NRTTwFoK0O+dOlS\nvPnmmwCAmTNnYvny5QAKo3y7gcyo3NTUBMCk2soq3YBpGOvbty8A4JprruFzJ0yYgHnz5lnaygVl\nZWXsdSpETaOUfJQN2TAMLFiwAAA45qSUQGns7LEtJDUVqYKal83ZgwcP7vGDsylUVFRY4uYBM7nm\nqlWrAJg7GxmRpP//iSeeKHi1lTUk8oFSCsceeywAU4oh/fGuu+6yFHABgDvvvJMjI2U+Cb/fn7Nf\nvZBoTumGpQxBRx99NEsCZMSVdRl32mkntgEMGTKEJQU3SCQSRamUTRm3ZI4OstcUA27rSGSDrMcp\n+Q/FkBDsdUqz4Qe3KGituQbfO++8A8BM/UXGMGn4Gj58OBu+Dj/88LzIJvLlkCnZ8+37G2+8AcDM\nJUlid2trK79YlEzl/fffZyOZ7G8umYELxd/+9jfL3+RpuPTSS7HbbrtZ+tmnTx/+v2EYWLhwIQBg\nypQpeb002aIkcwUVVCEkk0ksW7as4HY7A2VlZRY6OT3vlStXFqV9tyRAT33w4MGDBSUlKdiTa0pK\nMKkMu+++O4uw9Lu1tdWSUXnq1KkATLGXVsmqqipuI5ednkSueDxeVAOj9MFPmTIFgCl2//nPf+Z+\nAiZjsFDuRr7id01NjeW7V1xh5shZvHgx71577703AFP1oUzESinmKsjM3G5QDCnhggsuaCcVnnnm\nmQW7NyWKYeytqzPTl0rVQeKiiy4q+Br5oGQWBSexWA48TZYvvviCLcr0kO3i9U9/+lMAZoYd0tFj\nsVi7GIJMi0MoFGKyy7vvvsuLSb6+90yge+rbt2+7ylLFEh3zQTweZ9Vm3bp1juInieINDQ2YNm2a\n5btAYSpWvqAEPZKYRPPKvtDlC0nzzneRoWdNqpbkZWjdVgRpwYIFRY2vyLl/2+1KHjx4+EGgpCQF\n6S0A2nzhyWTSIlbad2xZcbd379648847+ThZwC+55BK22jvVe6Q+ECg3XiwWKzjIJxOoz+Sjliim\nqOsW48ePz3ln+uijjyzZnKksXL4oZEd88sknAVhrXlIg1b/+9a+i7LqUPzEYDGbN7OwEpRQHeRGL\nVeal3Lp1K/fZHpSWr6Hc7fdKZlGwv6ihUChjGCnp9jRoPXv25O+/+OKLrKsB4DyHkqKbyTZAgxaL\nxbioiSTQdFa8A1n0gTbxu9CCNYXAzX1Sbk0CEYS+D8jkJDR3yO1L9qdCEAgELEVz84HP50OfPn0s\nfdq8eTPWrjVLpTz22GN8fPny5UVJEOv2e5764MGDBwtKRlJIp9Pw+Xxcty8Wi/GqbBffaeWTZd0n\nTpwIwNx1yXCzcuXKvHMokLoisxkXW1Kg+5Mx9HPnzi3qNToblPIdMMeM0qVvbyilOFWc1hrPPfcc\ngDb1wS0kvZgkz40bN7KnZfXq1XnNh3A4zG2QOtu1a1f22vj9fs7yXQxvl10lzwUlsygQe4ssr7Ku\nZDZs3ryZ+ezpdJrZjXfccUfe/ZE5A4uZZEVCJlIh/Oc//ylK29sLVC8SMOM1isTRdw17bUqqVUFk\nsRNOOIHDsE844QQsWbIEgPkSUpKYZDLJsQfkfUmn05bcnHZ3uFvst99+nJ2KFlTDMFj9ra6uLmqG\nsEAgwG3naqcqtBT9pUqpBUqp+UqpKUqpsFKqr1LqE6XUV0qpZ5RZjdqDBw8/EOQtKSilegK4BMAe\nWuuoUupZAL8AcCyAO7TWTyul7gcwDsA/srVHXHKyHEuLbCbQ/+vr63HSSScBMKWDhoYGAGARMo97\nc6xIlG/lYif4fD4cf/zxAMzditqbOXNmzm0Um3+fD0488UQ26q1du9YiYXVEz7b/r9Dx1FrzTlhW\nVsacFIo+tV+fakxu2rSJOSFaa1ZJKa5m3rx5lnwWpFZIsdxN32fNmsUVpw499FA+ThJWTU0NG54D\ngUDBeUopS7obFGpo9AOIKKX8AMoArAVwOMy6kgDwGIATCryGBw8etiPylhS01quVUrcD+AZAFMBb\nAD4H0KC1Jn/aKgA9nb6vlBoPgFP/0mpLu46dm5ANVB5s1KhR7m7EATI6TUoNxTQ4ptNpNi5t2rSJ\njU6ffvqpqza+b8RiMeaCbNy40VIdXNLUJQ0dsBrRipVdmzI/V1ZW4rTTTgMA5k08+OCD7J6MxWJc\npu3TTz91dDnLKs/yuNTL8wlOi8fjuPzyywG0BfTttttu7JKcOnVqUdynBJm5OlcUUoq+GsDzAE4F\n0ADgOZgSwvVa637bzukF4A2t9V4ZG0JbKfpSSPiyvaCUYq/DKaecwgQmqhn5QxmLPn364J577gFg\nEr5eeOEFAGaWZLkA0AJBL1JnGCSzLdoyLb2EU6h2LhGx2aj5+SLfYspOkMV1UqlUpydZGQFgudZ6\no9Y6AeAFAMMAVG1TJwBgZwDbt0yyBw8eCkIhLslvAByglCqDqT78DMBsAO8COAXA0wDGAngpl8ay\nrbBShO8ssTnTTtNZPAUqP/7UU0+x2vRDkRBoTNavX4/HH38cgDXZbCAQ4F1WKcVSA/2WzzBfox3Q\ntquGw2HO65CpDTqeTqf5e4ZhWKQXSdnOhs5yVRdLQqDfbtsrtBT9RJjqQxLAXADnwbQhPA2gZtux\nM7XWHTpIc8nRaNfrgeLr1PksCvl6AKStIhgM8iSliV0K9oKOQH0PBAIc7t2rVy9eCBYtWmQpL09E\nLbrPTIS0XNRIKV5LtUSGxnc0fj6fzxJXI9Ucu32ho/7Ya14ahlEUtUgunAWo9wBMzxbxLLTW26UU\n/XUArrMdXgZg/0La9eDBw/eHksnm7Pf7kUqlLKuklA5oF5DZjIvZd6WUJZed3D1ol5M+Y9qJqN/0\nWYrMdlHULuVIEVb69wEzQQyt8FVVVVw2TCnFx6XoK3kVUrKReSWl8cyeE9Ln8/FneU9S/JTXk8a5\nTKK40zlOPAb5We5suUgNTmPrRO2VY+zz+Rzvz+l69r7LdmlOOo1hpn4GAgFLP+ga1B+7WpUrZN9l\n1LDtXjpfUigmyEItU4hTHERlZSUXGC0mgcgOWYpcioF2emimiSJfCqfottraWta5DcPghKitra3t\nFgXi8QNmIpNMZConHT2TNV2OrT3aLxaL8f+TyaTlhaXJr5TiRU9OQCnCy4UzV1VP9lN6KnJRoeg+\nkskkL3TyutRf2ZZMapJMJi39p/GQXodMqgSNl5Onwn6u3Mjo2dbU1PBvisptbGy0zEM3thY6NxQK\n8ZzNRw31oiQ9ePBgQclICnYYhsEW+Wg0atn9OkPlyWRcDIVC6N27N4C2DMZr167l3UWm5UokEhaS\nDkkCtHv26dMHt956KwDglVdewXvvvQfA3GloN6bdA2grv96tWzcO5pFqxy9+8QsuEjN//nwAZuSd\n3NnoPsrLyzmpR01NDZYuXQqgTQQOBAKO1nuprjiNu+yPXXR2Oj+TVT9fA7Is/ENt+Hw+pikTF2TF\nihVcHCgSiTAVXhodY7EYX3uXXXYBAHz77bcZiWx2voNUSzLN0WQyybRpUlftc0hKntnGgs7t0qUL\nE+Cqqqp47shzcn1vSsamYJ8s8m+l1HaNvvP5fFxhqGvXrqzP0wOqr6+3DLRcCKifslYD/b+srIw/\n77nnnjjrrLMAmC898eFJvejfvz8eeOABAGaVI7LW+3w+roUYDoeZ9ETJagFYRHx66cPhMPr37w/A\ntPzTAicXXpnz0skuYbdX0H1KK3yhz8ktic1pwkuuPxVsXbx4MXtJTj/9dI6LiUaj/DJFo9F2C1xH\nyW7s3od83yVZy6RPnz6WIsOyKHJH7WeyKdi+41WI8uDBg3uUjKRAolJnGhKz9IGvV1NTw9WEPvzw\nQ+y+++78GTDF+lx2RNpJyGAaj8cxcOBAAMCwYcM4TfrZZ5/dLh8f0LaLT5w4EX/5y1+4n9ReOBxm\nkTgTHVdGncod1G4wlLB7BuSOSCoR5Rm85557cOCBBwIwcyRecMEFHY5JNkhpqxggaa1Xr148t373\nu76AnZYAACAASURBVN/hscceA2COMalSUirIZe4VK/W/UgpPP/00AKBfv34s0c2fP5/T2/3mN78p\nOGISnqTgwYOHfFBSkoLdjiB97J1lU/jJT34CADjmmGM4l8FXX33FhqiysjJOn0W1DmQUmxtXUXl5\nOUfvRSIRjuO/5ZZb2E7gZIibP38+Bg0a5P7m0LZTVlRUsHQQi8UcJQtpqCPJJR6PW9iIf/jDHwCY\nFabpmOQmHHfccQCsNg436EAfzgt0H4MGDWIJq6amBrNmzQJg1dvdZtAuJv2d7Ag9e/a0jOf06dMB\nAMcdd1zetTQEflg8BTLYSYuszLknre+FYsKECQDM6EQS4VtbW9mgOHToUIsBjgxR2VJ6Z7IW08Qs\nKyvjtHGvvvoqP+QDDjiAFySymu+yyy48Ofr379+OKJMrqK/Nzc0ZvQT2c/1+vyX/JX0Oh8O47bbb\nALSlpe/Rowdb6rt27Yp//9tMpdGrVy9eWN2iGC/Zo48+CgBs6f/ggw/w9ttvAzDHWBKIyLv0zTff\nWDgC2wtdunRhdUzrtlqaCxcuxKRJkwDkX1wnH3jqgwcPHiwoGUmBfMC0KymlWPTt2rUrf161alXe\nAUi0C1NFYkpyApi7ICVS3bBhg2W3svvppSHO5/Nl3YFlZujXX38dADB9+nSLT5skFrrP+fPnc1qu\nQnZOklJksI8tSKbdd5LJpCPVWBq6zj//fP4+qReLFy9mEX3dunV83A2KISXU1tbijDPOANDm4h00\naBDefPNNAKb0QOramDFjODUbfWd7449//CN/lu9AKBTilG3r1q3D4YcfDgC4//77AbivJp0rSsam\n4PP5LC/7gAEDeGLW1NSwX33p0qV5qxCSkASYYjvpbBKRSMQxw45TJiG7Tu2EfKLehg0bhhkzZgAw\nRX9a0NyC1I50Os1EH6UUi9WSFCaJOfJzrirLI488grFjx3K7slJTrnDLU5Cg5xONRnlxXbRoEQDg\n4IMPtqT7JyLX1KlTOWPT7rvv/r1ko968ebOlWhR5Q5YvX46DDjoIgGkTsvMihg0bllNFLmH78LwP\nHjx4cI+SUR/sO8uaNWvY4i6z6VZXV7MBS9JPc9ld6BzytZOl3I6zzjoLkydPbvc9uYvInTTT7iJZ\naoDpvch1F6RdHWhfU9ANSBIIh8OWcnukmpBxNZFIsDgaCAS4zwMHDuRaFNmMXWREpXNzSWlmRyGS\nK7EUA4EAtzNkyBAA7fM30PPbZ599uH8VFRXM+9geICmApAQCMS+HDx/erlI60Nb3Dz74gKWcTP3O\nFDHZEUpmUSCRlV6kbt26MX+7vr6e1YcMIaE5XeOUU04BAEyZMgVA+1x91M6IESPYUp2pJDyd25Eq\nQzogTUhKLpsLBg8ezC8picCFIBgMYtdddwVgxgPQS0+JYr/99lsmHjU2NuKqq64CYLpRqR+rV6/G\nlVdeyf0DgKeffpq9OdJtGgqFWOWpr68vuP/ZEA6HccIJbYnDzzvvPADtFwMCuYYzFRveHpg2bVq7\nYyeddBK/9DNmzODiNMFg0NFdTVT5f/7zn44u1XzIgJ764MGDBwtKxtBIEgKV0qqtrWWp4b///W+7\nyD3Anah55plnsu9a7g7kl/71r3/N9NIDDjgAr7zyCgCTxuuUn0D2xel4XV0dxowZAwDsu6c03h2B\n+nbffffhzDPPBGDutHvssQeAzDtfJpAIHwqFmK49btw4NgiSJfv6669nK/yAAQN4rCorKy1JROw7\nayKRYLWE1DLAlKCIZ+LG95+vofG9997DIYccwn/LBCZ2VFVV4csvvwRg0rWJyHTwwQdvF2q9k7eK\n5phUfeS5gUAAo0ePBgDcfvvtAEy1g/7fu3dvNqRKo3EoFJLBXTkZGktmUSDdh25SZrEphLBEL0VT\nU5MluQYAPPPMMyxG2vrDn90sBEDbQ6ypqeH8/mQDueWWW7L2lxaCRx99lK/R1NSEE088EYBZYcgN\n866srAyAydajReHcc8/lF5XIMXaikUysQi/7+eefj3HjxgEAqyIrV67E119/DcDU36urqwGYiwWF\nLVNtz1zgdlEgnXvRokWsEi1YsMBi37DjjTfewGGHHQbAnGe0GVAiXTd9BdzbQWi8+m6rV6m1triO\ns4H6K9XKu+++m9mmMoYoFArx52g06nkfPHjw4B4lY2gErHkSk8kkr575Uk8jkQgnH5FSwvPPPw8A\njlICkH3lz8TPl+m8RowYwcQTKpaSKQLQMAwuQb/XXu3r5lRWVnJ58sceewy///3v+dpOfZU5E2U+\nBfq8bNky3qUycRDkcbLOT5o0iSULJ+ywww6cVszv91tSyuUKt7vuFVdcAcBUA2hsjzjiCMdz+/Xr\nB8Cs4Uhza+vWra5Vsnz7CpgGUBp7whVXXOGKH7Fx40a+Pj3rk046CTfeeCMAk/cgiWPkzSDqfjZ4\nkoIHDx4syCopKKUeBnAcgA16W/k3pVQNgGcA9AGwAsAYrfVmZSovd8GsPN0C4Jda6zm5dIR2WTI0\nbt26ld2QblBbW8uRjzfddJNlVSaG4M9//nPX7UpIFqNhGJY0ZnS9m266iQ13d9xxBwDTYEo7aSqV\n4p27R48erKPTjiEzW/v9fvZlX3LJJdi0aRMA4O2338bnn3/O16bfJBWlUine5VOpFF/7nXfeYYmk\nmHULo9Eo2zAMw8DLL78MoE0H7gyQcTEajfJYyFRkEiRhKaU44vVPf/oTG+gk/TsXuLEpkGRy6623\nWmxFAHDvvfe6uh7NJ2n0jUQiHJgGtEl3vXv3zuhWz4Rc1IdHAdwL4HFx7CoA07TWtyqlrtr295UA\njgGw27afoTBL0A/NdgEKk06lUiwaAe4MjPSCrV692mIkI2it2XpbKOwkJmkhvvDCCwGYUY50nIhI\nU6ZM4diA8vJyprPusssuLO5RtOTmzZvZQn7xxRdbcjdeffXVAID999+fuRcyUzPFdHTr1g1z5szh\nvtFkTCQSjj7yQiHzNQJtYqsbuDU0Usq6N998E6+++mrG8y655BL86le/AmDm2iSvy8svv5xXBKI9\ntD8bSJVasWIFJ+sh9TUXw7FSiklkUj2ihWXRokWc7Gb16tWWeBWKaJUkwI6QVX3QWs8A8J3t8GiY\nZeYBa7n50QAe1yY+hllXcseceuLBg4eSQL6GxjqtNTnd1wGo2/a5J4BvxXlUir6dg17ZStGTEU4m\nzHSzY1D6NGlQ1FqzofHhhx/OSx1xgsybIIOcunXrhlGjRvE59kCqgQMHWkROWtmBNprqpZdeCgAs\nJQCmeEmGyJ122oldWrI2Bl1j69atrIJJQ1Q8HuexWblyZacE/lDFabr2RRdd5LoNt8a7hQsXAjCl\nKXIplpeX830/++yzAExDJD2ziRMnFhxpKNPbdcRjIZA0cP755/OzzEUSJul28uTJ7O6VKiapBvff\nfz+329DQYMlQ7ZZRWrD3QWutVQ61IB2+9yCABwGTp5BIJCyxD0opFqmzWU27detmiVUgbN26Ffvv\nb1awc5tVpyOk02mL3k79vuiiiyz3QFZt0lmrq6v5ntLpNB+fNWsWW/XnzZsHwDrBGhsb8cEHHwAw\nqdo0KZ566ql2+ukuu+zC+nLv3r0t1aRkYpFcJnKuoIVw5MiRfOzFF1/kF7IzsWTJEgDAZ599xnkO\nZS5KCbrX448/HnfffXfB13YzdnTukiVLclaLx44di0ceeaTdcXr+jY2NPO9fe+01TgYkF6y1a9e6\n5vnk631YT2rBtt8bth1fDaCXOM8rRe/Bww8N5Ovu6Aeml2G++HsSgKu2fb4KwF+2fR4J4A0ACsAB\nAD7NsX0NQCuldCgUavcTCAR0XV2drqur036/XxuGoQ3D0JFIREciEf3kk0/qdDrNPy0tLbqlpUWH\nQiFNbRfzxzAMHQwGdTAY1H369NH9+vXT/fr10x999JFetGiRXrRokW5tbdWbNm3SmzZt0p999pn+\n7LPP9KZNm3QqldKpVErHYjH+/8yZM/XChQv1woULde/evXXv3r1J+tIA9Lhx43Rra6tubW3V6XRa\nz5s3T8+bN08PGjRIy7FTSulAIKC7deumu3XrpgOBgKXfgUBABwIBbRgGn1/oWAwbNozHPZVK8dj3\n6dOnU8Y+04/P5+NrJxIJ7lM0GtXRaFQnk0k+lkwmdffu3XX37t0LuibNz2Lfy4gRI/SIESMsczqZ\nTOqtW7fqrVu36gULFugFCxboI488UldUVOiKigrt9/st7wu9I8FgkD8DmJ3L+5iV5qyUmgLgMAC1\nANbDrDL9HwDPAtgFwEqYLsnvtrkk7wVwNEyX5Dla69kdXsC8BneCXDd+v5+tpuvXr8eee+4JANh7\n772Z8jt8+HAAph2BdPV0Os1tFKucuwyTpr4RdtttNxbdf/7zn3PU2saNG9nau2bNGgBmklhyl9qz\nH1EbpOZ8+OGHOPLIIwGgXYIVEpPPOussR9sAWbpbWlra1Z4ETOoruQ4lX94NKEvRE088wcc2bNjA\n4ehU3GZ7gu4vEAjw/dEcmTBhAvbZZx8+l2w4tbW1eatQxUzcSrj55ps5QlVi1KhReOuttwC4C0W3\neeCKk7hVa+1M+wN+5nCuBnBhtjY9ePBQuiiZgCgn/zSVbjMMgyMOr776atTV1bVrg3bdQhKSZIKd\n9yATq9TV1fG1DzroIM6ZQNIMAE75tnr1ag6KGjp0KKeO9/v9GWss2pFKpTiXZLZsyfbs0mSR9/v9\n7LWgJB0yg/M333yTkcRDJCuZG8JefbkQFJKOrSNUVFTgv//9LwAz6Q2N94EHHohPPvkkrzY7Q1JI\npVKWuUBZnknaLBA/vBTv9tyAJOLJiU0vhB2UxaYQkJje2trKC0FraysvNFLcJxG9oaGBRdX333+f\nF6z+/fuzJ0Fai3/5y18CMPMBXnvttQBM0dC+mCWTSUt+RXKnDho0KOfU6fbJKjNIkReErjtt2jQm\nG61fv56ZgmvWrGFL9vjx43HXXXe1u47TIp0NMg6ksxYCiebmZvz9738HANx22208zyZPnszJYb7P\nDVLWoSA0NzcXazFwBS/2wYMHDxaUjPoAmLsH5Q5cuXKlpd4h7eJffvkli90SxEfI18Dl9/txww03\nADCJIJS7MJlMcj4Bklii0Sjv4j6fzxLFSePZu3dvXvVpte+IKEO7saQJkwTS2trK104mk1nptfas\nv/TZqXo0qQOzZ89mlUKqEo2NjUyaccrO3L17d47FyAXUxq677soqiGEYjinliw0az/r6eo7GTafT\nHDPwfezKgCmtOUUC9+rVi9OxuUEHFai9fAoePHhwj5KxKfj9fkQiEUtkIO2E8Xicg4o++eQTNuJJ\n/WvixIkArKy6XCBdmRSJGA6H2TWolOJVXO7itPrS7gNY8z64jUyT1FWCU4ZewzDQq5fJD1uzZk27\n7FRyTOxRf9I2Q/1fvnw5AHNXGjrUjF275ppruDp2165dHSUEkqpylRLkcwVM96W9dmhngximTz75\nJNt2AHAegksvvZTdyDQ+HUkuxTI0Umo8O/KVXOwSoluUzKKQTqcRi8XYiGanNlP05Jo1a/jB/e9/\n/wNg3jhl73ULmqxVVVVMy/3mm28socj2F04WSInFYjknrygG0um0ZcGx50yUGbFzEcXp3pqamjhy\nctq0adzu6NGjmRcRCAT4+Vx//fWu+k2LHV0vkUhYxlW+hJ2Nm2++mQ23Xbt25bR5TklrOhq/Yqk5\nu+22m+X+KY6nEP6EPfmPm/Y89cGDBw8WlJSkkEqlWBy1M/FkOXhKq0W7lttKzBL03cbGRmb3ZQqe\nkist7aT5pvIqBHJXsRsb5W5XyE5G4z916lQsXrwYgBnlSfkLSMJyG20p3aL2Y4X2OVcEg0GWirp3\n785qn+QIyEI2hey6HYEMu+eeey4fi0aj+OlPfwqgrbiNWxTat5JZFABzIjpF74VCIV4UXnnlFUvB\n1kIhHzKFmGYSvySyFZXdHpC+fmltlmHdhSIYDHKY8c0338yJYfJdFJxgH9/OXhi++uorDj/v2rUr\n30Mm+wuh2J4RUjsvv/xyXHfddQDM7FzFiOAk5NNfT33w4MGDBSXFU7AzGgmBQIApz4lEgjkEhEJ2\nK3k9YvfFYrGskkIpjFsgEGhnwJOGxlQqVbC0YBgGj/1ee+3FTM7XX38dQHHKoWfKju0WHYn2cm7J\nfBiGYTAfxu/3tws2UkpZxla2UagqQdJmeXk55/bs1asXqzb2eZjvNcQc+GEVgyEXJImlyWTSMuhO\n7iv6HYlELAlKnYgwMhMS6XKxWIxJLC0tLY7p5Zubm9s9/FzINnKiS7KR0z0ppSxFWwDrBA0EApbi\nr3SOjDWgl7WxsdFyPSeiU6aXhiDdwfaxd/qurMZERK+WlhbLcWrDKcJPjpX9JbR7JeyLtaSCyz7K\nlzfbfTu5HyW1XS5Ysh90bae5kIlAJD/T+EhvVqZraK0t7wa1Jc+VtHGnMfTISx48eMgLJWNopF1N\nrnaZdgfajWgVraqqYiruhg0bOMW3fZeQtGHA3A2o7XA4zCtwOBy2RBTKVZz6ms3Q5mRRzyRVKKUc\nuQ50/9IbEo/HLbugE6XZyWAmxzYbgsEg9ycTh0AeIwq61ppTgvl8Pt5ttdYdpsOzPycnOrYcb3mv\n9F0ZaSrv30lisO2e7c7N9TiNp+yvhF0FBkyjuf1Z26VieQ0KXJPp+ul6MoguGo06zi0n7kU2eJKC\nBw8eLCgZSQFovzrLlZdWTCUSulIugHPOOYd96c8884xj24Zh8G5DpcYeeeQR9O7dG4C5kp999tkA\nTKYkFU75z3/+025HsO9WmUCrfyb3JbUhs0XROa2trZZiu9INS+3usMMOXOOBOBayuIvMNJ2tv1KX\nbW1tdfxetp0olUqxFCfHKBAI8C7n5HK2S4VS57b3Q/bTnqB1wIABAIDFixe3u569zxJOhmSSPCWN\nW35PPpNs1wgGg5xFLJ1Os31I3qddGgWsRtBQKMTPmhi94XAY3333HfeXWJr2nAxu6lMAJWRotIvW\n0iADwCKiUll2ehFaWlpYbG1oaHB8SIZh8GJC7Xbr1o0NdKNGjWKvhmEYePPNNwGY1YbsEzmb4a0Y\n8Pl8lshJEr/lSxEMBtk4SqpUY2NjTi9CMSGNpDQBJbFKLk6Z4DSJJej+EomERWWiMZLFblKpVDuv\nSKaFwH5d+zPOxENxw1mQfRs0aBCn77dzTDJdBzCfNb0DZChPJpN87Ouvv+a+2osVifY9Q6MHDx7c\no2QkBXvqMDtk4Q17PQgpfkrDoD0VmV1MtLsIpYoi60M69LdTJQQAGDJkCIuu8XjcEjEnRXTqZyYG\nHuH7eM75+PEzuScztSs/0w4aDAY5qpakP8lDqa6u5gC7WCyW0aWYre/53F8kEskrgE72Xwa8UVs5\nqgY/rHRsQMeTWN60fVC11hYyColUu+66K0cUduvWjcOBKRHLmjVrLO26KXmfyeKcL6j/e++9NwAz\n+zAtUtOnT8ff/vY3Pk+KxrlevzMXskyQPAU3xWfy8ewAYBVSKcXJY3bffXcAZjg4qZ1btmzhgjln\nn302e6uy2U866keucLsgSFWK5i/ZGZYvX94plb489cGDBw8W5FuKfhKAUQDiAL6GWd+hYdv/rgYw\nDkAKwCVa66m5dCQff6rEMcccA8AsN04ehZ49e3KbiUSCdxISv/v164f169e7vlYmsbYQUB2F++67\nD4DZR0qAMmnSJN4damtrLaniOoKdjVhMZBOdlVIswjc1NbHIa7e826G1LjjIrLm5mXd/krYGDhzI\nSXRqamqYun3HHXew18lt9eliRkwS/H4/J5IdOHAgG8Lj8TguvvhiAMCqVasAmIFUVDavmMi3FP3b\nAK7WWieVUrcBuBrAlUqpPQD8AsCeAHYC8I5Sqr/WOquMU8jA+v1+LgF/8MEHO74Ifr/fYjMAzPTZ\n+SwKQPHVh9/85jcArIQUyrD08ccf83Xc5uwrxoSlez3ooINYBKcF9uOPP2Z7R2trq2Xsx4836wfv\nvvvuePxxc/rMmTMHgCnCO5G6itHfYDCImpoaAMBRRx0FwFxkKcxdujrLy8s5ApcK1OaKQvtK83HA\ngAEc71BdXW0ZQ1IPtmzZwosaqZh777035zTtKAbF7eKVVyl6rfVbWmtazj+GWTMSMEvRP621jmmt\nlwP4CsD+OfXEgwcPJYFiGBrPBUCMoZ4wFwkClaLvVGitMWTIEADtiSiSNk1GHvLt52ukKVTVsUMp\nxbwIKisHtBmliKySb9tAYam9aCd9/vnnWSwnEX/69OnYaaedAJhl1olQBrTlcQSAM888E0Cb9PDp\np5+ysU/yMIqRn8Lv93NNDTJaNjY2ctstLS3c5xEjRjjyIjoTZFSm3JA/+9nPWLKRSKVSTEiKx+Pt\nPCPdu3dnaaMY0aqEghYFpdQEAEkAT+bx3fEAxhdyfcIJJ5zAohVgTcVOpbpnz57N5d5pMSgkt6Ik\n0BS6QBiGgWOPPRaA9SVesGBBQe1SO4XgrrvuYp07HA5zaXQStVevXs3szx122AEHHnggAODkk0+2\nJKMlpiUtelu3buWFoL6+nsezkAWQ8Kc//YmzF0kbBqk5lZWVbFeKRqOsptEi1ZkIBAJ45513AAAH\nHHAAAPOZ08s/ffp07se9996L2tpaAMBNN92En/3MWqmxsbExJ5uR2zmQ96Kg/l975x9bVZnm8c/T\n0tb+EKG6qTBFyuKPDcIubIwRd4MbZ+noiKwrYsAJDjphqU50uiGOECK6iRqW3aBMMju7ZnFrDLKr\nOKzYhB1ZS9SgUodIsAOD4zKrY2Vsq/JDEUrpu3+c87x9z+297T333nN7zb7fpOm959xznvd9z3ue\n93me9/khspzAAPltM0Q161L0xpingKfCe429s4SHhweQI1MQkRuAHwPXGWPcJIU7gOdEZCOBofEy\noDPvVo6C5557LvJ9w4YNQGAEU5fSOXPm2JVLnVza29u5/PLLgfgONq7bbb6r8fnnn09TU9Ow448/\n/njsthUKqmK1tLRY+i0tLVZScFcoFWE3bNhgU+xPnjzZjtGBAwfsmGtsysDAgJUwRCS25T8ddAdn\n2bJl1vV6//79QOBerLUkb7nlFntNX1+f3YkoBvr6+oY5IS1atIjdu3cD0bT+ImINy8ePHx8W67Fv\n3z4rYRQS2WxJ2lL0IvIxQSn6NUAVsCucHG8bY1qMMb8SkeeBgwRqxQ+z2Xnw8PAoHZSMm3Mu12m5\nL3cr6csvv7R62Lhx4+yKt2bNGlpaWoAhSeHUqVNWUjh69OhI7QOGVmw390JZWVneRp6Ghga7aurq\n0d3dbaP+8skYnYuhsaGhgbffDuzFU6dOtfaACy64IO191Li4Z88epk+fDgQSlOrwCxcutIWB1b34\n008/tauim+shHw89fQ5u5ih9rjU1NZbepEmT7Pn333/flhxMwjtQocZFNyOV0jvvvPPS0hYRWltb\nAVi/fr29h9rMGhsbreE3E1K8hL9Zbs65uOGqaAhDk/7qq6+2k6O/v9+Ktp988ol1+tEw1tOnT/PQ\nQw8BgRtsNqXd9b5KrxCW6+rq6mFVmCorKwuSPj4OU9C+tLW12UrSAwMD1jKe6R5qHKyvr7cT/quv\nvrLjfeTIERvarhPbTbpSW1ubt79HbW1tRKXbs2cPALfffjsQvHiaMXnWrFmWkdXV1UVyWsaBmwZ+\nNKiLsqsCqEExNapRF6133nnH+iG486yzM9DIs6k+7kaSZts/7+bs4eERQclICnGkBPWqmzBhgj2m\nBizN5w9R0b6trc26DT/99NNAsHosXrwYCGpUvvzyy0DAgUdK6jE4OFjQugdaV8GF66+QD+KswGrY\nbG5utv3fvHnzqL4DGnzk+ihUVFSwfft2AC6++GKrNrhBZzqGZ86cyXscXU/P48ePs3PnTiC6mq5c\nuRIInvtrr70GwLRp01i7di0QlMKLM16p5QRHmsPpyhqqgXP+/Pl2S3rJkiXWSKpu4qn01q9fD0Qr\nkI+0NR5XCisZm0Ic9UHFalUNAKsGrF+/3k6wqqoqm0Hn2LFjNnPNe++9BwzZFiAQ5bSmYEdHh52w\nx44dG+bS7IpyFRUVedeS7O/vtyKsiuKu30Ux0NzcbBnr+PHjrf591VVXjbp//+677wKBhV+fYUdH\nB8888wwQFHR1/QJSkU+Kd30WZ8+etS/n559/bl2BM7mF67Pv6emxdqfe3l67SKj6MVJ7dP65CXDS\n4cILL7SqrjqC5QK9v1aOWrVqlbXbpEtPDz7JioeHRwHwjVMf3B0F91oNKEk9riuvrlTAsOv1vJZE\nO3nyZGTl0s+uMVClhnx2HtSjzb2v1mosNi655BI7RsYMldC75557WLduHRD01VWhAFasWMGsWbPs\nfTRQ6v7777fGRRjZezQfI6MaRF1cf/31owaOuS7DKmF0dnbagK1soCtzusAuFxMnTrRzq6GhwUo3\n6YzUxhibXKe6utqqEm70qM4RVzXKJvdEtigZ9SHb31ZWVkbSiEOgW6mVtqenx4pzjY2NdlDGjx9P\nY2MQt/XSSy8Bwcuo5++8804rPmdK1a0vb2VlZURkzFUfdrc1FcX2w3f96F955RUgsJRr286ePWsj\nST/88EP7Eup1M2bMsJ/7+/utnSdOwpp8oIx1z5499iV11cpM0GfppkZ/8sknbVLfbJCqVqa6HLvM\nQttUX19v3aqvu+46IDpuW7dutblH9+7da+00lZWV1g6yYMECe11MePXBw8MjPkpGfcgWbjoyVQPO\nnDljfQ9OnDhh3UgbGxutA1B9fT233XYbEN1X1h2JgwcPZgwuUY6vK4JrLc9V0qqrq4tIBcVaWVOh\n7e/t7WX+/PlAIDWtWLECCHI66MrmJi+ZN28eEF0dd+3aVfR+qNHNGGOjDrPBE088AUQrd+vuS7ZI\nJyG4af3dtO2qPnV3d1vVRv0N3DlUVlbG5s2bgcCfxi1Np6pNIVzCR0LJqA/Z7j6Ul5dbXcpN3ctF\nHwAACdRJREFU0PrII48AgeVZVYnW1lark5WVlVmLuuZwPHfunLU5zJgxw+rRmdSHTFV8csHp06cj\nCVVmz54NYGM18kG+CVvdZ1FXV2d3e4yT3FYjON2YjcrKyoKEPseBPtMvvviCSy+9FBg9/Lqurs4+\n64qKikh8TJzxSl1E3OTDccdd71VfX289dN3dsZ07d7Jq1SqAiK0mJrz64OHhER/fOPXh3LlzViXY\nsWMHEIhZM2fOBAIpQFdgEYlkFFa3VDVU9vf3097eDgSrnCuquaKhqikjVR3KFhob4FaM7uvro6ur\nK+d7psKVbHIxgrqrnFtxCoZ2EVzHMUWxpQQRsbENvb29WT+XN954I+LarAa/XH0k3ApiuRqdNa/o\nFVdcYaVbt00bN260OxhJw0sKHh4eEXzjJAUYqu+nKdguuugiG+24bt26YVmbIVjdt2wJEkQ9//zz\nQOASvXDhQiBaLCa1IElqsFKuq0FZWVkk+66ubM3NzQXNDu3ug+eq444GV9IZKxhjrNG5qanJ2jsy\nBZKpwdT1vLz33nsjOQziQOeFjnE+BkCdUw888EDEVqGG29dffz3nORI3UrZkmEKcSZsaoTh79mwO\nHToEBAxDC4C4L8Wbb75prbqaIruxsdEWizlx4kTEcFnI1Ojazk2bNkXarhP65MmTBU0XrvdIMhTY\nFXEVo1X5SgJ33303ANu3b+ejjz4CAgbhFobR3+mOAwwZKDUOJhek+pkYp+hNXKjxW9VgCOah7qrl\nynByiT726oOHh0cEJSMpjMbR3GrGqSW5Z86caYtmDAwMMG3atMg1qb9ZvXq1vV6PVVVVWY++/v7+\niNEsNeAlLve96667AFi+fHnE8Kmeaz09PbHLhafCNS4mUaQkE71C3y9um7UEYGdnp02z1tPTw4sv\nvggM5TGYM2dO5DpNG5ePZKNtdvMq5Hq/W2+9FcAmCNK2jZZTQ+eTW4F8cHDQvhu5zIGSYwrpJkdZ\nWZkVoyZMmGBDjfVhXHnlldYKPWXKlMj+v2JgYMCGqu7duxeAQ4cOWTrV1dU2A/D+/futa2+6QY3L\nFDQ34LZt21i2bBkQRGVq2nN3f19ViqwTYjiiq8JNa18MBpFv5ik3U1KuWLx4sWWytbW1LF26FCBi\nU1Hm/sILL9hI2UzIFJLsujbr2Kpo79pZzp07l/WY19TUWGcxdyEzxti5nG5nx7V3rVy5kmeffRaI\nVuRy25Fte7z64OHhEUHJeDSOZqRy1QetQ6Cr7ty5c62hsampyXLJ2tpa6/14880389Zbbw27p7uq\nursMmTgzxPdozFQ6PSm4uyhJGRt1dSwvL7e5B+bNm5d1v1wpxkU+4ryK0o8++ih33HEHgK2/uGjR\nItra2oBA1VBDZDbtTJd6b3BwcMTSge4Olvscxo0bZ3+viVUefPBBrr32WiBY2fW+Dz/8MI899tiI\n7dPfTp482bqgj5AdOyuPxpJhCnFE8tTJNHXqVKs+VFVV2UGfPn26dcfNxrEmk8iY6uZcbAt7XKRO\n3kIiNcfi4OCgTXCzYcOGUZmQO5Zu2wrBLFWnHhgYGFZNqbq62jpe5bNLkG0RoFRm4tLTe2hE5n33\n3WfbfuTIEVtg9qabbqKjo8PSGwk1NTWR/mWAd3P28PCIj5IxNEL2BrzUVaC7u9tyX1cs7OrqiiU+\nu9mAR6JbKsg0XumknEK1Xe+jOzWnTp2yht/YuQALGGDmSkc1NTXW+q4rcENDgzVEpibRiYNsr3PP\np0oJqRWxW1tbbTDXrl27rMFbDeLZoJBqYkmpD+FnIN5EqaiosJPCjVvI1ZfdFW2NkyI7Ke/AXFFW\nVhbptyJJG4beT2tufPbZZ2n181R6qclvCxUnka5SlZuCX+lVVFREYl/ccPjRxsYdw5HsCOXl5ZE8\nnplqOSi0FsbXX38dyUzl7jhku7OT5YLq1QcPD4/4KBVJoRf4CugboyZc5Gl72v8PaE81xvzBaD8q\nCaYAICK/zEa08bQ9bU87WXj1wcPDIwLPFDw8PCIoJabwlKftaXvaY4+SsSl4eHiUBkpJUvDw8CgB\njDlTEJEbROSwiHwgIqsTpjVFRHaLyEER+ZWI/Cg8Xi8iu0TkN+H/iQm2oVxE3hWR9vD7NBHZG/b/\nP0RkeNx34WhPEJFtIvJrETkkInOL1XcR+dtwzLtEZKuInJdU30XkaRHpEZEu51jafkqAn4RtOCAi\neZX7zkD7H8IxPyAi20VkgnNuTUj7sIh8Jx/ahcKYMgURKQd+CtwIzACWisiMBEkOAKuMMTOAa4Af\nhvRWA68aYy4DXg2/J4UfAYec738PPGGMuRT4AvhBgrQ3Af9ljPkj4E/CdiTedxH5FnA/cJUxZiZQ\nDiwhub63ATekHMvUzxuBy8K/vwF+lgDtXcBMY8wfA+8DawDCubcEuDK85p/Cd2Jsoe7EY/EHzAV+\n4XxfA6wpIv2XgPnAYWBSeGwScDgheo0EE/J6oB0QAkeWcenGo8C0LwB+S2hHco4n3nfgW8DvgHqC\neJt24DtJ9h1oArpG6yfwL8DSdL8rFO2Uc38NbAk/R+Y78AtgbhLPP87fWKsPOlkUH4fHEoeINAFz\ngL1AgzHmaHjq98DwUsaFwZPAjwF1nL8QOGaM0UCAJPs/DegF/i1UX/5VRGopQt+NMd3APwIfAUeB\n48A+itd3yNzPYs/Bu4GdY0Q7K4w1UxgTiEgd8CLQaow54Z4zAcsu+JaMiCwAeowx+wp97ywxDvhT\n4GfGmDkEbuURVSHBvk8E/oqAMU0GahkuYhcNSfVzNIjIWgIVdkuxacfBWDOFbmCK870xPJYYRKSC\ngCFsMcb8PDz8qYhMCs9PAnoSIP1nwEIR+V/g3wlUiE3ABBHREPYk+/8x8LExRuNxtxEwiWL0/S+B\n3xpjeo0xZ4GfE4xHsfoOmftZlDkoIsuBBcD3QqZUNNpxMdZM4R3gstAKXUlgdNmRFDEJ4lY3A4eM\nMRudUzuA74efv09gaygojDFrjDGNxpgmgn52GGO+B+wGbkuSdkj/98DvROSK8NC3gYMUoe8EasM1\nIlITPgOlXZS+h8jUzx3AneEuxDXAcUfNKAhE5AYCtXGhMcZNz7wDWCIiVSIyjcDY2VlI2jlhrI0a\nwHcJLLL/A6xNmNafE4iNB4D94d93CXT7V4HfAP8N1Cfcjr8A2sPPf0gwET4AXgCqEqQ7G/hl2P//\nBCYWq+/A3wG/BrqAZ4GqpPoObCWwXZwlkJB+kKmfBMben4bz7z2CHZJC0/6AwHagc+6fnd+vDWkf\nBm5Mct5l++c9Gj08PCIYa/XBw8OjxOCZgoeHRwSeKXh4eETgmYKHh0cEnil4eHhE4JmCh4dHBJ4p\neHh4ROCZgoeHRwT/B7t3mfbAx/b3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/2... Discriminator Loss: 1.2653... Generator Loss: 0.6031\n", + "Epoch 1/2... Discriminator Loss: 1.0865... Generator Loss: 1.2273\n", + "Epoch 1/2... Discriminator Loss: 1.2002... Generator Loss: 0.6592\n", + "Epoch 1/2... Discriminator Loss: 1.2886... Generator Loss: 0.6356\n", + "Epoch 1/2... Discriminator Loss: 1.4369... Generator Loss: 0.4941\n", + "Epoch 1/2... Discriminator Loss: 1.1444... Generator Loss: 0.9019\n", + "Epoch 1/2... Discriminator Loss: 1.1936... Generator Loss: 0.6823\n", + "Epoch 1/2... Discriminator Loss: 1.1784... Generator Loss: 1.4153\n", + "Epoch 1/2... Discriminator Loss: 1.5582... Generator Loss: 0.4257\n", + "Epoch 1/2... Discriminator Loss: 1.0860... Generator Loss: 1.3010\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsXWeYFFXWfm+nyQMMSM4ZyUFEEUHUBREQE7jiyi7msO6q\niCK6JlTcNSsGXEVEgoqrIgoKSjASJCswgKQhZxiY1N33+1GcM7dqqruruquHwa/e5+Ghp7vq1q1b\nt+494T3nCCklXLhw4YLgOdUdcOHCRcWCuyi4cOFCB3dRcOHChQ7uouDChQsd3EXBhQsXOriLggsX\nLnRI2qIghOgrhFgvhNgohHggWddx4cKFsxDJ4CkIIbwAcgFcDCAPwBIAf5ZS/ub4xVy4cOEokiUp\ndAWwUUr5u5SyGMA0AJcl6VouXLhwEL4ktVsHwHbl7zwAZ0c6WAjh0ir/IBBC8GePR9tzpJTw+/0A\ngOLiYv6uIkO9D8Kp6LPaD59Pe12DwWCZ/gghrPRvv5TyjFgHJWtRiAkhxM0Abqa/PR4PwuGw1XPL\nfEcDov5mHCSz88wgpeRjpZQ8ual/Pp+PH4yd/hrbVT/bgdl56guo3ofX6wUAhEIhy9eLNME8Ho/p\nOKvnUT8AICsrCwBQWFiIWrVqAQDy8vK4P2Zj6PV6EQqFyvTD+Awi9cF4f3bGWAjBx6ekpJS5XlFR\nUZm+0r0Y+2sXaj/p5QfAi2k4HEbVqlUBAPv27eNj6Xo+n48XXPVdUvskpdxqpS/JWhR2AKin/F33\n5HcMKeV4AOMBTVKglyTRQVXb8Hq9upfFuOh4vV5+AMXFxbrfjS+XCjsvWLS24r1Xs0lP/xvv0Wxy\n2Glfhcfj4fGk6xUVFfF3gUCAr+f1enH8+HEAQE5ODg4cOAAAqFKlCgBg7969ptcIhUK6hYVAL2Ck\nZ2T3XmKB5kX16tWxe/duANocUdujvpgtyHahLra0yHg8HpSUlPAxgUAAAFCvnvZq7dy5kxeCkpIS\n3bNRFgLLmyEhWYvCEgDNhBCNoC0G1wC4NtoJdjpvtluZiVmRXkBafVVEu7bxYVck0Zf6QhMp1nGJ\nIBgMmu7Y9LmwsBBnnKFJp9nZ2ahevToAYNmyZTzmtDhEkgqNizpBfTmSBVWyqlGjBgAgPz+fpZxN\nmzZFPM/JPhDC4bBOGjl48CAA4MSJE/yd+i5EGlO7/UvKoiClDAoh7gTwFQAvgHeklL8m41ouXLhw\nFklxSdruhGJoNNuJYsHv97P+evToUd41U1JSWA80u0+/368TuUgUs3PtePtcXojXbhEPvF4vLrnk\nEgDAq6++in79+gEA1q9fz2Njpx+qjm9nbOvXr48dO3bozrN6XdqZMzMzAWjqUWFhYcT+GZHMcaZ5\nRpJwSUmJ3ev9IqXsEuugU2ZoNILERjsPX9Wn6YUOBAIsXkV6mIRgMGhqiLOif6svW0VcDAjlsSjQ\nZP3pp5/QoUMHAMChQ4ewf/9+ALFVG7UNQP8im/U7IyODf6fzGjZsiB9++AFAqYEzGsjecfbZZ7Na\nEAqFuK/0ezSDcjwLViKgsaC5niy4NGcXLlzoUGEkBbtiJVBqMPR4PGjYsCEAYOtWS14XXTuAJmGQ\nMcvr9fIOYSY1qGKt3X6T6NekSRO2aleqVImt8STdRDMc2UF5qA033ngjAKBz5848LmeccQaGDh0K\nAHjllVdMd1xVMjNa8iMhJSUFb7/9NgBg4MCBLOkZjcexDMckbSxatAgNGjQAoEk3NF5WXM5Oji3N\ni1GjRmHZsmUAgP3797O3Zt26dTp3rtPXV1HhbApWQBOHLN3XXnstbr31VgBAjx49Irq7jOjWrRt2\n7twJQO+SLCwsRH5+Ph9n5n2IxT1o3bo1/vGPfwAAWrRoAQA499xzY056wowZMzB48GAAetXGDj+i\nPODz+Vj8JlcZgcZt/fr1WLt2LQCwBf2ee+5hq/727dsjqnrGsU9LS8P27RovLicnJ+H+B4NBLF++\nHABw3nnnlYuXg54lLWhLly5FmzZtAJRdFGkByM/Px/fffw8AGDRokO43G7BkU3DVBxcuXOhQYdQH\nq/B4POjYsSMA4PzzzwcA3HnnnbzrdO/eHTNnzgSg920LIXhlJv/5iy++iKeeegqARgTZtWsXAKCg\noEBHwiGo39FnVWxNTU3Fa6+9BkCTXuySRlRceumluO222wBoqkafPn0AlEodFQWdO3dG7dq1+W8y\n0Pn9fmbe1alTB3Xr1gVQKiZXq1YNY8aMAaCNm8oWVFmMRu9BUVER3nvvPQDAP//5T911Sa14+umn\n+dpm5K2MjAyWEIUQ6Ny5M583cuRI3XnRYFWFbN26Nd//zTffzF4ZYk1GA82/7OxsdO/eXfddHJKC\nJZx2i0K7du1w//33Ayh9uatVq8a/X3311Vi9ejUATSwlsaxZs2aoX78+AKBTp04ANDWhUaNGAIDZ\ns2fzIJstBEDpJAgEAjwRwuEw6309e/ZkMbikpITbKSgoAKCJgGlpaQCATz/9lC31s2bNYhGWVIYn\nn3wSS5Ys4f7E8qSUN+jlnj17Nt+nlBJffvklAOCGG25ApUqVAGi6enZ2NoDSRXTHjh06NqnqGqYx\nN5v04XCYF/LCwkIcOXIEgOYCpQXJDOqLe/z4cSxYsAAA0K9fP772tddei/vuu8/eQERAZmYmE6De\nf/99tGzZEoCeRWtGrguFQnxPlSpV4vESQrAdJJHNxgpc9cGFCxc6nDaGRlrN27Zty5LCnj17AGji\nGe1E27dvx7p16wAAX331FWrWrAkAGD16NKsHjRs3BgBMnToVkyZN4rai7TQq0tPT+bPP52NJZefO\nnSwmAmA/PfEm7PiXq1Wrxt4Jj8fDuwdJJacaTZs2BQDk5ubyd0VFRcwRiNcgaiUwrk6dOgCA5s2b\n4+effwZQKo1ZvQapD2eccQbvvBs2bECrVq0AJK4+CCF4Tg4YMIA9MY0aNWK16YMPPgCgjZVZPIvH\n42Ejbv369blPNN8OHz5s+Z5PwjU0unDhwj5OG5sCraS5ubl49NFHAYCNb1dddRXrr3v37mWpYvfu\n3di8eTMA4OGHH8bAgQMBAO3btweguQgnTpwIQFutjfHqgDknQdXvU1NTWWIpLCzExo0bHbnfAwcO\n6HTH66+/3pF2EwXptWQDAUrH5ZxzznHUZWrGEfF4PGxrKC4u1j0LNVrReF4gEGBDZI8ePdgepSI9\nPd0xdqKUkqW7KVOmYPLkyfy9lXMBTVr55ZdfAGiSAt1fHBKCLVSYRSEWtVh9IUms/vrrrwFo5BkK\nK501axY+/vhjAJr4Thbew4cP44orrgBQKoJXq1aNLdg//PADk0by8vJ0RCZjuHBhYaFuoUhNTQUA\ny+pHNKjELFI70tPTsWjRooTbdgIvvvgigNLFAQDGjRsHAFi5cmXC7RtzRJBhlp5Bfn4+jh49CkCz\nyJO61rhxYzz22GMAtMWJ2qF5YQWHDx9OimU/3oUmLS0Nffv25b/Li6Piqg8uXLjQ4bSRFAhSSmYb\n0q66dOlSNtr89NNPOjYi+fW/+eabMlTYcDiMIUOGAABq1aqFtm3bAgBef/11ZkWqLEWzDDuFhYWW\njVyqUatHjx64+WYt8dS//vUvLF68GAB4Z1QlhYyMDM5DcCpRpUqVMmpMUVERMzedMFqrbYRCIX6W\naiQq7ZirV6/GgAEDAACPP/44KleuDEDvUjZrOxwOsxF4y5Yt7KKuVq0a/v3vfwMA7r333oTvJVG0\natUKa9as4c+k6iYbFWZRsDOhKKyVaK5ff/01+/TD4TCLjH6/HwsXLuTPBHq5J0+ezOJwnTp18OOP\nPwLQXnQS+VJSUky9BnZ8xXTse++9hwsvvBCAfuJ27NgRXbt2BVCakejRRx/l9FslJSUVIhIzLS2t\njH1lx44dyePgm9hzhBCs/g0ZMgS9e/cGoNkXZs+eDUDzRtHceOGFFwBoi0akfv75z38GoJGXunSJ\naZxnOHXf6lzq2bMnWrduDQB49tlnmRb+3HPPYezYsY5cLxZc9cGFCxc6VBhJIZb6QLtDVlYWevTo\nAUAT/QDNSEjswE2bNuGmm24CAPz9739nqQIoNfg8/fTTALTdmFZpEtOMMGMS2kkyC5TuKLfccgsb\nDIntBmgGMxJ9J0yYAEAznJHIXFBQUCFSwNWsWbNMP5YuXZq060XKp3Ds2DEA2px5+eWXAWjPnRKr\nFBYW2hqv6dOnA9Du75577gFQakh1wngcCy1atGAph1i3BJonH330UbkZGivMomDMy6dmBk5NTeVB\na9GiBb+Q5OYh2iugqRSk9xoXBFos3n33Xd014+2rXWzbto1jNLKzs5nQcuedd+Lqq68GUEoKUuMJ\naPE7VaDox08++aSMXSaZsRiRMkbTc6xVqxb+97//AdAyHNshMKkgT9O6deuY7EZxNbNmzYqrzWhQ\nadUAOJYjGn766Se2eW3bts3xPqlw1QcXLlzoUGFozmZpsomQlJ6ezqSgQCBQxvj0zDPPsNi1e/du\nXHaZVoyqTp06zFPo0KFDRBXBLvx+f9Li7onCu3HjRu77li1bmJpdXlDzQvz0008A9NwEQjAYxMUX\nXwwAWLJkCUc7BgIBWzu3WSo8M+pvWloai/hz585ldcyJeVy3bl2sX78eAJg+fdFFF5m2rdansAuS\nts4+W6uPNGfOHCbO7d+/n42jR44cYW9IZmYmS4xNmjSJ67qwSHOuUIuCUYdUI8ReeuklAMCwYcP4\nhSQvw/79+3nCejweJhPRuYDm0vn9998d6a8aOp2s8atfvz5PgkOHDrEnojzg9/s5vuT+++/XxXoQ\n1ExJ5N7Ly8vjxTk1NRUrVqwAADzwwAPs2SFESk4TK+OU3+9nJuvSpUuZyOYEGjZsyHOE7BZ169bl\nz+QuBrT7NxaHsQpjwZmioqKI80iNJCWQ2jFt2jS7l3ZjH1y4cGEfFUpSiLZDkLFr4sSJbISjvIwe\nj0e3oqpGSzJcBoNB9OzZEwCwatUqAPoyYOFw2HJ2Xq/XqyPCJAvUP7/fj1GjRgHQVKV4oJZ88/l8\npuoPjVWbNm3wzTffAAAqV66siyn49VetfAed37ZtW6aHqypOXl4exo8fD0AzklE0pVkafSO12Ux9\nUH+n2JeqVavirrvuAuAMLXn9+vVo1qwZAHDcQrNmzTjWQK3eZLwHq/B6vWU8G1b6rhbiIQmMSFc2\nkFxJQQhRTwgxTwjxmxDiVyHEP05+nyOEmCOE2HDy/4oR6+vChQtLiFtSEELUAlBLSrlMCJEF4BcA\ngwD8FcBBKeVYIcQDAKpIKe+P0Za0WrTV4/FwwZG//vWvAIBevXqxzl1UVIRDhw7xZ9JxpZS8Ms+f\nPx+AxhKjnS8/P59X4lAoFDX3gc/n063uyZK2KPAnMzOTr2dW8s4qSJpKT0/ndqjdOnXqcCDZvn37\nmNknhGCp4O6772YeBUUZfvnll2zDyczMxIgRIwBoBl9KNBoOh8uU+jPLkA3ooyDNIITA1KlTAWhZ\nqoge3q1bN7vDwSCOy6JFi3hcSFJo2rQpswqN9Ol4sir7fD7Lpf5UqJICzVlyUdpAcovBSCl3Adh1\n8vMxIcRaaCXoLwPQ6+RhEwHMBxB1UbCDcDiML774AgDYeNWhQwdcc801ALTBI9+11+tFr15aV0aO\nHMliG6Vgq1KlCscXqIajWBRmu0VO44W6AMSbgkvNDkyTMBgMonnz5gCAK6+8EoDGlaBJ37BhQw4H\nX7BgATZs2ABAU93ofikm4emnn+YoSb/fz3klL7/8ctNJH2m8oqkMxuPIGCilxFlnnQVAi3Ak/slD\nDz1UJj7G6/Wy2vnuu++yKhkMBnX9pLYpLZvRg0L9y8nJYQOrHUgpbS0G7dq1090HAPaQJAuOkJeE\nEA0BdASwCECNkwsGAOwGUCPCObpS9C5cuKgYSNjQKITIBLAAwJNSyv8JIQ5LKSsrvx+SUka1Kwgh\npNUoyUgg96Tq1gyHw8xMmzRpEteJIAbZvffey+4mO1BX7WRJCj6fj3cpr9fLSU0o87BVmJUnB8Dq\nFkWXduvWjSWFnTt3srvsP//5D9PKJ06cyBGRJF537NiR20pJScGrr74KQGOZxrOTRiq0o34mNWjT\npk28+0eKjLQC2rn79evHgVSU3KRz587MajzzzDO5foXP52M11aqUEw8otWDz5s1ZpaXxjoOCnfxa\nkkIIP4CPAUyWUv7v5Nd7hBC1pJS7TtodLFVmSXRASe81tkNRkk2bNuXU2qR22B3UZGfRVa9RvXp1\nnY3lv//9b0Ltqno9UJo/8s033wSghXKTyH3ixAnMnTsXgMYxIJ5CnTp1OIchvZjbtm3D448/DkDL\nRThv3jwA+gI2dp9tpMWAQOPStGlTVhvffPNNHT+FYGUBf/DBBwFoZCjVtgEAu3bt4nmybNky3e/J\n9tydf/75XL0qGAziT3/6EwBr8zaRGqKJeB8EgLcBrJVSPq/8NAPAsJOfhwH4LN5ruHDhovyRiPfh\nPADfAVgNgCxvD0KzK3wIoD6ArQAGSykPxmgrYfXBSah9MZMOVE6F+rvKdVC/p8Cs5s2bc0bpBg0a\n4LfffgOgRedR5t85c+YA0HI0qmXYSIw8//zzWWxVC9xE8tzQjq5KCuo4k9rVq1cvDsp68sknOTq0\nZs2anHBkypQpvBsT72DdunU6/gO1V1hYaCuqzyy/op1oVCEEPvtM23/69+8f9dh58+Zh9OjRADQ1\nIRpl3TgX6LNawMbs91h9BUoNyeo9Z2ZmMpv0rrvu4vvfsWMH06JJdTOC5kIUQ/jpRXM+1X0wIlbN\nRzUbEx3r8/n4pcnIyNCF+AKamEoRfsY6iDTBSJeXUvJkLSkp4QI3V1xxBXsG1LYjvTyJiJHlifKw\n0ziJtLQ0Xjjt9tf4TGjhBoBHHnmEXe2VK1dmu9LIkSPx4YcfAigtGWCESpuOAJfm7MKFC/twJYXS\nPpiqDGYibKQxU3NApKWl8WfaUbxeL4vXb775JvMmMjIyWCUgSu3cuXOZQ1C1alXOs3DRRRdxPH1B\nQYFlScCoBlWQ5w6gbDRkRehbLFgl29lFSkqKTgUllaCkpKQMWcqorpKkUFJSEkklOv3Uh1M5ISJd\n28x+YEdvVI9X8z1mZGToirEaoy69Xi+HjterV4/dqT///DOrJXa495F04/KGWWRkRZiDkaCOlepx\niBXNmcj1VNVVnUdGVVH18AghdHVLIvTNVR9cuHBhHxVGUjD6fcujX9HUhGjeB6O4a2bsE0KwdZlE\nOXXX8fv9USPu1OtmZ2czh0BKaboLmI2XUTqwGl/gxNgbxy2aVBBNfShvacLoPTKSqdRnbfbMzLxP\nVmjNZufRNY1tm1VC93q9/FmtTWmQyFxJwYULF/ZRYRK3AtZ3A5XSDGgro9mOnpaWpqMKk2HIzF8f\naTU327VUI5PqYzaeZ4y0VI8z/mZMR6fu5idOnDCVDmLptVJK0/qY5ZEVOFbgk2pfMbp/7UiM8doo\nIrlAY1GW1WuYlZiLZWdQ79VMGjVeN1Z/VKNjJNiVsirMohBrMFUxicqd00M5evQoTzCfz8cvgt/v\n1yVfMbPImk0k9cGZqRR2KbyxjvV4PGXEx3A4zP0oKSnRLRp2XgSasHbT0jsJM8+O+iyMfVerQUVq\nz/g50uIcCfGqI2aGRrW/kZ6HqrrReaRepqenM79l//79pguBlWetzqFEnrWrPrhw4UKHCiMpxIIq\nJtHKTMwuNQVbMBhk/3+/fv3w5ZdfAojM8orkhiQRO16XZKxrGH8nlYiupZaKU3da424UK0grlvhZ\nHrAinqtqjpXxMvtcnjDbuaM9C3V+ElT1SWW0qozFeO41UYnwtFkUCOFwGPv27Yt6zKWXXgpAi/yj\nDLx2ogzVB1deCVVoQlE2nRUrVuiurfLarUzC0wlWYjgqMuKJ1VChViFTVUljLk07i2UicNUHFy5c\n6FBheApOsezq1q3LmYgbNWrE0YdmNSErClJSUnDOOecAANcx2Lx5M4vUkcZGrY4diacQK2CqIkCt\n1REp2KeiIZm1P0g9DgQCPH+PHDmScJ0JqzyF0059iIVHHnmE03QXFhbqItCcglMLGInM77zzDrtO\nN23aBEB7iQ8cOABAK3pCi4aUkifKK6+8ErUKkxWbQ3lBjf6kv0lVqMgLVjQka0Ol8fB6vUxpL0+1\nylUfXLhwoUOFkRScWnWpjiSg7UbxilzR4FRfKVXc2WefzQYlShQSCATw1ltvAQBXqga0lGgUMRkp\n50MypQNKCUZ9N6plJP14vV7uX6VKlZhbQgVjvvnmGx0NnCzxp5rmXBFAY9i2bVvs3LkTALB9+/Zy\nu36FWRQSBbkhSbQG9KyzZBWEjRf169fnTDpAaQJVSny6evVqXcQk3V/nzp05urJFixacyYn+VxEr\nUYxdtGzZkhctmqTnn38+10WoXLkyLr/8cgBa6DfVwtyzZw8nhqFCwYCeCWhGzlLra5gtFGqRV9us\nvZNqpcfjQbVq1QDox7C8LP0ENeS+Zs2aAICXXnoJY8eOBaDZWqIlwrXCirTcF1tHu3Dh4g+PP4yk\ncMEFFwDQxG4y1DhVZToZyM3N5d1hzJgxXB/RLAIuFAqxBJSTk4Pp06cD0PIE0i6twoyOnQjatGkD\nQKusRYYvyoh98OBBlsL27t3L2aHtwixnQSgUMjVCEtGrVatWLHlQFGkk+Hw+7NixAwBQrVo1nVpC\niW327duHK664AkBpDspQKBQzsjNeEIemSpUqLNF2796d0/i3bNkSkydPBqBJju+//z4AYMaMGQC0\nrM70PEpKSlyeggsXLpKDCsNTSOR8r9fLrjmPx8M6d/fu3bl4hxNViZ0AVY9+8skn2c2UmpoaMQoS\nAGrXro1nn30WgFYx+7XXXgOg7RR0ntNuPbp2WloaV5UuKSnBiy++CKC0oI5Ttho1mCcatVcIgSZN\nmgAA7rnnHowZM4a/px0/EAjgjjvuAAA8/PDDADRJIVJuDJIyxo0bx4VW6DkdOnTIcfsB2QyozF2T\nJk04s5bX62WJpmHDhrrSgWSMpSzgr7zyCksNR48eteK2/P/DU/jtt9/YcCSl5DqBBw8eZFJMvXr1\n2JBEhVsTedjxWMUDgQBPYgBcvSrSC01i8sCBA9GiRQsA2iS30/94ojk9Hg97PPr06cO/X3bZZUyu\ncnqRpf4Zqb1mfaR6lcOGDePisE2aNOH0dT6fL6qRVUrJ9Rjr1avHqtCHH37IYrxKIFLD3NWFxc5C\nXKOGVj2xTp06nMKd6mBWrswF1VBYWMjPd8yYMRg+fDgATcWgOU7z4txzz8XWrVsBAMuXL2dVItFn\nk7D6IITwCiGWCyFmnvy7kRBikRBioxDiAyFEINFruHDhovzghKTwDwBrAZAv8BkAL0gppwkh3gBw\nA4DXHbhOGZC/nhiMADBhwgQWBwsLCzF48GAAmij2+utaNyiv/u+//86/z549m2srrF27VpdCzSh2\nGkuwWQXVJwQ0w9HPP/8c9Xjqw9dff41PPvkEgObes3NtNZBKNVyaQW2Xzhs6dCjvcpmZmUmnTce6\nt3A4jK+++goAcNttt6Fr164AYrtfP/74Y9518/PzedcdPHgwcy/27dvHY04MzNTUVJ10pBpEraJu\n3bq6GpTGNqSUrP7Onz+f5+fhw4fxzDPPANAkDJKQqJTcjBkz+Dk1btyYn+uqVassJXCJhIRsCkKI\nutDKzT8J4B4AAwDsA1BTShkUQpwD4FEpZZ8ozcRtU5g6dSoAYMiQIfxdlSpVeFGoXr06W+2DwSCr\nD/QwbrnlFiY7LViwgHXnn376if3q6kOM1ydOD2b37t0sKtKks4JEEqSQqKlO6FgJSTweD2644QYA\n2hiR7rtjxw6OUP3pp5+4XSehcg8igcazX79+eOqppwCURpcSyK5EIvr69et190zeqk8//ZTF9dtv\nvx0zZ87UXQOAaQi7nZetXbt2XCAYKI3voHmam5vLY/z++++bqk9+v59tKfRMDx06xH3Pyspi9Sk3\nNzehFO+Jqg8vAhiJ0rJxVQEcllKSxSMPQB2zE4UQNwshlgohlibYBxcuXDiIuNUHIUR/AHullL8I\nIXrZPV9KOR7A+JNtxSUpDBo0iD+rNRTI/1upUiVdKXpjma8XXngBL730EgBNTCSDkrry+3w+pkrH\nG/NPFN/09HQOcrJDwU5EVDfbda2w9T7++GP++9xzzwUAtG/fHsOGDQMA5kpcf/31jgbrWLlX6v8X\nX3zBZeJr1KihK74TrUx8amoqZs+eDUCbL8QWLSkp0RVUof5EMtZalRhnzZqlkyxUtRDQaozSdVu0\naMHeBeNY0Pwklen777/n84LBoGnOyHiQSIHZpwH8BUAQQCo0m8InAPqgnNQHeskDgQAX3WzatCkP\nyk033cR2gq+++irqQxRKEQ7VAq6KjPFmMaKHtWvXLlZnOnXqxA8/FuxGZaqT2Kxwqx1UrVoVdepo\nwl67du1YzFVdiO3atQMArFmzxnb7RiQzlySNxcSJEzF06FD+nkT7a6+9lglvam5L9SUzo1ub/QaU\nPvctW7bwGAKlagPNMbUYkNfr5Xk9YcIEdkVLKZnURIStvLw8VKlShftCLtko4efJVR+klKOklHWl\nlA0BXAPgWynlUADzAFx18rBhcEvRu3BxWsER8tJJ9WGElLK/EKIxgGkAcgAsB3CdlDKqnByvpKBm\ncKbVtUqVKrwbP/TQQ+jRowcAoEuXLnHtQGbGpXglhfnz53MQVFFREf71r38B0PIpNGrUCEBpROR3\n333HO1RxcbGpSKhGIqo5Jem7UCjERik1j2W8z9zv92PJkiUAwNKBikGDBjGZJl4kU1IgYtLOnTuZ\nFLRjxw40bNgQgH2xO9Z8IJLS5s2bWczftWsX1wIltaVVq1Y8f+k7apeea25uLlPIKe+omojHaEiO\ngPIjL0kp5wOYf/Lz7wC6OtGuCxcuyh+nNc2ZdMH27duza6ZGjRq8urZv3x6dOnUCoNFyja5FtUAM\nYH0HjXc3y8rK4pBjIQT3Q6Ur0+7yySefMKX4l19+KVPIhvphDA1XeRVSyRKt7iROuBE///xzAKVJ\ncgHNz1+joCG8AAAgAElEQVSvXj0AZYvdWEWyqjkDpUFOTZs2Zb1eDT+3i2iSglqf5Ouvv8Zzzz3H\nn4llS3aGvn37svGwY8eO7LZOS0vjtouLi9mYPnHiRADAAw88YPdZ/vFpzhRfHg6HefI3adJE9z0N\ncJs2bXiikq/96quvZsNZUVGRZR6/GvNvNDxFy+wrhOCs0gMHDuQIx0qVKrFoSy/Eli1b0LJlSwAa\njbt69eoANHG3du3aALSoRBKDydpO9238nJWVxZMqXvKVigEDBgDQaNDkicjJyWGS1dVXXx1XvsVk\nqQ5du3ZlshsAphrHuyBEgmqAzcnJAQCMHj2aN61gMMgeqL179wLQDLTkicrIyGB15rrrrtMtFjQ/\nyRukzjEnN3c3StKFCxc6nNbqA4lnW7du5c8333wzu/quu+46XHWV5ggZMGAAqxIkRu7atQubN28G\noO1QyU6OWbt2bVx//fUAgNatW3O6tW3btvEupoqcRN9u164dU3QPHz7MbqqlS5fyDhPpOapuVhJb\n8/PzHd2RW7duDQBYuXIlf/fBBx/guuuui9o3MziVFJdAu/WePXtY1VqzZo2podQuYhka6Xq1a9dm\nhmxJSQkbwkn0DwaDLMVWr16djY19+/ZlN+Mrr7zCUi+pPnXr1mUJxCL++OoDRYU98cQTTHe99tpr\n+WF06dKF1Yq+ffsyj9xMP7eDeCduSUkJqwFz585lm0hBQQFHuxFSU1PRpYv2/J577jmkp6cDAN54\n4w0sWrSI24sGNWGJeqzTFn5aWEOhEI/9RRddxItQtIzTyQaFIav2IycWBCugl3779u28gNSsWRNX\nX301ALAaOGjQIF5QmzdvzhuEz+djdXP69Om8wW3YsAFA8soWuOqDCxcudDit1QcVFFd/ySWXcGKN\nQCDAu0MyGYRW2gP0wVVGY5+RC3HGGWdg3bp1ADRDJElFHTp04ISoVq5bHsVgSIrZunUrM+z279/P\nOzIZ1KzAKSmGDK/kx+/fvz8WLFiQcLsqYlXHNkNaWhrX9qDzc3JyeJ4a0wmS1+KXX37hpL4k8X79\n9dd2pbA/vvqgYtWqVQA0qzcRRYQQbJ0/FZWHjOXl1eKpas1Ar9fLemZmZiYALQKQ4g9atmzJxBWr\nC0KkvgDOZyKmSVxcXMyTe9++fZZjO4wFdBPF4sWLOWKQwtOdXhCA+MaxoKCAQ58HDhwIQEucQ3M2\nPT2do37XrVvH9P1KlSrxAnHjjTcC0O7JGM/jBFz1wYULFzpUGEkhUZGddpjRo0fjb3/7G4BSIhBQ\nugPH6oP6P+DMCqymOSORMSUlhb/v3LkzR3xS9N748eNZLM/MzGT1IZFxSpaqSHH+fr+fuRDvvPMO\nf1ZhFqzllGrz5z//GQDYQAuAE5MkA/GOJxl9idOxadMmNoieOHHCdNwOHz7MyWUoCUuXLl3YQHno\n0CFWlRI1QFYYm4KTFnHKpDN79mx+AM2bNy9j4S8vkAckKysLr7zyCgBtISDd8vPPP8d3330HAKZh\ns0IIdlWWlJTwPanPTmW2JfPFMyIQCLBbzO/349dffwWgkYXMJmcsN14sAlg00MKpxg8kWhDHaftS\nIiDPDtkWdu7cyQvF5s2b2b5w/PhxnS3JboFZV31w4cKFDhVGfXByNZ43bx4ALZszWcCpJt+pABFT\nDhw4wCSkTp06cYbmCRMmRD1fSsm7sdGjECltudnnZKBVq1a8G+fl5fHOFSn2wU5WaTtSgsfj0UkI\n33//veVzo8HY31NZ25KkQUo/n5qaymnlQqEQG9vV3BkqV8UqXEnBhQsXOlQYm4KT7REdtGbNmkxp\nTqafviLgVO5gDzzwAABNMiPj2cGDB8ulAA/d986dOznrNFBaU8MpiaEiokaNGrjmmmsAAHPmzOFA\nQAr4M8KqTaHCLApOGnTUcOGKUhmqvGBlHJ02npEBLD09nXkKJSUlSY8lAUrJSXl5ecxN2LFjB8dj\nWOVKnI7w+/18n9u2beOYiGAwqEu0ozxr19DowoUL+/hDSgq0e4TD4ZhqgxVOQixj3qmE0eUWLUFr\ntArUkXJEWIHKzCRmnpr+LZ6M0tRurGS7lIeiY8eO7JLbsGEDi9KR0pWZpS6LND5mxyQyXomCrpua\nmmrqclVdwYZ7Pb3UB8q4Y2Wgk/UwKKqvqKgoqgXcSsESFZEmklr/0nhPgUBAl2bcrES9lftXeQpW\nOAL0f6SXRq2xCOi9DGof48k+Tf2NR+VTrezqeKpxJ2YZmtXPkRaISKnTjXPEmM8zUntmFcfoGkKI\niGqX8Z6MfTTjrxjgqg8uXLiwjwrDU6BYfDvFQJyEukLH2q3i9WSoDD3jzkHfUwBXUVFRxOy8du4/\nHnag3++PmKuB+k2SQnZ2NkckhkIhnThrJm2ZqWvq/ViRaMz6o4rJkXZlNfN1rAAsddzoXgsKCqJG\ntqqfjXPITPKg+aZKFdHmnXG8VM4KUKoqWU0rGAkVZlEATq2eZpyYVo+107ZxQpmJiU5ay41iaizK\ns5qQxeoCUlRUxO3SZKdrmI1TLNVFnQNWEOka1Ib6ksWbz9CsclgkRBpjs7yZxj7bhZX5FA8SUh+E\nEJWFENOFEOuEEGuFEOcIIXKEEHOEEBtO/l/FkZ66cOGiXJCoTeElALOllC0BtIdWkv4BAN9IKZsB\n+Obk35ZAu8upMn56vV54vV5bO1VFhlH6sTq20aQE4n6kp6cjPT0dAwcOhM/n4wQyVjw+kfpq9A7E\n+xz8fj+ysrKQlZWF7OxsZGdno1q1asjIyNBRoa2Acnda2YV9Ph/fv505TGJ/PKCxUv8likQKzFYC\ncD6Av57sXDGAYiHEZQB6nTxsIrQiMffHao90sFPpDfkjEl3MdG4nMG7cOAAaYYkiO5cudbaAeLz9\nrVSpEm666SYA4LyG7du355obzZs3T1jvBsqqCqqtwgrIVkHRnUCpTYlA7W3evBlt27YFUKrOqKqR\nk0SxRCSFRgD2AZgghFguhPivECIDQA0pJSXT3w2ghtnJwi1F78JFhUQihkYfgE4A/i6lXCSEeAkG\nVUFKKSPFNUgHStHHghCC07p/+umnvDJfccUVALS0XU7sGHb7BGi7GYmN7733Hnbv3g0AeOmllwBo\n6eWc2NmdlrworoRqdFauXJkL6jgtKdgFGTqbNm2Kjh07AihNPw8A9evXB6Cl9qf0+WoRHbuIZ2yF\nEJxmjxLrGH83Q+PGjTn5CqXka9asWVJo/IlICnkA8qSUi07+PR3aIrFHCFELAE7+bz1rpwsXLk45\nEmI0CiG+A3CjlHK9EOJRAGTFOSClHCuEeABAjpRyZIx2HKU5U7TcjTfeiMceewyAng5M18nLy8Pz\nzz8PAHj55Zcd31Vp1aesSStWrOBai6r7zgzhcJh1zRMnTnD+/wkTJrBuHGuXSEayVqpj+Je//IW/\no5qI8ZZgU9PUxasbq4lwL7jgAvTu3RsAcPHFFwPQbAo05uFwmEv21axZM+l2LCEE5syZAwDo1atX\nwtmgCM2bN8fGjRvtnGKJ0WhqvbT6D0AHAEsBrALwKYAqAKpC8zpsADAX2qIQqx2Z6L+TC4s877zz\nZEFBgSwoKJChUEiGw2EZDoflsWPH5KFDh+ShQ4fk9u3b5fbt22VJSYkMhUIyFArJCy64IOE+GP91\n69ZNduvWTZ44cUKeOHGC+5Lov2PHjsljx47JLl26yO7du8vu3bvz/Xs8Hun3+6Xf75cpKSn8PQDp\n9Xql1+tN6J42btwoN27cyH0JBoO6a8Tzj/rl9XoTaiczM1NmZmbK66+/Xl588cXy4osvlnXr1pV1\n69aV999/v1yyZIlcsmSJLCws5Od+4MABmZqaKlNTU+Oec7GOmzJlStTnOXbsWOnz+fifWbtPPPFE\nmfNWr15tt89LrbzXCZGXpJQrAJitPBcm0q4LFy5OHSpMQFSibXz00UcANOONSiOlwjATJkxgkbFn\nz54AgEmTJnHG58mTJ3OdR6fGhNKsDRs2LOpxkQJnYiEUCvHxpF489dRTnGRDCMERc04lmVm2bBmA\n0uI7x44dK1Mx2y5Uum4irlMSy7Oysli1Ijezev9PPPEEV50WQrBKRFnA7fSb+mwGci8eO3aMjdxA\nafEcO1mXhRCm6qJNVeT/TzGYli1bsu7o8Xi4KOeQIUMwd+5cAPoHRwVCdu3axQVIs7KyynDSE8Ul\nl1yi+zscDvPLe9ttt+n6RNcePHgwAOCFF17gupPqcXv37sUZZ5wBQB+12L17dwBaLc2XX34ZgD58\n2QlkZGRwIhOq+nTo0CEOl4533CLFLdgFvfhFRUXsVaIXU+3bt99+i5EjS81cVJvTaVx77bW6PgCa\n/SWeFOyBQKDMGCUriY0bJenChQsdTmtJgar2fvTRR0xfXb9+Pe677z4AwMKFC3U7JXkBqEBIy5Yt\neUe55ZZbHPX5CiE4PwN5EUaOHMnl34yga3/55ZcAgBkzZrBE8/3333OW5OXLl6N9+/YAgAsvvJDv\ne/Xq1QA0lcgsACsR7w7dx8svv8zl96jMXV5eHv7+978D0ArYkMRz+PBhy9W9nfaSFBUVsfRCklRq\nair3rVGjRpyQJSMjAx988EFc14nV17vuuos/f/rppwDi99Ds37+/jBR15MiRpAQQntaLwoEDBwAA\n//znP/Haa68BAHJzc9G8eXMAWgFOKnialZXFSUWJ0CKEQKtWrQAAe/bscbRvrVu35kWISCdW6hmS\neF69enVOOvvSSy8xyWbPnj1c1Obzzz8vQ7VVw7AjJfqwM4HOOOMMrF+/HoC2ANC5VNGoU6dOaNmy\nJQCgbdu2TBb75JNPmGTz0Ucfcf5AVfQl8pYqBjtF2KLFntTDoqIiHfWZxm3FihWsbjoBNQGKmifx\nqaeest2Wz+djOnlGRgaPDY3X0KFDeVM4fvy4YwuDqz64cOFCh9NaUiDL8jfffIM2bdoA0ERYKpYx\nfPhwLs12/vnncz1JWmlvu+02/P7770npW+/evXl3JMNS9erV2TNw8OBBFnHVxCJvv/02AG2HS0tL\nAwDUrVuX70OFlLKMymOMsbdj1aedrVKlSpg6dSoAzYBJATj//e9/WbIiw+7cuXN1CWLIsBsIBJjU\nlJKSwsVsqL+qNT0rK4ulKacCt6jtWrVqAQDOOussneoza9YsAJramKi3wxjdCWhjQbUthw4dapkC\n7vP5uNT83XffbXrMv//9bwDaPZIad+LECTZoRirEYxWn9aKggsTFxYsXs2uxcuXKLNqqL8gLL7wA\nQIs5cBp0jVWrVvFLT2Ky+gLt3r2bJ8qSJUu4sCwVa83JyeH6kvPnz0/Ism/WR+P3Ho+HX+JffvmF\n1a6SkhJmUObm5nKZdDUykMZz8+bN/PLHihhUX6Djx4/HnQAlFmg8r7vuOlYbCwoKuJoSqaDxwJgr\nUV2gQ6EQ8vLyAGhuYpoLaiQuqZc9e/bEZ599pmvLDDQ2dF7VqlU5FuXgwYOORfm66oMLFy50+MNI\nCrTC3n777boMvoRwOIyffvoJADgeIpnErUcffZSt3SpxhVC/fn2O2rv88svZEKXuOkQUcirpi5mh\nUc25OGXKFABAWloai8ZCCPZsHD58mA1bjRs3BqBJBBThefDgQVtjGskg6iRIOjjnnHN4Phw8eBDf\nfvttwm2bEcLUvJTk4bjyyiuZs/Lss89ixowZunMaNWoU81rBYJDJd0SGW7JkCRtSc3NzXUOjCxcu\nkoM/jKRAvvSMjAw2tFB6NUDTjR999FEAiRtiooF2o6pVq8aMhCSYSQJer5f9/ykpKXjuuecAaAxC\nJ+0L9F1OTg4aNmxY5vtjx47hnHPOAQA0bNiQbQ2kv6amprK7NN6aDSpd2ympgdoj+5IqrX322Wcs\nNToB6q+ajTwtLY2vOWDAADRo0ACAxlWhSFmzNGxSSnZFd+/ence5qKgIl112GQDgjTfeAAA8/PDD\nbMyePHkyf08SSrz4QywKaWlpeOihhwBoRjkydrVq1YoLjQKlJeoTRSSyjRCCDUpqHUuaKEeOHOE4\nASsqARmRRo4ciREjRgAAjh49iv79+wMAVq5cyQsPTQQ1pZ36gsV60Xw+H3MPqlatyn2uXLkyi6h5\neXnMtaAS6FJKTmiyYsUKtvCr913eEEKwVZ44Fk2aNMHixYsBaCqmE0Q1o/dBbbOgoIDHYvbs2di8\neTMAoFq1ahgwYACAUmp7RkYGexRGjx4d8VlRchZS55577jlWj3w+n2Mh2a764MKFCx1Oa0mBRNn7\n7rsPQ4cOBQB89dVXLGq/9tprvHru2bMnZt0Dq4gmKVx++eXcN+InbNu2DQDw7rvvsuv0nHPOQa9e\nvQCAA5yiQY0AJMps79692fC3bt06vi65ED0ej2VVw+/367gEakk7ouZ+9dVX7OJTg3xISps6dSp+\n+eUXAJraQZKHlYS8TgREEYQQHIz0pz/9CYBmqKNAMadS8JkV9iGoLvBvv/2Wg9tq1KiBX3/9FUAp\n03X27Nmchs+K6rRz504AGveCJCInJYXTclEgq/306dMBaNZbEtUee+wxJgitWbMG/fr1A6CJaE7G\nNkSyPJ933nkANLGbbBckGi5atIgt9VWrVuXF6/vvv+eXkM7x+XymNQM9Hg+rFcOHD8eKFSsAgMlN\nNGEAay8jYcuWLSzWpqSkMNErEAiwzSA/P58zCpNa1qBBA752dnY23/9bb70V13g7YU/weDys0lB7\n+/btY0JWvIhUwSzSJkPPbfjw4WzPUhdZsjkMHjzY1n1feKGWrkTdTP7xj3/g/fffB6CR5dS4E7v0\ndld9cOHChQ6nnaRQp04dlhCIrbh06VIWW48cOcKi7TXXXMOr5Ny5cx3z45qxAQFNtKede/DgwSym\nfv/99wA0FYaMS1u3bmWjY58+fdCuXTsA4B26QYMGLBH16NGDvSu//fYbi/nPPPMMW6cpqMdYs9Cq\nqqQaRouKivgaRqxcuZKPoeuRpDBlypS4GYJORvt5vV4eT2qPImPjgVoWj9qz4mmhZ/3YY4/pRPtq\n1arx94BGf4803mpbxGT88MMPAejH6vjx45wd+s033yxjBDV+jobTblEQQrDFlSb8Dz/8gLFjxwLQ\nxG+i6+bk5PBAPP744471QS1FL6Xkfhw+fJjdQk2bNuV+UmKVadOmMfV1yJAhHNk5bNgwjnkgL0LP\nnj05zuD48eNsnygsLETfvn35e+NLrz74ZFj/qX2K5lTtD4kuCE6hcuXKrD4QUYhiHezC4/GYJt9R\n3aiRXjbaFDZu3MiRu4A2X4HSkPrHH3+cPUqBQIAXiB9//JFjeurUqcObHV1v586dbM/58ccfmdyk\nep08Hg97xMiGEfOeLR3lwoWL/zc47SSFUCjEkY2Uyn3FihUszkop8fnnnwPQVkkid5DF1ynQ7mGM\nVKTd47fffsPtt98OoHTH6N69Ox8bDAZ598jOzubiJCT2NW/enHfgwsJCNiC+//77ZfgPkZCMmpjU\nJ/L8BAIBpjzbJR6ZibiJgJ6Jmmimc+fOAGKnw48EIYRpvgc79zp27Fi89dZbADSDLhkaSTro06eP\nqXoxcOBA0/Zox+/WrRv279/P/aH34fjx46xuFhcX2773025ROHDgAFvtH3nkEf6fXJIvvfQSu3+K\ni4uZBeYEVF57JFIQ/b106VIsX74cANCli5YrkwqxApqFXy12SuKuCnrp09PT2aMyceJEHUEoGpIR\nT1C3bl0A0PWd7Bl+vz8mW5QmaygU0kVGqglJ4kFqaionk+3VqxeP85o1awDEz5Q0hnLHs9AuXryY\nVaudO3fyIkN5Na26EmlzocTDqqcJKHV9A6WLt9frtc3gTbQU/d1CiF+FEGuEEFOFEKlCiEZCiEVC\niI1CiA+EEGWjgVy4cFFhkUjV6ToA7gJwppSyQAjxIYBrAPQD8IKUcpoQ4g0ANwB43ZHeQqM0U75C\nIgr17t2bjXodOnTA5MmTAWgcceKROwEroiN9v2bNGrZ4Uxr5Dz74gMkmxnPMdiAyRE2bNg2vvvoq\nAMS0Upv1xUnQLqfu8qSiRSNKGXMOlJSUxJ2b0czAFwqF2G9fUlKCJUuWAABLkHbHQvUo0ZjHyjod\n6X6Ki4s5N8bbb7/NPANV2ooEOu+OO+7g6t6R1EaVnEfHqFKtVSRqaPQBSBNC+ACkA9gFoDe0upKA\nVoq+bBVNFy5cVFgkWkvyHwCeBFAA4GsA/wDws5Sy6cnf6wGYJaVsY3LuzQBuPvln52juHY/Hw6nJ\nCgsL+RjSmx555BEMHz4cgGbg69OnDwDn8uKbJUdNdBdWo/ZCoRDr6uR6POuss/Djjz8C0OL/46Fo\nJyNPARnzKPpw6tSpOiNvvEiUp6AGQal1OBOFE2Po8XhMnxu5ClNSUliaPHDgADNI/X6/I9mUlLG1\nVAwm7kVBCFEFwMcAhgA4DOAjaBLCo1YWBUNbUu38yRvgvz0ej2kePCP9F4jfUOUiNrxeLxtxKfu1\nXS6E+vLHihmwMjfp2KysLE75n5qayiSyZCIZ6dWTDEuLQiLqw0UANksp90kpSwD8D0B3AJVPqhMA\nUBfAjgSu4cKFi3JGIi7JbQC6CSHSoakPF0KrQD0PwFUApgEYBuAzO42a0TJjscdUVuH/N5A4Xx4S\nUigUYvejE+Mdj8+fjieQhKgmmE0GP4PajYc2XF6I9I7YlWgStSk8Bk19CAJYDuBGAHWgLQg5J7+7\nTkoZVTESWult+szfm008j8fDtgTVAk4vh9/v5++Li4t1Vu9E9FW6zqmGUcUyy+6kjpvliaBMeONL\npz4b1aptbF8tgBKpP2RLCQaDESNNzfphlqpera8YCAR4LFJSUlgXJ05HvOHSRntAIjEFyYbaN7M5\na9WmkGgp+kcAPGL4+ncAXRNp14ULF6cOFaYUvc/nQzAYTDgRirpb+Xw+08Al4/H0OyGS+EVQI+Ss\niL6RJA1V4rGaNs3Yj1jnxaNeWGlXNQKrAUNmwUNmRkUrXA+rfTW2pxbXMTNsRtpJIxmuyfOlMgND\noVBcxu1EvBnGPqtRm2qQXpTkOqdXKXqKtktkMQCgE6eFEByKLKXUkVAIZpPCKKIbH2I4HLb1spld\nw+v1MuW3oKAgrvsOh8Mx4wecWLzUBYBAn/1+Py9uRUVFukXB7HoqzZlEeuP4xHphCdFsSWaLWiyR\n3+z31NRUDmHfunWrzkVI13Yio5cdFZWuZ3weFEWZqBvTjZJ04cKFDhVGUiDEK1rRearYlJ2dzTvT\n/v37Y7ZNv6vicyTDV7zWfvUaqmoTL6zuTlauQcf4/X7dOKqBYLQbmZWZLykpMd39Vai7qhXVzam8\nmvFC9WqoxlF1jtjpWyIqk1H68Xg8OmmBnkminqgKtSg47Vbr378/88xvvPHGuNow06+dsMOo9+rz\n+ZJai8IujJZ6ddKb9VP1KNDEVHVcoHRhsZrog6DaDKgv5WEHU93h5MEwqjanyh6netpo06tVqxYT\nyhKpjwm46oMLFy4MqBCSghACPp/PsdTbKvWVqjnbWdVVAx5QujLTjmh3tzNDKBTiKLlQKFShJAU7\n8Pv9nG5uwoQJ+PrrrwFElzaiwWgQdULFSgSJEoGSATLs1qpViz0jeXl5HDeTKFxJwYULFzpUCEnB\naVBGm61bt3LEmd2ISTUSk86l3S9S1JtdULtnnHEG64aJ6oORkIyISUCTACiV3JNPPhl3gtRIMOuz\nKrnR7piSksJJTidOnMhFaygR7qBBg7Bw4cKIbVpBamoqX6+8JYXMzEyWmtTcIVRwx8l0gxViUZBS\nOhrm/PDDDwPQMvhSVaBYEELwZFONZBkZGWUs7U6pOaSODB8+HFu2bAEALnyam5sbceGhfqoqTqw+\nGQlETk3qjh07cvbsuXPnOuolMFt8q1SpwmnHrCQpoTGeN28eq2g5OTmWU9qZWfcBffr8ZC0QXq+X\nIz+vuuoqrulJxYCOHz+Od9991/HruuqDCxcudKgQkgIhEZcP7VbvvfceOnXqBEBLZUW7aqQdjDLn\ntmzZkj/fd999uP/++wFoO7Za0Zn6lijq1q3Lonbz5s1551IptRs2bODvSL349ddf8c477wDQKmwf\nOXIk6nVisQPjvRfaQa+44gp88cUXAMBjlgjUvqmJbolVOG/ePEsSghmorUmTJuGaa64BoElYlOyk\nqKiozHip81CdQyrN2WlJgfrTu3dvTr6Tk5ODc889F0Cpevzll18mhb9RYRYFWhDMCETGG6eHQanF\nR40ahSuvvJJ/mzt3LgBNPyd9t2PHjvj73/8OAJwifvXq1TjzzDMBaAVfaVEoLCzkuooPPvigjl/u\nFCZNmsT9Ly4uRnp6uu5eMzMzOcOzev85OTmYM2cOAK22o50070742KkNekm3b9+OF154AUBp4pVE\noI6xx+NhtYhe4o0bN3Iqc6D0hTx48CDnZRwzZgwXRqFM2rt378Znn2lR/P3792d17dZbb+XqYrt3\n745aXCeZoDk9btw4XmQ9Hg9nZJJSss2ExqR9+/ZJWRRc9cGFCxc6VBhJAdCrD16v1zSwo0qVKly2\n+6qrrgKgiVtkBDp27BjzCLZv346ZM2cC0HYSqi9I5djatGmDxYsXA9DEQTJKeTwezqLr8/m4H06s\nyhdccAEA4Nxzz+XdIT8/n1UC+r1Ro0YsPVD/AGDZsmVYvXo1AGsGz1iBP3ZBfaIciD179sTrrzuW\nrFtXfEWtDUF1F5944glb9OJ169YB0J7pzz//DECrC1GrVi0AWs1PMu7afb6JShH0/Js1a8blBqtW\nrYqPP/4YgFa3k4yqrVq14nEhNWjKlCkJXT8SKsyiYIx4y8jI4Env9XpZzxo0aBCndqcFpKSkBJs3\nbwYA/OUvf8HatWu5HRK5qlevznaHIUOGANBKwy9atAiANgGvu+46ABohh5K/fvHFF44RVnJycli1\nUROWTJ8+HfPnzwcAfPTRRwCAK6+8kpPRpqencx8aNGgQ9+LkxCSmBZVeUlXNcwKRkq+otON4EA6H\nWZOV1lQAACAASURBVBdXx/68887jKkt2YYwetdo3qsNJafsHDRrE6syqVav4pW/fvj2nzx81ahSn\nsKex+Pbbb+Pqdyy46oMLFy50qDCSAlGdybKsWoUDgQD69esHQFtdaYWmkmCjR4/mVTMS32HLli28\nGlPqdNUPPmLECLRt2xaAZpyiwhvGhCqEeHbH+fPn69ogY9iyZcswb948AKU+6OXLl2PixIkAgL/9\n7W9sgJsyZQpWrVpl+ZpqIFG8oMjIrKwsLllGNRqjqTB0bTpfPd6JBCtWQGnfp0+fzuphKBTibM/n\nn39+3G0bx9YKqS0QCLARm8rc7d+/Hxs3bgQALFmyhEsEvv7665wDpGbNmjy36ViSLp1GhVgUhBAI\nBAL8D4Aub7/P52PPgdfr5UGjB0ouQ6swE0WPHTvGngqv18tRlW+++WaZ8+wSV8jD0bJlSybQDBw4\nEHv37gWgLQS0GJCK89e//pUXKaBUj8zJyYnphjS710SgJk4hy/ill14KAFiwYIHO7Uvj4vV6eTyb\nNm2KvLw8AKX1Do8eParL9+hEslVq49Zbb8WIESMAaLYZI3bv3o1bb70VABKKFzCGdUdbEOj5tWvX\njudr7969AWhzj36/5ZZbuDCx3+/nQr75+fk8dn379gWQPM+Iqz64cOFChwohKXg8HqSkpKC4uJjF\nS5Uc8uKLL7K46vf7Wfy3KyHEArUnhOAdW5UKCGpMf7SYgm7dugEAc+6FEGypX7RoEYuDffv2ZQMe\n7R6NGjVCVlYWAI3HQNz2ESNGlDvvXlUfaIw+/fRTAMCGDRvQoEEDANr9kRGtXbt23P9Dhw5xhWRj\nLUqCWSIbuyBD4osvvqhTWQgkGebm5qJq1aq668YDOyqZOobr168HUKo+Sil1noirr74agD62Y/Pm\nzbjiiisAIG7DqFW4koILFy50iJnNWQjxDoD+APbKk+XfhBA5AD4A0BDAFgCDpZSHhLbMvwSt8vQJ\nAH+VUi6L2QkhpFnaLdo1tm7dynTPI0eO8CrvJJurcuXKHKEohGBjzplnnsm7G/XH5/OxHl1SUmJq\nXwgEAlw4hQymUkp2e9apU4eZdFOnTuV7onZ3797N3wkhWIefN29e0gNxVAghWBI4fvw4czYuueQS\nAJrb7KKLLgIA1KtXj20mixcvZuZl27Zt2VY0btw4ANrOR3wS9T5Uw64d+Hw+joxctWoVj6OZ5HHi\nxAnemS+77DJ2E9uFneS9ZDNo06YN3+/WrVsBaO53cjcuWbKE25VSsm3toosuwtKlS+PqpwLHsjm/\nC+BVAO8p3z0A4Bsp5VghxAMn/74fwCUAmp38dza0EvRnW+2x8SWnB6rSWpcsWeJ4JB4AfP755zoR\n9pFHtHIWPp+vDFkmNTW1TApzI15++WWeCGpBkssuuwyAFi599tna0BQXF/PDpwlRrVo1/lxQUMDU\n7PKulSml5LiLhg0b4u677wYAjthr3749h+8uXLiQF9Mvv/ySF5CFCxeW8VLk5+c7WskpGAyyWJ6W\nlsbPlQx1EydORI8ePQBoizQ9m/Hjx/NiYneRtXM8zZe1a9fiP//5D4BSY3qPHj2YIl5SUqLjPZCq\nvGnTJlt9SwQx1Qcp5UIABw1fXwatzDygLzd/GYD3pIafodWVrOVUZ124cJF8xGtorCGl3HXy824A\ntJXXAbBdOS7v5He7YIDQl6I33TXMmITkz3cCVatWxb333gsAaNKkCYv7a9euZd5DSUkJ94PUgGAw\nyGJyJOnms88+4yCtV155BQDw9ttvs5EoHA7zrq+moiOD41dffcUipdfr5d34VOCOO+4AoJWfpzGi\n++jQoQNHdqpMUiD6TprMxKeqa5Tc15deeinT3L/77juuB9KwYUM2+JFUYRXxSDrBYBDPPfccgNL5\nNGfOHFbRateujbPOOguAXs2hZEHlgYS9D1JKKU6Wkrd53ngA44HSUvRG8gd9JlEPAK6++mo8/fTT\nlq6hxlIMGzaMvQHE3+/Tpw9by4uLi9mi/ssvv7Bol5WVxZ/pxVU9DsaJTX8vWbKEYzNiZfxR8zPS\nizV+/Hg89NBDAICnnnoq4QIfiYDiB9LT05lcNnr0aAAaKSzRAj6xirQ4BVpY165dy94sj8fDc+D5\n55/Hgw8+CMAafyGevoZCIeYb0Pm5ubk8Fps3b2a7S/369VndLE/E633YQ2rByf/3nvx+B4B6ynFu\nKXoXLk4zxCspzIBWZn4s9OXmZwC4UwgxDZqB8YiiZkRFNFbb4cOH2bDVoUMHtGzZEkCpCHvw4EEW\nB4UQHEVYtWpVljJUg6HZzqSKnEeOHGHRvrCwkC3ntHsYC8So7ZE/+sSJE1iwYIGVW9eBjIv33Xcf\nf542bZrtdpwEFUNRPQPEbEzE6GsWSJQsSSErK4slxH//+9/sMbnhhht4jgwdOpSD7Yg1ePjwYVYv\ngLI1MuNBtMjVrl27sgq5adOmUyIhWnFJTgXQC0A1AHugVZn+FMCHAOoD2ArNJXnwpEvyVQB9obkk\n/yaljOlHIfXBWBCWFombb77ZNDyXJqSqJhhB7aml6ImAEw6HmT+emZmJMWPGANBiKsyoxGbirqra\nqBGD9evX58hNOx4DsmX06tWLJwTp7KcK5BrduXMnjx2FHsdLIBNCsFejuLjYdKH2er2s59PLeOjQ\nIV2Vqljzl9Sd22+/nZ/VxIkT2TZSv359prK3a9eONxdSGVNTUzF+/HgAWswMpbA/evSoo8WB6J5y\nc3PZvjBx4kT87W9/S7htBc64JKWUf47w04Umx0oAd8TumwsXLioqKgTNGSiNcTfbMd5880107doV\nAHQrp5pp13gOoBGAyANwxx13MNW2evXqADSLNKU8Gz58OKfziiSymUVJqv53VWK56aabOFkGkU6i\nidqUCk6N2iO/+qmEEAIXX3wxAG28X3vtNQCJSQiANn5q8hq14rcafaiqbIAW9Th27FgAWhISUgOu\nv/56bo8C7ADtOQAaUYgS6hw/fpyNuxs3bmRV4bvvvkOLFi0AlFbHDgQCTDtevXq1LpO2k5wRotXn\n5+ezp4H6Xt6oMIsCFcuM9OLceeedALSEp99//z2A0kELh8MsZr755pucxUa1jC9duhTt27cHoHki\nAM3SS6xCNR9gJKjRgmZQVZ7jx4/jm2++AVDqUXjsscdYF1dRo0YNdvvRYnPs2DHW5U8FyF121lln\n4a233gIAzJ49mz0i8SJSqXozG40QokydhZSUFLYZ3X333fzyHj16lBOS5Obm8nn16ml27xkzZjCx\nyufzce7D7du3czTqqlWr0Lx5cwDgDaRatWp8/59//rmOhZlonktVTRo4cCAALaKUNj6nyh7YhRv7\n4MKFCx1iGhrLpRNCyGRVMFJBuxSJ5W3atGGL9GeffcaSwo4dO3QqhJG8FM2HTcdOnTqVeQqqaEyr\nf35+PhuX0tPTddWnAC2L9LPPPhvznhJNFUf31Lp1azaMqpwNNV1ZIqngCHTPkaQyY/ZpY/Sk3+/H\nn/70JwBaijLa5WOlfQ+Hw2w83rRpE7fbsmVLbjs3N5fpxJMmTQKgPSfK7VhcXOxo9Wvq88qVK9m4\nKKXUJRpyAsocsWRodCUFFy5c6PD/SlJQrgdA0xfJIFW3bl3W4Y8fP85psFQ7Ae1yVipEZ2VlcRJW\nMiK1aNFCF71H7WzevJmzOdPOd/vtt7OOHAk+ny9m1p9YBUuoP927d2f/eJcuXTB48GAAmsGNjJ+0\nYyaCWJKNOg/8fj9/JresanysW7cuB5sNHjyYbUxnnnmmLtKQ/lclNjWFGklv7733Hl588UUA4ExR\nJ06cMN2xnZivZPDOy8vj/vTu3ZuDoJyCXUmhwiwKp7oPPp9P99KrlmV1MgH2yqoDpS9mnTp1OC/f\nCy+8gFtuuQUA2CAJlE7+goKCmJNOCBEzk7DqoYnmV09JSWERdty4cUwQ+/DDDzk+pDwQKQ+mWiSG\n+AZGfoMZSD3817/+heuvvx6Axrug8VqzZg17nSZNmsQeCic5CJFAqtvhw4c5CpaKxzoFw3i66oML\nFy7iALlWTuU/APJU/0tNTZU+n0/6fD7d9yelGP6s/h3PP2ojNTWVP3u9Xv4cCARkIBCQfr/fkftS\nr+HxeKTH4zG9B6/XKzMzM2VmZqYcN26cPHbsmDx27Ji84IILTvmzUf8FAgFZqVIlWalSJVmzZk2+\np3jHhcbG6/VKn8/H418e95KSkiJTUlLk6tWrZYcOHWSHDh3iuher9wpgqZX3scLwFABn9LR4EYmw\n5GQEn3p/qp/eWAQH0HRZsndYsWHYgdl9hEIhHoNJkyZxrAnlhqwoKCkp0RGLVLXCjmdEHQOVLq/a\nGqy2Ga8HiJ5r7969baWJt4N4wrtd9cGFCxc6VBhJwUxKMBr4AGfzMqpQrdOpqak6yqzR6GT0pdOu\nkpqaygYsY4lzoGw0oEqZJZBlXU28EggEdPUUokkOkXYrlUqs7q7qvZFkIqXE22+/DUCTaBLlQsRC\nJAnRbJfzeDx8/4WFhSxZqRW4Y7Vn3I3VcSFjMz0zr9erKwYULQeEXUmXjj148CAaNmwIQGNgkufr\nwIEDOi9YPIhH+q4w3gc7YpPxwRhJLpGyONHLR5Nf5e+rUXuq5d9sfIwTxc6kUPtu5iJTj6OXNyMj\ng18EKSVf2+PxxAytJUt9MBjUicSxxtDpeWGMU/F6vTrCVrzis9mzjrXAqNGske7TzGtjDO83en6s\nPn+zhYW+8/l8rLqpxY2PHj3Kx1hRdSPA9T64cOHCPiqM+hAOh23vEpGMQaoYqYJIKmaJMtTgG7Od\nW4VaqEbd8aMRcggkjaj3akabVvtQUFCgux7tTFYCZuhYr9cbVRJw0qBKUCUh6j+pVKqUpo61lfE0\nu4YKM0lAjWqkuRbtGvS9qsYZj1cltlj9VVVT43nFxcWstng8HpxzzjkAgP79+zNhbMKECWXUV6MK\npEqFicCVFFy4cKFDhZEUAOu7RDR9MNKOF2vXkVLackPZbRvQdh0K8W7Tpg1Xtt65c2eZXUCVFEKh\nUMJuyVAoFJd7KhGoz4nsI8ZQ6Ejn2IU6Xuo8MrOjqNeJZAegXTctLc00Ya+ZAToa6JiioiKWFsk2\nIKXka1SuXJmNvD6fD5999hn3P9q8FEKUkUCM9211bCvcouA0okXlGdUVVdSOlUDDTl/VF53SfA0d\nOhRPPfUUAC1nAcX3d+rUCYAWu08cgUQqIydDLbALn8/HVbWpD1SNK1FEelHMFll6GdUXJRgM6lQa\nYwbxjIwM9gCo7cU7ruFwmOM1zPpbv359ZGdnA9Dm58qVK6Pep9qu2paZ584qXPXBhQsXOlQYl2Si\nbVBpuSNHjrCh5r333kPt2rX5GNqdqPTZpk2bsHz5cgDWgmuU/ia861auXBm33norAC1zs1khEhIv\nhwwZgs8//xyA/d3ejkrkNEj6GTVqFEegTpgwAYD2LMzce07kKTCD1+vlPBrZ2dns9svKyuKoxG3b\ntnFmJdXobBYcp0qZTvSX2s3Ly+OkuMFgkAO6EjEenrZRkvG8aKSnXnrppfjwww8BlHIQokG13r//\n/vsAtIzR5bkoAJpdAQCWL1+uIxQZEQqFuNJRvXr1bOUGJDG4PNKoA6Uvd9euXTn6s6SkhIvN/uUv\nfwGgLXixCrQ62c9AIIBrr70WgKa60cs/e/Zs9OzZE4CWAo/yaVIou6rLG20KTvaT2lNrSUop+fk5\nNBYuT8GFCxf2EdPQKMxL0f8HwAAAxQA2QavvcPjkb6MA3AAgBOAuKeVXVjoSj+GOEmLceuutUXda\nI+hYr9fLqb28Xm+5Jso888wzcdttt+n6o0I1Fnm9XhbF8/PzuTaBFYnBrI6Gk0hLS+McADfccANn\nz87KymIjr8/nYzXOjG+RTMmF1MqRI0dyVuZFixZxqrvff/+dxfUBAwZwPgsyBs6cOZNrRCRrDAHo\neAqEVatWnRLjcLyl6OcAGCWlDAohngEwCsD9QogzAVwDoDWA2gDmCiGaSykdrZ9OD4YyGhktwerf\nZEeYNm0aunTRJCf63+/3c2p1u4tSvA+L0qXPmjXLNKaDMj8//PDDaNq0KQDgmWee4WNTUlLQqFEj\nAODsxNFgRqVNZKLRpKXit0uXLmXPAum/dC0S0efMmYPnn38egHnchQqnVDOqD0mFXLp06cKL0Btv\nvIFly5YB0BbN3bt3A9DUOcr4TYvJqlWrOLejXTekHVApehUXXHCBo9ewirhK0Uspv5ZS0rb6M7Sa\nkYBWin6alLJISrkZwEYAXR3srwsXLpIMJ3gKwwF8cPJzHWiLBIFK0ScFlHH4hx9+YBHv119/xapV\nqwCUDXi65557AABnn3227nvAXmm3eHHjjTfi1VdfBaAXEwsKCnDJJZcAANe0UL0Fa9aswZdffsl/\nP/nkkwA0r0QsqNKBEx4IylBN0YmBQEAXXUnX27NnD7Zs2QJAy58YK5ckwYkiKz6fj+t4NmvWDIBW\nBfyKK64AoKU/UwOwbr/9dj6PSGLEJ1mzZk3SpAPCt99+y5INANx1113cTydg1wOV0KIghBgNIAhg\nchzn3gzg5niuSyIoic8//PADu+/279+vY6ARmjdvjvvuuw+A/oXctctS/Vsd7L5cVE786aefZmty\nOBzGu+++C0DLH0jFR8ywcuVKXuBSU1PRr18/2312InlHRkYGk6vISj927Fhe0Nq3b88vzuzZszFi\nxAgAsdl4Kpx48erXr8/5Jkn079u3r44ERnPj6aef1uVFpHyNZBtJJsgt2qtXL/5u//79vHE4BbvP\nPe5FQQjxV2gGyAtl6ZO0XIpeSjkewPiTbZ16v6gLFy4AxLkoCCH6AhgJoKeUUuVszgAwRQjxPDRD\nYzMAixPupQG0BpGxq7i4mD8vXLiQJQk1zXqrVq14ZVaRaBm0SPB4PJw9mLwkavKWmTNnsvcBMM8Y\nrYriJNFUr16d6botW7bEunXrovbDiZ2XPB+NGzdmtYGqLz/44IMs5XTs2JHT0r/77rtcwr28LOgk\nAX733Xd8zRtuuAFA2RwE1P8LLyytk1xQUFAuxr0bb7wRALjaNVA6RuQJiQfG5D/Gth2LfRBKKXoh\nRB60UvSjAKQAmHPy4j9LKW+VUv4qhPgQwG/Q1Io7nPY8uHDhIrmItxT921GOfxLAk4l0KhZoFSR9\n8fLLL2dqc8OGDbl4Se3atfl7Y8AIoO3AtGPE6wpTM+lkZ2dzMMu4cePY/Ui67CuvvMI7+7Rp07hP\n6enpOu4EoPERsrKyAACHDh1i5uW9997LdokvvvgCTZo0idk/umfaSamYL1AaKKYWlpFSsoFu/vz5\nLIUVFRUxl4Pu87zzzmO33//+9z8u2KtGftpBIlIFSYK///47G2wXLlwIQLs/MjAPHz5cJyEQsrKy\nkk4HF0IwR0LdzWnORjOyxsoyRXaUvXv38ljs3buX27RqwK0wNGc7xxPRo3HjxgA0oxaJXYFAIKJv\nnsRZesEeeeQRNuCFw2Hrgyb05dJVEHdiw4YNLOavWLECgEb9NfN2tGvXDrm5uQBKX9JQKGSaR3Dl\nypVMj5ZScin2efPmReyrET6fjwlQdI0RI0Zg5MiRALSFyZg+zQiV7ksU7GHDhuHbb78F4HwGaisg\nnkTlypU5spHuv2fPnvjgA81JRgQlQKt6de6558Z1PWMVKisLSv/+/dlrRmO8Zs0a5keoHpwLL7yQ\n1ds2bdqwt2no0KEAtEraGzZsAAB06NCB73/KlCm8EakJZUKhkEtzduHChX2cdpKCx+NB1apVAYBj\nzatXr25pZyP+Qp8+fQBoolWc/dW1q+Ljjz8GoKk0BLrOLbfcwtGOqrpiR2QNBAJMwfV4POzLpjEx\n9kc1YFLegNTUVGYbktS1bt06lnLiRX5+PqszJD2UJ9QIRlKxiJvywAMPsDoGgO9f/c4uYgV0qaBd\nfPfu3WWktBtuuAGTJ2te/WAwyH2//PLLubbo0KFDubQcjXFRURFLujNnzsTWrVsBaHU7SOI0JC46\nvaIkY/zOE/bjjz9GvXqa15NeBJrYsUBUUrIw79y5k0kqdB0gsTDj6667DoAWtm1Es2bNuNx7Iteg\niZCSkoIdOzSPL00Uo9huFp7s8Xh0mZQB4IknnsCoUaMA6KniqqpkBXRfDz/8MP7zn/8AsBf26wTN\nOS0tjWnK06dPB6BxKNRIRFI3EyEI2aGNk22je/fuZcYzOzs7ZjFhdVzOPPNMAFqBXfJgCCHQvXt3\nAFHtOa764MKFC/uoMOnY1Ay8QNlAnkWLFgHQfObGlVbd2YqLi1lMNh5HVvT58+cD0MTd119/HQCw\nYMECHDp0CACwY8cO0xRoVuiiZmnG6Phdu3YlbN2uVq0a3x9Q6tkwSzcH6MfALNsv9efZZ5/FrFmz\nAJRSrc1gzM+QmZmJgQMHAtDEVhqjMWPGsFeCDLyA85wFolinp6ezxPj444+zBNW8eXMAmthOInyL\nFi0SphDbkZ48Hg/zO9TzqI+xpARAP26kRsycOZMl6FWrVrEBNZIKaTlfSEVRH7xeL4QQuglLN1Op\nUiUW/VVVgXIYfvDBB3jjjTcAaOIgqRUNGjRg8kpOTg769+8PoHRiqxF7O3bs4JLrX3zxBevtqk4W\nq+y72rYqxtMENCNP2cWqVavY+/B/7Z1/bF1VHcA/376169zI6OaA2o0OGelCySzgHxD3h5kKgxCM\niX9QyNzWJVvII2IjMYyFLfsPUVRMJlV0mixkM0zUZcQRREgWMlAWpa2DSs2adcCEJStNFLru9fjH\nvd/Tc+/ea+97ffe9Oz2f5KV99/34nu+9533v+X7P93wPTK8GdN0gJV72u5hRq+b1HxgYsCnDxhib\nKqzR9iSU4z4sWrTIXovHHnuMjo4OIKh5qcZi//79QBBD0D4yNDSUuD2lKDdtvKurC8CuzoTp2TNd\nI5IUjVcdPHjQ9rOtW7faWbUZjIJ3HzweT/lkbqRQrPDGVVddZQN0TU1NNmlJg0mlhs5xNEA5MDAA\nTCfgQBC807ni8fFxzp49CwSLgHTUoHfdmbZqK5aHoO9358fLoaGhgV27dgFBPUfNfzh79qy92xQb\ngoqzCUupu0c1V4fedtttHDlyxD7XehA63E1CkpGC6tTY2BhJosrn80Awgnj00UeB6aSga6+91o4Q\ndu/enbg91UKvmVvJWdPHk86Cqa56PltaWiIJcO7vwHUZyh0pZCamoEt7i3WIsbExTp8+DQQZi1ps\nNakxUNQo6AVSuQDHjh2z/zc2NtqhfqFQsG5GkoQc/Q73cxoDSLJWQenq6rLZge73Tk5ORmIUumrx\n1VdfBaJrJty9EPQ5BJ1LDWs10T0KlFOnTs3p+1yjVqzG5OTkpDXe/f39dvqxra3NJoNpEZ1Vq1Yl\n8t3LaVs5N9RiO4qpkVqyZEnR72poaOCKK64A4OTJk9YlcmfJ9DouWLCganU4vfvg8XgiZGqkUMq6\nTUxM2CSTXC5nh8xJkkfUunZ3d9s5XT1WKBR45JFHAHj66adnjUiXE3H++OOPbZKK8uabb9ociWPH\njkW+V0ufawprPBlL7/j333+/XZfQ2dlpc/h1peLo6Gik+rC7nkG/s7m52boyOnSdixtx9dVXA0Rm\nRc6fP19RzUv3DlwqmOeu+tNrMjIyYq/r8PAwa9asAbAJPe+99x7PP/982e1J0s4kqAs5NTVl+60G\niQuFgk3L3rVrly2ysjLcnl7lKSr3lVdesXUt3PMUHx0mCZC7+JGCx+OJkJlA42zv0QzBe++996Ig\n2YkTJ9izZw8QTCeuW7cOCIp2uvGDOBs2bLDppQnbCSTz1/r6+ti6debCUm5JsJno7+9n586dQDA3\nre1YunSpzczTmMu5c+ds+xYsWGCzH902NzQ02Dl7nb6dP3++9cPL4ejRo3ZBkTsy6erqYnBwsOzv\nmylfZSbi+Rga39Dck0KhYK/HxMRExT73XPd76O3t5YknnqhItvZ3zSfJ5/N2hOjGkuKjq//JNGeY\nDhgNDw9bV6LSctu6avHmm2+uqLR8ks+0t7df9KPQBJZi6HfqRV6/fr0N1BXLQYDgB6RuQLEdjebN\nmxcZwrupy2qItIN1dHTYpK58Pl9yNmPbtm0APP7441YnN+CrP8YtW7ZUFNjL5XJz3nlp8eLF7Nu3\nD8DuCtXb22u3dR8ZGYmsRq2USnffWr16NYANmLtuVxx32bNuR6BB5fjOVcUK9MTOoc9T8Hg85XPJ\njBSUyy67jAceeAAIUmnDz896F5+amqKnpwcovlgpYTtnlBF/r9Y60NWZra2t9k66YsUKexcfHBy0\ndwGdYktK/G4VL8nlTrO6BW015Vu3c+vs7LSfdUcXExMTdjRS7DxPTU2xadMmIFgZqSnShUIhks9R\nrNxcKX1mcx+KBZjdwjEPPfQQmzdvBqaL++7du9dmVlYrN6Pc9OFS9PX12QBzc3Nz5Nxoev/OnTtt\nhepS8kq1x+kjl5b7oB24khPd3t5uEzoKhYLt/Pl83g7hjx8/XhU/spy2leq8SlpVfty0bFeGRufd\nVXlaaXrbtm02FXdsbIzly5dHdFA0V2Pt2rVAUEymWM5DXHZ8T8RSP0xXXrHl5aXOfS6XszK6u7tt\nVWZ1x8bHxysyBjOlM1fLKLgsXLjQGuG2tjZ7Q5lL33UMsXcfPB5P+WRupJBl0rgzpIl7l2hsbLTt\nvnDhQiQXAII0WTede8eOHQBs3rzZZtUdOHCAjRs3VtSOcmYR3PNcSdagu6lLNYnPPGS5P2jb3Nqb\nScuxZcoouGShXXGy3AlKocNxdybCHQ4Xc2caGhpoaWkBgki57rWYZO/KueLOjJRaC1NrXHesFjuJ\nVYO5rH3w7oPH44mQqTTnS8GFuJRw77TxYFncfTDG2FoVhULB1kUYGRlhdHS0pIxcLhfJf5jrndSY\n6S3qs9IfiqVdZ6FdSajkHGbGKMSnrCA7Jz7u2mSls5YiPi2pqCvR1NRkO7fOSHzyySd2rcayyOtL\nVAAABF5JREFUZctsMtSZM2dsVuj58+cvMiY9PT12td9rr7025wIu7rl14wuzLfWOf65a18d1rwqF\nQmQdQdbcyWK/IdflSdpO7z54PJ4IWQk0fgj8Gygvc6d6fNrL9rL/D2S3G2OWzfamTBgFABF5I0lk\n1Mv2sr3sdPHug8fjieCNgsfjiZAlo/AzL9vL9rLrT2ZiCh6PJxtkaaTg8XgyQN2NgoisF5EhERkW\nkYdTlrVCRF4WkRMi8ncReTA8vkREXhSRd8K/LSm2IScifxWRw+Hza0Tk9VD/X4tIU4qyLxeRgyLy\ntoi8JSK31kp3EekNz/mgiOwXkea0dBeRvSLygYgMOseK6ikBPw7b0C8iN6Ug+3vhOe8Xkd+KyOXO\na9tD2UMicvtcZFeLuhoFEckBe4A7gOuBbhG5PkWRF4BvG2OuB24B8qG8h4GXjDHXAS+Fz9PiQeAt\n5/l3gR8aY1YB54AtKcp+EjhijFkNfC5sR+q6i0gb8E3g88aYG4AccA/p6f4rYH3sWCk97wCuCx9b\ngadSkP0icIMxZg3wD2A7QNj37gE6w8/8JPxN1BddnlqPB3Ar8ILzfDuwvYbyfw98BRgCWsNjrcBQ\nSvKWE3TIdcBhQAgSWeYVOx9Vlr0YOEkYR3KOp6470AaMAksIUusPA7enqTuwEhicTU/gp0B3sfdV\nS3bsta8Bz4T/R/o78AJwaxrXv5xHvd0H7SzK6fBY6ojISuBG4HXgSmPM++FLZ4ArUxL7I+A7gC4Q\nWAqMGWO0/lma+l8DfAj8MnRffi4iC6mB7saYd4HvA6eA94GPgOPUTncorWet+2AP8Ic6yU5EvY1C\nXRCRRcBvgG8ZY8bd10xgsqs+JSMidwEfGGOOz/rmdJgH3AQ8ZYy5kSCtPOIqpKh7C/BVAsP0GWAh\nFw+xa0Zaes6GiOwgcGGT7ytQB+ptFN4FVjjPl4fHUkNEGgkMwjPGmOfCw/8Skdbw9VYg2Y6f5fEF\n4G4RGQEOELgQTwKXi4iuVk1T/9PAaWPM6+HzgwRGoha6fxk4aYz50BgzCTxHcD5qpTuU1rMmfVBE\nNgF3AfeFRqlmssul3kbhL8B1YRS6iSDocigtYRKsKf0F8JYx5gfOS4cArTO2kSDWUFWMMduNMcuN\nMSsJ9PyTMeY+4GXg62nKDuWfAUZFpCM89CXgBDXQncBtuEVEPhVeA5VdE91DSul5CPhGOAtxC/CR\n42ZUBRFZT+A23m2M+Y/z0iHgHhGZLyLXEAQ7/1xN2RVR76AGcCdBRPafwI6UZa0lGDb2A38LH3cS\n+PYvAe8AfwSWpNyOLwKHw/8/S9ARhoFngfkpyu0C3gj1/x3QUivdgd3A28AgsA+Yn5buwH6C2MUk\nwQhpSyk9CYK9e8L+N0AwQ1Jt2cMEsQPtc33O+3eEsoeAO9Lsd0kfPqPR4/FEqLf74PF4MoY3Ch6P\nJ4I3Ch6PJ4I3Ch6PJ4I3Ch6PJ4I3Ch6PJ4I3Ch6PJ4I3Ch6PJ8J/AQcmWZxM5zUAAAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/2... Discriminator Loss: 1.0424... Generator Loss: 1.1105\n", + "Epoch 1/2... Discriminator Loss: 1.0549... Generator Loss: 0.9376\n", + "Epoch 1/2... Discriminator Loss: 1.1714... Generator Loss: 1.1036\n", + "Epoch 1/2... Discriminator Loss: 1.1158... Generator Loss: 1.0531\n", + "Epoch 1/2... Discriminator Loss: 1.0498... Generator Loss: 0.9878\n", + "Epoch 1/2... Discriminator Loss: 1.2111... Generator Loss: 0.8901\n", + "Epoch 1/2... Discriminator Loss: 1.4104... Generator Loss: 0.4942\n", + "Epoch 1/2... Discriminator Loss: 1.0527... Generator Loss: 1.3645\n", + "Epoch 1/2... Discriminator Loss: 1.0832... Generator Loss: 0.8888\n", + "Epoch 1/2... Discriminator Loss: 1.1123... Generator Loss: 0.8392\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsXXd4FFX3fu/2JKTQpUovEQGlKJ8NUEBFQVSwN0BFUcBP\nLB+KHRtYALEgggoIqIgoiiIKWEFRQDpIEzB0SEjP7t7fH5Nzcmczm22zYfE37/PkyWYzc+fOnTv3\nnvKec4SUEhYsWLBAsJ3oDliwYCGxYC0KFixY0MFaFCxYsKCDtShYsGBBB2tRsGDBgg7WomDBggUd\n4rYoCCEuFkJsFkL8JYR4OF7XsWDBgrkQ8eApCCHsALYA6AFgD4DfAFwnpdxg+sUsWLBgKuIlKXQG\n8JeUcruUshjAbAB943QtCxYsmAhHnNqtB2C38vceAGcFO1gIEZW4YrNpa5rf7w9sDwBgt9vh8/kA\nAKEkIiFEyGNOFIQQfE9SyoTuZ2X3jcZFCKGbB+r3AAz/BwSfF+oxJ3Ls7XY7f6a5HAMOSSlrhjoo\nXotCSAgh7gBwh/J32ANOi4HH4wEAFBYW6h6iw6HdVmpqKo4fPw4A8Hq9hosHXdPpdPL//X4/fy+l\n1LVNiGRyhJqEwe6dznO5XDw5/H4/iouLua1Q/Qi2cIbbZ/X+hRDcnjo+9J0QAl6vl9tQ+xY4hhW9\njJGMrdvtBqA9v4KCgnJ9SkpKAgDk5+fzGAQ+a3VsaJxpDkkp+RoFBQWGm0wk/Q32kgcuYvQ5NTWV\nr5Gbm8t9DnXdIHNuVzh9jNeisBdAA+Xv+qXfMaSUkwFMBjRJIdyBFUIgPT0dAHgCSil5oIQQ/NLk\n5OTweeqLrvRBt5OoEz6ahx7q5Q7WTqjvS0pK+F6dTmdE/Yp0MTAC9d/hcMDlcgHQFmL1f3StcHbe\nQASOdajxUtusWrUqAG1c6CUrLi7mftJLqLZbv3597Nq1y7DP9Fm9Z3UBNDo22Lwxgs1mMzxG/Y76\nbLPZcN111wEAFixYgLy8vHLHBo6HGYjXovAbgOZCiMbQFoNrAVxvVuO1a9cGAOzYsQNA8FXb5/OF\nFLnoeHWHixbBHlasL6Z6fmWIsMEml8fj4Z0rPz+f+0OTuKKxDvUiRAMpJerWrQsAyMrK4oXK7/dz\nX9R+0oKalJSke9GN+lRUVARAezHp/tQ5EqjShXs/Pp+vwvkgpeTrpKSk4IUXXgAAdOzYEXfffXe5\nfhj1PVY1Li6LgpTSK4S4B8DXAOwApkop18fjWhYsWDAXcXFJRtyJCA2N4YqXkR5rwRikXwNl40k7\nsRnqSTCoO54Zz5Huo1GjRtzvf/75hyUM9TqEYNez2WxxvXe6BknDO3bswCWXXAIAbDtRoRrVK8Dv\nUsqOoQ46YYbGWBCrjn+ywel0slE1Pz8/Iiu0GS8Tic+pqalsdCMDbm5ublxfDiODYTT30rZtWyxa\ntAgAULNmTW4jNzcXmzdvBgDcf//9WL9+PV8HKG+gJhWkSpUqOHLkSDS3FDYyMzNRp04dAEBeXh6a\nNGkCANiwQaP7hKu6RToHLJqzBQsWdDgpJYWKIIRgMbFu3brYs2cPAFN8vJUKp9OJ3r17AwBmzpyJ\nTz75BABw99138y4dDmKVlJxOJ+9WXbt25e9bt24NAJg1axaaNWsGAFi2bBkb6FTPT7Sw2+1sVCPL\neyTnAppUAADz58/nz6qRMC0tDZ06dQIALFq0CBs3bgQAfPnllwCAb7/9lufQwYMHuX2SJOIJt9uN\nkpISAJpk0qVLFwBlkgIQ3ryOdA4kjE0hVlGfHvLtt9/ObpysrCzceeedABDRi1S1alX06tULADBv\n3jye6KHEsEjvgUTjyZMn47fffgMANGzYEICmq99www0ANB2YcPz4cWRkZFTYj8A+hXus2i8SVW+5\n5RZeZC+77DLUqlULAPDzzz8DAGrVqoX27dsD0PgUJGqPGTMGY8eOBaBZ8o2ub+TKU8dQXRQigdvt\nxo033ggAePrppwFoHqtgXhW6nqomUN9KSkp47rz88sv4/PPPAWgvZkVeh2htDm3btsXkyZMBaAsv\neXt8Ph8WL14MAOjfvz8AMG8hAoRlU7DUBwsWLOiQMOpDrFICGcDq16+PGjVqANCszZGs1iRyXnHF\nFfjvf/8LANi5cydWr14NACzKBSPpqASZlJQUFjHVHYpINfXq1UP16tUBAD169ECbNm0AAH369AGg\niaoTJ04EoFnIqQ2PxxN3j4qUEvv27eN+tGzZEgAwd+5crFmzBgDw008/AdDUhLfffhsAcN1117Eh\nrk+fPpg2bRoAYM+ePbzzqtcI9CwEfh+typeSkoJTTjkFQNl4qxKI1+tlq/7BgwdZZXA4HKxKkHqk\n9nv9+vX4559/uL2K5paqotB9GR0DaCpa586dAQBffPEFqlSpwufQebt372b1hSTHrVu3shRrJhJm\nUYgFderUwfPPPw8A6NatG1uqv/zyS2Y/hqOT0gRo164dfzd06FCMGTMGAHDo0CEAwJEjR0KyEJOS\nknDeeecBAK6++mpuf+bMmQCAyy+/HE888QQAbQIa6ag0CX755ReerAUFBahWrZquP+HcUyQvmEqp\nnTx5Mi+Gwdq46aabAAD/+c9/0LhxYwBA48aNceDAAW6PXiDVi0CLsPqCqS9TtNRsh8PBHoWUlBTu\nA43x1q1bMXr0aADA4sWLdRTyN954A0AZY9Pj8WDYsGEAtIWQxiIckNqlkqnUftJ1R48ezWpulSpV\ncPjwYQDAM888w9fLyMjA2rVrAZRtTklJSXFZFCz1wYIFCzqc1JICrbi0KwDaLk50UDVOwOFwhDRa\nUXsLFizA0qVLAQBNmzZFWloaAGD//v0AwtvBcnJy+Hrdu3cHoBncSCy98sorcfTo0QrbIF5/p06d\n2NiVnp6OW2+9FYC2i4ey8sfKIVCJPcFA0ggZSQFg27Ztut2RJCiVeBNMBYtWLaLn16FDB7z11lsA\n9MSrb7/9FoCmPpD6U1xczPMkPT0dy5YtA6AZqQHg+eef5z5HIiWoFHtVjXC73WjVqhUA4L333gOg\nzTGSaLKzs9lwm5WVxZJVx44d8cADDwAoeyYPPPAAjh07FnafwoUlKViwYEGHk1pSILdhSkoKR0YO\nHz4cn332GR9DRpvatWuzkchoJ3I6nejZsycA4OjRo/j1118BAL/++ivr86tWrQIQnuuxqKiIpQ3S\nZevVq8e7FRnygqFevXpYvnw5AG23I0Nqbm4u2zy6d++O+fPnB72nir43E1OnTgWgDwt+6qmnDCUz\no+C1QFdgtH2mdvr3789uW5KkcnJyWII8cuSIoS7esmVL7Ny5EwDw8ccfA9BsUaGiEkP1N/CeGzTQ\nAojJ/pKcnMzHDBgwgOcpUDZ3UlJSWPIgo2Tz5s25v2bipF4UXn31Vf68d68Wmb1gwQLdJFNDaCt6\neC6Xi0khf//9N0/onJwcLFiwAEB4cewqSNzs2FFzDffv35/F0mBiPU209evXs48aKDMqLlmyRGc5\nP9GxHU6nEzfffDP/TS8bjVlFMOImxHIf9Kz79+/P7dAi/PTTT7P6p6o1drudKeQbN27k/6m5GUL1\nPxJIKXmTUXMlzJ49GwB4IyHQZtCpUyd069YNAPDuu+8CAPMWzIalPliwYEGHk1pSINYdoPETAI22\nSoEqbreb/f8qNdQIxcXFvAMHIlaKNO0606dPD7m7vP766wDAxk1AE2HPPvtsAJpqQwa9HTt2mJZY\nI1oQ+46QnJwccRvqmNhstqjHm3Z8l8vF40Ku6L/++suQsehwONhtffz4cdSrVw+A5rYEzKfHCyHQ\no0ePct+TZKVybpxOJ6uKl156Kf766y8AYP5KJIGBkRx/Ui8KDz30EADgpZdeYivzrl278MsvvwDQ\nKKM0INdffz2LkkaIxLIcLSp6KO+88w4A4LbbbuPvSIU577zz2OcvhMD27dv584mK6SAx99xzz+Xv\n5syZE5TyS6I9qRcq0Yv+BmLzlpD96NixYxzncOaZZwLQxpDmRceOHZkA1KpVK3z11VcA9OqYGUl3\njHDhhReiRYsWAMruOT8/Hy+99BL3k2xbBQUFaNq0KQBtDGmBoyRDtEhUhGhsNJb6YMGCBR0SJiAq\nlvO/+OILTkAhpWQ/rtvt5pX/66+/xqWXXhpjT80FBRdNmTIFl112Wbn/Z2ZmAgA2bdpUqf0KBI1h\n8+bN8cEHHwAo24GLiopw0UUXASijPgeiWbNmrJqRaJyfn18uCSxdK1ppYejQoQA0JmAgt0RKyRTt\nVq1asWTo8Xg4GhXQjMwAwuImRJPsZ86cObjgggsAgJmpAJizkpqaylKvzWYzVA8parNfv37s8dm2\nbRtLEj6fj6WJAwcO8D1IKcMKiPpXLApCCIwbNw6AJtbu3q1ll1+8eDEP/MaNG3HaaafF2FPzYLfb\n2V3mdrvLvSDffvsti5EnArRgzZ07l63kLVq0YL2dcN9992H8+PEh26voBVKpzdGqRO3bt2eVRkrJ\n3hoKge7bty+7Kd1uN7KzswFotqZHH30UALB27VpeDNT+mqFKUHudO3fmzenKK68EoNmGyM2YkpLC\nRKZgoDEsKSnhhSA/Px8zZswAoBGuaCFQI1T9fr8VJWnBgoXI8a+QFIIhJyeHjU95eXk6v/+JAu0Y\nCxcu1EkC9BzI5z9r1qy45wCsCESvVespjB49GiNHjgRQpgZ4PB5TjbQul0sVd0MeT4bOL7/8ko+/\n/vrrmfpOBs7bb78dfftqRcrS09OZ2rx161b2+MyfP58lCLV8gBGizf/hcDh4TpLRNSMjA7fffjsA\nYOTIkSwpqKqDSpsmavPhw4fZYLpt2zZWQUkFUvtaei//3hyN4YImBACOMDvRIDsB6eGANgEnTZoE\nQFsMgPgmRA0GWgj8fj/bZdRYhZdffhnXXHMNAHA2JrO9H5G0Z7fbMWXKFADaC0ZehGXLlvHLQq7c\nc845h6NO09LSWBfPzMxkL1bVqlU5jyOFUwdb8KLdTG02G7MU1UI9lDglOTlZtxhQtGr79u1ZLaY+\npaenc3xMcnIy2xpi7aulPliwYEGHhJEUzMy8TOKXKimQj/pEom3btrr4CcKUKVM4vdmJVBloB6pf\nv74hp/6iiy7inYkMjmb1Vx0Po+IrKkh1eeSRR9jK/sMPP+CRRx4BoEk31MYZZ5wBAKhRowZLIS6X\ni9uQUnISnb1792LLli0VXtuoz5HM25KSEvYukApz/fXXcyIbNalLQUEBR0zu2LGj3HWys7NZ3TET\nUUsKQogGQoglQogNQoj1Qojhpd9XE0J8I4TYWvq7qnndtWDBQrwRi6TgBXC/lPIPIUQqgN+FEN8A\nuBXAt1LK54UQDwN4GMBDsXc1fFDCU6BsJ6NY9BMBip//4YcfytVeBIAJEyYwS/FEgnZSr9fLKe06\nderE9o9hw4axPky6vBlQ60BWVI+SQMbFQYMG8RiedtppuP56rTJhy5YtOfM00Zb9fj9LD/n5+bzD\nTps2DU899RQATX83IzCrIqSkpHBi4cceewyAZp8x4iN8/PHHhqUR4w5KahHrD4D5AHoA2AygTul3\ndQBsDuNcWeqBMOVnxYoVcsWKFdLv9/Nns9qO5sfr9Uqv1yv9fj//5OTkyFmzZslZs2bJ2rVrx+W6\nkY6py+WSLpdLXn311TIrK0tmZWXJnTt36vpfWFgoCwsLZVJSkkxKSjKtnzabjX9CHV+tWjVZrVo1\nuXLlSl3ffD6f9Pl85caafvLy8mReXp7cuXOnnD59upw+fbp0u90x9TvSMa5Tpw6PoVEf/X6/PHDg\ngDxw4IB0OBxmz4mV4bzLptgUhBCNAJwBYAWA2lLKrNJ/7QNQO8g5ulL0FixYSAzEvCgIIaoAmAtg\nhJQyJyDIhVbScpABpehj7QdhzJgxTMGVUnIqtBMBSqahGo9ITG7WrBlTcSlBjFlQXV3hGsNsNhtH\nX06ePJkjB1UDsM/nw7p16wCEl6YtEkRisCQ//bXXXsuuZjUyMtQ13n33XQ5Ai4WtGI1IX7t2bV0y\nGmqH+rZ169aQ1aXjjZgWBSGEE9qCMFNK+Unp1/uFEHWklFlCiDoADsTayXBAL8KDDz7Ig753795K\nqeQTDEYLEvXn0KFDTMU10+OgLkA2m43/DjXBXC4XOnToAEAf/iyl5AzUY8aM4cg8M3XcSNui8dq2\nbRtHQzZt2pTJO7fffjuXqKdjt2/fzraRgwcPmkK4isb7sGbNGrz55psAwBmcly9fziUF/vjjj6jm\ng0oVjyXPJRCb90EAeAfARinly8q/PgNwS+nnW6DZGixYsHCSIGqasxDiXAA/AFgLgJa2UdDsCh8C\naAhgF4ABUsoKy/PGWjbOZrNx3YeRI0cyc61Nmza6+n+VCZvNxnkeSZ1RceTIEQ7Qoki+ePUDCC2N\n1KtXj63wl19+OfMQVq1ahQsvvBCAOeJsOFWSzcCJTlNXEdSCQUBU5d/KITk5maUfr9cb7L7//0RJ\n1qpVCytXrgSgEW8omYpRhpvKQlpaGqZPnw4ALNYG6rw09oMHD+ZqSmYj3JfD7XYz2atXr15Mphk/\nfrwpk9bCiUOksQ8WzdmCBQs6/CskhczMTDz77LMAgJ49e3JpdDVVdmWBdtv09HTOFUm7bl5eHq/a\n6enpOP/88wEA77//PudWOFHPQ1Xf3G43fzbbM/L/HaHqS8YZ/3/UB6fTiVNPPRWAxnFfsWIFgMof\ndIfDwTpzSUlJSD1ejR+gCMV4cNktJA7UnImJuihY6oMFCxZ0+FdICi6Xi63ZKhEkXlBFbZW3ryIc\nXzGlB0tLS+MMv1Q5auvWrSy6n8hnZGb0aiJer7IRGOdRybAkBQsWLESOhJEUbDZbhbRc1UBD8eik\nvxcVFfF3Pp+PP6tJQNVVmT6ru1IkBiDqa2AbZkNNZmr0fShpREoZNk8hnH4Eth3ueUZjG+x8dWwj\n6VvgNehvldGpHkv2HJvNxhKZOnfI519RXyIZW7q2w+Hg84xYlS6XSzcniRsSTvSo2i8lWevJm47N\n7/frbibwZVMfcvPmzQGAw0rV8xwOh6EqYfTyqn9H8mKrky6ei6r6AqmTSr2/YOcE/h3L4lWZlOZg\nG0Ow8TYaI/V7I8JVeno6v5D5+fk8RxwOh26+0O9gfabvw1kc6Fi73c7Pj87z+Xz82W63c9i6lJIN\nz7m5udy+UWp8FeoYRlNBzFIfLFiwoEPCSAqAvviFKu6pO77NZmPqMkXqhbOTmb2jV7baFWrHD7WT\nnghE43oLdn9mPGP6/9GjRw3HK1IadzT35/F4mJNipNIWFxdzP9q2bYu77roLgBbkRbwXkjRUqVFV\nlWMpqAMk2KLg9Xp1YaVGg+31ek9YPAPhRL5o6sN2Op1h6b4nEyprbMO9jtk2Iwr7DtafkpIS7N27\nF4BGIqO4mM6dO+Prr7/WHat6vdTnH2t/LfXBggULOiSUpADEP3ouHITaHSK1kEcLMihlZmayhfzw\n4cNci8Hr9ZazlgPGRrJE8DKFA7PHlmjnycnJnBOxS5cumD9fi+h/4YUXQnpwThTS0tI47+TSpUvL\nPcu4eb0SYbLEq0JUwDX4JaP03mr2oEgSU1QGwaZv37548sknAWhJSYcMGQIAWL16NVc/KioqMqxk\npFqcVQt3vKGO8YlY3Om+k5KSOGnJoEGDAAANGzYMaolv27YtAHBWqRMNUqEXLVrE8TETJkzg6lwx\nzD2LvGTBgoXIkTDqg9HuawbxhqjEY8aM4dp9W7duBaClxqKUWA8//DD7hAsKCipVbExJSUGfPn0A\nAK+88goAoGbNmnzffr8fBw5oWe28Xi8Tb/Ly8kJa6sPxt4cC7VyDBw/m9Pn169cHANStW1dXOp2M\nZO3ateOKyDTu4SDafgohOMfkokWLuGo25ZqsCH/++ScALZiOLPzhXhMwX4wfMGAAAG0M6R2YOHFi\npc3JhFkUjBDt5KDKO4sWLeKw5ZKSEq56ROSQM888kydPSkoKv3iVMfgOhwNDhw4FoJUOJ5WGFoLC\nwkJWb44ePcph4Hv27GGXllqMNdjCSd9He08pKSlc35KSxVQEqrOwa9cuvPyylqXvqaeeqlCdMMP2\nIYTAhAkTAGjjRVb7//znPwD0uSuD4eDBg+WSqlY2kpKSuNhsUlISx8IYVeyKFyz1wYIFCzokhKQg\nhIDD4YDX69UZqkLtGiS+ud1uLFiwAACwYcMG9OvXDwBQrVo1Pnbfvn344osvAJTV8OvWrRtTpb1e\nb9jGMZU0EolqY7PZeOdauHAhW8aFELwbU7KYI0eOcMXkLl26cL6F1NRUpKamAtAyQqtVj4xA9+rz\n+SIi59D1fvvtNzRu3DjocYFUcvKS7Nmzh9Wcdu3aceZqGre8vDz+XFhYWCEtORzUqlWLr1etWjUe\n23AkBIIQAmvWrOE+h4KZRlVSwZo2bcpZtY8fP45du3bF3HaksCQFCxYs6JAQkgLtNoFGpmCZf2mF\npizJgwYNYt/9qlWr8OGHHwIAevfujWXLlgHQdi7S0amOQaNGjdiOQDtZOFB3MzUYi+4lEFRH4c47\n72Q3o8PhwMaNGwFo9SECDVw2mw2ZmZkAgLvuugvnnXceAG33+OyzzwAAf//9N7777rsK+6qOXbiG\n24YNG7JU1bRpU77frVu34pxzzgEA7q/aVoMGDVgf7t+/PxvMevXqhSVLlgAoy1w8f/58zma8du1a\nHD9+vMI+BQMZaF944QVOw+f1etlGEwwqK5Duz+Px4PTTTwdQloauZs2aQbNhmcWn8Hg8mDt3LgAg\nJyeHx6igoAAvvviiKdeIBAmxKADGfO1gYhkdRxmc6bfaFqAV2SAxslatWujbty+AsvLkqiU/0ozF\nwXze9L3dbudKP/fddx8AbXGgCfbiiy/i9ddfD3qfVatWxeDBg/m8KlWqANDu/ZNPtLo7R48eDWnZ\nV6NHQ6ljNBaTJk1CkyZN+D5ogRgwYECF4v3+/fuxaNEiAFqRXyrIMmPGDPz4448AtGcCaIubGmWo\n8vbDCV0HgI8++ohVRRXhGAtpgxg1ahSGDx8OQNskCCTOb9y4kb0a6r1HE30YCGrjvffeQ8+ePQEA\nL7/8MqcTLCwsrFQDIyFm9UEIYRdCrBJCLCj9u7EQYoUQ4i8hxBwhhCv2blqwYKGyYIakMBzARgBp\npX+/AOAVKeVsIcSbAAYBeCNUI8QoNGMFVndH8qePGzeORV/aSQ4ePIhrrrkmqvaNohbVzzVr1mQJ\ngdx0RUVFvJNOnTrVUEKgXXDy5MnsOvX7/axq3HXXXRxUE0ySUseQpKqSkhLe/YwSdtSoUYP72bp1\na5ZA8vLy0L9//wqvR0hKSsJVV10FQBt7MtpNnDixwhJ5arvhuCRJlaLdNVJMmzaNn01RURFmzJgB\nQHNht2/fHoC+YMspp5wCQFNBae64XC5WWaPFTz/9BECrK3r48GEAwFdffYXq1avz9UhCrEzEWkuy\nPoDeAMYA+G9pKbnuAK4vPeQ9AE8gjEUhMFOOGRbdWrVqMXe8V69efA1qu3HjxlGlMA/mV1c/+3w+\nfqlVenWdOnUAaFFvP//8MwBtYpLoTjpyjx492ANQUFCAO+7QCnQHi7JTofZDTchhJPrTQuHxePiF\nSEtL40WhWbNmumdBx9Nk7du3L/7++28Aml5PagcAVp/IbhMOwlEfiJtRUlJimDnLCD6fj/s5cuRI\nXTUlUumuv/56Ft3J3pGdnc1jqNZrjISQFQiaA2QT2759O8/TzZs38/WuvPJK7NmzJ+rrRItY1YdX\nATyIsrJx1QEck1LS7NsDoJ7RiUKIO4QQK4UQK43+b8GChRODqCUFIcRlAA5IKX8XQnSN9HwZpBS9\nGRZd2s3efPNN9vk6nU7eEQItzNFA3YGNdrb8/HzcfPPNAMAcBLvdjq5duwIAzj//fN5t1q1bx5wK\nEkmTkpJ4Z4/FOk8gLghBzW8JaDsm0b/T0tLYENe9e3cuw9e7d2888cQTAMqMcrt27eJK1B6PB2lp\naXz/kXAEIrkPkqCysrJYYlGvpXJO7r//fgCawZACyQoLC3V5Genc2rVrsyRG11iyZIlOOou1nqbN\nZsPDDz/M9wJoka/Ei9i2bRuqVq0KAJg+fXrMdUajoY3Hoj6cA6CPEOJSAB5oNoXxADKEEI5SaaE+\ngL2hGrLb7UhJSUFOTo4pFGN6cJ9//jmLaCUlJbxAxCqSuVyukOnXc3NzOTyX0rdfddVVPCGqVavG\nrsp27dphy5YtAMCWbrvdzpNm7NixUatTNOFtNptuQqsLBP1fpVUT/fujjz7i74kIBZSRrKZOnYqj\nR48CAL7//nvdRN+9e3dUfTaC6tUhW0X//v3x/vvvA9BUQVIJxo8fzwsxqS6qqqGS5KhNAHj11Vc5\nVobIYD/99BMvnIHPOlht0IpwySWXcLwNPYMOHTqgVatWADT1gebFtm3bQqoppOYUFBTwfQT2Q42h\nCQdRL+VSyv9JKetLKRsBuBbAd1LKGwAsAXB16WG3wCpFb8HCSQVT8imUqg8jpZSXCSGaAJgNoBqA\nVQBulFJWuNyJGEvRB4JWzKVLl6JjRy18fMaMGUysiRWxJAIhsfTss8/mHdbr9bLVnuL/69evz1GG\nNWvW1OV+iLSvQHmDaGCEn91uR+vWrQEAb7/9NhOniFINaJ4IUn/++OOPcu1mZGQgKysLALB7926W\nkMwASSlutxu33XYbAE3t6t27NwCgSZMmzKd4//33y6VPDza/nE4nqzwbN25kdWTbtm0AgH79+rF6\nFIhIJAUax/3797NRWQXNp3Xr1mH16tXcn8WLFwPQ5g2R7mguNGnSRJfTlNS/nj17ombNmgA09ZCC\n6Y4fP155Kd6llEsBLC39vB1AZzPatWDBQuUjYTIvqfnwY4HL5WJ67ZQpU3jHGDBgABYuXBhz+4A+\nd79ZoBWfdteNGzdy3z0eT0whxYSK2rDb7bjwwgv5nIEDBwLQdrbff/8dgLYDV9RGo0aN2JjXqFEj\nlhrMAHEonnvuOXTr1g0AsHjxYg4w27t3Ly6++GIAevtBKDidTkyaNAmAJqWRrejxxx8HgAppxuHm\nU6hTpw6MqVAMAAAgAElEQVQ2bdrE55CthaQDn8/HxsxzzjmHbT9btmxhybJBgwZ8HaJwl5SUMGNX\nSsnzZezYscy9IDcsABQUFJx8xWBiAakMderUYVFcCMEP9ZRTTgkaSxEpKitzsplJPMJJf06iqsvl\nwjfffAMgsnt9+umn+TqRcBPCAaVMa9WqFZOJmjZtigYNGgAA/vnnH0NVKVhhGUq+8vnnn+Oss87i\n70llGz9+fMx9ppd37dq1bLhcuXIlrr5aM7mpRkRSLw4ePMiqksvl4v4fOXKEFw6KO5k6dSp70jIy\nMrBhwwYAWmwPkaFsNpthJaqKYEVJWrBgQYeEkRTsdntMPmDa0UaPHs002IKCAnY/fvDBBwlXG6Fp\n06YANPclGZ9oNwgs/RVvNU8dm0iNmtT3yy67jN1sas4JM0D++hYtWvC4dOjQgaWD22+/3bDfRuzO\njh074vvvvwdQlu2ZQDkswmEshpvvY9CgQZzvI1hNSArSU92+Q4YMwQ8//FDuesGuqyaupfvyer0R\nz/uEWRRinUA0UG+++Sb7+jt06MAxA8XFxabo5WaCOO6PPfYY67JfffUVAE2MJHE+lgWhMmxGFLKs\n8vTNtrmsWrUKgLa4k5/f7XZzYSBKlhMMtWrVwi+//AJA44IYRVKuXLkyqKchGtAiRXyVivDMM8/w\nZ1IPKOw/XNCzzs/P5/tLTk4OyakJhKU+WLBgQYeEkRTMEpF3797NolhhYSFbfU3iYwAwx9DodDrZ\n2t+nTx/exShRZ3Z2NrPrEh233norAG18aMc2W1Kg53fw4EGdWkW7qpqJuaSkhFmBxGj97rvvyrE4\nCZT45qmnnjK1z+EiNTWVK6lLKVmFiQU0Xrm5uZVKczYVZom5/fr1Yx03LS2NacWzZ89mUsiJ6hv1\nCdDyQ1LFIofDgYsuuggAmF7s8XjYvkD5K+MJu90edeZniuDMzs7G1KlTw2pDLRwDhF5E6Nhzzz1X\nFxlJ2br/+usv1seFECw+B4u/oKQ6nTp1YjdqZUCNQalduzYALRSc5uzq1aujTqxC9+xwOCL2OKiw\n1AcLFizokDCSglnqw8KFC9kP3LFjR44+a9GiRblkIWp8vIqMjAyOqDTawcIlBAWiTp06+PLLLwFA\nl3fg+++/Z+s0BfKo16lISgj0wwdSsEP1lXbSTp06cZz/jz/+WK7seTCoxKp//vmHaz0E6ycF8OTm\n5vK1w5GCSMLavHkzU63V/lO7FYH6OWbMGDz99NMAENOOGg3U7NckKXz66acsPcycOTNq9ZTGKLAc\nYqRIGEajWYuCEIJtCnPnzuUU2Y899hi7d4xsA0IIHlS/388kFqMXLJAIE27uwzlz5nBBlcLCQjz6\n6KMAgNdff53bMArnttvt/P/A/pj1/AYMGIB7770XANC8eXNeDA4ePIjt27cD0EJ5Kc8lxUY4nU72\nPixduhS33HILAJRLREuh1lRBqqKX0WghI9G4bt26LO4bxRAEQ1FREasaKsvvRMLsClNhkPOsWpIW\nLFiIHP86SQEoi1NPTU1lemkkPAUz+qKqJuS/37FjB3sU9u7dy1ZmimKLB8LdjWw2Gxd9+fLLL3n3\n9/l8LJ0UFRXx2JI/v0GDBnx/QghcfvnlAIBvv/3WVNGcdkGPx8NxEPfddx/nfnQ4HOzXX7JkCZOP\nzKK2B6IyCGVxgCUpWLBgIXIkjKHRzFWXDFc5OTlRudnUXT5YurVwQNcmo6LqWrz66qvjKiEQwu27\n3+/nHAJt2rThLFUbNmzgFHFer7dcolQhBNauXQtA243JWGlWXQQ1MzfdD7EY77nnnpDP12wJgXAS\nSglhI2EWhXiIY8F45uGcFyvU6xIh6e233+aMyZSkJBFRUlLCtGKfz8cvllHmaiklp0vfs2ePjnMf\nKwKzY1PfyLqeaLEs/xZY6oMFCxZ0+FcYGoMVZIlHMpRoQLun3W7nGHtVtUk0RDqG5BpUsyibNa/U\nhK2AJjGoqgRdJ7CPZrv7TlYEvFcnV5KVWBYFNecgoC+kqk4OoyQcahvhItIcjWSFF0LoipVS31QC\nkBo6S2Jy4KJHx6jZdoyqLKn3HEl/1fH0+Xy6saUXkvpQUlISNNuxeo7aZ2rXiHsR+LeagZmgejUC\niwjR+YG2j8C8lEYFXtRFJth4GbUR6+IebO6rfbPb7bwwGj3zYIjmnbLUBwsWLOiQMJKC3++PKUuy\nkRFMhTCoah34fyMVJFhfIwHtkoG7Oe0CxcXFTNMl9aJq1arMJAysdqzSg+mzKl6rfQ9nx6vo/+ox\ndrtdJ7obXc8IaqIPNVDJSPQP3NFDwSjgKZyyfmp/IrleOGMbKYJdN3AsgqlKZiNhFgUgvvpfuFly\n4gFaFPLz8w0nqc1m40K4RHOuUqVK0ImtcttD9TvYhA81HsGuHZiRKNwXw6ggiarORZtlKrAyVGCf\nQ0H1rkSCyiIvqeMW70hZQkzqgxAiQwjxsRBikxBioxCiixCimhDiGyHE1tLfVc3qrAULFuKPmLwP\nQoj3APwgpZwihHABSAYwCsARKeXzQoiHAVSVUj4Uop2EMBEb7VaBwU+B35kFsuBTVt/s7OyYal0a\nwSzDWDwQbd9Ug2EoI6EZCFVDNMERlvch6kVBCJEOYDWAJlJpRAixGUBXKWWWEKIOgKVSypYh2jI1\n9iFWqPquagGmCRGPcFuyJZCIGKhzRxUCq/Q90BMTDex2O7tXieVoBoQQ3G6kJd7pnpo0acIRmNFW\n0woHZBOx2+08DxJl3oaBuMc+NAZwEMA0IcQqIcQUIUQKgNpSSqoCsg9AbaOThVWK3oKFhEQskkJH\nAMsBnCOlXCGEGA8gB8C9UsoM5bijUsoK7Qpmqg/RJkAJp00zczQCZYlBpJTo3FmrtEdRne+++y5H\nH2ZlZXFVpIKCAp3HIdCPH3jPwfz04UoNTqeTU8QtWbKEC7FQvok2bdpw4ZHA6xmB+u50Og37HOnY\n0vWSkpJYeonnzh2P+RUOVMkxhuvGXVLYA2CPlHJF6d8fAzgTwP5StQGlv80tFWTBgoW4ImqXpJRy\nnxBitxCipZRyM4ALAWwo/bkFwPOIoBS9WTaFoUOHYt68eQDKsvzEChNW6HKoVq0a11osKioqRw+u\nUqWKLtsQZXv+6KOPuL7g33//jZUrNe2LshEVFhaW4zUEfg5kgALaTqTmLKB2mzRpYsgFIClmyZIl\neOihh7gNKrKSkpLC97J48WKOFFX78OGHHwIAhg8fzolUI50HdKzb7WbDbDxdd/EyPJPU+Oabb3IS\nX3UOuFwurmFCJfTiJanEylO4F8DMUs/DdgC3QZM+PhRCDAKwC8CAcBoy6wYbNWrERVr/+eefhDMC\nkUFx9uzZTATyer2sNlDuwH379nGZdYfDgfvvvx8AkJ6ezkVV77nnHk4999///heAZpQMVn7eSEyn\niX3qqadyOrqPPvqIq1cFIpA+3Lx5c0ybNo3/TwbD3NxcPqZGjRp834SSkhJeQNLS0gzT30UCn8+H\nSy65BICWpzOahaGyVYOqVTWteu/evWGlljvttNMAlM2heBlUY1oUpJSrARjpKBfG0q4FCxZOHBKG\n0Rir+kCrZ9euXdGlSxcAQO/evXUBSEagayYnJ1eKoap79+4AgC5duvDO5HK5eLd96623AGjSw9y5\nc8udf/DgQZYqXnzxRRbjAwOCAG1MaQcqLCyscBfOzc3FjTfeCEAflEXnAsCECRM43VqNGjUAaAY+\n9XqUlbpHjx6YOXMmAGDw4ME8tiQJvfLKK6aySOvWrcuJZ0eMGIEbbrgBANgI6nK5uA9+v5/F8qSk\nJFZttm3bxmMbDgL7H+68oUQ04ai3gZIZAFxwwQUAgK+//jqs60WKhFkUYnkRXS4Xp3U/44wzeBKv\nWbOGs/Q0b96ck53QCzR37lwsWbIEgFYunPT6SH3l4UIIwS8KVTACgHnz5mHs2LEAQuvDVapUwZw5\ncwBodonArMl0HQKNRTCvBC2mDoeD+9asWTNWA1588UUuouN0OjmF+4ABmlbYpk0bftkWL17ML+G8\nefM4Ucvjjz/O6oEKMxZfuo/bbruNa4ieeuqp+PXXXwEAN998MwCgcePG+OmnnwBohX1p4xg8eDD+\n/PNPAFqRWqN+BkM0qs6zzz7LBYoIUkp8+umnALRxVWnXdH9LlizBOeecAwA4evRoxNeNBFaUpAUL\nFnRIGEkhGtAqOnv2bK5HoIrMNWvWZAt/YWFhOQv4oEGDeGf77bff4iYhEGrXrs1WZlVdGjFihOGO\nr4L4Abt27WJJx2azsSeC6ips2bKFd5pQUaFAmSSRlZXF/Rk6dCirJfv379cZROnapCbMnDkTOTk5\nfD2SPDZt2sSqW2UY7SZOnIghQ4YA0IyY1A+q17lw4UKddNSxY0fu25QpUwBEvgNH4n0YNGgQAOik\nBJpvqampQSVEavu0005jlSfegVEn5aJAD/zNN98EAFxxxRW6/5N765133sFLL70EQBOPhw4dCqCs\n9qHD4eCCqFS30QhmuZ4yMjJ0+jq5EYMlcCUR/pdffsHpp58OQE9YKi4u5mSrBLfbzS9xbm5uUFJT\n4IKh/v/48eOsEtSpU4ddYO3bt+dCqNWrVwegkawWLlwIQBsnWpBycnIq1fNzzTXX8IK1Y8cOTJgw\nAQDY7amOS+vWrdkmkpeXh1NPPRUAIrInAOFH3i5btgydOnXi73/77TcAwPnnnw+g4pec3JPVqlXj\n65FrMl6w1AcLFizocNJJCsnJyVyIhERqoGzVfvTRR/HGG28AKL/7jxo1CgAwf77Gp3r22WdRs2ZN\n3fkVIdpIPtox/ve//+m+J0u8EZKTk1mctdvthtF506ZNY2/Fpk2buI+q+hDtbk1Gu+nTp7OkYFSv\n8fLLL+dr5Ofnc2k+Ko8Xb1BUaZs2bXDggEaeXbFiBWbMmAGg7Fnl5+ezWrlkyRJcf/31ADRJiCTN\nYHUwg6Gi+WC32/H6668DAM4++2zdc1ixQiMBh1JXb7rpJrz77rsA9Kn8zAxGM8JJsyi0adMGgCZK\nB05Ov9+PBg0aAADbEIxAYtqGDRsAaA+1Z8+eAICPP/6Y7Qsq48/lcvF5scY8/Pjjj+z2Ky4u5kVh\n7ty5PGkoXfpzzz2n8yJQRF5hYSEmT54MQFvUAvVgIYQu5DqaeAe3280u0rPOOitoOffAa6SkpLDL\ntXr16uz5iRfsdjt7YqSUGDlyJADtpSf9m5LXnHHGGcwKrV+/PjM269Wrx4uo0+k0LVzd4XDwJtCw\nYUOuBpaWlsaqi5oti8YwMzOTbSODBw/WzYF+/fqZ0rdQsNQHCxYs6HBSSAoOh4PFZCMR9q233qpQ\nQlDbAcrEvuTkZJx77rkANDG0bt26ALSKybRC79+/n8+PNX/ktGnTeLVv2rQpqz+TJk3CtddeC6As\n2YqaU3Lnzp248847AWjSBhkryaBqdK1AREIOKy4uxldffQVA22FJbLXb7Vi+fDmAMtWtevXq7NWx\n2Ww8tp988glLDZHmnzCK16DfPp+Pd9gzzjiDDZ7PPPMMe0SAMiMtqQQtWrRgw25RURGrR263mw29\n6enpEUk3FY1nUVERqwdXXXUVz7PPP/8cl156KYAyrkpeXh6rM6NGjWLDp0oNLywsxNKlS8PuWyyw\nJAULFizocFJICk6nk/MNqPjss88AlOnhRufRalutWjUO8iGWW5MmTbBo0SIAQK1atbgitBACW7Zs\nAaCvuhwrvF4v7r77bgCaEWn48OEAgBtvvJH7Sddas2YNu6zy8vJ0fYiETxFNDggpJZ5//nkAmlGW\nskoHC8AhCWzs2LG46667AGjGtcceewwAMHr06LCvrcLpdJbLbiSE4KrTc+bMYYmgXbt2XHVaSsnB\nZGSLSktLYwP0ihUrmCqcmZnJtGM1L0Q4CFfyys/P17mdiQOyc+dOAMD48ePRv39/ABrzku5JxXnn\nnRdR32JBwlSIquj/L730ku7FJ8PQJ598AkDzUaugQb/hhhvw7LPPAtCnI1PFsvXr1wPQyq8Tnbdh\nw4bMgYg2FVoouFwuprb27NmTxW7ymJxyyimmGL1I1JZSVkpuRjKSjR8/nklNLVu2DEnOIoSTTITE\n7nvuuYdf/v379+PFF18EoKkMtHDSQvbAAw9w2XqXy8X09kaNGuGWW24BoJHg4gVaOFesWMGRrWTA\n3rdvH8dB7Nu3jw2R//nPf3jOdu7cmY2jMcAqRW/BgoXIkdDqA1F4VdVB9dNTIEubNm3Y2PXf//6X\n2WNutxvHjx8HoE8iQuLZhg0b2HD2/vvvs4inFi+JF/x+Pxsx1Xt65ZVXAMA015i664brkowlYpV4\nCn6/n/MFjBkzhtWmUO2G00+SFN944w1mLObn5/NzffLJJ3lXpQAnr9fL7T700ENsaPT5fKx2xBMk\nFQwYMAAff/wxgDJW6KBBg9iI6PP5uG8rV65EtWrVAGiBaWS4jTcSWn1QM/WSaH/s2DGmiZJOtnHj\nRrz66qsA9GG/W7duxZ49ewBok7RHjx66dgcNGsQkl3ipCcGQmZnJC5KUkkViit4zQVQEUKY+qBTk\ncHgK0caBkBq0fPlyji84dOgQJ4Yh4lkwxDOrN/Vt7969/ELm5eXxi1dZz584NaReBaOEJyUl6aI2\nQ/FFwoClPliwYCFyJLT6QKvntm3b2DgzatQoNhKRyrB//37edadOncp5Ew4dOsQr7fDhw5GZmQkA\nnHbsk08+Mb10eigQZfi2227jXbywsJD7GRjgFCtUNYiu5/f7y6lHDoeDKcMpKSls+Ip0XEiEb9++\nPX+3YcMG/P3332GdH8/nQAbmtLQ0loTeeeedSk/ZR9JrRVXQgbLnRaD5Tt6geCGhFwUVJHYOHjyY\nB5OITDk5Ofj8888BlE+sSXaJdevWccQZxT6o9NLKmBhCCHZDnnPOOTp3IdkzzE6goYqcdI81atRg\nLwepW8nJyay6XHfddRgzZgwAbdwiAR1P1nZAo3GHspEYZY4yG+Rydrlc7JWg+6xMqEV+KkJgZifa\nzCJBNEWbLfXBggULOpw0kgJBFX3Dyb9IEWVer5eJMJSQ5Oyzz8bu3bsBaOnSSaSMl9TQtWtXtG7d\nGoAW808kHI/HE9IAFy3UXYL4G2lpaUxOmjVrFgAtMIiyYNeuXRvfffcdAE3UJSPuBx98YBj7TyrD\nzJkzWcSVUrLK8M4774TsJ425CcY0QwghcNZZZwHQi+UV5dE40SBjKKBRxcmwHg6CpfYP69xE9j6Y\nibZt26JXr14AwDzzH3/8kZlil19+OU+WQ4cOcVyBkfgVqYWc1Jxt27axCLtu3Tp+WPfeey/bROLp\nCqXr2e125t/Td7///juL/E2bNmX2X+PGjcvptuGgsLCQ2YTBdGCj0ONglaNiRdWqVTkO4pZbbsGk\nSZMAgJO9JiK6deuGb7/9FoBmN6NNJNgcMYqIVWNoUBneByHEfUKI9UKIdUKIWUIIjxCisRBihRDi\nLyHEnNKaEBYsWDhJELX6IISoB2AYgEwpZYEQ4kMA1wK4FMArUsrZQog3AQwC8IYpvY0BRUVFTHYi\ng9qXX37JO3R2djarGmpUn9GqHOkORjvw3r17mcJ6+umnY+rUqQA0n35lUJDVupMUUaimZ6f/79y5\nU6fmUE6CcEAqWP369UNSmwML0lDf4iG9NmjQgLMh5+Xl4bnnnou5zXgYqYUQTLG/6aab+Hu3282k\npmBqRGDxn2gRqwLnAJAkhHAASAaQBaA7tLqSAPAegCuCnGvBgoUEREw2BSHEcABjABQAWARgOIDl\nUspmpf9vAGChlLKNwbl3ALij9M8OUXciTNhsNjakkc66e/duXRRevO0rSUlJ+OOPPwBoujpdm/gB\nJwOaNWum+3vfvn18H8nJyWy4i3Qs4+UapnaHDRvGmZkAcALaWEqvmdlnauvw4cNsd1JzR+Tl5bGk\nEIPbOiybQizqQ1UAfQE0BnAMwEcALg73fCnlZACTS9uqFGsneRpoIoTyE5uNgoICJlDZbDadL99M\nxJN7UZGXJFpqtJmVoghkxCRVcciQISx2O51OU7wcZo4v8UWOHTvG4zFq1CiuyHXXXXfxfI03tyaW\nkbkIwA4p5UEpZQmATwCcAyCjVJ0AgPoAzCn9bMGChUpB1OqDEOIsAFMBdIKmPrwLYCWA8wHMVQyN\nf0opXw/RVqVICpXJXgyFymDw/X+Fy+Xi8SVprEmTJvxdixYtOFIxUcae2Io+n4+D4w4fPsz9Lykp\nYT4IsUOjmMdhqQ+x2hSeBHANAC+AVQAGA6gHYDaAaqXf3SilrFCurKxFIci1AVTeQqFyBciWcOzY\nMdMt2EBiLH6VCXqxPB4Pe5IopiQlJYXVRo/HwzyUAD9+XBDIa1HnQGB/g6m0av7LGOJ14mtTAAAp\n5eMAHg/4ejuA8rnTLFiwcFIgYRiNkQRuBBqJ1FRrpe0BCO63Nfp/RSzFQENYZewu0ULtaySJVSpq\nR20vEtBOWLt2bd7FKQo0WO7LSOaBEILFa4/Hw2K1er6qRtCxeXl5LIoXFRXpokcpMQzRtXft2sXS\nRn5+ftS8FRpPNW8otauOtZoMSOXLqPOTfvv9/pAFigLmQ/wlBTNBEzjc+nx0TuDncF5Y9Vh1QoTT\nR/odbbWoeCNw/KJd9M3YLKiNo0ePlltkgo1bpAlmA1PAA9qCQwsAPV+Hw8Fit8PhYE+J3+/XWfXJ\nXU0p7FNTU7msvVpxK9pkMElJSXwNNXSaFk21nqXT6WT35KFDh3SLAZ0fTiarSGFFSVqwYEGHhJIU\nIj3O6JxIVkaHw8E7SXFxcUTnJoLaleigHa2goIDzRcTg7TI8XyX3qEY6tewfoNGEKaq2qKgo6Nyh\nYyjlX35+PhsoY3nmdK7D4WBpgCQGIQRHsAohWG3w+/2cgdooOjVeUmrC2BQq83pEFHG73fyw7HY7\nJ3lNhDH5tyFWj0gwtTGUGkdqhJQyIrKakVophNDZBqJhQ6o2E+q7ahtJT09nz0hBQYHZc9HK0WjB\ngoXIkTDqQ2WA8hpQvsfTTjsN77//PoD4l/c+UahMzsLOnTuZn+/3+9m63qBBA85cHKyPwSpZ0Y5N\nGZcLCgpYvC4qKjKUENxuN6e9mz59OgBw3s5woRofVSmF1JGkpKSoJAW/389SAeXyyM7OxsSJEwFo\n1cvMUFdigSUpWLBgQYd/vU2BVvkOHTpwhB8F9axevVpn7EmEsTAb8ZIUyIW2fv16zggUDPfddx/G\njx8f8TVUlxu55vx+P0t1xcXFOh1/0KBBALTMWh06aIG39KzXrVvHJQRvuOEGrt3YoEEDjux8/vnn\nOWjq999/B6BV9qY5kp+fr3NLR2voI2lq4cKFAIA6depwguFnnnmGcz3EwZAYlk2BQ4ZP5A8AWbow\nmP5To0YNWaNGDTl//nzZsGFD2bBhQ+l2u6Xb7Y66zXj1NR4/QoiY++t0OqXT6ZQXXnih9Pv9Uf14\nPB7p8XgiGlv1c1JSkkxKSpJ2u53vyW63S5fLJV0ul3z88cel1+uVXq836j4a/Rw/flzOmzdPzps3\nT9arVy/m8XS5XHL16tVy9erV3F+v1yuLi4tlcXGx7Ny5czznw8pw3kdLfbBgwYIO/3pDY+3atQEA\nM2bM4CQrBw8eBKB3Saq02xOhRhC9lph2AwcOxNChQwFo4jcVwCkpKYmY9RcL7r//fha7g+V/oMIx\nb7/9NhsBr732Wpx++ul8zJw5cwAAffv2Dbu/6mfVEKwaJemYAwcOhHdDESIlJYVzMgQyKKMR7zMy\nMsplIS8pKeHUdfHK6h0J/tWLgsPhwLnnngsA6NGjB9NVN2zYAEBPeCkqKgrbj22W/YEs2QsWLOD0\n4+QhUf3Zc+fOZRJLRkYGk1969+6NNWvWANBby0PFeYSDm2++GYCm46r1OQPx/fffo2vXruW+nzlz\npi6XINWSNMPGYbRwkA0B0MfCGMVwFBQU4JdffgEAPPHEE/xC1q9fH1988QUAPU/h/PPPB6BPIhNY\n5zFcJCcno1atWgDKYh/U6lx169YNmdsyElTk2QkGS32wYMGCDgkjKUSzcxjtOi6XC7179wYAPP74\n42jatCkAbYWmug+PPvooAE1UI9F3/vz5+PHHHwEAmzdvrrA/kYqNVH153LhxLLkAxoVP1KAX8u0L\nIVCnTh0A2q5CO/ezzz6LO+7Q0lySH16NrFPbiwQXXXQRnnrqKQDajkkMuzVr1nBhF/L/q9KV3W7n\nAiZXXnmlrk1Sj4hvcPjw4Yj7ZQTa0c844wxD6YDG46233sJ9991Xrs8qNmzYwGNrVOdR/Rw4zuHi\n+PHjfC6pY/n5+azSkkQYK1RJJ9I5kDCLgt1ur1B8pwedlpbGpbypUMbEiRP5pRg+fDi7HlWxVyh1\nJWmQ0tLSeNFo0qQJk0a2bdtW4UMPJ7zXbrejT58+AMr06WA6uZSSVQIS2//88088+OCDALT6mSpW\nr14NQMs1STkfKbZARaRqDk2k1157jdO6FxcXc+GURx55xPC+aZx///13bqNx48Z8rN/vZzVHjQI0\nE7Vq1dItBrt27QIAHp9IyWmhnq9RLEI4cDqdPM9prPbt28eLgsfjiapdFarKEI3tw1IfLFiwoEPC\nSAqhVjNKTEFiNACsXbsWADBixAg2ar377rucvrtjx46846WlpbFlt1WrVgC06su0ky5evBgrV64E\nEFo0DGflFUKwYXP9+vUAgFNPPdWQhLNixQr069cPADgoSwjBtRjVHf+nn35Ct27dAOjFYFUiiCRH\nhHpO3bp1AWgSCEUJnnLKKbp8ArQD0Y72xhtv4KqrrgKgGUnpmrt27cIPP/wAQPP2EEEomhJ0FYHG\nYNasWZzCPTs7Gy1btgSAkNWuI0WsWaBdLhePnZrBeciQIQCArKwslih9Pl/Ykp6aG0QtqBNN1emE\nWRRCgUR7Vd+/7LLLAOjddOogJiUl4eKLtazzTzzxBKsPhOTkZGRlZQEAXn75ZRY5QyEcsdzr9bJI\nT4/WSAoAACAASURBVLEW1apVY3eU+qDcbjf3rWbNmgCAL774QmdR/+abbwCA76ciRJMIpEqVKmjb\nti0ATQ34+uuvAWiTimpvXnnllTzm6enpFba3YcMGPPzwwwC0xYLGOV4xJr/88gsv5iNGjDB9MSDQ\noqiyLSNR0S655BJWb6mtmjVrsvpQs2ZNtrf07duX5/1ZZ52F1157DYAWswNoLE1Sx4qLiw0rm9ls\ntog9Ppb6YMGCBR1OGkmBoK52oaLUSkpKmEDTsmVLXlVpt1q5ciXuv/9+AGWFYsJBuDtw4DHB/M/F\nxcUs+l5zzTUAynYDQJM6wpEQCEY1GkNhyJAhuOGGGwBokgtVjG7dujUnADFC4FiQJLR+/XqcffbZ\nALTxVnMExAONGjVi6aBDhw7YtGkTgDLj7muvvcZ5F30+H7766isAmhH4s88+AxB8JyWVQd11VVUq\nEknhzjvvLKeC2O127s93333H4927d2+Ok7DZbHjkkUd052VnZ7M0NmfOHPZWSSl1apolKViwYCEm\nhIySFEJMBXAZgAOytCakEKIagDkAGgHYCWCAlPKo0Jak8dAqT+cDuFVK+UfITmjBLaaXcfN4PLxj\nNGzYkFdK2lEaN27M9NhIjDFOp5NdUmZRosmQSrp3RkaGLoWX2WnMCGT0Gjt2LC699FK+NjErnU5n\nSImDntv27dv5u6KiIjaq3n777ZzFOV403kmTJuGuu+4CAF2WJdoxg2W59vv9bDOZO3duOTuBlGVJ\neqtUqcLzpKSkRFeHVP1dETZv3syGcLU/JGFt3ryZJcqLLrqIJR0hBN+Tmm3q+++/BwDccccd2LFj\nR7nrKUGHgIl1H94F8BqA95XvHgbwrZTyeSHEw6V/PwTgEgDNS3/OglaC/qwwrhEXfPHFF7oy6qRu\nkKU33MQbgS9FJFbhcEELlcqtuOCCCwCYRwlWQROLXtwOHTqweuV0OpmC7XQ6efI/9dRTmDVrFoAy\nHkBgXkTyVJCHB9C8LnR/oRaFSLkVVE2JOCHUhtFiQC90UVGRzsJ/++23A9BTjGlR/Omnn9iz5fF4\n2CC8b9++qAyN48aN44Qq1Aev18tz0ePxMCXcZrPxuC1duhSNGjUCUDZH6tSpwzybjh07sgqshpSr\nC6Bp6oOU8nsAgcpwX2hl5gF9ufm+AN6XGpZDqytZBxYsWDhpEK2hsbaUMqv08z4AtUs/1wOgWuz2\nlH6XhQAIfSn6kIzGSEC73Pnnn89t+nw+rh84c+bMmNoPTNFlhtRAOxvtUACYdm0G1B1YCMF1DV5+\n+WUAWol52q127drFx3bp0oVVsFAsPiklnnzySQCaOkJGsszMTHZxhkIkYymEwPLlywFo9RkowCg3\nN5cNzJ988gkA4MMPP+Tnv3//fn5+6enpTBV//PHHefyJL3Leeefxbl1YWMjuwnBqLhjhnXfeYXfu\nqFGjAGgRnhMmTACgjRtJP6rKMG7cOJ4jNH/dbjfzdnr16sX3BwSnZ4eDmL0PUkpKOhHpebpS9NHS\nRo1AWXNsNhtblidMmIBly5ZF1V7goKp6WrSTIxCjR4/W/W1W1p3A6kOAtgC9+uqrAMClzl0uF1uv\n7777bl4IIuXik+h76qmn8oSeMWOGqRwQEuGvuOIKpjEfOHCAPTZHjx7lYymCM3A86RrZ2dms0qSl\npfF40TWaN2+OLVu28DkqdTsa+P1+XqjIw/Pss89i3LhxADR1iPrg8/lYJWjdujXbPsj+kJ6ejj17\n9gDQ7DZmbarReh/2k1pQ+puC2fcCaKAcZ5Wit2DhJEO0ksJnAG4B8Hzp7/nK9/cIIWZDMzBmK2pG\npWDEiBG8Y0gpWTQ0KyoP0HYz1XdNCLD0RgSKpKTzV6xYEWMv9VAlGp/Pxww61bBJoujff/8dVbRe\namoqB3FJKfkaRB8PB8HGj7wznTp1wnXXXQdAC2IjI2jbtm11EgIh1I5ep04dTJs2DYBeqiJvyYIF\nC4LuwNHmhiAvza233gpAMzgaGWDtdjsbykePHs2eIrrunDlzeH6b6rkLI3/iLGg2gRJoNoJBAKoD\n+BbAVgCLAVQrPVYAmARgG4C1ADqGkxMOMC/voZqjr6CgIC657mw2m2GewJSUFD7G4XBIu90u7Xa7\nrF+/vqxfv77MyMjg89Q2nE6nzMrKkllZWbKkpESWlJTIqVOnxqXv9EM5E4uKimRRUZH0+/3yyJEj\n8siRI1G3+ffff/PYFxUVybS0NJmWlmZKfylP5Ntvv835DA8ePCjfe+89+d5770XUlhBC3nvvvfLe\ne++VxcXFupyM48aNk+PGjQuZi9HsPJ0Oh0M6HA5ZWFio68/u3bvl7t275aeffir37t0r9+7dK6+7\n7jp53XXXSZvNFul1wsrRGFJSkFJeF+RfFxocKwEMDdWmBQsWEhcnHc05GNRAFQLlZ4zXtQBNrCUR\ntrCwkEW8oqIiFnnJqt+sWTOm+6plxBs0aIDNmzcDKLN6v/XWW1H1TaW3+ny+oGXVAisfA2WchUgi\n65o0acL5HVRyT4cOHSosABMpaMyrVKnC/v3q1atzsFk45w8bNgwAMGzYMDRu3LjcMTt37sT//vc/\nAAipEpjNU6HnMW/ePKa6A2UGz3nz5mHEiBEAyjgiZveB8K+p+7Bx40YAWowDJV/p0aNHrM0aQtXP\n3W43u6xSU1PLJeUMPE+1RZA1uXPnzuwFoMmRnJzMOn44LygtQFJKbkOtRhRIuKKXjBY0dXEoKSnh\n9gLx6aefAijzWqgL5LFjxzif4bp160L2ORKQm/nbb78tl++R+kwLanJyMuvoFJEYLHmJz+fj+IGJ\nEyfGLboyXKSlpXGYOVCWx7FmzZpRVaQKgFVL0oIFC5EjYSSFWDIkz507l5OUAGUEoHhF5KnidSAF\nOtQ90I6cmZmJP/74g88h6/HPP/8MQMu9QJJORZ4To7gEo4Qrqo8dKNs5KZFLjRo1Kux3RSAp7fTT\nT4+ZXxFsHtC49erVC1OnTgUQm3pIc6Nq1apRSwfxqL6lEpYAsLpJFblihCUpWLBgIXIkjKExltVW\nlRIWLFgQtYQQ7sqv7oZqwEk40g6dm5GRwf3Mzs5mltsLL7wAQDNaqrpluH0OvL5R9WQpJdsSKG3Z\nP//8Y2hHCHZPdB9NmzYNm60YC6gPX331FQdbTZkyhSM7A7NqGYFSzHXv3p2DvxJBUlYR2B+yn1R6\nJ070D6L07bZr1062a9dO+v1+9l2npqaa6j+O188dd9zB3IS77rqLOQ0nsk/p6ekyPT1dvvXWW1zj\n0OfzyQMHDsgDBw7IVq1aSZvNFo1//F/5Y0adTqOf7du3y+3bt8vCwkKz27ZqSVqwYCFyJIyhMZLj\nKcpMpbUuXboUgJaYIg4lvE2BzWZj49hzzz2HK67QIs6PHDmCM888EwDCUhn+vyAeiXcSHTabjYOg\nli9fjquvvhoAzFJzTEuyUimIxPtAPnLi1P/555/MAU/UBQHQ+kaZnsaOHcv1DDdu3Ggq0effgkRf\nEOLhfZBS4sILNbLwX3/9dUJsHpb6YMGCBR0SRn2IRFIILL+m+vlVqCy9YBJELGmrogH1PSkpibkC\nx44dKxennwjPJRBGiWUCadVmXy8Rx4EQr/mipmkzGf9e9SEwKWdgum2j7+12Ow+2Ucpuj8fDLsLC\nwsJybsdo+6pez+VycTnz3NxcJqao4cvUd7vdrgt1pu99Pp8uCUeofkQzcQPLlxslajG6RmpqKt+f\nGnfh8/nKkb0qSqSqfh+qn0b0bpvNxp9VmjdRpYEyspbD4WAqsc1mY5o6nR849tSnwJD5SBA4hoH0\nc3Whpc9GhV7iBUt9sGDBgg4JIylQ1KC6o4RagYOJV8FqLNL36s5MpdFtNhvTo48dO8bkFqPdOJyd\nITCSkr6jXUL97Pf7OS8f3VNaWpqO3qyShagcnd/v552Z+hQs7Vgk/bXZbDrSk9EYGp2bl5fHY5ue\nns679OHDh8uVdg+shhyNCC6EYG/Onj17dONJfVLnCAUUpaam8udLL72Ux37Dhg08tpQu3W63G6p0\nCscmImks8LkHQlWF/X6/7tqVpUpZkoIFCxZ0OCkNjSZfG4Bm+FNDjlVEa/Chtrt06QIA+OOPP3Q7\nu9EOQ9/VqFFDZ3+g7/v06cNFaL/++muWJsgeYoaxL1p+gBCCJQW73Y5OnToB0OjFqo4OBLcDRXJd\nh8PBaex+++23sM91OBx48803AQDnnnsuB1ideeaZnEB1714ttWhxcTHbHIqLi3luxMKhqAyDdhCE\nZWhMmEXhRPchGIzEvWgNS5EYiFwuFx+vqjB2u51VnpYtW3KhEqos5ff7T6jFXlVD1MkfbvRoZfFM\nzjnnHABa5fJnn30WgN6IW716dQDaYkt9onwN1F8T8htUNqwoSQsWLESOhDE0JqpPWt3lVBdbJIhm\n96tbty7H+e/fv19X1IayJB89elTntgTK79SVPabqjh/ufdvtdlY7Kmv3JZVg/fr1/FntL30nhGBX\nptfrZaNxUlLSySgphIWEWRQSAcFE2Mp8sWjSTZkyhe0FAwcO5EmqwsjWEWghj7f+KoTgEu8pKSlM\n4w6nTif1zeFwGN5LvBa1nj17Yvr06QA0uwzVxzSClJJtO0AZX8DstG009xwOB4+Let3KhKU+WLBg\nQYeQkoIwLkU/FsDlAIqh1Xi4TUp5rPR//4NWG8IHYJiUMrwigibCaMcP5m8mZGRk4OmnnwYArF27\nltOi5ebmcsoy1S8dr513+PDhALRyZ6QStG3blj0Yx48fD9vgaVZJOyOQuH/HHXfgueeeAwB88MEH\n+PLLLwGAy/UFg9vtZn5AXl4e35Pa51j6Trst9XP48OEYOXIkAH3quW7duiE1NRWAcYRq4LNWJRqz\npDCHw4GXXnoJAJCTk8PJb2fOnMk1OPfs2VNpAWLRlqL/BsD/pJReIcQLAP4H4CEhRCaAawGcBqAu\ngMVCiBZSykoNd6NU5aNGjeLMNdWrV8epp54KoEwEPHbsGE8Ql8ulo9pu2LABAHDTTTdxVh8S5+LA\nSefMzdRHv9/PImpJSQluuOEGAMBHH33EIeNer9dwQlI+v/z8fNMnEi24VIXLbrezVf61117jfI2h\nUFJSoosMNdProBLRqIDuwIED+bl5vV4eQzXuxAjxWFRpDCnN/IQJE9i1mpSUhCpVqgDQ3KU0J3fs\n2IHu3bsDQNwzXUVVil5KuUhKSW/Gcmg1IwGtFP1sKWWRlHIHgL8AdDaxvxYsWIgzzDA0DgQwp/Rz\nPWiLBIFK0YeEWSK5x+PBV199BQBo3759uYhKoKyGgFr2XYXNZmMJon379kxkof6ZLSnY7Xb2mw8Y\nMAAAdLvod999x5KL1+tlaSInJ4fFYzW4ingM//zzD39vFkgKo1L2rVq14t1406ZNYUsm8eAj0K76\n9ddfo23btgDAKkp2djbvtFu3bmUCWFFRkeEcCQc09sFIb0bweDysHpCxMz09nZ+TEIK9Gi6Xi+dc\n48aNcc899wAAHnjggaj6Gy5iWhSEEI8A8AKYGcW5dwC4g/6OlvsOaANNL8Jvv/3GD1yNNASg01vV\n8wnECnznnXcwYcIEABopiOIgjNKpm4Hu3bvzgyb9trCwEF988QUAYP78+Vi+XFtri4qK+MVLSkpi\n1iBF99WrV48XRbPL2Q8cOJCZh6NHjwag6cM0PrQ4nChQtaiuXbvyM16wYAEA4Nprr9Ul9CXV7NZb\nb2Ux/sknn4zK4q9G4hrZe9QNLzMzE7NnzwZQ9qwPHDjAbuarr74aHTp0AAD8/vvvWLx4MQCgfv36\nGDJkCIAEXhSEELdCM0BeKMtGIOxS9FLKyQAml7aVeAQFCxb+nyKqRUEIcTGABwFcIKXMV/71GYAP\nhBAvQzM0Ngfwa5htVigt0MpfpUoVDB2q1bClsmvNmjXjHczhcHA7xcXFeO211wBoKc9atGgBAJy6\nLTU1VRe9Rwachx56yDBNvNlGp65duwIA3n33XRZhaaf5+eefcf/99wPQ1AS1P7SbjRgxAu3atQOg\nEZwAYPz48ZzD8vDhw1HFFASCDK0NGzYsR6s+/fTTWdUxY3xiUSOppJ2aj+DKK68EUP7+SXVs2bIl\n/69du3b49dewpiuAsmcVyhukfp+fn89qB32/cuVKDBw4EICWr1MtS0/5Ghs2bMjnxZt7Eo5LchaA\nrgBqCCH2AHgcmrfBDeCb0g4ul1IOkVKuF0J8CGADNLViaGV7HixYsBAboi1F/04Fx48BMCbSjoSS\nElTXErlsgrVDMfH9+vXDqlWrAGirOelwpJupGXDy8/PRp08fAPErN6fC4/Hw7pCUlMQGMdoZBg4c\nyOxAh8OhkySoGErXrl1Rv77m+Nm6dSsAzedPOn4k1aODwel04qqrrgIANGrUCPPmzQMAZjEWFRVh\nypQpMV1DRSySAo0FUFa120hCstvtuPPOOwFoFajJBkPG3HARjcF5+/btzPZs2LAhAODee+81LA1o\ns9l0xWBoPsSbYZswNGc1sUcgnE4newDUlFrBQIPWpEkTbNmyBYD20tMAG1VCuvfee3ViWzzg8XiQ\nmZkJAOjbty8buIqKivj+Jk2aBAA4dOiQLq6BjGgPP/wwi/P16tXD5MmTdee1aNGCReOcnJyYF4W0\ntDROP79x40bUq6c5k8iwu2zZMowfPz6ma6hwOBxRUYgnTpyo+5tIYEZo3LgxnnnmGQDaXGndujUA\n8GIaLqIR44uLi7F69WoAQK1atfg3EeRUPPLIIzrjNlXzijcsmrMFCxZ0SBhJASifzJPEe7vdjvnz\n5wPQmF20O9KO6HA4dO7GunXrAtCCipYtWwZAizok8VKVNshoFy1LTBV3Az8TyMU0aNAg3HjjjQA0\nujLF7B8/fpyNgxT4dMEFF3C252HDhuHcc8/lvlPbxcXFfK8qX4F2nWCMx0hw+PBhzjfw4Ycf4okn\nngBQtjuOHDnS1OAgNUFpJLj77rv5s5SSnzH1rW7duqzmXHTRRTyGR48e5erekUpV0Y7tk08+CQDM\npVCjL4uLi1mCfOyxx/ickpKSSlFrgQRJsmKz2aTT6Sw3uYxy7qmRf7QoNGvWjCfFxRdfzMSaoqIi\nFrWNshAfPHgQp59+OoAyfS0chJN1x+l0srhHvub09HRdGC5NwmPHjvFLTS9FlSpV+Ds1O7HNZmPr\n+po1a3iikw4dmPvQTGzatAnNmjXjfgCaB8cogjNaRGsHCcz3SDYYmt/Tp0/HtddeC0Bf7v3o0aP8\nEkb60sXqBaDnWLt2bf6cm5vLmx7ZcgBtPkSq3hjASrJiwYKFyJEQkoIQQppVN9DlcrERbPbs2Sx2\nq5IC7ca1a9eOW+1GtSZBt27dAAC9evViGnNJSQmv/KtWrULPnj0BlNGI1RoEahTd7NmzcejQIQCa\naF+Zz++bb75hqrDK4juRc4ieq+oJ2LJlCxt0qZ9Hjhxh75Pf72dex7Fjx9iIa3aOhHAhhGDvk8Ph\nYFU2LS2NJaBoqdgBOLmKwQDli5BEg+LiYn7gK1asYJ45UKavDx48GEB8i7lKKZnDvnDhQv593333\nAdBUCYpm/P7771G1alUAZZmHvF4vi+rHjh1LiLqKLVu2LEf1rlq1Ko4cORLkjPhDJQ5R35o0acJq\nI3mc1KjT7OxsVj03b94cl6jXSCCl5LmZkZHBixdwYhKtWOqDBQsWdEgYScEsEdRms6F58+YANBqw\n2u6wYcMAAB9//HFM14iFYEPn5eTkMKW2QYOycJEHH3wQgBaUlWg5APfs2cPeDtqho/UWmA232827\nqs1mY+Pu+vXrAQDbtv1fe+caW1VWBeBvpdwCViKghPCYUIiNEyQKE39AtMGIxnagYwxNYNIwY4T4\nRyqKiaHhkfgP0QQxmY4aX4mBURzHsSHByYhDCYWgM1geAnUoEIfJ4GCCl4S06W27/LHP3pxT+riP\nc+45xP0lN7333Nuzztpn33X3Wnvttftd4Zfm5mbndvT29mZqp/J8Ph8pIx+T21ASmYkp2GnFSqvu\n9Pb2On+ypqbGddpr1665oWSlUdw44h/hCDg89Getb5mljmqH5ffv33dRcut6dXZ2ukSgtLEzO/l8\n3s3c2EzP/fv3u3Ub27ZtczNDGzZsKGnmqRqMt3Q6vJ6jAvzsg8fjKZ3MuA92lFBuXQWbp7BixYpI\nerCt1Hv69OnY6iHE8Ss+Nm/i4MGDsZ07buyv1ODgoPsVsym67e3tLrkp7Wu3o60zZ87Q2NgIPBw9\njIyMuJJnLS0tbpXneGsO0iQcbId02tSPFDweT4RMjBRExPnppezobBfnbNy40c3jhxdWNTY2ukDT\n0NAQ69atA3Cr4srd/i2cYVgu4WknVaWjo6Oi8yWJ1XXr1q2u0tPOnTsBM5du04Rt5eG0aW1tdQvM\nbDtfuXLFFcetq6ujvr4eSH90M5ZwrCmXy6WSA5IJoxBmoqIg1hCIiEvw2bJlCwB79uxxnx8YGKCp\nqQkwpdksmzZtor29HcB17M7OThfdzefzLno9tqNM5naUOxNh05IBTp48WfL/p0F3d7dro127dgHG\nQNq0XFs7Mm3u3bvnVsfaZfZtbW2uj4TLpmWNuro65/KM3YimWnj3wePxRMjUSCGXy7mRQm1trRu2\nDg4ORoq02kw/WxRldHSUI0eOACZl+OzZs+64Pd/Nmzfd/gR22q+7uzuyacmBAwcAM0oJ7zA8dpp0\n1qxZLqg1PDxc0lz9+vXrgYdlwsCkPz8O5PN55yKcP38eMKOu+fPnxyYjrqretjq2zQG5desWK1eu\nBMzKTtsvKpEXR6m7sYQL8+ZyOeeyzpw5s2qrJDNlFEZHR9388dDQkFta2tXV5Yb5IyMjrvKQvSkP\nHjxwRTXCpdHtOcHkw9sUYxuLOHTokIs+53I5t1ZhYGBg0o4yODgYuXHWeE3VuUSEo0ePAmbYferU\nKSCZzWXCMou5tlK5dOkSYIzCeCtQ08amDd+4ccMdC7sMts0rcSWSMArz5s2LJCzZa8vlcmUZhXKM\nXvbupsfjSZVMjBRU1c082F+gadOmuWG5qrrnDQ0NtLS0AA8DWzt27HhkhBA+N5jgk/1MeGsz+36h\nUCi6LsDIyEgkaGUt+1RuxMKFC10dwH379rmFUo8jdl/G5uZmLly4ACS7x2a5WDevtrbW9RtVdStQ\nK0nTtn0gjtGYPcfx48cj57OLzcpNdy7nmjJhFODRiH+hUKC/vx8wDWYrE61atcrFEmzj2Y00JkNV\nJx2ml9J44anTQqEw5fDTVljavn27mw61f+Nm7BczqS+pTXNetmyZW3o8WZ3N8PWBGQ6Hv5BxbCo7\nmbzR0VEOHzZ7FrW2tsaycU2xG/0Wg3VdbcEXMIV/1q5dC+D2voRHK5RBNBmu0vvv3QePxxMhMwui\npvqMDerMmDGDnp4eALe3Xk9PT1WHrRPVZZwIu7Z/eHi46KBkHNdWbUppl/F+7Yr5v0qwfWjRokWu\n5kYaeQDjYetxLlmyxCWG7d27142Cw21i9QgvIAynR0+yXKCoBVGPjVGw1NTUuClFuynnRDrEUbQl\nTqr1hU16B6FiZY/33DLZPav0usc7R1h+uFpU+ItV7Lkh3rYVkcjsmp3ivXPnzpT7oZTYr/0qSY/H\nUzpZGSncBR4A/0npEj7iZXvZ/weyl6jqvKk+lAmjACAibxYztPGyvWwvO1m8++DxeCJ4o+DxeCJk\nySj81Mv2sr3s9MlMTMHj8WSDLI0UPB5PBkjdKIhIk4j0ich1EdmVsKwnROQNEbkiIv8QkR3B8bki\n8rqIvB38nZPgNdSIyN9F5FjweqmInAv0/62I1E51jgpkzxaRl0XkmohcFZE11dJdRL4VtPllEXlJ\nRGYkpbuI/EJE3heRy6Fj4+ophh8F13BRRJ5KQPb3gza/KCJ/EJHZofc6Atl9IpKJwhqpGgURqQFe\nAJqB5cCzIrI8QZHDwLdVdTmwGvh6IG8XcEJVG4ATweuk2AFcDb3+HnBQVT8K3AO2Jij7EPAnVX0S\n+GRwHYnrLiKLgG8An1LVFUANsJnkdP8V0DTm2ER6NgMNweNrwIsJyH4dWKGqnwD+CXQABH1vM/Dx\n4H86g+9Eutg86TQewBrgtdDrDqCjivL/CHwB6AMWBMcWAH0JyVuM6ZCfA44BgklkmTZee8Qs+0PA\nTYI4Uuh44roDi4B3gLmYlbnHgC8mqTtQD1yeSk/gJ8Cz430uLtlj3vsycDh4HunvwGvAmiTufymP\ntN0H21kst4NjiSMi9cAq4BwwX1XfC966A8RXXyzKD4HvADZh/cPAf1XVrulOUv+lwF3gl4H78jMR\nqaMKuqvqu8APgH8B7wF54C2qpztMrGe1++BXAVtII7X+PxlpG4VUEJEPAr8Hvqmqkeosakx27FMy\nIrIBeF9V34r73EUyDXgKeFFVV2HSyiOuQoK6zwG+hDFMC4E6Hh1iV42k9JwKEdmNcWEPV1t2KaRt\nFN4Fngi9XhwcSwwRyWEMwmFVfSU4/G8RWRC8vwBIYnPBTwPPiMgt4DcYF+IQMFtEbLGbJPW/DdxW\n1XPB65cxRqIaun8euKmqd1W1ALyCaY9q6Q4T61mVPigiXwE2AG2BUaqa7FJJ2yj8DWgIotC1mKBL\n1xT/UzZi1r3+HLiqquHSO13A88Hz5zGxhlhR1Q5VXayq9Rg9/6KqbcAbQGuSsgP5d4B3RORjwaF1\nwBWqoDvGbVgtIh8I7oGVXRXdAybSswt4LpiFWA3kQ25GLIhIE8ZtfEZVw7sbdwGbRWS6iCzFBDv/\nGqfsskg7qAE8jYnI9gO7E5b1Gcyw8SLQGzyexvj2J4C3gT8DcxO+js8Cx4LnyzAd4TrwO2B6gnJX\nAm8G+r8KzKmW7sB3gWvAZeDXwPSkdAdewsQuCpgR0taJ9MQEe18I+t8lzAxJ3LKvY2IHts/9OPT5\n3YHsPqA5yX5X7MNnNHo8nghpuw8ejydjeKPg8XgieKPg8XgieKPg8XgieKPg8XgieKPg8XgisIq9\nLgAAABJJREFUeKPg8XgieKPg8Xgi/A+7RzdpakO0cAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/2... Discriminator Loss: 0.9938... Generator Loss: 1.1336\n", + "Epoch 1/2... Discriminator Loss: 1.2817... Generator Loss: 1.7325\n", + "Epoch 1/2... Discriminator Loss: 1.0349... Generator Loss: 0.8968\n", + "Epoch 1/2... Discriminator Loss: 1.0611... Generator Loss: 1.3221\n", + "Epoch 1/2... Discriminator Loss: 1.0041... Generator Loss: 1.2203\n", + "Epoch 1/2... Discriminator Loss: 1.0210... Generator Loss: 1.1737\n", + "Epoch 1/2... Discriminator Loss: 1.0761... Generator Loss: 1.2211\n", + "Epoch 1/2... Discriminator Loss: 0.9741... Generator Loss: 1.1375\n", + "Epoch 1/2... Discriminator Loss: 1.0377... Generator Loss: 0.8915\n", + "Epoch 1/2... Discriminator Loss: 1.0852... Generator Loss: 0.9029\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXd4VFXawH9nJpNJQiC0EKpEBCxYsCxFENtiZ1F07a66\n9ooNFixYdte6n6vrLmLDCqIiKChWFEUpAitgQQGpIi10kdQ53x83582dkJAp904G9vyeZ54kk5l7\nzz333HPe9z1vUVprLBaLxRCo7wZYLJb0wk4KFoslCjspWCyWKOykYLFYorCTgsViicJOChaLJQrf\nJgWl1ElKqR+VUouVUkP8Oo/FYvEW5YefglIqCCwE+gI/A7OA87TW33t+MovF4il+SQrdgMVa6yVa\n61JgDNDfp3NZLBYPyfDpuG2Ala6/fwa61/ZhpZR1q4wRpVTU70bSs56pNWP6y/YPAEVa6/y6PuTX\npFAnSqkrgSuTOUYgUCXo1HTT6xoIgUCASCQS93ndD2Mi342lbbWRkVF1y7KzsykuLgagoqIi6mcy\nxHt95prcE1YkEon6u/pntda+PqhmbJj+ikQiUfc61sk0mXudhiyP5UN+TQqrgHauv9tWvidorZ8G\nnobEJYVEJgI3iUwI8Z7Dy+8ClJeXEw6HAWcCKC8vBxK/lpqIt43mwcvOzmbbtm27PI5fD1j1h9dM\nCg0aNABg27ZtCfVRqieEdJiE/LIpzAI6KaX2VkplAucCE3w6l6w69d2ZqUBrLatefn4+DRo0kIFf\nX4RCIUKhEA8//DCdO3emc+fONUoJflL93ps25ebmkpubK5NnuhPvGFZKed7XvkgKWutypdT1wAdA\nEBiptf7Oj3NZLBZv8WVLMu5GJKg+/K8akXJzcwG4/fbbKSkpAeDee++tt/Y0bNgQgFNOOYWLL74Y\ngPPPP5/NmzfXW5vM2DBqhJGw/seZo7U+oq4P1ZuhMVGUUmRmZgJQVlYG/G9NCoWFhXz55ZcAfP/9\n96xZs6Ze25Odnc2FF14IwNChQ2XC6tatGx9++GG9tat58+YAXHmlY8v+6quvmDVrFkC9TlZekJ2d\nDUBxcbEvY9+6OVsslijSTlKoSSVwG1ICgYD8r1OnTgCUlJRQWloKwC+//CIio/t7XmzVpQNTp06l\nVatWABQUFJCfX+e2s+ClumWktSOPPJK//vWvgKNGmHP8/ve/5+OPPwa83RmJhUAgwG233QbAzTff\nLO8XFRUBcN555/H9945z7YYNG3YbtcL0uRn3q1atYuPGjYC30nLaTQq1XZx50IPBIDfddBNQpUeH\nw2H53q+//kpOTo58xwzSSCTC9OnTAWfAAqKP7060adNGft++fXuUr0ZNVHd2guQGUCgUAqBPnz4A\njB49WrYhv/76a5o2bQrAyJEjpW2pfuhycnJo37494PQROGPBqDbXXXcd1113HbD7qJ6ZmZn83//9\nHwCnn346ABs3buSQQw7x/FxWfbBYLFGknaRQE1prEZOHDRvGRRddBCCiU+PGjZk4cSIAy5YtY999\n9wUc0dZ8LxAI0LNnTwC++OILAHr37r3bSAsHH3zwTu8tX76cDRs2xPR9L/azlVI888wzAJx77rkA\nLFq0iKVLlwLw2WefSX//9ttv4j+xZcuWpM4bK0YyKS0t5amnnpJ2APTo0UPudXZ2No0aNQKqVAov\n8NrxSClFMBgEnJ2d/v2d8KEdO3YAiLTjNbvFpABVE8C0adNkAli4cCHgPBy1OaeYB2Hs2LHSqa1b\ntwYctSOdJwXT9muvvZYnnnhC3jf2k5omiurU5uabCIcccojsNJiB2a9fP3mwsrKyaNu2LeDovVOm\nTEnqfPFirq+iooJFixYBsNdeewHQsmXLqM+uW7cOSE598MNBKxgMiv0rGAxSWFgIwFVXXUWzZs0A\n+PzzzwHnWfADqz5YLJYodhtJwczoY8eOFd9/Y+Da1Qpovnfttddy0kknAVViphEt05FQKMTs2bMB\nOOigg6L+Z5yFYsGsOl4Y+84880xZHcePHw/AihUr5Ni//fab+Ad07txZJAW36pIKo2NFRYWI3fvv\nvz/gSDHG6Lh69WqRdJLBy2syBtwmTZqI9FpSUsKll14KOOrP8uVOPNN5553n2XlrwkoKFoslit1G\nUjCzYiQSkZk0Hn2wa9eusnoY+0OivgteGZTMSpOZmSltM27C9913n+iQbvLy8sSTMxbc3m/J+mq4\nbTfPP/+8vO8OnTZ76b1792b06NFA1bag+7O1tSXRcPbqtGvnBOm6Dc2m7YMHD/YkQMqs7l7Ypcw9\ndftNdOnShQsuuABw7EjDhg0D/PfI3G0mBXf8ezwPpLGA33nnnSIyjhs3LuqYibYlEcxDkZGRQbdu\n3aSNjz/+OAAdO3YEkEnCnK+goAAgKjQ5Fsw1e/Ggbdq0iRdffBFAjLabNm0Sv48LLrhADJsTJ06M\n6qdYJySvROITTzwx6u/t27czatQoANavX+/JOYzB10vc/eS+70VFRbz55puen68mrPpgsVii2C0k\nhURFyoyMDB577DEAunfvLgbGrKyspNqTqPqglBLJpXnz5lx99dUA7LfffiLmuiUEw4ABAxLeT/dy\n33z27Nk899xzQFU7r7nmGvn/6aefzldffQUQ5T8RT395oZoFAgHxejX3fMKECQwePBhwvF53By65\n5BJRx4YPH54y78u0nhSMPlyXpVgpJTc/FArRtWtXwNGjje57/vnnSwcbd9dEB2CiN8ecFxxL/ZAh\nTub7ESNGsN9+++30+RkzZgDw9ttvJ3Q+8HZS2Lp1q9wTo09rrZk8eTIA7733XtJt8KK9WmtJU2cm\n4datW3uy41D9PH5gJtz169eLOpHMGIgXqz5YLJYo0kZSqGnVNlZdt+dYRkaG7NOb1SA3N1ei3jZu\n3Mhnn30GwPXXXy/75pFIRKSJc845R94zLtPJtnVXmJk/EAiItNK8eXNxx27Xrp28b4hEIvTu3Tvu\nttXUVvBmVQuFQjupNxs3bpQAnXRBa73T7sIxxxwjrs+XX355fTQrZg499FAA/vKXv8j9a926tYxx\nv0mbSaEm3HYEYwdo3ry5+NIbp57hw4eLWNu4cWOefPJJwBkca9euBZxtSHM8M7B79OghbrArVqyI\nuV3xPmBGBNy6das4XgEySFu1aiXiuPnsrFmzPLHEeyninnnmmTtFZT700ENp6QT20ksvATBo0CDA\nmRzNAjBmzBgJ60438vLy+OSTTwBn/BsHtvnz58u49TsNgFUfLBZLNO5MyPX1AnRlnsY6X8FgUCul\ntFJKh0IhHQqFdEZGhg4EAjoQCOiMjAwdDAblcx07dtQdO3bU69ev1+Xl5bq8vFxXVFToiooKvXLl\nSp2dna2zs7NjOrd5xdrWXb3OPPNMXVxcrIuLi3UkEpE2lZWV6bKyMl1YWJj0OQDpl2SOEQ6HdTgc\n1lu2bNGRSCTq9fLLL3vSTq9fM2fO1DNnztypvZFIRE+bNk3GSH23E9CNGjXSU6ZM0VOmTNHbt2/X\n69ev1+vXr9fTpk3TGRkZMqbNuE/iXLNjeR7TWn2oCbfoVJNnX3WR26gdgUBAvmucTi677LKELNLJ\niOTGueeqq66KsuAbEfzrr78G2MnGkCjJqiChUEgy/ZSWlsq1G13Xr0i9ZAgEArIDZe651lrGy5o1\nayQRz6+//lpviVZM+Pbnn39Oly5dAGenberUqQBceumlUfevelSmX+226oPFYolit5MU4uW4444D\nnOgzM7OaVfmjjz5KeXtMmrDjjjtOZv6ioiLmz58PwLvvvgtU7azUF8ao1b59e8mR8Morr0hiD7fE\nYwy76cKcOXOkb43k9fnnn8uu09q1a2WV3r59e8olBSOlmAjITp06sXr1asBJMWh8EoqLi+slf2TC\nkoJSqp1S6lOl1PdKqe+UUgMr32+qlPpIKbWo8mcT75prsVj8JhlJoRy4VWv9X6VUQ2COUuoj4BJg\nstb6QaXUEGAI8Jfkm5oYHTp0kN/N3vVbb70F+KeT1UYoFJIcA24bxzfffCN70Oa9dClz1rx5cz79\n9FMAFi9eLLH8LVq0AJDts3TAbJfuv//+fPPNNwCcdtppgJMSziS9PeWUU5gwwaliuHbt2pSuxu3b\ntxcJwUhdixcvFmlr9OjRnntexkvCk4LWejWwuvL3bUqpBTgl6PsDx1R+7EVgCvU4KQwYMEB+NyKl\niTlINXvvvTeNGzeWv00I7NixY8UIts8++wDQs2fPlEXF1YR5gObMmSOTZ1FR0U7Vmo2jWDpgUt9D\nVe5FE+dQWloqYvlxxx0nqezef//9lLTN9Oe0adPE3f2XX34BnHHw7bffAnW79KcCT2wKSqlC4FBg\nJlBQOWEArAEKavlO0qXoLRaL9yQ9KSilcoE3gZu01lvd2yZaa7OvuhO6Wil6v0R5k/C1bdu2YmBM\ndbJWI9ZecMEFYsBbtWqVRBgWFRXJSmKScta3WG7K0Wmtpf39+/eX9pu+rC0Iqj4w0sHcuXNFDTN9\n/P3330vRmoyMDFGJgsGgb6qaeRYaNWrEAQccADhBfkYqNH34wgsvSPBbOpDUpKCUCuFMCKO01uMq\n316rlGqltV6tlGoFrIvlWF5l3KnWPg488ED52+z/+klNsQbmoTrppJMkpDgnJ4eTTz4ZcCYCY/sw\n6kN97Iy4cScQMSrPihUrxG3cnU49XTCT/aRJkyRj0dFHHw04/hrGFX779u2SzdlP243po379+knS\nl1WrVolKM2LECMDZ1UmnCmbJ7D4o4Dlggdb6Ude/JgAXV/5+MZC6mE+LxZI0yUgKvYCLgG+UUnMr\n37sdeBB4XSl1GbAcODuWg/lhAd5nn33kuIFAIKquoF+4Pf6M1GC861atWiX74+FwWETKiooK2af+\n5z//CaTP7gNUGUQ///xz7r//fgCpq5CO3HfffSxbtgyoKi3YqlUrMeLddddd8n8/MV6p77//vhgS\nw+Gw3NsFCxYA6VfnVKVDLb3a7A7J0qxZM3nYAoGAhFynysJrrMwmfBuqRPEmTZpIgZL33ntPnIG8\nrFhkqXLCCofD4hBWnwVlva4iFSdztNZH1PUh6+ZssVii2KPdnHfs2CGZe3/77TcJQEqVpGAMSrtL\nTsA9ESOa10fOh5qMzr4FMbnyXEQikaSS6+zxk4Kpo7B48WK2bt1azy2y/C+RSjWhukqUzLmt+mCx\nWKLYow2NsHNRFahfQ1NNuHcqqrsRW/Ysqjn3JX0s9zFiOLY1NFoslvhJG5uCH1s1gUBAjhkMBsXo\nlOxsnUwxmOqZi0zb3PUYITqrlNY6YcORl9mcvaCuvk/Fll31DEbGSBevv0A8fVv9/sb6verf31Ub\nvOq3tJkUEn3IdvVdd0d5aQFO9PvV21DTDa1tYCZ7znreH485lVgq2lj9HIk6D8XT1voac4lg1QeL\nxRJF2kgKEP9qVtdnq/+/vkXo6tdnxFatte/Gz/q+dkO6tKO+2B2uP60mhWR059owDkv1GUvgrnO5\n9957A048gSkrn47FVLzG7AKlU0yHpWas+mCxWKJIG0nBiNZeSAhmZX777bclZ8E999zD3/72t6SP\nHQ9GSjnyyCMBJ+FHr1695P+jR48GYOjQobuFWJkMqYwEDIfDsntjAs0OPPBAHn74YcCJVv3zn/+c\n8nbtLqSd81Ky6kMgEGD48OEAXHHFFXK8zZs307Rp02SbGjPhcFhCpq+66irASbZhoiQjkYgk+rjg\nggv48ssvgT1nkGZmZsoD2bBhQ0mAsn37dqDmQj7J0KZNG8mmZBLVQO1beUZ1a9++vYSG/w9gnZcs\nFksC+FkjMtYXHtblU0rpwsJCXVhYqFeuXCn1AysqKryoxRfXq0uXLrpLly56xowZesaMGXrjxo26\npKREl5SUSO3IiooKvWHDBn3sscfqY489NmVt8+N1xhlnRF1faWmpLi0t1VOnTtW9evXSvXr1krqU\nXp3T3OtFixbVWDeyrteWLVs8qbe5m7x2r1qSXjnXaK0lq851113H2LFjAUe3NGLl4sWLkz5PLJh8\njMbyvnTpUsm81KBBA0my0qRJEyZNmgQgeQTTHaMadO3alddeew1wRHF3CK/5fcqUKbWK8cm24ZJL\nLgFqr6hl1JVNmzZJ4tYzzzyTHj16AE6t0XA4DKQmpF4pJX3XrFkzwNl9Mu2MRCIJPQehUEh2dpLd\nxbPqg8ViiSJtDI2BQCBqNUl0xnQTDodlBg4EAvz9738HnBx9qcBcz1577QU4q9amTZsAJ0XbrFmz\nAKRWI8CSJUsA6NixY0raGAtG0ikoKODFF18Eqox54XBYDLi//vqrXN/gwYPl+kzRE6jqEy+ctTIz\nMyVL8m233SZVqz7++GPuu+8+AEmyUx2Tmu/bb7+VjN/G+Ognubm53HHHHQB0794dgAceeIA5c+YA\nTiWrmmJ0MjIyaNCgAVBlpA0EAlJV3fwNsG7dutoc46yh0WKxxE/a2BQgeV2oOsFgMOo4qS5xZs69\nfPnynf63du1abr/9dgBeeukleb+gwCmo5Y7qrA/MfcjPz+fwww8HHB04Pz8fqLq2l19+mXvuuQdw\nakDUJQF4KZlWVFQwffp0wLEf/fjjj0Bs251GgnzkkUdSWrsiLy+PCy+8EKjKkr1o0SKRsILBoEhm\nFRUV4uvy5JNP0rdvX8CpvwFO3QiTJXrx4sViV3E/R4lIZGk3KXg5aI488sioJCum+lK68OqrrwLw\nn//8R8RZIyKeeeaZvP766/XWNjOoOnfuzE033QQ4Vav+8Y9/ALBw4UIA5s2bl/KKW4ZIJCIPU7xZ\nsM04mzt3bh2f9JZhw4bRunVroCrLd25urrSnuhu4MUZefPHFohKYsRIMBqUwcfWJMBl38qTVB6VU\nUCn1tVLqncq/91ZKzVRKLVZKvaaUykz2HBaLJXV4ISkMBBYAjSr/fgj4p9Z6jFJqBHAZ8GRdB/Fa\nSgA49NBDo/5Ot2Acox5ccsklsq1nJJt//vOfvPHGG4C3IncsKKXo3LkzAKNGjZKALaWUiKumRqdX\nnomJqI1a66RzISxYsCBKVarNMJks5hznnnuunNv03U8//VTjd5o3b87KlSuBaHWyZ8+egCOt+TE2\nkq0l2RY4Ffg7cEtlKbnjgPMrP/IicA8xTAp+JAG58cYb5fdIJJJ2uRkNkyZNYv78+UDVRNaoUSPR\nJ1Ol8xrxtGXLltJ3X331lVSy6tq1K0uXLgVg9uzZ0s50dhM2PgEVFRXyeyQSEav93XffLf4i5eXl\nvPzyywDMnDkTcPR+L8aNURmys7NlcTL1Lt0+FoFAgE6dOgEwffr0KPvCZZddBiC2E79IVn14DBgM\nmF5rBmzWWpsl+WegTU1fVEpdqZSarZSanWQbLBaLhyQsKSilTgPWaa3nKKWOiff72sdS9GaFNeXd\nIfU7D/FQVlYmK4JZlbZv3y7750uXLhWDml9kZ2eLRNCuXTvxk2jSpAnfffcd4Oz5m1qS5n4NGTKE\nd955B6jdqzAWkr3/Sqkacy26VUa3qmPaOmrUKPFkPPjgg/nXv/4FIOUGf//733siqRkfCLdR1hQJ\nys3N5ayzzgKcOpjGAJmZmSnXcu2114oU4zcJOy8ppR7AKTBbDmTh2BTGAycCLbXW5UqpnsA9WusT\n6ziW9lJ9+OabbwDo0qWLvNehQ4eUFBVNhKysLHHwMVGUO3bs4NlnnwXg4YcfFh3ea1dco+vm5uZy\nzDHHAHDCCSdIO7TW4ly1fPly2TLt0KED4KgPxhr+wgsvMGjQIMAZ/O78kAYjwnttizBtTQa3Dm+K\nww4YMIC3306+cLpZqNavX09OTg5Q1V7zv+qUl5czZswYwLE7eaDG+Ou8pLUeqrVuq7UuBM4FPtFa\nXwB8CpxV+bGLsaXoLZbdCk/cnCvVh9u01qcppToAY4CmwNfAhVrrXW5ke1kMJjs7W8QypZTsX7ds\n2TJtDY2FhYUiopsVNBQK8cwzzwAwfPhwKf3ulTRlVlgjcufk5IioqrUWMdctlmutZQXNy8sDHB+L\nU089VY5lJJnnnntOdk+WLVsm51u7di3g3U6QMRjG4jgVC8apyQSmffXVVxI8lQzm+r/88ktxBqtJ\nQtBay/j9+eefueWWWwD46KOPasxMHicxSQqeOC9pracAUyp/XwJ08+K4Fosl9aSNR6NXNoV169ZF\nFVQx+//pKCWYdrZv315SxZ1/vrOb27FjR7GBLF++3DdfBRM2XFxcXKueX5PhzvguDBgwQFbSF198\nUbbeOnfuLF6PmzZtkv738jqUUtx7770A3HHHHUnf42AwuFPousnmlCzmuu+44w5xa3e7jJtw/nPP\nPVfsGn/6059EUnjooYckaMq4OT/44INyz7wc32kzKSQ7WIxYGwgEpKMmTpwoImwgEEi7icE8kNu2\nbZPdBWNQDAQCks7NTz8F85AnY/gzg/Xuu+9m2LBhgJOP0lT59iLitSaysrJE7fLi3l5xxRU7vWei\nLb1iypQp4oticne+9957ch/cVc0mTpxI//79AScq1ewOLViwQD47ZcoUwHGAMpOJzadgsVg8JW0k\nhWTVB+OeGolE+PDDDwG4/fbbKSwsBBzRMN0kBWPMa9iwofhU9O7dG3D6w2Ru8mOVNcf0Qgox25cP\nP/ywGCB79OghWa/8Un3uuusu6bdk9vBNNiyT8Beq+iUZ34ua0FqL8XvixIlAdGV0qJJ6li9fzgkn\nnAA4Rsk+ffoA8OabbwLOtrDJWWHGivs8iZI2k0IyF3HwwQdLdOG2bdt46qmnACdhhXnwGjVqJKJ5\nOiSWgap2fP7557K7MHjwYMAZBF4PSD/Iz8/nrbfeApz+Npbzd99917dJ2DxEhx56aNIW+ZYtW4qO\nDlVORn/605+SOm4sGBG/oKBAXK0XLFgQVRzIPXkbV3jjWHX44YeLO7rZNfECqz5YLJYo0kZSSIYN\nGzbIXnpeXh6PPvooAAMHDhSxqmXLlmJMM7NqutRY0FrL7G+MRR06dBDXV5O+Kx1wRxSCE8x1yCGH\nAE5uBWM889M4aiSQ3NxcWWHjSUpTWFgoae/crFu3TlLnpSIIzfhYnHLKKbzyyivArj1WjZpj1LXn\nn3/eF/f3tMnRmOwxTOfk5eWJyLVs2TKefvppwIksM5F9xtXWz62+RDE7DnPmzBGLtNuxqD5p2rQp\n7777LoBE8q1evVq2fR999NGU1sW84447uPnmmwHHpvD4448Djh3AuBIPGTIEgD//+c9RmaYNWmt5\n2LwUwXeFcVoydpB77rlHtm9rU7kyMjIkcvPnn38G4Oyzz443wY3N0WixWBIg1YVfanoBSRfj6NGj\nh+7Ro4cuKyuTQh/FxcV6xYoVesWKFfqEE07QOTk5OicnJ62Lf3Tt2lV37do1qlhM8+bNPT1HbQVx\nTL/k5OToDh066A4dOuirr75aL126VC9dulRv27ZNb9++XW/fvl3Pnz9fz58/X/fr16/e+ioQCOjy\n8nJdXl4edxGY0aNH69GjR9dLu/Py8nReXp4uKirSRUVF+pxzzqm1UJF5v0+fPnrq1Kl66tSpun37\n9rp9+/aJnHv3KgaTrBg/Y8YMwEng+X//93+A45hz3HHHAd4WgPEjIYzB7Yxjdh+MY5aXVA8vP+mk\nk+SaHn74YbEdZGZmyu+lpaUcffTRAPz3v/+VdtYXkUiEM844A4A33ngjqp/MtRiVYPXq1aKapaLo\ny64w6oqxI3Xs2JHc3FzAaZtRc5o1aybRqEceeaQ4V9WUCNhLrPpgsVii2GMMjYZQKCQW5CVLlqSd\nITFWzjvvPNktefPNN327DrMqud1rmzdvLu8XFxeLpLBjx456X2VrQymV8vR1iaCUkvgQ42Mwfvx4\nMdzeddddYkj84YcfJFvz8OHD0z+fgsVi2TPZ4yQFqIr137Jli5eHTSktWrSQcmw//PBDPbfG4hU5\nOTkiKRjX/C1btkSVGDTjdtu2bV5vRcckKexxk0IoFBI/hHQVdS3/u7hjcOrh2bPqg8ViiZ+02ZL0\nioYNG4onoJUUvMHL+p7/69SkDlT3tKzvaN60mRTM3n88A7CmTL6bNm3aIwavUqrG64v32rx4oNOt\nP73M4Ozu54YNG8rOhVFBi4uLZZGpfi7zMMfzENfk4xLL993X7H7PnT/THDfZScWqDxaLJYq0kRS8\nWsnSbVVLFKWU5A0oLy9P+Lr2lP5w4+U1uVdYd/4K815FRUWt5zMrcjzSmJf3sbrE5FW/pJWkYESr\nWC/Oy45IN0y9w6ysrD3iGqurQ+lISUkJoVCIUCgkfZ/ObdZaS41UkwfTi7GS1KSglGqslBqrlPpB\nKbVAKdVTKdVUKfWRUmpR5c8mSbfSYrGkjGQlhceB97XW+wGH4JSkHwJM1lp3AiZX/h0T7lkunWfo\nVGHcikOhUFqvtKZtgUCgxnYqpcjNzSU3NzetrwOq+rxr16507dp1p5TvNWFWaL+vqybjsx/V1JMp\nMJsH9AEuAdBalwKlSqn+wDGVH3sRp0jMX5JpZG2YaLMbb7xRUnGXlZWxzz77AFXJKHYnjDX5sMMO\nk9qOI0aM8Kyikte0b99eis7+8ssvPPfcc4BTm8DEblRUVEjuw3QmIyODww47DKjKitSiRQvJO1md\n6rsPfqt55viJ7HrEQzKSwt7AeuB5pdTXSqlnlVINgAKt9erKz6wBCmr6si1Fb7GkJ8nsPmQAhwE3\naK1nKqUep5qqoLU2iSN2QlcrRW/EIrfFvSaUUlL52FRQcsfRh0KhqOy8xo+8oKCgxug593nNueNM\nceUJJn3YNddcA8ANN9xAs2bNACd+3qT1rm+jo+kv479/6aWX8rvf/Q5wch/+8Y9/BOCpp57i3//+\nN0CtK2260b17d0k3Z4oImb93Raqcu9w+Cb6eJ4nv/gz8rLWeWfn3WJxJYq1SqhVA5c91yTXRYrGk\nkoQlBa31GqXUSqXUvlrrH4Hjge8rXxcDDxJHKXqzHVlXVJhSSnSpf/3rXwDceuutUQYY9+8mYrK4\nuFhm2E8++QSAuXPncsoppwBO7oWrrroKcHTjVBIKhUSXNbYRpZRk+J06dWrC+qPX+ueZZ54JwGmn\nnQY4GYExKhFNAAAgAElEQVTM/v7WrVsl8m/lypUJeWH6mdWqNowxcfLkyeLJOG7cOGDXba9eudsr\nu4/JC5Gbmyu2mL59+4p0ZrJn33zzzb4k9E0qSlIp1RV4FsgElgCX4kgfrwN7AcuBs7XWG+s4jq5u\nuY23XQ0bNgScdNn/+c9/ACT0uDaKi4v57LPPACeNW01pv1NB9+7dee+994CqAbpw4UJJNVZf7arO\nFVdcwU033QQgxXdee+01WrRoAcCoUaNkcnvhhRdYty79hcScnBxRzU488USJlzFjJ1WqpJkIJkyY\nIFWhoGqiKS8vF+OnUcc6d+7M2rVr4zmN/6XotdZzgZpOcnwyx7VYLPVHWuRTCAQCOhwOR83KXrRL\nKSUSxKxZs2jXrh1QZczcvHmzJPM0STRjPa4X7TOrw6JFi6SoiREHL7zwQsaPH5/0Obwwgp133nkA\nvPTSS3K8Bx54AHASzRrVpGXLlnIPn3vuuYTE6VSoD0opqeb87LPPRkmUpkz8JZdcUudxzDhKVIQ3\nVce3bt0qYyEWTP8cfvjhzJ07N55T7l5JVvwqFW9uXH5+Ptdeey0AV155JeDow/Upmhs/i4ULF4ra\nYEqL/+lPf0qLzFF9+/YVdaxVq1Z8/vnngFNcBRxnnyeeeAKAo446ij/84Q8AfPvtt763zR1y7B4/\n7nFk+jUSicju00EHHST9nJeXJxPd5s2bZeHwqzBMZmYmP/30E1CVSbs65pmcNm2a5G7Mz8+XdhqV\noXXr1vFOoDbJisViiZ+0iZL0Q1Jo3769lBJbtmyZ7ERMmDABgKVLlyZ0XK9EXGOsa9q0qVjwTT2F\n+vYANG0bMGCAiLkjRozgoYceApxVFaBbt24ceuihANxyyy2yCvqJEbVzcnKkTF31+2FWVTOmGjVq\nxOGHHw7A448/LlKaezfrlltuiUtCMFKo26PR7F64A9nOPvts/va3vwFOpuzqqoI7kGnq1KmcffbZ\ngGM8Hzp0KOD4g5hrMjUi/JLy02ZS8GpCUEqJvjt48GA57rJlyzjnnHMAJG12fYcjG0efsrIyGSjG\nslzfap0Z3B9//DEffvgh4GzlmgnCbN/ed999MhF88803vme7CofD9OvXD3DuqSnPHg6H5SFt3Lix\nPNxmwrrxxhvp1q0b4DyYbszOj6ntGCvV3ZvdaeabNGkiaqrZsQFn8TNqjJnQxo4dyz/+8Q/A2co9\n/fTTAbjooouk+I6bBQsWxNXOeLHqg8ViiSJtJAWvWL58OW3btpW/jTGqsLBQdhjSJXejCRgKh8Oy\nevTt2xdASt/VBw0aNJDV9MMPP6R9+/aAIwabKs/mvaysLClLnwqjrdZadjgKCwvFxb1fv37idHbP\nPfeIqrhhwwbAUTXcadXMjkFpaSnDhw8H4t9FMGPLfE9rLWrgmjVrGDVqFOC4Shu1q7y8nL/8xYkP\nNFJhMBiUY3344Yci0bjVjNLSUrlWE/AXDAZ9cV5Km0nBK3F5/PjxsstgxElwbuAHH3wAONbndMA4\nqQQCARHXn3/++Xprj9FZmzZtSp8+fQDo2rUrF110ERBtqXezcaPjm5aRkSETnV8Eg0EWLVoEwMCB\nA+Xh/+Mf/xjVNiPam8ntt99+EzvIihUrpL83btzIRx99lFBbahqz5r2ysjKp16GU4sQTTwQcO8G+\n++4LOKoCOP1mdj322WefqMnAPPSRSER+nz17tvSFH5OCVR8sFksUaeOnkJGR4XnOgJNPPpl33nnH\nnEPeN7sORgyrL4waEw6H5dpNlewvvvgipW1RSkmk5v3331+ndGBwW863bt3KyJEjARg0aFBC0l9d\nOzuBQECs72+99RYHHngg4Bj2jAqWmZkpqqKJNIUq34MGDRrINY0fP16uNV5jdzyOYcZF+frrrxdJ\nwBhwlVJiwC0pKeHiiy+Wa23cuDEAv//97+V3c52tW7eOd5fK+ilYLJb4SRtJwS/3VuM+vGrVqp1W\nvOOPP55PP/3U83PGQpMmTcQwlpmZKdtTpr1+edRVx/RJfn6+rFYffvihSA1NmjQRyWrMmDFiADX3\nKjs7W1yDTzvtNDneUUcdxbRp0xJqj3uLz2BsABUVFVFeqsZFuVWrVhxxhLMIjh8/njVr1gBVxrqh\nQ4dy8MEHA3D00UdTVFQEONuoRt/3s6aG8fsw9i5wXO/BMUouXLhQjuU+nrnubt26iTep+X/Xrl35\n7rvv4mmy/wFRXuLXpGAGR+fOnaP2tAHeeecdMUSlekfil19+kXYUFxdz1113AambDAzmASsrK5P9\n/3feeUcS1YwcOXKXbSorK5N99SeeeEL8F/r375/QpBAIBGo0nrkNmEbM/+WXX2Ri/e6773ZpMBwy\nZIj4p0DVw/b000+nxCfETCB9+vSRfjGu4Js3b641zNyolfvuu+9OlaTGjRsnRksvseqDxWKJIm0k\nBb9n659++klWNGN8LCsrE4+3RFa1RDB7zZmZmbIiHnXUUSLFpAqz6pifwWCQyZMnS9tee+01oMrr\nLhaGDRsmXporVqyIMp7Fita6xlJosXyvJoxEcMQRR/DMM88AjnfjsGHDAHj77ZhyAMV1zpowgVlL\nliyRrUojBcSyrXjUUUftdN4LLrgg5vPHQ9pMCnXpZ2agZGVlxTVQ3d831ltzrIYNG3LbbbcBTkah\nVIiRxg9BKSUZoL7++mu5fjOIvd6Jqa6emd+NJbuoqEge3g0bNrDffvsBMGPGjJj7ZdOmTZJkZdKk\nSTLhPvjgg+IKXdexlFKe7L2be3zDDTcAjruzydQ1depU5s2bByTXz7FmtVJKMWDAAMBxACssLATg\nyy+/lM/UNe7PP//8nT5r4mS8xqoPFoslirSRFKrPtjk5OSJqjxw5UkR/QLy/Vq1aVedxzUx72WWX\n0b1796hz7dixQ2oWpGoXxqRYgyqxulOnTkyaNAlApJni4mJeffVVwLFc33LLLdLmRKh+fTVdrzHm\nlZaWSl/17NkzLpdr4x+waNEi2f8fNWqU1OBw12uMpZ2JEAwG6dWrF4DkdygqKhJDY0VFhUgjtRk2\nYyFWvwa3GvTrr79KjoQuXboAVTk0arqOOXPmANEZy40a5FvJetPg+nwBuvpLKaXD4bAOh8P6sssu\n05FIRF5lZWW6rKxMV25l7vRd96tPnz66T58+uqSkRF7FxcW6uLhYb9y4UQeDQR0MBnd5jJraFs/n\nzSscDuuioiJdVFSkKyoqpD07duzQpaWlurS0VG/atElv2rRJr1y5Ul933XX6uuuu0507d9aBQEAH\nAoGEzhvvq3Xr1vqJJ57QTzzxhH7//fd1ixYtdIsWLeI6xrp163RFRYWuqKjQf/3rX2O6V4AOhUJJ\nt//yyy/XK1eu1CtXrtRLly7VS5cu1Xl5efL/QCAQc3u8epk+/PTTT6VNq1at0qtWrdJHH320jPVg\nMKgzMjJ0RkaGXrlypfRhJBLRv/zyi/7ll190QUGBLigoSKQds2N5Hq36YLFYokgb56W6PmOcad5/\n/33Jq2gsuu7Ap59//lkCX/Ly8qRwjKnHCFVi11133SW5F1JBIBAQleD444+PSj8/c6ZTPuOkk04C\nvDc0xotJQjJgwAApujN9+nRRx2pTY4yBctq0aeLau9dee0nQlFvkrcm4nKi/ilJKcg/cfPPNsn9v\n1LJbb721xlqlqRr/pt9OO+00XnjhBaBKVdy2bZv4LEQiETHWhkIhad/SpUu5/PLLgaRc4HevHI3x\nfN5ko/n73/8e13mMzmz02r59+4pXWar6wUxkl1xyiVQfWrVqlS/Rbl6glJIEINu2bWPgwIEAkr59\n/PjxjBgxAnDCqceMGQM4FbnMNeXn5++Ub9Lr/t5rr73kYWnRooXo6caGU9skZnZ7wLE1VN/9adSo\nEVu3bo273e5MYm7PzNatW8u4NTU0srOz5bjBYFC+V1paKhGh/fr1E3tNEpGo/sc+KKVuVkp9p5T6\nVin1qlIqSym1t1JqplJqsVLqNaVUZt1Hslgs6ULCkoJSqg3wBXCA1nqHUup1YBJwCjBOaz1GKTUC\nmKe1frKOY8XVCKMumIQf9913n1hnq7uCGgv/ggULxI3X+L1Xd6pJNmV3PNRHJSQv6Ny5MwCnnnoq\n4PjvG7/97Oxspk6dCjjqntkdOuqoo6SvzSrnteV85MiRXHjhhYDjNty7d28AaVt13H4vpk2BQEDu\niVGfysrKRFJI4lmJiueoXo/zpptukuzY4XBYdkluvvlmFi9eDMD69eu9qG6dkijJDCBbKZUB5ACr\ngeNw6kqCU4r+9Fq+a7FY0pBky8YNBP4O7AA+BAYCM7TWHSv/3w54T2t9YA3fvRK4svLPwxNuxC7I\nyMiISpVl8R+zAjdp0kSiEmfOnJmQF2osmKjS6dOni+G2R48etUoIEK3jQ1UkZYsWLcRWYmwKXkg0\ndZVEbNGiRZQb88cffwyQkC2jDvyNklRKNQH6A3sDm4E3gJNi/b6uVoo+0Xbsivq24P8vYh6iDRs2\niCrhpzp21llnAU7a88ceewxAjHO1Uf0BM67ea9eu9W1XoqZwcMPGjRtFdd17770l+YrWepcJbvwi\nGfXh98BSrfV6rXUZMA7oBTSuVCcA2gJ1ux1aLJa0IRk35xVAD6VUDo76cDwwG/gUOAsYQxyl6OvC\nHTDkd3JQizekQlIzPim9e/eWZDCJrvIVFRW+uA7X5YfRoEEDyYT97rvviuRSH1ICJG9TuBc4BygH\nvgYuB9rgTAhNK9+7UGu9y9jZWNQHI165O8qqBxaz66S1rnOxcI+dmsZ9Xf9PBnPs7OzsnXZgcnJy\nJLP3J598IhMd7JxGPklSUor+buDuam8vAbolc1yLxVJ/pI1Ho5f79mZWDgaDUWmuYhUNvWqLaYc7\nj39tq1kye+C7+r7f7rzuffddJUXxqx3uhCyGdBjTflDdByeeJDSV7F45Gr28kWYAukWueI7vVVvM\nccxklJmZKfqiV9TVVrfV248+dv++q+P79aD6Fj6chsQS/u4FNkrSYrFEkTaSglfEKs56cR5zjrow\nBtHaDKOBQECOZ366qxOnI6ad++23nwTquA1kFu+pydfBD7Vsj5MU3MkiTOJQP8/jBQ0bNqS4uDjq\n9d1339GkSROaNGkSFRqeKF5PjqFQiFAoxA033EDDhg1p2LBhverySiny8/PJz8+PinzcE5FkKJWL\niVJqJ3tDMuxxk4LFYkmOPWZKNWJUr169xPgUCASYMWMGULPo7lY1Um2w+uMf/yh5F3/3u9/tNNPv\ns88+rF+/HoB///vfUr48nnTpfmKyJJ9//vniK3DNNdfI7orXO0k1HS8QCEhVqE8//VRyVUBVP/Xo\n0QOAefPmpTyxiteY9pvkNY0bN5Yx4qXPjpUULBZLFHucpHDGGWdwzTXXyHsmpv+GG26QDMW33nor\n4PgxmLJyL774omR29suN2u3O2rx58xo96ExRmsLCQqmT6EdpsEQxq5SRcjIyMiR9WJ8+fSQYaeXK\nlUlLX27pyUgj119/PR06dACcGgqmj6q7BBt70tdffy3vmYxbq1atkj5N9y1NY0/KzMykYcOGgBOB\nCk5/v/feewCSLdsL9phJwRiXrrzyShm4Wmvy8/MBeOihh+R9k5pryZIl0pmTJ0/2LZrPDO77779f\nale6/Qa6dOkiVYPcmAfhuOOOY5999gGcpCHxiIqxFiyJFTOhmodRa83rr78OOOndzSD24nxuY655\n6FeuXCnp/hs2bCjvb9iwQa71+++/57LLLotqR9++fXniiScA6NChg5Rwz83NTVqd8FItcU9uDRo0\nkByj999/v+xGmSQsmzdv9iU+wqoPFoslij1GUjCprUzJb3CML1dffTXgpGMzIqUpt5WqaMu99toL\nQIqAgLOCXX/99QA1SglQdS0jR46U6sqvvPIKjz/+OBDfyuROJJooBQUFsgIbiWDLli1RZfjqymUQ\nC9V9NqBKbSkpKaFFixaAI/Hde++9AHVm5V68eDFPPulkBVy0aJFIXhs2bBCpJ9W4r9OoBqWlpVFp\n1373u98BTmby4447DoDly5cDTvDU6NGjPW/XHjEpZGVlSS47qLLEvv3227zxxhuA4/LspUU8ll0L\nI/6bSkA5OTlSbWnLli1SV7I2Nm3aBDhpyi+++GIAmjVrJmJwLOpOTS7fiXL77bfTpk0boKrw7MKF\nC1m7di3gTLbJOlwppaTfwuGwTORGDXzvvfckM5HWOqGMTp06dZLdicaNG0s+x3hTp1cX3eN1JXfv\nJuy9996AU5jXOIGVlZXx1ltvAU5JAPN5Y1PJysqS7NpeYtUHi8USxW4tKZiZc8KECSIdhEIhfv31\nVwDuvfdeX3IuxCKKu12XzQo0Y8YMeW/Tpk0xr9433ngjffr02ekYseCl8XTdunXStxMmTACc3IhG\nnPUCd0ZlqJKWzH484In7d6tWreS4Rx55JJB4kZV4JVATNWvUwx07dojB2y1tuCN7a3Ih3759uy8+\nF7v1pGDsCKtWrRJrclZWlqRwb9asmS8OK7G4OEciERFRzSCuqUJRLGRkZMggPvvssxk0aBDgPKR1\ntcOL6zc2g3333Vd2eYxOHg6HJUmqFzYarbVM5Nu2bfPN0Wj//fcHnP4xOyoPP/xwQseKp48DgYBM\nBqZfQ6GQqEG1jZEDDjhgp52kuXPn+hIfY9UHi8USxW4tKZiZtKCgQKzhOTk54gswbtw4CgsLAUTs\n9YJ4rfju2d+0M56AqgcffFBWid9++01Sma9fvz7mfArJYJxlDj/8cNkjN5JLWVmZpFn34lx+Rra6\n2b59u/w+fvz4hI5h2mnujVKqzrERiUREUjAqQUlJSY25P4LBoPTz/vvvL+PdOGHdd999Vn0wmJtg\n/NqVUlKAViklD82GDRukKOfzzz8vKoZbZ0s1ZjvNWOx3hdmm6t69u1jkN27cKF6RqfLGM+J1IBAQ\nZxozQDt16uRpyHQgEEhJha6nn35afv/xxx8TOkZNmZDqQikl/WWc6DIyMiRuw20nUEqJt2ibNm1E\nPZs7dy6AFP71Gqs+WCyWKHZLScEYGM0K1qpVK6kyPGfOHF588UXAcVgxK1peXh6XXnopAD/99BMA\nn332WUqlhczMTJo1awYgMRe10bRpU/FjOOiggyR9ebdu3VKaxTorK0vaOm/ePA444AAA2rZtCzi7\nA2bl8oJUST/G0Ki1FmeweKk+dmLxU9Bak5ubCzgJagAOPvhgict54YUXWLlyJeAYyv/1r38Bjiph\n7rsZx35V3bKSgsViiaJOSUEpNRI4DVhnakIqpZoCrwGFwDLgbK31JuUsy4/jVJ7+DbhEa/1frxtt\nohmNC+i6desYMGAAUPvsuXHjRtmHNh5h+fn5UjswFQSDQQ499FAAvvvuu6j/GZuBWZUrKirEIKWU\nYsGCBUB0fcFUkJWVJTrw1KlTxTvTVGUOBoOeboulqhq32x3eq2jOXRkajYE5KytLrs+04ZZbbhHJ\n64QTTpCxfN9994lUrJRiw4YNQJWk6xexqA8vAP8GXnK9NwSYrLV+UCk1pPLvvwAnA50qX92BJyt/\nesqxxx4LVDnmPPfcczGJUsagZOIIMjMzxY22pKTE9yQc5eXlks8wLy+PLVu2AE5592+//RaI3p0w\nA6ysrEwmrw4dOkS5dPtNeXm5hHMPHDhQdnPcfWUm2Y0bNyZ9vlRMCHfeeaf87t6FiJfq2bqzs7Nr\nLWhs/t6xY4eMVTP2zjvvPAlFHz16tESB9unTR/q5tLRU+tnvPqpTfdBafw5Uv9v9ccrMQ3S5+f7A\nS9phBk5dyVZeNdZisfhPoobGAq316srf1wAFlb+3AVa6Pvdz5XurqUa1UvQxk5OTIyKVe782HszW\n5JFHHilSx/Dhw8Wl1i/y8vIksOe///2vXEcoFKqxXLlZgUKhEBdccAEA55xzjhgr/YzyNCJxWVmZ\nBOscdNBB4tFo2lZUVCQSQjgcTjpdXCrUh7vvripqloz66JbqINozsTo1qRXGoFhWVsYLL7wAOP1p\njI5GRQMnqC5VqfiS3n3QWutESsnrBEvRZ2VlSQe/++67QPwPh/E9b9SokYTkBgIBzxOSGMzgGTZs\nGCeddBLg7KAYO4IbM8C2bdsmDldZWVnie6GUksi4f/zjH562040ZkBkZGaLLZmVlyQRgXMlHjx4t\nfdi2bVvZe1+zZk1C/ejX7kMgEJDJze0gNXv27ISP6c4FConvBmzdupXDDz8cgAsvvJCDDz5Y2ml8\nUszPVJDo7sNaoxZU/jTT7SqgnetzthS9xbKbkaikMAGnzPyDRJebnwBcr5Qag2Ng3OJSMzyhf//+\nsl974403JnQMk5/vjTfeEEvu/fff79sqZc7Xvn17Wa2q13Iw5zaGqsGDB8uK0aZNG/r37y/fu/nm\nmwF45513xHjqpcidmZkpuyRbt26VAKy8vDxeffVVAEmm8t1330kE4z777CPST69evSQXQDySXLzq\ng5Fofv311yhPVbN6n3jiiYCTdbpnz57yPWPYHTNmTJSxORHMeRP1H8nOzpYdh/bt28v7Gzdu5Mwz\nz4w6RyqIZUvyVeAYoLlS6mecKtMPAq8rpS4DlgNnV358Es525GKcLclLvWqou1jruHHjgOhw2lgw\nA2j69OmAM/gnTpwI+Js6vV+/fgAcccQRNRZ2KSsrk209s2368ssvywPWunVrcYPt3bu3hCo/88wz\nMmi83FqtqKgQN+yhQ4dy1FFHAU7Y9tixY4GqkOaGDRtKRqmePXtKpquRI0dKm+OZFOLNJmXiMsLh\nsKhbrVq1kmxXpn8KCwvFqW3r1q189NFHgOMkZvo50TGQ7GKitRY7l1JKVLQLL7xwp63rVFDnpKC1\nPq+Wfx1fw2c1cF2yjbJYLPXHbuPm3K6dY6p44IEHZFU10XkmjXtNmPx7I0aM4A9/+ANQtXKtXLmS\nv/3tb4C/7rUmN+Cdd94ZtRKa63jjjTd49NFHAZg/f760x+yubN26lVNOOQVw+uGuu+4CnB0Msxp7\n6WPhlhT22WcfCeLq3LmzSDpmVW3Xrh3nnnsu4KzWRgpbuHCh9HM8KkE8n41EIqxYsQJw1CqzK3PV\nVVeJG7PxBbnooovkuBs2bJD2J1NyrXqfJ7pzkp+fT9++fQHHWGmC+CZPnlwvKeh3m0nBPBTBYFDU\ngK+++gpwBofpvJycHBo3biyfNUQiEbGMv/POOwBcfPHFKSniahxkDj30UBHFX3nlFWlzJBKJOQR6\nxYoVXHedI4w1btxYRGavS86bCWnDhg3SztatW8uOh4l3aNu2rfT3t99+K1trs2bNSigaNd62u89x\nzDHHAM5EZXZE5s2bBzgLgbn/WVlZYq+JRCKS9Wj16tVRSVPjbWu8bTeTyl577SUT08aNG8UWU1+V\nrGzsg8ViiUKlQ129WPwUzEx66qmnMmbMGICo2oG1YcTEzz//XCz4ZhWs7Rx1iWyp8s+PBb9ds5s1\nayYp6H/++WdxXjKGxlatWnHHHXcATt7G2vrWb5RS0o5bbrlFdhSMYXTu3LkSN9K6dWs+/fRTwIm0\n/fOf/ww4qkY80k31wjeJ3oN169ZJYqAFCxZIfIkPzNFaH1HXh6ykYLFYothtbApmNp44caJk/3nk\nkUcAp1Sc+f+mTZu49tprAZgyZYp43tVFIBAQPdSvOHU/8Fti2bBhgwTihMNhcc02OQG+//57MebV\np/SktRbPy48++oiTTz4ZcPJPgJO7wBhMf/jhB0nB9uSTT0oUaLztTzZDlKmhkZmZKee+6KKLkjqm\nF+w26oMlfmoqYLsnY9S/cDgs2aaNurNmzRqZ7Hfs2JGy6mC7wkys06dPl0zSL7/8sp+ntOqDxWKJ\nHyspWHZrTMLeRo0aiTS0bt26nXwPYtn2TTUmYragoEA8F31uY0ySwm5jU7BYqqOUEnfmVatWRSVM\nSXZHIBUYe5c7biMdsOqDxWKJwkoKlt0as/OxY8cO8RsIBAJiYDR+E6moJREv7hRtfvubxEPaTArx\n+sdDfA4mNeHObhQPiTov1VY/MpmBUFPGppr+n6gLrleDtK52GmIp3us+hsl5Wf34ZnfBz4fMjwc5\nGAxK1GZpaWm9qEFWfbBYLFGkjaTgV9CMH2JjorO21lpWF69cpf2oJRlPRexYiSfyMdnjVy/n7hfu\nIDSvzmVSBUL97ZhYScFisUSRNpICpFegkV8YA5g7ZVgqwrfjwS3R7K6kchx5KSkEAgEJ4quvZyGt\nJoU9fUKAKmebvLw8SWSilBKDaCrrRO6K3fFemIfTXXcxFXiZCKVRo0ZiJDWxHKnGqg8WiyWKtJEU\n/FAdlFJiuEkHEd0diTlkyBDJwrRs2TIpZWci+TZv3ixp11atWrXbrdwZGRm1llDzC3Ov6yOFWTIo\npaQUYFlZGb169ZL36+O+p03sg5cdYMTIJk2aiFgeb+ZnLzG2g1AoJHvQ4XCYs846C4BrrrlGBrTJ\nM5idnS0TyLZt26Qk+WuvvSZipTtVWqow12JsI5mZmSLuup2GlFISlZgqUd6EdW/fvl2cmnYH7rrr\nLu69917AmUDff/99wKl8NmfOHMCzPrRRkhaLJX7qlBRqKUX/CNAPKAV+Ai7VWm+u/N9Q4DKgArhR\na/1BnY3wOErSrLAdO3aUoh9e4rVYFw6HJRmtyeR76623ipQTDodFkqioqOD1118H4NJLL/XNfdft\nT2ESf3Ts2JErrrgCqJJofvjhB77//nvASW7y5ptvAtGJalJRAzEjI0P65ZZbbmHZsmW+nzNZTMq4\nzZs3y++rV68W9SEYDEqZwbffflsSzCaBZ1GSL7BzKfqPgKFa63Kl1EPAUOAvSqkDgHOBLkBr4GOl\nVGetdVIjVylFgwYNAEeMMvYBI8pqrenYsSPgFEFt1copdD1r1qxkTlsrXqtcZWVlUtTkwAMPBJz0\n7aZaUIsWLWRSyMzMpHfv3oCjjvgxKeTk5Ej+y8GDB0sOw7KyMpm83EVVTR3EjIwM2V2ZMGGCFK1J\nBcEenq8AABCzSURBVAceeKBkaK4tgUq6JZ154IEHAEe1NerOqaeeKg+/Ukp2qJ544gleesl5BE3W\nKL9IqBS91vpDrbVRcmbg1IwEpxT9GK11idZ6KU6lqG4ettdisfiMF7sPfwZeq/y9Dc4kYTCl6BPC\nSALjx4+XnHslJSWiHhiKiopkpc3IyJD8/jNnzpQS7hs2bPDM4OW1+lBQUMBjjz0GVBWDqaio4J57\n7gEcMdPUqsjOzhZDo9diuSlvd//994u0NWXKFEaOHAk4RWtMnQlTH/P++++X1Ge5ubmi8rz88ssp\nWY2N2P3cc89JzsPLL7+chx56CKiSCAYOHMjQoUMBRxJ65ZVXALjiiitSbqw1Uq+R/u68804mT54M\n7FzYyJQ13LFjh0R8NmzYEEBKzXlNUpOCUuoOoBwYlcB3rwSu3NVnzM3q0qWLDDZ3WncjDubm5koH\nhcNh+cyhhx7KOeecAzjVoCZNmgSkRseNBWOpf+qpp0SPNA/8wIEDZRI76KCDJD15ZmYmw4YNA7wV\ngTMyMsSese+++8q5P/zwQ5577jkgOo7EqAaHH344Q4YMAZyH7bPPPgO8GbDxTL7Z2dmiVh544IFi\nzTdFhEzFKHPcCy+8EHDUnLfffptUcvbZTunVadOmAU4f1+ao5K5mZibtTz75xNf2JTwpKKUuwTFA\nHq+r7lzMpei11k8DT1ceq/4VPIvFAiQ4KSilTgIGA0drrd350CcAo5VSj+IYGjsBXyXbyHPPPZd3\n330XiM7FZ2Lpr7zySsmMO3ToULGMFxQUiBgJ8PHHHwOI9JBoKncv1IeMjAwRDY8//niReozzUpMm\nTUQsf/LJJ+X98vJyKZfnJQ0aNBAVDWD48OFAdHk7qMpPYUT1QYMGicRTUlLCzJkzpZ2JEAgE4upb\nIx00a9ZMxPJjjz1WCgZNmTIFcMbQaaedBjh9a0T3Z555JqWSQjgcZsGCBUCVFGBSzNeEUaFXr17N\nfvvtB/hfACjRUvRDgTDwUWUDZ2itr9Zaf6eUeh34HketuC7ZnQeLxZJa0sajcVf/DwaDoreuW7eO\nG2+8EYDbbrsNcIxzZusmFArJDPrFF19w2GGHAc6M65YsACZNmpTyrSmz0j7yyCPccMMNgLNimJXL\nlGP77LPP6Ny5MwAHHHCArBhr166VCtxebke+9tprnHnmmYBT5LRnz56AY/gyXpi//fYb5513HuDY\nQaDK0AfOqnvzzTcDiLE3XuLJvOSmQ4cOfP3114BjaDT+EuZYoVBIKpCvWLEiyiXaSDqpICcnh0sv\nvRSoMiKWlZWxbt06IDp6tnpuBXO/kzCY7znZnCsqKqRYxujRo+VGG9+EefPmiUhVUlIiv0+bNo0j\njqjqA1Ovz1QNmjJlSlQGYL9RSskD3b17d7nJbn8Ds4vSr18/ES/dg6Bv376eTgZmAB577LHSb0VF\nRSKWH3/88WJozMvLiwr9Ntdkfl+2bFnSRtxEJ+klS5ZIJauajHZlZWWycLgngVSHiJeWloox1vh3\nvPLKK3IfysvL+fLLLwF48MEHpWq2WSxSgXVztlgsUewWkgJUrZbXXHONGMHOOOMMAObMmSPiF1St\nNrm5uSJVuIN1jIfefffdl5rGV5KZmckf/vAHAMaNGye+ADk5OTz//POAU0IMnKCe008/HYBevXrJ\ndcRaGzNW8vLyAMc13PRxaWkpU6dOBaBdu3Y1rqamj90pw6644goRiU1xk3hJRp2LNf/A5s2bRSJL\ntfqotRaD6L///W8geps9HA5zwgknANEu5qlkt7ApuAmHwxxzzDFAVVRcWVkZCxcuBBz7gnHuePbZ\nZ8V33K2fmcF/8MEHS5n1eIhX7zWT0XvvvSc6eLdu3WSv//bbb2fcuHFA9CA1bZ40aRJ9+vQBHEcu\no9d7ce+M3eKDDz6QHQX3g+62GUCVj4dRuxo3bhxVjcm836ZNG/GtiIdUhAsXFxeLnaS8vFx+TxWm\nv4zvxFdffSUOebVlvf7qq6/ETyGJhcFGSVoslvjZbdQHQ0lJCR984ARemtm1f//+4pvQokULmV3n\nzZvHwIEDAfjxxx9l5TUrd+PGjRNqQ6xSgpn1Td6EAw44QOoHuo/xySef1Lg6ms/06dNH2nzMMceI\nT8aOHTsStkSbvjMW+Xnz5okUkJWVJVLM3nvvzYwZjuf6wIEDZZUybWvTpg1LliwBnBXQiMZHHnmk\n5AWIh1TUaXBLjcZ1OJWYvjMqlukzcNpodscee+wxkWK6d+8uu2eFhYXAzi7RXrHbqQ+1YaLzIpGI\nWO2ru+Uay78hPz8/oTx4sagPSikRzY17datWraK2FkeMGAFURctV59lnnwWqbCAADz30EHfffTeQ\neDapjIwMmUTN/W/atKn020EHHSQW8KKiojof1CeeeAJw7D3utl999dUJtc8vunTpAsA333wj7z3y\nyCP85S9/qa8m1cmpp54KOBOEGeNmITjkkEN26fhUA1Z9sFgsCaC1rvcXoP1+lZSU6EgkoiORiC4v\nL9fl5eW6UkKJ+7Wr7wWDQR0MBnWXLl30q6++ql999VW9adMmvWnTJv3bb7/pb775Rn/zzTf67LPP\n1s2aNdPNmjXTgUBAZ2dn6+zsbN2uXTvdrl07PXHiRF1RUaErKip0JBLRa9as0WvWrNGNGzfWgUBA\nBwKBuNtt2hYMBnXLli11y5YtdSgU0qFQSGdlZUkbcnNz4zpHgwYNdIMGDfSqVaukbydOnCjnSsX9\nrekeKaWirjkvL0/n5eXpsrIyefXo0aNe2hfvKxAI6EGDBulBgwbpBQsW6AULFugHHnhAZ2Zm6szM\nzFiPMzuW53GPUR9qw3iPGQccQJJkGvE+XnZlITc64E8//SRbjkaX/eSTTyQE+v3334/Ky2h2H8xW\nmRuttdglEk2w4d4h0FrXmFLetD03N1ecZZRSdapK5jqnT59O27ZOao2SkhJJevLTTz/F3E4/dx/M\nTorb2/KBBx7gjjvu8OV8XmN2h5YuXSrvmR24GHckrPpgsVjiZ7fbfYgHpZS4R0OV4dHkI0iUXa1k\nZmcgPz8/Kl0cOHkKjJFr7NixFBQUANFZp90YI+jJJ5/M7Nmzk2pz9fZX37VQSslKqrXmkEMOAZxI\nU5P4Ze3atTtJDUop8QXJyckRqaisrEzcjuORFPyUXM3uSnl5udybRHegUk0wGJR0bG5Xcj+yVltJ\nwWKxRLFHSwpQtQ8PVanOXnvttdo+njRm28i98pvVs3Xr1pLdyL2q1uRGXFpaKinPNm7cuNP/46Uu\nu4DWWrwR+/fvz/nnnw84K+moUU5irS+++EJ0V5NZ6ZBDDhFfkMzMTPFvmDx5skQtxkOiUZKxYBLh\nZmRkiERi7Ete4XWuAxNJe88998jYMrafzz77zJeaGnv0pJCZmSmJVMLhsIRa+ymimkpP//3vf8WQ\n6XZOMeoFVPkZbN++XR42E8+xZMkSzx1r6hqw5mF86623xFHm9NNPl8n03nvvpUePHkCVv/6OHTvE\nIcstlj/44IMJTWZ+3hu3y7a5VpO8xwuCwWCtEaxuVdL4iBjVZd26dTJGGjRoQN++fQEngY2ZyLTW\nMl4effRRwInd8aO/rPpgsVii2KMlhYyMjKgVzUQg+onbNfnOO+8EkDRgpaWlUtdBKSWpwq666iqR\nFBJNTlIbbukg1lVFay2uzbNmzZKVbf78+ZKyzWynNm/ePMpL06gSy5cvT7uajtdee638bvqlVatW\nEkwXL9XVvtqkBLd36+233y7JbNxBULXdG/P+lClTZHt9zZo1QO31LZJlj/ZTGDRoEA8++CDgiPUm\n52Ft7sFGV/OiGG0gEKBly5ZAlV1j4cKFMnD8quzkJ6FQSCJQjet1ly5dxB/h1ltvlYk30WQrfvop\nmHqc1113nbgHH3/88cydO9eX89VEZmYmnTp1ApxM0uDE65iI0unTp8v4GzRokPiLJJpPtBrWT8Fi\nscTPHi0pFBUVySpdUVEh3nbufHh+Ut33YHeUDuoiHA5LXoBvv/02ZRWmE2HFihWA4xloMjhffvnl\nnuzu7CbsOTka48WoAevWrROLc2lpqTjkfPrpp4B/OplhT5wEqlNSUiJFfNNhgamNUCgk26WNGjUS\ne0d9hE6nO1Z9sFgsUeyR6oOxhrdr104svFprSQZi8hLm5uaKSJkO/WDxF5NPQyklCUqCwaBIjP8D\nYyAm9WGPnBQM7mpD7noQxjOstLS0xjTqXuN3RZ/6Zne7PvdWYkZGRtS9312uIUHs7oPFYomfdJEU\n1gPbAW/zl8dOc3tue+7/gXO311rn1/WhtJgUAJRSs2MRbey57bntuf3Fqg8WiyUKOylYLJYo0mlS\neNqe257bnrv+SRubgsViSQ/SSVKwWCxpQL1PCkqpk5RSPyqlFiulhvh8rnZKqU+VUt8rpb5TSg2s\nfL+pUuojpdSiyp8751n3rg1BpdTXSql3Kv/eWyk1s/L6X1NK+VbtVCnVWCk1Vin1g1JqgVKqZ6qu\nXSl1c2Wff6uUelUpleXXtSulRiql1imlvnW9V+N1Kod/VbZhvlLqMB/O/Uhln89XSo1XSjV2/W9o\n5bl/VEqdmMy5vaJeJwWlVBD4D3AycABwnlLqAB9PWQ7cqrU+AOgBXFd5viHAZK11J2By5d9+MRBY\n4Pr7IeCfWuuOwCbgMh/P/TjwvtZ6P+CQynb4fu1KqTbAjcARWusDgSBwLv5d+wvASdXeq+06TwY6\nVb6uBJ704dwfAQdqrQ8GFgJDASrH3rlAl8rvDK98JuqXeq4M1RP4wPX3UGBoCs//NtAX+BFoVfle\nK+BHn87XFmdAHge8AygcR5aMmvrD43PnAUuptCO53vf92oE2wEqgKU5k7jvAiX5eO1AIfFvXdQJP\nAefV9Dmvzl3tf2cAoyp/jxrvwAdATz/ufzyv+lYfzGAx/Fz5nu8opQqBQ4GZQIHWenXlv9YABT6d\n9jFgMGDylDUDNmutjfO9n9e/N7AeeL5SfXlWKdWAFFy71noV8A9gBbAa2ALMIXXXDrVfZ6rH4J+B\n9+rp3DFR35NCvaCUygXeBG7SWm91/087U7bnWzJKqdOAdVrrOV4fO0YygMOAJ7XWh+K4lUepCj5e\nexOgP87E1BpowM4idsrw6zrrQil1B44KOyrV546H+p4UVgHu+vBtK9/zDaVUCGdCGKW1Hlf59lql\nVKvK/7cC1vlw6l7AH5RSy4AxOCrE40BjpZRJduPn9f8M/Ky1nln591icSSIV1/57YKnWer3WugwY\nh9Mfqbp2qP06UzIGlVKXAKcBF1ROSik7d7zU96QwC+hUaYXOxDG6TPDrZMqJmX0OWKC1ftT1rwnA\nxZW/X4xja/AUrfVQrXVbrXUhznV+orW+APgUOMvPc1eefw2wUim1b+VbxwPfk4Jrx1Ebeiilcirv\ngTl3Sq69ktqucwLwp8pdiB7AFpea4QlKqZNw1MY/aK3dGVgnAOcqpcJKqb1xjJ1feXnuhKhvowZw\nCo5F9ifgDp/P1RtHbJwPzK18nYKj208GFgEfA019bscxwDuVv3fAGQiLgTeAsI/n7QrMrrz+t4Am\nqbp24F7gB+Bb4GUg7Ne1A6/i2C7KcCSky2q7Thxj738qx983ODskXp97MY7twIy5Ea7P31F57h+B\nk/0cd7G+rEejxWKJor7VB4vFkmbYScFisURhJwWLxRKFnRQsFksUdlKwWCxR2EnBYrFEYScFi8US\nhZ0ULBZLFP8PkM5IigprKEEAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/2... Discriminator Loss: 1.3093... Generator Loss: 2.5877\n", + "Epoch 1/2... Discriminator Loss: 0.9853... Generator Loss: 1.1730\n", + "Epoch 1/2... Discriminator Loss: 1.0564... Generator Loss: 0.8760\n", + "Epoch 1/2... Discriminator Loss: 1.0396... Generator Loss: 1.4255\n", + "Epoch 1/2... Discriminator Loss: 1.0599... Generator Loss: 0.9275\n", + "Epoch 1/2... Discriminator Loss: 0.9641... Generator Loss: 1.3584\n", + "Epoch 1/2... Discriminator Loss: 1.1231... Generator Loss: 0.8175\n", + "Epoch 1/2... Discriminator Loss: 1.0010... Generator Loss: 1.1018\n", + "Epoch 1/2... Discriminator Loss: 1.3737... Generator Loss: 0.5330\n", + "Epoch 1/2... Discriminator Loss: 1.0614... Generator Loss: 0.9055\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeYVEXWh9/q6Z7EMMKQk4CCqCigiAQTKhhwFbOCiBjW\n1TXgiqx5MSu6a/wwYHYNgIo5oKAsyiJiVjKSo0hmgAnd9f1x55y53fTMdBwa9/6eZ56ZuX27qm7d\nqlMnH2OtxYMHDx4Evl09AA8ePGQWPKLgwYOHMHhEwYMHD2HwiIIHDx7C4BEFDx48hMEjCh48eAhD\n2oiCMeYEY8xcY8wCY8wN6erHgwcPqYVJh5+CMSYLmAf0BZYDM4AB1tpZKe/MgwcPKUW6OIVDgQXW\n2oXW2lJgDNA/TX158OAhhfCnqd0WwDLX/8uB7lXdbIzx3Co9eEg/frfWNqrppnQRhRphjLkUuNT1\nP57LdXT4fD6dm9qYI7/fTygUAtDfAmNM2P/WWnw+X9SxJTLWeNeBjMc9Lvf35W+fz6fP4u4j2vPE\n2/euWreRzxHDOJbE0m66iMIKoJXr/5YV1xTW2tHAaHA4BY8g7IysrCzAWXS1MT+yyEOhUJX9Rbse\nSTiSQaLP6fP5CAaDO113P1O0Ptx/RxKImhBJWGp7DVf1HMkiXURhBtDeGNMWhxicCwxMU19/SBhj\n9AQuKyurlT5rkxtJFWSs5eXlKWsrVkQSkT8Kt5sWomCtLTfGXAlMALKA56y1M9PRlwcPHlKLtJgk\n4x7E/6iisTq2Mzs7m+bNmwOwePHi2hyWhxgRTdzIhP0UCdc6+9Zae0hN9+8yRWMk/iisV6wwxlC3\nbl39X2TefffdF4ALLriABx54IOl+RASJV+6vimDtauVaJiGaviKV7fbu3Ztzzz0XgH/84x+sWbMm\n7rZ8Ph+BQACAkpKS2L4Tdy8ePHj4Q2O3FB/8fr98D3BOrWuuuQaAyZMn8/PPPwOxU8Z0Q8YZCAT0\nVGnUqBEnnXQSAHXr1tUTffDgwYBD4c844wwA5s2bV6vjbNiwIXXq1AFg+fLlYWMeMWIEAPfffz8A\nq1evZseOHbUyvkxDKrmmnJwcAB599FGOOOIIAPbZZx9dF2vWrGHIkCEAfPLJJ1H7lXsDgYByB9u2\nbXMrkGMSHzKGKIgtPhaWTO4Rk12vXr24+eabAdhzzz1p1qwZQBh7XlZWxttvvw3A8OHDAVi2bFnY\nhpW/ayImyYg68rKysrLIzs4GYL/99tOxNWzYEHC06a1aOVbd33//PaG+ZKxA2NxWNXYhtu3atdNF\n2rdvX72/Q4cOHH744QC0bNkSgL/97W9MnjwZgKVLl9aapUQgz9SxY0c2b94MhPskyEapV68ec+fO\nBWD79u0p7TvZtXDQQQdxwgknADBgwADatWsHOGOXPrZs2aJ/33jjjYBzAP76668A1K9fXz/fc889\n+eabbwAIBoPu8cVEFDzxwYMHD2HIGEWjtRa/3x+TvTnSNl1SUkLTpk0B55ST0wEqqXl2djZnn302\nAKeddhoA/fv3V4qam5vL8uXLYxprVd5zsUBO0rKysrDxC9fjdlgSriEZTkHgPj2rgny+Y8cOund3\nvNIvueQS9t57b21DUFpaCsCoUaP02owZMzjmmGOAxH0r4vXebNKkCQB33nknS5Y4DnuFhYX06NED\nQMe+YcMGfvvtNwB69uxJcXFxQuNzI1ku2z1Hwt02atSIdevWAc7pL9xbWVkZ06ZNA1Ax4vbbb1dR\nedWqVdSrVw+Ahx9+WB25YuEQI5ERRMEYQ05ODmVlZQlN9C+//MIpp5wCOOzXE088oZ/Jyz/iiCO4\n++67gcoXsGjRIrZs2QKgLyIW5OTkpESOFqKwYMECcnNzwz7btm0b8+fPT7oPITLRvP0iIQvwwAMP\n5MEHHwSgTp062oa7HXn+/Px8JRbr1q1Lifjgdl2uiUCIRv6yyy7j6KOPBuCMM87QQ0LGW1hYqCJR\ns2bNWLBgQdLjTBUWLlzI0qVLAYewPvPMMwD8+uuvXH755YAzz/Ksjz/+OACPPPIIBxxwgLYhYsXS\npUuT8nb0xAcPHjyEISM4BWstpaWlYYE4sVA3OQ02bNjAsmVOUOZ9990X9d7PP/+c3r17Aw43AdC8\neXNlOeOhpsI6pwotW7akoKAg7FpWVlZcp3xVkO/GIvLccIOTC+eaa65hjz320OvC0RhjlAWXa/n5\n+dp2vXr1kh6zO8AqLy+Pbdu2VTtmub5mzRref/99/V7r1q0BR+kGDqcgiucvvviCgw8+GHDY7upQ\nG/4zbdq0oUOHDoCjPPz0008BR4F+4IEHAs4aWblyJVCpjG7atKmuxU8++YQVK5zwomTH63EKHjx4\nCENGcArGGLKzs/H7/Wqm27p1a5X3y0kip1asHmVyij311FMATJo0iSuuuAKIz5W4qoi8RCFmPjdC\noVBKOBJ5Zp/PpybO5cuX72R2zc/PZ86cOfr/hg0bAFi7di0jR44EHIVo3759AfjTn/4EOHoI4RS2\nbdsWd6RhJNwnc0lJSVzegqI/Gjt2LO+++y6APvPEiRNVb9OkSRNefPFFAE488cSwdynjj8UTNFmT\npPTRtWtXunTpAjicrvgptGrVim7dugHOfjjkEMea2LFjR8B5t19//TXgKKOTnXtBRhAFt/gQS3x4\notF8svlk8o455piEXmgwGAzLIZAsuybWEDeWLl2asIuyG/KseXl5rF27tsr2tm3bxrhx4wB48803\nlZi4CVOrVq3YuHEj4Gwmad8t8iUbreiey3iVlm5iIuOWsW3atImioiK9d/369UDV+RRiIfrJvvcG\nDRoAcPfdd6vCe8iQIeq0ttdee+m9eXl56l8hFocpU6aoK/yWLVtSdlB54oMHDx7CkBGcgqC4uDgm\nFihRCi1ej3JKfP7556qgjAfGmJSKD999952evILLL788JYE2YobbunVrzGMOBoNR7129erWayEQx\naq1VUUP8QJJBVlZW0tyGm5MTcbRp06Zh60ZEyGT6SlR8EI5l7NixgKOgFR+D4cOHR90DpaWl6jkq\nHrm//vprSvJIRCJjiEIoFErKKagmnHjiiapxlliCe+65J6GN5x5rMuOUNiRuAyrZ1rZt2/Lll18m\n3LZAWM5UzGdeXh5//etfAUcHAc4ziKhRVFSUtFNQKoitMUZdiGUjyf/gvL8ffvgh6X4STTcn+qtI\ni1N1CAaD6kciVoZAIBCXuBMrPPHBgwcPYcgYTkEUi3J65ubm1ug1KLb0tm3b8uqrrwKOckpOx8aN\nGyslbdy4sSqu7r33XsDxhEwE2dnZ2lYyJ/All1wCOCewQDwr33vvvYTbdSMev4+acP3116s44ubq\nNm3aBDhznywHlQq/gEaNGqn1QfwU/H6/Wlz69u2rIk8yiEcRLPOycOFCjUCNhnvvvVcjZe+44w5O\nPfVUwAmaEz+b7777DoBbb71V14n4c6QCGRMlWfFbrxUWFqpG1j3pPp9P/d0nTZoEONF7Veki3JYK\niSg76qijAEdGTnC8O7UfL3w+n+o2CgsLtR3RJt94440Zk8hEnve///0vhx56aNg1qIwqHTdunJr9\nsrOzlU3+17/+pU5CbpOfsLzuRLFZWVlJs8J77723muqiOWEdddRRzJgxQ/tOFPEQwMLCQgCefvpp\nFV3efPNNILbQ+DPPPJN///vfQKWeqLi4WLNzyV6pAV6UpAcPHuJHxnAKEsUnLJlbfHD7Avh8PmW/\n5MT/4Ycf1AU0EAjo59dff726Qh9zzDHqPnrZZZcBibsrxxJxWBP23nvvsIAnCYK59NJLq/rKLoOc\niIsWLVJ2XN7Hjh07lGPbb7/9VLNer149/V5xcTFt27YFUD+HqrTmqXIrHjRoEIAGx5WXl/Pyyy8D\ncNVVVyXdPsTHKci69vv9Ca07YwyzZ88GnOQr4DyTcA0xztnulaPRrU8AZ/Lk5U2aNEknxOfzqfwk\nvu5ulJSUKDt7/fXX6/UuXboo+yXhvRMmTEhoASYjL9evXx/YWZ8xZcqUhNqsDchGF4IAlXMwbdo0\n9T796quvNGS5sLBQrRKBQEA3Qk0mtFQdUhMnTgQqTZJ5eXkce+yxgBOSnAqdQnWoirglehAdd9xx\nmnxFkKpkMZHwxAcPHjyEIWM4BXBOCVFUHXfccdxzzz2Ak29AfAwSjdfv2bOnZkoWzXTz5s0TSmCS\nKIubnZ2trsRuuzmgz/fKK68AqTsxU+FP0a9fv52uyYn/zDPPhIkGoiTctGmTpmybN29ezH75qRIf\nJDWbwB37IdxDqiDPVlhYqM9fUFCgfghr1qyJVRG4E0TsePnll8OS3IDzjOkQ/xPmFIwxrYwxnxtj\nZhljZhpjhlZcLzLGfGqMmV/xu37qhuvBg4d0IxlOoRwYZq39zhhTF/jWGPMpMASYZK29zxhzA3AD\ncH017YRB5KTNmzerEuWAAw7Q0yjRjDnXXHPNTrH+AwcO5NFHH427rUSVjOXl5VVyOhKt2atXL8CJ\nAL3wwgsBx3chFcFRiUICcNx6H8kU1KNHDzp37gzA119/zYQJEwBHAen2wBOlcW3Vjdh///3D+oNK\nU151fgKJwB0lKt6pw4YN037eeust/vznPwPxZxiX/CDiBu2GRKqmGgkTBWvtKmBVxd9bjDGzcUrQ\n9wd6V9z2IjCZGIhCZDjy5MmT1Z2zRYsWDBs2DEB972OFLMypU6dqvj5hLXNycmq1uIm1VsWV7du3\nhy1OGaeEx/p8vqhRjRs2bFAR5KabbtLrsulKS0tT/izutkXskUQfZ511ljpfrVq1Sq0LU6dOVYvK\n6tWrVcFWW9auH3/8EUAV1Pvuu6/OcbQNlgjkkJH3k5OTo89fWFioYsrAgQN1Di+77LKYCXv9+vU1\ndNodb/Pcc88Blc+YaqREp2CMaQMcBEwHmlQQDIDVQJMqvhNWit6DBw+ZgaSJgjGmAHgTuMZauznC\n289WVejFRpSiD4VCYdmcS0tLeeGFFwDHhCiJWS+88EI+/PBDoNJNeMOGDXqChUIhZROPPfZYjSg7\n+OCD9ZQSDmTp0qV6byRbl44Tze/3qyLxyCOPDPssMv5/jz320L/diUyKioo0WWfbtm1ZtGiR3gOO\niJLK4BjpUyDjEE/BwsJCHeeBBx6oXqLz589XRduGDRtq3TtTxDQpnCJpzcBxD46WwyJeyDwLx1Be\nXq4uyOXl5RocVr9+fV2rgwYN0vmM5sbv8/k04crbb79NixYt9DNxgXcnJk4HknJeMsYEgPeBCdba\nByuuzQV6W2tXGWOaAZOttR1qaMf6/f6wxewelzFGi6W45SghIG6HkDVr1ujfe+21V5jvv+RjFFfi\n1157TYnJgQceqO6mderUUZfodMKdtTiyCI77+QsKCtQJ66STTuKrr74CHP2KsKvRvpeqqFPxrVi6\ndGlUeVzew8iRI/n2228BJ3YjkbiLVLg5uyFxLm6flc2bN6dEhBA9j8zzqaeeqq7rTZs2ZdasWYDj\ny+HO1u1O7Q+OqCw6kMaNG0ed4/nz5+shKc+UANLr5mycmXgWmC0EoQLvAhdU/H0B8E6ifXjw4KH2\nkTCnYIw5HPgC+BkQzclNOHqFccCewBLgbGvt+hra0rJxNY2nT58+jBkzBqhUGLnTgPn9fmXbcnNz\nVVn32GOP8dhjjwGVFNrn84UpH93pvMRLL5q1YFdXyBZRIRgMKusqSq3t27eHpbQTJDNe6ePNN99U\nTs2djk7mu2PHjgklrXEj1Tk1RHErAVLgzJvMVyryYbgTurhFAvd7ECuXWJmqg3xv27Ztym0cccQR\nqcjZuXvVkkzlRpOINHf9vXjCW915B6u6LxPmDarOMRj5WSrGa4zhnHPOASrrGQ4ePFhrNKaiQE4q\n4krckDlYtWoVjRo1AhzLSKROJxEkks7e5/Opm72M55NPPlFTvJuopwFelKQHDx4SgLDsu/IHsN5P\nYj8VXJb+pLu/rKwsm5WVZXNzc21ubm6t9JmKnw4dOthFixbZRYsW2SuuuKLW5ivDfr6JZT9mjPiQ\npnbTwoplkviwq5Aup690za3f79dy71988YVmi/ofgyc+ePDgIX78ITkFt2Zc/BASrWidyTDG6LOm\n2mHJjVQWvokF6eBCfD6fKqCLi4tVmZnOectAeJyCBw8e4kfG5FNIpSnK3U6qK0RD7ekUouUgcPdr\nrU34pKvpNK7KnJnuALJ0za21VgPh3PUSxD9G7okHicxFqj0204GMIQq7IiQ4UaTC4cUdhhytPfem\nTMdGqUnscG8ad3xIIu8pnvGnQ3EJTvEacR9u1KiRhuAHg8GE+0zke26X9kwVZz3xwYMHD2HIGE7h\nfwWR7H9VMMaoO3MoFEp5zcCaWFi3d6c7q3YiqE3xIxJS2fnRRx/VeiFr1qzRBDa1fVqno/ZjquER\nhQyDEII999xT4y9+++23Wh1DgwYNNJ6hpKQk5VYACC8Akw6IqPD5558D0KZNG7VEDR06NO4MSJkE\nifmpV6+eukdv27ZNRbtk63l64oMHDx7CkDGcwv+6l6Cw1eeffz4A5513HhdffHFa+qpKAy5jyMvL\nU4+/WN6JRByWl5fXqIisLc37/fffDzglBcEZmyTckTRxyaI2RaFmzZppEJoEc61evZrrrrsOcGpU\npqoORMYQBUiOMAjb7U7WEks6+F2ZENU9Bsk9KQlgAoGAEoV//OMfKesHnGeNXNBuHcbWrVtr3LzN\nmjUDnKI2koXpww8/pH///mHt7go0atRIdQbyTGvWrFGLQ6zp5mtC5DOm42CTimGjRo3SccvmnzNn\nDgsXLgRSW2DWEx88ePAQhoziFNy2ewjXgEshj27duik1lgQpw4cPV+VLZMEM4RYWLFigZcNEcRcK\nhTLCP6J58+aayltOtrKyMq0ZmEyZMzdHUJ2TjjFGNeObNm2Keo/P59NSfsKeZ2Vl6b333HPPLuUQ\n8vPzAafMoDv9GTjcg9Qe7du3r7LiySgcI7mtVD97VlYWN998s/4t7Ut6/VdffTWlHIIgY4hCNHZW\nqiYdddRRjBw5Eth501eHUCikGuf99ttPczRKbQXJJ7irIM/38ccf63PLxrTWcvzxxwNOss/XX38d\ncNjgeBZfrCbQSOLozj8oiUQ//vhjnU/RcC9atIiBAwcC4SXV3U46OTk5+lyJVviKBVLrUhLbujFy\n5EgaN24MOLkUzzrrLMCxSiSq54jMcJVqotC4cWOtsgWVBOy9994D0lcPxBMfPHjwEIaM4BR8Ph8F\nBQVs3749jGoLmzR27FjatGkDOOneRdEihT6uvPJK9Wv3+/1hp5EUKpk3b56yl2vWrEnvA8WANm3a\n8MEHHwCOX4Ck7/7yyy8BR5kkcRsLFy4MswzEwzImepJIqrGCggJuueUWwBFjxCpx0kknAWhm6Ui0\natVKxbtFixaxePHiuPqPFz6fT1ltN2Rd3HnnnToXH3/8sWrtA4FAQlmnIf3Wh6uvvlr3w7Zt23jr\nrbcAuP3224HUp64TeJyCBw8ewpARnEIoFKK4uJisrCylvsFgUE/PYDCoCq6aECmzCldx8MEH62kl\nNQCGDh26yxSNxx9/vMq4gCY/lfoWQ4YM0bHdcMMN/Pvf/wYc5VI8SPT5hMMaNGiQKmgXLFig2ZHF\n2zIS4lb8008/Kbdx1113qU4o1ZD1MnLkSAYMGLDT50OHDgXC3YsnTJigZe/22msv1TXF6wmYDg7B\n5/Nx1113AXDdddcpp7Bq1Sp99+4aq9OmTQNS6/+REUQB0DTt7hLtqdywvXr1Uicb8Qm4+uqrU9Z+\nrBDrwqOPPqoLury8XJWeUrK8UaNG1K1bF3CyJE+ZMgWoejOmGiK6tGrVSgnV1VdfXWP///d//wdU\nZtQGp45jutC6dWvAIaJuJbQQAanI5UZJSYkWzV23bl3CGvxUig9iPZs9e7bGaLgtRnfccQfTp08H\nKrNmT58+PS3OYEmLD8aYLGPM98aY9yv+b2uMmW6MWWCMGWuMyU5+mB48eKgtpIJTGArMBuRoGAk8\nZK0dY4x5ErgYqLH4nbWWnJwcZY38fr+WREuGGopy8ZFHHlHOQwqD7Aqbunj/CccAsHjxYlUeiZkS\nKtnE77//nlWrVpEIEq39IGJA3bp1VaEr76O6vmbOnKl9Sd/idZdqGGOYNGkSEF7vEtipnJ4bPp+P\n008/HYDx48drqbd4zKXu5CyJQoK2Jk+eTNeuXaPeIyLvrFmzwkRrqFQGpxpJEQVjTEvgJOBu4NqK\nUnLHAAMrbnkRuI0YiILP56OsrEzZ1sjS9IlC2Mh+/fqpdlriC3YFRG7dsWOHbvrrr79exYYffvgB\ncNhaWRDXXHNNwtmH4ymG44a4MT/00EPqHhxLX+4anLJpxKKSDojeSaxT4Ig+4iIeLWy7efPmWrD4\n888/V9Y9JydH34/Md1Xz5vbDiHedivgqDmDRakeCY30TXdPBBx+sfiDpzi+ZrPjwMPB3KsvGNQA2\nWmtFq7McaBHti8aYS40x3xhjvklyDB48eEghEuYUjDF/An6z1n5rjOkd7/dtRCl6cCi1UPaSkpKE\nbexu92hh01evXq0a8F3pihuN5Rs4cKDWDJQIvgMOOEA5hURdnCExZa3f71c34Z9++inm+dprr720\nIrK79J6IFKlGQUEBnTt31v4EJSUlDBkyBEA5l759+yqn2KBBA73/3Xff1Xfi5k7l+6+//nrUPJ+J\nZrbu1KmT1pWMthZCoRATJkwA4Pfff9daFT179uSnn34C0u+Jm0yB2XuB84FyIBdHp/AWcDzQ1Fpb\nbozpCdxmrT2+urZ8Pp+VzSvjiSV3nhCNHj16qGz5wQcf8NprrwHO4pZFsWPHDhUbpNDs8uXL43rm\nVEBYxXXr1qk1ZMuWLarVF2ebJk2aqCb/jjvuSDhjTyIacmMMBQUFgCNni6ztTowic+/z+XRxf/bZ\nZ/Ts2VPbESex5s2bp4UQd+3aVZ2n3Bvs999/Vw296I9OOeWUMD2OG253ZflbxIennnpK18vatWvD\n3NDjObTEkrRixQrVc8m7WbZsmZpO33mnskh7kyZN1FyanZ2tYlgSdTDTm+LdWnujtbaltbYNcC7w\nmbX2POBz4MyK2y7AK0XvwcNuhXT4KVwPjDHG3AV8Dzxb0xckVXm86bbFp+H444/nm28c1UTnzp31\nhJ0/fz4PPvggAP3799f7r7zySsAJtJozZw7gKABrQ6yQE2zTpk3qQJOXl6cBTx07dgQqE5eAY8P+\n/fffE+ovnmeSPnv06KHJSWbMmMHRRx8NOFyDpDeTE7Ndu3Yq8ridsYqLi/VZ0jWv8u4Ebq28cIG9\ne/eO+l0Rze688049edu1a6dWDDnZr732WlUMDh48mHfffVfbiDUgyufz8dlnn+k948ePB9BAsqq4\nwN9++y2Mu2nXrp22B+nLAZISomCtnQxMrvh7IXBoKtr14MFD7SNjysYJl5Dq8YipasaMGWp7Fxn5\nnXfe0cw2mzdvrhWXZzlVhg4dqhmV1q5dy0UXXQRUnhr77LMPLVo4hpspU6bw3XffAZWcRrz9VXeK\ngaN/OeiggwBo3769clXz589n2bJlAKxfv17nSHQOw4YNY/DgwYATMDV58mQAzjrrLNWPpBNiLt1r\nr72UU1i8eDErV64EKv0XmjdvrgrDefPmqQJvx44dYXMjuolrr70WcDgJudatWzc1GQNh2bbdvyNR\np04d/vvf/wIOByIenjUVKjLGqLdlTk4Oq1evBtA8Gwl4t8akU8gYN2djDNnZ2XEv+pogbOKZZ57J\n888/D6Cs3AMPPKAEoraIo/RzwAEHaHyBW3MudvdDDjlE8wL4/X51sIlkmWPtLxKyoIVo/vnPf1YC\nuXz5cs3lsGrVqrA2xCpxxx13AE7Uqmy833//Xa+nKl9gTRBCtn79et1kRUVF6v4sc7tkyRLd0NnZ\n2VW+d7l/v/32AxxLhliGxDVaEKl0hUrCkJWVpX8PGTJECcG2bdtiVhrffPPNYWKkEIF0OS0JvChJ\nDx48hCEjOAWfz0dubi6lpaVpi1FfuHAh8+fPB1Dbdnl5uVLd3NxcDURJZ+y/mKNOPPFEvfbdd98p\nV9CoUSPAUYzKCTVjxoy4OYSaIPMrWaiuvfZaPT3Hjx+v7HckunfvDsAFF1wAOApFGdu2bdt2cjdO\nN8QT9NFHH+Vvf/sbUBnhCZUnd35+vj6TO3uVO82Z3++nffv2QOX7CYVCvPzyy8DOHoSRa9V9gltX\nxfM77rhDuYmDDjqoRjFV1sKIESPC+hBOJVHv1liREUTBWpu2NF3CJnft2lWTmghx6Nq1K3369AEc\nNvGpp54CwpOepBoiixcVFekiveuuu9RXXxxsAoGAsrvizJIq+Hw+DTN++OGHAYc1lTH8+uuvusCD\nwaCysMOHD1d7uszP6aefrv4IPp9Pn0liWcCRndMtng0bNoxDD3X024cddphel82Yn5/PaaedBjgb\n/T//+Q/g6HNE5AkEAqqjEIL87rvvVpkSPlIMcBMNn8+nfS9atEhT2p144ok8+eSTQPjBJ3N88803\nawIYN8H69NNPOeOMM2KdjqTgiQ8ePHgIQ0ZwCsYYcnNzU5YrQFiuoqIiPTWaNWvGJ598AlSmeeve\nvbtyCgUFBeoVuWLFipSMIxpGjRoFOKeMKPbmzp2rJ7PkIVi7di0jRoxIur9oVa6NMcpii6j08ccf\nq7XgoIMOUmvH/Pnz1WpTXFysEZMScLR48eIqFWfRricatRkLjjjiCACmTZumYo6goKBAlaTBYFCz\nOU+fPl3f+9y5c5VDEE6oOla/OlE3FAqp4nPZsmV06tQJcALM/vSnPwEwceJEALp06aJcTvv27bW9\nhQsXcskllwCoVac2kBFEwVrL9u3bw2QyY0yNJhtBbm6uLoj77rtPw5NzcnJ0ky1YsIBFixYBlU4g\nQ4cO1Wy51lpNAf7RRx+lxUEkPz9f+/D7/box8/LyGDNmDIB+vmnTppT2HQgEdooPcPcXDAbp1q0b\nALfddhuPP/44AO+//74SgjZt2qgzmBDWeCP1asPKc+SRR6r1w+2OLespEAioNScQCOhcLFmyhLVr\n18bcT6zG4Dr5AAAgAElEQVTPMmHCBM1pmZWVRd++fQHHcgPhWcdLSkrUOjZy5Mi0RphWBU988ODB\nQxgyglMAND+jUM+mTZtqYFNV6bIkX+D48ePVZTgYDKqvQ926dZUlNsZQv359oDI9WHFxsTqEGGNU\nseeO8EslrLU6Bp/PxyOPPAI4/hIyJjnZJk6cmNJ4+WAwqHO0bt06XnrppZ3uEeVb//792X///QFH\nxJo6dSrgFFmR0zaTS6qXlZVpPog33ngDcJzTxOln5cqVykFOmTJFT+Z457smS5n0cfnll6siPTc3\nV+dOFLHFxcW6Tm+66SYds3AztY2M8miESnNSx44dNarxlltuUX1DMBhUMcPtey6mvsMPP1wXdJcu\nXZSNzM3NVc2+OLb07NlTX9DWrVtV57B8+fK0JLAoKCjQMGh3kde1a9eqaU3CY4cPHx6XabQmccet\nR9i+fXuNrG86Zf+a+k1lf26PTdEvvfzyy5rz8rzzzkvoAHCPM5reJjs7W4nwXXfdpQdYQUGBil4S\n7/Lyyy/r9zZv3pzOIrzpjZL04MHDHxMZwylEOyHSXWzDGKMKHr/fr1xFuvrLzs7W+P99991XOZ6v\nv/6aa665Btj1pex2NdJRuVkgvgD77LMPv/zyS1JtpXOcaYTHKXjw4CF+ZAynkAFjqFXKHwgEwrL4\nePBQC9i9oiR3NWp7Y6az+vLujN2ULf9DwRMfPHjwEIbdhlNwu+hGKiCtterCWlpamnAV4dpEvKnn\nUoF0K25TgdoY267kRvx+f0b7eEAGEYWaXlS0DeRe5LWV1CMRuP0q3OMXy0c0O3l2drZeLy8vr5LQ\nxZrx2p2JOVEks5kiCVJVbdXGho2MThRRzu20JvPmvjcV46rKByGTCLYnPnjw4CEMGcMpiDdYLJTS\n7aUG4Uo7t1dZJlBdqDwFIusPunMWyDPJvbm5uXqquPMRuNN8uZ9VEPnMcm8qTuBUzmdVbdX2O3MH\n3UXrOxAIpFQp7PP5duIMd5X3aFXIKJNkKhbu7q69lgXi9/v1OTJdBv0jItMOFkjJmNLvvGSMqWeM\necMYM8cYM9sY09MYU2SM+dQYM7/id/1k+vDgwUPtIlmdwiPAx9bafYHOOCXpbwAmWWvbA5Mq/o8J\nyVBld/qr3RnyHMFgkPLyco9L2EVIR7mBZBAIBGjQoAENGjSgWbNmNGvWLG3rPZlaknsAPwB7WVcj\nxpi5QG9r7SpjTDNgsrW2Qw1tRY19yFSkY6zCGkoOx2AwWGXIeCLtZsrcSrTgnDlztOy7e2zRZO7/\nZYip/YcfftBwcMkxumTJEs455xwgZhEz7eJDW2At8Lwx5ntjzDPGmDpAE2vtqop7VgNNon3ZK0Xv\nwUNmIhnrgx84GLjKWjvdGPMIEaKCtdZWFddgI0rRJ3KSRYtjz5QTMR7Ur19fKf6FF14IOCnLJdmG\npAvbXdGkSROtpty1a1cANm7cqHkSX3jhhf+pOJB41qrU41y2bJlWLBer1dFHH621Pfv06VPlOol3\nbyTDKSwHlltrp1f8/wYOkVhTITZQ8fu3JPrw4MFDLSNhTsFau9oYs8wY08FaOxc4FphV8XMBcB+1\nVIre7/dH9RTz+XxhVLK23YprgvhZXHbZZVp7QE7MfffdV58pU/QtIt+Cky4PnOzDkjS3U6dOWsZt\n+/btmgX6gw8+oFWrVkClX8CcOXM0/Z3b9TcVz5qdna1Vo6W+Rf/+/VVHs379es2k7e6rXr16WvtC\n5r66sSTCnbr9TGL5/vfffw9Av379dEziCduvXz/NRr5q1SqtW3LLLbeE7Yd45zMpPwVjTBfgGSAb\nWAhciMN9jAP2BJYAZ1trq002F2/otCxOqaRz8skna1bigw8+WCdh5cqVWsJ9n3320eunnHIK4CQ0\nSWPqqxohrPTUqVOVQMhCeeCBB7jzzjsBZ4NJpuU2bdpoGq/aUshJJuLhw4fr5pZ5a9SokW7AUCik\nafNyc3N17k8++WStblTTmKPVZawOMl/du3fn008/BVA2uzoIEQqFQjr31lpeeOEFgKhEIxVwZyxP\ndu3l5OToYTJs2DC9PmjQIMaOHQvsNP70h05ba38AonVybDLtevDgYdchY9yc42EbRSkn5bUKCgpY\ntWqVtiMs1YwZM6p0XQUn27OwlG5315rGkirPy8svv1zHIyeenI7HHXccH3/8MeBUO5as08ccc4xm\nCRZWN52oU6cOb731FuCccnLCSumz559/Xk/m/Px8ra2xbNkyfZZ43ITz8/M1G7dbgRyNa+jatStX\nXnkl4IgJ0ez2MkfFxcXcf//9AAwePJgOHRwreV5eHsuXLwccLkXS4sXjbh8Px5bKKMmSkhJN9BsM\nBpXj2XPPPZNanxlDFGJ9iK5du/LEE08AlZv7zjvv5OmnnwZg9erVNbYli3THjh00btwYCC862qBB\nA2WDS0tLw2R7SI7tkza+//57rRoU7fPWrVszcOBAAF577TUVla677jr23HNPAK644oq0ixCjRo3S\nxRYMBjn55JMBlFW31ipL3KhRI62slOjCLykp0fbcZdjd+TNlM7pl6l9++UU39P777681LaV+qHtN\nPPvss0ybNg1wxMply5YBjuVHfCdiQby6BHDmMDJeBaLHx9TkQOXz+VQUFoc3SN5atfu7AHrw4CGl\nyBhOoSYIJb3//vu1iIYosh599NGEWOkdO3aoB2F2djY33XQT4JxKd911V1gfkBql08yZM4HKgjQC\nOVl//PFHwGG/Ren1l7/8RbkGd8XokSNH1lgbIlH/DVHmDh48WL978cUXa22MaH3UqVNHWf9ERZvc\n3Fzl5Nq1a6fP5x6/ePYtXbpUuZjGjRurcm3w4MHKCbjzNwiHceutt2ptkKysLP773/8CTrXteCCn\nfyxckZu7dAe9yRjr1asHOGKO3FuV2CXf79mzJ8cee6yORb4XuSbiXQO7DVGQF3D44YfrQwrbl+gC\n3GeffbjqqqsAp6iqFO8oLCxU9vPJJ5/U6j3JEoUBAwbsRAzAEVHee+89AHXyOfvss1Uk2nfffcNY\nTtH2N2zYMK6CMfGgR48e+rfoXV5++eWd7svNzdVnatmyJR9++GFS/ZaUlOizzp07dyfRzVqr72b9\n+vVK1PPy8rSgzr333qtFY6XK2FlnncXgwYMBaNGihbZXXl6ucx/v+41XlyC/5VBzFyoSUWnjxo1V\niqdC1G6//XYAzj//fH1+a60S5FAolJQznyc+ePDgIQwZwynEqtF3a1nffPPNuPoQbkMUlBs2bFCW\nc+HChcopLF26VNnP4uLiqEkx4qHAcgpE1m+UE2HFihV6z/HHH6+/ZZyRkO+JY0s6IKXcg8Ggul67\nn/nwww8HHFZ8v/32AxwFX7KKz5ycHFXy1pSI5bPPPlOrUX5+vlplunbtqj4gQ4cOBcLrhjZs2FDH\nOXr0aK2VGS/isT7IO8vLy1OlsayxLVu2KDdaHaQWpnw/NzeXTZs2AfDWW2+xZs0awFkXyaSRyxii\nUNPARW4rKSlR9uuSSy4B4F//+leNZeuPP/54brnlFgBlP1esWKGs4zPPPKPsZ25urhaCzc7O3qnt\naNrj6iCsrNtxxc3itW7dmjZt2lTZtnvRubXTbjmyKiQq8gwaNAhwRBuxOLRv356//OUvAGoBcY/v\nggsuYNSoUQn1JygvL4+Z9c3JydF3FgqF2GOPPYBwByg5QBYsWKCWBdlc4Mjtcn+8VqV4LCzyTIcf\nfjhdunQBYPr06TH3u//++2ucg3iKQqWlYePGjXzxxReAU5s0GXjigwcPHsKQMZxCrBg6dCgPPfQQ\ngLL7jz/+OCNGjAB29jeYO3cu4Jz+cl2uXXfddVFZv23btmmF4qVLl2r8eqTPOlR/molGuVevXjt9\nFkuCjBUrVgAOyymssc/n09Pv2WefZciQIWHjqCr/X7wcw3fffQc4UXrnnXeethHNGiAYNGiQikhy\ngscLv9+vCrOqIM+Un5+v8RNbtmyhRYsWABQVFenf4l693377Kffnzrv49ttvJ+x3kojz0hdffMHX\nX38NEOb/EQ1+v1/X+plnnqnr3f1O58yZAzjva/LkyUDy6fs8TsGDBw9h2O04hZdeeklPIZF7X3/9\ndY4++mjAUSjdcIOT1qFly5bk5eUBDnWVU1XMVNVBbOFQyVkIYk3V9cgjj2jf7u8K3BRfqLvIvaFQ\nSBVRPXv21FPO/b1DDjlEIxTlRNywYUNKvByF8+rfv7+avZYsWaKmyg0bNgBOLgjxMD3yyCMZP348\nAKeeempc3oGC8vLyGmV8mcMdO3ao/4bb8xQq50jmorCwUBWN7s/FPT4RRJtnaTcvLy+MY5W1WlhY\nqC7W4j4+Z84cNasvXLhQdWZTpkzhwAMPBGDTpk07cYOhUEi5g48//jhlwX27HVGAysl8//33gXB2\nqaioSAnE4sWLNX5gzJgxcRWMSVZZA5XhxQL35i8tLdVNs2LFClUYiQa5U6dO9O3bF3DYZLfoIt8b\nMWKEEg531F9kn4lAxISzzz6bxx9/HIBZs2axfv36sHbXrVun4sWoUaOUCLdv315Z+3gQCoViXtxu\nx7JIRD735s2bdd0MGDBA50niHhKB23VZIEThqKOO0liLuXPnqgi6aNGinSJirbX6/hs0aEDPnj0B\nxxnMvQ6FEIvIsGXLFu699159vlTBEx88ePAQht2SUxC43UCF6g4dOlTFhCeeeEJ9GeLhEpo2bapu\nsBMnTtzp81hO35ycHI488sidvien/C+//KL25jZt2uipI/kKRFEGzkkkp9GOHTs0z8Lrr7+e9uQr\nU6ZMUX+Jhg0bqj+FO+hGgsrOOuss8vPzAed0FJEmHrbWGKMnaaozWbtFMJnvPn36qKnP3Wc8vgcC\nY4wqA8eNG6dc0x577KEiQfv27VUZ+9VXX+l3xUx66qmnqutyixYt9Hs+n0/XsCiw69Wrl5b3v1sT\nBYExhtatWwNOFiN5sYsWLYpLCy7sfuPGjXnuueeAxF2ohwwZogvPLQOKi3KXLl10A7mL5oqVwQ2f\nz6ds5LBhwxgzZgxQOxmkysvLdQ7Wrl0b1R9EfCwKCwv1OcaMGZOQjJuTk6PfS2WYcXZ2tjo0QSVR\nuPvuu/UQWb58ub4rWTfxzHEgEODPf/4z4OgUpK3mzZurk9GOHTs0svP666/XvkTkrcphDSrd28U6\n8+GHH2pUairhiQ8ePHgIwx+CU8jJyVElUr169dRj8ZVXXqnxu8IOG2P0NHb7OsQLOSmXLFmip42w\nre7cA6LRrwrWWn77zcl5O378eLWobNu2rVbzNVprue+++wD46aefovYtz+l2/3bnQogH27dv1zlK\nRRZrYeFPP/30MPFBxjljxgxV6M6ZM0dZ9ClTpgDhlajdiObqXlZWpkFjt912m4pBUJmVGQjjWGLF\nmjVrVKko0bOJWHdiwR+CKDRt2lQX4eLFizXsubi4uMY08KKXSPVGa926tbLBbsuBLHS/3x/m9iz4\nxz/+ATiafNE2J4NkU9/Xr19fnagWLFgQ9R4hpu5IvXnz5iXUX25ublyL3Z2cROY7KytLZfGbb74Z\ncNyE3clLxDz55ptvqtvw+eefr6LSjBkzAKp1pIqcW2ttmKgY7f1WBWljxYoVXHHFFQDqgl/b8MQH\nDx48hGG35hSEEl955ZVK7T/55BNNwQXhWuRop2WiRWiq+p67/JsoDUVZ5vf79fOVK1eqYrO8vFzd\nqhOx7acDotQ6+OCDNfjJrS13Y9y4cUC4D0W8SkaZl9LS0jD34eo4nUAgoJaPbdu2haVs22uvvQDU\nUahu3bpRT/GRI0fSrl07wPEHkXGL5WT16tXKCU2bNi2MK3BzKfJb+nWLDtbasPkQ5eBpp50GwDff\nfJNRNUMzjijEw+6KyHDkkUdyzz33AE4obE2+87WBevXqaVLNoqIiwGGpZbPdf//9qvUeMGBAjVGe\ntQ3RE5SVlamIVVhYuJO2u2XLlnTu3Fn/X7p0KRA/sXVnSJINlJ2dHTWmo0kTpxJhMBjUz7ds2aL6\ngwYNGmhyXzH15eTkKCHIyspS/UKjRo3CiMUvv/wCoE5awWBQHY/c44xGFAYNGqRiy6uvvqqmw88+\n+4wXX3wRgK1bt2bcu45EsqXo/2aMmWmM+cUY85oxJtcY09YYM90Ys8AYM9YYk5jGyYMHD7sEyVSd\nbgF8Cexvrd1ujBkHfAj0A8Zba8cYY54EfrTWPlFDWxYclst9MtTEoktyjw4dOmgasNqouxhLkpX8\n/HyN75f4+dzcXGbNmgU48QxyKn3zTfpq7CaraDzttNM0b8X69es1h+Srr74KOCnnJfYhLy9P80dK\nwZp4xih/u8cqp7BwhXvssYfGexx44IGa6+G2227TXIuXXHKJ5tt0O/9Ei0zdsWOHckUvv/yy5jiQ\n97RhwwblMIQLihy35LPs0KGD+mx8//33LFmyJOY5qCWkveo0OOJHnjHGD+QDq4BjcOpKArwInJpk\nHx48eKhFJFs2bihwN7Ad+AQYCnxlrW1X8Xkr4CNr7QFRvnspcGnFv10jMw7FUsNPTuLaKIqSCrg9\nF2ur5FuynEIgEFBZ/aSTTmLvvfcG0KSyeXl5PPPMM4BT6m7ChAlJj7emd+9W7Ikr+eLFi9XM2KhR\nI40ufPbZZ/W78hz5+fmaubl79+4Jm34jdQrZ2dlhhWwyEDFxCsmID/WBN4FzgI3A6zgcwm2xEIWI\ntuIahLwEt9LHw65D8+bNAcfBZlfW5owGYe07deqklawuvfRSDWVORWEfWY916tRJyD063XAdDGkX\nH/oAi6y1a621ZcB44DCgXoU4AdASWJFEHx48eKhlJMMpdAeeA7rhiA8vAN8ARwJvuhSNP1lrH6+h\nrcwhqx7iRrIiSm3AXVuhpKQkpQppUUTWrVtX8xrUlngYC+LlFJLVKdyOIz6UA98DlwAtgDFAUcW1\nQdbaat9AokRhd1iM/wuQ91BVnEAmICsrKywnYiqdhUR8cDssZYovQkTWr/QThVTBIwq7Nzyi8Mci\nChnj0RhPgZVY6y5E2r9TtWDjLQYTqRiN/DtR+Hw+faaqMgunmnC6cxCC46ItbZeXlysr7Q4OSheM\nMZqTYvv27WGK58g5D4VCulFzc3M1SjUUCmlZvEh35Fj6lzYgOUKQ7Huqak0m0l7GEIV0nPap3oSp\naCuV43Bvuqo2YKrnVTa9OAW5N1K8myrVcG+s6ixTdevW1XgOd57H8vLysPiJmpBo3Ey077vdvBNp\nN5Xv2YuS9ODBQxgyhlOIB7ubDiFT5ex44T7lJP3dL7/8ssu4A3fOy2ifVYXu3btr5eZ169ZpvclV\nq1apKJEu1LR2M2Ft75ZEwcOuQaNGjbQehBS3nTdvXto3UqogHrC33HKLJs198803NTRa8ij+r8MT\nHzx48BCG3dok6aF2IPkgpk6dqrkVJM+gO81+JsMYo1GpEl0LTjzHRx99tKuGpRAF7r333qs5I9u1\na6ei2Ysvvsg111wDJCVi1EqUpAcPHv5g+MNwCuI40qJFCy29lgkZmNKBRKodxwtJb/fzzz9rgRNr\nrWY5PvVUJyI+XRmFUwUxnS5ZskRTt7lRr169lJZciwfidv36669z0kknAVVXI9++fbsmzr3wwgsB\nR58j7toxcmy7l/NSInBrw8WZpri4OCw3YiblvosFslC6dOmi4b9//vOfdWM2b96cZcuWAU7+wBNP\nPBGoTC4TaQlwF6SJNWw7OztbK2s1bdpU2dVZs2ZpduRYHcjihdshKxWQNH2RBEHWRVWbMF0IBAKc\ne+65QGWqdvdcBoNB/X/atGk6/s8//1zL0k+aNAlwDkKpJjVjxoyUWS488cGDBw9h2O3EB3daLXfC\nTbnWt29f+vfvD8CyZct4+OGHgfhqSdYW5ESoX78+F110EQA33ngjEF4+rqr6AdZaZRsluei5556r\nVYmDwWDYd2vyJ5CSZdOnT9csyIFAQBV0AwcO1HwBksC1YcOGSVVuThckYevs2bOBnTkb8WTs0KFD\n0klWBNXtJVmfd999NxdffDFQaSINBoOanObss8+uURSQmhrt2rXTPdC5c2e9HgqFVJwuLS3VNVBe\nXr57iQ+xune6s+i6X4qw3T169GDgwIGA4+N+9dVXA7DXXntlFGFo1aqVavAff/xxzfIsG3ft2rWq\n9XcXkcnNzdV5KikpUZlZUoufcMIJml8QKuclFplTWOoff/xRE6cMGDCA//znP0A48ZWMyhJ7kEkw\nxmiOxmhizu+//64ZpLZs2ZJw3EE8hXCl7REjRqjjlLyTeJ2/3JnG5H1ceOGFWrTn4IMP5uuvvwac\nvJPx1FMFT3zw4MFDBDKGU4gGYXvclDQrK0tZa4lKy8rKYubMmUBl5WhwTglRMD388MP85S9/qZVx\nVwcZz+jRozW/YCAQUA241CJ85pln9ET47bffokbg+f1+LWQi7U6dOjVqWTyoORJPrv/2228qSpxw\nwgnKKbi5OVGWXXTRRRx00EFA6kvHJ4pBgwYxePDgna4Lp3jWWWep1SQrK0tP23h9LtzlAKF6TkM+\nSyaSUkRE4XKgcs5nzpwZVqtCxJFEkslkjE4hmtZZXlZWVpaayPbee28lElu3bgWcdOPiotqrVy9N\nxS3++eBMVM+ePYH0plSvDkVFRSxatAhwCIE8x5w5czSXYPfu3QFidh2OFKUi51BYXDfrX9PmLSgo\n0FqK69evV9fmqVOnqq5BiqmUlJRoavVdDRHBNmzYsJNVIRgMqrg2c+ZMnSe/36/Xq6qAVRXc+Rkg\nvXELbquEwFpLs2bNALQYsYzL/Y5rM0ejBw8e/oDIGE4hmqLRTe1FsfXWW2+pZlkKk5xzzjlhlY/d\n3xctc2FhIV988QUARx99dJqeJDqEY/nyyy+Vsm/ZskV9AW677bakNfjip2GtDWMZo+UYiAXCfp9+\n+ukaPLRq1SoWLlwIOFp0cMQW4RR2dTSocIvCMbhxwAEHhClgZV722WcfXnnlFQCef/55Ro0aFXN/\n6c785U4ZHw0FBQXxBqPtXtaHaHAvMsnpf/vtt6s2ddq0aUDV2ttQKKQVe9asWaMsb21DNliLFi2U\nrbvpppu0vmAyUYbuwqyw81wk6v3473//G4Cvv/5aS6I3bdpU9Ryiu7njjjuUaAQCAdUvLFu2rFbj\nIt57772oxEBEAjdBgEqrTL9+/VQvc9555/Hcc88BsZmwZW7TFTouTmoCeYei70kXMfLEBw8ePIQh\nY8SHVLu3CqQAyObNm1WUEFEk3RAriTjHGGNUzDnjjDO0StHvv/+etlM12TiJnJwc1Xo3adJERZN3\n3nkHgDPPPDMsNZuIF++99x7Dhg3T6+lCTcrTaIq4OnXqqNt4QUGBWnz2228/5ZCkfmZ1SIf4kJeX\np8pot2u2tVbXchIxPZ6i0YMHD/GjRp2CMeY54E/Ab1L+zRhTBIwF2gCLgbOttRuMQzofwak8vQ0Y\nYq39LoY+yMrKSgun4M4uLN53tZEa3hjD+PHjd+pPglmmT5+uHEvDhg1VhhV/hXgVg+lCMBhUXUwg\nEFBb+JgxYwC44oorOOywwwBHkSrcz1lnncUNN9wApDfd+T/+8Y+o16Xis3CH7pqYt912m9rxFy1a\npJxQp06dNALxyiuvBKo/lVOpU5A1MmXKlKjRnA0bNqy1qN9YFI0vAP8HvOS6dgMwyVp7nzHmhor/\nrwdOBNpX/HQHnqj4XS2stWlzfNl33321DyEKc+fOBaBjx476QlNNkHJzc9UvQrB48WJ1oMrJydHx\ndO/enZ9//jlsvG+88UZK5iRZwuLz+cJcmYUAiJgAhCUpEQVkaWmpRlSKn0M6cOutt+50raysTGNJ\nRLTJz89XpXMwGNT3vWrVKlWUQuXmFFfk66+/vsq+3RmY3f/HC5/Pp5YTEREEMs+JxmckNJ6abrDW\nTgHWR1zuj1NmHsLLzfcHXrIOvsKpK9ksVYP14MFD+pGoSbKJtXZVxd+rAdHctQDcdpTlFddWEYGI\nUvT4fL60mHYksMetyJTfZ5xxBmPHjo27zViCtw477DA1HUl/F110kZofg8Ggsq3z589Xl+fRo0cD\nzgkhQS27EoWFhcq2/vrrr6oEqwryzHJ/uhEt4On888/nu+8cqVW4nKOOOios8lRMp/369Ysa1PXZ\nZ5/FPIZEOQTxYl2/fr3+DZXm0LfffpvzzjsvobaTQdJ+CtZam0jmJGvtaGA0ONYHSQKSSjna7/cz\nfPhwwEm+ImG0r732GuC4F7vCSuMZe5WfSXvjxo3byQ22d+/e6kAV2U6nTp2AykV8yy23aAj4riw+\n497kbdq0UUesxYsX63V3Naa//vWvgPPM6XZ/rirRS6NGjXj8caemscjnkydP5o033gDgwAMP1OjZ\nnJycMP8VWQeff/55jf0nWgzm3XffBdBsS26UlpZyxRVXAI4oKXonySYWC5K15CVqfVgjYkHFb7H3\nrABaue7zStF78LCbIVFO4V3gAuC+it/vuK5faYwZg6Ng3OQSM6qEMYbs7OyUlgcHhy2XU2D8+PHc\neeedQOVp7vf7NdHFxo0bUyK+iGJL2oXKE2XUqFFRT5dAIMDIkSPDrv3zn//MCOvD22+/rdzCsmXL\nlLWVALUtW7bw2GOPAQ7bK6fc9u3bNWCtttGuXTt69eoFVHJpwWBQvTGPOeYY5SDcSWistfTr1w+I\nzWISqWD0+/36d+RaknufeOIJTjjhhCrbHDlyJN26dQOc/JGnn346AE8++WSN68Gdei8ZxGKSfA3o\nDTQ0xiwHRuAQg3HGmIuBJcDZFbd/iGOOXIBjkrwwlkGI9SErKyslG1NSYRcWFvLJJ58AjhZZHFiE\n3R08eDC9e/cG4MEHH9RYimQgbbtZWzd77X6xQjiefvpp3XiiZe7YsSNffvklsGtjCp588kllxevW\nravPIpmXfD6f5g7Mzs6mXr16gGOS/Ne//gWQNrnYWqsxIy1bttR5OvXUU9UKImx3UVGRWioaNmwY\nFijOXIoAABnSSURBVFcj7+See+5h8uTJcfUPle86GAyqyOjz+VQUyc3N1axIzZs3jyr2yL1lZWV0\n7NgRcMyqffr0AcIjgatCqnRyNRIFa+2AKj46Nsq9Frgi2UF58OBh1yEj3Jx9Pp8NBAIpc3IRzTOg\niq9osfJZWVkMGODQvOXLl8d1StSENWvW0KhRo7Br/fv31+AiY4x+PmfOHD11LrjgAgD+85//xJ1G\nKx1o2LCh2srLysrU1h9tbD6fT0/KN954Q0+uWPIOJgpxNnr22Wf1tF20aJGOQ0rOB4NBFXn8fn+Y\nn4KIDJKLMlZElrv3+Xxh4oiM4YILLuCRRx4Ju+b+3ocffqjrtEGDBira/PDDD9re6tWrUyFO7j5R\nktZaUmV9aNeuHe3btwccU487lXe0JC6i9T/88MO1pkEq2PXTTz89zNIATmiu21tN2NmsrCzVjEvS\n1Uypp1BWVqaiTXFxsepMohEFa61uwhNOOEE3zTnnnKMWn1SbnWWOrbXaX7NmzdTEF03GLy0tVVGx\nX79+STsGSb8+n0/nZ/DgwepNee2114YRA8G4ceMAuPzyy/V7oVBI63Ru3LhR129tHt5e7IMHDx7C\nkBGcgjFGWbpEKaKwWa+//rpeW716tbKEVWn95Xrz5s1p2bIl4HAYyWrOp06dqv73YtsvKipSF+se\nPXqoUu7pp5/WVPSSkTfWeRBlpYy3Kq13ovO6adMmBg0aBDhp7NwRn5HIycnR6EmoPEH//ve/qzPQ\nypUrExpHVXAXwZHTOD8/X59XuL7s7GwVT0eMGME///lPILkTODIV3nXXXaecy7Zt29QhTTJtC+T0\nF06iuLhYx7F48WLlwnaVaO9xCh48eAhDRnAKkkIsGcooCUVbt26tp+WTTz6pp0O0tg899FANQOrR\no4fWR3zqqacSHocbbdu2BSpPs0AgoKfGG2+8oW63L774YtwcgkBOKckklI7aFpI2ribs2LFDU939\n9a9/1ZRtjzzyiGbOSjUkO9HatWvVDGmM0XmR0/g///kPzzzzDODoIeKZ56pyUsj/8vkzzzyjqQIH\nDRqkeg13fY5QKKTu32+//TbgcDmiQ8qEjNgZYX1IZYHZZs2aKfu1adOmal9+dna2btyysjL1Y0iX\n080XX3yh7PdVV12lY5Ps0380iHVl3bp1teJrISKkW7RJ5yaLtD644xcOPPBAVq1y/PY2bNiwyxy5\nIuAlWfHgwUP82C05BTkJ3GYeYc+2bdumlDuWZ5PvBQIBjWDc1VmJ/yiojWQ2mQC3F6usnaysrIwQ\nBSKw+/gpxAuxm7szGSdqzxWdQzqzA7lR2xsl2RyNyeCPTgwE7sIyggwkCDHDEx88ePAQht2SU4jM\nU1CVJ2Rubq7eU5s1CKqDe5z/K+z1roRb6ZiueXYHRP0R3mnGEIV4XJzFxOdmiaN9N5ZEl+5INyE2\nNRGQVCWDqa4Ndx9uf3q3g1cs46hKbKhu8UarWVgd3G0luynindtYi+a6nyne54un71jnKt7+Jbkx\nsFMGsVTDEx88ePAQhozhFOKh1tGSSdR0Wvl8vhqtErGewLXBGrr7qI4tjUeR6D6lqktDF+/zxXNS\nxtNWPKjqnVU1b7H2U91aSISjESczqFRux8od1Zby0uMUPHjwEIbdkiiUlpZSWlqqmYzcPxC9kIrI\n4rFQfXdWnkxBtLHn5OSEufTG01Z5eflubTYTRL77qj5Ppv1UQN5Ts2bNdpr7WPrwQqd3EWQB1atX\nj0AgQCAQ2ElBFe8GBIdldLONqUJpaSk+ny9mIpbsBqkNyBwnMs+xYlfMgbynJk2akJ+fHzWtfHVI\n53xEwiMKHjx4CEPGKBozAeLTUJWHZKIRjBJ0NX/+/JSYkURJGEv9TTGzxiMqGGO46aabAKf2wMCB\nAwHHhVxqFgwZMkTbTeXJmy734NrwV4il/0AgoHMrQVKhUEgjdDdv3qw5KVavXk3dunUBp3iNJCRO\nt3fqbhn7ECtycnI0PdjYsWNZsGABgJYe/+qrr3SCA4FAGCGoaeJjscfLPe4S4tJHdna2hvoWFRVp\nHkTpV/QmkfD7/fpMW7ZsqTG9mYgtZWVlYWOVmA/JDThgwAAOOSS6W3x1z1pWVqaL+Oyzz97p83iR\n6oJAEhp//PHHawKerVu3aiHfWMcE8Vsb3AVoJaHOAw88wMknnwyg17KyssJc9iWMet68eVrJKicn\nh1mzZgFOBGaC8KIkPXjwED9q5BSqKEX/AHAyUAr8Clxord1Y8dmNwMVAELjaWjuhxkEYY1N5Qkhy\njxtuuCEq2yjXtm/fzqeffgrAY489xrRp0wA0WrKa8cY1Vomzz8vL45577gGcJBxSGr0qxdpLLzmF\nvq+55hr1smzVqpXmX6hpnFApagSDQe0P4NtvvwUqT9JYEZlYxH0tLy8vaXfyVHMKTzzxBACXXHKJ\n1qqYO3euikEffPCBzqdbESs1SLdv306LFi0A+Omnn/T5avIEzc/PV67QGKNroEuXLjRs2BCARx99\nFIBXXnlF38fYsWOVE+zcubPe06VLF21bxAj5LA7ExCnEQhSOBLbiVJMWonAc8Jm1ttwYMxLAWnu9\nMWZ/4DXgUKA5MBHYx1pbLY8rRKGinZrGHBXyEn/66SeKioqi3hPpvLR9+3Z9WTt27NDS6Y899lhK\nFqZsyGOOOQZwCtqK7OhO/15WVhZWREQgi2rChAla3WrevHlaFCSWMboTgcgc77PPPvz8889hY3Sj\nvLxcxYua+lizZo2ywY8//jh/+9vfahxTbUBkcSEE1tqwJCwyF26RbuXKlVpDUrJvtW7dWus5fvDB\nB5o4xU1A3KHT0q7P5wsT/+T9ut3UY3l/UvNScngCWuCoukpTVSA14oONUoreWvuJtVa0QV/h1IwE\npxT9GGttibV2EU6lqEPjGrYHDx52KVJhfbgIkHruLXCIhEBK0VcLCUZKlPUsKCjQvHdywgmEWj/3\n3HPccsstQGWgVE5OjpYVq1OnDs899xyQOu201LG88cYbASfzsqSKGz9+vPYnrCOgrOWkSZN0nJMn\nT9ayY5s3b45rfCIyuJPPrFy5UnNCSu2B0aNHqyI2HrRo0YLx48cDsQWg1YRkKyYLpAajmyOQKtjt\n27fXsX755Ze6Rr755htmzJgBOJYicArEuJW5bhFB8nqIMtfv96tFIVJJnKhF5f/+7/8AeOihh7Tv\nSZMmJdRWrEiKKBhjbgbKgVcS+O6lwKXyfyJFQkTOevrpp3ciBgDvvPMOgwcPBhyNc6ROITc3V9k6\na23KE62I2e7www8HnAV/1113AU7tymga8LVr1wJOstP7778fgOOOO07Z2Xg3jCx+d1agzZs3qy4h\n2Y381Vdf6Xvo3bs3H3zwAeCkuE+EuKaCIOTk5PDss88C4ay9EAV3otySkhI9GFavXq0RuDV5vrqJ\nl2z4YDCY8mI355xzjo5fIAWM0oWEiYIxZgiOAvJYWzmDMZeit9aOBkZXtLXr7aIePHgAEiQKxpgT\ngL8DR1lr3Srwd4FXjTEP4iga2wNfx9hmzP0L2yYncefOnfWzsrIyhg0bBjiKL6HmbruxaJO//jp8\naLGOIVYNudSmdCuWpPbhfffdF/U7onm+9tprlS1t3rx5wtmA5fkjx5sohyC1JMWvwo2CggJ95iFD\nhqhfgJy+tYUff/xxJ9fv3NxcFU87deqkJQHmzJmjZdri5RSlj3SVdissLOTf//73TtdfeSVuxjwu\nJFqK/kYgB/i0YiN9Za29zFo70xgzDpiFI1ZcUZPlwYMHD5mFREvRP1vN/XcDd8c7kFhlSWMMffr0\nAeDiiy/Wa/L9v//971Hl70MPPZQTTzwRqLTzSjEWqNqDMBpiPRF++OEHAFUS7rvvvsrlTJo0ibfe\nekv7PvbYYwFHfwCO8kpOoPPPPz+m/pIZa3UQDqq8vLxabqqsrEwLt+bm5qpZsLY4BTm53eZeWQML\nFixQJW/jxo21nOCUKVMSUgL6fD7VH4ipMxUp//Lz87WgzLfffhvVz2bx4sVJ91MdMib2IVaW3FrL\n7NmzgUrbrzFGtehPPfVU1JczZ84crR/oduKRRXPPPfekJPGGG7LYxJ48c+ZMtS40adKEHj166DMJ\nQRK2Pjs7W+tOCnFJBKnIGShKuWgEIRQKaRWmxYsXq4Jv8uTJej0eJOO8JAT3n//8J2eccQaArpVR\no0apZcFdtCWZ6t4yH6kgBuJb884776i7uXu+Q6GQ1g1Nd0Vyz83ZgwcPYcgYTiEeU5QoEt1ed2IW\nO/nkk9WFtaSkRFnK0047TU9mtxefnObiUhwL4j3J5KTt3r27eiYec8wxGihVXFysdQUlWAYSM9Mm\nO9ZI+P1+dae96qqrVMEofgA9e/ZUW3qnTp14/PHHAYdrEDY4njEkM155lwsXLlQvy6OOOgpwak4K\nl7Zx40ZVLiaKZCqkRyIQCKiPiHADkejVq1faOQRBxhCFeNhGsTa4/Q5Gjx4NwKeffqoybFZWlkaU\nDRs2bCeXXmstH374IYCWjU8n5s2bx4MPPgjAr7/+qsVgn3/+ed1A8mwNGzYMY3MTRaLig3yvXr16\nSpyOP/54jdST9j755BOdw0svVbcT2rZtm9CmScZ5STb98OHDtZCvtDV8+HAWLVoEwCmnnJLwBktH\nCvfXX39diZgbW7duZdCgQcDOlrJ0whMfPHjwEI5oeQ5r+wewsf4ccsghtqyszJaVldlQKGRDoZDd\nvHmz7dy5s+3cubOtcITSn3Hjxtlx48bZ0tJSvV9+5s+fb30+n/X5fDH3D9iKAK6d+qrpx+fz2caN\nG9vGjRvbXr162eOOO84ed9xxNisry+bl5dm8vDy7ceNGu3HjRhsKheymTZvspk2b4uojWp/xPp/7\nGVu3bm2LiopsUVGR3WOPPaLem52dbbOzs+2WLVvC5lfeSbz9JvKcubm5duzYsXbs2LFha0N+gsGg\nLSkpsSUlJfbmm29Oak6TWQPR5i0YDIaNdeXKlXblypX27LPPTnqcET/fxLIfdzvx4aSTTlIxQO6/\n88471RTmRn5+vsqU69atUw2vmCRHjx6dMKuaCPvYqVMnTjvtNMCReyXmwc0yu3P3iSkzGYiFJl7H\nHHm+WMQqafuwww4Ls5TceuutAJx55pkx9+s29cWCZs2aAY51oVu3boDjYi1u3OIAVlBQoKHm06dP\nDxMDYk2Tn+qw7ttuu03bFVhrVeSVCM/ahic+ePDgIQwZwynURIHF8WjEiBF6TSj76tWr9USsX7++\nasBPOeWUsErAK1euBBzFHiSu3XfnJojl5BAnqdNOO43GjRsDjuVk48aNgOObIHHzbvdcsasnA7eb\nd6rdcCMxe/ZsNmzYADjvoX///oCjUZccEDUhnjE2b96cn376CXC4FXF7//zzz3WehZMYPnw4+++/\nPwBHHnmkcmmBQEB9GoqLixk7dmzYONxp7Nxjc6+BeLHnnnsCTuKXSBQXF6tVLTs7W/92B/SlGxlD\nFKqDMUbzALoxZ84cAPbff3+NKXjsscfC0qnLRP7yyy+aqCLZaMh4NeRy76+//sqRRx4JOARKnHsK\nCwvVa9G90Lp27ZrUOGWskBrzZk0oLy9nypQpgEOQRcybPXs2LVs6KTdSEQUpptwJEyqTet15550a\ndWqMUeuCHAo9e/ZUEXPFihVqodq6dWu1Eag5OTlVemQmOrfyjsVa4kafPn1Yv95JX1K3bl09wIwx\nnHXWWUBqQtSrgyc+ePDgIQy7BacgUY0COf3lxOjQoQNDhw4Fwmv1BYNBzWUwf/58PT1ScVrFIz60\na9cOcNhWofzdunVTkWHFihWa1MOdUVnSbiWDWF1w/X6/Ok4VFhYyZswYIL64BWOMKhf79Omj76dJ\nkyZ6yok7elXzVtO78fl8mgV77ty5qphdu3atvvvnn39ecw6ImFBeXq7JSb7//nv1Eanp/VX3/Imu\no9tvv32nayIGffPNN2GRreKI161bN31W4XQj+3fn40wGHqfgwYOHMOwWdR/q1aunSsKcnByl7mKy\nCYVCmoegvLxcvb/OPPNMjYxLJbKzs+PSS8jYTjvtNE3RNmXKFC0SU1paqma78847D3BOCcn5L16E\niSBWjsbn82nWpKOPPlrzN/Tp00dl8arakECkwsJCleE/+ugjPa2NMXz55ZcAqtTbunVrwrKxcCDn\nn3++Rsx+++23aspr0aIFM2fOBCpdzH/88UeNLpwzZ05KCs4k6t0oHKsE5m3atEkVou458fl8qpRs\n37696mUkUO63335TM/vPP/+sc1/Nmo8pcWtGiw+ieW3YsKGycbm5ufoyJER2w4YNmoX3+eef5/33\n3wdSE70WDfEuKCEge+65pxKy+vXr68Lt0aOHLm5hAaVOJIRbJNxKTjf7mKz7bSgU0s0dCATU7Xbi\nxIlqOSgoKFDbeuvWrQEnhmO//fbT78mc5+bmhmWSfuGFFwBUGRjJ+sYzftlUb7/9tm6sSy65RNvY\ntGmTplgTZe6f/vQnjS/YvHmzpnVPBonM9eWXX76T+3peXp7G5UybNk3Fo7Zt2+rB0atXL/W9kMzl\nJSUlDBjgZDYQcSgV8MQHDx48hCFjxAexo8tpFQwGlfIXFRUxceJEAA444ICd7MNbt27VNGEbNmxI\nuz030aAdY4zWEOjYsaNyP88++6wqI+XZQqEQH330EeDkU5Dn//HHH9W/IdaxSns1QZSyEydOjFqH\nIh6438G3336rtS9qSivnntuqfCtkjowxGvhUp04dLrjgAsBJzCrPIsrF8vJy5Q6SMUm7uR9BLOtN\nxty7d29N3itipc/n0yS9RxxxBOeeey7gcBCiNNyxY4cqUqUW5fPPPx+T/4eLC0tNMZjagDHGymS7\nC6K66yBKFp+XXnpJk5YIq/3BBx+oo0y8jkUJjjfptgOBgFaLOv/881UUcmc5mjp1KgDvv/++ssFv\nv/122EKIJJCR44pnLtwFcR955BEAjj322GqjNd3zXVxcrJt+1qxZvPHGG4BD9KqrrBQ5BjdhrAlu\nouVuW/QO7rElSsijZT9yI9EIVPFDeeqpp+jYsSPgrGlpb8eOHZqj8dZbb1XHsCTWnldL0oMHD/Ej\nYziFrKysmO2rwiFIibKHHnqoVjz2BKl2GX766afV+iBBULNnz9YiMlKqLFPhZucTtd3XdBpnAiLf\neyo5UnHBnjdvXkosI1Vg9xIf4rwfqF0X3nTCGKPikbDfgUCg1lOj70qkW+TzAHjigwcPHhJBRvsp\nVIV4FFG7A6y1yiHIM/0vcQngcQiZhN2SKLjLx0PVC8oYo044W7ZsUctGslFm6QhDjnRUSqNcmZGI\nJj5kgp6hNkLO0414RTNPfPDgwUMYMkXRuBYoBuKvHpIaNPT69vr+H+i7tbW2UU03ZQRRADDGfBOL\nZtTr2+vb6zu98MQHDx48hMEjCh48eAhDJhGF0V7fXt9e37seGaNT8ODBQ2YgkzgFDx48ZAB2OVEw\nxpxgjJlrjFlgjLkhzX21MsZ8boyZZYyZaYwZWnG9yBjzqTFmfsXv+mkcQ5Yx5ntjzPsV/7c1xkyv\neP6xxpjsmtpIou96xpg3jDFzjDGzjTE9a+vZjTF/q5jzX4wxrxljctP17MaY54wxvxljfnFdi/qc\nxsGjFWP4yRhzcBr6fqBizn8yxrxljKnn+uzGir7nGmOOT6bvVGGXEgVjTBYwCjgR2B8YYIzZP41d\nlgPDrLX7Az2AKyr6uwGYZK1tD0yq+D9dGArMdv0/EnjIWtsO2ABcnMa+HwE+ttbuC3SuGEfan90Y\n0wK4GjjEWnsAkAWcS/qe/QXghIhrVT3niUD7ip9LgSfS0PenwAHW2k7APOBGgIq1dy7QseI7j1fs\niV2LdBePre4H6AlMcP1/I3BjLfb/DtAXmAs0q7jWDJibpv5a4izIY4D3AYPjyOKPNh8p7nsPYBEV\neiTX9bQ/O9ACWAb8fzvn7xpFFMTxz4B6YCxMLEIkQiKIrbGKaCEoqCFEBAslYET/AStBUtmLaCEq\nKBZyKKhBjoAI/qijBkSDPzCiaIIxaYyFTYqxmLdwGz1yJ/veWswHFnbfO+6739th2Jnddx3Yq/Xj\nwL6Y3oEeYGoln8BV4OjfPleU9rK5Q0A17OfiHXgI7Ihx/VvZyi4fsmDJmAlj0RGRHqAPmAA6VTX7\n04I5oDOS7AXgNJCt5NoA/FDVbKFDTP+9wAJwI5Qv10SkjQTeVXUWOAd8Ab4Bi8Ak6bxDY5+pY/AE\n8KAk7aYoOymUgoisA+4Bp1T1Z/2cWsou/JGMiAwC86o6WfR3N8kqYDtwWVX7sNfKc6VCRO/twEEs\nMW0E2vjzFjsZsXyuhIiMYiVsNbV2K5SdFGaBTXXH3WEsGiKyGksIVVUdC8PfRaQrzHcB8xGkdwJD\nIvIZuI2VEBeB9SKSrVaN6X8GmFHViXB8F0sSKbzvBT6p6oKqLgFj2O+Ryjs09pkkBkXkODAIDIek\nlEy7VcpOCs+BLaELvQZrutRiiYmtIb0OvFXV83VTNWAk7I9gvYZCUdUzqtqtqj2YzyeqOgw8BQ7H\n1A76c8BXEdkahvYAb0jgHSsb+kVkbbgGmXYS74FGPmvAsfAUoh9YrCszCkFE9mNl45Cq/lp2TkdE\npCIivViz81mR2v9E2U0NYADryH4ERiNr7cJuG18BL8M2gNX2j4EPwCOgI/J57AbGw/5mLBCmgTtA\nJaLuNuBF8H8faE/lHTgLvAOmgJtAJZZ34BbWu1jC7pBONvKJNXsvhfh7jT0hKVp7GusdZDF3pe7z\no0H7PXAgZtw1u/kbjY7j5Ci7fHAc5z/Dk4LjODk8KTiOk8OTguM4OTwpOI6Tw5OC4zg5PCk4jpPD\nk4LjODl+Ay5UJ4xtuL2QAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/2... Discriminator Loss: 1.0209... Generator Loss: 1.0810\n", + "Epoch 1/2... Discriminator Loss: 0.9956... Generator Loss: 0.9358\n", + "Epoch 1/2... Discriminator Loss: 1.2294... Generator Loss: 0.6367\n", + "Epoch 2/2... Discriminator Loss: 1.0491... Generator Loss: 0.8156\n", + "Epoch 2/2... Discriminator Loss: 1.9660... Generator Loss: 0.3475\n", + "Epoch 2/2... Discriminator Loss: 1.0618... Generator Loss: 1.2255\n", + "Epoch 2/2... Discriminator Loss: 0.9658... Generator Loss: 1.0057\n", + "Epoch 2/2... Discriminator Loss: 0.8519... Generator Loss: 1.6786\n", + "Epoch 2/2... Discriminator Loss: 1.0465... Generator Loss: 0.9361\n", + "Epoch 2/2... Discriminator Loss: 1.0060... Generator Loss: 1.0238\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeYFNXSxn9nZnaXDeQMkgQVhU+SiIJiQMGEoIJZRFHM\noPeaMWBAxZwRjOgVELOXKyiiYkIERBAQBUFUUHJc2Djn+6Op2p5lw8TdWez3efZhme3pPn36dJ0K\nb1UZay0ePHjwIPBV9gA8ePCQXPCEggcPHkLgCQUPHjyEwBMKHjx4CIEnFDx48BACTyh48OAhBAkT\nCsaYE4wxPxtjlhtjbk7UdTx48BBfmETwFIwxfuAX4HjgT2AOcI61dkncL+bBg4e4IlGawqHAcmvt\nCmttHjAJ6Jega3nw4CGOCCTovE2BP1z//xPoVtrBxpgKoVUaY0r9m8fsjB3F57ey5tQY8494nu75\nTk1NpaCgAIBgMFja/W+w1tYv77yJEgrlwhgzFBgazXd9vlAFJxgMhvUdv98PoP8CFBYWAlBQUBD2\nQtrbF50xRhec+z5Lu2d5Hn6/P+TZyCK11ob1jOTa0c6tjDktLY28vLyQsclzlvFUFtzzI+OIdjwp\nKSl6z82aNWPz5s0AZGdnk5ubW9K5V4Vz3kQJhdVAM9f/99n9mcJaOw4YB5FrCuEusOLfkQeSmZkJ\nOItnw4YNMp6wz7U3CwRw7i/aeyzp2fh8vrCfWSxzK9+VFwKKhEGyPLNY5rY48vLySE1NBWD79u0q\nCAsLC2O6RqJ8CnOA/YwxrYwxqcDZwAcJulbYSE1NJTU1lfbt29O+fXsmTJgQsit6iA7BYFBf+vz8\nfP0pLCyksLBQNYZwEeszkRfP/ZMsiPdY8vLyyMvLIxAIUKdOHerUqUN+fn5M50yIpmCtLTDGXA18\nBPiBl6y1ixNxLQ8ePMQXCfMpWGs/BD5M1PmjQc+ePQG45pprABg7dmzEu5iH0hHrDiVIpp29qmCf\nffZh/vz5cTlXpTkaKxo9e/bkzTffBODXX38F4KuvvgpxQCUDxO/htsOTTQX2kDyoXr06AKeccgrz\n5s2Lyzk9mrMHDx5CsFdrCj6fj5NOOgmAyZMn6y78+OOPA2gIJ1LEKyRZp04dAB599FG6dXNoHPvt\nt59eY+fOnQDccccdzJgxA4BffvmFnJycmK8dT7Rs2RKAbdu2sWnTppjOFcncGmPU+56Xl7dXalMp\nKSmAEzHbtm2b/g7w8ccfc8ABBwCwbNky7rnnnrhcMyE054gHESV5ye2hTk9PBxxB0KhRIwAGDhzI\nnXfeCTiTu3btWgA6deoEwLp166JaSPEQCgMGDOCRRx4BoF69eqxYsQJABcHIkSPZvn07AI888oiG\nm3r37s2uXbvCvo4IQmNMiDkSK+S8zz//POeccw7gRHfEHMvJyVEz7YMPPuDdd98F4McffwRKDyv7\nfD59ruWZdn6/X8/jfiY+ny/pzMKy4Pf7lTszf/58nn32WQA6d+7M6NGjAdiwYQPZ2dkA9OvnkIMn\nTpyo58jNzVVToox7n2etPaS88XjmgwcPHkJQpc0H2VFq1qzJCSecADhsro4dOwJw9tlnqwTOy8vj\ntddeA2Djxo1A9DtmtN9LT0/n448/BqBDhw6sWuUQzN5++22uv/56oOQd9OOPP2bQoEEAEZsO7p00\nHjj11FMBx+QBx3SQ+TDGqLqbkpJCu3btANixYwdvvfVWWOOw1hIIBPT3skhPwWCQrKwsAPbdd199\n7vXr1+fWW28F0L8HAgHdQWfMmMFHH30EwPLly/nwQydIVhHahTFGNdU33nhDxyYkuiZNmvC///0P\ngGeeeSbke4LFixfreGWutm3bFrfxV2mhUK1aNcBZqBdccAEArVu31gls0KCBLqq8vDxdyLGGIaM1\nHzp06EBGRgYAa9eu5YUXXgCch1/W4v/555/1ZYv02iIUI6EaF4csvJUrV9K4ceOQv23cuJETTzwR\ngDVr1ujinjJlippxaWlptG/fXu8FSn8B09LSqFmzJuCw9ISdWNLxgUCA008/HYCbbrqJNm3aAM49\nlyR8ZC569+7N8ccfD8CqVauYO3cuAH/99Vc5MxE7srKy+O9//wtAjRo1AMfskvG+8sor/Pbbb3t8\nz/3Mu3btChQ9F6DE70QLz3zw4MFDCKqkpiC75u233w7AiSeeqB7w9PT0kKiCOO4efPBB1q1bF5fr\nR6oliFNu8+bN3HTTTfp7uHHlQYMGqdMuUkRrPrgTbb7++msAGjduzI4dOwAYMWIE4DgaxQnqxskn\nn6wm0VVXXcUZZ5wBFEV8pk+fXqLmkp+fr9eoU6cODRo0AOCHH37Q+5Ed8uSTT+bJJ5/U8bqp1uKU\ne+eddwA44YQT2GeffYBQZ2aTJk3U1PjXv/4VNwJWabjjjjuoXbs2ULSOc3Jy1KSdOnVqyPEyzmrV\nqnH55ZcDcO+99+5x3unTp8dtjJ6m4MGDhxBUSU1BpGe9evUAaNWqlYYkc3NzdSefMWOGStXZs2dX\nwkgdyA62bNkytanDgdicvXr10t0zUogd7d5Jw8FRRx0FwIQJE9Q3sGPHDg499FDA4UuUh0suuQSA\nRo0aqSNYnL2ljcVaqztomzZtOOQQJ4K2ZIlTtCstLU21v+7duzNnzhzAcS4OGTIEgAULFpS443/3\n3XcAek5w5uerr74CYvc1lQXRFk844QTS0tKAIj9JMBhU38jvv/+u30lJSeHCCy8E4LHHHlN/lFvr\n27p1KwBjxoyJ21irpFAQ0s8RRxwBQEZGhqqwf//9Nw8++CAAkyZN0lh/MiCSl9Lv9/P000/r98SB\nF6mzMJqFboxRlbphw4YqZM8444xyhYGo9rNnz1aTzufz6Ti+/fbbMr8fDAZ1oc+ZM4e///4bKEqH\nzsvLo27duoAjsJ544gn9XlmOwkAgQJcuXfb4/M8//9SIUCIhz23hwoUcdNBBQJGgSElJUedqkyZN\n1Mx56aWX2H///YHQGiCCb7/9lvHjxwPxdZJ65oMHDx5CUCU1BVFnRaLm5eWxfv16AG688UZ1upSm\ncouEDgaDJVYYqkzIeDp06ECTJk0AZ5yTJk2K6nxyr5EkVfn9fg17AeqgnTlzZpnfa9CggZppjRo1\nUvV4w4YNHHfccSHnKg1u1XjXrl0sX75cxy/3I3Tf/Px81QRLC3EKDXrDhg0h55bzLV26VE3PrVu3\nRrQOIlk7cqxoT3IvMsYvv/wSgPXr16tW0Lx58xIdxMJoPf7449WhGk9UOaEQCAQ021EmdePGjaqW\n9ujRgwULFgBOTFhMjOHDh9OhQwegSJX74YcfePvttwGHMioqemVAFoIIguHDh+uC2LlzZ0TUZjei\n5SaIkPX7/UpN3n///TUKIpTa4cOHc+mllwIOiUyeSX5+vkYGbr/99hIjFOGMvfgL564qVFBQUKow\n6Nu3LwDvvfceUHr9yCOOOIIbb7wRgCeffFLj/eHMWzQCxM2dcWfEynzKvyVB5l7IVokQCOCZDx48\neCiGKpcQ1aZNG77//nugyKn1/vvvc/PNTr+Zxo0bc9999wGO1iCebCgqAiK7y6+//qpJUu549Ycf\nfhjVzhYJqlWrpg4zN7VXqLoDBw6kR48egONYlWw4GW+4EA0kJSUlIoq0RA6efvrpkNqHMocSGQkE\nAroLup2ECxcu5Nhjj9X7CxcpKSnKVI3ESdy2bVuuvfZaHXvx4r4FBQUsXLgQgFmzZmnM3+fzqYbY\nq1cvpRBHYhJEcuwll1yi9G+hjLtNitKwfft2dVCKUzEKLTCshKgqJxT2339/PvnkEwAN0Rx33HGq\n4sr/Aa677jr16p511ln8+eefQOhD7Ny5M+CQXOSl6dixY9TqelnIyspS8lLnzp356aefAMfDX6tW\nLQC++eYbAPr06UOzZk7t2w8//JBhw4btMfZwUJIdHQ6EYPPrr7/qHJZ0rtzcXFavdmrybty4UX0K\njz76qOZ2RAI3saiMUuV74KGHHlKh4Pf7VajfcsstgGMayGZQr169EDNI/BxNmzatkPwH8XMIPfyJ\nJ55Qs9FNXXZj2rRpahLFMEYvS9KDBw+Ro8o5GrOzs7XIxJYtW4DQHSUYDGoGnPxbFvbdd1/A8ZaL\npzveRUxElb311ls58sgjAUdNPvfccwH44osvGDt2LICSVVq3bq159ffff39cxxMOhI7cu3dvPvvs\nM8ChkIuX/OGHHwYcjeaiiy4CnLmXyM8ff/xR/JRhoaS+COFg5MiRmvC2detWJTiVhC1btmgEIysr\nSzWdSNXxaCNXYoIJP2LBggVqSubk5KijvHv37nqN6dOnV1iNiConFAoLC/WBr1mzBoDDDz9cGW+R\nPNiUlBSee+45wAlrCk8+3iZVw4YNAYfNJsSrn3/+Wfn8zZs3V9VQwqzffvstDz30UMzXjvVe5s6d\nq9mHdevWVbVbzJ3HHntMhXT9+vX1nqKFu1x8JMjOzg7bG5+SksKsWbMAOO200zS/IjU1NaRnRKIh\nL/mHH37Iv/71L8CJ+tSv7zRx+vHHH9W/IsK4IuCZDx48eAhB0mgK0gCkvF1i06ZN3HDDDQD8+9//\nBhwCSjROtC+++EJ//+uvv3jggQeiGXqpENVPPPUffPCBquUHHnigag0HHnig0oA///xzwKkjGQ8u\nfjzIWRLxWLt2rUYzWrRoARSZX+Ds1pLtFy0/oiKQn5+v4/T7/ZpDE6l6Lru4mAPhPi/RrISTkJ2d\nrTkP+fn56uR2R86OPPJIrfuQaEStKRhjmhljPjPGLDHGLDbGDN/9eR1jzHRjzLLd/9aO33A9ePCQ\naMSiKRQA/7bWfm+MqQ7MM8ZMBwYDM6y1DxhjbgZuBm4q72TW2rBy/vPy8jQWLvHl+vXrhyXlxbaX\n+gC1a9dWZ89DDz0Ud4aYOM0kqScYDGqR07/++kvLctWoUUNj6DK2SPkIpSHe/hHREIQJWlBQoH6G\ngQMHxhzKrQgNo7CwMGStiWM5Uk0hWk1OriNa1uTJk0OyOoWP4EarVq2iulY0iFooWGv/Av7a/ft2\nY8xPOC3o+wFH7z5sPPA5YQgFYwyBQCAs0pB0wpk2bRrglP5yq8midgWDQeW1N2nSROnR4iSbP38+\nL730EoB62BOBU045BXAKlgghx+fzhZCXXn75ZYC4Z+y58zxiRcOGDbXUvJRlW716tUZUYi3vDo46\nXxFedqmeXVBQoA7rSCFmoUBMkrLgrjQtTtm8vDxdv8YYTjvtND02knPHC3HxKRhjWgKdgNlAw90C\nA+BvoGEp34m6Fb0HDx4Sh5iFgjEmC3gbuNZau60Y682WxlYsqRV9uOqYhMiEEVa9enX97pAhQ5Qd\n5vP5VH3Oz8/X36XYxtVXX63chESorcJOO//88wHHJBDm5QUXXKDXnDJlimoI8aZXx8N8kKzUd999\nV+dWHKYXXnhhXDQEQUV0APf5fJoF6q5AHSmKl7pzsxHdazkQCKhT8oQTTuCLL74AipLOjDHKzn3g\ngQc0wcw9F/EsolIeYhIKxpgUHIHwurX2nd0frzXGNLbW/mWMaQyEXRgxXPNBch/k5e7Ro4eqszt3\n7lQeQ0FBgZb4XrduHYsWLQKKeP2bNm1KaDMYWWwyzv79++viyMrKUkrw5ZdfXibZJhYIpdYYozH4\nSO45PT2dyZMnAw41W6IP0ogk3vHzjIwM9e3E24xwFzVp3bo14MxLWZmJZUGemUQTIHRu5aVu3bq1\nZjb6fL6Qyk/yHTFzzzzzzBDhIoInXvVFw0Es0QcDvAj8ZK191PWnD4ALd/9+IfB+9MPz4MFDRSMW\nTaEHcAHwozFGaGy3Ag8Ak40xQ4BVwJnhnMxaG3YlXZHQo0aNAhyJ3Lx5cwC6dOmiKu7ixYtVXV+z\nZk1Iok0sCHenlZ2padOmgMNWlEjErFmz1AGZKC0BiswRtylVHvx+P//3f/8HOBEF6W+5efNmddAJ\nAy/eu3l2dnbCHI3y/I844ghNNoOiCsqRao2ieZXGghTtderUqbo+g8EgK1euBIqo4Lm5uRpxSE1N\nDaHsi1O8IlHlsiSrItx9LkVQ1KpVS23KZGkY6y4EImnPLVq0UC7+5s2bNfKTKDpwvJr3lgSZ+/bt\n22u0KSUlRQWEhLrjBTFLTj31VM3Qff7559UnVhrEfBoxYoQWqokTvCxJDx48RA5PU6hExJNDUBFI\n5C5eERBN6MADD+S8884DHF6IlHivqCxEcTYLb6ZHjx5a9OW9997TcbjrQsQJe2eRFQ8eooW7ca1E\nZay1UUVl4oHyCuCkpKTEu2OVZz548OAhciRNluQ/GcYYjf+L6pgMGtzeBGNMyNy6nbuVNdelXdfd\nP1JMzMLCwoR2sHLD0xQ8ePAQgqTRFCLJ+y9eqTfaMlpQVO3YfV1rbVydf+XZjtbaMncBv9+v9xwI\nBCLK34+mnkIgEAhpIuO+jvtz+be8c0utjOLfiycicYJmZGTose52bHl5eXqviXL++ny+cs8tYyuv\nmrV7XbnPG+vcJo1QiORG4kk+cp8rUQsh1ofk9orn5+dH5CWPlsZd2ssRzcKLpDtVtCjv/MXpx3If\nbjMi2lJwkSCe53ffUzwjJ5754MGDhxAkjaZQWagqHAEJp8U5RFUiyrrG3uAA3blzp5Zg27RpU9zU\n7spGvPqi/uOFgiCZiTl+v1+FQkV6ofdWWGs1S3Ljxo1J+9wjRbzuwzMfPHjwEIJ/vFDw+/34/X56\n9epFIBAotW1XZUC89r179+bQQw/l0EMPjVhLcCdheXDw/PPPM3PmTGbOnMn+++9f2cOJC+JZnCZ5\n3oBKQK1atbShaI0aNbRxZ/v27RPeYBaKwnvVqlXTYjCySPfbbz8GDRoEOI1jXn311YSPxw23fSqU\n4K5duzJv3jwgNEtS7qNVq1ZceeWVgFNZSioM3XHHHSxbtgyIf2WpSCDNewcNGqShyClTpnD44YcD\nRZWQkhElmbc+n0+rYjVp0kSLD8XqJ/O2EA8ePIQgaRKiEu3o8/l82vr7jDPOAJw8d3cpLpGwPXv2\n1O7PicI555yjFZyLF9YA2LFjB2lpaYCzS0i78khLv4s55Pf7I6qBIDUDA4GANt+58sordYeVGhHh\n1DfcsmWL1gUYOXJk2GOIJ6pXr65zJ/MKztiGDnXqB7/zzjtJ4XQULa1mzZr07NkTcFoLvv++U8RM\nokMdO3bk8ccfB2D27NlcccUVQJlFe8JKiEoa8yERD6N9+/ZcffXVABxzzDHap1FevGAwqOQVn8/H\nfffdB5AwgZCenq4vxXXXXacPv7CwUAtrvPjii4CzWKW1ekZGRtS+DrnXSMgtgUBAW7gPHjxYey1G\nW+C0Vq1aei8VLRRkjseOHRsiDOTF+fnnn9XMqehekm6ICbb//vtz5plOsbJ27dpx3HHHAY4gkIbE\nUjOza9eu2mVsxowZcavg5ZkPHjx4CEHSmA/xOldKSgqffPIJ4KhXIoHT0tLUcy/NP9wdoS688MKY\nOyaXh0MOOUSbqWRkZKjT7ZVXXtGdVHb01NRUVXezsrKUbCOl1cOFaBiRRC3at2+vJeelqxaE5+GW\n8RljtFmKO/ohWod090o0xNzZvHmzVl0uLCzUsnJnnnmm1s10twGoSLJYIBDQvqiDBw/Wa2dlZenY\nrr76ah2zaAyPPvqo3l/Tpk3ZsmVLeZfy6il48OAhciSNTyEWNGzYUB1Zp512mu5M27dv11Beu3bt\n9HPZ/Ro1asR///tfgIRqCbI7vvPOO2rXZmdn89BDDwFOA5DiNn9qaqqW7TLGULNmTSByTSESDUF2\nqBdffFF3VbffJS8vT3cuaXmXn5/Pe++9B8Bjjz2mlYqttXTp0gVw+mNKWFP+Hm2vhUhx4IEHAk7Y\n190Y6M477wScuZWq2osXL1btsX379oBjq8c7jCq7u2hSZ555Jjfd5HRWrFmzps73d999x9133w3A\nt99+q8/niCOOABwflbSTi2fR2SopFESNlbhyrVq1QlJ6xXHUp08fnchmzZrxzjtOvxpZ0CtXrlTP\ncyJx8803A44wkoW5YsUK7r//fqDkuHJ2dnaIui603N9++y2ia0fCh5eIw3fffafNT7dt28YzzzwD\nwMMPP6wvswib9PT0UhuVCKehc+fOWmpfhE0gEKgQura8bIFAQOfgt99+07qMdevW1ZYA7sYw//vf\n/4D4mw8+n4+jjz4aKNos7rrrrhAhLLUbL7nkEt0s0tLStAq0RM98Ph+jR48G4uuoj9l8MMb4jTHz\njTFTdv+/lTFmtjFmuTHmDWNMauzD9ODBQ0UhHprCcOAnQFrwjgYes9ZOMsY8BwwB4tYIz+/3s3r1\nagANx0CR0/Dwww9XlqI7j/+FF14I2REAnn322YRmSUoI7/jjj9fPlixZAjhaTHnXdv89DCdSiYhk\nBxF1tkWLFnq9yy+/nM8//xzYs7gNhMcC/Omnn3Qc7hh8Ijspy1j79eunn0nPyzFjxtC/f3/AceDJ\neho7dqxqmYlq05aamqrPVe5/4sSJqtEuW7aMp556CnCendzHpZdeyj333AMU8SxWrFjBc889F/cx\nxtpLch/gZGAU8K/dreSOBc7dfch4YCRhCIXyyEsyEZ988omqXYLff/+d7t27A+zRVlxKZx9++OF6\nfunMM2HChPKGFRNq164NFL1smzZt0qYgoqqXhnr16oVkRootHincZlV5AkKu9/PPP6vv4JdfflF/\nQH5+vvpjfv/9dz1vebDWamcpMUt69eql8fZEYPjw4QAharn4aB588EFdA7JRACxatCjhVOeUlBRt\nriNCSqJlMk43jjrqKMAx3WSTkQ1w4MCB7Nq1K+5jjNV8eBy4EZA7qQtssdaKsfgn0LSkLxpjhhpj\n5hpj5sY4Bg8ePMQRUWsKxphTgHXW2nnGmKMj/X5JrehLuIYzyECAYcOGAY5XWFhn4qUdPHiwqmJp\naWm6Ixx99NHKUvT5fLoLiHoWLcKhZFerVk2Tmx591Om/u3btWo1HT5kyRX+fMWOGOpRkZ7vzzjv1\nPlevXs2OHTuiGmskNRFl1xkwYAAffPAB4Ki74myz1vLLL78AkSXdpKamqnNXxuHeoRMBd59Rua5o\nPIWFhSGammhI69atSxjN2d3HtLgpGAwGS+SAZGZmKrXZ7Sh99tlngcRFzGJtMHuqMeYkoBqOT+EJ\noJYxJrBbW9gHWF3eiYwxmrZcWulteaDbt2/XhyhU3D///JNWrVo5g+rRQ+3FOnXqhOQUiEosfQSr\nV6+uKlxKSkpIWLC8RV+eVz8/P19VfvHC5+fnM3PmTMBpOjp+/HjACfWJ4JDF2qlTJ108CxYsiNpT\nX17RWIHP59P7HzZsGLNnzwYcn0GsL0pKSoqaUoJvv/02pnOWhRdeeEE3BsGuXbu44447AEfI9urV\nC3CIQDK2RHaIkjnctWtXiWurpDn+/PPPNXsWUNNzxIgRCRqlg6jNB2vtLdbafay1LYGzgU+ttecB\nnwEDdh/mtaL34KGKIRE8hZuAScaYe4H5wIvlfUHa0BcUFJQoMfPz83n66acBR2M48sgjAbj++usB\n6N+/v0r5Ll26qGPPGKNqt5tWK63VxeEj1wi3t2M4O2dhYaF6td2Qmg1HHHGEZj7ef//9Gh8XLsXC\nhQtVBf7++++j7jsZrvng9/vVmfvhhx/GddeURDQoGn8iVF8Z/+DBg/Uzee7t2rVT89Hv96uzulq1\nakr8qQjKfzjPT7pgH3zwwTqmnTt3qpM20fyOuAgFa+3nwOe7f18BHBqP83rw4KHikTSMRik9Vpq0\nFml+zz33aJixcePGgLMbCP33s88+09BN9+7dtapOnTp1lFYsjLHiqMjKzjt27GDRokUA9O3bVz8X\nCuykSZPUUbl+/fqodwc5X3k9DVq3bq07aTxLewG0bdtWfxc/i9t3FC+If8jn8+k6Eiaou7GKz+fj\n/PPP19+vu+66uI8lWgQCAR555BEgtP9G8+bNK6xgb9IIhXBVt4KCAvW+irqYl5enuQHZ2dnqZNq0\naZPyxN9//32tVZDMEDNBOPvg8B2iLd/t7kVYFt58803N4LzlllvisgDdBCKJYIwdOzbm85aEmjVr\nauEXgLlznUh3SV2WzjzzTC3NBmgZs8pCZmYmJ554IuDwEaTEWm5uruZlRJrzEgu8LEkPHjyEQphu\nlfkDWJ/PZ4G4/DRr1sw2a9bM/vHHHzYnJ8fm5OTY1NTUuJ0/kT/du3e33bt3t8Fg0BYUFNiCggI7\ndOjQqM+XlZVls7KybHp6eol/z8zMtJmZmXbr1q36EwgEYr6P1NRU26dPH9unTx/7xx9/2CVLltgl\nS5ZYv99v/X5/md/dXZ4vouutXbvWBoNBGwwGbV5eXonHtGzZ0rZs2dJu3LjR5uXl2by8PLthw4ao\nrhfPnzZt2tgXXnjBvvDCC3bXrl363NesWRPva80N531MGvMhXvZ8SkqKkpOaNGmiZJvKrCIcCSSy\nUlBQoOW1RBWOBnKO0ub3gAMOABzOhtBno408GGNUhb/55puViLVmzRp69+4d9rkjMZGEs1KtWjU1\neST65Ma+++4bUmZPIkP9+vWr9LqMwWCQY445BnDuR0xFIS5VNDzzwYMHDyFIGk0hXmjRooXutoAm\nSlUVCHPT5/NpjP2nn36K+nyy65QW2WnatCg1RXbxcHZOcfLm5uZqtKdevXpaaPTkk0/m4IMPBpy+\nD/EsAuKGjH/Lli2627qLrwpbcfbs2ZpVW1hYyFVXXQWgdR4qEzt37lRugrul/I033lgp49lrhIKo\nqmPGFCVkrlq1KmGLMd6QAhpCvNm1a5eGUGMJEbprNJakuruJRUKpPfjgg1m4cKF+ftlllwFO5mGt\nWrUAlBS2ZMkSPcfvv/+uL+a2bduUyixlyOMN6Z4FDm36mmuuAZy5FIKaCAK/369jfvrpp5UkVtmm\nA8DQoUM1UpOXl6eFdNw1RCsSnvngwYOHECSNphBNMxiRrn6/X02GFi1a6OdbtmxJCCEp3o1rUlJS\n1Akm6u7SpUuZOnUq4Owe0fIU3HX9hIfgxvTp0/UaYrp8//33vP7664BT9ENqE9SpU0e1Daku3aJF\nCx3TwQdaPDgcAAAgAElEQVQfrKr7F198oT03IiEqRTK3GRkZdOrUCXDo7ZJ56a7HKDyF33//Xcug\nCcmpsiHPdPDgwbpmc3Nzo6a0xwtJIxSieclkUtPS0lRd/Ouvv/Tzs88+O34DdCHeKue///1vVcvl\npXv00Ue1xHssRCJJh5bM0OL49ddfAXj33Xc566yzAEfYXnDBBSUeX7wpTTAY1AhHbm6uNjKZOXNm\nRGnbgkiOzc7OVoF1ySWXKEGqYcOGvPLKK0BR0Z1kMBOKQ0h2u3bt0ufu9/v1nioLnvngwYOHEFTp\nZjBuz7qojv/5z39YtWoV4KhlyXB/pUE8519++aV6n6Uk/dChQxOa318SJE/i9NNPZ9KkSQAhZdy+\n+uor/u///g9wSpqBk/M/Z84cwOE6bNu2rULHXJUhmZpz5szR5//nn39qefkEzKXXDMaDBw+RI2l8\nCtHAbbNKVaWXXnpJW54ls5YAaBy/sLBQqwhLn4KK1hLc13zzzTdLzSQtC56WEB7EoSuOZHfFsTFj\nxpSYxFWRqNJCwQ1Z0O+++27cuu8mEunp6boQnn32WW0+4r1YVQfRRoQkwiTl9jIyMnRTSETJ9kjh\nmQ8ePHgIQZV2NJaGyo7zlgYpJANFTj1weAoSTpPwYzI8l8pAvDkgyQgJ60qR3tzcXE3Yc6+RBJiQ\nYTkaq6T5UJz2W3wRJVoYhFshuTjcnnz3GCui3XkkcC/M4vcXyf26yWVyPrfQq4iXv6RnVfz+3OMU\nuMvah3NuObY8k8Ln8+kx7rL90ayp4puMCBFjjK6vaObYMx88ePAQgiqpKVS2elnZ13fvRtE6u8pC\nvHbxknar8s4b77kt7XxuTc2dHRoJC7OkY8r7Xnm1MiNBac8pGAzGNI9VUij8EyEvv8/no0WLFoDT\nUj3Z/CYlobKFaHGEIygiQTL4sILBYEiR3lgQk/lgjKlljHnLGLPUGPOTMeZwY0wdY8x0Y8yy3f/W\nLv9MHjx4SBbE6lN4AphmrW0LdMBpSX8zMMNaux8wY/f/PcQIURWbNWvGgAEDGDBgQImt4T1UPOJp\nEkSLQCCA3+8PcZZGfa5ov2iMqQn0BAYDWGvzgDxjTD/g6N2HjcdpEnNTLIP0UIQNGzZo3clkg/QE\nheSLqECRCVazZk0mTpwIwKeffsoLL7wARF5GXe41kopV8YZsDBdccIFmhH788ccxjSWWraYVsB54\n2Rgz3xjzgjEmE2horf1r9zF/Aw1L+rLXit6Dh+RE1OQlY8whwLdAD2vtbGPME8A24BprbS3XcZut\ntWX6FeJNXooWonpVRt5BcQQCAS0xl52drWPLzMxUGndhYWGl78g+n4/FixcDTo9OWU85OTla/3DE\niBEsXboUKCoxlpOTE8IFiHcURc4nNQvuvfdezjjjDMDJTnS3pZe+ln369NmjTXxZcJe6SxTkPlJT\nU7VcntTHvP3227WJTF5eHo899hgQWpKwGBKeJfkn8Ke1dvbu/78FdAbWGmMaA+z+d10M1/DgwUMF\nIyaaszHmS+ASa+3PxpiRQObuP2201j5gjLkZqGOtLbMsbWVqCrID165dWxOU3EyzkpBIKq70LJg1\na5a2D1uzZg1TpkwBnIpMosm4beDSxpMIHgOgOf8//PBDqQ5PN3vTnbAGMHnyZE0CK67txDrWjIwM\nLTwrdQqk4jQ4z9etScj4X3rpJa644gogvN0/UXMrcPcwOfvss1VTELgrPxcWFtKlSxcA7VFaAiqE\n5nwN8LoxJhVYAVyEo31MNsYMAVYBZ8Z4jbggEAhoHceTTz5Z/5XFs337dq0pWB4SsQikmeyHH34I\nEOJJrlWrli7S7du3ax3EaAk20cIYw3vvvQeENsUVBINBLUs/b948Dj3UaT5eu3ZtVdf79esHwF13\n3RX3l0oaDn/xxRe0bNkSIERgSQOYgQMHahm6SZMmab/RQYMGaQMWEcJlIRHroG7dutxwww0AnHba\naTRs6LjkMjMzQwQAOGtENrK33347plYAbsQkFKy1PwAlSZ5esZzXgwcPlYe9ktEojpjbbrtNd6Z2\n7dqFJIyAs7NJz4Jjjjkm7KrD8TYf2rZtqxqLaAETJ07U0mfXXHONFpGJtIV7PHZj0VheffVV7YIs\nKCgoYPTo0QCMGjVKx+f3+7VE3pw5c7T0mLtRS0lO0mjnNisri3/961+A07a9uEnz0Ucf6dgLCwt1\nXs455xzVGjIzM7VHxUcffVTqGBMB0aqmTJmi852amqoa4uLFi7Xbumg27du3VyfvvffeGzcH+V4j\nFGQRnHXWWVrJ121HBoNBvvrqK6Co49Lxxx+vNRFlcsNBvASC2Nd9+/bVc8p4Jk6cqLZhdnZ21B7u\nGKJLgFN3cciQIQD0799fPxd/Rvv27fnrr7/2+H5hYSEbN24EnEpOl156KYAWE/njjz9KJPxEOl5R\nrz/77DM1GdxZgmLO9OvXL+Slkes0aNAghPAjJshtt90GwJ133hnReKJBeno69957L+DM959//gmE\n1m586aWXNJIi99mwYUPdLKpXrx43c8yjxHnw4CEEe42mcN555wGOd97dm0B6J5xzzjnacEUk7rHH\nHqvlz9xqbXnw+/0x5asDHHbYYWraQNEO+u9//xtw4s5ShCMWFTbaZB0ZW9u2bRk5ciTg3LfE8cU0\nKG3efD6f7mi9e/fWXUzmu7SWaJGYD2lpaZx++umAE2WQ5+73+7XOYa9ejnureNdxWQOdO3fWv6Wm\npurnPXv2LHc88dqZU1NTmT3biex//PHHTJs2DXDqdUo06thjj1UTTGp7BoNBZs2aBcDy5cvjpsHu\nFULhmGOO4cknnwQctVVU2xEjRvD8888DoS9F8+bNAUd1FLs9kpcmltRUMWm+/PJL/ey3337jpJNO\nAooW74033qj02/JCpOWNNVK0b99e+0e2a9cuZJxiBpQmDEQVb9SokTZIlfkGeOSRR8q8diTz2rRp\nUzUfAoGACkBrrfZjXLZs2R7fM8ZoSPWII47QOdq5c6cKBTHjKoK6vGvXLg09dunSRX0G3bt3102t\na9euOk5ZOz/++CNjx44F4tt30jMfPHjwEIIqrSkIDfj6669XCb9p0ya+//57AMaPHx+yU8pOIjtY\n9erVQ3bsSBCt6ig7gs/nUwddu3bttL2bqNy9evVS2mosiGScErW54oordBxZWVmsXLlSPxcTzH1+\n0X7y8/NVhb/22ms5//zz9biZM2cChHSzjhbuyIJ0nS4oKAgxG8Vh6C5zJr936NCBzp07A46zTrSb\njIwMNW/EWR3OOGI1JQOBgHITrrzySr0Pn8+nBLYJEybsYf7OnDlTzbl4ajRVUijIRIntJSaA/E34\n4Pfddx+jRo0CHLVsyZIlAEpi2rZtm9bejwTRPgB3j8adO3fy8MMPA86Cloat0r593LhxEfk5Yh2r\nz+fjkEMcysmSJUu0CevAgQOV9PPLL7/oC9S/f3/AEbCvvfYa4KjcYuNfeeWV+hJu3bqV0047DYhv\nIZJ9992X6tWrA45AkpfF5/Op2p2eng44PhzxL9StW5euXbsCztoRYlUwGFT/STjzFq0wkJde+ofO\nmjWLfffdF9iz7qNg3rx5/PHHHwAacVizZs0evpJ4wDMfPHjwEIIqpykYY7TPocRw3RV5CwoK9Pdh\nw4YxePBgAF5++WVVtUTSLly4UGPpkcDn86m0j0RS9+nTR3ezdevW8Z///AdwVFhxGIm3OVqzpjhk\nZw8EAjrW0nY20Qg2btyo4zj66KN56623AIdi/eijjwJw8cUXAw7fYMGCBQCcf/75XHjhhYCzQ8t1\nBg0aFHaTG2OM7tylaUqyQ3/33XfK9Tj//PNVa7DWqqYjHvvOnTszcOBAAOrXr0+dOnX2OG9+fj7P\nPPNMWOOE6MyH6tWr63wJcc5t9hQWFrJ161bA6aAuTuZzzz1XIxTiPI8kozMSeJqCBw8eQlDlmsH4\n/X6V8rL7FBQUhFCYxS7r1KkT9evXB5w4rtiR3bp1A+C1115j3rx5EY/XzYCLhFr6xRdf0KlTJ8Dp\n7Cwx5jvuuIPrr78eKNp19tlnH9Vo4oHy+gqkpaXpznfppZcyfPhwwImhi+N2y5YtnHvuuSHj7NCh\nAytWrAAcbezss8/W60msX5ikiYA4Rx9++GHVClNSUtR/VLduXcBxQIvm0aVLlxKfYYMGDSKuvhQu\nxLcxa9Ys5RkIgsGgOqCvv/76kLUsofYhQ4bo8znooIMAdN4jwN7ZDCYYDLJ+/fpS/+4ue+1+4evW\nratedFnQosZFCrf3OxyhIL0D99lnH4YNGwbAJ598ouMcN25cCGlJjo2HUCgt+uAu3gHOyyUO3Ntv\nv11V8W3btqkDslatWponIN7yn3/+Wc/ldvh+/vnnUQkDt1APxykpL/rw4cOVFv7EE0/QsWNHACUx\nbdiwgbZt2wKhz89aqxyRSAVCSU7BkgSuz+fjuOOO0+/IM5ayeueee25Z6c76PYlWlbX+4wHPfPDg\nwUMIqpymEK2507NnT3WCiaoebZJRpGG1Aw44AHBi39Li3X0ff//9N+PHjwechC6A+++/X2PwsZh4\npe1cYoJJWPSoo46iadOmgOP4kh02NzdXtYmtW7cqy1IKpICj9YBDiZYsyUGDBkU93mjuNxgMqgbg\nToQTqnj79u3VoWeMUer4ZZddpuOPFampqao5unkTjRs31rU2ZMiQPUrTlXa/w4YN03mcMmUKQ4cO\nBUh4q/oqJxQihZu2+t133wGO5z8WRCoUhHswZ86cEs2N7OxsjYKIjZyWlhaiwscKd5Uea62Sk8RH\nYIwJ8aaLvbp06VIlVt133317mGB169ZVs8Hn82kEQzL9IkUsaeluW13MCnnxMjMzQ0wpIVONHz8+\nZuJPaQ1hhVy3evVq5RiEcy55+e+//35dF+ecc05Ca0G64ZkPHjx4CMFerSn4fD718Ofl5WlufKw7\nb7Q7S2lOSWutxqNlV27WrFmp7LZoUFy7kV1HvPDGGB3fsGHDdBxfffWV1iTYtm2bnkdU49NPP13j\n6tnZ2comjRbRzm1GRgYDBgwAHAeeJELJPZ166ql67Pz58znnnHNiup77uyV1EjfGqIM5HHVfnsPI\nkSO56SanTcrmzZtp3bo1kNiK0cWRNEIhnvX65Fzjx49XglONGjWU/JGMkKo6srB9Ph8HHnggUGR+\nRANZbD6fL2RhiRASASmmCsBFF12kvg8oioj4/X4tHnr00UcDjgCR3pYLFiyI2myIB77++msA6tSp\nQ6tWrQBC6MNy/4888khciD/lrVmhrp966qlKOCooKNgjFT4zM1Pp9l27dlWTp1u3bgmhMZcHz3zw\n4MFDCJJGU4CytYRwNYmUlBRVv8444wyVur179670xillQXZuqQPQunVrddrFAnEepqenh5hNcp1j\njjkGcHZZIdh07txZ6w0MHjxY5z4nJ0cjFOIQzcjIULV5zJgxlTbHPp+Pt99+G3CyOYWTIJqStVYz\nH+fMmaPrKBbHZnHzzn0ea61yDx588EHuv/9+wHHAipYlZLoxY8aoVrFx40blTcgzqmgkjVCQPoTu\nvnzuBycc9saNGyvpqKSHWb9+fS0/vmDBAj799FPAqeGXzBAbXVTxuXPnxsWUkvmUsKJAVGnpjtSl\nSxf9PSUlRV/6Aw88MGQcJUVeRKBNmjSpwhutyouZlZWlZdlPOeUU7YEgQiE3N1eFxooVK/bwB8QC\niXCJH0Yg4dnjjz+ecePGAY7ZJTVCxddQp04dJXqdf/75Jda8rEjE2or+OmPMYmPMImPMRGNMNWNM\nK2PMbGPMcmPMG7t7Qnjw4KGKIJZekk2Br4CDrLW7jDGTgQ+Bk4B3rLWTjDHPAQustaU2t9t9rnIH\nIVl71157rZYI22+//QCncIk4lGrWrEmHDh0Ap5mGZMslO2THkxj1YYcdpvUi/ve//8VUki3SMRxw\nwAGqjblzBHJzc3V3k6jOpk2btIPz119/vcduWVFISUkJyWGYPn26/g5OPocQrtzaTEXl/ogZ98wz\nz3DJJZcARbU333rrLSXWJXg8Ce8lCY75kW6MCQAZwF/AsTh9JcFpRd8/xmt48OChAhFrL8nhwChg\nF/AxMBz41lrbZvffmwFTrbXtS/juUGDo7v92ieCaukuJxpCWlqYMtmAwyJVXXgnA66+/Hs1tVSpk\nt/b7/bq75OfnV9iOVhLE3+HuDi27bWZmZogWkyRZt+qbEaxatSopxjZgwABefPFFwEkaA6eKVQWN\nLSxNIRbzoTbwNnAWsAV4E0dDGBmOUCh2rqgG4U4lFcfS22+/XSGqtociJLrR6t6EjIwMXbeVsE4T\nbj4cB6y01q631uYD7wA9gFq7zQmAfYDY42oePHioMMQSkvwdOMwYk4FjPvQC5gKfAQOAScCFwPux\nDrI0iAq7dOlSli9fDkTW1MVDfOBpCOGjoKCgUliKkSBWn8JdOOZDATAfuARoiiMQ6uz+7HxrbZlv\narTmg+v7e/XC3Nvv75+GSjS3EutTiCc8oVA29vb7+6ch2YVC0jAaI4E7dg7h1Tco3ppcUFKzEHdb\nuHgmaBWvk+hmbLoLgIDDRHSzO2O9diTnKF4SLdpzuNu4lVZzoKTvRXO/7u/Fg7rsvudkEcgyJjd1\nXdZ+QUGBslRjZZVWSaFQPCwWSeOO0uDz+SIqwhoJyhMw1lp9oCIc4kUXjmZBF38Roj2H3IPf79e5\nlfsrLRU42hcw1vEW/24iBUGs9yjzmpOTE/JZvMbsZUl68OAhBFVSU0hEwYmKTuQpjmi0n2SH3ENG\nRoZSet3qrofoIPOaqDmskkIhWsiLJ515tm3bplWDKtuZV1L1nr0FwWBQw3CJMtE8xA+e+eDBg4cQ\n/GOEwiOPPKIe/VWrVrFq1SrWrVvHkiVLWLJkCXfffTctW7akZcuWca2NGA769u1LgwYNNKNvb0NO\nTk5INMVD+PD7/fj9flq2bEkgEAjpO5ko/GOEggcPHsLDXkFeKg3p6elaoNPdIESwffv2ED+ClL/q\n27dv2HX6o4XP52POnDmAU91IOjtXUF59hWBvSJRKT0/XCkoVcR/GGA499FAA/vOf/2gB2vz8fO3p\n+cYbbwAwbdo0XafWWqX4lzHOfw6jsTikLPbSpUtDiE5SIKRhw4aAM3mHHXYYAFOnTtUSZKeffjrv\nvx//lI02bdroQz711FO17Hj9+vV1bFIDMd6e5YpwpO67775ceumlADRq1EgLtYwbN46dO3cm9Nrh\nQBrgjBgxQpvdPPHEEyWOTTpo9evXj1dffVU/d5tAZdVojBRSRGj+/Pk0b95cz+92PBcn7a1du5Yn\nnngCcNrTSy/MWIWCZz548OAhBHtdSDIQCGgbcr/fr1Lz1FNPDel/KOjTpw/gFN+UY6WzcryxcuVK\nLQ+3ceNG3nnnHcBpRd+5c2egqGV5vPsFxltLkEYno0aN4qKLLgKKKjyDE4aUCsVvvPFGhWoKqamp\ndO/eHUALmjRp0kS1r7y8PM2q9fl8WuV58+bNWtbvsssuA+Cbb74pleUYrzmtXr26aiNNmjTRHhE3\n3XRTSBh9woQJQFFv0jVr1qgpsXnz5riNJ2mEQqzqbc2aNQFYtGiR+g8KCgqoX78+gPIR3PD5fNoC\nHtA+ieW1BY8WhYWFKhRycnI48sgjAcecEWFw1FFHAWhl4ljhzvmIlQORlZWlL5PMa2kqdF5envpo\n5N4SDTEFX375ZTUVZDyPPfYYt99+e8hn4MyPNBy+7rrrdI7++9//AvDmm2+WOm/u3I7i5w0HUmF7\n0qRJHHTQQXpdqRzmxtKlS7nuuuv0eHAqf0u/yngKfc988ODBQwiSRlOIRdKlpKTwwAMPAI76JZL9\nmGOOKVFDkN3tr7/+0rhvdna2toFPJESLOfzww7n44osBRxWXXee+++4D4qcpuOc1mmhAamoqd911\nFwA33HDDHtmmhYWFrF+/HoDRo0erJuRuHxdtJMcYo7tpacVzGjduDDie+sMPPxxwypyJ+i8mWmml\nz1JTU9X8qVmzptZNlO+XNVexal7Dhw8HHDP3k08+AZxGNiUhLS2NwYMHA0VOybVr1ybE1E0aoRAL\nfD6fPlhAm4tKgVeBCABZuNIXEZwy8fPmzUv0UNXuPuGEE3jqqacAaN++vdrf8W4EIoIgJSVF8w/C\nEQo9evQA4Omnn9aS+dZaPYcs6AkTJmhZ91q1aoWUWRcbPpKuUe6Uazc9ujR069YNcMK6Mp+vvfaa\n+pVKenGNMSpMRo8erbR3ay2DBg3S38MZa7jHuiFFZTt27Ag461JMg+JRJ1mzzZo103uVEOmIESP0\n93jCMx88ePAQgr1CU8jLy2PhwoWAU/b9kUceAUIl+CGHHKKtuUQlDQaDnHDCCUDFtZUTp9uoUaNU\nyi9evFgb20jvy3hBdspwysRLHPzqq69m5MiRgOMZl51+8uTJ3HDDDQD8/fffQOiu27t3b+VhvPji\ni1E1hrHWhk2HNsaow/Puu+9m8uTJQKgn3m3uZGRkAFC3bl1uvPFGAHr16qX3d9xxx7Fu3bqIxhoN\nxBSSyMGcOXP0ubsL7jRo0EDn88EHH1StSZrviMMx3tgrhIK1Vu3JMWPG6MNPT09n2LBhgPMSCmQR\n9O7dm5kzZ1boWDds2LDHZ9ZaZV5+8cUXcb2euxV9WWp8amqqqt8XXXSRvkyrV69m9uzZANx2221q\nm4tvpEuXLowePRpwBPJHH30EOOqumHGRIJIoVGpqqoZuFy1apOSdQCCgBCBplLtgwQLt+Thq1Cg1\nj9LT03nssccAIjYfozUfxM8l/gtrrUYfxo0bp2ZFSkpKyDVk7ufPnw8kLuPUMx88ePAQgr1CU4Ai\nqfnll19qJOL2229XuqoxRnexAQMGAPFX1SOBMUadjt27dw/pDBVPuOs0yO7v8/nUoSVjWLBgAc2a\nNQNg586d2otx1KhR+vnUqVOVhCTfb9asmZpjO3bs0Pto0KABixcvjnq84SA1NZWPP/4YcFRyuXaL\nFi1UtW7SpAngOHZlnMuWLdP72LhxI2PHjo342tEcD1CvXj11cItGMHbsWNVuMzIySqyPWVhYqM9K\nelG++OKLCam/4WkKHjx4CEG5moIx5iXgFGCdtH8zxtQB3gBaAr8BZ1prNxtHrD2B03l6JzDYWvt9\nYoZeMqZOncoLL7wAOLalSNr169fTt29foHJLgcnu4vf7Q9hzAwcOBIpYefG+XrVq1fS+fT6fzku/\nfv10POLIWrt2rVJt69WrxymnnAI4cXxJ2BK4qc05OTnq8P3mm2/Ytm1bxOONxKeQk5Oju3+NGjV0\nBz755JN1br/55hvASZITpmDz5s3VWffUU0+xcePGiMcJe1YIL2vXlrFdddVVtGnTBiia+4yMDGV/\nZmVlKcPy9ddf17nIzMzULEmhxN92223cfffdUY29LIRjPrwCPA286vrsZmCGtfYBY8zNu/9/E3Ai\nsN/un27AmN3/Vhhuu+22kDRpWZht2rRJqrqABQUFavJMmzaNIUOGAEU053hlNco5du3apfPSunXr\nPQhFEydOZPXq1XqsvPzdunVTj/x9992nzsN77rkHKHLkgZNZKCrx1q1bo1JtI7lnd1nza6+9VoV+\n7dq19aVfu3Yt4KSkCx+hevXqISX5okW499e6dWuNiG3btk1zFySC8/LLL/Poo48CjhO8pPNmZ2er\nM1J4NkceeWRC0tPLNR+stV8Am4p93A+nzTyEtpvvB7xqHXyL01eycbwG68GDh8QjWkdjQ2utUO/+\nBhru/r0p4N6C/tz92R40vWKt6GOGSH4JQQqEBhrvrMN4QKT7tGnTlMlYt25dAFq1aqU5//G6luyq\na9eu1fDc119/DTh0YFGHGzZsqKy71NRUVW2//vprDWtKZuHo0aM1KWfbtm089NBDABXSL9FdWKRJ\nkyYa7r3tttuUNix/f+qpp/jwww8B2H///Vm6dCkQGdsyUsh8Dh06VAunXHDBBWoGSAg1XIhmKdmS\nF198sa6XkkLd0SLm6IO11kZTJMVaOw4YB7EXWRkzZgxDhxbJF4nn5uTkaAw6mZGXl6ccASENHX74\n4XEVCm5s375dF6y8vMFgUBfdunXrWLNmDeBkjp577rn6XckPETqwz+dT4fbpp5/Stm1bwJl7UY+3\nbNmSsJi6jH/o0KFllscvKCjQKEowGIyKQxEpxPa/5ppr1FybO3duifk4kUDMCDd3IZ6INvqwVsyC\n3f8KDWw10Mx1nNeK3oOHKoZoNYUPcNrMP0Bou/kPgKuNMZNwHIxbXWZG3CFOJKG6grMrde3aFXCo\nr1JnIdlx9NFHA0Xe/KZNmypnIZZd1t1/UHZSd8ZhSY4q99/XrFmjjrF77rlnj1qX2dnZPP7444AT\n85fErgMPPFB340jGH6mDNVxnn9/vV5PIWqv1MWNBWeXYjDFMnToVcKJgYrrE4tg85BCnklqnTp30\neonQwMIJSU4EjgbqGWP+BO7EEQaTjTFDgFXAmbsP/xAnHLkcJyR50R4njANuueUWoKiOHhQVXe3d\nu7dOfMeOHbVYRrJDbHx5Ib/66qu4PHBZqKWdq7wX0Fqr4cn+/furkP3uu+8AJ/wn6nCrVq20ktVn\nn30WlV8h3hWixEwSwQUwffp03VBiQVlj9fl8KuALCwu59dZby/1OeXj22WeBIj/IkUcemRCfSLlC\nwVp7Til/6lXCsRa4KtZBefDgofKQNDTncNXGI444gjvvvBMo2gW++OILzj77bMCJsQvNORgMJiT7\nsXhL+XhAPPgi+aUScqxwlwyLdqw//PAD4MT35Xzjxo0DQsvkr1+/nnfffRcgakJQvCDjlB36vPPO\nUy3s/vvvT3hjmszMTI0ozZ49u9QiMeEiKytLtRspxCJEsXgjaYRCuGm9t99+u9q1MtEbN27k6aef\nBuDEE09UXvstt9wSFzUx0rFGA+Hoy8sUr0Ubj7GKmRYIBDSsKf4Ca60+j7y8vKjSpeONQCCgJuY1\n10NcrrYAABcuSURBVFwDOGtFXtJ4CdyyiEPVq1fXZ9mzZ0+OPfZYwMmMDJdE5/f7qVWrFuBshpIa\nLuHURJXs93IfPHjwEIKk0RTKMx+kLl3Pnj1DSoyB4+wSTSI7O1urJItETXYEAgEaNWoEwC+//AIQ\ntzJb7tJm0ULy/qGIFyCagjuPojSKbkVB1sC8efO0aI1oXAsXLuS5554DSq/XGC2kcI5bS9q0aZNq\nrHXr1uWDDz4AnLUqRDqZwyOPPFJNtMsuu0yjaSeddJKOdcKECUrIKp5zEW94moIHDx5CkDSaQrg+\nhQ0bNoRUVgJHy5BejOeee26V613o7nQtGZ7xQqy+ibS0NI3vFxQU8N577wFFSTluJmRlznsgENDs\nwpYtWyoPQUqbvfbaa1rZOV7jdCebFceuXbu02tfAgQPp3bs34IRGpcSahCxTUlL0XMYY9Tl88skn\nWv4uOztbfSKxOi3LhXilK/MHsOX9+P1+/fH5fNbn84X8P5xzJOtPWlqaHTFihB0xYkSlj6X4z9ln\nn21XrFhhV6xYYZ966ilrjBFau/6U9FlF/VSvXt1Wr17djhs3zv7000/2p59+sjfffLPNzMy0mZmZ\nNi0tzaalpdn09HQbCARsIBCo8DEaY/TagUDAduzY0Xbs2NFmZWXZrKwse/DBB9vU1FSbmppa6jnS\n09PjMZa54byPnvngwYOHEOyVXaerIuJBaU4Evv32W01sOuOMM/YYn5s+XRmQkN348eOVvfryyy8n\n3TwmCcLqOp00PoV/Moq3HE8GSGRn2bJlytsv6UVzV5CqDIh9fc8992gPUE8gxAbPfPDgwUMIqoT5\nEK/SZMmKRNCmY4V47Rs2bKis0JKYeG7zoTKfU0pKio4vWeYwCVG1zIeyFlTxlNSS/p6IWnXxhnvs\nbpMhGccsL5jUbSwNbtOhvKxB97+FhYVxvW93OXR34ZfS1oWEAwsKCvSYgoICPS5Rz8Tv96vAFTMn\nGAxGZYK5SUzuXqGxmnOe+eDBg4cQJI2mEK5kDkebSFa4x1gVxhtPJForcmeBhrNTCo3crWVWlPkj\nVPFYr+Vu8BPPSuWepuDBg4cQJI2m4OGfgUTtxJHa0SVpbRWhJcQ7XOq+75L8bdHAEwoePOwFiKfp\n45kPHjx4CEHSaAp7OxchnkhGXkO4kCpOubm56nBzO8kq6n7czsVkY5OWBHfdCvd4pZdmMBiMWxHX\npBEKVW1xRwLxENeoUUNpuYFAQLv7rFmzJqLKx1Vxrq699lrAaQkPcO+99zJr1iyg4u5H8ksaNWrE\n/vvvD0CXLl2YMmUKEHlRnoT0cfT5tBntTTfdpNWxCwoKtAGPFGmpX78+DRs6zdkyMjK0pHys3bk8\n88GDBw8hKJfmXEor+oeAvkAe8CtwkbV2y+6/3QIMAQqBYdbaj8odRBXMkoxkl5Bju3Tpot2Hu3Xr\npp7owsJCbZku6uAvv/yiBVcWLVoUc3m2yjTP2rVrp/e3ePFiwGl+E89+k8aYEJNAErpESzvyyCO1\n/+Xnn38eUq7tzz//BJws0Eiv6Ua08xsIBLj00ksBeOCBB7SIkPucwWBQ+6LKHK5YsYKLL74YcLSg\nHj16AGVqPHGjOb/Cnq3opwO3WGsLjDGjgVuAm4wxBwFnA+2AJsAnxpj9rbX/6LQ1ebD16tXTFu/W\nWtavXw84D1eaja5atQpwVMQ2bdoA8Pvvv6vZEe3Ci/R78jI1aNBAqyxF+hKLuj548GBtdrNlyxYg\nvmQbcF5QEag1a9ZUGrO0AzjssMPU5u7WrZsKjffeey/qhkHRPgsRJgcffDAAb775Ji1btgQcASE+\ng507d6qpkJGRoc2AhSZ98sknU716dcBZNyI0YkVUreittR9ba+WpfovTMxKcVvSTrLW51tqVOJ2i\nDo3LSD148FAhiIej8WLgjd2/N8UREgJpRV/+QAKBmHrjyc42bNgwrr76agAaN26sO5JI1OIQaT97\n9mythycSuaxribQPZ7yyY9aqVUubvkybNo3zzjsPQKv+lva9lJQUGjduDMDff/+dcG95jRo1OPnk\nkwFo0aIF48ePB9AageFC5rZ58+Z6L9JrsjSijbs+QyQ7sZvy26lTJ+0nWrt2bQD+85//0K1bN6DI\n2QmOqv3pp5+GfR03onU0inPw0UcfBZw5lvkpKChg9uzZADz00EPMnDkTcO5PKjuLtjlx4kRdO/37\n90+O6IMxZgRQALwexXeHAto/3lpLRkYG7dq1A2DAgAHcfPPNQGhGXdu2bXUy5SFXr15dVaooxgE4\n6uXHH38MOAu3rKYmkb6Uck89evRg/vz5AFxwwQWlCgOBCJwDDzxQ7/m8885TsyPekIW5cuVK7Q85\nY8aMEBs3XBhj2HfffQFn/DKfL7/8MlD6HEa7KRhjeO211wDHXyHjl6YwAMOHDwccv41sFj169FBf\nQ7xNmuLjAydiIOPs3r074Gwy8kIvW7aMgQMHAmjFq+KQzNXLLrtM2xmI2RkPRC0UjDGDcRyQvWyR\nqAy7Fb21dhwwbve5qpyj0YOHvRVRCQVjzAnAjcBR1lr3dvcBMMEY8yiOo3E/4Lvyzufz+ahWrRo3\n3nijemGttTz55JPOIAMBDjroIMBpiiEquGs8YY1bHGaiBm/atEmlNRTl2L/wwguq2peGcFRHcWaJ\nxnPMMcfw8MMPA5E1JGnZsmVI+zApsx6J2upu+VYajj76aMDpgyjnvvnmmyPqCykaW79+/bj77rsB\nxxz5+eefAbS0W2ljjzZKUrduXfr27avnGDBgAIBqZtWqVVPTBYrMzYULF5KdnR3x9YAQlb88iMny\n3HPP0aBBg5C/bd26lf/9738APPXUU6VqCAJZe+vWrePLL78EYucmuBFtK/pbgDRg+u4Bfmutvdxa\nu9gYMxlYgmNWXPVPjzx48FDVEG0r+hfLOH4UMCqSQQSDQXJycnj66ad1R+natau2UnvllVc44IAD\n9PjiTr7Nmzdz7733AjB58mTdrXJycnRHLi3OL8d++eWXdO7cGShyBJWFcHYzsROleWy1atWYMGFC\nud8TyH1edNFFap9nZGSoRpOXlxe2f6O83cwYw+DBg3XckXSPlnG2aNGCZ555BnA0mg0bNgDw888/\nK6OxPNs32jDfXXfdpTv34sWLdQeVz2bPnh1SqUiezeOPPx7V9SB8/0ezZs146qmnAMenIM/s999/\nB5zO2OJzEQ5CWXCv/5UrV0Y87vKQFDRnofz6/X7eeMMJZLz77rv6EKdOnaoe18zMTDUDRo4cCaAL\nMdprgyMI5HrSsy9eEPrpQQcdFBEJ6dBDnWjuySefrAvh4YcfVu/06tWrQ4qFxAJrLT179gQcwbN8\n+fIyj5eXrU6dOvTq1QtwIj/NmjkuJZ/PpxGTt956SystJwo5OTls27YNgDvuuEO7h3Xo0AFAuzIJ\npINzLKSwcKMP27ZtU5M1IyNDu1fdc889gONcFKEQjqCRdZqVlaWbXjxTsj2aswcPHkKQFJqCtZac\nnBwCgUBI8Ulhwf33v//l1FNPBRwaqEh5YXvFgrZt2wJOGFKkbbw1henTpwNw8cUX89hjjwEO1VYS\noubNm6fxaME+++zD+eefD8A333yjjtbVq1fr7rd9+3adI2FEuhGJ0y41NVXV2sLCQnX4vvHGG9x+\n++0AnHnmmRqelOe0cePGEBamoLCwUB1m999/f1hjiAW//fYbEydOBBwV/fTTTweKzAN3yLqwsFCd\ntVlZWcoWjTTOH+7c5ubmcvbZZwMOd0Y6TEfag1PuQcy8L7/8MiE9LpKixLvP57MpKSn4fL4QdU7U\ns3r16umCy83NjSuHf926dYDDdZBFUa9evbh6c0XVHjp0qGa6/fHHH/rSdOrUiWuuuQZw+AsAy5cv\n1/i5WxXv27eveqrr1aunXIcff/wRCFUj3UKhvE5O6enpzJgxA3D4HyVFdEoTMiKkH3zwQeUCHHXU\nUeo/ufPOO+NGrCkNNWrU0DkaNGgQw4YNA1Ah5h77smXL1GdSs2ZNpV6PHDlSxxnOGhM1Phwim/vY\ncF/katWqhfBzHnzwQaCIkDVw4MBI+Qlh5T545oMHDx5CkBSagjHGSq3+ihxPSkqKOu323Xdfbrzx\nRgDGjRuXkOsdc8wx6lCaP3++qq0pKSmaoXf55ZcDcNJJJ4UwHmU3mjBhgrY19/v92l79yiuvBKLX\npIwxuqsed9xxvP3220Bob4HSII7fr7/+Ws2c3377jX79+gGl07jjiUAgwPHHHw84z08c026IFjp7\n9myN4MybN09b2Ce8xXsYqF27tjIaW7durVGj66+/XjVOWUMDBw7UmhS5ubnhJM1VnWYwxhjlvFdk\nH8Bu3bppptpXX32VMGEgWLlypVJU3ep0fn4+c+fOBVA/w6mnnsqkSZP0GFkQRx99tKqP1lp9ISNR\ne0uCtVZJPO+//77ar+405IKCAg2vysIdNWqUEqv69OmjZsx5551XJlU83rDWaii5fv36IZ8DZGdn\n6z21bNmSr776CnCoz9HmksRaZEUiJBkZGVxxxRUAnH/++RpFmTVrlmZ+5uXl6fhFyE6aNEkp72ed\ndRYLFiwAYo9EeOaDBw8eQpAUmoK1lmAwmHDTQSS7JFK9+eab6mQ655ySOFrxvW5qaqru+G5NITU1\nVa8vu8Tnn3+uqru1VunYBQUFuhMsWrRIY90l7Q7xKKxirQ1xukpBEomifP/990ybNg1wzCDRdNLT\n0yvUFLTW0rx5cwBmzpyp9QnEHOvSpQsPPPAA4GRtioM5lozTaO9PTBcxGR955BElMs2aNYvbbrtN\njxXz4bvvvqNGjRqAY4ZCaKGadevWxU3LTgqhICjPQx4rWrRoATgvnFxP6vNFkhYs5g6Ex3t3Fyzp\n2LEjAHPnztWF2ahRI8aOHQs46bLg2IgiTDIzMzXbr3r16lrFqE+fPmWSb4r34EzESzpz5ky++85J\nb+nRo4eq8CI8KgrWWg19tmvXTslSModnnnlmiJB99dVXSz5RBIi28tI++zjlR6QW49KlSzVVfdeu\nXfpyp6enq5/nyy+/VGEiOR75+fkqkOM535754MGDhxAkjaaQaAdj/fr11aMujrONGzdy1llnRXwu\na21Eufdyb5s2bdJCLjfccIMShDZt2qRagxtSGOayyy5TLefdd99lzJgxQGQU3USq8tdddx3gaGDC\nJ6noqJa7QI843KCoqMvAgQNVC920aVNcaNfR3mPxLN++ffuGZM2KA7J///76eb9+/dR8ED7GK6+8\nouXm4glPU/DgwUMIkkZTkJBkvHcYscOWL1+u9pnEc6+44oqEM+3cWLJkiTL+atWqpTblTz/9pMeI\n3ZuamspVV10FOGEqCftNmjRJbfhw4LajE7F7BwIB5UpkZGRoqC+WMF+043RfU7TBI444AnDWgYRI\n77zzzrhoptGEJNPS0vYoYlurVi0de2ZmpmqTQ4YMUd/V8uXL+egjpzC6rJd33303IRyQpBAKxhgS\nQV46+OCDlbqbmZnJ+++/DzhZdBB584944I8//gCcl/WQQxweSUpKisbWpQhL7dq1dS7y8/OVYCN5\nFOEiUc1TZWF//vnnShTKzs7Wua1syAt70kknAY6QFU/9nDlzEtLIJRx07dqV1193qhdKt6wdO3aw\ndu1aHWfr1q0BZ41INOqpp57SzUCcilJyLt7wzAcPHjyEIGk0hfT0dPx+v0q/aNVPn8+ndNfXXntN\npfGmTZs0Zp2owqfhQNTW1atXq7Py1Vdf1fi+mDvu5h/PP/+8shsrqu+hmB3FryeOu8suuwyAQw45\nRHfdqVOnavmzaOH3+2MuoGqMUQ1BMk0DgYDOvdtciwci0Tq++eYbpdb3798fcByL4kTMy8tT56LP\n51P+yty5czUTNtHaTVIIhWAwyPbt28u8WfciLf4QfD6f2o4PPvggXbp0AZyHJSpj165dtRJQMiA3\nN1fVyMaNGyvxRvwdd911l3ryY3lJYl1AtWvXVnV2v/3249ZbbwXQRjXgdLMCxyyL1VaPh61vrdWc\nAInQ7Nixg9GjRwMOFyCMzmj6b2mCOJq5DQaDGvG68MILAcc0kOceDAa1juXzzz+vnJSKNHM888GD\nBw8hSJosyUiOF61BOgd/8MEHWsPQndWXk5OjDMFExHP/CUhPT2fIkCGAQwXv1KkTEMr1EC1txYoV\nSdfWXep8pqWlaTJaIvs7RIOMjAyNLgUCAR1nArg7YWVJVkmhIBASz9ChQ0Mop+KxPe6447TKTbIt\nhKoCd5bk/vvvrxRbqTu5aNGiiCsIeag0eEVWPHjwEDmSwtEYKUQrcJfDll3q119/1SxIIYd4iB6S\nwQoO+UqciuXVb0hUApaHxKNKCgVZbNL4dMuWLVpsdd26dSXatcYYLVIhpoS3aMuH++UunkbtPgYc\n4o2YEhWRCl9VUbyaVXp6etRdqhIBz3zw4MFDCJLF0bgeyAYqi0hQz7u2d+1/wLVbWGvrl3dQUggF\nAGPM3HA8o961vWt7104sPPPBgwcPIfCEggcPHkKQTEIhsfXVvWt71/auHRaSxqfgwYOH5EAyaQoe\nPHhIAlS6UDDGnGCM+dkYs9wYc3OCr9XMGPOZMWaJMWaxMWb47s/rGGOmG2OW7f63dgLH4DfGzDfG\nTNn9/1bGmNm77/8NY0xqAq9dyxjzljFmqTHmJ2PM4RV178aY63bP+SJjzERjTLVE3bsx5iVjzDpj\nzCLXZyXep3Hw5O4xLDTGdE7AtR/aPecLjTHvGmNquf52y+5r/2yM6RPLteOFShUKxhg/8AxwInAQ\ncI4x5qAEXrIA+Le19iDgMOCq3de7GZhhrd0PmLH7/4nCcMBd5WM08Ji1tg2wGRiSwGs/AUyz1rYF\nOuweR8Lv3RjTFBgGHGKtbQ/4gbNJ3L2/ApxQ7LPS7vNEYL/dP0OBMQm49nSgvbX2YOAX4Jb/b+9u\nXuQowjiOfx6ILhhBEw9hdYWNIB68GE8JehBfUEOICB4iASP6D3gSlj15FzEH30DxIIuCGnQJSMCX\nc9CAaFAXIxGzwWguxmsOj4eqgWmTJbs43e2hvlDQXTUzz/y6n3no5+muKai+dwh31/e8Xn8T4zL5\nX8QxGvbhxNT+EpYGtP8pHsEa5mvfPNZ6sregOOSDOI5QHmTZdrXjMWPbN+GsWkea6u9dO27DOexU\nHq0/jkf71I5FnL6WTryFp6/2ulnZ/tfYk1ip2x1/xwns6+P8b6WNnT5MnGXCeu3rnYhYxB6cxK7M\nnCwRdQG7ejL7Kl7EZHLGLfgrMyfzuvvUvxsX8W5NX96OiO0G0J6Z5/EyfsPvuIRThtPOxjqH9sHn\n8NlItjfF2EFhFCLiRnyMFzLz7+mxLCF75rdkIuIA/szMU7P+7E2yDffijczcozxW3kkVetS+A08o\ngelWbHflJfZg9KXzWkTEspLCrgxteyuMHRTO4/ap/YXa1xsRcZ0SEFYy81jt/iMi5uv4PK5crum/\ncx8ORsSv+EBJIY7i5oiYzFbtU/861jPzZN3/SAkSQ2h/GGcz82JmXsYx5XgMpZ2NdQ7igxHxLA7g\ncA1Kg9neKmMHha9xZ61CX68UXVb7MhZlju87+DEzX5kaWsWRun1EqTXMlMxcysyFzFxUdH6ZmYfx\nFZ7q03a1fwHnIuKu2vUQfjCAdiVt2BsRN9RzMLE9iPbKRjpX8Uy9C7EXl6bSjJkQEY8paePBzJxe\nvWUVhyJiLiJ2K8XOza/00xdjFzWwX6nI/oLlnm3dr1w2fodva9uv5PZf4Gd8jp09f48HcLxu36E4\nwhl8iLke7d6Db6r+T7BjKO14CT/hNN7DXF/a8b5Su7isXCE9v5FOpdj7WvW/75U7JLO2fUapHUx8\n7s2p1y9X22t4vE+/22xrTzQ2Go0OY6cPjUbjf0YLCo1Go0MLCo1Go0MLCo1Go0MLCo1Go0MLCo1G\no0MLCo1Go0MLCo1Go8M/s2DwvwtwYfMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2/2... Discriminator Loss: 1.2068... Generator Loss: 0.6641\n", + "Epoch 2/2... Discriminator Loss: 0.8739... Generator Loss: 1.2788\n", + "Epoch 2/2... Discriminator Loss: 1.2420... Generator Loss: 0.5994\n", + "Epoch 2/2... Discriminator Loss: 1.0455... Generator Loss: 1.3188\n", + "Epoch 2/2... Discriminator Loss: 1.5271... Generator Loss: 0.4801\n", + "Epoch 2/2... Discriminator Loss: 0.9442... Generator Loss: 0.9758\n", + "Epoch 2/2... Discriminator Loss: 1.1125... Generator Loss: 0.8582\n", + "Epoch 2/2... Discriminator Loss: 0.9858... Generator Loss: 0.8610\n", + "Epoch 2/2... Discriminator Loss: 1.7708... Generator Loss: 0.3445\n", + "Epoch 2/2... Discriminator Loss: 1.0218... Generator Loss: 0.9825\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsXXd4FNX6fs/sbpJNIaQAghAhIAhypSoKCoiAgnIR61Wx\noKKiAlK8gop6FbiIXBUrig2sgCKCghRFQKR3MURaIGAIEkJ62XJ+f0y+LzNhN9meDb95n2cfls3u\nzJkzZ77z1fcTUkoYMGDAAEGp7QEYMGAgvGAIBQMGDOhgCAUDBgzoYAgFAwYM6GAIBQMGDOhgCAUD\nBgzoEDShIIS4TgiRLoQ4IISYEKzzGDBgILAQwchTEEKYAPwJoB+AYwC2ALhDSvlHwE9mwICBgCJY\nmsJlAA5IKQ9JKcsBfAVgcJDOZcCAgQDCHKTjng8gU/P/YwC6ufuyEMIvdUUIwe+NDE3/oSgKz2O4\nzyfd+6prIFzHLYTweGyKovB1ORyOQJz+lJSyQU1fCpZQqBFCiIcAPOTD72AymXSfmUwmOJ1OAOqC\noPcAdO/dHa8qAr2gAiG0XI1Tu8ACMWY6R2xsLEpLSwEANpuN/649h6uHsaa51n4/UOO1WCwAALPZ\nzOuirKyMHyJvHyZ38wx4dn01HTciIuKssVW9j4qiKvCxsbH8u6KiorOupeoc0u+qGesRT8YaLKFw\nHEAzzf+bVnzGkFK+D+B9wDtNQUp51uQ4HA6XC9aThRfKHUUI4dUCo++aTCa+4SaTicesFZCFhYUB\nG2d5eTkiIyMBAHa73eUceSuM6FroIbbb7bpj+XIfFEVBREQEH5eO6XA4fN5ZtXMLAFFRUSwgAwFX\n973qZzSGqKgofl9aWsrXpJ0rWhdSyoBpFcESClsAXCiEaAFVGPwLwJ2BOnhNCyjcVEdfdnMhBP75\nz38CAN5880089dRTAICTJ0/i999/B6AKiOzs7ICMUVEUXpxaIeTtuN2BhJc7zcMbaB+E5s2bAwAy\nMzP5HAFStQGoD2Mgrp+Oob1+d0hNTQUAHDt2DOXl5fw5CcCysjIAeg3DbDZ7dGxPEBShIKW0CyEe\nB7AcgAnAR1LKvcE4lwEDBgKLoIQkvR6En47GcxEJCQk4dOgQACAmJgbLly8HANxxxx1sKoSDQ9Ab\nx1kwYLVaAejNHK1pUhdB19SkSRMcP65a3WVlZbjssssAAPfccw8AYP/+/fjxxx8BAA0bNsSWLVv4\nu1qTRGNOb5NSdq3p/IZQCDPQDTx8+DDOO+88AEBeXh6rySUlJbU1NB169OgBABg/fjwv0oKCglob\nj6IoiImJCek4Auk0JSiKggceeAAA8MMPP7D50KVLF3z33XcAKs0IAMjNzQWgmg90T9LS0nRmBY2z\nrKzMI6FgpDkbMGBAh1oLSQYLta3O+ovk5GQAQGRkJNLS0gCoJkO4aAiESy+9FADQu3dvNGnSBACQ\nnp5ea+O59tpr8c477wAALr/8ckRFRQGo3M3JFCP07NkTALBlyxZ23HmLQGsIANC2bVvWvKKionj3\nT0xM1GkIgOq0nD59OgBg0aJFOHDgAP+NrlvrqPQU55xQqKuIi4sDoKqJALB48WK88MILAICsrKza\nGpZbJCUlAVAXZnFxca2NgyIOb731Fs4//3wAQK9evdjcmjRpksvfrVixAgCwe/duXHHFFQBqN2pF\nEYfnnnsO//jHP/jznTt3AgAGDBiAoqIiAMBrr70GAHjppZdgNquPcFlZmS764irfwlMY5oMBAwZ0\nOGc0BVK/Xn31VYwbNw6Aqoo1a6bmUC1cuBB//KHWY02ePBkA8O2339bCSM/GY489htGjRwOo3K1e\neumlsNQQaDfq1k3NWnc4HIiPjweg5goEAt448Gg8sbGx/FlBQQFHa3744QcAajSHduDi4mKe7yNH\njnBClbeqdqAcjYmJifjiiy8AAPXr1+fIwdKlS/Hee+8BUB26rswcyk0wm8146CE1QXjBggX4+++/\nfR7POSEUGjRowIu0rKwMc+fOBQDccsstfMMBoFOnTgCAb775BoCaBdinTx8AwNatW2s8Dwkef9Jd\ntcd6+eWXAQB333036tevDwC48cYbAYBDTeGG6OhoAOB5czgcAc2m1GZsevKwUfixvLyc3//999/Y\ntWvXWd/99ddf+X3btm0BAGPGjPFZ1fZVmBBIoGlNhjNnzmDNmjUAgDfeeINNhpqQkpKCwYPVmsOP\nP/7Y5wxfwDAfDBgwUAV1WlMgCdi9e3ccOaLWeqxfvx67d+8GoCaBkJc5PT2dd/qOHTsCUJOCFi5c\nCED1WNMueOTIEU6VNZvNXAdAqlogcuEbN26MoUOHAlDV2f/9738AwldDILRs2RJA5dzv27ePE2wC\ngaoFbTWBvpueno6rr74agJrUUx2sVitGjRoFQE0b9zX64GuSFK3D66+/HgAwdOhQjixkZGTg+eef\nBwCPtQRANZ9GjBgB4OxcFm/NG0NTMGDAgA51UlMgSUt22KRJk9C3b18AwK5du1gy3nTTTS5/RyGo\nWbNmsRYgpeTsMCEES+6YmBjWEAJRcEJjuOeeeziUN2DAgBp3t3AB7WKkKbz00ksBK8QBfPfXaAu4\ntH4kVzh16hTf39mzZ/t0PsA3B6PFYsHXX38NoFJT0JZ6f/7559izZ4/Hx2vVqhUA1UG5b98+l+Py\n1qdQJ4UCebs//vhjAMDx48dZBazuwmnBkVf/vPPOw/r16wGoaqSr6jqtqeBP7Jfw6KOPAgAmTJjA\nFY779++vMwlXJFBJdV66dGltDocxf/589OrVCwDwyiuvYNiwYWd9h5yPVquV7ysl//gDTx46+s7L\nL7/MJq22NJ7m84ILLnB7DNrAunfvDkDd1Bo2bAgAmDhxIgsTm82mKwE3HI0GDBjwC3WuIEoIwQ66\nl156CQBw11138Y5f028BsJqVlJSE3r17AwBzFAQTZrOZd6j8/Hw2f7SOOtoNmjVrhnbt2gEA+vbt\ny2HU9evX11oVoBDiLCeW1WoNqJbja5q6oig6M6ZBA5V17PTp0wDU2D2F7EwmE2cQkoPaF1A2oSvy\nk6ogDeCLL77grFUyebKzszmj9dSpU2xW7t+/n7WCyMhIDlsTpJScj7Fz5042f2fOnMlrRMtK5nA4\nPCqIqnPmg5QSL774IgCgUaNGAIDhw4fXKBQURcFbb70FAGjRogUA9QaQgAgF+vTpwze8f//++Ouv\nv/hvJAw++eQTAMDgwYPZ7lUUhT3Lhw8fRps2bQCEPi1XSskPGS3iYJzDFzidTjzxxBMA1IeCTLOM\njAwAahkyJQJNmjQJZ86c8XusWgrA6iCEYJM3OTmZ8xqoVuTQoUPo168fAHVt0ubVvn17Pkd5eTkL\nPfr9Lbfcgg0bNvBYKIFLW0bui7/HMB8MGDCgB/Hj1eYLgPT0JYSQmZmZMjMzU5aVlcmysjJ59913\nV/t9IYRctmyZtNls0mazSbvdLu12u0xKSvL4vP68aAzZ2dkyIyNDZmRkyAqTiV/R0dEyOjpadu3a\nVXbt2lWuWLFCpqWlybS0NGm322VpaSm/JkyYICdMmCAtFktIxk+vmJgYnnOaw8aNG4d0DJ68iouL\npdPplE6nUzocDulwOGRpaamMjY2VsbGxAb+viqJIRVGqnbchQ4bIIUOGyPLycpmTkyNzcnLk3Llz\n5dy5c2WrVq1kbm6uzM3N5XHTq7i4WBYXF8upU6fKlJQUmZKSwtehXUPVnV/z2urJ81jnzAeTyYSc\nnBwAYBWpsLBQ52Glstnvv/8e+fn5AICrr76abbgpU6YAAB8n2CAPcVxcHMaOHasbO4HMCkq37t+/\nP/9NCMHhq0mTJuHhhx8GoNZ5hBL16tXjOaR/33//fQwZMgRA+DAetWvXjsvOSf3+448/Am5ukU+B\njusunOpwOPDss88C0Ie7t2/fDkC997NmzQKghqrJLFYURXcOqmegSFtERISOrDZQMMwHAwYM6FAn\now9UI09e3NatW6Np06YA1IIdbT4BOcYsFgunjZInOJBJN9WBdv9OnToxQzNV73kK2jE2b97Mu+Dw\n4cNDymXQrFkzTrLSEn6Q5uWOuyDUiI6OxpdffgkAnLsQHR3NBUilpaVM3eYPaA5q6jHRuHFjjm4l\nJCTwups6dSoAlSDl5MmTANQUZcq/GTRoEGtk27dvx3333Qeg0nlqtVq9rYY8d6MPNJlUw7B+/XrO\nYpNScths+vTp+OCDDwCoau6cOXMA+C8MvA2bUU2F3W6vMdvOHeh3MTExrD5GR0eHVCjk5+fjuuuu\nAwCsWrUKgDoXRGgSLrj00ktx5ZVXAqgkQSWhSp9RJIJMMV+gCfVV+73c3Fz85z//AaCafNq+DgCw\nd+9e3TGotH/AgAEseNq3b8/mIoXkacMLNAzzwYABAzrUOU0BqHRoUdpqly5d2GlYlZiE1K+rrrqK\n8xT8hbcmF5krJpPJ57Rg4oJISEjAtm3bAITOUUpzmJeXx7X+mzdvBqDuymS61TY/JlHEUUIPUJmc\n9PHHH7O5edNNN2H48OEAgI8++gibNm3y6XykKdSURlxaWsr1DtOmTWMzpnXr1gBUkpVTp07xsciU\n2LRpk44qjhzW5DwP1lz7rCkIIZoJIVYLIf4QQuwVQoyu+DxRCLFSCLG/4t+EwA3XgAEDwYY/moId\nwDgp5XYhRByAbUKIlQDuA/CTlHKaEGICgAkAnvJ/qGeDfAPVpSiTTVlQUICUlJRgDKNGjBkzBoCa\naUeMP66YgaqCxr5x40bOwszNzeWU52DuyqQdREZG6voZVmUUdjqd6NpV9V1pC3tCjfj4eNaghBDs\nd6FU8qqcCWSP//bbbzzP3jIoVW10XJ2vir5bUFDAGg05nTt27Iinn34agDrfq1evBgAcPXqUNUST\nycSO8kAygLmCz0JBSpkFIKvifYEQIg1qC/rBAHpXfG0OgF8QJKHgCchB17hxYyQk1I7S8tlnnwFQ\nWXiJEqxDhw7sRQYqnZHESDxw4EBObW7VqhV7mQcOHIgTJ04EfcyUZ//FF1/gwgsvBKDSqNP4tHUb\nlDJcG6YDPWzjxo3jse3bt48p6N0RqFC3pfT0dHaa9urVy6tr8LjqUFHY8SmEYKcirc0WLVowR2NO\nTg6nvP/111/83fLycs5f8Pb83iIgPgUhRHMAnQBsAtCoQmAAwAkAjdz8xqdW9AYMGAgu/BYKQohY\nAN8AeEJKma/NEZBSSnc5CNLHVvTegpxgUspaq/2nsGGPHj3YQZeens4OquzsbHYikQrqcDiwbt06\nAGo+wsaNGwG43/mChauvvprDecuXL2cV9tixYwBUx9kvv/zCYw416tWrBwB44IEHuAK1W7duNVLm\nUWjV6XTynCYlJbHDzxPQTl3TdUspmWbv7rvvZiq4AQMG8HdoLdSvX58diU6nkzWhffv2cW5LsBsD\n+SUUhBAWqALhcynlwoqPs4UQjaWUWUKIxgBO+jtIf0BqJABO+qkt7Ny5k1XAbt26cbLP9u3b2Rv+\nzDPPAFATY2bMmAGgdh42MgmKi4vZj9C4cWMcPXoUAPDnn38CAL766quQCyotiEm6sLCQqwRr8g28\n/PLLrM4XFRVx3ktZWRmr7jTn1flIPL0vWlavn3/+mdObqdFLXFycrqMVVVQWFRXxtWzdupUraINt\npvkTfRAAPgSQJqXUJuEvBnBvxft7AXzn+/AMGDAQavic5iyEuBLAOgB7AJAb9GmofoX5AFIAHAFw\nm5Sy2tSrYJkPiqJwnLpRo0ac2urOS6w1fei90+k8i4YtGJI6GB2MA3Fci8XCeRYnT57k3Zj6R27b\ntq1WcxPIE3/rrbeyQ/f48eM4fPgwgMp2bE2bNtXdR/Lcb9iwgclXpJRsHtEaCca10ZjJNCDtBFB7\nc1LX6U2bNrEJuX379kCYDR6lOdd62bS3pdOevKikdcaMGVwuXVRUVOPvIiIiZEREhIyKiuJjuDpu\noMdrvAIztxMnTpQTJ06UNpvtrBJkKSW/t9vtMjU1VaampgZlHGH88qh02khzNmDAgB61rSUEQ1OI\nioqSUVFRctiwYbKoqEgWFRXJXbt2efx7DwkrjFcdeMXHx8v4+HgZERFR62MJg9e5SbLiCbSZZlS2\nTA1FPUGwMsUMhB55eXm1PYQ6B8N8MGDAgA51jmSlJphMJk62iYiI4DivEKLGhBZXzV5czU9tVwMa\nMOAjPIo+GJqCAQMGdKiTPgXa0bW5BORHcDgcuiISgtls5viw9vfaRh6e7v6hqE6sCro+Lad/OCOc\ntamqY9OuC1f+pEBeh6IoZ+WOmM1ml7kzQggdYxStVRpvsNZCnRYK2glxl3JK3zWbzdzAhJKYtOmn\nxcXFYbGItcQdNE6TycSmTziM0RNIKXXCN5yct9qxad+bTCauVqX5djqdHjd9qQ50DkVROFmJqiQL\nCwt1x9auWSqzLikp4dTzYKe9G+aDAQMGdKiTmoKnu47WJCgrK2OpS5L6xIkTbtX12oYQgklhOnXq\nxPX2dQna3Y/U4HDpDUHmWMOGDVlbTEhI4N2Y0rnPnDkTEO2MjuF0OtmsJU1QOyeKoqBz584AgAMH\nDvDvampzp3Wq+4tzLvoQjtAy5dBilFJWK9ySkpJYlXU6nbomtKEGlSfHxcVxj0YaeziZBTWB1PKW\nLVtyY+H7778fy5YtAwDMmTOH55mEWKgrQJOTk3HvvfcCAPr164d//etfAGoWCh7CiD4YMGDAe9RJ\n86GuwmKx4LnnngOgMvJS74HCwkKu5qMd6tFHH8XEiRMBIKS9HarCYrEgOTkZgMoPGS7qv7cQQnAz\nlbfeeos1HKvVyt2/s7Oza2zsEiwQZ8U777zDbfjKy8sxbtw4AKFttHPOmQ/hHAoDKrkPW7dujR49\negAATp06xY1tiPuwZcuWTAFeGyQrpGo3atSIqeTrSjhUC7qOTZs2sY8mKSmJowsmk4lt+H379tXK\nGBVFYValK664gs21srIyZoK69tprWSAfOHAAgE+mm2E+GDBgwHucM+YDxXz79u3LfHjhuKuRw2j7\n9u1Mu/Xyyy8zaQmhfv36TAdfHYV9sEBjS05O5qKiUPXeDASI3oyo9Fu1asUEKp9++il27NgBQO2P\nSeZRqLVM0mJuvfVW1la0lPoAcN555wFQNR2a/zvuuAMAsGLFiuAQ/oTDg+Ov+WA2m7FwoUoR2a9f\nP36Yjh075tJLThN98uTJWvOeK4rCZK3jx4/HTTfdBACs4gohuD352LFjQ+4Fp/6QTz/9NDP+vPvu\nu7WmYnuDZ555BhMmTABQuTEIIbj/xieffMIm2aOPPsqm2/bt2/Huu++GbJzffvstAOCGG27gCNUr\nr7zCHavOP/98/Pe//wWgtgCgtUp0/0uWLMEjjzwCwOMN0DAfDBgw4ANqm2AlECQrEydOlBkZGTIj\nI0OuXLlSWiwWabFYpNlslnFxcTIuLk4ClVRbRLwxZswYaTKZpMlk8up8gaDrat68uVy4cKFcuHCh\n/Pvvv2VxcbEsLi5m+jin0ynT0tJkWlqaTEpKCjkhR1JSkkxKSpLl5eXS4XBIh8Mh09LSapyXJk2a\n8CvU1GatWrWSrVq1kvn5+bK8vFyWl5fLzMxMmZmZKdu3b+/yNxEREXL37t1y9+7d8sMPPwzJOIkK\njsZos9nk4sWL5eLFi89ai2azWZrNZrlv3z5pt9ul3W6XZWVlsqysTGZlZXl7boOOzYABA96jTjsa\nKTvQYrFgz549AFR7UesQKygo4Pdkd9HvCgsLuRMxNWnxBIHww4wYMQJ9+vQBoPoXyKaklNvExERm\nUR41ahSef/55v8/pDag/hclk4usl+7UqyGEWHR2NBQsWAFD7X77wwgsA9PcgWDCZTLjrrrsAAJmZ\nmRz3v/766wFU9qmoCkVRsH79egDwqhGMP7j44osBVM7bt99+i9tvvx3A2WuLwpA33HADhy0pXZ98\nC4FGnRYK5CEfMWIE5s2bBwBMiV0d6MH77bffQrYQCFR3ccstt3DVps1mYwceLd7Bgwez8KIGqKEE\nOersdjvTpbsSnIqi8DifffZZdtrt2rWLnaNCCBZ6wcq5GDRoELdtX7FiBcf63QkDQr169bB3714A\nKt07zXWwujCZzWa88cYbACoFwLBhw2rcaPLz85Geng5A7doFqJGTYLQG8Nt8EEKYhBA7hBDfV/y/\nhRBikxDigBBinhAioqZjGDBgIHwQCE1hNIA0APUq/v8ygNeklF8JIWYBeABAjXEeX2LElAacmJiI\nG2+8EQA8UrNJLb/xxhv5/SOPPOI2PFm1ktLXMKYQgvtZUsgPUM2YQ4cO6Y5tNpt1FZ6hRLNmzbjX\nohCCcysiIiLO2kGllGjWrBkA4KGHKvsF79u3j9XcU6dOsRoc6J2NzJwnn3ySs0UTEhK4zbs7kEYw\nadIkDmGPHDkSDz/8MABwf0x38DWnoU2bNpyTQvNaE00gfZfmk8YuhMCdd94JAPj888+9Hos7+NtL\nsimA6wFMATC2opVcHwB3VnxlDoAX4IFQUBTFY9WSkk2GDRtG4+BklOrYe2lB0uLdsmULT2ZVkgvt\n/+l89ED4aiP3798fvXr14v/Tg7JixQosWbIEgJqTAKhqNpk2M2fO9Ol83qJv374AgB9++EH38GrN\ntKpjsdlsuOaaawCoeSE0/++++y5fX7ByYYQQ3BWqc+fOLFAHDx7M1ZyuEB0djccffxyAmjhE3923\nbx/3eazunIBqdvjCFH3dddfxJkPryJN1X15ezg1pf/31VwBA+/btMXfuXADqmqbKT3/n21/z4XUA\n/0Zl27gkAGeklFQ1cwzA+a5+KIR4SAixVQix1c8xGDBgIIDwWVMQQtwA4KSUcpsQore3v5dVWtF7\nI91I/aIog9aDbDKZXEpeIQSbCkOHDgWgOhypLwR9pyosFgtLdF8rBEnFveeee/gYTqcTu3fv5vNS\n3TztyqdPn8Zvv/0GQPVWr127lo8XlNRWIdgDXpUb8MILLwQATJ48mbNBqdrTZrPxmBMTE7mTcigy\nZRVFwUUXXcT/p/lctWqVy++TmbNo0SJOg46Li2Pz7Pjx43zdWg4MghCCoxrU7dpbFBQU8DFpx/cU\n1KL+kksuAaBeJ0WwrrrqKtYyX3vttbPGDXh+T/wxH3oA+KcQYiCAKKg+hZkA6gshzBXaQlMAHrGD\nUCPXmgauKAqXwBI7jsPh4ImyWCxsc2mbwy5dupQrEMnrv3//fn7gtTnnQghmsXE4HD6rwbSAnn32\nWQDAgAEDuEbD4XBwvvull1561o2TUrI637lzZ7zzzjsAVEH2008/AQAyMjK8Gk91kFJi1KhRAICe\nPXvyAxQVFaXzqVB0oUGDBgDUB4kWY3x8PC6//HIA6hxqORq11xUoWK1WHkdZWRluu+02t9/dtGkT\nunatzPDVtpqn+ztw4EB+8F5//XUAaiq8q3Xh63W0a9eOBQ9tUr5i8ODBbMIoisINj7799luOGHlD\nSEzw2XyQUk6UUjaVUjYH8C8AP0sp7wKwGsAtFV+7F0YregMG6hSCkafwFICvhBCTAewA8KE3P65J\n1VEUhb21pPYpioI2bdoAAIYMGYItW7YAUFW1q666CoC629IuTaQaO3bscOksCsRuFhkZySQq1157\nLQB1dyK1TtvaTmu2aHdXLZszRVWKioqwYcMGv8fnCuRIbdOmDWs51157LTvzZs+ejeXLlwOoLNz6\n7bffeLcuLCzkOb7yyis5RyAuLo6dYFTBGggtZ8CAAazFlJWV6SIjNI8HDx4EoI/2SClZO3A4HLz7\nl5aWchIcJQZpd9pArIvu3bvz2Ei79TWSERMTo6N9b9y4MQA12Y20Ny1CYT5oT/YLgF8q3h8CcFkg\njmvAgIHQI6wyGj2RZHa7HZMnTwZQmR344IMPsp22e/dunD59GoC6O1C82mq1MoPQ008/DUANoQXL\nITZ9+nQ+N+1W48eP51h6p06d8OWXXwIAHn74YfTr1w+AanMCagiKHGYXXHABszDFxMTg2LFjQRmz\nFrR7LlmyhJ2LFosFTz75JIDKHBGtv+G7777jubXb7RxSveSSS3DppZfqjv/ee+/5PPe005JzFlC1\nkQ8++IDf9+zZ86zx0XjmzJnDfimLxcJhyE8++YTnPFjromnTprox+3IuurZ58+axZgZU5jt89913\nOj8IPSeeZmmGlVDwFMRZOH78eABqYgepg0eOHOGLT09PZ5XK6XTi7bffBgDmXghGyi3d9JtuuolV\n7SlTpgDQk6V8912lq2X8+PH80NMD2LBhQ1bhn3jiCZ2aGKwUXHeg85lMJjz66KM8DkAVHvRwLlq0\niH+jVYmXLVvGztFA0ZADwBdffMFmicViYTNNURQ20zIzMwGoZiWZBvfeey+vl4iICM4RWb16ddCj\nJitXruTol7dzQWt59uzZAFQiHu14qQ3AunXrdCaPt8lvRpWkAQMGdKiTmgKBpOFLL72kc9DRewpZ\n0ueUvRjMYhdSS/Pz8zFt2jQA4IIbdzCZTLxzkalx5swZzths0qQJOyZPnjwZjKHXOD5A1bDI/CHN\npWvXri7p4qruuIHUEOj+Ll++HPPnzweg5oDQOEtKSrBmzRoAwPDhwwEAOTk5/LuBAwciISEBgKq9\nkeYYCqZqbUoz5dmYzWZdGjjl4WRnZ7PG06BBA2zbtg0AmLFLCMEh9TVr1mDkyJEur8PbtPw6LRS0\n0KpLdPObN2+OK6+8EoDaDYpit4EGLcbk5GS+0Q6HA+3btwdQ6WnPz8/XPSx08ydOnMhJPxQZGT58\nOKvG8fHx/FARVVco0alTJwDA5ZdfzjyHZA7UBn8kwel08vlLS0vZ3HI4HHxP7r//fgDqHBK34Xnn\nnccPyuuvvx5S7sklS5bggQceAFC5abVu3ZojOOPGjeOH/sSJE5yclZKSwr4BWt9lZWX49NNPAQAv\nvvhiwASvYT4YMGBAh3NGU9CCduPRo0ezqbBp06agkbTS+crLy3mnLy8vx/Tp0wGAsxF3797NXA57\n9uzBwIEDAQCHDh3i3UObXqz1nG/cuBGASjQayoYs9erVw9dffw1AdeZR9SSp57UBrWed5kXb4j0+\nPp7HSUXayXCtAAAgAElEQVRE2t85nU68//77AICvv/46pAzO2ntK412yZAlnUqampnJUQguHw8Hf\nJ9PtoosuwtGjRwEEOFpS2/yMgeBodPcaNWqUXLNmjVyzZo385z//GVTePXoRP+Ts2bOZS494F202\nG/MdOhwOmZ+fL/Pz82V2dvZZf7fb7fL06dPy9OnT8rXXXpNWq1VardaQXIP21b9/f+YSzMrK8onT\nMlgvk8kkO3bsKDt27CiXLVvG82mz2ZjPUDufJ06ckCdOnJCPP/4436dQjzk5OZnvNY0xNzdXx81J\nL4fDIUtLS2VpaakcPXq07Nmzp+zZs6c/a8HgaDRgwID3OCfNB8Ltt9/OqnYgvd/VgZxWc+bM4ZwD\ncnY6nU6mCVu0aBFXF5pMJlx2mZoESubOtm3b8OCDDwJArXScpnyLRYsWsWo6ffr0WmlhVx0okeu+\n++7jiEJJSQmnr5Mz9/jx4xyvLy8v91jdDnSDmPj4eE6hpurZmJgYXd4HzXGfPn04ZT+U/UnOiWYw\n7jB+/HjOvNu5cyeTgfgKb0pQmzdvzuE7svtKS0tZSNlsNp1tXLVUtzbvixCCIzUpKSkcRouPj69T\nXaLCEQkJCZz1SSxPmZmZTDq7d+/eYJLTGM1gDBgw4D3OaU0hJSWFE5Y+/fRT9jjXBG0Fo6IoXK1I\n6dWhMkVqC61atWJ2aSEEEhMTAVRPdecvgsFKbECFRgs1NAUDBgx4j3Pa0Zifn8+UVxRr9wTaGnqn\n08msu+c6aLfesGED7y4nTpwIqoZAMDSE4MFbJ+U5bT6YzWb2SJ86dcpYeDWAhEJubi4nWV1yySUh\n6fBkICQwzAcDBgx4j7AxHwIdDwZUtYkIV7w9fiAdX66YgcMZl19+OYchDS0hsNCmY4dbzgchbIRC\nMB5YVzTX1UHLYhPI+gKqZ9DmJoQjaGwZGRk6+nztmKuOv+q8anMvtO/dnctTaO85vY+MjOQEMKfT\nyclA9evX51oCIlnJz8/X3QdtDQJVKxYXF/ODqj1fIHJH6HgRERF8DqrqjI2N5aQ1bfKSVoBo7wOR\nrRQXF/OmV9UP5g8M88GAAQM6hI2m4A18kdie8j8C+vbrtQUtWUyozA46n8Vi0e3yWgKQqrumu7FV\np134Au0xaJx2u513zfz8fHTo0AGAmp9CvIvEy5iXl6fr2UC5KHa7XRddIQ0i0JWoWk2Bzk2azenT\np3ketYzfWvPCZDLx55Ta7XQ6+ViBNEXO6eiDtwikH0GrPntz42gMPXv25ASi/Pz8kPIyWiyWoPeB\nDBRI9U9ISOAks8zMTDZ/6N9wuQ6TycRmA403JyfH7/F56DMLfvRBCFFfCPG1EGKfECJNCHGFECJR\nCLFSCLG/4t8Ef85hwICB0MIvTUEIMQfAOinlB0KICADRAJ4GcFpKOU0IMQFAgpTyqRqOExZinOiu\nbDab3yq7xWLhXYzmOC8vz600Jw3hiSeeAKAyQFPS1IABA7hPYrjseN5CSx4DBJcPUetErCsRH38R\nSE3BZ6EghIgHsBNAqtQcRAiRDqC3lDJLCNEYwC9SyjY1HKvWVrrWZAikfVavXj1uzJqUlARALePd\nsWMHALViMj09nb9PfSWJ+zA+Ph779+8HoPaaJG96XYQQQmf7A743aPXl3IBqy9My1UaB3DUkDkeQ\n2aGtRfHSrAy6+dACwN8APhZC7BBCfCCEiAHQSEqZVfGdEwAaufqx0YregIHwhD/RBzOAzgBGSik3\nCSFmApig/YKUUrrTAmSVVvR+jMMjJCUl4ZFHHgEA7q783HPPITo6GgDw1ltvBZQrID8/nxmaqc/l\n0aNHmWCD0ogBPZ/CoUOHAADbt2/HQw89BKDumgy0SyclJXHH5++//z7o5zOZTBg8eDAAlSYdANau\nXavTCH744QceG3VcCvU8u8q9kFJyar7ZbMbFF18MQNWsqLkQ5V6sW7eOad0DCX80hWMAjkkpiXP8\na6hCIrvCbEDFv6FvVGDAgAHf4Sfh6joAbSrevwDglYrXhIrPJgCYHgriVkVRpKIoUgjBpJzTpk1z\nSYhJr+3btzOZZ8+ePUNO4imEkEII+cknnzBB5y233CJvueWWkI8lGK+WLVvKli1byq1bt8pPP/1U\nfvrpp3yfgjGXKSkpMiUlRd5xxx18X4m41dX9J3LUxMREmZiYGPL5iYmJkTExMdJqtcrY2FgZGxsr\nb7/9diZ0dTdmIgTet2+fjIyMlJGRkZ6e0yPiVn+jDx0BfAAgAsAhAMOgah/zAaQAOALgNinl6RqO\n4/sgoObq33777QBUCnSiEqP+jARKZKG/79mzBzfffDMANYHkH//4B4BKMpVggxyQJ0+eZNOlRYsW\nAICsrCy3v6tNkJpL8/3666+zSTBy5EiumYiNjWVuyZiYGI6kEPejOweZtzUq1HCna9eu3GC2vLwc\nUVFR/B6odNK5wo8//ggAmDx5Mn777TePz+0LFEVB27ZtAQCvvvoqANXcoYY79erV05H8uII2Ffv5\n558HAEydOjVg0Qe/MhqllDsBuDqJf2SIBgwYqD34Yz4E6gUf1e4uXbrILl26yKKiIpmXlyfz8vLk\nmTNnZE5OjszJyZE2m02WlJTIkpIS+eCDD3LPArPZLM1msxwzZgz//dSpU7Jz586yc+fOIVMfly9f\nLpcvXy4dDodcuXKlXLlyZchVWE9epPL37duX50urzg4ZMkQOGTJEWq1WmZqaKlNTU+XGjRtd9lxw\n12+B7mlERITH47r55pvlli1b5JYtW2RGRgafz2azyaKiIllUVCTXr18v169fL2+++WZeF0eOHNGZ\nFWRi7tixw6d58ea7t956qzx69Kg8evRotaYtvTIzM2VmZqY8c+YMr3Ht2E+ePClPnjwpW7duHR7m\nQ6DgjfkghOCGoBT7jo6O5p6Bf/75J8fATSZTtRGFZs2aMW9jcnIytzKnyrNgwmw2s3odGxuLHj16\nAABHLMIJffv2BQDMmzePozU0x+3ateOIitVqxccffwwAGDx4MCcs7du3D1OmTAEAfPXVV36Ph+L0\nR44c4crW//3vf2x6TZ06lVPE6e8lJSU8HqvVyiZkYmKiLrmMjh1oUERhzZo1aNmyJQCwiaNFYWEh\nrrjiCgDAH3/8wZ8PGDCA2Z+p+5W24nLz5s28hqqBQbJiwIABH1DbpoO35kP37t1ZjRo9erQcPXq0\njI+P90rtI1VVURTZv39/2b9/f3no0CE5YMAAOWDAgJCo5ImJibK4uFgWFxfLtLQ0HlMozu3tONPS\n0mRaWposKipik8fVeJcsWcJqb3l5uZw1a5acNWuWrFevHptsgRgTmVrl5eVyz549cs+ePTIpKUnG\nx8d7vBZ27dold+3aJcvKynjMp0+fDtp9aN26tWzdurU8deoUt+HTmjvp6ekyPT1dNmzY0OVa/fnn\nn2V2drbMzs7m6EPVFoQemDMemQ91pnSauiz98MMP7OF+8803AXif3641maghbHJyMoYNGwYAWLly\nZdBy88mzvGrVKlZnN2/eHHYJStTkdPPmzWjevDkAVZ2lhq3a8Xbv3h0AcP311/NnNpsNY8eOBeBd\nNEcIwXMkZSXBCc3Vddddh6uvvpq/T412SkpKvDpPnz59AAC//fYbWrVqBUBV58l8yMnJ8fhYNcFk\nMvEcpaWlcdeqZs2aAVAjEmReaIlVGjRogM2bN/N3XRHa0H3YtGkTAgXDfDBgwIAOdUJTEEJg9erV\nANQdoWPHjgD8r4CTUnLuwqlTp3DkyBEAqiMqGNyEQgjWeFq1asXaCDmQ3EFLsBEqjYLSkpOTkznW\n371797PmvGXLlli7du1Zv2/durVP+R7R0dHMM5Cfn8/vSQuZMWMGp4SfOXMGixcvBuB9bglpm0uW\nLMGYMWMAqFWy5LB+5ZVXajyGN7SAixYtAgD8/vvvaNeuHQBw+7jU1FTuMbpz505uN1hdbgWgVppS\nGvcjjzziEeWgJ6gTQiE1NZWTX1544YWAJvbQDTh16hRXLQYreSkiIgK9e/fm87388ssAKheoFiaT\nifkHr7nmGk6w0fIIBgsWi4UF7+zZszliUFRUxN+hB3PRokX8vqysDAMHDgTge1NcKSVXUpaXl7NA\n0tY10EO4Z88en6tHqUy+ffv2LOiEEPjnP/8JAHjjjTcAgJvSuhurJ1AUhaM1f/75J99vipCkpKTw\nHDZo0MDlw+10Ovm+03nLy8uxYcMGAGrkJFDrwjAfDBgwoENYawokMadMmcKS/d133w3o8fv37w9A\nlbQkuQO9E5PjLC4ujh1Kd999N++8TZo0wbhx4wBUpmb37dtXRyn24osvAgBmzZoVdE3BZrNh5syZ\nAPRMzFon4IgRIwCoDjAygx588EE283yFNp9ACMHXSpriqlWrcMsttwAALrvsMiQnJwMAvvzyS6/O\nc+uttwIAevTooWNPvvzyywGA0443btzoz+UwaHdPSUnB3XffDaAyRdtsNrOmUFVLIP5IKSU7P887\n7zz+G40zkOauoSkYMGBAh7DOaNT2NqRstWbNmvnc9ZmOR/9eeumlePvttwGo/AVUm16dHekNaFel\nHWHs2LE89n379mHo0KEAgLZt27p0KpGm4HQ62Sb9/vvv8cADD/DnoYCWvWju3LkAgEGDBgFQd1fq\n19mvXz+/HaFabQSovEb6rE2bNti1a5duXICamehpz8+EhARmRI6KiuIxK4rC94c0t3fffdflPHtT\nuBUfH8/zNWbMGFxwwQUA9H0ftKDjlpWV8TVqtQn6u9Pp5GzSFi1aePJcBL8gKtighdC2bVuXKaE1\noVGjRnjrrbcAqA8htaWnNNJBgwZhxYoVAIBp06YFTBgQ7rnnHgDA448/DkBdSH/++ScAoEuXLnxD\nL774Yl54pIpv2LCBHVK9evVih+i1117rlZc5EAzVFAF49tlnOeWZ7sfbb78dUKIPLT2adsw0P3/8\n8Qc7gmlcgCqQyMPvKrU9Li6OyXW6devGJoqUlQQnNpuNqzcffPBBAGpatqucBZPJVGMuC63fAQMG\noF+/fgDUylg6BzmStSgrK9M5PkkQaPMXCE6nE1988YXba/YVhvlgwIABHcJaUyBJnJeXxypWRESE\nSzWJVLEhQ4bgvffeAwCO/QKqpkAhx4YNG/LxP/zwQwAIODGqoig4ePAggEpzZNGiRRzeO3bsGO+2\niqLwtZJ2IIRgh1qPHj24sOebb77xymwIhDr/0UcfAVB3PNrFKacj0HRgTqez2jE7nU6Ozbdo0ULn\n5CQH3pYtW/jeU/FQ06ZNWTsoLi5mx1xcXBzfH5vNxloBXWdVFmqCJ85euk87duxgc2Xjxo0clibK\nOG0eSkZGBq/15ORk1jacTidrCjTeI0eO8FoPpBsgrIUCIT4+nifknXfewb333gugslruiy++4Lj6\nX3/9xRVwycnJrMJnZWVxOuuTTz4JQK1Yo+8GGk6nkz3Xd955JwB1YWq7+1SXD5GUlMR2bUlJCXuZ\njx07FpIEJprvX375hc0tRVG4gpRIVmoDZMLs2rWLH9pevXrxvAwYMOCsZjZms5mjPdpKSG2PRofD\nAavVCqDywXNHBuPJPaDvZGRk8Drr1KkTk/nQRial5HldvHgx+4wsFovOD0aCiFLzH3rooaCsX8N8\nMGDAgA51QlOgHAUAaN68OUtaivlv3ryZaal27drlUroLITB79mwAYI1B23chGCAzhxyK7lTOyMhI\nNiXmz58PQE0pJm/6Y489xqaIr/DGW64oCms5Xbp04d8VFBTwPFOhTqCg7a5ck3lE3vvIyEhdp3Ca\n7xMnTuDf//43gEqH6LBhwzgHQevAAyo5F6SUzLK9bNkyAIFx4NlsNnY0PvbYY8ynQPNaWlrK892s\nWTNe19p7pnWCEo3bhg0bgpKzEtZCgVS506dPczPO9evX88NMKuK6detqXEht27blhiukti1evNin\nsJ63PIJ0MwsLCzk8abVaOZ//6quv5s+JxERKyaQvWrINb+FLH8vJkyfjkksu4c/IzFm2bFlAk8d8\nBT00JpNJ14SX7qXT6eR0a6LM79ixI8+Fu+jNiRMnOM2Z7kPDhg25ElN7z7Vmhye1D7T2UlNTdQKJ\n/k6NgxITE3Xjo/u2du1a3hiIizJYSWyG+WDAgAEdwlpTINXtp59+4nTkH374gSWpJ5KSduAffviB\nj0e7B6nq3sJbRx/tYEVFRcxHMGHCBDaLCgoKeDemvIpZs2b5XFTk6tyegHIhRowYwQ683NxcXYp1\nsODNnFLqr91u13nn6f7u3LmT55OcvFFRUW41BMpVGTp0KDv86PrdRUO81TBJO3U4HGclIeXm5nLO\ngtYJ6nA4kJGRAUDNEaF+oq5MGqvVqjNH/EFYCwUyD+655x4O02izzrSeWe2NI4KQOXPmMCFHXFwc\nq4HTp08HENiED0+gVSOPHj3K13TzzTezSRTolvPe+BGICCQ+Pp5/Z7FYmHcx0MldruAJuQ11SDp6\n9Cir3dpoTlFREe644w4AZ2cLVkV+fj6HfrVVoLQ2AlWO/N133wEAJk2adFZmbXx8PJvK2irQ33//\nHTfeeCMA1YSubv7tdrvO9+YP/G1FP0YIsVcI8bsQ4kshRJQQooUQYpMQ4oAQYl5FN2oDBgzUEfis\nKQghzgcwCkA7KWWJEGI+gH8BGAjgNSnlV0KIWQAeAOCXd0pKWW0VmJSSHZHjx4/H6NGjAUCXQ69V\ngykdtuouGsiu066gKAqTujz22GPceCRc2qUTsYiW5uuuu+4KScdrrUpdk3ZDO2ZhYSHv6GazmdfA\nv/71rxrPR+vpP//5T438GYFIFT///PMB6BvVEOLi4nSq/8mTaqfFIUOG6PJaqju/1pTyF/46Gs0A\nrEIIM4BoAFkA+kDtKwkAcwDc6Oc5DBgwEEr4ycI8GkAh1Jb0nwNIBnBA8/dmAH5389uHAGytePnN\nltukSRPZpEkT+d///lcuXLhQLly4UP79998yKytLZmVlyZYtW3rcvCMcWZWD/YqIiGCWbLvdLteu\nXSvXrl3rsnFLoF/ErO1tj8lu3bpxYxUtK3N1fSMdDodctmwZN60J1fzWq1dP1qtXT06dOlUWFBTI\ngoIClw1pMjIyZLdu3WS3bt0COr8Vazq4zWCEEAkAvgFwO4AzABZA1RBekFK2qvhOMwDLpJTtaziW\nb4MwEDDExsZi7969AFQnG6WHB7u3YqAQERHBTsXU1FROBf7ss88AAMuXL+f28wcPHgy4Q9cbVI0+\nAJUmSv369YPZjCjozWD6AjgspfxbSmkDsBBADwD1K8wJAGgKwP+4mgEDBkIGfzSFbgA+AnApgBIA\nn0A1BXoC+EbjaNwtpXynhmMZmkItw2w2o0GDBgD0lYgGzil4pCn424r+P1DNBzuAHQAeBHA+gK8A\nJFZ8NlRKWW2AO5hCgVS1Fi1acF67v+qZt2nOgfBeBwuuuAGFEEFrhhNoaGP+2ihOdXNeG5T5nsKT\n2g8/EJJW9M8DeL7Kx4cAXObPcQ0YMFB7COuMRneomhFmsViYVCMvL+8sajNArUGnVFPaHd1RalXd\ndarCT+3K72PUdHxvju2Of1CrOWhTibV8hoA691ouSe0xPN3xtOfydl7IuVhcXOxx9mHVPBTtOqK/\naQutPC188hTailBArfakdWi3232aD23lZ005DTWhTgqFqiqv1WrVJW64mpDk5GRepJSMo01z1nLg\nebOgPYE2KSrc1FVX0AqFqvOgFRCAmoyjvSZPHyBXfRH9HbOvx9OWJ2trFAI1tqqgOXRFZe9qXJ5A\nKxT8Tb4zqiQNGDCgQ1hTvHsKq9XKlWFadl76f8U5PN69Aj0nWrXOQPjCarWy9khFdeScDndERUVx\n+nc167fuU7x7iqqJKK4mpTaFX7DObbFYuDKOhKKnUYNwjoiEGlQyft9992HJkiUAKtm5Vq9e7XOf\nkVAiKiqKzQatWVydKegOhvlgwIABHc4JTcEd3HlxiZPPHZ+CO1PD193V391YG7vWdlD69ddf8eab\nbwIAN7rRjtPduRVF4TmgXfD/q8awdetW7t9ZWFiIefPmAagkO3HntAtyPoFL0H1v1qwZALXD2fLl\nywGoDYU2bdp01m8SEhL4d8QVWhMMTcGAAQM6nDOaAu2OkZGRTG2VmZnJ0txms+HAgQMAKinaRowY\nwd2Ktaw77nbNQITNpk2bBgBo164dj/Obb75hLgPyj2RnZ6NXr14AgN69e7PDq3v37swHsWfPHt4p\nXIUF3cHpdHLnYqrdr80CoVBACMHaUbNmzdC1q+pvI2ZwQG3UQs1gSGNwpw1om7MEU8sih6fD4WDG\nZ/osIiICkydPBgAu9gLUUCeFVp1Op9d8GOdE9CExMZEX+eOPP46HHnoIAM5iza0Kp9PJVOXXXXdd\n0MlEJkyYgClTpgBQF5Kr8Wlj5sQh2bx5c+5H2aFDB+zYsYO/S0zP3t7HNm3aAKgUCmfOnDknTYjG\njRsDUKslKS+gUaNG/HlcXBxvCO+99x4WLFgAAEhLSwOgbhbBIt3RggSMyWTiDmZWq5U5OxMSEtCh\nQwcAYN7G5ORkZnjOy8vDo48+CkC/GVbJjQl6laQBAwbOQdRpTYFSXD/66CP07NkTgCo9ifLMYrEw\nc/OKFStY4hPDb0pKCofyRo0ahU8//RRA8OjYTCYTNyl59NFHubfAkSNHOE2belseOHCAiWZjY2OZ\nyVcIwdfnq6PLbDZzSzrqoXD99ddzO7YGDRogOTkZgFpIduLECQBqQxXSyEjt/vvvv9kMuuiii7iB\nTW2sKzIP4uPjceuttwKo7PzdoUMHXSahNl2b5rGgoIC1RVpb48aNw9y5cwEEPs+ENMXU1FQ899xz\nANQ1SS0CLRYLazclJSV8fUQfZ7fbUVhYyMeiXhf79u1zd8rgV0kGChXMMF4vJLLDH3vsMe6pN2PG\nDPbE1xRfnjlzJh577DEAKnNujx49AOj9C66gbZceCGjNCOokZDabmWuwW7du6NOnDwAwZ5+3x9Yu\naEVR+KGeOXMmAODKK6/kv1etmPQUJ0+exBNPPAEA3Eg3VFAUhYXTww8/zN2gaD6joqJckppIKTm3\nY+PGjXwM+uzzzz9nFV6bA+JNMxh3oLYFn3/+OT/wVquVBYHNZuN1vXjxYtxwww0AKjubrVmzBp98\n8gkANXXfg3EY5oMBAwa8R9hEH7yRtsSGS/Han376ibn7bTabx2reM888w86Z1q1bM8lITZpCoNVI\n7fEoQrJgwQKOkmRmZrJD0Fu4mlen08kqJpktWm2l6m/o/8XFxdi5cyeASgfeH3/8wXF+q9XKGsj8\n+fNDHsenNN/Vq1dzp2zagavmbpCmd+zYMW4Vl56ezmNOSko667ta+HNt2qpMQI0i0dhbt27NJu87\n77zDjuTU1FRuDvT9998DUB2OwZjjsBEK3uCyy1S6BlL3p06d6lOjEm1lZGRkJLezJ++uOwTT5KJr\n6tChA59n/fr1Pqfa1hRepTRpp9PJvoqlS5fi/fffB6A+9ESH7i6ha+nSpQBUEyQlJYU/DyWEECzU\nU1JS0Lt3bwCVCT9aMyE7Oxu//PILAOD+++93mRruqxD2BDSP27dvBwC88MILbOaYTCZ8++23ANT0\n6xEjRgBQr4nC2WRSBGsdGuaDAQMGdKiTmgI1dSHtYNu2bV79nlp0LViwgNVmu93OqnFtgNJqyfEH\nVCYUPf300wE/HyVG0c7udDpx3XXXAYDX80Ct26xWK2JiYgCoiTWhTIgym8247bbbAABTpkzh+0pa\nzrx587B//34AwPvvv6/z4NcWUlNTAQBz587VtZ+newNUmrJ79uxx2f06GKhzQkEIwSEbergffvhh\nTkKqDrRQKCnoyiuvZJustLTUbZm11sSg7wYScXFxWLNmDYBK4o2ysjJWgb2NOGjhqg4iMjKSqwD3\n7NnD39u1a5fXx4+Pj2fB4nA4OKTqrblD4dmaujW5Q8OGDXH77bcDUFXwdevWAQBHbcKxbP2aa64B\nADRt2pQ/q8p6RT6fkpKSkJVxG+aDAQMGdKhzmoI2PZi8wg0bNnTJI3j33XdzckdaWhpuvvlmAOAk\nHYvFwsk2b731Fi655BIAKtszqZ1amqtAqppJSUnsML311lt5h6TkmY8++shrs6g6aDWfsrIyLFy4\nEEBldaWvvH7R0dFcbbphwwadGuxpbYA7OjJPQNri9OnT0bZtWwCqk5C6jXtyTaHmlqAxX3rppQBU\nE2flypUAgEOHDvHfi4uLMWTIEADqPIdK2zE0BQMGDOhQo6YghPgIwA0ATlL7NyFEIoB5AJoDyABw\nm5QyV6gidybUztPFAO6TUm4P5ICFEMjKygIAdmqVlZWhRYsWANTCEKoc7Nixo0vfACE/Px9jx44F\noGodtDOXl5frdo9A9gggv8Tq1avRrl07AKpmQr4EikVv2bLF73MB7sccqGYvOTk5rG01adKEc0eS\nkpLY0ehwOFiboH+rjsuXkDIADB8+HABw44038hxedNFFHt8rbcpzKAqfAHWsQKWzd8OGDZwvk5ub\nqxsHreUvv/wSF1xwAYDKXJZgwRPz4RMAbwGYq/lsAoCfpJTThBATKv7/FIABAC6seHWD2oK+WyAH\nnJyczJNGpsGVV17JSR4mk6nGNF1arEOHDmUBExUVxQs6Pz9ft0gDqVZSSetFF13EwiY7O5spwSg+\nTtcT7njllVe4qi8uLg7Dhg0DoC54quZs3749J5xNnDgRALB7926XAsKbdPfY2Fg8++yzAFRhS/eV\n1kV1IEfrp59+ysfYsGGDV45OX8wOIQSnYJMQ69atG5o0aQJArVbVrtnXX38dgLru//vf/wIA13UE\nCzWaD1LKtQCqtlQaDLXNPKBvNz8YwFypYiPUvpKNAzVYAwYMBB++OhobSSmzKt6fANCo4v35ADI1\n3ztW8VkWqkAI8RDUdvQegRyJr7zyClewUeZhw4YNWepq4XA4OOb+4YcfsoZBJCX16tVjqdyyZUvu\nVEeOvO4AABvMSURBVOyOpi0QoF0lNzeXSUKtVitLf8rK69q1a9DVRH9Aps/w4cN5Dk+cOIGnnnoK\nAJCVlcV5AXfeeSc7VSkNetu2bT5rYHSvmzdvzvfU4XBwJamrHInLLrsM77yjtjRdtmwZHnnkEQBq\nfsiMGTMAAIMGDfI5JOoppJSYOnUqgErzoXXr1nj44YcBACtXruTKzi5dunC4UkqJzp07Awi+Y9Tv\n6IOUUvpS+iylfB/A+4BnpdMkFDZt2sTpyBS/T0xM5MjA1q1buSw4PT1dZ59V7SyVn5+Pl156CYAq\nFCi2ftddd3l7OR6Dzj169GhOtdUmJ5HqSwIqXDF69GgA6n2hsXbq1Mll3cibb77J5gPdJ3/Yrcjs\nOnDgAD9go0aN4gfo6aef5oebvPcdOnTQ1TvQeMrKylh4hYp7k/w55Ft4+OGH2Zc0c+ZMXd4CoaCg\nAK+99ppP5/MWvkYfssksqPiXEsWPA2im+Z7Rit6AgToGXzWFxQDuBTCt4t/vNJ8/LoT4CqqDMU9j\nZlSLmlQiin9feOGF/F2SuEuXLsV7770HoHrPLB2bnH2XX345mjdvDkBVh6dPnw6g5uw3X7gfADUv\ngmLQGzdu5J2LstaAyuYjnmRo1gbIbLj//vsBqE5byhqsrro0kFmg2pZ1v//+OwDVhKTPBw4cyFrY\n2rVrAagOvAceeAAAcMMNNzB/hJSSKdgKCwtDmrNAmu6MGTPY+diwYUMeg8Ph4PXw+eefM9lLrac5\nCyG+BNAbQLIQ4hjULtPTAMwXQjwA4AiA2yq+vhRqOPIA1JDkME8GoSgK5827YhVSFIUf+ssvv5xt\nfkoqev3112ukr1YUhUuRBwwYAAB47rnn+Ab88ccf+PHHHz0Zrq6VuZa5p169evygFxcXnxXiiomJ\n4eSkhIQEtr/79OnD46DoQ6tWrXjBhxOIPIXGe/z4ceYJDASEEBy21YYyXSE+Ph6jRo0CoCb3kCC9\n6aabWECROSaEYJPhqquuYr+Uw+Fgk6agoMDrSALgnkafNpwuXbrgm2++4e+2bNkSQKUp9cQTT3BI\nUtsT1W6388b33nvvhawpTY1CQUp5h5s/XePiuxLAY/4OyoABA7WHsElzNplMKC0tZdVe2/Tk4osv\nxsUXXwxA9dSTY4vi4C1bttTxMpLkbt++PXuqGzRowA5IKjQqLy/nxJuxY8d6XNVnsVhYamtbh48a\nNYrpyGJjYzFo0CAA4GInbQw6Pz8fe/fuBaAm+tD1jRkzBkDwE1R8gclkYkIVuo5hw4YFVJ2NjY3V\nzVF1GDlyJM8xoOeGIHOFjtWlSxembddGLQoLC/Hbb7/x7zxFTV2eL7roIqxatQqAahIQcUp6ejrn\npBDNvMVi4WMVFRXxml2wYAHzKZSUlOgaAgFhHH0IBJxOJ4qKiuB0OnlyTCYTM9Ps3r2bH96EhAT2\nzlKIZvTo0RxmzM7O1nXQoQq+nJwc/pwSk44cOYLZs2cDUM0HV2FNV9BWVAKVN+d///sfnnzySR4/\nkWWQzb1x40b+7unTp5lBJyoqCuvXrwdQSbrpa4ZfMGEymXiOaIESUUigUFpa6nFmYW5uLo/D6XSy\nSdCkSRO20SkUOnbsWDYfhBBsbg4bNsyn7E4pZbUPZU5ODvvBFEXhZKkLLriAx0zrG6gUgH379mUO\nRqq/CTWM2gcDBgzoEDZszhX/8mdaqjS73c5aweTJk7nKkWA2m3Web9I2oqKiOF4dERHBKr+WnIVU\nx02bNuH0aTVxc8uWLT6rZuTE1HbsIYcSEakAqiOSog4tW7ZkTkBSM7OzsznX/e6772an45AhQ7Bs\n2TIAanrspEmTAIDTtYOJ+vXr8xzRbhcZGRnQmgFvIjtCCOTl5QFQ1wCZD0VFRRzlIZhMJl2NA2lv\nv/76a6CGrkNcXBz3drzooot0fyPKfFoP69at41TrLVu2BLMa0mBzNmDAgPcIC58CcHbhUtXdh9KV\nR44cyTFoSgkGKismgUobXwjBjD42m43DffS7vLw8TimdN29eQPgSiL0oNzdXxy0AALNnz2bKs337\n9nEbMKAyFEWx69jYWPajpKamsnO1Xr16vNMcO3asxtZ4gURZWRnPLe1mZrM5oJqCNxqalJL7NGzZ\nsoUZuWJjY/k4Wt/Mzz//DEDtExKIMCrNvav+D4WFhcyX8Oqrr6J79+4A1NaBNA5ah5mZmT5pplpn\nvNPpDJiGETbmgy8JQTQhbdu25Zi/2Wxm55KiKLpyWlo0W7duBaBWntHDpnUcuWszXpPXV1EUjp5M\nnTqVTQJyKCUkJDAFl6Io/DBJKTkeT+r5rFmz0KVLFwCqIKTFTX/3dEyBxGWXXcbmFj0Q7dq1q64j\nUUhBD9nChQt5fBSdKCkpYfMxEEJMm6sSDs+QhzDMBwMGDHiPsNEUansMBmqGxWLhVu1krnXu3Nkn\nwlcDtQKPNIWw8SkYCH84nU7uxEXNYoh23MC5A8N8MGDAgA6GpmDAYzidTqxevRoA8O9//xuAZ9Rn\n3sDXClRvz0EIB/M53FDnfAomk+kswg4tzXhxcbGugtHVAqCoRVRUFHuktdV4rlKYgw2KUGhbx2sJ\nSQIdZah6PC0luzYyUjWJzN1xCDS3JpOJ5zZYNOuKonDqeklJCYefCwsLOW2YxlxduK5qw1ft+5KS\nEr9bzlcds7sGvtWNreoxALVKlNZt48aNOZJWVFTk7phG9MGAAQPeo86YDyQxtRKfpGFBQYGuMIbg\nbnfQFqRod79A7gjeQFtxRzutw+EIqsZS3W6l3c1qahJT9W80n94mgnmrIQB65m6r1coa5KlTp9xS\nyVd3bofDwbkOpCnZ7faAFqd5m2DkqpUhjS0/P58T5AoLC73SzKqDoSkYMGBAhzqjKWilHxU5+SsR\ng83c6ymsVismT54MABg/fjyA2mmISvNps9nC2gGnHSeVPWt3c3/mjvIviCnpmmuuCYsydlf3w+l0\n8hpu0aJFwMh+66SmUFMte11Djx49cPDgQRw8ePCsrsO1gXCfW+39LykpYQISf/P/nU4n8vLykJeX\nh+LiYhQXF2PcuHFhcU9cgUw7KSXX9QQCdVIoGDBgIHiocyHJcwnk1Dp48CBzAZCzLBzuy/8XUNGc\ntm9ot25qt8OMjAyuSg0XEFdEp06d2Om6d+9eZn6uBkaac7iDaNJjYmLYoxzqtuiEUCQNBQP0UCiK\nosv1IDq2I0eOAAD69evHlH15eXnMx2m1WpGcnAxA9eBTFSoxQ9eGb8cdKDLVqJHakO2NN95gmrcR\nI0bgyy+/DMh5DPPBgAEDOvjaiv4VAIMAlAM4CGCYlPJMxd8mAngAgAPAKCnl8iCNvc6D2t8JIViF\nJfMhVJGR2tJMAgEhBHdi/sc//sFM0zabjXktKI5fXl6OgQMHAgDGjRvHVGgzZ87EunXrAADPP/88\nH7u2NASTycTaj91u190X0iYpynD++eczpd/gwYMDpinU6FMQQvQEUAi1mzQJhf4AfpZS2oUQLwOA\nlPIpIUQ7AF8CuAxAEwCrALSWUlbLaiGEkK6ITUgddDqdulRbsqm0Y6ewkdVq5QeqXr16zPD70ksv\n4e233wZQ2ea9rKyMeRCpWW2ooCgK5s+fD6Cy3yEAtGnTBkDwKd6rMldPnTqVexVGRkZyqC8hIYHV\n6wULFjBJDKnXOTk5TFmekpISUuFyxx136LomaSnXyTz4+uuvAagqN62F06dPMxFPo0aN+GHbs2cP\nbrrpJgDgRi4bN24MCCNXTaDOW4qiIDNT7dFM/JNVoaXApxBqQUEBC8BqBFpg0pyli1b0UsoVUkqa\nqY1Qe0YCaiv6r6SUZVLKw1A7RV1W0zkMGDAQPgiEo/F+APMq3p8PVUgQqBW9R9A6u0wmE1q0aAFA\nbZBCXIo2m40LX0iNItozQFW/tYU9WhCfPqmRu3fvZoq2//znP54OMyCIiIhgJ5h2l5s2bRoA4NZb\nbw1YAQ6g3z20MXfSTEaMGMEt2EwmE+9WKSkpOi5C4hc877zzdP8Cas8G+m5KSkrQGKZp/NRjA9AX\nbimKwjwP27ZtA6Dec2IEP3XqFHM7mkwm1hQaNGjAJgQxME+bNk3HzB0M9OjRA1OmTAGgal633XZb\ntd8nDVqr7ZnNZh1foxau1kB18EsoCCGeAWAH8LkPv30IwEP0/6oJSU6nE7169QKgNuwgG9FqtfL3\nSG0tLy/X9WB0ZYedOHGCG4DQgujduzd/Fmrve3l5uc5vQDeM1PaIiIiAZNK5WgjauabOVKdPn2az\nbMuWLfzADR8+nBvvamsKKJy6atUqNGnSBIA61zS3e/fuRc+ePQEg4D0xaezdu3fnh3fu3LnsUwAq\nCXSJ57J79+78MEVEROh8KTTPOTk5/B2i2l++PHguMRpD//79meS1e/fuNXJIUvRB63P4/fffWShU\n7b/prX/EZ6EghLgPqgPyGln5NHncil5K+T6A9yuOVfe8XAYMnKPwSSgIIa4D8G8AvaSUWjf5YgBf\nCCFehepovBCARz3VtUzK9O+ECRMAVLaOp++R5KN24llZWeyUURSFnWExMTFMH9a/f382QcgJ9eab\nb7J6WRt5AXFxcQDUHZZ2DWogEmznFiVLUfOaoqIiXH311QCAw4cP83xQb8uqIA2rQ4cOvEMlJSXx\nzhodHY22bdsCCLymQCgtLWXq/6uuugqfffYZAFWLoTFRElJUVJROUyQTFKhsH/Dvf/+bSWPI8RzM\n+0B5KoMGDeK+otXxXZJTnBzCBw8eZIf0559/HrCu1L62op8IIBLAyorFvFFK+YiUcq8QYj6AP6Ca\nFY/VFHkwYMBAeMHXVvQfVvP9KQCm+DIYLa9Aq1at2IGoZR4aO3Ysk4a66hKtKAp+/PFHfk/MPHFx\ncbjiiisAVIb7HA6Hx01lA424uDi2uc1mMzd+oR2ud+/e7NTzR4uheRNCcEguOjoaM2fOBFDptPrm\nm2/YjvYWZAPn5ORwl+Tly5fz+UKBvLw83HzzzQDU/hQ0nw8++CAA4LPPPmMNslevXjqfAjUX2r59\ne0jCjxTufPHFFwGoYd/Ro0e7/C75a9LS0lizJBQVFXET4xUrVrj1HXibixI2ac5VIwWtWrXiRXre\neeexevX2229XSwumnRiHw4GVK1cCACZNmsQPQPv27QEAf/75p1flpt56cV2BxtmvXz9ceOGFANR8\nCVrEhD179gQ0+hAdHc0OtcjISLz88ssAKh2NgUiWklLy8b7++muee2/gj8OX1Of169fzdb/xxhsA\n1I5dEydOBKCnXSsqKuLvhEIgmEwm5rls3LgxALVD1Mcff3zWd/fv34+WLVtWe7wNGzYAUK/d1frU\nRmU8bYJjpDkbMGBAh7DQFKgnnt1uZ2n9/fffs7OnoKCAdzl30pzCaaWlpSwpTSYTO9QKCgrYuUQm\ng6eOmUCmAtOxDh8+rGNCrhoCI6dYoFBYWMjj//vvv3Hq1CkAwI4dOwCoKbP+olGjRqyur1mzBgUF\nBV4fIxBzLKXkXZFyJVJSUnQOa8KcOXPOasUXTDRu3JgzREtLSwGoKcradU27v1ZLyMrKwjvvvAOg\nMiM3MjISx4+rwb2YmBgmq9VC65j3FGEhFLS9FLUgk6GmhaJN3Khfvz4//E2bNmW/g8ViOass+a67\n7sKrr74KoHrVKpCRCRIK6enpLJxiYmI43k4dmAJ1TnfXVfX4lB/hC+ia7r//fs4VGDFihMtFGipo\nWaUB9cHTCgUqM37iiSdCOq5169bxfaeozJ49e/jvqampnLPgdDo5R+SZZ57R8TUC6lqnZLfDhw+z\n0NDOuy/ryDAfDBgwoENYaAqAaweTp1KuKoMzVR/OmDGDHWiRkZGsolERydNPP83vp0yZouuzEAxo\nd6r69euzydChQwfOECQPc6h5Ae12u8+OVMqwGzp0KGeWZmdn10ruB6Cq6DSPjz/+OABVc9E6s9eu\nXQtAn+YcTJCWqh3DqlWrAKhO4EsuuQSAmm9A63DRokWsCbg61jXXXMMmRrNmzTBnzhwA8FtDCxuh\n4A+cTqfOfiWvd9++ffHoo48CUHPZiXiDHk6TyYTU1FQAqqCgYwR6kdBivfnmm9nG3b17N3dZmj9/\nPpfyUi2GL557f6B9gD2JANA1RURE8Jjr16/PQljr4fcGrqplPQXN4YYNG9jHRGFtbb3HsWPH8NRT\nTwFQTU96UG02G5/bVTRLC1+jJFpa9pSUFABqaJJ8MQDYxzFjxgz2O0RGRvJYKMKzevVqJo4B3K9b\nb31ihvlgwIABHcJGUwikqkmq97Fjx/DMM88AUJ2O5LQhkyErK4s9vXa7PWhqJF3biRMnOBqSm5uL\n3bt3A1A7N1NxV4cOHQCo6m2oTQhv7oGWZp0qKgsKCthp5iuvoa/rICIiAsuWLQOg3muCVkOg+ezW\nrRubOdodWEt2Q+aHu8iEt+Okc7/yyivs3KZqXaCyiGnbtm346quvAKjrokePHgBUpySZBd6m5ns7\n1rARCsECTUhRURGHcqi+4K+//mLzoWvXrszAEyzh8OeffzK5R5s2bTBs2DAAqopLajepi+Q1D3c4\nnU5cf/31ANQMUxK8gcrDrwmUNbl+/XpWq13RsTudTvTt2xeAKrBoXbhL2gp0mJLO17hxY64kJWFU\nWFiIxYsXA1CFBl1TSkoK1/QUFhaGbJMwzAcDBgzocM5rCoTIyEhWzSkH3uFwoGtXlZ1q/vz57JEO\nFo4fP84q4M6dO3XOLNqZSBWPiYnR1Xa4UgHDoaV6cnIyawoNGzZkL/rmzZt1Y6pKAOLOsemNA69R\no0ZMgEJaAp2D5obSx7du3cqmjbartq/w1dG4e/fusyqC9+7diw8++ACAqqFQnk1iYiKn4ZMGGQoY\nmoIBAwZ0+H+jKTRq1IjJRkeOHAlAtXtJKn/44Ych2W1/+uknAMDs2bO5otBisTCtGTHyHj58GFdd\ndRUAtVKOxpaZmelxxloo2KSef/55rj7NyclxuxsTAxLR3t12220oKioCoN/ZPQlJ0g67dOlSHSM2\noaSkhDND6V4fP36cfxcVFcXnDjVWrFjBa4B8C40bN+YeolJKpiF88cUXWdMJpSb4/0Yo2O12zjmn\neHZBQQHnjh8/fjykEz9y5Mj/a+/8Y7M6qzj++bblrXGC0AoLrotAAAWHusEfEIUYlbQszQyJf0Ca\nWGMT/zE4DYms4S//ITEadcIcGH8lTVOJowgh0WXiEkJI2DqkiGV1mBnH4mxtdCGEP2Y5/nHv83jf\n8Vba8d5735XzSW763ud9+5577n16es55nuc87N27F4CjR4/Gsf6wVLa9vT3Osdi0aRPDw8NAUlgj\ncKfrzS45r7duIRnW29sbM+d79uxhZGQEuD1ZGwxyKOpS61pr/V4tQiiSLZQS9oEEOHLkCBs2bAD+\nV+J927ZtHDx4ECDWb7wb3un9nJ6eZvfupBpBSMp2d3fHAjetra3xmXV2dsYyAEXi4YPjOFXcM57C\n0NBQnN0W3O8zZ87ELcfzqjz8/wjDdjt37oyl5QYHkxq4HR0dsXjqzZs36evrA+aecKq3hxBmKoak\nbEtLS3TFT5w4cdc1CWZzvcFDGBsbi9Wob926FduXLl0aPa4w/+PYsWNV1bPLJIQEYTHW+Ph4LLhS\nqVSit9Te3h5Xr+a9D0iWeW8UQmWadevWxc67fft2IHkYYZw6G9eW0WnOnj0LECtYHz9+PBaDyY5a\nlElLS0usUhRWdV6/fj1WkCpqbkIICcwsypQUDVZXV1dcgRg2g5mamqr7ate7/b4wujQwMBBHGQ4d\nOhTfr1QqVSFSUXj44DhOFfN6K/rR0dGYcAJiDb/gPTQ6YXOWc+fOceHCBaCcPQ7DrM+LFy/e9p9r\n1apVdUnczcVLy45UhBGFnp6euKHK6OgoBw4cAJKZjrP93rlQqVTq5hktWLAgXt/ChQtjCHbjxo16\nP+9ZbRs3L41CmL8+MTERY8qpqSmWLVsGlB9Tvptobm6Ow4yrV6+O9zaMgqxdu9bv57uH+uwl6TjO\nvcW8TDQGl2tycjKOXW/dutX/o82B4KIvWrSIgYEBAPbt2xdrThw+fBhwr2s+Mi/DhzC5ZePGjTEW\nh/qV8C5638la8iG/P8impqa4xDs7U7CtrS3OFAzU2nujSLJrKrL3I+Qaau2v2NTUNOO+i2URRk6m\np6dr5hHq1Oc8fHAcZ+40iqcwCdwA/lnSJXzAZbvse0D2h8xs6Z0+1BBGAUDSyGxcG5ftsl12vnj4\n4DhOFW4UHMepopGMwo9dtst22eXTMDkFx3Eag0byFBzHaQBKNwqSuiSNS7oq6YmcZT0o6XlJY5L+\nJOnxtL1N0nOSXkl/LsnxGpol/UHSqfR8paTzqf5HJd2+NXL9ZC+W9IyklyVdkbSlKN0lfSO955cl\nDUl6T166S/qZpAlJlzNtNfVUwg/Ta7gk6ZEcZH8nveeXJB2XtDjzXn8qe1xS593IrhelGgVJzcBT\nwA5gPbBb0vocRf4H2Gtm64HNwFdTeU8Ap81sDXA6Pc+Lx4ErmfNvA983s9XAv4C+HGU/CfzWzD4C\nfDy9jtx1l/QA8DVgk5k9BDQDu8hP918AXW9rm0nPHcCa9PgK8HQOsp8DHjKzjwF/BvoB0r63C/ho\n+js/Sv8mysXMSjuALcCzmfN+oL9A+SeA7cA4sDxtWw6M5ySvg6RDfgY4BYhkIktLrftRZ9nvB14l\nzSNl2nPXHXgAeA1oI1lvcwrozFN3YAVw+U56AkeA3bU+Vy/Zb3tvJzCYvq7q78CzwJY8nv9cjrLD\nh9BZAtfSttyRtAJ4GDgP3G9moR7bG8D9OYn9AfBNIExubwf+bWZhUUae+q8EJoGfp+HLTyTdRwG6\nm9nrwHeBvwF/B94EXqI43WFmPYvug18GflOS7FlRtlEoBUnvA44BXzezqjpnlpjsug/JSOoGJszs\npXp/9yxpAR4Bnjazh0mmlVeFCjnqvgT4PIlh+iBwH7e72IWRl553QtJ+khB2sGjZc6Fso/A68GDm\nvCNtyw1JC0gMwqCZDafN/5C0PH1/OTCRg+hPAo9J+ivwS5IQ4klgsaSwhD1P/a8B18zsfHr+DImR\nKEL3zwGvmtmkmb0FDJPcj6J0h5n1LKQPSvoS0A30pEapMNlzpWyj8CKwJs1CV0iSLifzEqZkHfBP\ngStm9r3MWyeB3vR1L0muoa6YWb+ZdZjZChI9f29mPcDzwBfylJ3KfwN4TdKH06bPAmMUoDtJ2LBZ\n0nvTZxBkF6J7ykx6ngS+mI5CbAbezIQZdUFSF0nY+JiZZXe0PQnsktQqaSVJsvOFesp+R5Sd1AAe\nJcnI/gXYn7OsT5G4jZeAi+nxKElsfxp4Bfgd0JbzdXwaOJW+XkXSEa4CvwJac5T7CWAk1f/XwJKi\ndAe+BbwMXAYGgNa8dAeGSHIXb5F4SH0z6UmS7H0q7X9/JBkhqbfsqyS5g9DnDmc+vz+VPQ7syLPf\nzfbwGY2O41RRdvjgOE6D4UbBcZwq3Cg4jlOFGwXHcapwo+A4ThVuFBzHqcKNguM4VbhRcByniv8C\nSGUYY7XTZEwAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2/2... Discriminator Loss: 0.9482... Generator Loss: 1.3030\n", + "Epoch 2/2... Discriminator Loss: 1.3452... Generator Loss: 1.9974\n", + "Epoch 2/2... Discriminator Loss: 1.0928... Generator Loss: 0.7811\n", + "Epoch 2/2... Discriminator Loss: 0.8769... Generator Loss: 1.3478\n", + "Epoch 2/2... Discriminator Loss: 1.2244... Generator Loss: 0.6451\n", + "Epoch 2/2... Discriminator Loss: 1.0969... Generator Loss: 2.4311\n", + "Epoch 2/2... Discriminator Loss: 1.0368... Generator Loss: 0.8528\n", + "Epoch 2/2... Discriminator Loss: 0.9872... Generator Loss: 1.3598\n", + "Epoch 2/2... Discriminator Loss: 1.1426... Generator Loss: 1.1906\n", + "Epoch 2/2... Discriminator Loss: 0.9564... Generator Loss: 1.2773\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsXXd4FNX6fs+WJKSQkAABQhUEpAkiIBaqooiCBb0iV1FR\nRAQR9FK8iqCiKFf0qqAiChaqEMUfIogCiiJFqkgLSAm9h/RsOb8/hu/LmWU32zeLd97n8SHu7syc\nOXPmO199PyGlhAEDBgwQTOU9AAMGDEQXDKFgwIABHQyhYMCAAR0MoWDAgAEdDKFgwIABHQyhYMCA\nAR3CJhSEELcIIXYJIfYIIUaF6zoGDBgILUQ48hSEEGYAuwHcBOAQgPUA+kgpt4f8YgYMGAgpwqUp\ntAWwR0r5l5SyBMAcAL3CdC0DBgyEEJYwnTcDQLby/4cAtPP0YyGEkVZpoFwghECks3qFEAAAq9UK\nADCbzfyd3W7n8UgpdWOjv+l4p9MJk8nEnzmdTt3v3OCUlLKKt/GFSyh4hRBiAIABAR7r8Tt/HnCk\nFgSN12w2e3xw7sZBx0V7KjqN03U+XRex+lmoQC+FpzGpL5i740wmE3/ncDjCPtdCCBYGNWrUAACk\npKTwdU+fPg2bzQYAsNlsKCkpAaAJANf5LCkpQWxsLABNwBQUFAC4WLAoOODLGMMlFA4DqKX8f80L\nnzGklFMBTAVCoykE8jCllBF58ejcJBDoM3VBq9If0B4y/e1wOPh3FouFdxabzcbHqb8JFsG8xO5+\nH865VefU3bP09HzV/6e5E0K4FSahXCNSStjtdgDA8ePHAQAnTpxApUqVAADNmjXDxo0bAQD5+fks\nIIQQbp+xxaK9wvHx8XyOM2fO8G8DGXO4hMJ6AJcLIepBEwb3Abg/VCcP1SITQvALRg8qnFAXMAC3\nuyoJiieeeALVqlUDAHz22WeoU6cOAGDo0KH46KOPAADffvstKlasCAC8SxQWFoZs8fr72/LWaPwR\nSPQs1GdStWpVVKhQAYC2YwNAWloacnJyAADnzp0LyT3SNQsLCwFo67BmzZoAgMOHD/O1XdeLOxQV\nFQHQ1i+thYoVK/I5AkFYhIKU0i6EGAxgKQAzgE+klH+G41oGDBgILcLmU5BSLgawOFznDwWklKhe\nvToA4NChQxHf6dxdj+zN119/HTExMQCAwYMH49ixYwCAvLw83mGqV6/Oqm1xcTGA0PhJynvHLy8M\nGjQIbdq0AQCsW7cOALBhwwZs2rQJgKYphANSSlb3U1NTy/SZeYLJZGItp6CggDVOX7QNV4QlT8Hv\nQUQ4+qDaiDSR9KJFEmS6CCFQu3ZtAJo9CADLly/HH3/8wd+PHj0agOZHcKdequZHIAshGNB9mEwm\nXtyRHkMwILv8yJEj+P333wEADz74IADg1KlTHo8Lla8hMTERWVlZAICTJ0/i3XffBQDMmTMHeXl5\nPl0jJSWF57y4uFjnPFV8ERuklFd7G4+R5mzAgAEd/paaAklwi8WCRo0a8efdu3cHAMybNw8AkJ2d\nHRbvfVnjohBSs2bN8NhjjwEA6tevj9TUVABAnz59AAC7d++OSjWe1NKEhAQAQO3atdG/f38AQN++\nfXnXPXv2LMaPHw8A+OKLL9iLHi2gcWZkZOC7774DANSqVQs33XQTAGDNmjVezxGspkDHL1myBNde\ney0AoEKFCrqIw6pVqwAAw4YNw/bt23XXs1qtSExMBKBpB/n5+XxuD+aDT5rC304omM1mtG/fHgDw\n1FNPoV07LWcqISGBTQRaxN9//32oLusTUlJS+KV//fXXERcXB0CzW2lM9OCjEZUqVcKbb74JAOjZ\nsycAzZxJS0sDoC1EdTHS3/n5+Zg+fToAYMyYMQCA8+fPR9zEoJewYcOGGDx4MACgbdu2uOyyywBo\nLyeZDb68F3R/gUZfrrzySgDAokWLONJkMpnc+hSKi4tx+LAW1Sd/x59//olp06YBKA1veoFhPhgw\nYMB/lFtGY6hBavn27dtRq5aWNyWEYMedmihEzptIZTSSqrpgwQI0btyYx5ubmwsA6NChQ9Sp1ypo\nF9u3bx9HRGje1Oy5HTt2YPPmzQCAa6+9FnXr1gWgJdbcdtttAErj/xMnTuTcinCA1gBpNEIIjBgx\nAoBmMtCYS0pKcOCAlui3fft2v9YDrSl6vpQz4A333nsvAC0XBQDS09N1qc7uEBsbi3r16gEovbfG\njRuz5hZKRI35EMwLWq1aNcyaNQsAcMMNN7Ba+vHHH7OaaDabkZ2tlWMcOnQIANCmTZuArulvxh+9\nVFlZWfxSrVu3Dvffr+Vz0bjCgUCzE8m06devH4/zmmuu4bRbMnMeeOABVmsLCgp016BzdO7cmT87\nePAgAGDXrl1BZd2VhYSEBKxfvx4AOCkoJiaGX171eiUlJfjll18AAHfccYdfUShKFiJ/0P79+70e\nU6lSJZ4vWgueUrW9wWazsQmyc+dOXw4xzAcDBgz4j6gxHwLZLUhSDx06lFWqdevWYcAArc7qzz9L\nkyidTifnJBw9ejTY4fo13nvuuQeAtnOS+vzkk0/yjhFOqEU0vnrL4+Pj8euvvwLQUn9J81q8eDEe\nf/xxAFq+vjeQOk3efQD8DMJRfET3l5mZiYYNG+q+y87OxpAhQwAAv/76K+677z4AwI033sjj7Nix\nIzuffXGCkreffms2m71Gsbp06cLaFpm8rlCvTen3lNQG6KssKUrSpEkTHDlyxOuYfYGhKRgwYECH\nqNEUAkHz5s0B6GvJ+/fv79a+MpvNLHW//vprAIHbsr4eR86joUOHAtB2gJ9++gmApsXQ95EIzalz\n5A3Lly/nnXbx4sWYOXMmAODHH39k52igCGfmKPkMWrduzc/o/PnzAMBOOsL7778PQPM7UTapmhXo\nD2hdlaUl0NieeeYZ1pZULY7+zs/PZ2ftlVdeySnWaWlpyMjI4HESkpKSAADt2rULel3zWIM6upxA\nDpq3334bAJCbm8uJMp4cLs899xwft3DhwqCu76tTlIRWeno6AO2FoMWZkpLCL9vixYsxZ84cAOCK\nvPT0dP47Nzc3aMHh7XghBOdKtGnTBmfPngUAvPDCC9izZw+A0JdnqzkNwS7k+Ph43HrrrQA0s5IE\n7l133eX1WLpXSsjyFaTGkxlrMpk8RlSoyrVp06YXbQbqejp+/DgaNGjA35OTev/+/SzgKA9HHcP7\n77/P97Fhw4aLTBt/YJgPBgwY0CFqQpL+/D4+Ph5AaRbXrl27cP311wPwHCv+448/WO2i3TpQDoWy\nwnz0XVxcHF544QUAwPDhwwFoOwlVO2ZmZmLQoEH8ucpe5HpuIQQX5litVt49nE4n5zeQeqqaSb7s\nwLRbX3XVVWzaxMXFsSOxffv2HDINdSo4PUe73c73Eeh67N69O2bMmAFAU7VpzJSt6Ok5JSQk8Bzk\n5eX5tbOSo/Caa64BAPz222/sRFRhtVrx7LPPAgBGjx7N9+1uPGomqPq5w+FgLZief6VKlXTaFmkp\nc+fOxccffwwA2Lhxozomn0KSl6T5UKWKnmbO4XB4FAb026pVq2LLli0AEDSxikrh5YnRx26388NT\nX25arOfPn9dRgrmDKiAqV67Mf9PDP3LkyEXC8OzZs369vGSTXn755ZzUBejTrVV1193LFagZEMrk\npS5dujDzUGFhIXr37g3As5Ch+7ZarZzg5q9AovVD5lVsbKxOKLijfMvNzWWfAqGwsJCfdWFhId+H\nw+HAyZMnAWhz1bdvX931OnbsiG+++QaA9oyoDqJTp0545plnAMCtkPIGw3wwYMCADpekpkCqJkni\n3bt3e/xtv379AGiZdJmZmQCCV4N9Od5ms3FaLcXEVZ69pUuXsvmQkJDAOwkVu7Rp04YzL+12O2s8\nlStX5t9aLBbOeyCSFX/TpSmaMGfOHJ6fK664gq+dk5PD16tUqRKr16SZWK1WjqHTjhtJ0A57zTXX\n8HrYs2cPduzY4fGY5ORkfPbZZwCAkSNHBkxdRnNBppY6965m4F9//QVAmy8yBSlPxWKxsJOwV69e\nrLGppoyrFgJoaeX0WVxcHD+nzZs3s1MyEFySQuGKK64AUPoQqlSporPJydbr0aMHV/ClpKSwdzlS\n1Xn0oNV0VrInExMT8dprrwHQOBjpIZKqXqlSJX7Ix44d41Taffv2sf9g5MiROo6+QKDOBQmWLVu2\n8HzGxsaidevWALQSaGIgpuvl5uZymvC9994bkRJ0FTRfJSUlHO40mUxo2bIlgNIS6JSUFE5e+ve/\n/81z2KVLFzzyyCMAgPXr1/uUquwKmgs1QQwoTfNOTk5GkyZNAGgCYv78+QBKBfLy5cvx888/8324\nAz0boDTaMWnSJF7r6rX9jaK4wjAfDBgwoMMlqSlQCi6ldTZv3hy//fYbAPCuBmhSmXbrM2fO8G8i\npSnQrjl37lwAmhnRrFkzAFrqMxFo1KpVC9u2beMxA5oWpMaaaRc8d+4c70DZ2dk+awj+0rSRs2vB\nggXsXSeNByiNdsTExOCOO+4AoJHX3H333T5fIxSg+3/ggQewZMkSAFqOx9KlSwGURqhU00d17MbH\nxzM7dmZmJsaOHQug1CSw2+0e55h2ZpqX4uJinpfk5GQ2XVu3bs1a7Z49e7B69WoAwIoVK/havjwb\nGneLFi0AgPkkCXSODz/80Ou5ysIlKRRIxaKEn5tuuolrHxwOB0+e6ukVQmDDhg3lMNpSvr+ePXuy\nuteiRQvOqnM6nTpvOKCZHqQGWiwWvPzyywA0NZiEydq1a30egy+edTUZh1Ttpk2b8kLPzc1lDkNS\ngd944w0e55133skCxBfmolDiyJEj7KP57rvveJ4pC3DNmjX8/Nu1a4fLL78cgBaGpPW0e/duzm4k\nu542FXegdUbPzmw26wh0Bw4cCEBvCq5fv56fHwksX6MeNM8UZs3NzWXiYaA0W5SETqAwzAcDBgzo\ncElqCqQmffLJJwCAV155haVthQoVeLdt1KgRq1LVq1ePSMMXdyAz4s0332RexoSEBE7TnjVrFjp2\n7Aig1KHUvn175h6wWq1c+VlYWIjnnnsOgH9xfn/oxa644grelRYuXMj59x9//PFF+SAzZ87U7aY3\n3ngjAE2Lce16FW6Qw3P+/Pmc3kxrZMKECbyjOxwOZsdet24drwuz2exX9Ibmi9LRVSfhuXPn+Hpq\nlOjTTz/lyI6/oLVB/BTEFQFoc0zJWzSeQBGwpiCEqCWEWCGE2C6E+FMIMfTC56lCiGVCiKwL/1YK\naoQGDBiIKILRFOwAnpFSbhRCJAHYIIRYBuAhAD9KKScIIUYBGAVgZPBDvRjkaFR3InX33LRpE/bu\n3QtAs8WrVq0KIDR8CoFgypQp3Mvh3XffRf369XlslLlGti6FIAFNU6CdPicnx1eWHb9BGs25c+dY\nI5g4cSLPl7twWUpKCtvfiYmJ7FybPXs2ny+QMF8goJ174cKFHPqdOHEiAE3DItLc3r17s/PXbre7\nbSHnD9xpoA6Hg53HrVq1Ytv/gw8+4HwQd/OpFkdZrVbOcbnttts4H4eyNdX8lqKiIixbtoyvHQwC\nFgpSyqMAjl74O1cIsQNaC/peADpd+NmnAFYiTELBXXPR5ORk/rx58+b8d2JiInuWn3/+eQDgFzFS\nOHXqFMf5k5KS2GvdpEmTMglQiouLsXLlSgCal12NWXtDIDTke/fu5bh6ZmYmC1O1RkFNtVavQbyM\nH330Ef7xj3/4fM1QQCUtITq2Bx54AIDW/YmqVW02GycOBWPa0H2rad5qrgA936SkJM6niI2NZSGq\n9v+k5LTCwkI2f3NzczkKpAoLNXpCAmDVqlXsBAZKHdZqQ1tfERKfghCiLoBWANYCSL8gMADgGIB0\nD8cE3IregAED4UPQQkEIkQhgAYCnpZTnXdI7pacKyFC3or/uuusAaOEmql3fs2cPWrVqBUBTcx9+\n+GEApbvD4MGDdaqWpwrFUFWSOp1OViktFovuGupvAE0dpIrK22+/nduK+asaBjJ2m83GBTVz587l\nEJjVauWx0i63YsUKTm/u1q0bf1+hQgXOJo2URkb5GwkJCUhOTgYAJu5NTEzkHbN3796+9kkoE655\nD2azmXdos9mMzz//HICmsVIWIlCa46F2iSao2Yg0fwRXra+kpIRNs759++rStWlsARETB7PghRBW\nAIsALJVSTrrw2S4AnaSUR4UQ1QGslFI28nKeoN86IqZYv369Lu2U1LaKFSuy2k0qpUq2opYcSynD\n5jGnRbNx40aOiR88eBB33nkngNKkGbUUtrz7MtKi79KlC9u1qj+H7PcHHniAx6x2K6KchnBCTW+/\n+uqr+YWkPIWioiLccMMNALQy+lDMqWt1q9PpZJPB6XTyNSwWC3ee+uqrr1goEKSUuhfeXTMYp9PJ\nUR7Kc3juueewa9cuPs4HhJfNWWgj/xjADhIIF/ANgH4X/u4HIDiaIwMGDEQUAWsKQojrAawC8AcA\nErvPQfMrzANQG8ABAPdKKcssnwuFpkDSdfr06dxsAyhVt2NiYvDBBx8AAF566SUAmpe9W7duALQs\nMNrdvDlmAjUphBCsKj788MPo0qULAK3fQHlrA6GAyq1gsVg4EjFjxgyf6/oDnVur1crPrWnTppy9\nSJri9OnTmYk6VHPtT7t3Wp89e/bknBPi26hTpw5Hm1wrLWn8K1euZJOOIlgBRBn+N3tJqhVySUlJ\n2LdvHwDNrlXDNwSa9KSkJFZ9AyGm8AVCCPYyl5SU8Dh87Sx0qYFehCpVquDcuXMAwje3KiwWC0eY\niHeydevWPtHSE9yp8EDoG9e4wmKxsHBT61VC5NsymsEYMGDAf/ztNIVohsVi4dTUI0eORGTXjAaY\nzeaL+i4WFxcH3K3ZF7hyC6hUc//D+N80H6IZgfZ1NGAgRDDMBwMGDPiPS7JKsrzhr9OHnJlqLoQK\nQ2sIPfyJDBjQw9AUDBgwoMMlpykIITidlXjuCwoK2IHVtGlTduCdP3+ew32nTp1im14N+ag7t0qr\n5S4GHKhjzBuvgCvhJ6AVzhBrVE5OjtvxhDIF2/W8Kvztnel6HtcGJ4AWY3eX3u3vOOm5W61Wt4Vi\n0aYxuOv+Xdb8+lrQFkp/VdQJBXfxYdebpBdETWcmOrbi4mJunLJt2zZOBnE6nbyA1HRmup7ZbGY6\nq1AvIPWF9vbA6Huz2cwCzVOSSrjMDte0W1/hqRmMSm2vfh/s+KWUHklR3KUgRwv8GQttVDab7aLj\nzGazTrCEaj0Y5oMBAwZ0iNqQpCoFVQlpNpu5+Imq8/Ly8nSqK6UrR8O9GYgMVFPq7xL6tVgsXCh3\n8OBBbihDa71y5cr4888/AYS2ICpqzQeVsEJVBRMSEpgApHHjxgCAadOmsZp19OjRS3ohuEOo27Z7\ngyeBHI3wxdwkqOsomu+L7qlu3brMMRkbG8tp+IsXLwagMWmHA4b5YMCAAR2iRlMg9c+dI8pqtXIb\n+YEDB3KPRvLOjxs3jiW/SrU1efJk5uI7e/as330WyxNNmjTBhAkTAGjsvaQJCSG4CnTNmjVMYELz\nc+7cuYAJNmgnbdSoEcaPHw9Aa1FPFXzx8fHs4Sdn7ZEjR5iz4Pbbb2dG5UgxZxNVXKVKlZhLsri4\nGFdfrWnJ5IB+/vnnuU1bgwYNmMsilJ2vQwUa29VXX82RtqKiIl4DxDt64403cs9Mk8nEjulgNcmo\n8Sl4C6/Rgu3Vqxc3KiFa9AvncHscnVMl0qSmIRs2bCg3QSGE0HH43X777QC0PocAUK9ePY/3RC/9\n4sWLmU2KqhCDIYih6zVv3hzLly8HoIV9KWrjLnSqwuFwsJ+nR48eXL4crjVmNptZKNxyyy0sIMeO\nHcvEL0SEq5pgDoeDyWLuueceJsJVoyTlhbFjxzI9vcViwVdffQVAe77ffvstgFKfWVxcHNO5nzp1\nSieIicxHJXuRUhppzgYMGPAfUWM+eNtNSNotXLgQY8aMAVDatZeabrgD7WwWi4V5Fkj6rl69mhmH\nI90oJjY2FrNnzwagOUyJBZkkvKo5qTtwpUqVeDf7448/+PNQ7MZ0jj///JPV7pKSEp77tLQ03Hzz\nzQCAYcOG8WdEXy6lZFNj/PjxTKkerhb1agKUzWbj5jrp6emsKdBcFRUVMYdh1apV+Z5SU1N5zk0m\nE+eqRBrUA/Uf//gH8z7cfffdPGZ3z/fKK6/0SAwUjAYcNeaDH7/lLkuvv/46AM23oDY/9QbVs052\n+5gxYyIatahduzbbhjQWoLTE1+l0spk0f/58Vn179uzJvP8DBw5kwRgptZf8OPRv3759uduS+rJJ\nKXlM6enpPM5Qg4TC2LFjeb6Sk5P5c8puXb9+PXMcdu7cmQXVM888g40bNwLQwn7l0UVMCMFjE0Iw\nn+O6des8/h7QTE1avz6O2zAfDBgw4D+ixnzwNY/fZDJxv0K1K7O/16JzXXXVVQCAGjVqcNQiVGN1\nB9phv/rqK53ji3Y0Yhw+ePAge5PtdjuPefHixahXrx4AjWqMdhXq9zh58mT2wocjp4F2JNICMjIy\ndM5HSqyRUvI9PfHEE/j6668BlHZxLioqYs/6uXPnAlZ36f5uvvlmNgOOHz/O5yMNcufOndwR+/Tp\n09iyZQsArfkKzZe/WkIgqeDuUKVKFa7j2b9/v9fu6HTdN954IyyajaEpGDBgQIeo0RR8lbYOh4Pj\n9OScq1mzJr777jsAWt8E2km9QQjBTjLawUM5VldYLBY0bdoUAFC/fn0+z65du9gpt3379jKvWVBQ\ngPfffx+Axv9P56PxT5kyJay+EdqByUewatUq7neoXtfpdOL8+fMAgJYtW2Lp0qUAtAY99H0o/Qwd\nOnTg66u7J2mRsbGx3O+jT58+3GKtQYMGPDZ/Eap5fvPNN1nzGj58uFf/EPltwkXnFzVCIRBQd5z9\n+/dzz72WLVvixx9/BOA5KqFW7BFddiSaoLZu3RoPPfQQAD3hSufOnXHq1Cmfz0MJN3369OHY9bRp\n0wBoyUSRSOEltfzFF1/k5CUALAjWr1/PUaLNmzf71f8yEHh6QUiI2Ww27uPZvHlzFk4DBgwoF+ci\nUGoGZGRksKm4ZMkSn49X2Z5DiaDNByGEWQixSQix6ML/1xNCrBVC7BFCzBVC+B4WMGDAQLkjFJrC\nUAA7AFBDvNcBvCWlnCOE+ABAfwDvh+A6ZYKk/ZYtW3T9+NyBpGtxcTH3GvRnt/BXQpNjdP78+Xzc\nuXPnOAPPHy0BKN1hEhMT8euvvwIAc0iEG6SRkYOzVatW7Fy02+348ssvAQCff/45Z5BGA2u1yWTi\nrNGkpCTUr18fQHD5KYESuJCWRY2B4uLi2BTxxeFKJtHIkSNZK16zZo1fYyjz/MEcLISoCaAHgPEA\nhl9oJdcFwP0XfvIpgLGIgFBQxnQRwYYr6PuJEycGlPvuqy1J3vCZM2cC0KIl9NCnTp0aUJWbEILN\noptuuomby9CLabVag2ou6u3aL774IgCwGaTOdVZWFsaNGwcAOHbsWFgp3H0FNRseOXIk+1+EECHp\nb0n3TpuQrz4SSvCaNEnrtnj48GHO9ShrrkggU57OmDFj+Hm88847GDVqFIDgE/GCNR/eBjACpW3j\n0gCck1LSqA4ByHB3oBBigBDidyHE70GOwYABAyFEwJqCEOI2ACeklBuEEJ38PT7UregJZaU8kxT+\nv//7PwBaRmS4MgGFEPjoo48AQNcnkK49efJkLmYBSncdaj8+evRotGvXDoCWuUbx/WuvvRaPPvoo\nAG2Hotp6ikiEswVdxYoV8eCDDwIo5ccESgt03n33XY75l3emLM0nOTu7devGnxUXF3NeRzAgjcyf\n1Gir1coaYvv27QFoBXpkBpYFWgMTJ04EoOWsrF+/HoCmuVH6/tatW4OK7ARjPlwHoKcQ4lYAcdB8\nCv8FkCKEsFzQFmoC8C0jKET4+eefPX63aNEiAOA04XB66atVq4a7774bQOkCXbx4MVdonj59mlX+\nDh064LXXXgMAtGjRAoD2wtP4li1bpuspePDgQQCaYJkyZQoAhN27D2h5+WQHk1/j9OnTeOeddwCA\nG/hGA6h6kmo4EhMTdb1EV69eHbJr+SMAe/fujc6dOwMobRS7fPlyv1R+ut62bdt4PY0bN459DcFu\nDAGbD1LK0VLKmlLKugDuA7BcStkXwAoAvS/8zGhFb8DApQYiNgnmPwCdACy68PdlANYB2APgSwCx\nPhwvg/2vbt26sm7dutLpdLr9z+FwyLS0NJmWliYtFou0WCzSZDIFdC2z2ezxu5iYGBkTEyPnz58v\nS0pKdP/16dNHxsfHy/j4eJmQkCCPHTsmjx07xuNzOBzy+PHj8vjx4zI7O1tu3bpVbt26Vf7xxx/S\nZrNJm80mHQ6HPHDggDxw4ICsVq1a0PPmy38pKSkyJSVF2mw2nk8az5AhQ3g+IzGWsv67wMshq1ev\nLk+fPi1Pnz7N4ywpKZFFRUWyqKhInj17NiRjNpvNZa4Fd2MrLCzkcbRr1062a9cuqDHQGjl9+rSs\nU6eOrFOnTlm//92X9zkkyUtSypUAVl74+y8AbUNxXgMGDEQel3RGowoqcPGEgwcPckiHbDJy3PiL\nspyTxJzUvXt39hnQ7++//35O0W7YsCHbvUCp8/OOO+646JzJyclYuXIlAM3nQKy+5OALB8gPUqlS\nJbz33nsA9M1eyEn60UcflVtGoIrExET069cPgOZcJIcz+T6Kioo4FdxkMjG70f/93/8FzaEQGxsL\noGy/jtq/gQrB6DgaE+Cfn8tisXB+yrFjx0K2Hv4WQiEjI0PnDVdBCzYlJYV5B8mpFw7yj2+++QaA\nloJMMXJKTmrZsiW/WIcPH8aBAwcAaAKEKMHcQQihE2iUku3LIgg0waZhw4YAgGbNmqF79+4AtLkk\nJ+f992upKOGMdvgCetFfe+01JiqpWLEiV7wS7dqZM2dwyy23ANDug6pRt27dWubc+wJfHI2Un5KT\nk8NCgf4VQrAD9/z58z4/q759+/J9fvTRR34nwXmCUSVpwIABHaJGUwiEo4C4EAYNGuSR/58kdGJi\nIlfGkYZOO3LGAAAgAElEQVRgNptZQicnJ/MuCJTusP6qxlQL36hRI96NiB3n8OHD/PfmzZu9Zh7S\nPbVt25aLeQCwOu/LjkJhKpvN5vP8pqWloUePHgCATp06cWbmuXPn8M9//hMAeC7LE2azmefirrvu\n4uf666+/4vPPPwcAzlxMT09nbfLKK69kolvS1gKBu6pMT6Bndf78eaSnpwMoZeCWUvJ4fAGZqPfd\ndx/nYVCOQigQFUKBmI19jbUTF9+AAQMAXNw3kODCZIvrr78eADBr1iwAmiAgOu077rgD33//PQCt\nnJYq/yZNmhRQDoCUkhNSaPEcO3aMVX9vSVMWi4VLfUeMGMECQmWl9ge+dE2izls//fQTcwNu376d\naxfsdjtatWoFAJw0ozZ5DQUztj+bw9ixYzndWkqJRx55BADwww8/6JoIA1r9RfPmzQFohDo0t++8\n8w7/tlatWixY3HEfehqXP6bZ999/zwzT//nPfwAACxYs8Nh8h0yMatWqcZ0D+aKsVitTyYUShvlg\nwIABHaJCUwA0KWyxWLyqYomJiZxqS1LUE8xms84MoB2NGoWsWLGCd48hQ4Zg4MCBADTnFKlzHTp0\nYM8/SXFfU6NJ+n/22WcANPo0InU5c+ZMmTti/fr18eyzzwIAqlevzh7yGTNm+KW50Fjj4+P5/jt2\n7MhVdZSFWFxcjG7dugHQUsVJO7j88sv5eqmpqexgpB31wIEDnIW5ZcsW1oROnjwZtoxR0mhGjhyp\nY3Pet28fAI1vgqILNN6bb75ZR39H0YBBgwZhwYIFfK/E+E0p6seOHdNpHeo9BXJ/zzzzDKep16xZ\nEwB0psOwYcPYYdixY0c215KTk/l6ZPL06dNHZ/KGClEjFMgr7433LiUlhW1cb3A6nRw6O3jwIKcE\n//DDDwC0F+GLL74AoKVH04tXo0YNZGVlAdCEiaug8lXFpd+Qqn3HHXfgsssuA6AJHjpvWloa3z8x\nMA0aNIhTdAsKClhNVJmdfVmUanp0165dAWgq89q1awGAPfImk0nHdUkLNi0tTUeT36ZNGwDg6rzX\nXnuNIxBdunTBihUrAGjpz+r5fC2fllKWaepYLBYugVZf0qysLH65mjdvziZmtWrV+DwkIEtKSrgx\n644dO/hZ7969m01Id5GdUAg5p9PJAmfo0KEAoCv1nzp1Kv+tdkz766+/eG3Q2P3xE/kDw3wwYMCA\nDlGjKTgcDtjtdq+S7+abb+ZGHwTX3YV2roMHD+KFF14AoLEdEwWX67GA3gt94sSJkDD10rHU2i0t\nLY0dmMnJyWzG3HrrraxBdOjQAYCW2ELJVW+//TY+/fRTAFo7OdIq/Nm58vLykJmZCUBzJBK3AJkz\n8fHxnJsQGxvL9y+E4B3YbDbj5ZdfBgA+1+HDhzkJJy8vjzUCdd7KajXnDt7aB27evBmAlv9BfBJp\naWmch9KoUSO+LzJ99u3bh48//pjHTOzSrnkWkSCEGT58OIDSCs6aNWti1apVPE6KkgwbNow1tunT\np0esU3bUCAXXF9sVKi27qhLTv7SQhBAcppo2bRoOHToEwP9GomUJBX/Dp6Tup6en4+mnnwYA/Otf\n/+LkJvV8qqlCiTezZs1ilqaePXty9MFut190X57GpX5+6tQp/PbbbwC0xQZo5hOFUJ966ikOOS5a\ntIhfnF69ejExiOrXoAY2nuDvXJW1+EtKStgfsmzZMu7wlZCQgJ49e150DjJ39uzZw/cRDEV/KEHz\ntnPnThZu0QDDfDBgwIAOUdM2jjoae1OR1IgCkZekp6cz597KlStZAgfVT8+HuL6vIHX/66+/ZvMg\nMTFRp42QQ3TEiBEAgE8//ZSPU1Vck8mExo0bA9BSfMk5umvXLr6WqgJ7M4PIGRgN9Qv+Qs2RqF69\nOj/vM2fORIRfIprh4bkbbeMMGDDgP6JOU4gGss9oB+0CZrNZ18PCgAEv8ElTiCpHo7GwfYM/OfcG\nDPgLw3wwYMCADlEjFPyJZZvNZh3hRzhA5owBA/9riCrzwVeQQCDPs5SSVWlPZogvL7h6XChNGdUH\noHZT8lQZ5wqTyaSrBFUrP9X8jFCN3WQyBTQXnsbgLi/A9Xn4cw11LihxqmLFipyzUVJSwvNMiUC1\natVCdnY2AC0Fm3wxkfZjWSwWvo6ahKaydKm1NfTbmJgYtzU3dFxsbCxHX4qLi4O6l6jRFAwYMBAd\niBpNwR+QRFRjsZ7Sal2lMhB5Bx2NweFw8C7vT8qqygthsVh09x0OEyfQ3dOf8QS6k6mFTUBppmph\nYaHunKRBEI3d/v37ubJTnftIO7ftdruuWpPGo2qN7sbkrvhJzdOQUnJuRrD3FDUhyTCdlyetdevW\nXBkYDfdsILygtGESBOHqBHaJIfzJS0KIFCHEfCHETiHEDiFEeyFEqhBimRAi68K/lYK5hgEDBiKL\noDQFIcSnAFZJKacJIWIAxAN4DsAZKeUEIcQoAJWklCO9nCekWzepjklJSZg8eTIArfqQ2pu9/vrr\nAMLbNs5A+cFisTCJSiBdxf/G8ElTCFgoCCGSAWwGcJlUTiKE2AWgk5TyqBCiOoCVUspGXs4VMqHQ\nrFkzbrbaunVrNhUqVKjAZBrUynvz5s38vcr972q3Gogc/K1gVKMMHTt2BKCRkBD1eXlT0LuDSloD\naGuT2MRatGjBrFHJycnsf8jJyWFylcGDBwPQSq6//fZbfy4ddvOhHoCTAKYLITYJIaYJIRIApEsp\nj174zTEA6e4ONlrRGzAQnQgm+mABcBWAIVLKtUKI/wIYpf5ASik9aQEyxK3oiaq9X79+aNtW61pn\nNptZKufk5PBviPfOarWy9BVCcHVlqM0KNR79v+jk9Gf39/Y7q9WKRo00xfPyyy9nRu9OnTrp+Bpf\neuklAGD+h2jR/IQQvNOTxtqkSRO3jOTqvKWkpKBdu3YAwFwYAHDttdcC0JrahGrdBqMpHAJwSEq5\n9sL/z4cmJI5fMBtw4d8TwQ3RgAEDkUSwjsZVAB6VUu4SQowFQAyUpxVHY6qUcoSX8wS9fXbq1AkA\nMGfOHA5HORwOpu46c+YMhySXL18OQJO41JAjJycn5DX4JP2JIXjnzp0+O768MRBFC4QQumw8NcNS\n7Z8Yqntp2bIlU8mNHDmSuSXUPJTi4mJ2NhO3xLJly3DPPffw9+WF+vXrc6Ma6qFhsVi8pu2rVHc0\n/ipVqjCNHzGMeUFEqiSHAJh5IfLwF4CHoWkf84QQ/QEcAHBvkNfwCHLUJCQk4JNPPgEAXdPW4uJi\nfPfddwA0pmGiMaMmLQ6Hg5uehFq9NJlM3PyTOBo3btzIFOjPPvssU6Nv27YNS5cuBQB2MjVt2pSZ\npocNGxY1AoJo9emexo8fz+za69atYz7HrKwsXryvvvoq/02C0mw261LTCZ5MDXrWvXr1YpW5cePG\n/LnT6cSRI0cAaAlLZEqQcLjtttuYofnDDz/Ek08+GeRMBIaDBw8yIQ71waxduzabtjabjSneV65c\nyev3hRdeYI5J6hBlMpm8tjkIBEEJBSnlZgDuJE/XYM5rwICB8kPUZDRSoYgvOzappW+++SYArack\nMSNbrVbeVZctW8Zc+bVr18bx48cBgP8NYrweHWLUJ7Bx48YYMmQIgFLzITY2lntCuqYD05gplFaz\nZk2eiyuuuAJ79+4NasyhQGxsLOd69O/fH4C+mlQt8tqxYwdrAj/99BP69u0LQAuzAdpzIo2tX79+\nOHr0KJ/D3Rqg3ghr1qzhtmsq9dyCBQvYudi5c2c88cQTALS+kTROgpQSEydOBAC89NJLHI72910I\nlPH7X//6FwBwH46kpCT+rmXLlrjjjjsAaM2K6NxZWVk8B0RDWFRUxKayj6HXS49kxReoTU2oo1HV\nqlV11YfkR/jnP//J6qw/DTx9GaunikASOBkZGbjpppsAlKqwZTWxoe5GKpMS3RPl75cXaNzbt2/n\nBjUEm82ma+xKguD555/nPo+PPfaYzqwDtPsjYdmnTx9u1HP+/Hm3YyCh+f3337Oq7XA4mMJ/3rx5\nXBOzZ88ebrjSrFkzAJoJc9tttwHQ1tCgQYMAaLY45bVEKkJBPSQpMmK1WrmaMzY2ljcGGiugmcKu\njM+nT58OSf9OVxhVkgYMGNAhaswHk8kEIYRXaZ2SkoLFixcD0OK7gL55SWFhoY7rPxDExcWxWurO\nwedr3J16KpDqLKVkk2LJkiW4++67AQCrV6/m1nJkXuzbt493gcqVK5drui61guvQoQNrAvfddx+A\nslugU8u2a665BidOaJFp+jcxMRF//fUXACA3N1d3HD1Lp9PJjkSVk4J21ZKSEnYeelo3dFzlypXZ\nyRsXF8caSadOnbBlyxYvM+AeoWgYRFAjOASTyYQZM2YAKJ1vAGxqdezYke/JR1w65gOFteLi4tg2\n8qQWDRkyBK1btwZQ6sk+duwYjh07BkCzrejYmJgY7iaVlJTEv6GFbTab2T9ht9vZZuvUqRMvvJkz\nZwbs+afEGvJ3VK9enX0Dhw4d4roMu93O1yBhlJeXx2NPSEiIuFCguR0zZgw3iQFKbfSdO3eWeXx8\nfDx3k3r22WeZwt4bYmJikJaWBkAT9hS1IGFis9l8sp/phaXn26RJExYgcXFxbNKlpKSU2ZvTarXy\nOQoLC3W/CaVQUIUeYfv27dxMFyg1rWhe/RQIPsMwHwwYMKBDVJgPJpNJxsTE4N5779X1+KMdPzEx\nkZNUli1bxvFdwtGjR7Fo0SIAmopLO2xGRgY7ydwlh9hsNt6Zly9fjrp16wIAGjZsyL0l27Rp41a9\n9WfeqLvwm2++yTvNe++9x7vtokWLOMZOcedt27ahXr16ALQCGHKGRQo//vgjAKB9+/a8kw4cOJDV\nWU+gHo5NmjRhzeubb77x+bqVK1dmR/LOnTt5d/dkCpInftiwYZzjkZCQwFEgQklJCe/4MTExvDOX\nlJRwMlvVqlVZo6G1l5eXx+bFL7/8gp9//hmApua7U/l9AV37iiuu4H/J1JRSshZD4wU0LYZa+VHh\nVwBJWJeO+UAci0uXLuUXOj8/X5eAQiq4OlH04LKysrBu3ToAmh1LHmfXjlOugkEIgU2bNgEAbrjh\nBjYZ1JoJd6qqv4L0v//9LwDNE05Zdffffz/mzp0LAPjss8/4t/SgnU4nj4G8+5HCk08+ifbt2wPQ\n7pX6WM6cOdPt72mcvXv35hDwrFmzuAmtP8jPz+fknrp162LDhg26a7jOPSUhjRgx4iL/gwqbzcbC\nvWLFijoBccsttwDQ16aQwN63bx//9uTJk0GzNlksFn7uFA1R2bQ8weFwcJVvuJvgGuaDAQMGdIgK\n80EIIYnp2J0UNJvNrCauXr2a1WqqanzggQd4x+/atSt/vnTpUv5bCMFdnmvXrs3HUwSgc+fOnFOf\nl5fHEQ6qZAsVaNepV68ebr75ZgCaKeHq5Dpz5gwn+qSmpvrsqAsGFPlYtWoVm2gWi4WTjLZv387t\n3kmDUhOa6taty5/369cPZ8+eBeB/12mVH9KbM49ate/evbtMUzE/P5/XVlJSEmsVrqB5pm7WDocD\nt99+OwBg9OjROt4NfxyNZEotWbKEq3jd5a144rksLi7m/Buq8wmX+WBoCgYMGNAhKnwKAMrMUVAl\ncVFRkS6ODWi2HoVrvvnmG85edO1dQCEc+tdkMnFxTatWrdihdvTo0bA59mi32rVrF3bv3n3ROGkH\nS0xMdNvTwV+UFW5ToVY72mw2rFmzBoCm2ZDt26tXL4wePVp3nOr72L9/P2cKxsXFccbewoULOS2a\nQqtZWVnso6C4O3AxM7e3XZiKh55++mne3Tt06MD3QseXlJSwv0rVElx3ZvIrzZ8/n39L51q6dCkX\nKAG4iJXZFXTeGjVqsJOwSpUqujEBmlZIWtXSpUsxbdo0AMD777/PTseWLVuyhkHrZt68eZwyHUpE\nhflgMplkXFwckpOTOZfA5Xv2yq9du5a9tuQ4qlevHqt9vrSzJwgh8OmnnwLQHH+EZ599lp2DkZof\nWmCUuv3tt99yBWdGRkbA6ay+qrhCCDafevTogZUrVwLQTIJHH30UQGmuvor8/Hx+yebPn89e/5yc\nHBa4JSUlrObTi2Cz2fhZjx49Gj/88AMAzXTzZ84p2lGvXj1+7tdffz2uu+46AGDVPxQdvw4fPsxr\nr7CwUEeeA2j5JjQXaWlpGDduHADNlCLExMTwcyVn7r59+7yu2cmTJ+Pxxx8HUPosnU4nE6+QaeEF\nhvlgwIAB/xE1moLFYoHJZOKdxFObsaeffprZmCkz8dZbb+WdzR9UrFiRC5FSUlI4V6B27doRp00j\nNfH7778HoFV+UgrxQw89FHBWpT/OMG+t5xITEzlPgUKF06ZNw1VXXQUAaN68OTsrp06dioMHDwLQ\ntAPaQVUOBdIq8vPzdVR4gcy9p9wRyv4bMWKEW8ee2mSF1qArKFdi2LBhrFnabDY2R+ie69evz6nd\nTqcT7777LgAtu5PmduvWrZz27i0rVIXVamWzgsy55ORk1jqaN2/OWZ9l4NLLUyhrMdB306ZNwyuv\nvKL7zkfWmYswYcIELlvNzc3lFN5ICwQ1MkJef4fDgQkTJgAIjjPS3w5PNB53yMvLwwMPPACg1PNt\nNpuxfft2AMDPP/+s886rcNeVi4RwKODpPolty3UOKUqyd+9eToxTx07q+M8//4ypU6cCACe0Eahq\nkUyj48ePc85DYmIiP0vX7k2Uh+EPbDYbR8K+/PJLANpmSIKJNpVQwDAfDBgwoENUaAr+oKioiJ2O\ntKONGTOG6cEA995gi8XCLMBUu3/ttdeys2jnzp2swkYaSUlJrILT7mM2m3kX8DetOlD44ohz7dFY\npUoV9thTV+fyhtls5t2fHMZ2u11nPpC3v379+rooAhWpEQnL+fPnPc49rbMdO3YA0DSNV199FYDG\nNN27d28AmhOZ8hSuvPJK1iB8KXKjsTVu3Jid6ddffz3fp+rYDNX8X3JCISUlhf0OtED79u3LnvGK\nFSviww8/BKDZsjRRw4cP56QnNUxHocwxY8ZEvPEsoWfPnhg2bBiAUqr63NxcJtuIhEBQ7V4ppdsF\n2717d4wapbH4Uz3AqFGjQlrB6Y8AFEJw9KGoqIg5MYcOHcpmDm0gqq9ACMG2v5SSE98GDx7MPJ6+\nbBBkgpBpoNbInD17ln0qzZo10wncP/74AwC4Xmf69Okcifjxxx91Ido777wTgMbWRD4YMnmllGw6\n++BP8BmG+WDAgAEdoiL6IISQ/uwQFIP+6aef6Hivqq+aFEMOpe+//56TPw4dOqRzRkVSaxg7dizz\n8pHJcPbsWa6Gi0Trs4SEBN51gVL6upycHFZXp0+fznNE+RSBEtl4QqCawvz589kUvPLKK3mcaqIS\naQtqLsuCBQs4R8Vfhy6lrJMZ4Wq20rU/+eQTbkCkgu7T4XDw+lXHVlBQwJ9XqFCBx09r0+FwcDRo\n8ODBvszbpRN9APxTkcmjTBlzgwcP5geSkJCg86JT0o/FYmG+ferQU1BQUK4dm+gh5+fncyiSkmNW\nrlwZFv49T8jPz2cmpE8++US3wKnq9PTp0yyQwyWo/I2W0Bzt3LlTZ8PTC0kqfVFRkc5HQ5mZ5EMI\nBHRtT2Oml/fBBx/EiBFa65P9+/e7DY2qHKO0LhITE3WmLj0Tqlo9f/48076HEsG2oh8mhPhTCLFN\nCDFbCBEnhKgnhFgrhNgjhJh7oSeEAQMGLhEErCkIITIAPAWgiZSyUAgxD8B9AG4F8JaUco4Q4gMA\n/QGEtJCAJKbqKSaT4IcffmAHzsmTJzlPPC4ujhuuREtjFWIz7t69O+8UlChTq1atiI+TxtCrVy+O\nKOTm5rIT64knngi7KeNvpIWeu9Pp1FWSkqZAWqUQAsuWLQOg5R4Q/0Yw8GeclNL9+uuvc6SMnMqk\nwajjdj2/zWbjhkeUQFWnTh2/EqB8RbCORguACkIIC4B4AEcBdIHWVxIAPgVwR5DXMGDAQAQRbC/J\noQDGAygE8D2AoQDWSCkbXPi+FoDvpJTN3Bw7AMCAC//bOuBBXKIQQmDevHkANHotyu774IMPAGi8\nEVu3bo3omGiXOnLkCPNX5OTkMO8DVfpFIxo3bsxOxz///JO1Bsr7KCgoiDiDlSeQFka5C6+99hqu\nueYa/o40gr/++otZmlJTU3WhSoJaDUpOyTLo4XxyNAYsFIQQlQAsAPAPAOcAfAlNQxjri1BwOVf5\nh0AijIyMDFZna9WqpWtgA2gvprtei5GA1WrlcXz11VchbaQTLnir2zAAIAJVkjcC2CelPCmltAHI\nBHAdgJQL5gQA1ARw2NMJDBgwEH0IRlNoB+ATAG2gmQ8zAPwOoAOABYqjcauUcoqXc/3Pifa4uDjO\nYsvNzeWqw2jZ5ULZ08BA1CC85gMACCHGQTMf7AA2AXgUQAaAOQBSL3z2TyllmWRy/4tCwWQycQ48\nRRyiBZGqtQgFAqVZDwUuQcEZfqEQKhhCwRAKgcIQCn7h0spo9AbVkUQLgYpdgNLsMZUz0Gw267LO\nXFOh1ZRSIQSnrZaUlOjSnIMwsXTjdDqdunFSIZG3l1BN465QoYKuM7V6PkATNvR3oOOWUupSgt2d\nxx3jsrtxA/pafxqbOhfBvFTlIQwIgfZ9cB1zWedRC7kilbcSdUJBXWAqQas6ca59F9VejK4EpOrn\nrpBSchhOTY212+26HSjQHYF+r7646svkz3nU8dM43aVpB8pc5ApVoNE8V6xYkasHVXpxT9ejz9Xf\nhmthXyrajd1u92s9qenPkYJRJWnAgAEdok5T8IXe21VTcD3enVT1VrRit9sDaa7hE9TqtkB3MzJB\nevTowfTj4VQnScVV/R1SSk648WeuIqH2us4rzXkgmlm44c9Y/DGxQuXjiDqh8HeEN/vcl+OJQOTW\nW2/lJqfHjx+P6GIvKioKex/DUIEqEb1VMl7KUE1e1UcT9HlDchYDBgz8bWBoCmEEOYmIGuzMmTNY\nsWIFAK2mgHgEX3nlFWaSpqrOatWqYezYsQC0hiwdOnQAoFG3US3Cp59+yrwAkdgJY2NjOYxK1OK+\nQAjB5o+6c6teeF87WfmKWrVqASjlHsjNzY2a6lh/4O65khbUsWNHrF69GoBvfI++wtAUDBgwoMPf\nLnkpWkJTai8HYlWqU6cOE8mmpKRwV2m1SzLtnqdOnWLG4dTUVPYpuMat169fDwDo0qULAM3uD9f9\np6enc9OdN998EwCwceNGrkgsKiri8TudTiajHTp0qC70C2ia0ksvvQRAqwwNhZOXHG3Jycn497//\nDaDUQTtu3DjmgrDb7Tz3J0+ejCoNokGDBlyAdvbsWZ636tWrM+vV1Vdr+Uf79u3jjt8+4u+VvOQO\nNGEOh4O94gMHDmSm4VWrVvkUTw8HpJRc6kp06EBpKe/Zs2eRkpICQFukxPBLDMDXXXcdMw5bLBaO\nAiQlJfF92Gw2vlcqxw0nCcp9993H9zJ06FAAGk+hKrDoBTt+/DhT6gOlZgE9j5iYGG6c8t577wU9\nNtUZ27VrV9x3330ANA5GQBNC5IhLTEzk52C327mkujw3E1q//fr1w/LlywEA69at488HDBjAgv/u\nu+8GALel1KGAYT4YMGBAh0tSUyA1kdTz4uJidrhkZGTwjjB79mxuMZeWlsakJZ5am4UaFL4j86Ft\n27a8C6xatYpJS7Kysljtph1s79697NQ7efIktxr7/fffua/F0aNHdVmdQHh2O5rvXr16IS0tDUCp\nw1A1GZYtW8b9E1u0aIEhQ4YA0JqlEGs2aQx33nkn80mEQn1v06YNa1bNmjXjzMuFCxfqxgto9Gf/\n+c9/AACZmZlMZFKezkjS+NLS0rgtXH5+Pq/VKVOm4LXXXuNxhhNRIxT88QVQjcIbb7wBQOv0RC+T\nWs9w8OBBtsv79+/PjWlHjhwJoJS/L1yg+3nxxRcBaE1Xn3rqKQCek386d+6sOxYAPvvsM4wZMwaA\n+4StcIOEQoMGDdgnQC/gxo0bkZmZCUBjgSYuwjVr1nAPRiHERTH0t956K6Rj7Nu3L79YGRkZzGTl\nzrSpUKECR35eeOEF7N27F4DWiKU8UKFCBW5UlJ+fr2PcojG3atUKrVq1AgD2xYQLhvlgwIABHaJG\nU/CnAQix4FJsPzk5mXczm83GrbRmzZrF8equXbvy78lj26lTp4iYErQT3XbbbR41BIpAkDZTXFyM\nX3/9FYCmaZRnJiE5MdPS0vg5Ubu9OXPmcIv0goKCoCs0/QXN2xVXXIGqVasCAD7//HOOypCqrVbP\n1qtXj82gs2fP4vjx4xEZqye88cYbPDbSrlzRtm3bkOYilIWoEQq+wmw2c/NPosYuLCxkr3tOTg7z\nC+7evZsjFPXr1+cXi1TXcNU6eEJZD7VTp04AwP0C9+7di169egFARJvCuMM999wDQFPB6QWikN+c\nOXN4XsvDHiczpmXLlkx4+uOPP+pavxNovTz++OPc2eqFF14ImCY9VLUGd911F5+DfGCuaNiwIZtp\n4YZhPhgwYECHqNEUfHU0ms1m3HDDDQDANORms5k1BZPJhP379/M5W7RoAUBLFiLJfuuttwIAvvnm\nG95RwknWobaxU++RknsGDRrE90LjmDJlSrl1wVYRGxuLxx57DIB+bmnXslgsnCBUHqzPv/zyCwDN\nhCRNwF2uhhACw4cPB6BVmtI8Hzt2LGANR21hHwjI2ZmYmMhjcJ3DjIwMAMAtt9zCjvVwI2qEgtls\nhsPh8CoYatWqxWq42pOPFqbdbufeh+fOnePQk0pSQskfmZmZHLIKJ2icffr0QevWWouLu+66ix+4\nCrr/t956C4MGDQIAtG7dutx8Cq1atULz5s0BaHNIoT4ind20aRPb9cEIhUBUcSEE+xEsFgvWrFnj\n8bdt27blEGlcXBzXmJw6dSpg9T9QYUIJYOPGjQOgrY99+/YBKH0PCHRPdrudI2meoNaPBGPaGOaD\nAYKFAHgAAB77SURBVAMGdIgaTcEbSPKlp6dzemfDhg0BaLsEqYxbtmxBgwYNAGi7gGoe0I5GeQ4P\nP/wwq8PUjCUcIE1h0qRJvEu40sOpJgaNsWnTpgA0dZi86aNGjeI+iCaTKeyJLIcPH+Yx5eXlsabT\nt29fAFpiEuUmBINAdrTY2FgdmYq7DlYdO3YEoHVhonoHp9PJ5k92dnZQXJaBgBzHFNVxOBxsKvbs\n2ZMrO6+77jo2iQ4cOMAdsKg7uEo9qFLllZSUBOX8NDQFAwYM6OBVUxBCfALgNgAnqP2bECIVwFwA\ndQHsB3CvlPKs0LaU/0LrPF0A4CEp5UZfBuKNcJS+u+yyy9C2bVsApQ6e4uJi/rtNmzasKQwYMIDT\na9etW8e7CknqU6dORSTcR2MvLCxEUlISAE27od1h+PDh3EmY/B3vvvsu7yQAeIdesmQJfvjhBwBa\naC3cmkJ2djY7a5cvX8529OHDWuOvQ4cOlVtqcGxsrM6vRH+bTCbWBp999lkAWm4CaTxnz57FjBkz\nAATnYA7UbqexvfzyywC0Z06dqGfOnMmcG9OnT2cN9siRIxexY1esWJGLuXJyckL2HHwxH2YAeA/A\nZ8pnowD8KKWcIIQYdeH/RwLoDuDyC/+1g9aCvp0vA/FEE+6KxMRErglQHyi9QBUrVuTElPbt27NZ\noS4eMj9+/vlnrkILJyiFdf/+/TyeyZMn44svvgCgCScCCYcFCxaw8yk1NZXnx2q1cupupJJuiFBF\n9fA/+uijAICxY8eyEzRULNK+nsdqtbLKbLVaWcjGxsZylWTdunUBaOq32vJdnfNgxgr4d98Wi4Uj\nTdQVbO/evejWrRsAbdOjdO1z587xBlhUVMQmDyXvVapUie8jlMliXs0HKeXPAFzb9faC1mYe0Leb\n7wXgM6lhDbS+ktVDNVgDBgyEH4E6GtOllFTMfQxA+oW/MwBkK787dOGziwq/XVrRe1V9KDOxcuXK\n7Dwkya82hVH//7nnntOFyegaZDL89ttvnIIcDpATiHaUNWvWcGGTNzKUvLw8LtDp0aOH7h6pkCuc\neQw03/Hx8bzrJiQk8L3Qbrd7927cfvvtAKAr5AkU/ux4p06dYk3glltu4TCj1WplZxxxVtStW5fv\nad68eZymHQwCUdftdjvv7vT8Tp8+zZWR99xzD5sMffv2ZVNj9erVOHDgAIBSLYcckqFG0NEHKaUM\nhDlJSjkVwFTAN+YlMhVmzJjBKqNaLUYvjZSSF1ZmZiarZSUlJUxUQvbknj17Anqwvqq4ZJpQfcU7\n77zD5oMvx1PKs8Vi0TVWoehDuOoLKlSogIceegiAZvLUrFkTgGbyEMvSE088AQCoUaMGszE1a9aM\nqxMjBRL6c+bM4c9sNhubiGRqxsbG8ss0evTociVUcZfPQfk08+bN4zX57rvvsuCYN28eNm70yT0X\nNAKNPhwns+DCvycufH4YQC3ld0YregMGLjEEqil8A6AfgAkX/l2ofD5YCDEHmoMxRzEzyoQ3yU3f\nZ2dn4+233wYAJvRQ1WghBGcKXn755Uz5FRMTwxRiVNUXTq+51WrlNGZScZ9//nmfnVPt2rXDVVdd\nBUDzptM9njt3DkuXLg3TqDX069ePHVw7duzAlClTAGgecBo3ZeO9/fbbuO222wAAjRo1irim4A5O\np5O1SRpPUlISvvvuOwBgj320QErJGmRWVpbOKU7rhbTbSMCXkORsAJ0AVBZCHALwIjRhME8I0R/A\nAQD3Xvj5YmjhyD3QQpIPh2HMF/VodP2OvPIq4amUkr26wQoDk8nkNZRVoUIFPPfccwBKIx/du3dH\nmzZtAGiLlNTy3bt386K44w7NZ/vee+9xCLW4uJhVzn379vkVRvXHQ04+mkmTJjHB7IgRI9zarnT/\nq1ev5kSmHj164KeffgJQPhWTKuj6lPDjdDpZ/bZYLFHb1EZKyUlWFouFIz+RbKTrVShIKft4+Kqr\nm99KAE8GOygDBgyUHy6ZNGd/QLtEo0aNdLvqn3/+GZLzq12gXXdg+rx///7s7SZUrlwZWVlZADQz\ngCjk1PPQ8a55G3Tc7Nmz2XmWk5Pjs9nlC1599VUAWtSEHLee4vl0b0VFRfx3q1atWNsg9b28QNER\n8t5bLBbWeMqbn8IbqKAvLi4Os2bNivj1/9ZCIT4+nl+KEydOhJX+nEDX+/LLL/HCCy8AKE02Ubsi\nkVkDaALAXS0E/TY3NxfffPMNAC3hiu7DbDaHNCy5atUqAFqmJKnXrtfo0aMHAHBdxoABA/jFy87O\njsgc+wKqx1CzWCn7M1p6g3gC8XQC2iYQaRi1DwYMGNDhb6kp0C7Qvn17TiCaO3duyHZVNRfCEw4d\nOoTLL78cgJ4lmHarunXrokaNGgD0dHLEFZGQkMA1Ds8//zzXGjgcjrDRny1evBiAtrsST0Hnzp05\nKemnn35itZzu3+FwsKkwevToqCCGUaGOc8eOHQDK3wnqDRQ9O3ToEDZt2hTx6xuaggEDBnT4W2oK\nZON269aN7XKqnAwFfLVJKR7ev39/ANruT+E7m83GRVxvvfUWh54o9HjmzBkO7xUWFgZsA/vTzZky\nLzdt2sT9Cr/99lv2d6g9Lyk79Ouvv2ZmpmiK/1MoUk01p/H561MIFUGrL4iPj0fXrlpg77fffrso\nKzYS+FsKBXoRjh8/zg+S+PlCAV/VT7o2VcMBmqMwkghEVb722muZJh8A59w3btwY999/P4DSrlfe\nSt7LC8TQTCnYS5YsCajeQXUAq+Xu4UKVKlU4TyE7OzsgijuVfMUXikNXGOaDAQMGdPhbagqUQVil\nShV20JG6a8A7nE4nO0EvVZDZ+MwzzwAAc1P4C3WXjURWYYsWLXDihFZKtHDhQr+uqZp5wTTlEdGg\n+gVSZVkWSCgkJydzVV+0J6wYMABoOS0UiQpDKvYGKeXV3n5kmA8GDBjQ4W9nPqgdjs+ePcvqUySc\nRAYMBApyDObm5gbsuFWdosFYAH87oeDJBizPhBU1lOcuvKV6i1UhpqqPNH71PsKVrhsXF8fjKSkp\n0Xmyafzq3NJnTqfT4zyHK6wX7Hk9Ue2HC1artczOUiaTSXdP/vgGQjV2w3wwYMCADn87TcFqteok\nJpkMJpOJP4+0c5UouUtKSnh3cNUUXHcN1THqabz+3oe6K6q7u+tn6enpXB2pFkSpY6QEMZPJxOzZ\nx48f96gphGvOgz2v2qYtEoVSycnJXOVK85qXl6fTFClS5m+0wx0jutE2zoABA0HjktQU3HEOUB3/\nkCFDdASt9Hd5sO3Q+GhnoGInV0RKc1Gv4+6a9NmZM2e85nUQo3ZMTAyzSe3atQvbt28P1XAjArvd\njlq1NFrRzp074/PPPwcQvmfy0ksvYcKECQDgtt2eECJg/xdpbzExMUHxWVySQoFIPehhUkUfAJw/\nfx7z5s0DoOWL0wSXh1BQX7JLCf50nSopKWE1eM6cOZwGnZ2dzQszklRi/sJkMjF35+DBg1GtWjUA\nwPvvvw/Av7nwBS+//DIzTbtDoCahyWTi9W30kjRgwEBIcUlmNFJIZ/DgwQA0NqCZM2cC0LMUqTuU\nxWLh48jxl5eXxypXsNL1fxUVK1ZkQtyMjAxduO3s2bMAtN4Q0cphULduXW6+UrFiRfzxxx8ASnuK\nZGZm/p3WhU8ZjZek+UAPadCgQQA0W51YkKdPn870Z7Qo6ZjffvsNANhbXlBQwDTx06dPZzU4XElO\nagRECMFlscOHD0ft2rUBlNrqWVlZmD9/PgCtmSu9VGrOQ3mo5fTSU6PcuXPnMo16tWrV+Hur1cpm\nXXZ2NjNXR8sLRmN7+eWXuYRdSsl9P2mzKI9IFZkEVatWZaKerVu3XsSqHa5oiWE+GDBgQAev5oOH\nVvQTAdwOoATAXgAPSynPXfhuNID+ABwAnpJSeu1cEmhBFLEzV6tWDb///jv/TY1MaNcl1K9fHwDY\nvNi9ezd+/fVXAMCbb74Ztl2hZ8+eADSN4ODBgwA0joJ//etfAPSmjZpXQcQax44dw549ewBo7MpU\n+UfVdJGC2WzGO++8AwDcAKZmzZrMU7BkyRKMHTsWgNZSnZrZAECfPlqngLlz50ZwxO7RpEkTTJo0\nCYBGQEvznJqaiuuvvx5AKR9DpEDPf/z48Ty3SUlJrNWuXr0a996rtVehyFAAGq1P5oMvQqEDgDxo\n3aRJKHQDsFxKaRdCvA4AUsqRQogmAGYDaAugBoAfADSUUpap5/orFEi9IrV1//79WL16NQAtLDZ1\n6lSfjk9KSmLVMRydjSgUSWaM1WrlSERMTAxfGwBXc9IxVquVzYPi4mL+3Ol04rHHHgMAfPHFFxGx\n1alJ619//cWmGS1iAFyePmXKFO6J2Lx5c6xfvx6ANt/E89ixY0cApfcbKcTGxmL8+PEAwJ27aBzU\nZPjVV1/FV199FdFxEZo0aQJAY71SQ+7097Zt21hgkVAIYBMLTZWku1b0UsrvpZQkptZA6xkJaK3o\n50gpi6WU+6B1imrr17ANGDBQrgiFo/ERAKQTZkATEgRqRe8V/jhNyNlG5kG1atWY+ZjanZUF1UPu\nLoEkmLGqEY4rr7wSQGnKcklJCe+q69ev5zj+7NmzedzXXHMNAK11G/EMWq1WVtGFENxP4tixY0w3\nRhpDqJ2kDRs25B2fnIsqCgsL+fvY2FjWJNq0acMmT4MGDdhhduuttwKIXD+Dhx/WOhdS3gGgzZXK\nhUmaJXFilgduvvlmANqaJD6QU6dOMZvz8OHDg9EQ/EJQQkEI8W8AdgAzAzh2AIAB9P/+3Cj9lhJL\n7HY7d1BSuQU9gV6gcLAx0bltNhur/MuXLwegPWSyqVetWsVCTUrJwuSyyy4DAEydOpVfoB9++AGN\nGzcGoPWjpBb1PXr0YM7HUCdmEdHt7NmzdWYOzT3NXb9+/dhHk5qaypmlv/zyC3vyn3jiCV7oo0aN\nAqA1ywlnKTuZCBMnTuTPaO5HjRrFRLmVKlXiKFB5JVkJIbgJcWFhIZubL774Ir744gsA2gYYqUhI\nwEJBCPEQNAdkV1k6Wp9b0UsppwKYeuFc0RGnMmDAQGBCQQhxC4ARADpKKdWE/m8AzBJCTILmaLwc\nwLqgR+kCMh8olrxmzRreKX1pWxYJietwOPD4448DAHvhx40bxzu73W7nJCqn08nqNd2T6lD866+/\ncO211wLQmJYp6jB79uywtGlLSEjgHaphw4b8uZSS6zeIqv6XX37RjZnyLR555BHe/Xbv3s3PjMyk\n6tWr+2TqBYK6detyfQE56jp37uyWSbugoIDNvFq1akXcAQpoJieZCa1ateLcma+++sptVW24EWgr\n+tEAYgEsuzDpa6SUA6WUfwoh5gHYDs2seNJb5MGAAQPRhUBb0X9cxu/HAxjv70BMJpPP4TVqVEKO\nuLvvvpt3Bk8QQnDMl+zJYNh6fDmWmrGSb6FevXq8c2VkZOCVV14BoGWukc399ttvAwBWrFihK+Ya\nMEBzv6Snp3MMfffu3V6Zh/xhJqIdX80xUEOPUkrs378fgKa90D2RNnHXXXehVatWAIDExESdQ5f+\nJo3o1VdfxQMPPOB1TP6AOmVv2bKF55Och2X126ACuxtuuAHbtm3z+XqhYpMymUycm1C9enXmskhI\nSOA1oBb3hTsMHTVpzv5MLCXCkIOooKCAk4I84ZFHHkGHDh0AlHqiN2/ezOru0aNHOR5/+vRpVsvV\nUlYaoy8PpUePHux0U9vTk/OtVq1aXHLscDjYS05OO0DrzQho6dx0rhMnTuDll1/m+y6L2ku9trf5\ntVqtnCretWtXflHU+1UdYtQM5syZM6hTpw4A7Xmo5C2uRDIqGjRooKN5CxZWqxUfffQRAO0lo+fn\nLWclLS2Nx/bBBx/4dc1QqfROp5OdixkZGfjuu+8AAEuXLmUH84gRI9hh7Uvlpvrc/RVeRpqzAQMG\ndIgaTcEfkPlA2Llzp67QiHag++67j+O/Xbt2ZfWyV69eADRiFrXXIIXI5s6di6effhqAFuoLpKa+\nd+/eF0nm1NRUdOrUCYDWiXrGjBkAgEWLFuH48eMXnYPCdwkJCTyGkSNHYs0aLRXEl5Zg7ii6VFBe\nQevWrfHGG28A0MwId5R22dnZPIcU569SpQrWrdN8ye3atdMdQ3OrahB0rszMTK9aji+g8w4aNIhV\ncIfDwc1fyClbo0YNdOvWDYAWIiYujq5du2Ly5Mm6sUUaDoeD82weeeQRno+bbrqJxzRhwgR2RlJv\n0piYGLdh7aKioqCqf6NGKPgzcCLCoKSgSZMmsYrbs2dPftmSk5M5KmG1Wjm2Tp8VFBRwDP7EiRNc\ndblo0aKAm8fQg3njjTd44bVo0QIAsGPHDvbqZ2ZmckKSuxwDq9XKY7Db7fj4Y82N88svv/i1eL35\nGqiZ6Z133skt0FX/Tk5ODveSzMvL40W4YsUKAJqgoMVat25dThl+7733cMMNN/D16B6fffZZAKHL\nU3jwwQcBaC8NnW/27Nlo1qwZAHAtRsuWLdkEKyoq0tXFvPbaa0GPI1isXbsWgJaPQAJt27ZtHBn5\n4osvODJCL/yHH37IfUoPHTrEiXjx8fHsQ3Gt//EFhvlgwIABHaJGU/A1+mA2m9mbT86wpKQk3vEy\nMzN1jhVSc1NTU1kFJ/OhWrVq6Ny5MwAte8xXXruyog80psOHD3M6sirt1SKnstTm66+/ntOKt2/f\njh9//BEA/Obe82Q+kGpPJkO1atV0XA30LCZOnMiaQqdOnXjuaVdaunQpz2t2djauuOIKvmeKAACl\nzrE5c+YAAHvYXeFPFOqyyy7DtGnTeLxffvklAGDo0KE851REVL16dd5hi4uL2Tman5/PWaR79uwp\nt6xGcprb7XbWNmNiYnicBQUFzK9B87Np0yaOllitVv67evXq/JwCMX2jRij4uhAsFguXTFM0YejQ\noUhNTQWgvQRkJrRu3Zpt9UWLFrF6TAt6w4YN7On1ZzGUZerQi3D+/Hmu3CQfgLtIBqC9oGoTGEAr\nSabP6tSpw+NTiWP8Gavry0bhWTLFaFESKGy7fft2bNy4EYBWt0C/I5Ph1KlTnIQ1ceJEVufpBaQx\nDB8+nH/vbbw0B57MCxJemzZt4hfo0KFDbP4VFRXxnJNaTtWbdDyV2jdt2jQquCTVRDZqRX/jjTfy\nM1u7di2Pk9b3xIkTWejHxsayiXb69GmDo9GAAQOhQ9RoCr6iuLgYN910EwDgH//4BwDNS0taw7Jl\ny5hRmHY7QCMA+fe//w0AuO666wAACxYsCPnu4K7IypsWpI6Bdken08k7osViYR7BUIHGSWqm63eU\nIJWSksJe+2bNmvFuRdRgVqsVTzzxBADNK047t5SS7+v06dPIzMz0aVxqqzRPoPyOChUq8Hiuuuoq\ntynf7nZMp9PJDuYzZ86ww7c8QRWlkydP5mK0rl27sqablZV1UZWkem+e2gcEgktOKAClLxmV3y5c\nuJC94XXq1HH7Yq5cuZIZi2gRr127ltVZf2z1cHYSovMOGDCA/16zZo1XtdvX8wLa+CkBSv2eBFJs\nbCybY0899RSrs7Vr1+YXiMKl999/PypVqsTnIUGQm5vLWaZvvfWWX9GcsuY2NjaWTZ/i4mL2tfhj\nVjVq1AhVqlQBoEUtQk3jHghozb799tsYOHAgAK0iljJHgzUJ/IFhPhgwYECHS1JTcEWtWrU4RblO\nnTqsfql57Pv27eO8fdr5HnvsMU6N9UdTCKfEpnqOtm3bshNpwYIFAee7u+sZaTab2dwidV/NrY+P\nj0fTpk0BaOYMOf7MZjPPMyWFUewf0BKayKT79ddfmfvQ3/kq6/fJyclMXZafn68bmzdTkGo0tm7d\nypoLkdQEgkBrH2jO1WdCY7/xxhs5CUuNHEWSIt/QFAwYMKDD30JTyMnJYdsrMTGR28a1bNmSJWyz\nZv/f3vmHyHVVcfzznaxZs11wkxnTJJviRnZRYqJu4x8bFJJopElpKkIDKYVUbPCfEKsIoZv8Efwn\nIBq1QlMFf7GyVLEaDQm41LgQAmFrGyXGZtdNWHF3aZNAYiEbwnYy1z/eu7dvtvtz9r2ZsTkfGHbe\ne7PvvPPmvjP33HvOuRtChKEP7YVovYeFstAxheTgW/L//K9coVAI6xD46EevFyyuArKfIl26dGkY\niHPO0dPTAxCyGpctWzZtqPjUX2D/GR9D0dPTE5K4zp49m4p/Ptsv8JEjR9i0aRMQRUn6uIi9e/eG\nEOyBgYFQpNWXimtpaWHfvn3h/H6/n7KshEp7jD4uwrfZ5KBye3s7GzduDNfmr7mavC+MwrVr10Ka\ncj6fDyGujY2NwSgk59N9I7969eqM8/izMR+j0NTUFBqpf9ALhUJ4gCQFY7F///4w8OUDq3K5XIgP\nWMzIso8raG5uDhWrS6USp0+fBt4tV9bQ0FD2MHr9isViGMS7efNmuP5jx44Bc8cdVMJs9/bEiRNh\nxqS9vZ1CoQBE2ZDJ2Qf/GT9zUiqVwvHjx49z6NChOWVlhXfBvMG+d+9e+J4OHDgQDERvb+97FoCp\nBuY+GIZRxv/lWpKVkMvlwgCVT9Q5f/58KPiaVhHXZDERP/XpF4O5cOFCSAhqamoKobhbt24NxUd8\nNeeJiYmQDZessbBQfG+lVCqVJV5518WHObe1tYXc/ba2Ns6dOwdEVYT9L+zo6GhFCTZpklwLobOz\nMywFmMvlwrWNjY2FOhl+/r+/vz/USxgeHq444S0NfI/VP3srV67k6NGjQJSY5tfI2LZtW9oFed+/\na0lWQqlUCuHRvsz63bt3wxz7QozCbO6D7/pNTEyE6kW+i7t9+/bgy+fz+VBwBd7N+PRBQwMDAyEE\nO8maNWtCl71YLM47MGrqyLzfPnjwIBA1VN+t7erqCkVU7ty5s6DiMlmTdG2GhobC/WptbQ0ZkSMj\nI+zatQsgxGOMj4/XzTqW/t5792HLli3s3r07HPczYpUahGS1rEq+M3MfDMMo475xH6Yjl8uFrmha\n4c7Joi1+lNnntufz+TIr7mVPTk6GOgv+l9svLzcVSSGJ6fbt2yEWYKbkoenmxOuFtGoc+nPVQ1ue\nD/478TEefX19wW0sFouhWM1CQ9uT5/Vl8wYHB5NtI521JKvB/bLuQ3Nzcwig6ejoCAVJbt26Fd6n\nTZoPnpENq1atCq7t5ORkSJdOe4Ef0lpL0jCM+wvrKRhGHZAs+pJF7EeMzT7UO9Xo2pv7UP9ICtmn\nvlJYLTH3wTCMMurFfbgBTACZ9ZvmoGCyTfZ9IPsjzrkPz/WhujAKAJJem4+/Y7JNtsnOFnMfDMMo\nw4yCYRhl1JNRmH0lUJNtsk12VaibMQXDMOqDeuopGIZRB9TcKEjaIWlI0hVJz2Us6yFJ/ZLekPRP\nSc/G+1dIekXScPx3+VznWsQ1LJH0N0mn4u11kgZi/X8jaelc51iE7BZJL0salHRZ0uZq6S7pm/E9\nvyTpJUkfzEp3ST+XdF3SpcS+afVUxI/ia7go6eEMZH83vucXJZ2Q1JI41h3LHpL0yGJkp0VNjYKk\nJcALwE5gPfCkpPUZiiwC33LOrQe6gP2xvOeAM865DuBMvJ0VzwKXE9vfAX7gnGsHbgHPZCj7eeBP\nzrmPA5+KryNz3SW1Al8HPuOc2wAsAfaQne6/BHZM2TeTnjuBjvj1NeDFDGS/Amxwzn0S+BfQDRC3\nvT3AJ+L/OR4/E7XFF62oxQvYDPQltruB7irK/yPwRWAIWB3vWw0MZSRvLVGD/DxwChBRIEvDdPcj\nZdkfAkaIx5ES+zPXHWgFRoEVRKH1p4BHstQdaAMuzaUn8BPgyek+l5bsKce+DPTG78vaO9AHbM7i\n+1/Iq9bug28snrF4X+ZIagM6gQHgQefcm/Ght4AHMxL7Q+Ag4Isb5IH/Oud8wnuW+q8DbgC/iN2X\nn0p6gCro7pwbB74H/Ad4E3gbeJ3q6Q4z61ntNvhVwJfUqln7n41aG4WaIKkZ+B3wDedc2UKCLjLZ\nqU/JSHoMuO6cez3tc8+TBuBh4EXnXCdRWHmZq5Ch7suBLxEZpjXAA7y3i101stJzLiQdJnJhe6st\neyHU2iiMAw8lttfG+zJD0geIDEKvc86venpN0ur4+GrgegaiPws8LunfwK+JXIjngRZJPls1S/3H\ngDHnnF/o4GUiI1EN3bcDI865G865d4DfE92PaukOM+tZlTYo6SvAY8BTsVGqmuyFUmuj8FegIx6F\nXko06FJ56eI5UJRH/DPgsnPu+4lDJ4Gn4/dPE401pIpzrts5t9Y510ak51+cc08B/cATWcqO5b8F\njEr6WLzrC8AbVEF3IrehS1JT/B142VXRPWYmPU8Ce+NZiC7g7YSbkQqSdhC5jY8755KLeJwE9khq\nlLSOaLDz1TRlV0StBzWAR4lGZK8ChzOW9TmibuNF4O/x61Ei3/4MMAz8GViR8XVsBU7F7z9K1BCu\nAL8FGjOU+2ngtVj/PwDLq6U78G1gELgE/ApozEp34CWisYt3iHpIz8ykJ9Fg7wtx+/sH0QxJ2rKv\nEI0d+Db348TnD8eyh4CdWba7+b4sotEwjDJq7T4YhlFnmFEwDKMMMwqGYZRhRsEwjDLMKBiGUYYZ\nBcMwyjCjYBhGGWYUDMMo43+f1ceyZSl1bgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2/2... Discriminator Loss: 0.9182... Generator Loss: 1.0495\n", + "Epoch 2/2... Discriminator Loss: 1.1554... Generator Loss: 0.6664\n", + "Epoch 2/2... Discriminator Loss: 1.0098... Generator Loss: 0.9703\n", + "Epoch 2/2... Discriminator Loss: 1.0875... Generator Loss: 0.7549\n", + "Epoch 2/2... Discriminator Loss: 0.8910... Generator Loss: 1.1223\n", + "Epoch 2/2... Discriminator Loss: 0.9773... Generator Loss: 2.6783\n", + "Epoch 2/2... Discriminator Loss: 1.0080... Generator Loss: 0.8345\n", + "Epoch 2/2... Discriminator Loss: 0.9571... Generator Loss: 1.3360\n", + "Epoch 2/2... Discriminator Loss: 0.9197... Generator Loss: 1.3654\n", + "Epoch 2/2... Discriminator Loss: 0.8306... Generator Loss: 1.2653\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsXXd4FFX3fu/sbrIpkJAECaEFVEREQKVXERUjICL8KKIg\nHygioqioKCoCFkQ/BRFsCCKCoIgUUZEPUUREAWkiAgGC9FBCEtK23d8fk3Myk2zIbrZkg/M+zz5J\nNrszd+7cOffU9wgpJQwYMGCAoFT0AAwYMBBaMISCAQMGdDCEggEDBnQwhIIBAwZ0MISCAQMGdDCE\nggEDBnQImFAQQtwmhNgrhEgVQowL1HkMGDDgX4hA5CkIIUwA9gG4BcBRAJsBDJRS/uX3kxkwYMCv\nCJSm0ApAqpTyoJTSBmARgF4BOpcBAwb8CHOAjlsLwBHN30cBtC7tw0III63SQIXDYrHA4XDo3gvl\njF9FUXh8Ho7zjJSyelkfCpRQKBNCiAcAPFBR569MEEJU2OI0mUwQQgDQL7zSFqOiqMqny+Uq8dlQ\nhKIoPObExEScPn0aQNGYbTZbUMZPc0w/3f1Oc0rvR0REoKCgAADgcDg8GedhT8YSKKFwDEAdzd+1\nC99jSCk/APABEDqagrvFX5EIhfE4nU7d32WNqbIIA4KUkq/RZDLhiiuu4PcBYN++fbDb7UEZB8Fk\nMgHQz31YWBgiIiIAqIIKAPLy8gKyRgIlFDYDuFIIUR+qMBgA4O4Ancsv0O6ITqczJBY07WDFH8yK\nRFnzEgrz5g20483IyMDAgQMBALt27QIA7NmzJ+jjKW7CAEBBQQFrBYFGQISClNIhhHgYwGoAJgBz\npJS7A3EuAwYM+BcB8ylIKb8B8E2gju8vNGnSBADw0ksv4emnnwYA7N27t8LGQ6pjlSpVcP78+Qob\nR2WD1v4ur7Zy9dVXo02bNgCAWbNmAdCbQ/8WVJijMdiwWCwYOXIkAMBqtQIAevbsiUaNGgEADh48\niFOnTlXI2IQQMJvVW0GmgiEQvIPFYuE5tNvtXvkByFb/8ccfceLECQBwq8IHC2Q2JicnIy4uDgAw\nevRozJkzBwCwZcsWAEBubm5AzDUjzdmAAQM6XNKaQlhYGFq0aAEAmDBhAqpUqQIA/LNhw4bIy8sD\nALz77rvIzMwM6vjIVIiNjeVzh7q6Smo6jf3RRx9F8+bNAQDZ2dmYOnUqAODw4cNBdTrabDb2ynuL\nF154AYC6XtLT0wEAOTk5fhubN6hevTqbsQ8//DAsFgsAdd7JCXro0CEAwKhRo7B582YA8OvavSSF\nQt26dQEAjRs3RkZGBgBg6NChuOyyywAADz74IH+W1LNDhw65De/4O0eAzlG7dm2Eh4cDAE6dOhVS\nEYbo6Gj07NkTALB06VLEx8cDUMe8atUqAEC1atUAFKm6gDpvffv2BQDUqVMnaN5yX6AoCu68807+\n+9dff62wcQBAjx49cP/99wMACwQCmUcNGjQAAHz++ec83jvuuMNva8gwHwwYMKDDJacpNGjQAB9+\n+CEA4I8//sD48eMBqGp5fn4+ALBJERYWxpL20KFDblV3X7QE0gpuu+02AMCLL76IevXqAVDjzrQj\nnD17tsR5zGYzq+UHDhxgx6O349FmypVlmtSpo+ab7d27F9nZ2QCA06dPIzU1FQDQunVr1rwOHjwI\nALjssstYk4iIiODdrU6dOvy9UMaLL76Ihg0bAlDXyDXXXAMg+IljpHk9/vjjbN5KKfmeuVwunlut\n2Ulr64477sCyZcv8M2YpZYW/AEhfX2azWZrNZrllyxaZmZkpMzMzZb169aQQQhZmTMrevXvL3r17\nyyNHjsgjR47I1atXy6SkJJmUlOT1+bTHdfdSFEU2a9ZMNmvWTGZkZMiMjAxpt9tlfn6+zM/Pl5Mn\nT77oMZo1aybPnTsnz507J7OysuTSpUvl0qVLvR6nxWKRFotFRkREXPRzcXFxfL7c3Fw5YsQIOWLE\nCGk2m3XjLD7mqlWryhYtWsgWLVrIvLw8fs2YMUMqiiIVRfH53gbiVaNGDVmjRg1ps9mk0+mUTqdT\nZmdny6ZNm8qmTZsGdewmk0nOnj1bzp49WzqdTulyuaTL5ZIOh0OuWrVKrlq1Sp4/f17a7XZpt9v5\n//QZh8Mhp06dyvf6Iufa4snzaJgPBgwY0OGSMR8GDBgAQHUukkf22LFjOlVq7dq1us9u3Lix3KoW\nfU/riIyIiGA1sE6dOpg8eTK/DwDnzp1Dy5YtAQD//PPPRY8/YcIEVhcjIyM5qSYsLMwrLzuNrTQn\nFDm4duzYgZiYGACquUImWHGTo/h8ZWVlYciQIfx3WFgYAKBv376YNGkSAHCRUUWDrnX8+PEYN07l\n/TGbzTh8WK0TuuGGG3Du3LmgjysuLg6DBw8GoK4nulfjx4/nfIvmzZvrzAr6LI03KipKl8DlCwxN\nwYABAzqElKZQ3vCfxWLBmDFjAKi73HvvvQegZFZaVlYWAOCXX37xcaTuK9ny8/PZIZiXl4dWrVoB\nKAolDR48uEwNgdC3b1/cfvvtAIDJkyfjqquuAqBqO506dQJQctd2BxqfNnSoRceOHQEASUlJvNOk\npqZ6nC9hMplYE9KeIy4uDl27dgUALFq0yKNjBQLkPO3cuTPnIyQnJ/NYDx48iMaNGwNAufMcfEXn\nzp15jQBFmtW2bdt4DqtVq8aOcvpsTk4Oa79jxozxXzVnRTsZtY5Gk8lULifazz//zM7DOXPmyMTE\nRJmYmFghDixyUL3++uvsBCIHUVnOvuIvcuo9+eST7KB0Op1y9OjRcvTo0Rd1dBY/RvHPkmNW67wi\nh9sjjzxS5vEiIiJkRESE7jqLO8BSUlJkSkpKhdyH1atXy9WrV8uCggJZUFBQwoH3448/yh9//FEm\nJCRUyPgAyOjoaBkdHS2zs7N1c0eO6Y0bN7Lj1uFw8O9paWkyLS1Nbtu2TcbGxsrY2FhPz2k4Gg0Y\nMOA9Qsp8UBTFq6ys1q1Vhrcrr7ySvzd9+vQKLSYis6JHjx6sol64cAEAWP3zFGQezJs3T5eKO3bs\nWADA4sWLOS23rGMUxy233KIbL1AUm9+5c6eOQYl+j46OxhdffAGgyFSoX78+q91Wq1XnBPvrr+Dy\n9NKYevXqhZtvvpnHURxZWVnsaAx2arsWlC8TGRmpe5/+vvbaa9lUKCgowIYNGwCoDnQAGDlyZECy\nRkNKKHhqE9Gk0YNStWpVLF++HADQtGlTXgg7duzQfY/eD2R9Ad1EYvABUK4bZzabdZGD48ePA1CT\ns6ZMmQKg/F59RVEwceLEEu/T+a677jr8/vvvAFSKsn79+gFQ/RzXXnstAHBiktPp1NnDNMfeVir6\nilq1auHAgQMA1Llzl3xE47Hb7bj66qsBqBvKN9+oFf5nz54Nylgp3f6rr75y+3+KOmk5I/fs2cO+\nmU8//RSA58+LtzDMBwMGDOgQUpqCp4iKigIAtG3bFoCqAq5fvx4A0K9fP7z55psAgLS0NN7xNmzY\ngOjoaADAkiVLAKjqPKm+/iomISmfl5fH56P4ctWqVd2qqyaTCUlJSQCKVOATJ07wTpCRkcHfUxSF\n3/cmUqON7AghMGPGDADA+++/D0A1S2h3HTNmDO644w4AqulDURCtKk47rda80EJRFL4m0nICAUoV\nnzlzJo8jLS2NzaKhQ4cCUDkILr/8cgCqJvTaa68BAMLDwzmaM2LEiIBXqQoh0KuX2u3AkzVHpuev\nv/6KuXPnBnRshEopFD755BPd37m5uaw6zps3D7Vq1QIA/P7770hJSQEA9O/fn1UxWqz/+9//mLDC\nX0KBVOnDhw9zqIvee+KJJzBhwgT+LC3cX375BSdPngRQxPo0efJkHpPFYuGkIABe1RTQg6woCh/D\n4XAw9yCdr1mzZvydWrVqcfWoVhV3h+JVklpBReoxhQX9BbqORo0a4fnnnwcAbN++Hc8++ywA9b66\nA5mTaWlpeP311wGofhKqkhw7dmzAfQy1atXiKl1KFisNNpuNS7jJjxQMGOaDAQMGdKh0moIQgh01\n5HCsWrUqmwnnz59n80AIwfRa1apVw+7dKnfsb7/9BgDYvXu33723pO717NkTW7duBVC0I4wfPx7/\n93//B0A1L6hCMz4+nslJyLN84cIF3S5Mqq/D4eAKRU9AO7eiKEwoY7VasX//fgBFhB3XXHMNazSK\norCJZrPZOJXWbDazKeSOE/HAgQO8i9epU4d/VxTFb2q5EILNpz179jB3hjfIy8vDzp07AaimBDld\nKbnNU9D9oev3xJx79NFH+V5qzTlCcS4PSn8OJjdFpRMKgJqRBhSp/D/99JPbMKSUEtWrqw1xhBBY\nsGABgCL1MhA8fOSjSEtLQ40aNQComWkAUK9ePY5K5OXl8Tjef/99Ji/Rhi3pQdJGMvLz89nU8AZO\np5MXn9aXQnUgTz31FB5++GEAKvsPnfvChQtsbmm93e4eACEEPvroIwBq9mZsbCy/7yu0ApLG5q33\nncYxbtw45ObmAgAGDRqENWvWAPDOR6P9vCffo7no3Lkzm43aSA2ZCRaLhTc7IQQL72DCMB8MGDCg\nQ0C6Tns9CC87RHXr1g0A2FnUrVs3NhO0UBSFtQGXy8UJO+vWrfNpvOVFs2bN8OWXXwJQvcnkMF27\ndu1F1evq1auzB//s2bPsuAtUnLphw4a8kxavNC0LCQkJAICTJ0/y+Nq2bYvt27eXayxkKl555ZUA\nVOIcMoO8QVhYGNcRTJkyBX///TcAYODAgeU2bdy1yHMHIQTX5tx///1sTj733HMAgOXLl7N2sH//\nfqbpczgc/L6ftNqtUsoWZX2o3JqCEKKOEGKdEOIvIcRuIcSjhe/HCSHWCCH2F/6sVt5zGDBgIPjw\nxafgAPCElPIPIUQVAFuFEGsA3AdgrZRyihBiHIBxAJ72fahFoNgzhR47duyIzz//vMTnhg8fzr87\nnU52LlUUduzYwanZ+fn57D8obachm/O1117jz+Tn5+v6GwQC+/btY7vXW02SxialZEfjFVdcUS5N\nQeuLIMq0ffv2lakpCCGY3JTSmTt37sw7u8ViwX//+18AvmW3euorqV69Os6cOQNAzan5+OOPAQDf\nfvstAJVng0LnxclaK4LQt9xCQUp5AsCJwt+zhRB7oLag7wXgxsKPzQPwI/woFMxmM6uS5AlPSUnh\niIPL5eKFOWjQIF7UqampzL/3888/0zX4a1gew5tUWipJbtmyJS/oVatWBYUGvryLka5Pyy9Y3mNJ\nKbm2g0ytOnXqcDRESsnRh1GjRrFTuXr16uzYIydtamoqe/0HDx5cIgW+vOMD3JfRA/qmLoR33nmH\nSYDo2rRkKVpUVE9Tv0QfhBDJAK4D8BuAGoUCAwBOAqhRyneMVvQGDIQgfBYKQohoAF8CGCOlzCoW\nc5WlORFlOVvRSylZ+pOE7tu3L77++msAwNdff40ePXoAUIk+yGHmcrlYhQsF52pZEEJwKnHNmjXZ\n0ZSdnR3UQiNvQWPOyMhgVZjyQ3wB7cKXX345k+QkJibqitzS0tIAANOmTWNtkLStY8eO8bylp6f7\nRdsqi/GZWK779u2LP//8k8dJuSE0BqvVitmzZwNQtQs6HmXbBhs+CQUhhAWqQFggpVxa+PYpIURN\nKeUJIURNABev7fUSTqeTc9Wp3sFut+PGG28EoNpklCB07tw59l6fP38eR48e9edQAg5KNbZYLLwA\nW7du7bHXO9gQQrCJRlyVgJpWvm/fPr+cY/bs2ahZs2aJ93NyctC5c2cAauSD5obmKhC2OZ2jtJwN\nWpNNmzZlX9L69ev5vtL3R48ezaYwUFT9SqXSwYYv0QcB4CMAe6SUb2r+tQLAkMLfhwBYXv7hGTBg\nINjwRVNoD+BeALuEEORafhbAFACfCyGGATgMoJ9vQywJiiIQi/Bvv/3G6cURERGsqvXp04edOadP\nn+bPVAYoioLevXsDUNO5aVeZNWtWSLWY0yIuLg7vvvsuAHX8tOORY80XkPP4r7/+4q7hhw8f5r6L\n69evd7tjB3KuLmaGWiwWJnpp1aoV5xt06NCBC7coq1QbqXE4HFzkRV2mgw1fog8bAJQWk+la3uN6\neG4A4I44WmRnZ7Mg+PPPP3X56ZXBl0BwuVy8+LXsSMePHw/Z67BYLDo1mPw8/mjWSj6VHj16hOz1\na2Gz2bg8fevWrdxjs2vXrmwKakPL5Hd57rnneN4q6jqNNGcDBgzoUCnTnP8N0JJxfPHFF9ywpGnT\nphxRCTUoisIFPGlpady5OlTH+y+ER2nOlbJK8t8AKSWXg7/yyiv8e3ny/oOJ6667DoBa6lsZWtEb\nKAnDfDBgwIAOhqYQolAUhZOtFi5cyBqClrAkFEw/LaSU7EQLBFdFZUCgWtiXt3taeWBoCgYMGNDh\nknA0CiFYQoeHh+tCPdqinOKhoKSkJC6cSUtL45h2VlZWSO3CpdF1BQqxsbHsHNSmVGv7O9C8ulyu\nCp0rSqXW5iOEWqanL/Cz5vHvcjTSgnU4HExSYbPZdEKBchZItT179iwn2NSrV48ZoUMNxRdEoFRU\ngpbRWHsOl8vF3I2UPn7s2DEuAa8I4RAoM4VyQypa6GnXtWE+GDBgoEJwSZgPhccAEHrOt4pEIJ1T\nlG1ZvXp1ZGdnAwDuuece5lOoUaMGE9NmZGQwS3VlAe3QWvboYKNRo0a4++67AQBvvfUWMjIyfD2k\nR+bDJSEUrFYrx8RD4Xr+TVAUBS1btgSgNrXRppUT6/Tq1asxatQoAKGdZ2EymbiCkao89+/fH/Q1\nVbt2bQBqlSSVX19zzTX4559/fD10YDkaDRgwcGmiUjsaiYqrdu3aLEVPnTrF1YXr16/nnoi33HIL\n71xUhZaVlcVqcHh4uD/Us6Cjos0mRVGwcuVK/p1gs9nwww8/AABefvnlkMpuVBQFrVq1AqC2eycO\niM2bNzPbtpZWLtig6t9atWpxPxM/aAkeo1IKBarEI8ru66+/HomJiQDU3oBdunQBoCcn0WLEiBEA\ngKNHj7LtmJmZye9v3LgxsBfgR9D1UemtzWYL6kKOi4vTNdWl5r4vvPBCSJlyiqJw+PnNN9/kBjcN\nGzbkpj0NGjRgVidicQo2hBDclMfpdHIT5WDCMB8MGDCgQ6V0NJKG8OmnnwJQVTzaBcxmsy7Jpixo\n+/l9//33AIBevXqFlLpbGqpUqcKOKFJ3L1y4ENQdesSIEXjyyScBqO3xiAovVEAmjbbrdtWqVbnL\n9vvvv8/NdYQQnPfQrl07AMHnSUxISMCRI0cAqLkJ5HT0UzfsSzN5yWq1cotzYrOx2+18M7VJSoA+\nuUXbzp2gNS+og9Rdd92Fzz77zP+D9wCUNBMbG8tJWNnZ2cwaFRMTwyr6gAEDuIkttSrfuXNnQD38\nNLczZ84EoPbgoDHfc889ATuvt6B7TT9jYmKYxLV+/fp44YUXAKh2u3YN0IbyzTffAADuvPNOrlAN\nBuX63LlzeczZ2dl+6cPpLQzzwYABAzqEjKZQVqINScx9+/aV6K+3Zs0a9hpv2bKFqa/effddjjvn\n5+dj165dAIq48bSMw9pzNG7c2C/XVBxms5l3q969e6NPnz4AVFWVcvdpJ164cCHWrl0LQI3/U8ej\n7777jn8HipKIqLM1XVsgIIRgxuSBAwcCUJ25ixYtAgBs2rQpYOf2FsXns3Hjxpg8eTIANSmIduOT\nJ0+yuh4REcGNWyj9PT09PSgRHnLWNm/enFPzV61a5S+zwSsYmoIBAwZ0CBlNoSwpvGLFCgCqDUgV\nfHfddRcAtYu01nfw119/8TFJ4nft2pW/R8650kB9JfwFbdgwNTUVgJoeTNecm5vL46Rw6tGjR1nL\nadmyJXfYbtCgAROhHjp0iOPtgdzFaPxvvPEG+vVTybkpLJybm4vBgwcH7NzlgRCC7zFpNv/973+5\n96iUkvs4Dho0CFlZWQBUfw51hCaNQds9O5CgtngxMTHMVj5ixIjK2zYu0GjUqBF7g3NycrjJxh9/\n/OH28+4mMjY2lm+41hHp7nv+bkRLx7Xb7Zg2bRoAtfHp3r17AQDdu3cv0b1KCMEVia+//jo3WHW5\nXNxYpWXLlgFfNIqi8Lz169ePHywSwm3btg05ynlFUbhh64cffghANd3ItOrfvz+WLy/ZjsTpdPJ1\nkcMxOTmZmZYDNddRUVFo0qQJAPX+/uc//wGgNwVjY2N5nsmRHKgKUZ/NByGESQixTQjxdeHf9YUQ\nvwkhUoUQi4UQJV3+BgwYCFn4Q1N4FMAeAFUL/34NwFtSykVCiPcADAPwbrkGVyitJ0yYwLvm559/\n7lVbc3JKzp8/v0Sb7+IgNblevXrlGW6ZcDqdPIaOHTuymeNO4teqVQurVq0CAO6yDahmBeVpBMPx\n9dlnn+HWW28FoGaLEigMuWbNGvz9998A1EzBiuxZQF2lb7zxRsyaNQtA0RqSUrIzmkzR4rBarbj/\n/vsBFKUaP/PMM9xcyN+g+Rw7dixrYG+99ZbufORIfvDBBzF8+HAAwIIFCwAAkydPDoi24GsvydoA\nugN4GcDjha3kbgJwd+FH5gF4ER4IBXfRB7rgn376CS1aqDkXU6dO9YpZhxaKlnyFoOUU1IKayfgb\nLpcLr7zyCgD1oSJ10GQy8bVTdGLOnDksDIQQXJ7cv3//gHukrVYr+zhIGBcHzVuNGjU4xbxz586s\n8lapUiWoJcdVqlTBSy+9BECN7GiFAaAmdY0ZM0b3HoEE3J133smJTBRJCQTxDgmA8ePH83nJZ/T6\n66/r1kXVqupem52dzev+gQfUZu1bt27lfAp/CgdfzYdpAJ4CQE9pPIDzUkoa4VEAtdx9UQjxgBBi\nixCiYlrrGjBgwC3KrSkIIXoASJdSbhVC3Ojt971pRW+327ki8sUXX8R9990HAGX2hlQUhXMOrFYr\nS2Dy3qenp3PMX+t87N+/P9f/+zvdmdTBqKgo3tliY2NZ4lO6dtu2bVn65+bmctfiYFDGff/992x2\nFYfWEVr8PaAog7BHjx6ceRpIEC3ckiVL0L59ex4PzR1pfc2aNeOdtkOHDqyFDRgwAFdccQUAYMeO\nHUwGs27dOgBg08hfqFmzJqfTk+Y6depUzJs3D4C645Pm0qlTJwwdOhSA2jfzrbfeAgDuUdmrVy92\nVtNPf8DXBrN3CCFuB2CF6lOYDiBWCGEu1BZqA/CIcudiNujYsWPZxu3Vqxen2D7zzDMA1P6K7lCj\nRg0mALHb7SwMZs+eze+RDUmVcoCqwpOKd/DgQU+G7zFI+DRp0gRNmzYFoO+1+NBDD/HvJMR69Ojh\n93G4Q6NGjQCoDVHpoXe5XDzm/Px8FkqUsNSsWTP29GtNjSVLlrBPZMCAASxc/R2peOONNwAU1SoA\naoIbCaRJkyYBUIU7XVNqairefvttAGpSkzYxjuY5UAKtc+fOvLbIZPj444+Z57Jr167o0KEDAJVY\nhXw069at402wZs2aANQEsj179gBQyWD8RVhbbvNBSvmMlLK2lDIZwAAAP0gpBwFYB6Bv4ceMVvQG\nDFQyBCJP4WkAi4QQLwHYBuCj8h6IVNGrrrqK3zOZTFx4Q86kYcOG6WK6pA6OHDmSk3vCwsJYLaP0\n4l27duk0BIKiKBzHbtq0qd886YqisBlUtWpV3kn//vtvrjQkp114eDjvEn/88Ue5x0C7oBDC7U5C\n/3/22We5jl9bOKatHDSZTJxCTrkS2nGlp6cjISGBv9ejRw8AKkcjFSDR7uiPXa1Zs2YYNGgQ/03J\naS1btnTb6ZrGmpGRwQ5di8XCY0lOTsaaNWsAgHduf4Hmefz48brKTUCNQhBRTbt27bBjxw7+Xduu\nnkyl5s2bA1AdlmQykcbkD/hFKEgpfwTwY+HvBwG08sdxDRgwEHyEdEajNi6uBUldqt2/4YYbuJzY\narWyc/Hqq6/m3+12O2sWlNZ6/fXXl8hgI5ANbLVa/VaKLKXkHVZRFGzevBmASidHuxztYP/88w/7\nF/xR5NS2bVs+t1Y7ogzLVq1a8bmdTiefMycnh+PmM2bMcKshEM6dO8eaghYWi4V5AfyhIZB/6Ycf\nftC1qSNb3Z2WoIXNZmO7HCi6lq+//ppzR/wN0r6ioqLY2Txy5EgAwFNPPcVzn56ezuF37VyZTCY8\n9dRTAMA+h7Vr1+KRRx7x+1hDWiiQY6W0fAJSv+rWrcupz/Pnz8eJEycAAEuXLmXn18MPP8wmAS3s\no0ePcg58zZo1dRGI+vXrA4Db85YXWq/433//zZGPhx56iB1llI9w9913M6ekL6AHKDExEU888QQA\nNfWXaL5I/QwLC9NVA5KQjIqK4sWZkJDgVhhQNIhSsYsjPz8fL7/8ss/XAqj3gzaA2NhYHs8nn3zC\nwr4s9OvXjx9CIQTzIL788ssB6y5F0Zzq1auzs5XqR6SUbCo+99xzfB9MJhMLr19++YUFK20gU6ZM\n4QpPf8KokjRgwIAOIa0pkETNzc3VSfbiOHPmDDtqDh06xJl0hw8f5p3ZXYjJarUyUWdxGjFyNPk7\nT4F2IiEEcxL07t2bTZSpU6cC8B83Ac3hpk2bsHr1an6PnLE0P8Wdi1pzihy9N910E4cfaY7vuusu\nduBqYbfb+dxbt271i9YDqKYPFQ8BRbsmMXRfDDTO4cOH8/XZbDZmrQpkpmj16tUBqCYWOQwp/Pnt\nt99yRexHH33EFZqRkZG6dU/3ipy1gSIYDmmhQKqTtjmsVn3V9oSkiYyNjeXc9tI89mQmDBs2jIWB\nVticPHmS6x/8HVenc48cORLPPvssAFUAkX9hxowZfj0fzUFmZib7CUwmE6udlM5cq1YtXW0IzYfF\nYuH70L9/f4/Pm5OTww8hUcb5A3379kXHjh0BqNdG1OfFU9iLw2q1coJYx44deV727NlT5nrxFeHh\n4Ww+RERE8LqlB/7uu+/mqFNx3xatvzNnzrD/4IsvvgjoeA3zwYABAzqEtKZAqrvD4WAHXFRUFEtI\nkqpxcXHs0a1RowbX/+fn5+uo1yhHgBxjgwcP1mkg69evB6CqyYGSwrQ7PPTQQ6yu2mw2LnIpK3Xb\nW9B1SClItrSYAAAgAElEQVR5565ZsyZf67BhwwCouxVVBppMJp3mVBr/RHGcPHmS1fhTp06xw9ef\ncxkdHa0bDzkXnU4nawvaa73tttsAqJwVlN0KFDl0BwwYEDCzgebQZrPh0KFDANSKXzIRyZkNQGeC\nkYn55Zdf4tFHHwWgasPBKjALaYp3CjFt2LBBx7WovfmAmrZKOeqnT59m9VIrCMxms676TPt9QE0j\nJTbnQM2JEIJ9BU2aNOFxLF26lJNw/H1urRlAdRX5+flsi5MqqygKj6dDhw4YMGAAADWhh8J04eHh\nrGrTPVi+fHmpHIYktF0uF/ssfE0KqlOnDg4fPsx/U23D7bffzp2eevTowfed3ouMjOTxZWVlcdRl\n7969QS3zjoiI4DD5hAkTAKhRHTLR/u///o+pAQJQFm30kjRgwID3CGlNgXaa/v37MyVW7dq1ce21\n1wIoiosvXryYd8F33nmHzQd3XnEtXC4Xe/3r1auHc+fO+XopF0VsbCz3k+jatSs7yQYMGBDwpiMm\nk4nV0lC45+WFEAL79+8HoPJVavkSSHspHj0BVFOUUpjvueceNh/+Zaj8rejdhR9LGy+pp3369GEi\n0Q4dOvDnIyMj2f4koXH+/Hn+f1JSUsDo0Uk4LVq0CL169eLrICHUsGHDgC3SsmofKiMo6efDDz/E\nTTfdBKCo5BxQ/RlETkK07rNmzWKT6V8Mw3wwYMCA9whpTcHfKG5OaDWRQDHjAuBdKzU1ldOurVYr\n98Ikr38gUNGt6g2EFAxNwYABA94jpPMU/I2K6k+gpY+jVnUOh4MpvwwYCCX8q4RCRYG6/2RkZHC+\n+5QpU5hpOiwsLGBOTsNsMOAtDPPBgAEDOvyrHI0VBW1YkIqOIiIiOEfC6XSW2NH9ZeoYjkYDGnjk\naKzU5oM3C76sVveBhLb+gOo5/F2SXda5PQFFZ+Lj4zkd2eVy8e8mk6mEmePp8YMhnOgc7mo1tMlb\niqKUGm0KdC5HWFgYJ1aR4Lfb7bp5qWgBbpgPBgwY0OGS0BQA99K1IrWDygjaJc+ePctmjtaM8UW7\nCeZ9cGd6aTUArZYQ7DVis9l4fP7WDvyljVVqoVCaqkdqsHZxhLJwCAsL47JYehi1acnBKpmlOXI6\nnSHXXt4TXOwel/a/ilgXgZpbv7Ui8OXLQohYIcQSIcTfQog9Qoi2Qog4IcQaIcT+wp/V/DJSAwYM\nBAU+RR+EEPMA/CylnC2ECAMQCeBZAOeklFOEEOMAVJNSPl3GcQIirkO5MtBkMqFNmzYAgIULFzI1\nOhF+KIrCLcFuvfXWoHZwNhBYkCNU64AOEgJbJSmEiAGwHUADqTmIEGIvgBullCeEEDUB/CilvKq0\n4xR+x6+zQtTpq1evZsLQTp06hZxgILaoP//8k+sj4uPjAej9JZmZmcwZ6SmNub8ghGDCkpo1a3Ik\ngroYBWJOKzKMqg0fA75FI6iU2+Fw8LUkJiZyhzJqL3D48OFgCf2A1z7UB3AawFwhxDYhxGwhRBSA\nGlLKE4WfOQmgZF82GK3oDRgIVfiiKbQAsAlAeynlb0KI6QCyAIyWUsZqPpchpbyoX8HfmsLSpUsB\nqB2q6fqSk5Nx9OhRf57GryAHI9GHzZgxg/tgms1m/PTTTwBUcpZg7KAUS7/xxhu5UYmWBp5YoDt1\n6sSdqN0lYXmLiowYVa9enbtp/+9//wMAvPbaa+XSFq644gqmYM/Pz+eaFyklaxBnz54FoHJb0nyG\nh4cz50YAuCMDrikcBXBUSvlb4d9LAFwP4FSh2YDCn+k+nMOAAQNBRrlDklLKk0KII0KIq6SUewF0\nBfBX4WsIgCmogFb0QghudOJyuTg8+e677+Luu+8GgJCk4iKbkkg7O3bsiD/++AOA2vmaSGwVRQl4\nuDAqKoqJZAcNGsSMRWFhYbyLkz/E323L/BWvp+NoOTSImHfcuHHcuXn79u3csfmVV15Bo0aNAIC1\nH2/HQ76I6dOnu/UPaUE9PannAyEjIwMAcP/99+Ojj8rdtL3c8DX60BzAbABhAA4CGApV+/gcQF0A\nhwH0k1JelPzQn+ZDfHw8N0TVNjs9f/48mjVrBgA4fvy4T+coK2nKHxBCYO3atQCAzp0785jr1Knj\n87HNZjNuuOEGAOBuS02bNuVjt2/fnuduyZIl+PnnnwGo6i45GMmDfubMGRayDodDlwZdnrkp79zG\nx8eja9euAFQORuqVSWq7EMLtw+lyuVgga/tpEmO0lgeyrDFLKXle9u/fr6NwLy9oHFdeeaU/iIAC\nX/sgpdwOwN1JuvpyXAMGDFQcKnVGoxbUZGXSpEmstrlcLnaYCSG4H8TixYsrZpBeQErJeQxCCL8y\nTQshEB0dDaCod2V0dLSubRzh22+/xccff1zifVLLu3fvzi375syZ4zMvhLYRTVlhOkVR+J5+9913\nJUwbLaSUbHZpNQaXy+W25VxaWhp/ryxoP0NOydtvvx3btm0DoNdAgKKMRup2ffLkSSaeJTORxkmh\n6Oeff577RAQal4xQoMkbNmyY7gZQvn5OTg7TxPsKKaVfW9S7Q82aNXXVdKNGjfLbse12O3dvovyI\n0ujw09LSdOoxmRVkomlbq+/evZvZpMob33e5XGXOLT1A06ZN4/6WJpOJS9EPHDjA56c+ljNnzsSZ\nM2cAqJT6L774IoCSPSipuczo0aPLNX7Cvn37cOWVVwJQO5GRKXHbbbexz4AiHLNmzWLT7e6772Y2\ncm20p2bNmrzx0XUGCkaVpAEDBnS4ZDSFp556CoDe87xhwwY2Jcxms87x6AuEEOxQClQkYMCAAbx7\nnz9/nrtS+wvPPfccAL2GQPOmncPvvvuOP1OaNkEazZdffsme9Pz8/HJlJpamKdB7zZo1w1tvvQVA\nn6V69uxZXH311QCKvPdAkSbkcrnw448/8jHccS44nU7897//BVCkCZUXUkocO3YMAPDqq6/y+Zo2\nbcoOUXIcfvDBB9zLonnz5m6v/z//+Q9eeeUVvhYAOHr0KM+91tTSarLlcvaGQuqvr9GHNm3asKfe\narVyCO3QoUO47LLLAKg+B4o+kL1YXmg7EPkrPZValY8fPx6Aqr6Surhv3z6OEvjjfkVHR3M0g9Tn\nadOmsaCIiorC559/DgC4+eabdd+l89N17927l8cGFJlrv//+O/sonnzySfz6668+jZ8S0u68807d\nWOg6evbsyeFcLW699VYAqnArDfSQHTp0iAVLoCj/FUXhjWrhwoUAgBYtWrDw0grk4r4P8iuRifb1\n11/zRvfOO+/wmC8yxwbFuwEDBsoBKWWFvwDI8ryEEFIIIR977DHpdDql0+mUNptNZmRkyIyMDJma\nmiqPHTsmjx07JocPHy6rVasmq1WrVubxCjWXi77MZrM0m83lGje9aDxbtmyRZ8+elWfPnpVZWVky\nKytL5uXlyfz8fJmfny87d+7s03mKvywWi0xKSpJJSUnSYrFIi8Xi0/E6dOggO3ToIF0ul+7lcDik\nw+GQO3fulJGRkTIyMtLrY8fExMiYmBi+v9rj5+bmyujoaBkdHV3ie3S+4mNy9yooKJAFBQUyMTHR\nr/Ps6atevXpy7969cu/evdLhcMjs7GyZnZ0tHQ6H2/Gmp6fL9PR0efnll8u4uDgZFxfn6bm2ePI8\nVmqfAtlpDz/8sM7bTV2YwsLCcOHCBQBqEgiFy8g2VhSF1WBtcosnnnPyJURFRbE3uKzvacOiCxYs\n0IWfCFSFaLFYeGxJSUlljscb2O12nxO4tNiwYQMA4OWXX8bTT6tV8lqSmPr162Pu3LkA1MQiGkNp\noPsQHh7O4VB3drbNZiv1OFQ/oAWNJycnh0OyQghP1O6A4vDhw1zNW7du3RLNcUvDiRMnAtIf0zAf\nDBgwoEOl1hRIsvfp04c9y9HR0TrPMu3oSUlJuPfeewEAK1asAKA6Hw8dOgRA1R68cRrSuXNzcz2O\nq2/fvp0dn9oEG5fLhdmzZwMAazMPPfQQx6lbt26NlStX8vVoU3fJwx0KeP755/H8888DUCMSFDFp\n2rQpevfuDQB45JFHAIC9/O5Aml5cXBxSU1MBQMfETLBarfjqq68AqNEnijrcddddeOaZZ3TfS09P\nZ8deq1at0KFDBz4O7cylRVeCAcqhcLlcrHlWq1ZNd930OzUUCpRmY2gKBgwY0OGSCEledtll+Ouv\nvwCo0pV2bqfTybv/8ePH2d5dvnw5/98f9f/a32kn00r2m266CQAwZswY/uxjjz3GWYVaNiXKbKNC\nGBrvO++8A0DVhH7//XcA4O+HKgYMGABA9Z8QKMOwdevWbudeURSO2ScnJ+O6664DAK5kjIuLc3su\nKSXfaykl7/50D1avXs1aGvFUENasWQNAzTasiOfBarVi586dAPSZi4D7HhakTc6fPx+PP/44ALVP\nKV1zeHg4+9KKIbB0bP6EP6okSUV//vnn8fDDDwPQq4O7d+9mldHfpdNUbhsWFsa/L1myxKtUXxIu\n5ACsUaMGmwyDBw/mBV9QUFBpmJZpkWZlZbEpRILsYtWe2sQbOgYJg82bN7ODtrTKRyklz/2XX34J\nAHj99dexfv16ANA9dC6XiytGqQI02EhISMDw4cMBqOQ1RKgzatQoDBs2DADYMQoUCYVBgwahevXq\nAIAtW7agdevWAICPP/4YOTk57k5l5CkYMGDAe1RqR6MWVHE2efJkdOnSBYDq4CKcOnUqIOGbiIgI\nTlvt1q0bnn32WQDeFQSFhYUxHRepztnZ2Zy9FwhtTtsiDigqBPIniEA3JyeHsxupcvBi0F4vhQtp\nftq3b4/GjRsDUMOab7/9NgBV86DvZWZmYuLEiQDAzs5BgwbpCowIBw4cYNW9oiCE4LDuxo0bee2M\nHTuWCYO6d++u+zyghl1/+eUXAMC9997L9G0U1i4vLhmhQLDZbKxqaUkvtDa+P5Gfn88CqWrVqrj2\n2msBeJc7v2TJEh4npbK2b9/eL+OjBWQ2m91GV2icn332GR577DEA/u+nGBsbywL5gw8+KNcx6IE/\nevSojmuT5rs0kCDYuXOnW/u8Y8eOFc7yHRUVhU2bNgHQz722FiMlJYXHTwK9Xbt2bDJs3LiRBaGv\n5qVhPhgwYECHS05TiIiIYFUzOTmZd4E9e/YEbEcg7/Ubb7zBO2GdOnUwffp0AO57MHbu3BnLli0D\noBZD0S4wZ84cAKpHmoqk8vPzfZb+xXd/+puo1kaOHMkqaqdOnXzOeIyLi+PCHYfDwUVoq1ev9um4\n3oLm7eabb9YVGtH1V61aNSCmkyeIiYkBoHKA0Br6+eefeZwWi4UJgdzR1F122WXYv38/AGDixIl+\nI+K55IRCRkYGe29btWrFDxvZ6v6GlJKF0JgxY/Dpp58CUMtlX3rpJQBqJSGgmjZ0c6+++modKxQl\nUZHpk5CQoKMA92V8QEmVkt4fMmQIAOCXX35hVTw1NZUf3r59+3oskIQQ7A3/5JNPdLTmRBIT7E5X\n2oQfrflQkQ1nio9hzJgxnJY9dOhQDkdPnjy5RJKbFunp6bjxxhsB+DeiZpgPBgwY0OGS0xSEEOz4\n0+4MpD0EArTbLFu2jB13zZo1Y02AGrxo4XK5OC136tSp+P777wEUaRUFBQVB2cUoyeXWW29lbSUs\nLIx5FA4ePMhj2rp1KzeGIXMgPT2d8wYmTZqEnj17AlDvA0UcvvvuO26MEmzQGO6//37d+9pIRUWB\n8lAiIiI4orJ48WJOc65bt66ucIs0CzJ3OnfuHJB2BZdM8pIWVNvQvXt3Vrnatm2LLVsC36GOSEs6\nderEfQaoMjAmJoa98EOHDmWOvmAJgLLQrl07AKrdTwk+WvtbURTOviSTYv369bjtttsAqMKEFnRB\nQQFzYvbp04dz+4MNij6sXLmS7wdQZMZER0dXWPNe8hmdOXOGzYTi60DrSyBBTJtMObgaA5+8JIR4\nTAixWwjxpxDiMyGEVQhRXwjxmxAiVQixuLAbtQEDBioJfOklWQvABgCNpZR5QojPAXwD4HYAS6WU\ni4QQ7wHYIaV8t4xj+W2btFqtrMLXr1+fVd9mzZoZ7dw9RHx8PFq2bAlArdGgHe2GG27gnYt24EOH\nDjHFe25uLvbt2wdA9ahTSvPp06crTBMijefQoUPsBBVCcBrwVVddxeq4lh8ymKnkQ4YMYb6J4qB5\n++effzgd24coQ1DSnM0AIoQQZgCRAE4AuAlqX0kAmAfgzlK+a8CAgVCEjzRqjwK4ALUl/QIACQBS\nNf+vA+DPUr77AIAthS+/0lsRPVhWVpZ88cUX5YsvvlghNFuX4qtu3bqybt26snbt2rJ27dqybt26\nMioqSkZFRcmYmBiP6eyC9aLxDB06VEfpZrPZpM1mkxMnTmTqNrPZLMPCwmRYWFjQx/nYY4/Jxx57\nTNpsNmm32/m1adMmuWnTpovSCHrx8oiOzReBUA3ADwCqA7AAWAbgHngoFPzB0VjW68knn5Th4eEy\nPDy8when8arY17Fjx3RCYdmyZXLZsmXSZDK5/XxFCjcSst5whnr48kgo+GI+3AzgkJTytJTSDmAp\ngPYAYgvNCQCoDSB0qIEMGDBQNnzQFFoD2A3VlyCg+g9GA/gCwIDCz7wH4KGK0hQURQk5ddZ4BfdF\nrNvdunWTR44ckUeOHJHPPPOMjIiIkBEREaV+7xJdNx5pCr62op8IoD8AB4BtAIYDqAVgEYC4wvfu\nkVKWTP7XH6f8g7gILBYL8/3l5uayR7mykJRUFILRASvQoCgCXcd1113H3vsFCxaUxkzEFYiUm6HN\n0/DXuKjHJKWx5+XllVrWr03A88M4gtKKfgKACcXePgiglZuPGzBgoBKgUmY0kvSksV/sGmjH8LfE\n9wahUHxzqUJLnEL3V5tvQO9dbO5JOwgLC+OKVk/Wlj+hzVzU9n2g30vLevVyfIHXFCoKnj7c2nzx\nQLeOvxj+rcJAm+hEvIL+ngsyb0wmExOzZmVllShXL80MslqtzO5UUFDAG06gekmWBu28UL2GzWbj\nVGZFUdzOXSA2HKNK0oABAzpUSvPBQOhDCMEM23FxcThw4EDAz1e8S7OBErh0zYdAwx3LTSBAHat6\n9+7Npb3kkQ51aL3iRBDSv39/JmbdsWMHEhMTAYDb2gcSmvC2V9C2fg8PD0fNmjUBFFUk/hthmA8G\nDBjQ4ZI3H9w1FtE6kWjHa968Odepx8fHM2fe/v372Unmj7HQGJYuXco8BCaTiR1hVAHXvXt3/PHH\nHwBCSxWmqkNyho0dOxanTp0CoFb7ESlI7dq12dl31VVX+Y0/0FsQv4XNZuNqT5fLhc6dOwNQ55n4\nKJ9++mn+DJGXbN68GePGjQMA/PXXX35bC55Aa4JNmjSJmZ190GKMZjAGDBjwHpekT4F2/wYNGuDV\nV18FoPYeoFZlRNfWtGlTjlErisIEqQsXLuQdURtO8xa0mxKj0aOPPsocA3Xr1uXdKCYmhsdBNf8r\nVqzA5ZdfDqBcDDsBgaIoTEZL3Z6nTZvGbEwzZ87ka96/fz+qVq0KAG6bsAQSFouFNZb//Oc/AIB5\n8+Zx5+s+ffrw3NatW5fHrNWaKRNWCMFaTjCyO7U0dgMHDmR2cLPZjAceeABAUe+MRx55JCA+r0vO\nfAgPD8ekSZMAAMOHD+fFoU0IKa3/ID389957L6u+P/30k64BrKewWq3coWrGjBkAVKIXMgVWrFjB\nLcXHjh2rGx9h5syZAIDRo0d7fX5/goTs8uXLmT24Xr16AEon/EhJSWE+x+HDh5dKIuJP0MPUuXNn\nZpKeMmUKAJURm5rVCiFYUGkdjQUFBfjtt98AgHs4pqWlBcx8o/Fefvnl7Ghu0qQJc3e2b98eCQkJ\n/Flat2T+3nPPPfjiiy+8OaVhPhgwYMB7XDKaAu1mixYtYgeexWLhXV5Kyeqstt8C7QJ5eXksufPy\n8vh7TzzxBDdt8WSuaBzR0dHc7IN6KzzzzDM6ui+ih6tSpYquQzaBzIZrrrmmQkNk1MLuhx9+4N6N\nTz755EW/06ZNG2Zw3rRpE5tQnqA8WXpVq1bF+PHjAaikuVdddRWAIjPAbDa7zWNwOBzcpXz+/PkB\ny7zUgvp37tq1CwBQrVo1Xjcul0uXVUlkww0aNEBSUhKAovnJy8tjKjzqPVIG/l2t6AcNGgQAmD59\nOr799lsAwIMPPqhryU0PKT2MSUlJTGseGRnJHuk6deqwULDb7Vi6dKnuXE6ns1yLpkePHhg8eDAA\n4Morr+Sbm5yczOqstvkH4eTJk9ys1dfmod5CCMHnNJlMrJaXRS2+fPly9OjRA4AqVKhXoifnK163\n4AkGDhyIu+++GwDQtWtXFvBaYUv37MyZM0ypP2rUqHKZh76AHvqGDRsCAHr27KlrTEy9Ms+ePcv9\nIUeOHInrr78eQFHj3szMTF5Pq1at8uTUhvlgwIAB73FJaAoRERHcTtxqtbIk9Qd7c2lOyfLAZDKx\ngy47O5tr6BMSEli9plg0ZQMSiHH4qquu0plEgcbNN9+M7777DgCwbt06Xe8Ed6D52r59O6vw8fHx\nOo3Nn6Aowpw5c3gOtXwQBJfLhTfffBOAeh3Uwj0nJyckOCO0lb90X7V5CitWrEDdunUBQBcZo1b1\nHvbV+HelOdPkbd682a9U7v588JxOJ0cctMjJyeH+gdRQ9LHHHsPUqVMBqIuDvNBffPEFe8aPHj0a\ncMFw5swZns+FCxeW+Xmiho+NjcWOHTsAoFQCEX+ATMJrrrmmBLEKABZG1113HVJTU0v8P1QSw9yN\nQ0rJY42NjWVhQNGHbdu2sU/h7NmzflsLhvlgwIABHS4JTeGDDz7g2G5MTAx7dwNZXBQo4hTaMSjd\ntvj5GjZsyB71YGDQoEGcs1FWEpXVasW776p9f1JTU7k4SlGUgKno8+fPB6B68LX3hM5HOSuHDx/m\n/990002sbu/YsSNk+S4URcHLL78MQL3v5DSlBkeTJk3C1q1bAfh3HVZqoVCjRg0AwKlTp/j3Bg0a\ncJnuZ599hvfeew+AmlVIiR4kLHyZyEAtJIo+PPDAA7pFTir8xIkTOWISjMV87bXXshAiv01p6Nix\nI5s8kZGRHEZVFKWEeuyPsYeHh+t6Xro7PvXxbNOmDVq1UlkCY2Nj8dZbbwEAmzihBLqWLl264NZb\nbwWghlQpXEqRBvKL+BuG+WDAgAEdKrWmQIy8+/fvZ3VRURROUhoxYgRGjBgBQN05qA6ie/fuAAIn\naT0FpWDn5+fzbkypwdTeHVB3Dtql582bF1TnGDEgA+BqwuKgiMojjzzCc3zgwAHOZXA4HAHRamrV\nqsUJPVpIKTm3gub4lltu0c03mZuhhuTkZO5GnpSUpKvy/OmnnwAATz31VEDHYGgKBgwY0KFMTUEI\nMQdADwDpUsomhe/FAVgMIBlAGoB+UsoMoRpD06F2ns4FcJ+U8o/ADL0o3PT+++9zt+MVK1awnVk8\nVk1Sl7SHjRs3+szW4w1MJhNnLt54443o1q0bAODYsWO8I7du3brE97Kzszl1O1haAtm1X375JTu4\nqLpUi+joaDz//PMA1JAr2ej5+fkBj/9fuHBB50ug850+fZq1FBpz9erV+Z6ZzWYuQHr//fd1qc30\nmWCHKmmtLlmyhLUfq9XK4zh//jyvgUDDE/PhYwDvAPhE8944AGullFOEEOMK/34aQAqAKwtfrQG8\nW/gz4Fi3bh0AtY6AJjgxMREbNmwAoJJ+0ANJKdF2ux3Dhw8H4J3jy1uBMHLkSADAq6++ymaCoihu\nad/cvXfu3Lmgp+KSCZaSkoJPPvmEx0bjo9qHiRMn8nyfOnUK77zzDgDg+++/Z1OorJTo8qJdu3ac\nzgwUPVgbN25kZmeKRDkcDn74LRYLN2R56qmnMGvWLABqOjaR65TWLCZQIJPh2muv5WtyOp1chdqo\nUaOgjaVM80FKuR5A8frYXlDbxAH6dvO9AHwiVWyC2leypr8Ga8CAgcCjvI7GGlLKE4W/nwRQo/D3\nWgCOaD53tPC9EygGIcQDUNvRa9/zi0OKVK7jx49zocl7772HKlWq8HkA4K677sLjjz8OQC0u8Sei\noqKwZ88eAKqWUhaKh9ScTidnAo4ePTqofQgUReHQopSSd64bbriBi80ok9DpdOLTTz8FoDrz+vXr\nBwAYPHgwq+4JCQke31dvSHNfeOEF3d+UT7F27Vq0adMGAJgf4eeff2ZOh9jYWNYqqlSpwlrBL7/8\nElS6NUL79u3RoUMHAKqJqa3gJA3B3+vzovCwmWwyNC3lAZwv9v+Mwp9fA+igeX8tgBYV1WAWUJvM\nKooiH3jgAZmTkyNzcnKkw+GQDodD7ty50++t6ul8J0+elC6Xq9wvp9Mpz507J8+dOydXrlwpq1at\nKqtWrSoVRQnYXJlMJmkymeT27dvlyZMn5cmTJ+W5c+fkli1b5JYtW+Tp06dldna2zM7OlmlpaTIt\nLU22aNFCNmjQQDZo0KBEu3ea58WLF/OxPZk/T8eZl5enm6/MzEyZmZkpU1JSZExMjIyJiZEWi0Va\nLBYZFhYm165dK9euXaub53Pnzsnq1avL6tWry/vvv1/WqVNH1qlTJ2BzrH317dtX9u3bV2ZlZenG\nRPM2cuRIf58zoK3oT5FZUPgzvfD9YwDqaD5ntKI3YKCSobzmwwoAQwBMKfy5XPP+w0KIRVAdjJka\nM6NCQKrYgQMHdIQqADB37twS7cV8BXnqy0pF1pJpuIO2Qu72229nxmSHw8FOx4YNG/qt+lAIgbFj\nxwIALrvsMqxduxaA6qijopvo6Ggexx133AEA2LNnD8/rXXfdxWZFfn4+O/OaNGnCJkhZvR09ae+n\nVa8pogSonntArSh1p26npKQAUKNW2vv0ww8/8O9du3YFoPIzXGycvoCukSoci6e0Ew8FVacGHR6o\n9p9B9QnYofoIhgGIh2oa7AfwPwBxhZ8VAGYCOABgFzwwHXwxH4QQUghxUZXTarVKq9Uqt2zZwqov\nvW0aXEAAABoZSURBVIYOHRow1XDcuHE6Vbr4y+Fw8P8LCgqkzWaTNputVHOCVEqbzSbz8/Nlfn6+\nnDFjBpsrvs5hnz59ZPv27WX79u3l6NGjZZcuXWSXLl3ktm3b5LJly+SyZcvkoEGDpNlslmaz2atz\nmEwmVuPL+qwnx6ZjZWRk6MyHrVu3yq1bt8qEhAS33+vevbvs3r27tNvtpZps58+fl+fPn5c9evSQ\nPXr0kFar1e9rg0xBu91eYixnzpzhexKAdemR+VCmpiClHFjKv7q6+awEMKqsYxowYCB0UelIVpo3\nb87pqn/99RcA1TPrLlHGYrFwFd0tt9zCsfdvvvkGgJqWSzwGgUCLFiqfBamnNG4CeboPHDiARx55\nBIBawQeoxV6kRq5fvx7PPfccf69jx44AVD4FUpN///13AN4n3WjpzUkVF0Iwg3S7du04ryMYuRLu\niqeKg9TvY8eOcSEcUJQPkZWVxdWDxD59/PhxVtdL42v8888/sXLlSgBggphu3bpxYtyTTz7JqcYA\nym1aUITms88+4+shM7Z169ZlFp75gEuLo5HYlDZu3MgZi8TJ99133+lqHyhT8NNPP2XbMTIykif7\n9ttvB1DEZhRo0Bi+/fZbtlmllLwY+/Tpw3UYlJNfrVo19hdIDf28FrGxsRyqpPClNiuvvGjUqBGT\n2+7fv9/vfpeLwZOwND3QkZGR+OeffwCoAldLyHsxaOfowoULHPZLT09nPw8lbPXr14+rUp999lnu\nd1HeEHFERARzMBLfJQD8+uuvAFSBH8BsSoOj0YABA+WAJ46HQL/ghUNs7NixsqCgQBYUFMjdu3fL\n3bt3y+nTp7NjKDU1lR14DodDZmRkyIyMDLlgwQIZEREhIyIiAuZc9ObVoEEDuXLlSrly5UqZkpLi\nNo7vqxOxvC+TyRRIZ5dfX4mJiTIxMVHu37+/zNwPctaeOXNGNm/eXDZv3rzU45Izs0mTJnwf/DEf\niqJwPoXWwdmuXTvZrl27QM9XQPMUDBgwcImi0vgUNJ9lpxq1AVMURWeHkg08f/58PP300wBUJ1Qo\nsPYShBA8tk8//ZSdePRT24n63wRvU93JB9CtWzdusxcbG8t5IkS7duLECfbnZGdnVxhha3JycgkC\n2SNHjnAPiAD7by4tR6MWVO04ffp0AECHDh24Iu+1115jj3woXJsBA1qEhYVxTQit4+PHjzN9e4Bh\nOBoNGDDgPSolHRuF54inwICByoKUlBQOSdasqbIKEDlrqKBSmg8GDFRWWCwWbuxDeTJB9B0Z5oMB\nAwa8R6U0HwwYqKyQUuLkyZO69/xFLuQvXBJCQZvWqp1gbaPR8PBwVtOoeavT6eQy6oyMjICpceRl\ndjqdiIuLA6CWFlOqrJRFzV60i4OuSzsud41T/Q0t+0/xMYUaiE2roKCA05y1ZenaMmuCNoRtNpv5\nf0IIt/fBnwgmg1Z5YZgPBgwY0OGScDR6qn5ptQZAZXOm9xRF4cSRQM4JFUdpd3+TycTsw8Te63A4\nSiUkoYKwgoKCkOmaXFEgbUrLNO1uToonuNFnq1WrxnkD2v+HYuKYH/qXGo5GAwYMeI9LQlPwNzyp\n6TfgOYz59B3x8fFcHk9ajN1uv6h25AYeaQqXhKPR35BSBqzVfHlQmiM1FMYGFBG1JCYm4sQJlZJT\n61ALlXFWRlx++eUAgPvuuw8tW7YEACbcqVmzJvf3JFIZf8AwHwwYMKCDYT6UgWCovoqicDiN6Ng6\nduyIcePGAdBrB3a7nftN7ty5M+i7MFHakVO2bdu2XJ2YnJzMjNDvv//+JWMyUNgzLy8v6E15Jk6c\nCEDVFKxWK4AizatKlSr44w+1VWv79u09OeSlaz6QOk2Rg0B6igO5sInau3Xr1pg0aRIA9SEDSuYj\n0DVbLBbu15iSkhKUnod07qZNm7LQOnZMbecRGRnJFX5ms5nHEwqbDVDEixkWFsb5IkARn2NZFPmx\nsbH48ccfAQAPPfQQNm7cGJiBukHjxo0xePBgAEBcXBwLJCoLt9vtmD17tt/Pa5gPBgwY0KG8rehf\nB9ATgA1qj4ehUsrzhf97BmpvCCeAR6SUq/09aCK8pGYpBw8evNj4dT+B4LcZd4eoqCjWCpYuXcpa\nA2kIWmenFkIIbls/bdo0PPHEEwCKiFspI89fUBSFTQar1Yr69esDABYsWABA7ZJMxDBxcXEV0oux\nOBRF4bwP6h9Zs2ZNdto5HA6cPXsWgEpwM2fOHAB64lbKPJ0/fz47UtPS0oIyfjITVqxYwW3pTSYT\nawq7d+8GAMyZMwfz5s1zfxAfUKZPQQjRCcAFqN2kSSjcCuAHKaVDCPEaAEgpnxZCNIbaPKYVgCSo\njWIaSikvqt8X8gF6pHJWqVKFOwGRXbt582YuR928eTNTZ3/zzTdMz/30009zW/IDBw4AKEnZHQyQ\nfTpkyBBMnjwZgJqMpE2FBlSmIOrGVKVKFaxfvx6A6nOgjk3aOaPrSElJ8euDGR8fj6ZNmwJQFysJ\nCOoEdd9997GPAyiizx88eDAzUwcLNLevvPIKM33TOIsLWG10yZ0g1ba4//vvvwGo7QXcfdbfkaqh\nQ4cCAGbOnKnzIxB5EG0m+/bt8/ac/klekm5a0Uspv5dSksdlE9SekYDain6RlLJASnkIQCpUAWHA\ngIFKAn84Gv8DYHHh77WgCgkCtaIvE5SmWppqT+nBs2bN4p2JpGizZs14B5NSslmRnJzstqcjNWlZ\nt24d8vPzAQCjRo1irv+yHJflrWoLCwvDNddcAwCYMGGCrocgpdquW7cOgKrZEL9gZmYmq7VhYWHc\nXKZVq1b8/vXXXw8ASEpKYjXXH9V32dnZ7FS84YYbcO+99wIoasRz7bXX6j6v7Y8YTE2hS5cu3O/j\nwQcfLOGMLg1CCJ0DsjiklBg1Sm16VpppRmvTH5GJRo0a4fHHHwegOm6JcyEiIgLffvstgCIzJlDO\nXJ+EghBiPAAHgAXl+O4DAB6gv8tqYkIqU7du3dijTHUCGzZswKxZswCoJJjUFWjHjh0YMWIEAGDY\nsGFum4WQYPnwww+5S9P1119/0bF4ezNIFb3vvvuYV1K7WP/880888IA6FRRiKn4OElR5eXkYMmQI\nf48WJP0sKCjQ+VHKu3DoGElJSUx4WqNGDX7Qa9dWlcN9+/axeWGz2fjeVKtWjYVJIEECfubMmdzV\nSbu50IPscrn4PpQlKICi+f/iiy/YdCsN/vBR0dgXL17M0Zxff/1VFwKm6l4yk2w2W0AEQ7mFghDi\nPqgOyK6yaGQet6KXUn4A4IPCY4VG/MqAAQPlEwpCiNsAPAWgs5QyV/OvFQAWCiHehOpovBLA754c\n82IST1EUdO/eHQCYygooktAjR47U9TkkMwBQY8sA8Oijj/IxPvjggxLHUhSFW9Ndd911vGP7A1df\nfTUA4OWXX+YdXQjBMfI+ffp45dk+cuQIAGDXrl1o3rw5gKLKyTvvvBPvv/8+AN/US20qNbXZS0xM\nZLPh7bffBqBqQZS8VK9ePXb40nUGEkIIPPnkkwDUnVbr8KM8hNdeew2AuuNTxKFKlSp49tlnAaj3\nplUr1e0VFhbGWgSlDw8bNqxMTaA4d0N5QPfx2LFjmDFjBgCV42PChAkAgFq1amH79u0AitoAVJj5\nIIT4DMCNABKEEEcBTADwDIBwAGsKb8QmKeWDUsrdQojPAfwF1awYVVbkwYABA6GF8rai/+gin38Z\nwMu+DKo47r33Xna+FJ4DgBrfBzzrhmy327FixQoAQKdOnQCoXae19iUdt0+fPhfVFDy11WnnWrVq\nFYCi2DegOhYpxuxt/Jt2pGuuuYbPQTuztguzLzsJOUE/+eQT3sWcTif7Nui86enp7NiNjIxkR2pZ\nmYL+wIMPPoi+ffvqxgOorFavvvoqAGDq1Kklvnf+/HlmAr/nnns4bNmsWTP+DF2/J+FdX30KiYmJ\neOGFFwCovoPevXsDUNcp+bzOnDnD2Y2BzgUJ6TRnemBfeuklXdyY4vekAnoKunmU8PPggw/ypANF\neQ//+9//yjyWJ7FpGjM5hrTCZN++fXjmmWe8Gj+BHsLs7GzOvaBrO3jwoF8cX+SgrVWrFkdwcnNz\nWeiQEEpOTubzmUwmnkNtJyRvoKWCK21uKU9j6tSpOmFAn3/77bfdCgMt6Hvbt2/nhCzt+ajq0JMU\nem/nm4RQmzZtAKgJUvSey+VC48aNAajmDDl2W7duHbRojpHmbMCAAR1CWlOgMCTtjARyGFFqr7cg\nSZyXl8eagsvlYrWsb9++nC/gDp6q5dQfkHZabfbcJ598Uu6U5Ntuuw2A3hyhGPmiRYvKdUwtkpOT\nWYuJj4/XEeFS5uS2bdsAqA4y7f2h+SSHpLcoKzQdHx+PzZs3A0CJHBQqxpoyZcpFzyGEYCfzRx99\nxHPncrnY7CHKPn9VyVI4fMSIERgzZgyAorBuWFiY25R2l8uFnj17AgD++ecfn8fgKUJKKBS31ffv\n3w9A9cKSd11RFFYfKUbtaeUaTTypatHR0brz9enTBwDYy+vpOEsDPbwEu93O3vL58+eX2+Yns0Sr\n2pIw8EftQ1xcnC4ZjITvsGHD2D9C723btg3ff/89AFWYkn+nbt267MH3BkIIfti1fgkyV7p3715q\nngGlv1PkoTRERkay4KhatSrGjx/P56O6EjJRExISSlCyuxszUHKzoPcTExOxY8cOAKpQcycA3KGg\noIBTrIMJw3wwYMCADiGjKWjZeAFV6pIKt2/fPq4Wk1LyTkLe+7Zt27JJUby6kHYVq9WKjh07AgB7\nerXnPHDgAKu8ZXl3TSYTq4OUJl0c7dq14xgz7XLaXdzpdPK5rVYrH4d2m4EDB7KK++GHH7IDr1On\nTnjjjTcAqCqptoDKXyieT0FRnq+++qpEKm9+fj5rbECRSZOQkFCuQiGTycRpx7m5ufxdOu5LL71U\nwpwkdOjQAQBQv3591jJIq9yzZw8f9/vvv0ejRo0AqLvxpk1qZv7111/Pjtt+/foBUJ3RvXr1AgDe\n7T2BEAL16tUDoBZUaeeAfqd7/vPPP3OOjNPpZLMiJyeHcyhWr14dNI6KkBEK7ngHKUknJSWFbdWB\nAwdycgdN5IkTJ7Bnzx4AajkpqY9ff/01P1gZGRlcfUZltWazmdXd0aNHl/qAuxsrqZyvvvqqzrdB\n45w8eTKbPHRNWVlZrGo7HA5OW/32229ZRaXFSiYOoKqfJKjGjh3Lx7Xb7VwRSuPxZeFow5skTHNy\ncjgBzF1uvxCCKyNHjhzJand6enq5xuJyufj6tN52SmlPT0/nxqzFE6SoNHrNmjW8BmjMs2bNws03\n3wxALaOm67Pb7TzXJ0+e5NoNKs93Op0skMuClkFLURQsXLgQgCqEyEc1f/589n24W28mk4krPOfM\nmYPPP/8cgJpuHgxCHcAwHwwYMFAMIcXR6G1SEHn3ly5dyl7xF154gSW7zWZjE6RXr16cn0AFPFJK\njqW3aNGiTAcVwWw2cwGLxWLRqZXkLf7yyy9LVM89/PDDTJ+l9WhXq1aNNRYyB6Kjo3HLLbcAUIt9\nSLvResO/+uor9O/fv8Txygsab3p6Ou+eGzZs4AIzdzCbzbyjh4eH8xw2aNCA6/+9QUREBGsKpB1o\nsXz5cvTo0QNASY4EgsPhYCd1rVpqkW5mZiY7T6Ojo3XpzOQ8HTJkCK8Xgs1mY/7DshiTTSYTr9/S\nzKCyoNW8tC3q4+PjuZLWB3jEp8AhoIp8AZCBflksFrl9+3a5fft26XA4pMPhkC6XS86dO1fOnTtX\nms1mr45nMpmkyWQqcY6CggJZUFAgXS4Xv1auXClXrlzp9TnCw8NleHi4PHjwoHQ6nfzatWuX3LVr\nl9fHK+tVSHYjt27dKrOzs2V2drZs06bNRb9Tr149mZ+fL/Pz86XT6ZRvvPGGfOONN8o9BkVReBzu\n/p+cnCzXrFkj16xZI51Op26e6eVwOHiutO9r36Pfs7KypM1mkzabTfd5+r/dbpcTJkyQEyZMkFar\nNSBrUwgh69atK+vWrSsXLFggjx8/Lo8fPy7tdrvMy8uTeXl5MjIy0h/n2uLJ82iYDwYMGNAhZByN\nwYA21wFQ1UyqcfCWIMNd+mtCQoIuHZs6Wv/f//1fuc5BzMm1a9dmVTk/P5+rFv1NN07n0NZU1K1b\nl73zQJGJQdGAX3/9ldVkh8OBadOm+XVMxXHkyBGOEnXq1Ek331pntbtcBq0Kr+1GTfPocDjYUUg/\nTSYTO1qnT5/usTO6NCQnJ3OFqdY8oHnVJridP3+e+Ud9Pa83MDQFAwYM6PCv0hS0WXqAutsT268/\nQE4tAjnaPA1paVGvXj0OR5lMJtZMunTpwqFaf4N2z8zMTA7ltm/fHl9//TUAdd7I+XnPPfcAUMO7\nNJ+//fZbubIYtSgrzdnpdHI2Yv/+/XmciqJwaFhRFNZetIxUdB1Wq5Wd1K+88gpWr1YJx7Ozszms\nSRrPlVdeyXkKnlTjlgbKlHznnXd0eR3aMRK0zFm//vorADXV353jNRD41wiFpk2bMlUYTfrBgwf9\nWuJ74cIFVvOsVivHuolqbe7cuayqahd+WFgYe703bNgAQK3P0HrXR48eDQCc9x9I5OTksAC9/fbb\nWQhdfvnlbNJQYo4Qgq/5/vvv9zkK4omXnrgr27Rpw3yVmZmZqFNHJf3SCgXKm+jYsSOXqHfo0IHn\ndtOmTWzmASpxDQDccccdANS58EeEjiIXHTp04HtNOSnPPfccJ9bFxMSw6eJyuThRK5htCQzzwYAB\nAzqEVJ7C/7d3fqFxVXkc/3wTtaaxk0nWRbKO2IqpUsWo8SFlt7BxXdKKKEIfGiwqSvsiaMtCMfSh\n9HFZ8R+ou8vuKkjJ2vXP7lBQ0Sr0rSaixGqNVrTaoLYLqw9NS0f4+XDPvTu3bZqmzrkztr8PHDL3\n3Jl8z+/m5Dfnd+7vnhOTpUuXZptopDZXq9VsEnC+16E+hTd9vWjRomwptIGBgew5/fT8+Ph4Nizd\ntWtXtiDJ9u3bs2/m+qFjmsU4PDxc6P4Ug4ODWehSKpWyMKinp+eE/Qzh/ytQr1+/nv379xfWTsgv\nLpMukjIyMpKlB6epz+noIv1M+m18JqFdDNJFXSYnJ7NU66NHj2Yp5ps2bWrEqNbzFOrL2NiY1Wo1\nq9Vq2X3ptWvXnvHvS/MU2trasrqFCxdmZcOGDTY9PW3T09NZ7kJ9rsHhw4dPei89zaE4duyYDQ0N\n2dDQUMPzEeYqW7ZsyeUe1Od1pGVmZsZmZmZs9erVVi6XrVwuF9rG40tbW5tVKhWrVCo2MDBg/f39\n1t/ff8qch1YqaTs7OjqsVCpZqVSy9vZ26+zstM7OzkbpeJ6C4zjz56wPH9Ih5fj4eDbUTIdhvb29\nhawlmOZHVKvVbL3Drq6ubAh+5MiRbP3I9B72xMRE9HbNRldXV7bhzooVK1i3bh2QDHHT9OGRkWTp\nznRbPudnwWmFD2e1U+jo6MgWTOnr68s9MwDJ47GtYH8rU/+sRaNWIXKaRmP2knQc59zirM5TqNVq\n2UyumWXPo2/cuDGrc05N/cjARwnnBme1U+ju7mbr1q1A8vxBmkSUrlLkw2HHOREPHxzHydEqE42H\ngMPAf+d6byQudm3XPge0LzezX871ppZwCgCSJk4r28q1Xdu1o+Lhg+M4OdwpOI6To5Wcwl9d27Vd\nu/m0zJyC4zitQSuNFBzHaQGa7hQkrZQ0JWmfpIcja10m6W1JH0n6UNJDob5H0huSPg0/uyO2oV3S\ne5J2hOMlknYH+1+QdEFE7bKkFyV9LGmvpOVF2S5pY7jmeySNSbowlu2S/iHpoKQ9dXUntVMJT4Y2\nTEq6MYL2n8I1n5T0iqRy3bnRoD0lafinaDeKpjoFSe3AU8AqYBkwImlZRMkfgD+Y2TJgEHgg6D0M\n7DSzPmBnOI7FQ8DeuuM/Ao+Z2ZXA/4D7I2o/AbxmZlcD/aEd0W2XdCnwIHCTmV0LtANriGf7c8DK\n4+pms3MV0BfKeuCZCNpvANea2XXAJ8AoQOh7a4BrwmeeDv8TzaXJi6ssB16vOx4FRgvU/w/we2AK\n6A11vcBUJL0KSYe8GdgBiCSR5byTXY8Ga3cBnxPmkerqo9sOXAp8BfSQpNbvAIZj2g4sBvbMZSfw\nF2DkZO9rlPZx5+4EtoXXuf4OvA4sj/H3n09pdviQdpaUA6EuOpIWAzcAu4FLzCzdtvkb4JJIso8D\nm4D0gYtfAN+ZWbqBQ0z7lwCHgGdD+PI3SZ0UYLuZTQOPAF8CXwPfA+9SnO0wu51F98H7gFebpH1a\nNNspNAVJFwEvARvMLLdutyUuu+G3ZCTdBhw0s1NvSBiP84AbgWfM7AaStPJcqBDR9m7gDhLH9Cug\nkxOH2IURy865kLSZJITdVrT2fGi2U5gGLqs7roS6aEg6n8QhbDOzl0P1t5J6w/le4GAE6V8Dt0v6\nAvgnSQjxBFCWlD6tGtP+A8ABM9sdjl8kcRJF2H4L8LmZHTKzGvAyyfUoynaY3c5C+qCke4HbgLuC\nUypMe7402ymMA31hFvoCkkmXaiwxJUsl/x3Ya2aP1p2qAveE1/eQzDU0FDMbNbOKmS0msfMtM7sL\neBtYHVM76H8DfCXpqlD1O+AjCrCdJGwYlLQw/A1S7UJsD8xmZxW4O9yFGAS+rwszGoKklSRh4+1m\nNnNcm9ZIWiBpCclk5zuN1D4jmj2pAdxKMiP7GbA5stZvSIaNk8D7odxKEtvvBD4F3gR6Irfjt8CO\n8PoKko6wD/gXsCCi7vXARLD/30B3UbYDW4GPgT3A88CCWLYDYyRzFzWSEdL9s9lJMtn7VOh/H5Dc\nIWm09j6SuYO0z/257v2bg/YUsCpmvzvd4hmNjuPkaHb44DhOi+FOwXGcHO4UHMfJ4U7BcZwc7hQc\nx8nhTsFxnBzuFBzHyeFOwXGcHD8CPaLG+4G8bqUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2/2... Discriminator Loss: 0.9596... Generator Loss: 1.1294\n", + "Epoch 2/2... Discriminator Loss: 0.9953... Generator Loss: 0.8804\n", + "Epoch 2/2... Discriminator Loss: 0.9510... Generator Loss: 1.1515\n", + "Epoch 2/2... Discriminator Loss: 1.3993... Generator Loss: 2.3715\n", + "Epoch 2/2... Discriminator Loss: 0.9080... Generator Loss: 1.4359\n", + "Epoch 2/2... Discriminator Loss: 0.8572... Generator Loss: 1.2590\n", + "Epoch 2/2... Discriminator Loss: 0.8892... Generator Loss: 1.4629\n", + "Epoch 2/2... Discriminator Loss: 1.5488... Generator Loss: 2.5772\n", + "Epoch 2/2... Discriminator Loss: 0.9225... Generator Loss: 1.1753\n", + "Epoch 2/2... Discriminator Loss: 1.0175... Generator Loss: 1.2177\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeYFFXWxn+3p6cnAAMMg2QQRUBBkgiiZBAQQUUwJ/hQ\ndF1dc9o1oatrwIAYEHNWDKCLAVEEFREBBUkKuIhKBonDhJ7p+/1RnDPVMLnDzGC9zzMPQ0911a1b\nt8498T3GWosHDx48CHwVPQAPHjxULnhCwYMHD2HwhIIHDx7C4AkFDx48hMETCh48eAiDJxQ8ePAQ\nhpgJBWPMIGPMz8aY1caYm2N1HQ8ePEQXJhZ5CsaYBGAlcCLwBzAfOMdauzzqF/PgwUNUEStNoQuw\n2lr7P2ttLvAmcGqMruXBg4cowh+j8zYCfnf9/w+ga1EHG2Oipq4YYxDtJxAIkJ+fD0BycjJZWVkA\npKSkAJCTk6PH5ufnk5CQAEAoFKKyZnr6fD5CoRAQfq+VBcYY/b2yja0wuMcLBWOWz621Yb9XcWy1\n1tYt6aBYCYUSYYwZA4yJ0rn0wQUCAfLy8gBo2LAhu3fvBqBVq1YsWbIEgKOOOgqAX375RYXG7t27\nqVGjBgBZWVnk5uYC6AsYbbjH7F5shS0898JNTU0lOzsbcASE3Kt8LxoL1+fzhb0cJc2BjM/n85GY\nmAg48yZzW9j3o/WCFfXC7v+5z+fD5/PpZzKmpKQk/U4oFNL5dG8Q8r1gMBiVMVcg1pbmoFj5FLoB\nd1prB+77/y0A1tr/FHF8VAchD9QYow997969pKamAuGLNCcnB4DExESqVasGOAto586dQHQWgixQ\n985emnmX++jTpw/dunUDoHr16qxYsQKA119/XY8RLSga8Pv9tGrVCoCNGzeyfft2oGgBmZycDIQL\nZL/fz969ewGoV6+ejq99+/YAzJo1S79f3jVojNH7t9aqECor5KUPhUK6XuQ+6taty5YtW/Qasdok\nikL16tUBZx3KWi0K7vsoAguttZ1LumashIIfx9HYD1iH42g811q7rIjjK4VelpGRATgPYu1aR6hW\npMp42WWXATBhwgQ2btwIwNKlSxkyZAhAuV+CktCiRQu9/9IIxUAgADgvkryk7rHVqFGDc845B4DP\nPvsMcLS0aGk1EDuNriKRkpLCHXfcAcCcOXP473//W+Sxxhjq168PwPbt21WA7DfHpRIKMTEfrLV5\nxpgrgOlAAvB8UQLBgwcPlQsx0RTKPIhKoimIpO3Rowdvv/12hY4lJSWF559/HoAVK1bw73//G6j4\nHXF/Wz01NVU/c5sw7nEmJiaqWi7+EFHPPRwImc/DDz9cNaHff/+9RBPxuuuuA+Cdd97hjz/+AA7Q\nJitOU6iq6NOnDwC1atWKicc5ISEhLHJQ2Asu1x00aBB/+9vfANixY0fUxhApZHxiJtSuXVvH5/f7\n1UHrRjAYPBicdHGB2++0evXqMn33jDPOAKBbt26MHDkSgD179pR5DF6aswcPHsLgaQr70KRJE3Xs\n3XfffVHVFGRXbdu2re7+HTt2JD09HYB7772X119/XY8BePDBB9VTX1lgjKFOnToADBgwAICHH35Y\nnZLTp0/nkUceARztRuYwVg7RgwmHHnoo4Dz/adOmlfn7CQkJNGzYEIBHHnmkXBqCwBMK+9CwYUP1\n8GdkZETVdpeXYsmSJVxzzTUA3HTTTfz666+AE54bPHgwAJMnTwYcm1yESWVBnTp1+Ne//gXA6NGj\nAahWrRp16zr5MJ06dVK/zE033aShTA/Fo169ejzzzDMAqvaXFc2bN2fu3LkAvPXWWxGNxzMfPHjw\nEIYqpymccMIJbNu2DYCffvop4vNJ4k23bt045JBDAHj11VcjPm9hCIVC6kG+88479XNjDO+++y5Q\nYGr4fD5Vxe+55x7+97//xWRMpYF4wMePH6/OWIkmBIPBsIw/SbbZuXPnwZAWHFOIeXXFFVfwww8/\nALBu3boynUMySMeOHcvll18elXFVGqFQkg3v9ztD7dmzJ+vXrwfQf3ft2lXu68rDaNCgAUcccUSx\nY4g25MV66aWX6NixIxAeyjvvvPMAR6XMzMwEoF27dmp2xAvHH388AMOHD1eT4B//+AcATz/9tPoZ\n7rjjDj799FMgen4EETiFZYW6r+Hz+fQYd+2KfP+oo47S9XL88cfr3E+dOrXCfB4iQAFefvnlMn8/\nPT1dk5vuuusu3SwjhWc+ePDgIQyVTlMQ7L9bi6f+2muvVa2hRYsWALzwwgv8/rtTlJmcnKxVkO74\nfmHx89TUVFq2bAk4atvWrVujcStFwu04bNCgAfPmzdPf5X4vvvhiAL788kuGDRsGOLuA7Co//fQT\nxx13HACLFi2K6XjBmU+JjBhjGDp0KAALFizQY2TennjiCX1O0UBqaqom5EhkqG7duupZD4VCWs+S\nmJgYVgchcK8ryZXYs2ePnqNz586MHTsWKEisihfatGkDONpfWUxW0X4WLVrEypUrAfj555+jNi5P\nU/DgwUMYKo2mAMWX6UqxUu3atfUzkfx5eXn06tULgO7du9OvXz8Axo0bxzHHHAPA3XfffUBW3YwZ\nM3Qneeedd6LuS5Bzi/1qrSUtLQ2AuXPn0qBBA/28b9++AMyePVu//9BDD+m/F154IeBoRdOnTwec\nMGqs7eF7771Xw4yzZs0K0xD2x+rVq6lXrx4QzvtQVsi81a5dm7///e8AGvY0xmiJu/veV69ezapV\nqwAnRfzoo48G4NtvvwUcLebrr78GnDCqZAuOGjWKp556CnBSiePpHJV5HThwIHfddVeJx4uG/NVX\nXwGOhnb66adHf2DW2gr/Aey++ocif2bPnm1nz55t8/Pz7cKFC+3ChQutMcYaY6zf77eJiYk2MTHR\n1q9f31avXt1Wr17dtm3b1n7yySf2k08+sXXq1NHjR40aZUeNGmWDwaANhUI2FArZnj17Fnv98vwk\nJCTYhIQEm5GRYTMyMmxaWpp95JFH7COPPGKzs7Ntfn6+zc/Pt126dCn1Offu3Wuzs7Ntdna2TU5O\njvqY5cfn81mfz2d37txp3333Xfvuu+/ahg0bFntsixYt7Pz58+38+fPt5MmT7UknnWRPOukk6/P5\nyj1/Q4YMsUOGDLE7d+60O3futBs3brTLly+3y5cvt/3797epqak2NTW1zPe2efNmu3nzZrty5Uob\nCARsIBCI2VwW9bN79267e/dum5uba6+//np7/fXXF3lsrVq17NatW+3WrVttVlaWzcrKsvfcc09Z\nr7mgNO+jZz548OAhDJXGfChObTPGcOyxxwJOGLJ79+5h33FX3ElWIjjVhRLrr1mzpqpaN910ExDu\nWBI1M5oQdU/Cd/3796dJkyYAbN68mV9++QWA7777rtTndNODxbJiUtip8vLyuPLKK4GCELAbffr0\nUTMnKSmJpk2b6u/33nsv4Dhxly1zKufLYu7k5+fz0UcfAah5+Ouvv+pz37VrV7nU/bFjx6oJsnjx\n4kKd0LGEPD8Jpft8PuWZcCMhIUHJaI477jj93sMPPwzA7bffHpPxVRqhUBzf4M03FzDEX3/99SUy\n0AhCoRAbNmwA4JZbbmH48OEA/PnnnwB8+OGHvP/++0DxQqm8EJ+BeND9fj9r1qwB4KqrrlIBVhqu\nRSEySUpK0sUUy/Lj//zHIckKBoNs3rxZPxfP9/LlDjF3kyZN9Hns3LmT++67D3DmXnIrVq9eXW7f\nhwi+xYsXA5E9J0n0ufbaa1UQnHnmmeU+X6SQhLRDDz2Uiy66CHCE7LXXXgs4PiN39OS9994D4NZb\nbwVityl45oMHDx7CUGk0hcJ2ANmVRo4cGcb9V1oJaYxRtbNXr15aMPLggw8CsGHDBq0sa9mypXqD\n582bV2yVWWkZixs1agQU7PLBYFDV4VatWtG5s8N30aNHD01vldyEt956S73l2dnZWpW4adMmrZ6M\npfkgORBdunTRvI/s7GyNnhx22GGA8zwkH6Rt27bKy5iQkKCcl/JZeRBNurXevXsDTnRCoiiRZMOW\nF7JmhGuzQ4cOmoeRm5sblukoGk3fvn2VeFhyQVJTU1VLO+WUU6hVqxYAjz/+uK7f8mhWlUYoFAax\nydPS0vTF2rt3b6E8gG7I39955x1OOukkALZs2aJ2m9i3J5xwAhMmTNDviZ3Zvn37EoWCWzAUNQ55\n6WVB7969m8MPPxxwFvvZZ58NOA9eQnmi4p533nkaQl21apWW1n7zzTdRS2ctDpJKnZaWpkJhz549\nSmgrNRw1atRQVigxF8AxbSIp3wVKVSVaWHq8O+VZno0xRm3w/Px8xoxxiMQrgslKBJ2sD0AT2c4/\n/3ydz2AwGLaBickmG1leXp6aoFlZWeq72rNnT0Rmlmc+ePDgIQyVWlMQKR4MBrUQ54cfftCdS1Sr\nYDConx199NFKUlGnTh3drb7++mtlFF64cCHgSGUxGYLBIDNmzABKrlRzcx24m8i4NQZjDCNGjAAK\ndrxatWrRtavTE+fuu+9W6vALL7xQdw/390U7at26tX5+6KGH6rGxTFw666yzdByisVlr1YyTQrIe\nPXqoQ3V/RLoLl3R/Pp9P+R2uuuqqMGp/iYhMnDgRcHbV3377DYAjjjhCnacVUck5cOBAAE2w2rp1\nqzrTN2/ezLPPPgs4a+S1114DnHvdf56zs7NVq3j11VejRvNfqYWCLMCXXnqJnj17Ao4nXyazXbt2\ngDNh7p4Nojru2bOHSy+9FIBPP/1Us+JEELjLe9evX68EF6Xx6suCLypzLzk5mSOPPFKPAWexSq76\njz/+qCr6wIEDadasGVDwIrgbvcydO5cePXoA0LhxYzU1NmzYEJNF3bBhw7AQsERw3BDPedeuXXVs\nAwYM0PsD1NSIFdmKtVbDc6FQSO3rwYMHq9ASZGdnK5lpIBAIa3ZT2O+xxIsvvggUrIvdu3dr1mvd\nunWVaKdOnTq68a1evZpHH30UQGs1pNFRtOGZDx48eAhDpdYUBLfffrvWMLz33nuqRrmTeNwq/Acf\nfADAiBEjwiS/eMFFwm7btk35Be+7774yOcZK6vSUm5uru6l4hYPBoHZe+vjjj5XU5cgjjzzAMbZz\n507tCvXnn39qclXjxo01pv3xxx+zdOlSILo5C88++6yeb8iQIYXeoyRcDR06VB1mH374YZjmdckl\nlwBOPYc4TaO5E1tr1bl5zz336Ofjxo07oOo2JSVFK2KttRox2X884mx2a4LR3pHd7evAqfGoWbMm\n4JiSojUYY9QkGDBggJqbsUa5NQVjTBNjzBfGmOXGmGXGmKv2fZ5ujJlhjFm179/aJZ3LgwcPlQeR\naAp5wHXW2u+NMTWAhcaYGcBI4HNr7X3GmJuBm4GbSjpZcfFoa63uiF999ZVWiUmI8dBDD9WdtKjd\nvl69espuJKnPK1eu1F18/vz5pbjl0iM/P19tbWnzNmHCBPVnCK0Z4C4M0x1s4sSJagPXrl1bY9QN\nGjSgU6dOALz99ttR1RBkd+3evTsff/wxUBBLl78LC9Mpp5wCOBqK7GzuxrQ33XSTPp+KcObtf82k\npCTVaIwxhWbFWmtjZqe7IdWcXbp00bGJD2fx4sXqD1myZIk6IEubxRsNlFsoWGs3ABv2/b7bGLMC\npwX9qUDvfYe9BMyilEKhOG+z1CkIRZkbxfUllESQ2bNna6xfHGfff/+9OsPWrl0b9bRheZCSnpqS\nkqKe5YSEhLA4vFxbSsOvueYaTjvtNAAmTZqkAiIzM1PPF21aNsmRMMYoaQ0UCOzrr79eS3wlIpGV\nlaWmweLFi7UhSbwp40pCz549dcOpSL5LcMq1wXE2g7MuxMn9yy+/aOr9vHnz4l6XAVHyKRhjDgU6\nAvOAevsEBsBGoF4R34laK3oPHjxEEVHgQqgOLARO3/f/Hfv9fXtp+BQSEhLKXZdev359rYlPSEhQ\nboXWrVvbCRMm2AkTJthgMGjz8vJsXl6e/fbbb+23335rU1NTbXp6uk1PT497Lb3f77cXXnihvfDC\nC+369eu1Rj4YDNpgMGizs7O13n7ixIm2Xbt2tl27dvbUU08tF4dAaX6EF2HLli32119/tb/++qtt\n27at3bBhg92wYYPNz89X/onMzEybmZlpn3rqKdusWTPbrFmzuM9haX6EQ2P+/PnKQ5GTkxOzOSzN\nj/BsCNdHTk6O3b59u92+fbt95ZVXbKdOnWynTp2s3++P9rVLxacQUYNZY0wiMA2Ybq19eN9nPwO9\nrbUbjDENgFnW2lYlnMdGEiP2+XxqJmRkZKgq/txzz6kNnJycrPFyKQt2e3Mrwu4VuO9dKOcTEhLC\n8i1i0duysHEATJkyResratasqWMKBAJaSyI+nMre/UlMtB9++EHzRvbs2aN1KZHUZUQL1atX1zUb\nY57IUjWYjST6YIDngBUiEPbhA+Cifb9fBLxf3mt48OChAhCB2dAdRyX5EVi072cwUAf4HFgFfAak\nl8Z8iPRHTIb+/fsrXVt2draqu5s2bbJNmjSxTZo0UZUyGtc9WH9q1qxpa9asaevVq6dmRUWPqTw/\njRs3to0bN7aZmZk2NzfX5ubm2m3bttmGDRsWSS93EP+UynyI2KcQjZ9o3LC86D/99JP6DkKhkC6E\nkSNHVvQD8X4q4CctLc2mpaXZr776SjkOd+7cadu3b2/bt2//V9scPI5GDx48lB1VIs25NBAHXI8e\nPTQRqW7dulpF9tJLL1XY2DxUHCRNOCsrSwliMjMzNZEtHk2AqhoOGqEg2LJliyYppaenqze3IqML\nHioO0kFq0aJFmmH63XffsWnTJsDJJpRErFhyXlYleOaDBw8ewhBRnkLUBuE4e0oFn8+nabclSXZ3\nrD8UClUI9ZaHioU8/8MPP1yp8L744gtNzS6uK9lBiNjmKXjw4OHgRJXTFApDYmKiZta5wpz4/X79\n3Vp7wI7grrk3xmj2WygUimqmXmnZn8tz3ng+v/05CiD8ftxzaK3V3909PKMxXvc4hIYvJydHK15z\nc3OVyk6K0pKTk9XpGAgE9PeaNWvqOdatWxemQURrzPuvM4FwKASDQf08NzdXNeGEhAStQA0Gg1qw\nJr1Sg8GgZuU2adJEK1t37dpVlPZTKk2hSjoaZdJkkoLBYJEl18XBGKPnql69ulakGWPCmIkjhYyj\nsJeqPHCnPMcq/bmw87pf9MKEppsKLxAIKBX57t27tRo1GuN1z6c8s7S0NDUn09LSlINRaO5+//13\ndSiGQiHlvezevTsnnHACABdffLGOT86VlJRUbu7DouZw/88PP/xwLdkOBAJ67UaNGimZTXp6ugoA\nmct169YxdOhQwKmklXFGag555oMHDx7CUCXNh0gbhMSjuCiaiLeZEC24d+bK6sxLT09XEyM3NzfM\n1Ik12rZtCzg8FdLfdNu2bWGmcJRx8JoP5Vlgfr//gHh0VYlL161bV6s9p06dWsGjKT2qwvxKX9F4\nQtbhhRdeCISzS0PFb1qe+eDBg4cwVElNoSS4HXrCBXDllVeqg+bDDz8EUIqzygrxoL/yyit6H598\n8kmsa+4PKlT0rrs/MjIyGDduHFAQlZk0aZKaMC1atNAU7P79+/PPf/4TcHpnxIuarUoKBfEpXHnl\nlYDT/UmIL40x3HLLLYDzACRCYa1VQo2MjAwAHnjgAVVxK3rRyOKVDlLDhw9XIeb3+1XNbdu2rRJ7\nVkaCE/dLWFLPz1iOQQhyZV1Ya5WE1v2CxYOo1RjDueeeCzgCQIS9dCpr3LixtjD4+9//HtYYRkwM\nn8/H6aefDqAcjm4U1ZSoPPDMBw8ePIShSkYfJNnkgQceAKBNmzYadxYtQCCMuTk5OcriK1WU27Zt\n49133wViToNVLFJTU3UnefzxxwEnrn7ccccBzjhF46lVqxZ16tQBnB2vInsi7o9q1app5+Nly5Zp\nU55Ywe/3c8MNNwBOboL0jfzb3/6mu6poDElJSaph+nw+Zas+99xzmTt3LhC7OaxRo4aaqjVq1NB8\ngltvvRUIp79LT09XZ/KUKVO0IZDf79du40L3f/LJJ6vZUcqxlyr6UCWFwv5ISUmhb9++gDNh8qLk\n5OSETZZ4fe+77z7AESCPPfYY4NC9xxvSUrx58+ZMmTIFKOCNHDBgQKGNbm+55RatAl23bh133303\nELsFXVRmn2QPduvWjfXr1wNOn09p4jtr1ixOPPHEmIxJ0LZtW+69917AEaZt2rQBnJdNWrTLBtKo\nUSN9/kBY2E8yBL/++uuYjPOyyy5jwoQJgBM5a968OVDQ46M4nkgRZE8++SQXXHABgCbWXXrppbpu\nSgmv9sGDBw9lR5V0NO6PnJwcjSgUB3HESNfq7du3a+XckiVLdPeIR6JN7dq1efrppwFo2rSp/n77\n7bcDB+784pwaM2aMjjPW6jk4HbGlo9Fhhx2mHYtE3Z09ezbffPMNACeddJJ+74knnojZmER7Oeqo\no/T3M888UztxBQIBfa5iFubk5HD22WcDcNppp9G9e3fAmXsx3aKtKcjYHnjgAf199erVSupSmmiC\nrMVrrrlGU5qFLOaCCy5QUyOamqKnKXjw4CEMB4WmUNqd/YgjjgDQbs8ffvgh06ZNA4hbeqs4DB97\n7DH69+8PwDfffKPt2AqT+D6fjzfffBNwHGey0zz55JNl2iHKEiIUTeCJJ57Q7y1ZskR9CbLT/vTT\nT7oLLliwgLfffls/jxXEF3PdddfpM01NTdU+ouvXr9ew3po1awA4//zz1UczdepUxo4dCzhhbdGE\nqlWrVqZCOLlvN2eHG40bNwYczUX+lpycXK4QbSgUUv/Jgw8+CDj+HHke0tMkGjgohEJpYIzhzjvv\nBNBGIDNnzix3BVx5IUJh0KBB+kKPGDGiUKEkL+OyZcs47LDDAKdCrkOHDgDqjS4O7oVb0mIUp9bA\ngQP1pdm1axfVqlUDHOG1f+INFAiy+fPn6/2dffbZOt/RhDsHoW7duppn8PPPPzN69GjASUoT1byw\nlHZrLTNnzgTg6quvDov/l6fPZFHVr5Jbkp+fr/OyY8eOMgkFd/m5VHzKZ/Xq1ePqq68G4I477ijz\nuItCxOaDMSbBGPODMWbavv83N8bMM8asNsa8ZYwJRD5MDx48xAvR0BSuAlYAafv+fz/wiLX2TWPM\nRGA08FQUrhMRmjdvTsuWLYGCsN+yZcviPo4RI0YAjqoqqm1hqp8xhk8++QRwCDQkxDZ48OBSaQgC\nN8lMSRg2bBjgOMYefthp+vXhhx9qjL2kAqcRI0YoUaoQfkQb1lrNPfm///s/HVtxncf3R3JysoYv\nU1JS1BlZXgdzUTu/aKTJyck6d7Nnzy71eQcOHKhr5I8//tDxyfUSExM1FH///fdHrQVeRELBGNMY\nOBm4B7h2Xyu5vsC5+w55CbiTSiAUDjnkECZPngwUJD3FO0fDGKNx/Pz8fN55551CjwFYunQpLVq0\nABz/g+Qj7Nq1KyZj8/l8mghUo0YNXn31VaCA0KM4iF179tlnq9ouizkWENNl1qxZ5T7HVVddBTiC\n7rbbbgPQhKbSoqT188wzz+jvkjsjkZri4GaQEiGbkpKififZIB566CGNsjRo0IBffvmlTOMvCpGa\nD48CNwIiYuvgdJ2WLeUPoFFhXzTGjDHGLDDGLIhwDB48eIgiyq0pGGOGAJuttQuNMb3L+n1r7SRg\n0r5zRbRl+3w+atSoAThOGFHH3ZJ83bp1qhJXVBZnQkKCUn8lJiYyY8aMA44Ryd+8eXOWL18OwI03\n3hjzMScnJ2sl5lVXXVUqDQGce5Ici6OPPlrNBsnWk2PEWSnZmD/++GOF9VsIBAIaqZg2bRqLFi0C\nolu4lZKSQpcuXQBH+5PrNW/eXDukS4pyfn6+mgZ+v18dqXPmzAkr2JM1IFm4t912m/I8vvzyywwc\nOBBAr1VeRGI+nACcYowZDCTj+BTGA7WMMf592kJj4MBc3SijXbt2LFjgKBz5+fnUrVsXcFRtUcc3\nbNhQ4aQf1lpdCKmpqfz888/6NxmnVH5u3rxZF1U0BILP59MXMyUlRf0qcu5AIKBCYX+7VzzngUBA\n7WRRYYcOHcqgQYMAxyYXGz8lJUVfsho1ami14rPPPgtAz549C03jjgfS09M544wzAMe/VFzdS0JC\nQrmERbVq1cJ8FBI96tOnjybayRxOmTJF6zamTp2q66Ko5y7nHTVqlJqVxx57rG4ibdq0iaj6s9zm\ng7X2FmttY2vtocDZwExr7XnAF8CIfYddhNeK3oOHKoVY5CncBLxpjPk38APwXFm+XB5SjIceekh3\n4AcffFCLYPx+v/Lg/e9//6twUpXU1FQ1czZt2hQmzUWV/vbbbwFHNYxGQpXMp8/no3NnpxbmlFNO\n4cYbbwQKdp1BgwZRu3ZtwInXS4HYsGHDtCoT0OInyWPo1KmTjnPatGlawVe3bt2wPo6SICRe/0hV\n3PJANK/TTjtNHX4bNmwodM2JWh4Jq7fkE0DBPE+cOFF5HeQaAwcOLFeVblJSkp7D7/drUtcDDzzA\n3/72t3KPOypCwVo7C5i17/f/AV2icV4PHjzEH5Uqo9Hn82mxUl5eXpF5BCLZRTK2b9+e1157DXB2\nPNkFk5OTdRf7/vvvlfw03o5GyRTs1auXOkHfe+89zUKbPn26Zr9JmDJaaddyr3l5eRrC69Chg9r4\nkpYszi1wdnlhAtqfSVpCZJJGvHfvXt31u3TpwltvvQU4GoTYzE2bNtXdsaKcvIsXL9a15R7Hpk2b\nlMnoiSeeUE1Idu7y+qHq1asX9n8pcZ4zZ45+5nbGlgczZ87kq6++AuCcc87Re6pfv74W0JWHwq1S\nCQVrrXpQ969YE2fXscceq44aUcXd3YHatGmjDjNrraroe/fupVOnTgDqyCmNChsJvboIg1NPPRVw\nzBzBRRddpA/u6quvVgEh6ncsMXv2bJ56ykkdadCgARDu3c7Ly1NzJj8/XxuS/Pnnn3qM1G20a9dO\nm75kZ2frczr66KOVROTpp59W8yHaNSYyx02bNlWH4ObNm1WtFkKdJk2ahH1PNpb69etz8cUXA47Q\nlg1FHNfhDcLlAAAgAElEQVRZWVlFPn+5dmEJYpmZmWE1ESJ8mzRpUmh0rDyoUaOGpj6709jXrFkT\nUSTFq5L04MFDGCqdpiDZhgMHDmTUqFGAQzt15JFHAk6cV1RXN6/APffcAziVg6tXrwac3ASR1l26\ndOFf//oXgDrcjjjiCHVQQsHuMW7cOM0e2717d7klupgrUt22detW3bESExNVtRsxYoRSgsWSfVjO\nuWzZMo11y/WmTJmiKrM7DOcu5unWrZtqBW6HoTjjrrzyStUEZs6cqXX/Z599tsbmH330UYCweS8L\njDG6FtycDTNnztQciSFDhii7kWiQa9asURLUBQsWqFN16NChXHbZZYCTSixOajFH16xZo9mPZXE6\n/vbbb3qv55xzjmqvK1asiLyt2z4NZciQIfouuPHYY49FpClUWjq2QCCgOf7umG9+fr4Kjv/85z+A\nYzeJ7VeUun/rrbceULXXpk0bVq5cCTgTLXavz+fTF1rSU8sD8XmIuhgIBFRVvfXWW7niiisAeOON\nN7TMVoTGggULyv3ixAru3puCUChUpAATP8X8+fPVTFm8eDHg1HBs2rSpXOP46KOPAIeyTuZ29OjR\n/PbbbwB07NhR8xBEcEyfPr1I/4C7Xb2YVX369AEcQSACZv/GMSUlX4ngnD17Nvfffz8AL774opa+\nl/fdk3U1b948jXDUqVNHNz2pZC0EHh2bBw8eyo5KZT64EQwGtUpw2LBhukPl5OTwwgsvAGgcfP+u\nvoVh1apVYamk4EhwyQirVq2aOvvefffdqDTeEE+2ICsri5dffhlwGIfPO+88wHGennbaaUBBH4LX\nX39dNaHKAmttmdRS0QTmz58fli8CjoYhKnVZY/SS9fniiy8qi/f48eNVU6hfv77upkJZV1wUQdbM\nli1b1EEpTujRo0cXSWBS3FwYY5RZfM2aNbzxxhv6uWgeZeVuENPmrLPOApwiPzFpzjvvvEIL7MqD\nSms+QIHt9P7779O7d2/9TNQ4SdD44YcfdIG1bdtWE2/+/PNPLSdNSUlR+nSZ1KSkJFXlzjnnHL74\n4ouo31tR9/TRRx/Ro0cPIDx0KoLk6aefVpWzsqC8kZhAIKBpviJs169fr/dcVvtX1P309HRtjCPm\niUA2AAnZnXjiiSWOPS0tTYWzMEdJ5KUwFBd9SEhI0HT7rKws3YhmzZqlyWAixCZOnKjRtqysLDVZ\nExIS1CfSokULrVyVsHD16tW1dFqS3kqAZz548OCh7KjUmkJh6N69u6rVRx11FOCYGqIpzJ8/X9vG\n/fjjj6o2hkIh3WFatWoFwAsvvKCOxv/7v/+La3uz1NRU3nvvPcBJdJGdQticd+3aVWnawkUjIiLn\nEIfq+vXrI74/YwwXXXQR4NCRCfdmUlKSXk9yUvr378+GDRuAou/D5/Pp7i/fz8vLK/L4ssyLRHBu\nueWWAxi7ExIS9Pe9e/eqBuX3+9Vk2Lt3r0YapJCsW7duZXWEH/zNYCRxo169eqouLlq0qMKrIUuL\nohqtHGzw+XzqJZeXI1osQRJaPOKII7QK9Pzzz1ceS7GzP//8c82QLS606O4iBc5mEk3Kf5/Pp81n\nJLQ6duxY3dQSEhLU1HAnlM2bN0/N4muvvRYoVyKYZz548OCh7KjSmoKHqgP3zhstJCQkaDLVjh07\nCk3TluumpKQolV1lWPNQkFgFBd2xe/TowciRIwEnp0PqVSZNmhSNDtmepuDBg4eyw9MUPFRZ+Hw+\nDfuVNzvyL4ZSaQqVNnnJg4eSEAqFIkpD91A4PPPBgwcPYfCEgoeIUFTLNA9VF1XafCgszu/+zJ3E\n4vP5NDbu9oS7E1CE9CQYDJaps1JJcKfDuscniSnWWm2UKrZxMBjU8WZkZKjXfufOnfq53+/X8Uki\nUDS8++5kmqSkJB2/3+/XNGV3Uo38PRgMaol0bm6uzufOnTsLncfCnlk0EqQqg5+sKCQkJOgzKqox\nrRvuXqDRXJPFwdMUPHjwEIYqqSlIdpxksLnjt24pmpOTU6h6606v3f/4WCIlJSUs21Ji6U2aNNGW\nZVIxGAwG9T6TkpL089zc3LA+DMIFKBV3Pp+v3NqCzFXNmjWVkOT7779XZ95vv/2mzWqEXi0/P181\nherVq2uxT15enmbcJScna46AfH/JkiVRbQbj9/sLPU9R2kNh60LmFQrvqh0NuFOXC2u4s3/RWWkq\ngAXRygWpkiFJ6bEoavT+JcqVGdFUB6tXr64LTAhpIlkQsqjOOussZTEqSvUvDMYYJRZJS0tT4bti\nxQoV4HL/lfWZ7Z+OXadOHR1rNN6V+vXrK6FtBSD2yUvGmFrGmHeMMT8ZY1YYY7oZY9KNMTOMMav2\n/Vs7kmt48OAhvohIUzDGvAR8Za191hgTAFKBfwJ/WmvvM8bcDNS21t5UwnnKNIiq4FCKJeT+U1NT\nVQUvbe/H4iCOweTkZCUZKavmIbX+bvXbrdZXlWcmGkNqamo00osrC2JbJWmMqQksAg6zrpMYY34G\neltrNxhjGgCzrLWtSjhX1VgplQSxrq50czG6iVvdjVBLGltVefn/Yoi5+dAc2AK8YIz5wRjzrDGm\nGlDPWrth3zEbgXqFfdlrRe/BQ+VEJJpCZ+Bb4ARr7TxjzHhgF3CltbaW67jt1tpi/QrR0BRkhwoE\nApWOBbkoyG582GGHaRMcqfX/+uuv6dq1K+DQl0s1YIsWLbQPonSOjjZOPvlk7SSdmpqqVGobNmxQ\ndmQZg7VWnZ1169ZVp1xl57QQ+vlDDz2UpUuXAuH8BfGGmF0nnngiZ555JuC0l5cqySit6ZhrCn8A\nf1hr5+37/ztAJ2DTPrOBff96yekePFQhlDtPwVq70RjzuzGmlbX2Z6AfsHzfz0XAfcS4Fb1oBx07\ndlTiSmMM119/PeA0xagMtq048Nw9Eo499lhl0Dn11FPVsVVYyDIvL081iOTkZKXzevjhh6PKTyDM\nyI899pjmG8yaNUu7NYdCIaXAk54VXbt2Vfq7HTt2qMbzyy+/RG1c0YKwNN18880MHToUcHJATj/9\ndKCgJ0W8YYzRPpf9+vVj+PDhgNNERzJcjznmGKWTizUiTV66EnhtX+Thf8AoHO1jsjFmNLAWODPC\naxQJUb9fffVV9cID2nBlzpw5SsEldPAVAUkNTkxM1K5XN998s6rgt99+u6rrsjh27Nihi2D69Omc\ne+65gJPoJIlMtWvXVmbrSIWfz+fTJKXjjz9e8wquueYaNVNGjRql1xPK9rvuuksF2erVq5VduLII\nBVHLL7zwQmXHdidWZWVlaSJWvCHrt1GjRso7evTRR6tj1xijvJOnnXYazzzzDBB70ywioWCtXQQU\nZqP0i+S8Hjx4qDhUyYxGgbDb/vnnn2HFNyeffDLgEFxKC/CdO3cyb948Pb44+P1+VTWzsrJK1Z26\nOIjkf/jhh7n00ksBp53ZDTfcABTd96CwgqFjjjlGd7bdu3dHnVRUxist31q2bKmOuN27d6vDc/To\n0YCj0dx0k5OG8u9//5vnnnsOqFjNzBij7eU7duwIOPckqeT169fXpi/Dhw9nxowZ5bpOcX0fioPM\nrTz/AQMGcOihhwKO81ho2kKhkDpE58yZo1pYBO9s1WJzLk+jEbGBFy1apC/8WWedpWpw06ZNGTBg\nAOCoxNIncPny5YCzyOWFbd68ub6wgwcPVq/v5MmTI24SI4vg999/V4HUsGHDSkPhXhgKyzcwxtCy\nZUugwD5fsWKFCucdO3ZEpbNWpHjppZfUg//Pf/4TcISwqN3PPvss7du3BxyfSHnVcfEDSfQlOzu7\nxHP16dOHF198EUA7SLkreCdNmqTNbU899VTtD/n555+rryGCOfY4Gj148FB2VJoqyfJoCu6W9OI4\n2rJli6rUv/76K5MmTQIcCSzHC3fBoEGDOOWUUwCn4lJUykAgoJ5o4dqXMULZ1TdJQV6xYoXusE2a\nNOHXX38t03niif01BHDyKcQh+scffwCOlhaNFGs3yjvPosWcd955fPbZZwA88sgjBxzXtGlTbTcX\nibYmWqZEZJYvX16kqSmO2zfeeENNMDE//vzzTzUNli1bRo0aNQCnZ6Zc45tvvilRCxGNJVLTrdII\nhbIsAIk0iLqfnJxcKi+8+B0+//xzwKmAk4meNWuWJuksXbpUbeNolNDKQ+ratatGFFauXKnnu+ii\ni/jwww8BCs2z9/l8Yf6FaPoRSkJycrJ2Ybr77ru1BHr+/PkATJs2LerXLM88JyQkaDQnMzOTU089\n9YBjxIzr27cvd955Z7mvJRA1XjYQMSf2h8/nU79FRkaGXlPWRefOnbWvJKD9LA855BA9dsmSJSWy\nXEXLj+OZDx48eAhDldQUBOJZDoVCqjoWJU0bNWqkXntp0ZWfn6/S/sgjj2TNmjWAE48vR0uuEpGV\nlaXRENl9wWmpLh20ZefdsWOH7jy5ublxo+ISyPjGjRunJo/P5wtrYAKOw7EC+QEU4lAGhwymsOf3\n/PPPA84cTp48OeJryrMQFb8o0yEjI0O1VDEZAL788ksdrxti0roRDAbjxodZaYRCWSAqv3iYly9f\nrow+7du3V3XOGMMll1wCwOOPP66TKnbkiy++yKeffgo4tpy0H4+lei7JS61ateK4444DnEX19NNP\nAwU57mvWrNGxScgvXvD7/YwfPx6AGjVqhHEJyqIWxqdPPvmEu+++G4ApU6bE1bRxY/v27eozaty4\nsUaaJNsyNzdXN45gMBiVhCU3A1ZJY3ObtyJMpk6desCxNWvW1KxQN9y+sljDMx88ePAQhiqpKQgk\nGaVWrVoa2z3ttNMYPHgw4OSR9+zZE3C0BtEwJN778ccfV1g1X69evZg+fTrgOMZk523Xrh3gRCeE\nEs3n88U1pyEvL0/j+AMGDKBBgwaAoxVIIpPsysuXL+fNN98EYNeuXTz22GOAk/4czxyYefPmqVb4\nzDPPcP755wPOLg2OA7dx48aAE5WKxnyKibJjx44SjzvvvPMAJwIl9QxSUZqenq4RjP/85z9q3kKB\nVus2IWMNT1Pw4MFDGCpNRmOk5xC77oILLuDyyy8HnLi1OxVadorKUOvvDjNaazXM2rmzk3B2zDHH\nqM9h06ZNTJw4EXB2ucowfoHf71f7vGnTpmr3vvTSS7pzx2uNyRoYPny4Oh4l3fmf//ynEv527txZ\n2a/jDZ/PpzkLMlf/+Mc/tNN0w4YNNd/A5/OpI7xOnTpaKRsBqlaac7TOFQgE1JQYNGgQM2fOBGDE\niBExiSiUFZLaumfPHn3ghTmQfD6fOvtOOeUUVqxYATjOUVnoZY1Lu8uzoylY5LzTpk3TlzEvL4+m\nTZsC8W/+6vP51Bzr3bs34ORYyLq48847K0VJvThwmzdvzieffAI4Dly3UBDHc61ataKxfr00Zw8e\nPJQdB52mkJGRoQVP+fn5qo6vX7++wneHk046SfkSHnnkkRIlvzhJr7vuOt35gsGgEoSU5ODaH1Jx\nt2fPnpiEtzIyMrjjjjsAuOSSSzRu379/fw0Tx+sZNGvWDIAJEyYATmq7hIO/++67CgudFgafz0ef\nPn0Ap5JWCv2MMbpG3H00IsBfsxV9//79Vf2aO3euqq4VIRBEPRTmossvv5yHHnoIKJ1fY86cOYCj\nOj777LOA4xuRVOOywv09GZv4MiJRTcWW3759u+YFHH744UrE8vLLL2ukRar+Yl1N2bx5cwA1uxo3\nbqz1GpVJIIAzHklkGj58uKbhN2rUSMcazzF75oMHDx7CcNBpCtdff716lidMmFChnnrRWK655hrA\nSWeVopzSaC6i7o8fP16jKB988EFUdg25vnjCU1NTlXatKK3BGKNZfGIGjRgxgnXr1gEO94Tc8733\n3qsUY0cddZRGIsSMePXVVyO+h6KQmpqqeQpSwRkKhWLGfh0NyDrdvHmzUshBgYYQT033oBMKNWrU\n0EpDKZ+tKAhxxldffQXAsGHDlGevJKSkpCinYPXq1TUlduzYsVEdo/A9Pvroo5osNWXKlDD1XgRH\njx49GDFiBFCQ5tyrVy/1HfTr10/Nhz/++EMrA2fMmKGL++23347q+AtD8+bNOemkk4CCHpt33313\npab+d7/0UkuSlpampllRDXRjAc988ODBQxgOmuiDqNd79uxRuvfevXtXCsozqTKcP3++7lbdunXT\n3bh+/fp069YNKHAGjh07Vjs4L1myRCMO0Y75i6Pxkksu0chBMBjUyMavv/6qnvwGDRqoSSOFUdnZ\n2ZpUk5iYqLkVr7/+uqYYZ2ZmHrBLx2Ldidr92muvKRmMaGa33npruR208USTJk20mrNnz546T/Xr\n1y9ztKkQ/LWiD7JwfT6fJoJUBoEABfn3Dz30kEYftm/frhEA9wuzdetWwIk4iLd82LBhMUsAEpX0\nmWee0SjJ6aefriXSjRo1Uh9DQkICa9euBQqEU0pKShif5YIFThfAovwesSz/FX9Nr1699Pri16gK\nAgEc00GyV7t3767mQ58+fbTsPtaItBX9NcaYZcaYpcaYN4wxycaY5saYecaY1caYt/b1hPDgwUMV\nQbk1BWNMI+AfwFHW2ixjzGTgbGAw8Ii19k1jzERgNPBUVEZbDET1BdR8KC8SExNjkhL9zDPPaDci\nSVYBR7sRDUFSl1988UV1NEZKMV8a5OXlcc899wAOsYrsrHv37lUPfn5+/gG08wkJCWVygMXSXB03\nbhzgPD+hvasMBDBlQTAY5LvvvgMcDgXRfho1ahS3jt6ROhr9QIoxxg+kAhuAvjh9JQFeAk6L8Boe\nPHiIIyLpJbnOGDMO+A3IAj4FFgI7rLWydfwBNCrs+8aYMcCY8l5/f7z00kuAUzz0888/R3SuWBVO\n5eXlqQMsPz9fnXXGmLBGLDKGeBZw+Xw+3VUzMzNL3I3cfS4rAwKBgOZL7NixQ+3yyuBILyuEJ6Rj\nx47K+H377bcrhZz0NYkVIjEfagOnAs2BHcDbwKDSft9aOwmYtO9cET85IaxYsWKF/l4Z4XZ+up1x\n8nlFVXKGQqG4mCnRhqjUSUlJym85b948pXCvyti2bRvvvvsu4OSASIr41VdfDcRO4EViPvQH1lhr\nt1hrg8B7wAlArX3mBEBjYF2EY/TgwUMcUe48BWNMV+B54Fgc8+FFYAHQE3jX5Wj80Vr7ZAnniljk\nSby9du3alTqd1UN0UViI0xijHA+VgUMjEohZWbt2bc13EfOhHGHW2JOsGGPGAmcBecAPwMU4PoQ3\ngfR9n51vrS02vzSapdPl6TRVGVGR9+Hz+SpdJaEHwnxQgsKeUzHr5q/JvOQJhcjhCYXKiXgJhSqZ\n0ShZXuL5TklJ0ZTh1NRUjfWnpqaq+uhmw5VJTUxM1HO4Y/Bubv5owN0ARMycvLy8A/pQuFHU9d0L\nIlZCwxgTl+tEA+5xul+a4qoLK+P9yH0YY7QALTMzU+8pLy+vUAFQmPkUqVCvckLB/cCFCjsYDGoo\nLzMzkzp16gAFFXLgTKoc4xYEgsTERBUs0d6lZbxuqnb3fRR1vcJeTHf5cqyq/tzh0rIuLneCjQhA\na23MUs7d81bYNeKV8FNauJ+fuxJVxpeUlKTrszTzJr6T/Px8/T3SMLFXJenBg4cwHHQ+hYMRVclP\nIrtVx44dadWqFeCwPEe7XX1VhZvvozAEAgHlgpg2bVq0NSyPzbmqQ2z7WrVqHWDnV1b4fD58Ph/H\nHnssW7duZevWrcW+BH81lDQXhx12GIMGDWLQoEEV5uz1hIIHDx7CUOUcjX8VGGOUZOXaa6/lgQce\nAGDVqlVhKmV5HYKxgozn+OOP17z9yjK2ygwxu77//nut3amwkHSFXNWDBw+VFgedplC/fn3lVjj2\n2GOVI2D37t3MnTsXIBo9+WKOpKQkJVJt2LAhZ599NgBjxozRtnEJCQlKQyeprxXpkDTG0L9/fwD6\n9u2rfSs8lIyaNWsCznOXkHpF4aCJPlSvXh1wuA3HjHEqspOTk8Nit5LU9PLLLwNOctO1114LEBfv\neFJSUqlzC1q2bKlkMbVq1dKX/bPPPlOilqysLKVUj5egcyfZQHiiV2JiIt9//z3gCGdpyBKv6kuJ\n/x9++OEVroKXFenp6YAj3KWmQT6LIrzogwcPHsqOKmk+yO4v/zZv3lwdce5srv3Ti0Wb+Nvf/gY4\nO62o4h988EHMxiskqKmpqUriWlLH6Ndee03Zia21qooPHjw4zNEYT1MoNTVV2Zz//PNPIDwrz+/3\nc8QRRwCwcOHCuGgIkjWZlJSkdGzdu3fn5ptvBgp6bhx22GE0aNAAcBrSiLnVsmVLVq9efcC9xBvC\n1Gyt1TTnikKVEwopKSl8+OGHALRv3x4oeOmgeLbg/VXfQCCg55g2bVrMvORLliwBHL7DY445pthj\nxZ486qijVOht27ZNzZyKYKgWtXzcuHHazOWLL7444LixY8dqrYk0jSkrSpOoJfZ3Tk6O+lQuvvhi\n7QqVmZnJE088ARTUydSvX1/Pm5OTo2sgFAopaUlpG/XEAjIeyfOoSHjmgwcPHsJQ5TSFunXrcuih\nhwIFTVastUVqCO4qSXePPnB27tGjRwPw5JNPqkpc0k5V2rRj0WBq1KgBOCZKUeq+7Hj//e9/AUcj\nEqfklClT1IEXb/h8Ph5++GHAiSiIWl4YevXqpSzK5eURdFf4uedYtKann36aNWvWAE47OmHFvumm\nm9Tpum3bNhYuXKhjAqeNnUSiDjvsMAYPHgw4LeqjRcoTSWWpu+CtovM6qpxQ2Lx5s6rjDRs2BArU\nW4FMcCgU0qYl1apVU1VSFlhSUpLa9sFgMOqe6hNOOAEo8HM88sgjYX9306RL2/bOnQucw9JG/eqr\nry73QikvFbugXbt2XHTRRYAT+SiO7ScQCPDRRx8B0U9Y6tq1K+AIjSZNmgCOgJAN4s8//9QI0nPP\nPceDDz4IFPgJ9n+20jBo+vTp3HnnnUB0mvdGwGQGOPMmv8ezf6QbnvngwYOHMFQ5TSE7O5thw4YB\nBbvqZ599plpATk6OqoOJiYmquteoUeMA5po9e/awcuVKoGxe/NLuBu3atQNQlTo7O1vH475eIBDQ\nnUu0mFAopHTwJUUqSjPWsu44MkdffPEFs2fPBuCcc84p9Fgx48BpYuO+blkRCoXCvivjEEdrw4YN\n1dHYoEEDfab9+vVTrbCk+fL5fNpOLiEhQddApJpiJN+X7xaWwh5vVDmhAAWq6dFHHw04fRnls6+/\n/lprBmbPns0FF1wAOBO8P+HG7t27eeONN4DYePXvu+8+oIDs5fXXX9feBLfeeqsKiMsuu0wXuoxt\n6tSpFUpAK63m/X4/t912G1A0qYvQqW/atInFixdHdN39XywxG8QUy8rKUv+Lz+fjm2++AZxeCaV9\nhoMHD9beowBPPfVUodeOJ2RtZmVlqe8rOTm5QsKknvngwYOHMFRJTUFUbEn33bVrF++99x7gqJRj\nx44FnH6NbvozgWgVS5Ys4csvvyzz9UsbfZBjRK09/vjjdTydO3cmIyMDcFK05Z6k0/Rdd91VoTtX\nt27d9HdxeBaG1q1ba7/DG2+8MSpjlmeVmprK7bffDhRoKbm5uZr+m5KSonkdgUCgRLOhRYsWANx9\n992ahLVr1y6WLVsW8ZgjhaxJNxXe0UcfXSH1I56m4MGDhzCUqCkYY54HhgCbrbVt932WDrwFHAr8\nCpxprd1uHBE/Hqfz9F5gpLU26gF2SW0V+3XVqlWaqjpp0iS1xRcuXMgZZ5wBOI42kcB79+4FHJ9C\neUJQZd0NW7ZsCYTbi82bN9fxWGt1HC+88AJQkAVZUZDQ4u+//64+GneuhGg2c+fO1VCgaGvRQk5O\njjouxRezadMmrrrqKgAuv/xyOnXqBMDq1as15NurVy9NJxdfxLx58zjyyCMBR7sRx+vixYtp2rQp\n4PimCnPIxkNjk2tMmjSJG264AYAePXpUTKWpVLkV9YPT8akTsNT12QPAzft+vxm4f9/vg4GPAQMc\nB8wr6fz7vmfL8hMIBGwgELBdu3a1Xbt2tZdccomtU6eOrVOnjk1ISNDjWrRoYZctW2aXLVtm8/Ly\nbDAYtMFg0GZlZdmsrCx76aWXWp/PZ30+X5muX96fWrVq2VdeecW+8sorNjs724ZCIRsKhWxeXp6O\nKSMjw2ZkZNh9laMV/rNu3Tq7d+9eu3fvXlu3bl2dr1GjRtlRo0bZzMxM26FDB9uhQ4eoX9sYoz/u\nzxs1amQbNWpkd+3aZTMzM21mZqbNy8vT+XT/5Ofn2/z8fLt37167ceNGu3HjRrt79267Zs0au2bN\nGvvpp5/qOmrUqJHeX2Jiok1MTIz7fE+aNEnXaevWraN9/gWleR9LNB+stV8Cf+738ak4beYhvN38\nqcDL1sG3OH0lG5R0DQ8ePFQelNfRWM9au2Hf7xuBevt+bwT87jpOWtFvYD9E0ope+j2Igys3N1fV\n2Zo1a2p13sCBA9XJ17JlS3VgCXnm+++/H9eU0h07dnDZZZfp2Pv16wc4oTV3IxpwQnFiBuXm5qqp\nsWHDBk3djodaO3LkSC1A+/TTT7WqVNLDf//9d3788ceYXLuo+5Ou4s2aNeO005z96OGHH9awrhvy\nzDMzM5kxYwbghCQl5PrRRx+pGZqTkxOWDRtPyDjXrFmjppKkc8cbEUcfrLWi3pX1e2Gt6MtCYy6J\nP5Lr3rlzZ02/Xbt2rS6an376ibp16wKODSwPWv5eEbTj8kJLqaxAvOtDhw4FnEiFCL3vv/9e/965\nc2etK/j444+ZOXMmUDAn0RYUM2bM4JZbbgGcVHHxL8h9vPnmm1G9Xmkg97h9+3b1wci/4AhZSaiS\naM+ePXu0dPr000/Xc3zwwQdkZ2fHbexFQXJWLr74Yo2i7F/PI740QaxSoMsbfdgkZsG+f6X6ZR3Q\nxHWc14reg4cqhvJqCh8AFwH37fv3fdfnVxhj3gS6AjtdZkbUIOaDVMj17NlTvdD333+/agItW7ak\nda9FPV0AABi5SURBVOvW+j2RrOLRrohiE6EoE7UXHC1ByECkwOeII47Q+7zqqqs0rg4Fu1/Pnj15\n6623ACevIVYQr37NmjV1/GJSHHbYYZWO8iwUCoW1DBRInkJycjJLly4F0BTuioYUZTVs2FBZsPdf\nn6LpSvWtz+fTSFpWVpZqlhs3bozomZQmJPkG0BvIMMb8AdyBIwwmG2NGA2uBM/cd/hFOBGI1Tkhy\nVLlHVgwOP/xwwFmQEJ6w9PPPP6spccMNN6ivAQqIQb7++msg/kKhWrVqvPPOO0C4H2HOnDn88ssv\nQIHK2KpVK01u2l9tFCQlJfH666/Heti6GHfv3q2+DbHfJfRXFfDcc88BzhwL01as+nGWFaeeeirg\nrEkRWIFAQDcAa61uEmIq1q5dm1GjnFesX79+GnLt0KFDRPdVolCw1hZeBQP9CjnWAn8v92g8ePBQ\n4ag0ac6lVXeMMbrjC+fi5s2b1bPcrFkzTf6QuntwdjsxG8TbHC+1V4g+nnrqKXV2ub3bJ5xwAr17\n9waKroxzO0kvvPBCwNF44qnt5OfnK++DcFh8/vnnlc58KAypqamqXgP873//A+K3BkrCv/71LwAm\nTpyoJtpjjz2mfI1XXnmlRs1EC9i4cSOvvfYa4JhBohVHqv1UGqFQWqSlpR3AoPTf//5XveE333wz\nJ598MuBEHOShb968Wdl44vEiJSUlKUuReO/9fr+OMy8vT18sqforCr/++qs2a5XvVxR69OgBFJg5\no0ePZtq0aUDl7gR14YUXank9VPw87o93330XgCeeeIIOHToAqJ8M4KSTTgorURdIFGv/aFYk8Gof\nPHjwEIZKoymUNk+hbt26qiaJE2bQoEFKvJKRkRFGbSX16DNmzNBkkFiqjOIU7N27t1LJy3i3b9+u\nXvs6deqoxtO5c2fduX7/3cn9evXVV3nssceAyrOrWWu56aabADj33HMBx6kltHhS4VkcRCsKBoNx\n1Sz69u0bZppJ4tiUKVMqRccwecZNmzZl0aJFQIFDHRyq+niZOp6m4MGDhzBUGk2htFKwevXquuNL\ndVv9+vU1XGOtVftq27Ztult//vnn0R5yoRB/xcyZM5VObdWqVYBTnVlZHFvlhey2ohHVrFlTQ6el\n0RTkOcVL+xGtsVu3bmFzP2XKFP17ZercnZmZqc7c999/X52jwiAWD1S5XpLuFFZJ+BgzZow67ay1\nmtBzwQUXVEjzlIMZ8pIJTdpvv/2mHJSVYS3tDzHd9uzZE+ZoHDlyJOAkYQm1/18AXi9JDx48lB1V\nTlMoDCkpKeo4Gjt2LCeeeCLAX2kH8FAExLRZuXKlFtDt3LlTSX+3bdtWKcyGOKFUmsJBIRTccHcY\n8uBBBMEZZ5yhlYjPP/98RLT5VRie+eDBg4eyw9MUPByUcBfCgcNXIGnCRTmfC+sFWRaejyqAUmkK\nlSYkWRa4CU8FFcWYUxq4F5uE5HJycjSsl5eXp55xSbZy9xEMBAJaLpuTk6OLunr16prnLtWK0bj/\n6tWrK/FIKBSKuI+luwFwtF8w93ndocX9X/zSpAEXNrZ4CISiBI87XOq+PzGJsrOzw1L2ozVWz3zw\n4MFDGKqkplDenUtUSpG4sZCyxaFGjRq6sxljVFPw+Xy648tn7qYgwWBQeSdzcnK0GcrevXvDUrqj\nhaysrDD1uTy7vM/nU1KTtWvXxqz9mYwpKSmpTNeIleYSDcjYEhMTw3qLSsKXaHF5eXkxGb+nKXjw\n4CEMB52jsTiI3S4NQtauXat19bGE7PjJyckq+ZOSktTOrQhauNLCGKNjTkxM1F2qsHXj9/uVFu6C\nCy7Qlm7NmzdXstnKsN7+wjh4HY3lhaiXwuHYtm3buAgFUe2zs7PDOl5XBfj9fn25N2/efECFqt/v\n1yrJ5557TpOC6tSpo8Q3e/bs8YRBFYJnPnjw4CEMfylNQSBq+w8//BDX67ra5GGMUXMmPT1dWXmF\nYWnVqlVhjqV4mxji7AoGg2zcuFE/39+hGQwGtXnJrbfeqgSk3bp145NPPgGKJp6tKBhjlE17yZIl\nqi3GO5wtdILW2jBOB7czuiJC7JXracUJQv8t/Hexhju+LLyRI0eO5LzzzgOgXr16ekxhORjLli3j\nkksuARwSFllAmZmZMRMWZVH3ZQzz589XkpjNmzergKsMzVbcmDZtGgMGDACcxrXHHHMMQKG08LGA\nCE7hZczOzua2224DnEY1PXv2BOCQQw7hp59+ApxOVkK1H2tB4ZkPHjx4CEOJ0YciWtE/CAwFcoFf\ngFHW2h37/nYLMBrIB/5hrZ1e4iDiFH3YHykpKcV606OFzp0dh++wYcM4//zzgXBaubVr16pJI7H9\n6tWrq9awZ88ezVh8/PHHmThxIkCloBFzw+fzKdno888/r2Q4p512WtwdjW5+DXAcoxJ1+uyzz/Tv\nCxYs0Kpa6RcSS9SqVUtJd9zmg7u/g2iw7kzYUCikhMTiwC2HxhC16MOLwOPAy67PZgC3WGvzjDH3\nA7cANxljjgLOBtoADYHPjDEtrbVxYzpJTU3VySyJ6ahNmzYqFKQBRzQhrDlPPvkk4Njf8qI/99xz\nPProowDaCGZ/SJLSU089pY1vPv/880onDMRnkJaWxvPPPw9A48aNeeKJJ4D4hyETEhIO6MOYlJSk\n1P+JiYlq8mRkZKg/Jx647bbb9GWWtbBy5UruvfdeAObNm6dm1/jx47VjWEJCgvJ7tmzZEnAa0FZI\n8lJhreittZ9aa8WY/RanZyQ4rejftNbmWGvX4HSK6hLF8Xrw4CHGiIaj8f+At/b93ghHSAikFX1M\n4ff7dScdNmyY0rFJT76iYK1VFS4WEEeS8Pj/8ssv6vVetGhRiVRxYjKkp6ezcuVKgLjkVZQGshP7\n/X7VFNq2bav5F5MmTdLWbPGCOyVY4HbcutVyOfabb76JS2RH2uyNHj1a15yktj///PO8/fbbgOO0\nlWf88ccfa4QqMzNTx/zwww8DMHz48JjQDUYkFIwx/wLygNfK8d0xwJhIri/2d9++fZXY8u2339YQ\nWTHXBqB169bagPbbb78t7itlRqtWrRg9ejRQsDCnTJnCjz/+CBRdvuvGpZdeCjhNQR544AEg3JPv\nbnYTS4+0zFezZs20d6EkKY0fP14JS7p06cKcOXMAmDp1algoM9YwxoTNqfwu/yYkJGiSFRRETKIh\nZEtTRyENgWrUqKHPatasWQA8+uijRX5XwtLBYFCFgqyBunXrxmSOyy0UjDEjcRyQ/WzBHZW6Fb21\ndhIwad+5vHQ3Dx4qCcolFIwxg4AbgV7WWreX5gPgdWPMwziOxiOA70p5zlI7TUQNFK/xkCFD1Pn2\n4YcflkgfLpL9tttu47333gOiR84i5/7HP/6h9yMVjrm5udpSPjMzU3exwsY7fPhwVRN9Pl+YmSPX\nSE9P58EHHwQK2sUvXbo0qiqlMYbx48cDjuorXvtvvvkGcLSYyZMnA05Xb6G1b9WqVdS1r+JQ0tqx\n1nLEEUfo/0W7mTVrVrkrJkUDlO8XNe8+n4+//72g77KwX5955pklXlfMjs8++0yjDyeddBIAt99+\ne8VoCkW0or8FSAJm7JuQb621l1lrlxljJgPLccyKv8cz8uDBg4fIUd5W9M8Vc/w9wD1lHUhZpLSE\n+DZt2gTATz/9xK233gpQKkLOoUOHAk71njRMDQQC6viJJMwjTreXXnqJhx56CCjQFKpXr65hpU6d\nOumxoVBIw2I///wz4ISdJFT53//+lzvuuEOPFWzZskX7F8QKjz/+uF4jKSlJU8OvvvpqAH788Ucd\n044dO7TpjoQjKws6dOgQ1jZO5rtly5bMnj0bKPtzl+NL+l4gENB2eaFQSFvvlSa03KiR46evVq2a\naiQ7d+4ECjSOaKPKpTnXrFmTM844A3Bi/QA33HBDqVJp5cFIS/rdu3ergIHoxNPFgfXddwdaTVu2\nbFFB8cYbb+jnPp9PTSLpH7ho0SKNXnz99dcRj6usOOSQQwC4+OKL9WXKz8/X8Uu/Qzf8fr/OYZ8+\nfdTUqMhemDL2CRMmhH0uY0pKSlIPf1nTseVe5T7z8/P1XO528GlpabqB+Xw+rQkpDWSTa9iwoQpf\nuV5ycnJMqm29NGcPHjyEocppCjNmzFDp7y4oKQmtW7fW3Vs0hm+++YYVK1YAHJABV14Up21YazUe\nPXXqVF5//XXAKZCR74n5cMkll2g6bLyRlpbG/PnzAWde1q5dC8DixYu1B2NhyMnJ0Tk+7rjjmDlz\nJoCaaPGEmGZSaCRZggIp3HrnnXfCdvWywJ2rAdCzZ0/tAzl58mTNSO3YsaP+vnnzZuWnkNT24taM\naAruFGw518svv6xOx2iiUgmF4iIAIgiOOeYYFQIl5ar7fD6mTp0KOBEKmXyxyUaOHKlNUePdczIY\nDHLFFVcAcP/996uNK/0xe/XqpQlLkaAw2vKiIGrpsmXLqFu3LgBffvkl99zjuIjmzp1bLA9iXl6e\nMiylpKTQrl07wMkRiNX8uu9Pfm/ZsqWmW0tValpaWliUQHwjW7ZsidhslLW5ZMkSFRCXXXaZRsfa\nt2+vLN4NGjTg/vvvB9DK14SEBLZs2VLouSX6kJmZGcbdCDBgwACNZkWzbsMzHzx48BCGSqUpFJcn\n4PYcl6TuybFDhw6lT58++rmoa126OOUYohZXFMT5tGnTJjVpjj32WABOPvlkXnnlFSA6fAQ+n093\nmNzc3APmOiEhQa9Xt25d3n33XcCJhUu1o9/vD+s5AE7Rl0RXjjnmGK1EBDTNOZZamGT5paWlceSR\nRwJOjohwJMh9urWVLVu2cN111wHRcYKKlrd3716tYPzhhx+46qqrgII+DeDMoRwvput3333HsGHD\ngHC+zuTkZNUqOnToEEbQA+Gp29HUFCqVUCgO8qJv375dXyCZkMzMTG2W0qZNGw1PrlmzhiVLlgBO\nWEjs+aKqEisSshikKW6zZs30ZWzSpEnE+fnJycn6ghx//PHMnTtXPwcYM2YM/fv3BxyhIYlH69at\n0++1bNlSQ5G33347AFdccYWaY5dffrnau/Pnz+fKK6+MaMwlISkpSV+8OnXqaBqzW+hJNCAvL0/n\ntm/fvlERBoW9pG7GKvFbtG7dOiwdXUhWRFi0bt2am2++GXAiarVr1waccLAIWbdQk5qYQCCgZt7G\njRu9ZjAePHiIDaqMpiAOrvvuu49rr70WQKmqNm/erF5fd7u1c889l7FjxwKOySBaQ7zi5+IEkh3s\njz/+0PvIy8sLU+Fld5AiL0B3gQULFmilZVkhO1dOTo7uTN9+++0BO+mMGTO45pprgHBOCrkHcFKv\np093OHNk1/3qq680Hbthw4Zqoo0ZMybmjNWhUEiTpKpVq6amxIABAzjnHCfnTu4jNzdXtZxoRXXc\nXIrgaAruRC6JunTs2FFza84991xdn7L+Vq9ereZO586dNVclIyMjrCfm1q1bgYIIVefOnfX5pKWl\nqcYW8X1VBurtshZECfGE2JAvv/yymg8JCQmaDz5s2DC6du0KOCq4lFQvXLgQiC35R0JCwgEvxYwZ\nM7TWYunSpXz//feAs6ikTXrz5s0BJ4QmZtDhhx+u6vq4ceNiNmYhhZk3b576CX777TcyMjJ0zNdf\nfz1QYKuvWrVKTYb8/Hzef/99wInsyDnijVGjRvHss8+GjXPq1KmcddZZYZ/FE2KmNW3aVMOM8sL3\n6NFDS+q//vprNYt3797NZZddBjhjdp8DnCia/J6bm1saE9NrRe/Bg4eyo0pqCoVBnI9+v193tnbt\n2mkFXygUUmn82WefAbHXFMT7vnr1asBRr/v16wc46qU4PCdPnqzHSrzaWqucBd99952aHY0bN1ZP\nc+PGjWnTpg2A1hxE4pAUNfjTTz+lb9++YZ+Bo5EJr8ONN94IwPnnn6/HzJs3TzkoK4IMRsaxfv16\n6tWrBxTQ+A8ZMiRmtQJlgTsKJBrB3r17VWvIycnR3wOBgM5ny5YtNa9F/p6Zmalmp5vnsRh4moIH\nDx7KjirjaCwJkruQk5Oj1Wd//PGH2pH33HOP2vjx6Dicn5+v9e9yvccee0wz1NLS0mjWrBng2JRS\nJOO2d8WRunv3bg3Jjhs3Tpmlrr32Wr744guggDkqEmeTzMfEiRPp3r07UKCBgcPKLPF09+eSFdq/\nf/+4kqDuD8kQrFOnju6aTz31FFD6isJYr41QKHQAcWtubq46fP1+f5gzetmyZYAT7t0/FX/Pnj16\nrmj6SQ4a86Ek1KpV64AU3Wgs4LKQw9SqVUvTb/v376/RAGMMxx9/PIA6H621SljywAMPqAMSChJV\nkpOTNY032p5+iXycc845YbRyEh0R4fPtt99y9tlnAxXb9KVr1658+eWXgDNOeYHEKS2CqyTIixoP\nejv3uhGTIDU1VR2RycnJSn9311136YYi+O2333RdlHINeuaDBw8eyo6/jKYABbvA8OHDAYd8VNJI\n491LITU1VXkd2rdvr447URc7d+6sKvr48eOVji0YDGqexqRJk+JayJWWlqYtzWS+5syZU2yRVKwh\nave6des0NGqM0d3W3XClJJRF64sV3EzTtWrV4oUXXgCccLHkMghyc3P1/vLz80sz9lJpCn8poSBq\nm+QxpKenc9xxxwEFuQsVBRFYjRs7LTTS0tK0DuK2227Tl79Pnz6lVoVjAakCFFU2Xv0Xi8Knn34K\nQO/evXVs2dnZKrwWLFhQYWOLFG4G6jFjxihjkwiN/2/v7EKsqqI4/vuj3Ym8kM4UMqmMRlKYNCk9\nKPUQfeAHYgQ9KEJGQi9BFkE4+NTTEEVl4FjRF4RYZFbDQImZz5ZRY5M6aRgzaqYD5UNPNqwe9j7D\nPeYwd8a7z7k06webOWefM/z3OmffxV5r73PO0NDQ2DqckZGRekIeDx8cx5k802qkkNHd3Q2E7G22\nXcYqt4mYzLsQpiOtra309/cDYXidrY3o7Oxsui9dXyuVSmVsRWO2FqWlpWWs39Y561TXSAEzK70A\nVmSpVCpWqVRM0lgpug1epl6ye9bT02Ojo6M2Ojpqw8PDVq1WrVqtlt6+Ji5H6vk9evjgOE6O/83i\npclQZrbcaRwdHR2cO3cOCE+XTvVdi06eaZlTuEIbwGP2OmjUV7SuleyetbW1jU2N1vO9D8dnHxzH\nmQLNMlK4CPwNjJTUhJtc27WngXaHmd080UlN4RQAJB2pa7rEtV3btZPi4YPjODncKTiOk6OZnMLb\nru3arl0+TZNTcBynOWimkYLjOE1A6U5B0mpJg5JOSdqWWGuBpEOSjkn6WdLWWN8q6YCkk/HvnIRt\nmCHpB0l9cX+RpMPR/o8lVRJqz5a0V9IJScclrSzKdknPxWs+IGmPpOtT2S7pPUkXJA3U1F3VTgXe\niG04Kml5Au2X4zU/KukzSbNrjnVF7UFJq65Fu1GU6hQkzQB2AmuAJcBGSUsSSv4DPG9mS4AVwNNR\nbxtw0MwWAwfjfiq2Asdr9l8CXjOz24A/gS0JtXcAX5nZHUBnbEdy2yXNA54B7jGzpcAMYAPpbP8A\nWH1F3Xh2rgEWx/IUsCuB9gFgqZndBfwCdAHEvrcBuDP+T0/8TZRLyU9HrgT21+x3AV0F6n8BPAwM\nAu2xrh0YTKQ3n9AhHwD6ABEWssy82vVosPaNwGliHqmmPrntwDxgGGglPG/TB6xKaTuwEBiYyE7g\nLWDj1c5rlPYVxx4FdsftXH8H9gMrU9z/yZSyw4ess2SciXXJkbQQWAYcBuaaWfa63/PA3ESyrwMv\nANkDBG3AX2aWfawhpf2LgIvA+zF8eUfSLAqw3czOAq8AQ8DvwCXge4qzHca3s+g++CTwZUnadVG2\nUygFSVXgU+BZM8t9w9uCy274lIykdcAFMyvrvW8zgeXALjNbRlhWngsVEto+B3iE4JhuAWbx3yF2\nYaSycyIkbSeEsLuL1p4MZTuFs8CCmv35sS4Zkq4jOITdZrYvVv8hqT0ebwcuJJC+F1gv6TfgI0II\nsQOYLSl7hD2l/WeAM2Z2OO7vJTiJImx/CDhtZhfN7DKwj3A9irIdxrezkD4o6QlgHbApOqXCtCdL\n2U7hO2BxzEJXCEmX3lRiCs/cvgscN7NXaw71Apvj9mZCrqGhmFmXmc03s4UEO78xs03AIeCxlNpR\n/zwwLOn2WPUgcIwCbCeEDSsk3RDvQaZdiO2R8ezsBR6PsxArgEs1YUZDkLSaEDauN7Paj430Ahsk\ntUhaREh2fttI7SlRdlIDWEvIyP4KbE+sdR9h2HgU+DGWtYTY/iBwEvgaaE3cjvuBvrh9K6EjnAI+\nAVoS6t4NHIn2fw7MKcp24EXgBDAAfAi0pLId2EPIXVwmjJC2jGcnIdm7M/a/nwgzJI3WPkXIHWR9\n7s2a87dH7UFgTcp+V2/xFY2O4+QoO3xwHKfJcKfgOE4OdwqO4+Rwp+A4Tg53Co7j5HCn4DhODncK\njuPkcKfgOE6OfwEnoesT8vs/JQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2/2... Discriminator Loss: 1.1387... Generator Loss: 2.3912\n", + "Epoch 2/2... Discriminator Loss: 1.1287... Generator Loss: 0.7842\n", + "Epoch 2/2... Discriminator Loss: 1.0247... Generator Loss: 1.9585\n", + "Epoch 2/2... Discriminator Loss: 0.9418... Generator Loss: 1.0972\n", + "Epoch 2/2... Discriminator Loss: 0.8407... Generator Loss: 1.2381\n", + "Epoch 2/2... Discriminator Loss: 0.8819... Generator Loss: 1.0197\n", + "Epoch 2/2... Discriminator Loss: 1.0199... Generator Loss: 0.8055\n", + "Epoch 2/2... Discriminator Loss: 0.9692... Generator Loss: 1.6409\n", + "Epoch 2/2... Discriminator Loss: 1.2472... Generator Loss: 0.7956\n", + "Epoch 2/2... Discriminator Loss: 0.9436... Generator Loss: 0.9713\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl4VNXZwH9nJslkIQlJ2BcTAdlkEUVAsIriQt1KQVHq\nUlEUrUJBrQrYz7q1tFQRN1wqVSsVkKoIsoiCa5GKsq8iIFvYFzFknTnfHzfnzZ2QZSaZLXh/zzNP\nksmde88998w573beV2mtcXBwcDC4ot0ABweH2MKZFBwcHPxwJgUHBwc/nEnBwcHBD2dScHBw8MOZ\nFBwcHPwI26SglOqvlNqolNqslHowXNdxcHAILSoccQpKKTewCbgY2Al8DQzRWq8L+cUcHBxCSrgk\nhR7AZq31Fq11ETAN+FWYruXg4BBC4sJ03ubADtvfO4GelR2slHLCKh0ihlKKn2kk7wGtdcPqDgrX\npFAtSqnbgdtDcS6Xy+X3u9frld/Nw/f5fKG4VNhQSp3w3s904Naair709vcSExMpLi4GrD6O5Bix\ntyMUz9x+jgA++0Mg5wzXpLALaGn7u0Xpe4LW+mXgZQheUnC73X5/ezwe6ZDWrVuTkJAAwKFDh9i1\nq+yy5phY+bKZB1pRe6LZxvKD1d4W8z/7RGwm4ViifN9qreW9Vq1akZeXB8COHTuitmB4PB4AmaAg\n+L6sagzVlHAZGuOwDI39sCaDr4HfaK3XVnJ8UI2oatBC2YC1P+wgZ9SIY9pnJrSSkpKY/LIZTB+f\neuqpbN26FYh9acxglyCrGwsulyvm7suMFY/HQ2FhIRDwmP5Ga929uoPCIilorUuUUncDCwA3MKWy\nCcHBwSG2CJtNQWs9F5gbpnNX+f+KZnalVMzN+BXRqVMnAPbs2eOn+sQa5hm0aNGCAwcOAHD06NFo\nNilgghkHsTRmjITQv39/AFasWEFubm7IrxM1Q2OkMGJu7969+fLLL4HYUR/MQ1ZK0aFDBwD++9//\nAlBYWEiLFi0A+PHHH6PTwCo49dRTAXj33Xf56quvALjiiiti6kt0MuHxePjuu+8AaNKkCQBr167l\nzDPPBEI7pp0wZwcHBz9OekmhVatWAJx22mkcP34cgJUrVwLRtZq73W5SUlIAqFevHjk5OfI+WNJD\n27ZtAVi2bFlU2lgRcXHWkPnwww8Bq+2ffPJJFFsUOHaPSXUSjXkOiYmJMm6iIWG2adMGgMWLF4uE\nYNqWk5NDZmYmAAcPHgzZNU+aScGI4omJidJp7du359ZbbwWgS5cuJCUlAfDYY48BlugbLZRSHDt2\nDLDUA6MbfvrppwD06NGDn376KWrtq4wxY8YA0LRpUwC2bt3K9OnTgdjRv1u1akXnzp0BuOeeewA4\n99xz5f8lJSV88803AEyfPp2XX34ZgKKiIpKTkwF4/PHHActm8tprrwGwfv16vv/+eyAyE8Tpp5/O\nJZdcAsB7771HgwYNAPjVr6zg4JSUFF544QUArr322pBd11EfHBwc/AhLnELQjahlmHPLli0ZNGgQ\nAH369BFjXW5uLn/7298AyMjIEAnijTfeAOB3v/tdRFc3t9st16us3wcMGADAjBkzZJWIFfG8e/fu\nLFmyBCgLuOnVqxerV68Gom/A/eUvfwlYq6rBqDv2OBWfz0d+fj5gSQ1GrcjNzaVhQysKOD09/YTz\n5+bmigSSl5fnF3QUKpRS9O3bF4BbbrmFVatWAfDkk0/KMX/9618BSwoyHh+jRlRDQHEKdXpSCCQg\nad68eQD069dP3jMW2zVr1tTkskFjBl2DBg3Yv38/UHl7v/76awC6du3KKaecAljuyWhi+nnLli3S\npr179wKWeB0LakP37t3FC+Lz+fi///s/AN5//30ANm3aJDacn376iXr16gHWhNuxY0fAUh/MOerX\nrw9YurxRNfbt2yfPJz4+nsOHD4f8Ptq0acPDDz8MWF/+isboggULALjooovYscPaYmRsUtUQ0KTg\nqA8ODg5+1GlDYyBSjlkpLr74YgkJNbNrpDChy8aIVRFpaWmAZRAF2LBhg6zG0caI1A0aNJA+nzx5\nMhA7xsVZs2ZRVFQEwG233cbUqVNPOMYeXGV+Hz16NK+//rp8znhVIo1Rc0477TTmzrVi/tat808/\nYsbROeecA1jjf9KkSSFviyMpODg4+FGnJYVA6N7dUqGUUrLymh1ykcIYpBITE8W+YI+RSEhIYMKE\nCX6fGTduXNQNdwazMnk8HnGjzpgxI5pNEowuXa9ePV599VWACqWEqj5vbAPRNOjGx8cDli1j48aN\ngGWLMvac1NRU3nrrLaBM4ty0aRP//Oc/Q96Wk35SuPLKKwFrUjAGmpKSkoi2wUwAP/zwgxi7MjIy\nJHz5jDPOEAPeokWLAESEjAVuvPFGwBJXTfsirYJVhonr2L17NyNHjgz4c0YlGjt2LDNnzgQQ9SPS\nKKV49NFHAThw4ACfffYZYC0WRq286667JNbCqGwHDx4MSwi8oz44ODj4cVJLCrfffjtZWVmAtQoY\nN1W0yM/Pl1l+woQJnH766YC/3/ymm24CYidxicvlkngJpRTz58+PcovKSEpKkh2a//jHPwJWt1JT\nU9m2bRtgjYvnnnsuXE0MiOzsbAYPHgxYhvHU1FQA2rZtK9LBpZdeypEjRwArshJg4MCBYTH01slJ\nISMjA4CCggLAerD2zunduzdghaqagdK/f3+JEYgmxgMyefJk3n77bcDSI802abP7cOPGjTFhU0hL\nS5Pw8A0bNjBnzhygrO+jSWFhocQQ9OvXj3feeQewYijKZ4hq1qwZ7dq1A6zxY8bLwIED2b17d6Sb\n7se4ceMkbuK5556TMfKb3/yG8847D7BUTzMZ/O53vwPCZxtz1AcHBwc/6qSk0Lx5cwDZiNOyZUvZ\nJfbyyy9z5513ApZ4aYw2xiAVKyxevJgnnngCsCQaszqYjS35+fnS9mjGAvTt21dW3ZkzZ4oHJxbi\nE3w+H08//TQAy5cvZ+DAgSccY5e2jHRz++23i9Xe9HE0MEbnQYMGsW/fPnl/xIgRAPz2t7+V/h42\nbJhsmgtHeLWdOjkpmNDPPn36APDMM89Ih40cOVIsy7m5uaKrxYIoXh4zUf3000+yp8Do75dffrno\n70OHDo24x8QwduxYmRSWLFkSc/1obAper1fcenbs1nnjXXjwwQdlf0Q0bTcmZDo9PV3ac/DgQdn/\n4nK5uP766wHYvn17xNrlqA8ODg5+1OkNURXh8XjEcLRnzx66du0KRD42IRDMzrbx48fLbs7hw4cD\ncMcdd0gK8AMHDkgQVqSNYk888YT4/1esWMGmTZsAmDhxIlD5prJoZkGuqO6Dx+MRQ112draEEHfp\n0kWOtSdhMcbV48ePhzbVmcslfWgSABUXF0uA2KpVqzjjjDMA61mH+HkHtCFKimFE8wXoUL2UUjo/\nP1/n5+frzZs364SEBJ2QkBCy84fylZycrJOTk3WbNm1O+F9mZqbOy8vTeXl5uqSkRO7pzjvv1PHx\n8fJyu93a7XaHvG1KKa2U0g0bNtSHDh3Shw4d0l6vV/t8Pu3z+bTX69Ver1d37dq1wnuKi4uLev/a\nXy6XS2/fvl1v375dFxcX6wMHDugDBw7olJQUnZ6ertPT0/WoUaP0yJEj9ciRI/XMmTP1zJkzddOm\nTavto0Cv73K59DPPPCN9Z57pgw8+6Hcuc2z5c2RlZemsrCwdFxdX0/5dFsj30VEfHBwc/Djp1If0\n9HSJR8jNzZXY+Fi4z/IY9aFRo0Zs2LDhhP8bcfb555/n17/+tbxvUqItXLhQxMtQi+omyYjb7RaP\nyKRJk2Q3n+GDDz7gqaeeAqxYfBNgE+n9JdURHx/P/fffD1jGaBPfMHDgQPFK2PNzmB2JXq+3UtUz\nmOpMRmU45ZRTZHyaHbGV5WVQSomH4rbbbpO+Nbs6a/DMw5tPQSnVUim1WCm1Tim1Vin1+9L3M5VS\nC5VS35X+zKjpNRwcHCJPbVySJcC9WutvlVKpwDdKqYXAzcDHWuvxSqkHgQeBB2rf1MCYOXOmzODB\nhL5Gg1GjRgFW/v6KJAWzEowYMUJqQPTr10+MkZdffjn/+c9/gLIUZCZcuja4XC4Jr/3kk0+YPXs2\nAGeffbYUIjEraf/+/SUN2qeffspFF11U6+uHEmOsPeecc2jfvj1guSaNpGDfBGUfKyZuxL5TsbLy\nhNW5NZs2bSob3g4fPiyRlSZLdHnOOusswMqwZDJAbdmyhV69egHhjxEJmfqglJoFPFf66qu1zlVK\nNQU+0Vq3q+aztW6EEal+85vfSKe1a9dOYtxjDbfbLcU9Vq9eLRl6K+P8888HrOAsExJbUlIioq2p\n53jVVVfJxFDTqlhKKclg3Lx5c4n7KCwslHRll112GeCfBqxVq1YR9adXham0ZULJGzduLF/uadOm\n8Yc//AGg2ozZ9erVky9/sDsSzfWWL18uqsKsWbMkn6h5NgkJCZLO/8Ybb5TgpYSEBIm/Of3000Ox\nIzJytSSVUjlAN2Ap0FhrbWpZ7QEaV/KZkJWid3BwCB21nhSUUvWA/wCjtNY/lkumqiuTAmpTir48\nLVu25IorrjDnldUq2glPq8NE4KWlpXHdddcBiDrg9Xr9VnlTEGb27NmShDYpKYnWrVsDZcaqli1b\nilGrpmKm1povvvgCgKefflpWymPHjkk4+c6dOwFrc9G4ceP83os2aWlpIjmedtppgCWqv/TSS4Bl\nqA0mbqVRo0bAiZJCoIZGU8QFrD40Kk12djZgRVh269YNsFSSzZs3A/DrX/9a6kxEklqpD0qpeGAO\nsEBr/VTpexuJkPpgBuv8+fO58MILAavT77vvPgDJxBPrXHzxxbKt21ibCwsLRYxcu3atFF+ZNGmS\nBLfceuutMgGabD2htqHUr19fVIT09HQJzbXvkoyFfRBKKdHb16xZI8FHxmbw5z//WfaaBNNHbrdb\nPC7GzhAs8+fPl/D177//nvHjxwNli1ZCQgLLly8HrN2QNXmGgWQ2JwLeBwW8Cqw3E0Ip7wO/Lf39\nt8Csml7DwcEh8tRYUlBKnQt8DqwGzFIxFsuuMAM4BfgBGKy1PlTNuYJqhJkVjei8bNkyWRn27Nkj\n4aPBbnYxFvWSkpKIr34mDsFIB3369JHVf9y4cVJT8M4775S6ANOmTYuod6Wi8OFoopSS4ixxcXG8\n+eabgFU7wWRrNv+vqSqZkpIiY6Gmnp3evXtLKsBVq1Zx+eWXA0i+y1Bsygrw2Zy8xWCMODtrliWE\nZGdnSwe3adOmRmKey+USEX337t1RH/ymmhVY4mBiYiJgxcmHe+tsXUEpxcUXXwxY9UHN/pDCwkLO\nPvtswFK9akN8fLzYH2qpatf6HCHAKQbj4OAQPHUun4Ld8GPEuRkzZojfuabGIK21iJjRlhLgRJGy\nskCXnzNaaxYuXAhYgWDGMzJu3LhaSwiGUEllsTCmAqVOqg92SyvUrQ53CA8ul0u8UbG4TT5GcNQH\nBweH4Klz6gM4koHDifh8vpiIlzgZcCQFBwcHP+qkpGB0RyMxuN1uCRkuKCioUJKINR97KAgwiq1G\n5zXnq+z3WMT0R3UbwVwul9xHLNxPVf1qv6fyhEsyqpOSghEVTfqokpIS8vPzyc/Pr7RzyycHqYqK\nHkCoUEqhlBLDmH1rbrCEa0Dbz1vRdmH7K5Yw46GiL4vpd6UUZ555JgkJCRKsVlew3184VaXYeqoO\nDg5Rp06qDzUhEH+zWbHj4+PDXoHY5XJJLEJtVvxIir+2RLsiJcTFxcW0C9A806ysLP71r38B0L17\nd1q2bBnNZvlR1TOMhprzs5kUgiGcD8Cc2+fziR0kWiXQa4P5siUlJUmIeSxi+js7O1uKB2mtY6IW\nZqziqA8ODg5+1MmIxiDOG9Sqb0Titm3bSqq0cJUVc7vdkn+vqKjIr7owwLp162La7/7b31q740eN\nGiU5BWOpvUaSManr/vznP8tYePjhhyvNoHySE7l0bLGKKUQL1j4JExtfGY0bW5njZs2aJTkIw5X5\nJi4ujnvvvRewtkubrd9mYlq0aBFDhgwBkJTgsYBReSZMmAAQkxZ8pRRXX301gNRiPOWUUyRBTGFh\nofRzLE1kYC0WJiHLLbfcIgV0jxw5IlWtwr2QO+qDg4ODHyelpHD66acD8Mgjj0hRkilTpkjZ8Ypm\n2gYNGvDf//4XgNTUVKlmHGrMSnvhhRdy5ZVXynvlff4XXHABW7ZsAayU3ybvYrQxae+M6rNs2bKY\nWW2NynDttddy5513Aoh0uGTJEsl4ffXVV8sO23nz5lWb0TmUuFwuSb1nxsK2bdt4/PHHAWsc2nMv\nmJT627Ztk7qo4ZYUTrpJoV27dixevBiw9ElTQWnLli3ypTd2gqSkJHr06AHA5MmTJcFmuKzTCQkJ\n9O7dG7ByLaampgLw/vvv8/777wPw6KOPAlYiGZOv8eOPP5bMSzXdGh4KlFKSENVMYibBa6ivY64R\nqE3H5XLx2GOPAXDJJZfIZHDrrbcCVtJVc97hw4eLS9Ik6okUK1eulEXLeJ1+/PFH2Rr/wQcf8PHH\nHwMwdOhQyRzVuHHjiE2+jvrg4ODgx0kjKZj0ZXPmzCErKwuwApaMpDB16lQxiplV96mnnpJcfnaj\n5KZNm6pckYONnTeGo2effZZdu3YB8MYbb0hWX3vwz9SpUwGrzqApZJKVlcVf//pXAEaPHh21eP0r\nrriCjAyrCmD5IjShIj4+XvJVbt68mW+//bbK483qv2TJEjp27AjA//73PxG7K+L555+XsPe0tDQO\nHaoyhWhIMKqCaSMgY6Fbt24VFnp5/vnnpRhMfn5+xIyjjqTg4ODgx0kjKZiVtHnz5qKrLVy4UN53\nu91SH9EkaPV6vTRr1gywVn+z+s2bN6/KRJv2cN9AuO222wCrbsI///lPAJESKjo3WLqnkTBWrFjB\n0KFDAXjxxRcrrDsZTswKNWXKFPnd+Pl37doV8qSkxsAayIponmXr1q3lcwMGDKj2c+ZZp6SkRERS\nMC5Sn88nRk4jNVQmlZaUlIiE0aRJE6kEHu4Yi5NiUmjcuLF8aX766SfJz/fQQw9JUFCrVq1ITk4G\nkJLkXq+XDh06ANChQwcZ8Pb6iBUR7OD/4IMPAKuC0t///veAP2cqLh05ckTqOZqBEUn+8pe/yLWN\numX8/0uWLBHVLVR7IMy9fvjhh1Uel52dzYwZMwArnsS0KZiw66KioohkWjbjE5C8koEYjY3BtEWL\nFhGbFGqtPiil3Eqp5UqpOaV/n6qUWqqU2qyUmq6Uir3oFgcHh0oJhaTwe2A9kFb691+BiVrraUqp\nF4FbgcnVncQY74KZrY3BcOnSpRLOunnzZh566CEAevToIatcfHy81BI07p/Zs2dzzz33AJCYmMi+\nffsAy8ATylXDrFwPPPBAUKupqTkIZSK8vS5hJIiPj+d3v/sdYElWprbCjh07AEt6MK7TvXv31vp6\nWmtxKVfnjnz77belhN6//vUvqcEYCEa6ady4sYyHcG7sMtdQSkld0EAwqk0w+UBqS62upJRqAVwO\nPAHcU1pK7kLgN6WHvA78iQAmBa11wH5pE/5rtsIqpSRIacuWLRKifMkll8iAzcvLE1HTfNk++ugj\n2rdvD1i63pIlSwBrkgklc+bMAYLbDZmWlsYf//hHwAoUMtbpRYsWhbRt1bFr1y4pRNOtWze2bdvm\n9//BgwfLZPDuu+/W+nper7faMZCZmSntMfEkJkahKox+ftZZZ0n8Qt++ffnqq68Aqwx8oLhcrqC8\nACYYzufzyXWmTJkCVD6Zejwe/ve//wFwzjnncOTIkYCvVxtqqz48DdxPWdm4LOCI1toshzuB5hV9\nUCl1u1JqmVIq8GnTwcEh7NRYUlBKXQHs01p/o5TqG+zny5eiD3RHY/v27Xn55Zf93lu+fDlz584F\nrFp9RtQaMGCArDq5ublSUvyXv/wlAGeccYbM9hs3bmTmzJlA6AqAGOwGJSO22lUl+30bNeGSSy5h\n8ODBgLXCvfHGGwARC8k1xtbMzEyJ9VizZs0Jx11++eW88847IbtuIOPAPEeXy8Xq1auBymtFGiNi\ncnKyGCIHDRrE+eefD1h9a2qPJicni2hv1NFVq1ZJvIhdMgg2VsCoqddffz3t2llF2E2/btq0iT//\n+c+AZbg1pfA6duxIly5dAMsQvmLFCgCR1iZMmCCqVijLCdZGfegDXKWUugxIxLIpTALqK6XiSqWF\nFsCuQE9YVa5C05ErV66U40yH/PrXv5b3CgsL5YH36dNH1Iddu3aJ2mDcQ1A2Abzwwgu89957gTa1\nRrhcLrEJJCUlyRf82LFjYlkeOXIkYO3fMOLi4sWLue+++4DIZeB59tlnAWvwGw+OHdPfO3fuZP36\n9SG9tpkYK1IjXC6XfLmhbMJNTEwUVUIpJV/0F198EbAWE6Of/+EPfxB7VHZ2ttzLFVdcIYvLpEmT\ngNBV5jLqX5s2bWTnrQmma9eunYSP2/H5fGLniIuLo0WLFkCZG3bEiBHMmzdPjg0VNVYftNZjtNYt\ntNY5wHXAIq319cBiwHzrnFL0Dg51jHCYNB8ApimlHgeWA68G8qGqjIwJCQl89NFHgDVjmo1NxqBY\nUlLit4IaPzDgZ5wxUoE9r4JZXd59992wVXM2Bq7GjRtzww03AFaSEpO/wePxiBHS9MGmTZvE0Lhw\n4cKIp2wzbdNaV+gXN6trhw4dalzmvSLcbneV0pBSSoK6lFKyc7Bbt25iEB04cCC33HKLtN/8NMFN\nXbp0kX5eunSpeDAOHjwowWXhCiXOzc2VHZFml2zHjh0lhgbK4j2OHDki9+T1eiUBj4lfufHGG8PS\nzpBMClrrT4BPSn/fAvQIxXkdHBwiT8ykY6vKwPTBBx/IBpfjx4/LXv5gU6W1bt0aQGwH7dq1E7fm\n8OHDw5aVeNy4cQD86U9/OqGQDVj3Yd43P3ft2sXZZ58NhMb/Hyymj6644grZlNSzZ09pd69evQCY\nP38+jzzyCABPP/10rW0epjYDVLxaK6XE0Lhhwwaxyxw5ckR0beOyhDJJcOnSpRJNunbtWp555hnA\nihQ0YcdXXHFFTKRpM2OgTZs2Ik18+eWX8v7GjRsBqs0kVgF1Px2bSVFmsvACjBkzpkZ5E10uF59/\n/jmA7KLcv38/o0ePBsJbqdgY6txut6goS5YsEe/C4cOHmT9/PmD5zcFKtmHuPxqsXLkSsERck4Px\n0ksvFRHcGPCSkpK46KKLAMs4GYp+rEok1lrLJJmRkSHGt5KSEiZOnAhYOzcnT7ZCY8xORHvVqPT0\ndMlr4fP5JMYhFiYEKLv/AwcOyO7dPn36yGJoguwOHToUFsOzs0vSwcHBH+Mvj+YL0KUZnf1eCQkJ\nOiEhQRcUFMgrISHhhOOqerlcLu1yufS3336ri4qKdFFRkd6/f7/ev3+/btOmTVDnqulr06ZNetOm\nTdrr9eqHH35YP/zww5UeO23aND1t2jRdXFwsv0eijeVfDRs21A0bNtSHDh2Svh89erROTEzUiYmJ\nOicnR+fk5Ojc3Fy9d+9evXfv3gqfYSy+XC6X3rNnj96zZ48uKCiQe4l2u8q/Ro8erXfs2KF37Nih\njx49qjds2KA3bNigu3fvrrt3716Tcy4L5PsYM+qDqa9oVw1MEFJBQYFYYVNSUgK2xLvdbl591XJ+\ndOnSRXzaRscPV6bm8mRnZwOW96O6cFy7X/zSSy8Na7uqwmSQbtOmDcOHDwesBDCmD7dv3w6A1pq0\nNGvbS1xcXNg8OKEkLi5O7A4lJSWSyCQWUErJdv67775bdoxqrWXLvNl3Ei4c9cHBwcGfaKsORn1w\nuVyVip/vvvuuiLCHDx/WXbp00V26dNHx8fE6Pj7+hOOzs7N1dna2/uijj7TX69Ver1cfPXpUjxgx\nQo8YMSJi4l/Tpk1106ZNRW05cOCAdrvd2u12n3Csed+oGiUlJfrIkSP6yJEjFR4f7Zdp78GDB3Vh\nYaEuLCzULpcr6u0K5NWoUSNdUlIifWxUzGi2yePxaI/Ho19//XV97NgxfezYMe31eqWde/fu1e3b\nt9ft27evdAwF8Kpb6kNV26YHDRokATJZWVkSn/7JJ58A8Mwzz0hc/gMPPMDNN98MWGKiEXe7dOki\nwR+RwuxzMKSmpsqOvBdffFGqUP3xj3+UzM72wqcmRLtZs2ZhFxlrSnJysoQPx4J7OxCMugNEJOtS\nddiDsAYOHCjPHcr2ujzwwAOyNTxcVcsMjvrg4ODgR0xJCpXh8/nEH71w4UJ69uwJIP7zyZMny642\nl8slYcX79++XoKdISwlQFnRkJJpzzjmHbt26AfDyyy/7bQAzs79JdwZlK9q5557LW2+9FYkmB4yR\nggoKCiQ2IdjandEiLy/Pr0R9VRvxIkFiYiLXXHON/G7iFL777jvZPfn222+HNZbGTsxMCtVhPA59\n+/aVZB5mD8Tvfvc78VQkJCRIjsbevXtL8pVoYCzxRp1p1KiRbDNu3LixeFSOHz/O8uXLAUtVApg5\nc6bsqLSLu7GCiSpMTk6W3ad1YUIAyxtk2lq+MpfBTHpKqbB/GRs3bsyoUaMAa5I1yYafeOKJkOe/\nDARHfXBwcPCjzkgKBq21Xz4EsEJyTTKKV199NSaMR3ZMMo3du3fLPv/qOP/88/3Kp8UaZqfepEmT\nmD59OlB3JIWlS5dK6r369euLlGk34BkRPpyqhT2Pg9nNe+ONN7JgwQLA6s9ISgiG2BttDg4OUSVm\ndknW5vMej0dm+WjMrA51D+P2a9q0aVBZoEOJcUNPnTpVJJOBAweGsyxc3d8lGShFRUV1RnR1iA2M\nATpaEwKUGaI///xzyTsaqcrSVeGoDw4ODn7USUnBGN5M4sufm6QQiTJnNbl2XYlTMHEscGIqv3Cj\nlBLVxbhyN27c6Ocijba0cFLYFFwul5+V2HSqPd+f3d9sPzbS92+ubU/6EcsE0ld2L0ll91R+Mgl3\nv5e/nqlAZv5nb0ckJ1l7OypCa12ht8nn853gCbG33fxdDQHZFBz1wcHBwY86rT7YZ3u7X9n83+12\n+71f0UwUXdjbAAAgAElEQVQbLewrQixLDIH0kenXhIQE2YBW/p6i1dd2ycz+nokU9Hq9fmOkfDtD\nrRIF8qwrO6Y6CSNU1MlJobocfsY9Ge7dZDXB/vDM7/bioabNsaDWBYp5HiYBaixQvv/Kj4WKxob9\nM9G02wRDONpXK/VBKVVfKTVTKbVBKbVeKXWOUipTKbVQKfVd6c+MUDXWwcEh/NTWpjAJmK+1bg90\nxSpJ/yDwsdb6NODj0r8dqsDr9Yp6k56eTnp6Og0bNqxQ5XGIDFXl9zjZqbH3QSmVDqwAWmnbSZRS\nG4G+WutcpVRT4BOtdbtqzvXz7P1S7Hn5TCHZHj168P777wNWTkmTZCUWVSKj/thT0hcVFfkV1q0L\neDweuQdTL8L8rMvYbFdh9z6cCuwH/qmUWq6U+odSKgVorLU2mTD3AI0r+rBTit7BITapjaTQHfgK\n6KO1XqqUmgT8CIzQWte3HXdYa12lXSEWJQUT4BKJ4JZ69epJleObbroJ8N8ZuWbNGs4991wAqUIc\nKRITEyWfQ8uWLaVqlalc1LdvX+mruLg4PyPwlClTAHjnnXekfLrJSBxLnHLKKQB8+umnEhBnan6a\nyuZ1CbfbLePHvhdIax12SWEnsFNrvbT075nAmcDeUrWB0p/7anENBweHCFNjl6TWeo9SaodSqp3W\neiPQD1hX+votMJ46Woo+KytL6hKuW7cubJKCmc1vuOEGKVn2448/Ala2JeNLb9asWUSrTmdkZHDa\naacBMGTIEKn74PF4qjV8mnvyer1SLi8pKYnf//73YWxx7TDZsFq2bCm2m6+//jqaTaoVHo9HJLaa\nSLq1jVMYAUxVSiUAW4ChWNLHDKXUrcAPwOBaXiMgTGqzAQMGSMKVfv36yeCOj4+XRBbmi9eoUSOp\njfjcc8/Rr18/wMqlOGPGDAD+7//+LyztVUpx/fXXA1bRFzMwn3rqKQC/ojG7du2KaIDT7bffLuXZ\ne/ToIYZE+4RgxNL169fLe++8844kCImLi5M0dC+88ELM1Gk0mHtp166d5M0EmDt3LlCWRTnamHba\nVbP09HTAPz8mQOfOnQEr/d/UqVMB+N///hfZSUFrvQKoSEfpV5vzOjg4RI+YiGhUSpGQkIDP5wuq\n7JiZRR944AFJfFm/fn2/XXD21c1eR8FgZt1XXnlFru31euUc9lJ2oYxya926Nb/4xS8AePLJJ6WW\nRadOnQB49NFH5XpHjhyJSEo2c73NmzeLwW3r1q0ibT377LOS6m7dunXyucpKxps0dK1atYp4AlIj\n3Ziya/v37/eLFjX/f+mll+S+8/PzGTNmTMjbkpGRwdatW6UdDz30EIC4nH0+n190q6mI/cYbb0iF\ndJ/PJ5XATdJcu0HxyJEjNGjQALDyNBiJxxwHgbuzY2JSAOumPR6PdE5Vg8cMWFMDMDk5WR7sd999\nx4QJEwBLZTBf7sTERD766CMAEduvvfZauU5SUpLokXPnzhUreaNGjaQQTSgmBfMQ77rrLvEojBo1\nSnz6Ji08lPXBPffcExGfv7mvgoICET/T0tJYtWoVENweDa01Y8eOBayanSbzdqQzY5n+tLfd5XIx\nYMAAALp3LxN033nnnZB6d9q3bw/4T6BpaWmSrt++a9NQfuejwev1Sil68/969epJ9qakpCRJHDNq\n1CgWLVoEVLy7sjqcXZIODg5+xISkYHY52me7yoiPj2f+/PlAmcQwbdo0brvtNiCwlcisYJ999pnM\nvuvXr2fFihVyjJldTSIMICS7Go0o16lTJzF42svLmTgFn88noroRGyPFihUrJLLv2LFjIm0FI60k\nJiZKgZ7ExMSIek+g6nHg8XgYNmwYYI0h07a5c+eGzNOUnZ0t1c1LSkqk7w4cOCBGcYPWWsaCz+eT\n8bBq1SpeeeUVwMpAbY655JJLAPw8OiNGjJBYkPJqQqS9DyHD5/Nx4MCBahN5zJ8/X1xdkydPBqwO\nCQYzyC+++GJeeOEF4MRcfXZR2hAKvd5YiHv27CmTS2FhoQyEyy67TI596aWXgMiHNmdnZ4suu3//\nfvHmzJkzp1qbjwl0+vjjj6Wfx48fH1Ph2WPHjhW9HRB9/5tvvqnVeV0ulxTwufvuu7n99tsBGD58\nOMePHwcsm0F1Ozirw7jLN2/ezH333QcQ0knXUR8cHBz8iBlJoToRxxiGzj//fPbv3w/AyJEjg7rG\n6aefDpSVm1NK8fDDDwf8+doayVJSUqSuZEpKCq+99hrgP8ubwiqnn366nzoTCYw0NnDgQLnXm266\niYwMK0o9NzeXc845Byir1pyRkcF7770HWCqRvXyfUXvM56ONMewOGTKE5ORkwJJQzb0aw3VN0VpL\nLMz9999f4ZiuzRj6y1/+AiCq8kUXXRQWtaxO5GhUSkmQTJs2baRClBmMdlq3bi3qxYIFC8RzEB8f\nL5OJ0Ze/+uorcQtGguHDh/P8888D1gAy7lAjWgIyWDdv3ixtv+WWWyI6QTRp0kRco88884xY0b1e\nr7TJTAodO3b0s4nYOXjwIGAFZBmL+/bt24HQZ5tyuVwyIdkt7kacv/nmmxk9ejRg1Vsw/z9+/LiM\np48++qhW7Qpn4tozzzyTL7/8EkAmHqNGBIGTo9HBwSF4YkZ9qAqllNT+S01NZdOmTQBi3Xa73Vxw\nwQWAZSR78cUXAcuAZ1aPgQMHSvCS8XD07ds3Iu03bXjkkUfkvUmTJvlJCAZj2Pzyyy9F3Zk3b560\ndePGjWFuLezZs0ckgi5dukjo8nnnnUfz5s0B5Gd57CulMcz27t1bjMKhRCkloeljx46VOp3NmjWT\na9tjS8x79vDgt956S1Q6u4RRkxU/HFKCGTtffvmlnD/QeqQ1xZEUHBwc/KgTNgWwdrAB/OpXv6Jx\nYytvizEYdu7cmU8//RSAZcuW+bl4TJhrbm6uzLSnnnoqUFY5OVjcbndQbqRLL70UgA8++EA+16RJ\nkwo3CZnYi0GDBolxNTU1VWwRH3zwQY3aXBvsYcCmfQav1yuRonfeeSfPPvssAGeffbZIQp07d642\n/iQYMjMzAWsT23XXXVflsfbnZJ6/z+eTjWdTpkwJaem4UIbCK6VkY5bH45HxMGfOnJqeMiCbQp2Z\nFAwul0sMXyZ444wzzmD16tWAtcPPnrLbTBZ9+vQRP3SPHj1q296gHrrx3W/fvl2Mcpdffjmff/65\nnM8cYwbVsWPHJMhl2LBhLF++HEDuJ5KYieD48eMnxGpMnDiRe++994TPXHDBBfJMDhw4ELK2KKXE\nMPjqq6+K0bi4uFhClH/44QcJHNq3z0rn8dxzz0mCmEOHDklilVCHXYdiUjBj5NChQ6Ii79u3ryaG\nxfI4hkYHB4fgqXOSgh2zK2zYsGEiUj722GMiMnbo0EFW4/z8fMkRYBJpRAqzaWXOnDl+UopZQV0u\nl2xgGTp0KGCJuG3btgWsKE4jIQwdOjTixWM+/PBDwPKLG0yNh/T09ApXW3vkXqijGe21RI2fvrI+\nMavrmjVrRHLp169fTEVYQpl0cO+994pB2uPxyCa98847LxSb4k7+UvTmS/W3v/3NT2wzHdy5c2d5\n+PPnzxeLeqQxYu3u3bv9tmSbAbtp0yZJ6tKmTRvA2jp91VVXAZZIauLaIz0hpKWliYUfynzkZsIq\nPyGYvrfX7gw1pg+qyrRsxoOJZXG5XFx88cVA7GTENm1s2LChxFDcc889MumtX79eYm4imRnbUR8c\nHBz8qNOSgqH86mmiAgcMGCBGstWrV4ds5app5NqUKVNkw1Nqaqq02+VyMXHiRMCKswD/nZNHjhzh\n9ddfr22zg8KsYjt27JDfvV6veIGMN8Hlcok3KDU1VVbvjh07ilci0jkUAIllMQl1zjvvvKAS+ISL\n1NTUE3I2JCcnc8cddwCWpGt2Ad90001RqZ1xUkwK5enTpw8A/fv3lwH5yiuvhCy4pKbnWbx4seSE\n7Ny5s3zxTWYj8Ldev/nmm4ClStTUfVpTvvjiC8AaxOZ+r7rqKnEzmsn2jTfekCCrd955h3nz5snn\nozEZAGzZskUm11DtgAwVFSVxGTdunCxk69evF1Xi6NGjEW2bwVEfHBwc/DgpJQWTREUpxdq1a4Ey\nA1k0KSkpYciQIQA8//zz4olITEyU1fjVV18F4L777hMRXSklxie32+0XhxEOw2O9evWkbVprFi5c\nCFhJP0yehX/+85+AJZWZTNTjx4+vtBR9JDA5Epo3by4btkz4eyxiguiuv/56kSAHDBggRuVoUadd\nkpWcS0TtzMxMseCbgR1LGFUhJSVFJoBgnkdSUlJIv4RGndm9e7dEgubl5cmW4927d4vL1LhZ3W43\nTzzxBGC5KaMxGYDlAjUqQqdOnSQ5qtluHIsYF2mrVq3Ew/PVV1+F85LhD15SSo1WSq1VSq1RSr2l\nlEpUSp2qlFqqlNqslJpeWhPCwcGhrmBKbgf7ApoDW4Gk0r9nADeX/ryu9L0XgTsDOJcO1at9+/Y6\nPz9f5+fn64MHD+qEhASdkJAQsvPH0ishIUFnZGTojIwMrZTSpRJXjV6ZmZl68eLFevHixdrr9eqS\nkhJdUlKi77rrLu12u7Xb7dZJSUlyHZfLpV0uV0z0QUJCgv7jH/+oCwoKdEFBgT506JBOS0vTaWlp\ntT6/y+XSiYmJOjExMWRtzsnJ0Tk5OdLe3NxcHR8fr+Pj48PdX8sC+W7X1tAYByQppeKAZCAXuBCr\nriTA68CAWl7DwcEhgtSmluQupdTfge1APvAh8A1wRGttfFE7sSSKE1BK3Q7cXtPrV8Y999wj7rID\nBw5EPItwJCkqKhK3X21tQ/Xr1ycnJwewNl2Z2hj2FGUmtDkU1wsFbrebW2+9FbDcesZG89JLL0nm\n41BcI5SuVaUU//vf/4Ayt+6WLVtiIoZCqIX6kAEsAhoC8cB7wA3AZtsxLYE1kVQfvv/+e+3z+bTP\n59OrV6+OunhbV15xcXG6UaNGulGjRjGhFlT2crlcun79+rp+/fq6R48eeuPGjXrjxo3a6/XqY8eO\n6WPHjoVU1A/1q02bNtrr9fqpaI8++mit1b8AX2FXHy4Ctmqt92uti4F3gD5A/VJ1AqAFsKsW13Bw\ncIgwtYlT2A70UkolY6kP/YBlwGLgamAaESxFb/z4X3zxheQmePLJJ0Oa9OJkpqSkRHIPxDI+n09i\nTg4cOCARlK1bt+Yf//gHUPVGqWjTuHFjvv/+e6CsXsnixYtjapzWKk5BKfUIcC1QAiwHhmHZEKYB\nmaXv3aC1rjKAOxRxCqZT+/TpI4k3/vvf/0pYbix0tkNoUUpJeHBRUVFI9PJQVAGriiZNmoidy2Te\nso/NcGaEJhJbp7XWDwMPl3t7C1C71EYODg5Ro05GNJafzV0ul7zn9XpPmHnBPzzYHKu1jsjeerto\naLLz2kOU7atSLDyPcFC+8nGo7tNEYfp8PklfZ6/HaFQJ+wocrahLsMZeRfceoed+8iZZKf9QfT5f\ntQ86IyNDds6ZnWrfffddeBpYDvsDN5NQMIPA4/HIl0op5ecarCuEa9DbJ3V7v5QvENysWTMpThOt\n3YcQ3QkpUJxdkg4ODn7USfXh54gJdGnRooUkOlm9erVY4sO5AhlRPCUl5QRJx+fzVZsnMRZIS0uT\nNleU0+BnwsmrPvwcMV+87t27M2jQIAD++te/Sur3cGKS4s6fP1/EclPfYc6cOVKjM5bJy8urkQoT\nZm9ATOKoDw4ODn44kkId4+OPP5ZU9enp6WFfxZRSTJ8+HYCuXbuKMc9IKHVBSgBLtenQoQMAGzZs\nCFjVibakYLxVkUxt50gKDg4OfpzUkoJSSnTgpKQkmXVNVqH09PSYSegZKBdccIEkpj3jjDP49ttv\nAWRXYKhXtUaNGtG1a1fAsmusX78eKMuWXFeIi4uTRLirVq2S7MnVhURHynhaUXXshg0bSsGjdevW\nRUxiOem8D/Hx8bRu3RqA+++/XzINt2rVivr16wNlwUslJSWSTvuZZ55h8eLFQOxY0c0kVq9ePUmj\n/tprr0nBmLy8PJkMTPHR3bt3hyT23wzSdu3aSSq7oqIiSc1m31JdF8jMzJTMzvHx8XTs2BEg6vkQ\nwb8wUFJSEt27Ww6CRx55RPajXHrppRKyXwucWpIODg7Bc1KoD0opkQjmzZsnLrTykYAGIx3FxcVJ\ncZb+/ftLwZW77747oslZXC4X11xzDVCWJdmE7IIVqWdiBebNm8eUKVMAuPrqq2nSpAlgRWxCWZ2D\n2pKSkgLA448/LhLWJ598UmHpvVja4Vce07Zhw4ZJBefCwsKYknROO+00STTbsGFDyaRdv359qQnS\npUuXcCd1LaOmSVZC+QKCSjBhElK0b99et2/fXr/99tv6+PHj+vjx47qkpESSWBQUFEi+xsWLF+t6\n9erpevXqSX7BHj166K1bt+qtW7fqkpISOcdVV10VVFsCPbb8q1evXrpXr1762LFjknDDvLxery4s\nLNSFhYW6pKRE5+Xl6by8PN2wYcOwJwJxuVz63//+t/73v//t16b+/ftXenysJmZp1aqVbtWqlT50\n6JDcx+jRo6PeLvs4HjJkiN61a5fetWuXLigokPFrkgX5fD49ZsyYUFwzIjkaHRwcTjJiRn0IRvQ0\nFY9vueUWAC6//HIxHh49epTHHnsMsMJZjcW5opp8K1eulM0xLVu2lFBis0e/Ksyxbdu2Zc2aNQG3\n3WzQWbt2rYQru1wuqfuwYMECAN566y15b9iwYVKXMRJxAfHx8VJERSklBq7qamdE26dfEf/6178A\nq99N/oJXXnklmk0SzJjds2cPs2fPBqx8IKbgjlENAUaOHCn1RsOdRCZmJoVgMHqtsbzfcccdkmBj\nxowZAW+HbtCggeycVEqJHcF4JKqiRYsWAJx11lkBTwoul0uKkzRr1kwe7osvvsi4ceMA/LZTG314\n1apVssMvEpSUlPgFy5hApcq+8PaKVbGCSbRjfh48eFD2PNx44428+OKLQHCLUagx3qX27duLl+GC\nCy6Qhequu+7ib3/7G2DZjPr27QsENj5rg6M+ODg4+BEzkkIwoqcRu8aPHw+cmFilOswMbc/nqLUW\ni/RPP/1U7TmMlX/79u3VWt+NOHjTTTeJJf/JJ58Ub8fmzZsr/Jw5X1paWkTDiZOTk6UsnM/nk9Dm\n1NTUCnMRmP6MVNKa6nC73fz5z38Gysrb7d+/X1LYr1+/PqoSghkvb731FmCFjxuV5sCBA3Lciy++\nKBWomzdvzuOPPw7Ahx9+CIQvniZmJoVgMF/aYBOWtG/fHijTjZs3by6fzc/PZ8KECUBgnW0+V1VM\nurE7tGvXDoAePXrwn//8B4BFixZJEdTKMG7IESNGcO+99wJE5EuXn58vW7JTU1Pp0qULULkuO2zY\nMMCqX2BsH9EIADNftq+//lomYlNguHPnzrKYmLoL0eL9998HEHe4z+djw4YNgP/imJaWxsaNGwEr\n4WujRo2AsnEVLtuCoz44ODj4UeckBft+BhPgU1RUVO0KetZZZ/H2228DloRgMBbpAQMGsHLlSiC4\nVc6ec698bsj+/fsDSErvMWPGBBVW26tXLwA6duwoUkMk8Hq9EgwFSNBPVlYWu3fv9js2PT1d1LjU\n1FS+/PJLAAYOHOgnCtvzYtp/hpKXXnoJsAJ9brjhBgAxAk+cOFE8PyEIF64x2dnZ9O7dGyjrg337\n9omhsVWrVmJAz8jI4NNPPwXgvPPOkzEe7rHgSAoODg5+VCspKKWmAFcA+7TWnUrfywSmAznANmCw\n1vqwspbwScBlwHHgZq31t4E0pLqVw0gHcXFxEgb6xhtvAJZrcsWKFQA8+uij7NixA7BCRs0mp8aN\nG4tR0XDs2DEuvPBCwDL21XQFqajtCQkJ/PGPfwSsDEngn7lIKSWr8Y033ijtv+SSSwB4/vnnmTx5\nsrTdSDeVGSVDicfjEVee1lp86D/++KNfajaw4gCMJKG1Funmww8/lGInS5YsCbuN4f7772fo0KGA\nJekZY5y5j/j4eEaOHBnSa9YkvPuyyy4Tw+zevXsBy11qwtx/8YtfSPzNzp072blzJwDFxcVyLxXF\n3ISSQNSH14DngDds7z0IfKy1Hq+UerD07weAXwKnlb56ApNLf9Yae07Aq6++GijL3puVlUXPntZl\n/v73v0vVoD/96U+yu9CIr1CWzbdNmzY18v+X98fbB4f5ffHixZx11llAWQDN559/LhbwU045RQxG\nFTFq1CgZPOvXr5edkdu3bw/7voyGDRvKl7+kpIR169ZJm43R1HhOkpKSRKw9duyYPKcOHTrIl9Co\nFIEQbACUmbD69+8vfW8v2NqqVSvAMtpVZ9gNJ2b8XXXVVRKTYsZvWlqaPNOxY8f6paU3BuaEhAS2\nb98OhD+2olr1QWv9GVC+N3+FVWYe/MvN/wp4Q1t8hVVXsmmoGuvg4BB+ampobKy1NtvM9gCNS39v\nDuywHWdK0Z+wJa2mpei9Xi+jRo3yey8+Pl72+Y8aNYpHH30UsFY8u4Fr0aJFAAwePBgoMzIGi32m\ndrlc/Pa3vwUsyePBBx8E/KUJY5w7++yzxW9ul1zsJc+MdOD1euX3LVu2iMsqEq6+HTt2iJEwOTmZ\n+++/H4AHHnhAjLtGkjh48KDkJkhLSxPfe4cOHSQhS6gx177ttttYvXo1YPXRk08+CVj9bZ7RE088\nAVguSZNYZezYsSFpRzArtumjN998U3Y7GsPn999/X6FK0K5dO0khB1bODwi/W7rW3gettdkpGOzn\nXgZehtonWSkuLpYMSsnJyeKjdrlc0oF33HGHbEsO5Rerfv36XHzxxYC1ldlMBj/++KOIrmbyiYuL\nEzWnpKSEZcuWye92mwlYyVRM1ubPPvtMdMtI5err168fYKlBZiu6z+eT6xvbxumnny79mZSUJGrO\nkSNHJONzMATyRTPHvPzyy9V6M4y65nK55D4ijVKKTp06AdaEZWxepi/Lj0cz6b399tuyeOzYsUPi\nG8JNTb0Pe41aUPrTlCveBbS0HeeUondwqGPUVFJ4H6vM/Hj8y82/D9ytlJqGZWA8alMzworJW9iz\nZ0+/dGvGAj5lypSwGGgOHTrEI488AlgGQVMOvaIkHsXFxXzxxRcVnqd8ncNly5aJVPH2229HNJsv\nlPn3zz77bFHHunXrxnnnnQf4q15GDJ44caJIOjNmzAibYS8YSc9Ih48//rgYoCNNXFycGLfT0tLE\nwFxRlWy3283dd98NWBG4xujYt2/fiCWGCcQl+RbQF2iglNqJVWV6PDBDKXUr8AMwuPTwuVjuyM1Y\nLsmhYWjzCXg8HvlipqSkyBeoZ8+e4uoLJyY4afz48TUuh24msnfeeQeACy+8UM4bzSxB27Zt4847\n7wSgadOmsp3btDc9PZ1rr70WsNypRs35y1/+EhPbqI2u7vP5qvT2hBOv1yvb/a+//nrmzJkD+Ks8\nxl0+depU2Q1ZVFQkQViRzCVZ7aSgtR5Syb/6VXCsBu6qbaMcHByiSLRTsZl0bDV5ZWRk6IyMDL1y\n5UpJtXX48GE9ZMgQPWTIkKin26rulZKSolNSUvT06dP1nj179J49e+Q+Nm7cqDt16qQ7deoU9Xaa\nl9vt1pmZmTozM1M3b95cN2/eXH/zzTeS8q6oqEhfc801+pprrqlVmrpQvEyKuB07dugdO3bokpIS\n3bNnT92zZ8+otCc+Pl7Hx8frlJSUE/5Xr149vWzZMr1s2TJdXFysDx8+rA8fPqwHDRoU6nYElI6t\nzu19gDJ331NPPQVYiS+NnnnRRRdJLYRgzmUnUmKvCazq3bu3eEmMunPZZZfFXPUlr9crtgSTsOSn\nn34SVUIpJbsSo606GM+P6WOv1yvqWDQwamVF6uXAgQP9XI833ngjgKgZkcbZ++Dg4OBPtFWHmqgP\nTZs21U2bNtVHjhzRR44c0QUFBXrWrFl61qxZQWcVNhl13W53xEVKoz7ccMMN+owzztBnnHGGTk9P\n1+np6TouLi4qYm6wL5fLpVevXq1Xr16tfT6fnj17tp49e3ZU25SSkqLnzp2r586dqwsKCnRBQYGe\nPn161Puq/Mvj8WiPx6O///57fezYMX3s2DF93333hfOaTjZnBweH4KlzZeMSEhIkK5BxMW3cuJFu\n3boBBL1ZyESPaa0jni2oqorCbrc7JlKbBcKqVasA6NSpk4RHN2nSJKL9qZTi7LPPBuCaa66RkGaT\n5Pess86SPAWxgomEnT17tthg6tWrF87nHlDZuDpjaDQGwenTpxMfHw+UxYDfeeedNd45GM0vXlUB\nSXVlQgAkyGrfvn0yKXg8HtkFGAm01mLkPPPMM7nrLsszPmuWFVcXSxOCGctXXnklYE2qJvguFp67\noz44ODj4UWckBZNk5KKLLpL3TALO//73v1Fpk4OFkQguvvhica2FOxFIRZhoS1PTIVYxY9kUAxo4\ncGCNI2HDQZ2xKZgtu99++62oCiYOP5ZEw58zSUlJYkeIxqRQF/B4PFJ9y2ypX79+faQmBacUvYOD\nQ/DEjPpQURouez5DM5Pas9qGQkKwR+OF2shjPBtmF6G9ZqQ914M9qtIYUUOVci0SZeLtCWPsJeSi\nKYWaNkWj/kRFmLFw0003iafM5PCMNeqM+lDu+BPei4X7CIRA215ZHshIDHK32y1tSkxMlAGdn59/\nQgEee8p9+/vRfB4VtcfeTqWU9KPH45FsWPZ8neZYt9stC1K47sk+qbpcLnFVQ9niYL+23ZVt3ne5\nXNLmKhY3R31wcHAInphRH4Ih0BnbLsLGinQR6DXtx9lXOZfLFXZpwX5+ezVun8/ntzKBtZIaK3pu\nbq4YGKMpKVR0bVtIvR+FhYUVrsZ2qSLc2Ptb67J6nAkJCRU+64qMkj6f74T4nZriSAoODg5+1Emb\nQjAY/SszM1NcQaZo5+rVq2MigqwuU5H+7hCznFxhzjXFhBLn5OTQtKlVguKHH34A6v4gjoQqUR11\nvXGw+dcAABMRSURBVA8dTsRRHxwcHPw46SUFQ15enhRUMZt2yq+yplbfmjVr+OmnnwDo3r27GHYi\n4fMPBNPO4uLiqEsKDoFhr+thnpkxDBYXF8eUGnvSTwrGpjBo0CDZWrtrl1WK4q677vJ7GFOmTAEs\nVcNYpP/9738zZIiVuzaaD84Mqp49e0pNwfJl4SOJKY573333SaHfnJwcKXSilOK7774DQheIVZdI\nTU2VokRjxoyRQsZFRUWi0po+zMrKkvR28fHxPPTQQ4BVg9QsTpHEUR8cHBz8qNb7UEkp+gnAlUAR\n8D0wVGt9pPR/Y4BbAS8wUmu9oNpGhMn7oJSSXZXPPfecJPH84IMPABg6dKisYm63W/ICnHbaaXzy\nyScA9OrVi/feew8o8w9HWmR3uVwMHz4csFYSU1Mw0iQlJTFx4kQAbr31VqAsfLc8a9eulZoFq1ev\n/tmoOUaiy8rK4rPPPgOQSt0Geyg4+Ec02tFai3F83759FR4TJCHzPrzGiaXoFwJjtNYlSqm/AmOA\nB5RSHYHrgNOBZsBHSqm2WuuoyN3x8fFSj/HUU08Vsc1stbYnOfF6vSxdulT+bx6YEdUhMoEs9muZ\nnaEffvghZ5xxBoCoMpEkPT0dgG+++UayJBu01n62FqNi1atXTwZyOMODK5tsygcfdenSRRKu5Ofn\ns3LlSgA++eQTGjRoAMBjjz1W6zaZe83Ly+M3v/kNAB999JF88Q8ePCiLkin6kpeXx1lnnQVYY9be\ndpM5qmHDhn5h2OGkRqXotdYfaq3NN+orrJqRYJWin6a1LtRab8WqFNUjhO11cHAIM6EwNN4CTC/9\nvTnWJGEwpeirxYihoTDmmXM1a9ZMcuhDmddh5syZwIlqgP3a4fYwJCQkyKrfqVMnevXqBVhl7wC+\n+OILScbRs2dPqfJsVplgrgOWwfX48eNBt7NTp04iBtvzB957772ApZaZvmratKnUbmzTpg3NmjUD\nyvIkBkIguyvvu+8+wNplaOpVHjhwQOourlmzRmphDh1qVS7MyMigRQtr7SoqKpJn37hxY5EYJ02a\nJAa/2j7//Px8qeFhJJFAMcbxrVu3yhhYu3YtTZo0qVWbAr5+bT6slBoHlABTa/DZ24Hb7e8FqndW\n5RpUSslW5SFDhvjtOHvggQcAalxkpbYDJT4+XmoKLlu2TL6wWmsZmK+88gpglVk3BVF9Ph+jRo2q\nURtMX2VmZsq+hEAmXiPaTp8+XeocHjp0iCuuuAIoy3plJzc3l2nTpgHWF9ZY3IMpzlPZ/Rnxu0GD\nBvIcU1NTZYdjdna2eJXefPNNBg4cCCD2oJ07d8qikJWVRaNGjQBrsjC2j5YtW7J+/foq2xEJzFjI\nzs6WJMUNGzakXr16AGH3SNR4UlBK3YxlgOyny3ow4FL0WuuXgZdLz+WExTk4xAg1mhSUUv2B+4Hz\ntdZ2mfR94N9KqaewDI2nAScuKRVg34FXHVUdZzc+5ebmykpZUFDgt/JGgzvuuEOs9lprWQWee+45\nKfduVvHk5GS/1GaVlbCvDnP/ffr0EbWpOhISEvj9738PWKuxadO6dev4+uuvK/2c1lokhZycHJYt\nWybv15SKpEIjpVxwwQXStttuu02uDfDSSy9V+nkoS+/3+uuvSzzBeeedJ5JCLODz+STu49RTTyUz\nMxOIAUmhklL0YwAPsLC007/SWt+htV6rlJoBrMNSK+6KlufBwcGhZtS0FP2rVRz/BPBEsA2prQ5n\njItmBQDo2LGj/J6QkCCp0CLNzTffDFgur+TkZAAGDx7MggVWCEdF9REyMzNp2LAhYNUFMEa0YDHS\nxuzZswM24o4ePVrsAUePHpVCvk8//XTAzyk5OTkoW0JlmOdq/PW5ubmMGzcOgAcffFCe8dtvv13h\n5ytrb/369QFo37699Mu2bdtiKp4iMzNTolbdbndQBtvacFKEOScmJkpm5127drF3714ALrnkkgpT\niUWaX/ziF4D1YG+/3bKtGgNYZTz77LNiiNy5c2eNr20CrqoqPGMw1xs6dKh4QQoLC0UNqCi5R0JC\nguzFOPfcc7nkkksAuPDCC8UgGAqMGA1WMBTA0qVLJbakTZs24qGBqo2pLpdLPCqtWrUSA6wpJhMN\nzj33XAC6du0qlaMuvPBCeSZvvfVWxCYsJ8zZwcHBjzotKRgj0nnnnceIESMAePzxx0WFyMzMlNl1\nyZIlUWufWcGys7PFr14ZxoXaoUMHCcGeM2dOrVeJQD5vktAY3zhY7kSzu7Sidr7++usSxtuhQweR\nzPbs2SOu4dqUj6tIwjFSwMSJE+nfvz8Af/vb32SFLS4u5ssvvwTgnnvuASxDs5G43G43p5xyCmA9\nI5Nfo6au6trSsWNH3n//fcAy7FYUOn7DDTdInMmDDz4IWAbHcLhO6/SkYNiyZQvdu1sh3TfffLOE\n165YsULCWW+66aao6YtPPvkkENhuwS5dugDWF9Pok9OnT6/qI1US6KBxu93icUhMTJS+SklJkTgF\nsEKdAb9AGnOsPYY/KytLgnbson+oMXaZzp07y6Tg8XgkzsLEVUyePFnak5WVJduWfT6fqHQ1tdvU\nlvHjx8sEas807fP5ZEJNTU2VorlGRbvuuuvkeYQSR31wcHDwx2S5jeYL0LV5paam6r179+q9e/fq\nPXv26JUrV+qVK1fqoUOH6pYtW+qWLVv6Ha+U0kopnZKSot1ut3a73bW6fmUvc534+HgdHx9f5bEu\nl0u7XC49depUPXXqVO31evXw4cP18OHDQ9KG6o7LycnR+/bt0/v27dNer1eXlJTokpISvWfPHn3w\n4EF98OBB7fP55GWwv+fz+XRBQYEuKCjQP/74o77qqqv0VVddFZa+raj/EhMTdWJiona73bpt27a6\nbdu2Oi4uTsfFxWm32y2/7927V9r75ZdfSt9Hop32V3p6uk5PT9c7duzQx48f18ePH9evvfaa3Acg\n43Py5Mm6uLhYFxcXS9uPHTsWbNuXBfJ9PCkSt8bFxbFo0SIAunXrJuLXgAED2LRpEwB79+6V4A/z\nc8KECRIOG+pafkopcT+ec845AHz88ceVhmYbvdyIgwUFBSLu1uYZ2VOxV3SPRmxt3ry5qFrx8fGi\nt+/du1dSuNt1XdMme2BVnz595JgffvhBdv5FI1FIRRg7yPHjx6WdXbt2lX0SkcKoLmPHjpX3TPBa\nVc86JycHKLNR2ceN3fNSBU4xGAcHh+A5KQyNPp9PwlN79Oghq+NTTz0luQDMLGtHay2r45NPPinW\n6fT0dPFZb9u2TYKegsnRqLWWz3300UdVHtu4cWNmz54NlEksTZo0CallubI4BeOjP3r0qIQwd+3a\nlY8//hiAUaNGcfToUcCy+pvjjf+8uLhYvBZz5syR8y5evDhqwWKVYXZXaq1Felm3bl1E29C8eXMu\nv/xyoCwuItDw823btgFI3Ei3bt348MMPASsIqzJDdrC5RU+KScHlconVPi4uTiy2SUlJfiJ4RfUZ\n27dvD1i7E+2dZn7fv3+/HGMGUqiDoNq2bSuT17Bhw4DQqTOBDoSDBw9KwdNhw4bJ/oLK8kDaS833\n7t0bsMRic73XXnst6gluy2O2chcVFckCECmPVHZ2NmC5xo0a88QTQQf+AnD++ecDsGjRIkm+s379\neq688koANmzYUKv7ctQHBwcHP+q0pGBW/hYtWtC6dWvASm1lgjtWr14tolaLFi0kkYkJv83JyZFw\nXvv57L9nZWVJGK9JwBFqZs6cKauHCWIJFcFUcPrqKys/zqxZs0RlqA6XyyUxIkopUeNCse8hlHg8\nHgl0crvdzJ8/v9bnDEYsN3s3GjRoIFKgUWemTJkS1NgyuzpbtWolgXo5OTkSuj1gwAAJ3qqshmZV\nOJKCg4ODH3VaUjBupezsbNk//+yzz0q4qn2G3Lx5s7ht3nzzTcCa6U102EMPPSSRe+3atRNj5aBB\ngyRhpnEl2fXp2mBWmtTUVNHdA9m4FAymDwJZLYwLNSMjQ8LGd+3axYQJEyr9THp6urhclVJSpzPU\nLt7acvXVV0vS2YMHD4qBuTYEswKbjVuXXnqp7Drt3LkzYIWE//3vfwesMH0zBuLi4uQaOTk5/PKX\nvwSQZ5Oeni72reLiYpHOli9fXmEF7YDbG+3ApVAELzVs2LDWAShKKZ2cnKyTk5P1WWedpT0ej/Z4\nPCccE0ggUKCvhIQEnZCQoIuLi/V3332nv/vuu5BfoyYve4BMcXGxHjx4sB48eLBu1KiR9It5PfTQ\nQxJUU1JSoocOHaqHDh0a1fZX9Mzmz5+vvV6v9nq9etu2bTopKUknJSVFpU1ZWVk6KytL5+fn6/z8\nfO3z+aRtx44d0/v379f79+/XBw8e1Hl5eTovL0+XlJTIMSawLC8vTy9YsEAvWLBA5+TkBBIkF1Dw\nkqM+ODg4+FGn1QdDKHa3aa1lF1plm0xC7WIz6ojWWmpRxIIb75ZbbuH1118HLBXN/P7jjz+Sm5sL\nlBld7XEhxcXFITeU1hbTx02bNhU33aRJk0KupgWDUUeNujp//nz69OkDWBvQ7MZvO0ZtNVG6119/\nPVu2bAGoUabuyjgpJoW6ivGSADEV6DNjxgw6dOgAWFuPTaBSw4YNJRuUmbzs/vA333yz2q3hkcbY\nEZo1aya7IOvVqxcTNg/Thn79+kkq+meeeUY8Cvv27ZPdqLNnz5bdpqNHjwaseJlwLCKO+uDg4ODH\nSbEhqq5iqjK3atVKLNHBht2a+AZjhQ7V8zQbpR566CHuuusuwPKSGFXNhEHPnTtXEtgcPXqUw4cP\nh+T6tcVY3E3xnH79+sl7vXv3lviVnxkBbYhyJoUoYpKnDBo0SGpemnqHgeByuULuJj1ZMMFCxg3t\n8XhE1WnWrJkUhvmZ4eySdHBwCB7H0BgD+Hw+KRJjrPeBSHA+n8+RECrA7XZL6ncjHeTl5YnUECsq\nTqziqA81IJAiqIFgLMtXXnmlxOKb3Xux8FyCJVT9Eop2ZGRkAEiCmNTUVCn4Gu2kL8aFG4WcoY76\n4ODgEDyxIinsB/KAaFl/GjjXdq79M7h2tta6YXUHxcSkAKCUWhaIaONc27m2c+3w4qgPDg4OfjiT\ngoODgx+xNCm87FzbubZz7egTMzYFBweH2CCWJAUHB4cYIOqTglKqv1Jqo1Jqs1Lqweo/UatrtVRK\nLVZKrVNKrVVK/b70/Uyl1EKl1HelPzPC2Aa3Umq5UmpO6d+nKqWWlt7/dKVUQhivXV8pNVMptUEp\ntV4pdU6k7l0pNbq0z9copd5SSiWG696VUlOUUvuUUmts71V4n8rimdI2rFJKnRmGa08o7fNVSql3\nlVL1bf8bU3rtjUqpS2tz7VAR1UlBKeUGngd+CXQEhiilOobxkiXAvVrrjkAv4K7S6z0IfKy1Pg34\nuPTvcPF7YL3t778CE7XWbYDDwK1hvPYkYL7Wuj3QtbQdYb93pVRzYCTQXWvdCXAD1xG+e38N6F/u\nvcru85fAaaWv24HJYbj2QqCT1roLsAkYA1A69q4DTi/9zAul34noEuXcjOcAC2x/jwHGRPD6s4CL\ngY1A09L3mgIbw3S9FlgD8kJgDqCwAlniKuqPEF87HdhKqR3J9n7Y7x1oDuwAMrH228wBLg3nvQM5\nwJrq7hN4CRhS0XGhuna5//0amFr6u994BxYA54Tj+Qfzirb6YAaLYWfpe2FHKZUDdAOWAo211rml\n/9oDNA7TZZ8G7gdM0HsWcERrbXKDhfP+TwX2A/8sVV/+oZRKIQL3rrXeBfwd2A7kAkeBb4jcvUPl\n9xnpMXgLMC9K1w6IaE8KUUEpVQ/4DzBKa/2j/X/amrJD7pJRSl0B7NNaV5wAMvzE/X87Z88aRRSF\n4ecUuqCNsYtEUEFs1SqghaCFBomNhRAwgr9CtvIPCBaijZUEBSXIYulHraYIKn5gRMEIflTWKY7F\nOQtzkUUje+9avA8MzNxZeOfdvbzcc2Z2gMPAdXc/RDxWXpQKFb1PAWeIYNoFbOf3JXYzavn8E2bW\nJ0rYpdbam2HSofAF2N05nsmxapjZFiIQltx9OYe/mdl0np8GvleQPgLMm9kn4A5RQlwFdpjZ8C/s\nNf2vA+vu/jSP7xEh0cL7CeCju/9w9w1gmfg+WnmH0T6bzEEzuwCcBhYylJppb5ZJh8JzYH92obcS\nTZdqrwO2eB/XTeCNu1/pnBoAi7m/SPQaxoq7X3L3GXffQ/h87O4LwBPgbE3t1P8KfDazAzl0HHhN\nA+9E2TBrZtvyNxhqN/GejPI5AM7nXYhZ4GenzBgLZnaSKBvn3b372uUBcM7Mema2l2h2Phun9j8x\n6aYGMEd0ZD8A/cpaR4ll4wtgNbc5orZ/BLwHHgI7K1/HMeBB7u8jJsIacBfoVdQ9CKyk//vAVCvv\nwGXgLfAKuAX0ankHbhO9iw1ihXRxlE+i2Xst599L4g7JuLXXiN7BcM7d6Hy+n9rvgFM1593fbnqi\nUQhRMOnyQQjxn6FQEEIUKBSEEAUKBSFEgUJBCFGgUBBCFCgUhBAFCgUhRMEv6Zbtfu1PCEYAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2/2... Discriminator Loss: 0.9250... Generator Loss: 1.0925\n", + "Epoch 2/2... Discriminator Loss: 0.9684... Generator Loss: 0.9028\n", + "Epoch 2/2... Discriminator Loss: 0.9477... Generator Loss: 0.9569\n", + "Epoch 2/2... Discriminator Loss: 1.2281... Generator Loss: 0.6713\n", + "Epoch 2/2... Discriminator Loss: 0.8281... Generator Loss: 1.1973\n", + "Epoch 2/2... Discriminator Loss: 1.0442... Generator Loss: 0.7927\n", + "Epoch 2/2... Discriminator Loss: 0.9155... Generator Loss: 1.0041\n", + "Epoch 2/2... Discriminator Loss: 0.8651... Generator Loss: 1.6100\n", + "Epoch 2/2... Discriminator Loss: 1.1178... Generator Loss: 0.7747\n", + "Epoch 2/2... Discriminator Loss: 1.6798... Generator Loss: 3.0678\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8VFX2wL93ZtJDCL1FelVRRFEQpVgRFdC1gRULujZ2\nXQvYhbViWRuIDUX5YcUVV0WxY0NRURBEilQB6XEpqff3x8s5eRMSMpPMm0zY9/188kkymbx333t3\nzj3n3FOMtRYfHx8fIVDTA/Dx8UksfKHg4+MThi8UfHx8wvCFgo+PTxi+UPDx8QnDFwo+Pj5heCYU\njDEDjDGLjDFLjDGjvDqPj49PbDFexCkYY4LAr8CxwGrgW2CotXZBzE/m4+MTU7zSFA4Fllhrl1lr\n84GXgMEencvHxyeGhDw6bgtglev31cBhFb3ZGOOHVfpUCWMMANbasJ9jcTwvCAaDu71mrdXzeRxh\nvNFa26iyN3klFCrFGDMCGFHF/wU8v4ExQ8br/rmySRwMBikqKtLf43mt7olbXFxc7piqOp5YP7tQ\nKKTHk2MXFRWFjTuaYwUCjvJcUFAQ03HK2LKzsyksLAx7rbCwUO9rXl5emIDY0/1yz6sIx7kikjd5\nJRTWAPu4fs8peU2x1j4JPAnRawq1RRgI7vFW9HPZh+/+YLqFQzxwr1wQ/sGr7r2P9bOTD28sKC4u\n1g9srJHr3rJli/7sfuYV3Zc93S+vPgdeCYVvgQ7GmDY4wuAsYJhH54oIY0xCC5OyY8vLy9OfA4FA\nXMdeXFysK2YwGGTIkCEAfPPNN6xYEdFiU6uQD2dVtItocZ8jXs80Wu3ME6FgrS00xlwJvAcEgWet\ntT97cS4fH5/Y4plPwVr7DvCOV8ePhFAoRHJyMgBNmzZl+fLlQHxWhFggEr5t27aqwm/atIkNGzZ4\nfm73PZLz3X///Zx//vkA7Nixw/MxxAO3Xb63Eq1G4kmcQrTEcvchPT2dHj16ADBkyBC+/PJLAD7+\n+GM2bdoE1B6fxKGHHgrASy+9RMuWLQFnEr/zjiNrhwwZEhd/Q/PmzQH45Zdf9N4deOCBACpoayuh\nUCjM4Vd2biS62elGriMjI4P//ve/+rqYgsXFxd9Zaw+p7Dh+mLOPj08YNbYlWR1EIqanpwOwzz77\n8NJLLwHQsWNHlZK33HKLevEzMzPJzc0FID8/P95DjprGjRtz0kknAVC/fn29ZmMMAwcOBOCaa67h\n/vvvB7zVftauXQvAH3/8QU5ODgBLliwB4IUXXuCiiy4Cao9ZFgwG2WcfZ3Ps/PPPp3379gA8+uij\nel3bt28HnJ0fr3YkYklqairPPvssAD/++CMTJ04EYOvWrVEfq1aaD3379gXQC2/VqlXYgxs+fDgA\nc+fO5bLLLgPgyCOP5Ouvvwbg73//O5A4kzgpKUkn6YQJEwA45JBDdHz5+flkZWUBjiAUAVFQUECH\nDh0AWLlypefj/Mtf/qLCV4Ttrl27qFevHhC+Y5IoyL0KBoNccsklAIwcOZIWLVoAjvmwa9cuAHbu\n3KnzaPz48QDcd999Fc4TL+JlUlNTdTyVmS6BQEDnzejRo1U4L1u2jLPPPhuA7777Ts2HoqIi33zw\n8fGJnlpnPtSrV49XX31VfwZYs2aNOuU2btyokt0Yw7Rp0wA48cQTVcNo2LAh4KjDNYms/qeeeir3\n3HMP4JgKAOvXr2fVKidSfOXKlbqLMmjQoLDVr1u3bvoer/n444/VNKtbty4AKSkpXHDBBUCp5pYI\nyG7NYYc50fXPPvusOkx///133n33XQC+/PJLtm3bBsDtt99Oo0bhUcDxCB5KSkriyiuvBCAnJ4d5\n8+YB8P7776vp5iY1NRWAli1b8vjjjwOw//77s3PnTsDRbr777jsdY7TO6IQRCpWpSvJBuOmmm8jM\nzARg8+bNgGNOlPcBt9Yye/ZsACZNmqQfIBEgb7/9do15luvWrUufPn0AZzKKf0RUx+XLl3P77bcD\nsHTpUh544AHA8ZCLgAC47rrrAJg+fbrnY968efNu/hhjDMuWLfP83NEQCoX0WctOTVpaGr///jvg\nCNalS5cCjs+gTZs2APz0008cc8wxAMyZMwfY8we/uuaDqPVvv/02nTp1AqBJkyY6Zz///POwwCoR\nBmISDx8+nC5dugDOvJDozsmTJ1drXvvmg4+PTxi1RlPIzs4G4OKLL1Yn19SpUwFUzS4PUZ0mTpzI\nQQcdBMCDDz4IOObDN998U/3BR0hSUpKuDhkZGcydOxeAO+64g1mzZgHoDsm2bdto3LgxAP379+fE\nE0/UY7i55ZZb4jJ2QdRZUbOttey///4AzJw5M65jKYvc24EDB3LuuecCqBYzZMiQCkO0RXPs2bOn\nmp5ian700Ucxd0jLin/HHXcAcNRRR+k58vLyuPTSS3Xs7nP36tULgDvvvBNwTDfRJAKBAE888QRQ\n/XwQX1Pw8fEJI2E0hcpsoEGDBgHOCit295tvvglEtrX4559/csABBwDQrl07AJ566ikOOcTZoYll\ntl1FNGrUSMODjTGsWeMkjr7wwgvubSPAcSJee+21AFx66aWqHbnv09q1a/n88889H7ebr776CkDv\nJcBbb70Vs+MbY3a7F5EQDAb1WT7yyCP8+eefAPz1r38F2E1LkBW2U6dO/O1vfwOgTp06ep/PO+88\nAB544IEK9/rL1kaINJ6hX79+AIwYMULHIuPZunWrajfueX3ooYfyn//8ByjVNNxs2LCBG2+8MaLz\nV0atEArGGFWdAoGA7od37NgRcLzilVG3bl318KakpADQokULRo8eDcDYsWM9dzpu2bJFhc+2bdv0\nfIFAYDfB1r17d53QZesbiJd58uTJcQ+skfHLBzYQCKiTNFZUJXS7a9euXH/99QA0aNCAb7/9FnAC\necoSDAY1PLtZs2blpjDLztZ5553HpEmTAFTQlCWaZ5Cdnc0jjzwCoA5zgHXr1gFw6623hjlzJQ7h\n888/L7cQiwRZ3X777TovqotvPvj4+ISRMJpCZRx++OGAozXUqVMHQPdiI6G4uJi7774bQDP9Dj/8\ncC688ELAcUSuX78+lkPeDTF7IFzaJyUlqSNVEo1uvfVW1RDc9Q3WrVunJsNjjz3m6XjLY+HChUD4\ndlwsYySi1dYyMjIA+Mc//qFqeSAQUFXbnRgkzseHH35Y4yystfz2228AfPLJJ2qCyGp95pln8tNP\nP+nf3USjIYiD+KKLLlLz1Y1snT7//PP6WigUUudtKBTS88k9Kigo4KOPPgJQbSYW1AqhYK1l0aJF\ngBOkIYEpRx55JODYU7IHXVxcrDctLS0trGrQF198AaCCAEozAI844ghef/31iMZTnrof6XW4Edvw\nqKOO4rjjjgPglFNO0XG5g5TEZDrxxBPV5nRP+Hgh4xQhBaiQrkqcfXWRHaXevXurOm6MYfHixUDp\nPZ86dSpnnHGG/l2e3zXXXKPqvDFGd1XEk9+tWzc9VllEaFdm7oRCIQYMGACgJg6U+gz+/PNPrrrq\nKn1Nnvvrr7+uJrL7fLK4XH/99Tz55JNAbH1ivvng4+MTRq3QFMBRD8FZKcVROG7cOABGjRqlXv3X\nXntNnUtz5swJWzEkErB169aAI3nFeVSeQ6oiYlEtuHnz5jRr1gyAMWPG6Iog6rCb/Px8VQ/nzZtX\no/n9EoUpWGtVS4s3gUBAYyQaNWqkK+mvv/6q8SeiCQ4ZMiQsOvC2224DUC1BGDlyJFDq4Pvwww8r\nLWpTUWSjaFP7778/Dz/8MOA4Qd31G8CZs7LSp6Sk6LyWWAlBNAuZq88995wnu2a1RiisXr0acLYm\nxe6S3IHs7GydEMcff7ymE7t9BIFAgOOPPx4o3X2AUlVMQqYjIdrCGzIJLrjgAlV3DzjgAE1DbtOm\nTbkVgMSu/e6773TnpCYFgjEmLMQaws21eI4DnGfav39/AJKTk/V+jRgxgqZNmwLoopCUlKRp0Qcd\ndJB67d1MmzZNjyd+hDvuuKPCVPu0tDSgYjNOhP6NN96oWZlus0tM2wEDBmgBoLp16+qH3/1ea63O\n0WHDnHKn5V1DLPDNBx8fnzBqjaYg0vODDz5QqSu4Jar7vWURD7+o6G7PeTQ1ByN1MspK8MYbbwBO\n0Io78ETGXZ6WsGnTJg1tnjNnTkLUfrDW7haws2PHjriPTTSTlJQU1Qbnzp2r8SonnngiV199tb4H\nHEec7Oy49/OTk5P58MMPAcepeO+99wLw0EMPAXtejSuLC5Dsyzp16ug9KttHA1CNUXAX1JFrXbFi\nhTrIvS6BV2uEwp6IZFKmpaWp2iUTpbi4WPMPYh0E1K5dO91OErs2EAiEPfDymnmIaXTxxRcnhCBw\nEwwGyxUKNUVGRgYNGjQAHDNw6NChgHO/y45z7dq1Yc9YBPadd96pz+f666/XXYdITKLKir6KafrV\nV1/RuXNnwAlYkl0SMcXcxyk7D8Xn9fjjj/Ppp59WOqZY4JsPPj4+YewVmkIkDBs2TJ1Pbu/ve++9\nB8SuNNsJJ5wAlJoMUFqmLDc3V51PZVcZeb+U1EqEMnllqVOnzm5ZmmV/jwdy7y677DKOOuoowCmc\nI6vsli1b1AkoBINBrT2wePFiNSVmz56tQW3ROJuh8vgEGc+YMWMYM2YM4Nyv0047DSgNyHv//fc1\n9uSf//yn1nRIS0vT2I/x48fHbU5UWVMwxuxjjPnYGLPAGPOzMWZkyev1jTEzjTGLS77Xi91wfXx8\nvKY6mkIh8A9r7ffGmDrAd8aYmcAFwIfW2nuMMaOAUcAN1R9q1RBnXqdOncrt+CureCykcCAQ4N//\n/jfgrEyyzfTZZ58BMHjw4N2couCUkzv99NNjNg6vkPoOblJSUiKO7IsVshV94YUXagRiIBDQmAPJ\nLoVSf84333zDfffdB8DTTz+tIctSzDdeFBQUaB0Q+V727+5tX4m3iEcWr1BloWCtXQusLfn5T2PM\nQpwW9IOBfiVvex74hBoUCrLTMHjw4N3Sj/Py8jT0ORYfxhYtWmhuQPPmzdVzLaXaxbklPPfcc4Dj\nVExkYSCUJ9DS09M1jyBa9bs8IokB6dmzJ+B47WVMixcv1gA3N1IOH0prSE6fPj0mAsyLZ9arVy81\nyQoLC3n66af153gRE5+CMaY1cBAwG2hSIjAA1gFNKvifKrei9/Hx8Y5qCwVjTCbwOvA3a21umW02\nW1FPh+q0oo8GcSg1b95cVxWR8MuXL49JVJioe+3atVOToV27dlqZ2b3Cihr4zTffJLRTsTzc0Yvu\nrVUpMCuxAdUhEk3hzDPPBMK7cYuDVxBnnUS33nTTTVrcNl5mTjRIhXH5Ds68kC3zeFItoWCMScIR\nCFOstdNKXl5vjGlmrV1rjGkG1GgddXegk7uJCji1GmOhlsnOxS+//EL37t2B8KYtMnG3b9+uFX1q\nspJ0VVmyZIkKUXeBEFHnu3fvzs8/O83Fq9oYJpJ7ImXNzznnHA0xbt++vYbCn3XWWRp8JFmE48eP\nT7i4Dzddu3YFdt/NkUUmnlRn98EAzwALrbUPuv40HTi/5OfzgTerPjwfH594Ux1NoTdwLjDPGCM6\nzo3APcArxpiLgBXAGdUbYvWQXH+3R1fCT19//fWYrB6ibSQnJ2sYs7u0l6xWzz77rPYTqI0UFxdr\npWFxkubn52vsxapVq6rdOi4S80GK62RmZqoj7qmnnmLLli2AE70ofR/2VOk7kZBdEjd//PFHjWiT\ntbKXZDRI+un06dN3y2pr1qxZTPsftmrVSjtStWrVSrsTSeORvZGabtUuJlqjRo3CgpcSYV5Hg/gS\nVq1apQtYbm6u1oqMEX4vSR8fn+jZ68OcRRNYuHChxgl8//33QOy90H/88Yd64r/66is2btwY0+Mn\nIjW9Isv5a7ovaHUR02flypW0bNkSoNw+kvFgrzYf3DX38vLyNKNOBMXvv/8e00ltjFHBE88INJ/a\njzufQ3Z4pk2bFus6nL754OPjEz17pabgDqyR0OZgMKhagTikvAhiqW4nYp//TUTDzMrK0vJvHlTr\n9jUFHx+f6NkrHY3u9loSh1BUVFRu2y2vzl0eZSstucOuy/s/d/ahvDcpKSksYaZsG7eaoGyBUXBW\nPhlnQUGBvi7jTERNqmw1LKj42cQa0V7LJpXtSfMMBoNhcTaxGudeKRTKI14Pt7IxCO4JWFEAVXn1\n/AoKCmIaW1Fd3B8idyerUCik4y8oKAgz4yC+WX+RkghzpCx7Go9XC4FvPvj4+ITxP6UpJBqVSXr3\nmBN1i7PsfRXtwF3p2BijzVUkwaeiDs7/iwSDQdWwCgsLa3yu/s8IhUTD7VPIysrSGAoJYmnfvj25\nubkA/Pbbb6puBwKBhBMQ7lL17lLmElZet25drWwcL2EgOS+SzVlUVKT2enFxcY1mTEoYs1Sy6tmz\np4bEP/roozFt2FsVfPPBx8cnjL1GUxCHVygU0hJsxcXFusK6W38lgpMrFAqRnp4OwN13360l22QF\ny87O1hV469at2n4+Pz9fMxXdre1rEjGDkpOTdRW8/PLLGTt2LOBkpUrX5XXr1nkyBmOM9vNo0aKF\ndpi+4QanEmBaWlqYU1RC0IcMGaJh7/GYF8YY7QHRu3dvAFq2bKl1KCSDtyap1cFLMgmSkpL0Q9W7\nd2+1Xzt16qTq47Jly7R+onQSeu+991RY7Ny503NbLikpSb3vvXr14qabbgKcKk1SDEbGkJ+fr1t6\nwWBQA1kCgYD2lZw6dWpCCDg30rz3l19+UQGRl5enVagq66pUVbKystRcmTFjBk2aOFUAJcvQbbe7\nn/PWrVu1vP7UqVO1yK5Xnn1jjNa0FDMwLS1Nn69b0BtjNHsyLy9Pzclq4Acv+fj4RE+tNB+kkIm0\n9x44cKCuDDt27Ahr5y4raYMGDejVqxfgVE+Wv4lkXrFiBUcccQTgnTPs4IMP1n6Af/nLX9QZ5q5J\nIN75yZMna93BNm3aaHu29PR0LrjgAsDReKQEWSJgjOH6668HHK1Irunrr7/2zNQRbXHkyJFcccUV\nAOq0hVInaFFRkT7X5ORk1Srq16/PKaecAsCGDRv48ssv9f1eYK3VBi/Czp07y3V8BgIBZs2aBTjm\nZJ8+fQD49ddfPRmbUCuFgkywBQsWAHDUUUepWlpUVKQ/z5s3TwtfHnrooWrLidq2cuVKFSDvvfee\nZ629RaV+/fXX9XxpaWk68X777Tet3ejubXnjjTcCTjEY6SfRtWtXvY6cnJy4CoXs7OzdJrSbzMxM\njj32WMARECKQ7777bs9MM/ETdOjQIcw8kHPLs160aJHe70MOCdeg5fWNGzfWiDlW0U5IUVGRplGn\npKRw0EEHAd4LBd988PHxCaNWagrChAkTAPjiiy9UBZw7d646FJcuXaqrR926dVWDEKeOtVarL+fl\n5alKGWuNYfjw4YCz0srKlZeXx1133QXAvffeW+5KKivIli1baN++PeCo5VIjok+fPp53ODLGqJmT\nlZW1R02hXbt2WmuwuLhYd0zEsesFYj7Mnj1bn68752XKlCmAYxJKPceyuRoSNj516tSEKv/ujkkJ\nhULMnz8/PueNy1l8fHxqDbVaU5DtxO+//16Lo+bm5pYr7ctb/UOhkG6VyeoL8OOPP8ZkfOL8vPzy\nywFnlZdxnnLKKREXdG3ZsqVqMcYYXdmkqrGXWGt1K6yyLbEXXnhBt1Hz8/MZN24c4G2ItjzXp556\nSv0B7sQm2QIeNGiQVnh2xysUFRXxyiuvALB+/XrPxhkNosl07949LOZGNDavqdVCQW7evvvuqw80\nEvVPClrcddddXHLJJYDjlBw6dGhMxyetz+V8eXl5vPPOO0B0FZ47dOgQlgIuKvxPP/0Uy+FWGVHh\nc3Jy9AO3evVq5s2b5/m5K3MMyn275ZZbduvlCY5glSCrmorZMcZwzz33AHD++efz4YcfAk65QFkA\nUlNTVcjKrpQHRViAGJgPxpigMeYHY8x/Sn5vY4yZbYxZYox52RiTXNkxfHx8EodYaAojgYVAVsnv\n9wIPWWtfMsY8AVwETIjBeXZDIuYuvvhinnjiCcDZa5bV6uCDD9aIsNWrV+t2mcQKtGrVStXLqVOn\nsmbNmpiNzRjDoEGDgNK4ip07d2o79EgQk2H06NE6Tvf2VaIkRnXo0AEI3wrcvn07v//+e00OC0Cj\nW/fdd9+w1+U+vvDCC57FpZRXIEWeI5S2iGvevDn9+vUDnKrjor3u2LFDQ7Cff/55dYqL0/mnn37y\nJLGrur0kc4ATgTuBa0payR0FDCt5y/PA7XgkFES16tq1q/YOXLJkCccffzzgeMPLQ3wRK1as4Icf\nfgBKuzjFimAwyMEHH6w/g/NBiWYCtmrVCnAClsRUKigoUF9CoqQfy/55RkaG3ttFixYlRO/G6667\nbrfXrLU6zqlTp3oeQ5Gamqqhzenp6SosO3bsCDgxNLJDJbE3wssvvww4vTAlZF+a5soiF2uqaz78\nC7gekKffANhqrRVDbzXQorx/NMaMMMbMMcbU3j5qPj57IVXWFIwxJwF/WGu/M8b0i/b/Y9GKXiT8\neeedx8yZMwHo16+fmhVl6+2V/b+ZM2eq1I31/nSjRo3Yf//9gVKH6Lx58yKOmAsEArrKdenSJUxT\n+OKLLzwZc1VISkri1ltv1d/dLc/cNSbjjayqYiq6e4kCGgm6p7iL6iLmQYMGDdQ5+O9//zssyhIc\n7aCieSHPfcGCBVpzITs7W4/vzv6NFdVtMDvIGDMQSMXxKTwMZBtjQiXaQg4QO0O9AtasWcMBBxwA\nOCrs+ec7Ta+zsrI0l6B79+6ce+65QOluQK9evTyLyXcXK5UH99Zbb0X8/w0bNtT031AopMfavHkz\nbdq00ddrOkvymGOOUbs9FAqpX0YCl8CZ2PE2JUQdF7+Mm8LCQk499VTPx+AOVJMgqvz8fBWSkQhL\nSa9PS0vTZy1p3+4grFhS5aNaa0dba3Osta2Bs4CPrLVnAx8Dp5W8zW9F7+NTy/AiTuEG4CVjzD+B\nH4BnPDjHbogU3bZtG4888shufw8Gg+q469GjB+BIX/GcxzpwxV1OTbSVH374IWKnVqNGjTQzcv36\n9bqPfd555+kKk5KS4pmm4A4PF4dm06ZNOe00R95LxumRRx6parK1VouESDwGVJzw4xWhUEgzJsvj\n3XffjUvIsFz3hg0bqnwMcaB37txZNY+pU6cC3mkKMREK1tpPgE9Kfl4GHBqL4/r4+MSfWh3RGA2Z\nmZlqi4lPITs7OxbVbCpE7GuR8Lm5ueXuXRtjVOrL9w0bNnDkkUcC4YldM2fOZODAgQCe9X8IhUJa\nq6KwsJCsLCcEZejQoaoVuJFr+fXXXzn55JMBaqTjttyjxx57TDVAN3K/hgwZEtdxRYs4aDt06MDp\np5+ur4lj8r333gNQTTLW7NVCIRAI0LVrV8DZ2z3wwAOBUqGwY8eOqMKNo2Hjxo1aYk0+SH379lXH\n5rp16/TDVFBQoCaBW+V0t1eX93bp0kU96U2bNo1ZPYVAIKB74oMGDdJx7Nq1S4VaQUGBOk0lIMtd\nN2H69OmsWLEiJuOJloyMDG655RYALrroonJ3nrzOKI0FwWBQqzy/8cYb6mgsLi7W8GcxR73Cz5L0\n8fEJY6/TFIwx6lA855xz+Nvf/gY425Oyevzyyy+AExFWldoJ7vJpFdGuXTvNvJT3jho1Sh10mzZt\n0pXriy++UNVWVODt27drbYKGDRtqBef8/Hx9zwsvvBD12Msix+rZs6dGgrpfX758uW7lLl26VFcu\nCcUdO3as3tdHHnkkrklFgUBAq1BNmjRJw4DdocSCtZYHHnggbmOLFndbPcmGbNGihT6HlStXcu+9\n9wLeh7fXaqEgH5qcnBw1E0aMGKGv161bN8yGl2YgJ554IlD1cuPBYLDSYJOrr746LN0ZnN2O/v37\nA479LWmx48aNC3sPOFWI3WN3F1x56qmngOoF3khm4znnnKNjvPrqqwFHVZ02bRqweyaeFDKR9HJ3\nR6OyAUJeIeXUBg8ezGWXXQY4tRYrClYD5x6KkI5EqMcbt/kowi0lJUUXi1deecVT/5cb33zw8fEJ\nI2E1hYqkeTAY1NXtr3/9K+Ds6cuq6+52/Pvvv6uz7vnnn1dHzapVq6o1tj3tu4t63bFjx912Gnbs\n2KHxEG3bttUVLz09Xd9b9rv8LBpInTp1dJWOdrWTY2ZlZakZIyHTixcv1veFQqEKdzbEaTp48GDA\nScqSOAavHWDgXMPo0aMBGDBgQJjDc0/s3LlTI0Tfe+893R2pLEw43lqFMUa1xby8PD33qlWr4jaO\nhBEKZW9+dna23pzjjz9eg2Z69OihNpXEgK9evVor3H766af6wKdMmaLvjWXnnbJhu+4JmZOTAzhb\noHI98j0UCmnaa0pKiu6CBIPB3d7r9vQHg0Edv/SalHFEk1cgx3aXO3dfhwiePQk9eSaiyr744oua\nredFHH5ZevXqxTHHHBM2lj0h17x161Y1+S688EINKNq0aZOmJ2/btk3fL0LRqwrfFVFcXMyMGTMA\nJwBMciYuv/xy3dl5//33Ae/ut28++Pj4hJEwbePKS5oRx9WiRYs06cZaq3v94jicMmUKzzzjRFOv\nWrXK8xVrTyqlmDFXXXWVNm0Rk0JamEHpPj84sQDShESu46uvvlKP9JYtW9QxuGPHDm12smnTpiqX\n5BItRXpSrFu3TlfFPWkg4qyTAKpDDz1UzZkZM2Z43jG5d+/emlzUokUL1dLKhvzKXBLtYNWqVXz6\n6aeAM1+kzeDUqVM15NmtricCDRs21CS6Hj166NjEUS4aQxRE1DYuoYWCkJSUxJ133gk49ekkD0Ds\n4G+//TauDzMYDEaltosd3r9/fxVuhYWFzJ49G3CuIxHSoCNBhIlsmxUWFmp5/dzcXP7zn//o61Uh\nGhs+EAioUNhnn320CG+DBg3UvyHCYvHixSpA3fMsEeb/nnjzTSef8OSTT9axSkHgKkSN+r0kfXx8\noidhNIWaHoNP9THG6MqdCKXY9ibeeecdzYWR4j1VCCn3NQUfH5/oSZgtSZ/aj7sJi09sufTSS9W/\nIPEtq1Zr1G2tAAAgAElEQVSt8kQj880HH59aQHp6unaglh2eKqRO++aDj49P9Piagk9UlFckxsd7\ngsGgmgrVuPcRaQq12qfgDi+W/Wh3NaXi4uI92lyJPLEDgcBuoc/xwh0rUDZuYE9jKfvesvkb7v/3\n8pqMMRr4JvEfbn9HNL6PWOc+uD/c7rByif+oKL6jvLD6aJ5NNPjmg4+PTxi1WlMoT0rm5uZWWoRC\nJG1SUlJYN+dEwr2ixHtsVV19yr7Xi1WsLLLauld/Y0zM6lfGWlNwP0v3z1UpnFJWK5NQ+Pz8/GqN\nuVYLBTfu7MJYvremSOSxJRLSGOe3337T5xrLbbraEoRljNEOUl9++WW1Sv9Xy3wwxmQbY14zxvxi\njFlojOlljKlvjJlpjFlc8r1e5Ufy8fFJFKq1+2CMeR6YZa192hiTDKQDNwKbrbX3GGNGAfWstTdU\ncpzE9fjVIJIlaYwJ8zwnsoM03khNBSkT57NHvM2SNMbUBeYCba3rIMaYRUA/a+1aY0wz4BNrbadK\njuXP8jIYY7RSUP/+/Wnbti3g9Czwqt5/LAkGg+q7qel+lz6K58FLbYANwCRjzA/GmKeNMRlAE2vt\n2pL3rAOalPfPfit6H5/EpDqawiHA10Bva+1sY8zDQC5wlbU22/W+LdbaPfoVfE2hdEdEPMi9e/fm\niSeeAJxCKOJlX7FihWoNiYjUNLjjjju0PubYsWPjPo7yajb6Zpf3msJqYLW1dnbJ768B3YH1JWYD\nJd//qOD/fXx8EpAqb0laa9cZY1YZYzpZaxcBRwMLSr7OB+4hTq3oU1NTtefeK6+8ojZsolfYcVcN\nkpZ2Y8aMAZyWcFKY1l1hqHXr1poQ079/f8/a3lWFQCDA+PHjAaf1nFTI8ork5GTVmlasWKFl+lJT\nU3VL110ZOR6FZfcGqrv70A14GkgGlgHDcbSPV4CWwArgDGvt5kqOU6VBiHf+sssu4+677wacGony\nAdq+fbs2X5kzJ/FcF3Xr1gWcdu7PPfccUFrPcePGjVpTcL/99tPS8FLJGODzzz/nqKOOAhJD6CUn\nJ2tvy/r16+vYPvvss5ifB5x7JVW809LSVBB8++23Wv1ayvqvWbNGaxoWFBQkxP0SAoGApkN3796d\niy++GIAbbriBuXPnAs7uiiwS7grlUQo673MfrLVzgfJOcnR1juvj41Nz1MqIRnG6HXfccYDT+kz6\nIRQVFakkTU5OVgmcaJpCIBDQIq7PPPOMtnuX9vX33Xcfzz77LBDecj47O1v7FOTk5KhjUlRnL3A7\n7fa0wroT0Ky1nrQ5c1eaTk1NVfMgNTVV78XRRx+t45T+mIWFhVoFesyYMVoJvCYiFkXD7dKlCwCP\nPvqoztNdu3Zppe833nhDNYGdO3fqdUvPjhNPPNGT6tkJkzodaYy5MUZLirdr1w6A66+/nieffBJw\nHr5knE2bNo3evXsD0KxZs5jFw1cHEWgnnHACN910E+CYPP/85z8BtIfjnvIdpHryLbfcok1yli1b\nFrMxDh06VHtzPvfccyxZsgSo/ANkjNEqyllZWaoGi2kUa9yxHHXr1lW/UteuXXcr/Z6Zmakl7OfP\nn8/QoUMBWLt2bdnDeoII/aefflrnrbScB7QK9ldffaVl97/99lu95wMGDNCy9LJwHHfccZ6YD36W\npI+PTxgJZT5EUkOgS5cu2n5cVObXX389LIFIfn7nnXf0tfLak8ebQCDAoYceCsCDDz6oOwfXXHMN\n33zzDRCZOiut51q1asXBBx8MVF9TMMZof8mHH35YVfHp06dHVXtAelwUFRVpkxWv+jFaa3n55ZcB\n594+/fTTgGNKyDhuvfVWAC655BJdrVu3bk2zZs0A7zSFYDCoTuNTTz2Va6+9FnBMvk8++QRAtcNZ\ns2apOeOOBHVrAaeccoq2JPzggw8A75LmEkYoVBbTLzcqMzNTPzjyWkU3Z9q0aUyaNAmIbahtpDa2\nIALpwQcf5NRTTwUcG/GBBx4AYPbs2VF9aM4880zAMTvOOussAF599dWI/788rLX89NNPAEyYMIGZ\nM2cC8PXXX0d8jKSkJPWWd+/enR49egDw/fffe+7tdwtTdxj4zTffDDiqupgMTZo0CVPdvRqPmKtz\n5sxRAfnWW2+p8Prtt9+A8DlU0aLQp08f9SVIExjP0tE9OaqPj0+tJWE0hcoQqbh582ZdqWW/etiw\nYTz11FNAuBde9vaFSLoqRzoWOVZqamqlGXonn3wyAKeffrqq5ddff73uoUeDMUY1o6KiIjp27Bj1\nMSpCVraPPvpIe1tGQ/369VUr2rVrF7/88gvgaDSyysUbuabPPvtMtapAIFDlHpyRYq1V9X/hwoVM\nnz4dgKuvvlp/jsTkE6djhw4d1Pn8+eefezDiUmqNUBBWr17N1q1bgdKGrbfccos24ly+fHnY+2WS\n9ujRQ7cA+/TpAzjNRcWWj8a8cKcyVyQQ3P6D++67D3B6HMruwiuvvBLx+dy0atWKbt266ThEzY8F\nMul++OGHqARnZmYm4KjGsmuxfv16VeNrsmCMXMfGjRvDaiN26uQk7n7xxRdxMW3E9wGlC5zkiWzd\nurXc+x0IBPj5558BZx6LkPE6itU3H3x8fMJIGE0hUg/1rl27mDhxIgB///vf9X9F8rv762VkZNC8\neXMAevXqpY4dWRG3b99eJVNiT2MV06ZOnToahyAayrZt2/jrX/8aNoZoef7551X7Wb9+PQ8//HCV\njlMeci+iCTpKSUnR+1q3bl29rlmzZunriVDS7NNPP1XTMiMjg379+gFO4Fg8kHvw0ksv0b17dwDN\nExkzZgwLFy4Ewp2HV199tQYyFRQU6LyX++oVvqbg4+MTRq3TFKA0k3Dw4MEAdOzYUW30lJQUtWF3\n7Nihttztt9+uzi6JXygsLKRFixaAk2gkCTMSMVYRkYzzjDPO4NhjjwVKHZzvvvuu+kOiRbSNQw45\nRLWRF198sSqdhyOisqYv4kf46quv1LdTVFSkWsa4ceM09DwRKi/l5+freOrUqaORrsFgMK7Vsq21\nGqYu47n33ntV03377bc5/PDDASceRe7dvHnzeP755wHvq3snjFCIRsWUGzVgwADA+ZAfcMABQHg7\n9F27dmmgU9OmTdVRI99TUlJUfczKylJz5IgjjihXhY6kO5K8p2HDhhpAI8JIzIloCQaDvP322wCE\nQiGNJ5DgFy+o6BolIOfSSy8FoG3btupsnTp1Kg8++CAAixYtSqhMxF27dmmYs7VW9/prArkvYkp2\n796d66+/HnBSzuXvgUBAs06vuOIK5s2bF5fx+eaDj49PGAmjKVQFCVHt1auXSt369etrxFiHDh3o\n2bMnALfddhutWrUCSveHf//9d5o2bQrAY489xoIFC4CKt9AiWfkka0+0DkDNknXr1ulroVAorKVZ\neYjJcN1112k8wqJFizTzT1a+eJGSkqKOzUGDBgHOFvGFF14IOFuZiVpUNhgMapgzlJqIieAE/f77\n7zXasmHDhhr1OmrUKDUx3NvgXlOrhYKwa9cuHnrood1eX7lypXpqr776arV999tvPwDOPvts/vWv\nfwHOJImFuivp3NnZ2Xo88TK7g56aNm2qKmxKSooG08jOwj/+8Q9GjhwJON5y8UWcdNJJNab6Hnjg\ngSpkZ8yYAThpv9999x2QGIVeKiInJ4c6dero72+88QaQOGOWcWzdulUXALfJK+Hj8cA3H3x8fMLY\nKzSFinA7lFJTU3UVFvNhxowZMa/bJ3UJA4GAqntNmjhV7rt06cLAgQMBJ3lInKM5OTnqoJTxHnbY\nYerU+/nnn7nooosAWLVqVUzHGwkSQfniiy+qefTiiy8CjsmQKKtteYhmduKJJ5KRkQE43ntx1iYa\nffr04YgjjgAcE1OyJ+MZFbpXCwUo3b5JSUnRD6lUYYq1QDDG6DGttfpBf+yxxwBHMIkZsHbtWho2\nbAg4KqP4OyQturi4WLeuLr30UhYtWqTHjSeBQEArQDVs2FBDbKV+ZKI15i2L5JoMHz5cBcT69es1\nfDhRkLGdccYZWpFp165dXHbZZUB877NvPvj4+ISx12sKUpgiFAqpZ/zyyy/35FzBYFBNk44dO2pZ\nOEl8gdKVq379+qoatm7dWh2isqMwadIkTZ7Kzc2tMRX9wgsv1FgPY4yOr7aUSxfH6L777quvzZ8/\nPyECqtxI6POZZ56pZuOWLVtUQ4wne71QOOGEEwBH7Z46dSqAZ7UaCwsLOf/88wHHhu3bty9QWvTj\nlFNO0V2GRo0aqcq4fPlyTaeV7dR169bVqGruDlKSFPUtW7bwl7/8pVrHFb9OvK5N6lkGg0EVrJdc\ncknC+UFk3mRkZOi9efPNNz0tyFsR1W1F/3djzM/GmPnGmKnGmFRjTBtjzGxjzBJjzMsl3ah9fHxq\nC1IGLdovoAXwG5BW8vsrwAUl388qee0J4K8RHMt69fXxxx/bjz/+2BYUFNjWrVvb1q1bV/uYJc1r\nIv4KBAI2EAjYjIwMm5KSYlNSUmzjxo1tZmamzczMtPXq1fPs+qv6NXToUDt06FCbm5trCwoKbEFB\ngR05cqQtqbwd9fFSU1NtamqqDYVCNhQKeT5+GefSpUvt0qVLbVFRkd25c6fduXOnzcrKqvH7W3Z+\nPPTQQ/ahhx6yeXl5dv369Xb9+vW2U6dOsT7XnEg+29V1NIaANGNMCEgH1gJH4fSVBHgeGFLNc/j4\n+MSR6vSSXGOMuR9YCewE3ge+A7Zaa8WLsxpHo9gNY8wIYERVzx8pkj25fv363aoyVZVo7VHZCnWH\nJUtH5kRFEp7c4diPP/54lW3xRo0aAZVnoMYK8dds2LABcCpWiS+pJuz0PdGoUSOGDRumv8uclZZ4\n8abKQsEYUw8YDLQBtgKvAgMi/X9r7ZPAkyXHqtpMiwDZV5ewVp/KSU5O1uIeSUlJKsyq4xz8/fff\ngfJbxHuBCGLpKWmMUedpIpT7dzNw4EAVtqFQKKzLVk1QHfPhGOA3a+0Ga20BMA3oDWSXmBMAOUB8\nlgYfH5+YUJ0tyZVAT2NMOo75cDQwB/gYOA14iTi1ot8T0vE40VTGRCY9PV0jLAsKCjQDtTorV01t\nr0o7th49euief6LFWLz22muqmd18880xLbFXFarbiv4O4EygEPgBuBjHh/ASUL/ktXOstXsMDPDK\nfAiFQtq+e+fOnXFPNa6tJCcn07ZtW8BR+71oFOsl7kI7ku/QpEkTTV3fvn17wsUpSEGeUCikQssD\nQRqXVvS3AbeVeXkZcGh1juvj41NzJEzX6WjeL5l6IkmNMRq2GggEqpxR5i63FknptWiPW/Z41T2H\ne0WMRwEOdx1N9zVJOHdRUVGlvUC9GFN55xNnovu+JMJcr4iKrkNedxdZKe+9EdY49V5TqClEvSrv\nw1Ydlcs94b1qiCpjDoVC1U6Hraz/Zqxxn8v9s9zzmqhiVN71G2N04XDXZUxkKhtfRfc+0v+PBj9L\n0sfHJ4xaqSnIyiRqa3FxcUzV6FivKuVJ+USvQxANiVDnEEoDlsaNG6eJZ2PHjgUSo8w8lK+FVqSZ\nupO44nmPa6VQENxBHokyMSPFPV6vzJX/BUQQhEIhjcI844wzWLJkCVDahLgmhYIxRrcczz77bE2J\nd2+Tu7dJZaw1tXD45oOPj08YtVpTkFXC7YV3h+UmMqmpqdql6KijjtKAFYnV9zWHyJACNllZWVo7\nY926ddx5550ACVNyXoq8NGrUiKuvvhpAO3S3bNlSuz9NmDChZgbowtcUfHx8wqjVmoLsRdepU0er\nKL/55pu89dZbNTmsiDj22GO5//77Aaccm6weV111FeB0l67N2kJqaiqNGzcG4L///a/2XJBq1bHQ\n5oLBoPYCPeecc7TobTAY1KK3iYC1Vn0Kxx13nI5TCvcmJSWp7+O1114LaxpUE9TK4CVBmpw+/vjj\nnHbaaYAT4y6dntwEg0FtBiNdd2rCkSM7JpMmTdIxS91GKP3Q7LvvvjXa77AimjVrBpT2sZwxY4b2\nuWzatClTpkwB4KCDDlLzbtGiRdx3330AvPDCCzEbS/v27fn4448B54MlWZAzZ87kzDPPBBJj16Fu\n3bq8++67gFMuXyp6y3hXrVqloeT77LOP1u687rrrmDlzZiyHElHwkm8++Pj4hFGrzQfZxjnssMPU\n0Sgdnsty2GGHqTPn6KOPBpy2cvFGIu0aNmyoK6kbcZzNmjVLC78mSkGW9PR07Y588sknA3DooYfq\ninfFFVdozwJjDCtWrACc4rnSPTkWiLb1zTffqFlSWFjI5MmTAbjhhhsSQkOQJKc2bdpoRWx31/Br\nr70WcJLOxOk4c+ZMNYneffdd1RZbtmwZt+zOvUIoXHfddToh0tLSwnYlpMR7RkaGVsyt7gStTlyB\ndItq1apVWL6Ge8zgeKnFY10TQkGEV0FBgZpZ+fn53HLLLQA899xzgNPcV+5FYWGhvn7rrbeqmhxr\nE/XYY48FnB0HOfaCBQu4/fbbAfS8NY0Iry5duqiPY+PGjdrty+1XkeY66enp6h8bOXKk+mW+/fZb\nDjzwwLiM2zcffHx8wqjVmoKwcuVKDWt98cUXtQ7ggAED1GkzaNAgFi9eDFS/JFggEKiSkzIpKYm7\n7roLcDSF8rILRWMoKirSiLd4Rzx27tyZZ555BnBUf1nRCgsL9T6LCrx48WIOOcTxXb311luMGzdO\n3+sFxhht226tVQfdhRdeyNq1ayM6RnJysnr7d+zY4Vk0bLt27fQcUhbwoYce2uPOS2FhIddddx3g\nNIgRE7Jz585ceeWVQGkbQq/YK4RC2aIZxxxzDOB49cXmPProo9Vz/uGHHwJO4ZWqUFWh0qpVKw2w\nSU1NDYtrl4xJmaBff/21+jziJRDEBv766681iEqKlEC4uitjKigo0PsxcOBAxo8fD5TWRow1xhiO\nPPJI/VnGVFFRXrmm7OxsbbTTtWtXHedDDz3kyTgDgYAK/T59+ug8lE5ge0Lu5+LFi/Vak5KSuOCC\nCwB07F4JM9988PHxCWOv0BQKCgo0PHTWrFlaTvzuu+/m66+/Bpw2biKtP/nkk2qdr6oS+rbbbtMg\nFncthKKiIlW3Fy5cCDil0LOysoDSSshec/fddwOOdrB+/XrASdqR1daNe+wXX3wx4PTPlOvzSlNo\n2bIlTZs2BZwVVcbWrFkzfS47d+7U+9imTRtgd5NPnM7z58/ngw8+AOCkk07Sv3/55ZdA1Z28xcXF\nav6tXbtW2wJWtoNgjNEdqBdeeIFzzz1Xx9+yZUuA3WpFxJpaLRTE/t62bRtvvunUh125cqW+fvbZ\nZ2t+waBBg9T+rK69G606L5GXxx57bJjpIZO4oKBAx9ypU6dqja2qpKamMnLkSMAZr2wzduzYkYMO\nOghw+lyWvXfGGP79738DTr8CESZe0bx5c72f1loVPhs3blRzsEmTJur7kMCqDh06aPDarl27aN68\nOQCvvvqqBo8Fg0ENvnr//ferPVYxabZs2cI+++wT0f+451bbtm01dyMUCun4pZCuRMTGGt988PHx\nCaNWawoi4dPS0tTznJSUpOHPQ4cOpX///oCjEstORHXLoEW7GyAq7o4dO8I0BVH/Zs2apRqNVJ8+\n8MADGTx4MAArVqyoslM0UoqKilS9DgaDem8ff/xxPbfsSLhxV36eNGmSOte82n0YNGhQWEEdcRRu\n2rRJn8maNWtUuymP5ORkDcK64YYbVPMoKChg9OjRQNWd0G7EfHj//fc1zHvLli2qvVSEzNNVq1bx\nxRdfAE7YuGg3otGNHz/ekyxQX1Pw8fEJo9KEKGPMs8BJwB/W2v1LXqsPvAy0BpYDZ1hrtxhHhD8M\nDAR2ABdYaytNV6tqQpTYvbt27QqrwHPKKacATlSdhIwWFRUxZIjT63bWrFlA1R2G0WoK4hhauXIl\nDRo00Nelt+Hzzz+vIcESMZiSkqIr98iRI3nyySf1OrxCwr+nTJmiq2dmZqZqVmeffbY64KRZzP77\n76+OxnfffZcffvgBcLbTxLG7dOlSdbCV3XqNFNEOfv75Zzp27Ag42ZcdOnQASutQREtaWhr77bcf\nAC1atNAYF3m+P/30U0w0S6kKdc0116jf5YwzzgAcZ6a7Mrl7bDLHW7duHZb8BY7vJEqHbkQJUZG0\nnO8DdAfmu167DxhV8vMo4N6SnwcC7wIG6AnMjrCtfZVaa7vbogeDQRsMBm3z5s3t2LFj7dixY21u\nbq7Nz8+3+fn59tdff7XZ2dk2Ozu72i29A4FAlca5du1aW1xcvNvXlVdeaTt37mw7d+5s58yZY+fM\nmRP29127dtnjjjvOHnfccVGfuypfoVDITpgwwU6YMMH++eeftrCw0BYWFtr8/Hxt5759+3a7fft2\nu2PHDv1atGiR7datm+3WrZs1xmjb+aq0rq/oa9myZfpMP/30U33usTh2586d7YYNG+yGDRvsn3/+\naf/88087ZsyYsHlW0fyLdA4sX77c5uXl2by8PJubm2tzc3Pt0KFDbePGjW3jxo1tIBDQa3IfOykp\nyS5YsMAuWLBAr//ggw+O9hpj04reWvsZsLnMy4Nx2sxDeLv5wcBk6/A1Tl/JZpWdw8fHJ3GoqqOx\nibVWYkrXAU1Kfm4BrHK9T1rR7xZ/GotW9G4VXtTRwsJCdXJJKCvAo48+GrNEmWhVXxnnaaedpjES\n7s7HF1xwgb4umZwHHHCAOu2Sk5O1cEzfvn019sIrCgsLddvryiuvpEePHjpOcYhKDMX27dv1Pp93\n3nnMnTs37DixQtTq8ePHc8cddwBObQIZh9TIqM6xjzjiCHVSy9g//vjjCk3FaExIee++++6rW4mH\nH344AIMHD1YHsyT2QXgpuWAwqMlRglfFWKq9+2CttVXxCcS6Fb3c9OTkZLWNk5KS1B4UP0JN8sUX\nX2j8+qOPPqp+kJ07d2r4qwTdvP322yooWrRooe8dNWoUf/nLX4D4FIkpKipSITRnzhxNmRbvfuvW\nrTUmQPwJXiDP99FHH9UqVU2aNNGgoL59+0YlrEXgglO1CeC+++7T1Hv54IodHyt27Nih1bWk8lKd\nOnXU57Jjx45yhY0IPyj1y5SXeh8LqnrU9WIWlHyXsK81gDtKw29F7+NTy6iqpjAdp838PYS3m58O\nXGmMeQk4DNjmMjPiQkZGhoa2QmlufSSJKPFg4sSJgLMCS7Zb586dNTRbkqBWr17NU089BTjtycXc\n6NKli9ZkiFf4s2Ct5fLLLwfQ2ITZs2fz2WefAdWP/4iEvLw83S34+eefNUNzzZo1ugsyf/58Va3d\nXn25hzk5OZx99tmAY9JJtKExRuMUnn32Wc+uQcYkuxCRRIE2atRIk9PEtKnqjktlVCoUjDFTgX5A\nQ2PMapwu0/cArxhjLgJWAGeUvP0dnB2IJThbksM9GPMeGTZsmNpnRUVFGoTSpk0bfvzxRyA6W9Ar\nnnnmGU4//XQAlixZosLA7Rt55513ACesVQRB8+bNNYgl3kKhf//+msor93X8+PFqXsTrvoqK3759\ne93KbdiwIW+88QbghDyLAJDXfvzxR/0Q3X///ZoxGwwG1Xa/4YYb1KcTDwEXDX369NFrcqeye0Gl\nQsFaO7SCPx1dznstcEV1B+Xj41Nz1Oow5/KYMmWKes6DwaBm1I0aNYqzzjqrJocWhrWWCy+8EHAc\nomVX2ZSUFC3SkZ2dHRbUEm8NQQKuXn31VR3HRx99BDi1F2qqHmJ+fr4Gp7Vt25Z//OMfgJMRK068\n4cMdZTUQCIR1FZcxb968WTMmP/zww4Tr8eneGZGxifZTY5pCbSMrK0v9B/vuu69GEx533HGqfiXK\ng5esTSiNUhPT4KqrrtKiGikpKTqhP/jgA88zEd0Eg0G1r93RjZdddhlQ8yXUxdxasmSJ+jsOPPBA\nFRBScMcdHfjHH3/oNd19990J00WqPMQU7tOnj84B6SbmFX7ug4+PTxh7nabwww8/aHx+UlKSVkS2\n1qqXuaLSXfFG9vcPPvhgrd0oDrDOnTuH7UNLtd/zzjsvrppOjx49OO644wBHlZVxeOX5rg6yks6d\nO1eLk0i2Z506dVQV37x5c1jH8kRGYm6ys7N1rF6bj76m4OPjE8ZepykUFRWpzZWfn682WU5OjmZP\nelWsM1pE8i9dulS3mSQDMBAIhNnL4iSVHH2vEf/LAw88oGHM27ZtUz+HV0VDY41kosr32oa7roNo\njuLH8arK914nFKDUPLjhhhu0d+Grr76qqnmisWXLFk2jlYYf5557rqYnz5gxQyd1vD6Mcp6ff/5Z\nPfw9e/aMq5PTB9577z3AMYm6desGOA143H+LNb754OPjE0at7jodDTk5OfTs2RNAi7wmWtRaRbjb\nyrkbx8SDunXrqpYSL9PFZ3dCoZBur0ojnio4HCMqsvI/IxSMMRxwwAEA/PLLL0DttTN9/reRXZQq\nfHb9VvQ+Pj7Rs1c6GitCIh0TwWwIhUI1Hg1YEe4mKwUFBQm/l783I2aju3mQ18+jVgqF8opLuOPa\ny27dCBLOKp71QCCgqpj7mEVFRTH18kvKa3FxsQYeFRYW6jnLO5c7Vr/sJKiG+hgRqampYedw38dE\nExDu7lUytqoK22AwGFatCxwTM5ZzISsrK2wOyHfZAi4sLAw7X3nnlmcTDAbDgrBi9Wx888HHxyeM\nWqkplJWexpiwcu/uMGCR/Pn5+eWuIPJe9/+46yfGAjl2fn5+VCpgLGoDVgX3LkOiaQZliaUpWFxc\nrM5nr67bnQTnJpLQ9bJarTt4KZbj9TUFHx+fMGqlplCW5ORkbb65du3aMKm5Jwlcka0Y64Sjquzv\nlx2baDzJyckaEm2t9cS/sKdjiRZVWUKRu/5DomsbQizt8uogmoBbY83MzNztWW/bts0Pcy6L3LRD\nDjlEawYOGzZMBcTChQu58847Aaf2odxAmdBFRUUJV2PBjbR1f+SRR7Sv5FtvvRVWyyCekzg9PZ1j\nj5idb0kAABPVSURBVD0WcLpBgaO+u3s7Conw4YoEY4xmUg4fPlwD26Q3abyuQ6pLd+zYUcPK3U7e\njIwMPvjgA8D7+BrffPDx8QkjYSIao8n4kpXp1ltvBZy6/VINGUpVbXcsgLur8ksvvQTACy+8oAVT\nV61y97CpeZKSkrR60I033qjbmvPmzaN79+5A/DMVr7rqKkaNGgU4FYsAnnrqqVoZGSr38/DDD9cK\nzocddhiLFy8G0G7l1WkyEynGGC3Se8QRR/Dhhx8CTm0Q6VA9d+7cWMS1RBTRWCvNBynPLbUYk5KS\nVAUsLCzUD38oFFLzIDk5WYWJ1EZs1KiRPozJkycnRFBTy5YtAaf7UevWrQGnfLmUafv73/8eZq/H\nAzFjbr75Zk1FP/PMMwH49ttvmT17dlzHEw1uO1xiGurXr6/p9b1799bOS6FQiC5dugCljW2OPPJI\nzxYM8R289dZbHH/88TpO2aH4/vvv+f57pz9zPBcA33zw8fEJI5K+D+W1oh8HnAzkA0uB4dbarSV/\nGw1cBBQBV1trI0r6jtR0aNCggfYSFMn/3//+V5t/bNq0SVe21atXa/mwH3/8UZ1I0i/whBNO0JoF\nb7zxBps3l+2jGx/S09N1hZoyZQrgtCsTx9KPP/7I/vvvDzhVi+WavERWsbS0NB588EHAKQkmmlen\nTp0AqFevnucRllVBximZhenp6eqgPeSQQ6hbty7grMBSFs8Yw6ZNmwB0LnixQotT8ZZbbgFgwIAB\nYX+XcPwvvviiRorZRGI+PAc8Bkx2vTYTGG2tLTTG3AuMBm4wxuwLnAXsBzQHPjDGdLTWVuraj9Sn\ncMYZZ2hfPQlb/te//sWTTz4JOJVqygvoMMboVp4EOqWmptK1a1fAKVwh9lu8ufvuu7VHo1SfvvHG\nG9m2bRvgpH3LtmadOnWi+vBV5QMbDAa1kEffvn21AEwwGGTNGqcLoHSvWrdunZZTLyoqqjHB6sYY\no3UlpSdk48aN1fQpLi7W3o0ffvih+keWLl2qHcW89JNccsklAFxzzTU6XqGoqIhHHnkEoMbuZZVa\n0Vtr37fWitfja5yekeC0on/JWptnrf0Np1PUoTEcr4+Pj8fEwtF4IfByyc8tcISEIK3oq42o+Vde\neSXz588H4JVXXgGc/oyVqVnBYJA6deoA4clP8n9Lly6NxTCjQhrVXHbZZToOcdq5vd7//e9/Oeqo\nowAYO3ZslVqgR4usYn379lVza+PGjdqWXsbXuHFjbr75ZsDxkEvbtZqs4diuXTutji1mjvs+fP/9\n99rM5rHHHlOtYMuWLZ6bQKmpqdqCvjzWrFlT49pWtYSCMeYmoBCYUoX/HQGMiPC9qgbm5OQwbdo0\nADUZIpmAN910027mg3sCxDuNuV69etqYNRQK8dZbbwFom3k3RUVF/Pvf/wbiU56+efPmWho/KytL\nbe799ttPbW5h06ZNWjq/RYsWvPbaa0Bpv8d44u4f2blzZ6B0AcjLy9P6kieddJIKteLi4rj6RFq2\nbKnboW5kDj/44IM17pupslAwxlyA44A82pZeRcSt6K21TwJPlhwrcTxUPj7/41RJKBhjBgDXA32t\nte6eW9OB/zPGPIjjaOwAfBPJMfckHbOyslTlstbqLkIkocmy1z9ixIjd6hcEAgGNTZCwVq+RVWny\n5MkacLVjxw71jLuvSd67c+dODSsWB5mXZGRkaKhtMBjUVb+slgDOCiyq+F133cVJJ50EwMsvv1yu\nBid9KXfs2KH33n3N1VklJQTb3UhHjv3ss8+qSbF58+aw88RzZd66datqNGK2pKenayn3eDzfyqhq\nK/rRQAows2Tifm2tvcxa+7Mx5hVgAY5ZcUUkOw8+Pj6JQ1Vb0T+zh/ffCdwZ7UD2tCV5wgknqLMr\nNzdX93mbNGkCOA1Dy24/grO9J9FogwYNYvz48QC6pRkIBNS/cO2112r8g1cYY+jbty9Q2g4MnNgE\n2QoTQqEQ1113HeBUn164cKGnY3Nzxhln6NYoONujFWGt5dJLLwWc+z1ihOMmmjZtGm3atAEcZ1/9\n+vWB0kjB+fPn6yoei5V6//3354knngAc7UaOLXv+Dz30kFY/jpVmIPMwGn9Ueno6Bx10EFCqKRQW\nFmpovvR2KEsgEFA/j2wL5+bmepLIlzBhznt6UG3atGHBggUAtG/fXsOc5X9uv/32cmPU3VmEy5cv\nZ/Xq1QB06NABCG/xfuqpp3ouFFq1aqVjN8boXr+YBoDmOxx//PEa0BQMBtVJOnHiRM+7JLdu3Vrv\nS2FhIZ9//nmF7w0EAmHl5iREd7/99lOh3bBhQ+bOnQvAr7/+qseNBe48GMmOdQckiRCSD5IX7Kms\nXtlx3nHHHTpOMSNCoZD+rwjPsmRmZupum+zE/frrr5qLEsvGMH6Ys4+PTxgJoym4Vb6ytGvXTreY\n0tLSNMJOtudOP/10nn32WSC8PJfbabNp0ybOOeccAO1KXbduXZXg++yzj0bmbdy4MVaXBZSqmQ8+\n+CD9+vUDnNiDl192wjtWrlyp/S1PPfVUwHFISRj3zTffrMe45ppraN++vV6fF06yTz75hKFDS63G\n3r17A+HbobI69u3bl5ycHH1NwrG7dOmi4diffPKJRmTGerziuOzcuXPYVp9ojl9/7YTN1KtXT7ck\nY61yR7Il3q5dO8DRACUM311ERe7nqlWr9Lm7C7oaY1SLEFOja9euGhfSrVs3DfWvLgkhFKQCs7U2\n7AbLB7Zdu3b6oQgGg+oHkAf+0ksvRaSOiodXQmBXr16tD6BOnTpq77/++uuVjre8wiLlvQ9K4ykG\nDhyogurOO+/UDLj69etrn8ubbroJgPfff1+FFKA9MXNycrj44osBx5TwIr7igw8+0N2YLVu26CQM\nBAL6HMQMuuOOO8IqEYuZs3r1as1czcvL88zDL7tS7du3323HAdBgq6VLl2pcyPbt2zXrND8/XwVI\nUVFRVJmykd57d9h4gwYNyq0BKvdnyJAh6htxC4jU1FQ1ofv06QM480vmyKhRo7jhhhuA6odo++aD\nj49PGAmjKaSkpOzmQBPp2bp16zBvuDizZsyYAaCJQ5GyYcMGwCl9tWzZMsBZBa+99lrA8ZzvaWUL\nhUIRrSiSIy9t5I0xaiZMnDhRVep169ZxyimnAOHqtRSAAfTv3333nXqhvYrC/P3337XvZlJSkq6k\nSUlJ6h2XwiQtWrRQ7eDtt99W7e3HH3/U5xKNlhAIBKIKkZa6DikpKWG1C6dPnw7AihUrAGellWjR\ne+65R02Nq666Ss04r2IEAoGAlgt0Jz+5IylFy2ncuDEDBw4E4PHHH1et4oknntBnIv9njNF5WFbL\nrg4JIRSstRQUFIQ1t3Dz7rvvcsEFFwDOwxV1VjzZVWX16tUqiDIyMnSrqHfv3nv0uEdikwYCATVD\nRI1+/fXXue2223Z7b3FxcaUfHNmpSElJ0ZBoL/njjz/0Z5mwoVBI/RkSFAalAmLixInV3maM9v9k\nh0bmEMD//d//MWbMGKB0wQiFQhoeX79+fT1Pw4YNVRh4la9RVFSkOwZuyrvWlJQUnS/BYJDhw4cD\ncPLJJ4cJA3D8ZxJY9vjjj8dskfDNBx8fnzASQlOQve6yATzCvffeqznoUBp8VN2kG2OMemzbtGlT\n6V6x+/8qo2PHjuplltVTgnwEKQO2a9euCpuEgJNEIzsAW7Zs0Rp+8UJWtMzMTIYNGwYQ5lyUJKhY\nrFTR1OpMTk5mv/32A5xVXkzB0aNHq0kjFBUV6e6D+/l169at3DaEsaS4uFjLvx188ME65orOKxpw\nv379GDduXIXv3bVrlzqrly1bFrugrJgcJQbIDkR5Ktzq1avV/s7IyNCLlw+VW9WNhjp16oTZkXJc\n8fJWNl73/5Rly5YtemyZrLL7AY46K0IiGAxqKXpRgY0xmg8xduxYvS9nnXVWjdWSbNq0KQcffLCO\nD5xrki3JP//8U59TPFKnW7duHdYtaebMmQC7CQRh0aJFQHi/jJ49e8YlQ/bHH38EHD/ThAkTAKf+\nI4RXr0pKSuLVV18FnGsqb6dCdhfeeecdnn76aSB6X8ye8M0HHx+fMBJCUwgEAqSmplZYXKKoqEjL\nud9///26dysOt8svvzwsVDhShgwZotpGUVGR7kpIvPyexluZs3Hz5s0aWiv1Bq699lrdfXCXDFu5\ncqV6w8UxduONN+o1FxYW8sADDwDE3XSQsQKMGzcuLJQYnNVXTLu5c+cyebJTtc/rUGxwqnG7V9I9\nlWNPT08P298Xvvzyy7jW0nDvNAnDhw/X2ISkpKSwgCU3S5YsARxzGuC1117TUHK/l6SPj49nJISm\nUFBQwLp16/Yo7Z55xknMHD16tDoCJSrtrrvu0ijH6dOnq+QvezyRwPLeESNG6PZPcXGx7rFXpgVE\nYrsVFhaqQ1S0gLPPPlsrSOXn56umUK9ePd2D/r//+z/A8XfIanvVVVdpleeaQO6jO7JU7kF+fr5u\n9X322WfVjqaLZsUrW8TWvb0s/hypWXHJJZdwxBFH6HvFv3PllVdWa7yxYNKkSVqab8yYMeX6ET7/\n/HPOO+88oDT2wlqrmmUgEIgoMSsSak2HKFGl9t13X626LELBfRNzc3OZOHEi4IRBS8ef3Nxcrrji\nCgCtnNy2bVsVIMuWLdOuQJXVyIvUQy6Za1Jfcc6cOVqEZNu2bSp8MjMzNR9DApPmzJmjwU8V7crE\nC7n3O3bs0BgR+QAOGzZMG+rEIqcgmt2HtLQ03VFIS0tTQbBgwQKt3CwLSGZmps6TgoICjWO45557\narz8GZTmx3z00UdhwktiXc4666xK7688m4KCgoquKaIOUb754OPjE0bCaArRvF+iw1588UXA2VYq\n2yIdHJVKVo+kpCT9m6x8a9euZc6cOQA8/PDDmtUXq3si55FmH6mpqbz//vtAePKNu6WZvFaT1ZAr\nYu7cudonQ8yExo0ba+2CmuD2228HnESyPcUbFBYW8vPPP+v/iHYT74K9ldG8eXPdOi0uLtb77Q55\nrwYRaQoJIxSqss8qkyAjI0Oz9vr376+x41u3blX1MRAIaDyDpEZfccUVWtEo2vyJqpCZman7+PEO\n9IkFv/76q8bwy05N8+bNYzqGql5Tv379dLemYcOGKqgkr2HChAkJUf8wEqTi1uTJk9U8ihG++eDj\n4xM9CaMpxOM8ZU2MRLj22kZZz7gXNQJ9PGPvbUVfVfwJXH38e7j345sPPj4+YfhCwcfHJ4xaLRTc\ntRJ99g5q0/P0Yv4lwvXXaqHg4+MTexLF0bgR2F7yPWJiuHvQMNpzxxD/3C7itCMUk+uu4lj3eG6P\nr3/3mnDlkBBbkgDGmDmRbJf45/bP7Z/bW3zzwcfHJwxfKPj4+ISRSELhSf/c/rn9c9c8CeNT8PHx\nSQwSSVPw8fFJAGpcKBhjBhhjFhljlhhjRnl8rn2MMR8bYxYYY342xowseb2+MWamMWZxyfd6Ho4h\naIz5wRjzn5Lf2xhjZpdc/8vGmGQPz51tjHnNGPOLMWahMaZXvK7dGPP3kns+3xgz1RiT6tW1G2Oe\nNcb8YYyZ73qt3Os0Do+UjOEnY0x3D849ruSe/2SMecMYk+362+iScy8yxhxfnXPHihoVCsaYIPA4\ncAKwLzDUGLOvh6csBP5hrd0X6AlcUXK+UcCH1toOwIclv3vFSGCh6/d7gYeste2BLcBFHp77YWCG\ntbYzcGDJODy/dmNMC+Bq4BBr7f5AEDgL7679OWBAmdcqus4TgA4lXyOACR6ceyawv7X2AOBXYDRA\nydw7C9iv5H/Gl3wmahZrbY19Ab2A91y/jwZGx/H8bwLHAouAZiWvNQMWeXS+HJwJeRTwH8DgBLKE\nyrsfMT53XeA3SvxIrtc9v3agBbAKqI8TMPcf4Hgvrx1oDcyv7DqBicDQ8t4Xq3OX+dspwJSSn8Pm\nO/Ae0MuL5x/NV02bDzJZhNUlr3mOMaY1cBAwG2hirV1b8qd1QBOPTvsv4HpASkw1ALZaa6UMk5fX\n3wbYAEwqMV+eNsZkEIdrt9auAe4HVgJrgW3Ad8Tv2qHi64z3HLwQkCYlNTb/90RNC4UawRiTCbwO\n/M1aG9bE0ToiO+ZbMsaYk4A/rLXfxfrYERICugMTrLUH4YSVh5kKHl57PWAwjmBqDmSwu4odN7y6\nzsowxtyEY8LWXL3+CKhpobAG2Mf1e07Ja55hjEnCEQhTrLXTSl5eb4xpVvL3ZkDVmlPumd7AIGPM\ncuAlHBPiYSDbGCM5KF5e/2pgtbV2dsnvr+EIiXhc+zHAb9baDdbaAmAazv2I17VDxdcZlzlojLkA\nOAk4u0Qoxe3c0VLTQuFboEOJFzoZx+ky3auTGScv9RlgobX2QdefpgPnl/x8Po6vIaZYa0dba3Os\nta1xrvMja+3ZwMfAaV6eu+T864BVxphOJS8dDSwgDteOYzb0NMaklzwDOXdcrr2Eiq5zOnBeyS5E\nT2Cby8yICcaYAThm4yBrrbuf3nTgLGNMijGmDY6z85tYnrtK/H+7doxDQBAFYPjv1BzBCRxAoeUa\njrGVQ0j0CoVGoeQGCkFBrJNoFG8kppAojFX8XzLJFpO8fcnLy8zbbXqoAYyIiewNqArH6hPHxgOw\nT2tE3O23wBXYAJ3C7zEA1um5SxRCDSyBVsG4PWCX8l8B7V/lDkyAM3AC5kCrVO7Agphd3IkT0vhd\nnsSwd5rq70h8Ifl27JqYHTxrbvayv0qxL8CwZN19uvyjUVKm6euDpD9jU5CUsSlIytgUJGVsCpIy\nNgVJGZuCpIxNQVLmAYKx84FNOBtDAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2/2... Discriminator Loss: 0.8941... Generator Loss: 1.0698\n", + "Epoch 2/2... Discriminator Loss: 1.0571... Generator Loss: 0.8698\n", + "Epoch 2/2... Discriminator Loss: 0.8889... Generator Loss: 1.0698\n", + "Epoch 2/2... Discriminator Loss: 1.2752... Generator Loss: 2.7747\n", + "Epoch 2/2... Discriminator Loss: 1.1641... Generator Loss: 0.7411\n", + "Epoch 2/2... Discriminator Loss: 0.8820... Generator Loss: 1.0839\n", + "Epoch 2/2... Discriminator Loss: 0.8707... Generator Loss: 1.0716\n", + "Epoch 2/2... Discriminator Loss: 0.8608... Generator Loss: 1.2287\n", + "Epoch 2/2... Discriminator Loss: 0.9702... Generator Loss: 1.0217\n", + "Epoch 2/2... Discriminator Loss: 1.1194... Generator Loss: 0.8550\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VVXWxn/7lnQCATRgkCIiDqAiCDZAsHcdZeyKgL2h\nY0FHUew4FtSxfGNHZQRGbCgqiDgiKg5jQaVIEUTpHQmpd39/nKyVc8NNcpNbcoPnfZ48hJt7ztln\nn33WXuVdaxlrLR48ePAg8DX0ADx48JBa8ISCBw8ewuAJBQ8ePITBEwoePHgIgycUPHjwEAZPKHjw\n4CEMCRMKxphjjTELjDGLjDE3J+o6Hjx4iC9MIngKxhg/8BNwFPAr8F/gbGvt3LhfzIMHD3FFojSF\n3sAia+0Sa20JMA44JUHX8uDBQxwRSNB5C4Dlrv//ChxY3ZeNMXVSV4wxYf+GQqE6D7AxIxgMAlBe\nXv6Hu/e6QtZIqjN3AwHnVTTGUFZWBiRkzOustbvUOpZ4XzVaGGMuAS6pz7HyUshEbt++PWwCfT5H\nAUqVF8YtxGSc1tpqP696nPszv99Pfn4+AFu2bGHr1q07fCde463red33Ec3n8YCM1efzhT1vv98f\n9vfy8vKIY0gFYWGMoWXLloBzH2vXrgVQ4SCoaazGmGg2yWXRjCdRQuE3YHfX/9tUfKaw1j4DPAN1\n1xRycnIAyMjIAByh4EaqCIOq8Pl8YS+/e5zyuVsQRFoEfr9fj/v9998TMs76vijVHZfIF0/OHQqF\ndphDgBYtWgCwYcMGSktLEzaOWBAMBtlzzz0BWLp0ab3GGc85TpRQ+C/QyRjTAUcYnAWcE6+Tb9u2\nDYhuIlJBfZRrl5eXqxYT6e9Vf4+E8vJytmzZAkDz5s31++vXr4/XcBslqs6h7LKrVq1qqCHVClmb\nU6ZMoW3btgDss88+9T5fvNZ4QoSCtbbMGHMV8CHgB16w1v6YiGt58OAhvkiYT8FaOxmYnIhzFxcX\nA1BSUqKfRfIjZGRkcMwxxwDw0Ucf6XHl5eXucerxYocmyoFnrdVru21AY0zU1+vcuTN77LEHAAce\neCBvvvkmkNqaQiJ9Co0ZmZmZAPTu3ZulS5cCUFRU1IAjcpAQnkKdB1FHn0IkyASXlJTQrFkzAN5/\n/3169uwJOC/khAkTALjpppsAx84sLCyUMYTZoon2S+y222506NABgOXLl9O1a1cAVq5cCcDixYt1\nbIFAIKIwcQuvhnqOxhjS0tIAxzYWQe0WsqFQSNX5VLXrkwl5fosXLwagTZs2auZ07tx5Bx9ZHPE/\na+0BtX3Jozl78OAhDA0Wkow3xDRo0qQJs2fPBqBdu3ZhjsYmTZoAsHHjRgDdieXvydht09PTATj0\n0EO5/fbbAWjatKmGGd3xarmnSZMmceGFF+4w5oZEx44dAZg1axbNmzff4e+lpaX07t0bgPnz56ds\nRKgh0KVLF8DRFsGZqxUrVgCwxx570KNHDwBWr17NlClTkj6+nUYoyMs0cuRI9eRCpRlw880389BD\nDwENG4nYfXcnUnv66adrbHrcuHFs2rQJgBNPPBFwFo7cU15eXkqo3T6fjwEDBgDw+OOPA5Cbm1tt\n/P/KK68E4LLLLvOEQgWMMbzxxhtApU/s3HPP5cMPPwTgggsu4IEHHgAcoSACJJnwzAcPHjyEYadx\nNIppMHv2bCWCrFixQlVYceA1JHw+H8888wwARx99NPfffz8AL7zwgpoK7u9OmzYNcHaXO++8E4Dp\n06cnccTh6Ny5MzNmzAAqiVNdu3ZVx5gxRlXiN954g9zcXMC5199+c7hrydAYcnNzdT5lDN26deO0\n004DHO7Chg0bAHj55ZfVJEvGuzBq1ChuuOEGoHJNtm/fXh3J7dq1Y968eYBjamZnZwNxi0pE5Wjc\nacyHE044AXDsNFHFjzjiiJQQBoLbb7+dQYMGAeEU1qoCAZyX5+uvvwbg6quvVvZmQ0CiOV9++aWa\nNBItcXvKrbX6grVv317No6lTp6pZtGjRooSPNysri/feew9AN4VgMKgv3rx58/jqq68ARyAnAxIy\nF4EAcNdddwHhIfLVq1fr2khLS6Nbt24A6idLBjzzwYMHD2HYaTSFiy++GHCkqxBBlixZ0oAjqoTE\n8a+66ipVA59++mmefvrpGo87/vjjAWf3kCSZhsBf//pXwOGCPPjggwARx3PggQfy7rvvApXaBcDm\nzZtVe0sGVq9ereaKaDZQuVsHAgG+/PJLwNFoRHtx79jxhlx727Zt/PrrrwC8+OKLO3zP7/eH8WXW\nrFmTsDFVB09T8ODBQxh2Gk1BHDLBYJA//elPgONf+OWXXxpyWADsv//+gMNHEBt8+PDhNR7j8/k0\nGxTgxx8bLnVEOBI+n48PPvgg7G+BQEDHJvRrcHbEfffdFyDpz8BaywUXXADAbbfdBsAjjzzCscce\nCziZk6IdLF68OKEagkAcrO+99x7//e9/AcJYqsL+XLRoEVlZWYDDSRGtIpnYaYTCvffeCzheb1HV\nmjVrlhJCoU2bNjt8lpaWFtHBKGMfMGCA5jM8/PDDSVm4kZCRkUHTpk0BxyH6888/A5VU3b59+yoh\na9WqVTz33HMA3HPPPQ02ZqjkAMjL/+OPP6qzs7CwkDlz5gA71ixIFEQoXHjhhRp1EtJXWVkZeXl5\ngDPfEgWZNWtWg/A7PPPBgwcPYdhpNAUJQW3YsEGdXGPHjlXVPVk7QiS4HUcSWjzppJNUUzj11FNZ\nuHAhUKmCr1y5ku+//x6Ad999NywjNJk44IADwjJJr7vuOgBGjx4NOKaBsO6qVsBKBYiW5g4FvvPO\nO8pTSDZKSkq44447gMpQdHp6uo5nzpw5HHLIIUBlwlS0iFfFsZ1GKMhEnHLKKUye7GRsd+rUSSd7\nzJgxXHPNNUDyac4iFAoLC9X+7tWrF/379wfgiy++UJ+IYO7cuaqKS65GQ6B///6agRoMBjUScf75\n5wNw3XXXMW7cOCA1SpuBM98yZuEj+P1+jfzceOONDTY22LFilpvCPnz4cD7++GPAIYsJKU/K7tUE\nIWrFGunxzAcPHjyEYaehObshKvpRRx3FxIkTAcdLLmXcpOSV8BkSBeEnPP/88wD069ePa6+9FoAP\nPvhA1b3CwkJ11p133nmAQ8sVTeGHH35I6DgjwZ0FKbuVFMx1w1qrDrwPPvigQbUF0cj2228/RowY\nAThmGjiawr/+9S+gUstJRaSnp2ty1J/+9CfVdE4++eR4zO0fi+bshqiJkyZN0sKdv/76qy5usdUO\nO+wwPvvss4SNQ669yy5OVe3t27ern6BqIQ0RHKeeeirgqItiq7v9D3VFfWpU9u/fn+uvv16Pu/rq\nqwF49dVXdQ6/+OILwCH/CGHphhtuUF9DQ+Dwww8HnDmUuXfXxJQXLJVRUlLCSy+9BMDQoUN1zPvs\ns49GTBINz3zw4MFDGHZK86E6SMmrXXfdFXA8/OLtr+9OXBMkDv3TTz8Bjmq49957A/Dbb7/pLnbF\nFVfw2GOPAYSVbxfn47///W81OxJJd5brffLJJ0qmGTJkCN9++221x5x77rlK1928eXNY4ZBkIjMz\nk1NOcZqQFRUVKb15/PjxgKPxyLNOBe5KTZC5P/XUUxk2bBjgEPEOPvhgIKY18Mc1H6qDZChOmjQJ\ngJYtW9K5c2eAOqtm0YR/hLwj5B+fz6decWOMnqNbt26MHDkSgKeeekrPK/z8AQMGaMj1tNNOqxPL\nTfwroVCoxrCmz+fjnHOcKvxr1qxRRmBtBWHHjh3LVVddBUD37t1VhRe7ONEQP8duu+3G559/Djim\nl0QYxHwqKSlpkDyC+kDWzbJly9Qvtfvuu+vGcOuttyb0+p754MGDhzD8oTQFceKJelZWVlbvTMpo\nzC7RBNzfPfvsswGHBiyEqssuuyzi8X369AGc6MN+++0HOJ5zocnWBndpdbnn6tC7d2/uuecewCkJ\nFm3JeGNMWFTCnR2ZDMgcL1++XDWhQCCglbIFmzdvTony6dFAntXixYuVn+D3+7n88suBFNYUjDG7\nG2OmG2PmGmN+NMYMq/i8uTFmqjFmYcW/efEbrgcPHhKNWDSFMuB6a+3XxpgmwP+MMVOBC4Fp1tpR\nxpibgZuBmlMC6wixE6vrJRnpuwUFBepTkM+2bt1a7+rI0WgK4myTHSo7O1ubt0RzvLSHmzVrlja1\nadmype4kTZs21Z0kkmPP3XymtuSkSZMm6XwKnyManHfeeeqX8fl8bN68Oepj4wHRDtzz6XY6CiRb\nMtXh8/l0fRYXFzNq1CjAqSIm2ZMJb4Uopc1j/QHeBo4CFgCtKz5rDSyI4lhbl59gMGiDwaAdNGiQ\nHTRokB0wYIANBAI2EAhYwBpjrDHGZmVl2bvvvtvefffddvPmzTYUCtlQKGSLiopsUVGRPeCAA+p0\n3br+5OXl2by8PLt27Vq7du1aW1RUZEePHm1Hjx5tKyIuNf60a9fOtmvXzm7ZssUWFxfb4uJie+CB\nB9ZpDDIXtc3l5s2bbUlJiS0pKbFjxoyp9XytW7e2rVu3ths2bNDj5s+fb30+n/X5fAmd19p+3nzz\nTVteXm7Ly8ttYWGhLSwstNnZ2Q06pmh//H5/2P932WUXu8suu9jy8nJdv9nZ2fW9n9nRvMtx8SkY\nY9oD+wOzgHxrrRRGXAXkV3NMvVvRe/DgIXGIWSgYY3KAicC11tot7oxAa63sUjsgllb0ouaeeeaZ\ngJNcJByEDz74QCnDQ4cODSt4KlwEyZycP39+XS5bZ4j6L87M/fffX9mBgwcPZuzYsYDDQ5g5cyZQ\nmc0ZCAQ0xp6VlaVJNMJ5iBbu0Gl1/RkAJkyYwFlnnQVAjx491CRIT0/XMXXt2lVZlpdeeikAOTk5\narrceuutDdrfoXXr1gAceeSR+tl3330H1M0kakhUNfPcIWzBoYceCpCwRjExkZeMMUHgXeBDa+0j\nFZ8tAPpba1caY1oDn1hrO9dynjoNQkg2jzzyCOC8/K5z6cJ0/z5//nz15svLmiyIYDruuON47bXX\ngMq8CHAWgmRCvvzyy4BDNZYKUmlpacydOxdwIhLRZMwJZDGlpaXpy928eXO1/SVyMHjwYCXKtGnT\nRn0taWlp6hPJyMjYgZ9RXFzMySefDKA8gWRCxnPMMcdobkNubq7eX/fu3YHUJyxVB1nra9as0XX0\n6aefAvDnP/+5rhmRie0laZzV9jwwTwRCBd4BBlX8PgjH1+DBg4dGgnprCsaYPsAM4HtAdMa/4fgV\nJgBtgWXAGdbaGita1JfmLN7Yd955R39v166dVvItLy+nX79+QPxpt/X1AIu07927t1Zz7ty58w6c\nhuLiYv1s8eLFnH766UDdTR6h+7Zo0UJb1uXk5GhPCVGrL7/8cmVeXnbZZapB5ObmqmnWqlUrrQch\nu9WNN96YdJNB5j4QCGji1siRI3XM1lrat28PoGshFej89YHc6/PPP681JoWtKeZnHRCVpvCHyn1I\nZUg+hjS1adq0qTYAmTlzZoMVhkmF9eGG27aGyo3hrbfeoqCgAHCa1lx00UVAcjpSNSJ4reg9ePBQ\nd3iagodGBTd120Od4WkKHnY+eAIh8fCEggcPHsLwh8qS9NAwqEJoq9NxEj1JdtGWPzI8TcGDBw9h\naJSagmQJRgo3VbcTGWN0x6otTBVvZ1Y8w3vp6elKhU1Ugxt3pl519Oi6oL7HW2uj1hDi8cz8fr9y\nQ2SOkxXSrK82JfD5fHpcrPPQ6ISCMUYr9QoVd/v27VG96FKJuLb03ng7s2J+SIGANvrYfffdlfKc\nSAgRKBQK6YtZ1/uIdaHXBfE4fzAYVHOlasOWRMLn89Vb+IgQc1etjnWz8MwHDx48hKFR8hTEfGjI\nrsbJRIsWLbQ46qOPPpr0Qia1QbJSMzIylDbt8/mUNr1hw4Y/zLNKcey81Zz/iAtMqkslO8OzNgwa\nNEjL0xtjtIpzcXGxft5QzVzdMMZoZmogENCKTV5UY0d45oMHDx7C0CjNhz8KxHkUCATUkVZaWqrO\nMEhcBKI6iPPw8ccfB5zsShlnaWkpK1asAJxWd5JR2RBrTMYpRUpuvfVWBg8erJ/tu+++gFMF+g+E\nndd8qC9k8R522GGAU2Zd+iCOGjUqpSi0wWCQTp06AbBgwYIwk0nSgkeNGqUVkKItyR4LfD4fN910\nE4CWG/f5fCqYli1bxkMPPQTAokWLGmw+jTGaMv/GG28AkJcXXlRcqjNJdysPlfDMBw8ePIRhp9cU\nRNUOBAIccICjOUlX39atW2u5rilTpmjhkYbUGESbOfnkk1UFro6XcNRRR/HXv/4VSGyDEHfJM7mO\njG3ZsmVaMzAQCGi/xvT09KQ3X5HaCueeey533303ELk5TSgUCmshuG7duriNwV0sJ5U0z7ogpXwK\n8WKltWzZEoDhw4drcctp06YpIeeJJ54A4MILL1TSyFNPPaWqcUN0EpLFO3DgQAAWLlyoNQ+resil\nwOrYsWO1XmNtnZkCgUC9/Q9irnz++edaDEZ6b/bs2VOfmTFGa0xOnTpVf08GmjZtqj02s7KydM4W\nLlwIwC233KIFdK+99lrOP/98wHnWe+21F1D/xq0iILOysrRe5ZAhQ7jyyisBp3KWbE5XXXUVZ5xx\nBgDz5s0D4L777tOxb9++PZHCxEud9uDBQ92RMuZD1TJbdYXsZpMmTdJS3zfeeKPGza21ulMKqcat\n4n388ccJaUcfDXw+Hw888ADg1G4ER2OoLobu7iUp3nW5p+qITfXldvh8Pl555RUA8vPz9fy9evUC\nwk0tay0TJ04E0OrUiYao66+99ppWPg6FQqpNvfXWWzscc+mll+punZmZqeZPpO9GA5mDUCikFbF7\n9+6tmsCvv/6qGunuu++u3xcNpXPnznz11VeAU/Fb1u/tt9+udRg3btyYNE6Fpyl48OAhDCmlKfj9\n/jpJQ9EuWrRowX/+8x/AqT588MEHAztWPpadRCQ0oJWKp0yZ0mDFUbt3766VliWEtmbNmrAeC/Ld\nU089lTZt2ujx8nm7du2ASls/Xmjbtq06aK213HXXXUD1mse0adMAOP7447VydTJ8NNOmTVPtZd68\nebz9dvWdBay1PPzwwwBceeWVqiHG4ncBxx/g1jbdXAnRWA877DD1afXs2RNwnq90I2/WrJked8cd\nd3DOOecA8OqrrzJgwAAAXevPPvtsQhK3UkYoQHimVzRo1aoVAJ999plW8v3Pf/5TbRn0bt26AWiT\nFYBvvvkGaBjqtIzjn//8J7vssgsAl1zidNJzP2yfz6edmYYMGaKfh0IhZsyYATjt6mtCfTMc//a3\nv6mDdvv27bWWFZdx5+fnJ0XIilr+8MMP64uel5dXY7q6MUYde2+99ZZ23YrHGhCh3LdvXx3bmWee\nySeffKLjkbHJen/kkUc0ArJ9+3ZycnIAh5gmJKt77rlHc36ke9ehhx7KeeedB8RX8MZsPhhj/MaY\nb4wx71b8v4MxZpYxZpExZrwxJq22c3jw4CF1EHNI0hjzV+AAINdae6IxZgLwhrV2nDHm/4DvrLVP\n13IOa4whLy9PHVQ1jUsk7fTp0wHo16+fhubE4VYVfr+fxYsXA6iqDmic/9lnn613W/q6wB3zl103\nKyuL4447Dqi8JzcyMjL44IMPADjooIN05y4pKVEH6+rVq+M6TnFgLlmyRMOQn3/+ubJBq8v/l+O+\n+uorNeOSWZsAnFZ3Mk4Zw7Rp09RJesghh3DDDTcAsHTpUi6++GLA4VzEClHxP/roI77//nvA6c1Z\nU72E9PR0nn32WcAxhYWN6e6D6vP51LR2axoSRh04cGA0bfsST3M2xrQBTgDuBf5a0UrucOCciq+M\nAUYCNQoFcITAxo0bo1I5Jebbt29f/ey0006r8Zj9999fhYFManFxsfbikyzERMLdNPaUU07Rcdxy\nyy0RhYHguOOO45BDDtFzyOI47bTT4i4MBPn5TrPwnJwcfSbr1q2rcXEbY7jtttsApzNTsvMyBKWl\npZqhudtuuwFwww036Evm9/t17lu2bKn5GvHAokWLACczVEy72gqoFBcXc8EFFwCOT+zcc88FYM89\n91QyWI8ePZSSLQ2SBwwYoKZGnz594tbLM1bz4VHgJirbxrUANllrZTX8ChREOtAYc4kxZrYxZnaM\nY/DgwUMcUW9NwRhzIrDGWvs/Y0z/uh5ftRV9XXgK4mgRbN++PeJOa4zR3eGWW27Zwfn0008/8frr\nr4d9lgiIZvPAAw9w9NFH6/VGjBgBwN///veIx11zzTWA44hy02dXrlwJoDtRIiCRGnd37I8//niH\n7wWDQVXFr7rqKtUwQqGQanJTp05N2DgjwVqrDtl7770XcEwGd3ap+7viwKsrDyCSM1NMLZ/Px5gx\nY+o89i1btmiPUfc18vLydJxXXHEF4HAhxERZsGCB3l+sGlos5sOhwMnGmOOBDCAXeAxoZowJVGgL\nbYDfojlZXV5K8cRL+GfJkiW6eNPS0sK4+KeccgpQ2aMRKm3cYcOGaaWgRED8G0I2Gjx4sPoDnnzy\nyTASkkCE2JgxY7SprDsq8/vvv3PLLbcAiTV5xK71+/16nenTp+vCvO+++4DKZqcQTgbz+XxaS7Mh\nIGQgtx3uji6ISv/LL7/oM6mrBz/SmpVoQElJib6wsUCusWHDBqWyi1DYtm2bCuqZM2fGLYJWb/PB\nWnuLtbaNtbY9cBbwsbX2XGA6MLDia14reg8eGhkSwVMYDowzxtwDfAM8H8+T+3w+TWaRXaBly5b8\n/PPPADRv3lxLls2bN0+zIN2FSt555x0Avvjii3gOLQwZGRmajXn88ccDzq4r17z22mv1u8YYPvro\nIwD69++vn7kh9/r2229rG/hEmTx+v1+Tw6AyqWj9+vXqzZfxW2tVY3ObRwceeGBCxhYtZG723HNP\n/X/Hjh0BR8UXk+eggw6iR48eQCUpqL7Iz89XEtKKFSu05Fu8IBEVqQ3hrmzepUuXuJmTcREK1tpP\ngE8qfl8C9I7HeT148JB8pBSjMRo0a9ZMd3+xvyWPHhzpKX6C5cuXh+1YwmUQmzyRCVDXXnstJ554\nIlDpE1i/fr2m1rp3+WeeeUZ3AbeGIDbizz//zGeffQbAddddp5pQojSFYDCobFFjjPpg+vXrx8iR\nIwH47rvvAIdVJ1qMz+fT0JoxRud+3LhxCRlnTRC+hPgODj74YH755RfAWRfCgM3Pz9fkqBkzZtSr\n/4I8s8LCQvW1fPzxx3F/PsJJkfNmZGQo4/Hmm2+O2/UanVCAypdZFmtGRoZ+9v7773PZZZcBDqFD\nHjg4zhhAKa71RTAYrNZTLd7nIUOG6GIR0+bQQw9VcpYxRh1GgwcP1u/KeX/++WdV4f/73/9qubV4\nq6SR4BZMoVCIDh06AI6Z9uijjwIo2cb9EvXq1UtzMNzfaQjIxiG8ELfTLy8vT3kf7tJt9W3KIs7X\n4uJinnvuOSD+TmC/3685KLLJZGRkKOEunp2svCxJDx48hKHRaQobNmzQgqaiIrolvJuqvHTp0rC+\nk+L4ixXVaQl+v58777wTgD322EPVf1Gp165dq+N59tlnNXzlprBOnjwZgHPOOUdDZMnO3szPz9dx\nunsUvvHGG2q6uHcmCb1OnjxZd7ElS5ZoPYFkIy8vTx1+UpvgjDPOUKfjiBEjVBsqLy9Xnkhd4/uR\nnMGJ0uTatGmjTmhBWVmZshzjuUYanVCAygmoLVdBOArgPPxE5zb4fL6wByc27Lfffgs46t5vvzm0\njaZNm+p9LFq0SFXDVGj2snXr1jA/gZhp5eXlaqZJX87HHntMKeY5OTn69z59+iRVmPl8Po0i9O3b\nl/322w+ozIx1p3JDZfXr6667jn/9618xXxsSU25fBM/TTz+tpqlg48aNMRcnigTPfPDgwUMYGqWm\nEC3EgSQQLkCiUFpaqglWUCnlpQJy27Zt1aRYt26d0rU3bdqUUpV/N27cyIIFCwDYd9991dE4c+ZM\n1RCaN28OVDrZwHGCSj0IKV6TaMj1+/btq07FzMzMMNMSwhmNr7zyitZekIY1sSCRzl/RePr376/3\nKhrvypUrtW9JPLFTCgVZCBJWA6cKUzKy9sS+NsZo4ZS2bdsCTv1IoQWvW7euwbIIo8Hs2U6eWpcu\nXZRCLuQfN0KhkL5Yp59+uqan1xfualK1edSNMRppuueee8jNzdXPBSIIlixZoubkggUL4iKEEy3I\nfT6f5kEEg0G9l1mzZgGO6ZOI4kCe+eDBg4cw7JSagsSgW7RoodJ81qxZcY3lRoLf79f6iVAZpfj3\nv/8NwHvvvdcoOmaHQiFtR3fZZZfpfB5xxBF8+eWXQCX1efny5XGtMuwuV1YbzjzzTDXNcnNz9VmX\nlZVpp2tx4K5YsSKlTLRo0L17dzUfysvLtV6C9AaprnJ3rNjphIIxhgsvvBBwXlJ3Db9E49BDD1WT\noKioiFNPPRWoJE015KKsa6Md+a61VtmU8m+iIUKhujGLeTh//nzefPNNwNkIpOntyy+/3CiEb3WQ\nZkbPPvuspkNv375d17AwcxMFz3zw4MFDGHY6TcHv92uhj5KSEpWq+fn5WrU33pCd7bTTTlN667XX\nXpu0nTUaNCbVubZdXu5lzpw52pqtsUO0nz322IPnn3cSi92m6F133aVl4hNtBnuaggcPHsKQUg1m\n44FgMKiFL9euXatU261bt9a7gWhtkNJlb731lrZNe+GFF5KSvORh50CfPn0AJ7Qq2ZD5+fmqhXbp\n0kUb5MaAqKo573RCoSEgcfz27dsraScV6MoeGg+EDHbUUUdp1fEBAwYo4e7RRx+NhwnodZ324MFD\n3bHTaQp1Cb3VN38+0nnASQiSmH0y+kh4aFjU1JquLscbY5SWXV5erpqnz+eLmJUaAxLfDCYVUd0D\ncguAaGm00ULOU53JkJ6eDjikGvc1ZazVCTI3iSdFhLf+7i4573453OOU7/j9fo23i58lXhTv6uZI\nPpd8AXdEw1qrGZPu6lvWWs1EFKG+bdu2sHXjvkZ9nkkkYlYoFArL4HXPjYyzrKxshw5R7vL07rHF\nOree+eD1MpikAAAgAElEQVTBg4cwNEpNwa12wY4SO5IEj7RDJwtSr7+wsFB3oKo7VyQ0lHbQpEkT\nHafP5wvbjWTcsmsFg8GwKIt7zPLdYDCY8Ni6e6d0a4UyBmttWLMU0RCqzrFEqCLNfTyex6677qrF\nc6SWqHvszZs3V6djq1attHRgdna2RtLk3kKhkLaN27Ztmz6nWDWFRu1TkKy433//PYyWm2pwV39K\nxfEJRMjm5+fry7Rx48awF8tDbIiXH6ueSHz0wRjTzBjzujFmvjFmnjHmYGNMc2PMVGPMwop/82K5\nhgcPHpKLmDQFY8wYYIa19jljTBqQBfwN2GCtHWWMuRnIs9YOr+U8dRqEeGqlIcmDDz6Y9NoEsXqe\nUxnuRLJk358xRh2UjTmpKUWR2OiDMaYp0A+4EMBaWwKUGGNOAfpXfG0MTpOYGoVCXSFlxMU2a4jF\nk6iXJRWETUO+jFV7Ptb1WAgvwR9ruHBnFPq1IRbzoQOwFnjRGPONMeY5Y0w2kG+tXVnxnVVAfqSD\nvVb0HjykJuptPhhjDgC+BA611s4yxjwGbAGuttY2c31vo7W2Rr9CXc0H6Qgl8X9psNJYEQgEOOig\ngwCnnTvAN998w6JFiwCn27P0aPT7/WE1+r755hsgsd2ukom61n0QZGRkaOmyli1bqjkpEYd99tmH\n3XbbTb8vRVjKy8s1d2Xq1Kk88cQTADr3a9asiWsRmQZGwh2NvwK/WmtnVfz/daAHsNoY0xqg4t81\nMVzDgwcPSUa9fQrW2lXGmOXGmM7W2gXAEcDcip9BwCgS0IreGKMhvsZOJZaOweeddx7Dhg0DKp2o\nJ510kt6n0F4FsnOtXr2arl27Ag2nKVQNsbmZjvXZ8euruXbv3p0jjzwScHgWUnVa/E4yrwIpqutm\nGJ588smqhUqB3TVrUmdPk7kVJCq0GSt56WpgbEXkYQkwGEf7mGCMGQosA86o4fgwuCvWVnfDrVq1\n4plnngEqG3pcc801jS4rsaCggKlTpwJOdqW8+CLoQqGQmkdV4aZHx6uNejQIBoP6EskCbdasmTZr\nPfLII7n99tsBR5AJOefyyy/XexXh5ff7tQCO27Ho7kgVjYCQ0nv333+/kn6++eYbFZZSqr5du3aM\nGDECcASFzO2oUaNUgLj7SkoP0nvvvTequakJfr8/jFgka1vmsG3btjqHCxYs4IYbbgCcFgXS4Qoq\n+5TK2NevX0/v3k6D92XLlsU8TkFMQsFa+y0QyUY5IpbzevDgoeGQMoxGYwxpaWm6E4naVxUDBw7k\n1VdfBSp3ksMOO4z//e9/QGzhtFhV32gg1YWnTJmiPSKstbqDSn/JDz74QFu5L1q0SOm3Pp9Pd4pu\n3bppdeVE8TT8fr+O48Ybb9QWcmL65OXl6a4cCAQ0gafq/Mn4pC/EXXfdxYQJE4BwrbBFixbaUKe2\nZ9m2bVt1tDZp0kTnaNKkSTovQjF/7rnnVHNxJ3F16tRJ28ZJ5WSA1157DYBBgwbFvBYKCgo466yz\nAKe4r3Qhl4rYRx99tK6LFi1a6ByWlpZqYdrs7GxtOfiXv/wFcLJy5Z579uwZjanT+LIky8vLa13c\nW7ZsCePigyMopCHJ7rvvrhOVkZGhvQTbtm3L8uXLgcpquD/99FNYmWwRCtUJpFjRrVs33n//fcBp\nGiOLdNCgQfrw3fjkk08inkdMjETWgJSX/tFHH9Wq1JmZmfqiup+BvNQvvfSSvujTp0/XGoMzZ85U\n1Vds+y+++CKiidi0aVONrlTnMzruuOMAmDhxIsFgEIC5c+dy2GGHAc4aqc3elhd97dq1WtPTGKP+\nGjE74rE5rFq1SoXURRddpA2Su3TpAjjCQQTEvffeq3PrjqoZY8jLc4J4RxzhKOI5OTmaG9GyZcu4\n+T+8LEkPHjyEIWU0BWttVCrwwIEDdUeXWPMzzzyju8v8+fN19wgEArzzzjuAI2mrZsaVl5fz6aef\nAo4ET1QNR6m598knn6gzrLy8nCeffBKAt9+Oa4AmZuTm5jJlyhTAUalFIystLWXy5MkAfP3114DD\nlRBzrmoEZOnSpQD84x//4K677gLQOoOitVXFxo0bd/CyQ6VW2KJFC5577jnAeb7yeVpamq6faLzy\nshtfcsklYY5Gubao6vGAu5FL79691Ykp1Zk3bNhQa0f0YDDIDz/8AFT2hSguLtb2ftXNZ32QMkIh\nWojqCJUt3oVoInCH7OSB77XXXuyzzz4APPTQQ4CTDSgqZ+fOneMuFGTBXn755QCq/oGT6ioCqbaO\nSJmZmZqebK1NWChKxjFx4kS1r40xvPzyywAMHTq0TtcW2/icc87RcwtJKxgMRgyjpqWl6TOZPXu2\nCnDZAAoLC7WX4iGHHKLEo1122YVBgwYBThOVmmjOe+21F4MHDwYcn4NbmMjLOW7cuKjvMxrIOH7/\n/XfGjBkD1M0PtGLFCl0/Mpfjx4/nn//8J0CtQqUu8MwHDx48hCFlog+1fUd2nU2bNql5ILTV1atX\nR3Ud8dpLTLdZs2bMmTMHgGOPPVZ3o3hB6j2Ih7x9+/a6086bN0/VwO3bt6vDSCIS33//ve4kEyZM\nUHU+UclKxhhOPPFEAF5//XWd41WrVmkCWjR0X1G/r776ajp37gw4JojscqKNXXrppcyfP3+H47Oy\nspR78dNPP2m0Q5yOaWlpaoJ99tlndOjQYYdzuE1Rcb7l5OToDpuZmRnW1l2o0Onp6cqBkSYzDVj7\nAKjsMN2rVy/9TO7ttNNOU3MuynE2vuhDTZDQUjAYVK9sXdV9IabIy7pq1SrNNYh3/oQxRr3L4nnf\ntGmTCohXXnmFRx55BHBsRPE7yMLdd999NTohHYPqOw6o3YvetGlTbrnlFsCx1SUCI2SkaK/18ccf\nA445JtGThx56SEk2Er4Utb8qmjdvrmPdvHnzDnU1S0pKNGI0YcIEhg/fMQHXGKNCTaIoZWVlylZ0\nv0CZmZlhNTsfe+yxHb4TTxhj9N5F4FWFCKzDDz9cBSRUbgivv/46AO+++25CxuiZDx48eAhDo9AU\njDG89dZb+n9p7V4XaZ6dna2qoewi69atU9JTIswo0W7kGl9++SUjR44EHC6EOJx8Pp/W2hMP8667\n7qr316RJE/17XduPR3tfubm5ynuYPXs2999/PxBezbh58+bK8YhkSuy66648+OCDgMNTEG0jIyND\nu3ZJjD6S6QCOui8NdapzxIlT7e9//zt77rkn4JDC5PMVK1aEcUCqnisnJ0e99q1bt1aTp6ysTDWa\n6sYXK4wxagqLZrZy5Up1ui5cuJDu3bsDTvEg0RoA7YUqBLdEwdMUPHjwEIZG4WjMzs5Wh1FGRgaX\nXXYZUGlrh0KhsKo7bg1C7MglS5aog0ruecKECVrSbcuWLepQy8nJ0XBneXl5vbSIYDCoTDmxo7/9\n9tuonaK77bYbc+fOBRwH2Lp16wBnp40n49JdrFWSykpLSyNqAh07duTRRx8FUCpyeno6Dz/8MODc\nX6Qw4wEHHKBaiPAbDjnkkIjjSUtLU9s5kRWgZLeeN2+ePndrrdrrotkkgj4ucy7+kNNPP12dnVDJ\ndAwGg/qs//e//6lPLIZ3dudxNPp8Pr744gvAmbBzzjkHgL333huAIUOG6Mu/detWJc3MmDFD1cGm\nTZvqIpNiHI8//riq+EOGDOHggw8GHO78999/D9R/YRpj1GMuY5g5c2bUx69YsYI77rgDgNGjR2u2\n3JNPPslFF10ExMfkkezMbdu21RrrXrJkiQpc4d+Xlpbqiy5mkkCiPddddx3fffcd4PRHrAllZWVJ\nKYEmL9srr7zCrbfeCjjPTHgUiYw6yP2JMJ0/f77mlwwbNkwFRHl5uTp6hVuTDHjmgwcPHsLQKMwH\nn8+nO+X111+vrEYJ9eXm5oaFlUaPHg04TqRTTjkFcHYGiT1/8MEHgBP7Fq5AUVGR7uzRtJCvLdS3\n6667ctRRRwFoWGnUqFF1CqMKD2PZsmXqDJszZw49e/bUe60Nclx1361LT4r09HTVwmTe/H4/K1c6\nJTm7du2qZgWgCVHbt29XDkht18jIyNDvJKNwzJ577qnJT8YYXRsnnHACkNjCrRKafPHFF3VNZ2dn\nq8ly5513xqWegwtRmQ+aJtyQP4CN9sfv99tAIGADgYANBoM2GAxan8+nP+7vtmzZ0hYVFdmioiK7\natUqm5OTY3NycqK+VnU/xpiI13P/7LfffnblypV25cqVdtGiRXbRokW2VatWdbpOQUGBLSgosCUl\nJba0tNSWlpbaq666ylakmkc91pq+G825unTpYrt06WLHjBljP/30U/vpp5/aNWvW2DVr1thQKGSL\ni4ttcXGx/fOf/6zzYoyxfr/f+v3+Ot1zVlaWbdGihW3RokW145LzytijnYtIP7fffrstLy+35eXl\nNhQK2VmzZtlZs2bZ7Oxsm52dHfNaieb5rly5Up9veXm5feWVV+wrr7ySiGvOjuZ99MwHDx48hCGl\nHI3RdFmui+OvqKhInTbbt2+Pa03Hql2Uq8IYo9EOYVCeddZZ6r2vDX6/n/feew9wTABRyz/66KMw\nlb82EyLaztUZGRl6L6FQSM2OtLQ0Dj30UADeeOMNJk2aBFRyMH7++Wd1KF5++eV89NFHgOPwrY+T\ntnnz5urse/fdd3eItBhjlIXao0cP7rvvPsCJ4ddF1Zd5Ef4HhN93bUlqsUDOPX36dMAxNWXsRUVF\nWmKuoZBSQiHe9tu2bdtUEDRv3jyunYdqC1UtW7ZMXzJ5ac444wwef/xxoHobX4qQ/Otf/9JQZklJ\niVYCWrFiRViD0WhR3dzKnNx6661K2Hn99dfD5uiFF14AwudNfAS//vqrRoHS09NjztZLS0vTeo6R\nQq+HH364pmG76djDhg2rU6hW6M+S7wHOHAlBSMhPiUD//v0BJ8QLjpCQ9XTWWWc1eGcsz3zw4MFD\nGFJKU4g3rLWadNK8eXMt671ixYqYzusuM1/dbl1YWKiFOsTLXFRUpISmVatW6e7t9/s17i/58VlZ\nWbp7TJw4UdXkwsLCOmlUwkOobhcVVfb0009n9913B5wd+JVXXqnxOKEXi5YAMHny5Jjj+8XFxRGv\nKePs3bu3ajfBYFDj+y1bttRM0+og5wgEAlqzIT8/X8dcVlam9RoTBWOMmpDu5yjcm0QlOdUFjSIk\nGQuEodalSxe1VeNRDl6EQnWqXmZmpnYbEvKS+7tffPGFhha3bNmixCkxNVavXs3NN9+s9yDhubq+\ndLWFJAVjx45VwfTDDz/oXLnJRD6fj+uuuw5AVfj09HTNRTn77LNjNgGDwaAKw0jn8vl8WgeyX79+\n6tt49dVX1cT6z3/+o6abCILjjz9ev3vxxRdruLegoEC/O2fOHP785z8DlYzNeJOYmjZtqpuSsCrX\nrFmjWbIJDsMmpRX9dcaYH40xPxhjXjPGZBhjOhhjZhljFhljxlf0hPDgwUMjQSxdpwuAa4Au1trt\nxpgJwFnA8cBoa+04Y8z/AUOBp+My2joiEAhoTcD33nuv2vz1usIYU6t3um3btlqhV7j1PXv2VFOi\na9euYYQryT4UGvD//ve/uLaDr61H40033cTJJ58MOFpVpGzM0tJSdYRKLsrZZ5+tZeXiAXceS6Tx\nhkIhzXwcOHCgVjbec889eeONNwD45ZdflOwmuSadO3cO0x6kfsbcuXP529/+BjgFTUSLjHf0Qc53\nxRVXqIYgGtGNN96YUr1AY3U0BoBMY0wAyAJWAofj9JUEpxX9qTFew4MHD0lETD4FY8ww4F5gOzAF\nGAZ8aa3ds+LvuwPvW2u7RTj2EuCSiv/2rPcgaoDf79fdJtlltdw7jewM+++/vzrGxo4dqz6G4uLi\nsEYlDQXpbP3aa6+p/e3u62CtVXtY+mmIhtNQEJ9J69atNeGsuLhYfQbiaPX7/eonGD58uGobDz/8\nsFb8TuTcS1u4CRMmqL9G5rJjx45RUevjgKh8CrG0os8DJgJnApuAf+NoCCOjEQpVzpWQpxEtccdD\nOA466CDld8ybN69OpdM9RIZktv7f//2fCrILLrgAQEvkJwEJdzQeCfxsrV1rrS0F3gAOBZpVmBMA\nbYD4FdD34MFDwhELT+EX4CBjTBaO+XAEMBuYDgwExpGAVvR1gacd1A/S4sxDfGCM4fDDDwccZ630\nkpRweaohVp/CnTjmQxnwDXARUIAjEJpXfHaetbZG12o8zQc3sSgjI0Pj/hs2bIibkKjNk/9Hgs/n\n04hKYWFhg1N0UxHBYFB9HJmZmUqljtUcq8c6THzlJWvtHcAdVT5eAvSO5bwePHhoODRqRqO7dbzr\nXPp7IlvKNxT8fn9c+QuREAgEdMevOrepPJ+R+A2RPvP5fPr/VLkfd/9M+d3n82n0xN0LVZ5NKBQK\nK90WxT0lntGYaNRGEnK/9PJdSSeOppJQddeL1OA0muPcxTfjATmvmER+v5999tkHn89X5zHWBZmZ\nmeTk5JCTk0MwGCQrK4usrKyoCD3uMScT7utVNzcyb2lpadWO0T3+WO6juuPS0tJ2eH4+ny/seuXl\n5ZSXl7PrrrvqZwUFBXqcfCadsMrKyuIaGUppoeDBg4fkI6WzJOuy08dDUtZXpZTvJ6IcODiJP9Ji\n7tVXX9Xy84lCSUlJWJfraHpIglN4RbIne/TowUsvvQQQ950sEtzPrLrfZQw11V1wU8/B2dnrQyyq\nbg1FOld1c+PO+qyuOU119xoLUsqn4PP56tXqXFSonQ2iYn7xxRcccIBjCvbs2TPhQqGukI5bvXr1\n4tRTHVZ7cXGxZv5t376dBx54AKjs2RnvZr4eokLj9yl48OAh+Ugp8yFaLUF2Jqkd+Pnnn++UmoJk\nJEpvQahsVZ8q8Pl8Wrxm0KBBmn8wbdo0LQO/atUq5TLIdz1NIXXhaQoePHgIQ8poCnWJgbdt2xaA\nSy5xkiw///zzhI2rIXHkkUcChIU6ays5lmykp6drA5W0tDT1HaxYsUKzAK21YaXQkgG5nsT5y8vL\nlelaUlKSMvyEukA0ZNGoE8UeTRmhUJeHJAU0pANRY3zAtcHn8zFixAggPH1ZHHUNDXnZZs2apVWn\nly9fzi+//ALs+Ezk/9FGMuoDEQR/+ctfaNKkCeAUVwEYP348vXr1AmDBggU6jpkzZ6bs+mnSpImm\nWd95551avk+KBV166aW8+eabQHwFhGc+ePDgIQwpoylEaz4Eg0EtrinVh3fbbTctu7azIDMzU3c5\nqNxhmzdvrsVChP2WTIgKK6ZB8+bNVYt54IEHGszhm5mZyfXXXw84beQvv/xyAN566y0gfCe98MIL\ntZbB1Vdfzcsvv1zteWsKk4tm4mYn1ud55OXlaeOg8vJy/vOf/wDO3Aq1OTs7W02vvLw8wOmYvWjR\nIr2nql2/64tGIxTEe/3xxx+z3377AZUVlR944AHOPfdcoObmsFXt2uzs7LCGqPEaayyQMY4bN46s\nrCzAsSHvuecewKl0JPed7BfwgAMO0DqIEgUpLS3l+eefB5wCIg2FjIwMnY8rrrhCXyz3c5KXZt68\nefrZDz/8oPfSoUMH7c4kJde//fZb3YRKS0vD1ldVGz89PV0raFW3RowxKuyluEqnTp3UHNu6dauu\nz6eeekrLwXft2pVWrVoBlc197733Xrp06QLAjBkz9PNYG/J45oMHDx7CkDKaQk1o1qwZt956K+DU\nBhSpKpK4c+fOyllo06aN7gQlJSXqBHvggQc07i87Q3FxsbbwipfqJZAxQqXqH4120aFDBwBtYw+w\nfv167WmwZcuWiBmMiUKTJk34+OOPAafKs2gpUhPg//7v/1RDaEiH3datW5k9ezbgVHOuaSxFRUUa\nMTn99NPp06cPAH379tXvyPEtWrRQFb7qOav2/nC3mjv22GO13d5PP/2kGuABBxygGo18tmrVKtW2\n/vGPfygN222KrFy5Un+X43Jzc7njDqdyQSAQ4E9/+hMAX3/9dUzPImWEQiS7TWy1Jk2a0KlTJ6CS\n2gywbt06AG644QYNSx522GEMHz4cgJNPPllVPGutFhmVlzQ7O5tPPvkEcARFtOSpaCbcrUpG830R\nItIhyOfzqRr48MMPq1c/WSaDqKJLlixRM2bDhg06t+PHjwecuUxkRCFapKenc+ONNwLQvn17fUEi\nPdOCggJVy3fZZRctxFNWVqYv3zXXXAPAp59+Wu2cRxIWst7GjBmj/Sp33XVXfdH9fj/ffPMNAA89\n9BAAH374YZ1UfhEKmZmZas6UlJRoOftY4ZkPHjx4CEPKaAqRIFJ+1apV6p11F5s4/fTTAfjss8/0\nmClTpmgk4qCDDtLsspdffplly5YBaHu0K6+8UnfBQYMG8eKLL8Zt7HXdPcWkWbx4MeBI/nHjxgHw\n/PPPJ9WpaIxhxowZgKNNSaShQ4cOO5guya6bUB2Kiop0Dlu1ahVxXOKsnjNnjj73xYsXc8UVVwDw\n/fffKw8kGq0xUlat/D5//nxtBWiM4auvvgKcaMeCBQuAuq8RcUDKuu/Tp4+aytu2bVP+QqxmXEoL\nBUEoFFJ1Vv4P1TMZJUwjIUuBhHLkZYPKRR2rx7YqiouL6/RwZBwi0Jo2baq9FzIyMmrsmhRv5Ofn\nq7lWWlqqPR4iCaZUIf6Ul5crA/Tss88mNzcXqOwb2rFjxzDmpXSFeuSRR+p9D5GOkzk64YQTWLt2\nrV5PIgeLFy+uVRiI2dyhQwf23XdfwDFnJC1diFn33XefRoNWr16tazjW6JhnPnjw4CEMKaEp+P1+\ncnNzCYVCEXsYQmWHHah0MNZ1JxbvsqiOUOnhFYnbEDDGKPfivPPOAxxN4ZBDDgGcmLl4mUtKSlSd\nf/LJJ7VFfTwbitxxxx2qmdx0003VPhMZu+xsDV3JWRy7c+fO5ZlnngGcrlzgrB9xAr7++us8/PDD\nMV9v1113BSrNADcFfa+99gpzcovWUFBQoJqswBijTsmXX36ZY489Vv/mXuNiNk+bNg2AyZMn89tv\nTluVQCCg5tOWLVtiMjc9TcGDBw9hqFVTMMa8AJwIrJH2b8aY5sB4oD2wFDjDWrvRONvLYzidpwuB\nC621X9d2jVAoVGNHaGut5t9nZ2erTyEnJwfYsZ+hm3Yq0jw/P3+H/oKAStpEFEKtrpKw/Cuf9+3b\nV/sZSnjMWqvhppYtW+rO52YQvvPOOwnRcNq0aaNzLDtc1XsS+P1+TUxbtWpVjaXOEg2Zz++++44p\nU6YATik7cMYpO/oTTzwRl+utX79ezy0Q7WDAgAFq42/fvl1p1a1atWLw4MEAXHfddUBlMVf3PQjc\n/gcJl4ozul27durv6d69u2p0EuqsL6IxH14CngDcBPGbgWnW2lHGmJsr/j8cOA7oVPFzIE4L+gNr\nu4C1NqxEdVWEQiF9EYYNG6bEmRNPPBGobPUOjkotE5mZmalp1lu2bOGUU07R6wmk6Effvn2VGlub\nIygalfmCCy5g4MCBAOr0KigoULUuLS1NzZiWLVvqyyYEnAsuuEAF5Q033KD0W7/fr6bCwoULo3aQ\n1qWv5pQpU7TZ7IgRIzSunp6ermQvEV7dunXT706aNEnT2WNxdMm8lJSU1EsNLiwsZOrUqQAaWdiw\nYYPWjFy3bt0OxKNY4CYjyTyXlJRw8sknAw7XQa6zdu1aHnvsMaByDktLS1XAdO3aVanLc+fOVZP3\niSee0IxIiV5cfPHF2nnK7/drhOPBBx+M6X5q3R6ttZ8CVcvknILTZh7C282fArxsHXyJ01eydUwj\n9ODBQ1IRVeFWY0x74F2X+bDJWtus4ncDbLTWNjPGvAuMstZ+VvG3acBwa+3sCOesUyt6dzKTOB1F\n+h555JFKxRXmnxzjbiEnPRIl3BYIBFTKX3zxxZotF48w2+LFi7VwaaRdurS0VFX0YDCoXIsBAwbs\ncM9NmjRRGvdhhx2mTkeodD7FE8FgkDlz5gBOKE+0oo0bNyqjVMy53Nxc3fGKior02UjX6vrArUrX\n51n06dOH0aNHA5Xmz2mnnaamTU5Ojo4vFk2hpjBxvJLmxOT99ttvuf/++wFU4znmmGP45z//CThz\ndu+99wIwatSo6k6X+LZxANZaW58OT9baZ4BnILoOUe6XaenSpVQcBziTFOkBWWvDXjzxL4igCIVC\n3H333YDj9Y32Idb0wGVBL1++XE0TybnYtm1bWOxaPv/kk080K0+Ov/TSSzWWXl5erj6HwYMHa15E\nkyZNtHry3Llzoxp7NCgtLVW69fnnn6+e8R9++EFVX+GNnHDCCXTs2BFwclQkAzCWitP1LQcv5J5J\nkyZpLP/9998Hwsu6FxYWhnVWSgTiIRCMMWp6rly5UqMWwr1Yvny5mro+n095GLGivt611WIWVPy7\npuLz3wA3Y8hrRe/BQyNDfTWFd3DazI8ivN38O8BVxphxOA7GzdbalZFPETuiaYQh3uDXXntNqdKC\n8ePHq6ZQ3+tWhexyRx11lGbfSRShT58+WhLsiCOOUK0gLy+PHj16APDRRx8BlZEVOecZZ5wBOOaC\nRFseeuihhBWXufnmmwG46667dDeKFFmYOHGiaitDhgxJyFiihTjdZHcFp4xZVYRCoXo1eKmKRNfU\nSE9PVwfktddeq5WyxYTr16+fOmXdXIhYEU1I8jWgP9DSGPMrTpfpUcAEY8xQYBlwRsXXJ+OEIxfh\nhCQHx2WUMWCPPfYAwm11IbkMHTo0YdctLS1l+vTpQKVguvrqqznuuOMA58F/9913gEM8kpde/B77\n7LOPHl9YWMhtt90GOJ7zZORBiFpdNdwrEIFWUFCg9+QmmCUbPp+PiRMnAs7cShTnxx9/TNg1q1Ze\nipcpIpTotWvXqu/ms88+07T6s88+G3CiUuLP+f333+MmpGoVCtbas6v50xERvmuBK2MdlAcPHhoO\nKUFzThQCgYAmP2VnZ6unXlqwJYtoI+r38uXLNcowYsQILezS0PTgumDvvfcGKglAu+yyizpMR44c\nqZfMxTMAABZGSURBVNpPsnH00UerKr1161blU8QSBakN9S2LV1vUwl1QReDuafnXv/4VCCfy/e1v\nf4t4XH2wUwuF1q1ba7ENQMNUCxcubJDxSIESiE9D3GRj7733VkEmpKn169drmvX48eMbLGvy6quv\n1jkdMmRI3LNe44ma5qjq38Q0ad26NWPGONQg8SlYa5Wk9dRTT8Vt7r3cBw8ePIRhp9YUrr76alXV\ntm3bxsiRI4GGqwHQGLUDN4qKijRGLhTsuXPnaqQiEUSqaLH//vvrriqaS6IRL7PP5/OpKeIu25+W\nlqY1Qfr168d7770HVM7zkiVLuPTSS4H4rmlPU/DgwUMYdkpNQRxOV155pUrgDz74ICUKjDZmLFu2\nTHtFiiPvxRdfjFt8vD6Q59usWTN1+DWW5yyajTuRqlOnTppIdemllyrdfNKkScpYlLKBa9euTYjW\nu1MKBYn5p6enq8oeazqpB0dFffbZZwG0KMyHH37YkENSVbtNmzZa5CRZ5mGs13Gbk+6msVKVOhgM\nKm38vPPOU9Mt0fDMBw8ePIRhp9MUWrRowUknnaT/F7VMmGEeYoNwO6SNXTzowvFAY3++onX88ssv\nyrht2bKllh6sjlmaCOw0QkEqNXfs2FFV3N69e2uvyMZiZ6Y6RF3f2Rr6pgoKCws16/SMM87QbNVk\nRsw888GDBw9hiKrISsIHUY96DBXHAQ7VVuoEzp07V1XaffbZRx01U6dODau2u7Mg0f0gjDGadOMu\nWiMoLCxs9PyLVIM7S1LWcpzmOKoiK41aKNRwPqD2hqBuSCYjOFz2eM5LpIIeMTUArTifMUbDcPEc\nrztE5hYC2dnZmksg5lgoFNLvuovPJHtdVS18U58MxnhVS0phRCUUPPPBgwcPYWjUjkZ3Lb9oqhVH\n+lx2wvz8fPX0+ny+uFJ2pTRYWVmZjnn79u11alHvHq+UQisqKlKvdDwzLY0x2ncRKouWlJeX65jd\n89NQ2oEbNVUCjxZpaWmqeSUqczVSj0ufz6dzvHXr1ojVoetbr7I+8DQFDx48hKHR+RR8Pp+2ApNC\nrN9++60m6NS3Ao0xhgMPdFpUFBYWKr00HhAfQCgUitlhZIzR86WlpanWIB21EwHRbkKhUNjvOxuS\n4VPIzc2lZ0+neLmkoWdkZLBmzZqaDosXklPNOVmQF6Fjx47acOT7778HnJx+yZ9fvny5EmzqYgJY\na7VtvXT6jRfqWz7N3bVKXkJrbZiTT4guiUQkOm4qw92b8fjjjwecLMrXXnsNQJumVEUiBYKs3+nT\np+tmJrU+kiQQooZnPnjw4CEMjdJ8EKfMwQcfDMDAgQPp2rUr4FBDpWrzypUrtYmKMBtTHdLnsn//\n/srMnDdvniZ5VU2KkR0oGcVcUz1kJ0zAJ598ksMOOwyobM3mxm+//cbYsWMBuO2225Iyd6L1vfHG\nG6xatQqAyy+/HEiqg3bnMh8EbpVZWm+XlZVpBdxmzZqp57xp06aa1vvEE09obbtUXNgSBbnmmmsA\nuP322/WzQCAQ0Wudlpam/IpkLOxgMJgyuQ4CEZZ33XWXVpPOyMiI2LBV5rCgoEDn+Z577qmxuXG8\nIGbXRRddpGZtKq5D8MwHDx48VEGt5kM1regfBE4CSoDFwGBr7aaKv90CDAXKgWustbUm3NeX0ehu\n6y7FLMvLy2nWrBngVL2Vdt/GGG644QagsoBrKuGss84C4L777gOcnV96A44bNy6scrConW3bttV+\nEMmoWpyVlaW7airscrm5udqWPS8vLyymL07o888/H4Cff/5Z29NLlAlgwoQJ2rIvWajKcI1mLt21\nQcTErIeTOT40Z2NMP+B3nG7SIhSOBj621pYZYx4AsNYON8Z0AV4DegO7AR8Be1lra2SCxJvm7IbU\ntTv22GPVay9hvGSojdEgNzeXn376CUD9CCNGjAj7jiz4Cy64gMcffxxwMhWlEYvYqfFGfn4+n3/+\nuV5DrvPCCy8AMG3atHjz82uFzMUjjzyiZoAbI0eOjNj5S0rRb968WV/MNWvW0K5dO6D+NSbdL3lt\n71NGRoam9kuv0A8//FAbJBcXFzNw4EDA6SgmLQp69uyp/iTJ5znttNPqWvUqPjTnSK3orbVTrLVi\nxH6J0zMSnFb046y1xdban3E6RfWuy6g9ePDQsIiHo3EIML7i9wIcISH4teKzBsNdd90FOG27xSnX\ntm1bIL6dmusD2fE+/fRTrSsZqfchVHrR77jjDv3up59+Wq8Yt5s+W93u3q1bNwC+/vprdWJmZ2er\nyipzGAgE1OG77777ah+CRKJ169aAYxq4HbCSBSsFYKpCam64k7zmzZtXbw1HzFcxVwGlyldF+/bt\nAfjHP/6hPBg5vrS0VOtTDBw4UOfwoYceUlJadnY2nTp1AuBf//oX4PTZOOGEE4D4mo8xCQVjzK1A\nGTC2HsdeAlwSy/WjwZFHHqm/y8NPlSo98mK1bdtWH3ikKEKTJk20J2JBQYF+59///ne9FnRubq72\nWhTz6vrrr9eXe8mSJdrg1t2W/vHHH1fVdcGCBQDstttujB/v7An77LMPn3zyCRA+7/GGFDZdu3at\n5pVs3ryZ22+/Hai+85J053KXUX/sscfqnecg1xG1vrrITGZmppoBf/rTn/j555+ByjlyC5JRo0ZF\nPMe2bdt0E1u9ejUAvXr10nu+++6749YAp95CwRhzIY4D8ghb+RSibkVvrX0GeKbiXA3vtfLgwQNQ\nT6FgjDkWuAk4zFrrFk/vAP8yxjyC42jsBETmlMYRgUAg4g4bDAa19bsxRnfVZPWQrAnGGFVz33zz\nzYhmwJlnngnAc889p6bPli1bNKLyxRdf1OvaoVBIHVTSefv8889XTcHn8zFv3jwAunfvHlbKTvj6\n4pRLT09XraNbt25KL/b7/QnLNBRn7GuvvaaRgxkzZrB06dJqj7n44ou1EA9UqtuxmA+yF9bG3ejZ\ns6dWvzbG6JxXZ2pUB3Foirny448/8vbbbwPhvSZj5azUtxX9LUA6MLXCpvvSWnuZtfZHY8wEYC6O\nWXFlbZEHDx48pBbq24r++Rq+fy9wbyyDqit69+4dtoOJI+7444/XjLSKsQHhTTgaKt7eunVrDYWN\nHj1axyRszF9++UXp3NZapWkfeuihas/Xd+y///47Rx99NFCpKVx00UVqn2/atIm+ffsCOxa8rerQ\n2r59u2oKZ511FjfddBOQ2E7acu7Nmzfz9NNP1/hdWQtDhw7VnRYqae8yl4nEQQcdpNyCyZMn16sz\nd3p6umpFoumeeeaZ/PrrrwB06dJFGycnXFNoDFi4cKH23MvJyeEf//gH4KhZkgdhjFH1KhVopmee\neaZ68ktKSjR2LZl8bs7+jBkzOPbYY4H4mD7WWuVoPPXUU4Cjkgv/Yb/99tP53Lx5c40vuDFGnV3B\nYLBB+0lGwsSJEwHo0aOHflZWVqYdrhIJEfT333+/fnbnnXfW6aWV6Mo555yjRDXplbl8+XJdwz/8\n8ENcxgwezdmDBw9VsFNoCps2bdIMub///e/ssccegFN8RUJ91lp1niWjBkF1EMm/fv16DfX9+OOP\nTJ48GajUEEpKSlQVlx08FgSDwYi9L+Sz0tJShg8fDsC7777LrFmzAMcp+eijjwJORqE45eQ+Tj75\nZK0PsGHDhqR1fK4Np5xyCuB0awZn15Zd9f77749L34qqSVdVNc8OHTro76Jtff3117WeV+b24IMP\nVkr2TTfdpFqvsFj9fn9Y6TYxj2LtcbJTCIXS0lKN/X722WesWLECcOLx7irNQittSOTn5wNOTH/v\nvfcGHJtTFpC8dP369au2GEh9EM1CEf7G7Nmz6d69O+DQcqW34cEHH6yFaCQy4vf79WVIhagOOF3C\nXnrpJSDcDJN18eCDD8blOvKsImVkgvNc5e+bN28OO6Y6GGPUFOjUqRPPPfcc4Pg+ZI3IGurWrZt+\nt3379px66qmAw72IRTB45oMHDx7CsFNoClBJcX3wwQdVpRo/fryqYuXl5eolbygYYxg8eDAAQ4YM\n4b///S8AhxxyiFJvhbUWTy0hWshOd/311+vvQ4cO1bEdeOCBqo4LZs6cyS677AI46rJEVGriDCQa\n8+bN08iNm849YMAAILpEuGia7FTlDfj9ftavX7/DcWVlZZrF26xZM418yDWCwaCyW0eMGMFee+0F\nOMVghMtirVWtR7S0jh07anTt0UcfVY3lyy+/VPZmfbBTCAW/36+hp02bNukD+fLLL9VrX1pamrRW\n3tWhf//+mttQXl6uD65jx45aqv2qq65qsPEJSkpKlCA1bNiwsMYqMs8yXmutEnO++eYbjZ5IVaxk\nQijbkgULler6SSedpGnWUNn8Jz8/X++pVatWmqG4cuVKwKGYS0Rl9OjRYfct566O5jxz5kzAmStZ\nkwMHDuTbb78F4PTTTwfg7LPP1o2ssLCQW2+9FXBedDmn3+/X6z300EM6XokeZWVl6d/PP/983VTq\nUxTHMx88ePAQhkatKYj69pe//EUjCyKFAU3qAYdkE6/y5D6fL8wsqQ1CCpowYYLuGDfeeKPWJOjV\nq5eWrReHVEMjUou7UCgUUdtavny5/i5U4kTSnCPB7/cr4Qoqxzxy5EgA3n//ff1bTk6OmpKBQIDn\nn3e4eIMHD1Y1X5x5bkf18OHD1SwpKyvTNVCdU09MqI4dOzJ9+nQArrzySm0fIFps06ZN1ewYOnSo\nmpXuXT43N1cTnqQuxNSpU9V0Kysr05ocTz/9dEyOxkYtFCQd9bbbbuPcc8/Vz+XlHzJkiH4Wz0ao\nbtUxGkj6digU0jGNHTtWF1X//v1VhU0Gwy7ekMVrrdWwWWZmZlKL2LRo0SIs0lCVRBUMBlU4L1y4\nUJmjgUCAO+64A3CKyNQUQQkEAiokQqFQ1EJv8+bNWvRl33331axSqRlaUlKiYfJAIKDzGQgE1J9z\n++236yYnIfcpU6Zwyy236P3Gq1OXZz548OAhDI1SUxBNQGoYNmvWLGxXkt1KVD1wyn5HqohcH0Qr\nieV6YhoEAgFef/11/bt4rXNyclR9TJVYf10gO2YoFNKdtHPnzpqPkgwMGTJEd9VQKKQOQSlo8tJL\nL2kcPzMzUzUJY4zmJUhFcKgsxFJaWqom6csvv6waontHjwZvvvkmAG+//XaNO7r7nO7eo/vtt59S\ntSX/5IQTTkjIevE0BQ8ePIShUWoKUt9fHDWBQEA/W7ZsGRdffDEQzrYrLi5OquNLrg9OFic4kr/q\nTgAO7VqSuBojZAd2z2+yHabfffed7v4ZGRnqgJMQoxuhUEifjVt7DAaDOu6//OUvgFOY1g35fqQm\nM9Ggrn4tWS9t27ZVzVc0hUQlnzVKoSAPRLyw5eXlYaqVO9YvauQ///nPJI+ycgHIg636oojjaN26\ndbzyyivJHVyc4Pf7NaV3+/btvPrqq0BiG95GwrRp09Sr36tXr4imoltdlyhKXl6eeupXrFhBnz59\n9PdIcG8yyYREQyDcsZsIeOaDBw8ewtAoNQXZhSQO3KFDB/7+978D4e3Si4uLNZknXkUt6wLRFKTP\nZa9evdS5mJWVpTtbMBhUR2NjQ7NmzVRLe/XVV5WxGWumXl1RUlLC4YcfDjjchGOOOQaoTPJav369\nZijOnz9fd9633npLS+HVRbVPdi2OSCXxEoVGKRRkgiSF9Kuvvgrjnwu+/vprJaY0JH77zaldu2nT\nJs19eOSRR8JKfKdaj8ZoMWHCBDXjNm3apGp1WlqavmTJ6HMJlbb28OHDNQ28sUPWiLtDlKSnJ6py\nmGc+ePDgIQyNUlMQSIJLixYttBLxCy+8oDvTeeedl7RWZtFg27ZtPPHEEwC8+OKLmrW3devWlCtj\nFi0KCgrC6krKzhZNCzUPtUM4FL/++qsWu6mtLmXMsNY2+A9g4/VT0UPC+0nSz80332yXLl1qly5d\nas8++2ybnZ1ts7OzG3xcO8tPfn6+zc/Pt5dcckk8zjc7mvfRMx88ePAQhlq7TidlEF6HqEaL3Nxc\nrZ0wa9Ys5WKkwrraGeDmW8RhTuPTij4ZqKtQqEpMcacyJ8vT/UeHzLfYvOBEUeKVqRcLGrKfR7wh\n81tWVhYP/1h8WtF78ODhj4VU0RTWAtuAujXXix9aetf2rv0HuHY7a+0utX0pJYQCgDFmdjSqjXdt\n79retRMLz3zw4MFDGDyh4MGDhzCkklB4xru2d23v2g2PlPEpePDgITWQSpqCBw8eUgANLhSMMcca\nYxYYYxYZY25O8LV2N8ZMN8bMNcb8aIwZVvF5c2PMVGPMwop/8xI4Br8x5htjzLsV/+9gjJlVcf/j\njTFptZ0jhms3M8a8boyZb4yZZ4w5OFn3boy5rmLOfzDGvGaMyUjUvRtjXjDGrDHG/OD6LOJ9GgeP\nV4xhjjGmRwKu/WDFnM8xxrxpjGnm+tstFddeYIw5JpZrxwsNKhSMMX7gSeA4oAtwtjGmSwIvWQZc\nb63tAhwEXFlxvZuBadbaTsC0iv8nCsOAea7/PwCMttbuCWwEhibw2o8BH1hr9wb2qxhHwu/dGFMA\nXAMcYK3tBviBs0jcvb8EHFvls+ru8zigU8XPJUCsKYiRrj0V6Gat3Rf4CbgFoGLtnQV0rTjmqYp3\nomHRwNmRBwMfuv5/C3BLEq//NnAUsABoXfFZa2BBgq7XBmdBHg68+//t3b2rHkUUx/HPgegFI2hi\nEaIRbgSxNVYRLQIKaggROyVgRP8BK0FuZS+ihaigWISLghrkkkbwpY4vIBp8wUjE3JCYNKZOcSxm\nFp7VPMarz+xjMV9Y2J3Zh/P8dg+HOWdndxDKRJZtV7seC7Z9E86odaSZ9ubacRvOYqfyuv4JPNRS\nO1Zx6lo68QaeuNp5i7L9p77HsF73R/6Oj3Bvi/u/lW3Z6cPgLAObta05EbGKfTiJXZl5vnZdwK45\nP/uvvIznMExivwW/Z+bwwkZL/XtxCW/X9OXNiNhuAu2ZeQ4v4lecx2V8ZTrtzNc5tQ8+jWENu6X5\n/9+x7KCwFCLiRnyAZzNztDhilpC98EcyEXEIFzNzuhVSxmzDPXgtM/cp08pHqUJD7TvwqBKYbsV2\nfx1iT0YrndciItaUFHZ9attbYdlB4RxunzneU9uaERHXKQFhPTOP1+bfImJ37d+Niw1M34fDEfEL\n3lVSiFdwc0QMX8BqqX8Tm5l5sh6/rwSJKbQ/iDOZeSkzr+C4cj2m0s58nZP4YEQ8hUM4UoPSZLa3\nyrKDwhe4s1ahr1eKLhutjEV53/ctfJ+ZL810beBo3T+q1BoWSmY+n5l7MnNV0flpZh7BZxhWLGli\nu9q/gLMRcVdtegDfmUC7kjbsj4gb6j0YbE+ivTJP5waerE8h9uPyTJqxECLiYSVtPJyZs58V38Dj\nEbESEXuVYufni7T9r1h2UQMHlYrsz1hrbOt+Zdj4Db6u20Elt/8EP+Fj7Gz8Pw7gRN2/Q3GE03gP\nKw3t3o0vq/4PsWMq7XgBP+AUjmGllXa8o9QurigjpGfm6VSKva9W//tWeUKyaNunldrB4HOvz5y/\nVm3/iEda+t0/3fqMxk6nM2LZ6UOn0/mf0YNCp9MZ0YNCp9MZ0YNCp9MZ0YNCp9MZ0YNCp9MZ0YNC\np9MZ0YNCp9MZ8QdFKCLkC5rYQwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2/2... Discriminator Loss: 1.1537... Generator Loss: 0.7651\n", + "Epoch 2/2... Discriminator Loss: 1.0387... Generator Loss: 1.4510\n", + "Epoch 2/2... Discriminator Loss: 0.8105... Generator Loss: 1.4478\n", + "Epoch 2/2... Discriminator Loss: 0.8504... Generator Loss: 1.3711\n", + "Epoch 2/2... Discriminator Loss: 0.8881... Generator Loss: 1.4892\n", + "Epoch 2/2... Discriminator Loss: 1.0879... Generator Loss: 0.7779\n", + "Epoch 2/2... Discriminator Loss: 0.8741... Generator Loss: 1.2485\n", + "Epoch 2/2... Discriminator Loss: 0.9110... Generator Loss: 1.7616\n", + "Epoch 2/2... Discriminator Loss: 0.8936... Generator Loss: 1.5694\n", + "Epoch 2/2... Discriminator Loss: 0.8861... Generator Loss: 1.0268\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8VFX6/99nZjIJSSgBYqgigoIgioKoiL2urFhB7L1i\nQ11E9rt2d0Vd/Pm1rO7aXZRiRdcGKoj4BUURFEVFei+BkJA6M+f3x+V5ciekTTIzKXs/r9e8GCYz\n95577rnP+TzdWGvx4MGDB4GvoQfgwYOHxgVPKHjw4CEKnlDw4MFDFDyh4MGDhyh4QsGDBw9R8ISC\nBw8eopAwoWCMOcUY84sxZqkxZmyizuPBg4f4wiQiTsEY4wd+BU4E1gDfAOdZa3+K+8k8ePAQVySK\nKQwCllprl1lrS4FJwOkJOpcHDx7iiECCjtsZWO36/xrg0Kq+bIz5rwyrNMYA0NiiSmVcAH6/n1Ao\npJ/LWGMde2O91v8ybLHWZtf0pUQJhRphjLkauLqOv93t33A4DDiL2L1w5XOfr5wURSKRSo/p9/sB\n9CFIBNwPRyAQ0PNVfGjcD2ZVY04UAoGAzkVmZibbt28HnDmUuZG/l5WV6ftIJFLlw5+SkqLfr+zv\nHpKClbX5UqKEwlqgq+v/XXZ9prDW/hP4J8TOFCouKPcDE4lEdJGmpqZSWFiov6luIbqFRjJgjNFz\nBgIBfdgqG6PP59Pv+v1+fbASibS0NADC4bCOyT23ImyhfMwV59gt2GTM7s88wVAzqpuvrKwsFdhx\nnUu5kfF84QibZUB3IAgsBPpW833b0C9jjL4aeizVjS87O7vBzt2qVSsbCARsIBBo8PmQV3Z2ts3O\nzratWrWywWDQBoNB26JFC9utWzfbrVu3Rn1Pa/Py+XzW5/PZlJQUvRa5B2PGjNG/1/J482vz/CaE\nKVhrQ8aYG4CPAT/wgrV2cSLO5cGDh/giIS7JmAeRBEOj3++PorxVfQeo8XsNCZ/Pl1T7ghstWrTQ\nc5eUlDTIGCri5ptvBmDUqFFqt8jMzOTbb78FYNiwYQCUlpY2zADriYyMDMBR3YqLiwHqoyp8a60d\nWNOXGszQmEiIHtarVy8uuOACAA477DD+9Kc/AfDbb78BUFRUpIvc7/dH2RUam2CQa2oIgSD2hZNO\nOomvvvoKgM2bNyd9HJXhm2++AeCdd97hyCOPBGDgwIEcc8wxABx33HEAfPTRRw0yvvpCbE1lZWVJ\ns8F4Yc4ePHiIQrNQH/x+P61btwbgrrvu4oorrgAgPT09ykUmu+zPP/8MwJAhQ8jPz5cx6PFq8lTE\nCmEgtdnl3WxF1JlevXqxbNkywKHtyWQxPp+Pxx9/HIBLL72Ur7/+GoBzzjkHgLy8vAZTZypC7uHF\nF1/Mww8/DJTf6+OOO67RjLMmyBro3Lkzhx12GAAzZ85k27ZtQL1c5rVSH5q0UJCH5uGHH6Z3794A\nHHXUUUp3fT6f6r55eXkUFRUBjs4JcMkll/Dxxx8DiaHlMg5RW77//nu+++47wFFdOnXqBMCVV17J\nXnvtBUBubi4A7du3p0OHDgCceeaZrF0b5dFNGnr37q36eSAQ4Jdffon6+/fff6+L9LrrrmsUtga/\n36/zlZWVBcCIESN49913G3JYQHQAWGU46qijePLJJwFn/ciafe655/jXv/4FlNtz6vDs1kooeOqD\nBw8eotCkDY3dunUDHForu//KlSuVft13331MnDgRcKTqAQccAMAHH3wAwFlnncWnn34KxN86PXjw\nYA4//HAALr/8csDZ/cVC7g5Icp//+++/ByA7O1tZg/ybTAgVnz17tjKeBQsW8O9//xuA1audKPbz\nzz9fDXxFRUWMHeskxIpa1hCIRCKqTsp8H3vssQ3KFGQ+3RG3qampgMNcH3nkEQAuuugi/bsE3gHc\nfffdbNy4EYA333wTSJwxvNEIhZpolRvt27cH4KWXXgIct43oW3PnzmXcuHEArFmzJup3Elbctm1b\nwHkwg8EgEH+h8PXXX+sx77vvPsC5RhmDtVYXSigUYvny5QDsvffeALRp04b//Oc/AOqKqg9imV+A\ns88+G3DotyzGY489loKCAh0/OAtUhO2sWbP0vQiKuoxTUFfVNhgM6jwL6jqeeCAtLU3V227duqng\n7NmzJ1Cu4oCzFtavXw/AK6+8wg033ABA69at+dvf/gbAhx9+CCRO8HrqgwcPHqLQaJiCBOXUZncQ\na7jQ882bN/PEE08A8Pe//73SXT8nJ4e3334bKN+NDjzwQNLT0wF0B4wXQqEQ8+fPB+D4448HHIv9\npEmTANixY4dK+oKCAmUsM2fOBBw2lJ2dreOt667pVlFqe4z999+fl19+GXAo6lFHHQVUvTP99JNT\nJiM9PZ1DD3WSYTMzM+s0p/UxfMt9FWbmPl4wGEx6pqabCQobGD9+PD169Ij6O8DixU7A7xVXXKHG\naChXIe666y5lyNOmTQNg6NChUSpGvOAxBQ8ePESh0TCF2rIEQHcuwbp163j00UcBJ/LLLYF79eoF\nwMsvv6wuPtnBZs6cyemnO7Vf3nrrLf083m61uXPnRv1bGWTMixYtAqBHjx58+eWXQP3cpe5U7Jp2\nStHDX3rpJf3uyy+/zNKlS2t1rk2bNrHHHnsA8Oyzz3LxxRcDyYkOTU9PVxZ2wAEHKEOS62jRooVe\nX12zTGNlbPLdcDisdqxAIKD2L4kOve222zQOpeLxH3vsMcBhaffccw/gMDlw7E8//vhjna6lOjQa\noRDLZIulVv7NycnRBz43N5dBgwYBjt98yZIlgDOB69atAxwqBo6lf+VKJ8W8tLS0QePjxUret29f\nwFlIkhZbH/XBndZcHQKBAKeddhrg0F0J+vnTn/6kD1YwGGT48OEAqhqtWLGC/v37AzBhwgTOPPNM\nwLkPck3JEAqHHHII7dq1AxwqLsJJPCetW7fW97URCnLNPp9Px1+f+zB48GDAEV6yOVx44YUA7Ny5\ns8rjipH5hRdeYPTo0QCqVq5atapOY6kJnvrgwYOHKDTJiMYWLVoAqKssMzNTJe0nn3yiLptwOMz5\n558POEzg2WefBeCLL77Q3ws1b+h5EFfeJ598Ajgqw6mnngqUxy4kArJ7Hnnkkbz++uuAwxSuu+46\nwEk4kvc33XST7v6iYi1ZskQp7pdffqmM7aqrrlImV1v1oy6QqNYBAwbQuXNnwFHB3njjDQD69eun\n3/38888BJ0J0586dwO73XdQOyU4sKCio99owxjBnzhzAUQsvueQSILYkrdTUVF3vcg/69OmjTLeW\naL5ZkhL6+c477wBwwQUXKN076aST2HfffQFYvnw5U6dOBZwY+A0bNgDlwgQaXhiAsxD/53/+Byj3\nWX/11Ve7xVnEEzJfbdq0AeD++++nZcuWACxcuFCpaSAQUNtARkaGzpc7n2OfffYBYPr06Ro0NGTI\nEPUIJRIyjnXr1qnwjEQiXHXVVQAabNW1a1fNIxg1apRuEAUFBVHqjWwS8YwBMMboPAeDQVW3JMS+\nujUo92nw4MEaoCfqj9yveMNTHzx48BCFJskUBLKDzZo1iwceeABw/PtCI/fYYw/N+z/22GO58sor\ngcZXK2G//fbjlFNOAcp3qq+//potW7Yk7JyyO8lcde7cOSqMVt4bY9TomJOTo793J5rJfWjRogUD\nBgwAnF1s69atMY8rVmOeJGPt2LEj6jNJ4pLxzJo1S1WJK6+8kqeffjrq94mE2+OQk5PDscceCziG\nWag+mlZU5euuu07nRVhMopLkmqRNoZLf06pVK8B5wD777DPA0b1EAOzcuZM77rgDgBdffBFoPMLh\n3XffVfuBWJs7d+4ctdDjgcpckuLevf/++5Webt68mT333BNwFrHowzt37uTggw8GykPF8/LyNPCq\npKREg8FWrlzJ0UcfDdTdBRjLNbVq1Yq8vLwqv3fwwQcza9YswLE5iKdl27ZtCVchs7Ky1AvWqlUr\nFUS///47AIMGDdLP2rVrpy7HlStX6n147733VECI3WnYsGGxCjUvS9KDBw+xo1kwhbS0NJWYaWlp\naqzr3Lkz5513HgDDhw9Xv7/4jOX/DQUxPi1evFh9zxKwdPzxx8d9B5NdNS0tTem/jKFly5bst99+\ngBObILEeaWlp/PrrrwCMGzeO2bNnA6iXYf369XTs2BGALl266A58zDHHaCm0RJZuk3krKiqqNqw6\nLS1N41RSUlI0e3bs2LHKMBL1LFx22WWMHz8ecJiCBFG5w6Dd4ejyvrCwUD03/fr1U2Y7YsQIwMn2\njZGFNV/vg0Biwa+77joWLFgAOG4eSetdvXq1Bor861//0np+f/nLXwBn8TdUNR6fz6cPXlZWlgo1\niYFPpLAuLS3V47vTs8XjUFBQwN133w04rlKZz/Xr1+sDJDqytVbf//TTT0ptFy1apEVTX3jhhYRc\njzGG1157DXC8DJKvURn22GMPVc3S09M1C3TBggWqTsY7eE2K6OTk5OjDfeCBB6pLUYSC/F8gc1VW\nVkb37t31802bNgFooZtErV1PffDgwUMUmiRTEIOLZEsedthhKj2rMrwsWbJErbZiLX/ssccSGgtQ\nHfx+v+b4BwIBNSpKznwi4I7Fr+7vc+fO1cIwN910k8aDrFu3TqlvTfkhK1euVEb2yiuvJMTYaK1l\nypQpAOy1116afbh8+XLdRYWKb968WYuTXHnllWqY7tmzZ0LC2935NzNnzmT69OmAE7wk2b0SxLR1\n61Y15j733HMakHTDDTdw/fXXAw4zk8rkstYTxSbrzBSMMV2NMZ8bY34yxiw2xty86/O2xpjpxpjf\ndv2bVdOxPHjw0HhQH6YQAm6z1n5njGkJfGuMmQ5cCnxqrX3IGDMWGAvcUf+hluOQQw4B4OSTTwYc\nXVAkcVWIRCLKIkSHa9WqVYN1Qw4EAro7GGN0Z4tHlaX6IhQKqR3BnRAVyxxlZ2drnEUiXb/PP/88\nAN27d1c20r17d91tZV5DoZBmIvp8Pg2PrliItj5wx1hYazVOY8OGDfr5t99+q1G2kuBUFcSACw7T\nFZtYotdqnYWCtXY9sH7X+3xjzM84LehPB47Z9bWXgZnEUSgYY7jooouAcgr717/+VY1dVWG//fZT\nr4TEvYuvvaEglnqfz6f1+mIRCu4mtYl88OqyCBcuXKgxDYnsaiXHXbFihRqefT6fxkvI/LRr146T\nTjpJPxNPhaRbxwMV56kqFau28xkIBHQ9TJ8+PWmVsuNiUzDG7AUcBMwDcnYJDIANQE4Vv6lzK3oP\nHjwkDvUWCsaYTOBN4BZr7Y4KhTdtVTEIto6t6K216uqRnPlx48Zpiaq+fftq4YmRI0dqLMLYsWN1\n15gxYwbgFHaVpJL8/PykqhBlZWVKZwEt1un2V9cEa22jicqsiP79++v9SUlJSXg4cTgcjgrNlnUo\nCVrZ2dlq4HPXSEhEObP6Qoy5hx12mEaZHnLIIUlbn/USCsaYFByBMNFa+9aujzcaYzpaa9cbYzoC\nm+o7yIoQq608/Dk5ORr006JFC7Usl5SUqB8+LS1NqxpJSu/GjRujSq4n8wELh8NRKcVdu3ZN2rkT\nCdHV27dvrz07U1JSNLM1GXB3+BK1cunSpZqVeMYZZ+hm0ZANe6uCCIKsrCydT/EAVYV4VMEW1Mf7\nYIDngZ+ttRNcf5oGXLLr/SVAw7fl8eDBQ61RH6ZwBHAR8IMxRqqAjAMeAqYYY64AVgIj6jfE3SFW\nbamJ/+KLL2oGnzFGd/9AIKDvf/zxRy0iIsabkpKSpO5gblhrtdhLY1UB6gJRx/bYYw/NVITY+mkm\nAlu2bNEyfL169dI1EIu6lixIFmVaWpoy3enTp1fLANLT0+OmCtXH+/AlYKr48/F1PW4skGCUli1b\najz4fvvtp+rD2rVrtfDGqFGjtMqQxOI3dN6HUNtnn31W8wSkQMx3333XYO7S+kAWZm5urlr4e/bs\nqfkT8S6lHwvE/di/f/9GO7c+n4/LLrsMcFyZUiympnqM4lGLyxjidiQPHjw0CzSLLMmmjoyMDPWX\nS2hwIusyJgPXXnut+tXfeecd3ckasmJ2U0DPnj156y3HZv/1118rU4jTc9r8W9E3J0gKsETBNTaL\neKxw6+pN/VqSAVFn+vbtq0FfEydOjLe9ySuy4sGDh9jRJLMkKyKePtqGgDFGjY5NfVd13wu5lvo0\nUaktAoGAniMQCGjYuJQzq9hJqbEZGoVZ5eTksHDhQqDhxuYxBQ8ePEThv8am4PP5qm2hZozRAqRl\nZWVx3bHruitVxoB8Pl9UxZ5EZFW6E7TKysqi2qZVvBb3PLkTtKy1Ucla4g4W46N7LuqzBiUOJRKJ\n6P0rLi6O+hycSEsxcrrn1Z2h6h6HhBqHw+FGwybigOZfji0W1PSQW2s19dZaG1d66T5WLMd1N4cV\n+P1+XfCJSrOORCKVHjslJWW3rEy3N8Gdi+EWIEDCg8TatGmjAscdsi4PdyQSiWo6K0KvpKREx5mR\nkRFVN1F+J4jnWojX8RIBT33w4MFDFJoNU5AdoV27dlrgMlZJnOicf6jb7lCRaicjs6+ycfbs2VMN\nd1LVuaq4AzfzSiRkR6+q8UxVLr3Ksjb79u2rUY/CbOK9Jqy1muTUWMPbm41NQTodHX744bz7rpOD\nlYxF+d+E1NRUrSG5fPlyAJ555hlvnpsOvDgFDx48xI5moT646x1u3bpVm35s3LhR++01htqHscJt\nGGsMVLO0tJQTTzwRcDINwWmsc/755wON03DW0NmZlaGxxUhURLMQCsFgUDsdpaenc+aZZwJO2e8/\n/vGPgJNxJhWXbr/9dsARFO6y543hwZMMT3fXqMLCQv785z8DTkZlQy5wKUUvNpxzzjlHy6xPmzat\nweYwEAhojcb27dtrcV9pprJ+/XptFlNUVNSgD6Tb3QmNS2CBpz548OChApoFUxgzZoxK26+++op7\n7rkHcHz60kxj1KhRUW3DwNmBa2qQkiwIpRw5ciTgMAa5pjZt2mjjm3HjxukuuGHDhqSO0W05F/h8\nPi0KIgbeZEKCovr3788+++wDOK3ZhCFKBe9WrVppNedp06bx/vvvA07xlWSzBhmz3F/3OqwP4qWW\nNAvvQ2lpqU7wHnvsUWkL9wMPPFD7IIrNoTGl8UrFIhFo3bp148ADDwQcNciddSgFSjt37pzUBe3z\n+TRHQ8YbiURUYN11113qLk3WuGReWrZsyZNPPgk4HigpGpuRkaHfFcFfVlama+Ccc87R2p3JGLPP\n59MsyCeeeAJw0uU/++wzIHZVQlSRzMxM7ZwmRYArged98ODBQ+xo0uqDqAEA//d//wewG0uQneTe\ne+/l/vvvB2oubdUQOOeccwCnrDc4xrKnn34acAypp59+OgADBw7UEN2srCyt4ZcM+P1+ZVvCFIwx\nWgrv9ddfj6rLmAzIzpqZmcnAgc4m2KZNG91BhQUUFBToTrrnnnvSrVs3wImzkNLvsULoupvFVaWG\nitp14IEHahEVKT//6KOPqtq4YcMGneOqjith7hkZGTz11FOAw36lW1Y1TKFW8JiCBw8eotCkmcJZ\nZ52l73/++edKv/Ppp58CcOSRR+qu8d133yV+cDGgV69eqpeLDpyfn699Ez766CMee+wxwGlgI+7X\nN954QxmEdNROJEKhkO5SAmOMugK7deuWdKYgOOKII5Q5FhUVMX78eABlW6Wlpbrb9u7dW9dA3759\ntc9CrEVlK8ZAVLRJuFvWHXPMMQDcf//92iPSXW1J6j1UrD0h76dPn67VyOWe5+TkcOihhwJO4VZZ\nF1LCra5o0kLhP//5D+BkusmEuLPQLrnkEqXjhYWFSrUag3EVysd65513qjCQz0pKSpg3bx4Q/TAW\nFxdrWHGiUqergrVWG9iIIc8Yo9R448aNDTa36enpGqh20003qXCqbDy///675jakpaWx9957A+Wq\nRm1RW49VVlYW1157LeAIThmT5F8UFBTosdLT01W4ubNqu3fvzp133gmUq8i9e/fWv69bt4577703\npvFXhXqrD8YYvzFmgTHm/V3/726MmWeMWWqMmWyMCdZ/mB48eEgW4sEUbgZ+Blrt+v944DFr7SRj\nzDPAFcA/4nCe3SASMz8/nz/84Q+A0zNyyJAhgNNUQ9qDvf766/q+sUB86G41SKoejx07Nsqod+WV\nVwLQoUMHZQpPPPFEwns0VoQwBPcOLLuuNORpCPz000+qgi1cuLBaxtK6dWs1RJaUlCTMNS1j6Nu3\nL/369dPzCbOaPn064MTZiPE7MzOTAQMGAPDrr7/qeujQoYOGlku38h49eug5ysrKNDu4vqhvL8ku\nwFDgQeDWXa3kjgPO3/WVl4F7SJBQEMo1Z84cTj75ZMCx7u6///6AY/EVWu7uL9gYkJmZyYMPPgg4\n/S/l4RbbyIoVK1RoZGRkMGbMGMCh6y+88AIAH374YdKvSewHbjVNvCFC3xsCixcv1oeiKl+/eB+m\nTJmiY96xY0fCvFFyb9w0v7CwkDPOOAOA+fPn7zbe3NxcFRZubNmyRVU32URatmypx92wYUPchFt9\n1Yf/B4wB5KraAduttbJ9rQE6V/ZDY8zVxpj5xpj59RyDBw8e4og6MwVjzB+BTdbab40xx8T6+7q2\noq8Mw4cPV+o6ZMgQVSWg3Cq/aNEiNdY1ZCSjSPYXX3xRrch+v18puBQxuf322/nqq68AxyAlNHL1\n6tU89NBDQHI8Dm60bNkyKj5BIDuieEsaAh06dNCWe126dFFrvtvnL7R7v/32099NnTp1t9Dt2qKm\nDEyZqxtuuEEN4Vu3bo0qERcLhBm3bdsWcNaNjL1FixZxywitb4PZYcaYU4E0HJvC40AbY0xgF1vo\nAiSFU0rob1lZmRbw9Pv9Sml//vnnBmsm64aoBIMHD9YbWlZWpvUFZYwHHHCAuqDmzp3Lc889Bzg2\nh4ZKA3/ppZd2e4DC4bDS2mQGUlXEsmXL9KFfsGCBugClGEwgENC/p6enq7CYPHlynfsw1vTw9e3b\nF3AeYvnu9OnTVW2IFSKI3ZXFRO0sLS1VYVPfTa/O6oO19k5rbRdr7V7ASOAza+0FwOfAObu+5rWi\n9+ChiSERcQp3AJOMMQ8AC4DnE3COKtG9e/co45vQtiVLljR43rrP51Pq37FjRx3P9u3btQGIfPb8\n88/z9ttvAw1fZlxUmoEDB0apDeCoNoMHDwYaNv7DWsv/+3//T/8vIcRHHXUUACNGjFCmYK3lo48+\nAhxWkahxSy2HUCikhs2vvvqqzh6jTp06AQ6LFMj9aNmyZZ3VoIqIi1Cw1s4EZu56vwwYFI/jevDg\nIflo0hGNleGll15SiXrjjTdqSGnbtm0rTamuC2JtgybSfMiQIVx88cWAs1tJGvI+++yjNgWxh6Sn\np1fbvCZZ8Pv9/PDDDwAaDgzlY8rNzW3wWhSVQXbmYcOGAQ5jkLnduXMnL730EuBEEyZqfmW9+Xw+\njS3p06ePji0WG1fLli256667AKeqthxX5n7y5Mlxs5k1aaHgjsMXSpaXl6fZkNdff736pt0Lur5I\nS0uL6QZIBuQLL7ygFuLCwkItCuIWVmIkOu+889R//sknnyRd9RFB9tBDD+0Wgg3RQqGx1b8MBAKq\nNsh8r1q1SsvbpaWl6ZgTKdDmzp0LODkqEkdz4YUXcsIJJwBOHQWAzz//PGr9uiFr/IYbbuDcc8/V\n8Qtk/K+88krcxu1lSXrw4CEKTZIpiMSXZKevvvoqqhmI7GjiogGHolfsPFxX1NblI3RVCsWmpqYq\njZw8efJuuwKUj/2II45QNeiTTz6p95hjhdQYuP7666Py+gXCXKRIbmUQw9dee+2lO7Pk+icywrRH\njx5adfof/3CCaS+77DItY1dWVqa7eCIha/LSSy9Vo+Pjjz+uLkUpGbd8+XLN0MzPz4/q1i2hzddf\nf70yBGEHJSUlWlausrVUVzRJoSA6mUxkxY5Jsoh9Pp9O8OrVq+N2/tpSTqldKKHBJSUlzJw5E3By\nG9wPhQgD+e6QIUPUzpBs1SEjI4M33ngDKJ/ripCxrVu3rtKW8+5ekoFAICkh0JLtmJ+fzx133AGU\nBxD98Y9/1HUxadKkpNpprLUsW7YMcGwcslmJylDVWDIzM7npppsAJ6+kYp/LtWvXsnLlyqjP4gFP\nffDgwUMUmhxTMMZobwShgBUNXZKPXlJSogbB+paoihVpaWlamFMyC2fOnMnll18OOAkubhx00EEA\nTJgwAXAKczz88MPJGi5QzlY+/PBD2rVrF/WZwG1ghOgdyp3/D+WMSvozJhrCWPLy8pQVXHjhhYAT\nBi1h2HfddVeDxazUpsemzOHVV1/NJZdcAjiqmPxOwt+nTZvGxIkT4z7GJicUOnfurJVvpcnp3Llz\nefHFFwGHqo4bNw5wHkxZmG6LbX1RG5dkSkqK5mMIXfT5fFFdn4Tajh8/niuuuCLq92vXrk16Cfcj\njjgCcIKUKlZYqggJwqo4Dw3lPu3SpYu+T09P58YbbwTQwiTGGE2t3rJlS6Pu0iQBd3fccUeUXUy6\noLmbGSWiHICnPnjw4CEKTY4pdOrUSSWpWL5PP/10brnlFsDZlSWLDMp7POzcubPS3SFRvQYDgYDG\nH0gAVYcOHbj55psBh91IK7gDDzxwN6p9/vnnx1wzsD7w+Xzq1akOYtgSZtbQHaf32msvwCk4Iztp\nv379tGaB3N8FCxZowFJjDLYSGGPo378/4Bh5Za26E74kgSsQCCREDWpyQuHrr79WHV06ErVv314F\nRUFBgQbbfP/991qxaNOmTZUKhbpMam0o544dO9SVeMEFFwBOFyO54eFwWC34+fn5Wl9PCqhU9Kgk\nGpFIROezY8eOGgDWv39/ffDWr1/P2WefDTSOhr1t2rRh8uTJgGOdlzGddNJJavMQ/fvCCy9scAFW\nW0ip+oyMDN0Ybrvttt2yORNVdctTHzx48BCFZtE2rrFCmInU3Pvkk0803Do/P18ty7NmzUp6wZTm\ngP/93/9VFpaZmRnFBMXLIzUpGjpDtrbw+/0a09C5c2c+/vhjwKnLGIdr8NrGefDgIXZ4TMFDk0XL\nli1V/z4urTNIAAAgAElEQVTjjDPU8FxYWKi2m8Zg+4gFWVlZWkXM7/dr3MqYMWPi4T6tFVPwhIKH\nZgFjjHpPNm/e3CjjD2qDtLQ0DQlfvny5Vm6OU8VpT33w4MFD7Gh2TCEzM1OTilasWBGvwyYEEjXY\nrVs3DcMWt5Pf749qWOJGQ0XjGWPU3ZvMGIraoLJaD00RrVu35rjjjgOcCEbJtHQXaqkHmr/6IAuh\nRYsWmuPQqlWrqAXrttjK9+VhrBi3766unCi4g6UktRrKG8tKwJM7tTglJSVqTHIdqampqjPH+z5W\nzHkQuLMgE3HeWOFuB19Vo9fGBJ/Pp2OWf8PhsL6PRCJRc1vV+zrCUx88ePAQO5o0U5Cd3Rijoat+\nv193jIosoaKENsZooZYFCxZoFGGidl33bib/BycyryJ72bp1axSrqKz2QiLGWh26dOkS1V+jqSIl\nJaXGWgaJQnp6urJCKYxSm6I9FddOHdH81Yd4QPIkEtnIpLFQ7bpCipfMnTuXiy66CCivBtVUrqlT\np0489thjgJMvcf311wNoy/pkwe/365w1QEBV4tUHY0wbY8wbxpglxpifjTGHG2PaGmOmG2N+2/Vv\nVn3O4cGDh+SivglRjwMfWWvPMcYEgXRgHPCptfYhY8xYYCxOg5hGiWS0Omsqu2llSEtLY9KkSYBj\nBBWPTlO5JlEx7777bs2c3LZtW1SdgmSiMWdoKsTKHesLaA0sZ5cK4vr8F6DjrvcdgV9qcSxb35ff\n77d+v99mZ2fbiy++2F588cU2KytLP4/HOer78vl8NjMz02ZmZtoWLVro2HapT3F/1ee4KSkpNiUl\nxS5dutQWFxfb4uJiO2LEiAafw1hfwWDQBoNBO3/+fFtWVmbLysrs3Llz9foaenxJfs2vzbNdH/Wh\nO7AZeNEYs8AY85wxJgPIsdZK7bMNQE5lP/Za0Xvw0DhRHw4VAA4GbrTWzjPGPI6jKiistbYqI2I8\nW9FnZmby3XffAY4RSay648eP53//938Bp+V4xcq3yabAgwYN4vzzzwccGtm5c2cAPvvsMy0AIoFK\n8RhbXY/h8/mYMWMG4MznTz/9BKAVnhsSFStGS7Xp0tLSqKrSoh5IXYiePXvq78rKyqqMw0gG5Nyi\n2rgNjlV5zCr+DeLmkdgN9WEKa4A11tp5u/7/Bo6Q2GiM6Qiw699N9RuiBw8ekol6uSSNMbOBK621\nvxhj7gEydv1pq8vQ2NZaO6aG49RrWwwGg7pjnHPOOVx77bWAUzVIDDu//fab9mFIhnHRDamh8M47\n72hzj5SUFO2MvH37dm699VYA3nrrLWD30OaaEM/YhdGjR2th1ry8PGU08Y5NcMdhyK4ZqyGuMndv\ny5YttU2bVMRu3749v/76K+A0Z4lXY6BYYYxRN7gU7t1///21eU1mZibz5zsa9QEHHKDrpV27dtop\nWyph/fjjj7z88stArROmauWSrK8J9kZg4i7PwzLgMhz2McUYcwWwEhhRz3PUiNLSUg0AefHFF7V+\n4IABA7Q9eU5Ojt4MqYCbLD/x8OHDAefmS3n6QCCgD0JOTg6vvvoqUN416IUXXmDIkCGAI8RE5Zk1\naxb9+vUDYMmSJdqkVlSmgoKCOlu4RXjdeuut+rD95S9/SUqgUl3vRWVBXampqboxiEArLS3VcugN\nJRAguuvTbbfdBjgtACQWJDs7m5EjRwLRc5KWlqaNZcUD9NFHH+n9jyfqJRSstd8DlUme4+tzXA8e\nPDQcmlzh1liwbNkyNTi1bdtWm8TUl17XthW97FLjx48HnB1MxuM2IllrlUqfd955+q/boCaJUu72\na6tWrdImMqNGjQLK1Y+64LXXXtNxyw7073//u87HqwzuEPN4V9KWub3ooos44IADgPJ7/dNPPylr\njBdiiVSV7/bv31/XgxSC8fl8qv76fD5lkBCdtCfzJL0oJ02aFLf28240a6GQk5OjtCwlJUUXYTK8\nDsYYDavNyioP6pSbHAqFdBEXFhYqda9MaEA5td933311cYjQAbRHZV2vLRgMqs0FyrM1K1YQri/c\n2YBuYRAPQS21MK+88srd5vP777+P+32XLNea7D/GGF0Df/rTn3Sc8vtQKKQqmrVWH/SUlBQVFu6x\nSxZwRkZGQoSClyXpwYOHKDRLptCiRQvA6bcgRrcXXnhB/e31RW13HGldtmjRIgBOPvlk5s1zPLgt\nW7bkkUceAZw6grKzXXXVVYCTwCOG0WOOOSbKty27ytKlSzXLs749AIYNG6Y7Vzgc1hZy8UaijLvB\nYFBLl7Vp00YpuBhgpZVgPFGb7EZw7pm0tRs0aJDOs9zTVatWafXpuXPn6vpq1aoVzz//POB0MJeC\nK2+++SZQ3jM17qhrmHM8X8Q5nPOUU06xp5xyil20aJHdvn273b59uz344IOtz+ezPp8v6eGlgUDA\nBgIB27Jly5jCrnv37m179+5tt23bZkOhkA2FQra4uNguWrTILlq0yAaDwXqPzRhjjTH22GOPtSUl\nJbakpMTOmTMnLnMlx2jdurXOQaLmODs7286bN8/OmzfPFhYW2tzcXJubm2snTZpkJ02alPR7XnEe\n+vbta/v27Wvnz59vw+GwDYfDGnZ97rnn6n0AbGpqqk1NTbUXXXSRLSwstIWFhTYSidiioiJbVFSk\n9/+VV16xXbt2tV27dq3tWBIe5uzBg4dmiGanPvh8PrXId+jQQWsfLlu2rMEaggi1j7XhS/fu3QHH\nRy1Uc9u2bRx99NFA7elrdXA3rBGj1UMPPVTnuRJj7gknnKCei7KyMm3vdtdddwHxq/EoasKoUaM4\n8MAD9TMxkD7wwAP1Or7b4FsxBLmiGlmdV0quNz09XdeDFPX55ZdftO3hGWecwZNPPglE33coN0z2\n7t0bcNaHqJ3nnHNO/Lw4cTlKI4LbvZORkaFFNOLxACUTPXv25B//+AfguDLFNvLee+/Ftf24LKSZ\nM2eqDaR9+/ZVNuOVhSkBNm+99ZZ6LS6++GIVWG3atFEBAeX2FbGBnHjiiXHxbOy3336AY4sRT4O1\nVitZPf3004BjU5Dcl9dee41p06YBTqCWVEJasmQJp59+OlAuwLt06aJz9Pvvv0cFhlX0ZlUlECKR\nCKtXr9ZjSPCSBLLNnj1b12xtUrrdtUnF9rPHHnuwYcOGGn9bG3jqgwcPHqLQ7JiC3+9n8ODBgOPn\nXbhwIdA4OwWJl6S4uFh3CAm6eeedd+jUqRPg7EAffPAB4NDkRMRZLF++XFnVAQccQFpaGuDscrKL\nDRo0SJnANddcA8AjjzyiXpKq8i/C4bDuYtLbsUuXLvzyyy+7jaO2gWGC4493gmfbtm2r5y8rK1NG\nI6rkrFmzosYnO6z7fP369dPxSZh0KBTSIKMtW7ZEhRXHQtflu6NHj9a8DLnnwlQqYufOnfz222+A\n0wZA2I9cWyAQUBVk33339ZiCBw8eEoNmxxTC4bAmDFlradeuHdA4ug77/X6NQuzVq5eG3W7cuFFb\nnskOLQ1twLGHyA6WqOSkHTt2sOeeewJOJOgLL7wAQFFRkfrHr7jiCtWDJYovNzc3agcWnXvu3LnK\nzrKysjQ+Q5KSJGKyImLJ9jTGkJPj1PAJBAL6/e3bt6sxr0OHDvpdWQM+n0//7vf7+f777wFYuXIl\np556KgCPP/444NgfFixYAEQbiuvK1pYuXcp9990HwL333lvpd2S+r7nmGrW7vPPOO7o2ZF4XL16s\nLO6oo47SOY41w7Yiml015+zsbA1SatmypRq25MY3JLKzs/Wh6N+/vwqsygp+WGt1ERcUFKgqkYiw\nVnCMXrNmzQKc8GkxZhYUFOgiTE1NVeoqxUs+/PBDBg0aBDgdjURopaSk0LdvX8AJzqltOXN3TkRN\n2Z69e/dm6tSpgJNOLPM1btw4DW+XojZffPGF5oekpqZq+nzr1q01hf2NN95gn332AcqF1kEHHcS6\ndeuAuguCqiCqz3PPPacCORwOq8qwdu1andv09HS9vrvvvhtw1vSSJUsAZ21JynVFuHJMvGYwHjx4\niB3NTn3o1auXSv7c3FylVw0J8UH36NGD5cuXAw5TqK4kmJspfPnll3qMRDGFoqIi/vrXvwLw4IMP\nKm2dP3+++sK7d++uBkbZoYqLi5WZuQ2mRx55pNaIWLlyJWeffTYAa9asqXYcgUAgqqxaZbuznOPM\nM8+ka9eu+rkUGlm8eDH7778/gKpoc+bMUbZyyCGHaP+K/Px8Lr30UgD22WcfNeZJXMG2bdsSlkD3\n6aefAnDJJZdoHMcvv/zCzz//DDjqmlxrcXGxhje//fbbgMNmxPAp7tbKEKvq3GyEgjxgQ4YMUbrr\n7hzVkBDr8uGHHx7Vr9KdGi2QzyKRiNLBZcuWsXnz5oSOMRKJ8PXXX+t7oc/Dhg1TAdCnTx9OO+00\noNyqP3DgQH0wn3/+eaXB11xzjQrnfffdV6sF1SQUQqFQjQ+hZByuWLFC59OtlmRnZ7NlyxYA9UQN\nGjRIi5T07t1bf1dQUKCpyNu2bdMHSPR+se4nEvPmzdN59fv9atdwx3kUFxcze/ZsoHwOi4uLG12N\nRg8ePDRDNDumkJ+frypDKBRKqtehojogRrmOHTsCcOGFF2qIqnsXcEPGu3nzZt0Rvvzyy4RfhzFG\nDWqPP/44f/nLXwCnNqCED/t8Ps02lJ3WWqu79IABA3TuZ8yYoQVfCgsLlW3UhNpQdTES/vDDD8oK\n27Rpo56Rv/3tb8omRB3IyMjQY7vnPjMzUw17H3/8Md98842OX+Yl0cb4kpISjREJBAJar7GkpETV\nh82bN2vYe7yL01REsxEK8uCNHTtWJzIlJaVaXSseCAQC+iCcffbZGs5aWlqqQSoXXHAB4AgJWaTu\ncFZrrao5ixcvBpyGtxMmTAAcfTHRQsGdev3MM8/wzDPPAM5D4w4EOuqoowBHDwbnQRJbRH5+vgqI\nnTt3RqlHct3xgBx31apVUYJYHhZRVdzfrVi0RlSG999/X4vUbtu2bbf6ncnyzrlDpWXNulXfrVu3\nqnoX78I3FeGpDx48eIhCs2EKt9xyC+BIV5Gwubm5GkqcKITDYTWo3XbbbaoeQHRpteoQiUT4+OOP\nAZg+fToAv/76qxoXY82urC/cu6P73DNmzFBaLdmOtT2eBNTEowO37OL5+fkMHToUcHz3YvzMysrS\nuXczLAkDXr9+PSeddBLgFGFpDLE6gjZt2jBwoBNKYIxRBmeM0bWR6PE2C6FgjFHaPXToUJ3IvLw8\n9thjD6Bmq3ddYa1VXXzgwIFaK/HQQw/dTRi43YzuunwzZszgf/7nfwBUvw0GgwmniQ2BeC5oa61G\n8Q0dOlTVnNLS0kozGBvTw18V/H4/hxxyiP5fvB9PPfVU0tZDfVvRjzbGLDbG/GiMed0Yk2aM6W6M\nmWeMWWqMmbyrJ4QHDx6aCOrMFIwxnYGbgD7W2iJjzBRgJHAq8Ji1dpIx5hngCuAfcRltFbDWarDJ\nqlWr1ErbunXrpPYMLCsr0wYub775pjZ2EXZQUlKi9Rp//vlnLQCyadOm3bI4k9GApTGirtZ+t4oC\nTaTleyUoKSlRNadfv34899xzAPznP/9JGtOpr6ExALQwxgSAdGA9cBxOX0mAl4Ez6nkODx48JBF1\nZgrW2rXGmEeBVUAR8AnwLbDdWiv+rTVA58p+b4y5Gri6ruevCKmkM3/+fN577z0Avvrqq6QnQok0\nP++887Tj9aRJkwBH15WQ4RkzZjTZ3SyRaAp6fyKRkpJCjx49AMeeIOHPiWgPVxXqoz5kAacD3YHt\nwFTglNr+3saxFT2Uh7muWLFCg20aMl26rKyMe+65BygPc165cuV/rVrgoXbYtm2bGq5LSkoapDhQ\nfdSHE4Dl1trN1toy4C3gCKDNLnUCoAuwtqoDePDgofGhPi7JVcBhxph0HPXheGA+8DlwDjAJuAR4\nt76DjBWNoaBKJBJRg1Ft6wN48BAKhbjuuusAp/hOfQum1AV1ZgrW2nk4BsXvgB92HeufwB3ArcaY\npUA74Pk4jDMuCAaDBIPB3UJeEwXxjVfsm1gRyfSQeGickDXZunVrDcCTeAufzxfXMPGaUN9W9HcD\nd1f4eBkwqD7H9eDBQ8OhWUQ0uuHz+SqtGQgN1/uhJot6Y7O4JyMzMF6QbM3U1FQ1yjUG9bEqpKam\nagKdFMxx19bIy8vTWha1qVHpzvz0msFUgUgkEpf4+kTBnfbaWMfZ2MZTHWSs8fDqBIPBhG8cpaWl\n1Z7D7/erqlBcXFzrNRJPQehlSXrw4CEKzVIoVJb8UpUxL1lGR0FNRseqIOPMysrC7/fj9/s9AyXl\n81lWVhY1t3W5r8mIIami67qqFSeeeCKLFy9m8eLFHH300WporOpYiUCzUx+qQnp6utbNlzwJt73B\nGJP0wKLqbmrXrl21TPnXX3+trqmdO3cqvSwrK/PcnC5IunRWVpYWS4nlnjak2iQC7G9/+5vWvDzv\nvPO07H4y0SyZggcPHuqOJs0URLoOGzZMm3i8+uqrGifeokULbUgycOBAvvjiCwCt9Nu2bVstC15U\nVJRUw19GRoaOecCAAfz9738H0NwIQPtgnnnmmVFl3mScKSkpyn6aeu2F+s69z+fTsnePPPKIFqi5\n8847Afjoo4+0zkZj8074fD4tIdelSxdlhZIhmfTxNMhZPXjw0GjR5JiCMUY7Bsvu2r9/f/VXP/TQ\nQ1FVd2RXyMvL06pGklEJ8K9//UuPmwzIOJ955hlGjhwZ9ZkbZWVlyhrWrVsXtYPK+5rcW8mGMUar\nH/Xo0YODDz4YcGw30sxGktUefvhhbYxjra03U8jMzNTu123bttVenNJWbuPGjTq233//XQvPrlix\nQu0yDWVT6NOnj2b2tmnTRpu9SJOdZKPJCAV50Pv06cO77zrpFOnp6UB0ZWT3w+22QLs/X7vWydH6\n7rvvNODFHUCSSIwZMwaAESNG6Gd5eXmcddZZOiZwuhVJmfKqrM+NAcYYunXrBsCECRO0kUlKSkql\nQWQixHr06KFNbN9++229xro2XykpKdFGNKFQSI2x8m/nzp1VfTjggAO0xuS4ceN0PTQU7rvvPhVo\nmzdv1p6XyWhEUxka72rz4MFDg6BRMAVjDIFAoNqWYUIHzz77bK1P4E4ScRuP3OqDuKRWrFihtf6l\nmOuvv/6aVPodDAZ1hwoEAlqu7cMPP9ztuwsXLtRirn6/n48++ihp46wOYths2bIl4LRj+/e//w2g\nVa0rg9wT+X1paanem0AgUG93cKtWrdSAvHHjRrp06bLbd6QydUpKipbsa9++fcKK+tYEYbjZ2dlR\nrEpa0TcUGoVQCAQCZGdnk5ubW2lRiWAwyG233QbA9ddfr5MpAiQcDmuHnffee0+bh2ZnZ0c1Hf3y\nyy8BtB18svXx7t2769iXLFlSqTAQDBs2TNWH+lSPikc3IRG+hx56qKb1HnPMMQB06NChSnuMzG9R\nUVFUj0xwhJ5cf2lpaZQKWBfk5ubyz3/+E3BsTNIcyH1c2UyCwaB6fsTO0BCQeevQoYPO8Y8//tjg\n3hFPffDgwUMUGgVTMMaQlpZWZUGJ8ePHc/311wPRkl+MV4899ph6IkKhEP/5z38Ah1XIjtG7d2/t\ng9hQPv333ntPd4eXX3650u+IajNixAgee+wxoLyJSV0gno1Ydx9hGAcffLD6/y+99NJqVQT3edye\nH3eDHok0nDx5ctR9cLetqwustaoezJw5U/sxSn9JiGYFsjOLR6ohIEzQzRTk/tcF8tstW7bUi200\nCqFQWlrKihUrqsxXOPvss1UYuO0OU6ZMARw3pCyIHj16qCX/s88+0yCWM844Q7s3ibU5WS4oWYwb\nNmxQITV37lxNoe3bty9XX+3UsJWw1ieeeEKbncYDsaRD+/1+Dfq68847Ofroo4HoB0xgrdWHe+vW\nreo9OeGEE1SwpKSk6LXK33/44YfdjlMfRCIRFSyvvPIK5557LoC6r93Xb4xh2bJl9TpfPCAP7pYt\nW9QGIkV+Y0WrVq30/gQCAa3zWBd46oMHDx6i0CiYAlS+U8hn6enp+r6wsJBPPvkEKKfgHTp04LLL\nLgPgr3/9q0rg7du3q2W5X79+SoP79+8PsJt/OlHMQSzrCxcuZMCAAYDTifrII48EnNgF2Uk//fRT\nwAnRFgu/UO66wJ01WNP1yc5+0kkn8eijjwJOvERlRkC5ppkzZ6pfvaCgQL1Er7zyCmec4bT8OO20\n0zQQS4x9iTCmucOYq7Pgl5WV8Ze//AVIfp9ON3JzcwF4/vnnufnmmwFnvkXlq02ym6hJy5cv1+PV\nZ71AIxcKbqu2LMItW7aw3377AY6OC3DyySfTrl273X6TlpamdB3K9cgnnngCcNqQL1iwAHBUGGkB\nHu+FIurDGWecoWNIT09Xt1hZWZl+LvHuaWlpSsvHjx/Pww8/DMQuuGSBtW/fXm02lT0w2dnZfPDB\nB4CjgolA8vl8UV4eof2nnXYawG40VewfixcvZs6cOYDjqRBbhLgkU1NTE1aUtG/fvtqpq2IwGzhz\n0rlzZ31fX3tGXSHz+u2332og3tlnn62bxZYtW3Sca9as0fV52GGHAU4RFhn7o48+qq7h+gpcT33w\n4MFDFExjKL1VVTMYkZ4bN25Uep2Xl0deXh5QHizTqlWrSqvdumPq5f8QbSGXY+3YsUNp8pFHHqnx\nDfGA7Fqff/65nu/oo4+mU6dOgLMzC2MRynjCCSeowfSggw7S3w0YMEB3jNqgZ8+egLNDi6W9tLRU\nGYSoM++++y7Z2dlA9O4aCoV0N8rPz+fNN98EUG9QdejQoQPgsAa5V1KXsG/fvnGdYyAqt0EYYmUh\n4qFQSFXJt956q8FqUsg8v/nmm6pqWWt1vkOhEC1atKj2GDL2iRMncvvttwPlWcCV4Ftr7cCaxuUx\nBQ8ePEShRpuCMeYF4I/AJmvt/rs+awtMBvYCVgAjrLXbjCP6HsfpPF0IXGqt/a6ug5NdZcWKFepO\nTE1NVX1XdO7Vq1drtRprrbKKrVu3qv7cq1cv3R1Frw2Hw+rGadu2rdotBg8eHNddbNiwYYBjO/j1\n118BZzeT91988cVu+vX8+fN56KGHACfH/scffwSciDdxXwl7qA5iaHXv+G68+OKLgGNzcGcqSjLO\n9u3bNZN00aJFms1XG4gRrLCwUA2MixcvBqrdzeoM2W3btWtXbdbrtm3bNLq1IZmyuH1PPvlk/WzH\njh16X4PBYKVMwW0zkAjgs846SyM6t2/fXi87SW0MjS8BTwKvuD4bC3xqrX3IGDN21//vAP4A7LPr\ndShOC/pD6zo4oX4dOnTQ96Wlpbqgvv76a8B5qESAbNmyhYMOOghwKNX69ev1eGKM7NOnD+BYwk86\n6SQARo0aperD0KFD6+wvrgxS9CUYDPL555/rddTWILRmzRpNPR46dKgalC644AItB14V5BwVF4l8\nLsU93MFGubm5ajA8//zzVSDFgnbt2nHeeecBzjyLwH3ttdeA+GcAGmN0s8jPz1dVojL1cd68eTqe\nhggplnspXrRgMKgb3JtvvsmhhzqPTNeuXaO8bpJKLSHmnTt3ZsKECYBzHyWsvL6G0xrVB2vtF0Bu\nhY9Px2kzD9Ht5k8HXrEO5uL0leyIBw8emgzq6pLMsdbKFrwByNn1vjOw2vU9aUW/ngqorBW9z+eL\n8tGKobG0tDSq6q2oBC+99BIAX375ZZTxcMaMGZUOWhiGlGXz+/3qUhsxYoQa2naNT49XXwhziUQi\nTJ8+Xd/XBZ9++qm6VEePHs29995b7feryj6U65O5zM7O1jEVFxdz+eWXA+V0v7YQ5jFr1iw19oXD\nYTWOvvrqqzEdLxbMnDkTcCh4ZbUo5F7++OOPNTKsWBDLWgkEAqqCCXNdtmwZ11xzDQDr16/nySef\nBBwmIFGthx9++G7HX7ZsGbfeeivglOyTpMD6ot5xCtZaW5dW8hVb0QcCAQKBgNK+4uJiXdAlJSU6\n8ampqWoxF3/u7Nmz6/Twur0TGRkZ+lAcd9xx6s2IRyalxFX4/f5KU3pjQUZGhgqvww47LCr8uzKI\n/aS4uDhqjkTHF1tGJBLR1PJXX31VBWgs89qtWzf1orRq1SqqwM3HH38M1M4OUleIqrhkyRKdZ3fg\nlVxLx44d46I21GXjOPXUUzV4Tn4/ceJEVqxYAcAtt9yicQjfffed2hvc55BnZN68eXrNTz31VNzs\nI3X1PmwUtWDXv5t2fb4W6Or6nteK3oOHJoa6MoVpOG3mHyK63fw04AZjzCQcA2OeS82oFpFIhNLS\n0qh6CiJJf/jhBy35FYlE1DcriTpPPPFEnXaglJQULXSSkpKiVPOLL76Iaw+IJUuWAE4I6+jRowHU\nWFhbyFzceOONqmLVJsPPnQTk3kkkalOiQt9++22l9gsXLowpM3PgQMf1PXXqVDX2hUIh3Y3HjRun\nlDhRhj1rrbKeO++8U3djiQiUMYFj7GyoKMbjjz9e16+st+uuu47zzz8fgJycHB3bmDFj9LvBYFDn\n9umnnwYcj9Hjjz8OoNGocUFlHWsqdK95HccmUIZjI7gCp8X8p8BvwAyg7a7vGuAp4Hec9vQDazr+\nrt+JClLpq1OnTvbDDz+0H374oV26dKndvHmz3bx5sy0qKrJFRUX2ueees6mpqTY1NbXKY7hfxhhr\njLF9+vSx8+bNs/PmzbNlZWW2sLDQFhYW2tNOO61Wx6ntKyUlxaakpNjVq1fb0tJSW1paavfcc08b\nCARsIBCwfr+/2t+npqbac88915577rl2w4YNNjc31+bm5trRo0frMar6rc/nsz6fr8r5DQaDNhgM\n2ssuu8wOHDjQDhw40A4ZMsS2bt3atm7dusrjZmZm2szMTLv33nvbVatW2VWrVtlQKGTD4bANh8M2\nLy/P/v3vf7d///vfbdeuXeM6nzW9gsGgnTp1qp06daqNRCL62rFjh92xY4cNBoNJHU/FtTdlyhQ7\nZRNkYIgAABgXSURBVMoUGwqFbCgUspFIRN8XFxfbsrIyW1ZWZr/55hu7bt06u27dOpuXl2eLi4tt\ncXGx/fbbb+23335rzzzzzJjWPTC/Ns9jjUzBWnteFX86vpLvWmBUTcf04MFD40WjDnN2Q7LvLr30\nUg3qEYTDYebNmwc4dRelfNnGjRvZf//9ASdrT+IFpOrv+PHjOeqoowDHCCjlwU4//fR6X1NluO66\n69RzUFRUpBb+RYsW8fvvvwPlSVuhUIgDDjgAgPvvv19DpQsLC9U3PWHChBppcG2NYVlZWVrGbtSo\nURpPceedd6qqEQgEtOrwPffcA8DIkSPVSxQKhbQl3wUXXBB1H5KNY489FkC9PT6fj6VLlwJONefK\nyv4lCzKHYlxMS0vT+xQOh6OKwbiT0SS2Q2pF/N///V+sXpRahTk3GaEgyMrK0mhDdxpuZa4nd0z7\nli1bNIpNvAH77ruv6ud5eXn6ECaq5HdWVhZPPfUU4GQZuscvura4CH0+n0azlZaWapTmtddey+uv\nv66/qwm1FQrGGM3QvOiii1TYhMNhXbzdunXTOXWX13f31rjxxhsBJ5eioUqUQ7lr9JdffgGccYpb\n9LjjjtM1VB8bR13d1rJWRTicdtppGo3p8/miiqXIZnjmmWeqUKtHpysv98GDBw+xo8kxBSin/1Io\nQzotgcMe3BZ3d1CTSFg3VRPa/sADD2iTmUTl+UO5j3no0KGadyAsAMrrEbRv3147KE2cOJFXXnGi\nzN1h27VBLLuZZDJu2rQpqmuVzKHf79+NhRUVFTF79mzACYkW9aGh15UELwlTaNeuncZhHHvssZp3\n0tCVk5MMjyl48OAhdjRJpuD6HeDsCpLYdPrpp2sUmDFGd+HCwkJlClLM9a233uLBBx8EnHBgOV6y\nd49u3bppuTJpJycGMoA5c+Ykdef95ptv1M/vrrwUiUSURYlf/MUXX9Sw8nA43OAMQSB6uxhM+/fv\nr0zwqquuSigbbMRonobG2kCor8/ni8qurNhEpqECWBo7rrrqKm3hnp2draHL1113nXpwRLDGM8gr\nkfD7/VGq5H8pPPXBgwcPsaNZMgUP9UNqaqq6Q3fu3Nlk2ICHGlErptBoqjl7aDwoKSn5b9W5PeCp\nDx48eKiAZscUKiu/1Vjg7sPYsWNHjWj8+eefGzT6r7YIBoPqzXH3xqhpzmNpWeeh4dGkbQriWXBl\nW1Z3jmr/bq3VgJe8vLykuyUrjs/9IPn9fg0WSvb98vl8UV2mZJwShFVSUqKCIhwO6/uSkhIdcyQS\n0c+laE28rqMqgeQu8FLZdbjvbzLnNCUlZbcAsHicv5aC1/M+ePDgIXY0afVBmIIxpkYLeVW0Vih8\nWVmZficlJUWPVxsWUl9UJuV9Pp/uru5rS01NTUol4soCudxjlBiPFi1a6H3w+XxaVbtFixaa2JOb\nmxt3hlATqmtDWDEgK5lwB8nJvEUikahw9IZm7x5T8ODBQxSaNFNw64iCWIxa1lotbFpYWKjHSbY7\nrrLxhsNh3XUrfi4MIhQKJSyGoKo5rBgNGgqFonY8QUFBgfbXkOjHZI6z4t/D4bBGtIbD4QZNhKos\ntb8mm1dlSJQBt0kbGgXu2gO9evXSTMOKHZE9/PfCGBPXCt2JRF0M6LV8jj1DowcPHmJHk1YfBMFg\nUCsmu6vhXn311dqm7L8sbz6uaMyxH7XFueeeq2rXyy+/XMO3GxZSpfyNN95Q9fbjjz/W5kdz5swB\nHAOuIJ6qRLNRH6Qv36GHHqqqRCgUYuzYsQA8++yzlero8Ya7OInQVSmplZ+fr0FKjT2fQBrOzJ49\nW+ezdevWukhXr3YagY0cOZKFCxcCjTPrVLpULVmyRB+a/v37a4m5xgafz6dl8aT8vkD6TY4ZMwZw\n2gTIenLbJ6qBpz548OAhdtS1Ff0jwGlAKU6Ph8ustdt3/e1OnN4QYeAma+3HCRq7IhKJaCXiV199\nVelXMBjktttuA2Dy5MkJZwqXXXaZ1hvIyMjQ3n7XX389AN27d9cyYB988IEWEl2zZo16PIRp+P1+\nLrzwQgDeeecdPUd+fn6VnaTjhQMPPFALkuTk5KjhS5gPQI8ePQCHScj4pKFJY4CoPOeccw7gFJqV\n3TQnJ0fnvjEwZTdat26tbePcBX3z8/N1rIcffrj+/fnnn4/7GOrain46cKe1NmSMGQ/cCdxhjOkD\njAT6Ap2AGcaYfa21teI2dYXP59PKuO4ehlBuaXbrX/GAOwBF3q9du1a79xQVFWlz1n79+gHOgyRV\noW644QZ9qP1+v3pMpFT9cccdp2HXTz75JD/88AMAt956K3vvvTfg0MeabCWxWKclkOvdd9+lQ4cO\nen2i6hQXF6sqISXSW7Rowdlnnw3AKaecompcY7HhHHHEEYBz/UK1N2zYoAIuNTU1qmOTNH0VoZEs\nyHi++OILevXqBTgq5iOPPAI4LvO7774bKG9BMG/evITMc51a0VtrP7HWyjY1F6dnJDit6CdZa0us\ntcuBpcCgOI7XgwcPCUY8vA+XA5N3ve+MIyQE0oo+ofD5fNrPUAxLAolVyMzMjFtQktvgtv/++6s1\neM8999Tdf++996Z3795AtPFRYK3V3SESiWiFaul96PP59FgpKSnazv7jjz/mu+++AxzrdE3ZldJ/\nMBAIaGZjZUbOYDCoVZk7d+6sO1BBQYHWsZw+fbqeTyojL126VHfXqVOnMnToUMDZ8RoSovK4M1PX\nrFkDOMFpUhMzPT1d53nbtm3auEYYUTKM0z6fj9tvvx2Anj176txPnz6dRx99VMd8/PFOUzZhnmIM\njjfqJRSMMX8GQsDEOvz2auDq+pxfEIlEtNBoSkpKFGWWBdu+fXtttFJfZGVlaUPbL774Qqn57Nmz\ntZFqMBjUz93UXW54WVlZlCdi+/btQPliLigo4NNPPwXgxBNP1IWQlpbGoYceCjhWaHFTVWVNF8/H\n5s2blSZXjAAFx4sg53CXcn/qqae0FH1lKthNN93Es88+Czhz/49//ANw9N4YuxclBNLgx+fz0alT\nJ8BpBiTdq0RQVIVkpH3vs88+3HHHHYCjzoiQKigoUPW3rKyMSy65BIBJkyYBjor5t7/9DYhvFG6d\nhYIx5lIcA+TxtnzWat2K3lr7T+Cfu47VuKw9Hjz8F6NOQsEYcwowBjjaWuvmr9OA14wxE3AMjfsA\nX9d7lDUgEokwcaJDVq6++uqonVCMZy1atFAaX0ufbpVYt26dHiMcDuv5cnJyos4t3xEpvmDBAg2c\nmTZtWq1zAnr37s2UKVMAZ5cTNnHRRRdpC7mqIC3wSktLq80cvOqqq6KYhLCCZcuWKYtxf1/w9ttv\nc/DBBwNwzTXX6Njat2+vjWEawugo913UJyg3Ov/yyy/qJaoJyfBOjBw5UtdmUVGRzldqaqr2jZwx\nY4Yaf0V9/PXXXxMSsl0bl+TrwDFAe2PMGuBuHG9DKjB91yKZa6291lq72BgzBfgJR60YlWjPgwcP\nHuKLZhHRCOUunWXLlqmxzlqrrqVx48bx0UcfAag9oK7XHgwGo+otCFq2bKmRfq1atdIItKlTpwKO\nzUFsALGc2+fzaezFlClTaNOmjf7tscceA8qj3Cr7rZyvunN26dKF++67D3Bci3KOQCDAzz//DDhG\nO2ksK81Ob731Vv71r38BTjKa2BFuvfVWZs6cCThspb7sLFZ069YNQONCUlJS9H2fPn0ahctU2MHG\njRuVTW7dulXd0lOmTOG4444DHKYr7EfcvtOmTYu1TsV/ZzXnNWvWqEEJ0PcTJkzgkEMOAZwW9OAY\n3+oiGCKRSKW/y8/P57fffgNgwIAB6ssXYSQqQKyw1qogW7VqlcZkWGt1AdWEmgxma9eu5eGHHwbg\nyCOPJCcnR38nBkg5J5R3TJ4zZ05UkxVJT37qqafU+HnVVVfpOJOxCfn9fo0HcccgPPTQQ0kbQ21w\n8cUX6/tFixYBTkyKdN+y1mr3rSOOOEI3FPE6fPDBBwlJ8/fCnD148BCFZsMUxO8sxhiIzqFv27Yt\nZ555JgBffvkl4NAwcQvGsnu0bt1aDXHu3/n9fo1Gs9YqU5BoxVghRr2OHTsyevRowImFcJdKk1iI\nqlDbGgLWWu3QPHz4cGbNmgU4BjtRQeR77rEZY/Tv4XBY3weDQXr27AnA6NGjufzyy4HypJ5EIiMj\nQ9mNjKesrIz9998fcO5TQyZv7bvvvkC56hcMBnnzzTcBZ/d3ryl5/+WXX6pr+NprrwWcNZ2I+Ww2\nQkFu/qJFi6ICgNy6rOhkp5xyCrD7DagtcnNzK/1dJBLRcOQBAwZw7733AuXW4ljgtiO8/vrr+nC7\n7QluelkVYtE55Tvff/+9qgfdu3fXgKRQKMTIkSMB9IEPBAJRZd/F2h+JRFSVGDx4sL5PBowx7Lff\nfkB0Hc/62pLihb/+9a9A+Xq85557NIehurFJzIV4lBLVFsBTHzx48BCFZsEUjDGceuqpAKxfv16j\n6j744AN+/PFHAO644w6uuuoqAP3uLbfcUufzCSpSvTfeeANwrN5vv/02UDvKXDET8fDDD+f9998H\n0J1YzuE+/xlnnAFQpcGxrruiMKylS5fy+OOP6+eS8CVo06aNemI6deqk1Pb0009XVS4zM1PHmYwC\nJ927d1dWIEZQn8+nhuaUlJSke0MEfr+fP/zhD0B5UtnkyZNrdZ+k5qUYF2sbaxErmoVQ8Pv9mqY8\nbdo0XRBuvP/++1x9tRNVLRS8rnql+8GseDOfeOIJwLE71DasOhAI6EMjemN6enrUwy/HKi4u1tDt\n1NRUVYX+/Oc/A4kPFKp4ve6F+euvv6pnZ9OmTToma21SbAkyX5s2bdIcBoHf71c3ZWpqqj6Q9YG4\nFEVlcgd5VYQI/TFjxqjg/+qrr4By9251SE1NZZ999gHK11hdir3WBp764MGDhyg0aaYgkjI7O1vD\nQe+5555Kv9O/f399L+G3bdq0qVP58YoGTDeEfdSGJcgOc9NNN6kqI8YnN/Ly8vjjH/8IOMlYN998\nM+AkxIhFXRKfJHuxoSDzOWjQIFUr/H6/vheDYyKs/8JiNm/erCXi3BmqktnasWPHStlkrBCPV20y\nKWUcw4cPV9bgVstqwsSJE/V3MseJYgpNWijIIhg+fLhSt4pBOqKPn3XWWfqZfLc6NaA6xIuiixoz\ndOjQKK+CQB6kiy66iAULFgDO9SxbtgyA1157Ta8vXhmg9YU8eNu2bdMHwVqr7uBp06YlfAxlZWXq\ndXG7b6WaVE2ZkbWFqES1EXCyvtLT0zWFXTw41QWWiapx1FFHqUoknopEqYqe+uDBg4coNGmmIFi3\nbp0GgsyZM0dz5X0+H3vttRfg0FbZNSQG3t0/MhbEw88dCAQYPHgw4MQ0VCzEUlpaqsFEK1asiOpA\nLT74du3a8eqrrwL1z/yMB4wxauEfOnRoVMCU0PlkxAj4fD4N2RbKXVJSoga6eBk9Y1GB3NRfQu/l\nnlfHFCTWpWXLluphEqbhMQUPHjwkBc2CKWzdulWNPlOnTtXGMKFQiCOPPBJwdHGRsFIMUwyOyYQY\nEqdMmcKxxx4LEBXt567MJBV2Vq1aFaWfCyv47LPPtDpTQ0IY2L777qsuyTZt2ui1LF26VDNFE4WU\nlBQtdPvhhx/qe5mrjz76SCMBGyKiUeaiW7duei+lqKzP54va9WU93HLLLdxwww2AYwe78cYbgcT3\nDGkWQmH27Nma3tu/f3+t01hWVhYV+CPGOFEvGmJxiEA68cQTK6WPQrlXrFjBe++9B0SX9w6FQixf\nvhyA5cuX6/tEQuocGmNUsIogcFdzHjt2LN27dwechS3XsmDBAn0g4w2ppTh58mQVsunp6TpfkqNy\n++23N2i6tDzowWBQ16TUXLzrrrtUlVy9erWWpU9LS1PPxuOPP86qVauAmPtHxgxPffDgwUMUmk2R\nFclOfPrppzULraSkRHeSrKwsDRu+5pprgMSFiVaFzMxMNXK2b9++UpVgwoQJgBMOLIbGivfIvUvL\nTpKo+5ienq478IMPPqgJX6KuWWsZMGAA4JSjE2pbWlrKTz/9BMCwYcOi3MDxhBjwVqxYQZcuTqeB\ncDisvvzLLrsMcMqZNQZj7PPPP8+IESMAtGCNO7sUylWN5cuXa1Tom2++GY+5++8qsiIP0AknnKC+\n8kgkogtl+PDhanVORtnuynDEEUdoiLLb2xCJRLRKkagX1TWvkcWRqCw5N4qKilTtys/P1yxJd06B\nPGzWWtavXw84Xa0eeOABwLHduNOr4wl3ByU59o8//qhh4xKT0BgEAjgbkoRYS+yGu1R7JBJh+vTp\nAIwYMSIp4eEV4akPHjx4iIbU7mvIF2AT/fL7/TYQCNhAIGCNMXaXypLU16OPPmrD4bANh8M2EonY\n0tJSW1paaqdOnWpzcnJsTk5O0sdU0ysYDNrRo0fb0aNH223bttlIJBL1CoVCdu3atXbt2rX2n//8\np+3fv7/t37+/9fv9SR1nSkqKzcrKsllZWQ0+Z7V9yTp0vxJ8zvm1eR6bjU2hMUNSiH/55ZeoIiS/\n//47AKeddprWdmwM98MNn8+nuu/w4cO1aYl4Fu666y6tKZiIcuMe4gqvFb0HDx5ih8cUkoALLrgA\ncGoliIHx6aef1uq833//faMxhFVETZl4jWH9eKg1mr/3QYJA3DkM1S3SRAd9VAWp0z958mSN+Pvp\np590HG53VGOAu8Zh27ZtNfBm6dKlWoTWLcRkXqtLKW8oyNxWDFyKV7ewWJGRkaHRllu2bAGc9SsF\neLds2aLu1Ejk/7d3fqFxVFEY/32kNmIFk1QosSkmYlDSorb4kKAP4h+alFIRfEgpWLHgi2AVQbrk\nyUdR1Aq1Kv4DCVWsVUNAS419jrYoMTZdG6nYlNZG0Ao+VTw+3LswU7Mk0b0zC54fDJl77ybffLNn\nD3Pu3M38lbttXdTiq+aKRsdxSqdZyod54A/gl5IO4VrXdu3/gfb1Zrbo8+ubIikASDq2lHrHtV3b\ntdPi5YPjODk8KTiOk6OZksLrru3arl0+TTOn4DhOc9BMVwqO4zQBpScFSYOSqpJmJe1JrLVO0lFJ\nJyR9J2l37O+QdETSqfizPeExtEj6WtJ4bPdImoz+35e0MqF2m6SDkk5KmpE0UJR3SU/Gcz4t6YCk\nK1N5l/SWpAuSpjN9C/pU4OV4DFOSNiXQfi6e8ylJH0lqy4xVonZV0ub/ot0oSk0KklqAfcAQ0Ads\nl9SXUPJP4Ckz6wP6gcei3h5gwsx6gYnYTsVuYCbTfhZ40cxuBH4FdiXU3gt8ZmY3A7fG40juXdJa\n4HHgdjPbALQAw6Tz/g4weFlfPZ9DQG/cHgX2J9A+Amwws1uA74EKQIy9YWB9/J1X4meiXEr+yvQA\ncDjTrgCVAvU/Ae4DqkBn7OsEqon0uggBeTcwDoiwkGXFQuejwdrXAKeJ80iZ/uTegbXAGaCDsLR+\nHNic0jvQDUwv5hN4Ddi+0OsapX3Z2APAaNzPxTtwGBhI8f4vZyu7fKgFS4252JccSd3ARmASWGNm\n5+LQeWBNItmXgKeB2iL21cBvZlZ7gEBK/z3APPB2LF/ekLSKAryb2VngeeAn4BxwEThOcd6hvs+i\nY/AR4NOStJdE2UmhFCRdDXwIPGFmv2fHLKTsht+SkbQVuGBmxxv9t5fICmATsN/MNhKWledKhYTe\n24H7CYnpOmAV/7zELoxUPhdD0gihhB0tWns5lJ0UzgLrMu2u2JcMSVcQEsKomR2K3T9L6ozjnUCK\np7TeAWyT9CPwHqGE2Au0Sap9WzWl/zlgzswmY/sgIUkU4f1e4LSZzZvZJeAQ4XwU5R3q+ywkBiU9\nDGwFdsSkVJj2cik7KXwF9MZZ6JWESZdkTyBV+I7vm8CMmb2QGRoDdsb9nYS5hoZiZhUz6zKzboLP\nL8xsB3AUeDCldtQ/D5yRdFPsugc4QQHeCWVDv6Sr4ntQ0y7Ee6SezzHgoXgXoh+4mCkzGoKkQULZ\nuM3Msv9tdwwYltQqqYcw2fllI7X/FWVPagBbCDOyPwAjibXuJFw2TgHfxG0LobafAE4BnwMdiY/j\nLmA87t9ACIRZ4AOgNaHubcCx6P9joL0o78AzwElgGngXaE3lHThAmLu4RLhC2lXPJ2Gyd1+Mv28J\nd0garT1LmDuoxdyrmdePRO0qMJQy7pa6+YpGx3FylF0+OI7TZHhScBwnhycFx3FyeFJwHCeHJwXH\ncXJ4UnAcJ4cnBcdxcnhScBwnx98T/qNalT9MKAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2/2... Discriminator Loss: 0.9276... Generator Loss: 0.9687\n", + "Epoch 2/2... Discriminator Loss: 0.9666... Generator Loss: 1.0320\n", + "Epoch 2/2... Discriminator Loss: 0.9749... Generator Loss: 0.8926\n", + "Epoch 2/2... Discriminator Loss: 0.7613... Generator Loss: 1.6372\n", + "Epoch 2/2... Discriminator Loss: 1.5822... Generator Loss: 0.4344\n", + "Epoch 2/2... Discriminator Loss: 1.1882... Generator Loss: 0.8438\n", + "Epoch 2/2... Discriminator Loss: 0.9924... Generator Loss: 1.1633\n" + ] + } + ], "source": [ - "batch_size = None\n", - "z_dim = None\n", - "learning_rate = None\n", - "beta1 = None\n", + "batch_size = 64\n", + "z_dim = 100\n", + "learning_rate = 0.0002\n", + "beta1 = 0.5\n", "\n", "\n", "\"\"\"\n", @@ -512,30 +1146,844 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### CelebA\n", - "Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces." + "在 CelebA 上运行你的 GANs 模型。在一般的GPU上运行每次迭代大约需要 20 分钟。你可以运行整个迭代,或者当 GANs 开始产生真实人脸图像时停止它。" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": { "collapsed": false, - "deletable": true, - "editable": true, "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 0.6635... Generator Loss: 2.6208\n", + "Epoch 1/1... Discriminator Loss: 0.5171... Generator Loss: 5.9576\n", + "Epoch 1/1... Discriminator Loss: 0.9434... Generator Loss: 4.5532\n", + "Epoch 1/1... Discriminator Loss: 0.9883... Generator Loss: 1.3031\n", + "Epoch 1/1... Discriminator Loss: 0.4266... Generator Loss: 3.6278\n", + "Epoch 1/1... Discriminator Loss: 0.6535... Generator Loss: 1.7355\n", + "Epoch 1/1... Discriminator Loss: 0.6394... Generator Loss: 3.2757\n", + "Epoch 1/1... Discriminator Loss: 0.5272... Generator Loss: 2.5773\n", + "Epoch 1/1... Discriminator Loss: 0.4938... Generator Loss: 2.2639\n", + "Epoch 1/1... Discriminator Loss: 0.6107... Generator Loss: 2.0199\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXmcZUlV57/xXq5VWVtXdVX1Xt3QG9B0I6u0IrKoIMqi\ngCgO4IwgLjAuCCoD7oOOIow6OIgoKrK67zgoKAg9LN3SQHfTG71Ud1V17VVZWbm8F/NHxMnzu1H3\nvveyqhqy5nPP55OfezLevRFxI+JGnP2EGCMttNBCCwadr3YHWmihhdUF7abQQgstVKDdFFpooYUK\ntJtCCy20UIF2U2ihhRYq0G4KLbTQQgUetE0hhPAtIYRbQgi3hRBe92C100ILLZxeCA+GnUIIoQt8\nCXg6cC/wKeBFMcYvnvbGWmihhdMKDxal8DjgthjjHTHGBeC9wLMfpLZaaKGF0whjD1K95wH3yP/3\nAo9vunk8hDhJYJGI0S1doJ/xPhDk/lhcg/wei3KFkiYKNXWVz2nbXesvsCjP1bUNvuPGmnub2hj2\nHsPoOm2jk/tK7q/W12cw1I2t9VX71DSGHbm3fkw69PMdHcbohIRPxMiCPBGKOvpSR1fKl6i+N1Ju\n9XSlvNfwfnVrRH/T99axrXt2UD1a1rQWOlTf28DeIxbloaZc328J9sYYzx7QTeDB2xSGQgjh5cDL\nASaAq8YmuG9pfnmy1gNzGZ/DJ3oMn4Tj+Topv/fk9y7VD9PKbZDG8MUxL+WTUj4HTORhmsmzcS5w\nf29puT1bHAv5z9qezLhN0LzcOy7lC/hEdOUZ7a/1rcfgxbcEjOW7pzpwXkgjsKvXY17ee0HutzZ0\nsS3KvZNyr9Vh907h87Ag/ZwBjuXRn6dPJz8xlUe2xxqOMQvAJJtZM5bwS+I8dy8tLr/rhLw3wDEp\n2yTvsQ8f27Vy/0F5jxkcDkv5tJTbmrP36+Bzo/M30Qmck9/2vn6aSRtLOPFjHZdy+83W5pSUzUnb\n66TOo3L/+nxdzOWQ5kw3KZ3ryZD6uSvGuxgBHqxNYSdwgfx/fi5bhhjj24G3A4QQ4qd783SpftD3\nZXwT8EDGz8In2hbHYdLAQhoMG9QlKT+Ov6y1MYEvqg6+kBaK8sU8NdvyDZ+T91gC1mR8Tvq0AGyU\n/kH6uA5lfD0+oZP4h2V16eLXxbhYvN+Y4OTfQt42JvtwY34r/dAn8UWj9WrfrY2e9Ok4vjCX5F7r\ne8DHcBFYlE8j5l98Izy6vIEc4wF2LKZfrsc3lkX8A7CxmqA6bgcy3sc/6DF8nHVDtvc7Km3MCT5L\ndQOwNmwtjEsbZ/UjN+Zxtk16ER/PJXwznac6hromAc7G1/QUvl5mSJudvbe967p83SP1HhB8lipV\nNL5CueGDJWgcIwkan0raDD4FfHeM8Qt190+HEC/uwO2yverpqCdpT57THTcKrqSTlivJSP5NKQwl\n4wyvkKu5cBuwK3od+oy1oaSt1qWncV259l1Pm9iAD+pvB9iSf9gX69mxkh0o21BSvItvBkqBlXWV\n9dWxKjo33RDobEj/nXMI7pMXLPuhm5RSN7P4ib8kz+kHrWDzpOulrq8le2jtBXzD0g1I51xZYcOV\nOrXNoUd1A9kguL3THNWP3tqwTaon9Sr70KGykX8mxvgYhsCDQinEGJdCCD8M/CNpTN7ZtCG00EIL\nqwseFEphxZ0IIdqOZieRkvZd6nf2uhO/P6BccXu+6dStK9+Ur4ekjd6ANkrSXvuuwsoxuUfJTz0d\nm96vDuz3aZxEtWdPBgaNofZdx61pDJvgIfl6B/VUj7WnAuiNONk9jZ+a24Dd0j9IY70947upzo2y\naYPWiFKv2h7yTN3ai0V7dvrb3GzBWYNtJLYA4DE4q3oxcGvGL8/Xm3EK4wjV9WIQqu83EqWwKjaF\niRDidhKvd1TK7SUXpayOLC31qk2S81JKXkrIm6T9JWm9FSfhjlNP2mvbOlkqwNL368hzVo9OrvZ9\n0IyVEnLbyI5SLyUftilqP+u0FqWWSElmJWcHg8/EZpI8BfxQsPqsDSOjN+Mfxb34x7ZJ2jQV2CTp\n44P0gVr5OP5+C7gsQaFO89HB2Ycj+Vp+jAZjVOfENoi10l99zjbIHfj73YPLEuwjvw0ww59D+Hgt\nUp0nWX8jbQqtmXMLLbRQgVWxKSySdvojJPJKJdsLpN1cT0gTqthpXAofrdx2dhMyGm512T11wiVt\nz/Dp/LeHRDrOUVVDaZ+MfTAV6iJOahvJOo9rFqx8HGctuviJq/XW9bOOghgD9uc/Oz3qKKMStFzH\n0ygdE5yZ4M3mQ8d2WBtV6DOJaxNs3nXObHzWkSiFNcD3Sg2PJp3c64G35bomgYfnv2ngf+e/DcAL\n8l8X+I78Ny512DsZJVTaykznvh6Qvpm62Kg867vNvamCbR3ZGvoOfIy/VZ57Nb4efiz3ewPwmvy3\nBvjB/NcjUR5rOXE9W9ujwqpgH9aEEC8NsD86+6DGKH3qSVHdDOylO0X5eM29VscEztcpud5kOGU7\n6I4Ae3Mlat+goLpplT8YGbxG2jteU8cCvuHox6Uket3MlcZLZqlii9fq0Pu1zyV0cTK5tK2AqooY\nfDzX4ao1vV/ZAJUTxDy4l0XYE70uk9Dbe1xAUmkBfFMHurmS2S4cyvil07Ar8yAHMk+xZQFmMr1+\n/2HYlyfn8CLszC/+9xF25bqNJVjC2a6SzTOVc6n+hLQe7d4JnOSfkOd25Ouz8LG/GGdzHtKFg3mR\nrBuDYxkfyzf/Wx/uz/e+BzAjhH34eBc2Li370EILLawcVgWlYNoH1YOrVFsNSFRDUQpzoGo0skBV\nt1uapY4X9TZJ560dE/SoddkS1dNP7SnU0tH6aG2sw08jNV6qk4SfrPbB2BKDk9U+6HiWkvMZ/D10\nzkq7kGGrzE7H/dLecZxC2J+v34QL1/4eeG7G3xvgB3Ij/wg8Mpe/Lw/cdwPX5QF4BPDm/PuPA/8j\n4z+AC/lMfz6JaxkCPg9r8fc2KO1NdNzMmvIYcFHGTcvwBuBdGf9vwDsy/gfStx8Cfinj5nL8Upxq\nequ0rRRaB19Tc2eS9mE8hLiFNMj2AalBxwJV9U6pelF+SQ2ZoGosVEc+DzMfrtM+nI2zOQtSnxqm\ndOQ5XeSGQ2WyTjBe6lPPPtCA60ahkm4jVU1eU8IgQyh7D/X5qDMAs/FXTYyWq/aoTvOjcD6+4czh\nG+tj83Uv/uF+K/CUjP8dcKW08dCM/06+XgncnfEnAW/M+BOBz2d8B/CBoj9HcI2EGtEF3Miojn3o\nUn9odeU5O2QeBlwmfTB27SJ8re+T+m/O1x7wtxl/QN5PzZyVFWjZhxZaaOGk4KvmEKWwRDIo0dNj\njKrDkwqqSvZhERdImbaixJV9UAGXnWJKYTSRu8aKPECVWtETsc4oxmwaxqn6OByWciNR1dxV6xrG\nPtT1t4MbxazEmKjJBFtPbmXz7P1KwzK1MyihpBLsvXcWbVyc8evy9Vm4YdIjgF/O+E8An8n4twC/\nmPHvyte/AF4mZa/K+LuAH834TwLfnvH35utm3KZBT9Czcd8cfac6vxsVRh/Dx878Gq4E3pnxlwO3\nZ/xVwE9J396T8W/N19eSxgPg3dLeLFUqRctHgZZSaKGFFiqwKmQKkyHEc0g7p/L9yhvr6W6gKkR1\nkjFYoCq4s/vVpLgvZXUnr/bDTu5zca/N0tpS2y9Vklr/Onm25MXJfW2SKTSZ4Nq9Om4qwBtmYdik\nklxT/A9OBZi9hfVZ5TwqHymtT9VpRwV4VwfYHb2Na3L5ufn6UuCB3NFnAPP53pkxOJ4rWdODBVPf\n5QVwMMB07vTOCDHXcTNwZa7jNuCW3M6/5usBXNW3Bx+jLi48NGpM1d5qCQq+Djv4eJpM4dvk3ieR\nbHYAvhGXd2wHbsi4uR9/Argx4/fhlMchXAiqY7twJgkaQwjRBDO6qOp8Bpo+BBt0dSdWvbJ6QTbV\nNexjUb20ah9U41D3cdaZT5f+HIrX1bUS0E1MhYsnO9NN9vynWq/C5nw9GGBC7BQuyeVGql+Nax++\nCfhYxn+UpHUA+F3ghRl/e75+T4CfyfV+P4nFAPhn4MkZ/yfcr8DaWI9/bOppuZUiFgBVM2gdq5Ll\nG5NySLYeRto/hOT/AUkAaf24At+wTHtxB74m9+IsmLIPAd+EjrSCxhZaaOFkYFVQChMhxK0kyzgj\nS3WnVetGBVVvKVlnUFr/9YvnoP40Lk/5UNy7hapK0qC0oSif05NE+1pHxVi5Pb+Sk1nb1SAlozso\n1dfX5KFa1/fynro66yioHfiYHsTVdyZwPICzK9vwU/Nu3MHoIPAzGf/DfN0IfCjjj8epigl8Tq7E\nyXGbm2M4haD2KYGq1yycuE6b4kuUZcpSqNpXBegaDMbqXY9bk6rQPAqu7Y6qklwVm0Kd67Tq/Jvc\ncw0iVYm14nULto5lGMRKWB22QA8X9Wp7yrroR1/WO0G967TWW4ePMlunm32oq/t0rxqV1Cs7ZrIE\n49svw6Xz23ESXrVV23Fz5Sfl6534ZnM/PjeLOG9/jBRcFHl+Gv/wlD/fipsYq62LsgaqiRikMVKz\n+kmqbLNG1OrJPXCiMZlGjdKDwe452rIPLbTQwsnAqrBTmCCdCHupagjUrkAt/kphVxcXNE5SfSnT\n/5faBYNQg+tOqae0nUQX4yaqPXyXn6LeylJPPnsPDSrbp34i6sjrldgb9EhCLEinXR37NAqUbJDi\nKxU46tjq/XYiPi7AvdHvNbLaBGoPoXoC2+8qEHwmTkF8c77+Gx6nQR3sNL7nVqoOXZBYEuuzmjUf\nxqmKvVKv2tmoxqVpLu33unWhlEn5rPVN440q66xasboYEYNgVWwKCySesGQfmrQPpaltad9fZwBU\nR4I3fWD9hnJbKHdSXZhqxqzlpTm29n2e6qIZFhvwZMBcp7XOk4FBXpkrhSb/CyNxP41/pMdw9sFU\nwH2cfdiIv5+aI78Hl/mYxP7LuFfi/bi2YxGfk9uo8vDkOs3ITD/eGVwjouuwyeDMoG5eSy9YVbXr\nIVMeOEeprrfSt8f6PFlTPgha9qGFFlqowKoQNE6EELdRNbBp2nXryFXVPijZpibR6hBVRw6XobRU\neFSGSjsHPz009JXmU9C69RTQcF51MfXqolUrNGkimrQlJiE/THUsTkZw2WQjon1p0hIN0h7pb5fh\n0vw5/HQzg517cYGvzvVh/ETs4Se+UQxrBN+CCxLX4xTgNImigHo7FD2ZwWM+GrWirKRShQqlIZqB\njoFSGLrurR/LuSfwd1KqQp3pirV8Zmof7MU0sOkUThpq8hGV7ps6ak7wWXwB7aea1wASCaj24HXB\nSMEH1T6wg0Xbtqhmi7YNN15UJ26NvMe09EO1F03ah2EftP2uYxioLthBC7P8rckgZ1C9oxicabs2\nN6X/iHlEmpXfFTjZ/lPAr2dcfRQeDfzfjJssYheeouwTJG9MSHPzExn/U3wz+XS+XoQHTNX32IRv\nBrqBGBukeSbmqbKY5RjqWOka0flTVaXJMh7A19ihAtdNRtixVvvQQgstrBxWBaUwFUK8kLSb17EP\nPaqpvQzqov2qQGZCfu9RPZkhndZGgcxS3aGNUtAgKp28/e4ghY6zem0ElZzV5zRGhO3gE9Jer8Ch\nPnYkVE9mGMw+dEisDqRTResuny/bqCPt9f3q2tP3U4l7nRGPktFK4n5LB27t+z120m/L1zUk7QLA\nFR24M997KMCNucKNuBGSaYnm8LFYwo26vhm4PC+0B5bg87kj/5jrOoB7ZaoB0RhObagmqs7GoNRm\n1cW1qDNw6+DfQJQ+m+n3OG4rcQTXrijbpRqMxQebUgghXBBC+JcQwhdDCF8IIbw6l58VQvinEMKt\n+bppWF0ttNDC6oGTphRCCOcA58QYPxtCWEdyZ38OyZFtf4zxTSGE1wGbYoyvHVJXNP2sJoPR3Id2\n2k7h6iKNm6BWXsrXq4qpTD2nwUVVKKmJaPQUM/XY/dL2PNXoRhr+rVRvqaxC29CkuaPIEVYiU1CB\nU1OqtPK5JplCnY1I6cxVxxuPIlNYTmIbYFP+cR/JAQrcMehr8NPxj4H/kvEfIYUyg3T6fzDjdqre\nQXIwguR5aPgu4C8z/kKcCvmDfFWZguZvOAeXc9i6WqA5rkedk57KFOqCBpfyBcOvyNfbcNXqbqqR\nvFQ4LvEUvrKCxhDCXwK/lf+eHGO8P28cH4kxXj7o2ckQ4rl4KHIDFTip5NXuqXN7LnM4qrRYbSAg\nkWM2cbupTpJKnEty6kJcQr4o9aqJqpLHdfpoFdr1au4dZKQ0qvYBnOw+SHXc6nToBk1t64Ktk5Yr\n+1BqcOr6W1fXNVJ+H75ZXJivB/BQa8/Ghbz/grs478TnwUh/De+3DTebfhQpExPApaQQ8ODaiaPS\nn11UyXnzuzCjKY3AXdrZ6PyWPihNm36nwK1ti1u5BbfZWKD67ZxKNOfTYrwUQthBGt/rgG0xRtvM\nd+HrsnxmORV9t+6GFlpo4asCp0wphBBmgI8CvxRj/LMQwsEY40b5/UCMcaBcwdgH9fSaoRqOzfBt\n+C5u5NJxqo4hqnqsS0VvO//DSKmxyc8bK7EJ3/2hnn1QNZSmGa+zpqzLiaknSUlqWx9Pln0wUMEg\nDFcRNtWr5SWF0ZTnc5BFatlGoMraWfCSBeDrMn59vl6KmxW/BfjpjL8WD8Z6IfDxjNvcHMXV00fw\n03Yaj5j8K6RYCwCvz9fHAP8g72rvsRmnQtS5alhYwAWq6myoUk0lC1YXXOjifL2XamwFa+OY3Kus\n2ajRnE+JUgghjJPUu++OMf5ZLt4dQjhH2Ic9zTUkmCLpo3dTJb/s4+7iNvxdPJrQopQZTMv/k/gC\nUxNk5d8sAvABXLp7Kb5Z7EGSeObR2rHknnPqAVcXaUdx/ajUGKWJVx9kL2/4oI2hR9XAZpDxkpKZ\nZb1176fRievsGJR103IFbcMW//PH4O7c0Xn8A7D5fwxu93Ep8AsZv5y0MUDiqY09sA9lJx7F6RAu\nqxjHSdnXST9fmq+TuEHTXfjaOYrbUNgCV/aw1IKp1qn80NW3JwquQV3Ut8FO2GlpYxP+PWgCGxjd\nvNngVLQPAfg94KYY45vlp78CXpLxl+BynBZaaOEMgFPRPnwdyfnsRnzz+2mSXOH9JCruLuAFMcb9\ntZV4XSewDxtxE84pnCRSSb1K91X7oCzDtNxjWgmrazNOim7A2YdH4ZGBdde0k+YGKV+kmppuUPi3\nUlA3SOh2OsS/pUfiydY5iH1oslxcaf3LYxhgMlcyh1NyJlC7AD+ZH4rnQHgB6TQCeBwpzBq4Zmgf\nzjLsJVEZkKwgX5zxd+Nh3Cxy8lNIOSWgapq+GWdjlZUcZS0MirNRsmBKbRilp/kmbH1rMBj1iuxU\ny88cM+fJEOJ5pI9SMzbZxz1GNUimfbwq3dYPTI0/kHvKyZjCB1UDZKzDye5PANO5pWO5lW1U2Yc6\nG3dtp8nuvymGXx2c7Memvg8q9a5jH4bZ5De1UffcsP6Wm6K1swNfAwek3Hwf5nCNwxF8oz8g5eZR\nCdX1ZB+bkuKT+DrT+Igmizgg995DVbW4NeO2FtT3odSCDQp2U/qrKG6gLLKxo5oaoNRq1GVR67dm\nzi200MLJwKqgFJR9sB1uC9UQXEaqbcL10bYLlk40U4JriKpSmKdtLKtLSKnEjGScwXdpE3p9Ru5V\nMrGOvNb2FEqSse70OFXQU6fs06nUCaPZU4wKpceoCt3K1GyX4afjBbhR0zTuoDSJU5N24qtAeF7a\n6OLGQLfic2w69e3ATXKvPaceigbadw2cU2enoXjTWig1O9Z/NZYzSkntaUr2YaVmzqsiyMp0gIeO\nwZ5Fn3BwEn4R2JFHZDK6etJIw6M4GxBwsu6o4Htw2/c9ua4nRtiX8cdF+FCmy563AI/Ls3tbB27d\nmm46eChdL5zrs7fnfahjH5psL/Sj0sVf5yfQ9BGPQprbdXteEfv61cCeg54r71HtwyAX9jqDrUF9\nrGvj6inYnyd4r7Rn87gOmMmFj+s7v7wZ+ESu5PLo6kIzeropwGNzg1/C5UM3deF5eQI/H+DsfM/f\n5cnZ0PM69gG95QEIXNBJN9tamJd30pwi48W71s2rsrw2FtNUWR77YX2ubC2+AeiHrNbA8tjI0LIP\nLbTQQgVWBfvQHQtx7UwgHIHZ3J/JCEt5y1obPfvPth48kHfxmbyNHgmwJuNHO7BRys2O/nDXyw/n\nrfP8PtyTqYP1PbdD2LgQ2D2dHjx7vsNcrvyqY4lwu27qEPFY+v14bDYxLklt1T40GS8ZlNGc66Bp\n5myn74bAeOallo5HFodMddN71LFHSu7WGeEM6l/ZRifAREg1hy3Q3ZuenI2RsVxJP8/5ZB9i7sRF\nPbg/kwoXLMF9ufysPuzM+Jbcof3A1lzXgXHYlsv3ddKzAHdOwMZ8xO7OnRvvwWxuu9uDsYyvjV1m\np1Il/blU8XwcHiBlKUAn+j2Q10VurxurGodeLp8C5jO+TtZ6J+MLQnrpWhoLMB7Sg7P92AoaW2ih\nhZXDqqAU1oZOvHJsgnuW5pdPzxQVKe1wc8RKwEzjlzSbswoXTeYwVpQb/2V1TUtdyoNprIMUQSf1\nYzLv1Bd3utzTSz0tzVatjQ5Vq0brbxlSC6phvszeIuD2FF0pR95PBYm2u2v+zIkQeEhOpvjlRR/b\nKVweoxGfNB/nISk3eU0fF67Ze2i/jkk/tLwumnCgmvdiMp9mF3W63JvHtkdVUAhVb9ctUscBKd8o\n5SZ81NyPgWo0LHuuLpye5u9QgXanA5d10lveszS/3EdTAR+lOrZWroFg7d3WUrWUtLWhalSN2GSg\nqk6lTNSisUNgKv9w/4iUwqoQNB4j8h9LaTrsJReA2UwPqVaigy9MG4Tj+OCp26gGm1DtgwZy0dBu\n6u2oH/dC7kfmKLi+t7S8aEq3bY2uqyHGIE2iun2r7toWY7/4H6o66AWqk1/aXnSkvW6MfGbRa7L2\n1lLdcKAaQOSY4HNUN0g7Qmzcloq+9mvKy/mz/uqH18mH0+d7PiqL8i7W30n8g96ICxQncE3SBtzA\nydrTDfmI4IeoJqLRSNLWd/VXsfqm+nBdnF8ut+dNG3A/biy1C/ebuRc32TYNx+W4G/ZmPNzcNnmP\nGdweQkMDqG+H+gItb17EZdZ6VGjZhxZaaKECq4J9mAwhntuBe/r1wik1DS3LoVkfP6icAh8kzCtJ\n9G0B9kT/vS6Iqe622kZT26XaqM70WftUh5f1BuDi3JEvywvWqcd0fENRrvcrRVJCk6flsP5qfecE\nT0VfN/YapFfndx5nc+riCpSh5BSvS0lo9ZapB/W9vyb/c2Pf21ABrCaWUUcpo0JMzTqHswxqmn+Q\n+lRw9k4aW8T6am2r8FcoyzPHzDmEEG2C62zqFeryLlakuyOWQ73UfxAomTlsMyn7V/dbXXld0tkm\no6hhoFLtEIf7KDS1PWgMdWE2RV4ata9Wr7Whpuc25xqBaBvOPqzFeXjNJakRlc0MukyiUpdKoMkv\nwWAc1wyYhuQ47mmrUbiO4569e+Ue6+/lpChK9k7GVqhvzgwui1DfHt1M6tZkoOIf0WofWmihhZXD\nqqAUxkKIG0lklUqq68hrtfhSPb/qhHWnVLPT8pTVU2AURyRrdxMu7OoxnCQ2KN/DoIzybG3NC66U\ngr3HKFaDRqIewslOPY2VMlM/ftXgKGtRanBU+KbCXCVhR8l8bf3ZipPXGgNDT3DTImyTNh7AzX+3\n40JHTfpiGoA5/DRWK80+Lggu15i1rWNhMQZtLRyQujSXx1pc6HgWLlR8RE3fvoBb3h6W97iPKisB\naT6PCq6aiDoW+oxyiOqRVEeWX9FkCBb63PjaiKtveqTFayakM/nPyF1VmU3i/GBH6grSXpBy/QMf\nWKv3gPShyVjHSH4jqcs21gmu7/eo/NcjLZb1uXxH/oOqDf4gCCTp9R7SorF+lH2yfl2Q//qkRWoL\n9dH5zzxXp6S/jxd8o+AalHOC6ng29TWQPu75/LdEmu+10t8L8bn+QdLHNw18G+mDOwv41dz+5cD3\n5L9LgP+Z/64Gnpr/lvJvl5A2oXX5z/oQ8z3GOlk/xkhu2zeT1sOB/PzW/HdIxm0CeH7+21Pge/J7\n7M5/P0jasO4nBSOxur9B7rkq/x0hJYY5j6psoTz8JjhRPT4IVsWm0EILLaweWBXsw9oQ4pVduKtX\nNUhSAxhNSW7xE/tyvSTju3By6TAeAnsXfrpqG0pSqz+6shUlyX8u9anolR1Rox/Vxxu+Xu49jscL\neFhuZH/fzbE3Rhcy3YyT1wtFP0sIwLVjqZLPLcWKQ5SyVZBOYEtusgEf47UkjQAkrYAK9iA5qlli\nnPkAE9HbttRth3CSt6m/Ni6PCXCfaB8sVJqR1JfhZPeV0vZYgPGMn9OFI3kyD2WScc0SrM/4Z5bc\njHln9AAuN+FGW7Yu1Daj1BI9O8/V3jyIi7gQcaP0eXPuNyRy39ayCT4vourhacLDOVI8D3KZJbgx\nluFm6edunPUpY3wI63UmGS/BZ/vVqEpdPFjGDL5Ie6R4e+BS2EV8kd5NNQiHLcZS4gxOUsNoLsA2\nuPdS5XFVeq0GS8bPW381d+U34O7ZF5F4SYBX5w69HHha7tC/AK/Iv3+SqoXhIAjAx3upEt0A1+F8\nsLkm304iwSEFRL024x8F/iD348V4XoR/zNdXRvhPGX9ahA9n/L8Af5txY9+G9RXgs7EaTcjyJv5r\nvj4SeFvGfyvCGzL+5ghvzfjbe/DqjL81fx2/Brw5T/zrgJfld3ob8KR87x5OzNWhshGVZ40Df5Pr\nsI3gEL5hfYLEngD8NfCMjP8lPob/lq+vB343468Bfifj/xWPZfgcfMy/Pl9344ZQNp9wYtxQjQY1\nCrTsQwsttFCBVcE+TIQQt5NOBt3xjKS+m2oSDtP5mmR5DX7Kb8RJMajqtzVWAzQnRSmNcErjoU34\nia/SaY2j18UlzvYet+M7+1bg4Rn/G5z9sbZeCPx8xi/FIwpvImU4MigTi5Rwcb4epJph28hZi1p9\nFi7IfDklQ73zAAAgAElEQVTwSxl/Ln5yPwqwCL0WmARSTESA38bJ/X3St5uoSsbr+mvvfTnOHh3D\nKRk7ae/Ax+rxeETl6/EIzWvx09uyO12EU5MdnErbjAftuQOnbmy97cXXjfpBBHwMTVOj6+up+Jzt\nwKnXC/GgLU+S+42qPIInuzmKmzZ/Sfp0v5RZ3w/jlPU8VdsR0aScOdqHFlpoYfXAqqAUzKJRreDW\n4QKV9fgpp5GdjX/v4zvxYVxAqRZfc5zoPAQrCyWm4bVUz69yBBXSGCVgwUAfg+/ybwZ+KONfiwuU\njC9+GfAdGf8zUn5EgA/g+nhNqNFkoai5CO203kHVAQfSmP52xt8CvDLjHwV+POOvIclCIFE3AD+H\nJ1B5JvD3Gf8uUv5AqOrmm/qrFo0qK3p6xi0ZzI/jEZx/APijjL8MpxyfgFMCT8nXvbia9DqSbAIS\nz25tfB9ObRhFNIPbCugJOo2vQ1t788CLMv5x0nhBErg+P+PvxuU1n8vXV+ByhO/Ek8+8Ak9K8/14\njgsr+0lcbvG7OCWkYx1wweaRM8nMeW0I8YoOPNB3Kft6fBLOx8nc83EJuGZgMnJ2F06i7qUq4bcP\npM62YJTgIMu+DziLsoRvQhP4R7ZI0jmDL/InkgJjAFwV4WhuaF0X9lhAmfzl3hphNu88HwO25Xs/\nmf8gLVYTpNaxEQH4lvFUyc2LcXljvQrPLPSw3EYfeI7sdGvy4B6NcG6udE74rTvzvef0fG4OAZ/N\n+AU4KX4Dbq6r2p46w7Cv6yTNC6SPzha9sV0vxOf/8Ti7uSn42tkG9EwrkXfsfoCxfEIsHYWYv6D5\nOd8sP9VPGzB47Mfb8MNJPUkBviWPxcHc37WkBLiQDKgsu9VR4BLR4KwVHBKLZ+80ha/FLVIecM2I\nsVT/If28FddO7KGaJco23IWvFPsQQuiGEK4PIfxN/v/iEMJ1IYTbQgjvCyGsxG6ihRZa+CrD6cgl\n+WMkynh9jPFZIYT3A38WY3xvCOF3gP+IMb5tSB2xk/XMdpJochZ1dlG1pZo2q7OSsg/qXDPIQWkU\nWAn7YNZ44AKoS3CS/x3k7LqkFOpvyBU+I3fuT3GqYz8u7JvlRNVqE4zjgUan+t6Pp+HJUkxQdyfw\n2Ix/hkTVQBKO/veM/xjwoxm3/IvfCfx+xs/BSfiz8bgAE7gwrgmWLTTF1mEeTxlvArWHkgTPkE5l\nE9o9HSebf47EAgH8ah7X/w28Jtf7qgCvz/jrgFfle78fF/KZunACX4dqRTpJDoEGbM51HcBTo32E\npJYF+GMp/2NcJflP+foS4A8y/q14IppXA7+R8ecB78u4sSVvwYXDH8PX4WF8fXZxFvorkoo+hHA+\n8C6SsPrHSKruB4DtMcalEMLXAj8bY/zmAdUsp6I/ipODAf8odhf3ayQcqJI7E9QH/VAPzMo7FPcN\nAvV9MPJsUdrXKLpqIGSbgwZkWQP8VMbfJnXcIm3YB6Z9n6L6gQ2bPWOrjuMb0lqcx/1jacM2tMfi\nMg7ToECyU/jrot27ccn5nVKuPgpG9kKzXYiN7YU4S3QYN7W2j/V++X2LtL0P/yguIMk0tN4pql6U\n78642m+cQ0ptBj4W91G1dbF5CnhEaF1Dphn5Btw+xczDIa0P28im5GpyoqNU16+tJ01qbNq3Tbhc\nwkyjIR0WamchdX1F2Ie3kOQdNtebgYMxRjvE7sXtTyoQQnh5COHTIYRPr8TFtoUWWnhw4VRyST4L\neGaM8QdDCE8GfoKUrPeTMcaH5nsuAP4+xviIxoqo1z5soD6XpIb2UlB7g7q4AGqiqo5OdXgTlKbB\nVldd9uAySYxdrQ9q3XghforbqTSINRiVDdLYExpk5Crcf9/Yhy/hIcMO4SfUAtXcGXaP6cR7VGNG\n1lFm2o8m0LFSTYRpDExffxVJwAZJWGrv0cXXyMNJVAt4nsjjuBDw7SQhJSTK57kZ/xNSTkpI5C8k\nzYJRquZMB0kQbhSQCUHnSKwLJCtUY0veS2ILAH4Tz2diAuOX5bYhWSt+LOPX4Gze5ThV8N35+qf5\nWUjUprGYe6gG2jHtw+GvgJnztcC3hxCeSfpu15M0ahtDCGOZWjgfp6IaYS1wVQfu7fum0MNJxz5V\nzUH5sQ16EbtHJ1QlyHV1NYEt8q1U8wdaHervoPIM+8A0Dfk1uKrrG3ETVluAasSlm1sT2V3X/z7w\ntOz7sH8pLpPXmwJ8TX7gqlzBR6JrCHo4aXuEJDeAtChN7mBsxHFcdhCpxrZsCtpSB1Z+VYBdpjnA\nSekd1nfcp0DjLmqQ3ufgZvHPy9fb8Q3meTi5fh++mTxD3sVUlgelDyZbgHRgPb14qXPxd342bkD1\nTHxcHi73mLnyI3D186VUs5VdLLixJmaQ9RiS7IL8biZrWUM1x2Rd4NxBcNLsQ4zxp2KM58cYd5BY\nuH+OMX4PaZO0dfQS2lT0LbRwRsFpsVMw9iFrHy4hUUxnkWxOXhxjHLhZhRBiN6QEMLbDqfZhEidR\n1UFFoY59UJZhGPswCjTVqydinSZCnbys77qbb8ZPNg0fVmdqvZL+qvZhfd/J3Zfigrbvzdd3k0hz\nSLYGGjF4Od0eflqZQdZanGoqQ+WtxNlMWQYdAxPmmS3Elbjz2Cac7RrHT0TNCm7m0R/FT6r34yzD\nP+BGZh/HSXvTZGylahdj87AG92K1hEMHcOOl63GNw+/ilMe/4N6oxuI8A/hUxr8ZZyUuwgXPW3FK\nztiV3bjNwn6qjln2PWh6gK8E+7AMMcaPkCmZGOMduDl8Cy20cIbBqrBonA4hXkI6LTVWgJmPHuBE\npySojyw86FQqoyOH4rdhI2H3b8Z5/iWpV1WSGqZMLS+N71XT7P1SbsLHLs7LasgwqEbZGQZmtvuA\nPDdPciUG13lfLu1dDfxVxi/DrTe34YI966+qyjSbs8JKwrFdgAuYVX5k/PcNuKp6Gqd+9lCNuaHu\n85D4/XsyvkXw83A50BTw6YwbdbQXn9/dVE9Ro6xs3Nbg4/IU3NpQQ8wdxCmPHfnaw6mHndLe7bhA\n9yCu4jWZwzTV+TBqcxynsnXtzJ9JZs4hhNih+lGphHIGn1zFNaaBkZxLuLHGAlUSviTBlZxvsmNQ\naGIfNBmMtR2BJ2f84/k6iX8g15Js8CGRfSbgMvPj26WuJdxeQE23h/VXhasafvxtpLBk4JvDdXgM\ngvfjY/xx3Fz79/AxN9+CHbg2YAIn4WeoJu1ZifZBPWLNwOsj+fpGJJYDLu0fw818X4oLQo1s/yhu\nTPRruE/EF3Hfjj/B9efmw3E1bsik/iMbcdbFSPhF3Gfivbih1weAH8n4L+As2PVS9ucZ/zbgf2X8\nmcDPZHw7zm4YW/IPOHv1D/hGqPE+wDeTA62XZAsttHAysCoohU0hxCd34Qu96uloPTuAl/fx00it\nBzU3o6ov1UZAqQKonqTKBgwjcS8LcE/0Nmxn3YwLD6/GVVZ9IU0WcyO9DtyWO3RLgENFoxqpdyN+\ngt2Nk58aKqypv6/OCTCvm49cm/vz0LXw7bnyTpaynXU79LNSv/cOWHxCwo98CrpZgnXnAc/m/Bf5\nPR7AhY4HcarJgp9COlENHxZP4doO3J9vmiAFPgV4Vr7uCM4+jI/D7Zl2P9CFe/N4XhPg8+Zslive\nGd3G4nocXw88Wu6x099sCPbh4dp2UqXSnpXHYjb392F45KXNwHnm5NaHyUxm3taDDbl8X37uIeOw\nkBfz1CQczoN1PMCf5wYXcEtGs+7cjbMu/wf3Hj2Arx2opFc8c9iHTghxLMCG6PzrJfhi24CTs+up\nSruhGgZtHt8gNCiGJvowUD+KUdgHfV5NrY08m8X5vTng1zNu5syvJBmvQIow/HsZvxgnDS1Iyf04\nrzuPmyvfxOi+Dx0g5Jsf24dPR6/DfBuuzzTnr8zBb+QK39CBH88v+4Ye/ER+7lvwsHBGtl+CG9VM\n41qi83G+XUPGN2lRlsc2wEz+8ai0Z+bHb8YNi/4QN+R5FT7Ov0iyuQd3Af+fOCvyFpJ7NSSd/9sz\n/pO4tuKd+fpInP0zeQGkOd+TX+aC3N+duE/I+4Afzb+/K6a6IbE/ZnBk8//juK/G/8DZtRfj4/xU\nfJzNVf0tuCv7B/BNYyf+bXSl3/ta9qGFFlo4GVgVlMK6EOKjqEpm+ziZqOHYJvCT0iTPqkVQfbWy\nD2UATgM98ZXVqANr5yJcS3AQp0y2SJ+24E5HV+bre3FK6B5cMHQPJ5LV0zgJqHH7t+M6+zImQR28\nJKd43xrjsiDuCvwEshPxm3CJ+zR+Om7AT6g+fmKb880ufFyPUT2h7P324RTZKOHYDA7iAlYLSHM9\nzlI8Up77d1zivhufE5PeHyj6YJL6S3Hh7o5cD/j83oezhHdSFTY/OTc+lV9mHKfArpT+LMp73SJ1\nGMWrsQX6VBPZ2D334taNZ8v1o/K7eZL2cJsGFTCfcdqHLmkB2gQ8Hbf73oi/5BW4QYfxr0eoRgBW\n7YNqKAZpHyxBysB+Cq4GS7Z5qdpoHnhTxn8lX59Pcpm2d1LXYuMN64ytwE2+dRMaZr6qz1+IfxSf\nxaMHG6n6cdyl95O4Qc/PA9+e8f8q5WamGvAPSNXBmu5+DVUed1hfbV77JJNlcPXeL+BS+5eRHG4g\nRWH6w4x/D/DTGTeDpXfjMRU/jGsAZvN7QXKvtsjUFoXqMjyS9FqcDdqIh4nfkV+6g2tGPoFvEH+H\nG0v9LG56bW28EY9S9WKqbulvzPgj8APlZ+V5q+sXcDnJ/8U35z6uqj3Ysg8ttNDCycCqoBTO7oT4\n3PHAzoW4fNKswwVV4CfNJtx+wU72g/jJfQw/rdQ2QVmJOkMoJcWHsQ9f0/HU7sdx4WIH36234oZB\nRtk8hHQaQSJfzVBGT1vTeS9QZW2MtD+Ok77HGa4xed+FyWD54D2zXGsmz1tgbebT1uVQ0/EAdE3S\nPQvdfFzvXvQkK++JfooY2xFxsjXgFI+GFVuU8qbo0za2TwhwJPo935TLzVDoG/GxugCnINeFpD2A\nRFab9sAorH/AhbV/jgt0D+Hekwdxj1CT5PdxVmoXVcH0q3Kou7VLqeGHRU/mM9eH8zN+tO9akE/H\nE2N3nhfgltz3h5KC3Bj+F3YPvh4szNutOFX15zhL90mcdYmcwcZLYx3Y2PcF/yjcKEYjL62l6lIN\niYxWIyUbhLrU6afUT8GVLVHtg03SIm5Hb8FSHotvBGupRvRRF2eopkhX46zSJ2JYfzuZ17i6B/+R\nv9L7cEvHT+SV9grgHfmLfSoeCeiHcHv+X8flI/bRTVE1Jus14KOyZiFUIy99bS63jfWVuGHR9+GB\nbt+Ay0l+Bmfdnp2vb8c/xhtwVuLLuEzhVnxcbsjXS/GgKGodOAkcy/9cmV/uS3jQ1bfgbMlrgf+c\n8d8gRXsCZxNejxss/QhuTPWf8YCu34T7R5j24p24gdwf4QeHWTlan20dtanoW2ihhZOCVUEprAkh\nXkYSMmpCCyOlD1L1PrSdzEjSMvCKsgHDWII6GMY+bMKFfBo3YaOUn01VewBVHw6NDFznwdl0uo5i\nMqzwXbnmjcRl78K9+Ilm8RdfiFNmW/AT+GG48GwS167YHMxKP0tjsTqKZtg8XICT6BqR2ISdR/Ek\nKnfilNmd0o87cTbOpPddqgFZNLeljef5uORf/W7sXfdRFTCbcdo2oWyMLfl6/F234hqjG6Tc1veX\ncGpzRtq+EafC+jgrZFdNLDOLe48eoaqZEwO9llJooYUWVg6rglIwhyhNRLoVV9ltohpnYX/18RNi\nFyi/bzAK/z2ql2R5CioVs2yCiwu2TIUG1YhKg+IN6P+BwarVYf2FJMMwGcxrcEcoywx9Ix6a7U24\nue8N0vZBqqpfewf12qyLVbGSsUXai/ipaFTXK/FYB4/FZR9b8VNzGx6FyByG7qTqqahm8xaH4CjO\nl9sam6EaT8H61gHmcqfPFpWkyQZ+DY9Z8e+4oPRHcArB7Ea+k2SRCMla0dbLGjwPhVEP4GrTD5Eo\nPEjyBZvfG6lXn49q5rwqsk6v78DXzgTmD0duzW/Tje5auhV4IJefF53EMxJwL05GzuEf2wLV8G51\nH17Th16H2/XicdiXv4RZfIFtwgVYmyfgkfke+5AORSfxNHDMGL5ZaMYmCc1d2XjsI6xjI8rN5Icu\nTyPzsFvm+fusJlk6DH+VV8qmfL3mEliXadxX9GA+r/43AQ/Ng3gjvmBMcj6FbyDaN2V9Rkm0Y3Dl\nOBzMlRzEF/q5efAXIzwsD8wTlvzj3RHhg7nP1/TdruFR+ToZYH1u/HO47v4QLhDWKMqqJbGgJoel\n/33geZtSg2cdSG/4wBjckPv+PWMpuRHAOdMwk3ekFwU4J1fykfweT16AHbnvj4ywaKbpSzCR3/tK\n4Ev5/kfmjq4LMJvruiB4GLuNVCNor/TYb9mHFlpooQKrglI42oWPbwjMHOvyQI4Ov74Hxyx1WQ+O\n5+1rrAf35Z10Y96JlwJMmN2AqLRKJ6iS7G4ia0OBd4x6ySbDO2dYlmD1iBzPlcyNJZ00pJPkjlx+\nb5YiXTzrdY31nfwcj1WPUHsnsw9YCmBc3kLR6dr+W3/p8I716czbvmYrd/fTmX4rXd5yXir/r7vS\nYH7kSI/v7aUH335+5Kn3J3xvJ9Ixb86On7bLJrrR36MTU3o269igPBva7w7QyZ2+ax10cuXHicsp\n5B7Ic/5A35Ow/HuAWzMZduXxwG2dVOvhCHfnid+bn/8yIjzswLrcgcMBFjJ+KKSQgOCsxniEeXm/\nMVuHocOHNqUfNs8lauye/jw3dVPZ/qnIE3JHv0BcNjf/4MbI1+fcgf/aTZ073oWPZirgSUuBD+fR\n+UyAGzOJeGsv8OVcflvuw81jsN3SDOLr/khIfQXoBujmRTffG41mWBUyhZlON141NsVdi3PL5Oc0\nkaN5CR0nLvNFkzhpZ+TeONUYf6qV0NThZfKYQLMGQG0djIwfz4N7cQjs6vWXn6uTuKueXiXWan6q\n3o6lQVVf3qPsj8ZBnF6+P9VwlMhUbmVmDM7O83tfr1eJCmV9U2OcujHsFOXlGKqpuMoWJoHF3KdF\nImP5ibV5q4hMcyhLiibZzoapJDW4YGmBu5cWlt/V2CaTKanp+ji+8aitSpeKvf8J79Gnynqp272O\nB6TxtbrmgKlcy5ouXICNbepFj3pjsq7UO86J60KD86gcTNeFrrO6wECB6glvrOkEgem8bu/r91vt\nQwsttLByWBWUQgghjoVAiHF5B19HvaXcNNXdH06Moqy7qwZtKbUS3RFxe86kxurcM0/VslKtG02Y\nZaSohihbL++3ARcM2fNHqObEVItGpTA06jJUT4tH41mgVR8/hY+h1qth5VSbM2gMmyI46xgqGGUz\nh2oZOjw9n4P/EiIhetv2fnXJgKaoOpJZexrWT9dCU5Kgphyh1oaNVVd+vxLPv2Awj4/nAj7/c1TH\nuVwX49JfTQuo8T70nrqEQ/oeOk8BD9Bz15lk5rwmhHhZjrxkUEqvm/wV4EQZwMm80SDtg6qhIBn3\nHJTf+/K74TqJulB0A5mScrvHFoQGbtWPTTdIZX/UT8I+7k4X1uWb91HP469UbThIBlPWXyc/0P7a\nx722E4jnp7u23eNRreqMz3Q+FAbNXx00vUdZXrKYtkGOhRPlK33q1cylN64aqMGJH3ed+rlOg1Oq\nfbXPujlbfV+RXJIhhI0hhA+GEG4OIdwUQvjaEMJZIYR/CiHcmq+bhtfUQgstrBY41azT7wL+Lcb4\njhDCBIky+mlgf4zxTSGE1wGbYoyvHVJP7AQIcbgTzbDTqm6nrytfCVgdGjHaoNzlldQeK+5XUlRx\ndfJSlqGOHCyNl5SULPt7OW5ea/2z30/XGK6UMmuqy3I+vpvq6XgybZ8stbgSOAe3zzAo14LOjeK6\nRqC61ssQgSuh5JrAWNKjDzb7EELYQDJ4uyRKJSGEW4AnxxjvDyGcA3wkxnh5Uz2QUtGfQyLDNOa/\nwbBFqiSePluyHE311P1Wd59dz8W9Ocv2dAMpecCI89T6QSsPr5oVNQSqIyN14alkWsk/lYMMM3aq\nKy/Htm4MY83vwxaxfggdJoiZWdpCNWLRIIOzJtC2695D2RIYvvHUtR1wo6f98nvdulWNg7J/6lGr\n7J8eAGosVdY7ChTsz4POPlxM8l/6/RDC9SGEd4QQ1gLbYowarWtb3cNtKvoWWlidcCqUwmNIbvXX\nxhivCyG8lbTJ/0iMcaPcdyDGOFCuYKnoSyHaMNKwThjYZG8wjBQd2L981VPZysq4B5p1upQya4iy\n8/GgGNtw+3oL8rFLnj+KCyXnqCdLlQqwsvPwQDWlTnslY9iUBAeqJ/6pkLgmIb+vaGPQnDW1XSb5\nsedPJyupuUCtTOejZB/q4mTYnGk4Pk2oc7rGVtbhg04p3AvcG2O0REcfJAWx2Z3ZBvK1ZL1aaKGF\nVQwnbeYcY9wVQrgnhHB5jPEWUsCeL+a/l5B8aV7CCKno1wJXdeHunvPqpXWYWgoi5XbVVGPlKWHP\n1alvyroGgfVnO9VIvNbeuNSzDio2F9aG5QxcQ4odYGAJPmblGdVda8Qf5TmNJLOTZg4fiwPBPfgO\nUm83UDcmahGoKi21hNSckU2qx7ox1VyaNj5buoEDWb934UHYLXYKdfIhwzVScRm520DfTykh/X0Q\nNaHrRn9fxPliM00fo0pB2XMTUq7yBaMqe7h8YYmqrEE9RoeByju0Hwv1tzfXc4rah2tIAYonSI5z\nL8v9eD8pBsRdwAtijKW3c1lPDCF5RqohzEoky18J9qHOyKU0XbYJVTsEsz1Yi5Oc2/EN8GLc69D4\nrAdwKfVxwVUopUJF/Vitb1fgXpknyz5Aldwt2ZWSVD+Z1RRIiWYgBX8ZlX1oalsNqpq0AWX7TW3U\n9RWqrKCB2hiU7dXZIajGQY3B1JR8WBi7Ufpra2r/V8J1OsZ4A1DXyFNPpd4WWmjhqwerwqJxPIS4\nkWTaq05ATTt4ueOXVmJ1J+Iguwc48VSqw+16Ph5FuCTVVCWpakK7VyM/qwlr2Z/D8ntJ/tWppzRE\nnVI0xrrMSj+axlZZND3F1KlsqXhOnx8lHJtB9TTv0M8tbsBZKFXJNVExTeXD1IzDLASbQNswlaSx\nD/r+Wm/JgihFU7ZbrkMNdVfWO6hvdarYUVWSq8J1eon0kTXpvEuokyzrb3Ufel3EoiaSuqltG6yd\nUpfygOr7cBAn29THwbQMVwOfz/g2XBprqdN34pmAduObyQGqmoi6xDDW98vwUOVaXr63/mbvpF6Z\n9n6z1EvO1TdgVH26akv69JcjHt3f0KemeuvYh0D9GqmLyFXeMwzsnkl8Luu0D8pWqmensg82bpri\nXtkHZStGYSWa+m9BYvY2/F5C6yXZQgstVGDVsA+bA+yLw+MqlhZ2VqYkrmothp3+w4RadZoPtWgs\nyUGVOJf2DYs4Ob+FakThZUebfD2ECygXqeYbNMqji+ugbdw0/uB4gH70Z4YZiSmbpH23Pvekz3pq\n9aSsTvqu41mnJRoHOvmHtUtVB6O6PtaNdykYLdsuhbIrEeA1CTkty3MT+zCsvrrxbrJebaq3jk3Q\nb6BLCrQCMB/PIC9JM16CkzfQGCYPOJW3tMVU556tZKLii8X9UCWvN+Af9yZ8YRmbsJ+qH4Tmx1QS\nXsvJv1nfHkvKaWhwsmMwyHjpVIxqFCzpyyel7GTnr5QrrfT5UUDdtg1KzcKoa7JJ9nW6xtZU3/e0\nId5baKGFk4FVQSl0Q4gzVCXkK4FSGt2kj68zhBm2s+vub2Xn4k4wKlxSaTGcKJQrSdwxwVWgZPXO\nC66SatUAKLsC1SjQfZy9aBrbQSyV4UqWlmT5IPZsmAagrnwj7hRX5/k5SswGqFI3Tf07VTDjJWN3\ntL+D2JM69qH8rQStr+n+/6+0D33cM+5kYBTtQ5MKqk6626SyMqm/2udrHEHFVRugpL190NP4O2/C\nDWGMfz9KVash+QAr0YisPVPjIX2/Gk9Wqu8xDMoPvSkYyErqGfabqfd2N9wzjKcu4cF2shvDs5kZ\nlOxDE16uyU4DXh5qdRuxQl15xLUP+2p+r4OWfWihhRYqsCoohS5J8HaQ4bthE9SRYnUCpxLUtrwO\n1xPRTv9zcPZBIwpPFbiarlq9qmWwWAdr8dNfWZG6k3Kt1DuB20KYMPOo1HF3Bzb0vbwpDXwJ5ViV\n4ej0npWS57rglEo7mH/YslQlx1dCbWjfyncox/NUoceJvg+q1VChcpPfja5ZHRddhyv5HnR+dN0f\nWaG0taUUWmihhQqsCkqhh++2J7ub15nXDlIRwWBz1zrBjvHvanWn4bVUdahRl9W6zmQKB6SNHlXv\nSEjyBrOO1GjOR6kKMPfLPVCVWzyqDx+reb9hUN6nFMZKZAp1UBf9qQdcmX/4AoNtR0ZR0+kJ+2Cp\nJDucGBNA11uTbKuuH6WH58mqJOvmJAIzuZKBXokCq0r7cJSTZx9UQ1C3gOq0D+oi3LTI67QP5+NC\nm3JTqet3nY9GSTKWNg1qPjxB1VVZg3uoIQ+kMbS6ejhbckT6OuxjqyNxrf/lODUJA4dJ1JvMdrfg\n4e6Vfaj7wLR8mOZjVBP6lUCZjLZPs4BzWHt1AXxWYrw0CGQsWjuFFlpoYeWwKtiHPm7dN4oQbJBu\nvfRjV4u/Unc9RtWZp8mP3dqzuu6larpstgCaAGQWT3FuJ5/mOpjB1ZAbcN28mc7uxjNQHwQelvFb\ncBXTHjx8207pr/X9GuBTNe9R4vZ/k52GxlAoIxGXrBZDyss+GljAkX1F2yW7ovOvjkRQpZrq7D5O\nlfVRCNQ7RDVZLg5iYzUMob5Tp8BVcAmjv0dp9ToMVgX7YK7Tymc3LdJA/UKxsi7NPFlJamtAkgV8\nAsoNofR9uIj6BCCau1Lt723j0Q9lHJ+sjuC2kVifIGkYzGOyh28Ah6XcNtWdpBTlAHEM5hb9Xh1b\nCvkdmNQAACAASURBVLxkE+pYAV28dRGBdMF3i3LdiO09tO1OrnBHP2265T1qPm72GxoVaq7oi3p5\nWhtlX+tgJV+D2VYouzOMfahj0wLVXJJ1hle6+elcDXOHh8r30rIPLbTQwsphVVAKK3GIKlNwwYks\nQ1MU3fJ007x9StqXp4r1Tc2HJRXX8uk+R1V7YCSxaRbGqWbKtvYswAy4xuEw1ZwNl2T8dinfTzX6\ns72T9f05wPvkPQaxXU2U2SDcnl+JILEJjG3aT/WU1zB0UGUNNN+ozl/TGjnd7ENpG1Oe8k1WjIPG\nsGR9hqWbGwVWGs15VWwKYyFEm+Bh7EOH5lh79ntdeemJZmUaCKNO81GyLgA7qHeXLd2lbcNR9sH6\npvIOiuesLn2nTfK7yR+O4KbXtlHcTtXs2japQ9SzDyuFOnajDkpDmjqSue7jvAgf22NSj+bjtDpm\n8I3gOPUkdtNaGMWXYBiU2odIM+s6zBeiLtgs1LNpWjaqQVqGln1ooYUWVg6rQvvQw4U1TRJyPWlU\nSwBV9mGR4WSbnSjjVNmHYVGJrd67qAq+7BQ/SjUegrEV5vik7INSEtq2UQ+zOBWgLMpdpDDZkLQP\npqGwtOhKfXwj8CH5/3TShKMYEJ2M9uFuqpSglWsqepv/NbjQVcOoq9S+ji2t07ysFJq0D02RtocZ\n0TWFlRsU3Vy1HYOg9NYd9f6vKnRJi14l5CXYy6vLcR2JWOYjGER+BVySXbpAU4Nb3x6Ck4wBX7hq\nZLQdJ/On5F4Dba8r76Tx/83wSHMqbpV7zgW+TsoB7gSmckO3jMOGvAspa6YwCjsw6KNpek41Mco+\nqJRd+eXFXNEjgLvzzapp0Pm3ujbim0WpMRkmPxl03ygQcc2PHWh1viFwYj6Iuv7UGWSFhnJdv8O0\nKMNUw3VwSuxDCOFHQwhfCCF8PoTwnhDCVAjh4hDCdSGE20II78vZqFtooYUzBE4ll+R5JNP6h8UY\n50II7wf+Dngm8GcxxveGEH4H+I8Y49uG1BVHtfOuExgO83EYpa5R2q/LiqQk7iJVs+KSkpmkaiyl\n3o6aS9Dq0nBshquB1ByeccpyRmpo+eeTUrsbrGSmRx3DlUKTBsDYINU+9HAqq27cVONQGv0Mivh9\nOqA8xWG0GArDNDij4vr8MJC4HF8RQeMYMB1CGCOt1fuBp5DySgK8i6QZa6GFFs4QOJVckjtDCL9G\nkg3NkWRanwEOxhht074XTyhcgRDCy4GXQ9r51pBOxCbdq+7KpcXXIH/1QbxlEz7I5BeSoE+dYKx8\nRu7dxIm8pqZdKwWfKiCEqrNW6Ti1HK0ZF7pdka+345TE+3BVZanuLaHJ+nNUCq6uvrIuxZU66hDY\nn3/Zijt8HaOaX8KeV1NrtZBsSgxj/TndglazrbB5VtmJUpVqe9C09mgoHyTrGfWd5offUoGT3hRC\nCJuAZ5NSIR4EPoCnBBwKMca3A2/PdcVjDH7BOjvxJoOQYeTVKAM5SPugfgZqb3AI90s4yImksgp9\nyo2sDMiiJr4RJwE1gewSvgHckq8T+Ad0NfBZqWOU8R21fBgMe07t8ANx+T32UJ0/DUkH6X1tI5zB\nNTs6tiU+Sn9OBsrwZuU6VJ+RlfRj1L6Oet8gu546OBX24WnAnTHGB2KMi8CfAdcCGzM7AYnl3dlU\nQQsttLD64FRUkncDTwghrCEdYE8FPg38C/CdwHsZMRX9GLCpCwd6zbpUdXiqUx3Wkauj6KNL1sDu\nG7SzX9iFfXnbnZd7pnCT5vVUU4FZG0odGIUxKe3p6aKUhgkz1+AswYEAT88V7s83LwK7s1HDwnyH\nTfPpzQ71BzvPNLFddQKuEurGXtkf1berM9OyYHAcQq7l8k5kbyYLVFhrAtwpYCYXnhWdUjqOj32d\nibVSXjoPcHJURAC258mytaDh2JQSVDWqtqdzMOx0HmaBWao1tY1O/qE34oueair6nwNeSJrf64H/\nQpIhvJdESV8PvDjGOJCt6XRCnJgK9ObiUAOLDiy/fTd3PQbHy4+picVgAF7yajao4yHVPD4d6R9L\ndxyPIieQfvQDTGf8eH5+Iro+fjp6ue2qAOvyM7MdWJPxIwFm8qqY7cJ4xhc6MJ0X5LHMM2xYCsTc\n8DXz6/hYN1lLLM3HgYYwVr78zjImgzbIQRtIv4anCzI+ho+NwVn9pGc4vHEBDtrYRh/P3KGxmOYb\nYGMfDufBn+47izEmYzsmNg8GTcFLRtV+AXRDYCKrRnrH05MLsZmNrV0jVhdVjUpT/shRDrmyvNuB\nqdz6bL/3FUlF/0bgjUXxHcDjTqXeFlpo4asHq8Ihak3oxMvGJtm5dLySnt12/kWqjkK2ex6Xe9WD\nUc2HTc+tyVU6eQ+fIbKYz8Rj9BnL+Br6hLxfHmKJqVzLTD6iHzq2hTvmkl9iZJwLstjsEGu4NxOx\n04xxaT6bj+fe30aP9bntc4kcy/g9xGX2wHz0l6ia8BrL0MdjOWiaeIPjOladwPZM3dzX61X0+DbO\nqpFQElY9DrUNExCqdZ2dbJpOT088FbTZPEUC8/lMm6TLdG78ogA7e73l50pWUc3Yp6X/x/ATzlgK\nqAoiNe+mUWYay6Lu/cblPeaB8fzLmk7g7JwA896lheX+2jwelzY0cndf+mQCYY3QfVjK1xTvZ2Nh\nbSxRNZvXb8AsPScIrMnJJO/q9c+cZDBzRD6/dLxiL6/qNiWjNBiKTdw8J0YEgrSQFmvL0xLrAQtC\noM1nfAI4mJ9IXolpm7kqV/axpT108r1LzHNlfv56Zpddnx9giVdl/P15ymeA3bntFwN/l/E1uIrT\n1DfX4RvE7cClGf8izl/vpKpytL7bG23uR/5DZM62gNSISqX7iqvLshoQqc8HVAPFltqVOo9B60OP\nKCrZHpvzzTcW904Vz2nf11Hvlh7x8bD+Hpf+zOIbywI+nnP4B2kHy1ppI6lRU+829SOf61djGalp\n+py0MYd/yAekT+YNOoarNQP+QYfiPY5LOfkZzQxma0E3lnkiW0YVJmRovSRbaKGFCqwK9mE8hLgl\nwO64MmFPk1S8SaJe6q4VV0GkmrCqGXM3H6XPmOjyV0fSCbwJmMvb8swC7M74sxfhbnOfzGTAHVPw\ngnzMHV4Le7PH1J1j8KR83N6Tn59d8LRkG0ip6iCdkiq11VgNUBW0Btx8+AGqrAIFPop5bXn6N9W1\nUgg4abwZ1/+rbYW2N1aDqwGYmhjXCe3UixLqBX51AkMN2tMFzso/7I5+r4JSvQZqk2KUmbah76Es\nnbJNKpSso6a1fFzqPn4mBVkJIZxyJ5ok5KNKzhWUJFb4mny9oeOx9A/H5KIMSRe7I8/czggfz/dc\nm3//iS68Nc/cF6PX9zMBfj7jf5+feS5e71+RgrBCCsRqLMohqv4R1neD9TiJqouxTs04SMsw6J7T\nZSloG69ueE1BTvVjU7Wv4es5kX1QXxLNydFkFVmnDdDD4ixONF4aNIb2fnOcyOpuwudJ2aMNOFuh\nFqDGUqn8SL1uVYYTqETnaoOstNBCCyuHVUEpdEOIpqs/2WzBqlevGG7UlCO/1xk6deS5Ogn4tSHQ\nzeN2Ky4YejzwyYw/A7At2U78XwS+O+NX4Lv5B4BHZtyEiwdJJqKQKAOjBO4Gbsh4F5dkq0ZGqQWN\nGWkkZd1YDII6oxiGlJ0sbObEd9I+RKq+H9Z2D6cE1km5hte30/oo1cjdyh4g5dauGj3ZuujgQkWb\nmzKEuhovWZ8nEJuUfN2MUwcqPFyDCzlnpT4NKFQXvrBPlW0S1qSlFFpooYWVw6qgFE6HTEH5NN0x\nNT5BadKs/KJCaUlmO6ed4rtwx6dD+Cn/BeCX5Z6fzfiH8/XJpMhIAA/H7RC2Anfmzl2aR+JWPKvx\n75NiIwC8Grgs478tfborXyfknTbgwkqoP/1Wi0xB+Xqdp5JKU7uBC0m++pCoAKOEvp9Efdk9ADeR\nqDeAv8VP+V14OL0DnKiSHJN6lfJcj9uL1PVXhZLgKuUvkyJmgVMBPwz8ScYfijuxPR/4w4xvA27L\nuD1/L257cZT6pC8dPETgvjNJ0Gjah33RybqmXpUsAfl/i2G4RJWkMqHcLNUBhES+GR7wyd+GswTH\ngck860u54ddPddk6m5bmXuDh+fcLI5yXZ2bNFHQsXtcduY1vxIMpPhfib+XyH8Y9RHbktv4VQnY6\nn9sFi7ntzywmuwVIvuq2ML+Ur4epjp2RqPupH9ths6/CNdXg1D1/KtoHa2Mr1TydpdGTalQuxj+A\ntfgGeRm++ark3z7+j8lzu/H1dBD/qI2c1zieeuB0gPPzP3uiP2PtTeECwe3AE6QOiwJt6/FxAW7L\ndWwOcFPGzwX+VPrxxYzbxmVh/SGtV2tvjqoR1pjf07IPLbTQwsphVVAKxj6MQoo2kb5qzaWqJwuE\nsZdq7gA4kTRUQU6ZTAQ8n+PNY/DIfOzeCPz3XP5zwBfzAx8EXpWP1Xfksv88BTflih++ANfnLfya\nKbgt1/fQLIX6YAe+Pdf7lggvzp17PskdFeA38XBsRlqukffYgIdpqzvlR4VRWIxTBQ03p+S4shWQ\nKAI7ub8ZZ82eSVIJA/wx8AMZ/758/V3gv2X8p0hkOqT5uyDjX6YatwJOzOdo62EtLhBVVaC+h1E0\nR4BnZfxvcVbw3/P1D0gsD7mPr8v464HXZPxKknch+FrfR1UlrepXFYga+7D3TGIfuiHEtSQSSHn8\nugWo5JAGJlG7d9NRq2xgHU5qG/SpklzanpuJnhjp6Sk4T3onvjj+Abc3+AGcpbkqX29jmTtgXuo4\nILiZO28g+aFDIj+vy/hawAJeTuJsgy3cB6iGhtcU9XWJQ+pmvwwAo9qHYUlNThXOwnlt1fzYO6kb\n+Xk4f70XeHTGz8bZRmMj1uLsw+24BmcRtxFYkLbV10I1HHpI2Ec/V1zJbdm6WIvPw7XA5zNuXoOb\ncbnUDTgLshM/wK7HDzD151C7DrWnUDsL6X/LPrTQQgsrh1VBKZys9kHNee2knaWaNs3KVf+rLMOw\nBDDajp0+R/FT4hgu1f4o8BPS9osybqf8t+F6843Av2b8CST7A3Bp+W+RnKYghch+UsZ/BviGjP86\nTvremK8aT/9snK2Ak7NNUFPbYXkQTwWatEQmKLUTcSN+Il9LsvCEZB1q/Xgj8IaMG/vwIeBHM/4i\n0lxAinZtp/THcOs/y3zd4URpPiRqZbYo61Fde2sE1zB9D6EKPwj874y/AGcrnk1idQAehdvA2Drc\nQ5V9qLO36OJjePBMYh80l2RT7r/le+X/Cfl9R8Z7+ATci5OXd+KTZ9LtCXyxRerlCEoyGgn47V2Y\nzDffg3/8G4Cn5c7dE+DKPLTmpDY5DsdzZVOL0Mu0eGccjuXy6bxjHe1DN9PO+/u+wG6OaTFAWuhG\n+trHbzIEeyeDw9SzD3VQ+obUGYCdqhFTKRtSte/ejCurYAv7Clwz9Ep8M70WZ70eg2dvMpnSfQG2\n5QY/gUvub5A2bsTXhpHox/FNoXQNPy//sz/6vcbmdPC1dwh4YsaPAl+fcZvH7xX8HJy12UCSQUBi\nC2/KuLFw+6hqRgwiVTmIrduvVIj3Flpo4f8zWBWUwkqSwTSBCgPVkKkpx+SK+pevZky0r8Oy//9e\nkuQbEjvwnzL+QRL5B/DX+foqXEL+KuBXM/7zuIDytfn6/bgU+vdJce4gmUqbg9Vf4+yGUQplmHkz\ni4DTrzE4naAJbpR9MMm52pbYKb4Vpw4eiZP8r8LJcZPqvwX4joz/ET5ud+Isw/04OV6Xu1JNhtUE\nuc6LUlkJdcbShEFGuT0BZ/++Hvg/GX84zh6psZR6TtZ5+ZYm+5Kg6MxhH8z34RjN9u4MKFdyVy3e\nVA2nEYJKbUZdG4NyCFyFk2e7can2c4G/ybguCvuIP4GTs4dJ0W0hyRyMPDbS8THAxzN+Nr6oHgX8\ns/TdrCKNbN1FNWOVvccsJ5+Kvnz/k6lj1DbOwj9I/Zjsw92Pv8cYvuCP4uM9hnug2qaxIHgXZy90\nvc3gH55qHNStWUlrY1Ntc1BNwCT1sgj117DDqwtclPGD+Drdj2+WBziRdWta0/q/ao/6LfvQQgst\nnAysCkrhdPg+VOqrKTuVBqw+jb+n2aFNP34b6SSH5AdxccbNlmAMJ4O34afVxbiPgp0eu/HT8SAu\nnPoszq78BX5amcBNtQ9bcT09nJ7T/cEyXtKQb9rGZimHJLwzYeo6XNAKVZ+PI3I/pDG0sSl9HDQ+\ngWqY4MS09roWNGwaVH1tNE5DiZegVMUM9UF0KiHxpb1hLHGgYovTUgottNDCymFo4NYQwjtJVpp7\nYoyPyGVnkVIV7iBZh74gxngghBCAt5IOs2PAS2OMn62rV6FLEqQcYrDKaxB0avCmuAErUcnpvbab\nP60L+/OxNIM74lyIx1Do4eoi26n1FLgST7K5Tdox6mASPyWNQoFko2AnxiOkPjsl91FVWZmgzuwj\nyncaBeoor5OlGOrGVp3RdmTHOEjzaIJiEww+BKemjuBjq5GJHo3LBq7O1xvwMVBeXxO4rJXflOJS\nQaLhi8DF+Z9dub+aV1TDoI1RTWZUjt0GfP7USW+OqmyjPMGbclRq3XBinIdhMJR9CCE8KffzD2VT\n+FVgf4zxTSGE1wGbYoyvDSE8E/gR0qbweOCtMcbHD+1E1j7oy5yKNmIl5NVKwIQ+iyFlJ4KkfXhK\nLv848NiMfxK3UTcBly7cjbgU/Rw8BqNtBHtxoeQR/KP4MlVbffO4Uxdi+5BmaLZbWG2gmZ7UBdh8\nFGx8vhb4t4xvlfIp3KhJbR0uydc7cLPz/VT9YOp8BtSEXtkHNV4y9kED8tRpvnoFbmDzMYavT00M\nNIYm4R3soToI5F1PD/sQY/xXfF0bPJuUZh6q6eafTdo8Yozxk6S8kufQQgstnDFwsnkftsUY7XDa\nhavwz6N6OFkq+vspoExFv4ETnXZ0d1Wf/jJYSpPPvzqDqJNPHYyy6y6b10a3fJvGbQSeA/xjxs/C\nB9fMWjWgR5d6SsCoh834SbQB3+2vwU/Hy/F+GPVwH35aHcTZh8PUh+46FSvEQXU1sWBNYGN7CT4G\n4Ce+2X/8NYkEJd9nXqK342xcwAPRmOXidlwouR5XI07i62xS+qGRofX0t3eZw4WYVq+qCKeoeuOO\nyT1NqnTyMyqsVFuHTs1zo1ipLg74rQ5OORlMjDGejPagTEVv/F6dDraLL2iN1KsJS9T4RclBxUsS\nro4kGwT2/L/jpOgiSYgC8L9w+/r3k1xfAX4lXx8N3Jzx7yJFaYZkx/CxjNuC/2dcs3AEd7f9EPD0\njP81ruEw+4YpnNxt0j40sWaj2IWshM1byaKwebqT6gf5xozbZvtm3F36J3F36EfgRj8/QDJQAvdE\n/CSuwfkwviHvoxpRqwzEoyS8fowT+OasLIdpL45RdeG3eDtqIGUbkK5plSnM4HIQTXaj9Y6yuatr\n9yhwstqH3cYW5KuZbu/EDy1oU9G30MIZByPZKYQQdgB/I4LG/wHsE0HjWTHGnwwhfCsp5JwJGv9n\njHFostmpEOJFpDiDSg4p6WQ77QS+8+2Xe5UK8JyR1d2xlNTqKaepypvAdtA3TAduy5mGvyHCdO7o\npgU4no+8TUuwkPG7cycWgycOeVRIzk2Qdn4LoGFtfA63ctwOPC3jmjfgwzhfZjYPD8j7dfCTbw+D\nU9FDM8lfp32og9K81kBTvw+zIH1pF27JHX0U8Mg8sc/IZfEsOCsfnwsXw6HMux3ZAHfl8skxuDeP\n+e7c4P3RT/ZbqeYbNZbuID6Odlpr39WisQNcleu+K/rvam2peR3U/sHu0ZBvBmUymHkp17rteU/D\nN9zLd1SLxlG0D+8hxRzdQhqzN5LsZt5PYoXvIqkk92eV5G+RUiIeA14WY/x0Xb1FG9Gi2thAai5J\nlc4q6WEk/CF80I9QJa/qJMt1LMooYHVNjMGL8oN/EuH/5vKnAr+ZF8ovxswbkdxhIUUKMpbhe4Hf\ny/hTSGwBVHNGmiziAO778Ie48dJ7YDmPpbEP0/iHt56koYATTb7r2KZTZR+a8FHAxjYEuCI/eAvu\nK/JD+fqX4/D2PPb/LcIrc4d+Fvie/NyvRme3zJX95/BIVu+lam5+RcY/h3+QqlnQw8TWkGqS7Jl5\nfCM/iptgz+Pk8924VsrUpjM4+7ARZxm24TIR1UqIK/QJ8rU6kAPz9CSYjTG+qOGnp5YFMe0wP1Rz\nbwsttHCGwKowc54IIW4l7a6zUq6mr0YGb8N3YDPt1UzU4/iOWpLAdeyDwSjsg93/hhDYnsftS7jq\n5Wm4d942XLBlffsATsXcI+3twk8mTROm1JEZNV2Ev3cPj+xsp9UdVMfNxuog1WQwdSfMMI3BSgSU\npZZo1LH9Ttw56A4SdQXucXonTiGei/f/Jvy0PYSzlhbIZhb3ouziFNQaqW8cF8wa2a6eiKVDlFFy\nduKr9mwdPqebcAO0Ps6aLMlVza4n5V6by1n8xFcvSWtj0PqV+TlzvCTNeEkDpir7MI5P/mOBz2Tc\nDH32UPWWq9M46ITW8X2jaCKW+ckAz8zDNkMKCgrJXdoW8e+ShCvguSC+Ho8IdC2em+DKmne6D1cn\nLuHk8IdJrAfAO3GLPZO8z+Bk7VnUsw/le8OJOQuGqRyHwUpZCVW3mZqxi2tlTPvwXOAzuUNPimnM\nIbFUFkD3FbgLuhnQ/CKej/MvqFp6mu/Kp6mOv/VBtQ82FnXswyK+wRzBWdp5aeMzuMGZbVLbqRqf\nmbxjI765zeAbgB1Cqn5Wf4kSVipTaH0fWmihhQqsCkphTQjx0pAkxEZaraGastt23Sfi5LNREmot\ndRA/EZVSUAMOFTSqQc8wvws7Ja6/ZIbOPamnF0aIWTXSvx8mckdn55z0uyu/yFSAv8mVr8VPuSk8\nyIadknfjwqkuno+yJ/d8GjecsWAqO6ma5W7Ind4T6/XUdVqGUcZiFKijMIaN7W9MBdZkzc4FwDV5\nAi383dp1EDN/ODYOixnvTsGxPMljHbg54yaUey9Owv8lfhofx7UPu3H21dg4zddYGtFdnf+5L7/U\nnLShFNZWfM6OSrkJEbtUA6jYWlVz7ciJ7O8R6rUPAwTFLaXQQgstrBxWBaVgKkkVBirfq+bKystp\nAhhVSTY5uJyq09VyIpBJ+OXcuTf2XU/9ROBduZEfBl6Ty1+Rn/tmPBDnFXjOwLNw6y872Y7I+x2j\nanVnastbcWGXmVp3qGY4tpMGTo+z2YMVT8Eoum4XnpgXwXV4ODJTab0zwJtyJ17f97H9X8EjH/9S\nTEFdAV6Yr6/FVY+fwgXXs1RDsKlzE5w4VhrEtwz0u0i9Q1SU9o5RtaaENP8mO5jCZQczOOWs6177\nOMp8nJGCxrEQooXuPi7lXcGNFFeBoU7K/2vvzIM0u6rD/jvf0vvsMxqNNBIjWZuFJIMCjoTAOJEN\nErFEnDgEhxiEiWWXKYMTqmJNyXZMElKmoGLM6tjGOIllgRGLtYRFJkixKxFBxCC0S2iEpNFIs289\nPb18380f95w+571+X/fXM9MzrfI7Va+++9333t3fvWc/C7ltjyhxFcwnmy/nfUiEc3XcngS+p/m/\nBfyBprfgQT9sw7oDZ0Q9SfXkxo3Q8qJyy2qcqTRKcdFARoEj4ytyryP5UGU/0o8adJXevsGJIDWu\nw3UvHsE3w1/V3wO4zcEk/jF9DzdFvxffXE2HZD/u7Ab8w4vtjo5MrD3lgLex39Y2IzmOhLJaIR2d\nqMQ1XUVWdXvcjxKcOAe9no9Qkw811FDDccGywBRMJNlL6y46qVjF3BDgZdv1Kh8KxxPIZI5eg8DF\ngWFoRjnvIou7IEcLNj0FE0O2yVp6aBvHQ37EdKwfEf00ZthhXCS1CxetGfkxGMposrBzlaUiBxYL\ns6eTwOnamBW41ufv6O/n8T6dRtbqhCxKNA3SK3CDKIu3cA+OrkddGJjfbVpck1EkGcXnEZOIWGxU\nV64KQ2h1tErpqI4e6y5Dv+LixWIKx20leSJgANjcgt0zRbfZs3QmMKw9OyM5amiwG0fLYzjwQ6GM\nSXywq7wa99JRqCIffu/SIS75fiZ07l0N23WX+uMmrNEXrl4JmzT/Rs17VhzdX52KlmKmeBOdfwyG\n+0Ph1xbQCE5K2JgcwfsswCYLKNNxFLZqMUW0NubHZ+PCrFqM/YxhfD9uzlbeL29qcumOPFPfHYbD\nSk9+TAdmoAWrlKnSfAzeqJ0aasAOnfjLj7jeinH9nwK2aIUP4wpucfNtUyTfrO0xfEAcgy369ezR\nl8YpbhoGA/j8RImYtSF6fBqmqMBmz1SRD3HTiPm9xrbfjb8mH2qooYYCLAtMYboBO0aEdCjR1e1M\nAPPR1k3ZwhDguQTj2urVAX9LumWOCwxrGdMCRh3NCJjXh7iLLmQQVcBYGrkRvz3W4ZKxrPv27ek9\nXCJ5b31mTZc37M/P3N9J/IRW9FVFY847DPu0H1Md2Kdb8mAXjmq+hZibEm/nJDClf45IEZsY0Hx7\nv5mgqeUONBrs1Qc6E4lIKZZPjYj6RuwAiuRYmTSLZF6ZHOuXsdsAWjq2t6yHzQcya/aJdJiHG7nG\nXWtzLe8bb/HNQ/lofs9kg09ckvP/2RMtvt7O+TsEvqRr5NV6iv8g+TweDmthJqyR6ZBf1acG0NSB\naYvwoioldA/rGKdwKgs0Qh1WyHQDhrshH5hMMBHm37CGGaojSZeZxJTyy2Nr63aqO9+MhHKWA09h\nrNFMl7VH+cHUYbratdV0OaJLcB9d2pq/iUTS9DPa/VGENZruIDyv6QGEFZpu4Jxq2wmHcVLjIMXY\nlLaAjoZ8W7gbGkNsn8mIXdE7jnBU62viYiibzCj+irYNUa89Ogw1SUyDohl5pyI/hXcGtbTRJmwZ\nyFYTT028SFd7vp5pDmrP9+oSbCGMaSldnJwZwscomqXbGEYHOFEEPIjzSaIfRCPzOgj7tb5Bqju4\nowAAHJlJREFUWqzQB9bKANtVIylLT/IzEzrnk6RCeHqrO5qUr8DRbiNHW7gUaBphfHaehHWanqbJ\nQR3dtrZ4NTMkHeWdTDGshMDY4DRrNRjoczN5DGfw+Z2iOH9Wdxf3LGXtHcbnL5K8kXyMZKGRknE+\nhOq1M0CDYV23u7qdWvpQQw01LB6WBfkwnrp8e3ocSHTCyb5Hz4EmzJ7Am2EWE7DddR+JLZp+gjR7\nkh4mzXLt9+GnijH72ria8ACOSUS5crS6XKXo14NdyymGh5sKp1h0HW67tuA7+zDVQT+M0RXVsrvM\ndeUOuf/TpecFmNanzuzAfUd3aX6XjvZqNfC8pu00OkiadWTzTOjTXvyUmyCg4Po7SHXAkphfliRB\nnjMra4oZXq4v/u+gsNshBmpxDCxy520mBB/nhOsh2BqZCm0fJwXSLM2e2IfD6B7RnmwAtulYNYGD\n2vMrJtOsDwyDcvzIiOZHUtAgMn5j26fCe9MV+dbKsuq+jfEUUQemy9pFujKvMYUaaqihAMuCpzDa\nkHRRW3hgKhXkvFHjz2jRJDCkTd6rD5zbhQN65M1MwkHdotclGA9Hd/TkBHlHjZpkVZprkblmv+sb\n8ELYfXuJgiilY1nl/Co5dC8ZdZWYNN6zLrcErh7Lvf3aoRn3EhwZX5oXtSZjUJOyqLLcpsiULPej\nKj8GRbGTbwRoaANWd2B718suQ5kJGvOj+XXU97B643tV+bFNs56gwv0pcT6RrIBhZbzs7vEJVYkF\nocikhbntiuLQ+E6/WqTldRj0Il46as4ikkQy59zQz6jrHVHGVxPCc+uoHkpuZ/AhYJXmH0ju9+Ar\nFPXdoRhApJeab5zQ6IV3kUojc6CX/4YTGbxmHb5xtrs+nispulE3iFKN2Pao0NOv9KFX/6o8EUPR\n34DBQiuzl/JZlTJYomh/EPPn845s0dDL8A9wV3HHuxbi+u4nf7FrJPS7ZjTWUEMNi4dlgSkMiaSz\nyUwtO8ESzmQ6gpMPW4DLNP2X+nsJHv9gC/BRTZ+F+yRYC9ypaUOVI3PKWYdzZe1ljb7oHWc+X/pV\nqH1EoyOKW0avyxpsi9FKK5zAqkOxL3VnvQnFeBhRbGYQYwy0S22qko1X+aToFXynFX4nSnmQtfss\nP5J3VRCxuOg5KoryIrMz+joYr8iP8T/jGEbvyU29k0iz75WZxPZ+WV/A8sv6BnGMJ0M6knQRi4n6\nJP04Hg5r5yVGPlBE+6L32jU4avt54COatqAoX9ALcgy7yzX9GwL/Q7v3YTwwiHlG/mVycBHIC2pf\nSFcF7oz66/1AGc2LC2WE4gdp9Zl6blSZrbLbmA/i5mWo7xBFleiyrHyGoil6lZ/HKCu3eRqg+OHF\nAD5V1qpVIefbZHfukIO29NvXMrli6bNwd2r24U7gwX//H25LspscaQuyXUrkN0HeYOJGYW37Edyx\nTT8Q9RfKcB7uNi9a/F6Bk8qt0A4zva4yi6+CEx5LsoYaavi7Bf3EffgT5oai/xDZ9H2K7FD4nSml\n/XpvK9lgsAO8J6X0tcqCA6xvSLq+LTw9ldileSP46fEqgWv0iFq7GVpP53RHH2g9D+kD+vAvCdMf\nUY3GT0FHvWwceT/MKN2xXx0dPNCAj5oaLK6n0KFoPFUmHzYK7DV15DhWIR2dnUTdBRvt9fiJEAN9\n2Mm2P7QhoqVlA5jyrh4Zgw3gN9fns/nB3UdnMaGnQ1sPhGcjZmN6CEO4UdE+HO2OWE70nt0N70Vp\nj5Vtjk4GyerGAGsFnlcU4uhEdh0X6yiDtX0g9LWLM9T+MT4vhplsB16v6UdhVq9lGzmSNWRLSmu/\nOa1Zjbv/2wWMakcmWtDWDpr0IfrFiFKbQdwhbNShMAzswqASvVN8vM9uwMO6CI6Iq8Ab1hGD2kTM\nMurICAXLzb4wBVJK817AT5Ax8gdD3huAlqY/CHxQ0xeT/V0Mksn8HwDNPupIjQZpY5Y4JoH0zyG1\n9bqnSfoFydeMkG7Sa3pjvv5ojNSVfP1am9S5IF+/vZHUzWYR6Z+0SIea+Xq1Xk9AGtHr7FB308nj\nRMi39sQ8ejwLpEG97F4LUkOvzeHZsZC/US+0Hc0F6qu6rKw1kBqtfK0M9zeE9IBeAmlIr1hGE9Iq\nvZphvOz+YGhbo9QGSzfDM6fr1YB0vl4rIb1fL6H/vpbrs/cuDe07T682pDfo1YB0mV4DkF6ll4Tx\nt7LWlMaqpdfP9ZhzqzfOn0C6UC9K49nUftt7V4b8z4X8i0L6J/WiNGe9xm1YL+D+hb7FlNLC5ENV\nKPqU0tdTSnaA3Ydvbm8GPptSmkwpbSNvuAuGjauhhhqWDxxTLMnSvTuAz6WU/kxEPg7cl1L6M733\naeArKaXbyu9FGBVJF5NRICMfWjjz8GPADZq+AA8WYt5w11N0UbZN06fhjjXOxCMYW2yGu8ihzwFu\nglnU/giOflUp3kQmaCQJomw+ShdMcnIQR3FbOGNvJ8Xw45DRTzNKItQRuf0RInMukjE/pv/24qTZ\nUTz2QDlyMhQZlMOhvsgINii7x6viuNu74Gj1JXiouw040ywy1GJdVcxHoci4tHQbd+lmTm1aoU9/\nn3ySQe6fzeVVZBICitGnzf3bsxTnyXwk2PuxvUMU41Xae68F/lrT54b7N2r6P5HHBjIJ+XZNb6Xo\npxMys9O8gAu9/UoGWHonKyJys7bllmN490Z8LPgOeZCNFrwBeKemP4nTuKfhDk9NyjAlMKaj8BQ5\nwCXAo+Iekm7B4wp+Rn9/FY88dD3wOU1HHf4INliHqF6kZU9P9nwMJ26b1zrcyUqURJj9wfbwflmP\nvgqqFsEw8F29Ez36tJi7GURty6jcE+NxRulD3LyiFmDcFKPWYAxQAzmgrvFPBnHHrB+muKnN17+E\nf5CxjkGy+3soBgmytt+DbyAH8A/2r0KbonWlhRCIH9sr8HUY14KN4QTFzTIGBbYxsE36X5FjXULm\nezyk6d8FflHTV+D+Jm3TiA5oo+v48lhFn539wDFvCiJyA5kBeXVydKPvUPQppT9EPWiJyMLoSg01\n1HBS4FhD0V9DFvG/PqW0Kzz3cuDPyXyEM8gb4/kppXl1LNaJpGuacKTjocBvxsmEC5se1n0EfMs7\nT39PB1GaIW0n44eQj13F1Tr7IOkWfVCPl8YkbNOj7Tbgi/radorKSWXyYQ3uJzIqHsVnEk42WN4q\n/DR7DY5BCC6nNpLiKfy0imrHvZSa4v1oX3ClHo/Pdjw0WVSgsWenKPoUjHVYP6LTj+kezxoMhLLb\nOMf8X+jvGcBEw8t9RI/or4/PjbXYC3p5vL4EL8Nc4P8t7u15O44RvIAzxKLLPsNANof0i/gpOtSE\nrq4dk0RFrKqB+88cJ4vqLH2N9U8b/+YUdBAa8KLO2ZoZeNzKFg8PYC7/7sdJ5Wcp+q+IH9xibR8W\nxBRiKHoReY5Mmm8lz/PdOfo896WUfiWl9JCI/AXZDd4M8O6FNoQaaqhhmUE/IoqlvoDUbJDWBZHP\nfwxioy9Dep3k6y5I/0jytbOZr7saWVQ5I6RbW6QZvX53mHSYfJ3TJH1Z8vUyvd4XRDpbgsinVRLp\nmKgniu+i+GcxIjS7ohhylKKIb3CR5faqZzUkkXwNhPuxf/30I4rWopiU0vO90q3wnokhByBdp9cF\n5Hm96xj7W75aoS82vzav1vde/Y4iRSiKlNvhurG0Duz9XmLkWK7Nsa2nG8nrYQzSvyOvh1FI7w3l\nXRjS9mxck/PNn5VHnyLJZaHmPCKSLiKjP+aqfDOugvxZXAV5BR715yv6+0qyQgpksuNeTZ8OvE/T\n78YDihh6NI4zbYyJA70jS9lvZAzOp+9efi8yoqLO/WR4L3KQq1CsXpzlyDCM9Zo7+EMUPQNHJmZV\ne8vmvZYukwqRhCn3PaKhhsIaY+w1eETpDfi8z1CU7CwGYvvLasVxPOezPqwyVzfG4B6cKdnBmZhV\n0oeypMbKiwzfdvh9h6a/ijObH8KjgX0P5jCbR3EJVXnOqvqRajXnGmqo4VhgWWAKZhA1iO+i15HD\nhkEWTf5XTY+SmXDgu+EkLvJ4FvgVTT8cyngOP63s9BjAd/PoWwGqT+PFinbmg3jqRuenVUy7xULE\naI6EvPlOknjil+uPzNMqW357VnqkYwg1Y1qO41jDBuBaTX+M4+u7tTeOrbX3WMa2PFaG/Zjqbhmq\nxnOh+tr4uj+dop5G9OXQr4Obcn2LNYhaFj4aVwGva8DzXee+N3Au7UVk5yqQOcAmYzf07QVczr03\nvPdVisottkBMwhE9/I5T1KNPIW1gE7cGR9t6obhVZESEkVD2IL4hGflQ9sXYq6wyqhcXxzTwo/pn\nRyqi5fFDL9cR60kUPQGV6+/1XvyA4iKziE0NHMXfKfB9bdCKjksOomSjH4goetn8OEpOIsm30DyN\n4e2PPip3iEeyijYzVl60JSnPZbmeM8Iz1+IKV7twiVH2D+ll228kN6MznLLOzGKgJh9qqKGGAiwb\n8qEpsDK57P564H9p+kbg45reCPxQ0zGisqnt7gKu1vQ9OKPmIeaGAB/E0bPIfIooI8yVhZe96PaL\nJkaIKG50PdcLHexVR1W+7fSjFDXzItlUrq+fOsrts/9V/Y75sa+mGhxjYk4Cb9H0fwllHOvKjPXF\nOYvamP3OWZl8sDJeDjwQ8mFusJx+SYm49jbgmMdGXKU5qoIbg/pwqb4q0g4cGz78UnKyMiaSLiV/\nrIYOHSbbIwB8Ave21MU3A9MhX4sPxAY85Pha3Ox1Da5WaoPaxid5F0VHsQZVptMrcRS3l+2DUI2O\nRsWi6LDEno2oZlVZvaQSEVVthGdNYWcfTqtGtdsq0+/If4h9aFbkl3kLsYyqBWv1rsE35+gApo1v\nZJGMq4I4LpHf0cRJE+tzVMEWiht75DtUeZaK6yKi1qacdCjcj5uRjW20g6mS7AhF1/DGdzmMK1Y9\ni5PWcYN9LpQx0yMd5qqWPtRQQw2Lh2WBKYhIMrm97aK3Av9N07+FG5+8BbhD03bS3AG8R9OfwtHS\nr+C6CR/AHXwY+fEmMjMS8mmxO6SrZMy9yIeqEzHhGEl0SGKjfRque7EOZ34aRz6GD+uUyopYRRXK\naPfjCRyNvKIFX2ROxf7FE9ieKQZn8T7NhHS0qKwKrx4tRq3cQVwdOXL0FyJLBqg+Ec/C14a5XduJ\nWzv+ED+Zj4Y2xTG3OS4bx0WVdZu/OFZxDOO4GVZxgCJmgt4zsnkIxzDeBLMBZy7DjYjMneBnQh1P\n46SZtcvaZmunX2/Oy2JTOKsh6dfbwt9Me1DWDUNwta68xgWwdps+/Esw88mcnFAzyb3fhQGd2cf2\nwws66o91/KP4IU5b2eL4cYGHtL67ccu6CeY3nd6EkyKRfIiipSEchY2LIKLPNvnRVNsW4CRFHkB0\nLhptIgyqlImawMX658U0N8IQ+OIv08DxGet3/Ljjs1VjJRQ5/5ZvikAx8lYD0DiyHO36B1K10dm7\nkMd4NDxr6bPCu9F7k43tzlD3EMUN18bIOP0RFY/taZM9JgE8mbx8m4e4IY8R41gW+w15U4h2C9aP\nv4eTf5sEztbCX6YL6vEO/I224RthfndT5BnZ2PVr+1CTDzXUUEMBlgWm0BBJAw24LsEd2pyHyHbZ\nAPeMwdd1y39bF27TnfJn9Pet0/BxPcKuwP0m/A7wC5r+I7LCCThH9ybc8coZOIMyosT2H6rR6w5F\nFDzqOphfPkNlV+AMytNDOzbiar52SkT0OqKf+ykyvnqpGENRHTvqQqzCT8IYCCV6Mq5i4FUpL5X9\nJkSFpSqyIuqFRJfrr9D0/wn9qOLax1NsLY4qR+ztx/GgMuap+RE8DMDjFJWozP/G08z1pxBJych0\nXMPcKOZTFAPOxPkzkvZFih6mIY9JjPJtp/zrcWb6T5MtPQH+u/7+HE4S34+TRDFYkVDwuVBjCjXU\nUMPiYVlgCptE0g0Cm5PLfi/DT/nv4af8SnwXtBP4IK4Fthv4i5COLttMOywGiLlA01/CT52401YZ\nRJ2G7+yR8RcZXy2c8WP3o3ecKFqNno4iP8BO+TZF4xnz5VAlsivT9XYKlg2iRkM+4XmDKlXuKnVs\nyy/XHTX6Yr5hJmvw+Yi8ihF6i3utjXYijuInfoy0PIRjVlFkF8fF9FNG8FN8Asc2bFziGEcMSvB1\nZM8eCPfHKMbWMHHiMK6RaxAZlFM4hjGCOzjdhrsPMTdu55DVwiGv3agSXdZD0XpeOoxGU156XfLF\ncTvuR+81ZFVYgB9JRYUOyJGirtL0m8h+8CDbSxjqtAtHXSN6dq+mf5Qi5zsy2uKHaveiXkCUMbdD\nfkQZoegPcBXOUIth2yMqGtWLbYM5FJ6J0YSqmHLRtiMqyERut43PBEXUuZeEo1xfLyWlaCUYP3rz\nM7gL3yAawBZNm89BqCYfmiG9meKmbx/hVfjasfqexRXcnsGlEoeBn9L0N/DDx/xHrsTJhLixrMDH\nMCpFxXiccS2YvkF0sxejcFV9xMP4ujgdH89/qr9/Dlyq6ftCO2KwosjwrYPB1FBDDccEy8Ig6vym\n8MnVbWTfFOfoMdBYDa9XPHngUjjXcK7TYOPDmn5Z/rluB3R1i/33k74zPoKjkffjjL8YfdkMdHbj\nqOgRqg2iLH02jmbGE72FD2gbR90NVV9B0VmrQTz9DJspi9Ls/jDFE7gMsb0zuNhsdyrqJqwqvlYI\nXjJANZkQT5CIRkuPZyImYKSSndDrcHItAS/qi2u6fuLHvjTDr2E0p+HY4tmhvPNxVNqwgzaO7s/g\n4z+Gr4cLcfJvY3jPxi2KgKeAy7Xj23SQDlN0RmswjKvbR0/ge8L96BfBsKoz8TF4RajfxJSvpegI\n2NJdivobi/ZLsRzIh4ZIGmjB2zpwqzZnB/B2HfQ/HYQ7Nf8tk7BVv4YPaN6vAf9Be34tHmPyE/iH\nvpu5ykSRI1+OGViFjlfRyGWUOnLqy8pOMXjqCEW7hPKHXg77vlibCLT+KCWwOgbxBRZJol7kUb/1\nRVKiF1lhm/RB/MNJOG/HeEr91BH1Qjbgm8LLcUmSfYyP4BvICxRJpSiBKccLjSb1UfqwEuft9GP7\nEOc1Wu5aPyL5YP2L8zSGb3S2pg+Essreow1q8qGGGmo4blgWmMIGkfSzZImDyWJHyIExIMuPjVET\nOdKmgbgCj+XQwd18HcVRNJiLEke3ZPPFaywbNq2k6P8gMsEM4ildZezUj4OMXr4O5oNye+10PEIR\nvYxYART1CsoGUVVt6geqJBF2sq3HmYTRWnWQokFUVZkRG4tkRcw38iB6nbb+lfU75utTrKPM/DVS\nb7L0a+2JbteipqP1tezTAoprwcqx/DKTN2KYMb+XQdtLTvogAqclpzk/BvwbTf81MKG9W5sylxh8\nwW/FlVQ+jyt0fJ/53YXPZy5dpQzU68ONkxXp/LKlXq+PrUrUV2WtV667F8SPMaLzVmbU57f2RhS3\nHHxmvg2rvGlQkV9GuyHPi6VHcL6LiZbL9cVyDcpWqVU2EXFzSCEd+zSfSXVUzhKK/KM4r/ZOVTr6\n4yzbrlTVESFV5Mf2zucJq9zmWs25hhpqOCZYFtKH0weFd25ucf5T09ylR8ahcfjCcN4fBwcSbfWx\n1rwLrlLui+iW9vYWnKvs2xGc6x+5xU/gu21E82yHLaNh88n/NzVhT2duWdEN2ACuW2Aos+Co8Sh+\nOoziHHfb1Y/iO37ZfViV8RMVeQKco1ym3dNet7UvQhNnSEVfmWUFqTIm0+uEij4EIlllBlGbQx0T\nbUgqPlqbEge00F5ccysvouXRKnN9eMbWwjP4ab2L4loIBkNz3OG1KKm368MCnKWV7NGXIrOvgFUI\nbNSGHg35ZpW7lqIylTFM11PUJzFsuZW8PmtvxH5i+8vSoX5gWWwKO5uJj69NbHlhFY+mPAw/bLTY\ntTF3+Tf2DnD34/kT/82JFp/+6Zz/L+/NS/v29tSsNeCXW3CejtSTQEMH8Ij4YE7ps43kaUnVKLEA\nTX2mqStizxB0juQnIvXVEeiaxVxIT+sqGOn4oiL5JKdUVGSxshqh7IjOz8d3ELyOljTYMaztnElu\ni5AghTGALNK14H3TYaw6Au0wbk17XsuKpEgct4SLiVOo74UwJmNaSEPgTMlzOd6egqOp0KcIUcQm\nQFe/wkbYySe6cETTM1rIPmDE1kLD+zdJsd9S6t906IckH9sBmuwcyU91D/lamCUDBTrJyzD+yUwL\nRnXArKzxBOOankp+QO0BprUfKc01d58M7e11WDQFBvT0nO5WcWnmQk0+1FBDDQVYLozGXWTsdvdC\nzy4RrK/rruv+O1D3y1JKGxZ6aFlsCgAicn8/nNG67rruuu6lhZp8qKGGGgpQbwo11FBDAZbTpvCH\ndd113XXdpx6WDU+hhhpqWB6wnDCFGmqoYRnAKd8UROQaEXlMRJ4UkZsWfuO46jpLRL4pIg+LyEMi\n8l7NXysid4vIE/q7ZqGyjqMNTRH5WxG5U/+fIyLf0v5/TkTKyoYnsu7VInKbiDwqIo+IyJUnq+8i\n8q91zB8UkVtFZGip+i4ifyIiO0XkwZBX2U/J8FFtwwMicvkS1P0hHfMHRORLIrI63NuqdT8mIm88\nnrpPFJzSTUFEmmS3B9eSPWH9vIhcPP9bxwUzwPtSSheTHT+/W+u7CfhGSul8sr3VUm5O7yWb9xt8\nEPi9lNJ5ZMW7dy1h3b8PfDWldBHwY9qOJe+7iJxJjtfzqpTSJWRFyLeydH3/Uzz4uEGvfl5Ldrtw\nPjls6aeWoO67gUtSSpeRXT1sBdC191ayC4hrgE/qN3FqIaV0yi7gSuBr4f9WYOtJrP8vyT5ZHgM2\nad4m4LElqm8zeUH+Q+BOsjbqbqBVNR4nuO5VZP+fUspf8r6TnQU9S1bzb2nf37iUfSe7fXxwoX6S\nY9r+fNVzJ6ru0r2fBW7RdGG9A18DrlyK+V/MdarJB1ssBs/h3qaWFERkC/BK4FvAxpSSORd+AffG\ndaLhI8C/xVXk1wH7U0pmPrCU/T+HbAv0GSVf/lhERjkJfU8pbQc+TLZL2kG28/kOJ6/v0LufJ3sN\n/iI5ouGpqLsvONWbwikBERkDvgD8ekrpYLyX8pZ9wkUyIvIzwM6U0ncWfHhpoAVcDnwqpfRKslp5\ngVRYwr6vAd5M3pjOIBuGllHskwZL1c+FQERuJpOwt5zsuhcDp3pT2I7704SMXm/v8ewJARFpkzeE\nW1JKX9TsF0Vkk97fhAdsOpFwFXC9iDwNfJZMQvw+sFpEzPBtKfv/HPBcSulb+v828iZxMvr+U8C2\nlNKulNI08EXyeJysvkPvfp6UNSgiN5CDnr1NN6WTVvdi4VRvCt8Gzlcu9ACZ6XL7UlUmIgJ8Gngk\npfSfw63bgXdo+h1kXsMJhZTS1pTS5pTSFnI//2dK6W3AN8kRwJasbq3/BeBZETEnVVcDD3MS+k4m\nG64QkRGdA6v7pPRdoVc/bwferlKIK4ADgcw4ISAi15DJxutTSjFmy+3AW0VkUETOITM7/++JrPuY\n4FQzNcjxWx4HfgDcvMR1vZaMNj5AjvfxXa1/HZkB+ATwV8DaJW7HTwJ3avpc8kJ4kuxNbnAJ630F\n2bXlA8CXyd7vTkrfgfcDjwIPksMhDi5V34FbybyLaTKG9K5e/SQzez+h6+/7ZAnJia77STLvwNbc\nH4Tnb9a6HwOuXcp11+9VazTWUEMNBTjV5EMNNdSwzKDeFGqooYYC1JtCDTXUUIB6U6ihhhoKUG8K\nNdRQQwHqTaGGGmooQL0p1FBDDQWoN4UaaqihAP8f2c71bCpcCXwAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 0.4906... Generator Loss: 4.7177\n", + "Epoch 1/1... Discriminator Loss: 6.6824... Generator Loss: 12.1958\n", + "Epoch 1/1... Discriminator Loss: 1.2869... Generator Loss: 1.1015\n", + "Epoch 1/1... Discriminator Loss: 0.8712... Generator Loss: 1.2599\n", + "Epoch 1/1... Discriminator Loss: 0.9868... Generator Loss: 2.0520\n", + "Epoch 1/1... Discriminator Loss: 1.0734... Generator Loss: 1.9953\n", + "Epoch 1/1... Discriminator Loss: 1.7425... Generator Loss: 0.3826\n", + "Epoch 1/1... Discriminator Loss: 1.1829... Generator Loss: 1.2268\n", + "Epoch 1/1... Discriminator Loss: 1.4086... Generator Loss: 0.8518\n", + "Epoch 1/1... Discriminator Loss: 1.2163... Generator Loss: 0.7233\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvdnrZdt23/eZc/Vr7f7XnzpVp7m6uro3EpHBKODkIUEI\nQjAYHAiOQ6KAQU+BBPwQkb/AT3mPIYE8BELAAefBEESICcZKIllYtvrbnKbqVPPrdr/6NWcexti/\nc8rWvVXnNlIR9nipXeu391pzzWbMMcf4ju8w3nuOcpSjHOUg9i+7AUc5ylHeLTkqhaMc5SivyVEp\nHOUoR3lNjkrhKEc5ymtyVApHOcpRXpOjUjjKUY7ymvzMlIIx5t83xvypMeZ7xpjf/Fk95yhHOcpP\nV8zPAqdgjAmAPwN+DXgG/A7wH3vv/+in/rCjHOUoP1X5WVkKvwJ8z3v/A+99C/zPwN/4GT3rKEc5\nyk9Rwp/RfR8BT7/y/2fAv/XDvpwliZ8UBd6D9wMA1nu8NwB4PINTi8Y70M89DgA3OJyXz8ZDq9aP\nwXOwgwIPvZH7Wb60jgKM3guM/m7gS23pzJffCWLprtloQmDlG947Am2H9wYbyO8GZ7H0el2+G4QG\n5+SzMQNW389EAW7Q19N72cHhgkDfz+N9rzf2DPoezh1aC36QtnsDg943jCzVcgfAjgF+TKvQ6L+R\nMTirfXH4o5exAmjwHLrW/VhPgsuTBcZ8pW8PY6I3NMbR62eLe7hucfROx9c6Bndop/7eGwL7lc8/\n5PrhXbQ7CezDdMOYL6+HUYhvOgD22nbTNXT6+8hDqx0XYB4mVGYsLpR5ZB/u67H6kM6YLx+If/hO\nb76cn07/td7THMbU+4e2Gb7sfwOgY+adv/Xen/2rff6vys9KKbxRjDG/AfwGwDjP+Vu/+qv0PqCp\nVwAUrqerpXlt0LErZVGYbsdQymAshxaA/a5k18rQxM3AM11h4TDQaPdMPdwbmcojo8rEGGa6gK6N\nIRrkGTvvyLVX93HARH83ef8EgL/57/wak2wibev3TL0svL5NyU9kZJablCK4k+vNSH5/FlKVBQBR\nsibRWRNfLGhW8rljK9d2JfVMnlEtO+p+KQ3a9KyjSK5vB7zZyO820ic+tKx7mYGLqxF/8A/+CQD/\nF2uomjcNi/QxD2ub0JoHBfgoDNgnqbyLUSXkHHknnfWDvsP10ve19w/KZHirp4r8+l//D8gS6aO2\n2TF28l67UpV+0LHUVZiaLetSnpKZmttK2jlJKtZVDMDIyphuOss0k8/bNmJk5b7bLmCSOr0ekvlG\nvy/3HWdQNgclCzudF7OLU9z3XgLw2zrH0hff43knz7gYLE91dc1MiEmkbb8UJ1QnpwAPcywMetJK\neulVEOIbHSffU/TSzzc2IOpqAGrVhGnT8t3usC46troxhoNHu4UIg810vuybz97Q/fL7t/nSjyFf\nAI+/8v/39dqDeO//PvD3AS4Wc29CR9E64kgGc+g9NpaOTH2FV+26HTxet6m0E6VQOkc/yN93riHQ\nidl4R6sz8i7wBDoIdaCWxmDp9TOdZ69WSttDrYrDlI5NJBPIPpeFORrFnOdyLQvPIFBNXJ9wOnsO\ngDs9YejkfkM5A2BxtYHwEoBwmNBspf0XTyKqjy4ACHYlADf3a+YzecbtRUF/Le/3Z1HHuRXFsQoi\n6t0agOfab4QNqpco6op/OtzLf9q3X5pftScG7x+skJvIcdJJm/pIxqbsDff+S2ulPuxmb/201yVO\nLYtQ+z6ZgJd3DQKZ2CEvSPoMgF3XcRbl8ryg5azOtM2OS1WckakASF2KH6SdV2GGQxZeYgJq3Qzm\nQUo3yPWxvlPZOFISAJrBEHdyv7ja8vvmFQDdU3nn521NL93DxnjiQSbqKuoZads+z3p+wckm4kJR\n+m5I2Vi5Nu0bttp7zRCwNtKe3HlqHZldJ//eugGnc2w/ODr3pcV2MCAaPLZs367zVX5WSuF3gG8a\nYz5ClMHfAv72D/uysZY4LkhCA71ow2Q/4k61fBZBqrv/JIaXoQzSB3NZCObFlkkov3sKpKHuLkNN\npgPTGU+iO16oCz70EWoo4O3ARjWxt55WZ7UzDqOm6N7JRDNxziScAjCeBtB9C4D7ScQsk0naby3E\nHwNwPR0DcHGyp6vldza6YjOT+04edRR3Mmn66TkAZdySzW8AWHzfsSvk2XbfEhXPAMhLMLEoE2u1\nf8wrKiPf9UFAopOmf22pv70YILAyTVIbkWdi9cwiuV/QW+5qUWT3Q8XgDwqZH+uJcTgmisUaSXMD\nG+mvqpCJnTYGUhmnwi64VquiaAeiqbx37A2rQPo8KGX8x0VIitx3HyXYnVxvU0uKzKPaRMQ7GT+b\nytwLIrBq+wd9x66XvmiIOFvLd26MLGi6L482Bmi0LzIMfaxKyhXYSxnjD70ohY6E9UYWfxZXbHaq\nNLqQlc77UTzg1Rqeq5X2ojL4QK71ztP+kB53X3MgfiZKwXvfG2P+C+B/R46f/4P3/g9/Fs86ylGO\n8tOVn5lPwXv/j4B/9DbfNcYQJyGjJiCfqqnGnsedaPamXRJkos3LbuBSNgfyXszyD9+PKb8QTTuM\nl8Q3osHvxiHBUrT8dua43Mvr9hN11Kwt7Vx26+S+55la4MtNRx/IzmR7Q6fHlaxVUzTNoZAvR6OE\n0skXnvTg1NIJQ0etu/vjgxM0hXAsPoDEj8hSeUYSTHCXcm+/k3c+z7dElezK9mRD90p2jPenKwbd\n5ey4wTl577NYnlsVGXYtO7exOdVPGHIOA8MCeY/TccY3I2lTsdC+vIGykLadPHds1bozg/+xLIUw\ngkhN/6wIWTrpo1PpNpZhydjIM+7zkifquN2f5VyuZSyrwPNITfNdoNZhmeKsHLWuggWrufiugk3M\n3soR69TOqTLxA/lSLLfSbvBOPu9Dg2nk2WFX8dkgY7bbH8z2L60jDwS6RfvIkOm8GM0KfjEQn8Li\nscz1zcucNH0BQFxPycfy/v1LiOeNvn+Mm4sVs1LLbJd09OprW9sOo74G96/1/Ncbib80R+NXxXhD\nMIT0JgZ0oTQtXp1LVewwajJlxlAG0plhoSaeuWCRyMBWuwmLUz3Y9QPZuXzOHZxdyWK6DaXT548M\n21rukS56zFImzWm0pNqICWeso1XPsY1EG9m6YfCikFy6Iv70YMJZ6lOZKEXRE30ig9dPxFz0JiM7\nkfcLqxsGr4onAhvL575UM7N9CbG8p3N7BnU4uWVFG6ovBUet5+Sy1fNmtUf9s8xNe3A8f20T8hBz\n8GGCncylTZMJ/UTM8mWqyuusY/5KJmvy/jXXLwdtf8Nabemv9ejOUTr1zm+38FIWU7uTPt64HUmg\n/pGyY7DSF3HnCUbSpmzIObhYxrX0YTwB38mY+QDGpX5hGhG34kDurMFXco9uLH9PnKXv5XO322Mi\nmUPeBEw01PQqlIVr29ff1WuUaCBgyKQdxZBwncj1spKxLiZ7wrUoMWaGXo+p8aOWcSMKyV2GlFbG\nIf95mVfjlxH2RI6Yr5YNtfpD3I/r0FE5wpyPcpSjvCbvhKWABZt5oqZmFIqeWs1bEq9Ou3QgXelO\nGNScp/J5rA7Di1FCn4hZe/nehOlKduuPFhH957L7r+cplysNN50uAAjub1l9IJo4f7Hlcir3WD0N\nGcWqze8G9urBzh9M8Z4+ERjGsJpym2sYdTghzSTIEq4+ZBuL9TJK9LgSvCB0vyi/GzfYWC0PtySI\n3pPrCz1GbHLCSqIdWTKiiMXT7RaevJT3COqQQUOStpD3SIkIb8U6apIGc4gLfk1LYaxYgauzJ/yS\nRmjCRwuuOnl2OJWxqdo7fu4D3cE+sVSP5bvlpyW/76Xv669xlPBBR4f8zlUNS3urf5C+cpOK7oXs\numW24SSR3d/MWuJWrBh7vmbuxUSvZzIGYTOhW8iumlYzgkzmTrfL6ObyvEU3ZhkqXqCSpVFGnrzW\nEGloaL6Q6FLmPC7R8Ks6961HkSliZx0W1yROeKLWTz6KuGhlzIpI2ltWLelMrZxmYDZXh+hdRzCV\n3013Pf1Mj9a3OjYfzul20oabSUN3c3Aqdz+mW1nk3VAK3jP0jrCPCRIZrKwcU6uZmDcJ9NLzsy5h\no61eHHwDbU9mpSN3WMypxtK7kGAuE7YNrYAVgFTDammW0fSiCEZzQ7XXZ78/cHcj5txF9JI/2WuU\nQ8/Tlevwau75uCW+k4l5G2z4jpOBdt2SvJOFswllqlzlEcPmGoDAn9NfHuLfBf1Oz6r38ntcRRJr\n5ORlRVbKO0V3DfOpTIq7riVvpU2DHjsm4Zr7QfEPnfkSefQ1xGBgIkrm/XnMZSCfu64gyRRYVEkf\nTk3ORk10czZlcXeYsPf84At5J7cvafzb2bR95xkp2MuECW4t0YeuFZM5vg1wRubFxWbKWsOXp+uO\nYiptCsuMdibHjvhOxi6YOGL10TTRgNcQr4l7Aj1v7WloN7qw1Dfi6NgpPKm6e8m+FaVYJQNVo7gI\nHafrtvtS+RqD16NGaD1hLs/GncC5tGm8VTxCG3EXyw+LCYR7DXe7DD3FYkeefKtHXT1W3lYJiyv5\n+/zpmjKTDWVfDgyv9ffX2xmOx4ejHOUor8m7YSkYi7UJvR0I1fPszy1Xd6Jp79OQiSv0s+NS/UxR\nJhowD3N8pqCTdkQQqPmZxgwj0a4f7yLKXH6YKvKtHzsuKjX4cs9VKDv7fdvzHXXcLcMLPhgEuZYW\n6rRKRrhEdk8bG4KpqPNv3M+oFB03a1K6R3L9UjV0m3gyddSFk4DYyrsOfiDQtg0KiipWMGzkeekY\nqrG088R19FbaOZ9ZbjM5YszXspvdpQmBlc+7qMC7r39+SCLDXxvJDv0rl4+IRrLLudUNbqx93qqH\nPAzIO41ExHuexPLd9H7gm3N5/8/LjmeKFHxTK3pj2emZJ056ikvFDdzLtV3Sk99KX1WzipmXZ/uz\nDKsOuvZqYL6X+VJdiYUR7S2bExmbfJ2zPlNn9MrRTBSQtJ3DVB2MiprdRgNxqY7t2Rn+XkCBpunZ\nVIqEVFSh58s92RpPplGpk3jM6VQs1kezHfNBAGyjSarfDolKaafFE2dyPUgarnqFa0eOJBaLlEGO\nH4+jCBS9+v7iis1G2hHZGq/WosNjtNffdga8G0rBOYZ9Td0k7BXZFa93BNq8uAcbyPVJBdkBptzL\nAsuyHqPhxiDa0yML1gwNg8JVDRWmlcH1imDr9wGxhoraYcDqfYPAQiyLAvMCiwyozeX3QdVgOpl0\nw2hF8KcSxnKhZTuVwQ3TO3LNCW1PZeDicE6nfgb7uWG4ks9mcoKtJSTl7iVS0fgbfKKT/H5HvZSF\nYLY97Vw+7zqo1X/S6sS8We0YjBy1pn1Apj6abfdmRKNRw3EcZmyv5Ey+DkrGajJPvOFeTeZQPe7G\nhXgNzfU2J9O1Fiwu+biXNnVlw/V9q+/1o6dm0HX0B0RZv8PdioKbqO6+2e8Z4gNs0DLE8nd3m+Kv\n5EvxbYJRsFO01uND2jHaqyeflmB7iIw4zEaVHjVs5HdeocEMY0yi82b5lESv2yTkJNRoliJa7cGh\nAETG0mfyd2MGXCMLObub8XxxyLfR8HRnyA/Ro3wEvfptnCNRNGkX5QwKlzRGlEbcN9QzWQPTIeT9\nD2SDePG9La6RfumcwWimykP+zBvkeHw4ylGO8pq8E5aC857atfTxnulO9NSy6AgVQOLm0D8Tbb4Z\nr7GBfB5P1VzqR3SnshMGTYCNRNOmu4KbqWbPLMMHXEN0LZp6XbR4NdH9ZCC5ld2jzRw+Fe2aFHPm\ne9HAsXrkW9fSBHKtKTtuz6QbV7uAYKGJWZ+dcDsS3P7ca0w8XZLu35dnP0pJNI5vzZJIHYb7TCyX\ncmuJat0RTUCtfqrlLoJUnjcMjiaSPrpVaPdQhLjPNIcjcRDqrtu9aRQgVhh4PAl5rI7dSZ2wOpd2\n9n1LEGmeg47NdjqQqJk8mA6n8Oe9SelmmoD2/ZwokF2x6X+0pdANFYGRe1d9yS5UHIbiVIIJ3L2Q\nv7fxGpOLRTe5AleK89ecN5hed+mxvIepE9pCrM1gZXG5vOuw6nGxWDrRPiVZaP6E5gtkiWeqUPnN\n6Xvcr38g72QNN5qjMBxMfGDQA4TznunhXcOMxso8+2TU8vNe+sJ0EgW7z2LSSMY9dzVjPcZu4gHX\nqPM7NWSN5lKkaqX5iEyTAt+fjmjWYtGeTdeYO/ndzteH1BzKt0x/OVoKRznKUV6Td8JSwHt819Pt\nI/bqUEvWMWWq2YnrmFxDNrZJsXN1/GiYLphG+NUBwhZinTpwbEuxEs2/jgLiQRGCgewM2TZjCDXc\nuIrQDGnyKsIqPLavaxJNZlGfFoPtqWvR5kPoCXe6s/kVJytJVw+oSTdyw10hWvtqU+BGmlx0A34h\n94jChGGlZ/XdIZF/TFTI7/f7DcFOz5PdhJmeLQPbMe2k/bGXd5t3Fa22nTZ82CWMMfwolq3AGCLt\ni8VwwijVUG0A/trpMwoC7dq5JvpHu4BaHZ+D7clL6Vtn16RraUeVhKSay7v7oS0QSa0Bo+PeOLpW\nfDde076HwPCBQtBdnVEritE/7/Bz8ecMz2Oqse7iuu9ZO+DupI864+jUp9A0Hd1e+rk2PdVanp2k\nh98bag1JNjfXGD3vr7AkB54NzRitO8MDMMQYmlT6c+o6Us3cHZVzCisOw1wT19zOE2kCV3ESoQYN\nfuNZKxIyjz2x02xORWMuvSe06j+j5vJCxuykvGKovytt2gegCV8Mb+dTeDeUgjGYIGIYdURWXqBZ\n9Fxs5IXviz1tJZ+Xc8up4gmuZ+qx3UOXSwefNxl1KmCiKEhZZwq8ua75NBGzbaYRh5ssplAz2SUd\nRvPmm8RhO7lfMJ7SrQRbkIQyAa2PidQe93lCmMtEeXx9ThlqqnJe8FQjAx9tZNLczNecx/Ie4Txj\nNMi79mWJVa93l8gEjb5wLNcSRbF2z0sF28SbFZtrnUyTjkHvMSsPabVztomAdOI8fvBC/zDXs9WJ\nnQYRY32/eVqxt7K4axdQTmQSp2VJpArHaLYkFsKNfHdla5pAM1Trnu0gx6e2271RGTy0x1jCAx/G\n6YiFxtvjQKNP7gX7Rl7metKw2EofvZr1BCslPVmkPC5lkXW6sYQuZqn4hvCu4dWgx7x1yVKGhHSI\n6aIDJ4EewYIeq5mtZnxG+1zmlktgc4Ce67/GQKiKN48DLp0s6PF4SheL4iTecltJny9mYu4HxZjp\nIMeHoGmwuTTIRyG5AhWWvmGm2ap3qYxBtvfsVWGZPH3grZhbxy6Wo0leXWN1Z9i/ZQb18fhwlKMc\n5TV5JywF72BoHENl2Y1l10leVmwVRrq+6/CaMNS9qHmmEOROUXxNccP0Xna5myykVUfVNl3zQuHR\n7Cqe3cq9NxqGdKWjDDWxqbQYxSGULaSdWCHb7Q6nOrhXZ15XtayMhOwwd/BK7hs6WDXSzl1cYj6R\nnfLpSHbz7LMJbSNWx9nLPe1Ej0H5CUkocN5nX6iltH7J81qthuqaxkl7WmakUw1PVgVlJ78zygWx\nBaw6+4ZwYKphzbIbHkg44CtAR/ulCWx0NtQm5+VOr3db5podWvqUeyMWQp3LDrauImjl2XdlS6RO\n2cgOZMoR0PuOiWbp1PxoMTbExNK3dv+UtNIQ4Vba/hkNI02aq56VrPQ4M9xZ7jUcfLEOeZopG1Yg\nu/xosuNOyauqfc2LjViNqW9INczaRgVWk/DauVgmuzriTMd/v7wGRdwShJwp8U8dK/qxswR6fBjb\nGH+iOJQ4ZOp0R+8XrBp1OmqDzu2WXZRo38/Jevnuy63DKunOKxcy9dJ7mVozO5PijMwXawZqdWaO\nkpRIHZdRlGIO2WH7t7PX3gmlgHEMtqZLOtpWz9FTT7hRT27h2d5JU19gmHvND8hlQQzllO+PpPM+\ncCPysSxGtwn4zCkhx7pjUyio6ZVMsM3YMo81QjBNMI16ugNDq0QuZjamUSxAJI+gdg2Rl2NC3w5c\nF2q2rjI6xdovnhV8qpRfp+r2rc4/53IjOQ5/MjNc6oQ/nW0xSif1eaeAny+gupD8itmN4UY94Em+\n5YOZKLJkBJHCqquFrI7LfsedHq9MZwgVbGQ3llC95V89WUaqHuIgY6xOk31QU9TSb7s65V79IOcJ\nXFm9hzIJvaxror2euZsda4WQm9Zyo5O4r3vWb4mhSk4cuUKli5OUV+qXqSJlYPKO9Ss9PvYdhZMx\nzUcd3Ur64s8WAx8okGmqR6lmlfFUPfXJqmajFHrVekCHifPEEiqTk6nlnXzuYRAlFU8uKG+kHZNk\nYJdoo+8PcGaH1+cSwAd6lp/FGU6Pv+uw5qqXiRQ4UVif5o4TKwr0IliRKM7mbujplKaty5dEt/LA\n61w6cREZ5iMF5JmCl3pfP8qZdoJ/Xm2fEn7NTIjj8eEoRznKa/JOWArea6y3jOgV7mtXsE7UCbi1\nDwitdCh5rnvd6YG+1vbMFM5bTSLO9b4mifiGshl/kQyMNVqxVI063FZcKxGKc3sulCNgGo9oD7Dc\n/YpCiUxa3VHaoSXWrLfSDQwr+byk5OxGtHy9WjHqxCn1fUXd/fI2ox7kJqNuYDiT541z6D4Tc/V0\nK+19FpZcNeKIur17TlPL9btRyvkjucfsJuRcIwadRiqCaEt8Lbp+FyUEauJOc8O97n7GQ6hmbqRo\nvZSBVBN7fBlhD4lpnWWsFpLxIempvF/Syn0vqpqlQm2tj6A8OChb+r2M5dY64gfG5x8tKSlzgXIQ\nriJ6dQRvD9yQ3tKu5RljX/LKK69DB2ksbV6soFfLK1AHdBAnnNzJizynI66lzbddS3ynz0hgEUkf\nFSPpl2zI6J0gVnf7O2IlOFllEakiLzOF25eNpVMGbmzEKpM+utxWNAp3LPcjzLmOeyVWSVp3YGX8\nT2YxfinX329qnirsP3dzKkWOxndigb0sQkKjDkob8CiS53URrJ3MvSwIaaMH7u23kndCKQBgwecB\nieK+7TRmXsvnuljjFQCUupQzzRIrEg1fJguSTDMq45xBPcuzuCBRJXPKjrtC7heqV7jtHFYXQsg9\nVa8hK9vz4jC5hxH3lWY2Knjpg87QKoQ3WUSMMlko87ZDx4WwMxSpmIdnGgH5+UfnBKEQeoynBRyU\n3tKTnMuzL2o5GnxnUUKpDD2/kNGoH6QKey57TeU+K8gGhTHrgt9tTzAnynNpC9C/921Lom1znSHR\niXKm0Z5FPmWqqdzxqOXxSDkjiTnw1odFSKB4/1jHIIw9mYYn/d5RZ3KPfGt5lqg2KR3S4jdLh8Vp\nintyOeJqr0QkuuDTa89esyF3vSdRn8mTUYDRNOpxAsVUgEyJhvGKdMZuKvc4IWGTKDFKXBNV2s48\nxw6ymFI1uTvf8OqQRRmcsW7kyNrvZEMAaDVq5QJPopGI6TTiY688njPDQqMnF7OObyYSto5OZD46\nF2H0SNwsHWdKwnI+PcOoz6g3IZ3GgwMli+kCCI0cV5MoptboStA19JHkV3j7fSLNsXlbOR4fjnKU\no7wm74SlYDBELsR0higVbTfetIzGskOlfUxyoYy6FfTxYTsWzZmPAnKlvXahJ9aEkSHpSRMF+pgU\np6aW87ILRrV7oMtumbA/cP/t1lT3svN+b7OiVx7+cDjEsAMGhRfbrmG0FtP+vZMx0UiptE7PGDbi\nlBqN5D2Kk1OSXBO39gbXyA6VnKQYJTKx+vcn7Yj+XHf5IKGrNSux3xK9JzuNH2JWmv9v1tLG2jTs\nDmEE03Kl5CvD2LNSPr8gNMz1qBRN5d8kzMnV2TUJRzT6d49lHsnvhi6h1uNIdSAYaTqUg4Y28HiN\nMqTpQLxUp3FgULQyb4LPpF2AizQZbblmpFbfSKHUm3NHamSnjOueQOdAkqZESlRyEni8Wje5mt9D\n7vBatGGUhTilTp8EYyaFRFTWdsBqYlKrllA1eALliby//ZSNHoN863iSipn/A4WmZ12Idg+PmxD/\nRB2K9pRIHd4nfkSr0SiroKes3uIVKt3lCVul2+tsz1wBTvUoI4n1aN0eyF1KerWOgiDCKWYF09Co\nRdPZiCj+epbCO6EUMJ4hbImNx+qCrqYBI6XkTqc7sljO18NJwqJXD3GkPIo+QkGFxGVMP5JZGgzQ\nTvXc18VcqbnXKKlnWVSMlMVotwupWyXBXHe8KGVBb0pLqYs37Q6AloZkkI5OnKObac0Jm/KhknEW\n+elDpaNMAUSjRyVOPR5uCOhuFRU4HmPUNFycS9vXTcjJTDH+51cMSu+9vbkmL6Q9ZR1xrxyFgyI+\nx517eN4uaHFzaVvydMxHel5+1SdEemw6ELEOszkTr5ySo4RznZitHdPYA+nJQKdn41iLreyTkGgs\nzzjZNbS5jM16E9EV8rxh/2ZlcBCXO/JO+nBSBNz2YnbXyjD1QTBnc0gl2fcPeTBFsgNNr+/GLbmS\n/g76zvGQYHUujOKEsfqjmnREaOS9p61hrWjBnUYqtrYhUEUXmUs27Z8CkPmBtdZaCp9r0SJ6Go0+\nfOZr/rqSxfBowXipinVhuYjkXSJNhd74jEY3pFHvQBUZcYidyL2vLFglDGo6mZvRJsRZabur7UMh\npSGB0UiiD7fL75N1b1cE6CDH48NRjnKU1+SdsBS8h66ztJUn0Tz9oo5pFKSTtAULxcOHPkGZ14hT\nJZ0oDWGrO+YoYaxYfF+uOa3EFB0YyLR00sFzvg1ibpQgxESe1a2YXEFT41di7jXtDqdOxZ3mpbcO\nUjUjK9fgKnEeVmfZg6UzqwJizXX3Y9G9+flj/Ev5e+u3OOWKTE5P6a8lnu4PxWIaQ3zIuPw0p9Pd\napg/JlVq+LbaMj44uzrZtk5HL7lXWHUaGCIFcn38Xsiznewk+TCm0ONBfSE747fXA9PiUOjkhBPl\nbEg3hkpZp1fhlDNF6x4sF0pDo/F4O4Urddp1acVWiU5WYYM5hG7eEDM3xhJo7N0Njlp37lo99dF8\nw2M9liTxjJWSuozSnAPt9lBDN1GG6U5p83zJxU7L8PUd0UjaE3mDVQDQxgA7Lc2mlmLsB9Y6Fzbb\nGwJ9j40tLhJ6AAAgAElEQVSNuGz1iDXS48XO0KhTr60jfk+trf9w2RCp4zYJppwpPX5UKTjN1+yU\ne+HRScGgeS5usKjvkPNLyNREqgOZN7cTBw/VskqeJGJJ7DcNcScFg0bG0pqvF334sS0FY8xjY8z/\naYz5I2PMHxpj/ku9vjDG/JYx5rv67/zHfcZRjnKUv3j5SSyFHvi73vvfM8aMgX9mjPkt4D8H/g/v\n/d8zxvwm8JvAf/2jbuQBh8OHjlozGZOxI9dzdjHaM4Tq2Csail40fh0Kmi1MMjYarx+3IfUhCSbp\ncZqHn5QQaMw7UGLXoQ+xSsW7pKTW8Nyq6nnRy05RtoZWT8Sh7kS+g0HLtJXeEM7kGbPckGpoqT2z\npHN1aObKMjx43KWyL28XpMom5bcp9sDOpHDm8W5FcCf61J9vsYpyy+9r2q3uYuOebXWofShsz/dt\nRDFRx+jonFRDkk3nmSpr0KI3XJ7LLj5Hy65dpKBhv3O7IzwwOI/HD8VuMhp6relYKOvxLgsItN5A\naB2pMhEv7z3JSM/OW//WtSVdH9Jp/ctuHnCgcpqpk7fftjjNYCyLnoXiEZrCkylG4NpnjNUicRqq\njusaci1DWDq8tj+ZhpSKSTGbiDLTWhzdoTaD47o7BFQnNFoA2LUBd5VYEHsl3d3iMHp+DxYxlzvl\nAJlbHulcOE1KwkSswSjVQkTFnESDtkk6JlKEbDi2mEo5IEpPOHmocQjAeOv5QpGZUWK4VcYt35X4\nSMoJDmaN+ZqWwo+tFLz3L4AX+nlrjPljpAT93wD+Xf3a/wj8Y96gFHDgWkPXGgatCWlvoT2XF75f\nB4SFRg5aGDQLst5pqSh/x1oXrBsMfaPpxK6mVFNsEuS8XIrCmYVaq89ZrHZ6Vw9sG3nGbbDGqbOu\n8fVDcQ13iBAYy8aJeXrp7hm/1MxILHeqvJIUevVk+zPBOZjwIwhlobR3LaSfy7NHlzgF5GyVQMTV\nNU6px4Oup10rVLp5QeNFyWyXa+71d0sljllNlngtlhPUS2aZfPf+3PBEK1O7fOBU6fNvNXaf7T1j\nTcmuk4haM1R90rBTaHNRDlRa1HfdHujVBgKj7MJDSKiUX/nUEK1lMvahRZMn31iB2veeVShOsvTu\nM9KtOtLuZbF9Pyo5OfjNqoFKwxrVdoTRmo6bMH4ALw16NDD9npVGkaI+ZK3e/stgQ3iIJA0lsZYD\nW/fq9U8MY41EPNu9YNAj5BCEzDTU8CpQZdNamkNh4m3L75ZyJDx9AV5h48E8JVJHeRhLe8ugZXQA\nyGUxrQK16rUj0LyTfRqRHyqPK61gXW+ptS+WVc+Ngqm2fcWLtUDkN94/FFJ6W/mpOBqNMR8CfwX4\nf4ALVRgAL4GLH/Kb3zDG/K4x5nfr9ut5R49ylKP87OQndjQaY0bAPwD+K+/9xjxUHwHvvTc/RE19\ntRT96XTqe0pc4BlqdeCNAkr9PF3U9IMcGe58yWyrRTESKbwSLC3PNCtsfucIc62luI/4VE2ti1FG\nqqXd9/fy92cY7reyc79Y9XyyFgtkuapZ6o7YDRanxwerEOXO7qgV5rytKrpBTOa+6fi2hud6MpZK\np5atlezz7AWREsB0Z3u6T/W+4acP1ZX3CFtwGQWca5jRBDEbLSCyX4eUVmC3tt6z24k5+9KI4y+3\nGdEB0xAkNKH8fbhN6SL53f1mQX0q1y+doCY3w8BKjfxJ1zDWGgLpPuNpqrDwrX2of+m0fuLn3nOi\n1GbTYsBpgtVt6dlrHL5p3FtXvXb5mlITqWh2aF0bbq1e855Xylq89StO1dlsFy/IbxQ3sLin38jR\nK8vF4cY656VmPs2jGbkS33T7nlt1CAZ7qNSLvW/EShuCmk0rO/rAKbte7pf4mlc611utL9m4gUF3\n60+6iidK6vIvQkelqM9NuONDDTOeaZLU9ryCpR5nulu8WqHXZsAq5qSIKkJ1kN9r6LHd96z0SBzt\nG7atXL8fAkwmjufm9jMS//U23Z9IKRhjIkQh/E/e+/9VL78yxlx5718YY66A67e4E36I6KuOrUKX\no2XKbq6L5taSJ5oKWlYsZ1rieyumnEs8Uy0kVPmYWCdmdrcitYdCH/UD2cSgvws3W7obGfBXuxXd\nRibCsm3xyp/ovlJU41C4M/YhYaTZgPuK261Cs92G3YmyDa3uyPS8Xn8s7Z2NTun1jB/XAf5Qo7GI\ncc+lm/KdmM5tskXTEqg/8dgvpB137Fgotud+ZRlrfkGi5vD5fE+w1KInQ8pM6eyTmWOndR5fUdG+\nVI+5vsd3tjEHPpYqLzhVk3nsLd/YaeyeFKv08cFelUqSEWn1psgaRhwAUC3X6l0ncA9e9DfJZZAR\naR3H8bOORh6D18Iy25OayUr6Ytp7bidy4ye1IVY4+cfLAqvVlzgwUrkSo36nOoqxqrCrwRBdKz6l\nbLm7F8XZdjIXbtsetGDvfXmNV9bsDZ6PFAuxUuVd1V85HjWOT1cKXmt/wOc6Qc3+hCuNRBTq1zm7\nnzDSbNbpyZjgC+nj2gW0ShkwjmK6tULrNRpy1xoSxTfUneGs1apdTYlbi/IyrmPffr1l/pNEHwzw\n3wN/7L3/b7/yp/8N+HX9/OvAP/xxn3GUoxzlL15+Ekvh3wb+U+BfGmP+uV77b4C/B/wvxpi/A3wG\n/EdvupHH0/mePvT06unu855AE3SIGgbd8esJTBHtv5/LjjH3BfmJaMnFbs9Tq3z6UU6i8d+wWfHy\nTrT/fiPf/WS34k93sjM8W264Vc9x0zn6P6/MmWIT7u0er+XMylnMYy2MMvtWwShVvsYUkrEm9qRa\nus4a4rnyF7RjksO20o8J35N3HS0UY/ByxfBKqdvyNb0yKs9XDbXu/kVa007kWHX1SpxQV/4S975c\na03K03+ulYhvKlYKIS9eNuwvpD8Xz6R/Psk65gvlDqSnSTVLsEvYK6x4xIa17raxetDTNCOJFDfB\njlZj6J9UDd9TOra6H97oYDzIbRzxDd3dh59b8I2X8t7PfkGp1G4MnZX7bnPPRCHI12PLN3VHXM3O\nudJoxY3WWAiqBHMotLPp+ExRhcU+4oVCqXeN52UjluP1VnbjZd2zVWf0tpPCPQCmgS+Uz7GstZCP\nhwMOYzAQKBz5E9PQ6NHFpbecttKfj5RMJZw+ItUCL00Vkiu+ZRRnuPKltq0nVqdqowWqo3XLSo9a\naTTiXp28t1XDvhFrsew3h2DFW8tPEn34J/zwSoW/+vVuZrB9iKtrjOK7q7WnU1aTfRNQqJnYtQF7\nzS5sNf21SXumhYTkgjBkpuHC7qyh+1zhqjF8V2sJJt2nANzc7OiUB/GuaRmGw+D+6PPvqZ0+sNws\nli3BRgYu+70x97+ixWeGgtAdzvZyNLDDJU7BL6ay+FSjFnaJ2cqivv9TrVdpr+mUvtxvP2P5QinO\n+zVcyXXXWbYaGjkfFPr9QUSogB8zi/lAsfGfhgOztfTRS1ei9Wr5ffW/PB4y9jrhvz2fcqugr3DS\ngTqCg9Ci5QwpY5mMfudINYP1tpqTa0HYXVeSari0ffA0vLlK0aU5JRtL7vTC3nMXi49l9gdyrz+8\nfE6ooeNt50HrdN4tDVYrdS2aiiYTX4nXo8b9rGP1SuZLOdR8rkCgUXBLoMcct1tyq0cFV8mCXXct\nKOlq74Yv228800BBT7rgzfCVUpIe2oMq7ODZXrMZKfi/tXhQWGrOzMXAoGHr2oSMG/EN7G9DevUV\nvQqmJL1c3+3lnc1mzVqzRCvXslIlZIaOpWb2dgP4v4zow1GOcpT//8g7AXMGh7MlbvAMnWjGvc25\n1aSUyTxmpXBklyUcoDC9luLa1QH36k0eNw2NRhdeBSUvNUqwCZesNnJ9rdwEvoYX6gHrBmjfsube\ndrZh8Wey933xwT35UzGZ/+yv3PFvKsdfevYxgWIE9q1YEnX5fU5fyY7+bARxK7tg3FbErdzv95SS\nfpM/J13L38cYGuXwG6KETE3mKIRAeRFeSfo8/8ZuzF5rrI3imPtz2V3iP2r4rmZBXg8hg+6wkbJA\nP58FzFt59neDhiuNalAGvNBMxDM2hzKG3Cmnw33XMy2UKm1/x7V633cbw1P16jv39nUM6yd3TNcS\n0b4J/oRVKjv+b31HMB3984GtclBmYcZ+UO7KfUN/J+3/kxPPtzT5Ce3XZ4HnuSa0Zaan3UtfPKVl\nqliGMHHESin/1IsFWbeeXueb9+bB2Wy9p5ko0Olern016eur79sbR9fLMz4tOpprsab+WKne/3C9\n41vvyzjNXizJJjKm31+GMFXcTrUmfWDu1/qZSUKpmIVN29LqMebOt4RG2azNHUn/tuloIu+EUrDG\nMAoSvN3QtocaAy2H00nXQqbeWd/3jJVU0znJOJyEPTSy2CZ9S/ieHLpm3/XEilBb3kd8pIw397cH\nctWKldJtd9bRH0BK/LBJrICXrmD7RCbVWb3ns0qUwvl3O8x3NCR5N4AqofiRtCeKU5ZaPzB+6sg1\nZTc9OYWXogy/rQw85baleKITsA1olE1pPQ7JdTKaXUCnRIGTc12AY8MiVyDTi5iplomPL2GifIfL\n0mAPRXoVmMSuJdF8gGI9Jr9U4pimJ9f8CtMGlJqXMLsRs3UcACvNDJ1YTg6K12z4VBdkbDxvKAz1\nINHK8EJT3K9Mw+9+pqHmnYLMDGRbDYFOGpzyHG5Dx0KPNKsqItQsyFgrPj1e9RT60ttlS3FIT24c\nobIUfbJrSdRcTzTK0AUDCljEGP9gWhsTEmmdzlCZl/qaP3/iOAhD6efTXcbFXOZLrCnN4yFgttTC\ntlenTDVz9zExVgl0w8uAWaNHhb0C1pIAtAbG7X6HbUU53zYdqZHPuQkwCqg7EOy+SY7Hh6Mc5Siv\nybthKQQByXRE7Bz37uD1rogKMYHiYkPldbfNDZXSXMVqWtX2lJk/MApPMQcmwEcTHrtrvUeGVY67\n27kAO8bNDwiUdo3acLAEDP7PVfgPu0RyyuNKYKSv+id8/JFyH5pLIqVa70YX1GPFECSyM9RRSR4/\nAaBIBwYvDrXGDuRa5XmuxBz5+n0aBblEbU7/gRay+aKk1qy8KDgnfKLAm41mA7obqk7OEu2kY5E9\nAuC6/wGpWiGzpGLfK8+C4uLHo3MKdVqNzieMCt1ppx89eMbLxpFpFqtVZ99JsKbUe/l+yyoRtuqh\n6RgUTm4wvO0BIu+u6LbCWfBF+Qh/8QkA/XPlGDi3nD75SPozviFXSygaNSRbefYHZofTyknu4LGf\nz5gp6KsjpdGddFWlZN1z6a897L1GTDSPYujdAw1+NJgHT35k4NRrLUg9HkotyS/lMF8SGzFC2j+f\nZ3w4lf567+OfB+B0HxKqFZtGEE3EAv7QtpTKJ9ElHTaRbFx7IceP8AcNd17avo9HrBXGbZOQmcLY\nbdg+VBPXAt5vlKOlcJSjHOU1MT+qvuBflLyXjf3f+fiv8t89ajC//TsA3JYDkfuSAfirIS3ltaRX\nZqM8MIShaPZLG7A7oPGMQ/1ejDvHc/1PeGDVGRyFxrNfOI/1B2o2j+Y+0cNDPUarjDj/2a/+Gk6L\ndGz7mrlSqHVDzPiQPdjDREu97RXHMIn6Bx/GNK5Zq2MvtzUrLfwy0czJdRMTKmXYpjFMlWFpXxmu\nNZR1v1ryxSGDrz0wJ3viw3uOU/7u3/5P5P1PTnClMhX3FXtNsGpjecb90hG0ksCzqyNSPXPflgG5\nZqOWTfqQPbnVEmRpsKfvDrUOLK0iK/OooVci3DSG+lCHITsg8GImGn7euIzT92Rne/WyptnJO+3a\nPdPDYAfy91FsqbUGxjSuaAbZSaepZ6M1Q2bJlrbX2owKwd40ISOtHdHWIUaZlvcVpMq2TZ0wTBSG\nruOUpCWBErdGJ2MaxUJkpwWf/Pa/BOBZJfftt2viTCyo3AQYJbE1XUusVcxNC1YZpjstfxcHDoYD\nG3dAow7RUeCw6ujaemiW4vt4Xonllm0a/kD9JEPdU2oyVuZgr8+YE9ArlmXz/NU/897/Vd4g78Tx\nYRW0/MPZJ/T/tGOldR69e50O/KuqqznUYNWrrYNBuRZvE8dUs/36APYKhtq7ASX2ZauOs33v2RzK\niTv/WrX2r/prD0zyB4xBU/d0ejHwhj6Qe5xFCVazPJMmJlB+yBMFYYXBmommQPehY6JAoNTvmXh1\nIikM+iIJCZzmH/QhS8UjZElCrFyLjXc06pit9e9ugEEnR7CpmCyUvCNLsep0C+oVt7qOUyOAhSkF\nlcbSp0RYzUSdMKNVnsAxIYkyNDfqvCqbkFbj9fI3vd71hLqQE7uhcFqJS2smzqKCUMvav+8G7CHr\nclezbbTYT9ui65EzpV0bJRVTZTP2EVwk8rw0u+EyFrO7T3sS5NknWsmqY0atc2RIQzKt/1mOCyqF\nindxSqhj1seykLquY5joUSkbCBXUZQLL/6vKeXlQsH2F1fFbpJ6RKkA8OM2YjYFENyVrDkcUjzLe\nMQpaUk1Pdz0EWg3t1HW8UCBeosmSf+Q7nBaL2XvHoQDYDkCzg+9tSzR8vY3/eHw4ylGO8pq8E5ZC\n1g388rMdL4o1GhF6S7eUOoAC81AROg8sY60dMQ09Xh2Xm6HGaZ56qaa2855mOJQc542ou8P10NuH\nPPYgikgHPT4UAVEpu1g2N8R6lIgKtQjKjGKk4ashZ68hrahJOFWTEXUQ3QQZ2V4Zl+uGU42l3/YT\nvq2W0H63505zjlrdJhwPaGwGZ0iVGTnNM3It/FDWE7zWWjxUmqbaMxrEUff9KOUjNT93SYrRNj0f\nRizUghi0jmffTniulG9jt6FVtF3UxNyppWBdgNFq2rnXWpRJTKp4iy5OKdQpO5gApRagcYZU4/Db\nXM3yPmc+1RBokNPN5P0e2QlOMxwDztmk8pyricb5u5hhkGSz5yZhobwW9bJir2Xgv+9jJrFsw1Wp\nYxOcslUHbRbvMQdy2Cg5cNJgFSbd1ANprNXIk4hIneNnY0dv1GpKIjI96gaHenVdQhXJvJjHYNSS\nTV3ISsOWH4cV+WeC1ci12vrLVxXXmhD1r7PY+IfrXf22FDci74RSaJ3ns6aiuX07hp7D4i3Up7Ao\nIhadTMx4EfLRwfN6YgnVTv5i5khfysT6Qtl4yqajUvCS4WuwAwUWpWIkCcEoO9BJnpGeK+FGl2EK\nufdlLF7j4arGaNp3G/XkvdykjO4x93rO1CzEhZvSKKMTS1hq4daimNIr8GY6LSl2srA2XznwfAm1\nHR4qRIUewpkSLPYdVzr0h0U8H3XcKQbhF/d7zELyNeZjT9NqURsGbCgedz9VxqPtwEwJTarB4/Xo\nssruKfScXIaeyV5BZJm831U0o1EFmW869gcOygE6deK4AQYFXJ1rBazFtOPUKPi/MHw01nP7rCc9\nZGXaKY+Tg0JW/woZnfofMt/gNWrRjC2tEwX5Yd3QqqIK1S+1MhWnqYyNCQZCLSLTBzH3gxaW1TNO\nGzkyxTeE45D3DhWrzlP8PtGmpWTKKBZmB7hyjFX/U+J6nJYwsLUn1zIH2doyfizv/UoLGnfBHYcs\n8x85d/1b1qBXOR4fjnKUo7wm74Sl4I2nsZ4+dPAWSs0EmiWoOAYWp0zV4RRGMYkiHlsbUGgJtZNl\nQfCRfH61lt+f2IpKC7aUvsPpbvWmo0vQGaxWqO6jFDiUVUtBC44Ui4hIodnpXCyUoY8Za60AvwSj\nSaDpMCF6T3aNfqUZjs6x0egE555YsQf7XcDmQ92503N+Tjn6bp5pNuTQPzicjAnolAasDM4wr7RS\n9mdbQvXw94r1yEzHRFGDiZ9gKoUSjyK8YhP6NoRErY3xobR8SLQXczaylk6zEvtlQaWJVFln0KQ9\nkk5euukd/a1iCArP+MAJicEpLZ41llC5EqPDO9UJxZUWtVlDmutWWcVMCt3lN/cEifR5FCg9XlbR\nrTXTtrqnfai7WD3wObZVRR9Im9ZqoUTbirudXJuUjlbfbxzfk6gltNLaErQRVq2KcZjjRmJt9UFM\nqDB8a8Grg9WrhZWENYN+7oMQq32R5Z6o0zl5GuKv5V2+dSl//5NlxFqp4N46DfUt5J1QCoGBWezp\nWoPly7PxnycRhqkWHPn3cplp0c99iwtNeR1OUs4Vl9qf5ezuNHX2kSf5QguhKkHcXZlSn6m5+6Ji\niUywwf3oo4SLWtDKSqG1zDQd+lE8Ypgo8apbYC9E4cwCrf0X74mtLOhmsiLfigKIw1uM07BRKMCU\nvJoQKtiqLnPWev20eI/prZzro4tHjO9kQn4+1XyPe0OjdPgWcBqyatprJso/+DK+eyCTnWlmYbY5\noRsdipIWZCNRIFH8mGqsUZB6RmjkO4cQ4a27Jwqk7SPu6TX7sCmWhFpopgorwntNKZ/Ie8z9GVsl\nKE3uQno1cb2vBMEDuK570EELNedH5y1ZL0Cv+mpFpHT+QXpDaAQY1p61jENZkGms5L7pCWUn79qb\nglCzCFNS7tS/YMcQa6GVy3tRXi/smizW3IigoljJWO/HAU7zR3jgXFxR6OF2ngW8P1VSlKyg1YhD\nFIWMFJpsIiUgHlrCUN45SxqySO7XNzVGj3+2XPGhboJ3g1bgnd1QKAx6+0MAdz+OHI8PRznKUV6T\nd8JS6Lzh+WA5i2Jedn9+0obVI8M4HDObiZfcfkt2nyeRY6JZhDuXkZyp83AHk1jj5nVEfqVm2a3s\nmI8vI5ZaRn46uaNUC6Pph4eaiK9rX3VxNiFO6ciGUcSwlLbdpEvsnZKQXNVEK837v1RK9m1MUKhZ\n2oxoR7K721WMDbVEfS27x9pWhPdadi5siDWKsuv2FKGSngwl3/yG7Ij/otFkpu4z/kxNf0NKpdDX\nrhuzSeWzv1tQ6o74nvarbXecKHtHfeoZq9ltqIlKLeU3qhlpvUL1pzHvF3Sh1ntsLZWiPcI646l2\nXlGFtEqnN9akrE1RMlwr5iFKKRSo1buQQROCvOvpter0F5189+p5xHtPZMefbFPKM3nIyTAhUq9b\n0IW4MyUfCcVacfuekfJp1P2STLkP/arkRI98dxXMDjUk1XKZ1DFLTeyaLgxDrceZ3DH0B+p0PYpV\nnr0W/rlvQ54pHd+3jTg6AfogYNDdP1dHpRkymlTeIyUm84cIVcL2cJQoxqxvpA80/47z+wvikfTV\nq23zU7MU3gml4JwwzpR9yaGbv3pEikzIJJEB/aXJKU/ek2Z/ZyYL4mS+oFebZ7FvHuoXBPOCSutD\nZrnDVRoy0DJHu+WKD6wMaNWNWOmEvl1XbHSSuq8gPg9mVR92OPUKh7ZiGCn+npD0Sq57bxgO0YNO\nFlI/Gqg1bOFnjkwVwDDe4xVg0uuRY3o/Y/2eZlmuctqxoA2nu4KukEjEuTnjqWbM/bJ64f+oOuW+\nl+9aa+n1WFIFDbkWXU3OHO9Vh4KMeva2Ed2l3GuBodb3K4IxVj3/4zrEKNIx0QXRjztOrrV+ZFQR\nq9LYLmpmz3WBnefMXsnnl+e1jlPG7Zk8r7j23B7CZsY9FNkd6oFAKejnqvSzacVeiWmjK8dZoN8d\nG5zWCE2mEYk7sHYpp2QQMYyUmPYup621b2cxbiFtOn8eUOkimzsx1XfhmvdqraY16tDIKXdhTKmK\no9eQtIscsR7XRmPLYyUD8nFCqEeiGLAHB4mGUJO8Z6r3sOlApO9KWjNXNOzAmnghbcqdzJFi4omf\nyzhYw4Mv6SeV4/HhKEc5ymvyTlgKgTVM04hXcYBRYFHgIVDTNh5nfJiJyfz+YsyVOu5axZZ31BTq\npQ0J2Csgx3etBOiBYTdQKd7d7/W+s4KJOqqycMO57maBfUm70Z277x7oya05aPsUX6rjaJSRNFrV\n6tTgd/Kd8KIhuD1YBbIT9U3AeCZa3jwNsFod2/uAKJLP4fJQr3JNWGlsO+4J91plihqvcXEbNYwm\n0gfp+ccAXLHhuRX70tqEbi+Otm03xkTiPBw+X9OoB283l/Yks4FMOF3op4bEamRnuiG5VhM8rLAj\nxQVoJatkF9O5Q/QhoteqL+E6JjxULNo6FEZCUqoTjQFzK1ZcG3lO1Ip5HufUigxLYsNCc0Jy5X0I\nmjmB9mH6RQzTQybmmGAuVkH0NMNPpT9dLu21wQZzowVu+hVOt8O+q0Fhw4VzDIp1aGL5/Wzd0isn\naLP3bMfS5tQMjDUTs1QK/FGTMY7EUpr4gLrTLF/b4RWQlDhHq0CsSOkGTQNGqfOHOsVpnc7YWTrF\nUHgizEa+k6tj969lU/7xQhym0Uvz1jT6b5KjpXCUoxzlNXknLIUB2FgPfchEz/JbAmJFtv1CmjGd\nSZx+OjLsBSDISSbfHTVjNhOlYwsGssO516XcRKJpwyFhrDHduR6+blrPWJ026XZMqHnzn3zesVWU\nYlXah1qDh3oSBC1WaxO4GFJFzU1thl8ozLeb4U9091d2YjvpsJq95y96yeQC4qwnLkX7lwtpr13m\nhIXsJMFtQJdL2MxsC5gpmOPaUCmG4GQmFsrWPeL9lWz5WZzQ7NVKCUpSdeDdFR21OtpOT9XZ9+qU\n9Uh24JN4hNFnZP059blaSLuOQOtyWCfWw35S0SmeIopaAsWAmHxJp+AEfzYQfKIh3MlG+ztl9Vjr\nZXxiaNRJaGzLSHfSwfUE2replqaLFjVFKYlPq3lJqjUn4klF4OX67jIl07oOYax96ArKhbxTeR1j\n9D1Mb9kr41R3m9Eqa7b9nrTtemRJlSC4G0F0o+xVJ+AUb1Bo5ec62xA7bS81I2WdDinY6jj5ICZV\nd0euWaTl1NGr7yvOahJlEVtFNUGr/qiwpdC+2GpJv++N50xKXcKWnxpW4Z1QCtYY4iAgzWN29QG4\nEpJqNZTd+YRfVqdMBgROVvJIU2WjICBTnjyTjcgUxpx2lrmag5soJgm1Bt9eJsF06Km0oG1Y9IwV\njPLk/Y7lMxmklblhUMeWPzgJu4i6VLLCLGC/0sKmo5p4LwM6m9Q0WkXJnYg5mL1M0eQ7+l3C/8fe\nm2aKpOkAACAASURBVMTaluXpXb+1++60t3tdRmRkpLPKLpXStgrbINwIzwzCEwshGADy2EJiAIYR\nAyOZEZQYABYIPEAyyCPEwBLCtrCMKJCrbFdVNpHRZLz34t1329Pus/u9GKzv3Kq0KyszKtLFs3SX\nlIqb9517drf2Wv/ma9L5US7cA4XP3q2bMftsxAp/X5sKf+UmQuMZxmtxIrqOhWzgOz3KzK+Yqp/d\nJSOt0GBemVMKmONVEX0oANBW0mDeQLCVO9LEshCugHlEstEsLgbEHmdUkyjeJex9GcyOI2UkfMPq\nCaXYo/atxQjSG2zdd22ijva18BS+JVWqMZopZe1eptBYmspd140KeNObjPnCHTxfeWwFZJpsMpA7\nV7Ly8SSVHwVahLcdyV50aRMQmSOI6pasdA/lrbGEKpr6EmfJd9EDUzOqAmJtVNMREOCo1gtf1ZaD\nOAx3hxBP7MoPhp5CzmDDxCeWhJ4v0cVoB4lS4SDwCEWXzvYpe0nrxXGK2aijkrj5dGYKeOZwL/5H\na356JczffXzl9MEY4xtjfs0Y87/p/39gjPkVY8zHxpj/2RgxeR7H43gc/1yMn0Wk8O8D3wW0B/Kf\nA/+FtfZvGGP+G+AvAv/1T/wWawg6S66VNhwNT9WC+ZY3Z/lUVmi+ZepLk98ci1A+1albfWeHkVEK\nv35S0ErtOLnruBERXU7mrGPDVA330T9QzNzu2Hk5JwrXh3rOwXcyXuGxOOXX2FxhMi2dwrqh7SFz\nhb2mjLnJ3LHPbhWhTMsHcRZmU+JSRa2kxVOBbi1iDNeWK4mbZIcDN1pa501CJVGQ3DOsFTMm8qtk\nsSB643aUKIpA/hRhZkmkgZAuLU+3rlhbyQu4bjMuVZx7vmr5QmzI885ilm4HWlQhjXGf8RI3dfal\nh72SN+e4Idm7SOGTCIqVu5Z9WKEInZWgyOdlxmbmLsr7YscX0ogwY0cgYRVjR+xCfqLy64zzFc3e\ntaLfTgeevXX/fvfk/oEdmkxPWUr4pauEaMwDarVRg1XP25Vr28bdmo+FBZjuR1axu75CMOhmEjKt\n3C5e5WCle9FEI8N4ZLa6uWBjg692eJZGzHqnVTHE55TyOk13IWulaUiItYsnLORTarsO5IJdJz2e\n7uFNuCGVr9+b/ihD2NGvlB6+K+mDMeYF8K8C/xnwH8hK7l8B/i195K8D/yk/YVEIjMdFnDHMQxqJ\nrBQm4FyAj3oBaykMJdsDW1XOjU6/S+4527sHsyamkjFKGe64PYbwVc3brXgJgg+H3kAt8Y6AhDhU\nfnpiOVu7iX6o92ytm5AmVA5sE6xUjPrUB72QdTJQ3UgN6vRA/8Y96KuJQuNNRKlFI3+7YZgd88WM\nuUQ/vhD4aTiseL099sxLrCC1bTLl6BdqJzHVcEyhpGh0v8dImMNLDcoS6IaYnZSkk7cV28Ddg+uD\nO8ddcsn4qfvi7+cQ7dSdOL/k6Y00GsMYI3h0LHzHp5chmyunUfj9qmFauZetGhvu5BY1DAOHEz1L\nCZKs+i2HG70cQcdMqcbOjzB6fnHQkmjh7GPxCw4Z+4Xy86uKy1yqSC8nlKXTK3xqtnSqsfiJC6/T\ncMVLuWG1qys+Fb6jqDc0owxXvFNaSfTbQunopqbXy19Zj1J+lcZYMr28peDaeeMxE1gqxqPELV5j\n0MNa99tP6a/cd6wCt/BexBveirsz1lOS2C2sr1cWb+vO7WYcKWR/EKuelRLSCG6/uDG4p/DVk4iv\nmj78l8B/yG9RFU6AtbX2yON9DTz/nf7wt1vRd8PPkM3xOB7H4/hK4/ccKRhj/jXg2lr7D4wxf+bL\n/v1vt6KfTRLrnUec3Pr0mVs9uyrGaFWeDMMDUWo1WiLJlC2MWH2HGT9UNfksDsl8FQHblDcSVgma\ngSpWBV8V8iqFqVyXlyH40u+vK0MkP79F9Zz7+hMAQkGfvaBFSmp0oU+t7TisenrBmO0qZScBjGIj\nYlN+8xDmX0cDT1S1n2QdtfQGXom0Y24btpnbMdo3I6VYhk/bhkIErLGFteDRc8mPebM5zaW6Mq2l\nVzfHeAPoXrydDJQr6VQKQWm/SHgpROdyuyN+4nb8xd0Z/2jmFu1naUshERLxe/iNzR2HW/kvFjfc\nX7lr3scjF7HgyKcRgUxnuuQoYzfDf092a5/3HGQuEyYjcgjEjxJHPgP88dgBWBOuXfvppfFYbF34\nXJ7cMNfvvztreHaQP0WoZzb6/KB1z//ubcNO/f3py5FrYSAu0gPT5+44fj3Rc2o5EfnLZgcCqdps\nFhYvE0Jyq0ixGAilhRAHLbngzGkZ8FLbZNjtMIGLQgM9/88ieK60ZBptQTqQb5saX5HcPlnjqVC6\nqaTvMB3JJLvmRQZldl85UviqBrP/ujHmzwEJrqbwy8DcGBMoWngBfPGTvsgzPpN4ytmHI2+lQ73x\nC6xCsT6fEV0pKbUN160LmaaJDGIwZLoTjR/wRBXb4JBycXAP4JKeXGCgfS9QzarmTvLkuQ+FQuK5\nH7ESFLVKXlFIg7BSB6TufMbGnacdwKptdOW3ZEdFonFL1bsX8q11k7GowWhyj4Flq9v/JA/xxW04\nvXeffW1KrLgP11XNKMPTwwReKH0Iipzz8NihUEtve0Mmtmc9+HTC18ejAcmWB9uAgxaLXI5UQ7Wj\nkADpJ4HHN9RmWAc9Rk5c67OC01xpQCmzmNWOa4Ftio3P3ZFrsS35VIv6c+/AeezOs1Bef5fWdLfq\nMjAyt9IUJHiQ6Peth1e7e7sSW/JsO6Gu3fnMmi2fqGvzfhSyk4oWhwPbc/d3z0+Ujt0mnN27DefK\n7pjuBMfebx6Uk152Hu/rOFPj5tB89DmozpM0Fl8ak3njYftjW+LoP+lxUHfirk8YGjdf2nKDEYjs\n1WA5nbr7kqkMNzuM2ExpwCTE37q58PXuwKeeOBFdxr3MXCxuQWuaE9JjmnRjMD+tYedPGL/n9MFa\n+x9ba19Ya78O/JvA37bW/tvA3wH+gj72aEX/OB7HP2fjnwVO4T8C/oYx5q8Avwb89z/pDzxjyEKf\n8RDw5MyFbS+2MacfOkWSaZ/jCwjUdSFLWaqfLsVj9+fM9LsgSEAahnmWMTuVUu+upBbkOQmP1nQd\nVoSg2GwJUsF5m5ZUuyrBBbEAUNFRydzvGSTiEaeGSPDpeVGQSYrdHnJ8RSbnIsPEEfRHqfLQkk1V\n5Gxqion77HwhU5fKZ6M4ehrnWLFH/SgnxWkS+J7HqALjfnuUPjtj3bl0x+99PMkE2y7Ak4TaYpJT\nNEfNhaMmQMBS3Z6TCJ5L+dlET5lLVi5IUnq5MRdzd74vTmYMkigb/BmL2O3GpjxQR5ISizYsVNAd\nclXhu5CbiYqA2zV3jTvPBMugyn+chsTCHlxIYyAI9sSSiw+TJ8RKG5/MphC5wuY89fDVweglV5fP\nI57WksVLG3rjui+Hfs2oSK41Ian0FxL9u40rh1ADtl5N/KCYHDAqCmtEWuqynlDksdkkYqnozXYB\nvoqOedBzMlHhOnbXf5JAJE1Jv2yYqJC+mMz5uqKQnRlZSH+B2j2DIfHxPjvqXHoPvplfNVT4mSwK\n1tq/C/xd/fwp8Md+Ft/7OB7H4/j9H+8EojHwfU5nc1piwiNk1it5oZ12fV6TNULVVSsXDQBxdBTA\nNGRHNeO2J1KbakhGArWYnsbBA2ahP6LSGNiPKkSmJxwdYBoToO4djV/SibYdK6qIvBSLW8FzL2au\nvPYkT8hVMDKnAeOdizBq5f3WWo49wvQwMChHHMOATirAgaKYJQGZ9P8HPyBVfrofOizufEwU0LdH\njwC3w13f37DrlJP3hswKC5BmTIUKnK13nM4lX6dcP1icUUuOzZqB4EQWZdFIKJhv05QIZPrQIjWx\n5RtyTzY59HMHNfZ2e0pFbN00IJJY6U4aE5XtGNSmO8RQaIc1+4xa9ZVFZDkXTPv8QhJ8YUH0DeFJ\nyi3omUbLOZHuc7g3jNJfiGdHZSZLKGzFN/wJvSzyhnRKcxAOod1zUHTjCwnarz3q1t3b2335sAkX\n9YFctaZ97u7FvEtYCo34xPNJpeURTj3s1n0HRBjR3ONEdQTTPcjAhWHAqDkQRHChKKWILUYF0dm5\nizqqjcfwwilU/+G3K/6+3ubtlzOZ/qfGO7EoGB/8mWX6ds6ThQs/L/0Je70oz4scT92AvrFkEq8o\nCjeJfRuxOYqFlAEiPhLiEU9l3pGlLGMVojqFsn5FVrrfdd4eIwGNu7EhlLLxYjznIJfq9NhpjTqy\no77eJCBUwTMLgoeXJs6m9EobFtJTaOtrWvHmd0mHL9BLkw5k4iJ4c32vyZir8Dk2c2qx5dL1yE74\n+rEy7OShuZUJyTguWdeua5HbAavwegFMJPnFk4JR8O7ZC6VB2YKuF0O1bokFXuqHCXsxA7ubhmNt\nLVMhcnIaglKDk7nH2Et6jjW9OhF9vuVw5c6vTAWD7jK8J8KbfB7QqZhp0oGpIMaTKKPVscdjyrAc\nmc/dgtX5F6SSxk+SPZ1x59GmUN9L18ITa7VIyE4V5vceS6VrrfXZ15K3u0yIxSTdql1wZ/Y0Kg6X\nQY8nLczmxDAk6i6txL4tKkZJ2bd0nEk9u0gLKi3CeePjh26B8D0BpDwPT2xQm44EYuMGS8ORXvo0\nbPBad29LFcrT0FDdCrqdJQT7o8DpV1sVHlmSj+NxPI4fGe9EpAAGb4iZvgelhCgP/hRPLLI2sXxr\nI8JQlNNIsHU60U7TxASNWx2racSptuuhP5AKEmu8nvlM0lZ7F7Y1fUq50KraTrlTCD6t4eaoBNRc\nUsi8wyq0tE1AJcahHxwYWxfFtJOOQCo9F34L6lNb+TUO4ZJ6LThr7+FN3I5wQoo+womKYTZtyVKF\n9jak1TG2EwvSg9iZPadKHzZbiY/uXhMqLVmTMMgbY7QWlD7Yck6/lAaE8BYnFaB24xhnRIUr2rXr\nAbvR+RctS6E6+4PDK0zaE47Vt9lkIN4KT2Bn7J/oFtYJ3VSYhUu3233CSKb0qg1GpkJhftF7BP0R\n/t2Qi0DVPBHZyY+Yqx/vzwOMTGvi5YL+iCEoW3r32JnO3HWMh5KwltCv55MLFTm7TZkKeXl30lCV\nRxizw2mc1iEfiVQXlVs6QYzHOmTUvW8k/DoeetbaZzdNxFRGNh/4I77IeMPUEhcX+rz7+2050M/c\n3y1MgBVmY1ovaY27t6fTkFh4iEat3lWfUj532MDoo08ZgqPSF19pvBOLwjhaDoeWdlMhiTzycOTJ\nhboMNmKUpLifxpwKEttFYgB6lr0gp2k7oCyA2GuRMQ9x04BAH57w9Kb3SHbuYVwOVw9Osrd+Q668\nfJMXxOIajLn7ssHrsaoNtINPn7uHaDilmOqz6SmhhDrSzk26rb0jVQvjOjAsBDjq/YFUXYsmkVZj\n7zNockSZT606SXzX8UWkUHsceSmex0f3DuT6poy4b1x3gsEQqKYQmJFOZqtB2FLoPEJBZ4flQKDr\nT8OY0arjMG/pRYHOhj2DsBoq9FPuOhLhMcwhwTuRpyUpyZ27ls1wINS1vE3lUbmGt0v3wp+82XI1\n6vq8EEJJ4RHT6Fll4nAYNnTzI7N1JI30gOsefynUU5ui9fYBSxCcWQLxD4JDjSdtTu+kw4ptO+k8\n7gSBjwWyuuo6EgG9tmmEt3L/3pqAWnWLoRGlOR45URcsm8acJW7hbOKnxHquk2BCbSSuIor41npM\nVUc5BC2ZAHVMLVOBvsahwRcmodO8idYDzcZBu+9D82Du+1XHY/rwOB7H4/iR8U5ECgZDSMBtFPGH\nVOnu+xui107f/9WzDqvKcXafMKpg2FWuz9t6a/aKmYb9gK9dvhtLWhl5NMbnXkYkC6ER/T6jLt2u\nu2p9Ool5rrsGaoVo3ZpGacBUDDiv8zjUR/k3S7N2K3g7P7CWBFswbxjkeN0mrni13nvUvdvFNzvD\nIOTevoat3I5HEbiaNKMt3cp/kq4wVkjC/YFGMO37+y2f7xyDcyeCz6vNPaPcla2tMerKVOGSuHSf\n9bcHmsJFOrfaoUc6EvlF1OmOYXChQNdcs9q6+xyVW7y5dAH28sjYN/SqwrfGMht2ukeWZueQd4fe\nYy/v+r3Sw3Hfs9q4+7IPYaIuQlVDPwgjYVrSOxU5T1yqsVknJJFg5f3AToVLwyn9xoX8q/uCcHTX\n2pw4rIt5s6UTQjTwKg7yG036kf6ge7u6Yid49N3KHWNbDw/6G2/3d/S6n7MOYhWb7yJFB72PJ3GX\nsC652bgcJgxqjNKqVbyikphuZ3V/Sv9BINiLQzZCm3abA70ipL6P6RKJthxh16t77oWmXR5qUAfj\nK9YZ341FYaBjba7Zvhn4PPwYgP3+hI+fuJv2vvcMI5ORzOseJLDDwIVOxTbnZeRetvzWI585ZLU9\n5Fzq5Z1Mp5ynbgHopZpxWd3haRFacSA9CCA1lhzNIrP5FLs+TnR3vg17OuXnddfTacGiHBjnR0l1\nn7Uq/5IUdCxFN2+5TNfMRKmO7R35W5drv1b69DWTM5m78622Ple+WKKrkcud+8Lr62sub10d5Adr\n99+y9RikgOKPI0N8BCndI6Eg9l7HIPnrQKHs2J/xppYRTR9jrfge+4DP9bN/H7Gwr9zPqnFcHgbm\nS9cWOw8qWomirKprTKvaR7mmF2W8PTg6sQmWpFO9/LeWWi/TGHQP6UPSRlSp4N1SV06S3UMN561p\nmYxH/e9XD+pMt/GK8UoM0+j7ABTekqv6mBpMONPzC3ufq9LNs7q03NWyrlcLcdusadRmtklGq/td\nB4bdsUajtncVldRS2brrS+ZS+e6bKVdSA8sqnzpw8zMTnPmVd89Urdp4uiWTyvfLtuSicPNwHtd0\nnbufH7fuOpqd5QdfuMXv+0NL1/9swEuP6cPjeByP40fGOxEpeD2k64Eivmf/yu0o3+sCntxJsCTq\n+NONC2cbfGr1fF90quiGA+d30lAwkEYuTfDfbtmochkOhkDqu91Barp3B24lJRZ3B1otsNMqoBS5\nJtjuyY42X5I+s21AU2lHYWD3Vqy2aEv+hTvPcFFiVWi7lzzcuIFRBcri3hBoRe/rJaOAPKnguU24\nR7wuDkOML179trN0ilz67YarvfAE7dGDoH8QGxkZCRRVBaFPJ4b7YR3QCT57VFG+v7vF28lC772G\nJ0cnaXqe3rtC485CHLjKeXDpzmcaRLSNK6jZQ8pG4ib97chW97araiphK04EFLq2HbEMdfowYiHA\nzmXvCpYA+6J/2E33ogBO7mCfueN5rWH7gXsmpzanlMrI9DY+1pSZpW7X9d/ULCvpH4SWQLv8+gqM\n8BTXbUtg3XEEX+GsD3mrn9NyxyDiVl8HmEapHm4ujPuOO/375rbnVaCOQl5i9+5erJchE9n3VSpm\nTq5DGrGZ4mFGIObnnPAB1BbbkHHvrjUXuWqzWlENR0Zwx/BT+6b/7uOdWBSqYeQ79wfsF7CS3l14\nv+f6A/dkT18NfDyTL+OTC2a6+JUw+e+ZCSZySLqz+2t28jC8mOW8yIW2G1eUwxHn7x7Atugwop7e\nRT3TRjWAaUQky8Q4n9HrxQsDt/Ds6obDUQJiqKhnChMHCKbus7Wd0clLcKbJuDnvWO7cuc0XF+T6\nkjf5hvjeffdRnLPo4EZahae9z1Wq1KayvDy433+vHFiVmty6tuG3RY5mHBnVLWD0MQLTzEZIwmMH\nxuXkfhhSL2UIazM2kp+fekvy1N3b+e6atf4un8k8NfdBHZC7Q0kuOfQqs4xKUfZJ92BLvz13/316\nH3M/de3XaGUfjFLtENClx2vJGE/l1KSF3os2jMeW86Qn6V29YxeXFLE7p5k55cxqocLNoeI8eBDm\nnazv2K7ddUc2YpWJSVpVfKHFJ9WiUocppnJzxGdO77kUazQBK20MO0EI27gmUzenmSyYizp+GAva\nhWjWvc9W6vmLYaZzuyBTSlAWPZkWDeKOSOCsbb1jGrm5c71xx/v+ruaVmKZvh/HRS/JxPI7H8c9m\nvBORQozH+7bg+3REa7eiboY9xWduxfz7T3t+0Tj/yCf+JZNChaaN+++YronEHGy9kGrvVutLU2Pe\nuJW0S0eupVQyDV2BsrztMIKM7gIPTzvJ2A+EquTW+5oxUq9Y//VbGCv1qMeRcquq/WlPtXOr/+Tc\nYxB3o5N4y9D4jBP3HUV1RyLuRnqoKCVkcrhR+DnNWK1cuFgXV1jdl3214Vbpg9mvOciI5XfaJixO\n6xLA+HPGg8Kf+wFPFva3smXrxx6jFGTsXBcAwE7XBJ1w+ybG1/F2SonKL0Y2qmBuvZQk+NRd661P\n6KtIGFrMUdtQsvax7Wi2gnEbn4ns3w6thUpiN/mO0ElIUgt45k0CUl/mMy3sBvfcwzqExIXS/mFD\n/0BpFUS5b2neuGOshxvWuvemuuT6VmFfdeBeGIFUaVBjeiKV8++bFa2i1NBYYmkmjhxxGgMHCQDZ\nyzWrxEVCk+lALWVu39tTC5Dl5dKT6O+JhLMZbc8w0zO7GigFDNseTjh4riDaqiA+3dxyOR61J+xX\nxSw9jMdI4XE8jsfxI+OdiBT6YODudMPwnQNvtOpuB59BhiyLTcjLp+738/Gc35TufXit1gwpN8oz\n0+AW/6X73uoUmlJ1hLSm2zjU372KOr4X4Gklrq1P0LhdoAlBUADCyYLdvWv7ROr/tzTQySPBu6cS\nCm4Yagax8voxYZhLn0FeFuPYUm7csa8Dy1w2YKuqYt3oZyEJk7amFwpwexcQC847dj7N3kVQP2Sk\n127141Quu0AqTPWWQK2+fRbwVvvKXEg7U6V4KspuhwPdxl1ze3XKnQxfJ1GNbVzUsNf3X7beQzGs\n3V8+9O6nk4BUGIg6NBhhBBoh/voxwUpPorr1GD3l5bZ88Kfw9wO9UJhWU/VsapioTnBIQ4LWXdNh\n/wWnvduZLz2PTJiSmaTwTBrxUkHVLtxR3rsQJKostZCc1sBODNxq7c6n9Ab2gYqA/YK1kU1b19Gq\nzRh0x+usqGXqculXLI/mxVHIIXcFz77ccOhdxOa9dRHDqjCcCJvg1zUbFX+vARMd8Td3D7D5Xsf7\n9XRkFJqy/ZlVFN6RRcGzhnwMWD5JuLnT22jMsV1N5PX41wJuXOw437niYXjqwE3T/S2+WH9nlWX8\n0D2A5KbhRuD+fmsxMzcJC/lVVlXFvbgBBRVWtNe0g+oIIx8r3tdDMp5k5mOfPnYLzFh7hAI6lfc9\nqb6Dk4pIYhiB4KxZl5FKyj2ufAqF60WS8kKr0A8VvgZVTyCOR+55jFp43gAvpB78RTnSie7dHdXG\nf3uhEY+JdxSLsQ+FtnHvcSKGZizZ95nvg6rpUZEzJu7exuGeoXT3dtl0tAIDPb+2+veebuuKdraY\nMI3FjdhbGqkOJ01FKmp0VLlFcwwsvUBBkzh8gCMfwoyxkemJB548PTM5VvnXKdGZFJd3B1IpYsf+\nN/FViZ9sE85HAZxeuOJjcQ2+9B6rtseeyNhnZ9hu3GpxnxpSsU6Ho3T+OHCrzWDDhueaL9ab0mXu\nM22u1LXxCeSb3t4b6qnOwR84DSTUk0UkR5bvRC985XOibGeYLllIdTzxe4zaIMFiji+l813u7vfV\ndcJGOpE3+0fX6cfxOB7HP6PxTkQKgQlZBs9pq49ZqIXWRi1W5lIT4/F09i0AwgTiMxcmzuUwUpx+\niwsV/lpjMFqtvQ9ivmVdhHHXZBwUSntCjIXnt2Rv3Op7iG/prSS42DHgziOPKgh/a3cDyL2ERLoB\nNj2QC+pokgQj45h99Qyj4mGvVMMreirrjr2IDnSxPBTCkVF986/LAKZuE9pEhbhqjgleu+Ptelrt\n8lX4W+xQX+HjiOXB8hKJxwDpWDEG7tinL0r8yuEN+twdr+9P6M4lstLmDKlESpqnnIhROPY+1ghi\nfuqmzrN4w37j6JDVdMQIbcjTDclrd54305JQlnRVLqGadUC0cM9p2GVsJOmWBtEDc7NrUrKpWtSe\noMHTDetWQi6TA71xkYu/qEisYwxeFCNGGIFez6w9T5jKOyK8j7g7tiHDFPvctS+zjw9soqOGhYuU\n2v4OZXQUYU8THG9uD/Xx+Sk9DAyF0rnZbE6sdm/ZnxEUR7fqKZFs78bBXcdp1mCFoTFJR6OfF+mW\nduN+buOSHa7YHog52fq3eINIfqbFU3TzT6IVvizO0Vj7s8tFfq9jHif2T754wXf6mlgU4DgPWWqB\nCBdToqNunx9ilLcuNXl2fcRSoiibJmKhnHTXe8wUXm3rkInUgrbSspuklsPobvo0spT6/XJqqQSM\nml7kVI2kupeus3D3xTVHL/Oq2zOTIk5vUjLl32ULc2k79r0LF5cLn11zXOjW1I07dpaPbGQUGqBF\npYzwtNhsqogsdYvboU45VeV/O6ScyWhmK2DL3C+5rt0idv6Bzx/9F/48AE/++C+R3zrI793VJ6z/\nlvu7T87d7y6/G9AFDsIcNwGt6gvlwRD57tht45PoJdsK05H5O/a6V2EwspM8eR7XVI37fRRbGuXB\nhYRJmj5kLpetakiZPxWo6bM3D+E6mxv0eHgqtmd1viTaHzUjG86lTFQvZg5dBVR285Ai3skzst1s\nWa8cxDpZ7fn7qvM0Vc1aZi/eaFXR+imGMfyvf+2/BWD2S3/cXdvNr3Lz2T92p/63A3594e7t/ece\njUTNp03CTinW0Ws0iHb4Ymp6afIAZ/b9A6Mov51vaISvSVTLYIiIYxkiETBVvabpAxaCp2z6hJNn\nbj78lb/2N/6BtfaXftKlPaYPj+NxPI4fGe9E+tDYgU+6Lftby0q97XBjaRWinowNo3YE34wsQxXu\nVJSLrEcgjYX384zYutB35kf0qlYugpSxl6SZdp3Wa3kmnTwz7shz7SqmZ1FIE7AdmUjUIpZ35b2x\n+OpHT8MAqx298GMmuTvGaXQGYs9NBhdmXpyu8b0XAPShxyBo9mJ5T9u4MLg8tDrGhCBzbZTtzjOA\nswAAIABJREFU7YTSyJwlWTKduSLn2WaOlefl89CF8EO45/xalfPOcPaLbrf+8CSjmbhjnGSG//FP\nfAeAf0kdkP/3F2dMXrpw9jJueRZJXzJZ0PbufnZeQiGZtmPqc2gNmdI839swEYqxbBsmxm3z1tsS\nGikRWxGDoow0ll4G5oHNeWkbxp3cnMMB7yCdAZHLnvst49w9p8RMSPV9H85Gyok7p6HK2KxdxPW1\n3H3vqygnOrii429GJTORmD6z4wPz8UvFzNZy+kfc3Pn5c/cct5Nzzu3PA/Bf/dIP+NMSp/k/hzlP\nBH+/zwaexopSQjlGdz2t/B1O8pbWSlbukLARgrQwB3q9A606LjZKyAIxflkSSD26SCZkSj3no/mn\n84mfMN6JRcG3llk9cOcdQOCWwRvpS/fAD+EJF2o5JnFCIjns0EiIdBoTqwVl45BgL8GVPMQ/5lmJ\noTvSmpVqJOR4uQQ7ypSjP/Y0ivATCW8khtoqRFO7yvcSQl9gk6AhGt3D7eKMqfL2KPLwjWMPdicu\nP302f4onPUOve8q91IFeTM7p1H3o925if7cIKcTg9KqKufLoH44Z8b1k4Gew7NzPW1XC823O9sRd\nU36y51nxTXc+RUzSuO/eNCf8yyv30tzEjgE52bX0mas/+IcJ86XLs+l8EO/kcmG4kMz4IKapbRe8\nFqM0rhNKdRSSzucKV3eJe0OvMDcQiGmIM0LZz3t5wVG9PDAZLybqtKxGGgmKdAq5bZGyUD3HN6dk\nhfu++TctJ1dHk92Um5lb1E7ec3n92W/2lKm7/u57IV8YF9pfv60fUoYva174teIb7lpn7rgpMXed\nWxT+5A9f87GgzbOyppvKV/NwwnLhFng7HOfCkrXYlefzCiMdz3bvMQpcF/cbGkHa28pN1HWQE0uc\nJcgikiNArEhJj4pbQU4w+XKrwldKH4wxc2PM3zTGfM8Y811jzL9ojFkaY/53Y8wP9N/FVznG43gc\nj+P3d3zVSOGXgb9lrf0LxpgIyID/BPg/rLV/1Rjzl4G/jDOI+bGjB1YMRK1BEnnkbUckF+j3vJEX\nkuAax4YXC+1A5zJQaVN6Va+n/gn1hXrCbUGrMDgZZ2xFVjL3gruGO2a+26La9AbaI2y6JZXe2MiO\nSFLrR7t4LzLEWom9tKBX3Pl+EhAKWDXxIgaZy7yn9MNbBOSqHBMv+MC68wnSKZlSjX3uoo5vbe74\nQuIfp+uBTyYuhH9vP3ItVeKv3cH1h+6cfkEWe6v3R55/5sLIyyAgPOopeCE2dtcaDL9KpbDza6/d\nNTdRTCfF6NnpikyagckIjQqX06GiLxSFiWm67zv+wMFFVTdpQqZq+A+9hjPpF6zjBtVDOSiimcUZ\n4dQdIxoto3Qw+8Qj2YjZeFoTXckpXOnc2d4n/5rAZw0UMgla1gn2iZSf1wNm5q7vtHTPcfX1iugT\n93enf/CS2d9xkdf3ogPm+AC/JAAoVjQZHIVQJucEzd8DYHNi+PZL9yx/0yvYDy5i+fppx/nCpXFR\nqjRgc8IzzZsiXoDvvq/etISVouXaPPiC3gXHTgaMSsFmo09buH8/D0LMXJiT0qeKvtze/1UMZmfA\nnwL+XQBrbQu0xpg/D/wZfeyv40xiftdFwRgIA58+NRhVtU0ckakC3mQLOnMU2TAMAuHEAraEs5BE\n6j9RODJqEmcZxBLn8IOBdu++zxO70gwJQeAmXb1L8VSj8MuObe8q7oPtaLTgeJ0ANINPq9w5NCOR\naM1jbx9YivFphyfdxMC69CHIZiRn7oEG2zcPdz9MUgK5QY2d1J3qiom6LPWkJ90cLeobMuXD3dIy\n37lJ36vLEv4QEgnMPvegP7iW47BqsfzQfd9H38X8Pffz//3kB+7v2w8xUp6axDGpwER2GhFJycrU\nA4E4CmEi56XtQDse6ecDdXIEZ5kHVmpfDWwztRb3spzvqwdtRO+iRyxiMpPjqQ3pNxMudF/m1j3T\nZpGRjPJLaNZ4eyFSjXPMAhyfRfTjupCylPXwLrTJfH5C84fFYP21gm3n6jKb7sslEFYajeORZ92v\nQejXk//rc37lvc8AKJv3qbVALocAo7qMp9ZjFqwfcpc8ibH+EWXqMTsK/3gNnTaOQO/I0LUuvQPq\nWUssVasmqQhXSh8mlsj8/qUPH+B0hP4HY8yvGWP+O2NMDlxYa0Vj4S1w8Tv98W+3oh9+VlCsx/E4\nHsdXHl8lfQiAPwr8JWvtrxhjfhmXKjwMa601xvyOb/xvt6IvktBOspDVyjCL3A4djx7PEhdGfvMs\nJ0zcjh/Or3miCn68dKt9Pk7gqdutT5oLDgvJp9UB3VSOz9slY+J2zdYt5oSzAzOlDHZZ4d270Hdf\nVMylfXdnWiYb931rAW+sbx50IrPGYyOtg5mZk104yGuwfZ/DwhXrTlL5IMaXeP0fAqCeVSTqSoR+\niYkFyFm46KIpl+QHhxuoXhUksWMflrMnmMLtUNXbOYtfcBeTxT/nzu3FG/jcXV+dhYQignTtgvDX\nv+uuKXjJ35WG4QcyEDmcJExH7WBJQpy6+5mQsdY9TMIFUaifBdXdZvegaAx/i7dyO1cXHkj0+0PU\nEW7EGM3c96aRRzgVnLf0sEc5+2QgXrsd8UXeM+z1e7FLz6hZJi46qruGXK5doV2RBa6we+ttGT33\ne7N3z/zkYsGNRF3SDxdkv+bmzh/75pbZP3Tn8SvDluFLdCKi2KUEo1ID/5M3NKeuiPid+YETcS3G\nLON56/bJtojIpTE5S1wa0UU10SgIftzipe7e9uMeZHOQVwc8Sfs3srJv/IwhdHMvKFP6ubu3uT/B\nCArvVx51/uVUnr9KpPAaeG2t/RX9/7+JWySujHFld/33+isc43E8jsfx+zx+z5GCtfatMeaVMebn\nrLXfB/4s8B39798B/io/pRW9tR6DzTjPKq4GtQ2zJaXafp+28EdSt6OdbCeMZyKSyCAmPA0ISrET\n8z3cKFedhfjSUGiiA/WbI/9due4ONvJQqK8DPM/lsvV2pNMK3NYdOxWiatUW2iYhkkGIzRoi+TyW\nWcVc2IPA25Ov3flvde5n7RQrRaDw/oT2ybE4GjI2bneMdy7b8ocvyIRsi5OG6do1cV5XHaGW2eh0\nxfDaRTcvT90vs08rzJkYlWHJau2Kh0+m0CTuMy//8RLvXvnuH3Tne/Jxw0Q1nJUXMJeNnakbzlqx\n+SYt86M9nbaT5X7CjWoKi/3IRoWvi23EayHw0j6kC48qx1Jj8ntS9ebL6UgoItkwRA8KUX1nqeW1\nMdWOGZ16xGt3vKAOqOSHkSxTxlt3rcU+4FZ1o3zh/r26bknU7rVdx/m33PNd/Oo57z9zx/6Ny56m\ncb+vx5+ch2/XLio8E/Gpj295+9HRAeclhxeu0Lj4QUOqVnS9nzDXc0+P7NpDzCDId5ZkjGKXTts5\nO8/NlyiIsZGrkywkaffWi5mIjNcnPaPs6zbTgULRVj8ZoftykcJX7T78JeB/UufhU+Dfw0Uf/4sx\n5i/iAtl/4yd+izHgeVgbPmgUPskML566G3l6lhM3bqJXS8tEvATz5MiotHSulse0mjI+UUGm7alV\ngMu3GVaVanN/ND5tyeTIVJ8fiFaioQY1Ra8XK2+Ib1UlVkpRBv6D4IoxIYGMUZ54U/yJm5hDP8Us\n3XFOVKXuZiNRJLn0k5hEE30MwFMf32gyF3XItTQhoxh235Ac3Uchd+dusUmuDB996MLjP1h/DYDV\n2cBMys6fmY6fF8ag7D8l8dxkerHsqJ/LXevWhdzTZzGe5OOeHmr28lhZ+gWD4MiLraXVteTybayK\nPRPhA27Oa+I7mbbMGp5cCyqdDLDWz1qEiy6kDyQLUrccVEQjsPgq4p7MMkKJj1xkgqNXA8gZLDtt\nmSk79bqRRNheM4dzSaiNKphOpwlGRdCv7zpaFeV+/oMlqcxsvnG44fbG3fM3AgINv0seMdRu0lW5\nwzzEXsT83B3jw7nPof4AgOTCspdx0QfjAeQxGmbuOryzlFwdHML+gc1qznom4lLceT6ZtCvXL9z5\nTq4HDhMpm28jNqdil9aWvfAbfj1SJ79P3QcAa+0/BH4nLPWf/Srf+zgex+P4/2+8E4hGz3hk0YQu\n35AdxSzDlInYjuPBwxerbSwjrIQ9R63q/ose714MkGLAbNSjTQfSUmG+6fAl0urLt9DbptijRdl9\nw3jsi+0NvUhOzarE+kpH7NHiPadrjiSojuKtK/CYhU8rO7J+8pbsE7X1zo5u1aewdEUpvt8zzLQb\nLZdYaQGMQiuOfY13XODDmvZKvXlTM1y5471NEvjM3YPLmStwtZ+X7J6465y2A+UbV2j0X36b/CAh\nk48/IrpzEcQnX3fFzPdvC/JbMQfjAC9zWJA22eK/FivJ60HQ5d6o4FjDUQgs6UNQES2v4geEaDB4\n1HLmRunDZuhAMnb38z3TXg7NJgfdb7qQTNJ6R/GWVRAzrdy1+teGQJFl92LK0Ks1vDaMEmAtly5l\nqHdrOs2FumvZFGpxXhuSZy5a/Eb5nEEGLfe6F4eh/7FFx7uPXeG2/+wXAUjZsvkHLi2zt1M+WzgS\n1OmVebAhJC1oz3RvhaXM3gaMRjoO+ZRenqa2ivBLKUUPPbU08tqNxF1aQ7tWaktNJ9Gh0Y60jRCy\ns45YCMifdrwTi4IxFhP2xGNILHpz4IGnyTY97SmPunaTkr5wL052IsUcOyGSUWw4hozqc9vBg9zd\nwGhnSBR21huBmJIBZDIznkWUl+7YXeSR6aU3ixReue/rpdDTdRWDmGrjoeNW+XLRjUSiIo/3p9zM\n9PCkwhsVe6aD65wcnheEenB+UBL2MqmdHoVAQjw5CY1eT3oU1jgk+E/kaPRRind6hMy+5373jQpz\n6RbIOh+pK7kXhSv8145+fTk55bOF+ukSp9n3U+rCnXtsEgqpXqX1nO1TLRbrCF+Am0hQ8n1+YBBL\n0hQGXzluuGiw9xJAWYB5I3l1gbCyncdW8NtsY6lx190RkAhWHngHrgP5J4rjMPNKbOmu7zoaKWR4\nO/cPD/Dnq6WH2UicpFZO3k64kyBN2VrsXoa3U8vqtWpNZwnv3ctsNlGFvxzpfwx5YCcOQiBeSvbq\nNa+l/fjZ5IZIRjXrLmGvGlWT+TyLpTHZubmwmWVkUu4mqIkEXd7FllJU7TEIMNpbKvEhut1IPVW3\n5M2IJEHphg6rRTi4N/TnR8Ocn248siQfx+N4HD8y3o1IAY+YjCYaqLRzdV7EtnO7S3UT8PPyao82\nMYOKNv3n7rP2oqFVx6HJGiShT2os41GQpLeUBxeidWtpEAQDjVSNbz4fmaJqsB2QlCLlTUmgKvlR\n2cyOKVXpbp1PS9a5HXETdeRrFxUY0z7Yspdz92UXq4LxRMXDKx+zdNcXBTGDmIH+/ugybIjlheDH\nA+lORKKhYrzULpgcGNTh+Dx0O6J/tafKZZXXVPi5Uq10wX4hD8LbA4UusE/c7npW57Q7d/37ZcoT\n8aH8Iia7UwEvMcTabT2hJpO7gNWRRdrFjLGcsss5ApYSHkJSSY/1Oxf9rApD3Oh3GGKZ79TWMCgl\nGBufUYxWKy1CgiXTTtBta2kz6V50Hp7gxpNtR61qf6Finr/ryaWxsLVLCjEt95crQqWmJzfPmDxz\nEdnnlYuk7oKO/sd4MzaeNC4k+nCdwEGkpf4e+qV7Zk86H6OCJ0VBoTTGK9SduQNPCuVJEDAquks2\nA7V1kUsRNpRiis42x1Sqwd8cC7R7apn5DBH0KprHUUO8+3Kv+buxKBiDH3jEQYCvCTGNBgrp+sXB\nhmrvJuZm4XEiOq1duJc7rVaMR6Zav2CQ2OU4Gta1PrNtWVdaLSo57KThA7PMTy21RF4Hf6AYXAuw\nnI2gmkGttNB6Hl4mhl+XgoAiS5sz4N6msp5zeeHCxA/lFHVdrDhTqy9+es60lZvS/oA3dZP/yNjz\nvtjzVtBYM1zyaqLuxGaLZ46Y+4HtVOK2gnAfTmd4b1w4+2k08qeMa5Hl+Wvy990L+XUbEkgCvbt2\nKZNNal4q7ZqtS76vMsKHQUc5czn3xQ5azy2ivgoGdwnY1+47rqItael+fpWGTLXQVVFF4cmEV+db\nrHL6VEzTpqYUaGj0eupeC8404kJCO3NxO2gPlGLM3iV7TnfunC/TinNhqOqTlMnOvSxH02B/miLp\nR+Y3e15L83MaDWzlN3qS7jjs9KHcnVu4L6l/DH+y3jrwUR672kI4S5mrvelvWt5uVCeIO14rzH9R\nrXilQzxPVTObTDnTZliXGyK1hjvjY8Vm/Xys8Cu3YL2WMc643nCQhP1gGxpJVpVNQy490VVbMY+z\n3/H8f9x4TB8ex+N4HD8y3pFIwSMJc4asxxvdjpIFCaNCynIFnTj2/tVIe1TwVaW/vfgta7ab4o6u\n1q5Z1NzL/6Tf1nx+hLmKADNWPmPhwrO27Ikm7u/aqqOWEEZ932AVHkeKYqo99OoZV9EecycPxnTL\nrpcUXHGF/cjtYh8rZZh+MudQOrjrU+/AQaYfYX5K5Ltd4JPPtdpvXvEd2crNdjfUvRyoh3P2kpvL\nlgvaO3dNjYxe1ld7hlwCMP74ABYy5bcZ8u+5m1F+Rvja7VK/8Z4kyzcd95+7c7gO5lgBslbTK967\ncsd4FQV0OxdBZYmLiL7/tme8d9HDJ03Die5tmFg6MU0bGzAKL1KpCh8eGkrpZbSjIdGOl3gFra+i\ncrdm6BSZSMjmauLR9O7Y9csDV4nrVvVvE1ZbJ7c2Hzw6dTD2idKH4YbXmgvBquRTFQ+Tao0nwtCu\nm2AX7v5/U1HafX7PQXaN/yRmoVq5+3Xv/wF3neYj7j9xv2vuKr6buwOmZcX4Vq7g+QVJ6yK2m7U6\nP8mELlHUVCxJPNe1+O5bj+7KRX3/T9kwk5xcIxKfbzK2ApN5xnKjrkVWdbwRHiQNDDb8ckSvd2NR\n8CCcWKaHlLo4Oh6NZJJAr8IWuaSzD1uetqJDi4ZbV1OauUBKwwwjt6jDJuC1/BRmm4ZOf1drMpKE\n5L4oq2lEKxak8Tsy303+/Kmh/0JuUEI84rdY5fvtMFIXUhMqQ9ZLSdG/TXgr5ubZxj2sLrvn6dqB\nhX593vFcL+wiucYKvfhR5c7n+nXL5sJNiPVVx853L+kkrXh+4cLWYfTp5FfYWSfq6V28wnwmX4Rm\nT/BUC0hWEu30ov/ccz576TgWvWb6dpvyRvqKY7tlkkicZLvkH03cAvnCz1iKm9LW7vpfNy2DFIbK\nyYr+UhX+HM5i99nzsxha93JuJIwzIWc8ipneGDp1Lfx5RXMlsdLlPZvevUCVJvYQlJh7qSlVllQL\nROp3LGpXH/nNxGOp+k8eu3ufdB6fKrUZyo5N4ebIbONTqvVtpnvOhV7NnklL803OW3PMG390Veil\niWgabTbATryF67hlyNRy/eHIrQpSi8OGReGe6/LW8V1+9WzgQ3Unlv0VVvPiu6uB7sbNhzV37Fai\noqsjM0v2nOp4W9MwCgv21vgP5sWm6gg2X8476jF9eByP43H8yHg3IgVr8NoAP67pVHwzQcC9op62\nMgxyWg6wfLJzu8O54JtPpj7TgwvF75c+haStYGC6divtXbnDDG5Hv1Jxyu5K1ge3imaJx1yruZ9E\nrFRQqw97Yqn9poLUXvUGXzuKh8WoMn4b9/iC/F7vtrTaQf5R4s7n58m5nThobLrfUb9wf5ctTqlW\n7u9ObtwO/slwz3Trfne5XtHJeeg2jQmXLnJ52p4xU5X9pfwVua1gdMed2Z4jld4vYjzBh5tPGlLf\nhbYzSaY1tzcUrfu736gMvyDnrDayTLW7jx4s4uMzcX/3/PCa70pXM9n5XLUCEO0q7ifu3PZ9xdck\ntzZVwbFLPKJWYDIzko5Hm+cR70Tdk1XHahQeRDJ94TQjvHPPf1rv+KEgwd/IoRW2ZNa3tNpB38/1\nvXcZX2/cuX1u4GLUdTd7QsSCvZ/w9Il2dBepczLx+Ex4kpHhR4BM3jEFWUgG7S6kVgi/rUvMkT+y\n3zAR5+UlObnm2TH6SdlQW5cGpacF7c5d07Pyhu8Jn3FiIj6rBaEfVFw9hIwn+o7ut7Qyu9HD6u8i\nax+e+087HiOFx/E4HsePjHciUsDgILFtSKHawMQEhFIMtm1JfdTmp2OayUdBmgbFNCURUy2fTAh7\nMfK8Can6iCddzHZ0O9oTsc3MoScp3Hd13BGqJ957HUGrPSHx8KTicy9mpMdIIwWiJIo4dnwuxpTR\ncztw28KJeujPzt2O+XOzlPzU1RSeziOCVGjKXUU2d7vN86WrZXx7diDxnLnJ2bdPCWt3TevY8kRt\nz+n5KZ2IOwivcBt/jXb3Q/dz0+ILltxWbwhn7uf5ac7TM3fSE8Gq0ye/JQ6bBjXfOpNkWHTGxN0i\nPD/CCCMwE+bhYn9GLY/DEktgXMTilS1tIeafvSeWxJg4XtguYCu5umRfUiuCWPV3+J+o5fZBx7Nb\neXR8Q6hJEkIVmhfTc4pQUdNiQREKcxEFdJ3wGYJSTxYxF5Frz5rmjl5is71dYKSy1caGaet2+vuF\n+2z8esOPk0MedTHj1tUn8vOY97bu+cVdx62EgtdFy0H1iCT3+MbCXXeWuXs8n3jkwqywteRz90ye\n5D5be/SnmNE/k3itcDZ12pNUrqBo8wzTunt0HZfktVrcfomvWtlPO96JRcEzHoWX0cU+qV62pT+S\nSkrrsPfIz93NtocDQy56teS8bB4QWve70ffwe8281CdW9dmcG1rBTvPShWpx0R3rX7S1hVBmrQeP\nXmHpYdVRCTKa69+TJsUavRyBYbF1Yd3zp1NicTfszxnYuQcWTd0knz49oZCl+qTtGVqF3bmPJ+hq\nNnHn+O3gjFAs0fEuA0mwVe0dwRO9NMmUy8/cBZzqZbzerWhlynpW+HRXKnKun9PMXExsX/6QpVIT\nLhz02YxTPMnKXQwp0dwtyPk8JDkWr5ueSXbUm5P0+NTnm9K5rFOoBcLJqobbRnJlxRMiYStKmXSa\noaXcuX+vjSWXQ9aijng1cefx7LIlkmLM6UsHCW7fb4nmMgnabR+8K02RkkuL0GtbQj2fMZP2o+lA\nRednXcIhES9lYfHEu6g6yM4l7COMQfVBQLHWgjW2D7VGgyGp9Pokktff35JWblP42hBQnUtQZpxy\nkKxaHE2YFkoVTmTGGxgCGeAE0wTUXTCnPe/5bqFePTlQXLt5XcyVPrQQSYjovh45dJpPdzFrAfHG\nzkdQj596PKYPj+NxPI4fGe9EpGA8i5db5jZEqmsEAWRixiXzkLp2y12XdixTFyaOxoV9oc1A6MZi\niLCF27k9k+A9deveaVUwU/jfqPhk7ZqlQoV17lGqsrlJdpzKb6A6ncBbtwL3mWDQYXOMgokDH7uU\nIGyYUjx33z1NTvGkEZAhBeRiTeS5c69nFm+l0D+NiATHPX1PBirJnMWJ2yWGDwpQO7W6SQkkZFLu\nc7rCsfJ2YsM8nc64/Z4invGGMnH36MzviRSKd88WbBTdLE/dLjc/y7jYuiJoXbVMT0TsGhY0Yj7a\nG4t3lPlSi7Q4qwlP3bk/C0f6c6Vj7Y7lnbu+ndlQqqV8rYimHluCo0P1pqGXavFdvKH53N3Dz/K3\nGOsmxFYErW/PlgSRXMf3M3K5S0/nFYGe2V2UUctJOjZS4gaOJpVjHHE+kcXafkqjFMyUDamkzgoh\nTIv9KX7qoqlg59M9oBstVjv2REKyszCiOnXYjBsq3i/c89snI/VWczmdcDrTvBUeo8tjAhWrjTcQ\nxFK5nmUMivo+7EL2maKivTvHdGzx99Jm8DpeXYtJO2mZHbE67Y5YEdtPO96JRQFrsI2h7geM+tX5\nGFEpVB1rw6lkrdMwxorWbOXFSNLg6YW2y5ZQEuFBUDNVWuHZhkDU6EWttCPI6BVGeusAFHIuOthJ\nncmUa46KfamOe9+aB3z6zjQYGdbui5FZ5x7SWTISyZjWmwqCnX8TewyfW4/21J1/MZljRZFNvDPd\nkoHY/Yi5mzDKFcueTfFHaU1WJXns6g6VlIWz+iWRTHWzcKTTS9MFI4fQQWY33484qMuzENBp/jog\nVMpQ5x7ZiVOAGsv4wbVqv+goUPdAUPG8fUKkvHdxWhPei8EZD6y1QAzbiDJ1dZBjKL7uI8LOrRSe\nGR5MYuzKspS2pbmq+K7nXrIoccd4mlb8ia3UjZKEUYCyxfMY71ZK02PDjRb+cwHH+jd75sdz7+FE\nEuhpGbJJJQAT+IQSlBk/cQvB7MRj9lpYAG+NGjFY4xEKhxLP3LwYDyVV4773sO8pZDD8zSohUB1h\nHy1YLlz6EGr+llj6ufuuZZhT710KMu8i4tadz/JFz7NLN58OUpNaDR515p579PINMwmrvL0vIJAQ\naR8xBo8w58fxOB7HVxjvRKRgraW3HfgD2oypsv6BVx9NOzxp3bdZy6ls2tZL7a7rkEuZhcQVjKnS\nh3qgFR+96EJUcCZKBY/2IjL5KdxmKxIx3G5Dj6JSNLLIiO7dTrnRGjoOlkFh5L43xFP5JfhLpnKH\n7icp4UzFpUAmM2YDOnY5FGTS4mvrFv9C/X3p6aVjiD1qSJzfwOBC5mQLrQhWcbynlobfKW53+TzP\nOc3cz6/ChK5xO37jfU6gar953vL0WgIfN253Cc4PGO1WUyyoG9BHPZ3vdpq0rTlaI3jSQuiGHaHY\nlV3pE51Ix3IMiF+5D997dwzSPPxC5jTNXclBJDazaxg9d4zP1nvG17pHSc1074qjxS+6h/d+NafT\nc8+yObkKnj4eRpJ8rApmjWieCu2DpwdSFVeTZvMQdptT8EUeKuqGXSOvTLmHvzwYdvLSHEYPq+du\nrAXZCI6jhHOmAZm8K188L/CE+mQ5YjP3XM+jAauUwChyrceUo+BybSzmmELXHYWQjmEzIf6a/B4a\nd76L65JPccXsPPf4YeW+t+Me+lTnfI8XfjmTtndiUcACnaEZfJKj4coWPAmerm7tg7joATwpAAAg\nAElEQVSHOYT4oXvx7i4lxhHs2OzdC5TGFSo10IQNhyPtsEgpb9xNe565D9ghYvBVJ2ijh6rv2I8M\ngQspq22NLBjJQk9/51MKeLMIemKp9FDsWK9UP4gHfFnYd6kLk0c7Z/DcJL/ftpQSFonnBanAWcbN\nd9ol9DL6SPuOceu+t+s/ph4URl5tuV6pviAx1xt7SSv/wcS3HKTXeH33LU5nDlPf/8Y1ncBemw/U\ncSgTYtnF11GFCdwi1Pdv2ctlifIaAncejXgk21VHqJB5aDyWmbuAwKQcRBpo9h5riaquB+W3u4aX\nO3duofGYHLSoW5+PxBW92PlsZORbf8+Fw7/29HP+WKP0IfIwC7Wq2ydY417OdTMj2LpFoXH7B7Y5\nsL4XnXjo2coLc5YdsOLYtH3FnURqb1f/H3tvFqtdlp93/dae937nM37fV3NVV3fbbSc2mDgoICHs\nKCSAkosQQJFQUKJcAEICCRG4yQ0XFkIKICQGMSlCih2iAIkTkQgIZHBsJ93toavb1V1VX33zmd9x\nz8PiYj3v6argdlWloVNB5y+VvlPvec8e1l57rf/w/J/HPbMq2RGyZ+9qbrnfrTEk2px6z+lHJuEH\nHIhSP7/yeSqpgYMiwuyUz0gKbO1WrzZ017sz0KrUG4zGdKpU7EqI9EzWfs+81NjiFoW2ySlalT3z\nLZvePUtbGp4ODkqdWKj1d5/W7sKHO7uzO/uYfS48hcEMVCantwGlePbWUQKqFgTJwFoEEuvRijdK\n5w7tpBMZXHuc33cr4+zFlHrsVtr1TcBu7Fbol6qMUI1LSt6yS0sOC7fq2tDQNfLhopZUOIX5ZEJ9\nIwpveS6D3WDF2dA3Hq3APUXVMz125/a6OS9EfT5q9pWTDxiJF+L97hmpdq55+5BD3O73QrRcx94B\nr4+VpS5jVq1zBdqVoW0l2tK2VJvnAGxUvZiPYnbvCs68rag9EcskZ7AUlgE4E+jnDcGSq+iQjYRh\nomQgzJycXLidcB64pFt/bYkT9/Nw7abON5drJpnzJE5mFTu56Fd+g3/j7v+irtnduF3xelCDT9HQ\nCENys1nRCxL8qF2yFdFMYUs6hZBF5byOP7Zr2B5KDGZnmW4FToqeEBtVH7wb7M49s7nvulK7KuDZ\nVpR9Scph4J5TWfmcbd14+p7PcufurxYkPn/asLnNLnrwkfBh/MNKXIuoJrucUR857olvtBsOt86r\nWocp3Y26UbsUb+S8iXTrXNAPRy+YikQnXj4mkkTe4x2MpnqubYd65nghD8tUDRtVFtq2YNi4e7ro\nN/TyUm+6NXX3g6V4/3/FjIWo9WlMTaMXs2tjtmqXrdY1h4Gyxbueq4VAMW4doB9ZoifqDfBLauUf\n0rqkkGt4zgVR4Qb4QKpCQz6wFF9ecVOTWukWNiEmdH8X1Q2hRqkN3FNpbMRQuvPlQUMqZqLztCWW\nGz9aLBl2ylGcuAl9uo3ZitZ8et2SC7CThgd0D91LE+Fc0ny8ZBA4Zntt4My9YEv/holAVLubntPS\n3dNzkcnM64JKpdBxUHCojrr5ZEK3Ubycd/iXbmIF0k2on11ghNxbn0S8rF6DamhZ3LhQajU0BJ6q\nEjfq9OsSdiKvsbmhqCW2ulpyw/4616zVd1BuxJpV7LiWix8MlkvNW99CKM7Lqvwu6cz6ylUf/tfH\nz/nRxl1DGGdUkXuWD7wRRoK8rzcBWxGzLh7omX31nM0e3VlbRioj27OBUe5OfjH0jNWnUlxK9Sns\nSHo3nwq+iwy0xvDmoVPlGqlSEyY3XL4nUNtXL9m9rArNWYPRy3tZw6valNrM3dP03GAlW+CNMuyN\nG5fExgxC1pqRR6UF16hdfmkG4npPJlPTq2wd5A2lejBMN7AbPhui8fuVov+3jDHvGGO+YYz5M8aY\nxBjzhjHml4wx7xljfk6aEHd2Z3f2D4l9P6rTLwH/JvDD1trSGPNngX8J+H3An7LW/qwx5r8A/ijw\nn/9WxxqwbP2ObhveZpAX7UAkPcAmKKnWotye1pxoR7iauzXt1SZmM5GmYA0bpXIX65BQ0NfRkLAU\nU7QvfsUmapnq5zrJSSrxIKaQSnymGfvESn4WcmWHYYf1dIwBghO3yo+mCal66AlT7Ik73zgQjmHU\nkQjIdJKeEONWcz8ZE7/h7m8RC9rsrWlWbreOM5/uVPdRJbSllKXG3i1c9y25iOfpEfe0K7+fhdSx\ni20Cf2D0uoMKf6FfsZWcu1m683qxIRflfNJ2XMsbmZmEyHP9GgfeGdfylibifpwYy3jnknJnRceB\nSGYuRobN+b6bL+dC4izXwmmcFRXdXtnaL8h6eUVdQ67O1R6LZxW6CfL+j1yP2LzlttqjxSGZPMid\n77E4dN9Ji1OS4kMAysrxTMSvBdxbuefUdGfU6jqNxj4odEnbirx1u3QhvcpNv6EQUcFgDVaZRs9a\n7MwxaGczFwb04y/x2hM3Dy/iF5hfdCHhRbSl0HglbcOlcCv3jQuDh8MpB7lk5uOOg8B5HuNRRNQ6\nj2W5LBnpdV0r8d1tG1bCp6wHw1oAv4vmjFKcDH3YMN7zCH5K+34TjQGQGtcjmgEvgH8apysJTor+\nD3yf57izO7uzH6B9P1qSz4wx/xHwGCiBvwp8FVhZa/f8t0+Bl36zvzfG/HHgjwNkcUxYdwy+xRc0\ntvYDIlyMtOs7BnEnbLqQRLXpXvXGs3HIVPDULFsQKoYK7yX4S7fbbrKBjcp6JlNn2SrA1+5Y7CJC\n1Y3zwicQtHdb9MSqPQcqWcb4VCpJJl6Hf+nOPRoleNKkiEKwaszyhfizfkyo447Dp4Rq7PJnNV4h\nj+WRmKajFc3M7VaBeUz5WJiF4Rw72+ddfMqNkJza+eoup1UkfuQNjMVcNPZfJwpcHsC7eYZ5ph37\nTbcTxUvDIBJX3w8YpCpdjK4Zco1X3bHae03iYzh/VFKaPU9FynXkKMbaVUOukuSzTUm1dj9f7fMP\nTUOx73ztDAhqnPoBOyFLHReEdCRW7rO/fHDF7KlL5jXJC17t3TPdXiU0Kv32FGDd95eNKwFn2xtu\nzlUijioeS48xtme3zMde27BTy2vei78juSZWbiQ3A+a2JAkTQU49oS4DP8Pec3/36n96wF9//RcA\nWJ+NKQQPn7eW8rm8m6njzgg550aM0GXd81yiQ92jgU2qvIxNSUOXVO7kNft9Q6152G4KdnafzBzY\niCXMNNBGn0ZD+7v2/YQPC+D3A28AK+B/BP6ZT/v3H5WiP5iNbZ+1mEcB61clI7+KaFWDzoeIciOK\n90lAI+2/PZVYue7o9jh0v2GQTuDVoiYUUMQ3ln5P564E4ChpGAvc0qUxG31eZw1Dr8EeRXTiSvQV\nitSmxhPte+kNFOrEu/QMi6noydOERkkws3H31FbXoJr/zSJmrmReutwyyD2+mLpE143dEYl3cWoT\nUEt5WxlisRn75UATupfpTGFEN4rIbzT5+xoWSpixwlMdv39rwS8FDrMQCq7cFnNmkRis7VPMe+7c\nWZxw4Qs4FRe0e0owVS3OO0Mdu0XBlkvOBKCZeCGVMPxdNeaFQDZ7Tzanxw7q0fB7wv3kPgAj1aOB\n7zYtL1UBWFzlPP2d7rPp7j6rhVsIoicfsBZ+4zd8w5EWiGyrDSRqeH/rFoL6OGdYuhcytpZBbd1e\nMNDvVLmS8E+5mlH67mUzjYfVFRkLvl50TxD8ocnx7rtn/h//8+/x1tfdgvTtV2Le2rmxfdTfwNKN\nxfqFu56bucdBqF6TXUGnebMqw1tm8ja/YiKcTCI2Z2sNK0H2V1FAJN7Qm2ANkq1vg464/cHRsf00\n8NBae2mtbYE/D/wuYG72lDPwMvDs+zjHnd3Znf2A7fspST4GfqcxJsOFDz8F/F3grwF/EPhZPqUU\nfYBhQUQ7K0mXItGsG9qrfSNSjxoDiYqaNHQu8b58PAs6dtLLM3WJlULxK0vDpQQ0wk3NSD3rsUg9\nm6Jlo4Ya2xaE7d4t7/AFYTVNxUyIts5zxz1MR6wbScpjiAt37rQP6dduFY9Ghli0Wv7MfdY0C6I9\nCWg5YzJWOHKUEq7FBSBaskO/I1wIDmtChp27hm1SkSk86iLod+4RHkk7cV14LBKVS3sfJOm2iQZO\nUved6/cHviiy1V0qnjQTYOSBZd4J0akIboY17Upy8FVHd+ju5U3pSz5OKwrpJoTz2S00vc13PJWq\ntjdeUirRaFXqbVqPwdt3HHpEgoL7QUmgkmrf9Rh5E77+bQnoP3DYA14/4F4lFe/5hG7rdvTXdjCu\n3PUFL4l74UWNGiYpryyhpPdGa8il0XhlYkba/c1Tt3O/Ntrx/kYJZr9Hzh3GhJQSjPHFJxH6Fzz7\nZfdsfvrbH/BMJcTZriY6dp/f6+4xKBEeJe4cXRNyKvx4fzhneuWu4Vk8YITZ8A5ixsLpl9KmqIOI\nA4W/z0uPSF7q85uIYi+YZDxCJTRpNG6fYN9PTuGXjDF/Dvga0AFfx4UDfwn4WWPMf6DP/ptPOpbn\n+UxHC8z1kqciNImCHZHvYkcbb0kUGzexoRNIZaYJ5vspD0Qq0QYzYrn29TRkLhWfql0QT/WdUjXh\neAMCmLTpigp3js7f3QqpBmlN20oQNBS70zRiIkzDjfVIwr2gyoTec27ravcGVnXotNVDmRYYKf5k\n445BTEFN3bCnNxrNRXtendKJWcr4I+yJ8haPApZqhx75HvlCmoHvu1P0xzN8KVbdTLbY3lUOhvwx\nG8nSj75yTfW3XZknCNx9BA9O6WMXXgR1SiP8xpQvMD2QDmIdUyq+Dl5z9/S6v2R7JWxFWlGrR8Of\nPyV8qHHxlpiR+idqdbtGA+EekxL7zMSOHYcLCsXG1ngMepZxqMXSWN4I/1EAkmiCeeCOO8Q944Mf\nAmBelNTGXdNg3MKavTniC55z26+3W0RsTRyMaTPhCR4X5NbF7VvfjVVvN6Sheg6aAE8LWWQM3Ubt\n9ebb7npXM7avfwOA1ddh95I7xlv3vszqUOzRZUKr+ZJJqn7aV/SiareBJQzdYvrFaMO6FoFN3IBg\n1aOZW4y6qwBEqd+M5xxJ+GY6yhHOjia1TIWveOEivk+071eK/k8Cf/Lv+fgD4Hd8P8e9szu7s39w\nZqz9bJnJ/y/sR77yFfvn/8zPcfj2WwQSeNjkj7F/0e0ev7D4P3j4192u8huP/yJfWrlV9VcTt3sM\nyx7rudU+bUJWgiiXlSUTzJc2pNp7EPIBR36HeofIbU/bqSHKHzBCiq3NcEvBNRK89mf/6/+Be7/d\nodn8ckm3ddDY6z+34qu+i5a++bc6XjTvAjBxl8aLvmclWG7oF/TNPjwYUGmeieKkpg+JtGTXg8dc\nHlTVh2SqguS9x0I99LX4ESKvYS087NGDGUjB2G5LCjUjzROfpnffH8tT2DQek8RdxLYKmUhVe1n5\nzLSzrdqYkaeqjHgvJl3DTrjxh9sVKzVgPWpr2Iv58ClMz+zf/z0/zbPM7Yjjh7/CmTAXsQhivhG3\nBGrAsvHAa0IC7hZzYmEkomAgkxeylASbLQpyHWtcNXwgD2IoKraqdrza+zxWuCH5DrYT+AMixvn1\nP/zj/N4LEfwcznjn538ZgG8KNTo6e4cb8Ve82sVcHDnv79jGhOoqPWkTSpGlNCJWCb0KTzgNP4mo\nW3GP+jWx5mQejzAa28ut0K/rkq/tY+hdzbWKfuPO3uJMpsbHE+fjxfPLr1prf+KTHsXnAuYcxD6H\nb45ZxAFdKPfag//wH/86AP9aC3/q2mVy/2D3Y/xv4TsA/D7BYX95mNMIFFP2DS/5rsqQBylbvSC+\n55FaNyl2g4Rfuw5fdNtB290uCpuux5O2YdMZut65z4EUgQ5+aMR0D5WOFvtIg6/9npJ/7Ffcy/To\nSwlvf8tNoIdqp56WG1oRfeRtR6D4O6XCiGSkFI9g6gVEAs2EfUhR7yXlIzyFLtPeUCmzfKD25sIM\nTDu125Y5hdirOno8K3fd65iLGj4K3ViFNqT33bFeylJQ7iMafHrfXdtpGJFoFR2JxCSvOmKBVkc7\neKqaXdNbPlPOW+O9nRfcv3HX/CQs2Elc5lsSGD5oDZfqP/DLiIup+/mNoaAK3T117UCp0OtU+u3b\n2KNR7ufMr5jtxWy8nr5w5/imX/PyM3e8S/19uon57xYupPj3fi3h/CsOsPQHHzzgL3nuc/PYjcV7\n7RoKUfxPO74iyvnqIGLSuWsr456ZqmClcmNt7xFIuHfqb7EiLDZ9RqxW81PPcDN3C1y/dcf69TBn\ntnH38WjoaJo9pH/A9O5Zr7ye7GbzqR7B3u66JO/szu7sY/a58BR84zMODzAGVIqlDRb84XfdTvt8\n/pB/8qED3iyHH+WV4U0Ayred2/p67VOK4urplc9i7BJVi63FU5LlYR8zUsXAiF7stGt5KLbFbCjB\nE1ff4FOIIry1NZ3k7HO5eBP/iD0bjA8MyoD/yAt41Ehu7Pya5cjtBPXKJUwPxgGeADvHxuNKHZpT\nb8dIK3us467DjKjdw1MHjuVeb8OEoN4zGFsSJcy0meOtDLmScjZ0jWYATePj60vJEILwEJ6qNtO5\nTyja3yGJ8aXsPRqBkYtahgGZ+AZG8jpeNh0X4mZ4BUuRO3zDsoFu31zIp7fX2inze24Mji4b/qZg\n33MlKKuoQ6r2xPGCTPwO6cmYl+QBmmDKbq/sPHNfXt8saZWY/nCdcTAT0/blihcqR9kWNtLptLn7\n7jU9yuvxV9oL/h1hQB73P8Lx2n3nue9C3mDZcaPnmK3hoRKUbxUtTFXl8aeM5N2kGh+/H1hrHt4/\naPHFLp1GKZU82TeOKy7ecxdSCcK8etayGjkPOl1bij2yanCtAwD+AEX7D2GXJBh8z8PgYRXreeV7\nbBbupTj5xZanvQuFoou/Q6ZS3pebtwAoflvFTpjz1+YrvNjh3fuyoV9rAfANO70gpUqFze6KPhSy\nbeNTDW4CbndbrqM9t6N/SxAbqBXa9zrMfqqbgCH4AID86ZbkO9KurKdsCkdP/tbhnkFqRqQKyG4T\n8pIw8EPk42kx6dVNd5JOqNVmHNQBde9Cl8l4yiD3M+5iKuk1Hipbfp6tMWI8Mm3DXhzITwyhaNZJ\nW45Sd3/Rwl3PqA3plF+Yp3P6E3evXuHT496w0JtjrTot1S/ed2uMKOyD6w3J1C2QwfbqlqXoM1nS\nEIiAtH99zPixCHVUxvtilVEJ+2+anoWIct9OJ8yO3P0tbxImc3dfs1ZEuA9aimfqiZnnvPqBe0mf\nLwounorgxGsQTwm13PmurSgivVR/o+DxH3EL/Bvv/M9cte7adtduwVr6lkHdql0c8UrujvHKqylz\nIUGzk46pZO6lZ0y1DngQSe9kFN8iXeMqhbE4S+uA+Zui+d9p0bx/SfRtd6z3/Zp9E6fluwtxb8Eb\nfrC9D3d2Z3f2/zP7nHgKAww11iagPgFz/h2a/+q/BODXXnnIL6/d50HcErZuRz+rVFc3Y9LEuYNZ\nlzKIvjuaj7BjMebmHSu5YvVU//YTPAFBzMjnXOQWU1sjHhMG8x6bQgInqh9X1+/g82O68qd0X3N1\n6u3f/AV+efQtd23Xp2y0wwbSCZyyoVNIkU0K2l4MzX5APBEnYi8XvvUIG3cfXRri966FxHpgBGft\n52NSXXMQSXL98oZAu2oYeJTSQayLDl/nMG2AUSWm37pr8GaQqFcjCMBT92icepjKHduGllaubaJ+\nEN8cMBKk1vy2U377IC6AZstfvRABCJ/ebBbTqHtye5YyO3LnOdAueHNiqMQ5cTj26awbz1UScqNK\ny2FaUqrjdSuuxYsu4/i+O8hkfUD/lvgyLmt+7NB5Xr+w6wmFQ9hIK3TmwUZJ0MvQ8HPvumf9L94/\nwFeY1gvm7RcGb++M9Zb1WMCxNsVXD0Owbek19rmSw5NoS+85byv0I4zvDhIGLbUqLe3EJ8/dc08e\nOIxI+uEB/itKpD8pSSQG03b9d2njwMm6A9hP57ndeQp3dmd39jH7XHgKhgFjCiCFnavF9vNLXgiq\nOv92yatCxFG9T3vPrbqn6v5Kx8fUI0FO2yOSSDwF0YRV5qCdcXnKqFWiRmy4hXnB0UwkmlvDvFZZ\nj45XRi7J+SKKaB79BgDHYoa2w0Pa0nkP4buPuYn+LgDfXF1RSd4t8DvGjUtAzYWnWKTtbalos2g4\n6ly/vTXXGOlTLIXmy+J7lIIzN/WIduy8oql/ctv81TcRnnIC9xq3ezZpSP6uy2UkpmGn5OkwCRj2\neoaTnpmSiv2p87DC3QEcOPdo4s2wc/d50M9oFm48x9UhbeTGMOzVRdmviGJJ+m1yfuiHvgDA4dOQ\nvxH+CuBKhJ822ThedDQP3bT8YQb+L2GTT+T9zDyf6sDlT+LtJUYaokfDksC6Z7npcvyxu6Z9w9eb\n0zG7tRTGXxvx4Npd0XzxEttviZMgfo/2zO2mrwfigugNqbyHe/nAv/BIGhHeNZE80t1D4UIYuFYJ\nOAt8viRG7OP5CfNaRKpxwiSQKvjg5tsu6ZgE+4T3hpFx3Zcrcoz4MOx6yf2ZWMyVU3jwxSPMO25c\nfvK04Z0P3bN5z5R0etYGMU9/BvtcLArWdnTNOZE5wKolN3/nHsFIrcc/8jbZ15XAi1/i+Y174CcP\n3HdNvoPavcTrycA0kg83eKS5G+CL0JCUUtNRhvmgnnGmjLXXJkyUXFrEAZfqhhvaF4TiYxNRM8vL\nM443jsG391ac/Z/uF+f5Db16A5JHlhPffX4hd/iNeUOgcx/nE1ZTUbWXIezJYArnDi/9Hl8Z8CSs\nWYhiLvcqBhFy2GlAoL6Dre/c9vWT5zSdWwiu/QbbuonUFdtbTcFuFXEVuYya/8SNSXZcE+7UvntS\nEAvvH497wn1ScVoSrkRIuaer6zMKYRqsl95OQPvllEWuxXe9Yd9L/0lWNXPe+IJ76Z+8WBGICm1T\nifvyZTh0WDGyNGG5dS/W+OUac1PqKAPnjYhoFoIor3oiYUGqXUxwKg7Gy4T2vtx4m/L2F9y4/Pw7\n7iRHhc+F7777O37sNYz6WCaTN+k/cKHEGzN3ju/kBVaDbMOIswdu7F/pWqYi1yn7gKnAZ3v6v7QI\n2QnenoQhnrAq4zpkpUV9EgYU1+6egkaiN/aAkx9y5/v6r/YsZm6Ug9WAL47Jxlp8I4q8fj8+v7Xd\nhQ93dmd39jH7XHgKDD62OWCIL29JLJIHJW9Jertc/ThfeXlP8/WIH9q6XdGOnAs/nkyohfY6XtYM\nE7cqR03CRpIFoxcdS9WsAzWyrO+tSS+U2HsJJoJPX3sdC2ESxvfuM7ly3Uat6vWrq7cIp841HpUG\no3O/Pfd4ogakg9OaldiK31bCsBrDPSWUirnlvkhXN9OOZN8LP3W7wWIZcC7ZuHhtyefSRqwmtCpp\nRW3LKnKr/6RwpbLg3gnJ+XvuOjcNRrt4GxkQR0Q1MYRybeMH7tqGOqBdiBKuiehnKq0Nhk6yaPN6\nTDUX34X6+MspZNqtq/CGQOW06TTgvq6z2ORcfsokV9EkLJUwOzo64QuiW0MozSo0LO658a79gFNB\ne3vbMZKacx+FvC7PKtYzMwcZncKA4yEj6dUFeX9CqfAoKweOhTz8oz8qbo1VwhMxab88JLy20EOZ\nv04hicBCjUij0DBTePjq8Zgfkebl67PJLQDn1IAn7oyR5gKZZbLvKI13tx2jTEsOhSPBu2Z64I6X\ni+X75TwkEJT8d732gK8Lvfus3qFLIqdl5LnPzz5lhfhzsSj0Tc720S8xyX4C1Mm2+0vvsn3hMu7P\nf/Jdxu8oJHi6xpP8dvtAAp2THcHzPXCjY0jl7tot/pUb7LYpscrs7+vu3npCJ7ERbwlWMFl/gDYV\nGmi1Ix25Y+jXPPrWL7DKvwLAJH7E06+5RaNcjXi+7zRsa9KNziOsu60X2FO1J68TfEF343aEH7nv\njmrBp8Oe5HZC+ASVe+l9O9CJ7n44mBKKWKTZk6x8uEGlebI4pFUW3qtKAuVg/LXBn4iufu3uzRx2\n+EtVKiYlg+j1JwcV/p41e5xDuSetkchpDo11uZOuTxgpp9ItXuKnxEI0bFZci8BmT5ryvcw0HReV\nm/zjrsaKvWksLPkyKxirn2W0Kwm08A52ghUaaJr3oAx+I8hwYDsywYAbv6TUw+xL8AQ9PwpPCA/U\n4i3yndFwwT2Jt1x+6ZCx4M82eMYkEjRd/SemSslUfrg/jLnR5/fbDaNci3qYOEQY0EvJLL4J8UI9\njzBjkEqVX/v0qsZ1ccIgUWAjOH5cV3RaV6JozD1hNt7a3ONZ5kBN3S4g8gScqj9dm+Rd+HBnd3Zn\nH7PPhacwDAN5WRL6z0jfVZ3/dMw3M0falBQ99M41rOc5uZiUTyfSf9i9xkb12uS8x1cTCZsZhdzd\nuo4xUi7mQjRho82t98BJii9yCz9rmahCMX37PtGltBqU9Hm6hLxyGf7XN4/5tcwt136xxJu43f/q\nw4h67HaNB5nbjafHhqGQ3Pv9jqkadMIwJ1q6HS2fum05uB4RHAhye2EwgSoqzZzkRF5B2RFncvkL\nl3ydv/GAm6+7e05sSTnongOPWsg2Gxh8JVjjA3kz7QH1WF2E3pzoxHlQplswHOoYpU+sMfd3+9Bn\ni1mKHi7aEclLWeeW6p6rrnzpvXN+1bjmofoTMuH50DGqhKAMVzxPxZmoMCgJe1q5ycvMsFAraZR1\n+Lk7+erIY1qJ+CYRkrCccqnQbChCInV+TlufZ8ICNKYjlRd5IHKepb3HM/NNAO5dNNSh1MZPLY2v\nzkZVyU68LYUk3Zqk53V1lPbtmKVwCl4YMx6LP7F0ocj6uGek6/X8klSVpKtJSS+4uRdVxEow5nIg\n694n1JycjWPGOt70fon3QvyR4TWxEu+P17/l0N/a52JR6G3Lpn5Kar9Ir+67+v0lsYRLPf8eo6Ub\nyND3KA4kCCr9wSgOGV0I7594REpMWN8QX7hB3doav3EDWHrS1jsfsdkXKh7nhA75P4IAACAASURB\nVOLGi4qIXsw11eMXxKKGbxWT1m1O2bpBfy+b4j11L4opIZEC1D0G2lyApJE7yegyJFqIBPYqwZd6\nVdQZAuHvp2uV1bIQX6CgcigJpJW5Gwa6tUQ/5tEtLPfauDzL9XuPaSSIar2WTrmRqtiCOgZ3JuFM\nDQQTgZEmWU0o3cLisGHyQuHTtMNKbWjIfOjVXakxTvIJa4Ultg3oxUfZjyumnkpoLx0y+o5zZ5vO\nXcP3Whr6wdIq/l56GXtZJKNrG80jTvb8mUPIJlbZr49IVL6M8p4hFrOSFuykNfu0BMsoJlNlqCu2\nhL27piZMmWTuGKlUwfJ4zVca96xPfnTC4rmbF98uB/zQPb/ZgUSK2zmxxGr96IgycPf/hTZgkCxB\nfxwhZDqpcM7+usObKU/kj7BiA0s2AYVa5kN/jN0T2tbavHxLJACUR8V47u71teJltq8+dGP05BCk\ni/pp7S58uLM7u7OP2efCU7BDRL97lX7x6ySCIB9+8R5cuR3v5oXFUw32UeZxb+P8oCdqE39wNCM/\ncsmUg3VHWcnVNjErrfzDwxWPQgfumK7czv9hZMlErd749Xf5FuhY7NyOHS+O4ZE7XqUFt6tnDNqZ\np6OAV19VU1Xgc9G5z/3M5+nIbU2nvfMwnnk7Egl25Mcxp43qx8mGSFTlN0ocBU9rXhiXcBrttrxQ\nw0zmjZzCBuD3BaUo4iaNo/aK7x0yeub+7jLuHcc3QOQxDHu2mJZEfH+JeAKbasp67K7z5CZjPXFj\n4ZUlzdhd1EudTyN3tZcozLY1xGoIetyfE6rKcLWtSTz3/BZYfO3ogVon2+/hK3RNwKDkbzqNmOv5\njQb3fG2wIz5wodbag7kSn1dezrHwJOU45ljiOG2n5NxoQi1Sm9EKrgQsG3two+z8kakIlcTthGOY\ne3CpMR7erShfd7v02x94xHoQVjiGkyzlfuKe49svHTKSorkNYzYTN6+PO9iqKS7rnfdbHAQcyoup\ngvVtYjAfQXStqltyzUEnnc5Yitmlpaid2xFPRkS1O97ct+xE3ZZlZ0zTzybS9rlYFIa2YXfxlGz9\nY7RTpxtw8+uX5OfuYbx/co2p3AudP7nh4fgEAP+Zu/Ft85zDZ25wnoeGJnIuXOhd8/hcnP3XK76T\nu4k+GdxL05mBa6uYrfWZLdxkK1KfwIoI9fk1nYA6e7WprixZiwzT2g3tCzf5Z0PHjbLyVdjASroU\n6kvgIoEDV504LkdcKcdRmJSRMtHnK3e9dVXzwdrdU9ZsCEP3Ei0jj0itj+2DAyp1fk7Ecbh5vKXI\nxIqUBZSlgnzb3LZGR1V8u1hsNpow85L+wn32eGTwV3rBDhpmhWjkRzG9746Rpe7luLo21ApnXuSF\na0EHvJHFes7tvnd0yD9x7cb8b4kD8bLof9NlwessjcA2edniVe6liKX1cW16PMndx6uGWnF9vhlh\nJDg8Wfvk0uxsvD23Z86lyG+97YozhSBTWxLKLR+SUwbpLwTKT8RHl5yI4n/9hs9CIr3r6RkTkd42\n0tnwuxQpChC0PUvlO0yY00v89cofbpWxmtTljyYbnwupoXX5hDxyc+RibemlBnbd9FxIB8VT6JYH\ncwIthHFUUKkq4Q0tvXIwAQl14v8mI/297S58uLM7u7OP2efDU/CgSjyGaE0gWrXrw5QPHzrX9ira\nYQS7fdGNCEu34x9aFz8crR7wjnbHe95AJE9gqOBbOyW+NiUb9UcUTwQNTnqO5Doeji3IFcv9jvng\nMBLJyycMV6JjU/a+8loGYepTr+ZmLgKQC0stPHx3GfIMt6scSPEniUp6JRLfO2h5S8kuL9jQrJ1r\n+H7rjjtbQxtKXfjKMmTC33sdMyXPwr4AJfnmOG6JxVseu6+Kjs3uaCQmMqoCWv08eB1+KQEXZcKH\nm5TnvfMIFrl3uxvb4oAnmfvuK0NA4rldrFVC9VGTE8jlXpsNtbQp67XPRKCgSTRw+prbCb/wjpKP\n/s0tCctHrYla0p07X5DUrPdQd/EWDnFPdS2QTm8ZiROxGW0Y5W5c3k867su7G8fuPqI24GLvxVSW\ncurmSHLms/T2iemckcZ8pkRl3Mz59gMXarzx8JpKMvDnc4MduesY74TdmPYgfo5y6G5FYup1xLk2\n69lgCXw3D4fc4TE+GLXck1RK4C/xVZX6cGgIpAa1zJaMztx5dpnzJg+SDYcKS8wwYiPXqx9lLCTE\nU2+fY5tPQod83O48hTu7szv7mH2ip2CM+W+Bfw64sNb+iD47AH4OeB34EPhD1tqlMcYA/wlOeboA\n/oi19mufdA5rB7puC0lAMezlunZYKe7ONxm7G9ftOG6XPNyq63Ci1TCqGElsJJ/FLFKx5uxG3NfO\n9a1mS6ba/I0kysJtzkPtKHXeMxZMNhk8VrHzRqqz58TSlGj6PRtPTYZINAfwJGDTUBCvhG4rtpyo\ny/GsdPd00kMn9eHFsiEXeeqpCW8l5l65ctdzRkmSu787azsiNcO8tzNspYV51B/d8jBcJy4+XT96\nCp3bzQwNbaeGoL7aU1XQ+QEXey3MaxG7Dluixnk2H1BxX6XOIqtJVcfPD3sOYqEzBct9kOc8GaTj\n2Xnscnfc0l9xI7LZN8eGMHffn+3Vs1+EVGqT6gaL1U7pNQNCYNMPBtvs+ebc/afNlEiUb0dNy2OV\nWU988PeM2MNAoRLvSypvet2I16Vj+Ti0TEoRqTY7TOdu9irJuO+L5VkZ3+h+zhc2LtcUvdkRviN9\nzEen+FN9d5/4tRmII6OOIiLVu02RM6slxBMPHGovtntl76KnUdl64cW3Y3FalFx7apQqUnKxcTfX\n7ljPRz1GkndRHbHPJ65NiCe2sNQEDMFnCwg+zbf/e+A/A/70Rz77E8D/bq39GWPMn9D//7vA7wXe\n1n8/iZOg/8lPPIP16bsF9fac+NTd5NHJIayUXNxljE71MgUZU9Ggv3ngEj1x+hozKeW0NsDqAWSL\nlFNNzDLx2PeITQVQ6Yo1Uw2Y8W4YawJVdDSC5ebhgrx0k7De04V7Aa0y+cE442Df9VaG7JT1NlXA\nXO2wJxItHc8MSeAAPfGkIJPcedlvmUqIZjzfs/eOWQorkcYtVEoyxRmD3M8RA40y3KZ0xzJHC9KH\nbjG92oGXCPsfJihHSJYFHIvTMhQBe7AeMdJY3Asjsn0zZHpEMlaFIzmiFYnKeH9P05x7muTXNiYS\n7LqqYzzBgI29oVIt//CRXjZ/TdXsIdM9e8azZgBTSyzlIOJA4cNMydrOlgQT93NkQ97WwhvMI3xV\nc5LMIwr2K4sbz3GSMT9wUPGu3lEaYdaHBCutzMkkYq4K1PCKxHYHy1XhxvvZr7Yciebt3vqMh9NX\n3P3tuSEXhpl0Pk+SEdZ3L2ZoJwQT3X8Uk6jdO7MuEdslHZFg1fWwY5EIODfxiEXgsjM1deKemZGi\nlZ9GeArn4tH4lkSlrQfORH1PtCPUQv5p7RPDB2vtXwdu/p6Pfz9OZh4+Ljf/+4E/bZ39Ik5X8v5n\nuqI7u7M7+wdqf7+JxlNr7V6Y7gw41c8vAU8+8r29FP3/Q8Tuo1L0R/MpzXLNLjwmUENU/+icA+kg\nBicrZnK1q13Lq3INkweuNJkmFlOLoLMq8BVW2N4SCRH2WpOwk5aWUcnSq2Mu1E42eAdY6UdWxAzS\nXLi+OGenElCkjjy/9ukEtR6qlvGNSpIjH1+cDPFLCaWSppFq9AQR2ULUXTbGV5IsJsRLJFCjBFF2\nOGYkOfEo8QlKVwJdDwWt7372xwt6aUf0iRur3fsXlCIkGSURCPFGYMlU9jq2PqeCXkfiK/Bf9emu\nhINNPazc0nRmmUpYpe8LvNtGI9XujSERa/FkGPDkUod9QmmF2LT36FfuuZ6pyfBgFdOoCazvfXxd\nW9gOtyXJbtni45J8iVCshT8QzUVksi4J5YI3Xsi+8hvR4al70FfX5pB1GIVjpwTkYsdm5hEO4icI\nAtKRm1PhtRKt04oXDxV2+D1XIn/tbEkyuOto1SSVNAETK1LVrKfVGMbHBsl0EoU+rUrD+2eeNT2d\nJ7Ri71OrUS4wFdEexu3Ht1RvYgWk9AaInffgeR2B9CjxPDyVJ9tkij/6bCXJ77v6YK21xpjfGtD+\nm//drRT9G6/ctzsGjs2GsBKE9TC7ddEPT1L8Y3X7dS9hRZM+l2hnPxyjcj3lhSHYk6w0A+NjdbVl\nHq+mbuGoKuHT7YrRUmxL1Zq14uiLfk0oduUwPmFdui7IA18hSlCTCXYb9hapjOM3IfEDFwaMqhgv\nUIdfJ/HUcY6RNmA9KQmVf2iyDrt/8dSmPPMzDsT01A1HWN85a0frlLVYj8qiIw/cgnRYuePOXn6d\n9dJN6NTsGPTypm3IeOxe2GAEsWaY5CyZ+lPyubunrIrpjHsZwyGlmOh4pUet+n/Q7bP+PYHEYA5M\nQL9XbPJ8pqrHD9tLEmH/60t3wj66IKrUO0BDo56IKmoIlwrBgpazdM9ZKVzBNGIY3PmawBDrHKNJ\nfquhuYt8Ii0AkXH/DoOhEzOyF46YSUjWbg6pBMiK2ojBc6HCbY/GkzGP1Xfy4bcCfqJzIcHfTj1e\nU3gX5sI/+DWFFtudB7OFm29Zk7FdqL26j+kV/vlCw90kA5Fa0W1Q0Wlu9SOItbCM/RZf86iQPmqW\nhzSB+Odzn7WwCWEYMN2zlBc7mv4HU30434cF+vdCnz8DXvnI9+6k6O/szv4hs79fT+Ev4GTmf4aP\ny83/BeDfMMb8LC7BuP5ImPE9zWJpTUPf+qx8t6LWlwG93Mg42bIQGYp3kNKr8WUkPQW7TClEYdWl\nASMlmar6Bl8UbJPaZ6pe+VPJvbfDAUvxCgSDpSqcq3DcxZyJv7+6eYzXOPdxpZ1t6KCRF1Pa7hab\n3GQ+I8mRnZiQYHDJPzuRnLo/Abm7dRlSzYRG28wZROQxEfdjlHakSs5NBsOgRGSetrRrdephCbRL\nnQnfsHvx4a0ScWs7UDKvbRr8UnXzOqUQ9mAqPoXJvGOuUGKY9hg1fNEbPEk016llqt2qz8X/UKS0\nSubNDnyCvW5C6LNROFb7p9QfOCRjkIoUZhgxpO5Zd62PDdUwVBki343Rrm3xVCXYifIsTH3uqxoy\nDWI8ATbT8RGRJNtWTUcvGrbDVLwJTcm0FQ/HsLvlzUwqQ82e5TsjUTJveemSy31wTrJzY/H6wYb3\n1pJjsxmvqmtxr/1I0xHeOE+oDRPKrbAzYc+0FnJ2ajG9i7aHVH9XeFSqgsXdBGvFJVkkBMqHjqch\ngkXQdfLG5j6xeDZyv2IiT+liCImNmwPW94g+I6Lx05Qk/wzwTwFHxpinOJXpnwH+rDHmjwKPgD+k\nr/9lXDnyPVxJ8l/9VFdhfWw7p403xHIzuddztFX2/SZjeCAo6cRjpDLbnstumHbUa8WvbUshNSET\nrqiVfQ+amr5S++pek69tUfjGJmtIcsnLDw07cfz18RHd4AZ46L6bq0BZ78oGWPVlHFuPWFDUNuoR\nYpapZNGLrL4NSy5HIZNSk2piCfWiq2ObURfhK84MMkMumLN/k7KZyn28KXki5qVMi0N87x4Hl+4a\nlk3ASJURz+8ZRCbSzRrCfc5gKqLc4BQz1cvWHpLH4r9sRmz1kmZNSKlFeySuScaQ7TSunSU4dMct\nrU92I5HXakmuDtNzLTA3Q85u34vgwUJCNXbwqds97Dhgun/pE/fdlJJCeYIohYnClT7oYSH4cBmR\niUC1VX0zmtUE0sFM8u4W0GOn5jbGT8uBrRbn3cKtbt/+ds4vnztn98VyYCoR3umQU6is6+2ZtcKO\nTFUw401IMrXt24BAArOZnZGP3OdRqc0kCkgl2NulEGtO9klHLG5H39viK29US2QnzRPOQ/ecwjBk\npUpSlltWB9IpLVuqRKWkT2mfuChYa//l7/Grn/pNvmuBf/0zXcGd3dmdfa7s8wFzHnrqcse6fx3f\nuL57+6ihUJ97/SDnaCkprSKljNzq6Hmu5m/ac653kggvLigD0WJvK9YbhQeF5UJEFkfiePTDEU3u\nEnjLFVSiILuxEb0AOZebx8gLxBOwqmlhpR1qUa2JBEWtkpDHoiMb5iVprTAlFMXcckIYup157adY\nYSjq3uBJu7KUzuVq5HP53O2Orx6sserTH/IlvVieyz6jFE1Zovr45YsPGVR9SWMfuw8JBn8vf4m/\n9emn7v52V26s0uMaBGTaJmvyrTvewDW98LPFAL2gu7meTZuXWAEgdkXENBZuou0ZlOBa1z65mqZu\n7Jl+b2jkCeF7tzNxaCGX1zApG3rJ1Ok2eNb7DJk7x7T28VXHb/sDCNxzzesYq4a2SvwPdl1QqrAe\n2I5GtHejpCJQt2JTN9wIc3D1bZfA+0b+IeeaQ1ddz1ZScBdeyf3K/d1NI5GZtqGWvHwbW56dKWQY\nb4kLgcgyy06kNEmixrzG4mtudQRYAZb6zUAXu+e06gNM6ubOIP7JZlgjSA6bMqdTGNe0sLp0v/CD\nkDT8TPrfn49FASydqanSDXsWv00Iz+VyPrAVo8Y93PPtmmyk+CtzRBJJHfKsc6mLZlkSaXJ4m5bH\nS7ngaciJssw7ubvn5MR648u2pVy7vyu9DQJI4vmnbOsPAUiN0I9ssIMAS7sVG83YvBg4PHYvy3o5\n5qm63e5lrjzRj56Q3LgJ8XR6yfEz90LWozX90j2KKxGV3mfMVIxHNxufMnKTY5wHt112bX5DqPhn\nHrzmxuqNN3j0jujX/d3tixd6llQxqZkMoMlrDxUmlTE3yshPtgm72FUfomXIs8iNS3YWMozcz+HG\nLUZnQcepeBBH04Zy6+7/w8ESCwB2vVnxtHIvwPrSXcRFX9MpDDR+x0YMUTtvQ71WVSK6ofEUo5fu\nvEfzOYXIdVa+RW0nJMkl451bhM+ynOi5xmuqTH8d8Sh3L9soPmA+FcX9Ds5EH5+VPk80j863bnN6\n+m7PC02GroNec8D6DavOLfZ7bcc63GFVQjwsY04eqNN07XM9dvd3XHnU6uZEY3hzkDO7EcAoWGNE\n6LuLWjKBmqJJTa4QcSmOyjgPWQm85q0bloGqRHZ0G2oEy4E2/LQE+87ueh/u7M7u7GP2ufAUfM8w\nS0IO0hBffAL9rsWow9GkHtulW/HbneHmgfvO63P3b9EZRtf6edsQSuewPi+I1I9ftB07AVYGZYKz\ncmCjHb/fVrQS0Eg2HvVOO9v66hYqu1E4EHcGX8QaVWfZrlVLNx2BWALGdkco9/LqvlvBj9YBrdi7\nZ09iWrnX5TYlu9G9Cg5bxEvMpcDsSYhEr1h1LSupaFnPEKqSkqteXT89x+u1g9meQHRsTd6Ra1ym\nKyhOtfu9UD1/UuKv3K6zOWzoz/Qc0o7kyt2f8SHCdXlmEhY5CjL8Pcx7GGGUfJvku1tgWNNWNOIh\nuBF+P2gtvTggAsstJoW8u82+r9Ytxt8DgyQpn5ac1mJlbqE4VIUmn93yDMxeeAxW9GaJ8zSyqzUz\nK2bnAVL1rpgCoqX6EqKBQNqbF+fus/f7lZNuBjD2lo3aDvZWrr6U+vSQN0TifFslGa1CgklS4p8p\n7DqCSB2m4YE712Q9JREgz4ZjIoWQXZXQyyvutgmVsCH7eHbl1bdak5G1xOU+uWqJxMMQBAGe+Wx7\n/52ncGd3dmcfs8+Fp4AHXuqRxR6jN1wN97XumkJQYnOdw54KLW5IVFpbagGfpiNmanYJR4ZN41bU\nZDImFCPyutmxERotaF3Mtkp6CsWDVxQ02nUvbc2TnYsBN01Kod1tj9tceT1IUCY7TJiok286GUhC\n993+pmWjnflEO83FuOVlKSN7s5eJN6JNm8FUfArHUyEpjeFGCEqvhBupaodDyk6x/7TqaZWUasSg\n1E0OyJ66XMYqhPlYO03Y0apZq1qA2T96oRXbNmQ9kS5jEd3Ssc3rEd5MDTrFwHqkclinxG4ykKqE\ndlFtyHTcs6HnxcpdZ3Gx41vCeojGgR0Dvkq8dWA5Fiz3qmrI1SnaTjsW2vF2gjZP24bHer7RZMJU\nnuCVLTjxpZkRv0xcu5zArnMew3jkc6wmqKC9Yr3RfXiGtfQZtusN5XOXU/h65e4/rw3tRxiotfkT\n2p6NiIBzzaEmbpi07j7b1GM8VoK5iKnVHXtYGXbSAt3nC7zZnEhSgBsfQo3hMDXEQvgu/ZxMZcsb\n4RuiraHcpyKqACOVa2/n3WqfBCX0wWdriPpcLAq+DZgMR0zHb5CoC28Yrqk+VOvx6QZu3OD0ZUOs\nNuPYuBezTTd4eoheU5MK2ltPW3ZKOK2bHZcCNV2rFaO78ukat1Cc1y2esAlXRYERDqFsNwx7n1Fk\nHGnr04mcJVwXBNU+8RNwqcyXTQJqHe9aibFd7RMeiqvQe4hRK+K4KqgPlfAUoUs+CVgJBluOzwkU\noiT+ikovwjDOWEn5JRQcePn0Q7pI0OYgwPbCVhTQC7PRrzyK0J0nluBMOm3pd246rOKC1Uq4iLTC\nr/RMwgwr7MhSjMPtVcda4JirXUxsXAt3fb0lUnLx3aYkEC6gE/VZMIBVn4jnGUrRqqVtz5VerOFs\nxUZEOovajdU3j2teF/DIdiW1ekWKF4fUwgV4/RJPu8iVQiLb76guBXaLDE96d4ypd0GhMff6gofC\nsiRKSvZ+jUSmsFoQAAbjEatS0Rr1pBcDre7PrresRUeXTqEQF2iQtlQrEcco2Rl3BYUId4q1oRO3\nZf4UtuLmvOkDMnVd5qIDSOioVNUIfEshnE1sBwoledsoJPbuEo13dmd39n3Y58JTIOzxj9ek/RJf\nJS/vJOMbvdom8h2dkICJN+ZCrRaTx+671fSIWj3o/qRntHIr4yre3kp3Pa9r1iu30jZKWmVeRKvd\ns80zVqo3txXcIG59YiqRsYbiD2umBf63JDzy6hYjaOuLezWJ0H/VzuILL7EVzRn5lvc38mLmhnv6\nbrOruYjF8aDdZ+iglOu86Q1HiRCdQUQTiRdgs8QI6Ydq7Yt7D3j4vrveI79lYN8F2lO1csUzy7TT\n/c2VLOt8ciU57a4m78XfcB5zJSq4aTPQiKllL0C2KwdidM9VSyu8xdDBlXb/tui4EYy3LVSPN5Y9\nKHLwLIMIV4qwxqqsuU5LltJLyIW8PNqFPBLDc1i8xJnvvL7gomLwVZI0C44Sh4eI1Wh2HsLTG033\naY3RWIStj69w9NpLaFZuTp3t5eEq810PwQK33sJArdAtUAJ6FxXk0mTYBiXjVGS6dUApDoihLehF\nZnP+wt3bbhpyILaPqgGrgblpzS1eZrAhgTp3rXg6kgGq2P1crbvbuZx3LUbcH13HLQbi09rnYlEw\ng0fQRqxNzWkgl/tpx2vi6tuaMYNeINv3zD3X3prdF42119LWDgsw2lWYexLzvJhzkQmW23bURwoJ\nNu6zdlPxVEy9h+0N3c7F4qFtkRYInqluJ72n2Oyki2iO3QIzKWquSrU9v2hJBPOdtxYjTsdx5iZE\nPz5kIoKXVZsyFzx2M8v4ypV7FM+EMKrXOVN1Mka+IVbMubI9RjX7evBAakprhRG7bs09VTVC6xOE\nLuNuvRuM8BThZqBRt6N34e5tPutIVm5coihg1O7JUCpEW8jcaynUS/BS7gboLBgIS6mZpgHevick\naWAr1qODlqfiF9yTAG2sJVJWfJJZjIR5F0GGXSj/sDMgSK9ROJPNC+ILVRzi50zUBxOPDvGUMzpo\nBo7UB2BP1D16XeAHwkVse+Jj5Rpq6Fs3L268Ec2b7po++A2FKFGH0PTub/dtBHbOXOpVVnPMNgGJ\nqO93N4ZaQK/j1DBq3TMLkoi6cX8XKNTwVz2eYpQ0S0kLKVY1hkHhn5/0zPaLbL3HRUQkuvbEH6j2\nUGkCGm1gU+vhV5+N4v0ufLizO7uzj9nnw1MwIb7/MjTPWS6dFxC/ec3u16S0HDeMRq7jsIlXJL3q\nzYmUj8N7TJTsGaoRjVbgbpERn4ih+NGMayHBStTplz4neuR2/22wYyeKsXK7QTR5jLrgdnfbU4Z5\nySnHnUP8ncWnHB0JRBDeI5YmWJyc0I/2TrbbrYK0JTIu+fRGl1NJcyK11hE4AveVaF0XB9QKGeou\nppg5HIJ9EZGLaZnKo7Tq6Zes+eHBHDkg7Pya+VzdgPGYdanmsKDC7mXT1Km4qcc0mZK5/QQjwRLa\nIx4o/LFhRircAEpsvsqGXek8tjIuqAJ3r1nzApSgHPcxoVzpfZa9x6frhJvwEkwo1OToNUZCnm7H\nHZE4Aow8lLhtiOduDH3TMizcHBl5LenhF9w1bWsa8RrsodbRq/f54l7sp57TCh4dtCdMJau9uS7x\nr1Xmkop3Vhi24mRoLcTenkJux2LkGLQTwaD7tGCmSsVoOiWQYFBtX7ptjgsZ44+F37DOu130O/rA\nhaDh0NKKK/Q0XVO0QnTGOaW6bgOFUv42pBfkvzZzjNmrUqeEmnt9P6NPPxvdibGfIPj5g7AHhwf2\nj/2+n6ZfHBGefwhAEDYE187teX4Ag/IE9VCQCqRR6MFVuw7PVya3D0B9AGVrSEVCEvQRnuKvPQtO\nam6Y7tyLcHOUUn7HDeo795e89cRNhF/8V97mn5Ur+UTiH7/ys3+FR/uDWHsrauLzXan10DOgCXQi\nZqJoNuFU17CYTgi0JidxTKuy5VgrT9N57Amb8hrSQPmMPmTPaZPvcnJPvQYqoa7GMeoGZ/7mfd44\ndspR0RBSSnhyNjTkavsNQ4UlhUci1qttFZEqvFhXPtPILXRVlzFR1SFv1b4ebKikRxmHA2WjrH6U\nU0j1ahL37MSfOFXL9roISY279osm5uQlCdZuPDrBistmx1iw704LaBwONIJHZ35BpTbiSTywrffC\nODmdri8M9xD0hq52L2m82vIdhQHV5Yb3pL35Wg2/MtdLv1RfSmaZq5tz9TNf4se/5sKcR/XAj/9l\nJ4b819RFa/IdWufw2Qc+Lg2xnyOZgUqLTKJ/8eF1tW+/CD0SzYXa9Lyq3I5YuAAAIABJREFUHNOT\n0CdV2bZUqPHlweOdyX7x6tmnTN7uDN/5stv4vrxLKWdu8Xn37/zaV621P8En2F34cGd3dmcfs89F\n+OD5lmzaMm4G2iOp/u6mvJi5HerLSc3zqXOP+60lF3jjSLtckWX0+6y373O4FzjpZwzqRPTigImE\nWgbhG+L1jI2y/r+73fDzR+73b70f8L/kzqV860+/z/8ksNDv/uIPA/Ckq/nNPKyPapu0g8WIr28p\nWrWTqqGVUnFZ9mRiKg5shy+gVi93d+QF+BKRMca/7UrM/JBBEOM0NKzUJLPT74MrjyJzfzd5cU1w\nz7m4qd8wjkTPblpmgnrHuF0ubUcUut40CDCxqOSGKb3/XfrxmejlrbyAcvDxQ/ERhNd03p7ncmAu\nFuFpcE0r3cVC1z6KpxTW7dAPmhqj5FrfxrSqpAQWOlUlUoU7WVCBOkbBMN1n4qM1k8i53UOfYIRf\nmAqzUo5TzLl7Qk8OCn6bugj/ZjAQqQv06/QE7rFT7ff2NSz3T/bffpevjX8DgHtv/Ch/u3ch5CB8\nwEdnxEfnwkc/Lyz4+qSVoxB0Hk/lCR53sJEn6DUeH6oScdzCRs1YUqnjV/yeBxLieYpFQ8s3zEDy\nDff5t9I1X/xsMIU7T+HO7uzOPm6fD0/BhEyil3hw5FMo0bPeTBkpJl9NSw5UxtnNjuiF9DueuSRL\nu7H0SuBtbMbJQizIvQeKnddJwivHir+X7rjRSU1eu0TVyw++zus/74io/+685EgY6pvwiq/o+3/t\nay5O86z92E7wvcyYPVuQ4r50waszEbuOFsRCAiZDRCD5t1CxZZv4eMIptEPDRLXmyo84lPrI5XbL\nWCXAZ4Jat3F9y5uQ2/F3xUL6AF/sP3E+YZXt6b/kSQ2WpHfXdp7NuS/mojoJCQTHLdMDFkokRqGI\ndMuD/7u9N425LcvPu35rz/vsM73znWrqrrbdg2nbMpEtIoHAKHYIjhB8cGSJhFiykCwlIKSQkj/x\nIR+ioECQQiAiEAmZJBACWFbA2MYIkLATOzFNu7ura647vvOZ97wXH9az33tvd92uW+W6Vdfi/KWr\n+77nnPesvfaw1n94/s/DA7XpTpsE9TIRFBHH2rnT1jJI3HfsSuvg1Axg5byOy9BjoOOxZYRRTF0F\nhsyqvbzXQiAmHojGzsYUqbsme/4Qi5CCWFaR8yxeORT25DxgfNOdz/jOdb740rcBWPwfb3Ouc+8V\nUPX7+gel2toaaazw4Os+ez22ot/BnzI9Z1XiztSgF3sJPWPa9WHAnvAyxBGn8gBfTTvmGzGMi5j4\nsu0o5EkEhe0dCOigEA4lWRneLP8Q4hSsZ6nTmmQZ0xxKLOWiwE918WdDzK4k5Zcdw9TdTINIfIaD\nkrZ0D8rNpGSo/v4uaPEEftlLO8YivOtuSUdxEbOciDfgjYYZznd8707FmTrS6rcNM3Esjje/DsDT\neGO+gUQXf6JM+BeThBdvuWOICp9w4m54n4ZItPNN04cGQwqN660TLnOXBM3CAQPVpic7GbmyS+mO\neunPfC7Vn3BQzol6hSTfZySZ9CIpeXHtHqCFYLR71udcYcKrWBi74zkoLLWy5NNBRJSJ3kzp9KaF\nfS0gM9MwkObncrzgc6JtX3owUW/GRebmd2Pl8+418UO+nbPqM3TG4IuTIAm8q/r9zcy9No0MceDG\nNl7NMOq7IS2ekpHGhtyQXNJQwILilmFffJ0vDdYc/Zbr9swm71Oeq+qC5cPy7rbPJHe/w1IP9UfN\n1ff3xeFQAjFFTCfW8R8uphwfCWT3ICHccz+/Okt4V7Do9Zkg6EFH16t+PXLsFq4y3oVnCcs7H+n4\ntuHD1ra2tcfsufAUPAtxY8mb5EonL6oXdGq+OT/oYKNOr6KltL1egGqxsUcqxJg1wZVQSxQ+7Mf3\ni5auT7TJxc0yOJq78cq0ptGuexRv+JpAetazNBJ1aUQCaiif6Cn2jpoJfILI1Zj9kfNcquk1jpVw\nGw89YuvW5LiJ8CUMEgg16UUdgdy+JjIMPLcLVp3PRgIvDTDddefovRM3VjpdURqxKId7GDUitZ1H\nq07F4eUaX2OHOj9RBCPhGCKvxuTu/Unm44mZKDPg9zoEY7nlFz5G77eRJRbDkL8KaTfOo6uMjxFU\nOlWHakVDeV/n3m/oS+mh9SnkCQWeT6xutEhutG0C0ok4BJYQiGosakIiieAkeXlVGoxTd7y+tQQD\nlYPzc9IvC9E4m/AnJdDzty/aK72Hp9n8/Y/mlQNgDES9NsTIeWOvXNvDDBXGjXaocZ7ZS7stgbpq\nd67F3N24cPmrglf/3+sVgdjJTgt7lcB81JO1HbTmD2P4YCxdVFM2a3aNm/A7Qx81spGWHYGo0dfl\nOY0eMt0DJN6UZdRTbaWEkTLn3i6LqAcQDRgYB/qIfQcCmZcNa4Uo2esLDhJ3Or9xz8OT4EwNREog\nVOpeM48Wnh8xA6RyV/ene7wqd3bvJVfbfinwiLKe9jxnrCy68XJiCapYsSWP2gHrxB27XaXMPBce\njFP/isV6bIesFRJ836EbNz8NGFYO6FS0lWtHBFpvQVCoRXi4Iiyd+xyotTw5H7BRq+/AZITicEy7\nPdprbuykO2AgefnICEy2f0m3drmDzD/Gnit0G56AwruYNcx1fKJHG5bXsftaIL65ps5UaQkaPLWc\np54lUs/EOHPnKttbMq3cAljsnjPs26HTM4bi7CwGSzIJ5iTieIxHu6xXSs9fP6B93x3PH/3qTe6J\nROYfRm9zLKiwvPLvafYjPGs9OjqNQ35aPRqHL30FgKNuRvWyy9W8srT88M1bALS3ZxxO3fX9yrnl\nSy+4fMz822rJTt8ivivVMr/jHd2nLY9jZ+xVzPN0tg0ftra1rT1mH1eK/q8A/ypQAW8B/5a1bkk2\nxrwG/ByuVPvnrLW/+qFHYQ1dFeBFGRtBlGkD6j5Lu9MQHOuj7ZDNSkmkGz2Pf0WknWGRGK4nwiFU\nLZ4SkMsEQiWoOgmZmLIhVxLNvPASX/t/XNLxPKqx6qQMjKG9yuBILt3UD197/GS5mATYzzJujtxu\nPBaENRi2eFqHJ0XAJnE7V7hoCXekCyD5sE1akasCEts1A1UymromUJLPq1oG4pYoPDfPwwPD6z0X\nQpxRC/McVhHdVJnq+ZCVvKKJpOtMBOONq8TUE8NU5LDDtKCVGIU57Ei7HmLu3p8srzMXAcxgmdAI\nzmzOR6jXiriIaGNRpS3dd53Zhu6eqkfUhDrOpoNOKG47aAjp5yfvaBYQjdz1izcp9ch5GOMmJVAz\n3WAT0R4oxOicF9OsWnzRoJE1eGqUOp1fZ/k5HeftOUcPXBj6XvXh6eSnzS8az5AJhj6aHFJ/0R3H\n3tS9dmTh1Lhzn/zACu9U1GyTETuZYNwvFFy8q0a3W+76H9QJ33fLeW7/9GvvcSgOhfeb+iqUaK0l\nMH3o+TT+z8eXov814DVrbWOM+cvAa8C/b4z5EvAzwJeBG8CvG2O+z1r7PSt4HYa8SyjaFbvqMtwP\nDb5aUk0D4ZFah+uARA91qGpCOh0RDNxDM6zBVzuxF8f4u6oAbGqsGJS8zN0oZAX7C5GznF2yI+7H\n/PyhA9V09ip2DOxDUVXDw9iz9yKT0OOriXtovvjii9xUF53pOxJTiFVCrMc+O42ba71fkarbr48t\nR1VKc02ApHMf9OAN24h64F73ViNWkiIfKm5c+AEj3AMUR2N8LRqdb/F1uTcHHYeicK+G7rODPKA+\ndN877Dzsbi9Mu0MktaVhM8D2D71EWe2tluGxu8ln4xXhQuHRK+cMxFZ9OV4ynbnP3xsqB/B+yHLH\nPZjt8RlLcSPGiSEcSFErDq/KqLuh5OfTBa0aU+r9gpFgzkW2JBLdvRl3V/qdJpZUezICHfvOZkAt\nFa2jz49JBNT6oU1C88Bdh7uKzL/X0tB9iFfu9VWGMOEHh871f/VzCX/kpmMXuzV18+/Ge9xcqFxq\nBnTX3LGXARwKfDewHq9+3t3vuRifolnBzvJlAH6BlG98262m/3D2Tt88C17LQIxU71RPtyh8LCl6\na+3/aq3tz9dv4TQjwUnR/11rbWmtfQenFPVHnupItra1rT0X9kkkGv8s8Pf0803cItFbL0X/va2z\nkJcUdpfVmTq9FmsyNbPMhg125VZSb1OS9oIbquPXaYkvjb8otPiiTLasCFUfr+2aWrDbbq0GlrrB\n05L6HiHxHWW6wxLbI0HMwyYnKxc+C70rybDOWny9vjvOmL7oGpAOsphGScdM9GllYOjEmRgWrkce\nwCs9Uu3+SSPoc1oyXqr/P4O5AFuGgnrRdzsuMNKu7Hv+13bFUhWMwrTsiuOvq0MqeUrxgxVNJBZo\nue1xvMacuXMYxD6+NBXjnQ3xifAU2RLfyvvxnduaXCTk2nW91lKK3q68AxQuHGtWFXNhIBpJyW0o\nWd7R+35O2PWQ75C2VtgUQaYGVC90Hl3XBDBx8xicttjAhSBBE9ON3HHEdwNaidJYZfrb8gKrJqmi\nK6jlmXWnhixxe9q//mrN/7UWHuQNEdzY7olhQuwrpOu+G+ZscJ4OwMF0zOHInc+XmdAOnYdgQ411\nnhDqHirjXXxVc4ZNdNU8VWUT6qWuu7yjvfBFvO93139KykvG4RF+4N0bvIVEhxYNQSvPuFo8YSaP\n2x9oUTDG/CLOw/qlj/G3Pw/8PMBkmFHUDYm3IFDcczZIqAXkCcKCVuKu56EhUpw5GbuT5G+mrPbc\nTZcuc4ePB8JmwEztwN0mwlN7tQoZ3O8Syr7PeLHkG6pgnG9C2g+IeHqCby8ICa84B5srspBrgc9X\nE3EephNK5Qw6SYtHg5BMFYB2t7vSDPQyj1RdhJVaHNOlDyIC6R6sqUfu7/xzqCbu2PL7DxmNSvUR\nLE1KkyvjHvqUqr/6SUGtxWmZtNS1kJMSfF1dZJSKz8MoId3TsTVj1gof0qIlkJBJoAdsOSipajf/\nNg7pztQFGVVYVRyKg4TyjjuO09S9762h3HGL9+lxwW4savhxSyyOyZGNUQoDT6Xc8OaS9NJVPi52\nL9nJ3QNmDleEK/f6ar8m0ibhq5144I04k3BOkXv4bQ8Gg7O5O8/fDI642bgHayxO/VVpaJ+wLLRX\n1YdHqZl0vAZuiCTn1uAF9nbce6tDjxdTdx8mjQsjLg9bpiJC8aIlw8bN4zSydIUo7ruCiVCh93Xt\nCtsyER38/s2EBxu3uGUvzvmi8g9Lv8IbuJP4xuwDp/Fd9rGrD8aYP4NLQP6sfdgd9NRS9Nbav2mt\n/VFr7Y9myUdjm93a1rb27OxjeQrGmJ8E/gLwz1urLcrZLwP/jTHmr+ISjV8A/tGHfV+Hpeoq8nrI\nQozLXQWVFdVWOGRie2ERjzJyu8aO2sySOMBKdi0JPYYCqcQXHW3pFpy535AKTGTnwitUFbkqCnG6\nh7dwvQ+X/uYhg+8jx9lj1mMvpJKQCZ2Hrz6AKBpxsuN2nX/WdhRy/23acx96KBFMd9ZdSYxV1hBI\n3s2I6beMfdq5Qg1qvLU8jLiiOhNxit3gSV7el8sdtcurykjbtFd7WLmMyLVL++sEFTnw56IGC4HC\n/VxMY6x0JRm2eGcuweXtdATG7cyoK9WbezTisDRdRal5+KewkLdlTls8gYwGCucW3Zq16NT9pmKm\n1w8PfVrxlpdDQ7YWvZmSoPFlRifsxWiZUe6qf2Q2wsaqDp1BN+n7I7Th2I5k5b6r8hqCgSDfFxsW\n0mvc84Z0P+ii3ejYcTx6TUH7gWlyQ6jwoTIPM/1GZ9z3fYp9t+N/ITEcCIcyqCaM5Vml6ij1zku8\nfeEqgoyefDlbt1wOBePOhtTH7o1wo56YaEAoHEP3Hkx33Xn5gfoLRD/iynXffMteySNw+4Pm8d32\ncaXoX8MN9WvGxTy/Za39t621v2+M+W+Bb+DCil/4sMrD1ra2tefLPq4U/d/6Hp//S8Bf+khHYQ22\nC+lY0io5M8xC9lSSrNYrupE6w5qa4dols+6IPHQ/i2nHzgsYtw2mrzHvRCDR0XTeciI9gUzIxAd+\nja9EY/vuCW8rB9DM7Hd4CM489Ua2WIyagDyvI1VjzGRvwAudQ+wZc8BaeYBISdJFYhguRUo6SIl0\nnGHcUKs8eRkJJnxac6zoLtnMuVQ3YNZZKnUJ1nVLrZzCbNUjFxMWhWvsGsQBnt/rDTRXEOpiP2dy\nLuq5gTvePA85G7pk3rWTmOPrysWsRzRqsHohTylxgalVonJlAtq7rjj1ZndJqM7Ht+KUeOHmUpua\nTLDQczVoXa6hrV3i4rR8n1h13zT2sKFo2uIAm7nP7zfOW2nTcxoxQp8OOw5UF3swXrOzceNtRglH\nIo3Ney2IMGEjjoXo3OO0dOco9g0bbc3BpsY/dccfCEqd5Ib6A3IKPhYjSGMvEuSZhw/UtUHCDyXO\nq7px8wbdxJ2v/XbFpVyPsRHb90HEochY62SJN3CJwVUSMDh3r5/X52TilFjIWRvlLY30UPzDjJ1c\nfmEz4kTPxuevrwmGDovDP/6uaXygPRcwZ6ylrRs2dowviu1JsUEeM6exxe/cw7Q8W7EQ52FPv3XC\nA67HkixPIzzrEjiT+JIHp3IfVxe8Lxo3v7ivgTtC9QAc03Bj4U7qnaCDD1DvtnpIx2FCJXfYtD5J\nqNbormMVKdmVWjr1VaxrqRgtGy4bKS+tV1yqRyNfj9kZuJDmgUg+gvWS95Rk2m3XBErDh+mIulYP\nhzVcSv/SK13i7G6xplUSdFPlfF4/11XCIlWS8KJg2Sd0z4XdCDva99SFNwBz6dzd6eiEF4xbkPK9\nDBu6+Y1Sdw7feQDVqXsy/8l6zXDhKgpt3BHpXHQ2phqLC7MSTLo651yU+11VsuqzvzbCVyLNDqor\nuv61rm9VQ6sHvblbcNt3C25+6bGJBaE+9TgW+Uq7Ejw6ueRkLX3Miw0n6oIdVnPaoRKpdofo0AHO\nfuIt537/5uCMbwlM1ZmHC4A1HmNR6/VUek0LAyUXj7KM7gW3UV34C5ITMUbHA4oziRhl9wDYWWVc\napEt2ympdTfBydxg+3bpmc+odfNT5zQzfwQ7Yt0uVlQKIf2mohmI0q1MadNH6KifwrYw561tbWuP\n2XPhKXS2o2py2qYmESbqdhggTxsbl8RSo35/aa5Ycr3M7RjDTcLvDd369nLYcdNzu1HTpLyduy+p\nLmtmsSs3ZXLJTmuuXNVXZjMeRBLbWHs8RCc8tL4kWfkNvshD26C5Ehj0A8tU+AVTJ1eK1tb2XYY5\na4UMd6zlusqXo3DGeu0uxR2FAeEsJxdY4rio6SRq8nIHWarSYlOxVpmxJ+DY1CGLlTs/SdvRBeKO\nqHOQluRsAJn0GtcKmbjfcaI9YlRdEGTyKs6G/NZE53aVc6CefqPE7j+57LBnCse8Y6Iz54GsEp/D\ngfMgbk3HdF1PPKvGNn/MQFve+fo+RihVL+4IEyH2/AGziTv+PYUDzXhGceF22tttw1DhXzeekwtN\neSeqEVUDIzV5VeuA10XSmyxr5pnzaPJLy8XC7bY7kyWfL9y9szxy1yn7VoJn1JhmHzY2ddZiFMZF\nokQLvZZQaMtB4HGr7/bshtzumaS7NRlieZ45r+Rro5qXJd4yDC8INI832xpfwjj1+D7hzIUPtxUS\nDpOcPRHhDqMxZ9KcaEYJscK0vfMll9VHa4h6LhYFcHF6YKDpWx8qn1oUQtM2o5EU/XCz5O3Snajr\nwtM3G59p7W7MTTglE+NwMI85lFDJe13NbqWwY+luCI8VC2W930oaOsWq1rd8MLWSAFKdz0YZcK/1\naBQ+bMqQU9wFfXlekQhWen/V5w5KAnEjjtqWpe8+e5CFRIozXyzcw/hObQmVoz3Pa4LKzfWtNuSa\nuicPu5oDfabRw3FSPgQ0LbyHYiKR9fA1qWTpsRC/ZSctwsVyQU/y97b1OdoX92ELiUKTTZWQ7boH\niKVzd1+Y3+f1xj1ImfG4pxvQywveVcu5Hy65vunJUgS5paEVqU3ctGx6d78z+AqPzNQwUsv8UjiG\nJE+oS9X5y4J7rXt9r26otPCERc1SWfsjLWhBHXJj5c7baVswWInhK89ZWac4lre7DMfumM2FAFuj\nnGD+SO5AMHVjfFK1kXtD99qiagki93dhOmGRuVj+hZOca+r+PS8CJkMtHAo7DlYNjaToR16MrxLV\nC+sz7vqq2nS7LIq+Z8ed77PxiMG+4OarGh06F0HMqHNzLVsY1x8t178NH7a2ta09Zs+Fp2CBurG0\ntU+yqwRXNGZHjT2+rUmUUHl5OOZA8NBdNRzlOwkTcdXVmQ9i7U2nIdfUh98NS+pcKs+33O6TrTfE\nG9Gxvd8yEzihbZ8EbHWvb5qKRjtw6zdEPePwfsZ1oeaMDUl9N/aLYQ9dnFCJGZq6xhuq/l9VDDOX\nzDsXrHd3aCiqHnac4GnXzYYxNM79nLUJCyVP31i7xNhFDo3CjmAJvmrpeBAPtcsPKrKZOwcq3ROM\nOspC52Ua8krcq+Hsc6SGrmB/Qh9tTFSDf3njk8v13ZQVwZGbh7+uacZigW7nhFM1rymEKbo15dpd\nv9JbY5QwjSIfIaKJ0iFM3evXdKCFvyHom8eqhGuCkndJTVf3jM81WSz1FaFiB6PsSqbPxDEL6TLG\nXcZYOhPpyDDUeVyrGW367eDqIalaSy/dGVhLKDe+FIdlOmi5qQ7dz3/+OjdE8JLuJhglx4+Cmmjk\nvsTgzmE29BgrlKyLgkT39WjnGi+1LvwpIoPvCa7cuLDDCyGwLoQOJiNSeRXZecdthbSeV1OIc+Np\n7blYFIy1RLajDj2MyErT1X2mE7W9xobkhrgNlxtu4F5vRdIxrnyi3LlLVdtipoIMRxVt6C7utTpm\nrSxzJSGXg0FIcey+4539AdcuJfXtuRbeDzhSN14YkQduvLDzCPTgDdYlKx1TkkUM1u4ztSDBpWfx\nBKYZDAMa3JzCYUehbsZEsedws4sn0dEw97ilG2kTxVCJsKSac2Fd3O5L2DRvqysXtw5bQrVAW8+/\nYi+abjbEmR5kibUW6TXatVsgbTRkOHTHGaQp+2pnD+OQ3XHPidizGCX80MB1AJ4NNtx8V8S05Mzk\nBo8mB3hq7a4UH+5WLSeZqyiYNiVWuc2vwWvV59HkjC7V8SmhYN9Auue+a7BaXREkVmFMN+zDB4uv\n/I+vMmw78ogkBz+hQ6kk6hHEKrm2TUq264havvxAYeewwVepLwweRpUhPntjlfoErLNdxq3MzeNG\nOKDuCWZjj3Dh7q00jilFsmK1QaRFR+v3rF4xtQhu4nlB0i96aYTvK0dR9ZWKkqaXPvAKFi7CJl/l\nnFbqFSkLBsUHlNK+h23Dh61tbWuP2XPhKXTGsjYFdhZSipX4xB9jpJN4fZKRhG4FDibjvi2ewUhy\nZmXISuCedrm5ovqOfJ9gR+FD5XMUu3W+SJz7dT63XKom/tJ7byNdFWz1BL61PnygwujvmqAmF+R3\nQc1QY8RJQCVOx7EaorpqyUrZ95VXMxC/nkd51XGXi7V4vJPhz9148zjGqrHpyIONix64MJa5qjIP\nlHCrG+j6xq2qxqq5KChrErErV1OfSKrMe5nb2f04pskFefYykkCdpOEApNbs1z5eKkCWvLFBuEsk\n0NBuPWQt8FlTLzhSQjihZiNP4P6l2wUPdn3K3OmGms37WAFDOq8j0Nh+M2a1Ixi3SHSykWUQOE/R\nH3ukov5v7TFV4a71eZoTq5MQkckEvsHuuGNOsgFZ6+K0fDlg0yl06TzMSnRsSlDa4x0C4/AENHBT\nQIULz2KEBRgf694cLWkTd5y513AktXGvich1HYZmxGjgPKSwctfgJLZMeo7KtCaW0M5m3DAUR8Rk\npySp3flahuLAOC/oYnmjc5jpHJ5TsxYJjne3o/E+WqLxuVgUbGdpy5YgLCklE7/2dtkLVVeKEm7q\nJm7DkE4sn+NDh4hr3m85xS0QZuhxdE2gmVlOIpx5VUZMXxJjz+t68PbWBDrRi1eP8I+d+2z86gnV\nBzlWlaERE1DXWDbSpzifN7wrQNVPhAZPN3Jp1CeQDYmlRuTVll4sMmlCAomU7ql6UeSQ7eg4z0Iq\nxYuLNiMU6tHJ00srs+lJX9qr9aw1UOl1r4nJ5br7q4BSN3QfI98oA0wvyhr6pCPnRnsryJU/8fZC\nptLT9Eo37nSdkKtQNziKOLwnKfp0h5V6VwK/pj11D8LByF3Hu8tDBkN3vpPLhFr6n03TXpH01gc1\nyYV7KNqJ2tpLw44WSBukdKnic7tPmbvz0pQRheKDrHXjmUXHuOxzAA1DSQZM85Cl1JnWdUQYuXk3\nb7hFo53eIc7dd4RJR6FqT+BntCKGsQpbqsZQatHfrANWGu/lssWITLeNO4ahCzv6VFNcWUoRy0zM\nBF/oxmk1Qhy97E8TBguFy9Ydz2p/QGfd9ZhtVgzVK/Ngbdht3fOw7GqC5qMRt27Dh61tbWuP2XPh\nKTSd5XzTECwqTqXn+FJcsqOa+D4d5Z4UjUKfTAAnq6Qk+w12KQ48DEbJtWAf4pn+Ll5fgT/MTbcr\nm1lK6ju47uqkIo7dZ7vvQIVe0bbT16OLK0hp53X4tduhgpHhZdXTi4Eh0+6+J2zCeWpJlXQ8xjDU\nit+lBaEo1avQzf+w8q52wWA3Yib14WhtOJNK8u0OjgupaKlG39pHejW67ooTsjEFjS53lVn2lcEf\nSPKongxIJM8+NFMasUrbLGUlVupdL6DUuQ/llhfxmlA9/d2iw78mbHoTMVRoM2vOSaSO/Pa56Oa6\nGYvUwYD30jVtX4nxQ8epB1gSNmM3zl7PpxBX2LHUqaKWYeN2ypxTupGo76OKYeWudSlZ+9QraaJe\nISukP0v+fkgv8DS+8DndOIBbNXLzPzn3aeTpFRUcKSp50cJK959gHNRZw1g8kdFOwKHmUacTYpFn\nHNiMauzOuR8o5O1apkrEdiHEAtH5tU/mqQOzqEHUgr2WZrKoOJsY+Eq+AAARi0lEQVSf6npYNqmq\nD6biWF2gXlhS9B73U9rWU9ja1rb2mD0XnoKxFr/MOW5Lbt5zK3Q7uk0duZXxrtnlpnbChuaqGQlP\nxJfVnEWuqZgN3VieQlUxn7u/y+qKY8W4AzUDNa0lU4fcm/sJO2+52Dj0G4pHGDsfphxVmrKwEabB\ndNAqkVOdn/PupWO/OYgHNOJqaD2XOJuf+tQqXxV1Q2AfeibVlSagRFYGhqXIVUemINJ30Va0vZBL\nWVKb/LFz+Wh6tANqOVO2iUjl0aTzlmIovIBEZkKvxZPwSOutydfCNNhLVvIOPNOxUQefN3dzqhcG\nX65V3nhMJADjm4RGicZNl1Gps7UTsq9sU5ZK9q33p0TazZqiAuVlVnZFdq5kq3bJomyvavOZ75Mn\nYkgqEqra5SjKhUenuXoDfRc1Xq/R6EM+7+HIawJd16IpWFfyWJTMtXGOp/NtIstaCeEkihkpf3Ae\nuGs6WXfUkTu2eL7gNHD5quFkhb/svbQNpWDVhfA2Veld5SoaEjaR+z5/XrBSrqU0Kb2QpafzWm7O\nKAS3X81KLkXyuirgeC4otW2ZeH8IxWDqruFBfsHiQUQ7csXWVXVItO9+/kqcsqndAnB/vWGsxcJP\nHKnTsAq4r+y7t8i54TkXMGTAuaDL8yDmSB11rR7G984aSlHA29MFp3IvTf69qw+rtqbr7NVrViKt\n769LvqyKyXnb4imBVQuE1KZrRKPH2XiFvVDdebDCE7HIfOw++2I3IBLte3G/5r2k78soeXDhMs6/\nXxasei3BJ+CtOrnPbdzgK3Rpk4pCnIiZp3NSJdyvpEfpRxSxg/6OVj73Ykc4cjkPmWRuAqkwFncX\nDRMpHU2SirZQp2l+Saos+ircEKtCk5daxDLDgfAmwfGSUNe0tjVdIn+8CJklwimILMff3VAp4TZP\nCyaE+rsL7MI9IPe9cwa5qOgVHo7WI86UHL42nBArPDCXLe/0wKlVwMnCzXtm3TEUpxHLzj2MbeMx\nFRz9jJpN6TAiK9GcFdGKSovJ69cu+MGJw2/M5iG1oOlVmeHtur/LZm5xOB3O2TlXt2NyTHLmEpF3\nu4rd0M17P15RqdJyWWiB3XjMlPC1xZpCC+/KN3gT8di9P6NNH9nhnsK24cPWtra1x+y58BRsa2lm\nFXm3ojl2K988XXHwvju8+zcO2C9VN1/6zPfcan1LPfjVBvaFOiuCkOGOW13jN2o2CjFavyNTWMG3\nRKtWFMyW6qg8aEnfFKOuZx9rknzofKk010H/AYtL7gFczkv+d/Xhf7+10MlNnAihN/cIxOC8c+HT\nCJlYeyl7qt83ppeUtyQiPo3biNGF22Hni5xjNU2xya8Sf99NHeqs0yX2co8ilV7lKqCRtqNdCNPg\nrWnVcDMfhexJ12GVdvBAqDo66oEr96ZnbueLO4+1iHLT0HA+U5luXnBfY2RBTaXynaQvOWkM46mI\ndOchjbgJ2gY6EeOsxw1TCdtsJkrOPQhYZm7sYFmx2hVqsA4wCsEOFiNq8RoEuN3aXxdkajpadQVR\nn9itfLyF88IuyjVN587n7MKdl/dZIR4b/AhpBkLX+XQiMqnE9VGtGgrhBoZvX1BEzuv4V9IE78yN\nNz+wHIqZW3lGjs7Sq/L0ILrOQGRAuzbCWp2jbsDmUjwTl27cpWmJlSVdNj57aiQrm4q9xt0jF16H\nV3+0vf+5WBTqtuXecslmYWmVAb+2XlDuuRtwrzRUqgWbMGAgcpJCN26257NXOWIVz5xiBGIJb3Rc\nqzONcUx9rG431YSbs4bbpQtRxm81vKv695NEPsK+ddp+58MnqK3pGJ27xevNg5CB+ANfkHLPajfg\nmtStTJYxVthxNy2JjfoABHdtZmvelsu5v055Sy29d2Yb7p65n99vG5oPEUQ1aqH1w5hAnYjZsGCo\nFt9GSYeuDVkO3HiDJr0KpQ5MymjitDBHzCj1fYFATzuRxcqFPZ9fklXufM8Tj1RHldMwFSzaH7u/\nO5i3ELrrtNpv6MS7eb+qUJsAnjeg08JxELpKRRtdgHVP03LYsK+Q6CK+ZF95EC+bsKek0P2kZ20e\n0GmRGm/gQSdVqyLhWNfhclFSSSHqm3qoihrWmkdQWZbCyHyuafi2WuJ7RvDWtETCSlz4A75/7d5/\nx6+ZqPfjoIi5vO7ObSZwm7+7z676Z4osYLAjZbGoI9A8VpsNA90jy0w36MZw0eqaeT6V2MnipaGI\n1CdhTmlV2Xha24YPW9va1h6z58JT8DAMO5+lXYP67otgg3nH1WDv3DogLSXrXm3wfLdazyq3YzR0\nxLhkmDU1rWC5XVmQP3BuZ+4XnAXqkZ+/A8Dp2YobG7fr/p9mw0goxuWjfAqPJG5b1fY9W38ABQt0\nVcdbudthji4TBvJkBhO3S8wvUrqp2IfbgsD2NX2fYkeQZ/Eano2HPDhxntK5d4eNkovh6pJTZdZN\n92Shkt76hqiwDbCqodtLSydxFSGwqf2SUtiLqssRSTRN17KD21W7KMNTxj3vXfHjmrXnvuu4Cxla\ndx3aZUubCB69k9GK8TqNxDo98JiLCyAdhBSBIMHv1ViFgt24RjozLCc6hsonFAFMe9lxKh2K03lN\noUpEtTylk6Rgce5268uopb7v5n87TriUNODAP6Y4VTjWFrydC8OiE5DbUuEitKEFVSLOAo9ESM+N\n4MWms7Ta8fOTOb9nXJIz8W6yKdW5OrE0D9Tcd127fF3gCaYf2pZcUn71vZp5p3B6k5FG7+r6KYxo\nS5biDinxmMlLMabivmgN67pmQK9s9HT2XCwKHZZFUGFqQ6mM/WUd8i2VZvbPN6w+5x6QTbdDaFz2\nNpyf6O/HHIuwZCddM9QD1KUNbyoLvRmfUN3Tk66MfF7GfE1glOCi4DyQK/7oOXxM9kegqScUJzos\nrVzRY79lqhjvXX1hVHcYSYefTQwviIOxydurxaQWnDsO75K79YyVKWnW7ntnQYMIfaieQuK0CZTt\nb1uM7m5vGlCKHh/1WpilT5f2JDSXbKSU1M6GnMotHbUVyaUqGKqMXNiIwpegTDtjpWOOMx8rha8k\naEhFUmoVoFeHHqPKubhdssRv3ANWmxydAvLG0imUSLR6teOSy4UexpElXbuFYNatWD1wnzkd1Oyp\nI7QvAd/uYFMJAEbJJu+Feixo8T7HZy369DMB2ZqloVbc7lfQCly2Citq5TD6HaIz0EugLE1z1ZL9\nIKrYUcjTdS1+LcDRO7qn9wJeasXitKkwalt/u7Y0vshSlidXHZOxelj80LJR23aS1+Ra1C9tRxi7\nTXS+ekBYbqsPW9va1v4A9lx4Cr5nmEQRXVLTyj0NPR+xcNNcbwnvuxV/NIgYShPSn7p6bpznHCmj\nOyw8gutaSY8XvKJs/upsRPKC8AIzgYn2ary5a4BZfu4Bv/u23LIONq0wC3AlpmGrGwBE/j266rsT\nfNZCoyzl4v6Ca4fqJIwciMWPE8a9t7FwXYwAYdhwUw1Rp6HbwYq7HVMBjA42DUvBjufLlixQ8ql+\nROfyCed2ouRU7XeM9CGztCjZj6/afhZbwsKNMYwT1sidrXNWqo/vdx3eDUGTVRW4FzbUco2LOGCy\nq27PdUs4ct5B6vvsRYIdSwfUT8EbCTK9tJytRZDiZZTiu8g8S6zKQDAQ3uISBqLCs/OcWKHisBwx\nCEXxvvEYikSlEtz3Zt5xYoTJKBp2xV8Rm4ZNz1OQQ3YgDs07ArKFllrXNPA9AjWSee0tholTV2mU\nDMxbMH11ogKr6+s9WDIRedBeM8KEriIyih9Wg0Y9eG1nh4nCp9Zv6fQddidBzZGsdK+UgUcqr7ep\nGvZ1HbqiZuO7ezy03lUV7GntOVkUfHYHO6R+y235LmMsO1OXhTWbBVXwJQCiMVgx03gi+PTHL3LY\nSmPAxjRSKYqPDjk6UpvqYu8q+4znRGCz6V3uffsN9x0nMalKa23ZXaHcmu4hW5AN3SqVmohWcVp9\npRsFnucxNL10+gGBdRfDiPFokDR0vquSHFQrNurgCykpjtwCd60Wq9I4YiDX955/jeHKgYa6sML2\negPGw9iHpdHvNAPEKocONyW1CEfC/TXeSnLn0n3wqimFxG9NOyYbuvn57HOkHIaNh5heol1EJzve\nnM3cucFmVEOuePnakkCIzHa4YKWSQjRWXqPOKDtpSMQjwj13o2edT6K2367zQDycbSkykemKXC3e\nzaDDE++m2S+wGzenm3aDtWIbUstyE6ccRW68PA/YSBWqzHcYNy72P242ZGpnDtW3kMxbSlVqitoy\nFS8j4TFhIi0K5RQa3xKI8SiJIqbKfU2SI/xExCqjCSOdZzy3IR35Da30Hm1Qk0uAdne6Js9d5Scf\nVFdVtejAITe513Epsh8vHFEpPAxqQ9bXUXf9q5DtaW0bPmxta1t7zMxDbdjP8CCMOQXWwNlndAj7\n27G3Y///YOyXrLUHH/ah52JRADDG/I619ke3Y2/H3o792do2fNja1rb2mG0Xha1tbWuP2fO0KPzN\n7djbsbdjf/b23OQUtra1rT0f9jx5Clvb2taeA/vMFwVjzE8aY143xrxpjPmLz3isF4wxv2mM+YYx\n5veNMX9er+8aY37NGPOG/t95hsfgG2P+qTHmV/T7K8aY39b8/54xJnqGY0+NMX/fGPMtY8w3jTE/\n/mnN3Rjz7+qcf90Y83eMMcmzmrsx5r80xpwYY77+yGsfOE/j7D/RMXzNGPMjz2Dsv6Jz/jVjzP9g\njJk+8t5rGvt1Y8wf+4OM/UnZZ7ooGGN84K8DPwV8CfhTxpgvPcMhG+Dfs9Z+Cfgx4Bc03l8EfsNa\n+wXgN/T7s7I/D3zzkd//MvAfWWtfBS6Bn3uGY/814H+x1v4A8FUdxzOfuzHmJvDngB+11n4Fp+j+\nMzy7uf9t4Ce/47UnzfOngC/o388Df+MZjP1rwFestf8M8G3gNQDdez8DfFl/85/qmfhszVr7mf0D\nfhz41Ud+fw147VMc/38C/mXgdeC6XrsOvP6MxruFuyH/ReBXcEjkMyD4oPPxCY89Ad5BeaRHXn/m\ncwduAreBXRy0/leAP/Ys5w68DHz9w+YJ/OfAn/qgz31SY3/He/8a8Ev6+bH7HfhV4MefxfX/KP8+\n6/Chv1l6u6PXnrkZY14Gfhj4beDIWntfbz0Ajp7RsP8x8Bd42Me0B8ystX1v67Oc/yvAKfBfKXz5\nL4wxGZ/C3K21d4H/EHgfuA/Mgd/l05s7PHmen/Y9+GeB//kzGvup7LNeFD4TM8YMgf8e+HestYtH\n37Nuyf7ESzLGmD8BnFhrf/eT/u6ntAD4EeBvWGt/GAcrfyxUeIZz3wH+JG5hugFkfLeL/anZs5rn\nh5kx5hdxIewvfdpjfxT7rBeFu8ALj/x+S689MzPGhLgF4Zestf9ALx8bY67r/evAyTMY+p8DftoY\n8y7wd3EhxF8DpsaYvlv1Wc7/DnDHWvvb+v3v4xaJT2PuPwG8Y609tU4p9x/gzsenNXd48jw/lXvQ\nGPNngD8B/KwWpU9t7I9qn/Wi8I+BLygLHeGSLr/8rAYzrtn9bwHftNb+1Ufe+mXgT+vnP43LNXyi\nZq19zVp7y1r7Mm6e/5u19meB3wT+jWc5tsZ/ANw2xny/XvqXgG/wKcwdFzb8mDFmoGvQj/2pzF32\npHn+MvBvqgrxY8D8kTDjEzFjzE/iwsaftlb98A/H/hljTGyMeQWX7PxHn+TYH8s+66QG8MdxGdm3\ngF98xmP9UZzb+DXg9/Tvj+Ni+98A3gB+Hdh9xsfxLwC/op8/h7sR3gT+OyB+huP+EPA7mv//COx8\nWnMH/gPgW8DXgf8aR13zTOYO/B1c7qLGeUg/96R54pK9f1333/+Lq5B80mO/icsd9Pfcf/bI539R\nY78O/NSzvO+e9t8W0bi1rW3tMfusw4etbW1rz5ltF4WtbW1rj9l2Udja1rb2mG0Xha1tbWuP2XZR\n2NrWtvaYbReFrW1ta4/ZdlHY2ta29phtF4WtbW1rj9n/B1FnQTciSctAAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.2762... Generator Loss: 0.8202\n", + "Epoch 1/1... Discriminator Loss: 1.0826... Generator Loss: 1.4488\n", + "Epoch 1/1... Discriminator Loss: 1.5480... Generator Loss: 1.4554\n", + "Epoch 1/1... Discriminator Loss: 1.1184... Generator Loss: 0.7442\n", + "Epoch 1/1... Discriminator Loss: 1.3038... Generator Loss: 0.8651\n", + "Epoch 1/1... Discriminator Loss: 1.2226... Generator Loss: 1.0445\n", + "Epoch 1/1... Discriminator Loss: 1.2978... Generator Loss: 0.7549\n", + "Epoch 1/1... Discriminator Loss: 1.2956... Generator Loss: 0.8022\n", + "Epoch 1/1... Discriminator Loss: 1.3636... Generator Loss: 0.6897\n", + "Epoch 1/1... Discriminator Loss: 1.0502... Generator Loss: 1.4712\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVmsZel13/f79rzPPNyxbs3VE9kcRFokTUkeJFuS4QGO\nDcVDJhmI4Tw4gYPkwYJfAgRIYOQhT0GAOImDxHYiG4gDO4YTepAl2YooUiIlkWz23FVdw607nnuG\nPQ9fHtY6xW6RXV1Ndltl4KyXu+85++z9jetb438Zay0b2tCGNrQm53e7ARva0IaeLtowhQ1taEPv\nog1T2NCGNvQu2jCFDW1oQ++iDVPY0IY29C7aMIUNbWhD76KPjCkYY/6IMeYVY8zrxpif+6jes6EN\nbejDJfNRxCkYY1zgVeAngXvAV4E/b6196UN/2YY2tKEPlT4qSeHzwOvW2jettSXw88Cf/IjetaEN\nbehDJO8jeu4BcPcd/98DvvBeN7tuYD2vQ21zbL2WXKpHzQudBmMCAEaxpSYEwPMbANrKB1sAkDUO\ntCUAdeuArQEoWrBW77dG3/GkUpIPQDdoARiMJxjHlbYD7Vraai2VPtNtLNaR+41+bRxwWvmdcRuM\ntsO6BrcV/vyd3xgaR773cGj1IY6FWj93G2iUrbeN9K1qLTT6Pq+l0+kCELgejl2fARVoO9bvc1pD\na2p9mMHq+0xraHQMm6qlsnK/DiUtDW0jnzXWYlrz6LmtXjdNTV3rdSvzVDSAPgvAcaRtdV191+h/\nUHIAaxy9lne01gG9/rBk49HwJgAp5wCUixxs/j3vNY8uDL5r9DOZg9B3aPQOx3EeNdA4Brv+pQGj\n18aVvvmuixvIHolwcXz5PjAOdv2O1qFB5u/12/dPrbXb79evj4opvC8ZY/4S8JcAXDdm/+DHmJWv\nUZzJonHahzR2C4Ab3TlecBmAf+sTDac8C8Du7hyA1dE2tG8C8I2LGJM9AOBsGdKWJwC8mbkUldyf\nV7ohKLHvxyAMGFfG8YcuZwD8+J/6GeLOAIAehryRQW+XBcc6Ad1FRduVvvjK6LyuoZvKJvUGS/xK\nGF098OjnHbmOE/m+8Fn1hfmN6og8ls0S5g6zWNo/nBtmHXl2Nl8B8LAoMBfKNLYyfvgzvweAK6Mp\nYS3vMO0xJusDUHSkjZ2lR+7L4nZyQxlKP9wkZN4cA3BxmHBcyBg0c3nHihmrC9kI87rGz4WBNkFC\nksvyWi1POTmWz2fFWwDcOW9p6kwH2aXTiwA4eXj/e8/DB6DIcbBeLP1C+rdqArDyvqI1rBnED0I/\n8fv/GwB+w/wdAO596du05SsAWOvwiDtj8Ixues9nfyjz7nsyBze3+yxdPXiimFab5gcutSNjaD2X\nQAV7fyRrb7/fY3B9AsBzzYj4QJ57xYtpR/I8J4tZWJnXP/GzP3fnSfr1UTGF+8CVd/x/WT97RNba\nvwH8DQDXc+zp/J+RzhoI9cQsS0x4BMDLC8tzL1wAkMfbfPxHPglAenEGwN4Nj/5DGZDFMmX1bbk2\nNxYMXxWp4cFoSX6oJ6UjC15Ou/c5NyzYQNrxK2/JJP8Zx2ADGfRh02XRzPWxLlUuExAGAcTyngO7\nC0C923LTyEIwOzmT2YG0eXvOKJOJTvozAOIHE463lwCMijEnHelr936PaiDv61URS0faFjSXAFj5\nR/R8uZeVZT+TDevtZmzFwtxuY7lkhDnVQxmf3dGIdlcls7sHLA7kuZ3jHulINlj+WyPejm8D4D+U\nRZ7HM7JXZEPfjc4JZ7IJay/j9FjG++XGozOU+WteE4ZWOwllKozO6RUkZ2sG8QOQ8ncfl3YiDHUw\nk79VN8dZSnsK03wo4sJX3vqPADh8ZQEoC3hko2vecael0s+DkUOaCnMeXxlKGzOXZl8OwF7uUvZU\ngkgqlpFKlklDHcq6ZiFz1tiQUpYIw0kPbyTf77XXyC/JF72ky8wrP1C/Piqm8FXgWWPMDYQZ/Dng\n33mvm21rKBMX3Ak2P/7O54UMbM932bqQzfQnnr3CWNUH92OfByC5fYzzuRcAuPTLr3LyBVnED996\nhd3PyWA7X7vNN4ayKF5dyIDVpqJ5EkNr2rzrX9PpQyMbwe9WDIxcp945nUJWpt8p6OnwDrdlYrt0\n2B2ouDfaozuVPk2LCd5A2jR296RvL/h05rJoTHyC2+qJMSkY656PozMGlYzFrCcfhncyyko2W91J\nKPflJNkqbtDEsnhjf4sslvdtLeR9ZmrpevI+57Jlq7wlLxmeEEbC38vLFe3849K+fTl0SteheUFV\nqYsJ3Y7w/mUbMHVko+femONSFmZ7aSzPfe0CHFXnEkvj/GC71ACuiuN/ZrTFFYQBBp8QCfP/vvtt\nfrgv7/gfHtwlp/mez/kgFEXy7OjH/zMAkn/yF9/z3rXiFs0sP3JT1qcXyPzfuroNrTCK5TQgUg3k\nhIKRJ2LDYZURqNqY6tNMr4aZqkc7M4beNQDc3YpppePcdenlgw/Ur4+EKVhra2PMfwx8CVG7/6a1\n9lsfxbs2tKENfbj0kdkUrLX/GPjHT3ZvS1tkWNJ3f6HGrhSDdyCi+HF8ne5QJYgdEUk7SxcbyakU\n3pww6qs+nI5JXTk9ru2MmZ0KV72/lFPy4vt0x9ZVSW3l5Dv0JyyX0o6SitoRqSFxa64Hcor3EH1/\nONkh6vcA6AYBoeq1ZqfEzUSisUZUA782hBM5GYrVDrUR24jJEmqVTGa5AU/6t0jVYBjsknkyjmO6\n+A9OATi5nNJzRZo6TRc8n4qYb6+IGuQHfbxW2unZgnZX7Q+LPZxGbDRex2fQ0zYfi4SR1oePTuiD\nqw72ZEeeW9/FLuUZV4YR1bGKvI2oR63j0DbyO9wMu77+Pska6PtqrLw+5FZH2nHxU/Lcn/lbl3gj\neQ2AAe6HIinYr70MQBL87Pve2651m9DDH4lE1vdEopv291jp+o2cCUkgEl1/2WXh63UVcG6kzYEa\nbU8XKdtG1tjdImY7V1WjbnAP5HNyDzcYf6B+/a4ZGt9FxtB6HjQNj6wsAEY6eWWvy60/+KJ8dKnH\n+Lroz7luquHAIxnKZurvD2nUKLf1GcudoQzIi5HLTI1rD35Z5LN0MSOfF/qyJ2cQZdbiD+X+enXM\nxUKNgAuP2hMG4VxYbrui421Hor+3fkKUySY0PY9ALceuG+L6sml8Xdhe5uOoPhmXGcbKdRv12O4J\nU6sSl9dUfYgceW6eLzGqwiziai1dstVcIrs40mdPsEN5d1/l2tDJcR01go4DUMMYfQevlUVsY4+t\nRBhHW8oC7dgxpi9jGFQNTrF+bp9FJe3MmoTJUJ53pzuV350NcX0ZqyqPsKo+NOX3533wIo8fv34D\ngOlnp3zq2Y8B8PV9YcKf/fMnpLXYdr74D36V/+e+MMvy4vv3dsz+6E8BYLgNgP1H3+S91pHnyUBf\nubRFfSBz9YJ9DoB595RuKox+1T9msJI5LXsn7CQynmdegVVvzplOTbxyaXflADg9W/HWVO69PPWx\nyiCCICZolh+oX5sw5w1taEPvoqdDUrBgGrCt5ZEJ2VgmoRhkDvZ+lH+vI0adS8/t062l2WYk3DWu\nZjShcN944NH05HpkurgDkQqKK0MueiIG778m7/jazn2+9PV7AORt8sTNLUxFtpYOfBGFAZxBRXQh\nJ9PlTklHT/qeuoeCqkPUEdXGmbg469PY1LiqatiBnMCuB47GHnheRNiRvpr2giiT06hXeuzq6X54\nIM/qH4Jx3wags6ipVExezpfshmJwKoYpfU+e53T1RLEGM5F7TRNCJO00WY3t6Gm67NJ0RMz1UzV8\ndh3MqUoY3gw/1OfFIwapGtTKnN1Tuf/grozVTm+f81Ykt7y5h6mkT3M+mBeip+ra3k+8wF+upR2D\nL/4YO+4+AJ+7JeOyb3f5t3dEUvrxl6/xyjN/H4Djf3iPc/v9qRIHX5U5O9/59mPvM45h2JGx+Gxw\nifDyZwHoPxBj7a6/w2xL3dplQK8v0ljQTFipGzV1fPxKr1OVJOKc+yfq4Rom5Go8xo9wdBxdm9Hp\nfjDV7OlgCiDBQBYMa93YYbwtG+xzL04oI9WRzlvYloXVKeR7S0Psi6huRymjUha/F5/TXXshpxlX\nTkV83P6cLKR53eXjpzJ4v/mgpq3WqsTjKVm2XFSiG2/1OqS1MB6nXOBZGdIkcAg02IlWJi6eRNSZ\nLNLIjUH1aNeNH1niPRURcV18Izp5210SOaJblq6L40i/m2GGm0ibvYVY/auOxZlL/5peziyVcUmS\nDC9Qcf5ShzyS343n+o7AxbVDHawK04hOjl2CI/dYm+Ahm63xZYO5FFSuqD5RdYk2VlemW1K60u++\nmWJGIuaOPGHuO0VF4ci42TYia7930M/jyfCTv1ee9/tufZF4JJM9Kiqcm8KIxwsZK7PVMO3J9eTP\nzvirX/sZAH7jW1/if3p4G4B8tfpAb5/8URkv/7f/RwAq5z+B9rufYQ3Uqm692T7kyonM5TnCKHpB\nyDSWdRNMt9layPrNvIa0lDan5yVBIPO6OJPfux6cVdLPVZvRm8mhN59YBttio6qLENUwn5g26sOG\nNrShd9FTISkYwLENDRajxjffGfLMs9cB+JF4l3FfRM2g5+BoxIaZqtHORHitBnb0DesgxSYb4OYq\nig0jdvXgPi/kdx877rLcGQFw/yzntBFff9O+lzgpPHRFgqPSyPmgoZuqcdDUTI0YNpuxw7Tq6O80\neGSR0RxMtXEeVg2i1qawDlJphK2bKMeqhNFEIUbjNJx+Qk+NjmeNQ7fQoBgrz+2tKo4GcmI0c0Ng\nNYilG9Psyem/XYT0Y/FmeGN5nxPFmKbU8VxiIznFcGNo5BQ3nYA2kxPf9HTplH3cWAyGdV3TdFUN\nWtU4obw7CgKSWNq3W8rv9/t92iPp00vxCaFKTavf4YB6HPlewBd9mb8fDRz6ugS6O9cJWlVDtuS9\nTtshsKIituOCLz4vcQzx8y/yysUhAL+wSmg+gMH51v/7/wHwL6//PADGrd4Zuc1aFTYYvFbW3Lyt\nefG2vO/hDWnPtWyfZipzPcbBDmVd+Ksuo6ncs19GzDR0u6Pz0cQtQ4mV477TMjyUd9SXLlipmjfw\nJrTZ7In7BE8LU3A9ouE2QZswUfXn1s0Bf2D6PADdZxraUESnfF4z2JKNZ5bSfKcOsUN1Q2YxgboL\naQOCoTywyPq0AxnszlI2tNP3sa0GuXS+zt/6yqsAJOUpTbPW9xtMIM/wNea8PmtoPQmy8u96JCvR\nZbf8HlUsVm3vvMvdobR5Uqk46Fu6c2lb4eZ42dqjkGNqDUiJ5HvPjXAiVSnmDdZI290mpBnJPU7h\ncXuudoBCfn8WnZKfy8qsqOlWIn7ueB5hKovDbbdxHPHgmFp2oW0D2krdjd09TKlLw3wnP4Kqg1GG\nbBN9r5+Bho2bsMQca86EW+PqRuh0Zngqwi49+X7c75BekoW7fW+LeSzeIzRK9XHkqCW/3wkZ9mTT\nz8hxl7Iu/OSMLqr+KJcxgQNdDf3NJ4x3pP0/9IWb/NjH/igAL/8vv8y92ds6Hu/PHB7+uf9S2jH/\nEgCLr/9tSdmRN+I8YjAOlZE5s8kADuQ6XIlb93T7lOk9Ucuy/TO2FrKe7EGJqxGZu7sVXbUfrDTi\nsbY9hnvCNE4WW8zVzsPgOj0rHDLue4Tu8H378k7aqA8b2tCG3kVPhaTgGOh4UGYjdjsqfrZDboZy\nWs/aiFsLtdrvhNilcsotNXA10KpRy2kcSpXa/bKh6ag6Ere4uYjEbSwcfKc3oF7KZ/8qGbLdl5O9\nODM064QZC6aU+ys9MXOTYlU6CH2HUD8vm4rmTNq2O2jIuiLmrfTeepExHUg7qxZKtXqXS5eokXY2\nrqoPeU6tCUyuNaBtdpIGF3luVFrGXTkRLkbyjuE3fbxKZfCyIAr0fTEc5HKq5jdaHHW2lKpeeKc1\ndk+P84uWtqNSQ22xoZ62WZdGxX9TamKUk0sKKlCnNVYDtawf4oaad5F0SQNRMVTCZzzucn4sfe6F\nHbxcvn/I+1OoyU6f2BtRehKbcLFtuKKSl9+vwZexazR5zMs9WnedfljS1iI1hMMxP70trXrtY0f8\n718Wg+1adXscLX/9bwKQnn0NAKdq3xESZR8FLLm0eCp5+Ls1F6lcX7ukktSqwF6S+SuSEq8v49J6\nBl8t5X4DU41ButJI/49zy6un0s7nxhfUV+TtzskL1KqamDTBBvP37cs7aSMpbGhDG3oXPRWSguu6\nDPpjcq9ibyyGo2svXKazJfpwGPZZ82135ZF25VTx6+sANHmDUb228TJCq/qku8TTE7isj3DU2OWe\ni+KX50s8R/TsftonWscbbEVwvPaXG4z6wiN1izY5ZK38Llj18dWd5CcrvEmsbbZ05CDAGmmvG1yl\nWmjMQmxpNOfdi3zqperosUg/ldPg+tJem5b4qouXZUOjGAmmdTCZPnspJ5yzbXAfaGquX1L7ij2R\nGGpPTowg71B5IiGEjbhpq4XFaMJYW83xfEmCshcVjDSte3mKQdpU52I7sW1BuZLnmnCHRlO4bb4g\nO5fTaoUl0Ai7Vo2kUX1GpyvjuuVHHAZP5kt3HZeexqGUiYe9Ju3Iyps46uIj8Wm2RKLxvGf1lzmo\nnaguGloN/W3LknPEjnF5GhB0NSN0/v5RgHONjfGq/0B+Y/97HhmVZRTkHa0hVckzuXPM8vnr8vtT\nGZ+dS0N6c7EYurtjolylCkKMinQLP8KzMl5hR8Y4ci7oTWV+l7OC3Z64meer21yLBL7Eccf4mmT3\npPRUMAUPw9RzIJwyuiSLdOq8QDDSkNmqZRVqNliSUWhsv9EN39nr01N/dBQusBoy3NoBtfq/04Fl\n8bIs3sNaBjVtKuaZpr3O7uF6urkfVuSaF2ERQBSASoOJXLdguFRVYycAFeGKjkNwJG17bdsw1CCr\n06n8bvpWzfxZ2dCXF5fpT6U93spQh6oqaFyBNzTYuxLc4uz4NHP1ErhnrBbybjohKtkTxTJu/XLG\nIpKxSrOAnsbOD3oBZigbvSXE7Yn3wZYyFtXQp1EsCz88IUnkd/6lCd6ZtM3xj6lmEodQdXST5yFF\nT5hs8dbJo7j9tmlZKQ7D7GGE9aWhsY5xYzsMI7l+MHSJ7NpT814kG7rjRXTHkvkZj54jq2SuRw9L\nvvWibORn5zeIJ6f6K9nkTW9KU6kq1TNcfEM8NHeDFauHwlipznDLdazK+wPxPP/ybwHwbf4ZAK6x\nvFvp+A5AiqPMcOVY/JkwgNd2NFZksUutboT9tqaMxCtTej51R/pX3i65p+roUrOH50lG9EDG/mzn\ngvZrsrayW8fcjQX58OPBTRL3rffsw/eijfqwoQ1t6F30VEgKQeBz5dJldvo+t6biKtu6VhMZFf1t\nQRsKFywbqFeqHqgUkJ8uMbtXAfD8Cb6V08G1KaWr4uxRhzIUlcDTw8BzR/S6wpU/92LMNxSEpdc7\nZbVSQ5uTEQ1FCnlOAx2qPIapXI9SQ93R7LUkoOrIqVN4O9TqZuyuNKquycl/S/t8aYmvYblBv8XR\n0OU80PiBsx1qdT25Rymup4bN6irxRETKJslJG/k8WvuunZS6VDXArQituEM7zgjP1d/lC+yFjFGl\nBsWq11IVasAt9mgzdY0mr9OJJWrQy7cwa+i1XETuvL1HPZP+rXxDVmn4c+tiM5FMgvEpxX1p01z7\nOeyGpCu53vY60H982J1RH/2nIx9vLNF6V4cr3KVkfq6cU86/opLlM0tGuUhOQSnqqBMU1GpUbR6G\n1NrXMl+wCgWHYPDCJT6p0Y1f/toa1+O9Q6AffurPArBfiiv78PyXMJmsMWtdPKPSrevgeWpUDHep\nNIbA3pW5e+PaCc+eC+BOPHTZbRS9qj2jPlJJp7skUlCaUjMjx/2bTJ8TxLE3bl8n0/iGxXOf55r2\nz44ChvW/geqDA/Q9Q2iHTMYSN+DFhtDIgJxEGRrbQb4Mmfsidj+4L99fjlLa+nUAOkMXuy0AIUE8\npzhRzMD2Acv7skCCPVnEHTNh5opt4OtnfW5dlYGsFoaZ6vB5aQlzeflrD0Vs/8yNgmYhzxpcDmnU\nkl8NWnKFIBv6MY4jeutcUTPmhx0OYmFS5/27jDV82NQHOEN5SHIuEx6Hb3Dx6nUAJrd8FoV8Pwjv\nkdzXTMMej0KpzTDW78dcUdtI3vhEujCbQcWgFGaa9s9o5yLOp7pYnZOcRSLjkp29wZ1TufeK/4D+\nWN49HbdUVpi2E4h4vjhz8I0szNnJM3R3Nd7CHZF1RP3JjkYknjIk9de3hQuqv48XhrZ+/FLULnHk\nd/jDN8Tj8GIZkiqa1GvH52wrluTD+SvcuicMoOjIPIWTlvxQxfnqLU6PZW6C4YgbiDpi+i9xoh4R\nV/NSmseEK1xdfh2Arx/K2tvD566qDJ4DreJgRp7H1NG+DsZYDV0uXZmD/vIcfyDt9JorhGtGnXUo\nFUUrOQ4Jp/K7XV/amzQ5L92TGISbO8dEN+V3k7TlWLv6zPmcpPf+sR/vpI36sKENbehd9HRICq5L\nOOhTeR6RyvbduI+jmXM263C8VLCQumFxJKf7shLxqzuNMQooOin6jNQAWZ/FNK48b3lsSdTAPX9F\nRPR5+C06j2xMLq1KBN0vPEP8z8U40/Y7+JGI4FcnGv1XQu2uwVpLjKoP/nnOQ42xnt0+wWnlpExy\njafo9Bh35VmzSUauRrAgCgkPVafROIbyQUiuhs1XXr5HpuCwu2VDOxGjVNHp0wzUIp2KBNIJHUqN\nzQixuKr6RM02BjmtXccnU0CbJJH2pEfH3G9kMN766pskaiTMt122NMqyqH2iWER37qj00ylBcRkT\nu2T1uoB4L9pvsHog73g9N0wbEW3PXcXAiFx8RFIK4ojGPN77EOtS3Z8MuXhdJJNvDvpMSz1J7YB9\nfV7atMxVsgwbOVXdo1Oarhpg70YsFfn4+Bu3uTeSOIP+WzmFft4+wXkZjUSqey76czI+Z/+IroLk\nNGX7SLxprGWhSNnm7G2Knqg2B4q3cZGX3FCDqeuEBLkmhzk1zrnsgYu2xRzJGGbhGwCMWpdAw9HN\nwuPmJz4BQPWNM67wRbl2xvj1Bzv7nwqmABbHVnQKQ6ax+GHVxemJJTsoYhIN5OkkLWGoi17xDgnn\nsJTJtwOHLJAF3ekb2ldloduOwJEDLFRsby/G5Ioj2AZz9geygbZuzzhTK/lrQctzaos4jUX3tKbF\nTWQSl1seVoNRgrAlUpdjamviVsXSQL0WvkPjyKJp722TP6vZk/45wZamHN9WT0cUPgKYdYJ9bCq/\ns82clTKIjk3wPNnUtVWd3Kvo9eT6bBUTVgr6MjA4rojddTKjr8FOqWLEuxcD7D1JIw/iIZkGkRXe\nAmehYbI7lkJxHt3LwoTMm60A5ABuNyCpFKT2zJKpHaBYzTmLFHi20LDk1mAdYRrusKDO38emoO6/\nrWnIZFdE7dH4KjulMMXtXo8oEyZcPxxRb2meSvsNAPzJNu3rCjIz7DFQvMZFeYWdVMFswnMuqwqy\ntig8DvL0mbclh+EXD2ST/ug05nV1B/c7FleRu/Mw4yCWMOZuJ+T6SOxfrSu/6+Xb2EDa03dTiKVP\n9Twj7Uk/gnPDxVDhASrNzmRBJ5Vwr1EVcPxLvw7Ap9JneOCL+nS1+Wle1sCwJ6WN+rChDW3oXfRU\nSAqOcYi8DtN9S1/DmbsHJWEmJ3d/2LDjy/V5nGGG4jGIVQTusIPnK5xXOKTWOgRlGNFqoEscjNnV\nE3t3Lr9vRi61Jpzsb58xvyMSwVvPDNj7TVFX3P2UF26JhLBdidh68UpMvSdi5qg01KGIdf1iwOiy\nvKNrbqI5SpRrQ2SQMlQpZbATC6YCYBuDc19DYrfllOiHvUeiYS9NSDsidUTjHZpd4fyeMyQvZLyC\nqdzbXXgUqUgP/emSeCSW576Z4ipwyqRyCZBTbKzxA4NLEQb5XRh1SLV2Rjg9oOOL2B10hzQav2AK\nudedrJh01ejqG7qVjO1qbDhFPh/2VmTHonYca6Eez4+oc4WJTyL8wXukR6rBbB0e/ZnJNp954dMA\nFL2SHUcMoid1STcTA3NjUlwFlKlONVCtnuEqZF08GnD5XKHtr26x0LDpfOcGPx1Iv3/znuIi1O8t\nK8x+WkT0PxysJdev8fvuyPy+8dYWl0ai5prhFbqNfH5puIUZybPjuXhnvO2KvnocaruEVBHBQ5dx\nqV63rYLLisVRj+Wzfj3i6nVR3fLDIbMrIgnNDn4SdyFrOTmYcCv/NzBL0mJpTc3qtE/9MWnSw7Jk\nT8Ul48G2ug7Htzr498Ti/LAn4m5vPuTM1YiwoiKNZRFHqaFUK3K/gK6iFPW2VTQOXTytf7AqCq6t\n5N1p94jPX5YF/Wsh/PBbMvBva9ZmGy4JV9Keaq9HmohoP+lDFMmm/sRkgu3pRl2JpftN+zb7Gree\n1MUjtKiibWg1xl0lWUauT78v9/ajKWEkEYvhhU+qmYFh0afsKGPUAKvAaemEwkCrBALdhLZX4qey\nMRfBOZGmaNfqZRnWHaJPyga79PKQu4qgNM72WKqnIWhDzmMFMil1gboBUaHZidsdRo5s365r6OmC\nLm5vc6gcMntLC4cNI5a6Vv3IxVm8B+KSWv8dzVtYTYcc7Gua+DWP3pkwvU7ngv65vO9edptWK1Et\n1AU6dbZIurIZe7lLqLkG4xQU1Io6CXk9l/EMVNV8HPSLvS3j8kYka+8PV32+pBiVv/9yy4NTURl2\n+iG3RtLmfrTH26Ew9R3Nc8mzBdmOjE+5rLD9tQpZ46t9LF512NlVyP+BjNU42eJltS89m845viqq\nxNVmxS8a8Yh8/qU+dyab3IcNbWhDPwA9JZKCocCjrhKyU/EMdC7vkioUe6cbQaBYCKUP6gUYl3JK\nWP8MT+Pa88UKVysyJe2SelvEyPnqHF9zBrxCw6RDF6tl2rr1GK8rXHc4uIGrlZN+73iHYk/es78U\nCeTs9GVSPZnH5RLUwu8sE1ott+a3GV31w8daoeeyt0W8kj6lvqGn2YV+Y/A0EGs4UKNem9Mr1KDU\nKXAdxYBcHrNDAAAgAElEQVQYQaxFQdqyxFdf9/xITsae37IcaEhwHZB3RGztrfaxrRj7nP6E8kxh\n0zyJO2ir+hEQiA1XjDQewXXOcHSZFKfHuGrYTFM1xfVj5oVIbNvlc7h66jrtkNaca/v7dNQoV2vM\nRvWgYqS5KI0XgK95C+9Bvko2A38HP5WTMi6mBJdlvKerfcxA+2d6uEfy7oGGjxdJQbirYcDnM6KF\nqISmnhFo5aW2t2Sk+Sa1wtZjeM9I55OufBGeSlGi0/Qu2x/7IfnuW29ieor43bisSul3v5/R82R9\njh1p48kQ4lzWdzy9RajyiYkmJOeyH+Jwm7Gzxq0QKbU7stxsRAWJds+4eetz8rzfGvFM9qMAvN2b\n4MwfVbJ8Ivq+JQVjzBVjzL8wxrxkjPmWMeav6OcTY8w/Nca8pn8/GOj8hja0od9V+kEkhRr4z621\nXzPG9IHfMMb8U+AvAP/cWvvXjTE/B/wc8Fcf9yCLpaSmO/e4f1242q2kglBOv3jL4E6Ey7vuCBMq\nxJqe+Ek3oj3SRJy+j6N+9daJCWZ63Y0JFBnXjjUbsunQ+KLYetWK5ZqhNvkjSWFrErG1rsA8Eh2x\ndr71SHee930iDdctSdgpFTBzaAnVkIgmDG3nLScaQ+CkkOmJ3qsi6rG6NTWYoum6tCoFMJxgajW1\n1QtYYy/0oLlQZCn1RecXDo0iNs17MW6q9Q0mGW5XXJLNcYan+Ueto/7xDtAqlsP4mP6ZtDlxLa2e\nzHQsbqKGO/Xn+3PvEWZBYzOMJrHZzMdsy/XoxONtnZOduZwRr9sEV2sduOGMRfD4pbhS52CT3edc\nk+bGcRdUCgu9Uy58kXTcKqXe0lN8jWi1V8GRjn3Ph0gkJeP6oNgKpTtn9qYUjKkb7fNjIhrP3pBi\nsm/W8jd/dsydX5X1dG1oOJiJpJc907KDtLkZLPn4kUhb3+4rSteyw0Ot37CfnZEoWpj3sGWp0kjn\nfEZxS2xpvUL2AvUFVSj2gnI+IXn1lwHYyz/Nr4xlnnZXV/mX1b+mWpLW2kPgUK+XxphvIyXo/yTw\nB/W2/xX4Rd6HKdCCm4DXW+CeqkGq3cIdaLUhB8h1U/QSXB2UVhGQ/XRG7K5LoHdpLmSgomFME2rs\neuGQq8gfLRS4YlhhNK7AtimpMpnZssH1ZPE6jgM9LVibiMgc2IB2LGLrVm3JFdAjLndwlJnUiUut\n2YpDrQN54aZ4M1k0oe/hXKg4208I1bLcqvHRuDmtEbWkvljgdTV/Ig1p1RtgFzm5ptkaBQfMti3Z\nGuZt6ZApTmTvYpeqXqecW2wtsfYKDI11WhyFuXecfdbgf+HiGF/Bbup8QKWo0q2WtW+iGq+rOSqm\noT5TWLy+wWhB17lxqRTH8szq3Pg+mRpJfT/CaeS570Wpiteduyn1SzKPzQtn2FLE/aKxdC5kkw2s\nR6nVqbJIPvOTkFYxKLtOAJmuJ9eFVoPBqiGLRAFz7PuL3HdbMUa3Cy3I8gu3iSoR/V87G7LfvQ2A\nub3FmeJm7uSXOAsUeVucWczDQ4avCAO5v/MyB4mobuFohFW07oVTEr2iNUmvSRvdurOux0zY8aka\nYfpvH1xicE9rUF7t8MLyd6EYjDHmOvAZ4NeAXWUYIEA6u+/xm79kjPl1Y8yv5+WTQatvaEMb+ujp\nBzY0GmN6wP8J/KfW2oUx3+Gw1lprjPmeAtg7S9FvjcY2MxX1ymNbC1fkdvaoQEhVdnGtlhjr9Wk1\nIzDR76M2wkZ60pwVLNSdFM0ADW315jllRw1Kmsef1xGOK79bpC3lQq5TJ6WjUYOrw4i+cutA3aJF\nc47V5KFXOxXumaIZW4s9FBFvb3ifSuHdZkaToLKQTFGGl0clCcLB3SSir1GIg76M36BcERVab2Fi\nSbXPYbtkeaH9SBMWmfqxVUyuHpYYhT7rZC61ZmslzTmDU1FnZn7JnsKmFRcqSbgVlZZ2M/k5ebou\nEjMSXQcBh50rWEpHYwycuMGcybPqbkyluBfl0lD6YiSrZzPmChGnGCz4vR6eqiv9Zk7jPH4prmt3\n/ne3X+K/ek6knGfGN6jWakXrYWKZnzR5E6OJcHOtOxpnA9jX+plvn1NdvS5j7yW0rozBye17/Pbd\ntcTy/iL3w9uCWTA/l+e2vqFZqeG6M+drWrRl37WP1JzZqEt7Ies20TmPHxjuXNZCLy9D/Qn5/upF\nRmHVjUoPZ0/WZLqWeOKIWqN7veYCZyjzvmuu82r+mwB89te63DcfbJv/QEzBGOMjDOHvWGv/vn58\nZIzZt9YeGmP2+U7E6HuStYa2ccjKFe16sRFgtAhqUcfkes3YxVcRz/W0GEzj47kiclW8TWjEW1Bj\n8HVynSgBV1QCeyGLtY0WLNUecJLm1JVM6LysWFllPLvX6GqR2lD16awTks1lE45XDeeBLqC7NfeG\noh5MVy7zh9L1PQ2sOusNmGpgUdrL6WhIrRfvEayz8jxFcDbdda0YquOCSutHlmcNCwWRYbUi82TR\nZFrqfdmPsbmqRPaEo6ViOxZdHFdrUPYdsgu1V0xlI2UXS+q1wX01o3Fl49XWoVUk6XJ5HzeXMczX\nCYfFKR0Ny21qqB7K4jZByfzNNdLwDKtja7VyUVhkuLtrD0APz7wPtrseLUlhefMlEb+/8MWrhNu6\nicfXcDN5Rzy6jt+KuB4gIcW2U+MooyeKsaWI6/nJKVkggu29r77BifvklvqZMriqUlUkW4Bmpa5W\n1SPYfmdV8lpX1u+N2X0WvWcA2FLmsNqOCR/Ihp53bpKeagGfFwy7C2Eci+4YN1dVuJZ+5itDXUs/\nCi/C60v9zNO3GzJPAqu+ms2x36NAzePoB/E+GOB/Br5trf1v3/HVPwTWZXh/FvgH3+87NrShDf3r\npx9EUvhR4N8HvmGM+U397K8Bfx34e8aY/xC4A/yZ93uQpaWgxJQxD7TqsjsPmWliU++iJB2I6Ouc\numjEKCZVeK3+AFetGHXXI0jllDDjy1hHTjw7fo3mnpxG+Vjz1dOERS4nTZ0FvK1qQl64FH05HaN0\nydm2vPCqEQ5enix5uBKf+NFoxFuvSa2At/sDBm+rdNN3edbVAi5XFAvhPGB1U9WA355gnpVTqbtY\nUV3Rys6lgn9MF9gzrYO5V1E91HoLLFktxABbewWt1ghIcs0GPXdINfYC43Aj0RMo8AmmYpRbnXqM\nRuuybyK5lJHzKLzW+h7OUgyC+V5IdF/uaYdLplo+PVkD2YxvYj2x2OenPq4iFDfpBafmVMez5UQN\niSNXjHMravyFlggcpazy9wYzQXsOcLY65quReHh+/+qUm5cUh8A7plG8ws6rAU5XxrM70qxTr0ut\nWBet+5Aqk+g/f9CS3ZMoy189fJ1y+XiD5zupWYlU2NbadsN3qqY7llQraF+YJelM1Mo7gxXPawGf\n9BlZQ3uvbPNNlQRH2QJvoh4T59PUz4tU1D128HZVVVoogMrgHEezZJ1lD3sm473jhNgd8Yh0khFn\nJx+ssvYP4n34V3wHyO530h/6IM8y1uDnDo5zQbuQjTSLfVq02lKnh1X9M29rSGQg1sFNTlpg9Hsa\nh1KLvXjOCfm+5lLcc1i2ijt4KJutdjJQ5KLQXeIrKMZZmdFdan5Ez5DrZjnS9N+jZcCeVmQ6PVmy\no6Cj7UWX7evyDq/ZpdIKSUczLXyav039ZWEse94Z3iuyuZ2BS/d13SAH8t72FZe0o0G2dxJyDc4a\nNz1spPDdCTxMNNOwku/Ltmalm62sDYkGrvQMnJXCOZ1wSJvJGPnq/nKamtzRyls2JC1k07i3A1oN\nBe/4JYUiGY0jtRG0FfVbwgjORxc0CkTTGEuA5qhMW6aa+/BQPRmdsIsZqpsZh7UE/n7UMw6H6kJ0\nqi50JF24feMUVxlWeFDgFmr/yTQvocootXhvsxizrDTr9ARu3xeGere9gqfn25OUnG3WGRmOqrZr\nhgDQGgJPsTvzLg8UX/Fyu8ORnmDBq9rG3inbM62AdmC4Vmim8PaK4aHkvJz4KcUDzZrtyfx73oAo\nEdWgLR3mc2lH6fTxDsV9nu5UBM4GZGVDG9rQD0BPSZizpXYqirJHTzk77QVL9QO7ucFdqxWdHi3C\n5WcKuVVhHllkB03J6aEmkUzg8FUR7W/4PvcUa/d5BbeIP3UNVzmtdxZxZSyf10VDclmrK58XTAdy\nMg0USuzG1gUvvy3c/JmrLb/wDTkFnv0MvPlt+fzHvniFfY1lSCfy2ckvpNzXgKTD+wt2bqgR9Nsx\n4fNykp6/JeAul7sT5gq1dm23T3BJvq/ajEY9A441xFpD86Iv74pOLONY1YC8pqpEcrmbxNxUj8n8\nIOOg1GSsQjM8aQjXoCDFKQ+/IaJo7TiYVgNhhl1WqYrXgZxWL79UMtRiOQ8o+bTC8vc+9jylK2Pv\nvT14lBloNRy7urpHXMvp6E5gevJkvvRl6fF7Pydhxf7HXfxIPN6n0zeI1btycXyPHa0xOVcV060M\n33xZVKbdzHCkCV/XRgEv3BIYeO+1r1B9gKr0DtKXZi0hvCMk2viQa5DZeNxjEGui2PVLlPdE7Ug8\nhdK7SCk9mbPs5YqXXlCj86+/zvO+GNCPwyNeNCKdete39R1dFIeHYVtSagh534f6/rcBuHXc47B5\nj2Sz96Cngim4xmUU9HGGR2x5IlJPgoKO1jP0bUxtNKg+9IguRKQa3BC9sUrLR/kA/lHL9IZa9cOW\nnup7QZvyKVVH/H2ZoKguudA17sY57UJdmaMuvRPRxeO9Cb6RxRtqZN/ZYYdtdSd5r+a82BMmFf6r\nGZ+8JhMzOi0YXpZ2Xj1X1+If7zH/qjwj/1jKzTMFJPlMSqh5Dsmz4jkJSourCyXYneCvRdFVH7+v\nlvpkiN8VT0pf62p6w5Is13h/p2Ku5bI6tmA1kk0TlTW55jn0phqNWI1oW1VFbJeDL8g8FIuKxqhb\nLw+JDjRqMNfisb2cTLNELxsXRzNQo2bG7LVG23GGq+hMgerOw6MTphK2j5OEFOj8vg/5bcav/F//\nFIC/2P3z+J+SjT4eTMkSGdsomtKq4WmggLBlmXLVl3cEs2O21D2djrZYJLKTX7h9zpcUs7Ks3587\nGA3gYu2Gt+2jS1MZxhpkFi0KRgO5/sRRyviWrMPqgbSn89wVeq8I43344jmf0kC1Zr/LljL9a9zA\nO1CbSaxz0PgMNMWzDkJ85UgXZy7X7U0AFm4fZ7EOG3oy2qgPG9rQht5FT4WkEHhwbezSFNvEmlNg\nFgPySINNZnPCK5rnfj7BUc9ArCdiZ9xQrxT6bHiGp+HBYX9Fs9IqS+V9OpHGKWiQh2kDHMUljAqX\nVI1nvTyiUUyGoGhxe2J0S1UE3IoLvp5ruXfnkNfP5ZSPR8cMliLmZ/svca0Q0I9apYrRyT6dLS0N\nH13HHyhMlnOZzlj997VmLcYnmJ70yd9OaXI5Ebx6Tpuq+2V0hnMup3+nlecmHsSRhopb2NUTKqgj\nOjsybs7FDdoDMT6VhVqvd89wEmm73cnoqYcjnpzRJuLB8ZK7FGtcyb7MzSDs46kM60c9iqEGRTUJ\ndSVicnVRk2vwmaPBT2mb4s2kDaEbsjBP5ksvreXOiWRl/h+/+Y/4C89rMZs7A+K+qDTp2QvQ13dr\nUFe0XbN9JH3KBws8xZwIO4cEKzXWORf4evo/SbaAp7iStZaaNrTYdXi001KisO5uxsBVCH53yVBr\nmja6DvvtDr6joD7elLir4eb2Y9TIPb29AX5fnuGg9VbDlCpZ189M8BuRaIeDilIlL7/7Knea/Sfo\nzXdoIylsaEMbehcZax+TBvavia5d3rN/7S//LJ3RlIlW+12ZmvZUOOM9W8CRnKTH7oyLudZbVJTk\nJgGrFY6r3GLW3Lq1j6Lx2sbhd/bVehajwpJxW6wazJrAw1PQUdwAWrn2pvL38PUa02iJNVsyUskl\nb4dc39awwKQlVgNlrsVZop4h0NBlp5uAGvvqEDx1Q+W+nFrlyiEJpT1xEdFMRErpuX0cvb5a7rP/\noiIKX7ku3+8NCDSeoljN+bn/4lcAOHG/yctf1XDc+S9xohF9gZVYkLKNiRTEtjARgZF767ZDpNGG\nq9bHWH2GnqgODc36bLENVr3UBvu4BMPvQRqz0fmDpNWX5XFVyfd2DmptBWNwFb3o8tDFBCJZPTP1\nOUckgYGieWdVh1Aj+44qFwqRJNLKxynEsHRcB5SFJEeV6uL9nYXgUJwF3/NoFTG5qX9Jv/ugPZZ3\nRI6hUai4yG0prRrKbU2i5eZoS6p23aYPYA19N/2GtfaH3++mp0J98HDZMkPCoc+OVn9K4kOipaaI\nlvdwNOXY5iEjX8TcC08W8cBL8Ur1HPRGmEYNcU6DWQmzyPwurtECISpSNnVDqaqG7yxZaYyHTRua\noYhcsV+CL+9xZ5W29w7H96VtW7+ny0uvaQ3DFy8xOxWj29XL14k1Xfiq5oSVw5xrrvZptKA/k77O\nRitiVQ+WWjSlOHJ5Q0OCh45LoqHU3STmNQ1+uRIWrIayoOPyUwC0cULXkfFpg4ckyd8F4PVvFyRT\nWVQXhxlGn5cq0IsTpGTaf9NryFbKCLslmjyKjRradTSyWs6bGuy6xHtjQFNdPvhZowE9xS9iH1eB\n5R331hacidZoTPvsXJd+HzQW/5IYbIdHmj26A9saL1KELc4djafYyh9lFD4IllSrdQ3R99p4CpVW\nN0gC8PdPVo3j1jo4ChcfzR3WZTUnqUsWS3u8lUul6N4aSf0BWdCT00Z92NCGNvQueiokBcc1REOX\ncRUymMjpeKUes9TKyOPXLIlmM8b16lGRjfFMTtVxEGM1FmBsI1ZaC2CIJdGowI4bcjRXF6eqFGdF\nQqQJSEd5y46y4CO3ZaJQYlkFvpb5qmI1KK0ixrtyKu29fMreDfl8emdFvCM+5EthxGAkhp/toYi1\noe8wWYOTDLcJ97R4SX4JUN+1Rg9WPtQX6/DUGUazo5xBQaxoMKfDGbuV+PXua2mwm0mfXKUNx0wY\nRWIkfPGP/QVe+vn/WtofOswVh8HT08rULvt6Kq0yl/117YjK45NbIoJ/9aymViCTTF12Xa8lqRWJ\n2jFU6yhfmu8SvJ+EbAPfWZaPf4JvLMMLefeffr6Po7EJP/T8czSpZiW+KMZldzEjuqo1It465s6z\nsoa25g+Ir8g8zO4U3PHU0Fivz+EP/zxen8SuqmAfCwNirRGxdynmoWJPHAw89ucieZ4Mam6vFMtC\nDZsV74ig/BDpqWAKWDCtIbUubiNqwKktUNwQks6UpRY2veFFnGuWoDOWDdELS/qqh4XdPqHiM4RO\ng19o0IgTUg1kI7u5MBuzCmgUAGVYjZjHol93E59U61h6jU86lIkxi0J/n3Oq3ge/ZygUTaicFlz3\nVJ/vG8Y9YSZdLcwxvLRDX3MNnK7F15LidlDTqrW/bBUJKkjYVeTk2WqCo6Gq2XFKtZLNsnT7nHji\np79yXXMDDi6xq8VZZrWL+TWJgf+F/b/CjuZVzJoWV5nBettFrmGh1vSe7zCXZnJzWfGq6tGD0HCm\nMQu9Vv5muITemik4uLWWpW8fA274WLK8HzNYU4ODGajaOHHY6cq6CCaGoitMbahBXT4hqFdmsD3i\nOfUkHZ80JCeaB9KJ8TRXpPzIhHOwGsygWc/4gyHBQLxkl65sM34oto9JZ4yrQDRbeUlSSkDSuVYy\nqz6iJm7Uhw1taEPvoqdDUmgsdlbgxQ35SsT2RZoT35cTKuOI+ExO27eigG1NXGqm8tlWFj/CtZtW\nBUkgJ/qwyjmP5UQb1QW51hqM1HOQ9Fv6C/Xvxz5TxSR4vRfR07oBqTV0tSzcuVFvwX6Xgy1RDQYn\nDZVWsd7OtvEmGkGZrkhiFQk7muRkckKFATO9lliLvbhhgFNpMo+e8rYe0vZFlRqdL3ByLcE26lEN\nFIimrTg6E5H54YH07drMYTbVGo2rU45+RkKCL3cisvk/l3fg0SoUXF9hdbvTziOgl2v9CcVVxco8\n9tkKRR1Z3oWBYkBEmpV55izoLDQ6MIRG6zecJDn5uahubftBxNwnkDDW0atxyMdvSlzHxUGHH9ay\neIugZtcXUedhX8Ztp+lxMZK27ToO9/QV21mXs21R70bpkhONrUjPNdP0Q5YYjGMINZz+kwfS9vFe\nly+OLgPw9mjKjxzI/L4+LPncQ1lzX/ZWfOorIk38imJkmLPkuzxqHwY9FUyhdSEbWGyV0FXrbmP7\nFFsSnrlzb4dQ8RWvuh5mrPq1Bt5s7+VMag2T7VX0zrXo6rDCFx5DFoKrenSrYJj+sUve00y92pAq\n4J370Ce/uU7VDllqkFGgFaR8YoIL2ehblwJyRT+6NrakgZZwj0r8iYKHrovROl1cX/XCoAMKJGts\njKfgp36s760Lelo1qF9O0VKaLOySw1MRL3e9Hnag8e5qmW6Wx8SVPLfpdrnysjCsb7/wBn92T8A9\n/rfmdf50R8Jg71wWm8MfmywIXxQGs/PqlJMflU318V895K2bsgnjIua3PyXPfvFlYWJ39wui35B2\n/tpnS679qqg535yc8ZVflA12WB1jmw9L/zXEkWyqz9+4xk+MhBGkHz/giqImOVsd/JWqR4p5ubfd\nMtDfmaZDqUFBIR6mFDtQuGO5MxdVwpmJ2N5+WJtOVYY9f8KVPyKM+t89lDZMfuyHGMprmbzQ5xkt\nJLvTgTqXtXXWX2IuS1uKRubpy195k6R+8lTvJ6WN+rChDW3oXfR0SAoNpAtIg+IRBNlydURTSehn\nU54y1oId7pZBbUcYLbXVXY2xz6rIfJTi7chD3GUHZ09OK2flCDIzAOLD3ru8ZKlAJqt4RaiVq51p\nSqDFO+rY0tyXYUpUWukEfZJSjYSJpRxpCGsaUBkxQC5NzFQz9Dyt8+iZAKuhr34QPfIoBM74UZn4\nSDMxWw8CIyeCGc6JFGuxbg02kXZi73Cm2BL3DuUkzp0d0CQgL3e48XkROT89v0m8J1WOP/3pKfED\nOY0+bQSubNLN8GPp59aPDDGF1jm8NWB3oFiCfyDlY5q5uvNxTRjrN3gjaVvQRARfkOt+e8bWTAxj\nf/eNiuRcAUmeSJVYw3R89ynteB5d9doEeUuronYwW1B6MhZdPDwF5ek4GpbdpLSadUpoiS60bmbX\nZ9sTQ3Ldh2FH+nfqSf/a6nGF456QDPiKQXn9s1Ne0AI1kxtryHaH+LJIntM2Ju6q1GfAagLatWxM\n8IKG6au06Z+n/JPXtWp6/cGAVB5HTwVTwLTYMMfxRqw60klnDt16jdfYx9mW663aB41SqzWYKNsP\nCC80unHQw52rBXyc0ZwqjmO3olHAEWeo2YCHDo4G9Hh3pjg9UVf6iUvtq0dhBnlX0G+WD2WB2ElA\nUMkCvNj22S5lQuksuK5eCxP6OFYh2nP5nVsmFH2tJpW11B2FancWoKm8baK1F3oNQSnfF26fWFMD\nbFSy48hmOTTbeJksoH4tCztw9nB6ivOYQXRbcMT7n7ecPSu1MBe/fcq1bcFHHAQahOX38TUgyU+X\nDD2xtTRDn5FG07Thil31mLAt/RxVPpXmHNy88FkMFUz3oot3IPf8xNEu/0IxIZcKXPteQrlYFL77\nW6OekaE75FIsKtrNK7tsraTfQ6+DUeBZx+nga0WxgdazzLodmnWkaz+jl0g/Ws/gq1uzsxvy/Cty\nfVe9WR/KVjMO/a6sp+tlyO9brxG1fU22nsG3stEvtQGpekk8N6BR4JgD65Kq3ezWUtaevTbgW3dl\nPd2tL/iw7B8b9WFDG9rQu+ipkBTaCvL7LUHnDDeWEz+ZNwSuxOcvp3N2FV5rHhgmWsE414oSdu6Q\nDfSEurvkqFUj0ryi7Mvn/eOA1VROwq4CfSwDcA419qBbEirsWhrFeKkczSuvYl2oyQkVJqvp0NFs\nwK2LGE9h6afOFnEsMRAh4Xcy7Vo5GUrjEygKdDZ16CoGQhWUeFqt2HQ147CJaDp63RpspLEA+ZDr\nmmlpjyvur7QQiVaULpM5ca44E/mK4U/9cQD+JCmXKsEi/EPPTEgXYnR8JpI4hlXwLLSirrGzS3Qh\nY1W3PZZTNbSmQ5xqXTlJ+lTHKb7OTRtVDHM5uZJ9uNJI6PVPffYOr2ciLd2+EOCVpGj4Xieb8TpY\nRdI2bbt2NOBp/cRPTWJ2p9JXP6voD/d03Dp4Ctqy8guimeIiDOQE7s861EM5dYOzBjfQQjSpoaPz\nt3XR4TP78oxfeFskDNOs3jtk21HjdruuW/LuG9cnrheFjCNpz+70Cka9PFueeByysCI4V/i//oqu\nQuUV0wrvVDEvvSWDUn7n7KmaN3+WP/CcrMOf/62Euv1glaDeizaSwoY2tKF30VMhKVjTUoYpOV12\n1T3c8yI6Rg14hz7jkXD2C+uRRlqH4IHq3PvzR6jGF1HOQp3QvptSnGj+fifFuy+n2OlQXlLdD0iH\nWkNi2acZiDFs+yxiNhUOPVq5pLEYzGKNJLRRRpGooWrsPtJfQ2tYqe9w37as1CaQK7BrmaVEvj4j\n9/EVOyIjoKcuu0ZDrd2qwvFVeggtcU9OElMVJHM5/cYYlpooFqgBc3VnhlknKw22SN/4bQAO9xyS\nQ7nn7730q/wp1Wf/biR2lJ8MV/if1HoDxwOOFhpi7nWJx4r009ac6mk4qrQozMTHaFj5skqwCsw6\n2oZCo0kPe3M+d0cSzLK5vO/N94haNFSg2YCOcR6dvQdqBM3dA3pao3PSb5kpOGxQN4xG6gJuGsqB\nzE+tBjgnDAm1IEsbQ72S59UuxGP193oDTh+K5BQr0lViH6Op2/XJ/L3vaPXMDYCbKo043Sknaku6\n4avkYnPsQMTeAgi8dZZvRaFxNsXKkOi6j3WtDHd6mIVITcOXH3KWfTiSwtPBFCxUlUNTrijWRULj\nGptpluDVPp6K2oMhVIc60SrqOfc8UKbhndWEml/QLGICTak2WUk91Xj9hSyCelBSHWl48PYKbyYL\nKSAW+WYAACAASURBVBstH1VASodgjrQik6tBD+2IrBUDV5NEDCfSti4Wd6S4kkVOrLEHmaMAI/Yy\nteYtGLel0mzOsNOl1cApR/MPmjbBWVfcKzIcTSmv2xzrKIPo5kSpPPvB/HVpw/6U+YUsxp5nuRvI\nhj199RMc/9pX5Z5P7PBPfknEeP/TIsJ++f4SXz0uSXEHN5CS6pedJXvaj2p5hN+VgiNVKWNhlj6t\n1nB0wmvE54rt6Dp4ip49DnbYC4TJjA5U3H/zDtZ+tyfCc71Hhka3tcQ9NTAHMgc7u4Aa305PLdUN\neW7A/8/em8XYlp33fb+1573PfKpOTbfu1LdvN7tJkZJIU5IlT3EEO5HhBIgn2EHs2AECBDAC5CF2\n8pSHBHDyEitBECOxIRhwDDuRncSxHTmyI9OWQ0omRTbZ7Pn2nWquOnXmc/a88vB9p7qb6m421bJy\nHdQCyD5dvc8+e6+99vqm//f/32RLaR7b7Tbo3CaKG/HqJbZWWrziCCeSzH88nbBULchsPCOtlApN\n+xKs63JFhPjrxrpKsna4P3g/a2q2oqo5mMsmfHPxGs38dwIwmcnxg7hBFch8+s2beLkarTzGzXTt\nJD1aQ5nPSnEvQZXRasimsB93mahITFl8uvTopw4fjDGuMeabxpi/q/9+1xjzK8aYd4wxf9MY8wnJ\nu6/H9bgez8L4zfAU/kPgddBOH/gvgf/aWvs3jDF/CfgzwH//cScwjsULCrplDIkmVha5EJwAzlHG\ngZa97EHFqatdgK+qK37HsvlEE1+9GncuHsbctawV1latkPqxWMKlwqP9s5ppJCHD6myLqCfWf3AW\nskzEwixXJV4kx68mKh8XpYRLsSjT5x0aqq483iponMv5DnyXopTPZVcsQnIJT5+XKb/9tElnR84b\npktQSLRZyP17nYz6XFztuuOynMr3lvkF1YVYrnejFZ4yBueu3HMyhJUmVGNyil/6hwD8P+H/wv5U\nsAdf+duv8txt+dx+R9zlfOBTCrcJ+fMlxbkkJR/9TMVPfvO3yXW+/JSdQKjpcm388rKSTEtl9eMR\n0w31GlY9ckfu384cBhsyX194R57Bt42h/BCvO8BSaWYvCjxc1fPY3hcE5kvugEN9qHO34nQlv+Gf\nugy/LB7U5544dHfF+re0I3ZGG0/JZlcNn9kb8r2L+IRiJL83cYccHDyWC1HvwFTVx4QPa8/gw49Y\nk/04gYtVFOJRuWT7QObw659RdOjRcyT3FHuwyjhUWrV0VjBvqJ7H60NGXbn+3pnMd+afEadyDZuD\nLbanct7DT1lI/bRakvvAzwD/BfAfqZTcvwL8cT3krwL/Gd9nU7CVoZ66LMOKVqGVhTzHncmDmTYz\nvFomqqxWLCbiBlbqzpdvelitj7cuGyhRMWHqMLZyTHXQZOJpu/BQz+snJCs5VxovQM87irso9oUq\ndXDVBY+0I4/cJ97SvoRJg2pbodmnhkVb21qbLTIFL9Vz2S8ru8T9jmxoFxsNGrnE2X5ocLXVNw9V\npORpn0LBNsVoSYluGsUmQU83k2HOcKxAF+2vyN0z7EwuPlvAd3r/GgC7XPB69hYAG7Xl/G25pudi\nUXd6Jb3NlvIkngx3uFk/krn4SsL4viy2e8EtAoWCrxmF02qCM5IFv/TOmS20K7WREDnCUdnwR2TK\nUXjvJa0c/POUKtV7fV8Y0exs0lPtzduOz6bsBewaqajUwQiLgLfS8pLZiZLkuBesfllc9Pi5Fp9L\nBbTVH2gbvY0YqVhrcdhlEQiueJmGOJHMhSl3eF7FfH7lgcYixnw0Y4xiJ7Aflh8xhJofsibAaD4g\nTO+xSAUK7r8i8zZ7wRIt5EYbTXBV7KcoU5YPZE2u7Dkrxd+YREIwt25xZ1cwNON3E/JbMkdHj0ps\n/RtpXJfxacOHvwj8x7wXTG0AY2uvZukAuPFhX3y/FP1i9YPx0l+P63E9/sWN37CnYIz5A8CZtfYb\nxpjf/YN+//1S9Ld3tmwQF+AkKC0hLgkLV3vbRyF2W6nQ8g2GkeyO7kPZGU18esXBXyQ5TSs7qRMf\n0VSm5Vk4xR2KRQj21dM4azDsaoJn2Kbuyw7enRlqTzvnmg55JMms5dma1H/O4lwskfv5kEr72xdx\nQFyqhYoDjJVE4blKw18+aNL3xW3NwqfkhcKR9+5jQlWPHq3FcB5xeSIufmvPpfLk2CI4JRuJJ9Cy\nFtsXS7ksZV+ezTZpaqdpq7tD/4GED/+gGpGoluJZmtFJlGdBvZmbWwc4iv4cbC5ZHopF79s53qF4\nGI1uiE0kQddQr6seudSZzNtkFrCzrYjNIKAKxDs4HLZo3RHLu9QQrOc5HH+IAe75DhPlfbi918OU\nct8vPSdW9Y1hh4a61PH5DuO+zNvyURdPdSOj0QEqWYltSsNUsFkSK/qviC5Ij8XzGmw3aRt51ofJ\nBa8fyxppaTA8O/ve9OH7hv04rkRLpq/XRuKwrXL3/u4eK9V2jLuyZsPlMZFC08t8QKhyg/ZpSNuX\nMG5y1GVrT3knNU036+WMdY3c+Nwc59viLX7dGbOq19f2g6McP63A7B80xvzrQITkFH4W6BpjPPUW\n9oHD738qA26MweLpzbh+QanqTeOyQfZUXM26OOfsUBZhHcmD3UsdRjsSy94qN0iaKuJaNnFVdy+/\nABPJ7R49lJd0kR1i35EHtOwW7BbyQvtbE/b0WNdJWJzIQ2gFsuiOFj6V8ieao5zgsyrqcZFy6arO\n5eGEldLHT08kN7ByOrhK0FnGY7Z7Gj6kFk8h2GgYtLh0Gemxl+8eMvKe6G8seGcpKz5xxky1DFWW\nmi9pDpjNNPeRLBjdlGM38j/B6slfASDwXRZLcbU9FT85ebpipaQu9etTeg2VVK9iFkpIsnIviUoB\nPRVn4mZbP2K+XHNfNnjzbQlHyo2U9ok8y1k/wj3Vjfi+aD/efO2M85XyJFYptYYQtze3yT3Z9L64\nvYn3OTlmcyX34eclByfSw5GXJaO3ZC1UTsCG5nnmgcGmklMojLxs9dmMlZYA09OUofJ0PvnuQ2ah\nApzGFQeXcr6Fsh9Z34Pvm83/8F6NNZHNcpZyohT+0Su/hrsv/Sa9pbzEtqwJU+1sjQMClX40bUv2\nXZnDeVRz/kSo7UneAKD9BswVFNU+b+B98Q4Az19OeWekoVKRUuncftLt4TccPlhr/xNr7b619g7w\nx4D/21r7J4BfAv6QHnYtRX89rse/ZONfBE7hzwF/wxjznwPfBP7K9/uCMZYgyAgcn9oTdz8dnaKK\nWdilxQSyzzWXMZOWuLaxdk52vCntuVjd6GaCmyiIpXZYam96nkQsUqVK21Np9YceTls8jLB0iRV7\n0Fk2ryDNVVngJXKOqVrzolxhFAtw8tkFvQOxguFOjVOua/05rlK9RbFq/yU+pdXk2rBPqRBs2xrh\nKUeEf6zVkE4Dt9aseKeDlVwfdWBorFTD0EKiDU2VZldN4NMOVUnbCel9Q1z/o9Y/p6H8DFle4ise\nJF83Dno1nlLcJ519Xr5xB4B2ckinlDCos2jiRSqeo15Terq6WkXRwKdaqd5hmVOrIEtYuASbEtLs\nK2V2w2/iI9bcOiuolCrNqZmo5Z31XYKpPKubW+I9bM8cZk3xGkrHpazFkzAmohUqXf1lh2xTzpGu\nw7WWhQN51qvY0FSw1yzawr9UHEY8pZNqJyzyHGdl+TGE6h9new1o9cHzHfqRzMugv8ntbXH5N7xH\nAFTFfVyFwoe7C0IFrXmHMxjIvTbzPvOO4hOeqsJ6kBMrIKu7dcH2pdzTq16LtiMPduHn5OVakfyT\nUcP/pmwK1tp/jPJdW2vfBb78m3He63E9rsdv/XgmEI0ODkkZ4/UCuqpwnIc+tSvtps7zBc1MPIFF\nryKeqWio6jHcqHdIevK9zdQwd7RBZVSDog37pY9Wqfj8Qs57+VKHUvn/R4MJA1W8Hvc92kq2Wsyb\nGGV46vZlNx+OSqItyVUk77psvCCJqhurJmZXYb7lHstSIdZ92bXH1YiWsvxsbK9oaxnRsSmeJiij\nPRV9YZtQLenNcUipSaZqNWDrtl7bOOR4KokoY+We5l2PrRuK4rM56Z/+MwC8MH7K8d/7JQDC8xFl\nLde8Gci53MEmPRVgvbV/m75Svt3rf5nGQCnmtvpUir2wWiKm4dAJVd7O1ISF3F8d56zGck/z8ozG\nVCHmAwmYzYMu26Xc3+loRaH2uL23w86meDrbnQBvUzwIM5draw+WfCmRtu/ZfEiSiJc2cybseqIe\nHW5UROpNeJWiUIddnESe317QpNGQ9XJvNmCxJ+cYP/FJfPEQjobawl/OIP2I8t5aMOhDkJnGOAy0\niW1vf497m+Lx/PD+HZbK97FZ/RAAvR3Y6GkTmzW4mlPZHGQ46tFFLHlxJc84+4I833paY11RKU9O\nN6mel9zV/mgDT5XHD08LzhXDkq9+Cz2FTzuMAT+2eF5EqOIsRZIRa19CNHe4u6fQ3sTDnMukPQok\n8XInbZGropEXQqjdYsvWiAulSXeCgoZqMLa21NVeTai0EhHlPtGedi2exdibSuk2NRSq3+KpMlXF\nipn2UQy/1GSlXISDu70rt/T2oEO11nEcykN8033MTe3eO7XH4MrnOjR4mfIuauIvWPl46kb2uk2W\nsSTDoklyRd0WhxHBrkrJD+UFPGxdsu3JBZeJw6ayOf+TW19n05OFeQG0Y1kol9p59ztahvsDeaF/\n2+bnOX1eXO2X7S5eXzaOpAy5aGrospT5yc2STQ1LqsThpvZolBsppSb5HpZzIlXZClNlKm6FvK5/\n8425oj2zjqW8lI1x3G5QZ7K4tzpyva0yZF+fR/XCNl94IqHNK/EB93OZg7GZ0dCXIqu0u9QPqJTA\npmUd0LBrqx2Qa1K58GN+4Ylu8B0JRQ6n8JE0Kx9D1eY4lqWVObq/2+UnXhSj9nx8l8d7Mp/PT3Sj\n30nxHPmcJUOahazJ3K3ZVu4E3Ipt1UJdthWPkUQ8VcPRCy3nEw0rkhUXC+3+9Q0m/cGo8K67JK/H\n9bgeHxjPhKeA62CbTQKnSeTILtrqdOHiEQBh4l6RrraiAq+ppaz2HQA2szlZQ3bXeGwZlWK5lsMM\nfNlJj59cEKg7t2bTDf0Y1E0sOinhWHZav7mkpZRnbgMupwqhVth1VseU6n6GxzPiL4iF9UcZNlGU\n2yonTuT4qCtW/rl6D08bXFr+BqFyNjSyXUyhegpdcY2L8YiOK3gLLyhJjFgJk+Qklfye66/oJ5s6\nhzI/W83tqySik7m4f0Qs6f13/htW7n8r5+s+IlUPyteQ4fULhx1HruH43mM2kManpFpSqIJx6q7w\nUrmmleov5mHIhWolNN1dHHVVg2V+RTEX1DF2NNFzyOX2y4huS8Vw8oS1Hp3xIgqVjXOzGuPJMQuF\nrju1h1ZIadAh3xcreL/eo6+l0ZWN8bXLs3bl/iu7wu3Kcp9eDIljmee4XRFqWS9rrtjyxYOICnnm\ndeLB9KPCBy1FXjkM9qo6aazBD+T3ZssVY228q74wYcuRtZVoAruqE4x2XCbpTexCvJR29wbjUsLD\nZrhBW5O7kXqQ1lnSUG4Re1zAjkxMf9pgV5PtT/IaR5ORFJ8M5fhMbAoGS+hUNLoplU6YczakcFWA\n89JncX+tBrVFqpj6gbIoV60ExyoF242IRKnhL8IGyaEstgmGm+r+T2NxrXqTJgdbcq7qAi5CcZnj\naoOFtu9Wq4A4kJf3MF2rIy3oaFb8ycs1n19rFPZX7GUy8fl+SezJi1xq70TrcsJZpNqGsxlDzVsw\ndEn3lLvxgeokuhNCI+dyWgmFak06ZkGFLPg8Tihz3egcubcwCfF1seYudP4rET89/Mm/RuVL1ru8\nnOJrdaVQrkminEYilOOdhst9rURk2ysipZur2xmdNWu0rypds5A0UlyIV1D3dGOtW2Q9KZnE50sW\niQrIqrDMwq3pLGRDOwpPCFaK37A5De1mHA8C+toLQiybSjQz5JvywrZjl0g3k91RyZlu+sX5BVMN\nETe0KzWLDOZQq0iBT2LluedbTaKFuO5pdMFGJc8kUIocd/kxL9JV+PC+MGJN+eY5RGuR2iChvyXr\n2rqXbC7k77qEMPMKp6OCvdMLzJrm/0FFpQasMc3IbuuGdSn/nHdPiU/k+qbdFfZU7unr9SWXF6qQ\n5Y0oPqzJ5GPGdfhwPa7H9fjAeDY8BePgBzGh06ahFr9jfOZWEnSz22NKrQxM7ZKWJrnSTbHg7nAJ\nmuF3TlvMlGMgHM8pjLi5ZrrgcVc8hOQd2WmdvqFxJud9HM+x52JdFhuGG+rOX0Y1XiXWr69uZl17\nzJXma/AgZHZPrEs680hVCzO/aJH2xPNojcUSTYIclMS1LJYMRxIGlO0LGkNlHQ5UVs7rg8qQ28sU\nX6nZrG2g/CawWGGUwdiJxSvxHIvbVrbj0Zh3/p1/H4Ctwzd5vPjbcgwOxUquqafZdqdOmFnxQNo8\nz1Bh1/Glz6Sh3ASLJmUl1j/QpGVhVxhN5i2DKfFKnpnbmuGdi80p5xlWLa5dqAQfHnsDqQw8PQ6Y\nuGuCkADTkc/Nizleot6gsi9XjRXLqXoxQUpcybzZuKBxrPqfTkH5UI6ZesIzEW30Sdc2cJkyUp6G\n6KGDtyu/580ifCPrYVgr4a9nPlLFzrhq0df1f2uv6ONs7bKhZCrtec1oKHM7cPfJYrHokSZU/X6N\nl4sXZ7JLknWCeiunPpRzXwQLmg/k84aSDZupS5qKBz19nHKCMIlPDpc4RtmKFpb8Y+HYv348E5uC\nA4RUmLCiWslDTplTKJho+m5KO5FJnXX7ZNoaOj6Tl3Sz7RLOVdswtSyVtv3M1rQXUurx3Uu6Q8X+\na09FdQ4jhUGHY4ehoxvIRURrV9y9qIqwawIMBYHMVufUY21lvlkzeENgp60b2/S0N6DdPiNXuvBZ\nIS9Y6rbIHbl2N4u4KKVN98mbMbe3VGo+lrJSw2YUG9JL1twoWWpGOuSCY+Xw23BTZurO72q5KfVq\nvHLdYBZz+r/9NQDeOP0Ohaoe1WUJRkqDY83utyeW+89pP8fcZdGTv/fKEC+W+fTmFac6BzvaEeBu\nVLhjbfeuQ2LNqXjtLirEhSm6mBO5V0/5F7265GSi11zmoMQitV2wOJdwZdSNyC9lDfiaR/DHJY5S\nyqdRSRWoIlXm09hQcd6DEaXS509y+eJenNDQlus0rWmq4pY3qKgrFQRKCsYagiQqbuycfEzmfl2K\nfF8VYl1F8Sg4nsmzvpPmBJmsgVkxItVS9bbSBFCnjB3t+D2BHRU2quo5jrJfpycFVVdf7qmydVvD\npJR7Os4e8Ogt3WSnUzLlxMRYqh9Ioes6fLge1+N6fM94JjwFXAcaCXXRAN1Rs6AiWmhzUBsWqp9X\nhBc0lxoqbElzTtu28QbahXbyiLohnXH98xOmO4JluPmkxQN1u7ZW8s/j5RHpobqZSUoTdUXblyjt\nIu7gJsw0waMJzuXKUGh9uHoC9Y42VT2tePuGhBq9I5eV8vd3NQl4WfaJ1ziF1RmX3xUMwVvlTc7U\nIu18Rizb7aqmbohLOXg8pWrKb7u1z6FiIYrihGVfrEoQK/SXzSuxgqKoeKcjYUX16h+mXv3ce3O+\ntnLKCXCcWv7ZY/Gg2P4GPfN7AHiuTlkpRVldnxPUkrWvNOyopyWh8h8YtinHSoBjl9QXmkhNM4y6\n2LXSzS2rSybagFWdGVJN289TyCq5gcHBhNW+PJOGzs/FhsN8IZ+n0ynNdeKyuUVXxXOaOy0YSdbe\nU7AYnk+hXlXXDVgoz2M9LsiRbL9ZWAql4bvQEGXV8GD2Ee63+V6bWl+1RlEbVq7890fTCf1z8Tye\ndwty1dxoacRUThvED6Th7ajcZDQSj9XtLAlm4ilM2w36WjFarlTjI3fJMgnnzg/h1U1Ncj/Nr6DZ\ntrZ8nLjOh41nY1Ooa8xqSbnnUofiwuZPFqTbKiP+0HCqbllrClNXFttA49P6MwVGewOKTnyFuss9\nh5VmuLM7c5IDZbRpr1FuLhe+nMNNfZYN+V5/usuZZsv9ixFuIi/AcKFddqsZpaLc8lbK6lTc+W/d\nDfjiubxY325V7I6UwGVPXpRmNmS8oXqU37DYXL43CCZY5ZWcHEnIUH4OgpF8b9mfUl9oIiEa460l\n5T3DRqHIQiUx8eMc6nWlwif/P/++nK+av5cZf99YC5RWNmeSy/UaJ+Ou7hmz/Sn9hZQhJ62Q/krL\nftr2G6z2yFzpWgyKOVlHe0bMnFTzEstsSKUb8QKZ45NJxuGxzP3cm1NrE8Y4nVIM5W25uGFxR/L8\nzrflWC9zONUKQXvcByWcaeab1M/J3G6+3aTYknW0VcuGXnciskzOFfTewg71BjseqSvXWZsZi5WI\n5zgLdb/nH90hud7o3i9es/5UGUumJcBRueJChYWjcsznS60C7chaSWYDJkrC4pYzMq0IOf4tVjuS\nE3GPHDLtBC71Oc28OaMT3RTmM07fkc2kqEo+6QbwYeM6fLge1+N6fGA8G56CcTB+i1a1ga+OT68B\n2SNJ9i13n7JURuVLf4ln5e+ekdCg9a1btG5I4iy8aBBkqjQ8ralayrX3cIdjX3bVaimWtjQpTVdp\nzpoVzlys7qzlk2jGNq/cq/NZT93oysMooy4Li02UZGWVsKeUbf1kh2jNGIMwJuflivhcpnxrPyLZ\nEOx7PM/w1DPxPqOgoMd7jLTDbzkKKVS8ZLvo0VDewdXU8Fjp5l7cE9e5OlniqaRbUc6YN0WQheWb\nsO4DkDvW/19fY0DZFgs9uXuP+VDl5oreFZFJlLZYjDRBN1cNzsGK7aVUHLIBeEr24oQRDRVL2YmW\nnHaUF6EWuO+l4xOqhZ4tzZUTU44tYVdBPYcVnReUu3CmWqK9Fd5QLOVJtSReaW/E4gG735RQIWm0\naWmIUSmNfmdcsezK5+S0zVlTOzSXOVWs3Ydejxta7Thn3YlohHf9Q4Z19ZhK4wBrubLQ1qHpyjXk\ndciFwvA37RZHlczd7qF4iu6WS6uWvg2/5bJRytqb9A3Bu8K9cNQ9Jp/J+nNDxaR4PXpaAfm1CVy4\nvznK3teewvW4HtfjA+OZ8BQcLIlJSd0FTatQ4jgn2NTPT3u0I9kd+/0WjxQJePBV+e/TzVPaytTc\nHrSYHilT0D4cvSZxWF12KbVE5KtV3m1vc9IWa5UcBCwUx1BdwuyG7OLNeY+qLxY2yLSm72YUiiR0\nIocik+/5+zGPp2Kxb770HH3tQMxiFQE9PCTRhiePlK52w51cXvJCV+Ldr39XYuc9BrxRiSf0hdbz\ntO9IwrBbdxhNJRbdx2O5qbiOtnhP83pKrLDj1IuIi9cAWGRTPhhnagOS2oWw5fOZz8j1fPbll5j8\nqsSys/MJ7iOZo+72FqdPJG73FHI7frIij+Xa61nEzq7iJTY3qJG5L55GNDZVs+Cbcn87e2Mevq6q\n3B7kiqAMminzE/HYopc8Tk7ktwcvCAmsGY1oByrB1i5ZqrjO8GHGPFIMRPaYuwr/LnWtTLsNjs/l\nXLdnIUfaYPYCMcFnJWdCtuLBhVzHi5oFvDix78n/fc9wFcBwBRg0XOVtHB9myu50s9uk25K5bd65\nw0x5HXxPuTeY4GizUzWOSJWabfrkkoaCUk5nBTeUAq+xK9ebxiuOXpO5aLQXmIPfOAXb+8czsSmU\n1nCRhWwuYgqzdjN9KlVUfn7DpVD5eNMzvPxAOwp/m/ZCX3jEz8vk9B5aLp7Xl3RWsLEnEzQ/z3ix\nIccv1I1skOM/lc/z7YLgXFzH2Y0Z25rpbfSG2IluMpVWOKxPrcrXTmZpah9E75sj7v6IAmve6VK+\nJBiJ3Ut5WP17ffK5/K3d36X5itKy33ZIdFP4oS3ZVGJgy/ssAEF7By/Ubs/KZ98TPH/kOrgK9io1\nYRg3trAKr63TkjRbg/GboGzGvI825EqDKXPoHUoC7OavPKW6Lfd6+djH7cqG07y0mE0lNdHE5mbd\npK9dm/2NHujc+mnJ8kDcWVPVXBzK3B52xcW/+Ltv42n4UKXgKTQ7WDQZKCN2PLLcvCUb3M7rihW5\nYfAcVXSKcnaXuineb+ErwK0Kd9lSpS6j1Y5Ww2dTn1/crdhSRmivU2MUcbQaVbywI4neX91QoJsJ\nmB/K5mypeS+TX+MpXV7tvXefxlXDU7psaYNjME3pdOVZbz89J9mU60gUQ+HFMW3F52S9kiSXdT/w\nPdD+mJcaEXbNTaks2ObRAi+U9ZKnyVU/DrPvNQA/2LgOH67H9bgeHxjPhKfgOJakmbGsM9pd7aY7\n36bclGQXxzFZV2rJm67HQrUgY4VBe1vnmEIwC2V5gqM16GY3w6ZigVf1JQ0lMHFrtZh+ge/LZ28a\nkNfyG+6iSW1lZx83KnqZWIKREQsbOy6l7qe1U5FqifBR45Q3lKbt3sarRENJEkUq9NKY9vGaYnW8\n2Sa1ouboh4QNbR4qfgoA0/wWW6HgLcrNKY6SsNj8kvZCrIPZnOOtxGvwGmJRS1zKSF31kUegeISV\nXfAeL7HhypIYRdUlS+K2oCnncZubK2mO6u2eMU4lWRn1xjR8hVCH6m1U+/i5Km17EVbLtxk1Cw0f\n0osFb11I2TI7UZm7dEqaaULRvOe57LddllMlp+EpT4/lOtIN8RQ2lx38hnABb5URtWpMdvIITxW7\nvbxPQ13zNW9C3C3wF3IusiP8SIU92tMrQGJlp3iqSN7KZB1uXF5wfhVq8d4cGoemds1equq0Y2oq\nfaVqr6ZG58pb4ipWpTZTGoqmDJtKXlO2saq5QepQKGdFWLSYKedEK/KZV0qWq8ncSTalfizXucjm\neEuFNn/K8MHYjyGK+K0anfaW/ckv/VsczL7L47dkgRXLB6RK3uGwwupkR06N0Vj8hj7X0u1zK9EW\naduhVcjCO88bOJUszLPcp65UZENVlYzJKe16XyywynPo+AWuKy/hiz/T5odu/wkA/oMXBBDjEBmY\nRAAAIABJREFUvPjHuHVDFphTFdijVwD41a/GzKL/C4DL10LKtlzTdCIPsY4g0FCkTiZkK8UI+BZX\nmY0zTzEWK5eF8uxFVUIVykIprU+q7mojC6lbmqNQRaPU1HhaLYkHlpNHqqxV1+vuapIkpKnAmlZH\nuzNXTUIFSNULB5Q/Mli1QAVq0pkl1R4Fq4Q1hR2ymMk5RpMnPHqiQrfVmzxWcZ1VPuQ9pO3Hr7c/\n9W//8Su2oWbl4qv4621tQ493euwWKgCTLNjoKqX+jou3eAGAcOcd3L5UdhyFQTvzfZzyqwAcFpv4\nvmxS4fBLNAbfAmDS+jGasayX/O0fBaD78teo3Z+UY+MaR0MQWx/w07/v35Njx9p+76bEulFYp6bt\naOiaG3xPnl9WhoTKBD5XYp3QSVkotiRyCpZWiXZMQR3KIo98l9CRXEOkosJx1CDQHo5u3aJu6Vq2\nNTPdcEldor6EI//j//Dz37DWfuljHwDX4cP1uB7X43vGMxE+FOWYk/Hf4fGbSxaa1a7KArQeX1lA\nIappZQgkV8c0VfGS2zG3UtlRF7sJ3Yeyo2a7Kb2nksk+b66wytqLr0i0DKwmhuRH1MUrwGp35Xf/\nzpibPyfW9k///W8A8Isv/jSmo5Daepf/4/Kb8vnl+/yd//0RAF/s3yVX8zjYFBd/WqTcVq5F2i7J\nRLyNSXNKu1BiGEebeo66HClzclz4ZMpHOT0NOHTl2hwT4Ky7DxW7UTZWhK54KM7MBUXH2TTG3VLZ\n+tBlW3kVA72ce1sNPOVGbJ1tMdmVe+6kMWZTrFzxKOZSwxR/KVbQ97Z5eiDz+s5ZwLIljU+Db0Y8\n9OQ66/STe6NmkZMqjVujG1xl/ntW4cqx4eamPFP/VsTGVBKD2e6UrlYDvM0mnqJFFy3xPJN2ccUd\nsZf2+Woh+hRf6hSkCkRoGZf/df5dAH5aE6qX5h/Trn8cgHc54HlPyGfScsZyLs/XS8V7yDqQ5OqF\nNjYZeFrZMpAo9mDR3mGzEG/kUr2xaJoz6co99S+XjLUZLZnVTJsK885KiFVfRN9av2xiNNHcNDGp\ncnnU1YAMCbdCxh+Ep3yC8UxsCliXKmsT7v9BFu9IV5/hgxR4Zo1K9WF3JYvm992XMk7k9/ntPyWu\n4+iNOeOfkAX01pNvs6/YHe/Vhxw2xbU7V+GNIMgZ6kIpsdg1oMdYrMJum7ttHv+s5Br+zfsqHb93\nj04ov2eWc35PX4Anr/z9Gb8rlg0gTzM8faC1lql2vCZbmp1v9/cIBsq5l20Sa4dmttaMbPrEl6po\n5Z4zzlX0YxuGQ3kJW2bKVDvugkRe1tm0wLKmLM8IfJmrFIcNbQuO+l22wo6eW3aFm9sOjS357eR2\ni1Q1NuNwiklkMVq/4KJUclTt8KwbIfvaB3H79i53vqvlwt91g4d/958A8IYprroHv+8IYioVuDEG\nvECVk3blnjayBmzIudrBNsEt5d20+1cVES/5Ekbp/Nu1iOPa+YSwJ0I09TuWn2xJZacezYhe1k37\n9SV/oCUVmOOJPOv7t/84C5Uzeq5x70oUKqSDX8gaSdWA9FYdQuV73PMtkbI4PRcm5Jo/2PAc5qVU\n0l4u18LEhp5qqJ5HlrulvOjznZSXrNzfU9fQaWoJVMl3+qHPqeaMNqKc4VrAiDlDlTaoS5dcxW4+\n6fhU4YMxpmuM+XljzBvGmNeNMT9hjOkbY37RGPO2/rP3aX7jelyP6/FbOz6tp/CzwC9Ya/+QMSYA\nEuA/Bf6RtfYvGGP+PPDnEYGYjxxVljN/9ykX9i+zzkj9Orui5eGCgKijzSUviJW7U3YoVMOwXYVU\n98RavZDdYqG8AZ/r9vCMeAj1mViiYelgzJq85L1ftRaMuqLzyYiXfWkq+ou3pLvtz73+lPENJSQp\nbvHfpVJRePHuOd96R6xqv1+xd6nJow1J1G1u7dNRIFO3HeLlch3RVoA7ETfYVSVtt8gY7GpSa7hL\n2hZPIJtNiJVefVxaHO1yvFjTkNdtFgrM6eeGVamsvsuI8Y5877nUJ1TPpHdL/hY3BzTWzGdFif+c\nnC8cD6g8AQA5kUNPqfSdI7F2OZegnIH93gzzVIljHvxTNjRT/4Mks2fLOcVEMQ0bCfsrJZoZSnUm\nvL+HEyuRS27xUdm4vUv8yR35PP0W/kSsf9kX4hHn9CYTfhGA1uJ5LjclfPBOd3iz9W0Ann/1Vb6y\nL6HgrV8Wj+jn/Xf5g0//FADfutXmR0pJYP5T12GlXZJOJc8u70+5oRR8UdNnd1M7Zt2ChsrL+2GL\n7USDokzmrZuVuJrwjoOCXDtpW26O0erDjS2fcCVzP/EktDNeTdtVmrfaoa2e4HFa4ij8ec6YoPj1\njXAfNz6NwGwH+J3AnwKw1uZAboz5N4DfrYf9VUQk5uM3hcBntH8DZzWnPtJ2RwtX+HwDnkqfd7fa\n/PiPvAyA+xkpN95rPMe5ZmH3ei5zFWN96csebyv/f2srwdWe4ntPZNF9rVhx9h2J70bVkkyJWvBr\nXHWrvd/v8tU/LAnbW29+B4DhrYjGTEqgx7O3+dwjWfzf+spLhH1ph05ncyZGFkKnljDAxmMa2i1n\no/fk3F2/JI7FXY204uBvxleqWJ4PVgV0W2nEULsE5yWcLDRPoC/gIluS6GO1rQpHZbac/ozOXKnM\nm3u0OhoKBUruwhxPS2jxICBQ4fAwKqgCXfzNCL+QTcZsysu6cmNQefrCKWn0ZW6/8/t/mGSm9/Q0\nZzX5KFzgB4dTesRdicWdccUyuiO/x7ra4eKv5KUoww5OV0FtmcHRhlGyDey2vJzuXDfWWy6t/IcB\nqO5s0MpViezFiluZPJ/8h1t8wYok/Du/Q051r/4yr/7oFwF4sYSzQM73o8UQv5BwpdAScGveYrYv\nhmDbW7AoxAj15g7Djsz9XW/KUyWAuZfLehy1Pbb1TTxoJOyHMvdPbcVNT449MKCETBwrMXEvqznQ\n/FESxRwrC1WyyjlTFbEitZT+99PC/OD4NOHDXeAc+DljzDeNMX/ZGNMAtq21x3rMCbD9YV9+vxS9\nrX4wuqjrcT2ux7+48WnCBw/4UeDPWmt/xRjzs0iocDWstdYY86G+4/ul6D3Pt5xPqdLL9zjuLDhr\nCm0TcKcrFuh3f/az/HTnRQBmL4gbuTWqaA20V+EyoOiJVdoNtmj1lBF5scvWDXHj255CirsrHp+I\n1f3bG0/Y+pZklB5uZdwZiwV6tDPkL/0t8SZ+7ktSu87Ohkx74pa2zj2++q70CXyh/ZR/9q5YkluN\niq3bsrVv6U7t2w1avoQB7s4NwmrdfekQRTpNfbkP/7KkoSFM2G6yqbXryXJEayJ/b9Y1PuIJjbqq\nPr0oaKimYrKyoLVyWzToafiw2c3ZjcTNdzTT3XE8jELC/bqBUcERd1FBW37PnTcpI+W4ULZr2/RA\nk50xIc62qkyFfX6sL/P1tctjMvUUvl8f36rOqJfi3dy4EdPUDsatrnh/LSehp55JtOfirjsVmyXO\nTNsZN1YYhchbZZp2xgFoCOYutinaSkN3aAi2FG78jsdwW9bUj78mc7i6/yadxWcAWFbvMJiKJ5Em\nCSvN/LtaBVvtFbS1e7S+0SRSYEi7kzJXns+yGbJZK2Wd0so5RU2gmJvNOEKXMmXh01OgUxUFDCrt\nulzKb7SKikzp/fqlQ6mewnnDJVLOz9p7hDv9ZF7aenwaT+EAOLDW/or++88jm8SpMWYXQP959il+\n43pcj+vxWzx+w56CtfbEGPPUGPOitfZN4PcCr+n//iTwF/ikUvTGYH2DWW1h1/LKxl712PtBQNAV\nC9wPKsw91RwoxOIbd0acK/lms6ZbihUM4zm+JsG4U3A7lzgzflmTPknFvT8q8aA33eXmbfEI3nou\npXsk2/Wj21/kuy8rjdtQ4rdhWbL6NSlJXj54hcOZREiX77zNSuvpYyrcU7mX/k05V3fVpQzFkvpe\nAIFaWH8bo81BkaeJz8SQVMpW6i3pKjtvPS9oKPXcsjqGE7GO9Uq5FyKHpiIai05FPdfyZDbDZjpH\njQq/pyVXJLa2BgJf59MLCFiLzKxwVX/DmoLACh+CVayEZy2FCqv5i94V8rLZ8PkdPyHH/MPyJb55\n8SoAq/wjyAl01LXLYinfW4wdwg31pjKxxrHTpdIOVVuEWFetbb6D1XwHeYJVslxTCNS8NmNsplRy\n9hI7U44L75x6TXrbWWJKOb6SlBGm/jxThRfXky9xrkrglBankLWVOvKcu4tbRMoWtuFAonR8Yb5N\neFee5WYRUCqatKOyccELln4pz6GThLQ05xC2cuJUdTSqiDAQT/feWnV8nrLQhjc/yQlH8r327AxX\nu3GruUfh/GCewqetPvxZ4H/SysO7wL+LeB//szHmzwCPgT/y/U5iq5JqOsKWBayjjdqCo5RflSH0\nxU1uNG/izuQFaCqVe9EoaSgduhfVNNW9NLaBrw6rSQraibpwgbYhFwuyDXnRfyK4wVJr9593h9xS\nSvUbd8dsa3E6OJbfe/TqU75zU8Ra84bL1/6awGTvdhtsKovuUeLxGQUU5UrvHQcO6Y66wXl85dri\njKkUQ+GoGhPJ8krRpyp93KXCkbsRg6kshEdpi44n158qCqk/i6i7ilbJa1wjC6lh2pQbckynbuOV\n+lKrKEzd7kGpFQyzoFZ6MNNM1pguTFxQZcpN2dCwJPOxTe3aK6DQWrkzqwg9uc6f6gQ8NuLOHilQ\n6KPqEWU9J9ZM/bwf86LOYVM3xTCqcBRk5dr6isrc+ieY3pZeU4mrYjW1r45qFb63KYY1dq096sSQ\n6eYbjylUEMiqLqWzGNFUXMDEeYjnyrUtlwY87eZMZaP0N1M2AzEQQeAQpzJXdSejPJH1u9qOMFZ+\ne6phi710KXbX5DQ5BYpPqTycngrM2hqnlHP7qbbybzbYLnVjyjP6kfxemT5HR+f+IDygWgvqfMLx\nqTYFa+23gA/DUv/eT3Pe63E9rsf/d+OZQDRaJ6Bs3MJZHmJz1SwwBpRwZeAXaA8Q9XxM3ReYotHu\nxbruk6luQuA08JQMxTgBjvbTuyYh0sSQddYWIydyJKHY8lZMjaDZqrZP+wVBvHVaI9o3lBehJ4y7\nf+Wvz3jybfVSnvwK/UuxuofDLi92pdGmnO5xqd1snY7AmeukIDtXReU4pV+qRmVZ4K31RNra6VeE\nmFDuw124ZGqtIlzam/L3W8OQtzRB5WkDTBZd0KgUgRhVtFy59sFWxp5a/EYjwlfLXSs0tpxnaH8O\njmnCTP8lz1g7L1Qu9UqeT5Vq2BJXWD3WFgUmUw8iiQl2xRX/0R8e84vfEG9pNJXE7jL98IpTYtu0\nBmLxmosW/rZ4Cq2ueDlhlGAUm1HXgFpmk7lXXqZxHaw2tJmlNnB56XuaiqaHl0t4Yd0QX5umaN+g\nPZO5zRsKlZ+VpDti5d2zEfVNRYVOZoSa/HW7Svg7HFB8Xo4NpgtOVTCIsz5syT21hyGLvjyrmyoG\nY29YHO2uLTcz/HUzU7ci0VDC6Vq8sSZ5NTns5TmRhoGUEQcaJuTLHFTPpLuKmCXrB/jJxjOxKVAX\nVKsD6jzjPY47i6Mu3mEW8Jlab7K3ItP48kA7IO/54ZW7aIoW6iXSKgwKFcAZ+lS+YtUdOW/QDzHK\nmXjWXRGqIEmwNcUfybmP6m/QfE0W5pP8EQBf+/abPLpQV7uYMzkXd67bnvL3nsiD/gm3Jt2XTPVU\n+xq4WNHbVLe2HJM78sDzDFrKDFxohtkpSupCNzSvwtX0tJ87+AoD7jYc7m3IS3+0BqucZ/R106io\nqFXcxNoeN9sqfe7McCv53srIsd2loerIb5fzilLdTz8vrzpJ/cxhoTvH+qUqrYOrlOxFajCaDQ/C\nNr7W2B/P52zoi2fzjwcyOXFFqriBl3fbxNr96i7lGWQmx1/quTYNdqTZ/naGp/V7m9Q4c1WUipQZ\neQo2EaCTmZdUyr7lFDVGhWdNWlKqzmigc18PLvC0w/20OCL5NZn7ZSfC0fbxcN3Kfq/CHqk4zZ5P\ntFCsRDelnCm5zG5BY6FiLy3l41zFLNvyPVNFV6QttV9TFMolWfq4gbb+K24kXDWp15WhWcVAwVLM\nHQYnunHEIcP5DwZeuu6SvB7X43p8YDwTnoIFausCAaisGECtmV7jW966ECt+90HBtPnLALRbPwLA\n7mSB2xZLOjdnhJG4rabKQXflrLzEuJJRt0pxVYeGtBB3tuHvYtbJt87LTB6JeWiGP0WqpC2+1vYf\nPX2F2VITdIs5VlGIo8sZcSi7+XcvHDoNJS1pye/d7P4Iz410Z+9bCu0i9Ps7FIUm9tSTLVZTTEu5\nDxcFnqLf0nlGpYhN33VoKhmMV0myL7wZ4Whtu5mkzJTtuPTLK6vTD1pXibbEEWtWLMqr314tVpiW\n/L2emqvnUCzmGF/c8lL1PCsnpZhqBSDqgzYikaVkY7m/BJ9zna+irWHJ+MMRC0UNaS3fm80jOqpZ\nWTXl4lrugHKpjNJZSFbL83PzAaV2LZrQo17/fV19yKbQEjhyER7gGUHFVtMhKCdinU2wvoR6xVSu\noUy6HBxLSOjFMcNa7r+Y+FitPsxUG3J7chP3trKRzy2ZomzzoY/dVuThKsGowrR3oR7G/opQIe9x\nr4O3kOuxfoira9J1+lceWcya06HARTkxXYdA1dHj6Jjels7bImAW/mCIxmdiU8DWUKyQFrRf715W\nlSVX1//BqCAfqhjImZSC0h9z+dwjeci7d8c4Wta0foNaXyYbp8wPpEchaylU9zihdk8BWFyckUSy\nYKOvnuMprv2N7iv8UCB499MjebCL0THFOlMP2nYNGIuG2pxXS946lmvudVRQ9M2n/PKPycv05adt\nzHOSGW/kUwi1b6xQgdlOTfFErrcYhFQKUU69E5ZPZNGsNipiT+PMQME4M4OvTQyFb4l9ueZuEbNM\n5NytNKZsSMhTzbUfxI/IdON1kxmrQ7lmb69BU7Ud/dYIowKRZUvj4TSiasoc54eXZB2lxp9Zpsjc\nfvXr3+FyqcI96ccvULdc0lDw0igMGaxjwVzJZ4qclad09qOURqwtydmUZl827fiiRdjUnoj1Ttfq\nUyq3oRM6pEcCWS+aOfWp3F8QnDI9k2v2B1p6PalpbmuvST0l0jyCZwPcQJ5vUkhoQz8l1j6DrJ3D\nUK75uKyZH0nodn7DkBzKNT3pyvdvvN2AF9UYTlLKRPIk1UVFOlDw0ukDHAVwVSeyKUT9EflC5ids\nNXDPtGW+GdFoyiZzNOhebRyfdFyHD9fjelyPD4xnw1MwLtZvQTmHam2BLes9q+1U1Mpa62+E5MEd\nACZjsbTVV5tsvyBWoG8HV+6VcQ2FVTdwtMFyJdZjqZ2Dkd/GWEGpxMmQy4fq2leQtuXv7qMmw5uy\n+98fKFVXHXIF2H2/zLcFT6sE6QLGasUD7dg76I4YfU3xFs9d8CMqieaaAF9pzkr3kVz7eZuZWp38\n/AInX1vMbfyu3NPyYslEAStOKdY1dS+pVIQlpKRVS+izsRWwqclYzy5x5gpuyTRx1odcQUHkWxQz\nlawbH1NoM08n6xJoY1ZVi1XKnBHVqYZuec7qQp5DWSesCnlOjW2XM63E1N9H1jBxO2wIxohB2CCK\nxTp6SkvmVC1sR55vTclULeVytWB1KZyeG50buD0BJ/naEEbgU1XSrJaf3ac8X3seC1Bhn5r7+Cq0\nUitk2qZQrploxhmrPbkB9+yERPktnb5Y+c5ih1JlCaKRZaTeWxD1SNbw/UmTzBMvzZzIXC67DnUq\nGAs2Xdb9S0WwIHtHhXaSKQxVgduRJHE8u0PYV5zG0YJCKxVB1aSlHmK/FeKqSvknHc/EpmCoceoV\nVfV+Cm2Lo7j9GSEv92VRvez0yTXGf3ohL1srWZIOpRWWRkURSewYBlzRs7N6yvlY3Khed03VnlMV\nslE8SiPitriOzvwIxnId/+j1N/mjN+Qle0UlwqkXH2SAuRqWTGGYTbekYzX231Ce/vOajgKWzOwp\nq5HGiNEtXJV7X00V/FOeMFXWqGDXkipe3tZPGZ/LxuJEBUYz0es9yrctto22Oocu+TrL7rXoe/IC\nlUl1dfxK3eE4NVTKIJTmpzzRHo5mlGKWD+U6QsMslrn1kJzLbBrhGZn7k/EebW3l85IGx5l87ytf\nn19tIt+PUzR0MpZLWfQ3tkOiQEu06z04ca9AUbXpks0kVHz9JGZ/qYSnN9+hnUkfS31HwkqnvqA8\nlmsw59/i6bm4/ANbkCl5b7I4ZuRLWbqv7nfWLGiqwPClXdJ4ohUDr4ESRJFMtQv2bkmtMvHjXkHr\nUinCBg7+UH7vcnNFqaHEIBKjZhsV1VQ3zflLWC0nzocNwkA2sosHN9i9q9IGaJ6h8YTsiWwarXB6\nRVVvVsEV3+iths+F91vXJXk9rsf1+P/heCY8BYzB8T1M3YRK5dBNjVGrG3gOj1QpaCtZkL4ipBiV\nI7vk0oeR1s9H1RxX8eLu/JKFL9Z9eVYxUlDI8KF0OFbdkg0FhIwYUFyotb7X5eAfCFffYvs2vxaJ\ntxEkCnh5H9fDR5m+dJlz5Ii16r+h8NP2LhuKBDqdT9gfiYUJO4ZAmZ1Rl7McOyxcOfbiZMgsewRA\nsoBHtbiRW0FFrpWPUvENZd3FqglzvRKUzszzfUJnqfcR4gzl93LEG5mOjhkq4czwtWOONLM+CBxm\nSmFet/pS0QFaEyX8CFaUQ0mcndolkwux3Ee8zcHrKq+eppSfUOZwFYQE9ZowJqWpUZNpyFwUaYvJ\nRCzszCsYPRaPZTmLyBWTMR5EdFRZqZWKZ2Nnl5ieeAGXwxGXCuoafuN1FgPFfcwzFqF6U2utyUGE\nXYi7P3ViinKtUVlgFFy3DGTdhMs2/q7MazgKeKziO8HTlLmnidY3l1hH4eZakRn357L2AfwQZ6re\nZBPyd8Ruz8qc4Sty35NQunLvZCVOR7zC0ibU95UAZ7kkcoUDokqn9PrxJ5r79bj2FK7H9bgeHxjP\nhKdgaoubFdh6iWGNwANnjVJ0YhrKp28qn92WJJF6fYnV/fotfGXMCVIf05Nd3ss8gnPJGRSNFhsb\nYm0W51K6smVK6KvlswtcX5NLXzsmr+XvT+ev8WNKifXwQllgP4HYhjUW1xcr3FadwLv9HULlnykv\nN8m3xDLXjRmOUvQGI7X4/RaJNsOQ36CaKKtvPWRzufZSKkKNHUtNGAZAtM4jOBHGEyseOi3KnlyP\nU4Jpruv48k+b+fgaD5uoR6QdnFUwwllJQtRJPJxQzlfqtfNkxiLUBJdTs9iQuXVfG3Og8mf5aMn7\npeo+dt6WcwpFrB43fCLt+PSbKpay0aRWrcnapHS6uzpFl5Rvq/fzYEmwK9/L+78m1xaHVG9Jl383\neJnBc3IfC+dlrJFnsm1Kxm2ZjzDU5JyJsUqYGvo1sZK1VnmTWpPKXq7rqlui8g4smwvCsZZvnYqW\ndujmrQFm3blrJIdlDhLqz0sOx+lcYNR7axycs1Aekch6jBXpaZSuLWdJoSxUzWSI94askVnsMdz6\nVQA2/Saz0x/sNX82NoUgJNi/Q315Qb3UWmudYpR/7vM9uP9jQq3dDyO2m7IZzLWFdCP6HC3NALdv\n9kkyebCRv4Gj8urtsHtFgOEPFIDiLqgKmchuds5lJec95pw3SnE12/Exx7sibvp5bZH9gMLS9wzt\nMiYOExqhTO9+V7v3kkt6VsAxydaKBMUTZBdY/T1H9QBbbkCtL9KNy4rphpzLC3bpqstohw2O5uKi\nl4VqOMYLHA2r4kZJrZtMs1UTKjzaiz0atSy2VGngem7CMNS6ux/TrtT1tbvEsdxUI/IpUwnvKgXY\nFGZMEMiL2Zw+wZ3rSxrBP5koX6FzxTT/fYdXR3S3lbtyNqepEOu2bjZe1CZ4Xl6gPJ/CHVkjt859\n+O1KUDN7RD0Qda3wTF54J26S7InhqNy73L1QtaUbSwqlyzP3ttmsJVSoXfm91eSCVMWHGpMFzoYk\nee14ekU042zIi9kahjRvaFv0IibdlptuZQPqSHUnq4hcRW/jmZyrv1XTaurmVznErlaUBi3aem0B\nM24rd2WxoQK8VUIVi0BRMLlNGgjDdlpvc0uFY7budrl948Enm3wd1+HD9bge1+MD45nwFNwaegt4\niqETies4ygte1G6wU6/LH0tkV73x8g7tsfD3f/uOlMJennVhUyxeI29Sqp5hlDWo17v4pA1bYgm7\nqstY9E+xR/I5c+fsKJx31jDsaufj107GbH9FZOHe7SpE92PCh7XGQ6fh8/lb4nZ/cUvo4w62T3l5\nIjv4whi8hiaXXA9XrUOpXZL+Irqy0K12E1c9ofiog9fW5GHdJFM9gYZ2AE6GGW2VXTNuepWItFVC\noDoEq2aG0hrgaq295bcI72oo8rBFGGmT1yogVeIU37osNXyItPGpicfkSK7hKM+5vy/PoWUL3L7g\nOhZvfsIsI+D6FaOhWMLn9zqMagn/yMWLcxoQaZdrfDOEyUD/8xDnVJKHedvDW0libxWIZ9N62iDz\nJFEXe3eo1POKVn38vmAWnNOQ5aZ4BeGFNqvtBjQeytweOgt6Z4ppiDxMoHRsl3K96UsJLFRJfGDp\nZXI9d260IBaLnxRbPHYl0b3bEI9n7J3hBRraJYZAsRWLVkl7rHDyjoeio8laMq/BWcywu6/3lFFr\nA9rG6Yzvqld7axwxzNcak59sPBubQsOj++VtFm/9q2xf/GMAnD3/qiX35Z07jKw8rO0Dh2pfXMJ9\ndbljd36VRZ+bIb2FuI5VnRNsCRImSy/oVHcA8JStx3W6VB15iFurFxnmcl5/5z7LX5ANJ2q8yDuq\nxbc118I0r/KRG4OGD7NVwVTZod3PymK8Hd6g39YehXZMoG9mxxlc6Tw2PVlIdZ3SqlRyvrUiVFYk\nu+PSKbUnIhnRUexEdqqtuVsJqDR8UCSstJrRtw4oG1Ez6GNXykBsZWNyqIiVMzJNVmwKYPx2AAAg\nAElEQVTUKhZTjKkCuc50PiNWLMPibXnRi/sV7z4W93Tj1g7eoeZGnruHfSxsS7VjhDTnE4yl54Fi\nGorxMeHz0sK+KrWderaJ1XZ4p9wClWcPqh+mduX5meCzLB+KbmRUCUNWYXPsD92Rc43OCCYSjuIP\ncR2ZZ7uZEdRyfG2Uaj+3XKi6U1W0mfpKfLN0yTRkq7QD1D2LCO5qZeEsp1Y920bhEu7L2mmuSmpP\nQqzemqo9HtBQWH2S9zFKZNzp9SnPZb200k187co0Dc3bbFb0jIoPLRY0PiMbz+rRiOduC0V90Qjx\nZx/KnfyR4zp8uB7X43p8YDwTnkKwKtl7dcjprb9FHon1n0yOubuviEXTYNCQHTpp9wi05rujYhqX\nzTEqu8hqsKK5FK8i3Y8IL7SvPApx9CAnUU4DYjzd+U12gB2JG/lw/BYnpXw+rAzJsezos9G63vsx\nVm8ta+469ALNYDuSWPpsUXHak8+dImChPfS96ZL0pioKH4uVzzoOSSnWquwFoLJxlbOk0srIwnfJ\npmJBJ7XKhC1c6pZCrVsh9UjOYeucVLUQknmNUVi1qxl0Io9SNSmq1iX1QznvaWBYDCVLPglLzGvi\nYTwOdcL/+oxfDeXYu995i8GPi7ZC9pWMi0SbkepPHj6Ql3SVeu5k4LE9UVhxR7ytwokIFIpMmVyh\nCi0PIBFXenn6HZKBelwa7pi6glM5OPBijErbm8gFo8zW/oRKsQVWOxyLmQfIMzNbCVa7Q1t+xDCT\nOWgsxUt9Y3vK3SP5751uyXMapqabMxorSf7mwQQtjnGuOqaLecpIDsWdOjg3lIfh6Yp63VXKKfWW\negjKHm3cIbWzht6nLB/LcyrmYx5tyOegvMvhv4wkK85Gl+af/Bl+V55SfVdc0fujMx4NBYBx96Ul\ndSITsWRCUsoEz1byYPOx5UKJU5KgR3Uqcei+n2DiNalJgFms+wTkd91mTa3QX6oVY18ehj0peRpK\nHqBnH+Pdk4e+9daadPSjqw9G/26yihMlaikO5WG+2z6Gc+3q61zSGctKON04pVvqBqJEJ/XUYe7L\nJmTPKqKWXnsaUCihijNdUmk5zNFHWXVW1C2Ni/OaWkt6tltiT5UYJUr+X/beNMaSLLvv+91YX8Tb\n873cs9auqu6uXmbrWTgkbYqkqaEgYURJEGTABiRQpg3LoGHog0RDgPzBH2jYgGVAlikD3gQDomSK\nBmiNRInbkNRw9uE0p9fq2iuzKvd8+4sX2/WHc15W1Ux3T9Y0OawB8gAz9fplvIgbN26ce9b/H6PF\nO1bZipyxA6EUArm7TQptw6VXkCTyguxlZ3AeCB7lnR353VHR5zUlmM2XCvi6KOyz7QlbvXnlkXmP\nsvDvFN/xcBY0+3CQkkeaoq1LBogiplA6eFMmkLf18yWMkuTUi9pxp6G3rdmHcz5FcV/v/xzBVBWV\n0wK9V+s0QYlzS8XHdKYhZVOeXzMZY5d1Y9jLyBXVqYzknhdvRhSX5nGGALOobe3DBaxmeaqDGr26\nkuTsKoV9mZM+UAj/7jbe/VRvdZFSC+58r0K+J0poDmKM1yHPNF4QejixjL3/0kuc1bVTvwzP3++d\nYOYfyqn7cCqnciqPydNhKcxmVK/d4Sv1+0RHsiu9/vYeV+M/AOBzf+jxXxrZKbpXr+Booc79WHai\nVj4kTETbb98YsK2w5t64Rrws3y/jMTujqLsKhJKbGmYiu+N27xYHEykfff3WTfY3JdA4Gu9Re1O0\n+I3y0Q7Od5eS+U4zoz4HC9EiLNcv5twsLIxyDpQNeHLXp1xUvMaxEpYEGW5dxhsuWkZjrUPwMmZ7\nakH4CYniFTbVIjo4TKlHcs9etUauwCq9XkxLG2bGwZgoVVTmmZZEOymJdmUW3CXRgqV4JcHflmPu\ncofRrlw7qMjuuHrPECj/5cHtkPXzkjc/HFUxNcmY2P2Tc0mms4SjRJZlWDVs52IGJxrAHLZXCaYS\nWS/jLo7iNBSVTdxMXM+s+k3czwuBS+/C1wFo/eYS6SXBp4jvDMg+LQHoIM8oNfJvxtskU7UEFCk8\nKXKivliIN6c9Fodyr1G1yX3t0jX35f5urkXEX5TS9vsbS/yQuiVhe4q3oNkM22M8EqvXauDw/uYU\nKuKulvsuLytkX9TJCTK1RtbP4MRaDKVemcuQ/nhOPXiPbQWW6WR13sykkWrpm0uMGz+A2YeyGjH5\n5POsfOkvk9z/VQDCqMb9bW1JvbjK549kJl7cvEZL69PvmPOAAFVuagtzunuH0hW/dn2vwsq6vExp\n5FDxlAh0V8x6jympYiM6wSqv3XkTgFdXOoy+IAqidGsMFKhlzn9wEknygreG2s59IL0a+/FHuKo9\nGjumoDaWl7fffIaGgq0aRXDtzixJVY4dbY1A0X2c1GdLfXS/7DGaoyKNZPEkzQqH2gLZmvU40u7K\nYJxSVBWKPW9QqOLM68oh0Zsy0peY7SFjhcEf3ixJPf3+92/x5qF2qI5FmfrhgNqezE+vHnOvr+5K\nI4Xdoc7Ge7tb3y6TMMIOZV5WBvv0FTlqmkooP5zNjl0mqB/zORr/R0G7Q932Z5g9+3sAxAfCMOBE\nBUHjC3KNj5wnUOSl2eYdzIpWvU4zRoqslO/LC39QdznaV9zFbhOj7ExeYZhov0qh2Qnv9oA0lvu/\nf/2QP9R4QDd3QMFbqoHDHUWTOq9Q7hNvSrEpz8atLLCnfJWdxRA9HbmtUGwr61VHwWVHOUNlyPIH\nFbwXZI5Gd2OC+McBGFYgPfo+ug/GmP/KGPO6MeY1Y8w/NcZUjDEXjDFfNsZcN8b8M+WEOJVTOZUf\nEPkgrNPrwM8DV621U2PMPwf+GvDngP/RWvvLxphfAn4W+F/e71zOXo/KP/6XfO3CL+FoD8PRdo9E\nizuS3pR7mm+/sniWPBTNfl47+Y7W73L5j6Tc9S3XZ90RrRxePUM9kICht7Z1nHt2tAhpVk4wGuG/\ns/0F7n5VPj8YvkGRa4Q7s8e1B/kTtKVbCo40QHeoPRWfdkMOz4p5ufrgMnkkoCDnq5ZQLE1qntx/\nvnQHX3fJsmUoxmqK5z08ZRgqTEwrl91q4spudSYMaGnPhV0sGb8uwbUjHDa1MKw+dKhq9iDSm0uC\n9JhwZhIHtBU2rb+S495V9ut4iZVl7fW/K2MY2CajpgbAkgwHsWjuPYgZm3lt88ndhywdM1Gym2ur\nJRtTGfPwwRsAOGeXaZZq+u+U+HVlxPb/V6h/Rk7yL36N2iWZ0Cz4RzJXH/qLTB+IpVg7t0OqOI8s\nR5QK/W/yPgSydlLlfjRHeziO7OL9hmWIMpobS5rIXBRaV5A5MB1qb0gtJbujhWUbBZ++L8V3jasJ\nzX1ZW7eekd83blQYaRn0WhDgr2phlb9BuXBbrnGwRy7DZ3qoGRUSJhMdw9YRs6p8v3a4QvW8WFvF\nned40Ll9gpl/KB800OgBkTHGA2LgAfDjCK8kCBX9X/yA1ziVUzmV76N8EC7JLWPM/wDcBabAvwW+\nDvSstfOI3Caw/m6/N8b8HPBzAH7c4ptXf4au84DN8e8D4NuSfCS7/2o0oFQf97A1wm3Lblq9Lcg+\n4zcMB85tAPrTEE+Djhde3Wb445K+bBxGTLSSMe9req82JvAF7bd59C1+fyK73DjNwc7zwwXHpoKZ\nw/+cYH5wmc65GErZtXZ7O3R6Yv3knV0WJxLMGxcZrV253uSiWA/t7ZL9QPz2+tGYqRLDtN0KFf3s\n7BgeOLI7dLW8Oq1kmJrGGSZT8pF2mi7kTHeV12KhhpnJmJJAjq2NY4ZVCeB5eYWhO6fmC3A2ZMwf\njc5xeSqfX1mWefsD5zrXX5OA6P3OFv1QrJQsnlIk8swcM6U8YUrSmbpUA7HYpjs+RwoQm58T66C1\nVMcmWrEav0FeFd/ZfH5K5sku75ptbv+OWIjx1xRly/uXFD8v6yn7dy9gF+a0cfvYBYWv85cID5RQ\nRXkgR6MJ27Hyam5N8RfEUjhIpscl7fPlYUuLUab0ycRlXZm7bVanUJDW2WGLPBNrMXpN5qQSV2k4\nMrZqs8ZKobUZCyVeT74/sGNmWjtCW9ZKlSWauqa3Ky1wNHbww8/xnJoV9tmIhaPRCWb+oXwQ96EN\nfBa4APSA/wf4zEl//ygVfadZsy8NPsevXD+iptHy/bykuiQ3+c5hxA99VB7ch86H1NuyIF/flOj9\nIBmQ7cmLkhUFt/VzPC1I+DwAf2b5BcbL8gK9oA/ZXVoCZZN68/aIyw3Jae/0C8mtgyBNHz/17wIw\n+Oj8eA6xBgrbn/y4jPP2bYqeBg/vb1K68uBGk32cloxpcF3ueTVZYr8pY3vO+lRX5cUL8oBSCV07\nEeRKqV6byQs4M4csl3Kfw6iCpxHu/qBKW7M1B0WfZYW087RMuh6lRIEswJyEgwei1+v1iMCVMXX9\nFmjh0GpFAnI3NnvkdVEgvb7PhUjO11hf5a4jJv/41ZMHGgt3Rn+sdSGeS91INqOYSN3BcGhoWble\n1FmHgfz95o3/l+Fvysv2z167w/OVfw3A/31P5uKHI5ff/rrM/d+++kmOzshc/PSHzxL/yIdkLlKH\nQai9MrqtLbegPpZ7fevON/j4WHEuVzMMGvh7ROFZqzDztZxvKn7kz76wRLUjyi1sr3DnG1KLY1N5\nBtHwHguR1I2MjgrmSa7r977IGS0oux6N+XhLxhGvaNdtadjRUutuOCGrybWvLK2x1xAXe23c4k74\nZA7BB3EffhK4Za3ds9ZmwK8CPwy01J0A2AC2PsA1TuVUTuX7LB8kJXkX+JQxJkbch58Avgb8DvBX\ngF/mhFT0k8Tlq9eruKbLOJVUoOtaij3RfM/XZ+wMNP+/tUZzImbuh54VjbnttgkvS4rJuzZmdkZ2\ntsULTapV0cCdxoyquh1OW03KzCM/kJ10Y+MqRxXRrk4thYF25+E8dCXmJcEn2PRMblnQqrgXvyr3\ntPhKi9KRXTBud3mmkCDabCliqaaBLa1pCMi4rIkbr+ke4zRYBxbVvAzbPksazPM9Rb6OFyk1ZWlH\nhkDp7EtnFzUwqKQewUQefRxpdaDpYBqKBeDMeF6dPt+vUSivRWQtgQK85FOx6F7xDUtH1wBYqpUc\nNcTiCfOc5TsSwNtxnBOXOrf8BmFddv9K1iRS7srsrsxl9VyNaVs6JsPRAs59+X7tlc+yPRG347Pr\nv035JXlmf++MrJXdKxu8rIAz5z+8yKfa0jDER1dxlWsj9RMCI7vxWDsVZ5MK16+LRfpC9SzbM60U\nvJZg5nvqsVtp0VIQvIHlhY5WSr7Zo9aROpvzfUP8kpRjW3UZR+4y5wfyHEbLBR1dA9XKKtFQ1uEZ\nZwF/Q9ZOpKjNxdjSnePcrTSJGnJP966PWVSMi6OsyfRgjgNyMvkgMYUvG2N+BfgGkAN/iLgDnwN+\n2Rjz3+p3/9t3O5dvcladQ96Z7NFVv2inbOFVZeGNuIhdk7xxc6GP0TLPlZ6+8JemOIkWoKwNmVWl\niGX1TEaeC1qSX7+G35CH73YkmkxWp8hvy8ftHudyqV+4kQyZPvrmz5WBcj9SvDtpzWNiCjLFRBwq\nKcrlPQe/pYjDlSvEytLUiEJqTSWtyUVxGX8TNxC/33T72NmcFegQfyQL112cEk5lgTnhA/17jVxr\nGvIipdOWR2ynEVYRiu14gaF+dpM5r+aQWEuGnVpGTT97rRlFrm3LwweksdZIBPKidKcN9tZlXl7s\nneVtZD6jWUau/RW+NSfEXYKLTYe00FiLcTGKgnywKIri2reGXPi4gIkU15fpKODIJFhh49Py/Pbc\nX+CFpX8KwOHozwHw8Veusbf9HwPQfP438GtSy+Je6EEi7qhXvEU+EJM/3pAXKd3u8OxFAbK5u7VE\n9Zx0X/YOLuCoUijsXOHZ4zhD6qZc05qUZvYOZ4ay9hZWPZa1A7XoyNy3zSpNI+u+VqlSU6Sn2qQD\nrtRe+I0FaM2zDtrwkeyjrRrEjQl+TxRW8/IOW4U895XoLd5QJKuTygelov/7wN//tq9vAp/4IOc9\nlVM5lT89MfaEUeE/SalWm/bFF36YPJnSUGCBen3MOJUd8XxnDErbXglTthVnwXEUfXkc4RqJ1O+P\nfGyueeWZT5CKpt3NDVZpw0ZKelLmE6bHfAqzR3p2Hp8To+QqnZqYlPuDMSfBHDyuf9RS5K5v8ALJ\nV//IYsmRcl6ue7vcO1TqsVSyD69OImaZ7B7TzGOOilJYh2PShvesFJTrRYHDrFDK+WL4Hsc+XfLM\npf+IBwOpRpzuD7CKXP0w/FUwvz/XlJQavgpMQaGYG4GTkKJl4UYssLysEOp6SaxHwJwAJqRqxKIZ\n4YJ2m+ZKeuNSkM2nzdrjALTvBZw/+5cB2C3+EIDxgxGONl1lRUzkzsuL67yolPHTeJkPn5W1k4+k\nAnF1acymWrrubJ99BeIh3+VmImsvCMZEiq/xisStufoX/xP+wo/Kd/H+f0D3RQnfOe6Vh4FyDHNz\nwnGbX7fWvvJecz+Xp6LM2dqELH+TgwcR7qfFdLx+bcL5D0vMYO+25dIVMaUbTkpzHqkfyc2Giznh\nUCb1+oKluKcAIc0xC5sywf32DGdTHsawIma933eYOGpSv49ynJOx7g/nXZIne7nmR83jBKPC48yq\nLNxzlQZnnxOl52zVWLsgYxp8RczMm+0po/uaTvRyinnhlCkfufx7Ab3IfU7TAsyTEYH8acve0a8w\nPVBXyil5eI+PKmEFPbEInRcwyy2OPz3+bJVmKUnlZXSiGdNElWlYMJ3Jef1ahtb/YGugjZZYV7tV\nc4ud6yNrj8eTZzO2e1KSPzrU8foOds4x6g4Za2GZH0+4oz0VFz7VZrYra/Lsi+KWPe9NqPqyKUyu\nx7hrWvL8jSa7Skx7/xosXZX7e/WmxlFuvMU/MF8D4L/++CXGSilQt88er1lD9ND9PaGcdkmeyqmc\nymPyVFgKlA7FoELQWqHzTdn9n3thivO2aLvW2jobnsJcLdYIM4XUXpIQeTztS/ITWL/Z5+6z8v25\n/W2yK6LFvQd7bK8pU7Jy8s0qJYOp5prfb3wafT95lYLIXOPWc/n0s2ttFpSW7Gf+/I/ibGk64BNd\n7r8m3Xy1nxL3YvFzt/hSU+7zi8MBvitzcVCU3/369j0+/wBIOvHAU1cqf/C+xxoA3Y1D1yHPxa1Y\nqsC+WgWup4HWmUHZ/9iaGeJAMSkSj5casga+NTQYhasfapW741gKbTqzx/8n/+SawUGBgez05sPB\nFY9kIlKHH1+XY1/ervPSp4WnNEnkWmevbHDlbcmcjF8+y7U3BbOClyPsNyVIfWEhxx5IKfSlz4hV\nvPJOi59ekZsaTgu6Rv2KUi2EY/k+Bhr/2KQscSYJu/YGjZrczO2DRS6clxd6xQmJlyQqvFytYLTn\nob0kkxpuL5IrH6C76uLo69tLZ2RGbMNxanjWzisMJYXWS0bAyau9nvT9KnUctUiuO3k+5BM1Bets\npSxNFXDlR26wdFfu71YksZHVZo3IFXPxmbHlmlqAJy8D+sGUIplg7cmeieWh65yWJYGRmTlMzXEK\nN9XYQYThns5h0/eYqkvXKQte17hEHBusRvbzUtZNWrjAd5rfFsi196G01951fPNMhAlK7lclfvDS\nlZBwdV5FOucDmOF21c1Z6tO4LWO4mfdpVzTe4VSPx/H2a5L5OTf8df5RKMrkb9+e8Orf+iQAH6n/\nNLYu68nYyhyj98Ry6j6cyqmcymPyVFgK1jOkyyHdRkis5CUrGzHLqfoEFyMqWghU5AVd1YJjtZCW\nmiFDze0GxjDVrrVLeZXrGshdDeD2WII2q9p51/MaOLdU26fJiSHDTiphTab3Z56TLENxeYPnVgVF\n2Jzv0DwnrkLZgNZflRx7aaTo5NzqEa52HN7+3bdhJGbkO28MGWeKx5g+AfbhD4gUUQUURIfi/QNk\nxjF4gWYZQgg102KqCShkWxjIuWpOhK80AM1sAdNUkpm4Al3Fy7gbgrJ49/cl4rg/HvHgvvI1Zulj\nS6SI5lkCDYKm6aOjI1BXpHZxgfo5CSBfuXSFwZKc5NmRspE3chob4vKaqOTKp+Se3HiVfkfWwEI0\nI1NAmcG69IH0RjHP/ZBYk799uM5nptoT0q3i2jnyuCF8F0vn/eTUUjiVUzmVx+SpsBQc61LJa7iD\ngKVV2cXdosNLS6KzJpUWG6Hy+W1UWNCYQlAXbdj2CwIlTknzKkOrfepBlZmCtQ7HDoNINHqgrNRF\nfo5dV/yz3CZ/rPcUhgHPnT8PwKdXpaoy+eg5GtuyK2UhOIq3UK0Z4rFYRUsrsjP4vTM452Rn+LHD\nBZ5fuQ3At7Zn/OP6W3Ifbx+xpw2p715F/ChS1PtbQcaY96zT+O5y8ut8N3FTn1Ibut7rWr7GA2pR\nzLIj1la/FfDJQp5h3u2yfChp6a9qN+TfNCG3L8gkffLBM3z543LsD+/ASPkSTCXiD2WzpfkFgW67\nXvT5/JF83i2OKMrk+DadVCsaC03/GYPV+694PpVIdv8fW1ngx18WAqP1Sp2kLZZuLVW26lqEpzRv\nZVwQoxWWlQHZhlSWbi0kRNdlLR/UlIjnKOe2khl9/J0b5H9FqjCd7AXQGBu2dZyePKk8HUrBdanX\nGwwSiBUgxKzWj8FEKun4ODBUmUwxde3EMw39/Ziq/i6sJSyOxIx0zN5xHblbCYiOtJ7dSHQ7cW8d\nL7AnQRx+PzGOnG/1mRofqkltxfonzwOQpzFFXSHnsyrIuiXorVDUtNxYi7TMhRELWtxifmidjzqi\nNJ75uS3G96Rg5bByjc8fSG56d1uUW5YbjgNjpTlGl7aPhs4dcxyMnRdWGRes1tFbLMeVuzzMzesP\njs8h/zjHMHWl9cARxWuzktKevFdkLn4IWTJH2J487CuYX93xcCNltaq0WF+Rl6nrn6Om0P0byy2W\nVAGcC2Su2ssul5o65lcyPjGSl63aGFNX8pz8guUFT9aWfU7Xxajg9Tnc3J2UmSI4F0WJ6ysMPBrU\nK2fgyXWjasDyhqzPcKFJcSjKvtjoEGv/hPUUX7Go4GhdhJ+2KbXoKShquEtKNDMLscvyjI+scoIu\neAwO5dqTSzn+8M8CkLhTKtGSzpiDVd7Qk8qp+3Aqp3Iqj8lTYSlASWFnNIoGoyXR/BdMi1K7Fjec\nCq5StYdOHaMIt0ZJOrJGiNF8dVGFWIOSk6KCM7/DWcLCocKNVUUrL+z6OK6SwVj7x5LqixRI83y8\nxsXnpbkpDGSX6JoQ0xT3KHBrOFasA7c1A80ru1pmS+DituYNTC6VqbIdL0z5jBHN/85uycSR3eN3\nd2RH6VsoldjiO4x6zd851sEPdZfKZF/ITXFs+ubfMROaWjOA1d+pdRCYCrE+Gz+rkmhDW1kWjHST\nL07SQKbi5zkGnQPPxR73oimtGhFVT+Z4zY1paA1J25mwrkCpK9WzrITKl9CRgONCM8MJlGYwHNPQ\nMbvk5No8VARTNrQDcai4EMbk+MGcB7JLouAzTuHg5g/XDoATOUK3DVSbDT7ui6XXjJssLUlQ0R8e\nUlFylpnycwQFlHPoOmdCEWgZ9yzCtGWNrE2q7Ose3hwpA3k4oPJAG8VqTZZeFc7TF6/mFJ2PyjG2\nQ87kRHM/l6dCKTjGpe63qK2mrGgrc3U1ozERM9/UeuQKvDF0BtSq8rlQczfoQaHErO6hpVAuwmpi\nKTx5aZJRSc1RevWxTHRqJ5SlvoxOj/yEfIfveR+Oy4tVcVGWwgp+qiaj+reJb3Fm8mBtNCUOtKgk\nyXA0V15qF6JDk1CxvHPXIdTz+v4ZrrQ07jCo4XQEfepr29pR2XubqbZL40CuWtEWMypKnd6IDEMr\nc9jUOo6dwsPMy2FLB0fN9tIajOb/MT4VbdGuNOX3i/UmUSEvTcMZ8cAqFX0yJB0o8lDaJ/kumYS5\nxBsXKYeSiWE4oNRy5UKRj1cCi6nLfGZ+SVE7D0AQuaS5jGk/HrGyoBkfJQly6otELY1LOUv4iayL\nIl2n8JWWvqhiNfMRrCt3Z29IvSl+e6e+xeBI41FOjtsUE71i5fdhllNdlRd+uXaG8+dk3hphjWyi\nCqSxRpIqxLvGlLKFgmoxLzbK8FItrGrluENRak6UHbuWVns4bLHC5XPKara3xO0FJUte+TjVUrtq\nHYOPf5KpP5ZT9+FUTuVUHpOnwlIwlDjOiEmvgXtReRryGU4ou9VR7nJJuReKumWqJq+XaLTZKY6r\nB73I4k5FmzvelCCW3aPSGBIOtWOwKrvH1WiBP1Bk6OIDWgkAnmPYVpr0Z23lGH5hpNmOmZtS084m\nNyxAA05ZzcfR3vuyqviLQ4fUFQ3vFFOchoKh7IzoqcXjeffpHMrnTEltDicjXJ2LwpZUKhpEKw1G\nzdJRaqlECtk21vt2C+x8Dow9/iyYg4oZ6IJV6vpOVXbJc02PsCIW3bDvE+qKapqCkS/nGG47cMIi\ncTs5IldLzjUOyUzWQByIRbM/DekqR2XsVTlSS2A6yHheq15bjsX0dSC6nuJimbApcxXfN/Q0WBlg\nSJry2T90MBqsDNUK7SzUOKMZsTtvtDG+4lhOS2wh2aFSKxP92CPpy+9eXoVxInN0cWZAvD9GE49M\ncSY686ar1JAXym/h+NS1C9bxwVeyzLzp4mn9zdk1sQjS+x6/sS+ZkXz4NmurEnQ+uPMyPCfrqM5L\npN73CWTlj1MshqwISRmRHon5tbjYOo4NVKMmbj5P+1SYumJexo6kecw4wa+oT5aMiUIN6xcFePIi\nJH6foC4mdmtfXsw3eICdaofbE9UPP37wHKwzNB5VZe+Y2ZQDXSCDy+Jnt+OXcdSMdJKIQlOkHgvY\neRukKpCkOMC6knHIjxJSLcdOxwdUQlkUN2/2+eJzckzvXykNuwkoj5msDIEqltJ3CEtFZ2q7TEdy\n7YmnsZg0P2a3EoXwEJfSVeXmYqjVRQEsKHjoevs8NpzpuVpU9tQsN5ZgrOPwHe14lw0AACAASURB\nVMhPphRMEFAaWQNluo/rKxy/FmoZL2dnqKS6yYRY2+GNdwZPfee83mBh6TYAq96n5arBDG8q6yJv\nHxKj3JRH2wTaij+djKEuc2uUQSsv60SOgLoQWbwjGX9iIJwXCHnaP5O6LK2JAsmzAl/jAYnnMhso\nipZ3myKXa4dDuScPHzdUMJX6Mo4GUty8CrF8HzgLOArYOyefmcZ9Or7kULez17gRSVHTnf/jK/yn\n/81PyO/CCl555n3n/Nvl1H04lVM5lcfkKbEUCnL6BMMGQ80PT448Rue1aWV8xEGoxUkPckpFZc4O\npIin83JE95aWta6O8ZQKrvRDZoUce1Ax9Pdlt72u0FfT3pgk00KZD1KjMLe6Aw/lfWE3SDF9cQ+W\nxrKbpXdvMHpBdquNA4+l1Tl9XYapSYAuS2U8ZTVjfENo7A7rBcW2kp7kD3j7DUED3t9y2fpNAfjI\n9D7K8lEkaosp5jBvOU4oO3BvmFOLFV24J7vS1JQPsVseFafEakTei12W1ULYWJBoemMlJtEO1vb9\nEbuxWCxlzydXrAonLx4d0vuK0z+k0DlwcMmUddnVnL6fQ6lWYT6t0FfcxcpgwLVLWsZ84yOMVuVB\ndCLZ5cvoAqVmXGxQZXJHwFD6lQHJgQZ/2Weo2AptX46NshFWsx1R2iJTSHw3dzClQtqpkWe6HoVi\nLXqXWywN5Bx7zZxSTf9hmmK2xOTfPytzee5wEbMqFkFkXGahzKeTJThVxYXYO2JaV8vjSMabjPfZ\nuv4aANNBlWu/9DkALhwu8g8LoSr8hfIX2c7n9H0nk6dCKWAd3Dymup6yokA79WdK6jsakW86zJQ6\nneqIQU8W5HgkPlTvdyzFuvQUrI66VFqy4B1bMiq0suugjl+Z06vLyzGptnHVJDPJ7fcFWnlMHil0\nMhg0W0aeOZxVHoZZf5loUSLDR9ti4rnOId6uLNzgfExjQUz/ZtbC6OLONF5Q7C0wmwgu5SAfkufi\nn9ZqH2NxTY79rf6I1zWwXDBn50seKikDKA9DPcyIMjl4qT7hnhYIrfgK7pIFGPXPc+tg5hrCGpS+\ngtjU+eg5GceVKzL2tDqmvC3XqLUPcfviPDvtlGAo1+jYazw4OllabOgt4gWyCPJkctztWGr7ed3N\nGBZyPfyUdCbXCJwdBq/K52vLb/JSX4B8ybRIqe0yU24Qf6dLT5mcjqYzskxTg+YcYSjjNLqxZN4C\n9bb2oyze5/5AXtjEm+ApMW2k6c92GdA9pynbsUNxXu4jKc/gKNfpIFmh1OdqXlMEsZUqVY0/RM0I\nV+M2SXiAsylZl6mdkGrvTlaVOTbhFS6/LOf4F79VcuOBYoye+Rk+eVNiZW++nPFC8WQpyVP34VRO\n5VQek6fCUphnH7IHNaofUe25P8RqwUfpdVnQ0ubscIk9R0y/O/ckKLQQHVHndQAa2QKOI+xAfniI\ne6AMQ8EdDvsanV4Tk/mcqfOHiXQfjp+AmPdhhbuUBBea//fCgi3ddZ5bWmZdcfdKJV65temyVJcd\neKvxGhulFrSYF6l2FYNRTVl3eou9fdkRqp0qTqYZlXKbL12TnaRWu0N4SxF+lQ/x0RIsayE08vfB\nuKDdlXHezwLWzsjn0S3Z+eJ4CkPZzUaOxSqMvHFAYTNZCCx+Kcef1Yh9OmzTbchO9M0HbZ5d0mcy\nNXzhBQEd2fvt6BgkJs0fhVX7TgmLfUZTzcA49rh2xAvkd73CpV6Vsa2M6txvyXylB84xqInd3yJR\nd3L0nACaLJ6Z4WkQO5jucKQttnG7ycioa2Z2mPQlkNpenEPgl1zSmoV7K2ep7wrBTeVgQqbuUTLU\n368HZBq0jNdC9qcyF6srVSoTGc9+VLJ5T55rLRCrcDi6TaKuSN66gG2KD2MmFQrEqtjttag1dPzq\nzpTFgFf3ZC2fD95hdFbmezj8Mr+hbuVfu32JX33lyUBWTi2FUzmVU3lMvqulYIz534E/D+xaa1/U\n7xaAfwacB24Df9Vae2QkN/c/IczTE+CvW2u/8d2uUZaG6dhjGpb4B6L5Vl7p0lW4qgdBhaObEjAa\nOgHXvyUBxj1FWfaGHkfK87VcxNTmWKUHltQXrTvcmrCllXn3vnkbgC13TLm5P7/RJwg2msf+y/O0\n5DdzYUGDS7duk3XFH+xeE3ScXbd5nMaqDqcMIxlzJa+QH2jAsyq/H993OCj0XN+8ybQrgaPVnZye\nNrhcH4Qcritn4Fu3Hhnbw/soNEjohDHVoTzuqy8EJJs69ob43AfDKUlFS39nKVadedd4tLXY7nK9\nxpllKd11FYosimCogS9bqbO78y0AbpshxRsyt2ObUh4T6rx/xDErHZxA04KzHr6njNBquUR+SKYM\n3Iehgx3IvFm3QqAl2F4twPpikYXaEOUdjPEWZLeeFg44kp6+8/Y32FdavHg3JV+Uc7cUGbo4e4Zm\nphWkQYUFrTx9EHg4pca8NAjuThyWLss1lguXnbrc8/17u8z33+ntIX3EgvQTef55IyFvafflLMIO\ndW4Cj8lYrtGbuRzdlHHYVbEeOklAzYi1udXd5KWP/Q0AfuMfbNF95ucB+Fx0hc/uH77rXL+XnMR9\n+D+Bfwj8k0e++7vAb1lrf9EY83f1v/8O8NPAZf3fJxEK+k9+twtYW5DNhrj9KrtXxBRt9wrsGTH9\na2nCTPP/7qSg3ZASVlc58tx8k8FAHnLaduk7shibtRl774hJteVkzBTOfdhVN+JmH6t5/CfpfbCP\noPoCFFp4UtalgAmATkDckmBcw5OFEtfrLJXirphBB6OR/Ly+gx8r4Mq+PPCw1WK5rsU/5QplKvl/\n18sJh6Igz/dSrmnxynvm/zMNHuYzem2Zz+ntmAsXRBm0NxUIpFKjroVCA1vg6uI37oSWJ8rtmYVV\nVlZlnEstuc+j/gDUnO8uVdl1RGkEO7skSnDT7cGuBjE13vaeAPnOLKHIJFrumYf4JVEs4/RNE0+L\nz864bYYV7ZJ0q0wdyXzUshbdhqyHwhVlaRa7lA8O9FxdOpf0hfSeYTqROWzNZuQKjBPpfDbLGQOF\n8esEAVbBWaI8ZlIoDqSWrk+WYTKRuRpeDKiPlcfTywhcWQPV6gKOoyXruayFZNjEaSkDWmOAr8Hh\ncviAimJJxosZUyPBdld7ZipZhPUk+/Ajm+f5licuw5/3a/yblV8H4JM7Mf948AS+MSdwH6y1vwd8\nu6r5LEIzD4/TzX8W+CdW5EsIr+TqE43oVE7lVP5U5XsNNC5ba+dQu9vAsn5eB+49ctyciv47YHkf\npaIPfR/HCWhtGC5ORWOunoUOShG+7LNcES25Pz1isSHDPppJoKbu1bGx7FbtRhOTisswmnokihfg\nRR0uKtX8aiHpn9GHu2x+Q7R2lgyZzk4GRmEc5yG7sOW44s8vPC4vixXywuJlzIZ83qiIXtwLh6wM\nxHoI6gOiddkRgmyCk8uxlZZ2g7LE+QMZ78raMmNFJQ7cNhc1B/q58bNEN6RmgXc07VQmPFpSbLXM\nu+lkdNSVOH8lgKSpn+W860mLkRETttfzyCoKmovBajb4YucZipqW9ub6pe+z0tLUXN1yNj4v59jo\ncO1tsRr2V97CuybX3hqLJTSZPgpd9lDKdoNQ3QOSBFfdAF/Lxz+05NO8IN2ncWEIdG4raY+4lLmd\nVG7g+rIzT0YyP7N7AVFTSXKaNc7q7n72rMdUzZFswyWryv21XVkjUzchFKOKjeU6F+/IPd0pimM4\nvFqsrmtuaCkQtbPvE19UC2raZRor6rStM8ll3UaFMom7CZVlsTD8Ykqg9+o269TqEuT0hyPcdW3e\nq+i54jarnjyH+60z2AUZ6Ds/+Wf5zDnZx7sfu8QvDH4fEHLXk8gHzj5Ya605bqN7ot8dU9HXotji\nFIy2XYbn5GG+sTNhfUNNTt+n25EJaXcc/Jty83db4ibU+y16RkufZ5Y9fUmjCPy5D1/OONxXSO0P\naXfaJOLq5fMAbG69zolB3K19hOkF5hyfQQWswpOvnV1i5bJM79JITNnrCwHnDkXR7ZsZ7lh+mGLx\nlSty2hA3oTqyJKsy3lbUJtE2av/eCq93pJb9J1p7fHFFznHznXn24fHxz7MS40FJuSKu0ht7AX/u\nOTXHHVmYL56rELb12rdWuXVOXszzB022a0pr7sbsqyntOtqLEU/pzEFDwpwzbbnXQyLWqxL1/uLd\nI6pH8nmqZckTsnedZ5MUZFM1j31DovUJGzVl8mqs81MXpZz33As1KneFVPVa6wbLezKmOztT/FRM\n5r19iU9cKCrsa5v5xaLAVf7LRrVBHMkm4my16C2Igog0W5BWExaVpSmPt2nEch9LE5fDmbogQwXv\nuVBneyjzvboxwZmoEl5wiLoyR43xIm9rDGpVdd9kNsPpaeanmbCsQC2zcEZrqDAA1YyOp52bK1r6\n3Ktz2JLPVyubRJ+UYrd/b/PP8EtViUFdeafGlzrfHyr6nblboP/u6vdbwKOF1qdU9KdyKj9g8r1a\nCr+G0Mz/Io/Tzf8a8F8YY34ZCTD2H3Ez3lMshlnhU4TgDFTTfmQZf6ZBllmVUKPVbloDCbiypGzI\nbuWARBtuiv4DSk92q527h9zpyu7wjX99Gz8S06/6mgaLXl5jZSZmlvF9mL0fNuAjYpyHETNr8BRj\noJ4FxNqAFc5SPEWNrqzLseeKVaqBaPZRvE4+E+umlV+gtLIzRR2pzEztAdWJBlS9IZEyUNszI55x\nBEDjxsqrxGeVAOT3f+94NnmkiqKcc2X6LqOBWE2LV7owUcp7DXbWsioRYoEtXY1xFWJsozY5RkRr\nGoOvFoItFADG8TgcSMDMrZzHNxoobri4CpbSaHaZKUxdsCiBSncypSjfBWOhUsFRq8mUQwJ1p8qK\nWDkr7RaEco7mdJ3GVbknb/ZxvJlkpWbNq8S3ZS9yc9ldsyI9xmE4nG7SOBTWaapTwlRM97KeUlO+\nxuN659ySHckza84C2m2lITw0uO7cmtC1MC4IuvJ3d+gy87SJzzd4iiEat1LWMlm33liZrZt1JmNx\nFZenZyDQOpRLl0m2ZH3Wi4sYzZJ4Rtw1u5Cymsl6KS8dcK7znwOw2VvkLzl/CYCd1ZCzgyd7zU+S\nkvynwI8BXWPMJsIy/YvAPzfG/CxwB/irevi/QtKR15GU5N84ySBKW5BkIxozl7cWZbG19xyKC7Ko\noiCh1BZgjypuRR5S3JcFmHgx+UC+K1fbVLbl85RNgt8TczWLPaqJGDTluiz4+oPzlNoq66ZPAG5p\nH3YRWsce9waUoUtHO/xmKxFxVV6y0sh4KsMR2zV5w5K7exwpKUi8fwv3RQX3uCsL3guB6B25XrSA\nyRT228mYjb8MgP+FnMPdL+mQ5j764yb5MajozDBc1LjLXUP5EXlB1rWwKrjgsRrLy1EzExoK9DGt\nVom1qGlcn9Le10i7dgbGI48dBQZdyu9hl2XB19I1xhfkvj9yzedaR44fFXLdu+4ulPMcxMMx5+MB\nVqHSZ1UD2l1oqzKvUV7Fb2tmoFunon0scaXkaFnOvbQ/pnxG3LiGe17mbfEQf1/b6NtgavISuq2Y\nciaKw60cHHfN5vMXPbVM03lnq0dfX3RaTZKhvNThRNbT0RloDGScSWfCxkziEr1WSdNTFyM4ottX\nblJNo3t39xlpiGZx+i3S8y/I9/dS4kj+YKMdvFCUUKlxsqAcM1BXI0wrjLbEZXhu8mn+qCrKZH28\nyr9yT7jZqXxXpWCt/Q/f408/8S7HWuBvPdEITuVUTuWpkqeizBkccALK5ZTulkRm/fWErCdasuh4\nmFzrFNp93HTeEKJuwOSQdkW076i/hB1IKWqUtSgXxbTdv1USdpWh+L7siMWzB4y2ZUfxPODdA+Lf\nIcZxjnc5Yw2OauthkuGre8D9GaNArl0dyk40dqZ4d+TvR2XGzi2xJFKzx+UFvXgoEfTCaeLNOQDL\nDEch7k2lQ30kO9Cvb/hkR/NGqHkp67d1xGlzjVdJCZQdmbMDNu/K3F24Kr+r7lYpz8iOEpQLjBpq\nuezvos2FOHtVBo4W8mhz1WyWMIdU7NVcmlogFS8cEW/Jznbg7eAqhF63dlt+7wagGIe5fVi1kLmV\nh22H4wyj6NC7B0oAtHyb/vaceu+Q1YY8y6QsqSjOwigaY6fyfWqlJD6eQa6Z9dRv4mpzUeGHuJF8\nX4wdirG6RX1Fbc5SXK1lqS9Ad1ssgalbgMKcJZFYK627LsOuzM/+ocP6sriH+V04WJR7qmRdJqkA\n4ozvSKRxNN7E86RpbvxgD6cr1q2zBNOJYnWkUFTVNakr4JDXIUjEasoil0p2HoC9Sy3WNbs0iS2f\neLJ+qKdDKZQ2Z5QckR3V+apyST741tt0zkrqiWiB2JMJTojxtZ12VsoDiqMFPMXQd/ePSKbysBqN\nCmc0APGJhbtMRmL6ZkuKlOOC01ZXY5ZzUpQVa8vjjkrrGLJ5SstmbCqAS7d5xFoi49hvytinaRWr\nNfXm/oSDnox5dz+kpkVP1SUptlmq+BSr5wGoNCyZ+tnBaJdbIwnTtPki5facO/3dKedz5SkopiU9\neU+Ybe6xcVE7RXfl783l5JhGfRK4TDTmEDVbx6hOkZNzMJBxLsUynlYrwR5q+zIRUUMWrol9wkVN\n2yYesaJotbRR1XFLynepasynR+TpPNZgjwlki0IU7L99fYpVvMeXL3rcG0hFZ9pJqHtyL362DbsS\nG3igKcJws3b8srk3Dilfkp4I4+dkCuuOM2WihMOOtrvPjM+chmKYZBRW3rBolDEeiTuaaRys34qI\nbkkPTra8SKxuycbClG5dwXC8PmPV43kgc7lclPzRW+Iqbg0zwooU3HlrM84Fcr3xMzEN7f8oNN7j\njUdMdN3EB4dMOnJsd7zKO7GQ1K6/s8Bmdv875vn95LT34VRO5VQek6fCUihKGCaGQd6nfk0DXK9M\nMD0NBrkr2KHsAlnbwVO05qgqmtjJA2KFYMujrxIlErWf7R2QVmQXWMpiNjVQ42jPxO5On/Qd2QUz\nz7x37e13yCO9D6XFzOHOZw57NXUDBmO2DsRCWJyK7n3gLhMdyt+3iSi2dHcoL3Hrnmyh83x8xSvx\nE3GTsuEeZkmi4VlW4seyy3199w02P6bW1O+8/a4jzTUrU5oSTzHXwy7UNf+dteS7Rp7TO9IcffWA\nRIlsaoklTLTTtL+Ll0ne/0i3T2OmtNXCGJc+HMzLsR3CbXHpYpNi1bTfjtXtKspH+iAejrcoHMXG\nA0F9mVsKClIym/DV2xLgu/zNa3x0ZVOP/AQrh3LM/pWL2ESsqTj6GABeNsSrap9EtIRViLJsawej\n/Q6z7TG50gfYiRw79fpMzDxQt0hFXdZJnjOdyTjzObbGwRirAfHR/R5vXlbr7zBic6R0BdGIoCJd\nvA3FOZiuvEz15hcB6HlXsZviSvgf2+FA4ejq/mWmQ3Fz5v0gs6IgN/IOzHwPG34IgNv9lKNCslJv\n7w0YDMY8iZxaCqdyKqfymDwVloItS5LpgGxa8HZNtPLu9YgPvyzxhapzHwWbIRo3KHU3dp15QKaK\nuaGwXXFA0BYfarpYUE5kR0ifuUvjjuyKzbr4p7mpcC3Vst303X3ydx2vfbiDAZRKSNKvTNncE+vm\n6xfh7J7ssP0NsQIq04jDBbVybsRQSJDv/EaGr1BpWSAxkGAlx87vL7bMJrKbebMhO4U0vsRvDiiG\n78xH9a5jLcs5zVlBoj7pUT/izpKMozGQXf715W06Y6Uaa4xoJDK2o0YCmudOjCUyj6P/2EqHwVB8\n4GLQo1iUgOI0syRaMszh3jHytq8lzGlZUD7kpns4t/mMd8eFk++yNGFrLNbdv/xySHBV5vjDrSlb\nHQmadL7aIF3TFKaVrs3i6jnKROpU/M6E0pFYjO26zFJllTZ9zQXDRGsoSq9BL5Fr7+6N+VoiVfxZ\nDrmW2efKAo5jyDQwuFU1jDYVgHWjzuSOWF6Ee1yZ81+elWdT/a0eTqL1K5MvsHVVLMzi9o/yQz+p\nltUswWi3aqJB7pAeua+vcOaQq+W57hVcP6upWuvwrc3b7zKf7y1Ph1KwkGcuuAnprqLlNgt6dYXn\nrl7EjGQC0zjDVZNp0hezKBoNj2Hbs/tVjhTKvDI8JF+UY+rbz3O4KialLWXhHuxsMSolA+AYQ/E9\ntk4rRgdZEbCmofoka5K0dGGGYg56ZUZ7qJHsS4aKL2akUzZYXtKioBW5Dz9fZJAoNBuWNNKahtVV\n1u9Il+Q3w+lxcRKz+ZgeLwgyCtPmeglG6yncpsdE4e0WunLdWtlgFumxdpFEg7m10hyjFbebHSaF\nzFclkhdlL6jRmkoBTf9CgqMMWaHrEGowsuL1uBfL+RZVYZc3Q47TFo+Jy6PFV98pllS7OTd7PX7d\nfgSAq7+1S96Sl23jpS12j6Q4qaEcm8GNd/A/IxBtxUGDoqrZh8LiRPIaVCoL5GrSB0tyru1ZSRTL\nXJWVgvKG3NNeaSmVWYo5iU5hj9dCmkAzlmd5MFpj0JV7OfAvs99T4JvX9O/uNr8zk3n1k30uviru\nUfTTX+Xe74orXDvnUa9qkLqpJEhem0jLqmfWI09Ea+wstahckzHfDu8Qu09GnnzqPpzKqZzKY/JU\nWAqYEuNMKKYurnY7ptsPKDui7XeLjE5Tdl23lVIciWk01qDdME840vReMBrSu63NJV7JmzdkV62l\nPlPljlhblh3zE5+6yu9+6esAlO8ep3v34VJiH7EWjolTFh3u9mUn+aGPnKU+J7LsSl7saPuAmiPa\nfBpvs9yT3eio0aemnAR3H0hKMkhc7sZiql7I1wiuKFhp3+f6SHamn1rd5a035NqH8560b9tcHUcr\n9GYubkVLwcczKuvy+YGCq648e5ZIy2hNUOWor5Wg04JSA7vL9QYTze/PDZQH9w4ocvmP/dGMM10l\nsHmpQVko1+frPpUN7Y78NWVU9hPydzEUDAXvj2xhUKgHqgsuz/+oNHR9/penrNfuAvDOrxxw5kVZ\nD7/9FbmPl1eavHFPGoY++8IrpOtyjefa63gvitvkMMYcaln4nMQy8ZkqhkI59igUVXpp2uctxYgo\nNG1qHChL5XLoFuyMxAW78mKLRbUaw4trbL8hwdEdJf7h+pjpVOb+rc2MeCRzdPufHPKfiSFEOtnk\nR88/J3PXEZfYyQJmaPPYpIer+BVReYHDo38HwLPXdvnCwc77zOd3ylOhFIx18G2F0h1jEu0jiHr4\nvyqTV/mZNqOu5KOrJiLWVVFdlWOLo4Tclwkusyr1NTW7e33WtKstnA5YU1SjqS8P6GhnxvNvywO4\n4boUJ+Q7dIxDcewP22M053Arod4VJbT7FVh+SZRB5w0Zb/uMoaadc/HCFVo1ieS3I0tlRV7OM+O5\n8TbheSukIXlYxdG3MM0KzkVirr+60cKZyf2Zb31ZR/OoP26pzJGBvRSTanlwfUL4BxLJjp6VfoFB\nOsPfkGs0A0vQFVciGmaMdA6jUUjelHNUJqJ416ohtZGYw0txhGlosc04I3lDvh9Zj/vCfcqrSrBb\nHO2/R0/qQ0aq93IfyJRUduxw8X8WJXruEzC4LWtk6aMrXLgvnZSND2nx0kqHtZqMud51WOiIWc5K\nHW+qczvwKB2ZL30vGc165DdFua1V4PxM5mXb9TBKruM4Os6yxNXP3l7OSk1e9PyN+1Q/JS/slS/f\nwyh1QeVQ1+bVD9P+d6I0L69us67oVh+vWTYuyMaxfO4CLMrG4es7kpmSUAurZvECUy3Rvnf7Hv6e\nxDC+cljlCRHeT92HUzmVU3lcngpLwTVQc11M5pE6stONJh5fbIg52LlZ5eVYVHe3v4qnnWqkCkbR\nzgj35XNWG1PViq+oktJSRN2t4T0Wa6Ll95WJutHrc5iLNnfLk5cpuMal1B3ZIhiTAGM3476yFtN7\nwK2b8nnlnFx39UEDtyEWTXRQwWkoUYm3hGmqKTmWYJjX+AZeLlV5YaeHTcV9cPJ7FPui+p8xb3Pu\ngUScb2oroyRC5jusQ00bcYq8JDeKrTB1uaF0ZF5fdpoiukt2KNH79rJPQ8uE/ZqlptcumWBypWhX\nqLiFcZPczusRQvDkvOlkxH4mZuvkRp+v7cs4R0cy95kt39VNcI1D/i5ZiUfFajD1zuCQ11fE0in3\nz/AxzajseT9J5aJ0Sa5FMp+tD/WZ7P0UANXVP8JtiMvgdXpkmayXotJnti+vxNBIRiXHo9/XzEBu\nmAf73UaAr1HF1D6swNREFDMnZTuVdRpnW7zxjjzfxgXLmQOxaNodpQ0c1KitKdt6eZ6Xz8uxY++n\naawpxFxzDU8JYxwN9rrFDtlUK12bRxjFfQgWx2zpkD7cfJs/ur3xvvP57WJOTIDyJyitZtP++5/6\nNLF5GMlvBobeUNNp+ZSJpnoKM6KnLdVVpWOazCrE+qIPyoiqFtb0kwBnLAtzKwuOy1LHGqm3Nn0k\nNnDyefg7f+tvYhTZp02Jo/iBTeuRK6BF/SDGNsREtwpyahtQG2mbbmVAVdOQTuxRTbUQq6pgMVEH\nv6PnTc8Rn5UFX1l6iaCmv7NLmDmNOtpm52bHqC/FbJe//nN/D4B8avFU4TqhT0WViKstvbWsRlzX\nIvlZgKvltcVRB99eA+DGqEZxKIp6cCgLfjC9wdsjVTzZEYPZfJ+ZkiqwqX2PEuyHYo75OL8d//LJ\nRM5R91ycQJ5PV2NUmRvTUmVyRIir5d8JLlVV8FMvxHPkmDngbT0ylI7c68bKAn5N5vnS2jL/6P8S\nxWPLz3+P4/2+y9etta98t4NO3YdTOZVTeUyeHvfBdzD9BtWLYs5mOxOClnZJbu0d99Mz9Qk72hev\nhTDOikd7KibVdjOmeSDfD1Ys3S059tDfI9OA3/gxZOEn35XiPASlMm85VbK6ugmzFn0trDobBcwa\nEmjsHkngaG+px/oc0GOlQXVPCpVGK4e01VLIW8pbeLRKf1ki59U8xOlqX8mFSQAAIABJREFUByMB\nhScWiEsbq5aCU8i1UucBvqtAIeEYO5nbswFFVaPkeUGsXZWFYjFu1H3iJSVCGS2w25brLa4FVOwV\nufZ+yjsHYuauPqfAKl+qUGnKPe9tGfCV1CQBa05aEGZPTtn3fjKvmi4dfK2/WBxqV2OrxpmxXCNv\nQrwr3+/FOTWFVE8aHuGe7JODplqmhxnlGXEv0m3Dwkf1+R0Mf5AshCeSU0vhVE7lVB6Tp8NSsIaG\n9XBWYy4VslNOL4V498TXu9tZoav497OF1jGhyqwt33UdCM/Jdx8+NAyelVoAfzAg/oSCn37jLb60\nJsd/+f5tADKTPpJaPLlEcYBjxI/uNhNShfmKu+CPZVeptjIaFUU5Pi9WxZnBOvGC+KxBtIC3Kueo\nz7rYUAKeUSAWg+kYlvoSkDKtlMCTz4VT4E0lSGa9BONL6qlU1mnfLFLOkWRthdCXeRlmKV0NOtoo\npKH59rSQHbXe8OksivXQXeuwEGhKcjqjvSYNWNXfvMW5F+V6w9uyn/if9Ii/LGXHd9suryuMmRck\n7KfzYOz3J27l6h73UlznkpU5WnxBGsYmaUo8R9c+OGTzrBzb6PdJ2jLmytSS1GWNeFp7ETdnBH35\nbuV8i3WFtq7Unnzd/KDIU6EUSiClpDUJGWkPfpw3GC1JtHWhV0XTx2xUfCaZmLAbHQVIyR1adVn8\nSbWkrsElpxbiaY376toKzyEP/+aOBIi28+TkjZGPSO4UUGo+23YJMq1xNwmOujxEMQ1HrufOMxJn\nKoRINsSzCYFCpWUrKe5QFEiuBT/hNCHtiJvgJWfIJlLIVJ0NKVa1zyO9TKEdc16mGYKKh9HahKGp\nks5rL/KIgRZONVNLqWZ+Q0ubA79OU/EpqnZMpAU7nlsjP5JrV4IZgWISVBUye7P0aXeU1WoUsjAR\nd2Y3+SABw+9N5lD7ZbtNsK5l3C/IPS/fb+C3RSnsRQ0aGuS9u3eLYiDPZDMb0E5k7RxYUdKVtMZ+\nSxRuNYGgKm5TfbbwfbijPx05dR9O5VRO5TF5KiwFi2VWZhx1jojvy47fW/Coj2QnHbsjapqSvE8N\nraSlV5dd9dndkGF1TsgRcl9TeWfdkr2m7ITPlHUevCCm+YtD0fIHg4Ls8AmxqoB45uMvKQ+kM8Eq\nE3M49pgpjFk0zZjVlaui5ut95kSZXi/yCJSk0XMcTFXBOB05l9OKj0uUCcAZSTlv0ahixjJHRcXF\n6StobEN2QSdzKH1tukoGVJTD0UYj4kRpzJwqXbV+C20YM1OHnkKsdeOYTF2QRmFIFEotOBvSCOU6\n7Y+IFTCpdanVlK8xOGT8ddlnZrMxs3tiVaR59iduNBjH0KpKEHDa9llV3sh3lEzm0/U697QDdxl4\nq5Sq17OjiBs1sW4W9w2HFUWR0vqNXjujrghas6Uj8n1ZQzvRE5YJ/gDJU6EUSmBaOpi+pa+B84gS\nrZPBuDFeKYs3NyOIpPQzRl6O2lqGr9DqtabDukbwl9tVGgp95dg6zyvh5xUlOokTj//vK+JKpPbk\nnWSmYbCBDK5ZqTJrapGKVxKoAljISuySvPQVZIEWYYavL7ptlDhaZEVY4uoLWyhkmpvkWF/dkh7k\nivHn5FXKiixor1dgV7SNXLMaNhriaBksfkrhquuSVYlU8VRLiEJlG1L/ac0L8GsKChKHpDr3kZfj\n15XcNWnghaLU4lTiDG5tH9sSRTZbafHcHVlSr7cO+PyOKJM3uEeZnayE/HsVJ66zqnGQlxbP4SgR\nzZlQYfY7M86GChWXZCyH8vKHU8uytokPQhe08/EgkpqWvO9xqGQx1QcedkVdqe3wT/R+/jTl1H04\nlVM5lcfke6Wi/++Bv4DgH98A/oa1EpkxxvwC8LNI1fDPW2v/zXe7hmMNYekxnAxYGsiuOquNiLVm\ndNwf4oRqCfgVutGcEVn+bRRtWJZdol0GNCPZNatZghfIOZxuyYWe1AXYj8vO8NHqMpN9IVH517e2\nHuEheH9JCHCHstMkocU4yh7tlgTa0565M3x/3lwv5/WLJjaXndYYDwrd/csl7BzeLFc4sKLEUdyI\n0h1jE/l77uxhUmmUKmyBKZSt2ogJbOwKOPP+/gijjNc2m1LxNQga+viBcjQyd0UMcVUrE8mpzOlB\nyymOEYsm8EeEpYKFKAJy6HRgQ9yEC1mT4KMynkp9n7VESpv/4dsuBw+kpHuWPQLK+scg80rIShCQ\nKu/DZHBIsaiWk3pgsV+lohwX/kLOSNmho1afdCBzFzkVZvvisgbIscPwiEy7UgfeIfkdddMqTwZx\n9oMk3ysV/W8Av2CtzY0x/x3wC8DfMcZcBf4a8AKwBvymMeaKtfZ937bSWBInw0vrHDbENF5M6kyR\nhxX7BSOlnW+lPqki6i4gC3Cw7NJSglZnwSPQlzG3dVDkIef/b+/MYyzLr/r++d39bfWW2rt6nX3G\n4/GCMWMbAoqDbBBrlDhGjjBLQiIRQVAkgmNlkyAKSkJCxJKgABGRAQOBYEyMF4yDA4yH8TbM1jPT\ne3V1Vdfylnrv3XfXX/4459VMY49neujqbinvSKN5feu9+1vu757fOed3zvfrQ0tfliSW7rxm7DC3\nJoriT9Z3GCSvLL7ge2MqykI1qbZpKD9I4PbwmnI9r4ZURppNE0gku3ANdOTF83IfQllY1u2BUqCj\nR7Im2qPUY0/ruDiZxhrCLqWnpDbeAo4qHGdaJeoNMUYVQZkQeKqEnCoTNakb1sU3ghDVQk8tajW8\nPVW2ixllpCnm1QhXqxKZ8wkVwzDXNqJ9h0Lh6ZfikEJ/503qtNZEqX0nbf5YU9bPDCSXf1y8cqSr\nVyJz44x8qAAplWNkilrV3pM53FoJ6VjxicoophHLsxlEFr8v66XatCx3RRlMKjKf/Z7LxNGU7z3D\nfkfu61++Fmjn8MVws05zXhUVvbX2Y/ag4JxHEM5IECr6X7fWJtbacwhT1JtvYH9nMpOZHLLciEDj\n9wEf1M9riJKYypSK/iuKKQUJ2Yt2md+S3cVrGpyREpnYwQF1+X49pKNn+ugJQGVkUDYyvFFA3hIt\nX0ur5HOq97oe1UCskNq8Vvqt3E8DSUH+OxH88iek6D8vvzKFXDWt0GlL23VSjFGIMqKDNN8gC0gr\nSnXnivVgihKriMNFw8PRXdpMHKzmLFCZMtK0DjAUyiI7oK40jVXcadFR4OBosRXLJwFxxdDEJLdI\ncTWdudouaSu9W+4toFnM2Hn5MI4rRMrN0LQVSCbaZ5+8PkWrruKVWqmH9M20oBzKOLwowY4UVmyh\nQrMhLsg7TvVYrcqO/cmrshP/yef3yHKxViwlRoFqyvJ6d0MteLI5fiJW1o6/R+eKLLvomPJw7EK8\nIOOv74Qk6m7N9TOsBn/LnuFoTeb/6nBaaXuGZHPKGzqm1PyM1HcxFXVHlY6QV5EI9/LDU8wGa7H6\n+SAZ7JqK2BsnfyWlYIx5PwIK+IFX8dsfAH4AoBJGTJwcf9yg1CM9M4asooxOfZ9GINf3+mOGTTFd\nfT2yXOvs4ihOXhoY7EHMwYD6zo7v4LvygpR2mrjj4C0px9/aEvNa+biVfGWl0Kg7uAodv+o3GWke\nix8HTDRBKkxyigPEHgUrdS2BQodnXoijiyh1K4QTXZiK1uTEGUUgL5CTZpT6YtLvkwby3TCewyqC\nEokeF0QFqCuF06WhzFmjrMFcTTpapCmlr+NWgNIT+QRXuSTLxMdqtqjLWFhzADMOyavy4gWJHnXW\nU5zRNKbi4ih2o9v28HR5DeoBr79bOTaXxRS/eibluf40jjJBq89Juc5TCv3d2DHk6mJWBy7mPi1n\nHygQz4mGFGQA+/WYciB9HtcMnh451qoexVjxKAuBZG9ecnjclWeaDHOcQKsoxyWe4lHeWEfohUE5\nBoyjLmSZYzQ7yymnpDCl8preWHnVSsEY8z1IAPLt9oVqlldMRW+t/QXgFwBac81bX789k5nMBHiV\nSsEY807gR4Gvt9a+ODr3IeBXjTE/hQQa7wYefbn7OdYQWZ887BNmkqQTzr8AXRbPeXiaflpbqVBT\nzMBqW0MZe4b6ikJceQmuJ2arO0wwVQXQ8HoHUXRHqcFiE+Nq1P/UZIWO1jDsuCOK8UsTS2ZBSMXK\n1BVZn0qhAC8mJ1Kk6DwZUyqTda6Iu3lQgS3FOsiGB9Bp7lyVdF+3PGXBtkUPx9dKxt2cUhGVy3QI\n7t1yv50U54ju/vkUH6ENU2xIjuHr7m/KkFAtIK9TJ9yW4GdWV6j2ckyeiXvVs/vUJgoFN8wxmgqd\n2zGVcl7vLbtnYSsUrvJL+qv4+4IHMR5NSGKZW48KfiDjWpmXvn/1vRnOloLejPbJhrL7bfevD08Q\ndTcKIB4rxVrLp+jJ551jMj93xUPQE6xgkhFrELcW++SKLZFkMWWkCOI9mfsLKwHFszr3ppzGrcFY\naneJ69k/p/vg5HGutRuuH6sDzAFJjuN4GFfrR0xIqUn5B1w5h4SF8mqp6N8HhMDH9UjoEWvtP7TW\nPmmM+Q3gKcSt+MGXO3mYyUxmcnvJq6Wi/8Wv8P2fAH7iejphjMXxM6p5h6It2s8d5QdEyrWNMefV\nj86eTSju1crHJ4Rd+vIDDe56Unawu18zoKJks0W0QjJSv7Vq6T0nAaGBZvkl3QSGShuXXOV4XTT/\nle5lel+2p7Lb1bwxDQV/zVvz5LoDN9wh6WTKCByS7ulurFwCO2dS8iW5x9LVGnPzsqtWhmMK3dFd\nRVf2G7uwKb9LmxXKXc3irG4yunhJP9+Ft6PBU93xCzPGNQJaWtqYlsLNOU6DcUWCuPFOj5W2wq1p\nH8/4GdFFrbRcTIg0qLW4WmPpqgQPw6h3gN+QRGKN5aP4AKchvrDNpKoo0H0XRwOJ3XRCRdGM1/oy\nvt3jJyCUAOzp/iXqekT4seu1FHTX9IuSRLMtu1sddu+QgOjaSJ7NxnyIlynhrZtjL8v19bkh/hRz\nIhwR9WRtJTXpe/NsTKH7WlGWLzDdlfDAuhyvfqau9IZplazsa7ecv2QfvLJd3WBwFAk4IsJocZ8/\ndhg5uq41nlMe0n57W6Q5Yw1OFuDXd2gMxBTz50NSfTP9Wkmg1NrVjsVVJqOwIy+0fXaCe0JRjYs1\nAoXP8k2B0fhbdj4EPUP3lWSlrC/hab7Bm9/YYnNbYMca6QL9LXm41sYYZfadojZHzDEXyOKuOjmZ\nokv7ZYvCU0afwMOm8qIOxxIwzOMrbJ6W+xaNACdY1PEFWA2C5b62uz+PURclK3ZxtPKx9O8imBPF\nM0lbGC0vr3y1mPuuNdhpf3EJWjKfd821aSuV+SjtUb+kVZ5aArxfbRHri1kWAdFA5mrY9ahNCWqC\nFQKjcxvISzfyRmQbCobjjyhzmSQ3mMPVBKC5aEKouSF5W757DxUWjyqQy06NvasaenqC65KpBV2W\nKbFCxI1X9onXZZNwHpR2m4UhddWd2wspAnmRvczBNGQ9VQuP9lGBm9t6VpTmqO1g9zXQ6hQYjYga\nx7L8DwTq7uGhbE5PfPRTuJcVg7JYpoZsQkPjYjUvw9qXyjfQDSdwqbRl3fiRxdd175ZDYjuFrFMX\nJTNQXh/RyyuRWZrzTGYyk2vk9rAUHLCRxYnbVFdFG1adKqOTSmN29i6Orqn7cLnBeEE5ES+KmTxf\nHxLnzwNQ9A1FXc6ow0qfcVf0nudeZXRZzOfGypT6rA2e7MzPj9e4/6iY81d259ja0Qq/zOBMMUt0\nuipega2pZi/qxHMSdHNGlolWGka2pEg0CDYWk+fs9jyhgvCXzvbBWX/MnfgKsjLem+rpM3SVB7PT\nKUm0gMcfXOGCclAuJ5/H+QY99uwJmEi22KOSC01d4e1xRDPzaPicasoOdPFCl8YR2Qn3FJtipRJh\nNSg7ynqc35PvHjcjRkpK00pqZG3hS/DUUuhfHuKP5Pju8u4CC3eoz2d88GVM8ahBQ6nLQqX3s2nA\nlrJxN9mlUEvoemVqxeWli9bEkXdjgjXFiejKw6uvVUhGMldp1GWoVkVrLSLQ7MxstWRzSwKTzXuV\nz/ERq8R7kJXmgOOhKOHh54Vc5mdqXwDgbWmdj6nbdbwyZD2WX4ZOTqbs3y914OpMg4dejXs0RbsT\ne6RaEnzmqktHj4bbY5n7p+zeC4HPGyi3hVKwFsrEEPtjyrGYfdUTAe5l8RHXWw7xWVlgg/oe0Z8q\njPiSgoLszJOckMXmjscY9RnKnRFuR1GaLu6TaEnx4IKYqoPms7Q3ZQr29uuMx+JW8OAKjYuy0Pte\neEDw0VD0JxsFVKaQ626Mq1T0aZww0lyIYW+XbU2rvvyEEJJs7Dt0NEfCq45pWlFSUc2h0ZOXc9xU\nN2HLQ9HGGV/oM2yJq7TmBMShzNH2zhxBIQpg9FFZoGvvfjO5uk9OsUCk6MPGXcYdyLxV76jDOTFz\nJ1ZM/I31i6Bl5rvPbZBoUtfKoiFWfsw0NITKQclAXhrbrrC9J3MfBz6XnxHlPKrEVHqaK+C1qEwp\n6Bfk2VhnjKvw5BXjYrxXmTY8TXZyLb5a1X69pLGv7FRrosQiC4EyZHU3crr6850Lm8TheZm7Cw67\nrlamXlAGreN13D3ZIFzHxdXcEuNY0q+R5/fw6P0A1NY/zv1HZF4G50a0PJnb/ngLO9X15ZdmNRhj\nqCp2/J3zq6x0ZG01m6tsKmFxMSnIhkKOtO5q6voNThWfysx9mMlMZnKN3BaWgiS65njjiJ7yDVR2\neyR1xQ3YTunrdTvpECsbtac72LiyzvaGIA4nYUHYkqhwFDQwIyV7WW3iaWFPzxX3IRtbYk8DY9GE\njiM78Gv7V7lYETNyUsa0NUDZdOXvQZlialoOUjtCMpRdqV6FXHeCzLqY6Tm91vTXQh8v1ZTYQY1y\nWkXZHmOainWwpfnHjYDWlOauXMBXM9/PekyGfyI/2z7Gxkc/BMDJc+IyfZYneWv+PQBcZoC3LzvN\naOEpslwwEPZ3N1lRhuZOqdWAgwrDvvTdd1fw2tKfSX6VWN001jLSk1L5aCKtBv3caTxX7kV1wr4v\nc2tHNQpXdtiyzMnVO4g8sRQmccp0ax/WC7yJAklcr+hxQMWJ8MJMuzGPUVyL4woVV6/PHfA12naF\n6o6C9jTr+F2xrLrBEG8kz3q3KpZi6+zogJymLIsD96G0hocfEZr7z3zdpwH49jvfzocekfbe9eAS\n/+dZWS+2nJDqWhjjHERHS6Ywfg5rFVkjb7hnjbcuyj0uxyXNFZn7djPi8Quai6JW2jNe+iKqwxuX\ns3B7KAULTmmgPqS6q0Syd9ZoKbhNdL/LyXUxZ/fmXIKxmJ29ilB2t5MTBziBlVMrBKUoDb/epKGR\nehsfxU3kQR8PZRFnTsj03PNE3GN4TEzj+sTlmVD8+aPhZe44Id8/NpTfh36dqiOL3ytTWlo6Hfod\nbFUVQdChp2XgNQXpmB/uE1i5b+ikLC/KWD0zIXLFZCxW5CH7Xo1qKp9N6h1Q0deqd3JPKPddT+/n\niaFEy59/7d8G4LXjXdLp8V++w+kjcnR4KlqiWpMX4a5hHV/dNKuALdTuZb8vLsrkKBRa4t2qPUSr\noseazTXMtixI9JShs+gyykUhrRU9Kpm6F82UYqyK1e0yp2XLuRLhmiigrglpSdmBhsQtrld8LZ+v\n1hzqviZqzRmaRvqRBAqNX2QHCWALVChXRGEt9iuMjiiy1OgIti4nUM6+3Hf93gHmC6I0PCchnOZj\nOwVn/+a3AfCtGkfY9x7h71VlXVx6+s2862uFZeq5/F7OXRAXcn27hjOSdZuoy1T1Yl57SvhB19YK\nFo7KBucXfUY9Sea7e7LHsiOEy1d8cSO6n2uxcfVxALL0K6fmX4/M3IeZzGQm18htYSmUQGxLKnsV\nupIFS9LbZ2VOTOYo9zh6XMk9GiELStt+uiI74vF+Tr+hwaDcYjWo5SUOmdKiVcYOqQbSqo7cK53f\nxd8Tze4s+XSCKX10lXdsi6n220mVxfOyy40amvBjMqziFwR2iYEmutRSH8eVPjUin0BxSpYuSD7C\nlaWLNPtidYzDPSpK9ZY1UkI1n4c1GUc4qJEvKWxc11AsS2Aw3A3YKOR6Z/NPOfbWzwHQfey3APg3\nr/00Hzz3HwD48zvPEiWaJuu6VBSefNu9ykk9JBhGmn4cVMnukw776/NstWRnmx+1SRV8pTop6Wqg\nNBrK78bDCZ1UrIrY8VmeV5CcBgQ6t5vE1GNpsK9VoK5n2ddU5KAcMh5efxjdYIgCzZuoLtBy9bTK\nlgxrYiHYkZrciwXudByFod5Vl7AzR6yB4qgScUlRmhePKnP55QquK3NfTARiHyAvoPvI5wF4LBIL\n8lt2HT7aFbfyR05s8WQq1u27Tgb07hPLbPDoCT7ckKDwXdua/u52uU9dsCteiKccqZVySCsSC/hs\nGfLwA2LRpLIcsXmH3/mUcGmSZsCNqdK8LZQCFsrcMqDPwlU99jtuKfc0J33Sx6srpmAzolqVl+KY\ngpxGfsxYAUTKrEfUf0hua1yiVfGjs/0edcQUc6qyGF2vSaH8idVsmVQTh2r1e2nX5YTiDWGDeWUI\nIpeFkvghjpYI5/4AV+HCk0mPSibXizxDaRYoNB7StosY5bw0fkh6VUzx0F+iUECZsKUPvhxQSaS2\nww+GqJWMmc9ZK98CwPbac3Tu/UcA/OpPia91z7v+Jb9XFRflzXseZ+pyGlAbdMj12DNsLjEcyuJt\nDkVhWd8QTRScpRLTTKQs2Ng+ppQXJb5ymUAr4eOuJi+trdB/8ozca/5+ykSBT2sepVEmK6dNafXY\nVrkgJv0BdS0dHwYRluvHPLRAobAeY1uQ60lE3xkRjLX0W7k3/DLA9+Q5TpzL+A15CefSAreiZfDx\nmK4az0M9+olP1ag+q2C0QQ1XaxtcCp7Xl3O0LvSMF4fnuPMNbwfgM1c3OdKSueqNEmotOalof03K\ndw3eJn1uCRrVlfIU6UTcp3ZxJzsj6c9keZH0nHynEt6Po5mz9aY8mzcunucjTVkjSfz8DSvdnrkP\nM5nJTK6R28JSsEagysK4RV8pzuf3S7K67LALbki/o2AZSUimdO61rux8e62AwaaY8NuLHt6WgKXY\nE6uY82Iye5GlNBJEMk1Jay2ti1EylazskupOM9o9R00Ti8r7Y/Ku1rSrWWeyffJIcvTt/CLZjqYa\n+yWFIzulW3cxhQZNNaXW3ZswDtT83B+SaNsmMdimYids6U4UOZSOtFHMV3BycS+cYpfR5JMA1B8/\nxnr/lwA4sS5z9Zu9MafSfw7A98aX+Fd9TbVdmBCuSk5DvB0z72kSkQLKmHaOOwV9iboEWjFZeA6Z\nBli9FZd0oIFbR6wc53QV01Jadya4Swonl6xATU6BvF7K0Ggehu7s/cIQa+R8z52Qa/D0ukWzfo5P\nKux2pE/RqMlZdcOWnpNg3/pXHaF1Xsa31coJe2IJ7h3tUNsVS2hQ2aCu2BcjrX4pTg+ZHKRSZ+TT\nZ5a7dP+vnAJdqn8KAPfh+3j6CzKm7z0aMDUwl9fm6GiCVFBucUQDjJsN5UTdnjBeFFdjtRdRzMk4\n2ntr7CyL5bkcDqgp7p9byHfnl3yOa1r90zjXi0TxkjKzFGYyk5lcI7eFpWCsxc8LTG1Ioyeacbzk\n0FJkZNMqCLe1GGR5SKj+fKa7hH9h76BirOcs4myJlvcbXcK67PJZWccrxRcrFbHJCXOsFd/SywuK\nSHRtbbjAxl2i5l+XLVN7k+jO4KIEpyaDhEKPRdNygFtqpqNt4+ruQGZxNLW3zBTRqFrgDOSam4HV\nYqwszfHTKfGL1u7jYpTPMN+LCRoaMIzmaeQSP3n6jhbnu/cC8Pvf8C4Alkaf4s/eInGU962vk1yU\ntut2gbIrwcOqUyXbVwKXRUVQii1o6rLjtXAKsRRMXhJOq44mCzAW6yWK5Jq/tMFQA7/9KIaeBvOi\nLWyqbM7l6CDle6DIU2kSYqdYAWkVi+ZnXIcYYJoAkYdXcRSkdeL32XharLT1k2Kt1J6wFHPif09i\nyDJ5ppUzI8KOrB133KRALK7LiPWwN3eOXDMTQzfFU6yKyCv4opJ0JJsSDzr/G5+n2ZRrf5DdyXtP\nyfW02cA2pI2weYK4kOvNHbm2V9vDG8ua3p1cYG4g7e1ULjDRVOm+9QkcraRVro9geIRTa/Icn9nq\nQTaFhbvuqbxGbgulgBF4dCepM2gqcenYMmzpycF2STKnyUJ7OcW8vpz7YqrmjQrpBTEXz+w9zwWx\ndvHGJXN3ykvYarrEngK4tOUFTJOIUM39/WGVUCG4skqXO4byYB7xnmfxM/JgYqN/D9YYT2scyhpD\nTcKpMCIdy2Ksk5Lqi0MsD6s/DnELeRGGwwnZ5Jx8NjWOdRVXsSH9adiUiS7iai1FUdMIh2PO9UTp\n1Scfwbpiwi5elJf4yV/5BO/4FYlI/9v7R/yQdx8ABQGJsh7t2k3u11z8/VxM/9UoJl9VXLnhNllN\n0ZrTElsXJVqsT5goN6d/SXEunYxOV/Ib+p0GJpDFnTYcvELaGFuPINHEYl+0pue7JFqJWUsGZOmr\nS+J3leCmoEWoAd9wtEe6InO/+bw8u7XXHWVVN45hZKn0NJuq6ZPrW1T1HIaaCt9elGfWfb4kCBXi\nvRfT8hUFOisZnP8sAHFf+r4ZOJQXJG/kWGeHj2xL8PBdyd04XyNrL+tXGej9mhWZqyW6bGzItefH\nE45k0uco2GNe8TjLEw5RVcmANdGtNfLoaeVn4KVkN6gOYuY+zGQmM7lGbg9LwQK5S+r2WZzI0Q0L\nI+YTTWNuJuQ78jm7IyUaaKWapg8Xewl5KKZV9PhTrNfFTTi953HXkgKQ5gmmI99Jz4sZXXYKEt0x\nJ06VWOvm7dFVNrZFc18o3ky6Lxp/kigv5YpLuKsZlNGQXIOE6bhACxiJ+xPippK9DGUXT4uQZCDt\nXUpLnEty30FwL75SnjVOKXBGkWPrCgaxGeMe0XtYFzeQ1NeNcJepUFL7AAAOHklEQVTgW/8FAHu/\nKwE1/5u/ng9+Vvt5/lGGr1dcgO02jVAsnbRt6F8Si8Q5KU0M4hhXrbGaLXD0+NY1E4qWnLFPNh8j\nGUrmnT/StPPONkld+lxWjpD1NQ21KBhOdIdNoapkNpkGNuPYkigDt+N4jMvrL4iyWIxCsPWWO8wp\nQU8cWZqXpR9d2YzZ2NwhDDUo2fO5qsVtSxMPq4FgP0+YUzDWeCS7snn9Uar/+7SMv3aEJFXimCBh\nd1/dH7X+ynGO0UrNzd0uzy7JOnzmyohoX3634I8JHZ3DKVRepUm0JsHxxf4DNPdlfdtmcEBmU2ne\nhRdrha2uf3/Spa74FLa0vFAm+lcDX7ktlII1UHg57qhFf0FLhCctdivyIgSDgkuRRGSDSwuUpzS3\nYKx4hqt13L9Qf7JWp9ZWOvsoYxyISZwv7JNpiW8wp+fA3YxQCUXHvo831mSSjR5LfU2KedMGzhfV\n5EfSS9PRGl0lbwkbbfKhKqzwqpQMA2nkgrIhZa4+xHGPwbzcq/bFCjvK3tTeW6d4nfTTjiXFNT+6\nTTEWE9Y0c5wpL61N2PIl96D5WJPl/m8A8G5H5uLn7jzD2mPvAODz3Ud5z5WH5X7zA9bnpGLw8Wc3\nqEznKBa3K7A5jVj6mbsJni9oJ3GwgnNZIvVOEOHlfyrzdURiMd1+A29J0XAujhgfl3wEnzrjQtJ5\n86FPfyTXM6t5GJOUQnM2Bm6C676a0mlDogk7q5lhHMpLs1gsMa7K2lkLREvXKwnWPwlAsjCilU/h\n94eMYlG+O9GEfSUALhXhp/m5DbKD57iNZrQzKSw2nbJEveDET8GQUi/m/JbM26MrLif2JPazvDSg\nXlcSID1RW3raUrTUZdjZp3ybPMu9c/fgH30SgGJyFbso30kRxdrP9uhekkQom6avmOHs5WTmPsxk\nJjO5Rm4LS8GUEKQObmNINBGTMltbpKY7qefs4/d0F+uUmES+M9TeV/cmrCwqBFnrBHFDNP9Kp4Vz\nRCvR9lv0rOyK8aZyLDQKfD2bj5IREyVfSbIB5ck3AHDPjkf8gOwaq18Qcz/pW9xQcxq6A7xIThEc\nOjgKhOHFJbFu78aT3WqcbZFd0nN+d0CgkXqbJbgXFAzl9WLCm26FoWawxfvZAQ5B2JnniLo5Ty7V\nOb0kO/bp9/59AL7WfYbePxPz9Due/gLDpyQ6fbTfxrWycz9USwliuR40pY0saTCeSB+8Iys4Z2Wn\ndeZCwqrsxqPyAcLhNHNUdsHafT7x4/I89qIJVinYjDOiqsjPgbcHynI90SU3144olNvSGUUMlQ7+\n+sTFr6r53K5xMpHnUO1ErOlZfnyX+A9fFa0xXlUAlFGLS8qFyajAq2hw129RceXzVi7zunN8iBfL\nfHcqHi1NCw/Hu3zx9BTI/Et3aFtAQ62OS6lhW08GVlbvpjitRWi+rKG9yiXOnNEcio0dqusyt/sP\npdx5Vt6BSbOPW8hYqjVdv7WTPFiTef1zE4GZMvy84gn8snJbKAUcKyQm4zZmXl7uMIkZ6vGOv+9S\nb8sEOzQYK4jrYFf+36o0KVx5yCcnTRIFTw1syKUNrWycNFl3tEpSqce91SaBwr73M8uClvoWiy6N\nZUn06XqP8bqzolj+qCEmrulNuKisSPfkDr2qmIMruaVM5LutMqNRmZrKykt4tWRPk2MGlzKSWGIb\n4y3L8Z7c4ymN5N89fyfPBTKmN1QWaWsln9uvclrH8WD1KnN3iEvz3dvSt/f4v8+Pf1x+95Nrd/Id\nDfl8uR/wGiWM+ewg5siyfD53WfzpNzY7tJYVAj2LGeoJB+NtunqEWxbneOJjcsQXNuV5PPLJhAdO\nCOrTxbLgjcuKbvXAEk4mY8rHVVpaXxCo2+V32gcoUwu1GHf/+qv8jGOpnhKzfGWpRUMPOFxnxOKy\npHrnWvviNDsUego0GhdMPAnVt21IqsQ+1JpsdmUOVo/Jc7K7Hvt3iLJ5dHvImyvykn7BVoGvADLr\nW3Ymct+3PnAPx18jG8BS4wgbVXEJsk15jmee3edKKqni559IKedkLrYufprRUZlbv+Jy6gF5xit3\nyIlRd2R5bkMU0lyQ0r0xOmHmPsxkJjO5Vm4LS8HDpUUNd6FPoyfWQXV1k9qG7DruXEq0oxBjd6cs\nxLK7LyrOYBTXyJtyreHNETamsOcFp7SYJ/f2uVPRlZ1V0fZu4pIVol7nKhWKOYkW59VjbJ6Vbeek\nfx/DrmIcXJBdN7cZlVj+PnbbBFrAklifaiRWSO7XKLR4ZlqIs/aaBpVtMZOXjhSET0qEPzk+we/I\nd1a18rPhDVkOpKDGW1omzBVfsFLyoFbyDb66Q+XkXwPgE8/L7/9p/cc5/ZD8/aGnf4etDQnQtoyl\nqIjL8MDiWfwNsYoePCZzUdabpBM1jXfHVOYlKDnaGpOH8t3889uESzK+/YnsqMeOBPiJWARv7Czi\nKUBIrTskUTyIumsoD4BKAKDYGlAPxPoZ9w2VKe3ddYhrLYuXJNfjZHOZilZiuisuR61SrLVkJ10L\n+ywpMEzTc1lQXIc0NFR8JcnZGrPqyvdHWrXYePAhjv2x7Oj1k6e4QytbqTzF41+J7CUtaQTyu41P\nP0UUfqP87NQOawviVm2sy++O3DfHwp/Jc5g/vsNZxEq5w4k4nssaWm02yXS+yoFYHSuPXmFtUayY\nz+7u43h6Kpe/Mvb0l5LbQin4Hqx2PPKkQeFqLULfYd/KgvZMjtUMtOhyyKQlpl9lX8+b/JhQzXnH\nrJNrjUJWGWMH4gY4lSF+pMedHa1ILNvYQtpIRy5uR176sDdHpSbm8xNpk7XjWp68K37qUbtDlMji\n8BcLnKGYc3lnn0RfLGexizdR4JRQS6CzKp5yKZaTBZyJLMbELNPQPiW5mMOO9yxuTbMOl2McZc7y\nzSYDhWI/fmJE/y9kLu57rbxtP+Os8HeP/SYAPzx+kHfu/h4A61GDk3WBIt+++HVUjkrZb6ixBf/4\nRRyrXA4LQyaJKtzVTQaJnIi4Cz3CmoLJeoLA1B0+TGYlYafRbOPP6VFn6MNVUc7uyCPRU54yl4U7\nnljGQ3nWiTsgCa4/cu464Gr9hLfTp9QXvdELKetSXVjdlOe0v1gQTeRFj5kQ1fUFK3pYBYwZ2zFm\nOFVe0t+jlzP6LXk2XeNj24K2NPFXXob/qWSktTRb8Rke35Z+LN77WqpDUQqr01O0jRWyJTk5qcSn\nuLclbk4+PE6ZyDg6C3W8mmYsTuR3+84z5Jta2ZvvMylkLXzpTF4fU9XMfZjJTGZyjRh7SHx019UJ\nY7YRcsKdW9SFhVnbs7b/P2j7hLV28eW+dFsoBQBjzGPW2jfN2p61PWv71srMfZjJTGZyjcyUwkxm\nMpNr5HZSCr8wa3vW9qztWy+3TUxhJjOZye0ht5OlMJOZzOQ2kFuuFIwx7zTGnDbGPG+M+bFDbuuY\nMeaPjDFPGWOeNMb8sF7vGGM+box5Tv/fPsQ+uMaYzxtjPqz/PmWM+YyO/4PGmODl7vFXaLtljPkt\nY8wzxpinjTFvuVljN8b8iM75E8aYXzPGRIc1dmPMLxljrhpjnnjRtS87TiPyn7UPjxtj3ngIbf87\nnfPHjTG/Y4xpvehv79O2Txtj3vFXaftGyS1VCsYYF/hZ4JuAB4DvMsY8cIhN5sA/sdY+ADwM/KC2\n92PAH1pr7wb+UP99WPLDwNMv+vdPAv/RWnsX0AW+/xDb/mngD6y19wGv034c+tiNMWvADwFvstY+\nCLjAuzm8sf934J1/6dpLjfObgLv1vx8Afv4Q2v448KC19iHgWeB9ALr23g28Rn/zc/pO3Fqx1t6y\n/4C3AB990b/fB7zvJrb/u8A3AqeBVb22Cpw+pPaOIgvyrwMfRvJPdwDvy83HDW67CZxD40gvun7o\nYwfWgEtAB0mt/zDwjsMcO3ASeOLlxgn8V+C7vtz3blTbf+lv3wl8QD9fs96BjwJvOYznfz3/3Wr3\nYbpYprKu1w5djDEngTcAnwGWrbVX9E+bwPIhNfufgB/lBX6veaBnrZ1C9h/m+E8B28Avq/vy34wx\nNW7C2K21l4F/D1wErgB94LPcvLHDS4/zZq/B7wM+covafkVyq5XCLRFjTB34n8A/ttZeg+5hRWXf\n8CMZY8y3AFettZ+90fd+heIBbwR+3lr7BiSt/BpX4RDH3ga+HVFMR4AaX2pi3zQ5rHG+nBhj3o+4\nsB+42W1fj9xqpXAZOPaifx/Va4cmxhgfUQgfsNb+tl7eMsas6t9XgauH0PTbgG8zxpwHfh1xIX4a\naBljptWqhzn+dWDdWvsZ/fdvIUriZoz9bwDnrLXb1toM+G1kPm7W2OGlx3lT1qAx5nuAbwHeo0rp\nprV9vXKrlcKfA3drFDpAgi4fOqzGjDEG+EXgaWvtT73oTx8C3quf34vEGm6oWGvfZ609aq09iYzz\nk9ba9wB/BPytw2xb298ELhlj7tVLbwee4iaMHXEbHjbGVPUZTNu+KWNXealxfgj4bj2FeBjov8jN\nuCFijHkn4jZ+m7X2xWAHHwLebYwJjTGnkGDnozey7VcltzqoAXwzEpE9A7z/kNv6WsRsfBz4gv73\nzYhv/4fAc8AngM4h9+MbgA/r5zuQhfA88JtAeIjtvh54TMf/v4D2zRo78K+BZ4AngP8BhIc1duDX\nkNhFhlhI3/9S40SCvT+r6+8vkBOSG93280jsYLrm/suLvv9+bfs08E2Hue5e6X+zjMaZzGQm18it\ndh9mMpOZ3GYyUwozmclMrpGZUpjJTGZyjcyUwkxmMpNrZKYUZjKTmVwjM6Uwk5nM5BqZKYWZzGQm\n18hMKcxkJjO5Rv4fYYSrPFJzp2sAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 0.9124... Generator Loss: 1.4509\n", + "Epoch 1/1... Discriminator Loss: 1.0586... Generator Loss: 0.9160\n", + "Epoch 1/1... Discriminator Loss: 1.4511... Generator Loss: 0.4657\n", + "Epoch 1/1... Discriminator Loss: 1.2195... Generator Loss: 1.5226\n", + "Epoch 1/1... Discriminator Loss: 1.1125... Generator Loss: 1.1325\n", + "Epoch 1/1... Discriminator Loss: 1.2902... Generator Loss: 0.7191\n", + "Epoch 1/1... Discriminator Loss: 1.1498... Generator Loss: 0.8416\n", + "Epoch 1/1... Discriminator Loss: 1.2848... Generator Loss: 0.7776\n", + "Epoch 1/1... Discriminator Loss: 1.9145... Generator Loss: 0.2802\n", + "Epoch 1/1... Discriminator Loss: 1.1082... Generator Loss: 1.2230\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVmwbOd13/f79rx77jMPd74ACIAkCI4SNZiSLEWyLEcW\nXdZgRZErqchxbMdxJSnbUVVcqXKl/BInVc5D7JRcicpRIqckW5Il2ZFsytZEiSQ4gACIC+DO98yn\n5+497y8Pa/UlIAIgaBI2Hnq93L59du9vXvP6f8Zay4pWtKIVLcn5992BFa1oRe8sWjGFFa1oRa+h\nFVNY0YpW9BpaMYUVrWhFr6EVU1jRilb0GloxhRWtaEWvobeNKRhjvs8Y86Ix5mVjzN94u9pZ0YpW\n9I0l83bkKRhjXOAG8D3AfeBTwI9Za5//hje2ohWt6BtKb5em8BHgZWvtTWttDvw/wA++TW2taEUr\n+gaS9za9dx+496r/3we+6Y0eXlvr24v7+xg3ACPfGQtZVQFQ5LCYDQEYDgsoz+R76wPgkVObCIDQ\nzXCCHgCBm2Crlr5vQloHANh8DkBaORib67sM8OZak3aN3d1tsNI3x3GpqwL9D3VRyvtwKdMUgErf\nayuLMUbfZfAD+ew7Pr7vAuAa9+EEWLOcDMNSobPGYiv9j+th61o/yrOOBRyZF1NXuKEssetYHKPj\nr6uH767rSv91SVOZi8rmmFr74wDW0TYqHO2fY6x206FG36Hjkj84uK6O1Rgcx9Nxy7scj4fvstIo\nAOP5GOPIM55xMEZ+53vL13o4zlKWObhurVMffHm+rMGYSp9ZtlFjZWmo6hRbG/1cUtX6M1t+eQvo\nuywO3nJuMVijbVcV4/lUxr1cDyx1Ie2WtqYqK32vpdJ1Agu17odlY39EWzev/rzshzG4jv7F0bXx\nHBydnygM8YIYgHbLJ/Djh+Mw2t7nn/vimbV2k69CbxdT+KpkjPkp4KcA9vf2+LVf/kX81h6uLwPw\nc5dXZiMADm5ZPvfJfwLAL/y/B1TnPwPAYbYLwKa9Rxo8DsC17k3iK38SgEvNL5EuhBcFxW/wpdkV\nAIq7vw/Ai+MGfvYAgOPaw1YZIJv79SjQf//zv/CTOJn0LYzaZPMj+V3QJDs+kb7VHY5feRmASSW7\nsZoUOIFu8trlwkV5425jj609YV7dcE0a8VNKT5fH9SlL2RC5W1LM5fDa1jqVHuTWujzbyCpM84K8\nYj6gc132QDcuaYQXZfzJmMqXthfTMQDTtM2NGzIX4/wuYSqMtRVavDqUd6yPiZ11mYtQGJ5fNUjt\nDICkrgn08Nduk25XmJMfBDQaMi5XmXe7D41AvksxMJb3/YtP/wu8QNpbj1v4fh+AHZ2WqLlFEMuG\nd0yDTkt+12xdpHLlwNa5jxvJgfWM/D4tFxQjWdnR7AblQvo5WZwwWci7y2pAueTv2ofKRmz05BDG\nXkDhNqWN0YR//ge/CcB8Jj8yVcn8bALAMEsYncoeSauC6XSufS6pMnm+UmZaZQWe7rqqNkRGd6Bx\n8TwZUxYG9CNlrLGsQXMzph3J+j5y+Qo7V94DwB/76D4Xdp6U9kIPfybtbL77kTu8BXq7mMID4OKr\n/n9Bv3tI1tp/APwDgKef/oANOrvYhour0v+WU3GqG/4L9+5zNu/K96NfpJvKM4P8NgC9OOaBK+Pd\n3+ozaMqkv/9d38Zzc2Eye8l1Tr4om/d6U5jJcHKHWKVnVaWv4dCvR5n+6zVj3reVAPDcpOKbowYA\nnz8oePSa9O3+nYp+JBtocSK/nPUXNErpT2VLmsE+APFeQf+iLPRG3QbAxBFBLcxk3Ijo6qY6SB2c\nDVnkAzLe40g/Tgpp95FLXY4DOShr45hwQ+btatRgiDxzwV3jwUKWo9eRLfCH9ZxGPpB5OfI47twF\noAyu4Gan8mxzB6+WwxauyRy2pgWVK3MYThfkHTmw/WJO5UrbbT/FRka/l/7W8QZtlfimE2FLOXhd\nx6cTxvp9lx3VekJ9727Dp1gTBtpaQLnWkc9eTd6U76O0Zh7J93GxXLQWbVfWf9Fo0zqTz7Q79JWR\nP1h41L7M3cSTddhL59TI581OwOAhU2/T9GXdvXUZx3BocSOZi3z6gKArn6djaMbyTJpEVH2Zi2Ai\nnTsLHTZ03w+ckp4VpnDHsVwN9d14hJ4wqtqRc5ENPObdQxnzbIvdySsAjN2P8Jgvv7O9Nk7wtfkN\n3y6m8CngUWPMVYQZ/Cjw597waWPBKXkl8/FdOUCDe5Z/cvMPAbj9XM3gzt8HYIMBo0o4cJzLRqr9\nhA+odFxLKrYC5brjM/74+mMAnDoRH23JRB3PxbJ5KmhxZGXDzwoHa5cq55vTbt5i3JbNvRmWvHgq\nnx0v59dfkoNlsoTn7h4D0KnVRDnLCENZ/CBqsLklbftn68R7Mu5uewOAMnAJliqwG2J2ZKzePcs4\nG2hPznghl2f6lfzu5mDB2pqqxjZjw/sIAGm7wNPDO/KnTKxI0Bfv3ZQ58QZ86ouflebslPNnRYO4\nduk5Op4wr6ZzyGkuB2QjEXMu93YYGDlgzTJhsRBGllSGRiBawfFiQSuWtmeJMMqWzZhkMqYor4ld\n2bhes8u0I5+7ayEp8o64K+MbZIbYkznMOwYC6U9S+iw1dBP45EuGo1I3qypKNaWSeYyPMNl5uSCN\n5H1H4ynlSNZs2pbxneUNtrTv2SSguSF9Dtwc1dwZqvlQNmsmp7LWdVBTTOXQt5s5ZSJrsh7W5EYZ\nZ1Pe9X7fI3bU7DRdYmX07y1jrCv9vGY9jgt5fjiTMdX+lPO5MDE3+iKefS8A28VLvFR9EIALVUZT\nzY23Sm8LU7DWlsaYvwz8C8So+4fW2ufejrZWtKIVfWPpbfMpWGt/Dfi1t/YslBV8wuT8qYF06W/d\nO+b77gnX/o17r/DR7MMA/NPO7/N+dR5+Um3ujz29yT8ZirXyYx/q8XML+fwTH34v/2xyDsCf2Ho3\nz9Ty+XuevALA3/zt3+O7lev+0itjvFKkdWnfyKsg5AUOW55w3y+9aPjgt4tE+J1f8Pn449Knn3um\nyQceFfXy9AVR+9Y2fZxQpEoniGkFIjXDIKCn6mNDnWE2CGhpG23XoxHrUtVT9j1Ry1867XL5MdF6\nbj4r0vrxRs5g+AgAm5cCTEMkZpyFpOKfZX235PnPiu17vScN3vx0zOaeSLDj3x8Sqv0aWY+paiz1\nvYqxFQ2ikYvkDrrHZFbG1zdzZlP9vFNw8rJIuX58wni4BUDrkkjgwRcC1jdGOqQ9krZqU55Da6oO\n2NJlY0f64ZzL2vTXYpyZfNdsGYqBOATCTot6IXPruhneRNbQqI8qKAPcUp5dG5W40hx7eYM0l++n\npwZHJXp+Lk6M/b0TTl8UbWVze0peyNw66y7jVPrRzmUOb82h48gkDxYFu01p+2jaYPuCfC6OHdZ3\npA23JeuYzAv2e7IXfr+M+IHrsu6/8Qw8viHzfTreoKsacjaU9RhPhvjqrB0d+xRd0Tzv/vqQ/Y89\nC0B69cPY7pvv5z9K/94cja+mJF/w3N3PsTfZ4ecLObjfdWj5py/cB+ByNGYaii37Ta0etZHD9oOx\nqI6PbLT5bx4R1Snv3OUvvFf+7gQDfnBDNvrZ+X1+4IIM16vFMfiTG2u86N4GYKfTYLoQVaxM3ry/\nZTfktpVDtXjS5+ZLskjDywUvn0gbjz7apXxZ3md3ZFEeqzLmoW6wnkvcEz/CxT2HuC2OveaGbI7K\nVgSNpf+hj22rSn29xVTVUru2wclEmIGeUU6sR3vvio4jexiVGflj7mzKgT0/ynle57O8K5su3Q7J\n/lDmzTZqLjqiMjcXHdZ0T90vx6yHsqHHlfo+MhipQ7gKR0yUkc3vDpktxN59/uic/IKsw60/kHFk\n3ftsnsuYr39onZ2i+fB9SVvGZIMe5wvpc6cpB3de+/hqgpnCA0e+z3JDJo/iVj4jIwwpTuXLLKhp\nuNKHeTikFcm8JGOXxJX32VbNcSFjuWfkwJ7cSpiaWzKHTsjVS08A0EpbpGrGnSbS3zKvOVdXRWpy\n5tIFgthQp9J2p+ux6encqvlkG9DWEMj3rcW0EtlP336xQRHLM484hvOJ7o1AzkjqOMwz2WOLyYDn\nPi1zcbL4Ne7ZDwDwpx95D49XYiq+VVqlOa9oRSt6Db0jNAWndolnPbKjGe9Trv3PPneTp9SJtuZ7\ntLevALDOKfOuhGF2U/n77lPvphpsA+A+cZXtqTqZNtpwInpivHOV/kA47Glbnv2Oy1/k2nu+HYBx\nMsRJxeP+hzde5tWByWVUYunDbdicTijcd/SlA/oaP24+c8L2t4lEWMwyNjelnXYtKqXbrWldEG6/\nMW3SuirStuO2aKzJ70Ij46cb01MHpR9B5MjvaFVs1pcBqPISP5C5sOcSTbhyMWBWihazttPDNNV7\nn/UIhqK6O9OK1rMHAFx4r8zVMyeWcldzPSbmYY6BsxkSI30LamhozNuppG89E2A9Ua12fEuYyRx3\n221OhyJ1W2sh94fSp05LpfWhy9r7NNfjdIJzRSRz06uJM/m88A09jdM7nox/y4lINOzZCTwmtWgb\njaogVcnrBzUmk7G0Uo03pgFhQ/8eRvQX0rbxczqqFeThiI32JenfRP7e6occ3RGt6vLlCH8qn5sX\nwoehyAiZi/NByvpMNC87SIj21HmaOzRV68sWFZlqMYs1WbuwLCgaOv7CMNuUvVVOHJy+aDqbScE8\nlHa8poaTz8cUtcxFZROKWtZh+Nwmw8dEG753Y8bO07LP3iq9I5hCURTcP35AerHDJ+/JpO/vnvPZ\nF+VgbndzaIndtvXEFoNCJmWtJRvN7u5y7ZpsntMqoqF28jTy2ZCgBKdDi9uX52s9xLsfvszZPbFV\n/9IP3+Lnj+Tv3VsR42LxsH9/NKBzkjm8bKSfs36T527Ioa+vNrk90BBos0WvuzxA4uPI67skp7LI\nwZWKYC4b12xDWkifei2NXecRiarqtd+hVhu/NJAiB28669JcSNvZphyaB+OE9r6olNn5mDKWd5x1\nFtyM5EDGwxGvPCkhxdO7ou+2r22yNZYxH3Z28EZiny6ylOaerMPpAVhfxl1YMTV6VU6xkL+PrWUR\niS0eRDVpR8ZXVjNmS1f9RMJ/SbjG8QPp2/aT0C31oBQR8zVZhyjexLZlLctQQowDXIyG/VqUpPre\nae0zMvKsN0l5aRnxmWmkYjOlUUl/pmVFRyNNWehi1JQY91qkavKcaTjZnB8zUyZ0+/45735MGKu3\naKLRVYa19LcqYFDIfjJewXwi4wvbEKsPo2cM5UL9FoWMeb1lidRMCtdjxieyDu2uQ3qseRFxji2F\nWRSa55A1WwSlmDAnaQdHzZmZ+wKTX5cGv+fPnrFXapLHW6SV+bCiFa3oNfSO0BQwFs+rSB6c078h\nUvD++C5+chuAKrI0p8IxOzstZuqJjjRLrl8nNBJRxTomwY9EpWzPU3xXPdXpiCAWabM5Ekka1S7d\nQLiuX4bsu6KWZ+ErOOqpru0yURaWWQymLvFeEgmbHWeUsUrr0yaXFur42o+xVhNduqoC35vhXBJp\n3fMi6AjnD9waX5fCpKJd1L5lmX/rjixOR73puYeZiPRby0uWWbddTV5ql1MCEeZE2w0G6qiaHdaE\np9Ln0fAu41N538QXyR0CjSekP9Mzn3Ao/ehtGdxStAI/tvQ1azBfttvwcQs1fbwpff2+5VYMG/K7\n8txlo7OMp8ssXrIRmSNzH6QpzrqsjdNwKEay1q4t8FvijK00du/GfZxMpKDpNsnHMthjA47mSAw9\nj8WprMOx/m7rfshMc0Hc+Yx5pc7MORgjErYeJhQD6VM3V23LG+LX4sVtzAaUQ2nbuW5ICs2m1HT8\n2bzGsSL9TenTcKS9zO9iY3kmGcaEnrwjXJf5IUmZN9Tc6Rja6nRdJ+fMlTZMZQhKWbMY6fsDk1PP\nl6nrc6YLnZd6RJ0/A8DP/crv0PyPrvO10DuCKVRlwWj0gMKWnOk8VQ8KQlUHJ2nNhibCvDztcyER\n2z+zEposipqBJrw08oLcykYxxudcj3LDWlIjG8VpSSPTosUmsiEmexs87Um04xOXLnB8Q76XfaZ5\n/trf+8MBD1RVG3gZY1WDHyQDzjpiGz5e5tS59PnwgfRn1wRkauumUUmg9m7u5lgrh2I01yQlf0iq\n2Y9u6JGkMtZkPmWhCTnnnoM/F7VzrC6QRr8BfWFu8yzi7EBCli8vTvmiMqz0JOTlxScBCPNvBeBb\nrmzinEnfgvnLtK8Kw52XKXVbsxEn2UP/QU+z+YYTn0DnYur4xGpfj2YW50yenVMyctRUGmm40Z+x\noYla8cZFImXk2XzG3FmGf9Y5TWQ+eprUduZBsynbdjSy5GM5IBN/G5DxNQYO6bGo+Qfqo0k3pzTv\nyYFNpodMPZ3buuY8kfbOzg44UJ/IbfVVlC+VZJkwznLPpd9Y13f0Ka0c2KHWuNTGYkthkF6Uk6ov\nJnIsDJRbFjNCjdB4GvqOYw9Pk7d6VYXTkjkaJdBoyOfpsKRppJ8vqblmspypJurl05JKhUhdJhgr\nbSTPJrynsYo+rGhFK/o66B2hKRgMXh0QnFs2JsLhkzLF1yqzK7VLIxfJ1I0nTDt7ADyuzqnK9Ig1\ndz6LO2ypirtwSxq5SIpzf53thqiG07Fy5dih9CSpZsMbkzjifGssPk+s3u55OeeCqgh31OPoFCnB\nQjy69fE500QkRfvcxd0WaWWiHkeaM3+tL/0spoY1dZg27TrFmrQRVOsP1RBf7YHKXycuRcPInA6O\nprgav0+vkjasX2ESkWhOLI7BHdumyGUOg9YW5JpWnHZpHaj5MDqgf0/Sv+dPSYLYZvkd/PyeSMnv\ne+oyJ1+Q6MSVyw3W1VYYXnTpD0X6+bFMRhgEJN6j0kYwIPdE+ps0p4zUZCigUWviUKA1Dpu79DQS\nYayhVodhy7QwjnxfWZemakuFOhp35oa8J3vB1DWlK07cxukIpynPFCajtSnzEt6UMcVBjR9qLQot\nmnOZizR3aOWibd1N2wRzeXdzJr9z/ZCpRrl61qVO5Hu7vovJRHvxrajwHkMClf5uAR3VsMLQJ1ft\nrldb4kjacztaMzKDQn2B7UYb09DK1tpnrBWajU7EkWSkE2l7pwuPdKpGbZZT6nkxFupS9tkLn/5V\n/tQXPsbXQitNYUUrWtFr6B2hKVDXsEhIWmPmWhbcbM2olQue5wWmI1L+YhaRBBILPlQJttZZ0FDu\na+uA1BVpVLQCQuXyRekySSV0NNH002ZdMe3JO5LaYLZEQv25p7f4X39XnIdekXKu1YrLyarnE6a5\n2OpZbjFj0QS6QU5+pJV6V0e8pyWf6cu/3kZN4YtDdG2nJtfiIC9KWCgGhJtqMZcHC3VgmXZOMNPw\nJDVFJP2xmU+kEvg8F3vTq2siLVAqJj5+KvM2dw7IKxnrpk2ZP6K5DMfvB6C8+IC/9ED6ef/5z7PX\nlL6l5YLmtvS5OnPwOpqH3dOS7DJgfU38BUVW4K1p8dT4HCdSP48JOEnk3RtatXiejigVJGHbnRJp\nCNh3G5z7Mve7/ehhfH+icz+LDAukD/FZwue0CioKMnqx+DYeGfncHmluiFZXnvtjLmil6SA/o8zk\njV4vwpuoTyA+o17IO5Kp7KHGeMgslfaOTjwupqKRBZMRsWJKZFYrP90IG8j+3Q1qNlhiHcR0jJaa\nWx+vp3tSK0AvbacEyPpH/bWHmtDOmsNYi60mgzPGV+WZ+kvi45jvBRxr6e5gUWHsEqeBh3H09Ow2\nP3UmvrKf5q3RO4MpGCCoCQYRTiYbep75xOpkMV6MMxK17bnYp6EF8Fkoi/Xuez2yfVHVnTDFOqKL\nReOMehkyyM7JFTikni4dQyn5XBY0bBTEjjCWG1WLSMtNS+PQ0byGmS5Q2I3ZH8kCpdEA29ODnIYE\nemaiVsWZI43v6yJPDwyt65rLn3p4yjNI2oSZbJBEy2IX1Yxc8/fjpAL93rQQ1BkgrCo8X3ZFL5Jn\nm+M5wUydaH2L1ehD86jDWkNi8Hf3anpncjqfbckm/2G/zf/sSsLLf7Ad8dxzYj483ewwHci7bQjO\nYpk7oWW/5YJKVf901CKwcqi6dc5CN394y+L15Plc56QdbhKoF907zxnsyTr4UU5pxVlbTKFuiZPM\n9eQQ5ybEfSDm0b+sTkluyedPnb/C98SCIXDvsktwfhuAVwoRINtn8KIna3Z/doh3LqZZ6kRca0nb\nx+dDHC2ptrmMs+gmRJqw1S0SikTmPvdSIo1LdUJZyCqsmA212jHwmGhtjnEcXinkHWt+RHEk7TWv\nixlQjD3qbZkXrza4+mwxWzBQB+vpIOZwKmM9V9CHaZEw1bRqa+rXhQjKqoyf/pu//jp/eWNamQ8r\nWtGKXkPvCE3B1gXV9BDPCXC6WjgS9ViMtB59w2e9KdVpqeMyuSfc38QiwYZZzi1Nid4vx7gN4dyl\nF5ChGXhpRqnQXUu1beGEdBRtiZZPT4uAOlevceX53wXgzAkkVQ2IVGMIbEXREinRymKcRDSBs/kC\nd1emdDw19LbF8fXCoUjgVnvGqVYAbjQdzGgZu3coC+nz5FSkwSSbslCJ0ent0NBQWDieE2rYNvdi\nQo3TL45ENba9MZ6OoxjVmFo0gTpf0FRn18WR4TMnggq1U8vYXm4P+KbWDgC3nx9wYVfmaDQrMZ5I\nv+B8yLivmkciv7s7S3FeFq1iRpOtUxnfi3GLaCJSderX5KVocpmahLk3Zv2SDGQjsjRUMg+S+0Sa\nut1s+ZRaznh6JlrOfD7BU8CS5w5ucv7JTwOQpCW/0/2STMzsEtdvf0bma//dMhcm56VaPHXlSy+T\nqLOuXQS81NIMyfGQVEN8qQLStKcl2UhRmq4aEkVeWsxd2hvSj0BRmlpJ4+HeW4znVKq9rbsNrKKj\nZYMMpy3rnp5JGvjZTo89TdF2YvB1n94r4PxcnnkwmlAOZS2Hnsz9hg1pb0nf0/uoUfVaMnXNex6R\n/j97/DoPvA69I5iCMQ6u36abV7iazhuMN9l4XJNm5g2idcVaPK2JN2Tzno00/75haY1FJcsvbaI4\nGBQNl3CksFrNHk1VjBaBmB+9MuZsXxa/2/PQfB6uDw85WPsQAPMHn+VPKn7izyeqordiLuUaV58m\nWFV3e80aX+GzxrbgtiL69FWxqwYOwb6aAaWhdmVMPc/jJFdwDs2dndxJyfxlXL1kb02YxXTzAk+q\n7ZgYQ0M92GmqSEOOIVMAlKgbYVVlvuDEqFlLXazxnuYVAL6gFXk7o4DPviDM9qmLaxyMZItd3LF0\njGzCohfhKRKQLeTfcjBheqwlws6YhdadOH6J0xPVv19nWC1L3+hpH8pLNBRirj7PqSL53UZ4jZky\nKt/rkJ1panZfGEVjPiE7koHs3DqivxB/xu+OE56eCvO9n5T4uxJdSdQftO33cQ6EgbaykHM1G6kW\nROqDGhOwoz6KhSu/29vdIFckr47nEWkJrfVzuv5S+GgS1mbE7JZ8F28YzuYa+XISHsw0Tb9bM57K\nM4+FovvXY4f8ouyhNd+nUFAUm06pxlpXMcsZz9TszdV0C2LS8yUupccbsAWe/fzJ63z/xrQyH1a0\nohW9ht4RmoJjDZF1GPYsbcVM7F13WKjnnKbDuaa2uo7DK0OR9E0tDDrpXWevI1zZqQoKhOuWxhB2\n1MmX5MS1qGITzWNw4pKFZpqVyQK/LVrF+z/Y5zOZSLknDta4txDpsK3Rjm5Zc6xQWv1ml0ILsyYz\nC2oSHN0+xNXU1nEm3Hy/n9EsJa5+oeWSaEqz07VLCwU7lXfdnc9oKO7DbMMHBQQNhiX3tuV3/d1r\nuAoKu8zFdkIfJxbp6c1T1jTVOAsrKoUou7ITcHRTlv69Vhr+onvE9Vjm7UuHJygMBXO3xX6oVXll\nRUeLkc5UnOxYw7n24YKXkbmS69FvWeq54j60F7hWvncy0X5GTkGhDspL6x4dTSsfD2acaOMXehVa\nuMkXH8i8NkzOC1bmpZmmPDMUx+aVasC9XTGxnvYsfqkmW/caAKUz5t1NWcffvpez5ouUPjYR1UDT\nn9MxQ8WS7K1LhWtcp6Sl7i3HPFTt3emIy2o2nHTENGq1mlxUrSK5N2ErlPZun05RaEvunkxZ4uWc\nNqW/H1j3aGs0JIx3H0LadeqKW8kyg3TCsSJQOwvpb2VTjFZaVbnFFEsE6le7HC1rXY26zHhL9I5g\nCtax2MjSSCBQz7rnBERa+ddpN2lqamftRVysZXSBK0kzfa9NK5CFK2sXT6MIfpXjzhXJ1i1prEsO\n+AWtoIud7GGuehz3KUqZjnl3wYZ67W+uX+MvRaKOf3quYbNeiysKoGHdGaWCny7KNp1YFjRqr7Gj\n5dWlpgaHoU/XU3W4yEnVE+/js1bqwYs1dNfIiXxJ0lprdrjQkVNY5C6dJdL3LKPZkrGUqjr645yq\nq6jULXD6mvSVeGwFWlXq+WxfFHOjraaPTX2KvpZOV018ncOdqM2aop+a3HuIj9iv5b3HjQlbHYXM\n37zChXV5n5tlZFoFGEwsA4XSt5H8G9nsYaQpOxoy3ZckstJJODqV340bfebKILYU7LTRjHm/pref\nXt18mCrscJ3WZVmzjYVhoJWLaPj5gu9zbyx9e9f+jI4rh36fgJZR0+zBglirVBtdGd/uBhjFdtws\nS4Il2rMpMFruviyd77ahOlMAmIt9vFzW/7HScHIk8xmNH/BAqy53Lygz8RzcpjqKypqOOo1GZkKk\nwidqPMH1SObr9rH4V8LZEKsVla5fkWtk5NVkgcHB+Vd8/2a0Mh9WtKIVvYbeEZoC1kJV4LmWfJmq\nSoOGJ1w7iLt02lpxN/eIXWHXjoJONMMeaSB/b9dTcl+lphdSBsKtu4FH0NVcBr0UxgkMu75WQzYW\nZIk6JfOavcu/BcD3Ph9ymgjvvNgVzaWJYaJqdGe7RaJVgvUgx9Xciku9TSIjzrFc8wPieI5RCXzm\n+MR6mUiau/hNFf9jkYJ78QjPE4npsYufaaJWZPF8xfgLDLcUjm16S3EA3IKmagfzfI0nt9UOiCM0\nrwjPMRyOV+UEAAAgAElEQVTcFO2lasrv94sNBq7GyvMOraZoG+trHVwt8to8Pqbs6J0MmkY7T3ao\nFfw+biW01QE795s0csVh8EckqeYTnIjUqub3aWzJe9c/9EEuaD7JjTuffIhdOd3vkCocvzeQ35tW\nh+11dTo6DdZU2/I6Hj2942GGQ/tYIg3zpvR3wx2R7WolredDQ+b+2ryHdTf0HWcEsVYlIqr9vDwk\nmsv4RlFKXxPKJrOSjjpHTVvWLPBiokuiKYzPc/xLumbpBhNNsT5Jci6GYsZuOTJXnc11Wr78ru4G\nBArwU17e4LqqhWWWsziW/Jt1TYVPJ11mqvW+dHNG8hVwQJIC5Ou+zUe8JXpHMAXHuARuByd3KBW8\nIyTC68mC7sdNCk0AajYaDNZk0O2pAo+sx0QKwJq12/Q0yahotwmWwDtrO7RRjDvF6ffymLQlMxVk\nfdAqtP3zmi9EApF9d/0Wf7El4dB/PRSsvjCKuaBAq/eHGX4p/dz2SvbVk23aCZstaXyhF4/EZRs3\nlH76izNmGma84pZMFdN/fUs9zHSJFXhj3krpKjoQnQb9lh4a69JUW/VAzYC2mZNo5l633STsaNmv\nram1z1lu2N6TjL+2ZkpmjZKrS74UrREvq0tbTRoa1h3srLGumYcTXw+Sf0zYFzOnMU5ZbGmCV9Fi\n2NYyZLvOqJB3LLEIp3WHQKHO01nKWL/fnG/wJU0sKnYXzDU7s/uIcLTLpiDVjM6LTThaFxOyu2iR\ndrVM/u6Ak6vvAmBD/QVh9yLrUwmd1o9eZk2zUNPejK4KiXlrg5bWmMx8ZSZ3K+oL44djyjWJzHHm\nxH2JgrU0KS5vtfA1mtPcbbKpmXPJFqx7Wq5fRJQnsp+6+7KOvldTXRZhuJ2HZC1F5EpOyZZl9wdT\nDje12tYVZjLpRzRuSJjSMgWFrX81GRzy2VvkBkor82FFK1rRa+gdoSlgXLywzXE7I/DF2eWHDq7e\nvDTyu/TU+RJ4Hn4mTilXocGybgtHc86t65NpAkodhHiaEupEbUqV4o62YUIHJxfVz5qUEk213e7i\nphIl+PjVV3juSDj+Uw1p16t8ZnqxTLPTIlzXC15maywUvGPNOMvrEamnIolK54ShJs1sZhV+Je0l\nLRdfa+jDSqVAw6fT0f7011lT/II8KdBgAOfOlz3OE00ZNos5Xkf6Hk0NoVYcDl2XqisStn95xJ07\nIpmsevf9XhNfbxXKDmtChcNfNCuCUubIWZSkLE0v2ToXTMRthSDrbNaUin/XLSqqmfQ/KoccFMsq\nSJHA0zjD0RukNi9ucEXxBH4VQ6pX4BVdWNtX0BI17RatJr6q2l67oNdQE7NjqXS/RHmTTKMcoSuS\ntGy57M5Fst8zMxodGX+0u0uvkjEF6YjIqONWc1OM5xGIgkhUjyg0T8NdVETLNVGTym80WFfV9Gi0\nhQlFw+g0I9xa2pud+jT7Uouw6El/dgwE6jy1Xe9hLshWuM6Z7qHGRWgbeX5T4QZfOB2x/8hLAPz+\nqMQs7+a0X85XsFhaGoGbDXhL9G+tKRhjLhpjPmGMed4Y85wx5q/q92vGmN8wxryk/35tCA8rWtGK\n/r3S16MplMB/ba19xhjTBj5jjPkN4M8D/9Ja+3eMMX8D+BvAX3+zF1kH8shikgbmXO/JazcpjYSV\nNpstrMZu8S2xIuw4ilcQjhPqbHnFWkauziV3mlM4wq3LPKFWB5WTaJVh4OIoV62zinCufonRnHXN\naXg2eoRtrdEbxpJGW4aGpkq+8QKshj1LN2M7DLU9h0ZHvh+pJPJpUx1qoQ0VQw0jNrsWf6yXFmi8\nPnAW+L5IF8/1CTX7r4xb1IpwHIwLykSLn9TxVxUWR+/PzDtTykD75lS4d2R8hwcFqStiY1OdU4vT\nDFcdm3XpYNTOLoYhqSt9GmbRQyQgFHR2mFmSTJGD/T5tRS6yc4dhpSjXuUutuBZTvcF6P/bxtQLS\nGWcMFesidJOHl51EN48ZRoIi1b+oa+528TTF2vgQ6C3PtopxzkUzmZ6ekCkU2kwTQOIJnA3Ep+BG\nC/JItL5wlGL1WRwfx1X0Ka1WbeRDOl3RaBozg1F8Cs+bUSmiUazr2xhUOJmiInkzAtWmmDr4qcx3\nO7TMjYRDe4mGwNOU3JffzZMJLVf26Wg6IK/EgZwtQmoNd4+Xodxsxo3nxQFbT4vXvfbQYpkN7n3F\n929G/9ZMwVp7CBzq56kx5gXkCvofBL5DH/s/gd/iqzEFA6VjKLyCWU8Ogls5dHSiznFZU1itHEOt\n6qpdzvm8Jq9UzVxM6WryUhCukZe6yMUI62kcfqmquz5FtmQw5mGZ6vl6j8VIkXbrU2xTPrfaWr23\nmDJRCPQqrMlV1fTqkBNHHEpd1+XuA3nfYi7w66d2TLguDrN0CLEj6afTtR5berNxop7wMC2oYy3J\nzZqkClhCNWeuMHV1u8UDTQA60kQh383ZWGL5pRFJJiZWkjeZKWRdx4TYl8TJeVfh6AIKXjqQNpKD\nl7jvK7ahvcBoedN0cptEoebXdPxnbkSwBLhJByT3hakPGiGJokNPkjGZMrVzZd6DyZxrenNR7lV4\nqoofnLxArDdij4p95qqOb6SyBlmzjaNmTmotpYKeLGzAKJV9MaxSRmdS2xGqc7njB9xTVbw7HbC8\nXrpTtKi2xavvV1My3VMOsg8nfoNCy9LPGFOGosLPxhkdTXTyFbW7zJsEmqbfzHKySPrctA0GhTD9\nJDlgopWPSbpMCQ/wtQIyaLgPIyPnQZOlj7CoCqpTGetEk5jmkyGDDXVMH2V85WUEQkFbGGA+vc9b\noW+Io9EYcwV4P/AHwLYyDIAjYPsNfvNTxphPG2M+PZ1MvxHdWNGKVvQNoK/b0WiMaQG/APxX1tqJ\nMV++0N1aa40xr3sP9quvon/kkUdsw9+kUVhSDem03CYzKxz1kdmEtCEcv1fDsBCp0lLY4igrcbU4\nalbX+FrMUqQPcFWFnbrrtF2RzJXCb9WtmkolmBdMCRWEpT1f0I1EOkZxxI5mkt23cj+fqUMUjYxZ\nmtNQ51vsp+zq8GdZShTr9eKnmhLd91mUWgRT1g/BYEInZ46YOV2tzrP9NrGCkKQFeKoJpfRoaPXd\nYLigrfc8umq2NAuLqynhTpQRquZR+xn+2bISM6Xekuev3BOJeVoYtvROxZcXHn2Nj/vG0NCCn8Jr\n0DTyjqW6G5s52a5mbi4yXEWBDodjBpqm7kcl81zXSquyup1t2oquTVmTq+rbmIcsy3ciOyQcyR7I\nL4hK3SpTqlDMRjctmShQjWumhHOVcacLWKg3VlPNF8kZ3kALzFpNep5iRFQGlhCAjRbr6vDMtECt\n5dUEmh7ej1ocTiSU2zEljVhRw1WLLX1LS/dF6QRsaCbr6SyloWbVYQKemnSFAr+OT+eE6jztNC0L\nX/ZCVqYkmuFrZzl2rE7zRPbp+P6C8+fkc5kWvPoCo1dTPjt83e/fiL4upmCM8RGG8H9Za39Rvz42\nxuxaaw+NMbvAVy3RMrg4ToujdkrS001Xlgz0/r0XSoeW3i9Ypw6vqEp8UcFWhi5ErkzkjYnD8fQO\nAMH6Dj09IKfBKZWiOkVyCRDbkzVOdYE2pjUTPWC2YUjnouBsrn2e+6cK5Y0wo8lowbl6vT23pKW3\nwprTNlNfqx1NQZYodHihiNEnU8oNee9OXTCvZSPMJi4bV+WQNmr19JclapWQhhW21MjAZEyl6azz\nvOJkrMAbZzInEzNgqxRG0Bl4pGPp2ythCFvy7BN+zoNndS40x+KUGV6h6b75kPBM/r52pcXlSA79\ng3bMpgKKsC4q97Y340ARld32bW7qn6v7M9JMDkUwHTJRuOlAy7fdNGNYq5d9Y5NLWl2aOh1cVZ+r\nvS7968r01G8zbYQUlfw9mOccqinZSxacKZx/1Cg4W+aOaEQpbXfY04rRoa0wjtZgRDWxHqZFMsXT\nepRK76tMPcNCTbQiXbDQW6aK0yn9qzLYmQLyEDi0Ne16er9FsRBGMCyOyc+lbvnOnTGu+sSKjvQn\nnlhe1CrSVhQQXZL5Xpu0OFdUJ4cFh76ch+SurNPNfMHCXV5F8MaXyBplWq/nc3g9+nqiDwb4GeAF\na+3ffdWffhn4Sf38k8Av/du2saIVrejfPX09msK3Aj8BPGuM+Zx+998Bfwf4x8aY/xS4A/zwV3uR\nccBruFR1h7MDvcSj4TNzhCNu24j0aFnk49OYKnfUNNO4ztErE7ngzdncEdXfNiBwRUU9vbfAc9XD\nf0sdlftz/IGoX0UjwNV7EcpshlWMvxenXVrKhF9pSH8em2U8UATnRmrIFd5tGpfsqTYyLGviddFe\nFrlIly0voNZ0ZafdJF5W33kdPL1JO1DzIY0crDqn/HJKQwFXzkcZtRbJ1BOLr1pIqtqDa2vGx4ra\nfA1SX/r2WVux96I64qzB7aiE1avck3FBodGeap4R6KUtdlGQqRO0WcUkmd6P6C7vlxxg9G7EO2dd\nTmeqXs9GjE5k4s78CqvyZ6rzs7sT03Tk77MpjHdE3XedgqRQvIDzEclApGZrX+bC2Bpf747Iqxx/\nJH3ObI1f65VtwG4k79jUa+xM5NFWJGmbjPFrcb456ZzQaKQiz/DWFCdDIwMt75h8efkQCxLFi3C7\nEzyNcqnmTzJKHuZQGHNCnEp7B0cOfiX9TKYVXc1DMHOZwzI0dPWehiiM6FsZc9RwGKrJc3IGUy3y\nevlYci/u3R2RzjRy8rpgbPqX+isLpd6Mvp7ow+/wZXfnH6U//rW8q3JgGlnCgSXeEHtxMVtwoKrv\n3HHY1pM5HUPLEbVs7kl6bWwNjt4kdKl9SjOS1Fe3B2asuejxARMN1Tmhht5GFkdtttrzKFVNHAZd\niCTM5puEmV79bobyruPj5zk0Yss+ElkCTQn2p5ZxX94Ruh3OTjTdOB9ofxw2NYzVDGOcZVls3CRQ\nYI25pwxtdkCpamZZ+IzUrvXCkoWmGtdeg1sLhV+faemxzejlatc/MNx6oAhEZ5doO9KPJy8HfOoZ\n6f9wTdNoiwlHtxQQNZ0w1tuLLhqHkd4QFSxOSbVMuJ3K4b9hdplWwiyzZER194F+n1DXMn6nqulq\nqjdaDXg6P+dqINGcva02Gxp+nZVnxJ48s+73cTUK4pzLgVi0e1jN/V/UGYmVvVDbJijjnFuXlsKv\nF2oexqbmbFkRWuUsFD6/TuCBpr13KodMgXDRWpr7aZtxIs/eGcyY6P2Y5rDgqW9TU09NImfLwywU\nFaxa59jIpUWFzXnhZa3MHY+oLsrvtjeEMbWCDRzdI04/wlEfTX7eJawlDF5Pz6gOFHlJa2YWyTk4\nygzexDIwru6p6vSNH3oVrdKcV7SiFb2G3hFpzp7jsdZY4/AspacQV4Mzy0iLU66dHDF99CoAVzYs\n5OoEfEW48vDKJmsT4eD1xY/SHap5EO0yUjUyqDzcZ24AkF2TNhprMYkv6mJzOGOoIQV7lHB8W/p2\ndGPCmqL5jhR7gbRHrapq4nR4Xu+6a6+PuDpWyd0bcFFr8o+neiHJScE8FInX9CtsKOMwVcR8LpKy\nir+sHXRnMv7Km9HqKYx6y2NDk3cG8ymb6lBbgq2E1sVXR6zpWnqhFHbdT0/Z3/4AAP/yXk7nCQmA\nX/09GdJ9c4cnNEX51miEOxCz47i1oOuL9J+MQmINnB/GUr14tDjEKgDM+c2E4VDh5X1LEquJcVJT\naepyjvR9+12P0cglZ8MzHY40h6QVbnE60grOKuLOPZmD9WuipT12mjHrL83GJqmmhTsnKTOF0u46\nNUkgqd5dvcbOYYuwqdiIiw0ilf65N6MTaV5L19LVVOFRpeZD7TA7lvG1CsMol7lo9QyNnjh0fXWo\nZiYmn4tUhmP2TkXiD0fn7KwpBkSW0D3RKt6+XnO3XWE7TwDQmVWkvmgQs0aGp+aTczhmONZcFtUE\nM+NjK81feUNqYKv/TD//j1/lWaF3BFMoiorDwxmzdUt+JmrU9kbNS7fl0D/XKnjCEdWnG26zaIoK\nO1dVtNFo0tfrxOetiqKv4cRGyb5mHg7DiO53SOLJKBRdq2P9h9V5o1bIopTDa+qMtClBkw33gNG5\nMJMluKZfn7Ol9umOV/PERTmYBzMLqo73es2HgCru/hIIxMHozUU900YTKzGtGNuWjdcpZKON/Zpa\nK/LcHf9hdpw7T1moqeCGOWjFoEJY0rAFpWbodYYN7qvKefHxLhtacfiR/SZ/8ILa5dtiRoRmm411\nTRDy0och18WVdbYTvT8xPaGtiUWTtmQHvnvQ5ouZbMxL9YBwX9ZhN7Pc0GrHA8YPwVw+9KgmZ12M\n2H9SQFXdZsSOZibGTsDaVQXsjRdsbsk7xpq3f8tv0CiFMfWKmCySgbd2LIEe7n5RMXU1yzBUptH2\n2ZrKfjnZaxHp7U31+i4bupbjqiBXAVAv72XMpzQUjNc5L/CUWXhnBTPNJrWacNcoMjoKVHNntEF6\nUUzQXrhFV++RiKMmHd0XrSelWnLb22SiodC4E+O2ZX1bqcNYa3oe387I+tKnzgvCFD9harTIVayH\n17gVhMkYcwM63yn9HL81prAyH1a0ohW9ht4RmoJjoB1X+KnPJb1s5FPFIY+taw7/8AR/Jpz/dh2w\np1JlmZgSn1te6oik3ZgUfKYpjq8PTUP+dV+eecycMNJchrbWGRw1DI46pCZ2SH0oz96fnZGfijS6\nVSVsKT73gS/i6tvbEben8rtL5ZgvTGQa9y5YFM6RKK7JNP5deMuLQCoqRRE2eQ2RaDzV6AQ0UWte\najSk5VAvIeUHFYUiKs/KCl+hzcrphEhv0t5tqQSzAakRaWWjijWNMvzhWcb3q2by9+1dvkPnazCU\nxJa2KcmXYCm9mLbGzavFlHohmkCcZBR6B6M70RyLe3ceOn4nnYAddS5+bpw8dJSOo5B9ddCdxBIN\n+N71x6g0GtSYjbih0PfXLwW8qAjcjYMZz/uyDjuKpzFkhHeoEj9Isf4SH63AHWuatrVUest1mkh/\n/EGbgcL52zYP7670FhkLTZgrYw+jkY9qMXk4/rbiWNoY1vQmcZoVtX6f6+U7rRncmolzMY5mTA7E\nGVvNBxSaA1JHJYFGKEp1SiZVRqHRHBsmpGfSt+RwRpmIuXIYZ0Snsu6/qQl5cbPG6iVCnhNQ6r2b\nvulTVIJm/QNr38evJF+b7F9pCita0YpeQ8baN45v/ruiq1cu2v/hb/1VOkFJU51vFDluQ7hgVAyp\nXQk/pqNDknqJYqN3PdgW+UIkyjRPsBqymdqQRDP+zkoLCuk18kTrsNmCuik2aTvJoS/2rpPOWSjc\nmnMyYtER6RbX0t7//nO/RKnz9uqYrG/AaGix5VgKdVptajyeRsh1NfzWWvvs9ETCBo9/lEuu2Oht\nI9HcE/MJPnUiTqZXPvMHfE6vI6tt+iYR6a+k923LmG5MW+wbkVy128cama/clzY67pRZJRK4Z8YM\nFffAny84LdQJaMcM0DCcZhXmdYhF1sNieLN4+ZvRDyu2wrPVmBf4Fv3290BTyGEZa49BsxQxv8BG\n568AcPl/e5H/uPsKANevv4f3bWjWY6S4EVVKNlMsh+o+RSX7rCgOKSfid5jaz5NPNByYicR3Fx06\nHdk3vgnIakX7Go74/h/5EeD1k4t9YHdbgIK/51KDj//Ifw9Ac+OU0RJ67VzWYzipyFLJwk3KLsVQ\n/Fmno3Mmmi06yCwsNR0FfnUaDq5muob9NSKFiivigMZUtJC8s0HkyDv+3v/xK5+x1n7odbr7GnpH\nmA+u69Bpt7jaCJiqGrWbVpw5srAXtkLOVGu76PqcKmR6pykTMnMaROeaw5/HGI1a3E5DLgaygdyx\neYiqPNKkkiuh4VAXeftqwW2Nxz+9nvPCfWmjf8njjlZSxnrRaPUqRvrqI1ACnsLHN2OHheYpb6na\nfmunzXsVMuy3Ht3hO0PJ5z//1m/h6YYmHBlhfsGDj/DKC3Igsudv8xmFgvtaaTiTQ5zYM461YnBW\nLWhrGa6nFZf9dgsFbSYqm8yV3T0RR9xWh2erbpDrZSmxllYv8Rm/cja+NvrH1Vg/bSDMYEl/NPEm\neVVzf4Yzrdoc/U8/y/1/9OMAFO6CKJJ9dFGPbC8IudGSsbrlGkcKk74X9YgceefhtEk/0xu6tK7h\nXfmUsdao7Ach58vLiureG1QaCBXAA4Wfz/7bP827rsnTR/trXHtJHbAbKniGdzgrJeIwLu7T1/Ls\nfzO+xY5Cuk2zDKPRrEhTnxMbsNnWpDY/5Fs2ZZ++cg7Xr0qfb+Uzdr/GdVmZDyta0YpeQ+8MTQGP\nvllj3ijR2g3GFTi1OOJOJgt8vUJtXI6JEClQjTTO2/IoFIKtUdSUqaizu3nJUDESWrYm0e97qlWc\nkBDrLSoni4SOLyrjDQcC1SbuzIY4mr041UrFP8p3FVqAnmP4pn2R/h++3OCHLj4FgNnS+xPrK7Su\niybwtx77FtLqC/I+7wmWuKx+Q9Tde1sddkfPAfAPP7JF51ekFn5Svloyf3WaOeJIdDKfWh2CLb+H\nr+nKe/uiSVzYtXxbU3JBTFhy665ef+cd82NDHX9xh08cizlifcErcGqf2n5tabRvTmdf2+NDWZPy\nC7/F//Jjcrvytf/iZ/nAB0TzmLXETHgyWrCZiWR+MD5gMhBNoJt8iZ0tWZNbRy8SnGpuRVdU+Jm7\nS9MqdkZeoakXD2/7fjOyCpF37x/9LDd/+mMALO6fPsSWOFYzOFtMOKhlnY5ePueeZh7GhzkL1W77\nfsBsoCaB5nS4VYVeRUInPuSmOun7xJxqucBG1CNzvhLQ9c3oHcEUcKAKoDutGRzLwu1cGnP7Gdls\njz2WMr13BYC1rYLRZ2VlFP2bYm5otUQlu3/XIwjl0M/nFXs9mZyTI5e+QqPfL4TzvGd3xOdui0p5\nbafks9r2t35kxG//jmym9+2d8HsKuPLeK0v47y8zBsdApUzqT3xgjYt73wzAj//1P4FzJn6CbUWk\nO/EvsveU3FiUnU3pdSSxaD5oEm/LQudTORR7vStk3yyM7k/vPMo/el7Trl++TVG9dXUwUPuzpqQZ\nCsM5yXb58FPLKIgwse/9gQ9jx7LR32srTt8v/fn4u/44/8kn5ID8zPouv/LLwqi/qy/j+Fe//yIR\nghOYZmA03/bfnadKOXL+STbt/w3AjZe/yMdSYXC//Igctm/ZWudvu3JIf3oU82svyzz/5eY6v54I\nHPwjr1TU6Qvy1gP5fXz5Aef3RW2/tOVR5ZLg5emNZG9GdS5z/x0f/FF+cyzv/eigz8KK70MhLDk7\nHXHnrjCC305O+cBM9v1vnyZ8UKwKzrOAa31hznZZB1PWdLVCczQM+OC7ZZ8+/0yLP/Yuecfnpzkf\nfvL17ph8Y1qZDyta0YpeQ+8ITcFaS1XUHAUPOGmpHv3SmHulOH0aRxntx4Rzn5+vUzSF+0cTlRJ9\ny3ykl5CYI6ID8axXbocTTSl1mhXJqWgQbluvsD/3SNvCUe8fLUCrGr/0+YKRkfr3F24siDZFa0i+\n8JUIUU1jeGxfvMzX9yzf/2c/CkCrCGlekLRizxOH037b4ugdCo3NHWqkjeZugV2iWOtdCPlgwZYW\n6oT5Df6UI+P/zfguxeyt1cUDpJr/4BkfT++1uPZon4WmaX/0QxLPDqcx+xuienX8GT+icLubzPh7\nFz8CwKG5yZ9/WjAT40BMn+ePrzE8FEnrlE0MOvdfgzbz9ZG247icnv6XADSf+bv86uQfA7B+8HEA\nfvUjB3xUr/H7pw9e4N1tWbPfTG/xRFeiEne9Kbar6eSamn78yhwb6p2efo9H9mT8YfnV8YiDhhyv\nfzX/PT5+KJGKV5JnmA9ESxlrQdyDo3PSu6I9rKcw1ijDvu8RJbLH37Pl4KgjOFSczAxDoXgSzmbC\n3duKG9pJOLgr87J9aZvw3sFX7eur6R3BFBzHEDcNcX2BuYZjIqa0bsrkXXh0nVSNp7jlsxgskzcU\nVadM8dSz3DiuQOsnoskZRsF9wrOKWmHio1NJTPG6TdYOFYSj5ZJO5H3tXofmHTmw9ZbH3GqF3pZC\nxBvzMALR7Ptk0XcDcO0HN7iu1X7u9jrx8nr5jScB8Ofn1A1Rv81ihu1K2rWbJtTqy3aWySiNDptG\nVNV6t8/3XnkegOHmh/k3/+YZnbmvbss3FTp8bDO6a+IPGJ6v820/JO/+bo32dK5v8Z5QS8DXH2F7\nLnM/3bjGFb2FKr761zjRi16/+2PfD8A//4MXePonHgfgEz/7WZ5a15ugbt3AVSZU1W8jg1CgVWMN\nO72/AEA5z3lkX2z4yUsyjo+ZR/mErtn7nno35nf0lqbre5i5Jk7ttPBvyj66qwhRF+KKs9uy/pfW\nA/xzBdy52njTbnmuQxDIhTQ/9PTH2VNQ2RMK2rVeQnumIDTlnPNU1ukgG7Kjl8vcnRdsK2hsMom5\nvCV7J1bkrY3pjEJvHFtMk4dXIgTHI+x1EShzO2ShqedvlVbmw4pWtKLX0DtCU6grWIwMZ2tDBnpx\nRfRgQXlZOOPdk4qtdylicg7+0gWc6t3aUY1TfBnqvNKY97w0VHqdnJ/NGSomga/SZVgXDwuNRtkC\nr5Bnbx2e4nXVYZYucB1RFX0FCHGNwdcU5M3tNf7KX5P3PVZtYfbV/Im7mLZeca74ALQNVu9JdKIa\nNNZPaKk1hOH2pD/VqKJWZOg8yPn2H/4BAP7VL/0We7uCFXlwlH9Vj15aL69/c6gb0t43f1dOcS6f\nzYf1HsxORNAXLacTtCj1vs4ybnDp3TK+B0XED/0Z6ecLCsjyM39xg799Uzrxo//hFp9X3IvHf/Ex\nXh6JdmOy/G1yPLqgMPlubBlf/UMAvrNVcuiKlN7/pisAfL4358e1ovT/G025sqvQbOsjvrkj7/jN\nF13aDVnjsToBG6P7nOpV05++kfCtT4iDlaH7uj1aSlnfc/jB7xHcv6P4Fo929Iq88xFBLtrUXF8R\nDgAcKi0AACAASURBVFOsAqjsV5a7Wox1JSgJFXs0urgg10t5wq78MKgaVJpWXucRN0/lPDScSvYG\n0Nnfojx8I9iT16d3BFPANZiuhzlwaR3oFeKmIB8qsEhzCgph7vQcrObG56qehxstUNQkP96gUjCV\n3l6B1cyu484a0xMNI2mFXDkZcajYgMmdgsm6/H03nHBS6QGZWtyrinGnFXnGcUABaj0si2e1vPU7\nmzgaqgrmOaYrG89qFSFxgJMoOpAJcfSeBdwYV5GcUBw9f3EGijnYOXdJUxnrk92YZ5H3GjfFlm/u\nXyhUVU0XlnQqKvPNZ3I+KIVz/z97bxprWXZeh6195nvuufN983v1Xk3d1d3sJtnNQSStkY4ciYll\nGZKjyBY8RQkQwAkQJJHlXwaUBJYTIPavGLETQ7aSyIHiCHYGyTZFQ+IgikMPZM81v3rjnaczn7Pz\n41v3sZrurqpm03IFeB9A1u377j33nH322fsb1rfWWVt4Oy/hEQiUjlJYbUrY5xpOQtITY47IkLH4\n8JQ9DrmDH6Fa1njtKXyaXIx/uO6hWtwGAMxyDU39he+3KTIWleUE9Z6EfHe3LyAYy32/7Uk4+pm3\nLfyDXQnXtk8HeC2Qv39sNMNd9mOEnkLnpjxYa0QHat2HHnBc/B5mt9iW/uzuv0Ko7iogoQLYhb0W\n6qz2fCLfQ70r1YXaQRWhyTIjgUfTZgXZWMb4phHhWXKFvjgB2oHc97vDHC+wfTw5ke8vKja8MSUM\nLAXfknMbz6pwOJ/0lgFsBu9rTM/Dh3M7t3N7hz0WnkKRpRieHOIoG2BINuT2YYbekYCJUNnA81dl\nZxqd7CA5lepD0CHnXpYBVe7Wrg13g52GoYfcE68iQIoKOyI1FXZiHSE/YaImTzEk/VtiGEjZiRk4\nVWSaij5TyUJbtgGP4UPFaKPJTkzz9FXEDQHCqEYKYywrt0lYapGY0NyVytIAMtm5SztFucQTkBa9\nWIRIPfle7hqYVGS3emqthg/9uLiw9/7PEyymDxnbpeehFEoWTy5fDrFN/sTelpxPTec4JTlNdTTA\nhJTxtquQsOvSwgSWJeOs1+TfTSuHPhFehEWeIme2PMUR8GUZrzf17TPgzXu32ry7kMmDTcMgaQts\nGzqTKkh4+BJWY0KBS4H69y9VYJ7IblwOrsOZSGWotZWhSq9vfahwj0rS4ZRAoRs2xiOZhxNUcLku\n1z2OAzgWz5l458A0sEsP6weu+rh4VTyFWm2O3pDM1UYfx0yK7zBkjDsteCSqWSs9NCl8M/dsrHFe\nWA3Aj4lVIV6hMwTG7J7VSYY5QVGnYYKcT3arqCB6fwJR557CuZ3bub3THgtPQSkDFctHfQGUI1nW\nssECFSbDajspZhHjaDtGY1WYgMoFpeICC4plHGvNhXMsuzWCIU4IV7Yaa3AZixsnskO/NTIQmaQd\nUx6yJaVZUcAgJLpwXJh1qVnPyJhjKIWSSUvPXaDHMuqi+xSqIXeuuQ2DWomlQU3IWYZiqYJdyZEb\ncj52XEJbZFPKHf7uKqrLrrg8RrcqrxvmDv7dnozRF0sfCzzYVVhS/adFgbQqv/H2/gx7F4WZ5xm7\nzd8N0CLNWVRsYFWLNxWWHjxDDhIFu1id8XWNSs2+ifCCJIQvHc7Rs6SO/3T9FdxeE2i2d3eIiKxP\n+XtqD7wfD2HpVRgwArIyK2ANnwMA+Gjj0jXBXJhvy2ev7XYx2CdD1LUfxt23ZdfV7hOYstvWvryN\n9S8xucsmqdyqwqQAjqOB5JQktRspKvRCQ2pFPHvBwcIWr+nKMx/HZ6pS9jXMBCurcv0H0TYukS7v\nlPRW1XiE+RNCH3f41hRPkXrvt9MET18WyrrJLEC7KvPlBpm3Wt0CEXU3lTUBJqQFLKaI2ZiX4x6O\nGqvvY2wfl0Wh1LDSHHl1gqIitfROcB3RNhN8pYkaa7OdSGNKXjqHicHSssGGSeiogMHKwWJeRaPC\n7Gw5OxObHbKPwtMTRKHcZNcIEVHdqJ9naJAxeGx6MG+y1ZWFBVNbZ8K0abWGtQ05n1WdIGH7sWGa\nsCaS+MKa1PELL0Rhk1OxTFFaNZ5/joJuoknijjwIELNVe2GYMOeyIM03WhiZEs7k33RAeP17mmYi\n0VR6majHE7tT1Ae3OBYy3o2uCZDZ2mi3EC594pU2bAqNlG4NZZ0S7Q4VjawcHhs3InuKKZWgmre6\nUBT09bYq0DeZak8fHXj1gKviNZlQqdxTt9pF8Ywk8352ewdHrgDGLl+TsTpu5PhpJqb/YDiHtRRW\nyd/GUwQi/WHvNXjybGJ0IPch8DLMlFyTMbKgqrIIN2YzrNhLinaZK5uXV/GJH5AHt51qqAZh8S0F\nq8cNrlairMh9X/NJXWfUcfuWLKBXd13cTWSO/Gm9QI33YbWbo7slC9zmlH0pNYWNLRnXo5tt9Bje\njsoUmryR84MqonTZfv5o9oHDB6WUqZR6USn1f/G/LyqlvqqUuq6U+kdKqfd3Rud2buf2b9S+H57C\nfwrgdYAyvcCvAvjvtda/oZT6OwD+MoD/4UEHUJaC1TBgH/uwXNm5jwsgZBeZPa2iOxBaqoXZhk1X\nNLxH3YTtBgoq+ea6gGayKy9TTMguPKwqvBzJrrgUBbkbaSRV2T7DUweFS9EPu0SouRPqAh1qINh0\nr7UGcrqw03SBVxnm7HariEfSPdhJHRRNuthsxMnzQziQ3dNo4SxkyB0PoA5iSpRiPJtgspCdb9YD\nyly8jtPBEV7/Z1+Vz1LV+UGmuavmGojZrPTSvSae/rclBJtTyThwhlisUz167EMr2YHrSQvFiiS2\nlNlDZsguZ/fk+ntRjgmpxr5xfAJ1Xcbzyycvon8smgXT496DMozfg7Fr0TBgkaA1LWZIqHj9radi\nXGQzUtGVsW+dZPhnJPqtHL+O3x/Ltfq31/H1F2Sc16MZvGPxoJxYxmpujLHCMGGWxUimRMBeAExy\nNqTkW8hgYHZdXPX6CzY8ajlkBwFKJa/DRRUeGcYXhYRurjFDtCbe1mnLRieXR+mf9Pu45kqo+5V+\nF59bFS/kmJR4l1amSA54Ds0C3pAI16qFcE5inFoA3a69r9H9oFqS2wA+B+C/BvCfUUruxwD8PD/y\nawD+Oh6yKKDIgUUfoW2iINimtDRu36ZO4lqG+lgGMEUN3qHE8J0VuvWjEMGq3PAsSRFRsWh4coQ3\neyS62I8xSWUAvUS+b1VLuGO5AbY5QZIyDjNs1Nj5uN6uwvUlR7FVyrG0kUORfVefakz2xfW7O7yB\nqCHu6u5uhOwGCVxsAdVk9RI2/14bb8HRstBVOk9Bsz23PxN38e6t38dsCdnIHdxj3Ty+fgN3Vylq\nYzxC7Z/6vo4CmoWM11MrJdwTwcP3Lkrc6zo5xoTwGqNXENVlwWk2NIJcJmPLj6A9MmOVMj5vTOd4\n7foXAACvfwtQPcHwvz3uw74lr42qCYNakN+P4GEZPhimhSrFW5JKFeZMFss3bru4VJfPrNQ+JL9r\nAeWxjPf+23+AtQO5pqPAR97ZAwAsXnwb8a4slhWK7Tq5j3Iui0Zz00K1JvMwV8ZZN26NnYq+biDY\nlNeNxTFGjhyr6hY47Ms8K6NjnDB35ZAsqK9tNBgHVlsFFseyIO9VZ5geypxrRHNMvi3dqAMKHzVe\nmmIWEJw2ipE4BKJFERqEJhi6jVr87kCr97IPGj78LQD/Jb7DSNUBMNZaL3s17wHYercv3i9FP5m9\nv37vczu3c/vXZ9+zp6CU+ncAnGqtv6GU+pH3+/37peifvLKnreoaGskCoL7i7eM+Kor8iqMM996S\nbfMe7uAZdrVhQGqwxgQWOfhDE9CENh8PHbx0TOmypMQbzHzvcZfbj8szcpN0VIdN6K5VaCxdVFWY\nMOqsGzMcUABYRECBBb5GSGlza+NMlKXuaZzkkvjxIK7cyXEVOx0K0tT7aHak89GpHmPJLpOeSAjj\nDhu4M5VjbRZDNPKS32th9YbsFGbhAXiwt2AwYZoUJVCVMdqfdPDhPybdkeshk7nNEi3iJvrzHG64\nFBQ4hlcu4dY7CJiszUjLVutPsTcR7+HLi2NcGRNWfhzD7LKT8O4UFht3svvp1N7VHsbzqGBQe8Iu\nAW9VbmA6y9AayLV0b7yNySeF53GdWh3tVh17N2Q+baYX8AdarmMtn2LxTfEEnM0OfAopdNty3HYn\nxiyQikI/TlErKO8X2/BN8U5TwpLtGhDPSRHYWcVl3tNxWqDlUQdyUKCVyXgOWCHwlcaswkY6nSOr\nkppNh6hkJIaZlehw790nhiK7UkOL3qSu1mAxSb3qB8iYNG6vDRGv/dFVHz4D4E8qpX4SgAfJKfxt\nAE2llEVvYRvAwcMOZJQFKuEImemi8MRtu1If4kuHjHfzBG+R3nqzWMXrdyQbvLcusW5lbQMVkmEa\ncYyUfkoR97A5lGPsJxGeoU91xA+Egwk0mYx0kaDkDc/zFKtyaCwyC4rwaJdQY1UATEsgr5h4YV3e\nvzDvobUj5/HSzTtwZ+IS/h5LSXurdRxtiADIhwyFOB3wPNeQs822QRn2b1sGNhoyWV+dVbDKisl0\nOEXUlddm14KSyOU9HyNr+QfTgM2KwSdeSLFzLOOs9+Tc3rp3E+5I8haHMxerpsy2jZ1PoV2SmzKe\nIq/KwxKbcs0db4EvEir+x9bm+P2FXMdHsiq+TUBOyzdwStl5I6UIy3flGBQXYf0IpUlN6Haj2j5T\nS6o6Lk7asgg9a7hoJzJ2nUBKr5k3w6d25Bz+t4GDT3TkGLeNGtYcub/J8RiVmixerid9CzVTYVCV\na6o4Fqy6vF7JZ/CZQzdZerZaAfbk52CPSszZ4jzNJzAoFDsbJ1hQ0LZCAJifFzAymSsqqGNQyuvn\n3RwvDeScP90tccSO1u1IFgfvVh9BQ/4epE3U57LYvJrNUKXGpJlWcEG/v96H7zl80Fr/stZ6W2u9\nB+DnAPyu1vrPAvgCgJ/hx86l6M/t3P5/Zv86cAq/BOA3lFL/FYAXAfxPD/uCNgyUQQBnNEMrlp3y\n1XEIt06xF7+DNWZQK9Ye6lOBOYNS4K6/ARtLiKeJmNiDA6RncGU4Do5bUoReCWSbH0zuouSOMgtd\naAJWDEuhxzBAL6bYIs1x3+ZwKYWSCTw4GaYzST5ZH7mGoiq77dOdFrIpVZVNccuznWtYkw0IwcRE\nBtk9LGRwSbJSaLmmi8EQsIUI5FMbCmFvqa9oIslkjFa6F9A7IAuyfnduYcVdvCg0lCmfGRx24HxO\nsBMt1tKvTGpQu+Ie1fdn2CTc1zQr6Ngy9sM8h03PyuT5JoaHD5ECfVb9MD63ISHTvXszNG7L8V66\nN0Q2o3jMlI6j/g5FmAQM9+9mD/YWTDamxfU1rDPZl2UKrW267hUDc8Z3VYdqzm4X7HHDx3fH2HYk\n1fW0WaLGEGs6nKJhc85V5N7VuhGyU/EIwjSDP5ZdfGrO4VQJNOO0MJMQozcoKf+Ewjq9O3tRRa1B\ntvGBiaYnvzdjGOuoIY4IWqvbY7gNeiDVAOs7DIs7W/hkg6rn1+UeBOZAOPAAeBULDj2CrdDEgp7u\n5e1V+K21B47nd9v3ZVHQWv9LAP+Sr28C+MT347jndm7n9kdvjwWiURcZ8tkRrLyKaUV2xM5OHfde\npL5DM8bluvTH22oVBVGKtRXZrRpWFYuqrKLOaYLelHJe906wX0rsW3Pq+KS71CyQBNHOE5dxRLXq\nydEhRkSK7acaRSI72QwKg5sS+3cZ9zuOglOhwGwYYLtO5h77HrauCcuSswgA1tA1pd3MRgg9F69C\n1xP4FGCNyxTeMnnky9/X6sGy6oc4rYJ6NPCcXfhEbM7GR3jrFUqQ6XdnF646ck01BXQd2Sr3ujZW\nKT5Sr8n5dq6tg8A9xOoEVkt2RMtcxYxBpj0+xYJsV0z1Iq+tYpfXl+ce8kRKnE94U+xTeLV78RZe\n/bZ8pndbxj5JpmfegQkNZcnYZvnD2KQUbCJaq2UXHePbMhZbO3hiLMfY8C7hI6SDq29L89h6tYS3\nLondZtBASc4NO3JQOrw/rTZyV+af5QuepBeHKCIprcaFgYUlc2hq5DAt7thsjEpiF4smeQx6PSxW\n5ab5rQowY86ongKWjGHTYc5hWkWbTXOYm1hj4tLvdrBicQwbHrQituQC57cy4UA8oSDx0WvLZ/Nw\nH8/uiauwuf0E9lbXHzKm77THYlGAYaN0VtFaaJgQzHpvMMUqqajWohIgEUatWcI05YY5Sxn2agMl\nNRiHToZ0ITfrMMnRp6s9zOtY4QOS8QFzjhw0VsQVTfUOZoa4/sVpCU28xKi0USU112scLcOwkKVy\n4+ZWjusDWTTu6A6uHpEG/tk6/KWwZJ3EKuMu0jUCXY7eRt6Sa23FIYqaJPwstjIWmxdQJyw3bmYo\nB1RmqoXwjsX1f3k9RamkmnF/j+GyKl0A8EjRFWflmbs7XAAjV0KpT7BnJG/7qDblQYq7TZiRnFtc\nMwAmIMd+E5t0+zNm1pt2CJCjsj5TiBlqFX0FY5PVl5ddHGxSWQmSGXVMF0kh17dhmdgvl5WdAvqB\naAYTTlc2iFo9hPvMhwEA0aszXH5OSCIm1h1EL3wUAHCtJ+MZrP8AbJLorD1ToH1dHqb5xhzuXBJ+\n09U5KrmMx4xKXxgOsCBNfBkvUCNXh0aKmiPfC4khMZWB2YyYhUYNz7hLsSILbVkrsYgKVBOZD4e5\njKXnTnEUy/U/gRS9QMI1L5nCbkvlYDU3cMp521XL4xroMnQdtkw0e4K/MXZWcMGS+xNsKsT2Elf4\naHbeJXlu53Zu77DHwlPQRYk8jHDiW0jJTrvmznFEzELSiOFXZKdcbQWY3mVDlC3ewSwvkY5kF4hm\nKSYnpLs6nCAZy25dm+1jyp3yqiMIRa/qIzmRne2iEaPHldssM5is5dXzOSqxeCQrsezHN0oDBv+e\nphqbriQrt3pPodhj+Qol3EC+VxAGa/oFZkwyOX4bZi47Rmb1oQKBYHsZ6+6lgkGJMuVVUFnyG/RL\n1PbEtdeHwDbVnPfHDB/0O/dZ31oy8yRIXMrY+XfQOhS3erYl5xAYFky6xqbRgeFQwblSQSVmd2kR\nYEa326nL7lNJPfisz1pKgVUzuDZQnBBivGcim8nYX16R3fXWyTFUKfd3gBwNntskepAYGwDDQpoJ\nGetT5g7SSO7f+uoe7rbknnzWuwpPHAHMPiwud1CZwVeyA0/mCorlaaPuwyMTVxQaMHMJJZaE2aXj\n4yCT+1tOh8C2XMfm3IHFTlmL3lFiOgg4F8yBQo+w+eqGA01PQOnaWWNeRJq39BCoc3+eQsFl9+RK\nxcWUCVM/aKAbUNO0K3Nan1po1uT3xlUD62TIqhQLeBtyvKZXR9tZBnuPZo/FolAqhYWyYC0KpNfF\npTyYhoiIv6/ChkrZyjq4B01R1BErB06vAc2W5Tj1EXVlwjr7qzAXMrnjrMDcFFdyTlddD2boM862\n8gJFTQbVmkwR8qGPMgNBRR6soV4SiAjuHhDylrt95iKuWrjEh0llFhQrApYtD7ryFGrUMEwGCllF\nHprCduFIgQJZTOIVM0Ue8HymHnRBundkWBwQJntQ4Ii8ke8pFFxlhhsV+ImM0d07Jl5fkzDnwkJy\nC+4gANoycS2rCsOQ367HQDknsMpO4BNwY0zkvcJIUbLGXlhVkBEMaWzAIa7j6KQACCK7PV/SzpXQ\nBOOUJTCJHxHVWiYoGPJ8sRLjeYYdL1tNfK4ni8XfcV38Ykd+52sncu/+eNLBvC2VDyMaIGUlxpta\n0CQ7qZSA4nU3ZvL9SVmg48pjMrJ9lCcy9pNaD0UgY2tRyczPYxwfyXuz9RDrBNTpkxbq63J9aW7C\nIB4mHbP9PstwyF6bC40CSSzzxY8GGMey8QVeFQXnsp7IHElgQrHr1pnkKNk/o237LLzFNMHYeggT\nz3fZefhwbud2bu+wx8NTKDIspqeY5DnCumw1+ihBRsjpaTVEbSqr5DwD8oFknBVryq5VoFKThExN\nF7A82aGySg5NqTjPChAoWT1XiHKsB9WzZNdsGKJBjMSRAkDknW3m0JOMvyPna5rFWTbPCw3UPNk9\nto9eBiaiH5nXQuQMFUyc8joNhJSlT80FRsPbAIAizFAL5OAxm5ZcNcNSdF47gGYIUqgMIUk4itUM\nFZKD5mzg+W5/oVUjTqHMkDFcSZMQ1oEkKE9XJOFoV4ewY0moWeUxUk+uf5bZKBeyM4WLIRR5vsqu\neFtjVYNRikcXGym0y5p+qTGJmPytaBSujLPvyq46m/dwNog6h0uF7iT9Dn7hXU2ZMKeMDfoxEEuT\nkL1m441Qmry8aQtfOxWvYcWV5OO+sqAsycJXo2NkJE6BUnD4UqcF6IQgrsj1j+0KBux8zZM5DE1q\nutKFJs4kY/VhNK8iKGVuOT0ThyYrAP4cd/q87sUYhwnHZUnBN0lhcLzTuYFak41SRoCAoVkST5HR\n05sTTeqXwDCRe1Nxm+gRs9+fLOBSSAhtIGBj1qPaY7EoaBgotYuudjEmf2LdbiJuy+B1YCCkK+4V\nIU5KmZBeJJOjG/voD1lKqhgYaOr9rR3ATOQmrqw6SLoyKVLG5/MJMNLyMMU1H+OZuI45cij2FMSq\nBs3O0wFl24sox4SttUHg4KWegKmuHbaxcyLnnHYTeIwNi4y09aYJi8ddDEM4DFytRgOzubjxmhyV\ni85FrNKlRKxhUNEpSivQ12Ui3PvdEWazHsfw3c1jlUCbLjyfMXBq4ojkLE+zGW04TNAK5Nxjs4qA\nBC+eCSR0KG3Vgk+vNJ/I76KYYkRinJVghpwtyW5aQpPD3DnOEN5k/8hQFkiUNqCXlPnAIlv2cDyk\n90EXKE0JH/NRD+NtKTPm4RyXOgKPee30LtCRz0RvyEM6d4/hTeRhy9ZqZ0zaRuHDptLYXJuokT8x\njuXfFb3AWl3m29z00bBlAHScny0QS8IQv6JhhRI+JCqHRwj2cJ6h2ZLxHMCAR8h3PJXrz0tATQm3\n7wQYGwwZ3Aghw6OaVWAyk893Lbn/o9jELklvbs5H8AzC8BurMDVh1b0CaL4/UeLz8OHczu3c3mGP\nh6dQaMTzFAM7RmnTfXSnmPSYfXdCBCNZHe08QczXxbJSYRRo0UWKJhO0p8zqGyu48pxgGlynAmNF\njpfQX0ynKSp3WHGYx8giWV2jJIRBPYWaymBmcux1Ld//Vl5CMUmWzxK0NplcDHNkJGLxomOUS9Ea\nStmnrg2tCSbqWpgogdoa/ggJecA6TKjGpYfMooybreFHS/nyEn0qbH85P3ooCbLtiJdSGAtEhexs\nFX+KcCZjcOtYKjW7ayeY9eT3XHcTcZf7n11Dgxn3pFhBpSpjHzfEG2vNDcSpjFuBFKdL+b5xirfp\n3Qyzu3iFIYZN8Z0oWmB58rEu4RAXkOqHhA/QyCim0rUMTE7kPj3x5BXc7cogvGDbOPL2AADNHTn3\nbLuNa5rutRmioD7DzIzQJAflIAGyIWHT1JNIXQOZId+rWCeIKObTmOag04CMwjnarMLrEAg1snFK\nqHwlmaBkU13WH6K05P2I3byYjUGsHA6OCtRd+Y0Nv40KPVJTR9BLNXWyhM/GNo7YdDfQFVQL+e3Z\nJMVddtV2a3V031/x4fFYFAoAMxjw8wIHcr/RNkpoZrqblsZJn1j2xgjHLO+0bZnEh1ONzJKHqWvZ\nUEQbBteehjcUN9dyHBweEb24JQPW2j/EAZFmqZVjsjwho0BB8EdU8dBqy6IQMpZLihwFF4UjRDg+\nks/u7gDPvSrMPWuf/jhWQjmPiKAZx8+Rs1uuOAlR5U3OawGCgNn8kdzBWGXI+JAmlo98Im7wvVsH\n+K3f+QYAoPfWTej3JEIVi4kUtKwacj5wi6KChCK7EcO1ZFKgCOShmqsUFlGh0AVQsMekdgwnFbdc\nsZ06D03oTEKCKM1RhPJ+f3GC3osS43/pWzcwui006SF/T2mN5UpWKnVGrvNw02ckTqfJAhcjWdzu\n7QPPd+WhuNdqYFvJvVqJuBAuchTsKESWARnLxPEMmkhVezKGVZMHMs/lRypFjDofesv2sOBmEdcT\nhCUBWaT7zyyNiK3OlbaBnNWX0cxA4MnEHhbGWfmx5EKoPQ8W76Nj2bBduSZfAW/wt1f7GmG2JO9d\njn15BsQr5hH6oSzYw6iN4VwWjq27+yj33l/vw3n4cG7ndm7vsMfCUyiLHItRHyOMkbP+P5qUiLgy\nDlQJh6vjfD9EhXVakIoq8KYIauJ+r7UXyHxJKGo1hVJXAQD70TE0uxUnt4lfjy04PhNqcwubXPkd\nL0BEN3+nVcEqM+Zt1tL/+f0dibmGyarGwSvfxmhXGur9mycYMdllcweLjAoKuvBxswJEsppbSRem\nK6+zmVRRInuObEyAVHKKE1dCkeN4iLcqcryCPQAPMoc4+8QGvFQqFVk0w4LVigE/t9afYWBLqNFs\nvY1pJsm10ujimIQk+b0D3PHkmtyBfPZ00kExl+x8kpmIQT4JrXGyEO/gIJpAU8bMoFuudYpl9cHQ\nBQzK0S1l7h5odMtLlSGdC5TavLwG1ZPfGxkGmkO512/uCuV8EBSYErDUMm8gypdVBIV5hRycBRDl\nhKmTln9iebBz2eUnmUZCMFg6N6C1vK/4GHXMKnxevx4vMPNk/jbjOfbHMt6BSmGSNm3Z1+AZCnSK\nUalWYCjxzG72QowpV7+YjRBSTm6Z8Pbvayyteg7CWH77eHAH1YiAMitHi6zTj2rnnsK5ndu5vcMe\nC08BAKA1mvAwmEs5pur6aBPmt2E3EDHvFfkdzJXsbzeP2SRVyXC8It+Lsm0kLAFWK0/gmCzIxckC\nA0Kej7TsLt1cY+CQViwuz/riy0oOM5NVd5H6CPbkeIcUT70/p1dAI8/kPL6uF7jyednpfvA/dHCR\nTMIZEY3OazP0GCOmcYS89REAQHOUw8iFHu2NhTQMWYs5zJsi+jJp15A3iA6cuYhf4879CGG43lBc\nXAAAIABJREFUJrLNSBU0xBtJDI0JE1F5KLvnMLexzb6ZmdlCfSC/N8QcMTkUxsMdlI7U/80DGZPj\n1T4Kvg50jkkuv1EPXNzsi9cT77+NuFgyLslYKcMGyOhkGzZifX9D1IOhzpoyb7ossPAlB9C+MUS8\nKx2fRR7jhLiV4A7zMmoH8fMyn6xsDasUJDa6Ci1XvKK8W0HAhqcFOxjLuMSI+A5nPkbBhrWsNOE4\nhKTzPhSWh4NIPltrZGiSHu4UJWrVJSeDQp2Orm4tCWjbsChHZ7k24G7wfCaI3pZ57WsPcSy5myc3\nZOfPbA8r9EyiuEBEIeNqYwP3FmzYG+X4va33x6T9WCwKBoDAUMjtDOstdnflOaq23KyO4WJZIK+6\ndUS+TOTPXBO3Pup0sBPIQEZODsOXunma3YbPBOTX9RD2XCa0V5OBTiIFO5LJMZxm8EiyEmQK66Tg\n6nYsgNx3z5MA5X+979z1/f8/zfCqfhMA8MT1IdLGDwEA/G254fFmCrCW3Op7mPjycBt+A8q/DQD4\naE/cvm+qAv6aHDe4EmCXCdGb2oXH9lwjKfAwb3s1EHe3LOaICAxqFgnsjMzV5Au0gyYCQxJSbqUB\nTQIbxzGxQRDZjXaJtissMSG1O59NKniJKdpaeg9+Q1aWJ49HuOOIK16pxrDYaeqnS5BWAs1eBK3m\ncF1J5mbx3bMKjfABf3d5RZ1VfmqmBZfqTBtPtlB7Tr73M/oy3qagypO7bF++fAGXHZlPd8sIdSbl\n1IaPtiMP7GnkIFUyBzKK6Li2A5Os4W27hhFDx6AfYZUqWSaz+ytdH8805Rx6QwMB8QFBBVilupjT\nqkNRBVqRPm4NLuZc6IJGDREh2MHCg7FCrc+wj053DwCwycRoVgI526zXEo01V87zlf4QTzflGXA6\n2/iU8ZB+ku+y8/Dh3M7t3N5hj4WnYCqg4ZZw8hIhkW1mMoNa1ooxR06MgJdkSFdkLVuSpVh+hGRE\nTQa3xOktSTi5noHZbQk1NotTzAk79tjYNI/nZxJ0llJnu25TKVTYJGPrGK14SaIh52MrgGA1GMA7\nnN3rhE3rGy56G/KXRiDhip/VoSdUzz6aI3Tl9YGtsMnd8eunchJrm8foubLabx9P8C8yOYeFewv9\nhoyFceoCeHCycc2nqElswqRXMIm+o1UQkXw0GhUYVsSTqFZS+IoydlGKWZ+JrWaJciLv+yQf7Q9N\nNOtyzaVrgXKV+DpiWIHck8VaFS0SkO4zfPIjGwvu5k/5Ll6Kxe2uBg0s5kz+okBMVKcyiPgrFXxC\nvkPLwwUSreZrObbJhfCGTnCRwjYZ+TTqo3u4Y9BbWYtQUrLNTXMMGR6VpUIENqyF1KnII5gsT2oj\ngZGQ4MaJsdFcKpaTzTkd4+hEztf3MgwZutWhMSUtXqUSom6I16ASEuvMDKg60bSnM5S8N2k/gket\n0JptAVSVthIZ5InhwmJycWzbKDrkZKhX8CbYpGXP8eLhwxi032mPxaIQdLr41J/9RQS1Dmzy7yll\nw3Y5CNpGyuL0dJpjRny5lYg7WOg5hmMZ6HrzLi5CSD9KNUDel5t/OPwCopm4vlEooiHlrIMP59JH\nkWgPOUVlZ3ONpJB8wHyeokeosN+Rc8juC9HuXxCiUiNiF+Avf/k1mF+RUGKbi1Hr0irWlg+bVRXF\nUgB5GiEm6L4g516uFPKEC4xpoCDWwfRsXOPv165tomT7scHciAMXPjn+dv0Wgkt7AADPuIKP7bKi\nsrWLk77AqmNNPcTJCb5+R2LW/X/8FbzOlvLi+g28SZSsn01xwsy4z8V0AQcmWZ9CZcHkyprBgqJ4\n5btFtPf3RL6cAr/KWv8vxWdoES538hAuCz6mobDBfpaf+tSP4s98TsLG+nMfgYLE+LrwYdlyTnZD\nqg9ZPINzynCz/Dz6ibBql4OvYHLWr/IFlPoH5fqM1wAAyewK5vGXAQCj7CKqWnotusYG/vO/9z/y\nWu4Pd97dFCstLVND+zLmtYK9DHBR43jOLQtrvGbHrmGlQujyxha2AvmdjR0RuGk0Y9gtCS/qlQpU\nINe0dtHD0yuSr3JqKT5CfsxHtfPw4dzO7dzeYY+Fp2CYFiqtFXS8KmYU+qhrE7Mls26hEHInsa0S\nfbrxDmXcCreCuStJREOvolcRl/GC08QN1pKBdYxn0rjU7MrqWtVTDLi7tNMEpzXZSbrGDLdn3EEb\nGgXdR8VuyUfN5S6z6HlHzvdiu4qtdfm9BhyckAvBqfgYzeTYHll9FxEwq8j343l2hvgzSxdokMOv\nqCBc8vmVck1zH1ghL8RdFeGjEO9ouh7D2BXqspnXhFOTvXqDgjq9+iou9mSs5u6TOBzJ7nhJOzgl\nqUmgTYSFuKImd75IxzCYJCvL7D5W5vx9jBPwS+XpI3221MDmxyWs+k/+vVUYn3wBANBtXUbKNlZr\nnCP0ZDyWuIhCryDzCLVOnsV+JF7MhfwjeOVQvKZt7OA4kWrVkxWhvDtK7qCAHKs37aOzKb89Gkyw\nOLvWhyfyltQ3oaVg0+ttMsE5SFPUiG6cqgIXiUJ93UvRJTTfaNnY2RXI/nZXvF+jUT0j8tFeFU3j\ntvxY5d8CfM6nZgcLPIz38p32eCwKhoVqpYmpaSAivFhpYKBkoMZa44hU7Yd5iK+SAMM9EAiz7xRY\nUCey3phiSN2+T7aOgJm8vnv8CjCg/HjxEgCg1ryCeMa4LnegWAIdGyYKgn4WkxGynC3Q8cMFXe83\ndtTiwkKu6UObz6GyIm7tVmUFV+bMgFcUUpLEKAKh0kGEhSvn0O+nmGq5Zi80wcY5eE6AkmQwdiK3\ncm5psAkU9shF5gqxSHhSRbQtJc4OGlgQbD8uJVzTtTHWtmQxuW3Nce06Jc4nC1TLZTkxhWI+JmFo\noPBOgpdHEXP5IFaxTfy8Kwtr91M/B6zLA2uiDpthhdnO4bADExRjzcwSgSn34chJsfWWLIpju4c9\ndsceha9hRMj6WxdeBwCoyToO5yKUe9qrw46oY+rs4dG3h/ssA7bqDEdJJPxjaR0xBWB8XcEaN8NP\nNVbRIRR+fW8bVYLh2k+IYtU8j5Ewv6B8B9lCJkZPHeOQbQEX7DFaiz9CmLNSqqmU+k2l1BtKqdeV\nUp9SSrWVUv9cKfU2/219kN84t3M7tz9a+6Cewt8G8Nta659RSjkAfAB/DcDntdZ/Qyn1VwH8VYhA\nzHuaBlAoE55h4JjJ9JajEHH3bJkG8impu6YFnK9JNj+tSpiwbjbxB1Sn+4k3XfzjQFzAj6kN/IOF\n0HP/XBrgxTu3AQCf7cjKeZzvw81JO2YVmLK5plvr4+AWqeHzAkeKJCvOo/elGwAy6id+6AqFV1wL\nFy9JEvSCcxsnt8Vz6WyY6Beyyq8qOffbXgcVcgfe7ALNSHb5V3seLgTy/pHbQEnhm0OTlHFFhnXS\n3fcGc/wYSUNeDF2E++yM9G+gsyK7nJdJ4kzNN9Cry7jW9jW+vSlJ3KcWI/zhmLqEWoHi0bAYMqQa\nMCiMo/X7k397P7bcvXK1g5/9b34VAGCuVWGx81HZDowlA3MxgZsRCs4EbbWoIEvl+rYWLr7liqdz\n2XoGXzReBgA8mdTxCinmPzQWnob/F0e4Sj3Kb6QxPm5LOLZfPnrtXxgi5Aq2Ah8z8k/8xA8IHP+f\n3prjz0Vybn8zcvEXrsqc/J/7a/iVz0hIe5xdxYevCCBL0eOpwIZJkESSdJE6AnxT90bo+8SIpFfx\nhnXvkc8V+GACsw0APwTgLwCAFjB7qpT6KQA/wo/9GkQk5oGLglIKpm0jKjReIw27kwHfZPgQpApz\nEnuepAFukVhiI5YYa5JPcXEgk/jLyZfwoZ6gA18338Qfr8kNeOnwVey0pex14MiNr7RryE/FhZ9b\nGjEn9O2Jg1RJHN0fzBBV5cYsy1GPYloB12oygTb25AHpbK0gYCkvqV1Aa0cmbtV3UCFQy3bkxm/W\nQtjsOIRtIqUb3C4MxOyAsxDjzoCZ6lgWEyPNcEruvygy8fqRdG1eco5wRFjo7uoOju/KRNE1VkPs\nMYoTmWDTsI8fZWZ8ZCRokCGoKDOYpBdXxOGr+3QKlVJQ+M4C8f20pXbnf/ezPwXDZ7u7tQG1rGNY\n6jtSTV7wHQKXqlxHWVoIqEMxRA9XtuX9YTTEZ+Zy8Jf7ES4RZXi7IuO5OvJw41jmwqUyQI89ESuN\nzUc+dw0gIAtTs2HgmSflu5fZGv/nLjwNbyr395etTew9KdfxK82n0XBlfm6vNqDYil8h85Y1zBA6\nJIGNYqSncm8G5S0UzGG8/dEKbFLKP6p9kPDhIoAegL+vlHpRKfX3lFJVAGtaa+q64RjAuwY090vR\nD/r9D3Aa53Zu5/b9tA8SPlgAngfwV7TWX1VK/W1IqHBmWmutlHrXPeN+KfrnX/iY9gwDylQwSDah\nLY07JBb5i6bCv0hl/XpixcLdgUBir/YIOgnW4SaysFzOP4Z7U3GpXyi38dKRHHBv5zJW3pRV1e+Q\nt7GooCR9XZAb6PG3DSNBL5KVthoABmvn5rtfyrvapUub+PGKdGhufVzcxI+Gc0SGeARdI8bAWmah\nc8xM2Slc9tVbKkOFLB55OYWdLIErM9gEJJ1MYuRKdsr+XLyAiYGz/v80SVAr5RywMKFJIlO8OYKq\nyWdWKjKGo5MMNVZnFosqJlTEVu4mYlO8ii27xISgnh1yKr6RlCB+CNNEoc4tfZKkZ3Dk79VpELdb\nvLSf/ksCGf/3n/sJ+Ft7AABTl9C2JBpVOgdM/lJRQLnsJWA/AEoNc0kyE6zC4WvLniPNZCfd8RtY\nMFSahwS4ndxGyRDTUhEamnwL7yN8WKn6WDdlb/z4D+7gMvtNsCcYitVxH7XnfhgAEN6xcOWKdPxe\nv+HD/YycR2sQIGsRDJfKOYTtCKu5HNdACSsQz3MxUPBZ2Qju9JD6j3yqPNb3bvcA3NNaf5X//ZuQ\nReJEKbUBAPz30WpN53Zu5/ZY2PfsKWitj5VS+0qpJ7XWbwL4LIDX+L8/D+Bv4H1I0RuGgYGh8SX+\ndzcF9m1Zs34nV+DCjnRhoMf+8BHZdVJjjitMrn1hcopd0nLdat3Dp6uykn6zl6G2QW3Hjhys7bs4\nHpD9CAvk3LnLuQOQCUn3U6S+LLX+YPzQ6zAJwVXNDB9/dqntJy5I301heqQHKxRca8l8rFAQ6VjY\nSwiswpRUXHlpI/KYUEoTmOkS5ZcDsyV2Qs69Vi4wWNATmi0wIfuT0Z7DJZux2+jhmEQK97TkJ8YG\nkPTEIxqOe7AL8SpulBEueSQgTTQ6PnM7LJ3WS4ViWXevWcjJSuwPLUQP1YV8sFkG8IM/Jp7Vn78s\neaLqT64AjM9hJgATnnAq0MROKGWiJCx8yW6UewUsJuXCaQaLsOmBU8Bbl8/eGxiocg+7CxbNshlO\npyx9AxgRA3OpfDhK0CA3iNkx8KfXhL5uajswLvH0/aXC+DoKUxKmux8vsSBT9jOrQF+xoW01RsFu\nTqcux+1PHNjUGdG5jZw4jakJlCl1Sps56sPDh57r/fZBqw9/BcD/wsrDTQB/EeJ9/O9Kqb8M4A6A\nP/PQoyjAMDQmUIiJIT4wFV5nV9+2ZWBBnMJHWxonr8kFH9ry72U/Qj8RN3O9jHBIkMqVOxFu0Let\n5hNMCMFdD8mZmC5gLmHCGvCoSGX7p2AOCDVYmLPFN288fECWcNbLwVWwqQ2jgbzX2LSgFnI+FTtB\nkpGwpLlAmVMhCqOzIzlcINJCoT2S7PS3sgImJ/Q4tmAm8vqUPSMTrdFiEvBmEuIKORPbmYsq8R2G\nYyImt19Rld9LjusIKXI6mNg4yUg15gI9g263W2DKFuddUrbfzBw0K3LcMPVQZc/IQGWAwWaS8nsL\nIDxTITr8aQDApc8K/NiwPJjFMs6rAZwXUAYU8RQoDRgk6Fkulva8QEnH2I2nyCn+2xpOEA0YuoUR\n7FTO2e5JovGrL38bN0/ELR+rBcaRfPaLzYcnGhXh8U+ub0M/I5OnGplosvehbRGEZzpLdjhEjkKH\nhCzjuYLPPut5I0AlIcyec0znIUyKGVXTAjYXhUa6gMOEtjGIzngxH9U+0KKgtX4JwMfe5U+f/SDH\nPbdzO7d/c/ZYIBoBoIRCWAL73GleyjQydid+yTbxCW4Cv9NXaE3pEjal5Dcb3kEjpDZBOESXGu5h\nU6E0xPUzFnP0bNnxPJb6rIqFcixQ6dDTsNjzfhLWYNhcoQEUJC5NogcjGhUAj6Sxe8kIN48kdLls\nyLFOcherHdmZ+0YdDglJwsyCxWTQPJbMp3ZGmI6JeLQzvE13OJqm6NM7mKsFjsf0YphQM0uNMl5C\nn1PE7B7tVxdQllzHcd9FocVNfv2mdOEZlSn2b8oxytEhPHpHRrLAikOZutzBBTblLBNZcWbA5w48\nqZRwTXZl2iUyEqukSj9yttFQwNIx32rU8Nf/Y8F4dBKhfCutTRiGeHo6jYFMzl9bAcplIji3UJJW\nDcuwzHOQUbJPp8CiJAmv4+GAytwtHeOe9U7BlZPExJQ8HDkU0lfFY7v0dAtf4Xm+26WZJtBuyny6\nbJsoqXm5m40QEja9Rgj+yN1CeyavY6eClCHmot2ESyRrlAdosYNTWeJhNosQ6RKaYZmYLcRbtpJj\nzEy5fk9ZmCdLZYpHs8diUVAAHAXUDGCH3uB+AgwYk30qKRAyv1AEJfyrEhs3X5fA+FJ9FWUhD1Bn\nbxeDV+T9C6WHA+YM0uYVbN+7DQBwuZhkyQwLwpmb0QIJSSrW/BSnFHJpzUzk5Ch0rQfTj2ulYGcy\nEcrWZeyScCNJJDS47JvISrp7louQuY2qWSJlbOzwwTXsAI2W/H30xgwm6bsHcYSS7viov0CPSkgx\nYc4jHWKTE+U4y/E8qxamVYFlE9DjWsCcwClTrunkwELECQizhaki44/jYWZRdGfVxzyURetKIA/N\nm7MQBjkxy9kCQSET8wA3AbroyBI86qpgGwaWxCovXHLhUDe0DKST0Y4VtLfESABlIW65EYVg+A2l\nDeRcZW1iS7QZwuGin1W6aMxkQR6FQ6zk5L8sath4Tdruv/W6gOHu3LmFjFLzJTReyWQsvv7yl/+V\nczeBM3Ffr+Ljsi95kI3Lz2DXl+9V9CXsVals5sumYSNF2BV8SnNawGS4poczFJtSPWpN+jBaH5Vr\nZS9D1tFoTmShKIIIlVjmQN/0EVC1LI1OUXPOuyTP7dzO7QPYY+EpALLqjxTwBW4oP2qWGBzIivp7\nkYmLF2Xl+8Rd4LdelGaVJkU6RivX8UlX0I0vngzRbjDRZpVYzyR5dmNygDCkNsSqZGO3FhYGueyI\nC8eCQ1yAlVVQrTLDXQuRUM0X0YOVkZXWqDiSiLqt7iBJpN7sbsruGtdMVLdk56tnJmxCmw2rgFmX\n3cqmtFnQriMciEtpXrJg/CEFZ7wC2VheD6MIc/JDptmSKCTHiGPoKMBgh+ckz7HWEY+l2axC2XLr\nKyOGGm0bTy/kGIctEytkV57FwIfI3Zg6XbSelh24T5f0c8EpjpTsck+lAwxLuT7vzgleo/5nXmYo\ni0dDg7qmdUZwU/vwRey+IGPukHatqOkztKKa9ZERNWoZCqUtnzHzCJrJvJJTPDOss4pKbmpMtNyn\nXjXG4q6EmIflEKdEu36NAje5LlHe5+UkrLQ42Xe8gqX/qCEVEwCw8xSbGyzxbM2wASa3W3VUm6Qc\n3BYxoPa0wITnqYMYI1u8rTU9wpRHn3kWdqvs8qRHkKsF0pbcnKQo4LjiYcyaNXiU51t0AzSH74+O\n7bFZFLQC/iaADrVDf31fwVjIAztyavgoQUj/1F4gHMrgvD34PADgWn4Rb6xSf68YoGeJm9x+M8KX\nFAdtfhvHY5lsz5JMpVf34VWoPBUaKMhlt+om8BjZ1mpVTKiraK8/eLg0gBOq/mwf53h7QyZWm7KL\nbhijoJZktZUiJTlJmdtQZEBKqe04MgucUCHr1miKsC/Z8EE4QdSj3uQiwjhmSZIhRak1SKmIogQi\nZtMd08A8l+t+9ThG5PIBCmXcpqaBY4YoqzZwiy3Z7U0XR6/LA7a5F+PUEZc3MOT735758AxpPb6z\nqKDhSThzI/FhUhOxfB9AH99yYLvMW0QmjJEAfIpVuag8H8HYJyhKZShDGZeFnsEqZGMw1h0g5ENN\nGnUjHCKjUMtgcYykLw/s7OYId8Y3AQDXbw7w9a8IuUqPKNviu859uTwkpYb5XfyRCkDOCoi2LNwk\n29TVHnCHgq+12MJ4JAuS4cp4+y5gkP1pDhs+//6HoUJz9k0AwP+NDn5hLHOyf0E2GeXOYZEC3lMK\nJUMblYWwGEvpSQmj+v6Yl87Dh3M7t3N7hz0WnoIGkGuNH48U/m4iK/PleoHr/4cke5LnLmGyLaud\nGidwXpWuNnNLwofe6DZURV6vh3fgm7I7TJ0JDvvSEFTc+DYiyPshYaYTvQ7vlmST3bUK2nS1ndUW\nfDI7l6aFWo0qx4NH6NGgtzG9dQ+/SyblTwdCy3a04+AJZsNHZRvNOeXjGw4QLsVVZGff7x3g3pF4\nBP3TO7gzJgP1OIVh03NBDnra0OQrKyGhGCA3dziT7sokNWDdXNK7raGMJKF2zF3Jy1KcjMUhNuwM\nOT2Bxb0ci0ySn6MD60xkJDXke2GaIB6IK1TEChF5EJFaMJZ8m6Y6I6p5mFWrJtYp7+YF1xCaMkbe\nUDgNsqAJyyFP4rRAMnxLrqnmwa7JbuuPV+EWpKInCC0pbPRTgWsf37yH6UyOG4Yz3I7ke+boHoxN\nzoH+w0VpzPu6QwFRnyanC1aMEhe25V6vLyboUe0lP7mFYYf4G3pjs+0tdOnZmK0mUlLr5dkC3zqW\nuVOf13C4Jl6tuS4JzJW3DqCvCl7CKgHtSlWjkZ+iRy9tUdQxHcweei3322OxKCgAFhR+3QJeqMjg\n/frfB/w/JW3G7pc1dtdloIZv9HDlCXFh57duAwCecxLkp3LzvZ0raE3koSmUhndd8geeWcOC93lB\nqnbMM4QtccW2wwUcZvvXggy9KVV8AiCPxS0rVx9e2ikKotjaNayxBHZUlQflytTCwJI8QbM6w0km\n7u5KlmAYSRzZH9GtvTPFEXs/wlmBJaQz90tY7HY0oZBxRlr3ubLLVxmALJPvZWWGPkk+Fxow6WqP\nWSozYo0hEZ0VeDhhWfOyAQz5cAdlFSUJdAOqTaVhH4pMWIM0wxoRnWVRwKzQhZ2mUGcP0IMXh7pr\noctOzE7QR9iXh7e+KvfJH4YoHImXi9EQasry3dBEc00WOsvQ0E2J123NeNSsoMLu0ZWKC3O+bIcf\n4wle363NJuzrJABedlzivStOBs+z5IJsG8CMBLxOO8AsFf5Io7uGJrsgxzpBc8SSuiEPqxfcxaIr\nuZGuCRQtQS4mbwywO5QN7PbchsMy8tHXJD9ReaaFNYaPbrcKh4tMubmOWk/G5bjsQ1vnUvTndm7n\n9gHssfAUoMXl/RMm8GvcSf7SL2j8w98U11fba/jqTCoOP+zt4PNfk/DhI9zw73VTfBSyuqaLMVZJ\nl/1mluMZqit/ZWhgh9p+Q6ord7MI0V1xs+atBFuG7J5e6qC5Iscwcg+ektfZQ6oPAEDcCQbjIQYU\nVJn02X+QpdhckzCn7JfIlbjdkddAWsgO5TOhGKZT7DA2+GIaYz4T17EIE1SJLajaJerkrgyXCTH9\nnay4AqCo4WhWgWpLvnexSJD2mcmmoMkriz5WSNGmS40d4vK14eNZ8rabKsdmS65lxM7BH1qM8Eok\nHshHqgZmTJjumCmGDDXKWoFZSE8he6+dV67DMKqYEA8Stlrw1+S3S+6ukRvi5qmEQePrN9Bjm+tO\nNYF9VaDQLdNHnIlH5mDJ4DwHCMK6lS+wSg/itSjFlOrQvYMBDGI5En4WD8jRmct/iTExFLBF8NqK\nAXz6GTnGK8c3USNb93CQYIVNktaWzLetxIYfkcXa30bJ6sqHXAO/TS6La/49/F6VGBGK79y7foDa\nmlR+1rsrqDrs1/CqqFaY3bbrsE7eXw/Kuadwbud2bu+wx8NTUIA2gL9VAj/FXN7f/UqB2sdlmV47\njbFL5Np86w5Wu/J605fVcNveQYPJm0VPQzOZt2UaKKn3d6mRwe/KyrzHer0bphh6sjN39AIuocRB\nNcfoWLyCuqcRsAMzO9sb3ttSCpJ8+PIF7FwViO5VingYjRo212Q17yLG2yw/mqMxZmyeqUxlBzMd\nA866JJF+IGhj/5Yk1ObjGJoNSLlyEFK52l1Q7iwvQbkMRBqIzygGcoRkvz4a+vDWKGPGnXDV72LU\nE+9gzZjhoC7jdqFRIrsjW1uwmsIkvmGvJddxa7JAi7v5LNjEcxfluKd3DFw1JT8yeg0IjSWEes6R\n+u4ypZx0xXTQ4W9Y4QKNSM7DWmXzULOG3QnZujs7mE3kuLXuHqzWki+hiiIVD1DR83TjHHpKpuYo\ng72xBwD4dL2F8Yp4E6+nGvu8V8FQznOx3MHfxRS9tKLgbzgKx7Gcw8cvr0Ar6Yx85rILo5TfuFrr\nwaiTeq8m87ETlOgxh1PXc/jLuV6YuNyUY8fe0/hkS8bWK8Urdq0qmlREr6YeqkzQNoICiOX69nQP\nk2DZZPdo9ngsClqjKAr8tzMDv0Z3/0/+pIXP/0OKjHQtfKgmD/2dGx52QlkMKmvycK/kCUyPhBXe\nAdCRB8xNHUy3xeV62nFgr8hN7FLDsKzYmLKTz7EL1Fry/kluwqQ735sFyElZVpIg5b1MAejwhj9d\nt/HDW08CAKrkkqxfaKFqSwIsySK0xvKg78+GKBKK5jp8MKsKFwigCv0mfqAmib17gxkaNflsvD/G\n6oasoocHQpDyrYWCR6KWXCnoQn47zw3gNgEy9RhNZrtrdclYXypc5FsE/DhNPNOVz7ZmGosrcrzI\nKtFsk8eSPRDOehvNpeR6xQDlE3G3YWORiGu7uj3C4haFWZetzt+dbzRk3Gw/Q0CwVFsynkuHAAAg\nAElEQVR1oS15QAJb7rndegZVAr20AlbmZJWuZtCF3OvSjmBM5b4m1O5MswgR9SpbXaBKRuVOfRdF\nXe7rqrOKp5+SMf9GIeP5K1+avgO8dL+5rNDkpKSzCoVLpApcCSNc3ZTfuNDowmFloGwAlVUmJnm+\n2ivRHcn4LKISFtvZ/bUVXPbkOip1DYMAvYDds5ZXR2OplhZsIA+YBA6nSFa4iOY7MPTDKyn323n4\ncG7ndm7vsMfDU4CCpUx83gH+i6ascL/4FtD6D54HADz3T+bYosv/dDbAAeT9a6y/bq934Dksve1t\nIZhQOKV7AStEq1UuNLBNNd+kKbuSn9YwIpd+LQkQVsi9MJvglGFAxy7RZ6OQ+ZCGKGUZaCgplz7/\n2T+Ba03CUVf2AABB6CJryu6Qn95F2qCa8cTCWxHJZGPBTUydHfDPSGv5GfFnp76AOZPXdz7axuhA\ntubVbflwerOPzzrizv8/8xIJodRxlGNYkXFJhz3MCznG8+RvuFttocXrU20TQY8IwraPmF2CSfci\nmkTQlVUpoc39N1GvSul4dqOP2QabuOY1FIEkR2s3azCXBBUgzRusM4EUR5lIycrs5ybMuezASTFD\nObsNANBPPAUAsHITmt6Kyl1YhLQjcpDbPP9pDsMjV8UyjCg1KqV4R4v1C+hUOV/sBUyGTV4baNz4\nBADg7U8SKfqVfwSDHaMlsKRewQgKJr2blCS3XsXEUSnHcp+6hKtU8a7srmCNj1qysQ13Ssjzuvyb\n9U4QdsQ96pYKCzZ2tZwhvIviAbdVgawhxw4SSfKmaz7attz3ourAoC5J2d6ETwwMkjkMm5nNR7TH\nZFEQb/IXKgq/Qfz6bz2j8fMvU01wx8O4Lu78lbCJAcVAgk12y+1WEWTiqqbWBEbOwTHGWPP5vkpg\nc9J4GxKr1wofeU+cpXrQR8ibkWkbUcaM7eQEuS9TQQ0fnFNwSo3nnpUb4DhHsFuyeBGGD8N0EZl0\no6GRT+Umz6IhQnIfgjj1Tj5Evy4LYTvoIuBiOT9uosE266PBGD+4I79340gm/PM1ByeET3dt40yb\nUlsaMWvzgVOiPpTrDllZsYocypGFwE0qWLBL8u60gjpxCCtpDoOLc6W5BwD4U0aIb98jluApCy9z\nrFaCOb51KBN9Y2Mfr3JxcscyyGmeAmxxz80UbiD3NLdcjCpyLTFsFHU5thXK5C8bVRhLqXrXwnIK\nKx9QhKYr30OcEH+RS20/rRhwtISHtgmUzA+ZdhvGBlWY+hYaOzJeKwdyHz5Wr+EbE8bk+jvFCFsp\nuFT76Sy1Rh0bP8MW1d2FC3tbrrXmOnA8CVEMMwcFoBBRKLiSBEiIL0rsU4Bak16jhZSYGtPNYFGW\n3jPknqnEBChSXLgFDM2FLswAQtrjio3cePBm9t12Hj6c27md2zvs8fAUFKCVxl8D8B8RgPb/sffm\nQZZld33n5+737UvuVVlVWUtXdas3LS2pJYMQkixArBOYbRz24MGW7cDhMYNjhoGIYWJmYgZHYDA2\nE2Y8G4FxsAgYC7BgAO1oaS2tXtXdtWdW7vny7e++u9/54/d72dVC3V2tJnA5Ik9ER71++d6755x7\n7jm/5fv7fr+/D25TIr8r2zklVRGe2Ndpm5o315I0f29C2JDIcjGISUuzU6nBfiYnhZnsE/piztWn\ns8h3SKUiU+DmC9QjJaZIY3ZT2V2nsUs2kl0+9Q9fcRiFZXF1S0k/4hNMYrE2vKHs8BEZlvI1Fn3Q\nIk/MYpXaTTVzPTmLdpOEE5kSskTLFJH8vW/ZmLly9NmLDBQ7sVuVAOatuSH36yk5HYcMlM9xkCW0\nNAC5GVv0NZJdVJRkhQqe0rgNDMDS6sJRwUSpKbuVhOumuBKn9DR/YT1jqoIy/amLm8lJubUbM0xl\nvm6tT8gUeRelM7rujBcVpQ0izbrk50/haxGbN0kxFVmaz2kEszWEWAEqZnRUSEZhYYaKZD2McBLp\ndKrWgzvwsAqBzacJGKrlYWQFpqJQfcNgotwK1fqDMq/Ox/FnWJCsoKFx0r2iIFM6taFmOE45OR/b\nlVP84gM5fUWntustcuXksN06aDDZP1SCnL2CXMVbCtPDHUrfivEhhcrJFbUW7kjh2K5ao1aGYcja\ncgMwA/mskxWYmoHzRimp9doCjXfFppDlOf045EdCn3+v6Z3/ehX+9y/KpD3jN7hfH5CngjKr3S8A\nsH1BUj52MaFQfsVmbx3DE383tSOmtjzQRXhAFMpCiRQa6ywtYankUWJPcT3x8Q6mBpNMbmjggqsw\n0Wxaf8VxuHlGQ6Py8a2vcrMukuGnC3mQkkqdXMuzw2rpqKx5rlbgNGUh7IcqNmLCTk9N2WSXW0rr\nPhyapJncfKNImWYy7rqy+FzMQyLdNOZ9l0RdKTMvMAPZpBzboNqTuQ21RLruJdzUCr+52gGZAqRK\nrslEiWCdG7sc+vL5h3cFPv6pXSgpUGjkgXcgWYL1kU08kQdhYI4ptL7gCIxd5ByZ/kWGtyhu3jQL\nGCsr0iBxOdyS682fkt/NoxpGeZYNMGFGDGPYJEqYk3kBw4HS+SsIKXOaZLlsnL45JCuUWcooUygt\nfWHZGHW5D4sLsjk8et8l/uzzcrCkuYGrqdSSZeAZ8hsLSndvxg73LkrfGsGARD8bTQegtTl+tEOi\n4w7UhYmciHAi/kOpUmBYMhdpaQk3lixIEvQw1A+1fL3/GOS5Vtq6bVJNv6fDbdJIxh95NQbFa2Ne\nOnYfjttxO24vaXeFpUBhYsc+/2av4IdiOUs+NIXsYSkoedfHdvFVNq46MZioTPhZhf6W/RXiffne\nxJijpkE7Ix5DV06Y1G+SKc9CrtS5RTAmV1xy1TGIevL3ljllT09QI6xTqPpzkr8yXDQyTLoHYqqt\nJxep6Wl1UJXg3NwoIClJIM4MLZoqI55HF2HhplwjkL/3S2NyJds4GCW4h/JbW2nKiboyJg/to+Bg\nMJVTZDDXYmUip1U5HLDVk5N0WKTMzulJWGCWVVquryZwE0ptBcpkJifUfYhzn5FW+JUSn22tAr2x\nL0Gtm4NrzGtw+ObYpaUm7sbgkKkCgTrTMbkW6xT5DIRt8mKxkU3Yl6yLWW+Sqaz21E6wlLE7Rqw/\nL9qniMSaMqyMQvU6jayHFWsGZic+Ynz2CzG1p+Yt7FjGNGksUdVxFJmDqUVeuWFSSjXarKb9ja88\nT6rWWFxELwLDsvxoHXVSueftusWVA+nv5YtnuKRUacNqlUUl3xkWVcqWrNs8lftLEGGri1IyGsSm\nuMKuYRAoaMOppDBjsQ4Ve1JZpKQ0hXERYB+Vx7rUHOURicbMvUY27btiU4izgpv9jPl5i9/WAfyE\nXfDff1LM7k9vu2xX5PVDhwm7mhZbU6668vkSTY2w7rtzNDX1mLRdziIP5Pp0RFvV7KaaVzLsjNFk\nlrpJCLRkNcxDDhQUY4WbTKsCGvEOXtk3M/KCubr0aWvyOPf2tdpNF92oVaJUUpJQJ6evi8L3HajK\nom9rNeDuZoc0kgflqtPlsKfS6cMCW6sdkxz6kYKIFEjTTA8Y6vVcs2CqC8koCuIZ3bkFqVKjn1WN\njF6Ssqy+cTkxaDVUn6I1z/tVwzAoz/OeeXGxOqU3APBPrv4RTyp70+nDy/yJ6jJGUcRI99AiT8n+\nAs9KzsxQzYuCekPmuJsXRDPAVdCHqswBgQDBknoVM5e/W4lJohTnVmoTaMQ9d0O2evL+YHxT5qJ+\nhroSn8ZJwXiimaTWgFIin+3lBnYqHf2UupWj5RrhtRdRjTdvK0ufyRG4utnGkcGl8zLosDNi4uo4\nkg1qPZnPsRURIP2Mq/Ke70UMdMPyR30sRd42KhVsjcGkcUSsGpqzhzaYBi9qgNRLR3GguKiAIRtP\n4NqEwSsTDn9te71S9D9hGMazhmE8YxjGbxiG4RuGcdYwjMcMw7hqGMZvGUeRoON23I7bfwrt9ahO\nnwT+MfCGoiimhmH8NvDDwAeAXyyK4jcNw/gV4MeAf/1Kv5VnBeNhyJc2Teb/VPapn3yTTTmXYJ9z\npYeVKx2Z28c4UJN4QXbixtY247Ke4vspRXmGky1jaCCmwphIpeZNzWQYToapoihFxSPpqpvQ22Ov\noyfoFFoaUAqcV65Lz02DK5tyoi/e77CnUXs3lcj6SrZAourQWWaS1xXGTQOvpH3T4GLaqrLxrIxj\nLwjxlRSkPyrI9ITpJ2XymdLRVCyQ0GnjGUoXXrNJdrU6kYJwhjBOwVag0uM35PulszVMdTUMs6AU\nqFtVL5gMxKI520hZj8W8fstDYgV94fMn6AVCBPJHX40IQ7l2dxodicC8HEx4Vv9gGA7Drlx7ZBcM\nlYH5i3s93q88Eyd8Vc4q+hhjhWu7PkZ/or9k4Ojr6WCfBaXBryo/ZmomeCU5gTuTMaZaAsXUJG9q\nDcruLTa+INW4z3xYtMouX9+guM1tvD3jH6gVNtZ3t5KCzSvK7fn2nMPHJRjbfHgB6nK9Xhax6ivP\nRCLXdTKLplobTb9E4clYK8YcqcLt/XQOSzM4jqpzWXkHY07WTT7wMHz5bLifE+uzMx5C6Lx8/cbX\na6830GgDJcMwbERVawd4D6IrCSJF/32v8xrH7bgdt7/C9nq0JLcMw/h5YAMBev0J8GWgXxTFbEPd\nBE5+ve8bhvFB4IMA5dYcv/LJ36X04TcSDyVecPqbz9H7XaFS2zl7iROJnJRb3W1qybMAPJeIH+53\n9vm0IT7iyRvPs74s/udSMGWaXQDA7O3hqLahFcjpYy6V8DTgFBsTXKVPuzJY4mAkBJ77kwlZrKzL\n0SszEltZjq/psmh7h+uxBC8u6EnULXLaWokZNudpK8Nx5JXxtYpwXBUsRWc/BIUlFwcGB7M+lFJ8\nU/q/0KgwUGGcuqcMPIcBmQYa/Qm8pPJIXxpArtwJfkO+V98bokYAJ6o29Yq8fzZOGSuWww4PUVAo\no0/9OgBf6lbp9OQ+xVGfUIlgi/zl7YMXm7JUkXHqje8DYHj9947SofvrE77yRTnxVn05uZ1LFzEa\nerJHAVkkcaKcNqFqWRT+In4sZLJGJsKN1XkLAhmHk6YMZpaCF4IiS6e2zfYZSQduO7Pe28DXDzDn\ns7SmfrQUZrQqiiB9bp0rjwib9/m9Q9YjZXAmYleLsdzSGgBpYdN2tHrUWcE7Yq/ymJEmZcWAJJLx\njWfRziQlTsUKyEyXoTL2HnQ22dyXAHvfKjMavLaYwutxH1rA9wJngT7wIeDb7/T7t0vRr555Y/GQ\n/QF+Y32blXc8DMC1f2tS/+FHAXjnr/eZPirm8cnwFI4lC6/ygrIyL3n0IiUhOZjHm0hwyuqu0F8T\nc708arKiOXvDUUbl+hKGRq8rvYytvmxI1uYOt7bl9waDBOe0/F43f+VNIbJgv694eKuKqeKfYy1v\nLd8as9mW99zpBsNFlYkfd6mZ9wNwcyDX6m0dEGxKf3rTHpmhwSnfJVaFq0lWYhBLPyeHsnoGoUuj\nrhiE+KX9vf0hnWqken0kD+bJhYKybpCuleFtyhx9dSFhPRWX4J5ejasKotpwxX14fmefdKis20F8\nxCr96huCxYympL7wt7jR/fsAtOPfJFKsSjja47H1ZwA4fY9ItS82xxhl2b1cp0au4jrm5UMyFeHN\nswaclM876l7ZLNLVDTDvFaBUfuHpjIWagsuMBSpPCrHP/raOI3v5jJOpm1qmoLDQMrisOOj4dMa9\nz8ua7a0anG/IWMNpmdahYk4ach/nmg5JQ8BSzSKiyNbk2tWCPJNAeXkAuda0lLWyNbWrlPWwmBQW\neU8zVDf6jHdlk+mZB2S1Wd3JnbXX4z68D7hRFMVBURQJ8HvAXwOa6k4ArAJbr+Max+24Hbe/4vZ6\nUpIbwKOGYZQR9+G9wJeAjwN/A/hN7lCKPkginty5wfw/O0P1QE6d//xMi088JkScL7ypxX2moMoe\nXJrniiPBoxOnJKgzaeR8z0hMsmcWDzhV0fr2hQr35rKrXl/q4mv1pH9eAk7lSoORVpbFZp9QTbhx\nOMFIJEhUi8d0u0rimmkhCi+jH5gV1HU3n4yv0ZwT07XiauHP6SregpxmJycWg1jTbd4CUUVOxPq2\nnPLXoi7WRNKwtj+hPMvpTafEmn613ABrkOs15DRoFRkqLs1qYvDCy8z5zORtq3aiS8abXZnPqlPG\nbssJPD6Z8kOJzO3V7pAPrAhqbrcpFsp9ozZ/oErabXvCzdtYY2d2yu1zZcxo1ywoGv9M+rz8ac5+\nj6BTt3+pwDDkdA4Gffq9rwDQfUbm/or7Nk61VHbNLcibIllXXHIgE+ulEWUM59WM92QcuZOwoEjP\nHdeifK981mgkuNrBacNn67R8xl4S6LZ58+VFsx1Nfbt6ttrkLCmmpbKbUJwWKzVPDVJfGJgbzUUs\nPTObbVnH1cSm0Cq3rNzEVu4QL60QaoGjUUxw22I1uIqgjBOItfo0zHJiFT4aOX2yTCyeIDcpXXtt\nZ//riSk8ZhjG7wCPI0HZryDuwH8AftMwjP9Z3/u/Xu23ahWLb35bgw914OfVL/yx9Qnf9hYZ8NWn\n/4hvTuQmfvG+Xc6o7+siD00jtVHXmhPWhCKQm+UPczqh+KR1PzkiUDTVnw4GXUIVQc2zgMGOfDYe\nD/Gn8pkNy6CpcOSOcufZBiS35atnARTHMhmq/uXZuEJfpeYXbFVhsgyinty48dQk6sv7g6JDSyPc\nW1uyMVWdDmlNBnUqNRmrgM3AyVCkNOkko6oKo7mSxYTYLDnykPbLBfbM/Sxe5BTMAFvJTg4VNPMW\n06WHrMC5UkKqojXVyGF3U6LazXLGXiz9X1aNzscOtjnlyuvPlX0WZ/OWpliKe8gAU6+TW3J/T556\nBxvnxX36549+K/+ZCty8pWxxK1C3wiyOwFVbWj16ur/O/LashdKJgmIoJrNpuDhD1dvMYuxbcrhc\n9mQ+LyU2j2sp+6lik4kyKZdHFXpa4l0cTrneEFcpHQsOI7f34GV4Jee1xqan9Swty+RGIvd/tWXy\n5Vj6fO/IYtzVjMn8mGVP5jlUoFNkuqS5rOV8mFE6UAkCcgplXoozG3Mkcx+r5HxqOqBl3XFnRBRq\n7cM0JVR+Tys0mDZfmxjM65Wi/1ngZ7/m7evA217P7x6343bc/uM149V4+P8q2qnTJ4uf/Kf/EMcu\nqDhawJRZeGXd7SiwLAnWjfsBha36gmhFm+dASczIcydsGm0x1XAjzKGYvjvTK0eFUEEoptVkUsF2\n9ZQwKkfVOkXu4ao5bhU+4YwpWbUW/4t/8PcYK9KsTAEKA667JlWVNXd9h0QDZmVf/l6xcsoVGZ9f\nmCwp5VmjVqKlnIhWLt9PnZg0lb+Phx0ee0Hl5A5u8NWhFvkk0SsG9FoY9O5UA/5rmqnouKZjcHpZ\neCHecSFmWlNXSIlQghgcW6sTcxNsRVsmGag0HZGNp3DdSGHsVFNc1ej0Wm1aevo9/K43U1fiyIp7\nkiyV089WjgGiHqkWNu1v7zI0ZF7soIQaaYzzFd52Vk78hbPfIb9VT6locHQcPgeZZBlGk3Vy5Zbo\nxBsEfVkP3VjmuLvfoxuKNRJs95hUZoVNE06f04I8xcI4ts/4UNzc3SSnty4u6O4oY+eWrLnxdEyk\nCMNUq1mjLMXT5zAxDOrq25mGfcS9ELsuTVfh5tqHesXBLclzYQFF+50A/M2Te5z8tv8BgNPtm7QX\nhKCm8sD5LxdF8Qiv0u4KmLNlmNQ9n0bJIzTFr13JTfqGmFcLjRIDnZB2atDT1JJfkgVjzS0yp7DO\n6sL9lFSGu6jUKfTh9icVvJ6Ywaly8pXSLiOl0PbyhImadY1pwlQXdwubXlUJOYrZgs9JVQAkNEGL\nC6m5LrUVuUnVssGClhEbmoZcuFhQ9+V6bbvMmbr6lOd93LJ8r5RIDGSQpiTq7vRuVbgWCp9j3p0j\nTTbvaF6/0Q0BXtR/PHWmxfctydybl1qUGzJHw6E8jNVpzmAq/tywbZMFstDLYUpH3aP0LEyn0pfT\nmgFaH7i48kxh2dkRbn++XeNiVe7PfgqnVJ1qV0uh5+ZdLiv2f6UTEu7L9Qb5TbLGWQC2h5/jXr5L\nxmE8BcA9c29nrLEKt7GA19Ey5GoTX7NZSVpmwZbPjFUk583JFp/dkPfqqzlXx/LQ1xMTuypzcaEs\n62J95B0R2navdmjOy/2/EQC2loAnGRNHS+p14xkZ4GucYWgVLKjpf8syOF+W35hYHl5ZPpNpJsOw\n/CMt0YZd5unuxwE49+C/YjIvqdqfOfsof1gci8Ect+N23F5HuyssBdOw8N0W/UqCp2bkYWxRFHJq\nricT3JKYlP30kEIltw87AtCYL1s43oxWrMdY4cVlAuxQTprOcISlO/NWKlFhcoex5qGTYYjRVun3\ncRnfk92/m6aUlEOgpqQu2W1k7xUMWiqP9pZakwcfEJxF1TFZ8zULonlsZ7lOdUkyH6vzc3haHGXV\n6uR66vhqrQwOh2RKUjKcW2JJr/e7pct8/vcly5u8NoXx19RMU6sng5g33P/dAGRngiOZ+P5pGdNS\nYdHbk36mRshIY3KGFeMrg/MoHhCbsypWLQIyc4Z7ck8Xmh6WmsxLziniulghFRyGY+V0DMR6eKHb\npV+W+/T0jevEWhy3cfMGblMyBsGg4GlDTP7O5YcA+NvvLdFeFFDbKL9FNhFKviDtYSqHQrTrYWoA\n1lfCknXXoVA3bnswwE5lDXSTgHv1/Z6ui2Y5Z3tf+hOaPZ69KZZplPQJFMtRLkJcDVxXPVUoT10a\nGigujBKXfAVWlZo4GsR12y2GysdYKov7kDkx211Z7EbJ5k19WU9V69f5zDM/DsAt45M8WBaRnDtt\nd8WmIGKSJnbXIAhl0SydDtlW7r9z8waHu/JwL7Rr7Dwni2a1KiaZl5eoKAqssjHioCKLpj48waGq\nMFUPUoKRmFQLE5m8gd8l354lzkakO5LyMdtD+j1xYxr1AlvLaQul3TEM60g/0KxaDC150M++4xz3\nrMhv1M8vcr6uC/pZRbNdqmCsCcqtkXhk6rdbpTkKVbWy1PzOPYe8EL+XuTrbF2SRXghC0rpsCkb/\n4HU4CK/c8lz6/CMf+DuYl8Q3Pu+v4ldULUsj+Y10wq4yF5mmS6iZlnp8i0/ta/TddnihJ/dqeeUa\nAH/2WYPFqjJExTnOsqbh6ga1VDbG7q2cxXvkOk89JtH51bNj9r8o8YlLCxZfEIuZll/D14rR6xWL\nymcl3fs7S7IWfnjlDE8kcv/f6FbJU5nD+bgKnjy8i0GKFWuptQaYLiwfsvd56dtb6/A5Jd+6tJIT\nqerTsrpEz12FxZb87hcfy7mvLuP79IZNfU5LvA9tkgX5vXNz8nB//mbG29vy2Q8FNf7mo7JJ/doL\nJ/ihN2gWpb/Kg+c1nTuRed2OxoRVBcb5Hv/+tHz2m3cdvhz+nrzPD/A+987czVk7dh+O23E7bi9p\nd4WlUJgmqedz6AQENdkN3YnNUPPAm1mB3ZQdvDcwMJQf0FQaLSL7KJBzaG/ha638rbaBo+7IrfAW\nnppi+8rFGIcRu7mYmdNswkhdEG/PIi7JqXLSWeH0quzojqsuilVQ1ozDWdPnDW+W6G7LK5i7IPUY\nzWqV8ryc9O4DSgG+YkAhZqsxV8dW/j3TKyhmNNwNBcSYFnlZKbomNU7XJCq3W32WC6pJc33I1+Ep\n+MtpFQ32ZdFnKTUEglzxR5RmQogqSOKUz3CiolRpZsE0kPcTp8m5TN4/HG5Rn5O5u3lLMgdGbZMt\nBZOVahY9xXFZfpOxL1bB4ekShVZ57jZU77E7ID+jgcinG9gN+eJaWmBm4m4uhlO6yOn4QUcst0l1\nmzdU5X6EwSZVraSdOjGuL/fXaJiYWs1oteWzvTCkdFbW5N5ej+aMNq6/TdEQC+GpA1kro1LI1hNi\nmWxmQ0Y3xZWYcx28sYrPtCu8YUVeLypT87c8UKGsLtM3u02WL8gc//SJ8wxLMr5GWqZQvkm7qsQz\nOw7YYpkEWcL7npE5+mTzkzz4uMCm//np3+Z7mt8KwK9wZ+3YUjhux+24vaTdFZaCaZiUHY/2YJ5Q\nJbgsy8Hty4lx7lSFnqYDF1tlBkrX1VZY4bRcpqFBm4QWrhYMlYY5Q/X9FwwfJ5LXmVYkGrlDrn7h\nNHZBRT0qRcy0p77agkOqqEdLZdwM0yHTlF226NAZyQllzs+zrBhjp1WmUmh12rLmtuMpcV1ODzPL\nycoSi7DjCak165NSxXk1XNVbiOwJralYFYsLDzM/L8Glg85X6I+Hr3W6X7V5LZ+3m4L7+NaLP8q9\nZY0jLLfRgk8SDYw6GEwWFDbeNckrYnmVxjXqNbl/LbPOWJWPz1Tl38u9CWZF+RamXWjJ/a3USziJ\nWBODyR7oFDpX5DS+7y1lnlP9yIsnypR7mjp2bCbLSnrbq3DOk9DscCz/njVaZHua5z+5QF0rXrOy\nj23Lfc3bKdWJsjxr9aHhLXCQ35R5WSrxuAZV662MSSqpvpkgy43rfeqR3t/1IfZqpuODalMsqLJr\n47bksQvvEaEXugn1s5JOre1V8c5ogdatjPppiUHVtgMGSqHXUuYt80TB6bFYTRuVClsjiX09lC/w\nb7ry+r98zuRnJ5JGvdN2V2wKeQ7jicXV2gFhKINsj3uMdCJvjjLm2hrJT01yRx6yKJYAUWJHZPrw\n9+OUyizXTJ+WKxvIziShplDisSETZtcjuoH8bpQO6Kmox6TbY6zmZWc94VvukxtTPaq4M/AUN2H6\nde59u6o0hSa53vCiXcNWFwNHctdpbpJqxaTnmJDNshkusUawPYUBR4MxhdKLTYix52Rx97dj/sY7\nZUy/MLQYXlb48F9CyHFGkbVYwPu+RcbceTDDVZfOKjfIFJCU1XQcto+ZyYOQllJypT136xGBllF7\nWYExr+Z/X74XV2yygbJc+zbTdTGJw6lPRwVgnq8sMH8gZdkHDwkkutjpUT2lVHy66v4AACAASURB\nVP2bDtOWuGPzyS6DTOZu9T6PQEVn1u6VBzNYbbFUVYUoyyf3ZL6LUglbs0RmUSUvq3hvrGQpYQyq\nR9pfPyBrqqpTd8KBSsPcVDbrKAu5saWbeymhf6jw9lLBomZz1qixmMpMRx3pw/KZBu5QA9RnDEaK\na2mfNDnszwLaJkZJ+1TVzXQ9wlSK/mAKrZqM9SuBxYPn5P2P3hvxvTtCNfDn3Fk7dh+O23E7bi9p\nd4WlUJgFWTnh5rWcOJLAiesXZGWVoncqJFoBZs/7mMqSGyt82MvHR8oqRlYwSdR9mBQEKmvuJqFq\nDcBcLH9P0gJXmXqNaUE5V9gpPWyFREf1A4a7cnKF94pZmxkFiUqXRfGUrefl76cfsbBU1MQPFrEU\nOZmqwIhZi/CSWXDUhVk+2jVwp3orZqi7NCQ3ZJxeaJNrkZdHxpwvVszp8w+wffXz8r38RVLZI22F\nV5n3r23JrHrPXyR2ZPz3DayjCj5jGhIqItObqHVgJ1iW8gm0wBgocq/bJ9G5bWQZ/lC+t9IQU9aa\nQKY5/zQyKFryOqk5jDpKfHNwyEQJaw/6WvhU6THKlU/hXJl+T9dA4VA7q3ByFvHVsjRslW7rDyls\nYQf3rJhY2cHdcUahFl2BQRorLkDdwCQ5IBlpoDgMqSDBwdqqS7SplmMsfdvbjilX5XvToU9NIfSD\nxhxpW+Zw4p0kbymEflWrUkc2wwWZn4V6BUNvZWUaEaqQS9XxMbQate6JFVCywbOVZyR3CEoyphMh\nfEKl7ZeeuM5zqVghd9ruik0hTVMOux2mwwmHasr52xE1R9mWTl5kWfXzuoMW8VgisqnSpQdZQaqs\nSnF3QGKqFqFbIw8lJ+xmE1I10XNdKLEVU51V9TnQV3ac4LBGN5Wy7Xp631EkuqZ6h4Zp4FryyFlj\nm1Oab/c7L7CpwJKV8ABXTVivEFBNsuRiKuGFZyyTqwhoXi9BSRdxKN/Pc4NcWYadUkySyEO6bM3R\nPSu1HY8MD3mhrqzFA/F1s+Ib3xTKWl35rdWAUUMr8pKbbE8kvnDSHBFYMud5RT6b2XU8W+IdSd6i\npFkCy/WoaG3D2APXFBP75hPyW6HZZaglnH5aot/XEuAg5IWhvP4CCXZXrtcJRCh4yKO854K8VwQ1\n6o787so95wiKmUvg4ykMO6vrBlMtk2m9ihWPSAoVFq6npFoSn477pKliWNQ1mEQ2h1pkGJo+h7a4\nVZXuDtsD2eC6Y9kUQoaMxCNiYkSUVLuynBks6uZVrkfUlZ1Lh0luFNS1JsQORxjqugahgadApxFD\njIo89L1YDpuqdchURZFL5RaTRN2L8ZOcD6Wf81HB3Jy8//9yZ+3YfThux+24vaTdFZaCWViU8yrX\nN/dJlFJqGj1HuSnR2ftLzzPI3g2AXU1xFyXQ5O7K6eiWS2SqD2mWM2qHemLkBaky3+blC9QTgTcH\nhX4/mtIri9Uxt9Fk5Ck0dvcmeaY6BI1bbHXlRN9eE3MxiTPGCl2uFF1+57NPAvCui49wj6XBzLLL\n8mkNyhmCMahNE6JETqKinpK50o/yuCBTeC1aGGRYFygZckRFRoWsKm5J0XqOtV0xB89yCiN5Wsat\nHJVZkWntKEzuZPK1WabFaXVLFt7//Tyirk3ZfoSa9i1tLFJXKrFcJczSOCA7IaeSlw+x1USP8j5x\nU+5D7YqBrUjN0+p+PJGMmSqY1CkOsBVz4vtl5lVVu7xpsr8lXItmJKedf36LgS3Q5fBUwoohuJDk\n6oS5NfntSuySLSuKNFMkoVFgKJ117s1RGqsUoLWEEWvA12ngTGWeHUWblrIGC45YjWnqY9iyXurt\nhOBpsZBizU6N+xGFZpzc0KSvmZZzrsG2WmEPNCFXM99VuL4V28QaJCx7LabqMlhOib6e2y3Ppj/U\nalzNnh3i09A1kkyGTG+qNTVY5BMHYp2W/IhPXhGZxTttd8WmkCY5e1sh/Z0Nxko80chvEnbk9RfM\nk7z3AUlJzefL7KompFmRGz+19pnX2PkgCKCiVO1GhbKWL+dezFQfSHtJblA5jEEzEZVzFTrXlJzE\nqLLdl6h3/pkTvP+vi5l4Ppe0UZKm5FrqOg5zFlqyOLzOFYxiTQYVl+BQFpCt6aa0MsCoifnsxgmG\nAmsKNyd1pG+OxhzyaoOp0qzjGlRUuDSr1OCS+t/GKb7pkvzeHz+lWuZ5zqyg2uJF9qNXa4aZ810n\nJc24cMKkekrTpZcq1CMlm3VMCpVP72oVqdsbsxOrElLf4FRb7OfaBPp9ecDs+SrpVIBM8Y5cI2tX\nKB1Kn/uZiaMkK06QE5aU2zJPWGvJbz+jUOLD4RpeLr9173iBrR15XSzYJLbqR84tE6grWJhKjuv6\nlAPZJg9tHy8Qt8Nt2zTG6u/7A3yNpaTRjH49oqtVhqY5ZmJofUE/JYplrFPVzMzDkEA3v2Uzp6yb\nkNuZ0liUA6kWQl7X+g91Z+pzEY7qRxaOTao1MW40AhWTHQw7MCf3OtGMhNXIiTxZQ72swF+Se7Pb\nuYFKUPJFOpx0ZI1f5c7asftw3I7bcXtJuzsshTyhN95ma/sFrFuyo3azPs05lZyvfIa37cvu+fS5\nglwj0WFHoKxNo0GuteYpQwZD5fDLB7wwUamtw4wntaLsjfNi4mZWmR3lZJg+e5WuAk+eu3aZRHUq\np/Ymv/5Ha3Lt5nkAkryg0NN4kMb0lJrWXSsof0L+59wHnsNRSu55hcOy06es6tKWbZMvSP+T2MbM\n5P3eWBmcrQ3+vCsn6UNhlcNITMM9p0P4rFgg0/0Of66s02k+owwrmCGfXwsC2nY8rutJ9NCkyWFf\nItyNGyOiVTVzJ1MCZU92D6RI6jPdMdm2mKr/j2PydzuCG+iuTEBFcJyDDpkyRdc8McUbhUnflvx/\nvWTgqNZiVkuJtNrvlNPj+YrMx+JE/r5TjvBVUfmTPqxWlM9xa5t7XLl2UU0pKU9Gbknfy4MpYw1E\nhuNttpTmbXUwYLqgytzplKkGrGfVkEW+SUlxL348JS7J+4snC5JPKdCskH9TxyVUzsvMKLGnlHaV\nBtyainVwwSxza0/moqnyhae682SaObFSF7OvbNzTiAOlv8t7FaY9uScnNMPRzS3q62LFJm7BhxXg\nFW0fcqiBXXMc80zw2gBud8WmEAcD1p/4E8ytCQTyoNimQbIjC2GyvMpwUx6KuDlHck0q7RIFoPSm\ne0T6UK10NkgVbWdOY76wKxMV736VjY4stqghD3R3dZX5Q3moNkol+ruy2JIoIlLz0nCqlB+X93/8\nHwvS7Ldui+sXeYGlN7+/foPPnFYQypee4Le0TuDhF+RBmDQj2opu9MrnOXNVHnr3zEU8/c0/3xBT\n9coLf8inH5fFc9aYcnVekXm725x4VMqzw9EmJRWhDZCH9HY2vpcjmP16zcsSura4T3HvKdaVRr1a\nctkvSyp2zRgTmDK+MBTz+qt7Gzx9VTQZuldqfKymbs6bHmDpWSE4Sd52hpoiCJNC4it1v4Ply8PW\nDRuY6oIE+7sYGrco8kMe0LTmlwfyoFxqT0hzeSjOmW32NuV6c6dWONSH00ljqlPpn9GUMaVWg04g\nm9St7avEgaZDW0s4A2XDutWn2pZ7ZigRSpHb5Hty7YmfM7AVvdnZxTI066KfnR8nVFUjozL1OK1u\n6qLdZE0DJT23yVxNNvVDncPNGrS6SinfyMm1zLw3GnBzUxib+qMRji19u6X2fQWbvTmZq3Qas1wS\nN7XvXqY6kg23OT1gWStbn4ruLMp07D4ct+N23F7S7gpLwcSnWtxDFH+SiqFMt1Eft6EEKTem8G1y\nwnaen3BJqa6fe16sgLPVgO5QmXEbDWyNz0Whz0Sr0xYHbT4zkJPipMJIr+3tkF6QAM/4ckCotfTB\n+BpWISdlGk24ORDL5Ns//hdDNTkvUpftuTZBT3b8y6dKVDTBva6R5c1Dnws3xb2YtnYJV+XEX2n2\n8VyxQjaf1mDZZy2ePJTxLWcDbrwglkDp4glObEnWJQwqDMbPaU8c/Tc+wincmfsgn14+dZJ3KnBq\n6s1RV9BQZgdUkNNqtHyGkkbGA1vuBzspD90UO/jZ4YBVJa35/BeusPBGOYHr45zmsnzGDyQ4N5yv\nMT2Uk73WnjBWq88u1Vn2VLSnPMeuMjR/20Wp+kusOguOzFVnI2RlSVw0t28yvyIWRCNxSJtyOtaV\nFGZsJ3jKlN0MSowyHd+oj68cjOniApVMsxIanKtYMYsaGKxnTRzEvV05VRDoOor1MYqshG3lrizP\n22yoAndtDa7EspbPtQYc7ooLNn9C3eDDiGlL3mvYNlPFwOShQU35OPfHPqkn932uLOt0XCmzou7m\nRl7maiJu3ANzH2R04/8E4FJ1gS+pXuqdtmNL4bgdt+P2kvaqloJhGP838F3AflEUD+h7beC3gDXg\nJvCDRVH0DMMwgF9ClKcD4EeLonj81a6Rp1Om/WdxsIhTCYq4JmTKntxajLm29VkA3rX2fTyxISfX\nvKp43DRgRSsc02CHsqt+r5fzrqqcl58xTd7fUiJUX06t95Qs9pVRlxMG29fl90qUmObK6YZDMpAd\n+IOZvPcvvqb/ehjRznLee1by6Zu711nUXPfj+3JKVD2Hq6vinz8cDCiCmwCYRYtEA1SP1sQ6+OVW\nwTer1uQTA5t7VV+R/T36SqQ6XaxxX1VOxK+opQR3noYEMPRYOBzskbgSgN0JBixpQO2wtUJbGZWT\nySG+ks0ODTkx32xP+VVFY76/FfLFtoz/AcsiuCbjm66tMs+MgkxiILU5DzcTK2CYVWincuJ5w0Ck\nioFxELH2gJy2z4/kJD1hGNyYSnCtwhwv7Mvr+52Qvlov7bKLqXOXa+o0ziIcX9bCZmGzrMI/1xyP\n5VTm3r61S62peAEVasmsjFA1I714gqms29P+hIpqcWRqYZFk1FWop9afcFLTt+vPTcCUU360U8Iv\nyfuBBkYfWsqw1YplvgVqgVjVnB3FnzT9DtdTmQNbg+qVccJeReZw6eQiPxKK+NBnimepeiK5eJB8\nhBXl6th5eQW8l7Q7cR9+Ffhl4Ndue++ngI8WRfFzhmH8lP7/fwt8B3CP/vd2RIL+7a92AdOz8c4u\nkGx0qCqQZJxAtS6vh1HBfEOEYjecgjlX1WAUxLHgOJQ8uRlJ5uNrjUNlocn1gUzqxUsD9gKBB79l\nRTabjVGLReVrvPnMHqYu0kk6wihmj1ZGoDRf/+JffuLr9j/Tcu+46vJETzae9z3axBxJUO2CAlqu\ntc9ycVn6XFuvEeSqTrWzQXVNNqrDiizGh088x5NNMZm/091ma1PM5FZtyolAHrwrFYenEqVvu42q\n/7XAnAtVTTp98Q1UHpbrXcyqePOyAH2vRLWQPu8NAkquBs+0nmPkNvimUxKULfx3845lhRWHC1ha\n8dp0HOqFvD6hPJi3NkskGpSjZNHToB0NaCkuYjGBku7ZF1fluvPNJQoVZ6kWJbo9eUhb3hJ13eHq\nts0o0FoZBUtV0hRHMworTkS7JcC4uuswr/D3ST9l3lfmbgVn1atjFp0ZY3IVSyHy1Wp4xPg90bmv\nt3KCHXXjTtToK8vzYqNBNhGXZ7WSMdLyl0pN7vlcahCpy2sXIdWyrAHP8DjfkgfariyyUpI+zekN\nHmcJmRIKDcurfGjpJgCXujFjXzahNxt1PjXDU99he1X3oSiKTwHdr3n7exGZeXip3Pz3Ar9WSPs8\noiu58pp6dNyO23H7j9q+0UDjUlEUipliF47Ihk+CRqWkzaTod/iadrsUfa3ksFRs0szLqMVNalqg\nqskLcxnZSNJ6sXsGT+FajkJj3alPoiIsc0EHpyq7csvIyE7ISXKYL7GoKbCyErFOvRxUm8GftzB6\ngo4zco5wCGBiKK/BPQ+IeXZl92tHMyuOmvLWh2Q3f7R9ktYF1ZL05RR865kq7q6YjAflXYbbMo5D\n26Y9El2H5opgId5cXOBNqo/ZO0h54wnVmWg0Mc9In8v7MR+1dHyF9P21uA4ArvJCPGAdcqEqls2a\nsU6uOp21ScRAQ5a1gwnTlhZ5Raq9cHYFf6JaDxWfaq5FY3OQFMKBUGmNKVcEAzFRIZezy4/Ti/S3\njNqROrSTWphq6bnLbVrqruSFLKt6Y5XTSvoyHVkUy9KP5WqOq4snqhqUhlrFqRBt07BI9WQ+QU6p\nJNewnQV8U+Z5oTzCn5cj23AX9fs95uflGkmc4Vfl/mRZn9XSEzI+NQ7cgwJXDCwWcpt712QOW/4q\nDUPWxcCI8criIldVE5VqTv0oaOmhSvXYy2usacGTZQ0pdO4chTbnRumIQ6JtZzzQlbW1PvkDqn1J\nnR4YIxbbSl93IFbaq7XXnX0oiqIwDOM1M3zcLkW/tnSyeOjM9zNtP8Z3Ij7nhzd3OPuQLNj5Yo0l\npedeNB0mDVlg3kQf8pqJrUw5wfwJlpTQwpq/RC1RWfpT9zLZlpubakn2cs+nq/lj66mAeFrTvh3y\nohGVYynxyZWnn37FMfWxGN6QqHb6gQuc06xDekIWmLU/R7KmdOKfukanJibsxe0+VvkBAJK+ZBmq\nF9/F+AXp++qZJtNrWtHw4BjrlvT5uXiXfvfT0ufblCLNo1ev3qxCFu6b3vPdvLUlD3fcuAevL2Zr\nsjBPcUtqO/asCvcqNDlalAVYKiLKp6Tvi0lGIsPDGZQYt8TMnzMWCS152Mq7XwWg5/ssG9pDa4Id\nyvjsco2VUKPvZobf1zqAVXH97nE9aMlFmhULU+NHrW2DbF4358mU6Zw8FDUto5/a0LAVyDa3wKKW\nTsd+TtlULEO9RBnZ1BJH+uaObKr6W97EYs+WBys3oiPxICuTa8Qt6Krm5al5sDUG4K0Z+BMZX2PB\nwtiRzdc7qfds0DmazzXbJq/I98qmidGWg6V0eMDEnvGXymcn5YRlS/p+YxQR3npM5mL0FgJLQnnf\n1Wjyi4evLZ/wjWYf9mZugf4743vaAk7d9rljKfrjdtz+E2vfqKXw+4jM/M/xUrn53wf+kWEYv4kE\nGAe3uRkv20y7oNzOeOfb38FG988AeG+5ymYglsA9lypEKs9dtxyGqg9p+LJD9xpLrAxlx1yqNjE1\nQOlXTS4siFVxdTRk5YLstFuemGGL7Yx+X8zue86nfKU/U5V2SI+ktiwyPXMvXJIT4+rey4wjzXDn\nNWB2cBlzUU433xZ3ppj36ORK0uGfZUEl0eJaH3tJTMlHGtL3rSLn/HmxMPqlFXw9xZ85XGdJuf+S\n8YQlDYxthC/aBa/FhWgpuUecPYtdf4+MY6mOW5U5HpZcSlpIFrsOI1twBnXlVKxXF/FULMc3DSzF\nlpTaFmlfLDLDCY4k03NlMB6kBXlXgmH9lQXQfLuFQ1fVtqdZRk1FYgbKtL1v+yypuW94Boat/A71\nMWFZAreVzCMN5f6FhcLY3QxfMTBYBZkWStnVeUxf3BgnLygUIzDTp88tkyCXz8bTXcJFWQPGrkFD\n3cbM0oDjBO6tyXv3jMssrMm9PGkvMD+vFIJpgaGB7u2yWDlzcYSnvKOhBWXV6yw5LpEiPd1Gk4kG\neT114cZBgDmToh8VvOOMWBi/Y26zuC9r/LHlLd5fkTn6yLPigr9au5OU5G8A7wbmDcPYRFSmfw74\nbcMwfgxYB35QP/4RJB15FUlJ/p076oVvUlwq81x3wnu25MH9yO4iZ++XRVMtDPxDFYdtb5Iocacq\nyhMlA26EGguNM+Y0yjxnNLGUvGPq75DkYnbOpOj3oojpWMy9a+shtpqtaZHyYuw+J1fM/NUvfPIV\nhxEXBR/7qvTj0iMN3qqbmj3Whes6uMoJeXUnJarJ7tJxM8pdWXgHofibeXqDsSlmop3U2OorJLoo\n2L0uCz18PuDWWMb3jeoE97UsPEruZ6gPRK1nMzWkz87BkMvrKnHuHlJcmjEZyf2Y2CEFmn1oLuGN\nZMymU8NXH98wqpizKshIPjvaCXFDzb5sBrhVLQG2Y0rINeq7BVONL1iFbEZGa55spBqVPrhKxptb\nCaW+kujEAZZuCoWrJdeRxyxebsdjjLqOLzOxCxlLbjgYmsGwJjLf5ijG1XVmJSVKysiVlzpEqqtZ\ndTRu4STkWsEY1WJMe3Z4+eS65rxmhVz1Qud1nSY9j1BTztU4w+sqb2g+JVEBG3IfW3Uj01jdJDdl\nqgxRlbHFH3dmqdOQ3rJsLCeMMn86K4u5w/aqm0JRFD/yMn9679f5bAH8+GvrwnE7bsftbmp3B8y5\nyChlQ77POUt4WgIr33lmh72hmFzdGqwlsnM/eeBSOngBgBeY8RYa9FTEsB4/x60FOQUeWQvZN8Xc\nq/Q6xIbCZ5UuvpNbREOtLGsGFDMmXsOmKGbbq4WVy8688t3fC8DWh5542bFEyhg9+exHubr6bgDu\ndyRAOa54BIEAoEJrj/0XJIBXtFu8TSvnnpyXINRiPCFcUj7D6ZCxIqS6wwkThQFH3haeVgPeXgh1\nJ22GZXA9eeVc/hzXL4ls+6XoMoeFmKKjqMu6wmv99Wv4TRG+ydSdyxcW8fQ0y6KYQuX7CjeEWCny\nzJisLu9v7YnJPMw26OjJV67ZMNLCrsmEifK6d0pVGvqZjuIxilGMVxdLYpJBoNWsbsUjVWEf17Ax\nEwn4Wk05lY24RGFLksye5CTKz4BbwlKYumGOKWbVlUo3l8RtJpZYKaZT0FN3xRhkrJaFc8OpKklL\nsIzbEkto3mtSLsm6cROI63JyW/mAVHkYhmrF5HYIyj0xrnqUtTJ0XDgkCjgKwi6ZcobklgazRwl9\nU8YxqPuUz0m2Z3rrOR4ZCDzo3pWnePN3fRMA/81/9znupN0lm0KVWvoOPj59njcdyg3/8o0Y+0G5\nMW/ojOn48vqEFdOJVbZ9JgqQlhn09GGLM2qFbCA37H3Sipi+40qdiqLNjBk+PQ3Y1VqFyfWERNmb\nijyG26L5hiX+7NZnXtl9KIBhLL/xuXGJ92zKw7S3KFmGucQiLCTGMd7co9QT1qDPGgaPqrn60Uiy\nCW8++xAVrcVYjgsmPRUuJaFQl2H9KxPCKHjFPr1SXwGCsTxsT0f38IBKru8vNvE0M2CkdfIZkYk5\nj6WiqtNcXB+rZ5CvauWgFYLqVhjTjEwp80u2Rb8rD0vb0OxFN2VJRXyngy6Nsorw2mXmlK+wyHJK\nStKaKVX/UhxShAroMSxiSzav2mSfisq2F4FN7CirlfIvxqUp5lDvdaOJ58/qASwMBZEVbgPT0dhH\n+iKdf9nXcnfOECgzE9kIQzfAedV96C8l1AfSX6NqUslkrvqpQXUoayExFqj6Mgd2ImMeDUIcRyUD\nMpfRSDJQZg4TTWWWvQKjJ31zFYE5zhr4GvsoBkN6T0qNTrv8nXz8lCpkPfg2/nVbwX532I5rH47b\ncTtuL2l3haWQxjkH61OK/dM8YUgG88xCj+eekp14c9VGGbowwoIDZc91bdlpTdfn4Zrs1tfDKnMN\nOVUq5y/yoNJZbWUplORE2G/J7mts7nOo+ei0MmGqwTDDsG5zHxxSdR8uXhCsxOXtT7zsWEyFbFw+\n3GJvLCfMvNqAxakq5XANgO//wRMMEwkk/sDqLunCOwH4V3vPA3Al3aUcCU7hD7cOOJnLSXvl+gAr\nEvPzitn7xqmbj/or43xq6+N83+BNABj1N5BqRmFiVFldlPk8zM+isVrKF+4FYMFYOILoGtmEsKIu\nQW7QUysk7o4ZaOBvOJYTesMwYV/GUTq9SLGtdQRRRl9P/F3bZlmBOjeUAn8SZlQ8+Y2FCK7PqP9D\nF6cknav4MVlZXk+Vm8Cem6Osp2oS90SBCEgrObbSoqXZGLSEJJ3VmlgZw6lqOBpbdJVVnO4IV4s0\nJkdnq423KGM2h3V6SrufhZtHithhNMXWTFJSWQNgaS5iR7E1qelgKi5iceoSa/1Pbo7YUi3UWiLv\n7RUdslgs5CtxhXP3yO9t1HzOBz8AQG91wr/Uepu3cWft2FI4bsftuL2k3SWWQkLn1g5XsxtUHhe/\n6PJkit+QXfDm023WlHUmKE2ZiqHAgRJcztsRh0pztpBGZKrP4Nd9DpUy+CAfMr6qbMyOHAfTaEjY\nlVNnb2dCrkIgxUtSkskRWvDyY0+96liUJ5bI9ri1rsIiq+JPnhqaBFXhZLi12WPtgvinz5srPHBa\n+vblm+qfZ1f50jXtTy9nd1v8+tHNLte3xJ8fHE6OBG6+0Ram8v3JwGdvQ9Nb7oCTTbFi/Dg60u48\nZ0ecqEv/SkpgapZXsBXlZ00M3JEyVpkZ/qFi2gybeG8WMRO48mR9QGFpnKSTYp3WUKlt0VBuiLgf\n4zky9w0tyqp5YCkyNVi08XuanrWHmPtiCY78kGRbi+KWJdAYT6qUFYFoUGAo5ZudjbBLcr2834eS\nxgRUs4J0n1zpzOLOhFADnlSHhKbMS02p5sZGgadw5ZGb4Gjl5+igwlTjFrfSlFOOBBhnzE1h5FBT\nLVQ3MSmronc+dslKMp/xoAodue+5ytRNtgp6tszxKF/gk1pg8JY1mxt/XXVE8jb/6Ahzc2ftrtgU\nQmPMc9anqT79MPPj3wdgftlnpIKgg1MG8ZY8FM9VLU6lsll4Wsa6ZlTpqmhGeWzSKcnNGGw8z7MT\nieYHo+v0RvJ7jk7SME8Zq55h5KUYg9kDZvIiBMjHU1fiDX/7nwDw+P/x6lHcdDjhsyoM8sBQbuZe\npcScBh//oJfx1s98AoCPFe+ED/08AL+7824AXPNzlB0BL2WTLoGa86k9Jl6WcVQ7Kd9YmPG2pu7H\nYG+P/7ApG+vfanmMarLgXXwipfwy9w4YKPy5FkgGqBct4phCw26ELrGCbYqmy8wB6zNkqvqHX74p\ngcHdZIOp5u5bQYp9WfD5eZaSqkBw4LugHJujVAOUicdiRfrZ6UwJE8kARMVJFtRc3whclkainzj2\nZHM7WZowVuzFuDugUM7HvCjItQTBzsfkCmrK9RrBqM7hWEVfRhGbhTwyXVkwiQAAIABJREFUya0U\nZX/jQHkdLctnf6Q1DPGYG1ozUylVWFd+xWqlQ+DIWBsKnw+NCn5fgEU99yTsytx2wjUmgZyAk86A\nYUcW1FOeXm/YZ1MV0Oykz/kFgZsXyyE/+lUJaL/tbQHfcWENgIvcWTt2H47bcTtuL2l3haXg2kus\nzf9TRpXf4/z9QmHylWc+R/WBDwFQeaZF90E5Ke4zyuSqgsy2EqYu5Oxr+q7daGIoyWfXqLGnJ0za\nNRlrldiMrs1Zskm0yMToGRTGTM8xApRqt5hSa/8MAI//f2+94zGlpkmo1GNPxlIOcs+1G3ziQKyb\nz+7tcLgjVeUf9j7BaWMNgH+XfQqAN604nNQ6+KWWgV9Rktp6i/gLM3ISC3hRQ/IbasoFkRgWc4qO\n2/bLPLguJ9uo5dBW6fNJ9W2Ux4q2u/oG+ffCCHck2IPatEtREUvBt9vkimVod336B0olprqMQTcg\njWfovz4HSoBju2VKkZyEoetgDlQrUlOEa4OIrlpuvlumCOXakxvr7DXkdN8sBlT3BU+x0xV3rdm9\nn8Nzkt83e2VKB2K9pXNjXF9Sw7hncGb8FFo9m/X7DLdViOeWTWpLqs9rBJgTuZcVVdqeTGISdbWm\nQY+SuredcZ8TCiefRB5OR8ayryzRFceiZz4i/QymjHpCwLrlhZiaAbW3PUYD6X97SZXUnTalW1oI\neOI8VxXT8d0XPsiHlQDmH6zdz0+kr+0xvys2hYQBO8ZHmP+m78HbFsW7c8nbGd0Uyob5tSnVQibk\nvtXTZBUFoaiASulEg3drXvr5zoATCnHfrrg8vCUL77FpF6VBZH9BFs9qPOWK5pjXyzEqO4kd+MRK\n4JJbP0tc+h0AFr777wFw8L/dwaCKlDndcDw1KaMFn8gVoM9PJTZ/qtmTn2m9g8aqdPqj+V8D4E86\nB1w8qzDok00eVbaeP3j6JsGc6jJa+0QHerk76NLXa+bsm0VEvaIS6JUW6Zo8bJVmjTMafZ96C8yt\nymZpLWoZclan09Cy52mB0dSYiO0dlVxnwYSJZgzGsdzHUmOKO5TvGabH+UO5RjiKSNoK440yWnoA\nPB+Ir3/YhFxxx3O5wZaKDC+frbGl8ZFHOjUea0mu/3RD+nPY6nF+Kn3+aprQ0JoKd/EEhoKIEsum\nmFVValYjCHtMDJnvWmmTRIFvpS2oN+W1pQQ/Dc+kpm5n4DUo62trvsKKlvYXbglbmbKzk+Lankvb\n7CQyjnZ7EUPLt8915nhaK02r0VU4LQ7AKSs4mu+vKut4bSnjpxclyzA4PeCnF2TT7iQhP6skMuKY\nv3o7dh+O23E7bi9pd4Wl4JVqnH3gXXReGPHLE4ES/1D4Jd7/LjG7n/zikHeofuSWF7Jckt3TUZbd\namnKYFfsrEU/IVW6rua4YKhMtovOiLAqqMhVFU7pxCmurxmChTZ1lbPfI2dpKHDrPT/kv7r3pwH4\nH78y42189dYyLW6oavTDqezmh0GbkoqC/HGQcl6JUT7Wr/G/LsvrX3paTtIf+PYuG7GYkQ8vu3y6\npxqF81OundQCnH6NwtBUzMtkIUwlGcmL4jaGiBfhDbn+/aTrs62Q8IQxhipSWj2b0QwybNlEGzJf\n9VBO0m5Rx1uZ5fkdrEBReowp1A2YxgFRT+5PZikpimlzMMM0mAYDR/PxWYChVkFlktExxI1Zdma6\nnIfYA1m2BzWHeT2lHSfmlAZ2d6pjHj6Qz3emNwHw8hLPKyHNfH2CqSA/Nw5JQ7kncW5jKsvzdEfu\n2bRzQDWacTHm1DWgbczFLFqqXzpzd4qcYqRWkwOZWiNmmpKqunleTalpVWXYl2t1h1NsdTV6wQ6N\nrrze6MZ4DZm3sGzS1lt8VeXvJmmAsSzPxcLcEn90jwQX/64xxy9a0o9fSAz+/v6dkavMmlF8o+V1\nf4mtWvaLN146RTewOOuqEIhXwi5kslMcTDXz0wxaSsZamRFYlubQNUOjmh0FDfLMYqTalAdhj/5A\nJmocy00eTlJyBe+kqQF6E6eTnKyQBTtJMjzdOtu+mJlPbP4F6qWXaV+LLPKBGV/eAgYKHzZOYhYC\n2sqVjsLgFgUzeGr4dX7rzto/fKuIsX5qcJ5LiRBvWCyzHUvGYE8ffi/uc6jpNDedMtHLVfKcXMlD\nKzbknqbhtDLQMsu4mk4zDAdX4dGHo4JkKpvotXFKogCul0ugzkb37371F6ioq+RZjSPh4NxTszxM\nybT8en87oVyXBb/UvJe6CuRm3gKLizcBKNffIj9sjnACedh2Dz7FOJCUw7j/JFN9CKNig3Ek8xto\nfw86IammE5MpoOnCigGHiRw4qR48tutSTHXNOgWJCg1t9sdcviHZhfFwxFThzSgPaFYYWHpfC9Oi\nrVmNxeYq952Q31t45Du5qDUvRenbZWz2H/JvLwvgbOMj/wubGrsyiq+SK1lRmRH/U0nYon5yeu3L\nRVE88jK34Kgduw/H7bgdt5e0u8J9MHITa1plxIRJQ3biqVnllFaAVeolSnoaLSUWtqfFUfdI98uV\nMvMoIMTxKalcVzBNCfflxL+1f8A1FSoZb0gAbzgMGKq52ytbmB21DooYAo0oOxm+CqDsZa+1FvFr\nT/XbWXUPXvxrsUV+dFbeuu2bt3/+G7PoRqaAW6/UXqA+lVPlC6ON/7+9N4+19Lzv+z7Pu5/93HPP\n3ebOPsNFpEiLlGQtji3ZjmLJtuI6rQMZSRzXLoygAeIUDtIIBgq0aP4wUqRNETeNkaQtAiVOnbqO\noMi1FVkpbDmSJVkWSZEcDsnZ7p27nnPv2d/96R+/3xlybC4zMoecoOcHDObcs7zP+yzv8/zW75eT\nkWhNEwWn6YYRZTp3rrokmh7cpqSvDtN2xSVRNbeh+JhFFBBpwD6rhLT09NsPcuyO3HOaz4G5Xl/m\nvavXa5zQNmK/TtVRarlEzIhGzXKoGt3JYQ9bivfY83cIT0n8f+ZOiZYk+mA0P6IadDEK+15pP0hD\n8c7Hy6eoNGSdbadrrOj931DVfiXb4gWFMwu7JbGmRIdTyHPp9zyt/rAIOKOgN/1JQbgpY9ubphTI\na4qYXLXQOZ6Lxd7KirG2JFX6vsuVCasKtFM3Pp0nPwLAy4oB4mV/hm//838hP8zqWPusXs8wz9ee\nAr8Qv/RGQ/8nZKEpLGQhC7lN7gtNwXFLovqEk5nLyY7supvBOYzuduFyjdqy7J6PBgFBRRxGVSUD\nrW8us6KQU9ZYHNUkUgO+lq+euXGN757IaXNjTez3YTxk53kJXfXLgpmnJ8asYHYodmInG+FlehJq\nUcub4st9R3JvfDtmVcA8a889xJDfA+BEskI2Ea1neU4k608505LXx3nOBaXNa1UKTlSU0swvqZ0Q\nZ2Ss/o6lZoOJEr6aqKDUE/EHRjHfWpZT9caXPSZzO/pNpO53GNfUqK4ETOZp2JrmPpkeMq5pEVva\np6LFWrt7Cac6Mr8b7RZW8zdGk3mZdU7NKDJy7hEoWKtjq7inFIXpMMSOxFsZKTnPbqXKBPENDPcP\naSj3wiwt8VOFiEO0rrprGBSiVdWCggNde+1uwvpV0Uy2/ARPHStzuOOSVwr1S6CqGs1jzhIPqx95\n5YEq07Gs2/dWhANlp50SGA3VOn0oX8fvZO/OH3VfbArGuPhRg8QxeC1Rl6ZZxIMKAbvs1Gidlj8u\nLGU4h4oPuKoAGmvLNLTuPjUxngJhFFWLp1yEtlOlrMlm0liSGLzb/0O+mkps92RZY1sXt3d4jZeU\nS3DQ79KtKijGzbs1H955ObemTMQHR/yYK8lX/8dBj/edlrG70ZNF/r4HNrnSk/6/y53yrDqqPvZ4\nyIvXZCzevZqx58h4bSgTVjSc4szxDXDIz8h1r/RusqJEPMmLCZ7C2WflG9dqJLakOZSHYrzt06nL\nAzl7URO5ujOqsTgJvc4GvtZUpOsdTngKDOMlnNCU9ZeUQWu9iBgZeXgrtoavB8C6v46nMG1O4FGG\nZwGwrpg8K509Dp6Vh+qkG3CUqaO1GbM9lDa6itNxNIX3nhWz42inxgc6crB8YdomPyGvl2c5R1rH\n0VHTqDczrHjywO5Yn++/IGv9N6rfx8+8X+bhS7Mq39t9DwC/rUQvPzRrMni/skv/3gfoHf7u64zq\n3R04C/NhIQtZyG1yX2gKloKMMZuNiFVHTp3V8xeIU8EWaKz61LRAxanXaEbq7FmX08qxbWxLtICw\nHGIUpckxVeiK86kSuqCORkcpvOIoZE2ZeqejEelAdtStwQodV5yRa8GAeDAPIc3VsP945NpIWKnf\nPTvBVlUIZ5547Dx9RcR+72nNQKxFfMiVOLd1d/iJZRnv806DM49JOnbpDmlFWoGqiMpxK2Cq1YC+\nOyBQs+uccekVMk9PLsFzinClKQ+vK9PxlAOtDIz9Cvs35Ac9hbmbJQnNrpyk3qBJuKzz1O3Q8mXe\nW+4aUyPh3ndpCnLuejQ8We4jb0hFtcw8jjHzzNiyStZSTsu6jEXvekx9TcZwNJwRViQvIE6GzAq5\nz2sT0STroWFwJPdgWzmZkmA83k1o92WtXl0e09IszGWlx3vROtQrssZOh0tUH5Rr/M3Ty9zMxfH8\n0Ys1RpmEkb8/FW1lK3mJT5QSHv9a+1k4fD3Gj/8IzQdhYaoRuIaRAqGcPTyivqz8g5FHtSYd6rgF\nZUvMg6oSe6Z1Bx/Frat0CfThzz33lsfZjdqEMzUlNOU2HCU0Nf+hFhZs5TJ4K2bMoeYvWNOiokk2\n6fQOGTpvyZ/cRIy+Z++QKF7E4U6J5f+4PNgWfL6veUM+duEsAL/xtZQPvUserDMatYkudDmTihq9\nV3a5qCnfdm2dhiY4xWGTNa00Pa7KwuxMjonrMj7dpGTPiGp8ggGDiqi23eUJS+oxH155E4+MKVmO\nFf6uPyVKZF6X9uRhffxklWOFLju9XmGmhDobaUC8Lg9ykEBZl3qGOTiPNT6mUOj/VpvacL52Irxc\nfVDLBZ2BPMhZJGaLG1a5oYdB2PAYF2Lkd7yMUqHwljXiMJ6NaLUUnv7QY+1BNStGLpttMW3qrYjr\n++Iru7gh7R580/AX3i8m2rMvPsKPf7eM2/PXTnDmu+R3y2MXV4GE2or8HXYe5nsekU3KP/u9/Nov\nS1lAUPZINcfnHIYrOsdwZ5T0C/NhIQtZyG3ynVLR/z3gk0AKvAT859baY/3s08DPIjrM37DW/tab\ntWGtQ1kETP0ZcSk7o38+xcwUbCIoKJQPz40iXE92vlwz7Qo/gkC74lQotFt5AL7ScOejId68ItDV\nvbDVZbwvO7+TRXhVOZWStIKJZDdup7vcVKdVmd+dpuCpT7lQEA7sqyyQ0vCm6tycJ94FoxwBd6dh\nwFQxCz740RbXrKjM7//oNa7uKkVeW68XOFQj+bw1KsjV+541I1Z1bJPDlLwlR+9YvezLVY9ySxx4\naeQwU1DRzG9RqCnxxKkaE81UPbyh1YL5a5MRHB3AaFVU/74b4Cn03OCk4CI8N4EHT4s5Uw3AKCBL\nXvEotfAnjBx6Os6hEj1mPijoMlnuUHiytnI/w9XCtGIWkkVaCKXwb3GtxnRZnN/l3oBJW7Esbs4o\nU+nDrqJaNMIVjjOZ027DvxX5WCenviraT6+fcuEBGZdeJqbYX/m4wahj90cfdTlYEUf4e06M2Jvq\nul7KSZQiLtpUaLeh5YknFFjmIOZjF2Rc/v1BiRlIP657ExxNzX4TH+8t+U6p6L8AfNpamxtjfgn4\nNPBfG2MeAT4FPAqcAP6dMeZBa+0bx6OMJQ9KosKjPhPVKhqtoM8+VS+imilOXq1Gpnn+JtQU3Ty4\nBdtu3AQ02cafGFDiUi+bUGqYypvow3jUxz/WWysT0iOZ5Ea5w7F6lgc0MQrxPbgL7iXHOBSK5+fo\nopF0Vq0cxEP2VBCjQtNcdZFjcubTEziGVJGRsXemAs6lH0j/L9+ccnYk9ufoOCb15TpLHeVw7Jc0\nV2TcerlLuKb1B25EbTxHEzJUIzEb1qfy/1LgEbeUij3wyIfyIKz4O/yRbiZnmjOCXNR5V8OJ3rhP\nrjBVHtwCZIlrJf6WtNfsj6ApG3Vbw8GtUxYzr3DsrBAPxeQxjSo13ZDwqtS1/iVTCPtwCFldk92S\nglQzyN20BPX8m8IjnScnKaK0m+0QDOTgqCUxU0UCD9dK7HXdGPWhS21GVNGdZ7yC50sE46DcxPGl\nH3HUJgpkXQSZHjYjj9oJuaGo2qKlJDn+tMqKLw93xY1wNDwbumo+2xs0lPXqA91THH5E5vLg+c/z\nrafl/b/IN/nVsZaGl89xJ/IdUdFba3/bvoJs+hWEMxKEiv5XrbWJtfYKwhR1p3iRC1nIQu4DeSsc\njT8D/Ct9vYlsEnOZU9G/qRgsNswIQjEf3MoyK67sRUOncouHYDIq8DLleGgrnh4BgdvVKx1jA8Xc\ncyugtGJpPAX1YGeqzs/cCjMFuuiPciaFaClP9zzyiXi1J0mB25fd2pndOf+WExi8SKGykjkNmINR\nTcFmr+hyFoOnzrxbFDTGgHrLwyqYWFTHIp3eQpe+E664TLUDvx8QK/BG1Ylp6am6p8kx79qIudEX\np1VneoOpFXV2KZ8yqYqauzwpxYsH1BXvcJIUdDUylIczVppyCma9Jc4pAnXp1HhCUaCPzouJsv3i\niN547s0sb+lg+zdepp++LNegxfGWaiGty3qBD3P2glwsTSNINbqQVLFqKtjMIUvltHXUBJtVfJif\n6BQ4mtfi+5DqNbLMgpG+DrRYbadoMFDNdDvLSTIZI2YlucIC7qs22ggNw5Got0Onz0ALrViHkZpN\n1rNY1UKtUvikWcbSUCnvagWhMmkPTcFyJglZ1nrUdHWUqj2sTAIy5RWtz0oee0ySmpqNFc7OBHsh\nbjs8oNG6Fz7HHcmfalMwxvwiso4/8x389ueAnwOoBD6VPCMdldhSJiM/CpisyAScmxaUpQy2V/Eo\nPQUAUQaiLDS4Cn+du0sECpCRZzFW/Q7WaVLRpBGbygR4FhjL583Ukm/LBIT9Pfp7ou5tpzM2FPuv\nn9wJAKYmVrUfwlPUJ3dJ+lHs71F15WE6Ko6IVLWdxTlrmu9/U6v0qidaFMopuNl5gO1DxUGsOYz7\ncl1LxptZZgeX5PNvH17j9DzJZjykuywe7gtKWjpZqrJ+QsYtqaxzypO+FmWDQO3kuBVwUv0SaSif\nN4MqE4XR70QeR0fKsFTx2HK0XiH3CIZy7aYSmmz7VVIlhllxYH/ejXhKNJO5LqZ9uoE8QI1EahlO\npxOKQLNXPR9PSVobkym5lsYHGExFrhHMowyug6cZjbkXUZ/J/SdBODfYyAKP+kjuqalvrhcRl3Xv\nbQaGYSkhws2g4CmtYWgrF+VsdgwN2WzCSZNgQ/o8S9fpaylz1ZTgK0irq1QEpWVcF9V/w7bxInm9\nMnUpo0cB6DKBSB50N1ccyWWPNSW/dYOSJ13lLn3sUzx7RTbFv/Zol//+aWn7Be4xQ5Qx5qcRB+QP\n2lfqr++Yit5a+yvArwC0a9V3vn57IQtZCPAdbgrGmI8Dfxv4iLX21YDCnwX+hTHm7yOOxgeAP3iz\n61kLZVwyDBJirRBrnXHozJRm26/hhep9n4woGnIyacYptIJXSN4cl1LhxzOvwNdrlL5PWiqARk1P\nj6MBA3XcuVnCSB1jvdhhoNoGsyn95M7VdaOmSeJt8XAoEZNdBYUJVpuwIubRdx/CM6p4ZCak2pYe\n/AV183wji1h5TE2pU1W+97rstZ+/mWI1hDGdDihmb6wp9HuK4TeYckMdnlU/5vBIrnFtVSsgT1bZ\n0NN1uOTiKUlOtLJMN1EsA6eKr6jSRU1PuWmME83xLMdUNmTsyxcTzKq4msL6EXEpnX3wrEYhLhcc\nj3U+8hJfCwHsxDLzxHTDW8MP5eQuV2Rce47DUqGAM4XhULU4r+rgqnYTlTmJrgija2RsDfWpXGu7\nGrA0z18xU1ozGfNhPkXBkRlP1DnslBxrOWM9zxko1V10PMRXd/6RagzVqEpfTbSuO2NfYTfC9jX8\nfTE16ksdjKZb+6GM20Y7x1OzOawHOA2JdiwFAcmpE3ofe9SV/q2hzOXjASQVdVYHASuBvN40LX7k\nr8h9bE3a/GVXckN+/99wR/KdUtF/GgiBLxixhb9irf1r1tpvG2P+T+BZxKz4628aeVjIQhZyX8l3\nSkX/T9/g+38X+Lt3cxOOtVSKnOu54Uh36Gs7K5gzek0DnW3Z7YZ+BVftqNKbhxAbWEUDNsURhdp4\n3jAj1/h+kvU5OtKwUF8zFPdfoD9Q8pL9PWbKAbE97HE0ke8M05Jojm5wB4Feq07AII94uSa7/1Kh\nzMluzrryrr3QbHEROUqeqa/yYa3a+/JMwkdnTr3ATimn7rvHAV9uiF9i2b/KULElIltjcsv5+dp7\n78s9DUOmI+YKz25R0mrKOF9+SezXzqPb1DriZEu9Bj2tamwmEZ4nJ5S7XDLO1LdzrNWLwwkDBW61\nRwFjRDPJt6+yF0vhTu+pXV7UCr6vPSNoyL3RkJnaxo61zH2nYafCySN1tPkOQVvGYC1TvoWwxLki\n83RtNcBTtvGes8fKUBCG8tMVwpFqg+pHqOxN6Ku9P94fcE2Rlc6OamQbqjWMJkxzuX9/KBpkI75C\nUx18FwJwFMrv3JmCb27LOtNlSi8taHdVwxxvMC1k7MfDGUcT0Vye6FQ47MnYLa3JHBzNQpa0EjOz\np3EUvWmnyKiOZLwOY8PasYznrCLXKr0hM4Vm87JlrPoo8rTPFV07F4/GfOUujfP7I83ZtZhmxoVa\nk/c2zgLwxEM1ZgcSfZg0fXxd9EPGmGsyYTVJ22fmBTSNDLRb7ONUxRmWJA7DoaiMO8fX2FdvVjGU\nib9x1OP4srg8nMqY2MqE1qIqHWWunlqLV6hjSG/3jdyN6tekOhvhteUhW82kPVv3aBsp1a4011jR\n5/mTay1Wu7J5fUAxB831hBXd9OpFj4sNpS3v+/gnJEnlaP+Q6yNN3nmt0mRjmKiH3OTm1oIOXIPV\nXI2bbS0xvrzD723IctiY3gRFKl6djdlbF9PlXXsJTldUW1fzAG7mY46fFifo1sDBO5bN+9nejLGq\nzMaN2VLH3jCf4xbObmVuO7ySEJ6N+4yCI73PE/Q18rNXCEFK1QwIlmV+neMag0tXAVg/GxGrs7Z9\n2KCSyX04kSIcW5/r2/LdZ3YuM8nE0ToKa3R8mSdubNNZFdM0mZuPlRYruTyM0wj8ilxvb5Bg9HDq\nRXL3Va9JosxSk/SQgfa1ZnJagXxn+zijFci1dzRdOev4+PuyYZWVA1CH8O4wZvCi5BbMRgFnFY8x\nXRbK+XC4zdIZMUG8iiG1yrTtbNPpi+mWrEWcD+8u6W6R5ryQhSzkNrkvNIXQCzi/fIrL+YRwTRmH\ntzdoP6IUZTsTHHXyub1DskJU3kIiXhi2KdXfWdQ2qCkiryl87Fi+5ByBO9AU3UPRAqrjIVviC+Sh\nxGVwLHvk7uCIiRJoZEV2K2R1JwFJW8q3O2vr1PRkbq/ISTQcF6wrZVhiSzoXhLnZbzZ55AF57T0r\nWsXKOYdnB6KbnGuWxH1Vh9/3KF2FihueMdzcFfIYM97V+82p6rE7xcMqqYktE/J5LkQBvpLLDCcK\nE9aI8A7lhO4bi1FNoB73qGqK8t7KKZbVqYZRsJGtA+yOHPlX45JlzQqdTSylqrOj3ozRsYLmjmQ+\nJO1knt35SsJ3xTd0PBmvMQknYjlBM+Yp6hnRsYLkjEMaM431X4uJSnkddc+BVjlWSo3zhzUq+3Jv\nZ4+qXNfTvx0fMBtWdR6WqauGUGsqh2Veh5Oipa2UG3zrQMZ5faPk95+XPm06um6yY0LN6RiNXAa+\njJVJUg4n0o8zwYTDUtb1iSXReKMixWgMtFGJiJvKC3HlAOe6jOENk1CNxQHrHqmKtXGSUNHBTVRQ\nt5q/U3ucttFwqfHpWc2XuEO5LzYFt4RWYvCqXcoTYk+eP1VwU8tmPS/j5UNRB93BMYdjGcCHFH8v\nec9DVBThN0+H5AqhndgUVyvDrmYTqqVc4w8nsiAOrl+l0HwEuoZC6wBWvYAjdPHyymZwJwWo1bqS\no5Z93rMi1uZN3VbOt0t4SEBPfiCeMq3L5G9udKity+uPNmSBff2a5cm23PsVv8bZrizol29MOLeu\nxKXLAX95S9T5X/2mbHTOZIqj0NYdUyVORrfurdSH0HcdfGVneuSs9Or6uM+pithjWwdTuuq32Os0\nWdJYfxnukmnC2BxnsG5zrmvE5aFWxgtT2SzaRYwSXJG3Siax5oYo41PGK4lgrx7Pig2JA40ueC0q\nTRn9eFfadYaHfOtAFnl1P2fnSO7jkS4sXRQMyq5bUpSahKte/SSZ0VScxy+WM1ZmkiD1H7wm3X25\nUb+/T005NE9dFBOl0qoSrWqp9hRqWjI+PXoJL5U739UOOD4MBzJW0WhEoFWUL8QJk9n8UKvQXZZN\nYeTK3F3cCIgULr5a8Uj1d6vVjC/oqjsRHbPTErPhQU0rj2djhorjWQ27NLQuYBTVCMTCZFSNeVe2\nAFlZyEIW8qeQ+0NT8B0aaxUOQshUtT8s6tQ2ZfdspxbfF9XIr3ToHoqKvbkp22FU71BT7eA4Hd8C\nv/OzFHssu+5aGuOflDTQ73PFybTrwr5mUDbcAS9oOuul3JLYeYHSKyfZm+23xhgy9ZI//OjjNE6I\nN/zDPdFGsnaTVa2hrw4mt6rWmrWErjpKK55EJ75rI2WpLZGIi0CzkP6ttQ+pacFXUg94/gNijjyp\nB++3rsNHqqIR/UF/lSQX9mWK4lYqdVp6tNblRKchavaTm0s4kWhpa84hWV1Os267wprW5o+tSxmL\n9hIo1RpFzvoJ6ZNXf4SNszLe+5evM+xKlODS0xlGaefT8o0j1JWOx0nlBZ1mHmstLY5SWj2vWyMt\nxLlWb0Zs7onWt77SpBvJvNbaDcZjda7pfNTyjELn9AlbkHdkbpZDt6i2AAAZmklEQVRDCDUKQmJo\n1qRf/lwTqlVpd0RbaVPlRCyvw1VDpJmHp3zRSvYzeGBV5nFUOUnYFHW/dgjDQ9F0LrY8yo5oCBvK\nb9glYaxe7IpbYnzpX+qPOb8m492uP0xtTd5fUvzMODAsaSGgW4KnXu6SGb0Nmdflac61bviGY/7H\n5b7YFHAtppHzY/U1Tp8S2/rMyQ7Tngx2tNSmpcCsZemwWpMwTWVDB8RpkERacXezx6Su6bqzmGFd\nHpoVv8Sv+PpaVPgHGjX6y7LBBM1dnrwiXvSnXzjipQNN+rmLbhgs7SVZKBeYcCaSSa+puu+uprSN\nEqK2IppHCueedoliWcSVrni3HywMgRKm5lkdxRWh3WxgaqIGp0Wb2ntEPQ5KWYD/ybkC05UFv1lU\n+LV/8ox8N3cINAmnEVVoh7KAzm+KyXBhcxXP03COyfFXZaxa/jrWl+9GR/tYrVaMNG+/PHOSU1bu\nJ2p4BBPp36mHKtw4UG+5O+al/1f8AFu3QGZee4utWo9UIzGNsImr2UdNDXVWlto06ooENWvS1U2m\ncbZFqOnWqQkJJ7J25gTCWZ6SL8laOGWnoGYeWYNIf+enM6pLNZ0H+d9GBTWlGkgaDXIFLJn1e1QC\nqYJMtOZi0yyxokC4J6vQWRWWsd5Gh4qS2gy9Gq3qnNVLxsetpHS1nN+6EWrBMFle55wS61aqI7DK\neam33jUumSaZ4QVsByv63ZhHEzGxVk4EuKy85li/nizMh4UsZCG3yX2hKYRuhbOtx/h2mhHOnSXX\nI5yLEmvdiGcU67J9hqlLouy6VeSUzKIaxVjMgEm1QV2da3kMzVhO4+nSaU5oMtGsqVBb0TJRVwup\nJht8ZVe24OtHz5Lf2i+L2zgY30hM6LNiRDU8/YGP8R6tnpsG0o/aOKPUEyjc3WaghVKb8ZTAVUh1\nZbtm9SxL2nJS8fBHMlVuu0bdaoy9TGkk0pf0uwWpOdiPscq63bla4YvR5wHoJ2NOdkSN3Eov8q5P\nyjW+P5PTbPPhc3QKabu/kRMdisZjNzsUBzKGx6vrLClVGnWFARv3sauiqq4VMOmKVhFGdbK62DRX\nn2nTU75G+yZ4EPVqhRUt0hp5Pl2lsssVa3PdseTqEK5UfbKOaH1RWqHQsTWThKQq6cHRTMwL4xlC\nR07V5PR5mnriZ62UYCrXLlZzwlRel1qIZZKYyrKMS9ArGfQkX8KtQr0i33nQkWttOxO6iqeQBwFr\ndWkvWC0IbojjcmXFwTmWk7tc1QrP3b1bnJDrDZ9ZoCnkRYxrZJ7qWciwOo9WqAa51GK5KvN07Dm0\ne1pmtPJBwqbCy7eqHOR3l1R8X2wKpeMR15dJOx5xV1Z0qz5mONKsuSAkVHBNU/Vwc0XIUDu6qFic\nqYSCSjcj1tDNJHKJZpqLn41INbzlt+Q9t9uAPeWlXBrSWr4KwHe1PH73+JUt4E6xjry8ZPUBVTvN\nFSqt83p/mi9fSzlQSvKoVidQbsuBXxCp2hpW6zomDoVi+hP5uIqJ6E4DrBEfhaWGr8lENa0+DJYO\nmGhIazUZ4Cp+4BJ1vK4soB8/HbC5L9ervl+TkeoBfqYApq6Dr3UER46PUbDWMvY51NBvSxmiOq7D\nSPP9bbVFTTNL/bDKzT1ZxKcvetinZWGaNzEfCtPgUBd/sxbiatKPU8p9pv6Yij7wXrOCQkLi2Ixc\nM/28skaZyGZfWFniRdUQamiurFRvgVqF1VX8to45FjdQNV7rE4xxGMSy0JqzGbOajK3ddvB1fvo1\n+bxT+hS+9H/NqZArN0Yn7+Kd1TD6NLoFHLMfyLi2VkJKxY9M8gJP62CCoo1bKPiK55M1xYRuK+DO\nrKxita4mcRr4GtYc+i6xqwBEvuVscXcGwcJ8WMhCFnKb3BeagiUnsUc836uwciTOm+3NkzRXNE/B\nr+Bpjr9jc4JcPTFaDekPM/JjcdQZBuSuVpxNXbJC1Mekl5GfUodSLJ87JicIFKtvcMwkk9PoUhHd\nomifM/PdiZSuy+6OeNzt9L2MWrLnmqFcwQtrVBQ7Lx0bploT4XcCHNVMEldbM0MCRUn2jqpzmAZ8\nU4LCvEXxBLSC0Vek6opXMtVEIZcYX1NwJzMHR1ON/8OLHh8/J1M/OJa062XPMNE6fz82TMcK+uFM\nOdZU41HUI1awG7sv3x2PUqapzJlnYzxkDJ1kyvFYvvvU8zOmmnD1ehrCXJw6LOcKy3/oE4r2TBHI\nWojaEZ7G3V07xfGbOvghoeYCFMcpvqMJbGqKRFkF9D2vSDEaafFyB+PIOAuz+ZxFSh2po0zRE8FN\nE9rztdeMabZEuzuj1YlFHrJS1X5GXZorCmvvuVQ01yNeXqWYyO86sYxhvhsy62ilZcMQKUFPVg4p\nMjGLM0KCqahFjit35PolRu+nlpbsDWQNzGoDLqlm0hrBbnB35sNCU1jIQhZym9wXmsIsj3m+9yzV\n4iLTC+JwqS85GK2YnIY1TKi2obV4mZz+VBQ9xxZMQ9mVRzs38Hx1NgxrHBVy6tScHokCYjoKnJlG\nDmUsu2hcc1lekutd7Lbp74hzLeG12BteW4IyQxUPihuX2A4fAeC0hrR2XBe3lJPkqBzh716R73pr\n0JF7niqaVJiNGCl6tFfJCBSsNC8TfC36j01A7ijitVbkDZIZWSR9PozBCeUEOtnycQJxdj120WNp\nICG7m11xEq4MDnmxIqfk6v6LjEM5jcrxjCtaEBZevcFMeTzXlLDl6VnA6p5oCvHqOquK9jyNIgaa\nEjyuT4jcOeXeG+eFpsMZ45b4FJz6GVL1H3mKXJRmBkedaNZ6ECtwa+iRaqUpQUkSS5i0ojyYeBFW\n592xY6ziOxROCEoiY02Oo87I0pXv5vWEsULCeZ7LkXpx03wVX8FvE+1z09nA1WxDN6iQa7ZhHraZ\nNuW702RAmYrGMnIU88EUlFN1GOdtKg1X+7qBr5gTE6YUSuBTLGkYvfAZlaIp9KM2W85ZuffqgMeP\nJMeldcLwcDBHG7kzuS82BSfzqd48wQuHB6xWJMa+FZTUHhXd8WQ2xc5NhdwQZzIxVV8G3c19vKO5\nahhRdaRbaXREcySTP1taI1A0XxQB15nNKBQCPXIKhj2tdzhMbkFlWeJbtQ/zxNzXA2fPHB/nQIE3\n3HM8oGppHMkDdjJJGYZzNqIZo0DgtVoO5EbV1alsePHyMh1Fe7YTC6ku4kpIVXPtcyfDd2XCfXXE\nLtmSA6332EgyGrE8xC+PJjQUruvgpRGXv09i/R85EnPnoDiPGcjC3Bu38BWLMXC6NI7keuNiicOZ\nXC/Wh2fvYAdnWUYoSFP8G/L+bHqDrWP53dNP926ZEm+WAuYbl7qRB9mUPtWaRh/UOVyz41fwF8sK\nea4OWjvDdfWBHqe3VGxfS+dz9wh3Jg9/1mzgKlQcqb2F3UklwqgT12jUw5k5ROrkDaYdGmM5LAwJ\nod7bhm6gU9dQV6CaPMqoKlboXjkhmqrTfGoIFWs+1yrKSW+E15TNfTlJGU7l3tx4SKrz66aGUhOn\n7LH8blhdJpxpIpt7xOHXrst3v/dHOHpE+rEe1/m6e+fYorAwHxaykIX8MbkvNIVJWvD714/Zr+Yc\nL8lptf6uDba3ZLfrN2u4qn6Rpkys7Kpmotj+9ZCgoYCh1ZP4Vpwztv4I7al8Z0CGpyfvROv1o9hw\nMFUKuSwjqYtaFq5DqqFKh9s1BPiTZ938fZMXODXZzW9ML/HBXEwhY+VUTlfb+IqGXztVo3FOT7+O\nh3/2vQB0tfRzd5aAmhqjWoGr6u7AWhzVxHPXQdHrGGtlYTE5ZqiwcnlvihY74hMyDkUVf/jhhOlV\nud7OGdFmSrvPWU0Jn5iQdeV3aHYf5JFzMg+XxpY/q2rTpC5a3M+Njnluqtwa6Us852ox0+42T2uh\n0XF5TFzcmbOrNykpNGS3Uq1SRFqAFYsDc1TOKDQjMEomxFbDpbOYtKlkME5OrKe3p5WTZbBEVbVN\nXEOuWH5FNSHQoPPUFlRH8p0imOeypuyqk3Q1O6KvnI/FdkGiRV43NS9kwyuIlc3aj2v0JpIvk5TX\nGB3JfRwP6mSK1WHr0qcGCf1SHaL9GY1lDYGO6hQKFpw7Uwaehk6V0nCSj5mqlvNUb53+qpgMu3HM\njedE29p8JONj4RwJ5M7kvtgU0izm5u4lXrYjMvXU2+wUH3q/5tSPj/GO1C4ylnKoCUeqvtnpEHRh\nVoMxvqYXuxUXT/H3fMeSzPQBGGv5bzYm3xF13QlH7L8g17uyPyBRBqTSGNxX1UG8lszfLxzD9Zvy\nUJ+5YLiqsN3rVhZ5xamT5mJnH2Q9mvqgj4KIExqHn+Zn5VqVY/J9xY8c5VBTApF8Qqmx8rKwWM0n\nMGqTUmakfTU16hmpergHzoxcSV5/81un2LyoHI1f1wV41nCponiN+ZCtWHwND24M2VbbtxL1GWh0\noaE1HJeHBmaSF/I73xwycGVsL790neO+tHGtNyIv7izbY+xYljSykSYF7gU1H6za0bWSUteI6xYw\nkzEqvQznQOfJxviZ4iDW1OcyzXErishlYxxXlr4ZlDgNBZ8ZzCDUfAqtvszzfVz1jezv7TCLtRy6\nPaU8kI2nqb6vYVGhvqGl47lPq64cnL0GS5qUtodLW/0Vc3SviU1upbm7swQSebgzz5CrXyk7DCg8\n6aupatJef8zVebRuMuA3L0mdy4q7xTf/08cBOPXb6/x3H54bwHcmC/NhIQtZyG1yf2gKRcLVwcs4\nqY+bS517OLnM4RfFDDh89wepq3NtGk0wM9kdh6o7O+4KEz3Ng+1tZktymgXZkDyRlNJ0vI9bqjdY\ngVCmoYOJZLeeeiXLa3JKLHe6HN6cx4dfZR7o/6+nMZi8IFdatIObN9hqKUjKg9LGLGhRV4fTU+ku\np54Tavj9nUdwR18A4Lj75wAYj79NA1HRM+swWFP6s3JKpsBwRdAgU6VnPJBT5OZowkindbTrMGvJ\nad3oN3hcqx1PtDO2rspY7J6SSEVjP+GqI578B9wp+QXF+7t2hatN0Rqqey/wkiOq7/krQhH62zcu\nYHvfkH4cJGSKc7k/y5mqw8w6JeYNtC0H8NU5vH3tJhNfNI8lU9J8WcazUlen67KPX5MoSpwcMhtL\nPxI/J/PkPotZQZTI6W47kgXodguyY3UwBzvkhZqbpoIbK3kQM6xm/6XqtDwcF3y7L1pYf2vCSE0N\nZxuGar6+XFFOi8Cy35dT3AtTfE1X9up1JkMp4jPxHgeaKl5Ecr+zIURGIlFH7gpMxWF4PHoXs1QJ\ndUYDZorinG5qdmsRc7OqGJVXjrCaZ/PSzq8T/ZJCtn3sKX7lkz8AwEdeY+xfS+6LTcFYhzAPOY4T\nBkrY8pkvDfjEX5RJ/OGDmEw5D5eiGmOteQgVhOUgOCQfyALslRs0ddDjww2OQllg5rCko0AWmS8L\nu32qSVyVjaV2MGP7kqic+zd7JLo4SpszzydSTI3XjT7kLqiLgqmtkxSyWPYjAek4tTXj5Uyue+XF\nCkVfQpaf39rmxO6TAPzRuyV//aFah1CTm4qVnCUNPSZhh0qqHn7rM0d4T9W77/dyikwWUr2Wc6or\nNRGXj6+xf+GHAfjybp3N8/8WgIe/Lffz8skJdU106oXLrL4oY/TcxiZ7npatzzbY0RAgiZShX+pd\nI9SH5mY/xlGcy0Nmt0YpT15rtF4ZxYobMLHret0ZrpYDp1tHeMtKE68PbqsMmOaaqFVZJhvKAeFu\nFUw0TBqWJSNf6mMqY/XYe21YkrWVTdepxrJ5pS1LqBiNqVPDn8jmk8Qa4r4y48o35CE1/WNmFa0/\n6A5Aa1AqusHkh8f4HU1IGjs0WwrwUhnROiGAO9n4ZSZq/vQVmSmoQ1wK2Y1beMx68kAfBwYGktKd\n74zJmrIZrCh1QGoqLP176X9Jl50twXOsOz/PaPS70nb3v+AHX7q7kOTCfFjIQhZym9wXmgKU5GVM\nGJbYVE72J9eukH9Z9qxvv6fByXTuFe6St7WSLdS4szHU1FM/ccDVJJW8nXLmWE6Bq8szHOUuDM/P\ni0zqFGP57rjs0+jKrrseFuwqFbtXcAt+/NZ+a6B4ldYwF7eAmvL2lek12lY0AUeRk4fdGnkqDrOf\nmHg8pQ68v7X+ONULQg/206vSt2+NB7jqXHOWOlQVVmzqGQaqimdOgjdVNGZtt1otQGPzbs9iChnP\nE49/DxebAr7ynvUP8txl/f6mnK5ECe9bkdM6bi9zZk0LpTZP8KOlqOB/tDfkRxTNeEdzMD78XMA/\n/oaoxidnEy4bOWlrscOOxtVTY7Hz7O1XXlAi7blen2rtAzI3xgdPT/9Gm1QdiX5NTuX+IMVXyroy\ndzENxQpwxpRK1e6PJ+R6qmbqlHXqDvVC3pt0q9hE1oVXb+AqWEVcGkpPTvoD1SRGg+tcz4XHcnV0\ng0NNm169HBGdUCRtXSuh3+RYHZHteosj1W4ix8dZkn4vPfgY7dOi4QbKZ9m2Dv1S7qfR8bEaSTs/\nqnFZtc1aGVCcFe3s7JKs2St5RH5RzI5g6vCTuWgVny9/ncbyLwBw9fCr/FQs5sM/487kvtgUAtfh\nXCfiD49zVqw8KF+7dMTHnpBFc3X2MqsHUiI7MhEz9S+0VP3y+wm5em9NlpAqa5AZhLfsvnApx1UO\nAHMkkxWbAZOePBTTZJfL1+Qa10twrSaYmJKKZhOmyl1QdQ2TOS24gVi/G/rm1r2t5RWuDcU7vaF2\naKWYYRMxA55lysm2tP1Ur8LHWk8B8JW+qJmbD84gk9/XKRnNZCEVro9V1MikX5Jq1aKPOhdsQqiQ\nTslSyuOPiSr6O3sj/ksryVL/zdY1fuhhMc1eeFFU/z/XrvJ8Kff2WC0jVlNiM59yrS/9X8777Ckw\na0c3rC/t9Xh3W0yNf5v7nE7lwfvSNKOuACdl6eCrDZbqWLX9gGNNUvqptUf4h/vycJ/pJkRTjR5l\nJbkml8W6EUbOmERBEb2Wz0yrGWuexT+WeypwyIbKozA3q45Kxk0trfbHFFqq7sQxiSIWmTRjoqZX\noSC2R0fbnNDowsyxc35dsqUx59rK+6ll4U6eEqbqrzq2+IX4pWJToaUAuZlbUFOfkK9JWCYGXwPf\n8czFqclGcKM3xq/Lpjh0PFYSiZRd0joKp+pwdErC3Wd6G/zD89LXT+6+m88gG/VPrJ/mb11Txq07\nlIX5sJCFLOQ2MfYO+BHv+U0YcwBMgMN36Ba6i7YXbf//oO0z1to3xWa7LzYFAGPM162171u0vWh7\n0fY7KwvzYSELWchtstgUFrKQhdwm99Om8CuLthdtL9p+5+W+8SksZCELuT/kftIUFrKQhdwH8o5v\nCsaYjxtjLhljXjTG/J173NYpY8yXjDHPGmO+bYz5eX2/Y4z5gjHmsv6/dA/vwTXGfNMY8zn9+5wx\n5qva/39ljLm74ve7a7ttjPnXxpjnjTHPGWM+9Hb13RjzX+mYP2OM+ZfGmOhe9d0Y88+MMfvGmGde\n9d5r9tOI/M96D08ZY568B23/PR3zp4wx/7cxpv2qzz6tbV8yxvzQn6btt0re0U3BGOMCvwx8AngE\n+EljzCP3sMkc+AVr7SPAB4G/ru39HeCL1toHgC/q3/dKfh547lV//xLwP1prLwJHwM/ew7b/AfD/\nWGsfBr5L7+Oe990Yswn8DeB91tp3Ixnjn+Le9f1/Bz7+x957vX5+AnhA//0c8I/uQdtfAN5trX0c\neAH4NICuvU8Bj+pv/hd9Jt5Zsda+Y/+ADwG/9aq/Pw18+m1s/98AHwMuARv63gZw6R61dxJZkD8A\nfA4pnTgEvNcaj7e47RZwBfUjver9e953YBO4AXSQ1PrPAT90L/sOnAWeebN+Av8Y+MnX+t5b1fYf\n++zHgc/o69vWO/BbwIfuxfzfzb932nyYL5a5bOl791yMMWeBJ4CvAmvW2h39aBdYu0fN/k/A3+YV\n0qll4NhaO0d8u5f9PwccAP+bmi//xBhT423ou7V2G/gfgOvADjAAvsHb13d4/X6+3WvwZ4DffIfa\nviN5pzeFd0SMMXXg/wL+prVKmaxiZct+y0MyxpgfBfattd94q699h+IBTwL/yFr7BJJWfpupcA/7\nvgT8GLIxnQBq/EkV+22Te9XPNxNjzC8iJuxn3u6270be6U1hGzj1qr9P6nv3TIwxPrIhfMZa++v6\n9p4xZkM/3wD270HT3wP8eWPMVeBXERPiHwBtY8y8WvVe9n8L2LLWflX//tfIJvF29P3PAlestQfW\n2gz4dWQ83q6+w+v3821Zg8aYnwZ+FPhLuim9bW3frbzTm8LXgAfUCx0gTpfP3qvGjDEG+KfAc9ba\nv/+qjz4L/FV9/VcRX8NbKtbaT1trT1przyL9/B1r7V8CvgT8Z/eybW1/F7hhjHlI3/pB4Fnehr4j\nZsMHjTFVnYN5229L31Ver5+fBX5KoxAfBAavMjPeEjHGfBwxG/+8tXb6qo8+C3zKGBMaY84hzs4/\neCvb/o7knXZqAD+MeGRfAn7xHrf1ZxC18Sngj/TfDyO2/ReBy8C/Azr3+D4+CnxOX59HFsKLwK8B\n4T1s9z3A17X/vwEsvV19B/5b4HngGeCfI6SN96TvwL9EfBcZoiH97Ov1E3H2/rKuv6eRCMlb3faL\niO9gvub+11d9/xe17UvAJ+7lurvTf4uMxoUsZCG3yTttPixkIQu5z2SxKSxkIQu5TRabwkIWspDb\nZLEpLGQhC7lNFpvCQhaykNtksSksZCELuU0Wm8JCFrKQ22SxKSxkIQu5Tf4/PUplhpUoQL8AAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.4833... Generator Loss: 2.0466\n", + "Epoch 1/1... Discriminator Loss: 0.8034... Generator Loss: 1.5415\n", + "Epoch 1/1... Discriminator Loss: 1.1546... Generator Loss: 0.6480\n", + "Epoch 1/1... Discriminator Loss: 1.1812... Generator Loss: 0.8394\n", + "Epoch 1/1... Discriminator Loss: 0.9518... Generator Loss: 1.0477\n", + "Epoch 1/1... Discriminator Loss: 1.2184... Generator Loss: 0.9924\n", + "Epoch 1/1... Discriminator Loss: 1.2908... Generator Loss: 0.8527\n", + "Epoch 1/1... Discriminator Loss: 1.2357... Generator Loss: 0.9712\n", + "Epoch 1/1... Discriminator Loss: 1.3955... Generator Loss: 0.6073\n", + "Epoch 1/1... Discriminator Loss: 1.0635... Generator Loss: 1.1717\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVesZll2mPedfP6cb763buXqrg6TZ8ghh4TIkUawBBmG\ngk3AkAwZgh9o2IAfSDnAD3wRYEh+siEIlgQLMGwo0pZFmRpGiRI5mtTT093V3ZWrbvzv/XM4+Rw/\nrHVrqskJPaGlHuBfL/e/f9hn77XXXnmtbRRFwQpWsIIVXID573sCK1jBCj5csGIKK1jBCt4DK6aw\nghWs4D2wYgorWMEK3gMrprCCFazgPbBiCitYwQreAx8YUzAM4wuGYbxjGMY9wzB++YN6zgpWsIIf\nLRgfRJ6CYRgW8C7weeAA+DLwnxRF8daP/GErWMEKfqTwQWkKnwLuFUXxoCiKGPi/gD/zAT1rBStY\nwY8Q7A9o3G3g6XP/HwCf/k5fdgyj8IH5D/FA47m/xXOvTf2gAPKL959Tjgz9POdbHNK0DRoVC4BO\n7xrlknximD4Ap4MTMv22Z9rgyGvfMklxZAzTBksG9x0Zy8L81kSL5yZSGBQ6uyyR97I8I8/lvTxL\nyZMIgMQwmJ08AWAeZqTFt4b7drhoNCryT1aQZal8tyjIs0zG1h9mefHc3IpniMnzAsu8eIbxDF8X\nCqZlyPsXuCx0QPmevl8Uz+aZ60yL4ltjGDxDIdvXrj4bzzYsMsUBeQhAmJoYeaxzBt0assLGNGXA\n3ABHcV8U9rOHGDp52zbJC1fnExMrzm0rI01lr0z5Q5zneFEAwIwUJ9X1eymTgzEAwbdRtp9bPp5p\nUPY9wZflgKXzlC3ANDMyRVBBQZLImk2jkH1RSBUXz++vof8Vz63PMsDQTXMsB9sTHJyeT8+Louj9\n0dm+Fz4opvA9wTCMvwL8FQAP+LgBv/s+LRndL3LFjlmAra8twyBTTuBR4JmCnMQoiJS+LEVugYGe\nVyIMfB233LH4U59pAvAL/8Xf5WO3ywD4tRsA/M9/768zymSTL1fWYUN+eavlMzC2AKiWO9AQwrvV\nk7HqlkdxwaXygkKJuEgNEiX0+VkCwHQ5ZrkQNrkcnzPtPwLgzHD4zf/pFwH4vbdHDC6YyMXhVnyC\nbO7nf+oVAIxZxmRyIriIE4KpjD1X5jBepNi2jhUXFIrQZVzQ0AHTwsLzFJ+xfLfmGSSZfNd1TKJY\nxvNtKHSDrKxgnMhpWupJSOKcSA+FB2zq6f6Vv/nXnzHcptVhEiwBMIO3AXh3UMJcCC4WocEtZd7z\nsIVXFtzFjkmvLrjPko6s30sxrRIA6x2PZXFZ1/+Qo77gvl2fc3bWAKDckMkdhgGX778JwO9yznpf\n5hxfOeP/++VfBeAN4VfvETw+kCmurlRcPn79muCr2cOoyzwXY8FPpTJjOBT8ZEbE8fECgJKTsFgo\nF8oL+gt5kKcMzyzAMWT9icmzw99xLczqxVo36e61APgbf/tfPOZ9wAfFFA6B3ef+39H3nkFRFH8L\n+FsAhmEU/+r7cG1cfPVC0rhApK9LVsEil82oWgUT3aWSXTBLBZkl/f2yKKjo50FRPNMqJifwT744\nBeCf3vu7/L2f/iYA/f/y1wGYZRWWhhyqw8ET7LWbAFgHLo86Kh3jjN2KvK4N5G/QA1slQtcyWFwc\n5ALCULWNshDjYmEy00Nlxx69dhWAxr0p/7oshDJKCuJvg7fwuddWKgyr0wpZBrLdXh4Q5/raEgTU\nfIuqSpqKZ1AIH8TM4IovBywomVTLdQAGoTzllmvwKNa5uzZnSyHojpURLOX9hRnjjOU585FMuE9B\noBvoA++Gyqj9JuFS1vc4yImyIQBHX5eD+054TnrnXQAm3YA0aQMwvTJl51SeFzTAXgojntrCVEqU\n8MoDAHL7RcaJaFvLQcFR9BoA9+5t8U5dpH/5RA5b5fJj/u0dYUijWsprbwpjrTmf50ARrcf2j2ip\nqRLl1c0a29cFoZ7T5dq1GgAzxeFuFQ6eqhZgTnlnU+bQCcecD2VPzoIl3kBorshkTUZgMqmo1hEU\nWAiO8rmF0ZL55+mMabzJ9wMfFFP4MnDdMIzLCDP4j4Ff+G4/yL/bh9/huxfqfgDPpPw0M2gZcrDO\ncNkrhCs/Tk1c5P257pz93GsDnh1SyOnPRV3nm3+Ln7+7AcC1L/53APzif3aD3a6wFnPUJ7blwFpN\nl823ZUOftEIemCKlDuoyu88cBxRb8t0NC+6oxvKJtOBpJvNkIX/fHg/56FQO2MA5pXx4BsBbs9+k\n8vYMgPB9MNJ5KKpvJSlgqmZQ7j0zTW5kQgLv5gYvlsX0Gds1XioLUc02rvOFthDV63nCCz35/tNU\n1nHTKPOVQA7bnhfweCCvN4qcO4sRAK1syJemMudKVT7/1bGBqUxhAFRUa7hUarIoyT/Z00d8YyAH\n5/zRlwBYvn6Xo6nIl8Bw+Gp9DYDdbxo8acnvzOYOE2XO1b4y6c0SdkM159aI6lTWdzDo81Ysc5sf\nnbNbERy153riP9rj8mtXAPhC66t4qqeelQb8xh/C9fPbsQRcXd+bYcqf968DUHphl9tdmXNRVfPS\nusJ6W33wuU3bewBAOS/zdukYgP1ozDcDscirmezp15KQbX09DpJnE0hTjytD2aerFR+nVuX7gQ+E\nKRRFkRqG8YvAryPa/t8piuLND+JZK1jBCn608IH5FIqi+DXg1z6Qwb9llgNgm8YzLtnquESqqrZa\nFVCOv9V0OToRiaCmHkmWP3OiZfl7fYDveVwiKuzDx6JGRpuvEBSnADgtaC0FjfOr25z4ouKNnozZ\nWIravSXaIpVbJaZqw68nFmn5mZcMVyXlrtreVCuMPZmvf17CQNTPK/YN/hc1KwyKPzLXP4KqVMar\nlieMSqphLCI6NZF4sWpPl0wLryRayk++ukbpUDSlGz9ZpVEVif+xax/HfE20l60dWVu90udS3AXA\neveUrS0xL3btJVmwDsD5m0teuSzPufNQNKnrvsE35rJPtglLVf8WvsVkIFrRIDOITkVS3hnL3ILq\ngPRc1GS/lGMl8tqtxMQzNWPyU1JL5jQ0Zc2dEw/fEE2ocKvMxHXA1nHKaSz7d+I+wfuso3OWOdyq\nX+Hrf1Vs8he5zz/5A8HLz9Ya3wPzkClFXfvpBq09ccz0rmxjjWWey7LQSoNDrJuieeZvHtPYl88r\n1jG9m2IGxa/N+VRJ1mTY5zLHQxPUB1UyM6JCcDxJEwxfXr+djrmWDr/nXJ+Hf2+Oxh8UbMBV56Cv\ndnHq5LxQyGYmTY+qJ+pu0przYlNUtTutiMtqKN+LJwCshSmP9Fw2g5zDTImU/JlH2QAKTxC/0zgC\nYLexw8NIfmhbN6nqhl+pdUkfiKp21txjngkBlUoSAaiMoVaV302LAlMddF6a01A/yLtispJFBfZU\ntycrmB9Pda0dfsWXNf2l6SnL78UWYiG847FHlgqOGraJl8phKjIhtMDI2KsLAb5obrPYuS1rSkNc\nu6f48hnsyEHfSeXQhKd7vFCS9Z+tdbmcqq0+zbmskRjPvcy09BUAxmtCrIE5ZmzK6z4F9UDWv1Hu\nMZftYelbLOZyqNcTYUyPD2KmgfyuHcdUHVlfNjVY1uVg2c051aX4GiyVHHF5h4r6ePLmPmU9QA+9\n27iWmCadeIdvflWY3ty5BcDhIOcvbMnr3oNd/upflLXGZ8F3xztwxRN6e+F4ncqtbQB20wVpSXDY\nVAM4Sxz2AmVG5T3KhZhYwWSbV5R5P927DuOvATA9lt/fKs74pinzGWVHFIWsbz2Gs5m8vt20KIIL\nr8f7g1Wa8wpWsIL3wI+dpoAJt5sieVvqXWy2trhUF466+epHMNS5NqpcZa8pr3fdFtbhfQBuPRXO\nWa884HggXNcK3+Ttd+X90/SMhQgo5q6JVxZH49pHXpYp9DpkfVGDHzV6XL2s2kHhE39EfncwKfG5\ntnDxUCWU55scKh/+VKXgTIW8k8NkKJLi2nVRyx88zTAb8rvw3hLzmkgd46TN2V+WlI8/9Td/l9+Y\nyDyG38FTG+cy7qVexPlCxmuUYmZLsWka6yIZe9Y2L6mTura/xRV93+5eo6thv4QK9Z5oGGkkmkSv\ntGQwF7zZk1OMXMK29Rdint4Tkd+07xAORLvZuiLmnP24xe2RmGCvzyOG56JVFb5JWOg+zEq4NzQn\n49/K+vNOgjmW+SyLmJkr80k2ctxIHLtVI6DbFq1hVr4I9ZUpOvKe02wxTUTzmne2yDpCSPHbL9DP\nJMJkPvwkAJU/t+QPTNGgtjcXlIYS4v3MxvDZ4fl20YeNbontPRl3b/cmk5bg4mBSpePKZoUzmU+n\nYrGIZR2WMyOKBVebl5ccR7J/zeCIqTordy5JZPHkaz5NW5yPUdgkMsVMOBmbWDqrx5OMbvL9aQo/\ndkzBLAxO54LAnpoPJzsjrpWuAuAZEZ0tUXe95JzFUF53N2NKlUvy/nXxXk8HL3GtK5s1HlxlrftQ\nxhu72JE8o14xsNuakKQ2aY7NflnU05fKBU4h9uW2a1OfCCGMrZTDTA54V82SYmLQq8sGvRMYJJao\nsFsDA1tt3288ksOY2yd035GDEtUfsDyRtW73jrnxQGLexksP6Gsk4hsTzTeI3+sTmS/l8+w4x51r\nhMMpUc2FWW6cC4Otd2xmFfGy78R9KnOJKFd3ZhT1jwLgm2fYvtrSGr8N5+u4czm4Xq1K4IhZkc5a\ndNY0FDu+jF19A4DSWPejd86xhsqsyWN8zV5yTYu1sszp9viErw7lcHbifwhA/9jBKYSxGKaDcxFy\nfuqRNcT2ekKT8lyYZTwVxry+E5K7e7LmSoLRl4P+0saY12xhcOvzjDT8aQDOX5Cw31vmPn/8jnzX\nKC6z8xeELpbhOqVnCTPyJzLAd2XNzQq81BGTodSd018IA3CTE/xMkh38F0WYnCzWKJc1gSoIKTeE\nPsfBJn5J6CWK6jTXxIRaTiTH4vruU0Yj2Zt5923yWCcyCHA0SmL4GfFiyfcDK/NhBStYwXvgx0ZT\n0CQuUqPgiorChSsvLp0VbJeEg9+yXIKSSvSZxbQuXLe+2KXcEY6ZzkV13quf8/hMOHi1MmKRiOd8\nMRpyYGgabG7gOCJtt6+p2uon9FU9K7cL9qaaTNQuiPQ7s0XOx9XBYyQqUloGX5mLRL8eGyw0hyIs\nwehA5u8UogK65wlHdTF3jFOHYC5OztRscfqiDFfvfpxP5DK3+qn8fWUy4X9TKT6cpTjqAW92M+xC\nnhFmETfLqt3saPLSTsr1m0IO9naHuiOqeNFyqNTE8VXU2hiaNnyRMu3nD0kLkXhJeIi7FE+9W48J\nZxe5y0OWD2U8+7KsY353jfqWrPVm5PM0l70ZGAkjW563uNGm/6vvyFpsmXu1HhJpxMQBvGemWXaR\nhoE3nZNW6jpn0RSWXow/EK3wpN5m5otG86hfJ8xFck/2zwjXROvJH8h8W3cDxlfEGdtc2+VkKvha\nt7ZxFbdqubLtGkw0E/TTV2/wM1cEx3nJJFCHZzZwON8W08W/p1mhLY9FKrSQ5UvsU6G9xDoiGMvr\n2D7EeCjj2W3RJhduTnfjQMaKCh5d0GHLZqn4nC0Nmvb3V/T4Y8MUHP3bMxyqa2JfbiiiX/CavFjR\njL/9q2j6Oo3hhOJAifR2TP9cRuke3wXgYBjSq4gZ8Cirk51P9Rk1Dg1B6oadkA9lwG1NEr3ibNGe\niYr7+MEGp7fk8+tGifRcCPaTyxJ31Uv+U01B82KUsq0a3vFBjKcE1HRT4pkQxWtfE9V4s7F8pmq7\nyZxkLmNEhkl7LEzNSBxevPHHAbi5LQfpzexd/qQrBG+/XXA3lHEnfY/ZROa528zptYTYipngrTbc\nIrKV4E9axK5k+fnhT5GrDWv72+SFHKyLTMn4HFy1h4t4DcuUaMBsvKScCY6K5AV6NRkvGQlht70h\nbwdy8Nqzt7k7Vc85JcJI1n0/PKFXyHfm6g9IHrUgkbVmpoGxELy4kY1R0lBtu4aDHORYs9PycgOz\nqVmFocnJUn00kUmsYWuvv4b3mu7VwasABKbHraa8Nr5usv4L6ida+uSaGltoRufT1ODTVcFx4zhj\n2FN6y6o4GrYttSPMvhzeXKNSkZXRNSU9PjBGhJ7MJ1iC68j8x4st6IhJlExlTyuxTzQSP8MJd6mr\nMPDtJYNQmaWZEy9W0YcVrGAFPwT82GgKVS1bG/smt3clYnDDVs/6zufo3BK27V26+szzuiinWJdF\nvVr6u7RroiYOc3E4vjt6F39N1O7oyYCaFpG8naVoli8nOLQMGe98JJ5ev2ySa2K12TO43pEv962M\nrCUc+knVYE1NhfueSOCbFhxrHsmVdYt5IO9HLThbyBhXXxFJtJiCvyuOs+jrI0JLnI6j0THujswn\n6C8J6pp7EImk+Whjk0eaEp0Vfe6/KVK+vJ7TteV3lpNjlEVDKO/LfLydS3RSwUVydYYViQaVey0s\nWxyChQlGUdf3Lzz5JbJAvOWO8ZBkLpGaSmXMoC/OzLh1TDKSeY7qIvkOBg6x1sVOyiUGhWhmCQm5\nKXhxkwr2njjXJvcF38vtEHshWs4iWbBQs3HZi2gsZR5GGDEvq4qtGb7mYsYikTFmszVGhZiVJ+Mu\n07I6m1sbDFNxNucNiYzYswMeWqJVRB/ZIB+Kk/fndlPqmhvja/3IdqWgn4icvbpXY+gLLWR2hcVc\naMe1fSwt1moUMp+m02CRy/4G1ZxsqIlM5oQzRLOKu4csRZHFqmka/yxn2JFxjZnFoqKRqNQnHGp6\nu1MnyVaOxhWsYAU/BPzYaApzQ7jxZRyenolN+ZGm2JuPfmKKn0sIrVk/x1fHV5xFlPoiuQLrnNGx\ncP837krByYODY9xj4fZ7y5ivaVVONYMjtcXdNGfUE79EvypSrm45VB2x+zphSqqSy69nqE+SShjw\nljBumlWRZmtPHYaXtChrbOJWRJrt3bEpLJFQ997VPg6VO9j3Zc3n2X0mWpJcngc03pRtc9o5uSOa\nRVWz+cIIXrghobCDSoXkq5KaXT53CZeCl71bJo5KsYpmVSbFOSeehu8mBaVIHHzGT7xMYotEsyop\nxuyRvF8VGzldtDAqsmgn6JF68vn47hwzl/XV3y2YNgRffqCp312f03cFx8dpjhvJur0CWlrPvrs8\n48nsYwBcNyQj8p1hnZGmmOeuT6pVp5UTmzNXEV71ybVM3BnI87yeSzyWdXjR1zE1jbtcXTA35P39\n7CGXU8Hja56MNe9uUXlLJO3Whsnep+X9waKKqyFltPq2vyzR0EKsUTag60oos9MckWih22jxhM1z\nlf4/K7Q3SAu2euJfsA5Spl3RYvrjKvZMshiDE4eRJ/h8vJTnXg1zGuKLZlpKCGN5njuaYYUy9qmf\nUo8uPHLvD34smIIJrPmiwlntDi/7wgy+8qcFOZvDFklTVOPKYpvxxQ+LKrOx5Ikb90d8/Uhqss7v\nC0G8OZnx2ZoQwVe8BY1ciHEUWVx2BZFnVkrFlbGvtGXjEicm1e+eOnAtk0N/NikItZji5CDm8bsa\nVy7UEfUKJHeEiNuTnBtdef+dcMpsKoQ3Wd4DIB9FTH0xfaYnJqNQXneNTc7amrATZVjaqMU1hPn5\n9ZQTNbWq7ZyWo9GVLaibso6aaT9rFjI09fM7A+758vonzQnHPyUx/fWnJ5QLIbbq5oQ00vx7bYaQ\nnE3Im7KOwclTilgI/uz0HdxM9izu3CV6IgcvsqSWYRF1iFPZm4/YVZ6URIU/T6eMc/nOslJjOfo9\nwaf2DVhrLyjHcvAGxHQMeYbjQhJrRCSKKOlBj9UZGCZLGIj+3XfLPMmESsLzmLwszNBobWDfljk1\nHsp3K4sW7Ruy/q1P2kQT2aeblRolTXWfadOUy+WIYayMtbVGqpR4/LTEO6mYrtePbb7xWWFYGw9l\nHduVjGUq5t84XbJ4KMfy+OFDCq2Nf9O+R6kvDG4Uy7i+3WZZl2hOaexihuoEbpeZT4QJ1x0br37R\nYeP9wcp8WMEKVvAe+LHQFDzT5JWqSIQ/99HPsfE5CdQHd78BQJkNnH1dSrmNFiUS5Amlnqi2h+Ye\nu5GondmecOq/lG9BT7PDjgNmquJVdzc51UKcVzhj1BHN5KPajq1t1YhzcZJtzVyOtbqwblmYmv68\nsYBJQxx+nkrXvd9/wOlCxkrXh9Tm8v5GtmSsUud1rQaMWynNI3H2FcOCsqemTaWFPxI10s/B2JE5\n1XwNpSUhO+pQPAgjrIq8ngU7mBOROt6VgrW5xu+fitZh9LrsXxHMpcUnsP+NdAuYbuwQvCKxe2u6\njqNNJ9K6mCKzZE72RCXUIGHsieSKXYPMUafjI4Mkeaw4EifvRqlEsyn7eGb8Q9aPZX+rkUNfm9L0\nw4eUZ7KuwtJ2bOctxtFFjoSLaYpGF80NQlNj/Ta0tKVZdtFayy/jeRftzCyqc5G6hlXDV4fhTnWb\nk0cisfOHomIYmwu8qjgX3d9PuPVnRBMaTE2Ote+DH8h8vzk3uNqSOTx8/THtnjjEk+IBuRZ/3ZvN\niP9PWUu/Kvv46FMjPqctiex5QWZqNqadMj4XOqwOLEZqKvlrsk+l2gbpg4s2fgG9itBCkfqsO7IO\nYz1l6WrHHF7n/cCHmilcqDEZ0G6IZ/mLu33+wlLSUk9v7ADQO0jJh1p9aJxS2hHCi4sFC0vbci1M\nFi0h0ttap3wnDPiYZv4+uRKzfyq+gyPnkNaubn7isJ2J+mhWxfNuWSme9twLPbis1WkPZyloJMJ8\nOiI3xAPsPxTV//hmQv7VRwAYfkKgCVLp5Trzc/nOTMu0N+77TLeEeNqjjPu2mDzVRYZxTQl6ZGN6\ncqgfTeRgmnWD7EC96ZOMsiUEtLkTkDW0rVwx5lD16s6+MB63XuZxJgRoL99l9LIm7xwPaR0KkS6O\nEiq3JBIR9SVtOTyFNBRcLRshnjb3KBKb8lxU8fAjSxp3u7qbokYfDzIql2Wey/slatoCa5HMiNUM\nyE8aZBVhrMFDObhG8xhzluveLPBced7InVOOtD4iCVlqirnZloNkuiYLRzY7n6fMC5lHMog4r2lS\n19kO05LMOaoIveXGfY61VV569ZNUHwgNfe4Vgw1tfDdUs6xbNziay/5vbbc51voKa2Hxju5rL7SY\n2UJ/24Hge3JnwdsHsqa1j20xUCbbnw+ZJLJPCydkI5c1nUbCTBx7Qn5J1tQ7ccmqOndsvB2hva5X\nZ2Ku8hRWsIIV/BDwodYUnrVdswz+YCke2Ze/3uLXN6SS7UZFdK75bpVJLhIPK6I3FtXerBQsBtpi\nzHyTZCCOv9+dyVhuAX8wErV2e+ZxrBlxXrXNLBDpsFG3qexIPX2mWXKeWRA48vnWWcFxRfsd1gPM\nJ8KV19sB9zSFOu2JxLh5t4x9XfjwgbVJpalOrVHBQAuJwkKcmWfhA/YOZNyjOMKviBYzTSI2tKKy\nvpaT1lTSpyIZ8pFBdlEZGCdQiDRanG5yqI1Ck06ZK4Y2LTiQuX1z/oQzUYS4EzzlMx1VUV+8TJoJ\nnhe9jOpMcGhpvkG2NEFThu2szFuHokE8GC6wjkS7+cxBwkJj8pVLWmjVM3DGIo2D5A655qz6ZNQ0\np709f8LBXIq0tgtxwJ4MHSwt+ar6dVx1lG5FBmfav8LOTALNHahqokKzXWVpikaTRQN6Gu14upjT\nvCgKazxkQyNb39BxZ1aZ8IlI4093Ha7/gjx7EZukao7sqCO5H9doNTW65ERsqyZxFM9pa/TsdJ5w\nVbv8jLUxiJvmPIzVBL1/TKFVqWmlxPKB0IhdGHzpVPbK1ByMzE140dMchFqHuifmyiyM8TUrdNLI\nWWbfn+z/UDMFU9M2W6bNy7dFbf25j77E1nWpnPPUE3y8XuEKihxnk7QlhFCEZaqZMIByb58NTf2s\nXNMQTTbArYvtVZ6fkbiyiV7q0t0UAmqEIwJtPrLTESJeZCFo4tGp7+LFWtnolildUps7hp9eE5Vx\noodqz415GgjhftZaks/Ew283ILPkO5dn4vcw7St0N4UwW/6E6lLLl/0alaUczLRmU1Fbe6ERGdsa\ncaR2f5Rk7Fsy9xvNkEoh83QrCfm6mFg9rQ2wkxEfSUT9nu+/xL4ta02uQVeTjPKwTHDRGORc8+mX\nc9KK4CqJXHovyCEO3nmKfVNU7fzgkNKuHjy1uY9OPJpdYSCNsxqbVWFk03zBTJuMFK1N5uk/lfc1\nXNpqBuzqHIJqTksP7zKPceZqU9sxGzXhcNVNeW5zq0GvJHQxrjXI7kvz166XMtWGtW6pTbQluO0k\nF7UmBf6u4Mr8VJXHmeD7C/Umvob9IkOb8JRCElXxr+10KWlz32bJZ6mNaau9Dr4mw03X5fhthXNy\nT+e+WaGijVMuT6d0rouJfNYPud1RhqN18rVOF1N9W+56lYa6T5ZGDSdX08XpUWji2/uFlfmwghWs\n4D3w4dYUtBvu9domP1X+WQA+1fhj9F6SiEEwFw5/ZVCwzNXrXa1gaBUdcYapMeQyXUq+SE2vJgVR\nRtrAb6zrs2qYsUiByK1S0ctHglqPzapw2lirHiuUCWJR62pZhZmqvm3TomEJu27nDhNTpNTMEenR\nKQp29B6DaRRjdnIdN6Ep1ggn55qM1GjgJSKB66GP7Wl7sUryzMSoBkPm6pEua838bBHT1FbfcZ5Q\naPRlPl/n6ECkSnUW8BlRkFi7Ki+s9DZ+SSXizho1lczWeErSFKlTLBegjr/4kd49kA9o+KLFmU6X\ntuYNbG7uk+1osVX3Y7i2tMlfLC+6QI84OpN1+OHbz9rBV/M656HmEBiHtDLRWJ6o5A7mNfrqaOsm\nPoG2OC/FDYaR4KDhVmk3xNyqd4RW1ppXwJJnOyUHR+/kyPqn7Lbl9VrN4yiSdv1TdSju7wbUAunV\ncSW2uGGLRpYlNlNP6KKikaN704R9nc/srUc0tAs2hcO2aoLpXoWuo/0ZtMmM5dcoNJ+ilBY4seZ0\neF0qLS0gM2KOJrLu7V3RxpqdKk2thjSSMUYuuO8EY/KSOooji6mjduH7hA8NU3i+a80F7FSFMG9t\nR9z8hBA9j7/mAAAgAElEQVRs5ac9vKZgsKwJLcOGgXEs78XDDLt7UWdtUu7oZkQF/rogcG0gY+Es\nsLV6LVgLCU7kMM3cEXGmPopWmYU2YPWq2uqpyHBKYnMXmFwvqdptWJjaZMNyClraX89JtfdjCjNT\nvpvlFsy0v6BtkNhCxLWeEEGz4rKzIcymFjVxtMJvjIWvaZPRwqaIHgHw9Exz570A60gO8WlSsOfK\n+ta6Kaar+fCnEY2GjHGRbelvtbE0yzGvhTiGRhHqJsZYmGjWjzG03Ntw1AcQVLGV8ZbWMqolwZu5\n4xNpFxIjGmNMxeSzEeZwfH/EoqxMMSmYa4t708yoaEvyqr/J5k0h6KNcqwjtO9SPhS5MJ8StCF6C\nIqSTqQruRJS3ZB4dNRmMeo1GVSMKZkiipcrtWhOrISaD397maia4s7uyH8PKmI2O1musteiqGdfZ\nMTDDi6Y7so5urcDRzNOKb2F1tWms06PUETx7VzbYiAS3SSi0ORndJ1NG7+UOtOTzcs2jrNWhRreg\np231y674g1yjjqu+mjBscjaT0HFSgKmt6j0/Jru4Bel9wsp8WMEKVvAe+NBoCt+uDUQ/0ivUSiX8\nkjiG8vMXyCuSD56Gohpm8YTHWjNucET7QCRCug+Lc+GkJX9CRW8eCn29i3BRJrbEEVldBBRNUc+q\nThs0dblqb1DXJhsn2nvAq9gYnkiMS6HJXKs1G1aCqw1VLDtjqB2KvVClRGIy0FTUo2VIMpZ6h+ai\nwmCsuQyaE2BUFxi5mDbG5QquKZKvGvdxVDIPKyNmiWyhXxFcdaZl4jWZ52QRMTyRePzWicPTN+R3\nQTMjeqTNWS6Ls6/suVD6BAD28iFFTfCWT+5z/Lamij89pjqQ9WVdmc/Er1A7vUiqmeJkF1fhvYo/\nkYiBUSoT6LUfC435R+0C676YaIfziJE2Lyn7Hq2aaGHlusnDrZ8H4NUjMVtO0n0Gcy019euU1SnX\nCEsMExlv2qpiaipwbuwqfiIi/6J2JaDQJizmdIpTFfOg5o5xZzLerC7zsTY/RUlzHj7X9mmvyeeT\nzCA3tL38Rcr7yMBQ7Wc2T9nT43XpWpP2pkSwlnafWL9/0BeTaDTKqOWCY8urUu2qI7zZxDNknwzH\np3BFG3QzMW08+wxHazVi4wy0cY7ph3QvHJd5xBxNxnmf8ANrCoZh7BqG8duGYbxlGMabhmH8V/p+\n2zCMLxqGcVf/tn7QZ6xgBSv4dw8/jKaQAv9NURRfMwyjBnzVMIwvAn8J+M2iKP6aYRi/DPwy8Evf\na7Bv51Ooagpry0g4WQpHbI4G5FqgMylEegyHCdFTsafMzRbnbe1MM44x9eqycq3BReaDXuGHl4+w\nL4paioRgog66YkFXOXvRgLnaz3rlARHFs9ttQ88m14rKgZNT1xh7Fud4Sxkv0DsGwmRGfyzaCIM+\ntqGxcHfx7Pbkml6r5vlN0JBVkC5poRmLtRKTkfZLSC28SFNitVFn2AkxQg3/BSkN7RB1lthc2pDv\nfvksQfvOgiEVlenQw1uItMK0SY8lFTyO6hgLyeUwK/sY6kgrV9VZ1spJFnqDdQhZLtLKMs5Bm7zm\nd+9jGfL90kwdjlOLk5KMu5OXKWmWaehkYGpvhe064VAzJzcE+dXZIYkWYBleTkMzM5fGHM1ypr4I\nydU/Eu4JPo1Dh86W4MIoxVS1wC7fDjAdebZX7YIv0rinWkAyf8ylj30WAL/uM9FeD9uWjaEdlxaa\nE3HJzlnqHPYqPi+si8Zju12cSIiunNZZ9EXTKWnXqJgcU0PHYSmgGMscWs0YI9G5WRXiTO/R0BBj\n5tWoRJpb41ZZy2Xcmd8mMzSnwTQxo+/vPvcfmCkURXEMHOvrmWEYd5Ar6P8M8LP6tf8d+B3eB1OA\nP3pBp6GtqY/PHYzf1wP2Hy6ISxpD72tvvcQmUudbsGyxMRSExNiMNcbuk1LXVt0bliA3iOoY2pAl\njRxKucSES40y63U5NZFXxdNLX5fakdezSmR6hx+GRaS3R5cM91mJLJnBYC7EvUg1uWm+wFVGMTwb\nYHaFSDcjG6ck6l6KJJ2UnQrZgWx4t9Il39MWbMsEWxucGNmSTC+MqaUau48SGlX1rLeaHCojuzn3\nOJjLIb22kWGqdzp8rNWAVgP7qrZfz6rP0qeNrENDr532mjco7+/LPAOZr1HcxfTFXDHPT7BK2iCk\nnGBp4pSx1iT3pPKxeFfWvGaWGQbyemj+cywlxarRINN4e4mCpiN7ctKQvZ76N8GQ1m7uJMOxNHV5\nVmKxkLWUCh80b+XwkQiFdscnqsmh2S91MNVh6GUbmNoWrYXNSaKO1Adal3LL5kqoCVAWuKb2qEwN\n5lpq6itzuJMUlPREnRyMeaMpv/sMAcZVwXfTznE8MV2iHfld7dzE1zYA2TIl1bL8eGmytiaKdnwM\nJb0j9aJhad1yoHQREXNIE8HVhl8wncn6SvUxfvHvIXnJMIx94KPAl4B1ZRgAJ8D6d/jNs6voV7CC\nFXx44IdmCoZhVIF/BPzXRVFMDcN49llRFIVhGN+2lewfvore4L03TxdArD/th2PuqQ4RhsdYT4WL\nJ5pqm/QDTK07j+YjxteE2zsDG1MF+mRus3FZJF6gqa+FlbO46GPQmFA81DZu203CVK+eKzyqZ6Jq\ndi+uRs4h1tyDSQa9sqDx7RAqmsI66Cc0NCw0f6wFPj2TbCQSuLPRJhjKeLXLLk5f5n+ipe9+MsbY\n1bsPZw5uSTSIYGoRaqbn5CzhcSb8d6zVjqVdg41DkdbTCs8aglq9CrduCIZf/90piVZdTpsitfz4\nmEIzL+3zOYV2SS6sAXZZKwd9oC3vX9yL4d2pkzuC5KLqk87FtKHWpdD1xd6E6G2RxsuFmEHvjs4Z\neSK5G2mVOSLRMwy5XBJYLMHWOqrxoV4t7/0rsoms44kxYTEXCRtZ5ySqWU7Cc1xNTT7ZkGfsDhIu\nKw3Ni5BcW6JZcYtWVZvbVjaZJ6Kaz7VJ6sQe40/lgpt2YeDrVd+bJRNTTc9Mb/D27IJFIp+fmTFr\navIdTkN6ur7pxKVsayh6pFpldcr8woy1p/hzWaudH7NEtYaKRXquYds1odl5UMVv6p2gAxfTk+c9\nOMlIC5l/4yCir2O8X/ihmIJhGA7CEP6Poij+sb59ahjGZlEUx4ZhbHJRFvcDwFzj+2+NFly/9zsA\npA9/huyKEGH9gjk0baaR2ri1iOpUCLa2bbFQD36n5lOy5MQl2tAjjiOmai/b/Rmx1gz4xQY1SzsU\nRxW4LAfnwUA2/KOuha+EuxGbDNS/ULVjimNNZ80W3BloBKMkfoTG44yG5krMjqDcEz/I4pHPeSjd\noEI1Sk+LBZeOtLrtpsMslY1N6xM8baBhNRbUQlHjHUtU9dbhx9h6WX53J6ozOtPy8lKVQOef9Bqc\nJIJDdyjfbdYdklBvWNqMcRaCq6w7Jp+KuebNv8j4t7SMeE1V/ycjKmVhoGXrkHBDDls4mz+79NM4\nCFiuq9n0rjAKO5tT7sv+faV4i/NEU41dC1yNPhDyJJb96/J1AManZc6U4OPUILbl0OcLi354cVFL\nyFzzKTSnjWLDJNEy8spGj95cE4/aFYySHkL3DO9MolGJ1s8Y3VcpbKGXSrJDu6Ut/FMwVJ0PtHvV\nPJE+lgCvTxMs9Q28vHsKytTt6hnRExFKi5pEnAbHCbVEnvvgwGRcSKQtq5T4+I5EGjYzi0gjTOfH\ngnvbSqlPtXy7V2eRiMlbK56y0EjZyDxl+e+qm7MhKsHfBu4URfE3nvvo/wH+or7+i8D//YM+YwUr\nWMG/e/hhNIXPAv8p8E3DUM8P/LfAXwP+vmEYfxl4DPz59zOY8V0+K9KUY3Wu3HzUJ9bin2lXpFLJ\nhI2acOX6ziWqA01Xdgqqpkppd4Oko9eNHWpWmrPkRBt2DLwFsWYu7gUZrIl2MMrOiFWaXlHpmBY5\nKhyIHOhqbP4wM1hqj77FYUFHTanclXGXuwvimfYJLJ1QStREsU+opiKtat43db4dzhryPCYJPS2u\nwXB5upQOvsdncx4fSZSguRTV3/3TZ/S14/DHX9njy/9KzYMdk2Kp/Sj9jL62ook0+3M6DWnq1XNB\nqU0SikaTzXv4iSh7dvoFZvlXAbBO92U+l98gnomEGpYcGjMxtcKTMzDFSTaZPcA8EifYKBDz4sEM\n+mXJN7l+XOZQOxHP0pxlJhGDqVXBikSCnmuR19ztM79wrrZS/FQ0mnE5oD0V3NpZTF3b0D0xhC7a\n05xAnY/hcMzpluC7FcQ0LgqGIp/DXJ+dq0nxzgH1Sy8BMDBSCs1D2XBsXNVuhva3MlbVeqBuFmyU\nRXN5Gro0p6KZjUOLVC+fefRUnauTOXNNnz41jinpvR5mLWCgqf5ZpUEt127cgYy18A1Mra7Mpzam\nLzRyvrQ4z6THZnpQkF5Emt4n/DDRh9/jO5/ln/t+x/t2iZgXKRfzOOfBAyH+K+2XKd3WxBPtZWcb\nU+KSNkAxp/hLzdt/NAFNbqncGEAmRGqrXTic1rniaIVf6BAG2tQk26CkVYLhE4viJVHtT74kG2d9\n1H4WZQgKONGkqMyyqGrj1swtM3xdCL2srlZrXqaqh20+8/HVjFk3eoy0p3xr8XEAjLJJZSm6r1v0\nyLWVu+9a1B2Z27A8Yl3Dj+5NSUXuvvVX2P6c9u0r2owtUVF7Z9ukFWUsdgtH6w6S+zL3ZLOLoSmz\n5dwkG+ndjmdVyj056G6ly473JwCIqkJp5RIsB9JBqf70NxiEeulJt4dGcnHtFxlmwsjqJ8K8PtU4\nZzQWeXHc+zsY5xqhMT0Mvf9xms05P5U9cXzBT9d4lbT+WwB0Fi6Gowllyx6JJdGHG601XDUJbmtN\nyRM89gz1JTk9zKdqjm1UCT29qalkYgfCqMeHQk9b14Ys7gmNeL0Y/wVtNb/IGV1cZKk8ZVl8S/V+\nsMyf+ahu5AOyPampWK8XTE6EYe2HkrxWVHo0NqVi9ubkFZ6syzraLQenJ5e91JcHHGjOVqUpD1xr\ntXC0ca9Ryom1QesLjZyHJ0JH/caXWGgU/P3CKs15BStYwXvgQ5Pm/N0gywsc7XHnm/fp3hAu2HpH\nW3jtNGgM5PNJo8BAxPW0nFN6Kl7fYJjhLTUBqCqiu7Y5pl8SVSwdHmPXJW06ut7CUNMkyqo8mes1\ndYn2eMxy9J4X7jrwghZBvVUUGE2Z03hosH1Dcwc08D5hyrlW+EWnh6RqakT+jETveZxbolpWQ4OB\nLeto1AJqDZGw0XLORB1tj/OMt9Yl+pBMRNJcvf41rt/VXoxFxiAXifeyH2Lbkpx0cDAj92UBg7ZI\nnZumi1fRWHmeMkplnnF9RFtvv65/JsXVy16Kkqiny392RsmXfo530nt09NKXRXWNeiy/Wxiw1GKe\nu2VZ0+ysT+VVadt+6Y0qZU9bicUxI21hPkgyTO14/eRU3su698mP5BnH7piudmIeW31eWlcTqpTS\n1L4O41PB1WXHwNVr7Gx/xkNk37eyJa2GaD2xVSK8rBfRqFPyYD6md3ElX9ChOxXcfrJiYmpr91Sj\nGqYBWrRKYSY8PBfN7KSXUcnEoR1TY6K9FQYtlfLRgq4WVC6bJpe0WUopAVPvP717ltPz9Ko7be7i\ndeuYhdBpULYZqRb60I857IlmXX8CJ7Gqr+8TPjRM4XtdgflQ7ys8OT4neFvs0u6GbMoG27i7Qvyt\n9Spo1t02IWlDfmeW68y0niHpCEF87esHhGqfL98+ZdAQQqhuWbi+jHeenGLG8v3XZ0KYf2wZ089k\nw4Opy28uhHDvdxLc17TqsDTmtaV85wXtE+j1EyqZbFZQyYlqslnLYx/P1+SeROsyXIeS2q/19T6L\nQtRytzYi+6ZelHv369hqXx5+4/dlTf8ixHtBeljuh2U6EyHof/laxDKT7Z6c9RloBeMn1Z6++2KJ\n9kDMjktcJlf7tPx0yFFLcOH2p7x5LPPcekcI+t13H5Cvi1kWPbKwPqv+Byq4OnY4jjk+l/snzqZy\noGdv9Ln3huDiYTIlObww6ebM9ap5c3DCE7HcqBfy3f79jLGuOQtd6qFWJRZlnurdnE65iqn+kYua\n5O4Clrt6P0eWsa7NWXrGMf2lJp/5fYavCaMKhlo7cG2LbCLPa7wyoajIur+SZs9C5upSeo8JPM5g\nrZB3fmd+hnNf+3FWYKol0LNQBNZp7lLS6MM4LtjUysiYGlu5MLJ8EWFXRaiFTclC9csZsXZ38qwT\nxlp9yXGf7FDGfmMyIZmvmqysYAUr+CHgQ6MpfLvah+ch1x53r80i/uRTuRan15bYr5F3CDTx3Tsw\nyUp66d7cJkqFY9ZGIbG2R0u/Lt7dLx8esTWWz8+8J6Cdc1+7M+Qzc3lGyypRVZXxSFX7k7sHJBWN\nRJxmvLnQ3gRHBctQLzuZOhieaDTNiah99bUz/EciwSKnT+tUKxG9x6QTrZnwNYkn3qN6cc/lsEah\n6R7pNMC17gCwNm3yO2+IGp+PRBpMwxlNra94q9Lkz7raP9Dqk6gW+fZswb5652ca+z6bzHD7grel\nPaF20bwj9HGmok0ld4eY2n48GmhkYTmgVpP17VxJKNfVKWf0SbVK1I7usKGt2u8/kPnGi4Q7kUi+\n22GdL+nujw+eUtLUZTNMMULJTyjrrdxV8+BZD8d7xYxOV1PP44BCm8tkxRxrKSbBekXrBJwqHb3O\n3qdHs651LkmJUGsRimCEl4tW0CtrH4fJjJc0R2R/7BDZgqOk6mJrCCrXub8nTb+ASP8pLSMO+7LW\nbs+kkgoO7bHgrZ+cc6ZqhlNNCMeiCZjegnipzV6sJa61oePJWIVZxnfEkRwHkB6L45IiZpKL5rGZ\nV3mg/UTfL6w0hRWsYAXvAaMovpc1/8HD/pVLxf/wK79EkTlYeofC2dGA/tvStfnuYcBItYO8KHC0\nz0KiEdE4N2lW5bVh2FQ9vRglL6hp5mEcF7h6pdtCu+74rg2aS2CZFrYWSvkNn7JeIpJRQRv6sKFh\nz7//D/45D9RMK/iWLVkFMu3E+2LV5faWeI8CVchyJ2Ssl71U3YyZBrUrrs1Iw5oN76LpKji6vmEY\n4Sj7DpIMR3n5MsspqR2dZlr/j0lx0Q25U6G5Lb0C5lGEn8kz7FZKQ285PtM2aE+O5tR7IlEaKVQS\n8WFE5yOqTbFbnyYFgdbpN9Xu33IrjDWTMDEs0A5KJd/CsUWbGh8/5pHmjky0n4IX5QzVUfcyBVe0\n29Cf+6XLfP03xWHYf+M1vqp2e3kmf99qW+ykMka92iTVMPLMSBjO5H3HKkhi3RXFRZQUlC769aq7\nAWARZ3j6HQNwTcFHrvj2fYdNLTArNRtsbu8D0N1u88W/+48AUBcPefGtMHoDCJQWLrkWu9pWbRam\nBOo0H2nmrW/lxEr3rm2SqLeyVTKxtFLY9xwKdV44qt8PopxDdaTOkuLZs7/Lif5qURSf+M4fC3w4\nzAfDwnDr5JHJ6FyvXB+/w9N3Bdsn0QnziSZpWCl7qR5YTcrYNmw2tZLPKpdwtOnJosipaPfdRegQ\n6aUYpqq1rhdhB/LdZTXB0mSUwkgxbNnEIE6p6Q1AE1Utz2K4SBw1+dYmOECkORB7GzXaGzLPKBAV\nt111Oa/JGG1gbmqbtyRl1BZCaWqJ7QKHUA+6MzdBVdgkd1jaFz0oLSxNtTULeVZuZ7jK6OZRDBe9\nD1sLpid6oa3XwOsLg7O14YxRc2kE4vVex+RAbz/aKi95dyK4+Mn9hK+MxGTbu2hY0lrgzIWMUg9M\nddo1uwYtvVexbziM5upc0/yHgzRnqQLpdeC3B4LRL/zb27z5WEyGg/MRv6d78jNaizHuu9zSy1i9\nSkApFhzWmiZlXXfdLgj1vslU2/Yv45w9rSuZLE2muaxvGKT42o3Zik2mrjoPVePO04Slml1ONybV\nMuRhtMGBMoNACcCGi+6gWAYk+sF2vUxHmV4rLuPa8rxhWdvjZTmJMnfbckl0bvu+yRRZX7lZJtDa\nDl8vti2GEf9ScxfGyfd21r9fWJkPK1jBCt4DHwpNwQJqJszNAm8hDpLR0wWPT+W1MR4z1ZBkBThz\nRIW9PNQQVLvMpYqo6jPHp+fprcSmRT0V7vokn7KpRTInep2bmzpMVN3tTCxM5dBO2SdXtdTIXAam\nvK5M9Trx51jy82GoIdDUMNTjLOVPaXXh2ZZ2nU7cZ52Ia1aZ05GIINMpyJeq8uvVZhExu8qycyek\nlKujzoxppqoJJSkXBfwTrenfJCVU1dl1IDnXDsBuyuWhjN3ca2NpHf6WNh9dDjLWu+LMfG3Uggdi\nrt1zb/LxRJyn//igy39QF0fbk/oNfZ7JUVlyDF4xI2bbor5d9uqkGvq99Y7J/6tXgXtqwiyfw+Hg\nORz+j7//69w9kt+JdSVf/G1NxtywY+6r5vXzSZulhu8+6cMD7WvRLpV5S9e6o81WonaPGyWRum8E\nKXVN3X7nbMy2K9/92jRiNxPxf65S2TIg1XZsvTOLGz0Na5aq/K9/SDQ/3/TsrICqUse9ouBz2gPk\nuONxS4nmna44vF9NE95QrelqGU41T+Hjdok7vszjkmcw0ZLfS5qa/y8b9/iJR7KON/nRwYeCKeQF\nLBOTxfCIk2NJEDp+8iZLtR0DO6aiF4aWHYN97ZLcU39Bs2vT0m659a0OyZnGrh2Lkjb6qLs2iTKW\nhvoLKmbEUm1VM49IYm28USwgVRtwMaRRFiaU+N+72izSDkj7t2s0OmqmtLQKrz+ChjyvEQ7Jrsi4\noycTujXttejIIW5lFYJQD7SVEyrB96YmZiHzWIsMtEUjagqTZukz/0Nq5qRNORTlTThPxTTr2gnu\n5yXt9vS3JC7PXsxcbdyf2Sjxe6aYF9dbCWcjIejPf/4zzL8shLn3sqjw3ekpkXZVssZjGtqj8FLD\nINb2+f8mfpdXSzL/f6MXU5l8+9R2s588qx94HmxVr0NsPqb5BpfaFt5l8cj7pwGXajLiuj/D3dSO\n3W+Kfu3vltnqaaKa0WP4NeEytzoZLW3Qc3yUMdHK76Ye0tQsyJQOM3/Jg5Ecwr3N7rMc/2+rthuQ\nKC1cu1amrjdH7d3eInhH8kFeXNdr6/MZlUvi+8nuLemsCT7X10MiQ/t0PhlR0iS5qnZ6emXjEn/9\ntyWaY1HwnKvkh4KV+bCCFazgPfCh0BSMAqyoYDRe8mQhcdfaLMLW7rzdxKKvYqWOTUez1NqWxMrb\nfhWnsS+fZw3GmrpsFlOKZVPfXzC+CNeGmo3o2NRUbR/E4GvzkjwxqGp1nRdX6GfaU6/4brWcYFrw\nee1d+PKyTDWVtOGtRCR+P91gSzPXCqNGZSy8/TytkupFNInmD9RdCzeW38fFhLoqKUEeMog0HJIH\nGLqFVy8a0mQOy0xvc85zGmo+HZ1ZtEui8m/cvsZ1LQT7LX4SgGp0zmZJriqvlF7kP7qs1Y6tEvuf\nlJThx9sOXU/TnB29ui7dpKd9Iq04oZUIbud5QCdU1T64ia3qy7n7CIDj7xA6P3JzXF1rDHrNDhiq\nKXzSb7OjDtEdv8dWTaIkob+L5eq9i1aPylLMgAe7Uqy1X06xMvnuNT/j7r5IZuP090nOxfTcMI7o\nX0S/QlEZDAPW1cR8cGrwqqtNec4G31ZDuKAQw4Q/URZaeCXr8kJlH4C66zDf+TnFoWjFbrRP+aJa\nt3mVniHZm+F5l229ynDsNukidJRqK8267/KXy0Ij//38nNmPyNX4oWAKRVGQZglZYcJC87s7cxxt\nJ15qRuwuhDx2Sxnb6n32tcddZe0qu5dEpZxRo6I3Oc1mXfymNDIZPbUotPedr6GyUqlgPpFxs/o5\nc21YYvgpUSrficoz6qnWQUTCbDzjW6mtxnMu549darK1L5u43dyjXxNreRAL82q4ISNfbO6dxozT\nqTIAf0K0lO/sVIUB9ScuZl2vnw8alJD3h0cVSr42Fknr1DQJ5+xc1hHbI7JA8DYvUiraoLS0mZJN\nZU1bt9eYmp8CoPapX5PJD2/wUV8vL9m+xmbrMwAs6nt0tYnpXu4S7Eje8fyBRCHiWw8Z3ZdnJNUz\ntFM5USvn6ViTyF5YsqM9IX9K066jd2LeWMr6lgZopTJXrTL3bNmnqg+5RnNevibM6MaWwZ7ellV6\nxWWht1N1yibxmqR375ZzhgjTq/bleVZ7ny291OXJLGffl6rS4cZnaTfEf3L2rxt089+VdYWyplE8\np6/xySoxTzVK0lsL8C7uHFJasGwwNKHp09c77Gjj3cu9TYorqpTXt9hrCB0FPVlTLc+Y6aU924sB\ngSXMu5kn9NXPVT6eUugFuY3bGlp/kjL8GWE8r/6zEa9rWFux/gPDynxYwQpW8B74UGgKWZ6yCEa4\n8ZRNvSa+v+jQ0f6Di8ihyIUdj9wama+prZFw12YrYVGTCsdSHpCpd9ryzgkjae7RcPuU1Ctnit8M\nK9/h8pZIEvvMItZGJrbj09RipIAms1hUyUhVvLJr0FNzZuqZbDZFSm+u2dyqyODR5pQxIm3KQ3FO\nGTODxZpIksd2naqvEmjoUmjq6thq6BwK3InG4BsJWSIJPfutEY9O9Eo3P6OknYEdvbV5kec8mMqa\nzBxm2lG6NICX9C7NhvMimqVNMBQ1ejwb8tCRvJZOmBMfybib2zmBLa/Lgwc42hMxLEnr9UXgUZRE\nsq8vmyyuyrNnAay15dn14y7xdZVfZ2KK/OfbT/lVEda8Pk5xQ8FFoxpz0xV8niRQWZd9KNvaSi1r\n4mvhWlRbp1vIM5zMoV0d6fsfp5tqe7p9aThjlTNiS2hhKx/gVqVPQcO9TxJ/FIBPXL5LfiI4mJx9\nGYAlEbEWXRmhSaot4Gdng2fJUF01ORaOybZGJ652LF5tSPTJ35oQab/OLHhKuBSN1FLncuBdomGr\nh7NaoWoJLUyXFQw1K8tunaInuF2ORVPq1gNezrQBTO2Me2rGLTJ+KKfjh4IpFBQERUxa7YPewDM8\n61v4LwwAACAASURBVFMqCyPoWNmzfn/rNYPahoRyNmpygOYp9GIhlMBzL1r8kYwb+J4QyqLhUlNf\ngu3LF6q1nJEnm9gwY0Zjvd0pz4gv7uKzIkqenKCRtmevGTY/W1P/w1qJumiBbGzc4lpNG21GJgca\nXvQdbVraPMOK5IB1mjFzTcLyagXJxT2IGi6dU6ath8qihl3RisrMYGtPbMvJuYldV6+8VkAGccKu\nUuv9NKKqJdLlVsKiI6p/PB1SkUpmzJ+UOe7FIbva5La+8QL7G1KKPSoSuprQ0zf2sctiutSfyueV\n2n0Oltpdtf6E4kgYT7U5YTaUtS6uZaRLwXlHQ4SPRyZ/9oYQ/+7pnNlM1vf2oU1F61h+wjfpqz2/\nU5FxP73mEOntTc0wYKphxkolZqCJaNveCbnWY5QuOhdZNlUNfg6zjHJXXs9nHXwtTz5OymxflfUt\npzL3b5zMmIUy56RcEF6EsO2Mkh6fTymDdVseuzfkve2tW1zxBKH5/8/em8Valp3nYd/a83jmc+48\n1djVze7m0E1SA0OKkiFbDmRYlo3AMZAYDvISGEHykDh5ykMMOHmJ9RAogGIkfhDgKIQND0KUUKJo\niaLIZpM9subh1p3PPO15Wnn4/1vdzTSb1WxJKQN3AYXadeqcvdde0z9/XyURcCYrFBeKwxiTnEBW\n9xdgUCXotoKKY96GNoHCFbiiOwIiOpDP13cSeZh+hkqynXEP229w7cqywvK8hBsfv12YDxftol20\nD7RnQlOoqhJpMEd8oGD/lPMKcg/1+nmabwMqw075K9vYZq9uUJFkqHkNLLneoa62seS8fN1VkDCB\nSxNznOZM4a7RST2aqtAYtViNN2AopOa7pQ3fZUbhtIM4JnRdkZBUEp7AKROyKImNGyndozsNYRis\napsp4hHFym2bvMzh0kVwziyVa+g55KxblhUKgxyiWk7PaGkSs5RUe885Qc6wa+0sxIMJSYxpMUKb\nE7i2OVEhz3uYSKqWswsVlkoSM53VEYVfpesvdVAvSY13H54T2ewBXTLXdos9lCX1x57toqxovHzp\noTCoT/Him/Qep6tYcUhzCaM2WgphOA4Oa2gzbmZyUIMfkgR2+P2f0zw8ICUOK4M+kpwJeswEYUDf\neZDlaHI69fX7jA+g9HBtSmpOYq1gyyINK05M9Ca0LhSvgYYk1T05Z3+SJSJ2gtadHOOcNJ1mc4Z4\nSnO502xCNslxqXf+TwDA3jTALQa1qeISGWdXTCYJwH07NDgaFJu4yjiRTbFExWQwjZoGMNFQcyNC\nOqX1ohs0p0o9h2+TORNXAcDrNx8CPnN6Lua9J/kpOWOG2paP9YSiR3BSaEyYM04XCJlpusR7kv9p\nuacvNIWLdtEu2gfaM6EpKABMKAgdG16N0YfzA+QRdU+9XqCdUshO8RcIfboWbFtlZQ1NltyJokBZ\n48rHSROuSY7LE6MDxyJcgDSkZ1RagDmTOM79PhL2KUgrxJCfbfhD2BXd2y0ofuwJA1vsJNpoAxVr\nNNkyxSQmu04v2ig4JyHq+vx7CdskR+R6K0SgcTaln6PByMdCsFZRbmLNYNReuQE1oXs9yDVMSvpO\nMteR1khK35+z/e5P0axIugyrJdwWcyhsp7B8kv713gZyTgZovcyQcZ3PYXdC4yMv2bAqiu8XigqX\nGa9VN0fGUGkrz5FzLr7yEIMl+RTU7Azlm7sAgIV4AI1TunM/RDUkreGxQ7b18eMFypQ+249LzAIu\nBMs1gMNwQpQYhTSXt21Gm4r6sJvkPFyzH2Fi0vVW04WqUD/q612UvB4s1kxy4cJvkLYxj1zUXRrP\ncLYK5wqHdY/nMLdIW2o8JE3igXkXc+s83zxHo+QK1SSCKmkNtHV6xpVmgYw1k2CWIvbpvkm0gpyd\noLG1Bk6tgMr8kV7LfeKIFNKFzs5m2xtjwaFq1RpARqxZ2MxfgiUWXdIO4jUfwiDNs/nNBCec45NV\nH9/p+GwcCrKCny2QVRILhutK1W1sNWiDFbkLtKiry3oDbkmfO49JPatemmDKFYctM4U+owWvtyTi\nhNTkTXWAgCHVY1bnx0sPNU4IsZYdHCtkujjCRJsrIs9mPh5npHeGCwZCQYkxE3vGMx+7Ji30TreC\nyuXZ8CZImBRXP6M4uDu1cO8q9XORVbjG5d76KWByBCO2aZGvhwNkHHGo3AR3D2mjry5nKA5oUTw0\nCiQx40dyms8sbWFfZep4aaIouNqx0rGxoI1uxesQNi3YTkWHxrL8Hk45yrAynQD7RCMf7t5AwAlQ\nRmnA4qIFlUFY4kkLWkHjiczBfkaOrzsPDiC57mI3zPGY5691dg61FuIWk9qM4xx03AKFzBBwYlMi\n3wPXKcf0vGlRwCuYpLZ2Db2Ysv6N4grUL9KBm9k2PK5KVCIaH90tEM5p/k29jzKhgy5y+2BKUmzZ\nwGhGYz68SodDe3INrf13uW8aTrnuWg8rZHw9ZV7KP81sXOaKS6OzxAqT+wZyiNCkteUdjlGFTHT7\n5RsAgLymo85ERNVsiZIJdOOpB4Uh2Mqli8imCMVwRP/fsSrUH3FULgfsOd1j06vww3NOWQGw7MFP\nTtKn9onNByGEKoR4Qwjxb/jfe0KI7woh7gsh/g8hhPFJn3HRLtpF+4trfxaawn8O4BaAGv/7fwDw\nP0kp/5kQ4n8B8PcA/OZHdkJT0O76ENkE4jKpQEr4EDlnAjacAospSYx0GGLB2WrMOoZ6FGGTnUj5\nqo6Kk02LuITKoPcpLMwlfWk+ojNThhMoBUnzmT9HxbBrQVhAN5g92Y/xYkx9Ou7Q8TsfO7hOH8Fq\n5XA4Uy6cdxGrdJrLQwcnzBl4qU/9efPFKWoBSXQtsZGbdJ17KbKStB5xwFqM1cLMJXVefWghikhy\nnaUWhhuceTg2oKUkQRWfczNEik/HJAV/WOZYWaPr0pJYXqP+VFWMdMTo0R71ff5WjscH5KAUsYLX\nXiaJ5/zwOzBvk5by8i99CksGBFXXWWOQI0jmpDh6cBvpjGTAtB/DZjyyb/k51lh7+15GffCDAvss\nu/ZUiSF/NyiBkANpKt7LHC05tDjLCswY3DYLxjhNaNntf2GGawHN7/NKgEqQhlCcg+wkFYo58zmW\nJW5mBCSrDGoQMY1zIXwsNjmn5E3mEVFHUNt0LzWd4yrjNJQqkLCJ2eEisG49QbtNWpyCLmYMXdef\n6Vjy+7XOVOx/kcymnRPSAsyBiXyTuVKXFgSHVrPhFBGbFXemj6APaY4nIelVTq2D/RqtFzEsMOVK\n2k3dQ9OgZ4u8Qv/jscZ9Yi7JTQB/FcA/BPBfMpXcVwH8bf7KPwXw3+EnHApQVVRND3nfQwqy9XTs\noGfR5p9WGjotroBzfWg84cmAF2jVhezSZPllHfJcX7ITTLnCLZsMMB3xgmVb1yglXJtt7lkHRUaT\nVG9qKEEb4VLZxNwhVboW0CEV+Cc4zGiziTMLOyqpj714Bp3rMmS0wLZDGz1o0d/qawFOmewz/qyK\nLY40OMo6PJVmbrZOqmXZnyE9pd9NohCVTv3UG11YDD6TRBFc9nyvcfq0X7RRtql+ZEXVsdGh06vd\n3MDKglKbM03CYg7C8hYdBErkYnObkYCUX8AvjL8GAHh85/Nwf4YRml0FK9vUj5jZtBZKhJxNkGvt\nn8XZNdpsf6e1igcF9a3dP8TxIVUGPjem/38DCwTch+9ICU6bwEIATCGKHO/VEiw4l7hKgTEf6i9d\nN+E0XgUAGN+6A+2M+jT4u2fY8ckMUFQugZ9bmElOCspsiDMyNeZRBjtjPs6NFmqH9Llcpzl/6eTz\nODEIKTudZLhf0KFmqioSq+IxoPU4nlq42mBfkyhgOVzBqQt4mxzVMDagv0PmSMBydPDVFA4n3Bki\nR8aAOWm9hsWCnlGb6jhjMmTLo/+feDWs9el5aTVDr0VRqdfjBI0xs0VVGbZ5PB8+Zfjhk5oP/xjA\nf4X3oh1tADMp5fnZdARg48N+KIT4T4UQrwshXl8sPyaFzUW7aBftz6391JqCEOLfBzCQUn5fCPGV\nj/v791PRX7u6J1vuJvTuETQmvrPjQ4xNOhETfQJ9TFKgXx9jheP0/SadhhuxidmUHYaxgL9CGkY0\nCbEoKHPtbBBjrJEKbjCqR9KroMSkyinbgD0miZEgQNnhjDgjwO6U7JTHp/sACOl3mzMJXbfEOcXA\nWWRBMkeEBQv7AV3vsUf6viNwWdLz0oMQgUL3M29cAZacojokaTAJS8wZjq2XGzjkdGVXHyFeYdqw\niYbSIafrsOLMvusZ1gu25IwUK206k1fXXAiXq0cdB9Mj+l3Qonc2wggPeCxWxn+C/mcpH8HPpvDn\n5CW35hLVOkdJGPBDlg1YrO4u1jKsF4TTcNK9i5em1I/ZZ0p86tukhTy+y9BtSwlOsYBVAQfnRUX4\nYBbe+fW51FnkFTo6ffp/HQ3wdwyCbrsldYALxXAvQaukZ9u75GgOwikSHuNFVCHge6iTBaZNMvnM\nuxLFNcZsu89gMPYSZYf6PFumuMbRkAd5gQ6bbDucebvZqJAanFlaecgUzrOpN3GT06OvixSH67TG\nV5ecgfhYw7JJZoC5voJ4RtdBXCJklO8TzUKNMeImLEPb2RDJFc5+VCSKitapWaRontEi9xcFbhdP\nm6FA7ZMSzP6qEOJXAFggn8JvAGgIITTWFjYBtgc+oomqhJLOIFUNS04k2VdacHIyD/RZiWHKdRB9\nA/tDPgBK5hzsnEAbUrKK1g7hPGYAz1aBkL2w5fIULbbr7k/OIb0LWMywc8nOkVi0uM3VPShztnFz\nDTe5ulKTHMpUh8g4EerBvA7XYrIQOwZbB7jdnyLl5JYBq4Dblok+J2HZuoFHTFW+c/AYikcK9IiB\nXrLRMSqu5vyDRyEUPkwGKLDHGH9HpYlOTqq75APEPDMwukxjGFabyJiQRVQCdc59DRsqdK7ANE7o\nXv1pH48L2vD5NMMrFDDBytUO4hZFLdCeQnD9iORkq2lqwNbZFzHp4SAg0I+DfoxkQFECb7/C/JS+\nv2Ra9KO4QMEOg7F8byH+OPP3vNJakxV+d0Tr4ouWg9/hQ/+vbHYgr9BcBso1DDhMuDqhwzSvzzFh\nZilpDAHqDr7z+j0cZQycoj3E5x5wCHCDvrvbeAnPCU7B1ob4NpdG7mY5GC8GCmNRfnveRIch9UU9\nR1tlpKfDUyyXNCdnwQRbzMQlLpGpktc2MDJo/lqzBSq2paZRjoph8B3ouH1G18sGC5CpgV0mLIau\nw3CobxsGYPvU/7uVxPWE5vi18umcCz+1+SCl/G+klJtSyl0A/wGAb0gp/0MAfwjg1/lrF1T0F+2i\n/TvW/jzyFP5rAP9MCPHfA3gDwD/5ST+QEihyiWq8gMnpup1iiKrBKaNND86EZMWe3kC4S+nDZp+k\nQNoV6Hn0O4ka8iabHbMQZsTEG60eJHPqbXMFk1iEaDMMO5ZTWPw8JzeQb9Hp7/VD7HCt+3iD1Mz1\nhw2st+jUFfkckqHhW7VVhBFpIc+ZbdS4OKpUydnXEhaEy4k54RS6Sc+oGg6kSlpBU2XtaG8XxSn9\n/pXrNjKmMoffhTnk1F/TgOR8gYTvZa8LCJv66xpzOJrH1z6yBkmatuNC234RAKBsMDzcz53hUwwy\nE1VXsFI7py7L0WVeyTToIeaEqqBPzxDxW9As0tLstofV2hY/7zHG2z9DfR7ch6vQUhsGpBr7moqS\nUQ1N8R5xyk8q4BES2Fgh0+4L6zV0f/kvAQC2tBWMd2gM10QMY0la3dinvieDCnZF2qaNPeAyvevz\n/h46t5k13OohZ9IdwVVHhf0AjW2S+FszE6tcgHVaLrGm0thucclsU09hdUgL2FrfRo2xPe1dH1sG\nw/vtXsXagrkre/S7erxAUnK+iAWobCr6YgHs0Nqp5xUa24SzYMzIkRwWHryYvluZNrhuDT3DwJcn\n9I8rDYm7xT79R/9ct/no9mdyKEgpvwngm3z9EMDn/yzue9Eu2kX7i2/PREajRIlCBDidZ3gYkI3Y\nyBI0OQQoTAVNg9GL3BY0l+C4rD2uS09jlD7nSFVAwTagoigIOLS40fIhJ6QVZDpJBrNpotYliagF\nKSyNpLTMa0gVOlVHKz1EERdEccZfUZtgkJHzbZ4C61zW7do69lxytC2sEF1G7xnvkvRYSysEjDZk\nuTXENr2TJiv4AUmdgvkNTLuFnkrSox8eAwpJjMQQkFxok8wOYHOfXI6Ze8UmWgxdNmm+AMciaSwX\nOTzBiD4u4GucmrxDv5fpFVSMRF2aDgweIxFUyDkvJEeIfEmSNJiShJodLNB8gbSDltZAWXCIzK2h\nxtpbLFsI5wSeYObkZ1jFBBxZQ1iBn/BBpOwPa0KIJ9wSz/ufxdoqM5A3arh6RlpYpcdY8A3FkEKL\ni9s+ZgGVjrc+fw3rrL0ppcAVnzTHR80cbZ1wORqSMjPn45fRi2hdRP4uziq6x3Zcx4Ax8uYg30A/\nBjaZC2JNKGh1CetgR5ioGwwk2+tAW+P09oDmJlGmyOdMHptMkLCfpypz1C4xN0i0DTujfAolp+Ip\np2FCYb+VXyyf4DRYQsUKIz2p/iG2DHK2fqP/xkcPLrdn4lAQlQo1qKNuFnAsUtE3Kh3CZwaldQkv\npcFpdgDZoZf3OL200LcgUlqsi2WOkuP/QitgNhizQFNg8CQaDH7i+QKaypuiOUOR00LJZYgo4GQg\nmaNR0AGQgpJjasJDh9F5rbJEi6MkG7qA0aADqbXbhJnwNUPFqXOBOlc7Thcj1DgJR5MtWK1zRiM6\n8JxuHQan0frBCqqYnHlh3kCyIBMlPPFxFpJKnHHq7PpmCJeBXmCUUJmKvtZ2YO6S17W58QIUBlRQ\n+EBDwyA7DkAlBQRXoGZKBcG6vZjmSPmgKhhLE24TBhO2uJs2FE6gwdYmDMZrDJ1DzCtSmU8DMjWK\n4zMIxinwc4nZT3CQvx85+avXdgEAK7/awvo1rktRHKSbnEMxO4X/mJmTOBKj1APUTKpn6CFDe4fe\nr7HTAka0HuqQiAfkF89PaQwP3ddxxgjcsZHj8jG9x9hbwlVoDDfatK6aNuAzanXDUNBgVnFtpQmP\nqe3zRglrSesh4nRmOVFQsdM5N1OoOplowmjC1LhvWxV80Prk1AuMFAllQeZYkdaQNBnmbaqjvk7r\nyD2zseB6jqdtF1WSF+2iXbQPtGdCU1DUHH7jGMdDG+YZSa4HNRWXOanJnNpY2WFKN3eXeBkAmHWS\n4FFxiCFnpZXVMbSA1V33DCUjH1fBMVSbdUr/vOJuHUaNpL+VSkiXJHCsr8NgZODJoIO5IKnIdBJI\nEGPJxS6LAGBNHBtmgKpkc6TKoRqkrhclSYxYkQgCik1PUwsiJ62opyiI61zyeV7dpxwjLzi8lUsg\nIimRqifwQkYUVnIoXFqyKUnF7ZRrsLcoN2FceshmlD3XK2w0luc4dAUUZiIWXEglZIZKcopukUMK\nVj+rBBPm7pxGhygPSaKdxjQmp6cTrHCad2NkQe9Qf8pUQAtu0tjPNcwmFOOcnXGMWMmeFOrMATAg\nE4IfYz6cf6wIidGc1Ggj6EFKMg9g70Hk9IxkASy1fXqvJReuhTkSLg6bCR0WU93ZVY5wSGOgVwco\nFmzyFZR5mU8zyAWnZk+8J1RvxUxFyvHnWUxrbDwUyDdorOJWhIxD5jV/gUqSiaWX9yF1RsSuaL2N\n8grTmEK5ciYQcSjackawWOu1EUIXXACYOzwojwBe97l2hGjK1IH5EMUJmax6y0LEVaxP256JQwGl\nQLlQ4SQDrLRoAhaTE4SbZN9tWAZiHpxGNoHOyMBVSJNcFBJOQgMcyDbKOqc2Ry5MhjdLHAueZJy8\njCvdvAQVpyVnWoiKJ1fGUyxyttudAcqErnst2hDBpAbLZZgvRaDkqEaQ6XA4dTfTBHSNiUgCmmR1\nliDjOH89SlC1aaFALyEi0p+tkhOMVB2S1XIlyqCUtOlds4FS0H27NpAy96S/SnbmypdqgEv3ulFE\neOsuv3N9HREo1dgYXYZ6jp1ecbm4qQI8LpWio2Qi2DTOkJ/Q7wp4GLOvxfbOEbFvITqhw3axXcAd\nck7HZIKSSWyX996Cy5sz5QpXaZjQeW7WtQr97OmAw1Qp0LzKh1v0GHqfKg2zyQIhb9J8MoPmUp/m\njMTtOAPMOJqT7A8Q8Jymbh2qyUlPhYMgukVjPqf3K8LXkYa8TVpjdBhEJW2nCM/Y/OFEKLdeQGeG\nqSwGpEprK51ocBiNW+Q1JAn7D7h0XB9MYHQJhEVOM3gmjZFQFGhcjVstBDLJ+TcM529JD0FKwkvP\nVORzhoavbJRNep5edLDCJu3Ttgvz4aJdtIv2gfZMaAqVWiBxpzi5P8TNu+TdVdwZXuD0zNMix7UZ\nnbrlVQtuStItj+hE1VwTEeNi1ttNCEbX9RsxZlM6XVeVHOmUpK3J8WWkKmxOS82THDrTjsnKRZ0l\n6ey0g6qkmv35mEEz7BLTlCRROCrhcX6DktoIWdpqSgqjxl7kgkEx4iUWXG+vySVKlkCZMFCqbBJo\ndKr39C6qlP5ft3OgIlPJjULkgjoXDA3suvRsl2P+1sSByRKzWL2OaUoe5/E7Bezgr1I/NhYw5bkK\ny16rpIGSzbIiUyAqBjaNTUwCclQdzAxsssZ2fMSpzyMfOfNv5LdHkC5FVKJ6gbQkSQiriTOOWlxi\nFfhUq7Dm0fOGSYobrMW9nn20x1FVBPTb9Dv1RQ+SqyALcYCcQUjiYI44pfdz2Ts/G3fgCfqdkrqQ\nDFqjqkDFqKlxFcL1yEE3Bpkl8m4TWb5PYzGy0OB7eJqDwCDJ3I/pueNJiV6TnndDLzB5QP+vBnWI\nDXJ8KqKOkqX7jGH8FtEIsxnnqVQG5px5mVsBNtfpeUGRoXaeO5LTGktlBZUL5aJqCpUd6IhKLGKm\nWaydQlU+3jZ/Jg4FJdfh9tdhIII0mb3pMMLpF0jNquwUU50mqzCTJwg0Gpvh1RJgqkUEswn0VXot\nMYqRsgdcyyQCiw4Rl+nu7W0d6YzBO+wllCENatnIcDilg2VQTKCfcFXalH6vVj40hjUvmwkcxtQ7\nXbhodJmIZm6jqDP33wn1oXAjaExwU2gpygVNeLkeQVvSZjGY71JEM/hN8tSXCVA1GN0pcxBxumrR\nThEk1P9DBlvZ6vaRPebS8NRFzKAmwWc7SJpk4wv9KyiZV1LRaQEWKCA42lHOE5QOm0HjJXwOh/rz\nGNU2I1Kxb2GezqFz8s/mL6xhekqfu1kTBdPOL5NjKDOaoAdcUzKfLZFzpKI7lDjO30/P+v9t59GH\nQkrMPFK1H9oBVE5pd9Yk0gk7fbQWOPADjROEikwgGtIm1IoEK5xkVWYVFIcOeL8f4awgX8nyFj3x\nB0fvYJ855+s9wDoHbampUDj61eASeeEUiLkw4a4cY6ND9y1HE3Q2VB43BQWvnTzg0LhmQ424pP5K\nBaPGPoV5CLYw0NtooeS5rmr0HtlQQyxoj8SjAscR+VqOjiUijo5lgyaM1keP7Y+2C/Phol20i/aB\n9kxoClBTVPU7GAcRjh7SiXqvzHDjDXJwlc/VsXWDEzfQglIn9cuL2VnUXqBPuSZIZ7egPWBgDSvF\nmE9zXQhsFJwSzLwBy3kTJsO4maMS6jqpeFLbgS/JUXN6rOPegvoRMM5gd0VBPyXYtHSk450m/e5X\n6hlmCZ3ibm2BUJKKXfjUOWPZRL7JRCZ9H4rLHIwPa1j0mG+AowmKqsJLSDOpmkDJJkicn8Eecgx+\ntsAqF1htlKTuHr9eg3/j1wAAM63Ad4bk1W7fPIaZfBkAEF7vw2xR39gXCEWNsUxZiutzuKds5qzm\nCB/RMnGvTaCf0HXCztUsbCE4pSjK/OsCUqHrd8wcNhOZnFQJeOjgKSQF95omDhfU92OnQD0jSXkC\n/uKPtCduSBXIckqEWi6uYtmhiIMxXYN2lcum7rrobjD4SEjSWml7UDgCUGsKiIqku6wpiBKak1Gt\nj+I+rZcx8zwWmQbMOPV50UHB5sGxCeQVaQXHc3qPo1mFE5vuVa+OEXMa/meu6JhHdX72FEZCKm79\nCmt0gz3UtshsNtQ9RJyCHY9rcFzqj6WWKFj6Bwk7TO1TlKx5Bm6I+YDmRlueQA1Js463iUDp47Rn\n4lCQS4n8jwrcVO8iFcyUEyWoevTylXQwZlCPvQgoHXrJkM3P6dRHPucknmIHg4Q2iB040FfYOxuv\nYMz2s8qksjUkmDEQp6JPUBwzwKozxWRGi/TO8j5qM9osC49z3Kc1pC/QJOZLBV+t0+QfJR7WdrlE\neB/Y5Oq0pMkoPq6CKmMIeLGE2f40vSoG6GrsLW9whEDaGNZ4My4KGCn5Q/Kxgof5gt81QcoqqGUz\nfH1xCOPO7wIAYv8FOEecVXhV4oHzFgDgs+kXUDHfpgQjTEmgmPB9LQ2VH/NYVbBs8i/U3F1oOdnJ\nZpeiHc/90m2M/glFiarPfwuT36J5unb9Hr55i/p/zw2w6tCGFOwJNxpNbI/ocOsIA0tJm/R2lH4k\ncataCeTnGa1BgPCEMwW3K2BO/hXbPYHdJl5Jk9m9IttAo05rRAk2kTJJjpgDOVj9n9i4PaHs1Tu3\nabO9sTxEHtD16DN9tE5p/n65s4c/fsAl41dobvywwHZOvT8rFOw1aL0dzRJc5hLoyHMgOGwdZ+fk\nQhN4PaoMMGcxTE5qUtTHcFPKwg18HXJMn2sZzUd45mBQcmh4P8UkZtSuiQbxebpuhQpe3Nz+kBH9\n8e3CfLhoF+2ifaA9E5pCYuS4vXGGxR+c4d6MpAdkheNTOl1broVtjyRQsmWixZDjSDluC8BokiSS\nJXDVof+PiwIW19XLmgbMSMqNwNJKz9Hkmvfx1Acjs8GpNDiMPvz5+au4Hf0OAEDr03cPNg4QfJck\nxul4hNOAJNSXfQMHN0l69PQQouQYOY+yMq49SbzS3SZ8jiLsmZ/CNCKJVjdJwlmdFjBmnD1d/LFq\nbwAAIABJREFURcFF9j07RhiRo60/WaLpMfT7CXMx/ouHmP8aE6/ck1gkLEm+u4Lw6K8AAJ5/JYKv\nkbQSnNBTwAUYeyEdVCh4HuRUgzJhiLzLb8FafhYA0DiipKjqmweIj/4QAPDmt4e4f8iVq48rgKHm\nb9vAtCQT6jOrlGPQWnOwrhJvY3/7D7A9IU3n6/jwmPq59qCqAtMzRtfuv4rWJmljkx/MoPWp//3u\nEG2XABO6zLW4SM6gMziNZhaouJJWgwtw6na9GeESr6PDtd+m8X5X4KbkPn1fx/cYdzGwjjBghGZ5\nh+41jQucwxTvJnMcfJ/m7EvNGCtt0ryaHQ3hIdfmPKCxOranaM9Ii6lPLyEoeOz9HJpBfTaDAhpD\n0mUlSf7t5imCE65Kzf8EiyPS/oJoguxPKZdnvHOGweBDwc9+bLvQFC7aRbtoH2jPhKYgMxXZ4zoO\nchOFTXb7aFKhvUO22t2lwGdMOhETd4I5O6tKTsXN7AoxhxbVnoFEIWnsGB5UxmfAfIoji8I3Cmfa\nzizAZCDOuTlGwChGcztAwfAFs4051tihGUomEIlqiEs6zWM3wjsndJpffeE++uW5WtCF0+KqyyZJ\nRyWaIWTkY+XoGBV/nhg5Co3sz5TBaK30BAOOs26oXSibBo/VAPMOPdtGiZQJa2ufI9tzOL6KakTv\ndPyuhinHqNOtEOt7fwIAcItLQMJaiEZaleIpaDCaVOgC92JOCe6ouDQ8d3Zdh9PmXIY6oxx9W+AW\nE9j8w8MAn8tJWv1xDvyNNknxhzMVL+ySxnaq0mfN5zykS+ZImK/hHYc0JQUfTm/GUA8IiwoWazn3\nxbtwOe/BkhFOejQP5esBki8znFqfaOwCp4J1kytUt9rIZgxD19pC7QpnEy5TKAY5Fd85pPn4YThH\nwoznUmZgMGe8fTRAw+Zsw3NEI73EAVdJtnsRMiaVNTsdWDo5ynP9BqTBBD4VzXX53cfoXyO/1boE\nooozGk8TBD6TvdTbcG1aL7VrtKaH+zHm7OPZj6d4i1GeA12i0Oh57cQDDm5+yIj++PZMHAppleJh\nso9YDrFkHkFNSNw+JfPgU/YE+2c0OPXpCladiL/DSUpFjCOHJrmOBAnXO5jqKQYhL5p8gmzEmHk1\nqjicooP2lFTtcigQM6R6VpXwF7Qo7h8s0J/RYaAMaKOM8gWOBrTxZrGAxh7z//1+iC8zxN/osg53\nRok825xYNFdK6AxVP3Sa6HECVJxL1BiVOfM4lq4CMqbJn9WPMTlmBqzBECc3SdWMUhPXtuh+qxY9\ny/xLIyTuXwYAFJ0I3/pNjrG/u0DtIS0qc/X38co2qZTunBao5lhIuQ9tWSHlVOl2fx/edToh/Utt\n5Kd0bdBQ4aS4ieMpe8XTHP+a57QqJX5rKJ7c79+c0cb565epP404Q2Rw+bXuo8mMVRDDD0Va4X0J\nUwCvT7la9a7AhkJmwvrGEk6f1Gr9ZQt17zka28uM0L24jtKgsu3AXIHPHnl/u0Iq6UAqxSmObpOj\nsf8ubbAiKMHpGxAAjjgxbq0qEVh0WJ4nrE0LQOFK0++PSmxq9PnX3SH0x/TdXXcHmk5rbvU8cvDp\nXbTXyGFa5BINToVPjh8iaDB8gCZRrdJBfjyn9TReHOCPX6MN//b+FAHXxESphK/R/H0rcfEF/yLN\n+aJdtIv2CdozoSmUcYXZuxEWAeDwSTyRAhwBhCwkIv7HPImhcdVew2MVcVbBriiUJ2YduApJdjk3\noWkMGLow0GanXMoSup4MkTMMWts5xpKrz8Zn+8gS5gwMD3GJK+duc+qzMy0wT0gKqBUQsXSohSnG\nXGC0sSxwJEibWPNJHVyTBaolpwErR9AG7Oxyp3AypjwTDB9XbqLnk0ZTjjwsMnIYqoMUIy4kajoa\njlmzusGciRuj51HxWf9Y2HiRJaxIFbzhn2s8Lex8bR8AYPwy5Vvk0wySC3VU3UJDYzRgaaPPlZ3N\nr7+NKTNal/+c8h/+55tDdBgqblhI2OdqfgUOdgIjIbFX0pz96SlpJpcOFuhZ54A6TXzdIOmpyh/D\njsz3LSWgqfRSPwwrfDWle2iZig026foixeoxSfwTLuyylRKHzAnZEnUYq2TylNEqEpO00Hx/jpOT\n1wAAKwm90+1SfoC1WfBcDyXwKbYlTliT0KVEzONtVBKLgtfycokfPCAzb6d7hBqjP6sqOQPLbIoW\nc4EmWgAvpQzSw7aEy2DBZes+ygl93l/QWghuTTCakNbkxxkOOczsAYi4wMxdznG3+njbXEj5dNVp\nf56t7tny5z99BWpcIgrJzhJKjoLzt0tDIMyYZKMDNF2yg5ucRhqFNlbILESR12HXSQ2eny2g2zRj\nYVBCM5kMZkwLQoFEnjIwRQIkvIBgqrjUoMOiarax1iM8Q6dDk/zX//Z/BpFxLYYSYnJEC/3d23+E\nN39AORKTO9/AgpGL7YgrP2WJOdvqjiVRcPapogrwfKLlMqmuUKBqZEqMogC2Tn3XjepJebZqC1QO\nLZorTHg7cxxs+gTPbq1J3PkB5VOUcQ5dMi17y8BWiyv42I8ymqTwm1xG7ki0qpdorIZjrK8y4rO2\nDsVnJOKANmBLVwCPFqtnulAYKNCqYmQaHYDjd/8t3nn3ewCA/bu0oN8eFRjy7tfxnsr6j/eA/4LO\nHaR4jxz1/SAr50u8qSsAC5FIkVC5VsZUBHR2QggO/ayoKi6v0bt6rVV4Jn2+SCssQxIoj9QUt79H\nB+M5ZuRHVWK4/PdPYi2xBPA8j7em21BMprNf0HrzdAnm7YVrKFhy/YevAwFvbl0AQcq5FTxYhQCS\niAVjKXGezKxXeHJ9A8DVGv3ga4vq+1LKV35Cdy/Mh4t20S7aB9szYT5ACiBVsdEpccJHsy8FCgaQ\nkC0FBqNwvNCsoVMnp8zqcwyyYjrYNel6qXbh+qSWn42nqHMk4rhvofLpHuNHpC5W1X0c3yNJ+7g1\nQH7GmAZWhIgJ+Kr1GuKInE5ZTvwHiumBIfZxmJgIIxJt/Ycj3GVvd3a8RKySg2eDM+K0roIVjobU\nbAWGIE2gsCVSVv9XGWtSlD6mLBKUiQvJKM/VzMRZnbSbcirg8Ps9HDAy9NUmqgWn/hqfQxHQPZxm\nimxKGouteNAYL2DJ2BO5k0L0aQw7dRsDi95pSxvAPKHciRdf1nDI2JQ9l0yqTmOOOau4TrcFIyOn\na7PlImRHWvuGh/t/RFJuGNL7jariiRTO8J5v8bf2AXbgf6C9X589ZyyelkBT54KnQqDNnw8r4LrJ\n1ZFszr3YMNDiQqJO24DeZOi95RjzQ7oubj3CW0+hIZy3D+vnh7WGIqBzuvLKiouuStuuz1mjKyjA\nhOZoqDpGzPLdlRIjzpBMsgIjI+N3pd55AB5xkWtUAJzGgBzvjddtAG8t/uLIYP7MWlVViMIQEBXs\nOVee+Tq4cAyfKgyEkkJuN9avo71NZsPmKqXXouvB818GAKT5CcwmHSbrkxwAk9R2R3BrNFQTex8A\nsFxcx2JMoBqvJiXenj7g/ihQGHT1UyfAtavM+tPgCrkywpRNm/Fhgm++Qxvou997Dc4+qccn4RIO\n81iOderPF+bACau1G14DM0ZW6hUCpUnoOOt1WqChMLDJoKv75QhgUJB3qgWaAy6znsRIeJMpXGZ9\ntZrj09u0+FO7wB8HdDD5yFAMOHnHa0I16N6rp1x9OYvg6HT4feNhA/Uzqi/4XvNFfFlQ6fjX0l38\nepPe9dEKefc9aeO4Rer358MM4Sor1UELeY1+tzG6h+8PyS9RMCT5uVkAfHDDv/4U1uz5ZnSqCrOS\nxrMpK5zyIbpRVXjAHvxfMmmD3VK6+FuMwXnoGviZhEylb44Erh3SO/1mGv9EiPn3t6f9br+U+FJG\n4+KsruNVlczfu1xavhcLPOA6lx1DwSEnql1WMnyfTc96NEXCpfu7HLV5uyzwApME/T/v68z7+/Xh\nlSQf3T6R+SCEaAghviaEuC2EuCWE+BkhREsI8XUhxD3+u/lJnnHRLtpF+4ttn1RT+A0Avyel/HUh\nhAHAAfDfAvgDKeU/EkL8AwD/AEQQ82ObAKAoEo1ajrBiJNtKx+YaS3kPcJ+jM29tPYXzAnnq3QX9\nna7msBSS0GK1B/2YXqvaWsBi7MJoqweVabec5+i+fqXAdUjpzG8fY3XOFGxagiXHee1mjncY/myH\nIbWmsxjLIcW240MgZCeaWE4x0qj/LeSw2f3e5Xi2ZqlYYzVyvZvA3iAgEO0ohb3CDrE1kuCL9W2U\nj0lKvOQ5CEp63oO7EcSETYJUojLYkWqTFFFXK3xbktR5ScwgmebMreWYJOzYqnLoaySNpo9JYtbd\nGCHjEXzWqnCfwVKu6zH0Go3Llz//HLRH1L9L69TfddeEXt8FACxHS6hc+ONqEQqdIhtvRa/hOrNq\n//6fhV+bVW0JgS5rhYtJihWTMS0zBS/tkVY3WZAm9eJOF36NTJ/rW1v44Yip4qwRIk6G2xEZ3v2x\nxHU/fdNrKlTGw7jx2Rso7pEWtqKSRtfwR7jKDOVxf4Edpp933RjPp0w3d1/BZ01WnRP6++dUG/+C\nk/ZsVD/R4fm07ZMQzNYB/HsA/mMAkFJmADIhxF8D8BX+2j8FkcR85KEAWQFFgrO5B5+hxXt1C9s8\nyYtgDesLymg0NuvYBl3nXPbcWHpQDLquxR5khzPwUh9FREbXhqIh79Ek+IyjOL4DfFEhP8FtW8EZ\nh8XSqMAlxms80FO8vO1xN6k/SZxgMKON9yaOUaW0YYtihjWuwBxUKjgggsscOWhaGwiZIartt7DF\n6Eejtop2gzae3SAVd8PuYrpJ98oWfWhTpnu3PDxS6IA8zmNYKt3vnG68/1jic69Qf51EgWATZjjW\nYLD6bDkaNgMG4WBujUnWwBoDq5idVdzgbMtStdFapd+JlomaRklPespmxyiDf+6XEBL5gsZilGQQ\nDVKTN89exqc42+lYJXPtsHh69ftHG9Na4NdND8kqzbUvPNxhgJ7PJSaSFm30WpNMzJUVHaZgLtBI\nYHfCoWFZw2mb+qZJC80jusf0p+zbh7VaBvxi81XqRzFDZNOaM+ZkXinSh5LQnIaZD/uchDhpoM5h\nVGntIYxpbDWWNtMc+FU2Jf5lFgAVC4hP2N9PYj7sARgC+N+EEG8IIf5XIYQLYEVKeQ40fwZg5cN+\n/H4q+qz8eI6Qi3bRLtqfX/sk5oMG4LMA/r6U8rtCiN8AmQpPmpRSCiE+VCC8n4res0wZVxp66ykq\n5kk0GxEqg055vxOitkVSdaNVQ854ChYnNMlaFxan6Fa29V6yiV2D1eBTt6ygcBKOcAh6ff1zNsL7\npEm01Ue4NKIKwEH6JxhzwpLwUzwek4bR4lz+PE4RM76id9KGwZyRB9JCxZV4zRMB6TABCMO2xxsh\n2m169u5VHZlFuoRZhVBrdHautZlz0GrCq7gir34dm9dJIvaVDmag1NaVUQepTWrwklOi9VqJu316\n3tZaBaGxNrUZoRyTJGmtKSgVcmxqgn7v2iu4wtzOtUvPYZNrG8rWDnyGs4/bLmzO288CUsU9dYFT\nztgpghjLCTuKtz2cMm178ooFb0Z5Dy8eklPyO68tMC8/vq6gCmBrlTSQ+lUbL7o0ht0bMT5X0Xv7\n8QzqJWJF0jnvI1fWUK/T/IULC9Eew7bHOoxXvggAePW1AebhtwEAM6aq+iTWzvk63NhZw/gzZFZ2\nxRbWOjTOcZOc5119CnXC7NHdCKVC77TbizCYk+bc9CYwFgz/TwoP7ImHoUnJW1898PD2gtb3o1Bi\n/pTcnB/V75+mHQE4klJ+l//9NdAh0RdCrAEA/z34BM+4aBftov0Ft59aU5BSngkhDoUQ16WUdwD8\nIoCb/Oc/AvCP8JRU9GVVYhkFWDxQITKSNF7TQSzJCdacGNDWKFw2cDvoJRRCqlI67fXWGLmgEJmq\naxAc71KtAFXEBUYyPWdFg+R052CQoWVypVq+g7NL9DxnuAdnRKE8NVlDa4WBNjUG37QLOByn7xUH\nuFOSQ61ePkAa0skulRwFZxs6LK3qoQ19g07zE/M5bGiMwFzVoJtMMqKQJtEWKULmLujWUowTwgX4\n9NZDZGc/DwCYNr6NY50kdj5mzki4cLdZQyk1RBmXhA4rNBgGLCs8mBa9n7eg/trlKU45Q7RWHCMZ\nkQPWMw6QdahPunEGvaT31rh4bHmkodJoPsS4RMFcF/fvZGD3CMyTFRQb5OSdP6Rn/FJriX89YnwA\n+V7GosCPqZJk8bWja+hyJe1kakELeC2cqUgYqQrra3BKZgJ3zvMOJ0gK0jA0ewYnJb9LVJtiQcsB\nn3mlxL3Xab0cMCL2+0OnH7f12MG8sVqgKWncgtkR9Jwkvu2RVjlMOmgyQZG+NGEwzNsyX4fvcmXn\nyIDvUiZuzGH2tl/CYf+aWR9hySHszizBmxwyn5eAyTkwy+Lp9IZPGn34+wB+myMPDwH8XZD28TtC\niL8H4DGAv/WTbqJAwJYCTb9AzvhzIhLo+jRx9YYLtUkKhzZfIAWXIlq0yKv+ErrFmHxKBqhcWZZm\nkDFDusFCHnPK75wmSGYHyBVG0d16gOtM3nE7SbF4mdN5wwAzJlypZ0zioVaIOaavbHRgHlIdABwV\nmxqphpEK6AptTpVTbb2agpATUNcKiYj5BWt5CjAas6MTGEmqrMCzyHxIqzraLicpbQn0GJrtM6IJ\ncZ+cT9XmOSx4gYWg/+85OTz1nKUohMNQaGrqQGnQ502yypDXK6wyonLNvISVGm2gwFzAWzIZjOEh\nZyCWpM8l1OIxih8yHF1tgOo1uoeyusToASWZHbbfQT6gXX3o8fjAQINJEeMKCPgk0IAn/n8D78XZ\nV3jD/81VEzOP1sW4XOA5NuNKN0dnSddbRf4E21B3uRw+LlFzWW2fbcBr0jvJsY92hw7O5LGNjPF7\nfPY0zn5K+8FWBb7UoP683O0hcuhNWkEDOrOPiZKERrMeIWaJ5ZslSqYzcJwxpow55HenWPC6rdWY\nlCgW0K5zHsrAwY0FJ+LZFv5GRELmjUxiwQ7IW6dPh+r8iQ4FKeWbAD4sl/oXP8l9L9pFu2j//7Vn\nIqNRQiJDjuHIeQJ08nxNYNMm/TMONLhLAgpV1wVqCtXNFwFlIKJ8DqXG/JL5FiQjMcuyjXTGlX/q\nAuxHA3SSbMHBMYTJpCHB85hZJB5WXA1lwLwI8T7MkE7ugolc2k4XCx66e9lbEEs6oVddB/GMNAwl\nj6CY9C6NkKRWrNpoFaTFqJqOVY1Mnnk5gM7unZhToptWhGlJ1049Q8zAKe2igTyic/ihvIttZjw+\nPeVwYjCFZ5PTMh0akOK8krSOnEOgzZ6BpkEhx4i5BEQAWD0ybXqpAhkwQOt+G8oKPdutryDnMRID\nkkTzExV1FvPpWYTjI9LoHt2eo7XK/BRvGSjG9Pk1BrOdpQIFFzOVUoJ9Z0g1gFMvUAFYZ7Nhk3nu\n6qKLSwXNxyBtwVwhUarPSjgeZzeKAnaT5iFlsp/aaY6oT9ervTHGIyYEuncCgyHPVNvCFqvjDwVp\nlbos8XTyldo5G58jgFWDTLtursEd0di3eidYsJct4exWUy/RMWk+FtIEzH0ao1MPLdaVZtkmpEZB\nvYDNLidLMZsyZ2QcYLc6X4cZHjG+yHOTGVTQ9S3MnuodnolDARAQqgF3tcROSJvbbhqImTtP2XUh\nNyg+biUZojotUpPdsEVRwFHoxYs0gmJzPDrXoHGFWD6pQbDalc2YXLTeRZDSxhU7MWpDRl0WFkLG\nTxyqgCaZTDZjQBbosCVt2HThQtVp2QxyIOjw4XQKJFzK2+Vqx/XVFK5BXv+O3UDGBRSG7SHnNGXL\not8vinXoNi+CwINRZ0TpqAZ1g4zgRraNpUdVmTWb+pNFC/gciZFuAN8jG77dq+AyvuDK2ipMXurK\nVWax0tbQO6/R2G3B4Uq+crMJU/Ch6Fow2OJXrjFE/JUQwQndwxM+WiX17ebbGfQmHTKlWaLBB8A7\nCwYWWVbgLG94AEZ8ENSEAFcco2MCGf/jiz16XtyroPHBOtEXuHKJNlt7msDt0oZ2jBLKKs2lxahI\n+toKDK4fCUUPukFja8IFTyuyrg71efr+1uQ90privIQfH2ziR/5tiPfAYF7wHYAZwsLQxyNJhwzW\nOvAVlk4uHUwtP0HE81QWS2hTeo+Veh+TigSgr5xhNGYOTfYtHAQOlmAi5BJIOH8lXyioGKX8ROpA\n/PGSnS+qJC/aRbtoH2jPhKZQyQpxlkL2NZyUdHruxQrSdTpR11HBE+SAi9w1NCzSv5QhcxM8L5EW\nRLFmd3OImGK3iq8/0QpkZwgxo+9LjaTZOCyfeHTtgYeqy7lg+RrWrX0AQNtew9Cl+wlWcmt6gGOD\n+lk+muMPDkki9OIF8iVJwroj4HVJC1FtOns7kYaKqB6w7GpoM0xWOYiR+CRipuwVd+QdMCQkyl0T\nJ6wydvwCBROcnK6MMC+uAwC8E3J2lvEq0jZpNobmIsvpnc3UgFZ1+DsGqhaZVXrC9frVPpIOaUeO\neIikz1ra3nUsOL3brDcgpjQWJecrjN+cYRATsvOtt47wvdskjd8Zp+gdk2nyklHha5x9eikn5+JZ\nVaBgsTqp3luIqgbYLG2TSsUKa1MHCt3rcuXhxKb+7Kk54hF9HoYZ9l8iSXrV8uErDBs3Z9ZxKwBi\n0tgs5xh9pqKPoeNBRGPhzh24j0nLClhDsZX3sBV+FHrkXFM4r9qsAKwanIVql6hZdK+lO4RlMW/k\n/n0CwQQQXCbtZ+rWsdWlz5JBjmyNM0TVq9hmzTEcb8Fvkeb19pT6u1OkGDxkDVlW0JhX0wvm+P6M\nq0dRIv2Ysv+ZOBQ0oaCpGlhpAblFk9zxPYA3SOL5WJwyItFZjoyjDvke6Zy1wRQul5ua0kepdvjO\nASLOcS8tHWeHlHMuC9pUJ8f3serQYbLcSKFMGOBkeQaV1VUkj+GxpehwNGE5SxHOKEU11B/BntB9\nF7bE5ipXIs4tKJI3ZEETftyu4EU0ye5RiWyT1PJRHANLWnFHB3QSmJqGE5dJRmYZopJ13MY2MmYv\nEnMNtZAOy/Y1eqdiEkDj16/VPKBJ//CtFFWNNqRpKsglpy4rnO6cRMAZmzB3lzjdpcPNvnUXWsUJ\nUGsGGOcW5ZIW2uTxAPNHdLj99p05LE4hf5hWqLHX+19pFdY4gnObEas+rQK3eVs1dQk+g9ApdZQ6\nfWfFVhHzJltjIBdNBLA54nDg2PjZPn334ItTdGlYMPcstJtM1MJh62KqIR7RGDZs4Dgjn4nzSMVB\nTpvs87mNpEX9fImJZf4kCaExSOOPJtw88R/wnqsZAjWOelxrryNjAt38IMcxc4yuDiq8+0X23ZzQ\nM0Kziww0T1GYo9BpvaSzAUoOqe4bt5Af0L0HzFjWGNk4tOk96mMPD5k3VZkKjC0a0JVMwv6YQEoX\n5sNFu2gX7QPtmdAUICSEUeEoacBgT7/e0nAlYmKRhwt46yS5tR0fPiiRZ/p7RI8WRS8i/MskYX33\nEnSLnC/FooHkvIjpMWCx2h0zlb3pNlE6dEJ7d5YQdTpRFbGOBhf8aItd5CyCZowfNiwH+Oe/S4mc\nb/zbf4XFklTqLb0Gt8ZYD5qONYWiADXJUusHAYwDkqrHXzmCPyV11wsVLDjSUNSZ13BUIT2h5y6g\noOIEqoaVoWRKszibocaQZ0LhZCNVh92iz3KrB8MlLSbSV6DF1LdFGqPBWHBKQH+rbhsWw7CbeBGd\nQxrb6fwK8hcpF6IhNTicNh2VJOU6qzU4BaUw/4+bAt+7Sff4T/QZbvsUXXlufoj9Pn2+1yYpt69q\nyLhq9bZe4NNcXXm3BTzH0YVDXeDVJi3RJjsM19CBxgAqr9gmrA1yCDbfjJ84oI0XDOQZOab9ihyR\niZxBNNg0WFbYZgKfU7PAz3VII7VrO/jcYxq7M5c0sO3VDL83IY1vGadPAlheBTCMJ1qstqdCwSUu\nfjPHE+SsS0yCPuopSfwfCB3J75KmMDQIP3T0cgzXprlx5wAERdVmlorFY9JuJpMQ0yEnNWlcEGd6\nMI7ovlleYZWxGMdyiYpRw4/KHKvWv4tU9EKBpTu4ulMBvEihFdgf0gs3mypUDu8E6QTKmDy5t67T\ngmjfPUXvJi3ccH4TtZ/9CgCgiI+hc9ViXJhIm/R99QFt4mU1gcfoQNFLdTQmZPeZfg2SbefgUgKP\n6S1LlRbHyZ8OcOsN8l7PFksEc1oqci3DiaDrhqzhT7mc+3JOG3bkJbjG/IHFyRDDKVUMKls7mDNu\n5GRGz436yhMwEWP2CPvMGdkZVlCYFal2aEBwgpNgZCrnkou2QotcbRbo+3QwbXYkMsYEbHk58iM6\nZGSXf1eMcDalZ/SyHCdt3myzMxS3SH3O07soNqimINepn3OhQzIfgdww8Ysmzdn3Jrfwy5wJedi1\n8KUHtNTCOkdDMh1yn+Zxt4jwnbfpbbu2j12VNtleTUPIPn+dUbj61gIe+wbe0gK8yhmrw0YddQZS\nXZ72kTKmZ75J9TPpcoqjPk2kGbmIPM421BXc4ZLxnp9j/AKN7S7XpQxQ4mf3aRMHD/YR5lyJGFZg\nVxG2zXPULAVLxn5M0xoWcxIASaXjjk5r54oG7At69h5HgCZnZzgpee1tbSA95CS5aIp9DhwMIbHJ\nmJ9TTqJbtVXMOTPVzw0cZjSGZ0WFAUfumpXEzfCCiv6iXbSL9gnaM6EpSEiUVY7ozEAgqUuFr0Ox\nSV1SZgI3j1ky2zrcManEL3OacKN3DZM6qbANDahH5BLSO+8x/Gr5PgxGvr17RqrhTJHQZiShr3Ui\nmA2mjnfaqEYkSZ2JiplPp+6cc9aXp/834tF3AACDWYKKUZJ/OIlxmSnVZ7UcW5I0hDCls/ey2kTh\n0Kl9FrbhCTrZ16YLWCxtkpAJYIbHcAxSAe8fq9C7rDKGp3iZU7cn2ITrUqVdtiTVeSP8VBUhAAAg\nAElEQVR1YFwlkyjTNiHE7wMA8sQECxgciRxuxeAqR4xlmKYYewxMspzA5lqMyOkCXdI2Zh0HLU78\nQo895Eug6L0NAJimTdybkPQ/tiT6h2RibcwFBgrjPzK5ia4tsdum8XwncfHzE+rHt8opUq52fDSV\ncBm0JjdII2pOKxwF9FmYAN84Io3lOddH36f+twIdBww6s322T783cwQxfTYbPUJR0Bjd67vINlgT\nGvTR4ESsRCdndsv0UGzS2O5ULk44KnHtUMG7bDaCWcG+H9pYURlnwlzCYai4e8sYOge2vlvkuMQ1\nEdOc5norN3DGhDJbpxOUjOG4n2UIj8nZrDgN/GH/HEuetc3ZFD12yh4XJnKG0V/EKWLGdlwCqH9M\n0X+hKVy0i3bRPtCeCU1BhYKmZmFnDTgIOayiO9jZoNRm03IgayTmXs1UFL9GVYJXx+REWlyeYyMk\ne1G3NyENyieQWQRXJWcOeh0oj+hkX/tZshd78xEKlzgSlGWCkisfbSXBoEEOo3h8DMRkJ3dAv3/9\nD49xOKf+aCJDzCAxhl5g2yZN4dKWjlevURgtW6XCIOdEw1mPTvAreo6KoeBq3RpCRkm+0ibJcOrs\nQR8y1sNmgZLzDez2FqoJiZ3Wuoo6c1BGNXasKSpKj8lpxBK1NvWhmesYtzmsawbQXO4T5w0Ia4lV\ntmvnn95Dk/EkYrlE26Xv6EoTkKQ1KJIp5pwzhKyldSoL4Qpl4F3N5xglnNexOIPmM7QepyuXlcAe\n06fVrB0cvkhaRfvN+9jrcBZiDMQc1lzRqD/1WoVWk9N8TQtGnbP/LBNFkyTzCuaQXNxWNbgiMTfR\n8Ek7StW9Jxmbz2+1kTFKcupuI+e8hppL75fmPdSahJS02z3DD1VOsR/cwsN/+Q0AwBY7qFfMFAaj\ne62qPYzYL/WKaiG12Ddi11HjDEmVgYC3fBWlRestbSlIA/rcXAqgTetCdVX8SpO+c6/PFaCWg4D9\nCJ0sw2ucFhoVQMq+GFO8V2z2tO2ZOBQURUI3cjzo20iYpWlFV/A8O7vq2z+DhJ0zLjrQNwly3OzS\nIu/NFRTKbQCAGCuQnTfovo+fR15SHNdwfRgN2jjaGS0UGa5CbVFZnNlSYTEuYxjoaI5IXRd5Bxqr\n+UuVHGoHjddRZVzhV5ZPkljCZYkz1r1enjfRCIlExm9wYpXTxKUFmUFVkQAmLTzdyaEnXNar0UbK\nrRp0zjcIJhMYnPzi1D00asy3eRRBYbahGpcWGjsGfMb1i7QaTOscIlygmtAzHDvFDkPW+a1d6o8U\n0LhEsGH2oDOMvJyPUZW0aQwJSIWTAc6YzPUkQ7tDy0jprEPv08YrYwNuk+6XFTbskMZL1eidnZaG\nkushu+1DyIrGSHn4Q/Q5h39/NsMq84W6DfruDbWLlJ2qbecKFv8ve28ac1uWngc9a8/Tmc833O+7\n8625qmd3t4f2kNjECUYYHLCCghiUKEgEIfEr+YEUIYHkICQUKQoRCIRCSBwbGegQ2zHYMXbHE93V\nXd3V1TXd+ZvPfM6ep8WP9zm3q2y3u8oFyY30rT/11bnn7L322mt4h+d9nj1iKCwX6lzKuZ1uDy2z\nAF5LIp7TBvspKybDEbpEJM0eZ+gSL9IZHmDTkTllJPK70OmisyvXOnvuGr4vkOeI738WP/uL/ycA\n4FEtzzRLgOcp5OL2YrzYkQ351C5wSAKyx4djDFnO7moK0JoOiDCHXZjwWecyrFrc5UF1q7qCd1mP\nEhJEt84tRJX8cFbGOOAcWOsW5pbuXQMR5+QHpaS/dB8u22W7bO9rT4WlACgYcDE40EgYRNobOXDI\nluJ2ZwiefREA4JQmMJSddHvqNKWH9k35rD2dQvmE87o5vOBz8vnQhyI9mr3DSkUAlSWugd2aQiAL\nwDE3UCSNzQcO3HMWUqWy/Ubv2lC0XCyjQU1asX6k4PuEPO/7sD5HdOMu8/8JgGtifuqLN1FRpyCM\nTdRyIMA9EFPc8AE3EfMzUSZCRywFI+qhy3ExrzfIyVZd8eTzOzegGLT0DGDkymkd7plQHenPTfcQ\nDiG4IZF/ZhTBMOUEyqBhMnjW9nuo1+KuNPMMlkWrgBWJ3c7HYe+RHXvXR3tAZhXdw9ogpdlFg3It\n/U88EsCkGghuynVPL5A0VL/WAXZp3SS7JgYM7A1MFo+NMoRDEtA6S9j78q79dQQdiTuWxm/B1WR2\nTslNcM2GPhFIeO/FAA4tvVFdwSGZTTOwYK2Iot2QSDVSiA25xqC3g5yM2FU/R8iA4HVKEz7TN2Dy\niN4LDFwZyrM+e/MaHPoMz1zZRSNxbhARD9QTDFt5pm5rYnqb43avh+duy/u7cpE9kbp7eCL/Pmpc\nnBeSktSnNY5I4htr/YSoxgawaj8covGp2BQarbHRBTADcMEIsatRkFOx2TyARwIQmF+A2YqkuM7J\nqjOdICFUVZtHsG2JL6iDAFUhk95wVjCpFmQT/KHjATxHQE9qEKGlIGy1AeJKqg+bxQQLAmjOG+o5\ndqdPdBmT9/hrs7jFmhmDVC8AS/xBI5O4hnJzZLHcb1V04FbCtWi1O8AhIa/0oZXewOYC8iuNkJkP\ny5zAC6SfjW3CZjm028ozB7cUDEKCLy48tA6zKJ0Aw1r6bx0eoGMIiMggkY3tLFBribX4+WO0inLo\n1gPEVICyulMomuA1/dt0sEHXlvfUIoLy6POsFLz2gYynWSB3pX95Iv9ueDlUIQu9HVcoc7pEVo2a\n0rT5wkBK6uaECy9eVrh+yO+O9pBXsihK4wznR+LaTNIWA1NM7T2WtRc3fJhkfm43UxQu2bScG1C5\n3K/MU/gsiWwdGfu4beAYBMOVQwRDeU/z0kJNv93MZI69Htt4uSf9zLsWorG8f/9KD5EjG1KcnWFm\niRsaz2ReNCpE1MoBkDVXYRom302K1UOO7UZjYsmmFyxlLSz2WlynCOWDrEJBCHmrv01UU+MPVnN+\nt3bpPly2y3bZ3teeCkvBUgYGVoBh34K3JbzIC2QkJ2nrfdSM4FnVW8COnG7thlJkVQU8ll3X7N9E\n0ciubJcz6Jyy9IhQt2TMtRn0UjFg03R8FAO0IJrpIySGnBhZu4QTs6iolfuV5wo5i0xC9aSWCY4F\nDLgvO2EIY5Wyz/L7XLWYb+RUUqsEBslQMieETRISixaB5+snPA6WESPwZe83nADWliCks4ZdM7A3\nlGuptIVmHjtUCSyavk7egz2U/jiLKco9uTbV4FEHPlQpY9V4Q5SMnKdZhPhcTuBgOEJBwg6bGRC1\nWqJtxcTNahMOKz+tooDZkxO0fvcMPkk/ylYCrUmxh9phlWjio0NLL9AeRn0Z0EKbqInGswjh9fz2\nSVGWgw1ch7wH8Qo++xblFuwOMSfsQ7fWcKkq3pgpasKcHT+HEci7VkYHacMAayWWUJtsEPuCBXH6\nGxSpPGvXbzEyxCXapQba0KjhdSh33wvh+dI3z4hgkMZOqw7qFYWLSCjRZGuojszDSXkOKDKJx1MM\nyK+YOgF2aMka5AUJ6xDpVqujKLGgG1vj29wPBj6YLuZ721OxKbRKozBKnKy6yEkL3hnWCLSYqsnJ\nCexK6h309SkUo72aMOG0vY2CcuLKvgnXEux4M7+BPJS/w6iBIgmFauUFaKeE0cgGYfQM1PTF26kP\nN6bPXN+EdUipJ5nDWF6t4Z3LsK+0flIt19YKK05enBRo5oz3dil9Ot0AW580O0Pqy+blzGNULBlP\nfYkRDEwfVi3XsrIGRkRXwgBaknnaqYuKkGCHtQPGDqBZadrMDKS5LLZpotELZaF43QID1oFU9Ekd\n5aBSJFBJMqg1CW2VA80oeZ0DXWY2Mt43r9cISEhjnuQwxrIBth0LxkZ+p7p9VBvyVbLmIvQDrNas\nIvXnMKgEkHspFo1kic4vlnB5ba5bnF00sClw014rETDWEhQKCTfD3dBGl7Lz3UhiUVWzQcua7E40\nRL6UBaZaC5pZoMAcAKwTWKdyLc+2gFA20DSx4DEuo2sFUNinYFXuNE3RIdPTZ4saRSnP3IkTtEyT\nh3UGsI4jnctBMFAZKleeQ9UhTpaSqm0tGyFTuE5pwOSh5ZB3M29LdEnQWtZAj2P03mrOFhI7Az44\nCe2l+3DZLttle197KiwFpQGzNdDZVfBJ+mGpFI+o19i/so+2kt0zShq0j7mT7sguWs7Poddi4hXL\nObwflkBOe5FCL8S2KyoH/nM8xWbkX+yYqAnSaf016kc8EXWOmHTYZ3trXGMxUk323SuPB3hVSd9M\nowURqvA8A1MWPM1SD6+b8p0X3xFT1N8vsZpInzfLHJ250JM7L0VQMcEmBPyURoXeTbpMqw4smsFN\nZcAgM3BbFTB5Mq1zmtebHAZz5Vbto54xCt+zUBji/vTdFpkl1oTBgGldmDBtsQ7yU42yT3KSR6fI\n15RSmxjIPsWMykP53fnDJayFjJv9yhWglndj2YdoyK5cWBPkDCTmZDierFZIWe3Ym5pIU1ZtNj46\nZHm+uedhciGWzpLnV9SWSLbU/o2Jihbbutx8WwTIKlFl0r/sUAhgzMUYJtmM60MFI6C1WGo0BEa1\nhUJiECpcyPhMrBgZeSb03hDR+VYX1EJECsDbe8RQKBvTnFWuDXBQyhjGiULQF/zDJvYRz5hV2kgf\ntbHGXXIlYOcEJ6fMYKQzuAHBV4cRGmqdNntyXW+q8DDdChE1WOMPbx+Wpv6p2BRqrbGoCyw3OYpj\nmXSrALjzrLyYdDHBgD71tH0RnQMBqfgJo+LXHZSLmwCAYP9duExVGs/eQaNIpOo5MLtiKlf0w/NY\nofHlBVlnFYoB1aTOW9SVuCNhWWO+LxN6wajvD39ug3/yiyyHbltshz1NW8zJuPH1zT185kRe4nQk\n9+ueX8fckkk+r3y09L+vxxH0SzJJXfqsTj+DYzDLEFrIKrpMuoG/ksg6wj7KjKXmPmMLOkJF+vbp\nwxjvHHFRZLvYZabhFBGuXifvYswqS/8R5oWgHNPoIcJjMvdcaZBTdzIp7iL9sjyTUVCj0rQRUqC1\nW0/Q2rLAkngJHcmErScaxa78XVKj03M1WpZIV+M55poIxLbEppGN/GhdoCDBi0EQ0mms0OWGlpc2\nCi4FvVDIWAfQNxTa5msAgPv/Gx1++wESpoC/R7+E7lDeb7t/iKKVvhVmgpSxkjX1HFfrBibBa815\nhOgW+SEzDwlTw8cLEs7kLXybYLKdAuuU2arxBcpCwFmr6tET3vp5LdcNSx/P85D5zbfHOItlTt41\nK3w+kzm+ZzbYCei/ssw+iwoMOBXyVj9xEz5q+6hS9P+JUuqbSqnXlVJ/XynlKaVuKaV+Vyn1rlLq\nH1AT4rJdtsv2L0j7KKrThwD+YwAvaa0zpdTPAfhzAP5lAP+11vpnlVJ/G8BfAPDf/FHXMluFKLER\njlPEazmNX9ltMSW6Y+/TfcwIk+2/VSD72BX2gYExGOgfyknpvfzTsHiK6UMLBlWmoJ5BtYW85kQK\nFV9FNmHeOZ8hOBEc/Wx1jouamYjsCN5j2dcc4uhXrw6xCSVSb1QaW+EdZQAtaeHmiYXOhOzBsVxX\nvRTApIz4c7sJdg5EidjoOLBr+XyLsej6B6gdWjlI4ZEZOi4bzFfyHGat0VTy/YzKWjDfRXcuNSPa\n9lDfZ948OsVFJa/7xvgQa46tUgSAnaeoKZW02eujCCVc5ZUGhpY84JXbX0BLLgvFkPvtwQlMU6yb\nqmuhPZdzxuyeoTgVy2RdTNHQ9apo/SSxwiYUM9ia9zCOqMbdhBj15V1HpUK2kWd9OJfx8cIc8428\nD3OeoiR3xDJYIdxQAStp0duReoVv2II3+cTJHiaflixK69ZYkLSnszLhVXIyl3qI03ib0aLr1jSo\nI7GElt01gkYsusOrPXRYK3J1LHO22QD7BCkVG4XNDVoxFyYiUqVt/Ajf8Ah1n8o7mHc0XvIFun/t\nzgzf+6rM72/tvw1NK6R/x0VxIc931ZQ5ff9xi9+m4nd+pJF/BP3I97aPGmi0APhKKQtAAOAUwJ+E\n6EoCIkX/r33Ee1y2y3bZ/hm2j6IleayU+q8APAKQAfgVAF8BsNRabwFVRwAO/7DfK6X+EoC/BACB\npeAYS8wevoyzpZxQrRfh+5h71682cG4J44859NDGLFD6mnzXqXpoOyyGKX4FqhbK5PZrK7TDB/K7\nsQ+TCtQN/cYi78EvZOcf7IyQ1VvefAf+hQxNWXwa4Uuyo1cs1PnNly6Q/2N5xPI9SeC6aZBznz2e\nz/DqN+UU+/gdOc2d3/WhCjmVljsdeMw7Xzk2kNFScK8wRqBamB1Ctzce4Ek/+7aLckcsnSodICvl\neppakrnZR0bdzezMxcVKTkp8bYx5Kyfe9wSP8fFrYr04LROq3TEK+sPqYYzFmiSvKwvDbX7feR37\nFKKZZvJM3qIHk5J1zeM18glh0LGDiIX8VfgikpVge60l03QYoJkLGtPZuYvVOVOkvQQFYxv32wkG\nHHNjm4bMA9SkP3NLH4r0R3uTPjbEtTx3YwSXnBI/dSy/f8MAPsmYStZ7Ee7p2wCA+XqAcGdbdNXD\nPnU/Hz4ifwMazBiU7FxchTOWz/MHFgJiD5a5TPF1EcPJ5b43lUKPQdBg5COoxarQGhjF0ue3GUQN\n4hJvHJKx61ULv5zK+xsuNApiat65F2NYiKUTVdQnaWt0aOnqpnySGt8uvj9u+yjuwwDATwK4BWAJ\n4OcB/OkP+vv3StGHrqXvNga+0DlCUJLCKp+iWspAlR+7gh6hvb3+CHFPJlPSk8V9MlK4+cvy3fXo\nIVxNeLTXwP0/CBT5VI7KJnw2E+5A73kbjSOQ4NrdQJsywFN/jQvi1pW/gEf+vIqTzvxGF6XOt0/y\n7WcCULKMemEAr2WyUV0jRdtOUyI/FNM3+eoRgtsUo00c1BHNePIoNrMJ/BWDj8Nr8Amf1Y2Hmrn+\nwi+wYtHEhuXNSQMEpLLPkgYzBqVGYYZnGKC7uRlDrcRVaA8kj+8ObPgrucfc9DC/y0Dc9SEGDwko\n+8Qr0FMZw94NqeHwfmONeFf+ffFwAzNkCfe1AKVHEzyNYQxlnM4pTJK0Z5iyvmRn2qBqZMJ7wS76\npEp73vUxoyaiGspnkzZDn2XR1dCEx03hXpWgd1MWy8Iqsf+jsnk1r8q8eeHH52j/sVyjP6zxlQnZ\nlcMK7YhgsJ4Nm4pa/Tvy2SKugauyoKu4xIYuwyDIkREjMSThTM9osHBloWcbAznn2ydahc5tUgHa\nBdzHlCZ4UZZfEDfo/YS4fG8vJ+gRl/zrrwF/8iW53q8/MvEjA5kjD0h0M+o02CwIkLNacO+Gwkdz\nIT6K+/BjAO5rrSda0C2/AOAHAPTpTgDAVQDHH+Eel+2yXbZ/xu2jpCQfAfhepVQAcR9+FMCXAfwT\nAP8GgJ/FB5ai11gmJX7+1SlOtjK/qsJoT8yoPz+b4dpPS5DFHe8goEbj+mUJ5F39agPjxyiAcvuT\naFPhVvCC70XR/LY86K3PQDUP5PMbhNFOTLRdCZxlxxWmLOwp4GCXclyG04NDVNmMgi1vOGt8t714\nXrfAVLbuX/oKC632ZxibYqX4t3dg20JsGu5vEPaYitxqTAxdGOTw8q9nKFesWoymKB/LaZZ5KXIm\ndwKLfTcMpCyoeVxkuBdTdfthgjdbCQ6epjN8bCR9eyUVrERwuIM6FNP3uSxHa94EAOg3lqhelPHe\ntVssCZrtz+S7s+vnsBvpe9tZwB8xpdc4cHJ57uPzBVb8++F94h82a7ihnElvjnxYJM31PAdrBiVP\n6x0s6tc5nnJ8HlQNYnJIqKbFVYqehLUL6w25x9HLFu68KyfsW1P57630KuKrFBGqFTYrGbdhZ4Vz\nYkT6usXDR2IhLQs52Us0sFz5brdXoVWSWnzQ5LBNGee3T6Rvjyff1pkY+C6eoaXbednDeEFCGe3C\nzmiZvEEo+dUG1/4f+eyd9HVkpbjKV9x38TsT+bzTJvi1tVhZfaaIv9oALVGjx7WCRVRo+R1Eaz6o\n9fBRYgq/q5T6XwC8CnFjvgpxB/4RgJ9VSv3n/Oy//27XcrTG9arFO2kJ6q1gqTWsc5nQ95WB3fuy\nSF82LzC+vpX1pgKTrTG9kEEfvPsaYipLOclrOGe12+F6iuIqGYQSmYDL1QUCIpE31duwY+bpV8fo\nsgzXt89Q11I96JjiT06Pmj+gFvT7mwKwJBZdZbJgFzMDN5RMzGTQxeFKFqTtBfC5YLW3Zh8PYTAa\nU689FAWFcpcF8lZMbSPZRUwW6LEnk9VcPQA8WaQ1SjzPEuLztICr5BpfX9jof0MW53Mkb9ksK9iN\nTFK76+AqszZ1FOH4nrhB1e8usH6OtQGvSX8fWykO+4wNjE6ByQ3e710MyRxyXt2FeiTv6s25bPT7\nhoekkPH0sitYmfIibsCBacv9uhsTpyV9e4N1BF4Fn2XfVp5AM04wqtewXbpSj4+waX4LANDZVi0u\nz7foYtjeCM97BEvVESZnZGs2E8QlMxQLcSsfGhVeGsjz9ZM1NDVE577GTYcZH/JdDjUQt8S6bEys\nuzIPTydr1AXjWVcHaKkwe4dCPL91d4ODk98EABytNriuZWP5atHiFkEN66rETUsOjHe4EXQNhVOW\nRUcK4P4IH98mVDHeo2/5QdtHlaL/awD+2u/7+B6Az32U6162y3bZ/vk1pT+kpNT/H21vd6j/3J/9\nMdQJoBlobBoNh/TDy0phK/3rhxo+1fsUCT/yQsMn6UdTK5iGnI6bzQYWEyHxYg0ikHGRUL4cBkxW\nQ1rahgqIRxh18fwNyXy442vY35FiLMeXe6zqDRoyNJu6xnpCC+L+b+Fkzlr3yTkcY6tZQHyECRCG\ngVHHQskqucgBpqwG7DL4Fqc1yDqGs6SAR5KRrGkQEbuWGBo2iT48knuYjokeVbejwxDrXxLuif+1\n+A7mI+/hGQa+8Irk9j9++4fhvCjPH+UVHBYalTsdOHOxtt69K2a9Xs+w2ZN3dv+1CEXOIrXGxLM/\nKGbw6VkXQSR9+tf/HXE7/tXvuY5R8FcAAD1rDmWKZfY3/tZ/BsVgntI50jndojPJohzNMsTnksmo\ntAYow9fARMxis35oQW+Jjzk+aVWh78jYrrMGLV2sZZ6ixxM41xoOXQKD/7UcCw05LkxHwSZaNhoH\n6JJDFLn0t8wvoEs52b2yxoaunYZCh5wcvg6gqRBeE7PiDzQUYeC1YSNPWQaqc5RLVubWwGaLPuWc\nTpMSii+wrGooFqkZukZL7hBtAP2RWGn/86+98RWttURg/4j2VMCclVawKhdWlGNBUUGFFYqJvIxN\np0GYcdEH7hPMOYZUD2oVwlBejGn4qBoxnnzLRluIaWdnHVxombyulpdVIYGfyotZdXO4RH8Y2QLZ\nhMQbI6BDMze3BFQCSz8h4ZgcpUiXkt56dDfFRUshj0UBQuqxV8k9OnsmuhRa3e8HMEzyCJoNHIrg\n9BXNT9vAmqZo1CoYYDVnbKLySUOeKdiUNa9YXer6LZJSFkq+6uBLhNR+x62f/xAqhXsUU3llrDEc\nb6XcS4wIH66bEZasj7hCRqejxII6kjF+/V6BMd2cx7WJ9lygxnczGz0atL/7yz8BAPjru9/ExP43\nAQB/8fRF/L2/K27Ff2mFTxi1NtMKeSE+/sWJXPc0PUW6IHzaKrFP0FYdVOhuD7i8wSCS+bAF/tuG\nBZOakEHgoKICWN/0npQ1h5WByt7WucgC81WOguPiGhot/fbFxsNVxTEakSdxGsIEF3QCONSP7DUO\nOiPpT1gOoMYhh561Hx2FJqZ+pFUiXrIqt7pAWosbk7kJbMKqVSPzOCoNrDy6c7EBkzthW5moWcPh\ntgrL9FKK/rJdtsv2EdpTYSm0bYu0TGBnBZpzAotMjTKRHW6wzlFGcqqO8xBRT47gqwWr8Do2hh05\nxeMygS5ZbmGtheoMwD1jhn0+blyRw7C2MKnkxBjNG5Sky67aEJtCduBb/hS3PiOBJuXLbv9os4BJ\nyLQ/v4/zB7Jzn00mMGI5KeK6RsRAW0KY8KeUh4LUus+MrmFDmMkVW2NAjkLXkb7fVQuM2V+zaJ5Q\nqr9VlOgwYNbGJYxga4rKMx22QI8ne9YtsfxgrwCzusEuhVXu2Rk+TdO2uLODPXKEv4k59icSwPu1\nUwk0Dh7/Br642cJ8F3hIUhCFGkwAAMi/3Y/yiwAAwe2I+f3fAcBPsLL1b/6nSGO6K7MzTB7L2J5O\niGOYrXGUs0pQA8c0mUdr4Ji8mTdUjbt0zcbkNJj6Ee4wEDexWoxY2npRK1ynUMsDBTzLsTXpMji2\nAxpvuGYa0PRBN3aBtCEnQ0wymXmDjGJAujbwPLMP9U4fVwOZQ223gzHp4ytyUQbRPmJmvlRRYkqi\nFiMN8Yiw9zuNiTNmXTxWxN43Y+xzrs+SNUq6v2Wh0CeNXV4WCJ8oYH6w9lRsCkLc6sCs5jBIEGJl\nGVpXXnLZVlAmpebDLkZXCfrIaH6PTPQcyT7UBz3kb8pE8kPAdeXFdUwbKdnJb7MGoG0VyjVjCkrD\n3drSukRMGfm0OcO3Hsl9dinPnuUd6EqYnh4vz3C6EB830+UTXkU31/A8ufZuT37X7Zood2VCDK6t\n0d5ixuCdGZqRmI+BTfrvtg/zQszyAz9EoZiVOFcIthsSDKS2/L3EtjS5xDlNY6f+TsW0f7Apz8CA\n/fyR7/8RlGsZw7620bPl2p++8TweMPbxQ0vJnKyLO3iOxK6vzddPyFJajffkwj5I3Eq+02xcYE2u\nxfn5Ex7DiotxYWWI6AZoU2Pfko260A1ucIOojBZ7jLGsGNcZqgYV+TP3bRMbplbv2CZc+vjdqkUT\nMprPg8N1KywpSLxxEuSkVK/qGEOqmW0ZnaIoR7Hegq1C1B6Fa/dydPs0yg934c7oBtC98NoVkgER\nj49qhDwYLGeGcYc8pKc5ugHvR4DcrmXBKqjboQzUllx3UlmoeMDB0tjC7D5ou5WyhkoAACAASURB\nVHQfLttlu2zva0+JpaDR6gKrykVRyI7ZM2qYNQONmQNNXT47q9GlkrRJzUEvMVB64lL0lwFmpuzQ\nXt7AyMXMHWUxQlsi3BMtQS3VBuix3qFsDVwUcgoGjsY+ocL37tZ4pS9w4/JCTLnabfDwsZjaj89O\n4RJq6mYFXJqtG90gquVU2SdduqoGGFjkaOyOcWMulsKZZWFIbL9hSH8P1hnOyDnoWBPYhCuPyzXO\nWMGXNAls7us+Kd7Pzw3cZCYmTT44Ct5VJn7i4M8AAF6JE7SV1Eb4uQWTlZ/WxsTzvmRiejekynBt\nb/DuIwk+Xmsu8CVCeL0qxRRbiy7Hqt2aDczE/IEeMIoer3FxIdc7n0zQJ+gpIWFJPzNxn4CDIdQT\nnsOxHWC5/dx2MGdw0GdQuipaWC45MNBiSNxDmmdPXDarKpCspWcVVZs7rY9dPn+6sGFbrEpsgYJ9\nWxfy+3jjoefI/Q7qPoxG7jeu9mESTn/YBMh5vx4DyWXdYJeVu7Gt4Grpe5EojKlyXUQ2zIVA9itW\nDDtFg3VKIJRu0NK6OdAFTkjvV7QrVNWHo1m5tBQu22W7bO9rT4mloGDBgdeZolrwJHEz5KWcqoUT\nw6mpoeA3KE3xs6Id+nf2IW4QPbbUPvoQHzezLPT2xN+Pz22kSzmBuhQvUcYplmRPLrGAwxMdZo0Z\nYWBVXeDePdKDkaIMeQ2PGo5N6qAyWYDUAiZjCjuVjaErO7RHSi3zag1v8AwA4M6ehYWSZwqjDTaZ\nWA2HI0Hz5ZNddKngXHdvY7crNfgzs490Ljl7d96DIhQ6b2V/r8MSj6lP0ZrfnfHfYUDqYz/wQ+j9\nKRnXxN/H7jWT11XwqeWQRj6CgTx3ZyWYhlufvwm1kdPRX76NF78ucYx1+es4PhHZvGX2Rbz5JRnP\ntCvp2/wkRG1zPK3vh9GVezdtC9clmKNuAOozmIQ5136FLi0w36yxQz/bCAr0qBRtWhl6DU9esiY5\nTQDHlTliwYXBIrVht4sgkDGMzwLUijiZkvnkLnBMiLltJQAtk2VV4RqxKv0RA4Cqxl6HVqG2EVyV\nf2+dHrqscoodGz5xNCtH0ro7UYZVxmK70EKaC0Zk90aJ+8fEupgJSup4dlk9u1iHsIdi9SZxCIt0\ne9PGhib6VqUGkuaDW4wyPk9Ba9sa63gBr2ngUtCiNiOYBCyNEEDbLA3WPVTMBdczEmXcmWNtibnr\nqRXKRibYnvsYiZZqvp3OBFYqcOXVgEKj6+sYd2SjaJc9NLxH6lrgmMK1bPgM/pV0ExbGKfSSue14\nhSznomgyWDk3KmhUpkysBUVPBgsf1SHz7dXH0LPFVYrUAXyXE3MtC2lQzpGWEp0fjRQ6jTzHp3Yu\nUHPCn+YPkJNmvKJQrF5rVAw4ecv6O+Le+TN8aihR/1d2azycsQYgfBfGXFym4add5Iyod7stQlLt\n23syhslyiOduyuIu7+7j0x8Tt+rtxedxfSCD+OCtT2D0sgQMf6++KeP2yT6KZ+WZ8p3nMH70UwCA\nOvnb8AqZxAfpGjVdxFDJ+JSlAxfkWoSLmpuhnwagFQ8nikDvAV3OhaIETNLBO41C5JM+37MQUhlr\nGG2wTORZtzgU37G2+wBUq3BWUJyl1SgzmTtYSx+jykYbyELfMwM4PLwGUYbSk+xYZGbQZAqPfFnQ\ny2QI02FgMwVUR8aqSPvoheRzXAfodB8AAJqVvLPdgzlmD+VvRy2BjtzbTko0dCXul+fQl+7DZbts\nl+2jtKfCUtBaUlhdL0XN6r06yzHaIeNu0aIdyc63G9qIuvJ5aIobUDU1OrQe1tCwOqTEyqInp/xc\neYg8ErdSJiwcxdhSU4z8Cj3SnF2ghZZboHJbpCTx3GWQKcs1XE/SZv0dA5tjsSD6gcKYmITKVIgi\nud6Qbk40cFARMhyYKRKandZJAcMgYpOCLNkA6LdykgRWH92rRNJ1Gtz2pKCm75o4XpM+jIHGqqyg\naF4XTvs+zv/ty24UcOcFsaz+7c+QIORgjBWLscLjm6g+QbzFxMP1jpw0xixHMSAnBbOdvrNCuiCV\n3MCADTmN96sjbEhg03nmDMuBWGl7vyMBsCb9UXzu+34cAPB/3Qzwgzflu/Vfb9FlpeVmx8bmSCwg\nj/Dv0Gjg2/JUqdmgQ9xHYAAwmLLrAMU2XUh+hKq2Ebnb9+dgZ0yL1ArQj8Ty2MCAH7GKkwhRO2wR\nEw8zSTP0SPAyaWsY1PgY72wrrQzs0N2xertwSGhbBC6ChjwSlQXDJGHMnD8zl8iKLXS/RBXTJWqX\nKBhU9pwLbBJaOo5YKJmq0dsXa6yY1NAUUrIdYO7IC+p4BhbqX0D3AQBUW2Mxt7FayMvaCV34JKnQ\nRgCDAxL1Bui1VNBhlVpkhyj5JD21g3Uti195Capcor47tsKpT1GW+psAgHjlwloRmZIPcV7J4u56\nBiqKzZppA3MjLyYjGMVsF4incsM3HyfoEmo70iYiCtVUloVhRFOyEl+3rSyMDOlPEri4pm8BAKbW\nDJUhk7EuOQniEg9K8eV7ukZG+LcZO8hSIUY5qr+BppBrI5W+F7kLhxQ8TaXAqm8ENVBx4/lcZOFO\nIP3QkNjAneN9vE6SmejFDoqp9GdUGMhHMhZ7t3eQZRRU2ci1LmYudnfl32duhJ0LueG7bxrYJ1z5\n/moEvM6y7LFsRvrlT2J/LBvBn7c89N6W78ZNjnzOOE/aYshsjcfNNFmNkBFKbmsHNeW5YtuA9mgm\nVzYcumYlsw91s0aylr71vQYXhcyFkZlgsxb3oVPmOE/knW1YnRnlPq5xE2oaGxtWqDaVQmpJnOfx\nCctZJx68z0gfnu/tIuV49mofSSkbRKhrbEgc07LisjBrDDxS++scNUFtxQZw+ayb/AoqJbGkZCa/\n8zYay7U8x6Y4gjenG6tzIJYDc5Me4UPuCZfuw2W7bJft/e2psBQMpeA6NjqegiIewe82yGhyBYc+\nHFuCilFkwDyUUydiPXpr7KJLiGuia5ik/grbATAQM2pV9DEIxBwvKtldk+I+5oRMa/8MLq/R2Cly\nBomSusCQqLlciWmYFSZMIiwHoQ2PVWuVNlDtyak5tjzY1D0wh9Lf7p6LsC+nyi1/ByUlyvx9R5B8\nAEahnAxn6xH2aSYmZQizy4pRYwSnlEBUP9vHshDl6prAN98tMG5IK+c2GLIC0DSA3QM5A654Y9z8\n+L8kz3ogp9ZkMcB5/BYA4K7excdCBkzdGxjeIeFIUMEkHiTVUgG5e3WOU8h4dswc37oQ4pjqxgz/\niIVLM7VGtivuQ/IJ6WdnlEBduQkAePtI4T98kdgKGDCof6YtH5qs0mdrUrv1U6iSepZZgahHjY9e\nC48Yj72eRuqIBaVqWmDZGCX5ImpjgGukr1uZPVi00pamD0AsAYeUb3YnxymtVKO7wYjFdHOdwCR1\n3m4kc8zfnWIAscDmqoVJOrpN0INjbbMWDjSDyi0Rub2Bi5zZLt0FWoq+WKM1psuIf8+xOedcdWQe\nn6kGRSDYmSTzYZKy8FHjoYjI8dDamBFl+UHbU7EpQGuYZY3A8WHR3PM8EweRdM8xBggZU9DjQziW\nmHZ6LStBPZPgnGSYoZ3BOadf2K2gK5kow26GkmZixezDvNnDNUaQy/kAbUiQiuHAPxUXpFUONl3a\nX4S7eukUAWsRTlMHGXUCD0xgRDGUIIqgb8q9TZZO24kF+1kqSEUGdgfUCTyy4Y1JAlrIotqpzzGn\n6+OGBVJIpP75joF4LcS0xe43UdRCatK5R05F7eCIuQY3MeBTPzGsLFwpBH8/+N49uHuyARSJ/P5R\n8RVMvyUbz6R6hFksWZCLfzfDZCYbwEs9H+EphW+GMoYPTvoY7HxVxvvRGOmxsF796jePcbuWsT37\n5hILj+/qTCa5apaovyK+/Bd+IMCvkgzmVhnDIXVQvyyxoesVEuadLA00rBaEa6Ox5XeddQTvpnw3\n2HWexB2KExnjpZfDrGQ8bauAriRqb/VrTM4IC19XsM9lc75wydG58dEjLL6q+rhLLklVGJheSLr7\n3YQuTnkTGzm78NyVC3Q4L9xohQ2/YxpnqMku1pDwdlVpjEfy78ZJC6sri35RdtAN5ABITiOYJjM7\nRzI399MC6Tn1T7slXEfG9goMxGSvequ4QFt8ODH6S/fhsl22y/a+9lRYCqZlorPTxwgr5D0xqSJn\nisqQ3K6BEpM1SSPKEzih7PhrAmmixxXsjCbeno81yTZM04GTbgubQkxa2dmXMzkN1uljdEnoMd9d\noUuBFLNMEbL+fa00Oh3y+bEOfllv0B/Kyd7TNkoyp3jBEHs7MqQXGaBY5dkqOQVmBw4UTcdBbKKg\nynWOEA3r95ulnAIrM8DEktO/SUy4EIhrrA5RXhOTOnjHwsAQ87G6xorRlcYui3Y2gY29iTyHG2js\nMbNz4FkYOcK1cT/+PenbN128yVrG6DdL/MOf/BUAwO3//SU8cyhh8ivLWzjZlTGYfpNM2m+8BvOR\nFEf9wp0zVL8o7/TLy/uYNXK/u9EKwTml18h9mFgTHH1eXIovP9zBX35OrKpEe/BdeaaFZ2K+EuvF\nYN7dsDMEPLlTs0GfyuTRYQ2HVpFR2bBtcdkaR7I5dt1BRuGcTd3BqckT/2GAOZW5e7mDeFeeqzuX\nMbStCprw+KJd4QVK3X29LLFfMIrryXveHz7AvikgNOVdwaalluSFwjyR+5lpjnko49xbyMne1y0q\nch0XbYJsQRdtfoa4krl3Xt5DSTnpeC0Ww2liQO3JtcyND5NQedPqo6E84Q3XwWvehyuJeio2BWUq\nOF0DWXkdJYnmtGHjqkGseuqhzxJh9PowbJlA3TfEtMqjHSjyNiq9g31et6gKpB61D3ULJxVEWFML\nO5BT91EQ0Vcc+1huZFDtrgdri9vXEYKumO6GIyZnOTrB6UzMs8eLBK6WhfJy1cEqFvtxv+NA+wSs\nsAy3eCdGPpNJdfLZC7xUycR1Wxsl2UAKYueT+RQXD1njkJ/DpTnbvXqA9dsymfL1EUr6tW0mE9Cv\nDhGxtrpwLJx1ZNJcayycnsu9D5sCxtsPAACmov9qXODzFCsN+l288KvvSN8np8h/gqXB48/jSo9I\nuYfy2TdwF+9a3DT/7yO881A2oY41R2FKpiE6bZCXz0v/PBkfb/fzqH9eNmnvCybOVvJMDkqsNvJ+\ny3KBPmMDbUNwVjXERlODUfloWqpQPbbQu0IGpUMT+578rfrijpnlMcpA3t9mYSBnXCKulhj0pE9u\nbx/OhDyPrSy8Xu1i5EsflvoQiSeMU73Ex4NQ5sudTO71VrYP4yZkDI/maCgNgGEOzZRxU1RovyGr\n+9zgAfBSjp4t3w2KADW1PDaNicVEMhz1wsCMJLwjXw5FFXqoj5llydaoWFEZ1RbaSmpUZs63EFC6\n/tvMjX90u3QfLttlu2zva0+FpWAZFkb+PobDAmvu8E4zxYwKO2W/QFHIzr7IJ7h9LDvlSSg77eG8\nRMUAX3etEO+TG2+eoy4JwlmZWIRyGlszni76GDbD9stOBYsYgdLYQPEENXYSXDHFeulGW3NxH4p6\nfj2zh9UDUnCNLLSMnJfwcerLLn9lRZGS3Rj7rQTfrFWLdS5mt78/QrqmiEjMLMOmgQrlu0FpIyPe\nfb6Zw75F+Pf9A1QEOy1pUu9fW2Ncyqljewbu3pWxSBvAHYj5fPraAMHz8vlxQUWusxV+LxPL61A7\nuKfFJXq2fQzvS/KsjwwH665UUp7MJevx1VffwfJdCQJ+q4wRxOLmnFcxtC/XmLcNPPNVAEBCsZRk\nM0dafkHG+H96C7/9F+Wd/mit4PC9mrYF5YoFuKHgchsk6JPeLtMZap5+8aBF1LKqVCdYr+S0dboy\nL3LDQJbKeDZOiIYu4QvuAdY96dNeVmO6K9feOxM3wLJmQtcPIBxN4TFQelEkGA/EEvTIvTHu5nBj\n4lDGFkqLAerHJd7ifAlOa0x7pFO7IGXaoykmtCQ6BwdYzuS7k/MjrIiNmQc5rtG6uVDizo2hcLov\n995djOFFMkdmuYPdZyVY6ZzYOMnfI2P2AdqlpXDZLttle1/7rpaCUup/APCvALjQWr/Cz4YA/gGA\nmwAeAPhprfVCKaUA/A2I8nQK4N/TWr/63bvRAm2MvLBQLGWfurDGiBT1DRYt5jPZ+WcxEE/kdNhh\n0Up2MEDkUubLLLDDuESmYpyQjNVL5vBT2WnvXbDAyepCrSRWcUf3MGfgT3kh6i17URKg/Zj4xi0R\nkdaDBwhYcfP6PIIiSrHVEZ5hgd+qWAnpPoDzczmhryw8dCkxFi9DUHYQ/nQDN5ATMae2Y5jM4bPw\n6Y3TOcqVPMfaq/ByKs+99GsEQwkYKmo19osRyq7cN0CDdUuYcGlgeSI3fHBwjnj56wCAybk858km\ngSY57nGVYceivoHr4zAU5OX99gAfz5he3aEl5USYOmIdBFWMM/ImOIaBVSXP5LcWUs2A2KmkQuts\nATyS9GX7wn+AB2/LM+XZCgMyKCEpkFUyBi51N43EwCwj90Ro4ojp3oPaRki9D2V0kTLIOTplANfN\nsV5RaGcSY7wrlsBbp2s01LdcFiluD6hYziBiOHoGFk/aJh/gTH1Z/tYOrJ5857AldsF4GdmYzEtW\nApuap6v1GjmDmcnJGrtb5i9qd7Z5H4tG4j39xRyGK5ZEqYBqJdamsw7xm8fUpCjFMnObDT7OCk+z\nZ+FgJDETY2XBJQr3XryE/pApyQ/iPvyPAP4mgL/zns/+KoBf1Vr/jFLqr/L//wqAPwMh3nsWwOch\nEvSf/243MAwTUdjFqKjgUJLc9TbQYwkZdrIS0Uge8rA2EV+TFzpilqEamNjbVr2NxvBYZtsYLvZo\nthXBDRi5LJDnWKab5Q+Q13KP4vgNeBVBStkUJSHWbs+By7z4MGItRidCXclEuhYqzAmrvnrdxzgU\nmGwXMTxOlvqOLKrd0kDWZ8muVcFihV8ROqhJNxZmci371i6KU5lgL3w6wnIupq9/7RbqQsxHO7Jh\nkPrcPiREuTxDSgizMg0EKQVZjBodJZuTWoewPZE+71uySAeHLvrE8u8fPouuIc/6lUGD7+/LeF6/\nfRv+JyXoujmXCXj16Ms4vaCupL1AxIzQ6ZlGxyd/YJYjIOt0ltKULZdojC3e/yEC9zMAACfowLFl\nDAYjH4uVPKvZl/exk2a4SvIZ022QsMJxp+fAIrW9hxopP1+NWDrdWjjkvMCNG7CZUdh/6RDFUlyw\nvH+I0eP7vJ/8vt/Z4CvnMl+u9s+AhxKsruolRj0+N5+thxxbgTO3OwK4MTm2wjPLrYDwx+BtZIPL\nehQ1ahfwFDeegY/2QgKt/XYG90BwJPM4wcc/KWMwfSjf9Xo9GBtWxO51ELDKN65KqEjcwmFg4272\n4XDO39V90Fr/BoD57/v4JyEy88D75eZ/EsDf0dJ+B6IreeVD9eiyXbbL9s+1/XEDjXta61P+fQZg\nj38fAnj8nu9tpehP8fvae6XoR/0ItlcjWxvYMKBotxEOduQ0ino2mlxSSzYC5K7s4jbNqAA5TOr9\n+S2gSfhq5iEUTwdzvAu9zZGvWWWmbyPuUPswD5HM5dS00hGyDQN/bvCEPXdLQuD1DLRExBXmBlc6\nYm0ETYQx5eYM3EHXlNPWGEl/ewCKGQOR4QVAui6zmkLH/A7TsHAPYO/R0tDlE2Vk/7oNmzgEI30T\nR0tBHu6txaxd4gXsWHKPedfBKU+PJtc45iHdR4rTr0igUHXktPOdFa5sWGh25WVcHcjzuZMzPLNh\nEdMnriMlX0R3KaedczRAQmi2uekgZz/sykJNlKJr9LDJZVwci7oWznNwLOkDVmvcIKluqzLkCU/5\nZQKvkucOamokeF1sMnmmjjGAb8u/92wbXVa8hs4QXYNQYlpr2RroKpkL/b2XEBIhWmGN1pQxbMYZ\nVEfQm17DornFFXysEbzIbHYLw+SfAgBOEcDYIwnQRlypc+2hY0nfrKxG6Mu/70ZD+Jb0Mx4E2CUF\nYH5MK8gbow5IEKMv4K8bPlMHQSBjseu7mJGM9eo1sR4yr8RoLLB51TxGmss7686OMC13+dz3Yecf\nLnT4kbMPWmutlPrQMlPvlaJ/5vqhHrl7UHsNdE8udRAewCZsMxpoGLYMju+aWDP6bKy3DEM2TFJ5\nGzCeVMjVUY2uJ6Z0NerCoi5fviO+dWXmmKwlR9331zgi4OWRfg0GYwaqC5SkFN8Kd3rRHXiERL88\nz2COZR/csSJEB1tSEAsBmYWMoZiDbmHBHFO0ZnaGasUou+HCJJTa7hH8Enmgqju02QeTMsiNLlRK\nMpj2Dgr3VwEAcwrLGN05AlbfLa0OIpbenqGBzc2iqG3sfEzGdpmIS/H56889YTx67gf3YacUVTW/\nH5OpbL7PjTXyR8RIMP6ibz6DPhmQNd6A7bBqbzHF7q78PV8tYJBjcs2FYq4KVN0/K39713EuMAbs\n3e/iCmtXXCPCmACgNmP1aBc4MOQ9+UGObLvxWB68jswRJ0hRMn6gTQLL+ja8iqpXQxtRQOFdP4BH\nEZVEu2g3hL0vZNPQ7hGOGtn0BrsJfF7XM07RCW/KO6NyWKdq0XPJ19komJ0t/LmBO+L87OZwWWFq\nE2+Tb6awKdiitQenQ+buWiMYEPIdtbjBDdIgA9C6DdByAymyjyHeiCt5vyngdeV67gYozf+P3Yfv\n0M63bgH/S6wVjgFce8/3LqXoL9tl+xes/XEthS9CZOZ/Bu+Xm/8igP9IKfWzkADj6j1uxndsymhh\nhSWCnoH+XHZ7DHx0Ldm1bSdEyNxuU99Gv5ZLbnUh0uoIMVFeg/wcbSsnienUyEJqQ7QbmIp5bKpy\nGfEQXVf2rAouZiSm8I0uKi33Hhg+xrfkyG6ph+gV5/CIEjPiAnBkHzSyJSJqLYx2LLQmXR5iAWo/\nQPv4AQDgcZbBS+TzntGHTQEQPFFXjuFREdoyc5gsfLKNGJrUXU30CB41GL1IrhvkHWQ8ufOkxGKr\nm9ZqpIRSO3aF3/maWDefuCljFSdLfBJSwlievY1eK67P/XyOmDDtL31tjuuBnLwPyP94dnYG8HQd\nJileZxDwuu4iIyvxDauPNzj2ViXjU7V3YRKNaHRexorHSpklaFwJ7A2dHYQmK2I7lP/r+HA7LHbC\nHmz+0LQt1JX8fbr2YE8lT2/XtKB2QhRduV9YTp7gSQIbMBIiL51jNCTJUX3JqBhNgYBuqn7Hxz0i\nK6cThU/cFMtjTUTr1bs1NqF811hMoDZkoN41AVZPuvUpFO+xbGTuLbIGOhP/qRN3UNKl9QIXLenf\n4I1hunI9cymugVmdoaPFclnoE5i0wpStMGBg8yhtQZW5D9w+SEry7wP4EQBjpdQRRGX6ZwD8nFLq\nLwB4COCn+fVfhKQj34WkJP/9D9QLZUBZAazSh93dEkxMn7D8OJVCuSG7T7NCRVeiScWMSgsfaCnx\n7vVhMZKLpQWrZUUlAjSKyjvkM3QxhclB3ZRT2ISI+8UKdldMu96NLuqOLM59/nflRbDI5VeMPdQT\n8Y11f4Sm5ueFgqdk81I0qduTKRpKkvvpAqpD0pduFxYXurllUzQc2JU8p7ZLmMSvV4aPYiKTqc0j\nOCmFXulb5845rJb+qa9BHllsALgU060aE6Ndeb4dUoT3wiEmZKm6vmiRMWuRbda4T9DPs7dv4uuh\nxF3UhgQ45TFubEuPfRc3uAmlAxN7XQq1RCkGdEGyNeHohQ8Vktj0Wozxbfl8XHbQYwk7hhYMLYul\n8LbgNAM2J79rrLEkyKzKVmipjBWUG6BHCDmBR0EYwja5QRoGzJT3biwYrmw4WkXQM8k+OK24lc7p\nW8hduce0u8TzE1mQF9EZ+rfFxTDJbXn0gg2XWppTs4cDX5bXtFLoM8ZhGR20S/m7yuW6XrUAOgP+\nuw3F0nc3mGJFAh+nqdByrno7nL95H+b8EcfCx6CRjdByXJyxJuYwc/FOTXDdB2zfdVPQWv9b3+Gf\nfvQP+a4G8Jc/VA8u22W7bE9VeypgzlorVI2BNC/gKDm5tF3AqWTHLNIMFkViaqMGmdORM//qGT7q\nakunPoBOJD/c+ArFVmLN8mHGpF6jxnuhHVgMIlk6wpqSe8MmRK1oKZi7uNmXrKoTstQqXsL05Vrd\nUmFDFl09T7BQLExaXwVYcefShEWyQuHLCWQXaziRXM+zFcCsS014cc810TZyujpmB61itaOTQFOL\ncOM9RutIPwNGphfxPrpjOYGGEbAhQMYvha4dADoeMCC4xb0ljNFXjC4OKXOnnBsoagEWmXWIG7Gc\nRnfXLgYkwck5WN3WQsET+pnBLaxdAVFFWRcZueDOnA4mKYlmHLE0KusTcC05obFK8MJdeZfrKkGk\n5DQO6hA1syf9lJWRVgGPGJGmaWEQHpylCTIGM02nhEcT3SIALJkGcPsyRh3HQUu6NXRHaMhkqZDC\nJOlOXspJG/VdXD2RsU+UiXQoVtNhsocr18Q9tGzyLTxcY0acSQ8ZllM5oa+5NYpgW9BloonlRN+S\nCOliDYvAONcaoLLkGsl6jJFJq2JRwPE4QUndFtRzKAagVXuCJpW5sFvNcZyKFTNv78P/kMv8qdgU\nFBSMxkJtWWipmuOqAtOCi0plqGOahkMHyYq1DcSsFzMXliEvdjVP4e6TNWiaYas8lKOAO5AXXpMH\nEo6JOJYFdrZeYH4hg/6oPYPFyrczxHCO5Xq3XmZKMgzQkH8wK3OEjNo/nttofLm2qRP0SS+uF0wL\nOh4sql4F3g6arfBnx4Biqs9ypY9FXcMjq1CZ13AIeko2DlaJLKbzixBvp1LN+PaEwJXBGt6COg3e\nHgZcKFO08LlQ0NroPPcpufV1WSgtXsRb+2Kq700LVD26PKmJqSMbmXWygfFxiTU0U6b6mgUsJX0e\n3GlRvS1ArWXvEdY0q6dVicITRCp5cVAf30cdSiWfum/j4Rfku3/6aBejiD8tfwAAIABJREFUDsFJ\naBG4MubLmNmZskZJklMjWCFjdWWODAaVweymRlNxPHbpP1UaPtGtWbGGJn+mzmJQsAnVpkJJpqZ4\nJfedPprhoUfeze4Gn6jk+S/aGSzGCRz6nb9Xz3GdTFe/t6lwJRQ3r54M4XUITjsyoEksrE+YtTE9\ntMw+lNfWUEtWNSZzVDbdLVNDr6ihSRRjU7ZIGnnOdXIVSSH3u2sW6JJxrKtDmDUVdD9gu6x9uGyX\n7bK9rz0VloJGiwoFPDtHh8CctHXhm6RE28RoqBh8Hu/BN4h0OWMga7DCgjwFlvkQMZmBW3eJFYNu\nh/4ODhgNdsc0VXMLFYNM7WKOk1RM33nmYrel6nJyHS/8+AsAgNyU0yWIj2GSLnxclVjEYkZ26m8g\nn8qJaAQFpoy42zuya1vJEHpMufuZB6MUUEw1MWGN5ZSrtsIrQ/fbgbF+irRm3byVIZ2ycm75Vczv\nyrgkZxItr5cDLG+624GFSWyC2wIlCWW0b+Lxu98AAPRcgTtf3fsWirlYBBfGt7BTiwlvfyFAeFdM\n0XZUYETSj/Uu1bGLAzg+iWOObZzy79nMhkuLpl47T7g3VSwnrVXdRf2mqGXZNxXuvc1sBk7hetT/\nbEeYUu1KMdCar3O4HrEEVYhCMSvR+ijIOZEXLjpUL8cF6f1u2Ei1WDTDcR+2QbVmt0S2VZKOCpT3\nZI4kEBM/Vw7Ms63wzR5+5+VtheYQQ2YwpuT8PJxH+G+p6PTyG/dwRKj0jcM3UaQCilI7FxgtpU/p\n8/LdeuLDaAVjsHp7Dxv7AQAgzkpElXxnHJfQhJAvSKm/KTRGDMA3gwnaVNaAv1giNMXlParuI00+\n3DK/tBQu22W7bO9rT4el0AJ1CbSmRrJl2FnOsWBApdYpPIn7wIoSpD1qHWimkrIIfebPtXsLMZl5\ndN1Bv0e/rujjPJBTxz5hkE3NMX8gu/279RmqlAUsRYZ2X3badifFOZVPnjmQ03PdAMaawaXBAO3y\nLgBgEjkYUERkkWfYYWo050limA1AnQY7X8PqSH68WiVQlTjbTkBxl3qImNWCVuxCFxIY22QaD2YS\nBFyeWVht5ERLyRZshGewNH3raIQuaczOjRYmlZS7lYHBMxJTgCmn7r31Hl5aUaPQ72FN6LYyShxc\nlbHd2fksqlb6p+hbd9xvIDyXE3/xJ2aofk4spf1hi68/lvudHE6RvytIzcqVexR5Bt3/orynTYlP\nXRdIY/BWAJ9B48xcwWPQLWYcqdQbJBNqSXo51hYL4cwYFsfWVBV8xkEKBlqjtAe1zxIe3UNGPQkn\nt9BkFFRRIS7WMl/iVKyq2XyKTSQn+7q3wGfTjwMAHg5TNPxO2hPL9Y1DAz9FlP+XixR+V9LkR5Mh\nXmEQt+iMwNeDNStid4wcfu9zAID56h0ECaHLo68guZBxftzJMViT6RxrjqGHMxa55cchprU8x1mu\ncHZN5sgnZ31kO7SaJF78XdtTsSm0bYs0zlBlJTTx6UbRIqKSjrGIUBIsY8drNAF190iW0iYh3B1C\niq8Y2PUk2DWJNzCJozfDDioydWhHJm68dtHtykTx7l7D8ZkM8MhtMZnIpDl4awf9H5K/64VMxr49\nQsu8szJLJK1sINZmhjblC/VL5BMxZ6N9mRDtQqGNaTJaPUQEEw0dHxWDdYpioE7mo2X1ZW1EaLjo\nu50UV3qyCB+dfgVdgqgmzO13NwN416UPfWcPRy6DWSmQP1GUzHH0T4WbMb8jzNBp+BqaWNwj/5ku\nsm/IIh6kb+HYl8n7yqGBUU82MvO+VMT7sQ2jKwth8lqAbCUz79GDFCe5PMv0mw7AEudmQZewzqEf\nMdDqfBH3/5a4MRdfmMCdSj/MyEUvk3c8YM6/La6jGjNjlPrYUA6+Wg4QF7LBmS6giGGxKQBzYT/E\ngKa2c7iBqeV3eTSEbZAx2tTYZe1Dnoo5P8YAMTMft+obUNdJuIJrmBLS/Pf+iy8BAP7hL7yOOP0l\nGXv9pzC4RkGWa99Cx5BN+HZgQM+kH1dJllJ5ERwlAcUX9z6DaS4bPdo/gSUp33R6D5UmqIn0cDe9\nAkUqc+8Cp9gvJfDZ9M9QzT8r79V7A+r/be9NYyVLsvu+X9wl7819e3u92nvv6Z6tOR6KY5LmApGE\nKEMAbY1Mi6JJgLZBQLIhQNaAn/SBHwTKsmVApkyIWiDREm2aoglS3CWTlEjN3sv0UtXVtb795cs9\n8+Zdwx/OedVV5PQ27Oou2nmAQmVlZWbciBs34pwT//P/z/WI4l3aMnxY2tKWdp89FJ4CGKwxpIFP\nrscntXbOQkVW/E2Hkp6FVxclkpa4VLMjJZ24VCO4op7EE2UilZwvb3ukU03guWMOT3cPXTn9Ncvo\nptJ51W7cZWi+MZmyvqVw1tqYr+3I7vCZTdUfLBkK1Spc4JGq/Pi8sYXXlSPCIAsoqS5hEstvDYmw\nekRIb4I9I/1IvQb5XRIRZRHO9hhrhWepZqmtSAiSzgKmVSXyaNS5WZHXlY6i4FoRjbZqAZDRVpbg\nkUlRJ4x5DieqCH24K5oN7vYaJ5rguhA8xsZIqgRfCjNGVyWJ6db6XNBwZRdlcz65zUDd4KNbGcFQ\nxvOrRR89XWWxt8BRhuZcORusMwP1ioos5uDk56X/dhWjIioOEV5DwobJRELFvMLd8CKvz8gUhTof\nn2DaSsY6GFFeEW+jr/oPQRDAXOXgoylTJdFppRGNLQlBkmLE0IoXkigU/qZ7QN6VHThZOyFUJoAw\nnXCkSd5f/bJ4SnvRz5AdqHzf5X32X5cfudh6hkld3PlB6QKVsuz+w1g8Vntzypkn5f7Oo4xckaf5\n/IRoLGN/bdHjkblKyz2uXmVkmfpyH3pZg4OWzPvhDB59WubhYwOXxe33diT5UCwKBZaFLSgVMQ2t\ndoxyh0Dj6+EwZ0NlxPt1h02rYcAZfWhOFgwuyOTZBGzplGxjRqQ32bFTXIWRp95VAK5eK5i+JrDW\nP/zyNW5PFAwVWsrq2j79ZEJVJ81rnjy4jyY5haMgIyLG6n6u1q9xdF0BUs6CmT4sj3aVcXkxwy9k\n0hwlJQIF3pj5jNqmtDcZyC2p1it4SiJT3tpjeMoEZUeMXr0JwN6rX+WwrwxDQ3k6/LhDfEb7YQqG\nvmpiGlDELwbLUU+uo+bK9b68P2dTi13rZs72ljyEteBjnH9GxrO6dZl6IJN0ZV9OJOrumK+dyDXv\n9G/w4kLGJR2OmStGxGQZmeq5GxV1oTBwWpdhq5DJAp+5LXqKQ2jM55wo5f3pdXqDmLQj3xsHdZra\nqYkTogz1JNUOnqpWeap0tRJUyBX1lpXLOFp9GayOGSm+wZ3N6O3Lg7q7u6f3yWc1lrGa5E2O6tKn\nPg6///v/EID9135SfvfAguZtZjczAu3/F2/6bHeUqMbvUoo1bNR5vNeqkM7l2nonC0JX5uze7SG5\nskzlixLTNRmjmQoIr84TkpH81mh4TL9QtqzXh+xek3H5pVqZtcMPpkpyaUtb2v9H7aHwFDxraacp\noZMztyrCMtihqaItuTtmpPwFRWzYVu6ArsrpFsmcoa7m/jgjW5UtIx01iPXkwEkbOEaKh6JburPt\n3ybZlwxxL57TVR6CflxwRuW/Hg18qrviilXPi3hJ3Dsi0EqjbGCZ78mZf3kwwVfRD1tusFDPI1EJ\n+1YpgpGemxfHGIXPxs0p3r56E766r2OPkrqD+aiLTaW4ajofkE3ltGPTCbmjKLbuipyMnK1PqChq\nMvTnlGbKUVjknDL1WcDV0CRWV7xWinlDQ5uPx3v4Kt/3kWzALYXofqqYE41knC+OZCf6tbphfSDu\n6ZfcIaHyGQ5z8U4AciyOwr+LU2/FCLwdwLgpVslX1q1PrZDfm0UOw4Xcn1gLt6phn4WGhNGkR61V\n17Ed4alKtzE9ylqBWdaxD4p1jKMnO7MN6g2tuk0a5DPVGJ1FoJDuLopoXOxTr0nitubvUzqSsMQ3\nEb/7P0rIkxyoxFxR3E3lYnNy7R9exO1U5uRz6YyGsi7P96WNhtmltKMwZ9sjGIlX7DknLHSun+sc\nUVO+j3ImXtzELeGr8nU7htsH0g8ntVyN5J49Mis4yt8b3YmRGqYP1x7f9O3P/EiLf/7PHV7fkw6/\nhKWqgJfjmsOGBsSPtFskd6UdxVUdThKqevSU4RCqvmCUWpoan2a4VAJx54tTqHGjRGNFy6wHIyLE\nTb78rSnf/2dksp1b/SestG8C4KwJSeoPXNzg1zVKeCvybM/AIw0l49TgOqsZhurm1z3LXNmEXB/m\nmp3vaLWkNS6BkqfO85yqL+97OHeh0sM4JVaCkHgmg9LPhH0KoB0YvvuH/zMAkmHKoHcdgNl4zuhY\nYvyxhiX9WXy3ujRLLMoxwzQt0Ap1HGOo6NjGWkfRqjh4nB4ROuT6RdcU9BJ1iQcRM40U8rcYr1P7\n/s88ezcHUypyKpLAZ7Olx39Onb7qhq6tWuo1Wb1X/EepKjtVvVHgVuRI1cv0WNufkmtoUxhLoUpP\nrj8mU/hwFC840WNZq8d7cQGh1qOkToVGWy4o9EvYbXmQR7GM/UpRZ6B076XRF3jxSMLO+Z3XyTUn\n9pTrktYuANBdUbGgc2ucXZfS+CBcxSkpGdDUkGmF4zAuyCK5Z1OtO/HtiKO+5leKI2Z6PPuJjSbz\nspR1d6sb5ArE++xn/4svW2ufe4dbsAwflra0pd1vD0X4kI19jn59m985eY1IE0d9INDEVzKFcx1Z\nBf26S1e5En1NHM3qMS1HPpu6DkFZWZnTjA31YScmoKQ8jmMtRApMzqaewe+SMR8qJ8OX1vnZ1yRU\n6G3+Iv/t1Z8C4J/9l0Jo/fvxW3sIp1bBMNUd9knVlyw3KyR63t4ylr72LzQuI2VzPqNFS1PrgUrI\nTeOYakmvee4xDZVibJAxVUr819WrmhSWkjp/r8aW7zMybuX2mJMjlVdPT7DK+1ByVSrOdyifMhGX\nHDL9xyKznD/lenA9uhvyG0Pd87+p7HMcKb9Bx2GqXkx9kTPuy2//4XTBV9+lCzudwXpH4bz9BWdq\nyjkwlDaK1TIVGRbMtETFFzxF1p7iqkvTzJuYQuZApFgXNzVU9Jx/nDQwp7SbkY+vWpDTfsZQE6G+\nSgjmzglOrPIBHUs4lC/mjTaOp6dHheANbu0es1CSldmXC17PJfxLr/aYthSunK6w+Ba5jrqyPYdF\nBaPUg7geiSZlm/WEXdWVXJBS5OKlxKEkx0d7ITtGEr8cxEy64t1UXl+QPS6eQjybEnRa72bo79rS\nU1ja0pZ2nz0UnsLtKOLHX32R4+j+/XdfNxefguc1bvuhrE10QZI9nyrLmnYlcnlUEzK30oKzKg93\nYCs87sv7Xy0WbOSyQl8fSzsX3JjrCiV++mTOP7giO9SOd8yLM2FTiotf4ld1Wyl/4YcAiN5Fn8bW\n8qgi4RZrkqj6jmCFg8dlR3hmVuGlSI6/tryENxLZ2Z5RItJXnIhtRTHuzuasZFqeXZvySYUaf+XE\nYb0ku8OLehSdW9ByMYwFi4ybjTyciSQJx1PDSLkoVnRnH2UeXc3LRKU63xYqm5Db4fu3JHZ+3m3z\nrapuPVfW6qdXHuW1qfRjpWNZRJLs6iSW37gjqMdvvdPjy+9S+Djpj2ipjsLKYUJnVcZlqyxeQFJU\nuNmX9vKy4ThTCtArPaaXnpTXzYi+clmsa0nycalCQ/Mnh6Uel5Wfo98JCUfiCZ2kx6yrTFtPKdhK\nvsdUS/g3DlOCy4oHMdnd0nijbGHTqze5NZedff/oBP9AdvTeeAwjGbcb9ZCL/0YGw3tOvJzSVkBv\nJl7Flk3JlPC1lwRkyg69GTlMfE1u55IvmXPI9lCu/ebeGyQTyZ+kzVUu3FbV6Y93sM6pwOy7s4di\nUTCWu2f2X88y4Mx5uRnttuWZT14GoHRdqhof26iyoXiE2vo22TUdkG6NRlke4adKa8yvS9LmqYbc\nlIaTgxJk/MHRLTYVCLI3lUzyXVMQVaSKR+/GHN9Q0cXpmz8hk9U/PuZCKO2ttft8TJOcg6tDHlUG\n6pU1cUXPZw2yQ5kQa62cM4FSw8+r7B3M9DcM/V1ZOC5qReXz9142kGtY4ZtjMkfP2+MhDQ1t8pJ8\n77K1lAL5rU8+VeWsciE8/Wyd7TOq8vz0M6x/RU9UPqqnAY0hG75MUvfFPmlXXgfugk9sC+fj3/q1\nV+7SzL1TojEPob4hnz0uMs7V5JrSJ2Vhza70GCtfRpgOaCjxjS1VaKgKk7fqsOZpvYnCv9tpQkX9\n4rgIOVGegvqooKlkMIOwRFaSvpaVj6EczckchbkzYHwk19ZesSyUmXui0vBRWBCNJFE+ONcgLhRn\nkuXU9Lnc3GxwUcFQ1TW5N816RqIJ07iAhSY210oumSYPZ5UYdybXsRnJe2MT0TcCnKo0K9hEw6BS\nStKVsXh9OODiSukdRv1+W4YPS1va0u6zh8JTKIzQhnkxnGKvDKCwAZ71Qj5pZSX9WPMSLSMrcLEi\nlWW5s4+biisWLFyGq3LUsxZGUEjCsOT5RGfkBzMlInXiOduR/G4tmfN5FcIy5Re4rTGCYxV8BwR6\nZBe/03YHVKzh+xvCs3Axld0n9C/j6Jm/iTt30Zsz7xwVX5KcaU8SRGcCn30Vhllhj0Sh2esnhome\nY6fuEcmq7A4trS6t5hlzdbo8C+iZ/3xUvStNt2pKTK18vhzLrpN6hmdq8vrT1XOU25+W9rpDwrIU\nQV0c+QwuiYdwVmnskuMGl7X69KRbZs1osdmNEtWS7Dl/vbnJfz0ShGDvHcbNTRJuyUfp2C4NhXd/\noir9/9fJBWJVtm4WR3QUszDLLEFb7qUp+biRTO1TDl8/r5CobKDje4SqsZmbhJGiTCuJT38oNzeZ\nadVtscCfyBgfJHOamzKeURzxWFU8vVdiOU5crLZpFV8G4IlpmReG4s4fFy4bSHsX7FnWQqHA6wQX\nAAhrKzRyCYlTO8BH+jGOc4KmeAeNPCRRaP1wJtd7JthiEctEvTOeYDXpuLE34iCTzz75HQVm9t4Q\njQ/FolB1PT7dbHFlPmKicXQyTXnskmRbP3Up5Km2VAbWnm1QTuTBCaSgjby6RVVPH6IooOtImFC4\nazQrMqj9OKOZyHntIpIbEFRLHOzIEz+s+1woyXAkiybnXpWJsEPGKQblFNATz96aM/sUsHN5a535\npxV3r/iH7uWEqcqlt+oVpsi1bZd7LHTxagTyUB1PPepKOV/xzlJR2u/XX58zUUHXdFKhHMoCeFlD\nn+GdI3ZzhQHPLa6KxnqNCclpJaY5wSh9ndmQfl6kwVOX5NrWv+kSq6ofWbrwHG1lEU7rIdtjpTuv\nSnVlPUiYKFCmceeAeUWup/0ZGClhyegvXuAv/mNZRH7hRK7z8C2ixcQLaG9rxetRQf2samHWRZK0\nvfEHhEg49nRvRHFR6eCLHKtn81tlS6aMz6eL8GToUXZ1pZ9AKZQxWoxcqmeUgfqOQ3lTxmN2S8Zq\n4B0yOqX/8+YUmrBxnTG2Lp9xezJnp8UKq09Jx0bjdSqX5XXj5gotpagvPVmm8Yj0qTgr5eLrXY9M\nfytLQo5Vcv7sSs6RCt3mNmU2lM80VwWwdPOgDtuSt6hd22DHCojullnBN6pJ+rLLpY8uqySXtrSl\n/QnsG5Wi/yng+4EEeAP4r6wVrXFjzOeAH0VySn/VWvsb79RGpQqf/JTHU+k5bo9kR7GZR1ur3p5r\nrNBe1QtueISKeAtVtZjygtyKi9uujgGB/FqGzDNxxeqliGwqnw+aKkWfBGx15XW1t0awLmHFizd9\nzisUdZQZMuU9KBQRydsUnbW0Kq9RiRlPleCkIqt5/dU63qc0SeRUqdVlNfeOS3gKV53MxV0uBxFW\nQybvzILFSAZgZfWI5lgSrYfVA0q+vH/5vGI2KDPUSr1qBnOkH41pQVNl6o4IhdUGCI5Vtr7pkKi8\nne/nuEY6WS3dICkLsUgYTEALkxztUxyv43pKJFpy8Fcl+Tvbq7O6JW17L30Kc05OCZ5XCb5oXjD+\nOmCPKIkpafjQzmuESCJxqyLh1YlZYXUqH7hVXqcylPkSDi2dR2Qbn1fXCZUnozxT8tzahLmqinvh\nCE9BJF53ymQs79erI9wDTWhuy/0IJmdpVZSyb9ZlWJHTnv1FcJp/puPLPO0WA3bj/xiAR91XMUMJ\nK2z1hGhVvJty0KZ6LJ5q/QlFmNaepKyszR1TpdyV0CVOqnRr0ojXq1Auy/27NZTvbxVD/PkFAAbd\nXYpMeETs7Yyuzp3VT/bI484fH+i3sW9Uiv63gM9ZazNjzN8GPgf8D8aYp4DPAk8DW8BvG2Mes9a+\nbRReuGWixpN8ZsNlrDduNL9CrSru1ZMti1HsbpGDqSqLbqrxnSlTU06+xFQJC810J20qjtzEaVql\n0hTXPFHWoGAlYjDW0urHZyyUndfcuUNftRSdIKGtENWJKvQYuItxv/d12TN8X1PJUNaqGI3bW31Z\nsKLtIdFVcWvPnk+YKVW5VyzIdk7bU/rvuEGtLa/t0Sa1TeWV9Gv0ci0ZP6iQKsvzcCgLxaOFT8nI\nA3Rtd4xRGLupjGh0tMT5qI+KLPFIR663u5rQUEhWOjH4TYUVj2Y0TkE4aYynUyYfyFjY4ohkIpM4\ncm/h7MpkzJ2MQo/sZp/coW6EZORZ1UHMb8456sn3dnhTp7PmWkptrSXwe0yPlHtyU3JGTqfHuZpq\ncB5G+FsSdrU7rbtHdpV4AbHE+74C2bw8pqH1MXFWJ68q72I/Y1OZlg+TOvac9CscyRxJSjOyhvQp\n646paCjxSDlnoqCntKpkKY/4LK7KYlmcydlWDZbQzWkhfa2er7FyVhaeQz1avtgbYlc0fGg5xDp/\ny0xIFY5tuwtmuoqe70o/dquQVuTeXAq6HPy7VwEobdXwNuWzd8aHPKu1G+/WviEpemvtb1p7uk7y\nHxDNSBAp+n9prY2ttTcQpahPvacrWtrSlvah2vuRaPwR4Of19RlkkTi1Uyn6tzVjwPXgyqKLO5CV\nr7VYp6XKxtNehXWV1ZrkZ2muymcWqqhcHTvYsqyerdoKC19Wfi9dMJso9NXPia3SjSl+YDHNaCMw\nWpNaRnuysz8zdnilkDVvPsmY6PFDNz6tM3zTLG+urE4O+6ms7E+clFlUxNMpPyK7xKJfp1HXbP+4\noKmqzCfDBWkh1Xmzo1M255zJRDgLOvUhkxOloHPatGNx523pdZoqg24UXvv5nZB0rOzKhYOnkGhn\ncpY7YymoKaUeSrPAXl+Toe4K8RMSdq07VaKRjEWtsUWmBTVVc55MKcRsKEm9ZL+Po4lIJ1mFqor2\njE7wrIrSzD6O23oRgO+8JAnD9eJl/mkqnlA4zVH8DyXXIenrLh1vU39WwodT8ZrOzRpZRTk46wu2\nU9mPFuk+DWWKNl7OmrJAZ65McXe/YKAaERuV6C7Tdv3khJOpXH+3mXEylulaVw+z4X2E8YoA2RbX\nqhyfSOiyV63znHqW+6oncZy5tJUqsOplHCQyZ1fyXYqaFvT11klr8tvbHbn/ec2hkcpYFdM5NdUi\nmUZQ3tQEuvXpKr3dUU95JztVOJETrpu2xfbFU8q7KWZPvMUz5S3GO0p79y7tT7QoGGN+AjlF/Llv\n4Ls/BvwYQKMS4iYh9TwjbCuF9lFMqmW6g3MFHvJAl5JjIldufqg3ALdNra0gF7eMr0dhNi9T8STm\njNIGJc3m29PYslZipsi+tDtl0VTmpVqJhdEYPQdPaxR253/8aMfwZh1E1TMcOvIb/bDKsZ4SXM4l\ntjzTdXGV0KO+2WGsRQpFNyOwKhpalsVhbptUFJWXztepKehp5qdMtIw6yjMGSn0+1Dg8NXMSRWAe\nJhFnVPMyyIeUtTZgNEoY6nlv0JCrPxekVJT1ql/OaFeVjSiqUF2R8Y4di+PIfUiUtNStHTPVGDdt\njlkcy29Yr8x8rgjK+gHzgZ4CPaEP/OQsFwfqX2cTTuZKRV+vUr2kqlDZPiVltVpozqj6jEtQkvh8\n686LBOdUm3NWkA70JKJWY6GgrOqKvJc5mzhndT7Fhpau5Ee2xmQhC51TaeJ1NH9wLItK2hhzqGjE\nnndAWcVexpM+Rh/0oqF/pyFnV+XhvnUY0/0u+eydnY8QRoLu7HVjLm/IQ+8sZCzalSq5p9yclRJz\nXchaXUPsSlhRCSOua12Quy6fPcnKGGUI62QOYwVvnSQpCw2JSkOfRuu9Kcx+w6cPxpgfRhKQP2jf\nrL9+11L01tqfsdY+Z619rhK8N8TV0pa2tAdn35CnYIz5HuBvAN9mrfKpi/0y8L8bY/4ukmh8FPjC\nO/1eUeQsoiE9v6C2kBXeT3ymniR9GgOLq2zNcdXFOMrae4r3f8oj0mxrtV1gRpq9Xc/IpuLieWmP\nQqXZFo4kHG/vJJRRmq/bU0ZaGWenPSYqwoGF05cKoaC454z93uP2k7ygotWAO+aQxkTcx5395wFo\njVaYf5eqahc56+4piWGfqKHn4zPZaUr08PuSLMvXhrx+pHRetZDNHSWDyQ0d3fE3Esn6/+beiGsq\nU9fPDJVoX/vfJVE26tj4tBTG3VFOyHI147aR73Wmt6npzu5/e4dI6e2qGyWcQxl0f11u++xwA6sJ\nXO+wimmLVmRvr8p6TatAd0JOmuLKbPW1XmANnn9dPT3HUFG+jCLOWFXJtjBeIynJeGRluefZARik\njdeynM092XPahynmo0qFVs8JT72wWAFpgUOsoiiLeEx/X0KXl169xm31btr1Iz7iSV8HlyQ8CrOU\n2Y6e5hwOeUHHbTP2aevjU6+K93fmMGXsS8L3IxtXiF+R/bHwXuCqowQw+QHmRYXLf7tshlP/DOWW\n/K43KKGlD8xmJaa+Eu3szjnalb5+VTUqH2l5bExljk1bEZ4v19zIb9OI5XXpTI+0eJ9rH95Civ5z\nQAD8lpGb+R+stf+NtfZlY8z/AbyChBU//k4nD0tb2tIeLvtGpehfPhmrAAAgAElEQVR/9m0+/5PA\nT76Xi3BwqBYh656P15VLGo+GzDWPUBRTvBNZrTOb0llI/H34mKyi3UGNih4h5l6dWOWz3Cwh31ex\njJph/+gmAGYku8/hySGdXDyMO6VDjCbUkoFlTb2CAfd4CBptGXK+HiCv7BhK+j9FFLKrHAjnX5UY\n8g8/scf6NYkzy90yiy0VqY0h1pr96FCuN2q1uZ5KfqF6u8Yglb6udNe405Td3+557Gt1nRlIn0ZB\nn2dVVfv3ogKj1YCl9TGPntXq0Z2MiUKo21vKm7BIWRxJTHrY87n13eLRXN69wXk91iulIami7Wwi\nu1X/+m2mysZ0e/4aVr2YpL9DbUXOzWeNPpmSu6bTI+3/JT52Vtp7pjD8dq7Jt9UWlQ09kmxaanpW\nOe8rUjC0ZG/IuB4dLgglV0f/8iZbWvDl7tUpNmU8Ug2nDRGFqo7ni4yvvKG4kH2XqwOFIE8sk0vy\n+rzmFKZRTFnVnvdLDs9qSdfc+ExVEdvqcfhkrYoXS5/mU59c0ZFh3yU+EY9lZ7jK/NtkftaPxFu5\n6JbxlSthSonJTK4h2Z1xnMh4ffHgJodX5J7tx+IVumvbZM+qox4H+HOV0DvfZmUu3s+k5rNV/lOo\nOp2bgr43x89rZIfiRjlOiWokIUM+tPihDGojaDGsyGeifyXu1EGrSu0/ks9Wo21CxX0XTkiu1OfZ\noKCm8uNTLSVtbm3gV8TFe+pKhyPlc3xi7SYva6a3UyyYOfKQXdbV4eX5/c7P6ZlEUcB2KJPxvA3Z\n7Egm21+XG+S8umCupB9Hzx2xOZPQpjlbZabcjEVHzuNH84xuT/qxNzgiEG+QXqnL2k2ZjKNZxKNK\n9Taqy/f//cspX50qMMlCryyLzPXXK+xf00XPFjiJhli3ZKKdKaWc25SeZCbj4Kdvymc7JUZ/Wfr7\nqfoajnY9Vaq4Xr3C6I6M6+xVl3GsVPWNGUfKpOy/WqOkoJ8zFenzrOwxzuV0Zad8k49rAq/aqeKX\nZdxWF+fwNIHcVRGdILNMn5Yx2v40VIKnpI3bV4huyQrhP5XSDuXUwqnKA1bkpbvxplde4y98s2ws\n1zdmfK8vD9ad5jbbUwViFcpzaQ17Ws9xdlxjzxeMSHPos+lrjUKkFHVYjkcyb1pBxvy20shXH+Oj\nl+X+nIkfpfuKLPZZIQno6FMOayob5fkpRvkoD8N9yCQZ+WyzzbVtef1EQ6XoN8+woYUuiWsYKVVc\nViyoTeV56AQF6XxZJbm0pS3tT2APhafgWIdqWmOjmhN7slvNRxBZcbOScEag2b1rvWOe1Z37tQ35\n+2L/iI19LWCJrtJ8Us5uk/kRVo+T5qMSfYWjhifi1vWCCRdGsvLvPz6lrjWandpZPqFu4m/fsXSV\n/itXhJ4z7989hrwX0bha8pg5SmriBnw5ERf1ibn8wFEpYCtVlej9Q44HSsf1+EUWE9lJF1pROZvV\nOA6l/xuBZaHUXWvTAUeflLW8/YaP1UL9YxUemVUyNvWk7w9yaC/EcwnyEa5KcF49tDQq6s7rDPBD\nh6+ppmIxdfh8U8d23qN4XnbPc7tfoPHpbwWgr7oIs91DjvelT7udgu4t2aEG85jFDdHXiD5ep72r\n6tFN+fs4n1J7QjyzJ19ocgfxaC6119h+TLwGLy+oKOXe6Ej+tqtNmhrCDBonlKeyA/eeqRHs6JHx\n3GGqNHPNuiYqoxNiRaYWTpMslEG6uF5hpyFz4Jl5mf55ZQo/UpxDKaKrCerpc8ecvS1eykll+mYJ\npiYGx4uAtRXxaG/vFVitynWfn3IrFXGdSpRxdEHu5cax9LM+bjFWdGN7e4VprnqbSU4xkb6a9irn\nxxIqXqvI/69PFsy2Zd4HI0s9lPaOxw6DLZUsnJWwlT+FVZLW5qTJkGl/g8jKzRj6HboqvhJFCV+6\nLfFS1Co40GrHsxWVEF+tMtPcwBiHplKOB62QiRL62eE+kZ5KvHBHMOf7zpy9ROK67m3DRF21mQlx\nQhnsj56Zc1ARd+05R3z4K/3+XRer4E13q0fOE8oA9Vp8RE0r6r6o7Ltdp8JLFZmYG6OcxUIevCde\neY30jLh+A6NVceM+raa89+LhBKuQaTt2uVCogtLUUmkqkMXKQ3U4SbmlcyAEokgZhKYZX1Ogk++l\njLVupKvVpdejkK1IxvOVRcFHc+lzO6ySWsEF7ARdnp3IPam35Em4dVhndEfAPWE45/dekvHMVhZ3\nF7KP5xPMWRm7cl3ARhcmGV9U3McLPhjkehbJmOmJ3LOy9eh5MkWbrsTR89tTxiNpY89pseZJ/7Zb\ndVa25P5FnUdx9KF3FXjrtqZMFjJufnGFZCz34frRbW4eynXePrlJ91jCm0pX+hd5W0SqUVkcewxq\nCgW3FXxO2bj1HtzscTWV+xd6A+xXtF4jPSBeyGJyZzzn428o/fxTCjYqn8Ffl7np5RXaSgx0Z9Kl\nKG4CMD2acdiTsOOwL9dmSld4bKo6pmsu80x+N0inVGO5f0W3z0KBUe/WluHD0pa2tPvsofAUjHUI\n8jIrlQmTXNzhljvH00KU2jShXBHXfa1SobgkCsXdoXoB5y0X9SjWNBoUetBrspjQyio/WmtTTmXl\n3r4kq3ZttEe5ogIv0xFhoNVyJ1us6M71yKDJybqsxi31HsyXvnI3ZLh3Vd2ulbm8KTtFs9Fkq63n\n4q7skrVJQk9RmFv5MVNfrjPf7hCUpO2ziojMPnEeV6G6qxfWCeeySxS1DZoz/cxKjqsotnEiO0Ng\nHbaVfflGZCnr6cOtYsZTVbnq19OCJ9bl/VXd5ToNwycfk+tML38L7QPZdcZPz3lakZCpt4XZVuTl\nSHbozebLzJ9TYovBAe1tjbX6R9iGnNnXrI+/Kb8X+uLx7AYVNtVLCctdXlIcwmZti65yYExLI1a1\ncrNY/wgA66MAvyQJxa0ZjM7J+62kxKSsSb4iIk+UgVmRjfEdSzGRkKcorePXZGfeeOosjYGM5+SJ\nC9QH4nHN1UvrlBKmqWo9VPfxVAU7rMQsFOOyiMVzPXFDSomoVeemTeOj0nZ7YVjXBGZWe5xGXe7r\nTFGMF5oZgWIMbD1kpjyPneCAXcWIuA1D+ZwkT88oBD1on2WhJyCZF1JRzzrJAyqhXNPIqVEP3hsq\n4KFYFDISesUOVw+3GClx5kot4smVU4jnWSKNr89ULhKePtRKjOrtgrcpg4M/B3sqVd4kVwadilnB\nD2SSelOJ+5q1DYKOuJzl1YJCy3pP3FWsuSm/t1Flta0qRFqmjBFeSZDw4XQQk1HMqCeLwlYpoNGX\nLPrm49JGc63Lo2OtfHTW6OsJRynNKKtkeliVh6p2/hyMpJ/z+BCM/IbfaN4VIC1PjwgTeWA/6sjv\nni/BS8p3uWHgUHH23VGZr6YyadqeR65Z8qArD1jDXGAjkcW2sfZRaquqr3gypNSUHsYbASaXB6uk\n0OZg0GS1JhO6El3iUKXoK6WLlDZkAWmW67T1dIW+js/tL/C8lnhPezdpOrK8BquwULBNJXuESiYP\n3plVWbz9ixucn4nMemGhaMg9CRjAUPo9iXs4mfx2NNWH/HB2FwZ8cfssruaH1ktbxIp5zjZbFCvS\nTlDIZ4cnc6qx/EY/atONlSHLdaloMiGKpF0ncbCZgJSaLY81DUdL7gUype7Pqh02jFybUbp4GzqU\n27qrWUugOZPpUU7ZqrRB6lBWjc2sLtfrBXUCrW0pWYeTmVLxx0MyDQXbdUuCguTepS3Dh6UtbWn3\n2UPhKZjc4IwDurUp1bbs1ucK6Ori2TpbUN2SHaHdLeGcldeu7nbp4yGMpI49TSpUlHcwq7rUHUmS\neY5L0ZHVv7IuK7jn5aRaOVmyCyJly53UCprq8i9qHVZTWXVtWRM29yCXHN4siFovGTY0M7y6cong\nrLwuPyZtbA6rRB3BRYyj1yhrhaKbGEKVXK+0Tz2CGuXwlHexTKCewsyHrKGy7IchM+U9uPq63MpG\nK2BjLrvH89ayORFPYLWZ46xodejtGY88Im7p+YYCrB5xOfO07FDuIym1WME/z3Rx+nKKQrzA68vu\nn2zKGK8uvp3mOdlbwmTI1kh22rDkMXeVDr1s4FgLurQK/6WXpsxO5dhm8NWRJiVNi2pbd7bKlK1t\nAUCVatL/WtPFbshrx1oi5zTpWmecqoBLFjLRKsGDivI+DA8Z6MnQ2cmQ+pOCkfCMIfDELR9UAqzy\nREyUOn1WnTLZU3q7ypzWXCnmjMG1cudDDXM7gcdllaqPSg4NZeCuxTn2VG4vs3iIF5boBA9Ci8lO\nTwgCZoqRqDe7TCPl4FwxeF2l1quJtzUtGtQV9zKZFIQaJiTHAcmK6nTOU2zwp/D0Ic0zjqdHrOw1\nGExkQszPJZQVvFTOHTqo++mfp5TJ6QEVnTzjEUOVqjfT14hdJeRoNplq9t3BEBbaXX3Y7KRKuXYT\nADcLmPriJuZ5zjyTSVWZukQteYBi1Uy8F81oeRO89OoiY0Un5qdaEdubItu3yOW3kmDGwULd2UmJ\nWMVT2+UyA6UZjwN5kJrDOzh6hGrKhmQsbqkTHhKoTkES7lP0JVZ9vCoVmb80zdhXaL0BAiWEJV9n\nfkce5LBRMNdjS6NcjM1yA7ctE7rqnGCrCgAbDZhoVald9Kh5OuaZjHHcKbBKiIqZ4DZyvQ8rVEJZ\nTHzTId+S63Ouyf9fiq/xK9fl2q7vxbygWpoHtk8zU+DNvEmh41JWMhkvrOFUVBw2f4TqQgBsaVjD\n9yW02V+MGc+lPiK7Kdd2Y3HARKtA25lHWbvRfLRLUciiEE5vkCiycOHJJjM4jJlMZRGunMRMTxXH\nUkOgp18VBcNd7DtMQrlnq0Wfmr4fNCyRhitBPMBTNOm8kP4P52XiUMI8b9phEUl71w5G1AOlBFgY\n/KYe1aZy8aEZoGsNSTAl1xDUdUasF7IZpN2I/uiPl/y/nS3Dh6UtbWn32UPhKTg5hCOHyE05F8gq\naSYWq0mfEivkSl7i9BMIVbZ9opTrxsXe0Sq68joTrWQL8xOyWLpYChwWRtw2q2rVPj1MpsmbQYp6\nYrgnu5CrdmF5QqFn3Z36m3Xpf9RbAGgbuDCVtivlBsFEcf66sk/yKafEhLU4obSypT/gEmgQ0lSs\nv53EJEoy4/YdHCX98LwSs0LGyD0OmaWyo+0dquZi2OOTqlD9rzOLq6QtXnfOf6J8Ec9HEStd2RGb\n6v0USQb7SsA+bpDV5bPxpGB+Im2XV8oME9WmzLTmYpJimjKeSWYwqs3puVPQisNskJAOZdccHPw2\nAP/uhTm/P5Vd8FJekGt1aZDWIJVdLmsOhGkEKKxm52OfQmHuTrRH5km/k/mAeCpeiHe0Q9GQMKek\nIcPqZE44Fw9zQYVFRfEgvTkrJfWmSi7TY/FogomMYdi7Sa57Z7Yxp6zvnw0zFkqxhqps5a2AknJE\nzGsep7WJaVFQnirEvOQxV4j5QKW4k/EueSifTvwxc1W1MrMjcJQusJljFFxXVtCUqdZJFABH4VBJ\nxZsuNZoUKg5kyiGrpyzW79KWnsLSlra0++yh8BRiU3DTneKMcq7q8U64YnhcJbx65SENPQ7MOnNC\n3d2tlsAVdHGqSi7qNwkUohzlNdJCdrnAb1BSPoFccwuFm1NONb8Q5jiJ7B4V26Wt+38pM4SqQZnP\nZOd7K4G7w8zy72eyin/LC7dZfFp21WpTvhcejoj8U4HMlIYjCaqSCUkKhQcr0m6lWyc+kEKcUqeE\nVZLaUtqiqpiEyB/SVXm3ngrk7JxkHCqUegV4OZDdo7OTMNUEpG0UnN2T9nZQXAURzRWJz8sdl1x3\nvNSt42hNvw0uU8tOoefyvUXSp6J7ojccY091CoIYfy7990oheMpJ8Irsyt7g5C7vw6sZd7U1hosZ\nx7t6rp59jMY5PToNxLPBcUCTp7kzJtM+FYsjRrrHjeZDJpqYvehoGWUSgY5tvV4lui7fa3brJCpD\nZ0yMp3oYA9XZCHo1GrqLx9MSbUSmzZo2vtXEhOpOOp5PUZXrDQufLDlFVZaZJsqLEAV4WniXKZfF\neDYgsZoQTmYkCyUpHi/AV3XwyKWqvA1G2ahKNkNvHxXrEyktXs0ElEvKzBsWLCaKw36X9lAsCuRQ\nDA0TbwGaQT3ZN1ypKTbe9Tg+FSFZeNixZskbCoMex6CValE0xjyi1X7HMZlWTKb5CKch3yv66vaV\nMhZT+V7eWJBpJV5RSxjEMqj1jr1LzRWWh+/UDQ7m+nAmNXJXlXx6sng54YjiQMlEahG5CrOmlwKK\nQ5l4fqrZ7+MCRzUA84MZ7rqeaQ+OmGhmOTqek+iZ/u+qeOxOAYpR4oaFTx2owI1dUNUs9M2eoffE\n6TWrAGse42oVqfNGm/CMllSP5xiF7sYHEeaCLqI9uc50ViL15DeKjZiSVkzmm3XsgbJqn6lw+8ta\nAnxN7uPf6c/RglhKQHS6ViYe6bYsJnn7ABsKz2W00DLkWonU0fBvkZMeK/Aon5Pty+RfaZ8jHsn7\n7uMqAV9qMB5Kg4t8TNiRB2yeJoQqMpyMS3cJeNIdLdV2R/Riuafz5ohAk7WpGZNpmJqfgrtszkoo\n9+xmBOZU2OgkoRHq6cN+ir8q35squ3RWVChuKPX94w5mLvPFuhYbK8fmRY9Mw4pSXU8vpjlWT4+S\nPjhVaeM4deioRqo/KUBFat+tLcOHpS1taffZQ+EpZNbSy2P6sctirKQageXcHTm+y7YdvrMmSaJJ\nVIYVSa6Vp5JkcrYNo9c0rRNeZXxVXM04hbG6eBt0qSrkeaE7+DiG3JdVOTxxSaqyWvuzOo1Ydoyi\nV2XqyWduDN++Lj0BRlrN+fz0DdYSCXmOGzcB6Izq9DsKd+2HNJqaiNxvU2iyrq+0ci23RFOrFof0\niAbqRpZcynfkdWEcMoXxrmpS0qPgtrriIbBnNck0dzgZy3/EpYyVAwkrRpsybu3g4C6WoHLhKpUT\nSfLO2xnjG7I71ldfYvryKZGqytRNO3Q68hubt46Zq65kMnAwDfEKqnsVFityXHisMvK2KMjUO7j3\nFP3G5JDmSPpdyy4SjeVeOSrtlk9TSq7cj15aYe5K1Zk5drHnlODkqke5JWM+lrwh08mQE1d29M5i\nRrKvsu6bGZOR7ujOAekdGaO+J9eQnTgw0OvpW/YvyP87vTqOwrQdFQlqZYaphqa+PyPbF6/KNz3U\nQaLazOncUPTmGfn/0W4M26rNuetTVOR1UA2pnkI2sggU7TpLdEzqc0ojJeatL4hUV3PVnVFJFEpd\njzk++DqqO29jD8WiYC1kMQz9DKXWo5QZ8GQilL0xry9kkj4zLJgpb1+u58D50CUwcuPCtc+Q9F4H\noErAyoZq+KVnicoyqIn6rUFyyEDPxyfuGDOWyR9zQhbIABfJHp6Sqjyx/vaLggFOOWwdW6F6rGQo\nmoV3XJ9pX0lDTE69ruz36YJGplWEqxKz+sl5pvq9dDDDHSuu3e8wUEIVd9Kir0Isg0iz14WDhsgc\nZAVGF4IbYYbSAJKnhroyXrc1gz5IfC7o0xmN1igEFkExbNN0pL2Gc55ZIQtrYOQelDdu4wVP67VZ\nrIZgJXfAQhmuXi8OeeE35eH9R0NZpHpvkZippT6uur6DzgHtWOoqYlXbMibDXajLfBwzLmuI5fRw\n5loFWR3TUkh7diIbiF/boPyYbDL+4Sazi/IbldfnrJyXuXOlZ9kZytzJx5o7ycYkp2GCO6J+ILF/\nveMzSuShLunJSe46+Ko+PHUsI1V3MgcWX/NclHxmZ+V7p1Bkz51SNgrXbicECuoqtcdUfWkv8jzQ\nMKZUUZbv2GWSyQKZLUIizbHZvMQEwYi4+2Uq4XtbFJbhw9KWtrT77KHwFHKgbyxJ8qZMo2ssf3Ak\nK+rx8y7/+VmBx45bCV3ZQJn1xBU1gyq+siGb2lVWJqciKy6q+4K76YMiJB2tq58mZZpGdtgZDeKZ\nvN/MXYpIOe5mLfqq5jv7Svi2/bC8yfx862TERLUR1l3ZdrNdQ2V6U9oOHWpNubhKr8loIeFRtS+7\na209INfsNQufQisDvUoFE6kglzPgsqeFQhp+fLTZ51Xlm7iQO9xwVdRmatGDCqoOvLQnLugzyrzS\nTebESmRS2ZyRvya7y3zfp6NiNr4XsBlIe/2B4jGSAH9NRViIyacKPXerBDUJ41onM1YUxntOTwAO\n32IMo/mY8WvisXH8DPmW4gWClo5FTFqS8Sz8XeKR4leOLGly6uos8LoyBqtV8WJK8Q2SGyoZn+zB\n8zK2g0MfU1Ovae6ykwgkfRpJgdlKbijpHMkWjxO0RJrN3S0TonD6oXiji1rIXCsuTejSHYjvPyZh\nqDiatJPjzhUbomjb6UmO05Hwas2eYa7kQn7sUlOpv2K2AC2OWuSKQq2GeN6pR+MQa8jrFTnpSMYo\n3TwgPXyf2Zw/CLNAVsjicArIzCwsjAzwS/sFf/m8Anm8Q+YNFSTZlc6enMvZvKrMPh/pMtZMtXu+\nRNiTG5O6c8aRTATjK9y3C2kiE6LkxpiWvF9MG3ddvGhnAjpRbu2+1VR+007j5NS6jBy50bV1CQ38\n4ZRoVRaWykHO9Jw8TIsiwSkL1DYfysQ+TnsMc3kYQ79K1oj0Og2JETc4cS0jhb7uKGFJw6tz6ba4\nmbemMade6xxQUitOcnikJp+5rjH7Zy528fTosVTdYhKrqMuTFm9HTz4+45EeK6PPWelHdXaZaEXG\nez4q4wRawh34JJpfma9HXPt/5MHpO6fO6dcv503dAHNRLrS+sk+jegGAQk9GXL+N05A+r0RrDPWB\nvnZ0nbkKAVenfWaKY85dCceiakzUkxzOgDtcn8n7l+NL+PpwJxs5+XW5x13lhhzPFgy1KjHwp6AU\n/JPsDlmiJx/6GM1dh3U9MbqV+jRU/3NnUqai+axB5DMtDfWeyPfHgz6bCmmv1Hfv8l+a6YxCqbHm\n8wV+VYlx9Ggydj0i1SM9CRccDWXOLpIMAj1S3YsJkntVGN7ZluHD0pa2tPvs4fEU9O9780+aIGbb\nZvyqVur9wLTM5Z5W/GzJ35cGTcw3yerZql1kbGQX6OZnmbXEDcRzyU6zxR1xs6bzAtcRFy4elzEl\n5VfsepxXfMPt1pBhT1x3o7Lub2enns7L0ZyvXpe2Yy3UWfFOyBOB35qzK1xUJunpox5VJdxIJrLa\nh17KfKTBVHWPiRE3sTTrcbKj4U8esXCVHkyTmod7U3YUQFUzLvtG+2RhpoPrAF8cyT++SUlPfufW\ngD+jO5dz5Yi4KbvZ5t6THG/I71WnAakqLZ9yPOauuSvfZ506pbrsiDM2qag72361gXNTPJNYPYS3\nSn1Fds54TzkUBm2udYS05JEtCR/c/oKKkqmMKiHrWql4Ui8RqER91irTWJf+pUdyndVhwrAsCdPJ\nbo4q2HP7YszJQObL+GjBzityzcO27Mob5Q7ZvsyRoDZnV1XFq7Z5tyrTOsoHmWf0E/Ek1pszelfk\n/q04PfZS6dP5dkKxqwA99X6SNZdKW35rMTRUlF9ynE0pZQp8c3KqbbmOWaq6ouUB8b5iJJwe0ULx\nNOkxsQL1RpUFsZ6CvFt7KBYFePNh+no2LGAeS8eu34q4vKbin6mCMpIS8x1ZNJzhiFD95KS0YFYo\nS01cx3jykBYLFasdD+kqJ2Ti3KG0EBe+N1hwVgk0nEGPVQU4XdGagnvJWt/S8oLP74vb9k3dmwDU\nmwlremx04s8xh0q+4s4IFO+/cOXG+6UOrbr0KR826Q+1yjAJyH3hKwzGZW5lkmupadY/jDIeK8QV\nveEtqCoPZN/au25hBoSaMb+jD9XWPOIrepb5WPsWJUUjhsmQseYPiteuwZrWOUw0dxD0CFKZuL53\nQq4sRVFyAIn83u3i96gpKOt0PXf4+gHE48al5UlYuBcuaOsR5urvyljUnl4nO1A05eKAslLcny8P\nSMsyttcm1ym9Idc0c78qP/yCZXciBDBef06hkgGLXcMX9Cj2CULiVN5vDeQ04M74kCc6Ej7WiiH1\nkSzqB5WU+Y6GhwqESoc+/dP7MUrI0WPtqSFdyOumG2K0hD/fV2CZP2a1pyFB6QbOUOXnwxhH1bK8\nzQnJTD8TysLr77pkroZ805BkJIjUlq2RqV5EPS4x994edPdHbRk+LG1pS7vPzJvasB/iRRhzjBw8\n9D6kS1hZtr1s+/8HbZ+31q6+04ceikUBwBjzJWvtc8u2l20v2/5wbRk+LG1pS7vPlovC0pa2tPvs\nYVoUfmbZ9rLtZdsfvj00OYWlLW1pD4c9TJ7C0pa2tIfAPvRFwRjzPcaYK8aYa8aYv/mA2zprjPm3\nxphXjDEvG2P+mr7fMcb8ljHmdf27/QCvwTXGfNUY8yv674vGmM9r/3/eGPP29dl/srZbxphfMMa8\nZox51RjzzR9U340x/72O+deMMf/CGBM+qL4bY/6RMebIGPO1e977uv00Yv+LXsOLxphPPIC2f0rH\n/EVjzL8yxrTu+b/PadtXjDF/9k/S9vtlH+qiYIxxgb8PfC/wFPCXjDFPPcAmM+CvW2ufAj4N/Li2\n9zeB37HWPgr8jv77QdlfA169599/G/ifrLWPAAPgRx9g238P+HVr7RPAR/U6HnjfjTFngL8KPGet\n/QjgAp/lwfX9nwDf80fee6t+fi/wqP75MeCnH0DbvwV8xFr7LHAV+ByAzr3PAk/rd/5XfSY+XLPW\nfmh/gG8GfuOef38O+NwH2P7/DXw3cAXY1Pc2gSsPqL1tZEJ+B/ArCGK6B3hfbzze57abwA00j3TP\n+w+878AZ4A7QQaD1vwL82QfZd+AC8LV36ifwvwF/6et97v1q+4/8318Afk5f3zffgd8AvvlB3P/3\n8ufDDh9OJ8up7eh7D9yMMReAjwOfB9attaqNxgGw/oCa/Z+Bv8Gb9UBdYGitPWUke5D9vwgcA/9Y\nw5d/aIyp8gH03Vq7C/wd4DawD4yAL/PB9R3eup8f9Bz8EYatdUwAAAI3SURBVODXPqS235V92IvC\nh2LGmBrwfwH/nbV2fO//WVmy3/cjGWPMnwOOrLVffr9/+12aB3wC+Glr7ccRWPl9ocID7Hsb+E+R\nhWkLqPLHXewPzB5UP9/JjDE/gYSwP/dBt/1e7MNeFHaBs/f8e1vfe2BmjPGRBeHnrLW/qG8fGiPK\noPr30QNo+luAP2+MuQn8SySE+HtAyxhzWq36IPu/A+xYaz+v//4FZJH4IPr+XcANa+2xtTYFfhEZ\njw+q7/DW/fxA5qAx5oeBPwf8oC5KH1jb79U+7EXhi8CjmoUuIUmXX35QjRljDPCzwKvW2r97z3/9\nMvBX9PVfQXIN76tZaz9nrd221l5A+vlvrLU/CPxb4AceZNva/gFwxxjzuL71ncArfAB9R8KGTxtj\nKnoPTtv+QPqu9lb9/GXgh/QU4tPA6J4w430xY8z3IGHjn7fW3kuD9MvAZ40xgTHmIpLs/ML72fY3\nZB92UgP4PiQj+wbwEw+4rc8gbuOLwPP65/uQ2P53gNeB3wY6D/g6vh34FX19CZkI14D/EwgeYLsf\nA76k/f8loP1B9R34W8BrwNeAfwYED6rvwL9Achcp4iH96Fv1E0n2/n2dfy8hJyTvd9vXkNzB6Zz7\nB/d8/ie07SvA9z7Iefdu/ywRjUtb2tLusw87fFja0pb2kNlyUVja0pZ2ny0XhaUtbWn32XJRWNrS\nlnafLReFpS1taffZclFY2tKWdp8tF4WlLW1p99lyUVja0pZ2n/2/mb4jAhSE70YAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.5523... Generator Loss: 0.5931\n", + "Epoch 1/1... Discriminator Loss: 1.5956... Generator Loss: 0.4272\n", + "Epoch 1/1... Discriminator Loss: 1.2407... Generator Loss: 0.6906\n", + "Epoch 1/1... Discriminator Loss: 1.5402... Generator Loss: 0.6955\n", + "Epoch 1/1... Discriminator Loss: 1.0282... Generator Loss: 1.7090\n", + "Epoch 1/1... Discriminator Loss: 2.0579... Generator Loss: 0.2622\n", + "Epoch 1/1... Discriminator Loss: 1.1844... Generator Loss: 1.0045\n", + "Epoch 1/1... Discriminator Loss: 1.5009... Generator Loss: 0.7875\n", + "Epoch 1/1... Discriminator Loss: 1.2890... Generator Loss: 0.6643\n", + "Epoch 1/1... Discriminator Loss: 1.2547... Generator Loss: 1.2426\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVmsred5mPf887DmtfY8nLPPyEEiKYoaLKmxVdcG3KBt\n0gZN2gJBWhTwVdEUaIEavepNgFwVuWpRIy2QFkXTNk2QBnERG64t25JsiaYsiuMhz3z2vNe81j8P\nvXjffUTakklZYsKL9QIE/7P2P3zf+33fOw9GXdesYAUrWMElmP+qB7CCFazg0wUrorCCFazgQ7Ai\nCitYwQo+BCuisIIVrOBDsCIKK1jBCj4EK6KwghWs4EPwiREFwzB+xTCMdw3DeN8wjF/7pL6zghWs\n4GcLxicRp2AYhgXcAX4ZeAJ8F/gP67p+62f+sRWsYAU/U/ikJIUvAe/XdX2vrusM+IfAX/mEvrWC\nFazgZwj2J/TeXeDxB/79BPjyj7t5sLZW71+9ggFkuQHAeRKTxAkATWeKVTQA8CjJklIeNCsAyqrG\nVvJW1xaWI++oMbAs+d0obSxHpKJCHsOiIiv0VWZJWcjfDSryXL5RZAlpKb/blqArbLZxLPl7FueY\nZAAkZYWN/J4XNdYlyTXkwqyhrPTjhiH/AUZtUlPrOOReyzQx9QU1PH1XiYmt/yhLcBz5Pc7kvSY5\nSabzcw2KVN9b1WRFLr8bkFPpt+XevKqgqp9+rygvx15DbXxgGoZ+p9Z3mVQGT58r9YVlXvMXkUK3\n1zewFLdFWuD6Ms6qdgFwPShTmb8bQFUIAgy7pkhlMU2jIk7kuq70XXmBbgWyqsK8nHddYSvOKwMc\nxe3lMnmOiW4FDKMiyRSfrsnEjeUP5x89L8OUr9uYGMblWsvfzBpKxWdd1VSXi1JBpb9X9dPtwlO0\nGsCPuDYaJrURAPDi9Wd5/fIPr792Udf1+keN9ZMiCh8JhmH8KvCrAHv7+/zWN38P17J4eCxD+h/v\nvM6d778NwNe2fpPm6BUAblVLHr4/BKD2IwAWSUE/FAznWYfutixAXrp0O/K7sejR2ZbVHc9lDC17\nweGJXAeNOeORHBqfBUeHCwBGR+9wZyynbK0j+Hz5L/0i280ZAI9/cEbTEPr39mTBmikvPzzLGbR0\noV1fvpHXjOepjMd1MW2Zq1l5VLp5g1AWs+OHNDotABKzouPLPOZmwKAr75tPYVOX+K0nQkC96oR3\njuRA9HZ9zu7JnMI45cnwCIC2Y3BWyjisUu49WaYYeqhiCobTy3UqqWoZp+uCZcrh9EwZb88KWTry\nXGpazG3B1ewoIy3l23Xx8YnDr/61v0GnJ7g9fW/I1c/IGkfJAQB7t2qiu4KjnRchPtuUsfVLzu/L\nvgi8JW++dQFAmU4AODse0lbifLiMcZUznMYRa4rzyDXYbgvzSSIZ8/XdJoe6Xzwj4q0jwXNrr8E/\n3fs+AMX/8BGTsgy8sA3AWuXjKKHzBJW0cphZsh5xnJM6gtsqMogvGU5WYyolK0vZ34YjxE4HB7n8\n3f9cg8T4LAC/+X98k11L1qHc8h5+xEiBT44oHAL7H/j3nv72FOq6/nXg1wFe/vzLtZcXFFhslrIJ\n/vPpjL/XvA7As9//Au9dF0SdPLBxNgURZxddeVkzY5LLwnb3DGaRLKzbgCjpATC4CsXCA6DRFwof\nX4S090YAzKc9gi2VCMZr7OzIcN+8FzKrZLMNj+X5r+1ZROcb+u0jvvu2LJx9s+Td95SLhz4XYxnn\nlefkcC+GYG3LppqN4FpHxnaSpXQashRlITult7lOVQsXbLYgK2Wug42cYib3dq/ZLEbyvY1bMo/j\nP24T5U8AOHqzpKfDPIkclkEIwOk8oTEQfB2PlJi4JcO5vGtgwaEh+O64Lo5KB71Wl0JFMkd3dF1V\nbPgyzmle0ymEbd6vC7Lih5LHx4XyuYon78j6pd4Fv/09wfmL/77g+LUnn+VgTd54OOyw84LgYn5k\nEdwQYjm9V7L5WXnHd7+n7x04DIeytzq7De7fHwNQuSF3l3LP/nqTJ6mteG4CcC/pMbgqfx/ePWZZ\nC4V4fGcJ/+xjTsow2FJxo7me0uSGfLsl47GSGYNcDu5FEeBbsibTOqepyEtrcFQkq2t5l1WYGPpb\nkdRPJYjsm3Nq59vyjddOGX5uDYDuxxzuJ0UUvgvcMgzjGkIM/gPgP/pxNw+rMf8g/0c89w9+iV87\nEur7t5+F9j/+AwDe+fIG7XeEyy3W1ijP5bDZTdmAycxhKfsd+yLA9XWj1w3MDdmwjSzA66rIXAgi\nJ4OC7ESuSyvFmAm1nnk5x6kgPnSWXIxlwVxLpIfk/gS7vC9ju3+H48kpANmbHk3lwM6hwySU5164\nJ2NYbjfZvhAqf7cNWy3ZuEHhM9DrM18OwdWNAbFSfieGkUo8rcQjs2Uc/h2DowOZa/xYDoTdm2I8\nlnfQXzB8X+YRJ2NOp7IJE7NikHUAMB3ByVrkE4dCLDt1gyuB/P5yuc7RTXn3X6q+yvv+mwAclELz\n32ieszaRsd+L7tIxZDz37y5UQfnJYPK7E0pfJMQ33j9hZgvu2t/8HACNvXfZunsFgPkvtNg+EoIb\nrFV478m2v3ttSvK2ENz1tjDHeGowC2VtinED15G51qcZc1P20+R+CU3ZD9WRHP7yM1PiQ6GsrU5F\nfVfWwe7FFB9zTmZR0egKEd6oQxq7Ir3sBSI9HI07OKUwHjdY0EPW71G2ZFypilIWKjOI+idQs7xU\nOz5AeUsA2Xrs/Nvb/MLXxh9zpAKfCFGo67owDOM/A/4FYAH/c13Xb34S31rBClbws4VPzKZQ1/Vv\nAL/xsW6+8DH//jNY34KvjEVsD8vv4n5G5LqTac49tbLsLk/wUqGkliuUNmVBv1axNmwR2sK5Mgxa\niXBV+m1qNaQtSnnXcj4kdwQFRpkya8hz60XGRSQ6aZq5pIZQ63klIvOFYzM7F47/aLbgfKZGraKm\ncIUjuFZKjHDYWsXrbh3irMvfB0ZBqVxwze/gBzL+3VBEHsPy6aiRcBmAtVSOH7QgFo5/2p1RDuUb\np57q3rHDWS5SzGTUJjQTnbNFrgbDooDUlTF7TREtS6Nm25GxvdLaZX1rR/4eNmhuyjdCq0s/E5Xu\nohJJ40a2wFsTHhZFO+RqXn6+ec53Z5muw8eH2QCyR7IOR6MUW0XlN56IevTS1pc5Qwwe3iRmuitj\n82oTqy9r2V4sqfdUsqpFqqiKI/aXaoy1Z5zH8o1FWJCngpckT1nGcp0Gal088kl3BId5BRNkHGfn\n/kfO5alrzzFYXlV7QNIncAS3x3254/pOE3spxqEDt+BiJDaVn9+Y8eShSMOZVfODUiSMG7Z8+0G6\n5FQNqvOy+rFq2sb9/+ojx/pB+FdmaPwg1GVGNjpk6lxh7+QWAPfMEbO77wIwSg6x9mWo6WJK4YqS\n117KYR1s7NAK5NpIXUJLRapeQBjKgpp5TaiichrKgd7G4mIpCDaKDPPSPm2cEepBDkuDKlfdREXj\n0btvsBjeA+DsbMI0EeK1YbQJLi3gFmSpHFQ3kIN0o9nFdOVdzXZMP5DNUZUpptMHwG/KM123ieOJ\nuFtmLkEoKkpiQKHGwSwJmDnvA7A2uQbAaVTSdwcy3DBjfijvS6OUtFCB16kYuKIz7zmyGcsbHTa3\n5EB89Zkvc7MhY7M2+tiOqG5JZnJtJPg6LISA1MtzhkcypxvOIyabNwH4neGSUIlTFVcfW9Q+f+8u\nF1PBbVZnzEtZ15upEqa3K8IvyPqbazkDV9QEtyypN4Vo++2Qw2NRJVJTDpK3s4VxLgxiWG+y5zwC\n4KHnstB1WuQGy6WQsFxP9Kw5ZSNTQ13DxY9k3qaffuRcLg/py7bD35gJjt55bo2vflYI8dK5DcD1\ncsjIkD3Ujk3mz8ja+NWE4fA9AIInNrfV6zZXQt8+e8LhXZnf42TG0Y+x4fzG8NsfOdYPwirMeQUr\nWMGH4NMhKVgOWXeDR194m2vPiLn4wfWIC0/UhOh+hpeJSDWJ92jdFmrebe4BkIYOobkFgLOT0c9F\ntB1bMYVa7ZNeQjMTo5TryPNTo8HSF4NSy1zHawuntBZt3OwdAMwtC+NCue1CuJXfKIhtMT75jyYY\nhkgg/p7DIBXOe5bOaRWC3nhTXUiDEF/dYoXZpFIppiwcHEs4ol0JJyr8hCpVacVbMi+F+1tOQelv\nAxAkc/qRuGoXt+X5/cUmJ7lwj+MjhzQQLmdaPtZCxlE5BvVnBBcDNa0bjZDbvuBw+7MBTVMkF7cN\n2fJAFqr/DllDJJK9Wr4xf/gK5YtvCI5PP8NmU/D59a+/xOj/Ewnje3cz6lK43GX4w4+D3k6BuSbW\n+dl3DumpGJ9/Vdb0mXqXqCGc9Nq4gXFT5mfPfIpKuHeSbVBtHgPQLNQJVo2wnGcAqLcOscpdGf/s\nkNyUfVZUS1RooNR4GbNwSXdE1fBDiC6EDyfTj+anPVV5l7/oU9vPCd4OYsa2qL07V2T9g+I2m8Uf\ny9jqDQxP9meYXsXtioy12G7yOQTnE0fW7r13DfL1zwDQ+P43uH4he+D36w+beLcCkdjufrRwA3xK\niELgWbxwq0M9LnhnKqLV/ffG9B6LGDk8TYhcGeoyvcdXn8gGyQ9kE68bFnTUUr8MyFS/bps+eSkI\ncsY2sSGEpQhUzEot/JkgsjQLjKm6C8s5RiTPtWyHriEiau6JiLecJoQjET9bZcpU3Xefi1q01mWc\n+w/bPFBr97ORjDPc6RKcqdV7c0ZHXSZZaNJCFtrUQxxYIYYt48ksn/alZm66FEsZxzgxOc9F5+wv\nhUhF6ZCbmRz05f4JKsFT5jNaSmTmDYfnJkIsd67L3A4qh9azQnh6XCPsyr2OCf6mXOejLRzVqVO1\nbjtbKdYT+faT9BG+oS7VnV1euiZqk3Fyh5O54OjeR/gns6WDeSrr3vRMFr4cyGcO5RDHL6S8kgiu\nlls15SO5LtpLTLUZ+YZJ51jGkVsy3qBymLkyD/O+x2wu62ecJZSRBiIUDtVS1qxS+0PizCnvqcqw\nVXN9IgRk2ayZ/Tnz6ACfsYUIf/V+gPusHOiDvEnsiqfhet5TJF7g1LKnF8mSgSXfKK2S9obMezJa\nEDhiH9npCE62ypKt8q7g5fkX+Mev/kDGuVw+VQFKDB5MfzI/0Ep9WMEKVvAh+FRICrUDyaaBtQ51\nJOKS/96IwhBu5oZzlkPhlIZXEM2FcrciMRzNm92nQU+e08OohEJHVYWlxsii2SMy1bKsgU5pdMqy\nlm/YxZgE9YlbawTVmYyj61D3hXtk4pDADsC7Itw/uYgIVNRMnSWtTaH+3dJmXa3EUU/G2cgqUl/D\ndQlIA/m7tayo28J6DTUW5ZaDqZbwqmVRlhr9SAPv0intLdkwRSQ2NMql1ZhycUNEZ/vUJUZ9865P\nrM85tg3qUbiyI5JZw1tjXUN8jWaJpUbXqm7AXAN9rA5GoZZ449JAW0BLxtlNR8xqkRoGvcf0rovk\nsX1yDfeOxAuksYznQ5FsH4SgYOOKqEf3J4f0moKvyUCe+Pn2K9ihBnXlGUVfOHAVzckqGdNiOafQ\n57y5iOpLq8JQQ3FUX3CqRtdlw8CuhfPWiyWGBmdlvopCeExq2Vv2oEF+oF6g8x8t8lyGEDiWwebz\nYqz9Hn2+qOY/b3aTzrpINycLuXuzn1HEsg6uG5OppBAECVks+6lnWdQNkSZqR43nW2165ecBsIoT\nfuUFwfHDV2Mi3UcmNY6GrZTJjxzyn4FPBVGw65r1rMCpMu6qvtSoUkYq5rtHKbtrMtTAahCsHQBw\ndUPDgNsenVCu6yKkqWG3I6um5WsIblbTdHWjGxoG3PO4cyGYsoqcNBOxLjXmRC1ZgOZhm+1KNnoR\nyuHomDn+XJ7b77k8KITw7Pb32CzkOXdg0XFEdO3aIkYPBiXlROZRrOV0kA1LY0F2GZnWlE1nRil1\nRzZmUpgEOg+rtLH0UARFQKcj36g80S3LCWz7Quie33/A6xoAZSYZiWMpDku8VDZs3RHbge12cdZE\nLXHLAFMDekq7xrKEiDpZht2Q61wDbLzQwTBEDeqUY3x1wwZlj4MNIeTurSWPS1mf+xr9aZT1j3Sh\n1eOci1MRzI22T9KW641ztR+9EEElBNluT8mngs/cKok1rNotbObxpXFA5lGZGfZY1ncxd6liwXOd\ngGcIoVpaDnYi65pqjkNcLzGWgu/yvZr2TOYRtiSyGMDTiUSArYznxW6X3URCsLe+4nGwJfhq9bbY\nVluS15SxN/rrmA0NyKscZsrU3MAkdNWmYgZEapCxVNsJ5ga9Uuw2xQaUqRCIrcY3cBcy/3drA9O4\nzPr4eLBSH1awghV8CD4VkkJlQOJCli54MRQZ/Rtdn+kDIYmTqqJbCJfur9/CvCEk027J/7tOTKBT\nicMSQw1qHSeiqjTT0J2Sl0Ktu6759L1GSzjX0bGB6Wn2XdQh0pgGWgbmpkgC+UOloUEBTZEewlnG\npjBPyn0IXOHSgZkyT8TybV2XORnVLsG6cAnb8sg0UcVJGjjq97Y0qKayc6q5qB2h51JoIFDR9jHj\ny6zNjDIVzpV1JaDHNSxsWzhi8b5NZF3iyEHDN+gYId7L8u2DQMVsp8CZCMcvnzmnjESKsZyUqpZ7\nUyfB0WCvhhpzy2kHsyNrY9W79C1RXeKqzXouUsxp+Aw3NRCteSb//1/OYyY/QlRwrxi0Q8Hb0cNT\n9izBR/G8zG93MSDcUwNs7VH1Za6zo4xCA6uzaso81cQzVSlMI2OhUlHZOKY3kOsmS/JU5tpaxtSa\ngzCZqFejgLly8e2DTWZqHE5nEYFKnpfa3KCseXZNxnvw7C5OX9SnlwdTurGqec9dYGrSmBuKVBGa\nLRJfvU9xQLejokDUZKmZmKYdEbRk/w018jlKS8aZqB3O2iH76u26vdfmW3diXZMKx15JCitYwQp+\nCvhUSAqWYdCxXWqzzamhhirrgsQVw0nkRAxy0YHPM/hsoTUHVJftxTa1RgoOrAzXUC5WBSxK4bbd\nyqTS0OXcF+NNmcwp1O3pJRXRSJ477OR0WyJtuFWDa9WBjKMjMbztNGSrI1yp297kjZ5w22fKW1Sa\nreKeBtgDMYK1z4XzOQNoxcI9ylZJR/XvqhVT5RLfUIWaGFM2SBGuWjh9vJbo1laVQ0MovzcbsOzL\nPWuX6Ue1QT0Tn/jR9ru0tfZA16zxTXXfDfp8efysvEPtEwOngdHS92YutkoYZuGAJ+NsREuMQO6v\n1YVWbiZYZzLPRWtOcSK4WDhzeKQRmb0F6T3B+euJuALtEFzNTvxgGPRLxg3Ykve18s8w/KxId1/v\n/uuCl22fRiFrPc1naKY61SwjjgVH8ySjUYlkYarebhQW06W8t7+IOVqIFGMmJhcakdp3vKe1Dtpq\nPE6qmmtTmfN2XPKvzWV/5vsptRob12sRFfc8B29NJMWXDjwiS9ZyLXwO76aMec/xiDI1MJ6LrWm5\nHdMzBVd14IDaX7IwYl3TpaO+jxGLXaVoiRE8fzwBdZOHwzWySKS0zk6LLx/L/N7P66fh9lPmfBz4\nVBCFyjCIXQdv6VKpUaS2MmINwmhUHksNANrfDGg3FWmxHPh30pwdDUV1tttUWgxlFsegWWanVkr+\nSO6fbsiGSccly1zuPZ8cM7QFaTvTHlkuG2HhDBm3BcFojHzRC2mqsRNzyu2hbNyqPcYsRSwt9mzC\nUqzocVfG7scOsRoS7bxNtaai+8QnUzHeV9Vm7kD6huZc7A9hLt/oNVuYsdwz6s5wh0JMihtifMM/\nIVrekffOQZ0EWE6DgS//2Oh0md2Q+XmaDbrEwNKU7LKTUup15c9wIxmb5XexMy1aoji24opEc00W\n7484sQVXD0YRmSO/E9tUz8n4/vqhENaNt2P+yY8wNVqfb9Iq5bBY9mP2myLa566sjWM3mbly+KPz\nEqOS359Mz4kjOVhm6dJtyVzXDN0rZkEzlLWh5ZCdCz6T/py5hm5bZUqigVF5R/aKubQ5u4xPabvc\n2paDXmYO7X0hEFe3JS5kdrLFCwcSN+Lc6uDdkwC4aDglk4hm6sOSI8QAOTmSLOB2OaD2hGg23ZTY\nVQ9VELAstLDFPZjuSEzCo0z3W+5wnqg647nsbosqcWW0xbkjYfFRviCzoj+D5z8PVurDClawgg/B\np0JSMMoaZxZjlQmzTKi9l/OUYs7iEemJlEjqTw3+5ESo+MGOcIGzxRD/poht1WSXzZ5WYapy0qVQ\nzEfDCef63Ewr9Jye58xS4caN1OQwFbHspNPg5oEkZvWCgF0NlS13hAuYSclyKtwjCCz6feF4WbXJ\nZKJiYDYl0px9L9Hw6b11zjWyr789w1gK93R7NWi2W1rLey+eLHjzkXCG8+89YaZxA1e3r7A7EE4z\nSg4JtoSTXj1TN2XDwCxEzGw0HxO4wlWc0iTVsNtFtOTR2yLGc0tjKOI3KBLBd2nX7Dc1oShIGLii\nurXXW/QbyrlLMS6m6YKzU8HLnffucjQSHEbunGUm8+s4Bg9yWYcfnMr8vtM0cNRgehkRAHCj2GPp\nqRTz0hdxfVkr2xYOPl9E1FoIhWTG8YU83TRdhpngu+tckESq3nTUyJvU1HPhutESopFIGGmeE9fy\nXN9p0ssEH+NEY12ShPNSIzq/OeGBxgrMb1n0C40n0BBua/uCJ5bGOY5Peef7opr62VvwO/KOb5Ey\nqeU5Q13Eg4vr/PyzLwJwsLdNcS7S1KiEXFXIi7fHFK/K+N+MRTpYJjGZGjYrw6DwRY1ZuDUD9ZdW\nC5PyJ2T9nwqigG1SDppwHGOo3/VtO+bu+6IDDkczOip2P/Db7KPlhFQbLZoejy8EUeZmjbuQjRvY\nUx4ngqiz4zFvXMjG9Baykc4ikxRBamwmmKp7nc1t1lJZjEa3hdlR/32mqdp1TG1cVh7ysNTvvExm\nLNQU7fomdSkiYbImm2AauGQLVV3uBxQ7cl0uuoR9mcs4kjHcfXSHbx1JBaXxYoydyqFIXDhVUdqd\nZYyH6on4mmzmbbrQk0CfYtTE78u3rxk9IleJU2hQ2XKoHw9ls26WAcfHWiwm9DkbaMmw44zjplxv\nFj2qNVmHhi9rcz4xeXAoB+9dOybRIiVlcQO/L7i1Og7XJzLmqx3B4fjBjO/wZ6H38j7PTITYPz55\nzIWmkqeJENvHo5hQD+lJnpCjaeTTmHksBGk58mjvyO/hSLNSGzlHKhjPCou0I3guK4OOBi817Cam\nqh2HkerqccbM1hgC2+F1X36PpiZLXfdDzUrdd21iLXXVfev7PB7K3ztFzDSQd/SHAWVP94uqyouz\nh9zRakyBn9BvCCE8mVQcfVfW8o4xxp4JwXkd2QvupMvAVxvI7QGxlgRo9W5z9LoQlsRfkJUflXHy\nYVipDytYwQo+BJ8KScGuC9byIQ/qkOxMjHOP3voT7KfVhS2qWMQ2Kw1pCSHlXKnkQRUy3ddEltSn\nDtX7sHQoK61gHOcEY6GB5yOhnMN8yK4jxhmjETNQCrzsxBwstOaj79CvZEzmQCh1dZxj18IdA7dJ\nsCmcJlx2KdMHABw+mnGmsQeBMFXK2xnriXxj2BnTeqIZnOszzGPhUHEmGUyNkU0rFk4yPwk50+jI\naycLKlPm18i6eLeEOxzoe5uhQToWw9coOGVHDViOEbBuy/cW2002E1Ex0LiQo8dzDjNR0TqjDZZa\n2LTd6JFqVJ0zjjDUh56osXM+PSHUOo9rixbvPBRO+mr6Oi/mwkEP9wyuaH7kvan8f7oD2yJd86T6\nIXe6FW4TNeW5W94VGh2Rlk4eyXNH90e880CyMt8/SjBr2Qyma7GmXhKj2WNwJhJC1dcM10lMciFz\nbZQZG6Xsp8PjYx6MBbdxJ8JTo9yGVomOLYt1jXVZSy36aoD1dkrKh7K+k1hUsRcO9pnlskdanoOr\ncQNnCSy11N+wyuiMZZxf25IEpxMzZn9D1rrRyCGW31m+QaWqZ7ps8yQSqe9Uv3c7S3gg6OFG2yCd\nyV6/+WzC91VF+RJdvnFZspyPF+f8qSAKpWUzb61DecjyLREBZ+E9hlobcRCadLqSLfby/hV2t0Tf\nb/UFkbERsK7Ze+3uGm3dxLGf4pxrjca+y+DS6hvKhr/ibPGcp3Hv5BSR6JZDb0muRS+mayVhrLkS\nnmq/vgm+jKeyTbzL0Ni1AjPRjdkrOWiJqDzYEpvE7toWVaUqz/yciWZXtpZL5qFW7U21lP2uz059\nAMC8OsJzZJNvDwIItb5iy6GtwT11Ww9BK6dM5XCXxRy3Jwes39rAUlfEIM1ZO9DS6F0hIPMs4XYm\nKpHpdznoKSFs+kQzwW3etik0d2GpatJi5sC62A6CTkGQi+i/P7XxLSFCrWBOyxeidfPzgtf02xNG\nlqpMZE+rQtkbzzDIZR1mR4f01I0cJzJnzzOpAjk0vfVH1JFcB40avyU4cGrwAtkbaSSHfFhkLPSg\nh0EH41kZj12nNCz53TJSKvV2dANRx0q/SaSuzkPbYk/dge9O2vS0xUC3I+96/+3bZK9IjdFx1OT5\nrhyvh1MbWwOIBrnJ2r4GNX1F1Ydonaa6hjtxRtXRys6nAVNHiJ6zvo41l+/taCySs3C4qhW0dsJN\n6hvy3OLNIRdXhSjsXGQYWiuUj+mEWKkPK1jBCj4EnwpJYba44F98+9e5+08O+cM3hAOlwZReICJu\nc61i60DCRLcPutzS4iq9PaHqtRsQNEVGd2IfxxED3sWFRWtfuMdW8zbPrIkh7dmWcMG+dU7PlXd5\n0ZTjsYjuD94658JQCeOtCLst3K8zOJDxTn5AFAg3tvshblM4Xqvoc72lPRKeu47fFmPeda2D2HIb\nTFUs3ygM0kKNXXVEoZwy0KrNgdHgi5fW9ME6ppYP2/auY6rretEpCFRVMizhwNbcglo4V8922VsX\nHHWCDsNYxtZcn+JqyOxuV77R7OziFCp5xet0NKJo7s9paIGbomiTaZ2J3FEvkVHS0GCw9UZKtys4\n+kUjJLWVo4/OOVQvUHym2YAv7nL+jrz3yXJCrPXPoskhtY5zPG7jaF0HSyWN5/cDWm15r1NVPHgs\n3w7yc2igmQjoAAAgAElEQVSIpNP1JpiVGpt1HsPDJ0RnMub97S7rfcH95LkvMduTtUyNDONYJJOR\njuH09BRDa2m605TvagLWqJewVG9GtRBJsRvamKWoVy/evkbhidfmuSaYpjx30zNIpiI5NtfUc5I0\n6bkSQxEbc8xMxrazsY6rxu+DxZKJL0bMs5lIrl4dcj4XQ+Tr8THTf/QAgOP2KeVbMqa7Vpv+ukhs\nhxcfr2vjp4IoGBHYrxq8f/QIcyY1B23ToXBEhBvUXQ625PrG3ufpt+UADLqqL68BC9koRW9ErsFE\nnbWKi0rFRCdiLRGRP9AowM3qFkFP4/qPungdQfbFZMA8kwM9WeaYW0IUZrVs4jyo8D0hNq7hY6j4\nWXCB35RF3HZzWoaI5g21Ngd1gzKTjXQ2MplY8g07LTBUlPbsy2KvS7x12QTXzSc4udQ+9Jo5SXjZ\nOSrF0r4W6HerZYqtB30+Smhq1aAtu4u/lA1bVG1KrV1oB6JS7Ycm1lxVieY5xVzm3LaWJNoMpjAT\nlpoHUcY/7MA0qrRk+WCbW03BrVPcJtVS9JHh0uhokNT0Mv33Ku6aHMC1H9TEqgMH7gbJUvBimn/E\nbK7ViyrZ2E2rzw2tWJQuP4PrC7EsZj089QaEyT6Zegwm54LXlCWRVot6NzZ4xpJx7Ny22ZnK3kln\nDzn2tDGM2kk2xm2GqprWicWJLfNfRBW2RpGWifw2Su8TakGeN48f8nPrsvee+0KT7c4vyzrd+w5l\noDkY1zQSNIqpFjLOoB5idGVskV9RD2U8YT8g6Mr+29sVRlYXp0weCfE7ab2KrW7iw8c5iWaHPr+e\n8bY2Gvqx6ep/ClbqwwpWsIIPwadCUpiVY35n+n9hP/a5UEOVM4u5opSx7nyRPUOoeZi36XdFTGy0\nVFJodTCEuJINc3JPA0/mNkFDOKEXP8ZU8XLDEEOP3THxNOvP612QnQpV3nZq3KlQ4HvxiJta2/B4\nT7junZOcMhAOZXrbaCc1+ssu6Le7lkvmCWceNHUMhkkjEpHS7R/T0jJZeVxQq6W6Unm3iYXr6nWy\ng9kWzuW4bZaZvNfO1zHWRX0YZJq30EiIR1qYIzhjkYiqFF5x8DRmI+rYbDjye0ML2bTNEHWy0Ix2\nqW2RaOKow1SzIBtzIL9snqNdnOyULW1o6ZLTrTTMe82hmKh/35syv6tzVZG7vd3GOZNvv3Jwhcca\nOJYZQ3xLxp8tPs+kISpduxJuXdZ9GiraO25AoyHqCI0EV8vOJ2sWS42dcLQ0vp345JHgKPQimAje\n9s3u06Y7p7YLZ3K/f6FZlmnMTlM3V7gkVWNfKzQ5PNfSeoW863rL5bXXRU36yivXKbRMfqfaxde4\nEO+XPw/3NGy8KwiP7O+RFzK/5fsmYSV1MEeDt+l1RdoqJh6NWO4vtZao63YxA+H/2bzLqydy/X4Q\nE6un4nHc5crBXwbgB+9KdfSPgr+wpGAYxr5hGL9jGMZbhmG8aRjG39bf+4Zh/JZhGO/p/3t/0W+s\nYAUr+JcPP42kUAD/ZV3XrxmG0QL+2DCM3wL+Y+C367r+u4Zh/Brwa8B//ee9yIwqvO/FPFyWmNoQ\ndNMJSLVfYW/+PlEhbq/CPcVYqI/d09JgpYOlXKDKSqKZRkJacypNlLLtDSz1yWQa7tvMoVIOy9xi\ncZlU1dvEr4Xq3his424IJ2lc9vBrQtAQw2fS8Alj4R5xw6RxIpwiD3s0m6JTWrnaNVybJBTpJ70o\nSAINUY2WJForK7BlzsvUpMpkHmbYJ6i0+k9cYidCy5fGlDV11RnKravMI1I9ez7J8Pa0n0S9xawj\n76uTEVFH7rfVRVoZHXzNqCw9m6pWo6MVYaotgq6FrU14E22MY4UOuSXzM/KKoim2liCNSVWEMiZz\nRto0Nepo9+XSw97TMdsXFEOtNpR2iZcqNc0esxUsdXlkzf1szqItc2pkObaKiEXtEGnl42Bhkvua\nHanVs/OwhbOn9qOoYKq1LJJ+n3IhhkbjpGSuVZiObFkne9DA127dZW+PoCGh5ydzD/V8c6qZld5i\nwdpU5j+cbvNKJe3vqvU2llbBNo8s6oFKHm0NmzcOKFQyiY0InO8KulufhVgTm4wxuRqHW46sR70I\n8AKRrK0Lk22tiuWepvS03frLPYftn5fx/fPf52PBX5go1HV9DBzr9dwwjLeRFvR/Bfi63vYPgN/l\nI4hCVJR8/2KKk9jE2gP8pEi5NtR04CsNRpFs3vnpkoe2hELvaIppWriEtVqT4ymcyb3nxZDwXBC4\nNA021GBYmhor4LqU2vyDqiCoRajZNGf012UTmkc1Y21ke7wu0TanFzMe9CWte9sPmGtz2MayT6Vl\nzIaTMU0t+9bsia/ZokN0qhbraoGteRDLPOZkKpvQvFAvQjigp+O1kzHrrm6kHCw9sFadUzfkfctU\nxFN3ueTsWA8gMwpNMy52U0otINJ2Eig1z8GU32Ijw9GQ4iqKMEytcl3E+C0N8y66OOrHT7RjthtN\nmWmmaa/lk2jWpRtYlFo3rOGFNDVduHEuhMld79LVzM+TeAfXENy+/da3CRfCAB6c1ew25bCkGhfR\n6kJ8We/Qz5hqdy6nnlPNNNitSEFjCPpdjTtYjKg1vP3eNMPf0MYwd4/pbqjBMI9pxbofTjTYKI1o\nDjTfI14QqVpZ2TkjTfL0NcjusVEQar/Oh4sz3n9B63UOAzQFhWbvGONUS+gdy9ino5j4/AEA528V\ntLS1/fKtNznVM9C66uFMtdxcQ6uAZwlKw2ga2+xuyD9e8R2+GH5Vxvb83+TWrwjR5u/8PT4O/Exs\nCoZhHAAvA38EbCrBADgBjRj6s888bUVv/WSFYVawghV8gvBTEwXDMJrA/w38F3VdzwzjaUtc6rqu\njcuqFX8KPtiK3ret2k1czqsMV3PmunWN1dcEniiltiWe83TmM0nEiLTUiruN9V3uqQtqeq9kESs3\nNmLqRCi726mxlAv76qMeTg3slrabK0oKDZl1sib1rlD8IMg5NP8EgIciHJD4GWjLeNfZxNHKwFE1\no5pqX0Vvgamk8UJrDLTbM8qFcMrppOBkKSpDkaXM1b9dq5rgd1v0VJIwtzrMtBBnbXl4U434CyIa\nWsAl1ai1cTrjKBLj3JsXFs99RdywadbEVLHzIu1S1SIGd9SV2/QLPDWyRf4Me6Gif5FSaIm4uZlj\nXgpWmrg2HQ+YtQTf/jBmoCrfLPep8lTHBHND1iwzxFjm2CmjXa11Mb3LQ+1PUVdN3jsXVhnU32au\nzXVGqooZRYhXyt9nU5fjpYj+ZurT7er4K49Ysx2HC5Xx/RGxFputnZSzQ/n72s0FsfZywKwYlTLB\nQy2xlxchrqpa0a7P9J6swzyynhZsvdzgARWBVldNF8c0/0Dbw/3KQ8yxcPzZa0+w17SlvCf3Phka\nTP5QVL4/GU/pRtpjtH+FmSdS09rjhNY17Ro+lueNRcI8lrHP/SGBlpgbOA2imxoB/Fcfsbbxi/wk\n8FMRBcMwHIQg/G91Xf9j/fnUMIztuq6PDcPYBs4++kU1OAX7lslI/dUTw+HnlqojbnkszuT6UfUm\nG9ogxF6TDXY4vWCmIlx58QS0SrJrVlRdWeSBAa6Kz7MTLZphzwnP1JLrLMi0fuBFfMH+c1qd6cxh\n91X53jKRU744hAtbevz1nIxUxbmNRUiqwUnDsyVJLSL9nmbkWeEuvqY19xoP6amvvDBiCv39oieH\np1M2cXWDjh7HDPVQ9RIX2pqJeegT7Uo2nK3x9OnojKWcd6pgzvANIXTJjsHmsRKkVpdd7XCUaFFy\np5wzbWqdwHFKoVl9RAamI+92l2Pm2jxnqYTpSfaYnUw9Ec0m+VjjAtop9oXMP6umlKIa80ADxK5d\nHZC8I/Pfu+/zrang9o2jQ/ZVrTi9PyC15Ns327KN6nCdWOtVzjITL9YOWHaGqwFARmhTRTLXfKFF\nUcYe0+IStwWRpqov7g05U8+ON81ZqMrnj7SQTT7HtuSAbRl7/Fwhc/3d4BghR6CdRkkxsLTy1ou5\nR31L7n38ako/kHwNL8oJ1T5yGfrdsGsa12VOjbN1sr7Ep8zXa57RvTwuYtKxitThmb6rZhYLgawr\nh5EGn4UvNeieaFzL9Gs8evdj1nZX+Gm8DwbwPwFv13X9333gT/8P8Lf0+m8B//Qv+o0VrGAF//Lh\np5EUvgb8TeAHhmH8if723wB/F/g/DcP4T4GHwF//qBeZmLQMn7FbU2jRkytmxdlAS1RlNZpkhluZ\nmA2h3JbWHogCi2ktlHazu4+fagORps1A69I5psX5VETGx6WIu2GR01ALeauTMFPu0Q1CkpNLY86U\nN2NJcnnnVL7Rt2xiU8TaC3ODgY5j2rDgfS2QEefYWucxr4Xal6VDrZ2k63mPYKCW+FGP+ZZQ862J\nljBzSu5OtI28mRBrM5jc9Bho2bFhkLBbaUs7W0TRWWZwpFWU3y9ygoZw3XTWYXQuc3qQHWNuSPTi\nrha1mbKL4wp+srCBO9b6ikGT5VLEVtO18R2J8ZgF8t0N5wmmLxw6KCoWtfAZezYn0+rZcVI+LSxC\nR8Zgz6+wvS3fe/P7J0zU61TNcx7o+p37UwKtIXDefU5xbzFbyLfN4pi6UoNnMadU74OVGNTaR6Oq\ntR5D02ZdozHz4TFnmvz1wM7Z1BDkkppKK5Lk2nBlahgcai3J4nmD9D3t51hnXDajvywS0wKeUwNZ\nfG2L8p4m2A1KMg3X3p9tEpuyH8xa1IsiXNI40PkFDmdaPXqrCZnGUEzHFYlm5nqG7MN4bjxt+jIt\nfVyNWUnnX2P5oozjPDnnov+TtY37abwPf8APG+L8afg3fqKXmVAGsBbBUIuXnJU2+49l09zfDfDH\nsjKTRotdLYASv6TLssgJtKZi4Lvc3BOFcB6n2FrFp4gtSrVBBCr6ut4YUxvFJgmUXZnOo+MpDLSM\n+Hce8f13BfEz3VSNsmQyF3F3bd7GvSlBKn7mcbEhC23ePeRIRe0XctWn64BzVZ5nSUF/rkE4ZcDo\nvuiUdzRk9sAPqLSSTn6+JN+WQ+XaDdI1EbvDOGaiLeptDfoaRyW16pmdIOK73/wNAG6vfw7DPpB3\n32jjIEQt25G5BXaFoxmjdlQzy7VK1WJEoGnPRu0Qahl8P9ew7GaPutRCL65BnsnG9Ns1tdaUb6YN\nOhsy5kqJ5l57wc2J4Ps7kxB7KWLw+Mn4ad/M2mjgDWT9MvWW2E0IfBlbqwo5Hwq+jkYRTiR605rV\nwba0MIz2XWSWUqrX5q0JeKmoFd7SZ6n9Rm82Gzx8rMRQvbDzLKFW9/Rfblr8wVALsvQXLFTO3ta8\nFQubVDM1X4o6nO/KOqydLlhoKLxXpaQaZr88lfE8zn32tD6oGzTwtKvZee2xqWN23RhTVWhTmwQZ\npctUvTKROWeqhXjK+j4vWF8CoL91Ddf/iAaefwpWYc4rWMEKPgSfijBnwzAJnJCFkxCgzS+8krGv\nYb7DGcZVtbi2S0pNGgpMobiH4SHpUqjk1iLhzNa6hOYJp8OBfuWMxNBuvrWGDM+3sfa1L6Hn49XC\ndfdHmyzvyvU5EWlP1I1EM0ouWiaf1bb2Xu2Tai/FKjp+yqW9LZNGJd7YI+1gPBs94UkpHGp8lrN7\nqEbJfkl6LJzy7VR+ey8xaR5oYRls3KVIDcbVirY2B6zdkroQNSAuhaMkRQ0HWup8CIfK8rqjnKYj\n1YXL+Cqd5x4A0KhFbA0GS6xIa//ZIx6riJpVF3S0oYrr2NgqHq9p7EJSNYltEanHqU1Dk9Wqqk3t\naEh036LrirT08rn6+edjThIxRF7sPaD4gXDBpF1hqIrVHJ1jWBq01lRXjnGDPRHMWAxtUlvjApYz\nAo25KBopa6nElpRaA6PlzXhX8TYzFox0D4Qdj/11ke5qy6G3o8FlI41/qCouDE1iOz3iyTPqaTpK\n6GjfyVJxf92ueF4d8MPuGc1IXRjPLelq45eT+xVdTVZ64kpsxqTZo3lffpsFHhueSEJx8wrnJ2JU\nPIwN1gfaF1Sl6SqMCR0ZQ2cWE0/Uq9bdYLGUee/sjllsi7r9ceFTQRRs22RtLeBKbjHW7k6TKmNT\nm32P6pLTc5mw9/aUB196DYDr1fMAPHv932VdrbCNyiDUgqmRv8vmkdqI521ydZclWvgUu8Kba3BT\nEREt5EDeyx6x1LTn5bHNZCRoCi8DcBIYjkXcv7rfZnkoG3O9sUFXrcj+ewbLWtyoa6b0WMA1eUbT\njJdrZ/R8cSfeMCJOdMP2NLBl4IcsNUCotbXHoiXfuOG0MZRYLv0OlmZzaoAhgZewcy4EcmxE/NGZ\nbOi7ye+ztSHfe/TqKV9IvyAoeEUOhJ928EPBhRfF3Nbs0cjYxtQgpL5t4oQaydiTCD2rzKk1HyAv\nXFjXuoxGSTIVApjHcyLdpHcvBG/B9oy9b2hXr4sKN1IvSJ1QTzTnBYfzc80MVMO72xvjqJuyE5xw\nTWsmhtv9p/0NvGpCX7YRzmUk6FqH53ONlu33ONKqVldvb9DZ1H2xMPn+64LPqQY6LeY5P9DKRQ8v\nUhpaw7GZQrsp73gl1uI17Q6Wfu8Fw2AS6j5cuFj3tD7oesBl79pbz34FAGP0gMZnxDVcFzHzNc3B\nGaXke6LetpIFsSvzzpU7FVnJ46G65/Meh7Fc7z075dkvq2u0ex0r+3j9Hi5hpT6sYAUr+BB8KiQF\nqzZoFT5RJ2Q5FooaWDYP1Oc9cw2SkXCdLDPo/KGQ2vtdEXefb+zDuoYun/ssN4Wrzs49HPMyJHgP\nY1vrURXCHS1zSKFdkxbREbNS3mfZLWbfke+d5QmRVpKutC5h6NtUrnocqprtQOswLH0MU8bfafnY\nM+GgtYrieRnQsrWYSrdFrKXNhm5FlWi8v+Yw5KFHqeG1RjDAb8jvS9PCNoQDFXOoTBnzYioSRmok\nTLV6NPMKL9KgpqoiTkQUfbZq8Z5WMB4kMl7X7hCopdt1GjStH/IL09SuUGkLtPxXoWXn7GJGZYv3\nwfRT6vKyF2ZKnmgV68XbnB6qaK+hyPf+1wXfKAQvZ0ZOogYzr4oxtYzbxCjwtc7EQjMn+4XJItEK\nxrVLQ7uDbzYKxhrs5bubFE+0TmdDJcFhRar9SGvfIdzRish2iDp2OHv9Dm8NRbIaqieqriHW3JbE\nzGlqt+qsMnjGF9xP2pqt65Xc3hRc3Y8bOIgaMB9FnKs68sxhxPgzgrvraDxzOyE5kjVNezHVExlb\nas+oCy1t38jJU9nLQ+2MZmRjZpHWHS0SOiq5bGUNmqbk5pjxGKPzk/H+laSwghWs4ENg1PVP5q74\nJGDQb9X/5i99HmNi4S40WywoQQ04PbfkZCxUNzALzpTD5rHok1legXK52oJCYw96nkGofmrbLsnU\ngxoXqocS4DQ086y/Q6k9Gm996QW+el16F+6+sos3F85VaH0Ec32HlqdRd+/X/PFbvwnAa3/8Btup\n2DuOhiUbPdEBl9qzwG9WzLWbccNIGU7Vr24VT5OVHDU0zuKYmZb5KqscR5uzbPR6DK5KtJrf2eL2\n1w8AePnZvwrA5l4Hx1C/e1Xw3/+3f0ee6w45uSP6+aB3woOh4CIPJXb7JEq4d0ddp8OCV+8Jh3Zq\ng1j3iGNbmCqFXL8qNoVn3AGDTCQlvz0j0a7bswfH/MHoAQDHxyPqS/bzwc4vPwKSpMBSA2WaQzqX\ntfr2GyLRnDz4h/y/74ldYvh7r/HGIxn/5HCOoX0Xi9LAVCOgqdGvvZ09Niwp+Nt3MnbVbe03A662\nZcz99hY7t4TrF662YHuuyV7vswC0d8OnpdJKYr76ZbEDjI/VRVjUTDWicWc95MqeSKGbZoCnsSVH\n8ZJUQ+HNy/B4y2ajp31Rd9bxNYpzIwhIbfndb1g81PvnD8RO9npywQPt71DaoH1jJFBAj7VleJSG\nxilU+R/Xdf2FP38FPiXqg0GNU2dMjA12e2Jt3nEWvO9q04xoSa2++dloQUerOJ+cy8I6YUSih60T\nOiy0ycag28bUDe07DY40J6KO5LeHWcWexgI8mY0YaJGO+E+mvPKSGKVGyyts9jQwaK4eDsukQsTE\ndmvGbiSL9aoDb74pYuC4bbI4FSKyeSBEap5uYGktyeGFR6ht6Z9cJHRsbVqjfv6W5/BIG94GhUGk\nomjQ22CmQVhNZ0b9+7ITbt0S9aFZNOlq2rCNhXVdy5I96pK5YsH/1psp/vPybeOReGc69R2m7woO\nsyjlsn+IWf9QnAwrn69UWjF5XULMX84tplvaaNW6Sabeh+m4ZlMNsFFtMFOi/ZFhNLaBqcTbtSum\nGkMQtYVgfeu7MSdDifU4/ME9sljwWZZgaMCSWddYOs6GpoP71ha7qko2r13FMbTgjBlxmMvv7S2L\nhxM9sB1Ny7/XZ/0XdB8WLZqhdrVKPMwLDfnWwjNN0+S6Kdd+c4Nf2RaD9hPPwNBy8EbjCQ+yS49X\nqXgt2FuTe6/s7ZFqubZOaVG3ZWymY7OWiYHx0RNN1T8bM9Fvj9P6h7j9AJ+v6xQNF+HjtoRZqQ8r\nWMEKPgSfCkkhzjPeOHtM5+iCb1dCGZ+71qY3E1Fu0TdJNE89MFIsdVu2WsIF24nHmWay7bhNso5M\na9fb5LKu6WbVwFRpYvhAMyqrGelIo8uSjOREDD/V6ZR//k255+e+0GTthhhtHFfG9lryiN4dES9/\n884bbEQPZB5/+B3OtV9EfS9iqmGn4SNRI4K9Ib5G8S1bKTPta5EvpyRaCNbQLtkZFV6lqlRekFw2\nFjl+wPJCONegeI+T9+T+e5+Te//a+X/Clz6npdksg+hVrbNgvcVr78o4TyYRHe0vkag00qpjTrUP\n5jmgDb9J+SHnqOqMQMvXvVKIVNV5aY22usWcIqHdlgdfizs4tnK0qv5oCUEhrWsqzcUapSWJKXO9\n93tS0Pf88X2WkagPy2jBvPwhW6xUKjQwoJS52LaI8M1RSeNr0vp5K29hbco6lYvl0/4bj548IddW\nf9biTQBOh79EfVsLlmy1CEyRFguz4l6ihs3LitEGeFoF/MUZlA359tUY0nWRUouJzzPaItBfyl44\n7azxuU1pGxf2e7Qt7RW647AbX/ZFjai0fd9FJGpgHJYsqj9fAvvJApwFPhVEwSwM/DOXTr7NIpRN\nHJs5yb6G0uYelaEpq5XHplrou6EE7oT9iDVtthFi09HajUbTxteuQUE1Y5KJyDtU78TOtEc112y6\nMmektoqiPOUb3xZRzev/Eb1SA4dua3DPb4c0juUwrh8/JDK+B8BF44i5ZgPO6pwN7Uc4cJQoLK2n\nh9sxZ+S64Q2nSaLVfZrqB/cXS1quzCNl9LSSThpHZGq1vv+DJlb4bQDu/X1JZb75hZc46H9R8LPn\nchrKnJJ7BneONSgmzjjRbE63JXOr3p+yrmnv86J+2kvIAkIV59u+zVc0Lj+6quK1s8TRUPLYdJiq\nV6Lx3Dn7Gqh0zxySPe329efDcFoy0Hsn4ynLsaTVpOo5OXUzpve0m5JrMY6Kp89W+vbQtKi0LPvn\netof9EbAYEvmsU5OFsq8HzkeHXVKpcMZk0Rw9PCOqH5r67/Pe4HEE6x/fYOGvrfwoVGoumJcqig1\nVwLtMfpsiKnXUdCgmsjYdpxzDG3Qk26KOtf3dwg2ZDyd5gBD16RX5bga9+HlOeOxEItnvig2hfm3\nN7lnCoF8XP1Fjv+PhpX6sIIVrOBD8KmQFIzawKlNFuRY2mtw1DJYG6vKsG5ieVp1ucrobErY5i1f\nrfutDi2VJAh9GsoFy2aTRqWiFiF7S+Hc46Vw4Fl0l2Ol8iQpWSrcuqpzlk8eAPDWG11e0KYmwZpw\n4Mmj90iHMobj104Y9kS6WRymT1vUl6FFpFmHibZy72QOhrYIt8oayxJLfitfElkaKajRc7kf0G1p\nKbJ5j1kpnDJeuBQLea/hpAQap2BF8vxjHvLekeTrb9ptHrwmefzD8X1GE/XWFAU3bOFAfa33uHtl\nk7cSkUC2shhbozdLTEKtu/hLa5tEm4LzaxrmvRwFZFqJuJ+6pL72n7BusnVL1Iqvjecs1av028rQ\nfpzEcPhoRqFr8s6bY2LzjwC4eyjJTvbjY5o92QvZsEO7Elx0SofEEsmk3Q1Y034W21dEZbj52V22\nWxr6bFe01OwWFh3SuVQ5Hp8ZxBrXsbS1vsHoPta5eB9GSckyl+c80yZUdbJdXBZpMUm3JAJxP1ln\nbyDX03mNv6Zq5fazrOtaLbXZkdWuWOuIFNsMHVINY/b9BYEaT8OWg6sVtLuheH7mZcq/c1fW7Huz\nJd/6GQkLnwqiUJsGhe+QBQuKWA63nXfJDkSMSrwmXqEhs/M1NFYGsyX6Xb9lYZoikpnmlPqyTLyf\ncVlwJTQKFpm6mTTN+Am3cCxRE1IzJTrVwp6FjdvWpiVFytiRcZgjDX0m5qIrjdRbzz3hgRbdnHcN\nSrVk13WJWwgxqHrq/hps4Wus+mzk47gaTFOZ2Br7WmoR1LZlYGrmXKtTcmeqodnunFIVfjPK8NRl\nlQQyhrPlGYkG6aRJiNcQMd8y1vDO5Ru+VcANzdEoheAlfsVf0jTsd8eP8dX1tp6P6L4kuDU6XZoD\nUdnyPSWmiwnZuYznzE5paEMSZ71Bpk16y5e+hP39PwTg39ImqP+MHw2TbEE6FyKzsT3mtQs5FAu1\n1BvrfezLxilXnqGYyvo90zjAVo/BwQu/SK7Nfdc6Mj+7ZdCxNYvQSXC1ruStbMqpK+HyVmNOVcsh\nKx7LfhvYVyl21a2dJVh6YgzTxAkFR722vDfPa3otbVj81TXSrny7354QPxJ8W+szSk2lD7XJjuM4\nVK3LuqEDPLUrFdMO6Z4ygHwNX1se4AsBsXYfYP3ivwfA1d/+39lRF/c/+jG4/biwUh9WsIIVfAg+\nFZICVY2ZlBTxklkqFH4UR/QtoXydKy4dzXBcrlns5EKNGxpj0IlNlk3NaluGTwtkuLFJacn7XMPD\nQ7KfTJYAACAASURBVIyKO45S6lswHEkg0Dz+HjNT6zCQYGuSj708hXti2Dm1hFsFzMmHwlHee/SQ\nx09ETCZbPg1CCk2HuBaR8Zq2L3fXTNoakGUHBrH2BJySYOdqzFSD4iBoMFGjnm32MTrCuc5PW8wm\nErAT0eFc/fS9TMu8LR7jaCXi+8kRM+Wq1ZMjzOKycjPsnqiIKjlSfD3pEd8Wlehz1TMkarhdjzze\n35F5XM8L7plqVJuJKDubTjAWYl2dJyaBBgLN/n/23jNWt+w8D3vW7u3r3+nnnnNum84ZFhVSokhV\nJ5YsKQkkI0gAJ4ZS/tgw4MAljhEEQQI4yY9ESP0RI5ADQ1JcIUuRJUeiFNCySA41JIdT79xy7j39\nfL3svvfKj/f5Locq5KVGUq6As4DBnHvK/tZee+31tud9niDFXs0QxS2wfv0GAOCX3hWMgZ/kj+vm\nTN4DANwqgZ/L2r7+8F2cHsq1109IW69cNE3xBHVvC997TcKD3jMvoE9sQr7ZhlERyUMQU6181GxW\nCpISoNCO7XcQ7YsndDIZYsyQtcmmubPFEW5Q57KNCjZJTR7GCTrsxjVTWcvSrLE05Xl4Rznam+QE\nvTSALmHcyw2Y9CwCwrLjoEBzQTmAZgar5JxDDW8mn1FWl7Ag+0FRYfx5+zqiltACjm+8gL/3umhF\nrkBRwJ/i6oM2amRuCmU6KDRJLkoTpcl4ud8G+EJGAMwewTnsDCw9HxZf+KLpwSKYPa0dWOTvz7QD\nA3QfCbbZrXvwIAt53Oohj8h3mBhokFq8v34dCwJycoYitZshZlw7tEyUPLwKAFbA0AUOooh9AKG8\nKG5dIlXycwMzYKWsFPgwAnn4Hg+02nDh+jLfes3CTchL1XYe4B0lB8DYHMBiW3YUyWZOtlqII3n5\n3YYNcD399QhpTE1EZWFIqfXrWwT52G001nhQqAhtzse+1DggA1Y+Abo2F51kK+sOMKcQrlYGSpYs\nI3uGUYt08KaJKfUJ/kwoB+jsCyN8tfi9mYVYp6j4uyMzwWJK8VcCj/xtB/Yl+zZ8A1tdia+71x04\nSl7krpogzcl2xW7JqXbgs0vS8iIEgazbxAqwV64AbilmtqzzkSFtzdadAB71I+cesICsZ+A6SHiN\nDjtHC0vDXso8G1aAiqFdGVbICMJCS6OnZP6FuRLpDQGClELdQO7L2prpELkre8CrHCREepql7Onp\n7josm30X1SZ+HNKVe/LlMYas4KQADAKqyvrJ0MtX4cPVuBpX4+vGU+Ep1LVGtsxQxgss2Z1mOhYM\nYvhDBHCb5P5za0SmJFp8R04+o9YIqLZk1C5sJm3mhQlnRUhR2UBLLFBNxl7oCTxaF686h03X3jAz\nKAJTouUY2aEkz9KG/L03vkA9ogjLYoyYwKpmEMJkTT/o9rG1J9aqSz7E3TWNObPXUd3FNLcez/mU\nFZM14vdNZSBlgnNR21BUTM4yF0YmFt9Ic4DiM6OH4nJ/8toQzYn8brmzDZ9WcH6ePE5y5qrCM025\n732qLVnNdaAjVqmnNmE0BPcwr7rwmLTztkwsqVpV1HKtrG7DdGQ+7dyEomeizRYKWijfnsNw5f6O\nzwXGvrGRYfNUPLBfqTRWDq87GsGqxJsw4glsJpiDtnhb7VkI/wbXtbWGnVCSeTcaHibsefGMNcQJ\nMQvcIw8rAz12xKa1iY4n83FtE61c9sv5EMjHdP+H4v3YvSEGD6Ty07z9PFICiOpIoyLb+IQYisLz\nMCNP5ERNsDekAlY5R01CGb94Dpr6kIocluFahYBdoK4qURD0FVgaFZtFDK1RFzInn2FpI2miqchy\n/SJg2t8DAPiL8VfxHZz/307nSD1WcwZTPMm48hSuxtW4Gl83ngpPQUMjUTkM24LD0Ms2HYRUeW61\nNsFwF8uFgWCLdGrUaFR2CZdNQKWh4TMR5YcLIKYSsbNEzXg3YBdaVtqIqXHYPT5EdCkIs2xiQ/fJ\nADXSCHbFCp+NJEZ0TI0hCTVRpVDWStuxwn5LLPDORoDWmkBXe4KSRqP0ESpqW6YZioLJ0VkIp8GG\np1Isd2Xa8OZiadsBsKCKsN+30FrxTJQx8pEsmM0S47vTKb69LdcolMIyZPluo4mADVpNG3Busac/\nkKTt5qaJKdfTacwQL9jY01wAnqyRziyY5QpiLvPNRoBmvf7UjXGN35/7DlrMwTyKazQNsWjdlngS\n4dDBL3hkiU70SuUNmZ9gSOGbLW3gjDHzspS/azobCDx5/s0ygrVLHokqRIOK3RoOTD5rh/mlvV4K\nsERqGAsoaiRsROqxwI3bdZGzyc7VZH8atTHdlOf7228d4Xt2BHuQmwoZuSU6EfUcVetxV257fx++\nQdo8v4FswbxT4xShIwldg7mfyGqgbq5EiZpoFCsItoMslPWslAePjOULepu6lSKDzCcw3oPfloRp\n+OkXMaDw0U/mD3HWk8bIt3/mZ/Ek46k4FIxaIcws2KjgGbJZ066H25a43Vv9AC2Sd2zdqOCBtWAm\nfcLMRuHLrvLSJZTFVl97AwhkIVXqYVFJBttkok7752jO2QOw3cUzX5YN+AVzhH1upts7LnZJ526y\nQ848O4Ii63KYOXjIvuAX/QDtTTmEnt96Ac3bktrf4kZxdYmCiUFtedg0VkCnClByTxZp10LDwcim\nMInahGrJC91RFaJ9upEPryHlPXW4yW+YNp7x5GW8oxS22aPgOkvAkZf+og8clFJ1WTCkUqM+Kn52\nlTUeZ9md2gU8JrisCVyHHYyQje33zuEYsm7BWQk3EOo5yxtAXcr9XdYTHFMBKjuS7zWfTfEXpvIC\n/pMqxVf5Yka5xXQwcFQlCDxu9ExeDtMrsaFZp1/zsZFIWBF4JgxiD2rLQ2DScLBCUCY95D6FgvMC\nNkmeddmEHcpLtns2g+7JehRjwS48apxhgyQzfcvHGj/j7rRGwL6EkIKOQaNGusWW7YHCbIfAuYcJ\n4kgOxXJ8gCqUvdOpKDwctBEy6eoFxWPMTbGbIkrlgNfuABXJgYK2PNPiPEVCDkpvfIDRuuyXD338\nJrYpgFzhJn6bTOH/4xMeCh84fFBKmUqp15RSv8h/X1dKfU4p9Z5S6ueVYlB/Na7G1fhTMf4oPIW/\nAuAtrKCDwH8D4L/XWv+cUup/A/BTAP7Xb3gFQ0N7NZpBG0vyFLR9B+U6EzVZBjTlBJ+kQCuUE7hc\nUuijymAzsWQFAeg0oFQRAsJgF36O4i05mc9uSRLNTq/BtykF51zD8PrrAID+sQ8jkM9OXQcXfUkS\nzahF6KUF5qwlnw9KKMq5T8wSz/vkG+g1UGSkLmMX3jwpsKSqcUNnqJtyXgYGkBOu3KKXE1cG6jOx\nysPNczjEULheCdOT5FqxcQ+3ibkYMGm5WHcxIuS7GzZRbcs8I2cHbUvuI4gcLJv0PHLyH7QaKFlC\nm1c19Mqj8QoYcxLRtHsw2Zxfu2Ktmobx2PupTBuzSBKDZdlCQuTpfJpg5ksCz2C49uw7Dcw2uBZZ\nCsVux9SFiIAASIoGWkykDQyWVtFFsko6pinSjqxhNk8wof5C3xmj0ZCEJtHcSCsNO5VE26IoEJOu\nLe1kaFKTwTZNWCTWne3IPG9dWjgK5CInPRsnTPatrUXgcmFrW27Ubm+gog3M7RkWbILK/RJpJvNR\nez1ESlz+uiHeXTlTMEn6YlUadVOepV8EyMjlYRx5WHaJaGQYpHe7UJfiEY16czQM6mE0vwf2dfE2\nqrRA1OciPOH4oFqSuwB+BMB/DeCvUkru+wH8O/yVnwHwX+CbHAoKCq6yUKcaPmu08ExMRhIvvr1I\n0KPAbFXVsB3mDNp0F5WNrb64VnXpw6YKka7HWGSy8Q4nD/Hm2w8AAKPX5FqjzMUza7J4g2mMnOQV\ni6LGLJMNNkgKJO9RDKYnG3R+cR/VPbLl5ksYWr424WPEl7p5MUKX2feTM3khen0L46m8mG63gkHX\n0AgymHwUubVik9IYV1RHemeIMXsRPOVjxnzGQivogGpJfNk6hY17EzmM3M0YB03ZgFaiEFwnzsIp\n4QdysMSaPQyXJTJHXrw8c+E1Zd1OL4dYZ/u5nvWxuc4Mvys/Nw0PMQ+Krz68j/JNgR2fmAo5Oxjn\noyneZFt6ygPE2PHxk8RvnDQq3GHG3Z7mMAln6mwGaBL2PZ0RSrw0cTrgod4K8NYdmc+tNYUTHoZB\nUEOVq0OWfQaFBU0BmHuTKZJjORQn8zF2DckDpTp6LIjjOXItdV0jWcra7k1zHCfyHLqLDDbb/Adz\nOSg2/AXiSAzHYJFhQI5KdzpBwvChpz1ELzLXMJf16beBPBdIfNQMRFsV0tuyGMs856enOD4R0NqS\n+piB9Sxc5hneS87ga1mj3YNjmI193oeDG+a39pp/0PDhfwDw1/E14FQPwERrvaowHQH4fUnnlVL/\nkVLqVaXUq0X1h8FdXY2rcTX+OMYf2lNQSv05ABda6y8qpb73W/3790vRh4Gt87DGtu1DEwVotqPH\nnZGLKkNUyOk6Mky4ZNHtMsE3L6bILuV3t9c1jAWtRKvEiO76/TeP8Llz6bQbE1dQ1wGWZGGxOwp+\ng0misQtjg2Qac41LWzyWR9Qw3FpWmBNPMU5mjxFjcRJjSrXj2HWQnMjvRCsqucRAYkti6OjSR6tN\nQe6qg36bOgup/O7F5AJ3Sbs2KAvM5LJwHAt9up1rVY2SmgOLQFzj06/O8ex3PpDfjTswurJuu0kP\nqMTVvAhteCG5I8bijeSNLnJb7jkOU0xisX6T+hST+/L923sFnLG4wdd25Fpp1sTsbKVdOYFDzcSm\nuYOI83zdewRNWbicHJQZ1jCSplPAsWCQCi51lqj5zLpuhPO2fJ5bincwGQI2valHEwMBiWzerBVi\n6kw8Outh63nycE7Yfdpa4Ig0fCdnI7w9pOc5AQYOkbORwjUqgTc4tcX5BpQja/ulL3v4s8+LRff9\nTRTELOxvSuKz2d3DlMlaIwpgMhFu6TYCWuvsto+M3k+SMPF94cNqUUl6uAGPCcN4aeBiLJ7XG/EE\n4wGl5cgZ2rpuIKCO5+LiKzg8FnzHi5/41xCQ3Ttoh0gZjj3p+KACsz+mlPphAB4kp/DTANpKKYve\nwi6A4286CW1gIwth2xobSl68eM3FJiXO708G+NK5uE6DKkZkSqgQrckDfGF9G9UaX+hhgXyNuoQn\nNc4u5ePnZyVMKuhkFE9N9ATXqalYqhzPegcAAHtzgk9GshmzPMIGexT+QS4PsRydYjmiMG2q8Ygl\nu/3KwWgp1747OkVqSL6ifZ9KT5sBXmhIuGJ2K7RrdkT6gElxkiqXh9lYAD5FWc2pC81uzp20h6Uv\nIUhbtWBQnWq9IS5w0LIwjmWjOCdj3LblnpxGBWe2yl5r2Ims830KiJyfnuLUYUVlaWHRZQw/ylFF\nFBw530LTJaR5IfcEc46Q9YL9qo/DI5n/l+u7uNWTzy7SMfYSWcPXCNH1o1MkrwuR6g+4e/g1V9Sr\n7MSAZo+Gmk4Q8WVao/Duop7h7B25RhpMsXdHvh7sBWgRAHa+kWAj/hoJDACUJwmmS3mpirtnKBZy\nH2fjBU582S/fFt3G/X35/R1fXrxe4MFlmdkPbXiKIdisQJtCuK2FrI8TdLFFspQoAeYL+bzDd+7g\nmF2wn8gq2B9mCMJnnrRrZPfEANS7JirCuHPMYJ8ShDXMcXhH/u60LwfaD56to9qUz7g+u42T3oDX\nHcGzPyZzMnqPw6YnHX/o8EFr/Z9qrXe11gcA/m0Av661/ncBfAbAT/DXrqTor8bV+FM2/jhwCn8D\nwM8ppf4rAK8B+Lvf9C9MAA0NvxfCt+SEtq0SDumsOpaLy4Wc0Nf9LsK2pClu9gVvEHVclCv4reui\nzsVKzGAhYaeeud5Gg25+wxZ3MTIL9NviKFo9H9tsbOlbU2xDLOHrawaCL4uX4l0jwcbrCtNgxa9Y\no0kKbccxcIPEKSdWgIDgltAXC73T3YDryf011RylwzN5mSL2Cb4iXVsRuWjSAl/awBYp5b3Mgsds\neTmz4HXFaxjO2HMYfBTdWFxtvROg2hKPp5HZUCBFvVsgp3cTuLKuOlDYINmgm0fYXvEk1jFySFPS\nWBnYYLViUYibnBcKoNK2W9Zw78t632is40UmhNeqjyC1X5VrvCPPJjt3cP6DYq13v3IHqkNOCqXh\nUiY+yR3AJDy4v9IPdWAoeTZr5QLdfUmYdiIfl0tZz36dI+M+qmqx3ENXYXksLrq5tYVuSpVuU6G7\nuu/gAIHLJB8rBG5YwKU3NSpuYGvOCs5GBzqk1F2PMnabNkAt0fWNHHOCuqyhi2uWeGadZ7ZxsCZN\nV1Uu3sHw8hTuptzfdlohbXLxswjWLrEVpYlgR577M12Z2+Z6Fw1C77P+OT4+kHuG9QqsHvd9XqJL\ngZonHX8kh4LW+jcA/Aa/vgfgO/4orns1rsbV+JMfTwWi0dIabV3CziuMGAPu2SZusBb2vPLx7L7E\nSP1wAlORuspYEWMCDstfWWkjJELNLGs4TTm5I38bfVrmu7RsTXOCrbac2m5hYdmiLsThAK85QtFV\n/vIE91w5gTfJ4/9bRQqbjECxNsDyOFynh52X5cTfy17EBkVq/VrKQ52oAeZLEdYpkpSSdmaCBdmg\nLE/uadNto898QXPLg002HizXYZgStz9s5NALmZtDgtaod4H5Qj6kvrjElkGL0ciREy3qqAkc5jNC\nJnarbh9+JNfFeANVKW3kZieAS4i1pT24DiXkCrH4VtlC35e1/+RmB7c25NmE5gydNfFSFl96D585\nZUv5QvIs52tL3PiMxMa/kvoguA/2ooBtUeynCViZeCRZJR6N708QkaF51xvBSyRHExkxsi2ZZ7+h\n4ZI7waAXkM8KRMbqurtoBDKP3q0d3CTq1Y730Gby8GEln+ssM2Qsl66b72GSiWfSGyg0iVXJStk3\nxtKH2Ze/6wXPok825xNjH0NHvK39dvQYLzEiojW0TpAnsm6ZZ4HVZdRIpK0awHXXgP0h2X/9lnjF\nu+vPwL6UffGgrrDPXJO/PYPLsiYiF2H9NX6FJxlPxaEAS8HoOTgwPJyn4qol6AKmuFcb3R66wYqK\n/CZKZoOREIdvTTAm+KX2E9RUMokaPmLWvI1ZDG9TDpl9JYmltnmA9Q5rxqmBlLwIc7gYzeTv7mYp\nrl8Tt7ucycZcmxk4ZDdjaBSPD6fW1hS36xdlHls1dk3pfYAn92HrAEZTNuZioLEk3VoeZ6h4GGhW\nVBZGjGbEsMMdQceSlLM25picUfXInuCMh+Fic0X4YWKNX8/tEHs86Jy5BY9AoLPUQUm58wZPtEYj\nRkhYub52hnJGLsbkEAmo7WgUqKnwtCTxCMzhirIBbmhgv8MOPmMPVs2+hP0SB7Gs+cXrchBOxyXe\nYna+UinqC2JOmiXSpXztGR6mPJCzJp9p3MKWyXAtfRlbz8j9N8oGAouw8Gwb9Q5FZHjwrkVNXGwz\nJLCBXvI8AGB7rcJaJs/JeaFEdUwFab6Zw9gCqH5+eZrg5vWVHHwFk8QpO+E1fq+BNCYVXiNHg8RA\n6zDRXZIYqL+ATeEf/5LdrEugJi6kNAtY7C8pCgeVkjVUmzb61N7csCRsdqNL6Ioq2LMvo8xlrerZ\nEAWxE27PhsEejCcdV12SV+NqXI2vG0+Fp2BoDb8socs5ArKyLqY51pggsYMN9ByZqgpdWOyhN0ny\nWqIHJxD3rLyYIl25jmmwYuNC1y1QE2NlaUlUOn0XrZAsONUMiSmuaK4fIKbSsJUD82NxA298u7hv\nn/MrPJPKZ4xsE92uzPm71TYc/2tIukZXTmvLoQuf1SgpV1a6KXpkDIsTH17JxBjxCr0SAFGDUbWF\nukuNiMJHQkyC8dDGgLoVO654QdX+LbxsiBX8oqq/1kgUjTAnStYsHDgkDc3pKXTKCIqcFWbZgdmh\n222tY+bIRLtxgZyhhEMqvKyI0QJxH4aDTk0EZWigtGl172nczoQh6Q39FQDAOz3g1hHFdQC4pKHT\nI8DxCEeexTBI2taluvJEGVhnExt6Hnpsxoo6JmwydSnPRUX8XEX17LQwYBiCMbiWjFAyNNsouqjY\ngmtNLMQumbrYuJUnGQwSre7uzBFyHlayQDVi+OcJS9N83gFYGm8PbHR3GdotXAzYKNW3t+ASNtBk\nB+jRWoY1WnxTebAIp4dbolnR+lslzFqembkh9+8bayiU7PvWbA+nOZPHTQVVUTW7slFqMp0/4Xgq\nDgXbMLDleajmIUZk8lXzBi5XUNX0GEUgL3ID3mOcvKpJgxVOUJKaOzUb0JVsqtTIYHry8lZJAIOU\nbXWP6kYoYVGLr6wqTKk1WTcdqEdsz/U24W7KtX2KdPRTGzk3YMup8f099nzttxEQdpo6baiUTMoE\nqzhmhQXFRGrlIuPfqeUCNTv4LGcl+uLA4X3GTo12JXOYlg7KTDbQaV3B8mUDpWtCQ/7sx15GEK6q\nAXOUA1nPctjCYib16uP4Aiaz4VuRhAmzysIGkaWO1UJdy9yTCLBz+X7pePBIg29mK97JEMaQqkrF\nCWqS3VgqRT2STZqUMQ4dOSA3+7IWrwwqeIF83TcnWPJZpn4NL5VrTJYxApOdm6UcNqFZPaa365sZ\nfHJJ+trEjBYgSGNkVGrKGe/MlAGrlhc91gFM9qucOwb2qSZVWi5MtqsParYnVzPAIRzd3UJJ5RjP\nacLr0OKQtRlBgrRgz0Howwnl2RiFRrtk9aRlwGZYaJeS13AfmNDE3LgGYNLgqEYTBjtljfkAqk1R\nIXZqGl4FA+SHDCzQNsGpd2BScQx1Atu4kqK/GlfjanyA8VR4CtpUyJouOtrFdEzG5PEY5yOpt2/d\n2EGVyinvaBuqkGQOyPw8HhcoZ+Ima3gISbs1M2zYA/ndSV7CI71bzIx21bCQUyZMoYI1FetozCx0\nXCIagwrOXBJwF1yuMrJwQG0J2AEueUQ3zhViJp/i8QV668xO03sLjRzpdOUJLJGy6SqbLjBaEMn4\nSCybjtrYcMmxUCyQmiu9iAnOHhLSvKgQa7m/HYgl/vi1W3CpWty2CxzeFQ1Gw8xwWcm9YjbGYEWw\n6glSMqobyLR4Qnm8hK1XmpYFPIedemYAlxYotsSyhfM5xrV4YL7nYXlJ3Y62RsxmNDM1YZ3RZyYh\nycsbbfSX4hHMzxt43ZK1H98ZI+2x4tDJ0CFJjGbYElQVzhhSOE6OEQlJykxjWAnzc7ewMCC1njeT\n/59bJRqnMs9DpXCwLp6HvZehVoQd5wVcl8hSNrY1zBg5qdI60RiWwVaeKgaLB5hDPrc5N5FRe8LL\nnn9clTLNAHUk6+lUFcAkoKY3snPNQuhQGMjrIKZlt6slciI6Xc9BsmLSZtdtXSsYDGcqow1vk0TA\nfvnYQ9awUVIH5EnHU3Eo+GGEV77940jfWKJ5/FkAwKTwMJiKezV8CPSZtR9VGTJmtSu6hsuiwmBO\nlwopOoYset0uUNAVXSJBNmfnG9uzz5eAYsbamAHjmNUADaTcjKmqUEZyOCWpbCS/00Ftigsb+iki\ncuANunPYkmSH1ygxmlHa3pSKSstvoaBzlqcljs/l5T5ZzgG6sw5BN0GQwjyXTdxf62HM8GiRTXFG\nF/4cYyiyQS0/KdCQ0g/AhD2K2kXZkp2ZjjU8lgnem6YoI4lFzwijLexHqJcE8fRzOMsVscocy4Jd\np+YY4Zg8l30p2U50H4ucOYDTGYKDVSzuoGBfxcl0ineYJ/A9+Xt3rQXjO+RlXHzhHLMzmUeyMYBp\nygESFCGCkiQ4W3xOhz3YgTyn6dSHbrHCEZuIU9kD02SCy6W465p5p0k2RbngwRoV8Nl1GjZcnLF/\nxGkp5Bnl6um2x9YB1EssuSy2UG/JgTvMmkCfnamhEMvAzBCS2XqwPoFNQR3HsFE+lHmO2jWqC+5D\nVteKRQHzFkPiWYLKk0Nmma1Du7L3soUBxdJvxv1b2ikqguUS6xh1KXmb9uY+tE3tTjNFXn5rvQ9X\n4cPVuBpX4+vGU+EpWJaJfr+F8XofN9fEuvxm8gDGUE7G4fYCNenGGk4Fm+5XRU58nZWPAS9OlaJM\neLLDxdIVCxUtC2jSZqUjsRKTcALnTM5FZY8wv5CfDy7GOKWK78l5hs0Gm38MgTu3rAZsUpt5KsQR\nmY0/9LBEsSWnf1wqxEpc83XCdudrDpokRTEbFp5VYoEPio3HGgFZixRfiQVVyn3GcYKSBCnLoxij\nMd2RyTnuL+Xa3z0QWbbD4NvxccLDfzWu0JjS45ke4959mf/56SWsgIlCNkE5SuOR5LGwNdFQTMbm\nqYJind4xYixG8nVVkG8hPkWPQJ+4clHeFSs26w5hXMicqzKGdyL3dbgQrMSz3+WgPxZKuB8b38Dr\n2btyf1+Zo7EjHmKSLzHYOgAAtCHgnkV5ifqY3Z6ZRuuMieS2iaqiW27ZsNlWWpINOSo1lpGEAQd5\nDpO0ctVogfkaOztPDZhsXHJO5J7GQQt7icyzu7GL5xia/qrKkbL6kIVCzlNXbVRkEm+cHyDryl4I\nDueYrlGf46j5GCNSnxKzEtUwz0TUZTrcRpkKcGzkTHCDVHja82GSdTqnknows5FT/7Od9ZDtyf15\nngnDXPHNGRhOxdt40vF0HAp2E72dH4LjXuLwVdncfSR4aMgGDA9tLDYkxu+05tjssKTIjsSqasJW\n8rumW4C6rrjUAUwqBdWewog6hrNa3PlorjCnmo5RWjgl0uzcKDFeiGs4VhoF8xlFIdn7fujAZNa7\njC3EmWzG42YXYczOt1wjJE8gInmI/VghI4IwMgyAbDvNYYA4YixLSvPSqHHKoHSRT9FiNeBU1Zgz\nXj4NNlDGMs/PJz8CAHjxQKNYhTD9DDVLfeO5jYcTcbtPxwPkC4KlyMqTjwx0qW3Zaz2LZMReEuXB\nZLyfu+5jcZnpjO65nWFuymkymU2BHglAUhc2s+QncY5jV14yvaIvv9hE8SF5ZodfvIsRUYEjEyhq\nygAAIABJREFUN0Y0llzKybTEs4a43eOmlBNdbWKesIyMI8SWfL9dGcjIBtUwcjj7zOaTa3JZurCW\nciBlVQMVn98oc9Ec8iVtt6HJnHRIId3gErBvSGXHaJs4X8gBsujksBhiaFv2Y2EVmBUSXkz0HP1Y\n7nVa+wBzXstWAxOGNqT8xOXpEoYl+7tMxygpOe8aA0wODuSeJksseuQIJfeltdlCVZK2fsdFKyQj\nk90HKByDuIL2iYZ9wnEVPlyNq3E1vm48FZ6CYSqEkQs338H17R8HACTLv4diISfmRTPB9UwsiYdN\ntAkswjUyP98rkNFNtOEhZP24uDxDSXo3pSz4lP+qp2R+DpYoyFlwulhgyTLBneEEBanT+44Fi4ka\nTcx9tTx6rOt3MVFIeRDvzUt4L8vvtrMChisub8BOvTpUWNLVnswjdHKxzE5VIT4RS5IwQeRrGwV/\nt7HMsDTFylcXwOfviqt9oWroVOY5+KV/AAD4zuKv4+aPkrrNCjA8YSLuYoDZRCaaxjkyLRbvlBa8\n9i7heowfzBzmptTbk6MlAvZMqKJGuMMuznMmc2sTBuXPOg0fk0fi+uvmOc5HTPzNYmh6NPfGsm5H\nB3fx4m/Iz+dHBUAuhOEbxyh70hNhH/iYbsk8b61EfbSPiF6hkbrIV55AVSJl9cFJG2iRKq0J0qtl\nY8TEYZimDcWKCsICfmtF12/ikuQyqc8u0I0TPCg+InOodtHpy7P8mBngt0h8U3QYojZ7iK5JGLhd\n3kTOa/jNEMNS3Dd34OHkkszOrHyt9zw41C5tdLdxPJT76Gx6qIhVyVoVhtQpjSLZNyoJMWcX6bhs\noGCncKt4GZ6WbLO2bISmeCFPOq48hatxNa7G142nwlMALMDsQzWnePajbwAA3nyvg+kZeQymJRJK\nmoVdD0YgJ5/JhEvR/wKmUyZWhjUuqe4RqDM8WIh1d+ZLZKFYndBlkimLUARUdnZdmItV8s3DlPJf\n3SRCQ3qRMCBNdGpptAqxXK4zQErauKo7QVgw97FtISVaMmeJVCPENBNLai5CJCOx/kluwfXklD+3\nJSaN9BxLdgBe27dB2ABGjVNsyW3j4vQc3kgsV9wRVqhX31viPyBfROAq/DMmHeNWhPWAaD3fRWGx\n/EguCN+z0VDiKVg3fCxH9LCapzhnjsZbprgcyz+cRDyQZd5FNZfy5nGtsLEu1uxR5QBMlE4bJUwm\nJl+O5RmY92e4w5j8cmuK8l2x3OnGErc2pUHJTkJs2eTX2OZ8HzUQ7ayEejooSvm7QptISIW3Xdto\nkFqvrMWKt60J0CIJrD8FZrIvut0FQlKauc0KXizPslFLQnh+3MCruayxd6zxZ18Ryx1ZBkYtisE0\npSQ5iSsELKcmW+/AvHxF1rOj0YeoY4+yY5wRdmyVZM0yAxhd8YqXkYGtbSZuow6SQvbLpEgR57K2\nFUuoxbUBXL4DGPwKwi98Wn7XPYW7LWvUaTjwFT2hJxxPxaFQ6hqDcgE/U4iN7wQAXOsN0HokbtRb\nSYnBGbECk3N8/3cTeEP68hudH8T1mbwURhYipZs8srsI3pZr2JGJRUS16nVKmdsJ8lPZVO+cD3DO\nOOB4OEPLZiKxaaBviLCGT3jxfV1Dp/JSmIaNdCgbdr2VwjTZcqz30Pfl2ja7+kqVot2UTLZVTuCW\nshE0DCzastm2hvRJZ8A5cfjHdQcrksZwOsXhxSWvUWPARKqx/gAA8LFPxfhFtoh/GhoVW66D7BEq\nsi7nqsBuuUpsykseZimGY5KzXEZo9FjZma8hZFepZ9qwUjmoYs63MShgedREnDkoV0zE9QgG28EH\nwxQ+D9FDaipWfeDaq/K9WW1grZIXZK9uwq8lE7/V+wgMks+sLWWTx2GBnIzKOl+iQ+q2zAuw0bzJ\n56Cx0ZHD2ScoqPI/ii3eXzVdIr6+6spcgyLF3GI5xmQo83tDSz/D26/FmASiZHO+/ufw7p683J/w\nKzTYBz84/h0AQNRYw733JJT6mH4FdkOAY9G4gWVH1rk/6+C5XA5Ri12UxfwUPS0t/Ko0Yd2WfaG0\nBYNQ8aUCihX1O3tUVFLj9I7wjiIy8Mtf+GUAQPN77uDT7/wUAGD+0ouwFE/1JxxX4cPVuBpX4+vG\nU+EpVFmJybtj6KiFkSEW0ay6GLCWPhkZmJ7Jad5o2/jIq9RdXGlG9isoUAthUmDK8GFyYiKnKrPj\n9KA22PgPdkPWQyzYBDUoKhzNiHWwDOTEOuTNELNA5jRls0+QasSEn86yGBYhsQ8WGWIShlpLhcSW\neTbZDKMDBTdaiawAo2P5WjVqzElva7CZq84bGLapTXA4xYiCLOnZFBWbo5KshE+KueqzD+RaBxE+\nfJPh076JmgnaLOhg3iDhzCRCsSJBYCl0rt3HdGzlDDADJhItCzWbv+K6Rko0oRGTNKV4iDQVV3vS\nXCAg/V3iRagHUp6c1RlqQro9dmeOfivFERGpU69AothFuGFj0xLJtjJYf9xINFl1Peopljnd4VrB\npifgKQ9BwCY1s0a1IF0eZeOS6TEMIi8rrWFEMp9xWcAn50I2KTGi53Xn12Tu8Z1LDL7yWa7tDl7i\nGpofaqPBcDKmVoSDDI2m7IWzdAwSgkOpCh65P8rdCVosKSOXe661BcpDwgwqWFxvK8tRrlNcqDRg\n0rszuafT8hJTwtwfvlGgTW2N5f9s4sGLcu3b7Qv4m98aolFprb+lP/jjGGvtlv63Pv1JtPQE948k\nhtpo1hjyzFoPC5wfyssWdUwUesU5J4u0nMwfb45E16gKYgXSxWMp+hwVHDpGMckqItdHygbHbtCA\nQdd352ATILCo07Jwyix675p8xj/99V/C4dvESBTAqgrcaDlYf0F2wkfXbuI5xuuXiWy0k9MBMsbW\n75wniPlSXE4qrBrZqDkLA0DNR6MUoClxbzsGDPIVHnzkFTwTkgewoCiM4+Nv/Jt/CwDw9oGNya/9\nAgCg36pxecRQoTVGmcvBuCdeK6bjFrb6VNMadNDscLMdVWjxoD6+0HAD4gZ4SK13bPhkRep2DIwp\npNrpVDgj1f5mR+H8HXkhrz8v3/vNfzWB25Mw4f/9/BDBbbm/Tz7zl7Au3jPmhyk8XzL1dx+xgcS/\nwEOK3UTTc7zBcOvkzTnmjNWXsUbN0MUhwUi/62LPkgtbXo12r8/10vBoXGpd44ujzwMA7hHUlRxO\nsfVdknO4/xmNn/5J0WP8K9VbaA/+EgBg8PdZDfvdrxK3qbHdeRz+LMsC6YL9NgZD1LKCYRFXYCj4\nWwJX7nRfwO1rIg77sR9qI7j5QwCAF8aCs/n5BzU+8+vCkTx7bhv1/y1t6e3/7Psw/l9k3X7hZ1/F\nj71GUqI/3/ui1vrb8E3GVfhwNa7G1fi68VSED7CBaqvG4F6ElOy0XxrE2P6EuGVvv1UhWJMs9L15\nhp1bdFepo9fdjzAeyMne6ru4f0aL6Lk4W4hFX2+6OB6z7k8OgkdpibWWuFb3khxbVGC+fwncfl6s\n8XRmoSKy8vW3Od27KbKcytYaYM8ROkYLf80Xqqw7+02sEYLrrzgB/Bb6jnhCo6rGkhJqEw3QI0S5\n8g7etzyGBmqaIbtU+FRK8ZJGis6/krmdNb8MAFh660gbEot8yngBv7Yr534ya8F0xfofnTaw92F2\nmE4EEdho20gncv/N/RizE7GOXn+EywfihYQbMxyeUTaOjWTD+RpefkbWajQu4VAd+3iyhfUXZW3v\nv72A+pA8q88fSVOZ8akxHv5z+fmj8RzT/0es5g/+GWA6lWdttA7xxn02bDXENX50bMNM5DOOjhS8\nlF5MXKJpEyJeFrAc2SMuv+dYa3A8mWej14fJUMP3DKSERzcK4GAm3sTpWNYzfVgjeSDPrFYK1mf/\nNgDg7177YfzVf/QHeAgcTVYXKp3DpgCRpXLoVajALkmz1lB8/i5MECmNHx0t4PwbwtXwE/5LuMNG\nt865vLbX01/Bgy+Kx/P6578ITYeg/g9/9bG5N3/6n+K1D38SAPCR33+av2c8FYdCERcYvHYOS5/j\n3ik7x1QJ8/OyGa2wRPAuW0jXS7z0jhwWd/ZlI71wCHx1Q57M/iLEzBV3vT0ysbAp257Z8Mi71yYD\n0dzMsZREMBaokY9IM76T4PBt+btmJ3jczm305XtfSWuYfLBLABHj+r28wrQj8NpXZuvAlvy+wVDk\nxhmQguWtLMUhH5xRA6tsx2pUv+vrlUtX6QpHFDl96e4E57HczOfokjrTCn/tv/3vAAD/+U/9l3Am\ncjBZ9gCjWHZNEubIz67x/sjhmHaAHrP6IxMhKyfzkxhlRKj40kFokJGKDFJFt4DSsjHb7SG8Kbsy\n/UsUPESN2Rz+L8lLffeHJCOf/JMm0Gci5UKj2GGG/MxE6kspenT0AOeJvPTZOfU8h5doubIay/EA\npyVFazRQZfJ9t9nABmTvOGtyEDwTHaC+KQddHz5qU+5bqQIm27LjfIj3KGazdAiK0hrzVSsNNP7j\nz/1LAMDz72xh+E0i7zl/3jrLUK70P2sN0nuieF/ozkgTrgLcqVTMps9+D17+slQ+lr2Xce1SQF3v\njuV0OHztM3h3ImtYvM/nn1Z4vIF+5H/6CbjeV77xRH/X+EDhg1KqrZT6h0qpt5VSbymlPqGU6iql\n/oVS6g7/3/kgn3E1rsbV+JMdH9RT+GkA/1xr/RNKKQdAAOBvAfg1rfXfUUr9TQB/EyIQ8wcObQCJ\nW6KY2FiSibnKFc49sYih14Nms87YcLHcEBe21xUL7KJE1xaLYbdNBEtKs9kLtHJJ/EVmjYDNKjVp\n5O1CQcdMGNY1TpjtU+P0cUflEhkmdP1mubjXYQnkdPAtaByQAKV54CJoyfwfBh7WKRbSPhYXMOin\nGI/EQn1b20fJRpxTpTHgWhDVive3sGh87UFZBnCLFYwlFMwuSTburi5QoHxdrMt7J78Cf4099iMT\n86VYFa+eYOKLG99OxcpP6wptutEDhHDzlVZm8Dj8yaMeOoQ8MyrDvpnBYk+/lfYQu/zBYIwFu0uP\ncIbRp+Tah+/IDV5snCI2xAQ/zEZIH8l152ETCSHfZ6MCy6ngTy4SdpE2Q2Tsnt3oeqguyXjdW8d5\nLZ/9kes25pbsgbU+hWX8NTRYcWhBI5nJ9Y7SBHYmn5EnM5R7xLJQos0D8H6GwxUMaLf8TbyFbzw6\njCvqhoWgZqJ4omBw72R0D0IorEjYP2raOGf373cfnMPZFL7NZfAuTi+k8arZEwzFrY0Po9n8qvx8\n8gdGMdhX/wkA4N1vMt/V+CACsy0AnwLw7wOA1joHkCulfhzA9/LXfgYiEvMND4WyKDA5uUSSLZCx\n3JbWNXYKWRx7ptAJJUZcVBmudwRMNKNg6lpPY+kJMKVVbGNrLi9FZXjIqIfQdLu4nVFLkIuOZIjz\nhTzmfJE+jtsrJGgMSZxSu/BIOOI25NE1HQOdgmAaAP66XO/jag87IVWrXIVttsGZHxZ3zztJUc4E\nnLVr3cetgbzJX7qfYUmWorsFKxZaY9XiEQPwyT+44zlII9nwP9DdxKkvG2U8elNuKdGoKBT7xc89\nwA9+mt134QwueQCd+j049GFL8hYi8pAV4qonMVCR3apoWVi3ZZ0d3YDTJXqzJejHrjNAkxyGKo4x\nglwvK7+Kd4cSi58+eIgWS2cjU1xj9VvPwqQBaGobFasF87NTjCgU+3A5gbmUA8Kt5Z5bU8Dblns6\naDyDlxZyH892biJty+8YwQNoVqDcVbOg20SDSlejeY4uaZMWcQGfVaDJVOElljuvb8i1Xo2HSDlP\nE0DNF/odzbLVNxgJqwvfYXrwWcKuAwMbfO1GrKL1XIWQocQrjT1EL0j0767voUOq+rWlRtlb3Yw8\nR+2t4cO29NdU7gSXZCL73RruhwW+pfFBwofrAC4B/B9KqdeUUv+7UioEsKG1PuXvnAHY+P3++P1S\n9OWVFP3VuBpPzfgg4YMF4KMA/rLW+nNKqZ+GhAqPh9ZaK6V+X6/m/VL0UWBrO6xgB2uYnLEDzKhh\nflQs7Hp6C3Ym1mpDm4hfohtYiWtcqhnWY7GOqjlHwxPrqZMljIW4pc11A9VI3P+Ibmt+2kBuiocx\nO81BY4UENnzSc8MzkGNFVMLPbTawQcx5mSRY3xVLmXxnhIxF9qZ9ifqSitZarF0KHx71YayNF+B+\nVlzq3lqJ/qXM41mDHAR3FxiRvGVWFdA9+X6qbDRJ8Z2t2XimewAAeCMjRd35EuiIpb2057AJBW+j\nByOl3H32IWT78v1oJFZnbvvIMqpF7czgLxheVDE8LZbLWcvRM8QTKiJ5HmF5AB2tOBwb8G0CkrKP\nIBpJrTy4FcBcSEL0BpN66XfdweGY3tbUREqJemujIzyGANplgBl7Qco+5enjDSy7YsU9fwebH5PP\nW7c34PeoNK0+hmUlGIhqLn8fekM4C+6L7l1Mjqgy1aoxqMmunN0BbLm2cyxz+NG1EP/nQMKLqjLg\nsUywf7PGw2+Qv1MK2GGVS3+kgfWh7IvL+TECT77eZOfrzedeRHosydX1Zz6MsCN7q319FxOKILU8\nBbNBWxuJl5Jt1Zh934/KWnzmCC/Tu/1S/bXgUwHY3hUSmPsP/uD5vn98EE/hCMCR1vpz/Pc/hBwS\n50qJrhv/f/EBPuNqXI2r8Sc8/tCegtb6TCn1SCn1rNb6HQA/AOBN/vfvAfg7eEIpel0DRaqB+RnY\ntIjYMPDcfSl7WTdr3BzI6Xj3wML2O9KUkn1IYuBrZ5sYNCWJ5p7uIrMkpWJNGzhzqLF42sZZJiWd\nFsRKrPcK2LHEZHP7PWRULc7cBOqctFxbClul5DOKrlxre7GG0BDPJA4XqEJJWrUvLLS2xEpbsQ+z\nK9bRZRya2z7qE7EChn6Ea69IWdC6F+NaQyzwGaXkPvb8OR69yqRdZeO3NsVShktgkRKOvXBwtJQS\n3/W+zL27qPDwXObz+uDLCH9YGJkCf4qK5dnUc9Aby9qmpcwxv0wwreWz16cO2CSIsEigIupdqDU4\nrMV2nBanZgAFy5P1FBUbm/SkQLsr1r/5VoJL5kQGA8n37C8P8PZQrPn+zMa9dSaYBwkWAyGFnWUz\nzBJ57tsXcq2qqXDAvEvnmoVdR3AWnU4DliHenbKAIJXnM9Nyfzq2kdekR5sYWNqS2q3TBE2SAm9e\nNFHQyuZN8R6GoYGPOrTcySnuFXLfy4kHYBUl/96xBYVtanzsnToIyej3vY01WJF4LK2WeDFOtIs9\n6ptazT2oFr23WYYNgg+yPILRlIcyJg3cnp6g8OTrzWc+gX/xBUFjqjKFxcRmhTYeHG5zVmd/4Hzf\nPz5o9eEvA/j7rDzcA/AXId7H/6WU+ikAhwD+/De7iIZGUVcIWj5yEotUMPAuH9wzG+twmNhxfQeX\nL8vDOKBoRtlKkNpULLo2RziiJuJ2Bp9Z9Ek6RUYVnoRdZhveJqxYEl9nyyZGWg4Zq/YRcUMHNzdh\nDynaUok7OOsu0fLlWvGyRiOhCEmjiZpwY10ZyNg6XNjEClgaKV3tRrQJUDOxc2sBh+3VN1ukR7sT\nIPooFaaOHuI2+6XfeKCRk2LtRC+ws0ao7LlsqkfNEvOZHJCJAWhK2EdqF2MlyTVvcow4IDM1qwlp\nVSDLWXHRLbgkAImLEOuOHEhFFiFQ7CgkuYurC1QGRV+KEtOlHEiX9hQe121jz8fYlmvcxPfJtYyf\nxTWCt97cyVGwpTrvlMBYnt9s+RC6lOez8OSF3/YtLCO5pxYSKB42Wb1EDrkXt4iR5rKOMSHmBVyA\nlHZF3Yav5euRCmBYsufs9QjLAasuDCU71hIOexQusQF7Jj9vPbsB9VAOr/fHx6sXyowsdF+UNX6Y\n+tgiEqWJLTgHYgBsLT+/3k3gF2LoVOSiYv9I31/AN6UPxHVKzDM5FFpsB4/NZ5E2ZM8u3Vdw0/sC\nAOArSxM126VNzKDbghF5Uqb3D3QoaK2/BOD3w1L/wAe57tW4Glfj/7/xVCAaDQ04lcJimmHVAJdm\nGTxKqhdnOTIlrnbtnaBzXzgJztbEFW2XPnISfwboQoGS8o6FBpN18aKBmoQVScxSoZNCkUXZLwdg\nLhNFvXgM+d1NFW5Hkh30D8Ql++rPv4d5wvJPbWLSp8cSFvBXcl16AZ8q1kEkJTQ3SjAdkjauqdHc\nYpl17kBR2r2ibmHvpsL4rrjzS99DTm+kXxZ4q5D72xxr3LN5bWph7KczHC9YzXE85BfUEGh40J7c\nt5EU8IinthekDPMtNImOqHwbnklJvn4EpyP3Fxg1bIOyd+w+NKopKmoYeo4Fn8Sst1WI05y0ae+G\n2N+Vz3OifwYA+Ozdl3Hv3q/Lz1MbTkt+fvjVN7C8LybtYjhFa0V+SzGLNHLQa7NU3VMw+Hxdt0BB\n2LBl2rAt8RB65HqYlBaajjybsQawYBNXncIiMUo9cRFpsaox2xZzpVF1xHLfilOkTYqs1OZjKPpK\n07kAYBDdumG1sD6Qz7CuKexQMKi1dhvPr9ObbMp9BN4N+IpydNrEjKm+oogQ17Jnm0kTC3pyBpOd\nh/crqEPhcnioKwxt8TyUnWGPIdZDbUJR5h54hCcZT8WhUBsauVdiu9HF9Ew2vGVWWF6XBd7dfA6K\n8aKrXSxvys15lN6eVwUCtpUWfgGfi2A5E5Rk+3U3H2J7JNWARihuZt3KoenWbl02cFqIyzybWyjk\nDIJet+Huibu3WLK2bcTwAkKwywgduq3ReoRqKS99o7PAhAAZvymbvHY03G35jMjdRJXLS2/lBcJ9\nkqXM+AALG71r3BA2MGBuRMUh9AWxAEjRjyVUMI0DAMDUn8G8JhuivkhReaS1txTCgWy2sREiYfKm\npLuPYohUSeZdbTyElQjgqmWlMGO2QzcGcCmEazI/kWQOErIfmVUCzfbrARwM2fKZBwViHlRm8SGZ\nZ/+L2O3Ktd5YjJDx+SVVgoR5hLBYwmDMXO7LGrarm7jGMlGQ9eBcp1bm2IRHXMiiLrAgVZVDRulW\nL4GzlJdUhcdIS6otWQssphJ6Zf4DDCp56ZNackNJbKBNxqq3kyWWZIuqp22wrQIV43dTaeyz3b9/\nI0IeElbdukS7kOfa7SRwfbnvBkWDXTVHSrBcNQuwsS7vQDm1cUGpgTdnUzT3JSc2W1L1qjvG/KHk\nH7r9rwBthrephcNc9pltlnB6lLYnqvybjasuyatxNa7G142nwlOwtIFu4cKJF+hzSkMDuP5ITvDF\n1hjfMRfTnT2/RPdS8AmLttT212dtxKwJN5Yu0Bar0kn24W9IRXTn7ksY7AmC0KrJbttZwrPFCt6/\noZDSmo2SU/ROZB6qb+D7t5i4fElO6DfHFTparPxWI8D8gM1YaRPhpszDjrfR2BSPpunJfA3XQk+L\n12GEFkyyIJfBEpYpIYrqyd8YawaSt8UKGNnLeKUhmeU3p0305yRvWTZR0iKsfZeECc8db2Ljvlio\nXwyWsBKyGjdr1ER3FlYXIbUqBgxFppcT3J3Jen5ksIbxrrjRGzqC7ohlblUWbBLHlEzkaUyR0/Wd\nDOfIDLHyb33+HViUSU8mXQQU5XlIdOituIffITVbf+igpFiKtQyw15e/C85vYLYtlvnbS3n+W9sG\nNtpiadfWTLj0YiyzgjkUr6cyF2gVkqQuDVlDc6mwLCUp56VTDAuZs3FhIq5l7fQ4R5YzGTuVZzrN\n5yAlA/Z8ExUrLWdmhZDaEftabKtpOgi3xdv61/vbOGfoU+s+7D1Zt/3mPhoNCRt6hGIbZoiuSah1\nmQOp3F+GFNVEusoWJwnGA/He7j8gwnb4RbybMZF+UeD4TO6vaiTYLGUPxI1byOefkBvAv8STjKfi\nUKgNjSSoEbTb8C/kZQsLH8eRADo6SQfjG/LgArePfEdi1c6lPPBxWCKv+BL3EvQgzCHOroNNuvaT\n5y9hvCehRLnBjLSxBtNhlcF8BVEq191/VKIM5XrZCz7SZ6g7uCYP07QqBA260Wu7+AjzEnkvgku+\nxqqxRBZLiFFRit4wQlQmf144UJ5saNcwAIclKV/uqRw+ghlTO3D7CzimSpG1uEDOjX4UzbDFeHjt\nKxIaOa9sYMcRyLPtOtCP5dAj5HTn9XSIhSP3p9k5Osr8x1n4y7IBj0I7o7qBPtV1EqcHl7FqurqW\naWNGFapH9y5wxB7wr46G2IgdPocMCaHgPVZJJvYDVA26+3mKgm47/BkCWzLuzt4RXqR462RDPndz\nWuOCsvbwQpipvPzpeITJuczZajXRNuV6rbbc03zmIvDkJT0eznHvTTEWc3+JC1al+oMJDgmbTrgu\nDaWwuJDvDbDAQkl4ODJjNB35DJdqYYHq4PuuMz9xax+adPeTKWBukqVpFMBm5Wo4lLl1oxKKbGDa\nNbCYkUDYGuL0LQkZ3r6T4BFJfy9ZUXPSBHOyP81T53FlqJyHyCy5hpk9QLgm+3DJ7uBvNq7Ch6tx\nNa7G142nwlMwYaBpOKjOE5iUAs9nOaYXYkl/e/oO8tep7ddx8AyBPuFzRITMcigmD3XVQLgjbmkX\nHRTk/lsMc9y7FKuSM5mZuEd4OaJVcmvYnQMAgH82hlWJlQtenSKhV9DclkSVLoCEMmCNnXMUPYGt\nxnqOs3NmkR8eYkwMQO6Jaxju7iFmc/7GfoSuKdlipxHCsFZdK5Sid4GT+2LN4rMMX2qzJ+9YI47l\nM6YnS7xLyLZ+nnRmag99wpJffN7E9L4Auc67fVSrVplqBr8Qi+3SN76218VNYj3Mcgs7XbGCw6oG\n2K1a5xUQiFdgsOJQzkcoB9TgnCwwnIs17nkujFAqONe7O2jVEhKoAwnhTr94gOJSvlcuLWgy9Lvz\nBNqR0MVRBRJWMyYPxGKeW0B/+UCezWGAciHPsrVQeHcgptBrtXF9W/bIS7coapOe4uFUntnJyQMc\nvSt/Z1cLzB3Zc2mmYLq8r5Hc8wOjRoMYkipJcEFsxaK7xFpL9si+kv3hRxEGhEmfXl7O50cyAAAg\nAElEQVRiTNo0VWq4d+W6F7cewSak+3hELEi3gwYrKpFhQNEbWSQ1YkO8WwdD9Dqyzvtr8r2TBz3s\nEKb/ejCFWYg3WTsO/oI+AAD8XDWB4wpY6kmhxU/FoaANjdKvsbu2jfMxN1Vn8riN2i5N3DdJqZ4p\njHbkIRSsPsAsoaYUFHWX8MYHco2gRJyI63daLHBEktY5CTydrIE7obxgtxpbuMb0bIEmHnYkjJlp\nB8dKSp9IJXOeeDU2ydxzPdwHWvJ1uqzgueSS3NiDSmR+i+vyEK1Q4+yhXGt6OsJ1ltOU5yHcJ5dk\nLgfd9I0zHNFdPOkUiGvJXjstAw37kPdUISNR7KNCOkfLtQrOLapUnVao2IuQ5Etc3KdaVD+Gza69\nfij5lV67hMmwq25lMNiJ5zvnmI5kbmlrACslcSlbxOemhTHLpeNyCcOXdWs76zAa8oKEjo3+bVm7\ne8cS5iw7v4HGmhyyp+UFajYlV6GJgsjSaM1EzPWoqCl5MVFwazlsBpYBpxTX+M3BAKOpbHtzNkNh\nyHr15WxA26pwOpY98uDOBPfZBRqqDItM7q8d96CcVQs+Q7u4QhExzImBEfUysnmNjkv9CR5ozXUP\ndps19TjDmCS1+w2N5o68mEZvC3FJLQ4etndjYJ3qT+1uC1028S5ME4q6HdOtAmsM76YOCYRbFpQl\neYYt5234zdXh9Bx+55S9IvUD4KboUuAJuVauwoercTWuxteNp8JTsLWB9cxHZKYo1Yp/0MBuQgXf\naogoEasSN1N0RmKBlj264nkbMSnYrIGL0hE3spyFyAlntU/qx1TeM3InXrhneK4WF35mnKMREcew\nXuBT7HMwFwcwc1H6GVOqvlU46FYrCfcUvXWZ2/qsgwu6s/c+ew9fKMXl/fDb4ta9/eIOvr8Sa3xx\n/QStXJbf7jWAKfvzF+JSO54FVwv0tXrvAV5bCrHGx7x1nLFf4YU4wh1Clz8aiYXuGx9C13tZfrd3\nBO/RP5ZrFHvYUBJivGHO8RKt7WQuLu70ZIwj0qnvdDwsyLXYdz0siQsIZ/8fe28aY1ma5vX9zn7u\nufsSe0RmRC5VWUt3Vy9DM/T0eGYYFiPEWNhG2PIHo7GxEBaSJVvmG5LlDyPkRciWMJaNEBJiANuS\nB2EYPAzMwvT0WvRSa+6ZkbHefTn74g/Pc7Mrx8101bQEiRSvVMqoiHvP8p73vM/2f/7/EquhAJpY\nrKeXhHRVLGZn5fG1c/FuHp4+4UBJcE46bf6ELcrN1/tyn43eFyjsXwEgyuqc1SR51gk7lL5iOSYW\nzoYSuJzLMx8vn/HhufRMDBcrbM05Oq7PpiWW8tRz2Ao0yakgZCttEo8FlpxWK4qhgnuKguFK5mDf\nC59rWt5Sla2oiugZCo/PCq4vxY7ecwra605ZrT54jkeh4K6tMuU0UUKZVcZFKMlfFjHT1yXcHKhW\narS1JEiV1KXM8Qp5NhYZbV/mJTq3eS8W6/8w+6Zcb2Ey64intB3UuNR7un37Ic3wSwBsWH+Uv/pd\nSdZ+3HHlKVyNq3E1XhgvhadQmZDVK/L9Pvva5NQzXCJtZrGra3ja4bbZvIGzI7v47W3BD7gJDFU2\nbl4uaKVyjHGeYSrDUKNr0Uglrptqk03fapE3xaLYnQYNtQh3jioiSzUf999gxxELk3cES+A2LK7t\nyLG6B20GC0na1Taaz7UZrZ7Jp3zxEHa35HtfvPU5+h0VgIktVlMte41PyDfWXYsqEOLv0fiCWAEj\nWnBNE26DZcJnY/FuMu8Uo5RHeHpXPJfTny3YtiX5NNnLuKG8CFZScvyeJvZGI87acv3NffE6RnmL\nlpa3SuuAzvrZWDVIVU/BqGiN5ZmkLS2Xzi0sTa5ZOzFmKNav7fo0lKbNMytSSyxhX1F+lvOrLHe0\ne3Qekep9h4MAbyWWMmlWuIi3tRZ66TV2iY7FYt5qL2mG4t0N9nx81Y+8NbXYO5T73lehnkkeMl83\nxE0MjB2VxZsb1Kzvc2fXtJRZV2nBV1o1eCy5iH9hFZSmeJ4pBrkrn/F9+U6x2qFtiKc4zmq0Wmsh\nG49rG3I9/d5NDlTdu+xpkrg0iSs51pZVkiunhlWl1BT9eHAn4b0H8vM1R9ZvLwzYbEl+wdnu0e8q\nZH1xk+UfFK+483e/Q/3HxcvkbT7WeCk2BbOCWgmdeUSnr7RbTkCh7bmzcMbClYRYZedokyN2Jgva\n8Vz2NOkzzBsUuojDcIihSSTDDLiuEFxnX4AwDX/JvlYcejWfrCaLIx+H+Jqxfet6jWLjxwDY6MmL\nsOs5hE3VMLSh6qp0eK9BrybhwUHnVVLNdrevaVZ45FGqrmTDirFUACRZrjA0YVhqa27nwOGLeqNH\nP/uH+AO+9AlsO0c8+OVfA+Bb3/Z5eygL9mlTruFzw++yqDSxuT/g3kg4/PiGzW+dyIKd22O+dEc+\ns/OmhD77nev0tIPTynt09UVZmSV9VCQmNKma8vtllOq8prR8eWHfvObjbf5+mQuGoJiL/XlO/VBh\nvGf/AoAPRgG1Z0q5H/msunKv1WhIiBzvPIMNrQxs7MiL9EYBr9yQa99tZdRX8lK0yoDLlmxYxnhK\nsyGJRqMmm8rsUUFrrv0eOxu8XpOfx90dIkuNT+iwWPNR6gYT3n/GsdLR2aOYCyXRLCzIEvlerh28\nD7L3efJYXqkbzS12tB36sL3P/nXJeN7c2KQq5JqnhUCp/YsER1vmsb3nTN61KmDQkM3ky2VCvyP3\nPWjpRp/dZrKQas637ZjFPbnX7958ny//dXmuX6l/EWd8yCcZV+HD1bgaV+OF8VJ4CoUBCweCehe7\nr+wetZhyKta41azjamOIYzRpb4pX0FSuAM9JCLUpxXRW2Ik2tRQVjidWrkptXBX329ZEXdfaobOj\nSaICikLpw7yc2S0tITnX6B3JMYqGuL7OwOR6U3Zrb1ay1B78qB/SXGlIsO1jIJ+hlNAm29jERH62\n8in5udxr4h6Tueop2OJGMnqF+nWxSls7d+m74q04F4+J3xRr9hsXY8JQodlrbonsgrAu2IRs5XBL\nsRDfLM44H4slmTomx3MJj75QSrmqv1XQzOWzsbfEXKlwijtlrHTGs2qOMZNnslItSsfxWWiprOVt\n80ZXPJdmdUjpqMJ0WpBrAu68lDlM2+/htFX2rzJYadfm4qCF9Y54IePsjJkCGOKGWNXP1a4R3JLn\nfmi9hlMqp0HqsTmQ66iSPWLlQLAmypjcvqTdlfs/uaxzfUOt+A0L1xVPLlkdMzyTZzJvyrG81QDr\nWDyCMwtSJVitiopYPb1CcQeT5PI5VZpjW+xuyRra2a9zc6BMzO6MTJOKlaPCQM4KI5DnbpcxtjaB\nJY6HHUomtbG3zxdburaakrRNspDLE/EeiuUvMY5Us+LrGf9gLOQ7PxW9j+t8XBkYGS/FpmCUYC8q\ncjskULfOebVLK5WYOjSWpIbGWW7ORl1iq0CBJkXZYKnsvN2ZTaiYdJaw1JhyCzBr4pZu2gpXbtdp\nonx3WYSxkp9P45g3ffm5dvOIwJEFZCzlATkTF/dA4vMs38RThytYOjh7kufwk5KsJw/Jbt6W381X\nVLwFwDz6NZrIRrA47+BvyT3NMtmY+hsXFBcSMgXuTTxDjlW92sb+x3J/P3bi88uXGqJsiPt5//6C\nm10Jj/zmGcu6hBU38Hjfkvk8MxN8S1W2DJnD/dTH6Mli7WYBrtbj47xJ4Mu5zVFEqaImppJ4zLKc\nLX1RAiejVmis7oUYSr6S2DPmChaKnklvRy1qU/elavHluMH3dmVuveMRx5dyL2mWMlHo8qG2JE/u\nBNzWjEerbtGoS7jm5DWMuty3FaVMNce0ZikqxruMZnK+fe+CmsKqb1R3KHXDmptL5qZsPkfaM3I+\nG5EM5KX3Hxr4iv/KTZNKgVoTVQvrBm0exnIfX+o3cQK5zh2nQ7Mm89nudtCWF5aZrIt645hKW//z\nVRe3L2uorBI2tJOyMgJ8S3t2FLuQVynjXLA1zmWd7zwVLsZ3dme4Y9k4f6NeZ/i8ufvjjavw4Wpc\njavxwngpPIWKisKsqLW2KbbEmg1o4F5XVN2oJMpUp8AxqSkdmamNSHmZ4qi8d9RuYisBSloYVNq0\nkpsujbWAi4qUNKsco9T++KriqbrEXr1N5kqtv7vVwg2UekwRiM6ez5qWOeqlWKo/WN7Yx6rEvTYs\nEzfT8EGlxat+QG5KTTwYH1Bo92FzMcRTy1u9Lh2VPEkwAvms1b6BaSmy7/0TLOX3PzGWog4DBDP5\n92Y7wK1JcrFwmrxiipjI+zsLrHtipQ+dimag2ArNb60GHfqxdt85TSjWUPCEQis4abeLMRaLt6jW\nz6NgotRsdjXB6omb3MgL8kLuu7wc8yRUTQlf5iS1zjDUq4ivnZFmYs2WgU2onZb3np7htdQDupR1\ncWv3hEkiFrNTzHFU2dpwC4pCvKZkmVNqGLdwtMnLGbFzJEns4TMolfdgUQPfVDj5ImI11UYwDR/a\n16+x9513APjAMHFVQzMtK5xKE8U1pWuLUvrK35AZNfoL5Xowj3DUw3CyAEOb0Sx/qL9rkI80fPAz\n0pWcux74kIvXYGWXZFtyTzVF5hqVQ03h/ZFp86be0937BpFqWVwPj6m68qwkePrh4+XYFCqRYD8P\nl7TmsgjKHQft0qXRq5iPtSOtjEhU1KWpmWKzcthQpaR6XMNW9+q08qnF4g5mNHC1vyDK5cE2vZRU\nH2IeRpjqMjqBTb8nkx206+QaYvSUuCMbpTzcEve0Ok0Z1mVRvTLbJtBSn5lDrn0FjrZZlxOHylIe\nwaZNTctUZWuHVDP4TRVCCa1THFM2m+TCweloqFQPMIeqjzl0uOPJA39zIC/Yzp1X8CMBrqT2u3wl\nknJU77xNVinduTckQzaZUDc8Oy8x23K9aTLD1opDOEspCwnNmlULe1e+l0xl7svlOROlhvd2UkLl\npXS9AMOQ3E2rkbKnuY8ol40pzAZcKKR9OhlQ25FzfO3rv01+b82rGeFpr8GliuMOnVfwVUA4yJuk\nTfl9I6qIlsq8lNgsY6WgVyDQVpozGUvIN5tFGB0pAdeeTOm2ZO6nywRXjY9zruedRuQDOUbn8Yqn\na9FYw+C4kOvc1I7SyoRoKZvmRZQxUfHichbRcGRt2d4cN9Z+HO1zyeYRpRLievngOb9kORsz15Jz\nvx+Q6vlqKjKTLFc0lI2pZbR55Gm/Tt/gtgpZfjW3iafKXvUxx1X4cDWuxtV4YbwUnkJpQhxAo1sj\n64hbW1ZNko5m/ccFpibawrFDbCuBxlKsY73lYmgm2Gwk6OaJ5TxlFYnb6TgjFpFYaSMQ92uyrDAV\nNzCMKi5tsfhb2etER5IEKi2TSjkQJrprW5s5dV8aUaLFkCSUvfWCGbVL7YWv1cgvVXzlXBJcRtrG\nbqtVSZtkygOYXYSUe78un40lsxydlMSmksL0ljgjsaTFhxOmSznu282MqJR76msytNaouGj9BgDT\npwmfrX8egG949xmotF7m1ki64kHkc2FXTrfHpGMl5sjGlCq7ViUL0kIs3srJcBbaEOVLOHAxHTBW\nApVqVrJpatNO5uLVNSFmWCyUt8KtpCvV3rpHR3Eh9++PeKpNV0atxSKR5GiRz8m0qSjVBOziZMLo\nUDkizmImc5nPXsNGGdVZJSbxqdKpXcpni9pTFkqRbkUQKW/Hoj8m1EThajHnQpPJpTYl7Q/2sM7l\ns+2mRTWXuS/zioZWvNaUmHUrpq0kLF5/RDEWD2TmnTCcaPNbbtBoyTUlpYLCFiWpdp0mC5fimpK+\nOBssk/U74FDbkc+MYpmroppxph6fVf86bynn4+RkzndNuWavTIjSj2qY//DxUmwKVQHZCJ65T7HU\nfauCgqO5uG1ZZRJNxHUK4xWNM5UOl/nHddtE+nKbUch0od1r4wmPUlm8b7ZrxNppvSYKWTVMAtV3\nmFYRLeVMPG7E/JRuPHHYJ1Bg1K8cKy/hhY3Vlri9nLrM2rI4aqOK4pq8TOUwIjXFXfVUgcioNTAM\nCQly9wyjrei4tzPymTzQe1OJX/eCiolmkINHDRaqwRgUIx5M5fqvXbq8q9WDvZ/Q0mp4xF4leYn3\nl7/KaUdepl1/k6mS3y4cjzcvtdSnhDPuccFEQm6cYUSlaLwir5GtQ4KsZKpake5EeS6tkG3NRSS2\nQTiW57T0zxkoSUyZLSgvZHHfW34DgK63y4WCu5zjGrWmbLxns0tQfUujNEkqzQ1oXfSsiOhfSsjw\noIzZLhVEtbFBw5frmJYhpZbnWOi8VD1sRZtuNZtMJspCNclZaHfs5GLEWD1ttRt8EA+p3daN8KFF\nq5DjTTFINNfSs5SU1nShKxWHm6sulpbXF2cxw7byioYdLASIFSsvZbrKKR3Vd0gqeCzfm3UWDBTK\ntHIzyqFyZeqGbJ0OmUQSopWXBv/8VOZz8OmYo2fyat8rDJ6tPtmm8KNK0f8XhmG8YxjG9wzD+NuG\nYfiGYRwZhvFVwzDuGYbxd1QT4mpcjavxb8j4UVSn94C/ALxeVVVkGMbfBf408MeA/7Gqql80DON/\nAX4e+Ks/7HiVUbDC48IT72C1cNgcyI5am58wXsrv215MtqbRXTMAJyWRpz34VpNcE4KrrENNBWWW\n2QaNUKG7be3Ii+HSl100vogZbgsUtZ01uB+JVb3VLHGeKbS1IRaq2Tax/UO5hs4cU7Ps4yChG8n5\nsqwuGVSg3FawyijGrrRikjewz8TK5X7ISv3VgVKIz5MaWUvuY+zcJWjI/U8eOjxy5Ljv2SlzpWIf\nP5JqyfZP9hlH0kV4XpS8ci4dnsfNMTOl6OrWlix3pAOzb3T1sy1cTc65QRdnqYlGt4UViEvm2y6D\nhfYrDOTfXv6IItK+jUnJk0Tms+9VTM+U6i5JOavkXi2tPiwnC44NOd+DZMiHpSb48jaxUs3nZcia\nR325plyfFpxuC+CqNZ+RBfL75SJkmaskQKMkMFTBS+HTYcOjg1hYoyh5rHR7GRP6NVlH09hmqJUr\nTzEWbs8mvC/X/hiThRLVpICby7OKDQ0ZzIq3GnK+/FqNREOboVVRKcCpYzXwIjl2WMr3zKrEd2Xt\nVY0ai754YT0jpnQ0PEjnXGiC3bPl2ZRuk8lYwqSV22JrVykE33V5YsvcRlkK5vd7Oz7O+FETjTZQ\nMwzDBgJER+tnEF1JECn6f+dHPMfVuBpX41/h+FG0JJ8ZhvHfAU+ACPjHwDeBaVVVqgjJMbD3g75v\nGMafBf4sgGeZ5POEMpgSObKb77+6jxdpj/nuJvsKpS3CJakmDJdKtBqmCfW+6k66Aa/cFAxBo5rj\naFdentYpa4oOU0anIBiyOpVjfePsESPWdeMLvvddsbz/Se/zTHbk2I7qIvhLC0MTan63hhI40842\nKLQP37EMSOV8ZizTHMURkwux4k7lYnT1uF2b4gPZ/Y2B/K7pjKkUF1HcN0lbwrZkZiHBQpt2FgYj\n1TqYG4/k380vEDyQJGjXOmOVyGe3zAEXLRHz6raeYCylYSg+VMGaZkF7V5W7L22ytb5BntIw1Qvz\nXGoN8SwmY8VbxA6Xmfw9rsYYing0Yp/GkVybPdzgCDnev6gEgn1n/CpvhWL5pmGLzo78PBnOMDPx\nFCp47m2Fc1kXd6dTjj6UJGl281PYam2LjQfE5ypvN3Ko1SVXtKPQdK+KSZWCbpUOaVQyL50lRIpo\nrPv58/KdF8nvvns55wtKEbgfpjxcr2wDXMUn7GfaJVnVuVS05eGjipGWkavLBe4NJe8tDYyOeBCL\nZ3KfppljK9fFxqCOoxgD1/EplZoNz6Gbrd8BXf/VmLnOy7PpnONHcrxTO2KZyPdOKtAOgY89fpTw\noQv8HHAETIG/B/zRj/v9j0rR+75VXdZTblU1bF0EcRniHkjyxYv22NyVCYnO9vkwl4X1bKauXlEx\n0KRk0D2kOBU3360fcxquMeX3iCLtqFOiD6d0yT1JxG0EJud3BSa69eQWF4lk/v/Ga0f85Z+TF+HT\nTZmuDwc5zaaAgszLC0JtAV5YH1IfC+2Ys+HiKM32dCkv9IOnc5KhLLogsOk/kQU06c7pevJSzELB\nslcXT/hQCT/eeKPEVums1dMxqQKkHnj5mhOETPtEeuOc5IZg6pO0xApkTx5ZI26tZN6GDZ9oU+6P\nUsKLTmuFkcj1loMRsxNZ0PNqiDuS6/R7JSvtGwl8+fdpZLFYyks6S1aUnlzQ9fw6blPupWHPMQ/k\nGHcuZWOaBffpn6qAz6tTolMFfYWNNZMkBtVzncZS6dK9x6eMviCdmHu3Kq6j9Gi5z/1TIR9Znq9I\nFC/wpC3HfbUJj2x5jvNn95mWcu7dN1r4ih0pVk16DfkeSjl/rYDTp5L4HOc5uSYVqxJsT4V19TWq\ne0saDWX23osxJ9qVuztj4YpBsXshpobIl7bwbrqjgFIT6cvOGQOlyrt0BhiqbzqjxjXdWCqtguUT\nBwLZmHaMp2xohSc+K/jwea9QxXof+7jjRwkffhZ4WFXVZVVVGfB/AV8COhpOAOwDH1OX5mpcjavx\nMowfpST5BPj9hmEESPjwB4FvAP8U+PeAX+RjStGbJXirivPkCUeaqHn8TsyXcqmxewdnoIivxtaS\nKFHFZyW8MAqb81PxKlr2BXXVRTA7Bj3FGHTKGjNFlVUNcffcoqCWyd+fPbmgUPqsXxu9S+L/LQA+\nlb/O/6B6jX9C99x20SCdi1WqWx3m6gZvj+/g70np0Fv4GF2xpo1H4pnsByVLTWol5YK29sXXqw7x\nntz3RqiWLws4eiohRTq0iN+X4w5rE375WK14YpCqRVj1xJqRPKNn/hEA/sBgwW8+FQ/LmlVcJGK5\nj6MzPq3177kpe/bG4pC4K3iKbpRhtTVkiHfwFP5d73qgpKppUyzia8mIZU0s33YvoLMj1rjRbuJp\ncjE3E+7P5Pq+976Uco0w4r37ikY8KUC1DIpuhDn8qI6zDtWZeDK9T/VNYQvxPxwy/MM/AcCP3WzQ\ndP99AJy9d6lOFL8dq5XfS3j1iZwvano8Ug6E5tYRrVDuO9nK8c5lTT2ayxwPn8yIVYHczCscxSaU\nFQyaKkCk4YNnupxp8njPvWShb1dymTF/IKXm4ksmQV2O9/md1/UaKuqGUrAZNtnuWjDHJU80iVuz\nKTqSeLeX4t1msyckFxLGnRslzxZyz+/0CjZP5BjPKnCVFDf/mD7Dj5JT+KphGP8H8C0gR3hd/lfg\nHwC/aBjGf6u/+99/2LFMAwIbEsNirC9p0095rACam+UFvnIpppmJry5Ty5fN4SLMKRUIc/E0o7Yn\nLlcwaeOqJmBht6gUR29MZUFM7BXRWlWWnOF0LRdesvj74oIXP1nnJ9+VY+x+Wc7XbppEqm3p1Cw6\nNXHr5r6Bm6j76VjPgRTV5trHr9MYaKyelkw9BWrVR9iJbGTVSh54ktWYdCVGDC4SHms2/Mk3l4wU\nZ5FR4Wssap9rFcV2KdJHcu1Wk/RUEO+W2eVY2/Mso+CpJe7strIIn40rbFM2sabVwlFCmtRuYHYV\nojy1MbTrNB4pqKiMSfsSdvQaJraGDJ4bkg1VOWo+5vEzua/5XO757OFT3p2pqG4DEm1xNs5Tio8k\ny9c/5pW6xnnI5f3fAuA3NnZ57dflpY+2juh2lCSntAhVN3Os0O3ZhcdYGYtWxSZhT9m6L0OeeTIH\nw7spj1XodzKRuZ9lkDySuYjK6vm1lRV42m+TdTRnlCTUlZzm+LJgqaI1qzCh0Oc0fbCgvSfz1WzJ\nvyYzShUWtn0DI9b2eWcIlsyn4WdEoeIaNNd0eWEwVQGY6UlBrrPlnIMKXGGaYBr6Px8zt/CjStH/\nJeAv/Y5fPwB+349y3KtxNa7Gv75hVNUPcNX+FY/97Z3qL/xHf4befoGdiVt6+LmIjeqnAOjupcyV\nkKQ9OMOypDLgNWVXj9MBhuoWLp6ZGEgCZ1hep18Tl7FtvIG7lu4yZIcOzEuShVr8zpIsFtfXtU44\neSgu4WL6W3xPe/qbquH4l0//G97+K2uBFKjUimGAUZddvL/V4kttwTpEKt5SmDmWWvmaYxGuM8uG\nRb7urlRCk0kWstQGn4qcrNSQxzc5K+RDeRPSc/E8VMeFeFLxal066z6oxfz8j0lCtJvknM5kjprA\nUJGAFPLvKCmoqxeAB+lEqxpZTKjVBcstydYM1MplEc4NMm3sWaUVTUUVVkaNoCGW7Xg5J1ZthEyh\n397AZCWXw5/73J/jr12T+/jbf/LTmIkc48NvXHA6kzCtzMRLuzGImcsjZbNV8nSiVaB0xt1L8XR6\nJkTKm7inmhzTDLY0UexbDdpacRhNpwRaJXpiVAy0Q/PhSMLRW6/tMM1l7e3dKHl2X74X3Cw4/S+/\nDsD/tH2qD81hLeYDfN/NGdT41HWxkwdTB1MxHp4qTftZxjRTBXIjJ1zzisawyFVhfFWQKf6mzL7/\nDHra8VvaFc26eH95ldPUZ7m06uzuCor2r/zi//3Nqqq+wA8ZLwfM2S3JDlcspw1aNeUDfHDI3k/L\n0w8vr1PWJYP/8NslR5+VbPezUyW/aCY0lSK91iiJT1Ve3btPqmKrxltnlKEyJzXlHGbcwR1o2bDw\nMbqyMO1wh+5NedC//H9mxKHEsMMHMune31qxfqf4yJ5qVAavJApeaTcwda+o9VQ0N2rS6itePqto\nachzlhT0NVa9SLWz0Ko4XyqHoeVQKtzVLS1uqJjIyXCFernoegEgCaWD80ZRAwX3zMqAUt38x7MY\nS2HM0VIFVRsVifqc+02HJ1rS2ncMzi7kZrdcjzNV3NpU8M/JPKFUcIxrGTTWbFhWia1dortmk+/M\nBHY8ChUI9uT70Nvy7t/kfyv+MACNwOMyEve5YT2gk8jGcqG6k0napBzoHMclG9flHBePajS25Jom\nlwbXr8saWGtUbvo25ULm7cZhwN0nMmHdLZdnY7nXwTWXe+9KuLXqyXG/9jjn0z9VjjIAACAASURB\nVP+WHCOcNki1zfrJV0u+pGtEMVG8sCEAa6/dTA3aqhxWf7XCVKKdtCnPOouHNJQpapyXGBrSLSrj\nueDMo2JFXXeZSMvFNb+LoVySuHVybRFotwPGCm22A4NHi09WT7jqkrwaV+NqvDBeCk+BsKT8ZkLv\nlTOiSCz35bUlh4ufAcApHhHnmjlOzrj3SHbB8p64RbWd91j0xE32L44ZPVJAS/ceWaZakbMx3kQw\nBN6uZJvn9evULrTzpbmJq4QlpWeSTzQD7MI/+q4Sa0TiYfzzkBc8hO+PiqknU3r72MV9U3zmdCW7\nfauTsF1IBvmkCQ0NlXrBmNs17eZU9uIw9Nh6zvBcgCZdaxQ8XaklcXieT/5oXvmRQoatKGaqVRkz\nO+dkzYHg5WwmKueu7nV37nDRl7/faPUZKPDmKMp52xOL1ndh80I+4yq82uxW0tGGWG5PgU6559Nw\nZQ6/cx4+bx5a29KPTt9fG835zaWwPP/xcZ/6b4pH85sffIfNunxyb6VJ2VcC2lNVXd4LsRWHsre9\nxPiezNG4H9NPJIQKDuR6dstNFgrUOujvEzQk6Wg+mzPpy3oYzFzejzXUe0fm7dHuJe4vi5t/9GN1\nOsfiQSzuZPxnv8TvOtb3aMwSVq/K9bvzknRfyW5KWQt3kw32TDlHZC54S+Xsv5vaDLQRzjw/xVhJ\nQnusTXBb+EwVJ7i1Krl05Bjnc4MqV4BUbNIdPHdlPtZ4KTaF3KkYbacMLvq8PRaAzZfjEY99mRDf\nsLj8upTOUvcJfKiErorDL59V5HdkUU1DhzQSYM501uRgR46X3D2iLITkc7YUZJvbeId0S0g7W96M\nRAEmrplTq3y9uq3nC3qh7bRG+eKiXoeOlgWfV9KT0+sOk1IeXktVr+rWDdKaLLpt36JvK2a+bGH4\nsthutDWrf3pBLdN+h+gUWxl/ojCmnq9JNr7/kv2gPjibklAVsozEIFlXDiKbnV15qf2OVHVMJ+HQ\nlXl5bfcAs61EH+GQz63E9V+ej9jQORpXskG+agekQ4mHndDikS9XdNDtUCopSM/Omd6VzyQ6c6vf\nMX+ektu6XxuQnctn6hkYylQ1HshL1ctbTFuy4DsrG0c1EvLiGmVX0KK3C/e5bsOuKigFiUdbxXgd\ny6Fryb3OOjbb2j5rZ1O6SnZzTzeK+Qje1m7X4WUXRvKCxY+3fsCMvzjW66IKYNaRCtZisU/DFV7J\nka6FLb9OX9vTt2wTV/sWbm1E7A3ls5fdPuM1oYzGink6olWqDIKVUiuVvWq8ZBEroZC94nT6yV7z\nq/DhalyNq/HCeCk8BdKS6vGK4eFdmntiwZ7t3Kc2FiXl0anNsBQX1j1bYDTE9TUdsT5Vr0lgyM+F\n2SRXwQ5z0yKxlZwkj3GUrirqy217ZkGpHApG0cZYi8zYBqa6vrv7LdrHEnY0hgKDNkDhIOK2r3fW\no8ol98T1fdOw2VB+wNmWWOPDDRPTkg6/ZjAmjcR93GGJ4cuO307Ewp0GAXtNsS7vhw2qUqzEw/M5\nO4lYq89YJb82Uk7BHzCtGRCp3Hm+yllmKsjiGfiZdOV9dlssv2P0aSuUfH/3dXrhmn59n/25JHnH\n13YoT8SKLdULSssV+Z642o25S0N1FWu1glkuCcqfthx+Sifp739XLPDbRfnckpbAhUKNo9kxeSi9\nG/aii6malr2ZXE/9KAbtTqx7TwncQzn3IoGahAxO7ZRbLfm52VM258Y2gaGWttHCMOV8tV6T+qUk\nki8il031pq7pmzFyZvBEtUeTMa8W8ofxegH8LmPtTR5UFl98Vzye02s1NuaKrbAEnLc9WeJ2ZQ63\nyjrLQNb9G7UZxpvy/F6b1PggFsj6YvK+HGscPae/s2ODUIlVEgMsBW2dJzlm9nFF6GVceQpX42pc\njRfGS+EpmH5J882QO/Wf4GQiFui6HeK/IXV+8+wZo1xJLhOXlZIkNzVeTqdjfE+6/lbBCKclt2WH\nDzA4BGDZnZHlcmxnItZq2eijXK34uYVvSxxdWDUq5RAIuybNVyTevaslTc80yTWZ51Gx6SmSbNuj\nsS+x5qjj0MrF+vfEKBO4R/T25RxVfIATSMJpNevhqkpyqX33jaVJokIurzBnkkpCI8rf5cwWlJs/\nv+A/TcRS/PdL9ZQ+Mq91E5aW6hU2PVLNqTqeh6mCKvVdubiWH9DMNXHbyJ4LndhlwtxQZcmwZLYj\nc2uW4nXYeYCnZdgsMBhor39UNqmpmnO8d0BDcQN/3pJz/FffeYdMWYxcI+fghljuKuix2JGyoJ/c\nhbp4TtGhNpI5XbquWEFn+DnsV4Rizq3v0NM5CMxt3CP5vF870Juu8EJlxK5XmLk8h1q5JDTEE+zP\nnrDxWcHAHGrOZPykwWRfG5uCGmOlWFstXiw//qCxdiZW1w1iT75n2iGrSrU3+5LvagY9WnPxCut9\n6N+W3++0GgwVmVlttBlYktuo2jKHdnmJjawLJzKfK7Pb7oxHmjAtyxWL5Sez/S/FpmAXNr3pBn79\nK9xyhRsxb5f4j+VmFstLkvdV3Sg6Yz+Tl7OmJCzu1KOo5MXttg0yRxa8m/cwA9kAmrVtDNUSzG2Z\nvHiWE6hbXpUDMtUitL0clEZ7x21zaym8ifcrCR8+3azjKCPveZGT+fLzH6razysDDa8i35CFeZAp\nZn0zY9vSzrqOg6cZ8lFtQkuhq4kpizXI97mw5J6cwieQfBmJswmake5tbPC41FZzBeA4WcZTdcxz\nDJgrbj+b467XcWDy6lSFSrZlge2HFd5NeXF9owXaWhxOQ+pKj2YVBpHSy1sSzZE3I5oq0hunGYFy\nIsZbIbNUk5nLMfX2IQCXCjX/dw2L+Fxe6LdXLivFfdTciEo3r8uyzVR7QT4zUjbkrRW+9hq4OxH9\nRObWr9vUFOBEt8aGKRunYyktv+FAR1/T3KQsZzq3CU3ttEz7ffbP5JrSQOblYfCMzXPZnO+2HnP7\nXM5xfEexMP+SYQC2Poejc+s5Yc7rdgWB0qYpKKr7LKDYkxe+MfbwzmXTWEwMPJ3oxE5p5vLMKkOu\nd2VsMimmOm8m01S1Ke06dUsrNEuLxE9+12v9neMqfLgaV+NqvDBeCk8B18A8cNjyfoInjngEnUnA\novHbAIzMIWfazbdol3R9cSnzXDkW6hF15cJ3ix7pSkk66jOceC0TXmPdzTJZKNorjcnqkvhbEpKO\ntSzkg+vLbl0Gj3Fur2XL5byt3S65ah86pyv8hljjJ9sd/A0heFmGIw5T7a03JLTpmm1i1UZsOSkZ\ncr46bRK1KoWmDEPfws7lfKZdo+Wpe3nNwSvEYqRlwKuvKRxZE0v35hF+qt2JrkWuHY6V65NpSc4z\nahQ7qu5dk/lxGn08bUZLBwmeZi5LOyDH1/vo0tImr3xTCVHdExJtB7TmPLeIrlVhGKoE7lWc53L9\nm1viSXzG3+CualUYD5/i7Oq9BlDvrBGbDl2VYcsDcf27TkCaynxbeUWoOm6NrCR3Zb47eY1Kcd9r\n76hwG5ipHssxKdM1bqJHrEnqPFzRaYvn0bopn/2c2+XJ4lsAXItcRsromuW175cc+cFjEMiaPHVd\nCk1gbsxr1G/I84sWco2D7jnpB8qh0BnSOZFn2ekXFHXxnFsNk8iR55Co3klzcxNCmc85MbeUCf38\n9BmXqlWSBnNWPzzSeWG8FJuCmRvURibjwTPMpsJy4+8RT+VlOnnnMU/PZZXOsogt5MWatLRLbZWT\n3pAFUfMaBNqLkJsrIs0NuPMLfJW2rxz5fh6UnFxIZnY/C4h8cblatQaW8oX32rvcWchkV5+SB/v3\neg0yhVifuSmrWK95XGC3xbXv7GzQO5QXr6uuaLsJjaY8WD8ICLQFvKo5hNqD0lAY0rgwiAPFvcc+\nvZpqP1odqpYqD9keiXZXmgP57OtxRqzVl4VjE6l6U6OKKBRYFPoxdVMZolrSFl6lFWVNzu2FLfJK\n8gFlWeHrC+b7NqlSis8Ugl1Y0OnJy504OfGlzr2XUldimCycMVF482MlGNmsb/LpQ/nd2WKbEwWO\n5ctTUOGfKA1ptGSjGmjlqBMElCq06uQLPFuu37JjzJo2gNRcbFXcQnscSgBXIV5xhRHoGogimva6\n69QmLbTPoSf3uVu/z+VvviFz/+hbDFSdzNiboY2PKO/KCwAy1zDoq+pVYxDw6oGEM27t8/yMYiiq\nA/272ya7KWFsL99jXhvpZ0vqnkLr+21SPeFOX0KKe1VJMFIw2aSg8mTt2Zt1gruyqRkzA9P5ZP1N\nV+HD1bgaV+OF8VJ4CoZT4mylNHiV8lLZl50VM82lL3MLQ+viidEmaWhlQBuKtt2SSmWy5m5OV42E\na2YYz2TfG/ULGspVYKby/XFRJ1Sk2YPxFNuUbJ5dBewqGYpnZnQP5XgNRxKDywLOlYk4NSIMS/Uq\n/ZK6YigO6wGNpWS+G6+LFW8se9Tq2jxkemTK1efNA2rapFWs5PvWxgnBhSS4mv2IUqnk6lsZ2alS\ne9VDasgx9nbF6/itocVE1XDyoiBUFe+6VcNVd75r92l9TixiS3Pk9U5BqiFDvjUn1kRq4UW4z6HX\nOZVqJ3S35cNFtEeSK0uyW7GhjJzzpctC+Q3mk4qRoaQuGrptmHuc5HqOnRmcalXGLClUoXnXWtHW\nDKt7IHbYNEoatljBZNEmO5Bws1ZsYCpO0sJjpTwa1rpyYlZUyTqcW2Bow5cdZM8FZTK3hqEISaOU\n77nVTSa3pFOzNexxphqTi3mFp5Y7/kin8drKOraJ0REP6tY+3O4Ie7azn+BsyD11bqn3U7WZKKzc\nWBZsbug12H0ynfsqz1CqChZDedZ2d87lSBnDOyVBKB5pwQm2JtvD5oLso/DRjzFeik3BLhw6iy28\nzQe4F0pCYmbsKf3404bJzXvqwjdCXivEtes35bNHj/tEb8rk+J5Joj0D2bMGYV1yEf3IJ9KwIlAS\nC7cZ4Worr11vUS1k0YT1GUWpvQjlJqUCXYi1izJd0GIdk3qMCzlGvzBR2j76Gzt09lTBSpWsXNvG\nT5UP0DJoqL9p+gmkSheuTFHdYcG5q0Kikw6FEteWT12WjmSqr80Mjk/0Mz15UQYpHCqs+v8tcnwN\nH7puQVtLrtmBxa2ZCMb4WnHwcgf7uixMa9HF7shxrWybROPopjUh16mwDAHYFIML7FiqQctGRHQs\nJc6k/QBzqVWgwMD/QF6XY1WTav3EhFePJJ/zyv1DvurKy93yumxtycsWFi2WO/qMA600tQ2qVBWW\nvCnBSPMddkrbURy679FRRkANwzGMFmVLNiY7c0l0My3DPoYlhsgeTon194ES0A4nGW89kbXw2+UT\n9rWv5uQL0GrIOXaXshZOyuI5mcqP1x3aTQVZ5XtkWhp+zQtoaq6hl0vo49ba7G1om6sdEOtzWqxi\nPEuASqPVFs37As1+dCJgsvNHD1hdam/LMuOilGPU7zTY6si5d888TrQSMebjJReuwoercTWuxgvj\npfAUKtci229RZV1ypQAvMpeVLYmTnZbP+ZuSXPni9jVuac9+oYmc8dGEhmb4E7tJpVWGZVBi98Rq\njqZL0qVmZ/sCGrKiBnZNLObpLGUZicu5jU9H6dftjRWlApUMdf2r0kHb/FkmCTXVGZ/YJp/SBN4s\n9EiVl7BUGvZFVodQ7mkrqFOqtmGtLEiUdh5TPIVLK2d+rLyFzQsm+vcLKybUenzYduk78vnhM/ns\no2ZMU0ldSscAFc5pdevYbfGw9pwd4j159OVUricOTMIzbdzqQqwydqRDqpUyGDsb1JR3sVJQUeAP\nCLVpKb87Z7Yllu3yyTbWRGnZxxbHLeUOiOS802GD/p54dGfNCx5rB+p+7YCGgrby9pjramEj9QKc\nVU6kYiqLsmSpfBCelZE6yqnhVLhduRdPtSjLysZUXEBoLVk+VLnAg2O+cyHf21uZeJqsXCm+pZzs\nU20/lGuPXRJH7sNctdn1ZD7PU5lvI07ZVPlCf6/FQVPc+SdhjTSVOepfDkgHcr7lUK59v20RWHKs\nzM4YX8ocm37IyQdi/YeXd5nUvgPAty/k2tv3Yk4UZ7P0U94yJaxsPAiZKz5j2UiJF58s0fhSbApG\nUeJPQxIvJN6UxdGazXAP5EUP4xmW6g4eP3xG95ry+2uW+uTiHGNX3M9Pda/RPhJ3r0oSLkPF/o9h\noZC+ciETfddtYcdK6lJWlFvaM7GdcaTusVVcY6w8jnWl1j4LxyBrhqwqiJRnfRUX3NP4+pXpGYUl\ni/DhscTfg0FAuVBQyaBDpqR5RmCyUjalciwHfnb2lIcP5YU1LEi0zDh8GnOmtN8ny4jZQymnXZZK\nEf8s51LXQFXZeIFc8yyGg/6aRnzOxVPpGFXPF3v5jOKpzEujW8fckoU7zX22mpIb6W4W+J5WTAqZ\nt3ixJEpkXt+5f8LTX5Hn8DXrfW6n4vJn6YzzB3J/54qU/OzmE7ZH4iYbj2CxBtuYCaGyEGVBSmat\ndG7lZSzKklLnYrlMqEbyggR7A8ZKW7WXPMOai6ttd7TbswjJ9XuX4yG/9XUhkL381RFjFZB82G9y\nZ0/yRn4mHZeLZsZ797RleXzONhIqRW2LpRKw7s5UmcosWKvcLuItpi150bc2DHqbkhCYpjY3Mt0U\nMpm3RT3GyOUcvr0kU57P0fkZ55cS/r7zQYRRidGq6nK++/MYv66b2OMLvlqTdfG5neuUM9U2WXqY\n5jpsuAofrsbVuBq/h/FyeAomOHWokh6NC7EI40ZGoRRWxaog2NcM/5MNwkSswKguVumkXTJfqcJO\nYGHPZIfe3gi5HIqf/yy75OJMFXlqSo9mFVSa3R0n5zQvZbd+767PoZ6vYYxR0mVWaz6CtCKrVAAm\nT7HV+iVlzEoxAmnNJl1q0rQnx5okBrFSl2UXFZub6ooabQKUJ1C9kscXC44juV7PtJgrVCZ0HWqq\nXZlnMdvqpQxViTquKvRyMPOCSvtA3uh06W+K57UMAgpNSY9ysfidecKpVtr9vI4fKZnIdMIqFn6K\nHW8P01Xm5i211mmHc6Uv/x5jHirWIUr6lJXKfPdLyvORXrPyTbR7PKnJ/b/DOfeeihucv/oGlkqn\nD8yK1JJ7LQw57mUYs+Frn4jXZH5dPJd60Gau3YDJmcG20qnZuXbEtgqmWnH48NtnfPPikVznbMTK\nkoRfp+hxTa140BPQ0LvjIec7cn+NfMB8XeGwHVztO7irmI6CHEcrUTEhT125j5u1EjsT77XYgvvK\nz+G68qyTyyZ9tfIt08HXbsdJVHD2vnzmPBhyzdE+lkC8ma2FQV4XL7RTdpjo/V0OSvxKzjebjsgX\nn0wi6spTuBpX42q8MH6op2AYxl8H/jhwUVXVm/q7HvB3gEPgEfCnqqqaGIZhAH8FUZ4Ogf+4qqpv\n/bBzWJVJIw/oBSMm2ojTjRK2BpKoyTsxd56K1ZlfG7PtS1fbt1ZiDW7dH/HrmxJ/7xHQUV3JQXTA\nrCaxoR1WjCNtJIoVxXewYE+bo94rRtRUo9IzHrGcy2fDuP/cCzkfaUJtuSJVvoF6aTBWhtYSi0tN\nLt6b3SNeS3d9INYu2PA4akjJbr5h0ptottKZEmlf/FxZhL3LEEPhw+dpzsVUGnU2cpeZI+e43Q14\noGjKSJOZ9cgkVk+h49TpaTK2TowC99jsVWxo1+XDk0cA/NZv3+crqg+5E3Rp3pHr/NOHP81yX8p0\nW8sAe0vvdaGl1eVDTNVzbEwHmA9k3t6ZHhNo7f0iHPNmLJ8/V0t7a3xJcSwJxZ952uefjCV2Hpgt\nGhsyL+bMgracW7lKiaZLvv1APIK3pyO6riQ87+8ccKuhVHeNkN1ELHZ2pJMxrrEIVRF8taBxKbmG\nu+cjni4lOfqF7oxvL+R4/+Hv+3EAvvSaj/8VAV+81/0K7TNZO+/vFZxow9qaQSsqbWbKNuUZGauh\nPNNH84Rv2/8cgAPfJdmSHM1P78ixjpsrflw1KGm6oGJGxeoSL1CF9NEmb48kQf5o+RUArnkeibI3\nvUVAGMhcfa7c5aF6W39sXucXtcNsrXDyw8bHCR/+BvA/A3/zI7/7i8A/qarqFwzD+Iv6//818G8D\nt/W/LyIS9F/84VdhY/T75Jc+hYJOSB1U44fNVkn9TZn4tnubciwu06ZqNT69NWW/JRPtzHr0C1mA\n1k7JxqXSh3UvcKfa+2CI27pxbZsNrUvHpz3eG8kZ++Me8yeyeBcHJpdK7Z6tvbAE5pplTvMKU6sT\nq0XCW44sxnFep9vSLkEVXtnb2qSlsGvsHKU5xCgqojX9WyV/Lzs1fIW42ss5TUfbwZMRHnKOyi44\n6msFRpWgpoZFw5EF4dcNzK58b2tvF29P+wfmTbauyTWPXK1kvBfwmi+Lf3CwyU++JnqN27fbpKly\nQg5MgljmKPbXUu41Ak1mNj9rUE108wpyOppIDQYDtrfle59Zygs/81Peq8uzHk+fMdfEJZvbeCt9\nJuaSdKWc921VOWq1GTbks9ebHjWtOh3tXsPtiONrLucsHdnsi5m2lDcLypXCtTsDNj4tayF4F3ZT\nMT5HmwP2O9qBq3O1u+WRHv1DAD6c5XymJffXs+s067IJXTaVrm5UgNL2P5s7vPqmsi8nhxz2labO\nfosbt+XaOn35/rZ9RuBqz0U5Z6pt6fPEAFOeSfszHsZjeVbdiWxuAxJsTcRuvNLhUNnIq8enfK2t\nrePOjLT4ZGqSPzR8qKrq1/n/E/v8HCIzDy/Kzf8c8DcrGb+N6ErufKIruhpX42r8ax2/10TjVlVV\nSnrPGbBmsdwDnn7kc2sp+lN+x/ioFP32oIuTRNitEEPps7ok1LWem140MbQbLimnNLYkibIdKmNt\n1sbXZp+91zo0dw8BcF2TgSO7tZXfJD2VMtxJIEkyI3pIqyHErX6t4ECl2O+8adPbk918y/cYnou1\nKUOxEk+THG3BJ8VACXVJcIkEpMdPtr/MZl2+VwslMdpo1si0bc/NJuSZQnuLJbnW/5uGWDNjsEdv\nJRbxvLvPGoNsFTsYao0Te0kxkjm6eaBdeGnAsbrz5d6AbiqfjeoFgRKd9F4J2VHG4P2xLIFX/+Sb\nrFbiwjcHr2Aqc7DluVihnLvKlyRr93iuSdBxg9qOuL5/ZByx9/vEMVwUH7KxISHIo3efcBnKEhh+\nIGi8D/aecfdviDX7amoQuXr9doGpScLx4hIrllBBK6EcNgwanxV+i5YX46diSVtmj2VLjlc5JUYp\n86LRIXFm4edy7XuDPgNVZts9fJ2W1vpv3HyVnaUKtXxKXO7l29/inwqNBsbjx1RbYtE7X9zjA+2e\nDIfima3KEhRBOmRBU5mmX//0HX72s/KKvFoesTEQb4QNFdnJa0RLWQtOPGL+SO5/4Fv0XhePpbHV\n5PWbn9KbuQdAzfEpjyVcS/uPePefydz+Rppw9k3FL5RQfgzquI+OH7n6UFVVZRjGJ0NH8KIU/eu3\nr1Vey8BY1RgozHcW72Cq1HyRntFWIRNr3qJQundUDr3eGD/vW1g0EgYaO9q9LqkCfVJriaNY/MpX\n9mFnD39DlYdK0KQum/U7XFP30Zkv2QkkM/zkUhaV8f09gZIKbQegMkZ8KfkyAIdHKYeWQoFtWdhW\nVCNurJWVPEJVZyqX5RpjRNwWd3A5rfBVUHTHm9Mspc5tmlPGriygobck0/r2VijZ8tubDXY8Oca0\nu8vwWCo019tbWAqxJjTJTXnRPUO+v3tkQSgqRnltSlLoTeWPyPSlyTKPXMlJbGWfLtwR2TMFFvUr\nbr+2huu+AioH3/l0m/fOBJT20w80T/Iw5h3tbZmXJSqERPdwn/hCuwSTJzxUtajqXD7QvNZmtyHn\naOf7lB3ZCOxkjoWEGuMqo1T261DJYErfJtK27qQwaercvm6O2fCEMdnvDPGQPIelrcfnrsO9pogP\n4VpMDyU/VOZLqrFc20rVvSqq533UUTnnoJCQ9otvWPz+Q3mhm80FtVyOYR/o9cyvY/gagjycUjYE\nxm7UpyxVY3Kv3uezA31mprBDGfmHFG1xxC9YsWzJxvudbw6Za+vmquLjwhOej99r9eF8HRbov2tm\nyGfAwUc+dyVFfzWuxr9h4/fqKfwSIjP/C7woN/9LwH9uGMYvIgnG2UfCjH/pMCsLL27Tap+RKgFj\nsDXGq2RHjUoHcy4/G+UxXlM+YyuBSjveZ6zc/PtOHT+Qz7pWH0exANVkk3FP+fvVsnnejP38EID0\n9S6Hc61KHDlsI5bQaFdEF8oerbz7cfXibrp2k+qGw3BbrumnjR5tRQWaqHJwmlNUYqEmpkFwJlZu\nkTuYCs1O1LPZLBJyxTS0qj6Olvwb2DQ3xXOpvudRhWIG9rT5ym7d5M2OQLcfODOSr0tmvb55gaWI\nTMf08TVJa7fl31YWkdXl/uzePsaaqCV6BaeQCk5nFFEpn0JgiNteNEd4LbmebNamVhOSGZoL8gO1\npL8eclvVkx+OxH6cDAp81ZIcFsI/ADDodlh44gn5T9+C428A0O/LvJpVg01DQh82bYKmJmNjjyxV\nwcpyDJF4DVUlLnwSpSSKLdlwcgJL5qLmHUAgx675A0xfvJR4LHNhvj/kzvti535l9T0+P5a1F/X7\nzAvlLFgjSPn+sMuCEyWnuWN2qbflOuqtGo6yURu28jZaS5JYxY4uNohOxEs7fhLz5jUJCYy8wWYi\nIUjpagXINFgl4kFtlivePpa5LTxjne/ELcFT4Mok/XgO/ccpSf5t4KeAgWEYx4jK9C8Af9cwjJ8H\nHgN/Sj/+/yDlyHtISfLPfJyLqCyLvNemmroUlrj27qLGQklUnCgnb2nIYG+RKy4/V666uD7FsWXS\ns9jDt8XFLWYBhYpuFtUpC4kqiBry93atTxnL31t4DBWQszXdx+hrWcxwKTe1EjGXl9iqXiTUeM7A\n4/q8rqQt4U2DjjIE2QpoKguPLFBa+oVNIvsO+TgkrJRYRGGyllOAskmVo2FjCgAAIABJREFUnSa9\nNZNHMUIRvxwHU3LtCQiUB7Lx6gGJLSsiLW0ah5JfMO2bzJS23py0CTe1O9JRvHZRx9M2Y9PuPF/p\nZeMSJ5LQLN1r4T+e6md0Bnb2sB7q87DOYE9bv6s68YlMuOnNWSp8+05PjjU/GzLRtu2WVTBRLc3G\nzk3codiRIloxU3Leh8qv+Qc6c5KmvEwbdgtTX7zKzinr2l6dVOTZQO9Lrre0PHzta8gLC9OUZ2r4\nbTxlpzJGJqUSpc5VAGcabBMfSuizd9pjuSObRiMdrNtUKH4A91Jewo1I0mvLDColsTXzgFLXZ6Z5\nlHyckU7koZ6tnvBEK2KbR/3nLdy+bVP4Ekr4WnHIJzbVXK5ztUho35KNevtX7/Jw3RJfK1h+suLD\nD98Uqqr6D/4lf/qDP+CzFfDnP9klXI2rcTVepvFSwJyroiSfLCmaEYupcvylj8iWqhhdhGTrBiQ/\nZKAS9IUq9VZJifJ1UPlzYkO77CYj8gt1y+YFhhKOTI5lF42NJdf3NdmTdnAcsUDVzgxX6/e24WFH\nksz5dF0sWA4v8POt7US+KnhHuyt3VhlRsE77aq08iolVV9JIEtxMKyNBh6nSGfdW8tmT1GCzKRYh\nDh2KmnJEmBm2uvbOeUGihCO9IznvrZsH+EOxkl5nxFf+4T8C4GxrTKKAFqMYkiykMpDtKGQ4dLHW\nzMfZEEMnNLqYkkWauDV9cg1z4pVYtvyfTRn6Msd+o0M1VBVvL2UZyfWH4xRnJs/yXGdr57DJa3Nx\n8Y8jC9NSL6YscJpy/Un7gDes3wQgVWhz7luEitNYlQl+LFbVTFLSlYQ2rmHg1ZQbQkPNdGnR0ArO\nqqqoFPexKiNsS/kh/SWOJoKbWu64sZhhNCQkWniPcEwpL82timjdPYuMj/oLBRUf6HWenZ5z1pcQ\nJGmF1NWdXypBSpXAbKrdrEaPHUsrO/MF5554m23LxVppUlX1SiM7xJupzOAIGto9+amdLnN1J+/n\nJkuluiP5ePCll2JTwKqoOiVRWBEoUcRo0Wehi9E8XVHfVL2By02G53LDlqIAzfaKXMt+09wjWUoZ\nrvILJkoz7sYZp+dSvnmsx7XOjzgaygt23Tx/3p7rnfwYSVMmOKlCCt0M3ntPFyDK+ceayluG3YvZ\neagdk7cXjJUOvMzk+2XoUipbVGQY5Np/vZyvmCDXHM/W2hNzzjV92+pnDJfruHfGqYKpjr0FkSkb\n1uc/8zkAnHafsit/v5zYOEdyf43giEp1EUYL4znZiTtVkI9Z4mp4Va5yTO0ZKMMhU+UBLLMh0zNl\niKpLQmBVbOCt5Jo3Vo8p2hIe5MOU8RO5gWezGeOGdjNeVxWnuzb9DblnRgllojoanX3yuRz789vv\n87VzKT8mF3LeUQ4DQyxEnPhEvrjodlnD9DWcNBpUWop2Q103jRnxRJ5v6K+YajRa38lYRBJiuAa4\net+FalkQDDBfkVL2DWvAsiPnu1x0sTVHkf2A8MGyKgah9ms4Ix6O5J4Wk4SGr23yNZm3cRYxf1fW\n5mJpQVOQkmX7CLMma3x5Xqe8KXOwUjLb9HjM2VI+OzSXZNrh6Uwe8vlbck3vX04plUXrBQHP32Vc\n9T5cjatxNV4YL4WnUGaQnFbU3VMmI4UUZ2c0lEsxsR3m72qfuvkBRwPxCsKmZOpqD7e4DGQnPuhm\nLBeScEnunvHdUPrmv9jvEDTEKm4/VLc1G7KhMFjjWpftUJOS2YhIRUbiZytO72kFQ0FMlQH+Rxh8\nba0SfCltUXlircZ3J5RtuRdzrJBo18KYyN8v7BJrJuZqvKqYK9nJUC3mlu/gaKLVG5fPKdHi04RQ\n9S/rpxanDbFyGyiuP/kJbmno893hI4ZPlXMi/SbpuXZ2bvx/7b1nrGVZeh229snn3JxeflWvYsfp\nnuEMh8NgySQlJo1pUCBsigIsWYQJAwREB0DmgH/sH4JByJBMA7Js2qRt2LQkW6LsAWExiMkSOZxh\nNyf0dKjuCq9eDjeHk8/Z/vGt96aL5Ki7h13dJet+QKFu3br37nj2/uJaAW4/ELV6tk6v/uwcEV3W\nlePaZbTD1G10mT5bags+8SBKPAsAOKzPsMP6ijkMGMfiGOvbryDl3A6HKbK3ZFwPUgEsuf3JCjY/\nJ9Ge6zjEmxfJHihRWmRQMn8IdvX/AQBcIRBKaEeYM+Ki3DO0yMJl2E2okqaZW8LNxVRImZsejOpI\nmtKHldiH4ZLs5qSEdskxOUsB1pWkkWiFaXgO35bISbx6BP9QXs/d7JICyuTF/3Z/ngsLaUU0gelu\njAcT0TYSy8Za5yo/T624DGETw9ItXXQtwXMMO1WsMJ/EyMeYn5HkJxMNazbdw/RYfqM4XeBIS983\nv3UD6oFEKp4f7uFVR8YyYB7HO8lSU1jKUpbyiDwZmoKpENYcGP0VnJ/JiRqHMeaBnIzNcXCJEFTd\nWkOZMQR2QoQaN0ZYiuPs9MjCjDx6D6enKFkyuOv5OJjKafyAbNXDsoqzvmgjV0LgoBCNYHvUQjRl\nhd/0AG8d7wIAXpqLNuLga04lVwFPufQN7NhAIr99PDER0sZtZax6K0okRBTu53N0CNRgxRo57dOW\nL3Z4pEwYE7nlTrsLmGT+UnGEw5G0vueliG1x4J21Pg0AeH6ngbAvv/Vge4wKHXijqIUzyI14PjKw\nzRyCeiaaRppWEJA/MVsPYCVyM5sVF8Zc5sJdUzAX1MKq0ofrmMBldWlojJDQN5IrFyesGN1NIkyJ\npuQ25Pac3K3BIv9BOtlHxJp/ZVXhVsQh5vYKrB7RP7Ii42zeDzFuEWn5WoHSlt8w+zPEDeaZBFWY\nINBrQaTmpoFKKne56Tjo9+X9vnN2qf0kmQPFe3JO9KPMr2HOEOJoZmJ//CUAwBu7VVj8bHyBoAX9\nNaejqVDwNx6WDvKQ0HtrHXhjZl56RARv27gSS39Nr4KQRW71agE3k/2yOxxiRDTyFkPLi0MbI/qX\nDjGDJjzc/KFG1hNt62z3KzhL3xuewpNxKCQZZrsnyKwpjgpCcS1SrDZEVSuvtNFcyMINcILtUiZt\nxCSO9MEUu2sywS+oJmpV2dCLL03xRkM2fXe2AUU8w+iUKaCNCfqapKTeDrZqJOm4EqMkNmASrWLI\nh3o1FhW/4Shcu8D+sxw0t+V73+FuYhjJhl1Jd7GeSppzjXDbg0Bjxtj2atNFk6nZzSsGTh6KGmjT\ns3x0lGGSSjJoNsyQWeJcy+HhfMHqwn6O7KY8eGeDL0vf3B9CY0MOuh/Cn8XPH//nMiZf42hEYtaO\nifguuSs3emw3BFrywJqwEHJe4rOHSAhXVs1NpMQPjN4kSW/WwNYW1dK5DYfOX7udo0mINb+cYUqU\n7jsT+ezNW3V4rAytxgE8Quab0DA4X+2tb8XzW2JuHN7dAQCc+7+DaiaHlG9qOBnJULoVTBjBcfoa\nNvMw2utiai7mQ5SMrowXC9gGAXxmcyiq7na3BoP5ItaI6dijPdin8r1GmWH/lIlxawWY3waPUaRI\n68vLokw19vnwb765i+Q56b8xcYDrMhf5A/l7vKewsSaH1JV2AzFJg6FaiGMxC51ZBGt+4aCU/eb2\nEsR7RKU+tvHbDTn0f8Kv4UYq6/Ob5wGUxcSWdylL82EpS1nKI/JEaAowAdQ1Il1F05Ob9mylxAGd\nZ9uzBoIbcgZHWQsHD0WNGmZyMharEZw1spCcVtCnmlXdiVBlFlt/OsI05a3qEgYrqWLRkVN5zU4Q\nsLrSLxsweIuPG6+juilhqDFzCHoNH7d86eeqrdH6qDjtVCeBF0objW4NHrH8FXkRHHsEqxRtwzBq\nqPPEV26AG7fEoXRA9TzQX8bRW3LTWDULSEX9zNIYa+RafG04gXcm81KvSyzdhY1qXd7rlAGOG3J7\nvqAr8GJp4yhfYN6W1OUikSrRygoQRHILTu0jTFktOBoP4BMDYf5KjD1XNK+1TLSV0o0xvCfzOapp\nPP08cR+MEqM35DNRlOGgLTea49LZObNhd0lhf0VDMzoJKFxUmAVbCxTpd3IOf0vW4PUhmpvMpyjr\nSOqibYzODvDV3dek7WEPN10xMUcrso5Kn+NhKms2On0T40qV/VeoKPIvXO3BZG6B68k4i0UXp/br\nAIDWxMH5c7IHds80HGo6kSITty5BKxClVUCT3/O4EmLjqsz9zdoGTF8+/zn9BzKvxynMt+gQvmVg\nhXwmY30V+ZnsvTPHx8eeb7LPornGwzoiYjn0by7wjMExx3NUaYIdr0+RHr63lMYn4lDQpUIZGah7\nDxBVZcFXUWIlF3U2cZNL1cmbniEgOi05X6B1DYs/lMlLbvgIjmQzzuwa2g8Jo327gZw+hY83JJFk\naCT4JkvqBPyaRmDIw1b1hjinErU4mSF8Q9oj8DO+5/Y2ng3EtLlyfRPTjjyE7WyEs4uU2dTC4o6U\nuFbEikDH9dBtf7P81vAEdZKF6LJA2ZR8gxXCRLsDoGgTidlMkBJ4wypK3D2RMXVzBw9mcnAcF2Jq\nDIpb8AwxCSo6RDKVDXF3+AZmZGc6Hp7Bc4gW1JSNuVpuwCaqUm8SoMGakRVswl9ltEPfxEcqMtaC\nf1ujMxRMlJk86COO5PCa7n4ZoxGRh04XMMhOZbK/3e+pYiuXPnzP7BaMkfQ/Kgr4nHtdVuHR+36F\nsfnxjS7KXannuD84wM01mTcVmNhsywEXhoAZMPks5Dqu17Hdlz6suR1MCXYTbNfQYLm+iTm0lrHs\n70tuyRdevYMVIkafVVKssaz5q2WMgLkz1QM5CYZ5hJyEQ3ZZIqIZsLe7B+9Ixt34YRef3pLfeHbr\nBwEAG9VT+AvWyTgRFpuyZlfOp5gRGKbh+zCrcsB5iVyGM28Og7iM0wHwYMLq0mdKnN6TPbJ9ChCk\nm7GOd5al+bCUpSzlEXkiNAVAo1QZyvImysouAMArTPTnRPjNFqixrty2bCTnoiKck4TDDw1MmAmZ\nf34Xu2us+e8byMgNOB0+RMzU1SpxFWqBj8S/CDI3MGcGmkqqiBeCQ9A3R4ivilpW3SeD8+o1VLbE\nZEgqHfikd0unTSQzOa2L6RAGSWu6r7P68GPrSBO5iTxfY3JC82Alw+ycWAcEL1noCmYNEqhMcUlH\npsb7yBLpxzFS9EyS1nxO8jGsT30XDMbaTS+HRTizk8LE/IKK3jNxh2Ag3VhuxLVsA17I1OC2CTeW\nW8ltaygiMGungsJgFulCvl/kCyyIK3BcNRDdk/X7g2GBk75oGP00R80jLgLXoP/VMYbPiooeWwlS\n5kWMT0OYVVY7OjkszUgToxbpS0fYP5G94OoR4rtcs6cMeKQZdDeHSKZisuUbMqZi1EZky5ri6i00\nO7zRnTV4rIyMzqeYjkRTu3cka7YIXZwS7GEQZrAb1DzGBTzS4oVMWlGLCBbXKS01ciVtZ8MRXiZy\n883Pfg67zR0AwKbJcVZylHRcxx0fER2b8/IUhS85DWVrjJC4kyPmkyR7OU6J+B3lKcpMvnf/5TP8\nC4MmCIpHuC7fjSj9Hr/wOMS7Yeitn7Fw79/NvpY//HYxAKMmk/ZMYxUuQ0uKGIdlmsO1SBEeyMMO\nAHmRocIPzdIUKUtHF5lMpE5sTOn1Ph7PkRF6u4wEdh4AdAk0CMw5cWVR/s5/8lPY6MrmefiFU9Q7\nUt66O/dw8worFI8DXP2ELLoVi4ni1hUGh2KDVJspZlPZ3I16iiHRexoEKp1OPLRZ73Ay0eitSYfO\n5hWs0SY9vJdim76WP3hDvl+tHeBLX6Vf46aDf+cv/JfyesNFMpG5sINjlFMxMYKeHGjjEx8e85zP\nHxQAac2ncwsB04qHxwrjMwENnTHkp/QQHyET0qTVQ9CV0LCuz+DnYqZtbxgg5ig2npUH6e7nC1g3\nvwgA+Of/9Bi9Z+Vw+sV/8jr2XpbDMJmkGHFDtAjGe2urgjrNjp7ysBeS3LbIEMXiPzFzhVHOWhFG\nBjKdwitIE2AWUJr+jDJDTXMjuSWqTPyaEZmkU62jxnqW7VYTxwzVtnsBJodMeiqkrcFijI0eDwrb\nxyZBV+8+jFBz5XXqOVhnaf8skffqngOTJKTNoIqQ9SUN34FL31Wz28SAiVgtJmE55TWsX+P+LrvY\nuCK/Z5cvoLZOsKIjBya5R5/+xA+8rLX+BN5BlubDUpaylEfkiTAfjAcalR/9OloCAK8E4JCkI1dw\n1+S1zkWFL90cRSYn+1rPRUKVejMIEM3l/Z5Z4s65OK16JZ0zUQQvukhAiTDkyZ1CNIRLYex9nfBh\n7vMGRvfldgwrB/i9LzM1+S/E+NL9HQDAjZU1zMdya2x+VNTa8thH44q42dMjE6uCAobRfoJqR347\nPpNbpHtNY7wrfav2NKJE9Ovt5z1M7kh7wQtDHO7LWFe+WW7543/uY5TJLX/v9yz86H/AuLt2UZB1\neTiuwu+RGp59RCXD+Ei2Q9gb4fgBHYmNCMGh3J6x8Spe2pV2klAwBuqhj499kkVQ5RtYsPjGc0wY\nH5d1urOvYFyTG32+J3kD9rd9Gf0vyC24t/hdvPS/MAHobIARuQ8rRYFtQ+ZFu2IOfMRZwf4q4dvH\nJdq8NcdTG3VCKISTOdp0zB7M5BZ3UIGmhtnxbJxHLNCyfMS53MydmodZSfxOOp2nqYXrHVIN2B48\nAqXfP1XwqtJGPmQUolrDAatgr35LF4OH0je/O8HuuWhvV27WMY1lzeqrMvflAtjaIAfp3ECDVHBW\nUcH6NdEm09gFoUkRR2JSdZ/xkI8Z2dq0UYSikbZulshC+bCzMsPZQyKIv0tZagpLWcpSHpEnQlOI\nNPCVfwm4ZAKgw1JXdbuCIJJTvE77vZWt4mFN3nvB2ETUk1P5GfcqTmty8vszC6YvKaq1UE7wO9Mh\nTEe0h/tHA3y9aO6Efy+IBrz4/Sk8U0J5v/fmGzhmWW/026u4QjDO6w9s5N8nJ/fmEWHl1hyou3KT\nDK4AVVKzObUYUSQ35ZQksF4YoNdhsdZQYdSWMRkPC/gm0YR+6xwPnpL3i98lQnDjBOaX5KxXmwtU\nTHlflwWKjChM1eQyrRhMCZ8aGUJmk86PTnBM3wf6U0y/KuHCqXMHD7/CzEP2bRoVeCkSyLTG6y0c\nlgwNr6yh8eD3AQBp8DQ2/geBRB78xSsAAPdXFHqfEI2m+gA4elY0kJfvzGCRfOcEGmvEUXhmQgyC\npxysjC32QcEdS0jSWQlRH8v4Djo+/IX4mDSRpdZVDadEk9r2W9gopG0v9tB3ZM57uoZRSnTkvvg1\nxpUY0zmdsisGMJW2W60Qg1dIehvIms/CEinDjeX9DhobdGa+rOA1ROO5OW7D3hFf0/ZM/t7d0bju\nSFpyWNGo0Q923vGw7rO0PUgQ0wl9VqX2M24jY1ZvZRBhvi17oRW24djEZIhqqPTebTBS5Ik4FN5J\nOgCylQt6eYVeIeqT70qlntEa4xqxENbbNbgdySFoGA34vjz0Vj1FCvHkjull/8gVG/lQNsqbp31E\n5/L4f72yc4/2zaBrAGQiPjgJETJ3fncww/qWICLPPI0Ws0vTq7L4zixDRtg4czpASAeWkTWRFdJP\nm06rwnFgEIor9kMYPDTiVgc6k4Pu8FaJ2T2Zl72OPFRlrHEvEhNleljD2GAEJBthOmc9fniOkEu/\nGMtoh4MJDFP6cPzgBCMSsiRHMTThwfRbORzi2bdHMofXfBPXvyy/NS9yxKzUG8aHONIy7rH7/+LX\nqGqr/00OmPQTt7FJh+9b+6+izOWhaE4dFIpEM0aCHY+QdDdoXhh1TNsyb44xRCeQ+fT8TZi+fGbH\nmKFmELItkkMIRoBVQx74XqWHLBKTYACNLrEW7bSP7FTmazdg5CBXGE9IS+/mGDAXoB91ELC2ReVi\nPiRWDGMg38+bCcJMEtHS6gQlIedVTaPbkPftQPq75mooT36jXSqYhOLfRg6TcHNuYSAi72mVhDxh\nTaESy/49ST2sW7K+/bqBNc7hvBxh4b83g2BpPixlKUt5RP6V0BQSw8C3M5zUnk+RPyWn/zffEvPB\nqn4SFV9ugZXaDXQvGNiCNpxUvpfkJTYIhLpHNmQ7U7hjy63z6e457tKh+BvD9JKy7u2SK/n+4LVX\nMR6SCKRIMM3lFvwWrOPGRNS9a9+5hXRdztzAkjRa2OcwmKXYtiJoYjYUwQClJ05Tm1wQXrkK5cjJ\nX9YrsEtWH2YzJKw43FAuBldFLa998UUAwGF0iLqSWzJ1UxgzmaPC8TDPCTVmv4pdQtLduycFR+dW\nBOeOpAkfT1JExwwLVutYu0AGznxsb4gDq8I08N4VAw2C444WJepnxKpIX8IDFkGdJQv0qjQJavL/\ntd/3cT6Quf94r4G9bfkNr3kKfyG3eJQvYF6Rm3c1Ea2pXmaImAa9akdo9YTvYrseIKrJPNeSfYwK\nMZtuXqS22000c8LwGQHWiafw5tCCORPt5X5WolISZo5FV/NsBusic/YwxYT5HWVziHgg/5FznXLP\nwNSTybLLHdTmNOMqPcxLCbmutG5gk6aCTU2x6/XhM8Tr5TPEDEP61ggeEaQUHGSsqm1G0kdlWDB5\nr1dv+qhTK7YNDZulWUFQx6b+/6H50Ahc7D8lG72x2EF7nYdBR9z3za4DM3kOABBsDOGTOAXVAohl\ngjPjCKYlcfN1n4Al0TPYssXujT7xCaz84e8BAH40neMXCF2m8TUMvuttWYDelgVnTQg52m++hCbx\n/hrf08TTWvpRmgGaYzJcPSMqpx5aKMhOUuRNZB2CsCxasBJRUX0tfU+66pJZKsiHWKRiO+eeAXfl\nGQCAnU+w0Ze8gPT7JRYdPLyKL5SSBpwOFBJXNneSRlgh6Mv+sIGoKps7GvLBzcYwQpLAzmdoGDR5\nijlaG2J2FTMXW56YTT3+1urHnka6IL5gWMD1ZfMfHa3Bq3NMFQ/qRA7OupYHd/1HfOys78jvvrQO\nYyRztLK1A7fCfIJ+Aacp66euSbtJXkedh3cZ3oL5EeZ3VDZQbbFuIX4WrkefQSp9d40xnIm81s0R\nzIHM53pngsXpxwAAN2qv4aEh/VshcI5zGsCnuyZPNTLSAA2GJroVRrZIbDuKDDikone+fRv1AWsR\nhja2hmLmlNdi2CTFNZhMpooeMs6ni8ZlpalCC2kgh5pntRGQdCbLuR7dHIGS/RI4GiYuzGlAkU/V\n9YDFeyuSXJoPS1nKUh6Vb5SK/m8B+LcgIf17AP59rfWY//cZAD8GoADw17XWv/qNdo5WAEwNfORc\nzi/3aoEXTfL5Mb10x7QQtQgakq7DpArnFRYyR4ao+gEWhTjjakN6ZlsWUMqNYdh3sH1lBwBwxwvx\n0XuirlvRGGOS0pg0NdKoRPdYVO1OpcSZLRrBx4+fgvNn5LdXB03Et+QWM96SqyarD6EZ+dDVHN7Z\nBfXaCHVGBnJWcFamFnLS4xXzHIuEKd1BBRG5JKMix3Qu1Y6dIzE/TuMTPD+S+dG3JjCZ0VekEc6Z\n8pyPE8QjAbOZjSRaEJ2dYnRf1M+qOUZMSLT10kN+IvN5tWWhQsTrWkNQjbOpgVZLxp+lxxjXZT57\n5xMs1mRM/sMzHCvRPE6ZRvzsr21gcEPm8IcPnsevfK9oPCuTDAs6M/uRwqQk4MoBcwIqp6i4JAba\nAFYn8tpuaPSY5qs6NoxQTMyMgDqNJEBav8DI6CDV5M2MS4DO0dCqoklnZMk8hYU7gTmT9ZsnfXgE\nsHGaC5isJA0j0dJqThUZHZztuxpBVcbROMtw0pT+e/c7mF1jlIBo5Kqp0QxlfowghENntFFTMGmm\nlcXisojNouZioYacUZRm1kBSp9YU+vDoBM1DBW2+N964b5SK/tcBfEZrnSulfgbAZwD8Z0qpZwH8\nCIDnAGwA+GdKqdta6+KdGnk7QvKFXOT7X9/qoO+JKv0sKghJ9LEK2bgzw0NAD3mmPPj0I8SmDZXT\n3nPasGKWTHu0X9UCsy7TgxfrOCTy807vDDPm3N8LXWDMBf0mUS3tpoFenaWPD15Gm2B90+6baPkf\nBQCYWxnyUEY0WxHV2Do8R0RSl2xhwa1T1VzUkZDYBkzcSWoLFCfSt6EqMWKFZxTZsAn7PVYlmt7H\nAQBlT1KtW/MWXiGLn33iY84ceMdwERnygETTY2iaDZEtc3K2mCOl93419uE16ZH3PWySgzFc2Kg2\nmODFlGhVVjBgUlCoGxgY5J30V7E9uifrsNHGPZadNwayyYfOHXzLqszbw60hmob4EZIrDjqcisNo\nDmdIkl6bxDrVDjKC7NTiEsUmyXtdAwXp5xvFHEXAWplYHtKxacMmclZiBghcMUumSQ3Nhpg8ce7A\nYnpwxMPk480Ag3OZz3lsYFaV98e5iYB9WmXacuQYcArp29Q6QqUjB6c9VQgYZgxXM6xnRFziHrOj\nDMmKXIH1UKFk9awKNUruERXXkJDf0ksIw9Wow2Mg/SB3sHoqfdctB4pJXzAWMFMmqL1L+Yao6LXW\nv6b1Bdcyfh/CGQkIFf0/0FonWusHEKaoT76nHi1lKUv5UOX9cDT+NQD/kK83IYfEhVxQ0b+jaCVM\nZY+WZ8mZdRLneP6m3CS1a3VYHWIgUAGxjBLKlNPQhAGDrsGkNOAyPqzLFHZFbg/mIKHhe9BV0cW8\nziFWZ3Liz6cKXltU8J34GCUr+zQ5ANuxAYcmyDMvrmJ3KDdQy76G0UgSi5peBQty6+Z3xRlU5DOU\nMU2btgsVM8EmS5G6LNJyyMt4WkFBr/E4OoeRi7fodB5fetGd5giOK5gNUfkd8v0wx1NMcR1fOQAO\n5ffCcoHjPvEfB3voh6LGFw/FFHGLGWzmP/gbT+PPPcW58lvwCW+HNECVeQMXOQGupeCSnn6hZrCZ\nJtzshHjIhDNjP0bbI2xYU5y8B4cbmBKa7dNbQ5TfSQyI3ESpeAfZOVIm4USBrFMriYCeRI96LYUG\nAUdqdReGTw2i4kFHTHBizD/PNGqevOfGNZgNws0lNjqcTytYRzqJDnUXAAAgAElEQVSR9oKA4CzT\nryK0aWI+fA1D4noYHmDZ8r0xo09lQyPmvJ7vrqE+J99HbCNpiXbQDNswmaBmeoxO1Ty4vJ7dhg92\nHYYZI6f5ZyEVryGAgrksGJ/BYEq/37ThNeigLBJYpB/UqKL6bgkfKH+qQ0Ep9dMQZOtf/Aa+++MA\nfvzy3/qPmw+E1MMnmju48Yxs0k7+FIIN2eieSShwo4BXygIVwQw5wVEdI0We0mPrzmDQbm925Idz\nJ4BLD3A2uob2mpQfl0kN3Q3ZNA+PS0wD4vkNZJe7mwnqKxICDL74ZXwzPc7urQL2UNTSSTTDGQdg\ntWRzZINA6IAAGFGKkIAeTasKk/2PMxlTrIpLYNBGWeKUCVJRx4UVkvRk7KJL2zd8UUhBnqvu4NWW\nhCmT+wZiV9qbT8ZY0fK911SM/luy2Q4vwGuiCdprEp3Z2A7Q3SQ35QbgELFoHNuwmNTkENHJTmtI\nWWWYJX3UyXPYjwosGAIuDIXGgByNAfu70kdvKn6Q/fUmBqxReL5podTyQG4OYkwWzOHvye6oJTU4\nLtGmok3UtggsYq3DtmWdVOwiJomKNxcVvVkNkcxY2dnuwwrlkNlwUuiC+8ieAvMdAED3OkOnx9+G\ne5PfBQDkrokFw7ppqlGw3Hu9Tn/OokCbZc3Zegq7Ir6BIPFglPSD9AbwGqz/yGSuKoWB3CcDVm7C\n5pqVCwuRRYzGwoE5l/djAsKWdQcWwVkSdYhJKOsUNIewaTKYVRdpfuGde3fyDR8KSqm/CnFAfrf+\nWv31u6ai11r/HICf4299+PXbS1nKUgB8g4eCUur7APwNAH9Wa/12honPAvjflVJ/G+JovAXgC+/m\nNzX+uLOxQ69+ZcNDdSan8cqLNqxQTmCbZDBtswnlXpgPEVxbTutSByhYIOZGPgziEKhcbgz4cxhj\nOh8rc1gncvSn6TEKnlM1L7skIjkiaEZvtoL1mtz+aLTxsCae46uT5xAGoj4Gr9i468jtvbMvnvBF\nZYittMbveVhNL/ANUnia+RQtufmMqYWEWAHDkQUzkRtj5SiEU8qtW5vYyNakT8+xwrG1WsWNfTFX\njq6kcFibb+kI98bye/aZjfWKaCnxivShmG1j2xA4s29b20SXcOm1RYa8Kr/tlUPEEZ1k4QXzdx+a\nN950dIp4Rvbs81OscTXPdIo2Vd83CtkuLx76iJvSnysvh3B2qNqPN2CT5dureXAcWasab9pqQ8Fn\nFMhaM9AIZV+4XgDXIOSbV4FHhGaDEYA096ACYilODKQ5c0ecAOOxfEbPZ8j4SDTmvIHzCJ0NyYfp\n+A/RGUgbUxuoRXQClmIS9dwmFjSvbgx30FmXPl+braB8VtpeM2/Bb8q8OKQNNPziEmncjBOUJXMa\nWlPYIWsprBglcxL0GlG5cwslK36bZQORIfuiGWWwWVWMKIZS7zNG49ehov8MBOD615VECH5fa/0f\naq1fVUr9HwBeg5gVP/FuIg9LWcpSnhz5Rqnof/5f8vm/CeBvvteO/FEtwQHQpSawWbcQ1eU23j/X\n2PQYWovkZj81p2gSz8tvmygZskpy+9KBEzdtlLviaAuvyt/pkQ/HkdM8jjWGNbldbqzfgHoo8f/d\nrIL7lnx+QGKReM1DEIjjsz5+Hdu03yLnVaSpBGJOmhOUJcFRHfocMhMZCWbdrArdkddBWUNZ4e1v\nEOatmyB5XRxc0ytv4exUxtcNTMRE6Zm3+9ATsYcjV+YnqJ0gvckCnvsREtLYpYsAJKvGIJ5iwvBs\nvSRJSdPA2joJcaslUsJ89q0GPFZSlmYFihl9Ientms06opFoHee7JYaezNWBrbDBOH681sVJLn2y\nU9Ew0nyOtEmOi/UJ7ETGXbRs1C0Zd2YW6EDWgaBRaKgqUku0qmikseAc2rMEitgYXS+E3RJfhEmf\nUQqNfCaayXlhID/k+Co5BgNmr8Y2UJP9EDJL9fnG0wgjQZJ+qVZF1mLIda6Q1KhNknhFuwEqvAOz\n9T24KQufrnpQzOS0dny456IhZD4rX2MXKiB9X2Ihoy/GRRsL5lYUuwYWXXHAFgMZf6NZQ8mCsFEe\noToj/0QRwOY6GXkG/UH5FN5v0UqSlC4ZBZVCnJIT8WGOjUi87KpiYMwc8FtXOWHTCN1AHopq2kan\nLg9NYQHzuWz+vckQp/dlw569tAsAcEoLzTVRyVprTcR92TRfjo5hBaK2NvQBDNJ9g5p/a2RgnjAt\ndbMB51jMhGJxCyGZh4LSQZ1Va4owcEHHwpSsxj3nDOkFSEyQXnpV80JU0WkY496xxPlfOXwDf/hA\nklRW6zVskoVkNOnjbFMSgJJUWKc3Rjb8fZm3RTuEPmaexnSMcCGbsJPbUD3ZpEGVh6LOkTL99jw2\n0ekQZCQeo97hgzVx4BPbsCTxShaNL9Noh94CSGVDr/R8eJaM1Q4M+KzBGBDo5fyoiclQDhvTdzBy\n6Dk/7aNklCDUCi5zAeJc+nO2CJHTTdWzYvzBl+SBvr1dQVKXOSyNKhpzeSBrPmnr5zNkY0nUOhzP\ncHpPHrBDPUJOkpy82sP1ROblAkDl0Iwx5gUQzP8QVkjmLAOwQnkIj85kzYJOhlkha91/ReON7HcA\nAFdLYMqkr4/eXsVTL0guy2IhkZ9et45qLodlq+ZD0ekc6QIL0ssPRkNM+2LyjJkLsdl+Cisr8tnc\nD6HpQJ9NZvBjOZxyN0NavDsOyQtZpjkvZSlLeUSeGE3BwKPFRzVDobYqp7K14cMkGKsqPUQNOf0n\nzPyahSEGfeLqpxnSQk77dqBBxjPs7k/xyr7c6KOxqLKm1cbzAZ1oqx4qDVb79V3MyIloOhXMGvL5\nmLdg0NVo+XJ7DO+WsKpyyp+lE6QR6//tBjyyXOt16buZBihY+HQ2MhFZ4qz0xy34hNqakJDl5OgU\nr54RWbg/g5VIPwdugIAI1ZPMwKuM7RgNuUX+fOc2Tpk3cT5IoGmuzI/naOZyqx74OXRBDYHhVBhT\nFLloCnHdwd6UXA+VCMdnNM3MMSISw9RqcrOfRBUcp6IqjBYTBBXS6aUNLLqyfrUTGzZ5E/cJUhKv\nnKNLVOawLjwZMr4F8ki0t0mSocb8k8iS9qygc+lQPM8qUCtyrx3ABcjo7Y1tJNdY7chwqqFzHMTS\nxv5piDeZQp5OhtDnomWGVokbHjMhidkwm5RIcgGRMVdXgVi0AjMBiiqrTnusdtV11C3RQEaxeYnm\nrIsSJR2J97SDPKGjkLgeJ2+FWN2U+bk2W0GLtH/zeYCjvmg3Xzm5j+FCNNm8lPam+QiZL3vWTROc\nMCRpXZ+CeDmoOBUs3uNj/kQcCgqAoQAP6hJGWbkuXmDed72oY3omExnZh1DEpXNZyVZPahhUxDsf\nHNZRuPSsJzUMUnlAyuMpbMZ0+3sk9yheRZ3lr0ZexW2SqLTrMzR7OwCAh9McT5/IYrzFxJweWqj7\nhEtf9VClH6Ayr+BzfdrA+w9w15cH6NqObKTTTh1rMQ+yGtDcEzXfuJpAzS5yK6S/fhrjBg+h3WML\nu0MxfV6AB6su/Xj+tILjLen/9/blILxhA4sTGce9rQRrDuezXcHgLXnoe75GzZZ+nJCsdPLQx7kl\nD8rqaIzpqvRtx23C7xKBOjJg8ZCJE0Z7ZufolIzpx3WcDIkDubiPGw1Zv1M1wjfVRZ2vb8na+f01\n9FcEcn3ntIVzkvS++qX7OGKq9I3Sxx5Lp2+GcjCpmsLgiKxIZoH1I+I8bqe40pQH+mErQXNIE7Il\n+yaeTDAOpW/6OIQ1Eo/8/bMpDln/8ZHxGr7EPIO/aDFFudvEpkUCn16O5ECetlfrUzRnTH8nz6dp\nO0jJXfmpaB1nxOyaHqbIWF7dODSgrpKbk+XdcXsEc8ykh40cxUj2aYRDGCMxn/S5hYO3ZCz3Ddnr\nqwMX92huPn/1GTg9OdzW4x5MIpMHiYfzcskluZSlLOVPIU+EpgAAhlLQyrgEjdhwDHhbcvt1rrQx\n4Q3UKVvwK3I73FgRgI3MnyK7Ty+7raHI7bfwPJhJlb+hsULn2inDtmpeh9uVW9UtC2SkDwuwCnsk\nt9ii3kCxQh7LMbP/dtZhZ6zaKx5iymKf4ayPtMG8h3GJLd5cLh14bbcHm/wVVjhBRGozHRWIaoRh\nm8mNoesZxvRqF+1jtGy5aTe6gNcT9dru7qFBDEanJo7Iozpg3hJTIu9HUG3S3U9OsGCqca6GmNUk\nSlIJWFRWNLCayQ3sFT488iJEqg6b0Ye5UUV1Qoo4aiBxGiCnGRdsOsiPpB9+1wcvXQTOOiJS0rU3\nZA1MdR+vKdECGuUx0pRrk8SYkhglGVZQJ1eianH8zSZeg2ggV8wYq6uCLXCt10RuUPPKJ4hteZ1H\nsmZT1JCdMhN2tYvtnqzJw6KD9UBMxXZrE9foeK21qZZ3AxSRYHtO1gsE5zKHttYw6BYvVmQN1lQF\nCSt3G60UqEp+iucPUDFFg2g9exXPbbHCNJTfOh7vYe7KZBlZgajG18kG3IZoju3VHqwLROgK06Q3\n1rG5Kmas5VXQY5p3sFFDyPyFPIlg4L05Gp+MQ4FWQ1AAKc2HkXKRkPvQsjWeWpcwlecA3aosaJOo\nNMMiQiMjIahuYkRmoqANqJzIPa0OGjQr2p8Q72+mDnC1S1jsWY60FJ/D6f4D6IocFutJH+uutH3W\nlIPJTI8wmsjiT89mmI8lAhD4t/ECAWSTjz4N3ZGHpcHyj8AwMWeCSSsIYV/QnteAiElBOanVPZXi\nNlmF9M1VPD0T/8MzL1xB9WU5AMcJ0JjJpjnYkgfl+v0z1IaysZttdYntWKRVDDVz/GchTJ+btyvt\nVTbaCBgB0Mdd1FjCnXoG2gwNZ3MLFslrkxmjBW6CliEPxYtbGtUuQ7XuCA2WEfuqQLspB9W8ENPg\nftGBx2iA7VVhEdTljfu7sJkUdGwcoMGQcduVtPKNnoenNuUA2fRGWHFl/VYDFzNiEXpZioR1KpbN\n6tmsRCuQB6VqrMEiQYr//bfRySQJdyW4ih2bIaamHEaz13exy1Cn+9o+uooXUtvF4FjAbOy+7Iuj\nmo0qk7S66y1cD+RCOrzVhWIk6sZqC3Xm+008UgfYESxGJ5TpwuK+rhQRKi2Zz2qcw/qU8LhUumI+\nXG+8iFpDPmusdhEwfJnmIfyBmDRZsIW29T5XSS5lKUv510ueDE0BAKCQGkDBOnBbJYjbBI0ImvDb\ncgOvxQ2UNXGuuGRsseIYESm6ImOKJuO40SyFZ5KGzQzQXhMV7qlcnHZWehPVDhOSzBwjQotPchc5\n6eSCVQMui2B8IvUGjRUkMTWT0SGOefs7oxwbN+TWbNgKFUvaywmpZYYBPENujGSeIOHNFi1MJAQT\nGVNTSML5JQGO1zGw6QjV/IYxR3b1gkLOwoJELReJMJ6/jeiWaASjg1OUzBVIk3PULcFjvKsruErC\nkSq91/WmiWIqaq158xTGmGZXLUdJSLuk2sdsIPNVkBSlTExoErL4zjpuWxIOaeEW6qsyR3pXwWhJ\nn4YHcsst1g9QHxMFedXC+YKFRlEBFpKiNCdoEufQIfP1du0plEwa2jJuo7JKiry0iqDOtR72UHoX\nmglNG1uh3BAtQLkp1hsCm7dpDFCPBd5OdUsYh4x/BdLfU3OE44kQ35xZi68hcDsGCJSNJvEUprYL\nw5ZxjK0UvZ60fVv5UDH5SBtTOB5NlEy0pvPUQOKTVzMPYEYyL6ZSKIjf4F9fx3ORaLJ+VdbJby5Q\nsZiyX0nhFKJtlU0fAxLUVIxDHJBj893KE3EoKAAmNHytkGtmZeXAxpmoye2Kg22f3IfrGTJCn7us\nFkyiKsZk+dkoHBSs2mtaNsDsv1bhoMKaAY8PaxkoWCanQPfh0F5ENEGLWXWJU8NTC1Kc++JnyKHR\n8uRASpu30c7uAwDW/CbGzGK8GtUw60r/Oq48eI6xgGbfh/kQNYKDWlYVurwooxYTx5zncGhKXU/q\nsJryW7XNG8inBKl9zcd11m48G4gaPY6GeGogwCs7qzE8yMZstjZwqsVsajZmWFXST49q66puIGEI\nWC9MGC3ZpBbUJaKPf1RgQWp3TdLZONfYLFgOXnPhlYTWsDNUEtmMce0YFnEca6as04uH13G3KclZ\nV/td+OREjPICTsEEKW3iNJTxrd6XwzL7WANPO4T4X2uiQcAc13RQQMaCVgz7nElLTBYr4xgRo0Rb\nRYw2fQ6BvYOSSL8qX6Coy6F1QmCV9M5DRORyj6YGvsUTUyO9VsXvvCL9Xy3JvVA6QEsOntv2FrpM\ngKuqKnLWc9QqXQSs8pzPZB9GnWNUmFlq5jYMmj4qAJo0wVQVaCm5GIqejL/i1JETVdYyXJSFtOGk\nJkKC05RvVfFFf5m8tJSlLOVPIU+EpgDI6ZQY6pL5uWYUiOl9t60CKVNfK4lGwLh4TG8znBAWwSZQ\nbSAgLqOJGhSr1qBcGDQ3FKMXTp7A5OmqJynOEnJBddaREjgkdkzEO8x3P2fdguqh4I1vtx5gdcgo\nSK+FNX4vcwzUCJDhsJ+mXSKypA9G5kDTiVYmGTSdQRm97PlsgZgsyisdD3WTJDKnYxTkazx0Z9CE\nA1+0xLHUqK9i7u8CAILYRVKlw81xkVHdtRITKdOqA2Inpg0fjVJuxNxykBPpY+gU0CNxus0tAymB\nWE6pMdQq+hJWrAoFw5Hf81WIlPUVauzgyBGzIrSJj9A+R8A4/VSNoWNxqKlCI6W2CF2iRfbns5rM\n4TenZ1jQk18vUhj5hYNOIzKk/3E0QWqR5j2XvbLwbTgM15e1HgwC2BR2BxX2M81NJExTnxzImp9U\nK5jqPc5tE4stolLbTXRa0kanJ+p8paGQK0Z7Oh3UfSbG+T4sPmq26cK0CNtOxcY8d5DYMhcVd4ac\n7NKBUwfIgm1ls0stxKZmAsO5rJhN5hqeI5GrxbyP80PRYmrju1hzSLL5LmWpKSxlKUt5RJ4ITUEp\nwLAVahlANjKEEfDgnmQHPvPiVfi5hOTMxgrqPGnBuLq5KLBCzP+gWoNtys0VwoBdimOvMAOUdALF\nzDGomTlK/pRveegu6OFa7COzJRfAyCzkfULBdeS2m4xPYM6IQzB0UKZSrGX2G9DbzAWI2rBZPJQx\nDGfkMVKm81pughqx+e1eB4Mz+V6LFGVjuw7TlLDZaGTCqsjNVqn5UDO58jYyHyXBT29e/Yj8brWH\nYCS3zm7v83CnF0wuVVjNHQBAL/88Sp84BMQb8F0bgUUnWTQFyguw1ggB0ZTM2EOd6b8+qygdjBFD\nbiLlm8jodK3ZDkrmCGTJBF7KlF9mbE7SGiYz0Tpc3UO4xuQRQ6HDu2puWEjpxCtZ4hmVLkLG3bOZ\ng8ggWGmkMWb6szWPkeXyGxVqQmM7Q425v+dzGw2G8lIzuvS75PkCAX1QOpI2OveH2KWNnxYKWIjP\nZHHbgF0TraBPZ2Y2y2DSCZ6FU5jUXrM8gEFYOKjwEobvAhWs3RCfGgBUjHXMWcRl6BlKYpobjo+I\n2qRvEnkpSQFHvpcqB/FYfF6H6RT5Lwkq4s/GETprj0CsvqM8EYeCoRSqtoWKVohZeqpVgZD4fAf9\nIerMTchOB0jpWTZYZ5AgxpxqlF1foKATTAdzJAvGnasTzJj3UG3JpE4iDU1K8rPxAR5qeXhnSQ9V\n5iSMzQzHxE28f8bFzD2EsfRBuX3EESHUvAfIR6IeB40TZAKwjFGVqcYjC5U2E6EWLjJ67Y29BSJf\nEmgGpCkPrclllpXhmzhnWayqF9CWHAq7DYXAYYLMNVnKaq2Kkftlmbc3J3j+2+WAzA5HWO+IGnxn\nv4vAkgekGNMzXc+QzuUBTMxjjFI50PwSCOkEm9szqLH0I9ckYp21YbT5kIZVeC2aXREwZwQniVMM\nTI7FlgN23B7ANS+Qlsc4ZQm46xjw6By0bY3NCh2wHTks5+cjVGsyn2O0YYTyEHq6RERo9PNEI2Od\nR5uOOjgjDIiGPPEGGA2kH81GjpB7oCwCDMYyroWW371vKvQbcmA32zaOOkzOmm/DastDelGVOwsL\nzKeypqO1M5xN5HCuNUxkh0xvb2bwE5q6JVOwYUNxT5pJgTyXNubZGjyXF0pso+Tnpxffry5gZ6zb\nMEcgADVG+7v4x3sC4R9V9vHGvdt4L7I0H5aylKU8Ik+EpmAaCs2qi3YCaHL1jVQJJ+GZNTtFeiCn\nbrg1hT+gJlAX1So8nyFiavN600XB2ns/biGlv8mJiktH47xP4NNyCIuZeWESIj2U6ehnu8jrYj7M\nwwzZidyOPmvsx+MhHHJBnB2bCDO5Vdq6CnTk1ozu5Dh3RduoTOW2hl/DnBWHE3+B6li0g3DcBRK5\nSR8kkuW3aQEJb+vZ6QgTT1TAwOjCuQBIOVKIusSZIPkJekM4XxR1vmONUFfStq6sIg8lJdhwzlAl\nFX1Os6QcZ1jQqVccpDAN4hjMCoSsgsyiEBnzCZrEuRtVC2wS98L0TWAi4xjrCGpMjUynmB/K65ne\nle+3uphqmZ/N2Sry6/K7K7aFHpGIA8dGvyG3/8qQJmH3DOeET0vdBL0xTYbmGhKak+PSRGUhIcUJ\nU6LrrodRRTbDRhjB8Jjxt9+55HLIDs4Qh2KmHr4lZs7RwT6CGvENHAvPZRJmPLEBg5pASKKXxThE\n0hDtwZibSBvSXpynUARjrS8cwLgIpcvvLjDFCp3jUeSjZCh+1BziekjzqWIBdJTGLMarnMYIqxfm\nk8JwX8aUdk6wxVyIyX4Dh38UEfkd5Ik4FCzDQLNSQa/loRiIqh4VOeZE5z2MM/iFLG41C8GSAeR9\niSmfDqeImW/QacSwWF2YVHJokqvomocpK+NCYjX6MaAIbmFkMyxasjGdfgVZQiIWJHgwkXb2S9J7\nT0yYc1KAFxkGfUYcVkz0iAA1VB5MksVmBIAxJjGSlqjiaerBqstrxywvPepVwpvnqsBkIofirjNE\nj6fbtJ/A58G5505QUURnmpMbcjbHyURy9X/zNMSfqcv4rDhG5sjm74/uQq/IAdFasLzbrMGzZdfp\nah3FvrwewEJhyZiqbgbNFOScdQtNzJEQcjyaFLDITOQbGnOmVeexhSlZihYgvqJRYGLyYctPcbKQ\nftZqATyiSDWzGq4yme2swjLs4QgFczLstomkRQr7NELk0stuF2gFfJ0y2aoONHPpQ8OpYVbI+Ibm\nOdYZaQmVhdMT2XP3UzmwXoLG9YIAKJubGJ3JBXGQjNBh2faMB8/cVtg7l+/3ugZWiY85RQ9rkH2t\nmhXEIZmqSC1fpA2Ac+xWcswSeR3EU2RMkTcnKcYk85kMeQgVVbhMiQ7TOqxVmXtruo6pov8reg1p\nVcbybmVpPixlKUt5RJ4ITcF2LGxtN2GfKWT0emdxgZRq/qQ+RTMW51nWvYEiE1VhQtNg+Eofh4wo\nWGGORkNO2mJ/AKPLOvW+j0qD5B0HcrOZnQQWvdv5tESVt+Bd+wA3+nJe7tglTmbMiuRJ3D86g5XI\nab97OoNF8+H0fgOVj8hrpYtL3AObaNDTIkJC4BTfbaBCH9jqles4eEOyIutMbV6EChZZqffeLDC3\ndwEA0Y0VgGpnNbHxZSVq8o0Hos00VBfhoUxMoz1FpWAWZ70OryHsylc3z5GTmTvrkkOhmqJiSduj\n2EHM/I5F/wgOOSfMiosrF4Ayp2L6GKaN6IQ4BW0FKyMuRM9BnWA4o2ENAVPF51q+l489rDD3JMob\n6IjCgutX2tiqiBNQx6uwG+JouyiYOo1TbI1krjz/Kjw6gVW9AZxLP7a1jx5Tmte3ZJzDaAIzkv8f\nTObwQKezAzhK2ijrIWIt8zhjRuDkrI/Ekc9+8sVr6FyRYqzqRxXu/MJvS6frMj97hykM5lPEuz6M\nDdEgfGUiaZPzMvcuzc0x92xQACY1r3r3FjQ5T+1qicKS9SuKBENGa0wlYzaUDzAvIm7ksI9kLYvp\nHO2ROCsPdQvJ4l/JKkkDuV1Ha8tEO5UJGyqFzLmwvUYIdyQ/3W3YqDKMGI4ZburGiGSe0B9PMfZp\nyxcJxgSpUPkQFlGNDJdgn9Mq6qxkRMVFcFUehN7pOnKqwepMo7hObLwpEX9QwLMYpkvG6F+UGRv7\n6DHFuNYq4CZi5x+ZYqc+jGLktMk3ggx1EIx2dgfVVCru7mUXpdUHOEjl8Jq4KToheSw9F81N6ees\nPsV1mlUhcRSrtof0Finn34xQksUot0o897Rs/r28gbkS38XGXEKTzpU6nAvmrLUF9njihrME4Gac\nz0wsILZ2UcjDfTCoYMYQYdVtYuUi2BNWLgldrZqBSo2w5vEOAGCaL7A9Zxsf6WMay4HUu7aBpxqS\nVt4rYxyzhHkQSX8XexqaiVemtwqnIeZTPz7Bm0MBWA3f7OK5OunhrxC9Kz/A/an81iTZR2VF+nH9\n6TZsJaZGZgHWtsynfUf2oX2q0CcRzWpjA9XvYjJRauKU6cObpXzHKvoYMrSoVw+RJEINH3RjeDRT\np9lD3B/RNxXLXG6XLXQ6/P+T+7ANOejPJwGQCEPCxHXQD+WwqObiy9AbczTJNlvtzlCwTuTBF/r4\njUwiTbY3gmksqySXspSl/CnkidAUXNvGrbUesuEEvbqcuidhhHoqN3o2nuN0LEH/4KUjLD7+bwAA\n1jbkRvzYYhPnVPvaXhu5RbwBS8EOxRzZKDwU9kWEgryFqybcgniHeYo7E7nF7w/2UbvgsTydw5nL\nFVqSM7AIh4giUc9m6QJHhDP+Dt2C6kh6aStaR0YosGcJrb7arCOvS3tKWVhZl9thbZZjekNusVt3\nZRy5cuDk7HvVQtIRraFjrABVcUbWhj7uMFphP5Db4OH8c6i9wuhLkmCcMT8gSzGay9z2PBe1M5nP\nUU3Mq7g/upwfZz7DjTUmIY23kW5Jn9ZUBUXMqkyabv7REGpMzWWRYOdp+Y+aZ6Mk6/aZFeKcUZ77\nu7syDmXhARN6VvY6GNH5+/yNp3CFGAJrZg/dikRXBm+IlpeSsVoAAAc7SURBVPMvygWO9uQW3H/9\nBN/z3TIvK9cCbK78IACgac7QI6y+V5CO71oNHztncdTxAmlNVBq/3Ybniqkw2N3Dg9fETH39PqHP\nTiLcZmToK9nv4TuznwQA7OhjZEQKPzx/HQCQJjmOT8XBVxo58qrQEFY6m6hViJEw92Gx+nc4k/Uw\npiEiash6kiFfEw3LHqcImBavC416ZYu/LXPZiGPkNCuHIwvTN6Xvrza/AJtEM2FkonyPrNNPxKGg\nlUbhaJStCvRAVPWmbSOMZWEGroXeqTyESgW48opMdnxVNlIlcDDz5QFTRophkx7yiYLNRB/VaqDW\nYf1EjTDeXoz4jJiC2Qx9vlaxhz22d1RkcFl+HDLnXJkxYmaaTc0KXIthOMNBwEy6JPFQY/QBTF6q\nWgVADH5DATmBWqLeDOWI5KGGbLSR42FGHope3oZRJYBGNIU1lc/EeYReLOrjyBZfxf6oQMBxZqcG\nzo7lgW5ZDvqpbKaa4WJiS83EjGHDPSTYqMnrSqjhs/qu3bZRptJGfjRGFDDrccBwqQ5hkdY9WLdg\naVHFtRMhPCdB7mSC4wEzS5nFmaQLpLQDB+0S6QUortqA60pkJKloGIX83nxG2PrhHIehHIquZSH8\nApm6Vm5igyxhfmcCM+UeoKmVPNyAtuQA1Ve+Be4NhiEXDmYMxSb3TrB/R+bxfp/oR6VGzEjUw/sh\nRp8kBmdWwJzLmBbMiJyWBUxmGO4lHq6ZDBFG28hN2YdWxYJHQts6OK+WgYRl5JEfIT9niX4SImG5\nv+UWKMgi5pA/NIGDeS59mDzMMWZ49vCXJ9idybOTOjmU9d4IZpfmw1KWspRHRH2NG/ZD7IRS5wAW\nAPofUhe6y7aXbf9r0PZVrXXvnT70RBwKAKCUeklr/Yll28u2l21/uLI0H5aylKU8IstDYSlLWcoj\n8iQdCj+3bHvZ9rLtD1+eGJ/CUpaylCdDniRNYSlLWcoTIB/6oaCU+j6l1B2l1F2l1E895ra2lVK/\npZR6TSn1qlLqJ/l+Wyn160qpt/j3ewPKf299MJVSX1RK/TL/fU0p9XmO/x8qpZzH2HZTKfWPlFJv\nKKVeV0p96wc1dqXUf8w5/6pS6u8rpbzHNXal1C8opc6UUl9923t/4jiVyH/DPnxFKfVNj6Htv8U5\n/4pS6p8oRZop+b/PsO07Sqnv/dO0/X7Jh3ooKKVMAH8XwPcDeBbAX1JKPfsYm8wB/Kda62cBfArA\nT7C9nwLwG1rrWwB+g/9+XPKTAF5/279/BsDf0VrfBDAC8GOPse2fBfArWuunAbzIfjz2sSulNgH8\ndQCf0Fo/D8AE8CN4fGP/nwF83x957+uN8/sB3OKfHwfw9x5D278O4Hmt9QsA3gTwGQDg3vsRAM/x\nO/8tn4kPV7TWH9ofAN8K4Fff9u/PAPjMB9j+/w3gzwO4A2Cd760DuPOY2tuCbMjvAvDLEB6cPgDr\nT5qP97ntBoAHoB/pbe8/9rED2ASwD6ANSa3/ZQDf+zjHDmAHwFffaZwA/nsAf+lP+tz71fYf+b8f\nAvCLfP3IfgfwqwC+9XGs/3v582GbDxeb5UIO+N5jF6XUDoCPAfg8gFWtNZPocQJg9TE1+18D+BsA\nLgCyOgDGWmsWLT/W8V8DcA7gf6L58j8qpSr4AMautT4E8F8B2ANwDGAC4GV8cGMHvv44P+g9+NcA\n/NMPqe13JR/2ofChiFKqCuAfA/iPtNbTt/+fliP7fQ/JKKU+DeBMa/3y+/3b71IsAN8E4O9prT8G\nSSt/xFR4jGNvAfi3IQfTBoAK/riK/YHJ4xrnO4lS6qchJuwvftBtvxf5sA+FQwDbb/v3Ft97bKKU\nsiEHwi9qrX+Jb58qJWCH/PvsMTT97QB+UCm1C+AfQEyInwXQVEpdVKs+zvEfADjQWn+e//5HkEPi\ngxj7nwPwQGt9rrXOAPwSZD4+qLEDX3+cH8geVEr9VQCfBvCXeSh9YG2/V/mwD4U/AHCLXmgH4nT5\n7ONqTCmlAPw8gNe11n/7bf/1WQB/ha//CsTX8L6K1vozWustrfUOZJy/qbX+ywB+C8APP8622f4J\ngH2l1FN867sBvIYPYOwQs+FTSqmAa3DR9gcydsrXG+dnAfx7jEJ8CsDkbWbG+yJKqe+DmI0/qLV+\nOzbaZwH8iFLKVUpdgzg7v/B+tv0NyYft1ADwAxCP7D0AP/2Y2/oOiNr4FQBf4p8fgNj2vwHgLQD/\nDED7Mffj3wTwy3x9HbIR7gL4PwG4j7HdjwJ4ieP/vwC0PqixA/gvALwB4KsA/lcA7uMaO4C/D/Fd\nZBAN6ce+3jghzt6/y/33CiRC8n63fRfiO7jYc//d2z7/02z7DoDvf5z77t3+WWY0LmUpS3lEPmzz\nYSlLWcoTJstDYSlLWcojsjwUlrKUpTwiy0NhKUtZyiOyPBSWspSlPCLLQ2EpS1nKI7I8FJaylKU8\nIstDYSlLWcoj8v8BCWsq1ZxHLwQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.3409... Generator Loss: 0.6901\n", + "Epoch 1/1... Discriminator Loss: 1.3804... Generator Loss: 0.5383\n", + "Epoch 1/1... Discriminator Loss: 1.4042... Generator Loss: 0.7307\n", + "Epoch 1/1... Discriminator Loss: 1.5044... Generator Loss: 1.7383\n", + "Epoch 1/1... Discriminator Loss: 1.4054... Generator Loss: 0.5633\n", + "Epoch 1/1... Discriminator Loss: 0.8011... Generator Loss: 2.2206\n", + "Epoch 1/1... Discriminator Loss: 1.2483... Generator Loss: 0.5992\n", + "Epoch 1/1... Discriminator Loss: 1.3313... Generator Loss: 0.5899\n", + "Epoch 1/1... Discriminator Loss: 1.2300... Generator Loss: 0.9554\n", + "Epoch 1/1... Discriminator Loss: 1.3818... Generator Loss: 1.0496\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmwptlZ2Pc77/7ty93X3mbr2UcaRkICIYmQuOxQBIck\nTuwEJyZkDy6TSqgkOJXKP7gqi1OVxUUFlzEmEMqQAIGEKCABQgszI2mWnpnu6e123/3eb9/e/c0f\nz3PvTGNAI5CgK/U9//TX332/857znHOefTFFUTCHOcxhDmdg/XlPYA5zmMPDBXOiMIc5zOEBmBOF\nOcxhDg/AnCjMYQ5zeADmRGEOc5jDAzAnCnOYwxwegG8ZUTDG/AVjzHVjzE1jzI99q94zhznM4ZsL\n5lsRp2CMsYEbwPcAu8DLwL9cFMVb3/SXzWEOc/imwrdKUngJuFkUxe2iKGLg54Hv+xa9aw5zmMM3\nEZxv0bgbwP33/X8X+Mgf9bAxphD6ZIDsD33Gwsiz8jwAOcV735393QKb9/290M+mwFKh6Ox3FOac\nLPpYhIUnY+Qx6fk8HCAFwMWVxW0tYtmRPuviBIl8Lsq4RsaOcwvflcHzQv61DSRZpr9LSWKdTxaR\nZblM6Uxws2wsS9dkW/iebFVhB9i2OR/XsWRusUyHLA8Jo/xsCHZ25SV23iRjRwfPAFu+V1xhlzGZ\nDJKSK1Y5X/sZ5s5+J5/R584m7YHJFRcF6D7ZOFhODYAVW3BxHNS46JQBOFmGjbHg5Y37b2EpvnLS\n833HlvdWMOefizwlLPLz6RSKe1OY88/22Vim4P3b7pytwzY4uTwTmoySXolpXle89UlQ5GK/Dx+G\nJ598AgDXkYGzxMYwA2AyGpPF8uw4ibASW98RU0xlhFD3zstsCl/mUMocQlvXEefMkLNl5Q6FLThy\ndb6Fa1HWMxmaEk4sA4/yKe/tX4KthzwjPy2KYomvA98qovB1wRjzw8AP6//AVKBwgN77nwJkAz09\nCC7g22cIlgPhGoNr5DvHN9SMLGtmMopYEBLZCUGqv7ME0SQu+PLxEiXeSjZkvNkup0Vf57AIpgPA\nSrEKwH/5H/0QQf2OvC9cY+VRoX9W9hJrnlzCvVGJy2ty6KdZAEDdLjgcTuQd01MO7skmj8e3GPTk\nMOVnd63couLLOkw94JHtFQCy+hM0m/L9OPFZKMvcdm/LOvvTG7x9dwRArVHwN35U5lYbfx99/l3F\nap/CkkNfLfRyVD9MaXILgONiAllJ5mOOMPpMwRio69bIATSFS2FkHVaxDY6sz0tTck8ObLtoEyx/\nNwA/WpNx/+4Tn+Dvtz8MwP/4Hxr+zheGAFz4W88RhIo3c0w5V0LdEKLyYu7jNFoAhJNjrqcTnY5N\n6Mq++rFDHMiFqyeC+6kb40RynkI3Z4GGjhuwMpND8LY95hkWAXhl9mn5/fRXOShu66bUgFMAHBx+\n7n/9RwBsLMm7+kc17OwaAK9+/vP0bh8D8MXjHfwDed8N5z7RV+XS36zK3m0MquSXqgA8MWhzoyn4\n9O5NeCM/BKA0bRM3BgBsTQQXyWaZ57NlAN7xnmPh3isAfDb6KqSC+8IcUSsEn32GZ1zhj4VvFVHY\nA7be9/9N/e4ciqL4SeAnQSWFYvSHDKMUmJS8LofeTz3cM4qpnN11LTLl7AtlB7ckmxzE0JnIoalk\nkHnK8RMZK3ESLCPIO66OGOy/pq99v7Syf85hdpXTVloBWfQSAB/Nc454Qd7tDohTubxr3imzoazJ\nqc50HQ5BIId/vGOBcwLApDclm8izO2PZEi9ImYZy8R6r+9wey2X0199h1hXitbHlEo0Fzb4rB3e2\nX2PRyOE5Pchh/NMA9PnpB7FqhTIPZXyF+zlm+l2eZLzHVt+TAwRO3jeI/nMugV2DXAhIRA5KqEfW\nPr1QDvd/sy5zu9v9n/lrz8je3F/4z/jeRblA+azLlO754GOEyFrLevlHAZMLgqPwbsyoLzhyrIzw\nTFq0cxIje2xKsqbMOBSZEI3YGPKyfJ75FWxX3jGb5dwuHQAw6X1F/n3gLITnn1IS6s2Jft4GYHkx\nZu+dNQD8Lly7cROAt28ecKTEa78XYcUyThjLfJPshCKUi75Q3WUvFkIWWydMpvL+MN8jm8m6j1Xk\nzao1phW5Vu/cfY082xW0pe/bsQIGDPlG4FtFFF4GHjXGXEKIwV8B/pU/+nEDeHAupj0IBQ7btiBt\nHKywUpNLVlIRcG25SarSQd13Cc6XVfDOkRxiU6SkhRyE5ZIQk71RguUJ0rdWFkhH+wAcDrtEeoDe\nE5MBmvLP7piVF+US7t+OiT05FGE3IW/JM9HufeKBcLSFTZnntNxgeiCS0N27ffqT6wD07mfc7N4D\n4PqxEKkk6MNIDvYX/YhmVdbRupjw4nMfBSAe12k15QCcTOXSpeaY44MjAI7Hp2D/GzLn7Kd5QCVI\n5XNGBYD1pM6pEYJmzBEUoWLQAGe4eL+qcIbjDNk7MFjYRU2xNsZVAuG4ZZ5dE45Wv/QDAHz68gv8\n5e3nAOhcX+fmULiZsf8BViaHuDAejl7KZ4ZtAHbyTb7XE7x8tVnjqorPeTyl4grh7M1i1qry7jiX\nea61y7zVEcLreoZ2VSSWx9ba7AidYnM647lVGeN/OxGJ4GB2l7w4O5fvPwsQJPJspSJEZXx/l4Ph\nFwH4/Ftf5PfuChPZ702YjAVvpbKHpcM4lszRo2DDlvX5syZPekLorgOJoxJZNsWzRNoo6xZcyJrU\nHMHhX1jpcS1ZAOD2yT55dqqzLCh0f/6o+/UH4VtCFIqiSI0x/z7wG4gi9veLorj2rXjXHOYwh28u\nfMtsCkVR/Drw6x/waf5QKqYE7jtaFsWHLgBwIV7i6W3hwO7iGICrG5eIpip2V1vYRkTAcOSwcSyc\n2WtUWSsJBwoHwpVO9zqMXKHE8VrO3uui44WNhKPug1wB4Dlb7AzV1SqTySMA2OHvk58ItX5j+BpZ\nT0Tf2e49ak2h1m/fkLW1Jy75WLjcMM65cyAcJjqNOOwK554lIgUNOxnTXLlEnOM33pE1H1e4df3z\nADzx1AYf+7RIJuVMbRnHJULV5Tc2tyD7H96H438St49XRAroBS61QnDVy2IsNail+XvyRaFyg3yW\nv9tAZsvntikYuIK3Vg5JVZ5erUYUfVEPrpQ+K/O89wrHWyJV7MR/mx/55F0A/gtnzKItY5xaCT98\nScb43U+ISP2DA5uDWGw7V4IZEzkWrC2HeKlw7k0v5KQszyz5ImlMhjWeikUk6DgOj63LuMenJRaG\ngudX74fY6yJlDXMRxT1rRviH274Zqm0qnsi448E+b7wpNonf3B3THcrfB5MM11XMWSHluqzvzDb2\n8XWLzrpIAU/XZrx5R87IkyV4tyufty2Xk1TG+8iK/O503WNlU/C282bORz8sc9/5nRGlmbxjksKG\nI+dv7/024z8G/twMjQ+CBSbALmZk7zt2pZIg6t3FJt/WkcN/8eqMp1dkw198fhMAO2vSXBE7Qtwt\nEbTEwDo56uFelt+FsYNbXQfg5LaI4geBw2hHrc2DAQeLclPS5DGGEzWBZBFJLqLmTUsOj1veobZ8\nhvQqi/arAOSdXe6rlXncDzh8U4hCaU0u+klk089lfdO9KaHqsrnJGeVy8qYjeTYpEvI4178b4lO1\nS5Sm9MdC3PrBiE2lXasfEtGxvNZmdk+IXqV+DJbgwuRdinPPQXwu5t9R70xlEpPr3B1TJj971mQU\nxZn6cO6rwFhnxscc28iFHYEK8zDNUtypXrzMwQSy1i/8nuzpi4/VuD/7awBUT3N+MRR15crqZT7l\nC77ffKzFq558/1Isas7NeIbXFaK/tQmuK2rJhzerZFX5XGFGrLaihbqci97BmPFMCONobGi6apcK\nLA725dIsk9DbFTwu1ASx0XTEweTM6Pwg4woSuYR2Lrj83XGfbPc3ZKxixqnuqeUUZOoBWKl5XCzL\n/vgtMS4WtZzLnozhTBw2HCEykV8+H7ueTXGV2N/P5HZXhzHdXTmzTa/AXfk4AM8/GjI5FXvG3dMZ\no1ztQOmUDwLzMOc5zGEOD8DDISnYBXYtpT0r6Ckv2vAcNp4WNeGKu0ylIVz+kadKPF0T0b1cEcNR\nJa0yGwtH8e0Rjhqcao0y8UA4VMmzKCpCVf2KUGjrtM52Tf5+325y6YJwv8HxTQKVBPxRSr8QNeXj\nNaHUy0mZVL6iVqwyU7H7aJzTV/VhEIGdy/eHd9WCXFiEE+W10yF2VX3MucVyody2JNQ8GdtERua2\nlrl0VQweTgyRkbWu7ozoXVJpJBXpabu5yuZzsv6hZYElKpF4VITDWAUEbZnHJTXEHaZ1LFsMrXns\nQKhcsQBLVY/CKnDUDZxprISbZ+RqrA3ymFBlBc8kqO0X10zpJ4Jzb3wDgF//Wp31mag27oef5vsd\n4f5Pf7rGJx6XdzydLFLcUgkqkfmMjY1niyXfcmyeXhUDnbMasGSJhBFPcpaqusdL8p07a1KoirW0\n7DNtyvzbw5S3PXl34RhmqRpsA3lHMuuCulz/oAZmW3KeBmPB8QtRg1+IVfI8yshnipfCpVSRzy8+\nucVCVfbhmQti2J2c9imXRaK1px4L6n49OOmyWRZ8nsYZfiY8fDYWya09M3h6LjxjMTuRdVx4zGfi\nqqpUirjkCC6+dO2DSQoPBVGwsalZdabZhHJVLoe/WKWeymLSZonLj8jh3yhdwG/J5jqOiMa564Fa\nkO0MrFQ2y3EDcg0KMXFMNpQD0mjJpWqMbBjJBmz7huBx2dz9ZIvLir+9maFtRAQ1qoePbKg76t6c\nHBNrcIEVWfgayOQcZaD64EAt6FaSYAV6mQKXNJFxl3yb03VZU31PDzMT3ExOYU6BPZHvfX9ClskY\nvXyMfaqxHHpgnmytEg/ldyveKqZQgb4oMGe31MoJJvLMIBCcLJQHdAeC+6qdkCPfj60ENODKtl1a\n6gaeleXfIkzwq4LD9STlUANvRv0BQf5ewFGucQN9JYqtos/oXdmH9rWUL1YE90//xW/j/rG8u1Vt\n8oorRKR0rF4kd8Tikqyp5rUJ1CZSs9cJNK4jMxW8XObhI4wlW+rRn8nFc4yh6ctaK2unbPfEDuD3\nHTxPvk83RcT/knHoRkLo8+T96kNBrgSwiezNtfv3iQ/l2dSAd0YUg5yFTPB1YcXl26tXBUe+qIHN\ntXUx3gCuH+BFcvhyqwaJ2i3iElYoZ+QwFFz68RhXA6QCy6IbCr4bTkG3ENW66XZIiphvBObqwxzm\nMIcH4KGQFExR4KQpjUrOVMXTej2n0pTAnO0LFdYaYmiyizZx+Sx8VP4tzCmlmhiwprZFdSai3zQA\nTyWFyAUnEco8OBaxopyXCZWzF40Kg/5TAFxuvM7uiXCMYb2PGQnlbpcEXU69QqHcOl4f0rsu7zia\njPFtEd2jvMtIw1+LWDiK03bYyDS014LAl8/lUkwxFk6SNNXIZPVIVdyfpTnZvnDVSl5hqAajBi5v\n3hGDaHNdcHXPvc/yE48CkJd8ilzDZMnJ1WDoWYY8EHy2NSgsSny8Qt49LQy5hnGT5ueh29gZ5bJw\nndSS3y2XUyYtkSQ2aik778o7KiYnVU+EUzachML9o6lw/J3UxhqJdGDZA9Z0z16of5LVdcH9+NSl\nlIhaVNPY4KTWpKoq5uLCOk5NcFhUy+QaT1G318h1LYV6Mkapw4IvRsSkPMNTSefwqMzVQI24VxNW\n6jLeVz4rv380v8+97MwT9Z7+YABTE8ljEMuarPoxb+3LPDvTiEQls1pkqC7J+8qzGv1HZV8vlMV1\nMiPEPouLClu4keC42nIYzcRrE7guJ7fFsBm1RS1tDRKyFdnH5LTMssbvJEOXvCGfvXHGmbD4QeGh\nIAqWBXXfIp7UqFc1TnvSpLgoB7NWKejlsvhFJ8HviJjkq45f0Mb1ZcMCx8FT74M1qZBolJfj2Fip\nLLfkyd+daJ9mS0T4JMkYW2IouJM3ebStuvqkSWtBDukg0BDX6RDXFn1wNm1R02DNxSzhJJZNLAcG\nK5L3rajLLli2OMsdeMKukKQyrlU6JazL94sVOZTjfkJqxOo9nNk4dRlr73hMNJPDP6nm9BINYd25\nC0B8aZMjjWi8UFo9x3GBwagaVBQGVN040rGSOCXVPIEAm8LSICQnwkrlkAZWmYon+1ByZb6TKGUp\nqimuPJoluSDDMCPQAClCH40VIhrUdEIDcg2fzk1IbyJ7+fxqk3W1yt8xhtG9r8p7NMS3aSVU6kIA\n1xZnbDZkTeWFMonmT3h2hKPE11Vm4tMmNHrBWnVsFbudBZtRojaj1gKHPZnzJ54TG9a+2eALp5+T\nuYchmeY2FOT4kVx0zxX14+Vpg6ZGoYZuSqjqX1TJsGxZ06Ibs6lzsiLZ/+UgI9bAuOq2IewIY0m8\nCUsnSvS8CXsDWWtFiWLZinE9DV6rpPSmagcrxgSqVtqxyzgUgvtBYa4+zGEOc3gAHgpJocgLwjDC\n8W1W1XOwsbLCS+ljAFTbNld7wmpuDRJKaqDzGyoa+xY5QlHTioeLUP6sYcjUS5CZGNsRKm9r8AhZ\nlUzDYb00o31JuNiaNWJ0Wyh3GoyZHYnEsqbcMUhLoBZ3P6rTL4kY3E1ivKr8rlQ4FIF4R1rqg47r\nAVs14SrdqIevasV+4XPJkbEPUhENHynXiVeEIza6M35Dw5i9bsppRbjcpTjgRNWfN45loXa8z8cq\nf0nWZ4/O8ziEn4iMauMQuMKlzkJ48ygm19yHyJQpVWPFi01VPRTtzRoXl4UD3Y+E213oTaEs3/Wd\nDrMDeV/ZjYk1OMdUc7pTVfUsDWFO3xccloHmKrFQyqAhHPi50GM/E5HfOhJpbLJaYUvDv60sJ7DF\noOZbFapLGm7ct7BUgkBVGKuckPdkn2aRj+to9mSlcx6IhfEItlRSG4nB8Ib3KjMNGirM5AEPRKxj\n3OlKTMDl3Q5fiASfu5PkPMt1waqztCp7vXLxeaqqurWW9VyYEjVL1llkHl5bPS0nhkpJA6C8OhfX\n5fw6mjvhlXwOXJFANqox4zOPUQwj9VzViojQPYtP+WAwlxTmMIc5PAAPhaSAMRjLIc/AcYUUp7Yh\n94U7LA3bHCeiU9ZZwFL3TurIv/WkBWWhb+6gDBVdVpiRVYVjWB2w6mKMtDTtl+WM/EiljXIJ1xZu\n20hhZapxA2GOo5GMyxpGGxYWLXUPhd2EcV+4n5/ZOA3hTM1SjammAOdaOKFsXHp9MRYlRYn+RPzK\nrlsjqai+vyoutOZxSGNJOEo3MDzV04Sw/iEVVRFv5lOcqcxp2pA5bozXWVTjlE2b9+h+gaM+1Yq9\nRNMIV/F9ed+JkxJ3BG92rcrFXL9fjKlMZIy15SaP+GKPWV+V9/VKFqib9XK0wjBXY9jYMNI9uer5\nLDZk7NNQIxPzLkWqnM0YLNQdWl6kHci7R8EMrybPzDQu+4LxWLgkZ6Sx9iIlNaK5tTrmLOmoFWH1\nRbK0Xd0DJySvCDcOhhnWqvw9KHISCXXgdO8+/oas72k1YJ5uL1N2flnmkCbk55mSBam6JFecKwD8\nzOkb3J9F+tcCV+tpbK06bARio6i1Axqe2KOKvmb51nzSiUgrpuaSqL1n6Be0joTLL1/xyGyZc1GV\nMzt6u8O62tJ6bkhdU14zB7ZdkVgP6dEYnyVEfTB4KIhCURRERcFyxdAry6YsJimxXsJXRz1MTw/h\n3pDnr8riV18R0Wl1a0L1zHhTGpCMNHPOpBQaVpxWEqKZ/C7R0F4O2lhtEcuzmWF2IH/fGlS4lcjF\nGkd9wokgdTURQ6NplM69JI6/j9EY9ygfUAsl1JY0o6IHaKAqzO3jPbypFtDwHKZqtKo3C8qZrLWt\nXo1J5pKeSObkwaBFpnUhypuLVG/L++ypYezKIYx7cnjevv8WT1T/ouCwGnMm7xoKMvU+1Eo98sXH\n5T1DucRZP8So9d4JXPKKrK9UtHjqgqzjyRdWWPdlnoPoouC4uU80FXwPiwOaBxpuXjJUNJ5ge9li\nNpT9ubItBHRnJwc1jMUFrCnhLdoL5GVZS5YnpLHM6UTn1qymDFLBcfPeiOgZSSMf3etjxpomX3XJ\nHFHDiplc7iydUOLsAiWUu/L38V6NQpMb3NYKti3z+8dfkzlcfvVrTOIzQ92M98OpJ/M/ikXVGI0+\nT57os1ZO05NzE2Q1PF/2NZrNeOO2BInVNA6nUo0JSprOPxqTa2xCOhvRm+ie3A0ojBDLcibXNmrX\n6J6l5w8W2VR1dTbJ2C1pIN5RnV5xljH5wWCuPsxhDnN4AB4KScEYCJyCeOYT1NQN1w94N5E6r2Y3\n5mQqHPF0ULBzRzho2xZKfGW9yYVVCX3+6PMNykuXARjPJgx3hHrm7R6n74ok0NNCIdOdGU++cBGA\nhnXIWA1YfavE+pqIewu9Gt1lkRqOToWym2FKuSWi3CjYoC3MiPpyQaguxdTyGe2LXGq1RBoZn0R0\nOrK+MIGNTeG6Dc+isiEGyFYuXDC3RpRTDX39jiWSd4WbXapaFL/0SwDca0yJO8JhbV/w4wQue0Ph\ndstW5T0cY7DUKDUu1lgZikoz0WC3IHBYc+R9S1c2aI+EQw3TKYUtx2TBtNhUv3h1JD/sZjl1LRCT\nn1bYrqnRlTZPLGklK2/Ao8uyV8Oa4PXxaIfhoeDlOEkYFLI3tazA15Dvbs3HHoq08ZhKD/FpyKQk\n3PjW8YDNpvxu1OkSTWSe1cDl0hUpduI0VHJzQkI1CDY8h+GhjDGrj7n7VTkPzefWmI1kLd/zzHcB\n0LY/jPWZ/wmAYjileJ+0sKKh23Yoaunb6Rqz9E3BfckwU6lvd9xh/y3NRh2PCRONWdCo2CWnzPMf\nEqN6Y7XNyIgUc3xjiOXJXtZGS4RPCS7WDsXVvHzJhwNRqwe1AcMjOQtXHl9idFddzb0ew8H7q5l9\nfXgoiEJRFIRJilsOKakXoeQkMBXkxV5KOZIL5Pk59/VATjWG/PDYZupIeTR2F3lWs8lGvZxhX4ua\n3LrO4USDYkbyjna5jB2LXr/s1RlbWkln1OMNTy7vdHXEgYpwzzY1cCccMkxFpE7CgpFW1RkWMaH6\n209HUzqHM/0stpG390+pRGf19QyBqhVW1GBZS7bd2Ze06P/nzgFOJHO/8Ys2H9eMyeutjPhUVQLb\nx9aKHe+cylZO3r7BdEfE02dLVc7UhwIwyDwX/SGU9MKqKLrk1Ai2xW6xuf4kaSrxHeWhzUIma71g\nWZTKWlouUm+H7ZwHWb1uTSiX5NKHxQCvIb9LvTqtmsxjdSi/69kbnBghCoNuzqOBzGOYDIgLuaRx\n74Q0lEM/1HqP5cUFpqkGgDVD7tySS3ySHxCLJsSlmkeyKPu3tal5C1OXzj0pTXfreJ/ds0olbzQJ\nVWUY3bpHb0HO2Vev/yQAV6Y3yJOznIEHsyTvZzK3NxIpg9ac7NMxGpac2ziRfB5nHrHmIsx2Unqp\nzNlXO8lmpYKzrinS5gmSgeDz5Zs3+PKBMMCS52C/KjaRTznCkGaPGqKRfK7VHDaUCN2a+PRcOYcz\n11BpfWM2hbn6MIc5zOEBeCgkBdtYNLwyTeNTU+t729/E0fBR8oCBGu2sQY5TFpHQqQg1rFoxuXLu\n/r7FicaMno5n3N4RkbEzMOe1Eu/0hAPfG47phGLYfG6toNFU0X/V48KBzGNWaVJNxVDja0RZnBq8\noUaMpSmWRhva0wr5mU/YHrG3q9mTGjHX7c2YKmevxgHjTJ59plZBtQ6mHRENJwd3ONmR+U5dize1\nFkB3kuGr96XWTLDV+NQINBuyZ5h8RuoL3rzxAkZrFdoFlPyzKMU1vNFd+d6SF/ecDukdLRYSx5RT\n+V2tNsHWWov94wPKGkHHgvxbbpQZa+TeRm7xeyPhbLv9PuNCVI2LrRKXC+Fok5LMdy2ZcFIW8bs8\ntEg0ecrMEoKxqDGWVSFuylryjqhiqVfleixSzM3fdrCags/xbMLjalzrGY9Qn/dm4hkwpZxx/jYA\nd/ehp4biG4PbHB+LBOXXZqwsijTwV5ckBLn52Pfyf++JNDl85x+SFu9lGrZzkZqeNxIe/38sP0Xk\nvqtzn3DGc61KRDBT43c1IBhp4pZ61PrRiIO+vO/qxQCtTEceuUSxGl2jgnagWZIaPj/pR7g9Gauf\n9CW7FVhrezS0CHERDMh2fb4ReCiIApYFvsf2BRenJbpgUDjU1kVcGk6HVEfqMbjgc1G/X26IHr5c\nTBncU+t1CyJNhx52RwwTOZjpwoQF1dtfUpflgJwNjYEvr05pWXJIk4HN3ZbYESwTsWDkoq6X7wKQ\nVR3iXDbZKmZ4U9lFuxXSzDXseGpYe1IOZnGqxMR14UQuerUVsKjh2GsLdbxVOWDeIzLH6a5NQ6sK\njfZtFC1MTINnNePwfryAY0QU1dglToZ3GVyTgJ4Pu2+9V1HRKog1kKlaGmKpiyzW/INZ7OE0BVf1\nhWUWFwQv65Myti3PRG6LKJd35/fkkieJg6dp2GtbG1xOxN22fnnIlak801yeUi1kXZfUIp+HY276\noj5UTErJlz372m7Gi9kbALx7e4SnIbrOuuxNcwHyniDm8RcttI4LpbJhcSpjtGyftCn74zqiGgzZ\noxfJ+vebIZdb8vfO7SfY2tKgp+GQ1UuyP+ZY1vno7LPYZfEutMsTjtV71DAFuxoWPwpEXXOnt6hb\n6g0iO6tET5zV8euyvwvLNcYr6nU61kzTElSW1Pu06DFtyw/TxRrTI3lfK8jJ9cxtPSLn6V6wjJ2p\nC7jvU9d8lNSqMKkIQ7LDVXz/gZrJXxfm6sMc5jCHB+ChkBRsC9plyMYtnHWhtHZRQlPlaS622FIR\nfRI4LLeFoy3YGpgSz6jWtLx3b4ppCHVtlm1amtXXKLlUtO9DY0Ge3V6os64ejM2FNmoX4nDqsKTW\n+dPpiJqWjB9l6g3oglEjZ1z42CqdtbMKMw2oWi5XsTWEeLUu6s5GEDGqiPhsNxo8tqHxD0s1FlrS\nWOSKtsyZ3Dzi7UhE8e/cLhGpcemxTpeOcr8mjxCeqtV+/DUA0ukSvVyMbF95ZxlLDXRF4WBrsY3O\noIkdiUqKZSyXAAAgAElEQVSUO/L3eqnG5qJw8xc2L/P4ReFss3sjpmrwzMMxpyrpjAMtEGMZHq1I\nOPZ6xcHdFKkqWsi5rAlZm1sZR7dlrSdact/ePyLvaLxFXjDRgiTTmy8z2Zd5Dlc8Jjsyv6dflL1b\narV4vC64mpopRhPoKuQEuj84BQ0tkmKrQbFVeokXXtD6kTsJJ1og5dHlJXYzkbbaSZnVZVmfvy5x\nHPWnnuZHBlJz+LcTly/fF3w3olus7cucnXvifRi215lq6T7LmtGPVU5zp6ijgWocsqUBVbO6SiVO\nmQtaYdzYFgueSA0Xl5bZKsl44SRhRYQ73hiINLY9yRnmIo2GpYK+ZnM+Y6/haw2FuBmSafGZDwoP\nBVFI84KTMMFb7LEYyaUJShF2VQ5pYz2gHcv3RaVD0xdZ2lvQhd9e5e1ACpsuWgGpLQfWT0ss2KIG\nOHYCa3KwFvqCSNuZslbTLLp6gNFAkMhOODAiEg7akGhxjac156CwZ0w1d6CReQx0x/2gQaLRfUu+\nS7Mu45lUDk3Vjwk2tEZjacjWgmyu185prGtnpbE0ZHn6n77KthYazVjBT+Udk9MVTgdiRb9WJIR7\nItr/5oEWk8lukY0FV5Nsj1xbTqUkWLFc7nrNJtMgJF+J5hONTbafkYP5iWceZ3lBL33llC++JeJz\ndtDlLW32UlbPnNUqY6t9wV8o8fi2rG9YWeLRJdkn2w9wV4XAHYqJh6/unnI3lkH6Ycq65l387PUO\nd58Xa/7v7DX5Z1IhgNGWEJhSy6fpab5KMaTsLOv3NpZGSHaGJ7gNzS5clH001iJuQyNkrzZZ17TN\not/GVS/RheYF0iUNEtOxjqe/w9HWXfmufZf6F+V3f9nUuDkR9+NdxFbxkh0zLWnW4szBqP1oyaqw\nvSzn5fGty5iKqB3lUxnrXrPH2qqqsbUZQVkL0K52WdIqTPZyn0Zb5nZpQbN1nSXcqRDWldCiXtIC\nPuUhgdqBmosNlr0Hg66+HszVhznMYQ4PwEMhKVhIjvjCaUCwKhR6EFapKrVeS9o0lrQ3YL6K62kV\n3Jlm53ETTWNnVlg0tQOUY2Y0FkQqmIUej7nStKVY16rMRZ1MDWdmWibNtc4jE2rq948JcALhlB01\nKCaxRVXr/aWzAqumsmHHoaFVhI0H05lw7HQq71utLYCW2mq4a7S0Rd5ibZNypnkZdWlXtly5TdX7\nXpnDCnBL1+R+jawpgS4f9woOohcBuLr6awAcHNWYaFbfu70lbJV43MKmVhNclO2LWI4Y+epaKOT5\nj1R5cvFpAJYqLSqWxnRU7uFpKPVR2GWoY6fauamIPXpdbaiz3sJeExwG0TK5hjF7bp3MVkNbU7jk\neggtNUQm+QlOIvi+VCr41DXxGDzxkUUOKyLpNY61TF9zi/qi1mToXSGYqvrQbFKo+NI0m7hjUaHc\nXPY8n/lEpxcBmL7RYfnbLsn8lz2uOCLRlAanmFz2Ic9EAiubJS5OZM6Tgxf5xCPCxev9JlUt1782\nEoPxjhOR18QI7uQTyho30N4seGRDzuyFJUNgiXSz50mzmOaghqOdrsoXr2C6coY2S5fZ0gI2nrNJ\n+arMzevK+xa8fRztSBb7HWzNMJ5NI3xPAviy9CuE0QdrAnMGf2JJwRizZYz5rDHmLWPMNWPMj+j3\nbWPMZ4wx7+q/rT/pO+Ywhzn82cOfRlJIgR8tiuIrxpga8Kox5jPAXwd+syiKnzDG/BjwY8B/8scN\nlBUFwyhj3OxxKIyNx9IRyZb4f3tFRDDTasBpil8XPTNTO4NtV8+bylYXKzQ8ofxWKSFLhMsHKw7O\nokZ/ZcJpilmO0SSSvBgS9oUqx2HGQKP/jtMpgfq9aso9qDmMNKS2NBuCVrmJ7Bw31fr9xAQVzbTU\nxqdubKNVx3CXx8Tay2By+5RAG7d6ttYNSHZJ+9rjMLKoO/K+kTUiVAnp/kmFYiB+/DQUqaNEn0jj\nBlrbE9TmiGVlTGaazdm8jd1SXbx0Zn9ZJVVXp1uPyLXWQzGpk80En649YFGFojPOFpuCaEntJEFI\nVfFiOWWKmiy2MGOGPe2/8K787pf2egxm4v+fJQVoJOCX7u7ySEVsKZ/7/TJ/U+cRLgpHtKIxE43y\nq/gB5qyVW5aQqnRXrYYUmgWZ7d6V38celho5xwsDFiyxy3jdLWoNLUnXCDAjiY2ZjdXl3Nvh+hsS\nezCaHjBeFtvGpY9U2M/kfEa5Rl2Gd1lWaTNzHRxthtPI69S0gGyttkii9qH6SKSKKV1SDUGfHo0w\nGmdj90Y0tuXZhcChrS7Hxqqciz5VfI02LWZVKlrXouz7ZIVWiErL5MV7PTA/CPyJiUJRFAfAgX4e\nGWPeRlrQfx/wSX3sp4HP8XWIgm2g4hiy4zKlFRF17gw9vNuycatZQrerXoSFNuWBppxqByVnPKGV\nnwUypVQ1EGbiJaDhnnXX4CZnpbrPKiqnOPFZ05MZsRrieicTnESbpEQpro69q6pGOoDCk3l2nQTn\nLATXzwkCbR5alCh5chEa3ll59j7HejGHL8f4vryvUq2z7cj63KmIhuNwRF+lvnK7TmegIdhDmyMN\ntjlmSJGISLm9rHEH9SfpqDukfinCeVMNbbnBVhH+zqjCck0OckM7WHemIRdUFB/tFnhaeu7k9JR0\nJvuQlexznO+pQbuXzNhwhPKMpjMSI/MpJceUtcRY1Izpayj0JJFLvLHgY/XkUmSmR6Ht1Wv9hEFf\nCOQnn97gy78vBO6fUmIaVsZUErmMuckpaZMZwjrughBkK04J2tqxu/q4rt8mDuXdj19cx3G0d2N7\nk2wgPT1LTptEU+0dLdc2y8p89yWZzzh6DOcl6Z59+fETjq4LQxmrsbc/GzM4a2NeMueen4EdEp4V\n0o6m+Gq4PtIguqwbcuSLmuTmEXZJ6y5WPJ5QBpd5BqP9JkeaMVqOHdSOTD91IFGvm1/D09J0JgE7\n+HNoMGuMuQi8AHwZWFGCAXAIrPwRvzlvRe/Yc3vnHObwsMCfmigYY6rALwJ/syiKoTHm/G9FURTG\nnJUCfhDe34redZyiH2aUmhOyWH209owoFnpyHLi4mllGPAFthlHVUmq56zM4S1bpGG6tS3JUlrhM\nJipGtQLK2r8gK9SHPcmwNGTUT63z4hau45Nqa64RFioFYmtYteXGjF3hSs0Z9EJNDrIMjmbzFXGP\npKcdpHNVUWzDQltYbPdkQO++it3OPh3tcu2cSp+DsG7haaGMID6AU5n7bjfk3qmsNTFTZlrebKLF\nYf2lY565IMa1zeV1fv2sTbyVQS64WCyVqJQuAtBqCPfZrjSZ5DJumo6xVAx20vS857SXW3SbIm3U\ntG3csACvJiJ17jmEQ5Ew+mGIWRQu7vcs9o80/DkUUfzaqIfly7NxZtFWfN8Jx7QWZdKnuwn/Qlm4\n5mFdohhLFY+RK1w1HE6xFLeNxiF5IntSjiMmB/LZb4hBdRZPOb4pEkGxPaN5WWIr8t41Kn112TUu\n4DiqrjhaIyHf4x1L1mE/scfqo6LebTUXeWeikZddmcPm1MbXwrbdpE6krekezcvEIxXzd2PiJcFz\nWWNPXi9Oie+KtLUzHLKyKGM4xza1y3IfyqUKeabqj0ZuFmHAaSrvqCVTbFVH7VnIQCXdYNYnn/0Z\nFlkxxrgIQfjZoih+Sb8+MsasFUVxYIxZA46/3jgW4GOxNg0Yagjy/njGSl8OTXS9R68hYrUdepSq\nop8lWrHXsgClPSbPSMdqA4gjIjTApFvC03Lmmfp2+7MUk4k4HPgukfb+61t9plP5XPFS8lhFey0X\nPo5sXFsOzXAaM9ZAkbxrkxUSdurnVRL1UHCmotRjSoGEIF++UmG/Kc8Opi7+SHTKA209VezGrG3L\nQcoHNh21d9y9vXdOhDqZOfdHR8tyYFrDCzCRw+aMyziqh5YKF89b0PkHlEaSPzDuyO/6izlZV+Zw\nPO7jasDWjBmxpXUXA4tmIM84WhEptyqUS/KdO/EZj+XS7J2OyTUrdX11lWVH1Io7Oodn3Q6J9lS8\nH48otABOw855biSHeG3zKuOK7GtlV3AxymKqS9qlamrjhfKOsF6hpIFYN28YSsVr8vxZ5e47J7y9\nIxdv860q7rfLeKWSoXeoORjVd4jasj+5EofTcIGKo2Xrszprr2v1rUe2mY4ktb8SClG51UsZqj0g\nnIXnRW1uVBIuqX2oX06xQiFYE2VSaVgiqasXLK8z2VN7TQTxbS1208oIS5phqnJ4FN0k0uzZmJyJ\n5mVEdkJTA6D2x6fMNKP1g8KfxvtggJ8C3i6K4r99359+BfhB/fyDwC//Sd8xhznM4c8e/jSSwseB\nfxV4wxjzNf3uPwV+AvgFY8zfAHaAf/HrDZQW0I1z7pd7nB4J5QuSMcvKPQ9rEZkmNuVjQ0lDWMmE\nQkf7Nsrkse2IXLmHFTYouyJeu2WLma81+UNtxxblpLZQcz+Cjlat2j/1mA01QzFwKDsynqstx+22\nB5ZIK5WVCfFAXj5OD8+NedE0xNFQ2lwjHsupw0TF8tSBVqBlwLwmZlc4r6t9C5O0wApl7ieRx7FG\n3d3t5xwOZf2D1Ge1qe6FPcHPXrNDyRNRe7QFiYa+Tk3MaKBCm+2wnIhhcjqVse7fnoCqBI+vh5Qb\ngvvoYIqnnY99K8LWsNvyQKW0uktZf9evx5zsCbfudkMs3Z+glHFHqzzHHTHKhWlM3tBYgn7BRa20\n/UpoEy/LnrzTP+T7luTd6apwcMdPOO2KlGZbVY5UalqdWuxrLENz2ad3X3CQa6/FqNjgisYYTKwK\nRkPdj+7nuAPB83GesGKJunHU0wIqex2+8jWRCJoLTfpPi8SzGexyrNWau5qJij8hMmfNdwxD7c/g\nHTvsaL2I7YaFk4vU0OloclleUIRajs2KiPV7r2pIM5HYTosILejNuCtn6GhgEWoCVpHlVLTz+jCy\nOdII0X7Ppx//GRVZKYri84D5I/783d/IWMYY7MDBdAIs7cLUG1vc9FSUdhKe3JKLvFBNKbRBRldj\n8ifDgsMD2VjT9CmpdyJcShn0BGmWbZ9XS7K1kGqSHOK6gsjBtEtPkx9udfdxVWT2JhFlLY4ZloWo\n1E2ZSkuWPhqXqYRinc+ZUKjeNyvqnPkD/UIuZncy41QbgBzdH1Hqi6h9EE2ZaFHOk1PN9LMS+hNt\nELK2wFR9mbuTGScz1Sk9i566zoKGXLbLPMVYy6fbxwnWWapeaigsWWs/SrmlFYYuaUbeepJhe+KO\nG5yuEGpdvzhyGM9k7IrlYrRm/vFZncCpzUiL1pR3U4xe0jS6R8VIgFAY54xizVAcyvu215ZJuqJK\nuOaEm9qUphE4LGl/z2c/8nHCd8R7spGoPWdhgqfNZ4p4QEWDwdJOhbLmlTijMhc2ZH1lW9SHo6t1\nxvfFBrBZjbGmWulqNeBo+AVZX1yhp9ylqJ0VKXG5pPkVrdIKZvM5wdFgQKskwUeBhkxfSxaJ1DZQ\ntnI8rQ+auAmZK/OZRBUCXy5sTwO29jpDMuesl6TNgXYOc8YFF/RcuGWf0UwI52gqaufMzhgoEymc\nKlEi96HR9nG68u538xGTwZ9R8NIc5jCH/3/CQxHmnOUZg+mIW0XCVH3lXp5xPxauYzoe7S2hgi+5\nTYZNoXzRoXDw3aMRHRWD3xzep7ms3YXHVda1FVqPQ8YjecZriahdLpfItNT5LK1wbyAccVCE3BkL\np6zWPXyl3JfVD+zZIY4asBYbGadDETVH7oQs05rjeZlI4yEi9SxMw4SOeg5O8ykDXevEshlrp+hc\njUW9wqZxKtJP2Wlw2xHD4M6oR6rNQOwspdkSDlM0pEZlaTtjdU2t8FsBmdY+hJRM+0oaYGxp0Zae\neB+SFYvYlflmlYihlpWbTCJ62s3Y2CmFdmUutKtz2IGTUCxfeTXB0XdklSpxRcPQI7ilXqAjhJO+\nlgypa63FnWFKS8XuATnvroua9k7ny/zrgaxltiYejmZljbJ2l+5MDP1Y/m68MeNdDRvOBuRqYK5e\n1JD4ic1sVySho+aQINdydFaFtKWZn5ME20hQVziVs3eDO/yaI3t2pXWXUlMyJj/SXmb/LdmHoa2J\nZmlCX4vQjIeGSKsyl5waE83yHds2E417SVSC9HyHjsZvZFZOSQ2QNStjX0vT3d/xqKiadhxo24Jp\nhOWpOud7NCpaN7RUY7Io5+h4r0luf2PVnB8KomBbNs1Si5VxwHFLplScdii0Ok4c1jjSEtneeBvr\ngpamGciBrq3foHRfdL2e67FVEf2z8mjKilbxGSc9ahXRoy1fDo9janT3ZOOOJwP6Wqq7MjAsx3L4\nl/qb8HER1ytvaDWbvIKXqrcjjvHVTVfdazAt5CI75Q6FRk7mA537zCEoywV61GnS0UzLTXeNwYJc\nkEzLzN8Y7LJghPC8U09ovrKic+6QaWFTu1JnoSH5CmvPiBvy8ZVvo3VVxlqttQg8zTqNDHFdy+CP\nQlztDzmN5YDtO6d8qiqEJalV8WPBZ2X1mO2O4NB4NrWyfM+SXO6kk5GHsr5qc4moEJdjkDSk4g3g\nWk0utsVNbE5knh2vS0sj+mZLr2PflX1vVRwua2rw0xc+RHwoOFy8KYQivxSQNOXSNNJVStoJqTuM\n2bqgHqP+VaxMLnJQiArDxRNsRz7v7e5RCQRvbN0gO3wegIPxfUaRnK1gRfb30ewZ/tmxNOx9dPs5\nFrQik7EXWdBW8usbGgjViLBGcnEP87dQmse4PuGxQjtdNcus2XIO24+JGrDdXeBIXbIrfoNsUy5x\nZVRlt6/ubK9CVheb0GZfu5eVYixLPm896vPkpuxfP1lj1tGsYvOT3HpZ3K/v8MFsC3P1YQ5zmMMD\n8FBICoUpSNwZSbNHrt2IFssp++lZ+HCCrf7aO1fusFoIta6p/ziMbfIF4QxL5TIrGkDkBSu0tZnI\nSusSFfVQRJ4WxTjIsXUMxkOyI+1BOR3TU5E/bd9g5ZpQ40zrQFqBQzJRY16RYvaEWzlBSjnWWoTT\nGb7GoIaWiKeuX2AN5LtkdoSrPRo96zaW5gYYFVsdCqJcVIbuTswwEc6cmgLXPesCHbJxQbjH1UvP\nArB58ZiSLdzYGo7Jg7NOUCFJoqXfa4a+ZnPWXO2vedzmmpYTv7jcoG5EaiomGZEWdatWDW6i/SaH\ngsMisliqyz45WQ5alj4+HRNviQibRz2mQ/WSqKoxngzxVkR6sG+H+NozsVoqky/JMydv3eJ57RzV\n3RCxfv3OITOtPVE69AmuyjrW92pk6u1p1lzyFcXtoeAzmtVx1Ai6dLVO0BEuPYpLpEey7mApw96T\ndQ868t5yb8SVp2T92/XbjDW4ru2cMqhpsRsNeksZsKnh6qOKj/HVkxaVmTY1XqTkU+TiRkjHqjJk\nR6y0BW+tYkKWiBE0ixKqFW0rkMUMNDjJUal5a3mZkqoUreYauZaKS2pdpgtiVE3erbCoDY8+KMwl\nhTnMYQ4PgCnOMir+HOGZZ54pfumXf4WVls10pBS63KGnrdDKpYgjzcpbahqm6tZy1eV368YB4Uyo\n4Z2bR+wfis1gHA5Zroou11hao6neuU4i3PHKapWoIbn7l9YNB9pL8cnNMdcPhSOkxWu8dUM54apw\n5f7vJsw8cUM2rTKrj4m+W46eYcMSHfDawOb5K+oCnIlevG4G3NAIwuVmwVjbhi2aDvu67rYrnHia\nWpSOhWtdG3e5vKoZlauPcHlduHTHLPPcZZnzrXtif+gPPsfLb8uezrZO+EtP/Li8e+WE8EhsLV71\ndfbva10Dlca+fOSyui/69E+cfInnf1WksZ975ho/dF249Mm//Qx/dVd7QX6n5OtfufUG72iFrCfD\nDfZekvk8PTwhXRDut+gmHE5Fn1/TJLD/eh++/1dlb/6D7/oqP/5zgsN/7Ttf5At35dkXVkb8x39X\nbBT/8G/Ls//496f89Kfl70/8vS/xt3bFnWgPFpg50qvBS3ISV+YRaOvBKLDxQjkjkZXh5VL3Lqvd\n51HNVgo+/d38lbZ2+v6OZwB4pPcmP3dHG+C83OO3LgsH/r47EaMn5QyUHQ1hthwatkgKgxC21c36\nmX6TyTtiJ/itwTXMRDm6UQmycEhtDbfPa5iS2BcqMdjqol/y64S+2C6irpz73XQfT0sMRsUFQKqP\ncdZF+5+EV4uiePGP+uMZPBTqg7Ey3GDAKFqmVRMZv9trgxExsnucUtZY9PC0gVvW2H9NWa42JtyW\n+BKi3iG79+XiVdMp+wtyWfzShH1tNLOkfuf9cZtaXQ7prdeWePyKvHsyfom6NkqdHX6Uj0ZSIu21\ne5p555+QzaRO4HfbNfaaYji6GMVMNUfjxWqIpd1eVtVi78Y1nrgicw6HQ5bUvz1K61zSWoL9icxn\ntWLxtgbpLEUlbmlJ+c7gkDc/L4fpn//2VSYb0jcy0JiNynCB7+nfBeC34zdof4cG01jPstnQxikn\nT7A4lZJndweytv/ztXe5dk8O/GtfGvKb2tY8fcXiv1Ox1J9t8dGqHMx3Gp8EYKd+ny9VBMcsH/HO\nTC7TqtPAXxEiFKYWp6kQ6h1HLvF/v/8uvxx8CYDrr7b4hWN5X/9/qfBkIvPHN/xXGmjGc2J8/KnP\nBPzUWIyE5ugzxNrHk6LgLEkjhvN7MTvjeRGcDUUGEVoXbmK4rt873htcLz4BQHtBBojKd/nVUyFM\nNe83uXcoe7aUGJ7NpdiNbWulasthplWka0dD+otyhl658xbdqaw/nb7vwup7E1LOMsDjIgJNk68C\neUPeV61OmKXy/awqxK3ovBfGD2/yzYK5+jCHOczhAXg4JAVsPNOgUoKJhhKPvRnhifhoC3uANRQR\nLe51qKxqHEIhVPnwnSl7d4QS348GWI6McTib4AzUzbjq8OiSLDccnkV4HdA/EvFya21K/566oy6/\nzv2xcN6m9y4Ht2S8uKVNQe4ElD8k4756UuZSSTv/pnUWlkVVSMYZ1VikBqeq/7bqTPe0t1lksHzh\n+EteQO9IIveSrva7LDpEAxETv/TWEcfHmpvfhKAs3COf7PADbVFRdn15ds0+4N2bmqe/tUPQ/+sA\n1LdPmWhE33G4z/G7Xwbg3RMNmX75iO6uFvHwV2CoYxRlCjW6fv/rT3LbvATAx5dlP35+/DQf08rX\nTW+L7xoJbj8b1/mYlNtgYfMlnnBlfoelHwLgZx5xyYeStPTLb3S5NpA9rfz49/PJf08MkL+5sUHM\n3wHgyt8Raet/v/Uhnh3+PACvjZ6F4obu5Zhz1ksBxRm/U50xtzkXJTDvPZu5Z0ya4HNlvrol6uS/\n86xIeeO1j/FvqbQ5aG/zuR3B2+3+OpfPqtBuy/7fSTz8VOYZ532qtpytq1mJd4yWBbTHFKlm7ipP\nNuTYGm1q5TmruUgeMydjzZHvk2CBj9XlfL5dFbVzFh2warSv5mDKH6M2fEPwUBCFpCg4jkPKxKRT\nOUgTp8lXjwTp7bxGkN8GYGPzSe6peOycaOn1bh+zrbH690s0Cq0ibM2oX5INrS4uEWk598qybKLd\nrjPoa9/JfZ/hguiIJa5SqL73yltP0cxFzC0nooeuLtyhH2qNv+kJ/T35frg8pKbNXYOgS+qK7j+L\nhLitnq4QatCQvdJiqmGpDNo4TbGZVDXrsTvJzzszhQzZL8vmnx5B3ZLDvTPuYL8hHoptFa9ffuN7\nePzCZwCojTeJqtp+fWwYdeWg37q2xi//nhC6Wz1Z893rw/M08kmS0FbL+Tib8b2XhSC93jjgOxq/\nC8AXXxfC9OxSwV3N91hftBm8ogE71iu8PpQL5gNWR/BSFycJo8Bi+0XZx3S8xt/72GcB+Miv/QNu\nXf2irPtuziekRgrXvvMFAH7g6uf4+X8kKo+dnpIWZxf9D0Ku75Z/I5LzmHzpq3n2OTsXlyfxIWb4\nCwD8X69/BwDf5r+L0Zqf2fodzKEQwE9tvYrRDlhn1bbGaYnhba3LaYW81RVCfzjoYHzBt5kmlNWO\nN9XmPNsuHFbl8z9XsvjKknz+sGPoa2j+s01DR+tHPq15FNPkkJLmUTD45hAEmKsPc5jDHP4APBSS\ngkNKmx5xtsJ1hOpunezwSEl9294y9kwSUeLRIRVbw4e13Nl4tYl3KJLEC1cW8NTwYyYFntZ9WnYt\nnIqEymqRaEwyY3tF2275C0RTiVxzOy/Tm4q1eLwyYue6cPQnl+4CMK05LF3SCLyLbZ7Y0lJaRxNM\nINzRjlp42o+x6Qm3SusugSYSOVlKrSzzyerL+BOxrtc0r34922avKipKHBa4rwsuDlZ2GGjdg+Vt\niK6LCP5F9WHPotcY7Qin+cSHb2KNn5T51Mt8eSic6+T1z9I/ljl37gkHn6YJ6HzbJZ9VTQjKV5a5\nrfX+vsta4OZY6056amW/1uHKRYn07CQBs5Zwsze+8hYfyl4H4H67jOdodOOuRN09F50yXpFIwk8s\nFfxKTySh7Rf/Jf7NLVElfvxZh6/9v/85AM/fkBJsP/+Fn2Ey0z4UWcZ7fO1MCRAwKmWlKhMYYzhP\npcWieN/zuaoSdpzzTk+Tjt4VacQ5+BCXHpVztjO8iGPJPnxtGLOlZdWGJa0OXvdo2iK5FcOcpoaj\nF3lBw9Mz2UhZKwnujs7iKjzD1QXBTxbBpxZlTf1ZSFWTmQbklFWaqLdkD56dthnkZ7U975FkZ2rJ\nn86j+FAQhbywCFOfbnaXq+p2OXBsSoVYd0tFTFrX2neRh9/XlGR1/zW9gkpTLkqtVqWkMfx5bJOU\nZWMq7gKlqnottLhoFkUUqbyv7veY5TKG5VZpT7W8/KnNBc2lOAzuArB5NMNV92XDbDJVAhHVMvxI\nrMA2DnXNYOseavnuUg3biF5YdSMy5CJ7dKF0ls0oaxrGQ0p1ycXYbjWwPiRq1Ve+ElDSRrnrOw2a\nn5DPhy9rkFIl5cnHpEy8tf4GQSG4mnRTnj6Ri/6zvTK7O5paO9FirVg42rxkZaXM9obM59k1m/As\nreWbBYMAACAASURBVNvr4mshE29PXbZ5ch4eTqXP9EjE3f74kFduCYEYb7xOOxDqnMZSgSmqrhHs\nixV9stDiihIZ+6Mvk2a/BcAzxVUat9TtF8r+rw+GvKs5A4binCaY/D2yYMP5yS7rt5PcwqjqlpNj\ndIy8MDIOkJORhYLzY/U0nW7YRDNxzx6eduj3hIkEboQ1EtzZVa2OdFplqjYlJ+pxpKpks+JiG3n2\niQ9f4ClkjLF6pfxwQhzI51aa0/XkTFb3e4y0oliYZviaH3PYkn8vbNc46gp+3LaF1dNguT+lJjFX\nH+Ywhzk8AA+FpGAsg1V22WCZyf/H3psGS5Kd12Hn5p6VtVe9evvW6/RMzw4QKwkCIEDSokTJpm1J\ntkOyFJLlCFOyaYdFb2FHWHZIP7zQEZLFsB2maDMoSqBlK0iRFEwAA2CIbQYzg5menl6mu1/367fW\nXlm5L/7xndfEkACmwaHIdsS7ERNdUy8r8+bNm/d+y/nOIVVaLdehmbKTNise8pi78dzBuJTV3E1k\nTetYJQJHzC8t0+DZ8jtVC5ElYrY5uoKdk/abDMAB2jBiEn3odRhK+A0sfQHzpiy3jmYiHIhrcm4q\nq/lRM3sg8+XNx3APZUc0kiqMOnf8uYZ0zmrOQI5NMwNt8vKVlQZK1rznnQoM0mqVBKOo3RJFTXad\nenMfjeklAMAzazdxjffn7B9g5W3BBRwRWPW2rmCPJHp/5mAVM0J7rTjA7dtiEh/19xHTijEImsmN\nAh7dh7VlHR/UJZB6uBSikQtQacF1scIircOLEjzt32ijx3GtOxuYXBBL4N5oExWyJ58tzmKjJ2Pk\n5AIOiocD1NuC7/C/6WNKCPZf+dTH8dz9HwUAvK438fVtGXv3LTnvUR6jZJS9KEuccIIqaDihAy0B\nmJSWO8kAJW6KIuTYmgo6dR5To0R5wvINQGOxmSpPKnB9rG1yTg7q2J2LVeQHEWwyP5+fiRWX1eto\nEQbuqxiLFi3WMkGLGpMdlcDLxN3yWX15P3DRJVlKkTRQNcWy3NMLOJyHLgo4pHqba6SuKx2s0AI7\n6EV4gZWWmERA+U536vtpj8SiUAJIlIaiTFHU5IVXfvlAJy8pXJjE4gdaiPiYLzX5KLVYh8bUjdJS\nhDTVjNSFSS78XA8fCMimjFincYi8lJcmjGLM6zI57KMhPFYUdpMKQkNiCsGItOhnElgsHc56Y0x9\nknXmLtZI4OK7I5REL85oj1VnNUT1E2ae9gNxVG0WISfzEDK5qXghgGJ6b6SHyKlDoZYMLJPHf+xW\n8eJtQW0VJOxYLl1MV2SsRn6KtcXn5XzTIbxFGZe9UYEklkmjkUnbSYEetQovF8vofUReoI/1nsR0\nU+5/9ewFGHzJzh+S3WllgCo5MysrC7jB6Ltafw23U4mTeI2reGtH0ghbd8S9+nsTFwtDifTfbj+F\nS70vSp/v/zQ+1fk6AKBmtvCcJzGaW+uCqjSnO9BvnnAOJig5hTU9g0YGJAcFnAYrUNvMMxxXUDVl\nDAeOgzZL1HdGgOJLlikFgwQohaKYcDHA3pEszlHwGoKAxLxFhIjzaZzK3NvPe9ieMs3oGejTBa3G\nNpIGGaAGOe6RLWt2LN8VZYHRTFw710vhQxYQW1Oo8/nE7QTDfRLqECk57RnQLjJjdHcVTxoyF77x\nwCH6g7VT9+G0nbbT9o72SFgKegm0EwWjVsMgkmBfQ9tDlYE2zdYQHsnq2Qz24VZllZ+TOzFXGurk\nQdRSwGhSo3BqwWC9vco0aCyTLBmojGMfZU5lZ6cJnS6KAlAlnfvx3iHug8ew2uxipQHPJOlHasKs\nydpq7wUPACmNZBVxLjtCeVKJWTdhaCQFKV3YjAhpFQsoKELCyHS1rCLrSlCypSyUSzRxZwNoFtWd\npiNUTbne1ViCV1dHU6Se7FBbFy8+uEZFc3HFJGS2CFHRTngl5V/dUbAdGZdPrhY4/4wACsqNi3iM\nlX86HoOqiBmfbokbEcz3UCUPpNb0UK2KBbFguFh+60W5JyicOyeQ5+kOYcJHv4PpjrgUB509bH5F\ngso/9e9Wcd75CQDAuudAI/1ntSvz4vZ0glLncyy1B1R5LWUj9Sgok+RY8+Tc5wklP9cpMPblu8WZ\nwrYrboy2MMf+dXmumipgUcylQqIaPTyHpiPm/jCo4dgU4JQWGBgRZ1AnBH3lYoTzEWUJ/GMkdEHu\n2wVWpyTf0RJYLolqIN95UQyDwex21UKhyb0e6xOUVJJe7QM+NUvPEFuz3dQRkAzn8SdNXAsEem9N\nbiBJT1yp79+NOLUUTttpO23vaI+EpQClUOga/HKICiG8U5UDsazathZCI23aNNCAhMxLTOPUKwoJ\n17eKV0V+ggVoJgh82f0cw4GmCDdmpV4Z6Mgou5YYOUyyLRl6joyFTc2FGpYPJCB2jZt1o+LC7Ypv\naSQWYkUy0ziF53H390oYjG2UCfvjudBMknLaBfJS7lXTNJCfE/lczquZNipEYBaNDOFIfjcbeMgJ\nq14eXEK8RJGVV09k5xJ0Xdl188UGTArKHEbXsUq9gCMAhwxKneTxu6mFNYqwpB/+FIpzEifpLD0N\nQ3EnTRrIS7GQHI/CI4fHsJTwN6CXILfEimvVpzjelF3s9nqM+/cEFRoNXgYA/J9vz+Bpcqx/tYpl\n6mz88vweSuczAIBQPQ33WNCN37jFmFKQg+p90FSJBVLlVbcLrNRIIFuE+IFlCcx6T4i1ef+oQPu+\nPCd38WlUnxcMxdd+o8T6nozdXSg4toxtSgq6TjLCFcaSDPcGkjH5LooYEx6zT7at4so+HluWPtzX\nLEQx516ao19nUZnlYkLrrd6V+EtrfYyVplhSetXH+Fjmy5qTI7LlHGM3hp2LBVFEMha7XhcrVLne\nyGO4bbEWX9wtAZL3/kGCC4/IoqBBc1w0DRcpo8KxNX8gT+6VDlJStddqMRJmDFxOTDvTYLqkHI8A\nryKmXxLEAOsLMFMwTXkYORmVbSMCWdRRwsTYZ165WYGeMEiUVZAR31AdyiROkwrqFIiJjkIczuX7\nMMkQEdzTyAqEXAwSmtcVN0dCKLFpN1EE7JtRIh8yQ2FSbeowR9xkHcixBp8S8P4gxJgv9Aw3ce0t\nCYyFUzm2n6W4zizD0y834DNg2Ha3cKuUrMQoih+YiAuM0i9saNjOxfRfPWuj7vwwAGA+BKqQRbFw\nDTgWKdv4QkfmIsqApePjBZQxaepmPYRTyeZsvqYhdSULZEcfBgA8tjLEKrEOzloNzX35+798/n34\ngC/1Fc1Ix5fO3ZHPb78AADjnJbitpGoxmxXobsvG8RPaZXzLkwXy/JEN9KR/TxGaHvVex6Qv82Wx\nmeGZg48BAPbaN/Amy51nRorzVMkKm9KfXrgGtS2L3uSVxzGzf0XGInVg0X2w+Zwbnot7FCLSigFi\nvpi+imEfSD8HqznOU6jFzU/mylm4hvTNnbcw12VhGneW8bgn87rereHtfYH9M1EBIwQ8l2C/TQ1q\nIsHc9bsZ7rJcIEcK7aTM4yFXiPfsPiildKXUK0qpX+P/byulvqaUuqmU+hWl1PenWXXaTttp+2Nt\nfxiWwt8AcBWgljrwdwD8D2VZ/kOl1N8H8JcB/M/f6wR5mWOSzVAkOZQnaSPPBDRTzPwkayAzKCIy\nO8SMFFTRseyqXhyj1mMhSuojK2X1NLUAWS7HTuIU8Z7squmYwhupjzmp0sbTCI2UhBVFBfVlmtKR\njTbXznlKEtRODSnTX5naRzAU23/iT9Hiaryv5rAoF5cyeDXZyxA2ZcdvZ4DtypKfjC1YDHiWmpjc\nYzVCSaVtf2rjkPmvqWsjYjpRr+gYagyOEh6RZgDSEyVtDX1aU3VtiqNCTHEzzR6IxBSUwhsOHHjU\nMfhHb7wO7bd+TcbC38Zfowluf+LPwKalU5yg8fqHuHVFLKyF2ht447rszNvzb+HaBpmRX/oK7t4S\nN+ZjJDopdIUPbMm5PtvawM98VFB8vxINsabEovlngzfwI6/eAQB8+Smx8p7eyRG8IeO9Zs9w7oIU\nv4XWTVRuyL2uWRPoCwzirVyV714oURzL7tn3c+z2iNl43cTTVbE884UeWiw2M6lT8ZHNCb7Sphz8\nUzdw50XiGCz/gevlMgAY6iE0ulqzIEOfDONBmsOmSrme6ThmgdUiaQFrjQI18iYU8RwNmwzNSNB5\nTMZQq2lYcwQ7YuhyDeOcgyVT3IdyWsVWQ+byy80lzGI5pt/H952gfK9akmsA/gSA/wbAz1BK7hMA\n/jwP+QcA/iu8y6KgFQqeb8BsV5HkYrbp+QyOIZMtL2L4VGE66keob4vxcf9A6hOy1EKuxFzcWm9B\nNWSgJn0Ps30xKbWKjpL06pOqmGfRvo3VCxJFV7f2EBLCG2EXrhK/vLAnOJqQdt0SXHsysAHqRBZF\nBS6FWBq5CZu49Cg0sDeSCTZn7jtPhojn4hcmrRyLLQKgmkCYktSDNQB+OMFxINftFyWOr0uf3YZC\nQZCR3ak8kJTfIRuVn6S4T9Ga4XKCj8WyVpuFAW9T4M+WvoOPkZR5wIzD2dUq+pH4tR9vPIlfe0nO\nq/WP8QuEOf/M84solkioUohfu/fKPjonmIfDNaw/LxNw79eewZ+5tAUAeONbd7H1QaoX7ciL+++s\n19Belaj+Y85z6Jvywv51awFLplxjC8/hG0//JgDg7yxJjOCry1/D9pIIxe7f1PGf/bUfBADceGEX\ne/uCgdiZ6/g3baljCUlqstR6E69/Sz5/aKuGza64BBt/ycDbn5XPHz63jJtHQuHuEG+SqRp+bEVM\n+Ff3n0e3JSCxaZ5gQclzbSgyf7ccRIeEygdHSEnVbusalgo5JtMLjIk/md4nq/igig7Zq2zDwGAs\n8+z+YYlGRepVjiITo7EAue6+LovYs5MtlNvCtjTo65h48iy3ztfw+p64goF+GzGZovGQLGvv1X34\nHwH8x/hd2HkHwLgsH4gN7AJY/U4/VEr9VaXUS0qpl4ZkGDptp+20/fG3P7CloJT6CQBHZVm+rJT6\n4e/3998uRf/4ExfKfnQfTqhQJ90XigipI7tckM9wPJFVebc/x/RYVtLrE4HatvdCdLbFzEo31tEr\nZDcahQWu35Gg1E7/HnyKrxxGYlo2VIpXjsXkiuZVtFisdGGzjlEqO3OptVGrijtyyEpGO0sQECPh\nTB3oNVnlNb0CZcuOmNt1JLFYMqORnCtLY8wCFugYESLiBraqZ5Ay6Li3JzvRrYO3cJ8s0YdRhIKB\nxqP0GBXIbvTcuYsYMw8fMnSjpwlWXAayVpu4Hci1reSf48Zd4VkokwDfMJnfD2Rcr9x3sbAlJvXt\nX81x7d4duY+4wHNy+/jm7i/jcufjMl6xjPGVK5/B77zM3bNd4uD/pgbjKMDsRVpKhY71J8Q0eY5U\nY15DR7QhY7WwlOEcGaivakNMEgYomxGWq/L83u4QsXo0wt0jeY5P1u/hJnUe//nV13C3z+yCynE7\nkx1UUUruS/difJFya19+6QgbISny3l7DRTJNv3Xg4s4dsbKstvTzmaaPAwrEVC5ch0VL4Izdx3hI\nOTlCkZcTA3dZUXp3niKktkbHqcHclOeknHXMJuIepZnMt8N4gsOpjKFlFNi/Ifdx5+gQR/cluOjX\nF2AUci/dVbFozUsVzAYyLnolR3VGN6gB1NZl7IvrGkj+jOy7UU/8nvZeBWb/lFLqXwLgQGIKPweg\nqZQyaC2sAbj/bifSdR3Vah0VzYSd0Pyqm0h8lrTmwIC6fPdu7WPPkYm+/7YMpKbPYI3E5GxMHkez\nJhMssm7gBk3fNwYxbL4gRyT8KCY2ikV5sL0iB5bFYkndxxHPT6rWcugzeUiVSEzqkaejNie9/DRG\nXmXE2bWgM+U4uX8fN18n3Ji4/sAPH5CXxPMezEAmysieQkUygfb74orsHxSYUuJ8HCSITkp69fJB\nRuUwPsbyTHz16y5NVbNAFMnEbrxtovqU9G0h+SGcXxDX5DXtDlz6ziVTXqE2x7VvyHTQ1yfo70s/\nDSfF1blMvOu3N/D0WYlwV2ry91p5Hjda1M+8luKuLn0z+jH8kBL2aYFVW8YwarL2oRljlapJ64YF\nvSPm7rPeArxSFtkgKnD1CZno8ze/AACYHq6i6MlC8dkva7j3srgML78Q4W7K1GGs8Mwdee6fhpSO\nrz+7h+xL8mwGRgT1BoFOWzPUB9wsLB8FPzuEkiNpwduUxT0+XkKnLZ+ju2uo2rI5eXyNdsoc+xOq\ngWU+Ms7ZzIgQk9VrungAcyxzfG7JuQ6SEm8vSfxsO23iYC7zZW8aY5kl52cqS7gfyz3tUragew/Y\nYrwjCqYwSdRzabaMK4xheM0+0sGJ20BClndpf2D3oSzL/6Qsy7WyLLcA/FkAnyvL8t8A8HkAP8XD\nTqXoT9tp+/9Z+xeBU/ibAP6hUupvAXgFwP/2bj/IigyjeR95YEJfYkahaENVZPWM5wrtOiPOHzkP\nm9yFuic7SnX3AGd7sgOZSxXorqy0cVWhSt1IO9awsb4lvyOvgJtp8B1ZRWtqgCYTuqqmS/oDQOIr\nWI5c26BmZKNTw5QFUak/RjwTl6dszaGIQvL1GPYCKyJ97phdD+6EAUpTx7giK/6mVj4o5rFqEk1X\n7SnWWHFpjV2MmpR1Hx3DZCCxNDXcZQajygzHsRah47Ji1HLxC/syhn8Ov4rP/L+S63eTAEdKHv2K\nKX0L8jo2e6w+fHYRC+dlZ/N2fLxvQ6ymJ55bQW2RYK+K/O7CT1zGhc9LMOz5yyP85m3u+D2F+5GM\n/fPz63BDua+SJDLzcA3FgUTI0/NPwKE7c5wlMHEi+TbCNlXD/59EnqmVTnH9ptzfqh6iPxFXKW2O\noO7KeG1ZJToV+b77uIzruf334YPrYrS+0M/x5Bn5PsAlfPRjYkHecdqoVCSIOab8YifTUPblnmfl\nLioTyuktHGJ8JFZWTeKzCGYmEFP9vFTIKHs4jEvotG7jzEa5LFZIt6CquBFBbxOzYafQDsnXCCC3\nZbz8ZoHVmYTnUlqma90aQl3eF9PzYBzLPJzrE9Q35NrVuxXMrBOrBw/V/lAWhbIsvwDgC/x8C8AP\n/GGc97SdttP2R98eCUSjWeroZVXYvQ7KE7iDpsE5YdVpRcgmkqPNOzHOb0j84AeoTmwtPoHas2I1\nLHkN2NzlF8cmLl2Q0tuN7RosBuiwymBgRUdMOTaFDZjkZ/CqFqrc8fP0GLOQte4OJdZShRpRcFPH\ngM5irAWnijYFWJvmErYNwp+rslLbwwxFdAIvBkxXPjfcHMqW+z5Prjgtr+EwEV+9bRRokCEqNwNU\nFmSHWt04i/yOnONFpsfMlQLputyn+1gHrRclqPWNr5YY3ieiM9FQIZKxsGW3+lef/zhWOzJum1uP\nQzfJajWtILko9/pc7wkYLTJp8zltfvRP4788CQh3Svz43S0AwHFtjM5U7j8ounACKbC6eZXK3pPP\nIWXRUtXVUaVVVEk1mMzTXy91vMky6fy2xI++/upt9IkmHc0SPHMon7fyKroN2UE79SqeXRO8hFkR\nGr/zZw7xJ/+UpKc/+PoeIk+sn8srLg6IJvzIVGF/XfpkUTHbnVmISf92uJsgyaQ/ZWhgjeXZtVDG\nbdIBbForuiqh5XIOp2KgCpmzSzbQpPAuWQPRzju4UJFgpjcZwnOIkM1TxBQuKg8OYTV5bcrUNWsF\nVqtSgLU3PYJOZOm2aeNbV2S+LFY1+MHJa/5wkcZHYlHIkcOHj2kcYdk70VoskLN7uRHBpjjHtvJg\nVmQgCkb9jbMREhJa2B5QmKR1r5m41JHJHbo9qUYEYOnyAJLwCJq2BQCI4xHUhKAoK0Urk+tNahrq\nXZmkwwOajqaGPYvnQhs+Tfi83QAWZKJ0CxdeIdmRJqGqRTMDpvJ5b7oPm5MGtgmHSk1w5CVfXqwj\n5bHLVQ3HDFY23RpyCo48YS/jrUtyr62X5Nie3cDHLoor1V2s4b/7soR02qMvwR+wIhI5cq642ysy\n6R7/0RV89GnWj6y+H+ackFpVQZiIcIzVrUGZtKtZl6HH11D/sAjS1PU7KC/Iteuz34HSJCjZKByU\nAzm+bctYffnn57gVSX/U4g46FgFiS4+hLGUx/GHbwNiTF2F2IOM6LUbosjLQaobYbItbMvQGuODK\nc2qs+2g8L78rusI+XalcxpMpN4XnfwqpLaAmpdpokqLegQf3UF6cpZFsFjcPTBy9LX2+PhmD/CdY\naAEsckROoNv5tI6xRS7NqQbNkjm0aphYbIobp/XO4eK6XG/OIO8ajtBuCZQ8DAJoqTzLpjcFBbYR\ndhTyWNJAHhcHhFNMiBdJ90IoEvT0gzH8Ljt32ILpyWIBeRXetZ1WSZ6203ba3tEeCUtB001UGj0Y\njkIZiGlf6hFin5RoZQ0u2XFyLURxUn1my2pYZhkcnczIcQyjFEtAL2cwqoJsc6cZ2g0GalhkWaZt\nhHMxS+GvwC8FVWehiokvO2iSGijoVlRqMly+7qJbkb9PsyNEJUVk/AQupb1sVUCzZPXXRrL7R26G\nyVysh8DX4JABSs8V9JBkpA75Fg6BFQaUQuVjM5MduI0J9HNisRTQcG4qVGmTVVLJOQ14uoxhPVvG\nB+pi2j926xL+j4oE9pJgCIeK19WZRMnev91GtRSWpoqfQ7OE5q3Q91DoPyZjlEZQJfUu8pOp81GA\ntfu6/oMobbJJxW2UoSDwVPYcIkc+IyAOxZzh7l3ZMW/gBVwOaGE848DQ5bmOIh1Lz8p4fPNFub9u\nWUOyIFZTY25Cs2TXfLbcQuuyuCa94izURCwau/ZpuZ42gd38CAAgHqZwTbFukuYIde7+iPbR9oST\nIPcl1dlLNXyLknfpTCFjwdo8aGGjLvOwdSjP6ahZIOO4WE6BVi5/X1g28KQn49xZdbFRE2bqIdOb\nwT0X0YHMBatw0WzKnOxEOkKKxJydN6GIXm0k5HqY6KiQhlC3+lDk4ijHFVhTVhjbU9jZ97f3PxKL\nQl7mGOU+KlMPZZv8i1EFGSSqHY0rUCb9IbuAHsvgFBNmCNIAeoV1wTlQkD05QQbLZ368HCAM5eHp\nCYEwpoLGOIHhZwAj4GVawGQcYOJbMCpyfDUQ8FJ1qYoJBWFD+wjehBkH10SbCkGGmcJ2iAUgu3QS\nmChnxAKYU4SBfN8cOSh57cKXv0+tCLrDCrmogZKWb+F6D4hA5laGrCaAnGqNB4ybcFqitZgbFbx4\nV0qEM20Ho77Yoo2yRMxItJXLInX7qwdY/KhMftW0kDGXXlg+LJr8BVrIhzLOJSsAtWCGoiOTX1Mr\nKEuOrcpQWDRbh0PM78iLnN4USvrPXp1jronp+8qkgo9Uf0nOkfwoaoU8V82Y4EIkC+sbl1gbkHqI\n7svflxZCXCThTKIF8PbEb69tWSgJl59fvyPPw+nBijifvDlyiqdYiQGTnJ1pJUfllvRZT1hLE+7D\nIJ4EegpDF9fV6nlQYG3OkozFwSjEid/etWxoFIrtlg7azD60vVXYS+JiNCPpY9tIobp0TX0bCbMd\n+9YNxFz00gUdG7Zc2yUk3l6qwzwpkc4tZH15DnlyjMCWd6DI6tCMh/Qb2E7dh9N22k7bO9ojYSkY\npY5O1oDTbiIgXLfQ53Ao9lJ2XUSHrMBWPiybuXWyJU/jOdSbNCkXAUuJKxFEMeYz2fE110cwZzCS\nhKkIfOgkU9F0HToRhLo1e8AL4BYzBNzRS0p/2foZdBvEFSzGmLLAxTVzWCc7ZebB5HXKUPpmThNE\nzC6UoxyaSz6FvAk/kc8TcvvbZQ5/xMi7aaGWSYS85/WgE4LbsQxkhGxrtGZmmo5ZjUHLuoZNmpGz\ngQeLUbJZlsEtZIe5RXLcQXCIyZFgDDpZG7lN0lxlIRvLjli/ZABgJRUVvJPIh6NJ30pt4YGgTD67\nCZWLZZUlA2R0j16je/ipp7pYyWRnH3/gWUzW5J7OhTkqHQmYDco2yiVBDb7vjDzT4zsT3J2QgTp3\n8YwhQclmpcTxoezAN+5l2LgteIMyJaJzu4GC7sra2TrQ5q67kcMiZZ9jX0DuSbYGfSITG1W45JB5\nvGOh2pXsy+blRYx/Q2DjDlGQXQSYslzVdQp0SiJdnQiDWH7XCQ5RGYqr5Hq0aD0bmiP3pxc5Koty\n7Wbag+PK7xbqFXQVodJUXa9bLVgUojEChaDL6011aEOxDlpqH4HFoONDtkdiUSg1hcQxMC0yrBCo\nHYUKSpdJU+RzZIbcfLwTIaArEds0ScsYE0bn/bddVGoikBGrAn1GkQ3DQp2MRT5fUnuuo9RYAl0G\n0EihnQd4UOEWJiVMRTBUSvEWM8GIZbN2pYXCF5cniIF5Jua4XkZwjxiDYH+jKIfDuMTUB8JATPRD\nc/aAS280InmLnSAlfXk+CzC3aeIWMSpk+12p1AHFik9WkUZRju4SQVi6jRuh+KcNYwqiZGGhRFKc\nMG/IPd+/cxMHK2KqR/k+zC6Fc8ImdinIsrCbovakvOi5RsGS4xjYkLiGnRvII7IhH7yGjGW9ub+H\nvX2JZ3iBRP131ypYvSjjWt0aYJ1sRLkKMSej9bKVYaTEjA87Qs7SXg/wiUN5ce8UKToHMkbjzRhV\nPsuX4iPcelWeySEIerpXR3Msz+Gcu4RLhLq3UhsNkvLYdQ0B7/VE9OXOJMdswjiCbuKD52SFONtb\nxBdJk59UyJSU1ZBXyIClewg35PP2sgkcSfxgOlzC/pZcw6vTRUkAg6Q1+bKFKd3Nmt9A56xsFlnH\nRT5j7IYuwzTOkGcnxYQphmMZ72B+iIhxGcfsorvA+sS7zBy9Szt1H07baTtt72iPhKWg6SZqtUX0\nLBOK5rdRCRDT9FfjEAWLS5JihoRgIo0mqVnx4FBkJS6nKE80/EIHYO7aDFxoLqneZiQsSUIoSnkb\ngYZMJ8wXMSJy9kdqhIT5fbNTsg9Powb5bjIfYU7+SDt2cUyNxgXDw5wBwWhGfv+6DjsRc7CSPLtl\n0QAAIABJREFUlsiIhUAVyHeZiaBVkc1dpNQONPIQgzF34HSGnk4Lo/SR+mIGT8g4XdZHOL4r93zJ\neQwLJENZndUQsWgq8gPoxEUc87w3D/p4/FtiqjvnTcAUjIEZdnFvJqAf89jC3JX780LZBfOFDipS\nXAlr0UA6k51tcGsP+YHoNxiFhSGLfA4nYgW8f7GKtVwARqP7x9gbyg7c+oSGOvsMrY7uptzX0d02\n78PAzVVaU2/M8DZhwFnsYr0m53b7bRh1ygUaYpYvQMOQRVnHOwpnzso5BtM5onsMRmtXEQzkdzcC\n+e7uwMWwxuKidg9GKe5BVy0jmst8WGNw8XaaIjaIvTAibE6oB1ItkEVy7GKlj/Km9CmhJsW39gqs\neZKdGQ57yCC7/8v7M6wdSn+WFlYwNiQDEzLIvbU9wrIhwcosi7DriyVw+94cDis056mPZfb5Ydsj\nsSgkRYl7SYoeTNRIT16WBjRbXtipXSAfy+dRaSOfycQ84bWLwwga6b3r0JBoYkZZYQmNyDSVZhjN\nmUb0qcYUp0gKcS8aFQcJkWKl1kaeywOI4joCZjtqc0bAGxkiqg25iy3opPj2hyM0yRV5PMvgEvWY\nUQkIcQVJSB9QB1qk7w6cLhTzYmXALIThI6Lk+MEQ8DO5/4MjH0Zd+t8PI4SOTJrjm2KeX+kXcD8u\n5vDYHuKYsYqF1hzhWM5tqBIZ3YcK/33pao7zvrzdsf0U6kom6bx6hAXWCcSzH0BkiulrZZKaXGxP\ngVIWulTfQzCQ8Ty4EePebclU1JIJvnJPYhGrHelPeqwwWRQS12JnEUZVPn/h4OP4UUMWAL05h1El\nQnRTFsLh+zJEf5d1HjMfKRMDVtXA3oylxRspKoYcX+cmo+8mWFsm41amISzl2SRDGxTnQn+S4vau\n9P+Nvnzp9QyM73Gskgpq/4osZNlCHS4BV9GaXMO9Y8NkWqeWO5iuyzPLbutwjmThOG61sHJWXMz9\n6wRmzX38Dsv2y8ZdJAO557Ic4nop13gbfVgVOeb5UH53Y9ZC3ZB3Yfc4xm3Gj24exNhNxH1q1baR\nQp7Zw7ZT9+G0nbbT9o72SFgKugLqhoaKY2LK7EM996EX3I1NE8O5fB8lBzC4iw+m8l0Ze4gp3bbp\njOC0ZPecjlPMxpQtVxFmDQKDXFlRk+wYlkEAlKEjpUJzFt1ElFNwxj9Cn2y9C2T6rWo/AqtJeu/M\nhjeUXdqPp4gZzTcyDxEj+NaUXAhZH8cjWYf98Rxt7la2t4dj2aAwm0guPS1txMS4DkYp5tQoXGoY\nSKn/WKs2EVBCL9QYJFU+bpICfBK0cHFRzPLn9izcrskxs/4EBXUX6T2gV5nj3pQch/cPUG19SMa7\ndR7jXycU+tM2Gol8j7MyJpOre6h9iLT24zNwOhKgK+bXoFijcCWIMe7I7jZksO99XQU73gIA7IZz\nvHznDgDgY8UeTFegy75aQLM4oYwXa8S51cQ9SsDfDBJ8nEbY8koTVVt+9+Wr91GS+2Kiy3gqq45X\nb4sLs1EJMSBU/HyzQHkou+29mY03Ysq7sS4lTXOsXBKL7rkPbUOvsFK24QHkcXT2ZHwsU4PDupue\npqMYyLiMYeCAlHVekaFJTk/9svTXeyXGxgoBSVoVyXNiKahZhEUGQaPJAaaZ7P5ZKIHWBa8LRSCf\n3qpjfk8sk0nNQrjD4LZ9CId1MQ/bTi2F03baTts72iNhKURljqvpFGdVDFsTvzDAGAmhzVY4R9mS\nlTYYuXAi7iQpq9fuHEPlkpeea3U0qLTsBxqO70mOfdc/hklyzMWWrIXtiz3U6kQrJnWYrqyuE91D\n7MvvZtVFVJhmG7EIqLQipJYMXatrYHBIdGNuw06oNKxr0EqmJF3ZXfz+HIcsAjKbDna4Iy7lQNSW\nHcGZsXa/P0a/L75nOMygb1CcZXUBq0QvztMOyoogFq9dly3TzEosSRwLRV3H/hbJarsDBAdUXR4W\nOMlInhD93vJ9rFRekXPFT+FPND4PAPjalz6P9EWRbvv5FyJ85Izs2JNI7nO7tPDUt2Q8N5/6SWQd\n8Xtf9o/w4lsSuJwrHQWxJe9fkvtIV59GzoK2SL+BPuXrfnHnNZw5L7ENpf0VNIjGO7ZlXliqjakl\ncPWpcYxfH8kNPH9zhOXWDsf5Lm6Qvm9ApqtKMIFiqu+KbmHppoz3mYs13F2UnXs8juFTlMbl/S2e\nN7B2SRCi6+eXsLYlsHEt17BDhiufludoasCmBfYtW6FC7Eg/A8YV6c+1mcL2iY//Rdn5R3GI+aFc\nd2Orh5VE+uNNFXYMmQOH8xIeMSmLW2SHSgyUpAV803dxsynj/ertWyg1FoT5KZoPS6TA9kgsCpbS\nsanXUMntB7TZqd7EhPRpzkENaU3s60VXQ9hgye1YbraynaKqCe2WadRRsyXfHptDtA0Gz3ZC6FUJ\nQC5sihm52OqgoP1s2AWKXF4glSoUDNoYeQRFiGqDpdf5DLAICEnCCWCRusw3MAzFbPWqM1ix9MN1\nTlShXKAlC5llLcC0pT/rSxsIGC2fXKc7E9yE49GEbd+GW5U3veu2oTvyMjlmhmKfFZGk9jLaq6iz\nLLrjLOFvfugvAgA+Pq7jrC6T8Jf/7v+E/UiOL7g62DUHXYrBVC6/H7V7WwCADz27D+tQXuTX+hHa\nVVkYn3hKTO4Nv4mCeAqn+2HsTr4s97fbwNtkKmnGNi5/WoKHH1h9Tr7b2IRXSN+zlT4C4kz+5PN/\nDiumLABGWYHhCgaiyopTZ/1HcP5TXwMAaP/Yw6gm4zW/dRG1vyTP7N/qXMRv5DLO6zTV/e5NLDIb\nsFsorF6SgOHMvo3tO/L9q+7bsKk4VVmWV2Nx5TIuLsp4rzvbsIgL0M0luDoBZT7nRSdFk/Dw2Iuw\nkcrv3j67h/MEbb3uZdD2qPZ1VuaV8aaBAauD2zsZrj8uLtjWsIdrhSwWXliFsSrPTw8IMktMVJZl\nXqwEBzgk5ZsT5QhDWbz0FR3BSBbyhy2TPHUfTttpO23vaI+EpVAUCcLgHoyihpKBnM4oQkpCi7w5\nxrxPRmQ/hq4ksON1CYMuunApMFg4IxgD+fswyRATs7Bil2hXWMTjUWBjGqHClGWR5chjklscptBK\nFgHlKVxaCCyQQ6qnyImKzGdzOHeImnQDeNQXTEcFLBZVmSyMMR0DFT/gtfcRcZcL5lcx9ngvhOp6\nxR00dFntM28d1IhBx80ASsTdLAeYx7Jjr1ELo1LTcLYpxDLmLMRwVUzqZO11XPstcY9+vDHDL7BO\n38mIfvQDDBckgKsNXkH7otxss7eFlT8tFs9mReH827K7zzu01mYmrG3qX/q7OKD1Nrw3RmdZOn0m\nDvFkRXb/tYbsZmrVRHksjMu6YcPVZEe3K3so2afScKGRIFexcvC56lv4zSvcy8wE2ZSIzPqraL1E\nxevuNegtwW8sMsaWBU3AkDFaWqijEUq6dM+PsH8gu79Z13EukP7FdQZdWwnOrco9F5U59DnVqssA\nJYORI1P6pvo60kjmzWHuwtVFQ0LdcmCW8tztvAm3Lc8vJC1gq6OQk4F7pVJFXsp92C0DT5JarzEa\nYYUENy6rLxfXGij2xaoY7R6gHwueJMgjlBZZvPsmLIfaiA/ZVPmQAhH/IptSVgksQMifv/6djoB6\nsH4VKB8o3qgH3wEnAI0cD9gvkH6XY05+r0E4kE4+EzSD8NuO+f3tn41ifJpv6X8+yPDRvyDiqf/X\n2tcQvfhPAABH9jEK1k8YDoVekhxZcVIuXQgXJICWoUHZcn9tjQzAronaXF6wq4GPJbqFg66LSyxP\nnto2fvzD4oLMH/soAGCrE2I8lrLnau8QxzvyQrcaIwwJ61/o7SHwZbL1HJnE9/0E59bkhRiGVXRY\n4bh7P4BFf/hoYKPdkAj3LORL0y0wDLlAmEfY2yOxyFqOQSqZj5XaEa5fkxfowgUZk1vlKuqmuAQH\ng0VUWQ79X/+t38LWUBbt8fIITw3lOlN5F9GZJrhP3EgYpAgtwr8jDcqSczdSCxHjQxnrJCZaBIuR\nelXT4ISsNHV8NCP5fuqV6OgyBnaPIjmtDooz4sJsrCyg3hWRoM2mid/4J0Jg0+IYpqWBjibjM0h1\nVMZyf2+NYzgEe0VGBpMVmpMKdTxVBS7FZi+bDbyYyD1HV+f4p9F1ea7Hj+HeqrhjHyQX4/WPPIG/\nvi5l7f946QP42V8UV/nH7v02VErlKPXvwStlXs9x+HJZlu/Du7RT9+G0nbbT9o72SLgPsqPv8b/v\n1EqU1ClQxXc55MGOD7yTtvbbd/z89/ym+D2fAzxM+/PaPv4DW6yD/96K8Fn/PwIA3GvreDqUfgwM\nG9RQAYPT0E0DJWncRkGMXoWEJHUL2xVqQLDI5gnPwW4of7800PAWkZAKwGtiMeKTbRP7A4Ejr1HB\n2a28D9us4DycA2FdXKlRuIqnXHEJ3sqbWNIkUp1Gsutc7GZQhfxupWlCC6QYbXtrhr2T6kJ3hjSV\n4882SAqjWthusWp1uo6n1onS09tYq8oxR9d7eMwQt2h8LKrVNS0BTMkiPKVn6PuyQ98a7GGaC5oy\nCCysEEcStcR6yKYpilye6f14DteXeTFEiTbN6gMth8vdf0BqNzstcZTJGLpTC/2CwjExcI2VqyoE\n9nMxu58J5Om9MfWwOJSx8s94+NEPy/XSogGTGAqN9H4XFRBZMm5e0sc9kmCsaMBVFp4t5xqmRGG2\nyClZaDFW1uTLecfHlbfEwrip3sCQWIdpfgPZnjyfz/H+k/wr+I3erwIAXvjyGl44ErZupL9rS6ME\n5oTAP2x7RBYFHUAV+B6dt2j6p8qExpf+xPVRSkdZnkxSEyUZjRR0FO9YLE6G6ttdje+/fcvdQIdM\nQeXtGP8LORq3f/Pn8UomZvDjbgR/QiFRgqZqtomAfTasBDVCs1c8F02SgDYcWUEWdRPtRenfyBzj\nmFV2mmNiSOKNa/0pmr5UHR4MJHZQW7gH90Cup3VK5GRK6qzdx62hpMKivIo5iTpa5BfUQgV9Ji+g\naTrQPZmk6a4PNZfnEmsJTrhctPSkEhMAOQ6bbRtJnwuyNwTm8qLXVo9x9ysy0fdasqINsgIX2nKs\ndq8JxdLpx+xVbLDmJW+sICclfpexijf9AjFh7mM/wcQ8qfbUMDnZOKAeUMmbnOLTMkGQkgFLxShY\nlTlVBVK6ebmegxlFvEpRFzfRcGsmfJWbxX18kxW4Hzj7UfgHrMBkCfR+aSMjV2jmTxBQkOWWP4Y/\nJoCt5aDCOh2XC55tWGg0uPBWLuFTrojdHBebmFNkGfEYGRe9gjGXpasdbPf+KgDgX19YwRc+/DcA\nAAef/wqQ/j35HUL8rjv9cCCm9+Q+KKWaSqnPKKXeUkpdVUp9SCnVVkp9Vil1g/+23ss1TttpO21/\ntO29Wgo/B+A3y7L8KaWUBWHe+E8B/HZZln9bKfWzAH4WIhDzPVqO72UluArQurLruJGCzQyFRxry\n1KphtaDsWmsZy5lElu+M68BEcrtTTccKa913WamHMECcf1d/5Lu2l/M5njLExL21M8CfvSBUYp+t\nJvjJVQkSzbQOWtuyHq63xQpIvRxOTP4G3YRNXcVer44uyTlycgnYPfVAjqy/sAv0xdSehCEuDKg1\nmPcR5iyeoabgN764jGcuyN8XjS3EJPoID1wEh9w9t1fwFt2HJ6fSN62Tod4WM9gfj+FN5HyFbqOy\nIcHK/f0j1BLJvau6jKVVa4IFecjDKgpmhqzqMgYnoj37PUwcyWxMG5IZmd7awSvEQjy5kmDNlO8r\njS/g8mUZg/1qiuc8GYNXBtLPxUGG3REzNRpgU1E5N0tU6JrVKh48Fg9NSbNfCU1YxonVqCNjsV0W\nlpiWrGzMShi0JmOC0GD6sLlZ3/YnaDZkt93aCpCzItImZXtcVBDtyfOfRCGOWI07m2rQTJmzpaHB\naxH4RZr5RsVBs5TnGGsDpEcybs+tzjGkZOGiVeDOWCySHlUQpuoQ18O/DwC48rKFyxfFWjxAAsXK\nzRLC3g08vF38XgRmGwB+CMBfBICyLBMAiVLqJwH8MA/7BxCRmHdZFAAx6X9vt0m4YuhokVu/U3fR\nWxC/7YNrRNd1G3gfB/h41kS3KbP01Z0dBFNJN93an8N0ZSIEZNqZFepB1aK4Hw+Xibk0KJAG8qLc\nH4X4ylUSjnTGeJ2ELJuxgrUhMZJuT0g7z3RczO+xGm41QpssRgtbdWiswLRaMuGtRIOqyn0uenUs\nOeTqc+/DP5QX8+yGiat3ZMZmjozdbHGAaztyvdXlGQyqNI2MJkYtGaPHtX1sKfIHLkj6yzEtmESC\nunYNcKRv+cSGG4rpf6bhAg05n5FJdLvIZnDpriWmibxCsd0gwyYZgrJzSzAaAhZydiVtNnEHONbl\nvK/eb2JpXcbt6eYKNlpy7nbXwW6fqd+B/G4cH2OY8pllBWhRwzFN5ByDhVqKCjM755X098YgQocv\n+jBJkCby92MrgZPIWAQqB9cHaCxhT2c5QlM2jkKLcXVf0qgfuuFgRnDWQUPu0/IqqLGeRU0niCka\nPElzVInYXOxUcYbCwifzzS0nqJ/Qt09SrDMmFCoXP7Yi7l+YTACmto+nshlWSoW7t5nWrNRRe+a/\nkO/vjKAPWedy/E3kxVd4vW93pb97ey/uwzaAYwD/u1LqFaXU/6qU8gAsliVpkYEDAIvf6cffLkX/\nHvpw2k7baftDbu/FfTAAPAfgp8uy/JpS6ucgrsKDVpZlqZT6jtvvt0vRyzG/37jRKFiy4jqotATG\nvPV8iU9tfBIA4DYkyFa3n0IRiOn0gfMbyDwJZnWWPoy7t38HAPCxC5cwbcpa9bkvy47xGl5FSgBJ\nlkTIHxKysY8dzDIJOH16+RBfKmS3Ng8UXEeshse0GswGeQfJD5BbHpZb8t3QsrHgsPKvVoNDYE3I\nyrtYC6BzJ01RwHLknsrZHG5P+ryxtwjtaTn+zauys3n2Oj5wWSjEtdYQ+lVSeLWOsVTIDpzYCqEu\nVkNuilmfO3VopewkZWzCsuSedAtQPlmCq224pMsrM1LgFwoB8+CuESLyGcwyS0SktKvXj+CCwCEx\nTND5nEIZy++e2TiLoi2/q/YIWQHQVQbSY7GcpgPZ2f2RQiOSeTEwgSo1MeOixGVyReoVGxeb1FWk\nPuiHzBxX6Ep2Zhlu0a3YTDTs0A3opAamOnf0VMZ4aGaIWQcRJzm6zJL09RwWZQAcMj+3RiaOCBvv\nH6WYkDatlmog9QdarofUYF2FkmscIYTNys+ZacGl61MZTnD+DKuDUxt1jsGVHdb2JApJn/uvNUW0\n84sAgOzxM6jii3K+L+iw51Q6f8hiyfdiKewC2C3L8mv8/89AFolDpdQyAPDfo/dwjdN22k7bH3H7\nA1sKZVkeKKXuKaUulmV5DcAnAbzJ//4CgL+N70uKXsM7cQOARdaZ2KjiB7dldVxvrOPMBVnyNoxn\nAAApcsSReCleI8JCIYIe0WYfC3g/ACCoT/GRmnz//BmB9v3Sr2X4rZdEhyAd5tinb/luKM9OlkE7\nFB/w1r0jjDzZpVtHGZZ74u92z5bo1iU4WGUe33IqwCZpufIGdEu2D1Nv4kSPTCPSDkmOhLl2Pc+g\nYqmobDgLKCpiYcRbb2KBzMDPrImfubNtQY3E1+22N/CqLvfqGibaTGXqUQ81+rWuktiBGSsYHP4o\nDFGcMBahhEGkIOYaNJsBSMZlSl9HHsgP526Gk6ErMwsuA6l62kCzSj2PcAsAsLU1xSDnOeIJ1sbi\nOxv+WwiHrPAzbByXYiENI1oueoiIvrWbKnhkzF6tWmgscAdu19FuytiuE64czkaY62I9RM4cZPRD\nasWYD07YriI4muzGJXd8J7KRMrWYKWAvkJ25eb2Ha7Fcr+0Ln0bg1KGGJHPNI1RMBkFthTop0cya\nwrnOiVaFPLNu7KKq5J4dexlpg8zkSRseyWhTexGxx6A51c/dsQ/NFGuj4ZTwKzLXL3d/EL3xfwgA\n+HztZZST/1ZuFickr9+7vdfsw08D+CVmHm4B+Lchb/c/Ukr9ZQA7AP61hzvVO19EDYDipDqzXkO1\nKzalVqsjZ373dkACFeTYJHY8go55KRNoWCZot2jirSzDasnA770sD/ODeo6vXySF150E+zvEOiD/\nniHHItcQtagf6E6xo8mL1akaaLO0diXrINWkgi0qZBHLDBsmKwrdSgPgYlLGOmJOGp36gjNjCsXa\nj1Ewgc7AYFrLUeGbNz7jIiWBRoPj81y5Aq8lC0zmhzDINGylJoKmfF/H+AHbbxyzD/YUEclkkMco\n5idU7ikKj/nxIkBKGro0YyBOMxERalxGJYoTcZJKgTyXsVdpimRBgrzh2wyueQa2+7KwVrQS/lT6\nllYcVJosRS7rCObUDVVkIi4zGIysGw5QMcUFsRoWVisyBo31JVQXJBBcIXGO4bWwSbi2nxyjSRTc\n/bdnSChKg2yCgt/HcxmL+/oEHoPcaVnC9eV6V477MAlJ91gav5d0Ec+kn6nuQnFR6AWA1Sb5CrrI\niWprEZyWmAtwuuynU0etL98/VcuQe8zyLK5Bvy4u6ydWpW9z28UR6e2uXPdw/tcFvPR18wj3SqG3\nS4M6rBMtyYfEML2nRaEsy1cBfCcs9Sffy3lP22k7bX987RFBNH57YyALgE5Sk4mt4wQot2QqeDMW\ntlRlyY0LhTKRnaa5vATGltDybcw0MfcWzUWoffm8Sgbn414b/z7r5j8zNFBtyFI6n0xRlt+dmKIW\npTBS+fuXzSoWiQVYWSrRYsBMy4FeV3b6Ri47m1ZrQ/flWEtTsImstD0gm4tLUNqSo65GOlSFEnRZ\nFWkopqNnxVAtcUsqsyqinuwUGk3n6fwY6ZwFMLUBilvUrKiuoKqT8svWUfNlDExyUxizLkp1kuoL\nAY8M1KEFk1gAK8uhsdK0IOGHQoSSseTcyRHO5Z6MKINtsG9lE/ZYgmcn1YJRt4XhSIKc81yDXWGh\nmOajbUlANO5a2L4lJvaYhVZ5ESIhWUrTMLFcl111abmCxrJYB0+dW0bV4BitEDdwmCIjmak/aUKx\ncnDTbGCySkLegYZjMnMfkjZuftdFUsozHQcRpl7E/vsI9kmnF9IlPJshnUp/7EmGGeHTvmthm27A\net1CfV3GIt0XC6Olz2DWKEfXieCYch+z8SEWq9J/tTCDS+361JcAdBaneGUi13h8u47gztMAgEYw\nQD0W92Fovgo1OzERjvEw7RFaFN5JBWRAoeWJD7jc2MCZqZjiw2SK1/blwZxfkX9jR0xNAHC8EBYh\nuFOVo9gnN+BkDCORARxBvrPiDOE5eYEubTbx9UPCefUUyfdI6U7zKY6Zdf2BZgyjJv5+PSthp6xK\nTKoYTOSlqNTkhfc0CxZpvUsFgLEBzTBgkT4+HpNHsqKgMxJumwpFQACUpsFypZ9G1kO9KqZvyArP\net0DQxUoNIU8EFdKLWfQXTl3qTuYRfLoFSeuZSTIE8KEwwpskqnAA8pYji0qHRTkh1QnvB2BgqaI\nrTAVTEOeSVCWQCbf524Ok4seiF2Y9z10FUVYYGNObs6jQYibHVksvOkUgyO53v6cGJPSRJOMVpWe\ng5VlSWcsLjp4/KJ8rvWqqHZkUbBpoutLPmZHVPKycuSlLDzuuokB4cpau4uqLy/6liP9MbMD3NqV\n+dLPgfe7sojW6k28+RYX8JosNridYIOLpW+aSMiKdKYw4GxwjM70kOSyKHQvyJzNjT6qhrg+sSpQ\noZsX5R4Mzp2wbaOeCO6lQ6Cbb1Qx6Ml86r8xxn72ORnDUYlBRbAJ+dxFCSqRPWQ7rZI8bafttL2j\nPUKWgjSFE/PaRYs75bq1iLwuq3Xt1iYqZ2VVjVIxh0w0URBGat5roboiK7GuNPjrLDqZZg92Y28i\nEN9oXSE/lJ32XO8cnntezIOvvthGMqF0+ndAgXmaB9eSar/b2QjReSlgWRhNsNQmA7WdYYVcgq7B\nwh9Nh0khF1gedOpPYMGB4m6sVZgh6LtQTeIDsuTB7q+OJoDBIGAZoiSkz2KxS1LRkRxRDMew4BNP\nsBCGcCNmDlwdoIWQzWS3UiWgiJVIkxQlhWqcxIPGCH92XACkiMNcnk1aFshIhJLZOvITNWqjROaf\nSFubSFmhCPJdZn4fMWSnnc51LB2Rsq4wYB6QVXuhjcNSIvtlKtewUcClVmavqKHTlettdJagqIun\nFWvQ92j1sBgtmWsYUOCh5RvwGvIcDEcDKJFX3D+CIvHNcRnyOxMLDKRO2w6uZ2KlPXXXgkWcQXNw\nUvi1hCPScteMEJZDyj4zxGRHHuBOb4zljlgpdwZ3AAAVTSGunRS0XUTgyrzuN1NU6PI2Fs7hmNZS\nEcuz2c99XKaU3FebOlYjya5Nasto9gVBOrSuws4kgxNBtC/frT1yi8JJ0aepx4iZujnM38QOQTjD\n6E04ruDkt9+QF7q6/Dg+/rj4hZP2GVhz8b3MmoJNUc5JOcE0kgG+cVtMam+cYkzB0DU1weuvy7Hd\n8BbGDyopf/+iMNRSqIx1F9ouFiJyNJoGLJp2h5MURiQQjXiDlN39ABXyOXqegk39wHJqQT9RJGG2\nINUnKAKm0xILBf9uVksYrLjT6wqKprRZ5wQcOtAsxgtSPHjCZZAiYvbFTSxksZzjhKg0xhzZmDEM\nI4e6TUCSPYVNDkKV+SgI6ilTpt6UhiinzzotkGUn9PkldNamVMYuFGMlyZT1cbYDbSZ+dC0+gslr\nXI8TrFsybt+8OUa2x5hC/ruVjDEXN+VNMApljvz29Vt4uivnS3IDkSfP1UhlUUj7Q8zmMl/miUI9\nJhtR2UDG1G9UN+GPKFo8JruR7WCXIq/JbIalnNcIJhhQpDdtMR08vIezzC7dTRRylm3fPQbsQkz/\nL9zQYLxM0B0FYJ5u6vCelfvYLl5+QB3f3o2wT1GaWXAXr74qz6R6LPcxXlnA8f4dAEAooRW7AAAg\nAElEQVS2p+FpQ6o5b+gBNjqvyzHJAi5VJS39ouxd79pO3YfTdtpO2zvaI2QpiOOgFHO3pQeDEmTD\nwEJKc1cLLJi3pNv71OdbiO7g1ZlQZm22FKwqAzhFjngm5mc+GuGrL4jbcPtAcrhHNyKsnRd6rfvx\nAUpNVuWx/SEgIy1cYQN4J8ddMyhBRDCuplVMaCksViPEvuxywTTG3V2xGrY02Ukrlo3WCd37ZIbV\nFrMPbg8pc97JoewupRZiRnPRNxTUsZjda2d6MBqkajdMZLFYPbbOYGYvx+yQAT47gn8ofy9KE2ZT\nrq3lY2gMgqaUo5vHCodHBAi5OXICixZqCzAJ3um6GXRXdtA4JouyP4Kfy3PqjwLMCdc19QyLPemT\nZU1QphIo1iwxk/OgxCCTHWw6TdFi5qcFC2BU3l1rYH5DnlmPwKuRnqO7xQC0toUmA23xfoR7t0mJ\nvzfD+z50Se6beIq741289U2xFJeXNRxZxLV070K/Lff0+LklGLSmClLeFfYEH1iV+4iujHEDDNxC\nxxO59PNpW/rTv7yA/c+TidkKcINjUfUsVMj9eKbdxC2O/f0x4crjAj+5RmZr10XGYqyjO8fotKSf\n7fkSHv+kWLJXfl3m/09+4IP4wlf+qTybjoVhX6ywT/VW8EMXhKZNCxWCV6SSEjeEtv/d2qOzKChA\nlSU0vphdt4BLdZxWJYY2kMGZtSLEofDWmQT03EsC1CKScPQT1DeZvpo7mL4hk/CNgyt47VCixAc7\nctueU8eOIWbdLC0wGAg4pEhfB4oTbsf093V1nh1hFMjLtGL7mDjMmGhNhJyE9+5G2CG46mBHzMuV\n5RoaM+mn64YobHnIa0UDOQVtJxRiPfb30R9TozKqoUtwSzi/joYrPmk9a6GA/C5hyjLTWlAOQUN6\nFYqKR2Zdg1vIfZe2iZxIv5RMT36sY+LKtYfTMSxWHA6GU7Q8Rt/hYN0kKpCpRb/QHyyKUVZBFrIK\ndM3ApKAPnLTRsZk+JomMUUzgOhKXcWojJLbcx/V0H1EoFZHDN13YgfTpZkQQmlIo7si4dDYK7N+R\nF/Ngtw+NKMVew0FJuvPOAhmd3ujjpVsSJ4pvTVHUyMWYN7DuygLwVngVNusxqqTlrzoBXrLknmfN\nKVK6Gm1ziusUshw2ZVG8dn8O05exetHIMKPLt1gCI4LdJneGuEPCnJgaIEtWgSvU8Vx1trD/lhz7\n9bvX8PLLMp8W2gXeDuR6ixMK4h59BYkMMeBa2O5yLPQqWmeEK3RyfwVP9OQcL+Ph2qn7cNpO22l7\nR3tkLAVd6TABVLmD1dx19CgdXla7mFEMZLIPBJ6siLotJuy258FyZTU3xjXoAzGjakrH4ES9Z7KI\nriM7zE3tDgBg1x+jeSi77ma1jucprHGzeBbHt8W0LYsj/H/svVmMpel53/f79uWsdZZau6qruqdn\nemY4Qw5JUVZkmXRkCFJkQ068wAYcIIFjB0mMAAECxHcGggDRRQDFiIEkFzISXViybBiw4siSgoiW\nZHORKJJDctbel9pPnf18+5KL56kmR6LIpgeRR0C9AMGeU+d8y/u93/ts/+f//zaNlZKUlBb9Wizf\niVFhXJfrmD6xqLSzcxrOObonVi5Q97LIDfZU1KbMIatl508aJnkhv3t0LH9fjU1mWl++fzjljjhH\nvHAt5MVtxWRcW9FQKjiVucRvlJSJJgZzg1yp7+v5hEixDJ1+m0J5BkxfQpGLk3MevyMWbJzmNFVQ\nZnurxnEFh2GOKmLr25T4AFEyJ5op0MnOeKrKWtm7JQOlARts1Lh9tXh9+SyurGceSBbmhNpzcBD2\neUmTke9trvHokfAXGKrtGdfgKavLnbsZRSzh2vKkgko8ssnMYmND3PH1Slz/ZTbj3lj+XlcV1zKF\ninsRxVQsurssGajn5OzJZ32zw+0Dmc8N889wfkewAMd3e7y0L8/vdSRJWO1c43e+/OsApHlCrv0T\nU39OpN6puRYzmqgauXKCzkvYO5PzfWbyMsF1CUG+8KttRolWDu6bGC35neLOWE5K2pGS8oQG86kk\nQYeDlN7bPwPA1uGC43t/FPfpdx9XnsLVuBpX4wPjI+IpGGCYtNyKUhuCtndL1lXDr46XEIqFsXbg\nusp4vdQRhqF+38ZIZft0O0Ms1R98mq5YFQoJfdlnYEgM+3GFka78ETfXVM/xdsL//A/EUjYvvs5Z\ndQkNXf6hq408h1KtVZDmGGOxwFH7Aa6hSc7CY3hdLJ63K97KYHudHWX/KeOAaCDTXzJnriWyIpLP\nHnFGR+PesNMgGIi3QccGJfk0Ao9Kz5e3taPyIsfvqVVahbS6YikNt/2MsqK8CMh9Rc2tlK6tWGAp\n2rKIC1o9Od6gG4AiQbOOQZHJfERKpJrEFiiexAldeoqaXNQmuUqeraqcWBOFJ3OxqvZmivVALNtm\nc4SrEOypc0j7Y9rQ9Tilob97pJwAflkxuWTh6q3wG9JdWfXGWPqojMDG31F16AMpB4ejbQJPrO4i\nm+MP5ZltOi8TNmW9LLOCOhPPY6YalTs9l0iTylHrDpuFXGene8Rvn4s38qcGbwPwz968T1vzKEvT\nwNV5qc3uMx4Ne3tAsC3eYPFA10Uj4nrvFgA3Pp5ycijr02mmrEaaTG+nJLmsh9cG8pzeboZ8elOe\nzReedtg2JJH628e7PHb/ewDOzc+xUz8fPuFyfCQ2BcMA14Ky9GkE4tZG8x6Wds5du9niZleqBJkd\nETTlgb6wpeQWwRqB5gXNbIJriyu6s/MqPe9y4UE8FccoUXryrH1E25K/99bOefDZ1wH4tV/9BMx+\nTg5Yu3w72SgPaFAFGIGc4yudFvru0jM6VJacI7x2jVOlels/kEV8DQ9XXfjCWxHm6vrVsVCgAd2O\nnOOVTp+4VNzEQYt2W16mG9dtur7iCUKb6kISjHVTJ6BhY2umu+ouaXuX7qWJrxyGflgzTOTYZlcT\na9aASUM2ppGf0NLqQguH2roMFTJiS16gSt39qliieTiqKqHfkU1qr+XSUH3Evh1QB9oroS/uBSVZ\nRzbheWEz7Mrm/e+5TTaV6m7zFYfxHdVSrOW8SWkQWJeVjxY9JXVZM30KpZRvBN4zPIFnyot3faPH\ni0O50PM4x9G53bsJhisv9850+ixxG2nCNHWavKrQ9RN7g2JfmaQfGrRi7Td5Wyod7s2SxUQ2BXto\nU2sifLd3gFnINe84Ni6qknVbNtZm3eVzrwvwyGvc5lOvyXGdP/2jjBe/A0CnyLn5gqz3Oxdynz8W\nOMw1u/qpV15nel/mPswfweyzAMT2W5z/Ybv2PcdV+HA1rsbV+MD4SHgKdV2TFhWmk5CvxLV6temx\nu/MGALv7cFBIyDC1x+xvqiya0nYZRcDjC4Frpd86IdlTfbQHT9kdS1mwfvEG69clqWhdE5cySbcZ\naN99Hvr8q5OfB+DJ4svwPbokCQxGKl32Sphz1xOrGRpb+JvKOhxEXC8EI7HR2Zdr6JcYJ2IFHqZL\nOvq7Mqjxc/k81GRSYTrYplp208cLxULZlo3ZV12HyHlGyGEXSuLR7WA0tSQ7cVlT/Yas3Sdcqote\nJGTKUNpuiSVtODW28h90m31UmgB7EXCu9XQvLqiUIDdTYhXTd/GUg6AMWjiWHM8MY0JNxlqdAFcb\nhWaheE/NiwmmL5atOzSxlbwlGZ4Q35ZndjvbgU2xvE/n6vFYMYFa4OsbM+hK+Oe7C5qFWvd+wo19\n+U5rTf7/Rtnnk8pDcDhfw9zS57Rp0dSEX6vT4CSWa+6PVdqtOee0pWS1GyZDR9bQfnDEL/+GhCO/\n0Pw6AI8eBezosZxum2sKG+9es9nuKtZj84BmW9z8y+aygfGE1quCsym2P0+eSUi0e/MtXv+ceDef\n2T5l1JHjva4l7vzFl7AzWYd//6tHnI6FBO38bZNRKWJFdQ3j6gfTN/lIbAoAplHjFzYbDXlh82VI\nmsukb+fbbA3l8w13g44lblSgHWtJmdI/F17C866HrYKhTbvHPJfY0jv2WGtI3Ga05QVqJH1MhQw3\nnBf5Hz/+VwD4L+6s8/S9S8KoPwxz9sIWu5ZM3XkaY7ak/l0ezwi1T8Bu5pix7FqXbrtdBiws2bwc\ny8KMtCei08RUDHteKn35eUV7U/sS7BJzIvdsmCW1JVWSaDWi1rfXvFSbam1iruSeiiInt+X+225C\nHmmsnnnUisOwPV+vEVaOHLdYWBhKNT9fTYky5WOcryg1O+8p/qE0U5ZKLz9YryhN2UDMpUvma8fk\nxGamWoqmJYs4q0OG6zqf44CgJc9yz37E3lT+kA7XORlqrH0sv0sim+GuzEvD22J7Q1uy002CdTEo\nnuXSUnh7z5P+kzxYcOumMnK984C2J/PS7LqEiYQPreKIypFntqxkDQV2j16pIjnFK9AUiPLjp3vc\nasmc/4ea9f/Kpw9YPJUXMywzvELm842X+gxNeekHQ5PNDQlT066ET9GTHyKYKHFM+BJrWhkx/J/g\nU32BLh8sfoIXfkI2wKiUTaWI7uH3fhqAv/PZGb9WyQZydPcfka40t1U/oHymp/p8JKRX4cPVuBpX\n4wPjI+MpFGXNysx471hc7mZjgtuU6sN8kRJfNtcMDCxHdvFKKbOiYoalOvFW/xh/ov3/5oheR6xY\n1AsoHOUOUGvsuVB3NENsPeTnviiYr/Th/8X34sgvGw0K5Y+sg0O8XKxc0Y9JNVFqjx26hlKFqS5C\nWfmYibifzSTFVpyFlwSUKnvXUgXK3JpRN8WjaRYhRldDDTcnnkkoURkxnkrPWQphtiJARU8MQppD\nsRhZ7lAptZc1c5g1VRpdNRSC2idQVGHmdUhLrYxUJbFCnkunpqWMyUWp1qdYESvd3IVd0K8vhVoa\nZLZ2KtY5uEpOoujBgV/RViKU7r5FpdY4yiuqUCz+vdTmmlLSPTmQ8JHlkq4j17a9kzDQRrDKd/BT\nsZRhK6fRU2bnWJ5B7UJPM8L9no05lL+vW1s0WuJVWMYmpWbltO8Lv5Vguaovsjgimcl3u50598/E\n6/uqJ17Mv/nSN/hpNbOna332DFmz0ftzOvuClm27LYqFdqjOtMuyTKmV4Tm58z6xeo3enbexVUek\neW1C9a54i0MFpdyxbVqeeCb/8Bdd+t/6J3K+1RnUPxiHwneOj8ymYBg1ZWXg1zJRR0uXR3cFdHHj\nsxskkZQTw8zAUC29Stt7jaTCzOR3+94Wzq6QbZSGySSRTWbYd6h1MdWX7cvmEZZCR8u04I2+uJdf\nd65B+lCv7A8rSHXNNmZPNoKnhYfZ1O5D28dWQtOkzjGVUISGLMB6OWYxkSx7liZ0N8S99LwuC0tA\nP2Yq5+sOwVCX2/GbeIHcc89pYCgEtywsDCX/9DU/YVs1uao7ZeUxtr7EjeYaWa2lMKOgrXDdQAlS\nrKSDrTGraRSk6s4uLlKiC1n0lhGDkpYkscT641mOpzyY1cR6VjruNAsajh7b8VAqSDxdca1uTbul\nRC4pONqSPX9yzmNTNk7z5hSjJ/++qfDwZZYx0w35bOzQ0bnvYBCa8p1W1ceOLk+kYCkvw2yq4OtG\nh3EsxmDu5BBImDp0WlhdbQNPZD7TysYs5Tm2Mwsi2dwOkxWtTK5jqWK0/Q2fr58qdXxUcuHL+pyU\nCSdzrZKcNqn7shFHiZzr8L0pGy/29TML21LRl/4mHzOl6uYO1/BaEtqcPRaAVGvh81BzUa9s3ubN\n97QM5nwJI9NcGlO+2xr+XuMqfLgaV+NqfGB8ZDyFuq4pqJ917QVmwtGWZuLbTSpXd88kJw+VfruU\n3TC1IhYrqThE8QbW1kMA8mTK7InsypU9pHddLFOmACIntrBczaZnF/zzo38BwCJ9yPfaXWvfY6ky\n5Nf7FY+0Jo6XUCvSxUoOiVUyPszEC0htk1yVj0+XCzJDLNesvkOu9fHTR2I93D54auVInxKqJ1Q0\nHVpdDZVwCbj0dOQ+jCCgMlU4Zm6RJgoPbrg0NeGZJhUrhSublsxxmh/RHollj13I9Dpp2dRKibZc\n2cQt8UwyRX5PspxOKtfg2yazldxHaTtUjpwvdHMcxRYYlXZnxh6Fq6AnL6aKxaM5Phtj9yVUaE09\n+tr8ZSuz93HDYEdhwkeGRXumYU7fAG1Aurs8I7lQluqOrIuqETF/U6XUvAULpa3vzVOKNTmfF64w\nfLkXJ9Bwx/RJlK/xJCloaudqGARcKJDrfVO+O56YvKp8ncmgz65iRDabNWUpYUA0M1lqF2Ss1340\nfcTZ70tImDtLjL7yRTxdcetzUokYrl3wcCn3crh6CMBbdxs4E3kHfv63voylYSVFTf2cEnHfbXxk\nNgUwsAFHlYvMysY7lxu7884ZL7yoIp7TBoHGaqlmWx3T5nQs7nxWP8U7kTi6+WDJLJUJbnY75Epf\nZDvygOaZg6UkmK6/xn/kSKb7f/HukWvl47tlbD23SYC80GdFD/dAQpSzr3okK2lS6DqnZEpgYmgc\nmvRsSq0SlEmTSoFKuRNg6b1eSr3XWZfC1MpAuiRdasmusDHUhQ/6FYZyU4YKlErrgli5A1fegpEy\nJDXLmJWiPkuzSaVgmnNt1W5aHgt1W83UxVVQ09Dq4h3I+Ua5SUcl3jnRisS1GecLeXGNMsdVdFIW\nFegpKLGodfPJKu2STAqSUEOpMxdLwWD3TmcMHMm477g+CZchj8yxPY3R5kSSWUnkK72806BSHYaL\nC4NJW0LPeiXP/HplUmgMU+JQq5Zk1JwSH8tzMAc27UguutR8yLJ0qOdyr1F9SnqqxLwbBqFm9duJ\nzJUV+CxLpdw/T3iq9Ptb3ZrpsW6c0RleLvO11I3u90Ypbi4gNB+H7FDu+XxVEP+a8FX+8Ms3Wepc\n/Ot/I8/68PQpA9V92MkDjqvL9nQLtGu44pxvG7jnK01+WCn6/8YwjLcMw/iWYRi/aBiGbxjGgWEY\nXzYM465hGP9YNSGuxtW4Gn9CxodRnd4B/mvglbquY8Mwfhn4a8B/APxcXde/ZBjG/wb8TeB//f5H\nFIcnz2VXdkyD8bm4Q4textFTTdaVQ1LNhq8rMGc0KYkv3eTDGYtAQ4ZpQXBTvIpGuUkeyLEXj9Wa\nnUU4qrpjdc/5x3fU/Vqd871qulNqGvWlqEnEaiB19fb+CdmZWO75Nw1KzSjHiqe3C4/JSNxrLwhp\naubfYB1fXe0s1JDJLTH1/h5nEb4SvSyymC1HzlFXHqYqPKWWcheM2qyUJ7HMDZSmgVW1pKMJyjoy\n8VSIplDuw4skpaGiNlYjIyzFksZ1RmbJ8bbWSmzFMjiqxXh24rLekXPPLJeLldgZJy8otNZvGR1M\nUzyM4lI1qkgpRuq51RBo+HRnktC1xYP4WjfmZ7bkO/1AEs2LrbucflOO9bSu2NEOzbqOOJlLHb+s\nF6xpEtCw5bhxDnEozyP3LLxSrPvxWUag1PYpATcFssBMjDK56VGcS/h3/6IgUHxDN5qzSBXgpgnO\n5STihj7zRdqgqZLzZ2/l1Aou62Gx29Mu1rlc+wtbQzgUDyrdqljeFQ9jWK04mcr9Pyjf4h/9thxj\n9q7gG363zOkqpd95tqCtnkBV2Zia8Kb+tuV/3nTjh0002kBgGIYNhMAx8O8jupIgUvR/8UOe42pc\njavxxzg+jJbkoWEY/xPwGIiB30DIXaZ1fUlWxlNg57v93jCMvw387e/4ROjYlDA1r6CeyW5eFRVO\ndpkQfEqhpJrvrmTHrLmNd6hx/Vvv0hjIjvmN8Ss0vyax5fjWhI0zMQN1uK83f46nreb5KqOh3AKV\n0QYt3303j6Ft2nhK0Hk/74ImOY3EIVJC1JxzVq4wCA1rSWRNJodMl2LN4sl7hLlYh84LEy4Smaay\nFs8lmzepXpBrsC4CFqVY426YYduS2DSLkESbxiy1A8X0LY4j1SX0T7m46Og9GSjwji4+a6rxcIlz\niJMmmTJIGUXJfC7XcTjLmByL5e4WFZ4ptflEm2zS/BGFNp11dhxQzIa5VtLOL1m1Ic2UmVqvLW5G\nVJXmC9w2tVq5ZZ1xbyLX9NLeFtdUsTvUMl46tZ81cV2MT7mrjNjhcUaqnBodLjh5JB5Ctyvz9i8W\nfZxImaGrJsGWEs+mA4YNOfat5i6FvhKuxurnswuOcy0tjk+Id+RZDsIMR0vcnhrl3LeYKNKzXTnM\nJ7IW2uSUylQVJANyV3Uikn0AZmdv053LvBiU2IrfN2fWM3Tq9BsDLE0gH6muSV5VjDWvYdk+uXo/\nltMA9UJh9qzJ63nHhwkf1oCfAQ6AKfBPgJ983t//YSn6Wpa17icFcK//EIA/V34a94Z2T05grC7j\nOJGbPU4Kbh3IRH1r4y9xEAoFWz74cTYuJPF3HG4xeSItrkPVFPQ3x2SuJDDffXrInXPBsBcqLf9H\njfM6pa0ZZ9f1iZSh+al5Qv22/NZP+5QNnV5PGZNXPrbCeXc/voflCjir4SzwmqoQlMgivvMo5uRE\nrvf08IKd68rL2NrAbSrewq9AGYNnmjhbDNaxZhIyrXKfu+cKmtno4mo7cLtlkGjm30IFZodQKjN0\nGlWMFSPx8GyJry/It/obvKBzd7QhfSmfnr3N25UmT0+fgLIud/oNvKGEGkFlUyrHZqph15FR07Qk\nPPJIcVWjMs1zDivZsM7f+ef8ld1XALBfEwZvn33KLTnGggvuLhSENY8I1iWs+s9+coOvdwSyvjsS\nSXaz+wa95VsAvPcmnL//GzLfkY23K4m/jZdeZEsBZ7OWXmd9l68+lsTn3MpoqJ77dpaSaUgUKYV/\nYpm0tZ9hbC9ppCq+EwbMdNN+lNe0NVnJSjap49GCsTI4F6VNVilUPJjzhUgBbA/GfEXJYHIl3ynq\n+pnJqowIR8Ogyk8xzctdW+j74XlBzh8ufPhzwIO6rs/rus6Bfwb8KNDVcALgGnD4Ic5xNa7G1fhj\nHh+mJPkY+FOGYYRI+PDjwFeAzwN/GfglfgApesO0RQo9kJ26kRrcWkhy6SgecDEVC7znr+MoCm+h\npb5P7DpsXf/rAHzK6rA1/FsAlDsm0SMRxZgc36dWWjFvW4lfy3V+/6EkAct3hgyUrHS0cMmfRUA1\n39471dLWDg5aSy5LuCZW/uL39kkNCRmuv/weL6dihf1Q3Nr9fItyU+jFWu0fo6VK2e3BG+RKtpqo\nmEijcZ9WKn/fOLjACyW8GEQtPGVUNqgxXUXsPZbf5eaEVElczdCkSJT+7a7LZEcxCUuP7YU8+rWm\nWK12YOJd8i14AUr7wO1Ni9BXrof2Hi9pU1GhGo6Hv+cym8g9TeMOW3uCfmzaazRiTSp6JcrHi6ke\nQZhUGA1NujZzbEc8Nt9y6KlS9Csf+ynstU8BYOdLnZeU669IA9ogeYUvRGLFi+OPsbUt59uZ/cfs\nvSGhy/7efwvAeH3O+Cty7fHBb2M//AQAL3/uAdcGL8nvgjYNTcYuawmZbp522Fel6cdxh9auQr6X\nN9nbkJu6rfwGF7f6eA+UqMcPWKnlnnciXqy0dHxtjYPwMwAEnxEv740H17ijz/12/1VOtr4BQPWN\nNeqF3F/70Ys8rWWeo4Ws03MP/Fyeg3/wIq8USmPXv0XxnqyBifWboCFbUV/SCn7v8WFyCl82DOOf\nAl9FvP2vIeHA/w38kmEY/4N+9vPPdUCzwjGrZ0pCN1sGF564V28woLpQ4I2xoHlLwUszychPp3PK\nt+RFX/1ITf6WuK3TWwcMNMZLvXsEprxYlyxHs/dSvhzJAjubvkk0lwfjmjm5usGmAZW2GSvrNxfJ\niJYt/5FXFq8dygJaDZ5g3NSY+nCAoX0Xrtauq+ibVEuN9Z7+U5JPyCYVPAqYaaxq3pNFFSQP2UmU\nKOTmNt1CNsBgM8NRNanUjCkP5cXyNXbOLpZYrvZBjHMqzZAvykNcrYxYbs3CkfO1NRyIIzD1u8F6\nSK+norjpAnMmzt44fYeLxRcAeHDZeHd2RLwUGvatag/fU37MaomrACAjDTH1pTZz2dyDRomlcGXL\naGGMZbMw/RpPKeXdh99kY09O9J6yZe2Pz3ioXIvV/Amnpr6E3iFH/1rm5fSdr3GeS/7Iz6Vv4a31\nDuGbkkCaFg+4Wcrnm94WW6WyOnUiDK2e5CNZC8fnI8YaHhRrM8yR9kl07onGPHCtLy/gaTnlp2+K\nMfmtfpcfUiHk81UISkpjWg2wJTdQPNAQ7nSM31DQ0/irHM81t3P0TcYKdKJ8n3ymeSVNYsxCi1eV\n1Mdsp/z4jsz3k+KEYesrAHztSwmBwq2nz9kO8WGl6P8e8Pf+wMf3gc98mONejatxNf7dDaOunzf9\n8P/f2NncqP/Lv/HX2A0splpYt2ZjHp2IBYomF5wo779X11iawBuoix+7Hlsqt1a3GtxSdNy4sHDV\n5T83a/YdzbQr58EwbHJayW7easF8JVauWdTcV7Xqo7cf81YplmC/0IaaP/MZetqgFK8KWppEOryY\nUMzFfT5KTLqJnOebhlqzJx2OW2IpB9Mmc+VEfKFYZzmUMKA3EevzXnVBdyau7HlnzI2V/N3caXLd\nkfNFYcGnPyHez/Wf/MsAvHHrk5SeeAGhnXP3gVj59fU5yalktcPBI6bncm49LQ/GNTuuWMGvn32L\n9q+I1fk/N3+XV74s9xr9cJPwW3K8hYZavl1RhJKo63Y8zFC8o4PNJnNDrPv2Zsmp1ttv74q1u3fY\nJCslkfr23RyjL/P9Qu+zbLUF3zA5cgkcOd/5hfyuVy+fWdKBZ2IqX2XnScGTjszddmGRHyh/p3rM\nS7dJR2n1MqdDR3EM7xfvc6DP9fzGq+wrhP6J0rzd2PY53/gcAJtBTRRJKNjyI379XwpV2mBDxYJG\n62zvi3e7GG2yrliQx+OI3aHM98lZQcOW9fTwSH7nkvP0TObTNSfMI1PP4ZCqh9h2ckaqlbmh1HYz\nf5PtgXx3vnS5eV3Wy5lzg742443mAb2mHPvP/tTf+P26rj/N9xkfCZizQYFpXRj/iaAAACAASURB\nVJB2h88y3ZPIRhPBzA2HrlK1R3ZETwVFWl25/P1uE1tLWr21HbymTMhB4fN4Kg9pLbNJA6Xt1n4H\nw3FZ1+A5CEO2VVlqno8JJwpC8SqisSy8x6m83LvFlEkiL9gN1+a4VjhyPubcksVk5TUPlUD26EwW\na8N8yrl237n2U1aVEr52TlkgL1asEOxpFmG15bwrbKYqqur11jhZyP33KoeHx3Lf1977FgDnuwM2\ntI2awqa9JnORF/tsawfgxfI2LeOhzPNS1Z0WD3g7fhOAn/v8e+w9EDKRz79T89kTBUNtrPNDWkYt\nO3K9q9qnqa3TUWyx25BNdlF0sJXC/fRuh/1NLaNlkiPo2RfMziWufy25zzcey7PsXE/J7X15fq0V\nDzV+7ppSUVomJoFyRj4qzvDO5dqOvQVHcw15cujNFaikRDUdSs4V+nutETFRJSj3MOYhGjZVd3n3\n6/J8tvqqCTn7FNZEdBnPN2+zs61Gq/QJQjFUcST9CZ9pwtiQd24YHlGmCrFeK8m0mjMMK0gkdLkp\n+xZnjy322xqCLLvsqqDtOZ58H0hKny1HOzuLS5KZmPmx5Hs2OhnjkYab4YjzmRiG/lpBGcsze95x\n1SV5Na7G1fjA+Ih4CuDUBtFJykhBOuVoysVUrGZtJawUBtyyQvYGkszb3FL6btfEaIvrtO5bBJ5Y\n8fFkjF+pFHl0xEoz36WttGR1G6+SpE+v2KdSPUej02FdGYq31td5eNmNKflEpuMVbles47sYz+DB\nE3JC7dlvGBbNWKxpX/KJlOk5eSa7/DJa8YJqSbruGh/fkhPeW0pIdJAlNBuaWKLBXc0gb7Ucnio4\ni9EZX38qc1SefhGAPz9aZ9DQKos1xNVmnfbmkuWRVEaWdk0ylax2rnDY/M4hJ78j9/QJdlgeS5hz\nO82JlmLlX5q1eLxUnIVCxkeZw1LBOP21hJOpXLNPA28slrs3iDg/VEozFcu5yGN8X5LDTw7HpF15\nDs7sFmFfKkKH00c8Gcvn1UTO4VowHqtnclFx/aZyTC5brK3kO0+SDps3Vb18InNh+ylhJqGW6yQM\nekKP1m2e8NaphHze1CbvyX3ND2WN3DHfY1bJcT/jndJbiFfQat0iP1I48msC6DodzSnLfQCM1Qyr\nK2u2mpUY6sVYof8sY11fSGhg1AsSBUg126AFI5Iclkpm0+lDNtckqPI7FPOaVk/u82KcMcvkePkq\nYact8zZ9EhIoff7zjo/EplABWV1hmTOWM6XYTqxnZCLtIKTWsKLrtxkOVdFH8whrPQdTX/6yqMmU\nqCSrUjIlZFlUDoEr31+kWllYLVkoMtF2MyzFxg+9FrEyDxUbHQZn8qJnobwoy7Sgo910S0IiXzah\nIojJlPHGbJtsbqo6lcZ0fWcfFuJSrnUi5qH0THQNH1t1M/c0xo+snNst+d106nNDKwNTY8rNuRxj\nvrgHr8j5Zl+XBfq79kM6f0nCnIONFrFmr/OpTR5J9n1mv8TvPNauw0I2vN/7wptYlsz9l45OeMXX\nakHd5Cf/tCzu97Z93pjpubVLtOeYpKX8PcpsXM2yl96KmS7oaBGTNyU3MNCqgFEU3H0ogCTHnONl\nUhZc2ZBoZ+fR2YKjqdKyT+VN2bJLHmvPwJrt8OZUrn/XNLG07+D69ZRxqu3XWuHI7Qa9UF68bDOg\n7cv1lxs7vLor1arTrGI4lucQDeVF3zxo8ujzsmn81jdTzJ+Wc9/eK8i0PXn2RHJRyXJBO5TQ4J3l\nCX1to/fNhI1N+Xw+n9NQBSzblg27tdlEdYJpGh1sU8vSbodlLucOPOcZm9Jld2acFZTaBZzlMZ5W\nu6ZHCe+eyXPv9nL2b2gc/pzjKny4GlfjanxgfCQ8BfKC8mTMzChY5mLxsmSO6niw1gxwFRew1bXZ\nassfttbEPS/MCj9QoIwbwFypyWyLzBILtbO2TqZ4gZUpnsI8G6Ms3NTmIYu5WCXXytntyPHGqxX3\nV7Ljn620V3415qi4FFzJuKHVB8eocTtiaYzU4LpKmFdaK++3G2SbyvYcxNQquDLY8Ykmck++KjeV\nsUW/obwQWcw0F0+hWzSxBmIFps0u0V2xHmMktjlyfpfHxyJOsu4GNGxJ0FneAe964pl0jr/K3kKT\ngCcSfliOw0p7Dj7d32RwIPe0bR7wTiDWarfRJVdeycaFJj6tJUule0/rnMqWeTGjnL4SsqRBH8+W\nOfDPpeJgNEucvszrw7tLtnsCx05HDVLtynxUzSlnEmL0VRPTL0LWTLnOtl1xIxAr390McFS9qeqU\nvLApWTy/MdBn2sJqyry17AbVUMIA2h7NSDyra4MFudKiZUeSBJ1N75LeFnj0W/Nj7j2WtXVzEJJH\n8vlZV70fr+LWVD4bjMeggDPPXaMai4fRCXws1UIttYehlY5otMWa552Q9uKSiXnGtVh7RoIWc2Xm\nzscSznTCgkKfR1WuU08V4+KdMHHk2I/iNbrjH0wN5spTuBpX42p8YHwkPIWaipyEpIT1keyMZ7WL\nr80umZXSCaXcUngpi1wTdJlYIivzuahll4ytgFCTWcuFh6ONSw+zGEdxCoEhFsVp5pzNxAItcodA\nYaBx0yNW6zeq21Sh5hS0gSWdxZRt2Yk3znwyFRmxbQdPcx/9zR6XWnaDpiTnWk0LT5uH5mOb7T2x\nqn4/xGyIJZmoBW5umDjKNF3MC2Yav3bDGr8nFqjxYsWJypQd3VWo9Xs+zmvyWZ2NcRVhmCTH3FQL\n9TQwSC/kOtJzmWPfbtINJecw2B2wrklQx/RoRKpQ3d161h1almJ17xdQaxKtCgrsmXguab8iW8gx\numYOcy39NtXyxSXtSLyj17b3eKyco36yItNu1d2RxUNFmyeK5svdHD+QHE6zu8TZl2fpNgy2LfFG\nCnMKDRXMGeqzyRJybe1c9Eo8WzwWlgFGLc+1tFycUM7jrKnmpT/Dfls5K45Ldn5Uk3ZBgjuSuagb\nCu1ONhkP5YLHUU7bUOSi18VVaH5VebSUharKlI0qMp/B1X3TwvZU5zOvQYVoAs8ky5QKTjEiedbA\n17VuVksi7Yb0qhBHmbo2Ol0If7DX/COxKVRlxWoeURspF0qgkhcptcqzD0sLy5eXfjjrEa7LorHU\nhS+imFppvoLKxujI4nfKnMlcHqJvVJiG/C5RyrDloqalHXmrtKbUTHyZZFSOuJd7a31GnlC/H102\nt3UqHFVTitsLNi3JcIehw+6OuH6e5eJb8m87lg0kbNn4tnIVrtU0VKim7QXUykxtNZWurKqw1b20\nNxzMVBNm4xV2R87d2V7jZW1J3vmEbJDfavt4R5K9dzZfJ1OQVdNYIzpX5ue4JlAATH9dFt2NkYuX\nyctm1z16pRKBNB2cpoCQjNEUoy/fT3syGcERZI5SmzkmiULCnchlXXkZrzV7OCoi01ThyWXLoKlM\nxMeTu+wmct+z5QrnMjlYjLEVoNbRjXytaRArccog6qJdz4ROg1Tr+5Z/Hf8Spq4clrVVYhqymdpz\nQHsRzE4GjggJ2ckMK5WqRN1VEV/zNV79mOJN9japJ9Im75y9yjJU+Hsg19hYjTHGsgm3rQ26StHf\nyFt4psxFndYYlkKeVWrAdmtKZZe2GwaGqmwRN6i1BdqqbQJV0VpouGqVS8xCofSuS+BKKGUXY0yl\nvrfOFwxSeX7PO67Ch6txNa7GB8ZHwlOwLJNOwydpNymUT+D+RUqvpUSbGy4tZdldmiVqgHTLh5WX\nYGqT0LRVsKVy4AvHBrX+q2bNUHkN5ol8t2v7VErYEQQ1yfuqPXCv5KIlCcrklZqosQdA5cpnBjUN\npRXLCp+ZWqXmWpdYGZrdoKAwxKKZypycGE2oxUoEGy5GpW5ktYapBCehNrsU+QJDk0jFYxPDVNbi\ndkGQiLUeByn5UOnmFH57UPSeEYUkZyeUG3LtlDHGUNzki/s1y3P1dFxtklqOsUKZ47AOKD2Z+0G+\nRqIJ0dJvkWlP/2ou58jNJnEg8+1WDivVMmB1Qqrq2OkkpbmhoZQmOKvwAFMbkTbcDuOJfD7YdKmC\nS+4Im8lD1WPUqlruGngqllJ2MhxVbamNGk89hcC3MbQMzEQ8mrxI8AINc7wAVAu0PCuwfSkBVq0I\nc6leioYBZW3gNsQaXzvxMAN5vtHkAU5TnkOo+IBVr8SYyLFip01biXcrJ2Kl3Yx1DZfNio7S5lWG\nSW7I34Xs97JRzCJXFvOKklR5RMxCCWmMAlvX3qxcYCrGxfYhUHxK5jZYLp+vO/JyfCQ2BeoKI4/p\nZiaGCoK+VscU2ok3nFYU2/LAt401uqq45Cu82KOBr91i/dYapmaTg2aPRBWGhm2TUOu8iU567J3h\nqohrdj7jPQULsXT45Ja4kc5sk81tedDGSF6gWVpxri9Ho51hqwT6WpYzVCYjN+kQiieJpQQabmBj\nVZq9Lz1a2g0Y9nyyseIiaqm7u5VFlagLXBWUKiTaMBKyphS1rQuexe22cclVeJcikRbhyeI+w0ji\nbMdZ40Il3jfsMZUKLr0z1nh4UGBr9n69k9IYqI7lwiJ0VbxknpMYcn2Zsm5XzPHUnTUXE2Ktm5PZ\nhIUS0Vxs4u9JzmOgbeThxgb3ngiA6ri8IFWex3ya4etL5hlwU914M5FzGJOaQqnvy9JFybHpNAxc\nU0ldLAd3oS9WT+cl2SbXTs3ASqjX5eU24yG1Un64hkndU4bwXDdLf0xrqHTw0ycsp/Lvk3hJR3Ed\njoZaldHG8uU+2quEpiHX2S57GEq+UuZz0Jc603yJmUT4StRjOlBpB6dpjnF1MymcBZa+roYpz9/L\nI1Lt4Kxzj1S1STFMziZStYmtEMO9wilcjatxNT7E+Eh4CmYFzbwmyh12FmKtRk0PlPfAbsJGqerC\n9pxKG2YueabsnT5NV0OJbogdi4mOspK1XMVJ+gGtQBGSyqxrOy2WSgl2GlY0H4plu8+cw+IeAAev\nT3nwSHbuhuohHk8tLElI01nZNBrKqbe+BUqA4rVqxqr70FKUn2c4+OrWFjXQFfezokCR0lRPlWvR\nqDFUWCStE2LtDqtMB2xNLgU5a7X21i8kTDDCJUNLjpvXLqVWO6L4kFBDm8d5wd0zCTtKbQjLU5tG\nR67TD7pY2nQT+iZnKp5TxRW5K8k6X1mEc+JnCdORlWMUipuIZjzRRrKta3N2Zx8H4IYr5z1PHUK1\nwM2kx1I1GazFnIlK2xurNiulHhsV4q3ZgcteJJNVb3lYtsKYww2ayn5telAr43WuzVNmc0UxlrmY\nJDaOVpfM+hgbTf6aPpZ6k5c0dUYBuSbqGvY57qVH5vn4mXobW8ocnXvk7iWa1sK+FPEoq2fcnZQG\nloaCliaBS8JLugWK0iNQzzOZtTANFQey++Bp17A2z7mJS2Rq9/DSYaVNgbN5SYKs9U7qkJY/mO3/\nSGwKRQ1naUUnWDAqVchkVdFTcRLXdoXJFTBtj1BvstlV8dTYoih0oiJIk0uJ+ilPz2Vh3jipMbUt\nLUZc5tx2qLV7reV1mUTSG7A6j/GW8mK56ce41vkqAIex+Nw5ySXtIkZQYCqYJrAKuq58p15E+Lr5\nWJpHqOyKUMtmVnsN+1Lo1mtRKBlMrWw+9bFDpeU/w0lpaLv3xdEpxVIWimNCoTF1x5ENq9fukiea\nDbdb5JUcNygCRkfido4mZ6y0Rb2lG4HXbhGrfuTIWGBN5XgFJZkuzGI0Y6rVkVIrBMs8JVTcvm1X\nqBYru1WfsqUlsmyTl3yZzyyTTd+azJlN5NyraEmmGo1nVUVX3eujZME00vyQit20jAzlomVt0SNp\nSjhj1CHVQl5Cuz3EVDl3JciiKEyWrnIbjhMszX3UzgS3kI0lOz/C35HwwVKhGivJKDT/YK8CpiuR\nga/iFYaGMUNbew5Sk4kyEbZCh46ySZlxQaqVtHy5oFKWLStWMpxmSJnIZhnYNqZuwqUVkynwyEoi\nlppvi9XYpLMZ85VCyedTltnl5lY8kwwo7BndWhl7n3NchQ9X42pcjQ+Mj4SnYJhg+zZFJ6BWSHE0\nzbDa6kZRYSC7pDmLqVXxeXakiR47pNUUy5DaLplyKOQltGZiYVbXOpjxQzlfV6xVZ9YkVdhxen+J\npdp+jVHKIxWJ8V/7Tbq+KP/eGgrHwBenJp6nHANug0CxDlBzojTiy/mI+DIb3BKPxn3H5KIn13Pj\nZoSvVjdfbWKqVbU0u1qEEYkK3JwuE0b3xVqt7DFo0s2rHRzEIjg9Zf0d2WSO8jecXJC8Ism3RZpR\nxHL9k8cJy6VY2GFrX86LhaPhWDSLWSijcLosqepLmvgaR8OxWmnLbDxqX3UpjRBPm9HyVkzQFcvl\n+vWzervpyrGClkMzk3/3ywRf5aiN/PhZ9cEZ56wmMoerUlmbmz4TtfLdbMqx4izmbz1hfVd+t31S\nYDe1MS1VsFSeUan3c//uMUUp81k4B2x2JCnnvtpn7cnvAdC+JlbeStpUDQ1T3TWcWrytOrUotAEp\nUT6GsFHRnSrepKpBiYEWjFioRZ8bFtMn4g33lMNxfbOHZWh3ae1hKkO3UbicjcRjqbyMC0VyJRpW\nlm5ENpF5izMDy1SZwnaAcVnhqEKs5Z/A8IG6xq4zrEnN3NZOMKvGWmp5LnZ5W1FjzmMXX/HlI+X1\na3YrNiMJHz7x6R1M1YiYFxMWT2Vxb6+bMFZkYi3HeuvNGa97gnGfP3nASslCFpbPZz8meYJPdf4C\nRihgoDfXJW73Hj5lsZKpG4YWbZVw70cJhoKQqtSl1qqD6cvfkyKiiOUcs7MOm1qpsFudZzyQZf5Q\nf7/i4ZclK/40OuTkSNzLGx/bwU/FhV3QZ6bl101PgVzmEcuxtuxac7ZHQn5rlzGHCEqv5Y64faDC\nrUP1rxMH01EVLsDRTsR5nOIgyLx24GN58nwuNPQxlmNc1erIzJilKs9OFi57ynrldFdMlHmpbUqI\nNqg+jtmWBR+d2njX5JrH36pQgiEWpo2jqNC9WJ6pbbfp7KlbPmmSahvx8WjCuT732Blx+6V9+c5A\nXPvCa7Gay3PcCDY51M7O9Zev01J05sFrL2Grm18VyrXZuIPRlbDTMh9wOtXyY/WEIXJPLc1LxU6D\nWkPTTp1grVS3o4DZiWpQ9k3KhWwsUaH3HFTc0C7K5tCm1LyaNXtK0JK5PZ1GxEojdRl2XD+4Tq5M\nXWdJjZmowlnfYn4uczsdu2TuVe/D1bgaV+NDjI+Ep2BUNcYyZeGBrTRaq7Jgqn31iTWlTMUSxs6S\n2aEyO8/EgtmTgJc8sZj2qKRVy05a5DX3Itkx3/nSQ/JQLMlqKsfqVTnvu5LRPX284p6KdGzZMb+n\nu3Fn8OtMLLG2g0AqHFWRM9hSC9YIqNXYmr0eVNr51nI4msi5k3Ox7KVhkygOIXYOCbqSALo+MCgK\nBZs8kN9cRCOeVuIdjCd9yp5Yj2kZE+wKBNuPPVaFWKZYvYBlFbOMpOPQMhOSVKzEKBkTKOjHbFtU\nyv3n5Fp9MBym6nOWsyVHShlfRTkzBV+FYc1Kaes9xVA8XK3w1DpOoxpPqyRG02CqibhFbTJQ6G5c\nqTdirLC0w3Hv9oSp8i4exTFzzeIWM0g1o1625HrXeiGGod2n2z5vVQrqqlbceyTPctTOWa2LB3Gj\nIx2jptVinElo9zAecagU97vfvMNLn5R7uljcpeFIdaXd0esstkFxMYmzjd8WL7XOXGrV4SzamhAu\nLIpaIfR1QKadrdOLmEdTCUfHTyeMtRO468g6PAgyWtvadVoNcbViMr7IOZvINb/1NMe7hEVvazhz\nMSfWYzRdl0TDDiu1iRRO7rgrivKKju1qXI2r8SHG9/UUDMP4h8CfB87quv6YftYD/jGwDzwE/mpd\n1xPDMAzg7yPK0xHwn9R1/dXvd47KMIgtnwEVE092TKeyaLS0/NVoPCvTTAuLSpGOhaK5yjTjaazl\nr7OU17piSe5NT/nKHYnfUq/kusKjl1q+WyUVjikWeDv1SULxBJyZQ0uto/neG7Qt1Qt4IhalE6R0\nlIjBbFb0O/J5nsWgvA7ffPc9fuuLsssXrliUjlPxyesSy3veDUwVg8nW2pjK8bDw5P8f36+glPzE\nW4fv80iZh3bbfV5V5PKNXZeX96UEGr+vsFz7IS3VRRjMckrNcQzwOIvlPjIzxdAGHGNDYtLFaMab\nX1b15OyQucJ17SzGcjQh6GwxWFeWpVBLx6cZ6SXM2zLItI7vxW38tsxFYOaYijnZ3FICi9yi52gS\nMbYIctWyqCz6WnI+9nIiLeDbqkZ+24SVWt07jwySbfFMFicOFXJNi1ObnnoY1/pyvrBrk6SSJzqZ\njDgeybp4995j3rkjnuCPf87glV3JH7gviNVtNVwy5THoFkviS6aukU/elfv2tIvUriBSWcB4BoUm\no6fxgkd35f7PzIJEJfQGSvln5w72hfyHP2hQqceWmzXHyrpd13PeP1aKtTuqxL3ucast5VRn4D5T\nYT/zAhpKWZfHY5xLEMxzjucJH/4P4B8Av/Adn/1d4P+t6/pnDcP4u/rf/x3wU8At/d8PIxL0P/z9\nTmCYBnbTxBw4+PoiGCuDxrpcXmWb1ArGcMIC25MHbW+p2tBFhr8m393cGbC9I2558rjgobYWr+qY\n67dkA8hHsmkYyQUzzSzX7QWNd+UcAyfhfKZELLe/hjUV8ErgyKJrr7XZ0G7IoLFHUMhD8toFM+0T\nWHRs9n7sOgAzbQHf7zXYa8pL7LRcJrI/0D4fEelLs7rQZFIjwm/LdW6vDujYco5NXLYGck9re9tY\n2sfxRUfr+b//JmUuC/svbD7GUjr4i2nC4kwIVy6OcvJMFuZSMQ/jUcokVVnzeU6s+IZW3qHX1SRm\nLyRUTkCOFNBV5ywUsFT5kK9kYW73wQw1WVeNSHXzXWlXY6dlYWSy6Yf9GqxLA+CTKc16dpSyPNEk\nmXZGvvXkmEepvECDPCHSF90/qGkdKSO0HRN7KuyjdHOZYTFUsFhQWGxZmqyMOrzxmdcBGH7qBRr2\nZWeq9m1kNZWrUONFhq/3YbUzRpoo1twktZWzpkzbcXsEmTxro93lpR+VeRkUCWjF6LoKwm7tbBCq\nscAwmCsZaFa7FFtyvGG1SVzJd64pTWFS2zQc2cgbW20K1bYcDHaYRQqWWq1TppfKPc83vm/4UNf1\nbwPjP/DxzyAy8/BBufmfAX6hlvElRFdy6we6oqtxNa7Gv9Pxb5to3Kjr+lj/fQJcQqZ2gCff8b1L\nKfpj/sD4Tin6buDSxqSZVCxV4srzDHqKYrRtmzO1eBQhDWVj3i4VljsIGWgjy+sbW1wfqlx4ZbMe\ny+/OozFbawr93FaZ8XifYqRJspVHfFNJTkch+6py/cLiRWLVFXyv0jr4mkdtasOQmdFWPYVtz+P2\ngSSqXui+SqEcEJHSi/VrE3uuSVB3hp1JCckcuFiGHC9W4Znh9oBeLfe0zgt0rokF63ba9JVYI8+3\nyZTk4WX38wB88dhk+qLs4cn8VbojxVBkETNPQ5d6hquNO9mZ3NvjNCCbXyZJYRArJVirycaaeizh\nDo2mPJ96Uyzf+jTDmku4UmcmvetCTbbZu8auYghC06NWBuowFgveag/xHIVPT3uY20oxVhqYik2Y\nGiZZplJwiTIuxy3WdmU+u9EOL6qydbeuma/L75ajKd1K5nmuoi9bTo9gT67zR/yXOdUwZhBfY/9H\nJBm5s3cNp6k0e2pcy9XsmQr0xPoqiZaUUyshULi1F8qx4irAVG6JdbePO5TnN2zcYFXKWqCR4ui6\nDdTLcQbQUqyHFdqE6umtNSI+2ZJ/T0yXaw1tJtvScrhd0FL6u7HhsHqqJVDfY6mo0GkckQY/WEny\nQ1cf6rquRUr+B/7dMyn6671m3XQt8p7F+ljhsN0llis3bK9brJsqPuLNyBAXLtUe1INOk+auuEsv\nHlyj6SmX4sELhIGKXicHsCNxpFmL6xiczqi3JWufuCecnijf3VZKtildkvlgzjtP5PYKZe7JwzaE\n4ra1zyoO17VLct+loy7ltVds8oluasoTaLkVhYqbHD1JKSaKVXcnRHqOUsVhrapNGMh1bt0IMUPZ\nCLttC3dNiUPOnnB+7WsA/O//6l/Ktbff5+4jmcO/ZT3CsEV8ZRbZbPjyokcbK+aP5N8TS+XLlzmO\nahzmZZOGqlf1h302NmXRb+x2CRVr72jJpbNpkKorXrRKCOTF8zrHnCu0ub1l0plo/qetuY/cwAkE\nFGbtlMQj7UvpWJxotj8YmyxCrZ6MFbDTneAr0/Yb/RTz9i0Atq0aS8v0kfWElRKfxJk88zye4Wrf\nxfatLbq1PjPLIlhTm2U51LbMS60Q9cq4S3whaygfnVBo375fw7zQqoTmbVqWy7LSXgS7gRXIWug0\nYhravuy0e9juJUmQAueyDLgE6k3IL5nF/IhCGcgHTkBbAWoo7iDwGwRKduOdZgR7svEcn60wNDdV\ne9YfW/Xh9DIs0P/Xx8EhsPsd37uSor8aV+NP2Pi39RR+BZGZ/1k+KDf/K8DfMQzjl5AE4+w7wow/\nctQGVJbF9cjkUN2oNLLoGLKzdxZbTLXRJlvY+FrH3gjEe9i+FtDblGRg13IJ9l4DoFpkOLd+CIDT\nu+e0LEn81fr75mCd2alUCIL0BVBBkijtUp6pKM3pDYwjgb4+PtXM8y2HhiIQF9kpxlTcwHIU4K6L\npfEJcdtixYxI69hmSJYKoq9aBkxWsoPXo4xL4v/VTFzS4qHP3osqAzYMIZV/G+MVoAmszKV5LFRi\n/7kpVuvddpOf7Ik1y/KPYSvMtx9mLI7VelQ+nikhxoapTUTdmHEmc9j0HHqb4o21r3usOeI1uasM\nW8Mc11S1a7MFypU5jFo4mlG3ljt4tdbmLwIWakGHQ3mQrYaLodWJ+rSg1mqP7XfZ0zp91pwRuqpT\n6Uvl5IW8zxtDeY5Nu80NbUAjDzkL3wPg7KxBXkjidrut3aDdCfT25dpnxn9h5AAAIABJREFUBp2+\nXKjRtXALKeeYuU2tYVMeyfMoVi7RVOY2Mro0zIVe5zr1UiteypVQrTLMUAlilhVeWzw6329QKo+E\nuSxxlKui1ORwVfXIZ/Ka5EmXSuUJ87hHvZJzbK1v4nbkudqp4FSMZEp5pnDs2WPmihrNYgtHeUJa\nzhmhcl4+73iekuQvAp8DBoZhPEVUpn8W+GXDMP4m8Aj4q/r1X0XKkXeRkuR/+lxXYRiUnsmsU5CO\ndLGdx0Rr2vVlr4iP1aWsZtQqtrpwdZGnWwQqPGJ0h1RzZTSyutiKTw96NY7y/VXaWWhkJZ5mmb1F\nTBZrh9zRA373XB/u4JR3tZuvrYSAfrODoaCZ87LGfqCCqAOPgUqY21sllhJmGppTqKKaPJdFlTXG\nRPrwu2c+C81XeMpRWRkOqa+9HZGFI+uLyl0QT+R808UFk0vI8813AdhZ5s/EWfZfn3Iq64/l2Gdu\nSbrHqywuVEzW1g6/Vp7jaNwfGA0aKozTXoQ4be3Uc20qLTmyknkLLZOqlnmZ+9Be6HEHC+auAtGK\nBZb2oGyooLHhrVGutPO1GWNq96S51aJUzccZUzraV3Cm7n7SWZLWMof7WzVeoOUMy8E9l3N3w5Su\nzoFlyGdplBOaslEUQUqSaVy/cDB6Ci4rc9BegqxSFabJObX2SXQXLkZL1ohndykKcZAz1Wp0qzn2\nUunuzZxsoZIBrHB1o67dgkoOR6EkO7WdUGqYxIlBquGIkSZUGq7l5QpH6d4NndfMWrI6V4GfZUaq\nYLfKmdOoxIg0hteYaz7mecf33RTquv7rf8Sffvy7fLcG/qsf6AquxtW4Gh+p8dGAOdfgpBbmkUvp\niBWcRxVtTVq1ckjbmnGfgau7ahirDNzZA8aRuOq+NcXTmn7dXxJ9Q75jdrrkqhhuadIuSca4ibjP\n6WyCpZWKWbJDrVqJG2c7FJuSFpkfXdcLNljN1DUMcjINeVxjjt1QMpRsDUc5Fg21OqVZPOMTMCcn\nXGupqMn6GquH4gY+WIj16fWn5NoZWiRNTOSencyg0p79eGIQx5Kg23eEgm28tYGhUOTfHEe8HmkC\nr12Q1nL9wx50G+q6L8QDu5ekrGki0nbTZ3yAS2eBP1PosulhKTgr8ZRKzgnYbElIMF7Fz6i/TNNm\nW7sr0yxlFsjn1iXNvhfgdTTRNmtSq9p2pxxg6rH7awueuvJ8PFu8qnDRplA+w9FiwI2FQteXFySn\nCjI7i6k6koA7X0lIuDbpYaq7vkZBqfyfycrGmSkQreFRq5TbZVdnkp5Sq2WeGCucC/F0/P6UfK6c\nBcrUvMLGV0zAeiN6BmQrjB4KIcC2FuTq4aaazMwXy2/zjnYcLKXmi80IX8OR3K1JcnmWtXVJSGNC\nJmu9XOXEyo7d6W1hK9hvde6RVX8CORqrumZVJJSdHO1MxahiTAV3XKxVtBRJtjQyigtxKS9s2UDM\nObz/+AsAWG99mVZfFtVsc439d5Rw5JMhW8p9l2n3YpgZJKo1WeQRd5UH8X455v95rISo/heYl+IG\n/sVCW5mjLoki+9aWXZK2vNDjosUm2h9hVRTnGq4oIKbKI6pQQTrBDFtdWxou1p667koBb/c38UJZ\nBGk+JVMwle1bFKWSn9o53lKuc6LgrtqOmWss3/RCSm3JPVmU9HI5R5Tk+E05T6SxZydZED/UvIZr\nsFRFpvWkyWkheZAoWyc39J48mavFw4JlfqHHqmhoaLdatUBj57xr0FVa83Yg92yZXVLtE7HCFeVE\ns/phwplm3zfbAYd6fae6Ec5bc5Spnpd8l9OJclBS4QSqydB3CfTfeVeeTbruESloyN/u4tbKzWku\nWI208lP1MD25F0MRlu5FTqRU+2VpYRraOl23SZR4dlzKBXWzgpnKmjlOG0t1PEvnhPxM15lZYmo4\nWfrKNVlFJEutdpgVhYaNtBwKFU4ufZtc8xl1pF2pRUWiupOJndHSEr5R5FTazZqbS+rsB3vNr3of\nrsbVuBofGB8JT6GuoSwMGmcmI+XqO6dmvJCdcS2z/j/23jRWtuy67/vtM1bVqfnOw7tvfj2wSYoz\nRVG2RIU2RStyDMiBBAOxLSV2AAUeEMA2IcCAP/iD48COgzhOFDsOYii2bFmJZAaRTMmSrImkODZf\nz91vuvNQc9WpM598WKueuhVRbFJ83c9ILaDR99Wte87e++yz99pr/df/T19pe8eDgpqqJdmh7AKd\nwKFUTsGqnzA/l893/Cb3tG5h84WUtka7R46s9g/mc4oFJXdk81osbtb9U4daoepU+1WuXxEXtqeV\niLkbsKqY/EoQ4yonok2VvtK/7UxiInUJF6zMbn0VX93TanMKp7Ljl2sWxUB2h2ZDoun1kyb48t1s\nPCUcqcvIGFs5GtPUZqgBtVTbPkpjemcKsGnkdCMN3EYzxor3t1yHLFdMRiSejZXHjJQUhCRhohkA\n9yIlTmRsi+AFCnVtq6pyNJ5ZlKnShNVc6gu49cii8GXs80lK1NRaC+QI044mOMqVFp1PyBWc5thr\nXG/Izwcjl/aWqD97FzIW7nDGWGsmXrEGPFMTLk2qa1haETqfmYdKXKECq2xrhn9ZpejPPCzlh8xj\nh6HyPgR5SEUVnSOUFCYd009kjsTpKdapfNdzDKUlWaeG4ioorIeap8xqzPsynk6tQhgpziKOset6\nlNJq3gSXaKK0coFPqPjhtKhSVc8ZxydRevyJkjbH+RCNLTJPZ/TUwVghxVFveDZJiBSy/mZt6Sks\nbWlLe4M9Fp4CtoXVquCtiTYjgBnO8JSazDQLip6e1aI5Xc27Bqo/6GV1VlZl92jOcqxNBVj2Ii4t\ngn2RS9rWyr6+rOzJGcwmstPu9894VWvsw3TCqe6w1ZWMTAlkrz8p130ptij8xe6/hqvEpaUdEyq/\nwcmsT1WJO4tcduPG1CZVzn63WWBpgUuW21RW5buurTtbNWBayt+FWcxMiT1jc8S6FtrMMESKGhyP\nJd2YF4ZoMW6TiEjP4sPMJ4zEg6g4q0wSDewp4fDwwOFCx7UcxnhaZXg88EhU0To/nT1MjdanMq5z\nt0pelTaQJOzPNBBXnxKpVmRiZRilaauol3fRP6RwJW1mOzlGGZzDWpdSU3WJG5EqI/ICxzDwUqan\nqog9DOlX1Pvr9gjvqVcUjphrLGLYl/He867SmCq68eoKicZXomSOscW7mQ4mtBVokSkydUaXYi7B\nXzvZxvFlt7bmbeZa0TvXuFSrYZFr8Dv358zViyumEXmmqc5pj8DIczdTJZKt2qTq0czTGFdRr1YV\nQo1HDU76uHOFhWvMJSz6VDQ2Ek0NtqeeVxqSxxrMLCCNvjnA8WOxKHiWxW61ybZV8nxd3LY4c7FV\nQSk7Sml0ZLGIIpu6Cr80NQprNTMmLyhEdzwDhdKG9gZTFQB558oa1lzps1S5aR4fk1TkAU2cjEID\nQHFWskBu1yOHmrrxhypSUq+7WMr2HHV9Kpq7j3oj6hpIS50VbA3K2XNpw/lwn8lMORWjCtuXpf1B\nr0Nak5ds+kAXjY0T7HRB9JGTJPJituoOpqpsvlOXZCLEIo22Ct3cmz4MpKbZCbX0GQASJ2Rf9QUb\n02M6qqtpz5VRGZtxqDl/K4eZLkh2BV8DrPnFHNZlYTl0BLgazE+I+zI+eSd8WCV5eHT3YTWraVVY\nW5GAYBzrC5YFBE1dpOM6XiDPJE0Nm6Fc4zP1Gicq/e4r3Vzen6PJB15MSlb1JbSnJb6KsfqjnNZC\nK9MTKHXzRv1hpiW+6BOp0lOcG9CFo9mYg2ZgUiWLycu7ZK48v8w+YD6TI2S1c0w1fgKAmgbBe1YF\nfyDzsLTAXtc2xwHxXPEp8wEzXQAyFTPK8xqbWvNTMwVj5aucXgyoLSQBphZDVSXLQs2++SVJrhSC\nM5coEbzFXqeBGcsZ5GQaEhYC0Huztjw+LG1pS3uDPRaeQmlB6uf0OzmO0oTlNdgfKrOx67IXqZtU\nz3lW2Wk3Ivl/txdxWl+4TiVzTcN55Zh2INd4vjZg7a7qSmq39304fnAHgLu9DFdRhaVfPhQvrKzU\n6OzIDrSqLv5zxyM6eyraMg/wNRV0Vqa4iZK71iZkC5VrX6nUJkNu70vb/Itznr0ju/u7blzlQpGF\n1ouyqofPj6h2JCiXNRMaSjhTttoYVduuBjPiQnbgSFmw89UtqjM5SlxYNlUNGE4puKKVf8OqzVid\ngkD3hcyvUFXcxMlpRH8mY7VZq9B4Sis4nZvUE8ELdNoqPhPe5c5L8tnZZEh1Iv3rXvNoqwbjer3L\nakvxEt3FkXCNtC3PtI5HMpVn8hvhiD1XKM9+Gwc3lUDi7UhShX44e0hesuPn3C7EU1oJAw5VH3My\nveBrz4nn8VQqGJOXhh1u1tVbaeW0mzK2bselrYG/oLGJrWSsNT0nmVqXoRbeNWo7qENHWsvpq/S7\npczRUZphLpRYxfOoFJp+baXEyl8xL+tc6C5+caz6I0zYD+TCqxtbjDVVO7voMVOSoElePJSrX12R\n+VSrd/BU4KfanmPbKl9X5BzX1BPqTegX/wGyOduWSzvYZN1vYRriUiZXZnBbSEESy2K+K5N756zL\nmeLZV86k5LX6yZyPnkoNwNE7L9gaC1b/YuezVF+UM+IDK6Rdl4nwQiKYhv7ncvYzhdFOS5y2PNCt\ntMpWW17orcoOl3fFZdxbEcz53d5zNIdacbgScq8nD79bScgKxU5EPitN5VK05PceNrsNjUJHNl1/\nIQZznV0928/aCq9NHSxVAloLTqi2JdLNJAfVKHSxaOiZOj2T8/kaEbUtxTSc1yhUqn7NC/HLhdx9\njXTqaZukPbvbY5oT6WfZSVkdy/Gguj3mqi2VlskNh6ejjwJwuCuuau+3O7xU+78BCI532XmPXO9y\n5RksPQrWGhXaXXnxNgJ5BrXRHEfZpkzQw+tK+9812GLFEpf/Y1zw5aq+kPnnZdyKGpbGj3YvOlQ2\n5Dm0H1yjuPw8AJvRJq/66qIr8IodQ1Hq8bE0tG0Zz24tpNqWvnozl3yh1KQVsWVRwqHcz2qfUGjV\nYs2s01JGIztVlap8Sl9FWJxRwkQFZJsYqkptb7ySQI+p2YosdNasg69zoZbtktfPtQ0uhxr7SMce\nG7fk+LOxovdLDYG+/I6TYitD1PQ0pqJAJr+V4uwvORqXtrSl/SHssfAUSrsk7RZE+YxcRT865wlH\niviy0wTuafFT2iPSZvfsrwIQ/GqDoJRjwHyvQxbKLpb0c/IThb52baqh7DaRUrT1kgljDQZW7IJu\nKitqt5NzrSUVg9uXS7aVdTjVijXPSx4Sr+S9CtVYvJvMqmNp3n80cPFTOQpULou71zYutq86BFUf\nt6pUWukFw/kC9yC/37NTFlrBSWsFT9WOrUZKobtYkcUUmje3q+LCO/GMshRXvVImuI1F9qVGU2Xu\nrXHEmbrBpaNIukmJq5kRJy+pbsq49Y8yTvqfljE8W6Ws/ioAr76qQcRXRow0Or/hVWnasuPXWn1W\nVNm5U9QIlMasphJsjc0m1kIjw2lhFD68X94mmos7fnCnx6VIBGw+q8Ipa8GUUPt83klpnsk1troz\nHEXAutsjnlJY9TXdPa3udfaU4Xhtp01Di+LydgN3phR4zYRC6fTmmkXKh6OHRwYnDXAWCs5Dm7kj\nc8CJlHGaglWlt6NusyBBmycJrh557aBgvVA4uQY+cR1KeyGxd0LvQvoUxzGrrsz15opPUFdNS4VH\nB4GNp9kJkxYMzrVQcH7BZCRzcjDKSM1CrOjNmSnLb5of5dtu6912+UMf/yO485iepo0aZc4g19RM\nOOZcmWQud1xoygTb04E8nBQ0FfwytH3WlfxiUAa09YHNGiUrd2UwP1+Xc+gH4jb8KeHn++SNpwi3\n5Mz57qsrTOvfA0CrmjCdihtfqcjRYPsfd/n1/13cwQ8MPktj/68DEAY2G6pClQY2SahpJs12FLlN\noT87ZRWjbfaKGrZCW1s6sUs/wVXZ+shKUbZwEq/kslbA7Tv/KR+byT1+RtOGrfgnGF/5AgB/67DG\n30wX9WweKARbTIlpVcil7rfY1gm21+ww0mh41bJxLbl5vVt9mOINtb6EXsy+I4tsu+dw35OXqTJw\nmTflOdy0uiRNeREuKaXRrza7/Hl+CIAX/4sd/qJWpZYfW2FjRSL40+M13IYs5Ocai+maPkeRLHpP\nXd2GQJ5NNcw4KSSW4uwfENYk/uMfSkxhZLl4OreyVov6SDaAi5Uj1pVef9Dapq406Q/2tUrUP+Gr\nMl2IJg84ONBXfc1meEfGYpGdWF2t8v4Pajn/5p/m2rYs8GG6werm4rtr1FSEOFSSFTcfMzxcEK0e\ncn6uGbh0n3FPeUr9KbGi4RyNqYz7Lu/YlPv9zZ/7CP6/+WcA/Ozs74NWl8IYoweCkuKLZVm+n29g\ny+PD0pa2tDfY4+EpdJrln/6+DxBnPmsq2X1gPIK57DrTdM5mRVb2ouWyt6KU257Sd9sWr/ZktV43\nOectuUZ+YfPiXNxqM3YYZnKsuHN/sQuWWDdkpX2/vceP/knJ6a+9+z/HUxis09qh2VjoEWpx1VMf\nhJ4UCZGxYNKCLlQUlpoFPrZ6KckCZlqUlJrTtikpFW9RsQy2YiGamoS3fQ+VVGSeWkzSRV29wa/I\nDtwbAYsKuEUbgMW5w4ofatN8Q6u9L+DJSIJv11s+ZS7eWN2HC+VLeKbjYdZUdj2UXevueY9QJfTK\nbMD+WFWzZzGpq9HyqmFuye7u+eKtfG6Qs7ujO95f+W7+6VADjX/sx7ELOa6thiH7Q/m+6f0qAKP+\nOY6S5LSvudRWhZ7dLwfcnshRw/mdB/gr0hc7Fe8ujhx6KrHXaqziaeHTMCy55IhXEXZWaF6oRJxW\nqA6jLv1Tucbh4YjkXH5+hRnHOucylb3/U+0GtT8mgdgnr63gK/26X7MpbOV3aK5Q0SNBpFB5M46Y\naFFVfP8OPYU8X9zLiarqWQ4t/JbyLNQEvFaU4O/JO/LxH/s0+Yv/Vh7m10c1Lz2FpS1tad+8PRaB\nxiIvCccpZSPkjsJZW26OpTnjncs+rVS8g+ZOhS1XUme7V+T3/TtDtioqzDG3eKotO820DJldyHcr\ntZAjlaSLAzmzvnKaUD2TXfALWwfc+E1Z+W82nsbW3fi9zXeTnoo3Yatn4v4Pr7H5Q7cB2Oc28KMA\nWENDpCi1LaugV2rqUM/kJTlG04kWUFPEX1nYbKoydaJpuiDwUBQtq27O6aJ235Tsrcoufue+Q79U\nyGt/4Y3sQyx9pvyrwH+lo/z1XAbZF94zanHSkbSu1z6mpaxRddfHzuR+3WrBXkdJWpULwXXW6auC\n9XRexfNlPO9FY1xX22R5XNVitLlSn72zFbIXSTtv/Na72V/5pIz3CJrbErgcHHyFw7ngFCaH4gXY\nJqepFUHx3W2u/YCkOPPZDuarkmr+/M+P2Phucdm6h7JbR81Dzo7kOdbfd0FhNOYwvuAFFU7Ze2JI\nZEubrL7s0P3qAaeKJs3aYwavym6dtkYM9OzfekbudbG+zuUdDfjmHl5VCrCKpEfiSJDQm07J60rN\nlij7dAzTnoxhOLGZqNL0i/dj5ohHuuPt0FbKPUfTqRV7zo1A6Ab/4rtW+ekzeSa9838PWtD1rdhj\nsSiUliGveDR9D7MAjTgb1DbkwbR9m11VR17b2KWqC4Bnixu1fnWI418HIB4OqZYKgHLPeIcKixx3\nJnzAr+u1FR7dmnAcyUt1Y1LlSz0FFn3Xi7hflJd09mzIRz4uE6WrAJz0X/4I/fa/lsYPSpwFHXjH\n5gPq8p/aLVZU6cdSEE+rEpGpQvETHYdJVybKVjElb2rATHkRnLUuV5UMpnff5rCvlOz2OZ3Lco3e\nwRGVLVngXu1JnwwlpdKVfXfw4/za7A8e+10NLs6/Y4P36nFnd2P9oQBMbVrwdFUCsN1qSm1Ta1Mi\nmdBuGjO6rJWTtZgHz2nQreLQV3j3dqtB1JMJG2xpNecLY6wNORId9bf4M9/50zK21T/H2UDrFo4e\ncIYc6X7h5WcBuNZMsJWW/qPvgme/+gvStijnwedVrr415PN3ZMw/qjqX0ajFWl0rIMsGqJp1NmpR\nb8jfHfZWuKk8BEe58ifau8x1jIa9a1gtqdps5R3qruAiNowCobw9NhIhuxkzYHQsL3Q6uIO1I9HK\nwXDKRkNeal/p1VLP5/4D6V+8nzO8J/icWZQwGEj7B26f3RM52qxfugdA0jX8xmu/DcCDB7/FTudX\nAeidf3OkKr/XlseHpS1taW+wx8JTMGWOnU+Ypg2cVVVzbs1Y1/TV5uUrtLQYpNX2aShs0wu0KKmE\npqo5W90Wbks8iOm9AK7Kd52oYKbFSnvPXAHgF4cvcWNL3NNhbvOulrLsfv5rWE+p6/vMjLunHwFg\nrSruda37E9yyPgHAl73fIEv+OQBBtsfzRlb2ehxTqUkgrb4p7uKHghrhigTU9joFsTIj77YtXCWC\nDVoSWHPCJs1NcZPPpxmbHdnBju/bhFqJuN7qMLa+AwDXF8xGns4oS7nub0V94OuQdmrA81jz+c2v\npIw3ZSy6nWs8rcjK0l2jo0xWnUqLxoa43fNTadvGtQnZgobBmuB2pc+TcZ+6UXYqa8ZQ9597DxTF\nWfOJfGnn9TTg3/yO7Mw/+u7bOOoBvrLSYeVVCZ59UuXR/NoGjqbh7NBls6vufjVnbUdSkv2XB3yX\ntrNVSP9a0yp2RfUs3VWstlwjzSP6x4InWds1eEr/tqaFa6PwkKYS144nR/RDxZZsnBOhsOqqYALc\nq7vYRlKgwfE5o5Y864uhR/maeArlxpx7CoVW4m6KL/QIK+Ldnd/vc6IB9tPn+8xU+Ig8YHhF5uS1\nI+nHTrpC05V3oN5eYXXjrwBg9v8N5fxl9A95YxT6G9tjsShQlJSzGLdbZWsibqu12qKmQJGgmuEp\n6Geel5RKBtKpiuucWSnxXN3ZwML1tER42yacKGy65eCvaDXcQK713e+POb4vT+b8SsF3vCKTMf6j\nI37rgUyqfNXmIx98WtpZ0RjAU/8NvXf/CwDs1xwqB/KwOp2ErVBpw7wqnT2ZQN97S1zK2kbGZXU1\nEy9mM1Bq+LZFW0u4B4lMwJ1uxqQuvJP19ilf7MlL/HR3xl2Nvg/WLcpQMAmZvUh7RKAUXS0PLr7O\n8cFSV/qmVk7WW3V2r2zovbtYqt5ULxJmeu/W5pwklqOErbyU6TABFT1JS/9hDn6jErCmqY/zagtH\nX4AHyozsnficnOpzdF7hSV1A/PQ/YaL6j++x2tzXY2P0isY4wnPqqwIfr7q3MXouj0xJVYVwb6yV\nBB3FPagQcLu7Qal+sWlWSTwZI4PBasrY5Scx4aaA4OL+opR9THws7XFrLa5dlUXohARPadl36nLf\n7qwNWosw7BpCJc4pojmTmdxj+EpOvSMxk/Bl6X94/5Aznb9RHDE7UaWyZM5A1bJcb4h/X8bzVaW2\nK4IW9TM5ovhPzugcCqbDWhtilP08S3kIonqzecbl8WFpS1vaG+xblaL/u8B/jMCmXgP+fFmWQ/3d\np4AfQ/yWv1SW5S9+o3uUQGJK6kWCva4CMF4bvxC3xy0DSkU0WnOPPFYylIVsvVUn0eSsPSowgUJb\nnQR3se71Uyxkl2uuy3eL8MNs1sStG9/0aWzIyr/mfZw/+V3iheTv/QC+6h86luz4T0fvYviyuJx+\naVPUfl3uN4m5UBKRzc2EVUei9rt74rlsNNapdZT8olynowUzXrOOo6g4kyq5aG7j6q6bXg14WvUb\nvEmFFcXdXq4P+ZmXlXi1exeA6UmPvFQUXAIwed0o/+6e4WiF6ZkG3J6pj6iO9Miw4+F40vZyz2Gu\npCZRYqgs4MFaORjhUKYKE84Mvi0/1xoFlipJX99yCLflGi+/qNLy+ZhjpTE7+GpId1e8txk9qnqP\n9OKcqkrEXd4R7oKdmz5GA3T26S3SWK7nUqXiaIFR5ybeXPpXvybFcXYyxKRX5LtxgTEStIuzl5n3\nNZrvOVgT8RZ9W64Vj6oEvvx+XmtRGYo7/6Szyr/T4bQVzt6sXaKaiHebDvsP9Sj7c5hp9WiSOExS\nCZSej2WspqM+5yP5fc3yGATiYYZRia3yd2FUkCurcXYu/Z9WbVq5ZDiecuBwUyAI11dOObmQa0wI\nsTO5T1a+OVq2b1WK/jPAp8qyzIwxfwf4FPDXjTFPAz8MvAPYBn7JGHOrLP/g1liWoe67NOo+ua2z\nP/VJFaQUmQJLCVeKPMPXVFcRyXmqKObY6iaWPtgLRpsyx1Ex1rhWYBLlf4xUiNOEVK9pFWHS4Pyq\nMvOcfYEVXVjS0xnWDZmwBbJQDJ+/Q60lZ3i7n9JYKARVGmxqdeUmOY2GZBdqsaRIB82AXEFBXaeF\nqSjIauYRe7Jg+Qojxk5x9Lw465U09AWbrMxBXf+jYcBH6uIyfl413g1zjM7Gtm/op693GhUnD5Ra\n7Xd9R+HH7R3clk5oJ2CeahYozmhWVbXKhVSVnqJIqdxxyTw549bqLhM9L3eyKl5XeSevdIgfaPYB\nSS3emWUMbXk5RonH+pm8WHZlg7mWSefbrxA/r8zHmlHy3Q62lsanW4ZCa0Z84+I2ZQyLTYPd1KpD\nR3U83RVKBRAl9glafEmc1HEUeh6T4ytj8kDjVtMkIVII+rpdx1+VfjvjE/JU5pOv4K1hs8VGIWMR\neykD6R7h7JS+lrDbUYbvynPoqmjRUeiRKo49red050q+YmxqWpsT10uMMllh5LvzfsxZRWIYYdqi\n25efa9aI1o6Wau8nVPQoOHmTWcpvSYq+LMt/W5ZahwufRTQjQaTo/0VZlnFZlncRpagPvrmmLG1p\nS3sc7NsRaPxR4Kf15x1kkVjYQor+D7SyLMnzlNHIYlNBMZV6TiuU5bzerpHNtACnyB7y/Nk1XX3D\nGpZmJ6qEVJT+Pxm3MK66s3FCqqId7Ux2lNBJ8HRHyJsl12ayq9xucuupAAAgAElEQVQLU2o9uch0\n7T4mky6UFVn7rkcuTiigkaOmIRpLrnjVyjlONdrvedxUMRujvItrjYCqDnmrnuLl0ievWWE6Vhiw\n4qQ93Ic7Yuj62LbsQKvGYqb8kdNOydfOJCPyZCD3PZw7hAo8cvwJzF9/fFCIMiVBTTUhu3LfSVhQ\nawrwpp4XWKoVmUy72BU52nSqdaoK+S6UlbqILqhXVB+y7bCAzdedEV5D8STWnHhLjzx35b6j1hHh\nvrRnWI2ZqYxbZXZKDZWesz/IUzsS+KtpoV9lexszVa7CSZWipcCw5jrpUMbLIsWq6DUa6uWNqhSJ\neCAuHWzVZbTzTbyhpk/qEyqqDeK1lDl5VLK1LUHHcjYj0iNrtOGQqMLLoTJtP2OnGHWK3QcTqg1p\nT5lVWU1km266Kbkte+x9xcs49KjMlddjHpJrBiTMU2rq6aVZiPH0uDmTNoyGZ/jKKRlvlqRGgGGX\n/ReZzeSo2wkOyeLFnr7Yx/9g+0MtCsaYn9A7/dS38Ld/AfgLAIHvUsY5zVWfNUceSr2x+lAsxao6\n2MpyM55kFIW8TIGtmYq2wdIDSl7pkrmKIOqWFD393HgYRwbFUal6Z+6SKarOupThpnJu7Ww8xwtD\nLZOeGva8hUKStOf22dewPdFu9NKYqiUPKUgycmQCXZnbjNS1zQZyfJivttlZFRcwttpUlG3HMQ7d\ndUVbqkiosXNKFRZp1YfM+rJIeTWIleJ8x0y5X7kHQBQoeMkbU6qwyDvbLi+fvf74oJPKwNqWXOM9\nOxLJv5bVOFA0pnPawGtoqtJziVX1qhbUSfVoslAuyqwmjTVVWLJKOtu60EUNHFVhSlcczJnyX2oM\n5xfGMbnWQYSJxbbySlpJwFxdYt9pMW+rWG4oRxjfG1EqJ2acvwJFR/+uwKnps0wGGD3yGFvp1IOY\nUo+PJgFTkZfU8yNw5efh+QznqoxnOdF0iTtjpPGX+s4Odqgb0SRkOtbMgD6Pk1GPrbZuOGsNolxl\nB4IUNDsUzKsMKoKyvDJVUlYnoq4T+DS32VIhmvt2wbbGwR4EEzZUe/PlSPqxOzS8pCLMe+M5RSZz\ndpZOsHWTyOOYelOeT1+P1d/IvuVFwRjz55AA5PeVv1tV9aal6Muy/EngJwFWG9W3vypraUtbGvAt\nLgrGmE8Afw34o2VZvj588fPA/2GM+XtIoPEm8PlvdL0SSA0wD/HXZOVzi1VcjZoSBhilt3aoUCSy\nhixELtppQFHXiPTcxlroGWYWcU2hxmcuhe5uhUbng66LFcpulSdVxloZFx13qQUCNa16LbKhuht1\ncc9uXf0I8ZEGDysps6oCh/I+XfVG5hs+lZlErWPELffDlJMzOaKsrHdxkV3Qa/gPMyqFejnlZABa\nGRqmOWVdawdmY3BUWMXErHuyG71jT442BwcdvBXxoG621+FlgQFbZUHgKmei3eSTRtq26kt7NtsJ\nzkI6vazS2pAdivEcWwOp6dTQCDSYp5/NazNQpXBv7xbpmYBmsuqccF92tEbUpqoU77ds2YG/v5Py\n8gPp/6E9IVPuiLmZUIulTeG4z0zd55pK6NnW05SrKjJzcfG7AWZTpZzp8ci5STlcEKfI3xU4FJ48\nX2cWgnJS5MUDTEs9nYFDOlWvUOeeV3pUBgr+qVWxY5nu6ZlLpPj26YHswI1xQabtYTilVtejmYkZ\nLTBIcU6gR9YHkxP9LGOu2qWXsoBhfajXMMxs+bmZl+zrcXKuJCsPogxPQWQv1nLqlnhK0yRndUEj\n38goowXs+c2pT3+rUvSfAnzgM0aQcZ8ty/K/LMvyOWPMvwSeR44VP/6NMg9LW9rSHi/7VqXo/8kf\n8P2/Dfztb6YRljEEjkXNhkiZM4txTqGViqMwYzSRM9loZLC0Ht2LNGjn2tSUx79ey6iosnPVtSg1\nDpD5YxJNIcVjTfu5BW1lB7LPfGap7EBFOWAa3QMg/O0ZO9//bgCanuSY7kUTNjcUF3BwSFCouIwX\nPAyCnp5BnAvuwa0rO++rB9zYlMKt970jw9fdvQhzbPV6Mu1/NO0TKpqt6Ln4WoxlaiNyBS/GfZc9\nRQ2+vyF9vvKEzXmiyL5rPnxGeSFMyVx1Mn7wZkj2iSsAbKk3Ys4N1pnsJHE34eBFxU3EMe01reZz\nUwpNP9YjhStbFpl6ZtHsHqkjnotJtyk1xFzEp8yVYqxyqmrQzIkb0pF4BNcXQaF6ldlcdsScF7BP\nVT25KfcN2hFzRRIyO+KBJwjR1sEx6VxuuHolp9TxMBMJVFpBG9tdULA5WMpDkTUuYc21kOpd6/hz\nRQLOZOcuBzHmqngKtpNQaopwpVJH6/JYnH5nto2vaNvCz7kYSDtHp2f0T2XHv8gMmY7z8VjG2E7n\nzBR7st6cUJ+qLOAkZawB9KSckymHhVuKd+DUVvAUY26ZLr5qdVhFnal6ReHM4BdvLpawsMcC5lyU\nJeM8xYwzgjUF0Dgj1OsGN2asQZ2Dg8nDyHGZSMdXG12qmsK9teVgrelAmirpSJV6rYzjY/l+X8Ej\n8STn/e+UEIiTDTAqOHI6mdPSqPxoB3KdIKFy8n10/TLVY3kw99tr9E6/CEDHTDhVQFJpStBc/ssv\nywKSp4bphUzAIgq5pLRyjR2XofI/zk4EApsx4OhUji0j12HnQtzSG09cw1Za8+OTOWeRTpCmvDyd\n6iWu12SxSdt9XIXEtkuXnSty/HnedfkTr4kLe16ReofD1BCqy73mj7jbU8r4cYr9krwoH/vIdeq2\nLGqpUd3GF+e4N/QF7K8wMNL+B7854NZHBKYdj+4TaWn3A1fG9WNXt+lXJXJ+3zrnjoJ3/GHOQu0l\ncd5FdUteoLaWi9vdGw9JWM7u5bQ/rNT/MwtPgVqDi5zNDWU8bsjzzeYRxaEsEFR8IgXGXQwPuP3z\nXwNg74Nb1BQWn2umZpKP2PauyHNqORRTacdoPaShUvMTDQivNy0WJbP1o5C5p1yatSartmbHriW8\notmAe+fyEifjhCcXlOyRIVTF72w+p9uR8ao7HpMdFQw6VYXutSZVrYM5cSHSo49TzDBK45YWc9Lw\nmwMuL2HOS1va0t5gj4WnYAC/MNRbNVYtrV6rdolZqPkGJAN1/b2Ss564EG4gK+rZxYgNRc9FcZ2n\nlM04TxJyhZcO0gMeHGklmnogblAwf0EKita3r7OqxUym0+WBpn2SfpfpZfEQ2pr+OlrvY127B8Dm\ni8eEjqLRkuIhXaaX+cSe/GugGITcnZMr+eZZNOFA1ZqDcg1H9Qh7GtS8d3yf+xo4W7fXaVyXINLQ\nnWEsQUp22w84izX3HKt0nZVBR6670QowygXQrBb4a9Lx97Z2mKF5+FjGJLyf0lMNx9e+WOUCce3L\nocOaK57S6tDnHaohOTkRj+fBwQP2vyS7a7Dt89U7ypjcO+JzlkBWvLHNeSk76NpcvJGv7tVZ1yDa\n7aLkpsLUTR4TV+RzL3BItf15XY4lJccMe9K2+9XnOPt12W1TO2MWSvD0qVqEfVWeX1dTdlnfYXwo\nwePh6Jieamx+8XZAoSnO0+Ed3FTGfE81N2prMFQ0ou9vYjfkfpUzqCls/PKW7NBeZNHXs10yO+NA\nqeRefCUiy2S8T/dTHhzJcwjVq3eyhGG5EA6y8DXO+GoxoDaSdjZ2oK3FaL53ofewuKdM1G6ZYGlw\n9O64INag+XxeUOc/wOMDQGlZFNGEcSkZzKuFj5Up660HE8WXn56NmOTyMKqaz11tlviaE7bPbSYK\nA3aKmP0zGcDzYcFEB/Cu8uzN70wYrIk76IRnNNe11LfqURTiEtbtBE8xC0ZxEX9k831UYnHRfy0+\n5NkHvwJAMb6NZWkE3E1wY3EJcyUssWMHz9OXN02Y9zWq3UzpKyX36VAZeEZQ1SzD8/3XeG0ibvl0\nuM3NNdVMtAq2KjIhj7S6spUXdFVtqdXZpaVu6So+n7glgCtTa+PeE1c6RHH0jZjxsapFbTpUNEuS\n1E4xQ5mw8axLMxRhmNgXuPLhyTE9Bfx0T9aYRdLOo96clVd0vGo+za5GwFUQ9QlsKrnEA7adffK5\nCqSYgiCThSXKj8BTKPtMFbLoEA0FI/Kb/7LPxbY8P3+YsPmkgrqOu7Aj45J1FCMyu8v9F+RFGVsN\nKoonsEdnPOjLwrPT3ma7oezWLVmcN5sBqYKUXGeOOVM+ykFJqixhYz0GnJ4es+JLPCc6HXGmuIKT\n6RmHz8oieurMYaowfaX472Q2TkcW2++pbHB2WRaW06/WyRWivNlfodTS6fGxzPVxbUCp77tlF2Bp\nGXU1pjmVfverp1SmqsTMmyNfWR4flra0pb3BHgtPwbFtVlt1au0VWr7kjw0bOGvqwk4h01Bvda+K\nU8oKvNGWXWK1cCg1Dx7VLBIVZxmmOZHKZ82DkBUl5BhpFZ7/5DW6vupRthyCPXUDS58s113z7ABr\nV2G1et2o02RzRYuOzs5ppOKNjEyOpVoVudVEkcTsXhNX1LJLNtFof8unoryFuRsSay55pnJ0p9aI\niu7ynalHY1ci692tNTzNyjSsDimyM1di8aS8ooav3BNVx8ZTt/RD10pC1Yr80GbOEeIJdE7l789C\nmxub0rb5jg8C7qR6Z5tLq7IdbT+9irulfIX7ihHxHUaO/L79joJ3vCSSb7XLAbWOtP/K6pS+JHZw\nXpWisi8XPteuyr3rZ1V8Tzwke61LqsFTb5RiRvLcszXFwPXPOVYOw6c/2OYLWvB2db3D+kR2/8u1\nLvk1CTQaFecJRxNsxZAkzSmdVdlV1y936D4pu3trr8amIg+3qtKP4ryP2ZE5aY0NpiHtrE0Duq6i\nPncWaMtVKqE8v2zLUL0r7TydpBRV8VLizGNrQ56fGynJzk7JrVsSwL1W9cmO5bqX1zL6igdZfTJn\neCG7/82r4sUchN2HVHKzcYVS6f+OYp+krZmI8wq+q5VZb9Iei0XBsi2Ceo1mt4G3JRNpbwf8c2VC\n6hRUUiE6WfdHZC0Z1LqWx7pFimKbKOPsocqU73Zpamlwzd2iUJaN913R8ti1FXaUDn57p4FrS3R+\nun+CSSXCf7fuMlSsuVXKi/feqEaq8uv3kg6jREu5kwzKhfvp0FRc+pon7lur7VDP5MWzGzlcyEPM\ng5RIy4hdrTO4tNokVkDP1eYl1p6UCfHM1hbNhiyA5/cGTE9kQbJVICQNIhYiRiU9NlW7slXdZu1p\n0d6cvHzGaqbEIvp371ldw9V06M1NH1erRL21giyUa1xbe4KKTpktS7ICD9bafFArOK20xQd3ZLF4\nNtziZlPTxAzIlIWqF8g93lXL6J6IEE+1epcvFkrXnzWxA80eFT6W4v19TUObRot3Py3Q7F5nn/fu\nKe35qIqXqAyAmxNUF2S7ElPohntwSZ+116Vsywax8pQhqcoCsX2rjXsqR5Dck3Ti9DjEqks/7EqE\nM5fFJt+ZorgofK0+bTTmrO/KM798vsbeu+RBtN01vqr1Djf8CzwlfC1v6IaU7XGzIdft+CXv3ZTF\nbccxXGhdRjMI6GzIfHj1UObCCuf0EllAk26AGcnfXXfGDFQ/8tVin1DrSt6sLY8PS1va0t5gj4en\nYARo5Ho1Lk8lwh/HDZyOFi4Zw6oWnThmgFGorbuQ4hrbnDgq+hLD3FfqrjShUZVV2ao3Qd31INaK\nxGDC9pqs7K3dJmWo9FlJxPBAVvlOYGO0YjBTvr9Te8iwJi7Zk8GcE0fz4xm4qtdYNW3e/7S075kP\ni0BIw+thLzQTiz5rK9KPzC2pz8Xdcz1Zp6tlTrYtbdtz12mv6uf1KrYCWip+n9BTGq9TBav4DdYX\nnlLiM9GylOPNAbWJ5OM3QxuUDMRT7cpbrRrJmrT98hNPYatEnj0tyGLhPvQaMwqNosc12cE26j3s\nFdmV/VsZ2Vi8sA/v32P9snh6aTbnOFeJv215Ts8OGjx9S6jEPvNiykq+YL52SZWN2q1ViFI5brjI\nWBjOMa4S8QQvgSViMOX6BKOeY8E9iBUApXgK22/ideX3VrOF3ZW+upUGjViwGk6yA1cVfPSa4jBu\nxthnyq949b04ylfJmUdX99RmV+bsdr5OMVaJtmZAqs9m85bFcSzB0eisYO1prY68Jjv++ysTVjWD\nUZgJQUu8GO/BgL26sFlXW4eEmo266atI0myTVqyFVlHJ7EgzO0cWfU8zLfOC9sOc2Juzx2JRKDEU\nloNbDOlFAvTZmBhK1dorax1qOmkmpokzF3dvgVAbx+eMVAuAKMQy4i5Vy4JCwTKVgctuUwbbWVG5\n8LxGZSruqTPYIlE2ITvv0FSceaXuPCRnyZQivmtKdpTH/2R3nbYnac2hc0qQyUv21PU6uyvyQC+p\nG931Kkya9wAIxw1mEyUTKQ3nMzlfj9UdbOQ+ewpuatcTasqwk53PCPWIMhglWNr+1MiYtP2AWqxi\npekq7bpWWt7vcOl75dw6LY5ohPKib2jtQ+UJWK9u698l1KtyXIuD28TnkiWYzU6oqkirOVNFo6xD\nPpE+35i+j2RTxjAO1/G0bL1RbnGtLXTokVa4muEFrWfl+PD0yW/ywlhrPvDxtP4jmR0Squitq6LA\nTq37sDyZ7BLWoi6hvks+l5c3HV8BI2NrmpKmLKMJRUVjOz2LoCrAqrTZpzyV+IGdGJJ7Mgbnh78G\nwMXpnOCK3KJSSakcahzIMsw1zRr05V794D5rXYk/2PmURibX6oWH5D1ZAPbSM9Y9KWteb6oYb9zC\nDWUhrzdv4mUaB1u7xehYq0fTSyj7P67Guzr+gCKR67rtKcd6BLs2uYc5E8apC75GmC6OD29OaHZ5\nfFja0pb2BnssPAXLsqkEbcJZ8FBVqeJWiNZVtjxyyGLZQSu1HKN471JX1CwsSFWcxDIGX8UUjXFw\nNVecVGNGhexuzZHW2HdSZqXCqo8n5DWF9mYp1DX70Msp9TuFYtW/YFW4GUo0/He+dps0vAdAWuZk\nCgCyJwVrHdm5OquymtuJRXMg3sr6fE5TtQFzUyHIZKdoaETbb3m4vsq313yqWtmZ+WNyrfmYzQti\nZXbWTYJKDMWqMlEXGbNQ+l/bG/Hs/VcB+D6Tcropu1hL6cT90zatm6pOZcWUqmfoFW1WtJ2J3yFX\n1uHZqQTGsqOvwaaqJplTKkN1fe0ZaDQ8t+acHSt3xMuCb/i5ezlXmyJx/4WJy4qtZCmBRaYVo7hT\naqF4FplyHliFi4mNjpFLsqDvmxekoRKrWCG5Vija5zpHMhdH2ZVTP6XI5OjiOhVMW+/XmFBMZDzm\nQw1mt21qgWQX6pNV7E2Ze96kzqpKDOQd+X0SNchP5VnHuyNihUyHF0d0mjKe5w2fxro8k3Ck1HWd\nC0JPvIbKxYSyIRiYMrsg1MxBOEzRUyobOjeHWZfNXNpzf+DRHissfhBxoXU6WQKu9c1J0S89haUt\nbWlvsMfCU8AyGM/DeFUuMtl1NqojOnpeDro+00jO5TVnTu4rn4LSYCVZghUriWZ9zjry3dLmIUzW\nSqYkswUxqfzeDQ11RfQVlRrzRc17OmDBdzodjpkuauiR1XfQb/HKQPEESYMkVWozb4CrWpGZnXJ+\nLufvHclkUsn72KqJublR0FzsDus+xxqvaFkSiCuNwQ40ppJ2KTXP7c0sSJUcNJwzVtLQlY7sklvd\nAFsPnzNrzK2WXPfW2hPM3il0mfc//SyXV+Qaw5lc99C4WHdUA+LJCv6OEoZOG6TnsqsmwRquBkTj\nQgKAdyYF19aUCSkqcRz5/Tzq4U6lTfG8T1Xh2JOqpEVvPnHEM699t4xx8JvMzzRmkDSxPGVbyj+A\nHaqugaNiP26XQmHeWD2cRXVpllOki+rCCF+hyaWyUiepzbQnz7qx51EoS6BtqlharemYVcpUPMC2\nI20YljVWrsruH6xtUijzEpVDhjovTs8V/Xr5kEQL01bTLYJ18UzODy4zUQRl1zqhooVyOJL2/Mpn\nLbab4qH0y02Cm+ISzO7buEreO0hKmtsyx+eqi9HwWuSOvCPTbMSBts2zS7pTiZ/MvJgyXnAYPWLm\npW+nGcC1Cs7SkiuJdGZaBvjKwehZFnmgDL7HIVN1NXMNuOGArXUGaVhhoDRgZVLSVwrb1U59oeXC\naSoPIzh3GXVk0gReSKTD0Tgf0bdlsPtxzEwr+Ap94X/xt09ozH8JgF5yQWsR6a6CGyjIyjcYSybY\nWINMZdOmpfTdF16FakvunTtt6pdk5chOdKFwI3JVbzLTC+YTuXfhBRRKzlJWDRXFGdhacZg2PeaR\nlj3PQ0JXJuN8LeRsJMeHK3HCqYqvXGzJ3+/tj3ktU4GU02M2tpSOzNtjbBTPP3wBWwO3h6oJOXs1\nwrsl18qDjFg5JrN4SKxZkMHsHr9zIRN9pD7wr5yX7K9/BYDnTlw+YikE17PINEjo+hZ5tui3LG5Y\nc4QTGIqDhHAmL1PmRMwX2Yc8ZnpPFuqi+py0IbIZzRVkVYRsGmW2Dl1aubzUWctiVpNFrdCK2dZG\nhqNB5dJLMJY8J+vYo1C1qDCQ7zYvNikbErjNt1fIFG5f3XmV9POSDeifz/A25KWOlar9/GjI7Rd0\nIfSeJ76npC/nGZVVJb6pgHcqbf6OdZWiX60RjRRWP51woHDrO+cDJrZybBqPVWWjvniTEpPL48PS\nlra0N9hj4SlgORCsseqlTNU1qk5rREZW4Gk2w1JF5OFsRpzLiukuJM8qVaa6q05mMRjZEWpTG6ui\nOf1slTJSpmGtkIvnLpYy1c+TCkZdsZPIcNLXIpfJAfOFUEdDdpRVoD0W93Ns36Tg30s3TEmqRVeR\nPeDwWDyZlfaz2lEfO5RV/oXzgBDZKSdxk1ooOOC+ipHsbo2o7koqMCgjYksl7UYjSoV5h/GESarF\nOlozn81KnIm0IbRcLqmk2Tv9D9FsvheAV5P/hfRExtlo317bcZg/kGtt24ZyS9J0lfUmZz3Z3Z3h\njP0L8SYmSnrztdGQ7DNyv9YzHZK6jP3Ji2eMFDXZTmugVZAXpXiCf9yBRk+FWopD+pYyH5curn4n\nTaaUquNYDJQghRBLCWhTcnIVognz2kPMRWbch5DfVI8J3jTFCXRuDdehpnoQ1oSpjqEd32dyIe08\n8+V4FPVarCn3grFc8iPZ/ZO0z6tT8Ui3XpGA8mudITc7OrfOS5gI8tLKDScjvccwpa1FeCuavty1\n1nlhJCnpJN5kHkufL/IJhRKu1GKLZFU+f/FAnkGZT3FSmfe9WcIo1fRlVhJEyjNRhiTpN/eaPyaL\ngo3xm5xGF7SQF+m8F1Gpq1gpDpmW+A5ym6SQs32jkEkw6vuMpjLo7cwmjhR74HoPS2GrnSlTrWob\n6DnckBAnct3deZPMl3tPUhjNxYWN5hZjpRT3KzIxXzg8JFAwyjQ2eIU8LDcLyKs6Ye+7DNYXjEtK\n0nIp5d6+PPzzxOYLGg0PqwPWxqpHuCZuZtS4RPdYvttp1qmqrHvcCslURSo6hVyh0BOlfQ/sEX5X\nXe0o42deXQB9fpYvHcvk/ejsiPWOvBR3Gsof+ZLDttK2+9g4ubwU8e2MTQVUnbstgg152foTyT58\n/GpJlunEXO9jLsRtd6bQ12rAfnrBfcUhrGiJ+2zuk23IcyzvGt7XkaNGbpdgL17CGHI5emUVJUiZ\npSTnSp1fpESK63CTOrkymdu1HE+zFVkkL55TcbGb8lm1apOrEM8sTqmcy3yY1k8ZT5Vc5VzasPP+\nFUqde0WvoFRa9mQ4o61V63OtKZmywfSuPI/BLjgjybS89tIrTBWH0i9d9rS2YzqSRd9LDrnRkazN\nReQRKYmK3TJkjoxbahJ6qjHp6Gdjq0WrI3OzdwwXZzK2p+OUWOMHeVmlvkhbvElbHh+WtrSlvcEe\nC0/Bsi38Vo3KeYMvIav59WGPDQ32dK+vkJUqBlM5IzxVEY4jcblHkUOyLzveaZrQbStpRn2DukrE\nFf0tvA0toFJXnBK6Ghi0VxyGM2UUnu0zUX6C+8dHzBL5u5lSjTlBA3sogb2cGcrHQm6luKoBMakn\nFANp030lZym8nIorO1fV2LzvkgqLVK8zb8rqH2gEubnm4CpEeZZDOBdEoMk7hFMJrh2M5vQUs3Ft\nXcZn1W0wz5SDIBiCFiINvnSNO++/It3+8pf45CVxqzsT8QjaruFcXfG2G+BpVVW85tL/krjza5dT\nNiaCirzxJ+R4NXrx3azKRzSKLabdlwB47mvHeKoRsT+eMTVarBSK67zRaVGotkIz7fElzfw4ONhK\nbxbbAVb2Zfl8McauR+4q2/Pxi6AybdPBgFBFfpIDn6ZCoYtSjiUTA45mC/xOG8fXIG5pSHzxQvzU\nelgJu/AkRsO7WDelnbYTE+ouHxYPGOoxZrAv/7/5CcNKS4ur5jXMhrJxr38XyWtyxPxKfs4Xbss8\nKm9+CYCjuxcUiv8wlZDTmXIyJD08lcvLqikLtPJJVY5lG5U2ZSDP7Ng2xOqxWe4QJ1QuDzdhqlXB\nbxbR+FgsCmlecDSbcV49JT2Sh9grYu7m8uLVojbOhjTVPXApVaWndyIDcuesJKjIiN1r1/nOSzKQ\ng50P8cy5uHD3jUtVxTBcLY+9vNmAVblH4dTxFKQzHFSY9OTFS9OAljLaJA8JSu+TcP9h+0utkktN\nTq5psbzpkQTSTk8Vm06ijLVYrvuKM8QLZSHYMNt46SLdJP04eD7GVdCMF6yi0o/U8jmxpkCnmaFU\nFSZLyUimGwFzFbuxJiXD01cA+KnyiyRf/nfSjyjBaYvr/r3DK3Lhpkfpajox9xhM5aU6+e3n+Lnf\nuCd/F46wVHuypXGdclrQqInburJ1has78tK/5AaczuQFu5N7uDUZu7WudOSuZ3GsIq6H5Yy6xhwK\nEz4UTrGsNrFS8CcKanOjKbnC2+fVJieHmuqMTugppbwduOTKprQi6zGT2Kej6cvzyQNqzx4vHh8N\nLRm3mjFeV8lX1OPubjQomgJLTms+hZ7hpy/bHMYyn65q2oH5lbEAAAirSURBVHdw16d8StWbbtWo\nKhBt/h0XhC/Lc/9XL13gKednpqnJ79rpcPgOIQfeNEfUtwVi/r7siPtDufa9z/0yeSLj3F6VeROu\nVZlZ8vuD5AGnqSw2F/M5lDJuZepQsb85QvXl8WFpS1vaG+yx8BQMhkrhsGNd5awuO/D9+1WMwjm7\nB1MuaUVkt9nBpLqDakCtnR5S0YDUO1d8nl75TgDc622Gkbi+lfDOQ4rz7SvijdQr29jKhZAXHrkl\nK7ApY8xcdrzN1pSmRpRrK5oZeO8PUv+85Mrv10Ky418GwLZTCl25/T2Xd9kSPMqV/+D6eIv4soBx\nNl5ZZV8r3KwHE5JN2ZqCqbL6ViN2x9Kn7WtDOu0rAMyOUxTxzOo6WEqF1rJlS6zPd3BrcmyZlBU6\nGzIWm4cpvV1pz9bkNepfkb+711Jp+L3XeEIrVId2hWRf23Ej50P35edfPMjZUT4IryPHq8tOhZc0\nmHuzvseDmVQctnKX40IVuJ0qtT1p9DUkuNasF2S3Jf9/EXyWdKxucurgWRpcLMbYGqEvXpNnloUB\nRUPG3vdiKuqlXdyrUQlkbOvldVCuz10dt2zlHOdCvKmz0wPsVCUHnTt4iX7nBZc4kF28s6Z4k+Am\nzmgRUayTjeXIajYKHH0Q7l35/fkzfc7mcq3W4Qgr0PG2p1irkvn50GrKvl6v0ZDf34pvcPmWZGI+\n5P8Iybu1r180VOqSuaq89kF6e3Lc2AvFu/W2KmwgHCA7/TGlspUP3Qximb9FM6emx+Ieb45s5bFY\nFHJS+pxBGdGcS8PrToYVySSdM2AwkQdaLedYymfXtTQ7MYuxxkpVfjGnH8k5dH/Y4apG6mutkF1l\n03Fb4gK704iyJe5emSTEU5no0bCkrvGHwO3QDPSMq15Y2Ppl9j4oqlD3nyu41pGJdODZPKFusj2G\nXlvc+KuBxhHcgsKTiVDbTHlCXxA3hmFFqMg7etRo+xkriqprNH3mClzp1HNm6tq6uf1Q5DRXsr5p\neodoKG0oZzGxL2lPszXCHMgYfmwbfueyxBQ+MZAqQs66jLWmYGPDx02UWar6NJV3Sz9+4MaQ1Uza\nP1c5dD80bAUyxvVyRFHIwjk5OWVlVcZ5dTDFCbXEby4xjMOhy7AqYCpzL8Uo+W1mxliqnWC7Hr5S\n6UdN7fRoTLIgljmPCBQButu1SOZa71AZQEtc7YoS5GR+FVfjS5ttg7lQifvmGr7yQ9rXExqHegTx\nZONpD0LsGzIv8tkJti/jVR+HtFVx7KImsYp33IvprsnCNF3fwzmWOELfymEmsRazGvO0zrOTCyW6\nad7ha7/0Oblu82e4d1sWyNWLmDttuXY7y+hoNqemwsUxKxwPZN5fnE2ZKsV9ToEXyM9W7NBqyFjs\nL8FLS1va0r4VM7+rDfs2NsKYc2DG78q/vNW2urz38t7/P7j35bIs177Rlx6LRQHAGPOFsizfv7z3\n8t7Le7+9tjw+LG1pS3uDLReFpS1taW+wx2lR+MnlvZf3Xt777bfHJqawtKUt7fGwx8lTWNrSlvYY\n2Nu+KBhjPmGMeckY86ox5m884ntdMsb8ijHmeWPMc8aYv6yfd40xnzHGvKL/7zzCNtjGmC8bYz6t\n/75qjPmc9v+njVFKpEdz77Yx5meMMS8aY14wxnznW9V3Y8xf1TG/bYz558aYyqPquzHmfzXGnBlj\nbr/us9+3n0bsv9c2PGuMee8juPff1TF/1hjzfxpj2q/73af03i8ZY/74H+be3y57WxcFY4wN/EPg\n+4GngR8xxjz9CG+ZAf91WZZPAx8Gflzv9zeAXy7L8ibwy/rvR2V/GXjhdf/+O8DfL8vyBjAAfuwR\n3vsfAL9QluWTwLu1HY+878aYHeAvAe8vy/IZwAZ+mEfX9/8N+MTv+ezr9fP7gZv6318A/tEjuPdn\ngGfKsnwX8DLwKQCdez8MvEP/5n/Ud+LttbIs37b/gO8EfvF1//4U8Km38P4/B3wceAnY0s+2gJce\n0f12kQn5MeDTCD3lBeD8fuPxbb53C7iLxpFe9/kj7zuwA+wDXQRa/2ngjz/KvgNXgNvfqJ/A/wz8\nyO/3vW/XvX/P7/4U8FP68xvmO/CLwHc+iuf/zfz3dh8fFpNlYQf62SM3Y8wV4D3A54CNsiwXtbQn\nwMYjuu1/B/w10EJ8WAGGZamccI+2/1eBc+Cf6vHlHxtjAt6CvpdleQj8t8AD4BgYAV/kres7fP1+\nvtVz8EeB/+dtuvebsrd7UXhbzBhTB/418FfKUgvP1UpZsr/tKRljzA8AZ2VZfvHbfe03aQ7wXuAf\nlWX5HgRW/oajwiPsewf4k8jCtA0E/H9d7LfMHlU/v5EZY34COcL+1Ft972/G3u5F4RC49Lp/7+pn\nj8yMMS6yIPxUWZY/qx+fGmO29PdbwNkjuPV3AT9ojLkH/AvkCPEPgLYxZlGt+ij7fwAclGX5Of33\nzyCLxFvR9/8IuFuW5XlZlinws8h4vFV9h6/fz7dkDhpj/hzwA8Cf0UXpLbv3N2tv96LwO8BNjUJ7\nSNDl5x/VzYwxBvgnwAtlWf691/3q54E/qz//WSTW8G21siw/VZblblmWV5B+/ruyLP8M8CvADz3K\ne+v9T4B9Y8wT+tH3Ac/zFvQdOTZ82BhT02ewuPdb0ne1r9fPnwf+M81CfBgYve6Y8W0xY8wnkGPj\nD5ZlGf6eNv2wMcY3xlxFgp2f/3be+1uytzuoAXwSici+BvzEI77XRxG38VngK/rfJ5Gz/S8DrwC/\nBHQfcTu+B/i0/nwNmQivAv8K8B/hfb8D+IL2//8COm9V34G/BbwI3Ab+GeA/qr4D/xyJXaSIh/Rj\nX6+fSLD3H+r8+xqSIfl23/tVJHawmHP/0+u+/xN675eA73+U8+7N/rdENC5taUt7g73dx4elLW1p\nj5n9v+3UsQAAAADAIH/r3XMoiKQAjBSAkQIwUgBGCsBIARgpABNASbw2XodlWQAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.3802... Generator Loss: 0.7881\n", + "Epoch 1/1... Discriminator Loss: 1.3059... Generator Loss: 1.2800\n", + "Epoch 1/1... Discriminator Loss: 1.2707... Generator Loss: 0.8262\n", + "Epoch 1/1... Discriminator Loss: 1.3435... Generator Loss: 0.7216\n", + "Epoch 1/1... Discriminator Loss: 1.1423... Generator Loss: 1.5386\n", + "Epoch 1/1... Discriminator Loss: 1.3705... Generator Loss: 1.4615\n", + "Epoch 1/1... Discriminator Loss: 1.3879... Generator Loss: 0.5866\n", + "Epoch 1/1... Discriminator Loss: 1.2942... Generator Loss: 1.0528\n", + "Epoch 1/1... Discriminator Loss: 1.2455... Generator Loss: 0.7173\n", + "Epoch 1/1... Discriminator Loss: 1.4368... Generator Loss: 0.5770\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVmsZVmamPWtPZ95vmPcGxEZkVNkVuVQ5Sq6yz3Y7cY2\ntts8gLEtgVtC2IAssMSDLZCQABlZPAAPCCMDNhYCeZCRbHDZ3R5ol9vdNWVNmVk5xBxx5+HMZ88D\nD/9/oyuRuyurq6udoPM/xD1xzt5rr/Wvtf95MFVVsYY1rGENV2D9i57AGtawhk8WrInCGtawho/A\nmiisYQ1r+AisicIa1rCGj8CaKKxhDWv4CKyJwhrWsIaPwI+MKBhjfp8x5gNjzD1jzJ/7UT1nDWtY\nw28tmB9FnIIxxgY+BH4WOAC+Bvyxqqq++1v+sDWsYQ2/pfCjkhQ+B9yrqupBVVUp8NeAP/wjetYa\n1rCG30JwfkTj7gJPv+f/B8Dnf72Lje1Uluvh2hWuLVPqBi52UgIQlRlZlgGQVhVX0k2p9zsYCv1s\nUVFaBgAXQ2n0s4Hc6EW53JkWFRW/NpatP5fYuPofY9k4tvzHsYSGBlVOpGM4bkVZysC5bePojW7p\n4BkZuyhl7pVr4VxN2lQYXUdlV5jC0mvlgrwoqSz53cbG6LMrY6gwOn+IFS9RLte6rsH4dQB2ax6J\n3QDAs0qKXLCUJxGr+QKAZZ7LuGVBqUKjMTx7hgWUzz5Xz/Bsnu2BwSgOq2f/XH34+FLo1dY8f/0G\npREclkVBVRYfmSe+jZ/L756pyBS3xnNwiyvkVmSF3Gf7MrKdO1i6H0me8mwjkl+bZloW2K7g2Srl\nr13ZZFWieLEoFEmmKjmareQaPSuebdGu+fI5zUkqeUaWFc8+U1Xfc24FCiDQM1tY4Ol8Mts8+1wa\nA0X1bMq6TBQr2Bjyyiguv2efyopK34E0zy+qqhrxfeBHRRS+Lxhj/iTwJwGM41K/9hKbnYzd3hCA\nn3t5i86HcnDfCU85OTkB4EmakVcpAKEioW8sZorpplUR+rKhG1VArC/phmsxVQxXF6GMtczIihiA\nVeXQVrkpMQ22uvLZrw8YtjsAdBuy4a9E53x7InMYbSasVvKMi06X0U4bgJ1wg31frpmuTgHIt32G\nkYxbuTl2rASgl+GMPbk20XsmC9KGbG3LtAgCeblTxyYzcu3jmcUHp0eCo7FcuzNycG69DsB/8do1\nHrQ+B8B+I2V6NgdgfP/b/Oo//hIAv3J6BkCZTJkr1aw5kOiL2SwNK0uOiV8VrBTPRglMisHoMS+r\nklJfpqpMQV/YXyPfvz5cHcT//j/9zwltwXc4m1BEMudfOb+QC273uHkuON73Ek5jWb+3v8HmWJBr\nTMzhXO5rPSd71hkPaBh5hR6MH2MPZN+Lh2Bl8v3D1ZzejuC5sWjK/VWLk/ghAK7rMV/JGbKqBf/Z\nF78OQLspuLjRafOzr14HYO/JlHulnLOjkwlPYnleWaaE+qKPlJlM7IoXAsFAWIftRHB42rW5nso1\nq5oFE53/FY7zgrGyslZlcV7KuahRML0iimlFack1D87PHv/GuyDwoyIKh8De9/z/mn73DKqq+kvA\nXwLwhs2q8ztr/JnGQ/6K2wPA87/M11s3ATgdTxgbQcQiKel1AwA6+hJ37YBmIsjb3LBY6UvToiIo\nBCGvvLjNROnnyYMlAMuHxyyVQ4fLmKUir0hi5pEcjpGfQipoilM5dF92E3Jkk7OFxUYhz/7JJOHx\noXCP9q7Lsi4veCdwAXDKBoMNOfD1GDovyu/LpUOGShOPxwAM92wOl8ITvMKhphz/uV2buSdzzk4M\n7dk2AI9eE8Hs94fHfO3N5+V3729w69qnAXhp1OGLYzmkh5dzHkcyzzScyt/Kwqg26TV9tpvyMpW5\nxYZyZlOvQTQD4DiSA2riiqIh+B45c+5FMoa7SJCnASnfF67Ix8ydYmcyp6fzI8L3BXebxQMAzg7b\n9F58FYAos9i5JgTCnWQMN4UJrh6m/PgrgufppRCkRi+gOpM5f+HV2zw5ECJTjQxnp4KLO7cCLk5k\nslZdnjuPMxp12d+z2YJqXpNxw4TadbnmX+/Jnv2jYZ1G8B0Avt2/weRUzsvcc1iFMsZ24NGW29hx\nBFdNKj57Q8bN2ja9sUrIwN5I3oeFlTE5lPHGgh6sKsNRgtZ0AhpGBi5p0ZupdNAOeXp58f3Q/xH4\nURGFrwHPG2NuIsTgjwJ//Ne7uJnCjx0W/E/Oc/zxL8h3+fJnOOPbAMzLgiiTl9D3U2KltG1lQC07\nx+kJgk3d53NKSRvXGwSZEJBbd67RX8jR+3ZzIjdWMV+7kMGiNGIVy4FIqopYX3THCdjYkV2YHysh\nOLjAFXrFIG+RqjTyfn+OawSl884ZrRP5/qSU++7029Tr8lK1Oj0qJRbdmc10Wza8Wch3C3K2Zioo\n7kI0ld8zt8f1XNSDzH/CVz3hiK89lTn+tdDnv9G30I7/FIMTORD3jg3dw38KwOX7E57MRfLKn3Fz\nG+PIfAO3z+264rZTh4UgetZwaI2FoF4LBK/nWUK7JQe3mUa0LTmk7ywNtVLGiz6GpHAF8f0xvrKT\n7dVDJo4QnLdcme/OKqbekc/bzoDzQn7fbrVwjEiWwzdsEku+v65nxRpA2b0SJ/u8agmRPa8uKUrB\n3aLu0Q1kjNQI7mOTskyEaDTbLvZIPk/fnbA/lrX+X4kQoH/rs028Qojw6cVd0lJ+j5MIz5Lxljns\nqRTWVW5utS0cX87NmzRw9mSv43rAxrAvcz6MeGcgY4zm+rvlYKt05zoWc5U8tq8lRD3Zk0nPpfdN\nOe+PPyZt+JEQhaqqcmPMnwZ+AVHV/3JVVe/+KJ61hjWs4bcWfmQ2haqqvgh88eNca7eg9xOGf818\niqQaALD41oQ9hBvZeUWvLuLsPGhz0wgnLAdC7a83KtymUNTXdh2mqgbcCobUBiJebvQ2mOfnANy5\nKwaD1csl/Qdy7d9LwUW4bppm+GqpmUYlj89V30uF+2xVFYtEnleObnARCgkeTDdJd2TsGUvmgUgI\nz7dENAx2NxiMZE2+sWmrEWPVKqhNWwDUr12ZiFbctdQWkUFhCxfwwoqwLdf4xTVevn0JQKQc/KeS\nIY/kNjaWS+xPy7WLVcSX7otA/9b0PnYha7Jc+bvp1zF7Mvff//w21kjwsmlqnKgS/JONgncS0bWH\noYy77+zx+U3RDI/mXb56T9SYqdXlNJPP/rFhWn48o2MxW5Du7AIw773B/eYTWcvj24LjN0fceEXU\nBKvZ51W1I/i9Hv3ecwCk9Zx6LHuVq3GxVuuQOrIf7sKwGIotZf+8g/umrDU8b/LUF0mgd3YMwNmw\nxH8s0t24snAmIlWsjM/zv0/ue613S57RvEXyFcHxy4nH8VIkE+PbPKzJvr8QpyybytFrisOGy++5\nLfO86MRsqU3BDYY0unLN3XRJcShjJ2pQvWUXvKcm2sDkjLq5rsMlseS+YV7yRKXPjwv/wgyN3wuN\n1ONzT/cwUcrbdTnRR51zTr+rep+J2PLlwL7ccbhuywu5+aogepcBG6+8CICbx1hdFZ9Dl5otB8ze\ndAgey4FOOo8A2I9c4pfkhX2+Mrz7vojSdgVLWzfUK/AdIUh+Sw7MeFFQ/7Q8Y7i1SzCWedSOzqm7\ncs3mckR9Wz5vtGXc6ztNGi2ZQ4CHqeuL6WVknr70CxUz6bGr4uVxNME+kUOetVpgy+eOE+Nlsr5L\nS4hC3zOcPRZiOXE/5Pl3xHD7rfvHPDp8D4D56oJI7dZWQ5472tjlp27uAHDt5nWu9QUv1qLk9S3Z\np/Mq5bOFEM7Vhay/61/DbcvevFG7ACVOoy3DOJIX9uuTCdPwNzYs1PRvuu1wMJKXcL9o8nohBODi\nRTH23dnuMzQbANRnKc6OvJh+p0Hgy7moWx405Hl+IHtnshq1WPahaM2oI2OkrfcYngoODwZz2gt5\nIdOu4LicZpz2ZE1eUqNREybzYmcOh4KvvVRm/3CZ86ArjOfkrRmWL0SotfRoK03MM5tbsiVcC+Xc\n3PhcD6sp497sNaieCt6c/Q1K3Yf+cQJTIUhtVz0yTZ92y9Zxa8+8ZH6wxOsqc30MJlv9hrj/f8M6\nzHkNa1jDR+ATISkUZc5iNeF+uOLgSDhRcgq7llDavFbjhY5Yvq4NfO70NwFwdoTSjqwNug31XXON\nWEVANwRTF85rzTJsIxyo7gln270eUop0yrjdATUizc8MdY1D8IzHwBFOkk1FfOtmLtsj4WC7lc1G\nRwxN2ajBmXKNHeOx0RUWu70tc3f6bdwzGdeqrfAL4Q6pO8VfapzCUI19saE0MpbzBOymfK7lHqj3\nATuj3heu8pIt7Oebjy4w5hEAp1mFuxAu99bRAy5OhIsVaUXPl+cMu2KQ+vHf8Rwv78rnW3mD86ng\noqwsTCpzvt3yuJjJWod94aR1Z0a/KbiYrgpubohLblau2PFlzu2jb/I3E40zUV97Cqocyme1keEf\n9RnuirEvGLXoT4X7v/mCuFnLTkbHk/3w7BW1uuCQro2NSGHGszFGOGVlyxkyJoBA4y3iHpSCIzt5\nAbZFzdmYtMlagi8zE3Uu208ZfCBzCLdsOpdydk6OTiFWr8RAzsXp+ft4j2U/bvsFK1fE9v2ey4ka\nJV+suwQjkV5eG8ncu0MXf0Okjsi2aCTyWtphgvEESxYNbt6R9aUHsh+rmsWOntPTgUM01xiJw4IL\nNcy3ez3eOb6KwPl48IkgCnFS8P6TCSdVBJlaU4OIWC2yrw9rvPiCIG3T26XRk03ot0SHbGx6FIEQ\nijwO8Qs5EGbHIi3lcDt5g6CpwQeuHMwwOaR9XV+EZUV2IQfia2FEoi+F7ccEHXmZZroBYWioO3Lt\nzUEPV0Xjy8kJN0bintoa7JBrHEKoATideYrZUf2uvE6uTjs7G1CpiF4tZawszwjUbrEYTDGWEsui\nRWDLeI12hwv1UExsES3tZkVYyOFYRWO+dSAHfhVOcVT/dNuw1RN8fVptLq+90GNgC45XySWbdRGv\ng9LmLJB5ZqVP36iq1JYXfuVElJkQqY6bUziyZxf+BQdvyZzc6zvcCkX8/yBSm0lZPfNUuoCv4vXB\nzZy6JwRuw2niDpUxlELQd8o2NaFLmLxGWVM7QXEdq+XpiD5XflALubjyAZ1n5axwEPdRPlxhnYp1\nvvRO6apXYtaRvbPDgkJtV/W2R7Ah++dXm3zjF98XHBVC9Ov4xOqqXlQFO0q8t2sB9Y4scNiqeEHP\nYWtbcJnW69jIuPZRSaqBaLN8SqPc0OcZ0ons68yS+faSGmONF7EfVMwcOXvNTsDuDXXVlhHW3Y/h\nE/4eWKsPa1jDGj4CnwhJoTQVKzvFTiyM+l3PEsOrKimY/gC/ISKq1/IImiKK5b7eH1XY+tkxAYWr\nXKJIcRtCla2VIXKEcxWRUHOn0aVxKdc2ugErX7lgWZKphddc5twzYvAMVOTeL0u8e8KVvjJ7lx/f\nFzbf3u1yORWucW5dstUUblzXIJXUruGshLNX1gpbQ7pzq8JOZE52R8OSlyGJBrQGK4+Rqg/xrGS5\nlPUnq1OMBjWxEE7j5gbb1tDfKqVU41oeWc8klpqpM3IFYbVdkQ7ycpdSQ3+rPGeSybNbjoetsQB5\naKi6wsXipvzeYYSlvv2CLl4u4nPHcihfUg/Nmc1zpeBw+o5w/KdZhUZx0zGgq2DrNKJqyP8euPe4\ncU28DhsrxaETEGTyPMeqYS8FbwxT0HnilM8CzipbYz0KA4pvEzuUnoxhogmWGg/9k5iFGgezM7nP\nqUpsEQopA5/TpxJEVSSw0xEcVupZcKOM41TO0yCNWCxkPs5WTLMte9YyDpl6z1wj0midGpUj0ljs\nxziV4KjX28eta9BeWLBxW/b4jUDwah555LFcOz1a4qpkulwm7HiC7/z2EO8HTHr8RBAFQ4Vblqzs\nkLpa+nPHoXBErysc6OtMm0UPd6qb64qnoshrlFfhp6OA4konY0n5SHX1a4ZC3Wmpqy/mHC4a8vnw\nOGehLxB5yUxFdKuK2LgKzNewVbfvEGzJBr3s98nOZPOPkzF1X0S7hrtH1ZH5o5vi5TOqXIOsXI8y\n0EOcWRTqPWCqIu52CzeXdTQaB+RP5UW58EvyXA505TikscxzHsjLuMhTqkuZcLnIWGik19KOqddk\n/f6oyeaeEKz9PVG1+hTUNVLusvCxHFmHnbewlEAmbQsvUgu3J3MPF1Cpdb66TIg03K5+2STXMO26\nFxNogkGzkvuMiZ/lHIwrWCiK007EpC6q0meXbYozeYFypRpOusIsXcWhD60ry0RClargG3vgXWUF\naBRWGkEi11ZeSLnU6NXljOJA5jkpZ1ycClGIV7LX4wtYeIKL5MGMmuagFNmSu+cqrjdlvvXzgKMr\n9SiGWk3m7lxaOJUQ9cZOwXBPnh3P9FAbQ6FEI8jrlKpLZU4bM5T76tkdVuaufD6QuV3ejPDeFlwU\n8YpEw//rGxVhV86y//AS27pyc388WKsPa1jDGj4CnwhJwasM+7lN6FusxsLlfGpYPaHs284OfrAP\nQK9d4LsS719oaDNPIrzdq8xIC9vW7MKoQxoIla+WHsVcqKdrxLi4ahV0jiRk1k0WtDuCjs5lgyQS\nCSJMLFzlQHmkoah7fQZtCVgpM6imEggzMDlZW9Scbi1gQwOuGq6wuazvYJ+rYaiWYjQcO3McrKlw\n8aouwUhmYp5lSZp5nXlNOEl3fs7EUt97mmBplmR/ItzndNzED1S9yMtnFv6uA6Vmne5VG7y69ykA\n6ka+890e81iMko3SYuULjkrj0+rKPOvNiqzSz7GMHOUnWJeCl8lFRB7LPGb1iKASLt2oGsRqSa28\nA5l7bmHpfBxLsgMB9swWA5UWk67LnmYtdjvXZD6dCKeSubkNC9uIKF05BtTgZ/wEcuGw1VVWY9Gk\n8oWzm2UOasyzyz5pR/KE/PdmWHORemxLxkqCc4pD2bPEB/sq1iGO+Kzm2Ewawq3HtmHLks9Jq+L1\npuDouU/3cSdy3/btOlZTjJ+erbEi9op6KFJl1QKj+SNFfP4sWStZhPQagudsW57bGFdcqofO6UCe\nyPf2rMDyZB+279Twv/mDeR/WksIa1rCGj8AnQlLIgBMDpg5+U6hd0K/TtIVm7Q0C+vvCbd2gD5Fw\n/3pdXFfWazFUQn1NssRRX3jWi8hWakeIl+QaPlrWRf8+enDBOFGd/DJhqJmWTq2G21SpgYJEw5WL\nTO9zm5ShcJcgvs2lJTreYlLy4pbObfQcaPRiFmrcRLWPtaXRZd6IcimatJUZiqHm05diGC2S8Fmd\ngtT3WCTCwY6TjELnHJQeZ5bM6VS5zrBnYdQ1V09sjh6InrkyBXV1kZ02Sw7OPgDgU57YFsJZysTI\nOi0vZKMu7t7tYVuMOkCtyqhfcV41OBb+BvlKE5GuwcVEOGwrmbI6EyPYcGfEK6Hg5WKsMQgHEZpF\nToDhSuibDUp6Gk3aq9epNPFqlYvhbLjsYzb14tqQUo2xtrUN3lXNAp8KwbPJVQLzEyhkrNJbPpME\ncrcg0OjG1faKfilrPVWDoePMuDzV6E1y6ru6p2OL/+WprOl2R+0s4ZCaft49zdm4IdLB6jDk7lyu\nvT5xeHVf9srRMOflIqK+J/h0sjpVTfZ6WlV4b4u9IswNhdp8Hsb6+3TF4lKeMT6unmXlOmWAmi04\neLKk6f1gNoVPBFFwbYvNTp08Krmo1I2wiJlpjPhZWtE6EoyUrYrAlriBpW5y07HweyoOTqbkKj6X\nk4pEA5bGd894fCkH5VuaNmzjEcZybZbPWKgf/9peQEMP0zyr6KpxaZ6JaHi9VcNSq//J4j6lBuYE\nacXZuYiBzX7ENRUv07nMIUyP6Whehj+q4FTE2bJWwKW8kIlmXCYXp4ynMrfLwmHVkM/T2KZM1VK9\nyMkbckBcVSMqu0G7K9t6+yjjTNWDjuWwUMNeczwmrMlz7pairoSJT4zguJavGG2LRX4ZpuzvC+Fo\nrRZYLcGBVQjxqkxIrGnWUdbD3pHn1aIhVinV91aZR3NTiPatXcHJ25FDZyx4fdMrOc7k4PbjBE/x\nPF4es2ckGMpPhZgs6g0C9b54kYsby5yrrSYEamx2G5ix1i+oqUeFCjR+w0QepSNjpNmC0lZVI3Sx\nm7Lv1qWM22rVaWnhm6LeIJvLnhVxzo1NzWPx1bPgLkjVUDzxcs61RobbyPBSuebxRcSpxpa80lZv\n16AiP9H4h/wS5YWMF+fEpezDQR7T0xiJYVdUpiyqkfmSoxF0bPxKfu/YNjPkzN1qt3lOCblU0Pj+\nsFYf1rCGNXwEPhGSQlKUPJiuOAxSKpWul3kGQpT5unmfbixi1KE3oL6Uz9V1MRLu0qHTvwFAt35O\nrgVZysmS06ciVXw4OeNpJFy1EakRqXWTpfqEI8+lvLJ2hQ0KVTE8EzK7KlhRiHhW1B3mCxW1w4Iz\n9SaehRN22+Li20kXHMyEA3mHspBxf852pGLicoeuJVw6TW28uXCPcx33MhzzSBOK2laNRycyZ9su\nCDUociOrIBfR1xQiXru1JeOHWrBjUScIBKEz36KrrtrCr/hwKtfbc8FPu6xzFokEks4XtPX706Mt\n0lCMko0btWcqG4XgbTHOOA9lfW8/OmMzEM726DTFdUV6aQ4j6io+b0WyTy81QsbK/Y+KGjcc2dPl\nas7SlnnsVHCg7uc00EjPRUhfxeHIe0RPDZ9FFNJSlc+xR7ieZG5m1Q1dZ8RsqtGR7iHjY5lno3jE\n6ZFw7GV6zIHGe3QsWdODC5ujM5m7Wy1ozzQmoZ7wZXVfbgdqwE1qFDWZz2hmGO+oOhrZPFmJlHK+\nTHh5IGfgn95X1ecg5w3Njq23XMKHsu+/MMuYRjKPszrshDLnE1UvHCyyusyhPnYZ7YmRe7/RxdfK\nUscHcxJz9Zp/vMjGTwRRsI1F162zihc8TGUxXTp4AxE5B/0+Xlc8DvZFiNW7AUChVtrT6DHlQg5B\nfVTHqF6XFSnxYq5jWKQzEfk3rt/Q37s8F8kz3ls9hU3ZjHTqsVWXl/vrBxkbmol2X3W6YRRAIAf+\nySQlncgm+8Mm9kzjG6Y5uRYyWaqr/OTDjHEs4t7GvRjnJXm2VbeJl/IinNyXZIykVXJ6It8deyuy\nI8XFvkNNy8rFVkSu9WJsfQFTq8XeTSEKj1MYRiLC+jWHWA9HiU1Pz0dck7Fe6g+5bUR0rm92iVRX\n3/agk8khDIp9bC04El4IXk+fTHj8VDwKD+YrDptXQU+7DJ6TwCivekKiuSnNlhCjjZ0hL7yrAUZb\nGXGoXo3KxTLqfaBkpOpPoNmuYTllFcv6ouOcVU08ERdHF2y2BV/bzZD6hhBLHK1FOZ/znUcfCr7P\njjh8JHuTdTt4kbxsC2eOrR6hQ19jIaqKrgY3LefJM8/WdFyw25V5vqBh4N+wl/RkWI58hz3NRL3z\nqRrdx4Lw2Z0Xn+XQ7HYEh28fF/iaRh85BaHWc5xOciZqB1otSo46Ml4vVcK11eLJRHN72jm1qRCh\n5p2cTHM3undS8kc/mEKwVh/WsIY1fAQ+EZJCkhfcncxI6xVbNzTCrtvihUI4117X4ekTEVcfTE54\n8rZYznevCfV9ee85LFfE3YbrM3A1IWp7C3cqhT2Tw4DxTK7/h98SA9iTeUizpSJnPOHlnRsAWK0G\ntY48+w23xUrLqWmKPqcmoww1nDeomIstjGrVJ4qFk/7iV97hvmYoXqphaWuQslsTI9GoNcWkws12\ngyFLNeCdaYbnwVN4qAbRB8cLLiKJIdieNthtynxudYZ4deFcDQ0N3ogNQV2kg3FrSHQuMRRWvaTn\niMgyLR3ShdaSVKuWZeUs6yLlHJ4fsdHXxfZvEKtVe+Ec0VkIZ06UC5blnEL97oOGx+lcnvE0PWLy\nWMZ7qRczGsn6Wr7EK5h7M4568vvmrRHnZ4LPyElwNX6h0Qyo1IgXISJRK4ZTT7MS7QuODkSycu2E\nOBBp0mVF370qaKoZjm5BvpJ6EpOoR3MonPQXDhLy01+RNcUOmwOZZ3A1VsdiqQVuurWMlobWOmcl\n985kHjM15N0c+LyiMQTLs5TtUiSasy/n/JImrF28HdHd1LqKR7LOr0Yhlqqov7vXJg9F6nP6Fd5M\nK1t7LvNQxj6vZP/7iU+21FJxQYOwKzgc1TY4fSJnL/UrNt2rahWq534f+EQQBcc3jG765LZDTfXo\n7WrE9VuyQY3mBuca2tnc67BVk5ds5zkp4DnotvDUIu8sls+8D8QVwa4EGfnZmO2GHKznEXdbOYh5\nIdPU07MWTUs+39huks1lE99Z5rS0eEVDg4k2nRqnTa2OM7tkL5AXpbZR47zSasCZx6AjVvtEKy07\nzYANTUP2DYw0o9DvBBSaUt3oSpDOkCluImP5lcvjnmz+m55LeUWkcPFrKuaqlyXdGtLX+d7sVDzR\nykpxp8NYD1gntbh2XXTjwtOgmfaAV7evqn9PiW35vdfwaKuXxw0jZp48ZzKWPZi5Hk5HDutea8Rg\nKvM5HRW8qJ4dggG+uhntuhz4OG3QQp69s3GdFkKo/STHcuQQl+ESPxAC39K8jGyrxZZ6Hv12k75m\nqy67LjuezL/ZgV6pIfKqSpaZT+6/JPO8XhKMbgDwe/ZL3l/IM5pHC0J9Tn2hZfs7Ge5S9q9IfRIt\nxpqnJXtauPXVT8m1G65h/C3B9/M3MwqthNQZjfkxR1SQSdMhaWsdT1fO2P6Zxw3NhzDNmP2XZNwf\nC3ssMjlz9/OS0UTu+4qWEfiJbslXNWt1VFbsDjXNehqy0NqdfuwxsK7i9D8erNWHNaxhDR+BT4Sk\nUGUV+VFG3JlTZELhZ05IdKFcIlixeUPEwO2wgTUQbsqGZupFOY5a1qO2h6MluLwCvJmoAf39FnYp\nY3TU3/uFoseiruLprYcMVKQunC4X2lNia/+Sx1oS3r5KZuoEDCwNSCoslpof79qbfGZLA4f2PoWn\nQUZLxfJk+R7mUA1DBvCusnwcnEI46EZNvmubBmFbjGR7oyY/nakvvetRIYFTtdMZmcZLFKn87bs2\n2eoqEKaEE178AAAgAElEQVRFrF4Jy15yo6l4cx2S5ZW0JVzn07euMzCyjtyqM1mI2uEB3kKumXXr\nkF41JBFp5XwR4aq6YvsJ/U2VGmjT2lRJp1VQTUW9uzgRbtZY+VzbkLGePMhZaPDVa55FoQk8fb+g\nKIUzh5Z6ckyGp4VVtsIOq44aHbsZA+XuQdqi3FDrrmaoOtMxviYgZdczKg1Zb5o5r4Yi0V00a9TU\nmNdSlWk8hvlVwc7OkuVTlZDCFfcfaxCSSn8PXUNDJc/4nsNIMzjPbY9U8dXy++y+dFW+T9Y2qUOq\ndS0aA5vqoYw72ndxJ2qALUKONfv1Dc2YrWp9fnwg86wZi65W1W64DV7x5dp3ZjEXzv8Hi6wEvsML\nNwe4dcP7mgPgeB6FJxtQazTY8WTBfn+J6wpSY0+Q4y4rnubyomzOh3g9QYJt2dgqajtJRUdj8Vt1\nzUVozWlrPsTSd+incjjSfEmlASvfPrHYqsucTmLZxD2nzVlTDvSZ65I8VV1tO2NgvwbANTK0jgnp\nSl7Mmb2Jpy/VcXFIT90SzpZNrSmfIz08rgftzg0Aml5BUmmgU1oQa6Jx1XY5Oxcc1bvqNrV6dBsy\nVsiKpqoXreY2s1jW0UgSykozPmMhvMGlRX9TRc7CodHSlPNpzkqDxVrlFmNN8V7ONFpv7LCt+nst\na9FpCOFttFY0VY0p84qVRt4daEHUWRwzV3Xsx246vJXIsztOA9OXOVdxDV97dWjgJnYdWp787tUd\ntrReY1xP8bXSVVZe4q/kGq2rQjPYpr0rg7h5TKVZsNe7L3DR0eKw8x7zUN3dWgezaITPUrLPLzxa\nNVFRTs/H7F0XBvaF23LPl2KX+Lsa3Tr0eWVLzudg2OeVlTCR4+fadHK5r3dbcHn/bsYbouUyfH6E\ndUvT9s/q3HxD1jE9uGDvVJiEOsForwqSoRCTuuXhaRq1XRje0v4Vo4bhUbHOfVjDGtbwQ8AnQlIo\n8pLFZcxOv81nX9EMOHdI47tasKLo01LrvMsOiZGgn7bWR4iHK+qBUGXjQlPFqNT28VcasOKU9Avh\nYoWWLzdLj5URLlEfB6Rt+X6JQ2SEs+21XVapBtbkMlY4qNOxrrL35jTVQGfFPm0Nvmr7CXYiJb/K\npXD5lmkTaXEPz+pBoBZy5zr5QDjXhma9jQlpLUQiKJ9Lqc3FOLqYHGI03mJiMkrFy0qNevWsJFOt\nZBy7nFwK56o2z9lUi7pd65Cor7xvrjprBQQNiQUoF48Yac2zZc0wPRcOe5EtyUvtnKQGLmuwJGwJ\nLm6NNmhtiuqWThqkmUaf5TWmWq9xVYpU9c++fZ/fuyMc+MlkyV2tEl2+USOoNLfTnoEaSkvNWq3F\nXfwNDS8OtihSPQtcI2+rQS1pEmncRi3RkvtmRUtrJJi2zVZLYiiyTsDmTNSqaXSM54i0cdaWuacm\nJM5lzRu+R3gkz5s7K8ZPZbP/QSj7+Ptf8bBeEM49exzS10CoV+sDZp7WhXiQ4HVknpGGebtOTnUp\nm1YbN6jU2B7UUmIt/d9IepRXErAWi6mCkprG9fjG5UCbC7GakeXazGae8HBxVa3i48FvWlIwxuwZ\nY/5vY8x3jTHvGmP+Q/2+b4z5B8aYu/q395t9xhrWsIbffvhhJIUc+I+qqvqGMaYFvGWM+QfAzwP/\nqKqqv2CM+XPAnwP+7G80kFezuPa6z+ZOnflYKOrkvTF1DW2N4x6xVspx2y4Nbe92ZZDy0pKWZrfV\nFxnVnlBwK44otJ+CO1lJ4hFQS4QjBpstfITLL5IzjLohLb9icqEuySfnPM1Vi9Pouq7vstB2Zt1m\nj2PlckXkMVsJZV89sTADmVOwVM7gHFGqD9rkCyzN+S86jynUOHpV+NQ5n5BosdL2bIOiLtfaswZT\nR2IvnPmSTAt3xmrgSn0fWw1fVlAQqEQTxm3uusJVhmmMrdWnEnXdjcdLWjXhjjXfJdXitibMaagN\nJ1nkRIqDNBeOHy1yelpINBoOcJYijTUbTbJLwdGCgouVjP1Pnz4C4N1sxviRjPvv/4RH74nYXbxi\nQamc0I7rTDThqaF9JuJml7rGgphWhhep/cFbYrSwrrEKvJnMPx/IuancOYVmnTaWOfRDfR44ravq\nTHWiTOwn/lUcilWy0toLi4OMTPFWZjnNO7Kvn9mWv5duQfRA9mOvW5CVV52kTygbItV2wjPONNHN\nKDf/dDOgXZPnreb3wRK8ZKaHqyUE02zFSMOpw00Zy54mzLTWhx1H+Bpt+vi04GtHWg2rVVE968b9\n8eA3TRSqqjoGjvXzwhjzHtKC/g8DP62X/VXgl/g+RCGNKg6+U3L+wSOaWi78LJlhn2qV3OE5fX3B\n8mkAGkyy0n5/+WJMOFeiMLIoFlrIJJxyoSXcfT/CVX+6p6nO5sChuPLhVs6zENZ0BufaobnfSqjQ\nGn566BJ/i9VKqyRHIePpVc5AjFUTg+eN1H1WEbqy5OWez6aEoYhy2dInu67Gwfo1nEqs/WGkJcPc\nNqmlIucyo9ROSIlVkWjH66KYUE61DqAW1WjlMYUlor9dWBzPtV7l5SH7ueQtzCoLR1+ahSPzdU2b\nWJM4ktYCzerGshOMuk+spkOgZdgGKxF3n0wjDudaMzOd89K8rXPLnjXNPZnNePRAxO7xQ+3CdR4x\n7wuR+ov/KOc5VWOsYEDZUIJkVhglqKU2QFnlF/S141Fxckmh5fSSeUXlSHm+1ZNtgl01UMbyu7t8\nSqS0vfAfU2ViYO1aGcVY1rcsHcZain2xlIuPz0pCJUITc8Gl9hNdXRS4GvdxciH32O2CVNVO66Ii\n0cI4Vlqw0NqcKxd6mv3bUPWiciuWG9q0qF5jeSLr+DA1bEai2vi1u8y1F2R5KvuUlRHLiaqBdZuJ\npsEezWICNYSXZY3SuuoX+vHgt8TQaIy5AbwBfAXYVIIBcAJs/jr3/EljzNeNMV+Psh9s0mtYwxp+\ndPBDGxqNMU3gbwF/pqqquTG/Fj1VVVVljPnnlpL93lb0+4NWdXPTIulZnF5otlhQI+prg5ccZifa\nP7E3x9HkmUrdjXnRxmgBlNyuY12VCruIsXwVndq7z9q/VdoTMm8vKM+V/IZLbG3jtVpNYHHVcr3i\nRls4b6CFRZw0otCiquNxSajFWeqmwlFD3OwsxtSl18FV2bHTeYxpirheS9NnRV+iw4xEE6KiUGsF\n1HKshiYG5Q6lqhLpfMpU24elYUGSqkuy1JoG9YyO1htI7eTKTQ9uj3NtSbc76rGpvRWut6TFs2d3\nKYxk85hjj6SSMdzARqVWavWAwFaXcUf2Y3tlcVWBtWu3yLUEa+CneKHMyV5W3DuT7x9MNKHKBluL\nnP7cFyre0t4ETXcbmiLCL44cPI0XcV0VmamjiYPQWWBp3MCKKZb2EzXeHEsLzGaZ/LX8bfo3BIdO\n/iKBjlvmNkVPK0KfLjChSpELrWtRJsy0f+Q4LHB9OQt5Z8oXduXZ1zTK87FxiDUy1W8GdK5qm2wF\ntB/Kuq97hrCSsetb2gzofIm5JviuVgXnqs3UT+oEn9LM3vqI3FXj51ybwbwfPqs6XqUWaM/PoVXx\nOJZzuNUKWKZX2ZEfz+D4QxEFY4yLEIT/raqq/0O/PjXGbFdVdWyM2QbOvt84SVry6ChmGDS4dUfs\nkgu7wfL/lKy2ac/QH8r388hm7l0hSg62sSu8murtVYifCVbjzQpbawb6psJtX5UwVx15umB11XLe\nq1E1VX89W3HhCCL7psK6JtccqJg5LhNC1d/yWoSaATg9C0k0v2Kj3WGsm5ckonPXPBdXM+vKs5z7\njyW7sM8ZH2iTWhPLYFs3dthSolBVDjPtB7hIKhytWxg3DZ7GThQa3t4pW0Ra1nxWlHwwEXG920n4\nzCticW95HcxE1Aa7aOg6+sRLbSJjzvDcq5r5LRa5pi1fpFQqjk9r6tWwUxpqSh54K3xXu0VFK1Za\nrn9epowvRSR21BZRhSlLjT34h780e+YFWZgzuNBKy7slwZXH50CJX5iSaw/OaJGQqAppWVtQ06C1\nZkWsadJNfR+OghRfG7JYpY2vXo2wzFiq/ejpZUiqm7nUzlJusHhW+n677RFrbkMfi/e/Iwt4pF6P\nxrCg35PfT95ZsqGNf+ZHAQdKAPtk3EFUl4uZ3P+NixnHX5TGMo2ywYHWlH+QPuRn5uLB8rsVWxq+\nHypxP03Cq4LYBJbNhc55Vi/pac+D/h2bp9/8wWwKP4z3wQD/M/BeVVX/9ff89HeAP6Gf/wTwt3+z\nz1jDGtbw2w8/jKTwBeDfBN42xnxLv/uPgb8A/A1jzL8NPAb+yPcbqBYY7jzvUH+1QcMSX/rdr55i\nqUX28mJKTf28g1sRwblQxEp9++3mTfwdkRr81YwkEFrXX7aZq8ehkadEYxG/bI1my7qG6qFW5w1L\nKld82qEJqbTeX9mG6lLF445mr1U5XqDibKvB2T2twGzDZKI1E82CfKQRggu5z9tss7spBqXmTkZ6\nIdx2ko55/kTE+Ht9mWO/XZLN9P5mG0t7TFZHS85nIjUEXonV1GhCrZWQ1lZsdQQXSbyke1WtuXI5\n0lDhRrrEM3LfWA2YQXxCfSicyE+zZ94HN26wVLEzP8/JbPl8fqk1MT2LXTWohWlIogZYy4xoK5d+\nPwr5pmYJXqpnpDRwxb8+7VTc1cSfBgVmV8RqbxJxOJe9ch35e36W4jra4KYZ4x2qdPd8QFOb79jN\ngKpSdbItXHVzMSTvxDrujEuNoIzHIan2w+g0PC4XWmFaI0yJUyyNi5nFEZ/KZW5l02f0pqiCe7dl\nbr1Zg198T/t+1EruadLYtaGh3FJj7HnB+76oR9u6HzeGHlUq0sbd5JKrfL7UN0xsUU1uLg29kahH\nF5pU5p/DwVR7PVglCz2zp6sS1CtVnNVYJb993odfBn699Kuf+UHGWiQW/+RhnVeXK+xb2qHHXjA+\nk8XPa2O66vZyj0fEGmqbaWv4m2eHkInYWqUJicbR+86KUgOAIs9jcZUTUNN26udtak35PbYKqly+\nP5nbvP1IDv+1FzyuaZeiVzT/IpzAyUw2NlrGZPpiXpwlXNX2uPANbiIvzkRVg5OqpPFYxOi4sYG7\nEKKQtwNs7RDULGU+6arP9KqrEmfk2nkqHdagUl10NaHS1umPCpnv7WGPSxVVa5bN45Ucml4Ws7WS\nwJyyA0xEdcm1u1Pm1JieanAMBY6+hG37lK7aH9J2xLIua7qthO48rBFOtYFPssKuK/Ei4FDTwB8c\nnlNcucjyq+KqPIO/OS/Z0pOU17aptPlrblmYSvF8pjkO7YSjqbzwjekWUSbnYpa77DySeVjtbepa\nRSqeq72nd0Z6IC9/YkWMP9RuYe2YZCy4XdVKTnRi84Xg7XwS8+BM5jDqeTx5pN9Xc/p1ydJtH4vt\n6KuFS6Eu4PvLjA3NhoyzgnwhwWff9R7S1wpR1om6TS2XSFWb/U6b959oCHoASy1bX74y5Nv35Xxe\najDSLM/JdL6HpcVEP0+igkTVmPQ4Jbb/BXgf1rCGNfz/Bz4RYc6WUxEMMwbXXb6jmS+1o5QPtXhF\nOc1pKYfdfn5ETcXEUNWIFQUmEVHNWzrMHeGwtchmUhfxi8RipoEnLRWd69sOZaGZblVEqD7x+xch\njVjoZRIP2LohBqPt66JePLj/mFQDp2Yzi2yu9RYKl6jUpCsnp6+W+mOtWTB9VHHoiN21Vc0ZLsXg\neTGMcS+FC4y1nbozvODCF1w4CYxG8r1bxTxjtoXLQn3lRU228uCywdZNwVsrrVFo7IVZ5Tw4/hoA\nnyk/S01b0HuqMjVrDpZyXZc6D8+1P2Rs4Wpfwo2ZT7EpEtlqIusYT1f4lcx91k3pauj5du+EUkvD\nN21YlFcirIoEtrR8BCg90CrqdEcGf+8zAMzDnNpcON5U6w0cRk94Tj0D+W2bvvcCAIuTGsfq389X\n36V9qupGSySM1tAhX2iNhfIhH8xkfZu7I7oqAabLDLTzeLiQNUdZjsZHMT9d4X5Wq3U/8vnUZ2Wv\nP39TVL93DwMe/a9y30HucqRZkp1WwSuqxrlVm2kkOKhpT9RascFIy7E9dTJeT2Qd36wchlp6jQtw\nrtrOq/Q7yldcaoh5LzW0NOGv2ag4UGP7cMPj3j2Nvf+Y8IkgCiYD78Rwz2ywvyny94VvODqT3nne\nrOQwVDGwveJnXhPx+eZNKXlknAZVKOKgV/rsGzm4eb1O04jotzpdMfDE6pv11FRfJaSq9xmnRpzI\nJvVrh3xjpbrlRcpLGxJAYibawNNyaWtm4KPQcKEEKb5MqGkgT/YTN8GXA/TKi/K8mtsh1aAfa3GJ\n05fPL/cCwk3Z/GtNLRpyOqGlXZqKay0sT0TAxWETYnWhmSHWluYEPBBbxCIN2FW35yI9I9Jek7Pz\nhIZm9d2bTXhJA7le0IYLvc42K82488cL9tStW/ouq6m89EekNMaiXzs9OXRbPY9Eo1CbTp1mR2xC\ns8Bw+E2578kH7zEIZZ4nmhnpVIarbo8dx2WosSpWfwPbEULVDs6xd6Ro7Fe/9AuC12nJ2S1NnY4M\n9r6sYz9tkdwUNad62iHWoKbr2s+z7HfIK1GZjj60udaTgitstlkamcl4umSq1a7mGkG7Wq7wVO20\niz5DS649mYbcKl8GYNp8HoA/EH2HS627+O77/4xK3cvvJBkHfbG1PB90+TntHNUohbmdWxMabcHb\na/mSo7bgojddMtQzYGYOYarFZzQXZ1U26eeiagRVm3ig/SiPwQ1k30MqEs2P+LiwVh/WsIY1fAQ+\nGZJCrcJ+Jafm+DyIRHQ6PJmSK1dZhjn3x+JX3809JkuhsN2BUEm77uA5IrYyyyg0dt7yM2oN4SpW\n3CbxtAmMluGOjUeqQSUzMp6MRTL51uyUmdY1sFaGb777NgB3PiWGOscNeTiWuT2KZpxpRd08jalp\njsLxcsb2pnDTSo1zjcaAugablPMtzGORYpLKo7atNQLaVw1L2iwtEXHrnYqZxoAtVwnjqYwxNuNn\nBrv3ClE1BukZyyMZd9cxGBWKQiqm978NwMMbQ3pHIv08aWs3LW9GUysHT8oK42m4tT9nsCX4NscF\nC7Xqd/rCgdvthFDLtYWcY2yNp4gK3kpElH6Sg5YXpIVw4LBVcGsl0l/sw1W7KMdAZWTspZuQTjW3\nQ+tCPBhPsVVy+b23XyWbqxdkE7yGLNZy9nG0yU2pmahWzaLqieene1RnpV6eVSMk096c83nJVFXW\ns4lw9olrOF7IWAM/JXz3EQDFKiL5SdmHUVvUj388rjjUXqHYFaqZclReUte+ojM/5aFKp3euaX3F\nZY0H52r4LeYsNShvu9Yi8TUXKJqSZxo7oXpXL4jJVO0qGxNSzS59WKXc12Y4xWVBXq7Lsa1hDWv4\nIcBU1T83Cvm3FfztW9W1n/8v+fk3XaaO6FZ/tHHM5Re/DsDf/fBdTh4Jt364TEGr+aalUMYNYxir\n0WrgZ8wQqtytLKaa8BQ7JRs3xF4xagrHf/3WFpuRGrCqiuRIKPcHkwn351oc1c5IjEgbP6Wlxv6r\nv/UL/9x1/EsGIq0C3QhzYs2bX6mxyLRrdC3hgqlj8HwtbWY59LV12SrTzEpmnGt2XrBacJqoXlvF\npFpUdcu1ySx53qYWCQ1qbUYjsZ0MXJv/9p+I9FNrxHRaYmv5N968w52nwm0f1LQi0NEZR4kmXZkE\nZeiMnCaFRjQmdkah8QvNXF25Rf6sc/W8ZlGbyTyOioqaNs9xBzu8rDYIU9NCuu0Zg5G46azmLhuW\n2IQef/2XOAq190e3xGTaeu15kVb2uhtUkeBqw2T84tED+f6mw+kT0cV39gqe08QstVNyeQrjrkgH\nT5/WefPz4mauX/8MP/UpmVOz6mF1NENRe4qUUcJdjQptdGuMx/LsUX7J1//qnwfgiVa/SjlnrMlq\nh2VCrpm0mzj42suiEeTP4iJaKzGCn0SQRPKM48ylpUbVeeGwr3E2s9omexqrM3bl/LrhKeWLvwuA\nF2olzfzzsif8ElvDVwDImyWNSCKD/50//xffqqrqs3wf+ESoD/Vuxes/V/DvXvsW/8mxLPL08V/n\nlzVj8FcefovVVGMWVhF9DRV2tOPNsvLQbGqyRp26+mUrz6F1KS9m67mb/OxIRLS31QDYWd6HkYjR\nL1YxH2iJseeSBjPNYPz045R3duVAL6bv/Ibr+LIBe6a9HR0bMxdi8MJ1uX/gt2gihqOTPKWj8RRL\nu8DK1PikhTK2u128VMTv9NJjOpYDZDkOmb68lxiMGsYcfYs3rCVmLuJs4sa4b8j3P1+74H9vy7Od\nxt/jV/ffBKA4kZdx5vqs1Bi41fVpaK3IjaDDMtKU637GpXpuBonswSKO2R01dIyKyVOZ29Mnl0zU\n81FenrHSsvudqeRX7I9jTpeiztwMLJYb2kC3jAhcVY+WJUPtMfm6dqyaFwlRXYjb01kM20oAT97m\n2zXBoXlwzHLnRQA+LVvNu6GFpf0a49dv82JbmMwXk+s8/5YGTt24+ayOY65t3+O7bRoam/fPvjXn\nVvNzMo/hnKd6/rJS1LzTzCLUuJBBmXGk+SN+exunqU2BPZdCK4/PNU/mfD57lvp+uZqyUBznRY6j\ncQq5OadmhDCuNI8ks1zuf+mLAHzw/A22Jlrb0T/iq5r9+tnWT7DbFfXn48JafVjDGtbwEfhESAqj\ntOLfe5LxPy5+mv9gcA+Ab83/Zb784H8AYHoZMl8JB4qrjHyqMQlqfGuUITOtsVDMPPbVrhJkSx5q\nXs/tg4q/f0/ue3PzEQAPam22tdJtN+wyyrRDdRpzR42Hb6UOr7vaTq64ozN+/GuTNzwjraYJpbqE\nC8fB147Hai/FKyK2LREpy8Al1DUN3Yq2LTECsfZibNTafF4NYO97EcuWLOoiyXE0Z9+scuKrCmT5\nVR/FAcNtWcfqNOFVrQb81919/vS/IurTIP7dHL4rImWsrlW3nrNz1Y7O2GjHdYZNQ7OrhXKNw8vq\nNi/76spc9Wn35NndRcbcFa5U81Iu1D3b8VJqT9Wd2xcx+XGSsbElYnv/ubtcfqgi+NGY2r48Yy+r\nM1cX4FN1C7oLi0ksRTI+iBzefyDxEr8UZmxoNuCD3YrXH0mCUccR6ah/MeGXR1rG7e27/FmVzL5Q\n/+/41d/1BwFo3/0uP/PSH5LrG9KGMG4ccv+7jwB4rtmmd03O58W3T8ieylqngUhSZh6x1MIpx3ZG\n4QleVt4SK9dCsIuIUvuLXNXsOEsSwkzWmaQloVooEwyhuh9bsQdacCZxtRxfnuJq7Qn7a1Mud+4D\nME9CXv2MqA83b36dD/+xzP/jwieCKFR+SfJizB9qDDm4L4v8xt99SOdSO+zkCS0tImI7Nm0NgElK\nQV5M9Uzsfr7tYgL5fVA3bLZEvHzjdsHTuaYX35dNOU7g9Qt5wWz7lIZ6DvYbFkdqpHh1p4tdqZ6v\nHX/4STBf0cl3DZ44THjNNWQaYLJoGHpaIaeRyv2NXotSsy8dr8a2eklM4HO9oVb0a0IU3mgOeaqZ\ng5977FPTasBMYr5xplQoyVmq+pBqBZ7TWYJ9oHjNYOOPyGH8g80vsNOSgxL9csIrlhz680RLuTdb\nXNYlPuC55YzGtuitO4MGdkfwtpkmJHXB86bmAKyaIX3Vlw8ii1wP9L15wR21NcyqgLo2eKm0pqSX\nFkRL+fw4GXI50Ea3D0rwREx26wOqUL5PtdDLRZnyQU3OwtHTOUeaEVpVKUsNzbanFrml6khLztOq\nVXJbW9G/7c+xStn3o8LjwZd+FYA/9sqr8MojAILrEnuwaDpcU0v+QTmlsSWxEE/cDPdva+q7qrkL\nq86lEeLumSbdruBzf6dFpm6CIOvyaHahc5LzYSrJcgSpJeprundVlQy0p2VkO4y0bP15KWPdjkfE\ngTyjEVQc7Ml8bi8rxhPxtMzf2OaD61e55h8P1urDGtawho/AJ0JScBObnXttssu7vHsuYu070Zd4\nMJVEk5VjESi3rhc5ofpdlfnQzwMaanzcHvZ5XesfDCKH+oZwvN29TX46Ft/z3z8XQ0+Rz7nUTDV7\nYFGp/9ieGTrafXiYhNy/EC6+SqU2Yus9+FPq4fgrezfZ+1kpNPXhX48J9jS3vujgxmqMy+T+tLWg\neiiWL6fjkGstgxffaLI1FYPn3jURd4NRh5sT4QzL8BRHw5LvthdsaY2Bx4dzskI44biQuWfRiptq\nnIqqiD82+UkAOosW72mS0OrVYx7/soZQd4UT7Te7dDSqsG3X6dyWed5ydwl8Mex59jmOtiZztILx\nptOCtpr4H54T9cUI9vIs4j2tm9kOQspKYw+0FF5UFgy7IuVsWBWbbRn3URuaz2n9RHuX4FC4aWi0\nJuSsIH1Ps0unKyKtX+HVMkItWuNmBQdaUGcgjJTBypZGlMDvya7xdF/7M9zrEDVELH9reoltiwHy\nd05E1XLHUy5Hsu8mbOJqdODreZ1f0YSvaKSxJZc1+poEVaxKtrXuw6g5wK2rAfbpFM0Ze1bTodHz\ncT3Zs11TUGr36NRLcRxVeboW7UtZTHcoY2WdNrlGrIaTNlYpIus7RcWNtqxp5L/KH3hV6mj8HT4e\nfCKIAkVBsZjy3uqI9O3vyHcXY7bVpTOrBXS06Md0tWRXdfSTQH5/sd9mvym//6uvXWM+kmXtxBZo\njcLrL1xnmsj1v0/7D37z4DGjQJAetBwiLQoSVku2czmMR2HGi1r6/ZtaX/B37LTJNC9hf36fN+7L\n7zdGgDZACW53QfXEINUCMYucZKDqTC9htCOhtp1tj4F6QbaHSlScBuO+vKQd5xq7uRzAW+c7VGP1\nOFyGXF61cFeVqmZqVKWM1YofkufaKah8wvipHPjm2OXzPQ240sY4HdvHVrdhK7dpO9okhhadtgZy\n5Q1sDZCxKy2aW1sQR4JPxzNs7QvefofZxrTEtrFIUxqRrkXdwf5RRGNLcga2/Tdxxr8MQLus076m\n2QM9vsUAACAASURBVJxHLpvqfiUXvH55dcKp1q6cLlOyga47tWluCi425ym1L6ixJVIXat/Ffiqf\nN+7UUbrK3qdWsBQ3+Es7d7h5UzIfa1ri3mvs0j8XleHB7gGjRH5feF+hqYWMMm06a1UFkSOqz+5e\nxWBPxrjhDZiO5YVtxCEHoaqQlezB9v/D3pvGWpad12Frn3m48/yGevVqrp7Y1c2hSUqKKDF2bElJ\nFEGSAwtRBv82AviHYxtIEAcJ4vyKBRhIEDiDbQS2AiVKIjlSLCnUYFJqspvN7mZXd9dc9ab73n13\nvvfMQ35865VEgDZLaoWqAG8DRF++uvecffbeZ+9vWN9aeh03r8gaWRXx0zT5h4sAN6pyjb1Kgc/d\nlE2haEi9R7e2gzsEOg1O9vCeLnPmf+Ah+oxs5DdaX0L2kQjrPms7dx/O23k7b9/RngtLYZ3E+OaT\nhzBNAyF3Rq+xjxrltWpaiS71CoelhhUFRV5mZeAP9BrIuhL4Uls13KCcnN4wkPWoVuwAtbVce25T\nWrzahsv7+crGmlVrVphimIglsNuoYkz+hpDUX+9/HCCxGe03PVRI7zYuQjR2xVRrml1sEOhzl1qE\nnzUvYTCQ3XyvE6MfyenQL+robAm2IHTOMhYuBiyAyZHhmEQflp5jcyim7XDvBCA13ZqnS8tZo2JI\ncG5fL3CXhVJpzYFLfEZYjnFoSN+uEOjUqFZhnhGIFFM0yKpd7XrICBKzs+lTS8HYolU1zVDShXFy\nAw4zGJm1Qq8uY1iuFDQGCtdrGeO1E8KiaW/0FwhLsW5G9ofokdp/cLmLfWJOjt4lQU4SwDsT+DET\n6Kdyv1IDPC7n2C/R2xfLMSUX46NFjph8nZPlGjrdv/UeoN+gvF01RV+TAJ3myXxkaYi4Kn0Y5Neg\ncT1hVceCFmTEDMBGWIVNRXRHVyRdA2pOiAXx6MtpCEVXqOeQ66Omw7CkP1uWhjrTVfW88jRwu6n7\n8Pfk80dEUvfaGa425Rrm8AWU5Cndb+/BaMn8LVoRTusv4I/TnotNwVYGdrQWxnaKq/TJDs06cocv\nglOBsuXhdfcEVxIZwDrLfl+6YaO+K+mtXs1DkZ6V6caoVGSS7VBHxmq4Gs29bWsHGk252I+Qk7wj\ntYHqRBbTyoqwfVFezitUGHrfNhD2ZWZ21xH29uV+HShUSvHRlw0X8Zraf5ysse3C2ZQFfa19Fcmp\npAkWZRv5SqLWrZr010gSZJAFFhpTOBYBSccz1NsE4ZgmFGspDKZn56cZJhXqU1S0pz68BQsWRWwD\nGNii/GXO2Mkq0+DzBaxaPhJuGmWSQTPPyp09pBzDkilb02giI3lsoGZIWLW32e5BcfOer9Y4IGAn\nDUjAu1JI3xb34mu9N3G1Lyb8p2sKdirzmqQpLI0KWExN3p9mGPnyfO5aIfG4IaXAxX7KeQAsn8pJ\nuWz6cZnhKgls0vkKMesnRj0DxhFBVuUHmJ7IxpjqfwEAUPdduEcy/3P9APOlIChLYxt9Cg4PZerw\nKDjBBUtcn+5GHbou9x6fHmNEImDLS2DEsl00WV/Tq1aexh+CuMDjlYxRpzTQ5YZzb7zCW8yY1MgG\nkN2LobEy9L3ZHLFGN+b+HNNfEZfhf+qf4NblXfxx2rn7cN7O23n7jvZcWAqjKMHf//gxLl07gT6X\nU8Ib9LDlSdDmiTrAJjMDtWUVJfP3Fz9LQAs6cFirsDRTuASHmCpANpOTJh7UUJItQ0FMUTXSkTTJ\nAh0qOAyYxScJxoF83ujaGD2QHboxleG6GxRwqQQ08lz0etRSVF1M+nKiXdADHAZyIigyIIeDHCvB\nvuDw7gLKZK7/xQN09li/T2GRVd8EeEqqZY6UuPeRX+LukmCqJHvKarY6E6rxU6xJELM2S1xi3cI8\nPUa9KuNpmAWUK+Nsk46ua9gwEvmbiwQ6yxbzRQqNBClFpQQo8FIYzHZMdeRNugypBUXodrxcYD/6\nQ9n2OQlHhjwFoSWYEdz06fpNrI7EqvrNeYRXqafZy3KsKZhycsIx1BOUe3ymTCGninfml9jbl+fO\nWzoWQ3GVrtFFaSyBgzMuh8zB3KULchjigSuu6fjhAiczwW38JFW+tWYXJwYtujXQmEr/l6M7iC35\nnNBdbbk+NP8Mjr+GXZAncmEiIa17MjcwYPagUUhQ1vF0LCLySWQhNnlUT0oDI459bi4RDWW8xpH0\ncanHSGhtadME788pbVDcR/BYrOkfLmsY70n9y7O2c0vhvJ238/Yd7bmwFCqmiS/2t7HZX+OdUHbG\nfmSgwgrAxnqGlOhAbXaC169IoK3TkZRW27uAdkdOFF0l0KjLWB6NUSgy+D62EPG0slipqOtTlCyC\n0nIDMQOQuq1jzpTbdmxjcJMVjGQ+tmyAwtUIzRA6U5l3Bx3cWjBld6GLfkNOoF5dUn2+0YDDashL\nPqBvyWcrsZ4G3dSZirDlII9o8VRaCALGQYoRLpK/4Kjpwj2mhgUZjstAgzGQE9GDQnVFJumej9VI\nTpqe62Fnhwyzhsf7+fCo1FyxOgA5J4wRoFFK28wMwCBzFNU8ysoSakx5PJXDI+56XibYZrziMNTR\n4dgeM0VoKx2Kuptm2odfl5O5N+hjUFI3MlhBX0hc6ZAQ5trawKTFKsnTCNm23OMVpcHekjG6PMmg\niKfoxTKPR34J65gpwIstuDzlJzUT/kdyjXSQIXiLcPLPSJ5/q95ETZfgcRzNoBdnCMP7qOnyWbNl\nMSxKHd2UdHR1G5QKhR0DPlmi/W4DRkXWhc/fVUsdFtf6ynYAhwGfYQCLRLAncx91BjxLxjJaixwn\njPHAiPEKdR/2Ix/3RtS31EOAGIlnbc/FprBaB/jqW2/BXye41ZMXfWV6GB+TLETLUJ7RY23o0EgT\nvrWWgWxu1wCdke5Ch0W1pLTnILVk4rLQgttl9J0CMX4S4XjNMutMw4R540Z7jWtj+W42rsAQPQ7U\nGZEvwxkOGHv7/KaBKy9Jn0+GNooOq9pWHmZKQC84kP622zkuD6RcOK8Axlnu3qoipPhrRLxFvl6j\nS6xAchrjKJB6i5puwVzKQtiODbjMwKwlbgZLzzBhgPN0vcZFl7UUdoGLO7Lz6EYNIaXrt+vye6th\nw4AExtI0RIuViNqNHEXErMT6BAah5fkFRuzXHhLSwzllirQq98iVwoI0dbY9RrKSFyGiruE4SPFq\nSxZ/UgwxYRD08cEEJ+/JtS80NrEgLFxRlNXxE7w8l2u96UZ4kVDp656N5pQHhzvFHW4AOrk0j+c5\n7iv5fPHxIarMkhwf57jLlwm3dSSl9OmWJwHfR/EajRdkTnc9C0OC6GbHc0zpxq7PnnNl4I4jm9vJ\nkxyOQ8UmowW4FKLRTNRIx7bNzFdkKCRk4Lb0ECqW+x20Yhhj0rnHSyQEZOXcvMeZQpZQTHkR4c5K\n7vEkGKEgIcuDeYgDBkKftX1i90EppSul3lFK/Sr//yWl1JtKqXtKqV9USlmf9B7n7bydt+9f+9Ow\nFP5DAB8ClGYG/isA/3VZlv9EKfXfAvgrAP6bf9kF9EqJ6g/keLVRYP/4EQBgPdpAP5ZT4ni+BoF7\nWMULfMjUTNGUANCtRor2C5LS8qYlivyAD+ciCyUQUyxzBAxgldv87uAa2g/kiC31CS4sJL0zLg04\nkO1Vv6pBd+QkaLFC0Boo1GNWBna7KD+Wz516hjmvpzVmmLKacUn9xJWt42j0AQDgpc4lbObyUJk3\nR3Isp/uikHsZywBjyPPdDfew1MVyaU9sGH3W7x+XaJAFOKZJuU4BjSefhgR15wx74WJFE3WQ5Uhy\n6dNwJqeWm5vwWP9vpQFCYhNqBmB58tkME8RnRUf7kmKM7QgZ5ZxnqwBLalysPRvjE4qoqALT7IzB\nmMG+HDjmPF62U/Qohdf4tIvOBpfS4QNMSG+matK3cAnsXJHvfsnwYDCo2tht4xYLuvK1BY2Mz9FS\nrM3GIkQ1Pks9pviQkn4rD6AxAkPPMCWN27ff/5rM6a2XsLP3gwCAsh+gWAoyUdPbcImByJkWfhSu\n4dLNs430qVr5HTVGJaDpX64QkbC1ZPCx6jWeyszP9SrCU+lQp8gxsmUuj9YpPDJTd3syHx1UEDHI\nO/+oBpMVqhuBiUckapnM52g0ZL0/a/ukWpLbAH4cwH8B4K9RSu5HAfxlfuUfAPhP8T02hWiR485v\nLpDsHmI+lYH0rABeIgOZGBE8Sm4vlwkMmmXHXIAn90vE1OW7cN2ERrhnsXeEESHBpXmKE4pubpAI\n5WDRQqPCKHtZwqLeoa3V4FITMbcsaGegJ5J/tLMjXCIwqdQHGH1ermvfXiNlVd4lb4ZXc5n8KdWB\nvE6JDqHPyd0Ai10xB1fDOYJjMTvvDCmaoitUGYZurFz0t4TVuP2Cjyfflo3lojnGCQFHS/qhllUg\nCsTvV1mKh9yQ0vYxLheCdTgqUvgL+b4i+/C1zTb2+czudI5iTRUj2PCb4lO3siVyn3UnFCQZj0Is\nItlAj7IAfRqfo9EmCkPGJdBK1CvM2VMgZxI9hJ7KBjg6ieGHshQ3Lmxik772kdlCe4Ow8X2ZG++K\nh1PCi/OZj0tbdIPKOo5uS5+PVhEeE3CWM9ZSi4CGkr61DQ/Vbfl7OHJw/4x8plzD2GAJ91j++94v\nH8D/t34PANAbv4yS4jK1KMSC2IvHrIItUiA2yAyd5ehn8rlquEhtmetH+zNMWaF6ciyb9M5uBN1k\nfOlSiR4LNtLSRflEDrXZxgH8M7FczlPZqaPgRu5UQxQ8RB+XB1jy735RQZ5+f9mc/y6Av44/VABr\nA5iVZXnG3r0PYOu7/fCPStGn2bkU/Xk7b89L+xNbCkqpnwBwUpbl20qpL/1xf/9Hpejb7Ua5e7OG\nm9UjfI358U6YwW/JfpLNRqi2ZPesz0dotMTML5ZySmY6kNyl+nC1hsKXkysYh3hwW8LkgQrxiJV9\nWp3svJMB4luyQ5vKgF7K53iew+0zMLS2oHlyquas5Ltec7HTkX+/X1/ghVj6ERsFFANRFbuHeC19\navbEctFSDYrFWCrJ0IDs+EndAQPu0OdiMWzVfVRccRm07gXUpjweVwplJKdH7pgApe5qjgSnJpMU\nFySWiUdzDQ1CsGHXsDfm2MLAnNt4lRWnwdqATtIXbHaQkdRkmpzApCVQdBowaZYWCeHVowVyU/5W\nhgn2uKTWd8dYlOJWVGBgSSZtLxJLwan5KJgZ2b5so1KV597sX0OVlsJJI0TzEcVZfBkrjE6xbFBG\nvhwjmsn17j+5iyqh5wf7MQZ10pvp8t9W00KDAdprVyv4Ft0nvNDCrUNZW1dvXcLtmfy9e1H6oFyg\ncl/moXwpfspiPY2HSAOqmCuxGIJYQy+Rf+8PHNTI4Hyp0sKE2aqNlo8Fs2DbhF2vRjNodZ7P4zZA\nGrvGSYCARXHG0IbGYGV3LnPdr+oYEcmaVjM092Wur9lNfHMmlbu1mgaVExvyjO2TCsz+G0qpHwPg\nQGIKvwCgoZQyaC1sAzj4Xhdar0J843c/wLcbEa7uiCnXdOqoMiK94TsYnciCfaBFeDgUnr9dXxZS\npjromOJKDCoWKppATdfaGAuy4tyfm5gzSvxkRMhP8AhX74tp/EIrQZUMQ5brIiJIp7OyMKuImUcs\nDr61P0NMn3un5SDKmAJdzWD2ZPGO9qd4QorzdF9Kti92fAxIvGEba8wYg71gDJD0xNR+gTLk8WmC\nBw9kJX20eBMBBVGr9RqaS7I0hTYMblRtiub6ZYE5MwvLIMXXUunD5mmEGxclDWlrGoqP+FIT7vvO\nJMKSQKDV/RAXueldv3gJliObUMVO0CbrT0y/P4mfYLTHlzGI8fBIXqr91RBBSM1HI8F1CvdYBIul\nEw3bTLc1iwgJx9BKNGS5jJEZZIjrJNd5TzbFInfQ1GSTfawSuOTgzAzg7mP5zuMyxmIlL85nB0xN\najoOuZl8++EY305kjCp5gbRGweGxg9fqMl6PWPn6rjvC67ekLuO1pIKYZD+e0kBtICTkarRyF3GT\nWQRHR40xpY+He3g4k3U4jdbwnLM4iVzXa1ZwzFjSjhbD7VLMKC9QMt2brksckYPxY0uYpz5dacHl\nprdR1LCzS/r8wykuZXLwOZ6BGSt3n7X9id2Hsiz/ZlmW22VZ7gL4twH8P2VZ/hyArwD4aX7tXIr+\nvJ23/5+1/y9wCv8RgH+ilPrPAbwD4L//Xj/QHQ2NmzZe2ypRX5BeLPKwQXBPHFhoEAhzq7EJh+Be\nnQQhlzQT/qaYbdVcR2nLLlkaDhwKdVzqmpgTyHRrJTv03laJz/HUybwQDQJPwmKBkpV4a7eANpaT\n2WO1o2vrMOSyqFUdrM8YnD0dLis79Z6FS8xHm2Q+7vVbqBHfYOVAP2Cw0plDNZldcISFOPInMF6S\n3zcfbeJxS06jF1Zr3B+K5WE9meBGT353uicX3o9ybDflOYYYY5s8FJZmwSMf5ZZbR/IicREkgAlW\nGZyOjHeKCF5dLIGe5aNJi6ZWJlCkkCsoiWa5PdhtcRMGjT5KiqmkOwv4x3LqTpUPQ2fQlOrKY93A\nOJHTfMMvENligtvdBpqtTQ7SBHeG0n+d4LQ8muHmT8gzv3zyMoxYaNOOH74NrxCjdFWs8SWejq9e\npDXW9fEuKfYejNfIDmSdFUaMfltO6VudAhEDnpEp1lE7NaF9XT4nP3OARSRjtFrb6BM3EJOLs8gU\nNn1ZGFf6HWg+IfYHS7TpPnX1KpotmZ9XWMk4nk1RXYr1Wzgm0hWp25p1VKhGfkG3sLOU+wUs0LtV\nr2FJN8ice7hCTg17pDAj9DpCghorKZ+1/alsCmVZ/jaA3+bnBwA+96dx3fN23s7b9789F4jGIlFY\nPzaxcMcom4IO/Fy3jm4mJ8nYnsEZyM5vTQw4hImatBRq6wJeLKdq0urAAnPp+Qwl4bpVvwGXJJ8m\nqdt+qLIBnyXJen0CtZCgZDGzkWvUYajEWPN0qJABeG8ZYvoxfcTlFNd7cr3tfABzg360aiBhLhw1\nORnyjoMGkWtlUmJB9J9ft3C2l1uQIGrzZgv1uZwSbuMU9prPZznwd+R0aMcahhTeTZsMdul13Dkk\n49EqwTux/PvVrECNwq2dRhsGlbCtDgVbtDbymArWGrBmQVCzyGEkRCPq6qklkFMd3M5b6PZZ068m\nqJBirB3s4kCXMuNBb432QiyyccIS+KhAyxIL458dlfgirRj7VhsF4d3BxwluE8l450CeL3IVjn9F\n/tZOZiga78j1vBQBEaKFpTCvS/wkJe9DPNaxzfUSRAp/flOeezkxoFelz4tTDflV6Uf6EclTG8Dw\nDVkj/dUWypH48/FoCrsi12vaFBUOAPiyFpLCQp1o2q0LfVQYw6hrGTSb65A5um69iYil4W6nRK04\nY5sysF1KsL0+mAKhWG/9tqS6tUYLpivWmD5JsEfo+TcmLdhnBLLLGq5TvPb3QVaz79Gei02h1rLw\nF35uBz/1KR8fBaLcs333GCVfxlqSoJGR53Bjik1mH5ZU2W0ObaRkNfZPbSSeLDYzdqARXlt1FBTV\nm7qaXEuvLuAzcFbkNkJKlS/LJerE6GfNGnxWu0URIaWGgX6P1OPdGbb4onzQNnFzJRPX2Gyh02Eg\nrU09y6qBKhf/7PAQdZ/Ao7mGJRl6Wx5Nx8KD7coCa26YeLwS89KGjcqCwbe6j+pSFtjHhiyeO0dP\n4PoSrF2vJmgRdr3pOHh3Lte4VqsAhMq2HBmLRtlA4UjQ0VIWZrb02Tm1sSiY4Uir0Cx5yRxdxnJd\nzJBkstG1zBZcPnM1WKFjEzbtOTAsjvOQlPK7PuwDWfzdCxWU6kzJSoN1xvlYs+EsZOxVV9bCxSDC\niG7O4DjApEGQ0v4a3V0GinMHf/mL5IkfMECrcmQUi/nixmU8Wgn/pzOOMCHOoLOV4+5aXrhP/egu\nAMBbuHijKkHSxTJGGsoz7R/v41KPgjkkCz3IC/gUr3HDAjZxMca6AGOL6NoFrJZsMlouYzyKT9Bm\npsLLN+CebcKI0SZFnldacEjuaHhyINXiMTKfm5dVh65IF2iUOFhLn94YbMG/STDYr+KZ2nmV5Hk7\nb+ftO9pzYSmYiYbeXgWPO1t445bsjIV6BXe+JrJiG5kFsObd7Qyeouq2Ndlxy+0lFiNqOvgRrFCu\nscYRbBbgaHUH27qcps412eHLeQ1lKSg4beYgrss99JWBVV12+W3Xg+bTgkjFpM6TBI9YEfWT123c\nsMU8mz8OUaFEXKcsoFhRtyA3w5bVg5uRjajh4XAqBVMt1wJCuce8Kuag3b2EVimn8czR0Sb7UZ6k\n2I7FxVoO1sjacpJePRErxjVd/LO7QtBaFCnW1CwY3tXwAz8mJ2VWqcA5lFOleUH67lgKphL2qjgb\nopOJqxHXQxgsIAtXGRrEEIQUWbG9GU5o7m/oBrS2PEfTcpHbYsKaqQeDbFAVsjG98iTDsi2n7lbV\nwuPjXQDAF10L2ULGsJaVqBEh2nxA/YaVhgHPsrntIn/CKsmGAS9kOvuWjc3LYnE2enJihouPYRNj\nkbgFLh+yGKmawoQEntU0wcvEDswIQZ9emONUp0XQcvBN4kgemlNcrHD9UfsS1gqKWg7wak8ZqnXX\nhE69DMeMUW2QmJb4hmxYRUDtSoUCCdeenlvIyCDVzfsw6sSIEE+j5RH0GQPlVgCfJMR61ccPXJZ5\nuvapNk7174of/Be252NTqJTY/GKMWze7KLJdAEA4XqNZykJfFGs0ST9ebWyjTb8chQA0VAFUWCrr\nrmNENRls08iQk3ClNp0j77JybiycdUargJrJhC+9Naw56w5UCpcoy3gRwW/KhPmUQ1cmUGW+/UGR\nInhfILiXGg4yojIONpZwO6yCHJ4J4sYIGRuYWyvE3CzGpYWmLRvSZr/O5whQNgjRNXzoJGRRywwn\nBC+liylqlI8/YLzj2w/2sWCkv8hLNFrST7PrPiUkWT0+RIP8gglpwmxbAQ0ZCy9JkRuSwYmXK4AY\nCMv0UJArMyVNWJl5cBfy/GuUaMzlu17DEVp1ANMkRspsRZxKf5b1FMZc5jeDgSqzOUVpQaP4TNjs\nI5P3BxvEltw/tqCqspHPawN8jvObZwl6rAP51I1Po7EpL0seS3VpZi6RZRJnCCdDTE9l8210M4Sb\nEifQ7rRwCALDusRp1D+Nqi0uxbwxhkYuxaP8Ml6vy++sJt2H8RrznBWj+gpRJHNSKUKQeQ2+bkIV\n4t5GMxmr2XwMbUVQW+MidIfYhEIBI9lYlwhRV7J56YxhYRhBNQiLn4ZYBnLI5MkUB2Ppf7gf4PLn\nzsqSnq2duw/n7bydt+9oz4WloEcGah+1sSqeIKnKPnW0OIJGiqqkjNBkxkG7F2LZl9NGkaDVzOfQ\nkl0AQHrVh27KseMschiRmMmr0kZJ8leXtFz61EZmcFce54gJGV5NFPSz79QrWJKs4PiIFZdJieWJ\n3PvwWwnqLcrQ7eWY9eVk2hzlmIshgwvMZw8xR3Utz/dooWNFUzQw17hcY6EQr+u+skCjLsEyp4ih\neK1VLcN0TotFz3DyRE6/40C0EyeVABNKsqscaLA2vxYC7kxOjMOaQmUop5vRl5PITqvITxjMtAMs\naJlF+gqzPXElrLZCNBJ3pULcyHBSQRbRqlAJmmS8Lg8dYaMBoPIMWSxow+khqdSWY7Qo6ffecIAq\nKybLygWUtH5sy0eZCmb7JP6mzIcFLEZkLzlc4Dddmb8NN8dulZWGbx3jJBa3aEHcy8m7YxwQNVit\nVEEJEJzuA7Mj+Z2lzXGgxP25tE/0q24h+Kw8c11dR0wG5qs3YnTZTzWWedyujbBiEdTRJEEJWTeG\npiGjUjhyHTkDkFEoY2ItC9Q5/37fg8XA9XIUYnVChurOKYol128kf6u2LRSUm9NagHYi7tPXD8YY\nM5tRnoS4/i7JNp6xPRebgq2AK44OfdvDvVN58RplAY0hW60AqgSF6MEC3lwW27SUgS7sLmoxXYa0\ngqJk5NzpoUEOQiOOoHEAc7oGRmOEckUcfZIBvG6mxwhPmaYyY1RZ9jo5lMWjDA0+zedZawVmyxBd\n7OKNQhZV3qygMZNJ36oyhmFFmJPURZ+eAqzaC2ID+8TRa0rySmb8eWiEyZaoo6zyWU8PETKLoC1K\nlKcCZJoeE168N4fjdDkuU7S6simoZhXDlSyOnVoToEtUtRk7WJmwlfQ3nhVYK7neMslQnsr9HgzX\nqFbk+8NQrpV7TYR8jrrpIS4J5NHmsMleVS8M5CGFfSbyfKMgxWrNOo9XLsIgb6G5LhGkcu04s2CS\nX/AK5e6/cSdAhT53cHiCHu9nmzrCnmwEVsWH1pb7LT+W/94rTeRitWOr4+GeKdfwYSObyEaVWcCU\nac3KlmzIO8kuro3kuh/YS9Sb8rmMp2ixRH1BUJsZOU+rFutOCJMsVWVsIE1JKLOOEbEMvjDP+u6i\nssmsld5BEci4OI5C0ZTxVrqONbNgOt3OolGFwWyWHrYxfSwEoN4CeJvVwTd/ZBfaD9N3+bt4pnbu\nPpy383bevqM9F5bCfLnC//WVr+L11i66bYG4lm6EZEk5MrtEQpGNaKZwZIot3aX8euxl2D+Rk9u9\nM4drihkVuBE0Vg86XQuuKaeG50sAaDVTiHTyAaYBxlXu5oslzJac6K0mUNTFXFWMMpdZgTktsk2/\nRK8mJ0L1QQy/Jzt0JS4Ai8rGmpy0W7MGLlI5eKO2hdunYrrf6rSRDuS5twntruhNNL0zzYIQ0ZzB\ntVAhCXgKJlOMWLh1j7oRA1/DYyVHolIZCK2A3TBQ7zPP3R6gmDAiGkm0XK9oiGdyci20McpI7qEa\nHmzqVI5mU9hKnuWwobGf5VPeBL8OmCmrCItjaErGOSh1RCQiMUsZw+PjCS41OU/HQ0yO5BRcvhog\nDEitp2uovcDA3u/J76tZjPFQgoTLLIVVyCndiB0MH4oVcjc/wYsjwSHMD+Vaj+ZHeBDLKX6sji/k\nxwAAIABJREFUrdCk+9D3A6yocVFEKS5SvTy9L+O9+MLXMW+9CAB4xe7jUUXG1l5qCMhloagInjfu\nQhG8FSU6aoGYkHMLOF2fVU8t0XaWnB8CpcY5ZppYfNvGGHpPninPt2D05Hot14c2l/WwMGWu1VKD\nRcq+bDXEgDyY3xqOcGFXnmMYxtAeEzb+jO252BRMAP0yw8odol4QDx6ZCImaUyugco8vb2eM5oha\ngkSiVRcOSjLzZMMEo0QWvLLrKEjy6VRNhBP62ozCG+0WNGYcFsihSD9ea9twl0wBHo3RuSaL94Ak\nF9AAeiKIYmDvMRGGtoWje3IP70WFLgVNT05JxLldwHQlBtDoVfE6J9806+j0BSBTNCk6Ol1iTRLU\nLIuxIpApHZ9AMUKehiVmpXxmQSIeTudwWmL66s4JmvTrvZYDrU7GnycjBCy5PZ7JS16zugARn0Uc\noJBHRrd3AQ41DC+mVzHjRn2BYjkTlaBuySKdTzOkmix4vesjfyzPb5gKiSMD9oibwrIscKCk06/a\nBUqWs0fLKapXduV3nW3c9WWu2++Iafzeo2P4TB3Hxgq2IS9m5Kb4aCrXC7HCHSpKjRayeydZjoBA\nwdXkCFcIWOp/fgvGBZm/ww8MZJa8vFcd2SzrnQ106cuv6wV6nrxgo80cjaE8y4r6mfXZZUwDYcta\n5UC+lD408gJzIkRbWYiVL/d2uKnoVo5GytL34hT1RzLeoX+MZpVCO0ceLBIBWy26hE9i5LY8X9a/\niK/8npDvPM4KjEeyDl/9lIniC+cU7+ftvJ23T9CeC0vhMMrwtz+a4cu/foRXPicn+4uhgS5lsKa1\nBBbN1vUjDY/JVpxmctpth1U4NOHDeQx1kfnhZYEylWuc3NNg8fRDStXmky5yYg/ydYKAJ2W+dpFq\nBAPV27j7B5JR+OYBTe4CKEnJMF8AJk+ggyBFV0nO/qXQxP5crIKIVsdpcw3/nUdyrTiEw4j0olbi\n1aa4RCa53osrXVgpeRCXU4zJWhw3XRxNxWQ8WH6AxZGcHh8cirmc6RoWR6z9QA7yqiCalTD35LsB\n5gADalpHTjvl5UDIjERgISbcunp6jPTseuEcC8LJ3YyncpYC1pnM/ByaQ0r5eBMVcmMkhULMTIu7\nEMtlEkXosoLzt49qGOzJief8ZA2VnvQzSW1sTQWE9M8vS43DptrCvbfFtE8yDW9TY/O666GeE1bs\nNXHCU9rYoTn/0ESNPJCThYGd12Wc375bwLlAQSBLw9XXJJBY7JMZutrGA7oM22YX90kW+mJoIaoJ\n3H5Nd+aojDFbyljFETAvxDqK9QVWtIr2jmYw13K/yxSkqdcqsMlDgcsaVCTrW0ts5E+kn3NnifVa\n7tOciFXpXjWQ2QLkeHh/D/fmcr/hyQwXX5C5/DD+Mv52KWC3/xL/A56lnVsK5+28nbfvaM+FpWBY\nCp2LOt74lIU75N3fmTlYF9K90PDR1mQH950hnLGcYn9ABuQtw4YGOSW6RhPrqsA6K3GEJVmE4+kp\nRmT68Q/kd73NCUpaG0mew1Wyu/qWiyKTXfdgFMNh0dD+lGQIhoJDHEPkZpiszlKVCk+OKShTW+EN\nxgHyKlmKgjqWKzn9/aCKNvt8pAWYeBS+oe89WXtYHvH0tEJQ8Q41BXSJeHs3N/AHJ1KJeBbIK9MU\nZlt+p1IgZa2/niU4mog1cllzMadKaVWXU8SepWhSA0JDG8MhGZrDGULI58bYxRNTUHM9TU7Jfazh\nk0su0AKYSu53ZUuHz+rBONExpcjNg5gpS9NAZclYxeUqZi7Zsx9liAdMC/oeuiwIerH2A/LMk19E\nWSNZ7ekIji7jfTDP8fItOUF3Kx6qxyLW8Rap+epqjJkh81i1B5gn8hyOa2CSieX1xoaNSusz0qcX\nJS5Trb2O1kqe9VtFhL5LTYZBC7VHZIquMQW8vovUECvHMSOYRJb2azuoLiTWkBYrfLgv89M6U90O\nPdxQYlXGRhtY0EJcpYhzucfQTxGRk+HCrvSnggES4js+XhT4jY/kHoUOVPdkXn/2P+lg80Vy/T1j\ney42BWQK2omO//vrDfzUj8vE7jiv4lvfEkDOC/0MFVdALH5qQG+IWfoz5Be0q5vICInWliVakUxc\nUnNgQ/4eRwZaqbzItZsCFzU8BwWDjzUzBDyqJXkNxAv5e75Y4dvJfQBAdAZFzYEgl3tXDBsW6ysW\naYkZVZWHdwx81JeX6ZVLEuD7i1c2kVx7Te7dPoGZCfbiyztVWJBNb6ik3iPfy2CRpGWWe0h1WRy5\nbaJN7O9gPEVExuszvccMwNkOYmQ5RjRLg6VC0RT3ZxkY2KLm5YBgHPfqNRg1cQNqgwzVDVKCaQ0Y\nVM3Ocwe7zhsyBqwM3NUf4ehbstmkKoJNwZ3MBgpSrFW0HFu5LPovvCwL9NqBh0uXPw0A+JHP/jA+\nuk3Sl60lfEPGwiwNNAwZu4Lu447eQpkwsKnnyDJ5CfuRCf+h3GO/OobJKtALQ3EJs7CDVY2s21mC\n3UDm+jjpounIPN3c/CKuvyIQ+JQKQKqtYZrJIeLGDuK6jIXx0R5m5ZkAkfS9qGrIj2RTX7nA1pIS\n9VcU5k2Z64ae4sKariC5FjNY2Lekn9tLwLsgwcx6I0c8kc27aSQoN+QaJg+ZoHCQMtuz/t1DVCxx\nXUv4sDqy0f3YzVuwIgJpnrGduw/n7bydt+9oz4WlYLcUdn7OxC17F2ZfzLfR+wtUPTmNju+FyF9n\nRaGvMJ7K6dBg9RouzVBTsosGt6dYJHJy6Z6Cxeo8b6wht1g0RRMdLYVYDmDkhgadSf2ltsZDmnj3\njg7x8UjuPSOyER0Fm/z/mpljHZ+hEf9Q/XmOY6wdMfMmhNceLicw69+Wvi+qmIzFEnLjDcRtybF7\nNcqSBSEWXQbcsjkqzEdPxzmWmQScflO/ixl1BlKa7apUyFNJ3yVliaAmfV6HC2TUThgZLhxNbNdH\nRAruxmvUTTm5cmXB8kmGkinkZ7yfwxlCumyoyf0Sb4iSGhDlpgFFujXPNzF7SEESpXBwgYQkiVg5\n2ksNvLgpp/K6q6MdiSVYMfsoSnnW43IJsy2n/6xJeLTdxuHgjvTtyEFKrYMhUrzZ/AMAwIbhIgxp\nyRG9ut5KsWuJBfJuMILJVLTWGeIlU6yRSXOIWXldno/Fc7VKE+VHMsZTJ8T4iGhDr4Y8lnE+jOS0\nPlgdY06XtxMAk6r87nSdoM2iqaRTh0c+kNwR6yfIPJAWAvN0DpeQfreeQVHsxqjo0OhKoULyofsz\nvMmq01/S3kREKTz/BYUf/9EfAQDESQqLOJtnbao8C6P/GbaLdb/8W198Ge8dx/CpfjSblNhr0Mf3\na+iRzv2ClWORyZscsqJwF0DOzIGzyHCSEX8/iXEvO4OgpkBPrnG5LZNSG2wiIfBkqddQjMhetPIw\nWd0GABzOCuTqjJZdXoQbdR973CAqdoo4pcHlW2iz+nBg1zFwKI1OM1OvACbrNeIsgkX3J9IKWJGY\n2mNqSlYSoHpDNrpuq4NdmrV6akK3SXcOC8lKFuGjfdlsSsPFUpNF3goP8fmf/5syLo6JmJHx1XyF\n/+4b/ycA4M2xLNyHX3kf5e2PAQD7yUfwfRnbPAhQr8k8VNcrBNw4pmPZNAsjQbiUF7PRr8G15QX5\nsc9dxQuEQj8oLAQfCTjnbnwmohNhmXDBazpc4ileuLyLoCQEO8twSualyUr85ZMogMcXfR7lMKn/\nOdOBDRbPRqaGXZeRfx4AzQB4dDZqSY6lx5Ls1IZGBayepRAxDtTW5L+Hug2zLZvJZ69fxPKaqEX9\n7GaKn/+nsi6+PDirgtXxI6ZkqvZ+7Tb+twPJCI0nQxyRecnVSyRkhN5gaX3q6rjA0upTpXBMl3aR\nhAhJIa5pgCKc3GvIpukaCrM1syurCMglE4OiAIhDgV3FP/3Pfh4A8ON//e+9XZblZ/A92rn7cN7O\n23n7jvZcuA9rlPiDIkapFoholleSEn9xLVv/x+ECvQHNyDJAlfLpfSoKF5qDy5QFj7c15Gc8BZGG\nmPnvvGIAgXw+oBtRNRIsWeg+DJYoWJQURGvgTOU6jKARbbaMJcBVqycwWcc/yTXUlQzjjl7AMCWL\n0K40YFICvMnKuTVKVDnkp5mOnhzGONEzhBHNYyIF1UUXXU2e40HgovYNWkeNOcJY6vhDQ4NxLOa4\nvnwbAPD1VYpXnNcBAGlnAYOqxLB8LBl0ffjLB3Dvi+vy+He+Is8Rd5HMCZ+9uIHXA0HHfdX0ED2W\nAOV6p4bXKAzzNapdO+MIim7OD3on+P0B8/Sjr+DDLWGmTh4u8JCCJAuiSWuuBZcFUwomlmsGTMsA\nDVK3PYwjlMRyFFS7LpIEqU5giJai4lHGzSjgETZ8WTNx8yo5KD0595JpDnNP5rq5bSMgQaKdmcjJ\nVt1t2tAJU44TuW450VE0pA8vt3Ic7bBIzxzi9Z8Vi/OvNd8CAPzHH7yKg3vy+WtljmPqWK5KDcVZ\nULxm4BrdgLYtz7HpWNh9SeZxleb41Qfi5jnv59gXowCDaI2hQ2rBTNzj7MU+fmhfgqS/4RQA8STQ\nSxC5jeyzAX7mf/97+OO052JTQJwBD05g7hRwaQ4vbR3v1+m/FhVkvvjc6lBhvJSBMEjAWu3kmNJc\nMmINjVN5YZ8EcwS5TGgwSrEgOUuHL+vQmmHQlYkpzQryKTcTzYKpka+wV4NWinmYHlKoZZwhq5JM\nRFVQmPJ5YikMKmdkrQsUFKEdzyWC3DJ85Jl81j0Nq0RMw8rcwnpBPD9VrJbvHuMdWoNt+yHe0T6U\n52tmeMGTdNklbYljR0z7uZLfV5q7qL8oYzV8awSDJqeZKXgn8qKn6xP8rw9/TcbzVBaYljxEyAyG\ncc/F73B9tVSIlcE6h+MU9+hC9ejLH5UF2oyy//pUx08ztrFw6vB8wqZXQME025Ry8Jphw2QtiuXm\nyMYytrPRBIEtfruVAlOqbD0OmbJMc5QkfSlVjhXhypdRoMbsQq1hoDeQzfk6SV2OrAgmhVOsug1r\ndEZFbyKayjV6XQttgt0embKB6qsS5lTG9vffb+CnXpbNdProOv6SLd/5R0NxKX4m/yreeizW+cfJ\n/4GUdRlFUcAhfLrqtfAyRYeu3ZBNpa65aO9IxmFjPkYxlM3kH9dKXEjpxsQhblZkHkrStw8SDQXL\nt2vjEIszlyFnFgrAVbPEF5c3AQD/EB/hWdonch+UUg2l1C8ppT5SSn2olPqCUqqllPoNpdRd/rf5\nva903s7beXte2ie1FH4BwK+XZfnTSikLgAfgbwH4rbIs/45S6m8A+BsQgZh/YVMoYaDESVBH35M9\n5CSZYjAX28nYrGHlsorOWGODFWC1HTG5tpQOHWR+9gMMyQtwA32khXyehzO8dRaUSuSUO8mmcCLZ\nrVWaYE4dyNDKEE7FhF0FOjq+BChXsZxmrlMg1MQ8Nfwq1plcrw8HSS7BwazQMaMqcYUn4jjX0GZA\nqaZ52KYZOdRjNDS5xxWeKFmW4wGDU8UyxzCX53jdqGLG55u16nhIXoRaIuOmZzZCwo6LS2vkp9TE\n3C2QKhFO+a2re/B+XT4/tMQcsXc19Oek7boRoR7INbwkRj6Sz//aZ5uYfEipdoKRLkVV1K+J6d9e\nmYg9SrEftPC6Jqf1/XiJmSsndp88Bk6oI2fAzcw15Ay6aXqGiiuZkSMFTKgT39QI0XZL9FkQpHkm\nPt+l5FvTxysEUVnVLl7ZPiO2kXZpaKPekLnp1Qp8UJNT3g4yTDgnnTxDfAY40mQ95f0U0Uz66XpH\nuP378kx+pQH1hvzuc4X09613LuHOB+La9RMfHouVui0D4Zb87qcvteDclMDlNVpVutFHvyHzdNSx\nMShkXf98dxuPWhL8nX+ji4Qck8ZU/M6rXQMlmcnv3nwI56GM8cgP4Yx53h9u4ov7so7+IZ6tfRKB\n2TqAfwXAvwcAZVkmABKl1L8J4Ev82j+AiMT8SzeFXAPmfobKF4AegTnV3IczIlW7mcA9IOd9I8NZ\nZuZalQQTXh0qIlOS08PmBnkJ0wKfYRR5T9lwLTEDbx/I5jBXGe6cUcOrDBmHY7HQ4BqsS7B6cGky\nu/YZqYsNRdSd53iw6S960OD7BEOFJtaMomexLFynsUaxlsWddTQEhWw8tcYCTsKoN0VEC6uOOrkI\nD5/4yLi5jW0Nmc+67aSKGV2pJU3H7c0IA00W65VBB+Wm3DtAjIJ1ArvDAL96gdoJPjMVp120S5Kb\nLOv4c5vy0qd+H9l1Ga/LDRvVrmzUO+9INqBRVHD1krwUPR/47dvy3Tsba9w+4Tj7FhQzHzkp0G1H\nYeHIuLm5AZ8vfxQlmJjyKltaBzbHQy9Zyt7N8LoniNXL7Qr8mvTz4o4Nh9To9Qs7MGyqh7HsO4oW\n6Djc9CoGPu1JmvnJw1M4TVLp1wbIWfOyPKBuwtzAuiJj1YkyTAkGG0Vv4lOWANGm90VP4TC6hzF5\nG08nC/B9hV1r44d7MkYXmn1c6sqm4DL74rc3kZOwZUfVYZOv0nS3UPRJuuqP8dv77BtdIr+0Ee1I\n3380mWBC6viT2j5+elMyVL84u4T7TOfjd/FM7ZO4D5cAjAD8j0qpd5RSf18p5QPol2VJ8jAMAfS/\n24//qBR9nBXf7Svn7bydtz+D9kncBwPA6wD+almWbyqlfgHiKjxtZVmWSqnvCoT4o1L0G65VXktt\n1BptbCSkpUpMqE0x7T8cLrHTlb/nSx27V4gv98mVsLIQEYpbdyzMCe64XE+xsmSXv97s4h0SaNwk\nLfqvHa5QozZTbMRIYznlHVSgkXAkrwcwLaE+D1YShR+0bDgNMQedRIeZy+fdfhUadfsqiwL6hBRx\nVBLKTQsuASb2qYJ9gUQmfhWNiFBZasTXrvbhLKU/X9hS2H0kJvxOvYl71+RUvXKoY9QV/EJzSJKZ\nPzfAxUQCX3jyyzDH0resF8JtySnf6W7gP/ihHwMA/M693wIAfOrmX8LhP5YquiuvWTAaco9/9fol\n1CB7fLN3EyfHUpt/ayBQ8eFHd3DjB6UPk+EJ/vWmPOu7ew+QkQzmcKHhQJfPNqklBpGJQ9ZrNCp1\nLBdi8Vi5gkO9ynS2RJUKV1f6Mqfblzt46YJAkJv5ClsmNRNdF3VyK9h6CJO4jwWttKprQicGpKxW\nALqNF66ayNlPUykkAYlTamI1VVYRWkqO/IdBiEoiQdx5mOD0sQQMf3dKDMX+AYyJ9P2Kp8NiFuW1\nK13sbsi43Kj0UUa0HGP5dy07gkVLcZWkuNCWytAimkMbCJhqFj/BD3nSp49PZawq8J7qmDY3Bnhv\nKpbgzZs3oX9D1v2LzdtIrrP24ftgKewD2C/L8k3+/1+CbBLHSqkNAOB/Tz7BPc7beTtv3+f2J7YU\nyrIcKqX2lFI3yrL8GMCXAdzm//5dAH8HzyhFn5kK44EF3c+wyTzxIlVYsFJvo7JGnUUgp+UaMQue\nGqSfKmsKriOBtiI20GRlZLGVApn8vbQMvJTL7nk3OuTflohSOT1ypWCQJTc0M9gug1YbVdiKWgBH\n3HH9OooK8+2FgzW1K1dJgS0SnsIAMtbLT6fyu4GrwTgrjas0YHbkfl64BjbJ8Fuh3oTK0SMBba5i\neJsknW0buGSSHLaiAyzMii9TkMXdhiuHONbxa5j1xKd2MwsLyKmiD6ao2GJB/DvHMpZbOwG+eV38\n0NyL8RPGNX53Ayp9BQCg7AV2dMFAzNtyOvZv3ERckdO633gJB3OJ29TNKVZt6fMNp4KSLFpjiu9E\nbooLFE7xmilun8oYjtIEimzG/W4fmcr4XHJav7bRwsZVyv5Ne8gYJ2nYNThtGdu0NJCn8juTsGO1\nCQTgnGY1OKnELTK7hlOyLlcyD2WdaVnKx6WdfYxo8Xl1Az6l8PaOD/HNe2JBTZbSh3StUFIn0mo7\neI0FZp/+zABeIZNS+Cs0qrvyHYrFxOUaJfktTMuC1qb2aGAh5fNXqltIqKBuFwKvXo9jaC1ZI5Yq\nUNsVi+e9gxU6WzIWXvQKjj6USlqAOe7v0T5p9uGvAvifmXl4AODfh1gf/4tS6q8AeAzgZ7/XRZxS\n4WamI9sz8Dbx5FvNJsqWmFdH0yayVEz3bncbg21Gg3XJv/rZ4ikLr2triClDrpIAtZY8Yjk8RsCc\nt8N6gRfrOmYnshgP8gIrkmJYWonVihLuj0MEpMEqucCu2CbCWF6EIFyjWZHJ7/UthEpeMt2OoMh/\nuL1JfkK3jRZBM0bFQsWSRarsPooTMagadblWJT3E6VQWq9mwcJnBMKdIcUKY7+N5hjWj5K+EzJbc\nOcAjRyDa3eY2aqH8TqsUUORsS1q7uBwJHPe2LqbqoLHAtZ+SRbe5nMFoCPCos7FASp1LK6oiuUwd\nQ2Yn1I1tWCyOyK0lNjd5v0YTxakYoofxKerH8twti7Dcoxg5szMjrUSFVekDU0OiM/KfAV4uL87O\nFgOwmolsSlEfPQffGUSrAiZrCbRKDyXdjpSYBs3KUHHlgMgmGRJmHNQqRM/m/ZbFU3q7yamMfTAO\nYdGtjBMgYHVp1UoxI5dkyo05T0usSGpzyS6R7xL0tqqiOpD+m6pA4cg1FIlXdMNEycrWwkug6XQx\nax1kS9LJlTE8Au12OOfzIsIRIf+psYLLash27uIeXd3Wa1XUl9/H0umyLL8F4Lthqb/8Sa573s7b\nefuza88FolEzAbunYPZs9EfMQecmHo1l1247BRqZVNHVmhX4kQTMrDYp2o4swGHVnqqgZAGT7i6B\nhcCjs60GDDI764n8uz0tcegJem421VFCdujFKkeVVXmrRh0mIa9nOgxmx4ZeY1ooBQJaJtHahU+U\nm0p9+FW5X4valm5lAe1I7qG8AMlCTDwHIzgGU4Akesk6F1CvSz+1eA3LE3N2iTnihaQnvfUC+7ac\nzLcdeY6dqcKVnhBsaGMPBccl1YEaK+428gp05tA/9QVZAhtHBaYkWp2dLlD78wLXjd7dRmbJd8tG\nC6CVpc/EsslLC/kml5E1QHEkhU/JkyomvsB1oySHRri1TVbjrAnkTCnXlgVKFoo5lRKK+okbqCKn\ntLvSyc3gJPBMWoIzA8pjrl9fIT2rXF0GKJqMby9oKcYR8rO0aLVEPmPVoj5BMRdLcF3PEVLiryQ7\n9slqjTW1HDoN+6nG5iIzsCAp7Ekm323AAv8Zum7CIJt324hRmVIfsgZohXw/WfI5iioK6kSqpQ4w\njZqNEyQd+ZzMMkSluGYluT6SjQzqSMaqEa/w/lSe7yNjiuu0OLPb16AM0gjiCZ6lPRebgq0MXHW7\n0LwuQsKH8/kKF8n3lzX72OnIAG7WW6jUKdBJgU9tPIXNFz23EkCJ2a4CHylFYfFgDSYisMVKv3fL\nFFYskxUGq6dRV9fwYERijreCGqpU7zmmsOdlp4miJWbtcZpgwEo2lCUKSri3DQWN9RNdVmdqG9uw\ndImT6EUE3aG/W92E2qMO4Eom2XUqiEnxXtvcRTSSBV/NCsx4u74bI+H/aVPZKBz04STiv5qNIdxU\n+lw6CeKebKYbSYmKJ0xGAd2y3m4XtRZrEZLLMJhdsGtNKLXPiTJRULBWI6uSXiawnG3ew4Xlfl76\nloxQIxnK/pMMMTUh65mMt5uWKLm5D7YNPBzJC/aiWUGywUj8iY5dS+Zql2PYbNXhWxL7UP4ILmSu\no6oGfcwNwh1DRTJ2GVmzzDGgcZMt1wUMci1W8iqmZIyuBGtkhIWvKVuvredQkTzrk8LGziVWLSYZ\nbjKTHjMLtgx8NCn04nomNnRZn5X6BdQ47xX/OnJiK/QHNOu3VzBBwhXDhk63K7RHUPycLxPoxGEs\nz3RVj2IErNc5DTQcUBfU0BXuU8zoys4+6peZ8vk6nqmdV0met/N23r6jPReWQqYDx36Odj5DSVXm\niVohC+S03mjFaG2/DADQKR8HADr5+J0tINXlKAqOJ9ASyp81G1gEEiF2kip0RplTBglDfYhwTUmt\nAkhYlbky19jusXa9aiB0ZEfXaeJHdQWPFZpVX8OULMHZPEN1JC5NsdGB0eUpRnO4PdWhtSh3jw5S\nBtrMbIVsIEGwBQUlilkMi1Vx8X0N9w/E9DtYLBAMJUg4i4GHJOfoEfH4I7YDfbALAFivPKQ+o+kw\nEJM/UG9kKGbyTNuEa6tuD/kZdHs5gUXiEa3TQHIiJxDiNQwG1YqBoPK0qsIZVE2veshXJGdx7mL/\nTbpKhyPcJ0fA/pLS6ls1vD6Q+x0hQ0IZvmMzQZdnVf/CAHlFTvqSVaR1R4NBK2UdlohycWOa2IHW\nlXsUhY/iLKBLubZiO0UCKsBMDXiXKFQztJE5Mp5haMIgr4NJ72PdGuHrb4nr01pF+DZl2gK1wOlC\nrJ6zzFBFeXD6rM48GaPjt/msHbi0plSUwW/L/KB9RpNmISM/hVmkSK5xTS4TZI/lud2ujeWIeBei\nMY8PCuRK5sMpbWhV+TzdW8NjsDINLmMxJQT4GQuinotNwdZ0XK01kNds3H0iL1WSAhVTTK5S62B9\nBu2MZRMBgITciOUiBVgtqKIZopxm1KkOpyaDmmszHDD7sKdJaqbraXBKWRxFOUfOKjrf1aDoZ8b+\nHBXKwBtUPNqu1ZFRz3AyOYWxJIdhvMSspJz7eo0NAq7OpmRRm6OeUAJeK+ARUpvZJSxCWL0zuO/J\nIe7f5sS2DRhUrJqNU4SMZAePMiSkYu8x7nEwWyEZCV5+s7oJg1F93VSwQqoeLUpsL+RzkIifqrnv\nQbHEe/6Nb8C6KpueUQDmBmMxQYiSlas6WAGpbQMkw8n1IeI+S6C3PgVzLAChvYtHiH6FxCnX6Aam\nJfKajFtNa+Mlysjf6nlwN+R3pwtApzJWQh7E4UMDBlW0cqwQ35E1cupr2KDilLkNFBP65Ywv+dMY\nOXVFleZjNWf84WIVViAVisHek6fZilLxhdddpK6sp3urCJtk5/KzOS40djkWMh+jaokYvFDyAAAg\nAElEQVR0X9bvqRNhkUg/T0cL9OpctPoK5ULuZ9KN1SsutJDErkkCNZXNQjemyEj0ezwCLIoflR5r\ncSbHCPkO6JkOgxXluaXBsWU8N2/GcHSJ7TxrO3cfztt5O2/f0Z4LSyEtMpysRsDKg0USjlQpRKQ8\nq6cljEx2/OmkAcuk9Dkr9dR4hYTVJ156ilgjUUkYIWZEerwK8JB53OhjOV1/fx7jMCedtlLIWNik\nYgtVkmnY9QZi8vnZBL+MJkuAtfJ2EiECf5e4qPfkhGnV23AqFAuhirBZTrEgd6BrFshtUqrrERSr\nCx3KlK9VB/ZL8vz+uoWyLYUxn7qhYToSMzCcjnFIvojfnEpQ79LBBD9aJ89gUUfJAqREj5Hvi52/\n9/bbSBLJEhgzuUfXOMAHb1HmrTlBvyXnRSPow1pKNqO2vURpivuWfp196Myhn+EKNkxYkPD7KtvB\nzhuCdSi/dQuNivAqfj2X+Q2VDYc8kMnEwIYjvztNATcj1VvSeJqBekIF78pSwy7FUj44KKAz2+Fc\nnePyh4+kH5sN7BADkFB9uj5KscfT36llWPXFnO8ODXx1Lqd/d5Uj4YneK+R3Fxs3cLVCQFrLQHZK\nvgvfxlcfihnvEkrdW9ewppL0tQB4py0cGLUkwDcTShBMj5G88C0AwAtkFbC8S/Dt+xyXOiwSh46P\nQix1ef77oYHOSK79zlzmabvqo7lFHc+7K7xKGr7QGWLjqmTdLttfwlZHrg18jGdpz8Wm4GQmbp5u\nYvzGELNtMWG3VzUMqRmYpybCfXl589kdqBaJM/bkb9ZiD+VKFmv/sgmbrqNmaYjoq+VpgOWJbCzH\n9En9eYomkX2L6Riaw4o8mOhnMsBRWaJFJNkD4uzNUEPYkcmYT1doUCKq6DpISVTSsH2oKZWoKoym\nj+swKeueBDlcMhYVfRMO02xaKOa8f7WNo6FsJuskw+Y/l8/d102oXDab5JUS1u+J2blB1qHTMWCF\njIG0V9D/X/beNFaSLL0OO7Evua8v8y1Vr9beu6enZ3oWcrhoSJtD0aAEWIIJGJAEGTIMGYINCKBA\nG5Z/0CABCzYsSLBsS4IgAyYpkTZBU6ZEjjQznLWH09PTM73VXvVevTX3zMjYI65/fOcVp2mSXWQD\nVgl4F2hUdrzMiBs3btz7Lec7hwudoWwEJAzd6V6D7whiMbr5ZX73I6iHX5Rjz2xgcVNM3Noghc5J\nqG9vQytkEcmGEsNZf+tNTA0qGn35GDdIYtr44q9C+xzrD/Zb0He4IH9P+rPZAyJG0Z/56AWgkKm4\nvWwhH8q4fCdR6LHK9TbTdJNRhDq1DrybGfaYUcHtAlkmC6M/yuFdYz+IGpzoK8zeocvUMZGSVPZ3\nMoXsAclwNhOQ8R4J1auaQRfXPiNjsfzODFdkncO375bY5HyoNeS6B501KsxqjOwahmThGpcW1L4s\nUrfrFzH9PXnR3y0EZHYh3sPWNXElavUERcpU550RThpkyzpOcEo+VX1P7ql3vQqPKeejdgXv3pHn\nMNzycOUlWfQ+9dE6zE1J5+O/x2O1c/fhvJ238/a+9kRYCsfhGv/dt7+Bn+jpKAlrbT2rcOlUdqNV\nGuLBQ9lBbz/McD+TVd6PJPK80eij15RgSt3rodmmhmMWYUbT/e40xjFBHweENr+HEAkp2nItRUlc\nQegskNFcf2VwGTMG6Dxfvntnfox6hSCrlgeTFo2RAopqUQcHR3iwln7OSMfW1Ve43iZu36rCNWT3\nbLubMDqyRcU3qUx19x6+TkKTu5MEq7Ws3z+cbeCqTXCW6cKgqzRn5V1luUAZyrGTkwhbvIaemyj4\nu2pzgZisyr2x7Kjfu3cX/3JfIOb37ur4VEM4Al781NPYrHG8bR+OJq6JcUmusX49wNED2QW/8XqM\n7xKKi3UK57fl3B9vn+J0QY1MVkDujSP82FusEo3uwWV9yDenR3g2EYvmUn8HUxbZNu7L7hljgd9b\ny1hN9Cnih7Kjb/djHBOTsdRH2KBrskN4+GJSwdiX8bx5L8GKas6jVQ0qErdqNqlhm7UwlzuUb28G\neIqvydeQ4a1D6c9kYuErx2L19SM5Vm0XeI7uyquRj4ErFgQWPhZNmXtvngZwfJlPmpLxWfn3UaZy\nz8/6fWSGzK2lv8Q98ko+jAscMkgNX96FC1oVA/esmy6u9OR6ZVLBM2t5d1qVAYITIqoes51bCuft\nvJ2397UnwlKwDeBy3cANN8Sza6b3KhbSJnUHa300Dsn+07PQP9NxNMTvv7Dy4Ne5Y9QMmC3Wxx+V\nMC9IPGBgTpFUzlicuZtlCvpIds/fy0xAMSVZsVCL5BxxeIKWI6u4V8jus2kYCG35u5/G6Pjyd7sB\njHPZmYNVBr3H4BKHuVHfgk8tCCgFQ5fv5lmIgvBfbUd2O8fs4BIJUbt1FwebsjN/olqBRTbj5DRC\nn0SvKZWMp4mJNx+Ir/rRTz4H84wx2TJQo4p17u6ixXRvcPWrAIArroY//0lxmE/v1MFSf/TCBtok\nFbWKBuDeBwDoJA9t/sCPY3giQccfe9HDj67FSjvZdHFtLjvUYXwbtXcZMEvl+XpLHV/0ZMf7ybSD\nSlUsvZeMi7AoiFNVxzCVPD/jZen7/ZmJ51goZ2xtwGIh2NILsfyWBP4uuxVskQHL78iuW8YR3OiM\nq2OJKp/NzrqJ44pc75oVISEaNrNkPC883cI6kL43XB9JTDawIgIz1AjaLGBSOf4NGZWt1hiX5tS2\nrPiPxGA+0l2hqEjgdkC2sHVcx/aZRVetoc651d7ZxlAXK0bLdVwvxbI4bsn8fcUzEFbIYp5pKCns\nE8/mMBtkq3ZMqMYZjevjtSdiURjFJf7e7TUuI8IeeRL/440Mu9vCWmy2EoQNGeBWWCImt10QMGAI\nhQoVlAo3hEU8PLQCOyTIWAwt1EN5uBNy3XlHNXyLwKJuaWA9JhbC99B7TiZjrXoRJzclelvVGexK\nNTQd+V27tYl6V2C3euhhoy3uiuPGqNMM9C9L34zKMey5PMS8cLCgCW+Ya1glCUKIauhubOMlBijD\nwxKfbsmL6XoO7KZMlGC9wHaTPI+pTMaeqWCTkj58aCAPiMLRb6MYye/iVQabbFcuqfN914H3FeIw\ndlJoORfC6gSGRvOz6wCKZnUgY2IXdQw68mw6tRaih8RNJDsoGPDt9XJ09jku5Jr80q1TtCIZw195\n+wA/yGzHb5UlPnksGYUt7SoGHWI9WOHYdCbwe/KCzaYVBIYsMnq5AsiOnZodqCY1KCkmk4xTVCpy\njt2qQkGwFLwIfULEY7ePCyTguagRVh12UWFp/Ed6K/z2Owx4w0Yayr1k9+VcgV7iOkEpvmGj6sp9\naJUK5uTbbLgVKLKJq7EEEZVysWQNi+skqCQs+7Yt9Dfl+VjLAAbp2zq5LFxhvQci8JGN9mAsZOx7\nDRvepszfYDqHtpaF7HHbuftw3s7beXtfeyIsBbtp4tKf7eFndw7wDyiGcvPNY9it7wEAhsGzsInK\nqutVDHwxmReEETfMCmJbVvAGGtA92UkMbwZYrL0/LWA2ZDUeUHFYLU+h+WJylXkGtU3dSbuKpyxZ\nobXSQNqWlE5uiwzYdsuF0xUrRk0T1EIZxtQ0UFalb1uag7MKLIvpLdW6jopDTYqTQ1SpOmx7G3Bn\nZzwE3A2cOizqLQzjNRaQ1GNrvYEVpdBqvQGGiexWn6RVcXec46rNYiAjhsnKTs0YQjHo1jlZQ2MF\no1GRXcvJnwM+Q44Bx0FGxWh9dgEJ0Y/GvRZwUQqorFJ2Yq+6hqtkLLLsGN0t2Y0j+zY0fme5slA+\nI30qaY29/Wdy9G5I4O/jOyWOH8jn515p4UpfxvMgd9Bn2nks3UHdaqDPVF+rOkd4ZjW6m9i9Kr9b\n5An6pfzAoXndatfRuiWWYn2rA43aCw3TxCSSOVKzfVRacu46cQVeGMJpitUULuZ4ZUOsvn8xigHq\nMAxcsSROBgoPZYrg84M18m/L37NrEbY8ztXNGoqcgUlbrvFuMEEn4t+LKkzyNJiTDNvUlWwNGvBX\nTG3TDdzwB5idyvMwlI+AmhU9R8EyZLwrhouQ5K6P256IRaGaavjUAwt/956Pv/DDMmDXtp7H0VIi\nqPWKDpu+XrXZB8hu1Dwj+hik8MgPq6sQjkZXYrcJ965EZOe1Er1IBirblt9d9TzkE8lgXBv7WBRi\nfi07KUzmh7v+MzhZiI9emvKCvX0yx+B7MpF67T7CXIbR1hTqjiwmpbeEqkif9ZWcy7WaKM+oxdGA\nQXFQX+/CvETfOSN4S5+hQZ882zJQj+Szpiu0WA4eNxaokLZ+NJIJeKleIO3RfdANFOQl1GMdKGUh\nMFs6kkReEP97lFz/WAnd35W+hw/hgFL0zVPopfStrOcwKARbuoTiHo2QcSGrpM9DPScTsLIYIFvI\n9dphDeue+PtZJKbshRspvnBD+n7xioFZLuZ6fAgc2/J5+LwHDARP0bgn8Qc7yqGozmX0hvBG4pb0\nlYmVIwv8tFBIc+lTmxF+3a9g44Jc751JjMGI4rfbHmpk9aqaCk1e22R1ZlpNUDLWdHEwxBsHEj9Z\nRTHMWBa4Y/77o08Z2HhF7n9vYSC+IvMw1xpIt5itqhjocDEIWQWcLWOsyDZ1Ie+jrHPRy0MUFOzd\nsNpQF2RxarJ+RJUL9Fy5v71kCYe8kg1zE31Psme6ayBZ/MlIVs7dh/N23s7b+9oTYSl4Gxpe+i9M\n/KXKFZyciVj8lo1rrANXNwtoQhgMqzeAtZAdISNBilqVKFkrb6T2Iz7AUi+hDSTS698dIZjKSupX\n5bbr3RSDY/n8rpZB12QF7mcu1FpW8z3zdYxYF6/XxBppVeYILObd9SWq1CkY5nWAFZOeDoAmrKKO\nYjpZoSBiMY9CmAwAackcOoNkJYNh2skE2UJMaj3vw6IMmvmgQJiJjZqUKWyDsGlWAEYtH9larICy\n3wNCMf3RvICCLkFalKjMZBcvduQatrGE5guJllmaKHPy+p1OoFNCTT8dAGcVfCZ5GpoOjLlcQ+mH\n0BlxR3Mb1KxB4o+BWIJuHVY9rj/yAM+eigm/ylcY6rKbha8o1C8IRdw6s6Bl8sw0Bnbz0SlKkLqs\nvos23aNodfJIeq7dMOHT6st8GWO9WkW1IpWdl6K3EVM8aFfPoQ1lDrTWDSTEKZSn5PHsmIgmYhXt\nPzzCjAVrngbYovaOF0mWYl2uo/y/ZWf/2HMuBsxEVLoz1E3Z5WuTCVIWZq2XRGDmCi4LnyJ7BJNu\ngFsD1Jp8IGYAh26ozUB6upfixkjcysN0hpCVgqXrIipkjnjucwA5Ph63PRGLQq308CPrF2FPfBSs\nYDz+UQfRF2SAm89paFGlSYtMKKZv0vCMG2+BYp902f0VNOpRmtoSs1vUpkxDJFRfsgk2KY9tJDo5\nB00NUSIv9Hym4c5EgDxldBVTpjDPVIpy5aLIqKw0r2CiS+zArxZwqAallx5MUpgnzAysgjnKhMxM\nhQGdlOulryMnMKoIWNXptbGmmegkAfCe3F8+VAiOSPK6nuDOnvzuXlV+1zE34ZqysLT1NgqmLAvj\nBoxMJlC01mGTxFWv8SXOulAUki2sABmFXPLwPZTRczJuT6XQPSFxRSKLRpZWoBWyKOSVNmzCoLUb\nGQqPpcwrBzqrTkO6DNuRi3xX+hkvuqhfYi1JfAm4KatJauu4O5OFww7Ir4kCFl/C+I0TnBaEsZtz\n5IGMbRl2sbpIBqs5ZdvbBZYzeU6ZsYHSZeQ/r8I6sjkEOsqVPDO9KdfLxlWsIzJ19WtIJuxnpuPi\nTbnG9ULmTdzqoC7M+Zi/liN6Qe7viqZjss8YjlWD4cjGYITSh5rmQW/LM4Vfh0F3M4x0FCxzjWyF\nWiyLfcyN7KSY4/ahfHc6W+BuJP1ptFaw57KJ9DHG4p4syI/bzt2H83beztv72hNhKejKgqcGCPsJ\n7CNZ4boHKUxCaV3TgKOzolBX0HIxQXVy4KlogCIR62F9fwWNPIeY7SMiEUZQ0WERfJTpZ5LzS2ik\nNvNjoOmKeTYZ53jwnrggUfW7qO/+iFxvV3L07TRHxEKU8XGAGvn8dq75MGhNJLkCzioUJ7JLLDIF\ni9WclaKE25NgUBn6WNO1UZnsIlpQINHPOAFs2Cl59sY+QhZ5rRIfq4WMwQ75JqZ6gLYjO1RmL1FS\neq/MIpRzsRS8gzaspyTAqFuUoMubKJnhKG6NkURiPhvdF2BCdusis1Ge0dxz99TDGlAT6LPpO9BA\nwFn3EFhQJXkRQS+kQGfRFAvs/izFtivn/cFP1qGZcny6MDFmdH60fwIzlGeyuS3jphUuTJr+0fES\nNVaH3lc59LOsxDjEXiG7o3dHLLq4DUQPZYzaGzpyTwJ/kTJgVqlHuVhBp+S9PqPFly1gEdMRrFIM\nbQnyfttf4cdqYtF0+O/NdolOTGtys0CDEHpro4KS7lHHqj6yHCNW0TbWIWoXyAdS1mAYtLZWCVot\nue/QUTAIdkqZDUKsMJ/KPD1MTJSBjPfsIMGdquBIpkYXM1qFj9ueiEWhyHOsxiPY8wYK+t+o+YgJ\n4jBS49FDTEoFpZ85q/SVLkfAA4prHp7AT2RCvBclUESgrVIN15py7pgVkHMnwSImktB2kMxpUpoF\n9uhTXjZewozy8fFM/LsTT0HRDUjbOhxPHsZSKShqBLgtHcdMVc5D0nvXFUAC08NkidNbLPvV6jDo\nKhQs8ax36nBZU2EWVcwzyZKkMwWsZLFYpwtYRLfZvmRqBt06/K68bMsgw5Jmvj0C4BPl9nQOxTJw\nbULE3yBFnsiCFFgJzFzSjHnNQzGV48l3DlEtRCFqaslkdO0RbJCLUBnIyTakFiFKAnb07gbyQPrR\nuCcvaWMO+KAb8PEWzMmLAIDT0xQxNTeCLEbOxdebM5ugAcqSv0/Wa7x+Ks+34eVwB7LoR2GCdCnX\nvtSXOMK8sKG3CWSqDNAm2W7dUsjm8szKioKWsHK1JfMpDEPkMVPAnRb2WBFa3I/wW2/JfPjkBtOX\nKoO5zUradzT4z8u5PKtAh7Tsp7URehQDDlx5WY/un+Ltfymfn/FuICWD0ryIcJWl6tt+HSXp4xfc\nDMeTFC2iKq0oR0auybXuw4zkD/MLBfLlGcPT47UPK0X/X2qa9ramaW9pmvZLmqa5mqZd0jTtNU3T\nbmua9ivUhDhv5+28/TvSPozq9BaAvwHgWaVUpGnaPwPwHwH4SQD/o1LqlzVN+wcA/iqA//mDzqdK\nIG+58Gi+RYch/KWs0PtYwicMtHa9AnvNHYhRWFdVkVM1yO86iIiv//gyx1jJDmsePcTBWFZ23ZTV\n3tzy4VCBelyECLhCrxYZVpqYiXv6BJ/t/PsAgG9uy648mKfQCJxCbGFB/oIUAcaKNF6nNkJX+qGd\n0bdngEXtSjNfI6de5Y3lGLs56dXJFeHUE6gj2V3MdgrVkN0huDXDhDwNtV4FOrMAZ3Ubvm1DsaIy\n9AwYFBPRLm7DJZ6i0DRoc7lOPLov18ACaU12F/NkBGxL3/32ZWgXRHSnvPc0Ysj3e6XsdvqgAYuM\nwpm6AY0ZALWxBfNQnlm8nAHbYp1N98XSODFWuE5eysF4iqRDsZi0i7AqGIlaoePWWjI74VysvMks\ngdOXv582l/DI9VBUfQyoOFUZ+NBYSxKQe+Fp3cEDBvNqVoR8Js9BXXCwZPWouZ/BEIseLsUOSy9F\nQotv/94hgh0JzAaagQGzWKMt6ftFZeHwBt21NEUxOuOr3IAxlO+MjkLklA9wlgQVbXuoHsh93AgW\n6DJgmF0z4DC7kiRLuMzcuIRdG0mKdxhcDaFj2JL35ZK7gdKXe3q6fh3fpRv7uO3DBhpNAJ6maSaE\nivAIwJ+B6EoCIkX/5z7kNc7beTtv/z+2D6MleaBp2t+BKExEAH4bwOsA5kqps7KshwC2/rDfa5r2\n1wD8NQAYNnzEqxyWduuRT+bWSuQZd928irCQgJJzCJjEJJSK/mu8QjlmYMgAqLUBUw+h9mXHiM0+\nUq6qkc9imLCB2rOyLj59UsWXviM+/jS0cXspMYWPPnMdv3kkK/ozVbEeutct5FViIWYxNFoHs0RH\nhSzPczOEVrCgKZEV3GkYwJIIw6aHeMZinms5bn6VmpBkGEpWK9hE4DVP1jAIeU5dHeWwze+EmJG1\nOLTkpp9zu0gdud6G3QM0Bjvzd2ExGBuf+tBJPKsUVamjKdIHrLKbT5DnrDRdLqE0oi3LEpYjGAKL\nhWTZrInSls/hrRyWSQbnqAFFIROlbKy+I9Rky3dkC3ZXC/gfucy+b4BFicjrPaAugdnZTMN6QjEY\nEsXmtoJ7xvS08jDV5L67roGUGh6jVYSUysyqJ2MxuZVh0ZexWLo72HxeduC9m3vISzn38IILD/KM\ni4r8Piw93FpJnyddB3v73LnDNd6cyNi3viX/vlVbPopb+XPAvSTxk92kguOxWDdRWGLKc+/QUjCq\nBqoMDmxdbaNNhOTIsICWjH3eSbEYyfyNF/KO7BsBEhqsx8cp3MlZ3O0ePvqc4HPeeHuEhycy9o/b\nPoz70ALw0wAuAZgD+OcAfuJxf//9UvTP95vKGUdILtWgvScmfrPfRt4QgFASLOEUNJOdJdSEcGVW\nyKXHCwShgDXchwn2KaRZC4DDnC+ZGWDGh79F+rROwwVYWhyrBKcMaj08tpCzfNULBvBfIKa+lKhv\nf20g7Am8dPbQhnJkYsbjCAsqGV2v1KBoluYskV48NHCtJvdUtHvo5JL/j+x72GzLRD/tEpuRWbiz\nkKrG9TJDvy6T1XPWKAy6WE4FeSL9GDAoO0oK7NaY865rqAQcQ6+GfCUvm+bpKA7qHJf78tX4KtyW\njJs27+HwHhevaQiv9hUAQPmOi1mHQiQrWTRDrQenSt3FVonWjgQo68+sUVAkZz6eY34kE/rrFGdp\nd9fYbknWwtupQ1FfcfNNB0FHgoMPFwVWhIKvSaUXmTlqhrxgg3yOZCUv0N0sxPWOjL1f2UG9Iy/F\nvY48081eEwUFhXz1NKbjN+V3N28jq8q+tVMFHJr2GnEx1XkINZfzfv3uKbpbhGPnHuBLALrFvh9U\nV3jvIdmVXROrW1wgLkzxVF+eU9u9gCCRsV1ysTHuxqiRU/LWhsKKpDxBUIV+SeZc77n+I/GjcSzv\nyPE0wd5Crh2bBjqQvlWqT+NoX/qce03cIlblcduHcR9+DMA9pdRIKZUB+D8B/ACAJt0JANgGcPBH\nneC8nbfz9uS1D5OS3APwSU3TfIj78FkA3wLwBQD/IYBfxmNK0WelwlGUY2M0QcGiFtMcwiKaazNz\nUHTleKIbqPTIe8Bgl709RPWYAjCbIZ6HFNFkloe+Kbn3468dYkh9QZMajystgnks9teGbeGpqazA\nN1shnokloLRo7uBn+mIy739bzLDk4zqaFhGIvRL5XHa2aTlBSWZgY8eCKmSX7jek772mCyuTFbyM\nTMxtOce2dg31j8mjqDVkx8iPj/EcM0lluw6d2pXlaRVtphNnKxtJjVWEpGPbztrwqRGRJUC4I/da\n9VMEfZLBLOsoHVpT+hW5yGYfFkleoQxcJQFrfmEL2j5Tkt4c2z5JSDwJPlabAXBPgoHtK1ehhrJD\nF1mB4zvC4Dz51gN8cS57wxDynD61vYvWpnzX3ryCaCHfXbkZHLp3lVYXXYrI3MhpQcYKA1/GVa+U\n0BMZ+8uOgqEEe1HbbqLliDVx8Zrg47Vpgv2JuIdBOgboXlzcHSKsy9gNdy6hsSUuaRKQKq0WY/Ta\nFwEA89DA4U0piJotjkHkNe4SQdtPXDT5Sj0MchzSUvpyEOB+IAHWn3i2jk8RI2Jckr5Nbt1EfiQW\nwdUoQ0CUaedqhE3Ol07/ZRwvLI7Ra/Lv0sCQgeue3Ye1wwpPw0TM4r+Hp/cR3Rexm8dtHyam8Jqm\nab8K4NsAcgBvQNyBfwHglzVN+3ke+0cfdC7DApoDhcN5C3SXUWpTIGK1o7NCoWTC+kYbJYlDCkaT\nTaVQbsitGIGPLGNNgWEi98iAW2sgy8V8LskjmJsFbhNWfLrI8T3KrF9HB6iK2fnsq31MyQVZ68vD\nrFRGWOQEQiFFrPN6yoDOEuYkXKPZkheSpMVwlINIycOPRjrWrINw7SHyTZmYbfIMzhcTJMy4eG0F\n3RYT8DgNsCTz8SFO4ZG2vFjJsXFcgUO+w06vAYckLJnahO7LS1HMHZR86VcaFbR0wPHkHGXsQm/I\n/VteAlyWF0ytHeSZLABWXY4ZG01AJ5V7e4HCJqYDJd6+I+P99YPbOA3l2i8PqdG5uY2yJQtgkhw/\nUm8y+wnmkYDEAu8Q9A6gka164SnMWWl6baeGlDLxVpIjSUVFqzxY4UiXce7M5NgsnsHI5WR3RgdA\nImO7s13Bi33WtphtZD5BTan0fRTm+HUycO9NR4gVa2yUQvmijH1nj+6aWeI0Oov0l1gSA1OUE/gL\nMe0PTo5weZMLNRWyWk91cJjKM5vHSzSIt+heu4ws53OqBJgxa7aiCPP9hgabuIqkucA1qna99uYU\nk0QWr+X4AGZChN5jtg8rRf+3AfztP3D4LoBXP8x5z9t5O2//9pqmyCX/b7NZuy+ozn/z6/j5T8R4\nizx6f8O8j5N/+DsAgH/87mu4d1eELO6vY5gO4c3UBOjAx9JklD1NEbNevZU6UHVZVYd5gjFJT8yx\nBMZOcgWTfAShbqJNUZdQcx8Fj0rNhkf025m24y/8w/8DjQaVhhfA6Fh2lS+/9hq+9K7svHdvvoP1\nCQuQYtlpNM2ARsiwV2tg4wzTcLmJy7qY9tUOK/ZcC2uSyTw8MfDOnbcBAMezMYrJfRk4VQD4o5/f\n846Gt5L/7981XcN/wB14STo2zNY4JQHMOFaIdAk3OaWJRKfgiAvEJCZ0lfRtrTehUbcwLXyUCeHa\nSn8kmFOqKgqKqyCngnWhQ9sgHO+HfgGnf+clAMA//9/+ATRKnmWzNY4PxW249fejVBAAACAASURB\nVFCe/1snKY4JK4/DDHEsO7dWliipuaGbFkpWneoGw2ZlAZOuz9D0YDLwV1+WiPisVZTiIGQmhZDi\nMl8A5Rm9nwIseT7/1Wefwf/6tlg6FV/m4VbNwzYl9Iw7J3iTdG3heoEJodK2VoLARFRp/Ua6jg5d\n5bFSiELpT6EKqLNrf3/Tzng+S+Ax3l/KouK0xOtKqY990PefCJhzowl87s8p/OXam/gr488AAG6/\n+/P4VS4QX7z5XWSRDM46STGkwMdOh/kY5cFnxWRUy1AmMmky3cJHqjI52heuPcoGHN1kznK8gulR\nP3EdwiRdupsqwBQTztN0WCZNSjL0+NEatQ35++k8wfIunf87U2Tv/C4AIJhFKELWFTDbUSlPEbod\nXuMGyuuSffjE5RB6JDDlXkdethcu9RHQXPyGOUdrJX7m53cWKL4qE2GRqj9uTZAFgS//939PKYXf\n4JO3uaAZhgXF0ttuw4V9BngpTJR0UWqVCpoOSXMjOYGTO3A35YXuu3t46wH9/eAmEl/cgEp8Gyd0\nD7SEqUJvjeusObj5N9/Az90TOMsPqf8MtkvxnTTHnKSpUcBsSHCKlC+YkZSALzfYiELMKP6qJxFK\nLixWxjJj24SnSIF+2cMnCThaHe9CkbSnRITWiVzvmzErGU80FKyudQsgviyf//6N76KzK6LHn2uJ\ne/lNXMO2K79/49QGqF2aWfYjER23aqHOZEDN4GJrGri4I/GxeZjhy8dyvvwkQeJyTuY5IorJ6jkX\nW1cDkxZ/3DTA6R+yrvxx7bxK8rydt/P2vvZEWArDHPivRwq/Ev84/gdLIvxfS34Obx7/HABgHcVI\nM8q9GznClN0OaQVoQEhzNw9jlAzwPLvh4Hpf4LU7T/UwmMkS/dZVWVddP8e0PMtdRwh43sgsARad\nVCpV6CQz1o7OqNRSaGQJ7i8f4sGJ7EBfuf8lLBnh1oIQOU0/LWelptKwoSSgVOk1cIkByFfzAS6T\nHzJ6lizCWQkv8NmHW/hNUn1fe5jjjTOT8gMsRwtA9n3f0c7S1Sag02vIT2T3UZoOg/iHLM2gqEA9\n0DUoEscYtoXnLOn0WUHLkV/g4pZYQvWZhTbh2HecDSSspFRajDVN/uBMJTkxcGNPrv3blXdRORLK\nuxvLX8DqzMAKDhCN5H/ukRRmHQYwGcwLSsAJZGznhYYKraJY1+GQ4yDjIDWUgSr5M5+t+GjqsjPv\nbCnEdG00pSEjZd2D92RuHes5dFK7xarEy025yMvRJvYmMh++Ecgze/WqjmAhmapp9hpKAtnKModv\nsrjP9HHVlnMM22LpOr6J4TWZpy9O53CnYm38KydD15C+TfMV+kR4Lfj4DU1HSHDaHzcXznb+xzUY\nnohFobRyRMMZftLs4/6JmMnf/CcneG4hEW7oGixy/ecbXTxH/ryC0txV30GFVWi7xhGWjoBRPuXa\nuPzcRwEAFzsNTJby/Wdvknq9UwEoOvuap2E6EnM9X8fiQgBYlQo+zbZxIpN/EcxhdiUGEAUGvjyV\ndFqwAMY0E0tHh0XAlTqTXIeHC32mRbMO/oLMH3RbEfyamNXVpoB/9NEhwpo8xtXYh9uRFFOaPcC1\nlXx++3QO/DGwdgdA9jfls/m/41GGpvFdHZR5xB5TIw+rGkzWc/hrQJHlx9Uz7GyI//0D9SomVItq\nMnV8YesCXtjlfbofw8dZo/CF2zm0lYzL3ZM69MlbAIA5U8Dz3UO8AHGf3rj9n+CnfpvMS2WClGxS\ndyYW7pGdKicbUagb0Dz5ew0+VJdcmkEda7IiNRYuzK64Gx6ZvLQGsKNkPr1csVFw5SkaNlybNQoq\nwuSyoCz7LEms7Ru4T+Wl1r4Nay1z66m9CONPyr3u2OL6hVYLE1ZtDgoXh+TH7CkNAYlbPzOwUL0q\ni8jLdHHyZhevbMrcejcosMUS8J85GSJ9WVK52u9W8eaZCtgeq0vbMbaP5Bw3i/KPXBjIOv/YBdTn\n7sN5O2/n7X3tibAUzERH746LZLGH744EPntv99dw46ZAl+NmBcOW7MwbRQ6D1OH9LmXUwxZ2dncB\nAOW0D/+S7PjNvIlNwmqNqotGwBI46ghetIeY0my/mFUQhJLT1iKFlZJzxG7tkfloaITcFjrisfRt\nMn6IgDRmcy2BskkFF9kwStYXJGKqPt0sMcvkcy9Z4PNvy4r/Q58ZIbnNKsGAlFqDBjKy/TrZCOap\n7IjDooF9mqUWgOwPjKWG398wOjpw6ctyjf+23MDPXn0ZALD1uTfxhb8v5/OuUUkp9NFjZkSvVGFf\nlB3vmXkfrW0hSLH7NVyv0fWiX9KpXUW9J75I1dCxH8v5fnLTwTeOZQe9bL6F9RGrVQk46648/PVL\nPwQA+Fe/+hDN5yW7cvKNCY5JsjIN1pjHxPuf8T/oGly6fJ6y4MYSuO07BY5JrtO4MIBJuryLgo/C\nYaFh0JV5sx8rbHTlubfWOVwGPDVzAxZZd/69puzm02yAj27K8/3c1R38+rGAto4//SZ6xyT2YRXs\ncjHDmNWqszBC7kifB6jhCrVCn+418fI1GYMO60s6u1eh6FJ8Qj/FVkv64HQ/gsoLkrly1BT/yy15\nN04HtBQmAU4pbLR/MENy5klowA4nwb5mosvsSnCW9viAdm4pnLfzdt7e154IS6HIEkyPb+OdyRrq\njW8CAPLvPcBlKvjaXgM7m6QuM2dwxoQYU4V3c6uJS125lfZTz2DFKrqe6sHtEfGW+1hVJYBT2ZCd\nr2YEqE7kHJG/QNw4SzPGSEgDpqkE9YYgxSah7J6VsYk54wzpsYEkles1VB2RYuyjWYfDFGbvqiD+\nnMoaO9wpP117AxpZllrxGsaG+Ltdl2oi+TNQM3IklD3o3HWadR/5saD1Dm0LUST3F3J5r5ZAwYDb\nwgB+5mXxkY+MCT598GUAwAXHxnM7TPFSpq/zUg9T6nh+wh/goSMn2bn0DDao6dkx6rjPmEmFfTfz\nCG1iIdZain6HTMu1Gv7sNfn8tS8sUO1I8dPnx68DALbdV3GTXBYvXvsuxp+QVO76dwwsGCScnqwQ\nM2d/xgWBIoNGxe84KlEzJQo8Viv4FbEUKn6GlzbERIhZXLTbrzwqfrvU6uJkKs/SrOiweO4dz8Cc\nc2rRknFbT8fY6Etq//SdABe7AjE2WjGow4KlEkthPF9Ai+WeB2UBRcvl6m4Vz/bE8vjczkVoRI7W\nIVaO44UwSRs4zyzsXhFyXDuYwfUkJjYb3MVPOnK+1/apFzLoIHz9vpyr6+HhWMZz1tbww2N5Zv/a\nzsEKAdx/TEvhiVgU4izDu8fHmB4WuDOjyIhVwK2IuT+sJrhymcIqo21MdgXLfaEhD/7SsA9zQ142\nZZXYgJitdl8BZ3TgJVCD4PwTTwbPig5QI/Ckt4ywnoqpatanWDO/7fYMwJKJlTMQ+YXTt3CxIy9x\n0ncfYRb8cYkO1ZsqrfojKu+BLX37882rqA9kst1YKDRDCWBt5Q1YjuTmJ6Q5q5oOBrJ24aSwUG0L\n6Ofk3TV0lkZ3LQ0PEnl5NYqJrAEQ2Y1KAdz+ovTd8DZhDUnaYrlYNyQP3x2Ke9X12rhGCjKjpuFV\nS3LwW41N7Htn5nGIDWIWcpaD73vHsFZyn9uVbVgUJxm7BmLCsZ9/5hq+ukem6IYsDl+9+SUM2hJU\nvv9rP4jZa3LeZrrChHRrum7DZFBRsYze1jI4zDQZloE4lRekrruoUo+zYjcQW3Kvl7dkEHUX0AjO\nmkGhv02W6xMLo/qc52jAYxWkF8ixke7hbQoGvVqtIDiW53Q42cPBKd0HT87bNtuPXD7N9vCRgcyt\nV1+5is2qzEmvZaHVEPyGQRclthLkZKX2CwdGnce1FfIzkme3i25NzjfcEDd39DBAZVfqfF5Y3UGD\ni/e3xwtYvoxRqzAeMZZLNcIHt3P34bydt/P2vvZEWAqaApxEw6xcohnJanac6PAzajH2bRwyDVfp\nrGHwuNmSHcqyC3hVkrPkJUBCEqQRTF9WXaPMkdmyCxup7J5etQfthDqCfQdrBvtqSsM6ZnHQUYqM\n8cmCdvkgr0CFsmMUZoGcUnG5dROKFXzFhS461F/okD1ab/vAS4I3eGXvaYwjqZzLhyYyplz7qQTf\nCi1GzLRYjlOAVkd7w0JOU7PMDDghST/OBrMELhCPoBSw02AhzvYKrxC6G4wMXKOLYTGtW/pVLAtC\nhqcLxKXslJml0Cb5aXC6Br0tRI5YVYhLBPclGHaveQBsyY7Y7VyHFomLkRYnuPeiWAon377HYwq/\nNhYG55+6FkI9JYHB8o0GcupvhIkORWvDJqw610uYlHYz9AAGjyvTQo128uawjl3uqlWmck3dgJWI\nBeIbEWYli5IaKUpWsxoqRkiLK2Wq1k9LeGuxft6aTtDflHNUjyIYzPybtJoiaCiobbnraHC2xeVt\ntnuob8h88R0TKXdsLxY3UNdaAJWvc1dBpyp1xRygICQ/cgw4dF+HLvtQqeCUKN2P9IewY8FY2M0W\n9kdihV7eLEFoDESZ9YPbE7EoJKWGu2sTo+AAGfHyU8NAryoDpWoZrjikFJ94mJJYJHLEjUjNDtw7\nMiGKDQAeYatphoIvUL6ZoeQkzTXCkic61jXCXY80ZMSRx+scKR/M0nRQZ0Rdke/v7379HXykKSCl\nC5NPw6duX8+/hLIqEeLNuITJSsSSQqTvdY6x+x059vB4iR7FUI4zB/Vjud6dgP5iSyGgv498DWMt\nEzdWS6yUvEBWCmjqDAcv46YA3GAUuqEDvzGX+780XUBvyeKlhj4+NZQX/bQt190yAizelh8eawk0\nl8K8xwlODuW+i2qImOAja8zFOyhwUpX6BL/no7aS/h83GshYJXpz/hbufUlegHglY5+lq0dCJ7/2\nrolXlrsyVs4Ic5ZO26UPjW4ASJaj6wY0VhSWsY4gJd6gtobJew0NHVPGF2zC3zsocLoit2EPyM4E\ngQoNOcc5cEqkZL7SeY1wEWJJyvWiARzdJcFPMEGYy73GFPLxDAN2Q+65U7Ox2ZfPPdhorTgXiinM\nKtmySM+vzVNkTfmcz3VoLsVwpgpFh2xhowyztbh861skr2mPERDIFU2XmJ/Kvd5uhRhw7LVFG+8S\n+HbuPpy383be/lTtibAU7FLhQlJiadcxo2k/NKuokPO+rdZAXXY2LVlix+Vn8gxqqyrqz1POq16F\nrsuqbK6AvPH7st5ZTI0EItuiXo765CxQFaBZlfPVfR+LkazG9kpHZ1OOHxIO20CJOqXbbusnqBVk\nPu71Ueduhd0+uivZbfpdKma719AhL0K9PYa7SxzC0oGuBCMQQlZ1T9OhRySTcXdRs8Uy2Rw6sCPp\n/9TKULHEpFxQos7KFc4KAxMNeN6Q45WOhXkpFsazLRNZIdbNJpGbfrOBqScmfi/xMSfMeRG6GFRo\nvVgVrKiPWdapqbgYw2zLc5ovC0ybYrFVbo6xdUWeSW02wKgibkNZsnP672tsutspFi+LK7X11hYy\nFjyFUQLXEGvKpMVQKU2k1ABR4RQ96iSaFfdRFeSFjTaebsoc8Wlq5+scfkqm5ZWJhJZZ6VYRWfJM\nGrpCzqrZGf2x1LDQIq9FcGjAbopVdEdlaLKAbMGqszRLcbGU677wzCaebsvn/sULqJJHw3YvoijP\nsmfUiezpUHTtDMeBSQ3KyBuh3BfLKjkMHvmIp7ynxUhDMCEcO9OwZ4tV4Uce9kISx/QW0F2+5uLl\nfWB7IhaFTBU4TqbIkhwhy56ThoFxKlHfi4aHikvQzIUmTI7O7o5ElquDPiyNWpLZAiZTQdkgASg7\nkSOETQrwnAaSiTWSsxevotDlRN/YibBkHMAKQ4TOGXBGFpX7N9/GkkKwn/74M0Au543vvYHr5DDs\nBAMckFS1sZC+v1Ar0PDk/qJKE9ZaTN+218SSNQVVUyaSMUux/bS4DLPDHM9clXv+2lcPMGRl5/Mt\nA98J5V6TpUyCmVaiy2rBqlnirUNqXoYlPnNFzmc1tjF5KMe3WZ4dLTKAk+o4nmHXZZlxu4aRomnr\nJBjo8kKOSdA67rqYsqy97fZR/Bu5p6+bv4fPpJ8AAOyoMT57KOP8Sw59m6CEIsxKO44R/Z48y3tl\nhILfMfUadIKlvIQLU91GlVWnKCzopF+/4Fv42LbEM/pbAwwIw/Yo1DNRCdCT32VZBmd4RoCiY5XI\nAmEpB74n43mRfXuIDAZFet/TlgjJwekoF2NuYGeCNe2qh6Ipfy9WazRI7mubCXKKFKs8gU2qdoPA\nqjRNYHLx1i0NxSVuLCsf2lz6UX+6gvAm6zkiWUxmsxBLgqXaysIeqy73F2vUmdZ9cGRi5PxBiNsf\n387dh/N23s7b+9oTYSnA0qANPFROGyhJbZYdz5DTbN2fm8ioEtz2LTRIKb4mJZqf69ArsgsYywmK\nCoNFqwQZSTFUUmA9J88CNxqnvoGCu0TpK9im7I6Xd3tYH8k1bms5arlYCjazGmpzhm1PILOL1Rjx\nHglJCh2LA7FujpoaEoNU9KFcMG1fQQ3i2lytOGgTAAV/Dp+L+ZlUXrWqoeBulW8ZaHiykzqXDgCK\nyNhWjE9RAOSbY1ojBxqGpFKbj9Y4vES6d9OCUxMrJHk3gm5JMGtECvxIi3AEMVXthcIRzc84WqCy\nQa3FhzqOCOk9ph6iCuaYc6zuBw8QNxjA0zS8ceO7ct8v9/GNnrhF1dnZfWqgWDf8Wg69EMvF9brI\nCSAKDQVE8twTjYVkuYOFJj+s1FxUietoDLbRvyjFZJeuDbARUwvUkbHPT9YIyOWwLBSOZ+J2zMoC\nNrElUTBGBnJQEuvR6ERIlFhYraYPh3Rz00KhYpEWkGQ5pVKwlfw90z2MT2RckuwhLMLf7WAEyydo\niYI1/m4Nxlju3zAMIGW1WhqjoMW6HpvQu2LF6IFYHat4jolcDjM9R5RRGEcZGBFQ9vxWDas5y04f\nsz0Ri4JW6DCWHk6n72E2lwjrZBUgDuRNmVaPoVO78a1ljiHx6e7zMpCvnGyjPxRQUBtLlBZziLM5\nJmv6lMkMh1SWajpM/+g6VFWucboooDioWrqB4SWZVKrQcfQu9SEZ6Y9PfKRDRtMPFOYryYIcn96E\nfuYnnp6gPMuSEOWn9ld4RhPzey+4CPcpgm0WziONyf0TeVktp0BATskd28L3HnIBPCkwYRnublhA\nT6TUstMVcJPrAnuRfNdRe1hRD8P3IuxTGt7cVthi2fIDVmfWxxO8PaGi1TpAQjLTa/cdrG/JJG0a\nOrS2TLZLhtxbkmnw6Q9nuxku3JeX8NCz4XV9jssMlyiKO32EFNVBaxfjpYPLFXkZj9IAJbUaahEe\nqVa5ZDFK3SXampjfam1hwayEr05wfCQv76CqISPZJ8m54PgFEi6m02WKFRehhrUD15V+GnYN5gaZ\nl96m5kY+RLNKuahmibflkUBlCWLWaGSsLdgwjEcgsuODA9jJgv3x8B7jS+0ognXpPT5Lef4bk0vY\nodaFsjdhsk7k3niJKCRpS1SiRtKqM87IfBmiqDAFmmuo5HIfJ1mEakXG8GBuoGvKGN59zDrJc/fh\nvJ238/a+9kRYCrpWomIG2LBqOCIjb0fZqLckmNfwEvQ6Ei030hk05mDVWnbBB4dzWIHs1v7mECYt\niXC+xDEJUJbFHMuZ7AIPCH653KohJzYhjVYIddmt7ZWGIc3IyVGCHRoetxYEvDgZetSaXJtTDCti\nNZyUHiKCbdqdHiokgRleflZ+l2kIDdkR3P0Rqn3qMfZKRKSbmy7kXOl0jQkrBN9zNqCPpT/Bjovm\nnPiN4S6Y+MDGJusrbk7gXpad63vzKloj2TF2TAcLhp+fCnuoMY9fc+Xf6iUPEU11o9nBtKTepp0h\nnst9rGwFpDIGYU9+d20eY39H+pOWGupXiQ8Y23hpU8z5EY7xoCe7u3MolqDZb6GzkM4X2yamdXlO\nw4MeXOpqLuwltqqyy/kOOSy7DVzpkWcjTGGSmi+PEngN2eMWixUGFolTSNe2nkyRTGlelws4tvzu\n+tVNbA6kn5pl4IiAqrwvmZgkD7GRitt1e34DNgN7i8LGNmnaUCOAytfRrtAyK3REZI8uDGBzzlft\n8ha0Ff1XU8Yi39tDvCHjmtsPUKxpNR4UOAkoEhSWeCMUizVfEeZd8eAQe5C4Cicj6U9SMWAV0qeX\nftDGwQl9IYHQfGA7txTO23k7b+9rH2gpaJr2jwH8FIBTpdTzPNYG8CsAdgHcB/AXlVIzTdM0AP8T\nRHk6BPCXlVLffoxrwLRMlCbgXJBdPItyOOzepbaDghVi0TDEZCW76bAuTqnT38XKlF0nMEdoWpKa\nKjYawEIcsWTkYBKKX3f7UHalN/a+Ao+ByKoeoeHLzu35Co3L0o+ndYV9ItYGx/LvuwcncMm+efnj\nBtJj2Umy+VdQp9ycOtFwwBTf7G3JwV/srlGS0SionuCInDg7wSYSslHXmD66Y9qPNCvuLEJUHLnn\nYt9GvSc7hu/WkbMOP1jLjnKl08YeC+stK0B+IjGDg4qF4bbssGl7gGgkx7dbsoNj3UDzsvR3flri\nAul6PKOGvEIE3jzBRQb8PnVJinrisEB8X+5vGdq4NZF+GLUIOwVz9lUbYSBxjhMi96ajQ6xIK9c5\nKhEfiSX0MFugxbx/o9OBbYiV8gyrT7tbVdisRLwdLjBbiuXVrZbopfLcl1hjxFhDK5djequBBi2h\n9biCspTzvfetm/i8Seu0rqPFQOGmwfnmGfCHMp4vq6t4YyV4C2ce413yKeySh+LVzQ5Ki4VdxxO0\ndZkLk4c5DiFz7uT1Mbot6YfbGfAaAeo2BXBMD6eH4vuP1ydIUqa7nRx2LnESsyH3XOg+WhU574be\nRHaG1B3HyA2iN29rqFM7QsrlPrg9jvvwTwD8PQD/9PuO/S0A/1op9Yuapv0t/v/PAvgcgGv87xMQ\nCfpPfNAFDMtAbaOBa40qHAYX316OsbND0LZh4+y2zK06ejSr/Q0JLlYMH25GQdRFgLxKKO2yRHkG\ndKoH6JHuPZd3H1HPxybrKMIwgknzrLfZgDGSgOEqn6A8IcUaTTJlF/AqYmT19QDvncndW1VkOXkc\nBymu98XlqbOaczgEFJWJHKXQJUairI1gKnFHjJ5kGXY6GUxWy+2e2Jj3ZNJsTyaYEYpbm4cIm3Lc\nOpAX7LvhGq9e2wUAzO/fxMGWTNLNzTautKUfbmmhM6CrQOLGyFXIib9vVU7hUbfQt1NUSBbjBmsk\n5GucGPJsLl0fYqlJEHE2yrHBYGyy08BHXZmYoW7j/haFb4gxyHIHNgVaB56Be7EsJnazCrvNnL1a\nYrmUMVhvkRQl9HB6VpfQqwJLPrNeH4p1LkWxQkFXYaHJSx4GQETKvsgpoZcy9Vd2gsqmjGEfLuyC\nSmSZ3FO/XYXGUuXl0QmUOpMSMNA03k+VPfdWePmCPPNL7a1HlHZ+lKEOGc8rHqBxM2tQyMZHDa0z\nzcwyAT06VJSPCitX690mjFPp2+tU8no2neJORNIeU8ceqd8nQQkzl5O8tDPAAWRDwdt4rPaB7oNS\n6ncBTP/A4Z+GyMwD75eb/2kA/1RJ+wZEV3L4eF05b+ftvD0J7U8baNxQSp1VWRwD2ODnLQD73/e9\nMyn6I/yB9j4p+n4fG80dzBcPMKkwn2sVWC1Y897NMdyRHWZjYQOerLoai3O8fIFkymBY3UbOFbjM\nY+jcVaoNHzFN3+FZrbnRQUYdg6I3hj+hnH3hIqGoh4oqiKh4bDOqt1hmGK3klt46rMKJaSnoLta2\nrJ9W7qHcpyVgSd8mWYmnqEGplI6QZJ6aVYGlyzWsCXkj6grhVI65+gyd+6SUbnRQo/tQLXNkZ0hG\nErP16wV+9837AIB7JyvoRHp6aYiUFYVu1YCWC5dBUZXgo1eEcKby3dKrw5cND8O5i5QFX/fMFLov\nO3YtP2Ny8VCnvsOV3n2s74oldHinwO2nxZKz8wWaM7EK9kd0V2YHUCQ2fX0yR527XJBmyAl/Xnk1\nPMWUWzYVKy+4eIIaocTrQEe7KhaW3i5hjZm2jCOMiWh0e3Iu3dSQLOQ5VMwajA1aHmqALUssJG9Q\nhyrEHE9ZBBblOlak/ZstLayoC+GbKW7FYi1FK7m3Z6Y6LjD93KjXYNkMDFYMzCjllxpAsWR0mCI6\netZEOCCNX5giYbUqNA3tdp2fC8RNse6urmQulLUqniPaNp2V2GTR1Y31Etc25Fn/5l6Gj1fPqFsf\nr33o7INSSmma9ieWmfp+KfoXn3patVwbTqWH07fEfFY4wnQtg9N0K+hQUn3QWcE2xBeLCS8tThPc\npd5jy+7DYGVcFpmwCr70ngGTpc87jrx4ST2ERVr3FAY84utLtwQeyvG9eY66KWbgmmzOTsPGtafl\nYQWXcwwnMmlurzP4rLMebg/xmT6hwpdEgzIo56iNpJ/zwyUaKc3dtETJ8lv7TLg2t1CtyUOupBsI\n2mSNskyUxFskAFz6s2ua5eOTCL2mTMxvHWXYbMtC19/pISY8fMOtwF0x00LSlLRex24s1yjsGto8\nb22gcDinlqbvYqMqfdZjAoi8BNtNuWenNDHbksUyWpbYIsBpma0xOSv9pox6uePB3jurvrQQkNHJ\n3uzgKgVV7rsFwpUsMrc9Oa8z2YHDzMmWlqDzqDQaSAmselgu4RJo5sTyzOOwQJxSe7QGVJTcR9uq\nobNF5mpDIed8CG1C5WMF76707WSyhM7fZXn1kWz9VdrC9/vBI7KUAOkjBTA3qCNj5qcKFxPStg/J\noJLrC/QDcQNmYQqPtRbpKkKDYDaj58Kw5Z6qdFG9dg854yT7boAHBEDNfB0lF+0f/ayJBWQM8TU8\nVvvTZh9OztwC/kt0Bw4A7Hzf986l6M/beft3rP1pLYXfgMjM/yLeLzf/GwD+c03TfhkSYFx8n5vx\nRzdDh9GowV46cJ5jEVSwjfvvfAcA0NE1eBcZdMQQqSOrbk1Raqs6gk2SVhbmhgAAIABJREFUwswp\nobM+Pq1oyAhtTiwDHVKelXVKeEU1lOQm8EIPGbHGmZYDV2QV3zEvI5uLZoF1lyrJRyG+/hWxQP7S\ndoL2XPLcs+l34ZLU5EW3ic26mLYmg1oveA7iuvS5WreREE3YLWs4icRSsKgQbDg2BhazBV0DFtFq\nebCCw2Klog+omtyf9j3p2ypKcO9YMBuHywxFxgDegYdXPynnq1odeGvx8nxLdtqw1JAQBTedaSjO\nYMLdCuDKDrxKAgwnsvv7A3E/YqMApSbRblnINLEa+rUZPAYde1oVPx7K+X5jQ3a26u0ES1ZDmnEM\nHWRinpnYp+7BT3xmGxl35tm7cp9WO4bPzELp21CuXKNbdbHypP8tf4GIyuI1StKvrQw+5dYyI0a9\nlGfjtmMsFzIGuXYMi4jLdUqoeBog6JILVBtiZtI9nORQI9nFb7wnffhPP1KH0RarMD08hXFR+m5X\nLXTZjzieoU+LUyPPxnLtQGXUBrEtjAO6ZnmAeU3my0vVDtCScfFmYkEn0FEU8l5YMxM2s2TOwzVu\nETvx8ufnmGln0j2P1x4nJflLAH4EQFfTtIcQlelfBPDPNE37qwAeAPiL/Pr/A0lH3oakJP/K43RC\n13XYjg/rQhO9qbxg/9f626iwDuLGSmF7KanF1nYVtZixBpsAm8xEi/BhOylQbMik0SYBQkWA/TRA\nQvesw9in1bFgMnq7LBbwAvEBK40Kkpk8pAeHd3FKwZiUgiRaRaFG3/rtvYcoydhUaeno+JxgzRjO\ndbngDjUFnZoFjak1U+moGfSTewpxLmYniZTQjCOoFgVNigZ0CtpqKsachLAINXimHL/DeoD1Iget\na9SKFC1f3ljDB2Y8ecMIkRDefTY8pW5A1elbxyukOBN5PcWahCRtW0dIMFFAkZbmbg1GIi9KbmrY\npHtRVAB3n9yOnRzz51jZ+aY8u6/6OlzCo3MzhZ7J5K59ysBld4fjvI3idTm+3ZaXNR8XiCjOYjg1\nNNbSz6LpIieQx0wc2LqMUcDaiHJWAKxQ1dIYMaP9dlRHnRWqbuYi5OdyIs9cKxKkh/J5ND3B1OQK\nWLpwWeex0ZZ7unG6RvtY0pvDTonsmNW4jgOjRj3OlUJI+QBzRaCbXqJKKPI0XMCoy6LgKx/DlBqa\nxRxuzLoMVgyXhxH2qSb1peQA7xBKPrOBTkbS4O0KVrPHlYGR9oGLglLqZ/6IP332D/muAvDX/0Q9\nOG/n7bw9Ue2JgDkrzUBp15BGI0TECvjzBEdzWWnn7hLLgBRU3zlBukWiQFpZafgAOYuA7IaNVMmu\nYtoxSgYXlSpRbhAeSl1KJ/OgCPLQFaCR/yAJNKTcEcxGBfpUdkK7lD7kawOzEYNa+3U8Q4hu+qCF\noEuegqyJ4FviCk0uEpa8nMAsCCaaVtEgP8Px7QM4c/m8n0oF3fW+BXSlDz3fA7jrRIaFMKGSchYj\nOpVd4wrBONrFFb51INaPa8/xnVPZlS64EZq69G3hxbgaEfJLII2FHCNG+JEBusfdbJwhp8twHCjY\nqdxrh3DuReZi2JcgsFZLES/ld6sHORIqfqdHOhqUU3v7VO7PWMbQyEoN4wdxYUMAOdvjNgaEqZ9W\ne0h74uaMDphpamWI5yzsOp2huCiZkYZ3CofB09JwAEeswc7z4s5kNw14DEaPT30UXWJZ5iaWpnyO\nXQ0RpegTEqEEAbDg31eOh5Qw55qZoUhkDIacT7XIx0Nmbex7GrSnSBiU+DCO5bvFKsS6QvEZyh96\nTgeZIdcobAtqzuDqaQGTjDlJtYJtU46vz6jw1jO8+1DueboXIpjRyklLLCvy+Re/fornzT9Z6PCJ\nWBQMaKjAgV2vwW6Qcny7h7IU/8wMTxESlZWaI9ROmZIh0q7IBzCoya3qOgpGmREZqNvyO6PWR01j\n9sAlXXg7Q0YAjVEWsM58OT9DeUMewJ3pHPlcHl5CMhWzGWLADKHy7qNP1N3pyzUMiTorvD5MSx5Y\nLSHxvlsgL1mGu5whIU5eJRUc/L/svXmsJdl9Hvad2qvuvrz9vd57eqZn5XA45FikqYWSqFhCHNgw\nJDMBFAmQHcuREwSQTRjKP4IQODKi2IAjRIkVBY5kK04sm1FiUTIlW5Go4TrkLD3T09vr9/pt9919\nq71O/vh9t8VxRLGHZnM6yD3AoO/cd6vq1KlT5/yW7/d9sUyKOk3g1a2z2ChJlsVUOfK6/N0YzQHy\nIBYThQmr8g5rTFOOKvjY83K933vzLtSx3HO7ZeLaXMDvLzXOI2IKsERR2Tx3USEgqaIMFKTGN1oV\nDJhyu9BuQVGRKGPdczE4RkAVLm2VkAXkTDxKYZhE7s1j3GP85zqFYmEV99mmLv57DTz35+RFqf7O\nBizqVfZ7LqoUkJ2Qit9LQmQsh7b0HC2yH7kzE1PqQSi7iq33iQuyU/2QjOGlI4yGkjrdru6hQ8Si\nF2rE1LiwUg2bsQTwRTfiDMUxN6R4Cp9lz9pqYafNeM2q9C0uMjQJZHJrCVYsGRfPLCFPSYqbG8hJ\nIJsxjmRaI4TUjpj1U4zIhmUmNmyWkfumiZRpZ02fL5sW0GNZePaSFBFTudpU98mNy48NcOvkAQUf\n2Ja1D8u2bMv2jvZIWApZUWAwn8IyFAIqGF96fAuT14WU2sccVkBTO9IYl8QMXOOuPPMSFAu58E6I\nZlVW5bBmwGIe3jQLaGK/c0t26OlghjAlXlzbSCukFtcjDGpyjlWnhHRbrmePZPV172Q4ymR3+JEP\nVGG1BFth/cGrqF8hLNVW8EmAEhmye9bNTRRkjzYfK+G4Iyv45ToQXBWgT51mea1ko2Kx2tOyMOVv\nh/MIioQdKBdAJv2v9mmSFiaOMkbq4wpe7YjLcK5m4zs/JDvsuGGj/ors2PZ5ktM4LpKMxCvGGBvM\nBrgrFs5SPfvebIh15u+DTZpKRQazJGOxvllGGEpUf9J+GUNCr11VB3qSMXo8kLF/e5RAU9SlOMgx\n/9x3yXE33kDzikTqr15cwe498m1e/z/lMVUVQD6JHAauRbsAgPP9OoZj4kWSPYy+LNWOmw2xjq6c\ntzEwqZXp9VGi6W75Mfrk6jBN475gTEJXMiwmOOHz80s+dJMuZDTHzV0GQbm1NtsZOrmcdz0dwLTo\n0tUtGFSH7lgRPLq6wXlmlCYJOoTSG2kfHXIqujsT2L5YPGUzQ9GXce6Sjq2bhIgKzqdJCr1ga05z\nzEnHVno7hJsv9v4/RaL8a9rSUli2ZVu2d7RHwlIwIOzFquJgh6VPX/HX4FIf8vCNEDUKv6yfP4FD\nH2l8kbtyWkaxIquoPzOQMQ1VmVYQkprM82zEORWMmf6yAgcGOQ/CxIBFdJjtlWBM5Te9O4eYEI4c\ncsU1qxorZBTudV2U96TYR5UKHFC8Q7XKKNcoZjMh3NnroJ2SC6BaYMOT7zOzjPOWxA+YWUV13MeA\n6tLx0MCUtFxIZohZBTlLExgMV3RnYjFUYGKLsYoNL8Eqc/eluoExuSO2Dk8xLDFGQRq3keugKEt/\n7NMMJ4FYSpsTC9WSfH9OO4gT+bwSyvGdokCUCHFrN9iESdJcq2KgRum9I6uH4vFnAABvH4qeZaIU\ntCV/33iqCf8TMobpaxp1CsoEzadRuv4FAMCA1GfmZA7bktiA3ZghZ3DtaH2A3a70qR9P8NZkIcoi\nlHC/8cYqnnhcnuPZS5uok9/A8qqwbMaSwvy+4M8i4AgFmKRHm07GcCCWUJ4Z2GCgtF6XcwVrDla6\nkpIcJSnu3ZMd3Z/mqDapDaEBm6xWdRZwqQ0bFXJrDGZlfJzs0rfHczzOgOfAjuBOiXYlNF+NIlxn\nAP7IyZCTgk0b92PwuOia2J89mIWwaI/EojDOgN8+zfCYdRdvkigiffU1pLdY4eYl6MwFpxC+qdGh\ntqFNHu5n+zPYZEKxMvM+pbVTGwOZBIbUzEBOV2IhmTOfluCUZaJMOhNYC1rzzMR1Zhz2Ggnmh8wL\nm3LdNXMVZ1lmvZ+uokTQ5slhD4/tEAx0dA/mQLQrx6tyvdJaAtxjVD/OoAuW02rgfEM+T3ty/Lji\nIz0ikMlJMT0htbprIGLWYl7EiEigETAjgbKP3puyKIyGNm7OOZ77KVoEVq02TeSnYkrvbcgi1tAa\n84G80LNC3ee5rPaG6DGw6WQzJMTB7J/KtLsdAx3qUZayE8SsP0gNG3WqXp2/cgG/9tsCALs35AKZ\npSBMA3fv/gX81RN52f76rb+O51fkWcat92MllnPPUumbWc/gMiDa7VjYp4u1Eo+xQRzCh69cgu2L\ne7P1ArNIAxeewyCh7WDGkuu0SJF0Zb6kNQsDZmVSBmL7c4W7hH+nKxbSiOQtZoFj4ixcVruqzjp6\nxDlgfoCxL3OobmVIO3IfiVbQhOdXCB/PBxXYdFcGxwbcSObCMFd4uyJjaI5y5MTR9JldG/kObEKf\nMS+gF/UoGtCG9O3lfoLyggsUD1aNsHQflm3Zlu0d7ZGwFAzkCDBFw23hlPnVV/cmuD4Ss+co6kIz\nuPKRi9tYp2ZgROLLOD9Cvic7XikuIbogq3JxMkfB1TqMZ5gv9AgpHV/Z0Ahj+ZwnIQotK6qRTqBm\n8vnWYYqty+LSOKdyvSwokJOKy9IjYCJWTJKluLknu+pGcYyzm7IzPVWTIGIWmojnYl723j5F0JPd\n6i07wl0iGu1c3IuVNY0SKeiCtgGTO5dRxMhZjGRGCiz/h9OWnbE+8tB8Vq579+Y92KT73akBe2T+\n3O54CJXsiNaY6Tg/hTGVe6opIDymDJ8qYLH6zo0y7JEINUzl2XQzjcEJLaHRDN4qyUKmCsYFMfPz\nQuGVmVgCvVAg2ACQM6i68Rf38fx3iXUQqj56exJg7oQewgNxTeYsAso7CTQRq+3MxLMbct+HkYet\nbbH6SpbCkytUds6flL4PXkFnyKrF/KuYNmWOqBQYk3rPHQ6hIrmvjJBorWKYTF9ODnK0roqFWOrO\nEAaC4A8of3eSnuCKkrEfxBYcLYFwO7TRID1ckZRxcCr9ODghEjQeoMI05S0zQkZXcbdvw2cqeqtq\nwCLpjh7JuI0nCiPiJkJD/bEdYCk4TFXnXo5p/O7qFR+JRUFrjSJJ8VXUccmUl3QfT+PGyT8HAARx\niAHjAW+NOviODz4HANjekIk2Ta9gzui2PU5RJf8e1svQCaGvQ42ApBdxk64GfKSM2rsNF0WfroTq\n4tqRHDeeAy5NzVnIOgn3DGxXXtiSX8Vs/oKcd/x/wSRgZ/Z2gT+c7QIAtjbkRf+zO1ehV0U6vF/5\nA3RvyMv2IZwi9+We5iW5Vm1qoHZWJtjcKmGUCFFGPNH3QTNG2UODylAt3rNVqUJbsrBuzgNYMpy4\nvufiOx+XPvtGBddO5cXbrhNvMG5icF+A18TOpvRt1dvBuHLEa9fxIhdtl9gLzzrCRi6Tv9ZUGDEj\ndMft4fY1uZeuXsXsbXm5FYFJGgYyLtI/e/b7URGCY+QnJ7jGcvDauIvTU1lkp4Usmut2jm26LtN6\niA1PXtL31zfhUH3r9RsdjHf/SK43+RwAYFArwcnJn9iYo0zMu7Vaue8q+GkZCGQ8AtarFD5gRORS\nNHwoQsX1fIDJRF62o2M5phm46FMUeDSf46wMBRx1CRFL8Vc8BxVHMgrZWdZAFAkU3aM1y8SI9Tor\ns7uY7LLOIZ3BcWShu2vKXB+MIljMuLRThQ7fZqewkVD81oMPk8QwU373jdrSfVi2ZVu2d7RHw1Jw\nMoTnTvCMv4FfJ6fgrYmLgivbIM9xK74FADjfPoseKwnXy2Iau0YJji1mZBqPEfus5HN8WCsLyHMd\nIRGGris7RmwUyMZiHcCeoBNJbvv6OMNnB/J5Oklwl6QYNk0y94wPi0zTo/QQMxK5TJTClAQvXVzD\nKmRlf21PfnvpXIIydRfLaw30TqX/YdZAe0d+0yarr3WnjqwmY5HrECEtgsnEQMbgmhPGsIitCFm0\nVPXnOKJFk1gJrEvy93ruYprK/X91eAqX8O45LaVOY4gKi45mpwrhlMVM5k1EE0KwO3PELIls12Xn\nLjsm8obsctkqkBA3YR+4+PXTXRnD/j56huy2IPWGsjQaDNbefauL7e8jK3MzgUvxnfHRb2NE6jGT\nBDcHaQ64Ethdrddxdyrfl9ersNdlXJ4pnUO4J7w/R+ty3bONBqptyWr48wgJg7yGZ8BUdBl6Bgy6\nkPtD2Y1P5hFuUXshShyMbgvlaGAr6Kb8ll4u/P4tvApWVCYKN1gfvN0aY4tSfplZhc3cgOFIf3NT\nITllRm0Y3S+Oy3WGlLHxnlnAtiQwOWZW6o0iQW8R1yxrNMjfMA40GmR8josE0O/OfVD6XR7wMJpp\nuzpobyLwHWySjOPJc+sIbsqDez0ZYDSSF6SbFzApCT/nBKsUJuYEwrhFiinvyctyzLGAiRaI+Llg\nSW+SZcj4oiOd4RtFZ3/2rLw0P3M3BdTCFFPYXpMF6eeNAv0rMhkP3urjVVsm9yn7Y1jAmiYFupdj\nhQxQhZmjmsn6fI9kI5VUo0ceSG+kccxajFKRw1wXt+KKV4YqC3187awct1K9iCH5Oa3sFE+ek6rT\nqFugy4X16Poxfne8CwDoM3bSjDNoHlf35wgZ9b6UJugRPmsWKWYsr14LOQHNHKt8kbDtYF3LIltZ\nqdwn3nVXylApsyecuCdhCDeQhSA2NlEnC9GP/sKnYBKchsLFx54W6vo/35fOvRaYuHcgL/quDu8v\nwpGhUMkJiVYF/JxVo7SFa9pEyBdz21VImIYMwhQni/gBciSG9LllMiNheGizJDk3bHgGMw2Whd96\n7bac3FjMGwNbZ+V5fFInsD4un+/cLCENJJayezDHhOerMz2deBnK1Ly8m85xc1/mSDS+jdFAFiSn\nDJgVWdR+6Ht/CADwibPnsfUd4opEsxUMWc3b9VawfU6e34HdwgcJN79ycfNLWusX8A3a0n1YtmVb\ntne0R8J9MFwDpYtlfNzfwx/aTwAAmv4errM2H/0YhUu+hCSFy+KYBnvvwoG1KOBxDIQhyVCSBCUW\nlNSqDkxSnS3YgI2hxkmV3AR7M8RfLw7DjfBn9vjbkoEKTcZJSaPriEXz1zYCnLkhFODIKxhwm7q8\nIidolGycteU+IqVwhTReOrBQCWnpHJGd+LyNPeImHE/dD4iaLYUO+RTe9k3U92VX3arIee+M30Iz\nlBMP0g76F2UMTauP/QMJVt64uQ+PJvGI7NlesIoJQV9lz8QmgTnNtTXofYlWbp8BTmO5F49Ap7yX\nYecMlZYrFsqp9KOS1BCclR00Sr37EfUJg4R1Z4ajvtxrzSxhTnix+pjGj5Kt+5eTAjcSCRj+13Vx\nxVrHE6RagqDzxEazJa6ga5iwSG/mpoAin4JLS9AxgDo5C86sVGBxLiTjCNNTAs6QYbwQkXTlXDY0\nLJM8l7YDW7E6dDK+//YsoAJJrcCoJHiMnz+3hY/uCv/ZKPoAZqey+2+vK6hQrF6PxVyxpfDEBbEa\nPlqa4efK8nfn8xoT7vgX54e40aD40b2/DwB4/Tt/Fudd6XsY1qBopZ2xhrCpU7kZVBDXFziFB2tL\nS2HZlm3Z3tEeCUvByTTOnIT4A7eOF5+ktoJ6ARNDgjqJqWCyCKZmaBi0GlYZLFup1WAT5TUNLJQm\nJEdFDUlO+G97DU+k4oteZ4n07SzBOnPJXzF6+LoZG24eG1xwj0OA2Si89DED+SpFP5SN/pj9H+TQ\nRF4OqBdRmWVwiG9IKjb6hazJV2MPblV26RlZpaq2iTMnZDUuKZCLFdPcxBPEGKR3Q4zbZNthUPNq\n6yrsLdlpPvfbp3DepBCsO4d9R/J+p6MZXiXBaExiWyM7BcMZOLQ8tKnZ0BuMEHnStzszBy1CbSNC\n0A3PwJxw7XNjhWKbsPFuBI/xk0aiME2lT/1ELtKLpshZWmyf62NwXY7bvubhl2fy/V/5MRcnE4mJ\n3KDk36jjwSTHQFGKURSLtF6EqkVmLNtETrLdOqnbrLKPKpnC11druESr6O2TDHEs5ztNDXhkCFcc\njImpUFlQvjXq8KosxroTARSYXRAFvvhhE2sflrRveljg6FVJmfuVCGYu6dnd7hylESnpiExdr28i\n75zwc4of35P5+w+CGeqHpHyLTbxIrMaZTUlfl7p7CBpP81wjrNTk2fSPriM6lljMpe/wcHKPvBUP\n2B6JRcH0NCqP5zhvXoJRkkE9vmngjJaXf+il0FQGjmo+Hgv44jH3u2mbmAViOn00KLBHifpS38Sg\nKp+fcqc4oQb9pWMxh4N2E8c1Mfc+/so6PnVLIs5fr5iM7Fvo/mMDH3lFgovm1WfwZ39KAkBbP/QV\n/N6RgJMOAwcTuj8bIadN4GNG5ed6PcD7WpxUTRf1lAsH6wzqOxqvbMticylW2HpaVoUNo4w3STKC\nOyO8SSqwNRZNjDwXvifw6sn5KdK5/P1uofBqLAvHV/O3EM+J5WDArb5Whc3J/9xWCavnJGC6UViY\nTSVXfmndxJDZgMriZYwKnKWa1iACbJLFDAOF1ZKM0dS3UD6RqebVqeQ11tCmPLPZ2EJSkuPK/8jE\nf9n7DwEAnWkVZ35GFtEPPPevAQCvz28iZbbDPr+JNqnuukUOlnmg6gW4REh6xxBMypYGKsSnXCkB\n98hbeGaSY4/PZEPNkHNzsTkJkryAomvXN3OsMBDZnztQH5HrbfK7je//GL7vvxL39/IPvoUvHkkG\n6865BFNiTk5vRph7MnZhQ8bVv5ri/Qw0qrNVhKlkV/7S6VX8i23ZGKvXXUxqcp1br0h26S9WXwWa\nsvAEjz0Hh8zdxUkLs21xFadZGVmd6kcP2Jbuw7It27K9oz0SloKTWTh72kbhFOgwuIaaQv8OK+Mq\nGhccMfN31ppotWghbMruGMQuqm1ZDcM8wpojK3DWMRHUZRdz7QRbNLt7lqSSnknWoVjf//sHe6je\nEUth/DWWgg0gZXDpYl3+8J98dQ0/MP3LAIBfjC8i+h++CAD4lZ9TSLZldwymBRQZkYfUPvTXE2xA\ndozzV3ewSdhq43wFxpg8BatidRT2GN/HQv1oClxymSJbK6O0L/18c74LBLJTvk4yzyuugbYnW+bH\nnjiP41cEuXhNpeiaDGDVgZTMPEFFzrsdrOPp82LRrNVdPHVWLAXfW4XLIh/LdeE6pPyakG/BsGD4\n1H5MIgyVBF31NEFek7GwwggxqeX0SK7hKA/KJVtU0ECdKd6/9+pTWDsVxq1f0RbSvyYuz+/9EyJP\nL7ax5cmOv6bKcGpy3tbKCOVTh+O8CZDpaLMq1yuPNMy6jH2xaqLSYf7VnWNrldiSaYFNFjdNifsY\nI8WcehlZSaNBfQ7fj/EMGbl+eksssy8ZfwnzX5Bn8yu/eBP154mc7fvI3hJ3LZk6sM6QFHYsrl3+\nOeC32tLfF9I52jOyUk/n+CvtxwAA1Zf6+Ke3xYqerAlF3aduaByZbwIA/kz3LDY78kyTYIpsIPfR\njToITykb94DtkVgUsqJAL5phoiN098U0qprrWHfIklyq4+y2RNQvnSnjgiOR2pQRZsfzETB6vQIH\nk5AQ1roJMoUh0AGGLJM26jK4vcxFrSqw4w/UB7jFar/X98c4YTXgc7HG22RK7tE8vWC/hM/VxKzb\nuP4Z1IeseqtEOBrL52LFwTWW9W4FMszVNQ8vbMsEunw+QLlElaZmCM9iySBFV1VrB/O5+Ja12lkY\nZHaGbqF+Wfq541io7RN2TPM8O+fhUkXKlIfjz2JGUZvS2Qk2iJMfJCVcukhKdQr6/uCTT2CdMZpN\nL4YdiNtlFzlMslhXy979/L5rs+iiNIXFQY6yFGUthDPT9SmSsdzTpDFAhTRnxiZLq7supjtiqleG\nKxieiNChnl/G78dC7R+c3EXck+M+ekaegYKPdlOev+WlqHAhOI48+E15yZoVA34h10noglbqFiwy\ncLtHMRRTSkW1isuEOXu2gSHHICrTVxznCEak+stNBL4slsXhAV58Sj7PL/K8d/4RnpvKwrOxMkOH\nmRijVUIaymLptR2srj8u40K27+cmb+KA8y0exIhKzJLoI4yvyFxtvVLDCxQAfvOYcgBbIZ5bELZs\nlOC1xR1rjx3cPBLklH0Y47T27haFpfuwbMu2bO9o36wU/c8D+CFI4PUWgP9Yaz3k3z4J4Mch4bqf\n0lp/+htdI8ky7HYHmDsm6j7JRtwEmgGZM9sNXL0kAZWms46Est6lqvy2anuYMe+cTlJ4NGfLNR8z\nZi3iSQaPuXeb+oJTPcbgQMxLf+cqPtIXs+xoaqA3FlP7rlIoEQnZnchxN25MYbmyy8+8FnozyWp0\n7AQNkmlAeXiOas02i46ebW5hh+zCeWkVOWGyjmoDayTznMtvjdSGNxbryNxRKAySxvoVVGfUqqha\nKK2JKxQxEt6qbsJYp4k/2MG1zZcBAHNHwyOWo9wCdlrSjxcIk75y0YQ6kPtMvAIVhzn/egAdy+6X\nmSHciPX9OySdnTXuM2K7Ux8po7FqqqBIJlKe1jBn+sRjAC9rJqhXxMJwt3zMc9l1r1/rYERm6klc\nwZyK1mmJLNflElbX5f6rsypOWkK3tooNBCTiiSwXmSG7e33B7G2lmGmKyJQcGIUEm91T4Jhzx8hN\nuHTp7D45N3SIkEHLoDZHuSLPWh+n6N+Qcd6FVMFe/N73YbAI7FYzrDXk2pNxgMvr4h70Zxke82Uu\nV9flmf7mzENlX+7z1jTGJoVcbnllVI6ohdqoY4sUgH3qTq5nDjIlrpZnF5iyeOwk7aNMwZl+S2N0\n+GAS9Iv2zUrR/w6AT2qtM6XU3wHwSQB/Uyl1FcAPA3gSwCaAf6WUekwv9Lu/TtMQF8JMTIQL1m8v\nQ+BwAno7SJUMYGTl8JjKmxB+q9IhCpepN2Sw3YVwSggnI9OwOUNCjr44pEhoUodVobJSzcS5VB7u\ncwdfwV3CcvNZjB1HrmMRzupWHGQNmRyXT6b4yok80NZwjmNCsGuWx58bAAAgAElEQVRlG711MSvP\nEl6LchkW00q2mQEsgU4LE6YSE09Z1OqdDaCJccesDHtHFghjpAEyJlu6i0ou99Scy4TYu/saOj05\nV3P9LJ6eign7B6Merg3l+3q1jo1zLAdvSsovGReoUgymUTegFU30eYSUTNmmMlGQDMRgPYTptQBm\nV9I8gh5To9KrQg0p+puFyJhSVJ4sJuXQQEHNz/HpHbCwExOnQJyQnCSMMCPTE5nTYdYdTFM5R6Sm\nCMne5LoWFuRUddeFIutTSvh0HhvwHVLfBykGM+lPPwqhyGhd9HLMNFORfDY6y5ExvqAPUvTW5bgk\nMmBVWXW7KptUu9+Dm1M/NCkQk71JWy6iMrUp8xRJLPPvWMsze2LFx0lHnk2tYWLGLMMTuo2QhRUz\nV2Paln48zmre2CwwzG4AAO4e29iuiFviDhRmFD2e5hlsVgc/aPumpOi11r+tFzzTwMsQzUhApOj/\nidY61lrfgShFvfiuerRsy7Zs72n7VgQafwzAr/PzFmSRWLSFFP2f2opCY56kmLs5GkQKKc+FIr+/\nW1ZwCVd2kgyJQwoymwCcQkFFhC77OQqqHecoMKfJn1dj5FNGZyl5ZswrSCnMkfdHGBmy43npGpQt\nZrnp2XgroglqSNR4DhcGOQojy8axQ8ivBXRN8kO6Puoj2ZmaDfmuVk8RM9hZ8kuAS7o1rWGQhEPT\n+oFnAtRULJwJzA6xGWddgArFltWBGkuf/6gp8Oqa2caTZSmSsfs17Dd5TyrAi105brIaoBmJBbHN\n4pyGV79v2tt5CaZPluuZgpGTiKbswCC1V0HxEnQqwLZcQ08daJfK1ac55jbZqMMMKcFS8x6xCV4I\nRXPXNFwUC6svy9FjUK5uaaTcexTdHbNkoU3eh3RQQc74q+WNAAb20p4pZIgATO78MEPEc/luiAiD\nmZzjMC4wmCf8PMGIqLSUMvODLIZF9yhWM5RH4gbFCDEzxH3VA3JvNHxMbLqMq1uIDdmtrdkY4R2q\ng3sZ9hcFe6/J32enGkNqW6rVEOvE2fQaddhk0ek6BVyyNY/4b6Eq2J3LK1xJI5wOxHqdF8eY0Jqe\nH8QI+9/G7INS6m8DyAD86jdx7E8A+AkAsAwDDhS0NpCTPDXId7BdY8zAaCKgWKudDlAnEi62yUbU\nm8MivjswfRR8MM7MQuSJkWMMM0RkGUpz+nr2HG6f0f4oRndMny1Q8JWk0+ajMXyWuMa+/PaJJITa\nkYcVvj5FNaKpqnyYnNzOuS1cpl/3DEVCa1sVlAcLItkObEPuCZUGcEDNw5pMYtOrAURCquQMQGFW\nNbagqFTlrG9jfVci9c9NxQ14+c0Rnl8oDzUtPOGJL26VfNxdl/s/b9VwZVv6VCdRzaq5CsuUl9Qz\nfaR1Ih1TA7os3xtmCYXFzE5X+qOrE6DDdKPO76dWU38Kl3qcYZYiYQ2wzijQ2s0Q80X3QwM6knjO\nztwAqnKO6d0Uq1wsKxTCLRWAooitE0yx5jETZVpIIoKBKiMEJrkZSYJqzTxEXNRVPINPNqILay2A\nSmRZXmA+4QJI1GQVLkwuEHnoo8TqURXZOGfLirS5LWnDcdrFDkv4lTIwzpn68l1Mmiw1dy2YBJql\nTKPXB7cwaci8OTupY9aWOdKMMsQbJp+PBc0xGBzIolBfn8CYCiBt6kSoGNL3RmEjiSmwa1YRrcm1\nH7R904uCUupHIQHI79F/XH/9wFL0WutfAvBLAOBZ1ntfv71sy7ZsAL7JRUEp9XEAPw3go1rr+df8\n6VMAfk0p9d9AAo2XAXz+G52vABAWBWIjQ+DJLhEbHroTiSyfgweDAKDU0OgSFNQmOKZ8tg2DUWad\nzmCTMy9vFigoMx7lE3iM9rPUHmqSY0YzMi+7OLcqvx2eS6Belvr3BAkSCs0oyt2PdIF0wloFy0N1\nVXauz3z2DTy+Jbv4Y+46Slus8kzETNwIVuBUWbXYrkBHCxPXRHGOJZOQv+skgVUiBXgNAKXuiqwC\n06BsnpOi8pSAZab/RvLSlWEft1PBeng3bsBsUefQAqqM4PfbGXqstDxrUHZtswqDwVodzuA2ZW3X\n/hSFSTN5NIWZyQ5U7MhuplUdeiBTwDItpCROUfMJEpLdmFGImDJziSf/ns5m2GZVY7HdQnokVlXi\nG/AbrGwsXAwtcTeGcwZzy2UYfL5FEGC+oGkr+TB2xOoxQwsZ3TuLLlFaLxBTCi6LAK/B4OjcgEHS\nmqg7gEGstD2X40KVoURei1obKIJFwDTBHoFY2V0xzz/wzJOYl2WMk8MuNrblPjonCvuFPB9jb4Az\ntgDxArq8X5mfID6S+dTwKpiMpA/DpofpobgEj21tI78p8+gWRY303Rk+SPZpe+sZ9C157oWhcc4T\nr/2krqAG3+Lah68jRf9JAC6A31HiY76stf6rWus3lFL/K4BrELfiJ79R5mHZlm3ZHq32zUrR/8M/\n5fc/B+Dn3k0nFERk1k9txNwRkQyRpLJz98YG5ilzxVaEEnn/VUl26EKbKJPFKIgNJGRWyiOFjCnC\n3DUQ5bITFgwuprmLuSUFTFHYgA5lt6qumDBasuI7BwO0A8JgubKvXGrCLstq3x2d4p9/XqCmBSbY\nG8i1n7XGeG5T0ovtkfSz7zXRTmg9zDSKkXhWkW3AYBA0d6SIxilvIM0kaGc3rsBkrTy6R9CrTAdW\nVlGqSMXcs/vyKE+9CWaTtwEA45Uynp3JPY3sBAepQIbVvoecFsvwVHYip5TAg/TXSE/va2S4UQrV\nkt8a0yFypgAXMmjai5ExDjSfAYlDXYRqFTHVqrNqDD8SCyJmALNyMkKfbFLV8QhlVieutUqol2W8\nOtMMg47ssDNWLR4aOWJD5kXVteAw8DmxA1QyFml5Cg530MwjNmFiIioYU7BCRFPp50TNYGCBoQDy\nhXYClZprvodSKPec9QqUXRIBxyYaq/KbrRaRi1kM41j6W9Zj7N1eUPPVEdHfv3M4wV2PWhsspDLt\nGHN60Gl5hOhErrE36ILQCox3O5SXBY4KWiiFAe+Ue65VwpVtia80pw4ST+IrlqvQtt5dSvKRgDlr\nrRHnKULXQo1VeIlloz+RCXurW2DHl5f07fEAOb93NyVDcNldx9oZyYqe9XJkNZqw0RR7QxnAZHSK\n21oi9GupBIvujfpIma822wfYotBHud/A2kLUo17ghMEzkw8D/hZS1lecGCmyshy3ez2CR1dj9yun\nmFyTh9GEBNGMx+/haYqh6GYVq5DJMWplWJvJozggt54zew1v+dLP97Vext2hLGhPPe2igu8BANQ2\nM1iFmInGZVncrm49g/51Odf8KEJekUh+d2+EEqnYj4wYXyQ/pGbZsDWfIqLOZWkyg1G5BgCoDkpw\nDGaB9BRZyv6TU3Ca5EhSMZ+PEwMlRoc65hZKfszfhKgwNz9PyVCdDeDEzAKpHeQkHNnrniJiFiib\nmfdZvM0+8QNxgSCQ53F0HCAbCW292jzBOWJZSvU22qCAiy/jZqQhOnRzOqfHOCIGxOmXcT0nnuIk\nwSnTGT4rI3PDQZV1Jf6KhzEVqMdFCpuK5sqSPvqpjaNMFpA7J13Ut+Vc0W4X8S0Zt/VKBEUXWe2R\n6j3JkDHL8vuDDM7CdSkK2IbMIedCjPMs889tZmK0hmrIeVdhILop/Um3NPpgcLhXhnH0YCzOi7aE\nOS/bsi3bO9qjYSkoBa0sBJlCkRBtmK+h6YqZ2C5XcaYku3/D8BE2xMyd0aUYZXOUSeY5Xq0jIFFl\nd3SKKSXfJqNjpCyCuU0IrC7aCHzZ5dOohx4JPIN4itUnBcY8/9cdVFbE9GPWEDsa0ISifiGOkBzJ\n9WLDgksk3BtmjvdNZLd9Lacr8n/v4nOJ7A71aYDnrpKH4coKokRObrwmZBu37Qi/dSKBo1+3Qmwx\n5Wjri7iyIm6Av+HCVrKLt9ckLRbf2sVqW/r28miEeizj5nunoCGEjagG/3GxQoY0l/NxAfuEDMaN\nKmrXZNcJ4wHW98QKUdseFHP2eczc/EkHiSf3v3cSYcgqV/t2iPZVuhimDQ15VnFCjYXMQUKLrRQU\nSBn9vTwvYb4mHf1ColGiRuZpujDbM5wcy/WS7hSqLqZ73FG4pSUwfb4ToUXRBXthYUz7mB3Kc5zO\np9BMkRZ1G1ci2bl31w3kpzJfLF+uV818nKNu6N1ODrcqr0zcM7FJcpmdtcvso8LshliF0+MJru/K\n84tND3lXUrHzWgX2gfTDZ1DzcJyjWhaLIHMKFETOhsMC5dUFytTEICDK9BrTm20TFS2uXU8bWHdl\njF3Dh+PRVTariNa+9TDnh9601oiyDLarUCtzMgYpwCjriu0gJG35MEuxPxWzs9rgg6tuIHfF5IyL\nMSzWHCTaRWLIQxqkCtnCnSd34ji+AZ+KQKuNEGdXZCGwGx5eOqUI7YaFg0XdwUQm6O7BEVaZqYiL\nGBsNmXjX7iYwSdi3PWohaTLNccC4Rj1C0ZEH/gXzEMe35Xz/0dkIK+vClDO6Kvf5+ldD1HwKi+gS\nWs+LOVh5fAWNTXEZLLcFI1lQh8s11kt1dOoUlf3yXezNdwEA0SzFAm2drkRosK4iO5G4xv8RHuDO\nXCZrpsu4ckWmxvPPPQePYKG6nSCw+XxYkTfp3sDentzTayc9fGmfEu7JPlpjGfALpQkubUk2o04i\nEG/FxrkSK/w2KxhzjP7ey7+H72nLcS1vA1FbFr3NU5kLJ2aK7kReip5h4oQQ8616hPKqPL+ek2OT\noi71Msl55nWUbEKJjRXkJPgcjqvYG8tiMk1niAiyWmf9Beo5rPPy+UpqYkBuy+oJMCaL1P5AsgKt\n5hUUHOPPvr2PjAGBpHDu65DmvRm2CXa7TYzM1NKwExnDp+0yUm4QN+sK46E8k9eVBxiyYaBEHM4g\nxocpMKvUKnrUmtyupKjP5PmGvkYcLjkal23Zlu3foT0SloKCgmOasAwLKQuGqmYDa1RwtupVUPIR\njXoJXotmUkXMqZptQY1lJ1XWGJOCwjCjFKkpO5PhZ6j6cj4fYqpFQYIWuQML1UBEE3Xlgo9brMev\n5WsIWrI79LsSWd66vAb3rJj+l1/cxT/9LHPsATAmotGr3kRwTkzYx1gNNzJ38FhlFwBQP87hZRSZ\n2TKx8UEJlNZGsrN9RL+Br5L977uMNuznZId+8vGzMFuyU6hkDM0qR6tDTUE/Rz6T3c7Z2MSOErxF\n1o6xclfGbWNlFc0Lcp3DPsVpTqbYqspnt1pFlezC65NV+ErGy3MiwCRCkG6evbaBBoN6zzRW0arI\nvd7ejPABIjJDO8Q2CUkW2YBAF4gIV1cnhzCJY6hUDBxwh13RM6hcjgs3CDXXFbQSGYt6u4Qr/Dua\nPs5wmy7ZQJX4i5zFXNMiRkIhHr9h4+KGBOtOb0ZItklpNtzHSUfue5tJMH+9hfKIitBRiAqzJGZm\nYoU8DOfqcryzYqFPpnGUDEyZUSqv6fuYFLvcQI/Iy0UBV7NS4MWmzNlz1TJUmxWc+8Z9Tku7bsHj\nPR1TWv5cO0NGZuvBfII2AbKDozIsX6yi7iBHNH13lsIjsSgAGrrIAVeh4nGSuiZAfT3Xd9AsBfd/\nnbHbmiQsZpEgZxpykDkwIuZxyimSPklGaj6MVQqfZLJQrM42MFYykpX2BBdZUejO2riYy8tUXIjx\nr26RXzCSf//hGzm+1xNGo89+YQZNrH4y08j5pH/jjRku3qCSVUv+/eAHY2SkVJ/YNZBgB+PARTEn\nQchZmazbH65A778KAAjmGdycKb1TDX+DpKnJELDoBtQJJprkAMldLphtDOgju80e1rhAljZqaEZy\nnfVVMY3jp8owKEVvuEASysLi6RkKReiyBmymeAvGX6qmh2BLzlG35lgpy019sLyCDAvS1C7Kp9K/\nuSeuQTKJ4DP9nA3nsFnt+albI1zgGL7wWIA/d06+N0J5TmFrApPQ5yyxoLXEa3K/hxLTvRXdQszp\nYnKhcNCHiqklWXOBkMxTrQxXZzLn+mWg3BDfvzIhHN10YJc5tp7C7XsyLoaZoevJczjLTSNQT6Dh\niZu0UjqA64hbMpwAc2pQTtMJTLJXmXT93MjDW7kcN3cOEX2VpLl+Ch/y3J3RKU77Mp67zM70sgaa\nWmJpF80CBTe7jcsVpCylNxKgGFOd6wHb0n1YtmVbtne0R8JSUKYBp+aj4fvQ1DOsNhsIKFHmelU0\nyMQcGH14FFSZMfqLUY5bqWAQ3MSByXr7uU5hs4rQrdkoLaodXWIhAgNbijtJqQmf8NlKGGLclmBe\n8rrC06uycn9GSx9ePF/FM0+Lefa/9JuYf5qagI4Bi5qPSUvjKuniTh4nR+OpickKadP2Izz/tJiM\nL1x6HhXyDHgQt+TCpRraGxTAORzjsMdiH7sNx2BRTnMdSslni5bSfD5DlcVjs0qIHSpNR00LaU+y\nCO2xj6xOchnK7Z1Jq9BiPMC0c4SGHOf2TIRKdrxgWgNokViEWsfmBA6p1X3LwFlaMVO1ByuW32Sl\nKhyCoQbkOTBsG4krz6NtWZhaYm05WxaevyR9m7wvhrorgdCjC9LP1XkN1VTOa9fnaFBGvlcxUB/L\n8ynSU1RT2Xn7CbkRtf5jjgUFVAmLd20DEen1K7FCHJMirsVz5RGKruy6d3oRamQHN/sOWgROlT0h\nOtk/PcCGRcKZMxovhmJh/W6awntbgoADF7Bm5GdYk7l3LvDxiU8Ihd54P8e1jDqXRQnnmVUqGbt4\n80CC0BMKBiUt//57MfI8PE7XzlQmpgxcJrMUA7JxP2h7JBYFXWik0wR5ycallqQb82YZak984LUn\nXLTIGeh6ZShqOQSshuznYxhDGZBxlKBKAYe0CFCUZEB6hkZpIeBAKvN8lmBW0O9L6nAIiom9ApWx\n+HVPXNrAy71dAEC2J8PVO4rw6dtCyPKJlUP0z0ufO5+/s6BYxPZxDQcb0v8LJySY3TGRvy6TplJR\nWOlxoes6cB+TyDmrYlHkOUrhOelP9QCrFwhSymNYmnUSrgGtxHTNFiXE2QzxOsdwN0PEGIcVmmhs\n0JVwdpBTC7LSISnrag6zLBMwm91COROzNW/PYfRporsaniWmdkxymuDkFFOa0fVpE+qcfG7ONpFk\nEpUvejWkTXlm+YBAoThDhYjNuKkwm5IV6iTHp1+W5/OfXvFhX34fACDcZxypUULZkgW0utaGyRqH\ns7kPbMrgjyYtRIwleDHRqzMDhU1aEKOEBiXsdS1BNpZFJvR6iEn8QrwSDqM58pIsUpXCRzhjmjFL\ncLcvL2/wZUk9P795BSNS3384d/AFkqFciGPcpM6EN4zvK0qdn8viXd9pwLgl17icOAgPZS7vBxPU\nSKyyqi3kFXExK6yC7Z7E2CCZsDJ97C0AW3u3cXVD5kjPddFhqvJB29J9WLZlW7Z3tEfCUlAKsHwT\nhmOiM5YI/87NOuItEnJMTMzVAnBkokS5c3DlNGY5fGoG2l4Evyq7gJ3aQCQrd2XWR0YQSjmR8xqB\njRZhu46RI6OytWnH98k2bnSOcGchHUWYc+3PT/BdZ8RS+NzNCKMTUelxrF2A4JypeQxVSOCrzf6G\nMTBsyGc/rWCFrsTEuwVD4poot8UU1b2boHgT7Kp7v17DvusBZ7jj5Sb0Ip9O9t65NUQyIXZhYwdV\nMlHr6jr8sexs+WSIgJiEeMEUN2/CrMnfLaOBrCw58WIUA9wdLbOEojTn2IlVhWoJQZ+/NQcIYhkX\nvWbA6cj9h6Ue8lPpc5FTsAQ9DEkmsqpNNEgGU39O4WqDdR7JOk4/L9dbbUl/jdsGrG2a/paCTXet\nUEDRZQbDL5ARNt2z5PhYzZBCrt1WCilrEUojB/QKUYODKen8vZAw6ChG90j6fnuYICJxjM6BmDR0\nJz2ZQ7+7MsVTJbnGaM3FFS19eH3WR5kZkyKI4JNibuILWOw72ms4U6Zi1XEXbzkyD5tuGzmzR4Mi\nQpN1F+THgR2biClRUHX1fc6KYTzGHU3Snl4AxcDsg7alpbBsy7Zs72iPhKUADZiJQjZO4AeybE+r\nIYa3ZKvcr9yDSzJWc2qiyjr9PGFlYTxDOiUCMS3QZZFTuRThdCSrfMlTCEiU6VlkvIl9WFSdNlwL\nSAQj0b/n495UdAjujMfojIlIZH549+UtvLEnO83tN1LkjqAmdaagF1V7MwtvkxZuTBXsM+MQK3P5\nfFoAL7Oqb8/ew0cr0o9hS+5p9dIOcqa0zDCFsSsMO8WqA53IcbbTQzFlqq8tfff0FXgGLRSrhinp\nz7L+LXgTGYuTboqE1DelCyQ2NWowmI9XzhBpV+451ofIU4kj6JUCuspinEgCrWlswTAZPG3X7qcq\n1YENzQCJzg3kzLdHJAFKUILHYF5sVGCT0uylsIHHA4lhGMUquk8Rh/F5BnAfD9FyJAaQHxuwbN5/\nnkBlcvKsU0PkM23XIapwPsXhTCyMsTFHvWBa2k1gkSFLpVNMmIod92W3Pu6PcXhMLEtJQzF1WrIV\n9nryLDvedQDAUzrHl8mEZGkHU0K7g4EDZ0FumxmwmXLdYYq4fNjGawwOl7wK6pQ0D+rnUPcE3j7J\nvowBKz8PWJQ1y3OM70m6sZSPMGMxYbXlI2WB3eONNawFhPI+YHskFgXLNtFYq6BU9ZGV5MGV6i5y\nlqx6sBFDbKaS7iMnGCPTpFcLc+QDDrq20R3Kg70HB72ZLAQbwSr8MjEC5ElUbg6fuWIdh0BHjjvd\nu4dBV4bmTmeMsiOR7KOaTI6X1tdw9byYfm9Fq3BZa2HUK1BD+Q1qJoxMrtdglH2rCZxQOMXqKWxf\nIF1XGOCrqZju72cZsvm8DVUIoElbBUCGY406FEVTdXIWigQh5ak8+HnlCH5ZXBDlJPDoH0wqNQz6\nRxwjBbdCsBfkJc/6gFkheUc4w2zKQg9dhpETQn5kAn0yUHckiBjpKvwqlaAcH1mu+LmDnGObTwE7\nlevMyVodTlLYrGYtmRXoprgo5yoVqBXWJaQTOIcMXK4RWGa3YWj5u1maoRgykm8UwFzGIB+NEU7k\nuHFX+j4uXLQcWSArXhOuz3PAgc0sVnKcQg/JVp3L8YNYIWc9x8lEYbsh91T3A/RJ0xaPpQ9fntzF\nBYrGnn2sjozfZ6sxkonMl6qn4LIGJyFUvN4eov1+ef7+a5uoPynX27xjYX1Txtkf+1CaAV2HWQYY\nyKeyOc0UENqURMgU2nSVV0sllL2v5UH6xm3pPizbsi3bO9ojYSnkaYHhSQinZOIClZbDyhr8Lwsp\n6azrob4hK/tkMkOXteIrZQYMqzbO073oWiHOUI7tJJoiZPDFyFpYqcjKXbbkt6dhH2BgCZkDcGcL\nXBt/0JM005Wyiy/NxYyPWOH41hd7uJ3L7thRczz7uEBjv3zt1v20ZzxIMabEWsxCKqvbwCrZ8vcA\n/JuvCmf/c4GL8aZYE0kmKtgfuR2gvUZLomrcR2zqyQDBipiU2uhBOaRH86lF6V8FqGBcjDPcu/NV\n+f6CQl6W3zYCD+aCSDXi8VsRqJCO2bgHn7Rq8CIYVLk+Pe6hzCDY3oSCPHUFRfJUJ02hlRwXzUNk\n5ALQloNpTdJlzZSBv7IPjwE37QFDwrQPhwkaDDRaQQ7Pld3/dCw7ZsOaw6iQVDeykJmsODQDqHVy\nUbQKKPJSrLMKrDBncGlZqsSEqcj+nQGTRHb8qS6QMl+Y0fT3S1Mc97hz2x7aTWqOxBqHpORTDILv\n1M7gxBVrM78X4rwtc2stNzAPZOfeO56hZJJk+ET68M8md7D1d2UuzPIII7pgM/sWnh2LO3Kp7CIn\nzFlR7MiahNiixugg0hgSb2H6VZyhG752xoJJAZ8HbY/EomAaCg3PRKMaYFIT09c/6GBOGHkajXDY\nlckR2BFKnMiDRQAcTczmMuibzQwDVotdyA28Qb9+xz7FfCgDnFJQtBRYyE8IifZm6HsyqK9OTzEk\nV+JrxyfYbEhE3dxkldr7p3jhI/LdM/tr+MRYFhDD+iIGKfP+hoJZlQViryB4xAceI3nHmRUDMypP\nndgZPuAJaMl+impFYQ8JJ6ZnPoEwkMlvd8fIOkIs4mxeRk7MhXlKgMOOAhaT3PPQpo5ltGKgZclE\nGUQaypbfzBgvse70UeywbgNzFOssyV5ZByx5CWu9CNNYFoMn4ksAgHkQo84S98nwDgoCNfJ2DbhL\nGvw0hkmTWa3Ib72pBd+lC9MrkLNO4lLDhbNKqflagO6JjLnKSGozsKEsshaXE4DcjcoCaoWcW5Wb\nsJUsvp1U7mk9MnCH4J52MMVhj/Tztg23xQi+BcwJLHJLFT67HjyD5eUqwzpfmdOSDU8tODalvwNV\nwJ6RWMY18QYZlWeui5A1H6lroCDjlGPLcasbwP5dxtKiGeYL9idT4xrZpbNihu2GxHYcGviZBYxJ\nFmMiwGpZPq8YBYyCILJ+CNNneuUB29J9WLZlW7Z3tEfCUoizHDcHU0zuBmgTabZZ08h7Qre2v9HD\nJfLynUYR9k9ISMJswrO5RlKSHe/eZ3vY25HjjLdr97nqesEm2k9z1zlmDtr0UGc5XDFp4PaRuCvX\njyy8siuq0parMEyeAgBsrUqE+DP6JVzZlZ32b95ScHZ3AQBhFgNUdk6SEHmHBC7UjUhTE7Ux5eVz\nHxtkLV67VEV7QyLudV8sFHdlDfkKxWDGXWQzMb+tLEIqBg9McwA1IRy3IekE03scBQt//FjjM1+U\n+28at+FRb6BcCWBmLH6qyK4UmSPkx7I7jk5j2JS4L00KKMrIm6chNPUQNHdBz3CRUSotH5eRuOJe\n6OMW3EXA8NDANJJAWzKQsS9KIwRKUHezZIZoKFZFN7Nhko5s1QigRKIUYVf6WWoPoDOxXJJZEwYr\nDidBDmMsQcx4bCHvk/tiIj5RMerjlO7hXS9AoskRYZTgzFhI5QEg2/TxgVx3t2/gbodu13kPRz2C\nR0oZCloQFlGFq5U2ShSkOU1PUPHl2odHI2QTMXvn6QRr7WNs+sEAAApySURBVIXsnYzPen8N7W35\nbTMFurvUy1AaCjLvZ1WFe7QyNaHUt0/nsFssXItrcAjzblUBc4WWY5phOv//IsxZAZmtkUcd3Dn6\nFAAgOGrBK8lAuf0qkrI85FZcoCCn3o1jknPWXLTOPQ8AWKtV0fAlTdPcuITiCTlHdLuC/ckfAgDC\nA1kcVlarqMXib6XBBK9QLOaVewfISUKt5xrOh+R8hk1peP8AV88/CwBIjB7AF6EwHIAEo1AF8oKA\nK2JH/LiNaVUe7EYnQ2sq/b+eAbWbUhF5blMWoNrFMbxMXBRllZA2ZSVwe8eIJVAPt7EC1RRIsxWJ\nOZ9DwwDNxVKMs8/K/flPrGKPYrqVcQkdJZ1yPPn75jyFyRRhtwgweJsMSsk+gpZcUN0zEZ4hM9GI\nPnnTh2nIGPcwhjEkMc6lOYoJU7m5C4NVoLMKXbcuMKVJDVtjxEyTbSQoMXI+SPV9LdCUpvHEKiOd\nEJq+OgfIyzgdpJgP+KwNF+apvHBzch+mUQNTxoTiKMU0kkVW+RmecFlSXfYx4LMMqUHZnSWICacv\nDXzMnpPxavdylA0yIJmywGozgSaiuBx4iEK5D10bIxwO+NBsTIdM29blx5OTtxD35HkMYgOzQlyf\n/tRAi5kfq7SGZEeg7qNbUsOS6RRhX+asUTPxTOkiAODyhRYU+RztOTDK36H6+A3b0n1YtmVbtne0\nR8JSQKGhZzGOIwNVklgc54coGFxbKwpsbAtWoKgFWGvKar290BncL2NMcEi94uHZy98FAKi21u7r\nEh6v3sbamJWIT0t2Imk4CBgkcg0fH7qzCwD4Iz2AsShMUkBwKHiBDVoof9nz8C/nknf/nzMLP+n/\nBelH/rOLkitA4/7nnEI2TyUFvnP7uwEAHe/zSEgH/z2VEKtnPggAaFyV/qy11xE8JdbIOAngziS4\nmHsV1DwpXFL1HZjMWWcO3QvdQE4qMjVMcf2aWCtVmAADTk50HjndkfJCqv3MGdikXz8TrAB0Ywq0\nYFF8J2lmqNYl06A9WlLGDJMj6Vt9GEA9w1JLt46MlZ0qixGRD8OhLqXjB/B9sX4yhLCVuBd3jhO0\ntfymqAewaTKfHouV1jwdYvOpqwCAk5mH7YZYGFuVNag1ub/ImMG6KDtlhQVv4TCC0xGQ0bU79xDN\nyMWx4qFL3od2mOGUFGm9Y1oupsJatuBPtFG2xTJT4yOExA1UuJvXjSpCZhnyk7vwaLBtRgFukcfS\nnM5RY/bgfcEHOIY3MSBMv+EMcLsnruQsmGCb7sOKs47OTZlH+xMZ13AWYYsZtcs778faM9I3rwJs\nN+Xic9dBOCTm5AHbI7EoaEOjCAqYqcK8LxoKsWWjQd941y5wcSBm3cbzW8hn8sAcouR2rXuIrjHi\nHuxjhRqGxmMptpUM6ujuVzBlnUOlJqbsWr2KmA9/N5/gN6sy8eBaKIiUMwoTcfhZAEC0iORfMvHd\nLTFbf80KsbL5ZwAAquQCE4qtKo0F341iCfVB1Me9SxKrONe1cSuXF7Ob+Fjflpd74+KTct3mJWSl\nhXZBBylRd6YOERMDbzsa5kJPk4tUZmokCV9Gtwr3O+nCxC4SlknfvbmHlEbi9Fj8cH8L8Ams0q4P\np0bsfALkIcFJ8x6SubheZiAvnQqS+wQpYS1GQOYlVBzEB1RIGs+gNcltSYeeDA2EMyJByykijlZR\n0zgkB2cWDjEiYtOYyXHT1EaLRLKVUoHQkLiEacxhFsypxg7mU1moFuJI3XmMzCIwKS1glWVjKdv6\nfsXn6XGEbl9cgv1UFqlJZkGRK3MWFzh6Tdy8VKeosrR/Rn0Sw5zDdqUPByUXZZLIjIM+DGbKMm0i\nceT76abUNayZPnbvsq4htVEQZVtx2xibMvan7gTXR6IJMuK8j60phqbcx7h6iMaqPJNZr4G3uhTF\nne3BjhYC8Q/Wlu7Dsi3bsr2jqT/Whn0PO6HUKYS6+d3xRn3rWnt57eW1/39w7bNa65Vv9KNHYlEA\nAKXUF7XWLyyvvbz28trvbVu6D8u2bMv2jrZcFJZt2ZbtHe1RWhR+aXnt5bWX137v2yMTU1i2ZVu2\nR6M9SpbCsi3bsj0C7T1fFJRSH1dKXVdK3VRK/a2HfK0dpdTvKaWuKaXeUEr9DX7fVEr9jlLqBv9t\nPMQ+mEqpV5RSv8n/P6+U+hzv/9eVUu+OZfPdXbuulPrflFJvKaXeVEq99O26d6XUf84xf10p9Y+V\nUt7Dunel1C8rpTpKqde/5rs/8T6VtL/PPryqlHr+IVz75znmryqlfkMpVf+av32S176ulPr+f5dr\nf6vae7ooKKVMAP8AwA8AuArgR5RSVx/iJTMA/4XW+iqADwH4SV7vbwH4jNb6MoDP8P8fVvsbAN78\nmv//OwB+QWt9CcAAwI8/xGv/PQC/pbV+HMCz7MdDv3el1BaAnwLwgtb6KQAmgB/Gw7v3XwHw8X/r\nu693nz8A4DL/+wkAv/gQrv07AJ7SWj8D4G0AnwQAzr0fBvAkj/nv+E68t01r/Z79B+AlAJ/+mv//\nJIBPfhuv/y8AfC+A6wA2+N0GgOsP6XrbkAn53QB+E4CCAFmsP2k8vsXXrgG4A8aRvub7h37vALYA\n7ANoQqD1vwng+x/mvQM4B+D1b3SfAP57AD/yJ/3uW3Xtf+tv/wGAX+Xnd8x3AJ8G8NLDeP7v5r/3\n2n1YTJZFu8fvHnpTSp0D8D4AnwOwprU+4p+OAaw9pMv+twB+GlgISaAFYKi1XoDTH+b9nwdwCuB/\novvyPyrRnHvo9661PgDwdyEsdEcARgC+hG/fvQNf/z6/3XPwxwD8y/fo2g/U3utF4T1pSqkygP8d\nwH+mtR5/7d+0LNnf8pSMUuoHAXS01l/6Vp/7AZsF4HkAv6i1fh8EVv4OV+Eh3nsDwL8PWZg2AZTw\n/zaxv23tYd3nN2pKqb8NcWF/9dt97XfT3utF4QDAztf8/za/e2hNKWVDFoRf1Vr/M359opTQAPHf\n/6e9M2ZpIw7D+O9dGnBqO3eoBenqGKiD0A4aSiYHIWAEP4U4+QUEB8GlU4cWFJHgqHauOpRWrGKK\nhTqUOjlneB3efyA3BKrc/+Lw/ODgcgk8ee5eHu5977j7l0H6DdA0s9/AZ6KFWAeemvWfHpvV/zVw\n7e5f0+dtIiSq8P4OuHL3G3fvATvE/qjKOwz3WUkNmtki8B5opVCqTPu+jDoUjoGJNIV+QgxdOrnE\nzMyAD8BPd18b+KoDtNN6m5g1lIq7L7v7C3d/Sfg8dPcW8AWYy6md9P8Cf8zsddr0FjijAu9E21A3\ns7F0DPralXhPDPPZARbSVYg6cDvQZpSCmc0QbWPT3QdfwtAB5s2sZmbjxLDzqEztBzHqoQbQICay\nv4CVzFpTxGnjd+BbWhpEb38AXAL7wPPM/2Ma2Evrr4hC6AJbQC2j7iRwkvzvAs+q8g6sAufAKfAR\nqOXyDnwiZhc94gxpaZhPYti7kervB3GFpGztLjE76Nfc5sDvV5L2BTCbs+7+d9EdjUKIAqNuH4QQ\njwyFghCigEJBCFFAoSCEKKBQEEIUUCgIIQooFIQQBRQKQogCdx9w5/yaBkpKAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.3614... Generator Loss: 1.5139\n", + "Epoch 1/1... Discriminator Loss: 1.3375... Generator Loss: 1.1554\n", + "Epoch 1/1... Discriminator Loss: 1.5048... Generator Loss: 0.8155\n", + "Epoch 1/1... Discriminator Loss: 1.3531... Generator Loss: 0.7889\n", + "Epoch 1/1... Discriminator Loss: 1.2752... Generator Loss: 0.8632\n", + "Epoch 1/1... Discriminator Loss: 1.3345... Generator Loss: 0.6996\n", + "Epoch 1/1... Discriminator Loss: 1.5458... Generator Loss: 1.1624\n", + "Epoch 1/1... Discriminator Loss: 1.8949... Generator Loss: 2.2906\n", + "Epoch 1/1... Discriminator Loss: 1.5799... Generator Loss: 0.3830\n", + "Epoch 1/1... Discriminator Loss: 1.3848... Generator Loss: 0.7840\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVmsZdl5mPetPe995jvPdauqqwd2s8lWNynZlhQNkCU7\njpXYhiEHCRxEjh6CBHaQAHYGJMibn2wYCBzEiA3YToIkkA1EiBxYliyHGik2RYo9V1XXXHe+Zx72\nvPLw/7fIDiKxKbLtDnD+l3vuOXvvtfZa//rnwVhrWcISlrCEK3D+VU9gCUtYwqcLlkRhCUtYwkdg\nSRSWsIQlfASWRGEJS1jCR2BJFJawhCV8BJZEYQlLWMJH4BMjCsaYnzLGfGCMuWuM+Wuf1DhLWMIS\nvrdgPok4BWOMC9wGfgJ4AnwF+AvW2ne/54MtYQlL+J7CJyUpfBG4a629Z63Ngf8V+OlPaKwlLGEJ\n30PwPqHn7gKPv+X/J8D3/34XtxpNu7qyglNXpGUKQJoV5Jl8rq3FMQYAg0MYyLQDz9HvoEYknqqo\nwZFrXcf5JtmrLXVdyzW11a9qzNUkaihsrR8NjidjRI2EbpIA4AfyN80tod6YVyVlOgVgPB2zKCoZ\nw1ZY+YhxZRKuhVqHs3VN/S1SmuXqs76nMZir2RmezdNiwX7ze8f15dmufOW4PoEnv3tuwM7mmtz3\nZMHD6cNna5HqcIGuVe04VM7V2ODo7xXm2dystd+c09VsjcHofbauKSt9Q/vNNwKDc7Unuq6B7xMl\nEQCtKMHzA/09wEUWrihSMlvI/GZjvQ9spfOsHNBRnNDF0X3Fc6G6WhCZjy0tVr+yJVij86xqHF/2\npypdrFE80veoDGQLwcPMWjwdwngejUDfW7afcTkjMldr5eD68q4lkD8bz2L0mlrxA0dw7v+99sYx\nXEnytTUYxd8k1PnWDhX6UtTUnn6uLdaRawLHxfNlnY9OTy+stet8G/ikiMK3BWPMzwE/B7Da6/Ff\n/yf/GWE64c75BwB8cP8pj+6+B8C8KImUEIR1k8N9QfT9VTmkgTHMakGe6cWcOhEE6/oRRi7Bzktm\n+QKAyVT+Lsrs2SbXac2xEqQ5Pu3uCgA3v/gGP/3a5wDYO3wdgHefZDynSP5ges7lu78JwC//xq/w\njaOhjFGOyCfy7Kgrm9LIXeZ1qeNlzItM5lY5lI58b3STvcAlMHLg8cCpZZMLU2ErWQvXr2i0dgBo\nteT3xsomB115/9WVff6bv/KzAFR/9S1+7jf+AxljUvKevvdBKHObxwGjpowXui6h/j61Dlkla1vU\nFrdSQuzK+/uej9eQ+VTTlP50BkCZV5RKZF3jE8fyXu1V2buD3R2ef/UzAPzYi59jdecaAL2VazTc\nAQDHJ3e4lz8BIPvyLwOws2upL+X9vHEDY2TdkptN4nku67naxUy68gKJ7HV2llO25RTWF5D72bM5\nNzbkvafDDqkrLz4ZyXuM/ZrbbwlO3q9LVgt5p3BljTcOZO3sr8lzf+n8q7wYyhzSImJlU87fmQNP\nAplHPc7xXbl+ofhBAKlyLzdwiXKZg990KLJSnxfgpnMA3rjVBKA/D5nSljnYjOlKR/ZmVlA2QgD2\nk1U2N28C8F/+jb+hXOEPhk+KKDwF9r/l/z397hlYa/8O8HcADve3LRwzcIaMj2Szju69x6Avn8PY\npatUt7vf5fpaD4DDPTm4ee0yz2SFT3OLtbLJ7SSg3WsBYBJL5ghypxPZ8KPZBD+VMe4HKeMT+TwZ\n98kmQiA67W/QuvVZABprgoztN58w7MnYF/kJi+kJANN5SLuS+xapg68UfaOQOTghVLlsbBDkVKXM\ns3YKAleJnhI/x42Jr4hbI2GSytwX84xhLfO3FWQjWVaPLZmjc4rJhFAUW9D+b/83AFq/+I8olHAa\nIFCmcqTfvby+zuaqINJqHREop0ldw9lEDuloWJIXgvRN5a691TaJG8u17ZLw9ELWZTRGzyilLZiX\niuiXZwCclR6bniB3tPN9dF5tyGfnnCySA1Q8WfD2r/+SrMugL8/KttlZyBqWUZNGVw5pJ2rjqOTh\nNdawkUqcU3mu27zE9eT9imSKTWVtR+6EVigEqbleUlayJyue/M2nTwk78n470wlhpgSk4bP5S3cB\n+Nm7gnuXjLmVyMJ+cS/gVCnrG7eusYIwC84zMpXu1j058BdlzelECMW8qlgtFQd8w6QQCelBmjK3\n8k53LmWM2tacZLJWzbBBdSS4UBUN/JlcG3facP07sxJ8UkThK8AtY8x1hBj8DPBv/34Xl3XF5XTC\nxdePeOvDdwA4mwa0EsGq3Tjm888Ltbtx7Rbbm4JMcSwbPk5HjC5kk+O1BWYhm5+sOnRbwpk838VR\nUazqibz3fB6RJpcAvHA75auZSCYf5OtkqORxlnI0OAZgeyyH8Z3qF7jzoXCBB2/9GlEqn01vwUtK\nuZMcwlyQ6frzIq5Es4C3R/cAGJ632GnJPDqLhHBdNjouhNjE6y12kk0A9g6btGfXAfj6+Ku8+55w\nz6fpE0KzK++XqHi68EhDQVJ/Mmel/bcBKK70FkTgzlR0LY18sHuGH9oUzt1bX6WryH+a3efRXVnD\nUeMJ2bnct74lv19v7rH/snKrUcTt47cAePPdBu/PZN3SsUOpsrK1shajdMiHAyEQD0fvsXq+AUBz\ne4/sNx4B8Dtf+nnuX8qefaEn63OYZaxuqvhXOGxcE1xwki6OHmRjDCaW/RsMVRrzcupMiIlZfcrk\nsRyUqDni4Uz2b2vVZbWUZ9tQ5puW19hoy+GtBpZGLISnbHb52eABABfFNxf2di733Qkn/FcvHADw\n6sEm3bbgb9PJsZUQ8CQSxj0/6zFIP5RnPc5wm0IILo7H3LshxOR3fjnlqJJn335U6txdNip5/6pY\nEIWyT25SMpyLJHcWD8jHfb4T+ESIgrW2NMb8R8A/BVzg71lr3/kkxlrCEpbwvYVPzKZgrf0nwD/5\nONfWRcnk/JTfO7/LmYqtDZOyuyk60meuH/KF50SEX+/tEa8JxeyfCUe0dYDNRVzqRT1SIebEQYlZ\nCMUMGyWpUtWNLeGudpYSqPHw69MnvFIKt5pnfejIPPy1Bu6Nl3QcYbdvfyUjTU/l9+glPluItHG2\nuodpiaj9/bMG40Kklx986RYAk8LjhaFwifuPz+j4IvrNVlq8XovUM2yJarR/cxW6wsFe2XuNiTAH\nfvDsM/yD9f8FgIdfr7g9FWnDCeXd5vWYsS+aW2fiUPyfv8+iqzHyf/jTfxaAF16+RtEQbtbt1vTH\nogYczlbY9EQ8aDZ3uJgLt73ZEa6UtFbZuCbvNC0GvPRE7T1bD3nnq7IRX4qeUo5UVFYRuCgj5gNZ\nty8fWfb78vva5iO+WvwuAO+22zSPviHPbsre5LHhvCFrtDbIwZX3ztMRTlvGDi4L6kSkxXQqc596\nLmGmhr/p87hG1m1WtbhmZZ/MvM1cBAua27Ifq6VHGot94ixc4BmR3rZzB+4KjoS+4EVWwrVIpJXd\nFw/413/4TwOw1TO4qcyzed2hLmVdfPbkO2dIwxWpuEhG+HN519ZaSfvyEID4B+/z974sktWLqgY9\nTqF2deyFi1G1MgsifJUAz8Ib7OYqWX1M+FdmaPxWyLKcB3ePiC6muKEsatLy+b4NWbSX1p5jZV8Q\nod2E7KlaaHLZWH/hkUSCrLFpsan2ucwUBJ4cPCfv0OuKmBsk8iy3k+IMZcGeb0x5uiWi6r+138YM\n5PuTVcuWFYT1cpET33n/LvtzGSTY3OLEkU3eaYeUKj4Oe4abgYpzKqpfb65xWsrmv7LjY9TG4bVi\nVjbFDnBd/zZME66JyOzGHTYbQiDHjYjX3xVV4qT5kOsLQeiTqeq1ucN5JbplZzpjTw2QT/o1hRoP\n1wOfv/znfwSAn/j3hShk1QWhGjC9oUsnOZQlHg9Y76kBq7TPvDymrcbTJMb3ReXxs4TFgahMnzEb\nZJUg6fFvzPmwPQLgWi5jDOuSTNW58cUT3vry7wBwsPLDvDqXax41M86vy2F6VT1AO/EeCzW+0Tuj\nPlWr/fUA51K+t94JzGT+reYqAMV8ihOokaNu09GDZUyDhRr5/HlK1FBjq65Fo9Gg8IU4rzZdFpFs\nZreOeH1TnvHkRA7moxb82VfEPvHv/ORPs3FLbEl2URAKyuEPLfWe2rnOhCi6QZ9qop6YzpzSkTEa\nTpe4oc6CE5c/cyDjNCZCsKzf52KonpGgJCwEX+wgZaAeh6Q4Jx/LnnxcWIY5L2EJS/gIfCokhcqW\njPMzntY5DfUMbG2vc7gjksL2zQ6NTC3H85SLkYhRs5nIeiaqqQOVAgKD0WgAz0bU6nKb5iXJVET7\nshaumjgNiko8B1nXoZULpQ27G3jqaei1VgmntwFIKyH3w/k5U53PYT7DXxVuxKJNFsrY3cJjgXCm\n4ZmIsKerQDDWsSFQV17pVBSeXLswYhTygpryXMRWp3VKR33wfjJg7WVRDz7zZI/bxfty30Lo+2xh\nqU5E9O/v9xg7wmnDaI7a4fixz23z5158Vf5Rn/nKxRa5cqh8dBcnUQOtu8CNZB5+mOMp13R94VDW\naYN6XNwgJqCl1x6xEghHW3khYvB1keQude0jArKF7F//w6/xtCX3YX+LfijPe81LSDui0qwcKHc1\nC5z3H8h+BKssNkRajPshXqIxFMlzVAvFAfU+rK3F1JFIPHUFRapxD9mI0UJwzqSW2Kpor5Jgc61g\ndiFzPmz4jJ8KDrGzRh7Iuuw/L3u3t+7zxhdFUljbi59Zc5NJQeXI8ybBQ+IngjtXoTyZ63M6Fpz2\nvS5+S/DCmoRMvWqlt8ZLB/J+09l9GeO2y7F6MMzQMtR1y01EUcucMgrGa1t8J/CpIAq2rslmGeE8\nZ6BT2o6SZ3JM4K1Rq45Ldw6K9P62bGBYdnDVGh7lNbWKzGV/ykL96qkZYmsRo7KxBp0kGQGCmAWG\nUPXB1GlhZyLazRtDzFDiFIq+IkR/zoqKmRfpLZ5zBPE6fk3bEcRrug4dtYlwJmPEZcXlpSBrvJKx\n0KCYKnAohjI325D5LvKKi45Y7+dHXfCvXIEtVg/lwLYOdikuxDo9VH9+4oSc6Nmwi5yuI8StDONn\ngUXPNw5wnhNEcWZKCObHoBZ+ay22EnE/8puUTZ2zCbGKhH6hiN2xOKqH584CSvm9tdJlLRNCfXi2\nzrAtxO70Qr0PixSrROhRAe49sb777gs0+nJAzu0Mf0v37EJsOGM/fBZbsrJl6dwQ1YX2dYyROYVF\nm6qp+nVL1s3LmxBoYFk2p9AAFneywI0UR8ozSg12igMZJM9XCKfyXTOdk63LfYMw56bGNASBrGVk\nE7ZXhEGYVo5/FZwWQdiSTXGqbdzWVWCVzN1exmyGso92Jcf1hdjUdYJfy+IGWwF5LGPnTw8BmG/e\npb8QPLzrLajm8txZnYK6tidZxOlMz87HhKX6sIQlLOEj8OmQFCoopzA2NUapb1TnFFtqXJueMXWE\n8gdvTzm7ONfvhaZ1Dio2p0KhbZwQToS71LlLW6lrVHpkV2G86lcuHQ+vFm7m5xl5Qw0yZc5JrOGl\npx75johwO0YlFCryjliIX7lZc+aLCLu945Gfa6Rc8hIXD4X69yuJiHv0/gW7qpZ8Nl2DLfls04oL\nVTvcuXCzWTBicleklXMumWlc8trLLxEORCXYPdhkdShxDw/U913Q5zVH1uJu0eQq6nhGQcNXLh9G\nNFdFNcs0ArGwPs6Z7kcveSZ+GlMTqafCcUOsGkptS42PWGyg71EZQg0gKsyQeCJz6u6d4h8L9zML\n2buy8p49K7Q1CyvqRZWX5KGsYea5OKlGN2qwEc6MJiIReDOXxkDmUZZTsPK8sl0TuKryaIAYYQs3\nlGcEURczU8/VzgpFfWWMzpkvRK0wDXnnxI45U6mwrCNC9Sit4xG7IiF6Xb1206FA9sZ3A8qhRq+G\nJbbU2Jp2g1Tjot2p/J7XD3A35HNRJKCSZ+2XJGpgzT3nmfdkek2+6wUpTTU0NmYFp5WsW1q7xHqO\nkkZCO1aJ9WPCp4IogKUyKSuFy5OrPYxrumeyQdmWR92QRXuSv8dQgzhCcxVPv0USye+um1CnisRO\ngNWY8shp4lcaMqr3u7YiUKQJWzDU0NesCPHvyGl62obDQpCmMZHNmPklP2QFuY/r6/zkpiB/MJjw\nXiaIeRn+Hm4hp+zNOw8AWKQwRZBq06SMTwVxN4Mmi7kQkEqDptKFS2YFccfzGluJetC4f0BzQ8N8\nm5t8ZvOLAGysyKF6+MBy70LG+/72Cv/TB3Loq7ym0oO8+cI6zlgOlq+GhpG9BE9UhvByCzVF4CYt\nrCfrZeoIJ9KDpxGW1vdw1BZjnZS5hpAbLyLyxX0XTjaYJUK8Yn1wL54xzlRlCgJWdC/TwZzdSuZ2\n15nzzrGqTedCkBtJQuuLQvTcoGaxo6J4bnELDbee5eQavORrdGvl5FiZGnhgjdgoSvcpgVLOPPAJ\nSxl7NlX9PPaprUYYYrjwVa3qz2m25b7nrgLd9rr4ev6KYYVpCb7U6Rk2EdsV1U1MR/CsHsizvMaY\nhaoztfWpzuRdg84OVnM4bDBnYdQjsq52orMObVfmm9kJjuKyYytyJdQkhp166X1YwhKW8F3Ap0JS\nqCxMFy6jaoEz1lDkQUV/IdPrnF9g7gonnF+2OBsfAXCglnAWBaYSEh16SJYcEPgNrmw9fmColGt0\nVdwrKQly+c7GJY1SKP7Jk6/xYCii++IoYXYotNM+L5blxbzkX5wL27Gt/5trjdcAWHG3OPng6/KM\n8RlWk5ju9WXuLoArY+TRNquxcKvjYkFb8xzqsXCRyG8zGWo+hDsiWwi1r86fcKmW8TIIcFQU9TTq\nZja/h/dYjHqD51ss1PBXV9AuRRoZD0vySNYom8tamsUls7nmDqzN8VQ0doMUU2tch5dTFSpCoPkX\nBeSVrFU59jBNNebNSsJcrqk3F9gPNJioEgmryh3QgLNykTPS+IyiGPM4FK7qPvKZHImB8amqBj+Y\nhOxPZQ2T3RdoTESNs06bqCtzNl7yzDtiUo0VMAVWeWA1H+BpLkaEj+YfERuL39VYjVSzK+mTzeSC\nbFbinAp3z9tNYjVQtq4JHu63DYlGFM9vToj78k+UjPDGL8jYW6e4Y1FZWRVDo6l38SuRDpy+9+xU\nOoVHP5SQ78UpZB3Z62Ko6kqV01fDaG0dykCN5pmDpxJrMMypfuAqk/LjwVJSWMISlvAR+FRICo5j\nSZoLZnOXgabpDuqSYi5GpmKrw3Au9oWqMX7mF3/QlGujYobVVF7PWMoV9ckdz/A6wuUiJ6XSEOJA\ns/5MHGCVuqZuRaausMsnBW++JxS6SiJ2VrcByGeaUGMWHOfCweYP4BfS3wPgh8LbPDTCCc+9ObOJ\n5uR3NVV24dBTA9ZwL8PfkN+3si0cNTqZVKSAYjRlaJTC91PKWrjxRXhMqq7D4ycj2lPVF1eFi5jh\nlMG2XHunvoujqdoVDtNMeMCDyRBbyhosrrI6R3MaG6LXmrrGNEQiaHirGGVsbpZzFTFrLoTz2zAG\nxPaRdgPsXPXkaB13R95vY7jLdktSX+49kvku7AQ18VCamrOprGfL93Fn4nKdDN9F1XLWz1TvXw+f\nuRMpfEpNVfa74A3k2f56iFfJNZVKLvUgh5YmT2WWRaQ696mlCr8lRV1D4a0aOG0VYxdiD5lVHoEn\n85iVM3a17kMnlmdFmcfadfm9lRZMuxpHUxeYdZWgHEgTjb4dqeSST/D6um7dJo6GkDumxh1qSD8p\njiY2FUciFS9aHutGpKNmPGDeVzexyQkSddE3IhKtVfFx4VNBFLAeVOts9SYUE5lSUkSc5mowHDqU\nuWzW2vY+3QNZzL0dTRfurrAdiPjphBVzzQeYd2N8VzZgWkZUI9kkz6o/e5JS+jJGMTdUWgzFa+Z4\noSBYsL7C2vMSVtxcU1E1D+gF8nvpGtbnsjEPMkOVaTrw2OXFVSFCt1XU/vGNJqOGXPvDG68x0LiI\n2osorASyTGbqX/di7Kl87m1u02wLITiLG8Rjja9vb2Giga7BDQBu9NaJjdyX7r7InV+R8GEXS6CG\nqq10g+FU3ns8EjVovChYaMyD2zA0z9WK/pxDpBZ333EormI8VmQNq9mUVFWwh8cnTDX4zMnucaRV\nZo5un3OuWXvW1bTozMfXLFi38Oipb972GqRqrIyftskvVaxWA2XjeoeZqgStssNQCXV2/oi9WzJG\n02nhqXeo1verkxaVFriYDUqGWsmknoXYuRDRwoupBupd0RoLbpriRJIrs5IOMaHmYJg5Zw0x/l6p\nH63mHhjBsfGpT92Qse89adKey/7+7rt95hpzMZ3IIX95L6J2xCi71dmisSrr7UR9fvMXHgDwzy9P\nmRxrLIOROZ4lMdmlqgylBUdjMnyPlU3Bzz/yxh9j5wWpAwL/kI8DS/VhCUtYwkfgUyEp+K5lo5Mz\nfuLRikT88iPDzrqG9rZd7IqG15aGdiIGGicWuTYkolQO5KUBxheO4PpT+qciNZwNp5QavZhrvMJ2\nO2HDk+eur1gcTT456I743Jo8IzxY44Wb6srrPAfA6qZlS0uCzXsOkYZVN0vDVF1d13ZjXmgLh1lt\nCYVveh69SDheGllMoq6u+pJAE412M5EkZiH419UQ5TncUENc3Egoz4XTjLoFCy2ykSiHa3Zu8KN/\nXOa7v/U8//BvaqBC7WDUAOu1JvilqkINGXdoXB5diuoTPHDwt4Xjr4zX2N4QF+CKu0m4rkEehRgl\n8zTjzplwvNsP7nDnTJKx/Dyn1AxU73TO7b6s51yj7lwvJ9a6FzQMTVeLgpQJ3bE8++14Sqbj3FoT\n/rXjrLH3BVmL1eYGqbK1weyCeq7/tD0wKt1o9PTs9JjxmUhVF4Mp5ULWKw8jVjUy1isbVJtyTZZp\nmLSTkGRqlIwblCuKQydQanxDZyQ4tgieMjoXnGy5U1xE5XVfLHA9MVLvbl/wRKtQnd2T9x8ufMIN\njdz0csKGhNWX77c5ykWK8eYDhqqu7G3KS3WsZaoRqV8bWGxxVZ7Qoa14+OK1NT7/3It8J/CpIAqV\ndRilCU57xJ6K9m7gcdGXA+IkZwy+pnkLJqe5It8HDzSFthuzpQsdLGqqlhzGnbXgWdjqohozTmUB\n/SsRz3fZWpcDu2iuY1VUPX1wj8lAxluvD+n4mgeg+mnkrnFtU8aebLW4rkjxwb0FVgnPRqfH3kuy\nMe1C5vP48jEttbjfPz3Dd+T3sWvZ1tqFZ1MRM+8+WPB7Q5lbOM+50xG7xv5OTKbZnuXDjLHqnCv6\nnXn+Zf61G2Lpbj23Tn1V3s2paWg67cLCZCiH5qoK0Ebo4OgBnO00GI+1ulF+ilPLoe/7J6zN5V02\nbsh8a1uTazGVbD5hR+MekrUeRnX4c3NB90Suz428P7lL6guB6dmY0pO1mI2GPEXsOe79lEv13Lyj\nuRFbwYL0/gOZz+oFma7h9MSndU3tJ7ZLmWqJUM2jN/WUkapmM2eIja5qW2YUml3YimcUlTwv1LlV\nswnZpYy36GzjaxasFyWM9dpyVVXbvMF0KraBkR/RDmRs58Qw6gjBzbdaxHNRe//4G1qFK2qSDuW+\nJN5jfUtUiXl5wucjKXyzvhjzI1f0XauQhVnAV78qKszAv8NTzdEobUlfvQ9brTbJ9pXH6OPBUn1Y\nwhKW8BH4VEgKngtrHYfZRZus0OIXWcYgFM6dnKR89b6IpZOFIeiJl+ClLSGdTrpFW+vhZW7B5o5G\n4Pk9GlrmeMWeMdV6hCdnaiSLDHup1n40Jc1YuMf26g53Hwn3KxlSX6qRTNWZV14ouOwI9Z2dXvDh\nhcYNmBGBJ9xhpbvBzQ1RN0orHCoct7l4KiKln9S0toWzXY9aDAOhz3PlymeXjynPhJMcZRWxI5zk\nuXiTTlu4/NGjEqOSSTST+3d7hrCjNRn8iIYWnLG5j6fejGoxfFYMJtYiHcePMi4u5PM4/2aWZOK0\nqUYaxViPKXdFlajR6Llywpau26Lb4p9/Xd7v8uiEjbasc3CxoN1RVSmX5/aLGWsaCxEFHm5PnrG6\n38M9lszIefkuX1gTFaS5rpF7oyf87Z+XOIbboxpnT97pc+s7/BtTyfy8tR/gXBdJzouEm2eXESZT\nNaGChUpsHzxccFwKh13vFOxocZYXD+T+xAuYKGdu+00cNaQuehUvbmocTaIh3/2S7dUr43HFZC7S\nwa9+6Zy3jmQNZ3bIZk/W4E/8EZECXkxKwlVZi1bb4GgdzKBOaGpm7/R8wptHWi9C41+CVoFdiDT5\n+WaTaxr9+GSWs74jkqOXtPC5ysr8ePCpIAoWQ2VCTHfGai569H57jc9tii5UNqfM1eKe5jWtjmxC\nS6vj3GyvMh+piy0vaKeyeJsrBr8liNCM9ig1Xba3o6GvdYK/K+NVVYanB2GQvc0HujTrQQtzIOOg\nqc7pxXVe3n5ZnvXSjNgVAvLIzQjbcu3LN27R25WKS64WUzkdLPAGQmBG+Rx/LMRr6jscqGejtSMI\nsbZw+VIihUE3Ji572yJSHt54jXPnbQDiBB48FaTwX5LDc2Nlk9XnNJXbDXE0xDVOSrbVo9I0WwSO\n5iJ4QoRXWqsYzTnozQOI5Nr2asJUbRhnswW+Ivd2rIjZ7LAdi7rC9iZ/bkv27L3+gBfagphvPn2H\n7WOZ/zuxuCYnZ1C15P2fcw85amjocmOdVIn+TrTJWInkq+s/AMD4ep8XX5eDvj80NFflucmapdwU\nD8zErfFSwRGrIcweASa8ysB9kYEnz73ZDUjUgr+ynmCHwoiiHamv6AyHFB2xNc39nE0NONoIFvQ1\n+Cx3FFd2elitoNRdXcHTA/t9399m51wYSiNoMtUMzu1VwY88Kim0QOti2CLQkgCZGbC6K/t02Oyw\notXLJ1oFfL+T8TVVmw8Ll7sXQixnC4/Dm6JuHr7yBfyrQi0fE5bqwxKWsISPwKdCUjC1xZstcKaG\nXMUvf81nRWOUo+YenTc0gSeICH2NplHD2TTLiDRMePS4JrRC6xwHYhW1a3vA3rlQ474vYnl3pcuq\nVoT2csO+4ZIWAAAgAElEQVRxIcapizqnqwEfGaigDGEkXKkOMvYXwlHirZe4saOVna3LQAtk7O1F\nbKmVeKAJLntrXd7VIKPrzga+r8FCaw0ijZE42BGuu765TfANeda7oz7BupYWz4+o+zK3J9P8WXm0\n5J4mdv1Um0BDeMOGT0uNo34aUjdV4glyiguZR/u6jOHvbdJKRYzOzQGLuRrtoimmI/dN+xBp7ww0\ngcmPY9xAjI+HdUm2Ir9/xoRUmvm5/VaPX6v/LwBmj2Qf63JANhNuFt4w/EBXK3C3P8eLmmn51eRt\nHg5k7BdPZM8+80f/JG/8jHqGWtcYqxoweHBMHco7RVFIfDU/DRab1Qlrdar7uE+nIZLAdr3g9UDr\nGtgUZiJx1p7gStlbRctzUKYuZaA1NXwHfyFre6BJYuMioqHxFH6+zcaBqAcrvQuMjjFJK6bqrUl6\n6llIdrl8InNzqLG63vE0wu88D8AXtnLItTdEItJDWYy4oZLXbDRkdVPw89bRGc7nRZUKrEN01V3m\nY8KngiiUdc15Nic3FZuzq9LcDVLNgAuNy7UV0TNNskrgqqilwU0+I05yjWzbMMQdqUzkmhhXsxJN\nnNPZVj1T49P9PMLV2ufzNOPO2+IKun3nybN02u3ePp6nMfXqLj2dFry7kAN/I85JtG5fa6/NqpYA\nXynbFCq6tgPVa+ebeJFY1gk7bDwniGnKgPgq8CTUVO8o4TndzOTDR4w0b6MXtLlw5ICMJxdUgRze\n6aFsZa84JGiJ6G9CD4x8TlqWXU2dHtqawUQOVnMkiLTW7WG7sm61v6DSkuyzfpMPRqI+1PEY1Bqe\nuyICx0EPL1Aruu0Qq8XdVhFYsYPYww2674pLLkbK6Fc4UKtbNG/jrglhdfwhs31B/oQZo0xE8OmW\nRvz1xyTPy0Fxo326M/ndm8WUpYjPReXjqXrjajhmlNSYQtLF3bUU35XxGjYCq41jiseUWkWr0pTk\nMr/E174eqbtFpX0rbGPzWXr1zNES/+l9aiWQdiPDvcLJ7R2qQuw83eScRiR4aPS+rExxfMF1p0pw\nAsGb0hYUntjSkuCFZ8Fe9ipaMz/BOZB38k5LxpeyT6XXonMqHo5seoJfiVr8cWGpPixhCUv4CHwq\nJAXHMbQCnyL1IRQxstHpoK5iOlFComW4wzDHb2opLc0XGH34GI2JYcdJCHzhYlQxce+KAsO8VslD\nqwF7Uf0s9yHPRriXQokb7jqtSqSRRndOpR17rI7nZafczR4AMH9asacFSw4vIoq2luiKI9aNlgpb\nlWeNbjhEj7Q/ZlgQqTfEb8wJPA16idRC3gxwlXvkkylte8XxI25pRmg62OS4EBH8xhPhPtc+D5W2\nm/Osw/6a5gMUCT1VlbqxT0NzHnytgu2kPlolHmsqikorLZ8/ZHEiUkM8hdKKUdUdCeezYf6sWrXp\nzJ7lbpiGS6WVm0PHo6udnFZ7YlzbOb/D5zaEm23Yklkh+QXB+vOYkXzf3tvhx13hvDe1CU3jRwc4\nV30XvRmuFt8JnSFWC9x4az4+WthAVRiOU8wVNz4dYnSfHC9+FsBlqwwz1iIrWh3bpA0aGoRVLBYM\nhxrLMblk38p4vq+ZvfNNep8Rg3E4DTHqBXOKNZyOKqHDACcQdbI6lftdPNpD9YitPCHIxYjtbg0x\n90USMskRnhZqcXsiNVWBQz6Q+ca4XO+JyrAbDBn8oIjDR2mfRDN+Py78oSUFY8y+MeZXjTHvGmPe\nMcb8Zf1+xRjzz4wxd/Rv7w87xhKWsIR/+fDdSAol8J9aa3/XGNMCvmqM+WfAvwf8irX2rxtj/hrw\n14C/+gc+yRpqGzKPR2gBZAbHF9zTikZxv0+9rjrZZUqllDlPtQmoWz9r+hIcrhI3RIdv+A0cTcpx\n4gQKobBuR7iy65W4M6HQ8/mIodZTGJdD4htyzWqyR7ghHL/UBown54ZNbQwTNz0qjZGwWwnuVYKV\ndVhoxaYgUR1/bvA0jDkgY6bJnJ3Qx/O0CpHWW6hcQ65tzrywi1GOaE2Aq3aHcD9k+L60HnsvEn3y\nx4YG/+Cqk7TB90RfDhoZnZYaa1PDWKtPtYbCacJuQq11A2y7IlMpLW2H2ErDeOOA4KqKzzOpIqfQ\nXpLOAnztT4EtqbVpbjqdMNdKQIXVTNQVyG5qi73YcKT9N6zjUMaaEOXUvDWXysVbiTQDWsMj0Ard\nNjdYRzl7ksJVEpObYkPttzgRLlklOdVcG+f4G1SVJmO1N3BU1LGNFsy1BoR2NHcY4K/rGo5y1mux\nuzSSEcWpXDPqyxjNtZgq10xGwL3QPeus4A6n+n4p9qpYbqC1GdIRpatdt+dNirbyaqdielXFezIj\n6IkU4qiEWZkcajnCWeAwzUSKq/e7BI4YrJPV5ynVdfpx4Q9NFKy1x8Cxfp4YY95DWtD/NPAjetnf\nB/4F34YoGAfcxNI98niCirWzC85vy0sOXYt/Vb07iQnPtKHpVAuvjEripohi7cUmjavM2kWOc9UR\nuUhAfcGZNt+0jQBXU67DQZuB5jM01poc9rT3X5KQTmWjnVxDcesFWS7i7km9xVz9E8llRLmqKb6j\ngnpb5jTQ/IvzoyNu6xxeHufMzmRzHb8gampat6s5BX3ILuT9LmazZ4i7ZTNMqQfstM3mhpzOvXPt\nwO3cpRzJ3N2kS6Mj79SbRJxr0EvHzhlrw9aedmIObETV1JDoywSrgU6zrAZtuR7mMb6GjZea4j6e\n1gTaPDXpRNQjbRaDS6aHcHKx4GKhjU+MvN9n9x1GSvTevPsm91Qsx4kJfdnfs9WE07sy9r1TIX4H\nJ5sk2w9kjKRHqb0i5wuP/KrUfMNgC01F74kxry5dMlebBzkOnq63KRcY9cqYsYPX1uxKreDMuoVK\nGNL6DszaYviLzA0el9L89po2B56EPaKRfDZ5COuy3vXiAWj+SD1YkJUaej9WyjtxqJS4eUkPq2nW\nk/sFmRJkx0CWyRoYVxsW2wpf1cNgBt1Im+jMt5iEYkBeNZaVSr1OHxO+JzYFY8wh8BrwZWBTCQbA\nCbD5+9zzrBV9En4qTBtLWMIS+B4QBWNME/hHwF+x1o6N+ocBrLXWGPP/6ST91lb0a63ENvE5aqTk\nfaGS59Oah+qO6Z4FeKXWv1/ZINUejOcaRprlF5R9cbsU1xaMH2sxjVYJmdZkmD1hMhADz2QkHCos\nW5SRTG9QjGlqyS+bRFxTFcNUbU7vC4UO26JGLKzDQItxNNI+w1o4ZREAJ8IRO+0p1YdazMWKSP34\nwRG+9lOoaRC2hFPEsw38FW1ddtWxhTPmQ3m/yficMNTouSTAKLf2dmu8C/n+SUfm8Nav5/DHJeLx\nwHmFoNb4jWgEc7lvMDUMIuFAq2qQCxcDHO1tZv0xeSnzaeaWJBTxOQsr5hrGPTqXMm5OHNHSuAL3\nzGK0p4FbpZRXklx1jtGIVIO8/wfvVzwdiAt4OpoQa7h2PZ2RZsI1m3EbeyFcTm2PzB6kdDbV+LZu\nKbWJij0CHJF+quyArH1Hvr8QSaFI75KpMS/aeIw3u2q0Y7ALdcW6JzDTMnQdmXtdNXBn6lotNonV\nPV02Wky158JYG8h4NmOkkpJtZDTPdF3aI+xEpbvZlFyNpjYRY2blxMwGKoEVExaZVv++94BHqiK/\nkmxRPy97VqVaUMcZY0OJ4vSuBfQ1uvXtd+5x+lhw68af+iLd/W+eyY8D3xVRMMb4CEH4n621/1i/\nPjXGbFtrj40x28DZt3uO6zu0NprsDA1PKxEyvLlhrKXTZ/mYTHvjVX5N7Y8/cn/gNvDjK13+iCh8\nAwA7fwKeBghVllLrEkbardXGNRitcecsaKgHw5ptSkXuSTEkmAgyaY9UnCInN0KYBucuPW1Ici0c\n8Li6Ep8TOhqclGr58oPdFeJz1fcTy/CREJt8ZYCvlY/Z1MCU8ZSqp3EYFzVOrHpv4BKobeDz93zu\naHDS7FKaqfzW4n/kS78gyPb6Sz+D39POWo9bLDTMe9GrKDUIaaEdmyrTo1bVrc5drGZPBq7D6roQ\njuxyjJtqNaGxfJccNmlody5npSI/ESQujUOuGa8NxyXTLkxP9UCczx8/q2Q1qEou1PZD5DIvNY14\nVPOjr4lnZw0l5NfnFHoonLH7rKiJ07J4Y1nDYjYGVV1KrYrEqENzVUOzywW2oes5s9iuPm/iURsh\n5O5VN6kpEAqxKascF3nXqnLoaVVmtymE2TuDjVeFCMV+SI7aEWY9THnliUhxGsrglAEUpsJEMob1\nW0yOlY+6a+zbb6ox/lMN7BNthqDZJF3T+I0HlsV9taVNhuz8kKq8nTa++535E74b74MB/i7wnrX2\nb3zLT78A/EX9/BeB/+MPO8YSlrCEf/nw3UgKfwz4d4G3jDFf1+/+C+CvA/+7MeZngYfAn/92DwqN\ny02/zW+tzFmbypTmtkCrfDGbzcly4R6TfIJWo+IoVW5dZM/ammdP+0yM9FfsxSlxKJR7ZbPHQg10\nnTXNSDOGytE6/6GLu631D5wSR+0c56enZMq5XDUSpimUAxEb1psnaLcy6vVdGh8Khb4sYH4q6s/4\nUkvC+YYyFcGpdAJKLXjopHMctdq3TyQ/fpgvOB8LF1gEFl/FlFmrZKiW8/u9iq/9jojx95+I92H7\nfIORkTG+MHqKP9Z6jumUdQ0LN2lFoeHY6VzEzFm7xptrFF9QMdeeDH7TkGgQyPqL17DK3ToN7TQd\nRARX3qDM4kfCSQtT4dYy/6HrkWpfyWOtWTEYGZxIxfmsoq3t7fJJn5G2OQuSDaqu1ieYi/G0uHhE\nPZBw9OTmEVQaN1C6VJWs/Tgd051rebeWSGOs7uFrr0l/tkV5JupFlewQjbUxTFqRp1ryTAWXYjal\n1BZsTMBsqCQYuky0GMyiL9Lt9sYWhZbe88sNSm18k1UukdZ2dMLoWQEYtPu5F9Tsbor6m5Ye8U2N\ntzhxaatXps/9Z2qV44n0BD6Zdry+8GJ+9/RNAE5ihz+28qcAuLa3hwn/JbWit9b+OvD7KSs//h1N\nInBY24/5wcs1fj7R4ibG0tR04FFhuEzlYDXa67jqy/O1F+NiUqP9VXn/ZIAbCLH49Uuf5w+1kMcF\nrN8SRB5NZWM3Awd3Jgttj+bMrgq1tNqgVXzm8zHHCw1kGSji1gWJpts+mrdItXhHMasZqs5pSTm+\nKlevhWK9uqBOhPC8vnPIpKHdfbIZZS0HxNEtMWWNp6myA6dkTV2V5x+cEaqe8/hiQakFWF9uCoLW\nnfvcPZLn/vW//4/4o6+Ka+ogN3xYyDO6qwsWT2Rui0T7KKYewYoGiGUhVusHjoaQ51pwpZ+TNOWa\n2aZe21hQToRQ5GYKVwevtU0diN2lnDzg7QfCNyr1gGx0A5pa+/EynjPTzljpZEz7GxIKfrF4yEN1\n5d2oJTx69czFdoRQbI72QIOvbOrzWPuNBpOKWj2jLfXm1N6EfKL2payg0EzE/OBDqDTIrLBkI1Wh\ntPCpaSfkWmo/93OCQoh2GNzgXHua3nTlcJ801wkXssZeNCDX0PQ8H4Gqja6fY1MlnJUQ7zqDSF2P\nTuJj+6oGjM4ZvSUh1gN7wofazeuz1+WQx51XcLW/6f0vv8vtvsx9LdinNb8qGjvFy5cl3pewhCV8\nF/Cp8AUa6+GV65S7Dqu1hO3WeZ+pNjKJywEXY+HA190OoVY2TkbCaV56bouoJwVNXDekWIik8EdP\nM/JNDUVNI45HolakQ7m/HacYrXE4D6AdCMVfqQyJxjc8msDZ22LEMz3hKEUNl1qzwb18wmQo1uLw\n4IcJPC2PVU6p1VhnVAKxU8P6qjzX9SyhJhyenDrMF1+Wa5SL5HbIUFuXZX7MSVstzoVP/0Ru/ODe\nlLTS8uoa9XV5r839sfx+K5gz8UQCOe/VTE60CvB4zGxLy4OlMrc0i9lONDgmsRQT4VyXZ0+41BoK\nnSAm6KiupPUOu36TSus92srQ+z6RTLaiOag6MvaOuX1fxnusrdXXEw/PaJj63KF51TZu3Ge6Lft6\n0HoVc0c8KVMtCbCWFYyeynx2XwxprUpS2WR4iZtrHYIa4ivd00h8wPzegOmRxhO03ydRUcKYlEYg\nOGeyAl/rTFTa2trNW88Sn8rMpa5ETXO8gKFW9B73roJ2F/hajbzurhIMtSdkVOBr67m0nlEOReSf\nlKL65ePVq74wuEWOmWlBlidzjnV/37ksngXtvR5qgx9rmark9Y3zPmeXovocfuaQ9UCSxvJLg9f7\n/2GWpA0rqlt98rtdzIl2xClgeCpINaszHp09AMBYeOM1eeG1A9nM7LJia12z3pIOx1qfbuY8Js1F\nnLuo+wy1AOdV8dC184hYq+qUjYJGJZvb6oUMr3oQVk/ItXJNHmpWHzVlIc8qx/Dffe0tAP7D3R43\nNUglvZ3QbWmQipYsr1YD2nPtA3h9H1/FwdH0mOlAYvxvqbegt7LLYEvm+aU3LykqESMvzie8q+7A\n89MFGx1VoTRQ6n0/fdbR6O0i5/v25PfocgNHoyLP04w33xJ7x+WmINjNhc+aZir2WhDuy9quVy1u\n3pCDEpJQ9zTVfKDBRvEZmeaMzLczanVxLmqHi0LW8EsfvMuToagjuaZkz5KS3VjXx6/oa6HUZPc6\nFILcwZnL9q4Qk6//lqgPv9fss9OVuV17eEk7FCIaX+uwpiJ4dV7hqvchLcXWNDyp2dYIOLcO4VC9\nQLZJNtRuX+kQVmX+USxl/d1WyKwvODlLM4JUA4Hqp7iKA+l7WhsxCPF/RCMlz48ptWmFOwvwVe1y\npynZmvaieCoEbe+LBwSa+egcbuJO5fNaccH2bwn+BskZM/VQOXN552yx4KmvWaTHPj8SSc7EK/GP\nk7yglapSh+xy2Yp+CUtYwncBnwpJoUodhu82qRZ9lHnS6UcMVQ2Y+1D1hfLfO5qz2hCuubqpHPi9\nORePhSO0u11KLcF2cQ6rytAmiwEBagTU7tJ5acitZiq6EVbDRHF7eJk61L2AzrqIifmVFbp2cDUm\nq6wNjnbmefetmlSEGJp9n0o7H987E8NYPIVHmv8/Di35RPsdVlOiVEu/d0ViGPaatJvyfqtBgdr9\neNofMdZ8jUWZkqUid148Eg71SpTx21rH4PpWk/Q94Sq2eMxUDbNBFnGqJfFTlX684z7bj0UlGG9G\nNAOZe3G5YKhdlcMhVP2rnAC1nDdr6lqNi9Yn1VDjwaTB7fsi0dz7IEDbShJoAZx6HJLtaz3DsqSl\nvvTi/JxFJfdRPCXXTk0HO7IHD+Y1g7lwvovZGv5jsfz7UUioY3g7AV4m65gZwZXI9LgKBQmLW5hY\nSt2dn5Yo48VmPUIN8JroPoVNj8VTLfte9LnU/qZJ3KCh4z0M5Nqel/NQ1a59F+q5BlZVbdyWxnIE\nllq9QJUW/Tl//ymR5sSY92oYisRWdY44+caJzsPnXAQSRlYiuSZ3Ljk9v6op4rJ4Xi4oyqccvyeI\n70896sOPxvV8O1hKCktYwhI+Asba78wI8UlAM/bsZ292KR45nBXCEl/0wKi+v9PscU+p6xnFM996\nrZWN5hVYjUzEGGotR5ZXNapmYh1Avy80w9HFgGY++oUPvnDbmJjC0aSpmUthhat+Tj2w//Hf/O9Z\nqJvuUf8d3j4Wv/nTt9+iUhvGpKgohlotSUOYe1GE48nvi7RkpNly4JHoPmyqaOO5Ic9aAGY5vnY4\nnswKUq0L4RtwVjQRqpC5ta9v8saasMTmznV+9Rf/KQDnns+NNXlg1Q5oqguw1RQJ7GLoE+aiT+/0\nLF2tUlXnC1K1DVTzkotM2GNfjVqjrCZTg3ASOTQ1I29rY4teV20U7ZixRi/mlezpOw/vMlAj2Uo1\nJ2pLqPGjd77KqS9c86WDFqYrEpSnHLwVTDnT0PXkcoOpJ2vfaG8RaEjwXq/LYCrvN5hcZZeOmGni\nmk0LrIaNb+2tsrUlNR424yaDUkOXc5EO/O4e8aVII9GtDeILscVUYcIv/q2/BcC7GjX5U8+HnGsU\nqvd+jt0Szv3emxVrrkgKh7s+r35RqlClfZECpqOa9z6Uax8ULsVUOXscE1rN9ox9dhUHHK3udXrS\nZ6r9QlYCj9WuGIojmzIL5do4rbBavu3v/uNf/aq1VsJ9/wD4VKgPTlbRvD3il4sKtOZg34XrLVng\nkzDnpnZI8ooxk3M9sFpKzYnss65PVf7NCr5Vaan1IE9TS6klz1L113uOWHABcgpqrYE3ZPKMsNTf\nMs/f1rn9pbU+84lkSY5+fcad978i911WOFrUwy2h1vLpthBxv7VuQcNkY2fBUEuiZVlK42oTAzmY\nbhDj+9rANAq40IzCvKy41EMY4GCPRM3xNDioc3ZJpykHLN5p8kRVmOZiRDIQZLxXPCYdxbq28qxi\n1CdzNVeDLpVWJbapg6fqmO9YWpEaxGL93a1xNeU8WVtjVy314cYKm7GMMY8bdDTM+fhSgomidEGk\nRUqcictcy+efJAXtQsTu3dE6D1rizbHHMoeztiHUMPUL9ynekRzi+8cnFNrcd8t5HifQmpaOqJWz\nSU2RaYBb4VA4KouTU+rBi1qrvKth0+VDIXq1/zaHSiCvzWp2FhqEtRvy4b4Qg8OxXLtfvs6TvhhE\np5VP/47sf5ZmPHBlvNWojat1HlNXjNKD4gl3NXP3vD+nUtxzpgWJ5pWENqPQNPjJpTYbnuakV1nF\nYUiknpGqtcpKJHtii4TMLOMUlrCEJXwX8KmQFCbAL1N+5LtZBW9fynef3Yb1PeG2r9fXSW5o38Sh\n9i5onzM/F4Pb+k6GfyEiZ7A3I7+rxTt2zrjzDaGwj1piqHr7w4K7yhlmQ4u24kMZ2O8Ldhrw9BdF\n9Pvnt7/CyUAoccNJ6anfP274ROrWvKl9Ag9bK4zUDdd/mJPGV9WoDZ0V4bBdVWd6Bw7NhUgNsdtn\ndSSi+FF0gf9U7iucOVl1VTxCJazzmssV4Vy7w4zqqbzzk0VJ2tQErHKdAy22Oj8r9feMWI19nZUx\n9SPN6a9SOmMRtQ8/u4+nKtGsq81nspgdNQK23DbJlWW3uU8UqFswqxitaWZnLvEkeXEH+1C5meOR\nV5qsdDZloEbce9EZsZHiKi+vaMfo2ZjclTm3pmNOQnEXPj3KmHgaFdmp2V4THNhQ4/IiHTIbyhiX\n9QBfi7U+ri5Ya8oY5V5M+FD24dFQMjhD95BDjRZ1bk9YdLStXNakdVcMusfaSu6Xy/uMEuH+r49P\n6GhW5n2bs6mVn7/veErrsUiLX3kkUsWHHxScF1owaGSpNQvW4D1re9hcJAyMqNah1fbzTko2kd9H\n+QzHEVzYby4YDWWMti1ZaELex4VPBVHAgimuFAeB0Bj8LXmx//wn/k0aQ0GEszznYEsLkVSCoHve\nLiNt/Hn9C5uMNHx2299k/LockO7eJq/9CRFLzQP57rY95Vd/9RsA/Ob9R3xwLBszMSXZH2BqaXkX\nvOPJARt5DdxSnus2AuJYEGE/7pBo5uYb2xLXXq81OVS9/WzvghdL0f1niWXPqk+7o01RAstYzent\nPKa9KhNqpz4VQtTqic+56s51Ry3absmp1j48zEqMelpSWzPZkrG3pimDphyQJ6q/Ps1qdrXxyvn5\nJmMrIq6tPLoa97DiBpTaQ/OgKym79bRi7UXxt+fjGZHaM+qypNZck1nxkLClHadaMkaz8qiuMgfN\nPmsq4l6sVRjt89j74nU6KsZPd2X/3/vdSzIrz+oOCjo9iVn4gRcdTjTW/c/sf455Qz6PfVmrVulT\nqVpSjjr0tfnrWrjL5bnYCW5lX2RU/o7Ms6GequNLxlL6kLt1jxde/WG57/KUaFOI2lmhmaoHHeZv\nyxhfbhouSp37sGSm1aXb04CHZ+JdefdIvqsWBUa7O3lJTaB2Dc91aGg17iKqqbUydXWldlkfo8R9\nkXmY0VU9xw6uke/Pwy0OplfGqY8HS/VhCUtYwkfgUyEpGMB3oa5BCSY/em2Tv/QXfhKAw1deYqy9\nHRN/yvZMCwRuKPepK9ZviYcg8raJt7VmIG3WI7nGZYUN7bE4jcV49dLlIY0fkd8/G/we/yIQkfF3\nnx5zP9dqxuVHJRiA8WCdV1PhiO/Gt6EplP2llsfriUTCBa8kvKL9ExulRiluHVJrZeDP+FsUWt6t\nrmqMxgsEjnCDQVnQuNSiIfmcpnIjm8Q8p3MbNUt2Ko0QnKlxtZuw0VIjaQjDc7mvGRncRq7rHRFr\nIlivkDkep3M0IpqwqvmChnQv6jafeUl4xxrXiK+LtBEEItGEL4JvteTZSkGt4d/Wc0nHmvBVBYxT\nTVZSicAYB08DBNL1jBUt3mLyJre08U1nI6aTaYftY9mba1WLe3PhiM+1ApLWN6NQzYHMac/doUi0\nb6YnXLLv9tiIxDp/5/gCV+tJnGdNDrqqMtw+YX8ouHOqksLGbknnqYZK7yWYQoyZ/o5HfiT3rWk7\nt9khrGmRllb/EY4neFr5Y55TtbHlVjxXqrFSe4y2Yh9Hu26v1CVRW/bkIFnhPSvruZhMSbUVfSNT\nqapO0TITVH6GoxmjTBfUbVGPYm/MuPyoav7t4FNBFCxQGwfPh0gP0k/86C4vaX/Fab5g0141YF0n\niGUxk5aGpIYL6lCCVeoyJ1Dx0u8sMEYs7tYb4GuJ7PaahkcnoB4k+p+fsKsW6TmWwalmNk5SLpUq\nBFc2h/wrfGjkUO1cZDhqkX9lf5M3vl+IQtcPSBJJ963HotfHu20a6mZN7XWCSDcrCIhVZFyov8Of\nDAk1hLcenlNrwRlvZvAa8n5rpxkzDXPtqbtqalfojQRxG9ev46sLNPFavHEpSBPtWZ6qvlvrO8dF\nStLUPp4Hm2wfCFKttgJa3ddk3TZjXE8IQKT1B914E6P2IDOLQD0YtY0wobx32O4Qn2kOSiii8ypz\nNtranOb+QzgUGX27m7O1InaHzw6v4a3K9b+thXkntxekpRD1rPcaz90ST0tzr0WiNpHAXcFRHX3U\nllUES8MAACAASURBVD3fDWKSrhz4va2EDy7lvYPTAVdJKPudivc1f6Kl9Tq3tgN2VrTEf9ylcypr\nG8Uv02xojU1NrT/4rYz8muDC+vVNXv9QA9yOa3ZU7Xpa14x7ssc/NpW5vRnXfE7dmm7D50/uimpW\nrXT58UzG/s1JH/dEVJPRVLuT9Rv8P+y9WYxtWXom9K09T2eOc2K+EXfKvDfHqkxXld0eyrjpboSh\n4cFqIRA0qAXipYUEUnfDE0KN1Dwg8BM8NKAWAjWmkZBo3GBjyu7G5Skrs6qyMvNm5p1jjjhx5rPn\nvRcP/3fClabsynIa+7YUS0rdyIhz9l57rbXX+ofv/76ndFH0XKPic1S5CZPAuLpy4FDT8/O2a/fh\nul236/aZ9kJYCgYAR2s4sNGyZUe9u30TanUaJSeoqQzTbm0iJFUWWdFhuw3UhOWa6QK1L5kBVfag\nItlJjWUMzc8YxCM4gY3NgVgjvnEfxYmccr0S2B7Ijn/y8Bn+5yFNYmIeRqaD6gkl15EjJJjEUkBf\nU9RF23A3Ka3WJJzXt+BSrqwReiCRNAqlYZIO3azls56Zw2mJuZ+pCkVCWno3Q8mIej7IMB8y1z0X\nEE8SJMgSsY6S+QRZykh2OsN31uTkfnnWR/KUBC6kC1+zbdyn3Pubt7uI9qXa0TEchBQyUUaFwiOb\nsZZ7GGYORbxIZaUgAxmMRg2XZm4d1kjb8izzU5m7fPwQQUKJ+14Hs4C056mFfCb3OHeewFvKJB9+\nU/qu7QI3vX0AwN79PvZvCq68PVhHMZPreVGFfEleikBOzCoOEZRy7xIpLM7vb41OMIzJO5m8j6or\n43lKsh83bcEk16azniFovy39rKZXkGafHI7DOyb2pmJhrT+2cKMp4xndBrZIKPPlssYxCW7s16gY\nfdFG4Urf87UAWy+L1RuZt1GlYpmoiyUuCbM/ovDPeHp4JZiUocI8IYVgvsQ6jQNb+ait70fb/PD2\nQmwKGvLCKVthQLWe46mJHZKHjkcG/AU5Az0Am1TsybgCSwsmORwNpwNVkp+vkcPQKx4YA7oiOShl\n1pVdwegQmLNsoH9LTP+jIENPiYvhbXpo/xMpne715GW8PCowjUjOUgPdkqXFL+2j7lDnzw+QH8tC\ncBuswksKVAE3qVzBpJCoMc9RWSQAoftgNRsIGL1HZaCmFoKathCSH3JhdzHjC/SAqStvbGKbQKCb\nnoZiqs8KLHRYcj4txzjhalowe7HjODADlnWjgfETeQnbWy5qluw6tg87k8+XK9O5KmEQpVinGVSb\ncRIzhaJmIiYnUETV1Z5kbU49F6AL3KpDWKxBGWuFgASy3a0mjt8ThqTnGUl3UwNf36ZOYhwjY4n0\n4YOP0bspcZ50UVzVnShS39vtAUaX4nbUykVoSD/13j7S5/LSfzhb4P5I5mH3rsxdWQ3xYCX3PjKx\nwU2mTmywNAe1w8wQUtQLZrZ2m9hl+f3dzLtyKxoFsN4W908fUjls10ajT2Sqs42gsy/XrWuUJsd+\nGiJsyAEW7kp8LZ9GADkzvdxATDcurS0YrEEJygai1en5Odu1+3Ddrtt1+0x7ISwFQwGBA6wpBQzE\n7rGCHAe/IepA52GJrZuyS7a7CjphkIz07CVMKPIW1rYFRcWiclGgtlmJmCmogp8xVnLqJlQhO7TV\nMpGTm6B50Ieu5CSpevfwb3z5XQDAG1tyQj3MctyYipl5gDOkDBJ1kjkUpdGzsI3ck4i5r8XqMD0L\nyGQfLq1LgNgLFVioCEKpyQZd6QJVKj9n2fQKUGXaJhqkl79QGQzIKZacUOimGWJJARFUIfoUeHnV\nDzAPxHxuLGwcksYLFCZpf7mHm6+TK2AHcAu5Rm43ELKi0lF9wJKfyyEtBSuBTYpzOBolFZbg4Uo6\n3WkH0BdyvdXJHhkWcprty06JPs2Gcz/AKz2xKjxrD46z4k98T8ZKp1gE1I/cyjE2hOatbtQoPpAx\n2Nm1kGYD9ol8GidHWJZi5scxENWslC1mSCZihcxOzhEz+Hl+InP9Yze6sJlFWXZcTGbydyMswOJZ\nbDHqf5jZaBNj8ZpKYGyKq1iGPtq0Fr3wFgJiCApmmuyoxCE5MbudOdJYsk6m1cecNR8IahRjGc8N\nVknutVOMzmQszs0MNtF3RVUiT+XVnjZSRHQxPm+7thSu23W7bp9pL4iloOBYJho9B9v0BR+88xwP\nG3ICB+cVNsliZHY6qEKm8licYrgxVC3pNMMoAaYegQRIybATz1AnJCv15ZQ0KgcWVZJLH2iGgmOw\nt8dYUIhlNrHw2lclRdS5J2mz4//tf8H7lgQz9TD//Xx0OUDJgKE+/AQ5tXUD+vK+soG2/N11O1DM\noSNzYNCi0cx71pdLaMIqbS9AoXg6jhVyErcGeQeTWOjKplTSdi8LTFb3WK8Rkri06FiIKFTyeHqC\n81zG8zaVqF9pW7jzys/JdScNmB6r/cIaDrEelu2hnlN/g3BmXdWAwZxt6kMHtCAKBQNyOhoqQMNl\nBZ/5VMaiyBGvinme5PC/zFSnbSMNZTyjmYnhSE7xMzIzDZSFZCJj38RXMWdRWXkZo2iKPz9PXkNN\nqb9pSpq6skTNKspFHGPBE72xtPA0ofJ2nOJbM4FN23OxKjrVGl6+eR8A4CzHOHkkf/fv3QUIYx8T\nrh6dZzhnHGEabeA+NRs22haM3k8DAJLCRGQSX/Mai8cqEwZTripXCJmKrhoFyrn0f3ppoGC8aUk0\nZlPZMCMZe3dmIzNlPA2oq6JA5AbsJllsP2d7ITYF29DYdjXutjzUVCMKLAcnjyUo9bgM8QYlvsM1\nDxbp1masevTOIlh7jN4nJoqANNxnGobPyH+SI++Q9ptkIvVGG4osym5TYUCo8dJooM8NonU/QsxK\n1qAhJbZ2+EvwZqwyLBPUxNw3ggS1I99TOoMd0iVgcHHhO2guVzRmNkxiE6oIsBlItYljsJoK2YoZ\n+mwOI5BNr65iGIRPd+MMfkmQ0eIpACBWBaxUzEs3UYjaZKiGjZRYj74RYFjIGEwpJrPeXcOA68ju\nT3HMuoX2RynKXUby6xAF4cPW8Yhj2ERGvEXqhKhJemJFLVgrtWDbg6K57toUTqmXaHDs7TUf9UoH\n0qiQaZKFqBx7pL6/x2Df1C0xIOfgJ/Pfg2nIc1yMAZcVk5PdJTYIvgJBVj5KdFtUumq3MOH9yvkc\n2JYNSVcZnlMg9mwhh8JHlyUuIfdYC3bQJBO453swPR5UZIm+RInmSJ6zc6hhbpPSrX+BtrsqI1co\nKFjsXsrmZ1+WiKiclW+kcJWMUTFP0WO597LpIClk8/IpsjNo53hzIcHVPDvAR8cyRnlRwCHnZVEm\nQP5Dinn+QPvC7oNSylRKvaeU+of8/5tKqd9RSj1USv1PSqkfDXh93a7bdfszbX8SlsK/B+AjrIgC\ngP8MwH+htf77Sqn/GsBfA/Bf/VEXUDBgmy4M5WElRflodI4HF2KK7vULPB7LqXNnVCCn2Tk9Jnvv\ndoE+q9A8u4X4WI72slnAol5EVgDjQzFFY6oo++fPUQVyGtvP1hDsyM97RY7qnpj+3tpNRKmcMEe5\nnPKLmYdJKCdpnSu4Mc1nYwfjjHRkyxydkpRn1JCwGjOku3KqDiofBk33cpzAYiWeSZh3rdqoKU+u\nBvdhVGJt2J6HlAFKr5kjZKFNvyXfv/Bt7O+JteKsDeCactJqDwhppHzveIxTYi7uR2IdLYoBMuoS\n5lWOxlhM7WTTRKtFerAqQBUzWEd+gMX8DPWhnGZnk2M4tCSayyGMlgRYndkcNtOvvktBnq0tuOSb\n6HgDaHIvPLIeo6wEpWi3HSw9mVczoLr2ugc/kOe74dzGu59IuriTLfCUrNI3TyOcMg23wX/XLAd2\nUwYgsH2gJiN0+03sU2Fa2b+JrVgsnfdJwbbeb6OiCMvleIya5vpyWSKr5FlmTVqsiUJKAp/KbyBr\ny/o8+8DEdCCFVrOD9Cq4nXdkrBpw4bGIzU03Yd4mN0gaYy7TjsfDxZXrNp1IHxdWgClT8aEbQFvE\nZGRAQgo9u2jAofX9edsX1ZLcAfDzAP5TAP8+peR+DsC/yo/8PQD/MX7IpmBYGsFaCQc5HrM6bzcp\n4fPlH6UGUppAT56dYDKSkbowZIHaZz28ThOwM7gL3xbTr1qWmLPy8eHxAmenMphPyb+XDJfodWUy\n/pk764D/GgCg297Hmi3MuMpWUInkt/da+3IPBewSojo2JqioO+lElwjImfgIFo7H9H1rWZiBMUf0\nSMy9aruNjZq55AZQaelTzHLx6WyJ0YwbWmmhSdGTpj1Ac2Wu97Zw/1VZpB9+csp7GGhvSt86nbuI\n+rLA9hMf7+WMNZQeHJv+NRexF0aoSCkPp0ZCt8JOIpDaEYZvQrXow5MzU5/kGJIUZFFOkM3kRYm8\nAQy6eY6RoWQOveLO1A3WYHrMBvk5TFPG7fnpED99V+C8bvUldEmseHNb/u61A7x1T+bp1RtbeOmO\nuAejyQn2HklH17suKsrZO7yH260RkUk71cVV1qV2p7ixLZtX1N3Cb38k43xgyXprKg+WL79bzjOM\nF/KyXZ5eoGPIGFkUzz23auwR9/LqPQ2TMaPn7iUefUsyad96WmCwRRbrD+Uc/fGXtnHTEbDYa18K\n4AasUdE7eMI4Sf30Yzw+FNemcMgY7XrYYmzkedNFaMrGO1OTK4BeYpZolJzAz9m+qPvwXwL4G/h9\ngqIegInWelWBcQhg+wd9USn17yil3lFKvVNUf/aUcNftul03aX9sS0Ep9S8AONdaf0sp9bM/6ve/\nX4q+6VlaZz6MhgmHiLmJVihd2e3vt31sm2JyjatneJ7Ijv/hA7EInPAQBk+BjdkFfEtOj83tCOMj\nsQ4ePHmGT0+pukzevu5aG7pBaTa7gTVGb12rRmUItVU+2YTFgiZlscqyynAayOnRGmmAAcM8bmNG\nzsT18zPMGOQMaY2oQsNllsG0J8iogWAVXZiB/LyYygl8dP4U44l8Ni6W2F6XQGvQNJAHcnr6VQPq\nSAqGhlN5tpFh4vJc+l6bC2BVkdfJYTAQdZEsME/pdpAG7MmHD1BAIutq3MOTXCyC3RZwYyABs2bL\nh1Ziiq7RWTxPpkhIFffx6SXahVzveDHDFqXl4sYeHBKElMcylun4EfyenI5+aUBTsu40TvERi3nc\ny9/Fs+dipX2sZVy+bHQROBRD6UTwa3m+nupg61WepG6EKmaQ05FxawUu4lisqYPDI/z6XNyO4nSO\nFrUqLqoai3P5XsKiu6rKkZNLclElSEfMZngh4mqFORHrYVcrTA1Zs8tZF3s3JGDYcoDwq5Jx2Hrb\nQcbK1f5bLvuWwyWDdXaxjeaO9LkqCkR0Cbob6+i2qDd6Y1++FwVYkufT+/ZTTA/+EQDgZKqwZGB3\nMtU4nf5olsIXFZj9y0qpfx4CVWkC+EUAbaWURWthB8DRD+2EWaPXzhCETcxYervn27jL4oBmEODh\nkJLpIxsfnwooKOODbxtdZDLfeHZ2gNd/SjYIjTa61G685TpwCIp5v5CJa3ZC3HGkkrHVsNEO3gIA\ntPc2YXCxpd5v4fzZPwYAfJDJC//yy1uYfEfcnIf2EXaasqDX+oBPH/hXPznBdyf0NRtSl7Db3cAb\nN4WQxDirgXXyHPY18nPCh7mYfWWgcuUlHk0iPDyR3y/GI+wREr27uYHXviym9OZv/gYAYL7IkV3K\ntFbjEfY2WcqrtzE0xSzfcJqYavl5uZTxfufwHEczMdH99gJzUOR0tIEO2an8wMLamoxdRV5DUy9g\nsJzYuVjgm89lnoKDKV7pyM5x784QHVLXO5a8bE6soFryovtGHykj6+ZoCn0gk3k46eF1pqiDlDqe\n1RInT0mGo7+LNlYCPzFaifQt7JswGzKeLjNUykxgcG4q4wzGx2KWf3eYwGYJc1FniFcajA15Ydfa\nfSQbVIg69TBiZuTx+Aw3WBNSUanMsWv85S1Zb6+++SqcHfn7w1/+FO9/R17MoTtGvy/uyktvSqqz\no2uUpfTBeuUcupRDzaiqq813OWkjoUvkErzmVhZsplnvbFv46V253uPhb2PKFGecl3jEFO7nbX9s\n90Fr/R9qrXe01vsA/hUA/7fW+l8D8A0Av8CPXUvRX7fr9k9Z+/8Dp/A3Afx9pdTfBvAegP/mh36j\nNqBjH/OwgSpZSVx52NmXbXJzvQc3o+hJXuINyqFPGOh5pRlhxCzD2WSMwZmcLnf6XSTkBtxPFzCZ\nDbh9U647rE28+rpcN6tCtMmlWBkxkElgaBb34Bk/BQB4c0uCmSf2LrzbIhU3eBCgRzDKev8NpKGc\nQLfu3YJD+fh11vQbTRtbNylSUudYkULWh0v4V4VL8vT9cAe6lv7e6poYxvKz37aQE3ClzAgLtcIC\nyDN1WgV6oYxLYgANsjyXVg+9QE70D6oYgUsZeFbybfZa2N2iibs5wJJ091u6B5804q7bhyYFXoNZ\nG6e/jbVum30/RJ/ZlcvUwGsvy3iZ1gwd0sxlc8KLO2tXpC7Ki+AQW3I5LvFL3xOXoec+xWRTvnfj\ntrgwN1s+mjfEjev5LVg22aXT51BkqK5qBbBIqyKk3UwaaPN+r269jvM35H76WY1xLq6XOengXVtg\n0yGVmmPDRGlR3zRMoHiiu8qD4ZEWsCFWwMY0AFySz3T3rtilF24DAcflrdY+3E2Rkh+8LM+0TJ7j\njDqfwaFGm+zZ2srh9WS99KwpPIOwaSXP5jnAUSZux3q0C/+OFI+5HzfhW/JMdqqQJ9TV/JztT2RT\n0Fr/OoBf58+PAXz1T+K61+26Xbc//fZCIBorXWOWLxA9P8SUQSS/leO+loDaztZrWKN/ahg25oS+\npqzjLwZz7Czls6dPDXTpFdUW4K0REuzcw+BCTqlgXXbim00fW5BTxw2XsGomTcwQGLLs1/hNONZT\nAEBky173yr230aWP+D/2vwl7l3wKy0Ps7Ukqs/XTXXhEzRkrBqW4QhlIMEznCtWIcmxdE5ontz3m\nceYPsOWKX5j1ZrhvSn9KI4dLNeesOsF8Rj+ZKcT0osaEGhjx4RhgmfXL0wTv0sK60/DAeBm6hDD/\nzN3beP1VQWyaVhsLkrjGSYoGU2sBXPgrNWaWiwcdBzZpzpxGF/2WnFBhO4RH6jnfjlESpl2wOGxd\nl8hZSKUwRrWQU16HBVoLCUa+mwM9QrZDQ07g3d0vY2tTmJn8qAmsBIEKCwaDv4bjID9a5VE5B2EF\nk2jK0BzgZ3ga322eIyZq8vnZUzTekf797kKuNZxmyEtRK18kgRS1AVizAmwQer0S/XnsVhhUEmv6\nytkThG+KJXDv7du4f0mNks012OQcVEw3NoINGFPGksIcBDHCsAG32JfxcuZQSta1HclY5MsJdgIZ\nq8fDQ1RjCWhvbX+MRw+ZfjWX8FdajJ+zvRibQgksxgrvqBLnDgEYcOB8VRaK51roRPLyVsqAZaw4\nEuTvi3qKkS0BIKMTodcU86wyNDxDNot2Z4I+FaFBiuxMObBpfjvNfegGWXJhIDEkPjp9v4NgXQKF\nrTYrGO0LHK7LZDSepJgwupsqC5jIi95xNDRkkixTJkW1I5AiArPqAgtDXjyVR7AV6/RZq6Dc0ZW5\n2LR6sJwO+zZDRf695fgc46On8j2+YFGjxvhSsg/DfIaC1Yzv6iEeXcpns2V6JTLSbMoYvrSzh+76\nDY63h8ZYXpQJjpFQRt3sGvCUuFsmo+LKCGCvyUO1Wzto+LJhl1ULrsfgsGrCnMnPHrMaS9OGT9KQ\n2fAci1z6MZ8aeM4U9Xld4pJQafMVugaxgo7lxYsTjTCQOXNmTdgM/NWVgWpDxjxNCEKrEhgEHlmd\nHK1cnjXo9LGkCvl25KBkoPHwfQlmn43OUbMqd5hM0KHP462FmJ/IOkxIkGLkFR6S5m2spvAeyxj1\nurdQrsmGpIpLWKyJKVl9Op+OEZfyva7xCupU8DemiqCUrDMTPZir2oYVHL1IYfVlTXvDU7T0x/L3\nqoHakqxbuSxxoX+00OF1leR1u27X7TPthbAUCqVxojKM8xwLouN+zY9x81QCTndu37+iLgs7JXxF\n5BZTkul7BxjTtOpZQOVIvr0ubqA2xPS1kwya0E+TO3SjXcEzyc1gXsK8YJlG7xMAclK8v/Xf46iQ\nz7c/EqvjKxs/i41cTodCfw82r9GKx3AZdDJzHzqS08pkQFQbGaoznp7LFD5PYLuYwHTEKnAqVhaO\nZ1D2SgsggEnMg6o1siXlz47HQCYW1OuhyNid+ya6hZzy8eNTmAMZi2w0wEEipr2LABH7H7Gox6p8\ntAiVth0XBpmZ5r8+Q92l7F3Yht1gMdlc+ma0TTgLl8+Xw6LL4zqAYlWqUS+gVwxBpoyh6RwgtmXO\nRgczPJhT5Xu9wIVMOwoN/J9ERQ7mUhz39uBtWKWcuk6g4RSEh0cJFPUpSseAnjKl6qxUxXswCBu3\ncg81ZfEMJ4RFnMkkuMQaBTwDwrir0kfJdbbV8rHeFFdpsN9Gj9Wx2RPpz6GeYF3L2HfPXYSvyc8G\nTHgr19RwUBEtqUhmq+IUm3SVXWsC0xKYt2GaMGj613UGrJi4AumvoRQ0C7iUlaHpi1t1b3+CXWpE\n/MbHH2C0uvfnbC/EplBXQDw3YJgKoFDsa4UH0yIFuPaQ0wRylhYqjy4GiUkuI4V6yUXgbcJrUhWq\ncAFyFFauj5r5facp5pvtKYBqRGq4QO6Jabw4nmBMDsPB8C/iEcuS/9z9nwAAxEsTJ2uySIu6RpSw\nDkBto8UyXBU2YUxJwzYgG3CeQ7Wlb2UxRiOUBaa0BbdLEBXpvLCcQ7Mk12rfhpHyWqpEFsv9kjLB\naSLkI8f0+7tOipT3PT6eIL6QF/YwrjA/Y7ymjJE1ZSFvdTkW/RZQsOS8paBmLDlve1AEJ9WOjdIV\nbIEqV6W5MapKNjSUFQyHifUyhSLtXT0ZoXYobpsKPmIOYEqKtcexwngh17UnEe425UX+OK/xV3fE\nBXspkrJ1U/VgMGNiOAZg0gHPEhRNCgiXM+Qk2jFoci/SBTx79YIZUMSqmIGBopB+LOMl0oruDWSe\nJtUhUkVxliDCy1vimjbW3kJ68B0AwMOW4ACSWQ4rIYQ+T1FeiAnv7N+DoltZ+wU0y7lzn4fafAaf\na9JVHpRLN8hIURGHkc8nsNvUUyWJTq1T5FrGVasQ9tpD6Xuxhe6mrIH+QYSzFXx9VbX6Q9q1+3Dd\nrtt1+0x7ISwFKKB2auhcgRQCOPcLGKzESRZL5A0xmYuwAdB0rWMSUxQ1DDCYVzRRjHkK+AoFsxlh\n2YFLdJwuZYfWtQOTlGe64yNnwLCeXcK8EnV5in+5JadDy5Sdug48vKnfBAB8I3gPE55sY+Mhtmtq\nJY7PYJKTwJqTCyHqIb+QIGARjWCcye+bb4fInoll4jfkpHp0kKHXk+mJj4+giJEwCucqqHiRXmAZ\nM1vRl5Ph8GGBj45Eo9D5xMLNu9KH8ZMhstVJYVWIMprMM7mvjhcwWD2qYhtkeUNRlrDIB4GFBast\nJ1pekCbNM2Dx1DW8CiWFWkzXh17yenaEjBmFtJa+p5XG9FROubNygtOZjOHX3goxpshKbeZQXWJA\nyIhd6hMkQ0qyr3WhGXXLiwwpqfCWlyMMGfAzPXl+07KRHxILYhvY3KbbMeujIDozmy1Qsjp0TAo2\nO3ex4HVzZeNiS37+klPjgMVkdydyrV+rMngkDZ4WR9ggHL2efQCwcKle1Ki5yGMGX0s3h22R5q3b\nhSaBR+lMME0pC2gWcCbiKtgFkZSFg9qgtWFcoFL7AID7/Rl++9uyXg7SfwyHgVuSEP7Q9mJsChow\nShOBBZQUNblveBgz5fPRx0fwlxS62N6GS98wm8gEeNrEfCKm77JXwGEprKnmsOnj1n4MxDTjbQF8\npHEIk2o81qIH5dM0LjZgs/Lxfv9fR3RLNgM48gKef/sh3vfFVKuNHAvCip3EwSKRvvnmCFYlC7qo\nSU8e26hdMZ/b+X2YL1NLsd6Gvy9mcpELWKV58imqWlyUKluDZqVbpRykGTe1UYZ8KddLjmVRHZ9c\n4NGpvJgVHIQcq8dZjIpsSxUUHrkk3ngspvOb6++gzdhBs9VAdjjlZw8RX0iEu9o6hxFLebUdsMrQ\nKFFTr7G6rABWeyr0UREerVMbjiMbR7KU2IG+vICmrqaVVvA9eVFc+6u48zV5MTeTGrsGmaPIOn3y\naQmLsHHbMWE58vsscWCwPiIZ18jIFRlPZR7tfAjy4mCjsYE5Kyrt9QTVnK9LPgbDQ2iQ//PcjFEo\nucc0maCyJaaSdR2krAN82hb3qp8ppNwg02mMnGlIb+ABuTxfkT6F5qa+qlQNk12YfZ6GSYSSGZW6\niKAzuV8xWsBoybuhUrpl+RJ5ulIqasIpJQ72zuEE734k63OUlCh/xHrDa/fhul236/aZ9kJYCqYB\ntP0ahTLhcYeerFl4lRp/lZ/jlDvmmjmASTInl3JY3mSOVlt2ZV3OYBosiEoBtyMnsFPXMLijqzP5\nvtE1YLCqTXdquJTvXtpr6NNsa9zagclIrkFiErfdRvNCCqnK7B9Bs3gmcxcwm7L7GzpERbNNrfQd\njBmCjHoDURvRFouKmndhKAKZpmJStu6MMWLkWS1r1OSlNOYpLJ6IyzJGlogLMifAyjDNK73GuVFj\nGrJ6cgGkrGg/VSZ6zMTMa7nfh5cLfIkVjmZvAEVz1v+tHeS1jJsezpF3xIJQK37FyIeRERMQxFAU\nzqnMBUihAK1i1KXczyHpixUVCJlZuNleRzyQMbzTaUFpsUzWTo6gIpmrDUv6YNtT6IQaElkK0yal\nmaPgMFC8FdQYTIgXp1bC8uQcmkrbyqyhG8w+zEsUDFw6toW7fbn21pFYeePzElUuay/w2liQgTpP\nZ1jboiL0iZjqHyQnWA9YxNdzUa3Tgorzq/GylIPCFzfAiuV7rqFgch5yI4A5ZBC3AJyKFbrrrUtP\nggAAIABJREFUHkwK44DBU5XWAN3mubHAs1KsuNHBr6HPStOjWv9/tFB/WHsxNgUoNGsb5sCGS7r0\nt9Y3kcZMvRQxjlki2h/E6A9kYU05WWlXAyQlbbe2YXPyvU4T7kriPahRkgfPalM4xouuiCCwyJAN\nKJDy/LswKHcfFvdghaQ1Jw15OU1x0BUT1o8MBNQtnJfbmCTyJnTdCKaiOzKWYV40DczekT4/e/jL\n6Oby9852HwYp6kPqT06jGv4q1fdja2jR/K6cJeYs5W2vrcG7KWg74zuyGB/WC5Q1NyPHhslFvNGo\nUbNU+55v4HIVjyGaKktynFFcx0ocDFmV+mR2gLig8E15Az6pgIJ1WdCR4cEip6C2c5hNZiJUhiqV\n8czKBRxmfsqmjLjjA+MVonO9j1caMk+z8xwJ4wA3dzrQtfxcVdywF0Pkjrxs9VhBN8S101EL9gr4\nZY5hd2him0SxdtpIbdZdZAukE3kmw96BWTOuoh08N2SuCmp3XtQLLGlQF1YCj0jHi+MG+mReetqR\ntO9yrHDJeNXpJeCfyAtdej2EHRLzjkrkkO9NL6UPE3WI9qlsaFXjCbJa+tDwGihypkhbARRrTFay\nBYV1hpzvyMU0xEfxNwAAv/veUySJ9OOPQ1Vy7T5ct+t23T7TXgxLwQRabWCjsHG8J6djmmookqGc\nVTO4tpw0L7+8g9wguQVl2LNFDcXf6aSGXVAyzCxQuHIKYGhdacrXXdIz2+FVhLwwl1g+FrP1XE2w\nXQi3gll8gHop5rheSGbBBPB1ioX8yhJIadpfXo6xty6ZijI0UK8i7YX0Yf5gig8LyQw8zk6QM1A6\ncI7w4VPZ2X/yDfls49DHjS8JV0J5/ACa+pCu7cCiaZhZFQKfNGUNBhePOrCackLdaTewThDSxsKG\nvUkq8rwBVUnAL6dM+afzDCMG89qTIySEEh8ZJTrOyj2aIuBpvGRlIZRCSHZhyzJRrYlVVWflVZWn\nijNUfVpntVgE9WGBZEGehn6OG7aM2//z4UfoElz2uLGNAaHLoSH38JXG5Yg1DuYc9Vye1UuWSF2x\nQrJDA1ZLfu7SKtSNDE3yFMymNspExjlTLtKurJ2WlaNP6424K+w0QpiUzeu1+ljMZFyG3/sneGlX\nvvcT5+LC/LcYYkKw1GE6x/qlnOzurQWSTH42vBjJJYOmFkltoDCPTjkWLsoTeb5Z6gApMQa2Qm1R\n8dohACzwoR4LFmJeHuDBQ3JPVDni5Pf1I1dFAZ/XaLi2FK7bdbtun2kvhKWgYMBQPsL9ECGDh3aq\n8d2VvNtwhkUh+9ydpw/R2JRdt7yQXXQSD2HNmHdunsGm9sJ8eQKnIddzMEXAAJYinNdMxigZwEoW\nHp49egcAsBiYUFuCtS2f/CQOvvt3AQCDviAazZ2Xcf4l6VrneR8hZb5Cx4VHKTDXWoNDXgNFhGEc\nNHHPFpXkW2//OHYj2fEb4T6Wj8SCqBkPOHnvQ+RkWzo35tjoEZuRFfBd8eGbXgO9WO4RduTvUXOG\nHsdio7eOmEjI1i3gLqs19eUUxwmnPpO/n4yO8ITK1TtqC8VcTvT+RhPBXO7X3nChCDHWF3JqJapA\n6RIXYWzC4HkUuGtwPOqVmX2ACEr9RNJm5+kHeHJOpORBjZ96W+ZmaI+gbbJFVQlaPnVA1uX75plG\nlsnpqB0XDgQ3kS0SnE/Earh4eoaWJ5ZM3RIRlpl5AHcoUPDD0TOELbG85hsLbPgyLvG8QhHI9Xo9\nGdcbpYHclbPz48kpnn8s6eyzcYy/8IZYjkdfkvjLa59olNTtiB0P1YLaE4t12G1WsdohljERiUux\nfqrmOgZbEhDtBPuISrJiZQukM6GNm5wPUYzk87ublAWMQnj3JYYTvzvHBVmY5osauv59u4CQE3xe\nsPMLsSlYpsZas4YeWwjI2mw1PTRP5KU/GeV4ynzsb33rMbqMON/YlTJXPw3Q7slkRnEBq0NsQraL\nHnEPUdBGdYO54CUVncwE85GYWcf5EaqpXOOtVwFrUzaF991/F//JN4R448Nv/O8AgN/4z38FOx0p\nkb4VvYu5L3379GiCtU0xL+2Ff1Wq6wZSkdfbPcfoU0b1HyyRBEL7/XT0bXz4nd+RflIDcNyssdWU\nF6X/8j04DHJWoULWYk3FpQWTzPpZLM+2kbrICY8uzCFeJlOxW0SYZTQkI4XugbgbJ9x3D2ONb/+W\nEMu8Gt6EuUF+wdMOfIrPqMsKaSYLNmXefXvLQRTKC6b2+6iGVJYyK2jWV2DNAVLKwAcS1f/2dxI8\npineqBr4aFM2i9AwkR2RX7CcodkgNTyrMms/REmqPFN50GSothoevGNx6bZ9E7Mn0o9HnlDpPX6S\nYs2QcdORA91jZmfRQX0igLLKGuFTZnbcjvT91vptXBKO/P63vofnqfT503KB5u2fBwB8iQze8B/i\nzBS3JH04x2MyEZquB5eHhR+EyAd8qb9F+PTpGMdn4j6MgxEKMnq3XQcWK4GdtgltklyFDNcaBsZK\nNrrT7x0gfS7PoXX9GVfhR6t8uHYfrtt1u25/oL0QloJRm/DjJmy/xIK52PNyhnRGFl3DgKYFcTgu\n8fRjMV1jws/6aEGzUAcAlnPm1e0KGZl6PXcLjlppHTAYVvsYXciJOV7mSMg4vDG9C/09MQk3Gl/H\n5COxLP7GW7JDzx9dYml+IH1vn6NLc93tmzhleitKWrBYrGMYlEFDAX1Bd8UsYaZiMhrWA9ThPgBg\n5yWZkt55jf4G8Q1VhMITI3AxyZEzkTo/miJfyom2ulf/VhtnR1SMTgfwl5Sj82qUJYOqqUKbIikj\nagwU8wTPR3IaP3jwGM1aTrZg4qNBERVlOHBbpIUrySuw0YftiYVlWhMsif7LK6AmY7S1rLFciMk/\ny2QspssYC1YyLkwT5om4Gt6wwOVSTP+pthEdMD3ny9gj1ViSpKQFC/M506iVBYsupo5KWEznHlcy\np5OljbIlvwvLCD6DtfF8jFlO6rZMYz2UlHBMLos7+wOc/J6c+G39FGkpFmRoulCX4q4cUB9zpsdY\nkh3bMRXOqFAdnih41AxpVD5qzoNNCkGr1UDoCpI1VhewSDZsehkcBnYNZ446F1cqp2p1vhjjg+9I\nsPL40QkSjothWGi4Mg/zTMMk/0hVf75Qo9L6z15z4daNG/pv/wd/E2p4gu+eiKn+eDaCcSamaqdt\noheyXLbwAUKXHcqiLy9TzFyZWB8+uhQ/9eHAajH/fTLDmKYhElmAuWmhpLKU3bDgkH/QdFo4O5XB\nPtU1HE40GrL4L5+e4MSTzeYv/MRLuPPnhEX3p9e+jt1bsslMn9lo0W8/eCqugdpaIj2RRep7PcTU\nOQz8cxx+T16aERfrw7MzOHymVqeHe7ek1uLOj/2lK5M6tXzUfLkfjZmP325ggxmFRquF3/0VcVHq\nfIoPzoTD7zSfAUdCyLHmyhh++nSB+QErNdUYDvEibp3AoIT9+k4fN9ryoufnzJVXBh6dSywiLjS0\n4ovQ6OPH7/0YAGDv1quo+gSa0e1aliYGL4nZfVOZCDlP//Y/9xO4JAfhZkuhCGVOmpy62pzj6Jw+\nz1IjJeu0ClyYK9ET10GDY9SNZK2MTxIsaEcfz5fQ5QryrVHWLEvfdgFBByMOZGNaDoGMdR5VAawM\ncx/AWzdl4xiReOW1nQDWujzH5tSB35UD4uIMCEmnFM/mSBvcnFf1FYEDn3EU2y4wZEl17ZsoCFMP\nrBLzKbNqFgWLXRs3O3JgLUoN05efTa+L1//ZHwcAfG33NpobrwAAtl55/Vtaa5mUP6Jduw/X7bpd\nt8+0F8J9AErAOMO5cYijZ2KSHR4+RMTddas/wBsNVhpurkEThwBCdS/86VVi2YMJi9BlyzTgVPIZ\n37VQrH6fyU479BTCWn4uAx9tosdiY4Lal92/l8eISxmmlEQuz8IK7URcmHvzV1EM5Pdh8QTlWIJu\nXf8BaktO2A5dAtO9DZOciPBvwOEplxi7MLYFmZg8ewoAaJlzmKyxD9zyigvCyp5g2pQKTldnmB8w\nUj2T78X1LdzpC0kHbAUVyXhO0jPkH8qJ/tHR72IzJ8Jwl9H2OL+iFWuZGq1NsbZ6YQ+WJWN/t92E\nSe0My5WA2ydPnsEs5bOZFSMei+U1zIbYPZBj95Negr2ZQHANJRZYZdkoHUnhvLp9HysZ4mM7R5CS\n53GxhpNKLKjJiC6MlaNMxFK4LDVcnpq9UGMrkL45nTZuNEjlRyZtfxDjkwM58du2f8VWbc1NOKSR\n6MHF6J7c5/feFXflPHsX+gfAAhMAxyv8AhGtg2oNKbk+iqWNjCzKvpHggi7r0KxgM2Pkcj2FDQ8d\nnzyfXhM9FqvNTQ+sy4PdjdBlgeCjuazpbp1jTBfTPo9xeSyZkUsM4bwr3/vJjW247VX+4fO1F2JT\nqHSNabXEk987wScPJQUz0iZur8mL+WY4wEv3xUSP2luwHfGpFhNZ2BfeY0ynnIAww5T4e1UtIUp2\nQKcxRZxRLGSdIA8dImKUOS0tOCF1B9Nd1JH4kQfHGqFNoRb69eFoiRnXyTcnF/h55+cAAHvBTYB+\nHaIWNK3ZZsFosdmGcfOe9M0KoFzpRzWq0N6TZ4ooLf+lW0eoKVVudUoYffE5w4aLguXOqgVEtkTc\n7zmS6lx8MsVyXRZPrzBgM6UX/18P8NsPvylju3Dx5r4syNsEb/m7fby+kIW5t9+Ay5qBxu4WPFc2\nN98HYlYfTlyZJ2/ewEZDNrTTZ0scNeWFPitbcCigGp750AOJkve8r8l10x6ydyTiftzcxF7K+Mls\ngRHt/Mw7h0rFRH+pzzTeRYCYrEle5eIX7ks/txvb8Pe4BuwNbO7L70vGC+rkAG+TsDfPLjA5pvhv\nUGI2lnk4tz7FYiTPNd9ghefjP9y9NqcyFkMSAH0yX2Krks3vS7s50rG4vEfpITCVz9zAEsVc+qlX\nVZt5hJ/8mhwmVdyFpVgzkW1j97Zs2gotqEj6PBvRzW0cYPY96fvx/Wf4Frkk68szWEesRxlOYM5/\ntPzDF3IflFJtpdQ/UEo9UEp9pJT6CaVUVyn1q0qpT/lv54vc47pdt+v2p9u+qKXwiwD+D631Lyil\nHAABgP8IwK9prf+OUupvAfhbEIGYP7RVZYH56QW+M36Ic2qx96oS+3tySgxubiMcyEnpZSGMhuyO\nBjkHQ38N9kRMQzvqYDaTYF/pRnAYzCkbJvJyRW8mJ992VsP0ZTc/SXK4PTnRvVmFJdWRq2oGPZMT\nu5lK3/oDhYRWzFf/yk/h/onYvuXXbaSP5NREUsE7oBTYV8TcNwoLZsScdqGBgFmQ+RwOtSLX6FKY\n4dtIKYxjdTZRU07OtmwsZpKPbu+9dgUWqljMdbmrEfRk3DLUaJI9+WjtCAbH8HbxDJt3BUIdkWps\nq9OHT3Ga3a/uQa94J7t3UK+8NScDTo45zmLxOPZTbC7lWtr/BO2pBBRvJBluOmLFfFqfY7MjJ6gf\n00p74wyXBQu+tjauiEwMo0IREGfRaiOiZZIwX39cLqAJO+/kKbb2xMJo3ungZl+sJTVTCO7KOKec\nf8v5Ghos8irMNk4fiStVqTWcsFAumkf46Lflem/PhMviGxj/ftHcH2iKdPeGI5/wNxuImA2qdjs4\nPhNX6cE4RzAh/qZlYdSU51sn52JrqdGIZI0lThMdT+bPToHWbXE3q8yH05Uxb+4Rb5Ftw7SFEs6a\n38PkhgSPy3YDOpBxnvUGyIz4D3mCH9y+iMBsC8DPAPg3AUBrnQPIlVL/EoCf5cf+HkQk5o/eFPIa\n4+MF1ibAkDUOnY6Dr2yKSfXyxm04IdmUnDE0ETcuq9Sy0oK3SbaaqokBNRAuqhwFtQBQhohslld7\n5AssKtRUZmprE4Epk+w4LuaUj1+z+zhtUEGIsYzOsInXtuRlGmx00d6hEtLwPdiUeNK5gnGPZn7M\nku1WBK35OxPQZBuCa8IgsanTk0WgtI+oIZtJmSwBIuKQFWg2GKOIbTQHsqnVhbzwe/kYdcGKS9+B\nMmSz+Tn3ZaQ7Mm69mwZeY3R+qyMLTbc9tNeZwfB7MF3ZFGEVsByyHk1r2JQ7VxYrPLvbMCzZhL+8\nLPGYNRideI6U6d5Nt0AjlUV/+035N8A2tCfuQxbPYQZkP5prdMjSm3ccRLZsHHsc+4Ht4RnL67+y\n56BpiSG60wmvVnN414fi5mRTpwFVAZeRej0x0OnJNY4WR3BZxaqqPv5iKC/cgy2Z848nYxz+IdZ3\nHXO9EFSUr3totWQzWrPn8MjHuTzx0F2X+eu6/tXYK5b4v/q6By9nDUsvghOxZiJKoHKme30DNWUA\nTHJfamWi6chmm7We4/VXZVNcO5xj0ZX7tYohdLL2gx/gD2lfxH24CeACwH+nlHpPKfV3lVIhgHWt\n9Qk/cwpg/Qd9+ful6GMyCV2363bd/uzbF3EfLABvAfjrWuvfUUr9IsRVuGpaa62U+oGRmu+Xot/o\nhjovDjB2EuyR6fZOaw9btwVIEqw3Uc1kn8nqFjKICWtVrB3ozGA2he23hoa7kJ2xVcyQkRm3iBMo\ncurlqZxyRSPBiLUBURjBZTCo0SuxRoTuxFEozsgIHIpFsLWh8VpXTOYvD0107lCopf0yHPIpFPYv\nw7L/RQC4IgoxzCa0KaejzrdQawlmqkWIasWSDIEla3cEzUBVlTwBIJaA4S5hsWbCjgCTFYwW4dzt\ndIAqloyEcnaBSjIAWcfE2zMZF8e7he27rCmIxJUykzO4gQRzLd+GMqlqVY5QrrIv2QUwp8lPfIMd\nNOBCnqksIvTOxDpYOBHytnxm3I3QIJdgg4zLjaaHV2diCdXnH6HckvkrkcNlzv7eRQZvnyzVkfSn\nrSJ8dSHu02tv/yVs3d2XZwq7MCDulva3UZiSHTFiOYGVewHTluc3jedwIRZUlI7g9GWNnB5PcNKT\niR9W8pw3Hns4JU7lD9KarTImHa6xr49MrL1BXMXgNloT6U+2eYJOV9S3NvcDrPdlnAOqYKvBSzDI\na6GKEHaH1q1xA9qW9WQuI+iKlalgHYl5CYs0bq1jB5nFDM1OjYRZLnP8FMaNl/CjtC9iKRwCONRa\n/w7//x9ANokzpdQmAPDf8y9wj+t23a7bn3L7Y1sKWutTpdSBUuplrfXHAP48gA/5318F8HfwOaXo\nNYC6rhHEQE4qsXrLgLUqYFEuMuYAy84YdkboZ0d2ZSfYhGIgqqwW0NFKZKUFh4ZKnieoqZ6sCYgr\n7QjujMw+jSXgyL2TsgGHBVgtDSy75BAgpZajbIzPJcVW1WOYmcQJ6uMURUNOTad6BQZZnhUZh7Vr\nAbRuYGXQKyJV5wB1Lr83bFYA5lNU6qn0c/oMiihO5Bo1eXmtogtzFQYjfLhIj6E9wSmU5RJOxIDp\nxQkMCpyoNYWKZLM5A5vNIILtER3oGqhKwTegUqipiakyE2WLYjCZfD/LZ8iouVFbQOQSVddwMKUG\n41IHOJoTnTqmXuX8HKeOYD0a/ltXDMZ5WcMlj8ZJL8KXfUkpD2Ii+3oKd2+vEHoRooFYaRVyGBRU\n0aqESdRq1ZL7GqYHXbMIarQEDDmB7dLAkniBZtTAG5rxoXOZ//2XL1AfyWc/OCsx/z5roSJuIGMw\n85GX4p4hcYTGhwuUPfn7XtLF1l05uQe9Puq+/OyyYA6+B70kNN1ZAjlP+UZ9pfdR6yVA2L/aWM2/\ndaU7GfU7yBj4DI+eQXOurfAlpIRjf972RbMPfx3A/8DMw2MA/xbE+vglpdRfA/AMwF/5oVepgSpT\nqFs1FIVWd+wWrDUJNCbTSyzJS4eJC8sRk7fImE0wDdQeJccNDyZpwKyGB1TyGbPVQkbKeJ+akqpO\nkGhWGVYVwKBUWSW4bNA29DK0j0mVRUh4OrHR7srkp3spkqVsENZkiWoqMOai7cKlRqF5ICaejr6L\nypC+I0hRH5C+2xqiIoLGaVPP8jRCZbHizrqNkCZjhQDOUvppDELoFWNyveIcNJETVJMbMRYXZDWu\njjELZZFuL2PErCq1V+pVrRCa1OG6qq4EUrQRIqtWDM0hSi7SypbnyO0JNKsW83yImCXS5TzHvJIx\n6l4WUG/LteepbARGlMEeMmB2R2NpkvItN1D48ny7bQ8hsf/hG/LZjt3DYF+g0lbUhyLAC7MjKAb8\narOCEUnmQ1GqXTue8EYCqAwfJUVpVNBGw6aAS2ijtOV+3buyOZyEe/jautyj8e4T/OopuTIVUJO+\nxOEhtL5uIpvLczyOpsgfy5w0swWmibyYkbkJsCqz7pASrlwDWO1poAQarOGAhjJJSlOPYazo2Dhn\nhgpQM7uUh03oWNzRieECLKOeLcdoupIF+bztC20KWutvA/hBWOo//0Wue92u23X7s2svBKJRaQ07\nrbCTRJh0mf7aVPBo55uwkNU8ue1zNGwxHx3SI0DbMK7imdaVZkOWV1hRTOjMBlj4UrHm3aptNEw5\n2ex8jpgMzsrOofVKOKaJaYu4B0rZRw0T25sMCI4bWJqUCHdPUdEa0cY+lgsGRFllqM/PUUCuZYcZ\napraXuZDG3JylZQ1N4MQZcYgWTRBsSJvMT0YaxQWSQoYxFNokoEWbRdxyXsUDVyeiztjpyYSLZbC\nYWihy+czK34/91BRJVrnPkqeXEVcAgxi1kYLhrsS4pG/u/ka6lBcCrfsAGQfzpBD5StWYoXzI+nz\n7W3S5qUZTqix0C6mVylLz6rxFaaMXXcXr+3L73cLmWxrbw32mpzi1kYAMHWsghB6Thi7A9RM261S\nslW6RJnT0lPAKlhX+edXWg1FXqAsGWEOZe667j7iGWHH/gi+LZZgWxno0aV7iZD4hjmAT0t38u0h\nDsi9EG12YbVlTvpeCYeRvIJJN8+cAuSZMEqNeiL9rDsFDGIZVGahyhmApDVj5D5MWrTFYoqa81ub\nJVK6jb59gfKYUn6fs70Qm4IGUKgKs1aODb7bu2kblUFzqThFNhYwie3vQg1YkkxRDRUYMAyZZEPF\nQL7KsedXbLZpNoeqCAxa+WlVBSKXoToWNHntKpUioA+LWsGkIpHtkxHIKlCQXdkYL5EFNFun6/DJ\nG6mXpzAvCaZpsSpTB1cbmYcACit/0Ye2SLhRR3y2FKYhH64dA3W6eiYbOhHTXbVToCRWlpqC5sJF\nsNpM2w6W1Ka8SI4Rs8rO3+7CoTiq7fM5jBhqxRSEDLqiixUp2GTEVkaOPCMdOrtjmBbsgrEar4Yi\nJebxwQjlUO73JD5BMpIXpEPhmJ21H0dNynnkMziE8ya1gWcUnt2bHyAu35Zr70m8YOBtwGtSKLZc\nBxSl6qttoEsAFNpXwjArFujaqGBRsNcv58hB122ZIF+pV8U1VETG5xk35M0IE6pvlZ96iLgpRr6N\ngIdBqyVjeCOvcDGUTeP51IA9ITO0P8Igk6rFOr0BvTrAXHn+Gg1YMQ8T1UJNcJNdOACxCUoZqBlD\nswyufwcAKzQDq4GM68kJelgpMvvjM4S7nKzP2a6rJK/bdbtun2kvhKVgGcBaaKKeBgApw7S7gFnK\nqTJxbCwmLFbqVphpCVY5wT4AIJgVUC2asyVQE9GoLwool6q8Vola8xSmajNaLSCRgAxKA3ZGN6E0\nkK00EVWAnRZr8kkgEpkVDEb7vbiBViF/N0sf2Q4Dm08XKNqkEBtzt49aMJdyehZujIxBSavjw7uk\nSMr3Qb0SxYzD4wxYp0WAKQru5XbsA5QY0yU5CZ0KqHnKVRq2zWDWxEBIvMHWzRlckqhUAf+daFBF\nHXWtUdEMtuYGKsKO1SRH3SdMmZBvw61AqxWW04HzTIJd+90WRtS9OD7u4Hwsz/rxJ2IxnJ18A9HL\ngqaM9BYUx8VAjoRQ6ELZ6JEpu0P+g7KVoaYFogcpVnwgpZvBHtHNacRQOVWemVEyRhVAOLKR5yi7\nDIh+vMC0S7TsPINDmbquSX1Q10HrTMbiZ1oB/uG5XK/QJtoB9UWIhM0QYpNBwOk4wfeoY/ozHQdB\nk4Qz1iESXwa6ccGA4rpzJRxUNVKY5wz4tg3knrgMWaMB81Tm0toUy61Cjpp8C7bbQrNDt3GaYUG9\nSldZ0OPPqyIp7YXYFGCaMKIGrH6MrKJ9nXaRFVzci0uMlUxWa1njkulHxVRg2DbRKVYrM0I95HUD\nB1VOJqC5hTOCPyz60fX5CBmJTLLLFCmJNepFhjnJS3xXo2lL/CAkAAdxAW8grk34qgEHBPToCtlc\n+hFbDZSkH5+d06XAOVxW+7lxhtkFqwgDD5ub8rPJF7deFBitTMoih1qS6ANbcEhx7tyNoFkrApaF\n10UGi8IqpQmYmSw201vCjlZ06T6UI8+UUaVp6ZVIL4Wjcf74FBOm29wtAw4FYAxzDe25uBVbO6Sc\nVwbqlUBrMgUgUf80OcOCVXtVPoTWFFG5kJqDod7G62OyN325BR2toOf2lfy6rUsYiYxL2l2RoOYY\nUajFuHiE2SNhQprHOVpbMiftpgPLlH6aLBE3+gY03ad5qTE6lk1q0etCpfJzspHjYkgXoy0+fs8Y\nY8RK2stNH86TlUy8AZ8Q7Lwp4+33KnxyzuyD0ugSznxZdVA3hUx4UQUwuLGMO/KczdSGIk1+epxC\nUR/TSmOUp/L8h8OPYTa5QWbyzIHZhJ+TfOhWB4rvCNpdODUPIs9HTs3Kz9uu3Yfrdt2u22faC2Ep\n2IaJjaCF/mGKhyz8qeIpbBanwATsPTkJo5YLl+Cl1KHJNTeRkgLdKwIEXUp85zWykvTqixrxgoQk\nLK7Z6jlQjLJX9hxjRn2rRYEFg5GW6yPZkOtlc2YfUgP7AcE0fg+mIadYUZxfuTxJUKFcSJ/cPVoB\n8ymWq5NvXuFiKCfQRmcJ62VKzZMluSpS1LFEwCuvh7UdOWncvAtFOXRd4irQVGWr51jCIiWaZzQQ\najnZ3mwNcE6W5ySIsGRQyqDi8jTNMVvK818mCziOnJ4nh010CgbEshEcVjNmhAar3Lg/hLotAAAg\nAElEQVQKYA4Pj3A4XlGMFbBrMldbCsOEoB5qZuqHI4zX5fmQFvAYRW+FFW4RTOQEFuarytZa+qOs\nCDmFaKzagQ7FJSwbZzg8Y24+jtFaFxN95QaUsymyA7EsD2fA+VjWQlyPoEeEYAebCFssJIrkWt3y\nNcARXMG7wwNUJGdpKhvKF2tqn/yYMUwEtNwcv8CYXIxr2sXDj9l/dw6DlsDiUJ5zszmHT7nATjeG\nQZzJbGTg2Zm4yqPjE4wZ+94kL0TDHOJuX55fLbZhEppthRswCvneLHiA4vE/hSQrhqEQBRaONk1s\n0vQ/DSocHROY4VQYPRaTyQ4vELHabzEkOKZroC4lep2mU6iSwp1tIOdLYTVnaDoyqk0SiwS9HtZc\n2WyGF5dQHMgxZjg7oWR6p4VqhZknb6HyNGpvX/qjmygX0unzk2NcnlHQNXkEi3UJdYOp0FEKPRFT\nfJlofEhT8810B/cYkM5JcJo5GZ6OxP0I/CPUj0RjoDuoYJ9Jmq3eeAZTi7JSFR9yMLdg0Xc2TQtO\nxHRb6KFPvz1OMsz5klWMwsfJDDFVo1TbRiJWPvzlCZamXG8Wp/BMcRvWjuVFWSwLTJh6O8gS0JNC\n4QVYuyu1DZcPvoVwJNmjZMJNw1JYTOX5k/EQNdOMtdGEvSbjvFcpTOfSz6cX8pK3qgzKWFWMzrEg\n4OzRJ0M02c+q1UPAmoFhwDTlcIEH77wPAPj28+d4TlCbndTYWpO109yt0R2J+9NglWhsTnGRy7Oe\nzGKURLourRppIi/bE6JC95+NcLgkI9UM2CcIqTxeYBLKvDvo48kTbvbMVC3HGWxPyF22xjdx+54c\nAL7SWONGPm+auME0Y9SV9bgWeigZO7BGCcoJD8BwguWEsY+zJWyHYrufs127D9ftul23z7QXwlLw\nPB8v3X8NG+4ujq0PAQCNbgOOLybcdHiK//X/Ze9NYyVL0uuwE3dfcl/e/qpebV3d1d0z08MZDvdV\n1HBsmZRNm5bsH5JNmIZsQ4B+WZYNUIANgT8EGwYMS4Ytg5ANi5RpEqAtypJIcyQus3B6erbqpaqr\nupb36m25Z959Cf/4TtZMDyRNNRumSsYLoFHZ+TLzxo2IG/Et5zvnN+X9o9RD70BYiV/dlNPz+25e\nh58zIt+04PaIxYcN2xBzr9HUSEgBfv9UTuPDwwk8cur1nQANRtmbYQMp+R+dvIZLSfgGA3V9BzBy\nOcXr0wg2adxa5wkeFCJq8tU3HiFnrX/REIvnktOBVa/r3D30CJIY7gYoCtJ6UxPz/MFXcHwokfzR\nmxZ6V+QUvLp/CHUg1sH16Ca8XVbOEQWuGhNoBvugNba3JeCWPqlQ1WJNNAMbNU+0hS+n1ddfP8IX\nnlCP0hqjTSCXZXm4QVepvemhz1x5zAClEU0RxwKQWs5L3H0kVtiqXsINxTqozjL0qKRcEusxWRVY\nRDKGTx7MMOzJtT++66AfyElp2wH2Xfl815f5SMoZvva78r23JxFyX248T0o4uYznzcEKfldO1YO+\n1IGMyhVqmtdxWmOvIa+PYOGI1vXiSQxFHc7egVgmGy2N1qkESV/pznHvhNmFEvguxvV8Utk/mafY\nIGhq6SzBqcSbh1McUj/S3xghbJL/UxGHs5pheS7BU+daAZuYG68RQxPmvFrWuPNA5jodyXgfGBrt\njvzWzmAPNLYQncXQHdYCHWlMqz9GOraLdtEu2v//2nNhKZi2hebWBnKV4Ir1SQBArU30EtlJExe4\nuSs7/oFhYeOyWAgb2xJk6V3bR0JG3SLVMKgxado2FOXWQv8SEtb397eZ/ooS0OWElWn0uvI/s/IJ\n1Jo2zameButqBpHM2kDGoiR1Q0MRKedevYSdYzkRXvvEEHVIJCAL8ZVZw7wvJ97MjXGFvmxv4wpc\nfy1lJyetZ2xClSyOuupgRXLQUdJEdV9O4GGrBT1mIVG5RnSG8MjeW+oStkNEX3uKNSdDpWsE1K0o\nKRryyos+VCC+7mTRx7wQX35XeetYJjrDLZQ8ucNMrhc5GTwtcQa9PEWLrEjZPEV8ItbNSTlFp1hD\ncMmY7fuwCumD6xUYrcSa6jm72NmWC74wGKLREUunaRBhiSV2D2Ts3W6KilDxpTlDvJ53ow3blrVT\nCKYZu52rmLcl0Pja5RyzgYzRx8IdjGMGkH0Dc5LGNpT8bmzVOF+P1e4lDO6I1eDbFnxiGpYMpGwr\nhRWDslvbPdjEJjiqQOVRZq/dRbAja+uSJ3NzNrExWpJ6L+uj3ZZ50sjRpYxgap0h6AiI5YSxjGu7\nNqqFxIHauwNUtqzvSewiBdnCohDJBmGmz9iej03BCtEefjf6yQ7ebr0OAJikKTorMZOu71zDn/sp\nUnb7DgpSnJc0Yc1mJWVrAPTRCs4au+x40FRs8txtbNM9aJDy7ZUyfFp9qScLJJT6zusNbHTE1F4l\nNmaOLFhjLAt7Z+M6eg3WVJQOapO0594CO/uiGxl2e6gz2Uwyak0mJzNEm4IF2G0NEDBI1O534Vi0\n/cjc0dzy8N2OBJRWMxcBay3q+AQZg6MFbGSsIlxS1r4MFXxyVzpOG0Ff6kS61SHOF+J2jTMPrVrc\nh82dA+lDr4Ub16T6cBydY/qA96xPYXWZOchaaFJox6kprZ4E8Ljgf7C9i9UO4cVxD/dzcfnuf0nj\nHVK29Ww+ELsWNg/koTh/UsCppJLv1WttvBzK+4d2GzFLtPuEM/f2BwgoS39TByjb8vDOziPMBlKq\n7btdbFuyibRI86bMCFduybU7T9pINd3K7RAvNWTsC7vC4kjcB5OU+stjBxVLDiYjF20yVHcSEx1P\nNoDrtLfvmxo9QrdbKxcbl2Wz3LheoEucAgIfBaUEckfWd7fTx+Cc5Cwqg7Z4GFgFbLqCw7KBRiD3\nfY3z4XoK5ljuKXFGGD+Sjszyxzg/lrXqtE+weveDCT5duA8X7aJdtPe158JSAHKY1UMsggjFUk72\nk8MzdA5IZqlLbA9l1zVbu7DIC5BpauQlEVY0tct2DsNZE2NGUDyNjSCBBTndvJ64InWhEGRiJsdb\nJfSIsubFbaQjag3qDO8SQRi68v0rWxUW5Aow5yewbFahOQXMki5NK0RMS8FZn9wND75DAphGG25A\nnYLGHpyQcGxD/m24AeyBUL5tVRYqrAlaB5jx6CrLMaqRpMtyFjDlJxo5A7TGIIBJeGfWCKBJKjt5\nPIJmNao/knFzmzZKQ/rWq4HmgZxsltlGXssJZSOHuRZcYVFPoWOonNWgzgC7bVLT1R66cxF7qW9W\nOLtDGDOl/nabH4OeUGF7/i7GsVhCrzUbSDoyZ944xooEL8uWzHkvDdEfiHkN1QRIaRbYLXgnxFBY\nNUyetoqkNsrWcHxZT/bwEN0edTTMLuAxYugYCIl2Xa1kXSzMc0wJhV+MV0/TkJ7jIGcF4ykJgcs0\nwlFEbYaWQovEQDtXPgGHlbIoViDfK+pI5vR8lUAxbR1ubEGviXMKExZRjA13Gz7TqFVJLEQ0g+qJ\nJWGd57DSrwEAJo9WmJIKbhEv0d+gFfqM7bnYFAzTg9N/CY3JBGYh7oO7sYsBhTxarRq+Kw+e0dAw\n+GAZBBPF8wVsLlK7AFRIH2rpow6J21/FIHkuDNLVWIEFxYG2EgW1kIE06jYaLUbZZzXOJ7KgT1ne\n/EPqALOpJPKd0TbaL8uEBysXekP6qecaVovDS8BO4sYoprwPp4GAUGqjEcGo+NpZq1jlsNvERZQe\n1Do2EGsUBO+sHi1QKHl/tSCRxo0molp0J73ShDsQpqPqOIYFcR8GWxvYIoQ6IFhMFQEsbrKG6cCj\n4IrWPqwGawZiwKJeo+uKa2MHCjUBTaWvYGnm/4MOasiDteHY6CSykd2pZfO6EWu88BFxAz//1Ufw\nIe7Mlcs9WIYAeZLpu+jTFRxYLHFvFLBtVkm6CjXnvfY1FnMKvLgKJnkT64GY6EYGGAU3kGWBgJuM\nY5qwvLVgTIKU4KSa2Atn1cUuiWH+1E0Pv/5lmcv7SYWf3KSoL7U24yKHpeT+qvMltq5L36wiQatD\nrkVvA2okv3f89x4AAKaehZcuy2ZqBTFAtvJ6aMIc0021IlgEQ1kN2dwtM0RdyGf1dAZHE+atCkTM\ncEyOp3grXuP+n61duA8X7aJdtPe158JS0KigscA4exeRQSq12V2cNYT1tlmsYJN1y1lo1FtizlUl\nIbNhBb1a8wsGABmhcy+DqiXAladN2NToc+gGKF1AEf1XLVKk68QyJnB9uWDHnSCeiDl7SAIOw3Cf\nBsDKoUZtkbcw6KMiHZfyQuicpy35FqpJ9ZTSra4mqELBGxhZjSpcU3AR/2CPgYimuB9AF2SBLlJY\nU3EZsiLDYSbvH8VyYgzPhrAvkcHa0rAVqcaqYxiksWsad1Eqccdqir643SbMmZzmtduBLhgwzH2g\nlPur6hU0RU3AzE9ljRDRXbFSG24oJ2UWvYOIltzCmOMx5xXEJkzsWxhF0rdrQY2xK2Zw5ZxhPpZ7\nmuan0LTSPHIXDPrb8GjFmTBheGuJwAR1Uyw2Fxp5yLGj62aqFmolQd6i00BN3IQKHCiq3WhPo1rK\nnE1j+a2T+Da+TtnAa7vXYH5dMj9eXCNPxCyPCQtZPEyxPJP7i/MSV2ZiEWxffhmtlfSnbAFJLuPy\nyJXxrjIHzvZNAIDfbKD2WCW5nEMx41UbDdgtImvVWn3aRkXrtjQ05onc35lho6IYjLYa0LSGn7U9\nJ5uChazsoWu1cYdMSaMSCKM1QMhGXgrgyDzowiA7Uc0qtXhSIq9IVBm3YW6yHiBViCuCQhCjw0VT\nLkjm6VmoIjHXqzxCspTFn+U1fPr4eboJw2e6iGxDhTHAkGXRqtlCRtYgO9FwuuK6ZOcLKOL5I8KZ\n09kKCclDA7eLkhqGVjdCTT+xpPFWnQXQnnA/6rMxDAqm1mmJJR/eJ6sYxVzu7/xY+jMNHuH6SPrr\nmruoDImfhE6GSf0AAHC2NNDOBRjVWjJNqb4JnCqnESJmdmojRs0H2pn7cIas1mRpcu62sDpj1aJ/\njOkTwq3T6mmNSfxEwyEZTLclcxO6NhbMGD05P8JVpoDjrES/lvv77GIJl/TqNjkHg3AM31y7f0NU\nxXrcLBSGPISlDlDX8ts2qx2RKdSbZDc6qlGHco1iOYemuGtRVchYVZqTo3I6dmEzhvO1B2McL2Qu\ns5WG2aXpfkTxmrpAStBXGWvMxrLpzQ6/iuGWPPTmov9UYDZbceNVEZaPZKMPLAAJSVyLc7Q6snk3\nNkpUJMwxuiSrjZbQlczTcn6EyWhdwWnj5FDu473yDGP271nbhftw0S7aRXtfez4shTJDPr2Po/k9\njMgcnE5MqCtiZs3KAo1zgQ/b3gsweKJVqZw6Zj2HjgnrtAqYGaXb6hUyWq3aSJE/oWTblgTnzDxD\nnsr1ltEMOYEnq3iBZCKvT3SGkzGVqUmZVhczzGhe2t4IlU23xEuBGc3g5RPUuZiXy5FYOcl5CdUm\nzXoWIKEkRjEB7IFYKTHJUvK6hvEOKx/7FsJITnzD08gpOFPNJ3hwh/wEBFMNjR5OD+Q+m8M+3CUZ\nfpePcB7LSXrycAVnVz4fM+Box3MYpYxbPH2ElK/NTcBXrOAc2rBtyUqoptxzNU0QU8hmcThDXNGV\nWKQ4sWSeotX8qbZhGtC9uDvB3Udyz6a28YJL/gYYGLvEdYQ1xiygshIZw87DCgE5MKpgiVIz2Jw0\noGg1GDARlaKxaD5k0LV1goLBXLsaI6O1qaopNHkeC6WgKHN/asp75/oB3iDBz6MHJ1iWMvZJbaKc\nECNBDsFNvYXFiVh3h3WEL74rgdb9UmFrKNkVb2MT8bmsgXYqv/W1UxuuIUHgB+8dw7ZY5brh4wY5\nOM1JBw4rONWCJ//qDBn7U9cG4ieyFp6MZ3h3KnPyxoMIioCxZ23PxaZQGxqZV2F6DsTHMmCbWxZ6\nDQKSgjkSshs5ZQSf0dc1Gk9NPNA1hlmmMAj6MRYddKg25DsRnC1G+Gl+a9/FU1iHkaOgrxbXHh4Z\nYs4VIxMWdRtKagUkSFFSg7I3HaIzFHOu4VeoSYgK00WRUFSUEXm3s3oaqygSjZjReVgZ8q/KwlPU\nvfCtczgvSUzFPwvR3CPhTGABLembfqSRkq+xTOS9Mpwipz5Alemn/mk+7iA7k/sYbpnosApQ9yjx\nvnCQ8v4XhoLJmpCOvfuUHNSABljnUSyY9o1rDKmJ2bx5Dct7stFluxmcQzHB480BVo+YVWHKtvNy\nhsO5fLa1pzDblf50AgPOXLIP0I+x58nn+3QfVs4c8Uqu7Xg+TKZZTb9EayEb8un0GJrgnUXvDbnu\nxEBzU2JJfnsJtyebkzFSAKtnzbKEt0EVrbGsw3cX+yjf+SIA4GO5id9aMi1YVGjtkCPUlT6cLiKE\nzMrcDDIEHM+75QqvpbJRt8IIDsVkm8xa/NC1NgbXJLsSbN5CmcrBEIQO2h2Zdz0oYTDFWRRkDqtK\nZIwpzdMZVmTTWoUn8FZrQh0DZ9Ufo/uglPpLSqnbSqlvKKX+jlLKU0pdUUp9QSn1rlLqV6gJcdEu\n2kX7l6R9GNXpXQB/EcAtrXWilPq7AP4MgH8FwH+jtf5lpdTfBPBzAP7GP++36qJAdPoEJ4t3kfiy\nT3UtG1YoNQ6RcQwzYb1CmaBTMjBESGlU50/1IZvBBtSa6rpjomLgR88KJKBpy6CWASDlrjxPKyxK\n2V2jZIwplZvHVgyT7Ln9FuXN6wIxsx27t2yAuImyCJAtHgAAkuUc5brsf8UMx24Peim7eeqdIRrL\nDj42M4CArBXr4LuZAfWHYorutXqocjGFfN3E7ImcDrEZ4wl1HC3yBNZpC10qDqfKQLFgPUNyF6XH\ngKGRIrUkwFjO5QSzNVDkVLqqMpRUaE6MCvlSIu6GNpBT4AaJjMnZWYbWmVg8ZVIgpbk/3ahRMup9\n+ugRmtRSPJ3K9/vGFj713Z8CALz4wk2019D1L//XOJ3KSRgm86ckKw5rHFQcoUMOCIUnKAg9n1oe\nKgY2H2GEaiKn8HwiZnlYbWG7EPO6YV5Hl8IwHecSPNLjm67GUssa+SLduC+OPo/TiWBAysJERpo6\nBUU4GXCf4KddtDDfI6Xdez5cQqnTWYHjU7GavEs2DrW8nlisytVTtNpy/+jMEdhiedhlG1aT+JRi\nBfRl/dUMUBZliTkh2HntYEE1rKM7Bb5Bla0o09D+B3vMP2yg0QLgK6UsAAGAYwA/BtGVBESK/k9/\nyGtctIt20f4Y24fRkjxSSv11AI8AJAD+IYDXAcy0XhP64xDr0rxva0qpnwfw8wCw1e8iGye4Oiqx\noJ7hkWNjl3RXVlThjLJo/VrD0pRTk7gZHoxHKEmptb1bYY++fxmaSCLGA+Ip6lS2VasvwTfX2UdG\ndqQ8miNh0Y0OAxgrOXVc3UZ/W763O5RT7sk7Ywy6hLhGLyBknjooD2FahEfXC8xPJGiVlLJr2w93\nYOwTEdjqYcMWP3trN0B8KP1Y2sLAU7x1jIzsSL9ynOBHAjmte842qlhO6dUqxGBTWJgcslBZXQuL\nY5nWjTDDigHT9izFEVNr81rDiuR1z2LqFQlSnuwLtYJ1KOP5IFxAsUq0YXoYtOX947GcYMXjc4zP\nH8hvPKjxO5WcVtfPO2jTojMcG1+8LSfo9e854Nw1cZU++eXmBlpMsz2upui+K9bPF0+PEM4M9o+n\n7k4L3QHTz8kAdcnXyxiLllher3pXoG5Jn5vkZliVgKlIFDupsJoy3rHzBEYkUGiroVAdySm8NZJi\nLuvhFAOHuIJJ/VRHBNA4ozjQC8QdvKFNNFkclwcRzicy/4+SMa4u5J685BA1xWXOadkcGyXsr78D\nAAimLixWZW5t96HGYkE4PRfpSCydXBGnUSUwiOJMVIRRInPi5QmMfJ0CPsarLKD6Hx7jmdqHcR+6\nAH4awBUAMwD/O4CffNbvf6sU/UtXd3RtLLC4ZCIk1XkzbcLwGXxJtjCr5AFphi7CUPaZ6Fgi0tGs\nQkTQSeMsRszyYz2uEPGhiM/uIqQWnyIUdXc7R80HwWsC1Vy+l6YJQlZUupmN0BOzbactT/+d/Bxt\nn+QXiyNYGaPznWswCaXtdE5hrWQDeO9c5OATq0ZAN8iyTBhNBiXHIXwtn40SyTLYwX18+b4sns89\nPMLVrlyjN6xB1XKE2xu4NWIW5Jp870vLR3jwtkDF+73X0KnloUk6NuyINQVLH25DxsI2yTRd+XAY\n9S+yHDNyVMazDAYDumHLQXQkgbT0VAKbiycVVseSwflaMccbxB4YfoQuszJvnVb4MmHD51+VjfVP\nf+qTaG1Jn4POAF6X2JKoj+WQtRvnPVjMw89ZJ7JtJDg/lQe3OwzgbcrcLE8yKJaXH89j9FkSH+SS\nfYgXr6O4T+i6egO1LdWsvldig3UH7iJFxID2w7ckW4D+I5y/yYPl27To3yB8+CuWjPFJ7eAGg46T\nyzXqhYzh2ajAOyO5p8F0Aj0jbyQD2G1vF+aWzE3DvgGrSVh500OSUDnsQQuRIePc6u5yjAOEG7Kh\ntfIudhp/AAB4vB2jIubGmldYfEDw0odxH/4EgPe01udaNNZ+DcD3A+jQnQCAPQBHH+IaF+2iXbQ/\n5vZhUpKPAHyPUiqAuA8/DuBLAH4HwL8J4JfxjFL0hmEhbPShUCKh5Ftjq4IiceuxSnB+RnKLIIF/\nTdyHYEdO/O1lDW2xkrH0ATL45mcGuuv3N4bIL7HwhQGgedLAJJO/jzHFOYOSRyMT87mc3JdsAwPu\nnU4tu7ZjFpi9K33I5xso9wn9DRzUm1SPRhv+ZTkVd4wD+axeYHqPcvetOVJqEqjNGt5CjrYNR04X\ndTVCWbPyMwIen8hY3LjswrxO6bZ3e2jdkJPizSMSxk5iZCdiVbkHb+NHX2F6dlJAn8q4tJoF6hXJ\nb8mP4FcOFNON7aAJn7pw80c22n0GOash0n35TDAnqct2hDmLp+aHJQxyR8xXFR6SdPRL8xSLMbEV\nEJ/vs/e/gRf/dQkkV7WBMqOk38cyHN6Ta+e3lyhJljsmXdntysQmg4+9RwUuCVIc7kYDeEfePzyc\n4MFXZa5mqaQk705q3GSwst3XuPGauCvmqg94dCETjcPF5wAAsSHBxfbZCPcbtBC+TVPlIYOHyT3p\n4xIWuhRqMdMMMTPO41WN229Jf14YPEK/LWZ+vpbxKyIUtayxyfYJ+ivpp3lSwO1S83K4hBsTOeus\nVacbKHdJynPSgBeKdXP8ztsoqY49zzIk7gcriPowMYUvKKV+FcCXAZQA3oC4A38PwC8rpf4rvve3\nvuOPVRWq+QRLfQKtKHJatFCzQm41mmJKeGlv3sH5ISvYKNveckpYuyQCKQIUtSwgr9VF7ctvWMt9\nOIY8yKOYJq5jIB7LxMwXLuZHYtRUukSbRCxmXz+F1U6pirSRaMyarK8Il5gSw9+IujAZWc4zFzal\n0deiIa6/hVUgLo+GhiJgR09OkMXygBS8j3t3hviUkr+/Xjh4eUPKqI+WbeyScTjXHqJ4/SBIHxbT\nCI8TRu/PusgIQc7KM1SlrNI8D2GzMrAoGcmGi2bFTbMATIrLuG6Ccu3DehpGLJuoawpsVw9zPPia\nbDw3bAdHNI132jv4ytfFifVjA2PWhOScg9vvfhVf/R0hgOn/iRvo75L16ssb6FEg18j3sE+3au6w\nLFpbWMZ0RZIemjTL3cSFwyrYW9d2UY2JWSiFeKU/2sEWZQLaCNBpk436bIbHJbkizzK8/aZcZ/So\nwXlqoZ5Lf5SqoL/Fg4jlOcc0kzFc1Rq3M7J7KQ9TfljnNR4RIv/Wm8cw9+Uz7jFBUe0nqFlfkybH\nWFJs1r26C9gUe3E0jLVAMrMveVQiJ7v06vEZspmMbZEqmB1KCRwr5JGND9I+rBT9LwD4hW97+z6A\n7/4wv3vRLtpF+xfXlNb6O3/q/+PWCTz9Qy9exlHtYEs8AqTaQk0W5ayIQM0S2GUDu5dlJ90byr/L\nYoz5mZxQR+eHWHL3rJGjJMuz4Wh4xBsELHaylAuLuAgzUiibfF1YaG5LwDN70ISxksDda80DAMDn\nrbcw+ap06K06x1rlEQBeXCsRN3xURFDOEnI0FhnmGS0Xq0JNrUhDKYDYyozv1aqGVXC3LwoM1pVz\npgVF8RmEGeqBoP82WHDzys/8LP78R68CAA76A/y1v/C98r3XC3xpLriHm0rjjFbMdSLmZr6DR1RB\nzucJ1gmkOAG0L31q2BZsi7wVlHUvbCBOWOBT1YioA1mb1lM4stcI0KCmY8hgbRFPcV7Lb/hJAuWL\nSf2ZP/mD+Pjn5L5/+e6v4hUWXv0DgvJe9vbhvSi0cfHOLkpiRG7NDTxaEQnoLPHeOenmCvI3XGtj\n84cFIXqAy+iYkrVJ7PtobEs/Zu95MBiktm5I1qLeaiNbyTVWYYr8SCxBO2jgt37pf5LvrXExKkHG\nAPXmdIndHY7LxEcjEpdoYSxhNGidsmDqbJri/lT6XpQZopiQb9NBSai47wEB1++gLUHnK9dv4doV\nCdaWfgOtpqyFr7z1FrLLMq+7J3egNmTMf/4//Euva60/ge/QnguYc25oPPJKBPM5miOZrPPwFOac\nwp+ehS6p0a2Oh72+RM6v3yDEd9bHnULMxPHCh1nLA1sVFjKa6FA2+tQrHFBVyOkGcBOW0PYtBLls\nMsN+ihk1Bf+XR19CkoudeDyVTeql+RK/+y39/1alvje4QH5gr4v+JTH9rk3lGqNZgcJkdZ5hQNV0\nHyyNYk38UolLtIprLGg6VyiwYF2GpU3M61Penw/rTDas8V1xffKpgf/or/5nMm6XLGz8I9kI/soy\nR03lqK8ZwDUK2R6SoehjBwfoFQJ0miYultGabLaCwY2u4TtoN2VcOmSIyuoCZ1O5j0kZQTNnt6w0\n1ujaRZnCYH1BXUpqtVQhOozt5CsDxGbh2n//a/jMbE3Rv0KXD+n1LRmfv2/P8OosTCIAACAASURB\nVG+89BEAwI3tAu6dAwDAb75zB28a/xgAsDfrwe6LSR+xivS98OP4k4wNXW9n+L9+TWojfq3/C/i3\nZj8h9/dqiUnyAgDge16SAWpWOXr+WpHLxhaFVZ44BiYtMderkayP4ImHu764h0ERoiAv456XwBzI\nmm14FpptVuvOJCDy9mQM76F8b5IasDICjxwDlZa1026F2OTTGnVkU9jpmzhqyf3diD0cncv9p8YU\n5kO5Rr8Kcbx7wdF40S7aRfsQ7bmwFFDW0KMFTuYFxg65C3QPH6MrEZYemntyUuz1L+NjLx7I+0Mx\nix6aRyiXYjoZcY5sRFZbA1gx79wMLXQJwrm0QZ3BzUtwLQKkTAXFKrpB+g38TVtO4HlegEkA3Kb8\n/O1/zq3QIsY3ggn+6ksfBwB0CS/GqYMwFL6B+dkNwJfXTtKC05d+JE/ks2f+XXzxq2IdfWW6QhrL\nybwwU9gZVa7tFQzSmxXEAdw7/Tp++1Csg3/n5S7+C2ZfamDtoWBeAV8+F6vh5Q2KlHQydFL5LXfj\nDA5Pmq6bokEquI9c7cB3OXaGjEVRhaj3xfR960EHI09AOvemFhSp3iZzEwbpx00lZm23DUwnMt5B\nqJBTnOXfNcZPxxAApsQG/CGDcpduRU85HT566Sb+/kCSW1/7wu/g8SPpx93SgKL6d1NTPfxLX8OU\nLND/ZeMcj39L+lbPgH9k/RIAwPgnFn7s039WxoB4jM+0P4NOl6Cg+TmSvrzegoVsIYHbh18jlHwV\nwdqVNfnylRA3AhbK7Q7hs/gptBswLBmDalP6uD9JYF2l9uMxoEknOB810N1hxWQUQG0ys1PKPHU2\nSsRHMi7Z7jl6DyguU1VYvSOWx+O9AG1yjz5rez42BWgAFSq/hEVQkK9qtF8QkIafFNhlOulgYxO9\nAxn4KGWKrRWiH5Iv79Y+RqyD8AoHE3mJYQcYEUl2eV3G2mrAYyXmMtFokmP/0L6FW3fk92Z7X8cX\n7ssk+Zb8PaGf+09rf+6ymHafvvUJDK79MACgz3LifKtEq5SIu7FdoaIbM4oUBqa8PtmQDu8v2+j6\nstjc33+ARxTTXSwLnJFHsAMfY/L7a/qbYZRiaksfJrEC/wyl8DRy7hsKGMo4/5Uf+BkZQyvDGw/k\nga6sGGlfNpNNZeIKsfjXN0Kcs3y8R/KWbBXDDuSHp0aG/pG4f40wRpNwld+2VrBqia7XlEiPXBtx\nn7UY6gCb3LH09P3juV6guiXj87f+g7+GrZcEkHQy8dF7KH2+ttPEyaFsEAduD4eZHC77NPfHRxaS\n3xNzffQkgbOS+0vrAnbOkvhlG+dfp6Drx2QeJtUhmp+WA0erNjqkn4+WS/SUbCz3BxTrbfbwAueh\n9/Gb0AtWlHohwpRZhK0QxVIedNeXTarnZ/APDgAAzc0VbEPWZ9Qv0dyjvsZkhnAg677HuhzLbuBR\nW46oVmMToHZl1qoxItvX9sEPwiyfEcrIduE+XLSLdtHe154LS6GugSyuYVcGShJWbIQOLpFAI7C2\n4fRkx2zul1BT2SlDRsiTzMB2jxBeawPXKGWeBys4WszgOi9RkPk2ZoTfNQJUyfq0MlBQPdhRNl7e\nF1yAPZnjwewBAKBLLP/bDDx+e+vvmfgLf/1fkz7X+7BpEtuHpHFrBfBiiqwkJlJi5pthgdKW3x4G\nBKhYNdqKVHFXU5xRuej3Hy5QR/IbC8vCAVmOF8wGxFWBRw/l79nlJS61ZSzmS2DGzMH3bw3wZ/5t\nyUpcvSlm8vHRObaZGWneddDoyeu9rsI18i56nottl1T05DnwbBcW6e6vh0usrsjYXpq38YTq0J94\nmD8FMtl0g2ZJDaOWvqu9Er5LJfAAoNgXEgU0yXXw7/+kZLl3PrID7UrfWov3kH9ZXm/G97BJYRh3\nnKDDAOWQvJraq+EtH0g/KyBnVP++MjEgBeA0j6FP5eQ9+XWxDqxfuAbrWCo866EJxTXXbfpIF9K3\nS6WsvdNLLWxuyVhs5Cu0HTnxc+VCd2myzQs4VK/SdI3sroZFshTf6aEkd2PTBxRrftxWFyV1UZ2Q\nZ3k+xQZBZmmxeApk0+c7WC3FXSm6I1xvErL9jO3CUrhoF+2iva89F5YCtEZdFdC1geGRHBO9T+yi\nuy3+914jhFKkGHM3kZPkNCNbcp2dwW3xNAuAkEq9lmrApExZkS+QMsVnnBN/atvIS9mVbbNAwdST\n75h4SIzAzLUwpJii02VB1eybloIG8FFKif2NH3sRQ/UDAIA2bCQMdhWQNFwjvwaDrM1pssKiFiRd\nEXfhdZieg5wYR7MjRGfyepomGLPCsdYxspDSZJEHu8N4Rym+fFFpqC/8bwCA25/6izB4en5kC1he\nk/v4qes38CILgmbMj3t3ZsgWJGA1M7y2K9V5OwMLwUBOnSSq4TDIaXlEShoW5kwtGovu0xM62ynR\nJwmq6V9G55CUbaHk5s2ogKb1458vER5If1RpgkLKKEKNf/VAxvwnXhDL7fj2DKonFt+Xf+MN/Oq7\ncq8nIyDPiJrUJVaEQr9RyRx4hY05Lci4KpBmtFygMWd1bKUU3mP15L3z3wYAzMtPwCA/RWCaMFnE\npE0XgSvzl1NJ+6OJxiud1wAAw919OIw5ROM34UKwI7A82NT2qAlph7WPilaxrXwoh0VqzgA6JvFw\n7CBPJX5ShzLXdlCj4cvvhlEEk5Bw1UvRMCWulL/zJuzXfgofpD0Xm4JWGpnSqJICEw5IURSoKAHu\n9LtwljS57AJWRFIPBt+a3SFMn7DcqgJY9ebnBooGq7hnBSjuA5OU3XNdoCBJBdoFohHxDVYIj/1w\n/A48j/yJhJd6BlCBICMD+JlrMkk7n/kpBOsVfTKH05XhNc9lYwo2QoDX0505/HtUiwoTOFjrA7Ki\nrauwjGTzGQcTLAmg0Q2FNqsBI1XBqeSBtao1GUmC2zPZID/yZIVPQwJjP3rz+/COL5/9rkaCkgzV\npydyb661RLsnn7WVh40htRi3bAQezfzkGEmbtOS5bDaWrcB4KFQ/hZoQx2AHaFmywTcaBvR6Xh+S\nZGb0BEkiG0SpA+Rk2H6lpTAgLPwfrCqkS7o3LHveC3OcfVZwGr93fBuLY3H/zGyFiGpSJYCaFZ8V\ncRNxncFjBWdpAgUf7qIGFNMdpsZTOr0vEjJ8+wtHuNWScnb/2h5qk7Uk+ltwGNFaQcxH0JQ1lB8e\nQbPy0cqaMCj6a+QpigbnXct8wKuBmALJjQIqWi/UGaqUPJ6VDzWXMTRCUrxnJeDSHW3UyBPC6I7P\nMI+lz+72dUQZOQaesV24Dxftol2097Xnw1KoFcrUhOnUaDDg1CkNVJfktEq1gtHnTju24TR5mpI+\nzWsqgGar6w5RkryibDswcvlsYQcwWawC1rwHWYkJWYar2EZAa2NirhDl8plqCLiPSP/GFJuhDNgO\nKxx9ExvfLyZcu7+BjPJoVTTBbE7mZkNOgfj8HjKmRZMowfRUcsmp5SLYl5NQESacHjUwXcp1J/dt\nWLbc67io0WOgzeo6yEiuYFAW3VgBr3CsFm4Cn4VbT4ZLBJa4MZ897uCFrpyOhw9Yd1+Y2GuSmm1v\nF3kgr2O9A4tmcN1UyEnDZvAwq21As5IvTZbQRGbqwIAilNipYrQ0A4x9mYPZyEahZCwGgY8Oi31m\nhUJBPUqrHuGukrF7++gBAODRYYL/+76M8e0vfg5R/k0S0zW8QRkKFbPGHq2qUgOa1l1R1LD5flHX\ncMgOXiigXRL+Tdm5cXUPhyz+2pmEaOzJmqzrGslSPttkADce1sBKxnsRtFCfSipQuQodisRUdQM1\nC7pUwGKuwoMiGzfMCQoGV4OyBVQkbs0WyOmmKt5cXfioyNqMqy7qTCyo88xGQAuyDgPUBd3lZ2zP\nxaZgKCB0a9i5g4J01Iav0Y/INOzYSCm5bm8sYFNtx2EFZFH7sGieVlkFizj7JM5QFbLwijIHUlaZ\n0bdUtQXPIK15NnlKL7+YmYgp1X48cpGzVmLIaPFjz4DNUtfh9T5effGHeI0+VC6Tf7J8B8mEgis1\n+Q47ClVJwZJ0hdSV3wjsEMaYmPqQtPXNHL2IrL+7PmqWcu9oDYeArNL1cWVHfHGLZd9ff6kHc1tg\nwD/iN/C/srpw443X8Y+vyfc+qQPcfktev7eUe+tfslBmspB2swVmZKS6ogu4uZjapmnBJEzboOis\nk5uwaO5XVYpqrddZ1TD5mBq2B4/gpR4Ffy83TZyRHSj2M3TIWHXaq7HHzbJqa9SpjOe7d6SU2VxG\neBgJyDzNI9SMGWgNrFk8Cq1ZT4KnJr4RAGBNjOfop5uGsr/pYjgl0OkRps1NuvfxAG3ZS7H8xAou\nAWxG5cBkNa6viMEwm3hCYIiRJChjrr2wi8SUTbYNCyYVzLJEXOLQncHhQeXmNkriZWJ7DKxl61ON\nOGUpvZYxUdqGyWzQcrSCIuOY07MRJ8RnlCt4BWtlnrFduA8X7aJdtPe158JS0AAqbcF2a7QzBqS0\nhYo7sFuW8EvqMEy3Ua9rzOk+ON0KJqGjpuWgoMsQVCkSakXqVYV0LSGXy6m1XMVYMbgYOwtMlixA\nMmNMzuWISaIIDRKS1F3J9zqehcsNOVV/+No2GkRFlnqJxd0HAIDFl9/GOQuJolCsALNsIluIBRIU\nAbJ1xLlRw2vJjp/wVF5kOSbUDTAHDs6oVREXwHlBerAKmGmJSCtf+Bi8uwna5j8EAIwbPweXQiZ/\noA38Hgll3p2tnhblFClh4FkPw4H8vWW7SFmMVqoVFoydGvEc0ZLmOGncGtpB3iJj9rREzgCfXVqw\nyJKsHYVuKNFwc1O+1z9tYEkXJX0So7wup6Y3U3iXoi7ZJEdKSrc37wml3Wr+JuYRtURr/dRlMPFN\nxGbHNJ9Wm16y5LdmysZWmxybaYYhg47vIkeb1sQUCiYL5FLybCw+O8f5J4VfcviWgfwFZrlaHZia\n5CzMKLUnBRS5OyelBZOBT60PUWtBU+ZuDSrawSzXZn0PGnR5YcIkaY1ZtWCwQA5OgXpNEEnotkpC\naMrfOYUFg8IxReI91SVp3JtCvcAJfMb2XGwKhgn4DQ0sTazZ5ByUaFEE1G42UM7FLAsbJXRNMome\ngDXc2IE1lMlwCg2TlXw6B1ymJKvGFIkvm0h6KIuq3thCnIjfl9UNmBTZOB6biEi22oMLvUWAEB/c\nvfsKbrBmI2qhUTFqb89x1hPwy3gwggH5zCyUxXFiLOEQxJIeNUFlcWybCdxCNj27lGvFaokH3CBP\njqeIIsKxiwI5XZc4mSM4k8+HvlSJzpoV7sUyLv333kJzRxbVb57leJtiMPfKCi1CxG+25PstPwDI\n3HNynmBGkZHRmxUafJCdtEDdkgU5J3mL2/Cg1qnTsolWJPfX3Blio0U4rt+EZ8iCblF56aBfYzqm\n22FFyFJqVLZKPKYCVp0Ad9nPhkUiG0cji9elygLfBqTmhF4hCltji5mfqyTHzVzgQMm9fnyY4ehc\n+jbLcvhzmVfXU8hZPj9IZM4Wh5/DaFvu6fja72Nr+oMAgPbyNYSMO2Q0903Lh2baGwvgnMkA6xzQ\n3Nys7BhBKGsyJF08vBI+SVhUy0Y4YSZpX6GmOxLbLZiMSxgdakm25qjJY4pVAb1+eKw54pgZlVYX\nOlun2J6tXbgPF+2iXbT3tefCUoA2oAsPZjtDSAXghg7g92RHVCiQEEyUzUs4zBL4hzwxbpjoM4Js\ndEIw2A/ncgsmATRVx5WIJgDToyk3fYwVxOo4fGcFh9BeP8lRM4BjbAbYc6TGfmpJfw7Vl7BHS6Gz\n/1EUgfR5GQHFE7EajudbePGyRN9TCrV8ahDg8YnknXdfCHFMBuqg0cTZQnbzLBWT8uQEyJmpSMs2\nbF9O0riwUTLgZGobiUnqtR6JVYY+9m5K8NHrX0c+k7H6fkvhGyxG2istLBiJN6nEXcNBTlh11FZ4\n+BbZsx2gOZbv5Y6H6UOxaB6f0sQ1CmRryvnyGAGzQDdP5ujsieWx07Fx5YpYL20W6gx2DnCJKtj6\nPQ2LOIRoYaNPP+BMleiQCm+N47jUMAFSuwW2h6grc/aDjQLvQTAE//knbyHa7bD/cgK/e3uMrYGc\nqn2/Db0j1/j8Fx5ioOXk/j/vPkJzKBbJ9JBQau8lTMYHAICNew2854sbdOugQKNBHEJLxqe/OcSw\nkH5GfgoTnDPbRjUVF9SCgUks1+gM5WjfiG1oksXkoxlyjkU1NkD0MxIdI1/D8+dr4FgNcyTXdi77\n8Fiw53Y30GowiO0PkT61v5+tPRebgqk0Wk4NI7ZhhtKlztDGcINqPMrBsS0TXlpLrM5l0OY9Mf17\nj/uwL8lD3E0CBH1GvZWCJknFcqRwnslkrBbUXUwXsFayIDa8OR6sZCEo24WixdVwdzHckYV5fSB9\n+N0GMKCtpozVU/ScfbZARFTg0inx+Xfkeu2BTNys2ETNWotxXMAmlbcuF2gzZrI6loVWRSsErNVA\nUkExc9JDgimrNGc50KB/2SIJS+NgE59+Reoabu738H+8SNak2zX6VGWPTzS6pO3bYrbn46928f2v\nCtlIHBzh+GXZWJJ3zuAsJCbyMKvwFsuFHaIA0/MaM9YDWEaNyJbf8y0PNqPvdXuEOWnw+x0+3EEb\nmoC0UfsUBe9psK1gPZD5mzQM2NwUfmBf5umG4+PJFfnsj5Yb0J+W+Q3nL6JLdqqDratPazNmJFL0\nnBr1uWzYgQuUM1Lct0aI78hk77tPkM75QHKzybMUl67I/NU7Na5Q/3NyZK2z4LhqyO8mVonCkr4Z\nRQpzxXXRCdBsMIc79VBwcZlMN3oNH0bFcauXKGzZTMazU2Tk4FwsaqwYrxj6VAVLAvRajCMsdwFu\nBBpDdNrMYvkOmvZay+rZ2oX7cNEu2kV7X3suLAUNhVyZCMIKZGFH7JhYUjnXCwoUY+onVimWBO+Y\nh7JzhttHKLijrool7EJq/d2tCnksJ9royVfxZEZzbiF58M3hEGiTcdkI0c4ZwDEeIuLJu8iPUVHm\n3vLkFC/hwOzI6bBTVihpeUTTGBWZeC8lDmaM0J+xxv6dByPs0DQMNwuUI0qu2xlatkS1l7b81lm6\nwrus7aiSAkWy5nDUGDE3n+oMY1ZH7pOubj/Zx3Wazl4/hKblsdevsENcQD8r8Jg5+4QR8jt/cB/2\n6n+U+YhtfOForSC1gJ3TekGMe7REN305iReNBGuu4Gld4QVGwO0uUDE3MJlk6Blfl88vhROg4dcw\nPelPz7Bx5lCFqmpjZyAXiUPgu10ZrySTuX4nzWFRSeThoMLp/yOWx357gc1NKozbBhpKTvSztZvX\nu4XZQrAObzy6jz+kK3V8Z4qcXKDnVfU0YwC6BOU0Q3Uq19i58iq8hlhQegC8zqrSfIPKUwuNhMIw\nqyyDyayMGZ8/dY/MQRNuIfe6Ya8t2jkyRp3LDGgR8hzVFoj5QjgEWgbZti0Z46ATAgT7mdlIBh2A\nGaUoLXGRA9cG/A+WfbiwFC7aRbto72vf0VJQSv3PAP4UgDOt9St8rwfgVwAcAHgA4Ge11lOllALw\n30KUp2MAf15r/eXv2AkDGAYGjMRCwVN1V9UIW/J6no/w+38g2n6vn5So7S8BAG4MBX76E/pVuEQH\nqnCJkpWDTt6BJsLQczM0Hcp7URTl8WwCIxDcQN/w0G3LSROoy1gmAmPTFlAp2ZkzniL7TYWagc00\nNREyJzwcmBi6ElxcNDqIGRxtP5DfauoKLfrIg6xARm2JLc/GLCJLD/UW5qszFBPef2HhKtGbyqlh\n8ZQ/T0r4tbxv0ydfXT9CwkBdMy9x60VSeDldeO8ImjKfuXDKNRxb7um2U2P2nlggUWog1fL3w3sF\nWqzjn7sKr7VoTVFz44VmgCOyEr81UniLv3uiLfRciYmkRYF4ItbLj9+SUzfc72CnJmPyeYYVg2E/\n5Fh4jyxFxuMxFqzKbLOwbcuqEQ9knpYvDnCg1yelhhnJNaxoCXtPrnOZKd66b8OK5JSfzN9Gj1Jw\ndxITNy0Jgl4NNLQpp3S64HiuHiOtJYhbmQ+BRCw6ZQaw2nJ/0Zh4DPMcrQ3pW9NQWC1kXF5/8xiP\nKRdouAle3pJT/HtfkP5sqc2nqUzXd7E6pgXhKYQMQGaVwuFjWdePeZZvGY/RaMp8HHR78C7TjNMx\nLE+Csaa9CeMDErY/i/vwSwD+OwB/+1ve+8sAfltr/YtKqb/M//9PAXwGwA3+9ymIBP2nvtMFlDJg\nmz6MYYa9ngRfhp1d9CieWpyVGG4KNdsn2hUUockbVIjavLmHuSmDapYWqiOCgvo5FOnDWs19RJ6Y\n9i/S3l3Gc5SWLLbJosBGIBN3oo5hpLLABq1NHFyREm5Nrj5HNzAgLdelzT6sgFyDAwdmQtPOMbFg\n7r3vXQYAWPkJ+hSCLd0MISG8K6eBgJuCG8hive71UDJA2Z3XqLjpvdrycVat1bAMrAh6uU9cxeVR\nD8GmRP1Lx0dQSoAv2LuCj+bU6bRSvH1fFuz+ZUb37QCGlgXdb7tIYnGx6oaDmKZt27ZhhdL/Vwey\nGJMK2OjK707DY1jnFPBBhZCRzTiboOImmpNyP0MT83LKa4S4zvue5NfwyS15WNKN+wgWMj9NCs0O\nX7bxUkfu72DzB1AfyBqZ3v8tFI9l7ZQNEzZ5JZdKnoggMeGQj/LW5GM4uSVszje+aGLGbM4LZhMP\nN6iuRfWmZdzEO0cyVs5hG9vbjPb7NuxUXKhMyXub7S30XOI+tvuYZWTHTm0E5MRMqgKtjqytktSD\ni0jD5trzMhu+v84IWWgzMLt0NdqKkOYxJex7PahENiZ7v4+KcemFU8OkmlR7J4TBrNuztu/oPmit\n/wmAb6+o+GmIzDzwfrn5nwbwt7W0z0N0JT8Y7ctFu2gX7V9o+6MGGje11sd8fQKAKgLYBfCtLJFr\nKfpjfFv7Vin60DbR0RX8OIR5RXZ7q2fCYpXh5cE+jJ+Q3bNaxShDOYHsiFoQTQveGl12OEbQ4c7o\nuUAiJ7DdvoJ9wkfLvphhZr6LJQkVFidznBYSwSoTF22eND1/iE1yJHgkLOkEJj7RZUouDOAYcjqY\ncyDoc0jTBA1bhmVCufdL5zacy1Ln3mpex3wp/QwfFzBaFDWpZA+99dExvm8iwdXXT05grFNPZY2X\nYunbF+wFAtKKBZn81iLIYZcktDVMnFHbcedwCh6qcE5DbDFH7vtiwrdxgmu70s/jVOHJtlg3qnuO\nLSJH47qB1YLS70w9Xr0xRJFL3z81K/F6W8bW8wNcIcXcK04b2l9reFDzYFI8rVZthhV8isScFhNc\nnsmRd+naJXTv0uobietjPukjJL32zscrnEYSPPS9K/D3KCN/eQiDjN4BOSlKbcEL5BrdTYUfmsvr\nJ+EJamInxuUJtpRYVuOhWDEbDRPdTOZ6aVbYYYrTVAEcallcIkv4zAhgNOW9jtnFkBWVg/4OsJL5\nmcUJ0mQtW0iXwalh00ozAhsFi9HMIoKC/EaggO5gbZHQcnNMuAzmRo5GRgt4PrPRGcoY6TqFFa4f\nz2drHzr7oLXWSqkPLDP1rVL03cDVEYBWw8amxSozQ6EM5eYdeLg6lMWbbnZgIGfvSTySVlhqMvq0\n5zAD+pZeBYA52nwOs6YghyNPhw49+BXBP66L9KFsEMfVHHrNsNMLEazdhg35nmo6WHnMuycPEVWy\nwNxAIYjltR02UXKiQ4e5/WIXhbM25RQcVgwmfvaUFapmVafTcNHtiBLSC64Pg+xPZ4sE455kKNpl\niRj8HjMd1nttOIzLaF8hkY9itaPRywkLr2c42l1Xo66pxQvcz6niZPowHnJRmT7sPfnelSubGN8X\nN8WL5OG3qgE627JZXv3eAtntdwAAJ/MabcLKs6iJwF6b3TIW0TLH+DGzR70aAYFj+d0EC1fmaU8b\nWGZrMRdCf5dTdNoyNy+ZDjb60jcjWaDVI4ehcwneSxSmfY9MUfE5Kh4QxkCh33kVAPBTbQujVD4z\nTeZ4+EjWke7IWvCaHkwyLxl3QuS3WD4fRFhRSOcJq0TV6hHilcw/+l1YkPndDjYRM3NgliOUAat7\n2Z8MJQgXgWPZTxmbKreHIpBruKWPPmScC4KYbKuE9mTzS85PkLOCM52mmLSooraRQ9kfLJ/wR80+\nnK7dAv675ic7ArD/LZ+7kKK/aBftX7L2R7UUfgMiM/+LeL/c/G8A+E+UUr8MCTDOv8XN+Gc20wBa\nnglDWXDncgKHRgfNiCbnfgmnlNPa9xyhfwZQMQCW5UtYfM8o2zCJc7aqPWiDVWbFCiqgfUX1aCNQ\n0BkRaKWCS2xCHQ3RZWngR65dQdMVE86ihsAVM0fG76VpA82ApC1FinpI6qt6B05Phteay8mXNRNE\nIzlha2MIYy59bhgTVBn1LgbSt8BTmEGO+S5WsFcMEnZSmBQ1CZIMd6YUhin5/e8aYUECkWZlwCEn\n4sjx8bAU8ZmrN/exeyrGnUWV78NFBpc0d529HVhKTujZeAlNKDjmLTQ6YtoXhGi3Ag+dDbHioBWy\nI3F5ek0HDSpwF54DZ63eZ8lYFHGCyJFAaxhtPj2dXhpEiElddr81xUtbcjqGSsb1fHaMJSnm5tUJ\nNuiitNsreAykhgMXitoKDWedAXHQISLQNw8wq+Veh5tNDMcMULYVDli4dO9tVkuWNew5181Lj5FY\n5K/IamzQ5VueUGtyWmFrl/J/owwembKt2IMmTB1uhQXdkZQVs0kYwGHWSdUuKgadlVvBII+G8mzY\nhDzbDblnyyqRrYuqTlc4pbp0ns3g12KxZdmL8BI+A8/YniUl+XcA/AiAgVLqEKIy/YsA/q5S6ucA\nPATws/z4b0LSke9CUpL/3jP1QivoysKRm+FlxgOcqkbiyeD4p4DekQk38gJgpHbNQGP0DZgzAkU6\nLkwtD4jRsqHT9SIOoSsZVbshD7mJFJWzLnvOsPTIWIR7OL4qQ/O9nTa6Q9WboAAAIABJREFUL0gK\nacpNKo49kBIRtV9jRY4+7ZQwzuQPpZMj8Mj5SKHVYmlgxToBnZyhJn1RVgdr6kbkfBgT3YVBMFUj\ncmGtzetlF1aD9xSmUJSSjwfSt5udj2Frh0pBlo0xsx2NRoi4lteep/CEupin1N38yukKH6W5G7cB\nxQfvcJ7iUirjPbcsJCzhXo1lofX2U/gOSUZywPflAcvyERxF5ix7ifKcNQFU55l4BR7FpJTfamKv\nK67ZncUjbHRkk7lebUA7hEozUxFuWBifkSnp0EG2Ie6hXWuAZdK6yFE3KC5D0Fe5VCj5VJVtC9aC\nrl3aQ+LKb5c5sPLXlYuME+kMo1D6cFB30e4QK+43ALIbzQhRr6wSBTf9xeUOzMey6Tm7WzCn8iBr\n34HibGfcVEwAPtPhVVrBJDFvvExR1iyfz3M02xJv8su1qpmHeCVnbhZUwEQ2nqgP9DIeZK0WSrom\nz9q+46agtf6z/4w//fg/5bMawH/8wbpw0S7aRXue2nMBcy51jVmSolW5OExlF9yrY+Qr2XUbnRBV\nTLBNoGBMebqzVj5Z1rCYfXDzEP6QphgskMIQqSqwjk+iZO2+GYNaGygKE/OYpqYFvLxghsO0EX3l\nDflaLViJ7iUHNwc0HQP/KQTXOqtgDGj6LacwO3RHCLDJshmSMYle0ggrcoUt9AILRSpykpg0Wx4c\nhzBnO0eLBTOhkaFFYhSv8HBFDnRYufRtf+BDpWvREAu3Z2IR7L75ELOX5J7evN9CNJHTb7YirLcq\n8am+WDljNcPjOU0hM4G1Pv2qJubFnGPPIK9tAgWhzXaOhAIwQe3CIwQ7X1RQDAq3N8WKic8UNppi\nwu/sd9DcFPGVt8rfhnEmeLcnl/vYS+Q0fsr9eK7QpDiN07JQEroOc4aCdIV2tEJKncqHE3E7ktrB\nLkWEDLMHs5CA9sJboEU9UT/yENM6m5QyPp29BlxXMjGe04a1Vv9uekgb0qdtZoDecSzMU1mns6MJ\nQrklYAIoZoTySYHRmo6NCuXNXo0WBWLcvsZqNuM9zbE44cssh0EeEWPAbFhswa1JzhP5MHfFXWuX\nB2gOuTCyBUx/Dx+kPRebQlUD86xCbaforyTFNFp1EXU4WYkDz5PJtcpt5Jn4xiV56Aw/gqqINPMz\n6JQAofQUFR/0cnYMlcnijUhm6loOFGtTdRwhMVn5qA28zszq27/268j0ZwEA9lJATFv2BlYNiaf2\n3AAZy55X1QQBE7I98x6MkqkgJhyy8xUsohjzykWxRpusfChXHt7VegOZzaCoRdjrOkhYWZeNMxRk\nZ7KH1jcBK6T9zh83Ub7CNCx8jPl3Zxii54n5OU4O8aWVLKDRiVy3WVT43D15UC6pq4iW8sAa2sf9\nEUuVzVOsDilR3xSzdXY2RH8gQKCzbxwiWQpgJ1mY6KzjOZYFj6nRMicJS+jBMASROtjoIewz1jC1\nMGcpc1P34boyP7cbrPeYxbhRCwvT9GgDoU0VppEF3RAzPr7bwZgm+oPPUdC3v0DiyRq5dmWFdEQC\nXTOGoruJKkM5kfHvMaMSbHfRasuD1zMuQZFNyyxSxHShTnJ5WJ/M5jBNuUbTMNGeyYPZiHMoZgxO\nl6dYrTUmmZEJ3Q0UDVnf6qwF1AQ6TYGUmpiGqlEyBW8w8+X6BQp7nXEZIy/E5fFrD9lS7qnIMmiT\nLtEztovah4t20S7a+9pzYSloVaNwUpRpAw1G4Q1TQxFYVAY29Ep2bm3OYeh1HpfMuksHhSMnV/n/\ntvfmsZZl13nfb5/53PnN79Vc3V09sZvspiialAhbsKSYUmzZiQNDjuAhNqDYcGA7cOCYEGA4CfyH\nh9hWAg9xrMRIIMmTrISQbJqyRFsyaXHoZpM9d3V3zfXmO99zz7zzx1r3dZXULXbTrO5CfBdQqFe3\n7jvn7HP22XsN3/q+yqFSmvRqMMdqIrEuLKalYYWKbVRrYDVcqUKHjioeH2U99v/tZwHY9+c8/4bW\n5H1xA37yj3w/KG2XHRvWtsTFbaQZk0o1A+chNQq4UjGOYNvBWahbHbSoGrLKRxs9vFpTjUeKdScn\nWZGdyKmGmELG725VNNrynY/sd3lZu+EuqsfZPh0xGS6UniI2VAnp4V7MTBOsD3cK6tsyli8rq/GE\nmsTIDpW1jnkkEDf61iBlrCHG4ewqc6VKi3THPJjs01UxmOJiBc/I56sbDrXuiCbI8ZVqua7O6nMa\nk/dkF6zsDkbBV6bc5QXt87CzCTsN8SY+rNyJ13yHWhO+XbuJq+rYUTdirmFMdpjj6O59+jEJq86v\nn6Wt9H44wLaqgR0nlErfF0znuOty71qazAzmIWFPkoB5fIi7oIwvPFjRTsrb4q34aUZDhYiaYYCn\nKtDGTym0M9LaOa6Cr7xKPyszpnMFZzkF2a4kKEssLVeJdtpdvKlSrEVK3RZ7WJ1Pnb7hWEFtzvoR\nZUfeo5pHIFt6Cktb2tL+A+y+8BSc2iFMQpz1ksYZWT19GyhWD5zDIZ4mD6syRRdacl3TKuORKONy\nMUqoXYmHvaCgUFbirmlQuwutSK3tm+CEULOwKa+ekt34+q/9Cl/Yk11sNqup8kVNX7kZjgsSX9l6\nPnSKSPvVvZWzmN3L8nu2ZF4LpmuBXCwdF1c5IibxMU6l4jNHk5MuyWwocfFeadlQFirCVba0YzQ5\nTtnVjshrrSEHmWDDnlcy0HOTFM+Ra5/PungqVDJ0ujzmC9rucCfl8DXZVRMVWzmew1eHWv7bqygQ\nt8nPMhq645XzNUyoHpnCgSe15dUjHb8Zky/gvGXCVMc6o09TxWxa2n06X22yNpJdbmYyOirgc/WW\nZaMhXsoDZx7nwuYFAFJlhj60I/qvyU752Tde4Hu39R5NAiJltp72YTyRsRhXjmuTkFuaJJ3tj8kV\nxbgRDtk5p/G+bTGy8p3cyHzq5Q1S5Ho2BlOGiFfgreQnrF2ThrhKG16XqNZGrLBDQyHhVSMC9dic\nLGfWUS9TcSo3964T7S3K3TnzVJ5JM97hzII0yWSUirOJNelc5B4zPcdh3GAylusYFYZLx5LldM+n\nTK0mlt6l3ReLgjGWyC/pVS1SV7OmaxFWM72u5zJXuKvxDVZBAvMbSqzSrE+EW7EuPe0KGyU9ylQF\nXo7GJ/Tb+Y5myDmFVbc8u3mb9KpMqmuDKzQ0M5wUFSo1SK4/fP3Fm/wn2k58ZW2HJ85JQtEEU0ql\nFB5nCXasvJENeZGKowa5JhKrvRzX1wnoFuy9KQuZVYWiq9MJhyqs0lxLOZzLfdlolNTH8nvXjwNq\nZWP+A9/zCQAeWd+l/+JXATj8yiZ9BVn9AGNGSgce2oCm4nFKJWzJ65qJCsq8MrvN+Q2Z/DMT8d3m\nAgD7H06o39TFWas90ajByqoCstIRL8SqH3mYMZrKwjKxDhfOyMJYNCTUOuV0qM/JhJ4Pj8msuM/7\nScqHKpncpxtP0W4LfqGtLeCP/bsOP5dKovGNWymtn5Nn9uDHt7i6K5O/exByRQVwG6kyYntdfP25\nf/A6D+3IXPj8Efy2lkKJ/ZBSQ8sFfHi67rMxk9/bzYa4c4W/X/FJFVp/TtmXv0jOJzZl4/HKmlTZ\nvJ20YqZVibFjyBQ4lkTybDZOdZlruBKGlsO+VraqfUKthvgmwldFqbbyciapzzSVcd5KfbIz2ucy\nOUPD17hwmhG339trvgwflra0pd1l94Wn4LoO7U6L7dNtNlsK180NRFr/p4VZEIL6PRLVPFygFT1b\nUarbtn22QaW6AGvHCaPjhX7gkMHeDT2GJoM296gX5aTZFZ79kuxAe4eWbCarbn0HEe6il+l1k9DV\nDsez6U2eagr0Neiusz5UBmd/TqLdcMVQk2h+SEOFY8xOD5QgpU0Dc152/KtH2qmZW+YLJuqhZX1F\nrnPfuIyR3zsqU1q1agYqxuCL/7Li//qpfwiAbyOOVSvzK7MpsWobxtbypn+3JmRu4XghKT9JyRTy\nfGq9wfVFmfiVjP1dTY7Gcqxpp+KsclasRtuUI3kmt7IUT2nDWk6JMpexXcru2tzY4uCKXPu18DbN\nBwRDMawdhrV4Xtsba+yck+9M1VNqbL3ElfFXABgkQxz1GqfjnPPfLed78BMXafZld5/o81stcvZC\n2cVH8Rm+eahydKM+65ooPbexReDKK2Ha8jzOJeBoc9T+sObqs+KFuWGH5rZ4U+NNRa4ez2k6ElL4\nGyt0lQoudCLCSHb5uXsTX5vetpriPXVWzrG9Ih7BaDDjtBK3TmY1ua9oS6Y4fVX6Vmm7tMooFcKc\nzQ9pqNf74FMP4W8LMUxQtfHD9wZpvG8WhZVOyMYspjOTRWEtcAmVf26yYvAVy+4Gc+JIatpmW1zZ\n4mpFs7UQgAmhLQ/DT3qsfFiqAXuvTPCRG+VVEg8XhctAY7J/c/AaN4fi5j8UZcw+Ijf+2VcABcUo\nPIBOPuH117UeP2tTXVKJ8LDA3ZHJ1D7aIGzLsct9Ze3dDChVV7LdbaCNhgzKGaVCsM8p1HjFLUma\n8gL2iyY99QbTsWUvUUKZWxEPKg9gXEj+4ucf/Cd8oZIXOp86fCoWZ/DZb+yD0oz/9tYpzk/k5IcL\nvUcLubrGB9enBB1dFJsR5y7KmFb2WqyF8lJfU93JB8I2v/PSxwAYn8t49l9LTsQOXQYzOd525NNz\nZOFs6wKy9+KUg5aGcfsBBy1ZDB/aqOjri/DS9cs8ffZp+Y6+CNkjc84bedbJYMIVzUWMgys88qYs\nCqvrOzSV1aitWBZ7mNAeybU1/Smf0/r/7izlypUFPDrkoTMCVFor5IVvn4o5HCujcnaF44FC4Vem\nfHJNjrd7Tdmoxnsnz6Z5MME/L8+yVdWESsqz7Z2mqTyct1/RPNh0SKCTzMYxsfJSbjVLEu14zcoV\nklqrK5nC5tMxrxWy2ORHIZuX5JpT3yOO5TqcaI1aCXjerS3Dh6UtbWl32X3hKQTWcKoISTcL8rY2\nzCQRlSIM44MjEqW1DQKPSllw0SqCqWaYVFZr2k2iQsVL3BZ+pHXeuSFa02MrYqw+OstXrsqO8fKX\nLWNFJhZRl0xJOv7T7ZJfeEOOt96VVbvse1Tq4h04t3lJBV6eDDZJK9nlZnmFq3oIhWIQ0kGBOZbf\n6/v7ZLdkp7hRFUxV1MPVGGWjY4iaskOfGtccqD6mV6b0J7q7d2CuBC8vPaseVutxyGWcG02LkhZT\n1jWD6zKm51eOOBgqqYdSiVFXFAtIeFZzWyXVG9eH/LpCmsNJyVg9i6Zm0w+qmmNNZhaHGY1dX++x\nR9fX+v/W5klt/hj5u9+fMDiSc+RRjz19vs1inSdVcKUqn2SkPARGuQfi/imGiXgpAQVXND6oqLhy\nQ77TPPo6V7wXAHiiJaFIvmuZqVf15tERnqNJ51FGptc5HhWkZ1QGflUrRt0VisM3Adg7LsgdbX4r\nHPa/riJAmfz/JJ+QHUr4OItLjifyHArPpVsuuiArvEA83SoTj67sDwkU0dk0KUEs2Iq1tRyOxNtq\ndkpyRedOlO8xnYE7UWlC5lxSNXIvL/GV3TyjotaE5rs1YxeqnB+gffhDj9hf/Jm/h/e7/imPHvxd\nAHwLC6fnvOOwru2i5UaDWnsGVpXbJali1jaVjSZcY3tdvrsSddl5UEONwmeUyAIwOdKH1XGIh+LO\nb330UTbOXwLg1Nmnuf6MQHefX02InvlVAI40RPn9n/6LRKo7+fWb3+Sbt0WA9OD5X2Z1VVtnCYn3\nZaGa+gph9WqKY5Wqn0KpJc62F7Gtx3bacr0NmzGYysScHV3hIVVYmh+41OvyUlCVFD15gW6/KlqS\nr6UZvlKEO3GH7/uYTKCbf/s1/kGtrElwohm0qHiFnkOlGfeksDgqZppbB1fzARjDYj0+aca1llIT\nL6Y2VKhsPZwIqVIbrD6rd5pui1P83h84T/mrEqJ8Ph/R088zXbAuOD5zLc313YrRXEdSWEo9tuuY\nk47JoJbvFk4BqsGZlxnaakJNfbIzWgORhm+OdkuGpsUkV+KVwlIgC/1ZYOejjwHQUMBdGMF3qfKU\nmTU50rs8LubUpS6AlSFUwRiUc9FzHTIFd7k2p1q83M2QOFT+z3bEqnKBuh0Fy7khTeW2nM0Lylqe\n5t74WMqgQK+e01uV6/xz/+NfesZa+7G3fwJv2TJ8WNrSlnaX3Rfhg/fKFda/98dozN6ej+U1W9Pc\nUHblsx1WtZMQVdbdWqnxtf+92XBptGT3P729QrsnnxcjOFQ9wtpIku316yMcFQ35tZtH/AFN8Hje\nEfMVCQMuZBXRVD6/trWQR9tnP5Qd/+Zzt/jqF/6JnCPJ2HxIvIPvjloYhZp6Klled1KGU/ksmKW4\nuovlYc1INQgbShYz38/50g1p5rk9OmZH2ZdXWy7FSMb0yOZpnLmqXKscXatIyRQOOw8tH/9fnwHg\nL95xP/M7flZ0NN3QI4y18ceWTBW/YEJY1c+pINAdLVc3YJwnJFr/z+5wAyre2nEqLHwLh3ThuTz0\ny9f5q3ccR5sET2jKX6DkwRXxjlarOYWyGSe2wFkwN3suVmHYSpFBWkfMas0Y1zV3An/LxQ8WEvVP\nfaWWn9ojbP2bL/46sKEe56Feg92c8vTqEwCsrZ1hXclpwtBnpjcjH1UEygfSVbDIcVXiaEg4rHOK\nmdLMm5JOLAnK9kaLTQXB9ZVvYbt0GSgVXGtWcTtVObk0JVXoX5h7ZGffW/iw9BSWtrSl3WX3hafw\ndVvQqN+Ztc1auKKouR95+ElayqATafNQc+OArC+NNs2zCf5ckj3b6yGRkZ/LMyO4LCvtfqzx224b\nfMkzNF/2edX9twB4fD+nlTG6//JlRlp7bhTy+4Rr1J8TVuZnf/3nuan8DhfjigeHsgdd+PgOO44w\nCDXOynY1Gc4Z6jiPqhGjhrImjS1T7ZWfvCSfPdvq88qurPBJarmlDDze1LCWqKTdfMal9gUA2h39\n7JaLFyiZp2/49Dve1btt5OZ8ROPX4FRFqhRj/naB39dy2vkZmxP9zobsZs98LeeZRe4geet4Fqi+\njXTVX30Hl2KxWde15SAW/+bpcpXWaTnptT3IAoVjZzXhisKKFwhfr6Y6sCfX9k62+L+8+tYUZruO\nlFEHqmVRH1o+eyRJ5z/3xGkeP/1dADSb4BrJCfnlFM9XvEFDE9HFGnUpu/zkaMa4khzUcBTjaet4\nUNeESoQ7iVTBO5qzMpbnkK3kuEN5Byp3xmFfPN2ws4Jvo285ljvtvlgUsMBvAc/+wxfX+M+fEqKn\n6GPfT3MqN3C8JRiEuChY3dR69JrHROvtDWNOXD+3bGJ6EiqYUroFH1/rQyYv7ovVEZNC6bX6Q3hE\nwoPjpksnEDXmh177N3KsdI8vFV8GYLfZIs4F3NPaWmPzMVlAHnrgKRqJTJbmObkGvzVgY03q7hfi\na4w08feaf8BgICFB2pXznt6LmK3K5Hj9dkrDU2KZwkPxSFRJyEjZr0vV18w7JY7iMDZP/OJ3tsd0\ngfyec9s89H0/DMCZYkJhlGSkKk4msdOpGStG4MKeisKYLzN/5mW5V1XJTY1NWg4o/gvfCjjqXdm3\n+N4fuHSa33lJOiev97Z5oFAYexu8PblfTf80+1ae9VGmGJI3Ev5FIsnYlybpbzzsiS3Wt3dzub4K\nrpxXLk67vc1/d/ZHAHj6sYuYSMMZp8ZfUOF1G2QKZou1Zyb0C6yKyBRVjVerzIFT4Sl8fzACb0c+\n39JKVNXwyEayKJjVVTYjmfd1HJIfK2lPdIlG9P6wOS9taUv7/6ndH54CYMxvLle112XN+pM/+QeJ\nKgkD3EaF95okanoqJRcGBaFq7jkmoN1Rlp5iiqc7W1HAtrIxhxckZAiaq+zNZadpXK8Yt+W4m+fH\nsK/0WNE69ZZ8/1RbvIrxOOaTE1nZnzMFqH7gD+5s8zu2PwqAv9mltWh4Uu3KdtAiV32GqBdRKdru\nsbbhliNew6ornYztcMzmNW2+WevjJLK7HLslnu5+pi7IFdEXaNLVryLqWNwu90Rj4jebr5oaP/m/\n/x4AutkaUUe0EIrrE7yWNvPMBqBMw3k2p6uaBG4kruzFtQf4s6p/cOvqIT81Enf+QzZCiYDYPEz5\nnHYtHqv38k4d/m83DwB2Tsn5/uv/5gdxkNDuYuixfiDaGM2VDkUhXlZcrTBOtRlrKM9gvlmy+U3x\nMH/mzUPeULq5iX3LOwCIlCFp4WQZLMWi1+43XFNb51xHE9iPbjzJhSdk3nQ6LUwoY66SnEyZrb2J\nj1XIfq7yf3VegrJj10VNUikPhVdSKNFvo+lTqwr5yb2burQWKMfSod1VLESjidHy5Dx26USN33xD\nfwu7fxYF7r7pOyH89McFqrpaPkWjLwvEcFRiFD/f7QquIO6AUQEYYzMC5UzsmDGZwmrzYkyoWPSN\nVFmLwxGB9ifMTm8TqAbluu/it5Qya7RCrgIn9iF54evZF7kaSuz/dOxRrwt8+qMff4LORy7Id3Z3\nqTxx42tXwC3GrNHUyke5sU1jrMI3vTM8rBnnA+3S255MuX1WFohL18a8MpEcxt5hyZ6yWO/UHs2G\nuMKrqq85Kl2KqYwjPvX2in1bTcNP/eCjAFzo/ajck8xnVinjcPgK1Yq8eDb2mStpTW1zfOUj9D0F\nE8UP0dISxsM7m/zRgUz0i6tr9PdkoftG8xo7N7QLVCnMjt7BP3d4ax7UBp7syfn+0nddBKDtPsG6\nhkqTIKS5Ji963YvoZnK/S+thxjIHSqXDj5pTLjoSgn7P/As85sgC8rlJyRlXzvhmAYWGm7VehY/B\n3DEz77zsRKtHXXXP14KrlLUsUm6ZgYLX6mKE60lommcpkc7J0iq/ZNwmyRaLgqUoVTin1SXXKlBU\nethMocuBhC2pmeE1FpW4CW0FXAW+S7Qq70P/9jXS3sW3v9nvYMvwYWlLW9pd9u1K0f814PcgJe83\ngP/KWmkuN8Z8BvjjSOn5T1tr/9W3vAgDq6FhVLzFWfDkepPg9z0FgLW3mSrE03Y7BLGslItEjksL\nVym8nBycQFxDO/GplM7ZSTJqXz93NPkUrOHW4taZvKBSNNq43yF6UzLLE56h8/CHAait6hrGHTrK\niHqbBOcBSVxW3oSxah5WwzHOhrL1xqoH2GwTREKf5tiY1NeOSFtRduXcq6nuIuUhD1QSHk1WbvLI\nm+IOPu+9xpdVO2FsSsKp7IhThd+WuDhau54VE0LllgiMS6J++R/aPs1Hft9/qWPRBC0TmkqOWmQx\nqEdQ5B61egWum2JVgMdRn3o1Dmmckyaior1DfH2kY13j9Cl5JpdWO8SZeFtlJM1Anx/ljCeqNM1b\n1vVhrhiIDMvmiux+vU9JcrHVO8RawYKsthziSEI644dY/b3SSXEUAhnoZ9a7wOlLsjOfiT9Feij4\njvOvH3PmQObDzwcZX78pHttAx1dg8QMZR1hVjO/omo2VKs0qWU4xaYFyHqSzY2xXSV6nKc6WPD+n\nnDNXKj9v7p9cb6nkLukaOH3x2Oa2wmqIYbwAo9SBmSceg82nzJV42DgZUw0lw+kRI4Xy21aLqRnz\nXuzblaL/JeAz1trSGPNXgM8A/70x5nHgR4EPAaeAf22MedhaW/FbmOs4tBtNfDdnWMpXP/J9W+y4\nwp58NPSpFB7cNDHlhmRhFy9/GtXE6mZZfGrNLpd+iaOceqa5glWabddVEFOVUWRS3onrXbINhRUP\njnlZX4RNIprK4eerdHw2HzPxxG1Nd0IeiPXBtHonDM12dY1YOQGjdQkDbJXhhcrbmI8xm+qq9ksC\nFSYtVVjGMxFG+RBNeZpEBUBa5SpbGvG2xxVTZfO9ZuUaeyGcacpLE4dvyZDXgUegHIyDJ9boPST5\ng2SqvQVpj8VjMlsR+Vhe3sxaPBXlMcbDzORFyHtyvX7tUS+EaooxRmHC9DK8hlZUsh5nTslimJyR\n5/HJ4YC9l+RF+MLUnrissevT0nzHwIUf+Ji4vuc35e/MbBArF6NTNQhOywZRThIWCj1+M8RRmG+1\niNWrFSptc42n55kaFeG9tUv022RhfXxynUyTHv++WFQoDHprCb0IM5fPfcfgazwfNeQ5ts5GsqAC\n6ZolP1SuzDo7YWEyORQLLnpX4cw2JMvlGuqioFRBYi8IqbW93tYGp+frr+lcdzrYBQS73aRSIqI9\nz8PRCkXtNgjqd1GGusO+LSl6a+3nrbWLM/06ohkJIkX/j6y1mbX2CqIU9fH3dEVLW9rSPlD7TiQa\n/xjwj/Xn08gisbCFFP1vaWEccOlDp+m/MaApuUNObTzFkUqN5WbKIF4ItRyyU8pOWFTqhjnuCdjE\nL8E01I2cOdS5glDKGtUpIddMv7ElbqGdmO4mI21a8WKfjURWa9vYYKSK0N1AJdFe3uN8JtcwCWfs\naojywHBCuOBrXF2hVlfS81VWbTOkHix4ISzVVI5RR8dkR8ol6C7Yp6EqlBKu7GMXZA51ia80b1On\nwKikW0ev0Q865EovFlOTa2rMzXJczU7/3o99lHKosmiaqBrPruBpIotrhiTS67A5eaHeT2ZB73kx\nF5c0xaHQWvm8SBkG8nMx7RFO5vr8Jtg12VceGksY0GvCT7YVLDabo9wzrKwEqHfMzsMrPPmEhJBO\n9rCMs+NSaAUnaFQYrezQMeAslLstlRKOeD15ZkX/gFQbjdLGPokCjsaPOtx+Q+bD4HZGrjDuRYeW\nU0OkGu9JbNCGSnZMQKDq110VqnG9BlY7EmcHBaW6/vMgoFkq5Llu42gH40yrF6QjaleeTZhZMp0D\nDVw8bVmrmS9oHmlr5acsfNoaCt+qB0y1KpXVFaW2kgWrOf7sTmD7t7b/oEXBGPMTSPXmp7+N3/1x\n4McBWo2Ac1urnFvbYuWCyqEHDsdKjT6Y36ChLEtVcQ6nKROvVnWccrKLi2R3vYbF5ppzyI8w6uJR\njEDLkwtBljo3+LUSZnozokUlYpYRa+cbYUB0W2M1LTfdrvYYBpJBmR38AAAgAElEQVQPcLKKhna7\njWuHcKGQNHwDkIlcBupGVl1qJU6x8zVMKd2VXhZROUqyoe53mdwkd5R+Ph3RV6RcMgHb0lh14uE0\n5L74pRJzuAF+oiQzO80T8FZhDejLnb55heoTcp1JXxiUysEVjg81692oqHItSTIn0pxIxQhXw5VQ\nF8LCz5iqqEmdljQDbaNO9xhqNcPEDp11uRfuWTnWcfeI6BvaDm/mGA1zOnHEudPyLC98qEM3kvth\nOxpzj6Y09ZGa0UXqtrJv5S2sdg9ShrjuTO+zPEfj7dBUcdw8eIBTKk7z2Oo6L197HoDXXPcEcGUW\nXYuuYYouPImLUnDidGsinTvNFc0p1AOKfSU9afuUmW5I2ZgyFVRoEFXkOv9IF4pVAaGGdsbzaSiP\nZ1yG1P4idJNuWgDXU1Rpo2AUysKzctBgMJVeGac0OI5caHY4wzyoAsDv0r7t6oMx5o8iCcgfs2/1\nX79rKXpr7d+31n7MWvuxSElAl7a0pX3w9m15CsaYTwN/Hvgd1to7EO98FvgZY8zfQBKNl4CvfKvj\n9fwWP3L2E8yaq+weSpa6Mi5Xj6S+fzwY8WAsu3TrsXNkSlFV6UrsHPt457SrL3OwKqHmzeKThJP1\nJ9RKieWOJGFYr2+Su+KNxPUqkQKA8nTGYCxrWZUUdM/KLhdNxM1s1Dm5CpL0Dwb4F+TzXj5nqnRr\n5aFDprXw3NfOO9vDV0BS7eYEuYYxnR6+wpi9huzgYepBIOfgaJ9HLjwEwObaLhszcSlfvrbHjcNF\n2CE7TeVDQ13KTEk+ACw1i0jqrx/f4FHzNbk2ZUZIrl4haslx7dTgrMk97kRbuJ56MfPyhH0gUPm3\n1GngDMVTmIQ+8z3t8owdwrF6MVQobozemuz8n8ot7im5zv95DGPdVx5pO6BJV3fk4hil49fQYOZO\naNeaSN3xcZQxuYx8vJFWGqI5rnaKOpoEDAqD48vvhblLek7mxcZzx3RW5N7GjsO/qKQq4d1U0Zfa\n4miSt3aqE7XxK/2Cpx9T6v+GDK7nNE529nw8ZKTViaif4F4QL2aSjsEoocpcE9ibHrW6+EnHgV3t\nZ1g1uIpJSQOPtiqFOyqDYEyNr/TzTI6ZzuXe3rp6nVCZu1dWtjHJohf23dm3K0X/GSAEfkk18n7d\nWvsnrLUvGmP+CfASElb8qW9VeVja0pZ2f9m3K0X/U7/F9/8y8Jffy0WYyMN7eItmGnE2FpaY5978\nMuNdbWqZp6Taafh9SUbRlZV5PFZ+gwe6NBYZoKhNqZ1jtnOHGIjpkZWLMo2s2s5kyFRZiuaJh7Mm\nu0OctJiva1IxCojOqKqypyUv3zLVnvaiG7CpsV7kbZBpwu+4tNTaqdZ/UzsYy1doaNloPfZZPyuI\nzbUpNJVxKVA15CwPqWKlYFs/TaIl2cxtkSvc1To1blOZdwpF+a0bTje3dMxvQYZdx0AsO/CfvPBp\nivSC3Nt92Rlv7NfEY2nsyqMGW6oBUe1M6SoqkMilVA2EWUcTsf0ZM63jl/OAcF1yBsxGTHcU5nur\noNBdsTuSc7gPb9N9SopW8WuXUSoEZu4K55vyfJsrj2AC9TwWOY66S98qvDixlHPxturxiMqT+dJo\nO1Qa7xeK42DdwUvk3tdBzVzppU3vEW6eew6A598IiFV3xNU8grXFCczZGIcFyNjBnDBp7yhNX3tn\ni4Ynv58VFaWSuB57htZIxWm8AncgO7rZ0uc7DrCaUxgeQqCJRqZzcqWxOzhyaClT17qK/BarLvlI\nQ++2S1pJ3mUY5LhKQLG93iS0760keV/AnF0vYHX1HPHNI17RpFw9DbndF7fHTCvaF+UBdBsdvFxe\nwlrVdEfH4G2pEnNSYVS9qSgrZn0Fo+wlHA0FW3CoxIXBLCFX5aHVFR9ceUl7bWjqwrEeRBhlWl5k\niKuRw4cdebCv73gEXXkR1s/06CkN2F5zxGqsdXolQBnXBRyqWErDobEmL29YjhkXknQ0N2VRODQV\n06syCW4cDbhxWyZ8VmVEWlG4WllWrIQrm6omdXrtHGd35NqyfoG3qIUbh8a6Jru21kgTaeG+MZIQ\n7YXRdWaXNUvdKLhwSsd/6PPImraOb3YJNDTx57LgpccOI53Qk/mMVkup+MsOW5mMf+Dd4OpU2K/L\nTJSLVho9XpvK/dxsQKbVgDhyUCJiOm2PgULWw0SuraoHzLQqMxrWFBO9jrWE+UGlx25gFzyHHRWF\noaYYy/iPC3CMwMZvHNzk8ldF1cs7vEWtOAVfoc9hDZUmQWd1/VajhLG4StkW6PXGWOYKIErmE6Za\ncZj7zRO+UfbmZJpmu56qDqTvYPrKAt6e0jinHZVVj5Fez/TgKmPlxes+oJR/1Vm8joRoh3lML5Fj\nnAlnlKkCwNwZriah360tYc5LW9rS7rL7wlMQRPSYdDti57as8L86+iK3+kps6pbsaa/89Sv/hjyW\nBqSbtxVS2xrxxFgafOrWGrEru2fUqbGKNxhMr7I/1oSLumF+r0EjXshyeYSleBhB1iDQ3cjx2zRy\nWXVdXUMzJ2eoeoDbdUytjMpT18doSTIYDRgmmtDUWrkziTlzVsk2mhuESqAxGxli1XG8noqnsH80\nZl+TgHuDMYmmZrx2k1SvZ90paSrybiGlN+kPSRSxWbkhVtVemo2QR7ekYai5kVHtyuduItf2Xa0Z\nYyWPZc2QKkuyUyVUtepI9FNyxTWYUu7rraM3efFAnsPYBHRflym1024z2VHS1Lxxoj0wVvq7w/7z\nXHtDxhpWDuWCNNZ1CNbEg3ggqk6g5bO54i2CBkEuxzpMb7CnVHeHX+3j1+I1nFkLiH1N8q5KiHK2\neYbpWMqvv/LVr/KNoZz71msHzGYy1r6pcOvFc5dr8JyaiXoj1R2tnYGBMBSPrLEh19AtG4wymWMH\nh1OssnjPzIDGXBuifI9+X+XyDmVMx9WUiSJLz2yfY+tsT+99Cp58d1YVtLRsnWui1fEL0sU83Z8L\nGzBQjkfEPfFe/d0Uu7rCe7H7YlHw/ZCd7XNUCVweCzX3udWzXL8lru0oKfjSdRn87eyQ3qrc+EAz\nzw8W2+Q9edHH7gD3jNZxTYQTyiTshDWVxqpvKsnTqDZEKgK72o54sCnV1G7Pp1CodO3OiCvpGDRK\nF7wW+RRj7b6cT9m5KBN6veczU5DRc9+8zS9flYfkhTKpzrXW+dTjHwHg4jkHT0OiZnOT3YEQlXAs\nj6TVssRN6XJM0hUSFf2IwzmNWFzUrhOdMP9ePtBzpSVHh1oFbsW0tKrRjjtsquu+fRiz/YjG7foy\nZvGDzNQNvnnlZQpVMcqrklKPEa6EdBW6PO2rMK9pUR3LPa68isupHG9QZZzJZZE5vzanvS33sOOq\nGMyo4OOn5Zn94sAynGunYVlTaLg23PN5YFUXX+XoLJw2g5nU4/NjGOocGY5GNJT7sJiXVKfkZeoG\ncp2lW1ErTiPb3yPX3pV+CI91ZWF80PjS3QjMU2nV7zjP8gu3lOhkzEmbZFrDqabS0ntyT5KioNJz\n5NNDrg7lvuwdJLzS0TxPK+WcLy9sEGhoVEaME7neuFWeYE6isMTd1xxTNuXmVVlkDnKBoD+2mWCV\nGj8bDig0zBnkFYXyZjpxgVu8VYV6N7YMH5a2tKXdZfeFp2CwGLcmCDo8flrCh/HOG/Qqoai/7h6x\n2ZJd88yDD9PckFX8eCSy5itBh4VufYZHMtKkVcPHKJXY+s6DVJuyYj7UUF6/ZMqGKlGXmSXeVDe/\nNNQqcJBXOeGiS9Bb6Cm0KVTWvBGu0wpkFwjic+SF7GLR6Q4PqGS8ZyTc6W55FC1tmPEjGqW615OE\nIJCdtLkl13Zq43GOlef/k2HB15ty3K6bM9Z++1ONBtd3xe05sAsegJx2LjuXX4VYbcoytWF1Q0Kw\nWTMm1HvYsTKmwIsZTTQJGj3Mm6l4UO3ExVbyeVmWDPqy+zfUS+vFEU+flwTt9ZblCVdc1bJ2eHhD\nrn887tMINCvvy3H//WRG45Q0ij10Y07QVuhu7DOslffi1DoNhfQ2t+S75QzydTlHYwZnCkHrxb2Q\nVYWhNxoZVaQck+GmXucGZlt246fPP4h7QXbxpyanaCr7dyst+NJI9EQfPJLrfXb2KB5C4xb7c+aL\npqooot2SawtiSXyfO3OGuXJYdgloKMP4mpsSrcp1NFrOiYewoYzTb+zvMwnEm6Ru0lDcg+M6bG3L\nvd0xhsBfhDZyf3K3wVyxIHHYxWiI6fa2aS0KRkSYE1WNd2f3xaKA8TDOKi07Z6wlnVO906xMtadg\n5TFOPSGLxeqZHXLtKJutyXfn5RSrsWB5nBIvsKiNJoGyD5lgix0tEc1imZgP2AaZQom9aUKkgrZ1\n6lDNZAHJ6gKvlMkUZcqdZ1qc1Rj5hlsyVTGU1TyhuymL10cfeYwnd1RFKpfJY0uPzqpCWLddfJ38\nXteSn9JSnio3NcwmbdVaHJ8e8kOnheClLIeku3LcW7NrbIZyDx5al8lRFzG5An2S/hxcWdA2vBnX\nlRo/nt/AHIg73u1JzG38KfGKvByTY496IJPb6R7Q9FV7M0uoi8VLIf9/xq5BTz57rFUwVAn0OGji\nankvOmgzzqXys38oL9CpvYznFGD0sFewUmqn5XTO+UhekL0s55RWcALt8QhXmlRzyRdcXG1wW1u8\nu/N1Wmf12uIVKs3RrCptf2BqViIJDy9eLFhLj/Te9pkqXD4rKj6kC/hzY3n+q+0WP1BLQ86RvcVL\nR3KfP7XxPYTIPTivYUsjDmjEsri365ANJVYZXKhotuR+5/gUI3k+aVNbucM1Uq2uBA2XsCuLXqvV\nJGjLvLhUtdiMtX9CpQNix1AoW+6N/JBM15XQSRhMFAseWRqz34IA9W1sGT4sbWlLu8vuC0/B1iV1\ndkjqN0hyqWcPpn3sGdlpzq579DQzHtiIWDv4Il/c9mzqMFnwKXQdmrpaNyIX48hKa4KCOJadvpOo\nam/h0daKQ9kIqRZucj4gmalidOUyryTZ42oys7IT9pRyvX/7Jr4SvJw6fQZH6dRW2l3yppCPNBXm\nTLVCFGlWP2yc1PyraUirt0iILcRWhnR9cR23ttdQlXjm85o93QXL3YJdrXB4iYx/4E+Zal7JD5uU\nWli/mTtkiSQzZ/7TOOoVhNoB5MQu+VAFVLo5W1a8m3mWUGvDEzYHq6CuSpK9k9mM1JUTnvIfp6Wk\nH6FZQRnyiG2XaizHiEdSAXijMefoddnBtuO3gFXHBRyoJ9g4fo4q+e1yjzSci4xHZ+2CjK/hEs3f\n0GfSw1WXOXUyCl+7ZnW3DtsN3GOlPV9LOL0h1arN6ZR5Kd8Z+TMqI+CqjTV5jtHxBi9uy878/eOP\n8of+ilzbQx/67Xzpf/pxuQdWQoPVLMHRbt0kymloV+qpOqJUr6k5S5krg3akzXpeNGT9onp0vbPE\n6gkEfggaKm6ur9NSUZ7KU2kDt8GkkPDRvVqTTmSeFmlFoCFvPpnjb8q5363dF4uC41iCqMaNmkz3\nZOCtlRVqLTk6sYunbcbhlnOCH1lkesvjBGexUKQxblduTj3s4K1oKWsyodZSnavkJW7Ho5pqW3Bd\ng4q/GhPgOcolmA/paDnJDGVSrW+tsK+6CMP+LmeVq88bl5hNWWScfA0UeecqF2PpDiGVz7ytEFdR\niHUnJbilHXD69rv9CV5HuzNrF0cnhBt4eArSYdAnGym6b0WuoRe3uPK6vHjXqyN8jTOzYsbBQM6x\nP3wOX7PrVt1a5hHhqvYc9Atc7cEoj7MTslU3KwjWVCdDCWa9VZdyrgxEzhBX8f5x7OHMtEclKDCq\ngFQHslA+fWPA9z0pb/FnvzjjxVqew/deXKM/kwVre7xJqLmGUEFhtOfooyHwDFbBWzVgB3LvypZP\ncyLPLLqU6Xc7+Bfkfq5/PSBXmGI8m9M7K2HF+jwgULao+LoyKH3oE3z8efnsU3/rUfa15LrZ7/Bz\nR5KXcIzMq3V6NM7JC7iS1zgtmbPmCIKmxvst96S0PenLmOdzn2ZfyYa3j4RNFvBO2ZOffb/C0RK9\nXff0vqbkGh4nk0MOlFCoGKSsKOq3rGvmucYV79KW4cPSlra0u+y+8BTqsmR+dEA9iRiNBKdwsDek\ntym7QNH1ybUXPhjVmFiZlvuasGlkeIX2o/c2cLUPwmn5mGLRJ9CiUnfdayi+vcxAiS6KYZ9aE42G\nGa4yMTt5ykxJNhZg0do26deSpR4VOUUlLvysAkfJUtyug6OKyEVPdoxq1qcOlOugyqiUerscFRTa\nw1DOZCcuqgy31tDA2wStZBgqrHYo7lUuueojGiNhUtwuiNuahc/mlAp0sjUYlZePrkdMnpKxRho+\nuZWHVyk2IwopFQyVBi6JqnV7BBTKOWE66p7GBYnqLnbKCt+VRKupI2odU1F4XNfM+VduvATAS+1D\nPhZKeHS5glxzYek4xnTVWwqgHCheQhwb3OMKqyGW49Z4azJHsnFN1dJ+heyYciEimavr7DZP4O9m\nrSbNBMthrE+USMha9yLcRBKiVy7J839h9E12d/4dAL3R32R7U7ywX509wFQ9pOsD8TDPPlBxXunZ\n86YPAwWWBS6Oclx4PZdM+0fSUEPU8ZxMad9X/VXQbl78EOtpeGstdDTcsAuejZRxIpiFQVZSKYXe\nqGNoKlZ8p7XBeMEp8i5t6SksbWlLu8vuC09hmg75tVd/kdZ1eE7LLo0i4/HXLgBQ5TDty24VP9HB\nHGj5Svvc50m9yFPhOS3cRctdbSlVz9irwbW6kyioweJiZuodBG2qZIHM8zFWdt4wSsk03p2XmgBi\nwGltmPlGbBmkyjaUTGj1lBQ2yyBUT0G1DqajFK+jMGhnBW9B49VqYbUBy04lcZTsT+lMZeUviwRX\nd8R6MMdVVijfhRVthFo0y8xnTZJadSYci6Ndhj4V2kfGl0dv8OhV4YioTsuOGMxKHI1DmZdkU4mp\nR4NjskMVtXHbNFtKLacKyPN5QqINZn5e4Pmy+3muAc13VJOaQLv9ThfyoDqxxy+9IN2JtwYl5QlV\n3gyVqWR37nKsXA4bSpjq9Rwq/dmagPJQuzltetKhalJYsK2q80PdNhTHkhwt3AKOxSPdexM6R8oQ\n1d2mCCS/0Lgsz9xJR3S/KLv138n+BIfPCA/Fo83fza6iIs8rhelxCoGWG9tzQ6SeyTxxiTf05h+b\nE7o51ONpFjDXMnJ6eEzygOBJ7GGTSj3EqsrIjNyLUEvu6Txn73V5NnvzEYlC06Nei6KS+TKoBzB6\nbw1R98WikIwLvvH5G7y4N+CNQMVD05j6Y/JgR9f32eq9BkBuHqe7Jr5koRntMpwzUSWdtLqOqzSz\ndX2MU8nkjVbAT3XSq4CKW8XYUhab0nbwVD+xyg0MBSxUli42lQMmtbh1jeOc3VRx5mbILJcqSGVz\niqm2Wdsh9VgezPxAcBHTSYWvEzpcycl1ASjGMazK53uvy4TIDq/iIcdtn27Q1jFl44xMJ1u3EzPU\nxGStsuiXqwFTTbi1ei3MghTF87GxTKZea53+VNudr0kSqhOCYxfUZVDOZDL6URt3QVseFLSGcp8z\n50DH71DP1WWuoFKquEaRY1XdtXSn7KWCN7g5FyDQ558/YveGKiTdwbgxqUJGmuRspG9wcyCJ0DON\nBRV/F0d5EG1Skc9l4UxyD7S1PUtK5qm8LG118TN3hJ1J2HX78vPwigrVVIds93UD2Egx2jX7TCyg\nqINsyr89/lU5xt93sJrlfD74xzx5UUKlSSghVTHbZd6S51/aiMZ4wbc5IZjt6M8BmVLWhQpnPi6O\nObglz/9g/yVe2ZMKyPm1Ft1twZG0jmsGqnxmx1oFm05IZtqXMc5oKE2Ak2aMtM/j5k2PRtjjvdgy\nfFja0pZ2l90XnkJhU/bsZV6clBwq90C1UdE+EI6BtfYGfU2kbT4wJ9fEXqLNPPkoJwmU8+D6ZRqK\n8nOmNdGG7Gz+JIa2JiOPlO25VaIVNOpwhKcNT2Qd8lA8hUE+PVnRjZKNNNcHeDdkJ2kVQ9aai8RX\nTqVlRDMPqJUdulD0o3FSrJKNHDgj3FJ20kb7HJF2vl3cVvbehsVR9GOjnFKd1oRhmWK1JFnXKdOJ\nnHvfyi7oJQ5N1Xu0PWioErFpOgS6Bxybkl5Xdph5pYzZpUtDG2pskhFuyXG7xwHHR/Lz0Y0DRtq5\n2UwkDFhph6y3lbNhO8JT7cY0Xscxsmu2GwWt2/LMrl8XT3Dan76taORWqyJWbEmcNOlo6dBTOHbW\nUao6gDDEKtGO61c4WnLOWymJsk2XmmhO9x1CJf8lG3O4Lh5Zd5Cx72uIMp6R7cg1r+3LHLr86tco\n+iqbV3LSEDXIClKNTYYKDDnsV2ytyvNbYYZysOCVPq4mx02dEChmwSgfw4PNBwgCgexXdcbegcyz\neXeN1ZkkjVurIeMb4lmOQ7mXzrTALvQpTMGeqpzXxZhSvcXDeE6gmI13a/fFokDtYsddzvkZU9XU\ne6Reo6mQ38vzmjUrGeL41CrrGzIJK1Xm8XseQSZDaXS75MrUu7odUWlWN7INppW4vJ5qEVZ1ilPJ\nd+fTEUFbXszpdI891au8WVRsKuz0TFuZhY86+KtXAehlbYKGPP2s7FKMZIK4foRVgFOoYJO8t4bn\nqKJTckRXOwbHyS1oysM/LmVM2/OSROPF2XpFZyTw27yomShAaFh4uEpXP1ng21sZm45c70Z7k8/P\nJNtvLYTK8Pvh3g5FT6C71b4svEPfo1Jor0tJlir3YZYwd+QFCxoRaSKLiacvfJFVjAMZ/6o1pOp2\np7ZmW6G7e70u/+KacG9+bU9BT3P7tkKycRIzUPjv2YbHRLtAB4oFaQ/BWXA4lsUJFXvuOHhNeSHz\nucfOpt7bQqHdXZ+xgtCq/jarCk3eHc3oaZfkUT3A02t6JpUqxLPP36Z8h3fK0UpMXwWYIsenUBaq\nuRPjTOX5Z56Dq4pVtWshkJOsdCSf45qYsxcE9zFgyqWpPN+D3OWBSp5Df15iCrmm3X0JpbK4oFjI\nEjR92spZ2s8q8rZ2Ws4DTsXn9Yq/8fYD+Y3jelffWtrSlvYfjd0XnkLkOzx8qsH5aUCiCLR26bDm\nyo5h04qbikzc6h4RqV8W6K7KIAaFEtdli4aqZkxxCBtKiUVBodtApl4ADRelCsCWLhPN9M49hwNJ\n4NNPC3Z+m3y+ofRp/tHznFHylpsrLiPdSjYmM/zugml3Qq3IhnxBXjKGeaR97onLdLEzRwnX9uQ7\nqftV+eqbfayWq0fThCdXlILO6eGqlkPQNQQofFb77sczD+es7B6NzYK58vN1C8NUG8yuDPtcUm5D\nJUAmKhIKzd57+Rwj+TuGZUJnLOcOwpRTugOlym3plE2KQr7cnxrmWnt3qnNs7agYzpUreLe+poOR\n5GIIzN/GU4iCKVsqgHI1c7hktfIjmyNxWGGVhm9e5hSBeG9VMiebSDZ2nh9S5nLwnkrQHb62Qoy4\n34OkIFKswCE5U614PVK0qK7Ldw6f+SYAxfToN1+k2jiV+3Va78mujXnUV54KUzMLVVfUKzlUyrpm\nHeApK/hI6diK9oDkUOby0A65/qaMuR0U3FCOD9vp88Vrck1hW6tg44hMk8N1OqVWYphubjhc0NhF\nHn7y3vgU7otFwZiAyD/HylMljyUKk51Mua6D8TKHfY0Nf3+8ynpDMrIzlVwvswSnkJejChxu7UrM\nZao9VjpSqQjWG5RDCR8qZSNa3W7hKujJZhEjFeEoDq8R+uIm95wzdFK52a2eTFaveZr8YXHRt0fX\nMYWGBy5EqcKV17qE6vom2iE4SRI8FQApg3VWt2RCh26TSME900wUkQ78l/nmkZCqziuHT3xEFptB\nEWK0/uoct3DUpVzTwkqeeZRKdNIuuyw83+OqosrlhcwnU5qu6hXqmOdecOLuJl5FpcSm09JiFqKy\nrksZyX2eKSPLrXTA/kDuVWs9xtsUV3WnfZV/dyAh35Xbli9fUVUk7VGp3oFLNOt2mKprn9o500QX\n9RX5uxyu42xJVacRWgaert6VZT6VlzCtV3ADebHGer/Hs8vc0tLx1fyYyaG87DezgA8/LAvIXjzl\nyvPyjK/dkOPWteFuAfq3bKyfN7XsfTR5k0JXctNq0k5Um9QpiZTcdzjp42v79Xwo11BNL9BwlJnq\naMBA9URZ7dLRNurXXn+Rq7dlLI8+rpD29gq55qv6VYynubZJDL6RY9fzLrmSwLxbW4YPS1va0u6y\n+8JTiGKPh59cJ6lWuPSywIfTVsLL+7LyvXpYUmrN93PPXuaHPy511601UaU2ZcT6I0INH1QtShUA\nMbctlS+7RzFM6K8pU/RQBWIKS6kw36Lj4SQKf962TL4q4JZm95imK0CfQnfaaDOm3pUVfHU8IFxV\nvoR5xnxTKxRFiFUOxqYqEcdbHtlN1X48v07kyTGyXkRwS7yYYk86GUfpSxxeVSDXR3r0FZhShyOm\nCugZpTAZyTH2hio4Uxk8o+Qm9TFoqJEXFeoU8I+efZ1HPyzu/FPbKiN/NMNRmHe816BSWfr6oEPU\nkmlSTyZM1OU93ldG7MLyoCZ869wnXTQ+uQNuHkm9/ad/ZY9jddc19/oOey/EzTneVJ6vO52zpwCN\n1ugqANUTIeFAEoMr603akXTEejsT3JFcx7nvPo+vbMbpmsrpXd7nyrHIwyUvVtw4kHAr763w8FR2\ndHe1z99JxEXPFEpuTH1y37iDoxGgTJU/8qbck1vmiN1HxTuKijWsqkenE8tGT35e91YZqYr3bF9+\n/7s+/Ahrp+U5ONtNvH25O2n5God9gWN/bfACXyrk2G+8KeN/5OGAnUBJbdw5qHRibnJiT8Y9IeEw\nO3iHu/32dl8sCnXlkU7WiYKcpJS4PZpbxhOJ/Xv+lGtaeor32rz0sriG4SPyckS3M4ZGaLopK5pK\nWpm/PsKckwd2dP02bldu9lQJNclWqbQESgkTBRPN0hHNrgyQ8lAAAAYWSURBVJzDbXWxnrp7Sqoa\njwpmlTygrGeIFBRkbAtq1ZFILe5CLFZzHMYPqacyptH1KVPVjbTxmNuvyYS2RibBS6/kbOmiMd3z\nmH5YXObx7ZI0kZ+TQR/rK1hI/57HDk29nvnYYCvtVcCikHmGxxVf+MWrABx8UibPQ26LtdWF1sGE\n6UCmht0bcKRtuNU444ZqTqQqkopvOadhFbagMZPz7c9zfu2bqkUxcLAaShktObzTopBc6TLx5B68\nOctx3pAMfdrVxX29S68hn0U9SLQMZwvDwWX5zu7BS9x6UxbUuCPjeOG5Q6aBfPbcwRGnlNFpOi+5\novqWv/K5MUev6gJfKbEtUOuNM+buKqqv5DnzQO7JaHrMi5cVZXauSWtRhkwsjab2leQeZSJzef95\nGeevjT4HoTzrnbPnMVcl5xBuRPzs9WfkXKMtauVavOSJolUxq8ishqBFTaZaDzadkeg19WcVafre\nAoJl+LC0pS3tLjP27YrF7/dFGHMIzIB3TvXeW1tfnnt57v8Izn3eWrvxrb50XywKAMaYr1lrP7Y8\n9/Lcy3N/sLYMH5a2tKXdZctFYWlLW9pddj8tCn9/ee7luZfn/uDtvskpLG1pS7s/7H7yFJa2tKXd\nB/aBLwrGmE8bY141xrxujPkL9/hcZ40xXzDGvGSMedEY82f081VjzC8ZYy7r3+9Npve9XYNrjPm6\nMeYX9N8XjTFf1vH/Y2NMcA/P3TPG/DNjzCvGmJeNMZ98v8ZujPlv9Z6/YIz5WWNMdK/Gboz5P4wx\nB8aYF+747G3HacT+F72GbxpjPnoPzv3X9J5/0xjz88aY3h3/9xk996vGmN/1H3Lu75R9oIuCMcYF\n/jbwQ8DjwB80xjx+D09ZAn/OWvs48AngT+n5/gLwy9baS8Av67/vlf0Z4OU7/v1XgL9prX0IGAB/\n/B6e+yeBz1lrHwU+otdxz8dujDkN/GngY9baJxCg4I9y78b+D4FP/4bP3mmcPwRc0j8/Dvzde3Du\nXwKesNZ+GHgN+AyAzr0fBT6kv/N39J34YM1a+4H9AT4J/Ks7/v0Z4DPv4/n/X+AHgVeBHf1sB3j1\nHp3vDDIhfyfwC4BBgCze292P7/C5u8AVNI90x+f3fOzAaeAGsIpA638B+F33cuzABeCFbzVO4H8D\n/uDbfe87de7f8H//GfDT+vNd8x34V8An78Xzfy9/PujwYTFZFnZTP7vnZoy5ADwNfBnYstbu6n/t\ngTKmfuftbwF/nrdaa9aAobV20Uh8L8d/ETgE/k8NX/6BMabJ+zB2a+0t4K8D14FdYAQ8w/s3dnjn\ncb7fc/CPAf/yAzr3u7IPelH4QMwY0wJ+Dviz1iq5oZqVJfs7XpIxxvxu4MBa+8x3+tjv0jzgo8Df\ntdY+jcDK7woV7uHYV4DfiyxMp4Amv9nFft/sXo3zW5kx5ieQEPan3+9zvxf7oBeFW8DZO/59Rj+7\nZ2aM8ZEF4aettf9cP943xuzo/+8A763X9N3Z9wI/Yoy5CvwjJIT4SaBnjFl0q97L8d8Eblprv6z/\n/mfIIvF+jP0HgCvW2kNrbQH8c+R+vF9jh3ce5/syB40xfxT43cCP6aL0vp37vdoHvSh8FbikWegA\nSbp89l6dzBhjgJ8CXrbW/o07/uuzwB/Rn/8Ikmv4jpq19jPW2jPW2gvIOH/FWvtjwBeA/+JenlvP\nvwfcMMY8oh99P/AS78PYkbDhE8aYhj6Dxbnfl7GrvdM4Pwv8Ya1CfAIY3RFmfEfMGPNpJGz8EWtt\n8huu6UeNMaEx5iKS7PzKd/Lc35Z90EkN4IeRjOwbwE/c43N9CnEbvwk8p39+GIntfxm4DPxrYPUe\nX8f3Ab+gPz+ATITXgX8KhPfwvE8BX9Px/z/Ayvs1duB/AF4BXgD+b4Sm8Z6MHfhZJHdRIB7SH3+n\ncSLJ3r+t8+95pELynT7360juYDHn/t4d3/8JPferwA/dy3n3bv8sEY1LW9rS7rIPOnxY2tKWdp/Z\nclFY2tKWdpctF4WlLW1pd9lyUVja0pZ2ly0XhaUtbWl32XJRWNrSlnaXLReFpS1taXfZclFY2tKW\ndpf9fxjdHT2o6ioaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.1885... Generator Loss: 0.7337\n", + "Epoch 1/1... Discriminator Loss: 1.4297... Generator Loss: 0.9953\n", + "Epoch 1/1... Discriminator Loss: 1.1458... Generator Loss: 0.9505\n", + "Epoch 1/1... Discriminator Loss: 1.3446... Generator Loss: 0.7885\n", + "Epoch 1/1... Discriminator Loss: 1.2624... Generator Loss: 0.8597\n", + "Epoch 1/1... Discriminator Loss: 1.4662... Generator Loss: 0.5536\n", + "Epoch 1/1... Discriminator Loss: 1.1388... Generator Loss: 0.7493\n", + "Epoch 1/1... Discriminator Loss: 1.4432... Generator Loss: 0.4454\n", + "Epoch 1/1... Discriminator Loss: 1.4186... Generator Loss: 1.0688\n", + "Epoch 1/1... Discriminator Loss: 1.4904... Generator Loss: 0.4468\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWeQZFl23/e7z+ZLb8qb7mo3093T49fMLtYThjAEAoRo\nRAZJKcSgImSCEqUQEYxgUMGQQvzEkAtRATqRITIIILgCAWnBxS6wBmtmd7xtb6rLV2VVpc98Xh/O\nqZ6d5ZoZ7A4xH/J86eysl+/dd+695/yPvSbPc6Y0pSlN6YSsP+4BTGlKU3p/0VQoTGlKU3obTYXC\nlKY0pbfRVChMaUpTehtNhcKUpjSlt9FUKExpSlN6G71nQsEY8yeNMdeNMbeMMb/6Xj1nSlOa0o+X\nzHuRp2CMsYEbwE8Bm8BzwH+Y5/mbP/aHTWlKU/qx0nuFFD4E3Mrz/E6e5xHwr4Bfeo+eNaUpTenH\nSM57dN9lYOM7/r8JfPj7XVwKTN6sGXb2c9L8ZGCG1BKZ1fI8MleGGvgGx7EB8G35N88dCkEAgCkU\nsZCbxOMJGPk8yVJMIp8zk8rvvSq5ryxILaLxGAC7EGBMCEDBKbKXyPflrgFgMLrO8UA+x1lG2ZJ7\nTCyo6thSA4ZMxpflOs6cRD8b89b7pxlkitick++N4QTE5eRY+gPjGqxUnpFEIb4l3/f1vmkO34n9\nnn5aeHjvBTjU8bwTsnUcWQ6OPjsh571OgH30YXjt+g+7SsbjWAZdIjiWRZjoX42F7cgfHCPrwiLC\n8eSz42d4eR2AXjIgsJSfFpTtEgBRTb6reAVcV+7lYh6sT9uAY7YAGN6SL6/19jE6tpwc+2SSLQtP\n16FlwNa3SHU6MpOfLFPS/C3eG2MefM5zyHSOkxMu5Dm5/t2xLRx9D98zBI6rnHKwbB+AO+39dp7n\nsz+Mu++VUPihZIz5a8BfA2hU4G/8RZe/+7+ldBPZsHVToFuSl/ml1dOECy0AHjvv0JptArBWLgOQ\npi0uPPIEAMGlJymkEQA7V6+R2XK/m8MeTke+H7sd+f3KTxKflfs6/Qrrr74MQO3SE9juHQAu1h/l\n77fF6vnEvxWmf/WFP8G//prMxm405kP+HADXijk/M1cFoGNbWHkfgCyKAUjimMOejMd1kRUCdEYZ\nY13RdV8WoO1ZhLEu1iyi4MlUuQs2xb68f2fjNmcLHgBfGorg6sSGUHeuBTz3nCzyv+ql/JNk9APn\n5GSxYkFZN0IU5zR8WWAHaUQay5gfCDHeWqTfSRZ8TxF0Ak2/n3j6nX8MZz4mn7+X/DFYGEfWRdO3\nKBVl1I2gwO1DuXvB96jPVACYsS7Ld2zSPPUoAK1zY87GvwjA7x19gytFWUd7BcPHGh8AYONnZV18\nevUiy4sFABaNQyeSkddcm7r7twB44Rdlfj/8hf8VNxNeRSam6sjcWMWAlYJcEzg5TWVCdyRjH5kY\noxKil0BVJYHr2LQCuXgS5owmwunjTK514oxIr51reMwEsi7OnrJ5ZG4FAC9r4dfPAPDnfu1/Wf8+\nbH8bvVdCYQtY/Y7/r+h3DyjP818Dfg3A2F7+3/6fs2Tx9okSoOeN+fSMDO9PfaLBrX1h8DiJOWvL\nyzfqFwAo1g2VpRoAZTsATyZx7sIao14XgEfcGXK/CEC8KIyuLC5gq8aI1zx22k8BsPNiif/p7uMA\n7P3PXYa/JcLki8N/BsCN188y7t4AwMwazj7dk2e0yywvzANwM+kxHKqA04V7nFpMvIGM3bhYKtkb\nXsJ+Is94qCnfxamN7cj73+6MqDuyIMzEw1+Q8X/lTp3nxvJ++ffYbhlgFXUdJE2+F1X13z6Q6mfL\nGMJYnh2anJ2xPDs3hu+GCt9LILx9FO/s+xNa+1gJGH7fv/9FP+cPdANNbJ9isKrjuIRb+RYAruNS\nsuTNPvCBNQCef7PIvbvC22s8xeadIwD2fn5CYMn8PXp8nid+Wa7/WEOEQm2hQFE3+jCHqgrnkZVz\n6m/8Hfn8+SdlcCYnQubRMYb/YFaE14tjm0iRy3zVJi+IoHZDEeRWd8iwrzy2wVH0ulhzqRlZyzvF\nCH8sMxRPJgAMehDIn6kXPS6fl80z65yhcyj3DpbrHJR2vi8/vxe9V0LhOeCCMeYMIgz+PPAXvu/V\nWUw2Upmha25pAguRTOyN+g6udwmAUytFkP1PoSxMqi1CsSJCwy5Z5LrByjMtAl8WWNpcIjMird2K\nCAIqJUahcNVxYk6dF3j5B/NDrv0/BwAY/y9j/vMrAMztbALwinUT0AkdWKx9ReHsh2Y4eFI2ffGO\ni6/Ytm9kMZ5pzBFM5Ltz2Qz3Mxn/Ka/MZVfG3LJkIUVBgKWmSHNnk6OuvMf17T7r18UyC82Et7by\n96HJ9xYGJ9TXf3PDA95nWU6kvDoxfeQ/P/hRPx76/gIB4ItJziiQuXYaMXdGMk9Vf8Ikls3ixwGx\nTCXPb14D4LjX5ziVuTl46VvcCnWN/N8+BZ2HZOWA438uG/ZX/vpHAeiOHJ4sNwC4GWZcsGXLWFnO\n6B+c01Htyz/5W2grwLBRl3dxF1aoe/K8I9djxZc53juUvxvLxSoLc8u5RbWuyqJcwikqakh9rL6s\nuaW+fHcvH2B0PaXVmG19+IcuuHzlpozzETcgjb7DVn0H9J4IhTzPE2PMfwF8HuHTP8nz/I334llT\nmtKUfrz0nvkU8jz/HPC5d/6LE1UlUm3DMdwVwc/Pph/jvidi0D4uYAXqrItFz/mNZ2AsqiErdzCJ\nwEvjWJiBmAxec4ixBRKahiCQNLEIAoWiI5u1OYGJ/RdD7HsvyjWTfUxPoOZX89dlQOlbKnMuLfG5\ns3K/s0eGK9cFxmzEKXEs917IBY0spxUuXHlYxjyocllhYuAavDOiodIjGUOzXGN0IMjkuLXGt29v\nA5BEr7PebgPi+IofaNYfUY3nBqP3MHynmfD9vAZ/PJQEAZkRH04wCcWkATInpLIi5t+s57NYlPXQ\nqYh5VWtV2drYAyAfHhBF8n79UoNXUnEqn+83WDwn37+xLX6G5uGY84/KnK45OQreyA4SyHr/zvhO\ncFuaG9aSswBcDxvMl3T8wyFlRbJLZfH5zZqEOJPvvMCj3hIk4XklaiPh/UoN9nriE+p3ZI0k6TpZ\nUf0LwzJzh3Jt2nH5+EUZ6HAvId659U5Y+4D+2ByN302ObcjTnLI6Z2YrNhc+Inb91w5v84Haslw4\nPsCak43lpAqNDw9I1YGHk2Ji2YTGGZH1BF5ZzRamJDDwxGNteRa2UbOjnpHFsiD+7k+XOHvrIgD/\n9Auf5uDWa/LoUCbgcc/mIBLWfWQmgFm5x1y1QjeXyT1fCohdGdPcGTE/Ls6cpbogY2vOnyPzZaVk\nYUboCAT1l+U7uzxHNj4FwO7W85SWRbhd+0ZEcU4W/I3nr3M9loUw3JPnTshIsrc84D+MHmx985a9\n79gWnq/RlSgnU1CcJ5Dl8k7vJI7xw5yK74ZOvPqdaMJqS8bTLQzxEYdasGJTacqmafrLNNXR6PRE\nYB/2b9B0RctUbZejQK5NxlukunR2D1Nu/cN/C8DpPytr5bmFQ5wZsXzXKHH5jDzbnTH4tvA+0t/b\nWGALR8/Mtvg6xwB8cqZO3xEBUivUmV2V9fJULibafGMOx5dxloIGiSdCyoQFwrIIiPHhmJWJmNiR\n+MlZcUrs9Q4BWAgM64eivL6wvsFDRTG3P/HJMofbsl/4f7/+jng9TXOe0pSm9DZ6XyAF41i4jSJJ\ne0ig4a+fu1DDU+fLvPUIo1zgc8k3TA7EbOjVRBuUOjmWJVLb3xqTuRpmrLfJqhqvHdcw5ZNA9glU\n4EEoyLFsKMjnGWMx+oRAu+C3fpq0KdLY6ggMS2aL1PdFc4V1l9OefJ7kY+rhDADlJUOzsgbAYlEi\nEs16lfqqfPYKAZajZkycEQgQwLZlvK7rkIxEWy0tPkJJ37m7EpNuyTM6p/ukh2JKXLVF81X3Ruyr\nBjNZRnSipr9PgoF1Eu6xwTuB4gYSRVAlz6ZREn4NTZm4K866YSZa1yElVUdqFiVk5iTfIkeBFyaH\n9I+Y4HDiIrM0fDtTeIpMvezLBZ/9O2I+jatPM1MRvpw5C0WdH39evjtu38PxROse2sfEQ3XQZSlo\n3kpkR3SeFnSWF3XdlPd587ckVM3PP8ZjRu6X5eA+ugBA8rJocNe2eKRygkxtLjVEW9fP2zSUR8c3\nhmQa8Vo9LSbK6YVVKjNLMobjFJqCFrsHA8qpjGOnEJF5Mk4zEIfj6kMRwwO5thinHIdiKrk7B9x2\nZG984GMfJD29+U7ZDbxPhIKf55yOE/Zch4cVGm9PDGfbshFGs3tcaMpkJOMIP5eF4Ks9nYWQjgRT\neV4F05TfJYcRuSYk+c0MygLdc08mwxBhObIbc8fFGGGH7cT85W1Z9C9+ImTwRfFw7yYy4aV+SFsF\nSMNOODqSDXSqFdM6I/c4d26eIBXbt9mSv1cXZimU5f1s18KyNXw16wMaW8plQ9tFByfQqMZkEZPI\nmE/N3yXT9/6FmTO89ryGuhKxl++tOAS6cbfGMQWNbU++i+fmuz5UqjaRhiKcDE4vyGJsNYqsBGIb\nr7olBnURZL0N8a9sDmHUF4FkZSEJAok3D8d0IoHBmckp66YeqT8myd6dF8RVUBsXN/npp34ZgK9+\n4Yt4XYHlLXPMky3ZCNFOjh/Ky4R18Qec8R02xzK2LIqx3BNpachCGVsQxSzr2qIk1775a9/imSfv\nyvsN/jMGQ3lGYix+bk+e/XlXNrxjcrYSudfP5A7FhvD+1HKTwYasw1IQ8ciy8HZNg/bVYvXBugj8\nMpkjY7dcD29eBNlStURdw51RIGbCIJnhglhPZNYxr//2bQCORyNWEzFdhq+/BMWVd8xnmJoPU5rS\nlL6L3hdIIbcMWcklHaUPchByP8fS5KWlqk1QV42eW4xnNLpQVjUX1LFs0UphzcUuiaT14jlCdeaM\nyi7+4J5874vjD2dIXlCn5He4w0xukz0m98h/c5eoKVI+13TnYbFEtSfaYb5gcWyJHi4WW5xeEjnb\nXK3hDAQhFE6LGVBoFLADgY5mkGEqvj4vBTR3YijjNVUfo9mdrl3C9wUa1lunmA3FKZmPymy2hAc9\nW/6+a3usH8jvrDcjCi1NwW5/VwRBWdcoaRy8XibpKVRoGVqLgkzOVK/w2Fnx6q8+6tHbl/fuP7wG\nwOwb+yysCjLp3+vQzeTvz37zFVCTrp/mlDVRK7WEz2kck38PD6QxhrcV6Z2k/FaFV5/5qTWqF2T+\n3F//AkcVucl82KOgGbxrtRFOWb4vjuT9s/oMd6vyTpGZoaue/IKVkKrzNDl9gfP+QwCUhpL0tXIB\nbixJPsLjTgShOisTj+SSLtavv5WtWKnK/OdnZvj4xZOMxjGHW2LmtYsZLc1adfJFeY+oTJ5qij0Z\ntqWJeMUMPOVFcfTg/cYzuqatKsVjeUZWTDm9Kn//vcke54eCRrIs4rTz7qJH7wuh4BhDy7XxCjbp\nRBZPLSpSrMtG8bKQvmYmVrOMgpGoQyRuBg7n9ilFsmiCYol0XyYustuYsSwOqxERpSIAMs3wsu7s\nYz0qqa92bmHVZfNiDPMVWQh/8888zK/893I/depTzWEUCKM7KTQzYeMTZ4qsWTJm56BPpXhaxuSK\nH8E5LpIj/gniEoQap4ogs8VEIZExWlkRlWdk3hCnJdc6Oy71stifm+4WzWUZ83hPFvzFRY//47b8\ncGj3+RNqn37usMPgO/baSS1FoIkt4e6Akiufa3aTj2WSHjz7qTM8hGSOLp26RGlVFvRrW1cBWLU8\nKkty44WHYz53/wUAnooKpNefk1ftj+l7wq+5UH7fjVMqCuHvxW+Ny3Mdco2opJaDyeX68qyUzjSG\nPl/7h78BwCju4/mygVr3YbgmJs2o3aT5iPDlbEn4eWfJ8MwjsuEX9nZJVQm8sNmndCwb8sKpiywE\n3wbguT+UuSuRYH1MTIaXf/dZZv6SQPGJa3EukmdvF2XubuQWjVQ26QdPl0lj9b/8/n2MZi+em6ng\n3ZZr/HOiyKx4gonEP2FnJVJHfuf4ZRI1tzxj6BsxkXONuvmTAVRU8B7MUNf1ds4bspGLEOq06xTL\nP7Tc4W00NR+mNKUpvY3eF0ghxxBZHmGasaza7AOXJ0wi0aoNc57UEul53OtTHYjDJTsvErPYDzCO\nQEC775IpVHXyEbmmDeeHEXlZ7udsiGRPazn+pkQUCksL+LFoVeM42JN78rs3c8pNed7IUidZ0VA8\nEtZ5PcNkUVRdfDCgWxXnk+fnRNwEYKkvzrnYj8m0jsCYFH+gKtIpkmsarKVFYHk4fhANIYmwNbmi\nOl/B9QR5JP2cTkveKayK1vIri6yekzEM2ja7D4sGGt/owoPkJHBOUpq1mi7JE7TYk1NuzumPCeKp\nZqs0TgkKqWUGXysNH1kVrZSeCskPBGHYtYyfHJ2Xm3x6Ga1bI7nT4VVNNAt7ou2+No4YRiew9q1U\nba9UIexohaqdcakhc2lGghQ37n2cg7HkxMWMmVXnYfWj86S2jNOaH1PekRd0FwQxLNYDNufEQTff\nG7GfC7+W6gMWFwTGn1qMuadFSta88GX2/BlObwhSPFpN2Ni8B0CjYriljut+IuvmsjviQ09rTsfu\ngGtqluzsdHArMs7L9x36TwtSreyqyTjboRTLeHIrx9FamTTPsdVcGVsWtqWmgh/qfLgcdJWHhRz/\nnHgul5I2m1ru8MZuAevcMe+GpkhhSlOa0tvofYEU0gx6w4zZms9Hrohma2aG9VjCQ1cHLzE/Esn9\n8p0ey6Fcs+SLFJ23SwzL8ip5vEHhYQkF+qb6oBgkOb7B5LSoLvuu2Fsbxy8yfygS2vvTl5k9/ZPy\n2WqR3BAEUf3oszz5dZH4v68hy0EnIVdVW1gA1NlzOD8kuyVSuVjtEfsirgsdkeaVhXMk6jzM7BCr\nJlosn13E9NTpmIiWT8yQrC7f2VaLfChIyaRjrJp8LiceTi4aNNaCsLVPlPnEhmi+N1/a4dkviOMl\nJ38r5g9o2JxYY/SFwMIIWGEw8shy7SdQ7UMq/PLTgMKyZMeVErFTh5v7HI7F8Rk3MlrPiC/G3trm\nI7tiw7/gPMtSR+bq9a469TKD5ysSCnlA6aSAVxRd9UtnniIdChJ62QjS2Lc+R9nR4qI0w9Y8k6g/\n5tEZueZwMGQhEX5EuYaL0xJdzT3Y6BwRFuUen75o09GcC9PepviEzHHzSMKQt1/rc3n+voy5XOeF\nL8r489oSt25oTklFC97KFcymfPfK8i6jPbnvRhiiUUaWZyckGvUcDyWM7JsS3oogKFOZxUrVqW5H\nZLH6oKwClubwuFXNYu1BJ9EbWzaFTG5cshLKyts3tm8z+NIPKZr7LnpfCAXbsag1qlRHHqsLAj/t\n1SHp1XsAdG4N6bYkT2G81eXenG7C9gmsr1PvCaOSRpHyzolHPSC31FNbHLH5gnomR7Jxjw6HtB+R\nBVi8+iy2LV7tcnKP2wtSGv07/90NNhOFlJk68HzvgZA6b+r0ntJnhwUOA5nEtlfAuy8TdtuT73z7\nmHxXhlAKLNJzjwGQh1sUPE1I0nyD3BwzviqbrWTNExhZKFHxAOtIhFtIwtGeCIU9TYEd755ltKIe\n9OwFDjS6kE3eyk0wRhrXADiexv9LPoHW6Vcf9sg03bofB9RK8mz31CyOmlCmKM63uNAD9WPt7WyQ\n1iU9fCZcZf4ZqR9Z+4055nX+vhl/U35vxYSZpwMKHyQtmPkl2BUp8cif+Qvc7IoJ5rz4BwBM7t0j\nb8iYvdQwLAnvu6MB2+vCuyhP2dRNMbOpFYdrHslAeBVlA27eEkFHr8oHNYX+/uM1iusypoktG/ps\n3SE8Jz0WiuEmt9pS19e6epuB5hnUXxPz8MqZMhsNcShurPdp78t7dJycx9Rh2ivDaFbuHeteDb0B\nqS/OY8fJMFoTM4mGTHTTd9sbWFW5xkeURTc8oL8hSqQw72Jptaddq+PsyRqfjAcspT+4j8Z309R8\nmNKUpvQ2el8ghUbR51eeOk29DI010YL9YZnxUNIzO+Mx3duSrbXUTxmf0uqyI5G4vfIueV9bn/V8\nRvcFipU+lNDIxSFmHRj6oSCF3o5o4GBiUdgU6fry/g7b6f8OwDPJEr01kcqPXu7xDz8vGqag6dHl\nUUJfYfd+KWa+K3DdKxu6tjxj79kBjjrSTEXNiNfGvNARbVYOSnxas/wardO0i6IR9rZF49+8eovb\n1+7qfVMcS5HJ6gzzmmo7KezSHYqz67yGPWdSj93f/UMAohyW1eQ5MIZI1XFgGc5dlntcULVw16qw\ngGj/Jz/8DLU3tcvP/D28ofzu1Nw5fMW+QyOadn3vFnduSM+C3rVdblyRXg/JyLCqFX5HQcZzN18B\noKhOtFO2w+qcvP9X1t/KbvyFp5/h1Jz8b3nuYe52tOPUQMy5Yn6V7j2Z93ScUtGyxeH1Nq86MiYr\nSrEWNPOyLeONDw2lI02b386ZSUTb0hnj5aJVf3bo86oip14m6GghOc0HPyjIa+t6xgtviJN6f7DD\nnwzl2btzoomfPRwTnmSFJimROhqtoWFbsx69rZiv/ZbMcWNGYOOl00s8YZ2EXh8mQ8yVwdGAO3cE\nZe7cv0NtWVBTbUb2SBot4SuKq1Z9jJpHmy9us6Vh1nrZJzlb4d3Q+0IoBL7How+t0kgrVKpaDXn8\nOt/cEfi1dSslqcmmv90Oufi6MC38jGxGa9NmKxMm3G13mFOmzXXGOCXxOO+HIXfvy2I63JD7+qWQ\nXkEmY7Tfo/3PZXH3L9zgzX8pnuH0VkRB7e+xJpLEVZuZvnw5Fy4zOStsPDoK6Lwgz9gsbGPUrn1y\npPkIFx0mX5MFmI9iNtbFN1AqlfA06cVH/CXHx+t0XZlMM06Y14St4x0LtyrP2O5YHE/kfncPZQEu\njGdpa2emKIqZ+UnJ5T/87Q4K1nlo0eVKTYTlQ5o+noUjCg3ZKH6S4J4Sv0zdpDRntHJz4JGpAyCe\niKDL+wntDdn8znyFSGsKFtyI9R0RpiYu0WjJvFYSEZoHnQITlC/WjhQTAIWnznKmLGbc5fMNvED4\n/NKXRJBnoxmyXJ6dOQmTUH43LibsHGvvTSvHWhdhcPqcppWPoW3ku9cHQyKd07Tv8HxBePjC8wln\n52Xeo0CudT5TB63AnZ97GG8kAnez08V+RASx+brwzclC+tp6b9BL8TV1vVJ1mWuK7+pKvUJSlXu3\nZWmyHUUs72okynSgoD6To4itAzEPjpszHKrfaQYRQmb3Dv2SCL/y8jya0c7dcZu9tqwR7/wc5TVN\nsnqHNDUfpjSlKb2N3hdIwbUs5v0KxWaLoCyS+lpms7ElEjXJxkz62q14aPG8FsAPXxUz4amZObaP\nREz2jgYPtEDiXyTUbMOd+/dpI5qrF8p97+yN6P6haIktUpaW5Ien7zj0jXxfWIhYUlTQPxKt44UZ\nXUc093przNlDGXNSqhBfECm//9IGqNb8XUe046Jfp1ATuLfXm5BrmZJdBK8oJlESi8lQTm3cZYXA\nWx1eXRck1LK3KCov/EqRjuY9uBXtB7l2k1P3BHK+lhqW9mWcXddhovkAo56htKIVg5rH4W7v8G3V\nrm17h5XHxWH4yfPLuH2t7+9dJatLcZSjjWNG29/mnEY+wtUix3dF/b3x3E3ujATulr2MtfOCPM7t\nCDLZKU14+rRovBe3eVDNecXxcFeEh0GzRLgpzzmt4ZLuKUP9UHjYbSdo4SDDKEM7pTEMc9KS3FCB\nBK2zi7x5TczR3UkbR0232RnDWPnpHh3xovLzzMMCxa9+c4uPz2lTmxmPug60PSpxxcj8HJVlbONu\nytFQ/l4OcnxN+U7yiPZIvn8269OKhV/nW/Iek0FIFgvfMmeOTKMP3b09gpGsof18yO6OzOtX9wQ1\nWUmXxtwaAKeeXCY4FtulNRmx0pT3my9HBCj6fof0vhAKlutQXGpS9jz8mpQ993Y8Eu1fPezZlGva\nOMTLmK3JhD2sZbF+ocKML4xuFR3OzcrmLRWWKLliSpQejSi8JPe4q/0Vj3oR2wV9Rjdl+6S/pZNy\n2FDW3AZ7UduEe7KIh1WXxV1ZPI/0LcrnZWMVTz9O8KbY1O3mAWFFazcuiNC4/Ogs2zWBzHO9lFpZ\nxhb4I0o1ecb58xLys0/VOL0uQm/v/AHrGyKkrOEmifoz5usBrZFs2Ds3ZPB37nncndEOU/Yu6c+J\nPRw/v46vacULZzzOrXwSADeW3x0f9PmARkAqF5e4vCafC+UmgdZrJE5CPND+kD15rpdUqFxUM8f2\nKV6UBTg4KhJuyubuxMcsNOS92g+LYO4/+wbfNNp0tTyAY21YMrdCIRO+uJWUovZHLD71CAC1V4ZE\nNfUH9BJyXzsTFRx62k2pVPT4wBUxj548I9A5evhxLk7kXut7HRLlW8XzKBbkfoNikar2RHQUzV+p\nJHBuTcbZ3SbyZMOei4dEmtR16k0NIZaGWNqVO7UDZn0Zz8j4D2z/1mKZVW3KY6eiFIKwTH+kNRXj\nI9ya3LdeaxDOyhq6nBVY0LTouW3h4Wh4zJov83T68gfZcMXvNjz9LAWNuiwW63zYenchyan5MKUp\nTelt9P5ACo5FsVWhEBaItALwwodO8yvrAlXN3IQ7WgxS64ZkM+LgKatHPnR86lU96KNqkfS1Gs4Z\nkhYFthZ6iyzVRdK+lAkMmyuOGQ7kWr9mMdJeBnXXwdYKzUdNykvaZKSqVXa9/oAt9Ze/nuzz6VSK\nZM5eWiC4LM7P5tUmuR4eU1sUjViKtshm1BlWgfnLUnRUSlbxtDGK2xRIesrUqKYyznKSc2FV7tEf\nPUHUF5gfJTcZabtv35XxVCmz84o0BXFw+JkDQRjjwOGaFtdkOxazj4jmOh9IBWSpUSeIBGEUzz5K\nKxEve0SXmtHKRqeGc1J9Z0sVoe10KC0JOqiFJSoI8lj75Yt888aJg7JHqo67Jc2QeixY4XRd+Pry\n4C1N1qoHLJbk2qP9PkMtXDp9WRBPfRzx5btfA6BQqOLVhcfFgkdPO17XvBLLHxZkMtt6BoDO7BGP\n/tSfAmCGmRcAAAAgAElEQVSYhrz00qsAvHY8IIg1WlUts/yYRJ16VVljhC3GE0EbmekwnhUeXfjI\nGrWNewC8pGvzcDB+0LTmiTM+q478rlvOWa5KUpfjVchtWePDHYEj6ThmsHRSzWqRlAQJEDg0F8Tx\n7IxyAq0EXpqTcxyyQgv1i2K5VexQHNf7Lw/Z0p6PH/o49KvvrsHN+0IokOVYg5A8z3By2dy1yZjl\nBZkgRjGrS9LFxusdMnFlsQWaxXiUTqgW1beelihoxtvkZo/iOQn7LNtN/BlJFho9LQv75tUtCpo1\nuXnvFhPNz8/8hMlNmbBXjMucNupYfUI27h/sjuC2PCO5G9P4tPxuoVckduWaD11cITvS9vHqR5h0\nU2KFjMY9pDjShh21GK0oxtcszdbYpVQVgVYuFslTDa0dpHQCze7bHDLSKMAru7KI1197g4OqwlNG\n7D0jZxIM/q9XaGhD2w99zOHMVe1apVWPTz+1ijURyF1u1bAnMg+TtEuqkR3TC0gDee+Bhhuz8gRz\n+6S/5AXKayLoTGrx06n4SQbHEUeeRIxuacn5emi495ys6NxyQRuIdOMBh6EIxqI15IwnQi0YyvO2\n1p7mkvZiDBvblDSUVy8YBvuymeZmHc5oY5hgUdZKwS5iFuV51uMfINPejS/cep6xI7w9BtxdGd+J\nibo536Py6xJxaJ+LOX9ehMzZtTJfvyo+k+RVLXHvgzcv42x2C5wU3S7NLWNrY5/ZWsCgLbzd1Vbu\nUXmI1ZdxDkspWUcre62IwqG22rcrOA3thpWdVLOG2IiwMVnCkdZG3Ei60nkIaI+qTCrvrnR6aj5M\naUpTehu9T5BCShb1wKlga/pspexxsSkatrPWpak9AydejSjTo9mKojHWGkskWn033OgwVJjca/k0\njxSuBxmzHxfN/alt6RJ9vrrE7z37PAALZ2YoOSLNj+8fsmXk3l4hZGVFpPUjfdE+v3d3i2Qiz3jN\nG/DRb4qGWr5w+0EUoWgVSRfFgXWSXmuVPda0FmN/PcMsCwR3vCXsvl47Fi+0VZjH09+3KJF1ZWwH\n7iGlVK5pNC2Oe9rDL5MIh7UYkXdF687kLi99VkwJ3wQMq6KBNp9N2XlccjL8gkDRmaSBVVJTyk2x\nK/p5HNLf1BOJ2Mb2BD6X9kSzXb2+jalqf8g1l3KqMDlqYPSoNHs5Ju/LUivEoofCQsATZwXlXP1G\nSn5S/3Bzm9tV5VfDZzTQLsi+3Kuy3OXJdUGQu3mF/X2J1iRNn2daMifhUUTYE/SSoi3+szK2EaRQ\nKgWc+mUxeQrfOua1l8V5etwZM3tK3u/Jz0j/hmTriBe+LoigVRlx5oPy99Xm44Tf/kcADDU/4k4W\n0tzXFOxHetRrgt6Wyh7pSbVnEjKr5aNBV+Zscz8k00OLGDqEh5raHKYsnNG6mfmz1G1Z95NYmOVY\nPkXNWcmKTdJjWRe1fvQA6URbbV79g39PjkZjzKox5kvGmDeNMW8YY/66ft80xnzBGHNT/238UZ8x\npSlN6d8//ShIIQH+mzzPXzTGVIAXjDFfAP4j4PfzPP97xphfBX4V+Js/6Ea5bZFXA+zIwa+KNBzs\nhRQa4g8Y70SY5RM/QhFTl2HPaP8DF4vuSR//2QLxoRaijHyiGXXAnSrh9rVtWkM0xqDW5IMfFT/D\n5jVDLxIN23YTQo1JHU4MxhXtt/CkOH3ar9sQy99r7Zjg4xq/SmpgyTjsQgFSPdehqVqg3cPRVlye\nY7C1T/8wzQjUeerGJ+dQpLh6toQz0yRK5BkzBYujW5rdZzfpH4m2LWr14e12CVvTa/OSYecxcbhN\nfvtNzmt4a+bCAmVH8hB8deq55QyvqmclVN0HDWSNXcXWRrFBoUCeihZ3ijKewswc3VD4nUcJblML\ne4ZgNFt0fGtI1ZbQ2f37XwKg397m65E4D/F3MXru5rrnULmvvTPKyYNzaOxzgsAak5CZNe2XEdkM\n9UyK3vYmqWaQznmGLBNfRG9PtPJMo4al5zD4Z3xO33T1PWocFdXxV1ugORQ/TnH+aeHbwQGTK1rZ\nGddYXvoUAAutJZ7TKlZL8xyaGZzSJM18UsBWdFPwCtiJPG9iYpyCOoe1TskfpDgNPa8yi4li8eH0\nMgtfOzf788fUZoQHlqZ+O9U6lmZQ+l4K6icZVsqcRG2jY1hMtNLyHdIfWSjkeb4D4mrO87xvjLmK\nHEH/S8Cn9LJ/BnyZHyYU8pw4jkkGPeyyTKxbyylrZdnpWpW8oM1LnBIlR8BHpPkG/WiEF8qrtKIG\nk4kwIRjvEB4pd85UcDQWPHYkiWWmUaeQ64lMl85ydVOcYStRlWheoPapnsUHPyCLd3FOBMh88ll6\nyrktN2d4VTbF5E8PcSYy/sQbYGlrubwjEDY8uE9/KF798VEHuyEbyN0v0hvI+eu5RgDmFmcJfIWc\npkNBhWW+nVHWKMgg2mP1tCzIT6kZ8eFZl1sjMXNCE9G6L1V9t1sZ+7Hw4lP3Yqq/KoLRPdZVbPu4\nemS5VZgjVyEUD9ZxHXGMpamP0Q7Uo1B4WM/LmDUZm2/mtd8kmHKFdFfbvddctnsCwSurInjOlnzW\nKgLbf3PjpAc0PDw/S2rL93t7W3gIj85rhKNxFLPekbZrjYYFb8j4794dExiB46lXoaHXr9yRDb+9\ntI0byXdR6nF4U+oPrt2586Bk/Mmay/zD4mz1NGlosVoi/4hEaMrjmNVlTdeu1fhMJuvwhh4ke33T\nsKEC4olKBpHMSWz1KVoSoXKDiEgLJLrHsqZzF+Yq8ruiVeZY2+RP+oZI90C8F9PREnbPk+c6RUg1\n9X5/e5t0JML7rO8wsUWwPr+/wQvXeVf0Y3E0GmPWgCeBbwHzKjAAdoH57/Obv2aMed4Y8/xx792V\ndk5pSlN67+hHdjQaY8rAvwb+qzzPe8a8dcJtnue5MeZ7Bkm/8yj6y2uz+ah3iD2JcLZECsbpJiMN\nz+WRjdHUZIsqvvYIcPRR4zxkMnD1vil5RTTzME7ZcbUL8uvXMGWBsKknGiUMU5I5QQSze0XuN4Ud\n7TsTjkeiuz5aPsXjn/mEXKPukWGziDUUaX9+YpE/ImObvDLgxINSjnhwLPnwSJDL8DAmdkSzhV6f\n8U3RYslMwEDzCZqq+RvrQ5IL8gw7CjGaXmvcHr4l71cq1rEq2quhrJl7w5xz5+U967bHsx8Qvqz/\n+ktUNLRY+I+LlDdEH9jabMR1fDJftXw+gvTk7xaxnt2Zbh6RaEpvtyMafzjfp3QoSMKcy+FE52cR\ntp6kbaUlPE3j7WvYN56Bo5GgKhPYWFrN41cDrIlo4+TGkEDTxtH2anbZp6btz9Z797i9Lz0b3HHG\nRDMBRy2wjmROOhc123DfZTCQClV7d4/tI9Gke4MDxkY0/RPVhMeXxVQ8fVbMiOx0CeuWZk1eeIxa\nQ/jsWA69c8KL0jXh8UU/YFjWOb+fsKdrdmF1zMCR93cmEWNdW4n2v8usAbmGHpMgJKiK87dS75Ae\nyyLvV2KiUO5RUCe3bSWEoSDL0Dli3xbeDms+sYZ+94Zj0ENi3in9SELBGOMiAuFf5Hn+Wf16zxiz\nmOf5jjFmkQfndH9/SqOYw/tbRMMY6yFJ/kmGUB0Lgw+LMZbC/Cjuku9rTYTawEXPYn8sm2pj/YBh\nTRb3TDqh/5qgkGBmQmlVIaitlXOWReckj7xYpNyRCMZO3Odxjekvf7TOqqb/Gq1ELHQNxpXxHPgp\nX/qWPKPYeo1WrNWV6QwjLdUe3ReoOllaYFb7+gXFJTqJQPBROaOlJ/oUQ7lXFm8RH+rnURX6CjWj\nCaYi93AnkKlvA1f+LdUtmmXZNLmxOfqX0p04iTM2NOHqc7++x6dXnhUenJG8AkKbTPma+9uYmpgg\n5GOyWHgbHQ3RRkZUa9ovsO9TntUelL0d4rZW5EUDEj3ncGJCRkOZywtz8p6PVR0aSwKHv34/UfEJ\nK16NeL6p81TgZi48GI+0I1XJIs81Oa07ZrAvm3viGn7xCYHo3XaRYy2P39QqUmccsTnQYwDaHRJV\nLJPOkPZY3nvHRGw9KYLj6aJcu5d5XDLCz8o8+LlumTRn5UA0wKbmsdzfP+RYj4k/v5ZgtIf9KIyp\n6jOiYIilpm6hq0lPvZCdTHhRwKaFrJtKsYil6f2TLMJoUl4nlIiLa0qUNZV+dDih3RezqzBIuHRO\nxnz8+pit5N0ZBD9K9MEA/xi4muf53/+OP/028Ff0818B/s0f9RlTmtKU/v3Tj4IUfgL4S8Brxhg9\nbI+/Bfw94DeMMf8JsA782R92o8w3ROd8si8dkWtV0qASMdJ05N4hFDWN1zYzJHo+ZLQnWsJquOR6\nIIu1UmBhKK81O7+CbYnETx2XMQKvXPXUOwsuPCSOv+1vHfK516WRx3C3Tfu0aLTLpxM81W69trRo\ni2sFCuq0NE7ORFt/7e4OKZySe1fiWfJYT26uyXjqWURlUbRgPihT0mYik4MMb04PkzzWdmz+iGNt\n/hEczuHEgm6YGWIfifPNdnKSXdGgaShIoVytYQLtzRCm3FgTjd7+WsyJJRdaOU5JIGphQbRV5i6R\nGuFVkgzwOneEn0GFKNbWa2cn2McKRW1NLy6Vcary7EneZbyrRyIXXNKyaOvRLUNpJKZLWpb5fd7Z\nYrAu4xyEb/WPHC/UmYuEF/VTZfJDjXaUtLHKwTGVpkBjP83oVjSiNID6oozzgudyUw/u2bohkHut\nWGFOG7zcm/cYaeOYxBgKWq16zw64tPcmADv9T8nY+33mH5Go03xt6cFBNVE/5fhxQWz1l7VHY9Oj\ndqzrcGjR0ahNujfgWA8psSyItcL2zlBNnMRh6QQhZutUM2lJmHs1/JpWWo5DhpYir6E6zL0SZijv\n6QV9hrua95COaaSaLTvj0zzUngy8M/pRog9f4zuOJPwu+hPv5l7JcEL7G2+yc3RM47QsFHOvjN/Q\n3PlOh1FXW3nX2gS2HimvSUrHu22StmzG87MNnIZMlt2NcRS2eStzdLWMOF2QCZgbl+BlWcRf/cMb\nPHtdFmxnAucvKyy/ZXNn/V8AED4rz/vlssdrTW2iOQ7p3NcknYcOcNpqi7YOCOryOS1J3ULW6xIf\nydTYvSEFT8+PDELiW1rhdl/t3qVVulvaBHZlk6oeAFOfOUtaVMi8/yo7x7J5S9rvcDG0qOltB7bD\nx78pC+lzBobayOReO2E3l4NaZo40ZLkypKTJMal9mfFdgah9s83kW3Lwy7G9RKDRkw1LNls0OqKu\nXvh2P+PhD0sPxoWV86DhvSRa5zCXe2zfkN+vvJTypbam8KZvuZ0uNZpUtavNaNfhlCvCcGgJvM69\nkNQXc6zS8imEmtRmDRltyzO6t1YonpJ3ORvI/IZJiOmLUvjkpUUO7ouf4Hfbbdo9Fah3jvla8BIA\ns49KG/nHrU/SvCLzV/OLZFq5e2SP+Mi+nje5qI1nnh/Tlj3KU3MpkR58M44jypo/FI3GRJrAhUYL\nZp0SNe16leQukSbiuRSJu7IHOumEQ/VjnZw7WpqLsG1ZL+t3b3JfIy0z4w5z2ky4eLTPvXSa5jyl\nKU3pR6D3RZrzxKRc9YeE2xPOHOtBID/XYbwvTrByUuVQq/La3ZhIU4KLRRHL472YuzuiPXqvbDE3\nI5I0GY4IPHnFam/MwmNSkz83Iw6bMDnk7/+maNov39wjVq+ua+DZl+Tz/3jnGms3JH/Bz0WC21dm\neeK6SN/RjstuTZDHay92MJfkd+Xza1ia6JON1XtvMrracdiOYsJN0TTWWpOjOwL9dnqSsHV09Zja\nGdHAa3aBkq3FMz1D2hL4uP6HXbb1OD17T3hy7pl5woJoNjM54oWL4vicPL/HSRwoKuRc/xcSvF77\nr7XfZWiRaTfgbLzH4LoWCW09y25XxlQY9Whf0nTsPdHgB4dH3D4U7d9phZyzJafDLTdJ1Izzrpzn\n+m8KMvm958S5+vn22xHCCfXSjKp2K55tpfT1OL37X5Tf9U9lnM+1NX7tiK42FhllEW9++STx62W6\n/58gucG8dtw5jDDqaH1pZ0TzopgEeeTSU4fgQS9i56ogtie/LU67j/yXbVztkZDUHdBTzId7PTaX\n5PNATspjJi/SWZbvjnsWkZq8xxnEHZnryDX0u7JeOrGsw6pdJ9Kj3awsJwll/sZHQzpDQWy90JCf\n1nZs2u05ipocBzIPdw4H9HI1mXoWD+s4+nkFKz/6d/j8g+h9IRQ67YR/84/3yHLDy+fuAfBXrz7D\noxdkYQ7mLAo35OVv7kccTWSTnl/VpJmLdaodPd8hC5nRLMbkco1WX0I2j6+tUP2QJvUci836G195\njS+9LsIkztIHJyPYluFYIdeNwQ7fekEm71fG8rzFn6xhzWnnoskO1zsyAfuTA9KyLujOASuunpYU\ny4Y3xRrlZUmOGe/2sZtiHswslSg21gDIX5VnnCkkVM7L58zNSfTUpN2jO0Tq+/j2i7e5tSML+sys\n/OuXPfJMFkFvK2bjd8SetIxFpmXI4xF86Z4kNS38vvD1qV+pMpdJlmPBdeBxtY2XVih9Xlun2xat\nonw/0Tb73q7L3b7WYrQsPC1htwYpmbadP37tGl95/jUAvq7ZmHn6PU6XBdxwyKHa7VlY5PqWPO/u\nm/LO7caIhfYTAGy+OqE/0jMxXYvjhvhrlvsBjkagntLMy91ynYn6Rq7MPsK5n5fPnz2ocOfwWwCk\nWUw6kHFtDbR8+82cxad1Q4/adLdlyzx/dY9bn5f56x4I4N51HNpaXbpcyXFtgf5x0aOnkL/essgr\nWhGp1aW7nTGeLYLXjpoM9JyJ0UFMoSLzXl9oEWjZpWtkPTpeyKAvQuzGq9vc1db4lhfgWXJtMD7g\nQCNljE9iPD+YpubDlKY0pbfR+wIpRAY2bUNxBJ/Ss/Hc5SP6S6IRCuE6nbJo92TcZ1fbcC9oGnCw\nXGHhjPbGa80wo7AtnAQUIj2h+snToI0+trSe/bO/vUWoDUTyzGDZmlKKTRSLZL/b72G7onW+YYlm\n+In6wzQ1OeRgzlDYEa3ZtXOGmZ4CfG9C71Fxjo0LopVmqgarITkP+VGfg4YmYe3uE1oixe0T59tP\nNCmtyjjDvQK9rmjr24UJ7Rui/e9N4gcHgDS1v2S+PCTW8xAjr8fEVa9jZj04aToGvtWX333wWLT5\no6/7RJfFKZmfeQivL+Mpe+cYL2kcv9RjZiy/G/dkDPsh5Je0HfpKHasvzsVho0tb0darv/sGL23L\nnAx6J9rqezf+uN4fMasdo0e1hNFd4e29BeFh9GV4/oq839duewwLmjgxzrmrGds7uyHesmjHtVB+\nZzdaRJuST/D8U2Xsvjhut2avEb+m28DEJHoy1vqxIMz1SY6vXaDnhjF72hjFeXWDb2pzlqI203Hd\nlFlFB2GYUjilkZ8+BKrxI8ejpDUT2bE8ayGoUFVU6OceBe0fmc/PE2pFpD9rg+bXTDTnY+don6v3\nZc6uR11idWDG3oSvFLVSuOpQGckaOImG/DCaIoUpTWlKbyNzEnf946RWo5r/7KeewWxuc9jTVM3I\nJU3EiTYOYwoFdRj6VYKKHvWmQ8/DGFcbt1IK8GJtGNqbYHt6HmPFoazXJ7FoMBufPBCk4GUFIl9+\nl1tVzj8mCOMnnv4M9RWxtevNNQD+0z//U+TqcJpzXRw9cCXMInw98XrBTvjoJ6WAavVjoq2s4Rxf\n/ezvAOBmhuf1fMXTVhWjacAL2hn5KI4wkdiOk1LCJ5+RTE//1KNUfcncGz7+FK3yBQCM9kIoZQ5H\nXXXWuiXeXJfioXoQc7wumubclUdJWhri1T4Gh+GQqladvvrKNwj7Yu9WKikLZclpmAQehUTGvH8s\nDsA8Srm+dU8+j1OKdRn/mcbD9F1tMTbscPO2+DBC7fXQ7m5QzESb7w0OyUN1DI62cSI9N3NsyBLt\nqREJSjucRDiaIzFJHXJtxBBmUNYj7SzXeUvb6vo2ccZEuzSlWUyq4dk8zkjUl1TyDEZTj2f1rNDE\ndTmruQIf+/AjXPmlPwdAs36B4MoHhUe63m7dXaejyHO498aDLFTCmKYvyGN74w7JRBBkNpaxFwMX\nZ1bO5yjFhpFWSRarVfKWIJpgkjHQ/IayFkQdZRbpWLtLz1osuOI8DasxjwTiuOz0Q8p6NsSlJ9Ze\nyPNczsD7AfS+MB+MZfAqLsc46Nkf9IMhk54myAQFZlqysZbW5lgJBAYW9ezD2POwA4FIi1aZgbbT\nPs4ijCeQqTj0iRU+D7XSr211KPVkozTmGvQjrXZMDpnckQV0p3KVRxfXAMjKMllZ1cVR+N2oOQy1\nzNoKDUe2fp447GjDDSf9GQBe+adf5F9pqe/MnQ7pSXutUY83dDG6GzK2uOWwcCQCMlmF0p44n57c\nqTHzF4QXtSinpIlRqZ53ORmnlBVS9/MRq7NSj9be7jCn0ZWu36esx6CPPXnnkm+RpvfkvsUipqPl\nyVYLtyTvWvUC9PxbakXhWyftMGPLgs8ZEBRFmHrzLstZRZ9RJl7WQ3LqYgalWzZE4oWPopBoLO9q\nrdQ4elH4fN7NWNfWc4cTXapFQzUQATjTcEDPEPWCjIIta6Bc86hoe/XxWObcuIaBJmeZowmH2vnZ\npCl9S55Xji18FWpWoqZWOuDaoTwjf/4u9c+IuVVutmhp+D/SOa9HEXsdiZKNb0TY6gR1lzJiI0K0\nUCyTR9pNXAVIhk090YpS1+JkW3qWRUnv4ZTKOLa2B9CToCrdIkYd3q2SobIo8zA+COnoCVGm4HDg\nvrvah6n5MKUpTelt9L5ACpmBsQMbyYQg1qPFSfD0CLygVuHsRYHPj556iGZV4FOtplqpMKYaCHTy\nvTK5q8U6WUw4EGfQeBCTTkQLp3qkd3fS5UCLZAISqnOiga7eeI2uZim+fu8+i2dFu51kUtpMaOvR\nXgvVAl6omZJWREEPn6HmcLQgsfV/8NnfBaC69yxbeyLte+GITlePKs8yDhVBzOuZDhsDi+pJZWQX\nOtdEY2yuPsfCjsTQf/qvt2nUfh6AVu3TAOyOJpS1sW2ejLCqAr+3d4vMPyJaN8gjBtoApHiS8YnP\nWIvD3EFCrM61+docfvFEG7uE2hTXjcWh6GQ9nHnhWzbv0qiLtirXAmwjiK5Q6GLrITLsCO/vpT6Z\n5iCUhrMcd0WblU2Pe9rZOvcK+NrswCqHynuf4ilBKQuVGYIzcr8Fz6e2JJ/Lbp1c5yFT1FQJPNKJ\nvPNR+5iBQnfbgWws5spWb4yrKcSmKb/bvnqb9VS07rd3DrH+kZTyeE/3WfzbvyDv1BaEEqUBxx0x\nA0fpJrk6TOfCZWLNJ2kPJ5Q0pXm2rB3InQRXbWErNMzonNlOiNeSdzKOReDLHhhlMt5ePWM80azI\nc/OMYm1cW1/g5W1Z95XUZ6KFV++U3hdCIQW6WUprGJEn2iXYsWkUZXGfX5jhnJ55WC1Uma3KYqvr\noZ2F2iJOKnA4qAU4Ch3zaspoWxifOG3ikWy4SCMZxX0Xr6q5/1FORQ8eqVdmGdkC1w+yIRsdmYT5\nG5JGG+cwryCreJixafTcPjtHzxKhmTq88GX5fjiSw1V3t/p4rlwwcrwHkHFgoKD366st7EU5/ROf\nSQwvqA3c2Uh4piGTv/7aPHVNN04vyoavFQakuTaWuXWXyUXxOVw+A0ZPNBrvGCqr8k7dI3n/YBxz\ncEfTa+2cosa2TSEn1YhD7nRAjzV31a4vDGFGS6ujxKbUkGc4Q4Ot7eydgcuMpqyPeloOX8vZUL+M\nW+xR0me0jzKWNYJDt09b/QR2SX01vs/D6rcJAodmWXsmlgrU1ByzTItSSeY9cNQsmysT9bV+ZH6X\nVLtDW9UinX3h3ZnePhNNPXa0pHyw2aViZJx7Scg33tQU66Mv8OTf+R/kWu/kTNAetIUvfmxIOmoS\n+QeMBzK/eTgmSUSIeFrD45sGQSbfZUGOp1WuUX+CG2nNRzQk10NrrJG8h+/ZjHWuDQ2KmYzdNgkr\n6iw66GQMXpLU7XdKU/NhSlOa0tvofYEU7CSjfDhk3RlzSp0oTcvl/JU1AC7NPsyFK6IRgmgJp6KO\nFlc0fqFscMciXS2vBidIId0n0C7QY6uJZcQecY2mGvs2aagmQZCgh/mySoWwJA66ZivgjELJYz24\n0O4l7CmkXA2geqB9/32o1WVsq3bKGdX0H9COxN9asHBiudbzHS65IpOvjXI2QtFMnjq4Zo3NS+oM\nG04yeooqjki59prc76cvfZk7iXj1ZyuioZONJnNX9BToxQm28qpqCngjeUZWd9jZEFQwOZD3cIJD\nomPxig+bDnX1yJtkTLwv94ujCGeiekTbfZHEZAXRXIWkRKCxcM8qE2sxU32xiFpHnF2VAqxBajit\ngODe7hHjsoyzvz2gpxGOS/MBLUW+ka0FPsUil9akEUqjtUpNi9+azRmqejq2HzWw1QFr6ZHydjPF\nDGU8UTRHqnzOCh1aNe2zsT3DRiaZhfm28PjM0gRnW3IBbo8NI0WyX2nv8be1yMnKhCfHN/ZIgxPn\n6ZhCLBEA25vQieR+jl9kZkbzVua1x2jfwakKEnZyGyZazWuVsIuy7p2JT6ZH3VnqlCYoUSnKIIph\nxGAk39/1I8aR8KvaSMgvyD3eKb0vhEJsMg6ckCx2HvSkY9ZiMROToFo3kMhQx/6AmjabSAsyAXnZ\nISvI5FtxShZpDn+YkNgnpawpuZY4p7qeszQhkD8zDnzQa/Nig1yr65KiT6z55X4oCyltGkrbAtsK\nUZODhtjis4lPLZHv40rAjkqZA0cmqB7llHQRPz5jYZ20UT/uUTuQDevoIR4F38fR8N2rnTGeQuo0\nN+zoBrt1p0+wIu9k//5XAQhXH2Im0/Ta7K2qvnSc4CqEPww7pB0xQXZvSO9E/+KYsZ41OXuc4cp6\nZphOSHWVFHbHjDzZvLamOyfFGHcgF5iKCyce9RoEWs5t+RW0hwyWNilZLZW5o3a906qSnbTwL2Wk\nXfsBRV4AACAASURBVDUDBlXeKMk8XNQDZitVm6ymN6tZNDTaUU4sHKO9JIMYe6w+BS2hNp4hT/QI\n9yTHCk9SqVNC9dTb9ghvKHNyWJQQaGwcnIviPykdHLF5X/iWj0IiNRstNTlMEZxNESDZTkJUENPu\nsOcSqclT69sUVcn4mljmtAIKyHNzH3Lt14hbwELezyk5JGURLEZ5URpnGF/2SLHhYJ3kcbX3GWjP\nTv+My76r/HqHNDUfpjSlKb2N3hdIwWQZZjQmdDP8lsbxi3Wqmg7arC7jKkQjjsgt0R7GFylqEZD1\n5bu0MCZXzZxODMmOSOs8jTGBaE3L0Z4NkwNyPVK9wJigIt7do6NrtE66nHk+lla1HSskKw4zUk16\n6i+Mqe6KJK7XHdbWBKo1/n/23izWliw9E/rWijliz8OZ773n5h2yMrOysmaPbdldNpbAwiC5GboR\n0OqGtxYSD9DwAhIgDDx0Wzx0C4HAQEvGMjy0jdztdpdHVVbaNWRW5Xzne8Z9ztnzEHMsHv5vn6yU\ninams2xfS2dJqbtzn9gRK1asWOsfvv/7pkBky07iEF1qBxrXduXavfYGag6Vhk2IsJBd87UhsQtJ\nAp+CHj/X8/CHR9L3ySxHwLH45skInX8kfbvzs1Jw5LdzJCfi+iyTLrbII1jkBslILI84TlEOJGBW\neuIyhE80LCo4Ww5QEYehnQwpaepSpZASnuzGhNSmUwQ+3RVlwSUICdYFXFK8IzKwbFLYe7Lbdd0Q\nVVsGee/+Fl7n5tgKLBgG+VbNFTaWYgGqulgB/aCNFs32bmhDMbKrfR+eR5cgLaHWFM3cPU3hopyK\niWgpB5pRe7vmo3BkDHXuoeZL8Vq4I6bSYJkgeCDPtFvL4FvS/6PSIKArmBL/cjKa4GAilsKOO4FL\nfoq2jpC7BB7VNFoEqAUBra7Mhcexsmr+JcVetUzgrYVx6i2UnNcmXvMqKKAj74hjRSgL+X7H89Ag\n1+dsbCNJP95r/kwsCnkFDNICtaVGv8vyUMeBs02SzGCB8LL2wQZqaypypqs8DwYywEXoQRmaWU4N\npUdz3lWw1zJEJct/SxsJX+4ILkATPbJCDLZlgH3Hg2aUeHcuxw5hcJP1BZ+3QpT78n2n18VtVgk2\nP53Df18WmX1fJmCj4aH9gixkVtKDblDJKTtH+4k88O67MiHmywWarETs3rBx510xcf+3wxg+SUnN\nxKC+IQvLfSo3/Vi9A4vprc2yxEks97RllbDX7tFihsxm9SQJUxv7HdQYA8iWBQpLCGdUWMHO5f5L\n14LkigCdMrNQOEjalID3k0tkZZVqZG2ZXgFcWEScWvTrrY0cNfrnfgO4lst4/sHSoEX3brNuw7GI\nLGTas9aM0GYVbOhYcElx7rgltM0FqbIAl3GlYj0X3EsmrCIqJYUEAFkBw/oCYytYC1ngPboRe+4C\ns01qZbY7WD2WmINXlpiSscle10ZEObZcMec95aNtybxoX7eBAcu9NwOEPcbCIpZLzwGHtR22awO5\n/L30E1ib4rpYnoJLHyyl7kPhunAJ2rM9F86anCaoXaJ9szLGZyjE/FHblftw1a7aVftQeyYsBV1U\nCIcJJmqJvJTVrqV8dFi1aM0LZIxq26UPl5TCaspqyGAGi7x+hU6hqKyUezFSKuikyGGRzy5xxcTL\n5jlymuKFZ8MmcKgTbaICGZzrC5RrM5FS4Nd9D5FgpeB1I9wiWGjz9gb8lpiM+vAB7rwkNQNBn/Tl\n4eeRK9lp7GoTRWutLGTDN0JjtkdadOMrBDdkdzlbePjihQChlqsDfLcSKO3DkYFNHcMgFXdgcFDi\n+i2xUEqnhGeYcVilyEhHZqUZypqYpW5FF0eV0BkZh70K2YiAC2sFzZx+VWoYQpPnlG7yltllVaae\nFCgTcTXMwIZPTkT7ooTySV/nyA4c1Lpwc3lOkavgbsrza59XGGmCjJIVnisJPorJyt1eIUioxp3V\nYRlaPzFQ1tdBZQ85QXDkHQH8OVIqgKmqhFnI+cpII2WgcF5pKFbexjT3w0YTNw5lRy+iIZyF3PdS\nGXjUBTX8fRqP0GrId63GBiLOT69cwe2whLPRhp/J+VREdaeoB9uWGgetS5SkandqPhTnFrIMRUG3\necrx7trAnBykOr10V0wjgF1Q1cqxYG6tpXY+WruyFK7aVbtqH2rPhKVQaoO5W0IlgFnKKpi+VKAk\nzHfuxpdScCrz0CokaFURUusXDijTACvRKOkDGzcHSF3lJCUyT3ajhKmwVZDApSBJ6uSwy3WBVQkn\nIy9CVsBZi/6t9RRaDupMm91u7qB5XXYKL/exmlKT4mSCkHoB7S1BFeq2gaIuRGXlCByJmRiVobtH\noZoac6QTICWVXLssYN+QYz/VifH2uxSOSVKkW3J89Ib0cdQpsDFnIDVcAKQam49mKDIJuj56+h6q\nx+In5y2xGKZphmUl/r5ZOXBdBu0yINf0/eMCZp3282ULXlkpwiWLh0ILizVlcH2J9mPx5/0tB3bO\n+BCl6cKswCJjMVq/j6An9z/z1Ae+/1zh6QYVv7njZ4slxjO5SBo9QWso41koBYTrwh8bFuX78ozW\nZlTBYizKrkpkbWplxhMYoiWtuQ9m++C5tAhSjdUGYddxD6kvVhoWGbK1VTSR/qjMgQ3pQzlYIeu1\n+f0HAd3a0oNpy/ElA9eZP4bDNDIqH5oQdCgHSNbxjhKKIkDWHmMERqNkUaDj5tCM2/h5iaJkStLN\nMQ/+EgYaUVQoxyuUtkZ7R27cSQMMz4iNzwAnlkk8skrcoondCUllvrBQMeij8wqmI2aUW9gwjPCb\neQI05HhnRlBQOkTGoE3k12CNqf3nFDBLmqtbIZJUZsp8It/ZZxmI18HCPkd4IAGg6s4CoFBqVcvh\naKparclUMgflhNo4egrdlUVNRZuw7tBEfSyTZz78LlBKOa33pTb0Q3n4jUkDPxvIC/TPpsf42oFM\n2O6mLJqdewYXfSmXdpzPYHNT/h4nCodvC9/fG4NDdDMZ2+7aBD4MMaGgju1FANWWao6HkguLWeUA\nq/IiBrKWABYX8rsis2DzvTzTEzg26cfDPaghK1656Fl+/VIT8/lHm/gnLGePkgIJJ3HaBtSCtHcu\nI/JnM4x9Ca5pu8CCJriKMrinxGx4PmxFTAK1Sa3EgaOIlsoT2MS4ZK6PfCZjofMV0rW/kQlPYuIe\no+Aiu9Wr4BLrkmgFi2X+OedHXhkkVNZy7AUMCVdsZZBQmxJVAsMApB3KfVpVBMM0ieq2oJXcn1nO\nUaYCtKtaEXRJgFopEHwz9FFRGsAkgMWaCEe3YIck15namF38OUnRr5tSylJKfVsp9Rv8/5tKqdeU\nUveVUv+XUkSlXLWrdtX+UrQfhKXwHwF4B0CD///fAfh7xphfUUr9QwB/C8A/+BedoIJCXClsVi42\nSAjRv+5B0YQ7HY7h2bLaLZ9M8ajLIqAZBVScD27FURk0LQEnakHbLDTZm0KxKMXpy+8aRRcLMiNn\nWYVovZMsCsRNrpfLFCuKVgaUuB86FW6Tgqtf9BHeYjVjrY1qLAHBiXGRP2RV4o6YnHb+HpYDbqUD\njcYPi1thV1PoF+UzWFyk2z1MLygDdvt5NBzmvH+shuA3hD641/t19AfSj4uJ9He61FgsxWzve6eY\nrUV02kCDRTL9kwx2c61cLd919AQx8/ilNYO2hWDWC+ZwWVVq1evQDLraxASkiY9zJdZNOYrR4I7X\na2+gqov5vPIq1LWkYkuSh6qmDTDIaTkDPL+U/v+G61xS3b3iBTB1uV5OqTyrLDCianO+MAiNPLNt\n7cBtyzlcS8OiNaHKNR+BhyymWb7hXOqEJOUcCxLvpiaGdS6WiUvLxJlrTEPS1K002DU0DDCv8ZhQ\nnn+308RgzZWQHmF2KMHf/mYf3lSOmfYmuGAgvM30Z7+rUO6KVVEVKTRd4XSxQKbkmSweDeDZtCxp\npcUdwJoQxh4GKMlsrbdrsOgHuV6BXknX5CO2T6oluQfgXwHw3wD4jykl91cB/HUe8ssA/kv8CYuC\nZQxaRYEiAgKaQ/1kDw8XYtadxRNgwIrC4xmGc2oznsrDOrnhoUaGnk6jDt2W7/NGHY5m7n2V4YRx\nCZ3JJD49u0CzLrj3NLZQETegtA13KC9NrlYwVJkak6txa1lgRcKLOBijraQs2Bk7mM/FZXjnn5/i\nmBVuP87ctp/YeOtY3IdazcMPz+X++l/5cfgkg9EdwfXHv3mA3/wDYRn+zj98C7NC+vZTGw1s35LU\nx+PvznGwWLsPMpYX4xVul7JoFkGMtiXj4vkVFpXcUxhtodGUhWPFst9BOoBhHGVlKeRUG6qUjb4r\nL3Rzvw9ty0szOhW1LHu0QosS9+PMwG/KS7HTDqF2xQQvHhxg4QmcOljypas14fBcyjLo3aVE/Rsa\nQ/rUx1mOFsFQeSX9fcdUqLFCc3pRIGQmaWAdYm9f4hb92jaaHda5tOTfcuVjvtaSfHeKx4/FBF/M\nJniSLPi7LtoBcSSMZUQbIW68IUxXZ+Y+mmMZoxMNeCsCubT8PrZz1AgDPz2o4DPbkzYKuKU8h+qk\ng8P7wkx93JNr3Oluw6ZL6PlNFOQCTRcV5k/k8/HiGG6bFZqWPOx68zOwOYZ5VsLO5HNp2XAsxhQi\nBxuvfDxj/ZO6D38fwH8CYM3X3QUwMcasJWkOAex+vx9+rxT9Olhy1a7aVfuLb39qS0Ep9XMAzowx\n31RK/eTH/f33StFHoWv8fojtvI6mJXyID1sLPPy2rKTnT31kTUb10wIvMCKr78oKeHoQQ0N2ktNR\njD1aBypLsGDc6GI8wTEDPKPvyM6dujPsUH69ea0N+4zwaFfDzJj/9eqomgxg0RVZ1i3sMnDWzvuw\nnHXI2sfsiexM03oAh/wFbiR59ePoHE8HYsrtmBxnb8s9RTtvwf8hUdrTdFUK7eOdSszFIxTYJhN1\nPezhsJSd4r3oEAnhvO/JhomVv4L/UMbtxfIQjXUhVVXBqYmFYQfnWB5TQTuSHWzl7CD35STBeQTP\nE0TjcBAh2JD77xXlpZYBtIzFUX6KMS8+ckc4o2wenBFapVgbWbhCSZbqMhSXov7gAaotcVGsXKHX\nlx16sRmidih71aap46wuD1Az2OdZGjMW+Lj9GhQtKKViTMkEnpSnqFhJ2NRiHRXWHJMLse7uHx5h\nyMKs1SyEVZe+5XMXi4AoWRa/5XNgSWj2ybCBMpTxCtICpUV6vnStc9pC5dFqgI2CO7qatPBgJePp\nzs8RN/jcY5k3ozxF75QB8W4Ip00yoNLBgHrcQ2PgzEnm0qGLeb5A1JM565gJFCkLcb5C2ROryQos\nKFYNf9T2SQVm/1Wl1L8MEbdrAPglAC2llE1rYQ/A0Z/YCa2wEflwwxDVNdYRZD4WZ6wyCxYYHjCO\nMC1wRnz5o5U8zGvtCKuZPIztoLyEe1b7fRzel9/dezzDoisP43AqD/P0fI4+sey7owQ//HnGDnSE\nGqPyVVfBo1bihCnS/irHmGQoj6szvFIQkHOzj+d+Wq49+b9P8Yjkn68OOSHKEi/syLHxYo5FjaKi\n5QJlTDEQLYZV3lniyz8tC+RXNvfQHYk5GHYU3G15QarJI/z335H+V4WMhXta4hFVjqxxB7f+NVb7\nrQzmK5qldR/bpSwQfo+1AycTHB3LeS9WI7gLmYz1qEA4lkX2urWE1ZfYR5iKST18801885Bgm3yG\nNhcQL3PQdga8XhO7FLpN+YJFTQPF2g4dAzmfyaZdg9qhf92NUM1YHbuSsUqrJSyKEFuTFgpDAtqG\njU0ybjUXJRqFHBP15Pe228DwRPozfjrFBdOMZ9MVjh5JnzrOEB0KBdWpFboTdbFF9ibv9hJv35Pv\n345tqJHEj/IZyXZRYsXy9J7ZwoUnf//9b30D52dUk1oV2LolL+y/9OI+AGCaKozPxb2y23fhKgEy\nJcUxEqaOT7MVAtaK5GttyMMci1dE9ez2ThfFShZhz1LQJJdB1YApPp4l/qd2H4wx/5kxZs8Ysw/g\n3wLwVWPM3wDwOwB+gYddSdFftav2l6z9WeAU/lMAv6KU+q8BfBvA//In/UBpC7ZXxwvhJq5tSr7+\n7OkI9k1KsB3soE6uurRpoMl9d/0mySNsoLbWv44chA2u7PY11JtyjmwjQ4fAocUezWQTICRJxZ3d\nFmptsQhcaGTcHSLLRhHRQqAk3zSy8TJZQ7aXDojtgWp20aC/svliB3hE2rjPrmXrp2is6aqNBfvx\nY+m+saHctcsj97nxU5/DT74nlkb9S7uoxhQLaWbIqDD94l9/gjvENRyxSOq8MjhYyGD8+PwYB3S1\nOmmCWk/2gDvTPQQ7VJhmsFZtWnAg99+uz+HQLLeSFBuhuAR+7xZcBgGdFhmVay+hfVvwDziP0Oox\nwNXZQrIp5wiTClbU5qMi63Tbh8fnWAYxuhDrYKEtPJfTMtnwLwlMDlnYtZ0ZBOQh8DsNaHJEtO0C\noCSAmZc4IjS7S0Baq9ZHfYvs2KrELZKv4PoEAYOxKzVHNyBTdlfmYWlszFx58MtVgYRz4aZrY2bJ\n61PP5Rk07ACZL8/c/fwO9Fvy9zs3NfZblNO76eEWyVXadZr7qYIVUYav6cKqE+C13IG6KRawdzLB\nRleCkVZEN3argTYBeVZzAyUxHUWtBZtFUFopWNnH2/t/IIuCMeZ3AfwuPz8E8OUfxHmv2lW7an/+\n7ZlANIa+i8+/sI9mvY7CyGre7gR4qUZmoi+6OKskvTUerGCTXTgkxdV0OrsspFJBDfNULAI/Aqqm\nfN7KDHxXjrdK2QUq30J0Q1bfnvwYAFAWE2SMKdRyB6FPgQ/K1X25FqIsmd4KJ9AVuQKCAM4NEQi5\ncT7E/ouywxrSxiGZwxqLv+9t9xGzBNgc1YCK4irML+u0i5rL0tzxHFax5hV4HkFL7sn81mtQ7h8A\nAJqh9CevNNqkhBve2cbNcl1UNkdC5KHj76K2xTFiCm5aeGg1ZQfq+RY0YzRID7HVkAIrp7sHix5n\nrgV7UbvTwZevy3NaPh4AJZ9fu42YcGWnFsPYHAPyMKzgwJpf8pmh4lg8bwErUpqdX1RYE3FtkeG4\nsCzcvCHj2o9uwmtJn51ihPF9GbuhWUIRvTpnYZe7Z8Ml7dpuaUE5ModuWhb0nlicudtEg4zP7abM\nEZPOUb0p15hhhjuEaR/XKzAzinjNFLVh0CZxbeS3ceNHfgwAcNe8jCiR3y3DJvw17JOEsFHuoCAb\nk5/YUJxvwU4bm+Zl6X91CkVo9o4l70IabGPrNi0TRHAY/K1sDV2uWaAV0Fib0R+tPROLguXYaG40\n0U9cKPIdLqwzuHwJfdPDTl26upFqFFQeMgymjGYx3ID8iXMFbLBarHQQ1mRy90Y5jC+Te11eroM5\nNjsEhCQFEvItFMiRD8hd2PXgcbEAI/2tT9XRvE/TcdpEKe8V7JkLUN2nef0mTEXevWQd3Tao7rwi\np7IvUN6TibeqL+G9JvFYr0dosLkBRbNd+QpgRaGzmKMg3LV+x8Zze2KWf+sdBi39CsuuVGf2ru+j\nqkhxP0sQZ+S5rMcIyA1hk66tHjagyEHZWClUjkxis3ELLjkpvFzBkAwGKV0718JWIAuMc2sLq4ZM\n3GwRI1gywJUPUc1lgctbZOA+niIhxXmpbfgErVVNG+4hWWliF5XDxY4w6LpxgdmaUv0CETM8qtCY\nVjLOhQ1YY0Klu/L3ZbzEqpC54NqAG5I/0VEobQlAtrV7yXEQkFviYrTCcClBy6PlAisCubY2gHhE\n8SDCw1sXbdR2qfq0AmwC0Tq7W7BB/E3lwSzJ1kwIfoUV3JWct3JTKAa0HRTYiij2cnMfZot4AyXf\ntbwQPrMrjq9h6JouZgUUceiBVpdgp4/arqokr9pVu2ofas+EpeBqG9ejHlQRIaEEVzoBvJx6Ch2D\nDe5Gwyy6FNlAU0ynO/kUDwaM9tkV7FB2Td9sYb5kKsx20ejJ+ZqKuet5GynVlQPbICQG6/Q8RjyU\nczR7PgoWSs2IHtxP2ghZ1Xe6OUFrIihEvJBD2bILBGYTFTULMJRdx+3ZQI3FM4MJfDDwNbkA9ugS\nPJW0ktpewQol7Wc5e0BOpqRGD25DxuhG+SmckL1oRebnXVvhU601a/NtONSVnCyB2VRQiA1vC9d2\n5P48m9WLeQ15yt3cnsJtynmDqAlFZKYxMSpF1eVzPrx0jCaDi/6dDrpkeV36BU5jUr45CkGd+Aam\nFpXOoDneZh4hYaC0CQtj0psl2QJDBgxRyj15lYdug1wBqQND2LQJLIRa+jlYJHB71FYgBNmKLRim\nC7O8QMACurAoMV+QNNbKYUfSj1JTO6PIUc3EetuzMhzQZ1guSpw9kUGoTeS7U32B3UfyHOvbU1ic\ns77twrIZYFYOsC7kq4iFyDJUlB5UeSmy4ABUvkJApWlnP4RN5iVDC1pnLlyyYGvHRkZiWq+q4BCT\nUxkFVX68lOQzsSgox4G1fQ21KoFN/sV5liAmqYk3t+BwUDt2idyTQYmJ8ffsBCFfjr1+Bx3Kj/th\nHVmL0vZ6jIA08I2ePCw1W6GgaGe6Gl2axlVS4dTI5NiaJXBflAnWJmw1/0IPGyc0B502bFb7wQ6h\n1kQYnWtQY1aq1cU8xcoCCE7CsQIo7gFvBxap5qtNLnieAnxW7zmbMGR+VoGHkpWY+pqLF8p9AMA0\nEtO42wbu7kqc93O9Ph7RpAwaPmqlXKMRdODWBaeg6dfaqYUyJlWaTqAJlbbVFtYaxJWeIZuva6NJ\n17Z0GJABnGUCqy6LTGmA7ia1JOcxHEbU10WIeWijojiPKeeIOCyregORS81EHcNQK7Ik03Tg+GgV\n0s/cT1DQF3TSKUrWUmzYLp7fFVcp8hlT0AYFAU1GZ6DQFZxOBIel9EpVsJM1aQ05DtMMqSefkwKY\nkbRnY2pwxgrMYCB9aHnlJbjJNBpQJGrRjgtFk1+FGmCcx1A63swS6BorI/U5LFLTmSq79HXttITT\n4utqGF/q1KDpSivLAtL1fDOXPoA2AMqPF1O4ch+u2lW7ah9qz4Sl4Lo+9q7dhWWd4OmbUhk4jBMU\nNBnrsY2lL7lgTzUQsBDFUN9hFMdoN2Qlvr7fws46cmyNUZFodA8hcu7+5kz+dfIKNiu7iypDmq8F\nWVJomngLM8PsSJBpo6diKfyHP/tT8LZlN8vvP4BlmG82DpQraDSsRtCuRImrFTn9dY6ChUSFymCd\ny33kWYRkKvdtM4tSbhl4DEgV5RnsSIquVOnCIvZi+nsLLG1BvO0zem1lLopQ0JGzPRt9I9u4CY5h\nj+TcoduGoqyazWrPrBhAExKdDCsUNInz7bfhpWTNTkIoEoNUSiLojh3CZdYCqYWSRC5BfQNqTCET\nt0IeTznOco00teBT2xN1D8aXsdhv9DGuyzkGx3NMStmZqe2CUmUYxfL3WtWEayhjZ2eokVCnETWw\n0ZMx75DObTU7h08kYEf7cEhTZ08zVMRk+E4dKpJjilwsL1U46JENOWnlOD8Xa+S78xj/bk+ery7F\nEnS0BlHJQAGA1ZDlcgFN3RLYLYBszdmSwjO5BZwS3n5ukIWS2bF0B3pDLDqrsgByfFgOn4ftQblr\n3AtgW7QwNEADGMpVuEyTfMT2TCwK0Ap25CLRJbKJvMST/BzVKZmGuxaC1roa7AIqlZe6oplVOS0E\nlBPPj1McTCl3bsUYkD/PSlJEjEHEMQsFtEbPEFJbpRhpecGO0jHm9MvNYQMTpsue3hNzPmhG0Mm6\nJPkVpG1xY8xpDBNSq71WwShScTM2ArOCIbchwibsrkCGIyuGoSKVukkFqayNgnVl2stRrYVHkKJc\nyAu99Eps7sgidMaX49aNFhq3fhgAYC/sS1x/lUVwG5KSc7oKWMisKWL69W6FFYVT4skx5iu5dm2R\nokYocXBmoaSOZ1qRFKYTI1/j9qM5bE5Ay5pDa7o5cFBRGCZevzWHKyi+uNoNsOYbDq/XMKdrZqo5\nKtLkk1IRmVtiWVET1MwQ8j58V8GjIrF2K2AsPxhwoU+y7PJzzXGgXFnIFvEMcSr33c5K1AOq4DjS\n31WRoqyRWMXpYExlsGVeQrFMWifrdJaFuCXzLVyml5uME+XAehHOJzDMJBmLgkNxAsVpU9gGmlD3\nop9fVmKWrRKKbjNcCtykPhQzcMoFtLMm86kuuSaVUpfu30dtV+7DVbtqV+1D7ZmwFCzloO5tQgcl\npqFAZk8P7qEVsEoyn6CZyMo+z3JYuazGQSir73ONGs4uZDU/HkxROhIMWy4zzCnDVvMsqEs8svw7\nPVgi6MkSndUjOGOu7LUSd5fMle8D7kz68f5DMfcQB7CYV4+dN2AIdNK7KUC9P5O6QEohmhnP1S+h\nSU7ihRrVy2IGGrcBRcIOjMRNQj2/JDTRXgDYMi5VooEai5KGc9yfyLl/llZAv7mJdiYWyuODc9ym\nOI3yQzgkKim1Bay4S3F3KYYGZSYmcxrPYVrrHbiHnOOC5QQVeSMLMmPH8QgGk8trNKlT4BZnAIlT\nEACGlG4xVa4xWsKJKNeWhsgmMm77nVdgtcU6eMc7w2ws21yD7sUkizElo7SbaSgG2izbQcT8flzY\neHxB05xck4UyKI3snjO4KGmFVQoYDaRPdn0ONyLexSL2ItCoEVbd2y/wnbfkOT1NCjgVsQV8i9J0\njnjJatD8GKAATjEpUS0kMFvBR0UtSUXtR0un0A3qN7R6AJnLy2WFbCVuZa7qqBFDoYg9KZceVPgB\nX+Oaj9PWGupyu1eXY/9R2zOxKMBWqLoerIMEW4G8SGFRwqwrPnMDQxPWgUFCclTPojJRr41NR9J3\neX+B82PxX+v1FppKbrGzqVGQM3F0SNBJtsCRYfRa57h3X9KBUaPEq32ZeF86KHFQE798GBLlt2VD\nM03l3+wgfcyXJm0AljxEHbZQlTSPtxgDWWXQlrw0hZ/CXrsoc4VyXcnGakGzMpfoxspZoMpJj89/\nCAAAIABJREFUbBXNkF+IezRsPkGfpB7Jyy8AAPbuKsShHOv/7lOMXhSw1HYUokGx2WymUJHRqCQp\njN+IkJBctejP4ZFEJmq2LlOVib+6NC098kumC4XZWCZpHp8jXLF+REco+utrJNBrEZmMfu9WA27I\nLBByaKZvay9tof2ePMsX2veRrORZVnzhM5Uina7TqQaLNU1RFkDRxfT9XbT6BKKxZsJrbmHJrEXg\nVCiYBhnHCzgk0RnFLuoEXHVJ/jvyJjjdlue0CQtvUSszKErkXdbYEDRl5znSifSh6nculaegW8gL\nihV1bNhc1NYbS5YAVo2gNSuDZh1EujRYpOLSVnqJoJB5qKmTmXRKeHTzXMdFRQSp5StAreMIBurj\nUTReuQ9X7apdtQ+3Z8NSqABrYZCkYxy+J2bycjbDtW1WgC1cFClBKI4BVdIxpxBGOBmhR7M2uLaB\njS1aDeUCEwJWmvUmTmjynk5kpz1frXA3lmvMLyo4XMG/caQxfSKr/68uC7wbfwsAsD8jx6PxL6Go\neHoPli2sy6qmoBYEMnkxtEOpMHITVAZIj78BACjeX8GtE5MQ1IET4V3MyV1g7D4yl9LqvbeBptTN\ne+1Pw6E1VfzONzA+Flqxv/HvSM1FJ/sZ/PGbvw0AeJKf4OcpKxZYDjxWA0bdBkom6i1SaxrMUSPY\nxi19ZCtxY+JcI2B2Jas14bBmYD6WHcxPPOSWuEHjCwuTNnkCXRsqJ9hG15BzJ4y25diqcKAITkhd\nF4mW4O+u00fwaTGTv/1ajipe4wbk2ZwWwDVaB6XnruN3sDPg9o48n+52gLBGCPmUAeoghU+WZNcO\nMSc3ZXwwwpyeW23TQUwcSU4rNKg81N4Ua+Voa4XtlViL7yqDcO02ksvCjArUWK8TBAFc4kJK24Ui\nHLmEhZxzxxRigS0Pl9AEJtlYAQS1mUONc4d1GbUI4boomJgV2wthEYdiFKAdUvsrBayDiwowH081\n7spSuGpX7ap9uD0TlkKhDAZOgsOLpxieUMyzs0I+4U4ZlsgjyrvNM5wz120nLCh54mEU0Je/f4GS\nTMyLaQJNotD68yOkhv4uA5SNrQDTU9mJ4s4K/+8Ri2CmS5xpshutssugzftYV/XlqEgCay4iVF1+\nXiogJ4xXhQCZoQzoZ67mKCuSa3oFTCXBQcvvoLwtRUyrJ/8UAJD88Rj2Fvvw/BZC+plZ1kDG3P1b\neQ/XupImPfm6bAfujy6BRAJc6cV7WKOEQ8uGR+xFqVPYc9nlYm4poe8i4f0FeYrs0g91sQzo1z/O\nMWJB0zr9lZkKo6VYHUWjREErLg9yuKy0jC3m8AH4RPxVyka+Rt3ZDkjJjWPHYEyrbzO08Bbl+aYP\neV0rx2P+sBOkWCzl2CmWsN+TzzuzI8CjNgSDgablI3DFKgrqGVYcmNhTqFMUtmFChDWJ+ThNQtPP\np/gmWZKXsxTnTGE73hQFhYwLBhHVPEFKvgkTb6NUROR2K1SGWJXhEtlC7sXbkUH2brThnJL3oxnA\nU2LlzP1jFO/K2A5CC7cbxJywWlLPcsSU46spSyoiAUlBcmwV8LELop6JRSGdJXj42+/ija+f4A1W\nlUaZg9YOsfhRDyyyQ7wCbF8mliYEdAkXc1Kcb/QbiFry8vvNFIY08JvRBvwtGbS1kMnvvZXi0UQu\nqMYJUmLnY69ANV9zz+Iyz+uzorA4nkFfyLHz+UPYC7Hr9N43AJ9U7fkCoDS4qgiU6cfwHZmAy+88\nweSctQhbHhY29S1fl4nk9DI0t9diMSUUhWgm51/D4FQWwN994w085eS++0MyMZ/vD1BGpC7TN+BV\nJAhZ5PC0LBamWsEnHr7wWQK+DFCmcl43KtFhjUaj2UNMujLTKeCzbD0Zyb/D0QWCJWtKdupo1qh6\nNQOKpVzbdQwsax01pgsGA7silHjqYTpkxuRbR5g+lcDlU7ODswmp7FgT48JBSVz/ycTGTkfOW8DF\nKRe4auFjb0sWhUZXXLtaawvxlG9KtoDPhe7WTgc5edsbrRKRz0rLWNycB2eneH8i13u+aV0Cj4og\nQjaURS8/k/PO4tnly7jVex9W83npzyxHsXpb+h90obYJec5Z9n1+ACoYwG33kBEDo4/PsEWG8Z1X\nnkNIWLyOGfDWGWwCpIyrsI4oKsuBKYlvgIU0vdKSvGpX7ap9gvZMWArjYoVfu/g20ncHsMhHUGtu\nYsZa8sC3kTAVVHgpMpKW9C1ZDeOyRAQWQe03UKemmxlaSC0xu5cNg5IBoYTagZiXiDU1GEfmMmW1\nWqQfBGqAy8/xWh+mfgaXOgTeMaDW6T3tQPlvAAB0+hwMzcvKXQeAYugaT7aZQoUssPJm8CqmqZ6T\nR+I9vwnnGnP65U3MkvcAAN88i/HbfyS7+1MnhiGt2OOmWAG3FLD3ggQd28PvYrDWP4kSlBwvqzBI\n6vJZkaqrsgrkK7GEZl6FHg0lKyhh99aK3jZcQu8cBsay5DrUnuxc7Y6GR72BvFwidamLYBfQ1I1U\n6yrYoAKYbkyyChUr/P7p03fQ/aN1Gu4cbaZ1Z0auoYMA05zWlKuROHK9a1sBSlLZOXUDe0esLJc0\ncJaqLtWzl9YYLgvsbNuBZrZXeQYV1sQ9ct333pnioKIat9VFui392DnWmBLToHZlzjoPCjhqTcjT\nRGVJlaif76Bgn1cbFmoOUbaZuCLLTCPdlefQM0t4DVbMtnuYvSL97Deb0CEDtwn1JDzAcaS/JTbW\n8BuImgzT3ZkNa7HGXn+0pszHxUD+GbRP3b1j/qf/8e9hI5zh6Xck6r258wqeDL4KAKjOzhBRrHVj\n9yU8ef3rAACnSSWodA63QY6/SQUrYF59UQn2G8DR0RkKtSYIkX+8oH4pRV+WKc5owp5nGSpO2Jsb\nLfQalD5v3QYAvOcniChU8/TBAqEWqPHT9CEm5/Iid/oRdhovAgDcGzLBrrk15KX0re7UcGhkUjnJ\nGIfHMoEK5smPlgfIKV6SxwvEa8pxnQIVTWMfiJg9UJ5MzFbUxj32PZj7+B/+wX8BAOhl38H7v/77\nAICxXyB/KPj6YCETdDIsMWLwJE8LnLFv7qxCk8pLNc9HPSLWYST9XIQllhzPk6LAaMgJ6Ctca8ix\n9aiOu3vrDIZMeF1WaD/H2oGNO2hRbLf1c38bXcLYf/N3X8fxhbwUf/z6L8uzef8QISnOe/rHYO3L\n9frlJjKIC2YnTdw7+47c66mMRVacIV3I7wo1g8lls+i0XNQjie1k9gKTc4oMLx8CALp+G+NMXJjR\n3McRCVW8ysWr/4/07d/8t2Ws3k9S1BgbWdoaP92XeRO3O7jelLnlBgbPkbQGjB3cvrGF5mc/K/0p\nXdz/xrfl2bS6uJ/L53e+ofDaI/m8V8rz/64dwyM1wHg2RofxnKfVh/e072nfNMZ88fv/6YN25T5c\ntat21T7Ungn3wXVdXL92DaP7j7GTiA10XLyDJ+8TajqN8akvCPYg2htgt5JIvZcIAjHJtqAiWcHd\noIliRVTkVh2VJZaHwnWMJ/J9ztx93gU2mEvOHAWbIh1ecY7ZIRPgVYG0xoDflvx9s3Ed939HzlVP\nczxqSMBwcGyjEUmfd7e38MoXxYLY7oroSUPZyC25duICN5gZmQ8SdPoCy82V7HbX7m9eStCdZzNc\nsPqwHKwQtcnfUH2gefhkJPexeFjD+W2SeIwG2OrLDr2676DHKsJ7B48xIXchxZdRuhEQkY9gHuAl\nZnvOewHuSqwOntmGRx2Fs5XcR5yfITmXXb6nh/iuQ3xDscCMaswbvQIZ3bjckp17MnCxGIq11flr\n+3BLudebSmNIhGBnucTvDL4m9/c6uQnMBnq7Mm57r3TRoeBKrwfk2b70uZqh+zVBeJo2cS+xi7BB\nXMDAQkArs9PvY/vFu9K3gykmu8Qh/L78/fjYwcOGYE/K+WsAsy4pUnzhP/gZeQyx4EKggAVJaHZ9\nGz//BXG7vnNe4Yxu2otRE9f7oudR/5SMyY3eTfSaUgVbBAaP74nVN/jmCg/2fgIA8PY7X8MJ2cbt\nIWHOtouEeIu5UZj/gKz+Z2JRUFrDrUW48G4guStmtFWNUNTlpW9lA3gdMfHU3EONIisuo7GdrR5S\n+gQmqmPGCrloo49iKqZdzVMoKOASkvjUr1WoSFyqVgk2X5GX99GjtxCQ6vtodA6fCjseXfzsmoW3\n18AibwZNcg+9maBdFx7IFz5zDZ9+XgBHva48cDe0YdEsLx2NMqXrUqWIU3nzsoUsDuM7CbJEFrrp\nIsfRRMbirQcHcFmpV/oW5kfSqUEhgCx/+wDjE6pXLTJ4hGjnZg9H1ExMnQQWmX4mBIUhSnHNpn/+\n0iY+sy2L8LKzQHnBOoHGNpyI921zYZpuoyAJTbxYoul+FwDw++9leMqK0OxRgi41Jh2StVY6w6Ej\n/Vm9amBVknvM/5qH08eyIH9rUuK9o8dyjC8graYb4e7tnwQAfPnOHaTeuqoxxi5Tme3Cx+CEZYd7\nsmjcia9d3vOjRw9R1OTYWzs93HpJLOpyJ8GTCwGRvXVNFrfz2grloWg/Qs2wLnK1DFBccDFYG+sG\ncNcfM41vaD6Trdu4UedC3d3CzX3JStR3Zd5sejfh09UoiwS3Py1u1YPWY3zju+T8bD3GDtO6ASHx\n80mKnKCuH2T7RO6DUqqllPo1pdS7Sql3lFI/opTqKKX+mVLqHv9t/6A6e9Wu2lX7s2+f1FL4JQD/\nxBjzC0opF0AI4D8H8M+NMb+olPq7AP4uRCDm/7cZCH3Xrf0UiwMxI9//vQy727IiNlQLnYms3Lnv\nwiLphclIG+5NYS3lc+nM4ZI4BekKTr6G+U7QISS0YrDPX9hIQ+7yykWNOok3689h3BFiFa+8ZACA\nplzdfHIbL7qyCzxdDkDZSey+1MZL1Gu8s7kFQ9otxYo8O6ugyKlXnhfwI9bCKxdeV7aYLCGQpjHF\ninXznXYfbkZegOtjLM7Eirm2EeLrA9kptmk6DhYubGZZUlSwG3LP9Z1zbFM38423LRQ0O++wgi4w\nNva5++81XkTjulhmtdstZI9ZrON0YChnn/fEIrKPQmh+l81mqG2Qlt/ZwJtvS24+iUqEpB+3Peoo\nTioccludP52gqYjDKAzcmgT2HPUt2A8Z7aeYyouNl/ATn/mC9Hm7cVmiuJjHqNaQ4AsH+9dlDsQn\nYoFtvdRAzOKh/k4P05nMp9rWHXjMGHQ+00Lyh+IqfOUzcq5f+a0/BEBX0oRY68SXSL5vNG89V/LS\nwp3ycwCA9yoHzaU8h2vtJrr2Wilc/u7GLXhrsp94gL0dsW7mDzX+Zl3G65vmDvoMsL7OotvO7AKn\n5oPCpx9U+yQCs00APwHg3wcAY0wGIFNK/TyAn+RhvwwRifkXLwrKoHBK1KomHIq4fupuB6cDMZ99\nv4vwurws1UGBgkAfRf9OeQDOadf5BayC6LfVGIY8gEVZICQIXLvk/ctLeIzqeyXg0JeFCTG2xSwN\nOzY211VrC3nJ0zjFnP3cbwbQJCvd7F7DZzYl47CzdwNuIkaSwxhGlWg4rMVwlQsVkHcxB9yMPI4k\nKVlELahCXv4wuo/NazJJZ4gxsOVFycocjZb08xokrrHRUnjjifz9pEjgkhsQjWtoLeT+bt6ysXVK\nEo5cFtNbX/bR+fwPSd+e/yJ0V/QGoKfwN0jC2PCB1VrolfyRbR+GNRWOdrH5UF6aWusWrjEd+A7u\no84YxoqVg3cjg22yBg2XIxwmMoav5BnMgmnZ+xY2Nhk/eF7u86+0fgifenlfnt9M4ykrZlcVsKXI\nllS34foSU9Bdsi21HRiK1J6rHcxGMt52x0OYEf1oN7D7ZZlnd0firu3d3sar/7tkPp5YBe5zkUpy\nC4pgobVouoZQawLAtc4Gvnoiz+RH956D71Ph6u4PodMQdzJYk9E269A9xguCLvRYfve5n9nBC0fy\nzH7mR34Bj++/CQD41gn1LP/oCb62ELfq5GSJlGCwTxpa+CTuw00A5wD+V6XUt5VS/7NSKgKwaYw5\n4TGnADa/34+/V4p+NBx/v0Ou2lW7an8B7ZO4DzaAzwP4O8aY15RSvwRxFS6bMcYo9f2R198rRf/y\nKy8ZqAzFaImyTjBOPkWb5l4WP8VixeizrRDGtBCI9a4yg3RNShcrFCQnMYGNjKa7yQ0MlXfyjLTo\nlYF9TtEQFSNiMMyoCmFAzMJCo0adx4qCNFMzwnQo57DsLmYtcUE+o3uwWnLtXBUA8RLenGQchYeK\nZCpK16DXVFuVDVMn4IoekTuYQdNqyLEBi7LndVhIfLEaSnuMtfBScp28lDULKTEE1mIJZbOiMlsi\na0v/HzyJ4SeyS1/fk3+juy9D70u2RDt3oKZcqBsKhjTpykQAGbYt0plBWQBdEbVYwmXZormw0Pth\nwXXcfWJjlpMsZCVj8qQq4ddkDJ9OKlgTGe9BPsboAfkitgsUQ7nOi5mY9b07ISri/UfLBPGFAJ1U\nqZCwJiByA5DNH0mLOI4ghSYr87W4jgU1H2f22Rq5DD1coduRwLN3V/5tVl3gK4Ih2Hi8wL2LV+V8\nwxVUwDoOEvJopfHZGms86jFeiCTQrMIK13ckkBilGrktQVClCEaKCmF7AQDlwm5TRt54sAkGCy+2\n0OzI/rozFCh9ktxD9v5rAICvjt8CEpkjiTFSkvunbJ/EUjgEcGiMeY3//2uQRWKglNoGAP579gmu\ncdWu2lX7c25/akvBGHOqlDpQSj1vjHkPwFcAvM3//j0Av4iPKEVvQaFuLKQKWF6QaXlhUOaye9j5\nCj4DkPZ2CS+QlRRrxl3loWDRUWkAizBSUwVATD1GGyhZm2+YmrSqJUqW9eUmhj+XlT8uYoRLWaE3\ngwXA+vc1wnBj00OyySKo4RF2PfG5g3YLtYjw2mGBqi67bclVW9Wa0OQYQL6EWevXBRYMqcvUuezs\njqegaWSZ3KCaEYdhDFxX1lnH9UDh48u4hu8YhKwSHZwa6Ep2SjuI8HhAqwEKdbJB9Ynss3opbI8x\njnYOxbiMqVmXfAFQK4AFUUavMd8pFJ1Y7UzghSzycTzYI0m9edkRpg1aN99mqhAxolh+10xT3BvL\ns9kqEiyohWnG40vRnVtfkt/fvHYH9lz6NpidA4Q/hzUbGznpz1QM21+zEMnV6sZCzAIty2rAIgN1\nlLTw5rFAyMskh92VmMc+JC3Yd4bYJKu2uZ3g9fepATE0aKyhy5xPfUdDWTIuW26EeV/69tm9XYQ0\n6Twzhdu8xvHk853MAE5pFTZh5WvzL4Ud0oL4tA0vk6Cp/1S+++ntx7B47Q1/A689lTjPk7MYI6a+\nv9dg+Ki2wyfNPvwdAP+ImYeHAP4mxPr4VaXU3wLwBMC/8SedJC0LPJiPsBlfIMolwLNpLbBigE6r\nHE5HTKPA24W6rAvly+9acKhLCK3gEQBlXAdOQ74vXMAdySKTrNV4CgtzEqtgpZBW5Aw0IpUOAM2F\ng0UpD7dDFt5/fDLHHiHR9brG9Sbly/e3EdXIqNu0gbUoLP/ueYBTI217rAGfM7ZcQVO4NGdQs/Iy\nFDRLq7hCGUs/YxMD56QBa9fgsLpuRLN+u3MT8zo5B41BQnSSW51jnyQcF8cVos9JYCvqUNFqpwcd\nsE7ZswCf1aPW9TXnB7DpAznNddaamCoH6oy5z0uolDUOyyEcchE6x5vw1kQzrN5z8wJnfCleSww2\nyHz81fNzNCcCMdbhAp9ti6m8uS+0cmFXo1pDsA88hD0x812rQL0h18szA1AhqkrXQi8eLEb4q4aB\nxeigQgqXrMwTy2DzjIph2ywN1zmKTfl71ruLpab7YMwl1b66kL97noW5TxezZeNfJ6FMs9OFQ3q3\n1bYBCJJTIQl54MI0uSBbGZRD4hudAAE3i9LAJhu5x8rJvR+/hRe/Ka7WRdXA6ZgbnDrC7EzGNq0q\n4GPSsX2iRcEY8zqA74el/sonOe9Vu2pX7S+uPROIRpOmKB7ex8n5GSISVthDDd1gBdg0hSlI47Us\ngLWWwbr7tgfDXLMxChURiFWWQZM3oMoNUi0rbMqCoXSeoWCwskiBMiMPgw5hU0KuxBTlgtqGKzHh\n90obc1bT7WUau5BVvh/4cGKa3V4B15adyXbkX5VpFOtMdm4j565Z5UCpZHdPqAm5mGbIFtLPVXmI\n4zMxfee6gsvU6qo0aEbki7Cl71tqBW8gLlNpgIDuSjZN8Nb7cr6ZFeNGV8bTprK1LmKo1Zq3KwNW\nTBo1E4A7F7IK4BiBaWG4BiAtnslXMIQ5G3OE4pBuUzS6lKGr9WUsum8XKEgOu3sR45S27ecPLnDy\nUCyFzqjA5jXZjdublLnLIozHtCTSQygt91df4JLsxlr6WDH1C2pZLNwpslP5Ll/F8HntwSzG4T1J\n6+ktjdqZHH/YJjNy5SHIxdzfPzpCdUrrFAo/uSnWyAPqWea2DaXl+b98rQ+PBWbBaoo+kbMt+zrU\nobhCxQ32t9y7VBVH7KAiQbCCBayRo5UCArrQfRLQHrTxXCjuVXnrFH+1JYHiz/1eipTn+MUHM+Qf\nE8PwTCwKZZVjvDhB/s5TNGy58biawT/iyx0aTEcCf160EgSxTF6LjLXKVMjXzpOyAOLsbS+FMRTh\nKHLkLGFeMfQ5tAsUK4JGrBKrEVmT2ho2JcdTNFGEhASzQi4zORKSrFz0fRxEYl9fn2WX5cL5cg6L\nHIwt5sctvw5Q2NS4NvRcJmBRaKguhUTpn3unCRaeTLb5sQZY7u2PissIf6ptaMVoPyfjPN1EXicL\nFRQQETaun2BAMd0/WpX4yrEsBp7gZ5Af1KE+fU/G6uwOlGLNiAJQybEq7QIlbVGLsYFoA2AcQWkF\nnMrgGlMCZJXWeYbgmuT/203pw+nQQUFVpCVsbBE7UmUjTHmOMw3YLClO+UIvzDkeHUtsOx+OsAmJ\n8Id3WigoDlRaMfRCxjkt1jTsJbImYyOTFIeswbg4P4ITrkVzMwT7VGTivMljDZeVn99aGFTWuj7Z\noH1H+tZ8Kv9OTYU2qeibcYUwIHO3t8B5JnOnNpwi26NA7JLjFl7AI9GLcvxL9i7j1aEoD6AiDyC8\n2SKrVPP2NlxPdEOtyRYGU9lQ3xzG6D1kibs7R0nSlo9K9H5VJXnVrtpV+1B7JiwFFCn0xQOk8RLj\nTFa4XKWoWGWHJMP5SPLwzvIMddKx+eRadEoDQ60+R6+gWeFnaw8FZDeu5gYZsweDqZhWw3SBinx/\neVHB3CIycWLQCuXaTtODP5QdbbJWe1ZjTBmo2pjOsTyhad89hxdRPfhgAkXtiJAQZmf3BpyVmLtl\nsYKiwrHdtABWHSYzFkQ9HWCwkJ17fJ5imMjO1qxsFFp2tjwrES/WkX8ZqudurLB9X3blc8eGtQ4y\n2T4eMIswm5RYOLL7bRyLyZn0Y3j3xeKpumfQzC4Y40Mp6ZNKE0E1AgB5KBSWMLM1+OwIJfUUyvE5\nDCHIFQbQDJiVh3If48MVTCp9ODY5LD7rzxUjOK6Y163ZAAHxIO/eewAAiGoFJl+Xc5yO7iPYI0p1\n4wbquTyTVb6EO6U7SWyGu9KYEaZ+9OAxpm15NvqiwhMWXb3UiDCdiHXjSfwVy7mHwVzmpLUzQEBz\nfmGt8P5r8v0BOUN7oYVoLuMzXK0wXIpLuOEUGMQy9tHq4Qe6oCTIqeYJtC3HWrvXoWkBm2IIRX0R\nc30DOiFeJhEIvjmfoaKYUR36MoNVq4fY+hHSuB0oPCIM/6N6Ec/EopBXFQZxhrBK4VbywEPtoqT/\nuTjXqFySWwwdlDQD64xCBzCwCPJQng+HMuJ2s46Egq1zdYrFlEw/jHr3wgZmxI7bqxI6F/+1cGKM\nmPZsZRammsQpLJF7da7QIFNQgQIB3RJ7t4Yko3swGyGbyEOsNSnikYw+GPEMl5D6YlVe2myTE3mC\n7128j0f3z/j3BQKqO838FA3CrW2/i9lU3IM1mesi30S8R1z/NxRKW9JUpTXCNVr8pg7svSixYPc5\ngdQuTQOgyV01HsIiyamV7sHiymIaFkCRVhQkIs0yVKlEwLO330PGsdfJBXKSrOAUyEkNnz6gLqed\n4P6FfB4WGr/Al3Dh+ejRVzf+NdieLBAVy6XfffsEq0wWqfNkgQPS9ZfTBuYLWdQcODAEnJVzKl11\n2ihJTnLuzPHkDXGxDo+HaDErc5Ivcbsm1aF1ygscJkOYrmwigzQAQhLjTBROAun/iJH+PUdh6wsy\nn7784m2Av8t7dSjCow/tIey5bAyWJfdmag7s5npzOoFTyqJeJCvAknvKnpwgDCXFq7khJa1jJKes\nS1n4WIzl84PZMb55jyXungVlPl764cp9uGpX7ap9qD0TloLOCrgHFxiNz9EmCMmvAuSFWAeF46O1\nDmYZoMaFrzqUHTzbcNEgTXdgtaB9YgGmj+FxY7PjAtlcjo+oRF3ba6BF9eSTZIjQXsOOY5QsOhkH\nK6yxO4YFWDvTBCcETtULDw1KvOs0hqGK82RmYRavo8vy+4vX76NxW/pmLxoItqi7qDzMjNzrg0PB\naRwOhpjOxLKxGin6u9LPtt9CQmbnlTNF6MvJb7FC/VZdo/tA7vNIKSRPhAvgO//tV/FfDcUK+duW\nwrQl1F5OJbtW8f4hElesoygOoS7EXLduHsBrS/TddgGVU+AmENemmjooSPG+fDTEMJbrBa5GQdl2\nL9yCYuS8+VckkPf83x/g9Vj62XOBfE929s91biKm+IyZ1tDrCVQ6ZaYm6+R4nYCri6cGSklw7b1/\nfISQiZF2vYubN+R37aZUc66mY6RTcfPuv/oY7z4V8pW8nOOcgWmrtoVwLM9h/vgtAEBD1fGj+2I9\nwAxxkMgcOLc0luTqoKGIgQZ+7p7M04vPu9hiluv0qxPkM97r8y5mM6HCy3bE4tmw+lC3BY+hlItF\nJdZfebZESps/SQp0P0+MCEF4trqO5SO5xtT7KqqhHPtj7Zfh9eU+fvWNB5fiSX+p3IdEV3wrAAAg\nAElEQVTKArK6QnbhI1cyMY/1BbJzKvDUVsimdA9qMbaJQnQi+mkXdai2vKROowN/fWITY8mS1aKo\no9oVRNjqCRV4kiVsvrFxrUBA/y1r2ADRb3nZh67xjDWm3q67UEOCorCB+x05R++kgB3IMZXWcAla\nWsVEPzYGKOkjB84I6pzItUAjyenaTOQ+/GWF7g3x96t6AIdlz/m4Qk5dzdW8QvwBpBEAMExbyJmm\nctVj/B/vybG/+OunyPhivd9S2GadWlyTF36yuIdpKH1vzgCX1ef2gzFq1J+oVX1YrPOoSL2eZW3k\npE63dr+AfleqRLUaoTwiw9WqgCLt/vK78jK+Wo9xQVr+T1+L8KVbcsEwcuEUsljC6mNJV2/KDWD4\npAA9FHjXa1gu+Lv6GGOWFId2jOVQxqNOqnpbZRiOmNU4vUBB4tbcql9ySZZxE2dTpheb8jz8qESn\nlDE6rXVh+1xApgpLan0WjGXcLm10viSfm4MFRrHcx7tPXseU9SHXqzr2X2T17Nsyx+JNwDhybHt7\nA3ks1z6ZVjg8ZoytM0b023Jtv6Duw/wNhNvyu+WpjxHBd28+fIrrC5k7jchFsq4U/ojlk1fuw1W7\nalftQ+2ZsBQsKIRKQYcuXOZgs2WEg3sE9BRTFAvqPxYGAcVArndkhf/yjRb2S1aQ7cVwSLe2epAi\nOZF1L4tcKFJ8D85l9X31j0+QGDGDe16EL/6IrKit5SYCmvx2lKIsJMiVJNQqdAMsCP6ZeQUaBCfZ\nOkSpZUiHh4/wiNBdBxLU2ulH6DVll1iVBQKqFld9G3odBEzF7OtHNcTcle4/vcCrjL5byQoRuRZ3\nn2+ia+0DABTh053NDC2CpnIb+D9/S+jRNrTGkHbkzamFJyNmA+ZSo//d+w+wpLCIb9WwR3zAxp4P\n94D+U+cQsMT8N9yVzeMjlCO5T3XLRbWQfsy/foCziZjHSaixzyBZn2rQL8KF317rfGbwZ7Lj1bWL\nzGaQsJmANAtw+RzDl2u4UYpL8M58iTQjt0Rho90h+U5uwXdlQDUh2DqqIbak0/1OByYkR8YwQ7WW\nqI9nmBMjoHfEXesMAHuXmqatCbbqEoAdjC9QELTkc2u1GxrmG3KuJy/P8K4WS+CsylHNpG+lSRA3\n5RpdWkHj0wk6kYxVuLmBypH7Oz76Ov4/9t4sVrIkPQ/74ux5Tu55b96t7q2lq6p7umd6eobDmeE6\nY1K2ZIIw9WDL9oMByxL0YsGAAQOmHwy96IGADRuGvAKWF0G2RqQo2DQpWKQILsPhrL1M79VdXevd\nb+6ZZz8nwg//l8VpQuR0s2GpCNwAGnU6b+ZZIuJE/Mv3f9+dt8UF1QMbcGXeT+/Id9P5HMMN6e+d\n2yHysdznQrnY/zGx5K5NDUYXH89/uLQULttlu2wfak+FpWAAlEqh3/AQdmSXX2UKhyEDbRMHFt3v\nG04HzPDh1hVZAVtuCLcjXzChAjLm1bUPm/5e5+YuGudy7tNSdqLhUuM4lfTdntNCMxI/rGV7yJio\njnIgtlhsxLTnu7qBgzZTb36FISHGjdsHCChhXA6OUTFtp5vUJmgBbZKLmqSGbnAF10t4lazPvRaL\nkq624ROlqBs9LLkLjNM7aBIjcGVjH2EoMZjcZxCgChG3xCJqWg5GLnUQS4NtFuuYZwfwLWEmUqlQ\nprnRJp4Zyrm2nh0iJMWabQE+LSXTaUARI2G3ZTezwhnshviy1qyGek6KfKrnNfqJ9KF9lqNDAtU5\nuR7yG29i+pY8/5bvYysnwhA+Wi35jutEqEgaa10Vy8w8stC8wb7qXEFKQR23TKAoqIO8RJe8CKHH\nQqyqQNMSa2T3szEOWAVb7udYUqpwZebIiWXZ7khw0docoNyVZ7ZUD0umJFtwsfTkOCN+5XoZYP5v\nyHUjdQv7jySgOIdBf1f68JnPDbG9JfNsdSyWRNtvwt+VcfcGBgXh5sP2bay+IPPT0wb+FbFSLmyx\njuLlO9C0fg52DnDOeaYfvI+3PpD7ONlpw7n/8dgLnopFwTIKYeWhQA4QI9/ttPCpvrzE6W6IPjn6\nBv0b8Mlxp5cMyuklfJc1B14LdckKt+JNrPj5ZrwN0N24QgEVN7qF7LFEfR13jDaBAyZdYMUsQjPy\n0WvIS59ZMgDP+9cxG0mU3V4ViIacpJ5C95p8VwUvYotw7IQsydb0ESyChgKlUQUkAMltZDbz7VQj\n6g77CGsZ2KEp8KNfEc7Ek9Mh+pSR7wybCCGLwclMXC2rrtHnonHXNvg7lcz4X227eI3ByJd8jeDZ\ndU2EXONZpTDck8nqBVtP5O716oMnFaiq0wdY1ms8gm0GDgJPFgiVWYAr13OeOYBXC0gHz6SwWMPQ\nosrRF8s38GgozzwxFf5wKYvsF7sDBBSoKecLBHSFUmYqupsRakrYR36IMmTJ/HIGQyhx17VQE2Jd\nUyl3Xp4irgn0iRqgUBVyK0M0oACw3ofalnH3mJGozQrZibwmkTfBQUDw0kaEFtXMagazZwMfV09k\nIbR+6hbam4Ro33cQZNJv7e3PYosVrejKItZXTTgbXITiLkBlqe7VPXx2KHTwzjRDRsq+na/I4vZg\nugeXQeegU+KZVMbMaii0Qplz1dfeQPkx0w+X7sNlu2yX7UPtqbAUYBlYXg47t+FCVtRlcY6anKNR\nEaJNaTZ7vkCTUNuaFZDQHiqLK/uZh8oSC2I60UgoB588mEK1JHjU6slu5XhNlM+w6m3aREFob2Iv\nEZB7YaEUWn3qLbrc7fbaSB/JfV5MDVybeImzGNQ0wbDdRkmKuJqpQBO1ULIgqnBnsJnfzyyD2ND0\npdakPcoRtCmtfuUA/VR2pX0/QUUCFLtZY5nI71bkW5gkHvKe7NztqI3uZ8Qsjay38WNKdo/P//wm\nmsR9VKfSb91rDXiblHSLNqBiSqw5O9AMcNXvO0CXBU+ktquzGqDeo213oajcbesFImpnVPYeHFaY\n5iRIefMgxOyRPF8804CS332uKuBW1GgMLGhiMlwG6izbgs/0pt3T8Axdm8hF0afl5Sxgz4mGreX3\no2UKFwwixiWitmh85N0MuZFxaCWdJ2k7QxblZKUxOxI34LhpoaTuxeZmH/NMzpedy3y7Ufh48eeY\nfi7bmJSyyw8/3YBP7c3u1qdgFRI8LGm5+YGCH5PZu1fDVix46mvYLPb0eruoBtvsc4oSRS4WGede\n/BArLRbIw/ES7telPyu3AWBNbPPR2lOxKCgN+LmC6xu4XXIfThtwanlIr5Fho7HmZWyg7a0nG0ku\nsgkUI8Hp8ggBJ6O9qJEcEozywkNsMmtxJZC880RVOKYLYkU5NGXIp/drNJlF8CMXDv3ggi/ujZee\nh7ctE/Px4jdw8ZjXfvYMtSOmXVi2YLho2TRblW+hSez89GSBwhagkh1soUHilItT+cy5FqExlAka\n6gAx4yBJW6PWhB0HHuKFnHvMiTnsAV0K48RVDu+7YnL+eDfCN4j6Ut/LUV2VrIQdyQRr3NiHpdbs\n0jFUyJcw1qjGXOnUORRBWyj43fkIVpOxn+0Eql6jREqAZDdWtAK4IK9l66+PI0zY3//gJMWxrHn4\nt6oKWfpHjFPLXBbncM3B2W0gIjTdsh0EzNA4HQ9rlNlyUWNMU3tBkzlMbDwmQbCrbLRvSL/tezuY\nL8kFiiVAxqYWgRqT1TFOHstC6GyU2Gowi9Bp4eweCWzIflTv2bBeJpfoFw2aWxSnMfvwsFaxXcGQ\nSOeGYZ3E4xSFL3EwvdmGQ/xGFi/gkB7av9ZEM2QZdSqxnxQJ3EL6Zw5Ak2RlURzC7ZBl6ngB9VHL\nI9ku3YfLdtku24faU2EpwLFg+gGaqY2AdexpkmNur4NINvw9WQU7rS6cvqyU9Up2Ve14AGvenSsR\nygWrFt0SM5ru0ShG0mB+mLx3rTbQ5I5gkhJVyVr4IoU7vAYA2LYjlGtOxxU5Fq5excY92T33H3pw\naYFkZQs1rQnHeIDL7ENLTE6dJrBYlZmXKZDIKp+WBVIGGCvutIs8RndF/sFhF2Euu7wdRchYtWeU\ni4zYi1Eqv+8vtpBFsu0OPQcPf44w3396jC9fp7V1awOuRZKVQKwKp2hAcTczzRGUs9ZuHMB5TBj3\nrRbAoJpqENGpCpiK0vEl4PRI0OCsAGZa1KqEBWI9RlKg9b7K8Ktn8tnj+RK3WbQzNTUiaiSETo04\nkbF2N2kdaQ2PHBJOw8BrcPyQQNlyb3muUVBhvCZUvC4yOLQg4zLDJuXrggMfihWa43YBNxdro+mL\nK4V6jAl5NPoXCnVb+uj5qIW3unL/9Uyu9SW3j+orkn1phREaFasrlQsdiKVkN+coF0TUBvIcnY4L\njwVj5TKDR8yJU7YBKn7bxoNDpOraIgo3NPJHFBq6KJCfyfvw3mtneOdIxm9kgGpNqP7nCeasNOBl\ngAmnKEv6QlrDmRBWbJdY5QLG6GdN+DmrzxhVTdICHsup3TCEo+Xl7Y/exaFaqyUVqEYyQdKxLBpe\nZwP9Ccuo0zmWZ+KfLRdLdHfkuNUNUVAcdEYil+c6B5hck1RR/ls+ZqyJqIITYC4+ZT7MYdNPLMlP\nWFcaRSn+aTxaPRErDWsXOpHzaaYmrbAJvSK02Z8CzDKgsGB4vIwnQCXnJuIbyB/DmclEyeoGfoxM\nSYvnm/jtGTkfj2awfoou1lpH3j2E5TIdWjRhGqxwLP4A1jbBO94AhufThbAf2a6CyVnJOPZRa8nK\nWI4PaIkDwQlQkXuziJluvHuKg4A0+srgEdW0bKuCS21OVAbdviysLHeAO01QefJ3NfOQE65sVjVy\n8kemiwTxlJmfOV0D8wAOeRL72w20XJbiQ8NhOreoGlhSEmA0Fr+/mi+hKQkQmxz7pH733Q6236Eu\nKKtdH24AX3yNhC3/9h6cEcvP9TkcqpKZZANmKudLtUC+6zyEZrrUyUJoMPOT9+B6XAhKH6YkIIsk\nsGbiQdHliwcxjo5lLox0jYKxqyyr4Jq1VMBl9uGyXbbL9mdoT4WlAKWhnRzLcY22ZvBF38d7qayM\n14MIYCAxDiew1Fqhl6tyYKGgmIY6WiDjTloOdtFoy46fzguMKahiTWUXyMYJZuRMXCwLjBi0M46L\nIYNdaaJhCL1epevIuwumnWHXBdKhnC997zZiVqd5fYNyzRHD3xWlh4r8irm1QnVKiO7A4II19jOH\nwauHOVrPkUsyVbBr0p5nQE1LqKozjEhUMs/lOXW+h5wgJd8BGs/J7j/3K/yoGCno/AcGFpMd5oJB\nxF4FrQWODT8EDAkOEgeKAiemdIGQ0ttL2Wm1WqEmzyWcDBizYKphAaWY4Krdgl4JTHtxJjn4B26J\nkCQ53bZCTYulzlKUlLfzOyE0LSGXeGetHFjEi+hOCUWwUVqtUK7JsXUMfSLPkpKX82gewevLd915\nAGtbdvlCp6i5NzomQ4Nq4qbBQKU9x4USK+cFu4/NF8QdK+4uELzATNmxjJP51hHMfyE7uz8rURPr\nYqk5KkfAW2U8RpzL/a9qums6Rn5H5kiy14fFjFntz+COZV54rQw2xV4UrSMrWMIhnffy0MN3vvEA\nAPD9I42CwVN46gmV/J8r98FSNhp2G0WwxBH9sGyusUsARl1nyFgZFicJMJKJFbDmwLZt1OTGG40z\nuD3pvKSoUfClqaFRX4i5ahEXb8wUi2TtyxfQkbykdupiHehtNgyWI/l8wii8W4fYYLpp4R7g9Xcl\ncnyj8y6aE3kJw4aPlO5GOpUBr7dD+JzcqWqioBah61pQdBsyVlFOhxm8O+J/d7ZrmBWFYH0LBU37\nGAsEpLnvUOr8U9sxFsJDivFiAeub8hJ3ogiv3mDM5DcstP/it+RZ6cs62S4UOLmnC6gB6xmcGmbE\nFcQ5BVr07Uk4Y2UOLFKkV4tDlDT31dsJ0Gd/PnMF5K9BaklfPNOwcZUkJWWt8HVmzVS2wHTBtOwK\niPvy3Bs509CRDaQENMULLGnmp6FChz5GoQqkRvqj4oK26ftP0tOh50MzVVlOgEVGktYyge5zcyEa\nNUsUXJrleGmBNmtlfuN3JvDGctMJUbO/b+V47r8TDYkv//X7UJ6cw826iBMyap0/Qj2UxbLDuMx0\nCixYlevEOZr+OquWI6/kd95FDpBox14yJlEtn3CCzpL7uM+Ua13nsGwibtWTLDcdih/ePqkU/X+s\nlHpLKfWmUuofKKUCpdR1pdS3lVJ3lVL/kJoQl+2yXbY/J+2TqE7vAfiPADxvjEmVUr8M4N8B8HMA\n/mtjzNeUUv8jgL8G4H/4U88VOgi+MIB/8hj2lGy/aYaE1oFXAJoA9drynsiPrxWW1PUAoSVmm9tT\nUFPZoQbXrwKxwINNNcbxsQR2zhZiGtqlxiGlxa30jzQTW40acShmYteqkNBcNaQyjyMLGXfMvWv3\n8Xgpu0u6CLFizh7Khk2KtAzyr5tqKLoijdYAPjURfbeJ6BoT9VuMUusCmU+cAyq4Fs1B30JFog8H\nNqZUwJpRPDFqXsOoK7unm6dY/AQpv/6vAT73k7IDNfoOnOZ1uc38FTlvbWAyVuS5BUD4M1QTmgwV\ndruESta1BMyo1ClMRDNg2YfOKYDTzGGY88dxAbNBerAjsRTuejGuteXv718Y7FSynR1XOULujqmK\nUExkXPUt6RdracNpynjMFz4o0wmdLoFQrDTX6sG/JhaSu5LsheOlWNpiiiu3QKoIUc4BWxP41tcw\nZEy2ihG75RgPGdjczxu4d09Mfm/6Bia35bknVPk+Pp5g8RnCjtu7qCuZb3mRYsEbnZkSbVpWjYFA\nm+19A3+L2ZwiR9SUYK6varibYm2k9hxmTt5QurZqb46UNPrp4xqHBHsoU/+RNqVlIeEc/6iiMJ80\n0OgAaCilHAAhgBMAPwPRlQREiv4vf8JrXLbLdtn+BbZPoiV5pJT6LwE8ApAC+E0ALwOYGWPW5PiH\nAPb+eb9XSv0NAH8DALYHIdSjMS6sC+ilrMrLiwK7HVnBE0vDz2XlaxQZbIfpq4goscUSzbbsJP5w\nGyUr+OxsDI87aXK+iTuppDVz5rCDrEBA3zNFicaU6cu8gXJbEH/LbAN+JT6cHYrPtq0tLPqyS0zf\nA1bUb7D8FNaF7Mx4zoJhdeFyIruVOS0R9gnbdRRc5q5dq4l5Igy9PqszPR0ipuTZtBgjYFFVhBZK\namwm1hgNsiW9dCK71cWdVzD+AyFjfbTKMfTEIih/JsViJs8UjStUtxknOOQ9fDmBarKwaTFGXUhg\nzER3YLvCWAXThabatLbekX+LLgzxBlnqQ1vSx/bcgkvOCR0C5UOxSE7vyN9vHqVPitWuzxJ8h7vY\n7P0HOD+SHdYPPbg3fkyOyX4V2A1kluyqYWpjeiGBXZ2dA7UEU+xThYYtFkZJGrjV/BxYybQMghCn\nJDwN+ymULxZEWDUBIgQXqQQXZ6MSz/gyR5bHOf7+vd8BAOSPNQ6op1AQGv0wr/Cd35Tff+U/eQ2D\nlSBnrR0HvT7TiIctVBljEcSpREsN5ck4FH6OkpB1la8AQtOzSYZ6i3Okoir1SQNJIfG1sfsGrlwh\n23hu4Yz3NK9q1B8T0fhJ3IcegF8AcB3ADMCvAPhLH/X3PyhFf/Nm3zzqVnj3JMXGAzI0fyZHPZKB\njeoCYy4EZVygwXJhl0EmdexhFHEivXe21syAsTXynNHk4RwqIDyawbXEZEhTOa5yBwuCbfqNAvEF\nKcLtJbItyXasQIyBq5EwSLjr1Pjepgzu+Ztz7H6a5CV+AzZhvjVp5vNSwRBk1LAs2IUM+LK1QE2w\njE3SEFTqCaDJtjUaDTEjgzpA3aa5Oz4ESYvxSkFzfvIAb50xL13XqHIKkjjfxfWaeIovNmGPWYo8\nkGCmLjdBSAe06aFmTYXyNmFYt67at54oLlnVT8jvkwvkilyaZQblEy9yZQh0hJrNRBpFKtdpthmo\nezvFrU3p48d2A7Ul572wE1RTWTgen0fobsris3csi1vV9eG7shAunQIOS9UnyxR+Is+3yk4BuRyK\nHQYlH08Qj+W8mWkg68uCdDXqg1g4mMrAvS5z7uTXpaR8dpTiG4/X5e4x6jXcuqxwl1L0OfdAXQP1\nDQaPv7aA/QtrV6pGwczP6uwQhvgaN13jH1Yoz8SljXdcpCN5+VVZAErGNbiyiWfWlZ9MDBUXY2R9\nef53P/AQj1kdqz0UOakF8UcUjR+1fRL34S8AuG+MuTDGlAD+MYCfANClOwEAVwAcfYJrXLbLdtn+\nBbdPkpJ8BODLSqkQ4j78LIDvAfgdAP8mgK/hI0rRj49j/P3//NtYXSxwyMqxF99u4y9/jmzAVR9V\nJbvmKPXQyphacmUlbvRdFDRh3W6IBnX54jaQPWbKbW5jm6rEK092moskhBVJKqjvlCgpxzaZVFgQ\ninq1GyKeyypesYBldpri+L7c2/fia3jvoaShep17OFt+Sa49nyMiU/K1LTHFF1iiIslpvVqiJhFs\nEHUQxnLtUSaWwmqWoSb0t9Xy4FiUlFclVC4WUjyK8S7lx197LObillUiS4gENQrnJKlt9Yew918E\nAFivfQvx0T+V/iJa0d1vAkr4D+xo9URRWWsN/a4ET8vRP4FyWF3JPtT3QtSO7P6+68O9Iu6TO9+A\nacuOh8rg/I704W/ekXH8fg78CAPGqzRDBdm5z7/+CsaH8p3D5hQvnQps+Pnn5TlXdhPeXPoqPn0T\nHY8Bww0bzYjQbb2CvSeWVYN6EUunh/vUAMFJAqcl+2cQtKALGSdLG1w8EMvk6D2531emMao1I3jL\nwMSEvBsbyQcfTvJVAL75tvz9gx/5f/A8Gba9aginlHnWa1uwSCYbdOV+83sG6ItFs9FSyKjvmR3G\nVCkF3G0PTiFzIEuIwn18jpM3hE4vm01wTLKXPDPwCc3PtQFJyj+y+PQniSl8Wyn1jwC8AumPVyHu\nwG8A+JpS6m/zs7/7w84VG41vlynceYW9UEZgu+1iyU5o7mosR9KRoVui7spE9tiRruWjTX7vxkEE\nm/6UfjRDQp7EQht4JF50yMPnRhoJv6tazSeRZ7cJTGjGN7ZitDj2z9CM/juTI/ivvgsAOK5ew7CU\n+xzrGsaX3+XLDHaTIBSSxXRUEykrPxd5EzlVqCxdI6slWl4tCWF2pvBJMKIcFxbZnxK/QkZFqvOx\nj+++Li/9HUui5e/MNGoOvwLwNlmYPvNGF61/VeTc8/EUOQVcnA6Zft97HxiSseqZISyXxCqZD/Qp\nJtt2n2RgbALB1JUKwWBdLqxha3lWEx6jolldjh7hHl2998/l9w/cCv87Ycer0EKfFM3voIDH+w+1\nhZJ1JY9sWYyG6RiGJrUTNVERhLStm3BJ4FKvdjBjRajPegjoFcpawlurnfvYigjX9jzEFLiZWxoP\nXpa+fb1gxeGkhOFGVcUOYK/ZsgqYtaFtmLEAcM436h+/qnD13zvmONwEBgRc9bpoEk/gNKSviuMl\n4h0KHKFCMJOTFF4L5bMyt8ItoCYj03IsxvdDPcedV2Tc31waHI/J+mXpJ2A+A/Nxleg/sRT93wLw\nt/7Yx/cAfPGTnPeyXbbL9i+vKfMRueD//2zP3rph/vv/6m9j6Jzj8Luyug4OXkBiS/CwuVwhPmfQ\nrdnGg1dEdXhGnvu2qtDdZPCxuY+gxR02d+DwOI5rVMwiVNwF+tsb2Lj6IwCAyFZYEiHpBy5GjCwP\nQoXxmNWKgbgBv/if/XVUDBhu+wF8V3YxF4BDVeJmM8LBrnx/e1vMxI1O+ETXoXVlF+6m5Kl7gz4M\nc9PdnuTaH9y9h/NjKS567eWvY0ZCluJ4jEYkO0z/R2+imd8GAFieFCjd2ryKs/ckoBZXPfz6q78i\nx4sUTWYwdkMHszl5GBIGDksDl7X7O54NRaScN9ewSDJzrd3C9q5YEG3yKTgDjbO7sru+M1/h0bH0\ny6Kh8Beuy859+/oz6P+M9DNyCRh+7+XfxPmU43FawNTS99mz22iTkOX0KENJPPlhIa5Iuarht2T3\n3+p9AXpTnmN+7GA6lezDMGyh4LN4dCWz6gKKGo1Ox4FPKzToWdjdEeXqaz/+InoJcS270t87B5/H\nzWcoIx80YNEsVwr4P7/2P8s4nIql8ObpCngsIju///o38ehCrL8kTVCsMwCuxoI4E8W0wIYfICXp\ngQsHKWneHMuCR2SiawXoBPLcUYsYkhsNrN6T48NHv4ef7ooF9c1+jPxIxuc8X8HX4kLlyF82xnwB\nP6Q9FTBn13GwNxxi/MYFBoSwjpZvADMZoLzWAE1t2z+BaslLcZ3mW1IH6A/Ju2iHsF3i5C0XFRl9\nmraPwsh3FuQnL6oCbkFTbjhAZw3hdz04tLnKSYWwJxHp3JXf1aEDi2Z+p++h7NJdWTXgMDrd3+hj\n56Zc75kN4YF0PQv5gACUvgU3JflpohHuiAnucMJvDw8Qk9jT7t7A3fF35dorF7f25Dv7W7vY2ZNr\npIeyOJw/OsKRkXt7sHoPiyfiJcD1bemXWzctvPo6adRp+oYtg15PPrsRRU/IPfK0QEhQV09todOT\na3d6kqaMgwv0MxKoRO/i6FT6+ywv0brPGoYrRzhwpKTaCWXRP2i3cXKPwCtH4YLanJ/e3sDRd5iq\n0xXegiwGpxOWjgfAwBDQNAhgd2Sx0SffRMqy5p2BQalZlsxU5uNzQK9rX4yNRlfmjmc7yHqsPhz5\naH9azl2TqKbZMiD1IZpbgE9vRAEYVfLcq57c7777PjKfoKm36icxoVzbUKx5KWoLhhWTIGHLra6H\nGV/cplXhEfFvTUejJN/mZjeCz0rgjSFjVKsWMJB7P33g4pcnTDNPFABmsQDkyPFx2mWV5GW7bJft\nQ+2psBSgFIxr4QQDuHtittlmiYSstlG5QEE6Mi9LYRO2SRZyXP/UHgxl1YzloSA5SdDaQJ3Jl/JQ\nw6HZ5rXE1bBUgdojX97CRniVUd/kBM2WmJRja/pEArxiJV+lUixIHX6l3cGARAuGGWoAACAASURB\nVB9VQ6HfEjfgYK+N4T65EnuMQnttkAYS2l/AkNwjrzM4/IM1JwQ2jOBty651O34GhycS2Hxn8xAP\nT+Q5bm8eoaIC9QtDidJ/42SFlrWWsz7BmPDwjaqE64mpuTw2GLQprtIRk7PZdvBiS6yVzkYLW5G4\nNiv9GIZqxkYFMOSWsFqys/WSBryr0i+9VYQtCqC8NzP4biCW1fSf1dj/8ZcBAP1MNB63wzbud2RX\n3amHaFky1qmb4w7N6q52EZfkQ3DX+AgHui0WiBdl+M7JAwDAVW+JYSH3lKQV2iRAGZNQpzfoorbk\nWUfLJaYEwz1nSjAejJPsEIszsSy+elsyMVYyx901K3dQ4daAPJAAvvmOZJ2uH0uA9jnP4O49Cfyd\nzxeYm3W1o0HDZcFeodEitaC7BmSpCBE5L3NPIWRWJnAV6D0gbzjoUt6uM5Rxeue1Cm+cfF++gDWh\nxidvT8WiYGCgdYkbeytUxyTeeBBgk5MNJwq9UlJS82mJHdZYRUSB+VqhsuTY6BJcB1AHJaxMOjIM\nfSxoojoROQB1GzGj6ZU7ggfSbOdtgEjBwC1Q8nr2BzL4ZaFwhapC/bQGuUPR6wTYJP/eRtdFSElx\nn6QYQcOBvSkTsx5FAGsfXDRhsTLOjmXy236J3Uj8wnyjgW2mr+7de4TVGnz19j6GG5JFMBTD+Pz1\nBHd+V2Ix8ZtvwKbMepAYRARkjQKFgJoS1zZlkm81ffTpEgyjJqJIJmy3/TzWOS1Tp0hYVap4vUjt\noR1JXxV5E9+8J33UTSqsmCI7MQUef136YPisLMLG38NfvC598e6dCZwL+Xxxvo8dkqVcTGNMqO+p\n+CIN/RC3Bj2Og4MrbYq8zhrYviF9mDa2sdEjyS7fqv7VEBlrZTYPD3G0kGuEvQBLh9mMjsFGLOPn\nRRIPeataYXQhsYq3VI0rHYmhBzkQn0vM54Nvihitf6uFb59IPOd4kSMgWCyMfChXNiKvBYREVr7w\n/DUAwETXGLJsf6or9JoyTpU2cAvSA4Qhnr0pG9VRLa/t8PkZ9AOwWQA+JnTxT2iX7sNlu2yX7UPt\n6bAUTIWinCKKevCpHt3zfSSZmGKmv4maRCXd/BQB6w4CUmE7WxHUmNBfr4bPnLZdpVjb68qx0ePO\nXBO7sIznyEMJ+gRJGxhJ1NvMDRYMKqIIEXo0V68xoFZqjMkf+fktGx1NAFCjib2W7KBbrU10KNvu\n0X1wrAFsgrAcr406kt85qQ+L6teKu3KmLbjMarTbOXbaYjVEpgkrlx1BjV/H198Rc91viyXVam5g\n2JLd9YPtAJ9msPJhlAOsDGz7AQ52xfK4uS+Uadu7HYQtCo8EHly6WNXsGM4NHvsFmgvyEnbX6l0K\npiN/3+u08NXf/R4A4NQqccyIelIZrC6kHuNVUGZ+C1Cx7NAvHQS4W8vn3354hMlcrMWBU2LAfnEa\n8t3dzhZ+9AVxQTZbNzFNZNdd3uwh3JXp7Di76PGeDM1Gz66gaDXONw+wtZJsjTUrUFYyB/IzG52X\n5LikiMxu0kC9kHlx70xhdEAyGwPs3hcL4TG361ffrnE/FmtU2xouGcFfvB7hc7vSt3MDKBL0tPdZ\nu6M7WE7EFVlMKsFLAygzg6a/pvqLcLArbsP1iEzb99pY/Gufl377f/8QxccFJPwJ7dJSuGyX7bJ9\nqD0VloKChucsYR/ZsDevAQBG9TnClSyp0/kjJIX4XL5jY4PgTy9iMX0eoFgLr5QuYNEH9jLodW46\ntVAxRaRtQo0jwF7Ibjx3KzRWYplYvg17KrtD4g7RbMsulStCf1s22hM59rI+TgayG90qbGgGxrIk\nh0914ZDkocbKgDZzWt0IDgOYdeDBCtcRSLkffx5D8zg6uI3m+/L8w+gDnBDld6wtnNM/HUykgOdR\n7yqKoVTnnbkODJWYd059GI/CKf0SPQ69R2EZ1+qgJm+EV4fQpGlzBy0omxwCdgStifmllJxezYGZ\nWA3uSRv7Py0+9436exg9JjS5rnH3nMFhaj1cOT/G6IAcCc4Olm15vmWRI07IGA0b59R3u0WIcm/H\nhTsU66YOA/SJUvUzFw2moqPIB7OoqCyxGPxeCTdjLKpYIXAkMHu2+hYeEdJuTwu4iQQYbzXEEgyh\n8N5SqN3ODzfw7kjmSH+VIfsq093/h5z3SK9g1pxnmUKjK+N38/ZNhLdkl99bRZgsmC5k4NOkczis\nhnStNqaBWHehCxy0iGK0B6iJQtUBNU9vt/GFpcQZXvFeRUnsjPmovGt/QnsqFgUHBj1jYNpATXhx\nz/ORj8VlKBcTdPn+uz2DxqaYmnpJmiyloWgmlnmOam3u2yHUlNWO/hKKgaaANQw2EtQlyVuMjWJO\n90FnaDvyIjRaNTQnypIs0MPAQUFsgnMF2EtZyeZ48Bmg8p0QYUNedDckvZhfw9JrUZAEymMkvwEg\noQpVTOEYt4bXkefr6wY+dVVeoOnVHXQXFB0djRCfy4vn84UYtucwRzQ/Yxv2XCbuwtFoXpMXup+G\niEg7394gqUvXgw9qXjYKOANZeK2mD0V+SAUDTfp1zQpPY+UwfI72zRqfe0Gg1AMnQ/t3ZKF649EF\nHrKE/cr78vv2DQ8t1nkEyRRORVWkRoKMwUMrq9Bm9WeH6k8b3S1skmbeivIn7qFuamxapGyriifR\nfs1x8nIXyVxM/xox7AYxJAfP4DSWsu6TV95H+TyfOxFsia4u8Pn3pMTxt7dLXBzJ+ZKTBp4/l6Dq\nN5ssz7/QyBK5917gYaPHa9y4ib4jQeeymqLFys1Nbl4PkxxgmXyjW2ObcO137o4wp+pT0bOxx3LO\nU7oom0GEg6/Kuf7q27fxP92XTESZf9iP+HhKkpfuw2W7bJftj7WnwlKoDbCoDPquRkQO/tWiwNQj\nm/HJDL1bYq5uhPuw6T7ULglRaw9gUMduAyS4he8FMBuyPtaWD59cADZVi1G2kWiyBRcFVEN2oHpV\nYRJSJThqoKacOzdulK6FLRKo7DlNFJHsfm6vgSbz963tEDbZXw0Vs1XoPeF0MMslVJeF/FbyxJS0\niLDUpoZNOHbY9jDoC4qtd3UP8/epR2mlaDI9+S6JX/+VykE5lA74qdzH7zFeejV3cD2VZ6ocF94G\n+RlYqekPtmCRMszuR7CJnlNhD6RLgBoGUCvpc2tAsZQqholJXlDO4VHv8NqnP4sfobu2/L+XOCHz\ndkpLY6QNbtMyGXcMbiYyfr8xB+yZPPe1wIO9Qbn6q4SB920E27TAlI2alG6echH4tF60DdujdVMy\nZen5KLy1jkiIgBZZ0I5glTIOo90UW6x8zG+zmKnlY/Jp6YvWO0sEC6YWT8aIr5AFWhPlGdtIfBm/\n650r+AyLmbZubMFOiUnxTtCqGJhmodXA8zHj3DOWQoN6IL2WgzyT+6l1hYT8Cy1iQVo7W/AnMp/2\nn22jQ8Xrcb74kFXwcZ2Jp2JRUAB8DZi8huYMbGgXnpbJtsQMA5pExfEI6jZfXqopKaeCzbqFBjxo\nluGa3MBljZhl26jYqZqColZqwSLoI53GKBvy8jupRhXJguTPKuhKBinO5bNdx4GmRofxa/Ro4kae\njZBwbMd48ElF76wFZhcZtE3ykkLD5Gs9dBumwUpEvjza9qEJQdblBC4Xy43eFk5bAvQ5ujfBaLT2\n8eUab88u8FxHXtjTosZV5srToMKclZb7joMha0KCgJmRZQ3blWPLt2GRflm5Copl1MYJYLWuybEW\nF8btD1GTWEVnE9RrVqzBDm6QZOaf+QYZ2ajf42dVJ4ZLBu7njIuEboA7LjAl//zSCvCcLVmSg5Ys\nYk3YqC4od68MbMrIN2Ibekh6/LoHxfhPqOS8RVXCyskh3HDgEU4+Ti5wwPjQpHSxmorLc3QqEPsd\n+zZuHYjf7rcm+DYFXQfWFL/7q7KwPLgnm82iMLhB4RXv8wl2m2S2vvMuGo7EeVL4CBKK2WzJ74Kl\nQrsti80gr5HS1drMPVhcvF0Vwjfs51OZp2V9B5/eEaHcV67E+PnPiMvz9stv4B3iG5bafFyG90v3\n4bJdtsv24fZUWAqWpRAEFqw4AVgzfjZ9B3ffkqjvxTSBdhjV39HonDGCT74Bq/CQMknbdBTWxE+2\ns0RORRaTWCi5AznMBsQKyHLWrvsuAloSJtQIaXZXDReGkmYJ2YkLx8KA5rqjfBQdWdnbaEOThKSs\nMyy0FPM0l2JS26ENixoQgII7ZWGM14Fa01pS21LNUlQuC1yWKRSj7xFSaGoNzh3hIgAAl2I5ptvE\nySLk883Q68jfb8ws7KyDnP0K65qckpoFdrlAzQpAP9lFHVBSPosBm6IuUDDEHhAiAqX6WNN31EEb\ndkxfw1XwPytBzN6bLTycUICH1ZeZnaBFfoq61cbFYxnrM0+hzvisnguLsHe9ks8mzhR5KjusFwXY\nXpGrYm//CUrTRCkazKroNRq1pVEQz+ycFJg4ssvnyxiLDnUrVjEUlb7Pp/L35pULVEeyi5dngBPI\n+C3KJV6bcl4smAGxgGhLPvvpqYfkmlggb9w/R6nFuhsUFtyhnK9F7YlV4MJlcNjuBjB0fdyNEh7n\ntTVsItfk3LDEUohPQ/gdwVu0q1sIQ+nDu7aPlBwRyhKLCgDKjwh4fDoWBQChZcNt7WIxk7TLhVY4\nPhLf6aSYo78rL9b0sIBdrKnIpfO8qAGXmnpVbmDTNKzLCjoVkzlbJJjHEu1WjD8URkEZ8u9FTST8\nHJlBK+QEimqUC07Ic2Yqljmihpi13m4EXHCiOwFcXm+aa8QjeZYm/cLWdgMOI/l2EKNNE965cgtW\nIm+ZiflsyyU0iU2rCqhZTtzq+7hNM/L8scbrhGmHTBV2ihzVWNyu02WNPYJ/ehs+ms/LrIhGA7h8\nWTSBUFVhQdWEMOdHcFjDYSYOrL68CPZiA2pbUmvKFdcIjoaaUkjWZKhoPsMkaBH7/4VrIe6fibtx\n54S8lfEKIWscWo8q3H2D4jLagWHKuBh6mI1Z4tyVF2KVVYhyZjsGAYgLg762g6ZmWroqEdC3rymS\no0ofxsjLP6uOYHcJZw62EI1el2tPM5wwxtI2AhWHm2L7XBbh5KUKV84ECn46ayAhQ5SiYV5DIb2Q\n57+/tcLokDGAmXlCHJN7PnbJD2lGsuAleYKIsS1Tt5/A2z+YGMQjmQ92z0VQy3cOL2R8s6nGIYV7\nD6YeFiTMaVgWSOSFRmTj5kqe9dWMm8wPaZfuw2W7bJftQ+2psBSU68HeOYCVeQht2VXjexc48WWl\nzZcOPBZ79COgXJPOSeAVoTuE61LV1/VRJWL61aXGeCK7+3y5wtGR5JUrimlEgYWqJ+bnRuagQ3iw\nzmqs+hJJHNpNFDTXWpQX8zwHPneHHSdCel1W/nhksNRy7YW7g+SRHB92KNX+2EI7lvvphSH2bkqQ\nqB1P4PnUx6TYSlGvMDolPVrqIX4oVsexfQFrJGZ52xi0mY+/iOXfvAS8odzPzbwGOnI8hI+DSHa5\n8sBAsxKvqgmkaWyjmhLC66ZQqRQBORngH68zFNefKH47NyQbopQH45Ky/NH7KB7KOHi1jZEt1kFv\n2YPP80Xst6PE4FMnZGW+4aO1Ideen7YwyGSvum478OUyKG3K7c1y2ISmu7XCMpQx65kEOc1uS1fQ\nFl1Luhpuy0NKmjN/K0BGApTWzj6q6KvSFy/9FnrHYrElsbh+975/geLFTwEAzu+UsGwxTfpLF0yu\ngOqA8AyQdOmCmU1sGdmZj3UGn2I3vYENt5D7X/EE6SoGWd3RT23YzEpt9wLEhHfnFxN4hJvvEf/w\nqDvFdM5AeZhj+i4xLmGJmorXtYpgSFGPj2gpPBWLApQLZQ9hdI7RKQVhjxIUS3mIXBtMTqX67OjM\noLFLEtMNps22l+iT/jqsuqg4cZenJ4gZ7bZHCWZnYoKnBIrEDR87BN54fgB3RUacLICdswPLEIYR\nbB3JC3ujGWGny3SjcRFdiK020zEaRFYqf4WIFZGgvkP27iM89uRFieMQ4TazE/djpEMxVw1FSUfz\nFI++L37oSXwPU6LgoroB5YvZejFJ18kKdGn0nccpdhjpT1wLVxZyPG+XuLDlHM3DLdRNxi46LCkd\nFUgergV2LWSHkpI7O72Pflsm9PZzM3Sf+4rcx7Pi2in7OvKFLKznvz/GREv0XrUbiJSMSblvYfk9\nZmDoXrhG4zuM7bz3xkN8KpYXes8UyBtyz6VroZfIuXOWTtdmjsW5vLgXqzHyIzGvD1+7jxZ1Qvpe\nF7c+K5H40BW30xk8wpLxo/R4gcd07VYXR7h4h3U1sykek2p+ckJVr7pCV8vxZz77BXibMmb5vg3v\n79JdWXtMloKfyjishkucsMIzP68wKchtmeeID6XvliumP4saXdY4qKub+ExfFp7tah9H92VjeDc9\nRPItAVG9eyq/H2QV7L70xZ04x6cZj/u85+F7JNQ59iNc2ZCV9bVvM97zQ9ql+3DZLttl+1B7KiwF\nY4CiNDDlHNVaUddLcc5qx4PIxqsXYmodXZyjNZKVe++WmOLT4ymu7soKvt+vYWyxIAqtnjD/1lsu\nujbNS+pVrtQc2UJW6HmzQEV15bJd4GAm1479AcqQtOZGdvnWRhMDkGk62EVqi3VjV11khF6n0xjp\nTM63FYgVoPdqDBbEu9stgGZyHeZw8rXcu+yoQe2g/cyn5T71FTgTkXJP3y+REr8w8rpAg5YHZcqt\nLMcZsw8tVSIhx1yYAL24z+ezULk8HhH/URc4pyZmYzXFnHx0pzODvCLpx32N9vOMagcU/jIKTpNq\nUi/+JOJYiGWC5dt4cEcsk6MHc7xPw+uCrtsCgEV3LJlopOSKxLUuNqg63UcTq1DmQ3okYz5bVnB9\nunl+A2Nu06dpgvyxjEM7GqHgpnhAbcewiHC6kh32zjsjTJj5SHSJjYDAsb0IN8k/8fqx9Pdpcoz8\nfbFA9vYfY/gFgXG7dQQTMWA4k/ttQeHKAbNSR0DOeoZFlcEKpA9Du4Ep4e+HE2Z4igqnc3mOTmsF\nu5Zgbt06xeGhWIvfnKdQE3mWzYGc9zEsbHFs3i01VoqBy0JhSJ+mc63Gl56V7/+6UJv+0HZpKVy2\ny3bZPtR+qKWglPpfAPw8gHNjzKf5WR/APwRwDcADAH/FGDNVQpf730CUpxMA/74x5pUfdo26LBBf\nPIZ3UuHRVFbt+3dDPGJKZ9JZwuMKfr5SGFHlOD3jytjTqO6Kn73xQoL2PhmL6haWFwxmzTKMEkqM\nEdH49pHGoS9byk4B3Hqe9fgzB5UjOxTsGBVJQ2Py6neUDZcMnpVaQq/kfI2shdO5WAWvvvIAb55w\n5+Jz7t7awucI120GDlqW7KSevYmaRU4J0Xq1AsCiJfdBil//huSjHz46Qi+Svuh0fIAYCkNNTN9R\nWCzEz17lAX6claSdQYjqpuxAjWWAhHGHRS0+6/n9OQ7JenU+miPckd9d3+8hovXS3avhrivTCsYI\n0gz53e8AAObmGO6pmATf+tYKv3tfOBQaaQxNhF2+lk0AnlSzxosSHVpNXQ3kTKeN3ArTMS0TBsnm\nfoFdppFPKwc1LQ8ndBCnEhM5X5R4cVNiBmlNctVRhYdrduXlEtOWjHtkOrh/KOPgqhRXflKssy+3\nJAj8tW8cwZ/Lbj21I7ywYqWi/QJcwt6ZQYXvWTg7YgHe9gx5Q+bp9R0XExISw7Wx15dxtc/kfr+/\nKp5Un87iHElP5tvi2MM3H0i8Y+JW6DIOdD6VubdrVagZO3j2ROG3zmmZLiocUkXmL/kRdloSKAW+\ng4/SPor78L8B+G8B/L0f+OwXAfy2MeaXlFK/yP//TwH86wBu8b8vQSTov/TDLqCNxrJM0TitsDeU\nDvvO1jYq7zUAwPiowsZVMXevbijsXpco7M421X/ONEKbnGiNAIErA1OE29gaUNFnewzvXEbRLxml\ndSJUHIxb2z30rovp649TFAz26MqgUPKSRZX8vnIbaDJ6H7khKub886CCOiG8dtjB54zc8941Odfm\n7R48woC3vA78HSoT+SuYKUlWOMPszhY2KgannvHwwgdC0jGZLRE15He39hrwQllEXrtHjkNjofCp\nFpWXsHoyOwbw0W9LtWfhVPApHNk6JabjYIhWS+joXvxJCw2Cl4KOQsgXr9n24axLv9e1d9qC9ynR\njLz+ygDVV+S7VtnDyUr67fUzDeQM+DJfb2pAr8ubSxsXrANoGBebjH02VYmVRbeBmI2+FcILpe+v\nBAMYwso7To3HJJHpLhvo7kiAscXxrxMDn0Fld+Bh25N+abe78FiXUDU89CjOmXcfAAB6rsJRIfd+\n57sz/OiXxJXsTU9Rr2tlUtZXGAWPtRiF9rBL98KyffSYdTH9EB5dOr0v5+pXJVjygl3bQjuQcSij\nOQa7cp/L0xhDriu9gPfQclBtyvGj1RzdC+mXcVghLuUa9/wWnrvzDj5O+6HugzHm9wFM/tjHvwCR\nmQc+LDf/CwD+npH2LYiu5M7HuqPLdtku27/U9mcNNG4ZY054fAqA2WTsAXj8A99bS9Gf4I+1H5Si\n39vZQrO5B2vjBHdPxKxra41eJBbBSVJA57JLd9sbsLs0g9cErM4UC6aSsm6EqpKgo+olCIZyvJtt\n4jyXlM6Egcqbe320mWLa6bcQcScpuwUKUqzlqwIVg1mlJ1tbBzZsCgza1gSdnpyjqz1YP/uTcu7T\nY1Rr7UKLAiNqAl0IGq0furAo8W6VGlktq7nJ5Dm9Kw00IbudZT3Ez/yU7MbdvV1YOVNZ0QKZkme6\nNl7zQmhMF+JKPciBdoOwazSRGrm2l7bQCqgz8IJYD60yh32dPGHeJhyb4gMXHyDclHXduRLBzIXg\nA9RGhAlhsfqyuT9AlorFcu1WhB+biiZDd3QH/+gPRPOw4bAvYWBIgFPrGhZlzq5ELnJiVWYV0GJh\nVhXJmLW1QpsaGT1zAD1g1Wk6xuNC7tnySmQ7YnEWhHYv1ASFkjFrdNpPqlxrx0W4Qe2M5h58uiYn\ndygnuBLxHADYbfk4Hck45fZLaBI3XPGZlo6FAbke+rs2FK2qRuHCdeV6/bCJmnwI8blYGN3AhyLe\n5DjxcXxHaN5q5SE7pWr2fIwZY7G1kt/bqoMp9U/fOh5hRQXuL4c2wq480zxwcJc8Ex+1feLsgzHG\nKLWuw/pYv3siRf+Z526bYpJAWTW2KPaZDG0EbXmY5jxC3ZLP2wHQZpTVJsff2AKaNVmRThzEWyyR\nVTYUTTsECr225K7rFuXZ5zG6SgauzG2M1nZTlaHJMus4bKJeVw9ycriODX/ty64iFJDJ6Kl9OCTZ\n2NreQ0lpdE2mZo0I9VKO/Q0Lei0IqlNkdLaLNm3qd87hbsvze1ub6EXyor80DHBKyvFZbeGRI3iC\nBYljnLRERuirgxgu60A8O4F9SFdqcwY/E+YhU8tECvotGObx/W4TdSyfV4PrWNvz+qKNuiX+t6b/\nqpwmFJd8KxzAp4qRaoV48UdEoCb+w3PUJGXJSnnhM60Awpwt1wLfRXjDEAGJTOyVhZz16jZLRsJ2\nG7t0g9yGhw5rHEboor0li0U3NOhVspCVzACsVg0YWxbF+L0Sdl9MdGfTgk04yU5VYlFQjIg1M6l2\nMJ3L/TQelwgO5e/P9D4ACFM3rHrchIVPHTAutVQI11mNsAmf+IwtBHiYsm9Z+dqwHTSJMUgchUcv\nM5PUX8JQyMX12yjIQpW4/DdxMH9PjldJhZyb2usNhb95U679/rUQBVW7Pmr7s2YfztZuAf9dV/kc\nAdj/ge9dStFftsv256z9WS2FX4PIzP8SPiw3/2sA/qZS6muQAOP8B9yMP7VpDQRuE3ZLds/puUJC\nVl/fmuLGQMykqGzAtyT4oim7tVX4UIzCWyGe6O+txhVsW4JdTtRBtEd4cCir6PTBDKsZg48mhlkx\nq5EXiEiG4hggpxZDzgKfRryE5zMQ6cRwqnXQbQrbp9aD14RLuKFacyQELsDAULkqUGQCpXW6ITyP\nZu67soaWwRwehUyaagOaZrTV7zwpXKoeHiMeM4/PgOlux4J9Jn2YaPVHAjhhE4VLDoRJE1ZIvQjm\nvD23C4uCJJaq4WzJcwSphXop1ki9egOqSRcDEvjEYgRFpKe7tYCrxL3wsYWylr3imS2F/YaMySFN\nYGP0E5owaI2I8mgd4+KM1Y6ZkyFbrCsmWaC24WOP8na234fPoPJGp42IAj3j5AIJEZARd2UUNdKp\nXLG7YaGzJX3YVS2creR4nI9gR9J3++TkeMuqkTBIurAWSGPxjlf1S09wFh0GQbc3A2Aun01bGhUt\n2tu7Llq+BJ3DWuHFG3K8eU/u52IxxSEts3YKrLoSCPemATqETdeeQZjLHHjArNz34iVAmPem8nDB\n622nBfx9+e5uVOLXzj6eIf9RUpL/AMBXAWwopQ4hKtO/BOCXlVJ/DcBDAH+FX/8nkHTkXUhK8q9+\nlJvQlkISuVBnGt62vIwX3/GfyLaXhY0hJ9NWz0MRyMCtU2VeYKNZyu/6Wy0YRqzdQqEwMoGCyoZr\nSIdOYQ7jt2BvSUfmyxgoWSFXWPC35KX3jQWLsYuAen/uRhMRF5DG7gYSpiqzUqNklaMbNOGytNsM\nWcqdVlDE59fTJUAiVbXM4IUkgt0Ws3Y5P4a/kPttb+zBkN2p6dlYncjzuxqouHDa7ItVMASa/G6c\nI9iVBTAsO2i2ttifGo6S36kF7217G6ombLxfPynlNgGAdWZElahZ5YjNteS8gm4QHj2uYLN0WLtz\nOD1JAc6OWk9IVBS9OWV+kPTDQrrm4A1bGJAMps5X0OyvjKxKHW3QYel4YLsANwulS7TJK2nnDoK2\n3J9HgpuhrjCvmFlYraBryt33cnSY4hv70TrTinyHC8gHTZxT6Wo1VkgyOa/bTGE4ZhkrVbcDHw4h\n4YgthFxYmnYLBz1xZ9xNB0G2JhyVPqle9/GQqlfFEtggaU86rGHaBE7NeH0FWgAAIABJREFULFhk\njhqxniUuNM4Yt+r3arzUJIDPJJjacs+P9QauULTmo7YfuigYY/7dP+FPP/vP+a4B8B9+rDu4bJft\nsj1V7amAOSsoNJQLuznD0T1Z1ZJ+iRZX+eM0x72JZCW2gjY6pC1vOlxdEw2Hud+g6SIgACoJR4hY\nzBSEGygTCQiuZnKuMDBQK1bFGRfKZ4BSp7AZqW6GPlzu6CWxENVZipo7X4UpbCPX8yoXNunX6zx7\nwllgZYRaZymykkEfKwBIdGI7BQrNHR8E63ge8rlcI56NYLOWPj31ENOdOTp7H2MWf/Udufcte4oT\nmqKJ3cAOzX3XzmAqcU2suPdECs4h5sHkJ7BtyZKoZRuaLli9vIAmX0JVduAQNl7l78vNz12UFNfR\nZ0vYSp5Pj3Lkd+U7iT7CxYoEN4xiuT9o0VpAROGb/Y0eCoKQinkDppJdtUUyGceyoEsZP1/3QY8O\nVZyjIMFL6gDDTCw9paWvzpYJFAFeXtBERWKU8aMMBcVXbFvBJvdFdUbXwDe41pF72+6EqGdi/Rw1\nN9BnlaPflLk3MiH2mJHYGPgISTenyyVKTQbm1lUEBM9NM3J57PdxeynnPUGBb5PZe0tV0CwqW5kV\nlgxGG8697bb1RM06HwG3yfHh77r4/h2ZD//ry99FkH680OFTsSgAGlWdIC0UGraYuGH+NpZ86S14\n0LZ0yNQeI2Sk1ngUH40rpLW8VKu3j7AkAMVtmCcS9k61RMr6gBX1HeyiCcWILlwNKyEazXJgz+Vl\nq9wGPFJra/I5JvMZAoLrvXAHRUfMfFNdAzIqGmVj1IzEG6a/SmRQFmFwbgmbqdEy8gGmX/NArpue\nGuQDTuIygZeQPSdPsEjkO6PFEvaag5aL38iUiEgW0w1cWGvdi6IAJrJIFY3HcEuJryhFGfbCQ+WQ\nlLWuYdRasBeo2Id4v0Z5nQhKlkibLqCJOqxsHzZrBorcwrzPm6tzeOTQVOwfrSyANRwN18KnKHHv\nRkCWrR8qQMr+qC+IeFQNjFgxWoUP0Dlmys42sBmX6EYNBAFJS0jK2g5qeH2ZN9WjFTJe+yKLUTM2\n0KgUTIPVry2qMA1CmJLIIsvFlGxJvXyMgGTCzqska7UMNvblHo4ubGhmV9zlChX5P73RCjVp210y\na23pHpwvC+rwYG7DJ0eju29D3Zdnfc8qn9AApMxkHLQ89F1ZyBd7LqoteXd+5eXfw+EbMpaZrqA/\nJnXrZe3DZbtsl+1D7emwFLSClSigAVQ7FCcZXUPI4Nm5lyGntPMisbDjiYlqkUij7dpYERp7dHGB\nTp/BIM9FVMgunlwsYWgSWzSZRydTIJHkiNt2YQ/F1DZLwKV966gJzJKBH5JjLI+WcEsG1IZjhJqQ\n4FaNEtyhco1sKcQiti/1BcZrwCH2QqOEacguYIURVE6hGrJW+24JxUCj6vvIZhLAzBdLpAvuGIsE\nvs+oNcFIKs+Ru2tosA814067YaGqCF7KAbdBRmFDEzdWQHbBe1sCHQbtBhEsUtQXgxiVEhfEJNTB\nTB7BYubHabioaWHo5WPM35TsyvnFEUK6P2v1IscyUAQs7UYWrtI1K1c1zklI4ukU6ZzBZm5fkzTB\n+aFkTvKWDdWQe7M2AnS0HMd2jupMfrDkdSuzREZ+Dss6h01V7aZl4YhWYW4phGu1auJerNpGk3yc\nuSmxk8p3J6MlDmj1zIgtSX0Xj96XsWn3DWKa++OVxpAKWEU6h+/LtUNiS4JuCkIdkFQ1wn3pWyuO\ngV353f6wD4fEod+nWpi2c2xdkbm+vWziN1mjc/LBAgWtEcDAMcRHY/3Zn94uLYXLdtku24faU2Ep\naMdCthmhsepjh0GbB4sD2Hvc8VcpbBYH9YoFauaxc6YQ7VAh4k7badpw6KuF0T5qi5oFrgO9IlUa\nSTLL2GBGv78PByF3hNANYLaEjs3WBhmDVaBfj2cd2K9S23I1gg4pjOI40CX5IFBBU7TG0CW3nRLW\n/9fem8dYduX3fZ9zl3fv29+rvbqqeiebTXKGM5yN1GgZSaNlBpLsREEsQUlkS4BgQIGV2IjjgYIE\nRuA/DAfyEihSBFkxkMiSHS3ReGBJs0ijmdGs5Ihrk002e+/a377e9eSP3+8V2fQsJIdNduL3Axpd\ndd+re+5Z7jm/9futiibkZzl2Q+PtqcVodtvYEbswHA+IrDrt2kNyhZhreS321ReRmhGOkibmVflu\n//qYoSOa0H1AeF60nEo/J9BQ1qQ3xdU4vqPeTlMugZ6OlGKMsmOb0goEShzzvireTdEmrKPjE+yA\n5ilM9vbJLmqKstPh8qpoYXtfi5loRaSvmknKEX8PplEgdaQfbT+nqGnaxkSE6hyclWFlxlLQ+UsL\nI0Y1zd7ME0xZ5r3bjzlMRbPav6ZUgJOMoKhOXDsmKGqWasXBU4TqadFSzGdaj8yjH03oFeQEXi4n\ncFyxKl48oHRO+SIUBi3Mu4THpY2mV6ejzzDsT9htyLNtNOwRfV13KhrPxXZKWWHjui+NSXfED3LO\nnTCqqIblGLZ7+h1Fglr0CrjqYHePx+z9jjh2J8mYTHNnCpUi9+g4P9Z5bZrCXbEpAGAdqsvgF2QR\nP3TmXTxZlhfoSrzN9FAWypV+xKZOUllz1gNyavryNxsNMnWuWTPCqrfYLjbpqmfY82Z4jhGuBqZH\nWUZNX1J/EpLaGZuQi+/L9UJNJ/zpMXsKpVXav4K7J5No3lsn1BfSej6eok1n6hhKW0UiZKGk0xxf\ngU7i2CNVPMNUnUx5z9Aaah5+9iIhszz7jKF6qsP+mGgoC6TSk8VzfZQTLisGYG2ZUk8WY5xEhB3N\nmW8V8TyNlbsS23ZthqN1EpRDZtCNWWsPVx1cZtXHU+5JxlJzYXe65OqdH13aoT+V5J7BpREnr0l7\nn9yZcNCTOdOKbZouNDR9aWEw5ZbmDZy5ts+24lwu+pZaoBWxS5q8RpmJRiT8QURalpc3pEJvKmNb\nGZXIFY4/U5Owe30HoynRVbdCd6TOvjRhoglOZS8g6YvJN7ku87HX6rPmyHjen9fpXhPz6a9aZfoX\npb0bM6Ii2tz7kozFse8ZYQ5kvSQHKY263K8x2iZRB+RzL0ppea1dZHlB1uFSDbJDGVuPkKVY+v/i\nYJ9EoQoHmnC31gwJlfD2wldeYKrjsukaVtbl71pbDcodSTen8ye8FpmbD3OZy1xuk7tCU5gmlgs7\nU+xSytllORFK5QHrNU1L3ixw/Ybs7AdmSuOy7GVnXeU66K/RTWQX3W2lGD2B4pJPRWvPs25EqCrv\nSDEbDrIuE1XFF1YWj1KJw6qPr5rHaJpQUEDQVJ03w2OG5JISyjzp0PyooiD3mrgzKrh7i2SHqq4r\nJ+SwtYttaXZgrUaQiANyXE8pKciInZF/NOrEqZwC0dij0lANZJyyelb6dLXTJ1M4tk9c1vBsmrOq\nBVg/eHxKVlGyl8Oc5EklXznbZtqWsQ01WzOLfKxWmmJWyLSwNX6xTbatmsLFEmZLTKX88CUd1wG9\nQ/ncnlvFD6X0JVm5yq9eVL6B8ZjWq4hIDjIoqEmR9mCrKOO2W8iYzABcEg9/XbkqPDn5pnlKqmZV\n0k3QaCIjP8NbloKoXmGb4RU1O1TLi4rLDHoyVjuHOxSbcr/KmSqZgt0cjA1G8R5e1NN4mo55saXr\nKe4y6ol2miXbPDGbV+XOKKWWD36PPPuW2eSFipgHT3S38RTLY2M7oaRO87JmObaifW6+JPc4s7iG\nrcjcXMiucevr4mw+vbpAsqKAxb6st68fhpzTDNLPXSvTGst6OpxYhpp7cX/jB3n3w6J5/MULvCa5\nKzaFdDqgffFzfHK3RufsDwFQH5WoNyR2e/rMk1y5KS/k1U7KH6n6/+N1WeTveVdG90BTPBs5dWbV\nk306uzLY66c8Fs7Ki+Un8gLtT31yTYkuGodGTT3ZSU42FVs0jQ3ZoQxTpOXSf/Abbdb05f3s0iE/\n9HnZbB78ka9g6u+Te4x7eKkyASn5h+uHTLT6rlwq4DfFfGg2apipTPhIc+snF69RTeXZl483qbhS\nUzCudohbmghEwLPXZLH19e3wDByojv7EfpUf/Jom01jLbiA1DM2LdRob0o5V1T+bjPEjLYu2z+Ck\nYnMXH76HcSYqtd0fEY60ylEJZuOrDoWJqNGlzpR2Ij6HF54b8+eXNZ9gmpO+KlRuDGihKd08p6l5\nzuuTlL6nG3LTw2/IJnNsU+ZuGBZxbqgp2WsximQjWzt2jJWCjOfXruwz2t7TdhQH0XM4GL4M7X++\nLnO94BSYamXucJTQH8wOF8WXHFsUs4ZOzWE4UHAd5zjdSxJdmUVwrjuGzz8un//kT4+oOjJG93T6\n3NS2v3x9j3eeFW7K1XV5of/g8T1ae9Lutf0+Qy0vuT40NJTm4F1Fh7ImnL0wki8c+GPGV8Sc2e/2\naeuazHOHRImHkzgge+rHdNQ/yWuRufkwl7nM5Ta5KzSFUZryxVabzeshE3WSVW1Gdq+og2tX7uUr\nvpxAk8QeQai1Yjkl2wmcPKmRg1qZugJvsJ1SUpOgcqyEv6jZhIqdWApTfM1cq60GOBorz50xEz3a\nbDnGJKJ2eq6cLk/XPbZvyAn8/XFOuqTP0y6w/JBgKWbDJfwFaS/bOAdAOI1wd6W9pB0Rr2omXZSQ\nqIZw8LTyAXYvUM6VaTkpEFVkXPZaEV0lmXmyO+FGVzkSdCxTC44+e68/4mBdNBD/psvSrBirHBE1\n5BRzy5pDMW2SFeTky8NV/FBj+pWQwgkFLGkasql8341lvKe9fcarWkjV2uOFoVz/ra+36Kpmld1W\n/KRioaVmnpMadpTeruFAVbWQugfH1NQzy6KNle2UdlNp+qKAQS4myjIx8THRJh84e5yeVnkulBQL\nwXNoT6S9aeeQ1U2Zm27P0tO08RvJmJY6B2fOw9HE0imIdjdueYQVNW+nMZpmgVFHspfDtppjl55w\nuPcRdShWiziqzrcJ6AeynjgrffqRi1t8XW9WJqGg/Vvcg0ArgZfOWh47VNg/xaS4medE1zQD1qQk\nySwL1WOkWCPbnWVOmMuvHv1vKcba142P8qbLya11+z/8vZ/Dvdlmuy/e5IozoT+Qzjsmoh7KC3Js\ndY1cE3VmaaKH2z08rZwMGguEiU5cfYGa2uLd3oSOkruOhspyVHPwZ+pgwSHeUKSjvYzd5/8CgPq6\nR+8peaauAqj85C/d4O/+1zKJf9rbp6k2YtfNeE9NUXyKBWqa0qycsZjcYazkqY1ayOqW2I7FSYX9\nbUHb8UvKI2gOaSlbUXvSpqnU6gd+gj/Veo1pH41IcfhNprF9Re73Ew8YvjCWfjiYo9TXcMakFAac\nUmDQzc0qD2vK7FOXp6y8QxCiPvhjH+Bs43ul7ec/B8AD7/8e/nL0WQBe+M02v/74vwJgawSXtDDh\nB+o13JNy7we2ZIy/92d/gvvWvkvmoXySYkXG7Rf/xveTa4KQE0HgiBkTeTqWuYOtaeJUUqc9kU00\nyR0qyhvZrKyzcFLT5WMZ771+5wjcduIN8QYzAtoxvi9rJHOm+FbGq7GivpNpgWsHz0t7EUw1UlEK\nl2mWRXWvR+JTWchcVtWkLRZyGp4mOl2fMC7Myi8Tnu2q/2RHNqNq1Wd1Xf4uicrsqulzdq3KgZL1\nDPabPK/RlQc1mez6yRreDRnXK48/xyN6wP1qL0E5kF69GT9urX0v30bm5sNc5jKX2+SuMB8wLnh1\npmFMLZHTfG0twb6gXJJjQ1UTb6hDTeHRxur1nY4OcBRxNxv0yRR7oBw0cPSEqVjvqJBkf6AFPA5U\nFa6t2myyVhTHYPkhS3Xh/dL283sM1mTvvLIt6NLv/h//NlH7V+R5PEtfMQVXApefPCen+Bf3XbpK\nPnOqqWQypUU6mty01WiwsiwncGojvrotJ1vvJfE2t5dqRJpjkQQOnlYiGuNhZ8lXGA6/jaa38OB/\nJz+M/+HRtRx7BMb843q6Pp5CHMrznt08DosCdd7f+QKOwnk9/WwVf0GclZ96STznpV9/hi//l3L4\nXPt3v0J/WSsAxxELqvp+5IGASwpD5ylpYv7JKww+rPiY79rAUYdaYanBwdNygp4sWHYUhi6P5DRP\nKi5N1Sqi0gj3upzojjfGc+WUL25UWK3J82kGNgvFGhPlBC22QvKqFrfZCrFyiJq9Io015YpcEdM1\n8mC5J9f2Rm2muobGZsTpJZlX87zcd2MJRka0Bs8rsa2RqIGB4pr0b62zSL8g37k1mkG7FaiuCVSg\nGbX4Qkf+7vB6RPe8aJPOQYdrmp+zPpYxrFwtUNqU+/52UuQLLY0efYcy1xTmMpe53CZ3haYQ5xnX\nBl1W9iYUq0pWur+H683KV1OKS+I4KeLQ11LWaVvJVNKQoVWSDifASWf18TkFzaTLAgdPkW8rVU2p\n7e4yWlbosl7GxvuFAGTQ2uf05rsAeDy7zsJUTqANI6d49IV/BmjKXwqL2o9jYYGXFuV6GC5zRmHf\ngmXRAu5buZebSv+2OKnT0QKt1vYe7ancexTI3/dbOa6yFhMdca8wzXIydVq9Jhn9T9/w8gxq90kt\n8jJrNZorcgp+dZSyNH0KgBuHe9xSwpjn99t8UqHgDlJNQZ+02f0tOcVd8yzmQJm585ypojf94V/t\ncuZe0cI6bfn8eO1Jhs9K24unHyBU1CeCAbsV5XJYqLKoteH7ZS06SnJCLakf9xOyUNrwc49lLTar\nV4oEddF6EnXobBSKRJosPSjnZKpZrucuE6vs4FmLbiqn/tqSaBru1LK4JuXJN4opvjr7pnaMm8pc\n9aqa61ENWLTSp36/S1+ZwPu7Q3Yi+bm0OuU9DVkPa/fIWJaLHs9q2vmw3aY7keuDfMqFF2Sul9p9\nIs3reGpfxqQfxNx4WvqR21clgnwHcldsCsZaApvij3vUGjLot8YlPMUMbEz6BLMXPQ7pTUSt7rdk\n8LxKyolAUjmbjQWyQP6uUm/izjj1KlVGWtXmBvL3zeoKo4FENTompL8tL3E1KALynfOnm9z6unyn\nMVS4ydveSQfNbSGMDPVtQRoeFkJKmodwb00WVR3L6r2PAtC9lbKkpQbj610WF2VDGsd97ec2s+kp\nOIaJ5rtj82/gyn/9MsNHNEVRxU26zKICeqS+R18Zq4rFBZJInikdDzkcygaR5PJCdKMxs7HKMnu0\nkY+xhBoFuRY7GE04O35GXsz93hgzSynuDij0rwIw7WXco5ZiM0rYV/h0V2tinFGC0Y3FnQ7JlNRl\n0S9SVnTlqqmwUJJNZoaxEJ6ukI10I0ug1ROnHWGZjvJOdgctZmTjZqKp7XGLal3ucTpvsK1rb3qz\nBRvyHPfqW1QduDyrqn93MqLQVej3KGW1I/c4Uamw+qDkXmw+KmbXeG/M4rOylj/jdzhXkT5dNhH1\niZhjPTsmVVCXA90AwnFKdJQAYnhTFgZz82Euc5nLq+Su0BRKjuE9gUv/tEva1zwFJkd8CUtZmWVF\nzbGjlEomKtPCinJBNIqsBJKN555YxTnUk6SRo5omk3JIrSX3U6xP2uMRE6PVl0mPrHsRgMODhOcb\nsnNXCotsnJNTZ5hIJtr9f3aRPQ0trrgh3aZSz5WaPJPKsfP+s8eoaPHkmRPvACColrDDqwDc9/AW\nTkFOjNNn3kH1s/8OgOx96px6bpWXJvLdm7fatDVMZ6YZmgpAllmyb3c4zFQCe/uloiun6oFWgH5g\n1RCHohE083W8FRmkSXuPBVXLH1xe4YUD+XmnJ/1MEo+SnsadyCfXLMxebJhF4Q6GEctWTtgbL2nY\nMAhYekHZqn/kOQauaFXt7gRH09fv3aqyqGQcF3YUbWo4pqYOzCyFNUWnOra4wpkzEu6seyuUmpID\nUFUG8kI1wakqWndeJCgp0tX4FoQyFjs0KRa18nYkz9s6GDHRa6VywFZD+j+JKiTbokEeavHc+WNw\nXDWClR70NVv0XUnOmbPS12N/60N4J/6GPD9XASjfv0z9fhnPD58rU/r0xwF4ICuxFov29qmDlC+/\nKN/Z1XCjl1u0yJccO0P3O6Lje6NyV2wK+JCvuYQdcxSPNn7KosaSS2GIoyrT2LeE6YzWWzaFpZVF\nGhVZEMXyBrHi4VGKyWfU7lOD78tbGq2cBCDx9kiuy32HNuZQ6dAn0wjbugDA1cI5luqSbn3YUMLX\nj66x8nGJUQfLBc7r5pUEHltleY5wscKZTYkueKFCvEeWxXXZvJZWj1MsyndXOj7+DyticF8mfm8l\n4YErstieOvZFLl75GgDPXx5QUjVyaHNcXQFHFs2rNglHcw/yQXy0P5QccLWKcK14CgD3+DInNefr\noD0miZWFqZFw75os6OWVVWobMicXXhTGJzvq0lbewvDAZ+qoSWfGDHWDyD3Y1nlYV9zCl3bHNDYV\nY7N9QFFzia2f40y0WtM7xZMV8cFMd2RdjKYJNxUFeblR52RBxnB9dZn6umyyjhNSSjUyoAlpXs3B\nVZMgiCyhpkRP6gExMubH9x36mkIfl2TcvJJLYSB+hqy5wkTrErKDPo4+s38o9536ixw0hGC4f1OY\nxACW3ncfC9/1fQAUTv41TFnadnzZuGzq4S/Ihry2UeU9kgqC2b15lApf/9oY6wpB7KW2JCM9tx0R\naPRpZEDrXokcIH/jpsTcfJjLXOZym7xRKvp/Avw4EAMvAX/LWtEPjTEfA34eObz+jrX2T79dG25u\nqcYTWo4h1dh+EkU09WSuNlYpqbrrJxOCppKk6G7erASUFOKqEKR4M8jg1CVXpmhTjHCPK2XbUDSG\n4mRMXpIdejSZEGvGY7YfEaizZ6s8JlfClaQju+9fb/f442V1YGUpVzuizz24WCRcVoCTe09RsXIS\nhKqBLJ9dpbEsJ1tQrBEUFYKt4XB/Qbzd7bGcDAvFFqVH5fMPDDf5o9+V9g62P8cgldNsI/QY60kR\njV7WHmaSA2uaEr4HOKoqxBYaim82UTCRraUi3WuiMpuDHpvvkrZPNitkeqKddBKmZ8VpupBJ5d3z\nV0KqA8VQOOaQKSBLfcdwVePmBouvK213fzZWE7bUpEi6z+NF75YxqgWMZpWPtKl2lX59oIjRbsaq\n4j4sLtVYOS/a2EJzkcV8hrqd43sK1KKnudcrYDQyUAwqVFTjyWigfkSKoxGHVrMpdQxfGnXJJ+rY\nW4lp5MpQbYqUNK24vqp4GYWEJS2C8mptzqzKWth4/ybl94i2ZVaWMbPXTpG/TRSDapOlk3BGiWOG\n5QWSijhEHzjd4PjkhwH4xB8+BsC4/TVuTUWbbPiGTG3JKBPNYdaPmYn5Wq2KN0pF/yngY9ba1Bjz\nj4GPAf+9MeZ+4KeAB4BjwKeNMfdaa79lDC13LHFoCbMpjnrZTXWRck3V63oBp6FkIrsugSd2VlUJ\nSSrNJXydRq9ZwctkMdrMww5mJIUVPLXLC2qIxdkirqZV+9Mp5LLYBsEhlxW2/bsxDItiKpwpin36\n1CrkF/UlHEGxKD8vrCzwfQ/Lsy2dOUl2VfoSnZC/K60tUdQog2ccvJpS0UcRtRPC7Zhfl9Bk43Qd\nT5Gl/JN1Ru+WBfHMlSd4pq1EJbHBVzOg78jmFo1copkxkUJ9Wfq6O8qPFoU1AiEP8L7z8gzVrUX6\nz0o/DxpTtlQZrZVXObYiC3pxeYFI1dLkjIRsC26P0VjU51vDDmsL0v+b6SGtsmwWlb5loNycJU3+\n2fahlMuLWywuUHRkg9gbOGxqlWcxyfEVAWpaks2kmhTZOi3PfO/mFhsbYo7VmgVKGknJJjEFJYzx\nCoqDGJQwI2WyWgzwdel71foRiE6cW9iTgyGx8rzFwGNXqeo3bRl/S35+qFViohiMD8by91uNgPZV\nxdVccVg+Leuz8aFH8MqSDGfKTVAfxAye3Q5iHPVL2bxAoIS+JptgtDLSxh5LxyXB6T/9oGx+rf51\n/vApiYhNRylKi4r17BE3aeraIxj81ypviIreWvtJazUIDV9GOCNBqOh/11obWWuvIExR7399jzSX\nuczl7ZQ3w9H4c8C/0Z83kE1iJjMq+m8tWY4djOgethhkouJt1ZqsvlM0hZJbI+0IQkSlWsBfFM9x\nMFV8BNfFz5U6OPEglZM5t50jVS039gi3bpJLDN6mBrVAGBZc0okmgsQ+ue55l5I2p9py70FbHJif\nf3xMq6WFKo7hVCI7/ul3NtkqyokfXu9QKUsab7EqO3wzX8BRfkg/K2EKitrrhVhXNYQNUR3TxOIX\n5eGSwohzP/oIAI9+6QF6rSd0cMcEmiDzkJHT6h1bDr9ydXA0tFP93DcvJ0A5FjJNK67flO92PvkU\nRT2VT/tNHtTx9FYLLDpKNb+yzpqyMl9THIrTToFxKvNwpp3zZCgRnEbnFD+8K2P0fHzI9PDlkwtg\nxSlwRXkXl6ILbPrCTbkauEwbCkTjxCzqKXdMcTndmuWMVkCeqqwTlqXtIg4KYk0xreCpU9nzZxiP\nGZ5qD05QltAFYL0xYVWul0eLLCgW5r7C29UKNZYWpc/HFh06SuwzKrucUP7PQPk4vUaZB46J5lL0\nBgTvlDwEN08xiYaiHBdSXasa+TKVFIumawcOeU1MhkIxBFb070K0zo+VD8sr9eGnP88TL4hm87VR\nwoywfMN1WBUrjj8ZZa87e+E72hSMMb+MYHD+9hv4218AfgFgaaFCN8s5aHdwEgU9ubeBo0CpcXNE\n1JKMxclyg/KO2Lj+ikxgEpXIi7KgC7GPyZR4pOhiUU/2eEDiaM2DEo3m2RRfSUrcQoXJVFTYoVOl\nNiND8ZYZWFl4LV/y/p8aOXQ1/tMMLe/V2oitWwGT41rWO24xUvj1MwNZKM7W8lG0gDDFqL+DzMNT\n02TGMOXsDjCBfF40DiXdLH7s7/4A4b+VF+S3/vgxYkVLuhBpee+tAKM8kdbCnqKjRkeKHRQc2Iql\nnVi96cNhn1RDgWejEeVNzSr0l6kd08rOgYenGYTHF8SkGHkDprtSyzK4AAAgAElEQVSKA3nM432H\nmiB2esp+IArkjhlzSxmZTEEGbmeSUb4l99q84BCuXpW/Ww1wbinBbN/nqi/zmkXKgLW0SOrI29Eq\nDNkYaG1EpXAEL5+GBWpa2m01IcsseVjFpbTDlLSuRENZEa+snI9NQz6W8RipCVaOi6zeUNxMU8QU\nNKGsVqCkwDCuhg0db4Vx8UkAksRnWcu2470K/r0SlfCmddmh4eWNiSmMlTksiY5MOxNWsB0xeW2j\nj3tTSWI06/fB/+Ih/vNtSSa78uXrJMpqtmMdUgV18V1QaNJvH75WecPRB2PM30QckD9jX66/fs1U\n9Nba37DWvtda+95aJXyjjzGXuczlTZY3pCkYY34U+PvA91k7S9AHhIr+XxtjfgVxNN4DfPXb3S8a\nTrj8xWfobfcpb2j04VZMujVDNnbpaP1BcnWMqyQqXkFi6e5kh8BTfWk5hZpoEk7mkWkeeTpoH50k\npiqbkENGsKPxaHdK4iuPYH+KO5WTJKgV6Shl2e6+YvntRwS6nTYXXZYyNS+OWS71JKGlGaaEmWg3\nw6kmQm1EGEUGtvkA4ynfYal+RGwzUykzN8bOgM3DIkZPvlNL7+CepYv6bBE3rqmHX71MrdUER3Pj\ns8gyPngZ1nuWpxDmQrMGcB1RPxdWypTGco8kDykqpF25MSaP9HRs7BEuiklXVQCYAS79qVYfri5g\n3ylaVe+ZAx7XZJuwFFAIFdZczZmDZESlLj9/5fA6zkXJl6iXJ0TqXBtO2gxaMzi1GU5+gDGiVY0H\nMd1Uza68LjznAKUQa2T+3Jo8uz9dIs+Va7LVJdXq2EKwTlHtDtvPcbQqM9TaiHw6xNc5WawZcq3t\neGq7y/1q6oYnVa/P9igpK7VTScgUu3IYP4d7XTAZau8p4SrnY66p+9ngWVx1xFLfxDjKPdq7SfJX\nki8zqbZwF05Kez0ZK+9WkWMn5dkbT1muiOJM5GQo/Aa1gmHQl/F8rTWUb5SK/mNAAHzKCJz6l621\nf9ta+6wx5t8CFxCz4he/XeRhLnOZy90lb5SK/l9+i+//I+AfvZ6HSN2cw8qUUW/MGQ3H+Jt1EiOP\nN+ruc3mo+9zhmNEpsc8qY9klw4llWfEWguImziy3OSsSadx51D/ksCuniufpTp0bDlPZXr2OS2BU\ngzAjRuoEPBH59Etyj6rWs+PmZJrF9wG/SvGDYjGV3SX6ynxsyhuEXTlhOmc1yy8fUOjLcRYGLpUF\nORHcyQRXHWbWagqvM2D7RelnPT9J1cjJPK19luENcUTl3YRUswZTDTheP/TItYiI6BsbkVMPllSz\nOqZsz+NiE1/heir3VJlqKG+ahVRC0cj8UhlNF6Gg2aSFSUq9phpG/yb1YwK861danH5UwmXpYxsc\nKur0WCHROoCviMnpk1PONhSAtFklVO1g0YOGErgMHM1/WGjiVZQoNo7oIqdxGk0oZ3K94i+TBvLM\nVsPTXjBluC3z3+1f58LTAj23WTnF8oxVvDbGn4hjLzP6bO2ITMfei0o4Ws24MsrorCjlXk/Ru06t\nkr9P+pF0yxyqbyc1RewzMper4ZdxC/Ic6basq3y3TeW8FPQViwnecXEkToeW/ZuS0fn0V5/jTF1C\nvJsPy5hMHkqY/l/i2/HzHYy6FLPU0neVFd2a100we1ekOReinM3rQ646MQeuDNS5wwmxEmRErktZ\nX3qntk7VFWdQ/3GpsrtR7ZIua1x5dZMQiU4kcYdJX9T5mzeG3LoiCyHW1Nnqeh1jFMnXMWSqwlkn\noanYjsMwo6Dw63lBFspZ3yNTTMG1lRIbuSYphRVKFY3jxy6FRJ2HY2mj/+mL9GvirCzFy5z+XuUU\nLDsoa/3RBO5dzvjcp6V8OTv3RY4dqlqapVxvK7NQa3KU515RL/v3blg+8dLLaSrubKG8YrxLuaGg\n8fblGbuyDSmfkec5ubBGRc2O3qRDUS3EpP4wJYWCS4yMZZYmJLmMt/WW6U4el/utLfPwRLApzTmP\nnW1Z0J1INrTTUUJbfZ+j3ZhPaa1BIU25Hskm2h47BOpAPaYYnGuLPse09sHzKiSaQzC6fo1+IM+8\nUG4RaHpzrS7PNkpuMZ3I55efavPcTTGbbqxvs+nLS7+6tUWgeTI9K5t7d/8WpXWZ33r9JGNlycnq\nMU3d4LKaXEvCPsVY6mO83h7jVbnXlT986shMrZz0SJVv8s+/IpB2yXTKhzyZs2OrdfwFYXqyvUUO\nu+LEvDLwmSzJhtO5Ihb5RjsnvEfxQb+aoVYXZz2DstXz/CjnZRfza5N5mvNc5jKX2+Su0BSygqG3\nHlK6OeVspinIm5UjskF/ukJFi47iQplcVV9Ps/GWJyG+0oplY4dcsf6tGYHmEBTqdUonBetgqg6e\ncdzGqHMqL/lMtP59mgcErqL9DnNcR07HvoJ2BsshKz2N04eLFDUEPXFLuHp9wJCikQ9GLeUzLFoy\n5WeIS0NGL8j14LyPq7hhuZIhTK/foqpkIdZrUDwhJ9t0+n466szEfYxcAVdGaj48cTW+TVm0M4/o\nJD86AVbKcM9Y+rRUE9NnAmRTVYdjSxzI2HoYIkUXzttTMsQMyLRyMM1g0tIs1GUfu6+0cnGb2BE1\n+Zi/wun7JB352rMy4Nsj8McyxttJxKo69sb3NRg+J33xM1g4I09d9uS0LgQh1zVU3W+1WNA5GTpD\nHB37abKDe000BH/rYQCKVQdP08qzYukIlXlsQ0augq/suJhT0l5XeUZ6lQhPyXAm5zxiNUscr0w2\nIx3aUQKfdo1EHbetasjBEzIWh3ZC1JQ1ee5Wh7Gi7Q50rTvEpC8ogO4JB5C+pm5GpEzapa3TdDXk\n6KlZMth3uaxjlbm+IMsC13Ooz+bS41X4H99e7opNwUY56bUxmfXpa/Qh77p4SjM+YZdnvyLe2wud\nMfFIJmlL0Zc/+OhJ0HTmfHiDTMuocycnUQr3MCuQqp11sC8L+9Klm4yGsnALZYets6KqFdMCComI\nm0b0FJ1opCQsq9YQaRmuOVukEKg/w80ZZPIck2ttnlJV+foTYuZUHlziXasScXDHQ1yk8jEdfQB3\nLIsiviZx50q8x9pmX5+3z+c/JWjP/377XxN1pUquYOwRyYqWOLDnZLeXSWt1ogO4M1fDyHI1kwUU\ntxSJ2LNcG2pC1u4B6/fKZvHAag1XwWkinicpa1Wl+iKm21eJ9YWODgwDRbbee/oFRj1ZvNOTTc6f\nEj/O3r68VDemO4SujNWNJOKCJjItP9fFKFlPqxxg97TOZVnBd3Z6TJ8RX8W1bsxYY/3VxZAPNuWw\nGKZjljwlsLlfkskKlTPEsaj5K26RW1qpmHW7vHBL5vXZzousXJXrSyd0rdxMqRZlMYSLhvAlGYvd\n/R7v14pepyjPPnLalEqyJpfTRfLTsnl/9flbvHSg/bCPEzV8HU9ZeztT+IhYWhTWlnE1dyQ52GWq\na72wUmFJ63suPybP++UXLtFSMyfNEgaZtGE8y1DT0T1ehv9/rTI3H+Yyl7ncJneFppC5Dv1Kkeb+\nmHtD8f7WN8/i1UWNSkY9qk05xc+bJZx3iQPvlHzMQm2TYMbsbMekYzlJ8qSM74gaWTqxyIk9Vdf0\nXolZptURp2MxSllRLEUT9mlrTnAlSemPxbEXJhpFWK5xXrEeTlYajDRTzviGYqTAMMeXOZmJxuLf\nL97kpaWcRia7vY2nWC2kStnB3VOSmD05GbITqxSvyb1ObFZ4cVnadm+8yLaaRFlujpIPZg7H+NWl\ncJo9l6eWWYrZIIQFrXx87ynRXG4OHO7RE295uczxFTl1a836Ec9EbDpMtCIyQE5ENy/iNDQFeTyh\ntqB8CWfeRWUkzsh6rcCaMnof9kQb2Rt0OdQ560QJvuaFdHLIFW374SDk1GnFx6xJdqTJplyuSv/X\njAvL8vO51QY1jQxYG+BpJWXoyBj7xZBaWaI9q4/4vOemmGbDbMTBdXFybnduUNYclsa6/L95CElJ\nnt2mGdOKPH99lBCdl7YbmkFbDytYzUhN60t4it537pHTvPMljWZ97wfor4mJ8ayyuD26uMrmO6RE\nKFgogEZzgkKTcx/+HgCOX+3Q/C4xwRZLoq0Nx0M+uSfPEwYJFWYAN/lRFmNiXj9I212xKRRdh3fU\nyhwWYlqZTNDyqE/lpFZDNt6NW9YKuDyBolQaFhMNMYYJJdWNM4rkmlIbFw+PzIBSY5NAVV7blRds\n4f0bXFd1seC0yRwZyf4oJh+IidHyIkqaODTW6soPlRo4RSVH9VPcqajEjdUSa2dOyvVSTjmQfP6s\nqeGxUYcsFnWvUV0mCZXgZBqQ+3J9GsuL5CyeZuOM9DMpjvnrH5GQVVwacWFPXpQ//dJXSXpqO+qC\nMK9iY/I1t9UCWvqBHxmiE/ISriwoM9NSnXKuoDVrx2nEM8LaEcVYwVACD9ORJROXJYqSmQLVddlM\ni9MFIi3FboYBnZF44stliCrab4Wjep8XcEu5FJ/fH9DWh35gmKBNsF/IuW8kv6zeI39XC3yavdlc\nu5RLomrX6WI1MtBMChR1s3MG8rnN2nhaklyvbxFq3UK3c50tBd1ZG5+nURTVfO9QXtxmIyXf1LL9\nvImJZe106oaTDU0+6+rmnh/ghTLnlfU6xWMflPa2n6LyIXmhx8Exioq+Ze6Xe506c57i/bIpuGkJ\nm8pBFRzzqfuyGVZZBMWHPPleudcj00fp3hAz7y8+9znsVJ69NLF01DcVJfYoae21ytx8mMtc5nKb\n3BWagvFdCus11rYHVPSYMOEIdyB7lpMNWNAs5jhdwFOVuBDqd4OAzFcwlQNDNJnBqvVxXKXv7icU\ntPhpaUlOj7hvKK/LPfpJmWGkRCxemzxVQo5RjK80dY4VNXLzhEdtV06HcLLMaEOjHfvmCBKrdv4s\nBS2kmqmyGYtkjZmp4WI1eScvDIkPJQadIo5G8zSE5+SkrawsUQmlHz8+LrP5mJwCf5E+Tz9v3TaW\nr1YV00Dh2OIIRQjHL8NDL4naWXxISV3KBUqKZ7ga+ARaoTkxLklFTuD4UkDckGeOFLU4y4f415St\ne6FOcUn+LnQc6sqrGOUVcs1BLmm68mWvyFhxGGKvi9XPk6U6nuI/nko9jp/XYqU9ZdVu5GwtaZFT\nHFAtaeFTFNJ1NELFlEIqWkFUkef0BwWCmj7D1KOoKeale3xS1baK/ZjJYEZJqP1r7tHQitj28ohW\nJm3ntkL5jKyByr6aFwcbGMX29KZlPE3jLn3f9+EkmjYeu4x2Fb5OyWQqC1VcZSjPvRZWtTTHHxNG\nykdaXcI0ZX78oTig73v4PNOK9P9Ln6sy6Er/9nOHLHk5O+H/k+aDk0LQynEbx4hPyyPZTgG7LCqc\nCX1C9eo63Sm+Jji5GqZ0AodYs+BSt02mmwV9iDrihWbRx6mKqlUtyATlkYufKg5ksU9Ly4KvXB/Q\nUvUrsBHujINwIJvNVvNeSqvyPNRS7K68mDZIGFflOeo2p6DRE1e9xt56AavchulkyGRXahjMioMz\n1WrGC/JCeMUBpiyLIHDOU9DtZrXgs6QRmnIlg9G3htXJ05kX+uWElnACj6npYrqyCT26ci8FfamM\nExEuyFi5kwP2lJA38wZYJdkNZxwKBxPyBZmn3PMopoo7OLIYTTJySxOiWWl7rD6OSpnvvl+ufWl/\nh+0ZGu0gZ60oJ4BZdLlyVX0C7xBfS5MqS2q3Rx74CufvNY/TjDQc2O/jxDe0PTU7d6skPZnf0rEi\nRqcvcGuk6ncw6RjXkxeupkb5jVFEGirhbbmM/6yYTZ1Bm9Kulpc3ZYOZjm4R7CtO5OkxTl0rRr0S\nRov+8taYYEUrMH3xOZk8I+s+Jw9kDrAzk7B3lVxJep2tHn5DTBMU5Jaxx8aGjPHZJXi+r2bV8Dur\nLJibD3OZy1xuk7tCU7CBR3zPAhsvxGwsi2e1WFrBKMaAjYc4RoEsTBlT093TKA6fV4OJVtMVLZnC\nXRXcnLgqKvykM6bky0kSrElQOAstoToP05ujowhGeJiQjaSNRrFEZOVUXdBEoMrDZ1k5VObjY2Ou\nayHiNA3wtKLOcQLcsiak1OR/mxqsr2nHO/ugtfnR3iGOFhWYdTklR1lGZahx8K3mUf/Kpz3aX5Fo\nSBAsQt6djeI3HFujLNb5pEOgII2jkqEay/UTCmHm5SUqeuIFCyF+WROSvDrlKzLOpXVD2dPU7VD6\nGRlL2hMNKotbOAXVFIoOiotC2h0S+Mr1eSix++k45jkEJTuuXyTYEwflpFKmojD/mw0PT8EdM60j\nCWounib3FBo1QoXpC9wER2sY3JYHykI+9mR8fMfDnaFLM8U3sxyDBt5Yni0oR/R6ooX6Gs6pJiFB\nQ1+TeIqna2/F9Yjul7Go9WXcisfK5EFJx20FM4MWDIugpqepJPh91chm9S79Llkm2ub0uev4ymlq\nii5pUQYxnPg4ivlolaPSX2vj3lT8kaBMPgO3TF+vwXC7zDWFucxlLrfJXaEpFKzl9DTHlMaQqx8h\na+BomrPne6SKTOPkPkYdVLlVe9HZAUWBdqM6RT39J9PnKWrlXBZ62Ex26KyviL2FELM7C9i4DPoS\nDhzkHQqa8efWXJoakhxM5bvNsAJaoBX3fCqK7hOUAtxEbcckgpHuuVU9JUyG+i8x/gKZ4iyY0Zhp\nWfrd3VPUodWUqhKhlKMOjmaoRXtDVtYlVFk2f0ZQkGeKZve1YI05+nnZlX6MXUOiZ0CYOqw/JKdt\nrDHbLB1S6GhqcH35aIzT6DL+qvTPd8v4seZTINpKIQtINGU4H1eJduXE9wo+eaqhWDegp8Q2VOXa\ng84B9bH4M4LDoSZPwyO+R0cddHt7CW5FOR/PyjwWk4DckT6VpzlBpLklNqLXlTbiToTviTPZHSjA\nbnCN2Eq+iFnPoSfaiJfuYxU7Ih0b0LnuT8SHYR2L11jWsTCMBuKM7ofQCCRb0jmuXvDOLfyuzJ85\nU8Ggtn8+5qjiLStiFeErV7q9vDdk9FXRtvrXBrAlIUkzcvHWFTMkXMBZVye04nfkB2MKCmLcmRxS\nKSmHyQAydStYviEf0LeUu2JTsORMvRHFYR/nmkxy+u4+zow+cZBgAlVRw0WsApVgFOE5K5IqwJPt\nWFxFFE7tCvGqIgNTO8IldFwlD4wbpEojPxmmTBXaK3N8SoGmRycnCGpatqw5BMnYkHUE4jzuufQU\nJr6YnMaqumfzhLygACgKyU7uYrSSL88mmH15jkGhTLwrC2iwqeW210KiFfWAj1vkmvQ0LQwpKRxZ\n4JVxZpi6uhFgLUZLp4McCu+UZLDuZ67hKMjMxppLrSv3CzQRqDgZMFFIu2rUISko8Ijv4aKYj5MC\nqSZc2VjnqXJIrolcUZhj0CSr2MdXtOIkC8kVzl0LFRnVEqirI7bUIOhoEs6pMssXpL1CXsCXfYpI\nU5G764Z6LCp6Ukxxtf95kjNRB9s0jrG74mhMV2QDzdNFnFWZ/+KtPnZR2yuGGHUqZqMekdYMpLqB\nFmplAq3gbLtV+joPJglwFSbZiWSenewE2abCqvUD0GgHaRMcJSQeTo/Uf6tkwvlwCvvyPJOSD7c0\nx+L+mFJP1nK8PqHQk77aknzXLhiKSi/Qi1x6Y+1HbrCv2AJe76YwNx/mMpe53CZ3h6YQW+IrMbbn\nsVeRHX6lC2ZJlEpTdjBDjZv3euSxOKv8FTlGXEbEfXWy9KfkixJCKixW8NQM8HwX2xeVMMk0ffrw\nMqNbcsrHdIl9+bkS5tQaorYtbhQYDuWkv6L/Dw/3cG6pSZGYo6KV2kJKrqBX+WBEVpDrM8o7W1o6\nUiOdskukVW+5v0c6Kzq6pTwUTsBwT8Kpw0qBwkT6NB1cp5s8DUA27DCLRc5wEzBQnPELppbKtj6z\na9AoKy9sJ9y/KZpVfSon6dlCHSfV0GvnKm54XNuYkKiJ4YwzjJpKjuJJhGkRW1ZNaBqRaUFUfNAh\nUyKTtFBmrE7h9XWtrixssnFGTsw/9odcV4Cu+xeXubimBWjDhESLtE4syalrk4BEqyGzpE3aE7PL\nWT9BJZT1kC575Ieihc3AUrwkJd6W+e0XIwqq2mfTVZjIPYYHE8ZT+Y4zK4IKINcwqpOPoCPzO4j6\npMp6HmzM8lBuguY0OOe7R5VINiqC8m3a8QACNXU9ze9YNhTeLc/eTBKsanFuvk+woZWR9MhRM1Sd\nrnZ0gNVM2FFnwCTTdfZKLcFwxOk55bXJXbEp5KEhOhdSe7pFpjZrtB1jz4m31dgOFBV0bvQyOu3M\nI+8vr4KmuPrLU3xdmKbWJFUbkcKY6EDVOasq3jSjV5W/61938BZVpfY9DpW4tGS7XFLNr6Yx49GS\nh3lWsPMid0Js1OYsBriKwJy64GpVpqOz4sQjTFlMEadkqTwiURD/ZgFHcSc3NNlmkg/oTOTFLX+1\nSOW0Lv61J+ldkH4cRDGZ+hrsK3JZp5qQYEiJ3intjZ/bEycDEHiG875sBhsnNVffMUymmutRGOBo\nOq9JQ3pqBpQqHdyxmlVlxSX0yjhaepxlHews3dqfoi4YRoc5YVmuHx5Txqf15xi3ZawupbkCnEP4\nvVucUdj5rtuiq1RHTqLp1W6Xof7sJ0WmCnxTHXcprGnOyXAFqwxfk0z74XgYjSgMnBRvqKZiOsWM\npN/77iETrXkpai5LwYlJFqWNYX9CT30ppWFKtqILUfNX3JMNss5sJyhgAjkUhKVFzY6mwdXqUQpK\n3hkXCO8Rf4d7KSTZ0I0pybAFWRfT7iH5tpodq7q+T1/HfkH6sTNJsDP+yFfaCa+sfbjTaM5zmctc\n/v8pd4WmUMThAVOkneaYHTEZIreEk8rPnlkiKavzDBjd1Pp9xfOaZodUxtqV8hZoLsB07zKpYvu5\nsUf3luL+L2rVo1PEy0WNNPU2PjMSkinuJWn7YjrBLypElxYXFa9f5XJLTu6SyTBaV1869xC0lIGY\nCWFTU5or4pRjb0SsrNLxzh6RFtJksUOWyAmc9ZT+bTvnyReljf3TO9x7oNwROzkvPHZJrg/HKF4M\ngZ7KBhgrqQ0W7n1e7tsyMNAyyd4EdmtXATjbFrXVK60TLCjkXbLMSIaI2LuFqzkNZlplqt78gTIf\nO9UVQsUwHI9rJEqv7hsP4yvKdTomVbNqNRJN4d2fG/EvLija9fbkKLS+0RrxlI5362aHA+3L+ZMy\nboVOQFaUe5UrlsKqnLB+32W0I99x+hOsVjbGkTxv//AWYazcnVtlUvU1mzNtUgVq6XZTplPNll2R\nAa06AcmhFsplLUY6f22vS3GWn6EOXO/C0zhjybMx92QwVh6kYhfjn9QpKR3lp2QtcVbnTx+QGcmU\npODivigwbdNnhuTKr/HiC1dZ2BIYtoKC7yzfqnLzs6Kx7vejoypYj5dP+9QeKYivWe6KTcGELv65\nCrVbFVqXFOjj2CHjy6J+lcoG976TAHjtGKPq6rAjC97vpuSKNVg2U7KGQlpPl5i0pX513B7QVS/x\nopoJ1UINWxDF1fcL5BNN/U0criuI6WA6JNfwVi2UBTOsRfT78sJ2XvBY/wF55qTvit0JRPGUaCx2\nuT9jnorGjC4KhuH2c1cZX1GV8oEQ2hLZOLwp/1887HJNcSfPFtaPIjGffH7MH+i4jBKOFsIRzv6r\nFsATCuoysJ2j2od61VISzBomW/LylANL2hW1NrYuZqS2fymmGmr9RFjHKaltPxEuycTuEHdlAx30\nhrjLCv7aXMCxCsvfbEBNwV8Vpuqf3vw8X7isNSoZhPrgF0OXiz2ZV/cgovIeTfbalmcYHUuPXmIz\n6dAYin9oGkV0t+Xv+ocDsoGC8C4qFH2e4U0kpNe7ucPxeyRxasstM/EV3PewT7Qk/V7T6kvPBCRj\n6d/eeEo702S3cU6ioLCFoWwUyTNlnB9Q9rFhSU4wwLhljggdrY/VHTDdl01h9PRT2Cuazv3+Lbq7\nMmcHNy7x5GeFGa1+ZgVXE8NWC7K5ffkxh997Vtob5S9nuue8HHEwvOKXufkwl7nM5Y3IXaEp5BPD\n5IKPiRe5WRPn2vQ5j836ZwHwTn+UwkB2edcpsrCgVZIz2vqsAHuyW+fOLfxYVGLHpsTbopYloxa1\nRYlvLzTFwVNJXSaKb1DydjlU9/zFWy0uadz8vF+ipaQfnbG09/nfvMTeZfn8SdPlo1+XHfzUypfI\nm0Kpno1vUL2pjqS6QsUVyxTf8U4Alm/tMVlWh1mtR+LJSWr2RbOJhxFr4uinVpqy3ZXvfuIzL9E6\nUCox/kMnkuH2A+HgL9RphQNGQTgG8KVlGc/0mpykH6h2CQIZt/pCCIp5GR04pAfyTJNggFvTKsFU\ntJXOjT64clo5BY9V5XmseUvkjqrzUYGuFpX95Zf/PQBffqaPBl/IcojVOfr7/+tFCook3YkNxb/S\nIVRH65pdoTlSp/JBDSdQx9/SMYonBXNiZ/dpfNXYqoHqUCZnotBuGzWf5bMKDDNyiA9VUxjuExbU\nw684Du1Jj85AI0aTGIaqpWGYXJAOGC2o6h2+RO0vRd0v1H8f0xCAFBu4oKRE+BbjayXm2kNyLfo6\ng95VAJrXDslVozE7cGKWW1KJaGsC34WnZA7+5yevc9jWXAduFw1AkQNl9UJPX6OqcFdsCmkh53Ar\nomQ9Ng7kxRubkFaqzEQ8jtPRAfRzklDUq1Dx/8NpQKobBAtFHJ2k0OtSXpaNINwCr6wZfbNMyOqU\nSFMM40sDWgcy4buHUw5dZfdZXKKkSUjNkiz4L04yhgpxVCFlqqGgm8UGKw3lDDxYIGqIOj5WTsHQ\ntPAdSSYK7rmPib6YWdaCtvT14EA3oAdDVlU97fSX+fRXBfb7OTumPwPds6/eAr5B6bTaDMYaPNUL\nM8fhspYiv+9BaW9vYgjKak+vLVDVrFAih6HiX8bV5AjQ1inIRuCGU3L1xdRWqwQFmZu8Gh9Ffuzo\nMrtX5fpv/L6EnLv5+ChMBxmO6rjPpWNcxcIsFUbkqoNfUUU+vAAAAAU8SURBVLLaWnNCrJWalCcM\n1Nd0pjSgeEw2543+SSYaJq5qKHPNFOhomXWwuUx9USstxymDGfrMYpGgoWaKOmsm44xLYzlYoqFh\nkMl9635I/6R8J7mlQLNLDpGn4DSFEK/4BRmryfeDArrmbh2TyjibigL8PHISZ6K1D8kuoSaOmXpK\nVZPPvHzMsCM+il97QvwIz4zHRN+kzmFWOG0sjObmw1zmMpfvRMzL3LBv40MYcwCM4CgF/q2WpXnb\n87b/I2j7hLV2+dt96a7YFACMMY9Za987b3ve9rztt1fm5sNc5jKX22S+KcxlLnO5Te6mTeE35m3P\n2563/fbLXeNTmMtc5nJ3yN2kKcxlLnO5C+Rt3xSMMT9qjLlojLlkjPkHd7itLWPMnxtjLhhjnjXG\n/JJeXzDGfMoY86L+37yDz+AaY/7KGPMJ/f2UMeYr2v9/Y8wMt+uOtN0wxvyeMeZ5Y8xzxphH36q+\nG2P+Wx3zZ4wxv2OMCe9U340xv2WM2TfGPPOKa9+wn0bkX+gzPGWMefgOtP1PdMyfMsb8oTGm8YrP\nPqZtXzTG/Mh30vabJW/rpmCMcYFfBT4C3A/8tDHm/jvYZAr8PWvt/cAjwC9qe/8A+Iy19h7gM/r7\nnZJfAp57xe//GPin1tqzQAf4+TvY9j8H/sRaex/wkD7HHe+7MWYD+DvAe621DyJZuD/Fnev7vwJ+\n9FXXvlk/PwLco/9+Afi1O9D2p4AHrbXvBF4APgaga++ngAf0b/43fSfeXrHWvm3/gEeBP33F7x8D\nPvYWtv9HwA8BF4F1vbYOXLxD7W0iC/IHgE8gpQqHgPeNxuNNbrsOXEH9SK+4fsf7DmwAN4AFJLX+\nE8CP3Mm+AyeBZ75dP4H/Hfjpb/S9N6vtV332nwC/rT/ftt6BPwUevRPz/3r+vd3mw2yxzOSmXrvj\nYow5Cbwb+Aqwaq1VjmB2gdU71Ow/A/4+L9evLAJda+0sVf1O9v8UcAD8H2q+/KYxpsxb0Hdr7S3g\nfwGuAztAD3ict67v8M37+VavwZ8D/vhtavs1ydu9KbwtYoypAL8P/DfW2v4rP7OyZb/pIRljzI8B\n+9bax9/se79G8YCHgV+z1r4bSSu/zVS4g31vAn8N2ZiOAWX+QxX7LZM71c9vJ8aYX0ZM2N9+q9t+\nPfJ2bwq3gK1X/L6p1+6YGGN8ZEP4bWvtH+jlPWPMun6+zqyk7c2VDwI/YYy5CvwuYkL8c6BhjJlV\nq97J/t8Eblprv6K//x6ySbwVff8wcMVae2CtTYA/QMbjreo7fPN+viVr0BjzN4EfA35GN6W3rO3X\nK2/3pvA14B71QhcQp8vH71RjxhgD/EvgOWvtr7zio48DP6s//yzia3hTxVr7MWvtprX2JNLPP7PW\n/gzw58B/difb1vZ3gRvGmHN66QeBC7wFfUfMhkeMMSWdg1nbb0nfVb5ZPz8O/FcahXgE6L3CzHhT\nxBjzo4jZ+BPW2vErPvo48FPGmMAYcwpxdn71zWz7Dcnb7dQAPop4ZF8CfvkOt/XdiNr4FPCE/vso\nYtt/BngR+DSwcIef40PAJ/Tn08hCuAT830BwB9t9F/CY9v//AZpvVd+Bfwg8DzwD/J8IWNkd6Tvw\nO4jvIkE0pJ//Zv1EnL2/quvvaSRC8ma3fQnxHczW3K+/4vu/rG1fBD5yJ9fda/03z2icy1zmcpu8\n3ebDXOYyl7tM5pvCXOYyl9tkvinMZS5zuU3mm8Jc5jKX22S+KcxlLnO5TeabwlzmMpfbZL4pzGUu\nc7lN5pvCXOYyl9vk/wXydv6uFCRQigAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.3577... Generator Loss: 0.9579\n", + "Epoch 1/1... Discriminator Loss: 1.4756... Generator Loss: 0.6143\n", + "Epoch 1/1... Discriminator Loss: 1.2961... Generator Loss: 0.8042\n", + "Epoch 1/1... Discriminator Loss: 0.9653... Generator Loss: 1.3168\n", + "Epoch 1/1... Discriminator Loss: 1.4968... Generator Loss: 0.7849\n", + "Epoch 1/1... Discriminator Loss: 1.3341... Generator Loss: 0.8891\n", + "Epoch 1/1... Discriminator Loss: 1.3685... Generator Loss: 0.7253\n", + "Epoch 1/1... Discriminator Loss: 1.3404... Generator Loss: 0.9025\n", + "Epoch 1/1... Discriminator Loss: 1.2645... Generator Loss: 0.8479\n", + "Epoch 1/1... Discriminator Loss: 1.6065... Generator Loss: 0.4065\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVmvLFl2mPftmDMycs4z33vuWFPX1CObaordnDTYBDXA\nA0TDNg0bECBAgg34wYT9B/RkA34UIEN6kC3PMCWKsFoyaZOi1ezuqq6+Nd66deczn5NzZswRfljr\n3O6SyGY1yZLKQK6XkycyMmLvtdfea17L1HXNGtawhjVcgvWvewBrWMMaPluwPhTWsIY1fAzWh8Ia\n1rCGj8H6UFjDGtbwMVgfCmtYwxo+ButDYQ1rWMPH4FM7FIwxf94Y84Ex5p4x5lc/rfesYQ1r+JMF\n82nEKRhjbOAu8GeAp8C3gV+u6/rdP/GXrWENa/gThU9LUvgJ4F5d1/frus6Avw/8xU/pXWtYwxr+\nBMH5lJ67Bzz5of+fAl/9g242xtQYcBxwXblWN12shUoxNVTGyMeioqgrnn0BGAyO/tCqK2pLzjpT\nGS5vra3q8nZs/Wts+9kzKmMw5eUNFUYlKMfUpPqDVicEoBvt49hya5YuyYoSgLKMqWtFaZFRVvJy\nC/lb4uFUhXxd1Rgj13NqrEw+V+R6b42n78CqwfL1uTWrWu4pFhV5peP/fQQ+E0FYteQf38H25Rl1\nBUWZKI4CAMIgxUE+p0UClczDsnKMTI/KAtuS67bixMamUtbi2A72JZspa1Z5JuMswNSpvlt+nxcZ\nmEvyK3GM/DDJc1xbJu7bDlyueyl4q6oKjKLFQGnp/KuaWtehNmDpuleO3GyXYOtnyzJYOtC6KsHT\nueZQ6ruNvhcsVstYnoV59m4HmC3ifxnpfwQwLgT63MIFk+oXNeQ6D6PzArCb8rePoQhl7L4T4llC\nn412C98NdPgGWwf9xhvfO6/reuMPG8+ndSj8oWCM+avAX73833KhvwE7W/J//rVNon+mGyStSZSg\nk7Mlk2wBQKEbumFsBvrDMM3Imw0AnKVLmQqhJF787FBo54KkoNN5Rqwr28eeyr1VZ4lfCBEOnZgH\nXRnH1/+NLwPwl7/+39LtyMOe3vsujy4uAJjN3qGIN+UZk8fMlJjCagnAwuzSX8q9ozTH6OofOxnR\nI7l3WR8DMCflSlsPtzDHtK7J4E8r3syOADj55zEnK/2dEpJVQ3m5Sb9oeH0hY65ubtK/dUNwm8Lp\n5EMA3OVtAL700iP61vMAfHT8ASbpA9CMjrFG8sC4Be2gB0C3Ixu+RYe4KRtpq7VBFAoOzaTiu6f3\nZa4XBit7JGu2lN8fnz/F+AMZqJnTV4L+4PCAnV4XgNudAXierN/4TNYpXT071ZuezSKUtVnOc4rz\nscwvqPB1v6Z92RztObT6Ms6o6eFHQiNFMoe9oczlqGbcawvuHN0adchb374ja2L7WI7s0n5l8Y9/\n+y3+Jbg8S36UVq6HvfIEgiG8qMzw9KqF/4E8pCpKjlZy3bF+sK6dr8qHX65tTj6/DcALg9fYb38R\ngJd+/ue4ufOS/M63CREcNhqdRz9iVM/g0zoUDoCrP/T/Fb32DOq6/lvA3wJwbVP3A8Mvnde8pSN6\n+n/tc3LyGIANL6TREs523Q+4a2STlVPB7q3tiqIZAWD7OaYhhLffa9IIBdtFfEK8EmQO27IaC29A\nupwCcHgKbm8GwI1qyNPuCQA/+dTh1Y6szL1vTgAIbj3h0aEgOj8smdTy/fnbK9yVbPrzi4rzmRDy\nliPviJs1uy0ZT7sFdaLc726G8YWKfsaXzXEa5Wx8JBvsbCfnwVSI+Gg2Z3RPNk3mJfy1VOb0dwKZ\n0y+u4DeUIE//GWRfkHdM3tmksZQ5edeusJ11AGi4IwB8/xvEF0IzLze7HMby3MaqTz6QB95wY0ws\n4wtLGY8dObykOF6kAR3dDXHL4oUzWZPjJOMiFwY1s+YA7EUux6cytjhNuQhlLRtJjD2T+XV7Gfo6\nHGWZruPRdeXdW9tN0kQP2bzE7co6PE0raiP0slrIvZt+xU1X3mE3IZjLoZaUS+68L2t5dlYx1t8N\nNuV3sXVAU+c0O/cpEqGBM/dy98Nt/XsPfvRhgJwZl5JXRzd5eg6Hyv2zNx0cX/Dy72SGX3fkgZ+P\n4Q3dG09+W679982K/rHg3mtP6XzxnuCovUP6p24BEG7a2EHwowf1L8CndSh8G3jOGHMDOQz+CvDv\n/UE3N9s+X/25fV45vMVvfE8Id0WDq5UsTNkIaap85dYJW45wmJvKRR5VPu2pHARXrIh2S4hxZyeg\n58s9WJu4czlMlqpTJB4khSCs657wOBdkb5ZN6vZNACZRj+/ngqbGQjZ3mha0S+FQ48KheCzXN5YX\nxEsh+mqZMhvLhgsCIca9YkEUCldqFiviROb35UZNeakqlDK3zvAqrUSkoydHcxZKKJvHbQaRXD/3\nl+wlwt1/5S8JMZ//DymTTDQ3U9YsT+8CUHRqvtj8KwB8QM7nXMHz7bZs1uTagNyWQ7E4PuelgeB7\nJ9qAloql+RlRKBs2aAjeCsAuZINtRjktT6h7mlu02i2dy4SpEUnu6Vgmejqe0/FF4tvvbHKoov+i\nBNfI8xps0AtlrcKZSiZXmljIRnAbHstcPl+vUx4ZwdGWt6TliKTjZLL+oVswcOVZRbHNPJF1Ojh2\nWOQiYUxnS0Y6/kEqokZzGNFUtXIZZbywL/j+7ukxt16WJXvxHfl7jz8YLrUqx8CGHhwjFSvc0mDm\nQgsuEXsNeXfbhPz1rwi+zn9vxrdSVfl0PNbE4UJVmODLOXUu62dm7xEkPyXvc3apfkxnwqdyKNR1\nXRhj/jrwfyLC0n9X1/U7n8a71rCGNfzJwqdmU6jr+h8B/+gT3Vx4mNOrvP9kyl8eyAl/48Uh//RA\nTvCyMSNXQ5zbrbg2Er2v1RWO+fXQJ9yRk3Yyj9nYks++FVM2hQM5lkWteltLOXRRJGSBnL7tDYdw\nLM/9KJoz+0jGcWHO6J8dArDXE3vB0jM4ys2CZUE3lRP6W49duomI4GG7y/VQ7vmcSh2tax2ee044\ncz3JWTaFU8w7h5SZ3Gu7wtmaZYg1kLF/pYa2L2LrY3tF1JUxnx70+M6fFhzs/bNXAfhLWyW7M8Fb\nYQr+ntoGXnwu4HEkGtywMnR/+msAXN0TY0TT5Cyawv3PvGvsqa7uRC5eIpLC0o7oqZETtR2UscNC\n7T19k1FGytmnMdOO4LMTQLUQKe1Sv62Pr7M7FGllEcJ+IRLS8WMwqioYN6aViprjNYXXuo2ShhFp\nhShnmQgnTfYKdk7lGY3KJz8XDloqrmbzlLSWdTfjJV4kxNCIXLoTecZFUoEr97+fyjy7M5fQEQXh\nxlZBpoa9/aLD/u/IXI7QtQME23DGM9MBBrihtLcqDH9B7RVPbVn/b/QafDMV3HfaJdOp2rxe6bNX\nCM198eo5L86EBqxA3ve3Jjm3N+RZ4XbFTiTP+NAdsB+IJGTZNebHjDr412Zo/GFIc8OHpx75sP/M\nYHY4OWfmysSycYzTEOKITJf5FVmMbr+r1wK29SBwszmNSpC62dig3RdiWiUWritqRdUUIm/WI5xI\nFn9yUjJMZOUu4ilT6xSAk8WC1UyIdNcVI+BXVydYahi78+Qd7j6QzTazj0lVx58+mPKc6vn+y3Lt\nla0XaDTkd71BwTRVm8K8z1EmurFfCAKWjT5OIWrJnTzBWqkdJCyYT1UBjWxOz0RFGe+JynC3b/PG\nPxYV5XpvhnFVpCy3uD4Ugt/ufZXdpmzYgSd6uD1JCXMVuYcOw7aKtgV4XqSfl9SKW0s3TWAickvG\nbCwXT7+3G13atjy7WOVMkENktxSSO90+ZejJJm7XCThC/HGy5MRWr0xyjbqS+dVbgjfHKqh0u/lx\njPHk3f605Hwx1nUdU6r1PVvoAboqGZ7LZjJNn6opqo3babKTyYH1oO1RxmpsDoTGWrbNkZEx9Mua\ndiKfafT5n9VTcaUQvJX1mItnHrEfmBdajsVmJPc+tRzud2X9Wks5TO9t2pQLmcfZCrKBvPu30xH3\nBjLvL7/yMh/9rhiYw5bQZtuMOQuEZl+OrnBlY0fe3eiSzdUTU4B16dL7hLAOc17DGtbwMfhMSApl\nnTJJP+KJ32WwKafkEhszFU7qFy7bkZy7W1cinovU8BXImdbttuh15Vr7oIGjfufWZgPXFY5gTxfY\nysVKV7hcnLcZqlpStH2aXeEYk5HHlbZwBOvA48NUxLbzU3VvzsbElYinfubSU7Xi/Pwho5GqFQuX\n7lVRFV72RMppRhXWVOZR100CS7jYMjNsIdwj64mqsRmeks2uyLV9l4OVSEI7Hz5moVx+Vs0xljh5\noudljPnjmpktXo+35xW+uhBz06ShRrfnBgGb22Lki8pQcbIk1u8Dx6LO5X0kM/K2cLk6gzRVn34s\nY096OVkq3xeui7dQ6aft4OaXBl2HhryOrCtrNsg8SlvwaS0rmoE8t6gMjiXj2LAM9lA4vqdeosBu\nUjrqObBSNhf6uWFwPZlLxzrn0YlImZEaqJtORssRHLvuHBv1cGy1qPbk3eM3DU+nMtBKRXu7k7E/\nk9/5eU41lfHsuCmZLXN9YgutmFJiJwDcCiJf5hr1XV6+Iu97tXBxQvW61CoxbNp88bFKtLuGxyot\nh7bNjabc65WnNG6L1Od2hKZvVjlLX5571aSUA3lGmbuUisNqPsLtfDa8Dz8WVGVJNh/TiTp84cZP\nAHAxOWG0EnFwOZ3Sboio9VKrQ7MlSCk0kKZPlzCTiVtXIE3ks1P7z4KFnKZHHV+KxEI8nhmxasgm\n7cc57oVc9+sTPlTini9SrqtuHKdyaESjcxxXRN/FYsLFmYhz0+WSp3Mhxpc3G2x+STbkcz8r/mMv\n2sdcyMJW3YrWSsYZmBg/lIOFPbUsxxuUAyH4QbRBeym+8sBZcfeOHADh0zPijoiUizfl5x+eu7Qc\nwVVWxPg9tVvMLuj2hFDs+oDyoby7GsjGDZoRVSYb3Z6NSSayCU2rRXkkn3NrznwpB2rTVw/AeIWv\nVBQvwWrJu6vxKSaRe+skpqkbpMh0DdKCUa4W/miLcSnvaBQpfVt2RXi1RR/BvbWSa1m9JFIvg+nU\nhG1lEJlhsCm4ndgR24UcjLVoZQynOTRUDYo9VksZ/00/JFfx+rm9OYeJ4GA+Vav+ERS6TUqr5kvX\nZH73R1P8VHC3HchzS8fGq2ScQWAxHMhh2bFa/NwXRLS3gx5PJkJHjSM9TFslxW3Z3FaZsjkWHE2q\nBW0NKGuYgK8OxLYxMYIrbqwYq76dzWOML/h+rp1R5uLON05Nbf2h8Uofg7X6sIY1rOFj8JmQFGog\nqy3Oi4SVBgoNkwFzjSXuDLrcuiIn7eDqDraeZY4nf73cwkMty03wVK2wqhgr1yCj+gdRtVUh7CNb\nWJhCTmXHcnDackN9EdFQCaM5WHF6qvLcZejz/g7+Un7X2Xod972HADw+npMqF/PbHXb7IvVY10UK\nqMeGVP3g7jQm3RIO5bgBVkvGbNfCdawtcGK1aocrdp68IJ+TIcsb78tcjcOTyVMAHpXCDfLmCWen\nyknymu5Kxhz4JRN9XukmzBzhhF3FW5lkVGrdPj3P8TROuDQ1Gm/E0ssIFPe2BtVY84S0rHQ9bCwN\nV47HCzK15AfGp2rLXPPTsc6jJFMPTj05wDEqojcbbOyK4a61c4VGLO85UqkwiJsEur6m4dGohEYc\nuyC2RE1rXRjm1TkAG7WoKO+UKS8gqsGi2STsy3OzxoooFy7dq7bZ3hAunqqUw6Kg0VHdZ6vFaClz\nvWo3yRwZx3kp89gawA2NxmzkBRcaNNTvRrRfEYmnW16loTEu5Y7QupXl7A3V+9Kck6uauhyNaYVC\nD06vg7vU0PKlRLc6owWpRtOOdyv4vqzl4s8u6WtkZrl8jGNd+kE+GXwmDgVMTeVktPds9i6EeFbB\nhEBF0VY5p98T5PS9bWK1ygeFiqdWhteQxcpiD6PG1mwFrhHEZ+kCS0OXU3X/WaQsfPmdvcoJ1Xez\nP8zJNAa1Ool4oSX3H3jy4E6zQaBRk6fvv8WBEa+EY1lseHIA/MTWLV7/mdcBaJayoUtnRt2QTWxt\nunAuRBNnFbZuIH9HDjErsamNis7hAZvP7wmqooLnj3YB2H2xyc5Mdqz9QMb41pOINhoS7BakvtpB\niprGuRB8thuwZckmdOYaJlxNiBH8lHZJOlH1KU7hMu8g92jWQmCrRDZK6NqsNJimt8xZXKal+B6F\nI/OLypKylrV0enLNbKXYB3Iw3Y+ntBqywV57vstPvf4FALb9gHEqc8nURjAMa+xLr4XvY0JZh9C2\ncFS/bnbfwZnJxokiGfs3wkPMK3Jt/qhPfKGq236E0xecu2mLfi7jPEn0wPJrLBXhny8t/L48z5qC\nq+6Fhtotvli1Ge5cJu8M2awER7eu7nLFFrpoWde43pF7qq54jPz2gBpRibeXJaV6uRZRk6IUul9k\nEa4vtOy1ZWzpuMfTUnCYL2LKV8W20Z7exj/VALYXN6jC6/w4sFYf1rCGNXwMPhOSgoWhYbn4hcPK\nPAQgLQf0VLS9EoQM1Hg24imlBi+lnnCGVjDDVis7VcFlfI3rLCn1d5QVq8vkoVIMUglNrJlcW+Ut\nCneh7w7pXEoh2wUrjW+4mqnYdxBjnpPn2uE2m3PhXJPWKa/2rwPw+S/sENpyj2mIWO63NrE1rsAs\nfRbqBbHdimSp2W4T4ezzIMfTEGwrc3F8FSMtn+aNfQAas0dEe98AIIofADBz7zAay7OaaQUigOAV\nGWUiIrWpLaxA/djqySknhuVSsyTjU7JSuGcxOqc2Q53HgpVatcNM8Ja0InwNy12aCHcs6sGEiMiT\n63Frj6DWTEMjHHHo9XiaCV6K8xlJV+Z3O9zg9nVRH7aCPhpBzXn0EIBeK6QTizrn+pvPEpfqLGJo\niygdfeUnGbwnQWROWzhmK4yoNfbgbmDTvao5A8WCWpOjDEu2hprQNpKxPXEXhKm8r7/YxfNFRXGC\nAxzNuszVc5L1Ito3Zez9uYelnorXuxmldakqnZEonhvqfclDG3cltFIWGbWGQtjtFvVEVcgyYOkv\n9d2qomxk7Gjo/g07Jf2W0PXJ6wd87gv/ttxbLjC5EsEnhLWksIY1rOFj8JmQFDBg2RahPaRnfwWA\nRQdeKIWzZZsBuwPhVlFjn/y6hB3TEomhVw+oAzlpm3FBqrYIL+1itTQ9d/qUhUaSxRdyFi4mS0xf\ns/7iFVmmrs56jLUhnxfziui6SCHnGna9LHPah2rDePoGcw0JvpbZlB2N7nNf4f594d5XRjqG9hzO\n5Ps8OKA+F/105YdYql/PusJF8qomMZJis9/couwJR0hyj9ASiWa1Cgia8rnUTMXG8YDNvnCg44tz\njCfvGBUZc/lIVMT4oqpjXaZZLy38XJO5yoSFJt94tk+uGZx5URF7cn1TszktmjQ0UnDWSGkYwb07\nXmC21chZQrulxkMNE87HTb5vXRplB0w02ezKTpvBlqR4u+dtyi3Ro1+4K5zbbl9j76rYVNgYYjzB\nS+V2sVdq0C0buL8gCVhF8ksyhl//DUYqEdxo2ZyrZHk1TFm01Ii5n+Br2PB25zKX+QPaKrFOmykb\nmSSYjS6gKoQGBprT/OWbN7nqy9iC5SOS1+QZ/ewqQSUpzrU1JVHJwmf3GV4vs1WDTohViUSTuoaW\nJv+Vsxx3KjhPnqobMnTIPRlbHW4RvSo0O7i6yRJxkzeDfShUWv6E8Bk5FAzGcbGmYxwl8t1qzmEt\nRBMsDAd92Xh7cQYttVSn8tceNrDVAJbZFp4W97C6LcjVF9zdJljJ87It2TSh06ZyZCMskhVGQ0at\ncoMbpW42Up6cye8aGkC1bM5ZHKnBKdzFS78DwN0jh9sDGefv3n/M4v/RsNvNtwHYKHLaQw2x7gU0\nAjnUGsGCueYGfPimeBZ++3CFFahoGLTZ6Mmmam9E7JUyznjo4OnB0lcj4Y1dw4NHItaGlo2n4nez\nUWI15B7bcRhvaIzAVIOQ5jEHjyXm4f3TR5QayGQiD3cpJ8gy9Gk15NknmicRlEu+Vwo+7aMzPC0o\nw7KiWuiabXnQE+9RQw3Jdr/PxoZsptP5gg1LU7G329jnGjjmdXHekDF9cCiE/cLOhMdGPC075zmr\nbZ3fzAY9UJ1ZhaVBYK4ewp2f+llaroxzuhkT9IV2CuuQ7AO5J05CiguhhzzSAKrpHr7SYTpcsTyR\njddvTrBUfQi0+knLy+nUlzk4OeUTQf6dOmZ7Ju8o2w1OYsHnrpYAaJYW1Q1ZX2+4wHa1lsXEsNID\nK4mPGavXZaH0/eDJBYu50Ni8mTJ9KmrF8KVjhp56vpYVlSXM9ZPCWn1YwxrW8DH4TEgKBoNje5RR\nwGgi4uJH2YhHT1RNiFPOHoo46DUeUWkCS3cgp/3t/Wvs7wtn8N0cT33zcZ2ySOXz6OKA5EBE0PFY\npICRl7PXEEkiNDaWut76NwaYUDj6/rIkWYgB50hey3ya4Ku4/tZ7b/PWIzFwzfOYzkfCEWfB2+y+\nKuLhK9tfAmB69JiZJmhd2bXp9qQQhnW64N1NyRg8OUn13nPMROZ3/2bFtefkuVc6PaKVcLwiHxPk\ner9mjG487bHXUcNfPMFohKsfhbS3JCS6rF1SrfR0/0RwcnDxgPfG4gqbPD4nT7SwiFuzrZWVbCfi\nqtZIOPdkbQrfkJ8I58qSBZ6nJehaAdsrudfxntC7kPG1N0TET+OU/ZaI8A82zgnUfbmz+RypL3NN\nF2POqo8AeC8WcXj2dk70pqhV1oaPr6Lxlb0dnLaomL1ej14ldQ9czShMZhcUKo299bvv8saFjN92\nS/JCE6wCm02NeoweCV43eharSiS6zaMlq7bWnLAaeJdlljRas6paHGo49hunIxaP5X173Yz3GoJb\n/7HN2YUaY3OtJxE1+KIl0Yqf93do9GQedt1k/ljG+fjRCTM1GJZNjflYXJDq2I/vr3D7YlQd3tml\nYcnvopsGP1B16xPCZ+RQqLHrjDSZsohlcxRVwnwiSOjWEbNYFn83dDhWv/HJYyHoZJZTLGXxr+z3\n8LWKTzwxjC+rEB2e8mgmC7qayIbYGgbYtRYLiUoCLd3mFDktI4fCKDWErry7q9brd7//IVcDIdxh\ndIMv7DwE4MFkia8FXL71aMatp+o3fkm+n8SbtDX+fhn22B8KcQQ39nnlRJ4d+UIcm9Ydjs7lsHm8\nMBy/KfaJzvYZ5UCIFM9jpunX12cqym422D3W3IhFyFx1zkFzl1s7op/WGwPqBxrrocE/y4XPbiGW\ndToJZ7V8bycetaom7WGFreqY0TyD5ek5Z2NZhzgvaWqswC3XYjUU9SHNaoqlzHWmcQXBosBRS/7L\nZu+Z6D8fTWnkgqPN4Q4vf/XPyZBm35X3uhnHT+R91fSUYw3o+TC5TziX68+/5PFSLJswvHkdgMaw\nT3lDbBW3Vy4f3lU7yKnD7rbQw2BW8CS9TDmWcbaqY3qoqrXXpR5rbElyjtHgpZYvOPEaSxa6o7bc\nDm1NE88cQ1ML+HQDj9llvMtK1IRFOqKZyCYeHzdpbUrOi7sbsoEcbkl3g85YY1I0ruLabp/3P/oe\nABenBY8+kmcMtt5mGAsjMqucwgjdf1JYqw9rWMMaPgafCUmhrmrKpCDNoSrUOu0bIg2DPa6OQeMJ\nuruv0d8VEfTpsYiRWW0Rx6J2xHMPz9HQ3bQgGcnpuawLXC0A4mjsghNaNNTwF8RzOl0Rd6NGTllp\n6SuvoqcJWPO5cM8HDz6ivyGnb1R32euIuDe0C/7vJ2JEun94xtuecO87ucQV+M0JP7mS9220v4hl\na2JW9xo7hYz/pBJJKXVtfusD+Xy6eMIbiqsrGxG3lMP+zOf26WtCU6xhnKHT47Vt4VwPTp9Qq8Gs\n0TF4hXCgplOx0EKBD1eSOPPw5H3OdQxJMmOsNSSsvKCtJdg2m22aQw2l1bJzi/aK0bmIwTNTcVNj\nOSZ5gyuJcPyLi4R4R0u2aXHpoKqJc5m//dwOB5rteDY9ohuJqui2fJxAOOwLv/iKzOl7T7nzlhRM\nPZvnuJ7M4/y04BtX5eFWEjKxZByDQLhxsLlLpuHtp9MT3rojdLFIJ3yg1UPbUZPJVIxy3/BFsnE7\nHvua4TjPHZobWn9i0cNBYiFy9T6Mxk1aWiqvb7kcIDg6Oag4VHxPghxLM2z/1LaI9T08VoWsU8et\n8FVKNV5GUsn7Pnj/A54eiuRZRpp0lZW8eyp0+LVwh2Ui6kqnMMx9kZTabo/ysjr0J4TPxKGAMdSO\ng7ta4VaCSG9qM1eXT1wnjCxZmLBV4m/JIlzryGZrjWPCSAjQBDmV1g/0ZlBqZZ5uK8dXq/2yKfeW\nSUahIlne9phpGfVlZtFUu0PhlsRa+MTrye8/eJLTiIUgXni+yeeHYs94NBmwh1SdS90h19Wt+bM/\n8SIAZ2GLDbUHtLrbVD1NQ7ZTiIR4dx/KeBqft4g19fjucZc0ESLdx8ba1/yJgUOsacS9i8uagiW/\np+4913iUWrm6H4aYXRU/sxpvT6tVa8ru57Z6HKh+/vjYoqFVn5I8Y9jX1O8XDaHmktgI4Q4SQ9GW\nsfWSJkFDK0e1AjKtr7iz0yfRyknJhfpF2zmBitRxo+T5HZnT6cESR+0LrRtdPHUfl8/JPLfPM37i\nFwSfoxJ8PZCSvW22Nd7fW8xZZoKD2tcdEflkdwRHjlXy6g2xHcROB2sheAnaQ44uzQRjGY/XavLo\nrmy87qbH8UQOlsAupQQ9sKHFVgI7J10IjexuQao5Fbnv0taqSE3fcL4rqucrWkey7U1JngoO055L\npUFKTLq4bZlfN7IormiQnIaxRwdNvnxL3mcyn2oq+L73JOalhTLJ9AlG1apPCmv1YQ1rWMPH4DMh\nKTiuzWAzYrN7hVwLT4zKDznTAJp+7fDq81oS7VoTk6k1/LKryzCk46gompTUB3pK1haVZgNOVgWu\nBoW4auhpNirSy1M+tXHUOt3c9rAGGgYbFzS09Nhl45Gz5RFcEZVhb1KR3ZJ3X3nhKv9h7zkA8jBn\n0NZMQleZUDTTAAAgAElEQVTujaOI0JWx3Rp2ablyb00T5+KhPO+mcJeNxj57kRgd7z/+LoX2p8jy\nhK5KFa0qo6vZnHNbs/tiQ9tWzu3XPNAyaEWS4seCw2bHJ9fq17u7wgW9lksfTbjpz7AO1aBox+w8\nJwa6vt/D1ixId09rPbQPQWMTVknMVlukiq3dAW1b4wYaFju+rGukxXBOzudYWtosGjboRuKJmR+O\niYYiYXnWBo3rMv6sEIPb7tf2cf/578h6MOPppnzfDrs01ZPk+R4jnZ851EIuw5juy9dlnXKHf2tP\nRHe736DpCz4nbsLsUAy6xaFIgul5xmNVMd988oTzpXDdz+236V8GYmnmK1ZIT+NlllaHL6pE234h\nwmiJtSwfEDZV8lTjuJMNGalnIf5/V6wcDWTa8qkKefatnQG72sagg6hXR69bOCuRiKqTd3lD1ZKD\njyqKX/8tGccvvcxu5yf5ceAzcShYGEKrQb8PvroTb+DzQAmwUde0LotJvH1KagnRO5F8vz0MyTT+\nvrFMqFxB5Cpdkmt9/7ByCTtCsLYG3rhWwNBoVaFqhq05E5Zl00g1emyVUZQaDKSCVT1xiHXjXWw/\nIrorrr7u6phsU0XDq0M6fe1so0FTualxQ9HJrY3b2EoINRZ2rhtBi8k06gRrR659qfslpipS54/v\nYTQ9zy0uWGmZe++e1pdcnFLo4bc3aHFvJNeTuEE6lYMj9iIa6lFI2/I+Pw0JtXhoaJbMt7XgTOgz\nvCp4s87nWJsSLdTUADJMyFKrSc2Pjwg1WaHjWlga77/f2qCldR4pNTJzasi1XmMnC/B1TnXWIVP7\niDVfUrdk83q1/K52XQa7nwegClbY3/s2AE5UYxwRta1eE3cu9hhrKGtn8nPqTNap5fXIdWnC5Rml\nqlW9Y0NrR+ZXaoGfQ84o7orKMJyBmpqYvzchUkZ0W+0sOwOfqfaFiKYrsp6I+3b2A7rupQVWoSn/\nWkl4aZfM1AvmZCn2W3IwRVsr/C1Rke1Wl61M60eqWnp7vGTpbCsuMoa9hwA8ni3paE+U8qMZ2WUE\n8CeEtfqwhjWs4WPw2ZAUbIt2y+fVvevPSoB//27NVk9CXOuFzUKbZUxeqIgWckIXttZDXEW0NDbB\n5Daltmnr1B4jS8SrVenQzkQ8DrR4i99xn5UTt3Noat/FhikoInm2W0FXuymdXohlOq+WZJlw2LPT\nmqwvUspmVlOo+hPUm4TXhVP4FzKeUQ3Wh8LN3OACb0tE3HgBZS51FhZz4R4te0hTxVOvsYXX0z5o\n+Q6LqYj8VlFRztQibcnc3Aj6c+E604saW+tATpInnI1EHWmaCCfXKslqOQ/9Gqsv3Hx74wZPLPmc\n3iuZaVOejrE4nGnJr1TLrgU2nS3Bm/ErypXWCvBLtmP1VBgbX3tIeslltecFsWY7ev6QVLMuA+sx\nJpP6E3TdZzESTrPS8Yb428IxV96EzjXB8Sr1aGixk6zd4NrzYnS0+6Ia2GGTSqtL+80pRsvCOW4H\nT7tBWcYl0w5R+Uqkik5a8PqW0Mv/cvcD3ljK523fYqghyBuqMnXskETxuioT+pUagfvbuJsqHSx6\n1Jqhas00w9OZcu2KfH//3cWz8mlVXVJpTYYo7NPU2pwmUlo4TamaYnTM70W0tczgz36ug4a90Ix8\nbDXSf1L4I0sKxpirxpjfNMa8a4x5xxjzn+r1vjHmm8aYD/Vv74/6jjWsYQ3/6uGPIykUwH9e1/Ub\nxpgW8F1jzDeB/wj4p3Vd/01jzK8Cvwr8Fz/yScai8EJcK2WhlZFbgwXFoeadhyuMpvMVJxNMX7hG\nLxL9vTQZiTb0cCOfQvv8ecslaam6ep6SaSfhhrqHgjqkobaBlVWz0io28dKiraXXEifhRJNkFlrJ\nf5XAk1Q7f+5d8BOuhOA+LbpcdS5dYRHmSKSGNFQ33vFHrFoaVj2JKG9oI9wEvH1tIzLSugO2g6NJ\nNM7VEOtIe2I2QgINTV6wohprAlIhHC6jwNK6c8NbPay3ZDz97U1Kzeb0/BW5+v/NSObWyRwKbZAy\nosQ6UENbWtA8kRiB8EqfrlZuzkL5vV/ZONp7oUHG1o5IEJY/xB/IddtYFJfOcu2faVPQ64k+bFs2\nWlqAVXid3lD7c3g+JtNCt666bzODpYV03btdYk9sB63YotaustajFEttA26ojXmDOWauTWbMOfaZ\nGgduRJgDDZ7wauxDGV9yTfDSvoDpW8K5p/7b1JrNehHZtDR+ZaOtzYmu7ZBoVbB4PMJWSSFPLayp\n4CUlwVHbQHZJY+9ekLZl/evbEclKbSNJRlnI+1qLU6otrVo11voPlot7Jmt2bp0RXraorl3sPbVX\n5DV9W+vpfUL4Ix8KdV0fAUf6eW6MeQ9pQf8XgZ/R2/4u8Fv8IYdCaQqm7phkc5/yfW2AkhxSaqn2\nZFRxpMEffgauVhRuqcU9a3WptNfi6nRGoUhvOBattoYPdzsMB0Igmv2L24Ti8llpTKmWYzewmWlM\neXpRkmo2m6XFVrIyY6xGTv9iwe9cBrxEHcZ3ROU5HzRotjT7Ti3hR995Qr6pHpOtFS3d6M7K4uxA\ngk3sqZbaGiRsahPXIlzSaIsIWJyOKWMZcz6bs9TiJbGWEYxsD7Y1LNkZstIgnLxR0NKGOq43pNb3\n2JouPa0XJHr4jfKUp2+LceqwTrmqasz4g11s/+OFRZrBgjzXkmFxQqYZfD3rgoan5eXTnEpFZo0U\nZ7aq2bxsFDw02BrItXGlid/W311MsdBOVZbiKsnJ52o4yy+wVEWJs4xEu4bH5h7pY2EY4ZEcbv4L\nNbZ2ckrnm1QzjSe5c5doQ4yZtb+F0Y7m9X1tslOd8MaJjHN8sCTVOIa25z37vNQs0cVFQlloHUW3\niZMJjaTxObYGUZnUUCEHxMoI3cRDh6cfSt7CuVMy1pqX19wV7lQOt2Bgky0eAtCIJAgtmdsUatit\ny5hcO4FfHKW0L/ttfu0UbyiFeD4p/InYFIwx14EvAN8CtvTAADgG9Z/8y7951orea/x4HWzWsIY1\nfHrwxz4UjDER8L8C/1ld1zNjftCiu67r2pjfv5PdD7ei98NmPXrscNx5RKpdiXtZxellp+HY4Gt7\nt3SVchEox1OOH7Gg0EKci+kENHKx6Ri29oTreIFHlcvJnavBaZnYGM2YKuMAo4kjjtthutDTP4ZT\nrUa66WkvhMKAcqWptyK7I6f878YJX7smrYh3H9Wcp8Jt5tqz4Oh8wVB7SyytCruU39lBSvVY8JZc\nU3VncsTDlbYlO/EwXxSOkV7MmauqsBgVJE3B0YkaHytifO263Y4MmWaJlhcWzGT8562QhjZrKBZa\n0+A4w9a4kFWdcHgZbbiwGR2JiH64mHI+1jgLdVMOtwP8WiSM5ahkotWsZ1UDVw2JUbuHq/0ULK0h\n4bkRhVZwtqYVaUOe68S7FNq6zYl9Ei0Y05yIQa1yLMonqmK5FiqhQ9gj1rDwfANOVMXKR/+7fP0t\nn8Gr6vYr2yxb6sr9bobjao/GeE7ZFbwspxrO7EdM5/LumbUgy7V2BCnHWkLt/kxw9VJSUxqh05UN\ncSI4ikuDrY2NSjegVvdqrnSxKCta6uqNL0b0XXW/DwYMN7QtXut56rFIPZl2zJ5dXHB2KtLG6l5O\ntC/IeBj6NLSNeeQ8h5NrhOQnhD/WoWCMcZED4e/Vdf2/6eUTY8xOXddHxpgd0BIwPwqqHCs+pr/y\nOL8v4uBu80V2fPEP37Gb+IksUn1rSKRi8EpTV71VTK2NWfsbbVxteLod+s/yHBq2wTiyoCZX3cxO\nqbSOYGFSBrV6C5oBW3pAmGpB71jVFK0jaFk16mpmnhgsXfDPP6g4d1Wcd++R7UlAThmq/SEIcLVD\nUtPxsT1NB66aBF0NXdW5Bf6Q7B3N7WgU1He0HHjLodSAFXpL4pVsts6mzHM2LWkP5RmL2YxCxeGn\n86ccXciB1WvV+LFmNqqu7wUTjrUAysSNaatnx263OdLYgpOTA061X2Mykc39wrhHT4OeTpsDIi2N\nbh8vwFE1IGziaDxFrdmuQZ2x0jLynr/HXIu9DNo5hf4uNlOcREjU3tAelvEWzp4IosmowhrIPNJs\nhfecPMOdV0TfEJXg0dtakWt1THoiY3N3u9hjuR59NaTQIiqet6RIZd5+KHhJ9jyuvS90808euDyv\nVb0WWYFR1abVkE0aDm1aTYkrqMNDjCPfmzoka2g9xmpMeixrcmkn8xtwgWzuRdfihVA8H/btbTa0\n5H+9F+CqirU8Uy/LbMmoUC/SwKZqiMr03GZEqvkTttXgTBvbfFL443gfDPC3gffquv6vf+irXwN+\nRT//CvB//FHfsYY1rOFfPfxxJIWfAv4D4I4x5nt67b8E/ibwPxlj/hPgEfDv/mEPKvKa44OEX8tP\neaTVfv/GixHfLa4D0LwYw1K4UXU+xb4hXGPlCDcwpcNAox8rzwZtwrG0u3Q1Sm8anOKrOoIlp7Zb\nVM/qH8ypGWnV3vo8oFzKPaejnO/OhQO9dEPDnUuYFZeFXCpCFZ//fmlzWxgpUW/K7Xc1zPW2SD/N\nnQ5hTxvZBHCmIqoznVJqfEb0RIvC7NjMNMR3+jDjqkjG+J+3sdXoRjPCURVjoC3Xm9s3iC+0VyY+\nRaqh3TmMMjHQnc+bGE3GQsuu5UWf3JGXjC9G2NpKrdn3uKZRjw/SiI4mKL3UEW7++taLHGiX6Mby\nPlMNu15OZ0z02Rt+AV2RXtKpcuAALPUorC6OGD3VLMo/9wqBrb0v2n1cTUDS/ikYy2B8CRu3zi8o\n1SjpTuckHS204+VYfc1c3dPu0m6JOZB55PYGgfr884FL+W1R45wrMX6ilcK1GAyTnLYtRsLu3gnv\nnsqa9SuXqYbIn6jRdml8BqFGepaHLF0Zm5VUZGoQdeqESV/mbTQ5zsGnoclRQTehqAVXG6Ntii/L\n9YaxmOr1/EyIbBFNqbTF3GoY0fBl7M3NDh2Nz/CqnCxWovyE8MfxPvwOYP6Ar3/+x3lWRUFizpm2\nLPYnIg7+7n6HllbbefT9JXlbCK81yhlVct1Wt1jLdyk1nbgYj7jS0MKYm6ckDXEn+UXIaqWiba6q\nSGCTpJfNPldYTfld6K44UGJ89/Ex0WUadSTx95b7AOfS+1PUHKge2V+MObgvY3pwE35q+BIATk9y\nB1bjE85jJYiTD4gPtIT77B7fWcmGvLat4ulbN1lciJoweAlcVV3K5ZLLzuJ5nTBQ/bO8LD5al8Sx\nbH5/vCRFRP+zxObsQua92U9pa/ZkS59rz2fMnmjVq7MFRjfmTj7hq3tfBmDvCw6dSuLoh3taHNcp\nGCSian3zO3NOTz6Q+a0Srqttp5t0mGnmZmjLpnl0PCHUJjunbo7RGo1brT6huprT+3dBszHtnhaE\ndRrPqs3aV10WH8hzH7/nkG++B8B26zmK73xfcBTI+5LqKVEqmzSbFrgvi2rnHB/T0wCo2rxGlok4\nnnXvA9AZbDH+lgbJzQKe09yVa47D3xnJu5cLzSI1PkY9HCtcZmcP5d1ENNS1mHkV6UJwP10K3rYi\nH6Oepqu2Re1ILvfZySnhIymWsjwekWqrgLmWABi9V5JrV7NOP2ZLw6qTaoCtamHupfSakmPzSWEd\n5ryGNazhY/DZCHOupSzYy49qFjuax//Nmlmtou/eiLGWD9sMa/zLstZafzDot9k2l52mb+NpFqRL\nRFYKl09nKyoN7ihVfajyOX6qVZuDNnWlmZFhmziXuIFWo8G25vLsHGo4s23z0xo38S1qRuqwnpsK\no9Wo4zsl4x0JXd4caK/CbZ/5bwsXWOYVlXZ2PiJmeU+efe+uXLtXHfHc88LNdpZdVptaL6FYkG5p\nsZjfzXFf0tZ6c5VA2sNnocGj8j1cS6sPW20s5ehnqzM21Rjb6kg7ur6JGfQFV9GTEfemYvgMypqP\njsXqbfotzifalOdUpLXavs5qJeJ3eXbKySP10LQr8qVIW0VdUao3Z5nJc604Z94Qb/Xq+JjFZT/K\n5S6Wlr9zl10SWWr8c1Uf92LqU+2N6NyEhXD2anDKpi34uvLCVzC/8HUAcke4q/f4dWqt4FxNbZYL\nteR/c0X9iyIBeoWN/7oYCr23tNP4ImW7FDV1c+MCDuR62Kuo1YSeqtr58Og9hg1RO+bnOaEGZSwu\npjRtoS0/7HPhiaF0eShS5cn5jKvalCexQpZaxg93Rv6b/yMAt376ZcYa1zFSqWsRL/E1aW4zHWCF\nGpznhNSRSMjN9Ay78f/HEu+OhTMMODZt3n0kyMn9glc1IOnwaEVDm8nOqjmZtgDfLUWXb80iHmm3\nIWPZBBptmNtgawPZOID9gSDwekfrgpcxqXY8MuUK35MNkoyWJJm84yx1OdsVysx6QsR7r03Y0EzE\n9lsnHGjAjkfFkdot3vFDXp/IZonUDdnyX2D75+Qd2aSHNZZNupmGvPYLQnjLI1FFrl/kLLSs/ZUX\n95iO3gXg5Nyl/LbMe+t6A8YaIKOBV+XJ2bOcEH+UEGovxcpbkYQqlp+nLFS87Gkb9Y1XNoibWqA2\nbjP7SA83x8LeFvXn5RcDxlqAtR9Jf45VsSQ/F7yW1YRrN0WEXUwmBA3R611/RlDIe8Zzee/TZYwd\nyOZoX+8yfqTRfYNznFAI2rrZZPK2Hk4Djcp7/zGN19UifzrH+5zgrfOdt4gfyYE77U6wL8SCn6kn\no78zBKWFKhxRvisFYTt/5iauNqG1BhWFdriqrwvuL+5+h29fiEr0zvkRv7ClXb8Kl/lKNunTCzkd\n3nt8wsZVmd8ec+KDy0hCw6qSjT6dlBSqxm5Gsv2mF0vua2TtC9OK1p/SzMiHU1aKz6ydEGimaXpw\nB4AH54am2jVu/fzrWJ6sQ9V8iEmEVoPbu2SLH6/B7Fp9WMMa1vAx+ExICpYx+MbDzObc1gzG5q1D\nikw4zW0ynmhPvYVl8FfyeaRGtCIZ0/SVO2YBXfVpNxtDovZl8ItDraXPV5qRVzopJlVvQAsOa41V\nn8441cIhHa/F/FxO/DhUw9/+BjfuapnunQHOSqsuzwqiy2YoecL3tW9k2xMppvvqBcu2iqfxEfVN\nkSD6dpMKqRFgBw8BCG5XlAutVr3yOZ2roep4iRtq7cppk4b2v/TUI7GaP2RRatBMb0Z4IlJOb8em\nVgki70451poSfc2HsC2HUrtJ1UGD1/eF09w7TTHa1j01L9G5qpmGmuFnFRZnGgvRNCWx5pWEfhNb\nO3jNg5qpeh3OtOP3RQJNLb/ukHH1ioa0JzEtT5vB+JuEQ+nItNIgK7e/oE61A3d9iKVz6g83Gb0r\n4/zOb/wGlkpFgdaFuHH1S3g72r2r9vG3NFuzfxVjqYcjiCAR/Of6jrMnS9o9WdNbS8NprZmR12oa\n7wqtOhpBVZ6ectrVAjdWh0rXaTSraR5rDoO9YqFNcEYLrQkaJFgz7eq1P+FUdaYtf8zWdZWanBnL\nuYQ3zzXwKrqw2emLJDTKXAKj0nLao7elehcd3Ia6bj4hrCWFNaxhDR8DU9e/bxTyv9pB/H6h0Ab4\nfYZmgEAPQWf/slNzhy1fE2Y2a2rNRMyf1Fhqaxg5Bftan7/WEl7d21e4olV0z1cb1Bp2Gz+qOJhK\nlePpqqTI5ZQPVYr5r/7OP8RTV9CD997lAy35NSu/g3UoJ/ug9YDsVKsezcS9ZVvb+L5IHcWsYKR9\nECdjSCfyvrlyxKxc4Fjia7bSMZOFjKEuVpSWcGPfKjH2ZUUj+d5ttPG1H0EnavHLPy9hIld/uUWz\nK7aB+emH/De/9bfl2U+lCOq/v/WA7nWpt3D83hTfyOdh44Kllg0bxyWWJqm1I23HVzgcXaixzwvY\nbWrh1maPVaL9NnOIZ+ImPZnIot55+13GypNMleHZGrFob+JdFcPsjedvYOu8nozFXmDmG3z1purk\nm/vE6p4cWpvYvkgxq9GYC1uMplWsLfbSOecnMs7zdIRtiRQz9BsUpYxpkiaUieJWMwvnic/TR7p+\nzQ6Ntoyz5zR498mbAHz5FaGbV/se863PAZC/MeejmUasniwoOiJN9fsu3YG878nbWlvjNqRPBVeP\n3ZyTb8vnNAeNqsaYH2wHc2l8TSFVWb/+URWblURY8N26rr/8I+4EPiPqwyV8FcmoAn7fA+HysnaJ\nxzkUMfnnXmiSqoW/PRtxOlMsbFa8ogR9J58xOBAMHxVabvtkxakGHhVhk01tpLoKVjQ13yHLDItM\nrqdq4IwfPOE7M1mZ5d0Lpn3ZILM7C4aXpeDOGoxWQhQ9LVuflUt6avgrrg3Z00IlJ7ZNrB6VJw0R\nZZ0c5rGWnw9cLF8Ot3JqkWt5OCvwKVXlsXRTscooNZNxWViEG7JJP3z7p/iSJ2W+sl2PGw+Usg5F\nPD/d+o+x/onUPty/Crkj4wyLLrH6zfsNh2Kl2ZGXsRJ+wWZDxOB4VuOoV8b4KV1P8DJNXBbapDWt\nxOo/6IfkZ7Kh56uUlQaDeVslq3sy79o7wt4Q8fimNhD2KXAjCdd2V0t25AwmyVYEWsiFbotAvR1z\nzVQMiwZ2W+jCO1uw0GIxeGBrMFE/LUgUtzGaJZucMNBuYMupR6FG7Lln8eWOPPtPaxBSGi15eCgG\nzrPZ+5xrnctkvuBVrRS+52fYx3J9v6l5FIctPlzIAfHgnkH77vL5Ci6jAr0aLve9VuInAbQEJwCX\nCkPMDwKIaoAFPxas1Yc1rGENH4PPhKTghrD1Mtz69g9JCn8AWECnlrPsVy+bxVzv8LIGLQxaX8BO\n5FQ+Do8pT0Sa8M2SbC5H7APtFTCtc1yNuqubKZZGTUYdi7lKGN3IpeVK+OxE8/gfnKxIcuE0lmdY\nPRHuvu+vGHbErbd0hni1xkBMJeah2yq4taMutGiPK7vKEmo4X8qcHo7EWHZ0dEBYyPcdr80Trd1/\nOr4gPheD59w3rDQce5bKGGorw3XFSGjMisXv/V2Z08/B517+aQDu3F/x00fCjRvKU+KbNsuVqAzW\n5JShVnneqnYpXXU5zjJQ910vVBcqGY52x/biFQ2t4GynBjRjMsxzmg116zqyHrPlBU0j+L6+d50H\nUxn/7OIhhdYFeM3+85yotLGtLtTrm0OmWkmbKVjaWnAzcPAzIeduJ8Rood9a28+vkpRZIM8a5SVj\nSyP+0oz4SDl9oyb0NYZFIy9ZlBxrjw8/rLk2FHXrokp58YoYh/f7Uj7unbcNk0jG4xyOqTRGZqOG\nV1oiyb5wa5/2RNbno6m4rD+q79OdCt5eY8m7tmbrljVflWXi7qrmX0xrUnlRP1cM9PqFDVpS5IcF\niU8Mn4lDwVnBxndt3qV8JvaEwGXCpwEuPa3Ph9CttIpzXxD9mned618Ra3PuPYevcQODNKJeysJc\ne9yFHRGfbzyUTfq98YgHcxFbG4OYlWa1zYuS1Ig+HzVKCg0auQzRfXwItS1hySXHbBayiHFzgOXK\nvX3fZqlW7XEgy9XwCrTwMV0WpD3ZWP1yjtXXFGdtl+6ZPp6GtW61N9g6Egw8XHWZZRIUNTlNONE+\njqsjwYXlrsg0Zbsm5M3FzwLw1760x9OVqAFb799h+rNyQHz+Vfl9O69J/qwG27y7DeoBSC5O8bUi\ndJaDo3kQpQivNCybOtDKz5sWSaK2jdJnrtWqaZSkqo4VvlJ54yrdtlr9q5SuGooORy1e1hLvh/0l\nW9rhqrv3BRnnZsxOcVlMpWY6VxuGb2FrGnkw8Sk8OTj8SNfXLeksu7o2A5KB4OLuKMEdq2fErdCM\ncmLNnGxmHsWJxLUMOzF5oLExZYClIdQLZSAv3YiI1Abya+6SlXqlqrRiVQltjZIu5b7gpf2OvCMY\n+9zNL5nJilR3/4broOEyfMMUvKn2P2PJLjmsQTUbJhkMNZekyB3+piobf50azeLgPp8M1urDGtaw\nho/BZ0JSiIE7xtDGo9aEkn+xLERbLf9f6Yeke3JCX3lNDE6vXfs64dcl6aNaNqi1nddwsoRQk0jS\nJkkqUXjmTYlm2z77kH/wRKLVFscudls53mTER1rvzzQiXG0GY2tL9vvpG/S0NJs7mVFpn4KCOacH\nwrkm6SG1FrdwXOEIm96QjmoMg1b3B5WNvRaeFiG51hVR1Gmc0/dEkui2OrSuilV7K55w8q68+151\nSrUSsfPIEz6wyixyTSlMrQVf/Asiom43/k2y/CEAOy98jb4vnHKgxTjysxhrpSG87hmW1lKMsxVB\npXUX2w5abpJLs5dftTCBVka2fBJNpHILh0S9AXkMi1rGtKGh60etDOuy/F2cslSPifFXGLW0Xbva\nYEuT0HxXft8uLVRwo1NvMtwUVtoPW1Qabh48b0guGy1fGkSTHv6W/DNOY+KpctVozEIlxKSYgIYs\nZ1ryrrl0cJuXJc8cCo1irAOf48f6u1AiM13b4vGZqJjHi9Ezj1GIw/1ziczMGt/H0Wpy//ADURWr\nbIJqGmxRE6sz7i1T0NL4k1eigLFGQvqalerVUGk1bs+zeO+y0KWBv6Gy9SIrVKb75PCZOBQASlMy\nNcUzr4PFD8SYhmMIhzLUn/7c8+yofvqcdvzxX72J05PiolWwBCUwp7Og0i5MdvyAMpFN5n5dNtWT\n9Hm+8g/kuU8HDSYq+s/jTZI7D+XlvsXTkVq+1YaRPjjgQruJbN+06DfF4jwZv8lUC3mM4wk9W5vH\nNFTP3Ijo9kSEjZwORkO3C2PIdbaeVpUKKw+j3WkaSYdSEzDCbEprW1Slm6HPsikIu6KBXvPljEN1\n+xW5If/oVQDi1wrmSsTP7/RYhnJYVAtRk9KzJyxVnzZlReFo/sg8J2uqNwAfarVxq6u36uS46hdz\n/RDPl3dkvRrvVDM7WWJr96LlZal206B0BZ/VzDC4TDvNQypXDydjs6H5CkFHbSbTgMoW1caxN2jq\ncFyvh9NSPHduYXkarqyp8Y47x3S0B+fTI+xAaGHQ8KhvyuEV3VsyUy080OzT1aahocFEjpVTqZvV\nKV+bXy8AACAASURBVEsWthwGja4813G6z1LOu3nFSjNRd4zNbW3ms5sYDozmhCw0WIwKTf3AcySY\nD8Cp62cHZGXXeIEWntU9EhRQa77D0jJYiR6sQYWtfVjJfny7wlp9WMMa1vAx+MxICnYJbdfl0qbq\nUhIFmjffcvhyX8t//Znr3H5RrOR+T9QHb+8aaG0FO2xQZ9r8wuthfOUezm3qnqoHSzH8NTmn9TWx\nIP/m+wX/H3tvGnNblp4HPWvP05nP+ebvu2MNt6bu6i73YLrtdtrBcQZHQBgUIgYH8YsoAiEI/EIC\npPAHiASCHyAUJIRjGRIJiCAdx25s4nZXdVdV13Crbt35m4czn332vBc/3ud8dgmTrk7Z5iJ9Syrd\nU+c7e++11157rXd43ufZOJfdb9y8QMr6/f2lwhatlKML6i7qBDUhz5F5Cx4xAnUS4yAXs9ws50hd\n2SlvU3899B00qQNpNw04ttxfAgdNui4g9fpO5qIm3sJq1DCUXG/DUfCYu29nCstIvh8SxDOFA58B\n2OnwGM+/Jn/ff/MDrF0X032evYVkpb9O0txgr4lqIfdnHk1Qm/Rz+j2krLR0syXyWsYoaJLSrrIQ\n0sStdAnfkj7PkgU8hsBnSXEplaaYvSjSAgazK4PdLkZnlFvraKQ00YN2FyFhzPmB/Nb1KgRtuT9L\neWi3VlRqPZjkV0TgwOU4lyv6t2KKgqSe/V4DKcVgdJGhmkjwsGdqzBjEM1Oyh8OBKkgco5do9Zl1\niWO0h5Jd6tBc8QAcEDZfWzYK0tRttQxs/0UZ++fqLThvizX1p7tiaXxQG4jilaUEfIFQ+X1bYYfu\nz8BX+LmZuATvrQAJhkIe0ypMSpCAHGFlYEb3wVI1VhAWwmx+bHtmFoXKUFhUJTo0h641Q4ATMwsC\npGTuCQYhjC2yyrDyTqcGSLwEHVhQLB3WUQFFhGDt2zDJQgSWCHvHAYKOkFi81L+LBYVE5+9NUZkk\nZ/HPcETqc4/oR6MAAkqrR4MdeIwdHJ0MMTmTzIbr+NigclDGCHjlW8jVaiGoMSbHX6tQmLMiNOIk\nTj0LpkMqd79CuJRrp6GFkDyIy0EFZ8J+BKwGtIDpEVNatY1eLGPUfb6Gqsl9OH0TQxJ8hF1xfVRe\nQZ9R83KewGJFqWk5CKZMvzYBh2K5JsFN9lKhIDpGuSEqUPdiomBZ1H3wSph0mpMxU716ijlBVuNh\nBpvlvWFhYosLZGUASSGLxcST8xplE2FNnzqrUDbks2cDhrdKHRTQ0ap8ngtWU0Mx7Zf6FjwuCum6\nRieVMWq3W+izfuCCpvh4NIGqWbZtW4gvGCdyLASsnr1Bini/fQ2ffPe3AABxnsAggvblnT5ecL4F\nANh8zUdBFrHRUznXjSzBuySunU0rjFjNuQMgpAs6Nw08YVxmky7KogZOyP2YluoSvBS7DirGqEoN\nVD8haPnKfbhqV+2qfao9M5aCqYDQMnCTpmiwBjhYaeAZ2N6QHU1XAdTFdQBATUKLIslhMzqtZh5W\nZkO91JcKzSq3oWlSaUqyW30brTO5xjVrD1Mt+f/w+RAZ1aPV+GV85+5v8XrkZWwFMFxy/2UjPClJ\nfjE9Q5HKTuhbCu3nJAC125QIet+3oAjXhefDJW51WdcoqF5kd1Y1BQo22Y7zWXxZBWmYDZiGXC/U\nLrYpg/70puwT6WMHh4z6x0WG/hbp1s6vY6LEXB2e2GgRW+CT2brMalgkBSnbHdhU466VDatFSyd3\noBiANMmL4EU26jH7ZswxWyXWKxNkukM2WWJEkFFBopupruGsxFKMFLMF6fzbDkzWczSyEDZxDdFI\nrBG/DdhUW/Ju+fCpSqgCFzohnCe0AO7+cNifOIJiFkHlbVQGsb8zAyaVwJthB+2x9DOmy9R0Khyz\nEtWrHcQMiGbpAn9qW/q2uU4Y/NE9FIZYinkG7NA1+9LLt3H7578q3cl7CH9BguI3m39PutDcx4vf\nleDjd++OYDtixW1u2bhBHMahCqAaYi3lzGZZsYHZBWs/AgWTYDHbA46oeWmgxkp14bNaDFeWwlW7\nalftU+2ZsBSUAkxTQQcKMRPhm9YAISvdIr+Jn7vJYJ27jjqXFdGgLJuhNcAKR5g1NPO1OlEAaa60\nkVzmrPWMhKnGAKUhKMei4aFB1enma7+E8h9+BADIwxKjBwJtrbqSa/7t0xiIZPc4mU+RkpUZywVs\npkM3O228AEHCXb8uq3bb3YHHwFhUe0h9yqZpDxb9ZMW8M+wMNenhUIWoydKjFzPUqzxcvoQ9EEun\ndy5jMTU+hsHd2K4NDD+mmrP1AD7TWy23gZBRKUW17mIxRM49QhcmSkPGUy9TgBBde5nC9OUcPgNc\nvuFhYdHnrmzUFG2Z2CZSWgeq8GFR8dug7qQFGx1abrnjYUJhlFg56JFhKHQK5LSW7BbTnp4HM5B7\nssqbMPpyDtMLLytFlb8ORYJVkCUbTgBlE4KtlsgMEqzOTZS2zJG8GkN1BrwvsTwXVgPemNWMSYUF\ng6e6KGGPKU94k6nX0Tr2cmHIOg8U3tgQePydmyHcWhCwbnsArydp8rCUYO/aool5710AwK03Enz0\nllxvvQ9kVLx+tdPDW/synjeJ8nzr7fT3GLF1CRAS7i0rVMQ8L48lAAp89rqoZ2JRkNJHjXVt4ee3\nxCXIwx3YgZhizes9rPVIUbV1HYpBoIzRe19ZqBIxv8zIhi5kEus6BRYyebWVo87l4asu9RDLDAaD\n/rUZoHtDHqKxBnzhW5Lh+ODuCZqvsdJyXwKOmW5iTtquCC4WpVxbGQUsaju64RaONWseHlHncrdG\nayZZlHSrRn4sj6mwXfgF4cOhHD+NJ6gI195oesgTclC6KYJa7skrTDS5hkR8CZZw0ezKjJidPYXd\nl++r8whZIQug44XoMIhrzWXye40mDLoEbq+GcqSfht8EDJls3YaPNORLzeCbtRtgdyQvxSifIWCk\nPkuXqMmVWaFC3Weg9EwWQrsuMSEM2gwD1KwRNlBhSnKZWjswCfDKRoJNSPohNm7d5jO1YTBSXzsW\nTJfupsouZ7YmJF7ZGlXCClWjRM5F0Ww5mJFER7mAyWrNHkWE4noBTYzFeVVBkzU8SabI2f/+hTx/\n++ICNslN/mQKJK7cqypexvIxadxuV6gZzNQXstkkcYnseamvKD4K4fC8v363hmaF7cfqHOtUzvqQ\nWOzHboCUOpYq0djuynhPQ40WhYc7Von5ym0oP5v/8LndB6WUqZR6Wyn1v/L/byilflcpdV8p9beU\nUs6PO8dVu2pX7dlpfxiWwl8FcBdAk///nwD4z7TWv6KU+q8B/GUA/9U/8gwK0LYBndWwCMpsOTHu\nPZYV3HUbONphgcrjEWbEHnRGTNld8y/ThbbXhcWaeB1YKE8luLZUFjzCJVc7WH44vmTGjeIY5joR\nj8sMFvECL6/VsBLZgdxEdqv7D13YBoOO1hw++f2zOEV4ab3YyIeyw3x/LpwFa0kfzXXZadYOBrCY\nkmvlNVJP7umc5KNvfXQMjyburUETPk3c7oaHPZc6BT0DyYiyapX82zDGsEkP1ot8gHl31TiBS5q2\n4qLAGVNg3Yb8vaxqJBPZXQo3QXRplrdhLqmr2HPQLEh026JbNlGY06Su/BamDXEf5oclUkLWp5MS\nixXxDYN64WKKMe1avZiLiA8AK3Ow1hI3zmhVyPZlPI6IW+4aBkr2oTgcYhFwt15GAElOVRIDHFvF\n4im4CuWJnOviLEc2lnmxcGM8eCB9ttTyknV6Tu3SuM5QxgzgoUYZi3VnGTaWrvTp7F2KyaCNIJHv\nHi0auPmG9OGdsydojpkyniQ4eyDQ+vpUfmsENdbWJbDd8J4i3JX735ik+PUzihLpJT6gW7hLOrbt\nsAlQktB0HDzPCtVFVuMtysk9mAJyNnxmuPPn1ZLcAfBnAPzHAP4tSsn9CQB/kT/5mwD+A/yYRUEp\nwDaBtY4LfyFry4NOjKEl3XMODeRf44QNawTE+0/nYrYtWx76fXLZ5S5MTtKkmiMuxJe79+ZMRFYB\nHL4g/65dmJjlYg5v5W2sfyBY9O5gDUWXUfuugQYFXX+28yW5qXf/FgJmH8JFigu9imc4aAXCo/fy\nizfwxrdEOGVxzBz04gRGR17Mzb5GlVE3si5w91Qm7A8PhYHpbHqIthY8xn4nwuubMuEbzQCK7kOd\neXD4siQtqjQtWsBcXBtXW+iu6PATHyPIb4tWCot1Ak+OZAyPHz/GJJNF2KkKbG7JOYLWOq5vEeyl\nmzByWVBnNsd+XOBHv/U+AODu9AJLxnt0r4FdfwV/rhBc0P/mgjxquFAc+3FWIi+ox+g1YJBvMy4c\nzHJiQO7Li9eyNpCyDiarlnAP5XpTYwa7FNeza/fgEdfiTCm8Yp7i4kDcp3c/eIjJI3mmD40JOoQ/\n9yIPvmLsJiFDd26jIjCu1i4WBGEV8xSKG0DRkONPH8WYZNK3OTIs78lczl9+jIzxLzu6jn5L+vl9\nivUa8TGWZIJad9t4siObyfH4BAfEshxnNmyLRDSB9DEzC3gEi5nLAicUnDk2PTzmeFcVYP5kZM6f\n2334zwH8O8CKrRQ9ABOtWXcKHADY/oMOVEr960qpt5RSbz0DjHBX7apdNbZ/bEtBKfVnAZxprX+g\nlPrWT3r875eiN01DG4ZCritMSNixF+yi0ZG1ZbvbQaVkRZwfTBCTUKXi0rMxMVE6NI4ac6BHNGLs\nomxLBqDVu4sPZ98HANz7X7jb9TvY3JDrXTRmCGMyAA8MuMxQ2L02rmXXAQD5LrMWcQxDy2+j9SYq\n7n5JcYK98Jrc39p1ZLRoOk0x5dxqA25HdgRXW2h3Ut7HJhozckySa8uqDpEy0Lj/6AwRkYv2rglc\nE2skLDXKcGVqyr8jx8W1SoJaSWShWMp6nVYxuoHs+JnZw/SJWCSUfoTrtPHKtgRzF0aBaU2r4vwC\nZ4Qmb+/VsChzH2hZ67PuFP01EWFBNcMsll3zmpXCpgDKwrKw0iOpfLmnKPeQZnL/TlVDLUnI0gjQ\nsmRse7VCzGKztXXZBZudAdKM1s8iQG6J6X9ax+h+LKa9sZGht2Kp7kh/1IGLOpAAZWuQ4sFEtBMe\nPpnjJVpNvpEh6YoL6TLC3/AUtiYyn+LZCBMWMS0TDWdMeXlfnu92YxO+Q2GghoML4lo+epziDola\ncge495SW45jur5nijYVYit4ru9i4zwKrrsaf+47c37utDJ/QShuQobwfK5ywwvORGaFhiaVbPZph\njQmqRwlAShrqWv/49nkFZn9JKfWnIVmPJoC/AaCtlLJoLewAOPyxZ9IauqjQqkz4DJUuS4U3HKlE\n/KRo4J3f+UA+Rz5CT8yvsCMvwnqvf5nKKy4yOJ68eFYzh1vIAwubBcYP5HY/zP8vAMDJ0xCFI+ey\nhm08vy2T0VY+LI8046YBf42gGBK4FkaJ3JQh3r3+IppzptD8fczoU/7o3bfx8VBclxcZf5i7XXxt\nSB/3VgdzVkE2mwZudeT7x7e48Ohr+ORDyV4sZ08xog+8LDpYZ27p9Vs9NBuUJ2eazrM9dPbE7UhG\nFzAdUtynDdRTiXqjZaPF1OgJqceTdIqDcxJ9RAHOT+X+IsNE6BIgk4XwWXdQU7I9uTjCQS73+cnp\nDMOpxGjef5pjc0f86IGucbNN8dO29Leul5eVmEapkTOKbtQpJhM5X1Z9AZEv196lYGqtMjx6IiCz\nDz5+iIr1Ma7Twje/JC9bsNxEdkGAU09eCa87Q3Qu9xRiifQx7zt+jH/wSI47ibfgPpHBfXFP3I+u\nZeOpKab/SekhY8o8XtzHnAS6KbUkF5MMMd/ALoB7R3K93z6d4bsH8qyj/SmGIxnnn2Jq+Vq/jTSS\nebipXoe/+zsAADXqYUgGrOOnNbKxzMl3WcrejhzMF/I8vlTW+D4zKplf4oyxkTYAZRG9VPwRZx+0\n1v+e1npHa30dwL8A4B9orf9FAL8B4C/wZ1dS9Fftqv3/rP1R4BT+XQC/opT6jwC8DeC//fGHKGhl\nIlsWuNeQ3ey1ehPB62L6f9l6HjPCVduRgagjK2yrKbiC1kYALFbBqSH8pQStdGCiPFspRld4/cti\nCaD6CgAgm01xrScQZK/pwxzILpblR5idSyBtvT2+LGhyeT0kNdqs2nQ7EfZIejEeteBPCdMOm3hu\nINvGspS+DaoQx2vyuTWN0YxkB2oUGtgRc/xVYjA2ggDdluwCw+km+uQz3N6N0I/EDTB7BmYLOUdC\nUpAu5jgnm9/aWoiahVawMrTIZlxNUyxJ+9Yk0EvtRihM2YGaSQn/BRl7Y5wiCVjZaMxEMAVAuZBd\nMo4zrJHo5Au6gxNG2WejBRoM0PmugyCQ3+fEiuhkhiV1PO+dLpGu+Bq1hbVQzOfCSVCT31JROKdV\nr2GHQKbA9EARb4TrLazvUmJtNMEkFQM11OIO1J6FjEritgrxxleF7r49a+Lxffl+czNCk/xm62TB\nXqQpCtK+D4xT7LOas0xrVH3ye7La89rzryD3xDpw6gW21uW4Lw63sMkCsrVmA79D0NqNhYzVSy9s\nosf7s7oF7KUQ6gzmT9H8k3IN7/vH+OhIdnx3Tfq2hi0M7xCk9X4LN4mj+e58dEm0c1xr3PwJY3Z/\nKIuC1vo3AfwmPz8E8JU/jPNetat21f742zOBaFSGhhNUuNXz8BVL4gTLToiuL4GvGzeeg78hq65n\nAVUt/pfZY3GOY8Nsi0WQD3MU3DXr4RJmayWIehstLb/pXshx9d4UFSnPnKgJj76jMts4nElgCKMZ\nWl8kx4MvKcnMrJHYYq20cxeawSl7egt3dsS/fO5OD/0N2f1PT+S8pc6x3magTYfQLECy/AAtIjLD\nPdntNm82cXsgQbbZ7DFCh+nLdgCf8RNTj1CQlfjQlnP5YQPbREeb1jrSJ+SAgImqIX12BxrVmHJy\nLBf3igpOm3wLlcYaA5QZZmiyTNz0BqiPiQY1ZcfcaEQQml3gZ+5sInYpppLUl3Rsy7ML6HMK1jLV\n9CQAnkwIbU4SFKR3s10Nsxbf2JlMEDBVZ46orvzSJjYMGYt8cxNxJlaFE7igEh6sztoly7Umw3OR\nLNFj0NnrRbgGCda+tpyj/inZxVMnEGUeAKNziWvYRYy8LfR9i7wJ2GKF1ShRzSn245I0GCm8klbO\n85v4Vi5cHX/iGy6iBhm+pjaeJxtUl/wPg0YHusE5XZrwPHlmnVcGWA7lpvpf/xAvPxTKvWaPehp6\ngDSUORZ/+wgH/5ukbe+PY3xwLvPMRI0FU6dIPxsH0zOxKHhK4SXbxTebGo2WTA6nvAFjzL8/p9Hu\nyeRQ0S50KRPM9CT4BJVC+zQT9RHUKgi2P0VA/IIVzmEP5EXY8cU8K5tNVKkExuq6QkGq5aLlQZfy\nW6NsAaeEI9P8rBZAMpMX6CAz0KX74NsVQktcjBsbHRghGYV7EhhzbB9WKROp8H04MzE1kzxGXZCe\nnGzJvpPDp0jJevAcioDEIssLOK5cezlOURAUhKdU5R5m8AmDtToWRqy+VOUCHgOeerMPtaq0M+XF\ndYY2rDmBV3WCtJLvW24Ga00Cvm5VQnMxVMxCTyvjMshbpgYc6koaUYn+jOPZ7yLhM6spXhM9sjFg\ntWphGdAMktmqB7fNIKHdhHK4aLVZ11ClcEMZC89poFGtyBgdmIH0owoHaJA+3SLlXX5gQmvZZDyM\noC1WRtYWsCHzqIpHqNfFpM+Jtxg2G2h/IotJrp+iJHV8XRtQsTyHcSQT9Wari4tSsgW7B+eorgkV\nXr9nwVwX7s2bVgZFghqTWpoIN1AdfCLfNdehiIvR7Qj2x3K+ut/FLVfGy/iqLATdt23Uu/JeDB8s\nEL0qi9M37g/xNUfG8DdUBSLPsY/P1q6qJK/aVbtqn2rPhKUAS0F3FOrODeRzWbXvRzl+kQiu3PBg\n+rLrGh0DRiK/0RQp0UuFuiYazzIRn3CHwgEmT8UMDDdasFh956zJ7mOHNRRVmfM8h2nLrqM/eIwN\n7v73R/dgsHrSeyireRIfYT5/CwBQFs9hMiTsuJrhQEmAazxtodEn3DiR42emA5tF7RoJHAqVnB4s\noViHXynp25oZwg+YrzYDgLBkNwbKlRBNUaEgz4BL2rJZW0HZ0p9kGCOPVozBA6Q90sbNLhDwfCbN\nb7NpgPykMCc2TCL7gqwBgyg9V2vU1OwMTNk9E3//Mqhl5wbMakVyGsNlhWqW5jDmrESkK9LaKOFM\n5beNtMaU6d5mM0VdE7/gGojPWXim6BIOFGwyMynXhLmUe60cCwaZiUwrh9liUDWny7TZRHImu64q\nFrCUWD/ern9Jfmqa/UsLoc25cvjwE2iiRg8yDXsgu7FxeACUpJCz5Tt/uQSYWo7aDbisYPW3Xwd2\niZfwClQkcVW0PAs1hMMKIR0YMJTs/mU6Afoyf42wD29TrA3FqkyvVsh8uY/oh/tYMjX+cz+1hV/9\nnqQvz0YFZitass9I4fpMLAqGVghqG+XBGTZeF/DPrZstVASgNEILmtBWlSlo5ooN0lZVQQ39VAah\n6DqwIxkEz2yg2JdBzScVvIa4EsonLHlUXYqv2IsKKTHlaZrj4IKVbOMxikN5sfYD6k6mFvKpvITv\nxOe4Zcnn01GF7ZgiprsX8A9leGNGqcM4R+ywwnFZQ1GSvD0wMZqx2m8m7szSqNBhxqVqhHAI0a5d\nEw6pvhchkJIqrmbWoueEmLIaMCtqJNQwbPVsaM3FMKtREnTqkMHZNJuXXIVVXcLieJeqgkdAkm44\nsAmrVRTKdY0ABV2wwkxgeStgUQvKkXEz6wroyH1bzJV3CwMuy6jHRY6ci02tPKy1VzyWTQQZKfpz\nWTR68+T3GL8LhZq0+1ZioVoJqQ4zoMV4DTG+quGjHss5lsMRbE2259461DFBSE4Bg1W1hS+L7bKY\nYbFgRsKd42zKUm7HxrIl3ze4OUVfeQnOPmNRWQprk4tXFAKnxAp4HoyMIKOI1bVPLIALneXuAm0+\nk4sGjD2C2T44hPppVq5OxA1SAwvWuWxUcf4OwPL7sPE6vrIrJdxPl2Occ3M9XlWT/5h25T5ctat2\n1T7VnglLoYTGRV3jqNOGfSSmVbQR42ZTIsSL4yncLTH9THsbKpfdr2bVWF4XKFjtV09iIKbZurSg\nDMoSBy3UDNSsWIttK0RFiGtZmkhHghqcNIaYncruf3xiYL7SSlxpevsLWGti0TifTPDoFQazphpW\nLUHFBycmGl25l+VczEtrMceYJqdru2hTL6EBjYp5+kqx2Mu1YLPysa6mcAkvXiYLZKQdm5Qpcuow\nTNUFzxUhVjJWo1hhi4QLnapCQfco0Sbc1X7AAp9lcoqKRUBlmkJTuzENHRhEHlbzEDUl1gwyIxfJ\nFAUrMa0gQEpEo+OlqAvqbxQJsKD5z9jak3mJSstxoSmmMADsx1Ns0dLZmFeoDTHBEwYil3EMb0HY\nuD0Q3DCAMq+QcvdXULAy8k8wE5WiQEIrZVbnyKdyDu+4gMuMV54YqI8Ie6d2W1ZYSCq5p7LsIVpB\niW0Tk5HczDkFhy4+foiQBLN1ewuKget64xFMUgdWpwnqiajBFKz2NSwXJbVE4aXQASX2xiMsmO1Z\njGYYsHgtvCYhw7xwkd6jbODjFB9OJEui3S7OHHE1Lox91D4Vtv8fapR/cHsmFoW6AhZT4G5+CvSI\nsx99DaOQEfBNfbkA1LUJo16JctM/P8+BmuCY+RkUXxDbtlHviu8bliWMS7eDx7UbUASeaLtAfE/+\nXgfXcFwI81IVaEzIvONRoNRGhHAq/Sy9p9D3mNK6OELMSPzpkx5mWyxPppR7NjaRzZk6zU6Qk+Ck\nrvsYkN0o3ZL7CNMCxCWhmmVAl7GPaY6CvnM6LS9Ljk2Sf8yTGhcnct1prqGo+jSya/QnhOW2atQp\niUyYqYhHBTQrEtMUKJm+tBcKBasyx5NzTMb0cel7h2suImoqWqqNkkI0Sy9DEMtL6vVbqCwZLyuX\n+09rE4uEmaZKI6RfP54rjGK+kMsYGd0cTZ7yGBohlZeMqILJNHJZV0j35XvTD1CEpKunq5VpYLli\nltIG0ogu0UUOY5sLcpIiaclLff5I7iO2TSglY1HbE9TkoPQ8R1ipALxLhuc71QgL6kRuBzOUNOft\nhxOolnxfpx1oUzaJigtQZU9AjhkY2QcoP+Im4x0hfiQv+mnloPmObDje8yTkeeIgPZF5evbkAht0\ntw/0h3garchngGuenPx7+Gztyn24alftqn2qPROWgtYaVZ5D+z4aDGRZhokWFSWXuoGKydY6nwMG\na8VT6gMEOcoh8+7+FEUuppobVbC5kzqtDjQhtkYkQTLUMUyeq0gseE2xMKaI0adJ/A+nY6y3VjX2\n8l00uIl+V4I9fvc5LJgTbk+e4CKRPl9bzKCWshtXpCubljlm1Ig4P34E/ZCigv09fHNX8A0diLvT\nCDXOyTFgOBni4UoGLcOSlXp5maJSNOcLsQ4uygw5KyensyFOCcYZ2Bo5swHFRQqXJCJ1udpdZxiu\nAD+egYp8jrbhILXkHMvARDJjRoXumm8qNKMV1thCkckOOxydwvNXO/McLglAKrJL9y/2sRbLcZPS\nQEEylLyc4Xgk45IVe8hpLrmWjFvsN5FrsYosNUIRy9hnExsVZeCzYoaSVaDpSH4Lc4GMwKmoUSCn\n22g7JZb74jYWRo4RLZ1kFQwsEpQci1Exh0uZPrMKgUSspsiRMam8HhqU2Ou3fGhiRHTbQk66PB1P\nkNElqBoyPpPjQ8zO6LrGFexzsVbMgY0OtSxmWQmTsHG1FBEkuz9FRiVxa3yIyfNiFW+32/jed84A\nAIOywqL8yQgVnolFodLAKFd4NF1AszrxG9UUR125mVvWEnlN5FqcoyLwxjTIOmSbgEnSj8yDT+pw\no2fAXjDW0KgvTV5N4gpj4opKJwCVT2GRktv9JEadyucXbAdPEnkpmhBfPWyuo2mTMHWtAyuTPH2f\n6QAAIABJREFUCf0uykswkKqmWM6ZSSBXnzlSiJipKP0MD89Zf1DOkW+RhIQyPqNAQadyXG4WiCjl\nnjdrGEpM4yDMsZyz5JjEGwNUmJKm3I1MqAGRkI0IVpdENE+HWIylb+11ifSbugXLkO8s00RiyXhP\n2wEapK3faCkEgZRJh4pkpmUPFms4El1gQiLYZB4ABX+TNTHnQjUmc9HEqTGi7zwc19CruEXhouJ4\nLjKNsqSrRMFfz6vBgkqU0wQFFwvDbcMLCeWcZZiRcGWFUjVCB02Wsi8tALa8NMsqgzNm7KZfwKT+\no6tksZkWCfIlGZKSGaYz+X7vRoohP99mzYjZ76GhJda0dEroJhfedAm9z3nWMFGYqwVQnlPYb6Ag\nB2eshzAokLwd1ljcohbq3b+PH9JNfeP7QgFQP9fA+K5kO76vgC+RmHaK65i1hO3rk8MEd+qfzCG4\nch+u2lW7ap9qz4SlAKUBt4RpmTBICfY4O8JLqexi6aMhsj65/Twfei67X0Xtx0U9Rk3atemDFP6J\nfF6E72D9uuxs3snXAQJy7BuyozidCJrBN6QzLBjtabRibDKq3UoGOLonwZ6KtfnOYA/GdYGwnu3H\nl3qOSxiwcgnsTQHElHrTNJPj2RRZKWZpM4jgkrm5mVnYPxTePpuR7jrbQDGk6bxRoLsuu3yyWMBi\nvUOaxYiowD0h54EftGFRVs6vGuhVc37fxNwUgFQdVnBJVFIryo7Fc9QkdTmZZUBP+u7qCRyCaZLR\nBJbF3DvBNnkyhsFxm9k2ygVp+WvAbIg5u9A1plp25oxB0sdPhhhTUj60DBAuggsUYJwRxXwJKyQl\nHyXvrHmFrCv3ZHpNVBxbjCcoYum/F5iwCBs3C+n7YvxDqED67iz6WBwQYt1aoNuRGpM8LxDzXh4e\nP+Z3Y5TkpPDyCH5IDtG929gjfd9GQ67hOBeAZrC66MJ8Qjf1uoJHKHVmRVAE1E0mMgAt6xTmQkBI\n20aA6bpYvXV5jvgtuae7b17Af06smJcZ+MW+wmQpfz/bLmEtmSW5eAtnH9PdWqYwGiuS98/WriyF\nq3bVrtqn2jNhKdiGgZ3AxZ2sAMixP36/xrsU0Pjiq9vonZOhOdqAtRLobclqWPzmU1Qh+Q2KCsOm\n7Er4XRunTx/LceEQnW/+PACgxwpB9B0YDBKVL1bA/yjHWRvPoUGhVHV9jA5VgjODQrORg4i+f+I/\nRT4Wf7maJLBrytfNHUwK8a83DKLy0gkOHso9NZSHni/nuzAMxO/J+c5JUKq7H2C9L4Vb1y0DSUvW\nbwclYoqK5scFzD4h2ORsmGiNIF9pSJgIyg4HeQc+2YgWVoVlcV/6sSr8yjQM+p6mqTHNKFKbuUAg\nxzmDPuqc1XcU683s+hIJucQQ6VyeX2fQQkXnv7XXw+SRPKvZPoVtlx7alPSrKiDsyHlHhQubyuPx\ncA7MaCH2qLnhNKEnEpQz+21YDgNxxhj1+xLzyXZvwGEc5CwRUtnk7QWKSOI9efEecsZXmpWG2lpJ\n6C1xSmHWk7FcbzFcYHRBZK2q0KT03F6WYr2S40JWlzaG1+DsSX/jKdAh4tE4GEKRn8I1m8iuSbXj\n4v/4AQAg1QZqJXNv3M+g3n8MAFCOgw8XkoZsrGk8fyzX1gkZpd+NMdiTa//zT3tYU3KN0YMnMMnq\n9QVb4dukwvs1fLb2TCwKWilkpovToIEpLa4YY2w/lkn6kXmBvWusgixT1MzH1owU+280EN9lpN6a\nXVKce/90iPpQXky/M0BBTUDj1jbPdYGEi9DB9/aRvEIdwFkFe10e6Jtvv4eceuATQmA7t3ZRky24\nfPAqnpbycO3AwGgiC0C/7iJOBYKa8mVMkhm6hPvaoxKdQBaylluieZO5a1LVN3ob8Lvirqw/twZU\n0ocyDxB/LAtLq2ehYtS+ilhFOh2jsSOman56hMYtuf/tvoEmzdzsB09Qs0Yhn0hg178RIh8zIh+H\nCIjLj7MSF6ZEuJe1h5IZikEoWYTJ6AKJubqnCbokn2nGS6AnwdjZxQVm7Oc+gUc/zKdwWbV5eyNC\nzUUmzRJMc5YvW2O4/H1osjK0zlHSlYLWsDzWXdgR8GX5jbmwYHVkkW3OpDai/ec6SIgtqfINzLXM\nl/VBE7qWe50vbNx9LIvl+VwyIKPZGI4lC8Wo1HBaQs4ybv4epZ3flMVmXixwSNq8aBFj8q68Xje+\n/Rxsqlfp4ACu3BJu/lOSwYrPPNRU+HLyM6z/JdGdVLqJbx7I5vTBm+8Br8i8XcxlYb1Ipzh9Rxbb\n4EtNHBSyofzti1N8OJQ+37YV3iquAo1X7apdtc/RnglLQRkGvMgDRkv0HAmK+OESFzUrBnsnmC6E\nNi2cPIITkCyjSYRhtg2rJcSuo4VC0+eqG72Ios+6+r02GpvUq6EoSpUdI2ahTcMcw7FfBwBkwVOM\nmTp8RaU4Dqkh0GKAKz9Hh0GiWT3FWi5m68KoETbEKsiNOS5IBuKxSq25phFPZTfrNAN4JEFtuDGC\nluzuK4Vgqx9ia01Mf9sOUJGnIM4rOORZmKY2DK7rSSy7VZKMoIgw7G0EsCn/pjYyGAzW9W9/iOMT\nIuzIjF1oGxWVu63cgd+R7+cPSiRads867yL2ZLwmE9mBXW8Me8biqXaGmHl10ysRKLnGdDrFwUh2\n7nsLsQKcvEBJ/oOTvES7TwzIgQ2nQVTkOMciIpmsKWN1OxgjTWVcZ/MT2L70I1p3oLXcX10uUDMF\n2nSZfrYG8OiOZpGDVkoXy3KQcec9qyeoziR4uKB7OM4KxHQJu5EHM5X+57mBkII5zTE5Ijoujs7F\nXSnqEJUv998+7KCuWRzWuQG7T/h3JurT3tMfYkyWa7ecYPoJpemKu7C/KBby9WkblSGWwslCnkfm\n29h+jmn09gbuPxWG6qVtYo1WWGAoFNZKceGzNaWfAdGFQW9D//lf+JcQ/OIajKaY0aPjIf7P3/mf\nAQDZ0xfQK38bADCuDJhkGq5NyeH2cYiSVX2DyEO2qoxbJJhkYn7NdYqQoh2bEavbrr+GYCq/PUpM\npIzUl+YLGGyR1GT7DrwWmZs9WYz+p//w34DdE/P5lZefh0uo9CdPH2NOwMpuVKC90Wc/iUEI19DX\n8vL6LuC0ZUI3+95lBV9JBqKpZWOHAjAdI0K7IZM89jx4hHTDjOGbJJppSn87QRMpKxiDPMI/+8t/\nFQCwtd7Ga2tiriZOH6f37wIAHs4ey3eTDFPqQ6aphk+NTdPSaHxVFpa1eyWOWP5RPCTVeVEgTTkB\nm0BANuPOL3Vx7XfkZXp/qlFfyGJRmYT2psD1rozL8UDjZ/7NbwAA3vu3D6FDigx3e6gJj17OSKZS\ne9hqy/PrDgxMCNoqpgVqiOvmd/qw+RxiWzqcXiQ4oxBwnC1QEjYtkprSN2Uq5MweuMzEqMhGQEBS\nNzRRt+X5fOUb/wR+9T8VKfmSTNVbm9vIXPnt7PwIigLDX9zTaKxLfOjw8UcYT8gOXgrGIKs8OB7H\nM7VQJhJfSNIaPB0cr42AICrLksWv0fNgKLJO90y0BsL09KWfehV3Xv0CAKDZs7BGhq+NVvsHWus3\n8GPalftw1a7aVftUeybchxoauZXj47//Gl7ZkMis8UIE/1h2PzV6G2P75wAA8cO/i76SVTylKrUf\neFCEjO41bZwQaut5Np7ryqp6OBminshxgSFm3eJgjoQaMvE0gG0SYbZeopiIhaHTOZrrcu4hmZgz\nE8CQAbVaY9AXU7TMmph4Yl5urb2GW1z999YJk0Ubt5qCmyjbJvqEKKfLBmpJU2OqZbcrJnNUD2Wn\ndRox5lp+21z6yAmbzo0YC1dM4k1y/I1at2DlEjizdl20SRbTyRyEDNDCdeCQU8I6IfGMVeNPMfj4\no84St0iFt+wB99+V7eogWyA5XDEYy7m+Wiu8yyzC9TFAJC7e/+9dnDDgWxdNRMRf/Cz5Ft7zYvxr\nB7JjPjRq/O5/IdG3VNUwhjKedjuDo8lFQZZlrWp0ezJYtywN9MR1W2Y1CgY8R6qBgs8SrCLtDQIY\n5F5IzwssU/ncaBjIWRRm1znG5E6oOW5u6UDnYqXs5hF6XXHjZj8aYWkwDXZGbIK7QGeDhDt2E3ZF\nXsrwJRhTwslrA9lM5m24KuyLFDqE4yvdQFBTzzLMEJBurio0GiGrJ5vEt1Q51Fz67sKGY0umonzo\nwiJLeavtwWJB12dtz8SiUKYznN79DpwXXXy5/2cBAH/n/VPcpsVYzircG4gflSqNpSmTtG3IxNw0\nW3D54q3HDbxIkkwVaqiM5vp6Cwlx/h8ey8PQyRhBytLbdgRY8kB7vobFSko7SmBEMgltX96UejlB\n3SCtefZP4oipylv1CNcDAcJYr++gSx+wzRTS19tthJuySCX9DP4Zqei9AEZLrndRr8hNPJyl8qI4\nVY1zqgqpRgprxTDk+jinStHFRDIEzYWL/ksSnV/UBizI/TnwUY1EIanqaDgEOL3SY9mw4+MXpuLj\nXvtpEy6BOb/yYIFMU4A1dWByIiuLUPLaxjfoMpwOFd7lM8uNAh3GMCqzhU5XFoBrlpTDv/JtG/Vb\n4jK8HxwhPyRgJ/5tVIwDbBVfRhwSUEZA03WnCYNCLYNJDxn1j7bbBvbn5LxUwIDVkSvykht9Cynr\nL7DWQkZiUwWNEyo5lQsX54yDHBOi7S0sJFgx4W7gcfgtAMCmXaJcSJ81j78d/iVMKE7Tn55js0UG\nJTvCdCq/nZ0cQhE2b1nybJ4fhOixfPt6uwudyfMb6hH0UL4vao3ckH7YBJwtlzma1Kisex3cacq8\n38xjNA2mLe0+avxkMYXP5T4opdpKqV9TSn2klLqrlPq6UqqrlPqOUuoT/tv5PNe4alftqv3xts9r\nKfwNAP+71vovKKUcCNf3vw/g17XWf10p9dcA/DWIQMz/a8srDwfzF/FzL3fxICB0NHuI89clG/CS\nFePVE1nxH/YNrGViGrlSe4Jrbh8pI8CWnyAKuDIGDWgWUm2PLBzFAiXeyeTvj5ZnGK74JxYljBah\nxJ4DxxIz326ZyG0x93pnMlxlaWOXO9Bh5wKOIbt44+YNbL4kpu+OCuGRr89aUrxm0IDXks/OWRMl\nzcEg9FG1pP/9CwkGzpoTXCOf4WFeYn0hFsTI0QjJIzE1EhQEHH3MaPoXe0dICDZqZwEy8lAk2Qyj\nmdy/WgZQzJsTBQwz7eDgS+JKzEZNNEml/bw7QsI8/Ye6gslg3oJEKIcuMB/JDrZW5bjN9MlGANwj\nDdj1nRnOyOx8/LIcN3/vNbz8vOwXv+zeQyuQa//y33bQZ1Zp6o7RJOtyY0cedrSTo0eNSntjimYp\nu7+zFeK1gsChRYwRC+RccmiEfgmDdHThZgsJsxrL0sCgkPs7aroYsJ8GYeCz/gxn+zKGB/4Q60/k\n/oPWDeRk5h6QSu5x9QThRMZetzZRrstvO9kZakOg8hPkMEwZeyuSsWoZLvyOuMpmOENvTYLH67qN\nszXK9A1PkHliNayK2c6yAtlSLIIb9hIjm4CrYA/XWUCm0kNYlZzjs7bPIzDbAvAzAP4VANBa5wBy\npdSfB/At/uxvQkRi/pGLgnJyuHsHCOovYoM8iJsvfw1PpgIK+jJexOlTeTFvWHfQ+7qwyrzQF7P+\nYrZEQOn007KAS7advKFgzWQSxkaOckgyTqaHkqzEpCJrUJ1hrSXn27jzAsauvC3V2MbBgUSJV6hC\nbRSoSDS6tmdj1/s6AMDUh9hltWKvaCCy5XwG4wVeN8KqxM/v1ygoRW9GNupcXoRwg2nIwEa5kAXN\nTufISZSh8iUmiSxCk2kKJ6VeQiX3n4wi5PcoZrrVw/mMqcplDTNgpkIPkXlyXMT7h1Phu4eSTjs7\nd5EljwEAx/EcilmJqtIwSBxC/lk8KQqspAqVa2Ka8+XH4rJK8v5RgIBZpfGZ3Ge8fo7/ciHlzeqe\nwpe+Ki+TMgoU1GpwegbWPUnJ9al1sBl14ZOxyvJM1A71K9rWpZLTeieEywXVspgiVRp7rriHkzRB\nv0MUIwJkXHgO5hMcnck4FqT1X44LuLa4cQejDPeO5byDvRQVqErGF9NtJAi0uDPTaojJIWMKy1No\nmv6Wb+G2J8+4w1qaO2s9pMyIDdrr2Ajk767vIqI26RhSQQoABsuwS7PEjFT71dMEr7ky9mGU4dGb\nQr4SN17GoPXHV/twA8A5gP9OKfW2Uuq/UUqFANa11sf8zQmA9T/o4N8vRV8WP5nPc9Wu2lX7o2uf\nx32wAHwJwF/RWv+uUupvQFyFy6a11kqpPxAI8ful6IOgpauzNtKqDdeSHfhON7okN1FHDm6vRF3W\ne3iVFNdlLWZRmFqY+pIT7p0+gHJXAZ4E1Y7sMDenj7A4EfPrsCfm4nKRwRpS8WdSo99jALN3B9uM\n8J7P+tifiyk6na5IQ0yYvlyjU2i01iT33mmZCDOy8joxKnIiOqZkBnSyhFEygux3oLAK1vlAzNWc\nGoZKGXBcVjLOUxgdAqGGy0sqc2c2RbXiL6DK8LgsYT0Qa6s7P0DBnb2oKhSUfm+3PDis4Fx3ZfeZ\n201kIwkoJuk5lgs5R5GlUKQGr2oJzEkH5Z+6UtD2ih8A0MRkpKle/RK6TKF6kiUZF1+WZ6ZGKEZy\nz0fxI5TvkCoPDjxPxnDHcNHZkzmw16FLVAfwI5ZUmh20ucOitmCRv2DpheiR2t1alXMiQ2NNxnB5\nPEaLis9aNaBJqOMUOQwGDTu7ctyZUyMK5PlmdYppLuNyfpACNRXKWDlqVyXctmxwnWwCdcJnbZvw\nfOn/Gx0ToS2WwPa6WE+b19ZwzvFu1RswWRnqm110aHmhXSDlM5sRu9FOhiie0tLdnKP05b1oXKth\n0QodPf4EzcYfX6DxAMCB1vp3+f+/BlkkTpVSmwDAf88+xzWu2lW7an/M7R/bUtBanyil9pVSL2it\nPwbwbQAf8r9/GcBfx2eUorddjZ0bJWYPn2D9OUlTGdEB5m8Je0w1ucCdrwl6se4N0NkRj4RrD/Kz\nCVyH6tJdC5Mz2dlhBsgtWZMMmNghFViQyC7xnWWGgorSo6rAdCIr+MtfaCEq5Ny/oRPsbYpf++Cp\nYChsD0Amu1K01UOX7E31qQFzjVwG1/aIlgMsVkkCIQwqRmtdwuozNZpHMAldLliF6BkmEu7QbuSi\npF9vZRXiGVNayQKGy8AeC5X243tokwko3mihIjKvUhUanvRz3W4gXlU+MtfnlAbahBcfnS2gKThj\nqQo1WZdNQ8Pm5+xSfAHwV8TQdX2JU0i1RsW6/3mVIL0v/XjpmkBxu82b+N5E8urtdIaoFKsvCmRs\nAMBa66NbkxVJDA14WzV665LWdGqNkLu8clvQOZnAGynWb7DAKiGnhZmhIhXeVs/HkhWshi6Q1eL7\no8jRVDIeLtXDT6s5Zqf068dLBCw803UOg2nSnOc1axNhLs/0yeEYrXCFU7mGARGwvUpDuTIWuxSW\niZwQDUKmp5mCMljY1c/QXlkhZoHaZyKPOpdHJfCJJj9HsoG2lnnfPItwbP8IANBJr+HAlXH+rO3z\nZh/+CoD/gZmHhwD+VYj18atKqb8M4AmAf+7HncQ1LFwLenjpRQdeUx7y2f6bePMTidi+HIYYknpt\nR28gY5DPyaj403HQnMikKq430aW+YlkWmBGwZDk1elwAvBflgb+SKwyfSrBrgQo+eQuPLhT2NuXB\n9AYmPnkqk6J3Tq7F2sAeSUjsusQ0l5fe8WKY0XUAkDLkJfkf+TI6noKirLs5dgCXoqJ+ipqah+aB\nTKoiT+CQ9jw1U9RPKaaSLxCxknKc2hg+kklxNBLzc2zOcDST+/hnmn/3UiCkVg6MJkVWgiZCW8au\nImTaT2q0CCwyjBAmwT9aKUSG9G2hKtgMTBYUSQ1MBeKAYGogpnsEBaTV73mOKRe4H5zKgub3E1Ra\nnuPpYoacGRzfbGCdcPSeVUPRVcr78oIZUQ82PVLTdJFxIQsKDc0Xy142URFHElJwprBLVBnJYrI5\nAgZB80WMmuMVORViUsR51Lw0hhpZwgBfkGA6l/7bMGDz+Xis4Cx1iZRkMoZbwvbEhN9pReizqtb2\nCrg2qQXDlQDMOmpPXtx+YCJwqci1tJCxjieoQzh9MkyPhc+zZRwisKbsQ4I5S4zPdwqA7N7pg49h\n+J9NGWrVPteioLV+B8AfhKX+9uc571W7alft/7v2TCAaPc/Ciy+toR/toRzJrvzJaY3xRD57nS1E\ntMCjax4MRS1Jhyi/ooBqkNCidOFQjdosx2hvUlHYdhH2uVOSDbmzvon4N6nOu38PFtM/qjfEEPLb\nW76HH7ZImrrF4zoObDIKY+bBIYotUCVs7oh1ksDxqXVZcfeED8IDYHo1aqapVNVGPZF7qbmz53MN\nRSsntXPUlvzdWAbwc9kdHmULxIYgGRVTr5jMUHK3+7BuoCYU13EUOrZcz2uGyEcs6q9kYGPPB6hj\nubXpICGSzkoc6Jq7dF5A0xIIVg/PNuGS7DTXgOkwAlmVlxWfWkMo9wDM23JPrf2nyLVMv7Cl4G1y\n91womCQu1YULp0ntSpLxmp6CokiOt9aBnlM2r9OEQWIV3TBgssK2Yn90XmKV5UpnQJ5SZ2KUIr7U\noijhxGI1lIRHv7gd4iyWeTE/cKDpE6ZmDV1d5mJlKGofmngRC3M0iMwMfWCrT9M/BwK6uj6ZxF1v\nAUdJerJSBgoK55T+AiU5PIyFQkA9zZ2XpW/DxSZOScHmVwqtDbEw1r0IfVa/PrgWQP+ExK3PxKJg\n1AbCxEPYLDEgBnw9bGLNkIlybWsXjS3xxZFoKIKCNFYCs3Mom9yBWFxGvVG4qP0V4Gh4yZloEVse\nNvrYui7+2fbiFbx2Wwg0Nq1tgDqOxWkC41QyHy0WSiSlhx2WJ2/ZBSrCrW2vgqLikqpGqFaU8gSd\nVLUHtWDcNdqDKglzDl2AgiIgXbzjGMg7VK96MkEW+Lz2HBWBAVmyhD6VSfr9C5m4t40a/Vi+894+\nhcaKsclG11uV09ZICJXNmS0JrAT9DmMuzQ5MQ/qclue4RiKTD55kKDkGTziGyq8xJYW45zlIKXS7\nY5t4f7RiVtKoV+/PKeHc7hjrrCLtlBq3mD051RFCW8agjwIucQgNyrc3zDYM0ssXVQi0qAVaN1BC\nfGozi1A6jBNQcQv5Ei5LP5N8gjRm1maqUfF6OpvjvJbNoMGMQ+ls4SUK8zrBMd79kC9ynmFBSLrP\nRSGy5lAMNDTcDANbYO6+ZaMgxL4ZhfCIX1kRr1hlhMJlHUSpYBBqXRU16lKe66RoIzmTe/L7pA7o\n+PAsmZueucTRRObkCy9O0LkmWZ7BB3cxWi1en7FdVUletat21T7VnglLQZkadqtACBdNkp74aYpb\n4aqK8AheKNmHOM5QEXUGV1bcQHkomCs38gz6slgH0DO5RWOWYXwmQcUmMwAzrbHVkR1xY8fDjdvf\nBAC8eD3EcCLH/boaYf2W7H5PP2CBkldgSahqXZTwSMjhXCxQ0aWxomuoFd0DVj5qO4Ttye5YoIBH\njIG2Faz1FYWx7GxuGqDM5XgfE1Sx7FyWp5Fk0p+b7QQ/YNB1k6rVH50X6DHA17EUzBWeoNaYX1Dl\nuu9gjfvBmMHXOmugQWur7nlobYvVcO+4jxOSr2zfnAM5UZjHjwAAIxfY4tbitjoAg7/pssZuXyyh\no3GGhJwTNnkvHO1jNpXO7bx0CwndHP88wYrjo9VoIarl+XQW5IZct+Cakg2aTcYAA395kCEM5LmW\nQQKX1lJJ3Qc7qaGZqVFlEzMtdGtuPMecsHd3zUJjKePcow6Fb42geqyiPLLQ6svzOTjPAVLMzbib\nFwngMBVTp8ASDEram/BcukeoYJEz0VzKeKd2AbOS+ytywF5Kf4rIBUpautkxDFLyLY4FsVo5FUgT\niTVnC84m3dgkxIIZkc3XXsCjdwQN/FnbM7EoGIaF0FtDo6uhO2Iuum+f4kFCCXALGJK+Ozm7wPJY\nzKgN5r/y3SbMMf0w14bLFwhtF9kjeTB39zVGlKWPKTOuCuCI+PO1rI1GX47TM4WQgq+7TYUPKAN/\nJ5IJ8VFlgwFy6BBIqQo1RwbLpr+b5MguSNfu07zuLFGusxx8/xzpFqnmHQWEkp4y6dNWXQWfWpPq\nlddQ7MvnIj6COpGHfP4YmIzk3B+cyQTtFRofcFG4kS9Q1TID0yLBJBXXZX3iIyaZS02YLOoaCdmN\numsuYlbW9coSza68bLvhdYQEJ0Urt6O9gzin3+5oPD6Rl61tdvHeuSwcw7ef4nsjGXuHVPQGLGw+\nJ9mXNaURuHLth0aJBuNDpSqhWcJ8yFjLteUSGSHdBx/u4+mFfDbzKcItWXCbQYAgkkVt0KQmphNg\n+UBYuN48HmL2RPp2NDrGGV0X676BDt2023tMPboWQOasO80Qjw6YJUG10syFwTjSuJjAYTxkUabw\nKXIbn8aYcHE6Dwq0Joz/+GThqj3MWSdiLzNYbZlcUVzhSSWxiNReoiDJ7slD2QjemY2xeCAu00X7\nFNabUjfT+zN7+FJDxmKpTWwXj/GTtCv34apdtav2qfZMWAqmoRBFNvxuB5fyu250ScVVLDzcf0c4\nGGMjhq1kJR3NqZw8a6JHReig20V/TNmxZY4ZlYE/OP0QT+7LLka5SoRrW5gfkT35Vo6I19trudin\nZPqr/TaSYzGZh1I4ic0mEDKgOJ3MUV7Iaj1ZXiCmhLtj+Zc04SFNx+2ggwlVtZu6RnMkq/mW0Yfa\nYfFTKTv7+P4UF3d/KJ/rC5wuaQYvSizISn2/WGBEerdd4jsWY4Cqa/huYaBmQLDSFqAJajIdJMwY\nlCR66QQRVFN244tZgYpS7BdD4GImLsFwrcKdgexGXUeqFhPTxoNDYa3+6HiMNs3g98JDJAdiVp+Y\nPUwKsZpAsFHXcJDNxTqK3RI5gVxFlaHW8sxmBlCMyOwcy1hOMsD1CTs3MpCGAOUB8MONOpAhAAAg\nAElEQVRzAZf1HRc3bkr/gonsrtlaggxyjruf/AhPHpzwHCm21+Q5DOoakStjMKF259ZGCxazVpZd\no9+Q+5gtHZQc+4QZGR0DicnrpXPkBDLN9RIlOT/tucZ5LBYLWKw16HrQjMRuOB1UDNamkYszzvu7\nHx+jt0YIvMfg6XCKhBbtk/0TdInJGM++iIi/yfUQaoulsJ+xPROLAmoFLA3MEx/rxL3feONn8BLJ\nSI1hFwelPETDr2EoiQ0cEi9ePfGwviZv+k/f6SHfEHCHm3RRUNGnbXs4aMqgVvOVglINVwK5CJNt\nuI6YdVVRY5f+Z2n6SH2J8D4YkmYcDfTIXLTX6+LIlofRGHtYhdmPTzIgYbXfhryY99MjmG9R/NWJ\nceOmvGzj7VtonUvlZ+7wntIFLqhHkD1cx82XGOl2gbc/Fn7Fyf0Kr3NxeszJ8RVL4e8QSXg6+z3w\nkFnV8B3GJUwHAeMd80R+c1BM0XxE8tDawxF1MCdLE64pfdrJEpxwsei+IP01PYU2+RDrsgaryxE1\ncnisV1j4S2ClxAVZKLSv0JBkDw6HwCZ1NU3lwszFXdnwGiiZysvPqEORlHgaU0h2kqDviFsyMgyE\nY9Yi9DR2W/KM+11BP9ZWE2lDsgE/exTjY6atl7WBWwOWFucxHh0/lv4xCzbJYjzPOgq1s4H2exJX\n6hszPNSsxCQCMYoClAaRklYFayqD8agxwfNnFD3eMJAtmYqNVwS8I/gsYE3cAJuObEK52cZWSybo\nZM+FF8rcen5X7unLr7yKuz8S1O/fe8fD8JwKYE/eRa1/EQBQTiIYJ3SnP2O7ch+u2lW7ap9qz4Sl\noFGi0EOo+QJoEUuQprjDWoWP0yM8OBUYaNzO0KnEHLp/LmZ0v5piyyeAxuijQdBQ6SzQYK274yvE\njMQPbsmy3Ao7eH5TMhif2BvwbNmhVBFDEXP+OJ383+y9WYxtWXom9K09D2eeYh7ukHfIyqpK21Uu\nN+Wp3RZqBmFArRb9BmrJSIBASEj0W7/wYCEEQkKCF1qohbDdRgwtaGPsxi2bsl3lyqrMyvHevEPE\njTnixBn3PPLwf+e6summbjpb9jWKJZUqMu6JfdZee+31T9//fagGYqUOn0lyarNRwWFi6PRojNQl\nVn+a4DoRq/oiDDFbsrsulvm4VYQ32O3YrzVEMeG8ywBVR+4vIYDqOJ9iEkh4VOQpnjyR6xqqiY+f\nye+dLMOnJPhobIiF+u7TEnNyLNjQX4KGCgBhQFUnLFCRMn4SiEcQFjUWjngKy3KGmGGAnzgv+QPT\nsoTDrsN6Kl6crQDckfvonS5x/nxVV0/RcIgnMFzs+bLmj6hklZo6Dkg317csNC3593xxCYM1e9Md\nvhSM0Wm/nkYTfHQi7ncwX2JO4JFbG3i4IRb/XmsLTV1CgqYrlYqyukaa0N3XaxxeyXfPZ6f46EzW\nsNuycPpMwoafXJPn1GmayOgd6ZGLtT3xGo/Dy5fq5Rk9s7hIsN2R/ZQnY5yXEuZ4lwEChrTJgSFx\nBoDdtnzHlt9CcSVzGzUquGSgbt52UMQkl0lyXBzKff8+aehbVoXvklzI8RWSqTyn65mJw6l4oV7L\nxzHBUq86bjyFm3EzbsZnxmvhKQAaoBqoVYKKJUJ/nsNYE2u9fhVg8A1m+Rp9hBEblCYSW5nBAgP2\n1ftrHVgtsvhAR/5EPjtou3iblF7NHTmJ2y0HkSvW5UsWAEOs8XJmwmS82Byf4sW5cMaMaFUbjo6e\nI3H0YNhCkIin4L2RwstkTsMaWMzE4hlM5gUbFnarVafmAho5G4xdHYoAvOiKjU92BI/sytWohSgh\nw+95BTjUOgBgronX9OKpXODrWYnfIaZz1yhQs86NuoKzajpamshWjT/UnYRmYYPKyJeLBLnHzyZt\n3CWa0KwzqDVZz4rJXi1oYPuueFjVdoloKDHwJ/MnWFyKFVtrxTgjf0GHiuFVWMPgPT8N59ijyIxf\nG2gReVg0YnQI0e18VX7XmO1g6xYVnGMTs2uxxmnTwg47P4dtH/pgJUpD0ZtYB07l59ZIw8N1kqMO\nDNRMzJp1gXyLMG7ec+IYmM/lnl1VIaBWZs83XmpvmoRS6wYQM5mpdxW8mChbo4H1oXguqZ3BYKPU\nns9mND1DOCVa1pqjIvRcO3XQ3pLJ7Y2bsBwh3n0xEZzCo6cxmqTK+1CvUWpy/1f5Ekks1yjjCvUF\nE5uvOF6LQ0EzTfjDDTQbW3DYcqf6XbQcvmBfu484IYZAyzBN5MXaGBAcNDvDkF1ovr4Jg/x6UHOM\n7lA/8ekeWvfkgXVIT+VoPRwzSVa3dJipLKRRdHHAikLxaIrDiVBbqUque39niPXmQwCApxmwqVKk\n2R1sDrgRnAoVa/JxviLhWMKs5CGaxgjTE3FhjSMXxRrlzkm7FpwNsbvFF9bx8EYoh9dZL4bHA+Bk\nX8d8LNgDa0Me5R+e5wj5sl3oGrQVH4lmYNAWpuntdQeLWF7eBuXpLc+FP5J1qXwdJrUdnYGGIQFV\nhWEhYxiTdOVFMfUIBdE4mlEDhGbvzSwcsutSTYe4PZKNeWiykzHowYjkuu3iAC/25SVV76ZoUc7e\n1wxsDKixSZKSdb/ALjELKSJMFpLAM+0mPIKIGmYTmpL1qomnqBHDH1Jx7PIWBl+W6wbh5GW4cnGd\nYi2RxKVDoVmVKswI7Z4scziFHJZ9y0WzIWvkspzVMxvQCY+fTmpsUG9z78EAu1uko4tc6E0CpMh8\nPXQtfDIhd+XTEtcd6nW2E5QZBYzWNQwlEsJtUuB/0g6RxLKeB9/+TaQmwzVziOpMDs6n7VNcVisi\n0lcbN+HDzbgZN+Mz47XwFOpKQ5k6COwaTTYt2R0fLUJ4czdFi0jB0mrBWshJa9H1rbe3UZEroJ6d\nIiODryorOIZ4Ck09gs+f11hOxHYbasLOutqBIoFnskjhULrr2eU11HN26G3K3+lZF7on1sVvNLCo\nJKmjTYHMkLn5sACL0NaEqEGt/dITyDvr0Kc06R5QsC4eUTSkjEpk9DQasykqWuZblg1jX5JZxYs5\ntuiiXhOqW2oVzslQFtbqJRrP0jQ0bQl/YoxgE46na2LNGo6CnrLkFek4I76jFWXAtlhdZxpiwXu5\nOpZk17FrY4udionVgUsqseamg/unMqdL00PzWkqLu0o+a3lL3Keoy5Owgfh9StGXNopUrJ+xDFC0\n5eeGvcJb6HCpomzU67Dasm5a2YRtsuS8tgktkuendH42dGAQ/q6HZ6hNedbDRhPFQPaFW42RKjYr\nsWHsRRggXJGszOZIiOjc3Wyi8VzWbhW29PwY5xHh6osZYFDSzWvAUPLZN10NRSF71SHPQTFYg3ct\nHsrx4ymy5F0AwP72XfQ2ZT1bo3vwmfzub4nH124u8YLoVk97iCWEeLdRnOOcGhhXY4Vw/mfE5vzP\ncmh6BacRIy9KhC32CcQmXCo5aUYTOmG3VSNDK6cMfI8vXahjTkl50ypRBCSm6DmoUnmgTd9CQACJ\nRjFX3cwxYPx9Xs5hk7knUZc4uZLw4enlAfq78vJWLisH6xoahP5W0RImcwaOV8HUZPP73S7qLhl8\nHXkohapgGLLpamuKNvMSeV2jsSGhUko8Rpot4bniqvqZC70vczO0AXZcvvXPF5ja7MAcyctxWHVQ\nXEs7da6X0FZS9ZpCQsjsjteCRvHTpCFz71steGxfLo0QXZPu85UOI5aXKV0EsAjN3WrKGs6jOTTG\nsk0jQZsHrx0rzBxm9f0E69cy/2FH3P3tzQ08Ybfg5aMxzk05TO9pU+S1PLM0tJFds8ZO0hNneAtO\nR16wvOXCYIt34lswmMPJNA0W1aJKS+7fqg1EIas5VgbLlzl7pg2DeBDTcLEgRF7x0AzSMwRdeU3O\n5wFMXdZoEZZY68l365XkCy4DG3NWu4q0RECQ3LC7i90H+wCA9jRG3WELP0O0eRQhYr/D750u0WjI\ndaezEJ1dubblmHDZ65M3JOw0VYzrWPJdenGMjHvZaNxCxMqGdX2Ga4r5vOq4CR9uxs24GZ8Zr4Wn\nAKUDVgN9sw2TtGRGfIqAyDU/q6E15TTPr2skJJBoMCNfmjq0E1ozq4FGW45oe+hBuxKXeGkewD6n\nu96V076e2cgoPNJceIhM8TaC8wjnjyUxVhVHmCZiYe/26H52HHgNUmYN1qGOiRycXUD3xT1GsQ7t\nmsAIahZYpotSE0tUvchQ6qxEOLdgjORRtNmjX2YfImHCrbPmoVrQu7EBxax3sd1BRWGU9FAssGF/\nBINQ3VYJXJBT0YRCry0/twwT5jpVmRmuubkOmw1oS8+HysRyZWaN6FLWZWK6UAzNQqL4QjVBSF1J\nq67QaTLp6LfgULosmYawiOXwdslZ0d3GWl9c+PmnDaSFeGZ5aWNEFGPh1Kh0CXkCKol3kxCKVtBc\nKMSsguBijIiVBnPsoWyJJ2euks49Ew0Sq0Tta+QX4pGZt2/DWpD3YmDDp5e5dIkLmenQyRcRaxZ8\neh6D7Ra8Q+JkbHmmbqtCHDPkVSX6NoVqagcq4npv9DFk4jlggjZ9tMB3U0lEqvUIB+zwrNxr+Pxs\nL1ii6HDvHMtziusSzpl4AZf1HBYb9tZubaBN7yZKXQxXrbKvOF6LQ0G3HLR3H8DzXBRjCo3qPlJT\nNoqvdZEU5L6rLeSE9M5OiM8vFzghWWs2DbDbFpjzlrUNncQiSeEh5MYrLgUo5A7WkYR0v4sQWSAP\nqfQqBASmuGELVo/t3HQX60ug5uGVzpcAhUQLTQFULCqKk5dhQ0mIb60BsSOxXlKXmBzKfBqjNhom\ny2wE94SVg4ziorPrMVp9cu5lPnLqXGplCxdnsi6fhjLHx5c1jsjC5PsKNbkUo7LE5aVsjsF2jCY7\n+FzF/hE3R1IyL4HqJW9huoxxQq3MoxczRMxzrDGObmgKhSHfcW9jCNOSLdXtDpDUdK9nZxhQ5NTp\nkq9y4zbKhP0TzfdQWnIQRJenyEt2h9YlCuo/lnO2eGsJkoz5gqqJ8Io8j48/ROiQhKRowh2I291x\n5HDQlYM4l/W8CkrkE5Z1G8fo0l0v5wrFhGEDq12TLMaYbelbuoutfQmP2tsPoSz2T7BfJbgsseBz\nyGAiYH4hTS5RkpjWDlxkPLSzQvIIP/Cf4OOPvgUAuAyX0Nj/c7loIfTk/kc/vQWNpXi3Lfd2FQMz\nGpZu7aBYk3vNjHvQprKei/JdhO3PFxDchA8342bcjM+M18JTQFmjntfISwWT7lJmGQA75DItQ7aU\nk08ZBdKFeBNRJFb16jLHmO5uOJ9gyrpy9c4U3TfFrYaTIW2ydn0qJ3hhZqh0+Y4y6yHlEem4Qzht\n6bhDHAAxlaInrGe/WMKgBPxI30FNS5lXNTISYdTjKdwVPyBh11pXR3FNKnfDQUxKt/jiGPNL+b6K\nQjXBLENCGjdvkSAnjFtZGRYzsWLPlwFURyzoH37/hPd/hjktfjMHCj7iqqiQJuIhXUctqJzEIaRd\nc9IJWmTMDpIucuYyzY6DhNbTrW145EdsJmL59W6FrkXreq2QN+XnpK5hsbMzjSxUvri5t9pfkfsY\nznE8ExpyBAY8MkYXlQeDsnFuUWNKIR6jwQ5Pqw2L8zG1HMlc1uLJdYxyRWk3yqAdMhnXkGejv+dD\na4jHkwVzBJpY4PToGtUew7tUITbl8+fn7FRUOY7Z+WqnCor6kaYVoCAEuySmoWk30CIfQ5DlMKlt\nOUtCbBBjbzZDKE28jSokt2O2hrU+FcrV8iVNfjWy0STr9nKioeGRdt8Tj8hb5ji5IIAqt/B1V5LV\nhrPE01yaBssXfbjG58MpvB6HghJKbN3WYTArHF7naPSpk3dpoG7KQ15cFS9JNiaKsVenwICVg1Z3\nhDOCgpbLGbxHssLujgPFl1DnRkkTwCU+P7A0mKTWrlsV3mgLUuTRZY3GaMXJTzab4AieTSJOlUNj\ne3K/pSMN5bvrdokQcvhokN+VyxA6yUrD2TGiRP796dkh2uzjsEkCO9zQoGoB9LQ6GlSHPOqVgaov\nD/nOtYGzDZl/n0p9F2EAg8xF67qJMwrMllqNS7qab7e72KKuQ0btS23pIzflgFBJjipnz0G/h4fU\nKDypDeiavCx7uxIDF1EGrVj1TGTwWXrTqxqdbbnepZHCOZWW6+7+A/l338ZkLnNrdyocTJgHQYir\nUvIIkyyHQd2KgiFFZSyhEegVBAEOpnLfs3CK/gMiVXsGTl+Q+v5Y9kqRhrBZwm73KsxJzNrQTVin\ncu1+30NEHdKUHI+p0rDTlb21tGMosnYlLyLoGefE/pOttoNZIGFes5lD77JjMm9C5wFfxQZCHiar\ng3drtIbogYRS75xc4ctN2Vulr+EbD2TdrI0BOvoqZJVnHtclxoagG0NT4WpEsJ+7hpAMUu1hgTOq\nWr3q+KJS9P+hUupDpdQHSqlfVUo5SqlbSqlvK6WeKKV+nZoQN+Nm3Iy/IOOLqE5vAfj3AbxZ13Ws\nlPp7AP4NAP8igP+irutfU0r9NwD+JoD/+v/rWrXSkJoemroFGHKGWItLTMla1dQKaCvAUXyBhIAc\nn9RXeteHya6+aeIhp9agXmaoCXQZZ12YS4YbVFvSjzIk98W6uKVC5dIlntbQPPZdbI6wyKQSoRNM\ndWmb2FuwB2BLobwiN6B+ArVJDEVcoVyybqyt6uc6ipW0Zg0oiBupw8VMyZzWS7FmM9WCztP+UDfQ\nJQV8YWaYnYklff/9DSyWYtH+4FjmVuc12LSHfitHQSGTqqpgYEVaM4I2kD78tCQ2ofBQz+g1IURM\nb6osA1TUoNS7GkxaWDChWE4MLAhdnmslHl/IPO9UCyQkbdEmKfQhqc89CeHmtYcXy+/LeppT3GoR\nhLXwMCStOywgmDDp1iDtmr8DkyCe9GqCOJDfdwc1tt8Q76Wr+/DJcuxpYknzcIIuNUYjbQgtlyTh\nZHGK8FSSrbrTh16xp8OUeSbhAgGBc+aggxMmwpGWiLjOFpXEM0uD25RwVeVXcLkuqV5gEshzqttN\nGExc1rwPq3yGJRXH9GyOp0fyHN5oNvHRHWqr6iEumBTX2XF5HHyK8dE518VCvyv3XMYFopDs0HaC\njRbfnVccXzTRaABwlVIGRArgDMAvQHQlAZGi/1e/4HfcjJtxM/4MxxfRkjxRSv1nAF4AiAH8nwDe\nATCrV2KAIkK79U/6e6XULwP4ZQBY39yE5rgofR2LS7GCueUiYnNUq24hCCVxojVNZFOegjMmetJT\nNJgPUBMDQ02QX7p+CJNWx0lKnNCqPLp6AgAYNLawFsjJ7q43kLBU5Pk91FSYblsdHLMW3GDPP7I5\n6khiPQRXqMn1X8CHETG5iBQaPYT5NWv+YYlwKJamiw3Unljgh/sPMOvJnJq8p1oPMSaz1BI6NFqd\nIG3ifUqvPX8Y4NEPviPrUq9ETF4KQuO9Wy3gkiIzcICAOZP0FJVFxe5YrpV3alxcSHz+3sUESzJI\nqRIwyGzsTUs06UHV12KhktLCbMFysEqgMyF41e0gOpdYPHYWuHuPDU8dsdbTdxMcn8m6TedXeGvw\nJfl37xgN5j5sFIiIai0u6Gl0Eqg2qd0GBdIjmc8izFCcyDq7e210uF6NliQ249YRKvJCuGGO62Px\nSA/GM+yTQq20GkhSiecvauHOiPMUMzZa1XMNNrU+s1whieX5FkRuGqqGTXYvrx6iYuR8dTGH3pM1\nqhITDsurh5cfAQDOTs/x/rns7/51hueQvVAHTWz8o7fkXj86QO8taWKbMtf03rfniIlurXo9NNri\nERwFJSZj8Uxm3hJf3pe1fdXxRcKHLoBfAnALwAzAbwD4q6/69z8sRf/gwZfr6KqEVygYmbhGqdOF\nxo1QDDQYP2DHYH+ATi6LdsKsav00hrEmtVuvXWGhxO12rgwUzGRnSYBwIr8PnsvLpt2foVVKRr7t\n3EdzSf3Efg82z7W5SqFfyMYLCTW+HTdR5gwJnpfQOgST6DHaTBLV10vodFdNag2OmxOUrD6UTQ9D\n4h7iSmE7FGxF1RFXNpmHIC4J3WUMa4+6g/MS67Gcsz+4SvBLZ7Khv18QngvgDnOS/9pVjf+UWX3P\nqFDpUjF5cTWCyQNrryXJqcyL0abG4Wap8AxyQFTFGlqu3Pf6KEaLn++8pKszcc2ekdn0DBRFQpVG\n0Khktda+jX5HWt/Lqfzd4uoIh0/lOQ7TDXz5TaHwf3T0DG1fNn873cR1LFWZUJcQTkX3oFE1yS+7\n2OrJsxxnOebP+NnOBspKXuSgw0rU0xOgeQ8AEMUZLsYSVhx9MkHrbeklUOECqkE28ancc66XcENi\nBTZaOHosCczJ+AglmFRliBqnGvy+PPM8CeEwvpiZ12hfEL4/aGFMSP75sazPxXiM7piHcFajHwrA\n67w4wOTs/wIAfPOtn8b4IcO078phsjj7BBP2vOztbcEuJYwNi2NMKULbaQL+HvHWrzi+SPjwiwCe\n13V9Vdd1DuB/AvBNAB2GEwCwDeDkC3zHzbgZN+PPeHyRkuQLAD+llPIg4cNfAfBdAL8L4K8B+DW8\nohS9MipYwwRZ5cLqi7UKD2O0tiVpFx5P0fmJPylVujvi+g7HcuI639wBmAAz6hwGm1pau2vIKEKS\nBCXOTXHd9dssJ1oGGgaFYcIE7R0JJZI6wpJIyIOzEzh3xEpfUNn5g+gCI5JyqraBnPJoLQ9IqP/o\n7fuoVkIkdOs6Fza0NTbwXB/ieCb3FF1corviYYhJpmKZABNOo+EaDOpBpEmNy0hYqcP8HL8ey/3V\nlJKrc+CaZ/L/MO2hKkhdpgHvkPz0Y+Nj/EtUEXFJ3Lq1N0LeY0ItMtGbkK26vAZZzBD012AZck/6\nlqzbVZQiYcg0HS/Q7YiVby1jLFZiNypB6MjaLvgMfuvkD3H4Qu7ja18bINyQdcnsGCbLq1Wnj/yx\nfIbKbJgfXsBll6hm1ejsyrPcnM3g9Bh2rLtoKbI5M7nqbH8di6bcSPThBOFH7wEA9jfXsUVNz1p5\n0Obi5mtkYj5+/hxPVh7k0adwiEnR8xoam8aYZ8SVFsBPxCMYeQ4uStkvi7DEmKQn1sSGT0GgvTdl\nrdLvTPGCzW+N+AI5DXs1j6GT7GXaP0WfJdXvsovyW0dHL3U91h/+LC62ZG3jjy5wfHwgz/JOG2eF\nrOerji+SU/i2Uup/BPA9CAXg9yHhwP8O4NeUUv8Jf/ff/shrlSKo2hwuYXCzjpo5UpC2vduA4clK\nOfMx6D1ijfFt6fsoGRvHqoEGGZR0p4WaPIBzc4l18iqSDR6hleGK4cpGN0K9+odFAIOAnN2WQs4d\n2WLsmJvGS6y+Wz9E3hI3OExasD1CqeM2akrUg1BVe81ERlWgqjpDSYGb0hkjKsRltIjHaBQ51Abb\nqI0+xjNxW2eagTARt3M6rnDMSooii/DbJnBnxTT9z3v4z39NXlitKJAs5drVNMIHobxMDKERpg5s\nJdf1bQPqNlmn309eZvgfxUuAvQ3uhfyhZYTQKaaiejouCNFN/QCaKa703bZCHEgO4ukRY/U4wv1t\nmfNOdwujpoRYF8pC7bD/IM6gcaNPQ7nWYBihxZ4SzThCQKHf3e0OlqzfB88OsSSXoh+w38GMELP3\n5fz6KVxT9kJjYMPqshdBq7Ew5OBcMK9RQ8Fjb8d1GIMFGnhWDpcwbq1JbdMwwaIla5U22zDIlZlU\nS1wQlGfPLFhvMs+l5O/3H/gwS1bBNhtoOnJYFMUFmqSB7/QtHFIE6fhcYN55mmPUkr+L61McXMla\nBBcXcCwC/OYFsoXsnVcdX1SK/m8D+Nv/2K+fAfjJL3Ldm3Ezbsaf31Ar3b4/z7G5uVv/27/8H6Hx\ntRY6HuXTGj4+KSXrv6ffwZuEydp5C+8+E5GUj5j0KYJ3EB+Ku9u908DahqARe64Lj1DTT7NzFI64\nnW+xC29j+8fRXxe3tqFZqCxyJqYFDgiV9q0GQlusXD+Q0/4Hv/8B2tuk6Hr8ET4lu+6nJx/CXsh3\nD9wYp3NJpzw7Ehd4OgWa9Fb8bhNGJq5oUlvIWHUIa7EupSoBKmZv6hYGO2IptzaG2HtDkn3rPQtW\nU35/QiKQLz28D3ddLFA/9XHi/5zcX1fDOanbjoMKT2e/BwBwI0EYmsH3MD2ROUyOv4WTA7F+PSxe\n1tNHrglSK6AiOc14/gIv6Br7noa1ITUN7v44vHOx/ufTGtckrQljNhR1TLTvvQ0AuPWwi4eeJCLt\n7a8g/LJ8xs8MaEz8fYekLzuOB5eYjosr4L3/+/dljb9fwmkK7iF/4mKwReGfWpKI3e4E1iXDNecS\nTV322e3tCj7ndJRfYsbChm2JR1PMXJzMJCm5OfwSXEoLDhMPe1t/WdboF6Uq1Te34NGb/J/Hn2Cj\nlnt6q/4IRSXh1sH5J0gz2Ye3unJPXtGBTotvGxriCRvsqgQXpeytRpwjXcp+MggfP7s6wfOnsq4X\nF+eIOfcgT5AQ95DaNe7uSij13//GP3ynruuv4UeM1wLmrFDAqKd4+v2HuMfsu/+VDrZJX93DOaJN\nebh5PENzSkaiQ3mJl+MevC7BP/MY5H6F3XKQDWVxGi8SnH8gh8n7Q/Yc/FSMZvXjAIDU2IPN1ml4\nBvqX8h2R68EgOUnQkQs7kxc4GMtDbEUGCjIWpc8LFInEb/n2XXinPMiIwnIihTsDuW7tuLBMtirD\nBIsWWBRs/w0qBIQiD0wHek0h2ThB9ceyERZ7PgxTSll3bXGXl49LeCQzLdcKWJGs59PlCE5IFao2\nUH0oh2EZSMb+IN/A/NkfAQCSg2MsxxTNdUo019hXUupYJux9cOUA+aluB02KzGgnGXLO86oMYLIE\nOl24qHjI2lQ/qooay0QO0FwZmHxFrtG9SvHx+3IIdTs5brG1Ham80H5R448SCccevxfi+n+VtU+e\nHCCG3Ku9H8O+YkmZupS9eBf5hoSVjbEFa87+Cc+H2iFxzLGGJvtKLpgnqbwJ3iAVCXYAACAASURB\nVGCVYfE0QTqW+V93DXzptqzBi0M5WPveArgtc9ueNdG5PgAAfOA9wPgdObCaKkY5Z+Xqjvx98+0B\nuuzKNWIHxkLWytjqwn/G8PD4Amdsqe5uyz1NEwNr7K5dpHM4HTlA8+sr9EgvAHOKnHT8rzpuuiRv\nxs24GZ8Zr4WnUGYh5offRr3Vxv2hgDUenWb4KtWMWz0NMfn1lvkSmIklvO3IyWntD6FtspMtWKCh\nkxuvbWEaEB68WOJTJlx0/v9ZpqM9ETfzKz/7N9DsibkOywI9AovaZgGNEtNPFjzhz4/RbYoL2Klb\n8K/F3ftK7uGaVMpnz59hSlxEyfncqwzoENd+YHbQBiHDboWBt6qLSxigJfWfUMRbJiKKl9SYwaZs\n+xocTJj5ylzxStreMTb3pB5/HnfBr8O+XUHRRQ2OQnxzKH/34lz+7snJFa4/EGs2i+bw2BgEwweb\n81AUCiMyAxukwHdLDzsDoR7PZzG+R7h1EcbwCfO2BxqsBiXsU7knVcewTKmlV8UaciYiHznnmHUk\nPPq5fRe5knn+1aZ4DItK5gEAJ59MUQe/BQBIo+fojwS/sdlZxy1SJb/9QCpVA28NpSvffWkAFkEg\no0YTNmHzecfFFYU4u6l4XrPpFEEhe6TbP8WtpoQEzxIdwVg4ENw7IqF3Z2eEZ1N5pd6eW5im4pmE\nboEXxE3sFxfo70no8uV9eU7WsI0G8Qa65aEmCVCmByhZgcudPuwJu3VNSWb2ihANepvaXokrwvjN\neYKQzYJTZxejz2n7X4tDIStsHE3u4Bf/ko+pL5tudHmM/CvyAPq+Bt2kuk+WY3BXNo29S3adHl7q\nNo6v5uiSZhtdoJPRXde+Ds+VUs4n5+y4nE/xLZYF70dzpNQX1GMXeVdeoA5qxE3ZhNsEAj3t7WOz\nJ5tUL3XcHsvv/9jqASRR6VoOPLIb/Ywmrnr1ZgM7dGetdg863cSq14VH3cyyLQ9eyxR8uuIXMWCn\nco1PszG6Q3nTZ2aNnNn3EwJl9m+3EA1kbp20xGOSh+61TJQEe93yL3FAjsn9LZl7VlVoBQSixhuw\niNLcazdRgOxOQYmMepvRkoKw202s1dysm1d4UMmheGUEmJqySS2tREn6cYe/m0Q76LLakeMAxomA\nt56Y2/jmCgxmK2xzP088+UFFFUJqgTaePUHYlhdr516OtbckHPnJjSGGe1LN2eIL3xppqNnubby5\nA5vl2aypgSBMxK0hRuwaLUOyehkepgsJXe9uFUh8uf+d1MbpQnIi/8qu7JvQNGBlsrc+HrSx70o4\nsx6c45s7JBu238ab7GbUd8m7mZiIeX9+XKPqMXSbW0g7cjiZ+RgdEr2al7L20chE1pHndLty0VrK\nuj3ONzGzpBTtRwvUzp8deOlm3Iyb8f/D8Vp4CsrMoW2cobbeQHMp7qxy1tCi+IpXKWDV9KXaMOj6\nUnYSmqFg6mTn9ZbQCCBxbANmTyxJ1Q3R1iSp2FgTC3X87Bnei8Wy/dHiHF8fS314s9FDRl4DQwcc\nUpo5rpy4o8ECLUJxL84nOC9kcufOBRqEq1bTJTZHzLTfFqv11Z0hDIseSKeJ+VLcQKtOYEHCkaYv\nliH0QpBNHGtBDiOQOZjlABkJZcqywC61Kad0je3EghcxDY278LlWXsdEwF4DU/XgOuy3d8TltvwA\n3xyJwM3luok3QlncWNfhEq78aB5Bm4jLr5rkDahqTFklKXo60pgUdMEEU/Yt2JmBTVus+CaFeOpu\nDbWU7zh7uoR3R55Z/MBGZ13Wvg8FIojxB1wLJ67xwW8KND04+xD2hlj8n7j9C/jqT4k3dafZwJIJ\n20YlLny78mF0mGBe1CgbcuGB6WBgiYW9bkfwMvl5wi7D9drEwZZk/VVmokMvVNkDFD8me87x5VpV\nnqIoyMQcv0DzVJ7v0fVjOFT7Gt110WyQw6IgzkalSEN6t5UGcynPzHBs1OSRyCca5uxHyekVTqsa\nFXll5vBREagXts6R0ns9GVdor90kGm/GzbgZX2C8Fp4CCgP1dQeLkxRbGxJz7m+34DMmM7QWVLiy\nfm207ZXFk5NfLReoGIfadQzNE6ukhQFAJKSdztDsimXyybvvjXq4fOdDAMDx776Lr3TYzej/DOqC\nffWuB510WytSUn1moPLFInTMDE0qFGvvJyCIDW8YGjYHYh0ebohFaHZcuNRwrK0UnZBUcVYKDXJ/\nmUstsYUO3ZHvs32FvE9k21GGMWvXblIiHDIuX8p8lmEOg7Rx/WaAnB15ml2iRdLV2m2iYpk05Pft\nJTa0vng0t5tjLMlv0AwXWDTFe7mdn2OppDu0chkj6x10fXke0bSNiihFc1Zi/pQsz6mH4e0VLFxy\nGaMsQpzL85jFSyQX4grMD32c35N5fmNNYchE428VFKF5t0TxHWo5XO1iwxJKt3vfvIU7zKW0shIl\nS8Omy1pvHsLOZI0aeYHSYjcjKtRkTnKzHBGRjl0SzZ6vJei8kOvmpguXTFZd18KzM1mviB21WhWj\nr4hcnL/AybHE9dazBJ078tmRFSEjq7SXyhwNZwMhOzFLuNCocWI3W0BOacGhQutQ9nJIVu5mlGK2\n4rVYnL5E/Y7W+kim8kxOFykWY7pZrzhei0PBMHKMBmOMj2042+wBSJ9APyeXna9g9cVVy+czWJW8\nCBXFPjW3gWImbqJd1QhTuuWuhpzuozatkTEj60NeeP/g+KVo7O/kE9x6LiHB+l6Gts4W4byE2ZRl\nSsl92LFCdOlkzTyFKWGnXpYg4PX6X9nA3ohw41tk8u3cxkuOFaOEcgkwSV0oCqNki9XcE5QahUur\nFmpe19NKGGzJ1a0CFTk/fG6e2TzG2o4ciolzgaHPVt8kh88NH0VTVEqy/SFd3O6tFAUrNT3LRYuU\n6mbZxoqjwzK3MU2Z4WY7dVVW0FYCulaF0UIOkMdJhXAk859VBTRqIt7akAN0ee7iqSvf3Rr0EXjy\nLO+9WUKRpNCvFVYLNkjlZfw/Jhcw7/+xXPfFt7F9R75vmh7Cm8phXzgWNpWEKVeBrIvTayEijZ+X\n1ziZs5/BAFDJPaGKURFQZjEp6y109NmMXmUxvPUN3tME97bZ5XgoB8juyMM8lkpF+v67OD36FADw\n1R+7D5fMz63iFuqQrebUIC2rKxikdjsYz7F/l8Q3bgbPpL5nocHZZW8KSW8QAOFc5t43FBQFi8sL\nHZ9G8vzazRHm17I/X3XchA8342bcjM+M18JTUCVgz2tsrNXQPCpJqwVCcgS4WgP1ipB2lmJOoguH\nv8yrHCXRj2W7hhWxQcUCqhUZSBaiweRZLRUh2AsbY3obnXmA4EIam46+9wnUPycfGjkPACYaTSZy\njLt78NmABHsfbvRtAMDFIoBFOOX2WhfDu5K4UwxFVF3IzQJQgYe6QTouPUBhMCQKZI5FUULTWCLU\nAih2gdmWhj7RaoFWIWUYoFlitczBABnRenoye1necswCYHONXp/gmoSmFpOWtmHDBiXgSw26zgVX\nIssHAPrQRzMiSzIxFjUqhKG4vh4iRE35fb/xBjaX7wMA0jRFgx2jccLssBG/JDYdX8wwpL7ioDTx\nZXZ8VhrAqAHffiLPd/YP3kf4mHogYYyjQ/nubXOCP6QFfcMysBzJPDuReJuhGaONFSlrgo7BdXMq\nZNwDpZnACWWNKNGJ+miChG2iTbeNspTP2rWNZip7tb0uv1uoCtcHggr94NEjNFdCPVULw0zW5SqY\ngb1fsEnukpzOEDIh3ECBOl5RaWvITZYhdRNqIPPXDqkBYvioUjbgOToUkb61bsNtkcvhcowi/wvI\n5lyjQlxHyGJAY9tzWjlwLHYUziLkiWziSjORrcRCYjL7JFPUBPSoZQMuIbHJ7Bo1X+RlUMO8Ztsv\n239xV4N/IK790dExlv+L5Bfyf+cWOtdStVj3apQr6llDNvFGfwgT4kZePv8BrhgbxnGFt7clrvOr\nDoYUUNW5scsoR16s3O8a2Ywvm64hJ1ZdkS25UAoGRV/SqkJNHUzUFqyKh1OuQ3lsDY8kXm5PIuC+\nrEtmrEFnzGnqQDZjx2FSYpLxZWJeRpsv0WRbd5EVsClqkzcC2DbfkEKDZlCsVNH91irYfDmyvIOe\nywP0gYegFOzB8vgJFN1jnWK8odvGbcjC5r0EDis15oaFHte7qoTOCwC+/UzyKPn3nqDEbwMA7LdH\n2LsjwKkt24ZWiut+nltonJFKn9yIyCMkbe6LVEOPWIe0ykHoBEpde8nDWfE5WbaDkgd9QysQmSvQ\nlovAlLVvsVowOT/H757J/g3NEPcNgT/b4xr+19mqnrRhMD0WEYRUjK4QXcgBEY8VagoB160OigvS\nA1wXqLc5N4ZXmV0guiRArlVi0JID5MSJ4CY8WLQI8ap094rjJny4GTfjZnxmvB6eQq1QpibKNIDD\nZBdcB7pGlF+j9ycIs6qDWqO0HEON4CSAmVCzoDVFQu0I7WoC2LSUVYl4SFn2QKzAonkX61tS8946\nthEnYlU+/tYBvvlArE6t7UFj+KCYcIoPSlgPxVK6GOB2QzLLnzRP0KXqdMfIUaQSuhSaYAHKaYXa\nEIun9e6gLIjSsxUUXXCdVjnTEsR0Ucr5CTKXytVxiJRCJla1RMAQKqaeRD7zoabigTjbE1xfUcG5\n04Sm5L5V3EWDiscVk6HluEAarXzmGaa0/lqWwmS4Uqg/4X/UKUmvLCCn7kVQ10giPr8SSKgDWek6\nLPF4QVFmWO0MGjU3mlcu7CXDqhmwosIsPaBFEhj99wmJ9j9Fl3Jz3xg7+ObXBEPQW/sJlKlUqxpB\nA4tEPl/avM+kQpgxQatXuGaitJkCKUNBYzFFbklFqCbXRa18tMkVGqUKVsEwrW9heSLP8qCQZHZu\njWETp9Irgd498RotL0B0SEnCxlPsrguzQBDKHP0nNtIeJeX7DRQl99nzDHlbPIG6uYb8Qubkkmyl\nWuYot1lFWUbIKZG3EdW4pqp4I9WQxp+vE/q1OBSAElBzzFMHaUwGmtCFQV2+um7AoljnLD5HNpE4\nalpKVrUMCkSZ/K6teUiWsmg9K0KHPQotu0KkyYulV7J5POMKaYvdcrfWMaKkutrsw2EeoCwzaKT4\nLunOtzohmo03AQDZ5hm8Lbnuz+9qsCgkOnx4H4YhDDt6k2pDug7LII+tVaCxYt7WPCiNfRAteSPc\naIyMHYllPsCyJEmtZwLE58PvomR1wWen5hQTkGMG9RVQbst/lDMbbpcir60YOz6FWzN5S/2hj/Mz\n0qhbVxgzq93VPYCdlo0WoDSGR5xPFRsoeEAkyxmuSWQyDUOc072exxHWl7JhG0Ni8s/nOGQPy9Lt\nvHTbH7RrXJCj3iwUPmXVwe1I6TE4+kdobEmo8XQ2wu4P5BB+ZoWwGX8P1pvwohXHJis4uoWWQ2Oh\nKjRY2bEH/suDrtILaLEcoitIsWubsEqGmIslcl2ez/nRGJ5PuDzJY/PsE1xRp1SrQlx8IL0R4eYe\nnidCsPvA2kKg/6rcX8gczhAIn8vPM6uExxxO7GY4YW9LkV3gzlDm0Srl4LqoLlFeyDuQ2CZu+bJW\nVZCi4cv78uD+XfzRux/g84yb8OFm3Iyb8ZnxWngKWq3gVBq2hjasdbGYVlEiWKmaJAFqTnXxaIyP\nxgIKyeZiBSe2+bKhyNw0sd0gV4A/wEoZJW410SI9WNonO/OnS4xJILIzdRDcFuuZvLBwrOTadzQN\nitfQmLTMNwYvpeLczdvo/4Ykvv5gobDzhsz/NJ7BmotVNTrsfLRGsFty8rtxBZ24Ad3UodiMhYTh\nQGqhJqw12rSRPqdeJQokhMRWnQjGORus1sVCx14Lis1HlRnBoJdjeAZ0XyxN4+AKj+hN6SuKNlvH\n1ZF4CpfaHMmC4KS2jz6JQ1q5DTZaQmcSWCsyREwYxkgRUfZ8MsuRsdZvmBYUYdh6JRdI6jn0ijDo\nfIk+wUIblY4uTfdC1diay3NNH8k8bb9Ck4Itg3KB7x/JXmiZNtbZ+GOWW0gGcn99TeKWsgxwdCJk\nKWfLAvf78lmtvYlmIFY10TU0MrlvfY8UehchWk35ecdSyNjtuAwzXNMbKYJHAIBQB9apbP1ekCOj\nOvpmdInT5zLP7y4/QoOU1yUJgG7fsaGNJCm5013Hp+SJfPztD/DuWH5Weo5terrbPe5jW0PPZCet\nb2L2qfz7fqNE1xNP7+ywRM/7fCJtr8WhoOtAxzMwbFswGSaESY7ltbit4UWCoHcAALhSGcJVbEzs\n+NyYwtugKKnZgG4wy+xVCCt2Nr4zxfGBuHAGAePvTp9jcSwPqD1qwvwBpdr/9Qod6kFUOZCz+lhS\nS6DVXofyJSxZfvg7+M2AkuLPr/GcxC+LZxFGAwJn2rKx/cYzNHsCLNrd3kabOHtvuUBEEtCK8eLx\nd9/DfEbpdL1Cn1L0vZ6FmmSk1UUJsyeHyQVRa3prjPpNQR16va8CLeo7+DZqSpmHjQrnhcTD9lg2\nTNh/joRchUgdVNdyH/NoAp2ls3ruwSLarqCQrJ9qOLySZ3N2NMZsTg1Gs0DB3EevWb4EOHXJqzlZ\nTJGzJX0a57DZGl01NXQopruIavzeisDGeAoAWPf/MgZ3ZF1/eu0uxilDyPD0JQvV1raN2hAgWoPg\npxfTU3xyxnleTrE4pgJUPsHDuxIKWqUJgzka7YrVEq9CwtBub93HMXMxTtfDZSLraTYYUh1+hCc8\nNDYdE3e9r8sa92f4uV+QatYymgPfE4Nz1ZK5P7zdQUii2SIwcMQOx+HYxR2ul4sebt2XOf/029I9\nHJynmHwsDFEn8RJNVpQWlo8Ow4fWZgxrvpJhebVxEz7cjJtxMz4zXg9PQRlomR0Yxga6JmnF3BKZ\nJidqqts4ei6WS88M1JDfX/Pv1wsPQ7rftzYAn5wE3voIFa/nP32KJUExpy/EGt8ajBC/Jdc9PteR\nUpZ99EwBXyc0VN0GSmbac9KoX0aoBmK5zMDAV9bk5A43lvD5Wafdwf5dmceYNPLhIoYdyPdNXlzC\n36fuZLcJFUtSsnbEEqntXTwthfRk8fEUPcJdU1fHwiHj88yE0SCAK5DzPZk34OyKdVRr58BMuAAK\n2DCY1UY9RCMVT2fakrV8//0aFuHhnnGMBUV0NqoGKk2+wxnGsIiv9z1Zw9hQaLHz87KRYkS+c3vg\nok/uiGBhoD2Uz0TMp/Z8Gz65HvLlHBol3pNFgZR4ENus8ZOcx/fzHwMA3Pm5Nhq2eB0baxZ2SM+O\ndA06KeVd1UTHlvuKSKUWaPvodBiaXc3RphcTRCZmR+KlDbaBhArTXsJkrtZCj6ziRupgu5LnE7U1\npEfiFeUzseb3Nr+EVi4eQavzEQYtwbLU9jr2t2QfNloLqLeohcmMcHUaoiCOI+orXF1IMtq97+E+\nWZ59Zxc1ARzFpXhYXSyBXfb2THWk5CK5l1QIDfGaeoWGNd7rq44bT+Fm3Iyb8ZnxIz0FpdTfAfAv\nA7is6/ot/q4H4NcB7AM4APDX67qeKqUUgP8SojwdAfg367r+3o+chFZj0CjQdyvoPJWdVon1uViB\ni1mMKhQr9r3DY5yTLyAjkeWwbeJrQ4EUv6Hdg+2KdTQTGwl1GE7tx/gwplhVKKi6ICtRa7IE7+sG\nvkadw/jOAK5LLYA6g8uadkpIsLIi6MW+XPfRB/iUVGkbVYp3F/Lzi0+W+PhQYsNyn/mJJMLP3BaU\nX8coEU7F0tieA0WE4HImHsjBxRjf/wNJjE0xw8mRxIvr1104FklT+yOkLNmZnqzJXDNQkEW4iF1o\nLcaTeQWNJVDHz/HWvpjsD5/K33XdCN/59EDuv85hUvfC7QNtXSyNv+HBJraCHKmotQg5NRUz5Gg5\nct2u3caDLbF4y20To5as10wXD+zaNvF4Jl5Td2ChyMSbmhglnhKd+kApaIT//rX/QPQQp0cFbmdS\n03/nLMDX2fB2nLvYOSb13raOgqhWoy9x+Cg9Q74he2ut3MJyueqSjAFP9pZKbBQ55Qe3mMBtOnAI\nbU41CwrUmnxygiAlFiKQfYO9Dbx5X/bNbvBjeHEif3fw8SN897dlzqNhhjVf6Nv6Ldl7VrcLkyXe\n2mliQO2MyCjQYm7kxdESB+/L8wkNQp9DBZtiQD97r4Etm8xSmg6X3aFvbvdw+FQas151vEr48N8B\n+K8A/N0f+t3fAvAP67r+FaXU3+J//8cA/gUAb/B/34BI0H/jR32BUjpMqwnL9KGIG3CnKfJtUpw7\nPvw7dJl6XVxM5WFccvZbzQbukX6rse3BJVV7ncTIPpCfh3qOB2zVzb8kCzaZXuHjx/JS7G0PMCPt\nWP6hhsOfl4Xfqmrk7IdOF7LpHMdGdUna951b+PGjd2Q+a8bLB5MZLXSZ4e6wH2B5q4sW8fBzFcEK\n5QVp1A0YrP9nS2IJEOHBvmzoRd6DZ8umGZrAcFfc0lwzEc7kMLmYM4k4aCGAMDzbSQt298uyxlaG\nmgeuPh4jyCVZuwXiDd6+C6Ok7mYcY6HLdTc8H40OD2rbgiVRB3JCxqOLHE2K+O77A9gJhXO6NjJL\n7rvXcVAUsnbhtRwqR5mBDZtchEaBJhW5prMKPFdQmsBXmeT9bYaHdzBFQiDXLk5xxArNZu4jGcm1\n7cpDQQbqJitH9nCAmlWb9g6QskpSFx5cguBSr8Qa9T8Vr4Wl/ZL6v2FpSHVJUq91dSyeyDXWLVnL\njcE6bq0EitYDuAHJWfwmfPInLr0lRkP2WqQEqumAwVPWMmpYTEBvmD2MiIHp+gEaU1mYE0oKGJgh\nIcFL4LtoeRL+OlkJ15f98OFlBcv9ZyxFX9f17wGY/GO//iWIzDzwWbn5XwLwd2sZfwTRldz4XDO6\nGTfjZvy5jj9tonGtruuVQN05QC4xkZ0/+qHPraTo/19idj8sRT9oeihViWxZopyJRbF1Czov27rV\nRYcovtHPrmN8KW5p3RKL302W6FPwokw91LTouTmGztJZdtjGT3xJrHFvS/6uyAx8yxXdg2dlhvNU\noM2z5rfw4vv7AIA3VISky2Qem2j2nQ6qPnvho++ip8mJf9XfesmSvPPlDXSIC7hmQ5QWL1ErNj7N\nQ+RLOfmjx3NoG2Jh25Qyr/23sLMrzT61XaLHWvky1lHNJPwp6kuYnri7z8jDMBufYbyUBF7LbaBm\nrdyJK8Qzub9lEmCWirUadSXUGpYTWA+kM/QyjKHHpDGzFHYIvVSNLoyAuAdaR29dw7yUuW30KviU\nW7PmNSISmYQnc8wyWed5Sdn2qEJvW757pi5hDsV2HJoKt6gpkaXAIZGHTxn7bPVdpOHHAADd2oS2\nkPub1ilusTS43m6h0ReraRL+PZtN0dwVt0MlPbQm4hGUaoJWlyGD6cLT5Zk55I2wLQMRa9K+GSJj\n92hnZxfqU0LIx8QNXF1AG0rJ2Vlr4M2vC7Fr73YDMRuzFmkGmw1Yq+Ti0EqQVxImVFGJnFgJ30vR\nplp3W9+A2TgAANzZlX1TTEdQtazP0AV6DfGm0nQCg+znLf8YDfvzlSS/cPWhrutaKfX5wNX4rBT9\nrdGgzlMfizxHNCM4vtuDRaKPKo9REWKspw0MdPnMCgbcafowuLnV1RQJyQ3jC+0lw0704SlUTzaW\n1yG33psd/KVQ3Ou7iwv8+nfkIY3fu0a487vyHfUtsEETEZV50tM5jA5BLp4JEHbrXQBdHlSNqQaH\ndO1tMjehsqBTrzJqNaFRB7KsC6iFwGOLTDZlZ13B7EouwpjNoHnyoptZAqzJw4+PF9AJhromEKY6\nXyJ/JG7raf0RNtuyqeaGBzvnC1l20SaMe9lg+DCxVoTz2DWCl8xLO2YNe1NwD05dQLF7MivFeQwS\nDcm13GcVt9AiSMna8ZBRDMatTZyQ7j7lc9SaDXQI2NlNPMwZjhw/CXHAEKS3D9wlG/OxReZjt8Di\ngjmayzmcUFxpzzeR56yI2D7azHOs+gPr0kHXkj2iJeZLVqtMS6Hbsp51HEAfsepAyvXC16BHDHPi\nDEYtP9eWgZT+83LB7sWgiznZwzezDCpjBcC7g1jJ/dvRd5BXMv+Vi5837sCfSu4rzHLkPHjrIAV6\ncpBrvS30ePhWrNpkywuYTXlOfTdFSpIV+7CN+ZWEkHrqYrNPYNwrjj9t9eFiFRbw/1fULicAdn7o\nczdS9DfjZvwFG39aT+HvQ2TmfwWflZv/+wD+PaXUr0ESjPMfCjP+qUOhgFmPkYY6FjN2sgUl7C02\nASVb0F3WaN0KviGntUH0o9V9A6pkRiqfYXIurq/jlZg/oY5jP0dVE1ZrSvhhegqbbTldn/UidP+A\ncN2+hf1Ncf3Mjo0GLfqzc0lKbhTPoUqxwJq5QOHI920OQ7g6eQBRATy5rUhO9lrP4FGCzlABSkJR\nqxmgfLHTivyTvmfCqsWimKMG6g5FVEINkSH3kQctxEuxlGu2WLh3tSUuz8RC1XGJtbukqVsogIIx\nSbSAwRp5dsl/92oUDAma8wYsksEM/XU4nFsdhohpuR1NwqdpdoSAuJG+WcBtiFdhIIdPFuhZPYOz\nggQzqTfodJGxYrI0TVznshWn+RgfWfJ8f0JzsGLmfHsk/354FSOPJMn7zJrjF4iJnic2hmRGKbMC\nOqUB85Sw+eoc0VhcPrNVIYpX+g4dZJasYS/OEYzpfdKDQqjB5Loox4JicjQ4G8MlnVzEhGHkBSCp\nOBwrh07EprksUVIzxG70EYeyBmYia5jWCzhkD59rJhS9ivn8EgG9pvaiB8+QvZPb8vxL30UZyM9J\n5MEt5efCTKC3ZR+26hxHrPK86niVkuSvAvh5AAOl1DFEZfpXAPw9pdTfBHAI4K/z4/8AUo58AilJ\n/luvNg0FBQPNrgOH8EzDiJGQKMJSU+jUSjSWBQKCW9ozButbGRS1DxdlE6pmD4Ovwx1Qj3LehhGt\nYMfy78Z0H9ck0LjzqIu/4/whAKAz/BK235A4s2XqmLLzsVNK2DKuQzgz+SGZzgAAIABJREFUbjCv\nh95C4sFwegKdAqSJ6cA7k0NGIyDJcG3kfNnqS0DvUL6p20ZNkdYkks9apwuYfXEpK7MHHHCT6hOY\nC2LZGzUMknA0KdUO38W7hzK328Vz7K9gu+0auiY5Gk+b4mJJJzFZ8s/aqNlSrmneS6akXJUwpzLn\nwq6hs824Zj9E0+tjciHVoAApQo9dnucthJD1UosY5xSFzQnjrvMUxqU8j3mYQ+f3FU+BwSbpyQH8\nOKsEh+QcNPUCcS3zWVfXQEcO+P1ZDrAK4qfmy8PH4cs4a5bQSGK7nGQwqWnpDBzkXIvcKtFW8j2l\nz5br+RTQ5e+cRhs5X7y6LrBM5DB4wGpI89YmegPZN5WbwSjYDm67L1XE5vVtWL4wfJWNLteqB7Uj\ne7IxvYLNalWuNlEuuF9acxgG27oXJHqpdCQ1aQCMCNmcIkB6Do3rWRcavK3PFz78yEOhruu/8U/5\np7/yT/hsDeDf/VwzuBk342a8VuO1gDnXSiE1DBimjlrnqV24qAnMqJIUQSnWyKxMgEQkMd16bTJF\nRurtd/63D3A1lky3t+Zil57H4TzHdpO98M/ktB++cY0rNpFcl8d4KyC3wsMu5sd01dwKMZtcVknL\n6wvA09mVWV4iMiSlMolrDKmIXKkQuiOWWVtVH1QTJcVE7D0fyOQahtNGRlit7YvlVlYTeUpJt8UB\nDHY+1vMWFDkD42WMlKHU9UKitGYEnFridVxXW7hmkrPja1CQv9O7LWhXci92IlaurmP0KCxTphUU\n1zPVpwAz3OkiwUqLXvXEQuV2Cp3JLk2vEK7Yqs0Ql1cyj8mLU0xnpHv/ivx7GVVYMGu/sI4wGFBV\n3LRQ7YnF264UYhKxzMmFALiYkd9u3RoCK3GZoMKczM1eo4JGyngifxGMA1gQLy4vbJQg9HeeoNFg\nk5NroS7le9JI1s3RPEwqUqLNAiypbl45behrUu3IB6ySVS6MesWvaEOrKJJTngBNeqdxhvIJ72WL\nDVWDGkoR3zHqY3Akz9J1ZjBYXTJSD6BX0BjIdaO5DaOUNYziJRx6N8u0gqlTcKZZoFH9BeySrKoa\naVIiXFZYb/FFMDJUZO1MrBLqigdAs4GKIKSUpBr+6SWmJFNRuYZqpWH4vEL+i7LZHloZYrIzZZrE\nkIm3gdYLucbFEwvb6xKi7JcjVIa47vOsjSqgKCwrB+8/PkBMzcE3G31ovrh1Sf0MQSBum6lvIqCY\nas68vu5nKCl1bjt9mOzRqDULTo8vpCnXsjGFyuTfk7NTFGxDzrIYJfsgFgsbJVu8oyHRbGMHDt/M\nJRaYXsq6TVWGjRWrS2lBryU7nQ4obDoHLFYnarNCzBx0EQIRXfFFOkPA56DGKwoloAgkXHGsXUQs\nKaduhRn1JudFjYDhww5x++M7FTTqVfpooUWgk3ZUwjyR7+5+SWGNJckL9m3kjgu3EqCa63rQpvIC\nlXEBjWHeOKuRROKi95QYAt9uwhuxXLic4Zot2VGWwqjl5XaCObQWX9iSoVS3g2bAqoZpILtmZSvP\noc7lMwYrFdaegSXLqU4CVLxGOR+iCqiPOX2MoJJ10U7lWsZmC1rGEpem0O6wOtHvoVoSvZsUMAkX\nKgvZp3WgvVTQMvQKCXNN5dxFmDJcq2v4zuerJ9z0PtyMm3EzPjNeD0+hLLCcX6Pt+UgzSdrpYQSL\nWd8wcVETaqoSD1abFGPMgOuDLrb+n/beNEayLLvv+923xYs9IiNyz6zM2np6nY1NasYakENSFkmR\nki3AMCgItjZAMiBDsmFA1oCf/EEwBBmyZUCWLZiyAEObLVE0MZAtUjOSrBlpFs7Wa3XXnpV7ZmTs\ny1uvP5wT2V30jKZ72NVdhuMAhYqM5d3l3XfvWf//hiYy/cEbHB7KTtrKzwjXJQGoeG2DI3XELGlq\n7HSaUdwRTWL/9ITR7ZsAdIu77KhT52IWsbIip3S3Lzv77Ud3eWlXHaI7HnFfNJe16yXoqae+FdPz\n5l5mxfA7dyhopWVU6+FO9DQKm9RV1WRZU5GNQ6qszHn1gvGBOu3iKkP1uKd1y1jBxNpD+f243mRn\nSbSm0yjg6FRqKdpunfWmzEtajqhWNO22o6QnVUOip7KdjRir2RHM4HQobR+enXGoWsGqIhib0GNt\nVU/5RoTvzrMdMjxPtKKeGaMQCWSrMt+bfpuuL1pDbWOdQl2xHAYTjuqq8+ceE9XGrxfl/PqK63Jt\nU9mijsq0WzL3p7ZA0RF13PNS2k1Rq72SJEVttoqXeJ1Db8ihws0VSy6e3p9iEdKZ5lHMqy8HFlfx\nO2ZRjAZJOD7pU3BEmzzXdRglIVbPWWMHl7ySWemIoc7nNIyYFRSyT7WKJJlCJH035QpVjfZMSymO\npgAN9kcwhwhUc9YrukQXClXvGAqa1xP5EQFaE+M2ODrQQpX3KAtNYSELWchj8nRoCsYh8kqkmQsK\nmJnNClirjrhKATRtkygjVQi1UMOJjufAmTgi0wIsafbbuFukeEf8ByfX1sk06v12R65bi5YZbsku\nujJ0qX5cYuw3ayuXseCC414iHbWUczBvVKi0RaMp7tyk+pZkdu95TYyGQB0zw1qt1FMOxyjw6Sth\niT/1L+3WcTQgmzNa78upk17JMJqinPhLpIrTEFTHFIvifBq7Pv2hnHIrGxq+zVa4f6RkKaFDV8O2\n8XrCWMlg/OOYWE/Ngp1DwuXkA+nbyOagJ83Azyil8t1SsUx5og7Dsry32WpgVqTtrBxxdqhUfk6R\nztwuP8/pxtJOcCbXHRV8msr1ENZc6nMshDOXTQUrPd62rKfqU9DQ5E7V45Vj5bjgkLuasrie9zEt\nuV7tfEg3lu+vaA5FvJRjzuUEvhjklOZwWqWcckf6ljYM5VTGZ5sK4ju1REX1u/hVYoVKy+MBNhft\ndE3DzBfVhOUzGf9sx6WkkHUuDdxzyVj1bZn6uvQtVKBV5zxmOtO5GkXETdU2zmvE6kwfezCNZCwV\nDYUGrRm5Oo+TksVONG+nkpFqFmY0ihlqxe97ladiU0iThJOjQ8oFn8RIabFfB9fIzfcKATOFeE/9\nKYlqQ0NNvHkQPiQ8lNXx9umMNYUZvz/+Hq2CqNLRv2zRUaKVSS43trj5PIU9cfAVt8v0FDp+WLJ0\n31LPcD1j5yVNXVXi2pVaQG1FFk1QhuCmqOV5t0bnoVx7Ou2xqoSnuT8nSzEMPEkganoNYn1oKsEy\noaIrGx2z7zWYHWuVXVCguCIbwaQHM81Fyf2I7SUFETHKg7nW4FFD0HsrZy1unQtL08bFBtet9N9f\nX8K5LX02CtgyHF3g6KaRTDJMpKqoGVFQ7s1ma42Vdbk/dUXSNsZcwuJ995W7xIE8QNaBQUdBVvyM\nR1buT2VVrtuMSsRW2Zs8h+Wa5Bt42wWSLd2QIsux2h37Vu7BVtWHmlxjdrzE4EIWQ3TSoNGW9VBd\nWmGkeIyDQzks7u0a2ordmWQRNleiobMh9bZEYIxTINdKw1xRnYNqkaluhMXQMKrLBlLJbrCViWnW\nUUKdV7/xPcIrL+k4alSKmoeSn1LclvXSf1DCXMi9nmjZez0Dq/DzWQwXD8V5GoR1HM3JiQcRgSa7\n4Wsew8yAJvDZbEJVN6GLaf+ScWxGTM15fwxRC/NhIQtZyGPyVGgKWBeT1HBthfRQnFq2UsdrKGpx\nai7DPra8jGba0vHllMjuz+hp7sJ6IaCgob7rDzz6kZy240f3sFqBeK7hrZXo21Q0DJnln6C5Lb8b\n3elyTxmKtysvEWg2nVfRk/98lRzldLiISVWdD4rLBBUFO7kfM5mfjjuK0+CMuThVdX08JmzK6dgd\nJ2SncoqNqnJClV/7HqUrWg1qXYxm6xWyKZOSpsx2YjLNoKv6yi/oL9OKJGTXqftEd+UU6w8Cko6a\nWPUdwjlwjGoavDnG1uRks9kJJwpu292bcJTJOPLZCQdW3q8N5f+6rYNqG2N8IlW7i8WcqeYNnJxa\n6qGmOd+Sa93bHXPDVcq6eEqWK8HJkUP5QFONb+aUFHh3XR2ArgfNc+nzQWeFs9ekcG1oErYD0WKu\nPLvLmjoge5tyP9z+EF9ZnsfxgI6SDmUnfYp1mbu2zVGlCKscnaNZTqoZjxdBEX+gxUi1Kpv5row1\nV9PtdMjRqqzZ7fMO+ZZqP4OAzMo9KdnXGWilbPaq0sO16qTTOQr4IeN9zZFo50RajVco1jBKShRV\nFBk7TsiVEd3vQrKu6diTKpmGpYtOQKxh6/cqT8WmYJyUQuUCLwkxFY0+9Ab46p21UQlXUZGM5+Er\nNHp7Kg+x/+k1uvdEnT2YJkR7gm1INeLgtqjrD40hP5GbUL4mi//+SY+3z2VjSbfh2Su/AIBXm5Fq\nTcFJ54BRQcqyTzW2na/fxYtkATrNLaZduYn1UolHvXcSaAZ9rXDraZqp9VnVjeX8bMBAbcTSLCLT\nXH1PQV+6G5YbI/XOX11mptdNfEN2rgQwS8tkoWyGvqYGZ2nO+k/IYrw4PCZRtN9oukNaekb7UWRJ\n7fnRsWxChefLnJ8pL2GWESr4yrWPbzEZy7Wn44zo6IF8X1NxS1FGqt73WTqgqNGVO/t7PNIciX4O\nridmXHBNNrEr7SLdqnzebu/QUTr45vMT+pqO3Ukq5JpiXFS0qbtnM5xPaRr0YEjxQub2e9/9NzSV\nTam25rFWkHkeK2ZkpRQyUMIZp+rjKaT89s2X8LWcu1QxKBYMnm4U40FMpKXHyWRM9Yq8P+1ZNl6S\nuV8zujanDe7eVp/JNGd4Jgdc9ZkqzpGC5+QVkjuy5sJPyuYWdQyeRte82YzSivKJDi7ING/HhGOW\ndxQeoC+/H+QJ7om0sby+Qa4IUXE2YjKT9RtU67jnCzTnhSxkIb8LeSo0BReXilOhuGGI1dNN+4Iz\nRVeuVib4vpwwJDMyIztssaX5w8USjZHshhezIdGynn7xKuGmqMxLexMyVe2mmsL7wBmRKl/C9eVV\nOh3RNsbBGc1E2t65meJooRBlOYnaZpPWtvbTBBTLEn2YVGKqerLdY8ZYgTqSh3Jd90qJMBRnX2Nn\nTFtzGvznZjSR94NNOWkblXX8pjIt52vMNCNwmtZwQ+lz33PI1Zaas0SH1SEVX+bnEysNbk/lFFu9\nVgD14FM8Iw5U5e3J57H1MArBlmQ+9bpoKW6zRrMpJ9BkUGFJU5rTfTmhh4UDPE2rm9gxd7QA67A7\n5lEq16vlAZlm7B2lWkmftvh4SebTmXQpl7T/hynPP6dwek5AU6MEjif37NOlS/JvSs+5HHc0irLj\n4Sud4O2H3+GiLfkJBeUjjdMSnqZMp+OElWVZT5VyDS/XbNEEiupInLkKlTYeMlWYumrFJVdE8FbD\n4cFIvrvRUo22X+KGEgqNgoCoJmp+OW5jXKnsjDOHhpo2qPbreQMipdXbKPVIIomCRdExeaS4D97Z\nJYSe9TXvpetjlsXsurABkWYxDsYzjoaamt8dEiqc3nsVY+37xkf5wOX7grS4oJFA/ZL851gINBO1\n+glZjOV9w8t/WFCDfqq1xL0d8ROsv9VirSAe4qNVWFf18dWJpPhmVz7NT2SyOM7sGo6v4cAjQ9fX\nCr5Zhb6aAY2Z3MRf+g//DOGaLNL7+29zqyM369v3fx3/0ScAaJrfZv8teSi6x8IgNBrWCQPFUhzO\ncDX91A/DS9s5VtDO8WxKphV7JkqxoYKnepbE11Dl6ZSulQ1noAhEbgYajcN/ziV65d2T+COKeec/\ne0m8+EO+W36n7mBaBqtZvPPlZn/Hb8wflpfXv3GNrCIP5LWVDYKmevA1MhK4LZ5flYet2r5Bp6s+\nnHFCNH4AQGeYU1LTM80USLYag0Y7CoUcT4FKGtUR8VQRokYnDIY650Y25OE0oHck4US33qSgpkQN\nn2/fkgfdr0ofP7lzjaoS6jheSsmT97eXizS0IrITDSnofXW1j0GSE2nFrJvN6Cjgyulxh2OrZeml\nZTYacu26ZlCdOQlWN41Bb4/+qdzrvdNDPGXLCooObUfG96u//i++Za19mR8iC/NhIQtZyGPyVJgP\nc/k88C/mf/zOA06PFgNo2J/WK7Lj/sHtjKMD+cK39y6Yfk8cbWX3gt//WdEEnvXuUf6SnDBzfMKv\nf+2cf4wcYUuby1zPFdLjmk9FqdGHZzluT6ap31Iq+/Mzbg8kWjB86DOuyvVG/9rFngk7cr+8xv6d\nLwNQVWZnGzjUinJCVWtlmgrrnpgKy+r5H+sRfHHU4fhMTgnrZngaay57Dp2u0sSXJ/yRqfzunyhf\n5edPLb+p2uLxG+8c558Evsv7F4dLOk6R36HTBcA8Cu6+6/N0BOM590xkmCuDP6Hf/SbwMX1910L8\na/J6diXDU5gzrz6iVRYNcD7+ipmS+mK69IZ9ZmMZ9/7be5fYlZNiiOa3kSmmQTLxLrEuGOUkiZz4\n06FhVtGK12lOJRU1dKDwdvHkmHpBaew6GbHmuvQ9mGWKt6kmqL/RoaZkOSW/QF2xJ8JiiVyBUxpe\nznig7OVqxrrLJXYChfgf1amrEzRolVnrCDy77RbY0II2b13+XxqO6WuUwSYthoFowMuBoXMm/ZwG\nERe65t6rLDSFhSxkIY/JU6EplGrwwmfg87/5Lk3hB0gReEFr1v+ClhD/s3KJ9QeiBazFO+hByqev\neAQDyVarLf8J4mdl9+z95lcAOOoe0YoVSPVkTOnHlcwzjZhqQcxKLWZJ6+WP1OE4Gp9SjmU3D9cr\n3Prnclq9NEu423sAwOnogEwLiXJFKXquGPLCpmgYwWqRSiq2XjsLcNSO7mlRz55b4tZMsvI644zY\nkdOomgasVGTcEydmM/40AD/7s5p+/JvQ63wTACeN2HxRTqCt1967pmCAOXpBxKWbAIN51ymi9jCG\nmjow08zSf7cqoQ4IBw9fU4Fv6JWfezHn7qtyUr7JOxl32aQHJbnG9aXPUWuJfyiYivqwUq1yrGm7\nne45B2/fktfHFwS52vslj4L2ulaV8VcKyxSsgvhmXQIFufDzIoFWgeNaqiUlGNIw44NozGgmvoOy\nN+aa4j4cJhHZA7lXsfoG2v5LtAvil1riglZDcxrCEpHidkS9IXUlqlmbs3lX6jS1GC1cbRG35Xrb\nNLGnCkM4dCgp23SmGkgcxDTKMq816gRW2n5khziapr9RX2fP/iAH0PeXp2NTGDl84itlvstwDn3B\nBnBPX/uAanD83NY76nOosfZfjCo0r8hQ/tVFzlWNBrw6ndKyEpsvDENajtzw3/+SPJhXL3K+dy5q\n3cpOh75yDabjCrkveQhr5ZjuukYoeso/GGyxui59uJg4XA8EcvxrpslK+20AGpWQiT7on6iIObP5\n/A43VjS9OA8xyhBUYkKs2BHTU/lN4/kiflnU2od3HDpjhQEreIR1+e5wUufrVzXR5bvS3x9v+fx8\n+j0AzmYW+7psZA/e5Rl0+P5+wvlisMAcwGtioK0RjlOgqruCooRxveCSapz/BTJe1wcTA3d0fwi8\nDIVo5F5L5rB1d5v/2pc3/3b2Fs+ryfOXU481JVTplyOaCqnu7kqP8iCmcabAOKMHnCmScpT0yLXG\nZCkNIBY1PgtVRQ8yKp4cHJlTw1EHXl7KKWrnho5LQUlpYt00SlGJ/kAiGUuNKYlyd7biEKu4oMsK\nABNVDVoeQ16tk5bUrLARVrE1esahUp1XxCpMny2SztmdvACjSUgrpyHTllTu+q0LEsXwcBWO7SSs\nUmrK+p2WU0qZmJKl4g3CqmxkMz9nJX5/tQ8L82EhC1nIY/JUaAoXGP4+DlvOFWa5hH8ekvPu6OqV\nmjhXrrSrnCzLXvabipa7NQl4qSpZXlvZmFRRbho3LYHu7OW1HmZXsBXG35ATuLg8xlfn4nFnTG1V\nTvFrGw36StMW+GVcrWxs1sUUqW+71BUt99GdPYbKL9hvfpuriBbiUGb3ijg5dz8hyNAf293A1dOl\nUKowizUen0+wWm9vluTEKI/PL0/Mk7Uu58eSb3Hkzsj6opZG6ZC9B6IVzVI5Gb5WCTjTkyT0U7Tg\nkIp9J8b7/bQEBwjmhajGXDJ0h6lLonNRxlDV0z/yZRynbnZZcRlXA46PdBwmJlV+xDQ1OKoev6pO\n13K1z59ZkxN2/7Uiz5Q0pd2zxK6c3OvbIZtFyXDtTeW642GPRw8lRLx/3mcWi1kRZIZEw7rDccpZ\nItpEYyb97E8SNrUgqlcds6YFVsk4oZhr9qMzxVPg3LE6ARuzCqeqsZXcgGKizmG/TKZVrFPNzai3\nyjQDWQtZNiGfKj1cHqP0j6zWimy1Rc1vleT/ZnuNNNGcjaCIp6ZpaaVEmIzmE06q2aLuksxrNDOk\nUy066wfcUG2ju/uISqRp7/GEWCHd3qs8FZtCbnOmdsJ9M7j0UrsuKGo5u0sh6y/IA3l9/QWqXYkh\nl9XwrfuW1VAe6EKxj7ssk+3lM5YTSQpKekf426IGlms6qfUq5luqipsJzl2x4SeV5mWegim1mSq4\nSmueLNU1xIqXV6u41DZksa3fiygrb99LwRKNZyQtdXNdcfZsgUDtZ+v4eFbj1U6BVA3bXKvequM+\nXllubCGskDXkGuVHe5zURDWurbiU31KwEIUbL5xNONRy4WiWkM1LoH/A3Hvz/A8ftgJZDlFuUHcH\nUeZQUcIZZ2ppNrWaT5XMSuyyonkTpWqNzkzV9ShlOlIkYiyZbjiZPqSF5REoR87Um3Fb3QqhX6cc\nyP1bLjUpbGoC20giC2e3MsbqqxkNptR0o0vCIrWCLIhS4GJirQ+ItNK2CH2di3aUUmlKGyGQBIqC\n3B+TKVlNQSHT4qWAskYiZnZCQTEqyxUH1/iXfQZYNgFea16jkuOMFa8z6xEoNHw5NDSLYgpVNAfD\nKTdwEjWc85RM8TpNuYLrKOhL6uNFch+yttaXnCZMFSm81IPhmty/Wloj0nqVZBThBu/Pp7AwHxay\nkIU8Jj8qFf1fAf4gEAN3gT9hre3pZ18A/hSiq/45a+0//aFtWIsTpVRdj5Ii67Y8w9VV2V3XPt6g\npcQZ2z/WYnOoNPHncrxccwakCri58Uyd2ZF8XqnP6K9IbXp98HEmPUmxXVZn0Gh4wHNFMR9eP+/h\n31Nv8L/T4JmqkGU/KoeUtdrP6sndqmQYBfdoV+BBVzIWV5wRmRbULP2+ZwiN7OzVkjrLAhffaB1/\nMKXoy1jjpICjdGNTPdOrhZBQTYlkmjANxTyYpG3MQBs/KTFSh9nb90VTOL1wcPTEzGcJWpBHwDup\nH76BqkYMXIU5a7ouv/iMOG7fNA59BUMpZgmlVenn1ZrP9VxOuYcz6efZapmWMmWXgxWqytz9pfv7\nGE1NtqnFJnLiGeUj8Hs+vVD5LH2PkqfaW9nFKidDOWywpEPt3NLIUXR8ifJd8lJSNTJHSUzJk376\nFClrSnOkfagVlyjrWKu2QqDjb5RK9CfK+BxbLvQGOop1Qe4y7Ytqn2ZjmpuyDkf5kKAw12plksNW\nnSUF1hl1Zlhfq2SLRXzVphqlEHSOPMVhwInx5zQcs5Cgqie7F1NWYhzCJlZh6hJFpTYlCz3NwCxL\nlAdgI4N7Uy0kW9qge6rppO9RflQq+t8CvmCtTY0xfxn4AvBfGmOeB34ZeAEJIPwzY8wz1tp/a66t\nBVKgn6cU9SZ+bHeLurICTWjTWpKHqdaC0jVJJU7vyUPesEv4WprrLZdo1XRSkzGrgZgdUTukrOrc\n+T1RRbMk5ItKeHd+NuFVVW3r33kL98efB2CnBl/ti1nxc4rc5H3286gJjO9uUUkkLfXW3RGffE4e\nLMddppSLyj9I5SZWkxmOhq+cWUhWlQXkEpHObaULtXVdD2LRr3MTE/bEZMgrlpIiUq1ueQQXCoai\nSNV5cEqiZcFk+WWAMALUrCdwHSoaRijWZeOpBB5Xf1ZMsOvZKrfvyxy5gyEvbojZtf1iyOxCQnJl\n5b70Gy1CT9rrJEv0taT6p29s809eewDAyKSX6c2xzttxmuMqxP14FhE6c2QlaJdlrGnRoZ/Khjw3\n53oPuiSafFbNDVONV5WrMUbVec/JmGqVZEkLJVw/x9cQab7kUlLo/8APWE5ko4tLPUq6CcUa9s6H\nM4zaObMg5+xCvlCvlCiq+bexJL8PK2ViLS3vF6cUFagm8Ax+rHDvYYLrKJPTPBR71iera3m+X2Pu\nuPESB1vV99MAq5il+YGW8NsQX9dC1HAw9+Th91yHRkNRpjo9YsUCfa/yI1HRW2t/01o7r8f8GsIZ\nCUJF//ettZG19j7CFPUTLGQhC/n/jHwQjsY/CfwDfb2JbBJzmVPR/1AxQME1vKxQU9efc9lYFWir\n2WhITeG6CnnO+kQTgG78OAB2dpfimgKB9JvvFJcE+wQ7qibfXmaoeAjxS5LwEvUfcu0NUR3finJS\ntQm+9akBv38kOATJpEGyKh7+r2pCy+fqy5fIuYPD7/CGxqDHXkojE295ttfB/4T0040Vji2doVo0\nhTDgMng/9ZjpaRvraTaOE3w9aSZRn5mCJGeJoTydewcDVtXz76uj0h1WKOgJlLgxCu0o86tth2V4\n5obS1fsypkZhjXV1uK2PV/mxT/6YzP3hIe0X5DvFtV3SbXGePqso0Wl5jD0TLW6YZWy9LOru1x98\nhZVzUeftkb1M355TsBVmEXPvYwio5o9TDYi0YCjqj0nVm3/WmTtoYxzVqophi2pbrrE9nZJp0lOR\nMg/GSkOnORQkM2xd5yqtUlRqe88Z4GmUp55vYRLRkE4mcy0NRrm058YZA1Ul8gjqLU12a2hUyoYU\n1FHudMGvjLW9GlWtZizMSpcRqFRxEbxmBRRf0RYd8p5GiZoeRlG+jee9w7w+L7pKK7iKKWmmDsWS\nIon3+hRVa+pkMR07z856b/K72hSMMb+CaP5/50f47Z8G/vT8b8eB3DUUGzKYnZufYlnxvYeeZdcX\n1ag4XcNRVTIoKbZeH9y+IiF5Fv/jMmnJ2zmeTnZW7VFty0OaHoi+u2kWAAAgAElEQVS6tzN6hmlF\nrnXqBWS+TPDWFw2FT0vq1M3rPwlvy8PbmfsWLgZEmrDiFupcrX0GgAf1N6lo9V0aNpkqGIpf07Bo\nsEaWianhTStkSpSeeYZEqxytGpfWy+koaEb/fMZEodOjix59JS/xwjH+uqjzzdti4/fKXYx6qQt4\nlzn+FlAXBzfCIjeGcr3nPiYPXa3t0dL58XtlqppMVWvVqFyRxKhCfxlHy4RnY+lbfavA4FweoGrZ\nYxjKAvz8tW36r4iJ8U0/5ZGdR3mkD3mWsazJWycptHTBe3lAWSnlvbTHvvbDyXXubYGyJhaVCwGb\ndc34s6uUSkrkWyuQ3BZf0ngsD57r+5SsrIVKYUKsuJJO7tBJlbRl0MEoLX1dN4cOMQUNX7qxjz8H\n07UzPEWLWqup+VBymGmVq1dNIJX++MkEo2FGv5YR1hp6Pa25KLTx3Pl9MqB+CccJsBp9yD2HfKA8\nnq6OMzslKcs4vJML8uqG3oeM0VQOMtNLyYbvD6PxR94UjDF/HHFA/qx9p/76PVPRW2v/JvA39Vof\nff32QhayEOBH3BSMMT8P/AXgp+wch13kN4C/a4z5q4ij8SbwjR96PcBYqBqXF+qSYNQoX2FpJieN\n2XVYSsRtUdpcIQhkZ45cOa1KqzVS3VGDkiWdKlZdMuPivgKd7MfspXL6uydy3VdfT/iakr68FiWk\nqlVMGx7jt3YB+MrDA3yr0FxD0Vb+o9BQsLLzV6sxnvIEfq5dIgtkD/STNq++9joA7VUxZ8JayrKi\nBcfVHp5iP2axj40UCk3h6ePuhIu+ov4edjhUp5ZfMoQ61tVRyFhLRiNNz52dJwSh9C0zEWhSlAuX\nVXv1Gzv8+yuK//gLzwLQukhoPas4grsl4qKaDFNDWlYE4+stMiUkccdSvZfadeo7chKNA7h5WzSF\nt95YwX9Zkoz8b3QIFHbe9ZRizTr057DvjsNU1ZhWkNO3ykF5ZkGda2f78nsbRPzYTUn9dQp1ylbW\nQO4VKSj13MTktBTxeahUeG4cw0DaDgtNypr+7IwczCWTtCXIVWML9ZRPu2SK5nwQj1hSTTAbzXAD\n0QpirctglhNoAtWkP0E1eBo3dwkKmmfig9sWTa+gkRzrg7GaI5JkOKo1JaMJTj7XDgr4FU2nnqkp\n5XmXzlOvGeDVZBztvuWgq+nk9QoPTuU+vFf5Uanov4DUzPyWkZv5NWvtf2Ktfd0Y878BbyBmxZ/9\nYZGHhSxkIU+X/KhU9L/6b/n+XwL+0vvqhQHHNRSspRzI6bgZ5RxqsUsyGrBXlfjw+gPLA1fqxicH\nYkev1nIaFTnZqtd3CDLRBFK/wuiunNYH/SInZ2Jn9dS/169M6Cl5bKPgYBXkc6lYZliUk/uGH3G8\nJ9dzlNjWrxUI0nmW2A4fm/xrAP7WoeWq1uybR/vcvyO5BcmbMqbm0hrrO2JPrrWWKFfkZKt5Vfyq\nEpBeiC1868Qy6smJ+Wg4ZqY5GcW1gGKu2Y9XqnhKF9dUSDTPxkwyGWCrUWHQUxZrC79H/RX/6c0X\nCRvyHaN+kk7YJrhQGz8eU3igpDyVCZU9OXWKtWW8WGP6W3JaB7OQTHNEfAaczRGFxydsxOKL+Hhx\nRrg2d3bJOM96oJizvHmesKwOSCd2qanXsed08E5lPsdavVixLmMNtNbslHN18hZjQ1mRrStpTKTU\na6tKEhJQZVkRv6mETKfSnyyb0dU2uumQQqAQam0ZcxRNydRb6wKxOiBd38FVhvSaanEjL8XsyT0/\n7U2ol9UnNo5xjsVHse/32O5p0dWuaKnh1JDOi50yl1SJcWZH++wrmU8rrFK7qbwch7IWhnGHgqYg\nmM0CaBWv5/qsaoJkx42oKUHwe5WnIs3ZAAXjEIYBtiDe+/3xGbeOJIlgcj5m9wV5oB8OTil1RGW6\n6MgN+lKzxx+4IqrvVnuJUBGtD7J9sq4s+lv7Ocd95YT0lZ23bIiVqTivrZGMZBPaSwycSCr1XlZg\nTwErtpek3UrYINAHLL54xLFO47B2Tt4Tr/10Y8jzn5M+pVqAkOdTpsFcPU3wA1FFQ2CgD/K54hq+\nffIW3/6WmDsn0x5pJH1fv6jw3IpuZN46gTJVJRqXL+JT0Jj/SrHEnnprHGPIQlFX970LKkjbX/2S\nmAFx+QFhIijY58cDEsUDvJ+N+MnVXQB+Ofhprl2ROg5vVRGMnYxHX5Gi7K9+7RVONZnqzLNEHdkM\ns9IGRmnp/YrMVb1Voncu99fmltNA5zawJLyDjj2cyriSgSIchw57Z/K7PC7R1cSj0EvZmkl7O1vb\npPocPH9FzM4UB0cD8A/3T9h/JP3s9k/pKZx9zfOptES1N1LsSuY5jDQDzHNgrEznThKzVtFGFCqu\nMMs50sjIxXGfYkXGcbxcw1Gzqb/XpzdPSZ/IQXdj+3k8rWQsRSHnBTkY9vaPuPU9MUfLQZMVex2A\nK811bbbBWDcb25lSVjatUehQ1Lye+MIlLL0/jMZFmvNCFrKQx+Tp0BSMwQtcGqGhXlLnWrrDc1o4\nMr1eJdBTbs2t495UN0Ugp8TN7CqhIueWwhmZ7uy1B036G7J7firI+PJAduB8Tx1S0SF1V6nnbI+x\n8iOmFY+ynjob9W1Oz0Q9no3VwTNJyLUQpeDXufL85wBY/vY3LivnxsNVblZkRy+tS7ujtE6prAU6\nvs+KovqWSkv4SnYytpJVWIsO8JS0ZjaATT2VroQpuQKI9J2MUiTaRD7UkF7RUstFd/zEtsNv31F2\naAM3KtK3lZ3P4qkp9dmGqPi9apkdLai5v5tw+1XJ4gzudSAQ82n29teYbYiGUVcOCRNcY3lXTKLS\nyT7mvpy0O+VjroWizn/TjLiTC0JxOZX8hvBownZZTrD9iaEYSf99N6Doyxy0Cw6ZOjzXqnKt9aU2\nmZoPYzejmCnEWuwTK2nLeBZR1rRi19HU9OUm40D6Vj6M6ClwyqNhRE3BTqoFGGnMdKbxfyceUVWz\ncho5ZBrunWQJ7pz7Qs3AQuhROtd0+2qTnRUxD1qVNpW6aAVX1g3TiZzuvqJuR9MejjKJ57WAUJGd\ny7UlWhvS9r3zOzz6spg83rL49pd2EjLNTC1PPBLVwmr9EfdGsn5XeiHTUFOl36M8FZuCAxSMIU58\n9seyIF5suWzk8rozjbm/L2bAa5OH+KEswsMTee/37BqCsZa8ns8Ik3n68D5+KhPZcypMTkWFOziU\nxKTb/XNcfcC6k4Rnm4KwhNekuCrfvT2Ygi/XcJR5yvgJRm1jv5ETapLKL36qwb/5nqbjHnf54v4d\nANY2ZCPoYvnMqmwU13bbFBRF2C+sUFZa83ZbbubuTpP7PYk7n0xPMVqp5zbbWF/Rixp1Om1FGi7K\nQot7E4payvuyafCr+gBZx6WyJslgW5/cZflEkpAO1Yfx2jdvcWcg4/ja0REP98RjvVEvsV2dE8Eu\n4Rt5OI2mARvvnKgoD9jDgx53TwRwpnN3xOtb8kCOZlVuKKHM66GmYxdHnGk0IPAcKkaWYsXNyTV/\nI0nW2N6VB6c9UrzK5YBmS+7/o70R7pKS64wt2025P/XSChXlXWyUpe+VoIyr8O2ldsDktsx9kk3p\nRDKW1VYTm86JaeX/08ji6xyOAp9wHh0ajqhp9CHUepW4N8Xq5t1q1JgoOM04jshHMrdhqcR5JG1X\nNRIfZxnRnpgU/laFUkV9Ffkp/Tfld1/9yh49TxC13ixKfuDq8hJ1ZC5+6ifX2a2t6fWGuMi4lzYK\n3FdCoPcqC/NhIQtZyGPydGgKxqHkF9gquuzW1IPaNyw/Kydi2SyR35cTavlsQtAQh+Dyy6JmXc1X\naG6pg2h6gquU5L7Twlcc/4+9sEzelPc3t2VHXXnzVeK+esPdU5b0VFlf3+V7R3JiJ/vf4UILcHY0\n1pwZg2/mlY8FlhUxeC8pctOXKV36mZsE6oBy9RTs47Gqr/1qgViJEbzsgiTWSrxHWuy00+T3RnLy\nWfc5So58vrq8gatmQDws4CohyZ0jTeud5bxpZA7j9WM0ZIwP7LSU8Xq8if+SVo++Jarl+s0VHrmi\nrVy3Q0pXRaPZTepsLalJ5PRJ63IqppqvYN4aEWhx0ed+5hmuj8TMu/3gDWpHoj6fPX/C8K6YKct9\nudbX7uYsWZnj/cxSV2i2IPeoKa5D6p0RDRTUZFs0jGIWkmoOQavhM9TIwG7LZWlJvrMUFNBAESW9\nHzRc6gNZT5tba7x4/Vy/m+MVlQm7USMIZe6G6tgM7kdECrhCMGGgOTCBFxJohGPJaHFVDSonSlu/\nbUl9Gb+p1QiDedICLKtG6moUaTiYMBuKttV2tnGaMrelTsB6TTNPbzY4m8j6rGlFaX21RFXBh0zN\nZzqW+5dnU6oKPTdLupSLc5DD9yZPxabge4bNZkgpWMJRfsjmOCLzxHO8uXaV9RW5iSZwiVNZsFms\nYbV4RLkkN3zaKZMfK219vkdL89rd8rO8eFVUtN0NWYyfbfm82pcH/uSszkZbXo/zgG++KQ/Q1K1S\n8eVBLbwo/ZnGOb56y7P+kNSX13Gxyc1nNRlo2aXYkk1kTmW+7o4JNUW3XipiNZkoG6aMh3ITvYKY\nH65Z58a21pkVIqZ9URNnscd0IIvpmFMu7knZtuPOUX5y2vpAvNos4zqidhf8kCu1n5e2W0W8ygsA\nBDdkXgtOiZsFBYrd2iJVr392vsdSQa49PS8y/hfi+S/8lDyAQdNi9+T1x7aucrMkyWe/d32Fg7E8\nCL2HMf+y/VXp/4HMa1DLOdaK0DzL2dfoyZXQZ6QU7ePRlKnayf2plslX6xRj6bOthtSNbEKrhQI1\nrbAtBjUSTRuehyGCUULQ1Acz9nh+WeZzuQpNvUbxYyGnezLW3sFvy8/TnENNtZnNHDKNDgWOw4qm\nWDfbEmVq+WXCFfnuZLDNzrocWo2WT6ggwzPTJlNo/0jZ0IqFEmMtbI/PI9yCjLW51eC5QKp125UV\nuhPZyBtr0veMAhVPy8GDlKpWjD6YvonvzUvHEyru+0sYXpgPC1nIQh6Tp0JTCByP7fIyN1ZK7D4r\nu3lWdylf6OlX6FJQAhCCIp6mgRoj2oEp5qRFLSOcdcmVenu8P2ESyCm/xhsMFXK7cazptS+v8dlX\ntMrsmZc401TcQ29IYSpaReki47mrom2sZrIT9466OFrz7yU5gaun1dI1xpqavBYZHKX0qoWq2qc+\nRT0R3eUtGAvuYjZMiPV0NMrO7Jzvg6rRH6NOck1Ux2Hf0pnKSbl/eJ8X1aEUWun7M9bhswr2EH95\ngKOJQLXAYVOdkqwWcfT0CxQuvV5ukqrTyuMOzqq0bbMGlOTs6O09xH9WnJ/ZPYl6RG6bfCKmTb5p\nqHQUgu3ju9y4pdWTrT6v/1259o7ygJ4khzRc6efDFHIFBfGtf0ng0u1PWFYPfVVVZrwySaZRBGMg\nH+p9MBSKqiLVC5Q0hdxoFGISJSgMIuHI4Gl6+HPOLvaawqp1ZgRaYPRQoehNZURDi9XOpsmlKRgW\nHKq5OjGLmkyWOxjlDy34Me4c6ARwlOynPJ2Sa+UjYxnnIKzhojymcQ+/K30IgiXaK9KPql8m1aI/\nuyQO+Hy8j6/w0WZ8TKQ4IsWDBgd7kt+QXXSJs/d39j8Vm4LnwErRUqtVqQQy8DwZ4RTlgfaKZXwN\n+9iqxR3M0YvkptjeGWlXASbMlN5AfhcUUnqaFdive9TUBmy8LPataTs4qaiZs2UP70IW2+zWba6r\nffqvZl3uxvIg9LWUuT97iDuV92qtiOlIN5DaEf1DWRRRq0lR/SMl9WTHeQV3zujT78NUNovJWYqv\n9mX3UPo7yqfUNDRX3bxKuqoq5Zs5QUmhwcenDB+If+QXf0I2o3/92x3+oYbVVlLwlG9hlPvc17Dg\njjG4itJqFdknuLKK0fBszVRANy/HbTDoyoJdbgZMz7Qi8vNiwqWDKbmSmRZmG4TPShtmzb8ktXQn\nB9y4kI1srPNzXCjwdcU7nNlESEKBkg8DrT9wZy7pmUYitPy3zylhQ7EP8WhrspAJPRwtbS/5PhWt\nBRlpxaE1hlmkUaSKQzURe7/mVwiUI8EUfZKe+o98BYzNYnLdZLsGCpq9mDgpAzsH/dVy6uyYg4n4\nBjY9SzbnrKhv4eiG5WYuiachzJ78zna71LT8enToQFND3zahpGZHUAnIlYR3XFHa+lGBeKw+jKiG\nf6K73uARUSZ9q3g1Hu1/35rEHygL82EhC1nIY/JUaArGdXBrJTYbTWovSuV11hmT6glk1obgysns\ndA1W6wQchWePS1Nmr8tpbSsVqm1R5yeTgFxz/6fHfQKkZsJeUxj2oyo2VPW7v88wkBNxWtkjVDXy\nWnvKqlanLS3r6dFPqSrzUJyUcQNxAJ0/SLBqdqSZjzNST73G1b1+TlrVk+0oJa7Jzu+VExIjp4pz\nqtBm8RGlgXxe2K1jeloN2exRUqjvzNlgdkMAY85fkXF8MurzbXWGLTsT8lxOqLJrqTU7OuMpVgll\njLbh+EU8ZS2OgmUKBT2hiRl8SesnyobKhtwfq2bArHvETKMzHB9Svir3yT20pEOFAXt4hztFcaBO\nn1FW7fs7bPri2BzOUubF86FXolzUOhDXpZCL5tRJ1BE7PMVfEWdm2ViMqs/VnEs4fzcqoch7lBTH\nIKrEuFpHEGU5oUKieU2DdyH3N0knuJHkZ3g6P/VpzpnWhKS2R6I5De2lFTytUFxS9vDW9jrJgZLM\nDCIcX+fFzUCjLknRYtSpnCgWo3M0I9kQB3u4YsiVV9L0O+QKghPEy6RV1RD3FWnaJpeI51FtxvSB\nzFU8KGBS6dNZd8jYf3+P+UJTWMhCFvKYPBWags1yotGQzI1IL2T3LDjgauVj1g9IPTlVPH+ZvKfV\nbmPp/jjrMlJkpuH+lPKWhPIG/cElmOfJ2MfVGPNUiVUqmyHRWPMD7p3Sff1bAHyVPg/3xP4M3RpD\nPdGDnrx3lAyppXL6B9MZmYZ/skL1Er+gd3pOuyR2t6lJH2wSk2g4yhQsqYKEWhMx0WKsVMNRWV5i\notl/Z6MppWBecZfQP5YT4cHokNt7ov30NOvufsFyoqm4OT7zQyI3IXuHEiJ78TTHq8pJ7ygdXWb7\nZK5c185SxqNA57DDuZ6644OAtVV18lbnqearXGhWZL2dUFOkaVPtMc1E8xq91cGbV3xqkdAkTTlR\n9KMED0d9H+Vrq1SKcnLH0YhM80gG6nOpREX6J3L/qNexvqZY5zk9BSj13XPsTAY+nSPejSNC5I/U\n9ak0xJcynUUEZRnraOgyPlVU7b6MY5gUeaCVpJMUvEDD4AHkmocyUCdxdtBheKK5ArFL+ZGSCLWO\nKHqbek8q5MpoPlK7P2/5zHH6fM8n7sj10qKDk8p9cisQDxWTQlGpTRSSTtQvM9gn92S9dLLbXD7a\ntQx3MmcDfW/yVGwKSWY57ae88bDLJxSwZLYcE6Za3ZWVcOZYdZUhVpMxrHrF8/0m8dzhVBpwdiKL\nNB3N6GjZaCmfMnBEtZ0cShulq13i+zqpj/a5dU/SQae9IZ05q6XjsqWx7tlYfje+d8FoXfMp1sqY\nSBZ3aDxO2gp3PgoZa0KSM9Eb6/i4U/XqV9o4PelnZsH05X2nJX1cPugSKfTxbDLCqSgqdZYxS2QD\nuf1wQG9fHpbv9DStN8vJFQ/RJDHWkbYrjkNbzafT8R12TqWdecq0HaU4ij6de8fkmvRkB5uUrsj4\ny1cGNFZ1wY5FTY6rIUbzOOL6deJ9mUN3dw1Hgx2M+hQ0l2ND/I183Rsz0o0lm6SX7FRtpwCBmGnN\neoVcU8hPFKk462b054lJxQLhROZiYH2YSD9MocIsEzMgOpuvoZTVq0o2zJixI/fMdB0uGkocfPCI\n41TGdT6WeS15MZ4+/HaaUHI1RbngMh4qxFyieSg0mGkUbBh3OZ+TCB1NMW11mgcu0RzzuKPJeUUX\nf0WRqFOPQJOb8qVlfCUWtolD2tVJUkermQ3IdOImh1UudFPvxJb+RDftTk7mLfIUFrKQhfwu5KnQ\nFMgz8ukAMoeJOg8bWZm6pBVgU0tWnH85Io8k7JNNlCyl1MU6emJMzrk9kx1zs5OQt2Q33rmxQ6ZO\nqcaqOBrtKMd3JFxzkjxg/1TRdf0KaxrfPw0r1FxxAk401DfsP+DCk916ub6C68zBRXtEGp5KVlKi\nOalJJll8ubNJQU0JChZPT4zx2KNSkTEZzcFobTzHsZ7GhW5K5si8OO4UG8hYm/k5B0Vpe2kk7fYn\nySVv4fORy21NH77Ic+4kogk8mxdQwGSMJ6enUx6TaCGS4QQ7VQdsK6aaidnhltt0FVV5Sfue2AnL\ny6J15JMcsyzvZ1ECu1oQ9EqFE+U8/I7yZ44GU8YKKOpai6vnU3N1ncaKaArtVpOTY9EQzs5E4+n2\np/hFaaPgZgRK+pJFlkDNppE3IdIQ9UPl8rjiJcxmCrRaMmRK7+aYlPG5AqgaQ6xh4kBpzmOzTq0q\nn8/SEF8rDhNcZgNxJDuBFjPZc3xV99dqKdNMxjedphSnsrZSmzJVs3cONZc6Hq5Cpo1a27RVe3NN\nir4kw8NrSj9GHQ2tZimRIgbFySnRRN6fdsb0lDBmfXeF/E3RSN+rPBWbQmIMZ26B1VnKmTL+lIor\nRFpGTehd2lzpOMcpq21YnCcxNTCa8FKp1mijpaLNGTuukqis7pJEYoueHcnNbA5b9AbzmoMxZ4q7\nGNcSLrR8dZrOeHv2AIDlWKMWeQHfUwRgk+Efao5B3CPUlNJyxRArKeqsoVDm+RSrefbuqMdECVj9\nUYoWNrKqT2tveQnPk+uen/bwL5Qfs2zoDsXGfXjq0xlLP95WO7Rt4VhT9W/5KUmmJDpOAqEiHE8h\nKcnD6astT1rCKhDKdFq5JPdNyuDOZHPKuhZnLPN5ZjXl9rDO8Ia8Z887zNTrvTwak7SVDIUiLSt+\nnoKRytHe2GB0M41TS0mTqZxanfqSmg+by/hjeThvqcm4mUK7qVyKQYotKUej7xNq6Xd74vBgLJva\nsifjLNSbrCTy3V4zoaq5EH3fMj2XdTYMJ0Su4jVW1ESNMmquXLcbOKSK5xj6FU6Que8oQUx3s3FZ\nqt0fx+ThnNgnJVJ+yCCcEZTE9CwVlCg4njA6URMty7FXNTV7DHOKScdGEGo0SpP64gYYV9av1zQk\nD6RvpbJLKdFK0rOUDu/Pp7AwHxaykIU8Jk+FpmCMxfVnlGwTBqJGJXFArqpY0B2T62nruQUy5T1I\nzhT6a3yIo+ml5+cpjUxRb51HjKdy6uT3izw4ELzGtWd35b0cMs0e28dw6stJWXJrRGPpx0W3QlrU\nY1wdY5XizUswlWzUI1XTxkwbLDWUBTmKWK1pjNkozj8+Q9VS3MkZ5/cUJbl3wNFItJj2lpxmdlSn\n/5a8d7rUo674DZNJzAPFprzvHXOkp0axoE6vyTs7/dvW4DuiVU2yIm99V06Sn3zhHOel5wBwPKVH\nc8fQFs0kfcXj6EDaHvlvsOqL42s2rlFQE2zqy+dRtYy9Jdc9PzwmvCFzH1BhqujYd7ouX96RPi/d\nVgTuSsyor2zW5MwU7zCqlqCtE+qk1Helbf+WUrxPRkxOxRyrrtSZKSbDUqVO7oga75RqpOqEbnui\nYQXFAWmg4CbZKp1D0bbOTUJHc0vGhwN6ik1uVdl08wZ7I8FmizKDq4AsWaFArJmsuRVsCnd0QKz8\noJVCgXwg6yZqjjFqgmW2TN5RajlX82ziERN9r3twQVGzOFdquxS3BMzGHSTEBcW5XFEuk0GCzeVZ\n6MfnNIqyzk6CAxJP3h91jpkqlsN7ladiU/CMQ8srUvEARRCKjmb0FD2+VmhTUI5CZ20DR+Ns01Ae\n4ui1GVZDj2U8Ohp6Mre2GJTk4e4/vIsXivrffyRe+K2XP40bib+gUch5RnkHD7s+uaqJM7oYDfts\nzCsup0Xq23IDKjOHmRKFNmyXuCiL3jmeEK/Joi9q6W3mJaSvCfLQcOoyeCQPytvThwzfEt/GQ4Ue\n71S/A1sSxvLHBWrrGn49OeXehWyAg7OUZ3ULOFJT5Cex/N+6K/QjyKsSplo2LnUjfXv17l02ThUB\nqqWOm7HBj6Tar7x0xEDNg+gbDQovybjb13+M6ZKG2d74JQASe8T5I6mDKCwVaCgJr1MDtA7EWfVp\n7stCXlFH0e6jAWfq/OikEGr/B/sZfQU8XV51mbnyu2Yom/ugfszgodrUNuPKdRnsyMTkD+X1wfSc\n857M7fBCHtyWA28VZD0VR2+wvClz+6gz5FDNplrewWnKGok0SSnPewS6IY+ilKImVjnFjGCkRL4D\n+f3JQZ2Z1kyk6Tk1dQgU7gfMnpHrVm3IONXN/g3p49S4l4S354MZlTfk/h4uvcbmfdmQVp//DGak\n9RxbetjMpkzLmir9ikOkodWCWSbRjS47h3G+oKJfyEIW8ruQp0JTSPKc49mU5anHbd3Z9+mzo/X4\nU9vnyid3AXByg1GK71DTfdeutzm/L5iDg8gl6UiAPFuuYU5FhfPbbZhI8ketobgIbx/woC7X+uZe\nzFd7stN2Zmco+zjjLL0sZula2dlrGxFNrd2vbLZwunLiFbyQvYeSsOOt+wzP5QQpKyiMGa1Q/WlB\n5PXvQbgq3y32BhQ+KydoV2tXit0Jp550Yq0Wcn8oJ8atwzF3VdMZTYccaE3+HMLry3lOT/Mb4gwq\nirMwCXxe0yjI0Stv8uLHleV5TeYifK6EUSep7zi0FJew+DMtZocy7vHb/4YzRWAuKRSZ6cb06jpZ\n/YBVLVJLBufsqXd+784evUROxzcPRHs4sj6nWoxmc9Bbidc4J9GqS1uqM1VH6s6OnLT3oz2Kz0ka\n+zBPGUVK0+a4tDZFe7v33SEnagf0jkUzi9eWqJ7MK1QrRCX53B10GQ9l0pNCQKDtVdYkUnM86EFL\nSWQIWNkUc6a20ubB/VcAuHMi83betZyqc3gpzck14vL8MzMVLQsAAAavSURBVFs0p2LqhrGBVCHz\nN9QsfXsEqzIBy7UZ5Wel7dJpQOOTYjZ57RIFecnkSOZyZmKGr0rUqtLOObsQZO5HvQGv78t68co5\nhbMPiTbugxTXgVrBYKIR3kwe0vNoRH4qdtHq9YxiVyaqmc9wkEVhKvPqtCVc3Sjy8xkzR0yGODY4\ny7Iw13eWsLECsEby/yPvgGlXFlK56tLQpBD6CSPlEwhNiqKvE+cyuRVnheqK8gsWqhRDuUkXJqCq\nSTFxkDLWbMnehby3tD7ACaV2oLj8iEgr4zZHy6RjTRzSSEe2VMLrSnuns5zze1rWfXrBaKIclIlh\npqyxVUf6vu3PIJf3lgqGQyXCLQcZyVQeyE7L8s0HEkYs734PgJX+yxCryZDPKDXUdDEBg+hVACYX\nGU5N+ueHCvW+fcRu6WMyQaMDcq0kHfqnTBWWPpoc4Ng5ya68l7qgealEBsqqszqTBqXryvWQTKg5\nWnauD8SV5hadXPrpzmZ0z+WHS9sOPeWKXNtMMTOd84+Jf2K9vEbjWVnu5ZJHPJFxHNqQyIpJVLY+\nhYrM3UEu7/WdCbluvLX1OqXGHL2pSvdbmjw3lf4myYAxcp+SLKSog9rvnbN0Jg/sWuEqrvorUk0s\n89Yn+BVljaplVFuy8QRLM0rKFRqWweayXtAkpWkUETSlv5OgwUTL5012hBvJpjeYWqob+pi/yXuS\nhfmwkIUs5DEx73DDfoSdMOYMGAPnH1EX2ou2F23//6DtHWuVQ+DfIk/FpgBgjPlta+3Li7YXbS/a\n/mhlYT4sZCELeUwWm8JCFrKQx+Rp2hT+5qLtRduLtj96eWp8CgtZyEKeDnmaNIWFLGQhT4F85JuC\nMebnjTFvGWPuGGP+4hNua9sY88+NMW8YY143xvx5fX/JGPNbxpjb+n/zCfbBNcZ8xxjzRf37qjHm\n6zr+f2CMCZ5g2w1jzD80xtwyxrxpjPnshzV2Y8x/rnP+mjHm7xljwic1dmPM3zLGnBpjXnvXe993\nnEbkv9c+vGKM+fQTaPuv6Jy/Yoz5x8ZohZx89gVt+y1jzM/9btr+oOQj3RSMMS7w14FfAJ4H/ogx\n5vkn2GQK/BfW2ueBzwB/Vtv7i8CXrLU3gS/p309K/jyP55b9ZeC/tdbeALrAn3qCbf814P+y1j4L\nfEL78cTHbozZBP4c8LK19kXABX6ZJzf2vw38/O947weN8xeAm/rvTwN/4wm0/VvAi9bajwNvA18A\n0LX3y8AL+pv/QZ+Jj1astR/ZP+CzwD99199fAL7wIbb/fwD/LvAWsK7vrQNvPaH2tpAF+TPAFwGD\nJLJ4328+PuC268B91I/0rvef+NiBTeARsISk1n8R+LknOXZgF3jth40T+J+AP/L9vvdBtf07PvvD\nwN/R14+td+CfAp99Evf//fz7qM2H+WKZy76+98TFGLMLfAr4OrBqrZ1jVh0Dq0+o2f8O+AvAvJa1\nBfSsnSN5PtHxXwXOgP9FzZf/2RhT5kMYu7X2APhvgD3gCOgD3+LDGzv84HF+2GvwTwL/50fU9nuS\nj3pT+EjEGFMB/hHwn1mrpY8qVrbsDzwkY4z5JeDUWvutD/ra71E84NPA37DWfgpJK3/MVHiCY28C\n/x6yMW0AZf7fKvaHJk9qnD9MjDG/gpiwf+fDbvv9yEe9KRwA2+/6e0vfe2JihAjiHyEq3K/p2yfG\nmHX9fB2U7fODld8L/CFjzAPg7yMmxF8DGsaYebXqkxz/PrBvrf26/v0PkU3iwxj77wPuW2vPrLUJ\n8GvIfHxYY4cfPM4PZQ0aY/448EvAH9VN6UNr+/3KR70pfBO4qV7oAHG6/MaTaswYY4BfBd601v7V\nd330G8Af09d/DPE1fKBirf2CtXbLWruLjPPL1to/Cvxz4D94km1r+8fAI2OM1jnzs8AbfAhjR8yG\nzxhjSnoP5m1/KGNX+UHj/A3gP9YoxGeA/rvMjA9EjDE/j5iNf8hahRN7p+1fNsYUjDFXEWfnNz7I\ntn8k+aidGsAfQDyyd4FfecJtfQ5RG18Bvqv//gBi238JuA38M2DpCffj88AX9fU1ZCHcAf53oPAE\n2/0k8Ns6/l8Hmh/W2IH/CrgFvAb8r0DhSY0d+HuI7yJBNKQ/9YPGiTh7/7quv1eRCMkH3fYdxHcw\nX3P/47u+/yva9lvALzzJdfde/y0yGheykIU8Jh+1+bCQhSzkKZPFprCQhSzkMVlsCgtZyEIek8Wm\nsJCFLOQxWWwKC1nIQh6TxaawkIUs5DFZbAoLWchCHpPFprCQhSzkMfl/AFTPwNE6il00AAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.6008... Generator Loss: 0.3544\n", + "Epoch 1/1... Discriminator Loss: 1.2181... Generator Loss: 1.1289\n", + "Epoch 1/1... Discriminator Loss: 1.2560... Generator Loss: 0.9682\n", + "Epoch 1/1... Discriminator Loss: 1.3160... Generator Loss: 1.1959\n", + "Epoch 1/1... Discriminator Loss: 1.2201... Generator Loss: 0.7981\n", + "Epoch 1/1... Discriminator Loss: 1.2491... Generator Loss: 1.1460\n", + "Epoch 1/1... Discriminator Loss: 1.2200... Generator Loss: 0.7130\n", + "Epoch 1/1... Discriminator Loss: 1.4682... Generator Loss: 0.8232\n", + "Epoch 1/1... Discriminator Loss: 1.4792... Generator Loss: 0.9793\n", + "Epoch 1/1... Discriminator Loss: 1.3934... Generator Loss: 0.6182\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVmsbWt23/X7Zj/n6tfa/T79OberW12qynYVdnDKkUOk\noESKFBSQkCMQkUAIkHjAQogHHlCQEC8QEJGIBBIiCsTEDkoUnDh27CqX7brlqrp1++7c0+1+r37N\nfn48jLH2qRs3da+rrnON1ng5+6w115xfN8c3mv/4f8Zay0Y2spGNrMX5l92AjWxkI58s2SiFjWxk\nIx+QjVLYyEY28gHZKIWNbGQjH5CNUtjIRjbyAdkohY1sZCMfkI9NKRhj/rwx5g1jzNvGmJ//uJ6z\nkY1s5Ecr5uPAKRhjXOBN4GeBR8DvAP+mtfbVH/nDNrKRjfxI5eOyFH4ceNta+661tgD+DvCXPqZn\nbWQjG/kRivcx3fcQePh9/38E/MQfdLHrOtZzPcz3fWYtNGsrxjY0rC0ac3Xd2sqxWNBPv/8emO+7\n2oBr9Brz9Kpa72EAN5Dh8OIQnwgA3wTY0AUg9Br513HwHKtt9/Fc+byqLNlqDkA6mzNrarmmked5\nnkMkt8LxXKhFJxd1RVNVADSV3IvEsMzQ51lc9IfWpdaxqOqaRofFmHU/DEYfErgxnXZHnmfBBKG0\no6qY5yUAq9VSxqEqqHVcQtfHN9I2a2qqutZpsFR1o2Mu/9ZNw1Nr06A/w3U8giiQv42HE0ibrJVn\nNGWDbeTi2jP4rs5NWeC42v5Wh3Yt43K6KgBYzC+pqlLbYDFX/Xdw1mNrXIyO0bppT9ePzPV63Kyt\nsc3TLz6K4fzMnZvSP32u58d4Rtpb1g1pugAgW6wodL34BbiO9tW9ahzWcdYNulqfjbGg40XdPF23\n6+VrXGodn7oxVNqRPK+u3p3GwvrWaV6eW2u3f1C/Pi6l8APFGPPXgb8O4Lou+3tb+I1ztWjqumFV\nyUJoipxMO+8Yc9XJqpTPqubpgBkLjl7guODpjBnX0PJ9AGJ9OaxtmOVyD4Old2MLgN3P3WO/fh6A\nHf+Q+rkRAHf78gLdbUX0W7Iw++1ddns5AOeXBa++9CsAvPzLv86vrMYAtHN5ObYGEc8OpO3twYBm\n1gLg4fSc7OIUgPllKm3/nMs33pJrn21ZevRkXIouS+R5x5M5aSEvbKAKK3AcvGelvYfDT/EzX/kq\nAEnd4B/cBWA4PedX3zmRdv7uNwCYnD5kquNyp7PHbiBta/wxZ+MZAHmaM5mtAMiQds6WKUVZ6Bj6\n+LGMd7874vqzNwDoekNa17sAFLUsucWjlDoVhTXbdThoybPN2Xt0u0Np/499lZ+cyLj8zW/LHvP1\nf/53OD85kvbYCu02kR8TtWUNxFEXr5b5KfXlyKsSqy+ji6GoZNzyYkGRqtLzLaUq4g8j//1//V9K\nX/vSiOHB59gKzwCZm+9992sAvPm1l3kQyXjtPnEYJtJXvy3zWK8ayrgtN60LPF82pFVY4mS62Gc5\nrm5Oa6VSh12m40sZz8LhNJP1+d79MVmuSrRqiFvyu+++8ej9D9Ovj0spPAauf9//r+lnV2Kt/VvA\n3wIIAt8W1ARVgHVloLoYllYmtnHAU08ncmCpE6obGAaudobGcQk93ZU8Q2CkizK2co+sXu+qlnkq\ngxcbQ3omK+LJ9xa4O/Iif+ovD4jelHZ4RhbruT/hMJTvw3dXZIeifF/+7f+L/+3r8ibXDy+5vJDF\n8paRieu838Huy4TffGHOQ7VGhl5OsZJnD1Npe/pbKWcTeZEOWwXLXVEwdnfA9lJ+F7ozrK6Z04WM\nW1KFDF6VhXl/9w0mX/gZAO7udkhfEytmvOpz9PIvS18mro5rwKetKJ6jZkmzUiVczVmUUwAuVg2h\nbm6ebstBGJKqebDl+/itGIDd/jalEcXy2b17mEh+eKJ9vrRTdq/LeHZPz6mdXWlz+5L/4FlRyP3X\nDb55BoA3vvY/Sj/PFthGxtVtoFJTobY1rifP22r7rDx5zpbOuS1LEj8BYNaUeDJclNOMopB7PCpq\nRP093YzXRsTvJzNPlNqnB9Ln8GRGHR8CMHnjl/jn35Jfx3nEzqm04x1WuBNZuH1UEVrLVMfbZDHd\nHV/b4LK0cs2gFROqJeCpApmUFZ1gR/rRTIli6XMVOjRr67RoYOX+Ib34vfJxKYXfAZ4xxtxGlMFf\nBf6tP+higyWsaqKgoMpkcC69Gt10yI2hLtREB2JdhCtdEJ7n4frSlWESQCSD47odylq0Z6euaRo1\n0XUy0mxFz5H7zouaaCHX2qyiXz+Q311cpzOUxfRmLLvWl0+eYDyZjNq/4Fe+dw7A737jFd5++Ip8\nflKyKmTlqQ6jchZklUzWo9qnfFP05DsDSz3XF13bMCs9vlDI7uJ2DItBH4DnjxzO7sjA1NMtVpUo\ngKaQMZkVBVN9xjPLGZ1cnrE6vUYzk7b944fHnOfSF9+Xtm/ZPj6ieLaqFhWiyFarmoWVfrSsJdKX\nvteTxb+koK1vTtPxGToH0tddl2cj+TtIplzf/TQAxkr/ktMJ7pYoqQfLPY5r2f1fmL7Ftd7n5B7F\nS/w3/+QlAMYL+b5pxrhrk9pYQrUKWy2XG31RaoPbbfpj+Txsy+C3wl1MX9bIAdc48uX1X/224f1U\nrJCzMidGrhd76A+XO6tvyx/RT8m/9cs8WMramuSWpPgmAPlFjyoQy+wzboft62IuJqEosUfOCe0T\naVtaWEpH10LgstPRtez7VKUoi9LIBrJXWi5yUdjDbpdyKt8/G8248KT/R6VPHuUfojdP5WNRCtba\nyhjzHwL/GHCBv22tfeXjeNZGNrKRH618bDEFa+0/BP7hh7vYYBuHFEPhyS4QtB2cuTQvbwqiULSg\n63p0EjGfcisacz9J2L4h3sqn793hMhdtPyoazkP5e/zenAfjRwCsprJbFZFDPlNTzVnSGNnyntsJ\n2Lsu/vBuZ5f5eB0olOd1O4YqFOvh3XfOeXj82wD82ssPOdeYQG4tvu6gVvvU67ikbelTOIbjSnbK\n5bnPwbb0KRyo3ziFXikafn6tRWzl+2o7x5nLjW92Mt5KZEcorbga4/kMm8r3T5oF5lKsqcfREa++\n+0SuKR4xP5Hn+GqK2mGHypWxCI2Pm0s7nWFAkImZPNiJGe3JbrzVlfiLZwwdX9yrSR3Sj8WCYitg\nFIp148U1sSd77+et7JKz57Z44og1cvakoWfEArnlbTPO5e+TkwHn7rHce6ZWXAWluoq+Y/BjNa93\nWmzvijvS2YoZdaR/68DtTi+m15H27A+HDBNpv7n2LKtv/SYAn3nrjO9OxO3OL9YBPPn395N+JONF\npkHb822a+GUAHrxTkj2UflyYC64H8rxkN2B3ILt/4onL1A12mAQy1yUVrUDW1v5om7gra6eqHcqF\nPCct5d+zRU6Yyposswm7PZmz2bKFnUi/yzIjs3+YE/R75V9aoPH7pQGyxmJNTasri87zK9xAX9jF\nnACZnO29PvduSdT3pi66O3fusNuTQR89c8D0QgbYrVOWMzETz/bP+frrcv3FEzGpL5ZT6lgWWDqd\nkar/2cwjbh3KizCOfXq5tONnDvYByC8eU47F7H7pt4946UwWd5ZXV5kBx3kaEHI1wFn5Lp1aFuuj\nx1OMLia3B71Cg2Rq4u77AWlXFvzzZY93VxMArg88TmrpX9/CrS1ZQIWmKn5zCoW+CGlQcd+I4pk/\nqXj9vvzOtAytkcREOrGMycHNHUwh0fKirggc6X/odMg0+nbz2h7dlsxPtyWmL5Mp7o60s5/HJBoH\nMr2EVkv64lcJdSVjsFKF1t2pKHJ5ife2CnY70rbCvcnxhcR5vnPfwz7UuNI6s9AYXI0ZRZ7L3p7c\n48XbOzz7nKyLYpITtTTu4MqmMAy79DSmkPQMsSoIz5R84fNfkvlL3mbhi5J85v99A4DfulxeRfL/\nxcREeEOfV8vLPy6OKSYyVuPgkmUs4xmHHfo7oixvPLNLvydt9pfSj4SKwYGMT50H9FTRhb5De0/+\nriqPZixjtFLXL+7W+LkomKJok2pwMRj6FKWs5U5iaGv86z4fTjYw541sZCMfkE+EpWCweNQEbsgo\nlh3I+BnWFw0XULDXFkvg5p0+X3nmRQBuXxdNvX3zBmuUQ+AGDA9EpxdZykyDOa5n+LKRneLJjnz/\n6sMIx6iZuYpZqdmNNydEIuD7o4TFgexWF5k8Y6fZ5eHXfxGAiXnI5VR2hypy8TSoGNWQabBnHfs1\neclbJ2JVXOYNjgbMrtmSZShafl5Knwu/wqrFM03nHKsJ+OpFSabR69wzOHPZpY6X0reqsTie9G9R\n1oRn0oa3HrzNqiUmeNg47NyUYF5rIM842BswX8pY2fmYkScWwY3DFr4n2ZV226OlwTxHraBlf4ss\nF2ss6gBG2t94Dn6p0XWvwo9kjNqefL+oezjqPsTDhmPNuryY3sVpxM2ztx4xf0v6GvVkZzfZjK6a\nyf3I486utO1GP2JH10Aa+zil7KDdbflsGPWIQp2PskM1lTY3xHQUT3F5cEj3TQncVZ8Tq7D/zWMu\nNfhL89QMNxhi557cr3lHxrU15dFccQpeh6YjLt3N2OX6LbG8Dto91Dgl7MlYNkFBaORv0/cI1bIE\ni5dLm2Pfp9A1UiFzHS4MbXWlk+aSaamYk6yhrZZ1NoopmpSPIp8MpWDA9Q3DVshAF1sVxvTamoaM\nd3lmX/yvFz97i3s3ngOg0xIzLG4F+JGj94qv0jFV5RFEakaafapCIvWr4BoAz1YuC0dMPCe/w7WR\nvBTHaUwVSrR7d2uLazOZhLwjC3vyzn0eJuIjT9+v6GseOInhvUIWWGQajKwJwoWCUUJQC53EsYSK\noCkz0FvgVupbFjWnavouFh5vzTVWUVhSTameBQ5fFUgCn1O34xfSgHGlLoxneG8hC3ZmV8Sn0v5r\nd+7ymR+TlyzJ5MEjJ2IxkoXUuuiwvS/fDzq7xENZpC03wdFceVOof9s5Z3YuHU3zJZn2qfYq0oW4\nLqFTEqhbiHod7jSj64nSaPkWH1nw7zRvQiXt7H1zwfVEzO5WrFmpk4pRKL873IroOjLeO05AqS9k\ntxMTdWTOWgpIa8V9QqPuWuBRlNLOVW1IHXmZ+hTc2hElOzuRNXLzhZzOa9Kex3NzBXZzDGRWx7aU\nuWnyjHC6rfd6zH5H7rXfGnFttCfj6fWIB9I2p9QUY3cb35MxNC64ugGYVoGzDHTAXBxVnLala30Z\n4g7k+3TZJdc5KdOKJpJneIucy2KtZD6cbNyHjWxkIx+QT4SlgDVQO5Sly7wreqofhIRicTHA4/oN\n2Wlu7tyifygWguOIdrVlg7MOSjoGo1qynhrQoIwTQu9QPr85lfx5mU1IfLFAdoOQRHEPo6Cm6ig8\neF5T90Ubx8i/uXeMPRLzcxFlHPbFhKttRTWW3arwMvq6S13blp3tyXnOUaLgrMpSqnWwVRpWCjtW\nMBvnVU1k5fdHxYpGrYOFtVeafFk0fPOx7HIPDsSqOLCGSyt/lxUslgpHPp+Tt+Qet565zgvdOwBM\nQ8mfZ1nKKJYx3r7dpduT/sdOm0DN5iSyWA3yrYFjtgqpFK3nxi0S3ZVm+Qp/JO23NZSZWAJlI7tu\n40XkqQRPlzR0ajEh8ixgPhWLbv5szq2VfD5KZQc+cg2HO/JZp7PDcO2ihRWJAqSSxKenQdpAnbck\nCXGstt3JyVZybbaawkzwGb6fca0jlsk4F0txXkTUezIWebriWC25BvfqfqGa7as8pVFU1GBkqAoF\nch0k9F3FJvQDMHKNp2PlNg3+2sd0wJT6WqYrUMyJZXblvphSzE23HeIr6KlfLzlRWP0iyJmdazut\nxWt/tL3/E6EULJbK1pRlia84iyooWalpe+daj+6ORosj9wqoZGSd4YcOxsjb5LVCavWn/NgFhdJ2\n2zWeRvi9XCbx/WSfvUgGcufWDRL1qd+ZXTDoyeL1Bwk9TdtFsUzKGwvL6VjN0+X5VWq0f7vHaCj3\ndhcR3UxrHw6lH97S5VNtzUQ8KYglTMK3H1k+rfDn1Uza+Nnr8J5Y32zdcDn5njy77YKGFPBdyNVV\neLYrff6NiWVX05RVCUvta2patBRF1U5Cdg/l4cFSrs2Pjuio4hkNe7iB9DlgeYWIcyOD9TWjsoaY\nW4/hUN2HxqVY6svvBgS6FnO3IpuJ0purS5EVJ9DIPMZeQmjFHXuwOiPO1oogJVf483ZPfecgIFKX\nYdC4eKqkjG8IPE2pVi65+u2RKmaWC1KFyld1Rmb171lNquZ6PS4ZJ5ICtSvp564/5PRSFGcKuIrI\ndAz4vo5zKp+1lwXvVgKEupjFRLsKpmrvEfuKuKWGStZkoxuAm4YQy7hZN8QUirXOaqyvcQTjUBuZ\nv6ZU16DJCSLN8JDQaouysHWFu/7cpvS8j4Zo3LgPG9nIRj4gnwxLwVrquqaoLDhicgXVDG8iqnTc\nKcjnqr8Opjj5bfk7EW3v2gGu7sCuP8S4shuZOifRwp7SHlE3cs06j5/UUGuwZxBfZ9SX3Wox2GYy\nEfCS7Wxhww/Co8v7x2KbA003ojPU6sMs4lxNvNU4JYo1V/yO4gPalqkW39xtGdyLdfGGw0zrJM61\nmi6ZBDS6k3JS4OvnVQXrsFHYQK4uzzeO5F5+7mAUsT+zlkqh1rVJyTVSHZkRTS27u+/I953tfcJY\ndmDPD69wAWUdk7RlHqxxcbxSJ00zQy2LzWXcHLPC5LLDRk15FYwsnRqv1kIvte6mtYtvFEzczMg9\nifY3qaVS1FfWjulrhkY3ScblAtfKjrj0aoon+rxtn3wmN9/bqgkUlLbqrV0pH1vL97O0YKFVl0W6\n5HIlbVvMfFa5uC49zfNXo4ZHgazJlU1BYfGOk+CWYt65LclYNOeWYqUQ+klNqRBsyyWpEYstt1uE\nkVxvtMjNjRuaWrMP/hKrBS3WS2gyxW9Ul+QX0s55LiC0fOWST9TVuhgzS7Vw7cJyqdkVGwdX8P4P\nKxtLYSMb2cgH5BNhKYhYfLchrmQXqFsBnhbihLXDQNFapnapTyV46I1EUxt3jO1Jygc3wwkjvbYh\nGMjvvJlPso5LZBLgSooV2x1JPe1c7zDY+QwA+ewU5z3R5tutBZ4j9260TOZ0ksBKC3Tygkx9eL9a\nUaailVNr8FRBL9Sq6DUBgfp3+Qze17x6uGw401TduaYvV0XDSINoJ7WDVR6DGovGXykdcHQHvTiT\n75umIYrXnAUunqIK+9WIoRaSNTsubY1huJryCmuHUqshl9OautHYSFlTbotVMeiMCI083aoPXKeX\nuBqLaLstnER+5/jga5FX4sccFzIGi9W78lkQXiFWF6tdJo816FhfkLQl+LvttKg0LetUMvajIKPU\nqkb8mkQtKG/pXeXpyyZgu6NWoVqeHb++qoit04ZyLn8/GM94kssOnEQRnqZJ5xoY3G6mPKdt+G0L\nlZX7WhPjtcT3d2odk17M4nxdPGZorcT3XxRzSoUxD3ODi6ynSovD3DjA08it68ag1ljVXNKspN/1\nvODs+AKAs0rGqpVB0JX5LYOUbCJj3LY5ib7Zs1lNZj6apfCJUQqmrsFpsFoVdmNv6yrKutcfUWtE\ntloY8h0dCIXMNpHBPJGXNOmFuIqjt2VJ1Sg2YR6QPZay5le+IxWQv/7aa3zqpkzWMy98gSbTunjX\nxQkVWJLGFFqVZudybR4WuB0Z6PfziutKkOJEJRN1CRY0aICblq8mpanpKlBm2Sso1dROnIIT5X2o\n5FLCToelmtFmEVIrfiOpIVH3Z+nbq5LxqWIz2pW94hDwPUtL4cq1m1ImsqAPBh5+oWO45jdYTJkh\niy2qW6RjURC2cehHcu9W4sBKPi8VmLRghuco18PxKU/O5R4Xq5IbIwFRePmc1aVE+PNSxqczdNkK\nRdmcn53yeCJAprbfouNofcggYDeQvk4n0qeL2lIs5CWeZD5JS/P4q5xcMxyFO6cVyz2imeb2XZeF\nZgZqL2ShLshi1lzVN/S6BqdS4IduTsGoS1c1qMsEu86eNC6Okjn4RgKR9ekxRrNI1d41llNpz8nx\n5ZU74990aSpVBm3ZCYI6xSggqZ7lkMm1OZfkubR/tnjIyVSUwnkqa3pg+jRax1PNG2JHHcukgblC\nwU1D4XyAeugHysZ92MhGNvIB+URYCo7R4g9aPL+rwbBuB80gkZsFT6ayO0y/NWcRSBV2toaAOhUH\nQ/nd85+9Q++ewKDNYkI21/Tj19/g/3hNquHefEdM2LnnEwwl/724zOnvak7Y6TA6VHO3Dsi1IMrp\nrXeojMcaI8vnFSe1/Gd/B06RnSJfVFdMWtaRwGcQOiRTafNO4uDrjr7A4CjEWhnaeJQvmatpHBTN\nVUDRqQ2O5vqGnoOjpntLTdy0tvTNunLS4CTSiJyETqUQ8rlzFfE7vZTCrmZ+RNaIFTCeLTheyu7n\nmpR9xO0ada6TuTLO6QOxuh4snjB9R8b4a/ff4/xMfle0WzyniNP9u9vUE0WO3pFU6BcOO7T2BCux\nvHjEVkd2v6M6IxmJ+3C9N6ApJGB2cinBtbNyjNXcfE3J7FT5D4IcLmUergVDZksNvCpGpLUaU+sY\nv/lwzlklfY0L8LfFmuqHMfF1xTVMhNzFP/Q4tZJmdIxzBYv3rIvfF06J+aViVh7PqUvZzb1Bj7EG\nV09mZ7CSZz9OV2yNtMBsT9p42LpHEGkhWdSlmYtVVTUVK8VsPJlccnQkY7BQK7UOGqwiSDOnxlEX\ndKcb4ARi3Ty8nBFrgPXDyidCKRhrCZqalu/gK8Z92C1pLsT3Shlzf6Gm2OxtHh6JezBHcspx4XLz\ntgzqV+qcP+eIKdYdbHGuWIevP3zA0YWYqL7WQ+zd67PqfwGAbFpQqB/tR30qzZV77YLigZbvqiI4\nWTVcTORFX+Q5VDKM0+WYUheebcwVLx9r2PWqJtfPUgu+xhS82l6RehQ6yVVRXPEIVo4DoVxbYpmt\nuRQbh9CXBXKWysURhoW6FB6WfM26sxhjBwoscgNWS2Xv0Yi9nc54eywL+vV3x6ymErd5tt8mfF5M\n9CduRUsJtFIt2X289BjPtfYh9vj8XXnR84Muy4W4B++dnjLQ2McdZWTJ3c8QLLV+YvmINx6J2xEP\n25RKtJMzZ7GSe7/2RLECRYtDXfx+L+Zkon1avUutyK/p5ZxSa0iauSq9wx4nWmn67nRCmcmcffpO\nF/earCevuslNzYg4fY0/mIiH21JjY957eAVBdj2XZo3JeHJfxvJiSrkl9ypPfF57LDUc3vuLK9el\nrHKCviiZF9ridn31SyGJK+u+W8xZI5nSVcPlpbJevXdKZdekPepSnPh4mvmxdUmWiBIq513qQtZy\n7HqcrT4aycrGfdjIRjbyAflEWAqO4xAHEaMs5taa4XZ4QKyBnMuiw8OxBBLfPV9xma+huVpZNxwx\nv5BdwB1b3ES2Ev/eXVrl1wGIL1LQ6x9oXXr9ckmv+mcAfMN5QO+WMMZ1DhzWMZuwsVTXJEORKBFr\nN0uplY8gzHpkoWjrfAXuminMM3iaPehqvvqiNiQ65B3Pst+Vh2S1i6MFPA8eaZVe2bDSGJohuKIZ\nbpmGQJF0iRsy1mxHqQU+dW3ZUYKRVu7SaisByqxFRy2apNch3lWsxky28HMb8+g7Yh2cP3lErlH7\ncc/lugZEW60GrLgEs5XswGYxpb8udor7PLiU57317UfsdCSgOz3KObglVsPOpWaMbr/NdKpkOeGI\nQe++tD+qiUsZz+XiktfGMq9OJhZDt3ZwFIL+/mVOY8QtKbMYV9fOLF9yc6hBYcUHVHQ4PVN8wOUS\nrZ3ia9+dE9wXl+bHP/UKB12Z62v3vgjAyLP8tYfyjLe/m/BYLQzX72DUelu6Epx0D1sUE+XKzBds\nBfL9/bBkqftvu28xvoxhMpTnLv0YR6tH3TjCuIpGTCeEWil8ePc2L70h7sM7x7IOb7em5BpEjAKP\nyJd5OPRDLhVn8agpSD8JdGwfVRxjaPshBzccZpEsmkOnz0j9u9ZsQKDVh73+DgsFxXja/J+606Z9\nLrN8eGdE5znxSX3Xp9OXBTS8l7Dflsk7GEiVZXT7gOc/K+burRuHTBcy+f1FgrdmvMGlXMhiqtXU\nrsKCdeFCu5Mxasvf355X62wSK7fBUdx6Ju87LcewlSh0+zBgr6uMRsYl1FjEtzQ6/93LJflCFnns\nWYwqyNyBrmYzMr8mXejnGnNoe4aFQp/dqKZjRUFmzjmXrpKZRi6RMiuNdLyn8/fwuvKS7j97l52e\njPedwXPc2ZfFO+gbrJKo+HNpw+VuyEhfiv4iZaCZim4vpK0Y/3q3orMrz3nxzgsyH37IiQJzTh+9\ncZXu3favobqUk7RkOpcNIFeXopMELNRs7zU+M83a7AwDXKWrd9w2kaY7t65JLUM/S3io2Y6tvll7\nY6xmsKtpvYHbooXEmKqxEuUObuHuCQv2taTHaSovpjU1dSPuVjh9E4DmQUn/roLX0hGJblRdIlo6\ntndfOGA70jqe3i35d69L3FHF6rugNSFg6O8JqMssJ3zuhlaHZgLea/cdirHEHKytcFytArUO6bqc\n/+TRR6Kth437sJGNbORfkE+EpWCMwY99mrDPLeX8D6OAkR5kcrDd4faWaMdr+Zyko1Bg5QMcZmcU\nsWjtwQ0DWqzEtQ6RUn598Se/SO9c+RkC0b7t6xGHN8VcNLnFz0Sbr5YVnVDz9J5LgkKvFe58Oa2o\nFbA0qLYJrAQd7w0sx2pNmAZiDSpaNWtD1+VzuzLkX751ndFN0fw7ZxGd28ov+IvfkmuLjK9plN3H\nMlAXZNrUuFrY1N+qmJ6phaBj2TSWkXJCepVDZ0t2oMXcsKXU8M6kInxR4c16rsDt/bu4a7r7UZcy\nEJj3ji052JZn9HZHKKk2jgby7j0oMHvy9H4a0OzIs19wUvztvj6vJHLlen+o9PrBGEerlu4MX+D5\nvuzi2e6IWS67XHo+xWqAeaz5/9H+Nvduy/yFFx6pto2pgVPZxWty9m4q3Vwk62a0F1Ip5uG9/g5x\nV74fOj3Pj5sbAAAgAElEQVRcPUdj52BAS92mYS2ZBafIiI2srdbeiK1KxjBqDCglfhmIpTTamTE7\nUvbs7hhXq1JvHNxjRynrrt8YsNUTcpaemv7Dfgz+GsZur5i53SLB1eBhv39I2MgYHISaqdrKmZ3r\n+RwnGZVmPmbhFE2u4AUxz4d/AqskjQHXWObpgtTTcuNOl1i5+7tJB68vgzpqutRKaFqtgW2dgnVF\ngCkyGmUeqmcr/C2Z3EHH44VHGql1tYbBN7KYAD/x8LcVKcmQxhGTOYwdXM1KFLog8qzk7ETrK+KM\noZbpkg+I4zWRZokWc9LSLINfGfy2LLrUm5HYZwHY/4nnaemJAz/51U/JfX/jZY4Uy+6ahlyj3mXt\nkqr7NHlQ0VrHGtYnHvkuXY30z43FVwYlp3mI3ZKX96RqKGfSl5Yu6O6zIf2BmPjV5BGZvv293T6R\nEtU0uYObaWajJb+Pr40wWgfh2xx60j/HtDAK6vICl1pLxlOlredsSDyQ728835AuRcG7acxYgVN1\nnnO51FSdulXdske7UXKd3iltrTXAz4m1xLmuDW2NH60RilXgXlUihlMHeyGuYnQYUWvFZHZpuXlb\n+RGH0obAvY315Hl/7l+9xu53XwfgO9Mp1ZqCXzeCQecGb3ZlQ/JPVmwVMt6f/eJN9q5JJi2IuhSL\nlY6hZiqModSqTFMVV6hXN3GoNUsUVQVRZ00eJM+tT9r4qkCn/pyJph7t2TZOJGu5NQioP2JKcuM+\nbGQjG/mAfDIsBSwelUTQzyS3W93pE4XqSvQDorZozLjOsZmYmqVVDVimNLkAkprKxzlWePCzFlOL\nxm+VQ4zmfzM9sSkY+ERaFWeaCM8q7XfH4roKRXVCqli0v6sVh8WyBoXGHs8Mo5sa9a1rXldYQBV4\ntNR96Ovm2HUhXsjvhm6L/oWeV/k5j2ggdRe3lVvQfRDxRKnj33VLpro72GlJpZWYcxwCBS/114Qt\nhWGhefwsd7l3TyP1R9fxpmLdeLag8mTsHDUtE79L2EiAqwkOsRokxS1x15GqeUmhQ17kmq+3EKoZ\n7B8MQbMhXlJjVlpr4Va4GrVv1hyO7gxPqwTTNCRbW30Dn34uc92chnhaw6C0Auz1LLtqgeCFOJpR\nCba6WOWvyE2LRvEirVoJSdwOiZLybA1KglDPDZ2XpJppMs4leaoYl1I4OsNuxB09MiC6dcDltVsA\nvP3rr0Ah42lvCGmPU81IjrVW43SX/U9JO3dbu4w00+A1PrlaqlbXE4mHM1MG8q5HM1O+EN9eUdPF\nu3tYDba6HS1cmeQsdT3lD6dojBfHT2mUAKZouizWXH8fUv7IloIx5rox5p8ZY141xrxijPmP9fOh\nMeaXjTFv6b+DP+ozNrKRjfzxyw9jKVTAf2qt/ZYxpgO8ZIz5ZeCvAf/UWvs3jDE/D/w88J/9YTey\nDTR5g+cUHCk70sGswrY1xVT3QFNoblBjNT235jko3go4fyTXbt1+hmYo9yhK8HRnon0GGkhzNY0X\nzDzCrjIYhwGNBr6ixL06oRkDtZ4eXC7WsYwV85X4ulO35DDT4imvoVY924lLPKUCczQomRtLoAef\nGizh83ogS3uIl4iFkF2Tf9PnW7gn2vazJUanyhnBMJW/C6/CUV97oNz+w8bhgabmUlujQ8Sz3oon\na+YhW1wdYOJo0VWDhxdJnx0TUetxZNmlT1qrNWU9loqwK9bErYGLMrfh1C6BwqB902A0+lmtHLKp\nxnPW8ZV2QqostlVWYzUAU5eWYiafn09rWgorDgbr8w8iGo1ntG2J1XiH44E71P3HephEzxtVzEaZ\nZ6C7Z9CuaCmDrG1qBppHbvcSfOUAzJVnwq/bGC26aheWi98UiH0+n1JYCewleg5HNnHY9aUNzos7\nZMrTkCQJXrk+CLi46ms+1nWY1ITherAsVlGqTdPGW8cR6jl+oWeirPRA3LDAGeu5GFlJoPETbxRx\n8b7Eo/ygpKOHz3xY+SMrBWvtEXCkf8+NMa8hR9D/JeDP6GX/K/Cr/ACl4DgOUSvCa9okShByUs0Z\nLcR9aCUZjlbO2azETzRSqwCNxaTi3QcCppkulhxpAcHdO1PsSlyFaPuQTCvxUOjssnHxlKHZ1h6R\n5vpt0eDEWrKaeXh6clLUlmsvs4bl+tSd0nByKYvi5pZPpCQcVC6uL5MX68lTF65hqSb12cmco+I+\nAGnT4u4dxVasDxS9NSJ+Wck9Hi+otEZ6Hw9nqMrE+lfch2ua8veLhnilCiSw7N+S7MrR+yvupeKa\npacPmRWCz4jVFfHqBLQ82YsjVuoeFLOCs5VgBap5wyNXF/JEiUWSFo2+YG0/pOepIifGKENzWZfU\nrvR7qWXK9SpjXkr/3FZAz9dzFSvLRSXXBsbS0pOxVjquedvgaMCwrBpaCjgIow6N1hfUTcN4KXMc\nNPKMaAULVUJN5VDL0qJrDMtgDSIrudBai8FDee6iY1np76YLl75SqW3PnpBeSjvyhaw9NwrpaAVn\nFjtXNH6YBgpVip4LOseOckqyaCi35Htjh7iBuHGmbKjMutw7ASvYiTUlnDEFRlF2QdLF03U9rWGx\nPgC45XKoh898WPmRxBSMMbeAPwX8FrCrCgPgGNj9A35zdRR97H80n2cjG9nIxyc/tFIwxrSBvwf8\nJ9bamTFPa7ettdYY8/viqb7/KPpeEtrCgNNxCLcldZPkIbWSmK7aBW4tWtDrtCnXDMVrCGszYaZm\n1rxIaM4lbdQJpsR6IAeLx9R6yIajOylRwHIqWru7H+D2NZfn9Kk12GVDi81lJ8hyTWU2lrWhYJ2G\nuRalPJy3WJ/jkaYlSy34meuYuJHlHd0pF2/BuZrEd/ZfJTiWHHuyL/1fuFNW/hql2LBM14VEhp6S\nZmSuuSJxPVLikUu3YKnBx17iCGkHsNdpaO7dkvZ0R8zeE7PTjhTu3JvjKOIxPR0zyySlVZ7POQm0\nYnRZXNGRtWJB/tluQ14rae5igVGLLikraj3zsK4LVqkE5S7UfWKxRaMR2CoHPU6C5XnGcm0Sm4hA\nj6fLz2X+j+YzkhPZPXe9kLmmE5N2dWU5ls2SCz1DcxXLMw5wmS9lpzVZSKp0bHngs2qUzCfcxgvF\nGjThfRnD+vNMO4Jo9ByftJGTpo/9GXWu7h0SRGxFPnWspKxjS4ES8VQDcrXkytwlq8XtyKda+Ro7\nsBK3o2kmtNVzLaMCq6dn1+Eltbq9pqckOn5EqRZRU88p9KzT6WnEMlMSV8fQ+1BnaD+VH0opGGN8\nRCH879baX9CPT4wx+9baI2PMPnD6g+7jOA5Jp0WnNaDtKblFb0TpSCfryqHQBdvMnlwdSOK6smCc\na1vsqrnnFCGuHuiRTdrUyibk5CVeJofQhrdlQU9nGZFG9Y3rYTyJIhMZyGQRNzZgobHSwtGqzEpo\nyQHSvGE6Vdh1MQWtQfBbHo4e8unry30Qh3T3FNAzTbm1r5iM/oj+jkCv07FU0C1PKjqe9Olgv2Ko\nEGy3cnD1frYLYz0kZluzCFETMu5rxB5LW9mQzWCf/nTNTORwapRQRU3ZIgsxemJTE5SYNePwrQ6D\nM1FYOwf71Mo72VW+x0lzjtGMgy0NpdaLT7LpFaahrmuWjfwuVY5Kx5kRqvtQFw5jVawnVUprpLl5\nv+FSixQWVv3zKmOsSiGLCjoa++muMlJ1bR7PCtrqgoyVJn+Z1VxoRmVUz+jVYsBOs+yK5XlYT6mU\noMcgGJKzoqZQHk9/mjFDD/I9CxkfS8YrTmQ91YG5Ct27TkrkybpZzeaUWuEY+Qk2kLFVAnIushna\ndHzPo1aSFeqGQDNCjhlQ6GE2Va1M4+Mllb8u9w+o1EVx7JRkXUPkblGuPtoBsz9M9sEA/wvwmrX2\nv/u+r34J+Dn9++eAX/yjPmMjG9nIH7/8MJbCTwL/NvCyMebb+tl/DvwN4O8aY/5d4H3g3/hBN7IY\n6iZgu+9Q60nStnFxtPowXbpXR2yFQYNRAo1CWXEf/eoD3n5XdvFnnotJ9ACRaNChWrOW1F1C5Rq0\nRlFrLGn68r3X6WI0Om0aS6N4gSK/YHJfdtBcWaJzH3x3fd+GlSLGPBOyo8y/sZeRKcFJpT5FUcOD\nh9LmVV1y/kDu+xdDBw5lF7j/phyF/mDRpehLnyO3oqWQxbFnuKncCW+dZjTK/5gqbZc3bDPw1Sy3\nYBV1NwwLUi0eilsOgWIvGvXuVqbBWdPKBQFFKuO5euSyOJd79G5OiZSuzNUUu2P6uJlWdjo1leI3\n3NLiaDbDugvsqYxRtIZ+tyM0/U8xOyFXumZbJjjKMVkWDoniTOaKwDyZjWmrpRgtV5hYT2v2PaZz\n2UHntuR4rtWosVw7vYRVoq5Pu4OrGY46n+PoYSnFoH1lnTkKXujvO7zxumRfuvNHPPq2VNVmxSVe\n66dlzPUA0dW8ASVLsa7H5Fj5OYoluZr54a6LVTfHU9zEdnuIp8Va+AYu1O3ycmI9rTpfTcj1eDpH\nad6sU6HscFRZgxpThMMurmaoAlNiFBfxYeWHyT78BvAHkb/92Y9yrwZLZioWmc+eq4AWb0mtKcJm\nEJHPZEIrWxIqxvvhG0pv/pu/yZsrGZ0hc7xrgnfvns1w1ISd9x+zVPJTL5OX8SwwfOaWsDQ5fgtX\no8VNlePUGq8oS4pAorcDLW/thR6VcgA6pb0yL9O0INiWa/aDhIke4X6pfvQjfFJNa5bWkjSyUH5t\n5NJ/Vxb/TAEtKRP2hkLuEY5DUgVqlWXGK9k6vlARaLWmF8vCnK2WxKo0b+3GtBX0NesOKMbKJTjP\naCLp3yxQDsO5Q4l8FoynvPNYXpr59x5TKttLx90l+KKMrXsmcxBYQ6nmdz2MKdflyQl0HX1Bco9C\nD6HNdMkFQU6qGY5ZVdPpyTO+9/CCZ2Jx4/Z37jG80GzNe68BsGgsF09k/jpbBv9cTepei/FCTO2h\nH9DVUu2RLy/VwacaQlUQpo55+31pvwngMWu4csNyV+Y6qmUDmL9uaU7k2leOT3lHx9bOhrgKR670\nbMduNCSv7stn9Yq6K33KH86J9O/04gynJf2zlSjesLuF19N0uTvCdWUzLPOc2iiZLhaUXWt9BikR\n5EtVsnVOo/GVRbUk1MrdqA6Im4/mEGxgzhvZyEY+IJ8ImHNjLcuq5NX5KYe6Q+20PcbK1pzbKR09\nxiy0ASs9Bfpb978DwEU34vP3JB//4u3PE+2t6+33qbZl53XSm7yrHHfn92XHvP6FEY2aia7rgVbL\nmTCi1AM5zswRgUbfO7uySzrtiEC5ADqBy1jZlfMaIs0hu92Ak7nsYk804FhSEStb9U7L5faORK1v\nRLBUqrSpQn9v+z0qhei+bzMKDSg+nK1orc9EjCyXCu6JrOyMbp1ilZbsAovNNae9nOMq6KsYxKSP\nZSdcKj+C8QM8/d0si5g7MkbJp5/lmlLjX79+j6Cru61mBQKbk51LVP/982PsVMal57WvaOoWdsl5\nKhmcVagFXBfPcqE75dHZY/a16Oj0okuSyLUd16fuKhGJWlDniwwHscCCWYe31HpzTi641OCvuTyj\neaDwYFfi3DeuDXEU0xBlCbNC2hx3XKxWnc6nF7SD96R9h8rH0O/wvXcF3/Hay/eZZbKG8K9hEazH\nYvGG3PeyoNoS9yo/OWOSyzNa8xRHT88+XVakZ68CXJ2OvtM/JRlLhiP13iU4lblOQwdPCXUmdYZ3\nJnO1c1OrgKcBC2U8X6WXPFpJX4vTHXauixt7mWa0yj+BFO91XTO9nBEXLt+1vwrAc/EX2NZyP38+\nwq5BRk5NomWvzym3nlPvczBUUM3tLUZbMsBBEFIpeWaVPSZeSIrooCPd3urEJKP1EfZAoCchNXOK\nQMlWZw3lQCZ/pYCQ50Yx511pz8l9B9ZgoaZmX03Jr3xph+l0DYxSIEldMBxJ5LndbvHpe7LgV8WK\nO3tiUvaOZeLveObKlbgebfH6ywqm8jwyjSY3bY9aT5Za6AJMug5xJAs6tl18BTrZwYC2nvTkOAFF\nS7MAisxc2IKgpYeVtj2Gk/V5nXPIZSyq5R5RSyLtZqSgodzBUXLca92EVblGnpb46ub4lUucrT1N\nXXLuEfmaR7A9wNcUcFW/ShIKaWq6spQjmeNnPiXVrsWrj8guXe3zlK7mhsNWzG0lpv3Ogxm5Ru19\nzTg8WUwIlYp+dwTXtyQz0I6664QRkWNxFE24FcomM7Y5kbqgs/IEo2eKOMtdFrmSq6hZX20bInUr\nt9qjp0d5pT76btOKDMVA5tpoe2I3otsXxdtztsnVVfSSmvqxlGJv94e4CmDzlVLAz2YUmnKepxZv\nIX3a2p0z2hEl6xX75A9/YALwA7JxHzaykY18QD4RloLTQCu1hC2Pse7G09kpw56YYoW3ZKXmuut0\nCNqiSbf78r19610mCiSZHN+nSRVKG9TE6yi5u6TV0lOJD+TfVusaJtbDP4IAqyAWmzcEWhnYD3au\noKZ+Kpq9Y3PCTPLcwbWUAwXCBG7E/rbs/vPc4V5LzLxdPfwjd4cMNFLdMiHPqlWRmmuc3Z9rn6Q5\nYQqOqy6BO76qEj0ACsW4P86XtEI9AEWhuu0yoqOVhd0kodBDWIKwIdWotddqY0daaaqw3KJesVro\nuIQlozXY5uSIsbJjx/mb1BqAq5TNualrah1v17N4LeVGrCNKb30O4phSafCt0aO2s5q2BuoGbYdY\nt9KdJwXLvgab20s+pdRzUU+tqsPrHFmlaCsbdpSqvvIDom25x0/H94j05KtKXb95U1M3cq8bLTBa\njzJzKhzFMrRaHRI9QbvsStvPzgJczZjs7DzDSrlCW90VnrpNblcsm8bvYXy1UDoOka6LhU2pLtUF\njUMczdA0WqNitgPsGvRXFVSpBDZX8ymBpyWvzYo60joOrZwsnZLlhbha44s5qcKmt7JtQq32LNIp\nUyPt/LCysRQ2spGNfECM/aisjh9HI/4AKPTaC73luqSa867LjEyDVZqFJHQdAi1aSlyHvNGThm35\n1P/25MRmgDXEwMFBAWGEvnv1eWQgVp+5th43nhdf7W5bOA92f7zNe8fSnp+MV7hzZSVOXRal7CTT\nIsMY2VVfe03+Hc/GPFHS0WVVXp2kXBuLrwG/5UJTXh1YSBaPTgtcT/rXaxy6uqs2ns/WLT0iT9Fz\nN+MB3pakMnf3Df/Ff/W3ZSxtdbUbuZQ8el2CZ7/0W5J3/7t/83/i1Qtpe7QydCLpUxKW5LrD+r5l\nqUjPXANc02lFE2jqreCqQClxAzqKz/B9l1oZilsawJ0VBU6gsRg3ZHtHLLbsP3qZbyr0zY8g0apZ\n48nOdzNxOdZzLebLFbXz9JwNV4Ouvu9Qa6zB0YNxHNch1Am2roPVqsWmqXHUYrHW0FMEaFdTk9u9\nLaaKN8jTnIkuoqjr8OVPfxaAa9cEKfuv/ZV/j7ux7NyPypr3XvtdGaOTR2SKFRiegadnXs6NpmkX\nc3KtnGwWKZVSgmfWsj7+20kLEiXTDT2NpXW2MBN5nk0CLrSa98HDS6qJPOOyatCD1/m//8lLL1lr\nv8QPkE+E+2CAgHXs/6msJ6t908Vb6qEnlw71cl1aqi9HXZMqBZu1Poku/rqwV7EeSqn1hqt0L5XT\naNYBGtM8fWkqB9TcWzoJrXfkhT19RnLln/0mvDT/CwA8DlP27go0+Wi1zWIpmmpyfMIbmjF470jp\nxZYpdb3GW1gaJSdpu4ZKF3FXYcLVxDJbq8oFzH2tGWi3sBqIWtWGo7cV/qsHydp7lsP7cuk871Kt\ny8EjQ3Ok5nzU4pf/nmRu/of/53fkXo+OqXRcL8hY6IGwrQj6CsiZ1g2RvqSlwpWjBhR1S9YY1qVt\nWVTQDuVFTgKPTF/klWZqFgY8rY1wa5gpxuD//Dl4Tu9RZTDV/aKbaEnzQYdQldd04VArJ1/Ld4nW\n7mEYkWv1Z08p0oOux8BIe07SmkYp/fIiu6LPn6Qlqeb9/UsZ17NmwmxNTOnmoEq7qV3OR6IM/v2v\nyGaxdzzHC+Wz5vIf8ehEXJGOc5cXlSXmySDFVV7Nnqv0cCFkRvEbrQG0lfLOuEx0vKLao6Pug69A\npzkrvEr4Kpc2pdNTxXuZk1UyttFsjqNgvg8rG/dhIxvZyAfkE2EpWH6vlQDQVS35YO7hTUXj22p5\nld91dfepLfhrM6CpyNSVqGqHwIpmX4JyMj91S0xjCNcYA+OgNSvUpsbXgpq7TU4VitY9fEd2q4e9\nfX7q4csAFJ/O+bZiC1on5zy8kDz2m/cnPNL69koLhqrGXmlh64C3tgqCCKtHVMcahJpb9K5gLCTK\n8Ntf5pzpTWxdXqXD1lRdZ64l0FTueJXj6nkSTWFolDz11bce8Z1X5FzNk+O/L98vC+pGUXU41OvT\nlTOXmabCTA4rHb1SrbTQ1iy1H0OANa1a4bGjlZ2F5+GpeZzmSnNXNRRrr7Gq8JSg9Us83akCuKJp\nW/M3nPVSSoUw+15JV6Hb3u4OP/uipKKjdk1roZwFNwUf0LNDLj1JzXUvGr43lXm6OC9595G4Uu2s\npFBY+OVY3YQSkrXF5oBV1y0Ncn68EcKV5PrPSnum3+XbY0lZrlYV93hJxmj2ZVY7cjDO7hKaa0oC\nNFYm5oOYA600rXOPMFbKOr/klidrLjMF2UTPBY1lrDqLkMKTcRl4XdxS5u9uMuHEFatoMqvJkj+B\nh8H8fmIwHGiO/czt0omUjQcPZ03Rhy5WF2KNvvtxcnVIa6cyV7nwJrNE6kDkV3DXp74nZcM6tFF5\nBqNm55MApnqgaz1SXsP9HqYjvvWDlqWtlXyP5zkPjyTSezyfUyi7UaPmqWMMkZ50krRDWlppSMdj\nL5LJLy4VPnxR0FaMxWniEmtNhQmgfaEU6E2B563LaJXEpLQcqevT7l7iuGsXq+H4t2Rh/sbb/zP/\n6Nd+Re4xW1210Wg7jWvxdVwKx6XUUmzXMaiVS7slba+rgkQxCIkpKTprEz7B76xxHw6tSsauWdcq\n4FBkiuMoKwqtH2kB65q+JWA0G3VdwTgXXsLWrpr47iF/4U/LWaDJwYivfFYqG4PYZSsQlbry5eVo\nNT4rhbc3Vc6XLrQU+3vf49dGkvJ589UjjibiCqZqfvumJl3TVeKQ56rgvZo762Pr9eyWxfIZ/JYy\nM71SUZbShnH3bbaWkj2p+jM8jSW0VLGO3D2MKs3SLAk03hG3+/iaBcpLj1RZptaZpnHoY9W1K21K\nT9fQMutiFETm1ZZV9sdUJbmRjWzk/5/yibAUDE/BX66agxWWVS4R9dDNOdGDUYxriLTVtRJ6tNrh\nFWVaL+5S6M7erl2qQIIy/tLF1aIhvxaz7Xh8TKF8Chd1QaVBK8dCpTRnlyXkWoHoqIYfdFfMtYjG\nGVvO9NRlz2Yca3AxzWvWtrSjAcU4DnjxjkS1n7u9x607twCwRHTWBC5IRd7sxLBaaoCyCHntUnew\nbEUTKEFI7a1JpSnU9D9vpvih7KrXbY9an51PG17+p9L/X/vu6yxyJeGw37eLrAOtxsHXeYgil0av\n8XFA79fVMW5aCYHu/kEbULerqC2+7mhuVeI7GtVXy4ZyQe49tWJcve9fjHr8fSUICVzDXKnsxlOZ\nxzvXIjzNcPz5H3uGL/+Zn5D7lh7b1wRt6duQ+ECrDpXOzbFg9QyF0lsxPJVdftpvsTsSzMk3Oi/z\ntW/Ksx9O1/RohkZdzKVbX/EUxI5H+BXBJyzU9H9yPsMP5HdFf0ZWaJ8HI2yigds0IVLotrFPT4a2\nyim5aJ66wo5NCbVi1I1jQiVRyZQTsq5yZkrEMM8dKj0x2+t7NLX0tdud01K8zIeVT4RSsAh819Q1\nQaIw0bpFpoNQzIurhVk3YJVYY6gUNbfu7BAqS2jiOxSamur4CUv1VdN+eqVw+roY3RiOjsWkDnKD\nq6mg0kK5ZlZqnr40gb7wl5OHXD4RRXC93WXrUF70V89XrDTl2Nh67V5fpcKub7X501/5UwDc3O1w\nb0vg0+HAJdYy2tmF/Kp4PifVQ0ZO509o3tOzG0/fwNMJd45nnK7ZjbQcl6ZgpiQsx2mDqZUk9Nuv\nE9yU+MHZP5hQrXG3mk1w4CoKbx2LWfe7QYI2QGpq2rpgSzUym9yhUgKi0HHo9LRc2hpCrbUITIij\nbFGhxkbmnrmK7XiRw5rKqrVvyd9X98B3GerZV3u7Sta6NeJLWzJWu/duEupuMmg3eKXcMWi5mKUS\n8bTXcQtYd8mZWSI9dKiIodWWLw57IYfXtLxeXbfjWbHuPqZpqCJlmYpL9nlRv5AajvSwZHKsbW9f\nJ1+zhTlLWkre0o5d0KrZcE1fH2Vg9eDdnofVGI7n5JSalvbblnU0zNPTwhIbUsUyrqt0QpGvtYlH\nWysmL4YRhbPko8jGfdjIRjbyAflEWAqeMQw9w8r49CrZGVx/xUI1X1o2OGraBkBfA1i3D6Ww5F//\n4k+w3RNtP7koOU31HMiyRdUVs3s1H1AHooHv3JZM+KPJ6/Rf0bzze4+YqAav0hJnbZkAtZqPa6qx\nPeuwVDM4z118Pe3XKbOr4hrXOFenJ9/dEvPtzz57j595QQptbhw+g6PD74ceji87yaEG0apLy2Rb\nLIXk3KVQIpOH8xHhNS2wSlxm70jwbM3qbIFyqhmJqUOu5w++2l/y0i/I7ufjMthSHMZyncportIy\nvrUozQJuY+mphZW5NayJPHQ+Er8h1r+7wz5tPVG5tnNctUJiP8ck4rKVY61EJaRWkNmyAEUa8+/8\n1ef4B//t92Q8bYWrkPahUvONun1aA7l4381JUJo6tlFENK5nMetotGaqjNtgWut5SvACDcQtAroD\nPT+y1+KOHtoy0UKxqJyRLZUsxYWw0F3cC3mcvCOfz8RS7F7mdFqCG6jCObFmn9p2QE8Bd+HCIVpz\nLGow08XH0yCiW7l4SqdXuwWOkv041dNT1vHWRwd4GM0SFW2fuc6701QQy3jXgVRmfhT5RCgFsFgq\nfLR6r58AACAASURBVAKW9drUca7SX64Dib6Eoyjk3nWpmHvhU18F4OBuj3iN726WLHKJJo+bU5qx\nDFpnlDHaE3PvVl98yLp4wtmuLI5na493HkvZ7GpVrtcSZk1oAaQKPCrzR0R6RmMna5g3Yvot/SMi\ndUGMAwM9n+DLX5Dj1/+VH/tpOn09F8AJSOI1sWkfVxdbpKZj3fVBo9f5ZE5Ya6blcMDtQvpXpq8z\nUr99pUi7/4+9N4u1LDvv+35rz3uf+Zw7V9Wtoauqq7vZbJJNkaJEShQZSzAZxIbgGEEcxHGMBEkA\nI0AeEidPfkgABwiQ6CUJEgeBgQSxbDkGYjORRcmUSEkmJVLNodlDVXXNVXe+Zz5nzysP33cu1YBs\ndasluQXcBTTq9r3n7GHttdc3/b//P8tK0JfDBgWmVCz+b36Hb49/Tf4wSGmNVpK009V046nj2Gx4\nNLWNuu0LcSzAxFS4qqPR103TizzWN+Q6L169SazhXz49pdAcTZXPqbR35alWg6ZlgavZd6e2ZDq3\ns8l36SpK8VFZU2p+ZP0zgtJ8vt/hUl821s21LdrKc+g6bUrt43AcH6Nw0cpoP0tucXSjqAOHTDkh\ni7lLdiIVn3HcxKpr3lQFLeOUWFWTyucZ6P25sUc4kbyEUer/Zdey4a70MyNGmilrlVMiK5/1miW1\nxgSBhlJO1CDQ+Qw8eyYdX7qhJEPk6FBp+KCbqWn4hFqK7tiUhZafp6ZiNJLnWs2nEJ5XH87H+Tgf\nH2B8KDwFa6EsYGFz2qvuvKoEtY6e653Vx9tBgxtbYpkiX0IDZ5aTWtmVp5MZx1O1fqMHzFVZqh0k\n0gABFANh4W3vOfy4ElYsO4adprh+X3ntPmOFB6dwpqUYawKzrCxHI9mhP/6q5fBYeBXrhaWhVRDH\nh+eVGGb3hriktljiVIpHWBaEShBSsiBQi2D0Pvy2oVqKNev2C3abcs/9HZ9Q2aXXw4rjPaHHPMzV\nWuUiRw8wiAOyUq752ydtuhoq3NsfU6hqUKCWsXYsLTUoW0mAq5j7jW2XtvIrbnR8FLHN7qZc+7rt\nsXZF3Of+msHTJHARdhnXAhaqR4apViV6qvFxSkamljtwDKG6xE9+o+Z7CrHuJJaudhomh/L9qx95\nji3lw4gGDWpNNKaLBe4KQr60ZyEdSvnmuFBpItKPCqwmPivHJU9USj7bJ9uUZ7Z/KvfUiTKOVFks\nN/YMIFQtfbJEQpfBQtZN4o4o+0paU0MYigvv2gCrYRzVHMdXSS0tCgS4+NoxW5cedabHyCucWDyr\nyoRYVqzZGj66Do6qXJfDKYlyiD5dzliquU+9kuYf3Fr0LxznnsL5OB/n413jw+EpIBDgyhrSbKUL\nUOFqYq9yLJnGUyfFkjePxCpeb0iH2P37Bs0F8viwZqaq0nZu2VWm3pbjMFwo/Pn7KqAxvI+jJa9m\n4LGucea1huG15e+7ON1oK7Vgl08q9ipFGD5pYVrSoONXJUZBFM3QYW1LEWZzsZ6L9pjpWPIBUd8h\nX0ii1O3OKFXoo1BkGwufyUwp08Yz9nNh4Mnvumwq7nYwS7msupm/d6gXaS255mL2D5ZMjmQu+g8O\n8DdXOpcb1Npi+kCTiG5laQaaD6lgY0M5FCrL567LHI33Tyj7cv0thY93L9W025LjKSrwxuJKnMxO\n0DI8MRUtxZCPNM+wWFQU6UoH0qWqVurJOUY7KS+UPh3V23xlIHM1HJ2wXUnZcNac4ivzEO4xcaH8\nE60CKrH+K0yHqc1ZWbQuLLV6Ql46BiW0nT8bYk9Uhk89gsT3Mbr2yrJkqTJtfl0SLuX5Vm0tCxqH\nVrl6DD65Mir7zgJXPYUq9XAKWWeNWhGfQYlF4NhukuKsVKltcKbxUMxTyoksyoUS/mJjrKJC59OM\nseI7JsOSkXZM4puzcv57HR+KTcEAvuNQVJZCkyhgWHk9rjWEunizsmT/kQJ5MnkojwZLokLc2cl8\nTlGv2mYth2/Li9V/XHC1ECz6m2uyQA+rinXFQuxcNLAjCUh7e0iiC6jAnlUUCqX22itabCjV2jB+\nwMGGLMa+awm0cO4kNY9XUuM/vANAmW6TXdeFm2xirYQxSbaFo63RJwsBL9UHKWPt/Hz6nSlfu69i\nIpMln3tZr6fdpFZtyg0F9Mwzs4q6mC8tZSVhx9NL20SPhGMyyJ5iApmvXXU5/WbButK+32z02NmQ\nZN6l52taJ1qpWKzx6jsKG9+V7x2OE4JcNoLmJZ+xrkWvEbO5gutuNki1dyXP5GV7pY75PcV0DBeW\nShOlpd8kUg7G07okzhSmPJFkYNNZo0rl59E8oLkS+2n2CVa5U9fDKLmKr/Nqyxxayte5sMTafly1\nWyQXZB1dqBzaKkQzt/LivTOaoNALytIl147JvCipFJ/gRzJX3TrENHUjKF1srcLEx7BU8pnWbIzf\nkY11hWNw3DUCNYCm2cV1VyQqc7wDhYKXJeOpJI1nkRyrm9d4KpDcTofEWmUYuAWpt+KdhHH9/nof\nPnD4YIxxjTGvGWP+if7/VWPMt4wxd40xv2jMSvb5fJyP8/FnYfxxeAr/KfAmqJ4W/LfAf2+t/XvG\nmP8Z+OvA//SHH6YGjBZVAGvPEIiR8TGaiKq8mqUmz+yxWK3ZLMdPFFLreTQVQeg7LU4GUqqczgtu\nLx4AcHBHXUoXOqGYgetlj7YmicotH/eZSsHNy7OGpkJbdboDh0DP8Xa3Q5Ur8+/lJg05NFuRh5co\n8m5TXN84iuis4Ni9Bt1kJShTsJzKzv5oLBb49P4+85Fc+4O9Q1otsTqdzmXmaworTkdcvSyu+2s6\nc95iBJpoXOQVthZX9dY6vL0jXoO9VBAW0vef2K/LcbehFYv1fPnlF1hradnvaptyIdf08eMlx0/u\nyjVlYrUmo4xnTTlH+dBhnqnKd8+lpXJq0UmNp41NXUXxHeMRK55kbzEnVe+u3Kp4eShW860wYrYt\nbnX/81KSLJ7CIyVO8Z4ecLUjc+yVM3LthDMdi99Qch0NA8gcqpXgDAGLqXRGPn3rHe4NxZOzJ01m\ntdyrq+XCsNuhnuv9TVM0L0tZGaJau2MrDSmCgqbCuevQJZvI77PxMwpFlpZhSDGVa2quFMqLJXYF\nDJnkZ2FXGU9YqmeyWBxweChze6D6HNveJg1NqhfDCU61QqRW1MqkHRYZnnl/tv+DakleBL4M/DfA\nf6ZScl8A/m39yN8F/hbvYVOojfQ7hIqBr4xzxprTbHhn9W/f+kTBCiqrGoAWjE7wWuKRbKtC1GlF\nqS/b3mnKWLPdjsbDzSRiV9l3C39BvJAF1gw84kQZg9Mat1rh3fW+uwMWU/mfF5qWR7phJUGHtb4c\nb2MnZFvpvjc35MWdjF12FcjUb0J/TQVds5ClxrWOZuy9rZqhK07W2vpFNpUncme9ybNHGhKFA+qe\n5FW2lcr92YF/tpCakUOZyCIdt7cZnMhLf/+0IE8eAHCowJz9tyZnIKTHbz/j2vPyMn76ZIcbL14H\nYN13mCu34+JbkuN4Nj/hB6rteJqWuCoAk3QbLPpynde2m7S11t9dl+Pubi/Y01BjOKmYGYmXf/on\n/zy/9fDbcq8bM041dps/0S7Q8hDPyFyt1zu8fl+Bar0NbihlfLIZkazwOqEK/ExHlCtBncOn3H8s\nG8HbD+9xokxIW77PdKZQd9UpbQY5/VjmdhqmLLQy4Dk1cUuxJfr3hAhP10KdZhQqqrt0a2yuc1Rm\nGC2ZZJmEivH6Gq6rrZb+JapC2ZdtSj2VUOn1d+7z6LbkrlJds8N4QqRU+15aouoCDNYijDJ67zsj\nLgV/uuHD/wD85/yo23UAjKy1q0fyBLjwB33RGPMfGmO+bYz59vtLg5yP83E+/iTHH9lTMMb868Ch\ntfY7xpjPv9/v/34pes8Y7QExZ95B6Fh87b6znk+qVmyWpfi1WLxQd0zbiQk0e900Pru5JI7i3Sb7\nt8UCpcGYKpVdvK0wU9cLOC3Ecl8fQjxYuV8Oc3X3CEsCjWlUg4V8MSXT7ks37nGttzpei5FyF87f\neMK3HEmI+qUkFLc3E8wVCSXWej8GG5L4i9iHSizFO5qcevo7C759W2C0hyd7rPTJA9Pg+U1xWz97\ns4vTF0uYP5WEVHdtQTxSghTH8Ez1FRevH+EpQ/FsGuNMJDQplKKs5wVYrZsvcDg4lL/fMz7boeAs\n3FaL8anyECiG4vHxkmPVmlyUJYlWT6Kk4jSXObqSh7SUldhR7sv8ZI1SOwqTps9SkXnz5yKuqzeV\nXt1i/BEJcxpWE8mzBp2Gel5YnsxljXjDR3g74pltbw1JYwl/Ag1zbJWd8VvsjzLeeSZW/Gics69o\n2eGyy7Z6ZM2BwrX78PhUcS+c/j4NUTALWYdFIp5Gbjx89QImQ3h6Il7M6dM9cu2CfLrnM80EObuu\na+ynTUZ461MAxJM9Ug0hj8o5+/fEKzp4NKHStersqmjPqM+zA/l7b+nibmujVbEFvmJ8ApfhcpW8\nf2/jgwrM/hvGmC8hjksb+AWga4zx1Fu4CDz9ww5kUDn6Cppa/8tcF1djY9dCoTDguqhBs6+5lYXW\nihIGGpOudfu88Jz0Nmze6jOeqJT3pOaecgke6sKu6gnrLVmYT1sJ4bYswGg257mG/P7QBky1XdaJ\nVzmFXVLVtrxgQxYDBQKlGWkmC+zAGmZDWWBtBbkczVosHZWi90NWGJYiH+DpuVtPJW7s9is2duVl\n3C+WLDK5591GhvW1fNm+SL+UhfelS/IS/9a8xWP1I+t+DirG+vBKl+5EyhY7h99kqGCnZqIgpFaP\nXFWTtjoJxxqTpjZmtpAQ5cKaYdySl2VrVyo1g9M5nb68CM9sjc3kpSlMQqurHZ9xTOeWdIQ2tCIT\n+iMOe7LRpZMEo3N78Wf/A/yv/n8yB+3vkCiJSKTEtkHickfLrE++d0SlrdXGjWkPBNR1PF3SHcg1\ne7nyE/oBNhV33WRjVjxc33xnxJt7EnZcu7zHSVPCmxsvyBpqFTs835HvHfsNDnXTCFvgN7S1PdXy\nhFew1FKncSakugk9mcx5pOQ7p5Mps4nMwVUt7z5dNnj+TLG3iavhiD+v6TW0BLwV8OChbD7f+45c\nz0Z0l1RVyLZ3Aq5kWwBcWXNYWs1t+FDkq/r6ext/5PDBWvtfWmsvWmuvAP8W8M+stX8F+Brwl/Rj\n51L05+N8/BkbfxI4hf8C+HvGmP8aeA343/7QbxipBPgYUu1zJ/BwVnTbQeesw9Fvl3SUfnt3IJZ0\na+05fFU1vtxq8dzHhJar2Wjw6k2xAp7fYHPFY/hMKciMxydekd2161XQFuuxl6XcVjd+WrpYJSRB\nM9KtNUOsEOVp0mCwuSvHIMA/kGSQG7fZ6YtV2b4p59iKNtnoiIV1nHWq6aohaoldyDVdeUky9s+9\n/JNcuSuZ/i98Fk6Gcm0fe2UdRpJ8cr2Cek+sxmGoIKXjkJNCYNdJEeJPxLo8bypuzyWMKS6OOP2B\nWjTlm8hbBVqIIdz1eNURF33DW6OhXYS5Z+lrAva6CtLkL16htPL3w9MZVrkBg06XT74olnsriOlc\nFAvcVd3G2r2PeyLW03OmJGq5c57wynUJux6PAjq70sR2c0cs9/aTJxwrFuRO0iVaW0F+I7YiWQ+B\n16PS+awS7Uic5NS6tprtHTYviIv+Ezdf4OJFIUt5/tYauYrc9PSeo0WLB21x6WzTwzuV+UynDi1P\nwiNH10Jd5HhKxGErF0dFW0ILFxoSzlzdclmkct999cYu9C7iKCiqznLquaxZWhldo99z9kiUKbrZ\n29I5XEicAjQbFdfWJTT1exFT5cLMn+1Tvc+3/I9lU7DW/jrw6/rzPeBTfxzHPR/n43z86Y8PBaIR\nAMehrA3rmjyc1A6lWvak6dBQK95uB1y+KQ0oG7HUri/3E3KNZXsbLVoN7W9PWlzri9fQu7zFbLGq\n70uc2V/zad+Qn5fHJ1QPxYrdTe4yUeGNk6zieaMeSyRWZ1RDrpDaz95aY6Y8DIP1Bs1Irq39OMfV\nklX/iiQDW1xiY9V6W0+xCsErZjVxJkmyzlTO5V7OSbfkHNEjuHxVJdYueZi2eBNx5TKaCHPUXiXX\ne3Ur5np9BYDtjnuWG8jrFhcDsbbfe/MupVK9LdXDWi4qXlyTeXv1hYuQyn1caKb0Boqa832WCjMN\nlSV5azxltC4W8dGdCbYh17l9cYvtq3KMVhbTUWGYOhfPpghL2kr+eqVjKT3N/VQRj1N51lv9OeZY\nynPN3Zs6lxcZBBJnb1TPcLpq0RkQqOZGHFsK5eKwWn52yhireaBkw2OrJ/mVbgMKRRB2d7sUx+Jh\nOJobGh69Q6elJenAZajED4FTEqq8nU0VE1AXVEqJ5gQVHc1x3KAH8sgYtCIKZZpuLcWrvDAIcX2Z\ni+VkRJWLx+MfpJgt+WzXv06sLNYXt+S4i1ZB+kTl+MqMlnJklEmKI84iQdTnms7tex0fik3BopqE\neFh1RQN/yerySsdy7YIssFtXt7iieo2RMvbW7QZjVUlumg5NZT5uRDEb18XV6tEGxZQnqsuYLypC\npe3Kbc2iKRLhaQTxUo7xXFSdqQn5it+3pwccjjWhNrpO/7oKrkybpKm8ZFsXfAZ9OXezpX33eUmk\nvRil51AcauZz6aN5IeKWPHDfbbCmPf3dC1M8JWFpnES4RjvnxnvMFENhDmUuti/3aHQlvIgY8/Yz\nyXQvv/EDuo5Ck/sN6mMJY1IFwpRFSdiSiyifLPFSyQ8Pr8T4E+1mrAfE6oL7FxR+vOvS1gpGkj/G\nUS1Gz22zqXwQSWApVHxlvgrFhgl9rZ/HV3LGqmO5OPwK0/tCsnLr8i2ql24BEM614lQeEXXketre\nBpket86P8RRiXJb+WaJtxUORNHJc5Sr0bINNZYsptxtn5DJBGeFsKXbkQDavhR+QK5zedyoCf8WJ\nWGAW2tFbyLyausSq6naR+YRazgn7C2JN3wV5k2UqSdBIOUYL17IcKSvzuJKwACgiCHKZw06aMlPd\n0EqZzcOJhUjmInUtqSbEOe2TBBKCLPolabaS6Hlv47xL8nycj/PxrvGh8BQM4BiXpPLYCWVnf+KH\n2IWKjAyaXNuQZNBL1/tsK3PSLJXPppM9ltpX3wwi4q7s4D6W9rqW5+Zt3DXxEKzWrpOOoXqsyr+e\nZaqlvAuDJk2V4Fq4BW8qD8OpCraEdHBU0+1o7x3iT4g1c90aV93LfrfH+kDc8ZZmepZxiKOJKv9S\nTK3Q5LzKWTW1uZ5YKMe49Nbl+65dJ+wo2WxqKLXjbjKERiS/396QuQpbEdOZWNX5YnzGIPTV7Bk3\n5nIdlzZ26ayJN/Fo70cErNVMy2Lz5Oy4pA5lUyylCWOMwskDhXZXWYHRkK+9vk2lSyrpebjaDYix\neFoy9pWire84uB15HqfzktrT50CHrz6Ua15zb/OCskw5UyVM3e7gqnRQ5GfkE13CrQYLbRgiqvFU\njXrFXWD9gGAl09YO8dqbej5wdM2xDLBGEYta6mwcP+GCleP2gIcrflzH4Gqp2dHFV6cZhXomVeFg\nVGMzKpo0VdKuGxgWkTzX4li/HzSop6sFUFErHoHZCTQ0rAotnVi+53iK0gwKlrl4Kd5ohslWbORz\nUmelQp5QrTyI9zg+FJsCSPWh6btMmqrFXi2JOzLBoR/SvSyu+PqgR6JxYqZiMMO0xlGlpEYnxFNw\nU1mmIsUE+M0cCnEZ61QWirucQygLd/FsTDaWv8d4VFcljj54vWJ/KCHBgTInf9zN2VIQzm0cNhTE\nsruzhunKQwqXPrFeX6QKU5QZuZFzO5R4kbqzdY47USqtlfKSsTiqfutkAa5m7R1TYk41s55VoO2y\n0YaEHeNhRlmswpKK5a//LQDWbnv88lQy1Y3gBZLkY3K8ltxba93H0T6Ctat9Ir12b1HR1E7DuJ/g\nKE9dqe2QC7/G19p90o4wc3l5Q8fiKjVZvSyp1M0vdPebeQvmc/m5KnJKJWF54x/8HTzFCv2/b/co\n9+Uzr9yS47qVJa7UHa4gbitmY7rAmWhFxbMkLbkXo3kg5gW1MjEbU2GVG9+t2zhW58sssKoVuWKa\nTm3OnVxeqsdHM2ZT7YOoDEb7HDyFT+cLB7Qj0Qsj7FBxNlV6BsQziSHQis9KYNhOF7iOrlm7oNZu\n3KUNMBrmBFH7rIdhBdOvA4uv+YxlmWKs5hd6DfyhGMbEr0jfZzxwHj6cj/NxPt41PhSegsVQWQdb\nG5QljHTuY9Rtb4Q+PqL9V5cJtfbNL5ScsswXBHorVeycNa2EnFCqux5u9alURMNz1NJaQ4V2TMYF\nDSXsqFvbTLRP/8QMcULZdTcVDhsl6ywVOnpxx+AoYswNPRqVeDoNMgJ1c6261/kwwtVjuFWCo4hG\nz+vQVNowM1S+gnrOci7nbdqaulCtB39BHar3E/iEsSRgZ4qIqwIPRzPZg96C7x7IdX796IhWIq5o\n+tYTNp6T5OdI1ZCDImRLOwsjCiaZWLa27xFomGM8S6nEKKuMvVfUJMrUbOvGGVOxE4c4pQrOlDm5\nurb1SuynckldseZZNKah/GHffb3iGyM5xxevHnH0PWmOmvuiExnvblOqgI8XOGeEsGlRUyse3QSt\ns+4115drMzbHKpdDOp1SrkS8zfRMR8Fr+tRKpssz5ct455gf3BbcxHFV46rX1AoMXqTWXUlYkrqi\nVlxEOiwIlQzHpv4ZtwLWB6Uc9BLFdLiWcpU8dl2MKnD74Zw0l3N4eYgXyDVV6kk4foGjtHMWn1qT\nq6XxmKv+dxVVdN8nHduHZFOwFKZmTs2ylIe4niyolGZ7YXMm2jh22j5hnsminw4lQ35yNGWui3F5\nf5NBIi/9WsM9g8H2jkrcUMMHdT+NX5KuwCgnC/xKcOS2XLI4kXM8cytOlPsPZYaw3RZrOs+XupdY\n7wrAxM9jrJWcgGctqaf8j6eywSzmnOlHukkEtXZzhjVcUT6/nsSNdVaQn0rJqqgdKiUNqZaGWiHP\nxhmT6qLIjqXmVcb75KXCwMOCVw5kM103fZqqJjTuTWho6bTWhW3tnIdHcoOLfMZWRzbc2mtglL2o\nxFAv5Ni+urJuEKB8JBjG5CuOynoBCv+1RUq6kBzGYqK9GOOa00LCmdl8wUSrNu23U1IN+Z4cRez6\nch2LVLLwk+EDPIW3F8DyiYC2ZnaGU4pF6bQcSit9JZ7G1m4nJtecQ2XXzticSYVdCaDKpziRXt9T\n+exvHx1xoJWBRV3S0ZzKRtNgFMzma8k6TAJqXSN5PafSfhbfpFRGrn86Kah1g/C0UmEii61WG8wp\nnlZwnKI8E/PJxwucYMVuLht9XllKbT+fjJ6gVJq42SUKX+5jWlegz++9jvPw4Xycj/PxrvGh8BQM\nBkdbEKul7K5ut3Umn1WOCw6UjutSltFR4NBStfrspsPTt8Qi7j/+DutKJnIh7mK0EnEpSum1xF/P\nlPCj8HKKFdQ2qMhd+XuYGNYO5Xhb6w3uH4h1XCoR5JWddaoLcu71QYtk8KMElqmVt89ZUq30Gpea\n1TcRGLE0y9NjrB7P7/Xw1Q3xFfyTTYeE6gJmdUmWK3XXLD+TzbNugrFiKVqhoFV6/XVm8ysAHNc1\n2zf/IgCvfOP/5siTez1YbHH70T+VS9IkWzno4WtisONYio7MYZE6HJ3o/Z/s0b4kYceadol6fRdT\naNLOi1jJdqQVhMj5bFBSr5RatMqQhDnb6kl97+mURwr53nECjDY/3Zsvab0u5762+B0AXvqJGxir\n4VqWMq/EhazCLkYpv5/snRDMRf25GWpDUWOTeSlehSkOcUJlQZ5U2G25pqbtYULFvlyQ393bP6RW\nRex+0CBuKsFP6IAyLfuVYktYnHXzOkmNp25DdrIkzRSE5fgEaosrVTZf5hYv1zCgGZM/k+NmfRdm\nSjfntnHm8j4Uii2JbEmqLAVlEWM0FPaqEVFL7i87hZPln0GORoslrwo8zzLSsliv0yQPV2IaBYGK\niMwfWlDxDactk3rFRLReEsSbG3n4Dc0BOH0CFWSJY09UZYBypqo6oxNsV2PA+ZigXGn4+ZQ9Ocb4\ndsXRUAkxtWtz7eKAJFKiqdIlcuSzYRxRaYUjrQ1WGXaS5grQ4xBqltkxBqPchuUQalVOqjWbbtOc\nhapCVUVItBJOGSSgMbUtXQLdTHLdmLywQactG8RyVtL/aVnkf/mdT/I/PpPFW/tjnPBFAKJcwE2b\n/SbGkWtIvJrsVBZpO/SY60vR6iZ4E5kLvyGbX73gLK6dL7MzMVa7yPFUqcXJZ1gNefQ2mPouTyYS\nGuztn3BfkZUhBYHGwFPj8nisvQtXdFMxPnkurn+a7hOdMacPqRUJafwAR+mLlg3NZTwaY7a1RJg6\npNozYU2Bp92McWII9AVKfyjG6e6DPY617Bd5MbsK3nJNk0DBc6ue+mrqUmplwIY+lTJIFUWN1VKs\n6QYYfWYrgtrIA0erJFltKTNdn5MMT9mbls6UCWIYAy0xLqMQRxWijAcdJcBJTcJIK2nLYoRGJu95\nnIcP5+N8nI93jQ+JpyDUTWXl0lX3rMxSmprMyudzvv9DIRwJb2yxs0r47Up3YvZsTOOGegfbLklX\neiIaWQvXVSmxVsVcGZitWrZJnRNo3dy6FR6KZZ+MGE/F1Ty1KYVyQjZVfmtrvUvak98NqgGBchg6\nwQyU57CaTkBZiXN1DaNGn0o9HsIARzPkJRUoq3ShbnQRWKaaJPOqBamy/bpY6kqspmN9HKWFCwfy\nuyyqWT3WSxtb7Lz6ZQD89DJ/7WvfAOC/+62v8+CxuNehykgXeUp3TZOOZkTal7k4eTxl66Xe2XUs\nE8VDZJLkdaYxS2Wdtm6DYEU7GECsOo+VaVCtKKb1n7oY82Apz+b+ckGhuIEv7Qb8iup7XmxCsPrM\ntyWcu9Jqk5TiVcS9kGIpkOHc2yZBPIjmeoNGT5KRdUPWgueNsRpe+NspdSB/z4f7oP0ObvOIJVP6\nCQAAIABJREFUsRLG3HkqdG3j4yHLxYod3KFoyLXtrGUEXQlNSqVZD50eNhXux3I2O1NQrycRhZG5\nWM7nOKtqgIbHpghIVlWL3GJr8VLCUUWq3uTMD6lX1ZOmAqFC4eIASFoZcwUkZH7Gs7GEK8vxgo14\nRXP93sa5p3A+zsf5eNf4UHgKWDB1TWoqZloH3+otGI8VrsuUI7WUxTOHi33p9TdvirV7epCxeyKW\n8gv3X2HjM7LX2cLBrFSQ92uOlKnXUe2zeVASp5q06QdkY6lHn5ZLvnlfruPJyYw8XImWKEItvEjk\nSfmycTQlXxO0pT25T1Zr+ac2WMU9TFX4dDx5gKtYueYwoDuW2nvqvEl4JMceahIxrWqWpVxvc5nT\nu6VNVdOQUmP8Mj9l2JBrrh5KWbTRm5Bpti/2upRKhJusrbFxSUtdF3eIlJFqosm3dFryZir38bSf\n0F9K92U6LOidSHPNgA7Hmq/oavlvY7dF5Hf0fNDT/MraZoOFoxDzZsFY8yNTTYbdGzvsH4g1G7sl\nE/UU2kc5A21c+4jj84ZiOZbKFPWduw/4dEsbkcKQoyP57LR8g0qrjNeKU6KJQM/n/m8B0HpUkF+U\ndTPYrzloyH34w4ytm8IKlVUx87kkR//+W/8cgIfplEJzSXk547bVvMzBEEc1NRxHcz/5AouK/86P\nqRRZGno5rgq/TJdLTpdKRrbUXEZoMTN5FcfmCPdAvbf1grCWUvPe6JBsrJwbN1Qg+RDKpnhNs6Lg\nRKHd+3s1T0fyzKzXkJL3+xgfjk0BwBrCuqLSpM442yT2lPtvXLBQHcC99JAwkN9v6Av/4nNbbCq0\nefPyDtuRuIx+11kl+6lP57iqlDNaUV/FJU1VJW62d3ADOff+3TsMtIZuXUNb+RE9rQZ0WuMzluBg\nPcRoi/T8SYyz6gIMYKm1cE/dPjdISBS44qYVvmbifW+dhaw1qoUsMO9kxED5F7sXd4ia8r1gOsdR\neG1eQ1SqNmUtm4ONfTYvfByA8GiKvylu8lHVZHD5pwH4xLMDpvd+IPM8k2uc1zX3K3lRrpkmifYM\ndAcJXQVObWw06TUVmq1kIssSPE0iRmt9orMqQ4tAN1ETxrihcvnmModbjUPqRMFSUUigm1f8XJ+f\n/6q8TB95MefJscztt9+ShOgLtOltSNt2u+iwrmvBidv4OkfdnS3Wb0ri2TgyscHHmqSaoHWfPiLQ\nykg1LakUe+AYyz/91V8F4M235aUq5xUrhnTfqYkV5jysfPL6AQC1KkE5JqXShKmtAmJlqLaud9bn\n0o0MqcKtbUM2+iAviNZl/SZ1i1GwEoBJMUov3wsSHFX3bgdyT43YI19VO7yAocLf89kJoVZ2nE6H\nWDlL3+s4Dx/Ox/k4H+8aHwpPwQESx6HlhKRtcXFbRUVj1dRSOhxMZAf2Gh6OkmX4ZoVtOIW+uIvW\nWjJ1jYvc4qv8m+dH+Koe7CnCK61c/J643a7JmGdipccnObOxfG9r6lOppkSi5UQ3L6gDceuqJCJQ\nSPSy24CRIszSKflMrq+14iCIDI5aj3BtjSjWZJhrqBfixidW0W5b6wRNlTnzl1T5qve+ZLGU0tR0\ndECuSa7AiPXpcZEWiviLl5SK+2jXCXeHDwDY2Njk0q2fAWD22v8DwEFxiquMyW5t6RQrUpQSs6Hl\n0MISqyO04nGoyfBdJa6NnTOSFetZikCXl51TqpdWqWDYbJrSmyo3ATWuUp4V223+3Ktyvt/93AaD\n35CE31Kh3aWJOXTknvumS9xWUprMMDtQ1KQXskxU0k2JabP6mLpYrYWYKpe/1+sxmWpmpMdvcPee\neEt72ohlDHhqjZtlRL7SiqxzqhPlolBv1B0X4Mk6LfOKpa6nuioptdRpHIuvwi92qp2hUUipnkQ2\nWTJ9IknVSTWjpfR28VqI29KEoXquZRBRaqi4GGfMtNGqmDlEq27WZU4Yvj8+BWPt+8NF/0mMrQsX\n7L/7H/0nZHfu8PDRbQAORhWnQ4EMZ1nKTPsWqqrCareiXcV6dYXV1lyLxWj+wcJZu5sx5gzjvnIH\nHRzKle6k4+CqTHqctFgpVzTdJrUyBHXXFNAzfEign+2ECVe3lSvyynVmTx4A8N1Hj5lph9sNfVGS\nRsJCqb77vsPVC3JcP+4y1k0oUImp8WHG4YkszHceHDNXjP90CY1YFoWJfHxfFnSx0I3HOCxUkGR9\nfZt/+I/lpaeoyJSWfThLeePbwv/4i78pvQXf//r/wv5D5bMMK1Iln/G8Elc3mW4jpFaw03Ahm818\nUp3JwVcFaGsDPu7ZHHmOIddOwlTbz60HysqPG4Nn5Bwb3RahiuCEjQ6hhianWrufzU5ZquqT9Vxi\nBaK14wDXl2N3WhH9tvaK6FpIy5JKYcLFzBBqV2bhWmaKW5nklkIh7aFiXZL1XdY8ieG3omtkF2We\ne92Az39UIOmBhhRu6FIu5CV9fHDEQ10L4/kJqXa83upvcV0ZmWIVIO76I8bP5D6//2yfU1UG45rP\n57c+CcCV3iWWDVn3o6fyjvyTr/yA33kmG2FapHh9hVsvEy7FYrSKdkK7Jw/oF3/pl79jrZUD/kvG\nefhwPs7H+XjX+FCED2Wecvz0DfbePOXwUOrOOBXjVBJ/tnTQTZ7CGpbqzgVqlmLfgFqdzFb4Wt/H\nt3iqL5gZSBRWGniKJHN99pUXwLX1j7T4iorlCkHoLAk1DKgVETm3OQ2lB4v9nAtaMThMJ+wpIjOo\nSuZDsSC3Q7EIPx9e5LlPi3Wx9irxpngNt5Kb0BcLc6qkJ6813mbQUhm04i1++FDCi2fF5Iy70gQ5\nrhErpz07uNYSaXepW5ZU6lJSWLLXlc5rq8mvfF28sAdviMU3x0sc7c2fLebUtbitvmtpdpVvoHuR\nH4vlmm/fk+89w5Ap38AYWPGV2KAiSGSOtq3LdCHnnutzzErQPiqCJaSadM39JhuOeA2NIKCrz3KU\ny3OK4yZhorgPx6HQDtRLfsJgINe83kqotLN1TVtRJ+WUI0WYPsqnBKvQZmHPBGwOJycEimUol4oa\nHKbsRYpM3VwSH2hYVblU6nmFvla7Jh65nm+aPqbvSbWjvxYzVA9k0Wiz3lPPUhufRlmfe6pA3vDb\n9FsySQ+OQh735HpuXdlhbeXFlNLMtoz3GUTyu5kdMh4ppZ1T4wTK8ny4IFJavPc6PhSbQlVYxvsF\nx6cPmStl9SSyBKpGlzkVRiHIrg9bibjMlfYydKwhV0BS18TQl9+vOdtMkMW/TcSirUKgCvg4zvbY\neialxTv7+6QrIdmsINCwwsOj1HbZif6uW1Ukq7ZnW/J2KRvZ1jjjYCjuXLJY0tmW7/3Hn30BgJd+\n9i9yc1dyH2WjJFICT6fXxLHy2c2bUqa7st1n4kqX5A//+S4PjPQq9IYzRgqlXmYGNGvvl3LtqYF8\nRRdeLEAXfDZfnpVUv/n4DtWxhA+nCxGYzUcFbq2lzNrB0/6D3W7CzlWhDv9I50XGr4rrm/yibNif\nmDzhtxWYdBm4oPvxXRNyVasWBy0PfyEbWUuJQCbYM0XiGmhpO3CcZ3Q3VMJ+PudOJPe61tMXz3js\nKHGt6znsqPJU51KDF7ZlbtmsGCjxzUxl60tu8MMn2h/yyCd35LjTsMmRVgxuOh0eHsv6c7WDMV+M\n8VKFVR/mBJ7koJ7Mj/GslJRXOYlmdsJ95Vdci2PQnNB68zn2rRx3be7g92QuGsqktGwe8rm5lDLv\nxydsuaLdWZQZl82Klt5l0Bb2MTZk7v/q5z7GP/qGVEseHvbJZ7JxBtMUowwuhbHs1++vJPmBwgdj\nTNcY80vGmLeMMW8aYz5jjOkbY75qjLmj//Y+yDnOx/k4H3+644N6Cr8A/LK19i8ZYwIgAf4r4Nes\ntX/bGPM3gb+JCMT8C0dZlRyNhoyWc8aahY1iD38h7mDBgkSZeMM44iO7IorR3hSL//HBJt6O1K5f\n3L3OWHkD1h2fuWYMm7g8VHfPPZB/H+QjDm4r5fh3v8aRgmkqY5grtDl3PGqVOqt1x40Dj05fLFTc\n7NN9XpWd35gzP1KNRqfiL9z8HAB//ue+INd74xMEDQEIETgYhRjj+Fj1hFoK4om2M6JUrIf/nMfP\nHYj1+MpDmBwIsMguUqyGUsuVxGFtcdRrMLMp6hxQefDGm+LyPxn/GtMD+Xn2TO6/8kMqZWXeutDj\nReWz/MyXvkQzEXf15atrHHbFKrY+/nMAPP7G/8Unvif3HKYPuPNFuc7New4XNCH6PUoaJ7LU3nnr\nNwGYPFzgVdpo5nLWVObVPgsNf9KWx9qa3N/6UlyzRifkhkK62+EaqjFDY3CRnba4604votL6/rKQ\nNTI5mfL8tnawDpccKImM61sSBbOkdY9BTysiShff9i2pgtCK3HKqwDHHKXAX6r3omj0oLe1Q6eBb\nbZrKjt0Im6xZuQ63d0BbORpRro+1ZUSpXuxHWz9BqWvgC/OSSpmrw2pAoXDrWCtO7Y0dXryhnqd9\nSKyw6XdszVKbreapJUzfH5/CBxGY7QA/Bfx7ANbaHMiNMX8B+Lx+7O8iIjH/0k2hqmsmixmZU9GO\nxakMw4BBVxbm8XBMuyMT/OIL2/zMpySBemNLJmRnsEGkuhCN7TVK7UhzrcFqjG/bGeunyu14QV6E\nq5NNRtcks9wKS775PQH03N17xjTVsqa1hFr6DLRkt9Hr0NqRTeFSY4viWI5352hOrWSdV7oNvvAx\ncTW7L72q19PE0YoEywrTlpfQliVGO9+Mo/+uxzhTWRD+9hX+3I99BoAoswx/RUKeh1lJqm5ipbWy\nEnC0KkNeUmq8O8sdnggAlLfm4Vko0fBlsaZNuNiVe3rxU1/gedVU/OSLlwmVg/Hi1S22tHO1qWK1\n1zb/CvbLusEs5/xYJo7h293XaAUrBqiA+L7M0c6rssF86utv8MsP3gTAOS2INJ+T+T7KnM5me8Du\nlhyj3Za4eJeEy9dWuYMBLe1mjcMBYaCCxAtL1VcWpon83ekHZFoCHVywTI4kZDgdH+FpTiRoRfSU\nKHbVtzJflBjVtR/PM9qr8KCKmDeVhWqkuahpRqj5gN56l6aWUV3PozpVtqgwwdHqSjnWPp+jmuCS\n0sjXMbH2ZcxnpzQ1pzAZP6NpZa3WS801bSSsD+T5NboV86GEm16QM9YKXcNmZ4xi73V8kPDhKnAE\n/O/GmNeMMX/HGNMANq21e/qZfWDzD/ry75eiL1fcWOfjfJyPf+Xjg4QPHvAJ4G9Ya79ljPkFJFQ4\nG9Zaa8wfTBD3+6XokyS2dTbBq3y21D2NOwk9tVbdZsJHPyJu6aUb27xySfQFtzVkSHqbuJHsuo6T\nEHR+JBdeq4hKWZyeQXRTlFmXU6xyDX78E7ewKtJx/+QRru6XZZVjk1Uvv1iMQSdmQysYz3ciflMa\n4xiVExIFjXzpy5/mhX9NXGzXXJFrc0dYBU6YqIFVOi9MAVqPt4rxr6cFqMiILfZwtM7v4dJT0ZPx\nsOJUI5BCXWBb5lhnhdXPSJX78Z1f2se7/B0AWr+e0bwqbM43Y7Hgg+ZzLBSwtHPhEi9dEYu/3m4T\nBipFX8KgIVbM62hoEwcschU3sQW1VkN23c/yKJXO1ou02HlFvnd9IUnCX0122PnHYgweZw8plMOx\nYQsSTZ62B12ayplx64Yk9bpOSlNhwmHL0qjVszTgVHL9RZDhVvL7uK2us8OZN9ktt9hc4apszqM9\nCRsTH/K2Cv+cKETZSSmVp8FWp+jlM817BIoNGR08kHltxDR8mbeNZh+rEGzmC46UXt4ez+ioFXd1\n7ZlmitXrdVoTjOIwzOUKtxLeizp+TDmU60w18VmW9VkYGxUT9jSpmg5zaiXlmXsO9Vxh/e9xfBBP\n4QnwxFr7Lf3/X0I2iQNjzDaA/nv4Ac5xPs7H+fhTHn9kT8Fau2+MeWyMed5a+zbwReAN/e+vAn+b\n9yFF7zkOg60OO6HsfIMr61zYFmuUjTa5sS3JmWs7W3S6qt2nXoAXGlwVLzEeoIrIxrcYVwVCFs0f\n0VUp6q7RNzieFkeSgI/FPw7Aa4+OmY2+D0DseGh+klr5D7Y6IZcuS2wcuzGuWuZLTZ9OS6KlF178\n6BmM2Zayg9c2xQlXMesYcoWtmgx71lyp0NlhgWkrQ7Vp4MSSXNzaaLG7Llbl4Sgj0vq/PcMBGFSa\nAWt8Ck20fuuTEzr/q9z4C5/s86kvS5nx+18VvoXl+B1sS25026nptsTqJs0OjZaKqHhNPEUpGiUr\n9YMRrVQ8MBOl1LnMS++521T39P42Ija2xOJ1tTHquSeG8g3Rczx5dshCkZJ1VLOmVHC71uFqT7zB\ny5p/cYuanqo8NxIf5SfFK8A4Goa2wBQy90Ek/zrOnHZfsB5rRYvKF+s53J9jFXptq4JE8xJ+V/Ek\npmSseanIdXCO1Ip3XTwV2smUgamVLhk0ZU22mi42lbmaFjk4Cmlepvh9hTwbmZ8qsIQKA/fKBoky\nVsUFZMrVkQ1zjo+1e3IleWcXuEpCfK2zw2EkHtssnzFWLIstLKrb857HB60+/A3g/9TKwz3gryHe\nx983xvx14CHwl/+wgxjjYLyYjbhJcEEWa3f7IrsX5AXK14/Y6klmuRftEHW0A0y1020O6MPElOAq\nzLkEVEfPUGOaK+UopTA7HRIpVVpYNKn68lJsXvBx78mDWUwWOPoiOJpwbLV/JEizSBdYdS93bnT5\nqY//JACXb/wUnm44q8VqHQ9br4RhLEYTeHU1Rbu6KbSPwjZ8CmWXroqSaqSJqu0eFxX8cjk44U0F\n2ZSBOn2zEjRiq6qafCL39NHXR/yDg98F4PNf/Fl21+QlHX5CdBvvf3uKuyHfe+Fmk65WHOKkSxBo\nt2cU4WiVoM5Xc5zjKYDIhGtYpQdrZgZ2tFek1aXlyIsT1UpXtlbxk5+WkPBXfuNXmClWoNlo4xT6\nfLZjNlcqW4rfzwt3lbQnMgmeJqCrMkcbXqnmGYGGikYTqv4iwBZqOKIao9WFfuwRaGLTrcDV+zOR\nvMQDt6aslcAmm2I6cvKg6eOpkdluyAsYmx79jib+4oCRgu/y8TGeduaGa01cxcOsnr+X5niRWh43\noRwrOUs4x9M+h6pwUeQ2k/lKDKaBVZKgwttj05O18013SqYVisJxaJr395p/oE3BWvtd4A/CUn/x\ngxz3fJyP8/GvbnwoEI04Dl4SUnc3eXFLEkoXBy6hhgGFu82q4F47FqvNLGWk2nlVRpnJrXh+xArz\nbGxFrfVaJ/HPdLqMu0r0hERK7OoEOW51BYBr/cu45vf0fFCXcrxEv99p+czUmiWnJaGRHXqwvcPu\nC5/Qz7hY7ZKz2gxTOzGOdurVpcFEWk6sDFUpCb/5XLkXKLCKpKzLilr1FHrGcvl5yXY9O6g4qR4A\nMDs+PZufVROQU9fsq1V5Pbb89JqUcLfmDoliCFoIbqK1+Q7NWunM3N0zoRJTDqk0oeZ5FaWqLptU\nCWqrnGagCj7UZwlRxzN01YUvgojI0znXRqOu1+LKJ+Xc3bUXWGTfleM5BU4s577eaNPqahekhis2\nmFOvqBlyF3fVuWYgr1TXo45wY71Ou1L5zlcOFHEyJ9HSY+ROacQyX1UW4qr8ICs9R2rcRBO+mYtd\nrPQiTgl7kqytC03KOjOcWjkbvPisQau0PrVqmDCAWrGctYoF+cQ4ys9R1U0KxRWUp4bgoqwh0+ji\nrMJYxXfEzYhCOSk6/S6PtWls7VLBg0M5d+JUhLpW3+v4cGwKxgG/wXpji+e3hBzD79bkE3Wfawer\nlNyecSlVNadU3T63bOIox52tYozGelgHN9Qara3OavN4mr2OmphVz4CbEHgPALjeCkChq7PiCE9j\n2KX2EeTpAadPZZEOkg5rXXnI1zoXGWgN2iyW1PpSW5VyN50au+qz9QNspm5gPqXKV9UTrU7UEdWK\nzfn0kCzX7slpSVM/O2hkNDQ+zTWdW9d2RS6MqUrujBX+fdvho//+FQAu3foMRsOOu3s6h/dctl4S\nBqLabVJrtrxIa3ytm5dVSOmIm2/OdDkT0nqlvzjGWbEvZwuKSKnPjcVVyHqg4qhlHdNqSEjxytYR\ndx7L8+2ylAQBkBqHSOco03d/MgNHs/qNes5yKcdI3QVG79WJcrx5W8+tMgF1itW+hNnJEam2Mi/y\nktlcN468xtWuy1Jfbq8Z4Czl/tP6Kal26x7NBihhNHWpeSDPI1SOzmJkefxEKvPzg8dMdX2uPYJi\nQxXMdPNuJ2t42hpfeRNylainY7AK2rJ2SWmVQVtZt52TkFph4I3lhC9elHzWye8d8ZrWECIslLqb\nvMdx3iV5Ps7H+XjX+FB4Cp7vMdhc5+bLL3DxsliXWTRlhc70R3NcRbxNJw5WGZFLzXrTKTGlUmLF\ncxztzccHjGbwagezMqEKS63jCldTsyaAsKOu9EWH64pEPUl9pprJXYayQx8cznn4WKC9aW+EVTRa\n01bECoO15QIidXmVd9JLA2pNgjrlmFqh1KTpmVBJORPvyKlCXEUmDi2cTFQHs+sTNSTR2JoMcd+W\nqkSsEOzcWmqdq6JyGXTFUh79m7tcULGbRuJSK0ty546cb3YxIJsLwnBxP2VypImxZv+sLh73+uBq\nYmspc3Ly7PtESo/Wrdowk/ubDI/otFZdYw61dkyuVL5902SjL/Pd/+SX8d76P+TPfsH6ujy/zSRi\nqlbR0xp8drJP3hAv4DSeEaiEe22gmqtHttEjVL5CV2XxgnmA35XPblTrtGL5++RkhAnl59iLaEer\nypWuodwn08a0k8IyV29xfjphFaa6VsOrsMCsdBhseRYqzkYFnmJdkqokDGVxuUvxuurFAQuFY1em\nxNaaVJ2f0NLEZtJt/yhZ2VDeBOOx1RbvYGm2uP1IkI574w47Klk3dize9E8x0fjHNSIv4ObgAh+5\neYtK2WWStORYW0VPlmOyhTzQteXyjAY+8mTRtdopm+q2d03FmUJIEZFb1YecReQn0p569FR5IJcl\nm9syqZ2NhCyXhddwB2fhSlEcY7ULMB3LZnT7jTsMR4otP+rxkZsSn9brTTJ9Iffe2ie3wqDTUVp0\ntzL4+iJETXA6qmE4PsQe6wZQCqlnbboc3RHY9W987R3uKtvSltdi0NaNc3zERN3jqVZDPGRjAKip\nuKz1yZd7XaxyO/qxQ+nI/U13ZY6/8d03mR4LyWnSGRA9kxchc9a5/FHZhD730ZdYC+Q8p0cSXj1c\nfI/Z78rzWDy5y/ffkjly2x6f/5nPAvCTr17HKotWom2/xgOnkM/OfvMrpKdyf4Pn17i6Jb0t3d1d\nNh15VhMlxB06OYtjuTY7DvG1nX0ynVJPtSuRAYplOxN/deYNIk/zOU7C6ULirf3HQxZ7WgVIoBet\niE9U87MTsH8q11BUGbXObT6fsiI08rRSMa0Cci0tTm3Os8fCm3lv/zENDaUuXL9Afag8nFrVqvwJ\njjIsFdNDMl1bh9GQZq7VmnsnzFQwyFnZwu4lXK3EmUGP8SuytvLS4mgCwpQ1Cz2PCkv9oeM8fDgf\n5+N8vGt8KDyFsBFx49MvsrHWZVe336PapxirFVgWRFvKgOv7zJRr8bAS9ys4eEKm8OD4Ixu4nrA5\n18eHDE/eAuDZ3Rk/eFvc49uPhfcv7O3yqZcFMn153oBQrV865qMXxX385l2PWq2wq+nr+5MKZYnn\n5WDE4p5m7V8IGR4I5jmfHLEcye/fWYiLv2wYOtH3ANgeDNjeFTeyiAJm2sc/reXf0f27fO2h9P/f\nH+1j1a1NmhWztnhC05EHGjaoPgjLHBSBTVkbOgp0aicBTQ2V7LIiPZS5+93bcj137r1OoNyWe3dP\nOFG+gdnhHTr7cp2nRw94+SelMas3EqDM0d6UJ/fEkv768T7Znvy+MWzBbwvV20Gc8rOqt9hW3ojG\npW2IZb67xS1uDcSj295oc+OmeCY3L2yxQt5MRuJ1jReH2IliSBZDxgoFn2MJVLl6uZeuKDUYRK/I\n+fw5LMVrONo/5oePxNsYzUbE+twH3R5RS84dabhjWiHXt+Qc79xvMFaXf7mcgEq9VRo+RPOU+ZFW\ngeyU31U6tmcPj0nUEzp5OCTakFDhgoZG2ztduprxLpshkxNVKZ8sOB3K2nlrNqI60YShEshc7y3w\nLsn1xrmPo81qz1+IOVCV7uzZlKJ4fzDnD8Wm4OAR2x7+HGrV/qvq4AyZl6ytc2FTXHRvmbDUsMJU\n8gAazQ0CBdCki00aWiKkNpzm8lK89eyYexMp+7XaApByNvvcP9F21HpCx1XyVDfhtbFsLNa7i3Yn\nn6kczU9rUl2sQdXmhVvyc9i8hqsuarKTcB8JBZ4cy0I6fvKEW02VS49rjg7F9WvaMUEgD644kcU4\nDnx2YnmRnv/igEkhv4/mGzTn8sI+WX/Ay7LW2D/VW3bMWfhQ2Bqr1PdhZvBi7UQsHQ6nMkfd7ecB\n+HcuR9x5W67hwew21Rtvy9/7HrOpbLiv36nY6ci9XP2MfK9bL/m9A5nX68OYn/mZnwBgtHadYSKL\n/+JyiV8q76CWgIvUpzqR62k5b7HUEuJOskGoLdxmnlFqH0CurEkNr4e/klm3BfsHMhcHyyFd3bR3\nmiOGfXnGTT1vsD44ay8/yAvmysjV3hrgaFkvsJfZUIDawsg9RVmH/VxewpSSWsOYybTCUTBUrape\nbpozVBDd9MkxM80DrUUhM63a/mCvYqbqXOu6mbz0Qpfttrj+m2GbMpDjHY1zHmsPxsPhnJY69qes\nuBprLiuxStJcEnbkJE9tzkJ7Sagrlit1rvc4zsOH83E+zse7xofCU8Cx1O2SKpgTOIrl9DOCpuxw\n0bJi/7GKc2QZVpV1cu0TTy5vYXzNNpsZaOdcnWQ4qsXXKC2tUBJYP7gnrujiyff52A3JnN+ZdOhe\nE++gZcb8/Iviqt15IyJVrgO3pX3z8xJfE4otu6De0mrAdE6ZyHX8zg++zz/6uiQKT09x5uLZAAAg\nAElEQVT29Np89rXb0+xVfEaTjnH3EoUqMLebEu6MnuZEkYCUvvmdx/zgWJKkL63dpa+JxiRoUVuF\nAasrauqMubo2Boh1DkvHwSjewnVL1nsyd5+9ouraew6n9/4ZAOnePsdKVW8CS6jgrX5YMBgIuOxS\nV2Dnrdb3aCoHxlfyU77+XWEa7u0MuekqH8bGFebXP6LXJ96TzTwOHkrXpv3MLV79ocxnt5MzUB7I\nxFmSNuReBolY8PEy4kQ9nrzyVwUe3EXzTM25DAdsrmvvwqFce5UUTGrxchajIYWqMr8znXOsmI1r\n2+9gXbmXUrtBB9bSUe1KU9VYfsQI3tNrCip5/saMWSilXVUZGl3xlPJ2iqskOtu9moMTubaGgvNO\n84odhSU7zS6bFwQvMlrcZuGv6OsaPFjKMz4Zqgr42oixehXTaEA4Eo/nudrloUKbx2FAnmu35nsc\n557C+Tgf5+Nd40PhKQS4XKna9Dc6DDU5V+ZT2toxOasyPCUBDaMmzS2xHo11hZdGa3R7susGfoSr\nXZTOMiPpa1Lm5S6dQj7z8evaDOQFPHdTdu0qHWM0cRm6F8lUfGaz8RqjTHZjPxErUixGBJ5cw9R0\nWG9/FIDB1QGZ7srbrwfc2hFL4d+Ssmd3o8/NNfFGbm4N6G/IPXmJjzOSJF+kTVRXL/dY187B5y5d\n5sdOJYHX7BiWCjE2Wc1eJd5ES6XpYjvmWOPMAos6LiSxSzZbieBMmT5TFuCheGBP7t3jWBON7kbN\nj29IDmcQbuNdEq/g089v8dKrMl+b2rjV6lmW2xIjX37oEpyI9TxJZnSevwrAlRevsra7akxT3c1i\nn9MnQs02euN1Lt+Sz14umviV5BQWJTATD8rVXESz7rDU/ELP2SRSXEu8mbFWy7O+fGGdViylz+Cq\nzOEyXzI/026MiLtyPbtpwkXVYdi6uoPSYZBN1Lp6OW+mKyX0kqpSjIvrEit6ES0Xj+clti/fm7uw\no+XShfX/f/beJMayLD0P+86585vfixdjRmREZlZW1tDVQzW7m2Q3RalJSKRhmFwYgg3D8kBAGxkG\nvJJ22njBBWHDgAF7Y8OWAJOSDRsiJKIhkqIlNtnN6rm7xqzMrMyMOeLNw53vOV7834uqItTsbLZM\nJYU4QCGjXry4w7nnnn/6/u/DMmAn5abFnT1Z1718JZBjcKMp893fa6IBWaev3ttFw5P7MPUJ+mPm\ntCK5yLv7mwCRpyoE7ELWyJtTFwWJcNMku9KyeNbxXGwKRlvMGwY6s2iCorITBw4z1VvdddR9ecEi\nf4GdG/IiuIG8pH6m4DJR57cjWFKuI6nQjUm3tg+0Wae3m/Jgq8BDnW70Mg7hzuS4i+U7OJ3Kg27A\nwb11+fzTnxZatX/2e7+DmEConbUczVOpRzc+9TrabI3+whd/ETuvicvvbhJXEe2jb2XBh94UOmR7\nq9OCuykLaOOUDM9fbMIKLQXsCHitkpCnamZYkv5t+N4C4HUOmqK1+PZpAUW1G0eZK8izMRUU+dUv\nH01xcShVkuOhLLSxt4/X70nt/sXP7MNZyHz3ixRqT67p9p0bqG8Lo7BHCLb5ygR3PyfXOf2eD+dv\n8HzFPm69JByVwVoPHW52+SmBZ+YBnp7KC/+F119DHRLaVRsVGl15gYIMKAg7Dshh2LYa/i1qSY6G\n8Nvi+k+cNoJLCU26jRqyFZirkM3EcRwY9qJEayHurIth8NctEtb9d27tgOJTyBM53+D8AXziVypd\nYeVcOwA8yt2vnPPocojZVF5Mr5ahtSZroWMV2iwJ1e7U4bAnpDkSw5M7BUL2X3imhxoTzF7QgveK\nbNTVgzpGpAGw3CC3Xq6h4UlC1Z1rzAk3P4seINMrXlHAWWXKn3Fchw/X43pcj4+N58JTsFajKmpI\n4gqttlyS31pHfc6dtKZwg33zzXoPrrfarel+BfMrJuLSxNApOyOh4W2LlVf+Et0J3UASYeQoYVj7\nbYU+rC8WOCnaMGT7rW02cMBk19/4pLj+//IrBnMRpUNQ9NHdZAmtasCH7OL9FxRqS7FGlpBiJ/Tg\nN+XcJv+wkQYmg7dSu9lmonUM+A3+3vfgsxPRxDW4WqxRqU4QkEg0oeuces4Vf4OGQkGKstAYOITM\nRv0u1EQsyXFNsBD7QQLX/RwAoK0mCAkDVpsemrRi1oYAa966lPp598tfQPr0fwcAHNz7RbSIPTA3\nA6gNsWK19QiuJ/eSZnRrJxFe6EuHfaerUU4FWLAM53BXuBDXQ6kpzUZZ92ajjrpa8DrrsFzCkSng\n9SU00bpARim3ksloT+dwQ5aOFwEiutTt3Q4KdjYFiYduV64/Z2fk+cDiZCHPLytKBGTo0b6Ca/ks\nZ+JhqbzAJXkm1LQGxVDjRttFg+vaGzlIlvT6XLmGaZ5iMSDT9MYIQZ8duL0GmlQVv7M/QLcvnjFJ\npLGX9OG6Mle5GWFkVgSzLhQh8qHvoFhJQ9IL+lHjudgU0irBe9MfoFn7BLaNvMReu4TDl7gDjYBM\nOX7ThW8oBkOXzM4tsoTS4okL6rnCDUPkqXzuFjU4ETsYC6qkesDKWdKeRklXzJvfh3rCzWKUIbwj\nnZsRmZ4qOAhZ564tzqC3V8IxDlyqFGmngUZbzmMv5cGqdg1gLG4agGG2WK9tQc2IrXAExIPLDhxy\nCipHwauTyXeQwe+KC788OkeRi6iLHlEQNS3hUABGlQqVK/MWQ6HGurjXqtDYkQX78hOZy8vBEXZd\nyS/4ZhMhhVu1E2PxVF4ar1JQc9m0/HX5V50lqMZ/FQCw/YYG/pYswGWVQ5/L5lUEG6jIZGIvZBNK\nhlM4ZDSabWygPJVwJnrVh8NuRrOYwDC77pWsNAUeSr5sYd1A86VpOA4KtjVnxRhJzNo8iU50M0LI\nDbJdC9DuyfWH2odDrVCV+AhpMLKY6mOzJeYnhDnnKTSFdvwgguX6SxkS5u4l0qkYMi910WsybISL\nTsRKheejuS4s3/ElcziTAiE3W993r8I/X7sIW1LZcMMG6jREKfHKjSqC48saSpIcTsqO2EyDurqo\n+x5yhmDT+bPtCtfhw/W4HtfjY+O58BR0WiF8bwy34+GQUFU/yNCiPJzxNBBK8knlFsCqQiE74+zx\nDKNMEm3N8ACuI8ewUQDPIZ9jTSHoE4HGHnWFBIq8i67SMKSaT42P9K4kvsqTp+i64j5WYzluAYMW\nyUbO1rZQ5DcBAE4zBUqKoZWAZq3Y0nWEiWEmbHDJBnAadDWLEiipklzIvdnOBGZBTwIhsFIiDpco\nHoi7unzwED94RzAQZ3QRS+XAYZOU9hTcRH72XQfzsViYwi/h8TpHSqx53mzCYRNYe7cGl4nEyZnF\n/YlY971ljmVfrOZCSy291XbhrEsC1v/kEgstlQpfa6gW50JbFKnca8xOJfvCLsJcwrWLw3M8WUqS\n8Av6FZgVW3GsYQu6vh7xFkkJjzqXTuDA8yjLrkosF2Ie54mGS06CkDyXjqpDER4eejkcX6ymW9Sv\nBHMQaDgrtm2H2pbFCOeFeG95WYGk2QiLGgquVTWXcOC9945w4clzWlMtTKgkXl9fv+rgRKjgzOTc\n6VOZ45PpKSImF6vRDI5T5/0ZBIQua1fDIexfkwim0EuYAXkibYKUa/IQCeZU0k4tEPorwhh6oz9i\nPBebwiLP8NUnTxCmJ/j8a5L1vsxT1D1y30Ua+UIeUhYALmPjkmQjS2Nw8oQtq2vHSKaUJPdyOIUs\nzN1P74CkP/B426VV8Oyqc86FIRx0keSYfSAxc+EpZLEwFp1Ri3ChFHx23+3Wphh9IFTmi+4mGux2\n8zzAskyISh5GUZQA78PECdwGH3IOKC39GBU74cp0jmX6ttx/UsBpMvSpHMTUY4znS4wocHI0IJln\nYeHSd2w6AS4W8t2OcuBWzDucVVeAlpXrO1xO8ImOnLvTWcfDgfx8dHyItx7JxvOBniLYkUrDS0ey\nCe/tfQYbNylqE6whYogyiaeIfHk+RaCvyGwKzltkZzjL5NpOL4FLhn+qVYchJ6KXjWBCOV7BNnO3\n4cAhNb6uHOhwxZQE6EqOp9MMWZ16lBFlAFwFw3ZvmyjE1IrUdoC4XJHQKlQuQ4FYntnjt95FSqh1\nYSw8rpF4mSLjvQ6ZM7LxCJOYz6Fv0aeg8TydX3X2RlWMGcODBbkBBuMEY3Z47rohYkLlM+xiLZB5\nKZ0IlsQ2RcESY1mhINFvFmeYn0qV5Gi4RFLIPAcusMYwRlbvjx7X4cP1uB7X42PjufAUTAWkM4Oj\nXop96iDWgxbsQvasaRjDIwzUd+vAUH7Oszn/fomEGoCj0wJxKZatdDfRvi2Jo7SsoW7YJUhXW0PB\nkAbL8SyqWFxpW5R4nEpIMG6d4MGpwH+fkkZ9nhsYqjL/07em0Bt/DADoztZw95d47LCDakV2cinu\nfqbOoM9kBy+bCcyhVCdU+Ab0BYk8yDM4HbnIm+K27hwDAevxpa4hZvfT4f0xnkwkwXilOK8qtIhN\n2O5ajClNVodFuCVzFLp1jB+w24/9+rc8C6vFqp49vUA1lGvW2QnA6kvW3ES3Q63EljREVd0epqSy\nb+sGclZDkHeQzNho1PHhOnM+EwmT0qxEzj7/0clX8L1DCSV+tYygGPK5nTWUNIoVqwm5jaEJCnLd\nECmtdJLPUZB2zPoZDEOMhGI4jrbIiSjIlxZOY8VKbaHJ2VDmPVQeKw1D+SxQJSrOkbEWVbkisIlR\nrSjUyL4cNVporuTIZzM8ZTNWbbmEZ8VjHSwtSrBBjl7jucmRLdnVaBOU9IRSlSJLxHNWXoUyXa17\nwrWXDlwmkst4jqORHC9ZJDAMMaIwvEp4Put4LjaF0pYYFkPM8yGaROgFexE0s6Vu4mJpxZ3zvSlQ\nEB1HQhZ3w0Obi6a1E6Dw5QHs9PvwyaHf1iFcvqRWc9IRw2EJydMu4pjsTmdL3CQL0cnxCN+Ysitv\n8SFLxarMczxZ4G3K2X+meAu3f05k57PEoMiYaZ/Lv9H6TZRbAmi5PPoulrn0RqTpEGdvy4P+5tlj\nAMA6Emzuy1xM3SY8boBRPIehQtRRz8eUXINarTpHAVPIghjEBvNAXu6pX0Ntxe7j5/B6cv2vNeUc\nw1zBj2SD8RAg2pOcSlBYOE/kOntOAeMQkLMmG0jZLNAgaMavW+iStPydBRy2KrulQsG+BOWuKhkl\n8pG8NO9MIpydiOtrwxIhCUkCm2LOUiRSuvuli5TxeawncEjVHrUiWJLUDsaXqIxk9kdkZvKzALla\nZfhTdPlC54GHJdmgaqWHFnM7T0mo8/WnGXwqinnIUbICYI2FYUmxfou07q0CswsxLOfTEVYKjodJ\niYKI1RuuB9ugJgWrAt5SY2+drFidG1jfFnRnYw2o8XwqsJgMFO+J4UpaotGX9T2dW1zMyTKmLbre\nivBWYbkqST7j+Eml6P8bpdRbSqk3lVK/qZQKlVK3lFJ/opR6oJT6R9SEuB7X43r8JRk/ier0DQD/\nNYBXrLWJUuofA/iPAPx7AP57a+1vKaX+ZwC/BuB/+jMvorToXRZY/4TBQ8JuP3Wg4ZFMYjgbwWF/\neFzlCGttXoRYDHdmsU7IaXd/By6tWS0IUBHa7KrqilatYOLIzXxoghoqL0Z8KVbncPFN/P7pYznF\nxSXOmQSio4GPbrwDa/FHlHg/6Jzj1WRFerJEzq42rSU5V2gDOxMLFCZdFFSo1vUeNsgTeJeeRLv1\nAjbZDWjKGeastFSehUtm5/mTHBPyAGa8N2ss4lju47IssD4Wa9RYA05I5NLoOfBX6kSRWJ04yrGc\ny7V1tI8P3pFuxwd//B18/1I8oZeCu/gZ5wAAsNaQ66x3PTjEb3h+iIreXVBG8FjNqMI5ygE9GrIa\no6wjPRfOhg/e/kM8JSeDq2pwVhJelXNlpSsm3+K8gCWEuZxmaJD6vsoSlBMKykDDBcMH4hyq2KAE\nu26jD9m/M9irEKUwBRIKvCQLmfth12DJkC+sNBYEVlWwCAkSWyOjy6IqsEn173jTxehIEtC+yjFb\nyOfdZojFsXgv52fi/eY6Q5OQ/g3joE2MhV8LAALYFjOLnIQysCRNCUJUDCkWRYYFeRZSGCTklmjB\nQqc/nkTUT5podAFESikXQA3AKYAvQ3QlAZGi/9Wf8BzX43pcj7/A8ZNoSR4rpX4DwFNIT8g/B/At\nABNrVwodOAJw41/390qpvw3gbwOA44e4jxyfPoqwe1PyAbO5xWaNyLyGg+m5WGPVUWgEEn/mY0F7\nxZfnOB/I7quXPgI2IKG4REm9Rl2zKMgtULEDLm8G6DMrZ9FCQnTY6JvnWHfFqn4jLlBeeQirxhKL\nlbPgAEhi+btsPgKmYmFNawcOLX05k/Lm9HAT3pnUtPNco/MStSx2fhqqQdLRC5FxK/sZxiytmgsN\nTUtTuAs8Hor3M7Y5EnojFWGtxgJ2ZfkKhROW+vxZC9qIdR8PcpCkByFFSJaDC7hd5i1aGkdMeH79\ncIzTpcTczaNDnO0LFPqFt6QkGRUH8HdZB/dL+M4KduteQaXLsIVSsbRGbUTlnOPxhczF+RyIGAMn\nKoZDZtKwtgZEklQt2C1pHI2cOYzcsVDjcx6vjuVSkrWeG6JzV57VVl06WPVwjMWKMbsskfIBZvMp\nYnZB9dcDFGRTmjEpqXOLFmHe8xJQLKlaADpi5y5Lj2EVXhHQPsoGWBLFOBiV6Lfl75zLKRaUpjuf\nyprtRD7mgTy0vV4Ikwiy1Mn6YMoL82wB0EsxZAyvBQViCssUswohWcfT3F5xZ1RVBb+2eh2fbfwk\n4UMXwK8AuAVgAuD/BPBLz/r3H5Wi92sNW8QL/O7b34J7QxbEX9m7jcWF3HzsGmRaJm0ZexiSV2uu\nBBobLweoSvY+pB6ilZhI5iLxZdGYEXA2FPeymYu7tx26cAvZWNJwhnQpL2TSfoT3v8WsdmlxtQPw\nBw+gkynD8IXc8ndx5MoCuxsPgYacJ7mQZN5T+xhmJg92b62N0AoASM/PUcWyEGybCksDg+lIkoSz\nB0dwAznH5SKHIXz6G8UJpgwbqo+ENKufi6rE0wVBX5MBtvbY+9DtwZ7JHF1QbUhXA7x3Jud+92GF\nH9wX3MSgWq7yushnTRw+EU7Hr2uZt9fMDM2ZnKN+Zx9tTdbmbgSXgjqZnUATW6Fc+f3iOMfl6fu8\n4DG0R3zAvI3El5c3zA2ciD0BKTfTIgUIU7elizNWOI5m30NyKe54wzPosurSXpfrDbWPjDqeKrM4\nSWRdxNMF9nbk+WRzg2kuG8vTE4GPV7UYhmGHVgrqw8WAbMluXBKr1CsLvXYg1zZ5D6MVh6hKcUza\nvGMVwLVy/TPqf07SBfKT2zzmewgoWGsefQA3Y/jb1ujxdOFK4MgLYWpyrKdmgofEaRTWoMxWG3KA\nIP/oav3R4ycJH34RwAfW2ktrbQHg/wbwRQAdhhMAsAuQqPB6XI/r8Zdi/CQlyacAflopVYOED78A\n4JsA/gDAfwjgt/CMUvS2zJGPH+ESMb76L8VC7770a7jXYUJpMIa3agaZXGBB+e0ZmZ/jmYNgLpY2\nXeugR0IWpxZ+SM3mpdhZ7bAsXemmAliXrgqDJBYX98l9wGU3X2nt1c6pCYEtYbEKJHwAlgyz3373\nMe58XyzezU/8LOqkcVvfFmsXVTeRUom+s+2h0ZbIStdrsC0pAbZK8TSy9x4ipMbC6XSJOJTPay2L\nb34gFmg5KMAeGHwY2Hw4jFVoNMQaT6oAxalYoDtdF+G2HLtxKn/5QRrj/EgSf7UsRdmRu37tszs4\nfyCu+6c2XsBL++Ih3FyXstna/iZ6ntyUioCSwjeISlT07lTuwhKT4LCubtsZTofEG3ghQsrppfY9\nhKnMS6HmqAL5jheQDTqZIqZYSuInaEVipfe7G5i7UhrMpiN4TAI6Szlupi2sFVNbdyy2Q+m+nCYK\nIXUzw1aIQ2oyDM7Z1XkcoguKs1QVPMr66UqhCthYR7Rl1dLwmIXe2t3C6YmUJ2cZMGGzVtdPUNuU\n9bnPkvq79weYToWTw49DTDsrlKbCNkPQve4m/BXN3kp5UNewKGX91gqLgiQsns3QJFtMLXTQJTYE\nOMOzjJ8kp/AnSqn/C8C3IVI534GEA/8MwG8ppf5bfva//KhjaWNQm+cI6i5O2Wfw8PgYB8xwB80I\nylAJKOzAZdtrfSZuZjUeYMaYrHZ6AUU3qtQVfLbONrshQuIXLOvL1kTIUznufHaIeLESHOnhRlte\nhKpIMDAroRVZoOOyuNooCk+hRX71vbsWviMLM8lGCEfyEkZdArLKJvTosdzHaRfWlYy7mQYomOco\nM9br6woBqwitdg0V2X+qfIHDB8xejz6MFVebggaw4tlRCohOWNPuKAwKcY0P0i2YprwgLbYKd9dz\nLBMBJG3gEB5f2H4vxH5HNoDXoi40qzkZZAO1VRPYknvWOkBVW2lMhlct7lqXcCjQUxXyTEt1iQ47\nA6OyQoPEIe5ZhfgW3fxcoeawN6NaQX8rxA5x/VOgyY0+Kkt4dW7wa1voRwI+W0GDF5MYOXtCKqPh\nsLchrJfQxAvE6Rhnj6ViMCfWI6956HjyHJNijgFFXAOlYEiTXxBWPp/H0KwMNDpNrF/Iyzh2Mzhk\nk2raFI1Uvt/dl89+qtNEe0x+ybrChHIFzV4D+3UKHkUKtiYVtoqVBScrkZGVe3g2gqZJcAqgFsq5\n1xpNdBp/sVL0fx/A3/9THz8C8Pmf5LjX43pcj397Q9kfE+30/8e4ubtp/+7f+U+w5iaI1iTp48+e\n4I1HUnG4/877V7yDUb+DL70olmvTo1VWY8wGkjiaexZv073e6ibILsXCNLZ83H8kNnR3h7t20saM\n5CTLZIk5kY6VUrBsFNpu3ET7s2JBb3bEyt1/8w8RU6jlycUAF+yhvxjOsEzFUmRVhZVghE8p+mYt\nQKsuXsWNdg0t1vEbnQiuZvMXm2RMz8fDC/bH2wweM/JGRShWGhHxMX7wPZmXpMa6+ghwmJDSNsR/\n9rf+AwDAhu+h3RdOhtthikfkOvjjN74NAHhweIklw529movP7Il13Nyo4YWb4rr3+jtYEgtw8r5Y\nqKW/xJip/HfPY5ydkR5uksBSjvGD4wwVgYnmRyy3oqwE9w7AVgVSWs0F2aUfnJ5hfiJo0+OLc8yO\nCfkdzlDUZb6mgyECJvFmh8SKbPqoSM5ya/9FvNgQjoz9n3kFfUrGx3GMb39DEpMjQpEf56d48g3x\nSN1ZiBkb07rtGJ+/89NybE1Ck0/+DD55LBR8v/G19/G1f/F/AADm4yEyR7yRnlfDra6EivUDco0G\nNawRk4O4wJCq2nGSIZuyujTPkK/Ic9g5mmsXKGW9tNcb8IlxaeR93HRWpC1d1FriFf36f/cPv2Wt\n/ak/+wk8JzBnKIXKV9hpdeDGEuudTC0u+PDTrI1XuTBf699F7aYs2C0tn6nEwzST0ODh2ffRmkrc\n21s8xFKJW6pPYqRTYeZZMOM+bF0icQVY1LEe4qmEDJMMSCg57t704b4jx1i+Ji/0aPwEozP57ng6\nR0LFqrgqseLIdLWGuyLLYGn1k1vrePEVeTFveh1c0OdvGx91tnuHFG+5yJ7iaSZQYosLxIoMS3Uf\n+zmJQMYlfonx7psMJQYWiPgCLt0U5wRqHVgXmwMGo50WHg3e4b3K4tm/YWGYyY+2LX5+XYhc7vz8\nTfQ64opnkYeSvIo7PcKnLys8WEguuZVaLHg9g2KKb69EYQsHM5bT2AD+w0dloVj6tQvAYdfi7IzP\n7EQjeyLzefIgxx9dPAYA3BgDUU++E1uLBfMHL7H2WhpgUMi6efqBh9eFPhINk6MWyrpI5iXubQsF\n/8ORhBHDpI9AS0nZ9IeonbOMkPTx5sviov+XVBNLfvcEp0tZT/f/xW9gTBIdXwfYZBhbdELsknD4\n5r5037ZrCRRh6v2oj4K9GOeXOd58LLkGGyUoE3m5NYk3H00maLBTs0w8FGMatcpivM3Kx7BCvVoB\nrp9tXHdJXo/rcT0+Np4LT8GvcuzNjuB0XkQQixjKd3GBRlPCg7t3NF5vi+U6uL2OBpWLbYvststN\nWPf7AIC1izv4EtWMx2u30D+UHXOoI/zUSEzoWU/2wvM0RDiTnf9Y50hZE45NDpvKMc7OchT8PG+R\nl3FisFiyy3A6x5iS5HWtsKzLlDYdjV3qOP7qp0V/8Qt//bO4dSBu62T8A0zfFMs2qRJkhPPmI7G6\n+fktfJZcfu91FC5ZcQkuYhx1xLpP523s5OLaPqZ1fREWo9W8lgob53KMYH8POhF+hj/sulin5Vp8\ngi51sYPuvnz2c96LuPFXxGK2NvZgI2IMThykt8iIvBBr17gzwc1zCa/O9g5xcizh3zeD78D7OiHf\nZoGTFRiI1/bDSMe1o64aulQoPAEAkI9XnYFv47tfk3t68+J3MDuX61l0AtzUsl66/S72Q7He7prc\n00F3F0Es66U5SGEY2tS8plShAGwWEdRUkrG3/QOZYzWG2xC3fVR38O5TWQMn3in+0/HXAQC28QUA\nwNj+Nn79W+TcKIdXZD/rbhvb9BZf37+FF39WMAkvNkVYZ7afYGcp4YPX9OApeb7H2RyvvCchwVE1\nx5MHlJOjNunLUYnLU0LX/TYqckRE5RDZhF2gRYLD2o/XfvRcbApaO2jWuihVhAHRXntwUGxKaerm\n5hZ2b1C9KapDs1RXWpk8bUN0NyXP4HzpHmZfktLLeh5iTl2DbulgWlAfcCSvTXaSYZDLpM7GOSpu\nJu0owpwx3jIuYTTBNCO6anGGyyWFTR2DKOBGoH30yEX45Zd38bOfF13FX/iySLK7QQceGYHq7kvo\nfEIWabeyMJn8XZJIvLmdpTi6KwCa6PEhykPJAczzBMtSXpT6wR4Od2QzcR4xVInPULIU6FgPN0iX\n7jS2Ma1RR6KXIVqKW12jyOGLt1s42JCN4ParHXiRzLdrAiCRazbuGVTMtmZ2GSM7PY0AACAASURB\nVLZRg+6RlzK4hXZb+AcndR9OR17e35u+jfZXZfMZzeWef9hQSliGAKAcGqSVbJIZyXi/9cYTvDWR\neZk+LdAkjfr+3jru3RQVqoOtW+isy7woapN2nCZep56CFxQIqM7lhT0ERDHaho/6vsydGQow7vPu\nGt4ZybzMT9+EXeVGVIq1RNbn4UCu8WvfmyNOWYacl/AVeS7XQ3T2DgAA/Vf3sLUmz6RB2vpedwdr\nrBA4TQeaFcmGaWNJuYLNeYa9SNbvZSb3fHg6QS14DAAoqgV2+rIpPjy/gGF7xHCWwdafkbGV4zp8\nuB7X43p8bDwXngJcB2WvgTJUuMxWfeUF9A26g946GjuSgNTJEiCHn8+Mrh/WoKnoEfZyNKy4sOnM\nQhN2WyYJbEnY7ZkkiOzyApdk1J0mMYyRPTIxHsIr6myLBfv+i574nGmeYcnEWeBECEmr1ruxjk+z\nevLLv/wpfPqueArNLbl2zA3ABGaQFtDsu3DRhWaDRUVIqnF8rPUOAAB7VRNl+l0AwIMsxmNL+ZEl\n4O+Lh/QSNTPfWiZQp9SVtCXWX5Hfq6AOzOXaGuU5ynVxRfsEuazf3cYGLZhqtgF6IyZJgRUeJJij\nJMjIqVY8DiWcFunS601E7Gb96XAXL1KqPSsqvHwsocs/eUxQ0KxgT9+fGkpdgcGsrTC4lGf9rfvy\nDB6cPMDlhCDZZob6tjBwv3zjs3jtVUmIdppNdNcIYGPY5Tg+Cl5btF4B7K70yhIl78Vr+mgwMW1j\ncfHtZICtV7j29AbW1sTjudFv4pKqV8dvyT19ddCAQ11KN9IIHTnWq6+/hFdvHAAAbu7vYY2w6gY9\n3ab20NyQdaod76qb113ECBiCuj0HkSuhUG8iSd4w8BFkpM0bjzEhO3a9W8MZe2IaU4XWFUfjs41r\nT+F6XI/r8bHxXHgKutKoL+oYTI+h67Ib6iDEC2uyW9fbBTRZZUpToRixm4/JJC+awu9I4qvQKers\nCMqjDDiUXTlxLqBzUmmFEpv5hUZGXEGc5lC0GEopJLlYB09N4RABOVhRm2Uj+KwVb/RceB3JB/zM\n3VfwxVckpn5p8/MI29Q6mLGjKJnBrsRUah34JE91XYXVo6hysQxpdYFuzBLiWoaduVjx9z44x/yc\nbNXeDN1I4svHZKW1Q4WKdfPCVNhUch9JNkXQJXLPKHTrYmH9DYmBW1UAQ13C8rJAyQYkJw6ANbL/\nzFtwmV+xlvYkCGDmkmhV+QguaeoaNsSiJtZ6/S0X3i15Pi8xvP1uPoAiRtviQ0QmjIWd5Px8hDNC\n0guiTZdZiXu7skZm2W3sUdLv1Ts9rG8QCu0H0Ey8Ro1gdWCEbbJAOzVY4jqcSkGxxKcSB36dit5t\nuc90YREM5Pf9yuDk5oqsdY69ueR/5ouvyFze/ABjqWRic+NF9G/JM/v05+7h9rp4vTvuOho8X60n\nnkRY78KlcrdTd2EW1KuEgiExb9MvURDjMp4ygYsSkRwW9VmCKSHmrt6Ak0sX66gOVCv+hWccz8Wm\nUKHEAgMYx0c/EXex0dvCGolTnHQOS/p148cIKOtdb8okuV4DDttDa24XiqIvZWzh1yRhtDwGCuLu\nq1IWdPBkgJBJLVMZpHThdaHQ8ilhDsAjeZSlCE1YOYh4jm7Nwc6WvGD37m1jryuVkaC+gMtWVsPW\nYzgGTkBXNIqhSlmAUDkq8ow7NW4al3VUfbIhmw2s9aRKcmujjveG8iIfJgq9XH7+LNWDvllGKAgp\nTuMKur1qqV5DyC7BQK8hbDJTna3oxAsgZ5fdJIHblHkpbA7HkJRGu1ddi6th7BCKwr0IDCyz6Dac\nou3K87l3w8f3LmXz+sRrcn/90sEfPF6FaObDTUEBCc+3/GCC6vElP5a+jHu7N5Acc+53fLy4I5iU\nZq+LBsFnflRBU6xntdGHUQBqzEBbDcuKkbWAihjIGAOHVaCQFZ6uXqIYS2h2Z2cDx/eZKK1ivJlI\n9eFrJD/ZeFKg0RRsycEX+9ivSzLzZX8THeItwsTAYyUiIiDNqQEOqe+RZVcclDoq4CbscddL+OzW\nrFMaIF0GaEWy8UxbExjWdOblEP6KvWBu4bt/sSQr1+N6XI9/x8Zz4SlAaVRuCDfOoUKxAmvddTRC\nsUBFWSBfSHLF5ga1TTY2BbQvpoKmBoRTV4DLHnTHIGJZCK0KMT2ELWoJrLk9RKHs/L4To6QWX5HF\nKBpsFDIuFOvUTpfEoCcWTe7aXqOOTSoxH+xso9UW6+DqGmBXJDFiSSwCgB4PckCRvMMU6orjzazY\nP5oOSnoYushQnZOYdm0N/ZZAuqfLJR6QNLZJWG5XaRwzLKmMRdgSzyRaLjCnyEgdHrpd6nHOGSY1\nNDxLhebe/IrB2AsBh/Vvp6VhKFYDr8l78oCQSdKlQUl8h5NdIOoxMZbU0ack3WO6xuErdewcyzke\nZ+ZD3IKJ4Y/FO3j/n/5zfPOWPJ+dPUHnbgZLqA05bgt9fP41Esm2m/BIDus6Gp4ieQ49uiq3V4rS\nOiyvujYVHBiGglo5Vww1K1SlWyhkXGdn98/gZHJtabbA6YXM1/yBoA6rWoF7d8Vr/NSNz6BJOHqt\n5cFviVcY1mMEEWuOq8Ym614loOFZmHSlT1FdcTmUJr2KsTRDXutWALtqPa9EQGGjeaowG8h6gAW0\nauHHGc/FplBVFeazGYKwgyBYiXRk0GRCqnSFglndohagYMbVYfea8hQqkkq4ZQgQ965UCcWF3uhW\nUJW8FOVAFvbdgx2khSy6JItxOBI3UbkWIcVfo802WhuysZip/DtIKyxIF79pDFQg8Wej3oBDfIOu\nDHKKdnh0VZUXANQzNGUFQzr0qspg+RJmqwVaZijo7pvKR9iiPPvsCJ2m3JN3nqEiC8/wMReBdtFl\nSDTJHAR1Ql+zCOsp8RluBWspxsoKiI8Axl3BZEvoOnkwMxeKG5Z1ClhudKCQi0lK0YwHUFoNxdyG\nU7SheH+tbY09xsyG2o7/77tDzAjtddWH1CXGlPjBVyUejmffwOKfEOD1RaksrLUaSNjDsN9bIKzx\nPtCGS3IdkwPghqvI96gMUJAH3wk0LIheMhkK8moiLKDYBm3YyZhlBk5IMR+T45Cdqzaf4+iEPRP8\nbj3L4BCCvtZtgbYHzSqCk8schcqFIv28ZYUnW+TQqxc+0FdroUgNFJWxdOUA7APJaQBbvoOMIfZy\n1kLmylpeZClSbopVksKybftZx3X4cD2ux/X42HguPAVrgCzWyN0F2mxy8lADjThm0xR5Qv7+qAmb\ns7+d8uY6ayBcY31ZNa92V2sAzbpzuUxROBRauRRr5TWmiJTstL2mhxG1G7PCYMpQ4qZuwiFD8Zzy\nb3FZQRE1uBbV8UIkWegoCa8qFdZkcNtybFsx3PFymJLJx8hAU64M3gyWTVWaXlClhsjG8tnkwSnO\nlgJtPZkXV52UgZtjyJ/nFD3xrELErj/tlghJMjK2OaJIrJjjh1eK3nbl+uczFEzU5bMATkM8jyhT\nUHW6s3EHBmQUnq0YhR2UJKTJF0NoSmMskcEkbNw6P0eeEdG4Jdf78F19paHgf2QV2ovvIvktSZ6a\nrSbC12Xu9rekEnWZP0CTjMnGRJgeyzNxbjrwy5VX2IcmDsEwgautAsKVl+bBgi547sCy2ayKa1Ak\n3TFMeDtlgXRE3dDRKeb0tgbjGdpkmLYMEyZBiIDPPLRbsIUkh6d2gk1LrEpVg3Zkvip20YbNEI6q\nfXgsMjt7RQ67mlvMkRfi6cR8MfK5Albao/ESkxm5QdIcS1a5CmVQFn8Jqw9ACVRD1PwDRKve2pqF\nZomsmi+hiQd3Ax+evxIBlUVnAbA5D7rtwAkY764vYGsCetFFH02+OMM7jHu/dYLXX5fs9WQ5xtFU\nFlg6SJBP5dxKT9H8HEVT32Q4E42wYDdj5Rl0qKVYdx04fEmVA4Cuvark5Vczi5RS9HqWQVOxScGD\noUhKMpNqSZHFCAjLnS6mmDyQB3t7s41DEo90EWBGsJND7UDHlldtushdRIT5Fl4XbiXxsK0buBRU\nUdRXzIsKBcVb/GyOoCYvY1UU0OUqHMugKfpredyqmgEzOUbg+xgTWLQ0OeptKRfWD7roMNx6+ULu\nc9B08duM26eeEvcYQGnv4LvvC/ltzbnEpi8vU3AgPQkbUQD0uCk2ckQM0QKtEVCv0QmKqx5tvWJF\nqiqYUua+RO2qDFmVHoxH0SFTIci5cSiWRe0YdRqDW2ubeCOV65ilCeptskJpEvn4BjVCl30VI57J\ncwrqLlyC4epBCG8lZ09iGUcXUKwoaFvBkAzGekNohpthopCRnHhIseFaJWVLADAmxXJJLsbpFFhJ\nAiQVcu8vUAzmelyP6/Hv3nguPAWtHDSiBjqegxqJTBpBDSBNlnZLxHT5cy+Ey0Rbzk5FxBXapLvy\nAkCzYcRWHhSzyVVlELPr8Adfk4z977/5ECUTQPmwBImYUTkWpSdTs1hzsbGS/j6Q3dc9VFineMtO\n4wCbDUl2IagQT6kMfDpB3CHIyiNb8Pkxhofy+2hDY7PY4e89WKo8n8VSj7+YtjA6kaz2b/7BfTyY\nkOr8TYM2eb8vrUXC+1uJf6xrF3OSlBjHoBmJpQlcA0O9wkYzAIhTmByJizscXmBJjc5+M8RiLC6q\nO1mivsEmrnUHekk3dyjewdw9ReZQWGZQ4uhYrNjDZIF7dwkiO04QUwDlIqPrv6lx+4kk6N5epleu\ntKkm+PkviWX+h3kHO18SSvn+Jz8l9/nkMaYgG/Jigc2uPOtqmCDjXDiVgs+E55X+4tJDTp4CDYs0\nlWrI7LSCE8p6Wl9fh6G4TkVwls0UElYL8ipBey739/44R9aUUNcxco5uI8D2mng2pVXI6JlOh2PM\nyUCdNyrUV/D8ulx7s1dHza7EQDMYNn/lxRiqku/Mhh/ggpqkJ+dyDU0bQEGeU5Uu4HENzMsSScbj\nWQWzcqOfcTwXm4LSFq5fIup10SAPndGAYwimSRcoGTJUWY4zknrETNmWg2OsMc8QeLvw+3Sl50tk\nuSz6+aPH+FfvfAcA8N235WWblgY3iGBDQ2O0lMU4ygtYuqWDYQHflQdaZvKwfvbuOsYkhN3bqF3R\nr7vIcDGTBzeYnCJnTuTyXGBuZ3qKt78h5CaN7Ta+PJfQ5dWf+yT8RBZsNiDN+p+8if/nSNpwn85m\nmCfEw/vAjMCclm9hKUZqiWJMTQWPbnleKnTZG5BUDnAum6F2Sih3pacpm80kn6Bgy/Kjw3OE26xw\njB5hq8E5GgHuloCz1EhequUixvfeewsA8LvzMaZPZNOb11xsv/MYALB90EDKis/+JhmdhiFOKKO+\nFXrw2FNh3U1Mbh4AAL789AL335Bn7W6urvMEJ8cSXujS4I23CU6zwJ0bsvhvvfwKdgvZiIuGbFiz\n0RHGlgQpMXDBNvp4eoGyKy/yvXQJv8tyNt12a6ao0Sh0D7ZRtuSZteIxQr7IOVuTrVfHVRybTfGQ\nm7o9HmP5mOHR9PtorsrB9Opf+9Qr+NRNOW50sAdzyIqYXiKfyjXfP3+Mw2PJK8GVNbK108aYFP61\nVKHuyRy1fR+LiBWzskLd//E2hevw4Xpcj+vxsfF8eArWgV81geUShkIYjvFQpOKqBrUNlK5YmqXr\n4eKCQi1UKu6FHeRMFk2GEdoUVnFCBykt6cBx0bknpBZ//Y6Aje5ncxQzhhpPFhhTzfeDhyMsKTgz\nSqdYiIFFnezEdW8Ti6V81/d2AHb1LZctFFRA8tZ2MSMx4YKJuuJBhfUtSVpW+SneOpL7u/3VCzRf\nlfvWF2SMhsbLZPL91F2FhHqW40mKx2P5u5pJcUIMxIpZPavslWCJgYHOWQGZH8JSo1CHdSzO5Oc5\nVaiKFBgxm36ZGSy+Lt5NI02xR3KSRvsGdt8RDsKUSeDvnwzxlQcMNTKFg77ch3/DQ2ikQ9NPLhBS\nsWhOpu1lcx23bxFDMB5DE/+QKo1WTzyTpHcT7YZY0IJ4Ayfvo2Pk92+VY7x3Tu3Hyds4uxCIcaOz\njrCSnwO6+3m6wIjq4ZNZihlBZO2wgcqVOTpZOFinFW4R6eR1LUYX4hXGF+dw+fksr7BBTUvFSlUW\nRxiyAlBflnAswVsv9RCyU3Y4dDEaCQ5jyX6Oy/P7eET7vJdViNgzMj6f4sFjWXxPjk+vunidljz/\n4QiImBhdWgfMdyIpAEMaPrjhlQjOs45rT+F6XI/r8bHxIz0FpdT/CuDfB3Bhrf0EP+sB+EcADgA8\nBvA3rbVjpZQC8D9AlKdjAP+5tfbbP/Ic2sCvpdCFRuQSXhp4cJh8qnKFy8digf/w4Tt4ytg4yxhD\n3t3H5ylj1r93gcpd6RB0YGOxeDrOMT8X6/6H35U49PffeQdRyB50CzgtQmLLGupEzamsQs4usxqV\njPcPtmFJHtrvBwjJ/tOoPMza8vnjd47wrSdiVU8u5Xx56eJgW2JdJ01wk6Wp5n4f9aZY1XZD4sLP\n9bbwnZoc90++f4iLgeQqclvHJpOjSehCUzLZp3cwMxVc5hQUFByWzZx8G/6OHKMKAI8xdcAk27ef\nDPDGBxIDD+MhFElnN+t1nMZy7L/mjpE0SFLKxO57T5+iRYXmaTfAw1Ss3PQR8OltKcnVHaDeINy6\nJh7KRqIwabIhaH0d1TnFbroRTl+VuXCfDrAbynN3Hbl2Heb4gIm9r/3O1zGJJQ+UGYNkR65j88kx\nNm5I8tf3JAfitIFwJonpmu/DMXKd7z04wZNc7vvuDYXZmXz/1mtCsNs3AdbrMt+jTg83mO94MDnF\nep+EvjEbtBoBIlJpd7ZTnD+Uv7scLHD8SEqZg8kJZgtZh2sdOUcTFe7skLi3fwCHqun2/BRhSK6O\n/hbe+EA84EOS2L64U2Cbpd7Odg3Np/J323qCxcrzqswP5777IeNZwof/DcD/COAffOSzvwfg9621\nv66U+nv8/78L4JcB3OV/X4BI0H/hR53AUS5a/hpqjeCKRsokKWxF6i+vQFBJUmqvv4EdPuikLW7b\nRtjHdk9cvKCsgIgkI/MpCgqH+BroUGD2blfcz8udFoasFtjIQTYUN7jmK8w52WWpkJPUZUaq9m6j\ni/ZdOVa7s486iWHCposON5bbbQfLWwcAgM/2ZcMq+w3c6cjLkZoxtpkhbtzowSfFXK8tD3b3ky6S\nhXx3Z6OP75yx96OIcUEswOLpAt5Q3MRZVl3NZ0pYsnYAhxMaqQxmIv6las7gcLFFDD92fI2bXdlM\nX9zrolFjn0jho1WT6zzoe6ixTbw8kjn5qZtdLDaINzARCgK1xnWN7RZr/Zm9Yqmuv0Cqc9VHdCwv\n/PzRUxR77OQrc9xtyWby/tMjzH9OnlXHE/BSWL6P+glh5ZGP9RdkLewG62i32JV48Em0KYYSsvri\nmwjFLdmQt2YNDBN51qbSiDjPd7c6qJOHM2qTgzLsAITb9+MMIen8a6qBkBB6ww05NAoeAXLLmUVA\nuPJkcoFaKOe+t76L8K6s660VdL3uoRXIZuLXIoTEULTXetC5fB71DDaoynVKgNjauoPQSAgdGAsz\nlHXxbfUU6Qqn4RrY6t9wl6S19l8BV1ygq/ErEJl54ONy878C4B9YGV+H6Epu/1hXdD2ux/X4tzr+\nvInGTWvtKX8+A7DJn28AOPzI91ZS9Kf4U+OjUvRbvRZUEKAwdWgmlEyWg2xWaHUaCO5JvbpZTK76\n0Z1ALFtjsUTARCTcDArUS3AzeKzNN3c1Xvbk87t3hJT0r5WvIqF+9PkfPcYHT8UV/ZMn38EPxrId\nj+YpXJb7GlRM7m+tYzGXz7qNAJ5loi3so9sXq1N/pYttR47nU0DELbuIiK2oyjbiWMIK39mEZodb\nALnetVsdtCr5eTHxcO+2kJXGCvjBW/Ldd2dv4/eYMFzt7imuimJQRsGyj79EcdUwhGQIN1jVyMXL\n+cRrX8KBletB1yJwxLJ1LkbwVjDgKIXrNzgX8gw+qzpY3iLqTr8ARaHDZHqKdF2uLTlTaLH701uX\nh1qUc3B6cHDjJkKHeBIDxKkcY7veQPxHJNf5HEuTjSW2XviMPL9aiO2Xxea09AE2qbvYaWu0O6s1\nQLl4M4Pmcf2bCk7GUl64xE1CntsbASJf5oXOATy9vCKtsRWwv3uH178kWgJXjXthLYS/Yt1WCdY3\nZW53d27Ai+S+dw7acHnuJllgK6Tw6I25tg/NZGcdHegdl8fuw8zk+g+YVA9aOfILNmVdlKhZwbj4\ngUadYSF8jar88VSnf+Lqg7XWKqV+bJmpj0rRv3Kwax00UJRDxGyt1V4PAXULa36AaIP6kdUajGXs\nX7ENt+1fsctUaYhqLC6V41tkHunJpx2s5kk3xRVvzBxkZA0K70Rw6rJKP1g2ERF4EirA1RJHr/Vk\nE1JeDcbQ/UwqmBVkdmHhU/w07GnUK/m+TVfsQQMoamVmZohkyvxJbYCwkAVkuLBt6iEg9NlTCg57\nIkrk6HLR+EmGe9wNvs33/aObgoWByeniLh7DkrU4c/qwhGP7I+Lv20vUMrZ6jxwYwrHDnouYfSf5\nmQbJi+BuEZtRaPgJBXTDKZy2LHjXsXBH8pzCZIoWzUZOCHqhX0brQM5hak+QrfoBihTqhN2Vt2/B\nkMnRgbzc9WqJl2/Jfbyw/zMINNmiygmiHis4cFAxs+81GUrWQkSEFVsdoEVOy6DbQs4ZCyvA4yuh\nNLtAUaKcSfgXdMbovSibxnrQwfhdbvBkAU9NHYNErne9u46+LyFTt95ESABUlDooq1XvDcVvbQqw\nCpTXRwiYt1F1QE/Y7u7OoVglqdh/4WZr8NmVO4sPMWPXZT7K4a6qUqVGFjPeeMbx560+nK/CAv57\nwc+PAex95HvXUvTX43r8JRt/Xk/htyEy87+Oj8vN/zaA/0op9VuQBOP0I2HGDx1KVfCDGUzRRMVs\nct4L4FuxDroRwiGU1s3mUOwcA/kcbZKgJLuymcXQ5G5EaeCncovWTRD2xKV0qB+pehk8dtZp1cdy\nyhAki1CnldZOA15b/q5+U6xEFFrkbPbRKkdJt7xKS/iUcHd1Dc6qo5DT7EcNFKfstMxLlCuYtu2g\nottZMZmpzxWCLfI2qgLN23Kd1fdTzJi0KpI6Luka5rBXZ7pSoLYKlRWroqI2VEivSaUAuyRrVD52\nBkAot4dg4kJtyP8UlyfIrFjgMDeIXqPVLGTua90MOJf5jBoOVsQIfrMFlyQxRRhiRRPI/ib4eoAp\nCXWK2mfhkp9Bey6+RcTmi9P30egQ4cqV2mp24ZBqzLUxsGCnaaOF5JKAkn4daLAzVfH5L5MrtXGn\nHl6tBS+OUfD56dhcybxbVlxQlVC0tB4M+mxuGzk1rFOmzl7INY4vh3AaMp/52gmiDXlOvfU2AuIi\nQt+H4fVnI2lQS3yFZkUUrqNhiT1wrIbPRGnUCaFI4m3XySGxVCgZbkbNCCW9yQAawQpibQrMkx8P\np/AsJcnfBPBXAfSVUkcQlelfB/CPlVK/BuAJgL/Jr/8OpBz5AFKS/C+e7TIUKuUC6RIlgT7VLL4i\nITGxhuuzG9D1oEgggZLy7YmBoTiL5zgwxIMXY4U8lwfqdh2UGdtsHW4OAFzGZzrOkV0I0OV8fIwl\n+yC8IEJEn3mNrEqF7yFgHOmgATA8QLBAyUXquM4V0QcCtlPnBVICrhbnT9Bh/iEwIQzZjTyW+srd\nKap8JXbjwhsytmwXSCZcpP06FiyzaS7isLKIeVpXAYbMPMqpUIwo8R4Y6DYZfcYE6ZQeHAK93CZg\n2HGn0hIB4d/hzjoCgoIUN7GwuQvlSbVA6zZ0TkBPogC2hGBQoXgkzyfOKLhzZxttthMnxRKKLe7Z\n6G28dCZ25L2HAwx/Wo738w1RobJ6DsVKhi4reDW2w1+cYMISYFpNEXEjKyFlvPHRKRQrJ93u/hUA\nqFz6cCJ5SR2vDhSUl6cTrXQA1ZZrNmdTVCmFjhtdJGxhnlHgZrYs0B6v1qyBm65CLMBl6AKUADfL\nZAUgyyfo7Ep1xTFATsNYJCXKYAW+6lzlIhSp6o2aolzK9VSXCZak/j9XFXQl9zTLY8z+TW8K1tr/\n+If86hf+Nd+1AP7Oj3UF1+N6XI/najwXMOfKWizyEsb3r5p5yrpBzCahuhUuPUD4Cld0ARVdriKf\noSTVVhnO4IWS4POcOVLunuOTBRI2+XRp2VylUMWU/Z6PMDgVV/s0XuCYfANb7Q7uklL8lTtC3z6d\nJ3BJhFFzDCwxBnE6RY3MudZPoVdIU/p9hS6QER6sshJDJVbJ9Tx0fPEgyjmrCamL3CGxDFLoGhOf\nC4Neh2QiKkWNCTqXoK9lZeFceQoal1NJ93hLF83VxJVLFLRihGMgzXKExEpXtQQVCVeMMfBiCd2K\nfgmfRCVuQ663Gs1BnBNMNceHxGoWhhbUWI2K9XtQICY1QFnJ/a/Va6hickcMNb7+PQGcbfQfI/49\neVZHvrgd202DkHBerUs4xK+MFgmekoimO2ogXBdrm9DjGV8eIXks99e5k6CzfgAAqAUuvJwViiCG\nYaJYUbutKjLk5E8sEg8e8Q+bXoJWkwrhFNRpVCUc8kyM8jluGlmH6WIGQ9h8WM6QkGdjNCEIDxku\nqVfaLLoIuF7y5QWWI2JkWh4a5GfwydztqQwFc/ylKdGh8vqad4r7KfESSQ6isJ95PB+bQmUwmi2R\n5ROENekN0KkLTXc2rRJYsyISrSEjvnwxZ03rcorKkfjMZFvQFDNtdELMSJxyelQiyKXkVtXFdYyS\nAqu87Hh6gW8OiRiLU1RUIA13uji4+yoAoEOFqMl0ijQl0Kl+A7pBwtdpCUMkZKM2F3cUwrUHAOny\nMeZsfx2oC4zuS0r++PiPsUeVJafHcmvSA8Wt0JqMkBEFN69KlENxKdthgEbALsnlyqUESDYEzwGm\nE2o2jMcIiCo0TR8F1YSSWPLAUVnBsDxjBwZZ9b58d1kh9+Seire34G8IlWPF1AAAIABJREFUQLVO\nEpJFfIGEUueu76LOezW6REK6dBUvUCzk+cRPBRTk4w4a26yoFAqKG+v06PvQ5/Ld3F3H9K64zEt2\nnI7sGBuJzOs0KDE/lE7Shw++h3RKDcp6F8mZPNk1djLW9javqj1p1UZMoJpp1dCosW175gA+cxuZ\nhFUZligm8kwSt0TqUKvCtfCYx6qRBLbW6sOCYdDYx5ErRsaYGD1HjjGajjBdMTIx1LhQQ+g52+FP\nCtzalXsumhmqGRGky0tkSzlPIxNj6YchUv48ns2wJFdosqyQEhhXlBWMvSLQf6Zx3ftwPa7H9fjY\neC48haLIcHH2BI7bR1JRmai7h2DFteiWKKnuVFYDlDOxAsqsOAFyXDIzGCzOgUIs4ugkxtsxlaYX\nORpKrJQi92FjrYKnmGSq1VFvE4JcHqNFC/zaWg97EE6CjPwNR0+eIM3EInRaC/Q6AmhpwkCv9BPz\nHMhZqeW1qXYbVYsw4MtzVOT2WywyvH9JbUq6kS9EOcKIHZWLNSQduY/stELYFrc0iDKYTKxDxP3d\nWgOXbNZ9L8Db3/kaAGAt2kZtIV6Tiw5c+kguw4F8UWJBEho/q+CuSZIzKVw8OpLPyyJFlyFI+r5Y\n2sN6hg0+h+bWGkriIopGhZAswnlNowj6fFYy35E7hSK+IVYhlnO5j42XPoM3Jz8AAOx472NZkwTc\niqw6OujimCpVUTDDMiUmpb+NkDX7i0mMfPR9uZdPvyjHqt9BFJJPYoCratXiMkHVt3x+LvyVkFBO\nDIJeIqWXFoYVSoaxw2WJWovYCTqs2WyAxVxeqSM1hM+eEN/rYcakeF2nCMgZ0unKud54+wx5Ip2T\n7/fOcfZIqvpq08NWW9ZqJ9/EYhUS1Bl2JTVY0uPlITAk5sTkJSxhzo524DEpnOJDKPyfNa49hetx\nPa7Hx8Zz4SmUFhgmCvXqAoNELEq4DxhNhFYC2JJQW+RX5RarmVycpnDJFWCVgskkN5A9GcBtynfX\nmj3pGANwaemNVC1UJEe18wTLc1odW6JaQSGCFtwbcgwvkh3+/dEURSxW571JD595QXbwZl2hiomI\nM0tURJj5pNjJ5mMUQ/luu95Bu08hQJ1DH7G0RLbn9n4fDmvbSTlHxdJipcsr9uG8SjHlPWWUGmu6\nGk1Cpve3GkiZU1lmBvfPxWLcblWoR8RAnH5Yj1/R0bmRQkW+CBcObrTkOquaj5wNVpkvnkKUpaiR\ngkylOSaMcWEATZpmHRtMz4g47ch8x3BhCTs+P/kGzhOZ+7b/BLdacn/vnvuY7U45X6L7cJaMEdHi\nVcNTuDP5O6sV2iy9FUWEndtyTd1ALOma56HRlWOUToIJE5RIcAVNjnoBrCF6k01lRVaBAFqkuUW+\nlPNlSYWKTUxGy2e60QbIuaFNjkUsx525c4SWSumVgrNqJWJi8F5jDQv+XWOrhs6MqtsaaKoVA1QJ\n5cicl8x3xIFFQA4QuyjxIJHPn2YFSnp0ASqYFcT1GROOz8WmkOUF7h8foW062H1JJmepZ2ikpCQP\nPeQU7FABYBdMNDKDvhidQq0gz/suUuIQWrcqvOgz7ChzzBl2rODRs9EUAUk8Lk5TPB7Kg/Pgobcl\nD6x7cBt1Jo/qNUkA/cFgiCqXlfLSbQc5xVAQW7hNChbOAnhNPlwupDQLEA9Y+UCFlIKvja1NNEkj\nv0oJ5ZMl5uQLDN0YhvTeSZ7glIzIT07nmJFCreDmUIsCbDRl87pTO8DhQhaSNSHu8eVeJufwqWOI\nNW6wxwoBQyatMhhF4NhsjmglstJQcLiJumtyjpbNMefmPZunaDdX7MoNlBRxXS7K/6+9N42xLMnu\n+35x9/v2l3tWZe3V+zKcmR5ymhJFirIgUpZp2NAHCoQtWgQIAwQkGQYojQgY8Ad9kGXIpgFZtiDZ\nMmxapCxRFkHDGg8XcZ+VQ/b03lXVteae+fZ39xv+cM7LmaI4nO5hV3cZfgfomayXL2/ciBs34sQ5\n//P/n7ELewoWi4KS3alkC+688YBShWGGF1u8rQKq/e3bDH9Pvv9OX8Z1cAmMIwvy5dCyijyzB2OH\nUMsH29slTdW8bLbk6FdNBzgqwlKbOaUSpHh1SaZjV2QTHFcXOFcXjalhrLx607RiqgA3N5iz0ZJA\n8S3NZuVpcqZaNkprGj2Zv0XZom4qSczBhJnqbU6OJcvS7zS59v1yn+tX/jQ9XaSS6QO8QBbFo7lP\nelezbaW059PiaCLX2juYMDyR7w6nGa4edf0gpKHl3KcqZPOtbHl8WNrSlvaQPRaegq0tZVJw7Mw5\nmMg61Z2UzJUjwEtSQt3d/ShimIlLdfOGBKQe3DxkjqyS7a/1SCNZ+ddTh0o1GdbcPgdaQ19qMdDK\nEyucnEgw8LW7B9zylDG6kRH1rgPQqHzuKFT6E1ohmM5mjFXv73BasnEkKcJR1SOfK7FIVaCp/jPK\ns3u332RXvzsuR7R2BQZbB2/TUvn1gapdr7lNqhXZMTb9CF/hwe/uZ9y5J0HHt/Ips4UrrY15kcus\nIX2+fGmboXpKe+4J21PlUxj3mB8qujPUQGuRky2wDgcZh/u/D8DJgyl5Q1GfJx2OPJXW04KjZMVh\nDYFEZ25CQ8lnwgsJjXtKaWerM9bsrVVpYz6MKB7cBmB3NGRPqxKf/OpvcnT4PAB9b4XjnoxXcyhH\nvvvmkIuu7I7trXXemolHkB2+wa09+e7F0wYnA/nO+uBXAGjtT85gx5nbwllTcpLCY3tdJfLmAVZ1\nP7O5sk+nx4wOZIwfpPc5HstYbHVcAnX560RxBZOMibr7wXTEUIl/zm8n9BWn/cAG3N0X8p1EeQ4u\nRTPWXpPvnt79FTqB3OepN2ZVU5mHgyluKgHGzZ4834OZZTSS+/2dwV1uaCA5sTWeHn/KRvOsAvXf\nIkD4JvZYLApFUbK3d8RW5HC3L/nxrdPnCPQFcU0T311oTFrWu9JJ50kpm11Z61INZMBavScwCv5I\nDs2ZO2fGB9RNORK4Clv2/IhQ4dFvDoeUqSw8a3XMzooy4eycsq04BXuk4jRVyYrWZUzKU9JU3Mgs\nH+KHyolYGGqtSmype71xsYWvkeeD3Qbdtlyj11xjUYe7rmW6zcGI4JJea+Sf4Sl87rOni2WGIVJn\nT4/OXApDnlE6dDda4Xjvy9L2Zp+pzor1oo1r9LjlyR/Gfkip491oZ8Qqxb5+9TyFEn2sdvvMc82C\nHMs9pEkBI3kZT90Yo8eDynFwtKS85bo0VPNwzSgjUvs2vx2qzPzOKlfvygsyX3keZypszfPoBKPl\nwpORHDWyKuW2kpvMBxMu96Uf0yDgwlOSXboanONPvfx90vZ1zaKMfJJKBtk5qXEVDBYXHl5zAYxz\npMwUcOaqVzpOyDM5/tWxT7zAYUxr+s/KtTePZR5Own3ysxqOmFgrXt0iJdMajCtrlsiXBWCh/uSm\nFU1d1OOywYGK8szSgPlMmAg6vR6BiiW7rixi6+cMN157R8cnJRnJM3Gp8JSi3q9KSpZS9Etb2tL+\nGPZYeApUFm9UEzdrfKWoKtyEXF1jt65JdOULM49FKV5Tc7T14YR6R3brsNGl0Cj7aHrEeCC7Y6cT\nEwSqGKzeQ1pW7KtOwzytyLWwqdPrcFEp3zY3XyBSLHClxTdRChfWxRVfu3IZlFffUpAm4mHUuaWp\n0XdfZcCiOiDQgpreuk9zoPwGiWE406pM9SpWL57D0UrNuR+Q6N+5roGFZN18fNbG5absIt957XkC\n9YishdV98YQ2G9fpvSC7dOeyQ3QqLn+pbnJaV/gaDHRc8OeyC5r7JxjVOcyKgnRPvImb9yTDk1Yz\nNi9IADNuRaQLPoK6JO6rW+7UKBCQQJ9jXBiuzOTv8uMTypZ8YX8y5MlrMt5fbfTwHPVkVAAoTA7x\nFR7eaZ1nc12Di6mLowVK55+6gBbVYhWTkg72GCpCttdsEDtyvKhbBZVqeua2oF7ohKTiip9kJclM\ng7jWoaMYECKHbE++6zuKvQi6bGq7lR/Q9uW6CQYqxUL4llXVosi1jc7FLS40lXGg0SEcy5ydNSyR\nJ0cJukc4Vq7nx4qQHU/Ye0dh4A9Osfq+BNYh9DTIWViMfX+vubH2ffOjfOD2zDPP2v/ln/xvOFVB\n1JfMQc+U3DyRwXn1zZs8eFvAKA+mA3YWRCwqTz9sDDjV7zadknunCuHNR7RWZDJ935/6BC/2nwGg\nq8IbbjHi7g1xz7782tvMFkCm1ZAr514E4En3HNVl1UQ0sqj8xN/6r+hofcXFpz/FJeUznHRcTm5K\nRLlkjomVY1HVpvrWxexoVsMk+FriXY0q/C19CbWsthinFOqie2susaYnzc4O3h2ZjKsvP0WipC3t\nidyj2W9zfGXx4u3zt37yvwAg9ENauuD2aocjnaTTgUTy51lCFSj+3kJD3d06KM4UhhwDpf6dF6vK\nUbvFik7yCI9mV+tL2j02rlyWe5rUeOek34nCjou9gnqkZ+MtwzmNZ1z72MfxtOzXbUQEY+nLjTta\nOXn3bd65J/GOcjSno/jneydj9oYCYy+LEl9fXkchyKuNGpWEJI8sQwUW+cbiav+Kssb3tbZDFabi\ndoNivEiBB7ih3PPKWpPjRERwjk6kzy9dcNmeysL72tGEgRK5jMoMZ0EH70OhQLxFpimMXEJnsWDF\n+LrA9zoBmpRhMp4xUFHfVGNi06zG0SxDezXm2p+RStL/8KUf5dMXZK6bZ7ZZ02PhE1de+Iq19iW+\nhS2PD0tb2tIessfi+FDVMJrBtbUG5dvqOq1u8+BLbwLwyt0J4aG4ue1xxmuxSpAp+KXjQd7WiG1d\n8mRfVsapiclqDTQN2rR3NHddqGIym4xK2Wk2oy0OTiTCfVp2uKfQ5O4zx4Q3xEWzXTmiVLHLi1vy\n81Z/jXMr0vbtyW1WL0qQL2pVdHX3Q8U9nm408btahVc1Secq9953yBsK1CrlkZwUc9wdra7Mcxwt\nrhodJ2yHsuPnBxnuquS354eyW61cr2lPZHzKrI9iqVizAc1adqC+0+D+WDyk3C7ox3ya6jVODLi6\nozvWw9PjUVYburqT+kpw0+91cbTA7HKzc8bdGHW2qBPZbS+2ViiUsuwY8Z72JnO6mxrA3L1HHl8G\nYPf4hCtKHMKrGfk5GeevvPGq3O804LLyTk5XN7inxF7NcUFQL5SwodKgMYonCfLybAsMpyWHufbb\n1sy9BT+kS0PxIGWqcHUyKt3ZG12XQLNO1bjiyXuyY+8jcPSBSWhevaPPcQPvVDknrFDEARRVhac/\n+95CddzBKq5irdXA25CfO2HzDJy25owpFOCVKZ9CViVovJjyOOXtX5G2fyG/y4t/Q3hIt4+nVK2l\nbNzSlra0P4Y9Fp6CZyrWwxFJuorny279xpt77B/Jyney/1k6t5WgMrzNtq86C+flXH9t7TmuKTHo\nRSdmGsny2U/WeCW7DcBWEdPVwpdmLKmruW+5rkUtb3ccUiMr/lExIxvIDvTuu6e0lYLLqsjpxRja\n16XBC9kht5Uhams9pKPxhY34HGg59Lbu0O0LK0SKw8hWQ8KJ7P5ZMcOmck+nCrNtlpZUmYJme3Ca\nSxur5ZRRJp7L1dEnGeihc6UpO3GBTy2/Zrd3j3YhHsjKeo8gl2u/WR1jFQnoKKNwaBys1uZ3cbBK\nytAMAhod8Q7WGjGV5tu3lc7M6ftcakiMxlv16TqKmlzx6Gs5d1YcsKqeQKqp02dWZ9Q9ufdbexvs\nOjLeF90dUuVA6JmEf7kv6Uk/kZhC2rjHNQ1QBs/CywM5R//q+pT68/JMBqND8kJ2x47utNt+gKeK\n10elT7dUJKhn0Kp83Lpirmd4by5zKCRAM4uEuYOrXtOEOXkh4/JnKwlWp2nFDSOxk/Ygo1BiVm/q\nEamCesv1mU9lbK+fk3mRVYYLKrdXbK5xofcsAMnqlJf2xJO9u93AKJfdyTuvy/3MDakWdhVZwVhL\nsQ8+/6+4/VvivW7+qTVm3vtTg3ksFgXXOrTKiJKcvbsyeEfx77H/tkz03TcOeFvr9y8SEmt0/cVL\nMjEvnX+Cfk8mSqdbULOg9fbYyRTvnk3xYiUh1OBMnAxx+zKh20WCcyoPt1vGnOqEHY5Pua1R5u5c\nXuhtZ521UGnJzl/gikbAV4oYR6niunGDfku1DZvq45kcp5IXvZUE4GqWgJBCCWV6+tm86ZxJnLuO\nS2tT3qZR0qIVSv9mzYTLa+LGT8YyIZrpnN1TVU0qU2Ilgym9kLmrVOxuQaXVfK4yZuNbGlo/4bge\nkVZ79httNs/LBOuHbazKDW0oF+HKhR029ZhUBTGhwoSdNY9sUeWaeuSVLKjXHSGqqS50GDnKgWFS\nAs3N75gm85a08eorUyKlLfcLuc+ov0r7WQE3fWptlcan9Yj1W8e8uyvj/PpJxixR2nblgXT6PcZa\niTk6zmhopiV3wOrxoKgq7CIgqP0MPIPvy9ibIKRaqG95JdWKZKiGKjO/d8FgdpW7ci0nLWUuPLG2\nSf+cuPPf8/yTzLV25WIgY9i9uElvQwKUo7TBmmYtyk6J+0BW+AezMUersnCudaVPX/rSG+yNpE95\nVeOXqjze9zlQENXJIKXRe38sK8vjw9KWtrSH7LHwFKzvUG+0yE4N+4nsLkd7Y24ObgMwzUaUoaLD\nuqtce0rcqyd3ZPVdWekTaXVhZ32Fuvo6Qs3TWiXHd5lpIM1qqm+Wz/Gb4oE0Gg7DsexyZZ0Qd2Xn\nfndUM1Kmp1ZbVvCNF58mviIrexuPWDUm6yBmXQt3VjsxkaYiF9qO1gvPJO2oCtDqOwePWnfsQivd\nStdQG9l16nBGrSjG0pSg1F6HI5c0l5RiuKNYirE9c503Gh5OTzyPqulhVAW5lRfk6to6eixptsC3\nC5m+kAvqgaz2VlhTDyvqdXAquY+2cqLFjkNLuRecRgc/VehvWWOCBfrPME2kf0eFHrUuNjG5jPdq\nF7Y6mg6+tIa9LS5zvp9yrGP4rCIin37iCt/xMcnpb3Ug9+XY9eJaH3tJuQXmHn5b7uPeRMZiO8i5\nqc+hE/ikmgJccQwHSrdmHRhpOtRbeJMmJNT8/9wkNI08tF4Qcqwe0rAj7bZHTRLFnhZhiyurMsbP\nbEZ853dLJvDpa9dpZTJf2luaGs9K4idlPiXTCl9VzG2Vw470b2NgGW7KfF/fFO/3+a0t/tn/9W8A\nuDMckyvv2umN2/zmL/8yAFcbG3zsunqD79Eei0XB1C5e0iHZ+32ijriLt18bMQyU6rrV4oVnZCA/\n9tTH+fhTgiE4v6ZS9a0+jnIjOtbDXWDS6xGO5pVtEuAECv42Wi1Z1NSL/L/j4iVyfCgDh1YhD8PL\ndqkcmaR7eiB+ubFCy9Vy6lYA6iauNPv09QVpNlx8s8DGK4UXBVbPpPgO9SICHlfUmUy2ebbgFjTU\noVLHB4Y01TLsusWkJfc/HJ2QKKx2eyhZj6pxytHqoiw4YVWhsaFrKfVFSAtoKpuxpzXijagk0nvr\n+6tcUBTOxvYmgUKvA9PAhAsKMvl7x3VxK3lhg6rC+EoLZytcxTo4McQNdWFdPQOXXULkWNbYKDnU\nX5ui4ta/Ecq3efsu5X1xn1tXRJL0+U9tsHNeXg6clOkDwQr4JmctlgX+XhCwP1X+S30GB+OU2UDG\nc2RLjJYWl05NQ2n1awPlAuijR6mynGC9vt56RqbM3FMnJVNlqXwin612Ulb1+LjiGC52ZS689ML3\n8vRVeek3Vy7S6srYBrrQGaeD0fkUxB4obX85Lil1keq2K6qWzM/19QW5UItPPCVHu/DNhFc161Tk\nHu/clMzda8e/xXPbQlTzXm15fFja0pb2kH27UvR/F/j3gBy4Cfwn1kr1izHmM8CPARXwV621n/1W\nbVhTkoYDjmLI35CdZiP2MedlJR41tnlyU4I6H3/yMpu6ywXKpe/HPmZRPOUHoKu9E/QxtRwDauPj\nKmR26mswqXlMeV8CVYEpWNsSN9ltRaT74sb3ApcHSpgZtfS629BQzcEt14GurPjdVkhbvxN5EdYq\nYYdiHmyVYUuFWIcFxiiKMa0xim9bRP2pwWiE3M1rHN3ZTJ3jqhvccNwzfoOBchOYKqevfASpC7nG\nVttORDhSBe5Gk44SpdpKdq0V36fV0Jp/06SvOgxmDEFbKx8j92xsQ0c8szD0CRbloGmJ0R22Dg1e\nvijK8XAVLeko4tGtE+JAg5lhl0zZZoM4ZPyE6on+9oTVK/Lcn/sT4kmd39omiuX5V/kR+anyb9wd\ncKi4AFvM8BOZD4o6Z9iGVDMxWW5xFyzWDQeNhxIHPr5VT0A1O4IqJNVAYuA5RAu49jzAKZXeLlAi\nFyempQrcF7e7nF+XY+7lKw3W2qpd2Y7wlZzFi1XHITQYDY5b62I1GO2ZE+yx3GhtLJFK7sUt8Xjb\nk3WefPqy9NOtefdLt+XeswmOCsrs35wzf/r9aTx/u1L0nwM+Y60tjTF/B/gM8DeMMc8CPww8B5wD\nfskY86S19o8mh6stzjTFHD7gcCpCqn7D4/ntJwDIyhGXr4gLdG7zKfrrOqihTuLaw9EqSrd2qXSC\n1dOaKpMKPpwOlFpfoFp+5Wm6SADgZTVdIy93aOFYU4vFZIRr5PgwVJhpt1qn5yscOWywpkq43VZA\nGGklWwm1lni7vlZt+gnOVAMJVY6nLEa0CirlOfTVVa9ih8LI7715dVYNSeihAXKMY/FiedELFZEZ\nnBxj9UzqRh6+ciZmdUnVks/PtRo0tH+Ognw6HYeWloaHbkChqUrfJjgaJfeNg6el2J5Gt93ao9bM\nUNiwWD0GeZmDcnvghB656lQushcmqKk1PlEzwVc2rWgy5Tl1pX+tLjjXF9f92WufBKCx0qJSivRq\n7hDG8nz7OwEbh9KnQTug8JUYRgfL9yDX+RIGDu7ieIChVqaqvBHS1VLySutV8rLCMSo7kFhqTTM7\nkSVTgptQjygzU9N2JOO0ev4cVzeUiCbeIlYxZD8ymKYqmC3o5GsPFszXnsGqhD2Zg9HsCV5xJhac\n65GCZo8r5+UofXzrDpHybRZOTXmom136Bn7rWyKbH7JvS4reWvv/WGsXeY7PI5qRIFL0P2utzay1\n7yJKUd/5vu5oaUtb2kdqH0Sg8a8AP6c/n0cWiYUtpOj/SKuxJOTkk4DGkQpsNGdEO7JzrTf67Kh2\nY8MZEXgKnFHuAi+vqbXOnbbD17GfGcqkhdOan3E0ZgqOyWcVQVfd9mYDdyLumR+krAZKthFajhTR\nsmKVRbpXYHRnbpcGR8VJoqglxxekpj3T6jnHWUi6tam0UMeUFSZY8CMGOHrPptT8uJ/g6NGgdFIq\nrQz1vRp0x7BOzUxVsw+NiskMLdlCD6MfUETyd2Hu0S6UdzF06MTiIoWKoWi6ZpEMYZ6naB0RXmSJ\n1J1tNGGx/YdK+GeNPTsGuES44UI12+BHCuclxs2k31OtRA3aI3JV6/b8gDUV7XHWmtCT7MKz4TFJ\nWzyFjsKqjedjEunfePAu80o5CoNNutsCcOrdgZ0N+f5XJwreantn8n3z0lAob+Z0Ysn1c983OJ4W\neun9VnVFod5N5QnkHKCcWTLVVhjrMXG1jglUA8SGNd2+BBcjv6TMch2v8kxvE72urQ1moSpHhdHK\nV7wIT7UkbVoQanVk5C4yQykdZZ9+8fg5PvuO4D6ms4S5nomSA5+yeH+6D3+sRcEY81MIHeTPfBt/\n++PAjwNsbWySTyzz8SHZpk7i+DzdUCZEHAgDEoAfdaiVpNUJF6AgF7crk9zg4ngqFNsM8LVmt5zm\n5LlMmkTP+PNsBgNZePw4w9XFwo0bHCj3XZ2lGAURLcgvoklIsq46lk2HjjKcuKWHBqQpyilWjwTF\ndEEEkuKlShLqOrCoRDQltbqroSLfcutTZgrMMSU2WcieN88UmWakVOrsVXqGHOQFIy2/bpU16KIx\nd+bUysG4CsS+1hdo6WCR55Qqv55NfUolHonynLpapFFXiLsqDa8ZF8epMZoCLbIppabsqrrGUdEW\nx61xPH2ZVDNzPPYpdCEo7SlzXWym04zxAzkSND4ecvEpIbhxtM6lSDM4krqN+SBk/EBIRm4f5gzv\nKStUCYcaE0oU918mFX0VfbG1z0Rd/zzMSKYyRrW1eKHOs4VClGvRLDlO7VDo3jPOKkqNP6DXcq3H\npm4A7WHMaCTPbBD6hIEsHHW+g23rBoDGlDwXFPWKW2B0LjhxjNVKS1PDooKhdhc6oDWOth1zRFNr\nfqoTh6mCs16Z3eHozi7vx77t7IMx5keRAOSP2K/XX79nKXpr7T+01r5krX2p1+1+u7extKUt7QO2\nb8tTMMb8APCTwPdaq9zVYr8A/O/GmL+HBBqfAL74ra5XUzGvRtytfVoKflldD1hbk12nW3q0VBk4\n6hhcPQa4i4h84GGUVwCviVEp89qkpOod5IMaswCbKCT4YHpKM5QVvG88RholqQ8zuqpz2Go0iNVj\nmWqVmg1H+J54Jq08x21Ke27DYjXCXWcuuSt5ZauAlqZtUWoku2wYAkeH3w9xNfhZ6/2EJy6h7jrp\nyQTbknv2akPQkpRCc1JyrHTfqcrDnZ4ekMwW/PQGT11Op/Jg4cKG7hlUdpLoTjqsSPTM4KVzrGZD\ndg9L8hXZjTaMS1uDqh2tlsQtiJXXImpEDE/lvDbzK/rqNfitCDQQbHLBHbi2QaDK17PpGvOpSqwF\nhnuxeG8v3o7Y+JQ0E/S1H05NqoClk1uf5ebn5Tmd3LzHOw3xMFrzSoBiwNUTcbVHOzPeVjq9eVae\nqUrPqpJK60e6DvgarDOaJSrLHD0dUhgode5ZrLDYwBmnQVKOqSItwvESsvFI++8xtzJfmoM9HE+O\nFbVme5xGD2MWLr4PzoK5fA4KwfaCiGoqc2RvIoC1Yr+k1VcvZWObeiycI7YoUCeV3duW48kHXPvw\nTaToPwOEwOe0M5+31v6n1trXjDH/DHgdOVb8xLfMPCxtaUt7rOyqUp2vAAAgAElEQVTblaL/x3/E\n9/828Lffz03UZcn06ABz8goPDmU1fP7JNTo9WVHd0ZSToey24+Imm5qv5aZ4AUFvjWhVd6VOgZ3J\nCp3PasYD2d3nZYvRbUF5PXhFi0yqKZvbwkeQTwbMprKiziKf467s2OtJxYqeux9okKyZxbQ9Pdc5\nhkAjR05ZnXEkDG/uclQLdiAu5HiUZMfUKhATnfp0VK24LGqsXnsSa+47b5LONHA0OmSgu3+vZQg0\nvmBOUxQuQKZEo7PjwZkHUsUdIoVKGyc/wxtcWtui15ExrJW56GhwyqAtY9jshThjZUjKS07msouH\ngxoUouuGcq2yNcUEqq0wr5gcym68x5zryl+xFpeYRFPGqmXhuw7lqTxrMzkCRRtW90/pnMhz+sVb\nt/nr7e/V9sRDKY9OuPdVYbf62c//Gl97QwVW9w4ZaMBzve2ypf17UeHOIxMzsDJGp1lFpWm/ytRn\nlY81LoHyKEQN9WxWwCib92SacbbnOs6ZNJvRtKcNGjR6At0OezGxYjNGx3PqjszfTlxSHStuZXWR\nIo1xQ3W4He+sQAtTnMWlyukxibajBZyw4lIoA1bytSM2lGLuHdcl13Genx7x9ptf4f3YYwFzttRU\nbsZJ1cWfKy/hcIiXyIu5Oz/EnkoZtfPA8KZWjk0Vj7DSgMuXBMdw5bnrOEpqMrs74HQkrtbJwU1+\nfyp/Z6byWdnyCbWE+DhPOT2Uh9VZiYhCDVRt+NQHEjBbHcuEd5oJUSj485bXxCwkeOqE6ZEsQkcn\nR9y4LzyGe68LQch+XFDoIvWJ5zd5akUmUHX+EvZUQi+Z0nefvHufV3fls9nuXZK+vBRPru3QVoIX\np87INABX13pvQZNRqorLbs76umZDygbtjjzuC+sB631pZ+9EMzJOzXwg4313fESlrrFfjzkfyQvW\nmiR4qmrlHSxQQT5vD2Rh+fXJEeldpbuPPD5xTY5Pn/zEx1lTGHqqk7gdT5nrUcQ/9Ti/ItfIGg7j\nhmwGz9mU4FCPNC/Iy3qaD7k1k7mwe2S5eyjjOSwr8pliEzKXUGtFfndLIdiHKXOFik9n1Vk2J3DE\nvQfwnZqwK5/Hmvlx3IBKlcgKE2JmyscYeySL8nJdmS/0AhpKOBMaVwAvCPBoqtT+r1cF9UyCo9tt\nrVG59ATdizJnTdCj1ueAk1Nksqjfe/Aar3/+qwB87VD6v7WyQakgtGhnHf9J5bE8dMhKpfw3MWXx\n/mofljDnpS1taQ/ZY+EpVGXF+GREdX8Pq8T7xtukmGvNfrRB85pgE27P59wZyko53Bc30tJiW9Nm\nk30IfdmhimTE3oF4AjffvcVQ6+kvqevrrVzG1JIs2Q6nNNbkOFJ1Egaa6o8PffKBXHuo4ZEwaZCq\nS513PepcqbumBt2MMFGIe+UKAHd2Zbd+5cavUkwVBt06YBJK8Gn9S69ypCIj9zQV9tZrNxhM5d5b\nFs41laYtq5grWq3KMnzVwJhVi7x6Rq274Hye0TML3ERBs5SfTWI41Nza4Z5c697RnAdKTXd/ryZX\njQQPh3un4nms99Z57lB2zXVVeL5fHPDVd2SwDsYljQUmYzvmlsKtV97ZxSgxbe7J342ONul3ZBdv\ntXYprQQP8zSifFM8pJWXV1i5KkeTOltQmHV46pwgXddf/i76yrQ8f+dd2j253lYU4jW1ME0rXN91\nHObKN2BNTaB53fMrbdqbck/hPGBdIdvrikx94JeMxgpvNylNxUv4DWdBy4GrgcogDDCqcp4VVzlB\nxnNcwUTp7279esyNkShMv7QqAeMf+osGx5OCr7i5i51Je7NwxL2vylh89jc+x+9/WY6j+6vyDGJ3\nxnepx3d5PaGjxz8TdYl9eSYrLcP+7ntUgVF7LBYF13Np9VqkjS2uxzIBz+00WbssLlVV1NxVSvFf\n+rXf5p23pDIuU1DR8VPXz0qg250uK5FMJLfb4MJQjgy960+xdygv2Rs3ZXAPOeDZjgqWmA2ibXWN\n6znx6DYAdyYjIiUZWVFW37ib0dC6hUaeg1LH40N5IhNvf+7wG6+KEMvNt9+Q+3xwSlXry7Sa8/Jl\neRGSezH1XI8du+JazkYTKl8m4NgxnJ4ofNif0UoXEueWfKiZD62sm09TEs2fO0HNS0/IxDO2SZjL\n57lbEZaSu54rG1OCZTSQWe6QULN4EQIOVcS0yZRoR16WK89dA+Du72ZslHKuH3fCs2zG8dBjoymT\n8cA39BX3oPSYtKNDWNcFMryCr5gFe7FJ/R1S8fl8BGtb4hJ7igyOpj7ZhrwIR7/zCqNbml3Ka7pt\nGa8nt1v86RfkOPngVCn+d8dnx6NOGJIotLlRB2RjubcLXbi0KQ1dviYLevcwo2nlRd/zXOYKRw5C\nh0QlBoxqVDbrnKgt4+1nM0qtmTl1Z9x7IGN0XBxxdCI7xx3V2nywf8jOljBRV0mbQitRJ8fvcjSU\neZGHDe6qRuidG/LsNrp3eSVXaPrFZ2i+K+1dX9vjdKhaoevX6XxSax/+Ne/JlseHpS1taQ/ZY+Ep\nmLomSjKe6h6RDBTvmTs4hQJviwB/JoGa860Gqy+I+9jqyU57aeUq/Z6skg3fBYUP++kxm9fkepvl\nCoErblsxll3OuHM21yRo1/QzvDUNStHE1+KZNNhn8o6s4ieKjmubLoG6wVme01DqL6eCeio7V33z\nDfqJrNZPrwl9mOfeIJ1IgO758y+wrUU7xfmQCyeyPj9QV9bJrpIqlLjpxEw1lplVIV0NLnm1xdN8\nfKVQVrcscRWKa3sd+krd5rk9HJVKC2JDdiIX7CmkdtJw2VmTAF9KjqeszCu+x2As3tTF2OVJ5QW4\nti474vS5K3xBTmscjI7oaFDSWW+xsSHB2EtP9EEzIts92bX67SaBUuHNMxd/gRZN5/zgeXlmyTyk\nsgv26wWUusYZyHPsbrZ5yso1skHBE1vCs/DyS89z7bJ8/8pMxvvqb36JZCBjdSvN6elRarsRY3dU\nG8IP2TonXmYQitdxsbtJphD0dBQTaGFX2PA4MnJ8jWN5HlOnS6JH3qvnuzR0LKbjKb3nZNyqVp+X\nVVfzfFc+u3TpHH5DvFG3XYAyXxunT+ucjMXTfsbmymUA3r4v8+Lc1Q5bsTKCT+e4m3LdB8kmrga/\nbTzBPXh/qIDHY1FwHNxWg900IlDx1NO3Xsd9QUVeey5XEXGLxmqXqKeR4UoGslWDqVRyPR9RaR2E\nm8cESjwRveCyUl0G4Jm2fPak9Whdkmt4pcUodNeYGY1IBrtMu+zuys8bKjk+qSe0VKUpJqZQCXCn\nHeGo+Onmued4KhDXz/suWWw+Nv4u1pSI9ErcZ/WSvFijGw7VJ+R6z35WXujRdspQAVJuXRIrZ2LV\nq2As/Td1RaHioZ5GwoO4RaEw557XJFTCGeNDW6HNjSBl3NLS8IZcK1i/wvq6Lm4rAWuVTNi1IKGY\niQtumlMub7wAwPo1cfGf48tU3yGu8eTtCF8Xp2eeOsfGS7L4rk369BXDX/Xl/1fPNXED6d/KLKRW\noZ1idYtoIi/C2l5J8q6Mbag8IWl6SJjKM/t3rz3F/iekjXDX4/qWbBJbKxHhFXkOxZHMi/ATl/nk\nF+V83uq5HJ/IfT7/fMX5WI8Kl3s0tJS825T/P6kzbmulacsGbDoaqzAZjS0Zz5NUYxmhg0WOQZnb\n5ZLyLp5v14y08rPZjDENWRgX4rGRk+BqurS2LiaTNoJkwIaWvnfXXyLelv5936c1Jb3tM9NjtXuv\nwa0HPyuf+yk7n5Sy7e954Tv5pDKU/fQ/+he8F1seH5a2tKU9ZI+Fp1DWFcfzMUd3b+Br7no2yvnO\nA9kFm9tN4r6s/FEYU+Wyc1XIkcI1EaNSBVCGU+qusit7KUEkq3l1OKFrJIMRdWRXdlc8fE/cz9pL\nIZPrzvMJ/kgwBK43w1Oix6FWMNqkwURl671mjevIcu4kHpFqxpudlGeUwhvdaVgzbD77CelTBPZI\nAkbt3jVSRaSsP6+u89s+bfV4bK+N40pfvdMmtfIsjKucTGnGMy20CoIATwNgzW6TYiK/zznFC5SL\n0LSotfKx05DxaTcS1nXs6yTCUc+LVoajgcR47tAyEowtVPY8bK3Q6V4G4ImdW3haHBWUFfUNxTK0\nfWqFgjcDGe+4ukisz6Gqhpym8nNuGphEPLLoasBcA5SxgqnymY+jgbhge4erhXiWwbmAdQ3cBlGG\nmcuO3VJl73i1zwsfl+eUvrWLF8lzWk/WafZVm7K+RLzAU7jiuYxIiGrxBC6suAQ63pM0P6sUDT35\n/5V2m1Xlg28kPk0FpK3snOe8akwar0ldLDIYWqxnHWrNBpmZg6tZEq/nEKkwzprXIFLPRGukKMch\nfR2L4/i3uZ/LvD9IN3jqmacB2F5fwW0o7uE92mOxKDjGoREE3Jr41MdyTtvqtjiq5cFuBG2cWCZs\nFNWUxzI4jhKkZId7OI48RC8q8FpC72CGBTbVye2v0hgoWcjOgsikxlWQS+2XlBo5912PdikLxJoP\nkdVSZQVLFfU+bi4TsBjNSbQ4PG4G0FRWpM46gZYwL2TPvU7362K1xRHzE0UHniQEW6q5MJXJemG1\nycSR40dauGTK9BRby0SrHaOpS5EsQEayKDaiGBztpw+lq/h7L8Zq7CP1Ypr6nVIj9qHXxGgGw2v4\n+FpOnM49FBRJq7kBOs71XBa8Rl7xzFVx4W1acnAs9xF3oKkLh9OJiGpxpZvKmdlsFnh64VkFc63h\n6Hcsuz2lrR+MCXSKTmS4maYHFBqfaFYpVhfcjXMtIiVqSYdj3Pu6aH3Hc/psXmAVqQ3YCl3OLVia\nTMpQ9R+bjCnO6TNRPs6gjNnQLIHxmwxVwWtWjblwXv4uOJRFox/VVFo63zQhoWZO2qutszJyE3So\nta6kymWxJc+oE5nrftzBqJakN80JdAFpXlnF1RhU2Jc5Up/k5IkcNbL0GS4U0r9bx/e4vivvUefF\n7yYJ399rvjw+LG1pS3vIHgtPIUtT7rx+g2hyj1tT5RHMhsw0r14DVtcvxwS43QVPgeANsoOU0/uS\n3+9v9qlKcSnnRYSnePBmP8R9VqvSrNb5lzVGJdDLUUqlyKO8GjFTso35/Sm7u+LmjxXiWiYuuVY7\n5qlHtEAsxSn+IkpeZZhIGZN196jzOVWtGP5pTa1qQvXOiJnSxB+rSzmsb2E10BiVhlrpz+pOzYq6\n+V4xJ82Vc8EuGJUNXkt2l6ARk2jQsUozBgr0WZ94xJpdWPAThh5UugN7gcEo5j4oQAWN6KyFVC35\nPMkWILM5pdaa+O6cjtK6Bw2PzZ3LMiy9PpEV/7kVLYhsYtCdfTqcMdSKwo1JyjXlR7x3q6TTk8+j\nVI4tk+GQulRuhXaP5upC+zFhpnqjh7vvQKJU8spZ0drsM1gXl24+36fzvAarN9fZXoxzYHD0+dQK\nSArDionC5ovE42gk3tvheEpbPce1Db2HsIlV+n33fIqrEHSbGIyCz5xyjAkV3j7XSszJEE+PucYa\njEKUnTrE8Xb18zUolTOkkLF3DLjquU3ffJNkV+b92HOYKTya/JD6dFHn+d5s6SksbWlLe8geC0/B\nAMatOLQOVnegk/uHPND4wvMbHoEnZ+o6nUKiRVMaWDk+3eV0qnRkcU2gwbNgcJdcd7zEnRMVkoOO\n9ExOXRMshFpMjVFCUGNjrCtFU/emKVOtod/S9N1hNiHQ3aXr1kzUoykGI2KtuAtMm2kqO9dCjq32\na2plxClmE0ZjCR6WjoevO0w6lFhGYSoWxD6NoAJPdrA4LCgTDUrZnFRz2oenMm7NxgqrqpfRb8Xc\nfiDXc/KCNY2NzOsQX6NViyBqmrmEGkfoxt4ZEezwTs3YKAkoJ+Tal3VPd5+TGVxVtijj4UbSJ793\nlc6msm57XVq5npN1jJ3YkKnuhR9Z+srynEfumTbGhXMtJkMZw0klu+DhbEyk2AU3ORJcCpCGGbVW\nkt6+c8TgUGJJzlzG5fxexL2hAComXoWtZT7tlG2StsrphRWlBnwLJdcYe5AXmiZOHUZmwadQE2h8\nZKS6HhtFelapOZhskGilbVYfYY6VFHgtxC7EZ3TuFROH2khwtXLPE9UyhslJTmNFg4uzjMCXz+uF\nWrWbUKjuh08fTxW91+0eiULzd++MOb0pXvR7tcdiUSjrksHkmMY8xVe69JGTc/N3JCr8oDOipbTY\nlCXzPXGpTkaSoy0P75O68uCYN+iPZAJVhNR9GfhxFmGVyMOmC1HVmFQJLap0QDlRrHqdMrwvLuOD\nZESuD1FpDakTS6IZgMjrkqTy0uRpSBbK542wZvFWHx5JQClox6yoWG1hEhIlPTkcn9DU7EG5oIA/\nOKVqyT3kLZdmIhNiPm9TO9LecTpmPFPhF33pTCugUPblojCMhtLX/PSUZkd1M6seuZYOZxrMDYqE\nyMiLMj4wzCrJ6U+LjFLp6MoxlGv6Ui84I7stqGW8qZpnY+gcj5l4sgh3V0dkSp3nosCxSZNKQUF5\nbRkrPqBVhCIbD8SXXCYz6Uv6jj7ryqXZVCZt0+dQJ3zlGbIbMs6/sbfLV16TZ13evAXAumngaRl1\ny+9wWSHYp6clV0sVpnUNobJ0D1L5/aRukGldxkE+5+RQPp/VBW+pOle+L8/54uoKbRU/Tk8LBiuy\n8LaOAoJtmTxl0gElBFqQpsztiEqrQev4DquaPUq8CqM0+VQDzFgWYsWrUVQe+Vyew9i+it+RRWi8\nt8mrR3K0/sLP32I++0YepG9ty+PD0pa2tIfssfAUAt/nws4OrNwgPRAvID/1eXVXJOS+/6hJek7h\ns+UxWSquVmdHKhyrXpPpPdkRismcspSgVFm0GE/kWNF3Dqmt7ISLlJYbpwQLVeKoQ+rKLl/aGbO5\ntBHWBj/QIJC/IEGdESiisZoOGXrKNxClnDG35iGZUqwFSh7bb3cJ2/LdZDLB0d0hyjJ2b8tu/I6i\nIzvUNJRIFgemCqVt4zFXvYgyN8xmi+InVa2ONogS2WnGUU2pAbdR5TDSSsxeGeJoFaS1ultXOTM9\ngrUjh+bCte35eHPp9+aVNs0dSfe2lUm7GB4wG4rburGfMr8iP8/LBuEixRkaolB241rZpW08Enpk\noAjWmVdyVKzcgrKjxUp5gKuaEuUCCZk3qbSE1XBK3JSfextPMLkisOqdn7tB9EJHr61IV7vORHU/\nrq2t4eh2u0mPupJ72lkNGU1kHCP1tpKhIXM0kJpPKbQIL/VSjI7LiQZrx6cnrD4j3phnpuSZjEVS\nFTTVq3Dc+syrKxaeUlbiKjGx1+xSTOR+yijF6pwzI6j0xFYW4jXm04xckayFc5FNV+bsU/E+r78t\n/XinNOTZ/wdhzrauyGZDzvk5NwLtuWsJNgXOmjXWmCweVjEG7WSeyAJS30zIlYHH7c9BASY+Dp1F\nzrfImCrFecMq408aEay39R6GZ0IleV2SqOjH8P6UdkfBMn2Vjq/jM77DxAQY5WV0vCn1ojy3zigK\neegLHH0du+Qn6jLevM88k+8ORxPGSkWeahWlyVxyowApW1APZHJkrYJYJ0I9TbALlmQF2OAYrIJp\nrDXkmbwUpqqZ5UqJH1gWoh1mKNfyK3BV/micQn4oL9CD3YxTZQVynA47GkspWnKt+SQn1SrD4IWQ\nRltefm9cY3p6Vl/t4iqj0RnsOovJ9D7L8T6FPhuTVIS1tH10aKk70r9I5dmT3IOOjtEpNJoC0qmq\nCYN9uX+n7nDpUyrKojUl4VqbN5U/cjVxOJ7LdSedMV1l0J7WDVytaalU6De+EDLYk98fTk8ZadYp\nczNuHchLuFD92tsNWVFBodwPKDQTlVaWolCxHz+lVKGd/FiPblFMR3lAy2aI4qZo5hDr+2B8Q6FY\nFKuiRLVfMa3kODPYv0V4We7t7a8ecXcg3z0sa+yixvs92vL4sLSlLe0heyw8hTgM+djl63xl4x0a\ne6qoXCTcfUMQWm9eXOHihgSonLimvisr/q0j2YnGX/waQbzQoNyg8fRTAJiDQ6zma+sqpVBKs+mh\nBNHKRoKvcNi87JPOZKUdHWV8XgNUR7OStq7WTyoP5CBLCHQ93fIy5uUimJezcV6xB4XHTPkYmWtE\n/g5khxIw233nEFdX8HnzAkku34k1Op9XA6aVQr5vjalb0r91W+AgbeRpdiY3V6mXU5sOM6uMyzZg\nv1zgPrZ45hnxijw/wV+cTJRRmYFHpUU76eExr90SL+XeySm2La70Jm9jtsUlXtMsST7wmDgSEK63\nt4lvaxC0E9BpyDVsfQ4nkh20VuWcMPZIlZzGNjqcUxm7QTals9CUcBOyU4UKtxeMJhFmoh7YRhNz\nIm3/7hcP+fxv/BYArw6mrL8hY7DSk2KnfjBk/1iu8Zo/Zu26Yhb2C9oq2tJoJiRDlbdTEpZ87HIy\nUT6F6ZSZQs9bbZ/7C73KqXgx33M5J85uy9h3dkhV92GczWlF0p6bD0gT8QoWAfMiDokuSbuBu4pv\nJEti8Kk0wJxOLFbxCRMd1zixpAorj+oWA31m3TDjrsKmq7P/ee/2WCwKYMB1OOcZZioeezspGewL\nW83nXvsCH78ik+n65hZHnqbhZr8HwL7vc72zKNn9FLW6eDaJOYi1Su6k5mSqpa5jmbg7W6tk3oI8\ndcKRwpJfGdxj/764X3NnRKhRa6uHumJSMNYUUmE9ci37NWkBKtF+sefT0pKH4Z60cWd6j6ayjDhd\n94xTcF6dYPTFo6kpr72QWw+EnGU4m7Kmrn85N2dpxFGdUqp639RclrGYHBEE8t1G0KGjkuwn+SqD\nuZK15nOKI+2TMvQHXolV8pb7I7inn5vL6/zJa3LtF5/6btYuyn02kEq/aT+h2JXJ+u79PSbq4hZ+\nwuCe1gHEpzTWlWuxJ/Ge2q5S+vKy+TGYQK43mfskNyW20d0o8dZVg1HZpvJOQazqTlnW53RfXppb\nxw/oPSn3+R/1NtlRvdGkKS9gWtYcR7pIHTV5864Q9YzzlFq1Nxm1cFrynUTTjIdlzUhToGUxJVhR\nshjPpaWkO8eVfLZ3GvBST56N620wGkkZfVZbGjOZO47d5ngun0+0viSeu7R3pZ9VcR/fVRj/akV1\nInGwrLxPNpT28loXkLwk0zRl0r7D+fPy+/0vlH9gHbC8H1seH5a2tKU9ZI+Fp+BGId3rV9j57hdo\nXRbv4K1ff5PDB+ouPTjk9bfEnW/VEQ1fVuOLC5XoTolRME41S0Ap4ItmhltqIHF2h7WugmlaWq8e\nOqCrfF0DGlnO9yYEueyw/QurrKvU+KLQKGiWOHP5u2w04mAku1hdOKx1lHugvYbR4Ni5DVnB12kz\n1shyY8vD94Uvwnv3Aa/sKlhKd0R/toenUfFmFOJqpL4dOWTKI9hLI2aqAGmbKl7Tu0i8JkG2InDY\n18Kf1dGUow3hcjDzZ+mo/qGrNf1OZimUwXmjG5BPZWezps2Ko5WGmzVGsROOAsTiyiVW6vidLYe5\nkc+H+ZDN5kJ1uUUjlB3PjdXbcqYUSvFettaoMw2eeffZa8m9OfU6q+rJFSvKaz7g7JjjBikrF+V4\n8Hx+i7192fFXKwfjytjWibSR25LyVO6tPLpFpJT4/c0e67HqVbYc5rnCsDVwm6dzDq0e7aKATI8M\nYRSyq9wRzVI+2xvtcvtEuAuecwckJ+IJDQqfVU+8n+YVS6xaoPG6eEfO6fDrxU55hHHFE/YmCWjB\nW1DlZ+IzQaQCMFVOL5JrBO0tfu+L4r1mqeEbvQNXC7DK9+gxPBaLQlVkjA/vEuUeM83vbAcNWJez\n81q0yn2tibh0POb8pp6Te3pu3D+kbGrJ8mCfiaL8TpMBtRKXrnR8fFVLCvShmDBGEwCMq0MOFQyV\nOh5tJVVd9dbohItKRHXtD3IKxfhnvsFb0PQbB+spMpGSluojeqphGMUNwqmcF+dJj5kqTh0eP+Du\nibA7zdTv852abl9eoL5voZRJ6gcutpQJNKkzPH0hV4ye9S9sYhsLkpVtGtrB1e2Q+UUVBzfQXdUz\nvmoXMKnwVJ2r34lxM3Fn54cTMtWymB/cwXFl7GZ7X9VLVRjlPrRuBFqV6XVjjJYnO3FIFelUUw0F\nYzI8RynJZ0Mo5YV1d99gy5NU88SUrCkzlHU1BVpGOIria2Qxzqrc287RFs4XJIX9teKEu6/I/VVW\n/v72aEJbtRwaseXqVXl513pN6pYCpMKQ0pe+FLXGLboB4ak8x24UU2otSbfZp6UxoZ72rb5yjkTR\npvl2SaxFkNn4hOFY+rcyhrClAR0j7Trbq/gqGkvToVKtU+o5xteUs00xRuZ1OVNuSGsZjYXEOPfa\nvD1TbcpmSKQ6pBkQqPpUad/borA8PixtaUt7yIx9j6vHI70JY46AGXD8Ed3C2rLtZdv/P2j7krV2\n/Vt96bFYFACMMV+21r60bHvZ9rLtj9aWx4elLW1pD9lyUVja0pb2kD1Oi8I/XLa9bHvZ9kdvj01M\nYWlLW9rjYY+Tp7C0pS3tMbCPfFEwxvyAMeYtY8wNY8zffMRtXTDG/Kox5nVjzGvGmL+mn68YYz5n\njHlH/7//CO/BNcZ81Rjzi/rvK8aYL2j/f84YRVs9mrZ7xph/box50xjzhjHm5Q+r78aY/0zH/FVj\nzD81xkSPqu/GmP/JGHNojHn1Gz77Q/tpxP47vYdXjDGfeARt/10d81eMMf/SGKW4kt99Rtt+yxjz\n5/44bX9Q9pEuCsYYF/j7wA8CzwJ/yRjz7CNssgT+c2vts8CngZ/Q9v4m8MvW2ieAX9Z/Pyr7a8Ab\n3/DvvwP8N9ba68AA+LFH2PZPA//aWvs08DG9j0fed2PMeeCvAi9Za58HXOCHeXR9/yfAD/yBz75Z\nP38QeEL/+3HgHzyCtj8HPG+tfRF4G/gMgM69Hwae07/57/Wd+GjNWvuR/Qe8DHz2G/79GeAzH2L7\n/wr4s8BbwLZ+tg289Yja20Em5PcDv4hw1h4D3h82Hh9w25kBQ8UAAALYSURBVF3gXTSO9A2fP/K+\nA+eBe8AKAq3/ReDPPcq+A5eBV79VP4H/EfhLf9j3Pqi2/8Dv/gPgZ/Tnh+Y78Fng5Ufx/N/Pfx/1\n8WExWRZ2Xz975GaMuQx8HPgCsGmt3dNf7QObj6jZ/xb4SVDyA1gFhtbaBRHSo+z/FeAI+J/1+PKP\njDFNPoS+W2sfAP81cBfYA0bAV/jw+g7fvJ8f9hz8K8D//RG1/Z7so14UPhIzxrSAfwH8dWvt+Bt/\nZ2XJ/sBTMsaYvwAcWmu/8kFf+z2aB3wC+AfW2o8jsPKHjgqPsO994N9HFqZzQJN/28X+0OxR9fNb\nmTHmp5Aj7M982G2/H/uoF4UHwIVv+PeOfvbIzBjjIwvCz1hrf14/PjDGbOvvt4HDR9D0nwB+yBhz\nG/hZ5Ajx00DPGLOoVn2U/b8P3LfWfkH//c+RReLD6Pu/A7xrrT2ywhT788h4fFh9h2/ezw9lDhpj\nfhT4C8CP6KL0obX9fu2jXhS+BDyhUegACbr8wqNqzBhjgH8MvGGt/Xvf8KtfAP6y/vyXkVjDB2rW\n2s9Ya3estZeRfv6KtfZHgF8F/uKjbFvb3wfuGWOe0o/+DPA6H0LfkWPDp40xDX0Gi7Y/lL6rfbN+\n/gLwH2sW4tPA6BuOGR+IGWN+ADk2/pBdUF19ve0fNsaExpgrSLDzix9k29+WfdRBDeDPIxHZm8BP\nPeK2/iTiNr4C/J7+9+eRs/0vA+8AvwSsPOL7+D7gF/Xnq8hEuAH8H0D4CNv9DuDL2v//E+h/WH0H\n/kvgTeBV4H8FwkfVd+CfIrGLAvGQfuyb9RMJ9v59nX9fQzIkH3TbN5DYwWLO/Q/f8P2f0rbfAn7w\nUc679/rfEtG4tKUt7SH7qI8PS1va0h4zWy4KS1va0h6y5aKwtKUt7SFbLgpLW9rSHrLlorC0pS3t\nIVsuCktb2tIesuWisLSlLe0hWy4KS1va0h6y/xfIOPq364CimwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.2531... Generator Loss: 0.8170\n", + "Epoch 1/1... Discriminator Loss: 1.4623... Generator Loss: 1.2401\n", + "Epoch 1/1... Discriminator Loss: 1.2366... Generator Loss: 0.9501\n", + "Epoch 1/1... Discriminator Loss: 1.3075... Generator Loss: 1.3609\n", + "Epoch 1/1... Discriminator Loss: 1.4270... Generator Loss: 0.9645\n", + "Epoch 1/1... Discriminator Loss: 1.4111... Generator Loss: 0.8603\n", + "Epoch 1/1... Discriminator Loss: 1.2284... Generator Loss: 0.7865\n", + "Epoch 1/1... Discriminator Loss: 1.4061... Generator Loss: 0.6807\n", + "Epoch 1/1... Discriminator Loss: 1.2659... Generator Loss: 1.0759\n", + "Epoch 1/1... Discriminator Loss: 1.4578... Generator Loss: 0.7154\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVnsbXl23/X57Xmffeb/fOd7a+6unuzqbrsTx+0kdnhy\nXhACJEgkpAgJRJB4ICAFEOIhEoIHeEGRAgSBiIITEpBMIie2cRzb3XYP1VN1DbfufP/zmc+e9/7x\nsNb5d5cgdLXb5VSks17+5+57zt6/aa/xu9Yy1lq2tKUtbWlDzj/vAWxpS1v6eNGWKWxpS1v6AG2Z\nwpa2tKUP0JYpbGlLW/oAbZnClra0pQ/QlilsaUtb+gB9ZEzBGPMvGWPeNsa8Z4z5Kx/Vc7a0pS39\n0ZL5KHAKxhgXeAf4ReAp8PvAv2at/d4f+cO2tKUt/ZHSR6UpfAF4z1r7vrW2BP4W8Oc/omdtaUtb\n+iMk7yO673XgyQ/9+ynwxX/Wl0PPtYnvk1kIjA7MGHDkH461oBpNa8CocqNfxdJSNXKxsZb2h7Qf\nvYzrOLiu8MDYl2kb42L1Ji3tFYesHI9umMg4Qp9Yf2dc+d358XNSNwRgN+rQ6UY6aHD1ebauqdsG\ngLoq5RmNxXE2Y3Z+MBELxmxmsxmPxTbt1Tytzta4DrZtr75XN/KMdvOsusHWtS6QS3LjBQDmObRl\nJY8zDtWykPWp5XfGFlf3NaYGHZpjWpomld/Z9mofXFfG47Zg9BTZBlzPlXHYiqa2Oj27+RnGyAJ4\nxrkSSU4r8wI4eOEVilLGUVUlVT6VL6W5riG0RubhAlbnbzBXa2uMg8Pm2bqe1tLqGjqt7Pdm/epW\nv2sBnVeg83DCiH7Ul8+ewdM9M65HNpsBsLQ+AD3X0h105LuOwdH7tnVFq9try5amkf2pWplTWUNT\nyrUWS2t1bBhcPaCttdS6P83mXWjt1fyM4+D6ciaHvRFJpyfXYxerc333e9+7sNbu8SPoo2IKP5KM\nMX8J+EsAHd/jz75wk7dyl2u+LM5OHENHFrtTZriVTH/lWkJ9WXzd5LLJOF7Ji7fIS1Z6UGgtc121\nURgxGnUBePVA1sWPBjS+3CsnJ9DFPu3s8Cdv/4yM46VrfLIXAxCOxgD8d//5f8I3By8C8Bc/+Vk+\n9zOvAeAcGPq53K88v2CWL+R+J88AKBYZUSInt6o7EMqYaczVIWwb+f+Mknoth8bBYPVweMM+5XIt\n152Wcz2Y+UqunV7OaSfncl+vzxf+y78LwK++ZVg+PZFnhzHnv/EOANOzuaxF+4B6JYzC8c8w8pHE\nX7GYv6ljXmH0Re+N9EVY10Q7cozqeU13bwDAZXXM4kL2sm5rSv2d58tLsxsktPKR3rolGMre/OVf\n+Q0ePJR5n5w85PjtX5ElevM9WZeJJQ2fAzBsHeqVzN+0AYncgsCLiJRJVkb3oyxI3UD2MbOsa5ng\n5XzCJJOx1Q2YruzDtQNhBJ3br/HnXv0zAMQHIWNf9izq7fOtv/e/A/Bb7TUAvjyo+dlf+ilZt44h\nLuTZ2dkz8kiekT/JWc0uATjO3gLgyblh9ugMgJVtWTcZAJPWp9fIvhd1xeVKmPNE34U0K6lUcAad\niMHhSwD88s//y3zxp35Orn9iTMUKgD/32U8/4kPQR8UUngE3f+jfN/TaFVlr/zrw1wH24sT2zYh+\nMqPpyEvx1mTC7Y5sUOfaNUapXI+aCYtWOKJx5WAO2pDSneg1g6sHwjQWpxCpEvs+xpf7MZbT6A18\n3EwOyso4dOfyYt1dHXOtlo0puinzsWyGO5WN+2Tniwx/UQ4N+x2+W74PwCfifYLoCIB13mAy+f4M\nee6iqIhUiiedFZErzMnrBjiVjDPwVDKUAW0pm7/MU5JIxlm5LXVfPvvLlMOxbmGwo38dZixlTuuW\n+1+Rg/m8STn+lkjdIvFZPRRFzobye3v8Hm4s93Cqmr2OvGHp7IKwcx2AJn1AqNLINfJ35419CGWc\n0dkx5aVcH3RfwHOP5dnFHN/K/HzkpdrtjikTeXZARl7Jes9bl97qFIB/8rd/H2csWljSkxfPrZ7h\nX6ow2O1yYGQthoOWbiD7Gu3f5kCZQTuQv53Mx4mEYfnzlseFjG12csnJTJjod56ueLyWc5RN5Cwc\n9R+y48k4q0OPJpe1nV6c8HLzabn+RVnXncDy2/e/CsCf+NQ1OnvykgbVAa4yIW+/ZWn1PC1lTre6\nJd1dWe8Lf84NFXphGFGsRGN98+wtokLOu1/KvYx1KPONFtoS9OW8vVVN+Nk9eV/CTsKelXt8WPqo\nmMLvAy8ZY+4izOBfBf71f9aXG9My9zOSvKaditqz2+bYhRywsalZjeTzchqR6KIljhy0Vdihaw4A\n2NmtmJ6JpJklLZGVlzAPIVgLs1iu5Hf7ZUh/RzbDPy0oQ/nuhRnz/Yt3Abj3f73D4stfBqDvyu/z\nT6z52fg2AEGxS5MJ52/frGlekJdtul5wMZUD1jyXQzPwZ6SNHNz1IqajGk0vXVMFMievlgMfYnEd\nmceCDHTsNA0N8tmtS9aVbPggkmt31xHfS24BUDkL3jmSlyr9Ssoolpf72ekMMxOtwdEXsyktdfmm\nruuSdSgvqTEJPdWgukMDytQ6PRnnjfaMub5ID+cTakf26aX6NsOxvLAnK0NtZXzOZv55xahURuAN\n8AM56OvTFb/y9ldkndMnvDG+Iets5GVsX95j+kAO/LAa89rLsm57gx6OkXuP/X12X5R9taqK+wOH\nYLEr9xi0vDxJdZ9OWLwpArTbe4vya6I5LVey9s9mDieXchY+8VWX9MVXAIiclNXOQwBeUe2uX3yW\n60audR4ndF6QdVsfhfgTWa9h3GM0luuXR3JmvcuQ9GWR5sViSamCIchcFqpZlr+X8t1AGNnQkXV7\n7lc8n4o2Omta+nPVPN/5Bufnd2Rd9vpksQrDD0kfCVOw1tbGmH8X+IeI6fffW2u/+1E8a0tb2tIf\nLX1kPgVr7a8Cv/phvttgSK1H3fOoV8IxXbePGQnH7I8GHMTCuZ/v+uwdC/e3sUiim16P7idlKv1q\nwKoW1S+d58wRreDiYs1SnXmRSrPBoUMyFkkbDy33H8ize9kxJ5U6g26MuPvdb8hAPylSy9YH+GPh\nyquLC8KpqKXpzjPOToWzu6c5ppJxhMrZs6bLeiWcPejULAv5/7wyuKk68Fo1d+KYUr1TnbYi0zkV\nM5dKpW5rfLxExuE5Yopkuxm7cgtCL+TN74lEXDk1dSn3a+Zdmr46W1NROduwoinVr+FCMRsBMBq5\nhF2Z3050E6sO2GsdkdzdZES3+j4A0+GY20b2qXKmmIV898a4w+lcHWlGxjupM7KOaDEjJyVT0+7r\nX32b89+X+d0bB5RDec7N4acAKL33uREOAdgfx9zbEe0nHqzwFjLOuNsQ78t6BKptEYxw9zafe3BD\nzk48CRjvyefPf8clUY3lH3xDTMLi+XMePpfP+3/qdUZGNImiHzDviaS/flPWNTt7QtSICWZvRrhd\nmcfAXsc90nPt9Ihc0WIiNYPMqwXWynrX9TF5KtdtuaCnfp43opfpvCnjzPblDEUnOZ76nL3lmrJR\nDbla8Nbbcv3O9TnZUrTvD0v/3ByNP0yu59AfJZw+y3E6MstXk5ruSO32YUgY6wsy7RPckoVKXFEX\nR67HQO3F6NaA/aVsTHZwwfxSpug6U8JKFi3sqCrbVpSNbpaBzkgOZrjqcGnlMH7r2xf4r+phu5RN\nufGFT3H/RO7R8S75xAtyUCovAHUCFf4ZZ+oIjfbFFmwvcwzCIFZzi2k1SuC0+KW8LI0VprLrlKiv\nj/W04nwhv0u9lFa/47geoSMqcXckL3+78Gh35f/91MG+JvNf/IpL9UwYgDN2CB7Jy1RZcaI62TlN\nfaZjqAh1bf12zq53R9b7ZkhX/Thd9TmMfMtiJS/gq/WaxVLMkmw5YtWqWZU3GFWJ1fIhXa1JM5lz\neC2mo6GIWZZzEAuzGJ8+I3lBmMEwkv3oJV28nqzMzm5AnMh6Jxzg9GR//bGDE8h1Z+MDCWqMJ5/b\n1sOuZa+DoKQayEvTHcfc3tkH4Pq+zOPZOuXdY2EKne/E/PQXxTSLOwd86vMiJE4vxXwa9WfcflXW\nJ3Z2iPdkb4w12FiiQKb18HJh8J6utx31aVL1h5gbRKmsW14ZlisZx55/g7u35Ax8+1LW53qccS2U\n3/3+86dMNTISTyyDTEyeWXoNE8uYPixtYc5b2tKWPkAfC03BMw67cYdZf4pTiTTuhH0+GUoIMO2P\n6LqiMvXHNWNV23wNFR4NeriOTCUKuzRjjcezT34g0njvbMHp7AIAV8NDte/Tc0QVzVYTCpWavTgm\nXAt3XZQPqTS0aM/lvsnRiI4nDsUmhsqKF7mzvuS5RjPqxnCgURIc0XhOouckKqGGUUtiREIVtPiJ\n3NtpRYoEKWRWJKJvCmI1n0wasMz0elgwakVid63MI+qUtBrTX8Uh5/c1Fv7knCYQyRxPQpyOSJim\nfajzXxLqeEIM3V0Z885gj52XRBM4PBjRy2SclSPrOkwWdCvRzM4jcO2hjGeY0TsRbcQfPqKcyLNL\nNY+CoMtKQSSdooRW1+LJA9LHEn580Eu4rbiG3ainv7NUraxhbGI6vqjdjlPhu3I9CnfwfQ2BhrI+\nxunAZjsWE1pftcViRNgTbfFo95Dwpmhcn3oqUtw0x0TrTYQmpVBz9HbTxw9kr92OOAADbhD5n5Qx\nmBLHE63DiV0cT9bQFms2x8Id39T/72B80QJs08V1FPeSL4l9WYsqzHBDuX5zZ2MGJZznsg/jVYDN\n5B513vL4gcxv9LkFr8WisXxY+lgwBVxoOuDFUOuhmTnwTMOCd6suSaDmwSAn0NhtouCQOocokJWO\n9yKM2nX4K0IFHEWJIXoupsmThTCHLi1xV4FJoWV3od7isibpy0G5NyxZP9VwkTKYUXiBUdPGX1jy\nWFTb2SrDc8WUcIIuhS/MJNN4dRBYKgU90bR0rqldmztYDVOV6w1IK6c0srGNaYjVHxCFPlmhYbGs\npriUz4OeRHwjx2AaYWietfSvy8t//oV9/N94AEAVT3HqpwBoRBLjdXDVVzEYw7XrgsM4GHi8oICc\nwcBgduTlzpeyTx2TsIhFfQ7KAY2rL/2sZf+6vKR50aW71kjDBrDlVww1krEqI5xIPl/vhjzbFaY3\nWp/hNcJYciP/HwYGZ60e+cuWyhecgh+5uL4Czkofd6hmkb5IjgFT69qP+ljkujXHuGvZ32ac0Awl\nqvTCStY1fbPm0sozDrtLEj1D5sWMQH1F/UMxDcJiBhoRM6N9XDWDTOAJCAIwkY8bqTqvkTFTh6D+\nFQv4azkL5rlhvCtn2Y1zLisZR3Eiv1sf1shbAd0nLmeFrmdwQbN+CEBS/zxe8OOlMmzNhy1taUsf\noI+FptA0Lav1gvmypFKHm5/mmLGoxHkQ4Dnqoeq5uGuFq6q66DlTUFPCqUtCBT01VYTb38T0XZq+\ncOCiVhU/Thmq02p2aclVNczqJQv5KpeZYaKoufDiPgA3pq9SKedPVym7jSIBaSgUrpusDO0G2uuq\nSeDuYA91zN2APU8km8HQqm67VAk8v5hTLdQRSU0dKbS3LfBU7bZtwWIpUvr+iQK5eoeMfDWf4orm\niUgz53JKHYgW0y7WVIolMytBB7pBRDy+A8Dde0NuqUd+/0ZEYtXkCaD2FUcSapShmLLnijTz60ty\n3ZPUBsQbLMP+kImaYPlU/r9saspG5hy09goS7dQrBgr53Rv0mWcyv2kukrQqKwJHxhYlXWwlstJ0\nfbxINYFuAFYBbv5GStaw8be5MUbVbtf3aRwxFcLdHoOprN3onmgPB9Md6kv57qTJ8Z7LuiUHAeFI\nHI11Lnuez0M6O/L/jnsbfH1g6YCCt3DdK0g3rb5+PqBoS2NX4ClUerjGQ0zlYP4eA0W1TvVewQKs\nOrZ3hwGPFrK2iV/iJTLmKAxJ0x9PU/hYMIW2tSxXDWVuaVE10TU4gUy+sS2ZqmKJ9TFqAxpdSC9M\nMAogoeNQlxvockqjoTAvbgliYRxDVcnSeoipNaRX+nix3GN94XOssOHHFwtcPVjTU7lXYwqcpRya\nQXeO0xXmVc+nxPrsxsmxibz0ifoJvKZDq88Iwpho45FPS6ZL+d1aD1ibG1an8juzE5A1suHXTYiL\ncKym9kitbOFcD3lWpayHamfSI70j92vmlmYiKrHtrGgn4tV2PTm4TueSvb7AtQe9hFFffQrBgsFA\nfS2Oi9fT8anZ4kYJrSdMMaoGTHWutm3ZjWVshe2z05G1uJgJc6gr8Cq168feVf6BGyfEscKjn71H\nFr0q92g1UrHj42s41Q89GmXqJh7iaXzODRyceGOmbOzznEb9E65vMJFGcFoXOhvh4pD4YvvfOBRm\ntLi25NvviP/o/eyCN1QYnE9e5OXXNLqgCNPwcEZw8El9RoJRJCtmiQ1lDY0Jf4hZyFrhWGg3iRsR\nVMK8rWPxQmX2gxF5X0BwjyqZU3OxIlBmGUYNoZ6n9TJiqYxgPXtCE4op+GFpaz5saUtb+gB9LDQF\nWouTNYRuS6AqZeQZ+pvcgNAhUmx80nWJjKiMrkqG1q8xmkjV2gSj101V4ChQyVYGXz34kVEMeVXj\nFsLlm7BgV6X4uZMTqmrXNy1lrslYmrHXzxPyWCRG6MX4tWDnV3XNqpbf7XcjIp2Lo3kCbt+nrw7T\nZgmOlXh00db4uhV7jkRcsqHL5XIDbU5pSxl7Vo1xNZV0XLuMO+pgDWStynxJvFKshPFZTzT68PSC\nWhz1Glnxdd4a209u0rkj99jd6THcVwh2J6HXkzH3KXByeXY1FCnZqSyhEYn4ZH12pbENY49Ro5GB\newuaVMyOvC8axvFZh1Khy1VqafUerJ4zfybrWQwibgxlfK4RTSN1uEpFbX0Xr5X9a9tMsyrA2BZa\nkfQ2E1XcOi6+akW2yrAqxWtSPM2fsJVH7is0vZC7BUWOPxeN9eRyyTcRDXHntQfE7hfkgQoxd+ob\nOL5GBtopNpc9bW2G42i2llljdS5XWWd1DHqGqFvqTWZoYzC5nBEb+DSNaBadVJ43fzDh/Uy05lXR\nkCr+ZrlYYk9k/P/0suEXXtPMsw9JW01hS1va0gfoY6EpGAeCrsXLDKXmfjdZS1UonHNpWSvUdrSG\nqKPIRHWy1Gv3KqTlBD5tqzFfQnyVXE7Po9Jc3cjTjMPjFKejdn3e4qlNduj5eD11Lp1WnKtjs1UO\njTMjiRRqXY0oLhRrWhbEPa3rEPYI5sLFw6FCissGoxiJwGnwEEk6zR+RpiIpvFLGawOHxIjvYBb7\n+O0GPrxipWninb4HtUi/fU3pfbg45VKlY4+ATG3nLNkheCQot3z4jKArz+sNPyN/3RirWIckW+Nu\n6h60LkazNcMgoFGB1802zkwoVDiuqyVnCt3upg2l5jK31iMeiqYwmMkzqv6EE0VpZusAq9mxwxvX\n8FeSfuw9/QOeXKg2EYrE7AdHTDJ5YFE2DG/J/8e9m9TrStdwih1uCkJI+JksgJ5oYU2bXdnw1eyC\nQuHBtgmvamC4RpzLox4MdkWrcC8aWk1fHvsJniNaBYloTa5TYRQeTjQFRX+2TDGKv2mjELOpW6Ha\nDDYERZBak9MqFB58anXylibHCdVXthAfx1l2yYMLOZvXhjH7+zK/smpYz2RORyu4NfoXEKdgW0u5\nLplXJYm+o7UPy0JV9DoiXcuhf1ovWaqDylWnXhIHrFWlvL4c4OkmhZ5PO9AswAJqV0E96lyce1M6\nqTiApu2cpXpvy6Sg6Ylavn+xh1W8wVqdXdUq5Wwhn3thia+4gcbtkahn3K5rpqX8zn2mTMzZQetr\nEPcLvJWOP4TmUg7QuisHZTWDQCGs6+mMp5eabptOaDwZc10GdPZFBc0UH2DrDq6rZlWxoPimHCD3\n+Hcp698BIDj9PE1PgUo35SU9uHFAV82qBSW9c/HIXx6NMKpK96oO1UKekwaKqyhq8kei7j45e8Zi\nJtercQertR4aA5Ncr6uq3dYuwVIO8bpZsZr/wDz81K4yXHYwlezDs8m3ATBpRdrRoi+pyyPFZKSL\nE7oagQqSlGipkQg1DRp/Sb1UR+v5klodt7V/TL6pz+Ee4fUVnJVpVKNT0I82YCkfR6Nga3OJO9ZU\nc4XY4+1hIgEywS7Wyr43+R7LheSHFNbQRfa1jRRYxTluK45d1/MpSjmzWXnC+ljOQ5me8+3vS0LD\nW6cy/0cXa/yZjCfxLT93SxyK/+gyxe+Ks3J0fcTI//Fe8635sKUtbekD9LHQFFpg1RiytaF0RPKN\ns5b1UlTGdRVwpNz6LAzw7wsX9DQ81HQM45HG/G/WHBzdlc/jMeszzQxcP+b4uaD4Lo9FGpz7DSN1\n2lXGZaEaxGXhU6vfyw97RBuOrw6i83TKYiGS1tmzdFS9aSczzlOVOsby3kwLmTzalD57l51Dkcwv\n3bzD7kh4cn0RUGsVpuxEpF2+vOTt92T+z8qMY4Uud01Dq2ZT2VsxyuV+/m0FVtSQqynhWIf8/v8m\n93v6j3AamXex85xuJtDseCkhrajI6Lci2S9W73H2WEyfm+cuxBKP9+6MiRQdVyvk++nZY5xwqns2\noqeVlVrP4+ZdrU9xP+eZYidKDaGGYUi3m+nzGlY6p3Vb8nwpRVauX1g6I0lGUgWE8yfPYUfW6Cx5\nlyeqUs9tQn8mc+kGPv1EPrsabqzyiFyrYqV+RkerWk3mS2ZLmevhSxndXGDayVD30QspxpIEtQ6e\ns6NO7MXiFs74ZQCMFU3BaUusL4jIdpbSqPNwdnrKg28IxuW99DnXNITZeqIp1MU+t+4KJHo8GtAu\n5LwsLgoezAX3cPHeA+4/FUxJO5fFiPsBc3Uq168ExC/L2t65OODJpczJCc+4X2/MkQ9HHwumYKwh\nrl2ioMZHFixva1y1cTtty0DNChP4mKHASm0lC+auVvhrWYSmPaLW4h113eLkspD5Ykqj9npXbS8b\nXjBqhYEUbspoIodxp5eQV3LwnvROOVtt6vXJZu2mY9yxMKasaZk/lUUPbYsfiDprTiYsdXMnzzXN\n2plyXSHPu3GHpKdqYrWk0bTuupD71suSuVb8caqInaHajn6fZwqDdYqUrlGorSsMy+muiCr57qyo\nKS5/XRaueEhrO7peO0TXNQ28L8+7nCzY8TSCs1zTZlqZyEno35C1OGy7LKby/Xcey4FfL46J1jpm\nZ4MygZuez1rzGdZxQ7KWfd3tiQq/1x5xEQnTe/zdOVUuazVdPqZ4Kn6Ad2cVI0/W7vGxpnivF5iZ\nzOPla2MuFaeQzSpyxUU0B3u4rlwPNY6/sjOWWpZs+fSci3fk7Nw/y2BPIz/zhDuJrOftz8icb47u\n8rkDUeHf6UQc9cU0vTM+w2htRmM3PokAdB9t/YDiQoRQcT+jzYThTr/zNpMzeUbXFwZ0+OWY9Lky\nsQuD6ckZKXpLvHceyv3ePqWnEYzgRTFbTubnpA/kvo/esfz0l6QATHH9GTupVstaHnDbarbxh6St\n+bClLW3pA/Sx0BRc36V/rY99OKfWmoptVeNowYtlmvJPjkU6po1HVgnH76pz8cXeDteF+bK4ec54\nIB5gt3EoHolEy2h5otmFx6ouPp+uePWGJAl1opKh5t6bukMSaQJSWxGoaosi+wr/kvlEpEdahDSt\n3HfY+GQq6R9Pz7nQMZ16miSzaOkORJY+m2YMx6J2LzsFy6cibeqFOtl2e/iawdmuMqYKZ468hoUW\nb4m9hqLW+H0m1+bLCaViM/Bc3KE8o2qLq7i4jc4JR+K0unZDJEr/0qfUhBq/XoE6zzKbU5+KNPJe\n3KcdavTgiaj1wcUF8U3FXvT3OXsomtnbx1MuOiu9h0+oqFBrRGr1D13mb6lZZg0KN6A7b/heqOZh\nc8LRWiNGGl1qfB+rezPc6zE6kLnWtU+mdRmL1Roz0EjKNZ3HxQU8UIdwlpLvK8Kwbxgo9iLLG56F\n8p1XCxlnbFzKnpipfuzSVyk+7h6AVum2GzCiv8Cos9YEOzhqxuXDr7LzRE2iJOBiV53GYjEwzM/o\nf0LMDn/QoTwXzdP5nTe5/7YULHtQVZSJ3PtIFBCc5Zp1X9bw5dser6rmuXr9Ju/25Us3PhfT2k1l\njg9HHwum0NQ1i8sZLQ2uI4vujEMirXAc91xSDekMhwOihWzYepMunVTkHYX5LhxMoZVm9gKaO2qj\nP6wINdcgTNSGDGJQGGlWxsSqZZXeCk/LQNeRz86uAqoORMUr8xUzBTTNV5fsaMjRRgGe8g/P63O0\nL+MfaI288nCfvivPnnc8TjSC4bo+rYKz1mrLtu6AI40kWc+w0gq/0/WETLP9Yr8g1Qcez+QwO2lA\nqAe3iWrq7610lR3QeoXOsgREdR0dydhf3NkjLGUtotU1aisqfNCFRPMdep1dwkjW0335HgAP2oCj\n2wJ6SqKItVbMfn5xjl9rLklb0NngdRbCvCZhyOGhFLlNnl7iahbo+bPneI9lL293AuiLqnzkaAEc\n43Bb92FwcJs9hZgHaDYi0BnFXN+R+W32w+0fgead2HLIvoLTPhE6rNQub8oFkUaP4v4dAFbVkjIT\npnDQ2eXeTQWihSkovJtKw8iNg+loDkdnQLAraz8uv0z1hqzRwZ1T+u9pWvOOCC/voEdXU6sjN6E+\nlLE9uDUinsn1uycVvbHsj7pOMO/W3NQ8iS8fvcZlKH4ir9/jhdekGvnr41fIzbbIypa2tKWfgD4W\nmoLB4Fofd+UQaIL/HSfhxoGqgNUB12+qC6vwce8Jh+6eqmTYMTQbqGpnDUuRZu0OlL5mT+7H3M20\n4rNCe9vMUve1BPhZgKMx6mW5ZB6JiheuYHxN1LnGFdFd2ohSIxhhXHGkZd0PD3bxV8Jnx7cumVwo\naOm6JnbN9shrkcAJY2pvA20NWDoKVNJaAZ3OGl9BSL6T068UouuHJOoBrzwIGhHBnaH8f9mUVKHy\n+tLi9uTZ9aTG2TguB0vqQuLm9l2ZU/zJfW5orYdibNnXXgZu0oJGDDqJS6xRhGN1qDn9ALe81PF0\nMVoPY3eMc5jlAAAgAElEQVSnh6Ol547SMbVWwq66m94TXJWu2xtHaNlNTk/OaBzReoICIk2K87W/\nwV7tX6nrgSnxWlm3jtvD74km0E+6RL7Wu1A4c9PO6O6ojTL1cbRqdrouaNVBuWwcwqO+jm/TyCdl\npppX/1qHZFfWa3p5AJtqBmqWmfwSOrf1moergKxu/5zUl2SznWc19hWNBuSajBYMqAu9h9PByZur\n+YU673AnodLyfq6/0nn26ByKJlHfHGJS1XLqjFc/KZpS3G+5nG/cvx+OPh5MwULQWDphxTiRlziK\nDEexYu7vJESKmquqCjcQtavsyKGLfY/ztUYAmh61MgjXNSRadcavHZpYDpCv+HUTFoTaT8HZdXAG\nekhtn7NNefb9lKzU1GANU8aVi6fhpknWkqeyoXHo4Wq9vxvrhOuK4jP6ki4mS1y1kZduSceR++bn\nKYOujGmhfQUC08HdET3xKN1jeEN8A1HqcGzk2cvMZW+sUYlYIirTvRmt9hjISkOrhWMc43AVZ10Z\nulpYJNVqPbutw8GRrlsaX/VnqOuA0lXk4eWaRjsPBVpOvefmoGaH10kYjuW+rtcQqtpaZwWXM80b\n0aiOLTPOxnL4i2che6rhLs+ekGqzm6fdA17T7M9mLS/m42bBq46YLveu32WgdrbbBFgtdBvFDoEy\nk03xGooGL9fUYneAr/ue9F1Qs6Po54SZZlpeaJ+G8ZjDUCsouSVrHU8n/Ba21ntrVjTeHubKwXAh\nXBtwwyFJK/tzcCtjtZJ5e4Pu1V8n1z4tyxWNIh6LZsDlqRz8UZvTj8T/8/KLMp4oX9EqMtPLI8yu\nmrwraJciAI/dkMFwC17a0pa29BPQx0JTcDxDNHIIcp9MMfWrpuTJmUjr13cS4n3hfOGswVeP62yt\nrb+WOZlKgbBfYTV2bctdOsp1nf6ScqOCq9rqN306Co3N3YU0KgRs3uKXIgX26pRLX8t1hQpFZcmi\nFMn38MEaR1XUjh9z61Cr+SZ9gk0nKwVZ1VFIoSW4ommO58szvGEBUzUbFIdftks6CgTykj49zT9o\nkwvWaqLkWcrZVKRjN1QsRbqg3sBoQ49AAR75tMFotGZ8+FmSQ3n2izdE8u94t+gv5XdxZ0IbiFmS\npwXOuRaUYUGjkZRK8RZVXjCNRau4PnJxG/Xq1xUm1E5OSUUtAQUazeRr84ZQ73t7EJKq6h+sW84V\nwLZsLnBLwZG8X2rZOWMEDwCMmiH9vqxxlk2Yr7SBzYOE5p7sj9F5tE2Lt+lt6VcMjzYtFUMczWYs\ne8UVTmSl9SL8iUvfk+hLcmPFYi5zelQEUhQCwFE1p11ApRmJ3hCjeTWe72M2UOP4HpHmrqAmlT1P\nsVryzuYWx5f9vV5M+K6WqI8HDnu3Zfw7gazJy6/NuVRTI+4N6Z7IXnaGBu9Qe506Pk82oZ0PSX9o\nTcEYc9MY8xvGmO8ZY75rjPnLen1sjPk1Y8y7+nf0h33Glra0pT9++kk0hRr4D6y1XzfG9ICvGWN+\nDfiLwD+21v41Y8xfAf4K8B/+/92oqhtOpkvWrWVfi5V6dY2jRT6j2mcQK8fvVFSK2Ety4YyL9gxn\nIBx16L1EUiq6ry5Q9wFO0WA21YO1Go/TN3i6BGFQk83EgbNeP0Hzc1jbhECdak0h/3++WnKhWWjr\nWcrlM0H/LUbX4FCeMXAigqFmaGqjDz+dkWo3hyJY06qvol2d41mRbLU6lto1WG0lN+rWZKoJrPKW\nnmbf+aFDpci9qWZatalHqQ6+Niuo55vWzh3CjVMkfx/H1QakQ9F+goHFKJrPs0NcLSFXeDVrbYCS\nrjwSdeB52sLsYp0TpLKG44MMbeeIG3o/qDxUNNRa/DTXMOx7szVDrSgdujm7E5nrtGrpV/K7rmeZ\naLivo41/kijmpesyhrBfEFotjup65Lp2/n6DUQes0Xv5TkumGapJu4PXbqR4F8SfTWQHZFpVudjs\nbzkjRZ2xnX3m3/o1AB5czLDepoSchibbLtbRhreMQLUDxw6gL/sTZAe0sZbFKxTF2q4w67Eu3Pqq\nHFvRGTPWCtvtzGPndYFbB9fF1zZe9xhpkVsnGDNTdexB3XJN4eht0DCeaYWnD0l/aKZgrT0GjvXz\n0hjzFtKC/s8DX9av/U3gN/kRTAEMTutDXRLo5vc6EYkCVrykpdXSVY1tsI44FVstJGGKHn1H1Nb+\nyyFxX9Wo3RHrlToMK5f5dNOxSV7uYDQm0MIrTR2z0iIWlyuPtcKmbdW5ahl+oU4oL+zgGu1VGGW0\nmnG3XkxY6uYOBjFtprDUnja/rdurtvSrqUOhICyvqCm1v6WJFL/vVTgaZegnPtRaVq0NSRRvsDQh\nqXZMjvS+oeuSt5sS9xbTkxPvNSm9kQKBPv0GkSNz1aLFZEdLGoVBp2TEemCLfM3phRz02uvQq7Xo\nhzq0XdPgenKTxfIWB1on0ZoA4yojWOcsFCpeaFaj61ZEMznQbs9noqZU4AVYbfzShjWJrnPkyXj9\n5Acdsta2wM0V4192cRTLEbYJzW6ka6tVksuWstFK21EDWqfTCQqMo3ksXk3UyHqFXa0pee7Q3ZNn\nu/WcZ0uZ+K+dFvzVQF/kaFPUx2A02kVhr9raG6/mqmm832AKfe0qcRjX64o6k89+v0s9fyzPvtGj\noxiQaeUDCvZQARmFPmYgYygWF8yPRbA4YY4//4587r7Mf6U5Ex+W/kh8CsaYO8DngK8AB8owAE5A\nK0/+v39z1Yo+8n88cMWWtrSlj45+YqZgjOkCfwf49621C6OqNoC11hqzKfT/QfrhVvSDKLLtusI4\nBU6gWXuhIdFGH2kKUSvxbdt6VyGraSAx/4vzOc6m/fx9j7NWuPxoOSDoifQoL2CtmsD6Ur572GnJ\nVDUsqzNa7avYtTW2kGevmHD2VCCqEy0u+tqte9zcV9VvGRKrCm/dltVSri/XKW5Xi2zMFEbrNQRa\nULSXWTrav+K8qWkDLSrbblrb9UEbmfhxj5FRzWWaYIPNPVrG2uru7kjCVfVwSXymFaEbQ6PIS6cd\nMveFPx/6d/C1n+Gldq0+mXkkGleP1jBVPMWT41Pefl8zFc9WfFULt16NbTa7atXe2AmJVnPe3+3i\nal2AoilptRKL09MCMe4Bs1Zkx6Mso9HSc0FVgVa0njWGVtu3jbUl+9Nyxvcey7Xd3RjUKWeqc861\nzgZVyqoVrWCt3aVnGYTab2GcOKz16GctDBLFuNiCRnuNOFrcxO1XOCvRHibLS377sZpSRY7RcKDZ\nwONtDJuq42YCzaaXQwBqStnqnFrDmlZ7RPjDI1x1ApeXhslz0bDixKenRVqfFSumM0X4KqLRx6PS\nBkeLpcviQDSW/+lXfpd3v6fn80treuUfYyt6I0DvvwP8L9bav6uXT40xR9baY2PMEXD2I+/jgtdv\nSS9bLueiApWTAYtYXu7xZMVqqM6BVUmmRT+mU/nuqk05OZeF/OYs44ULecH8JuGmYh38OyN8rcjk\naDrt43cecP2Oxsq9OWtNpy3mGR3tpuR6OW/lcmju68H+hF/hK9y3S0ae6cs9WXEjUtUvuUGpmX9W\nvdM26hNqCrgb9SjU5A6KC6Zq5rSbQzxo0KZIdLohVqvxWCeldbQGY9gSa2n4RIPldZ1i1NSoXBdz\nV2PX37jEXcj4n8Rfold9T+6dfFnW8nnNk6WM98DMyZRBFJM1x4rFzy6nLM7kQA+UOYyjXbKh+gaq\n6dXB7XorWrWNUx/W6tOONqnV7TnvKHZh5q45VuDUG0e75AoFn0wXlO/Ivp7uybWL5wsaBZPdfBLx\nOcleph3u0Xska7jOMqpzMXNWKqMKKpKO4BvodfG0tmVTrynnwvStbyi1QE2uRWFM2zB79Jas24Mn\nV9D1bucI26jtpRW08CtQUxKnc1W2naoEZVht417V2zQb/rE+B638nb73LstMMjh7D5YstCGvv1gy\nHwiWYfxEnjH61KuwAV5Nz4jn2rzYlPzfv/4/AHB491Wenv5pfhz6SaIPBvgbwFvW2v/6h/7r/wD+\ngn7+C8Df/8M+Y0tb2tIfP/0kmsKfAP4N4NvGmG/qtf8Y+GvA3zbG/FvAI+Bf+VE3qhrL8bxilhV4\niXDBN9eXjDXKEKQh402MuS4oSjUVNMGpjffYtGjejYZcai++3W7CsXaxfilvoRUk2CIWjnt/cc7i\nvmgP1/p7LOdyk7PVgrArkiRPXU4rld5qtqxNxVS1AGffx5aa+JM1LNG48npJNVfHprYw64Qxbmdf\nx36Jl4npMgosa+0+Mz3SVvSnLVZb2jnenEbFykV6xlqrCzdOS6FoyaVmX9aXCZ5GEZqypH1PnWDW\nYrW3RPMP3+f5ZwWOO3xZHFlNd8aFNp+Zeh5W57x2a+JIqxJ3O3RrkfRd7WMwuL7DnpF5pkVLqa3N\nztMBXZVyF/M1tX5eahz/66sV4Uo+z80UO5X53Xk95vGpQtMHFY+0NkaxEKkbrFJOj+Veb9ozdvoi\npQdHId0jcbq16ZpAM0xdVb+TwMN2RGMLex0c7QHill3yTLuGL1MKTUxLI/lbrQKe16KlPFudE78k\n97u38wJWIwM0m3qQBuwGg+CC9tu0rUurma1NXVFtFIiZapD5KcVziaikdsFME8LScMnJt7Ue47Tk\nkUZuygNZt88sX8HRdolm5yZvPpD35b3LjMoRWLX/tyr8VmtqfEj6SaIPvw2Yf8Z//5kfaxC+z8HR\nNSarikpV3CpuyI8VXvtSTKVe7ZOqpC50E1L1CtuS5vAlAG7v79EPpCHH6NWMh5o6nc/foVTQyz/+\nHWEKw7DmlZ+XwzObw0S9+l/NCl5Rb7EzGbIM9OXcNBYhZq4H2sVlpKXDi6ziTMFSnabiQlufJ5Uw\nkD27xsvFmiqnllbrKq7OHdaqakYX2mg1yHAKeUY98Ti9VN/IuiDTrD03jDjRhrU759qKPjWkaqJ4\nlSH8aQ1v/aM5VrP68hsPKbqiSl82Wsx0Z4fZWnsVdqe4c1GNzx/NyDVFw/V7aECEntrnXm7xVPVf\nuDmB1tVsTrOrrlbr3FLUCnZSU+TVvQLzQNT9bBxyovb1z/zUn+LZUtb7e29+n2gtexzlamfHXbo3\n5Ng+Wp7wXiH79+mkT2slxDtvIjwtGON5Wva8bqnUb1HZkErnEbYW6yqDGOT4Cr4KzuX356tzHqh5\nEU0KvvRTYq+cJy+CFsW1joY/jQMKcKNpr/wLJsholalXtb1yO5T1Q/n77iXNPVmXnned3TvyuTr1\niGMxsc6KBd+/L+Morsu6feHnruP0xJc0O/4D0kSu/+lf/ixv/IG8R/fvuPyPvyqm4oelLcx5S1va\n0gfoYwFz9rHsuy1l16dUR02bLphrluBLO3e41hUOPMxT7s+lVPnX3xe17+anXuCNT/8SAO6LKTcv\npER4/2bJuKeVnZu3+Opv/hYAZ6qqdu4lWCsOzH4z5GIuGsROVeP0JcusObCYt7SKs2bW7VZdbu4K\n126LQ1APsJMsCbVkVtcNiLqb0nLyd7J0yJcKXFm6tBrHnz27pFDoa6ll4eugwl/JM2ZOJBBawC9D\nrh1qd+UmIzciEZJGIgvmwMOfarXqtqDpyDx854JKNQy+vybcuQOAVSfq83cfcbPVmPj0Cf7jhwA8\nfPAeNpVnG2dNqBGT55eyN7c7Hida55LIJzqU9e7vumQKzfZ8ONeksbk6wt96Zvnl27JWT962JGpq\n7e50+OxtEeP37/u8+0yk31xNuz9zaOifiAk26tXYx/LdiyhlNZdoRjw6oFwpSExNokVrCbTd3DkP\nCAbaHu72TfZ2Rzp8S/pc1ujyQjS61fox7/+uOI93YniplnP4c90Gq3UtrCPr3QbhlZQ1bovV7FJc\n8FQjc+uC6SM1RzU60b9xh66aaM1JRrzz0zKP1ZrXv6TRh9/6Bgut/XHrBclgbYdjHC359/g44/xM\n9vrBa4f8O58Tbfk3f+3vM3gu8/uwlRo/FkzBuC7+cMA6X9DqgV7mKb+nCK3D5VNeuPdpAKLc46Ub\nosJlavd+a3bMFzXfYXT4BstbmreQvIa3pw1K71esFA7xxi8Kdvx2k3CgWX/Pe2c8ONZCLTODo1WD\nFmnE/h1JjS61G4+5GzPoS43DAyfn4VKLrJyMCBXI8sytGCmgar+v6c3J8ApY1UwtjYZDo6N9Gs3K\ndJ/JnCfugpl6rM8DSzNX9Xv0AyBX4cU81rLl7MvfnusR7YlKbbySVz1Zi++0C6yaKGHvGoVmPrr7\nwgivnb9Emwng5VqZMPucmGPX/BT7+B15hjtiUmma9FzGNilzUl+ZZbCLcbQYbbm66sjk+NCqz2P3\nidxruGr5X7+jdklnSKml3+NPvMI9DfG++jzj0UzGtz6X+f/BYsH16zK/O50Gb0eY4iFzylD9C22M\nfySmRHlNG8YWLtGmo1hiabR5cewFmFDWs26gOJRxLjU0FH7lGKO9SJaLnOpYgED/sH/B65VU7Wp8\nzcR1GgmlgTAELRiE04K2rfeTkNGn5DzFc1mf6vtvk11oKfdOj/Nvyhq5zwoeZt/SMcfcvSXP+ewd\nqcXYCR1mY40M9Z/yZz8vc/4Zu8/vNP8pAGZvTLX7UMYhkdwfSVvzYUtb2tIH6GOhKVSt5fm64maw\nx2QkKjPZEDMRrj2f9Fmpw6k/cnAV1PSpn/sFAJx/8B6XX/k9AM5OnnOwKz3+zpKv0UlE8zj+6ne4\nd0tU7EFH8f5Jwnqikm9aEDeyHGkEZ5lI+b17NxkoCGdX8QiV63P7UFQ166/Zr0QNPlmdEEZyb6ct\n8BT7HmlMfDS6RjLSRi7hivkTkeI7yR6g9R/Hgqso3jnFVbz86fyMleIGykmfsC8S5mI2odQsuSf3\nRbpev7fLWv2hPSfm6e8/0FVOcBUebItv4h2LihpOJQrx4u0TEu7IN4sVN7TrdDWE5XdlbO+9f8zt\nVK7nfTF93L5LorDd3dEeSaz5E0FMo7UcisJjkookPH4oe/Bs+YBZKWZAnGY4le51tWZf69C51wNC\nTz47ruzTdN1h9Ejh6DcSDh5uSrEndDTKY6sFqzMZX9CVs2ICB+tt8h1idhzZv3DHB1/WZXWypNA2\n7+tLEavfmcJz1XhuNftMLnS9z0vsv631ELTupOEHPTppUzCbhjQh6LOdsCVSkzU8kL9Vd0h9oYV8\nFnO6n1HY/GdPKb4q47kxighflvuNb8uepasJfisazy/d/SKnCrFPRkuqd/4LAH7B/02+spLy8h+W\ntprClra0pQ+Qsfb/E4X8x0qfef11+w9+5e+SVjm9lTjt/P0+6wtxKLKsaEuRJFXrsV5rf0BNcCJs\nqBVG2hrwtV6CCR2ySjhtXlpKTXLqxoqObDrUO8Lly8kaf0ck3vvzjINQ7LNpbTi4L7Z2ZoVT/9W/\n+Te40O7RX7p2iy999lUAei/GHGnFHy7Lq0KiVsNxMRBq8lBtQ9Yz8R/k6YpGE3tm0aakVkhbib2c\nnl7yRH0Kx6akUBu3WDSsNNtvGChS0q/xFd9hkz6TuWhK75YBWg+Ug8EO4Uie09ff58WaU8VeNGVJ\nJxI/SH8vJGy1ngT5VfFXb4NeNwGb4tGhAU9hzi0RGqkkzRpKDTmaUy2Cetgy/qcy5z940edrnqL4\nnjzim9+VgX7qL495eyHOw+qb4tj8dO2xUJjiwDgU+eZcWHLdd8czV3DrWJ1zieezUm2krSylkc+m\ngUxh2nudLsWe9rjYFy2m3XmNP5m8LvM4TLjnal2HvX3+s//o3wPgsfa32EsSro2lJ8loZ4dQe016\n8zXPtR5ENbuk3tT48LRfRDjgBe1FYoIOsYZy08ojVhi3H3S5paXiRp2bAHT2Y9pGw93XuqwVA/PZ\nFz9PR31lUddchYy74+HXrLVv8CPoY2E+OI0hnjn41ytazWFYPn2CReO8fpdCC1r47ZJWi4hkGnev\nihXxpglH1aEZiv4cBDDSmo/pzGGhYKBSGaHr5xTaOj693iVJ5aC8seuTqNPqrFPSjPTzH4gX+ijY\nJdpTLMBrMQ8S8VT//LWXOOzKoWCwJlaYdqNoFadx6CiM1kQr2pU4nPJVdoV5bRtheGG8T2o33Y1q\nhu9ITcVrk5bnWoTEPV+SZnLY8lgOwWqV4ahzMc2X9LRq87A7By2N/qg8454Cv6IDcZiapy1dBV4t\n8TFafCaOeuxuSqxVQ1L9zobxOqGLVfBOWZV4WmY9il08X1E6UY1faL3CX5Rrb3e6/OxLouLffXyb\nd5/IOB/9zyV3/00B7HznvzHkY7l+UznaetVnL1ah4CW8PlbOE6SsteahNT67waZwivztOhHrXITI\n4+OMRzNxclZNg9HOWc9zQ6qRllqb3gyGp9hXtHHOpyLmqazt5fE7+Fb7cSqArI49HtfiiCzrOdeP\nJEpQrTLyQsY8afIr/2PH1bF1WuK+mAHDWzskCoarWvAzLWm3ExJoqcJ4tEm5hkYh75OnUw7HwmT9\n8evUB2pKBS42V0DVh6St+bClLW3pA/Sx0BSsqWjCU9xTi9HqvE5eiy0A+D2XtRFHU5muQGHOvVC4\nZGYcrIYFg04H7e5GEFZ4tRap6BtCLVx6gSIhJ5ZNgd8wKwkrQY9NvAOMle8cnFY88CWEGW8qCx9Y\nXtwXCeXNQ65r0lXnNKajMes0KPAyDUWqaRO6DfTkgd6zLm5Pk4Py+5S3Rbup35f/95MxiZYwW+06\nvKS1JQ5eCejfF43l9IbBOZffDVULyC6mvKPzX5mWrvaRGOYO+UprTngl3lyh16pGT/waJ5M5XR91\n2Ff4sN/fYagJXZ0dl1bxBjOtx+A1lkazNhsccoX5xvhXZepGrmXeyL7emsrfxaNv8LUz0QjuN2NO\nM9m/V/7bx/y6NJgG9yk/r2acp2HK7t41Qg0tRvUut2/LGnbsDr6q3cM6ILou1xs1NRakrLXVXbZ7\nzrkm3l3YBk8L6hg/JbvQHpkrLflne3zzwdcAeG3qUX9Gkos8f3bl/B1vMnTLXYJSIdPtgmxmdR8y\n5ooR6TSWUFGWGyRljzHXemI+3KaPGWnB18bH0V4VSZiwUhOsq+0PXTcnVVj2PL3km2vF5ETf5cVA\nYM7uy9cw5l/Aas4WS2krEv+C+lQm3NYzUPu6TI+xqrat85xI+01WajeaeoSnL03QCUErFjVVhzbX\ngizeVXoE+UQbpBQ5map+pl4wW2osOf0+3Z0vAlDvFnQeSLcd56aW23b28XdlDHu0jEcChDE7FYWj\namft4WjeRbhx27QtnKotG59juloluNPHnmgQuRH1s8lu4mmFHW8Fwxc0+67xuIW8KJylmH1VDbWZ\nyuVwl0orQVW0VAqwoZ/DRLPz/F0qLQmfd+SgHTUeaV8O6YEzxu9pRaM6uPINBGGHWg/0SBmecSHS\n/pl5nmFamV/p2qvenXWekmgF7kcKpKlMyvc1AvJC/bs8065db/2fBhRiHrQwS0UYXEPAODc/c8je\nShj99es3uJvcAaC7N8PTyn+xb/C68p1qrSCkbJ+5MorkYZ+RkbF95+kxU02pT5cVgVZvyrRTWfPk\nEV/XJV72XuLz54Ib8D5xl1prfoZjOQuGNU4jsOM2ekxl5TwN3Jxamwn31yHRSEyFSM3g/ZeOOLou\nUZluryXydN9Ngx9pnc6wIc61pHwoY/OcAF+jT4u1g3n0dZmTHzN8QfZnfz3E17T8D0tb82FLW9rS\nB+hjoSk4niHe9UnP92kGIpU74ZD0UmR761tqdTRO/JbEl+vJpgFMXtCoVmF6PqGnn6s1RaSZc9WC\nbKEQ4k1JtNzixuLscmrLqtUybb094q6o6MuTNc1QG44oyu3O51/hQtGUblhz70gkcJT08BWTYLwM\ng2oQiNpqih9ky1W5hVo87tQ+jUqVjToYmxmNSoG6sFe/Szo7VKpGhn5LNZW5pqoptcawcyhSvpiX\n9I5EYi6PS8KB/O6TY0NHe1IMEnUikhI5ImmTnkdo1a4qaoxm4rVeja8OStSZGTkOoUY+erHLSpua\n2DSjUk99i6XQ9VppkxX3IuZPHkp06d2nHcZjGc/0dMphIN+5m7j0fkY87TcGcm3frTm8LWryzb2A\nfiLaWBIfEWifCT/JaRWSHmjPhqizxnPF8bcoWw5PpN7hk/6E2bmch0lZkGuty0ad0bVjWGhC1De/\nNmOAOAw/vbemq41hzrR2QxCuONyRezkWXG9Tem6Bm4vED26EDHSd99QJejDYwetqxMzx8bVZURT3\nsBuHaQFG60d6WrLP2gpPy9W5vTOCSuY65T5ffUf2+sujHknwIj8OfSyYgiRbuvj2MVWqmWfGYLTm\n3jyDlXqORybB12zFRot6BmFDJ/xBT0F3k7XW7RHW2jnpEnINSVkt9ol3QahQ0zqICLV8+aCO8FpR\nAzvByZV3Ol2I+nbYrdnVUuw73og6EtVvz4loWlX97AmJNsh1Va1tTIEOE+uscRttFtOJMPrsQAuM\n2GCHRlXY2EyuQDWkA2K9x17h4GWyBpetAn4G53S14cp87bBr1FfRN4RGftjt7vPqrnxOu7JWPa8i\nCrX5TjIg0xBaWzk0myzR0mwqDWI0x8M4Db6aDG1dbgwbitBhrTb1hcmuqkU5ldx32XOZXsi307hm\nqaZbXXl4qr+ehwGfLmWct1uJ1Oz1u9xUYdDrN3S1jHrHtITqV3H7ISbbVLDRrFu3L/0fAZsNqF+T\n82TjVxjtCdPuv3fGe+dixq0bzROpW7qbCkq1R7GS7wanr9HVELW+78SOC1qk904EZwr/jk3Ji101\nFXqHuCNZr8OerPfBqHdVmBgD3Z6e306Cp6H40q+uzCN/oLkvxYpiImds3+2T7sic05OM1UxMyLOf\nesYrtVai+ZC0NR+2tKUtfYA+FpqCsS1uXZC7IxokHp+vfRbLTcEKB0fNA7csaFvh3LE6XALTIdba\n4vFuF29Twt0raLUgSXS9DwNtHPJA1L1o4bPWAiHBMMRbqSp+fknQ1aYtcUI90VZp2rsu3GlIjGgH\ngfkXWfAAACAASURBVG3R5tdkVUkv1MQm6+FolMRRLITjl1cFOdy5j7Ov0siNCDbl3y60NPe4odRe\n9hkljhZ4YZjhqiP1/2HvzWIuy9IrobX3PvO58z//MeecWYPLZZddXUZQdgsQGOgXC6FGArcs8dZC\ngAQN4oGHbtQtIcASLRBqhPxg1LQaGowtwN1tu2VMV9lVWVNmVkRmRmRE/PHPwx3PPGwevnVuVbbK\nXVFO24Slf0upjLhx7xn2Pmd/0/rW6g/GuLqSRFpgxAqGVYKyoCXd8FDFcs2RG4Ik1nB73lqxu1MU\ni4YDTAjiMcbA4Rwnqkaf14+RQm3JO0lZOa8x0PQfavhQZIH2Cgd6QvIZv8GK8OAViQxOpjnO2OFX\n3mpRNALMsV6LFev4cc/AuSFzP5rIXIwHfXgtM/LHGsFN+dxzK2i66+4qhuqTKp9Yj6Zs4CdyH/3J\nAEMmq8PqMT7F+7794w4e/55UJSqqY2uj0AQycZuOi8VUjnfarqBYgYpmlBSYJqhceW4OVYIRvTRH\n+WiJuSmd5Zq2vSKoLV0W6FEMxncc1ATchQkQxGK3w2gEfh0hOpm+PjyCrYpHC1g29KH/FMNtgUJ7\npz3Ug055/PnGC7EpWFg0bQGdVygXnLwoB0WIYFvAY3bdWgWH3YM+3S8vUPAibhrWheGftQ2gx1IN\nMHWMnpEFn+yK23pQXKGmBmV+UmPGkKBqErTTtwAAfT9H3fGgx/Lw+0WDltoL8yJHj5vFqBej4gMb\nVhYI+TvV0bfvQXnyEquJt36Z9CRE2+zyz3zBjisYdjXarEHuM99RXcKUHcKwhOY1pVTI0tE2qpp9\nCW6KlA/3IisQECyTZCWciTywLlWc+pWHgCU2x2nh0BX3Mw9gDKtUgLaVzcCyG7CuGxhuGkpn0Hyg\n65FGvJQXfVK28Ddkzab87mKWI2BZIy0ttojym2qNmCjET/e3sEMNSb+r8JQhDNm5zHgEbcSl1mG5\n7sq0KACH4J2aL0rToqU4rhP4CBcyR1vj3lpfI/fH+OceyDX/H+RobOsWqmEVRcVo+WZerC5Rs7ya\nLwl4aivYlXwW9xxUJGONHIMg5jz7HoJQjjekoQs2grWaWOxVsMyH6GaxVtzSCnCYM9Fsl/eHEVwa\nHs8P0JIU15trLK+k3+H88gY27/1AQvU/dFyHD9fjelyPj40XwlNomwbFfIY8uULJLHWWOihodTyr\nUJTEHvQ8DIn971SNfV/DsiOxcTyYnMIpqkLZslPRbeEEHR6c8NNxgdUDCVfO9Xyt3mR7PXgkTinc\nHZQUjIlIj2a9Fm4h5+6NDXpM/GivguaUtpFBHUjm3LQSUmitoEMyChdnwIBJwOM58pJELuQfRO8M\nbdrV9D3McvnzaGJRUoPRei4sJbA8JtyyfI6WiUFVxjgjZV1TGcQsc29u9OGRGEXTxYVfQIcMiRog\noNBJHSRoHSbtaoWCgjFFd9y8gmJCVZUKLS2007Yw5DkMVhFmVH8es6KyvaUQfCCe1O27E/yDUDyo\n2A/hdsI2rkJLxS09ks96egh3k+5zbwM6JgFMfBuGFYMyDKAzKkJ3Qi/6Ag09nqBQ2CA7eFE3SOlt\nvRlXeEal6M2h3PPJvF2rROveAj7FXk5PpygYSpWEIjfNAv6A4SFaWHqTiAAQe6AdHzE93B6p4TfD\nqNN3gefG69CsMQ2UofVXEdyYzxbX19MKLY8bjWboM9lcfP0DPEikOzb2thDdFi6S5x3XnsL1uB7X\n42PjhfAU0Fo0aY10dYEqkxjQbTMUDAcr68NhOTFuxiCHKxqWjcqmQVexa4snqKkjiCBEqGX3tOYC\naLrGJPnyHX8bOpQd9f7JJVrKwk1uaARb0gRjbIXRjBoIrM2PygEqYqkngYcee/2ddmN9HSbKYdg8\n1JJR2DY5jBGLaJfbgKLeQFujSTqGalpa/zOo98hGtPgA0VLyIc3sFiqy+FiU0LQqmvwAQXiGFbtH\nEwsYStdpp4Bj6NHoAu46ccs4u+/CZSyvrYbxuqYcFw4ZnBuVweZyTyt6Ctrx1nqOZZ2gYV5GOz40\n57v2Fqiojl1uyzWsKhcbr8r9n6UZhgsyUimNkEjBy6yGWpKybMBi5wYQVswTTSbQS7GUyuSoOjLZ\nsoQlfLVmfqW0CsGaPm0GB5I7aMtj6E25ptlZgc9+Qc736LfpxZkcDW1nkbeYncl8B/4cmPMYjeR7\njPbXiM/QiUESKniOj3hIz9KM0CeTdBB20nUuFBv32qpBw9xP4CsoNp41QYGGyeFAM3/UALbp9D9b\nRJTCW60qHLwj3mnffx9bb/0efpTxQmwKSrXwvBwm2IabC2ioRgiPLxXiFhWhtH2vhR/LQ9p1m9m6\ngJvJJHijIRpqBtqrGdSmPAi16q3p1IY3JDNrvUfof05quP7vniLYYW9DpeCQTltvXGBFWK3LyoG3\nUcMPGc4UPdRZt3slMJsdHVkEn7RpnRepw3wNR1bZO2sW4MxewJIZWBu689UKObv+cneMxUyATrZ9\ngCQkAUqpkZOD0GcN/vjiCqecl7o3QuWKi661Qkrcw+pwiQIyRwMCnZo6RLPihhyXqJgQtFWLNiOT\ndBBg1TDMYQv1SLlrWvPWV2hISKPaFBk3CEAj8OXYNyioU8VTHDz7EABwubmJZiL3OpgB76Vyvkmi\nsMEqQt2fcc1apCWJVw7mKAmGCmY5DPkoPd2gHQq+oeNPtKUPTdBX6Y2Q5HJuBA5GV9IaX2ch/t8D\nCRsVQy2jNVr2DgxKhYrgprO5RdCXOaCiPNqsQTWXdbgqS2xwDpvhBCSXxniswHwuwk7CIFlCa26g\nZYKSz4jvDoAJQzdjULFzs2XYYYYaIG192IRwCWAbjzQqburTJyvUT3603odPHD4opYxS6htKqV/n\n3+8ppb6qlPpQKfU/K0WkyfW4Htfjz8T44/AU/l0A3wXojwF/A8B/Za3920qp/w7ALwH4b/+pR1AK\ncAx6ZokpXSSjS7A3BWplQNAcVm2GmizBpmuIqlwYRyzJMOrD0QL3bLwWl6mQYJ58PV3rOB4QVXfx\n/gO8/1B2dmfSoKVHUA8TZA5l2i40QsqDNT4tQxJjRR1Br1mgIWdLrUYAXdQiT1FbOUZI2K652oEe\nUdber2BYfnXwBpQn4UEuRhDJgxTKZcKpmuGE5c3mQwflmNoStcWSCcM8kvsYOJsoKXU+ryucUy8i\nVRZlj0QtPRfjQkxhkLMTtfJwlhOuuzLrDkc1iOB2pm1RoGV5LqBHk+kKmnqVRQlUJIYpTIuwI5ut\na+havr9sB1y7BuHkiwCAnfQRrk5krparCqCFvWU9pCu5/vZIvIDydoQzkpNcPFvh6kg8RD9LoIZS\nhtt6fYydI0kme6Quq/IcOpZn5Lv/5zHeOxOP9DtHx1ANSU90jrIU5KSupIPTURqWds31PeiISV6b\noZnLHHUSc65x0TEXlK6BJh1bU1ksOC8nyQJFzWR6T9Yg8xrsB1JyrR0PPruD27gFatL35dUa1ap5\nvV7RA1wiYNvvlVa3tkYYMeQ7OTvFt77x2/hRxifVkrwJ4OcB/DUA/z6l5H4OwF/kV34FwH+GH7Yp\naAMdjVAcVajarpfxEslVp9IzR01yEhsP4JfyICxSLoHXok+Irmq+x9VXtCWe3ZeX6b33von8TF68\nB0vpRMzOAyy1LNBwuYN4JAvuZi4CErjo1kPNTsoNxuHn6QIuIbr+pIDp2giLM0yfyuI7VuF0Li/n\nFuPvIn0P9YixfJ1ie0cy/H7YwhnKNWdn1IHsV5h/XfpAFrB45129/p1zwHhkw6Lt+BhJzOjXGdpY\n7uN0WuCYrc5tjbXO4WJgsTjmhhVRyn7gYEaa9eZZCrerpS+24TFr73oNlKFADTeHxSpHXchmkpyt\nUC1lPguvwg4Zmm0dIGMruk+F8btRgNsbcg1fO/IQs8X76HSB0HTxT4XlFTeTMTesC4X9l2SDUEZj\ngzKO9dEOrgJ2RD41GNySdXfZP1O5BWYPuQ75KSYrue+XxkPs9WRXH04yzGQvwNvsV/ngVCElXfye\na2Fvyfp9eAbEzGklzEX5bokxO2PVaokZ+1nqozkOmSc4aCx6kax1HMrL/6nbt2G4EWztDeCypb5M\nHFj2qyCpMb9k7043PTcL+OWE67iAYefuzkuvY2siHZPvPpvi/UOGIM85Pmn48F8D+A8B1giBDQAz\na20XxDwDcOMH/VAp9e8opb6mlPra5dXzMtJfj+txPf6kxx/ZU1BK/SsAzqy1X1dKfflH/f33S9F/\n7q2XbZ1VUOoK7SWRZHGFnOrSp8fn4B8RbpQI2Jufk8IsSg1KZs5TlUHPWduOFfqbEhK8urOJJ664\nrncyoUx7MHiCu0RHeghhtmS3vhcOcKsvIch5uUDAHb1m1nu7nGAVUeHXtyhpYVNXAalYKD+fwWcV\nZE625+PlDP6BWKDRHR8lUYzNxVMsZ+RHJNWaeuDgnROxfE+LGeZ0PzcrHwcr8XhUbuGSJabapUDI\nYIzZlbjJTdnAYdNYhRKu7mi8ZjAeM+e8/9Pjc1yyQ7OaVjCxeD+7mcYePRo4EcqFzMGC5qRoS1Tn\n8tlHHx1hVctcbG146FHPMW8KlESFWnYDhuEQYCemytU6AVvm1Rr+O++5KIhe9ByZK8dqfPRAzHl/\n7KHuMvURMOA96chDS+ufrSjTVxpowpnv3HoZo12571u+hypjByosnFQSjYMzWaeJewQ6AphHHjQ9\nMpMn8BXl5hg0tNbFlNWZ2PcRkdJvd+BjSPGZkTPEaS5JY5/q06vkDKuUidskQLhFjIi5xPlTadC6\nejrFgiFbh9MoT7exMSRpT+Ch78jvJr0d7LMB61vFOa4umFR9zvFJBWb/NaXUvwwggOQUfhnASCnl\n0Fu4CeDwhx6prYH0HNOrJaZW3ER3YZGRdPT07BwPZ+I67TcZdCSLGFJIdms0gZeIm9UWDfQWSz21\nj5gVgHzvJfihPAiHH0me4WyeYEnq7bIu8LMs2QX9PhbMKSyTY1TMqPv01etohiaQlzdZ9ZGxw2+o\nG5y+/wgA8ODJFeqb8v3OjdLHFYZjeVj3H1XYE3IcVAOL5X3yKj4V8ZP5KMQfsIzQTjS+yzjy88Ma\nK4KsiqlFxnLpxoHMW10XWIzlxXtsYsSehFqNarCiA1dWFjlFU6cUdZk21Vqlqq0semw5zl2Lzu9z\nowCW8OfVMdvBTy9RGW42gxDHJ7IhHT27RLohG4EyLZj4BziXhbGYXlGKXrdg8h29noeE0F0n1thj\nKW9rR9ZmevUI7z2hItdji9mSIjNbA7y0K07pXmjgbDHvNJGXQ53ncCniW8YNTlcyb+8//BBJInO3\nPQ6gljQoLnMqJkTryX1EaYIFn6FLW2NzQD1R6lyWeY7cyHEz32LQcpNtXVxSx3I1uETKEHmL3ZA2\nneP0UMqzk91NbHmS16hnOWre36VWuCIZzGjaEeAsUbPnJV7uAKQMaLITnJOUqOd7+LHbsqH+xttn\neJ7xRw4frLX/sbX2prX2LoB/A8BvWWv/TQC/DeAX+LVrKfrrcT3+jI0/CZzCfwTgbyul/iqAbwD4\nH37YD2zbokoTOI2PPmvwjQfE3W7Xi3GTjUbb4w30acXqUKzIhh8i7nXewUDcUQBtXYDK5wAijIZi\n3cZ9sdY3+/sALb7rDeBSWbzADNmFuM9JAwwoh95uMdk5bzBlj31PzXHzVUKN5yl6D0kWYqboU3yl\nv5B/L/fvIbIUKbnnIaUP3u/dgO/L55djueA09fDFN4Uco9hOMHgsHoS5UKjpRvpqhQsiuRJ2VL7u\nbOOIxDETc4GUKtCt7yJk8jC+MUFI/cQuXz4sI/R3ZF6tF0NRcGfc94Co6/a0647PPnUSzwIH/VCS\nrrf8CB6VtJ9eOVhmxAXULm5Rx3HFLkKVZoiMrPXArJAyZGhqDULPcHc0xvie0LD1WAFp5nu4sU2K\n+9LDzT5d6dBHP5Br9kcKQSpHCZmAdgcBioE8Q1G1gVdYiQgHLfKcFO02xiklBiJyQr5/eo6C1a5F\nPECl+LzkNTQ5IbXtfMEWddlxVPowfSZr+wFGDGOj0F8DzXYoVHR6XsJhjOLULry+3IfdyxARur0f\njnGLieJqIOeN3RiKLObK7aMqxftbnp7BEP5+cz/H3s6Phgr4Y9kUrLW/A+B3+OdHAH7qj+O41+N6\nXI8//fFCIBqtBZraIHQMDBuYnF4fo32KX6hgzcBs4z48WqmYu6HTc2EozqLbHEVKebemwbxgDXnU\nw81KKLiyz8sOvhpF0JFY5iB14cfy3bPyEjMyIK0OXeTEGdwk38JFOoO+oI7BHR97PuXo7g6xeSY7\n+/yWxdNnTDrtixXYPYsQ7rG06OxgRrg1ns2x1CxDsc8/2jeITiUfcGgSPH5X/lzrFuZSPIV8O8Tr\nTLa+9UU57/TvvYPZjpzjo7ZCQ9ScUzcYxPK7Tw038OquxK0+5zL3Kpiu3Oh5GIHiJKZGJ4VWVAlq\n6jckpF1L8wqqkVg1Tw2SnG3iRYmUVrXfDpFwXQ1h3L1RjuKYSWUfoFwEepGLiseweYnRSix6RJhz\nvDVCRfRn09YAy4JbZoL+Bl09aFScF48lWeU7cGbiVYWbA8Skr+rFARpyWcTGxeSBzNFXqXbtxsAG\n2ZV/crnCGZmtDwON0O/gxkSxNg18YgnmSQEnl3u98XoPQ1fWZ3AjgvOso9wjSfFgBzMrXqzfxGgT\nMkT1NVoyPocoYU2HEZG5MLHGmI1d/b4DMO9UvzzA3Vvi9fk6QK/3Fufla3ie8UJsCrCAKgHbZlBk\nuPWtQdfC4OzHGENcKuNuQjPZU9HlKq1dw1l1q5DN5UFKXQO+E9ClA3NLDrhrRdGp9xMh6hWVpBdz\nfMSegd1whG0KaDx0CziEttbMzm/ZAKcl4bBVjKaWzH/jFQjekj+/+WGJW7uyYO6OXHty02LIh2ZV\n5dgwkpEuhjU8gnviDdm43KIHNZSsfnpVYJeCNG6eouVDumwVbn9KFv9b/P3NTzcYMYHnfmjRdAhs\np0JIkplgNMKEwJmwy+5rFx7p1OFpLJayoTVVg9qVh9RXBslSXrKAUFuYGroh/6Bb4AaPu+0GiFge\nX85WcOjm1ryggRPjjJDwaJ5ikw//ubII6I73Rh48hi5Ry56QfovXWlnH1jiw5IOwmYVbE5Ph12gr\nub6K0G7X1SCdIVS6QkCxmyjahMMuUK1WaHdkXetvyXed1iIjUc+3HRc5DUNQWijuZD5BQ35t1mQq\nsdaoeM877ga2KWbTqwPkA9lwri46tbAVgkquYVVlyKl6ZZw+hrzm5WIGG/Cae3Is1zOYlOwUhgvT\nk43uxsUcK1al1PA2bm+Rw/45x3WX5PW4HtfjY+MF8RQaoJgiW+VoOi1J5wYU9yyjPBifyK02gOkx\nPFAseVkLdUqXK2hRtSxDTgFDS+L0FGJyBCi6bX5Swb8j1vHyqoA9lJrws6sag5hdZrpFwU61TkPB\n0ydQgXgjT76bY+wKQjI43ULbp6za5i4mI7HuDrth9DLFwoiL20+GcJh0K30POBcLu0mpuVRdYBlQ\ngzLaws8MJemYuGc4JCQ4QoZQy3y15/L//+13z1G9TLRhL4KaiuUqFPD0Qkpv+XyJZiyhmduTOXED\nH7FHs2QTkPAHc60R0jo2KkUzYAm3pIdRASWFYaLNDdQkkvWSGnpAmHPso0llvkBrPptnqDJ6I46P\nhii+Wzc8fPOclGd5gZQdiNYV78eJfFQFiUvrHhxN/MMgQ0nODTUHdI+iQj2iP+sBXNK/1f0plKUr\nrn1odmWqngenJzjz8ba8GndnDt6m+MzTeQJPE1sQeZhQh7SDOdtyiYr129M8x+dZkjTw4R+Jt2Fu\nlkiJqbmyTAye1RhRF8LmKzRtzjlUcCgaEg76KNjR6ubiFQ77PjySwKrahWYJX6dTbMRybgUF/YPx\ng3/oeCE2BWstyqaGKgsYAlpalSJqxTVWbr2m2nLDEpoMv4o0aOVVjZYZWV321pOqixKJQ13JWYic\nWpIdJLoOAJdsz5Fx4bD70m2OUOWy4El9BWTsjuzL4i8vEjw6YSUiucTiki9N5CKeyUs2Ggaw+/KS\ntawW2A8+hGIH5+BlD6NKcPlh3SAaEntg+JvEIp2yxVsZXPYIn1Z97FFlaqFPcXQuuYGHHwocZFn2\noZ9QU1CnKIuOSq1Zv5ClqdeK6Q6p4vpqjIBkI63aQEgR32LVwmWvRVNuoSrk2CNi7he+QZkyN2Id\nTDZlN/E2XdjOa40rJFZe3qfn8mGeFADzGa6rMfZl7h8XFmOGD1sjQHlsqe4oyuoQ/Z5sGtZT60x+\nXZ8iWcjGUbdniJeyiZpNhqNejXLQVaUCaJK96ECjNew+nBcoCsmPUPQLrZ1gkdNQKRc+OSjdtIV9\niUzSIV+jnoeLrgVeKaxo1MLQQcuqjC1qxMzHgGGCjRP0fAklAxNCF6R7H/bgEGKt/RQ+afjcCcOV\noA8HpPyrG2S59H7kqGE9EvwsT9GW7+NHGdfhw/W4HtfjY+OF8BSUcWEGu/DqGVpiE1w9RAtxk13V\nByi5XVUWypFMrU17/GyBlK6j57eiZQYgrVdIuJH2hiVIyQDVMSfXBoa8CMHKw3Ag5mE+nyMtxd2d\n5goeG3RGTOZVTYQYrMHrcK0/4bgJ3IjZ0ShGtZDrr1wJRWYfXKEKxAr0sIfmhlxQkGp4fSaayFdg\nGoPLhPL0YY0pWZD3nRolKdSKpUFQSbffSzflGvYeL3GxKce677jQRO5ZAB6FXLZCH11Du2Y2vQ1r\nlMRetnYBsILjaoNmySx51CDyyYgdyNwHjgfTk7XxKh8T3r9qNRRZkJvEx7yQ7+eZhDBX8xR9hivO\n2MAhOnC0qfDRih5EPERlRL+gIXO3zQawpCOzLa8VgLoK4DKTWJQpmn3qeG6xyuK6KA8lzKvVORLO\np85cNKz/t06GVVdhom5E6KR4jazN5jhDHtP1NxouYdMr6mBmTQtNisCiqHAyk2s7efIYBcll9m2C\nlt9v+DxteB78XQk1g8FtgIJCq1UDy05gXQawdL20FW/UqhaWzNCtWqIs6ZF6JbxYQrrVszm+cvBn\nkM1ZAQiUghlr5CuKqXjVmniiTVYoa7YfaxeW8WyRSRdhWldQZDOusjnmU3Ej05WFGbNE5gHoMtIk\noPC9CJjKhOl8ioALur8xQLWQCY7qM4BlOJcbSGRi7Eaz9bXHbNvW/ktoieFv8keoWtkATunOHzSX\n2KZ+pBvMUD+R6zgMH6G4lPCgP2C79DJEy/AoOUswoPYj5iOA7E1F3mLRk3v62rcZ4/sawYIU6DBg\nGwicugY6L7914ddbvE75rFjN170BxazAPJN7yuGj7PgO5wYJhWKn5wxRVIGADEvWZEgSkqVEHty2\n01hcQXfiMkoe7L6OUbJvwWt89LTcxwOVIWef/IPKxxsLeam3yVak6ivEHXt0btYVqKrKsCBQqyob\nuOyhOdEP5Ls6hGVfSn5+jppCxrP9JXoRqdjTKxzPBCQ2PWbpsdfHii3lseeiIPHNUPfgNFSAIlOz\nLQcII3Yypi3OWal5/3yJe2RWGngbyLTkrhYUuc1DhfpIDN35KsdoJi96PNlYA+1U1aJhlcSwqqED\nF4rhg9ElQraMDmcaWsl9/MY7/xiPyFz9vOM6fLge1+N6fGy8GJ6CUjCugXInUGPZMU0xRkNtR1tk\nSFhR8J5oaEJ0LYE+Xl7Bo1XC0IVP9eRh2yKkjFewOYJH3v+1K3rxBLkRq5RFNSzhzF5u0bBhaBMN\nLsin1iTMvKfPkBsxsXVmUH4g506CA2DASoM/QHsiu/jqhEIuSYPBm2RdrhMcOaK5Xj55hg8OxGq8\nMpTEmbu7ieKY1joosXxCzyQeYk7I70JZbDBp5ftyjsNZif6nxaJcTH1E5ItYosW0Zot64yCh2xBo\nSr4tWzgEDdUqg/boKVkfnpF5SbwGzYIurCvJOb8OUQ4JTEKCkh5bUy1gmGUvfYMU5BIkiGnlVHA7\nabYgQEnwlvYzPDmRz5eTU9xrZf1eZpJ05+aPoXks3pRbtmsMRa0VNMOfeXaJU3aSjpcU8skabDC8\n0JsDZJyX7HgJxWTrzFZ4dk5uSiPPYTS7QEe8eZKXIJIaZlDA2ZJkXp+y9do7RU7MRmkq5JSlvz9/\nhh71IW/5Bk9KuZcT4mnCNAC0XO9gGKIlcc5AxQip0+mMewDPUycd6MuDmjB5mto1KZGZP4Lqi3dj\nHIVlR+ON5wsjXoxNwSh4Ixf1soKzfRcAUK+mKJd0S50Z6gsuFjQCLpJLZJc33oBjZIIdb4xudmLl\nwnIDcL0AXp+xGLvJZrNnKK4kBGmxQFGxczA/hGH6ObMaEWNOlzTqDx9neDKjCOqkwiGJSjZmS7id\njLgDzNMVjyHfHe1vwbkjwKn5wwNURNWVY42tkO3VDDn250uEjF/HTYbvsIPxZH6FaCQIyu1BgfvP\n5HcfXck5dqMxNshtmZUFqAWDyrYoWQL82ukRtjbkOg1BQz3rYFUTkBW4gM+svw2BkFTtjY+G+Ywo\nIAlsz4eicO9lnqFgV+rKdeDxvutlAUuxl1VN+nnHQ6qJWPUHcBm6Pfr9GgFDxfy9Bie1uMGnX5S1\nHg9qhF3OyCvXVQnlhDATeZyjosV4R+bFMmTcinowPjeyTEN1xK6jOc7nsll+8HCOgxOZ/xUFV959\nbDBLGIMFA9zihvzRUiNgRSxn301fTdBc0FU3LWqWPafzFe5zvqJ8Cl2QRp6sULt3+rgVviqnmPQQ\nckN2XR/hFsOH2iCiClppJUdVtiU0eTWVMcgZC16MPFzcl03hWzpBHPxoAcF1+HA9rsf1+Nh4MTwF\nJ4S3+Vko5wKaTL5OaGBLqbs2Th+GtfDLIkGWkuaMtGuNznF5RfludQjL+jdKiyXVqh2/j8Fd0r3T\nhS3KCsOuBl+MEJGC7UE7Q8jqg6230aNycViKRTi8bDG/Io2Z3UKVsItyN0ceUpbdG+KYwiDntwWv\n4gAAIABJREFU3M01LtCjqvHvlH28yQ7Nyd7n4I7kO4/vS005O3tnfZ2/+e1DlITU/tRLITQlzP0G\nODyWRNrrm3Kun0yWmPyMWJT//quAOpXP3cYg4vGGSQSXVNiGCUxVO1gyI59lCTzKrXlmiaazlD2N\ngAm/Ch2ICUAlrq9OGmTsNbnyHZBhDknRYsaa/ILclraxmDgkegkCLCiM82NfsvjG/8Jqz6se5rfk\neG9TGfql6i6cHtmsqxplRsq3ag5bildw4fawU7ErMRbYuJqkOHgmz4I6OETOvpOnFytckQ+jSpZ4\nbGWtl0dy3oNsBdvIve5FBjmoHzkew7v7OfkdBXzm+ftQ9Pjaqzla9kY0jYsrJmNXicWAIcEu+xZ0\n0kfFxHVQhHAIWsttCT6ScBXQsp/DGci9hbEDR5EvolggYSh4dGThPpJjfPHWFh5mXfhwgecZ157C\n9bge1+Nj48XwFGChmxpOYFERX2vPztG6FFOxI7hEhJmywYr6C23esSVXcCDxuY6AnFDbepFgRXLX\nJj/GsxMqQu/KznljbwthX0peVlXwPdlJXwt6CBlTVxveWgylJW7gJ22Ah/tyPZPBEDgT6z+7CLD7\n018CAGzsbuAtIiQ/OngXAPDwGw0iEpS+/Jk3cd6X63lt9TPA8DEAIHj1x2VO/Jfxv//Dvw8AOLnI\n0B+xXl242KHKyFcePMEpG7eWR2LN/vkvjfH+P2L8enCOmkbeKgUdUkm6PcR0IbmNbUiybNBbIc1J\nYTZ9htNTUr71B+sGpf6gRnEqa7JYUgAlSWCdrsGngk9+A9gSNagp0RpYlmoDV47lhvuIJ+K5mdrA\nmcqjONUu3gjJNvTQ4kOyT/1ULtb84sshXqFXoX0XGeX9nj46g2K+ow0nmEX0HI/lHPOzGYaplIOT\nq/fxwaHgH1ZuiIxQ6lVRoMemuLNLduUWOVSXUgh8VGRXHjcVLHk7NsiENQti1CyFhp6HnM/ssiox\nYlJ1biN4lJtb5fK72+N9GOZXilIBxEg4PYOEnqXFAI0r59sM5J78gQ8zpa6JU6O9lDV7+3f/AINa\nzj3avoN/lR7i38LzjRdiU7Bo0OoZGmg4kfDJpZMZ7IecnD0HNUlWglojYqbaMttclS4C9hcoN0ZM\nHUDbczFc0dWMCiStLEZNEEivmUNRbafZatEwWdeYBpUhnn9wBz4Zk5d0xd9vVig80n6bE/xBx/NY\nFhitRHEqDPrARDafH/8X7gIA9O88wtvMiv/Cq/cweuUvABBSl33v5+W+U3kIHt8/gHNfHsBNbGJE\n6PbuZ3vQhXznQCdIr+QhVKRJ+xtfPUVFCrJZ08AlrZg1DlpS3B8phVNHXqa7TF4ps4GQClgbwx50\nLJvsNF/CofusihAV4dhdm67T9FFSLSuMLTKuk2qmMFRLWiQzLEh7Z9quc7SFakkh17uHWSPu85em\nNX6FlPEIK/yLA0n3P6Vc2CvTQ9zpizaiqVIMKOE+HoxwaOUcb9y9g+03hdKjhmxYcfMG9EJCkHLz\nHjwmDH2nhCHH5LyxuCxlDg7ZLp/nLRxf1jovMrgk9jlVGX7mNUn4PjiX3oLwaYZyXzaY6jJEj+FY\n3vpISZtm4hI2pFAL3frg/BI+VcU3B5sICCiLywD+ROarDvowXQVuSOBVW4MNumjmNfShcFcuygwD\nhhI/8akRvkqKTfxNPNe4Dh+ux/W4Hh8bL4inoFApD65pAC2WQcclkorUWDMPmn34ejiAZuLLIatz\nUNdoaP2r8zP4I3GvlKeh+0y0tRG2SKhiByxNBg5KUm0p1cBhCS3zUixXcoxb+zEcJWGK3iYnwGiM\nT+1IAqv3hQo3nsq1ffRbBVYnlILbuYA/kc9HoViSL/7cZ+D/lpTY0t/7Lbz/4AMAwJ39LyCxQoDh\nFuJJ/P5vvoveltzf6/kUQ7qM335Y4ORCLPN7H66wTMQy9wjzfs8fY5PlS1M0UOSYG/kRbtyV+x9u\n3oa6IInpITkp7uZwaNnd3ghjXyxUnMaw9J/reYkB3dyArmy5W6K+Ig1aUKNcivWfroATIgjnZYOC\nOguWHa5qGUANpcxYL2YwhFU/vnABJuL2nRYV594cU+BnNsRsWz4bRwbKiEez98Y+mo+E/LS+OMZ3\nfv3X5DsDMaXaWkQ98QgeH1xgsifH08UZskpCyMOnH2HqMlFIL8YxZq2JqSebKBxx10cpkD5+LOdm\nJ+OTNoVHjoxBACCW+3NWVzBcPy91AcU5ZOnYqgb6gBiau1uwJPtp2xLISQbjxjBb5LsIiN5NMlCU\nGlWzwLNM7n8aRnhrKJ7S4NabuMMyN/B38DxDWWt/+Lf+hIc2yjo9oFoAeIUffvR9X2ix3r6cWnAN\nANZZYXgGltlyaL1ui/V3IviX8qD7mz5KdjY2t8RtWy6PgCVj9cBA+bJwwc5r2E1lMdJBDxNSu++9\nKaKz3/6tX0XDOM2FAVx2YqJC29LtbDK0DE18utpWKahOdxEKmnFmBbIIAajZ1j003ppR2LQ12DiH\nqijQaDIOaw13LC/9l176PADgn/m5L+Izn/s0AGBr+xYuPhKX89d/+yk++tp/AwB4VJ7h8EOBSlcU\n7rWwaAifNUpDEeuhYdF2sNqPLQlfcmAdcwMW6+dPq+8RqxiLEQV1bpEt+Y0/pxD8LhWU/uYX8D85\nXwEA/KNX/gEuyZY0yQ8R3pD7S74t/96kJRyGOY4bojiSUErZBA6Vl3LPwmUIslrJBpJcJrik273T\njgHCwyeTMeIN2TjCW6+hYfWrIFX742yOmF258yZD79ljAEBauvirv/Y7AIDzRp6F7TDEeFNCitub\n29ghyG57Q+Hma8J+tD3XuFx8FwDw9D0RbLk/u8TqsYRPH5UVSvI8LhyNO47cv3YVbE2sCifZpBVm\nHaOTZ2C35Xxf8l+BuSPP+L1Ao78l9/eL//l/8XVr7U/ih4zr8OF6XI/r8bHxYoQPnwOqrwAqBOwP\n1K1Q6NLojdEwXSONphR9baCY+ENroVlDr/MBwn/pHgCg2HkVm7/56wCAp5QGg3cLqMVNbBYZlMNG\nI7uNZuvLAIDhTon6WNz8FTsOUQNVy0YrY0ElNLimD9/v5OOBnJZ+QI6IShfQpBVrdYuAHsSqrYGq\no5YTy933YuSE3zrWoCbMt1EOSnZS2rpGcylezHEk136QPcUNJeHKZhUheyoXl9R/gEeXknH/8Pgc\nNT2rlnPlAqByGVpr4dHii8xnR9lmUDPE0rRW1mh4tC1ZU8PYLrRzoOkp5G2Ny6F8fu+XxPL9r19+\nGf/BTVF7/upf+3kUnxNdSf8vAgNiE9C2WD6lboXH7ksbIwjkGErPgT2BhSM9Q0B0ZmQz6Fq+3xsz\nkdwb4iaRsPFoH3ZEMphwD2ZAwpnQR0sX3Z+K5f586QGlzOe5PsEsFhd99s05NNfV5Tq1botMEXZt\nUmy9LB7b61t9DHYY5m2NkTwkFyafj+RqhYy4Edc18IjuLKsKBd2wsm5hupAtkWchrywSepteUQKF\neDmLvQ0YehDnjsFi2ql/P994ITYF9Rhw/hLAJP4PGBb0quG0LaySlyLvpOjRIGIoUcCi7Y6TZdh5\nR9plz37//8EHZ3TjO8h96aBmua2xACr2RKQXKOdC0nejiVAPXpJzsx+icAzahoAlOAgsiTzcCh4h\n1MFghJhY+x2SgqApkLOMNXYcBNR8nK8yrCAvKQ8LNzJYUo2psBpDipVWOsclBULmaGD5Jn90LCI0\nO7+xxE9N5HrbT03wXQqwfvCVP8BqJvOmGouGLy/3M7RGw+J7YUKHo6+0xpCiv76n0dZyL7UhI5Dx\n4LHy4VcWNTe6oRPAuuRXRIED9hr8Wx/I9fyXjy7wn/49nvzmv4eIlZY8+lmYE7nv2A2wIoTaWco1\njG4MkLBdujpcwGU3Z98pYVkmMg8a+C/Ji15eyLHqmwHcU25ue5twG7Yc353A8HMThGhyksISWJZV\nE9hIciPjCwenvsytZx4iY3nVIS9jnbuI2VE7qSJssVDT7/lYPZEXM8rvI/9Q8keLY4oGLzTuDmUT\nGywrnBiqPmUZKp6jyAuUIUmAyMvY91oU3CAuVYuahEHvHT3BmzN57pPXfwzBxo+WIvhE4YNSaqSU\n+rtKqftKqe8qpf6cUmqilPr7SqkP+P/xJznH9bge1+NPd3xST+GXAfxf1tpfUEp5ACIA/wmAf2it\n/etKqb8C4K9ABGL+0GGvgOpX//B/N45CyDq360Zoqk5eXT4LTQvLGrXT2HWyLoTCkxO66zZZaxeG\nrOHWtoFlUlKhhWXyDNkRpoE0SmH+Oj5zU6zcKibQKW/Q0nq6gYbHPvZB2KLH7PpONMFGX5I9O3RP\nK0wBVgbcIEKf1GVuk+BsIZ9Pz8XyJWWKq0ysR7EsYUmeHFhgj92T3zk7x6qS36Wck2/PE/z0B5LA\n2r4T4IMToWk7bo6xpKdTAmsRkRE5FIynkbN2H+UaYJJ0HHjo70iibWhiVOwkHZDoZLSzgT7p9ReL\nHMOOd3LooaCkXTldAMRW/Mq3vizTWv8KLEOp/eMEU3ZRNm6Gnt/RQFcwnlxzeIdWUq1gqZW5ys8w\nIUjJBLuoObf2xhQ1Q8HoVdHmK+oWzsuCU3CcGs4GJd7nDhR5MS1GMKEco0ykimDNAZQR7yDbPYL/\nnlTE4v0abac7T5GdskqReJTbuxditE1qOt/DshBP7mD6AAkbuhz+7pXXQ2x7ssBv9Uf4kJD9+0+f\nIs1kPgMvRs7GvLzPz0KD1xhK3Z+tkDM5eqYtFNm/30ieQbHS8rzjkwjMDgH8swB+EQCstSWAUin1\nFwB8mV/7FYhIzD91U5ADArAf/zu9KGz2DXSnGxAaNCTyCFmFKIt6XYmwuoGhG9y2EO54AG0FBCTg\nrEnE2rYa7Vrd53snb22JfCYoxMXTHPObnwEA7JNn8OvKoGWJ1FEeNh357bbjYJtltju3+9gd3gUA\nRLskfD3bRN2K++z1XKSK0z+L4O9JrBq7kil+lsyRs13aGV0htKQ1bxoE1G/YHjgANQrnzElML+e4\n/0iy24MPd+CxzHh8nKIkACjUDTQ3zoi9DFtDHwuSl+jtFj6ltXaGAfbYlekNHQx4zeMJuyW9Lagx\nN+xFBBuTSLVx0TA3UF2OEUqlFb7zjwEAw3di/OKb8hD/9sLFu1oe7uF+iOy4q4K8h609+dxha3xT\n5wBBaGfTGVpS+7ttjNryfBcr9PuyEWMl860HLlrurK1foiy4mYQeGuYiXLeF4iapfYLCwh2A/RzZ\neY6sI0qd+1CxhIfJQs4RRRa3N2ReX3VG62fWLUokfKEvUmDF9mxNZKrOYtQ7cg1F6mFI0h7P8bAk\nffxq1qIkMUzukGvUhKibjqnMQlEXIqkaPHwmE77hVLix/NPrkrwH4BzA/6iU+oZS6m8ppWIAO9ba\nY37nBMDOD/rx90vRf4JruB7X43r8MY9PEj44AD4P4C9ba7+qlPplSKiwHtZaq5T6gVmO75eiV0pZ\n/BPfUhaI6MIOegP4TKL0bzVYHJDyrOh63x2UoSRcTKrRMolWtQpO11nWKuTUK1wn1LRdp9zb78dr\nWAtlCQ+u7qBdinu5tS26hm2Tg4eA8gZAKNZsHPdx65b0yN+72cNdysPT80cdL4CGmNOghpoTc+80\nWFD5ZsIs/a3LGIfMQldViJQVgEEFnJBvYFFm8Jh0CztVYwtcnVDg5vHFGkpsqwQ1OQ08pXCPQK7e\ny5K9v+cZJMRb3PQD5OzBf3V7B4Mtsbobug9tCN4hX4Hb99DMxPIVmxYh+STSsIC5EOu3qk/QpHKe\nk06cpi7wkJTzc6eEwz4B1bRwV9Ip2tgAPpNrhl7M1WKJJ4++CQAo0wUcV843G2cYLiWp6PZihI18\nrsiv6WpAkwdStX20mVjSsqzgUCQICwNNyXiXmqZOqVGxytU3BimBTBe5xqCrcjEcHdsehgOpdr32\n0mvwI1Z+3Bn6odjGq+o96DuCh/mUI8/HpqPgenJ/J8kKzqmc73MvA8SC4dv2AhWT1Anp417b2sQz\n8jf06xwuPY/YejjvCGzKBm5FnP5zjk/iKTwD8Mxa+1X+/e9CNolTpdQeAPD/z6d/fT2ux/V4IcYf\n2VOw1p4opQ6UUq9bax8A+PMA3uN//zaAv44fRYpeA2i/76+uAaUNEd1wcW8q1vhiUWFvTL0HQmOb\nKEdUsGQX1FCp7JKzRkMx1k50g5a19e40qgU8xmdkIluPlqrDO1sWweR1OcYNwqMjD5YMzjkyVLFY\nj3i7xVsvi6XZjSeIaemdsBNAGKDhDm4yH2Zb/t1r+/DnkojrGJV17MJsirU6f/YYYCLVb0uElp16\nSw85BWpq0qs5WYYriobkyiKVcBeZUus7t77BjMbxZ3fFs5ncHKLHcmIQufB9+UJ/NMJOj3qFkwg0\nmlBkBwoVUN8hPPxyAUtr1WtiVDfppekIO0yIDhjffstZ4W0SwuaxQkXsiVmtkAzlvqP5EzAFg4rl\nvWR2gTmFb3SRofFlLvzMoKaN6+UWhqjHltwLugWcQ3Z+7pfojGeTTWGeso7/Sgg1kvt2C7neajqF\nYsOXM3ARLuTf43AFl3weoUNV8bJeX2jkBxjvyvra0x4yIzmj7Rs3MBoLMnafTXxtuoIXSRK0l04A\nzkXzYY1gW45npw7Olh2jFgl9BwUSSuj1FgHmhE17bYUeHfRFabEgbPx5xyetPvxlAL/KysMjAH8J\n8nr/HaXULwF4AuBff54DdXnGDvBiWguHk70ZjhFsyQ6x1URQF3TntshrV5ewc1nlVT2FxxzT1FoU\nBG4cLRMUBDB0SWO0CiU3Cg2NtntpgHUyyzGfR/8leXEMBWJUAThdksi28GfcFF7dW7udURzCIRDJ\nNExwmQwOQVg68teJpkCnKLk5gS5i4yr0yXxcTvpoZ+Iah66DMTPOz0ZX0BTL3CLNeu9Co8ek1tHJ\nAb56IvVqXRSoO8BRo3Fvm+23r4oL+1J/DH9EmjAngOvIuWMdwWMLuOeHMMRTdNeujAePtXQvbqE6\n8ddsDmhx4X2/QPCyrM/TC7n2/fcP0bD/ItEK6bzrUJ1DkzilxQZyJi6zqWyaJ4+eIGULe7gTIiKU\neOQP4W8LpNuP4jV2RAeyScNPAcvEbbgJTTyCilNYdjDaFAC1K1uS2tiwQNOQOr1pULPkoPwMPisx\nxC6hbCzSWp63opejLqgg1T6BYbv05r03sDGUuUck19teLdGyn2dr0MAlLWDZDpCQQu/TZ0tMSe9X\n8xnKYhefDSSx/a3lOSbn8hzWRY0BYeWhAmrC9J93fKJNwVr7TQA/CEv95z/Jca/H9bge//+NFwLR\nCAUYV1TNDJt9rK+gR2L9RiaEoeLuSw2QvkaE3VwIQuzsCME+0WxuAALQcFTNUHdMwwfA0ZQoxLaL\nFewa39B8f+wCQEHON0+eoSmlJLnS4gJ6/RCWIcpQ9bD3kljP3Z099KkVqeL2e7hhIt48uwnjk7ps\nEMKw/NWWNUAcxpIkH24Uo0cp82BDY0CRlaZ2UF2I1fTjA1QnZGBeEtHZWmyyVHtWuti+kn9/11oY\nwhTv9DRusylsz5JoduJiYyweja+BiCzKTpHC82kdjQvXZdzB8phSGppMxV7toIZYJdv3AGopRk4f\ndiEFKS+R+/vC3h5eu5Qs2ldyB++xXJwWBpblXi+/hGpkjbMTwY0kZ2dYsdnJOCE8ckd4wQg6EDxF\n49s1mrJl2AEbwpL52hlV0C4JXrCJbHbOdahgyXdBPljUVYiGJCr1CsipvVAsPMw7jAu9gNAtEYZU\n9k4j1LT4M6QojVzPnfENeKbD1MizsjInMEMmlU9K1HwmA7/Fzohh2uUNXPTlGJcH8oC/tjlG9kSe\nodc/fQNf+T2Zo57vYX5FzpCeQZr9oVDhHzhejE3BCvTYAGBiHW6psU3tvGljMJnR7b63g7cq+fyg\nkcXc2d3Dgpn13SZGRoWkbbuLE8Z4m2fvYEnWZZa2UbYWipqCBYCG2WSlFKDo+hev4PETeQHufkoe\n0LZq4LFjrWgq+JDFveXvoCIZymJeYEgVJXddH79AQdrz2GINwoIFanbaBZRy1+lyXahwqhG22WBR\nJQkuCaxqM4OStfkVexmassHThWwEr2dzPGmkOuFYwO20DYMAb0x+GgAw2pJrC2cVwr7cRy/qQ1Nk\nRLnuWvXIwKLmfFpm9cOet853aNdF3ZAIpPag2YE6681huH51K+HMdLHAiByNT+srON+HHUkv5JqD\n7T3Esbj85VR+9/aDM9Ss3cdTF4szCslup9hgFcAP9qAySsoX0uiiCgs/lgqAXXioa9ngk0ah5CZk\n8hbZguER8RuuH8Ph3DveEj3eR9auUKfy3YICs4NejIaxxMXsGCn7J5buKTa2pUuySBagPixays+r\nUq3nG8UM+aoTzPHW8+K85aL/oaxVToN1eNXi9Ubu8xvfTDBhLqJoNCJHnsM8A7JkHTA/17jukrwe\n1+N6fGy8EJ6C1oDvA9x4AQCjgcFgJFb87laE8kp2x9O5QlaxeLsjVnW1yOH6HWOyi2hfqgVxfQmb\niTexuughpnZfwZS2tsWaZKW1dm3xAA3LhOfcfxcx6/AX2U8AAAJVIDPUdGg0/Exc2CQ5RDzgbr1o\nsOx3nANE3Y37ADPurc1he3I9dVujptCHpymPphxULjv50gI1hVzKOocmF8DQ89AjddcJUXd5XmLb\ndPcB3GBU9EgBmp14b41G2GJX2ADiLreRQex1lmuxfjCMruHyu23UQ5NSSIKIyKbI0BDFl559B2VK\nhm2VAuRo1I5GRfHKCUlIdgdLnH5E61gBpD6EVxlkLwuc3CyvUB9IOPLhobTPPs7ncHisu5cJ7D0S\nlayOUJFwJTq6QLtFDMFMKuJ2ZqEiljI2XWQp+SN7AVqGgmayATid6jlFbxYABoTWuvN1uOmlATS5\nJLuQt85rlIfyvC16D5FuiKdQ3M8wKQQhW5d9nFIZPmIopY8KKHJ3To8ucHZfrP9lVMAlevVytYmr\nD+VeL0ldF4VX+HUwWZvW2GBFTKsWuaZOSlkjnYvH+rzjhdgUbPu9klPXtefmDUZG4r5BsIVmQ+Lo\n6cziu2dsL45lAWq7wNKlKGe9i09vC97f6bfolfK0bWfAMUj3zrbStnLRENyklUEHdW6VB+XKyqnq\nHtzPCckpJShRJzlachF6rkbWyPnQexkl6eUrr8TVsXweEWwyLGvoETcQp8KQgKPGB9ygk63n/esx\nNNmkas9FXsmDWUYegqE8CDubG5jMWSWYUgkqq9F0D7bn4mFCWK4FNggGs5Meyh7zBC0l0MsST88o\nZNKUiEqK+0YD9Lborqf6e52pDIlWOsXl18QVfzY/w+lUXnRPFbhFN9fGEcbccBZdWDbx4W8L0Cda\nPIKmixvc2oE376DLFaZzofn/zpWsf3Ja48YteTGnXoODJxJWYHQDMUlWpvExhkthxvJ8icGS8BSz\nueQ10m9WsFwT/+UB1IasSdhsw+tk5RvmJ6ILdA51NffRFLKx1O4cet5t8LRmXoWclYxj+xEGR2RN\nuuHi2SUFdbw59GO5pnhDnt+n06fYekzBXl9hXskxHl1oVO/IfT9ZnSGL5BgdoKv1QgS5bKATc4QD\nMl3FYQCPObKmUTjPfrTW6evw4Xpcj+vxsfFCeApQgGMUmsaCHjOGt3uwW+QNuHiMnDXv4skTuPtU\nVU7Ek7jMLYpL2VEvthIcvyO/+8JP3MPyPSHyGN29jbtMTHpzcSkvkwJhl9VfFmhpxZTSsIVYILv8\nNUTfEHfuXfoxrdIIeaFDBwiNSH5h5eFhQWBNNUN1Kjt3Fwbs7G5iM2H9XBvkBGH1dIiI3V81gUmr\nNMN0Jhb46ukRTgoKpEwiqJJ4iZdG2GG9/VsHcl7PbbFBCLNStxDq+/xzjYyekE5qLM7k/i4ZioVh\ngZqu/2J+CoeWphfEuHFLugRf31oh3JeOO0s9xOlJgjST+Rw0JbyODGWwh7jfVUY8FIq6oBTLGSLG\n0qFH57TQXXObO4JyWaG5CHDwgYQNTz4g10XbYr4QD+vkYAqflYh6tcSSbvLeZoSoL8cwuVRRcge4\n/7bcqy4dXDAhWj/L4RLgdPOldzC6KaHnxg4rQ95krVGZJUtcNR37TB8XVZexJrGO1ihJ237+UOHU\nCDmPv+zjnF6jfbtFREwKc+N4er7AJnkXXxoOMLonHsb++0vot8Sbah+fo63kHTjmMxZGA8yYlE10\ngxQy9/UsA7WTUNkaxer74vLnGC/GpmAFkKGsvHAA0DcegoW4WffTCxw/fQwAiJ0S+VxeoANmXpdN\nBY9+d16UyOfSpnrSs9jdlgV78o0nOEnkJT1ZsKTlKjRZR5ZSo+F0GA00DUEzxQrvPpYF9Ug3rpsW\nJcskxXCMjFiU8/kKCwJryvkcEYV5Cta3Dh8eofTF7d7f66MmCUuRl1Bk5tHMXs+PH+PwCTe6CoiY\nP+n3JqhJ0hpON3F3T67jNl3Kp1kFN5KXe+CnqMnBaKxdd+0tvRp13qHtSM8+MtBs5e5Ht4GFvEBu\nBUwI+jHhFkI+yRXReB5ShISeltBIqW4UtAkaKjapUCEksrSaUlmr7ANjceEPs3qtNYnWolkxDDg6\nx8mhVFoOqKewO/ZwbyTHvTHyMOlJmLdqrrA8YQyPFJM+SWF9CRlmTy8QbMtzc/z1M3z9VNZ9Fg7Q\nuynP0WfrO7i9lPP5Adfp9ssANRrjfoAR72lVnACs+CSsRG2aCASYIk9WmNcULD5M4TItsZglOGSo\nrNlvk7QpzsglejBP8amI536jxP/9tiiAXZ5kWNIoeawy1M+eIeW8Kt8i4OdVo0AuHFSFRt7+E3Dd\nHzKuw4frcT2ux8fGC+EpKA14kUa2akEhX9z+9AZ2ArHW+QcGU3bRta1Cj1Z6VXQdcOWa41BPDBbc\nif13nuKsJnfheYkZiVGII8HEDOGz5p21JdpOeaqp13xkTfsUNZNuRSq1/UHgrBmM29rv5fCdAAAg\nAElEQVSDn8q/7+yPkIS8jqxFzOShs6KMfOShJYejWVjYWCxMHRiUS7lXl+ClpmhRjRlKzCu4hEpX\nrYOasOKd8RDLgrwGE3FVB/kKBVWjji7n2KXVeVbUaEwnItJickOs+7yUxNl3L1LEF+LlLMtLWHLj\n3drdxG5B190r4GyxE35FU3RyH7Ncfne8SPDdZ2J1q7TA7Tvizo7HPvaUJDSNK8cajD0MvyXrEcMg\nGzAJmtWYE2KdXs2QHsrcLjjhG2gRcG2eLlpkn5XzHX91hqgkkOl0hv1bcl9BJN5d4Q4RHYnFH96O\n8Yj8DmYjxG0SnBymK8wT8TJvVOxzuUiASLyUQp/D1gnXz4dPYNyM9HiLosEe+SY29wB1Jg/zeZpi\n0rK7dKMCVsTUsH/k4LjAt3Xn4luEnVdxkOHkSp6Lj/IGEZ/VTf6u53uYr4gbSVLM6G3FBlCEabcw\nUKrr032+ce0pXI/rcT0+Nl4IT8FaoK0BoxXGnuyu99yX4N4gh355Hz6TgFeXDs4ywlXJJJTVrcjy\nAnCSAW4OJc6895kQ737ApM70GJuMuW7eYKebHuLrhyQGLRVUV3pqXVgr59DqLUSkG8uuxLy4rQOX\nO7E/crB/T5JTgzsb2HhGJOCru9iNJSlXKzlW2QJ9QghcVaLH5KKyFooiI2lM1mrloU/04w3UgMf8\ng3ERGLlv1wmxMkzyeWLZllEOl5Dhy6sMRyVRfkphn3O7t3sDPWoEDDlvYZTAC0gbd/n/sfdmsbYl\n53nYV7Xmac9nuufOt29PZJNNURKtaGLMJFKEOPKDrMQvQQIjekkQIMhDnCfnIQiEIEBgIEAGIIGh\nPFh2BsAO4sByZMeWY4mUKEpsDt3s4Y5nPntce695rcrD/+1DtSGFt9WAdBWcAoje3Heftapq1ar6\nh+//vptoaCkMRhVyFjkV5yWaHQIKaNHZd3bRPxL/3XhruL7MbdYuMfHlHlmewz7gnHPM2tUYvCbB\nmJ3nZ4j9LTNvjX4tVoX3YIHmIwm6Dd6VIPHnbRcPqAWxslokC3JA3HsV1UZ+U7Q2fIJFRwNBoY6/\nFEP/sDxr52un+MW1sFNN7R1Ye3LvtMgRuQ/kmdly38p/DpNz7meAtYVg32rA4klE23iJLjBmavzm\n/gQ3iQif386vCrDePXuGhwOZ8z4tt3Jto8eCsFfjEb7yi8JsnX93ht86+ocAxHL8bEyy2UjW8SYJ\ncLcva2w2n+GdmVhNVYerwG0/SRDfonV3IjGqH9Reik3BsoB+X2M2beGQt859WOFwSD7A1SHmuTzQ\nJLvEpSGJCIVFrARoKXHuHYR4lXx+0cMJ7rJO4MPnChVBONNUzMGnTYo8J8ijrdGSms2YAjbJRG6H\nj/HwTQEt/aN3xA0YxJOrKPNQ23iF5mdkfNzelw1pU6dXAbiilTeoZym4LJ2ulI0FRT/6aghNQdB8\nyy6tLPTI8ejoHBtWxjVNjZxUaQtzigsCsvx9yVffMCE+Wj4FAKwKg1vMRGzKDg7N7tt5gMRlMDLh\nyxoZKGIM6vsGSU7Id+yjIllI5rXAWl5qiwzBQT9CwWBtoHYRh5SXVzkalp8f4gb6I5YwU3K9sB3Y\nH4qJ/1OvD3Eay6amjAu7R93F8wneuCHfv8k5zqsOUZ+kJpmF8FD6Fh6FMIn8Nit9DAmAchakgM8r\nqF35vPfDLooLgpMGBQJPfpurHDf37sozoQ5o1floXLJHNxYWFBt2ph5GLJ3eFNKfvmthQMGZwThB\nL5Ix96MlqgsZa916WJBhu6IHVrk+RoTg3wkCTDIeEAPg/taFnK/wQSFAroLw6Lhu0Wn57aUPELuE\nuuqgCJvf2Y3wcE94Kn8PQk7zg9q1+3Ddrtt1+1h7KSwFpRS0rRGqDk4pO/8gHaJPUy61n6Gdk9Ai\n2bmqJ2+oDB00NvxYzL37gwl8X3b+7lGBaEdO7p4+QcagTEV0YJIYnGxFVrruihFOQcPwRC+bAd75\nFtNsPCWTcYzapyl+7z70TTHhkl0bzoWcDp5yESdidnrbQGNdwqJFE0Q2akrItfkMNanQqi25R9Oi\nZ+S6/mCAMYVD1psS8xmlz+cOAiMm+q2RnOzvpRmWp9L3rNWIyBzccx3cJ2lL8jqwy/PAZXVmT7lo\nRtR0MDX0Vq+wKWEsCdANrUNophw9qsV0dh8g38K6nAmZLADHTaB8OW3DJoa3RxwCcRju+QJPb5Hw\ndufz+MpETvlqeYLsI0kB64XCkGZ8Qpfow3mL1z+Sk/nHv5jA6YQPor5VY/2eWFtOWEFd3JXn58u1\nVLsLb07U4HgfB1+m7sV8gbbj6d9E8BjQ9ol6TXwP9VYLwgVqulVNPoXfk2e2Q0q0UAfo+TKO/W6E\nmm7CLfsm7F3pZ7/ocETEZk5rs2dVuO/z+Y9jzC+36t+3ccP7DgDgqZVjWbEqk65bmzc4NYJlqS0b\nE0LkVypHSfRqMnmIh58TURr873ih9lJsClGg8KXPePg/z2tMlSzAwcigf0im2n6CD5+I39rmKeKF\n+E7GlcVR923ssNrv8AsJDm7IRjA/W+D2R8wVRy4uuAFshWSxrq4efmP0lZCJtg00KYbmeAyb+Pkq\nkgd++PpbKGnmT7SHXW4nfSuAnjAjkhqMWEZdDxhZVhYq4oTNrLhiItZhDHcLXU0pQmIZhNG2+tCC\nnVONqBegYNlyuUmRs4oOJBXp79zAgFWS63KKu670YXqkkG95JVsXrSY+gTGACjYilu8VToViKXO8\nVh3sNV+aXg5rhxWTfLlDx6C0pRLRdRPYjFsMmgR6SBh3ucGW9YkJF2TTFXpP5Nnc+PIO9l//WQDA\n+YXGyhFzfbJ6DMWszDEzQ1Vd4elTGf9n+zEGnxNcwfRZgUenLNVOPYxIwOMQ6LRpa+jxlvSmRhjK\neqqOaxja8f6uBb8v688j7Lq7XAJDeen1cAO1ZiYmj/BgIH/364wznK+X+GneL9tr0WfGxO0i9Lak\nPTcSpERmf+9ExnmUt3hIN+H2xEWbyb3tdoODPYLdzixka7n2CLJR7g80jukmZJsaKUFydVvBZhrP\nKUpcrD9Z6fS1+3Ddrtt1+1h7KSyFulY4P9dwlEZQUpL8mx9hZyDsyXZn4f4DcRXm6QCfJenFEQt/\ndkyDIfPxt3ELO4FEtft7Pj7kzt5Y7pVst0cJsxoOcprzoa3Rsm6+a0LULJ7q2iFiViBebMRiSHIP\nCYNhnheg2uoAJhb6mfTJ6CE8Bk0TxSxEu8EaEiSdu2t0DBJ6ULBIq5bbxGNoCxpyrTjsQ1OarS00\nnFB+47k+0pmcNqeV/HutbIRjeay90z2ckFegZxnc5fdwDRQtIcoroh96QMTTrIklJQQAp1NEuzK3\nSfAAAQVcLJ+w7FEMl1iJppojCu/KXAxd2PxtW6/Qbd2xSk7dRfP+VXXl4a03MWIg8tGzJ9BLFjwp\nDx2fcePKd1lnwVDe72I2Re9M/m7Y7mM+lOKpcKeCx8KmTkthVHd6hKmRudixfxo6lOuNOwdLWhCR\nNcBwzMrOaou3f45uW2WYutDkR+ySNVpaBT6DoIOmQVmLXLrVDqCJTQj6HayEltJmF6/fYrXjc1lP\nRdngMJG5evveF5AweJrVJQpaDf1cXQXCVUzNimSCH+mJVXw6n+GbzySobrQL15Ogqn8wREP8xou2\nl2JTiAONf+GzPaTzCsrii3njPhyfgit1gHGPYiGuBqggdKuQh3XsdGiJ+Ci6DBUrBqOJhVduyoT8\nxKt7+C2WJy9beTG7ukFkbSnecSWjrvUaIdOXIyfFhqAQn+mmgzcOkDFbcOj52ItIopIp2B6j9o6B\nRRPOELrsKBuK4JdKt2j4faBiVLmYyZuAsvaFBYtiI2EvREWCzk6tgEzGVHsGC8PfaNkclrMC2Zyw\nY32Km/uS3nu3quBrucZBNIbt0kRl9Fo5LlqauwpLBKnMZ68foa/E1LYmMYzFugu6CfXyHBn7vpoB\nPgVWkcQwBOQYa4COkfOKc1mVCSJbUohRfIkNXcHG2sc5KfWj4hmGvrBevZJLCvGj7hj/bC7ztnCA\nv3xHfhsnO3DJFqXnDYLPvAoAaI/kOT6ev4/6Q3nR919tYXsypsGdHF5D1wwLdCQDbjzpZ5Fq1I2M\nL9tYV9Wq5Ubhs2/dlbknK9j5xRwt5+fo4hSWJS+mbU9R84X2IsAjOCt0KTRrtVcapBVqGF++v5we\nYxDLmBp3hqM1DyrGPSK3wUUn8/rtdIk561F006HlZr84zlDiD1Vt/iPbtftw3a7bdftYeyksBdvy\nMYke4ksjF5et7FMHnkFYyy7Z6RZBTXluB2hbcQ8ymzX/qwYtQ7LleYHvZiIm0hx5eIXVbtnlGjWL\ng2xy6oWRQkGswLqp0LRbkRgbFvkVV8ZHSQZfxyG1uj3C7YHcexgcwtnfMj8bGJ40tdGw3K2gjJwM\neZEi3dD8rCw4ISXquxbzOQuCbEKN1x3ShKQh/QF4GEEvamQMRlbVAPEO2aqfyylyfnmBo0spAnL8\nPRhyQrr5CqdUNkZvBVdJZkfRFUPWwKYgSb1RqCxyVZTAUksgsToO4TsS7SZiHI6eY3Mkp9Usm125\nCcHQgvIk+2Dac2jyNSoqbZ9mDYaenIjpRYuJJzl0f3aAejsXydvYe1XWwN6unMDp5QnorcFrNTZL\nAeZscIxvvC/uwZuJjeO/J9Wxi1r6+41nC+wPJVDcbCqgogtplWjJ799aG9DggqGlYBlAaVpe5gKK\nrmTTpdCUuru9K2PbdS1EpAKMFVAsWYFqFAzFbLJVjQ05GY4JaS+bBid8fs/sryF5T57T7TsJsinB\ndaih6OqOSABkGxvfS8VlSOclGrKVN0aho5zc8fQYO9GfQZIVz9O491qM042LxbtUfdpEyC2Z1GES\nIWHMYLO04JOxpmURg38QwNvSoScluktZHNmyxrMPZNGfpMWV6VqQFCMwClbAyGyjYOhnNwqwXIJ0\nahsBXQJ7RBWnG4ALWWA+LGC+9T8VdLg1q3Moyqdv/feqs8A9D22ew7dlUaVlhg0rPhXp4tUghqKZ\naJoW9YZmueWg9uW662yNhmSkoGm5yGfoqB+pYyAk99+TQgPHEvZ+/vQ2otvyIodMWVZNApvuVaUq\n5EyN6ho4vRQwVHt0CZsxn22Nyl48wLyi2tJmiZTMRKvvlQh3KGwar74fUZ/Rl19eYphIfyzvFo4v\ndtjnu9j/IRn3/rM1gpnM+Yw6DqXpcMoq0a8uNH6sEdO4qvvYIVlrsUmwmEvJeMuy6IOHAR7ee8i+\nd7CYGTHPW9h0R5x+AjXhS98wDXm8QEtgkQkblEuuz7lCj+K2l1vSnrKBM2VKtpfCois8nzuItjGf\nqsOj92XDfczsk2k6lHfkOXibHMuOqMmPalyyDqLT7pW+5ZaPE04NZ6s/0nYouSHbXgjP3ipkJVjV\nPFFesH1aKfr/UCn1baXUt5RSf1Mp5Sul7imlvqqU+kAp9beoCXHdrtt1+zPSPo3q9CGA/wDAm8aY\nXCn1twH8mwB+DsB/ZYz5VaXUfwvgrwD4b/6/rmWMi6a+hQQW3npTotOefYbqXEBImdXBY+392dSG\nLkmMQqqtumwwb2lSP7nENBWrYV60cGj6Lxc1WuoxRqwyzFsLBaW+LVjQNPfrWqMjYYXVT7A7lgiv\nZsTdyg0ycgzAapGSSy7SPmxiIbLSYEl5JoumaKVKzAq5hxVbKJl9qJ0UFev0zRbiuzbYLMRsTYY1\nGp4e87XCjKAXJ+ldkZasyHe4Kgs4rCPosiE+1FRrznO0ns15WaEuxSxfEZsQWw1qzSBoAZRavu8G\nAcLtKglizHlSHm6FcyYJxuSneFr6WKZyCh45c+zbFKhpYjSsD9jyInx9qPDF8MsAgP4RcPLo/5Lr\n/sxPwsmE1CXp30N6KnwC36a4Sc/VeEpSk2XTYkFX4t74LoY/xTqOWiEOBSwE920AwFsjB60rJ7vt\nj2BAarP+DWSluBiN00ETYpymAnqq6gsEnWQw6qaHcvlY/r1dAiVBWxckdAkq5HzWtRtAbSHrZYXL\nhcztSpeYEaZekpNCDzuMRqzxMAkUqepX9gWypyziaDtErIWZEVb93cUcFl0bZdvoqK3aog/HFxfb\nDUPYn4xO4VMHGm0AgVLKBhACOAHw5yG6koBI0f/FT3mP63bdrtufYPs0WpJHSqn/EsBTADmAXwPw\ndQALY7ZMlngO4PAP+3ul1C8B+CUA2JkM0b97D1/oj1AeyQ7d9e5h5w7z9N4eFjPJ6cY3gI60MvdS\n8ZvONi1mKX3W2EY8Z/HNrr5SY44mR/AyOR0v12TcrTOYbit/ZmErfd1q9/tCLvErUAdCidW/Jdd1\n9w6wmMqpEzoF7DHhs1EMZTEtlp1gwWBPVcspMTIx7EgiWWoeohvJvQftDpJbpCvjdKXnJeDJ+J+f\nPEfGsZb7MeBIqmuTn+OEgiTzqfAAODAoFclK4wa/9FNyUp7/rwWU2Z7cHpqcxWRj0qv5QE7YdY4S\nNQvFVOnC8eV+g8MdPHhNKkKtvszh5bSEM5cx9eHha+/Iye6YMQ4fii9b2/6VhmZKubkv3LqF19+Q\nIGFmNL7zSP799bufQU1eh3p5DE1i0iEpjW4OXJxeyG8/ylp8ixbIvS90sF0p/Dk+PcY+i+kw/aY8\nJ/81zKayLMNeCjuTmIo/uAn3gKjB9SMURIimW+Rl3sPgDqtkFy6WTFUv5iWiHcY7iIVxNy3Km9LP\nW9qCYvC70xaeGpmv/HmGBXlAWjI2bUyIlmn09bCHmwcyR+89jXE5lSDvvO7weC6/p7GJkVYwJB6u\nGo1GbZmZHISWWFtx3waiT8an8GnchyGAnwdwD8ACwP8M4Gdf9O//oBT9q/fvGrftI7QHWN6VheJV\nG1g0feP9MXzWGlSLGmH+GADw6IlsFJbqI6QZeTJ7griUHPSBvo+dW7KIj/x/Cp+0altceGpaLAlR\ntVULowgmUgoqEhPulZ2fgDOSl+xH9iVib7cXSCAv4ZHysEvswc1kAKfdMu0amAt5uBUZlZdhC6it\n5HwPSZ/4htKgc0R0tF6yIq9/gelMrpu6NlJS1VfzAuOF9N9uCvSpq/mEJrUuM7QUvN1rYgxuSZ9/\nau9dXNCtWqUZbEbDlSP/jX0HAcM/8+wUTz6gCIuTIn5L5vAiyhGQvi27kBfXxx24xBscHf82Vguq\nGx0quKyY1LN9ZCe/DQBYrAXcM9x7A/7+zwEAjv/J34D1jnyvK4OIQC34Bzh9QlHVHennrtVDeyLj\nqOsWv/EN6eeXdi7xwXf/JwCAE3p42nHDaVlZaP0mdh8wiKv38PqrsoF4nz9EQLeqqdyrDdwFBYUO\nbyHavSvPqZ0jJsP2NM9wo5HNIqDSV27ZmBj5+37/s/AorrM5eowgl7XwPG8x5bO6syd9nFh9HL4l\n7s6wvYO7bwh7+PBghUNPrvEPv/suzrlhLekSW9qGoUSB1QEe16+KdrBD2gEnjHF7Vz5LPuYHt0/j\nPvxLAB4ZYy6MMTWA/w3AjwMY0J0AgJsAjj7FPa7bdbtuf8Lt06QknwL4c0qpEOI+fAXA7wD4RwB+\nAcCv4gWl6G3XxuDGDsp2id4HEjD7tr3BnVx264mtkAwlZTW8+QjhhZjrAUlPqrrBwTYH3dvB739P\nAkf9YAJ7T4J93ijGkjRuF4/JapwZqCuVboPGkj3SUgZxIrvruf9d/Ij3EwCAeSD5f7+/wQXEIvDT\n1RXBi2MiGNb6W6kLKybyjEHEweHoKqWXX5wiXUj/86ZDxnp7xWARvBJ+JK7IWm0wJPJyjgibu3J6\nOk8SOIEg/bTLVFo2A3gqPTs4x+c+/5cAAB/kR7A+kPu1RYV3LmWOvvSmjHMUTGBRRXm0s4PigfT9\nPWXwmQeSyhvffRP5a3LyDoxA0C2kOP22mLjWrT388E0yEe/twCcuIh8c4d1Hkl6encgpt5ecY1O/\nAwDY/aEfg1WK5QFXwVCvMqhS+J+V7z/zXXGDlP91/DqtmPwyQ0Ol7O+sjnF3XwhVmlmBRoTCsTkm\nLVlRw6NeyO7PjuC8Li4hBi2K2WMAwCJboSPUPdkV18e2XZhOiq5Om3NcUI5tvNvHnETAH6yJLalr\nwJZ1+MUbHfSE0PR8D7ovVu3Y6sG/lGvMWRGs+woNCwHn9Qf4wlNyg2QGizEFY/YGuEUCnuhcnkEd\nB8jo56jKRbDNd/sNFvlvAADu73wRs+STycZ9mpjCV5VS/wuA3wXQAPgGxB34PwD8qlLqP+N3/8OL\ndaRF33mIzeckd33nIw/lY5mQYqeD2vqIQYwhcd3hPTGNs+wCGrLofv+4wuuaD7xZo6WC0uyxRtAT\nE80PtrTYzhXPdueGsIgngNEAiVj2zA/jkOXXIX3Hdr3ADUbny/4GIbUki3IBF7Jh9cMAOTcyRTWp\n2IoQHogJu04cWASvBFWHIesOaps573kNhwpSfRVgviH2/0LBCuQeO5MSZ8f0RWeMB1gB0rW8pN1H\nfZwtZQF9If5J2G+RLn16hvnvyAZ3wTLrnneCgP5yp1z0bgpM+Ob7Fyi+KX75cbrEIPy89FOJy5DV\nT3D+HVnwe/197Oywz3s7WKWy8azXQEpWpEVFc/7WjyLeFYYhbWJ87jOyoHNTYrDVzXQaDCwx8+9/\n4bH0rX4bt179L+T5tQY4l3mZOS76b4o5v9NotEt5rjdC8a2P9BSVIVgs9REpWQvKLdF4Mp/VIke8\nIxuxP5I1pnSLs+cyV2WawWJNSHwrwMVH8iLvBfI3xszQ9GVTfH6Z49Ahe9OgwYBsUXrVQ/BQNq/N\nMSnn3QJ6Sdh87wHM8gkAIDwIET6Rvv2LX7mHswt5Nz48EUzL770zhybzErI1WlauwrYRDX4SAPDK\nZAc6kWfya3ix9mml6P8agL/2z339EYAf/TTXvW7X7br96TVlttVwf4ptNBqbf+Vnfg6Xaw/xtuZ/\ndBNUycK6CzEZyS5YqQkayoOdkulXmw1OlxL1nkweoKOoSe+mwtF3/x8AgFsusZlPeQ3ZlW1/jR1H\ndvCg7TAt5HrrtkFM/YnBaIxXf+RzAIC37gpZxdG3fx/vFmLi3rdr3H8oeWw7LOAzGJSnKcp6S8hI\nNyiM0eNJ2nN2YBg8VU2DlkU3G0bT87JGlcvpH2mDYiX794Wfok5ZSWkKPJmyco6UaJd1iuhITrba\nCfEokJNkPU/hlnKP1rNhb+TEthgkM36HyKIcsq3Qj2R84+EQPpGj1WqDdclg5VqupWHDZbCy6Qxm\nqVhFy7xGx+j6ugVqYjlqRsj92qAiR6ELC4OR5NX/0n/y3+Of/n2xdJ5847/DPJXP6SWtn6ZFgy1T\nMWCTYs7SNvS2oEtZV/qODlGFtqcRUqgmDD1428I7VFcQ5DzLkLGIy4rFqui/8qP4xS//uwCAO1+8\njZs3Zb3cSEJ8/jWxEJZz6cPk3/IxJ6TdfNPFZ4iKdd0Eb5CabX93B6/dkLHu7YnFcKenMSAHyNmT\nc6hd6fti9giqFffu8hvP8I5Dd+VUoM1hHWO1JoeC1aJIJFj9md4rmNIVjsoL7O7Jtf/Tv/6ff90Y\n88P4Ae2lgDm3tcHqtMSmztHwYVlBg8VSzLMmVrg4lwkxuxbW5+RoPBFz6nT5AaKhTPDjssMhF/Sz\nRwtEt74CAKguvgqLWPSKQJKm8dCMCBlWOTqy6nR1jQ3rIGy1xGwqZnD7pmwOB+YQ3X3xax2t8bwQ\n8/mzhxPEtmQ+vNMpakaiHS7GQRKgTxx60h/CIolp5xhka25krMXIlwaXAcVf6w4WhSyjMsBsItdw\nNxt8PpB++JDU3XtpgsqVF/D4LEMzlWts5s+x5EvqJT76FDuJR/LfsLbg7EjfY9vGzR0SyvTHVyZ1\nmBW4zMR0zcn+tNIGDpWBV8iwuZAxz+ocF5fy+fliBt3Is1TYRs7dq7LU1tTYsMLv+TsXeHoiFEGn\nZ+8jK2R8HXH90OqqLkXbGiHXixvYlLMF4LiISYRLOUuM3AThWMa3E/XgBiRAaTRA9qkPP7zA01Mp\nv+7mXGNPv4X8mBWcX6pxwU2o12jk/0Du0fuXpe/TX/HRBdKf/r6HzVIOi3v31vD2JYPz9uEe3nhD\nNgX7lqzZw4P7V1WUB9F7OGccZPfOHbxPlbGle4EFN3t7Jc8DlkbaboljpGoSAHadAO6+PL/5cYpF\ncRU4e6F2XSV53a7bdftYezksBQXMbI2yKGHID4CzDWpyG+bZHN1UTpjs/d9BRyBTAYnYl2ugq2SH\n9+Y+3iPfoS48HHRyOgT5U5xTEbh0WPWobRQbuYYdJPD1VjrdwcrIybYuG6TPZLe+/FAshuE4ww7N\n4HYVI4ipuzgNMRizwKhnwatkLGNiHiaTHuxAThe/jeAmksFoqwzBgPX0c/n7tldgr5Td/gKXsCi+\nMtQ+NPPcrb1G2kgw06Ub8Fld4Bt9CRL2Ns+wmspcLasMmqIugeOBBZHYJW5Cj3o48ORau4c+dnsy\nb+NxglEn/QjuAHchJuqSEffmuMR6l8VYaYmcFYPtWYPjgVgVm28XOKKl4FR0V3QDl8VcmQrhkp/i\naWUwfSqYhTrfQDMQvIUMu7YDTVKTwE4wjuU5jHs+NiRGmdg+diYyroRWmo4i3KY1OTocXHFT5nWB\nHouKblnv4dfmcho/KsWV9Esfx88Egv36b3wZD/4Nsch6nsKD/0j6/x0KywBzfI5rT1kGn7spwcp7\nb1g4jCVA+8qbHg5uSmrEHZERe/UuEMhcLd79Jkpar/FpAtTi5q2KBk2f1bZkMXddwGVRnW46OIW4\nCfVkjAMGyv3wdXRejk/SXopNAU0LNV1B2UDTygtbFgvkRlJB9blBVsiiKmcrdMw0GEZbta5QVkxJ\ndiW6XB5G5FwipQR45Y9gEyc+8iW6m6O+qoYLlMGgxzqB0AZm9DOrCjX99eWxVAuGezfhh1QKqhqE\njrxM3dBBqyXKPlYuOgZIkh6p2n0XuiSgxwcUadbt0MAwDmK7rJdwfKS+LJR+Eb3Y6MsAACAASURB\nVKGKl+wz4DP9uJhpuGA038iYl/sB9h5ToHU3QPZ7cr22KGBt4zVBgNFQTNhgV16a1/YO0CdF+k4v\nQsjKwJ7VQxTI/eJ4B3BTfmZZe7TGppB5263XKAgc2/RnCC5lI7uszqDelZd+SqHZutXICSJz0aCl\ne/D46/8Ym8VjAIBBCYsbwLaac2fUx6sH0k9vt4/XBq8AAEprjoApvrg/wM6BvHiBkrnwgz565NhM\nxiPAyPdl7gN080a3Yrisxvw7vynl9+X6HB88/l0AwMEPjfAZyMvtmABPvoaPNQVgyc3voXcPP/QX\n3pTPto+bt6Wfw70AXiQbh7WS++bzAYpc1mTVHEC9J8/9o/oU33km6ymuBvDPiMikwKyqJxgMZF6L\nzkeSUPeh72FFpqpY+yisCJ+kXbsP1+26XbePtZfCUugshaLvojzO0LYSWbUcGw0JScpygzyjUEl1\nCc0TX4NUap4FXVGZyXGgyU0AXaPZisR4DSY5o+QBFY2qFcqOoJmiQm8gO+p+FCJg9UY66wBWs53Z\nYsV8/rUhLqZky+1vcHOfEGMNuFtpe6sCIrEQuoC8CJ4Hi/yQXdhDy3p623LgeDTH9yRb4JRrhNmW\nDXoBQwn7qq7hkn1YhTkqwnEt1vavTyu0e2JqhwuFlpF6tBoeadtvBBYOR+La3N4VK+fmboK4x+Bc\nV8MnAYqrK2DLERFmCFk9ahNzX3sBygVBNYsAhi5aavmoPbFS+tUAYUTwUkXOxXIDbLU77QagilZn\ncpSsAnRMhyGBYfsUxrmzexNv3hc3wNsZYMCga7AeI/TIBD4ZA3TTet5dmQvfgccAtFI2LGpb+n6G\nWst6WBQZ3r4vJ/qG7tFvf3SE8wtZk0e/8x6qvyhjyu0BHAaje5aM44ansPOT0ref/jEbD2/IOHbc\nIXrkaPQsDU2gUuPIfxcX/xhFny7BMMYltSmfn6zhU1XcfzKH4XN4viRhjb2Cl5IMppfA9WXteFGN\nDWt+VHCJ0ehPkE/hul236/b/v/ZSWArKALpusCnP4fgJv23QsfCjyqdomedWwn0MADDkRzAt4IeD\nq4spMtMUhYUBU29WWWNTiH/WQU7uG4kHQyquVdnCkEO/d3cP41RQkZfW97CihdBv5GQIlcYuhWg6\nEwHdFsVoYUNJr67NMeTvY7LgaFjQJJ31oiF0Q+6vOoQhKs5jUZJdVzDEDUReCEWeBlV2UFuZusZF\nwBy7p+Xka3xAM0g6QwCLaUijGjiWnBj+YIAHe+Jz370h8zZMQgRkt0LTwiG60YtdhIQru0pDE1uw\nVSSxbUA50rdN0MFq5bf9SYqc1ayTgxAHrsQwulKeQW07eDyXUxdWjZbjMJv3rqo5lbLhMRDyuYkg\nE2+9/RB3tkHExEGfFk0T57Ah89wbegiYoPSGHudnAHsoa8tpu6vjsK4SGBIEq3KIminhmzfEYjBu\njd/6PQnWLh5d4FEqwe+fHuGKHs0mPiKPbfyML0jJz2dfxD4/D00Atye/3WTPgCVjUGS60nfeQvPh\n+/zOwjRnYPeWjTOm3cssQzOjtsmAUoBph/W5rKHOHeBwV+b4RrKHVUvUblDBMmIJvWh7KTYFaA0V\nxmj6PTQLMTNt3aIqmaMGoFnW3OkOfsiIK4kkVFMgJtjEiyKUkIVXri2MegTpNGuAKkUO2XsHloPK\nJW497VBzE+qbAAf7BLqYPZyT1tsbyAtkUMIayIN18sUVjVueaygSi9ge4NCs3EbOfceCZRhkKjvo\noVxPOxGwBb1sCTE8H4HHl7StYTOyboIpGoKJosbBihiBspTFY9sVug03k6iBzei80j4UacNGcYjx\nrnw/7MtG4Vgafk7iFK+Dp0jHBsBa0BQdKShqbG5z+3rtg3oyMF6ITslmiVWDZEBdydshnJwKKEOZ\ne39TYlzL8puVCiaUDURbfWimRuyigBtRVJXw8PuTMXoD6UPfbq4o62I4qEIyYZc2/D3exyYlfdzB\nJzenNbShDO9XpDCkqI9CD81D2Vhus2Tbz3Oc7csLNrpZYncufWvv1rC5sQQUYTkYxqh2CIbbMwgs\n2fT8OoRD4WErKeGQZrDdY4XuRQNzj9ksO8IOuSbN8RqpJ79JRxtQAAqHlzL+xaRBTdxEerHAs8eS\nOXl973WMJjw4qjGU98nIz67dh+t23a7bx9rLYSmoDpadI9EFKp5mqlRYU0ZdNR1sgrLs+D76O1K1\ndyMSCKjb92BR06Cuz9HWkkt3d1dAIZZA0POhqVa9N6Z2QVtidUrCi8U5AsrLr7MaNok074/vYWcq\ngaYqYGCz6dCRGbprHeSEXdtuBMXgYZBbUFs8xBZ+60awKPCiegrotrgIG21L+jMlJ0rTWGjZ3840\nqAhx7XQLVZJgtjVotHyfU4Rms2lgka4Nfge75YmpK/Sp+eiGfTiJnCSaFoEHH/AJ/7YCWMHWLbGu\nmI2N8WBIxKJ43c4t0PE0VlUBW0uf26BFwVr/e/YSK85tweDwWa3R0VVy4wKasNzL2UcwhFK3MCjo\njgz7lA10czh0Sxr3+7wHsBrEXC/+qIeALp1D6j2rCWElhERbLgCZQ8cL0FA7IRqPUZDspD+WE3/9\ncIBxIfOW9zqUTI1nmxw9YkNCohjf2BniLj8PHAVNub0uNuiIvDT1AIrp3G0VbOtl6BXirnbNGu59\n+TwLz/H6TNbes3CByYVYLMcRLZB1h2xFZuiLJY6+K7qT3zp8Da884LsxsNFZW86jF2svxaagVAfL\nTmHyBkPGCRbhFNaa0XmlQEsTQ2+FiP586MnD3Ng1yLKOrAG8QBZCmp7Dj6jetGpQkhDq+UqqBQ8P\n95G48u9z10JFBY15OkWZixn5xnCC57flNx8c0wS0NCyqH8VRhmggv23XJVzGJbQHmPGWUZf5eCeE\nJvOQgiXoEwCdstHxZVuzrsGYEoqLvCnMVU1EW7foNoRjK6CmSbwuZU4uLlt0lvSzZwJ4dFHazEaf\n5vUr+x6GNk1tJYu/CTJYpLDXRsGlBqU2FQyrFlvk0Nx8DclIGqWh2+1mEkEFsiH56RPcYGXr+nsF\ndnryArwXEbptFIYZNxvHwoJwXV1baBi2cJTB7VBerD2WqttVgGoo9wiDEBarSkNzABfy0oQDD3Yk\nc+744uZZTg5NM1pb1pXokLYaIJRnotcFnL7EAbqaVPzlHqpUNpjWFDCQGoxl/joUKa1HPbnXzc6C\n55B5KyoQ8n7eKEFTMEPlVNDUoNSsk2lb60pcxwkTtFO6ROMChpmvV0yAky0bP7HbF/Up3Fb+btMt\nsKpk/Cfnx9ihPMBwAGi6tC/art2H63bdrtvH2kthKbSqw8Ip4KolloQGh04PJXPXmS5gOWLyR6Mb\nmDDiHBIdF8FHzIi8rjKsqfloOoWIJp6lNrggqQmVxRHnJe4Q5ht5ORRlmV29xOZI7j0b6SuW3Ac8\nUbxCo2PRkQMPPk3mQnWoGJSzxz68jhiCLTOy6WBomVh6AlNLQKnNfKzrrYYkLYmqRbmWnf9iuYBN\ntuo2U1iT/i1PM0QkubIJd14U76FitecybK6UtO26gO1R1r3XQxQEnCM5zbtNDUOchgV9VYnauB1c\nksR0domSEOuGWQhHA4auVFGVOK1k7u1egDn5J/xbBuVXpZ+H7MPFLMPMZUS+LEErH4vsEooWnWV5\nVzyIfZLeaKtCcUn34iBAQE7Mzs9QMKAbVgZWtCVXIes2bGhK5ZlqA+WLFQcHsLfjQ4fOIuMz3QDX\nr9Cs5DmdPa/wm+8/BgD8wsM5hlxHeUrthbccBK4EEd3VK2hj0sblK3QF+SrXK6ChijeZuB3tXLGA\nm0bDIR1dogOEhDGvkgaFFivG2ch6C7sQ50/FWnY7g9YQjj8/AmZSgJW6JSajP4Nakso0cNtzfJRO\nYVsyyHvOEC4frN0NEdIPe/vuF7A35qQSgGOKC/iNfF4kM8wXMqzl4gg9cvW1ew1CgkbqJdlspimW\nJKDwrO6KLr3bGCwtiZabrMHtHYlRnNKk1HoGN2Z6q3OhUllUTruCGsoGYscaHqG5HtNROjKwKK2k\n6zU6mp+5SlGnS15PxpF1JapaFnGjOhQE9OSmxrzYqkk1MARkuT5dim6B+UL6GcNGyHTbSdVgwVqS\nclqgG8iCtalolK8Nui2wyC2hSCeuqxoVNyHlBuh0zTlkKbRlQTFm0tiAQ6ixVT+C3cnG8tH6GdqJ\n9C9eSn/q3QotN42xNnhEyLM/2kHZbZ97Ad4axaVA3oM4wyZjxSgM/JH8wNcT+NvAU1lB0Y1THudl\nVQHkz8RYw3QyR6aqv5/xqW2oWH4Tack+OJmLt++y3uP9j3CHmo+e66Bmebbm3B99b4UnpbAPHv5k\nCJ91PPWqgSKoq3MtwFDYhxkQZWKYiK9io2AzbmFXCTq6GoiHKE5kDqyMMapxiwlJg4PnNrhfY+AY\nNCM5GA57Y3hcty/art2H63bdrtvH2kthKTR1i8ujDbzaRsgaey8x2A/FJI76fTy8I+CVO4e78KjK\nqyB52aYXwOpkKIPqAAcTOa1W+RB+JabW8ZPv18ivlmJmfWdew/LFpdhzPBz05N5FU8G0DJJdDnCT\nvIMRi6Bcuwcwsu6OQ+iSFkjVwYachNW8wZSCIjWrAcPBPtyBmICWo6B5OupGwSFwqKIidjXXWFOC\nrSybq0Bcs1ghp5x9vbHh+fJZMwqf5Q48mqJFtUY2Jw/FuoDFeZnqCrOaWoqsWoRRaJcspHJtOAtG\nrGMPGjJub1OjI4ag4fFadSU0Jdk39RpLsieX5QH8Wsa/mr+GQSOW18ISU3xpQtzYFetvs3yKHinz\nUyuAQwzEwOsBDJgdEwaeLmpY5CLMl3PsgtWc6yn6OzK3A6uCSytLb7EeVoDKJTw4DaA6wbIUdQVT\nElZtRVANeRSoV2qNJrjzowJdftVN4T0in8QH37oieHFbVsaODYI9WbPGBGhPCAWflKipXWlbPXQk\npYkOCL6zU3jMVCivFmlqANqp0W6k/3Y9heooeMSMU9tq9PpiKdzox7gkdbzTAaBepRvswNSf7DV/\nKTYFdB26IkNbNegdykKxDmwYErfuORYs1iisF9/DmmZXR7pt2zJX6Z3BYAdjl2Qhzhynj2VxzBYp\nbGLVB0TrHQQREqapDge7mNCPnMYGAc3LYvkM59+jb8+Hcv+LDxAQzRYZDxl9wObsHBlNNaNWeMIa\nheBc/Mx49wS7E6a/4hF8h6XTbomMxDFLGm+r1RlKbl6bkyVyRpAdk8GUslDqrkDXkWiUdOJOuIML\nmp+Ja2FJdGfVGSjqORazFFks12iZbgtjF3VHFNyygEPz25q7ICgS8cC+KtXd8nXNL9foqCy1ulxg\nxrHWpoYHEqu4Fs6XrO0gcGwv6fCqS+Jdx8L7S87n3S9i/R7LOXGJWz15Id0L2WAeqRKNkTnM8upK\nOasf+7hNDYu3772Kh69KD/u3pZzYNRrNmjIBxVOsTllSvpqiIftWHMfosXo08gRh6O3uYveOEPW8\ndvYcaiaVst9b/hg8Zyv0KPe6XYUYdC7np4+U7mGdtVhNSczrbJAMmbZ+IuOwaxvBrrh2SdyDy4Ol\nrVyUlHfaLHKkJzK30wWBYHGIPSXu8W7vDBmlBNLpBc4eyb0ju4MVbFHCL9au3Yfrdt2u28faS2Ep\ntI1BelnDbQ3SKeW2hxEmpNTatCXWJ7KTLtMzWLl83/C8ssMAvZGcqkHboSQGfDIYo/dATKryvI90\nG7VVksloegaFJeZXaWy4B/L9nxtFwIp6lPMF3nsiborqmP//4k9A2Qz21YBN01B3BWyacLXVk+o/\nAGdzudazyyk2d2R8D18J0LGeozkpsWCVZ95teSPmOD3ZSpan0LxWGNiwsYXw2tjvy1h7AVWMBk9h\nZfJYV02DRS2nf1O2OOL4yoHGjMHBhDX903RxRfm22VgoMgZjtUYSUp2qDK4i3Pm2dqDMoJbybJ49\nnyMj8MhxSjiUTK9yGxtNy4uw3WjTg75xV6779LtwGSWrU8ClhVEHfZxF8vsbPM3DXCOhReftD+HS\n1C7mFxg0Mqa6LbDaug9HYhH4kwgdVabK9VOkj8RKMTt7iHcZrPPHsJitwbb6tPLhD2QckfsWvpZ+\nHQDw1sVvYaC3tPvMdHguskSyDGvfhceg6mx5hi5m5mMFnJ8KTsZnHYwfWxiuWRE7SpDcJHxflVg+\nkjXw5MkzPJltgW1yrXEbY74Rd8YNIzzsyXo6u5zjybscv+vh9VevqySv23W7bp+i/UBLQSn1PwL4\n1wCcG2M+y+9GAP4WgLsAHgP4RWPMXCmlAPx1iPJ0BuDfNsb87g++B2BZDVZli2YsO/irw5twbPrf\nTR8nz+Q0uswtOIGcKoFNlJuyUNMnPbOXSGgpJHGMhif3zkGIcSanyjefC3S0XmnMmTY7Ly6RUF16\nR93DcEdOD2tzjOqU0F6mytAV6Mj23AYpumYLzdbYGMq4pc/QEJ14SgGRNo0Q7MnOPswusTOWajj3\npov2EStCyRRVmwoNi4TmlxmypZwYA8cCAjnxb+z6V8g8m0SkG1NfsRj1fAvuAQtmHvnIIrnHxe0W\nP6TEgjC0up5/cAHGPZHlNTrGbbx+iJboRW/cg/bk1Nkcs+L09BLboEPuajyaMVC3WcPfFrFBgchk\nGMKLi16D9zfyHHLfAIzLTN5+A6kl1x7MLxFStyPYk9Rx0DVYnss1husNTC7PL7M79McS5AsANNQL\nLYcMBpY+vCW/qx2sSX93dPoI+5k8h15/id4+qyptFqupBgHkBPaGLd54Q/L/D974HBKmsDXZupdN\nA4+amX3tYsk40Jl1jAEZt7KygcVCuZzWWnhWIe1LvCBIHIQrGZOZTrE+kvWS2gWWRI7GjCMtOgcd\ntUEe5CUyErS+m2eYptTiSHtQa1YQv2B7EffhbwD4rwH8yh/47q8C+HVjzC8rpf4q//9/DOBfBfCQ\n//sSRIL+Sz/oBqYDmg1g2S6SUrpUn5xBTSjeMnFxr9xy+7nwWCYdkSI9ifuombs2MGhZOqxsQPfk\nYfQP38BdzUguFYhK1UGT4t4oDzfvCPtu4jgY9WWym+w25mdi7p0RVONaNuytkaVsdCMKjBZ78DOS\nxEw7xIT2tqR6t3b6GDoSDOtOG+SKlZFuDFNSx5GbVFsGsLjBTOI+zgiwCSILHQFZvhugYpDvcrVl\nS7YxJrBokwBrqiL1VAObxDD3lrfQJKx8DFkZ2g9RMzBquRoezfJeGF1lHHpeAk29QnsoYz7JM/Ro\nRqPcIKJk/LPpCboVxXNahRtDUrOROEdXLTpb8v97QYZdly/K8QwJRXPDkY8eN+rxoZjOzmIN2xF3\nJkxCJAz2GbuH/kDGnUQ9hISIE2MGx3bRjsmJ2PgYmS14y0M3kLkwABrOwVZXtMkb1NvaiGCIOJQg\nthNY8JklKcB12I8RH0pgdHBwA9FGNt44GUBtS7w7G1lJTAqDrl1vCYuB3a4FQP1I+Ab2nvRnsB7g\n/iFdsGZLzuPiglmipJ+gOZe1Zz+u0OSyLspVinn5ybTof6D7YIz5JwAZUr/ffh4iMw98XG7+5wH8\nipH2WxBdyYNP1KPrdt2u259q++MGGveMMSf8fApgj58PAVaMSNtK0Z/gn2t/UIpeW0A00CjOG0xY\nK2/GLfJQdtqBehWewBQQOS5MJ7tuP6E0vO9fSavP8wV8yoCZqoXlyCkQTiLsdEKc4fXl70KVIM8o\n/TUa40ZPdlQnsFGTnMVfGdj+YwCAXZEfwImht6Qg2RI+C41UqDCM5CTpJUukTM8NGXzadfpwx2L9\nLJoN1lu5+7zCipZOTVPV8it45RZt6WJ/tNXDACaJWCCR78M426AceRyaCPMh1ZArINljkdfvt5g8\n4Lzs/zaqyU8BAB5MCcG+5cGh7kVZAAkI/fVsdISQe4kHt5SxzEoZ27JKsSiJvFz6mLMoB1AgJy5u\nuwl8nugbX9zAomjQq+SsqcY2goTW2wiw5kyv5kvcJSQ4IbHtMHLg7dG6CQPYLjUQpjl80pUpO0I2\nFXbv1pYxq3oNEzDY1zpQ5N8ImwSKqeouBMA0sdqK1zgdMjI0JzeWsHi9Kp+g5vexJX8Tw0NMzILn\nDRCTxdutcrS0oNZnGSKqcdskZKjhY34m5r7j7cGiH1ckEQoWv3mxiwHTk2uS76xTGxOibbU9g7et\nDram6JOeb7MucHaS4pO0T519MMYYtcW5frK/u5Kitx1tmkIhUsDsVAauVYDX79MX2ndxb8iaiOEA\nrE5GRxBLUVtobFZO+j5YsQxl24hIyOJYIWxHfMr9VJiP/WgPHcFNnuUjSpjbhoLHl/MsVigC6cfI\nJxCordGQjUlbAWwyBSFQ2JbkJqqP+HV5SAtmFOImQM6yZyuOEBFP0FourIAl1TVLbFsHYSiLdcfe\nhcNNqp9EcJot7XmGMJFNyGKVpRlfoFtxY+1ybLjwAqfBhozKj/5ZgB/9vHxWI1lgr9sJGhLAbDYZ\nGuIb2s6DobuSWAodsy4emZc8HcPn+BdegVEjC34SBIiZOVBWB4exgQ2JXFRV4dglnf/axdCR316k\nNTR9bufuLaiejCtmRakV2YjIIDWIXbisVcjcNVaXLFUP1jg/ERO9EWQwJocPEJMAxWobtHTNbKUR\nkGofXYeQm3PLPtjDAbwFs0RmgpJl5KH/HLvcQLqePKcbkxHCkWxuXlzDY4VmoIfouHH03Qu0S9k4\nS8YfClXDi4h5yCt0FEJ24KPH+p7KcWBF4t7uu+TrTHKkZzLOaRZjhyzfk5GF2TPp07LIMc5lA3/R\n9sfNPpxt3QL+95zfHwG49Qd+dy1Ff92u25+x9se1FP4uRGb+l/Fxufm/C+DfV0r9KiTAuPwDbsYf\n3QkLGMYGT6ctHJKJ3O+Pkbliat4afQauxYxC5sDhiV5QRVgXS6glzSzPgsUClTZLoYkqs11g4EmQ\nLyds17dcBL5YAU6vgJ4x32zV0H1mOLIWBzuyM3tKotRtdYlG0zRsV98n0ICLoE+NhxhwNjxVyNS7\naTK0uZwkoyJCdCjX61oPNXEImv9eWym8kVgBidGIWGjk9QO0nfQ/u9jAEE/RkfrLdnMMyX9QxgrD\nUK77LG+xHsp8vn1nAqMey/iCH5E+lj04JE5xwxobGj+5ZRCSd7IXDZE7WwtJzpM9L4RmBDz29lCv\nGTlPa3jUUGh0gyYjzJfCK1XVotpQRUXFSKlT4NzuI6ThOdlkqGmOr2qx8hI4KDpak3MNL6F4TlBB\n57Tk3nmKlifsZkZk336EwYYBt34MP5B5rlYlND0eJwIghg4acjXaT1doPeosBC5CW05/zx7D5jrb\naoKm8zXqC5qpd2xYsYzDCgNouj/eMEETsRI2Jaz8cYWO5EJWUMLi9ay0wdreFrz58IjPCCtaKLvx\nFXdId5mjYtHczd0QFzOZz0VlsNmwquwF24ukJP8mgC8DmCilnkNUpn8ZwN9WSv0VAE8A/CJ//vcg\n6cgPICnJf+dFOmFaoF4YONrGiDUMm6enMJ4IumqtoUKae1EMj9LvlhazqDMuFF8807loWX5c1zUy\n8iu6bgybVZKxLw8o9IBkSxTr1KhYlWkWOVgwiEZ7GA1InEFFn7T0EBDEUxsLbSTf+9qDMtsKvgH0\nvjw8X5G8JF1eKUS5o/DKF+2cDTrS1oMqQE2mAaZTB0kfzL4i8ANU5HNsnRblmpTj5HBURR/eWoyz\nTZdj+S7TpZaFHiPrz7/+f+PWj/3r0jef7EGuD5vzZvI9dBYBW5mDmCQibuvBbIV3KdyYug1YlgFX\nFxiyTHcdlgjBtG6zQEaz+8mxzE9qtZh4ZCDyQzSVjKl4L4ViSnJptbjMxNVLWEW4WaxxQEKSdWBd\nQY0ts4uORCYfugqnTyrOvexuycUaM7ogceoiZim+Ew1hmK3RdgBTy4vasBx8XZ8BZIuyEcEjhb/S\nKWq6rzazD4O+A5visJYdwqarpZFA9UiyYsZXILFqznLqwRkiiug4kQ9H061KsqsNIGtTuFQ7c4e8\nrj+EnXCja4CT+bcAAJHyrrJHYV4hZ9r2RdsP3BSMMX/5j/inr/whvzUA/r1P1IPrdt2u20vVXgqY\ns60V9hMXuinRY5QWkxgrh5RfJxmaB3Kiu16Lrvm+ajQAtGjRMbdd2oDPmve6K5FdVcvlCMhE7LsM\n5AQBLBafqNZH51GCK7BQeQTeZDF8sfLhDce8R4ScvAKBaRAzG4CugXa2kFKNlkHHtharwoYNK2OO\n2unBOiBnwSaAT1bpFUlYivUaPjkcnS6DRR5EWCU0T3xo90p704nkHpXd4YgiK+cXGZhWR7cCXrvL\nYO1feA0W71dTeET1S2BbUViu4S3lHjVqTFfkDXDmKGkJ5cRTGDdCVZ6xz33UtlzXjnx4xB5gnqAg\n9yT5amCUdQUV7/QGK4rL5FGLjozJe36IHnk4k63qtOeh7mgherhiqFZFhDUtwcvNCnOqba/IpXL2\nwVPcJaT9zs0SETMqDhQakr2YNoUmZTKnEA02V4I7wyiDxYB2kcfIe1ssB62OZAzPpUuIFobCOdCF\npI0AmK6EyUl1p2nxlT5K9iHwd6HpMhSVQUdQmlNp2DYFjwisgmlhG/ns99fIqZuZ+gb9QNxtY8/g\nB7Q8XrC9FJsCDNCWGrFxUDYEgmQdhpRnn2YbTCgwm/ZKGMqWdxv5btk02BL7dVaGnBkF3/UQEnVm\n1x58RpS/z37UQrNstmnXVzqWQRIhNDI11TjHgqWnHmsfjBVDkzMxX/pIJFQBXcdoWCZtAFgEt3Ts\nb9UCBTkFXT9H08hLb+o10kJeMkUGJqcECpZRN6rF7phgo6UHsB+OWsMZ0FztBOSz7r6JZ0+kim62\n2aA6k8XmG4MpyWfG5yMMEknPok/yj0ULPZS5yFYzrNstm5SHopbnsDreYNGnGZ/Kd+PYR0X/4el0\njgWzFje0gUVSk6W/QnpBH1/Jv8faxRl97llZgeUOsKcp6rXErde929BE/E+hjwAAIABJREFUMnqa\noK/qHFUtL1XrBiAuDFl5ipAu31s3fhz2G/LypnOa+2sDdY8EKr6HbsXy8shFoEkj35UwmcRdzJZ0\nd9CHtaD477RFXcu/B+EMPtPSITcK27ZgUYNTBQYd16QpM1h81brNDC01GfKcaw826hX5FVffgmbK\n0Q1dGFbdOn6CJtyiLbevbYmuIAtX3sFjrdCkjjCj9qirQ/SST5ZPuK59uG7X7bp9rL0UloJtaewM\nXDxuKzTMV1vOEEckioiqPrINK/WOO2ietul29+0KJBZp26GQ2QzqeBUccuM5TgflM99ckRk5U8CW\n/lq36EpWOzYONDUKI1+jZiQXhpDpfg9FKaeOsY5hMvm+qko422pAVcI/J/Q6IXTbaChGyNNnl5g9\n3xKjpDh+JiZxSDhsqTsMu62QS4P1qUTAPcdFQ/cnXzdISEGmefp06QmaNRWWIg+tlvEt8g6Vz/r9\nxIE1FF4Ar/eG3G9WQj2jUI1yoOl2tVYHv6J4yc7r6DP4OaJaNdoGG2Z1wnQGQ1epnufIB+K7rMwG\nm0KuF5JgZKnWWEzl2UT7NVa7dwEAvhOiOSVfxPkx0ks5mdVE/j7qOyimpI1bGhiCrBrLh6Ly+MEw\ngntLApQVrThn0odD6w4hrohjCrRQ+ZZuTgGkvm/mtBSyBpulKFAPbvbg+qIkrVQPBQllUkLUp/NL\nZGcyjm5H7gMAXVlD5XK9zgCd3eM8i9vlNR064kmKqkZeEFyxnEBttTLjEGTEh0lZixO5aGg1mHoD\nj3PhjWIc1jL3uzEwCen/vmC7thSu23W7bh9rL4Wl0Bkgqyxop4/XiLDLyhI5IZ5Pnl1i4snu+lRb\n6DN12PAkDVwFuMQeeD5UJztm7MZwmUO3nRANg4OGf1fm1dXf5W4KEAvgtivAkpNmVaYoPLEgYsZr\nwkGMDU9uq5sgpV9nVAu3JAItdbGhxqLTyInY+AFqFvM0aQrS/uNiEcBjECxVTGnWLhqqVqu6wIwW\nhucALfUVjdXBInloAenj0bzFgjn21LVRbKtWOqBby3x+9R98Dfd/9hcAANoVS8Irc1T091e2RkUO\nheOzDRYM2jmbI9xnGtE94OljlijmW03MGsWWbLZTMJyXxSpD7bPgKZPncRKssZ8zPTlw8GBH/v3Z\nd3IsU4mJzBvg2VNJT968vcc+rBCTbSmzFCpWKJrcgcllfGn0BNZTOSm9kPRx7RwmIiy+MOi2SNcu\nuBq33QDgZ5Dr4Gx1jqKT8adTg9GuPPd+V2FK8tpnCwrg3NS4S/6K241B3ZKTwoQwjNG0Sl/R89Xb\nmNKwQLy1tpoS3UY+N3b7/7b35rG2Zfl912ft+czDne+bX809VI82NsYGEozbGRxZoMiR5TjEkhVk\nKcZCStyyQOKPIFlBhiCFhJAEpMhkDtDYgKdYEMfpbrvtdvVQ4xvqze9O5555z4s/1vfcqhfc6ap2\nvaoXcX7S07v33HPO3nvttdf6Dd/f9wsab+Pl2MWK+0O0cumCVJ27i6WHKZxHN+z2eSCvt99psr35\nr2GisbYead2k1SloKbM+t13mS5dwqqIF05kbiK0dQ70iA1MLXJ77Z+Kw+BXtSg9T4hFIOMOECd6K\nzr2phGGnz1Q3thkNSc6JRp0WtaTPvTKgIcGVXs8l59o7z5MZ1+KRv/EVPOEepvObeInr/zJmegZv\njpWxj2rw1RBgWg2aYpLevfgc01PnMj6cK8Ncn9AUvuFodEIq97M/DAnkrpaTjJsKlcqJwybcny9Z\ndqWM4yW0BJSZV5ZEGe7smQ47T7vJG9mn3LA1LUu5+NnBguVEoYY5JRNT9mZR4e068M7Sus8/fGCZ\n3XOYhrkX8RW1uO/uDOn1VUOPEspjVStEKb/dq4jedOPz7//Rfb4k0dgw38f/knOrl/M3OFWNvXjo\nJn9rc4/xzIU+ZpoSqUIV54a66RaT8d2UQMm1ROClIDZkqgA0dnoI00YxGxOJ2r651caTRL33wN3f\nV+eGh7fcdQyHFYNn3T1LW1c5nInqTngFO/Fo9MQ03m3iS3vUS0sKYSHS0SmVxrlYicAuSmKFto12\nF4t7uOfzinKssLHfol1ohRduxg8SQlXPaJxyuOoFavc4L3mBXssy7L07gdl1+LC2ta3tEXsiPAVs\nTZVOIfUZDZ1bF6czPImzFGHKqbogF4HPUBDVxcS5dcf37tISSUcx7nE0uQlA5nXY7KkmPPQZNlxI\nsP/xVTdZRCiyyzoNSDZc20Yn6JHXbscr4pJ22+3+XXUf2jolkYz8wUaT7A23S+f+IfuXnOvnLWOG\nChtmYk4ezZeELZHH9jfxhIsojwtK6Te0x+rETHJuyHU+np/QUxfhbpmAkpylN2MgyPPRVKjDGHal\nND1dVgTCbzSoIXfHbr4Gxbc9787jaXe+yWmALzKVw/kJo5vu+jc+8m1cftY14gyeixnm7nN+WzR3\nzxvmd78MwL/4zZeoNlcs0N4ZAWmyqLklvoelEsm/8+aST2g3L77Y4Y+84Mb4HxaGSG73ogmTqfMK\nssTpK7aHQxajG+76x3OmQmTmZYZfubFLvAFb++4eG087dLGHSd19yqYTsomSuJfbdFXHjzo9gpnm\n1ty9t7z9Gr/xzxxP0IvPbtLYcp7Ep17YpCEwQ1G40ODavMnonjAbH/dJKnmpjZxQUPGsvM/JXecJ\nLIRjaVQhfkfJ79GUYuG8KTJDVTtveT4bElxwx26HKnX7JVNJ0Vdeg6cbn3LnEx9jBaE21tJP3l2/\n4pOxKHgeptXC2BqD2IpIOZXkelwsuLlwF3kxP8Xriq15T2GC51MeKadQhXhbLqfgLyGQTHjQahI8\n4wY1OpN4n5GKbDC52jsTCrV1zahwkzFsXKAjwQ0rshFMTN1zMe5WeMKtLUducfPzhzQ2nAsbtbcI\nxZTTEI160mmR6YZ2ujGtjjLkm5bg1B271gKyPAlZakHrnnZpC+Yd5SXzjuL2B+aMabmQvmIwjhkK\nun3qTWh+1U2Isa3xBBDK4g1uSA59Q7mD2A6oxTW50dvEe9qNy2H6kHM9tyi0om3ygQtvep7LKfjN\nglx19WGxTXSkfM/4NsuFO959c8hM+ZWtuSpKy5SvnKpT86kbfEnqXRc+8n0UlevHqK59nkIP/WIm\n5uekxdamW7yLMsWMFaJsd8kn7gEyBzPGmToRxa+YTV6iIRHf4hJ0tlzY1G7URNJ89GlRbqklfKQO\n1od3uSNW7cFyg+/ddZ972DKrLmu8ciXqU/NQLFzpZELRk2qZtZgVr6bfZXBFi6HYq2Jb4avHI9gM\nCJZubNt1QKGFJev4xFqEPM+NZbasyLWYtOuQQEJE01lOoVJFxx+x9NZiMGtb29r+APZEeAoGj8A0\n6QSGiUQFzbxFLChtYFrYpUgj5jHVplvL2hICaeyF1D0h147mdLty4bdCUE0/bm2xhXY3ScqnVYwV\n32Gv3sNKin1RnjA9civ0+WSLqOFc2xX0dbnMaAnCGxZDOn23kwb2iPkb7vyj55dkifMwYnWvtRox\nvVUGvLYYkZM0vAFJy53nQhWXtBqzJ75+c76NdGGYH42ISmEdbMZ9Zf7vjpRY6u0wnrnEX3PcIrMr\nPUuPnqTgFuWI8ReEp1CzU3muxvRXXXh9Gucdq83ewSFl5na02Zs1w71n3Fiog7WOUtLb7j6dH/ZZ\niuzlZFDw+j9zNHZHJxH3TtzxXj9x11+UBWnooLi799vclwanvz/iyjl3f8OyT9Rwx4s0+OVRzMam\n9DCiIeFDsXg3GiRXnPdmzm3REZrU77gwImjOqdXYZCYFichJzDAikGZGmYJnVyhT55ncsQV1182b\nq5ufIOm4c57bDUJhyHfVENXYrshE9Xd6dJ+ulLuj3TZWkG7bDWku3fzcGbrzWaYzsrHzUIzt4YnQ\nsgjTsw7cZt0EKWnn4vJIs5KGv6PrtBS+eD6nLXZ31a1rfFKpnr9TM9a+a36U99w6SWw/dWGfu7bN\nBQmf7vQ38IZ6+D1DlbvwYJYFGAF2ug13Azd3EvqbrjJwaf8qrVB8hp2aNHMD/+DeLSaK1TY3nd/X\nDZ5iKCKU+aJi64rL6k5Mgw/tONc+CEMauqG+BvfP/ekf5dY156qeHt/kVDLws8WcQuxFJZyRkzRj\nN6nieIuWOirbpxkHTZdZzg884m03gcYNiYLUmwz1XoqYcEV60iw5ECiqkUzZuC7R3AsCNN2Ek+91\nE+KwOuF7rrlJM8lzEH15qx2yJ+x/oIXpoC7p9dwEfH6rz476PPYvtdi+5M5/y79MnkqIZeFi57LR\nYHboJvTNW1PeOHXnf+x5PP+8Wyx/9XdvUY9dNn/2O+4hXuzVjKRpMv6RmIWYjn5i+z/jpnGQ7U/s\n7PD8Rxy4qi0XOGxEDFV1agYR+X33JUcnd8iMG4vKthkIBJbrgW1txKC27fn9Q16//iYAd+6+xK1b\nArUFhmrPhSYvfqfLnQQX/g0+c8ktTF47pKNjt5OYH/+Pf8pd00gAqyyjve3G6rmdPYxa0b3GmLgS\nweytmzy45+77cek+l1eGzZaIadtdnr3kwtzQ7xCLF3R8esRo6r7jzsiFYPUi41SVrTiKqPtuDn1y\n+DR1313/xY0WW/vu/P+Dn/rpL1lrP803sXX4sLa1re0ReyLCh8AEDIINymFNokb9YxZcViXi3O4l\n/Adup5h5Y0CkHoLRbncbbG25mvBGv403cCt0VSwIJYXWIGGm8OBANOrl5m1mD5UE7DeI7rhd4NJw\nQDJ1O2y5B7UAQivNwXQ6ZZK7HWqez0kFRqmr+oz6PaxranVlrjwMr7HkVLyM4VObZNqlN4sJ40Ml\nu7acx9NoeJCKEizMiXacR9Po54Rt585/3bN0/ksXonxFuIo//Bdf4ujX1dXeuEVj0+2I87IiEE4h\nCmFnX+AdNWJxkuK3nOt7eWOX/S33fe32Nlf3X3Tv9XpkueTUMoU21iepnUt9evt3WQhiXfUCxgp5\nWpcCflkJ9Us/6zzB14qQ7/kxt1N+/u98F6hOX//xFt3nlFyMfA6VmA1UydnstohwX9bwaxa67tGD\nO9y9c6D3FMyN8976+yKqwWPYlySc8Vkkwgrkc5bq7Lzz+sFZJWElK/c9+2MGwpakfZ9C++hsXlGt\nkpGHbi7MFiVB33kKy6SNmTnsyenNE1LfeTH1ZMkDYQ9OZu7z3XYTqfix0QloSdF8a3cTYZ6YLUYs\nlQiOJT5zv4D7C/FFeDltgdaM2cfbcu+Z1SXhqZsD79TWnsLa1ra2R+yJ8BRsANUWbIYxLNwqOYx9\numIO3h77HPfcz70iYlNaDtsbaoJqRCRiqOn4Fjt1y2tmFqRjCW5EcFUErNemqu0+WNKp3Spa+30q\n3N9ftgNebLqVfTju4UkDwoocdbTImYkFepnVqNJHbWsC9ePbyOCtGHTUkm2KAk90ZZ69TiIug2vT\nnDp0ceIVI1LZKsC2XGzpFwvOdcTyXM5p7bgS6P3TI37yF913//Spu85ffgkI/wEaACjVV5/Ys2Tl\nedPhfOR22EHXHa83XPK8yqzPfdcLbGxKWs9PaIpdOLP3qNVSHgpJ2bjvkQ8ED29tktrrAASTmPF1\n10j0oeeXvPSayyX89b/tdrDP3IH/RzkFvH8KKq0un/pBNiM3hvten44EdXaFGu037Zls4Gw2ptCO\nHhUTvKXztrJpSq+nxLRkCHeTkLJ0r7UsXBxccuP5YszmKy4n8kwz5o68s44wHTfHHk8psbt50qQe\n6P6ajEz6IsfycnxjueCrXF4tOfXd504f3qUUNZ0pl7SV78C66zjX3WJXLeLnBkMaxv19Y2I5KNVK\n7wcUapoyQv0aO6eYub8f+5ZKnund9JT9l+TdPvMM3rt8yp+IRcFYH78YUA0yuqrtD5r7hFvCuEdT\nzom6jK0uXfUPtJQYs8smQexuzDwviJuCxi4iGr5zI8N2l1qJu71Umom9KZX4DMPFlCOBd8Lj17gW\n/aD7eQgNqV/76vCbHt5lIThyZXNqEaA0Q4+WOB8D32ek7yslxjEf19T+Sl9yl8p3Dzd+l4uRuuiE\nsw/seQrJovcbfZoNN9kC06c+cjTxW/Mv87M3fgSAdPKfazRjEvXgZ1iMuiQ9G3BOrMWbz++wpS7C\n3cQtGpeCkGefcxWHzadeeIsspvTIR66KEJQxJpGAiTgNzPMjEvENbPcNz6jX5HcfjhkJCDS6d55Q\nPQV/8toPu8+Pf44VzZlXW1YKjuVhROequ09ZaIlV3/dXdMBFxVKgn8lJzsJXuBL3aGqKBEmKL9CS\nWRHOTCvaY7cKtfttQpEvDLsd2h93791J21yauTG/uZAK9q3f5M55V31q7YbEqk7UcUIhWrwIF9pd\n3G3hnXfhwyyfMLvnkrLG5HR8N2c3O9skl1e8B+6EB5d32VAFpChP6GpjybwpbfVudJcDrojn8kBd\nvsvM40hJ99O8ZKY5eW9+yGLTHe9D6QOEz3vHtg4f1ra2tT1iT4SnECYhe8/ucWdygieCzuf3U9LA\nrZ69VkIk4s8y7uA3VfNVJ1tQLzCqCRfhnECloLCRYjrOJQ5sRinRj1giM0Xd4qByya5+0WSRup/j\nwWVOey6h9qX7XV4853amtu92gbTIydThZ4Cm6sbNZp9IRKKmbJItVXIUm5KtwIgLIgxPCIWwO9cw\nhMIQWM+FDGV3gUnVUWkrPCWU2qFPc0vdPN0NOs/+YwDuvOzc/auXcn75NRG0+snZNUfGsquuy49u\nDLh60ZX99jYUrsQe3efcjhi1N87Kl8Xxm5Ryg2t8kliCX57bUZcsiY3bga9uRHxJ9+T6wZJQmIWn\nn2nyKbm8R9/zPwCw+ILHd6sc/vNHcF8hyt6nznEq3YrAS+ntum2uV4g+LYJ84UKtw2RBJvaixItQ\nIy3zwlDHuic6RjF5nQfi3Og2FnQUgnjLEmkLkZmaWKSwDevund0Y4jXcjj/KE/aEUmwGCWW3r3Nz\npexeUJ5J6AWzOfNa5eduwp70Tfcv7HFOxMOm6fbk3mYDI2rBKG/hxc7TK8uIdOnGebPdIm25z90U\ni9XDhSUT65U1NblCu+PZ4kxcaKeV0Rfi8p3aE7Eo+MZnGLUIevMzwEcW9LgggdU8bBFKpLVvLEko\nF11+TtxvEgoIQ73EC8Rt2Nsk0g0o5xPmnnO/Wh2BiqqIwdy9dno0wzbURtysqG+7Y4dRyWzHufQ9\nwU+9OqM2EkWxPr4Wgl60Q9pQ/8DDI6wYga1ouUoqYrV1F8Y/44xcAsUq+9xWPGlaZKpRt8IEab7Q\nLQuWC/d6yEUyycD7gVv8sqN7LOOb7rUyYlPdeWUEL+659zz9fIe9ljLxXfdasj+g0Xf9Baa2VKda\nCHKPsC/MxuIhtl4J2KiSEfc4fvM33Htfv09+3S243bDgTQnBTo6u4w3dg9Ofu/txYlt8de7c71k8\nJ5TOZ5z6BNZd007nAi3BdVd9FMUi5VjqVJ2lJVJMXUQZrY6b/Dtxh1J9MWeVocynqa5N+zBnZsXz\nGLVpt91i2aGmqtz7BxLnYZDg31Ulo+UR7Lp50fQCfEGQG+LzNBcv025rES4qprqm4eZ5nrviMBtP\nnbtIKDbnSNiTRj8kEr7FryJU5KKOElLlRGaFZaYQ4xnpas5GXWYT0eZZQ09s3FfCLqXmZJSbM9q4\nd2rr8GFta1vbI/atStH/ZeCP43LG14D/yFq3vBtjPgv8GE4/7c9ba3/pm5+Fpd6oaRYbIDizCS2z\nVUNRkNKIlfXG4GkHbfgrUlaPQNnwqNciFLzY1BajjHvYaeEHLvFlJSaSlxG5UlxZa8ZEOIXFrYc0\nPuJW/8H+pwjFyZ/LZbZ+fJZ0rIucwFfyLRyzEF0ZdkEiV8ZK3MRUHvLm8X2Djdy1+mGfQUvJyqYy\n713LaFNJtrrESshk2S3xNC7hNCbSrnNXeIyvF7Oznv4pEZupe322YTA7bodJiucJ+uqe7LvdOu48\njS9ItGmGoDEKPB9PNHRmo4LYeRjFgWrfd46JYndRh1cyesJ0JL9oOV3Joi0qYu3MXQnrZJ2a63Jx\ne8MAb8d97+aOD/J6ellBrUpRoV3XRktY6J5NxmeJ2zDyiFbUe0VJe7hCNArzMM4JRWPmtz1ycSuk\ndXbWVNUYRPj70vi4J7LaiU/4tLvvnZ0OTXkunqnZVmK2kBfTrgymdnNoms1pS9Z+EPcIJPXmtwxt\nzWVfIVUvbxNJ4Kg2YBTGVosKoye0HrYZit02qSRqdGnG7RNR+o0rkPeWDAMiVcoWxmcUvTtP4VuV\nov8V4LPW2tIY87PAZ4G/aIz5EPBDwIeBfeBXjTHPWivhvm9kZY09XVLYgvlKR29a0FA/Q0xAkMpd\nbVSEEngx6vAzpSFsy92nxWoMqjJCoSq28qhKCY6IArgsJm+VE9OC2YkYgHsjBvfddy9aD4n0/kBc\n77ZaQLES9/CoJXri+TWKUOiFAXOVnlY9DlEVUEjRp2EHLKTqtBG0udJ1FYWWtAh7nQYXdGOjrk8g\nsI058ZiolHmxNeQwETOPsP7tZkEtFaPZwYTmOXdN21GHK2rr8+MF0Yp+XZluzwtBC6sNDV7XvTfw\nts7gwTZqY8RM7YlAJB1fJxuv9Dr3uKRqwKXBlH9+6B42v4bhaqapHX6WV+ypArD37ZvcuC75+WWB\nZDOxXsJy6eL5U+VigmlGJVj5Ml/QExFNUJZ4Qy1qvqFTq7NVi1EnalAWKi0vC3wBfdLUMFG40un1\nCOeBxtOdQ1FMSQsXPtmgwOrBs57HhoSMI+Vq9jsZ6T0H5z5NMzyFLv1GA6v8QpXWoHxHO1F/QqNB\nJJGZOn8I1o39MhgTt9z9TR88pC0B3UqD2a+6XH5DHbHpMfPc3b8xAc9IXSyOR/jZStXxndm3JEVv\nrf1la+2q0PF5UE3GSdH/PWttZq29gVOK+vZ3dUZrW9vaPlB7LxKNfxb4+/r5HG6RWNlKiv5faTWW\n1KbYPKYjKHKvExJInyGwPoicxDRaqHGMpthr/W5AotDAb7eIxLVVhQWV+BiDtqUzkX6gpLYmeUwp\nMgp72sJT5rioBszV63478CgvqO6/4tv3WtQ4V7ysIREWoOVvMFZ33WmdYWp5N0oAVZT44ogo87tn\nVZJF/pAHlTvPpwWEicPz9FR9KaqUlgA983rKRFDph4dvIHgGF1puZ+gmfe7MnSt+zfsKm1LrfuZc\nkwsbAkPFNaYUiEr4WhNbak+usWexStaaek42dy58YGLwpRMhl7v0pjQ2xAI9Tfiq9D0/OqzZVjfq\nnanlQCCk0Ztu59/uJ3zysvv7YprzW6quDDZDGoJE2+UBkWDD82OFPmFFPXF7lGegFP6h5QUYhUp+\ny8fq9USCLKZanhGueHFFpNdrJkxUcajqGGPc2HXbzsNoNHagEDdiWdBZuZbGpxbzc0PdifH9E0aF\n25UnpydnzNx57mGMtByC6EwXtSmdz2RngK+ws4q3sZnDr2RRg0ieVdVJMDrOSIIz8WxErPsXTiNK\nebR2nDOWXN7THx9wbN7H6oMx5mdwDYE//y189seBHwfoNps05h6ZP8PXxIz9jERS5bayWAGOTAjG\nkwir3Ew/DkAMQ3UxobSqOPgeiVRzTJ1hFZNVmgRd61PVbqAPD28yF7Y88GNmcq/jo4KTlnMv25Gb\nKMtlihXSrKwNC+UJioUlraTUtKyJJUAa+GKTCmYci0EqiTwKEY0mgUc6cg+LP3TxdDdakCtWjZOY\nVuTi+q22x63TlbqT5VCLaFOEoVe8bX47ceXUbtinH7luxl4ZEqk9u7Mxo5wKWHXL6Q9mMQR95/DV\nU48VP3mRzajEmlSOXz5rRU/viJ588wLZxLnMJ9cfck3IxbEXcVK5zxWWMzKYTPmV+XHGF8T9ePyH\nTtgxqoJUIZ4k1eNODLUbl3Tmjjeu7ZkATOIFJCsgD0sChS6NNCBUlaRe8eIYQywyGJsbcuuuP29Y\n2sqD+IuStHC5kqoj5SxrWCr3UUyuUvQU/vkWpm5eeJkbk4MgPctbNJZTThbiwRy0uNBU/mgREG6v\ncjfu+oM6wngSoclzaom6tL2AYtUzUcUs1Uk6FItTu3WeN8+7zw0PJxzHCh/qgvMCbS3uVARDVVLe\noX3L1QdjzJ/BJSB/2L7Vf/2OpeittX/DWvtpa+2nm6sgcm1rW9sHbt+Sp2CM+QzwF4B/21r7dknb\nzwH/szHm53CJxmeAL37TL/Rq6sYM34/PpNTS05qOvtrvBWerZ+h7NJSsW7lOERCK0pokohY8OKy9\ns93Ba/sYZY86EjSs6gkHc+fuLTsplb7Dz2JqVRTCrQnt0lFwNdwmSCOBWjTrdV3SWEg4JJiQ2xVT\nb0lD2XfEfByEb4Uam7Zm0tExvJBYGpr7wsN3vIp4w53vwMa0VyCkjQ4fTVx/fOHfwBw6V7MpvcO8\ne8Sl4DIAB4s3qQ+cL346yOm+rC7PrzUIL4s45b7zCKKyIBrcdH9PEopUnAWnO/hDeRXFjFC9AfXK\ni8nBH7hz6326xwsD55lt3Bjza9KLGc9dVh1A8A5M13J77na5TTxui4hmc/stIE9STjk9luy8Lz6F\nVkS6qsTMMzJta6aYYJfuy8Mc6K9Upd3fw8IHicHEjZJc8OD0wZjTuZsv3cYxXQHDEiGh2mWEFf9n\nEC6J5YobC0Y9EQdSP2+d1NSZ64y8kZ7Q0HVMjsf83usODNW5mGEmLqmcBAKLGQikiF3akloJceuF\nzI07z+niDrZ055ErhCt2O/Recce4sN2ibdUx2Q84lWeFiWmri/Wd2rcqRf9ZIAZ+xbia3+ettX/O\nWvs1Y8w/AL6OCyt+4ptWHta2trU9UfatStH/rX/F+/8S8JfezUmYCsKZYRKk9DtqkomCsxpzq/Tx\ntLRMw+XZqhqIdLVudKkkVhpaH1/eQdDoYsQY7AdNErENiW6B8WlNIBhpkJUkMyEMzYiVtMTkwGNP\nvem5dozlbIkRSjE0hrnKZQ/zBVbddS3fP+NWMGpTqzxLfyXzlTRPlGW4AAAgAElEQVR5QazUnb3z\nXNoSVLatROTcY/SKI4/9vVlFU4nGna0+kXItFy9dJui5PO6Gzq3VGXJJsezLLz2gec6d52C5SfyU\nqMSOj5m/IgEbaR7cvvXPuXPT7cavFhVbwiZ89OqQ+GMuInwh2WBjKFTnhur8xYz8SEK4kwbjN90u\n97lXEm4pb2GAM0KwVQn4BF7Ydl7KM7djviT2otiL6LeVi0gTgqb7jrHKifkiZy5o73gxx+Tu52wy\nJ09Vcq6PyY5cLb+/q5JrkFDJTRmOC5ZKNvimog7d+Rs/IFNuJjx292McXMcTUWxZZWcBtwWCQ+dt\nZSuqQHtMNnG7eDqqqZV/8dMp1W333t88GXFBXbwfveg8jf3tLTa7EgyqK5byZJfBXe696jzZ24fH\n/NbLN92xhYT0jMGfiaw1L7FqgvI6XRrCeuzZCQ9OJ7wbeyJgzrWxpEGBV7aIw5WacZ9YdOBFCZ4I\nQk7nc6anmmwd57ZtNjfpivswiX3CDeHTlxWV6tW1nbFcOld7/KrjMLy+GLM8dW7d0WjOXECmRdLH\nqIPNb/ZQEYCWWKTnVUWlxGZpK7JUC0RsKaReFASGpqcOTI1yhzaZXL+oNqTqZb6QegSajC+/5ibM\ngzs3uCncRFaWNFoOF3Dhwh4fOvcRAJbFDBJ3nv2Oqyx0k5zDl9WT3DwlDVTzri3BVIvXqyU3VA24\nrMTnqIyo77kJeH5zQGPfPYRZ06cxcmM4u2SphRtYpa6m18fcuuXG8It3rvMVVRfqNxds6AE6MG+F\nD4q6uLAPnzh219y8lPD6bWXwW+Ytpa5iQSm4cT2W+jQ1/kLjkk1JlFCbzxacjtx8mI5PyZtuHC9J\njXvQ86jG7iGd71/EjxQS3D1iKYo5b1gSLlV9uCpl740LmGO3EFa+xQo4ZoOY67dc92itZGgzLYjV\nX+FFbbYFS77S3qaRCHrfDMgW7p6keliLYEgpiLYtXSIb4HBUcHjgKi0nN8eECkcjkQw1tn2QMNBp\ne4ldSB09tFxSeLdshjw8XatOr21ta/sD2BPhKYT47Nsuo96SZuzc2bRcEKhhqCpSBwgATNgmk3DK\nQq5/2azBeUvkKSRLbe1D70wFeX7nGjffdC7qwcyt0NOoope7Y9TTKUHudoErWy0mhfNYBgzPiEWQ\nzqPr0VfN2w8R3ABTeYQCUXhVSSUYc0tkKyYq6CpRFYbQ1HccZg+wM9eM1BFJbG5ixnI/O4M2vQvu\nAp/Z+iTBRXVS3jwk0k7a3RDacnTCG4eujFVMDOd67jvqIWfeTzOpySZuJ/n6dTc+XzoIOVE35OJB\nyvB1N7b7V4Z8+3e73bb7wJAL9dhWWOZtGCa/7XbKV3/nIcfympYNj7kSe9ZaVvUpo0LTnUPDsaCn\nb/zfhs2ZBG7yGUiGrfYCQmE9glz3Lj3kzdfc7nk0OSKVZ3ZyOKFMVwAHiyetjTCRB9kfYAbuvt+8\n9iXuHurnWUFDY3hu1mUQOW8pl0Tg9jPPnSX2kmVCLg6FhjGUY/fesUqWdSOkaumeN9t40qx4+eGE\nHR2bhxCq63IQuBBn45KlFu2cWeTU8iAbxrA7cJ6Ll3s0MlHPSRuk1+mwVCi1M8sxq/lpWkxWYVUG\nCHr9Tu2JWBS80NDcj8jKmlz9DGlZ0VRdNptNueuvstBN5PkSKrdgTEB74ia014wJh4rrlgG1NAxn\n85pUuopHqfIWuWGhSZV3YFMPtKkHVE0V1uuHeAs3QcqZwpbQwwr66wGRMsTtQQhzN+vnC0tarnoX\nhI+w/hkhi19b7ErdyOtRKdu/oWuLt88z6UqgdZTRzV2M29iJzliRQi8kL90C0Gm617L5nHgVSpVj\nFis+yn2YzV1m3DLnUs+d/1fUTfdgMWVfFY57xmMqTMM8rF35AAj2NwgkmFOLX5DbDzi9f9NdR2LP\ndD63reVgpaBr3gobLqqL8HQLfu/QjXHy0RJeci5x0y7PGJIoFhTzVVemYOVZwihUB6e/IJOza4MW\nfSljHZ0cUwqgZtvu/pa14fSGW0yuvXmX35Oeo+9FXIrdohd3OsyHeoAEFPLuQf+K26gaYUEkHA1l\njYoBlAJFjdMJVmJGVegxVrg2XloK5Wh8YgLllTZO3TE+em9G3dAGmGT4euiTuqJKBL67eJE7X3Os\nVifHbsG+f3BCqJPoxDFGorkjP2N57BaevFFzT3mud2rr8GFta1vbI/ZEeAq+hVbpkYYtfEGCk4bB\naBX0CosRDKHd7dDUwreIXfItbHjYVYa/MlQTJQHjJakyzovaZynXNlZx+2Q05iQU/VujwVxw3sns\nNWZLl1TMdkt2r7gE1uHcue22rM6y6aEPoTobk36fRDDl/X5NqjXXV5at9EqaylqGZkEiz6TXjLi4\n47478N3Ovms36Aiqe+9kQmPb1baDQQerNN/gXJvRyLmUon4k9Qtakdt1+36HQhR0O0cR9tvdeF38\n2C59HXvvNbcTf+rTu1h5abenc+4eus89vXuOrYvieAh2SQQ9LwfOnb+7CLGXHRLye8wRp5F0Fe+C\nd+zc69Cr2VaiuNK5Xa6huek+92OTU/5m6MbezArquaC9QUitZHOn6TylypY8lzucxqyZcTJ1u39Z\n1QSZPIjdiqEAChc2nIt++cWr5Po5MV+E+26X7g23aKkc1d1sshFLUKZWAm/xeXbLP+ruY9O6TCBQ\n1z6xwiNfTWLWr5gJruxXNZ6SoJsb2zz37McAuLS1w1iu/dO7gitvtc6qMmZp8TVv0jgm6rn7vpce\n8eJld/8eiBMzyC33H7iqxm4rJlNT3MMHOR1VH6aLe3RXcNJ3aE/EokDg4w/adCYGKvdQDKiwajdt\ntTdJVKYqvZC4KSBTveoyK0Bx+6KYgDrdOC2YqUpQeRUbbcVnqm+aoMUsd8czi4hKoPucAXXsJmE4\n2GUxd4O60RbsGv8s7qush69QIjQxkUhigk55JhlfFJITz5qEYo2KvS6BWIoa3bd+zsQBGA37NGfu\nuy5fzahEZ2+zmLxw3zuez/DbbqLbFVz7wEeUkoTthFBktVXYIlJbW2Nrj+72h9zre+rKrOcsZ9Ka\n/NU36T7njnH+yiZ7okaP8Ak6q1Zd913NWcY5yciPiwIr8Nm54i6t+25cuoHHVtvdk8tPucl67kLK\nj1x2770zbdKRlmLpQ6S8hb+YYHTdteLi2MQE+6JO71qqa+486kbFQiHfdrDDQIK8Gy3X3twzXcor\n7pq2Jh/luwfKP/TnGHWaxv09uqow+aLRt40Aq3IodUm1XLXPtwikQRksdO5ZgRHXZlaGtBtuod/c\nH3L+ojuP/cEWT2sR2m24Mek1AvKj27rOyRkxTFqUNFta7f2EvYG71x1Bpg/HY66Kfj5Lp1S+QreB\nz9W76t0Ztvj60oV/79TW4cPa1ra2R+yJ8BQ8a2jkAUUwoRJMOF0mtGKtysbQVVdblPQJxHC71Ipa\npBYTS7qrzpmq464IIZOnEHohvZW+YEOEHvEms5V0161TRpFz1bYHW8SlZNyCAalc3iwQBgGfQB2V\niR+eYSi6tkEgAZt2BLYlqbeR2x3nzRRhjKhqi6cgJMsDylCM0eKKYDQjb2Y69118eU3pqOKOGngm\nQcRAXaCZcZ879TwK1bGbrR0S3yWnJmnB+aa7Pn+7gUncTukL53Bu80UCz3kVe82vMqvdeLc2uiSi\nuDfTY7ITN17l1F1z3uxTSBG6G3i0Cve5vY9f5uGDmwCcHC4IpfS9t+dCreVxl+P2ZQCONo557rKa\nkmY51YqUptVDmx+VmtlqH4Kqo/vXY7Ltwr+j7JSWPMcL3XP0BL0OlZEnj2jgPIKOP+I0UTKvucfm\nrqN7n80OiUfuWlYe1mDrMm3NIT/3SXF/972UaIXZVuOXNYZU98/WMBP9217/BT78sU+6c2tbolUD\nVr7KmJ+wKNy4jm8dUYoH0poMm0rrdKNNW3MEz722mzS4duqa305Op0w7zsMaFSUPBTc/ntYMJ+8u\n0fhELApQgTfF+iXZkUQymyUorusEbYpohWvPaYhZyQvdjX04ygnHakONDZIPpDQBiYAgRAm13DW/\nXD2AsKXvWr5g4ECU8rlHvuE+t72VsDdw5cKGHqCwF+GpGy4vQdwWHBcpQ/UulHOfUg9CLP3BBjAv\nRUk+z1jxaZpGzOEDMeWUztVrd9psbj7rXksti4erkKdBKmr07DjgjbaL23fVcbkoU5LYPRxBt6Z/\nLBTmcx6jhVsgWneeo9wTEEZPXaMXE4mcJfzYx+msFqd8TiiK+qqdY8VakygI3pn63Jqp9LjpEbVF\nIOtd5tbH3LW8+fIpdU/EIKEb7/BqTj50Mcj+/kVQG7LfNNhCZd3pEVbENuR6jeysk7aaLmmrVTsP\nDFYkMtsmp6lMfGmFWLXzM77HTr+F6arE7cXEIsHZ2GlRrBClJworR0vCq26B8JMAP9QCmb7Vwp9q\nDE/Hc4zCytTL2M7VHbu1zRA3LsNBjBUxa33g7l12uyCfOmBd5c+Zz9Svky0xIsFp9VokK1KhXAty\nz4DIhR7kI8JjSdVTczhx4cO9pMkt7911GqzDh7WtbW2P2BPhKVS1ZTrPGc0n5GO3+3e9Bl7gdhW/\n6dMVoUrQqkiEgDHiNGhkJYgCvmHalJnbHZpBRCrClUYZEwkUE4tAxA6WRKFzKbtxQH7bJXtuH73B\nbOkScd+27xNviFZN3Aw2q7EC1fheTSno6ySbE87luvcaWBGZFHKHl5xhsKiwSGCIcJozM25nOpan\ncDLN8Dbllncu48s1XuQeC7kmi9Bjek8hiu+y93k2Z1sqRlEQk192t/jc7Bz9b3O7rtk3GJzH0uqr\n+zLq42nXiaMhQeXOo1gavNydB5MmgYBcbfVcFNM5l3ccU/FoUbG34+5Nq9Hmo3Pn6ezwKr6StM2O\nozYrkpRg2+E/9i+9QHgkt7sC36ygxLtUIrMx4o+sbU2gaVs2LdtWFah+Rbl0Y+gNalrVqu/EJQ4j\nv0klfovE1qTH7vqi3haJzrk53MGItWaZrkAIE+ryMgB+FGJFlkLzLa7QfqCEY6PgUEnpugBPKucN\nLA11vEadGE/0+Ut1yebDA8oTN8dqf4E/cec2MRmCZ1Asa+KBPFx12tpjqFRZ8IuCU92bE98nXLpQ\nsVoeUI/eXfVh7SmsbW1re8SeCE/BGINJQuYH5qyhKLY+SGQljrvUgnPmpU9UuhIfqSDKpiDUzrAg\nJ5AHkaYLMiEIk2aTWNTOPm4lTquAUI0z1TTntCHEo7UkEok5XLY5rzxAt+dixNz3YNXs5BuCeJXM\nrKi1ss+zlEbsjl2kSpgu67N8h61rVkFp2/fwVWYtTlbiHtmZKEpnI8Io0VgeG06nKkn5FVNhIPpS\ne47ok03cuYfbHnFTJcuPbOANXULN2pylWIATJaRM4oG/opurMYrr/TyjOpGgShIStkQxduKarrxu\nny1XbaNT+my0RKDba7Jx7FiM2sEFZnMxAamctn9hl8vnpKS902IubyzuXMZb1f1HI5Ce5uxN18RW\n1iWZFKWXZUYpBWovzBgfOTzJwXHOcd+9pxG7e7btH+Knbvf02g3SE82d2T2qpfQu/CZ+4DyyZENN\nUo2IM1qMOiJWR6yXNImVKA7lKbSaNVPxQkzzimMlwhfpAUp34AcB1mpeTNz8njwsmYg9uxV2WIhK\nzQu7+NKUsKY8I9vNpOOQmymIxq/0I1J5nnsxDEPn3X258ija7z2b82M3z0Jr6RF5E5YLdwfizRwj\nhttZVtGoVpTjHjaTqyVXbzOMWHF0BaFlNhW3Y5Hgh3Lz7YJCry8FfbWhhzdVu/TJTW6+4ogp0hA8\ngZcSQg6VPGoLrDL3Sgplw71Og3BFvBFsnCUdizynKYp3T/RZuT/D6CFeVCWe1I2ulffxT1ZZR/ff\nIo8J1MPg7V7kYtO5yfMwIxNFxWI2IxJIJRKEu5jf50RkMcE0xmuLd3GUs1JxNTtjZrfdQtUSEKZa\nfphAi7DNTqikqZhlEzwlTBlNmNx37dwP1Orc7jQxE+EKQkOx4glMHp61NR9fv0/VVuZ/zz10JzcW\nHLXdOQ9f6HI1cAtWPqmIVCWqmwNWqOJFooXpoDg7RmBiUrEy3zk8YD5y92+QdCkO3Bjcyt3C9ObN\niHOX3TUN2x1GYz30vk9LILFeujgDpa0qSqa3jZXCV1gYrAQrPWOI1dARrOLA2qev+XY4y5gKev/1\nwzFLUcoXJqIWl+RCrNSmTmjVbvGapkfkWmTaDQ9PgDJDRKlxiUQRH9Q1J4Le+3mINxBQb9HEVyI1\nOxzRr94ds9k6fFjb2tb2iD0ZnkLg0d5u0Ki2qNXgE9oey5lcQ3+Ckf/VSUOQvNtK6t2vMiIlosoy\no91SD74taOTSBWj2CLXbLO1KTGRCpqTP/cWIg1PnEi+8DXZdnpHz2xHbkdvlIhG+Judg9DX393Q5\npWioIco7oiXUZDVdstR3e3JxLYZasvSezamVgAwKj0rn1pdqtTfYoNUX4nFRYDbdLtfrbBB2lWgb\nZ8xFBbap8KqMoZ5LiXgxZnnbof/C3ZSGGvXMNKZSiDE6caWr1vQN/GCF2Aywodu5/PkMI6m7koKl\nZNWmYycz74+GjITZ8Ns+iv7oTjJOZm48D6cFHbnjplDib6dDMHPHHobfTiSYuo0skUIlk1hyISdX\nnZNRu+L4SBiLyYK5XPTx0ZLpkeTeKdl/yiVVE41FXmQ0jqRD0TB09p0Xukxzxrfcee7vbOIPVBqV\nUEt9UONJSzRoBnj+SpTCEMidt42VUFFJTyFq5dWUauh77eUvM146r+F80sCqO3TllTR65yBz19Qe\nbpE/dOXJcJlg1FRXkVFNV8owKp3bAivl9fnQY9N31zQl5f41N7ZBLyRN/3XEKXhQtQ3W8+htuQub\nVIZKLurSt/SEU6AbEJcrNh3V2pMBVjyIvh3iKxPfzKHy3I0JrIVoFSfLhV9OGB3dAODug7vcve1u\nTL3xgKfVMXgQjuj2HEcjscs8T+8WtNS1mY3rM1WryhTMAvd615ScZGJDMiu8fEUlRaOqNHT7ckVp\nsiWFqIU67prFjKXk0NPu0h0HOEpyZriFoChGeGKLGolH0c5K2qHDM0+OI06cV455pab5UeU2BglT\n1bSLh44oZHL4LB6u+mIbHmWuBaI5ABGr2LCBrwTCnsKgWXYH79BN3LnJmCsb/mCRcuO6O97JeEl2\nJLy+qivBuS7V5Y+6+1GGGFVfMA2sHjw/TjDqR6kFP2Zxl/Kuu6ezZQq6D37gkzXUB5LkzIUL2Nhy\n/xdjy7yvzcKv8Zfq9qybTBvaLOYFDeEeitItzpl3n0b2nLtnfgje6pGxZ2EcZ3qdNWPlmsoSKv39\n8N49fvH/cIvo1p80tCQs7HWHGpMDumqNn2cLcrFnV5sZsTDrlpJcnKWFcAoH9w44uus20aZvycTO\ndffoiFIaqrZI8SZ6dt6hrcOHta1tbY/YE+Ep+H7EoHOOXlJB4XaXvMg5vidl4GGDjvgMTwMfBAlN\ntKt2opxUDTVUkzM2YJsdc7Jwu0CT0RlvXTpyO+lpPmGmxOakbtKW7Plo5xKjxMUPafRhugN1CQrN\n9vx3hLz6OZFpdH3KhlvBj+qIgZI6SdAgECw1EZz1JF9Qqo9/bCo4kCcQGgq9Z7zidJiW1ILqJsUN\n8tjtVsEiJ78jyfG7t8980IF2HxsGzMTbtwgOyIQKXdYBzc6LAJSTBaZWdUVy6BssqcUFkGRDfDFl\nl9MlWb5yk6OzDsxs4nblrFiQR6oGTANShSWTu6dkE7f7N4cBR+IdnI7ca9/7nUMunFPizEu5oWrG\n+cvfiyd+isD4+FfdcYbKyOfFCxzMXgbgjflDInEPXLi8S3roQqXR7ZD9bXln0stIkpSD+25uRacz\nqp7bpUfZmCvPOncq3t/Dazs+xniobsfGeWLPhYQmTt5K/BmP/sDNpwd3nKseU7MZuuvvBQFjlaKq\nvOKLN5wX9icOr2A2FepJZ+ThwSlVJizINGeuMkJ0WJFFbryiKsPO3L28N5IHcnBEKb6JeRZyZ+HO\no5GOz1S662Gfw0gxnXMKv6k9EYuCqS1BWtKJJ0xzN+nGd25y7U0Hy92ZbzFIHOil1VgwLdyNziUE\nYpKMMHE3rg4XZ1DTsH+ZrsKpKMlY3tVNkMrP0emEyal7Lb9/igndTf7Y4DL5WSdmiFEKvCFa8JkX\n8uK2m+SvHvhk01UYk5Iqjqz3E5odd56tuXDoixMynXPkJ/irXEQVEWYub3Fh6NzWyWLCaKpS6M4l\nmi13q079CuavuGPMvoZvxRvZuwzA+fCUNw/c3fdsk6TlHth6WPPwK27SbGyNeOWmk+Pw77vz2e5e\n4fwzHwbAjn0WJ6q03Lt2Vg7leM7k0E36xZELKeK6Js1d1t+eBrRUtj3ZeY3DBxrbg4yxRHI++W+q\no3JqaEzd944Xv0dfIZ3Z9TBaqGhEeKo0JFsKZxYX6dTuAdu3fW4cu4diMjslEqjnXGeTRE0mUerm\n0+bOebr7KxKdkpsPXNx+mi0p1GtQRe2zlmkvEf1+1MUqZ2LwWDnXnjG0BQDbbrv/H95tEqzUwIzB\nr1fVgDHLyf8OwM3jT5GIN/T1z3/ZXefJ/EyY9uHhTSYHbj61/Ckzhch7G1ukTznAWK5qR7FckmiC\nl3fmlGO3sLw5y/iei+4+LKqIPQkp6Wjf1Nbhw9rWtrZH7InwFIg8zF6byL9KL3VNItPX7vLyQ7fT\nTOwR4QXnGl7yL7GlXTMUhboNEzra2b2wQ63avMlqWlLoDbwWx9tqNjp0LlmxmPPGiWTJ2gGtXXHj\nbV5h2nHvDXshw0iVDXkYz40zfuXQnVvmB2wIgj0NCtoSCCnTLXxRgrUvquMwHzARbHffj2huXgbg\n1I7wxSW4qUaeRbckkXRbdz+it6+uvtOCBxvODfbuQmjc+e84R4Px5AF+7Fzj0Jtw/UA8lnbJuflv\nAHBlGeEbEcqIGuyLR1+m89B9rtf9NHFLHAq9j1AcOw+jDn2al915dsTEHCwzutqN/aRkdN+BjPyX\np7x8ICjxsmbzktultzbcGG+fP2C0cGqDVTZk8UC4iY//ANZIDp6MKlRHoSpNzaFH7znxCnjXuNB1\n4zU7BD9wn1tOakrNkVTVkjqdsaeqVNwN2O267wiXEVck69f0CmrRsfnBqp01p5SnEHsNvDOKd8tC\nSccTMbgdewe0JOTS73koQmNc1lx/zRE/vHbjdxhuveDe8zEXonrXbmDFqh1f6TN59ab7eZRwKIr7\nec/j1tzdB7N0Y3+3WdBUR3DatZzcceH2xAR85ZbzhDa39rhdr0o478yeiEWhLi2z05R+0uS2UIrT\nsEWqCb9YNqkfup/LzYJKrarhQLx3VUUprQO/0SRUeOHHNQiBxnzJhog3EEb8aN4n7qxINM/T3FU4\ncuEee4WLLT/UjUnUIlvXbnG4e6eiEJV3o8qovJVOYI9EJSJbZWx3LwMw7CrP8KEB0SsuC22qlBu3\nHbAmDCLGuElj993DWNYxzzzv2HrOnWvSwT2w16dvEgopubfRwtQu3FioTJeFM8jcNYVek/KSO8/t\nWYfmVTcWNzseE5Vln1LI1NnaIJCQKouaZENt1r2QUsQx+el9Iqvseigp+tERVuClXS9nvuNc+8NX\nu6SRO4+9pMu/+4JDL159/nk3bvUOvjo/bTrj2quuCnTBQGBW3I4evpImlZGobO7Rbrvrjzf3aT9w\nx+iej0jEzpQXczjUwqmxIh9jFFKY2nBhw4VdF672CQfuczbwCQstSImqRHaO8USc4xkkfoS1MFWn\naKKSrfXmjHy3kFdxQSQa+TjPiMZubEf/4jrpnusJubDn7k3a3WBeuhCs2+mTXHEVnvzSgo2FgFFZ\nwUEpoljJ2p8+sJRavO/NXme0Kr/mJQdtN1+Oj5dUb9dwewe2Dh/Wtra1PWLmLW3YD/AkjDkE5sDR\nB3QKm+tjr4/9/4NjX7LWbn2zNz0RiwKAMea3rbWfXh97fez1sT9YW4cPa1vb2h6x9aKwtrWt7RF7\nkhaFv7E+9vrY62N/8PbE5BTWtra1PRn2JHkKa1vb2p4A+8AXBWPMZ4wxrxpj3jDG/PRjPtYFY8yv\nG2O+boz5mjHmJ/X60BjzK8aY1/X/4DGeg2+M+V1jzC/o9yvGmC/o+v++MeIhfzzH7htj/pEx5hVj\nzMvGmO98v67dGPNTGvOvGmP+rjEmeVzXboz528aYA2PMV9/22u97ncbZf6tzeMkY88nHcOy/rDF/\nyRjzvxhj+m/722d17FeNMd/3Bzn2e2Uf6KJgjPGBvwp8P/Ah4E8ZYz70GA9ZAv+ptfZDwHcAP6Hj\n/TTwa9baZ4Bf0++Py34SePltv/8s8F9ba58GRsCPPcZj/xXg/7LWPg98TOfx2K/dGHMO+PPAp621\nH8H1dv4Qj+/a/yfgM//Sa9/oOr8feEb/fhz4a4/h2L8CfMRa+yLwGvBZAM29HwI+rM/8d3omPliz\n1n5g/4DvBH7pbb9/Fvjs+3j8/w34XuBVYE+v7QGvPqbjncdNyD8E/AKOkfEICH6/8XiPj90DbqA8\n0ttef+zXDpwDbgNDHLT+F4Dve5zXDlwGvvrNrhP474E/9fu977069r/0tx8Efl4/PzLfgV8CvvNx\n3P938++DDh9Wk2Vld/TaYzdjzGXgE8AXgB1r7X396QGw85gO+98AfwFYUeFsAKfWSkDg8V7/FeAQ\n+B8VvvxNY0yL9+HarbV3gf8KuAXcB8bAl3j/rh2+8XW+33PwzwL/5wd07HdkH/Si8IGYMaYN/GPg\nP7ErHjeZdUv2e16SMcb8MeDAWvul9/q736EFwCeBv2at/QQOVv5IqPAYr30A/AncwrQPtPj/utjv\nmz2u6/xmZoz5GVwI+/Pv97HfjX3Qi8Jd4MLbfj+v1x6bGWNC3ILw89baf6KXHxpj9vT3PeDgMRz6\nu4AfMMbcBP4eLoT4K0DfGLPqVn2c138HuGOt/YJ+/0e4RTBBdncAAAGXSURBVOL9uPZ/D7hhrT20\n1hbAP8GNx/t17fCNr/N9mYPGmD8D/DHgh7UovW/Hfrf2QS8KvwU8oyx0hEu6fO5xHcy4vte/Bbxs\nrf25t/3pc8CP6ucfxeUa3lOz1n7WWnveWnsZd53/1Fr7w8CvA//h4zy2jv8AuG2MeU4v/WHg67wP\n144LG77DGNPUPVgd+325dtk3us7PAX9aVYjvAMZvCzPeEzPGfAYXNv6AtfbtjcyfA37IGBMbY67g\nkp1ffC+P/S3ZB53UAP4ILiN7DfiZx3ysfwvnNr6EY6f6so6/gUsAvg78KjB8zOfx7wC/oJ+v4ibC\nG8A/BOLHeNyPA7+t6/9fgcH7de3AfwG8AnwV+DtA/LiuHfi7uNxFgfOQfuwbXScu2ftXNf++gquQ\nvNfHfgOXO1jNub/+tvf/jI79KvD9j3PevdN/a0Tj2ta2tkfsgw4f1ra2tT1htl4U1ra2tT1i60Vh\nbWtb2yO2XhTWtra1PWLrRWFta1vbI7ZeFNa2trU9YutFYW1rW9sjtl4U1ra2tT1i/y+ueZdNY7uB\nSwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.3840... Generator Loss: 0.7229\n", + "Epoch 1/1... Discriminator Loss: 1.3608... Generator Loss: 0.7311\n", + "Epoch 1/1... Discriminator Loss: 1.4321... Generator Loss: 0.7518\n", + "Epoch 1/1... Discriminator Loss: 1.2556... Generator Loss: 0.9692\n", + "Epoch 1/1... Discriminator Loss: 1.2830... Generator Loss: 0.7561\n", + "Epoch 1/1... Discriminator Loss: 1.3029... Generator Loss: 0.9397\n", + "Epoch 1/1... Discriminator Loss: 1.5198... Generator Loss: 0.4745\n", + "Epoch 1/1... Discriminator Loss: 1.2650... Generator Loss: 1.0075\n", + "Epoch 1/1... Discriminator Loss: 1.3682... Generator Loss: 0.6288\n", + "Epoch 1/1... Discriminator Loss: 1.3223... Generator Loss: 0.6662\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWmsrWl23/V73nnPw5mne8+d69bY1UN12d2e4iSyGewQ\nI5IgRQGsBIgiAQKJiC/wBRQ+ECGhICUiiSJigRocHBAtYsd27PbUQ3VVd413ns+4zz573u/88GGt\nc7oK4rja7Uoq0l714e7a593v+7zPsMb/WstYa1nQgha0oDNy/kUPYEELWtCnixZMYUELWtBHaMEU\nFrSgBX2EFkxhQQta0EdowRQWtKAFfYQWTGFBC1rQR+gTYwrGmJ8yxtwyxtw1xvzVT+o5C1rQgv5o\nyXwSOAVjjAvcBv4E8BT4JvDnrLXv/ZE/bEELWtAfKX1SmsJrwF1r7X1rbQr8r8DPfkLPWtCCFvRH\nSN4ndN8t4MmH/v8p8MXfdxCOZ33Xp+qVTOMMAMc1GF+GZwCMOf+cFyUAZSn/WuzZVbiOwXWE11nX\nUKomlCc5Z1pRWcq/xsCZouQ4oLfDGuCfokAZ/ffatWsUcQJAXAyZxoU+28HGKQCJKcgy+b5I5WaO\nAVvIZ9812FLu6AUugZF39SJ5Rl6A1QGVLqSF3MumFk9ZeZlaHN+cXw/g1n3sRJ7RqBj8ug9Amnm0\nlwIAJpMYrzA6Drl2Pi1w9LNbaYDOkesZCp1vHIM5myNH5zUrzifGWDCO/I8tyvM1K3TsAMXZ3Ac+\nrsokP/Ipcvn++DRkrSOf954+xnVcub62LO9MTFCR9widEKt/zyenJEms61Se39t1ZMCFb0jKXD5P\nvjceC7gf+nxGruvq2Dw6S10AmrU2QSU8f9cs0/XRdZ6lfUZjGUM6n5PqXrAfunNZgmvOPuv35nv7\nlA/tyT8qOnu/AnrW2pU/6PpPiin8gWSM+UvAXwLwHY/Ly7t8tjPjdz84BKDaCIg2ZTEca/Ei2Qh+\nYTgYTQFIZjMA0rLAMbIJmvWIRiQLV3QDppkszMndPrl+nk5kczg+FMKDqFYMs5kschZBOf/eIp2t\naaBj/5t/439gcOseAO8PfplvvT8EoF0NmX/wGICH4ZiDwwEAo4fyvCC0lH3ZQBtNn3Qu07+63WQn\nXJJ7XJclPJnkFFNlPPWCRxN55/zJnHZVrokfpNQ35V2PRjK25g+vUP6WPOPLn/HZfH0LgCd7bf6N\nf3cXgN/4nfdZ7Qc6DpmAd94YUW3JOOsv/ijuXOaq2Y04PR3LVFQ9PJlyyoZMSu/pCSaU9/DTAqch\nn4uTlCIUhjQdDs83/SiWZ/jb6zRMRcZwY42hzsvf/N8u8Z/8nIzpv/rP/gqtqCXXv/bzAEz4gEsv\nXwTgYnQFW2/L+//GV3j48JZcy4QWDQAalTkA4w2P2/OejOE3B5TKAG1uaSjzyq3BevK51ajL2G6u\n8qf//J8B4Kc//6fYefEqAE5hODqayJieyPq/+eQr/MrXxEJ+8va7PNK9UNqc3MjzknFJXZaMWPdb\nGTrMdF7c0JLHcm3hgZWvf18yH/rs6NjL3KK8EltAU9/v1NpH/+y7CX1STOEZsPOh/9/W787JWvu3\ngL8FcHVry/43/8Gf4y/+z3+TaUOli/F4fiqTE0YFbWXuUdMlm+pLevLmTWOIlGmsdJvU27KRdv0m\npimcezav8wuPZJFaVfl9L89Zqsg9hhm8tFQD4LvFnAvKAu7OpyLigUQ5ezqb8Z2JMIW3vvWUgxPZ\nHEXFp0jl8L6aOAxqctCbS7Ixf2k65+KOPO/dvOSFTdl4D0qX56+JipCpxnB5qcKRJyd9M4+5XJPv\nK+tN/mFPmM3GzZA7jnz/U5fkoLxvIq7/vGzcrzx8j7/cuSLXtvf4+3/jTQDWt0oGG7Iz04kcQP/V\nJqOJHKRuUlKoBjKfzcGVyfdnHtRUY5kLw6qEAV6qaxp6BFY2ut+tUsa6M5sJSSJzUHHkudVxxp6R\n9zt5a5/lJRn/1/+fP8vFv/x3AJiu3eColLW8fCDv7DQNrULm7Qs/tEv4TTnof39S0NEjMo9TvEK+\n7yfyvJ9qbNP2haPV2jlfGQijcxzDqTJ9zzdnChJBJvvm6btDbv2j9wFohNd4bUXG89LqJlYP8r3k\nAQDvvnXM0zfvAzC895R8KhNzIQwwNZkLt8h4P5E52mwKU3xsUzZcEWr7ccZuRZjpfVK6eqBPsu9p\nNx+mM6Wi6jvMlUNsNSs8ncj4ncBwqtopxcdTQT4ppvBN4Jox5hLCDP4s8G//fhcPkjm/dP8dftpZ\n5v925WWyKCXqylsu4ZLrxnQnIYGy2ottOcRBw7LSUBWv26Kzsg7Adt5gPz8A4P5uwc91LwHw7Uey\nQecnT0l9maim9cirqwA04iNGDVmY5V5AXxekNHLgn80mPP4tOWDz/j7eQBY0bji4maqzS2v8yed2\nAbgzk9//j1sdHh3JYfq1R1/HUSnwfNTm5tq2vN+2MresxtCVC6o9y4PDOwB8I+3xr+zKOJ+Edea5\nSCl3VX73w+EFPHcNgM/uzOmsywF6+m6N5Z3bALRnlxm8eQTA1hXZmLdvp4RXzjZNTubLOMeTKW6q\nqnTdEMQyL2fSrF0JMTVZJ8eHfCS/qzcCRkbeu+FUSQbyvW+qAExqCfm+jD0zBdVc7vGL05i/e/VP\nAfDnvvo+1H9J3u8zPyn3yg6I1kT7yb4z563bb8h9N2PsXN51pVLQm+u8PCeM+SRd54WqMIJ/sJJy\nTe2txwXkVsfs+RSuHNjIk6OROJbffv+bMofTkqufFcZpOk2OVTt9/LvfBeDB299i+FiE8UkyJ1Tt\nIPVDWrnM84E7Zq0iv3OUiflFQqwmYTvwKaqi/bTshFz5aqU/J7GqCagZ5LoG5cGE1RBXWYTfrnMl\nkOf1cBnPhfmWUzlbfxB9IkzBWpsbY/4K8I8Qk+bvWGvf/SSetaAFLeiPlj4xn4K19qvAVz/OtZPZ\nlN/+zjfwn/RpIKxvrd3APZXPad0hTYU7Lnc92ploBS/eEIlxcafB1pKoyXElpIaoiXuzjK1crtlb\nanP9kVgwSV2kZPt+iw8ORHpUy5xTcwzAbsfwbipc9UKRk6pqt+yJZtJ/9zFHR3KP3lHBxY6wczt2\nqTZV0r/Q4nOvX5Zxrj8PwFY/5+L0VL5rWt5+Kp+X11JWEbW05YmWE2zXsaqXP24NWA8uyDixeHui\nGu+EKbtN8RvdGosJ43jvkD58CsBnwy1qd5syL8NbdE9kvm3tmIovc3t6T95/tX6RoDwzKcZkarp5\nsxhP1dksdch1bs/CVrYoiRz5u5uBF8kclWTUA5kLtyhZ82Qcw1zmdd5z2JvJmsb9IXlH7vd/vPce\n23/9KzIX9n26W6IhVL4rc9W40WQnknus10+4tSnr/moxZXVbpONmxfLgWMyxSk1k0ZHjsenJvmlU\nfV76zYcAdDF8ppAxH7hNRh2RqocyhUxyl+hY1qHX2uPp10VDnK59gfmezMX9e2KWvv/GY4aJrkMO\nbdU2Uj/lyMqYj1PLcipz30Pev11ahmqito1h5oiptOt63LGi0VxwXPbVy9u2ct9RaYn8s3XI2a3L\nfD+Np7yi1zhexucasrd+7V+kpvD9kk0L0sdDxk5GpJGDOCmoLalHPs5oLcmGXV4JeXVd3BXXn/8c\nAJeu7lJR1d8nIU1kIrfMIdNMJn5nf87JkniwXzlRB1BkGSOrn4wLAt3qlU6Fl/RzHg2pjUQFrXbE\n7DjZ/yYnE1E511YDGlN5nunWefULYqL88A9/jp0XfgwAN5dFKdZn7EzkcARLcxrqZQndGdWmXDNP\n1MEXdM8jFbX1kieJ2P5f7g+4U+kDkBUZg0I28UYg4312b0QcyO/iKkSX5Pv6uM3kRWGQLyVzBmM5\nIHFTna7jhCKS9wtTi6de1cJxaIVy2DIbkFo1jyI5EF7pUszPHD4OZU3G2fJcUqvzmYRMNZI0P5Vn\nTOI+DQ21FI2Ymm7u6d/+Fd7blM/5yYQ8Ed+N2ZU1X+mscn1H7rVjGnxpS8axvfUTXL4pDNV4BT86\nUGdz8mV5v6WU6VhMitduHzH8oQ8A6A9rJFVh8O5BCzOS8X3zlgTPfvnOe8TH8l1x/xkPq8KcsmGf\no0KueXRw5lOKMTN1EkYOtaqaICkccxaJyhiq7V+oCWZDh0B9B17FY1knv9J2uHbmSuwkrA9kvvxQ\nDnclh1AjQ2nmUVEz7kItQK0xKpMaWU3tVLGk/0BawJwXtKAFfYQ+FZpCaUvmWSySUTlc5oCjTrto\nKWJjWSTpj/zQa6yv3wBg+4I458LmMn4oXNQWOS2jUsJugkqrwdITVqfiiGrsiSOu69SpjEREPT05\npFIVJ1JYW6Yfilp9Gnk0G6q2bYqOO+n1uaChN5uk7Gng+ebqBj/2RdEOLj//BcKmSGarDimPGl4p\nv9tabZJG4rgsTA/PiBbT1phfOShxVBrH+SUuXBAz4cnwiMqh3KP0Qq42RPM4GosEm7sO/UMxg1rX\nwLwvc9RdmzMyIjGexQGOqq7OXDSGdieDTObCkOMkMvet9hKRI3M7mY4w+rlWkbnyDcwzlZRxScOT\newSOIczlc1yx1PXesYaLBzOXZqQRjFYHV/9ePB2QFTIvoWMZqINyZ1tU/Feub/G5SLTCtQsrrFZl\nXlau1YnqotE5vgvLqnqoc5jcUtYVk9EeYYsXAJj153iZPGP2XMB8LFrkAFmP93tPefdIHXv5nN63\nRZMrXk558K5cG0YaWci8c3zDRrVBQ83K5tThdCQmwbpr6StuoxJq5MuxrNdkXuutkK2GOGPDWoUi\nl2ePopiKOkEbVXm3cpCTOqKZpXMXP5Df5UlO1tKzY3MI1Bv5MelTwRSshSQp8Ywl8OWFV12P9ZZs\n+OW1kFcuyEG+srHN0sYGABUjXtrASbBGcQz1OjZRezhMsYX6A4IdYrUpQ8RD3JyOGV2RTdNeaxO2\nhWlcX2lxeirXjtxHHKnalTVF/UzuxfQzDdjbhKtdufaPfekzbN0UkybqruEEob6fgqnKAtOSw+RE\nHn5dFrHM2xTqLTe5fteZUZRybVCMyDT6slN0eKBMrxJ6bIYy5pbRkGb/iLwlm9xkJd4X1RxLA8qx\nzFdZ9SmnstlaKxqjn9ZIJjKGoOqy3BAGmJ5MGKi9b6KAmkZ+yliBZUGFsKVAJ5PiaaQiqlSJ56Lm\nVusumWjg1DJZp6UrEU19j+MHHieFmETxU6irOp8Mc7otYQavf/ZVAJ5bq7LR0XcOq7Ql+ooXNvFC\nBQA44Ki5UmZyLVGKq2FWv1WhTGRvVaqnlBMNoyanVMPrANz4nFz744evk0wlwoEbMzqW/XL86AGT\nIwUnje/KvRyDU5HnNjerbKigStMJ2woiO809bmhUYqYScCmEG0uyvzev1GhVZcxtP+JkT66dejNs\nWxjLyVMRWFPfpRbK/MSNkqrClIbDClX155SRYZwriOVj0sJ8WNCCFvQR+nRoClisLXGBlnLaVuSx\n3RVu12hWWbl8DYCl7jqVpsZ5C5FExayCp7Bb41jMGY40C74Hwa06VDTom6uHP1tNWV0RBGXiHNBu\nCICmulGHtkjbWrGN2RFVMrCiJv+TW7+DVTj2uh+yVRXT5uVXn6O1rHDsIOQcYOqIRHHwQKGxjl/H\nqaikGZXk6ow8QwIVXhUzkShDNjYUgczLzC1ApUBt5hApPiFO5e9BtU7lDNqbNcjV0z3PDQ01CYbT\nGF8RhvOBiPBmkpDM5P3Gowg3l2eTllQK+Z3nd1EMEp6CtMqyoFAQWWDF2w3iULOqwQdFCo5oQPWK\nSM/9uI6pyfqV9RHuXM0H9w7Fk315v5daRJkCtQLRJC5UJ5SJSFWbpgQrIlVdzweFk+PmEJ7B4hVs\nNYoxkW5338UpZd6cIqK0EpaxToGTyXs110QCX35tm+1Y9kiRTLiYivb27jsDRrO5PkOeu7m6xFSj\nQNeDkOlIJHriO2yrVrRWLVhWYNxE1f3lmsOVLdE2O7vbWFc0Oj8as7stY+4NZjyb6x6ZCGZlvZYR\nK2IpabRQQCOhOyetyHvXr25w+jvfH276U8EUjP6HZ84x/l1yjhVH7l3o0KmqDuu2yAZycGZTUYvC\nikPVk/CfiRIcFJ9eKUBNDMda8lJ+50UScWiuLfHciy/KtbcMiac229IWy2rLBdEKVzdkg4zvyO/2\n/e/wtjKYcbvklcsytm5zHewFfacUEK/9Wb4AuYej64oNUBMfG3o4kWygMpNnmemcPFOI78oIbyKM\naXVlm+4tMX9iM8dqmPTiiszb0TTFVQjv8GiGpwypOq0Rt9X2nc8ohrL5A42cPHPGeLkc6GrmEnky\n9iRoU4lk807nGZHas3kghzuquzhjeUbFr2KVgeAXRMqco6KGuiAo1LzYjAuOnsg9mlFBWMhB8XpH\nLK+IH2Q+vseFSExFo2HP/iPLpS05eCUdSvXgm2SGaepElw3OkWF6aEy1wM7lecY45/h24+aYTPeL\nm2BLNX+GsvduU+GmQq0/GCyxvSPz3Z3VWe/KmvUqEnEqGgmXBuLXCKtzpqk8wys9blxS/5dXYM7y\nTeZyr80XW6zX5e+1egPfyjjdzhIVhfLnp/ep5YKWPFwVP4qDy6QnviRTBpgNjWxdznjal/Hff2PM\ndCZm4celhfmwoAUt6CP0qdAUrLEUoaVpDUEinP3RUUzbExX+layFOfOsmoRcpV/vULhhpxURaH6B\nN/dJY/k+3GjhnulUaQqaGWhcBQK5hvyK4tD7Cbkm+XQqG5iaSIGKt0RaCsdfvSBOqP/L7RGpmPcP\nwCie34tWMRogtqX9nuqqqoJNDU5VpZVTxZyZChMfUxFtw1MzAcdg1dRwp6tUdC5Mt8aSApZOqkMy\nBalMVFdvd1q8e08cXy23ge0J3++FfYKZ3MMOC3JVk0dqRtRC6I9UU2gFBJ7M91I1otCISeb658lk\n9bNswZmhXlGNKEtwl+X9ytwSqYpeNFwcM9G5lWunQZfmjnw3j31CncP4hT72O6KR+UcpJxUxJW6/\nKxDtKy9dJ5vJtf5W5Vzip+PxeZanV/UglnXITnQOVwOcUJ1v5ZhyqNiDyMWqs9ZJS0xF7hHV1BH5\n+BF7pWhpXnfGt49lX7z+Yx7OgczR6q6MJ3iwSqsr1ybpXcpM7nXp4joX1kXbyGo+oz2R3FtNecZG\na4tORU2GSo2wJqZEEC1zOhIIdT6eUozkObWmPDedDbCqsa163bMUHdw44+REI1enE/Ls+4s+LDSF\nBS1oQR+hT4WmgDWQGuLA0huLBItdDyYa/iqrGM24O9kf0p+JdIhUesa2DamG8loRuaYZm9mU0FeH\nUsWAK5LZDTStr2jSMQKfO+n2KNRZST6i2xBnVq29QYlI4ZMDyZbrJi5vKVtuZAkNDTP69RoEIv2Y\n5tia2IzWO5vmBBK1dX0PHEUCBvm5lDOuSC3P5qA4BuuF6riEXXeN6WdEqtz63UPiRKTq8y/sArAd\nBHwewXHcefyUQUOdmWnMXCW+zXKiXORBpFmpNm0RtWQ8wdYy7Qsi8cKkQqnhvSJLMaXMha8JN02v\nRUU1NzdMydTp5gYtXKMp1/MZfl2dw74mLW03GB3KtdW+TzwTjSD7vR6PXXH8lcMpW4nMoXsgPqPj\nyibeZxWuO/IoHJH4WRbjqX/BMy62pVphW661hQeaSGSdjMQVR2rS83CRe0yThDyW7ydzGW+nBvsN\nQVXyrOTK2ssy/p0EO5OxpT3ZK9c6E3Y1jfxxtkmuW2F1pUOzIr6GaeFRKoagviq/X2st0WhcPp/j\nRB3aw8kDjh6Ik/O7D95mUpd3Wr2vCNrcwVZl349rCU5f3iOqRdRV2+iseeRjdRp/TPp0MAUsJZZk\nXjDTTLBJkbOh2YUzN+P2kQByyunbPDoSj/TZ4F954UfxNHd/o3YZ6wvTSDKf0hevtRc36O/L5h0p\nPNUjJFRP/vyOxa7LtUUYsLYizCIKa2RnBV6m4vQak1BMxMkZVeqsXZQYulONoNQiG2VCNngIQNAQ\niK4pXc6qMpj5SKu5IAxED73RzEIqdYynmzgrKQs5KLmJqB7KZlpODPunGt/vi6Nq6cYOR74cWLsX\nk58q/r70aITy/vPIkiYyjvFY5qrSKKiqM7catinGMp+2WaWm8fYwhSRXeHNVxlBt+jieOnOzhCJR\ntTXOKfVd89mUhppHob6eMQVBKn8/PnjARE0+6wyI1QmaW8sTddZNjvYAGHxxndvPJHp03X+ftKrg\nnm/3aVyWcbQ7GRVHsdKpPrBuKTzNypxaTu/LHhokU0JPo1ipJTuUQ8gFuVe9uUH1ljDeI3fMUDNi\np84VlnRvlTqv9dVLzJShmYMYX/EIcVmc1wA5ymbMB/K8a5oCnnZHmIrspzyN6T2Wvb7Xe8bD90UQ\n/ZPbB+fFFS4oAMyplXRHcvjrvkupUHg3Log10hLPC5xEsRofkxbmw4IWtKCP0KdCU7BAgaX0DPNY\n4/iuw7Gq16fZPsuFONf2ZwP2h6Jqjg+Fc85mv4pjnwPAa5fUm8olByccfyCS692Tb3Pvu8J100Kk\n1mecZSarIgU76QnBO8JR/Y0Wa6sCY6zP13EiRSRWhNtfqaxyNxTpUQlCKpsqmZmSHgiX7x3f4vCR\n3MPtCNy546/S2RKHk5vEFL6okWG1jjfXexSKR8ifsf/135D3HD5j+FhVXA/ivkjN06c97pXyfo0D\nqfjz2sYyax25x3bX4Gplpfy4wVkhrtBOSA9FMlkNFY5Gc9qKHsynhlOF/uZ2itdVaRs2JHQMeApB\nn80KxulDWZunT7BasaTuRYQNeXboBoSapOVVFGoeNmjPNKScJ5wW8rxiNsVT53CRlWTqrL2r2k90\n94TrN0TK335vyJ2nvyd/f7jHpd8Rx91rP/Iy7U3BnHQuiloeFlskc4V5H32T9975bR3nOhuBmEqj\n2hw3kPXzejLf+8GQbCDq9/7JhJ/5URlHt7NCEIqm0Fr9LADDx79OW83O/tM7HI/l74/eO2aqRU/m\n0xlWTc/jdYFJR/7zFBfVyRtFtDWRahB2qSzL2F6/6bBeF3j3BUVuHifP2DsSEy3rzTjUMOzlts/J\nkcK74xnxWa2+j0mfCqYQOIbtqsvBMAPNE4gteAoP7g0dVtVj259b5gMF5+giz/I+R89E7bt4YYgT\nSXTBiU/ofSBVcR7t9ckUrrxUk4M06DqkA42rDy1LVdm4g96Y9WPZpJ2VAQpvoKKe3rQ5JlDbeM1Y\n/ANVk/djxndlnAenY976unjMYyP/1lP44nWx9+vbG5Qax29sXKe6JfHm6cNvA3D/997nzl1Jo9zo\nhISbwljSeE7ckvef1B9jnsk4p/syF3tXnzLoawUia2nsadHH1TF7+7Lhm9OQiasHEjlI60t1ylg2\noGM7zGPZbK3Qx0616lPdkrkKMirUFOvPODkRWPL9d/ZxjYxnc+sSS7HYu1kwonqq6dUatcnLmFlT\ncy2qLp1Mxnxj+yK3H0g83uCSaiWqth6qeFbDn2s8vtKgFbwCQG0y4/plmaP8ZHqO/c/7mrewuk+S\nyNievvmI9E3Nr7hRgYvCLYP5nMqa7DkTC7e8brY5XREG0Z7eoYe8U61bUmkIE/WmsrGyI5/ffvMd\n+Y6MUiNDO16VqTLDqZ2QKgNsae6DneSkmqpftxXymuyh1WadYUsE2FLs0ViSz7VI/BOzo4yrF2U8\nh6cxvVPxReydxjwYyfruj+dsqW/r49LCfFjQghb0EfpUaAq5NQwKj22/ZC/XmKrv0L0iqtjF56rs\nD8RkON0fcPuZcNL6kkia3WCDlZqoi25QEvmaMemGbK6Jw+hV0yQX4Bm/+Ouifk+++8sMEpEYu+ur\nPH9RpPjF1TpxItzfelexijArZyLBdtqr3HxVnv0j620anxMnX+HljLty77d+632GpTg03zwSifBD\n11bZU25+deWAclscl9XLbeZPVLV9Qzzdv/n1r/PiT4i02ju4wuy+aBtBZYoTyrWVecAcUTvv1UQy\nNAZTYi1IMzga4n5OpecgwWRaIyKes+ppNKMrEuzkaM6juRQ+Pbl/j23NCHUrFVYqIpmTMiNsujoX\nWgvgNMdRbMXV611+8z0tR/b4NrlCnrdWA1gTadyKZI5zMyRzZO6Xgg2K2kMARis7XOnJ9/dnI5xV\nGfNLf1KKge9eyxnNZW0mb3yLf/wdqYvQ2rJMw8/L85YaUBNpHJwlc5kWyTMpq5YePSR6Rd7/N2+9\nw8pjMStrNZedmUjhtV1x4D3/mQ7RspggK+9EtDuKM8mH1Fx574eeaBJv909oOrK+Ny9foLUsGmsQ\nbjK+LfviznDKiRVN9dp1MSWXs5LsVEyUWSWm4cr3eTmgHonqP1oP+NpdgTeHqWi/Wx0HR4varK50\nsZ6ckcfPYsxYNK+O79GwWp34Y9KngilYU5KalElWEKj5sOV6XFZVdaexxngkzOLiZ3apb4pavaIl\ny7eXN1lZksMftusYqyEyJ8BoeGdpeZMaskg/9ryoyQ+bK3ixqO2eN2FlUya4ZquoKUuazvEU2usE\nslFOfXhuJur1jS/8a3iu2JlOJaAayy5cWQ3Z6ErG5MYVGeel9QnLLakUFPoF3pKk73qRh6fw51sH\nwvA6boPVExlvUs8ZzjXjcpqSDOXZfsNnKZMDW9Mif0WekWrJ+X5m6ejmGE5yoqlsxvF4xgUFQKVa\nVGSeO9QUQOT6GaFCf+fJgAMFQPlLHo2pZuVNZaP14x7+GWjGRLykUZvCMaAhyXReEipjQetdWq9K\nqenEfpCBrt98f4/gLWUmUZtXtbjKq6GoyZHfoKLvN9tu8CVHAGWN+ojmqvolmhU8hU1bV+HMNmN+\nIDZ8u9ZkuSbMsns1ptSwbC0KCRMxsZa68jzPWWFTD+bR6ojnl4WpFVGH7FQY9VJfmNTFhs/tU5nj\nm9OCrS2JktSW10g0W7M6PmASqdmoxXjJhwwm4n8Al9II4z0+OSQfyTjcpmVbTRCrFaauNLrMNApW\na7WpK0T78OiYvuadLNcjls+x9Ud8HFqYDwta0II+Qp8KTYESTAyZa8jVfCgoaa1pZtnWNtdviqQZ\nxwNembxapC66AAAgAElEQVQEwDQRntZoWEJEirvDOZmrgJZ8SqKdU9rhGhpu5/UlURG/EL5ANhTO\nbkrwtG7h4eiEUV+iC5M711n+vIJ+UvX0P5rxTIEp8fEYd3VZ7+HTviKS8qZ7kxMt8LGt4JbuWot2\nS00N12KsaAVlsYypikTrXhHJsLN0gZWbYhJ1/TaXc3Gkjg/3mB6JBHqcfsD9XKRjpHUUm94m47Zo\nUo1JQFoqSOeoZBTKM2oO9DWGvrYl470R+hSKkSi8Llq9nI7xcfXeTpaDZkRaXxxjSTKmooVOWjtt\nmpsyMRXHZaYplW6esrmmpdK0QnV8dMTkUB14HYe8lGe39tqs7H5G5ztmeUk0hfSqeN6XuhFb6hD2\nrE/8vF47e0akyW/DwlDrP5TfPRGb0S4PKLWAzWr9Is3nxXTreFUCTf6aZ0PMTL4Pq6q2l4dkByJh\n884FLv24ZOtG0SqV6tdkDqqyTsXaXbJ7Mi/fOHjMUlc23M1rK0Ta4KZV3OTxqaj5kZaRjyd16oXs\nhck0ZzDU581TCoWvh57hkvZBWVqWueisNnGcXXn2oMeDUB2Y9yOKUrS0l5YDGu6/hOYDBvKwZD4u\nyRUodJzmPH0gQBB3MGZtRSZ+Z+MqqWaAlXpIJzNwFa1o3CWMeoh9z6O1KovsFFUirWRUN9pkJjAk\nWpfQ5im5qqjz6ZxHxxrZWBoy76kKp/kXJzsQ/I4wkOTePnYoarCpLuOGwiC21j7DykTNmJdE5fZ9\ng6dqu00gn52pqBGl0VRszRDMo5xA03/DxjKtTDMVazsMl8RXcWc+Jnqo5btL2RC90RNSW9e5yJho\n+480zNgfynxWkgqtFW18M5fnrjW3sNqbIHQjjEYJTFkltrLBgjwgUBXVqOd8udUhQp635Fmslif3\nEo+lqjDfIEoJNHKTa9ckM53S3pIxV6MUX3tOTJ0juv4uALWGYaq5EvGhMJv2UpumFtQJOiukGpWg\n0iBFAUfFEb13tIhMTcusm2MIhTn73TrRTJGZ3e55PopbNLAaZrR6NMp5ypGmxr+6dhVXnRRu6HN4\nlmmqdn3X67C6LmYJ8YT5qWYnTjwqK7Iv8kHCutqmhyMFupmYY025bs2a5Lrubujhar5OkDosa2Ww\npgq1SrWBoynufbdONpG9fBobXtSan9ZJyc/Ckx+TFubDgha0oI/Qp0JTsCXk2ojprNfg3FpuPxYu\n+ODOI17YFQdPzYbkTS0hprnyeXKMo5DhWekRKquz1iMwWhUkNDgq6T31jAVeSKjY8axIGGveebUZ\nstRVmPMuZKp9zfvipV55cMK72nnqpHhwDm02FQ+0hLkTFjQ6Gvf3RboYMtD8gyKc4mmdROM7+J5I\n20jzMkanTygui3bkNEu8WJ2ZruVkpgCgyKGhZsc4Ecnn2RmT8feat0zqIpWy/pRmqJl4WUqpGkJF\nM/WcsELd1TyRAFAJPR8neKXWTqhAo6sOzVTrIYanBA1t+tJdwSpsurpepyDRua/jnNUvQL33tT1q\nvuZDZCHHPa2qPW3j/7S894XfMywlWnpMy+o9ufWY9Qui6XluC1edb4XNKc/Kq48CorrWpdAK3GW4\niZtKdMVrlLgXRKI7NsENtOZhnBIr3DrTPp6mKNi9LnuhuVQ/71NKlmJVs3RdMXNvfO4FgqnCmR8c\nczTUYiq9HnUtpxfUGiTa0i7UStzFccIkVWeuOaVsyNx3Mp9Ay+WF9eXz+o9ohfL5pEeu8zqYpMS6\nf7cuNLjkytjuPx1wR53iH5f+0JqCMWbHGPPrxpj3jDHvGmP+I/2+a4z5FWPMHf2384d9xoIWtKB/\n/vSDaAo58J9aa79tjGkAbxhjfgX4d4Bftdb+NWPMXwX+KvCf/7NuZIHclpgSzlwixkrLMoD+s4cM\ntXFILY6x6kgsNGEoL3IShZR2K+BoVqMtAlytZJSnPoGi3HxXbfxaRHlWry2e42mtgKKfsqbluKqm\nec6ZJ9qXcK+T03ggWkxUWSHvCX7B7W7h5pqVaD0c73uhSvmyPE9aMXGKrxqE4waUda2QpBDsUecp\n/kxt/AtrOC1553x4TKRNPcwkIddOov1E/BqzxwW+htCysMlMy5yVSUlXy5UluUtYaIhPC7hWVgqi\ns9oT9QbZXB2wOee+jWqrga9IRg+RSrlTxyrkOSwLfO3Q7DfqWHXc5uMphVZunQ0lBByGLbxUfBzT\neUwSyti6y89xeSphxut/doN33hIcQiMRLS04sjxEJOwF0yC6qD4jG5BqZaV+9hAKfZ469cLKPsWx\naorVFo6WqaNWwSoEuywyUq3mFSsEe5o1WVsVx17r4iWsZpcm8SlNRNvYXpZrK+kWR1viGD19cJfh\nkezJve/exX9JHJ71awEVrZZVlqK59eIjnsWy16em5IImNY4M1CLRhCpNcLRPhldTBK2bMTuY6rye\nMNIQbzy1VC+LBvjwnfu8t//9aQp/aKZgrd0H9vXz2BjzPtKC/meBH9fL/h7wT/gDmAKoCcFH24E/\n1cP49cEJf1w9stNui0wPcnwiG9MWMQMt49aZjXCQBTAdl3R01rGnj51L3N/f0jBEWQXFMZA6oGCa\nspbhFcIAkpMJZlU2cqnP+HyxwbfqEs/+xtPHvDiVoiZ+8jylZvWV2ZxUGZV31sB6luNUtOBKUgf/\nrHxYgOtpE9eWMJLapMLoodyreSMn7ykDTKaMn0l04eh4nwNlEBOFyU5Lj0Zbxt5phMy1TmA29Zmc\nqfnkqJ+QSCtYe06A1XTo0HMpz6pjV3xcLVPnzmLKQKMPCuEtnAyvPGtV7+Hrxg0qS5RaQ9Oms/Oo\nUumKSRFOciY6x9WKQ+NUNnFewM0fex2AjbqhsSH3e/iOgH+e9e+yFcsh7HQ/hzM+s+1SjKZGj09m\ntPaFqdkVhaZPJnhaQCUthkxG4oirOTWslUOaxFMybRgz1RT+PVK2lUGW1sdqzcj0NKG6KXOUml2Z\ni1aPK8oUpq0O750KLuJxfMqulgusedXz7HlPi+ycFgZnIGuTdj1iNUeazQZ1zXYsqnVCR7E4jqxT\nnvVIZ7LHJidjSs2lefFCBz8Qh/aN+kOeKZCLf54doowxu8CrwNeBNWUYID1p1n6f35y3ol/Qghb0\n6aEfmCkYY+rALwL/sbV2ZDSkCGCttcaYf2op2Q+3ojfGWNeDIv/Q3/le6/f37o55cFt0qtr6FTzt\nrxdruavCjVhdkh+XrqWIhbOHyzXaK6IdzJMhVpFiuYbbgsCFiXxXYLBacdjNPcZasGLo3D938kVd\nURfbP3EB8y0pkzUt4PS2Vn7eyM8Rgnkx4UzvyYeijbjGI2yIuovrkB5p7n2ZU7Q0i+6pSI+HHxzR\n0Oy2+v4eUSjOqcnTOaea2DPJDLmWf0smWofCGxFpi/NKvUt5X+bCrcWkcxnbcRawqe6kvVMd+3JJ\nxT+D8BZ4GkIMAwfXKt4gTilGur5t7c68tIrR8ZAW0Nb+kaUvNiBQGO8829GohpFmCaXWkCizGa72\n+3C6Dh98TSTsyuVLuFrG7GWFR3/AIflZT4owJZvImhUzn0IrcDeCFuUl7SWpyMaivopdE9MmL8ck\nj3RNnCFRquM3LmN1Ao5K0QSL1DDXorFBUtC7I/twOryDSUX6OyqJi5Hh1BeNJ1tb5uQdgazfaFQw\nmsyEH1Joa0CjxWt2Olssf1Z+t+WGdC9d1ftZ0lwxCxOPQjWLJDprThORzNREy2MidWIHzWXoyNwe\nkuI7/9Qj+PvSD8QUjDE+whB+wVr7D/TrQ2PMhrV23xizwcfEVha5VGP/8PC1lSKn85hhqd1Rs5Lk\nrNKP2s6RDWgEMpFhE0Ktr+c7FndFKwyxRqkwX7T/nnFKjH+m7scUc91U3SYTBefMzAzraE/LkeAD\nhvdGZFfF+z45SvGaaiNWfXKFyWaHU5xQO0A1xHsd1tuoOYwNYgpHpiY7GTO4pf0trTzDx8UGosr2\nnjylWspB3+u9y9OZXDOYJ+eqe67NRasFBNptKCqn1K5rRt3xBKOp6DWvylSRXImq89iQSOsuFhSU\n2o8ztD5NLZBiGj2cZcU3FGfFW2bYylmDGxdNasQGE4pUvevuIdlU1izUQ1NcdCi1Scnh3YJHzwQq\n7Cx/lsGX5Rl3D2d84YqsT6D4h7WTJax27HLTkkzBW1ljSHKqEaj9x0TqaxneEKbBpEVFzQdGE0z9\nrJmPwbpibibTQ1JXzVQtELMUBswVNp/Oj7h7X8Z55XJEsy1z66m/JJlO6SiWwGvUqK5p7crlOsxl\nzINhnz2FRY8Ue5GORoRG9tC82WCszWi9IGGsPqhWDUoj4yjV75STQVUBUGGGrx2kqA45nmoBmLmD\n/32e8h8k+mCAvw28b6396x/60/8J/AX9/BeAf/iHfcaCFrSgf/70g2gKXwL+PPC2MeYt/e6/AP4a\n8BVjzM8Dj4B/6+PczPJRLYEP/X8xzeg9VUeVmZKVIhGcVNXacnSutkbtXTz17DlOE0fbqVmvpNTi\nFPZMUwiS83g8eUmuDiVnOqPeFI+zOzEUqT5vSbj5Iwp69wR2vL6+gtvVzMHxANvX4guOIdMqzuHZ\n+3hzrDqOypMMXyGq/vITvFAzEX3J9NutThjN5Rn7dx9yNHwIwCR2KY610Mkop0zPnqHVnNdb7K4I\npNirN6n3FRFY36Pra2SgNHjaudg9Qxi6EYHWs0wMoIk2uc3IKtpOzm+Qa8KWrarzbe5h1Vmbz6oY\n7VuYT2Zk6miMRx65Ii5LrSiddWqM+rJOT8ZDThXTsB4v0bkn92vc9HEzma9cHWdNU+DkWogm6RGq\n2VHOLYlGNmhbXG18c/odcQIHlRr20rouTU4xkDlMbYZBpGqSWIb7cg/bUNzHyiXmWmLu6M1fZtIR\nrWLmL7NZlfnMjGpExTZPO1IPY5AbquoQ75QuIysOymCQ0Xsi2uTJgXznVifUFNE5SXr0p7IOa/UG\nmbZAPJiFVKIzc0y0uNIWDLXuxzQraGuyWTwtuD0RjecZCb424IGP1//hB4k+/Bbn/Zf+f/STf9j7\nfuQZ+m9sS45DUbnGnJ4X6Dy5peEtv8RRX4bdHxG0xLfpVe7jd8WsKEcZtiKeeK+ph8Osk4/k4KWn\nY7JY7Uw3IFBHrRmn1Je0ElAiC7dzWuEbkYY9wwL3VLsirfYoVNW0ZoYTipo3m2r4zkJFu0Y5UUhx\ncub7aOOG2s9Qsf6V4T2++0vvAnD3+Al+Tw9Yw6Gq6vrMKzEVzf/whfUs166SaXizFlZpLAtTmL2/\nQmplDtsskR/oRldQzec2Amodmbd0+IT9I/EV1wOf6akww2zvTfIzGLN3lva8RhJr/cznVvEV/FNv\nd7FDbYbieMS61UZVGW/1eMZE3ykvZ5iJjKO5XPLSpZsyn2uwoXUjR0ajLBc3KaYTnWNDrOXLs0mJ\npxDs5XAHtP7jREO5s3GP4FSeMe49xUY6R9OC5baYGP3plJ62nW+N5Z2P50OcfTHX3Nde5uJLMp4L\n3kVONIzqaM7FkROzPZeiL/i3GWrz3/sjS+We7IFK9xgTazsCZAw74RpZV3MusjEVLS7UcVfpObI/\nT57dw9H0cztWBluFSargruMEV9O6/fGQ2YGs+6XlKoE24PnaHa0/+QfQAua8oAUt6CP0qYA5+8CK\nA3v/n54VZ5pCVlj6mvjjhz5d9RCPM9EU7t57H45FrUvdFnkpalllI6dzUbhqMssYz8Xht/PHhLPb\nio871Tj4ySm5NkbZ3ejipuL1jv2YItGmMyvCce+27pAcyGC/O+gxfkcgutX6q+CLQzRqr2Eqco+Z\ntnnr9Q6JrCYBdes4R6rOFWuwrtrE5CEA/cMe//B3pe7itOzxo1elBuXW1hp5Kbx8dtLHUc/ypkr5\nxmpJpiCreOySaNMXz444mssczuYOxVzUy301B774I5/n2hUFdfU9BlrVPH/R5+aS9t5sNJk8lrmI\ntGCNKaAWSoTn8NYRxYqo4vWVbSIFbU3cGTNtrx4oFHkcO6D1Mup+Tl/b9B2aE2YPZcxuOyXPtVyc\nJmvFtUs4oThlKx5YrV8wfNgnU9jwSglJW5vEaGu6slVncqhO1ZHPd56I1vTi5zZpemdZrmMcrZ3R\nP2tWPZ7wK3e/A8BPOttce2kXgLDTZKyFZpq6b+puhZ5K+fWtBne/JeswyKeUuXzOpgUVzTqN92Q8\nB70DEtWEA6oERv5+kO/x+ESL1swcrr8oz7l4ScYwT4bMVduiHkFFNInbvYOzvkdMbcZLy98fqPhT\nwRQKY5iEHrV5xofzuTw1CbzA8igTNSmcn+BWRNVa/YymJG/UcLUCaXv1GlFFIWFuiNfU7j2dJaq+\nbjatzZ9lQ/qposC8fcqeog3XuhRd2bz9/lv4D9XbfSyLstJfYXzxIQDjZw4nQ7Fba3yA1caeQR5h\nFOzUfk7SbRvpEJtpzkA1wHle8w7sEelU8P6ehlzc9m1eflGe+/5Bi2VN+w2WSr51+DYA906PaLdk\nA33heSkemvgZR6mO/egJW69I+fkkPyJ8pEzIHtLTHoWOptW+eesdbtyQAjB+e4PrX5D3i4/z8xbo\nprFC54c1ZTqWU1OOMtJQU8p3pyyvyruawJKrNzyvPmB6T1RmR3drZatDpIzp+H4F1xFw0uZGhwcv\ny/fL73bpv64RJgX0lO6AJb1vOS1xjcxh1O0TaHt5e9wjUqCae0Xe+XQWEE3kEJ6spWyvCANsXK5Q\nlMLIpoXBbQlTH47k2vcfv00nFBM0+jM9Rj1hTq3WKZWGMJOZguxGpx5zT0Pn1S5eW1GhxmX/SN5/\nbbOLtghl/Zr8/sl7/XOToTQzDs78PKOckboDmk0DCnAb9MQMuNMfMdVwceQFkMqzO8sQT+XzlaMK\nnjYy/ri0MB8WtKAFfYQ+FZqCDSzZTom9/T0u5Ruoails1xicY+H4337nAZ/XuoO+ZoJ5SyX2VFTV\nbPAAq92eg2rE/Fi4ddVbI6grcEi9uON+n9EtcZI5TwoaoXrqpxPKkXDa/J2D8yrAp1sKr/Z8moi0\nurQc8XZfO0Z/4+vUNgTQ4r+4iq9QWVPVvpT+2rlXO4sLsn2RSkVeMN8XSXlwLKrxw8NnTPoiJrqm\nx4FiY4s7Je+r97qYzMg1tz7Qblrjqy3sXQW3uAn2jrx/Uc6wQ3nvfgpWpVGp2ARnP+beban9t3vx\neVo6V8Gzxzx7IGNqZSlsypZxSlmPxEtpPdXaBGtdQq1ynccDpgoAK5+UVDVZdazPdbMjksnZ2E7p\nBzK3L+0ZnBdE4nd3It5Ws2K1pzkXZo1SwT/j/A6BlofL4jlGwV4nJsY8EfsnPRRNKMt9ZpsKWhtG\ndPT9omnEpBDJO7l3wuhA1tpvyZodDQ1fUkdz177Ocl1M0LfGPa4W6nTVrNvhrGR/IFpa9mCEW4r2\nmu2d8FDbBOQHcypaHKi2q81rrjUpxQKFWkhF7zGqz6gOtUlQZJiN1cTqy3hHaQbqXK3MDZWWgs8O\nh+xrs55Ku87j+ceDN5/RQlNY0IIW9BEy1n5/EMhPghxjbOB4rHklPY27txxD2BZu12r4VFTCVo2h\nWhdJcumKOFCuX36e5UjDMUFEoPDZws4ZDc4yx8bYucZ3fZFQD+6NONUY++AoZ18dfwdJQqB4gq3l\nZV77shRYbbdFutRmCbm2F5vxlA/UVq84JbM9kTC1tqFZ0SrHWhehs1Lh+de/DID1DM2a3M/NMkKt\nXG3mGtJMAk7ui4Nr4N3n3W9JiNCblUzHohUNOzG3tFP2O/+LOKRGz/kc/e+idXy2Bn/5b/3XALx9\nt6R9WZxZ37lV8sqqZCIe/apATH713a/y6FA1EGtouCIvLux2aCk6cJobZgohH6tUHiUpvsLTq8Yh\nrMu1aVwyOWv5Ni/OxU9F2/Td2F7h86/JvDaee5mLddEw/vt//DbRXH0wX1jCmUuIduOahJFrVNl5\nSRGbj6aczmTM4+mQL39JoNBt02C1qrUhFL8RLQXkWqXp+NFtfvuNbwDwuLjFB18VrWLruU2WEGfd\n5c/LOhVrETvr4ms5nUasX5MXefZgyP/0H/57ALRyrWmQzBlrn9PMJsQqod3AZbkm46jV25Rac2Go\n8Or+OCZT7IxroaZZkIFxCLRTdpZkaMkFSnU0E7kE+vG1L36Wn/i5nwLgC5//GaraSdtvBcTaH2Wn\ns/KGtVaAMP8M+lSYDxcaVf7L15/n53/926i/hZlruKQbs1YLeK4ipsLyxRZXugIsuvayuMC3dy7h\nawNPW1RwFGRQJCXZSDdxf0buy+Gdaxm33daQvUNtDNM55htaOn1wt2A+lQV7PO8x+81vAfDTf+xL\nAFSjKkex3OvuwSnZWA5yVuS46gTbqEbsXBZH0uWa/Lt0YZOwqunblXUcdYyZYoqvDU39mpgfhB7B\nVVWj4122XhLmdrr3kHiqzrr1iJ/RWoLBX/yLAPz73/oK3p+WefnVr73Bz3lyqI79e/zWL0s0o7P5\nAm++/VsAfNCTsudHgyFjZZoVLK5CpV9brrD9gpSImw08pgqf9dTzfjCaMR4rkCk3tFb1EFrLmw9k\nzEdFzEhrMJZqBk0nQwpt626qz5hoQ1s7W2KoIKT+uyM2XxbmdVbDceWyy4YCzuzlkHZPnteNdrm6\nLvfohA0cjV1Zzb/wfIPjaXGTwOdPLAlD7h895DAUhnr47ISKRpg2rsl+21j6IpkWg9nzYr56R67d\nGdUItanLQJ2SUzsjP5OxeUFFf7ccOuxsyiGtZfAo1sIpZ8mlOdjsrMmmS1fBd9WqS6bfj/KCUr+3\nyhTyUUqhjtuDvVvEe/+6rJ8N8WpajTstqXAGXvp4tDAfFrSgBX2EPhWaQt9YfsEv+ONhg1/TcJoN\n4eqOqIzbWw2ubYgU+MKVm6ysi3q5vibIt8rKAFxtiph7oCWzbDGgaGvbrfUZqaqi6Vy4/STq4lXF\nodg6rjLSEOj+0W32BsL9x/OYRl9UwkdfE0lb/exNJk/FM9SajhhNz9q6O7R9kTBLnTrP70qYcO3m\nrowzWsUakbSjwx4lUhfBHE7wa6L9eMrVnaiNr8hF392koh2VTd1lrupq6W1wcEcahDytiwr8l17+\nM/zCdwUJ+bjzjFgz/Mq7z9jYUMff777N3Z5cf/+hVq1OCzw1JYPQ5eVted6lH7/CzRVR84fHU5od\nacXe1C7fg17C/FgclHvPZly7oq3+DuasarbmN94b8EDX9dmJjOFRf074WN7/hUYOGowerF/FkzId\nNJbWQZOGaroXpv05fQ1PtuKMG4rYdKsRddUsyQuCSCT+PJa5clyp2C1jDwibsi822m2uhDL3h1ce\n8YY6tE8UsVnPLDsbckw27hXsab0c52Sfk7MeFoU6lG1OqJm7pVNS10yk1VZINxFTeJjNybRJzpkV\n0PIBzeCteR5dheyXiaGvqcOT0uIqJiXTgsCJY89LBX770SHZtwRi/drP/CT1oTzbb7j456WLPh59\nKpjCPEv5zpMHNOMpF/VAX+00uVzK4l/c3uTGBVm4nYur1JYl0BvUtR6iaWK0RiHVCBT6WRY+jjZJ\ncSsOrmbtWU03rpqIttZttCs5awPtSNUZMR5qrUQn45niFzwr0YLrsyPmqmoPT0q2dWM2Apfdlqj8\nO9dqrCyLSdPckGiJOzXEmuyZH04IOGtaYyjvaVbbRA6pu2twtMqPtRPQz7XqBkEih+YoHTPXGoxf\nnYrKffXx1zndF3/Hl0cB2z0Zz6PKOq17UiHqaLXP8Xc1Nq+13Atrz2smvt5p8dOvi33+wvJzVDUq\n07nZYqkpc1QoJr/rVBhpI9lGZY6rGYMXIgi3NUOxtsbeW1o5aaTPyy0HWsHYvZUTd9TsmLxCsS1Q\n4Z1ZzvqPy9ztasr1s+GUWl2esV7rstFRtbzuE2ojody1uFa98hrBMnGG1aa5jutR1YIkuCX+ljCI\nICiwKlwaIxFCbn1GR7ElW5s+t35H5vbYX2Y20OiJduTy84KWApNca1hryfuvb0c44+/lJSxp86AL\nFQVYVfyzMp9ES+45FH7iG3oKvc8cy3wq93D0PRtFyamW3K8ODONvvCE3eX+C/5L4RkxmmTgL82FB\nC1rQD0CfCk3BJJbgQcoggJXgrJ+Az9IrohFsLEesrwoHj2otAk06QqU1Xoz1RXKZeQlnSUdVc66i\nmbF3XvHZ1Uw+r5pTK7QVV5ay3RHOvbxV5+JA1L3x3ohS49BzzcocPzxgUMrnWi3g2pJoNOFah51l\nud9Ku4urfRCdE5Eued4kTsVbTt6nom3svM0lwq4m12gPAqYO1ETSmBxMQ6WRA6ZUk8jM6Kmj6Wc1\nnv9GXjDRxJ9ZdcBjX8yLJAmw25rN+SszRgq31qnCs4YrHZFgP/Onv8zzL4iDb2ltjVS9v61qhdBX\nM60qTsRJPqdzqL0QvBx3XeY2Hre42BQJ29qfMzoQDegX+1oeLyuItJRasFqlPxYzbryWsG7F2Tq/\nuo6jhUN6I8W6LkXgicbnVkstPQ22LCk0P88mJamjhU9UE3Kj+XnlY7es4Wp5OCecYtyz6td1lnNZ\nV1MXiT9subQ8uVfbBFz5ETFBa8dj/p7WqzR636rrULPyPFsP6TQ129EJiLWBzTKWlZrM4UpNS/MF\nLlUtteZEJVVX1IZvPpkz0cxdmxXEat6N1WzxMWy6ioANfGaFRJf+wa/9d/ybV/5bABqtCvX0X0Lz\noaBkUqayUOq9twa6WvFopeNhEoW2zqYUGtbyHb228HG0RLo1CeVMIbWmgnF0kUzMWU/5wBdvulMM\nSLTqiV9xaGhVpBebKUfq4b68nfNkqI1fNNxUODlLqj7vVAK8NXn2ZnONRlsxrL6DH8vvZtqkIznu\nEZf6vKUVXB2/mcW4GwoPXpHNQVZgNWRlvFWcijatKQZ4hai2ldLl6iU5kE8PZENUDlO62k59dDKj\n96bMVXvpkPfvCnN6d7hHom7ymh6IF7sh/+qPSH7Fc698GT8UE2zw+ARvVcdU6+AYrQ+o7embSw7T\nTIPRVFwAACAASURBVN6pZdPzAiCe12N+ZjNvWLZ3JCJy6aEwk/40pq1h5lrgc9a8s3xWkt0Qxllr\nrXOkEYpTrY14sdVmsyHMZrMaYWaqltsJhRai8YuS7HSu38vvokaHUg9xPkkIKlqRyq7gFvI5S+fn\nRXdcDZEuByFMZZ3aLcsLyLOLRh2r91N5hF/CWGOEu0GFV9bUzHVD8pZ253pW5aVrKuBU9fdWQ6qu\nrGm9nTPWDFbSI9ITYRDLzYT3DjTEqXBt13VpqoU2dlxSdTB8/auP+PKPCxNudq8ThAvzYUELWtAP\nQJ8KTcGWkCYlobFEqiJddgJ2NgVSGjg1qto4xffMecYZ/lnsW8p/AdiwgtHCG8V8jqtt0qk5EInU\nNBP1SGMwimkoTYmnZsVSq8krr4hj890nJQdDrRKsZbLsSUlTpXw/+H/Ze7MY29I0Le/517znMeYz\nTzlnZWXW0EPRXT3QjWgDko0RwpIHIXyBhJB8YbDlC8vGFr7CXICRDLK4MHQ3WFZjaJrGRVPt6qwx\nO7NyOCczzxgn5ogdsedhjb8vvm9HdUHRnUVCc5Dil1IZJ2Lttdf6x294v/ddcFMFVbq3tkAr9dxZ\nSnqi7NBKG7fIesSxKhynEYVaGL6bYZXowyhs13TaMFfCj+xE3AnA2gyzBLcUDmWtcfq8keBcUA/Z\nPfzHAHw8TsmuK5jou3uc3Zf7zSYphUakmwrSuvlcm05VqiHt5AyV2KQc9KkF8n6uV8IqTbyZKodC\n0pBUETAzGZNjUWKezmbYuQKIopBLGhB8oy33utuMuKo8BnSr7ByKRVD9sZtUlF+wt31ER0Vdrmue\nv9V0CLSIqxi5ZB1llx6PyWKtNJ16zPSaoWY4vPoxwak8T3izQrGkFu48xZ/KMyWlGYVS3jvKmZmM\nXcJ1LVwzLoEWuWVBQqbkO75aOVMn46rSzd24VKOuQWd/NiUvybXNSxHRXCya8pa8s03btOpKaZen\nUNHiv6zC52+JtbG7n+BfEqvn3Y8Uru7lbHgy1xuViNOJzJHhasHBSILKm+llGr+DN/WTtGdiUwAo\nsOTFOX0iTuCxsqaS3XWDVbPUDSyuEmUWyZKqPcRXHkXrgrHqZwbe9zYOLwBV7DFmqYdosJp6MrMz\nrMqv19bKOLlEb6NbEdGJpPgGU00JrWdUdpUspKizqoxO1Qpkik/Pi4AklkWY6kKfxSnM5HPmsj13\neQozolB+SFvVCs+igdH6Cqwh13tZG4IjG2AxdyhqspkM9uTv7lnCaE3euXc/xdfU1B49FgqymccJ\nZQ0mrKgWxtVmC0c5HHuDU6paepz1faJ1VWSquqAktLlme0xkUQV7KkGZRaAoxqmlOJNJ7LQnJEbM\n7s6WTP4XhynRqiyaSW7IY9lMLyUbNJua1issE60InLTFvL5SdjDKppWbEYlyP+azHmYo946DA+ZD\n6fPeTCouzz4cYCJZ6Ful52lqTMWfVkhjIVExpRK+jqWr1Phup46nfJReaKhpVuPYK1No/CCzMk5r\nfsCaan3cuVajofOs71QJFN1YrTkEdVXZmsrzlsMKNpQNzaFEeiT3aLRyaoVsCh2/YNxT6v6u9Ek6\nnrGn8YX6wlKrq0vnVKg05H5RVnD2QxK3XrgPF+2iXbTva8+MpYAVzNFAo8LddoFflp1xepzSWVMo\ncRHBROnAS5plqFlMoErLmXPOE0i5QDdzzCShMMrRqEEmnBJRQ07BYjrCXZHdvJ832FSguc0CekqW\nMg+U7bnvsSgrtXqe4SuYxi5iZidy4lVahiKTz+VaUeg50Lgu3xfWazAXqyB1EjxfTodC9THN8R5G\nce/kOVatnyI5wfHUnHUMeaoCLiUJNNZ/ZEzy18VqCDyorGlg8zubjML3AYgch2Vgr6Q580URnDMm\nR+WYRCv5Sh1Dojl9b3yKq6ao01YXrLmJ01d6/WtNKqmcYuXgHh8o/ddmWsK6YtGwKif4nYbPVIOd\njcWIAwX9LK4ZNs/kBH0428FX1ZpsvlRwXiWoy1yITJUsUwn3w4RyXdWg6JIqibifylxZrbuEufQ9\nJ9uYutSjLOanxIpbodijPr6s7yeW4iSLKWkg0ika+Crgs1kEVBSctAzWZjhcuyQWUTXsMJyp0NAk\noVyT726VOOdd7CgwKag42PlU39MSqkVTjWr4qvA1ihw+pxkm77aM07fvxfSUxs4lY6EVk5fHx4yV\nQ31WTOlkF4HGi3bRLtqnaM+EpWAMBJ6B3NLSwOC3Rj4v7SrbUKNFrkjHYjEmVtLNJYoxaIY4dpnz\nNeTqt3sNByfXXbI8ptBT1fpyWpGl5BWNOWxcoujLyVbJcrqX5JRvBjkPviXfczdRQZPVjPE9sRqu\n1UKmmrLyHvUo1H8b9oZENXmOqUqRlW2NXAtVkpNdMrVozKKG15GT3q2oxRAP8CZKG1ebUaioic0S\nkoGe0tEBUSA5/ctrgiuw736Tz35Gqvq++uEjUkUQUh/iJ9K3xvdouHrKqTUSlCvkmk21fomS6hBU\nKx5VxVCQOdg9eX7vmnzOCwPyhgRlzXRAbUueuT3fpB5JMHI0mBNc0u+ZymkWX0651hfr7s3hiO6q\nvPfDZHbeX4vaHtUduSZcE+vhihtQUcxKKXfJNP08dcs4LXkBL3bwR4r+08K20mqTmit/d4xHOlIr\n83rrHC9BvMpcY1C5mpjR3C4NU3AzPEUTep5DoFWwNpX5uBGUiBURmU8XzEc6T7MMXwvFkigmVrbq\nkaI4a/aQbFfuVauEWEfe388MVgvouibE0ZT5rROxFM8GCY0jsTDiyDBWnomjNCNVVGtyPMG/2uGH\nac/GpoAhcF1arkNZQSMbV8DWNILVcvCVnTfxXNxMyVU0ousULo7y/dnIx1GwiTEeRklEDM45kCmf\nquBmuYqvdFbz4RGOmsnBeE5t6R50N7l0TWosKh/JwrUHLiUtEZ7lMzzN048jGJzJgLaTgGEkm1qs\nMGBrMuITWSjtoSXoyCR1m1OMv6yYVMBTw8cqfDZbxKAug1vysbkSw5RukR9JtD9Z0aq+Vz7D2gfy\nfZeTHlZ5EtPUJ1AYcyMIaCjnYVlN4DXfo5NKMLcWVfCMLMZ2UCOyYko75YBiU+netS6DsIHranC0\n1MZ4YiavtyK0pIDT+9sMI+nno33JBqQPLPc1u7JesyTqNv362T4fDeWa8f/1JvbqFwFofenzcjNb\nwFg205MZjHtybX97m+pMnr8xqnKykNqOkyMZs+5wBdPS+ZIPmGrtxvBth3qgD9ocUVIMQKmrMOc0\nweo8y22B1fExeUJNQUgVrWVoVkusaZC3cEukxRIGbTjsyRzZO5jTHgvWfXQq93pxp0qkm6mTTkiU\nrXxqh3grMn61vEPe0A3nQ3HFmrWQfk82hSgsyJauZyXi4PQJAPN0j3Qo7/JJ26d2H4wxrjHmbWPM\nP9R/XzfGfNMY88AY80vGqFLpRbtoF+3fi/ZvwlL488A9oK7//l+Av2Kt/UVjzN8A/jTwv/3ut7AU\nWCKT85qKovxI8wrRUlYi9BiqiVaexPhKsjLT/KVPFbdQkzpzWVLZGhwRfAGK3CFTVORCkYLJYJdc\n3Y7p/hS10JnnPgvl5m9kLRp3JH9vfnPJDLyg+nSJlCwz16q1xd6EPaPEGWHMzbpqSaopPvM9ao7K\npkWGqKnEME0fRxmqTUtN0iAkncl3pI5PdirksFF9i0QrOL38BDvUtKbqKPJgTluh0n+ifQUPOT27\nayHDXYFVn3l9Llc0daqn0tFZQndTLCh/YCmrXuHMaRFlYu56pRaOQr4LxYK4vk+hoij2IKdQ3rV0\nEBNVJZi3tVaiOZfTLVQI3sPZfd4dS0BtxUY8f0Vp5fZPOXzvtwA4HT1msavp0CdvSB9/OeHRXNB6\no4/3mSk1Xe/BU7yW9FFx9Ij8UOnm6vIeyZUOM55IH5057D9W1umbZaZl+e61yRaxq3oQVySdWlQq\n1NQddRs5meJMDtOciic/X1br9qXNS9xsq6Tb4IwHe3KKz7OMTZUs3B+MeXeoHBjqan5Eny8ojNu9\n1cDod/Q9B7cnls7HyRk7ShjT35Vnm86HzHQJm1mOUf3PzXKFZkMm82j/kCeZWHqftH1aLclLwC8A\n/xPwX6mU3E8Df0ov+dvAf8/vsSm4xtBwHWoVD0erzIJGgGkog+8wJ1cOv5n1CAdiihUKE/XNU7Kh\n/OxWa+cEEz4tslhecb54ymDnIwAcpQ2P/AppIYPhBwUmk0UxToZ4CuM1DZebdens57U6c9PNOLis\nefzHlnlbNx63TCeX57/kVgk0PlJBNoXpwsH15dkjr421iufPffxQhVh6MgHT5C672wJAicc5DQUC\nBa1dIs1H28GARHEBDGRzmPhH+Dqs5RsVqjdkUR0/fpW8LiZ1NHcY9jWbk8kzvPdwQTqRyRZuhbTU\nwPtROyPypGKSwuKpXP2y+nT8eI/+4G0Antz7Or2RxkwOBlQUDPXyqx2Cujzf1hfEDZh9bYZ3KuPR\nSi11Hfftr/9j1hx5punglLNQFvqDfanhKN0HEnn23sF3yc4k47D/wceksQrUFAMOFGP9uetils+T\nEs776uZlGeMjlQe4m3FT2ZTsRp1yLAuooViJcjUhi9X8TtfIAoXKL3KaimkIlX+xVMopatJvg7Gl\n7MkG2TINNjVmcnmzwr37siHt7GlmKMh52pd0wVVbcFUh4YwmnOjwzsyEyqmOqwLOBqZMrhT30zjD\nBrIBbvT7TDXz8yB8i+dH6up9wvZp3Yf/FfivYYmyoQMMrF0mAtkFtn7QB40x/6Ux5jvGmO/kzwAl\n3EW7aBdN2r+2pWCM+Q+AY2vtW8aYL/+wn/+dUvSR51jPM9jMEEYqmjEo4eiJmLgpmcJrZ4MEfyBm\nZ6kkJ3SQ+ueEJFE6p5wJPNqpn5FpZiCe5mQ9lZpfl107zkNI9ZQIKziKaAySKblGtQtOMMrrv1mR\nE//GrYDsLbEqJmWXp09lO99wHKzKuZ8yJX6iyLtcAkteUMJT9+AAS1vRlK3sKv5lMYmdVEz1/v4e\ni3e18KXlkm9J5Nl6PmksJzqTGK8jVs9Y5cUe3D3gVPPVP/KlF3hf39+vgVVm4Ml8SilTLkilVbuz\n2iBqKIqz8CjUHdv5aOdcrbvd3qT10ouAZBoAjh99yG/80lcA+PD4lLaKqTSuXMOkMk47T0+53JTn\nDJ9XAZimw2W1fl750it4Gvi8fbXD/a/+pnyHHzGYKZ+h8mDeX7lL+Eg4KB/e/4BU/346OqOrBUqp\nB62yjPVWS4q8HH/MkfIRfOfuQ7aP9JS2BR+OZZyulUe0NpSyb0PG/OXLL+ArbiCKp8zVBU1yg9UK\nxbnyak6OB8y1+Gg4mHCmCuNdhrgnmnUJY9p6TXlLvuNkELPEjSRPcvIbMreuttfhQIPDfZhoIm2g\ngfby0RGuYhc+SlKG+n4PWjHXezJmR197RPmLP1xY79MKzP5RY8wfBiIkpvBXgaYxxlNr4RIovdDv\n9hCuy2q9xrUrVZ5TXsP1l5pEkZjrmRnx+J4smuFsyn2FGL9+TYyQTv0GUUUGKEmmVMOl+GmVxYGY\nl6cMMKsyoF/5qoB48t4RtiqT/7krNdZ8MXfr5TnTZQlsWMIqVHiivIzT5DNcvS6T8aOzMe2umOjN\nFZea9ujxYcrJsSzwj1Rc9bkooqVMULY341RjG91GH88TRqOkr2m8gx6Z+vi/8e0JkzdFAKbS8Hjj\nmmxqL7z8MmFT+f5msuiq5SfkWtcQTmMGmtI63B/haL1GJ52RKma+s64iryZldSEm9XRhUM5cuklI\nfKQVk9UBKyqAstiV3/W+fZd91Y98/sdX2N6XZ8uLmAeJ+MN3DkJKSqy7Gcvf02iDq5+TPpxUcpId\n2Tj7SZnbVZn0H86mGPWNr72gKcl1l/dHSu57UuE0kXusrZUIFvLQ3YrDl/7gKwD82E/8pIzHkxFP\nd38VgN04BsUxWbfO2jKW5Cc0An0vBR7tHO5x87pUsDomYa5kN/nZlG5DYhEHU9mk+jbhM8oJiU3J\nI41X5fBQlbg+jGO6K6rzuCoP0S1OybTU24sS2oX0VebMONXS6V48ZftIxrJ3eKTvmeIrcUzFcUmV\nx3IwS3jaeyLXhj439sQ1/aTtX9t9sNb+N9baS9baa8CfBP6ZtfY/AX4D+ON62YUU/UW7aP+etX8b\nOIW/APyiMeYvAW8Df+v3+oABAsfhihdwdUt25UbUJajJjrkYJeDJz5e31tnQKsmVq1qx54e4yluY\nllsUKg1O4jIfys+Odahq1dpLV+W1+60mke7QWbpLrArMeVEwUfqvUj5npvLpZ8oBGDf2saqp2Ky3\nuap57IZbxWtqJuK0wgsvy0lyeS7PFnVBv05YnY3Cg905uboNi7sSWFs8nLBQYNWtcpmFypx1rMV3\nFOCUrxBUxJoaapDwdOjQKMvfabZRSANMDqkuNQr9FGcpSKLYhQDD1pJmvumxrmrN7eomUSIWhOcU\nmFxOUkdNiX4YsF6XYN5zXotLNwUmXNSa9AeCoYinPfyqZhGUosxf6VJGnjk+nrC/K99R2AHjM80M\nBCF3WoIhuKMQ7Mttj5Ke3I+HCbVQ+qi7GONaCWbevtbmSz/zC9JfVwTcZbMzOq0PAXi5eUhDVayv\nr9+k1RIrJEn2z3No3Y5wbqy0Q6rId7tOgaMSBNumYEWtH0YqkJP4HGm2wJnGNDXo2C4F2Eyu6fbK\nzBXI1FAsyMZWjHeqHI31CE+Dso6f0tXA7cFZcl6MlVTEemgtcrZVZGc4h6qS8kSFYX8gc8tUS5yF\nS/TVJ2v/RjYFa+0/B/65/vwI+MK/iftetIt20X7/2zOBaAwch8vliGqzTq4nfh4UOL7skuVyxJay\n//jrhupUfP+aBv7aax2sBh/dwTa5J4KgTn0ENdlKm846pS05dV5saRDR22CoO7s9dXF14z8cV6mn\nSmx6z2KReEauzDbBbsLisvIiHOf4K5oq8v3zk+S5NYdBIPdwjDIRT1JqysCTZQHOmfjD+a6hsJIu\nnLdUXPVSDb+rSs31Bq4GzuJ4juPKezdXahQad3GXJcLDI9Y2JGBYSifkrmoTmCY7C7nmSq2B35KT\npKnMwXdeus7lq3JitqJV/ET6s1FZZRpJf1azp+dFXk5NfORLr3e4fFtO4/rVOjaRMct8j5MjuYdX\neY4r6xL/KSoSU2mXPyJWWLI/m3KgYrPOonYuAuSczQmV9Kl+U/q4s3EJ18iJv1vtU50tA4Yur166\nBsD1L3+e1ppYPU4u/VYx79B6Xk7an4wbHG2LlRkGZ1SUQu6a06BQqbfmJQlWJ+UJo5FYPKX8RXKN\nV60mM57fkHE1Rsuex33mmpLOioz2ikyoG9UqrC5Rtg3uajymNhNLqdpqUa8pnLvkkJyK1RSXAryq\nvHfb5nQP5B53NsQS7Hge7TMVuBmNOS7LtfkUXEVefu52gy9cFXzKJ23PxKZQGJiHhurUglECjfGC\nzFMwjVNwrS4L2nUjQq3JdzQ/7GQzUA688dilsqRum09BgUPEM7y5mOhRTSamMRHlTTHxF9U6Q1Xq\nrY5TzpQWzmlNefyeDFJJXYqsZvCO1GQEpoqFqBXpubKSG7isrclCiA9lATacmJmKlARewJmSdDTP\nUuZVdXl8DQq5c0J1L/x0QlBTqLEXEaBZlJIPqrY91kq/rtvGqMqIn+fEmjlxkz5MZFHshjFvbMr3\nrGmtxWevPc/mnWsA5Is5jipn2W6DUqqVpGcVAqVGzwq579bNN0gSeZ6St8ALZaEnzCjrM5fcOVFN\nxm8JCsvcJlfa0vfv7n5MpFmQtSurHNyXDSKPOBfdSXfUveg0qSmG5MWN5zgtZDGtB3O2Xpf6j/Xu\nVfxAFrXRDIEz63K7kGforV/H2ZOF3mg3aUUdvTYk0kDiKJDvq0+fZzxW1e2No3O8TGFdCq3i3aio\nOzrPOFTW5lZuWZvJpuCVY6zqgsaDmE6sB99MXM1mJWfmy4IPd0oM1bVpbK0RLOTQWpuXGGgguFIR\nH2dRzLipmJz11RJPxvJs740HlFOZAysbVS5f/+HASxdVkhftol2072vPhKVgAD+39Fv5OQuvHfco\n3GVxUIlQFXXLzQ6hnkBuqIUq8YxMGWvLQQOnprp8QZdyLkIlpt3F04IST01YJ2jgKqKvsGOCXCwF\nW/ao9MUMnNkTKLRa0ciufbq9oL4qu3nmQHggp3xcmlG/rNWF7TpEyp1wU57dzuewkHTSfLcgsstT\np4cXqniHqh47nQhPC27CjRKeEqZ6zSqZVsNZPKyV9/ZVm6GzETEZKcbg4DGtH1WKtUubxI++CcBG\nEnGnIybl5Y5qZl65Tr0u1xa1BamyLieTIWdW3nvFrYIyFjkzdWcOD8nVbPUv38INVf5uUaakeoa5\nk2AU3RmkerKXD3A18Hur9zpvWjm5C2+DTkvEerKjA6oKMe5qMDfqp4TKEl2JSszV2iqnEA6UkWj1\nhGKhMoJjpTybPKWqVam1RotNVS4PXtkgOJJ+thVLXKhAz0yec+b2MVtyryKcMlZIez5Oubol1tag\nLHNoYWOmmr61iwV+fUkhGDBVUZq8XGKtLvN3qPod6SInnYkVNxr3aCvefvh0SOzKPUIvxnTk96dL\nmr9gfs7iVAmr5GdLVxEuNWQ+XHvhGq794c7+Z2JTKKxlkuVwGBMoiUV+s8Ap5OcgXRD4YpaG9TpB\nW342KnxaTAPIZOJG7TJusRT9qBK2ZKJngYuj5r8TLD9vMZ6a14sUowzA9nTGTPkY+z2HqRJ5VJVp\nOUuGVCY6yesNwuUidad4mWw4RWDwNCdvm4p5SLtYR6+tTAkS2XgWaQ6yDogaCncOE1wNcvh2Bbel\npdO5i9GaCDtMKNTFKAcqix51GBxLDOTw4JTqFxUfUEoZIe/dX8woKVT29g0BRYWNJn5Znj0vdig0\n7jI7mFFbSD/XXt7A0SxAbjQGMGqSaamvB3ih9LdTdchmyjs5mFIoHX82X8ZULG4h73Rie3w8lN/3\nksf4JzKW8yKhPlyq52j+3xsQKwVZYH1qmzJOs90hw76WVJ+M4LpiVVJ5z8XpEXsfCO2aFx8RKSei\n/3SCUazHIk1IpkrHNlW+R29CyxG3I/JcYo1z3XP61K/IYmtNtEYln9JTbIpXcUgUcJd5kAx0YdZz\nXK3dQTepvcExQ517ySzj6ntar5E/Itd6B69dxq1otW1dPlexPnVPXbdFmVg1UjcLl5u3xX1qhZeY\nZ5qN+oTtwn24aBfton1feyYshQDDlcJlMppz71hMqu4tKDRo5XotHKOR1dQnV+IMlDSEYkJ2ouQX\n7gyvrVWNfkC8NJ3GPWKtb/e0otDOffJUabCGUxJlTI7zErMzcSWebJ+Aqv12lDLNPeqT3VJUXZ6S\naL498hychVgCTq+KURirUTM6SVOcx7Lbm2hOWU/5xA3PJeRyV07gYN4lmYkpmhmLsySZSUPyJWhu\nmhGreM4Sll2KAm6EcgruhRNuvioIxCT5Ob7x21J96C0S3GWwa1u1Jtf7JIm8nykl5EdaJZp38ari\nagQrGzhI37qKBRks7lHTbFB+lBOuKbvy3MWokIudWAq13sZiBOA4MxYq6pL3E5TRjOndp6DW1GyR\nsKPFb/vbopPoOi+yUpPTeFwELHpy396D96h7YmUNGwHOb4uVEh/JOH748Xvs78rPhbHUBnKP9lGN\nrZf05C2XWJzK74fKRhvc3CcpjrTfniNzBL245TnsvCWuxmImv6vsZlwvZHBWg4CsIWO26Bs8zUTU\nNspMVH/EPJU+3p/NeHIo7zm1lr72m19NcJXj40rLwx+JZXW5oVaXcUiVgHdqchYrqsxtAjrXhN17\n885t7Fzm3ydtz8SmkGDZI6V8kmE0pdfb3aCqmOFxHBMqa3H5LCRVikVfBTSMtzhPX6a+JRlp6XQE\nibLoTk4GtNpiamUrmir0fNLR0ndOQEFBWXzG/hOFuR6f4ldlka1ek1Lgew8+YvKufF8pKsjaMvjz\nPGWgIKRskVBvaCxC2ZfzU4fMU74/p4JRKvNqHOE0VJa9cU2exyvwD+Rz86NjiqWr5OSYJcV9MWes\nAjXHexohjyPGRk3YckSk/JG3rm2xqZWYD9MFexoHSQffAuCNzue5+rLGPgZjmC6BMgscTyb99Fc+\nglxM34OxSNh//Zsf84VX5J1KreuEcxXiKbXIhpppKIrz+JBVHcjB7pi8L8/59qOnFKr5GD0XcvJQ\n3mlOwf2pXPONr0vMYZ6m5C2JB1QbCbv3hWn7bDelclXjPAfHPPin8nz3NPsSLIakyvoSVWJ29mQO\nHNg+07ospo1qh6FqYfYd2UDWj7YocnE7Fi2XXH11z9T4h1tS5fnlvyu+32+djukcyKawt5jzGc0I\nLS41aGnJeFKYc05LM9ODpdbi+XXZnMP0e5qep3HAxJW+nfdyiqm835m6AxvVMkmuz5tM2VMQVZF5\nvLaQDWQ6PMGr/XDgpQv34aJdtIv2fe2ZsBQcDJEbMFv3z7n4Sp0amad8Ct4EV4UuYneIdSTC32oo\nkcbEJbVatXh8wKKkpth3Rud6CUXUpaH53XSgUF2vYD7UU6A8ZzTROv7pgkOF8+YBhEpplsUqI9/L\n2dHsQ71tuaZB0LRimSzFZXKDdyrPkVk5JRbJU/o7ct96eZWkKidzs+FitfY+7Sv01y0IQ7U6ipxi\nX++7PsQNlPKLBlapyUxDmYPzHG9PhvV4v0/Ulu8o+XVe++mfBqBtvklclUDa9r5836uTPrNDAVCZ\n0BKsilXhTg2ZamGOh4eMtdjq2+88BeDmyxFuRaLzftPDanFUPh9RFHLamtaMXHUYMgUbLeYHnGkw\nNyuqNFW3Y/rt7FwzPreQKpHOW1rYlu35XFVugnji4S7kc5ubG1SaYiY3WjeZSHEkLeQZomGdqKNB\n3OmMwspznOYOU3k9dvwBeNKPlY4EXRe2IF/2YbNgrEFF1/bY/h/EQvhr6VJkx9Ja6q6cLEhUXRNy\nTQAAIABJREFUoOjLt+rMNWA4GU6YjGSsh3rKh0UL/6p8x4ot8MtqKfVyJonM2WmRMlFSl3omVlxa\ng54KG+2ScqZW9tbtNby2ErUMzsieKBb6E7ZnYlNILOxkhuZoTrMr0XC30sSo0GY2gpny4Fk7p6RR\n6ySTgTVeRDGVBVurbmDVx8cF57rwK2LTcx7HQivr4lkPda1JhgHjiUyg3mDAIJaFNykiurp4GzWJ\n6A78tyif6IbU7FDqLAFSUxS2j7NZkCjphzOQQZw/NaQKMJnaY2ozmdyztI3RofDVX7TFlP6BEsKG\nFrumUfuzDGVlZ+FM6e/L9aeFclSGI450UgXNEmWdjDcbJVb+iNQDvLVW44N/8BsAPD4RdODgcEJ3\nQza3qHBxY02tdVuUNAXYWr1FPJdqzWvPK2o02sRty2L0ggDVWiUfPyTR8utwkVF4WtaswYOTNGCo\n8Zdaq0H3upDNDr/7LVKl+S+ATMFeRyMZ6+3dPsObGj8yCY5yaXaigkjTlvPFLlXNglzPZGzyW5At\n5O9puiAuSbq4Ol8wUVao0ZlPWett6qn8P6yVaHtCeuK7BRVFlh7lOe+ksrG6E3nGEbAsklyZ5xQ9\n2RReO4VqWWIfizhhcizvPVWt0aJyRkuFbBatEkNlDgsCS2WkiEXHZSn01NTSf68a4S4FfgYFnorp\nNouIY1djMe9k9EJx/z5pu3AfLtpFu2jf154JS8HFoW4jJuMxIz0R/DzDUREWJ59hlvwGhcdEJdYW\nfdnT6qFLtCanuB07hG0lWVkdkZek2o2zA+YDORHyskrZz6rkhZq7xYJUTdv9ZEGq8m+jJCUfyjVG\nBUa2wha5r27JNMFFzcuVEiezJ3Lt0McoujRL9ESpuFRVyr1Ua6A4H7zLNygtswuaz1/sfsRRLNFt\ne1zl+eti+vpByFyVmN18ytlE4ch7SmiSO1xf1cxBMsNRC6soIhxlGv6p177E4VffBODrCvqadyd4\nvtxrlqbEx2K2loYN3DWFWNucsPsjAOccjkVnA+bKTvzRAeUbSv01N5hMsQKE+CrcM45Vo/FsSqaU\n6/WVGc1jOQaz3oJzrE0BS06uoXJp9rw5Na1VCP0KaVMsgvHgmHSoXAdhCaPYkmlZXa2JxSg5yTSZ\nMlfugbBSotHSopdgwUQtrtjKs61uVvB9eY/EbJFWNWsxMcx0rJYnuLXfe96etcyVAGVQFDT0L41G\niUWstPQ9+a56FDHSl56OprQcsYQrRUiqWIbppI+rIjLhhrxHrdnk4z2Zk7NpzIb+/sVmlVlfLKHJ\n+jE30k1+mHZhKVy0i3bRvq89E5ZCYlN200O8ScZ7jyWg9Npv7xPF4sum3YJQkXRhFDA4VO6AYznZ\nDypD1k8lPek7HuGx/FzuWPL8LgBZOmN0JDutr5wHzRvrBIo6HGZTBnoaVasVEqXHKofZOe/BzlPx\nzZ46Pa4qLHV3Z8gtTT3mCx+ryiHHfkLVKCpQU0XWpuS5WDn51GOhmgvtJ2MSLf4aaRqrP0w5kbgf\nlWpGnMg7he0yxUBOrp3ZKYkqPu+cCpy7G26RDcSK2d0fsDHXd3ILlGyJpKhSuSmnSvFPpE8q5TUa\ndyS3Pdy9y1zZrfonb7E5lqjdPO9TDJWy6I58zn2wy+xY+uX97xxy6Zb8/dZP/gHU+CFLfRbKqt3d\nktjBydEJUSGn7sBzMBpc/A9vrvPL7wsiE7538josLQ2HKBProH2lynRPYeyTNrNTxSGczBmqBei4\nMoem/hQC6YDTfkxPCU+NN8O/rYxbXhtlAOSsKs97ZbzCpCRzYT44JlOOhFLQ4H9cEavov1PF7N/Z\njDEslOrvwcmEVkvmWTWMaHZU4nAonzsdx3hKQtyphrgaM+5lQ47UKjS5xVdxoUjV00c2Yf9M5vJh\nknFH0Y0LPziPNRTpAu/V9r/0fL9beyY2BVOAN3EYBjm7hSyKx/lTHCXNaERVqq68sCWndUUGsdzS\nXLst4WpgqNy9jK8BINo1fDUDvSAjWFNmOKN06l5KYmVyjN0dDvVzi8MD6k0ZgLA054OPFJqcKu33\n2OGjsk6qCazpolhpVzgpyyAGM4/oQN6lqlDiZDQn0yq6ce+M+mWZsGE0xKspRuJEdTKf97mlBZO1\nm2t4nrpBtROGviyE3jTj+ImwqGSal55dv8fdN9W8NjE/pdyHp0nMwa6Sl3gxkZH7ra+rUnN9SKLQ\n3krwGmxJALLsbbLQiru0skHoCfooSySA58UJiQaHN27v42q1auaMCbQE2o6fkqrmYaLvv3Gtw77C\noL/7rROeHuhG8J/+Sf7s3/q7APyNB2dkRvq+pfUCt1cMCw265nbIuiukLrONYwqtkyjWapSVPj3P\nJLuUTwyx1nM4NUNDAVKm1iBXdmg6NQJlRC435NlPsglhVfrqbD7muC/3XSkm/OJtwUv84RPBUPyj\npWQ60CyFhGty7aSRMzAKcJt2yZQfM+ho4HuckZW0orJuQRf/6EmKWdeDY5FTX9Osi2Ivtg+mfKy1\nHSPP0FfNy2KlzGGkh2FcoaQAvU/aLtyHi3bRLtr3tWfCUiisYVY4pNbS8uSR7vdjvJ6ewIvLhFfl\ndHCdMUFNTr+qwqCLwsUugz2zmLykObszyBZa9Vap4iTK2NGQHX0+OGSspvbJkzMqx7IDn81TUsUY\nvDsZsX8oO3Cmp8/rlRqeprdu+CHbscKu9wr2+3ISXg1dRhVxH/ynKh9nQhwlamk2oKUFXxif5FhP\nv0KCdo3JKl5FTqjS6SppS95j8uGQ4YmasKcLQmVrxpHn/eCdOQPlJnjiLPjzqn/ZcnySiVhb74x2\nqZzIM2/dlpM2+3jKwVD0Gzo3n8MoCWruH7H9QPQnZk9GzBoyPlWdOlngsqZM02G4QVP1EeODJzip\nwKPTNMDTKsHpRCyb9PGMQS4n9/7TI45i6fv1O0+oLOQEvrPSIaqqmrYyLlcaLawyFQ/LFq9YCgI1\nKbTw7MwZMPtQ+qOn/BzT/oxTrfBciX2ylsyFZuBjFHtRLHLmGozszuX/49mQ6mPFFfgpxal890l1\nQfZFGau9N2U+loxhI5S+38DDU73OxmnOifJzhJ0FqXI2VBVtWi07WA1sT/BYHC1FZBLqWlSV10tk\nCnN+X2X1Dk9mDCdy36YXUFXrppGF9EvXALg0b7OfiSv1SZuxz4DmwmffeMN+9be+gU1yPuwLKObX\nP7jHx78lEfKv/cqvUV1fUq7HDN9RPkOFFI9GCbli54ucpa4U/7bezDUONWVGHuWgoGO8MKDWlH+t\ntUImuhBQbr2G77B+WaC2+Sw+n4yl1GWiOfbZkkHKZLhK1V5fiwiNTNJGJcBVvr9eMgZHFsu+bkyT\nqz7Hvyh9+Hyr4Jc+EIDN9GTIuwe/BMA/+NZjZg8kav3b/+Tr8nc7PBcotSNDpJN7PilQMiXSRYHq\nq7LczwrDD+xoV/8DqIUu3a4K8FRkYkeuQfdY1qsVMoWp/5k/8x/TU2aiztYZ730oC6+lZDCVJMQs\nOQxnU/zVa9L3vWOMMnq/f/cjikTu0Vc8SXO9xE5PTPjn1tZZKYkL+srPvcCT958AsGhm9N6V7zsb\nyLVP+gc0WrI5e07Bz/6obKJfea9HpBT22VTG4PNfrHD3gRwy7dU2Kzp+sVei7siib117nWohczla\nlzjR6PAAG8rv8t05NKVzzw63uXxNiGPKWUjts7LJDu7JprA3POHBW1ouns05UymB6sZ1GMr33XnO\n4x9/SzbW//0Xv/GWtfZz/+JY/Yvtwn24aBfton1feybcBwO4GCamYK7y8nt3pzx+8x0ApruHXFO4\n50s3Nmg2Jcr8V1SrrxH4nOZa+OJAopVqrllKbICPIVWr6F9lSSzLRtLf43l/9U/9EX7+73yPuX4J\nIi1jSBSuWzEeq005KcKZsj2vV7ixIu9Rbpbp7WrgyytoasHMdCrvcdyf4Wou3WlbbvkSQU5DcLQg\nrD33Wda6/KnNlwH4WjDgw//oGgC//s1vUmhJ5dNiwG+9JUG39//pu8y2JbB3onyAXQoCI8+76Vje\n1tjbai1gW7EMdd+lr1wGJS1gmlt7bhEs+3r581Llu18Y1oxyIKiVEzkFCx2J7eMR620xfROnS9oU\nK+ar33jMQjkn/E2xJCpNQ7kpv5uGFTzlZxgECXmsmA3P4WhX3rvbUTRqI8cv5JQPi4jKpvT3pNfj\n6lUpdOufnpLfkNN2+ki1OvIXSKsyzx6WYv6ftyUltLnSZj5Q2Lye0P/otw4IquLSVlKHvK50e0GJ\nUqQkOEGIU1FpxEz7slzFapUvVXAUst9e+yzt4Jq8/0sRgSIdmxq4Dt55wrgja+FoMONS/hIgMPVv\nlcT1fvurx0TF0pb9ZO2Z2BQshtxxWMwLjhQvb99/wOmRRMCLdMxpLCbj4HHMt0OZsbc2ZFCOpx6V\nmQxMhuj8AVI5qSW7Xuhi5gq4WfrDWYKjk9sWFqsU6BS/+7bw5/c+5otGOvqbNj63t1Y2Wmx1xTy+\n2WnwnCqOVBSWenPzczSuyPPEjs/xFRn85voaTbXLM02lLU57jE80e+GMeDAWX/zxzh7+VPzhilnw\nLXUXTwpxE9avfp7+TH55qbZ7DorZ+cr7PHn7GwAM7+7R15qQRIV7T12fy5qz7LU9fqYjz35gSoyP\n5N7zeaqqmFC48p5utsAoesdNCwr92WLx3aW+p0NTiXFqVUmpVIspvVPZTtdKOdORlpyX5hx9Q0z3\nRTygHih7lZbJN2yT08OlfqLBpmJKx+MTFlrh6MQOt14SMtmmbv1OkHC5K3BlE8XURuqa1T18T/po\npahBTzaOu75soLWVJo3nZT403snZ2JQ55D1JiLUmYrKrorTRjJorYxNMCkpVcQ/ycUa5Ju9vbYGf\nSt8VmbxnkIVkumnUux2KscRD6tevElWUsDjawvWPtW+19ufGlM2yaHN+9OY/pLsufRW9MKT+q0os\n3DGYbY15fcL2qdwHY0zTGPP3jTEfGmPuGWN+1BjTNsb8U2PMff1/69N8x0W7aBft97d9WkvhrwK/\nZq3948aYACgD/y3wFWvtXzbG/EXgLyICMf/KZvQ/ioLD35QT/2j4dRYneuLnloFGrXfCGYdWdtU7\nyn9gria8dCzm4LspbCnP47DssKbchvfzgg0FkywjwTXf50hpvnKbMddItcP3FHN/UHty/ICSWhM+\nsKay7Otjn8svSACr6cLt6xJUZE3M0xdfv4JVbLO7aHH1hpw6lchSKCO0r1L1i+fOmJ7KyXDvnYd4\nk6Wy9RknykX4sFzgaRDzVxVAc2X2f3M8lVNi4zjADOUUO9jZ5u5vyP1G8yFz1R1cBvsycsor0ocr\nd27zZTWDvzU7pTWRPnyrsNQUs3DqyvuvGodD9cfWcofBuRXs4KmV4jsBdQVRtRXHMM9K5JE8287Q\n4mqPO0cZcSx4ieAopnpNCW7Kcrou5gPSsVgEpycxmWIryr5hQwN4QXOFrY7yW4ZaPDd0MapdaVYy\nRgoWOnpvTDRWTc/PreLqe/+YK+7Y2XxAc1+sh51sn9muQt5NgdOXMVOPisqZgxb5UnFTkrHiPhoV\nPLXIyOY4qnSutJx4UYRtKjdIfILfEvcgilsEa0odmI8wClRT6AaldofOTMB+P+K9xnCsRYHHV/ko\nlO8YnU7Igx8u+/BpBGYbwE8A/zmAtTYBEmPMHwO+rJf9bUQk5nfdFHJrmWUJw3FKnIm46NmTE6bI\nixlXou4A17stGsqK01mXSfdCo4p1ZUJc7vvkc3FB5lmFRDUBTRLDWCneF8p9WFrQ0DD6zt7snD8w\nN1b8kH9Fcx7k6LrDWPB9+ceVVyqs5kvuw4iKEme8oP5rWLQodZVBylYIcxlwAh+3rKXRiYKwplUi\nLZG9tfYUx8pmUX88YZLLtaP7E8Z1RcIpMcf+UcqJllPbOOG4L7qZb+3sUKhOYjCyFMomFenCbVUj\nXn1BJv9rr3+WugJrvtQfcW9DvqP8eEC60IyPVga6lYRVLWuPnAWVYxkb68+ZKWDJNZBMFTl5Vf3+\nQUYxUlLSkiXXhX48e0o2VJP/Upcrq1qtGMjGNMpSMmXQmicnuFPdnDY3aOoCurR5iWbpOblHW57H\nM2NsWwBQ/tGIg21ZWd6rfRaPlBNy5LLZFBN89lMyTis84lgJdVrFJpNVRY66IUcfy0EVaFCp9MIa\nl1RHA7+KqatUvW/JIs00LWZUNhS0VlKq/kqIO1Zy2GYZry7v6vgeznIj80NMRTYZq1mWwF1ja1Vc\nkNofj3g8elf68Ov7VFM5nOZrPbqL3+2I+5fbp3EfrgMnwP9hjHnbGPM3jTEVYM1ae6DXHAI/UN3y\nd0rRn/VOftAlF+2iXbR/B+3TuA8e8Drw56y13zTG/FXEVThv1lprjPmBcIHfKUX/8uuv29PcEvQX\nzLdlgzg66BEpHLneCfmpF2Tn/5kf/0kmmSomK09ivgC14BnOfPJAIsSPHozwZnJa3Xu4y6CrlG1n\n8kitqEqslFiJf0rxdHkKZmItwPenKJYAKddi1YRzDEw021HKg3M69yDx2bopNQN+R9yHaqeF1ZuE\nnU0cjfaT5pCrKlKovBFFQWkuf1/b/BJ28h0Aeu1VHgw0G1AOeTQUV6LY0KBkAJOxKjMtUp5+KJiF\n9cjh/VTut7AFHaWEryoQ7A9+8QZ/6Kd+DoD2xvMEVbnH8YNDugoxTq7FJFopenoip7Wdp5xqgC9N\nB/R60t9Vd8z+XXF5tqdjNInAVLkl8oml3ZIz6WA0JdU+nDwc4+nR61ZTcruEt6vYzzxnpIG4xWJO\noO5foxxw6Yrk9Ls3r+MkimXQjJNf3yJSNetkuuDyC/J+cfUGo7mc/mfHj5mq9mj5ZanRWKlfYjEW\na+tS95RZXbACxWJOcnCk/SVzaM1NKcpKPx94eCpEFEYFNXVZTSkn9DUD1dLq00qXoroUMHLwAlW3\nCkJwl/OwAOXHPD/Jgxi/rYHbWZ1LyvI9O7vPaluyD7XGDfKj3z8+hV1g11r7Tf3330c2iSNjzAaA\n/v/4U3zHRbtoF+33uf1rWwrW2kNjzI4x5jlr7UfAzwB39b//DPjLfEIp+nxeML434eDNv8kv//W/\nA4BjXdZvyM643r3MH/jSawC88urLuJo6zMty6kTlmFRzvn5cYpZKOuq6/132n0rgstgesrd0rdpa\nkBJnWGVVWl1vsVuTHfXx+6fcV5qrnIJcA0muRuXSBajniGuhq6f/jfU2S5KE9ZZHQyvqypqaonAI\n1Od0jMVR1eKCOXYZP1laJhUXx1XRmmxELVCtwW6bFydymn00HLKiAcr0kTIUlReEmt5Lc0uqBK2j\nk28w12BX5DqsdMRSeO2GQIp/7stf4sYVOQVr7TUKTbl232hhlX3YyToUoZz+s1NJU6b9Cb0DiVXE\n5ZiRFujEHx/xrYGkC4OzI3YVxrxakueNG3X8mvjD4ZMy9zWeU25nTJbsTUMHVsXHd1TXwiZ36Sml\nnQ2g/IKczOWNJmFXrs3nBbmezGj62iMmL+TvpesVHK2ILRGSqubEo+17NBEL4kV3XT9Xpvm6nPiP\n+jWckfTbdDbHrGrQWGEAJijjOWLdlisNSqonYecuvl5U6l4iWlExo5oGF0ODUavYbYQYxcga12KU\nh4IMSDTQpZodlC2uQv39oqBckjnS+kNl5iOJDw12yxx4P9y5/GmzD38O+D818/AI+C8Q6+OXjTF/\nGpE4+RO/101im/Aw2eHwr/09jpSia2Etf1TN9TdeaHB1Q8y5Uljgd9Uk1EWVnRWEGsq1zRhvJp06\nPl6lrYQjNz/Xpf1AB1RN5/7BYwJV4MlMRqGKTB+1Bjiz7y0sV6vWXGU4zkx2rk1iEel6gDUzwfha\n7WZuUo1kkIIN/V0eQq5mreefqzuRLbCaDTBqzmN8vEKDbG5BsiUm5+p+mziXBbkXltkrZGH1tcIz\n71ts8b2HO9CsBWlMW6XKjxdDXtD6kNdvy303yps0fA3E1XI8XVRZv4Kv7gOhwRitQbBiqucrIyrr\nSkIyP2Q2EkKPdL3MQBWNkndP6T+Qnw+0VmNl3XKlLJRue51dIiWysW6Gr5M+6MNsqOpLitLa3hly\n0heMRacUsh5KpL7V9fHVHStVK4yVLAWtEEwnMZ7WlVDfPHc3mSX4KkWfJ2UOBuK+3jiVPmxXA+Zd\n2TjLswWDM3EZMiDVwyCLtIYh8Sgra7XXKOEo5iQIDJo8IWq0cSMda7XTHdPAhvLsJgMUpGRcD6sY\nCtIEtKLXqquJ72GWO6hTEJZk46zyCm1f3MZ0f0B55fexdNpa+w7wg7DUP/Np7nvRLtpF+3fXnglE\n43wy4r2vfYWPyzOGSmEVuA6Dipyq/rxGpOy0ealKeYlP0ICh66YUnuzmjh1TLGRHbW9EVKzQh7WD\nbfZTJUl5Iidt0mmzyBU9VqlgBnKq/MILhl9rCKJt+2SBCv/iaS7dWAkwAqQWcnUrzgqX/FB+/rEf\nd7FlCTR6Wp2ZTx38FT0R8xrkS56GAqrqo1g5BYwJyD0NGLZdqg1B4z3fCmi9JJ8bffVD3rwt39f/\nFcVbeAXF70hLf+6SnGLbH90kX5VUbX3kkXlydIUq5BLVcopAJdPygkJTiH4jBk9MdNcvYbQIqKR1\n/kW+QliTMZvut6mEckLNi9u8rrL19HosRpKQujcRyyZ7vMC/IVbKzZUu/afKGF0UlPUEHmQlyirR\n3oxUyn1/zKnCrtvX1nhuVVzFbv0K9cvKk5G3MbGYzP2hUvp1XBwlw/Edgy2rVVRe0FJdj5/8zGfY\n39bg4Lr0hdPu0DmR/H8yLtOvaoXqLKOh5DutWF3C1QZBXSypjuNgUrHMUjPDqtUYJgYKVbmOvsc7\nZxK1ED0f4y9NiOgck0DosmTJsUs3OM3Pi+1cB9K6jFn11CGfq1txJ6J2rOCJT9ieiU1hpV7nz/7s\nz/LH/ue/dG5TLfBoaLlsUqpgZlpldznALcmAxepbM3dxFayRz3KYqC/fukpJYaeni2NqD6RTV1bE\n5Gz6EU+UzTiZOlzpio8XtAuilizSX/rVHU50vGZq7q/7cKJgHA/DrpX7npzMqG7KZJv4a0RleeZC\nefbSoym5q9mH1gIyZWGaW9xIrnU0H2/zGEfBVgRtPN14rLEkDyS+8rM3PV7tyfXvrYkwyV/YPzqP\n1BdAdk0mxJc/f53DJ/cBeGoTelqD4CheoUg8KMv3pSahmKqallsiXFFz1iZYjWE4mmP3q1XMXBZ6\nKQrI4mvyfkGBc0PG4Yv5FyiVJYfe+kB22GF/Sk1dtDPrnPvcnUWdx4mMq7Piongy+lrKvhenzH1V\nYXI7dF6U/q6EdVDch/Er5PmSoEfmUNQNKIUyvk7ZB43UO80y5VDmyOqP/ChJrIspl/nkzjs0VIP0\neP2UhqsQ7NkRJ6ku0pL0W60yJ1IovfVjPJ17bj3DU5cuCxM85Wi0sR4yUeO88MbOXYyOgzEeNtLT\nZ1JASd0GrWcxNsMqf6RJI4JUYc7+mEVDId+1JlX/h6N4v6iSvGgX7aJ9X3smLIVZZnmrF/PF2y9z\n77tvAeCvuPzEz0mxx6WWg6P15iZ1SAdywiypzVzPx9OTJqi3yAIlzfBjMkXeBUHtXPKrc1NOkWz/\nGG8ied7ThkO1Kzvx2fZDOkjA7Cd+fJWvfVdJLQbifhTG5ZbSdu1n4Gjgk606zWUJ5ihm8FgqEZeU\nFeOjfaoqMtLeBO+yUsXVXYynjMLLAJldYFXyzqmF55J2Udqkeku5K6ufp/e+uELvvSCn0o9Nprw5\nUqnyvOCSBg+HYRk7kWBk3bHcVNXl2pm6DLYgPtKMSyvGjhWiXI1wUkXYVcsUimg0ajpjDa5qbJL4\nOGphka3R1OCvuxrx+guqDRGLnNs729v4XemLa3bE4Z587tj2aLW1YMiGoKQnZ4G4Plk8o50qSjFs\nkMylw4fDEY5yKZo0xq1oIdxE+SlO1ih8sTaKKzXI5f0cJ8IJ1JowXVrPicVmSvL/sOhQKCP0Ij6h\no/313e0z6hr83FhXnchaHU95Et3QYEpiCbh5BdD7Gv97bqMGgW1eg8bSbVyABphxPJY1ejay2CWe\n2qgCuWPOs1Y2zzBK6uJfi6gV4k4nsc/pTDAun7Q9E5tCbCc8Kt7kaHebOzWZrD//6h3e8MXf3XNP\nOZ2ImVSZnJJoZPzkoWK9G1XW1eipbVXwNAK8KGCaSzT5/a/f5Sv//LsApCUxAW+4ZSpt6XXXX8fd\nUJHXSsSJlpv6o/vcfE0n4VellmHWPCLYl5W+5YfcimRBdrcHHHTk2q/ffZfsRPzk/YVMxm/vxFyp\nyvd98bVXeKnx8wCErTooCUehAYF0njBTTkHP6eFkmr6MM3iswKLsIQ8SiajfU4HaDQdaan6OJxZ3\nU4BTt/a+gtVU10464SVVwBp15HP3Pjhm9Y760XOH5FAm7GVnk5YKnkZmDauZllxTiI47YT6VbMD+\n4wMOknsyDouQqKbw7mGDVE3sdldSZd7omHm45FpskavqVzZNqWp8xS118avyfOOH8rvRMD6HB19q\nlFkoiOrho20yxaa3mgGXG5d1XGUjTMyM0iWVbe9dxmqeueTlzBV8ZYGgkGuiVDaxvBiThkrhf7zJ\nve0HAJyYnBv6fqvKRVl36+fsR145wtH6mKwoE7VUC9QLSNTFcDWx7RXHuKqLikkgXcYXpufuWj7o\nnWe5jKcbst8gP5X3czyfXA/LolumompSXlEwaUrc5ZO2C/fhol20i/Z97ZmwFKLE4fZ2ld9++QrP\nadXbCz+xSfycAjoeTEkKDTRtF/QmAmO+9zWJdHebLi8/dw2Aq8EXqXfEdDKDCR9+XXgH/9HXfo1H\nZ2I1rKxJoLHTbLMIFKLcmpHtyakzywqMVurNah79txUD4UiQbD3xCXXnd3KPYFN25UkjohnK6fFq\nbZO1LcnDl1XbMt17yOhMshr33z/l0styMredz2IiMfOnB3LqHj76Dh/cFf6DGzdep3Va9y+hAAAg\nAElEQVSqWoudhEoqp/xi7wlBS8zSn1dK8u2fCAm/Iv06NRMCxWzcna3zeEcsFxMU9JR67f4HWuDz\nuVN2vyHByn4yYXIiVsqd7gZf+Ly4cc3bz9PYEmvJqKbi9HjO3Xv/r4zHu/8Mi5xKL3przG7KSXi1\nMqKrepzTK+KWvTad0VMtxcUswah1dzbuEyoD9+VOwMcKO955JNkLO1ywprKB4/4xH39H/n7vnYcs\nVP37cxtdgltiTa2siBWXFHPifXFzDqbvsP3uEwAq7Q3yREVpthIuXRV3Mrz1BgBRpYRJZN60rE9W\nkvFhPmNjQ/qiHqkEXb1LuNSVSRJSxWTk0ZhJX+aLjfPvVcRaMf39eoR3Ju8RbTXwVerOUpAuZI6P\n7r+Dq+I5QVlBT7UZRoOWuJahFSutNLiOu3JN7rdasPpDEhM+E5tCnKdsD3bwyys0FO+/bm4SKBHG\nYpJhFC9+ejbk/Yfi4/efivuwWiljlBqepCCfyqJJ033iXZlMbdPh1nXp7Bdv/CgAblBiqJWTQTUj\nmMj3BeNjJqowNNwbM08VAKRW3SIscAdaPxF4VOcyE6qtEEejzIfHfU56vw3AYCKxiPGJh6mrzuVJ\nmemOipnWRzCSawb3ZXI8unvI6J6qA9kZoS6mYjxiYjUe4Fyjq2pCBytiDne9KbVIFsRgamhd1qzG\n3/0QJWzieJrj6KJ+siQzna9CJJPcjt6nqeMQln2eqskcNjtUtLTYcWQyPvj2m7z9wcf6Tj6dlpjM\nR02H0rFcU17xWCnJRrypwrzVtKDbk/EbboQcPpYUYpEaQqWln+ST81Td3r5sprvTBbGSmQbf2WGo\ncZKPxxNuzKRfZjdfIawssznyTpVqm7Iu3nf2Rnz9oycAGPOYjdsvArDVW6E50nG9oXoL0Sbuss6l\neY1G4wO5XwqBlb5PEzW4kwGhJ5uKLSyFajvmLJgeqHhxbcHsTEZitaxp3U5EXbMFrvs6/hUdKWOw\nucYP5k3cTRX9rWiWBY9cYzupgbAsXJJmDK5mXQwZvrOkxvlk7cJ9uGgX7aJ9X3smLAXP9Wm1N/FX\nB7yxJeb3c1fr+BsSaAxWprzztphRZ9v3+GfKk9dZlWu/1P0cXf05n5zAiuyMRT+gkkvU+rkrEe1X\nXgHgG2+KmZweDyl3lLNga5PWTTkxbj46pTQTE626UeboVMzHuSenUjb3qbbkRFkPfG6qUpC3UsHJ\n5IR5+/ge0305Yh7PZOfvrIe8ZGS3v1Gp4Wsmwrflc1GaklYOtrYSVl4VwNI33x5T/v9+Hf5/9t4s\n1rIrPQ/71p7PPvNw56FuTawqNotFskl2t7ojdUuWoMG28hAITp5sGJAfEgRIAiR+80se9JAgyITk\nxYGjBJAs24IheJDbknrQ2APJZjfJmqvuPJ175nP2vPfKw/+dyyEtdbUJSCXgLqDRl6fO2cPaa69/\n+v7vAzDLJlh/Sa6tWbuOxUAsvdGTBGZYWUfFk2OZRoCDXXF3B/sJRux98C2F1k1JQDYXxcPYm21D\n7cq8PBnH2FiTe1qrbqKzXOG5Ayy3SWU3EEtsDobwTbnnjZ/dwNe/JnN08uCrmBDXcevaGn7pzdcA\nAJtV6a/IGjXoFbHckweHsAzW/2ceJiSraK8vQz8iVfsc7pykGBLO3PYUuuQ/MAYZkiYTd56DlLLz\ntRXO1aUrsGjFF7o72Lokc3/sWqixp2A8OMD2BvtiDmQNeXYLkZbnf4h3UWPVQuURCsoReKxUOC0L\nFsNAIxshphT94bsn0AS+7c0crDUlpKtTZKZVLUHTA3NWTcCWay5GZxj1pRqHpRx72/IsG0xKp+UM\nHhXHLGMZZpMkM9degEHG62w8wjSkJ/eM48JTuBgX42J8bDwXnoIuFLLQxjW3h6uviLW2XR8epdSW\ngiXcZCw+/OxPITNkx19cEQt19YUtOGSjSUoKeS7xqRFUELP+v7a2gesbQrHVeEN24sCZoJWLhVV5\nFwbzEkndw+kpla09A0s1sUCDfWIFOjFKYzYMeQ40cadOUKDkkusBDVy+JcfrsAtv/YqFUiox7pUX\nFlElz4IyJ1Azlj1ZxtrcegNldlS29QT5VyTxZQ8iqJiSYPkSdgt2dh4IJuLxcoJkkfDvQ+A4k/zL\nu1//fTiGWNiOZeIrS2IpqzclGXq4M0X9NbF47aMDXFuV61iqL6Nis9RV86CUWD/TI3eOXUG7Kc1R\nN1rr8L8kH5/0ryI+lcRsYA5QYqkPCTHYtgWXitj97iGGLMO1Oy4qBHaEgxkSJc84III0SQv4JhWj\nswQ+xCKueFVsEPdw6/ZLWLm+BQBoEZviVOsA8ycl04dry9xuDQ3UXhTvZXV9CeUaS6d1ub84niIH\nS6uZg7NDqnTbDlxXLLZKycGgXzinWDNrK4glhwsYQ5gsRS8ZLuol8eQ8Nqj5rSp0XXIuVhlQFOHU\nsxTOWDwhpwLYi4JPyck85ZpTZLF40MqYIY/keIa9DmURs5HlGJs/Xk7hudgULJ2iHZ3iKeo4m0jd\nvZXXUC5R+7DRxNqrsvDaWYa1S9QPnIlbt7S4jCKWCbFG30XuyMuft8bw6zI5q5c3UGL9fus6u/7Q\nnONAYEZtaEtc1C4a2CBOYed4Ap/CKDUSYZihAUUl0vEgxoT9Gm2jQMWQB3ftDQ9jLrBX5xLpzgJq\nm/KQ66UlOFN52eJhCZkhIKSYQqvNzdXzjsu1peKcabqI+lChhFVFcozxnmT7Xz+TMOnJw11ET+TF\ny6ERvCsbZPTyFSTfEBCL37BhvSAVhZUbsim88CUDs0iqE5dPtpCG87lfRUJ3vVLsQQd012vygnmb\nDi5PZT692jpeoNz9lr6E6Yk8H0+P0d6UDTAivNof9THsy6a55EUIY1noUVTHiNT25dIIg764xBX2\nQ5iehRuX5eV/+W/dwNpENoUPZgW+8FnpNVm++jI6HQKuInHL89kAhc0E7aUOrvZlPcHRqLeEGn1l\n0UPtkrj0BnvYC5VjeEyVsdMGAvZg1BwHNrUr87qslVwXUIQiG/BQItv4ctJB1iAV3nQZToWb84Z0\n/holBxZ7SnR8DYrrTC0DZV9CSKtRQcmQewUxCMXkFJq9K7mlMUvYpDM+Q1EIKVFo7sIrfrzeh4vw\n4WJcjIvxsfFceAraVEgaBj4zXYA6E2v1dvoBrlvS+LNhl9BYEItoVmtIZ+JNRKO5nmF93suDyf4G\nHCbzYjOF25KdVhcRlCWWuU70mFW3kVGEMksOMKWicDUK8McsLbbqJezQDfao9ltat1Ds0spbFt4e\nkuDFTrG1JLt8e3MTn3lJrLE+G/A+NXRFLK3vdpDOaczu72Ck5J78KyQctW3YZmk+QecCIrnKkbO+\nHYdlNDPCbllaXatqfJcoTT0C2i/I+cyph9WyeDFRyQViWi6PKMDSBlotsVxB7QiIKpzDNjyqbYfd\nKix2+8356DorLyMIKINWteFUJTwyTQuNKpNuqg+DLmzBcvE09+A2xBU/TqZYs+Xf47iATbKKh3tj\nTPl8QpKzuJGDV1+SEPOln/u7CE/Fm7reP4XDLslapQHFsCKbyvnyHHAbLB13ruKlO2JhJ3qGkmI3\n7lINDiHbBjsY0/4ImhwlYdZDqyq/U50ZEo8K4dSBHA334FHuHo0WND2s5YXLMH129m7YsFjbdlri\n8SjbRsbuUYUCc1Yfw9qAYuejcjwYHkMwek2G7UOT9Aa6D/dkDvkO4cV3OW8aleYGfpzxXGwKjuNh\n69INxFs59h5KIPbOb/9LjAnoMMbXUPk8Y+qShlsTl9AkE3E6OEbMXmbLdKAVa74TC4NjqbHbwRIa\nq3wIJdJ0a3V+jGBqIiRkOOh1cacQ12/fnAFTOfbMkIc17Jq4SfWfwThGeiRu8r0oQEpI85d/8iX4\nBNkYqxRxTVLAFDfZyJLzjPT+/fvIiNX3yV5nvL56zglplAMogy+bU0d2yk2hf4Lpw20AQPkRhUn8\nAsnBhyxOs6q4w7/0X/8Kpv/Lv5DflbuobsriBlmazJUCFuGzZqOFbEAW4ekZBhTh9QwLhjPnlWSn\n6ugusogLt/MyLBKkWHYJliffTUILOpW5VdS+rNlj5Ja8KC9t3kHwUPAk7w0nGFN4duhZUH2+QATg\nBGYOry0bSNtfhPGGbASNAwMFAVl5tw/N65w8+YHMfc1AnXqc/nIV3hJ7ZSYVJJSir5V9WGUC1cgU\npYsChScvbGr34LDq5B8BVTJ/OQxV7FYTigI4eRQjLyZ8ZmWUFrjxVFYwb/2cQ8Z1NIVDZi3lJFAW\nN94sgEEotbJcYE64QjZzpQ0oViLM2D3/rl8xkcQy37H2UHVILvOM4yJ8uBgX42J8bDwXnoIyTTjl\nJjrlAdAXS/LBdhe9E0medfQEy4skxbCrMBokAKnIDh0FBcZ74mHUqk2gzGz5ZIp4X/a9eHUAzNjh\n16QLaAN5JAm1vHuK8UgsfhQHeDIW6/jABPb68nePLMqrC8CoT0tilqEzIttmMcaENM+OT7DM6oMm\n14MVp5ir1qvSGCHDkqfdPQzfkbDpJ36OiDgPH0qkZxYU8RZFESMbbAMApts9fOdA9Db/1bbc/85w\nhj5VHWeFRrkjlnQluIpf/W/+AQDgd//5v0BB4hCnPudTyM7VSYxSBoscjtnMQcq5aG9dP+cjzE25\nEWd6BfFMeBpMI4ZliTdmugYK8h2agxDxjJ2bU/b5WwZ0zgpOnqK1JJ6QN9jBhN7L7DREALJj037V\nobEezxVsUljUxqhWO+iHTwAAcTAFSJiz+3Auj3eGDYtrqOljbg/joospQ4xG3oZBKrSCFnhyPERC\nfo4Vs4GTQ/EaCrcEzS5Jt5DvVgobSOilFTlsclvapQ5Mi92ovoU5NDblnORxBLtBlKJyAJMVMZQ/\nNNsZAOIiFKtdWlkAE7cqT2CxizI3a7CIEamELorKX0OSFUMXcHWAdFpFSPjs4iIwHZJ0tB8jMtg9\nOMtgsuPOMkgomljQocTOUTyGw9g5iSeAJe76YBxhdCoT5a3JObJ+6VzOPhpMkBIgM45MVEk+knaP\noThNHl3SNFGwG/LSTEcFrLY8jGymcdiVYw/3TxAeSChgBuQqPJhA1+UcmbcFi3H9qpthcZHdmtxU\nkqO7SJSUyqwwAQJWO5xT5F1Z6P3hNvYIpT2h6M2eFZ+X7zSATZM8kS/ewcpYNo4vDl5GPpOXejZk\n/8X6BPmcKSkykQ/l2lxoKBKPWLMhQFy+InGMKvfgjthdOa3BWONDzUrQ5EfEZAYwLzEZsx08zRGz\n7XnBN9AjiaHhuejRrR5mKaYUDjbJYZmZCr//rrz8y1//Nja/IjmY/CjByYl0wc58hQYl4Z88ZFej\nqeAO6JYPbPiJnPuDf/V1TCYM3f6mi/ZLWzIFgdz//uQe9j6Qqo0xjlFhmbxUuGhS0zFjWBkmU1gM\nA1VaOyeHhY6RDalB6U6hGW7psdxHPtUAj6uMxfNNQRcRwGdZRAYMm/0TFByCSqEZrubhBEkgzzc8\n7uE0J5T6pQ04rIg967gIHy7GxbgYHxvPhaeQFzlG0yGMcIyH35auxpO+CZ9t4+/u7OENJvvymg0j\nnWu60UKValCmuN+9wx4mDyWx0oeBnTMCEcoDlO4K0MchDLq2sYjkUHbiMHWRu8y4hwEOIrFobmGg\nWp2TiIhFWKgqnPXFS2m5NQSZ/K7IejiiBf6Tt3bQvCFUb85UXGDj0EQ+EYvZunwJuSthjF+9Bvdl\nObZfvgMAyPoOxvsCOzaXXGQUeEmjBAN6I/G4jEMm6A5DuZ7pKIdi0jUvNFJ/jjEwkSVyvopxB3ZT\nQpchvY7VogWbGf4iDKHY668bdbht+W736R4WtAijZBUJP4KkhWyJFZxZAUYEMEsFdMzrUCYycgkW\n5MIYPJ4gpIuryhkaixI2qXd3USNXZDzMYNM769JTPAk0vvVAgFpXvvpvUWH1JbV9HG/LXNhmipEt\nnz+lpPzqZxdQdQWb4EUVzAZy/UfBBO98S8Bga2oZM0oOuqTXP3l0D7PH7ESslrFEaHpiZ8gJMjIi\nuY9osg+PPJDaDpDE8u9OeIJSMa8YTKHYJZlksk5NXUU2EHg4JiOoDSY70zKKiPHmJD+XoVPmvEkq\nQTGXIghCxGzSO7h/gP0zWesLN1+ASbzLs47nY1PIC8xGM0ySITKWvK6s2Ogzv+C2XeRUyjGjCAWZ\nlbK5YlNcoLogwBXPdZHyBRrEPVz9rCDF4kET1TX5XcLsdnK6gIgAqHFzgOiAvH1FiCgW13dgWagx\noz6bt6BmNjps01U1D5ca8vfg0MWM7tw7wQm+8C43oS26nM0PyTx793bxZEdw7WfbITZNcfEurclv\nIqcC64a8QKd7MyCQ6zmcDRBlskj3Hu/hB/PegLFsKqn+UBXJAKC4MEd+gVkkG8DSloQvAJAQeIWS\nhmJ8DjNGwRqvE9toNgV4ZKytwpqThpJQdaGaIo+kXGxZBXJSzRtFgYyMt6l9iGTCCgU5OJPSFEox\nHrYVJiTTrfsWQJ5KVIGQQKxj6nrMkOERCV4ebh9i9fCPAQBtbwmZKxe3qG9h5MlLf/VNKbNe/+xn\nsLAx11vwYC5LSLTyYBnHbTEo9/1dXO7J2gjIYuQPIgz4fCsrwGEim3p8dozNa1LZyRx2jlo2chLv\n6iRFmskGY0ZlJBFf6AJwfH7nKXU3lYnI3eEcxtD3iZCttFHQUJk1DwUBTorVkmx2jDyTZxpGOYpQ\nrrm/EgMt+d1URygN9vHjjE8rRf9fKaXeV0q9p5T6DaWUp5S6rJT6llLqkVLqn1IT4mJcjIvx12R8\nGtXpNQD/JYAXtdahUuq3APwdAL8I4H/SWv+mUur/BPD3Afwff9GxirzAdBghnj1BxZJddLW9jDwk\nL2PuwiyY5NMRNPvXjSkzy8n43OqUWgtwFZMsqsCKYp/D0hCFZrKqK1YrWtsBE8dwThSOCZTpqxT3\nCEjp+zmKklyHm8q/9/IMKpZjXfItXKuKlf9WMUacknJ9kOHBkezQL6wIlNidpoAtnkk2O0WHXAFF\nx0KdlOtGY54k1LACsZhuOEO/EAuWTy2c0fV9fzjCPfYSBHMBGABzY24AsIm5z3pd5Aah0n4NDr1V\nhxx/RmwDFKLRaACJJNqS8RmcCunJl7egpnJumxgE5D7yMiG6wURYhwHkOEWm2c03BcJMrn9yKt+d\neg7ieA4QmsEt0xspheedn6VaB8fr1I0cfAhCUvQaH00C/GyXeIPbLtrETpSMHWRd8TJjVhEqyoEm\nQ3Oee3BimdvWSy/D+JokEo8e7qKqxRMo16QaMjJG8Eqkjh/1QVJpoOHAaElyW9HbdO0aFKsyWRqd\n0+QXPpCnxCaEOfKphDnWIvE2yoLdFPkUnR0BZAc3mi0YJFZRRgHMBYq0PIN0nCI/kxAkz1yMWXWy\nZi7qFa6H3RGma3+5fAoWgJKSN9IHcATgpyG6koBI0f/Hn/IcF+NiXIy/xPFptCQPlFL/A4BdACGA\nrwJ4C8BQaz3PBO4DWPthv1dK/SqAXwWAhUYN2fQYwXEFzobstEuXl5GTYedonOCkK7txa6cFzY7J\n/ER21GlvAHeZMNpRBqNK9t3DMRxyMph7EQ4HErd1yGLkj6qIafFTtwR9KrvuJElRZ06hmxvon5CH\nQIuVW/LaCLkrew0bo0z21kvVCu72yF8wSXFCVeL1B/Ldxs1bKNXFIjbu+IgvEwaLCPZMElhzq5xg\niC51GiZmBXlPvBHtbMOm6nYYHiFU+Q+bXpkLAIrsR7HvYdDbBgB8praK2KDlPmKcveZDGYTRjvvo\nvyNJ0mx2jPICuzkfh0CN8T5FX3T1EvIzlnjNHrxFsbCWUwEo74ZZCoPzfDyTMq0zyJExv7K4MEZw\n0udxXTyZiMVfUh4SYhK2yHOWFjmKTLyRSTHEW/e/BgB4Xd+EWpHn6no5hp7E8+PuvPRaoD4TlGqk\ne4ASr+/bv/c+huTAaPsB3JjaCey4DKcxwq5c82Rqo8ykqp/656I1M/JUuHULHhOcyUxBl9mpWDGh\nWcKNT/qIWA4tk+3ZutZAMSF+o7UOZbKUay0BgZw7iWcwWuSwyMVzKVQPoLaEMvsYZfLdUlLAtCSX\nZi7aMEZzjbxnG58mfGgC+GUAlwEMAfwzAD//rL//qBT95sqC3h+cwfGA6ERevKa1idIqGYcP93Fw\nKv7uavsIfiIvyIRipr3HD2A+lMXqxyYOYjlGEYcYKqFE070e9mby8F57U/59+Rd+EVV2kEXpERIS\nU5x2p+hyEVdthYJ73C4TPA1fo2nKIh2lGguEtp6ZORYZBvi2wi7p0Ld64gLW4xjjr/97ueZvmMjn\njMFw4REIU6H+4sHxDiYWgUev38FlYvWfHvaxfU9eNusgRymiUAuToPEn5jkqU4jmvRkCJmYHAweN\nDXkhj5mcWks8GAQsGYGPYCBf3t87w+2pXH9SKxDeF1q02JSXzm91MT4Wn/r4CLj+C+ImN199DWYh\nL1Y2DtFXDAnYf3D4cBdlW84RJTFislhHuYNyU67p3fe6KFsMG0nf7ocKEYVx9mcBHhzIvI2KPm6S\n8qx+8w5qSjanzJJrM7WD7ESu/fTJAR6ciZH5w0dvwWI359X2FVQaskk6deI78nVEsRxjGk1QyuV6\nNq6/hmBGjsmpXMMsfoKNzi2ZQ9OGZsLXLnlwSI82OOwiOCEbuSMb70pvA1YhRs12V2FfZaWiESHa\nJ8HLPQONn5L1sHjrJ/ndGuJYEtMDlcEm/sHedOCxIzTLQqTuj7cpfJrw4W8AeKq17mpRSv1tAF8E\n0FDzAB9YB3DwKc5xMS7GxfhLHp+mJLkL4PNKKR8SPvwMgO8C+BqA/wTAb+IZpegNQ8Evmzh6cgjD\nFY8gzU6h2Svv1kf4zve/DQC4Wh+iWJXuSWeJCUXnOvQ+YbT1RWzaYhGe7NkoUbZ80HGx1hFrtbgl\n1kCZY6Qk7Ji0RtjZExfWOnqAGrvlqrcSjHco8GGJZdiyK5i5VADOJjgmC7QuLCwtyy7fPSvQ1/L9\n95ngavunuP6KuOLH2yNYdPEaKoe7TNl5X9zPtWvLsGsSztjNCqI6lZ2PUtwNvwUA+GY0RqbniT0Z\nDQMg/wsKAPWaWKDD1wb41/+7zMUvf/ExrpCTYRpL0itM63AjMlSrKjq3qTXpXYUmziL1mvAu8Zqq\ngiuw4xrKG2LlL8dHKJFOT+cRclO8htR8fI4QTIcSUnlVA+HGNgCg9ycJ9FCe2dKNm3h8xK7MvIfh\ngA1bhPM2Ohp77AZUFvB9W7y4z1h9fKYh3sFBdB+Wx7mti90rZ30YJEtZ/PJtlFLBJvR+o4bDhngC\n9fUbyDYJU9cMH9J9zHvAap0ANdKmxYPDc6n57miHc1JgEkpY5ZfbsDoUtYkjFEyg11/YgNMUO1lM\nSE2XleBskjfBzKHach8wFuC8KPex0nof7tr8cyYRHQt5VagJT/fH8IgQXbq8ilDLNZ3s5qjOfryS\n5KfJKXxLKfXPAbwNQWa/AwkH/jWA31RK/ff87B//qGMZBeDNNEoeMKZrdRx3YQZcsGcxckJmv/W2\nizdtiaMaubzcbrOEGev48cnpuTCr39M45h2W0zI8nxhwVgj6u49xyuzH6cEA7rEcoz82EUEWx+HD\nBKeuTHbA6sNCtYwtsubEUYi9E7YhOynCKbsu0xwnVLDaJLfj491FrP6MxL2e04Y7ImlLTcEIyFzN\nyoJbW4GRzeHaGt3vCKhr93tP8fWvyUsziiLM2wDmTNNBgXNCbwXAZB7kysjH37oq4J3vhF00HwiG\nIPTkHPFhgHiyLYeqdFAymVlvBTibCHy2+OZb0G1xRcsU7dGeC2dD6vV+7QYsdiImvSeI+sSTHAM1\nKk6FbE8vBUMM35YNYjBIcJ8b7me1Qj1nv0OUo0vAmCb5zGhaIOMdplqjSWGVnSjGKYlo0qSGFxbk\nGI1rMt9Gzcc0l7n1exFsLZv+izdvIZf3B01HIY9J8c4QdPdoBK8rz6+oV1GKJK6f1CM0EnJCEmCk\nxgXOSLdUdfswCKxSlSp0yqpNXkfJkLlNbeJl0gnMXYE866U27G0KAw32YF+XlJzjXoNlyaZQBOzX\niRVwKvO9OulhwMVgDRLkDMfi7VMcdpivecbxaaXo/xGAf/SJj58AePPTHPdiXIyL8Vc31DwZ8lc5\nbt56Qf/j//t/xdPwEl57TXAF270Iw0eSRNl/2seDrsBrzaMzrLwq5CUVJm8+9+ZtNB3ZMRv1EpCI\nVfFrNiL2xUMpxCTv6FAu3MiAglX9YS9GTC7Cx90TpFT2Pd7NceM1OfbOvuy4X/0f/1t0D3m+rQiH\nj8W1r5UrmOyJO9cbTGFRHbnaFtewko8REhgRpQUcehteHp93Np6xkWXyeAKbNHDFpECbWX9De2gt\nEw9WWTiHJre2xCK+9rmfxBd+6ecAAAvaxUvXrv+Fc28QEr2wuIJLrwgqVM/KUBMxn6FroEfptfj9\nAUrMqI8YMmUlhWSu4GwoaOIlKoYBg+7LQstBtS3WcbHKbLmdYcSMu1+2YbPqcqv9Gl6oSRLza//m\nB3CvyjFaa+LR9PsBVldJq2a5OB2JRZz0BojJSzgeJgAh1MY8vWVbmFFXMkkyxFwjuigwI5tzuWKj\nSUhwQXupVQrT4XzrAgvEffRjA//sd6Xykc05E8tAEEkY5KYe0sdSDTjpfQOzfelmdZdfR7EvieLm\n64K2PPngAZi3RnKcQ6/I9dz9/UfwV2ReWrqC2hVWFMgzMvXbOGRzWMky0M0ldKmsLaO/NxfzmeGf\nfFPm8//5w4O3tNYCiPgLxnMBcy7gYoKrMDcU/t0H8uKtNWt44M5FMbbRISz1tFtCeiwPt7y5wN+n\nMG2q7hQaymVsDI2KNQdUavhUIbIJUrItAwX/rjdczCh7/mJtE8czmfj7rVN8d08e4oYWd7CPKsa5\nfLbz7QNk3JBGJwfIIwlBfAMA2YaaZIo6zhIY7PrLoNDk37Fh4Ca1yPf4kqp6CWE6PSMAACAASURB\nVH82kfv3qyYec5EvlQ1MR/LiLaTH6J6yA5M9Fw+dDlZvCjPRpc/cws/5cm1fDeZSMJ+Ye96/Wa2g\nWpP5XPUU3juTxXhVWXixI3O/ul7Bb7Bse2NDXu7vzXpYZJ/EURTBsmWOhwB8hl37AXCjQRc7Y45A\nm8gIJjvYGWNjTebiy3/nBn79t0RwZW85QhaLu/46+RA9J4dPDsf1Sw68ewwFGxXkGTeC9SZyEq74\nLRKgQGHC7Hy/FyJK2M06nSFh34hWCvP3H6ZcTxA751WE2DLw+EjWheM4MBwKznDjmXbvwTbls8Sw\n0I+FWr1nGBgdyqbWOpudi8n6uxIe15rriHblGOVOhKQnG0vTWkR+nxT+KybUUDbnSi6/T8Yh0iq7\nfKcTNGzJUXhw8P4aw+2vHcOY/fll6x82LrokL8bFuBgfG8+Fp6AdBb3uId5O0V6RTKmzY8B+iz34\nwxhntOKz0SHyjlz2aSG98mrPxpGS3f7Fa00E5BioN3102FFWLjmYK3nPac6UAow5S7AJ5Oxki3Og\n1hBvw98HRjVyHGyLh9KPgbgnSbKSOUF8QvqwNIJN65+4LpoMTQ5Zo4+NGBEvomYaOCXPYc1ycEhy\njyqTZXu+xusWKeF0Dk0rWCQJDDb+BMpAwmOPxuIi3r93H5sHIvf+hdUWfs+Q79YAzBG6Hx2KzMD+\n5k00SlIZyZ0BjCWyNVttGBSXeXirjr/9ijQ/vf+IPAzdPwPqcs8b/QAjejyzZASL86nNDFN6Midk\nSd4opygmxDSUNE4Jf37vvSd4jeCkaWLArDC8uSQW39wvsEy+yvp0E9UtSfIuTTOAKtat+jJsSsKr\nCiXgnTGSmaybwekhhj3iIoJDvPuehKnHWYyczyEgwQ3golZn92g/RMVlwjRKoMijoCgDZ9WOYcxe\nBQAkvV2MjsUb+bM/+QAthqP6ehVbDQmRc5es1ZU1eLdIY1ftYLovXtg1r49j4hTanRoUE6UF52R8\nOoJZk7Ds4eOHaG5JwvfyRoSF78octS67ePRtdnk+43guNgU3NbB17CN0A1RP5OEfqwP4qUz23sku\nqo6U0Ix2E3W+1C6z+9F37uKI5Ro/XMWE/bsvrpeRrUmsbXoGLJOgkLnupKGhiGyztUKzkIkMKgk0\n0W9L5TGC70gJ6WlJFr/9VOMsZf9FLz/vqUBSwGAXYMUG4JLcNSIVOIpzTYNqyUaiqPXg5ojZUuxX\n5LNKUsIlxjOVTCPO5e9ud4ogZRkySVBieJSlc3d3goM/FcDWg+bnUJD0gxws52PuIpq8/2LnGOYL\nwiXZ/cEAaizPobs4wJ2ObATey5t4/T3ZtPvXxJVdLrXw3bG4qtdnEQ64+GH4GBHcMytyDAbsY5nJ\nwj6suRixfyKaAD41ET84+TM0dqUyUkpMvMHqgTWQ65k4AQ7ZEdox+kjIm7Kxsg5Sd6LSWINJ8BFo\nIILIQz7Pd2xmaPqyKTzen6BcosDsuIuAr0SVOYc0jaGGfH6Gg17MikquYHADtEpyH2Z0DTmk+pDs\nT/HBv/wTAMDTnQM4REjerivUa3L9FVfuzV64hMKX0C0dPUbuyqZRrddQX5LPk0EPyZkcI2UnZ8d3\nEY9kXq9iEWf3JBypbLwATVLZcb+NpCYG7FnHRfhwMS7GxfjYeC48hcTIseP3UTot4eEydfa2+zgg\ndVdUqkG7FBbBDGMSg1T7koVOrBRxLO7z5MH3sLgiCdbJukaHikt5lsGwyX3HrVAD50kkZQJWSaym\n65qISRzQCn3cfVlc0fqpWLmhcYKE9XHtKpRouXKlASomO76Dlsd7oQWD8tAkNt6ueOdeSsP3UTiK\nvyMAZWLCok50MdE4m8i5zciAw2x/oTUKqh5Zc/e028V2TxJRT773NgiROO+cnA+t5qQfJEKxB+i/\nI92C+6MImnN/6eZ1vHFdmLRXbl+HtSHu+sLJNgDgUXcDq0PxpMYPt6HnCkrpGUaPWKEICyQMCXJ2\nISZjG8VEnkezZcKYyflmd7voEtLsTXJokquUGvIMhvdiXCcoaDLuYrkklrTiuqhRdt4r12HapHhn\nOGd4KWa8Bj9oItNiVRebNoYMD2ZTFw7DyYxhguFrJHNKuMRBnSzeRZADBKfpnD0jFRfWVBKKM+sx\nziyZFyfpwViQ3y1fXkP1mlSj7Lp8V1VtmEwemv5lOFfFG9NFDByKB5xUDSR1OV7MtZd2m3BL4o0u\nf2EDu1rC6dG9Izhd8TaWN8roMEEOcVx+5LjwFC7GxbgYHxvPhacQBwrbb9lobA5ghWKJth8NkGup\nwVZ9E/Ul0nUdDVGw+3DXl93+8sIldBjX93ZSnGr598/qS3DnPPypgZzwUIPJNUC0EQCg0Ab4VfjK\ngKKH0XE1XqUQTTyH+3YTeI5YiekwwinZiyqugxco8HFlrQ1vkeeesK6+UMBX7KFvuCiRYHZtxUMR\ny3fDSHb+oNAwIffXfgRMya3wMHNw1BevaBgpWIQ5JyTztEyF4X2xxoetxzAZ7xbRvHGV931+/2Kt\nG7UOPndTPIKTr/8JnKbUxG9euo1LL8v9L9Y3UDTZjFWWI7Rabax1xULfR4IVelvdbgz7SLyYD5Ih\nAuZxIno0dlygRI3OYZTCogDKnWYbb1E8p7VRw2NPLOjtidxfYGo8YVnz1c1lGM5c68AB+LcyfOR8\nJkVCHorcgSLPRjwcIZwzRKVVGL4kGnWWwbTJejSnMFMGCnpm7YbGkOXXNCqgyaZkunMOhSHyKWHz\nvRO88wM51sZKHT/xEyJNV7negU1lalVmnsypA3O2LFWGUlty7jhF3pF8jd0fwtDkdSgoD2dMUTCR\nDt/BpYlgUva3d7GwKO+RKi0grf41pGOzSgXadwJEwxi798VNjoMZcopfeKUMSY9Q4rMeJra8LA2S\nm4yiMdrsMmzcrqO8SUKLYAJFlmfVLH34JuTzRKOC5q6QS6OxfKwBm3p/NeXD7krevsfatrvUwOxE\nFlKc5Ocbi+sCGwSbbF1ZgCKU1mzJ9ZRLi2iukFfScbDWlJdNeWWYShZpFDFpGSWYBLLBdG4doL9N\nerTrZSywM/C97hA1bgbUsIXh5AjIcn3aPQUi+a5n5AiZaNP4kBbNZa/Fay9/AddqsqiutB4guMaX\n8dICylwmTgr0qH/JBDh8wwRI626s3kbXEwBN6XgFIybUXtEaD1l9mFPFRYYFRgSwYWLElzhvL+Ir\ni7LQT/IaKquyiWpCie1JiJZLGrNxAfMm+wu0C4OJ5zgZICcaKItZxx/PUJBmPSkXKEjLPx31AFYl\nJpaGNw+rKNhiw0XSkbkynRwL7Crd1QaUQ7Fcig8hbyOnAta9u9+D7cszXVxYhjmi2MvSNcDmpsBk\nIKwEoDCOchQUE8naSGGyZdzw1wFiZ1w+33RlijJko7CPAxSE9ztv2MiX+T48LfB+70Mj+CzjIny4\nGBfjYnxsPBeegpEDft9ANxvAPxLXeGf/EbwZXcDSABWSSfTGe5gMKQCiZSduXHPRaJGHwduET+ov\nQ4eYkCrLKntw564WdQLzQp+TbRjFhwlIoAAK+Y+qYaBJbMGRwYaqyEfMUMQGkNA13qz6uLIs19ms\nVUHoBBTZoDdWq+e6haXyImrL9CRyEzFDDH8utVYawiF56Fm0jM4iWZCzEIpydGdx49yiGXMchwI8\nSuGd9IcwK/Q8Qn3eKCVzQ81LJj7XV5YQKrHy7TUHn12X+7hsfQbxUJ5JYAYIKCITHcgJSytjmJZY\n8bWJhucJ9VyxugufJV4/c5CUOPfkf5ikEXKDdHO1AqVAjudvVbA+4vNdWcNoIM/vjEnecJghoYao\nricf3o+fIshJbFoUSBk2pEQ2ZsMEeZVJZbcKl924nr8ANBhKnDqYUW/UYFhl+zYU1cM9ZSNm45ab\nu1DWJ9xy5WD7+HcAAN99K8KY93TdBhYoyWeoJgziE9T8eq3OuRQc9AyacHxlWwAbzFQ2g8nQBTUp\nl1tpA8WUDBpeDmdKIZ6WDcUE7SgJgM6P95o/F5tCqnKcekMU7yg8oDgLjBKKUPoIKnkHxynlwOME\nDer9tW3pIKtVGqiyzushBRwKamYKGbnxwmEPWU3CDZswWdsyUJDvT2XClQdI7V6xpdoqLDiLsngv\npfJQvviTl/HONwTu+3D6PsqpLOK1Zg0NT67JqnhwlCyaVlkeuJfX4dTlZbTLPkxSoJuFjVKV7EUU\nx/UKE1PGBJtrEaZTARaV6h08ui8by8nkER4MWLMvc5PSdeSkUzfTGCY7Qi1LIcg+si2QvKSyIuFV\nuRxilpOlaBShd1d6H3ba38SKJ/HwyNnBjD0PTomqV+MtpBb1LxuL6DDXol75LAY10XEcVm2ErESM\n2+wMnRnoFwRI9SxowqPfXHsJjqQ24I+6CHOZO/+UOaOhC2eTYimGAZf3P9YaZoPQ5ryOgMxZIdm1\nVUXBrpK5KANKDYnnW0UXp4TLV4+7mARyPJd06lXXwozdkIYy4RI7smiaH0lIyXNWTh8pQ8z+5BE6\nxKFUrt+AfUtuykwSwGNI67EmZDnAXLbAMKCIVQE8qEyOrasKFsMRRdyLH2fICKu36hkKMo7VH1vw\nTohpKA+xNJ4L0z7buAgfLsbFuBgfG8+Fp1BEBSZ3A9wdP8DpiXgH6jBAyxSvYRylsCAJHMQpGm2x\n+HPl4KpZhQO6ouUKCvrSdjqGncjnlmtATZnMIvGGleVQZFQeJDmaRBUaygQ9cKSmgslGmrYtO27J\nbKFxU6xOaezCoUu82b6CEr2CwvLh0D22CbV1tQmbyaVK2YCiS52cGbDJGOzSQ0xiFyVm87LqFVR8\nsappMsYmM/VjP8Do+5J0VWRAblUt7I9YDSmV8J/9tNTEf/23H3xszi02Qm2yWtJMmzBDOXndrZ7D\ngAdDE1dvy33o6QrcjJ7CklxDs7SOkyFRoWEItOQ+VmtNRKSjO+slqG+JZY5YBUlxiAdTsXwzZYO5\nNZSvrqLpyfnCoYMOl+jUoohONcS4Kc/BtdtAg8IqiYI3R45WMiBkNn8kc19edVHy5nyGKYqxWGBr\n3cENNo1F/RGOt6VyZRGtaGdllFmJihzAYtNYrkYAv0PFeRSTBIPvzxWlLVR5U8vX1mDSM9FlE3qO\nKZn/Hhpg1UNPLSgyMSvDlyQkAEyM82SkWSJfZyeCnpLXogjgk2+zPOwjpDq25bhoJh+GWc8ynotN\nIbcKTBcjzHb60JR1d3P3vMuuhCHiM5l5y1LwGEtmdP2TJELGG9duiGJeJfAceASWOK5CPi8dEXPv\nahsJ0wTxbIS+Sdpvsw7FklueB3AYfwcjCRmufeVVTP6Y1OP72yhIkLK62kBp7gaOA2R8uKZFjsOZ\nCZ/tu8pRMBwuChXAYOw4RxmZYYqQwqfTKMGUL6nnTGDE8qV11cYDLVUQetlIJgbqDrv6igDfeiyP\n+Lpt4vvnzR9Am63Ki0o4BZ1qBxt1aZ0uvdnG4YmUBV/93GUsV0Sv0WqNcBZuAwBsX84x2zmDPZFr\nODnKsHVZKhj5SYxaQje//RLSksB/e4/k2sd+FYrlu8XmCH1yQvrZOiJL7nt2NEVCUNMyy2r51EaV\nczWY5rBsbs6FAdMRt9ya+bAZtxt12UzMwoA5zympDBm7aquLWyiqct/XMwdLoQCAhrasodPQwCyS\n8MgqZeeFhpJdAeZCr3P2qyKGnbF92c7QWJQKjuUvIe/TWLQygBWR82deNaDm3bzW9EOWHG0AxnzH\nKc4ZlzTk5YczARQ3bNuGzW5W19dwMylbqgON47Mfr/fhIny4GBfjYnxsPBeegpEApd0cSe8UCCkW\nEgQwCWTqDgfwCBluNRpoUUm5qmWnLYocqSKNWeZCW/NuxxyxRU7BwMDoibirASGslkrQqBEUFY1h\ncyce5RmqhbiajtKwqPw7ZiJy01uH9XnpXV8MvoiU8uqXbl3D4X1JiPaOAjTWiRFg0suJPBgOdScn\nA5RJn6VViILUXaYjnoZqlhAfyu+Ohj0MDuTaF1o1WDM5bhSHWKG7vj8XS1lIkSdyrOlhivElseJn\n737oJSgAPlmJ+5yfb7z3bdyxJJm50JlhdU7T1lUYnIqmZWujjkpDjt0LJMybhgopuXlPD4DR98TT\nswfAKKTLv+/DYmNPfUks2N5JjrAi96ctEzZ7dtqbPmKCs2y/inAg3xmNJGx5N5gh+I5Y2pdbGdyJ\nXH/N7OASKz+VkgvHkb/dsvw+sS0EtPjDbh/b5O50/Skm7HIdTaeoR+QqoBFvJgZCWvGDoxl8Kj/X\n1z0oizgDCvUUcRX/bl/uGUmOmi8e6fTuIWpvcj6nJSgmul3+v6UjGFUmx3UGRFSadvrQxNTk4RB6\nSOEXQvqTiYX8hBT+FmCT8s4s1+HMxYySI3gvzhOXzzaei00hMzOcVXpQoxZOc1lUHVNBc1FZhSts\nOgBa/gwhuRKzoSwwL20gZwdjt+jCZOmwnQfoU3fwuDbE+EC+P30gC6WzOUZyWdpNPd1AlAqKLyjG\niLUsqqq5BG3J9xfoUq7cWkP6rvRXnFzewdVQHmjupNjblZdlLxui0ZXr3D0QHLofaWzVxd1dXm0C\nFbnOjbV1uLlsTuGOLLQT/RAH+yKtvv9ghORUrn12q4NrpH5fLEc4Yoi1xtJqN8qQE91pGClG35aX\nKVXAR2uSZ8Ttf/u7fwgAiP9I4avUJrDMAkusnCx9Yx0/dVm6+W68uoGri+KixwQhPf7+B9jekXs+\nOuvDPqNGxHYP72hZvK+UHFTvUZvxGvMr+QgzluRmTwuAbeSG14bVlnPXVvcxY55g755890nvFBFf\npng8RpvdrGb0FDunsvFc26jj0ioJR5h3yjJg+z0hL7m/ew+9MypBlTewznstwgjVmjxrd8QO1qt1\n5McSdh5tH2FSkudTKkzMwW6a1Ydp/k3MAlm/k56BnLmo49NtlJ9KVSqunGGwLRv10qrMZevKxjk9\nu1k1oOf9KoWJQV/6UUZP3oOVy8bisGQ7rcSo2HIfxkGCdJ1y97MKzAlJijt15AYJX/HHeJZxET5c\njItxMT42ngtPQcdA9FgjbaTwSOkdjlJk1OWzkKFKTcBsbKGgWz5gv355eoZ4Irt1u54hIVcf1kO4\nhli56b0e3v220HylBdlwTx3cui/Hrd2uoh6KlagtXEZ0yox6bQjDI2uvpkpyZMDflL/H38lQH4g1\njrpHePuxWMerG1X4xKrrrli5o0GIzBAXcPDwEM112cFb/jK8slzT3UffBwD8+9/9FvapmhSlM5gl\nSSjdDgOk1yWTXR/h3BXN6O6umWV8r0/23iSDTxry8fFH5htATF3CgGzJdgGobN5FauBeJubqdDxF\nQvBSearQ+iXxpsIj8Q7efe8x3noqFjjMC1zqSqKtqLQxPZP5/MZpgM9TZKV0QuyF9nCkScvfMnD3\niDT5jobN0k953IF7V453dCwu+tEshcMkYaI9DJi4DUYJpnPodtXF7Vvi6S1dEWq6fDxBcUaG5rgC\nm+Q0Zn+EvUw+35tu4+ETmYO/cVsSsI3GElZ6Mkc/MHaxsixe35WltY/QZsscp/emSN6X49aXKuie\nyO8u6yZ+cI+M0G4fXXKPFkO5Z+W00doigMpoQJGvMzp9GwN+9/B7Q2R1WTt+mZgcAxhT2qCz0oBF\n5m4NC+aCeBXlZgKXOJpnHReewsW4GBfjY+NHegpKqf8LwN8EcKq1fomftQD8UwBbALYB/IrWeqCE\nIOB/hihPBwD+rtb67R91jsIqEC4lwEkKRViqMmNQag+uYaK1IjFZp+LD1ESQNcnzr1JUSb91mk6x\nsiB/Z41luCStfHL0EMGS7LTbO2KtbrdqmHZI55U4cKgJ6OUF9ILs+MNZgIgYgII6kcuvXod1KNfw\n+a01GK7s1k8OFKoLxBDkCnYsu/9DJn22lgxYNuvVdoKQ6MbalnEuIbe/J7iD/fEZrr4snz3ar51T\nJ+3rEBjLfVh+G4qIzY263HOQlZFFEtdOMcNg+/8/3wo4R+O5XAGW4WDJo2ZDKs8EACpGGXfa1Nl4\nYwEbr9+W8+zL81h9+gj3mTu5c2cNxqFYse3++zjkvNmmwh/ymm8wOTdqLmC9LjF1b3SGuSSmTk3M\nyZv0qomWz/JrS76w1rcQUgatlCY4Ygl+ZKZIaWFf8w0Ym+KF1Vckx4F6gcwUz+1auovNWG78G9/r\nYXdPcjf3umPUyfS9NJH7+EX7Bo5J/5Y3HLhEDbphH5p4kXkJ/ECf4uoWMQZ5BfVLcv9v9/awEspz\n/aM4xiLL4Fdd0eEoletI6B15vomcjV1J30ZGTcy1Lzfw/r7M85O3RBjp3vEZNlbEg7xhb+D2ypZc\nZ0uj4lNG0V6CHokn96zjWcKHfwLgfwPw6x/57B8C+H2t9a8ppf4h//u/A/ALAK7zf5+DSNB/7ked\nwMgMVE8cjMwU6xQZOc5mUDPuCkZ8XhnI0ggzuuDVnDLdtgOfDM6uXYZFaC/CCQqDoiA1Cx5FWi9d\nJ/X4wiJqdYKeMgWfSaRJdIJWIIspKY4R0v1/OhEffLMwUaNGY55toIs/AACUpgk+40riy19aQIMu\nf4Ub3ea6RtuRhOLscA92WV4K1zGQkZwlJRCqXarihbokQe8sLmA0lBc9KiLYpmw2Nd9Bh9WHKTv9\njlUfg4TCOOMCIRswPtr3oAEk5xlw+d3Veg1XKQ7bCydICbxZ8pbwCjeCVz7/FTS4olVF3OjLSy/j\nYEOu+UvVOmY35Z7LxxlGQwmFenGIDmHMGc/XDYcouCM9NmLMMvYDOAbME3YDqjZy9h3YqczbS7UI\nnRo5DK9u4OuHMi+ngx2s1+TaXr3yOjYuywvnVmggXBf+UMIqr/wCDJth3pIFgyGUqY/h1eQFv7lI\ngZtqBWVWMqzEhscuyYmtAArU5FOpalSKdRS+bOS3ayuoKuqKdi2sf1FAZOmkj0VKyTfW5Z4sN4PJ\npLNyHChD1mGsUlgp4dg1FzdI7d/8DNds/T2MxnLuZuHBi+TfdakJm707pmFCr8n1P+v4keGD1vqb\nAD4pMfPLEJl54ONy878M4Ne1jD+D6Equ/FhXdDEuxsX4Kx3/oYnGJa3JZwUcA1ji32sAPuqrzKXo\nj/CJ8VEp+kqzgUn5DNbRAs7qtIJZG3kku3ZhNGH7TD5VTSwuiZVKSExScysw64SlRlPojF5DHqHU\nllvcMjYR0gV1SiRPrbdhkxw2n2kEgVio3DzF8IxdbWEJo6l4COaAhB0IMCF9VrdxikUtnYGno4fY\nWpO/r9x6DamS71/q8bhGhILIzNHmFlZa866+VZi2uJrlTfFsVoY+fGICFlwbpk+6riyHSsW1XV6r\nY8jS6SKbgYaPhudw7GgxRbH3IYfCR0fGkmLhy/xsfGkdG1fkMW48yXFGIpv/6JXXsfQlEfyqLtoA\nVbp9lmnXb5fws8vCC+EHGZZX5fo33Mt4iVDouydnKBHjcaIizmGC/ZzEtu9m57wWaZxgSlnAqXsP\n45QM2mQyLlUWcOdnxHOplqv4aYqzPB7W8cZPS5n4+os/gzq9NEXla8MaoqjIZ7deu4HBiSSgy0v3\n8CIEsRncG6JyTebgypJ4TXnJgbcraExVMWEWRLf2uihiImTpEajqY7z6IsOq1hvn2Jr1LQ8F4cqt\nhxswOrKuW0vizRjVChyWkXVSAnxZN/aSjU5Z5rZUL2E9Ea9oZVPuf/kDG3khz6nd2ETekOM6M42I\nnaT1eogilfflWcenrj5orbVS6pNr7ll+dy5F31la18GORlwewxlRizGrwG3IAjQKhUpFXO2FhUtY\nJPuuIgFh4gJRyg0kMQFKzrdrDspqrolookomXo+umpcayF1ZKIOgh0nIrr3YQWLKYgyzHnIqCE0J\nNkpmCk0SwMxUC71IwDtrq9dgp7IBrHQ6KCDnDguK5qozTJfEvbwZGLCUvFimYcNinuTq1ZfknocF\nqlU5r+dYWOa/F1kNjscss+ujZpAshFn46pKP+r5sIO4wRJ1t4sPwkyyNMlgexyV/Cz//uZ+X61w5\nOFe6Wvu5n8TljixeK09hFrLQU1Z+Ni/fwdKC3Me0exc2w6OikUN9li78PRvJTK7/Mp+BkfXwR3uy\n2R64JmbsPoyTBGUSxwyeepgYci+oycvt5wauXr8j13ZpC/uLcp137ASVO1IxWPBbMJljmvNyFkkJ\ntYZsBKVahlaLm5q6ApO0+smrKayIIAGqWw1PJ7BMCTtv1TbhOrI59XYTFNRrNEjYYhwswOVLrK9U\nAVZMFhbuwKoucm6nANeqqpBsRQOKG6ThuNDs7Kz4V6DL89xPApeEKpq5E/vll1HQYBlGjGRIZrAi\nQ4lcp1kYwv1LkqI/mYcF/P9Tfn4AYOMj37uQor8YF+Ov2fgP9RR+ByIz/2v4uNz87wD4L5RSvwlJ\nMI4+Emb8+cNR0FcMuCd1ZDV2+5kODCIaR4cpBmSwre/vodaRKkDKlsJgnMCi1kMKAw6RclFUhmew\ndl3yETnkraOVU44Fpec6iBMoegp2tYTMlc/HkxFOqXk4ZiOLUzdQYfPUknEZUyZ1Rt1DeORcMHMN\nZ07E0uaunVyGXYiFmnlT2IF4EpiNgFx+Z1MerlYroV2Rnd+tZlCheBiW5SPJ6RVZKSYDSbq6M7JB\nhyV0KGuf1jxM32GiDsW5vAmAcyZphzJ1r764iS3KoJlrNgZstKmEXYS8Tt92kFDHMM8kStSYoWBi\n13B9eFtE1Z3kCKidcOTWMYqIDenKMx1rAx1PLN9yM8Mp+SuK4iNdrFeX4P6p3OsWOTQqQRWrLXGH\na6aPG29IM1NwcAab3lASTOESR5JNSbYSjs6l4iqdJhQ7JsuuAqjhUaBAOJwnfOU+rUKhRe2M8qs1\nnOxSIm+wh2wq6zAmBZu3ZqNFL9Xq9uB45OeoV2CSu9LAAoqQsOicnb+WB9NmCGIkMJgENks9GHNO\nz1IH8xKNMsXym+UyUov3qfdgMXFrjsM5XQa05SBju8CzjmcpSf4GgC8Dxv2KbAAAIABJREFU6Cil\n9iEq078G4LeUUn8fwA6AX+HX/w2kHPkIUpL8e89yEWZuot5rIK+OsRFKthV1hfGhVAB6ybs4eySL\nP3UNFEoywzFrV3Geod6eE5mY55qCxaiHoC+Oi20ZsAs+cEv+PcknyPhCR5GGw00hNLuwHPInpgox\nH/6IJCSO4aHMhK6XLeLrU8myz0ZjXCnku9N+G/Zc29SZ04znUKEsTDvKUFmYL4QKMjL6OHMprDRE\nzExA1V6GxzbqMI+hmO+YnA0xYjv4MVmOnBfKsLty3OV3LRQeeyk+IQbDBlM0WAqbPu6iuM3uPWuM\nckteCp2tA6FQjhtuEzHbwWcP2PZ8MkT9TflswSpDx/Ki51aIICLJ65MuAoZjqkRRm1GBXkIiVUtj\niWxSjueiBJmLmufjyZhy7aeymbzZKaDPJI5WzRYMGoByq4IpSW91+hTFjG48JTSDvV0MnlKK/ouv\nwuN6UXCgz1ufe7DO5L7DUM4R9ybI6E9HRwXe/uAeAOC9wQSaoZk5EkKair+CszNZC20/QIUuvJEU\nUFWGQYjOCXzmCllmScOoUAcgyuaRC2y9BO1wEWUFFNvrFTcCZWuYU6718WPYEz7UhQWkfdkI0rEP\ne/WH64j+eeNHbgpa6//0z/mnn/kh39UA/vMf6wouxsW4GM/VeC5gzoVVIOoEWIgWUSyTazF24Xiy\n2+2mOY7YIWb6DnTOvnl2k/WKKaJD+bvqfChFrz0T/lASUYE6RckhM+48F68dwKJgSXCMCWG+JQA6\nE+sYzAIMJ+Lyl1lrtz0DSsmunXYyXNuUhNrdp7uY9OX6O4t9pPMqCLPQRjCDQyXqJLYw3JfIKjZy\nqDZ1MwNJz9ixAdVlF119DDMXD8oNZ5h2ZV6KqIfuScb7ptrxxEPnQCxt4vTOLeUnM8E5PxnEcr3b\nvad48gGl90yFChvJ2jdCFCwuRfuH6AvqFr2ZWMSs34P9eEuu06zDIa5g2ougx3IdqRoDfXo3DA0W\n2grb9+cdsQVST+41TcPza90v3sd4LDT/2UC8jq6hcXIqaSqjvASrQas7iBAXMi8TqwrbE1IZG+LS\nBcUQeUm8gDjpwY7kc9MqkHcpumMF0PRe5tTw4zyDjuTZhMEAmklJw9BQPSZHNanq1QcwPKkQBA8V\n4liqGv6NGXSF4kF5gaIra1mRjg5qCcjnwZ13zq2Q5ccwYpl7XcQwquRcyOa69SaQyrxgUiD3KBh0\nUMYkluuotQ045Xlx8NnGc7EpINZQT3L0y49RobJPYDeQksMuTnK41IEslWuok8Q1acoDbE9zuPNs\ns9Yw6H5WrBgR40xlJUhJn26wFOihDsUQZJxaCAkq8QsfUVcmfjTtwcpYJbDI3JPbMC1mhTMLQSYx\nfGya+ICLtxMtocYYo0jkfJbhQTfYOj3ew7d+7y0AQDjKYHeoUViVjLSTjLBBKvBSPUZrg+w/ykBU\nk43lxM1xNpIX4awsi+6Nto0/eCj9AtU/OoI59z4/Qb4zf/GSWH735Ad7uLUuABs/t7BIApDqDQ2L\nykqjp6fYfU82smxRXu4V7zUEzIZjWMA95EYAF6Oh/H3WA1xL7jsM5IL29Ckisj+Nc41NuslJHsBj\nKGE/yOFpWdA9SLjypwenWL1HhbDls/Nry/saIas1rooQjUmAe8Yeh/V1NEuvyHPw60hJhhNPUih2\naGajEFnAXZSt7IbuwuB7l2YmmkTLLs7a5+GDm4rrb/3bU8yeMrxaLNB9Rzam169eh8/u2CKeIjth\nmNNmaJeNkT0RY5AdpdBrzNvbW9CGXI+ZKOiCaF/7Q+3SnLk2ZBp6wPdl2IdjzQleKrBtojqfcVz0\nPlyMi3ExPjaeD0/B1sjXQoT9GcIDcdVqiw580oqVF4FJl7qMuozCFKvZnydVDRsO9fI6SzXUF+Tv\ndruFekX66m2VwQCxBwHVgpWPQU6Ow3yIgsCUeKYROLJDT9Ix4pDMx3W6i/aHznimTKwsixXcWaki\nfsoONytHe87dBdnhc6sMxT53pyhj62XJnHd3nuKEFmGZwiPZWRl2jTiMho3RgCI5yRBRLKar8ihB\ndMhqwFNxd//f+8c4+2MJfZwMyD/kVvmho6DP8LgIMD6U+amsOlArAkTNQ4WSkjp9dfVFXC9tyXzZ\n4o2Y5iaioZCwhOkhEupDmsMmzlin30ljXK6xEkMF5ySIEZLG7rITwWcSWPUKZIsyR+6igVfIv/AH\nJBAZhBm6prjG+cDEtEwKf99FyZAEdNVag5HLOopY5zeDDNVLFNRp2ygmBFHl0ZzKAVk2QWaRt4JE\nNflMYZDJ3I9LKcAqUEUdwprTr7clnDW+dB0rC3Ifj3cPkZJGPnZO4HXFm8zrCbBOfkjyh6rEQlGS\nuMxYBLI5A3ftDJrVB+XYKOZK51S3Sg+fIFOS5MysBHZZzpE1HNhlrrkMyP+/9t40RrIsu+/73be/\nWDMycq997+nqWXpmOCslWaRkDgcUacGCTVmGKZMwLViAKMOAzAE/GP4gA4QEmTJASyZMLzBIiRZF\n26OBySE51Ixm4Ww9ey/VXVtXZVaukbEvb73+cE7kdJGzdA+7ust2HKBQkZGRcd+9775zz/I//5MI\nxdyrlYWlsJCFLOQheSwsBa8wrB0H7M32sdriauDt4CqS0MsClmLRylHbIYpF0/qaQpx5GYHGH4Kq\nRz1Uura4hudqCtCLCavyvqsot2w0JQ/kROgnBa6e6LYeU2qxi7GWelNJY6M5K7OH1ay/cX2GDQ1s\nzlrYicQfnN2E8qLyEzQ1cDTqMNXiqLgRc9pVSGwYMotlLsVIToZRdESp6EhzbEhq8vuB63CgKckd\nHJ6JZC2+PJETI/1cfoIPMBbsvGPYn4g0nnCDakxlMrH0rVaM5k1CNLg2c3D8b8m6RW2aa3qCRmJJ\n5Dt9YkdOSutsc3SgFkF1yIHGcMa9CS8rD8FKQ7ZcJ+lRKN5i2PJo633P2hH1qVoh9VU2LktK2X5F\nrJEgG1DReEGWlgwLWe+6OyKpirW1tOHgMY/diLXinmviKu2ya70TQlR3VDAea9pzbLBHCr1WTMPu\n0Q57A7nXYzuV4DQQL6/gavWoo3R7K9fez5E2bPFv7bNzT9Ka+XYVe17zjE4TT/k+jNICGpvjehLv\noHKM72hVrgVc2XOOl0OhVqRGe6fjDtlBV9e7ih2pBXx+GTNQBGstoqi9EqHy/eWxUAqOW1BdHtK6\ne4qdlpL1jT3cuizCxqmnuLknm36cZZSJ3LClipi1hZvScOVBme72uPVAAjXDpRanz0stQuYOKU+L\neeVrUNLUqrAneed8WlLVAJ478ygn8lCEXkSmwJO1umz+SZmedG/KKxnrhcBnNzc3edGTmzhpp2Tl\nvKW6bLTRNKN3LBvQm8SYVB5C79wKFaUHszX53my3y7ayR4cbG9Qncs1enuBHcj3nl30+1RbFwadl\n/mlYkM1bHMKfTjv8CTkBP9ucvY6Y4lVnQKBlz80j74RL0U33SbSUt/852Yybb1tl72V5b5Aecua6\nRNydwzaDqcy/mxacuyvf11fI94N7PYZqtz/Zt3ygKcqt++w97GXJgiRf+izrVXGx3PD3ADjIoV8q\nqU12n+JA6hK2HxQsnRIF0gi3KV3F+yuZDJ/sY96lALdBj1JBZM76GsFY1nZqX8QqxVqqpD4zryTX\nsvXucU5teV46PcVRivZce2l67pjVc8Jm3U1+j28pE7V/PcfRQ63sHpD25iA5xSaEERyrid/wYKwM\n3bUm5UAzCqsRXk3h1NoawMkzbKF1EuEyibog8VGTUrthBasV1Gt+1bJwHxaykIU8JI+FpVCWDqNh\nRLlUYhVSPPQ8ttpyctscqtrXYbhnub8vJ2irJTptqwxxleF4kowYqOlXTEfUVZu7gcN0XzR0+92C\nK7CVkLAr1kazNQDFIQRBjVSrJ4M8JazK6b9UlxPhaFTS1jRcXi8IEZP60jsu8NUviUswyDxqWvc/\nnZ9Wo5LpQHLs47FLoVWe6d0B3rJWCU7l1D18ucdIIbNH2TGr77wk49mUdl9OxNnkAT82kes/rZV1\nv9EdEehpl2BZ01qYg+9iQc4DjZPpjEQDmPXsLAPtUTn7N19giJyawWTCCyMN3KXy2eoNl9FUu1z7\nPv9eU9Ka3tMu258UKyYd5xyHiiLVYO4gndFR16Uwho9rQddbgpTkxl2ZaxRw92DOVSBr/2D6gP2+\nzDWMCgpfT2Zvh5e+KNiJaHtI3pdx7gzEGquuVKh/Wu5Zf+JSbog18r6/9edpnjovn4kucdzXVnfK\ndt1aO8vBbbHi/EqHMlTTK5sy787pKEfEbNaBqezZ7imfO9uyRs40xG0JzqScZkz2BDszvS0uUaV5\nmVID0MlwTBmo+1SdMTsSCyMr6zSvyuvaO39Y7sf5nDyXv0uDglC7sGcHIf5EIbfeGLeuKOFXKY+F\nUggihzPXq2w/14G+mHWczTl3USZzsJwSdSVnb6sHlAqlzXyFePpVoqp2LEpPE5VqRrVqRIoLqF09\ng6sNXqYT2ShJ2WGs2H8nyjFakdcd9kmr2lnKFpT6kA1SMX0vVC03FK6cHkx5m5q+tajK6Q15vbZS\notR/LFXkIZ7W9qjUxHcc3u1QarOYODliVGi8QzswNZ+o0OrLF8TnAkaKobCex+2qMAUVkzXu7Mp6\nfWNN/v7D9Zw/UoBRks/ItLntRnfC3itciXmoYd5Ud2RLxlNRts/u1nnfFfm+C09f4eUjBeTsWt55\nXrI1uzfVZA6m7MlLKmspzyTPy9if/hzP3hOlsFzNuK9rd1+Jah5kJauKwbk1M9LsFxjXW4SrEsP4\n2sc6dGri3h0NtCFslPKlB+JKfnhYw/XEXVm7XuWJc+JqzO6npC2FeiuWpdfJ6BXyenqxwumzmg3I\nBuQohN5z6Jcyv7kiN4MJGxdkv032t9m7q5mvXg8UO5OrSzSe9LCdjwGw/ckXeVCV+d94/lO8+5pk\nwUxUJzyn8PaZQum9ZdzzSk/PLTCKK8h84qe17fzgBm5VlIJVkJYJXUxDrjcdjXDHmsE5VVI0ZQ3N\ncQ07E0X3amXhPixkIQt5SB4LS8HNDY19j+ZGk7UjjehGEaGy3YZuwHpTkG33uvuMj8R8HGrrMutl\n5Eofthz0CPS0LqYOGgMiTH08rUcvtOdBpzclO1KykXL9hOZsYhNGz8sJnC0FVDXnuz8TDV2b5iyr\nPp31PO5psc9qd8pqQ3Ll7tFtBqXCcVsaWLIhzrw4qp0RvKAmY2AIOwpz1gYi1czDtBTO3TcM+xKI\nGieGu3c1Mp7dZP9AC5euyKnV+GLEhQ2xeIpBl+1L8n2TL5kTeLdBOmvDCRExNs34Rle2w3vaEx6M\nFOvxRJX0GW2hVt4i3Je5djSS3yNhmMrfhbsBe2pVPNfpMp3J2HczmCi24MZQMzVAR70q6zmMFFDR\nsjvknz3JjfCN58TsGfZlfUxucDQo+7ufucf7zmqrtPN1lp+QveMvGyqKa7Gx/L9+UKFbKIFPEBO2\nxPL0C0Pnvlg3prOETeT7Gn0x/XeHCaNtcem2jwfc1sYxkywHdavcTPZb3Iv5wh+KC+Pu79FUVyn/\nzJfpbmln6ys/jBuqK1GKhZLcv4ntaqap2cTRjt7l0QD3qrijrn8VTynr8j1BShbTFO5pU5ukJNUs\nSn19Aj3ZA05WYxi/wGsRY+1r5kd53eU7kbQYvm3iVhoh594ti1M0GxTPKVDpafWVPjPg+r/7AQCG\nnxhR/7dlcxS7BbWffBqA7d88ZHruJQC++pu/A8DxWpdMqbdx7CtC8d9bfvUf/jfs3ZCo953BMxx2\n5QF5+8VzVHuK568PmRxpdiHQMuTY561PCxGIm7kEoSgp181x5jbbWDbEYJqy95KY2rP6jBefk6zM\n/aMD9hS6m9oSo4xG805Ra6tNolVZl62VFh/93U8CEKUeTiAPaT+xtFZl0zTH8l0jT7phAeShj3LI\n0FgKGB8rw5BToPqUsT7E42HCkjJEtdyQsC2m8bifY7UU01iPQMukNzdFaW5dvkr7rMQfinOrLPVF\nQ/z6r/wykWL7o5ZDMtJdMGfLsgZtUUnaT06AZO1Wm6sKBoto4ikEOdAa4mglYqoKrXu4w67S5w/K\nQw7va3VoOaXI5MunyhDlpiGOowiwSoP+SbPhgs898zVejURNl41NiUvVZhWunFFy2LrM/+n31qla\nuWdBaPBPyWFwfHzIqVWlc5/U2Hy/uEqDW7IXjoshX//ScwA88dSTuOviXrzt+l/BV2BVrR0x1OrR\nzfryM9bad3+/6124DwtZyEIeksfCfWgZw49GHr89/XaI3MKJbZsWIWdGovnOnV7jzFsFe/D7Yznt\nfvQXnuQP1FT98M+u80k1ff+TnzrHtrI8/+W/W+EX/1cpQHrPT7wLgI//0a+w3BAT/3iwQzR3Cb6P\nyZAVBTeP5e9eeGkfV9uODeoh47p2tO5DksrrVQW0rKyvs15RRt61J8j0dBx3+zg1OZlybQmX5hMc\nDRLW0pxry1pQdNhnoAzNeVGCtkkfDcX89EuIx2LWtptQaCRxmiSMlPPSC/yTWn5nVVmbZy7ekqzx\nVhgRKW3cqh8yvaS07McjCleveVdO106cnVT11eoe2jeHshGwrZyWk+lEOv4AvQO5ntNn2ySpgp7u\nWDIjfl5gDGhAcDZ0cLRNfFUtovU1F08h7ZN6lXIi17+1scHFc1pAFjaxeqKHiukImnXKhhLnRA6n\n12Xs0bROvy7uyPigR6aWRarVknmW4yjlelLxGGmm4f5sgNig8FW+t0Sp4VRVFubPby6Tac/Ln3j6\nnQDULy4TlAIGK6MUG8oarwancRTr4bYGTA/FQlhSOPP0foKj9/T57td4f/0/k8+WHh0lhjkeZ2zM\nKe1epSwshYUsZCEPyWNhKfRd+L9rHmvTnINXQPAiTQuuvSVk/d3iCp2Lm6RNiS/8h5fFP+93Nnj/\n2pcAmE3HfOBJ0YyxrREUcoI+Ox3wQxqXuP2vtIdaVtCfUxI5DknZ0JF73/N6j6ZTetsSAAuyhMj7\ndhdoXzkQ0qplqyInwuaW5I+vXnyS01viOxpceppSrZ+rcHxPb4UyEyWTQ5pqVWy2TnOgqdVBMcN/\nWdbl7mTEjsYtOuo3zsoxa1paO9rpMjkhSh0TqI/vJw420pRqR8aoVj3e1pDT6vKlc2yeUS6A5S6F\n09Z17mFiWaOiq37taEKp8HAzaxCm4qvf2HmZB4o8LcYFx12NtSg3wVb3CCeW7+1GcEaboxaVEMeq\n1eNCnCocWYPKThHjqfXX9qrEm2JZrZxaoaHUevnRAF9PZldPWrwZrsKA280GlVTxFsvnyGK5T8NT\nI/q6jscz7fj97CF5TfaIbQXMErFSqpM+n/0uEPIT0d9f++AZfubtkoo+U7/K5tsEc7LW0EKqWokf\nyevMuJTK3lWNIdkTzMJkLyLWgHWoEPwwTPGrste//MIzZBsSuNwK2xzvyH6KtjKY/b8Q5lwaSxIl\nONiTC6oGDqcVQLLZWmItkht6/X1n2Y5FGVzUasmXvQFbhwJr7cYtLmhNxNg9ZiWU1zfadbx/Jc2q\nXhxL3rYyPqSfKdFFWWK/jzKYy+TOLqlueDP1OXNd6+lnHgfax9HJQp5a1+7X2glpqeJSKp+Am1ns\nTPPKRY9Ao/mO1RoPGoRKMjMoC8KBBvNqKyRb+v6BJVWG6QOtuehlGZkSmtSdCZmCYsoSahrtX2p5\nBErDFqh70VzxuHROlMKVJ86w3NRI/to6QSkKKT8fnDARp1aj4qOATLMv6ajHy7c16FqvkPiivL5e\n3uR4e87SLdfevXnE6iUBHlW8MYe7kpt3Ohmlcm828pxIg5ihIw+C45Y0K0q9F9apaO6+GUYnnZWO\nBx38jhLmKHS9Oiqk5gGoxHWaJ5T5U0Z1UXR+JaKhGIDKgVx7cjphR2stusMuA21QNJll3356vsMz\n5wCx1jZ8OF7mqffKXNuzs6xekP0QhIpdyAocvQbKI7JDmVNgS6YKrXfT+6SarfLqst7LcYU15YH8\n0PRtOM9+Xub6xDtoaFC5PDQcLb0xbM4LWchC/j8qj4Wl4BaGpa7LzIeKsmhurnicPy9Q1OvveRc/\ndEW06vmVVa5oIxZbk/83zhgy5UhwqJ9wCLjtkK7CnC/0xnztghYVfUa6T0/rDcyxmMHWOGA1wGj4\nnoVESXGfQmm5zjy5zmUNhh3aGV4oNuPWmkt1Sb5kzdOcOQbUuikCQyvUE2N5kxU5eOmqeVpzAwpl\nCc7CMTtWTMO1sIWTKenoLGecKGUbcors9xOCqgQ+jyZ9prniIsocv6Lms+tALOtc16rFc60aW9fE\nsmmtLBO35OQKSoPR0yi0FUxDGYmU7Tpt+KBt9aZuzsUrMnavU+PP+7IWS6MZ9MTd+npfcv63d+9Q\nuSUB4/U/d5WG9r9MI4dqLn9nVwKW1ULMtNxzdalOY1lb03neSUjYpFPGCvkt+wk9ZWoyCkt2DNSV\njahwcwINjiauS6yPgReBP5FgZfuKfNek4VC9K6nsl+6EHIYSgEyHU7QGj1dSVpyk0UPDD71TrNen\nP/gWljUCWwk8nESu359TybkzXE0hwhLOllbgjgvcu1o0ZQtGG4LknClbVro/4eqy7KH+Wo17kbga\nN+58nvplcbeLNWiZ70Oq8SfksVAK1lpmhcUzhoaaXEtnqlxoizn7xKlVnjytftjmZTIrG6WqPlnh\n+hi9HXaakmi3ndx1aetnw6JG94Lc6L/wY8It+/GP/lO8sWQR0myGMcqjZ0uY56a/QyLCjF2uXZQN\ntuR7HCtEd1KpsrUlN/xd19o89aTSfyl/YiVsEmojmnhl7WQ3BWEFq1WXVe1rODAejOVBmY49WBVK\n9ZvTnLglrkIlWeaMZmw6idKbt2bkgVYDzjKsKgXPsbhK3vHAFJzRHptPrMhDcPXUOist8fH9qI6n\n+BUTxLhKkWc8F1dLjk0p7kVghiirPbEDTl/MZBMf454XBfLWaskd5Tx86Zviou33Si4pbV5UODQj\nNecHMyItcKyUVbrKXdh05lDyCmtN+YCXF/T7Snfv2pMGMF7VJdIYhq/U/9XaKSqqCJ1JiasKK3BP\n4zni8pVZTtiUh9Axcu3XVjvc1sxON4YlKVdgejz6U1vDwAmD99U44ANvVeiydYn1F25R4LqyD20+\np3JfB71PMIZUe1fmKXlNRvFLj1YsbVmzicTEOsmIbibXbtoe60aqde998S7X2/K6vXaZ2I14LbJw\nHxaykIU8JD9oK/p/APwVhGfsFvAfW2t7+ruPAD+HnIN/x1r78e87Bga/dGnVPTZroiUvLNX5kXe+\nD4DV5jobDTkdoiDCq8nJa1ytUTcZVvs3mGaMP1NGXsclzzS/fdrhp7ST8KeVH3/08gf5yg2lROs8\nc0KQEgWGaVe0eOG9QJk+HElaW2vjq0uQOyPinuSNL615LLfEUrh45hSNpmQa/LrMqdJsEGkTEicI\ncQItcDEZRoNgCmnAocZspMG1mkM6FARlMu4z0OrC6nLAk1aspXkwqTlO6WRatXjQxWrBlzWWqZJ7\ntI05uc6VU3Ltq6vLuBq0tHmG1QuxpktZKJy3unnSwt4quYlxDcGytpLrNzCBsm6PAyJfTtiVtTU+\ncO06AA/uyN91g5wnVjT4Fj9JWWqvyDNLhGqXp0lCQ+nImstiSayuNWlpq7y0Ygl0LSoVw7E2qplZ\nQ9lQE70m11YmY4xRi61dw8vnzXD6JHNy76RkpI1avLZS0wFntK/k8YFhra2I04MhHnOouGYyMJxa\nkvv400+9g6vnxSpshimxusVOFOLO4avzfVr6GA2ekvonRL844Ot9cpsbZKN5m3vFdwQHNHUtjGlw\n3NGq03cZxhVtOZinZK8RtfyDtqL/A+Aj1trcGPPLwEeA/9IY8yTw08B1YAv4Q2PMVWvt93VqXMfi\nWFg+LYvz1Fqb89dkIdfWAxxtz+06Lo43vxnzLh4FVkE8xjh4c1/PKUGj3fWoQbOvD4i2BR/0Vpmp\nr37jmSqz0+8HoN//GjbVKrORB8GcPVchrsunWFvTZrOpT7cQP3n9zBqXz4qp7XvL1BR85SikuFar\nYQo1DWsBpauKLMuxmc5Fb6bvLIOWb9usJGxJpaW3ukO4Iy5PaGpUtTZ6pByGW+0qxaFUzu3v9yn1\nobEutPR2N/2Yi+dkw54+I5subjVOXKasGBBqfMXPlnGVccr1cpwTN035AgOD1Xl6Xoir4Cu3vo/R\nvpOVqceSVrw+9bbzAGx3Jpx/Sq596VSbnZsy/0rpEzfk+6rWxdeHST0DwiADbfdukh7GVzbn0mA0\nc1Pxc2a6N2bK3lVxAsbKd1/m/kn4KJyUTJmncye4cx7EsSgj6wckrpKa+BGxL98RB/G3uzDpd1Vq\nDm87J9f29r9YoxVoOjVpYrUdQbBcYIx8xma6r/wpJp/TbudYpQkwoQtalu+mBYU2qS1j5RL1ApKO\n7MPYH7K8KfusN25iA3HTvNmIYUVcxFcrP1Aremvt71tr507Q55GekSCt6P+5tTax1t5BOkW95zVd\n0UIWspA3VV6PQOPPAr+lr08hSmIu81b031OMAdc4rDZrnFnTDr9vv0Y1FF1TdiP8Na04mxiMtkE3\nSopSZpMTTVvGHpi5ue/iaGCsSCaMlPtu/6tiHdT9FuunRWvf6zYYPpAIeWP5DJ2xFJrY2GVORGA0\nJXH1XJs4FO078EfMj4y3bJ4hLsXNCWszSleCPXVlQ3byJby2fNbaKo72jSwyg1EwEametHlKZtTt\naO1j9Xvfce0t3A/mHIUjypaYtk8kYjrf3xuRduXEPAhcfLWqQmMII/m76+tVNn05CTM9GW2ekmcK\n+ppOsdoO3m3luDqeUxgo5/0RtSFN3sbMA2a1kMifN2dZx845IIzH1lTbxq3IqXsxmeCOxPppNx3c\nUzI/v+FRS9Q9cAcst2S8Ze3DYKcOua/3PwvxJlq45Dp4NbUqihrKk0MeAAAgAElEQVRGmbR9R9Yi\nLUqqWkmVPzhmpI2Bpm5ycnKXmcVT0EE6kexFtblOuy33r3pvhkGCv4Fnaeje8gNZw0bN5d95q8xp\ndesqHEtAsLXi4MyBSnnE/Dx1KvOCsQA0EGuIcGvyfYX1ceYWJFV8LQqbKXipPsnIjpVpfM3lwBGL\nrrHfxVuVx658e0TNvrbH/M+kFIwxv4TUj/7GD/C3Pw/8PEi6qHAFxHE2lQ0xHcVMFY0XxzWSmdz8\nYCkjmxOTqjtgAoOj/fnMLCAf6PsVFxOq2TYsyZXVaaMt0+5NY2Z93Rx7fS6ZKzrej3GvJi7Byy99\ngnlzP6ulspVagyBSs63nEugDFK9sUlWcedbIifV9syx+u7H+KzoMhSe+Onl0wnbiRGLO4ztEhTy4\nRdSiqSajrfgYzbkWpcGqQzxORNFNs1vcU+apFT8i1xi5wbCmEXCDR6Tm9ZonY0S+j6cVhzNvTDCv\nQ9lwcGMFvzgOhZaam4o2PvWqlLoW5tjgzGM/2QQzVaSnt0e0pkCuUBTlYTumoWxMx4XP+YuyRuUg\n5VhJBSthSZ6p778k8/Ayg6f3obTZSX1MiUdDSWwdG1JqU5fpnEi3ZkkT7bcZeDBHOkYVHFXIYdqk\nnyjjlqYsm16DQOn3/eWU2X0xy8vUUmpdhaf34PIsZOpq7UqvxNHMV+IaGlp1WZSGfCjXGShIyyXF\nauq8TCxOQ37vlgHF3CBPS0yg6NP5Hrt2gVwPxqE7IOjI3pk02kyR1+UE3OZryyf8wErBGPM3kQDk\nj9pv11+/6lb01tpfA34NwHOdN79+eyELWQjwAyoFY8yHgL8H/AVr590KAWlF/5vGmH+EBBqvAF/8\nft/nGEPguJTtgIm20w72d4lOn5oPiEk0wDUoQJlqU1dztD2HuKUnTWVy0tnYiQpc7ZJsmgVWA3u+\nwnKb96a8TWvQuz8UMlSobereJo/OA9BY+SDDw8/IdyuwwC8TxtpfcpoMWKvLddaWljHHc/hzTqKV\nekFdacMfDPDW1MT12hjtJF3OEkygr7UpSukkpNoSzjE+NlFtn/sYJfUIYggLrZhcEddoOWnxVoW4\nfqsY4L2owU7fAbWm1kOXuK4BUaW9r7sxpHrSViM8pdE3owSUPdg0KziRNJphIpZCGecnwcwsGzDb\nm1cXFozKI/3slJ4yW9cjrSI1MWhL9YpJaahFRzPEKlY/S0rcpnwmCsTqCgOL0eBbEcT4ma6R4zBW\njIeXDTnWAJxiwegfp2wuaeAvD7FaRTjISpa18UsSZ5R6Mpdz3EA+w9eT1ltyWWvImdeLn2fLV2xF\nU4OdlZiKo/cjGZ/08TRLJYUGmLEurroBVq1fIge0kzRFH1IlSIk8jD/fFymlrqFlbmnEePOWd/4a\nVV85Gc6skysWwinBTl75iH5/+UFb0X8ECYv+gRHz7fPW2r9lrX3WGPO/A88hbsXffjWZh4UsZCGP\nj/ygreh//Xt8/u8Df/+1XITBEDsem45Lc12CJacuPoEXa+u28SHHmt+untolcpXO6jkNkl000JXX\nES2MxiKIQgg0vZP62K5aG5ryGU/uUlNC0bXby9i6dpout8mXhf7Nv/EyvhbP5BP1+8MM70g7Rneq\nRBvqq3swUYqt49uWeJ4JUt9zb3+Aq/RpK+0O9RUJpFonJzmSyrhJoo1JOiW7Cq81bpeK+vCTPiQv\nyzXXTmWYOeRb89V+MWUylddhWT2Ba9eckhVFBYaNBnFFkYnaZ+I4twSujB3YkGwg82j6Z6ho85Ew\nWSXXxqwY+b31u2THst5Hd3ZJFMZdTtOTNKuZdkjVulmJ5d51sw4HRjzLU8cXSCqaj+/NSEutSkwh\nqKjPHGujnsxCXyzE0TAnUl/cGE4g2KUzBuUZKDT+FK66+Nq0Zwzs3hIr5qhzSFXRpJWgOCn+2roo\nJ3tnfESIWKFx18HNlCrNC4lj+bslpdi7ulGn3XpK13DIsQYEDympj2Q8u75FounJCG062+vgxjIu\nzDChFkf5OTAvZnJJtdHxrCfBztlsxOhQ1sVPU2jI3lry3oKZ11dNDbuFFv29SnksYM6eY1iKfJpB\njU19AG0zYKxR7fFgwFRLnHfvGbwleXhTrXCsPzNi453yEFcvXCdWrH7QO0WmvIM9e4/79+Qhy2Ya\nsEkK2m152DYuHnJwS6LFppFRnhZCFv89dfisUnXrTbbjGYcPZOzOcYelZaWAbx5x+EW5tuPgEOdI\nMgPVA1Eg21+5xaSUQNWV9Q2iJ4Vqfn1zlZE2Xzn4pnIc3nuWtvI1brav4EzkoZr1XmJaynXWOhUG\nmhnoTWXDjEdDVnUf7ZgZjVB+WGn4TDTBEVYNjq8B3YM5CMlyPNGg3n6HTlcUjz/6FOcvSXDQbSyz\n8TapQQlm8qCk+xXu3BQP8WjyNdxdeejXlyuwOe8EPqWh5DM9vd7y5Slf/bSUuw+fKmgj972MLZWe\nZh88i6PkKhV1Ke7cO2B/IJt/kmUEgQT2VpfWaWqpfTNOSNT8b61I1P/U+mmGmtU4Pr7FSzu6FwYB\nZ7TjdVIpKZXg5O49udcXZhazIWvkJY5ExYFKkNPQmpe5stk806ZxUcYoZsvkY1Gc+WFOR2tTvGSf\nRLs31SsaPKXEbUqGo9IKMFobQbxEpi7y+M5dUnU3JofyLOQVcMaibIqsy04o7z85voRVl9Zpl9TG\n87qKVycLmPNCFrKQh+SxsBQsYF2Hwrh4Wv8/28nIVufwWY+RJ6fDgyMLyvB7846cyu9dW6OrRJ1P\nJCPMRUmLuY0uk762KXt+wN0HolWbvprA1TPkVrTvUqvJVTWle+GEUNNGO517DLTWPRlrmisZMdO+\nANOD0Ukjl+P1Cc88kJP+wf5N0pFaHo68d3h/yBlFEsa5x2nlWZiFK1htWnLzBWED3uv1aVbF+jHL\nLnt9WZfuNCIeiwVSOd3EqotV3hLzM408OtryrhXXuKz9IChyvEisomcHlroG4oqq8g406/iFRuXC\nKRUNYFV8w+EtMfOj9TFrLelV4G3KuPsPPsuX/0gshb2Xx2xor4OdK5us7iiXwYWIZU21rmiq7D77\nTO+IBbZX38dckVPVmbmMlPItLiEbyDidXO7veJQzHqvJk0XkWjB1UBxycCD3cjwpqFflXj65qpBg\nJpSK+nywPWCyq60Aly2NNVlnJ8nwtLoyVwLd3ihm+kD2S8/tU8yU6ASHfFWL95SheulgSnZD/i6t\nQqHcGV0/ZXRX1nBqE6YH8vmzWwrRbm5RnVezcha3rZW7kyP6XWXuvrPHqC9VklMltvXzJpG6V36l\nStORAkJqEZH6jb1hTjQP4r5KeSyUguMYojigeqpJeFk2bsCMQrupjJZ9XnhRFmr6wgt8bk82fXMe\nFR5X+Evqc/b8Y1qhbDxrXXK9iZPkOVp6Ez91V3sjfvMbGIWOFo0arZoCemYhFIpbP1/h6KWPyoWW\n2q/ywZhSS3k3rrZZvqKZjyAnV3zDN292WBpLKev2TCHI5wOctjzQm1cuEl2QzVi/0GI2kPGudmTz\nFDd6rL9XTNGv3d1leEPKvW8eH7OlHH/+0WUurMuDFz0pa7XCeby7srG37+6e9CvcCB1iLUOur3jY\ntiiLULtsdV/e5VhZm1+awFOXxcyvti5SUzalaVgQX9LSaV/iIfndT3CkjXC33tPiS/fVTL59i8ay\nbK+nKk3WN6XCr6m8k+dqp3m+qab69m0ObgvmLVgK8GcypyDNiPx5xkjWe3nNoe8qX+UMjjR8VK87\nMFQovGepKbnKU1vndB6r9Lel0vT27W1KZA987cUZz78sa15vhlzYVF5Mq9Tx2ZCxVlruj4bEnjyQ\njThgOZOgkXNKm9yulFSqckHDKMRxZQ1f2r3PcF8zQv0RZ87IvQ4SKR0/YxIO9cBpn65S5vK90/6M\nB3tySEydAZ++Ic/AZFuuN4stb78kn13lKqtaf2+aLlmumRY3I1IY96uVhfuwkIUs5CF5LCwFCxQl\nrBc+dUeCWhUK3CXRytmOoa75++DcJZ5clZOwPZUTbH2tSkXRbLFXhUJM8SKNSY6lF2HDW+WMMvgG\nrlga/dVNxhqs/ObN59ifSkDw9ukxO9sa1f7KTVItiErHivijS3FPXJfGtSfw1DwzWYVmJqfYxVqN\nK+eEA6IyFAvjrZsFZy89CcCpa2cI1uR1VE8walYvrUmg7lpUY6uuWYSW4faTyud4b0SlqYHGMmec\niGsSVcTqaK2uMuppW7H6Er27Mqf1qcvqspwqF6nQcuXE98o58ciUxpZc+1uG7gn9GdGMqsKjy6SO\no4QdRvkjs6CgbuTar7oNzl2Xk3lsAzyFGi/VelRDceniLbGq9pZu8MJdcQPb4xr3PieBPz8pqGnT\nieVqjWpFxlvRiPzeJGcplt/HrkugqNC4UqPQYF7gh6wtyTg17VxOrc54JlZcJSsZKdVfoxITKF7i\ndN0Dq+hUrcr0KzGlBm7t8QRPrS3fq58EfC911YVzV8nXxGqqVk7hKEJ03dQ5d10CiacGE1qbMvaK\n8mw0KwGZ9is1XoLWgJEe7ZApQ2CzvsR7rsh3bIcyN8cMyTR67CYpK2fl/lbzOhMtBbATGJh5mdKr\nk8dCKbjWUssyzCzFV/BIvLkkVDjA+uUSf1VAI0mU8dauZii0mq7u1PEVc0/WY9aTByteTyg1TrAR\nX6B+STZm65ws5DRJ6U608aI/YzgS82zcitm+9wUAjq+Mmfyb8UPXe3i7x/68tVJvwIpClKtOxqlL\nwh956h1XcZS05PqOgqkaS2xcE7O72lom0vI6x67ghXL3nZaYrauBh+PKBl1/MiNWivti8x5kkgGw\ngwF390TpPaldhYoHBe22zG9rtY7TV3ryVR+rwBq/4uLWtFmIlj3H7jpZIA9VkTWYg0yjzBdwDVA3\nBxTHWuXpSzzAO7vE2/ZEEbSeOIVJZMO6zRAcmXdk2jTPKC27Qn9PdwKSiWZA8ikdKw+Y70Jov81U\nFXqicCotee90fYPaqpKr9rtkVvdCUaNQt9FxHFbWFFhUEXfNDWasXpX7sXl8lklHgUOeZUl7gZ5q\nu1Q0j5zpWkWNmNlIMzSzkIkikmLHUu3J2h6qa9N/dp/1q1oH4Z2mWZG1aC8tkTVkPU+Pzp7UNrRi\nJXRJS7z+A72nZzHLui82qmz5ylG5XGdZbjuXn5aDM9nvk2s59fKVLVKFrpfHHUqNRwX1HtVinu58\ndbJwHxaykIU8JI+FpVBYGJYF6XHGdConUGFahI4GtYLgpHrSRCHuOdGwRk8ibJU8FZN51D8ArQpz\nyoh4SaHSmYOjWrda1erDaUZYlZNh89yE6JacXP9B0Ob9Z0Ub/1e/9RsY5XIoynmuHdyBth8fTugf\naK647UFTxjh/9RpL6xKpT65pnts6uCvKfejEJyAq1zEUhdKN1eQ4KNxDIi1E8vwq7bZYSqOVNYqO\nuAS39o7JjsSy2k/k5Dtzts/N+/J3G1XDVBvHTAYeQ6X2Gk0SVrTvYLyqbdUqTXLdDllsMVYBRDbE\nlsp96DQxCvQpdb2rjXM0N+R1O7f4VbHS3HoILYVNlxOY6SmuFaUvbQS8RfkQp+WU7g09KbfO46q7\n5vgO5ZyPRAvJKs2IdqJBUhsxONYTve1ilefQjxusLouFUFfuBes5tJckOt9uDEky6c1ZKUNqmhkJ\nvSq+YhZcxSMEWUQ8lTGqdYdIT93ZbMa56xIwfOkT4sKNIo9vagvB97VdokD5IjyD05D9W0Q+RviI\nsMrPUdInK7WIL/ehnFsp67hKOR/4LkYrOK02SM2urWMT7VO61KamVcVjGxJ78tlZURFU3WuQx0Ip\nWFuS5ik79T75nHlodEyifQkzp6Rl5AY02g1c3XhzAsVk1sOdafoyaxIqLThRDW8mZmlp8xNkoaN9\nA0wEoaZAa/UG7jUlYL2xw/2GLPy1C5f56jekB5Bx5AHsHHWpKNNR/a2ncY+06Wp6i64yT1w5fwbf\nyHdHq+K22CTDaGzElimq82CW4Kr/GSgxqGM8XO3TECzFOMqEVC9C+t68c5SD2xEfNhvJWN866mMf\nSNYjK3MSrRkpVyBSX9zLx9hMNs2c9tz3C2Kt2svrTZxSHujh4YCpxhTCvoPJ5whRWSuzs4On6127\ncAWj5rUXr4CS2KZTS6muSanI1Cf2V7jTlDXe/uw9jnclTnTu2lVKVfZh7BDOadmVTSqwTepVpaX3\nAtYaWtZdrzJW+nmv4bLqznkl50hIqFntI7JRw1Q03lPxaOvZ0qgvMVZ2qkJZkchLJpp9SM2YVIsp\nRumI2/syXkXjFgedKdmBHGq8ZYqvD29Qq+HPGbCaNVxHri2ZavozjalorYm/5ONo3CJIcoJVPeCC\nGnNSz3n/0MD1yR1RyG5UAQXX1ZoBhboSNre4894mr1IW7sNCFrKQh+SxsBTAUFqX2sRS7YuGSyqW\nQDEG8WSEq70UvSjGVRNvTlZhxi6FnlBBYPByPTHyKU4qp0Mex/jKuuyE1fmoOGrCh3nB3WMx6yoX\nxoweyKk5uP0ijp42c8KLkSm5oJWBS0nMwBFLYfvLt+nrCXN8foWmZhKc2gmXGKVyIVhbYtQkxgSU\n2rvQHGsAc8k5YV82tnoSySYClOtgd/eIoZ5Ad/cE2PLSnQyvI+7MU3FApuOVE0stU7qyPCbOlb5O\n+1nm9RhXIeZB7GIV71+kJU5f6yA2WycmbD4VC8VlHd8Xd8Z2p7hrAt12GwGlAsMYTxjf11oDzQx9\nNYKpNpx5uRxwfCjfd2qSgbJRB2lJ0ZJ5TxUX4hUJrnbrDhsVikjXyDj4mjmoBi7NluwX/TU53jxe\nSmlcQjXR26XH5qrM1daqBErfVigbwGE+YlbKPIa7U2a51uOUBYOq7JelBzKntHCx9+RUnt4f0WrJ\n77PUJaiItWjCEhNoIFXrLEoG+I153eAQpkpw40RYtRqcwsEop6dRcBdOgaOGiUMfVmSve1Qw84xR\nr2DiLnAKC1nIQv4M8lhYCp6BNdchdAL2UtW+fsBYkXK+ExOrv5SlLm5Vc+iJorbClOxQKxjTIe6G\nBPiC5SZpLt8R2jGlBiw85S4g8XHmJ1BScL4u/m4/P8tTK0Lc+umLBXxTW6x5ygJ9MOSlXLRye3aM\nncrpcW/3HntatfZDT95h+bycsEsa2PRc5yQtmEw9zFR7Wo588lzSofOqPjMq0aXAXZlSDORUycZT\nenfuyveNpvhaqVdVbv/7ezvMbiur8cUQV60jk5VkFa0crFSYVPQz6nuXBy5GU2R+EIEGsCq9DDxJ\nOYb1Ei+WYJ3jSXDNVFIqYznNBsmA+rbM2fM3yUrtHr0/IdGqy/5YLI0rJuN+5RYAD54bnfjtWVGA\nMi1PQ5+GWlNGYc7FaIZOibLuUlVugfHeFHdF6flmEVYtId+RgGO4mjEdzdvpjXlwLNe2EYLJBL/C\nZEKaaTC2kBM/m2bMEjmOR9MZA722KHYZfFXWcFfHGgwSWkqbMC4PmPa0II6UJNL+G9iTloMUYoEk\n/YJqIe9Zv4XTVjzMYRdH+UWMUydozOMj8l5ucpKOBLGClWVKjZ9F/jI2ksBm3C4IstfW9+GxUAoF\n0HUKJscTpi+ImbkbNllaFnMpj0Kmuomr6ZRCezCSz2GtFSpKVzZ1IVPsq7uWYrVxZzpz8RX3gGYT\nTOzi5kohvnWZZCaf3TQ17r/wony2A6G6K5HSmR1MZrjamenF/FmqbckY9GaWA1UQX7+9zfo7JKIe\ndWSnRLUNNF6KUzqMlRE5+/oYd10pyesy52R6n/JI5uwcVwmq2q9xMqVzoEG7UYUzTVF0HU/GHfVy\n6tpf8TO7GROlszgcpQzuymeOag0aHXEVOhNZq4rbY7atzM7rfQJ3buImZGNxD4bTkmxbQU+bcj39\npEY5Fu3l9gqChroMkx1MoPRgTpXSyNo+6Atc+1Z2gHNLsRWBReOepN2EcVXJUgqPIzWDrbpBA8+Q\nKKX66lKDwVBM96lvKZRwpRE5DNWspibXEGUhZSH3fXxkKadyzbuTAi9S+rcsZTiRcSbzrE1ekveU\nRKXICZWePTIVXvLlMw+66lIZSPTevOvmhKAmY5gioVnRrM2kwFWaPav1PIETUMzN/bElWRIFkTs1\nJtrIt2JySg3cesj9zTKPiYKwisEEJ5JsThC5uLpGnolw/TnP46uThfuwkIUs5CF5LCwFay02Ldmt\nWQZroqcuLfk4c5izNyEfKwXXdEqpWABX6dVIDGFTtKc7G1IeSqpn9qCHgxzNftw4IV61aqoZpwlK\nzUZYUI8U+bXTZXwgiLCitcqqmo8X6hpoHE55MVbzOop4O3ICL9ddbhyKhr57eMTBM3LChtqabTVY\nwp/JGI4TEswU67A8YzKQE6qpfP3T3jFBLOPmtoVR4pTj/Vt0A0k5OhsRAz2ZXlbuifVKxLH2b9gK\nHe515HQZxy6pWLOsmZBCezKMPTld89InnIhLMDyusr6uPQZKl2lf5rfTP8RfkbUd/bEWKAVDiljW\neP2qIdE0rClL8pHCf2tjDm+KaTt7VtyI55+9x6eqMvZs/G0Y7rQhLe4AynSGM9Hg59wCSTNCJUqd\njcag/TFtYSiUdmyUOMw0BZpof8nsyCFT8p3u+Bijgdv+OKUWiXWaOxHdVE7vnraKy8uAgaeVuybF\nKJ5kPBuSKrGPenAcpharbtA9O8Uo5mat6TPVakdbz4n0sTPzykh/GeupdRBOSO8JSjX1auS6x4PY\no+hrqlLJcAazEamdt81bp679KcqWh6NWbVHkuLzOdGxvhBQYejhsHA3IDtWOfEcFX3EB2XDGTFc+\nKUcnDxa6INYpcZShJl66hFV2XsvoBDSCG+Pkutm07NkEPVBf1SsijLI2p2sDboy0Eq3Xo/1eMf/f\nsy1VbZ/qfYtkqKQvtyZceac8IIPUoabgnlkxYyeRrk7LnWsA1Ft7OJ48mY7nUaqPO35+G7SPaN8R\nkzrZ65NoDMONuowief/eQYed5+XBjM9EtNfEPP7Kjmzc4/4YX4LpnMqb3FQHPJ4ljJTtd3TWwfeV\nov2BKtYGuL7iKiYuw752hSImXJIH8nS4yUw3ZE3vR2XlLM6agoaS/KQjVx7MyJSJefSgR1frRj4e\nyYb/+GCPyQNlaeIVMnMp5p1bZ5ZSiWbGmnHxC8gVxzAKe4SaXTK+xcwNX39GFGmGQr/LTSwjd96M\nNzjJAGSDKbOaKoJKzqir3I0TmedwljHVjk2TMcSxNsyxAT1loy7zOY7BMNM9ZrOE8UC7STU9Wkoy\nY8cZqZXxjHYtKp09KqEcQrYAlK3Zi1bxazrGwGKncm2pxjtGNiXTdYkqOVbxC56p4Wj2JC890tfm\nPSzch4UsZCEPy2NhKbgYlpyQIrFkIw0oTnOCVdH24+EUR2vCbV4wyeS0MUM5Er0yxVVUWXY4wq3M\n27yNwJVoeXl/j4ERc766LoHBcOMyqUJY3TzAU3Rccm+D9VyiuteffgdpT7WxUqatRBXu9eUUGBZT\nSoU8v+XsOqmSoRwfJjz/3Avyd3qimOyv0roqYyzV2iT6fvMtLWY97WOpDMHF4SG74zn2ok36knz2\n1lfucTCWaz592Gd/V5mWtTCq9CDRbEB7yaGpwb7eYMq2zt/bb+LHc4IXNZMzB8/VyLuXUHRkvOok\nJL4gEGs3rlBrKBfkRXUTgg3SmbgzO7dv4y0LNqOdt/EUQVrEUNEek8UltQJ+rzipBnxlL/demlDV\njFAWuESK/quUpc4vZabWT8vxKJXBORkluMpBGVer5Mdyuud12UPGJKzVpV3g9NSE8bPqYsZ16jN5\nf+Z3GCr3xVFfx0ssM61EzIryhBG84hcEqVpFyvmQzkoGavfsTjPsSK7hHVFOqIjFJIX+kVZz6hFe\nOVVn/KK4MM7pOsG8U3gYM7uhdGwckBVK6rIl984dGTKdv+96lKFyMSYdClebz1QdgmTO8/jq5LFQ\nCqUpGXgjgr7HS3dkc3/wTpdKrNWA6QizrI0zqh4cy+J0dmSTT/bv4yiQqTaoMe6pr1fv4KTCtTju\nPuAPd+Uz//4v/AwA6xc8jMJ5Z94qEyXGJHRBWYrebk7RuCC+4YvdLwMwdTIqRq7nsDfl5WPZ8Nc3\nLrCq6aRO/w77+3Kjn/uyEnY0dk8gp37NMO3IeEefv4e5pMCTfXngjwYDBiN5vXQxJtLfOy9n1PbF\n9PVNDaulzB11iSYzy6Ulmf96xaNjJXrtFjk7A/nM156/xweUJt0/K1ugES1T1/Jd2x8wVOU8nuyT\nTuTBSqYZNV87ObW0ki+4T+dAysi/9eKIc5flejZ/4gnsvGT35ojJRNboLw4Enz+Lt/n9nsYJOOGX\npRhNGGgF6pJxGWVzoI785+YlxpOxJy4UHY2JYMhn8qBPOn3GmlJ1UQCZe0QjkLjG9mifZ+/K68pW\nyLktbQLkB5RWYcPaWavhN07qR4bFjHmLE8ca/to75J78+h9qmbIxHGmxRu9+SjeVOX9ww7BxUdaw\nnFmGx/KgZ2PZV63ZjEgJWcIbIXiq4DtH7GtM6M7LHSpteX19S5RYUClIpkoUXC1pa8PN8QS8TNbW\n813cYJnXIgv3YSELWchD8nhYCoUlPS7Y9lJGarb9uf5z+EqP5ngWVwtw7CTBWxLt39T8st84RaZQ\nU2d1i3apQcL0KjWFPM8uN3g6EChw6kuEf5b2KRSD0G+8wL0bGsw8+CTneB8Ajf/0Dn/8i6K5b/Tk\n/8tn1vimJsIn45xZKlH7WnAe/yk5rerPuKQKpXUURnv6LctsXhMYcLI/ho7CtLe2OdxVht+xQrgb\nU7beqnDteEDvSEhIdm6NKGtiIc16KcNd6Xl5rObyqWXLBeUV6NQTgplYQpOgP8cj8cLsGNu/DcCV\nUok5qhUSPdjj9da8sTPZqILVa2qeXj+JtM9q2qq+6+PW5TuuXxvTelqBGPXqSX/EydYNjvQ6nntW\nAUuVJS4rAOrmYYlVW6GyHBNpJ2nfgtWGOeG8cU5RUGp2ZfmoxQwAAAcBSURBVDpLaWk7uqK0RNqi\nPa6coqZcFokCxDqTLUItMLuQ1fCWNRORVRhp1eJokpL7SnlWKEjJmZHH8tq1OY4SshQzy04mJ/aH\n1sRS+BcHGUUk137fyVhD5r/t7HFaG8449bO0LmoQc19dseYa9XWpyq3VHdyqfK8dO4TXZez48Cu4\nytsezGH+Xg6J7HtGI0auBLYrlxrMHJlTMFnCC19b65XHQimAoTQOaZajfBd8fq9HdEcmuRSsEJ2X\nmzwb9oldURBBoRVkTZ9hRx6gpPOAxFGO/WnOSM1B2qtsdiULEF+XHT/sHuAkklk4flBQ7Atg6Y9v\nznjvOXmChl+bcKciJtoLO/KQX3dcWhq9biUuAyVZOXAfMN1RoEvg4GvHpa1Sr8GEuE192nKP1lS7\nM638CGfuiZIZx2o67q2QjmVDJw+e57kXbwBwdHuPI00xRcULfONwXoYrN37HDVlvqAk7LsnUF08L\nqCvw5oWkwD9WU/sFzRxUMi6rTxr6M6pK8OLHBY5udGeQMFOEXbEjD89wNiSqKWIzPEcj1ZqJl7/B\nRJu7Hn0jp98VF+Perowx2poy/Lo6Dc5JgR+1UYS7rqXTJiLT1NpY27a7eZVwThOfG8ZjUYY2cRih\n5dxFykAZtzKtLu0c9eg5c5Yil6mmUZ3S0NE+EunA43isMRqNNfXDhNmhAqeaLoG6Eqb0mNXlnikH\nLitBhB/MswwJ+6GS/94+5KAtD3R8uYWncZJYFWExHDLoi3Kfrm7g6TWnvQ5uW9Y28DYJY4k3zane\ns2mCOVTF4s8YjMXlW16ZkjVUgaQhXbRT16uUhfuwkIUs5CEx3+4N+yZehDGHSOOe16bSXj9ZWYy9\nGPv/B2Ofs9aufr8PPRZKAcAY82Vr7bsXYy/GXoz95srCfVjIQhbykCyUwkIWspCH5HFSCr+2GHsx\n9mLsN18em5jCQhaykMdDHidLYSELWchjIG+6UjDGfMgYc8MYc9MY84uPeKwzxph/bYx5zhjzrDHm\nF/T9ZWPMHxhjXtL/W4/wGlxjzFeNMR/Tny8YY76g8/8tY7So4tGMvWSM+W1jzAvGmOeNMe9/o+Zu\njPnPdc2/ZYz5Z8aY6FHN3RjzPxljDowx33rFe99xnkbkv9Nr+IYx5p2PYOx/oGv+DWPM/2GMWXrF\n7z6iY98wxvzYn2Xs10veVKVgjHGBXwV+HHgS+OvGmCcf4ZA58F9Ya58E3gf8bR3vF4FPWGuvAJ/Q\nnx+V/ALw/Ct+/mXgv7XWXga6wM89wrH/MfB71tongLfrdTzyuRtjTgF/B3i3tfYpwAV+mkc39/8F\n+NCfeO+7zfPHgSv67+eBf/IIxv4D4Clr7duAF4GPAOje+2nguv7Nf6/PxJsr1to37R/wfuDjr/j5\nI8BH3sDx/y/gLwM3gE19bxO48YjGO41syB8BPgYYBMjifaf1eJ3HbgJ30DjSK95/5HMHTgH3gWUE\nWv8x4Mce5dyB88C3vt88gf8B+Ovf6XOv19h/4nd/FfgNff3Qfgc+Drz/Udz/1/LvzXYf5ptlLtv6\n3iMXY8x54GngC8C6tXZXf7UHrD+iYX8F+Ht8m2yoDfTsvIHFo53/BeAQ+J/VffkfjTFV3oC5W2t3\ngH8I3AN2gT7wDG/c3OG7z/ON3oM/C/zumzT2q5I3Wym8KWKMqQH/Evi71io3looVlf26p2SMMT8B\nHFhrn3m9v/tVige8E/gn1tqnEVj5Q67CI5x7C/gpRDFtAVX+tIn9hsmjmuf3E2PMLyEu7G+80WO/\nFnmzlcIOcOYVP5/W9x6ZGGnL9C8RE+539O19Y8ym/n4TOHgEQ38Q+EljzF3gnyMuxD8Glow56QD6\nKOe/DWxba7+gP/82oiTeiLn/JeCOtfbQWpsBv4Osxxs1d/ju83xD9qAx5m8CPwH8DVVKb9jYr1Xe\nbKXwJeCKRqEDJOjy0Uc1mDHGAL8OPG+t/Uev+NVHgZ/R1z+DxBpeV7HWfsRae9paex6Z5x9Za/8G\n8K+Bv/Yox9bx94D7xphr+taPAs/xBswdcRveZ4yp6D2Yj/2GzF3lu83zo8B/pFmI9wH9V7gZr4sY\nYz6EuI0/aa19JbXyR4GfNsaExpgLSLDzi6/n2D+QvNlBDeDDSET2FvBLj3isH0bMxm8AX9N/H0Z8\n+08ALwF/CCw/4uv4t4CP6euLyEa4CfwLIHyE474D+LLO//8EWm/U3IH/GngB+BbwvwHho5o78M+Q\n2EWGWEg/993miQR7f1X33zeRDMnrPfZNJHYw33P/9BWf/yUd+wbw449y373afwtE40IWspCH5M12\nHxaykIU8ZrJQCgtZyEIekoVSWMhCFvKQLJTCQhaykIdkoRQWspCFPCQLpbCQhSzkIVkohYUsZCEP\nyUIpLGQhC3lI/h/qu6kx5N24XAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.3569... Generator Loss: 0.8252\n", + "Epoch 1/1... Discriminator Loss: 1.3871... Generator Loss: 0.7830\n", + "Epoch 1/1... Discriminator Loss: 1.8022... Generator Loss: 0.2896\n", + "Epoch 1/1... Discriminator Loss: 1.3923... Generator Loss: 0.6645\n", + "Epoch 1/1... Discriminator Loss: 1.4469... Generator Loss: 1.4170\n", + "Epoch 1/1... Discriminator Loss: 1.3721... Generator Loss: 0.7974\n", + "Epoch 1/1... Discriminator Loss: 1.1933... Generator Loss: 1.0238\n", + "Epoch 1/1... Discriminator Loss: 1.2738... Generator Loss: 0.9327\n", + "Epoch 1/1... Discriminator Loss: 1.4144... Generator Loss: 0.9993\n", + "Epoch 1/1... Discriminator Loss: 1.3502... Generator Loss: 0.6667\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvemvbXl63/X5rXmtPQ9nPneo+dbQVV092nFCOwkII0VY\nAhGFIAgC5DeAQEICK39BXgF5mwQDQliRpUCAxAg7HTtuOx66u9rurqFvDXc895757HnvNf948Tz7\ndJfArrLd7RRoP1Lp7tpn7bV+03rG7/M8xlrLhja0oQ2tyfkXPYANbWhDny3aMIUNbWhDH6MNU9jQ\nhjb0MdowhQ1taEMfow1T2NCGNvQx2jCFDW1oQx+jHxtTMMb8jDHmrjHmQ2PMz/+4nrOhDW3oR0vm\nx4FTMMa4wPvAvwIcAd8E/m1r7bs/8odtaEMb+pHSj0tT+ArwobX2nrU2B/4+8LM/pmdtaEMb+hGS\n92O67wHw+If+/wj46h92ca/btft7uzi2ZlmWABR5yvRqBkBaFkSOAcBgqG0tPzTm+h9bi8ZT1jUG\nc/13g3xvsbjG0Xvod9aSVbV+x/XvXNdhfQvXgqvPsa78vjXoE3gRAJXrE3qOjtlSKpsNfY9Qr18r\nY7Wt0ZHju+56+DgGrD7Q6MVFmVNUshaO4+J7nl7rXP+uri3oWuR5Kv9mNXWV6vMsVxcXMg+c62cb\nwOhN6lq+rer6eqA14OnYA9dBl55VUeHp//hBIPN0LGX1g/VEf2eMwQkTAJJmAz9oyP08V59XUZVy\nr6LOqXVPXGPwXbl37roE+rzlotLvIPHlu8hx1tOnsjVV/UNar362OnaqGsx6r+31nuKYH+yvrX/o\nHK3vVel/YEqDca0+z+Hi9ImshcrW0q5XD8rKyv7InT92BtZr76zPL1Bda+zrAcun9beOMdf7sP6u\nrO0PnWWD5zjXc76+iwW7XsMsu7DWbvEJ9ONiCp9IxpifA34OYG93h1/6H/4uYbbirdE5AMdHH/BP\n/6evA3D38pQXW3JQvNplWcqhd3xfvnMgT3MALhYLAldfIM/HN/qS1RltfZE9R77L05x7swUArqnx\nTQhAvxlh9fB2raVt5H5FVw751/69f4fDwfMATLv7vLglB/7pg4KrhmzMMwddnmk3AdDhsrAL0lo2\naL/Xwnflc+A61HpAvFoYwfHpE07HpwBEzS77/aF8DhI8X8aWLXOoVgA8evgOAA8+XJHO7srzsopf\n/O//HgA9EzGvZWy+AV/XKF0tARinC2whBzqjpN+UuR522jQCeSm+93TGsC37sL9/E4DnkoLzWSHr\nU6S4nVjW0w9Jnv88AG9+9Svs3v4KADe2uwDMF3OmlzKPo+UDMn2Bmp7hoP+szKnV4WYs4/z274zk\nu77L57dlHi8nTfJcfjdNV0xWcgZcaylTmYvVsVeTBbiyEZ4p6OkaEgZ0I9n3PJ1TprL+F6sMgNrM\noZrIPl16uF253ywL+YX/5m8CsIes1WXtUZVynkaTglkm4zG2olThM89TAmXwiTJWz8K8lDUEcy3s\nHGtRvkniB8Q65rqUe52lGZ4yurp06CdyDkvfIVBmaSuoEnlPfu/u+w/5FPTjYgpPgBs/9P+H+t01\nWWv/DvB3AF556SW7WuVczSq69x4A8M7DP6C9PANgK5uwMPJCdxoNtgNZHL8jk20nbQpkUfcuW5RG\nNq7X6BM3ZeFNmhLGcn0rGQAwzy/ZuyvrdDK+YktfBBO3mZZTAIIqpG/lHoW+3enEYx7LeO5s+Wz1\n5Xcdc85VLYepvTJ42/KCxLFOelmTjORwx1HzWsNwHQO5jLnU3UziEb25XJs/HePuCFPwgwmhlRv6\nFNCQU9OPZG7L5IT8VMa2bKRY1QTc0uVWR6V4q6aVypw+zESTCKuKXKXcQRjx5s0+AD9x83VWoTCe\npvs+jiPjvKlrlW5V1KtjWc/xhNZcXoTRfpfgwe8B8H4+55Xejqz9c9sydtehKmStDk66XLgiDBbO\nNh/15SV9rjJ0Q5nfVz4nY/9SbUl0/7ttDxd5ic9WLv69K10Dn61ExhHSknUdz6jbskZ5NqeRtAHw\n5hWdHWUcYUVuxrJel3KeomcaTD6ScZ6szuh7svaD9opr1auQ8d7qRywcuXarqDlWgZQbj1q1qYEP\njr7cu7GMrfJr0kw15LoiVuFUO9W1BhEEHl1d81UuD+7NpiymcwDaUUDZkjmZJCNM5Qx0rxzuLUb8\ncejHxRS+CbxgjHkGYQZ/Dfjrf9jFFoul4OTbv0n5WA7gxf0njFcyYceWNCI5FN2wIvZVordF6uwM\ndnCs/D3bKnBD/bvbxXTkUMWLAmL5PsplA46uXLwDWYJOr4OTKTfvFHRSuda5WLKrz/twLr9rtWIq\n5XG97kuQyaFqxH3s4pFMqlvgWDF/wkA234ZQDUR7ixwHz5NDam1JraZNnYvkTuIOQSBjy290cDNZ\nC2Mb1IG8hLh9Kr0+CoSJDbOS7NY+AIu33iHUsTnBlEMrL3q6yGkaVeMr+Tc2NQfbMs6v3b7N57/y\nkwDcHL7AZCGMc+B5PFzJy5KeyUv3+IML3LGsizdvEOn84tGK8UzXzX/M2/dkXbxnD2V5koheLnvN\nQcjVPRln+FJ8LeVbbZ9KJWzf6ciUOyuiQJm3l1Pksr/p6hEnC2Ha7mrM1s4zMj9XVf9+guPKWnX7\nAWYqWlijd5PYlxfPJyTz5EyVlzK2dD6niMUSLqsZBQeyZx9c4KhmMi+Eod0eb5FZ+c5xXboNmX/s\nuriezMPJIlwVKANPNMk5GWFPhZdxiFUIzeo5ke5T7QcEKkQmair2nQZPgkv5XQ5+Igxpr9ehuVCm\nmHe5O/sMMAVrbWmM+U+A/wtwgV+w1r7z43jWhja0oR8t/dh8CtbaXwZ++dNcW5UwvvD4zvl9vMcf\nATB/cszlWKVH6NJ3hdOGrkfkCjffSoTTtoOISLlyubL4LZmWb3wiV02NvkcQiZSra+HEr3R3iSOx\nwzpBxPyB2IP2/IqTTCSvSTNuD0UaNWfqiAwHdG6LOmz9Oe1QxrGYX1IHItFCz6MZyPdBIJIhjlpU\nlczJD3yMOqhs7VD6wtljX8YTxwmmLWMvygrPkbFROhSZSPSajDJVaeuJhL5c3iW+IfPrbXnMC3WO\nxgHZrownrDs8PRHpcajOKQYdvvbqywC8/OUvcPM5kejGb2Jm8rw822I7FPX58a7Y2b2rFpMz+Xw4\nTKCxJ993Lri6lD377jLnyXvvy57tyL38177EJBdp3d+6QXYq0v9h2SVry5hW3opDZF9JdN0aybXj\nzJawykXdf/r0CY9GJwB85YWXGfRkHdd+lLN0wY5Mn5Zpk+t5cb2SoJY/+ImBlVyf7Ml9V+OKIJfz\nNho/otkUFR234Gol48jVhDn1ZzSQvX46K+j1ZR98Y3Fz1cziiN2uaIiNtpyV3bxiWsi92klFrT6s\n7hLmqjUMelAia99eyZ5fOoZQhsb4qmCsmtJjFnSXsid39nocZHKPT0v/whyNP0xlseLi+Ht0JvDh\nuUzm4XiKVZvMwcM6akc1IpoNGXZ/VzY+Cj18TyYehDVxY/2yWQJV25JGi546wfJaXrBs5LB9W5nN\naI7TloMwKXLKIxlbNxywWggzqdS+DaOCFx09rHlF6ogt69c1TbUB3dLiespEHBmvcT3xHyBq4rWP\n2HGuN8LogTDGgJWD5LgV662yJsfVqARFhoMckKoSU+Xg5oDRiQw+9U9xrIx9t5GwFcmBXaRXDBP1\nkquza/BSh1e/Koxu63Yfz5W1yuxDarVhu88cECsDbLSeArDa2yX+styj0e1SZEvdsxu0HovJ8PT+\nXT5669syzkLGViUhz+6JmVNPc/yhMGEvqPiCOmEqa5l5Mv5hEOu6QG1l/st8xXuPxO908lGKry9W\ny+twNZV9ONbfF8cjWj1hPGFjQrmQ9cyaKZ115CfaInBlXxvKTE1ZcVLIvW4fPkM5Fx/MtHaxuTDy\n7bb8pshhWss+dGKXyMr3QdMS6Do7gcvBljCWQJ22qznYUu7VDBwKdbrmfkjXk3sMOzGlnuX5WNai\njC/oqXO4mUOO+rxSCNwfOHSzjtz709IG5ryhDW3oY/SZ0BSqsmJ0NuWj83u8eyROtNOsZKiqv5O4\ndHx1NBmPfkdU0Ei5aOQ3qTXiYGwCGonwghaOrw6eukFR6zWZcOoyuSLK5R5LU+Mn4ogbFjB0RQKP\nvYwyFc49k58zmRpOzD0AOk8rnOBlfV5AHoha7qwiXPUim7Wm4BiolA/bmrWmYIyF+oc+AzgeqKff\nVBXXrm5jMJ7iCa6mWA2B1Rr+SsOC/EhV325NqDH/nXZMS69ZeC6eru3NXZEoLxy+QTMQk4EiJi1l\nH/KRwWj0JDY9HF+eFydirnR3LH4sv3P7F8yfijR2bUrrpjj7ttzv8Z3fF4n+/l0ZW/fXf432X/03\nAOg/mpJqJGlS+hz3NNpRWIbq+HM0jFd4BVdPxez4/gfvc/qe3C+46dM7l6hSvkoJHRlH4IjmUq4y\nrnxxCHrFPvPoA7nf+yX912X//GZ9jR0I7UCfN6M5l2fPnDH1SvZh5RfU1XpPZD9MllG35dpWlRAl\n6sSOWtCQM9l2WnR7GiXw1QHtpMSp4kaCnEA1jLALTTVtkn5NmaozvSeaaXe8RaZy3e9Z9hSUUdol\no7bsdeMJlPX/B82HqiiYnT/h+PGITL3l1lZY9bb2XJ+G2uVB4OKqR9lZA1dKSx3JIY8iQxj1AKht\nCOEa3FGzXInaaZU5uE5C4sniVe0hRakx/1lOmshCuucj7qn6OFX1rVmeMnkgz/bIaRxK9LW/s48t\nJXRoWgbHlYO+xskYW2OVeQmqRg6KrcCq6ketW2IqTK2xdArWW2VcMKW8kGU8wx3L+P1QohP2+2c4\nN+S+/uMlW4EeJFsRhHK/xiKgq3b7s7dk7L2dbXDULFlOyNVXkVYGB/mdCWf4K/WS60tc5w5oWLMe\ne3iBvKTlqkG7I9e+PPtp/lH1iwDceyLe8vr0jOFv3wcguLOLr1773U6OWwoX6sQB8Rq0paZYXTj8\n0je/BcBv/sP/lb/40/Lyfm3wM9iORiWKEcYXT3xjIGdh6Bqy0S4A3VZJcSyfr9InZGOZS7ObYdy1\nKSH7YaYxfiRj9kcwS3SbLuY4Cmpa4yOaUUKlXv+432A7VP+JCUFD4ztJg66GIksNLZuWwWvKfjhO\njzSXz6lZkShehsK7lgt+sQYpZRRrEFltWOj7Uvou3rHM/14x58pfx04/HW3Mhw1taEMfo8+EppCV\nOR+ePyHLZ0Qq2ZIyYEfxAVtJQrchHL/RdIlCMSV8jf/jWQJfgUK+g69mBb5PpbDbejm7Rr+5vnD4\nIAoxnsa2swK9BYNWTZCJpDxdLK6dPSbVaEA2JVew0TJpE7dExQ3cBiaRm1jr4rjr5V3zXou1P2Qm\nlGoq2OwaZGSNSGtTOKDIS1wfo/FqjINjRCX2XAd3KBqUORNpx+oUm4um0GFIW1FuWzahHMo1UeRR\nq7Oy35Wxd7e3CEtVtbMxdd3SkdcEnohHp0qx6s13FCXnxAmsxLlWlVBr9MR4hroWdT2sRnz+GdFu\nkkok6fNlQOWKhtFqHjCeiJpsrEMYqQredAh8fZ7imbM048PvvA1Ank04XP4MANvtHa7UXKvmj4l9\nmVc4UXW/0aVULbSqUxyFKwddqNoyb+o2a+3NUQkceC1CxRVEjkdbwWVlFLBSiHGh56rZNfiemKCt\npEGrIfeIW33aOqewkxBrVKpWMzB0EiyyLp4XEClQb7HyKZdz3ZMCVRAorKJRswlWEa1hENNsyhk5\nv5xzupQ92Y567JZrjfPT0WeCKXh1zWC55NwLyNRM6JmMUlW5MvQwDdnQZrtFQ8NJkaLL6ggS/c4x\nCZ4yk9xNcX050KWJqVUlrNVWD4Bc0WWFdQg07Jm4HTINBVnHY6KgpVUkm5ikRzSP9O/hnPzOd+Vz\n56dxfwh0buwauqqqtjXYWk2GMvshXH5Frb4BWyx1jE0cDf85tbnmD7iGUrGv5eiCeiGHYpFK1MYl\nIn0iobnUntBR34HplET6PG9ZgoKl1vkAvllc+zXqqoOndmgVTfB8nUfexFN1vjbq0a4spZH5uYGP\nr5BhKodZqlEbs01PQ3L1XPbgrrnk9cELAFydWuir/yR06GoUIa1cVdDBKjjtCo+BArYKZ8VkJNGM\n0WKLp4/k+0V+F68QIZIrEtTMruiqaR0sV0wzORfTozNWVsyD9JWfJlKmTqEvWzwnXSgSNoLpTF7S\nOCjwNbwcqyCbrwytofwu8jqQaNizbQiTdaQsxgsUWamQdtfUWH+dG+JBqAIiarC0airbEuOoryzT\nw2BcVooKLbKMcim/Gy8trkaubFGRNlRgfEramA8b2tCGPkafCU2htoa0NAzDgLknnHhVuSSqfseu\nxVNOGkYBSVOjD4k6XIiIUQdY5JOXwj2dPLxOGAqi8Jr7W4XG5v4Mk4vE8OKAQnlk5M64pVLaTzzm\nqo4vVTjW3gFuX6TxxfElL656Og6fWp2YdZZRaaRhHYUoKMnHotbl2TFxJXkANrnAjmT8macQ5nSb\nlSbwBLmL15R1CRsHZLnGyt8/xlbiiV+kMoYn9oLJPfn7yVVGM1In01nN9xP5vr0yuI6soafRiewi\nJWqLVzyvF3iBrKGdNKGp+RNNj2wunu9iLusThhlOLCqzKWc4qajtdcPgzuV3S3vClYYw9kPVuuIG\nUwVkeWenlHPBSIwPXExHJOGwLulVcgY8xX+MHn3E733jLbnH6ANeCL8AwDd+8xvY+zLmp/lHdAsZ\nR3NHzauRQ/2irGdYvMrD+jcBeHAvYKXaz5ftLtsvyZ54GmWgXOEs5Iz4HUPyUHMUnAyrUaW2Ood3\nWoaOmpp7ww6lJmP5bodKQWJ53CTQLE+j+QleaLG+fK6L+TWAylAQR2JqrGyKp98va3HmWs+lrQCo\nxSqlpyZvp+lxqUlTdpXjWLn3p6WNprChDW3oY/SZ0BRcF1oth9WVz64rXPkkXl0noWEcGm2RFN1m\nQqiOtkgdKEG/S+1q2mxWslrXIfB8qrUzKM1IK5FMZaFhrqKEUiSfqVcoOJBJUdPcEw49WHk8uRQJ\nM1I7emhPiBciEZ6/vUPSEKlrsgmllWuzDMgVNTeX8WZOxvGR2MDLi0sGTbm2592iXMe6HZHc9fSb\nnCCS7+h0yo22aEr7W8e4fRnbkhnFpdiLVSL3Dc4r3nso6MDvz+Y4qUirs9DhS+p8G/S6NLXWQcsV\nB2Cjt0seybr50ZjySh1uxqFUp5xdFWRjmUswFHlSURFZeR7LOVY1jGxlcSNNCFs2GKhP6JEmtr3w\nzA7dXP5eRJbKrDWhJXWlNRuswarPI03lvu9OvsHJVByNzsrh4eWvA+BdvAaR7O+NsElDEZ7eTdGg\nivaMbCWaUB19wLAp+5fdWuK6ClmvzrBTDWsq3sAuW0Tepe5ZSalOvicPJwzUf9doyXif3dshdWQe\nfu6vg8wUQUaqjuJidQaztdNRwqlOVBKqFjq3hkJdOGle4mrcvV5OWS1lDVeKmqS2+BqGHCQdZop1\n2NuvSEeyJ/fyjGWs139K+kwwBYtDbSJ63RA/lhU5f2qJtf5BuxGCFl85zic0LmShzn0BCu04hobW\nOsAucDTmbU2IVe91WeQ/KESSiiq7dFbYiRzyhpcSKly1VQccH6szK6tpay2Hi4liAqIB3VsC2CkG\nW4Qt9XqnKeVM1P9pHjI+lzh8ca5Y/eWIqYLVr+oJca71FuoHLNU52lJPdjx9TKRoqTwzvDVWWPHd\np2zdkky9og3TRD3fuYxxdL6gjJWxjB2mC037nTrc92VO7a7LVztSswBltiuvoFQTzDNNakccl872\nAC/R01+d4y41I7IpTKrR2iboq/M0b1JGYkqE2SXpY8UvRB/SPpAxHx7LPPbrhFiZbNwccvdU092r\nkG11jPUCH1dTjmdTUZmnX79PZygq/qy5ZDeWF6s1j+nfkGf3d5rc8EStrl1Z46PhguVI1qIXGeyx\nSIDusGBeCVNP05DllZwpry9OUL+bXNdT4MGAiSN72my4GE1X3+nL7w/fbPLkHTmzV4sVXqwvcVny\nVKHi8WSGVYfuoaMRM6917fwu0ylEMr848sk1U3iR+ZzM5Pw+utC8nFnJQPd/8HyXgUZJ8pMlqZ77\nG57LudziU9PGfNjQhjb0MfpMaApRGHDn9g3OHlvOLyS23WvkpEtRBz8cWValOPYc3+P0iUBmU420\nPHfrIW++Isi8prkJyrn95VNqdfwsR2Mu5+KUMxqO6201WWkIbVbnLFPhxMtJSewI1x01m4QzlZqK\nmnTqHFfV/V6cYLV6EXZOcSXmSJrOMZmMM5vK31eOwV/I/A5CS1j6em3O0ooEDVR1bjg9wkORfMnD\nu5hMpPHx9IzZUxln4ySnDkW6T11V992QZKxJXonhQw1fPbILvtSUa9zzhHlPpPijS8lqrMbHLBYy\n9un9c2wsv9vZOmP7QKRxmTWIOqLpuLX83lYJy2NR0ZerI47v/mMAju4+5rE6GnvEHM9FSp83ZC3S\nLKObS/WqMl9hepoElBiilarakX+d0Ha5kL8v3F1uamLbQSvg5FRU+7Ez57X25wC484KPPdMQr4ac\nG70FnpHv5o/O+eBYVOq798+IO3LNadjnq6/cAuDlpuI3tvq4bdEKW3su8fvyyjR2Ew41C/K5oWip\n1SQmReDT988yyoVoU8mqxtQy5o/e+Yg8EG1r54EkjL307C5bkWhS/f0hsZ/q2hrmE6nb8fDkCfOZ\njLmhZ+Qs9KgV95E9vmIrkXfAq/okrpynq3zJuaYFfFr6TDAFg4vv9gmSI5oKhBnVNVp1i7Iu6Qzk\nBRoXNe2OqIZ5Kddm05rpseYDbE8YKABgMV1wcSkLX6VTZmqCOEY28bRw6WilJL/n0E3lJYyaKzqx\n+gZaM1YX8rm5hh14h9dMobw4pQ4kFm5Nk6kjtv1H/+xD3r2QDY0VPbyyGR09bM89/wZmIPdY1iXj\nD0V99PY17XnQBvXO94ipNcMx3HKYXn4oYzNNtg7kwCYaw75oPmGmAKiogH9N04Uv8pilwrX/uXdF\nxxP7ejyTe9mTOb9/IgdpdLriqdHKUyOH2x053LvDPl/6y68CcHsp5sdR/m2OH8iL8MH5GdkDeV6x\n5dFUbMF0NyPWFwTEh7Ecn3KC7E1wN+OpwoAPdh1OGnLQb84tSzUlQgXjHOx2ufWsRByi9oAi09yP\n2RHbc01JznZxdNFPJvKMyaMMVytktaKIZ7eFEdy69TnimzKmuoaoloIq2QP13u+GYNQXER7RXtdj\nrAp2YlHz+6q2+5OCkKbOsoaWjGdruMdjxV5s9be5ysXETEcyz6OnE9zdtfno41/IOEerKdOJzK+D\nwzM3pQSesyPPHV1UzDK5l53mVBqtam0BF4odOaqIp+os+5S0MR82tKENfYw+E5qC4xqirkv2YYFX\nCAcPbY1ZD2+V8623RfV/uFiyLEWqbjWEQz/baJLOxREVJxDvreP/M47eFbOjyEo6mtn33Xsiwd9Z\njLjREw49iJq8ePM5ANrbQ268IR7pxq9f8qgQ8yHTCIe9+oBlT7SDstnHnss4XR5y+l2RaL/x1ju8\no9WoX+mIpEkD0NIMPFNaumqiEBsKresQK+zYpJalKDGcP53xsFCMQb4g1ySZRttyqIlC3QPFClw9\ny5NtkZJPl49BUW5nb+S8/1CzDx80+H5fvh9YMRmOT+a8cyJrWFQVSRXp0pd850y+/1IIXV/MjXgg\nEvHROyOO74snK/USHo1Esp2kC/7C85J0dKcYMGuK5vGtmUjuncPXuFiXaPObRIrhHbSqawn6oc05\n3JH9mbZlMW7f2efF1wXanE5WeHrte++V7L0oe5ZYl+tQUqoRp8BlNxYNc9C4Qeu2QonPIa9kUxqx\nQ7bSbNw9GW+d3sZV7IhjU9p35IyMF0fshJq8p5GRJkueHIt5uNU5wGpm7+MPRvzBTEzJq9GMjtYK\nfXUo59GrU1qKrUlchzUo1B2nBGM1m2qXb35HtNAH9fcBeO5WDzQBq5V06GpmaLTVpfV7sraP3JBs\nS53wYml9In0mmILFklcFjV7IYCyH43hlyDRvwa1LCs01CIKQV1QFv9WXRX/hpZu4K3lpSEt8BYc0\nGkOcpmxAxw/Z6eqLsyMqt/fRXZpaKQe3pNJN3t4NSU/lZVn1VuwMZWOuNPzXagyIjNjZq7omX2iI\ndHVOsZTfDfdavKo1+J5/UezUncZt7I4s+ct3btFQFT4ezbGO1EEMFAhUlmdMH8jLthwWHKxzAxyX\ncEsY0nA74mBXU3wnwjRDLC99VQuh3L3B40vxlvfeTWgrxPq065IX6vlfap3LIKTY1kNqK7YWYodO\nmxmXuTDFm509tvTZ3ZfFO39zeUF1JIzXnlQs9KAH6SWxJ0zR3wlJrKi+t78v98ofHZE2ZZ9ePvgi\njzXbsxWGuBq+LM6veHIstviTd2R+r932iJ67I9eeP8C9LeP8Yr9DrmndjSQmfyB9hwZtLeQyy2iE\nWqzVrwnmsrYzz1Bohah6yyPWPXMimacbOaDRrKiXsD2Q73nHYZn8NgCZFsbJb9YMprJ/3UGf4U0R\nTtHckJ2LeTTvZex7Gl4+kPOUTUaEGi5uNX3Cppzr5XKBpyF1fxyR3dao2bps/yK6LtzvJrB/KPM7\nn66YJ2JKfLHVZmblfu/xgE9DG/NhQxva0MfoM6EpGCAwDqQ1R5rI0esEeFpqapaF3N4RLngnddkZ\naM3DQ5GSblSx1DJh1cWUiYKFjF9zc0cl6czgaFRiqLDWn4rfQH2OdIKAOhYe2Q9r5h3h+CdHXXxf\n1W51DEa9BmjxjjqvQOvhEZbcvCWFRZL2NtlIvt9RyZZs7eFrBKM5dLATjYz4Rxgt6ZZo7YKg2+bW\naypRUg/XlzGPRx59jbokvYioIxJhrJKv6XscIlKn8WbI1T8W1d/pX9GdiaR5pd+mo469RAuBNIcd\nuhNZn8V4ylhz8MenE7pbmhx16OGEsvZWc/69docrR9aqeVDSPxE1uXerydYNMTWGwQ5vfef3ZS9X\nIs0XdY+RxGuRAAAgAElEQVTmVPZmFExZmXWTGctQswS/5fb4/pXUdvzG138FgL/ys1/gr90WsyTu\nHVCvi6ksl1Rq/uB5GNXCskqK4aRRRqYRnCS6TaDIoxZTmgstbxYOaYYKbNOs1TJb4GpdBC9sUGoF\n6sZtl0TXqKkJTqenPuxo0tJhC0edw4eHA6JE9iRbHkGme6ml19thKV5hJDG21oSoVtIAjb6EjYj5\nuWgIz1aa5Bc36TZkLVo9n4E6IC9XI5qZ1iztODy+oTgTaQfyifSZYAq1dZiXEU9nU1I93IUb8pym\nnrbj7LoUea8VsKel2gNN+zMePNDmHfFiTqkvUFBZXE8OnhenBAqW8Rb6YvZquoEcaKdR4BTrzj0h\npaZDL7zv0NB6jB0FoJhmm3Ih6ux4ekWcyKHpuYfXRUZsluNrhqYW2KE5BNdRr3AekWvW5uTsnNEj\nOWzuoTxj51aHpqZcVlcBVay5H94ZQaW9I8IOnivzi9SGTrv3Ca5EXRx2tylisUPNBbiFIhaznMNC\nBtUMNBS4igiMHuhOi1IZXTzsEg9kjZ4dtHA7ummTE11jB1/XZ7Q8J9RamV3PsHgg9vU/SZ5w/1Rs\n9KWqu814xoOnD2StPjzliaJCv7BycRoKkFpMOD0T5nPT/HlZ43CLPJOXrfBWcN1EZUo1l2ek5ZhS\nAUKzlXw3PqpANf/WdnjdMiDMdlnVWleynONqSwBvJSFCB+e6r0Ptj+ChdlsqHRwjL2HuCaMrMsP2\nixIZ2W4OsJ7Mo57VdBSUZ8o+eUOuT85kT23YotnQrMYgopyI2bVyQ6yGyetqTKWh5qGGhSM/AC1S\nHJcu9VLGlgx9xjuyr3e+n1F+IGfuG3w62pgPG9rQhj5GnwlNAVPjOSmzheFqIhyu07W42gmo6bYp\nG+sWcSGFFlnxwvXwveumIF7YwYgmTtgOGKgzy08CalW7rcbdW/0GkYJ7ZrW97iNYpRHnrtzEOSoZ\nKUDkLBEtxl1cMtLuTReTCYe+SIygm0Mm9/ZbhqXmLvhaVs1hhuusKxWvqDR+fPL+hMeaPrBlxQxy\nZwXOUAt93L55XRTFrS8oU73Ga5Jr/oDtivTxy2fxX5BnjMvH9LRYyFFg1mUCafkBHTUDItbt03wK\nzYcIbcULLXlG3qwourKG281tIq1L6IdasKWxza1DcaQ6y4LiRIFVboXVoh/ZRcH3jMzVBNoqr7Vz\nXXDm/WxKHWpxnTgnLrQbWNzia1+WuXyo2IXt527hKoakWlQ4Cmpz64R4KNGH9P5DCtWmnJFmuBYu\n2ZXsx42Lc5J9MfPcKqNSrSIsU3x1+AWOmqNpAycRHIadJBRdzfx8f0EzE63wbCJ70x50yRdaM7J5\neO24rkxJWIs548cFXQUTrSqF0scFcS5zdvPgujhPw3UotDXi0m2yvavQbcVgtD2XhWZo+pFHtpT1\nXjS7lOdyln93MuXoQMNYn5L+xJqCMeaGMebXjDHvGmPeMcb8Z/p93xjzq8aYD/Tf3p/0GRva0Ib+\n7OlPoymUwH9hrX3LGNMCvm2M+VXg3we+bq39W8aYnwd+Hviv/qgb1TUsU0PSDegca62DzDLS5Ju4\nBTe2xKHi1j6e0Qq3lRZGbXd5plS0mr+ikyic142ItLyWX6wYqz+woQU+/dzB1TJYwWJFqY5G461w\n3pXY9CKf4GvvgPbJusffihCFsNoZpquVcLIVtZUxJVsxgZZv8xRLYJYedqi2ZeVgU/H8tCKPXe11\n0H1GDN+QJp63Lte2wtFqSw4pRrPl6u4SXytEVdoY1bud4A1EYkbvtyjM7wBw4Huk3g8qSRdakUkV\nKRqRj6+NV7ygIvHFj+DtpXgKxx60m0RaG8JRrETStvQ7ogUcH8NgKDJgK86ZX4pj7MhfsKfyJx7K\nPG939rlQ2HmrzPj9p+KgXGUeW20Z1M3tkN1a7e62OC13yppKk5xSd0wLORdmYCjNA1mL/oD0UvZv\nmapW2AkoFNdSTSz2pvYUCUMamsEYeG3CRNbO1ZodlQEqrb5sSnx1cieDIcumjMMqxLw9cBh6AjUe\nTc5pllptqdWWnoGA57v4rqJTbyjKM5vhuS3dByi154ZrDdVM1nB1McdRZ/qgoQjLwNDO1OcQhrjb\nWjvkwxkXI/ns1yWNoz9e5aU/MVOw1h4Dx/p5Zox5D2lB/7PAT+tl/yPw63wCU3CA0NTs7d3kTD32\n5WykfXfAcQyrqajJW80mtTZzWbe4CJcBw65iGkYujhV1yc1TvKWCVArLuTbyWGgtwsAtqQNRF/Mo\nIi8UMptGXMRa5qrpM/1Anj3R+nzzq4K54tOLtouzELNiWvh4SzlsYzPFVYz6TBvT1nlAhL5sYUih\nzU+d4D43kI3uaDEOrxmTrrQjzWhENRVzZjwagTLLllfgdLV8mDYWiUyImQtKJest2XYVzpxMr3ts\nxgmk67bz+sK75geNW+PII9Ksvdr4qLVG3W6AMmI8rYhdxkSatTmczfjoe9Lha9adEi6FwU2WGU+v\nZI3u7MvLvbW3w7gUJ+njR7+NbWsxFM9em1tZ7NNQxri7K2t1YSyxNundCoaYlo7D9XCeyvzGV+9z\n+Z5c8+4DGc+CIZ97U8aTMsRoFqFLRXO9hk6As65+rS+b9cbUGokInCZomfxw2GWgAK6hdhlbuIa0\no30blwkTbRYTVEs6asaZ0rtmItauhVdArWUAamvRVpk4K1gphDoLz6hW2pWrIetW110Wmsdj0x+U\n03ucVTjqmHbCkmVXTcRPCV76kTgajTG3gTeB3wV2lGEAnAA7f8hvfs4Y8y1jzLemy+WPYhgb2tCG\nfgT0p3Y0GmOawD8A/nNr7dSsmxwA1lprrrubfJx+uBX9swc3rZvs4k9PaGi5rvHMsNIin0+cHLMu\nGLqyBD3lwEZxB6FldiESo7sXgub6Ly9LppXCnE3IaqoZdWcitbKVoR1rc5OBIVwn8Jgc9N61615L\n05FChhdlyXImnsFiMeesrQVKGz1Wmhk5nkKo4UerDrw8Lmg90t6WgyF+W5GJezs4K+3dqBU2Si9n\nuRTz4vS3vsMHD0VbSV2XOBGt4fboNXraei3eVnH+bEL5fVm3xeQMX1Gc3eUVEy3yuSpgpT0uxlqs\n1kwLKnUCGn9ApMVS3KqLp+jHcgZTX5xu/rnMqfYd5pms6+r8iGws6/2d44JeKVLz7Trn0UqOwYsK\nDCm7fc7vSyu5q+kps0yk7vEFWC0+s1NGuFpyb0sLn9Z2gRlrARSnwAlUapZTCtUELx6OmU1lLrsK\nKZ4tY/qemma7DViXK5tbqkBNzHZCoWPOrmSf3JaDceXZaTsj07W9NJe049sAOE3Zj+xiSarmo1nm\nuOocb+CCL1Le80NcDf220T0LahzVTOtmgOZ+sUrPGc1kn0bnjyi1fJut1UnchUpxDHVRkeeqefYL\nertyv/2LmupS1lB27pPpT8UUjDE+whD+Z2vt/6Jfnxpj9qy1x8aYPeDsk+7jAJFxMOU+iRU7Mwou\nSUvZ5HycEaoNe+7MidRW29Gai++Mlvz2icB5b3y/wxsHArU9eTjnXCMAwcBIzBlA4/VvP3nArc66\nWe0uTUdV7aLibKE27hyO1Et+qiCm+uqMSrMScVyWK63qm15xOZFrJnnJKtSiLg/l753zBsda/en+\n29/kuYbCrRsu6WMB6TS35OXZfqmLozXnjy8W/PJ3VS03NS96svnuly859oQ5vdTQpi7nz7PQAin3\nH9yjpZERv3vAYKVFODAYbfc+0gzQdjcmc2St8vQMz8oz2jccskwZRDhnoU12p1eneq+cOFpHjO4Q\nBHKiP7p8yGIi1x6lFbGaG9s7so+7jSGRgolSP+DwUPMWmiuclTCOpVfS0NqFvkYyiiq+rpJtIp9a\nM2Xzk3PufSAZju/dm/IXPv8iAN1nvii/79ykVDxFUq2odK7uVs26BVbo+NTuGgOhfRmdAFMqKGri\nc664jpOzkp6Gc7JcMzmrJo/PhEF2nYhCO4AFQcVKmw45ZU247oWpvpHZ4ogw09L+lwnTJ3JGztJL\npplgPcrcwWgBnoWRtR/mXZyB+juChIVWzz6/gLnWmPzQc3mkeJhPfhOF/jTRBwP8d8B71tr/+of+\n9L8Df0M//w3gf/uTPmNDG9rQnz39aTSFnwL+XeB7xpjf1+/+JvC3gF8yxvyHwEPgr37SjYzj40V7\n+PsuN4yon9FJxYm2vvKKBdlSm4J4KeMLkcbzS9EYLs0VpxfCXQOT8r7W0YsSh1QLWtwwTaKeSL+s\nlL/P51ccq2NwN1uRaoLVKp1yfE8SlC5HxzzbEw/3bCScPUt8IrvuIlxRax5/7WTXbc5mrkesvf+e\n3Jc6BY8rj0yRdLNJxqVCm9t7N6i0w0E/VSfoXUv3VXleNNhmMRO47tl8zkBxA4UfsetqXwP1y8wu\nz7CakdigpuiL1jR0AwaKTTiZTCmm8ry29mywxiVQzEI5S5mpw7NeRTRDhZM7E1CTqL0vGkhmVgSa\nkFiZE/qvizlzeDXmCNkTg6XfEU3mK69+HoBOEnLjtki5P39ywFgTwWzlX5d/6+KQqPPM0Xi947gs\nEnVBOyW1lti+eHjEb33nm/I8m+Jr6TwyLRATgVf8IHOy1p4hxnVJ+nv6DIvVqJLXlb0J3JBaZedi\nOsdRZKIXxZRdOU/FRJ21B1e0Hsp907ymoYlSdeVTajJaejnB8VXiq7N6OS/pNdSZ6RUYGQ7N3Kc1\n0toJoxmLdfBITfSFE7DlrGt0tgi6CsFejbmhz7497DA9Eg3pMaJhfBL9aaIPv8l1L/X/B/3lP869\nKmCO5Umvy4st8WS3gxy0O85kHhBoWHC/v8W9VDbswVgOv2sibrdkM571IwavvwLAVtzg5ZVWW6oD\nFgpHfnTvPQCSOsf05RC43SF9OZfM5jGPR7pJdYuFRjPylmzi7HzEYEsYSLfTAQ2BTi4dKoVeN8wM\nqwd5dKnFXYqSPe109bkvDumEYj70XvoC8ydi8YUNNZ/YptmWtYjzpxxqQ5YjLGjGaOd0QqAMYq4q\nd38QYyZiF/dfOuD9XxFm8c6Oz6s7MuaXJ12ePlW0lCK6TLiipV74+WjFyYXcw8zHNDR8Wa0iWpoT\nYmL5fRn6oA14w+WAqeY+XGY59ythnGXisaUmhn9DmEYR5gxXPyHr9vI32X9eDn/TL7hRCTMsEp9Q\nM16twtxx3OuS+XXukqppNy1CXM0o3K+aHM8UZPVYzEouDV21uU06wJPHEQwdmjfUHIsGOOvnaJ1L\nrxFTrHuQBitmCjXefSHg6qHc29VU/tJrMripAKITl1JDwHmyJFLTtKyXnJ1rb0pV912vhgv5+407\nL9NqZjrOBksrjJXU4d4TSYe+2dZs3Xib/u5tuVdYMRnLpI6ikOee1zP73oysLQLux24+bGhDG/r/\nJ30mYM6eY+gmPl9uJ8xPRTt4t7ikckQFXNYjHM38O3jmRRaLdwD49tviULvz0h3++r/6VwBo753h\n+lIyrLz7hKuhNssYPeCdd8Wb/9Y74pB67kbIV/dFcrX6LTwtpvLh/VMKjS4Euw6hgj/KiYwtLyO8\nSO4bLSs0mRN3OWGpauI8LwlUvcwUQDWbzUgaws3f3HuduCWSrRUl9Dui3Tg3RHqa7D3OpjLPf/LP\nfou3rkTix1VFobH7hyVErBN31OHWmmH+QItt3NmnvStS7gvtmuWVOG7fL1L2ErlmruOtZiVLq0lV\nRcmFJkS55wGBNsO5nGcMdrR2RKWt+7Y6lHOJQJ8Dp+9Iebf7kxUtbYzTS1o8+5zoxLNMQTpDl2pX\n7nv77AAvFUfj5TjkSKX4dlHiaPLbuvnyqrKcPVXI9HTMjiZPRYHHv/QX/y0AuvMm7eflfktHAWSx\nR6GNeMqq4GxdtXns0ysUTh7k1IrlMOv6FXGIq4Voxs6SxXuqpd3x0QLTlKrFlrMrAgUWNRPDvFJp\nfVkTqkkQOjC90mI2V/Ks53YSXO0aXsznFPfl7Dldh/lS1vbdBxe8e180jM5romEe+GDUEVtlJ8wU\ndh01L7hUR+rs62MWoz9eOefPBFPAATeC870ltQJ6/LfbpBqmaV7m7Aay2O7M5fWfeg2Ah+eKgS9n\nDD8vtvXW4dfIEz3Qb+4RPBB1vDiKmSowahC+LP822+zsaYv3dMLjD+Tv3/3e97jUMNyXs23OXVGZ\nF23ZlGafa6932GlRa+3D4bAHI/m+5TTI1F+xd0tNFM9w+47Y+L1X79DbkcIj1rG4r2kfBe2E5VYD\nxr/3qzInd4vAiu7n+wEHkYZi2eLDkaiUw57WrUxXdP6SVAeydcb2GzL2R70T/KXY9YO3IdRQpPXE\nhxOGMWhL9V4S0rXChB3P50KZ4avP9al8eVkCbZLqmYxYAUnF0RMeag/KvlNyum552IfLXTm8703l\nGS8+1yFXQE/8YkJzIfswuFGjKQEsovq6B2+wbhFf1eSKNZpfuEQt7QbW8IlmcvHF975DuhSml21p\nW/uox+X7mifxShs/kvN0+82X8CK9YeRjNYLuDbRMvnXJlDHNH7qMtedG6Li0hsKQLo7lHG7tbbNa\nygsd1UNcbUGQ1y6uZlru3GpjchFEi11hWC+99jl2NH/E9TKMr12oRjVcyFmv+DVuqQDr7AnD29nt\nkSKMYDaHj55IpMIc9NnWyM5H3hLErQJqMX4SbcyHDW1oQx+jz4SmUNcZy9UHNB52ubwUTvxh3eLA\nqMNld0GkErQ9dAhjkZR/7g2Rund/a863f+H/BOCVn1yxDIV77uw0OXlXTAUmT4nUHPncyyIxI9ti\nEYp2MD56yvcfCae9qJY42ml6tp1THMg1nXsKRok7xE0t49Zqw0KuTfMRnj5jmvqkWp8h0ryEm70u\nXUd7LY5PqRVkhbHXxUJyBT+VZ29x/h0p95V3Ztf1KHebDW40xVn5tBiTa9OafYVS58MdgsM35R7p\nMUSi3dxytsgVYv1edM5OSxvbzLT+Q8PFqjMwrEtchc+Wgcd2Sz63gi2sRld8Fdf5cM5CG6vUQUZD\nKyaHfsKhFhNJygHVfRnz79wW88K89VU6e+sejC8yzUTDGk+hsade9LpBrZmr625hjinYDuTZi+aU\neCxrOA3OiBM5O5cvW7ZauscNEY/NfgNXIyZddwCaoxG0BlSBrIWpYQ2+c/W85XVGpdiTWX6PXd33\noPZIFfJdROsISYKvGY6Zl+Jo9Ml3YzSYQ+QE3NCCQaMP1EH50RGXY+2hWizpNmUNLx+dESowrh1G\nbN0SDTDZ1jPkWrIrxdOkUCvk2zy+IqxFSxnezul/IGN+wKejjaawoQ1t6GNkrP1/RSH/mdKbb7xh\n/+mv/ApR5JJpWMlUM37xv/3bAPz93/3n/Ec/KYVCv3rnde7+ujgMv/72bwDw5MmYqSLCqtoyXef8\n84O51Vg8ZdeBJv7sBA61q/Fvz4OGcPmrZc3ktthtD+9X/MuHInXaX9AmHL/627yo0NdJMqBtRNp+\n98hylWtVXt+w0tDh1VwkTWWgm2jVKONcw5+XeYaneUZPtXFMQcBMuwgHvs9sJpLE1i62/PS5Ij9x\nU3wNN1ttuj0xLvd2HcKm2KftrmZ7drokCvN2nSXNtT/AAOrAeufuQ+a5rHNPHbg7TR+j/T9dY2hq\nJW3frxncEUzC3s5tnIFIuUhrYBjPwWrvwzxYUNUi5f+Df/0v8awmqY3DASGipT3VqsalYxhqRa5q\nXnCksOqqqLG1jK0sKyaFrH2kVbgiP8RY+W6Jua4zkcQRthRNYV5burFmj3Y0K/NGl/7z4vv5qcM3\nGL6q5fa6Q/7L//Q/BqCj/oLj3HI50pDsaIJV7+gzB4e8dFMa34RuGyfScK/WAGnELsNnxHdQhAXJ\nlWisT8+eMsvFydn1erQ0czN0ZC0mToRRX8s0danVD3YxvcJbyDvQdUumiuT8u//wH3zbWvslPoE+\nE+aDtWDzktpziRWWvKpm7LuCifr86oTggRw8+/wWra4wheVYvcKTlJUji7MTOcTK6DqOj6cMIDMl\nTQU1dUNN+214uLF8l+JQh/K7xIu4o+rXz7zg8pMdeSFbGjn420HMbinq51efe55ZQ0rGt9Nj3jqR\n8S/w8QNtJBoq2ASD9i3FOg6dWpmFrcmUka1rJoZugVFV1TQrfufJun15ykQBPbW18Ak8vaHq/m0S\nDrVa8/6diHYgjG6xkIjEcmVRxzlN0yPQSsxMIgqF9nZ8D0/BQm31vMe7LRw185K8onoscfX0+Q7O\nTEBbNo4JtWxceFscarYoqXyt9jwq8NqalegERJqq/Llem1ki9zvIZH2epnPWXeKjdsAdI0ytKiti\nhStbUzJSIbGu7N0Kmtd4k+miuK592PQj0kDrGY6nFFrWr9vV6tLNFvGZ7NPV3pJ9LdqStEfkWvhm\nVspzt4OMXNsA4NdsNWUeX33mGZ5/7SUAgmTGwwth6hfvCLR9UTV4Q8sC2tmcxw80n7BaEOgzWgOP\nnmY+Ng+FIXdmczIt1NP0HTx1aHvvLFhpmbrD3g7LWDfrU9LGfNjQhjb0MfpMaAqOYwijGIpL0Nr8\ni8cfkc9EUt4Z+DzznKiX9cNvcve+ILTeO9PWbrWlq2rUq502bkNbcFU+ibab66cOmZoHbe1kfMKS\njmbtzXw4UVPiIrzg3qmq8dsVj96X5/hauHU7z1kE8vetWcjjC1FxU5Nct0Nv1QavoeXdtMBG5nqU\nGmOb23zdx4N56KD+NHLtU5GUPk8FXc3oNGOpLe9sbanXiadr79sfQTf132a/5qWeaDqeDWirKuo2\ntX7DeUVTnYQDx2KWYj7VbslITYbbw2d42hWtqY1oSm5Rs6sZjH4SU0VilqzM5Ac9IeMFtZpulTY9\ncdwUZ6VNdDou+bk4BNtFyawW5+jn5ttMLkTirVSTyuKKrmY4dvuGhhaDieMOe1qoJI1yIg3bVmvc\nwcrlwVw0unw8Z+7o0c8NF1q41bYcIu01Emk/kNrMWSayUauj96lvCEYgPclwFf2YLRWan0eU2jNz\nO2zyxdcEe/JTX/siTVHSmJ/MePRQwsijY5nzpfuUm5FmfvYGzLWP58DfIlEn5s3eLaJE9q/WsoCW\nLouWaA1H91dcXcg4svACKtFegl4DM/7jlSb4TDAFjIMTBuD0KEcysdVv/w6cyoH4wuf2ifdkoe79\n1jm//7a8pHvqKW42fP78bTmkL+zt4WnMPi0dmqoyWsegcHfONLJwaxpzoYdtu12TKkNyV1BcysE8\nebTkSlXC6Udyr1vRgHM9KA97T9h/KAzrW4tTkr4cwnBlWVeJOTVivw78mkpbzgc5jJQJ7bfD6wxO\nR238rk3oadnv95zHjLVrENmCUrPsPo03qG6Lfd7c3qfxurxAPbfHPFMQkoJfaGe0S1m3sFXjqj1s\new6J9lJMlz321hl+aqfabIm7LnseOBQKle71GwTa/DbIb0NfOaAyGJIIXGUQYYGrOSpXVeM6g/GB\nf0JjKWv0/lReoNYwptGWsQ2CFlFH9/1Gh/5g3VcTZoXmI0SatTpd4R1r5ywvZq8jR78oXG7oGZjO\nlqy0AnOu71F6tGI+kO+6zRmuNqkNrM98rqAlbSlwXkzxFKfRbHR4/YviB2sfeBRaofmjh3d5+56Y\nVUeKC3n55jaOQsIvV3089ZnsDXfZ1bYErSChaGo2p6/7EaXX1Z6T/oJJqud3kl+Xjy/2C6JED/6n\npI35sKENbehj9NnQFKix9Qq3NKRTQSBm7QkHz2l83A2o7wqnffD2lA+0BsChmgw/ud/ji3e0x+HO\ngKqlYtVAqTUEvHZKMNOqytuaUXjxA2dgtSp5Vgt6jOp9HjUUJno6olLe+cxN+V1+mfOGtk9zpyu+\nkcmYew1YqISKOxW2Eql/UyX+VicCdXxeTR32FQa7t9/DJCLxOi2tSZhZpoXM2Y0KOupwe/jkKZnG\nzbO0QJMr/1DqJSJ1Xny+je+o1z6e0NRiIGsHZ9mucDX70PgxkSdrWAQZoToam4NbuOsMvVThcSbC\nm6p5VfvYobZdC1Z46xqa0Qyz/my1Jljdx9VmKVU5xWkorDhf8az2PnQWJXdTcYRuq3pdmxodOs1e\nk32N+d++eYjTU4mYG9RvidEO3JW7ZKUNUm4kWwTr4ivljGKqJc28ilBz/Ca6NyxmnJ7JIr/afpbF\nRzJ++8oukVFUqOpstrT4rpyRg+5zoGXQ/MuMkWo6l3evqNSHuz8Qm+JrX3ud0JFITbFluLESB/oz\nyYCtzrp8X4Ol1heJNTRk/D1GE/kuZYY7kkmX2w2a2tejmM9YBH882f+ZYAp1XZNmGc7kMX/wG38P\ngGbZxW8JHPkqesg3f03SYv+Ph3NCLRAyVFW9kUSsVppNt6ih0oUqobKqXhGRKSDnUot/GCcgUwZj\nuxHTiaqR5pRdLUb6fliSaeWa4K7Ycn4nYWHl2odPrlh15ID545pGVz7vbXVx9UVw1aPd6npUubyY\njQh6nqj227eGuGq6VGqq+IXlVItqmGKAoyqsf9Vkpv6FOq0oPsGx0A2FyQwaDRIdR9Bv4mpB1FJf\n0mTZINaQpIdPpQVlgrxLqI1K3EaDSvMAwoUyWzeGvvZ+LB+RXSiQJ2ng9eT7MD+HMy1E0tRU78qA\nlmo3xxVWsy692iHVl2wxHZFqGnVrqinbQcxuR/wdg7jD3vCG3reNqbSxT5RhKi2v7ui6TXo0+hqG\nnEfkvqZGT3rkTa19aLsstT9AMZcxNJotnpzKWjxxLzk8lnFs73cwmhNS6bPGqyVb+xJl6d7Zw9Wo\nxtOHD3j7TNT5J17NK6+LmbOnoe4vfe3fxNH09JeqFaszrdJUn1NpkWHjZVTHMn7WIXffJdLmOz2n\nQ61p3due5cyVsxpWESMtGPNpaWM+bGhDG/oYfSY0hWqWcfmrd/ne5QmXj4TD/bk3n6P7rJTUmn07\n5+2PhBufZyU7WgK8q//6LcMD7TrdHOdYhcGmxeK6+u7gvCZOhBsHtUYDwgW1eqFn57DS2PX8tKBO\nRRrus1IAACAASURBVCJMxzDXWpEfNUXvO3Bd7p2IJAlWIQvtGX/QctjWdudxnuA2fxDrBinFtc7T\n77dCukPtA9iK8dqiPvvlWhXNcS7lvlUzp1hpk5KDkgf3RXItGgXF9I/WFIax2he2oKUO2GJS4rsy\np0DrT1bWJ1csQOAvrsu1Oe0KqxqWk6UYdZRq0irlqibQVu6u2afuyN+vRv83e28Wa9uWngd9Y47Z\nz7n63Tenv331fdmO7cQ2CbEVkIggAQmIIh5NFwFJXuCBSOEp+Ck8gEgkAkkIUSIF48Q4rsSusst2\nNa6qW7c9/dn77G71c81+zsHD/61ddcGue66v7RyjPaTS2bXuWrMZc8zxd9//fafoUd7N2mpQRmKB\n7VSsue8aIJFsuul6QL5OCDc4GssaCJSLgszV1Zq0Wg3QZzNTr6/RJS2/bWlYpNJvlIYfEabdiGeS\ndTPYCek//BaNYdLONmhauRkvquFp+VsTQ/J0pjCvBEz06I1j7NyW/25OHqKo5Rx5Kd6McjxsslFs\nGNzCCb2je9+ewN2U+/voDx3g85Foiw5viifc3d6AIkeEFzgICG3OHg/gaVL3LxVMuIZNE2puNCI2\nc0WdDBclm+m8OVqui7lTo53/Eaw+rJZL/Mav/Ev8r19f4LWXZeH+6x8dIJxKeWtuL5ETxGG3wIEj\nL9Ye+fQK34ZPBhprZaEgtXqSejhlaDiwG5yxdLjzkrQbO3EMzZewtufISBZyolIsZvLD+0mLDstp\nGyS8qKsO0hU5Gl1gg5tMpIBojXH3QzQEUTWpfDcINCyHwKlOhBHFZgMvAAsRsHwyOmUGFnUCdWUj\ntmReussWxVAW6a8bB/d4bE7P/6ciEQ7YzWiPoHpyT97KQ0sU3xpYZbldaMbfllawLXaruj48V86t\nwuKSUAUhJdC1B+TsPlQx2kZeJiuI0WayiaaLEL7LDYIdp0rryw1GWzEUJeBXVY2KlOp2oKDA3Ac3\nL9fyMSBZzjAcQHMtwPgAKwO204Phs7I9vjROC0Uh2PRihprZfu2XiEiSAssgYHUlpwKWpwwizqpd\n1uizv8AyBusWzhWZvHqOh4988hYAoLPjI5uQdr8q8blXRWPy46+9iuEtWdfGYf+FqmC4fu3ag+Ww\nRDrU6HDzNtqF61IFbM2WpQF3RQ3V2Mcwk/OtfAfeGZXDSh91/btxIf3O4yp8uBpX42q8ZzwXnsLT\n1QJ/7au/iHcwxxcV+wW+vgd8mhlu7/OIOz8PANgogICegCGVWpM6UNuyS2ZJiackvQj6DaaPZHf9\nraMUCRNNP0Wz2k6Glx5I3TigmBDOH7b4Vik79KKpEdKCfoW8jF+oMuySz9GoECtizrWvoQdi/Zxu\nCYvafmv26LjjQduk5/YNarIk1/ESpl27s7R8VXtp5QLfAfNtGA5s7FHt+E5H4WxCKjji/i9RUBwe\nWZQDJ0U9I2xarWCIPbAM2ZIDwGqZhS8j2LSU2ragWqbLzQCKGAKQphxqjJa1eeNZCOjOWk2N9J7M\nfTp9gryQRFvIBK4T/RiciND1NofF35mqRMwKTV0AHin/I3oaxqtR8zMdWjB8JsoO0DKprO0KqOT+\nbLpgrl2hoXxQU/jQDFeUB9gkfsmLHPNE5stWzOQ3K1yQN3MnjJAeSZja2d9E5rN3hXiLa7aG15GK\nwuH1W0gP5fUaREsMPynVse7BPoKBeKr1nIlWbwFDhbOmncAk4tF2bMDierHcBi3DO12QNKW/i4Zw\n7sBfYqsj83YRaoRUHJvMU8B6BpTb940rT+FqXI2r8Z7xXHgK3bbGv5ZN8KKfYjaTHfP/OvlNfPa7\nskP/i29+B++MxTKdZi2GLDMdn4jV2d20kFFRuM0bXGOsp6MMT22Wm2IFfylW4O2HYrUmOsUmu4Aq\n5UNZcryOBdy2ZBefRC1+lN1sD0kGaoUuAiaqrCFg6BFsuRE6jA2HnQHmuVhKTRhw4BoYJTF1lecw\nHSoNFyl0wZo28REIgIalR1vHsCwy+nRD9EkF98qTGiWRnr9xIaXFxby5fKgtADAXUeUAKIbj+i5c\nnw041FBAHaJlwrBRFTKqRFcn2wh6pAdrXChHjpFTLMVuUsBimdFdoFrXx+0+0huS+zh/+zFm98RK\nRztyXmdzBscWi4ncgWJDG1oH8TrBEgCGZdLtnpyvpxv06FXZRqNdexh2jYaNVDo30JzbpqSAaOrD\nadce2wAZm7js0oUhq7ITjGBZYoXtOTEt1QUGlhwr3vVhEafhJDl2CFm9RXxEHvtoiU3w9nxYM/Eq\n3JGDrbk8B+f2Dgz1PNr1tbUNjEUdjfQpihkTu24NuyvJcWWvgJXMLaitgbKCWuMplgYE76JXOZis\nRX60wtOM5K/POJ6LTSEzNb5TnOONH7bw4Exu4JN//zWYPy/dXb/6pXdxd8mQwDJoCFpyiNu3RhE0\nabnslY0xcQNzH1iO5YFndY5vUQuyZbVgJ+/BWyfX/AaLlryF0Rmm5BKLhhYecE6Pa1kce6ZERrz8\nTb0Pr0sXzvHRECiySG0k5FJsata+TxSaiBvEVo0eiUXgDhGw+lCytdo0BZJj+e9L3WKp5SKqrEbB\nttjECuFRVHQvl99lZQaudxit4CzlxcynBdxA6uJV3cDnQqnYs1075jJB2+TnsBcy31bTIGP40+mu\nYLeyuK01p2BtYDuyabRlgdpnMq9VcEgu0+vFGFGpqkgYwhQlTErKdS++5AV3baBkxn1DDWCxyzGi\ne92LI/T2uJkOunBjEoughsMWVOVZUOxTaSiaaxwDxb9VWqAggqhMPRRsqbbK6aWYbsDwaFEXWJEf\nbtAahI68mEmRwafYT3Gd92QppJm88LOHUyw6YnwSNcHOiNUVf4Gaydp130nTONAMy+w6wiyXLsnl\nkwSd63LuuLZgb1JFjHB0U83Q1rKxmOYcqxmBWmYCX/H5OBqLoz/kLkmllFZKfUMp9U/4/28qpb6q\nlHpXKfX3lCLw/2pcjavxR2L8fngK/wmANwDKJgP/HYC/YYz5u0qp/wHAXwTwN3/QATwN3Bo22P+V\nQ3xrU3btn98uob8kLtXx8QQVEYQdy0KXJSAQSZbXNUaRJHJe2olR8kreSWd42FCrIclhkR4toEV5\nFDV4kfJoe90Im2zgydJt9LrU4jvSuBiJRcsuqDegLGiW0MqODZvlybpwLt3PNJvhuKCLcSo79RNV\no7O5VlG+hiExCzqq4DCRNmeCsz47xTSR3xcI8HBOb2SVI6Z3szewUXrUFlgw6TWvoSOZl+Pcg6Hc\nWu1EqOhtuHkfS4YjOd3PpqkwpRxfVM+RjOW7g90QWSWfu76GZlilRzLfKluhPpau1WRSYjWQ450+\nybCRi9Sdl3Sw8RPyfa8vIYNCBbCcqCwboHiJgS1lTgB234fP574kRNvyOqhpEedRAUMcSooAPvkU\nXKsLDaqC1/I8WtdDW8o5ymKB1QVh7GmDlPgUky0xisUys8oMBz5SIkGT4xoHf2oNFfcwNzK3h7l4\nQeHONuyYdG7ZOSIycFfLGl/5tuhmjh+8BYcQ8r0DIZ4Z9UbwScFmey1Ajo+vPnwXvS9LuKY94Mbn\nBQrd70ii2UKFJpWOy0x7SJjMnVxMkR9R63TgfY8K+xnHh9WSPADw0wD+GoD/nFJyfwLAv8uv/G0A\n/w3eZ1NoGoX5NMDZRxr88Vdkojx7G1/7igikRE6AiPLdH480nFge4l0y1u6PV9jf58uEzmXNvlM1\n2CEWYGlbUIM185I8gE9thugy/2CZ+hJYdHN3hGPK0mOU4HApu8ztQ4qg3nsKh7JIjmuhJd15ms1h\nr/ExmzG2CIA6O5I6/rlqcHEqG52z0UG0RSUkf4DKlgc6ncoif/e7b+N8KddgrBoNV2k5qWB58p3W\namFXEnP6BGF1RgUChhdN7GJBOfTddIGMwKEKF6jJsTiZyTmyrEVZyfUcPUqQE25dPD7GgCCxneMD\nvPpRoc8PYtno2izHu18XcZ17Z0/h78rcxghxQqryrZfmwEPZFPy+KF21y8/C1FSQsloYtj03VgPF\nMM/SGtmK4Q0kBHt4UaPk8/dwgfGbMrdjq8QmWZ9eevFV9H05n8M2+iY7Q57J38vFKRKyLpcWEHYJ\nCrI8tIQuR4TQb3aEBAcAJqixOpYNYviFLaSUq68yefl7uovDWNbQ/MFTPF4KC9NifITVGxKu/ON7\nE9QMiV69JXDtv/DFn8DoY9f4HA8xfyi/O3t8D7/81QdyPb7B1juyQXzkBjEkvREGsTz3RQXkqydy\nnYsCFTes5ZMVKnaxPuv4sOHDfw/gv8T3OvtHAGbGEAECPAEoTPD/Gt8vRb9uyrkaV+Nq/Ksfv2dP\nQSn1MwDOjDFfU0r9+Af9/fdL0Q89x5jW4OAdC3lfes2tbIrOiViSNgRGtligvnIR0OJnTArdiDwo\nSnZPmgmsQqz/+OkMNTkPe5YFs+4LoWL02crCaM3EW5eIJ7IDuz2NeFO4+PYuTmDT/B/Tko5bB0Pq\nUwwcB2lIl/GpjVPyGV6cPcURKyKzc7ESdqTQJ4Nzmlco1hwKdgNF17ZmAtBtHSi6fbE9QMMqSccv\nsYK4xGpZomVIsLUrc3Ge2/DpXme1hSZlt6NngFO5juAgwoKNYI8WkiF//OYxVuVa9jzDKd3vclai\nYX//a/tHGG6KZ3IjFMtWpQqplnClXM3Qq8Vab37qcwivy1zo89dRnMu9tLUg/qqNR/DtGwAAkx0D\nvtgOv3Xhk5Qmz1dYUXfxkKQhlmeBMhQoVjaWhCiPrQvoI3muF50x9C6h0F25tuS0wuMLKnfPSkyn\nIvn29CzHkqzL2x2FnT15lq+4wohtbb0Ix5U1GW5ZaFglsgsbNatDBcMLb3aOdC12MV6gacW7GSUh\nNkYyL+ErhzgqxOLvTYWabjYv4JyyItFfoDwndmbpI6C9XK5SZFRCnxPLs7cdYESaisXcRk2PdX6+\ngE3Kvp7twqs+GKLxwwrM/hml1J8G4ENyCj8HoK+UsuktHAA4er8DZbXBG5Mc040jfP6+lLd+Mj7A\no1jipduzGMgly/q6ztE/J8zTlck56Oyix0loqgY1yTSKZY2QD7E/HAKOZG3vncqCP0su4LCTrdf3\n8fJtOXfPGcAe0q32R5hO5NjFSjL5HdNibsT93MyGAIVMar1Efi4L5GiywgMSYCxYVtvRAa7vy+KP\nnB4i9heoIodLshNFANFg1IVtBA77xrsTjMfiJu91OqjoiPnaxUhx46Dbujya4h1mshd+DTeR68w8\nD5px+cU7OSJPNrU6lWuYJSnGDKXsIMCGxxZoVeMu595bAaaS43k92RxsP8ENitzqfSBtZI7H8zl2\n78gGWHk9BDtynlUqyyEubqEpqfNo70ERamy5wJR5gHDlIiSQac1ihVTjwbG8VPftp0gZQg46fXzk\n1jXOoYZarK9Tnu8KU0xO5DPl1HBjeQ6nbx3j7lTc7scDhZdW8vJu9eV6s06DzU0CvIoSBUt9yaME\na+qSDLKZzsoCIypSGc8BzsWQXdQzdAnNvlF1MaB8/MvMDWwc3kI3JM+lO8Auw9SPndzA9ZWsvdnN\nIRZvkziFwLLNro96TpKc1TmWFCXKsxRZJcYwHG0gPWM56hnH7zl8MMb8FWPMgTHmBoA/B+CfG2P+\nPQC/DODP8mtXUvRX42r8ERt/EDiF/wrA31VK/bcAvgHgf3r/nxigrZAeO3jHEqvU7n4Nc2rtBW6K\ngp1G3ULjWlcSZq/elt13d28PPfadt+8+RgPKkVU2WFaHa/dwkyIyza5Y4Pj0BNcdyqxHGhY9iTiy\noQggicIBdCw79Nk73LUjFx1yISCwoEmrlVeAS6l5x/Nwnc1NdUd2/ls3drC1Sa1BXQCF7Phl2QCG\n4B69JiYZwqb3cPPlGDb9rVj7KChe2VUNapcJ1ol4D562cOiuG3gsKPJStojhbtCKnXlIyPJ8e1ea\ncvr7t5BN6WFYAXqZWGDjpvhiItc2tLex5QtVuWZS1vX3sEmZOm/yKTxh+NRtYnisfHi3twFXjudS\nw7JeJfAqCixaNdqKVrCqEHJZOjGQkgcx7Ik3cu0gRpCIjb7Tj+H5AivuxV1sbbMbdXIEl/enyWcZ\n2wP4MfVBVYtrZFre/pnX8Prbwg7etVxYLr0icjxuLQ1CqkNP8xKjL1AW0BuiG8jzOSBPZBxqBARh\nVa2PmqQotVoiSuVetz41xMe0rL9gj3M/HMFjslIrjaAv93rzhRTZDrt1J3u4+Ix4UMsz8aC3ezuo\nY/FSNq0XsM3E57eLMzQMFXVoEHXXhcFnG78vm4Ix5ksAvsS/7wH43O/Hca/G1bgaf/jjuUA0Fsbg\nblUhU1NsJhRkuRsiJmvt/uYhvJmU8vY2bLz4cUHmhTtS0om3OnDY/TrRARoKiLjdFmEjx9vc28J0\nyFiO1txsvAZNBGLg2HCJhAzqFGZEoZKFi5rNM6NDsQinbz9FTL4v3bRoWWIKex5ULF5BtG/D02IJ\nfHoMznCIspadfagCFCuWHLMECduzLba5xoMtxKxn2/ESvfiGzFVWwmETU50v0CQsVQaShCqTCg2R\nlNHNCCnzDwfdBnkj1q/sJiiIBYiZML2230e5Tc2KpzkUcxQVahzcFK8ozx24rOMbj/mQtoG3/1EA\nwNYNB9G5JOWWJ8co5yM+JweLt6RsiaFYzDq04CeU9Mu7aByx+Ms0hU+qNLfuIiRJq2KyM+xs4+Mv\ny3N3nT7sda96bV+W3nToAeV7iWKboMQGyVqb3IelyYDlpXjlpqynAgWGWtaIGpL1KmlRd9ispjvI\nHrLd/ZMpBnyuIVGVeWMuk4+DPRe9TeFLUOE+DncFjbi18znAkfVZkz7NKXKAIjlWvYImg1Jvw4cK\nJOH9sHqIpw9Fci9hE9goqLDXlzzKvMnhziiX2NsBAalYXOSwPuBb/lxsCg4MdtBg2gApu9R+20pw\niwpKt1SDj9+RpMxhx0d/JC9nj2o+VWGhWXBB13MYuqplGiDRVIM67GKbbnyxph7faC43DbdrwVR0\ntW0XTUuq+fAMBZM5XfIbtEYjYM271jkadglGZYRgRJoydxcRF7dH4o3CKpAu6MLr6lKopkaJkvyR\nhtTiA1cjYNdbsOphQHx+7rlYsZZeFO6lkLDLkGkRNLBLeVFezjtQkGSf54SwSZbibO4imsmxXXIq\nRuEuFOnNK6+ECpmUm2m4gWwKqZqhcmSeq7vy8tt37sDy5RyWb8FLb8hxr/WQ1qRAN2/g5B7d+FZ+\np69byAkWw9sPUQ3kRa8aBZdwa+VYl8nhDhWk4ihEwGcT2wrgy13pAoakNPBraL3u3GQoNXcRerJJ\nG6VhkT3aKxx0I4ZKziaaSpKY6RN20nouNtlR2tvSKEn6MjkuoJk8tAgASydjnJM9e3tnDz431p5/\nB3ubcn/B/gCqXIcEEhNWy+8lvOuhhpXJfCoTozOQY3wy3kaPvTdPA/awuA4yX57TYBVjzASkbwdY\n0PDt2l2UGXssnnFcdUlejatxNd4zngtPoTHAzACJb5C24ino1MMFkWvauNgcyk7b3fEw7Iu7pwNx\nZZXt4cFjSb5MKoMOE5RlWGFFFeh6urq0eH5HLEbYNnAzsSRlVKKarKmRO9CtHK89q2FH4tpa1HBs\nswxTdhzG2RYKltOUp1EtZZ/14gL+QM5nE8JrOQoty6h1A6wxXpbxsNZ3qVnzN3ULpyQ3g3JgUzLM\nszLU7M5LUSIpxFIcL1i8Ty14TC46L/nokIpL5Q4CCofMkgIx+/4bhiKoLCiWTjtxDy6TU1aQoV53\n850kSEqW+l6V33tpDYtQ4zbswSFatAk99JgkRLyHa5/+jlxnI9Zxs2+hfkfCp1XlQE0ZYqHFjF2w\nh46PLXaYrkOKVjmXUGI3iKGw1g21oLy1BKCGzc/1knjlqoRiY5du28uFb3kBwOSn1bQo+axawmLz\nooLTl4ezEYdIWSI8+e4JhvQ2yjUUu6qwS/3PdDxByU5S98UQNhvh7LyCEqcHTijP+uRoim6fTX6T\nHRRM8ibtAi49R2d7C+EhPeBHRHm6LVTFULJsMSfZ7Eov0VI2rg4D1OMPRtz6XGwKlgIiyyBPNSrW\ngWvdwtANThqDjGGA725CkXdwTUKSBRaK9SQkC6Ajbt1m2IfNrK4qfETsV9DrBZZZ0N66uzJEEazB\nKCVsdtn5bY3hDh+YJWCTUgEVRUr0JIVmzb+t2kvshN1TcNcLkyKnUAZ+KNe5SgGfEGzVGjiObCAl\n7x/GhkvAkuO56JA+beVIXwUAnDclJsQhVIxPQ09jvycv/87qOspA+hJWuY3AkZcwrIbISdjh0b1u\n3RYOBV5sU8FnbG12LLQnXIztXXiJZM7dSGJke/862smbcoyxDWuT/QedHhT1OOHvo/ei8G2qE84b\nFDJfwD2LxQyDwRpubsGvZIPYMCECCqBUhHk7bQOH+RftOtBs/W6MCzciPLrWcAmV1ux2tH0Flyw6\ndVmiJa5F+4C77ruwctQMD1yCwpCNETsMA5MavRvy3expCySkW+MjC9oGir00Orfh0AjFsQPNaohy\nMyiGm5o9F+HmFiJiS1qrg5aufz3pQBtZv/YThQE5PXcoHdCzc3TYM6N3bNSp4GiW+Qo5K0bWtoFP\nwNyzjqvw4WpcjavxnvFceAoNgLmxkNutJI8AhJaLPisDB1GA5UKsTrsdoWypTM28UnpS4jyVuuzJ\nRYWYFtjLCgx5jDrPpDMPgtgDpHmsZGITTXnJZGbZOTISmiqveym4onvkRygr5I1Y6FW7DdeXC8ln\nIigCAJmTwKJKtbo8ro+mXHdaVkgXzHArDYe9+Q7JTD1Lw6XnEg5igHwJRbVE0zAkymaX8m8Lhl2O\nH8PpsYNzK0VxRqq4OENWkguhu0K7pkc2RGtaBWx2LRrHESJUAPV0htWSOI0HCQLKqA/JBWGqGVBK\nXR39BK0itBlLmDVJq1nAsIPP26WlTVbI77KD8fRtqM0/CQCIG4PjlkQn+TFenfL7pKnLVR8ZE3ux\nUaioK2mMQkWvoHUtFLn8zg4kNNBuDp+ViLQuYRiiKLeAzTVSpkCl6YKvH5oylw1TveiGeKIAdLeD\nrkvYNEVBsxLIxlIhmEQ3sDFkAnMRoO1JpaVuejAkY81ozbPZUxREgvpOgpR6HxnO0JLFW1+rYZG+\n7+aAIY7fg8fO0OXqAh7vvzItNDU0JycVaveDvebPxaZgGcBrW5Qt0JJto3JquK4shNNqge1EXLjH\nDx8hssWN74AcgKveZbfg/naDQ3afWXoDRT3j3z2YTBZmekRWHcdA0Y009QJWywWYrlAydnS3Hbik\nzm748CfKQsMMsm5rVCRfaQFUmbyc7QRIO9yEKCnfmBUM+zXqNEPBHo3aJFAp6bltiUnL7gqbxPUj\nqVAxn1HrBcaplB8fPj7F2YW44Moh2MozyNj5aKUhen1mtY2FkrLldhijrhi3EiymJhF0j0I0Tg+r\nRnIm1VmDllUE3R3C78nLtHpL5jUKpjA9XqeVQzH9UCsFq79+sSZoarr/kI0C8TEuDgW6nU8ctCvJ\nNejIR58chGezDK6WzWdr64bMi2NhebEW/D1DQ5IYtCuUU66dOoHmy52yTb5JbawIkFK5j9bmfBYG\npSvn0zpAnsnfzZpR2g3gphIytV0P9QUZskIFh/e9z7RMdp6jZP3PKgOk3LxOH88w6sjmFPS3oCFz\nlzyV63307gKPzwVA1doXWDxmzmvfxq0dAYuN3BU89n8o9oN0EKGBhAzVskBB6zWqBkiYt9h1fRw9\nk+ro98ZV+HA1rsbVeM94LjyFFkBhgNpW0HTb7aaHgq6hKh0saVW/MV7hhUZcsYIJNXQbFERy9jMX\ndn8t6OEiYUNUFNrICzZNZbSYLuC26wy5C1WxO69NkRZCidVNOmgJUjl9LLBVr6xwSoquLbWJhqrD\nlQlxQvDRUNWYkRPQrCsDVg29bljrRugGa3l5FwkTpUVOD6WxkfC4pvJRk5E3GZc4e0s+/87xCvfJ\n+7+1rsu7Gn7K30XnuOmsE5QhvFCs9NnZGH3WxcflmmsxgaFeo8IYuqRrbzQcR8zO7gub0KxghF2x\nWo0RSLcc5AYMORzRGUFp8X7aKoT2xSuwBhJqWFUXHSNuhXUQwqaW5k/ffAHfruUY95IMWSN263Qq\n1zM4HeNwT849LxcwbAIKdQyPTkhTOdBLhncUgCkThZxVG69dwTCh21YNMtKxhQpQazEeVgAy24JL\n7gydTFETc5JXS1yj7mcTyP2PVnPcJ/NzPznFYEzSmp0B5lOGd+4D2LEkDPu3xaPr1n28vMdEub+J\n7FCeSd7poMvqi21sKCbbHWqHeMa67LQtL0pkGUPlqICXcqFFDpqzD8an8FxsChYAHwplraF5w4mb\nYptkTlnZYsVW3g2ri3Qif4/oli/zBdSa428ALCnk0t2LEHYkrAiUQrKUL+VsSe5EFlAwE+xkyFt5\nSHnVILdZApwvkR2SIWgqv5vZGtcIFnJMivOWQh5OhMhm/Gk70CWRbqxkGLeGz5fR1TZCXxZY6wMB\nxUmqUq4hLhwsJ8wddBfoUEg1WLmYUIA0KwvkxLsvOW93xwn2KeQS63PMWU7tIYazJQsvXm4iMeve\nAFZAlIFhLLvMzmAYXgS2D0UQWXd/G0FHEHbutsyP041gBWv3tA+w9GZFe1BGXH+lHVhc0BYrQC1y\n9HpyrM7mEh43kOH1W/hhS97ujXmC18kgVJNyHYWFNqe/7tdoGdLl3QYBlcF85SLYkufgFwRkxRYy\nVoMC0yAhK1LtO1Br5qUKaKnUBG7YcZZhwcrP8fkS116Q46m2A5e9NH2GKAvPwdlbgrxdlDk2Cglj\nO50hGua58mmFliK0JUVdev0RegMStLZDtLfZ2ZlM4JNlazU20OzXiFy2+wNoWWY1YQqHbfeWbaHI\nSADT92GxqvSs4yp8uBpX42q8ZzwXnkKrFFLHRmG1GHliobqtjb7LWqvfBSj7PepbMCQkuaCbbF4d\ntAAAIABJREFUvGpKBESE1FYExe7C3LJRMWnVrnwsCfPNLEnO2Ok2jE+wUAtUFJFBVSItWWOf1rB+\nW6xVQyZfGy1s0rVNJx007BmI7Qqmwz4Bv0LF/oKClQpVtigZBvj194l7hB4si17KXK7h6ZNzTKn8\nvH84xM2eJJyyro+cJDGlU6Cgu3tKSvZZVSG0xJMYVy6mJJ857Gg0ibju7kYCl4zAGanq24EDw6Td\n7LyAQzm6ylsgZjdnYu/BIvbAhrj4dd6F7r0qcxU4UKRx09oArVg/SxmQHQyKnhSUi2gkCTzUMyCW\nufr4qx/F12zJ4Ou797BFiz49okT85gE2bbm/QXiAi7GEdGkxg6/kuUZ2hJzzHJEi3Qor+IS01/Ps\nMiFYIIVL0BYcFy0v1NLrsKSLCUMwlQRYUbHc2gA2qBtqUyxnaPsIef9pZqN01ziUAl4o6yK5KNA+\nJR1/IiHV0eMT+EY8pdDtIWXvTtF4sJl4d70unIAS9dck/LA6I6zteutY0GvpQKMRb4mHWM5WSFh1\ne9Zx5SlcjatxNd4zngtPIbaAH/EV3q08NIzfjlCgS26BtDlHEFI+K3dQsNT1dCE79PndGjbFNPJU\nwY/FepisREtrvTME4m3GbV2xmK0/RZ+5ytYpUDEpOZmdoWBiK6ksPHqTZbst0sO1GjaVj+/lCUaF\nHLcbDC7r39UyR6rpkZDuK3Uz1E+YBMxahB65ArYGcFmzXp1JgtMsZoj3JbZ2ndtoGNfHwWMcnzPx\nVdbwGA/HZCZK8goHFK9JCwtVyjJr5OHRU7Hyd/o34UW8cXYWrpISDhGPVmFwQVyBPw7QrpmRF0eX\nOZj6RCxf75Xgkjeg3TbQY+ICIguK1taoFmATGtgEpbCC6jM7PFEAE7TqRojtp9L59+D0S/gWZdr6\nFBO+5ezAqSUX0fM6yGMpz44nKWZkvN52U+hK5nw2WsfkC+Rk17btCinxGQYuNinm4njBpUhMxlyE\nDQ1rRg/KXWGDjWRaWyjJzpQwv3R2/Bj3prJWAq/FvpG5bZYGplmjCk8xmYjnePoOsR6NjaDLJHdo\nMD1jvqeZYy3jkqUr9MZsturIcX23QkLKt3RpIWN+yW0V5hTYDcoG6ZIdo884notNoTUKK6ORfqbF\n7Lvk8ptprByZyDujLg5tUoTbUwQe+wcIH97bdFET932wGSPh5Ng72ygrtipv7cLZJ7yZGWSn8tEw\n6YOFAp8hpucppsfycJco0LB4ECykvmzyCvfm8mB3ul2cUOH3zu0Qu2wpXhkHWGtedkigUmg0Xcmy\nz7GCSwxBVysEO/KSRu4aY9DD+AbFQvIFpmOp4z/69hHe5cZxlBUANyGPCzPcUVixnbpqe9ii6zif\nJbizIecusiU29m/IHBGDEK4UmnrdCtzCLxkqeRYK9jv48TZCQnC7nxT3VOsN6KFsik3PwHHlmRnb\nAOy6rI2CZgKyYbLPsmIo9kyorka7ZCv6/guo1DfkO/3bSFKhSiPLHT72cIH4E+TSdBSG2wRk1S0K\nwt+dAnAYjhiLNf14E8kFk4SNhUFE1e1wcJlsbVUNQ8Icm9R1mQX0t5lIPauRUFW7nebYuy6b9uIt\neTEfHVW4eyqb2E5XoyJFv/JsKOJX3O4AHWJVSgIc2lWBbizziY0FBhvydzHuw2c/Rxs18MHeHcL0\nG9eg5rxVTQqzXgOOi4Iao3XbQpd/SHRsV+NqXI3/f47nwlOAbdD2a2x+y8e8kl2tcAwCkoou8xpq\nX3Zw19fIuDtuaKLHtnvo7ou1Gg4Vcu6SbvcWKkuSOrY9QFayDEVoaKkylDxWm6aYsqlolmkkiVj/\nRVLh2gZdXmIoUPioILv1YBRhh1apVjmGJMCoLQeGmZ+WJC3a2IjYrOX7Bg7d/ErXcFKiG6ky7Gx6\niMfy+2Vd4M2LBwCAN7/7LlZs2gmaCpm7ljmjnmUVof+KHPf14x70Jq1gpWGPxEPqd/aQ0730SK/f\nOD5qNkeZuYKO6Cb7MRSTjvUqwZKlNeuElrb/FOGA2BJsQbOxq1UtFJuVLKMvy2ItBQ+VCWDWytXG\nQ6Mk6fbmG9/A+EQarLInJ6AcJ8ixgnGdYZWKF5crQBEW341DZISN12EBwyRuxa5FZ9BHQN4H13OB\nNeQ97l7CxvPKXHZHomEY5ACa5WLLADqW32kV4JhEsHePBTfzzvICTSbf9TZsGDZBpcpDSaSqqxp4\n6+Y+kNh1dY4yZ/l5XiDqiQdi+S78iBwJYReeJx6EIhrTtBlqamd4doCYwNLF+Rz5iiVc30JnSA3K\nZxzKmA8GgfyDGAcbofnZn34Br8ZDJJG0RUfBBG89lIU0MwkGhPFOnl7gdCLuGpGoGHVDBJQZnxUG\nDjUDnVGAYikT+GRRweVLvbsh9eNB3EXDev1kscDFhIutqjGrZFI7to2dkeQgwh3Jlv+Nv/W//YC7\nWaOTDNaOmNYUQdUGETv8qkDjx0cSO+trQ3x+WxaCzf6K7HSFCTPvfs/GPmPgLx89gmGc84kXP4Y/\n9x/9aQDA3mf+LQBAEAxg9Bp7oDG885MAgGT1Dv7jOxKC7Q+Ah6Sff52Yj3I1wcYl6YuF9lI5yiBj\na3DpBWgYEry2IfmA8QqYKlnc9y5OccBNprBrhNwgrUCDER8cyrf7/SECkpREd15Eb0+Od8N6isOO\ndGBO/R1c25CXNLnPFundDoYjhiLTKf7p//EPAQBfv3cfmlyKtguAVZUOmZnCIETBBVNnJXJuClv9\nDnwCvzavHWDgr2n35dqUW2NwKNe2Y20h4t/K2cZf+it/CQDw8Z2X5Jkd/gm8eJO5nXsW3FtynZ0N\nDTySDWQyfYQpGZKabM281WKeypr27AA5Kdx1VSPJM37ugtMJZdb9MxotjZPd9zE+lbV879ohTt6Q\n8905fBl7n5Nn/I/+6n/9NWPMZ/A+4yp8uBpX42q8Zzwf4YOxYDURwryP3U3u0DdyDNis9K3vXOCI\nFshA44CNUjWxCwECxGxOGTUtLCb78srFvCM7aWcxQUJhmFktibp6o4ZN5d+8WCFoxXpMsgyLuXgN\nqY7QJRTYDZ5Fk+/7PS9CaYmUdJWFTzA5utIa/kCu49DJ4NPNPXso/z6dpFjN5Xe7ahPmjugUxIXG\nhBJkrbqPWSIexgE1M2EBqmH3pTb4Tw+ELGb3hV2ou+JN3U0ynBG96DZyjpHvIqI3UnotTMp7NQ1S\nQsH3nAbbfbH0nZE8g3JDQ9GFLSIPDdXBz0r7UrQkNC1q4rtP1h2u1TH6qTzrjz62oEPxwjLHRUoK\nuZf7EYZM8rlDXlt6gZwds2fpFKORZIGvPW7WdIxoPQ82OxHX3ZJ1nuOCzyZoaliE0F+sStg9uQ4z\nO0F37brT2xoc7sIe8xjDFdRYwrvo8Bwgr2QH4t1+fnsb+68xJBr4eDoRXsqTYx+G/A6bboCwK9/x\neS6no4AFFcFRwqUnUDgZqlNZD4lVgI8VzZqbQbVY0VOI/AJdenG77jtoXpDzfb6KECzkPP8Izzae\ni03BaWpsLie4KIDrjZBxHD84xorZ4olfI53JTQ62I9zalCy6y4xtWDqoGNcOmxCKjEfz2RLHlIHv\nNj5OWnGpnhI+vJjPETFT3601cuLsg3p+ScCZZ1OwHQHJ8e8t1FpHaJUx+E260ZZpccKX/jszH9tD\nWegOw5lOVqMiOYatt7DZE9f/z39qH+8OHwAApkc5fin9CgDgthHlJTcPYAWj9ZlhU53qSz+m8GWW\nVu23PLx6nfyXBzJXOyuD1ZpmvqrxhOK9xxWQOsyNwMaMFZMJS3eTssZoKd8964jaEQAcZepSfcvW\nGgFFbhqyTanE4IFNstnzJSJXXOrPvPwyslaIYQbOCzAzqlqR1t/251jM5btVe4GNmACiPRuGOaan\niwmcQu7vQU6NzsxgRrCbdh30Q9nUitCBRQCbU2XwGJoErWxSOrIBl9DltI9uV17C5TcvsENimGJH\n5u16p4vsiaw3pBUWNmXi52O4zDuFro1hT1rqh77MvRM48CmWk+sKWJJvs5oC7OBcWBkK9jNkDH3q\nqkDElvmVCTBjXubROzMcuTK3v/mdb8M6+hQ+yPhQ4YNSqq+U+gdKqTeVUm8opb6olBoqpX5RKfUO\n/x18mHNcjatxNf5wx4f1FH4OwC8YY/6sUsoFEAL4qwB+yRjz15VSfxnAX4YIxPyuo9IuTjr7GDkr\nXFyXnbZ3z8XXWY9f1iF6DANuDW5hh7v5Tl92XG97hIhyXbVxoCNJMk1nF9ih8GC6dQ0zurnvvkF4\n6fQYVUJwi8lRrGGirQVDjEHVtJfWra3XurnPNtYpR023Tne8S/5Ey4wwopK2MzrEtc46KSfW43oN\ndDapn2kd4pVXqG152McrBAV99Z9/F+WvCffh6iOCY+hdP/zeiaHwzbXE/d+z4fBxz2INZ90dmsk9\nTYsaHv3vc1PAYWawMhbukJSmoyP47EqcsYswXdYAQ5F2qdAQ9NM0CiZhl2tg1l+BZclxi6rGZC4u\nvlcB9evka/zoLobkLpwPZ7gRrPEQTC7rDXQicamt1Qjerpzvxm6BMUOXzhMX79wVvICm57Vqanik\nVTPGRo+NaVFniIINRiMrhK5lzsuI+I8TFwHDi+PJGeIdeT59r0HbEHpO3EB67QgbE5nvb87fRU5I\n94Ybwlfi0XiRgw47TDtr/snQviTy8bIlVpF4R+HKIHNkDnu2j5QiPy4nczZzoZR4QkXuwidLkG41\nirfk+p2iwewhO1efcXwYgdkegB8F8B8CgDGmBFAqpf4NAD/Or/1tiEjMD9wU2rZGkU9xe+MQzoU8\n8HvFCUK+NG6dI+wzQ3zgYH8g8dfWFpl9OhEovQBL92CxUhEOcpQX7LTsLjEkgUax5KTHmzg9lQk7\nzWsoxvWmaUAeC2jLxiIlj2Mv/SBThB7LSf1NWUgb13fwmiWL4wtfuA02a2JrsA8wdBkQI19kBQJ2\ngbYWELPrT1kNugM57mdv2/i1r4gr/et/638BAPyb/9lHYLFFGtpDMpPVttRz3KCORGezh5D6hymR\nlHlZAAwZSjQoynW+xiBkS7X2v1eyC1gWjYsWx0uZH1+38Nkxes1qcUEQWVsWCCtmycmg1CobKTeN\np0ixrAT9uaqO8RFLQiFvskBxU57Z0JUMv2rGiMmr2bu+h5FmBWdZwz96R+ZQGfgE8piJXHs0S1Gy\nNNytLHQ25EUfbm0gp6rVfJZgmLBlfiQ5nF5oI2fn5F7vBZiZXOfc2kZnJJ//6A3ZHKqHY/xWKaHG\nwPFgVkThxlNskHg4drroMS+zLqc6ylzykTpuhEqzX6dtYVvsTQGgbCIyl2TFMinyucxhx01QLGXt\n1FYDRZqAcevB2eNillt73/FhwoebAM4B/M9KqW8opf5HpVQEYNsYsz79CYDt3+nH3y9FnxYfzAJf\njatxNf7gxocJH2wAnwLws8aYryqlfg4SKlwOY4xRSv2O2bnvl6I/7HdMp4zQ2C3O35Ik02LkI6Fq\nc9+x8dKWWI9rvRcwOKRCEN0zVXbgDrn7ah/Gkp3WvRhBMVFjXA/lSiCzMckXdBjCJn69XJR4Oual\n2g5cVgka1cCQF6FIn326LCho0rvtOrLbXxt28aeuSyL1pVuvYdAjJ4EP1Bnhv2T6tYYRTCueyfys\nhpqLRTdWFyBsVe2PEL8kx/75b4mV/BHzW9gi74M1uok5vaO6cZBQ9epOW6MhLT25a3CSVtIqCvHc\nFOco1i4CXn9/FMFlbHKRyb0NVYGa3aylstFjJ+qkqDBad6VWBhPyAtisSNzednHGcyRnDQImfzGz\nkO+IYEw+T+FWHwMANCM5X7Wao6DmZefOLvpD8jOkc4TkMIyGHUQ7DCUm4jU9fHiGOXsAwsSCHbNi\n0pZ4nMjvknmCjHiIg1KeQ/yShqXYdetMUFwQHDOYICTvw9KTBPbi4QQXQ7m/7iyGQzWtEbaxxWpG\nZzgC0fswGZXG9RJEmyNvUrRj8UAyk8OmMrmxVmjma1Zwcnc2DjoMXepJg8aX98WvFgC9qZ0C8M5k\nDbyv/DvHh/EUngB4Yoz5Kv//P4BsEqdKqV0A4L9nH+IcV+NqXI0/5PF79hSMMSdKqcdKqZeMMW8B\n+AkA3+X//gMAfx3PKkXfVMDiHMcPMxzEUqyYvjtGlzF5NNrDaCSJtqBjIWTPOytQsDoOCGKE5VSX\nRKMqtKCWhIn6QDOUpNUetQmOp2MMmQTMFLCYyU47LUrYjPeqrMHyMnO37ln73cf6m33PwUc+KlqC\n+ztyvs++eAfX9sXjGexvIKY3osMIDTUm21xMt4MShqI1JkuRrpj4y6bQRH0O+ttwfvu7AIB3H4mn\n8Kt/8xfxZ/6LHwEAuFB4MqMF9lp8jBbPVgFWhEUPSCsH7eJpyy47y4ZDngZfiwYHAPRaHwqktyO+\nofYqjEjXVqUFOkRsnjWry7r6PG+x5LNyWd+928Q4ZydqVdWobELBV8dYnMtzuvnKIZqKnBqETzf5\nHhZKolPHTRC7wi3QNiUCYk6SM4WAeZUdwrUbO4b1QPIB8VDDceR3waCH+dviQR7d/zaqRhJ3XXbU\nZlWBiKXAvFmhHYhH6iUrBCOZl+Onco5RFaAzXdecF+gVTChudKDdtZ5ECZv5jpbsTk3mQFGOT+d9\nND5Fh05zpMx3wNKXFHFqDUFHBoe5CAslXApIFmhgmBRPagsFy52gdOf7jQ9bffhZAH+HlYd7AP4C\nxPv4+0qpvwjgIYB/+/0O0iiFqVaw0wqjTZmQQbkDRRfohf1b2NiTl6kTVLDWdFRcKMppYWm2AltL\nKIsJnm5zqSlYjVtYa7HRSBaj17iw2DE5XJ1jwPbkpbdCkK51EIE+XbSYcN4fNNZu96jn4xW2bX92\nW679Nf8GNgmxjrwIHtWrLDu4FMFpCVxRs1NY3LCcvgPHlftrkgkahgQ67uPmF78AAPjEr/2CfBa2\ncFR/fTWX6kVFDtC7RrI/hj6RRd9S9MRzDHYzuqJVBZ/0bps6RJc7rlfnWLEJwSUd/LW4AE5ZfegC\nZ+yNOGw0DLElvmowJ3X9W8T4Z6sCZ8wlxbCxQ+CY0RZaAjuaQMHZEHxGm9+TufI7GOx/Qua4fwOO\nz47QGnA3BY6+vTECFgyPLHn5G/cpfEKso7EFK5TrXMYWdoeyWYw7HiZrkdpErsfDABY7KsPMguOz\nP6TxUbF9dsXu2WGoYVF3sq3zSybtfrCNTiTXY7kA1JqBmhu2b4N5XyhTImR/xflEIeR9TNIKrZHf\nOcyqO02IgSOhSxt30HANjaY+poSs9/o2olTmRfii3398qE3BGPNNAL8TlvonPsxxr8bVuBr/6sZz\ngWhUpoVblnj1ToQ4khKTVR6h7oiV6PYDRH0mDwMfmtbdIvGpMSkMRUhM04ey1zRYDeCKS9x4HTQV\nu8t416ZpMaEWwkUJRHTPOg3wiKQfUeDCZnGkUu/fl+6SRMS2I4S7YikGu3If4dYANkt6jsmgbJKM\n1M0lNBuaKLhgCDCE0cqDxXr1uGjgnop16HQj+Pz83rtybT/k3EM7k7KY7naRMM+b6wKBI3PkHg/g\ndughsMsSM0CxWJ6rFs6Q0m0dBZ8YkdJzkBCn0FKVOg9a+J7cU2YDE5Z7J1WDpKHFsw3ctaQjw4dp\nlV3iP2oYvEvdyUW5gE5kXorTAvPoPgAg6EmC1u566PviNTk9D9DiCdhWhA5LyrZVAcSwOES0bjsK\nA8rKzVSFtiff7bUaL+xIOJbYd/HWWErUx4/l38+8+gQBdTf93giZL/fnmxCrM4Ex71D0J1lViDps\nJIMLRU/RiiawPfI+tBHWsW5N96ApM+SUIUwaG6W1Ri6uMCFeZlYXuNGX+eoR5t+6XdSVPLPNdgU/\nkrl48yzB6FhKrrllMN6hG/I6nmk8F5uCVjb6wQCDug9YMum10tjekpe+1/XhgrLfdgcg65Eh/LZZ\nBABBMcoHDNlozNy7ZP9xXQ9UmofXyENZ1iv47KnQKJCxQ26xbC47KiPPgz1Za0y+P8zZ0L3c8R0g\nYXWE2eaiWyBn7TpKK1is/7fZBBUFVhXjTG0sNBRkKWchirVqkuWjdsjRuMjAUBS3bkln4fiLB0gf\nSZ6hc3ADn6CruRlqbHAxvt4kuGXLZhlrmeNDDbxJnMJoK8DHtySfMehGmJMgpAgNtgmx7VyQwTht\nsNwgmUzVYkj6/LfbFmbd+1ErGMp5EfkMxy4wIQHKgQGeVGulri7AFu6JzrHVlzBHx/LfvciFQyCQ\nQg9KrasyJfT6xbOM9DwDcAv5XdztoK65gRxMkJzKxjluG1yQQTsd1sBjOd67p7KBHo8TvOjJNfSv\na/hna7GiHBXDo5TuvuOmyPI105ePgDyefnEDzlCeu3E8NDQMFasMTV6iIXt2hgkWawnOugB/hu2o\nRkWsxwXn0lUpdI/hXGrQY9ngcC/Gm+eyye4cG/Rzeca/iWcbV12SV+NqXI33jOfCU7BMi6hIka00\nul1xtVO/Qp9SYyoIYNhCkdUNHEqo6bU374doGDLYyKE0vYpRBqtm15uTXCaBSkdc9NOZBZu8fn5q\n4SGhsd9cnmPILPOdJkZKa3thvz/XnZ9Lxnn32jZ2P3EbAL6n/bhYANtMfIUaeinV2rry0JJJuk25\nT0cFaiYtKzdDRi+lNQlyVl86KgY8MSuvflYaeDxvAUOtB6M0dmJa9J8J8PZ9wmBfD3G+TQtD63O/\nbLEMxcpvGw2E8vnk5j48knrYRzkuGCoUo3VFoo+gEu/ua0/muEtm5BJj1MyMn7c1lkTYqYDkJ57Q\n8AHA/bRFzYap5ewJnnqSGLv+wqto2PDjsXnIjjrQVIlurETEGgDU+TnskOrRlQWLSTyz7q61MiS5\n4B/GDx7gzQeSuFz620jPxKKfTXK4LJksqDPx4P4cr/WZ9Z8ZeEO5jsW9c0xTqYIEROHe6BzA26De\nBBz4PWp1DD20JM9BswK4bi2fTXeqRFWvdSAtWMQ6OGoLniPXXIQakzMqli9JMWct0FHyHDt+hJzK\n3Hf6BR67EnadRR5mH6du6JfxTOO52BSMBVS+hUz3serJAusv+yh8ydSbvMWykQcwmyq4M+LaO+wo\n3L8Fd0jIM1LYBDVZYfw9wpFVCY9u23BH3MHbzXXUxw8AAL1Zgrf6fAmXQE6gi9o0uL0v5VBzcc4r\nPv1d74V4JTS2g3QqL/0ykQVx73EEO5Jj+UEMTYx/oyu0muAr4tdNXaOp1jTkDRY5F8piiYC5BnVY\nQpsbAIAXSGY7OPxjiG7IZ8o0iHZk0ex/e4QGkgd4vRfiDqHJIBTZ1C08EtfOZznu2bLZ9EKFnJDf\nV7wKHxnJPDcM11ZtiPl35LibtUa2bg23bVR8YQ8shSesKKR8+Ydao2b1wbKBqvyesPD2phiGpL+D\nmEZCM7SzdQBiojA9vQszfQAAqPQK3c2PAgA8HcOsE0EW4dwXT/FbvyoO9PG/eAcXLAHvvNjg7VNK\nBUxS1CR83WT2fpnWGHusUDkt2i3Kz89CpGTLQkxBoc0avk11Mm8ARb7K2mhUDI/U7PyS7KUliql1\nQuiAwKO8hO+JUZt3ZrAj2ezt4zNEBH69Qzr/3UV+CazzghAByXvteYVtVoE2Ry3ae5fNMM80rsKH\nq3E1rsZ7xnPhKWilEAU2LL1A04rr6IUtjEVVYn0L1SZDiUJjvpREYnJGYFL+DYRzsf5b3UN0Yjbf\n1Au0tLxFmSKnMIqxZFe+88I16DuiYL26OMHLb4gIyf/9yOCcHXf37RLX6b0EnR+84yoAXWIdVpMc\n476EKY+evA0AuDAKHzsXt+6PfeKz2D+Q8KK/PURbyT1VBActTxaYLMV1PK9ml3JryQq4zm657vwc\nzvp8gTzKm1YGxS46Y2n45Ivwdit8LJDQ5WBQ4+ldubZdCsDc3g6xcSBzmM5meGyRMfikxnYsXkUY\nOIh98XrcgInYRqF4Qa7tRruNL1wTr8LWu8h+40sAgP/98V2Mv0kK/mbNO2nB68u9xiv30vqftwqa\n2IqNIMDFVOagVwvWoz8qsXoqFfdvfPMX8dV/9m0AgBNMsX/zZQDAn/zRTyPeEA6BgsnTX//lL+NX\nf0k6St99ssCoQ57EqYNd6nHen+XIqf85WWtXhvfx8IGEY9uDT8A5owfp+ajpCfWIm9HYAGw5X9JU\n6zwzdPU9iz6+dx8T6lxWmpDorQ14FfkXY6BOZa6W0xp3H8k1PxlfIK/lGQc9ufaLNEJKshsztbAb\ni1dlOf4lH2W9TDE/+GBiMM/FpgClYakBdN6geiQvR/T5F9GhbmFlFjh9m/LrTYKInWFNILFgNIlR\n5vIQre0pbAJFvOMAiZEJrlcWJokQgs4uZPLy5gj78p6gMUtcf1Fw9rfvz3F/Ktnnwskxm1Kv73du\n4/jebSigpHZCP9SARDko+vLSaFNCQf6eTaboxLI4gqEFTGUFXazkPlfLFGdzOUDW+Jgy1NjyRghZ\nObAWDvSevMgbuz8l9/zaHupCjuHUG5gx/7A1dnGwzxAjaXCH7D3+lizo7Y0BDDsYte+A1S8cdAIo\n9mBE0RCdkH0Xa9c3rXEzkI1g0RkjSwj+8VbovCix7B83+4geycb6f05kfhptkBD/uQuFvF0zQQHa\nkw1pdfQUNrsLzx4I6rC253jwd4RY5heO3sKDBxLmPJydwf0NubaD3RE+tSHwmZSlvqM3FnibupM2\nNLJCXpRf/+3XccR8TdAWsFgx8TkXlt1BtpK1ddG5wGDO0mGdI6I0vM+ybtTM0HCTRV5jMSU5y3mD\n+5k8y/lb5xgH8ny2mH8arVpsdOUaem4XaiXXNh4/xPycvKGzCt2efF9rCeH6sY+KFbhiqTGxZc22\n2odDIzo5XqJ844N1916FD1fjalyN94znwlPQbYNeOkfiKQzI6tusUnikybpYOfiVfynIi69P78Jh\nRvoV9rF/9MYWau780ekx2ohVBivF5EgsSRUUMLaECq/fFxf+y0d38eI22YnNEJp69m6tZGWvAAAg\nAElEQVSvD4u1+bhWeIeF44n1g90wA4XISJXk4dEcb2ju3LVYsO2bQ2wfyDW3oY3VXCyGXo0uu/ba\nU7FKTl7DjcQivP5bJ7ifSpLzWteGfZPu7NZLUJVgGYaHBO40LsC6OpRGw0Si0jbuOOIhTYYJxqRe\n06Rvnz9I8JVKXPVFXiF2qEj18hAbhCZ7dYaallKvu0hbD3mHlGHLEX7jWxLylf4xfugzxBhYOQLC\nnD1qZiadCAG9g9TkKOlKZ+cL3D2SY7jhDqpvEqtBoJo9+jH0X5ZQ4t//0U9ApzKH//Cf/GN844H8\nbeobCDcFkOSwE/XGp1/CD3O5b+YrHLGP5eFdF08glYitpo+DLbk/KxFP4ZHJscc5unhnCUXClcn9\nc9gUhjkdi0fQD31YDI+saI6sklD48fFTfGdG3o6LI8SB3MsWWcLbrILNXhKv64kOJ59Nn2GcO9jG\ngwux+McMQbfiHpxYvK39/ibsnN5NOINL7xZBD6089mceV57C1bgaV+M947nwFCxbI9iM4NdbiA/F\nuvSGL8Ddkh1z1ER46ZPyubOI0MnFGu/tyb/9Xhe6EqvsVA4a9ptr7cEEYik8WHD6smV+7qcElqq/\nG8OjLkTHnaLry+c/mR2gGktuoyhrXCdSLs1/cJekgkJDWrioE2KHwi87xCZ89qWXcXhTkIf1bAJ7\nRVqx0IJjyb1Ew4znXeAA4hEkH+/DPxWvYdvvYjiQc5R2g9iSklX11tfl/j//KTjkGFCqwYC1+0/2\nd7D9EuHB4wIZq6sJPaxF18Iem8f23A5usmz7wstbiAjHdc9b1D3GsJB58zqbAMt4kR3hxc+QLcop\nMCITUGc3wfyW3N9nqef4sC1xwd9d93xMqG+wH3YxIWHvr7QP8NprEkfXpBTb753j1o98Wq6nG6Mh\ngvTfsTwcfE26+D/9Y1+EE8vc61Is7Y29HqLqhtz/vMStMT2ocI75N+RZ34k6+H/Ye7NY2a70vu+3\n9ly75uHMd768ZHNokmq1erTldls2LMWGHNlxJiBILEAvSYzkJTGQB78kgB8CBAEcRC+xHQWBJTsx\nAtsyYMm2pO5o6rnZTbJJ3nt5xzOfU3Ptea88fF8dNm3LZJuwQwFnAcQt1qnatfZaa6/1Df/v///y\np4ThyVd8xze+f3jBi9BOU0K9D3cWUQVa5VpLH+MNn1XV1vtv0Y9UpvDagHBX5jL8xHOErlxjU9GI\n7sE+rkreua6HURGhqBHRWlf2xk02nxHL4u67UhEbxE3KXGHXxuIr0nWyn4CyVV/tO5wsNM7xIdvH\nYlOwZUl1PsH2ViyEioFBb58gkgmKGtf4cWUzfmkRUKUKXlLOtKrO8Ne02AsXo+WAuZMSuGvzeZtO\nLA9FW2HQGz/xMvOpDGqn4eEq311xNqT9HQlwzZOnTFIV79CJ+4Oa78CPq0z4q7eucucZyS5saKVf\ns2NwlTRjWSzJNIBFUlDJfBMpjbyT7lFpKfC1K4a9HdlMvKjPblce+ma7STUXU3vNojzM3iNLwfGp\nlEout8d4Vh50D4vfloXXVM3Edgibe7JYO8M+rZH+XjuhowG1ZZGwUFcqV6bimIjODQkIb0UjdiZC\nklO0uzRVjLW1+yncK3IvD+YylnfHhvGhXsMWZLHM5X6ny0PdsTbv77Mv08PIyLj+kX8nxA5VkKXR\nwaZyjd6dbV7KJFAcjobgrQEja55Ig5PJZ1vPX6PSkvofOzukoSCxl55/gRdf/jEAjt/4pszHzkOO\nlIlmiU9DA384MZ017Z8G+x48mhBuaF1KFNEPxAXb2mmymcvY1tWKgLXrJfMfbTXJVHfSMQ6JYiwa\njsHqwdLoNXGVJv5OLWORG0tZyHtJZgk1hdOIKmZrfI51iHZ/tE3h0n24bJftsr2vfSwshdrxSKIB\n/mTF+X0hjdq9/qfwY9kR3U5Nb67oRjeHDa1ZVz3E6iyncsVNiBsrPCW0KCchbqC4B2oiT9OWmhPu\nDTw21bS32ROKd2U3z1dt+lpFOElLbK6c/WuBlD+oGcuZJ6mnTwyeZbcppvRgR7X80jGn53JSLqfn\nNJTN12mVMNHKuVKDnZ0Cp6XIt6MhflcJUFp9WmpBhI5P3ZU+e1tfki4Mhtg15WVdouTKZGeWRGXd\nvVHIzoaO51CO4mzZYE9VqQe7AxyF+eYTg6sumOlbVlMJRj65r313SrrXlW+gU9D0JZjrd0a4yrSc\nR49Zfk9NbR3LO/GC80jM3dHc4VRP471qiqtCPD84n9EpZQyTTamevVcljJSBOmiAo6exv3OTbSvj\n7LvvnXWFplOXpz5jla7eeeEO3Styf/5phO/JWNy4vY07kHnPlcFnOc/watUV9du0J7pGyFnruPnO\nWqUlY6XcBXHHp6WcFI2qTRAp7LqOqWq5v+pYU91BeQHHzp0CZ6ZCO0ELo2zjWZZQT8VSbWplbNt4\nJMod0rQVvloKzaiL7QoC2HlcXaiJf9j2sdgUnCInOHzE3QIGt2RRFV6K4ympSe3jqh9tsjYmV2iu\nDkgVW1JdVG4OnhKSmLigXuhG4LoXpmSwuRb66ICacLW7Q+JLFPor97/Gu0qA8kyngzuVwX7Xzv+V\n91EZQ6Q+JY0eYV/z2No3E4IJFBQ1P+aakc3JsyO8lnwm1oi2R4QT64LfzqmVKcivUoxGpHEjTCqL\npr8tboRjfUyoD7HxcFVo9X45JTiVB7JbNAkVdry/L783jww9XWx77hATKCzXKykVl980Mc65XONA\n3QjvPOTqQlyNylsRjmT+3LiJ11LWo8Mmh6eyGb6jTMXLysNRQ/V+XTHX0upFmvNQ60DOyhT/SFyl\n4bPSt6eLklIh1kEcY9eConZxIeSCE13wWxZPxZ15enTCQyvvfaI8Iuy9AEB7GjEzgl+Z2ZR2qQ+W\n7qyzoKBaylg555ZipFIC0wU7Stfva7VrmjfIVnJ/SbWg0DLzTmAJPVkLprIYZaoqB3KtJBWmLYC6\nDNHKaWI/vCjzL7IaB72GblieNXiaqXA8KBW0Nk33yR7roZYHJI1LnMJlu2yX7SO0j4WlkFvLk6LA\nSbpEyuDcjbcvtiwTOWu+EWzUuKiMY50TbvsEWsloTI0bvlcQ1VcKLqdM8CMtrlGz3o0ibLUWykjA\n0xr7hyc8eCwn4bVek+u7Kln2WHZcw/sVI9fNsYaVMi3nxsEkaz4FMRf9uEszkpOk1+iw05Tj0XUt\nTlOtAg0muZM5TqW0coM2nvIDODbAUf0GvJIqXFsjStEVbWK89/Z65UehnUSk5+sgZ8awFgshV16/\n7rbPqLul/fUw67EduThriffzIxoaoNxIVDchGuCobHvg9/HWUnftPvZUSEjs2T2s0q15atlwkuEt\n1Qz2LOeq+VglC/xTzbfnAcU1LYRS1eb2o4dEr3xGrmENjlnzYbjYls6160GpWqALwS7MZhOsJ5ZZ\nkUUU6sZ4g5j2QLUijx5RaWaAtrpuC2h35ET3xwXeTUU82ohKRXJQ66LXMkxX0vf5aQ1XlVDH9fCU\nZcZUOVa1McKOulRBRKxuUFGkpArT73oeSS0uX41DpG6c72ilaZ5dzFMeZFCs5exLlppVigOPcvaj\nPeYfi02B0mLOM468U46VkvvZ+fcIPYGqhmGDKpCHzcGnUnPcWZuOboGr9QA2b+KpL+c2wNNoflX2\ncLQSzaiphklgLTnudXDL3wDgPEk5UYDUk9LgKa231WjzD28KxgidO4DnudwYiJlflCnKX0KpJcLV\nYskiXUNRVywLSYHWKzC6QMqF9DE5h+iKmICmbhNobYM1IdauxXZrjBEff73RYTKo9bXrX0xw1qg4\nXN/3+YKDlYq/Kpy3n6zwOwqgam7itsQlsNNDVvrZyXFBUsi97KpQz7XYA/XhbcPBaIqQ8pRS3bwy\n7xLoZrDSuMyDsiZTO7ltAkZDucZhFfC4I9/b7MRsdKR/i0Rct3nymPlYsketXpNay+izxWPyibKT\n9LfJVyqm+20Bve2/vc9tffiXC1hp2q+smjjrYRlPyc/keu8eSB1Mo1mQZfKQTn0onyplfhDT0nL9\nSB/4eWFZqLzAIu9QWiXbrXMCIxtIljv46ypX7UPtw/JcS67bHTx1Mf2lS62sNDUuvpa2t7Vqc5VY\nFlPZLOfpHKvuReaBoy7KOHWpdy6zD5ftsl22j9A+FpZCZgx33QCvLihUuOLgaU0/VtMwP6JKlK25\nmoNaCFZz5U46xKhL4bRcrFoV1ZFHHcvpUS4DzEBNYjVVGa5Aq8mq9CGHvyOn7t2JpanMuWXXo1Yi\nizWNm8N7loIDYi4AncihCOVEMxWsFJbq7KnbMjvA5mLC7rghnWsK6Y7GVGcqta7wVBO45Gt8xKTG\nKkFz0OpRKC+CWYYEI80CNCQ6jxeCwqoxDmfKunxr5RNqBPxxVlOq7FuuAjF922J6JieNt1ESKCjG\nFE08BeGMrl6nKFWabCHz0Ry1SRM52RvFDE9N/9KrWR3dA+D84Q84eywj1qvFMttrL1mpVF5z5VNV\n8httY/lUvHYDuCDPQatBD5an3P/KPwHAN5/B8SXan2WHHPz2A/ns/Fs8OhK34VtvfA2A8UFJo5QA\nc2+Z4771GgDJg5rfe1cCjdHBKU+VOGWinPTNXsD1kbw+j32iVMlQyhWrUtmVO7reZoaVwuOLYEmi\n0nvprMbRDEaRWGolqmElY7GYHHPyWPprOgVFonyV7oQoF6svbBjqQuanCNXidXwqRy1oa3HVquh2\nepxsilXRuDdmfPjBLOQ/3D4Wm4JrKzrZgnkr5pZSoE/SkuJcF7cfgFY+1kWO0ci539DYAPZi8bis\nKBdyW/nhE+a5bAphx4By+9FXVaFljbsmOVw0ePgtyT48yObcVJHaT3sjAsTMf9IX4nwjPwRAEDiY\nQga94Xl0K/FJg8inWIOrUp3w3KW9rWXdg5hetu5ziHU0zbah7yUuhT7QdZVQlNLn6vQYlHAkaBpS\nlVxvdpTwteyDt6Z4d2ko/3858NhS5N272YxM01d1oVmdqMncyILvnVQUmtaNhj0aynTEcsJsX2sU\nDmTDO82O6F6Rhy0+aOL0dPGXUyr97eJwyOJUfOOHpfw9jD2uZOIqxh2fubJhdRpNqpuql9A0PPmB\nXGM/k3jP0W+VLHZlToPbA3b3ZONs5S8xvCkPy/RkxqYvG+BzvAjAYmtOtCebcHPYItWI/HHnIalS\nePmNgPOnMh6LXL7vt0OaGgNYzo/IXdmE0iQhVN/fVR2HQbPJ01L6eZ7mjJXEdrOvWp1AVSQEodx3\nsLFW3fVpa+bgpKwZn4gblzoFlWYwrOtjVVcyUaarthvjKKtP6Eak6j54cUlDS8bfSXxmGsf6sO2j\nStH/18aY140x3zfG/G1jTGSMuWmM+X1jzF1jzK+oJsRlu2yX7Q9J+yiq03vAXwZesNYmxpi/A/wH\nwM8A/5O19peNMb8I/Dzwv/6rrpXj8MQEfMLb4NoLcvKNWptYTTvXvsVV6XQn9EADWNSy85d+hU01\nOu+PsZrHda8HtFUMxFlUWDW/bKA1/90RZqXKTO4huVY19guDo9jxI7vki59Ry+JMKu/+0Tffwlda\nsQYRK1XsCeMIR3doWxksysE31ch7o41ZSt/b7gaNXSV9sQZXxUmaeoq4rZzVfE3XVWPVYak9H6OA\nntptEHTk5HLXCGzThTWYhppTfRnmDr1r2s+ZR1tz6z3NFuxd69EL1Dw9HVP01JJwctAxdM2UrgY0\n41fEInJGA7xDpYafH1Ai1lh8Yxv/ngQEe3sLwpa8P8rE2ipweO6amLvb0R75U/ntzX6TzY64QuN2\ni/zTgr9IfleyRHaZEi4Ujl30aBmBbod7hmFf4NYt95y8oe5NLFwPUydidSI1A83FMWYNPOrtcKD1\nIavpuzT0taPBwE+2m8Q7Mv/JoyWUCupyA85LsSYCzQx1N3y8U7X0WpZC3YeqrnE1GOtiKJSIZX3K\nx/EG3RsyUQMCsm357fPVKa5WqC7OppRKERehmYraAGtukZBQax/G45SF1pJcG/V5+MHKBO9rHzXQ\n6AENY4wHxIjY9ZcRXUkQKfo/9xF/47Jdtsv2b7F9FC3Jp8aY/xF4hIhe/RrwTWBi7QXQ9gmw9y/7\nvjHmF4BfAOg4hnaaMYuOGK/EB9waJuS60zplk1pFUjy/R3KqOgMTec9tLXHXO38WEPX1FDM1rqc5\n9pVDpYGtUum8PJNgAhEZsYtzikKutxW6JC2lHQt6OGMN9gx1hzcGFV2mOyh4IVQarDgg0pjIuJyz\nZdapIw3qjU+ZZeJbd9uPqabyvf7Qwxtp8DDWYp9xwCzL9Von9Dfk5KtTn8Csa/ZTnHyi3xO/3jgu\nRk8PjMsa/OiYklqDZ502FGrpWKWYW1VTWooETcYpmDVuoiDSQjEn7zLYlVO8Vp+9JKJuyCm+XDnM\nC6EP6yUJ/lLmwQ8XtPoSwCt8DcS5JVaDlk0X/FgReO4WhVpez2+4XDmR5fOgfCD9xSMfaxGQ77DQ\nWFKQe5RPxDJhumChDNprTdB73/4ey1pxKM4uW7fEwhg/OGB5JLGkJCtpNWT8Q0U/bva7rBQ7kwYe\njgoGOS4cH4tvH7iyPnzTob+lWg4TnxOdv+3qjA1H1kVlPVYTuVdbSKzJSWt8JVpt9rt4mjrv+iOS\nTCkJ65JcyYt9f41sbGBdjSMEOUEqv5HZ8oIgeJwayo0PZiH/4fZR3Ic+8LPATWAC/F3gT3/Y7/+w\nFP12GNi60aLt9ZgeSwagGL9IPVStxWCBnSkWoKqpUpn8J8fKqrxqMVKqsWbVolqLbh43ME3NlceP\nmClKOaolA9De6WO0Iu+73/5nfPWpTG4r7vLqsxJcbLc38RX0cjsS077jQKPWXPPY4e6WbCZf2BmS\nKQtynm1BtaZrlyjz8fwp+3fl7zciH5SmrQg9eCyLrdGUzWFRpjwpZfEsz3NuaPVlt9+9MCPLyYDG\nljxY9ToY6NZYNR0JXVpaBdnyW2QKaBk2YnLl+8sVQ3H8YIlvlSfSGqqFvK72JxgVow1WPvMDCVqp\nfgpFviS3QpVmRztsanVlVWdEql74+197i6PHsnmdKYPzrY0mJx3pZ281wtcMRljltMey0OvqhNcT\nGdvTlfy7NB7dXPpw7+EKdygd8aICP5UHOo1rykPVh5wrf+IYOqGMVTic8vhA7m/+vXPeVWGY0bCF\n1cxA05XvlV5NqAZ1ahwCBaRVnsNc3cKDvpZAz48p1QVzzZzlQu55drLFVk/dSs+wSsWeXx7KxhOx\nwtcah0lrxUxJW2bLCbWRez3PckKtVh3trXkyK9xQ3WonooiUtj+MyLQysvuo5kSBZh+2fRT34aeA\nd621J9baAvh7wBeBnroTAFeApx/hNy7bZbts/5bbR0lJPgI+Z4yJEffhTwDfAH4D+AvAL/MhpehD\nF270DF6v4vmXfwKAwo6pEimuIa2Ir6quQxrR2ZKd8oqm2FbTkkz5BBp3ulhF4Dk3LOVcPZncp6GF\nNq0tLRjytykrMc++9zdf46v78noWVXw2Ey6EV+54NLRePldUXdc4nGjWL2v4bBbyP0G6xU4su3Wv\n28Ct5XWs0OVrwy6d6wqZLWo2rmu1ZtMlvCKmdrmQvncbV2giZnm9CDFaHx/FJW5DT/+NiHSuGIEt\nJfcoc4xCn42tGa01EsqcgRKFTsuU68q6bCM5aRMTYdRdi/d8nJlYMeFGh7GSo3auNTFKXtu6qii/\n/ZLAkWCn5zYIQ0VTNguOD2W8f+Obh3znUDUmFe48mKR0kNP/+2cpjyv5+4tFwKnzQD77oOCJ8hes\nlhpJjVweaqDu7eQ+lbqSQXOXrRsyD/FZD78p47nYl+DineevcHwq5ndr2yN5JGP7djZjqVRoceXS\nUWzM9ZGMT7sRU1vFw5ynLDWVm1VzdoYKlVaU5063w2NVBLd2SKgQ7DwqsHr+RjEMlFwm3lgricdo\nXBScgm5Xfvt83yNLxWJtdafUmpJsKPeEF7lYdQPDKmCi6d5qw+PWVFyJd65VeAMtiPo3LQZjrf19\nY8z/BXwLKIFvI+7ArwK/bIz57/W9/+2DrlV7HvnGFnGnzWhLBVlWhsrKJNblAEpZeNZNcNYPdywL\nN3bb5Iip1gx72h0IvQ5lVzaL8tQDI6a5ozDhPHvKvX/8KwD8g8c/oC7ksy3HJ1XcQFFaepvyeqF5\n9zyCYaLlrcblVLUE47ZDS8vaOr6LryATu6YC91y8Tc2YTHNQKfM8cS9cDFf77jdgw9GNsNMnNVp3\nYSpsIm5VVTWwHY1qa/wC18fotFqbEvQ0g4GhUrDUs0kLvy+fCZQ6fpo4lMrb2Jz4+L489HFrQPMF\nLUu3MbWKmrRiycREzQFMZFyT6pxqprT0Z3N+/6vCBvX68YxD9a8ThTY/PC+Yat2F58GBUqA/z4Ty\nHfnMg+mURzPVeVSwVWQMS61X+dprr5G+rZD3L3nEN6TysQhOaSjQrKcVo9zcwL+ukOl3x5hKsiB+\nkVLowxuklrYCp4JANpWzqmZ8LPN4erpEybhpRU1cI5tQFsnczKMGsfIkui2HUHEmwdySKY28F1V4\n699TwFbmLUn08EqWZ/ihzNM8qQhipdK3MW5ffs9a6U/hOBgdt2Xukva1JujQxbbFNbv+8oDokXb6\nQ7aPKkX/V4G/+s+9fR/4zEe57mW7bJft/79mrP1gJeV/063batgvvnKT23vPE179HACvvrxNNNOo\n7mYADc0JzyumUwlTzE+V+bg/AD1J7t1/zFT5A4e9FpFyMgxHHdod2Wk7m3ICN6qQxUoLbeYLnJYi\n3sKSrT397Com0yBRUsjf/6uf/0sMtHIudBxWWkRT5DMaPdn9//2f+5P8zM9J3LWeKydk6z4nj5Q+\nbNshfaqS8U2HaiUnm2/EOnr9H7zJuWpAzCufF7Zlt/d3X2WwI6dfETfIVe4dFQKJ/G3yPWUyjkKu\nD4X52HVhWa2lz+f8vb/1NwH45d8QGPCPDyo29eQr8vxCiv5mbwtPNTTTqmarpydpR8awXuxz990H\n8nuVT/eGZEH8ZcaBno51kuC1xSSOVZexv7vJSPklw4Gl9GRs//r/8jdparbmLElYFXIqLs6VMTrN\nWCqS8MlBSqKcmKvFgme1UKjxDPzCbbEatq6JC5pHPudjsWgePX6X47FGSquSQIOfmWPpaLVtopJ9\nbhdQ+rfPbd3ipT8u5128eZ3Xv/m7ci/KSn2c5vieXPf3/vEh//RtKcbq5ClnmZK9VC5RW8b2lU0x\n8butDoWiIutixYGiSb/99pRcoX+L5Yw/syVzXOrcPBtc400lpCntMalCooPPf4bHakG9/OxtNl4W\ny+QX/8v/5pvWWqky/Fe0jwXM2RgPxx3RZI9XNKV352aPxlJFTpMnLE5UqruawLEs7mmq7KPH+0yR\nxfP4nTeZqcpPETaIr8v1/GwPVwlVQpXybl0JiXz1t9IJ+VRckO3P38CRZ5OD+pi+1axER2GrZsHN\nTPy7o8WUh1q1ubnp8bNXZQH99IufpLstC6i+pgCp2YqdY32oNl9gcFPMYMeE1Mc6+7rgPzv6dZK3\nviFdu+sTvyKKR+ZGgK/m5+zpOalueqVVJSUXujos3tZ10IxDGRqCpfzeyfIuweF3AYjvy7/ffTPi\nuevy4L70TJ9RW+8paOHpPfm1S7Ml92LOZWPKdq9xR6vPi3qCWVPAX++xdSCb3vJoSqYmf+e2xGqC\nU5dqIOnZYNYn3pa5SRfzC5h6wIxcAUIt3dBmRQljrRb0XZ7XEnC68Fl115ww4KCUCZwrcmdjd4tK\n3bWR6xDqcOdZRLgpLthktcDTzM22ZhHOvJjJvsRUjqMF5V1VC9uescw1e7KUz97ZjFisJKux6dyD\nhdzz01XBrFSxG9fSVjh5HshETZwMq1WwVZrRVjduu5nwjPKNDpqGZwKF7G/K5j0O93lZN6GTecoR\ncrDcyL/Bn/uCuNs/1twi1k3oF/lw7bJK8rJdtsv2vvaxsBSCwOXmtQ6t2wF7m2Jq+0sPJ1WxkOyM\nyVx2yWU2xSI7bTiVU34x9pguRCBjNl1QoCIyueGKmleprSk9BSoobDWoDe1czM+TrQbTe3K9J4dP\n6CqAZHXSwm2ICdq4L32YHU35zkABPYHPM5FkEf69F5/l0z8njMLtFz6DVTIMd80snAQEWyqQ0vDx\nYvksjotzTSs/tQK02fxzxDfF/bBJQak0Zm5VwbpIJp9eALEO78mYvN77NTaMZHAGHZ+mKydzNXsA\nml2Y/va3OXwgp3it+fGwY9jYlrG4srfF9U+KaE3T3cFo4ZmfL7CxQqyVK6CslgyU/2DVGEApFoQt\nigt5M/sTLZZvaLBOMSadVkJ9JGPRe3aP1ZvyvrNIqXOlVC88ZsqL4CrmI68qcsUQdDYtZqZ8Ga+G\n/P19OVVnb8GmcmVul/LZL7ghg45mrbodvB357fm4YKF8lL12C0dP1Uh5EuvhgvGhvD48ekJxS/Qq\nx1+/R+tIMzcLwWkM/Js8+o4AoZ4c1eTqliyqmpXOa4G5EMF5okVSG4s5DV2HaW55eCr3PC3nvDaX\n7002HbJDcSejRzI+N2836Ko4TVT6nNRi6U6/U3K3L1bKu988Jf+EYEc+bPtYbAqOExHHz9McXiO4\nIQMZ53CiEeLFPLmouAuyiER9TiJlwWnkbCkbkZkPWfrKc2gjPK1FaPst1rINvqagvKRB2BHTrzUv\nmQ/E58wnFaWVHNF+8oQ+srhRJOHDJGX3VMx22+ty8zOiQ/Cpv/BH2H5JzHyaLZx1vEaRa97W86CV\nk8YbXpRcYxxQ9SmzBiPaOQQCWKobCaH6+3Z5BmtmKVPR0yzAdCV9v3vfozdd+w9zKqVWL3Epn0qJ\n8Mlv/javf0vNeeRBee72FX7yJ4Xe/JkrP0n32lpWqLyouyBfUCuleLEn3/dnLYpaxiKyLpluhF7m\nkg3kte+Bc1025JMDrRzdganSmm+1ClqadVokNY6a2jbISTQFWujv7oUBq7bM9cPipIkAACAASURB\nVO2rbfx1Hci8zXcaD+Q3uh7bEwUhDWV+w8LS1RTxoOcTaw1Ht11AqSWvZcVK19RMx7h1nhEpt+d8\nkjAuJZ7VY4Cj9OtWAWcPVxMensoh9JsP91np92prCNZEPLgEqjfpFfLv8bTCUZt92GsSrQVrozZL\nrX0ITiyKM2OhadH00KdRySPcclr0FFl6OglwfnUNhko4MD/aY37pPly2y3bZ3tc+FpaC63t0doe8\nuLeHXWidu7fALLXeYRISa1DG67QpMwUnac47dycMFYK8cTtnFSjcdbxgqClap8wptJptVWmVZXkK\nVkz/VtOnmaqJWp5zogGnUbRDdaqVepFcNylyjrS+4IvdHf78T8tv7958Ba+l0uDLE6zCmB2FSRun\nCWvSEMfhgpRB/rruqPwbDEBhzoY5aAW6aYxgKa5L5KXkuQSUmpWYw09+5xFn9hEAz73oMJhKLQln\nR5w9+ToA0+MnDDsyzoH24db1LZ595gYAnY1tgo66ASZlLbZtKw+UHdrXakEbWKpIcPZ1tWKVy2lV\nLSy+VnD6dUqlVafGl75PFhXXOvI95+iETE/dMpnR1AzAwG+SGuWSXLPNhR7PaH3B87u7hK7Myay5\nIn4kbt4Xd1zyM+nHLeXX7MUBW8pQHTguLaW5dGMPVynQV05NYMWk7671dFY+70xkADaaGyxfl7Vw\n+oUmVs31zYZYSrP7J3z3iazTtJRsDUBoDA2tkixdQ1e5OoZKm5c3LLUWqbS3urStZpLqnEeqfHbi\nTljMZa42tH5ksZrRWSmLeZld4C2KZcq+aoh6lWVnJNRyH7ZdWgqX7bJdtve1j4WlYHAJ6FK455Rj\nDS5GUxzFIWSNU9wjPUn9jJ6VvWwWi7/Vbg/odGUXjYMYRT+TzruEGpRbOR5HRvzBk7feBsArrvOs\n5sdNWBIrww7ViuBYqwi35qSzNbeA6jzWll118PautLly548B4GxuUevJNl88pN0RzIXjKibaM1wQ\n+eOubQPx2S/wIus4g2XNKGqTEuNpUbzXxCoZbT2BbCUBtXuZVCe+5d0n+105SbaKmvPnvwxA/s4/\n47f/z18D4NvHOTdGEtDduymxk0/9+OfptCS37/dbOBocrRc1RtGNxgmxgQYEzwXxZ/0FpiknbTF/\nij1RS8lbXMC8TbHCN3IqtkNlMTorSG5qEPjU4De08tW4tJUPIlksKBTe3VMk5c6wwZXB9Yv+dGKl\nyEtAwYh4taW1rVJ9yphdErzHs2ECMrVc0jTAaGC6LA2lVlWeLMVi6zQDCmVrPnAPaO4rWvR+m9YV\nVcI+k5jC19+8x3iuEnN1haMEwh1cCvXrt9sBOwONRazkutuDATuaDv7Ec1eYqoVRpgnPaJzr95++\nxmNVGD9XDdKgsOyrwM3U+iQaz3Hcmko1POZnDo3sDyGbs+vWdLoJ5cSh1uq9eu7hac1AJx2yVIjy\nOJnhqZy5P9XqvdgSN8RU7XeCC5rxZFhQ6gPtHe8zPZIJO1SqrWr/CbvKPzi4vkFTI8/nh01srS7G\nuKDsKeOz5o/zyvJE4cibt0Kiji5SP6TQ6kLP3YaGBj9VCAR8qbnV9j7YmAaPUBZpDKCis7hQjL8H\ngDPcwMl1UTkhyb0H8rWZPBHff8sQLKWfv3ZyynNfk43g67/xO9x7JAHPRhTz4o9/AYArz4l5Pbz2\nDG5bNkinSLGlisFEASjNFzaBSutGlPm5mjlQy9zg7YByVOZJgqcYAq8Z0dSNZX6kik+zQxqPFU9y\nY5f6TMxkN6uZKCDLc1wc9V2ayurcb3WodmRdNFJDU3UXHaciCbR8vtOio+5dRzk4V4XFmjUkfElR\nKRgsd6laeo0sw9ENqdmQ96YLF1fnbLGf84b2zTk8ovtA+vxQp2x85lHqrLajkIa6uXllyZUAJQgb\ndDSbM1Lx2K07G7zyqmSirty6SVHJNeaLU/I7qur1cMXXf1MzEe+okKxNqbVqc+kUZGsKOcfH03E7\nqVZ8kLDZP98u3YfLdtku2/vax8JSsFgKkzFeprQV2WWqAFdPq2YADZXyro/HrNSV8DVt5PYi2mo6\nxq0ujgaUatenUCyDb5yL4FKgplyBR7EmLHGhGckJPOwazrUqL8CnH6tbYdcnPgyU7Xl381Uc1Syo\ny9kFVZrfXOK569I3/b5xuXAP/gVJmfdIPOV/q4vPmsjHdOT+yQIq7XPlQLqhBKrfFeGV5aoiVg6F\nm1nOa2+KbNrp8RRHhXHufP5Znv+iWAqDtkrXbe3haT0+1Rl40ndrSxwVl7E/JLpt14G/so1danVe\nZbDdtYJPkyKTk7QsawjlXsJYSUEaMQvFodxsFXhKTFsbg1Ope+QY4oaMR0NTp428ZqRFRxaDr+zJ\njbhFEmmQsNlH4RQiFwjYMsXXKkN/4oBybhSNAFcD1pWXU6o0YKUB2MraC5nCRZbxQlMsj0HZ5OFj\nMeffWCquoq55dSR9OzmN6SuXxw/mBfvKAu1mFXtayPfMDbEEX/rCZxleE3eu2dslqcQ6aDpdTg/F\n1f1Mc8DZp+V7+8otMduvOdfiuJ71eVSt89kVK02zftIf0HPFYnuDD9c+HptCXZDPTwjrkNO1/xpb\nglIWZnS9havw0bapGSvJSC+Sme/ZIV19ljwnJlUdwbzI8JR3MStOiJRko1vKIK2Sx+w/FpN5OIRw\nU+nOGy5H5/J61I3wNBreUVHWyIFEwwQnq2+Snn8JgCC+hllvIEVLhFkAWFNs/0HaUrz3/lpGHveC\n49HaGcVEiUzoQC0LYTU75J1vCnjpV+6Ja3C2hLoW0/6XFiX/3QOJo4QNg1EB2e1piVExVlfrQVx3\njlGRXuv0sOpHWzunVtg4VbSmBAQFkEFKpRL3+HOM2qp1lTNXn9krSyplT3b1e4tyzm5jzQk5IdiU\ncQusZeWqGVw7NJXiqqUiMw2/pKVu3LAd4SpDlvFDWjrOzV6Mb9c6pGtcyAq75ka0PdJU4lWVP8do\n7KNwC8oLIh75XpZnHJ+p6V/WuMq8lPdLXjuSwfiaK/f2lyOfUtmtene26CoE/eB73yNRsSI3dHhB\nRY1vXX1OPjsIabhaURnUkCtjV+OEqCXzlLQCRrmAkLbbCm4KD8mLNdAppVaXIatrSsXAnHHGO/WP\n5j9cug+X7bJdtve1j4WlUBeW1XHKu40pTQ1OjZzrdK++h5Qr5rIjni2bOFpPblT1N/R6WH2dE5At\nJJc8PysJWyrV3unQLBXroCbnIvPYP3sAwJXlNhtTjSwnCaVGlM+GBbvKNdhQYpHYdfmc4gayWZPp\nu0Lk0XpuiNG8uWv7WJVKM4118NBcnFwCXVzvyeVFYI81b4JtgkqW1+cTlvfEjCy8mkSlyR59ZcpX\nfldy0POZciCyYEMj9YuzhEZLOBW3pm/wQDESVXf7gizFUQSfXTlYdbtsbSkLwRNUZy5eWywe4/lY\n1TWo54ro9FNQtGmVHJAp6UmezyhV3zKrz6myNd+D/OPXEaGSlJQnOYmvgV3H0lXDJPVLZpqVqTvy\nZisKGOjJF/ltnL4EmAPXUqnid5DXqAwnZSjryT/3L6DStukQalFSndgLjQvjdWgoN4bR+TiZllSq\n7Ox2PZKFvj5Y8e925f6+rMG+d9z0Ilty+6bhnXcVYVhUnOm8v9IIsTsqUb8jGYdWa4NItTN8d0H9\nUCy9oOrQvyEcom5xwqeW0rejLbmuWZyTLZV/pK4I165pWGMUVn29cgl1vSuD5Qe2j8WmYG1JVpxR\nTRfkyMTuXh+wqXEEx4k4fCyTey95i/lTqXNYPNFF9UzN4kwe2GYPVqksQLdZXgiJ9txM/ghcVwGV\nkyRjdaaCsMmUsC3ugY1aRFY2kOUPnjJ7Qczj9lIexqZjKV+Uodt5fg+3LQChVVVSnws0O2q3cRSm\n3dAyXOM13gMC2Rpz4V741MqPWKm/aNz6or4g4yFjJdMIB2MWJ3KRo/yc78zle2u5D68Bj9UEnljD\nqCsP23lzj9stvY+buzgzTcMpcaXfGVwQ5ZbpCcz0QQ98cq0qDbwZnsZVTF/Lohc1jiMumhO6+DsK\n0T0e0fLFN05XbXI1u6eqXrXdtBepR6cZcPqWAK46rnMRLa9w2VKiktZcHrxV4LG4IXM6C5aMcpnT\nyHeomxrb8Qtc3ZDWakt0AupQN5hZykTrDmalS6WiPL5dEurG4SoZ62l5uhYRo3vukigt+ztewjPq\nt3/9WRnLb3w34cpMDpCt50PuPpF7up8WFynCJHVYaoXtuZHv9QcRsW6sLAdUDSUBWqQYq/23AdFQ\n6liufOJY7+OUdxdyeD09qChdJW9xHKKm3P8PFrByfzSH4NJ9uGyX7bK9r30sLAUMOI6DiTtkan6N\nOtsY5f6r8iekiNm6Oj4jPVCyDFXWzbqPGI7ks6MTaHe0+CTepNNU4o3z8gJqGwzl9NxLG5xMFUa7\nzC+CVh3bZmtXLJa3xzWtXGXfFmJJNDyHP5pKsMhPR8xSORHiswaFMh/byZxK5d0yI5qKbnsXvyEn\nm3EDQoXHGuNRa4Bx/Ej4DYrDt1lN9AR7dos3NcB369Gcg++pzmPssLslJ+mOUoZNZoZRIL+bVIZm\nV8ZlczTgSAFebrCDbb8XXQcBymRKmZY/vk8eycketa/iadDO6axwNPjp+mqft0aUS6WnLwL8UMVU\nWgYWGmi0NVbTQ+54rQ05pViL5FzL8adyas6qioYjloDr1uynyhu5/reZcvpE5ixtlUyW4rq1d2q8\ngQCW/HDIQF0sVCncjRokpfxeOpmzmIuJvsgcjtWqaJUp20oC440kyD1YNjBvqAVVWzaHOoYTy/Kq\njN3tt2VdPLCHvK3gp+gr+5wqBXzPtdxWGfk/vrXDdiyvPRWecas+jsLbTRPqhc5NZslUYbsoC1bK\nrXB6Ln3fn2RcW8n8p42CMlMeSMejoeJI/XbN3fk60KjcEx/QPhabgsWS24zeqsGpL5ORBTOiWMzy\nqtXgysvS1S93At75J78HwFvq9x+8cQxXVKOwvYOv2PLAA6takueTCUkun19qaa6TW2ykEul2TqZp\nqs2rW2wXUn149s2KJ9/XCP51AZgUFZw0ZYA/94k+nY5EhZ+88VVmE3mwNvdWtJ4RkptkqqXFqxXH\nj74JwHB4h2vXpKKys7FHORc/cf5U2Hr+yf/+Jmd9NSlf97H35O9/61tPGQ5kkse5ZG4A3tYKUNMO\ncBW81Gt7LDSVt7rWYbCtEhwHKbOxmPyJfp/6EbVW781m+8yfyFjF0X06+rDtmFcwW2IeV4WMYTl5\nl9mRuAmT8TELXXhZmTI7Ux3LsibXzcRRJGhpZ0SOgL7S1x9TqIlu3JrcXddJxETqbqwUKWraPeJt\nLbnutXh6XxJtDx4VeE+18nNrg9s6J91tAWdV2ZzZuczDWXLMUkFIhROwsaUZr8QlVQakUB+qjvHI\n1pLxecXNRPrWenGTYKycltfl38+V2wzuifv34OH4Qn/jTw43+I/+0h+Vew1iZg3dvNT0L1eHlFpX\nY1KfLJM1u5qds1LXbVYtWanr0lvrTIQjlNSL/kGJ1QzNopCaDoAdIhpb0r/flqruD2yX7sNlu2yX\n7X3t42EpFIb8xOconuIrUGSr+2X8ruyeRb4EFfc4HB9fnGjZQsz6g5OaypMts+fn9JWjkUmbA1X6\nOXn4Lo8OJfAXqKx5ujsgVki034R6onRez7Ro9VVJ+cY9jr8ursv8UDABS1vj3Zf99Gz/mObxAwCe\n3Juw74kr8dr3+7x8V0zb8Fkx4RfTKZ1DqQw0fYNVenY7KjAa2HODV+U+esc8fiyuRPb9IWe7yvbr\nNPjaPcmu2MTBtFWBekPGpMotz6k5fFaGeCpPHr6d8WQp9RFxEmM1h96wMoZHd59ynMlJ2/U9zkvB\nRUQnO3zyVTmZyu05JhJLLv2emCYPH7zN9EAyH+fmKdOp/P2pBy3NEnjenIErVkq9ZiRO2hRtDaQe\nRzhdOc1qQrbUpUltSaL1A3s6Zzd3BgS7Mp5HmSEciSXQWiyJVlo/kRRkymxsFBJfTBwminWpFjVJ\nKpbS4dJyKEx2bFeG61flXreM6lXuPsNuS8Zo7B0xz7WGoWgyVrXq54y6A8URc60zmKYVh1q1+Haa\n8tV/KmuocbvFqVLn3RqJxRPHTULF3qTJIftvyvweL47Y6asiF6cs35a1/OiJkgwFDa5ti5t7rdHh\naycquOMlVAqX30s6mHStEKW8eR/QLi2Fy3bZLtv72gdaCsaYvwH8GeDYWvuSvjcAfgW4ATwA/qK1\ndmyMMcD/jChPr4D/1Fr7rQ/+jYrAm+PkFZEWi5TpGcVUdtfzs3f59a8Jielr997FVQbmqQayHC+4\n4NDvRiFD1VDobob4UzmZZklIpifXgcJSwxPLxkBOsLFZsvLFH8yLFb5CJDunMas9OZmiruSMD7KK\nXzyTOMNnv31E8JKc7jO/YPGmWDdv33+Le4Xs+D/TFgLXvZd26HU0QLl5g+62nDCuu4mj8NiRnog/\n/R+PeTX4KQC+/w8e8M5crI4r4zf5dRVO8dugXJ00FX5rdw3xY2Uxarn8w//nqwDc2xjxpVfFmhpW\nuxhXTs14Q07a3/ruu7wzk5Pk2U3LlqYeJ2mK+0iCdi/8ZB8vlGuUhQRPX3/tAdd3pBObVz/LwW/L\nPX/9wTfp5ir8cm3AsyMZ+60rqg6+yEk1zRhvbbJSucCWY1mohPaVKMaqxuKNTWWham9x/IbEMP7Z\nwX0OtJBqFPT43G2hkGuwIlTC19CR9VSYhDOtKHSdOYmyaT16POapjmfWNtSH8kjsKb9D78qIn/hj\nct27X604UezJ2M1IzmUMn87WVtcAkwmsfO7V5IlabGnKPzx6DYDnnZuUHQl+710Va8REDqVaqVXi\ncjqXsUhnNUVPVcpbd/iWku3+4LFYLrE7YzeUfnr9G7RqgbpP65gdjSsdFSu+o3qjH7Z9GPfhbwF/\nHfilH3rvrwD/1Fr714wxf0X//78Ffhq4o/99FpGg/+wH/YDB4OHhRCGRimeWy5SVsg8vj47p9mWA\n22HIUOG4A1100yLn1lXBNFy5eZP2QMk9OhFtZVoebQdsK0V7pE/SKrd0+/K9UbNPrdWMbpFgVdCW\nbYeXA5n0rXVpgIWZlnj/6usP+bkX/28A4vOrdDZlwl9pwTMqxnr7WaFr27p284KqvtW5jrsug/Bj\nTCUTFw+0CrH7WZq1PICd/+QGzz0WSGz9yef4/PfFRTmvTjlVrcUnx4r7d3p8+vPSt9fvh3z9B+IG\nfONRhas0dZ9/YcJNV4KgWwP5jRdvbdIuxGX61PMjbrrPA3Ba7HPnilLiDzZwGrIImzckWDa4tUV3\nIA/ecOcTOD8nAdr8t1zCpZjPG9tdNq7KnAxj1dVMT0k0+7D7qR5mpuzQv/57XFe48rW9IaYjS3TU\nX4vx+uTqMj3TvMUnRvLQjFojrl2R3yA/wddMk6MBQ9+vGWgGxDENRk0x3bfuvMJElcEir0HtrgOa\nMtnDvMF4KnMWt31e3pVN6rnWkN+pZGyHfenPwklpyqWIXJdtfbq+sNdlY1P6tvfZLzHckXWxrTyR\n21c7F/UjiW9olfK+03cwgRxqnm1y7ZNyjeecO9Kfs5JXdpUlethl/i1VABtPKbRe5dPdNkfKRi29\n/eD2ge6DtfYr/ItgqJ9FZObh/XLzPwv8kpX2e4iu5A6X7bJdtj807V830LhlrWq6wSGwpa/3gMc/\n9Lm1FP0B/1z7YSn6dhyxtCntxGdiZGc/KyYMplpL3trmuZdkt77RusmxKga/rboBjeOU7Q05BXJj\nsLpLFnmKo8dxc7vLFSWhKJXheVRYrJ4ovtvGKJotWeyTTlVoJjV0lN4tuC0naQEUyMl8/943+I2/\nITv/S59f8cVP/gXpU6fP1itChBrG4l54XbCKYnMDD5x11WVxsT0blXM28W1cRTT2K4g2lRfA+STD\nO2JKHz94h3e/L8P92lwCsZtVk66mMl/481f4H35XzNZpmfH0vpx+5eoKe39WLIErdz4JQBxWvKp5\n8J3r27QV67Cd3aA9UkSmE0GtKEzt+ovPDAkacv9h02VXGW7+5Gc/SaWllIN2jNdXP2cmFtHkqEVz\nTYpSlnhKsXY2WdLsy+nfcbpcbYmV4iqkOOx0uKpVjU3HIbylGhGuxajb4RQRtdLGrQlU3NiyuyH9\ncYINQg20Fq2Aui+COYs0o7FGWaq7U87G5IrpuLq5xXUVAer98VdJvvI7AJyo/kOw18UqnZtb12hW\nEN/rceOWnO67O10Gn5Dfayg2wYm6F0Qu1OdkofJ9rGaEvjxazbbDJ66IVbu3LW7HPLPsjVQWcP8d\nvvFtTZ1WDaqFrPHD6Yy37b8lKfp1s9ZaswbS/2jfu5Ci3+h17XzlU4YlgeIK0vQ6DhLJbnpzmHb0\nmwXbPWXVaa9ZmnIWRhZbsDwiPFeiCxqUuvAcdmhrpV68XJfvulitB3BNhVGmpyr0yBay8MbdhMFE\nHqZqKnnlSP8DOJrV/B+qHPPls4yWeQDAH3vhTxFva6ZBc9A4YNXlwfgi2wRQL6lOHurb8lteywHl\nlAz9qzixjIu3syBXmvTmoqJYySIchkonv7FiuVLCmWTIZ7Qq8VtVzcm5LJq/HU64komdO1zJptLv\nNmho+XLcv4Kr4CU3cQm0Dtk4YCsZg/pU/u43R8QjrfeoU5pnsqSavQ5OoFF5L8UUcq+FvtdO21Qt\nMWi96QZWS6srHKzCh01hKFylMPf7+nshvgrlNgcF3lpEhRWrsWaljIuv0fcqkAfWpm3CQK4V+zFG\n3bgwkcpFgG6nReHIOFsN1LvtBv1aHujzW2+BEtwEi4J9ncpoIuvqbLZiqht9v+kS6NO1cavN8y9K\nXKn3E7cIldinOJfv2dkZaH1FXo9J1O2ajUOuiNdIt2fpIofS7rqGpRFRZOJKjmdLmMsY9uIFjzQD\nFx5CU+EuH7b24V83+3C0dgv032N9/ylw9Yc+dylFf9ku2x+y9q9rKfx9RGb+r/F+ufm/D/wXxphf\nRgKM0x9yM/7AVtcF2XKf5XlJ3JJTLh1PKEZiEme55bSSTISJfOxS3m90NcjScTh7rFHmZYadKT3Y\nwCFWGmDPXxL25NqZsuXOnXPCVAtn/IxYRV2Mt4ntCPwruNuCa7KzW1/MjgpYKn/K/X6Nuy+nw5sn\nAd99U2jTvvRTfxajQTXUJYIcXMUmVDVmTV6Spiy0yMvtibnYHlWYtZZFs42yjlFnBbZWQZlogzfH\ngpAcqfn96qc+xzCTa5jBkne02m8aWWaFHG0b912mc+mzoxReYbtL3JWgVtgNsaWeYl5JpSeTXy+w\nszVxhYy9H3t4WuxkuiWRunHWNDHZWmjDgrompVa70jil0ZPMjxO2mDyQ7IpvKo41ANucpzQV0Vcp\na3F+muEOVXrPaRApjLk2BclMi9tqg++pmMt8bSr6RAOtqi1LStUDcdtDHIWjmzRDkxZkSopSu4ZV\nV7IB/XRIqUHu8+kpK9Wt+IqiQt2wwZ4vE9X3fZ6oivkpHsuOCr9M24TKsekr90ZlaworazZYNanV\nanpSn/HcWC2XboNAlcLrUteFk2LXGqqJ5ffOpJ9nvsVVaPOkSDhZi4l8yPZhUpJ/G/gSMDLGPEFU\npv8a8HeMMT8PPAT+on78HyHpyLtISvI/+zCdsDWkK0ue5rhasjufGSYnynHnznBrFcBYrWion2hV\nazLe6VAr41FvlROqw+uFPWy2xntnOMpM0+3JgLWdHnUln+3YPqFWUZrYEJyofmTfo60cjesKwbYD\nbSXTmFQuE2VeCpYrwomYufV8TUICoJuUDbG1xEGMtwkKEKonGSvF5bea6/CMx7rO2LgRpqkiK5VP\nZXRz8mtiBdM8o6m3F3ZfIGzrBjlf0laztLF0yNRfPuk65AfSj0xjJ612iK+ZBVOcUp/L2NZxQhQp\nPLocX7BPeR25VlwOcNXct0WIoxDluvZACUBMVlOr4latpnoQeDQ1PBHdCojGmp4zDkP9jQYOpbpb\n85l8P4oCOlpRGEZtjCPvlzMXR92tju/TUbgyZm3jN/DbSrlfZdQKdMJW+I5uHG6Or1D3XDVGbVUT\na12GUxWMXtZNaGJYaVVpU4mEG5GDVU2B9HSFUWapdLwk1HlywxIvFneramjV5jzFTHSN4NPXtO9W\nM6WpsP8gHuB2tI5Dqzqz8YIik3ks5udkhZIHnSYcLqTPu7h4a97PD9k+cFOw1v6Hf8Cf/sS/5LMW\n+M9/pB5ctst22T5W7WMBc67rmjRLMWXJEy1UOTq5y0zr/23LkCpc2cEyWb0n/Q5QHYQ0NQf/eJzT\n6YuJtxFB02plnAspkgteLeR07HUDas0slL7LQkFNzTCj1Hx1e2uDsFCqcqUL7zqGQqPhg9ttfvIZ\nieD7Dx+yKuXay9mbNDN1H6xytzmWciHelGmUOBoQTB68xfRr4nZ0NMtg51cxKjmOrd9TmPMDHA0i\nVcsjVlrBeVorGUeZ4SkF+II2TaOcE52CWN2Vl/eaNJpyAoWO3H82OafQk6vIK2Z3xYoJbhiCaM0f\nuQ1rERiV3nNMTZnIfVbFikJpx5wkEWsBcF2PNX1gnWmg0vdwYxmX/HRGohZG01iyUE62h0VCrMVk\n56GM67DskGQyj54bUswT7fOcSrNHrU4HqwHNSLM9puvgqhxdnpfkK72PsMZXUpoyNyjeiFQZlY0p\nqEdi0jTTbexTFSi62iHV76U9uc9r201aqbz3g9mKRE/os2lGsRCXtywTaquFYuc6T8t9pk/kukm6\nYqqEGFthhVUrxG2AU66tMC0Sq8ckc1kL8/OnHCiw6qQ0FAoVP7Ulqx8SE/gw7WOxKVgcKhsQhjWR\n+qfjeclc/dDcJDBTxhuW1Eqc4ipl98Dt4GZrSvIETxWg5o9OSBXoYmzIIpeI+/lYabFHO3SuymIL\nyhR3JQu9OdjBV5M52Ijx5orRn6n6j+syUlWh3TLgjmZJupvXqDtyvcffdlP97QAAIABJREFUSOju\nyAbgddZ6EvtkD9b6km+QnUrG5Lu/+Uskr8nvdXbEdAy+MCfQ9BdFiU21nsNpkKv/+ea37vLGD2QB\n7d4UtyvpPqD6rpji5cYTttvy2/nKZabsP5WfE7fkno5WUpXZOuqSn4kpmoQdioUwOm08+hytWPvR\nzalTiX2U55pxaFdUWg04Pf4+kwOdm67FNVq23lxiVMFqXMjcLM9beBrpNyc1M3UDFl7IRqGZCFvw\nZCr3d7UjG8+ChHym+pGrc1IlIfGrhHqhNPKTM8IdmctcqfrLwxijVO4mb5AVMpf5uEHaWpvuAZmv\n6D8lxkndiHQmsfP2FlRH6lbNwdG07Q1NJ/pVxkI1Phw/p6xkLUxtwUy9mNLtUat6U6LZrMXYp8zW\nepYpXrGmD2hdrJ1iNsZoaXtSyXORjuHRWNb046dz7EpJbCkptRS/URuU04oPG1m4rH24bJftsr2v\nfSwsBdfUxH4mXMcqvztezDk6FdO4oqawCjhqxPhqEsaOmIiNVsHBqSSWmzOL3ZLAUbm0F8QUHXfB\nSvfASlWaDrIF4Ymc8lW3Q6imdkYb11GuxDwi0cDeWHUu+45htCfXevbFHZ69KQCb4mHNWSIm4XE2\nZnoqJ3PXk93ccUZ4V+Ua9fwW4fD/BcDjk9z8lFgeyxeEs2Gr64CegtYkoDl2wxIvl1PXawx4y8rv\n/WQhJ+P0UUJnrriIFnxRqxKbny55+75iC2ybs5mcOrtHajrXJ5yv5O+9jYwolAxNuO2RaaA0SBJs\nouOlrlhV+rihzI0fDC/g4U9OZnStnLrVThcVUmasJz+LQwqlrXdaTZaPxKrajX1Q66ZOLONSrInH\nx2p1BA4jrbWYLBO8htaMtNrEyuH/ZPWQ+AcyLnVbhYGOZ5Tq8m10YpyWBmuLkqenktnqeE1crUHx\nPbVGPI8MwZDYbIRty1xPx2MczewcK7jrqtfGTeR7cQjLpUoJFBVvH0hm4OrZU+JKrMJSuTuLomRz\nRwLMbvEcvU2x2BaLOS0lbfFqn1ID7LkGSdN6SqJ8jm9OcibKul065oIK9AxLvfY9PySa6NJSuGyX\n7bK9r30sLIUah9QJGTgOrZ6mrOgy02yi7xfEkfpqpsKk4iX5iiOdhwm+ypkNN1w6scBuixs1KOGp\n6xjmd8WaSFSMY2czhpaeQO4QNFVEI8JTAZfaDSHUtNixbLWe5/JjVj674wcsVGfi1t4G3oHm4+sA\nDXNQHovFE1zp43latON52FTgrj/23GfxOkpXZpV9Omqz3rONCSFY6zLmOKrm3NiGF0K579FEfnfx\n+pLBnvSnsWfxb4tV8ad7Q3o/rhwC8yYbkbxvtHI0aDRpRBqXCQ2NWNCYdELqiYxR1T7GegKxdpSu\nzCnACWU+gv5VmqWMW7Sfki9d/YxH0Rb/Otd7KkmJTsSvbz/r0+zLfWdewAs6P6t+yO+/LTi8qeYv\ni8qhoWnbRu+M+lxhxZF3EQhuzzYINmSu3VjGarDbIlEMQddCrVW1KyciWGl8Ia/oaBqx0jjKap4w\nV8q+p6unPPcTMu/d6QBPGb2v1jJ37SjiVJmitloDrqjWadxts13LeCWHZ8yGYvXlGiQM6yYmEwvL\n2k3C0bqwq8BXvITTbRN05fd6Len74nsTVkuZ0yio2Whrmnyao3WAuLxHIP5h28djU7A1SZ6C22Sp\nuGR/O7+QX7ejAZHmjRs2YJ6qruRETNF6vmSoNQ5BsAkDWVSRX1LroFkT0RoKRdfSkwWzt3cNL5Ig\nUnPrKm5DJjTqxrgKaIkam5wfaxWdmv5bgcv/196bxkqanfd9v/OutVfdqrsvvfcsPfsicSiSJkVR\nFMlIJBLHiATFsmwFigEHspMglgkhH/LBAQwnih1AduJ4USLLlhRZWwjIFEmRFMloSM5CDnt67+l7\nu/vuS+3bu518eJ5qTduiZoaanukk9QCNvrduVb3nnPe8z3nW/z/RrEbcDCiviAk3ivIwKzn2NN1l\n2JMS1F5OylOrg5RUTepocMDoogba7IAjhXBvfEw6Kmfaz+HNa8dezmLCCeVRET9TGPXWACeRtfjD\nTbnuD82OOF4TU3V49DjP1gQBOHm6QCGWB3owSkBrQAqKS1kqucwsS5CzdatPpy1jN33wFC48V10j\nv6K19i0FLAlapEMxqW0S0D3Scuy4i1dSBRJWGHsKy6/FSF0npKIKrX90xEAzB8drOcKSAo6MDb7C\nu93YkXv20KlZAl/mXF4+wW1Fzz7c6jCn9byhG5NHlF5u+QkZp9PD0xZiM/SxeRnz0LuG0UBh6htG\nqnzDsmI1Nh2ONGuRK9Xobcg40kaJk7PycB89Lt91plwivSpjG9VcZpUhbLDR4/a+tJoXl2cJWrLO\ngz1xW9ywSLsp1y3P7tDSzI9XPCBz5ICb912slmbHWv/RtQeMc6IIi3VDRWtrdkYG1I1NgLeYfJi6\nD1OZylTulvvCUgAHmxZIinlCBQTNeTUqCrDh5VxKmgt36OOMRTsedCU4lbU9vIIy8u5fxd+Uk9vm\nDFbx9vvxkN2O/Lw3lFNr9YEPUaxqI1HVwFAtE6eIpymdLO/gtrS5Rv2BxHcoB2KN7LU65LdkbJXj\nK3cwC4aHbcYKXJqVNZdc22T7l4QF+tWbV/C0qWi7nLB1WU7Yxm9Kxfizy8c587ekbmzlwQ9iGpOE\nUkpvIKb4d77cYbcpx8DZBT25/Vukl8QUdytb+A9JR81MfY78gaQfb3aGuEYDfjPK1Tg+RlGJYwZL\n57nx4joA7dunOP2MnPg2tCS+roVkJnGX50msjGdnb5NvflX+cHLVZ04LIQcMONyQ6+02xVQPRylD\nT9ZlsAEdT+HYXJeGQuQ53SP2B5OGJrlGc7hKvig1GaXqKmFeyqNffukSB66M//EnjjFwJVg3CWDu\nXLvKSMFhc4WIvgaPW5s9ZhTKbrZWIimo+6BNc82kT+9A7mNUh9Gu3LM0s5zQRrBnrFgKtw42uKKl\nzY80FmhrG2hrf0Cke+70nEGzs7gHynzthKRaHbm5vs21r4s1UmqMWKpLatit96hEJ2S9NH07vH6d\nq0dixVYHOWY92Yctb4DYedK4NzEUtOj8DeW+UAqB53BsNs9sPiDnKPpuqUKwKDemUc0zu6iR+H6e\nRk025vCW5sdpUlU+wGBuBqvmZ1it0duc1M5XyXlirn3sRz4MwPyxRarqv0W5EUa5Dfs4BFUF5Bh5\nJHNK0a6O2niQ8bLm9NdMgXXlqzy7BsdXtGT2+AJWYdAHObluKVlk/scFwfnyL+8zc0qBVYY+n/iA\nPMitA908n/go4Wl5oG0xJZtkm13LSOvha88t0NFrhItiqs5/eEgwOgdA1g5pfJ9kEWw5z8yctHC/\nZl7E6en8lP2q/OhJHG1vnikvceZAHlInyROuyUNYWFnGLWjc4diarmuCr9mJmaTP9z+jbX2YO/Gh\nXrdF0hSlMFJcykYBPC1djwwMb4rLU6mWCBWb82x+kfRlMaV3NL60udfFqcs4g2LGiffLXPvrPfa1\n16KwOEfjzF+QNXBlrZY+cJrmusR27EFEi3UZR3EGX+3qfCFCCcoYjjRG0+oQlBQYx4lhQZ7oYbfD\nkXKM3qxIz9+tb8Xc1lbE+lzIivaV7I5dbnUkZrA5OOSMJ8pg9kmNYR1a3BPyYzjIsXRaMxy3mjTm\nNZtRrOCFsj8HqgiOxiP2XpU9dDBy2EhEmTR76Z1it9iCM/EH3mS189R9mMpUpnKX3BeWgsHD92aJ\nZhJmFyQYWAhKlLQrsVAJ8UM50W2wi6d5eO+UNuW4DdxAqxGdKn1F6i1RJ50V1T9Xzzh5SuzZU+cE\n+zBYCXEUbMONXKziHGYGSCaNMT2KVdHskcKHxb5HFMtpZb0hnhIXDmlRdcXUZibAURfEbyuHZdnD\nXxC8v2c++SSFVE6xbPc21VOfAGChJhZP7sQ8ZPK91nHv8CzYpE8rluDag2sF/mJbIvEf/5Cc3Iu3\n6uQfkuDi9cKAmjYElXJVUsUGnIsqhMqfGGopdeJBoiXITtahUhfLI16H7gUBanFHfZySZocU23J8\nuAeJHI9Jp01lWTs0h11iK/ek3zpkqFkgq2Q5uAnxgRKdVAMcHcfBbYtrZBz+3JCKlXWOHTl1O7FL\nf1/+Xps1uNolefyJZZyvikXWfuEyjmJjDJSBu3Z8lWhDrDu/ZPBHSie4ME+iFYaJ2yZSopWhds86\ngcuClrk7UYq/qgQ3jodV96dwQSnmugn7mr3Y2mwzUp7OrpfgqSUbXe6zt7IOQP6E1KR4tR6+zmPF\nX8KtiPU2WNzH0bHFvUM6Q7GaOlviEq2/2qSrla67oyG9vrKUJ5ZJX65rIH5rTZIYa98yPsrbLg+e\nOWH/0f/437K0fIq4JJH6E4tl2orhdGm0xfDGywD0XrnAb//uFwF4dXdd3pCmWLWXRollsu8WiuEd\nMJSD4fgOC9OMFrms1fIcOy2pt4X5Gs2eUpJHMdcUSHTUHONo+XPXER365SvX/tR5VDDYQMxWU79I\nZeUnAfjwJwWt7iuf+z842JGCpe711/gT+vmE0Mh3e0qU+7MnlnGK4iOvD7fodGWTf2v7ALSm3jMO\nj83KDJfmxeQ8V/KZn5Gfg+MzHGTyAD2er3FUlNdr42v8y1+XaPiXD8WsfygHn1iVdVk1OYIVWc+C\nE3IwUhYtW6ajhToffkjckhFtFGeUK7fa5EPZmIVqnjPv/T5Z75V5XE0T+3VFPIoiWhsyp6P9y/RU\nyZ762H9DviDvOTQeFUUqufKymMzf6exTi+XhGKxv8uo3BP3o5s4WSwoGE7l1eiVRavtDmf9jvs9A\n1yKf5IkCbfdOM1ItQmoNujiTrJLC5Duu0LwDFDJDWYF1nVqNn/iIkNmcmJdDKss1qC/Keh68HHPt\nQMZZnc2z1pDxHJ4/4NLVb8lcduTwGiUZ+025RmQ8Ti3Iexs+vHBTxtwajtCqfgqTjmEMjqJzDUcJ\nbS1eih2HMxVZz2eePMfKg3JI/PX//pdftNYKOOefIVP3YSpTmcpdcl+4D+DhZnUCGqzUROsWciWC\nNQmc3L7wFS7+7r8E4GtXm1w/VPKR7oSKzDJRo0EAuVRMhWLqUVO+xsTEKKwiBY30phE42lyUdhJO\n5pV1+lgOqyfX0LpUQ9HcG+mfDWjVwUL0ZbnGgUurI9i2L8afk7H1Djl5KHN61UnwtKrEMfAB7RKs\nqsm5UTjC74uFcq5Upas2z+22y5ESxyx5lrq+HmgB0TiF3KacwGGY0a/JPKJxhScUqr43usCzJaUj\n25fvOmsCnlX3afEBn0BJWAa9hPhA7U9zyCNqTY0vyecPRzEvaLffbC+lqd2FV+mxZb8EwHtn51h7\nz/sAyJ/6YQDczhbVOY2GXQrwNCiZ9n16oVy7kUa42nS0uqxB5d46188L1PlrNy7Tub0u8xsO6CsO\nQ9BIeSTQLkhfOz87A3xtCYoY3OmY9G2egdZQ+E6Ml4qb0tCgXlpwMEeacXFyNBTxO/PGeJ5Cz8Vi\ngc2sLeDPi3sYPv51ep+V2pPOKw6D5wTSLfVf48WLYkGsK+S8LYcsz8icl4OQtbLcp/JSFYyA/Vy9\nmWJjPcPVmjS5DE+Lm8aBw6ttmVNnPOZ2S957+sY2x5Tq783K1FKYylSmcpfcF5aC5zk0GgXyxSEF\nJeGAlExP642Xv8XvnBcfePv2YOJS46WTdmqDp6hCM05IqCfNYpin2pApPm0XUWYu9jRhu2HbdLeV\nH2DFMsnZZK0+JeWZKMVlCjPqn2523/SchqnBaBPXjWtKJGotSSTjtNYywdi1HnxOIbPMoVYaFgfM\na557ztRwTsi7P+QYriuRqh2ntOryfcfV9+7tjikpXNmNq/sUl+Rk38x2Od6UU+zV9Zt4WoL8hJbO\nPrDoM/u0zLlSK2E0ANu8fMRNbbZKhx6bGqS5pczfV44iPM3//5CpkWqe/3C3yVc+Lyfwd5aG/CdK\nbvvUM1oqXqkSrMspl3/4JDvflFN1vuaTaYuwXy6Tad7fqFXY27nEzs4lAPbWL7HTkjWu2QBHrUK/\n3+RIYzBjJePd6w/IUi2D9jPyWtIepSPQis2C65APNYgdS6hu5MUUqjrpbkKg+2zcT5jri+XozWjA\ne+n9ZAqPGhYfIahJgLZrD5hrSzq0ZHJ3gFm7iaz3fOLygWOCrr10YoFGIPepXThkBlncpdld9m7L\nnC5qC/+8V6S+qCnwxKVppXGrcxjT0kbA3YMeu5feLOODyH2hFBw3oFQ/RmVxBkfhukyaER99HoCv\nfeMFjrYVoXnksK/B0aJGbPN4PKskKvnZZdZ0I1hvjveclI2Qq9dYPi4b88JrEoXeu3KJ232FDp8p\nk+jmME6NsQaahvEOc6ckqLY8fvNmmLUJfqRI0e4E6ztBcUfIUgdXQbCz1BEcQyDV9wb9ALeimYEE\nvr8k5mfliYjnnpEo+wtf22Wo+f8DxQ2wg4jBqpTRrrkBLygn4n57E78gXJhRK+OqNvh/5IRs+OKy\noTBSbIIesCibKitkPHFaN94VO4EZYK+i9RGJx1O+vHj8uE8ai3ldDWKqr8rYtpsxyTWFLW9KtNxb\nrpAaUfTe8ZD5DS0cc0MIVdm7EV5XlE+0IYrg4ksX2dsRRXDUjEiH8vAGxYCilrqXTEhnoqn68l31\nwGPkygO/7PlUFYjHSWGgh0E6jHAUJCbVLIITQ1fXZTjuM1+RdQswZPPKN3paaiWoB3ixdH7Gh9+h\nviqZqO6eT3Akn7vdzjgxL/ekrlgfn/zQcxz/QcmIlWoF+loPM9ffZ9+VNToz+yDXL0lh2MKG3I/9\n/T6zyiU5osCZrgQu99pDDhTerztMGDTfHAX9RKbuw1SmMpW75P6wFBxLWEjJhyFGfYOENjdfkdPh\n1S/cpqalZrW8Q5rJ6bCizSAPVyq893Gt6Dv5FOaMBH7Koc/CmuTvC/NVfESLzzwoRaDth+q8tik/\n95MebSUycdwB+woES3AKtNR2XJ5kf9/EnDCEk5S8P8FSC6gqtFmlnAOF88rqluxIkZyW5TQb9YZ8\n/7JYNmfrVU7pnHInHHJWTqBy81t8ZV1O4BfVnC+kHoeT7sMGHO3J2J91Ib0i77maDjmnbkVNT6vG\nnMHMaU1AYYDblZ/nSmOinJaYlyxGafE+taFkI4s5xorJMFvMUerJ34+dNQw2xSpYN2N6N8S0zQ4/\nK0sx/2OU1iQ7Njx8nuS0kq8QUzWaWkwj+o5YLHs9cZluXt0h6Uig+VjicaBu01JthtkZ7VYsFln1\nZcyJeqPjGOp5WVufgFJdA4ZYfG3S2hs0GQ3FRB9qXUQwThireVfNzYFVZuuSgx9qSb4GJUksVrEl\nvEIVV838LNklMho8XK3zQ4FYCsV52ZtnPv44fl0a4QwuQVssuuSoRKEhroSfFHAVfyE3o6X5223i\nWMZbTSMWFb5w1j+iq7BwvWjIjXiCLPXm5L5QChaXLK1iicgiMTmjcY/nvyDuQ8sZMqORVz8f8LSW\nwS4+JjfjRLbKwkPyoMz9wHvJL0ibtZv1CDxlGCo0cIpyQ/1UCWj9RRYVcKXTXyfYU5PYy5GriR99\ndTCg1BR/dpybAFu9uVmNFVMvyLRkOO+yoL76SrXCQkE2RxpYXC2ymrBRzc8F+PNaYOPmiDR/Xuse\nJ1cV96f09BmeK6kP35OxbaQxF29rRqXtMVYYs+2sz/amXCO/6NJQrsTSqpaHF8r4VpSe6cdkioId\nJTlCzX8Xlko4deU2dPTz7R6J+v1uvUs6o25Cb8SMkinObkZ85pKUAp97QR4Uf24TMyNuTvZyj74S\n3o6GLsbRGEzrgBvr4g+/9GWpR1g/WCdUOL2CH3BC8/+nj82Tq8pD0SjmCSqK0ZhTUBjHI/SUXMcx\nWKNlzN0BIwWqWUhrNB0FPtEMFYFHSbsSh96YonaoDjz/TgcjSjJkmxs4s9IOT21Ecko+d/CSg7so\n+/DYE49R1dbpwJf35hZPYhRT0sYdHG0/d/MF3EQ7UOMbWH1cjYIBNZwCB4qSfXRgmGnI586s1Bhs\nyz1LOwnNg7eG5jx1H6YylancJd8rFf3fB34MiIDrwF+1VoACjDGfBn4GCeX/nLX2s290DQdL3h2T\njTwcjcL3b77KQU407UKhQKwlnBtuwsrDohHPrUqjzsm1GpXjUl2WLwUEejo4bhlHLQFM8w6Di6PV\nbs4opj4b3lmJrkbZretTVpM/O+gwKKvJuPPGGtfR7pOcccgrejLKYVnOhaw25IR99uw8K0UJYJaX\nZxgOFGQj0kq6LMZoAC8euziTWKXbJ5+XUvDjp4+RDcVSWNlROvVXtnlJQWg8Us5obcaryYjihCex\na5k/rhwWeeVX7GekvowhPFUluawZh2ZEqo1SZrWBVSRiv6ilv06D3DF1O/aapEauvX4zYuaYvGe4\nHfGVQ3n9PS9Kp+anPvoXCK6L9ROthWQbMkE/7TPsyaCHe0121iVPf2UgQbasHzCYBFUTmCuKuzJf\nqVBUq6EcFilU1aRXxGjrFwg0gOl1xoy0TiHvx4SuWBhZ1sMU1XpT8JlWLyLpK018v09XT+mMMeGe\nBAEngLFmaY5M4ePc/CKl8AMyD75ER1GZq8fnKVUUZ8JX7mU3A+WgJB3jFLVm4yjGcbWhb1TGpIof\not26TmjwNPJrCikDDarOLcxR3Zeg480sIbuT53pz8r1S0X8O+LS1NjHG/D3g08DPG2POAT8OPAIs\nA583xjxgrf0znybjgBe6mGBMNpCJt/auEb0oJuX7Q5ctrcW/FXWo9sU/O6ttwfPnVqjkZIFdv4br\nK9mGG2Mc3dBjlyxVfEQF6cAHk5PyWbc7IKe9FpXFWfZvymY0g30yXzYeSpjqGkjtxMh6fWG5g6M1\n1qEPRTXE6jn53BPlOg+elnGurs0zFygBayXkqKGdf0YV1u3BHbLSwUqFyozEQ3KuT5CI+2CreZYf\nlrjDE5tS0LP+SszpUOnXU9ifkK6ODI2cKJwfaJRZq8qtzylyclQt42uXqLs1wJZlPL7NKChlejBI\nyGZVWSrKcFhaxLmg/J9uQsvX4p9VQ0XTr8s2IdAG3sNbolQGV8/jHFsHoFx7AG+s2Jxuiq+mvV/y\n6Wqn4eA1+VzDNeTrinjtwNyK+OWN+jzW1zWcKeK5ci+9UBWWAUcf9IiMVAvHjCetywCpC9WB3M+4\nKHvI2PYd87vdG5NTFzSJCgRzqhhDRanKF3BCdR+yDtVT7wXgmWfGhEuibArBI7jKMmW0MMtxi5CI\nQsYNcbQoyi8tYdtSQ54MBsSabcvNyP1InF1cRfoajRPGCkgTuh5G996pXB7P1YPvTcr3REVvrf0D\nOzky4HmEMxKEiv7XrLVja+0NhCnq+9/SiKYylam8q/J2BBr/GvDr+vMKoiQmMqGi/zPFWHAyi0lc\nYmWdvv3qBrs5OaF/cLHOKS2l/eZBl0DN0tXHHwWg7C/iKc+eCYtYLUV1MxeDAp2MIxLFz8uUmSRt\nDhj3dKCH+9iSLkdzRKxsxcXFVbo9sV7yJTVJTQAK3mKsxSjeH27IjPI2uM1dCuoKHVd+xSdPLnNK\ncQjm5/Pk9TTDWEpaWONrQ1FQ8IjV7SgmA/LaURn7JYxiKJQKht6enH7fuCxW0EGU8KBaiwf1kFAp\n1h6uOpSVX3G5AeO8jNlb1gaf8gCjUGSp6+FFmp2wI8yiUr41ShjlOfQ9zX2PhqRFtbxGLsWxwphV\nAgbfkc8NjKEylHF84YrUWNR/43n+0n/1c7JWJiJUoBPPWPIKY7YbZmTKnbClFtnc/DHOVdT1cV2K\nRbEanWLpTg2FY7M7FHKJFrglJmHS/JdmDrF+X2rSO7RqrpOnq1ZkXu+pF1Zp5ZWaLRcSq3uHG1Ns\nTILYevInIeS0Ms5dwMtrifbTK3iuBFidfBkTquUZ6ebzR6A1FCT9OyX7xm2SKvaCDft4gYxZS3nY\njVKOWnK9eBzR1yzKOKoxqYgOjOWW/3oKwzeWP5dSMMb8AgID96vfw2d/FvhZgLWVFTLHJ467bD3/\nGQD+4KsvU9D25fJKiTQvvuGCLfD+44K75zuyedxiFUfNVuMXmDQ5ZFGC1WhylnkcbAoZa1srAndb\nO7hDuRm7t64SKNJF/skC2aHcsKIfMxPIBrmm3ZInCzU27rQyj8j04c+VHMpa3GIOMzpquvsa6c/P\nwoJG72tVHycnD+R4sEe+I7ci0dbdtJASD0UR0KnQ0wxAqV7AU4hzL3bIHUh6bvIwNkLDWNctPwC3\nKArkRGhZXpZ5NOZzeIpn6ASybl5axPYUVYgMb0ENwfwcTle7OedcjBLkOk3dOkmHTKHo3UobR7lU\nuBKTeHIfHjPwOUceph0liv3S9T1+tKGu236eoXJb8kSRsQLl9m7e5PolRaTSB+W54zOU83LOeKZP\nY0munYUxrtUHCJdM6d6jRNYziQKsp6SxXsBIexzM0CXWOQV+CV/Xy2rMwc2n1PIKpDofEXfknjZT\ni1OVlKrJyVrY2OKgit4PMJo6J6iBxiKM7ZMlCvYyVjBePFC3kewAO5gY8O4dWMUoahNrr8SwL66G\n0zcU9Jzq9EYMFckr9ffwFWO01LOErbeSNftzZB+MMT+NBCB/0v5J//WbpqK31v4Ta+2z1tpnG6px\npzKVqbz78j1ZCsaYjwF/G/igtUryKPJ7wL8yxvwiEmg8C3zjjb7PZgnx4JBBd4P/+8svANBsHvHc\nM2KKz1aX2P2GglfMNvnGQAphFtalyMN/sIYXKm9hsotRrLok7jFWEIr2jYu8fEEi2N8+kNMn3eyR\nRALa4NqMvDJCj/IzzCqabzEtkSr0ebcvJuBHjz/K//7zYkmMfv4CYU8CP5WHizyYk07L0SjF14Kr\nGTVPw9gS5LWM2XcIlMJ81KvSH8gRe3tfApx+EuBoqerYzUibmokZ9ij7kmmprj7GwFdsB+UzrB15\nbPfklG97Ed+naxzkHZbUMsnlcoSpnKr9llw3nCmSoaZ/lpBd0Nv9RbJgAAAgAElEQVQaeQSP6ndU\nlqE3oaKXz2XuEKNzGn+pxEYirlYby6kH5XoPpwHnNuX9v621G7fGGcOvq4W1UKE/FqvBlCDV/o+4\nl6P4oARYH43FOnj4gTWqStPXiX1Qjkk3qxAqFZ51AuKW3h91wVI3IRnq94479DWw108CrPZJ+KaP\np0iGgVGa+NRQqSl4iSmwrZmIg+EhbiTFdXYswUW38QhosNrgYhWmLjJt+rsSlqs2apiu7E8/N6HH\nK+IqY7SNapiiuFijvQ5xT8bZ2dmmqdbiUUe+y8kGLChN3VY85MpI3rsYFPGUfnEjjdnLq8szseLe\nQL5XKvpPAyHwOSPgJs9ba/+6tfZVY8xvABcQt+JvvFHmYSpTmcr9Jd8rFf0/+zPe/3eBv/tWBmGT\nhLi1S+9oh+fPyyl+mPnMluScC9MthmdEkzq3Y+ILovJuFMQ3G3oXWDojJ0nBjEH9rEGnxfp1YXPu\nXr5JNpDT9tFjctJ2T5Yp7spJMj7cozMSH2/fG5FHfq6YA1KFGMttSfxh5adS/osX/zIAv/Hcv2Cz\nJUfp+xqW7PC8fF8BAk2BPVCXZQ6HCUdqNQTjEJNqZWIuoa1pqPYtrarc7TNT13LfconbLZnr5uXm\nnUYw7/EFsoGmrzSV5mYuK1pX0eslOEpS6xaLeCcUb8D18LQWoBzK5wZly9GWnHIz13YYqy4PzzSw\nWgEatG7jqMvM0gkAzC0PuyGxGu+05fiyNAkdHR7iX1cg1aLDaa1uXNiUE+z4wOUW0kVYrT6J2xEL\nKYpcYWsBxsUO9ZGMuaBdhJXQIWjIurT2d1kYTCjRPNyqWBB+mKFAVlhlMe/hcJAolVy7c4fLo4/P\nbl8shUIKZQ3mzSu/hXUKRBqnC7KYBa3v2LtexCmINeFUHtE3+BgzCUbbOyS1KZaNodzrpfPfoVQX\nJKT80kOyxia8g/tAPrqTnezcPKR9URDHOt0WnJAk35HyoQx6beZ6sqdz9ZAlhZBr7kZ3GrpSF+L+\nW0NXuy/KnJPRiKNLl9k6ukHuhBb3HDmsnJQij/nj78c7Iz0Kjc5Ndq5eBOC2kmkEXkpdYbPzxTlS\nhV3bvX2DmzfEvK5gmF2URS0tSNFTsVKGiizqlWDAS1/7JgDlPuT0vYunH2Ko8OP1Ock1P7nxU3R+\nUlGXX/tL/FjjBACHn91gdyjjbF7aYFmbH758JG5HmwOevC1lu+97cpFjFVFky2snmNcy59Oa+97c\n27+Tlx51dzB9eYjXR0MW2vKewvpt7KEW4SzJZszd7tJWxGQndHGUi7AUZIw0X+3mx3QPFQdRMRDZ\nGZHE8l2Xd+I7n5sZ7eHsiKKun/eZPSf3xH+fzDPzXI7Ug9nvJ2y9IPfmi/sRhSMZ/5O1ELRdeEFz\n8y+PEi5/Qea0NPodrmqNxMk0JR7Ke9qlOVaOTSDUtP8il7Dx7QsA3Ghe59I1NaUrOVbOyMN26tRx\n3HiCb6kgM8M9uk2FNtva5EAVgesVmdGeAqfnM1QXalt0BkWnTapFX2F+joLurdpCRpJqgHHyFDsn\nQHlObQKREhG9+PufY/u8QNF/tWlYOC0u0elz0l352Hs/QrEhoThjXHrXpSjq8tc+y/XXtBXb8XC1\nszUZyL4/3IpoalA5DkeUIoWxi/vs6OFTtz4rNdmH1ztvDuR9WuY8lalM5S65LyyFLE3oHh3Sf36D\n0YFo3fd9+DmWzghHgnEyWk3R7K9tbNDXSrmdTQn0tDurzK2JS1B5NE8SyXeMrjdpN0WzLxXmGKeK\nvf/C1wEohCXqpzRVdLhDplVuIxtSGoh27ef75Lty6sRWgmjNH36Y5jVJBR6/+SXG6xK0+8iM4flZ\nMTsr9QrLqYJoPCyn3ObNAScrciLURzkyNZO9lRFOO69zFZN0JkgIlMdgzCLxCbFSzu50hQMTqBdP\n4a3I6bj6TbFAvu3vcXWsOX3XwddGG1JDuK0dfCd9gknQTRupOk3Y2pGTdHCUUi5NOBsswwOxYl5z\nRnz4WUW/fkWCwDsvXOcLz8vnxlU4UivmsvV5UOtB/rgf4WqlZ0G7REteysWBnIgn//Amba3Z6Dzl\n0Nb71Lm4jqeVl8ueuCXtwVWurK8D8OWrtylrTUrZ6cEtOZlncrPUlFcxrGtzUd9jNJbgadqPcBWE\nZNzLOOrI2GqMKCmeRVUb6eKiwdeGuKDhkEfeu0KBKJM9p+RsMOxBeU7Xu0NHux1vfX6LLx7KiZ8f\nFvmNKy8BsPY12UO/uPoghTmpiswcy9bL4vL+6leukO7J/QnLFnNR1mjT00a7ZMSMsm4/UJrh7IpW\nTXqHmB2xKmaTPG1tXoND3ozcF0oh6g25/bVX+OcXr3Fcu/7mF87iF9Q0GnXoaMbhxkET5WmhPGnp\nrc/SV4TbtDMk1dr4A3dIOSduQH6pSEk3yFjLh9uDNvOxLGTpVI/ZdVm0rTSPWdQ8d9dnrDyHiebr\nH36swdWWbITm/gN84Iw8IJV2l3NjeehvVa7x1eviNhhlispXc8ytSWfdMN6ioC2t3sExvJIoEFej\n5uVClX5dTPXtSy2u7suGXq1k7BzKTT47LpPXLrmH3yNR6C/8QYqWAlAoOMxqV18/HZF0RHl1Xurf\nQaHqtEU57Da7fO1IrlFxLY8qOnY+yLOjNRnPnAkI60pQc0MRjTauMDujbebzJdC2bpcjFuU5pn+h\nLRiZwKIqBWeuwt62KL3fGhhsdYIVGdFXl+i1w33OhvpwNsRkHu7tMy7LPCrlOVa0YzbN5Zmd1XJj\nfFwtjy5n8t6x59wheikUKxSrsl5XL+yzPpT7tFQOSJQAuK7xAtfNKNW192HgQkn2ixP1yY+lBNmq\n/27K81gtkLN2TFbSOX2gxuAVec+ZhUWKF7Uc25ExdJrg+pNYRIarax9FlsdOyntWH3yca98WN26j\nKS5aEBt2dJ4P1yrMVmWtKosNuodKJjyK2PVfnyB8Y5m6D1OZylTukvvCUsiilN7tHjd2LM6qBgmj\n85Q2TwAQJYe4Gk6uB3UeOCanf/GMHEV+cY5lhWNzsoQ0E01cigoEVXk9LOXvBOX8eQX0eGWbzf46\nAKYcsqCot4XqLDU17UtJQjqnpqhyLMzWXX6iLifKxWvzvKhWzK1LPRb3xYz3Z/PUWjKOc46M8/HT\nK5x5SiyFbivDUawAJ0zw1+SUWz4jJuXB9XVI5aQ589SDrGmAbrZQoqR1E24uoxCKtWSvyDyumIin\nFDjlZxaqXFMMxnDs4yyr5bXnECl1fWNerafjRT68rwApNqKofI6m7lIfium7UMkTFMQq4qPy3ge9\nfZb/SK59MPJJ3ycZgE9dziiOlc9xzeV4Tk68H9Qy7vPb8E01jcu+R6uvAbrUUq7IOB9eXSYzchL2\nDhRjod9h+bhkg2b8Go88JBF8f1wEJe2x421C7dY0jmZcwjF5Tzsccw4zeXlv+H2L1LalfqUQ1ihp\naXK5PsE8sIw1wJeZFu6MfK5GiWBWux1LMgbrOJgJOvjgO+QU+OaRD36cM0tijeQfOcupF+XE37Vi\nmT7w9AM4OjbrZtRW5RoP1eqcOSV7/fEzD3LqOYmmL/+RrPHRzSM8VyzLh84e47iidZ+/coOa1o50\n4hFh76095veFUmhi+c0s4lphm7yaQ//qV57nL39Sbmjp1PfTVzDP1bBATaHIi8GEZy8mLGndvg1I\nBmLWRd4hjtaXh+5pHAWhWNKOveqZNUZHGoUuV9jXyHIl7BD1ZFNEFTjSOEc5Lx2OwQj2NTPwYqPG\n9VcF1v1bX77MalUeoJU04SdOin9pVgQ9p9RwGNyWOEg2GtPUwpqsVyPWCHZxTuYWbZ3kSHkbvWqP\nlYJsjtzsPPNaKh3Mh9iRxDl6eXVhcHlPUfEsP1GjfkHmOmsS9tT9MbMJjpYN50+KyXnyRBF/IOvt\n+xGxUpmPr25TmhUlmp4MQVN2Rjvy/OMupR+QKHqYDgg3JRWxebZIpAxXj/kNyg+Iz9cXnccXtzc4\nGsl3lUzEwkllpIoTHKsdjmtLBG0piD1Ukkbr5Fmal7GvLZSgLAqi2+8xHGuk3g2wirc5UtargdNH\nExy4+RCtTKeYy3iweELmUqxQ8xXCXjs1nXEHR/ebNQFJImsRVAOsNwE90VKczCdNRNEfXbxAe3td\nvmumSD3U1uj+w6w8Jfto7kjuo1+tcMdoH3dJtYjugZmIxTUZjzdvqWoK+9xJ+fzuYoUlVWLVY7PY\nW7KXs6CPp525C8OYQV2bYcQDe0OZug9TmcpU7pL7wlKouxn/aaNPoetw60jMy99v7VF/WaLTc0lG\nWdmY/cghViCTvJYiB26JtKlU7J5lvyU59I0LAypKerJyPE+xqp2ImlkIKh5RIqfAMHfEWip1AzYJ\n6bgSBLs1OCSncOiegnQkFRdPLZfilQs8/28kbz7T8zl+Uky8hbalqO+vKFGLc3DEsCNjPxp28Tpy\n2nYf26d4S67dGyhM+emAOQ0WhfESM0UZe36UkUMCR85ODEU5YaOBQpNXDGU1RUsX8pS09z6Mtsi0\noy4oLjFXkrWbWZCT1qk0cLSRzK9l2B0xd+NTx3G1HNcpDKEhJ689FFPVrHuYoiT182GNxkhOv0Yl\nT7Sl67zcASWwaV2R/4dJn6HePzMKqN7U2oSRQ5qTdcn1Em7sigXV6MnJV624zCLXKFcsqHuR2TbD\noWIvOENGCsrjKkO1GXi4SkfnRSEFbbpKTJG81pMUc1USR65nWvLa2Pg4jo45N6So1laUSxkbxbjQ\n+2EPd8i06ap/K6I5kJ9DJ4+/LO5hcfnEnea9nI7N9erYCQxh5wrrl+T7WlnAEwvHdK5F/L7iJSzJ\nnq2N8qSR3Kdk64BoUqPUKVCak/E7SYFq+81ji8J9ohQc1yFXzjP66Tq3fkUWZHAtz9cy8b0+cOsk\n40z8/UpxTNzR6r2Spms8l0TLzrKkj9XCk/3+gI764o+O25hMwUJy8l1uCMWcLGrBVsir4bQ+yGMH\n8vpgs4ezoO3QVjsKHQc3VDNz+RGOPSUuQam/wXseFC7J2XiT7FC+o64cA+FMns6G3Pzzrx6xojDk\n6UaRo4qYfr1IFMFCGViRDeF5RQoFMfPDcZNUi2YYz5BojX52XNbih2fq5Iby8F8f3mJpRh6g4TBj\nPJQHKxeXyK/JhnSWFaw2V8KvyIPujjPMSfXxr28y2BNFUJxfxm7I2tmBVFgmpgs9hdR3HPJ1KQyz\naZHiE2Lujg/n6V0Xl+5rCl6z6zkcV0W2WC8yXlGId9Olp9WWrWabmRntUByJ3+FlcxgtJhuNIFMi\ny2EYk2pqsDfMcBJV2lpAFSXmDipW3ma42pIcOHmMuoImS1DPkkQrOjMbgCqKtD3gyJU1HIwGJAcC\nbDMey3d55TIm0y7YZ84RbU8o7quU5iTuEBTrGKMt09ouj03Bk2skX7/M9Vev6f1r8aE9TSOfmqEU\nSmwq15VnxM022W3Lveluuey0Zb3bpQFrsSihZrnF+bEcrm9Wpu7DVKYylbvk/rAUchmlByJ+7MsP\ncyOvBULLJZbbCsk9ZyhrsGepUWdpVhGFFSYtzhl8hWe3ox1SPRFWFuqQ11MszuEoQbeXFzPMHUJm\ntB7e9TGVCVZAC60PoZoZCkXtVhxrIZCxzCvX4n90apHrG9L7kLsxQ13z8ElxnlQhvoNUtHndP8PQ\nF6uiQoGqoghHpV3CopiiXcUdaHQ7WC2W8uarOFqz4WY+RvvtbX7AWMtyZ4/kVh6VHarzshbetZTs\nCQWc8apYBdDKlz1sW5mXDiWgapZzZAM1Z4dXsIpR6axa/KYGIK+vY1blpDSrElwMjs2RfVWYtNPm\nEKOYl+7xRZwjOcUdv01cl3E2t+V/N4FHH5b3PvbUKVo3lQtzkNHQjs98pcCeBlIDR90cIlINMHf7\nI0LtBjROQF7XKPV9wgnMXKRdqYFDqgApxk8nSO24oUvo6nqSYCPtK9GgpI0yorYyOh31cMsyHtev\n0D0Qa8nTL/PtgHBOGb8dhxkjJ3tQWbmTBTFx8w6snw0V08ELYCiWUKv9KvsdrV9JfEykhVFNQ9oQ\nqyHWfo6os4nZEGu6P4q5vdfUdUmYmZXPzZ6bY+VFeV6+C4rBvydTS2EqU5nKXXJfWAomKuBtPsXO\ne3b5gZ5UBL7/tSqZdoPNFapUFP5rqVTAFOT1SKHG7OEuQ0drD0YeIyOv58Zj6lWl/EoHDBOtJFOr\nwksjklj+3jvY4XpfNH971MVqcHHkOIwO5VTNKZfAcJiSKSzZzuICjzwjlsJrboH9QFFxLn6LMzUJ\nAgY1GW9cbzH+hsQM0kqMHSsEl18j1bx5TWngjjoBR0VJb1UOWhxvyMkcB2UcTTclmaXbEt93f0ZO\nl9mlY1S/LT7pxXLCTEEskFLNI5mQ2RRjEi0rjhVhyEZbuGoRpLaPq2XO3M6wuvb7z6fUArE2/HOC\nexHFY9ItjWucTHFHkvO3r+2S3daTsO7Q/CM5pb4Zyym367h8wChXx2BIUzELhv0xjqYFo2qJhtYb\njBS5KPYtkcLjNTxwldcidUcMx0oRSMJooHgIEx4HL8VTy8u6AY6WKydOn7wv77U2INPS9L6OsxD4\nmIKs99B36O1IPGDueIP1K9LkxLLc0+rZNUJNLcfdIYPDdQDarWvMVxWVcP44jkJzJ7tSp+CUK4wu\nyrr98WfOc/2qvP7+pRy7WxIn8FZKOIosFe3Kum5v79IZSHzh9maTi8qrOch8TtTlOQraKbm6wr+9\nSbkvlIJ1MuKgy/BLPdplmdjJxMdTbMOZwohMoat6rT5+WVuKlbDEGQf4GiyyxqOsudvc/ElyE+g7\nP6TXlUSts69FLN4YtKz4wvor7B1pqXElIKelzaOCQzXSjTVUDsMUElVITm9INhbz7Fx5AZOKYun1\nBxyN5eY25qSHY3x0k7Fag8mhpf60BBLDmVlGWvJrlYq+6IcM2mIOvrYRYyMJFi3Mn8ApyXuzPrS0\nS67blAdsZu2Qgysyv/PbfZ5tCABIGn8Ho6XgXd8nbakJamXTZRdLFCawZMan6GuBlFnFalnt3mGP\n/lclUMhnVTEFA6zydVZu1Bmta8FSYqmoGxN3h/zTm6K0vnMk82vUXcKHRMm2+y67CnwTxg6pksuM\nWwOsKr26sjAZt0/aVBiz2QxHb3AYRdiufK7fbdPtqmtmtTNw7KEYM+QqHli57+nIxynIWvi+YZjI\nODOFpkvKBseI4on9DKPKYtzuczQQpb+gKOHljTFZTdGeez43D5Tw9VrG0ZJkxE496ePpNawqLuN3\nGFyXDNZh/5DTgSjytfk6sSKTX11fZ/iyzGlPOzzTscXVrMX11pCdA+2JCGFLy+bDaAaydwiObSpT\nmcr/N+W+sBQG3YgXvnSLX082OV0UbT9DiUUt4SyuFsmqmiJyPTKttitpSi8uG6JUPld0UhyrufsF\nS1OrwIJRQk9PnVQR5NK0z3hT/r671eNALYKCrRPm5EhPeiOSqqThYmVMNknGUCORcRDw8COaNpsd\nYPYkFdTZG1IORIvHSrLSut7jfF9OrpfaXZ5QUJfyyQrFRUnlDTpyohTTFr1EyWC4xaUd+ZwT7uNq\nMNKMqjQ1TTpSrK1CMeSmFrA9PxjzV9XcjXMLRJofzwYhoXJHbO7KugWuQ8uXazQ8n6I2Ejm1kHhO\nrIKlJysMezLvgy15766X8tgzmt7Ll+n1ZY0+u9XiR8tyNB9dtVxSPIUDhSI9HXicDaQyL26X2B/I\n6TmXDhi1NOGeOTSOSbCudCTuh43KuHVxYQwBgRKkJKlPSSv3RonDstLSGy1jTGweFArOixJsoFBo\nmctIuUIzkzIyCpw7OVzdHKkrYwsT6E+g4BjzQFMsAX9ZmsT8lYCor5B+44tsXRer8dKlA1YVmLdY\nWWJ+VRjEPa2biG2Go/UI8w89zZLyUTYrKYuaI00jl00t9X55R+71k3Ml8ooCXbQ+h1pbs5D3KHU1\npVz07hDfvFm5L5RClEbcat+i2Y7ZrisjTvE18jtidkcPj8jGaj56hpJGX0dKPW5tjIknptiQsYJ0\nDG1MrOAkyWGTKK8PhRKEOKOAntY3jLD4GkWu4BJpy67damG1hmCg5ndmMxaU2NQrF4m15TqqH8Pq\nBru84GIcRddVoIzdK4f88Q1xYU7mPBpjdTVuWNwludGOKiPTj/F3RWnkqDFaUD9onOBqLKLn90gm\ncPVj+fyVq1usT5CacfBPifuQJUOKixqDabZwtbOvop16URZTRLEmo0OiHd3cK01cNdcL5QhfUaQK\nq/KwznQOqO7LGDrJPk3F4P2+XJHgSJmq7JChGqU1hVZ/qOizPhIFeGz2fZzQbEFschSWRcn4zT5F\nhaIPG3K9bD8k0+9wcoZkQpaSunTGcr18sUBt0gaaaBYi59PvyUMVJAlWK32ygoebKJNVlmImEO76\nedfNiLQV3QJrJxS0JclRaMihNLMkB4G3egxHoewdN08jJ4dFdT6i6ikKUDsmWdWy6LzC9m+nZMrz\n2UiLtI7JtQcH27SGEmsIqi5FbZM+1dBCNa/OgmZ1bvQs9QONjWQRm1357rWVRZZSOdTerEzdh6lM\nZSp3yX1hKXSs5Q/iMa2wy7FANN/wIMfOnJQmdjpnqQbyc8lfJI3FhGtp9R+dI9ycWBLDoYurZcUH\n29tEkRJ5uEsUlAI8G4mZlYsSIj3lfQ+cgpYH1zI6Ct0VhT59zT54SpZSdKGmS5fkXWYmYLmOYbgo\nzU/h5iaVSbRYKy+vN9ssqmUylytx+6acKuHCNrMKIuIdTqLXHmg1X7a3wQPHNIuQOwZq+pbcHsFQ\n5t1bkKBm95olui2Vdp6fEZbkc86ST1m7R9nbYF+BQzJtbAoWcxSUWGV/IyJaV6yAmx22r8r4i8OU\nmcqEukysn//rWpdQKyjLM3kSBYYpn6oRam3JrVsdqloh+H4l3Dm+NM+gJ2tlcx2cNRnnIMyzmClG\nwrESx3IKEDJSi6+6RHtHxhDkHTLNIvT29undVOtm2KedKv3evGI9RGPSCfv3KCLUrEUQxjiaSWLs\n4+oeQPEfbGoZu9pgNrNMrOjgLJZwfQ3MKjtLmBZJAzmhI1Nkpib3v9EGP6fAP+YYWVuZqzc1G9Jr\n0lHXZul9y2RXBGG8lWXEsVLa+VUKivswo1ZqpZEjVdKb+WKPR1fFGrk5jgmVQq8/6DIsvP1ckvdc\nZp2M/7wU8fU0x4ECkH5zPMDuiqn9+dlX+agnJlqp4OBp3MFVYo79zZicksMOGZI4shHam0eUlRMx\nm9kjVmjtrC3uwKGfMj6Qz+2M+2Ra1BRal1jJQpxCjopuiiM1I9uJi3KNULEGFBSjlnNJlIXp6rfW\nGTYlUn9qTWnRTcxHPvUXAXiy8QMEj6m/GzTIKcjG2JeNMozWaX1LNsfBluXpk7LBqlWfUSAPdJx4\n9Cd+8rrM42J7h9e6GjnHIbcmD16xaomOJIPRGg4pago3mlXldpgnpxmVTqvJxX3Z3LldAdaVQSVk\nscyvqsS29bFPX12eNM4Yadq32DeMNJX5D7ZHKGo7/0FJ/Oiz76tw4Yoo+oXzMcVj8vqFA3CWZWyL\n0ZieclauaEdix0C0J1/WyQ/Ja/dhmPMpBKLUvHEO5adhFGvpc3vEWA+DJOmTU/zEwlGF2swEct3B\n16K0kaYmkySDgSqmYkK+I6+PjjziuuxJq8AryX4boxwm+WibbEEUk/dSkfKyuGm5ShGnKNfuv6Rl\nyQe36bVFwcTnA7a16O2PN3eY0cK5M/VFFhbloZ9VcqJi6LKuGbi9JKNak31/Kg3ZUqU2sx0zCt4a\nQ9TUfZjKVKZyl9wXloKfD5h/fJn0P0vZ+t+k3NP8W5dbGgFe7rdwXSlztWMPhhpoUtPpgSfPEnfk\n5CpW80SRZhfOWFotMYODnMO+FpZ4rmj2QXNIWlTOyJ7BRU70JLTktNbBDiIcBVeJ99U0rhpGCnOW\ncyyhWgrG9Rgrxt/q6UfhVaVtPyGaeqWSp/2SIEYfrh1Qqn5QJvjUAC8nxSbdmwo7RpMsk0Dkp37m\no1QdOZWc0gGRokN7A0P/QH6edBZWuhE5LecehCOMBgaHuaM71yhuJcRKH89A3TLPIdEuw+qDDU4p\neUnLS4iUdn5mtcawrPgTgZyu85czchrhf2UwugNqU+wVueXKd2z1M1INCreWZS3q7hqtyrcAOO/k\nWdMTOMv12GjJ9+WLLse0ASlU4Jic7VFcE2yJ7vYWjqI1e6QUFW4v3h3j6ZjspPko52MVyMVLU8pG\nvrfRqBNoF6Tn+qD3NVAuycNsjF9XUh9bIFO4tq2oSSkv8xvc0nLntXnQYHTpzClWAq2h+AtFOpns\nSW8xj1+VrMvax7Th7bNDylWxzC5tHpJo6brfz0iU5Ii+oaIM2/lJuX5pzM3PK1T9wRCFmqRYrUBX\nxvbSMKZW/n+h++CWLbUPZvzorz3GbaWiv5EfUppUKUY5RvmJT2lwtDOwqC29bli508lG3Cd01R+s\nLpAEolmiaExJ2X16EzrxuItpi1k+W3cYKbhHz0BrX0y8cTwkUx6FglYmjsYJs+qHeplLrKx5bmrx\nPbkZS/Uim8uqOIyAq84/9iIHX5H5fXv3Fs9el8iyM6xinpS5+hX1G7ci4kdl81drT2ID2dzj7gjb\nlvhB1nNw1dztqUtkg4jHziq46iDAuDKPolOASB+m0gFuJArO7WvvgF/Gqck8ckNYOyObfzUXMzK6\ntntjdq9pp6Eja5lYS7or3xUaw6zCy/8xQ64dyJgSY5HtD7Oamju8+RrHXlOq+rrLzqTZ5GCP2jG5\nRjFeZqDptExTc7lCxqKa4odei/yujLOVXSLVArdxaYynHAiZtjrn8iHesjyMRZuQ0zhArljGKAFr\nbHwyNcfH6u7YvIM30GzIjKWglPLjPRfHkzcNtYfBGQT4nsLBBx75iqacT51k9JpWem4cMl7VmMiq\ncFnUP3iSbFeUfjhzk2woXbmrJ29Q3Jb7182N8HsTIF8FLhJBb5sAAAS/SURBVN5qshPL3ztxgglE\nEUajiKQlY4qTAw6St9Y6PXUfpjKVqdwl5k+4Yd/FQRizD/SBg3dpCLPTa0+v/f+Dax+31s690Zvu\nC6UAYIx5wVr77PTa02tPr/3uytR9mMpUpnKXTJXCVKYylbvkflIK/2R67em1p9d+9+W+iSlMZSpT\nuT/kfrIUpjKVqdwH8q4rBWPMx4wxl40x14wxf+ceX2vNGPNFY8wFY8yrxpi/qa/XjTGfM8Zc1f/f\nWq/pWxuDa4x52RjzGf39pDHm6zr/XzfGBG/0HX+Oa9eMMb9pjLlkjLlojHnvOzV3Y8x/qWt+3hjz\nr40xuXs1d2PMPzfG7Bljzr/utT91nkbkf9YxvGKMefoeXPvv65q/Yoz5bWNM7XV/+7Re+7Ix5kf+\nPNd+u+RdVQrGGBf4JeDjwDngJ4wx5+7hJRPgv7bWngOeA/6GXu/vAF+w1p4FvqC/3yv5m8DF1/3+\n94D/yVp7BmgCP3MPr/0PgX9rrX0IeELHcc/nboxZAX4OeNZa+yjgAj/OvZv7LwMf+3de+27z/Dhw\nVv/9LPCP78G1Pwc8aq19HLgCfBpA996PA4/oZ/6RPhPvrlhr37V/wHuBz77u908Dn34Hr/+7wA8D\nl4ElfW0JuHyPrreKbMgPA59BqEcOAO9PW4+3+dpV4AYaR3rd6/d87sAKcAuoI6X1nwF+5F7OHTgB\nnH+jeQL/K/ATf9r73q5r/zt/+w+BX9Wf79rvwGeB996L+/9W/r3b7sNks0zktr52z8UYcwJ4Cvg6\nsGCtVepTdoCFe3TZfwD8bVDoIGgALWut9ibf0/mfBPaBf6Huyz81xhR5B+Zurd0E/gfgJrANtIEX\neefmDt99nu/0HvxrwO+/S9d+U/JuK4V3RYwxJeDfAH/LWuUOV7Gist/2lIwx5keBPWvti2/3d79J\n8YCngX9srX0KKSu/y1W4h3OfAT6FKKZloMi/b2K/Y3Kv5vlGYoz5BcSF/dV3+tpvRd5tpbAJrL3u\n91XeLI3N9yjGGB9RCL9qrf0tfXnXGLOkf18C9u7Bpd8HfNIYsw78GuJC/EOgZoyZdKvey/nfBm5b\na7+uv/8moiTeibl/BLhhrd231sbAbyHr8U7NHb77PN+RPWiM+WngR4GfVKX0jl37rcq7rRS+CZzV\nKHSABF1+715dzBhjgH8GXLTW/uLr/vR7wF/Rn/8KEmt4W8Va+2lr7aq19gQyzz+01v4k8EXgP76X\n19br7wC3jDEP6ks/BFzgHZg74jY8Z4wp6D2YXPsdmbvKd5vn7wE/pVmI54D269yMt0WMMR9D3MZP\nWqtQ4n9y7R83xoTGmJNIsPMbb+e1vyd5t4MawCeQiOx14Bfu8bXej5iNrwDf0n+fQHz7LwBXgc8D\n9Xs8jg8Bn9GfTyEb4RrwfwLhPbzuk8ALOv/fAWbeqbkD/x1wCTgP/AoQ3qu5A/8aiV3EiIX0M99t\nnkiw95d0/30HyZC83de+hsQOJnvuf3nd+39Br30Z+Pi93Hdv9t+0onEqU5nKXfJuuw9TmcpU7jOZ\nKoWpTGUqd8lUKUxlKlO5S6ZKYSpTmcpdMlUKU5nKVO6SqVKYylSmcpdMlcJUpjKVu2SqFKYylanc\nJf8PYsKe8eIq/vcAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.4132... Generator Loss: 0.5582\n", + "Epoch 1/1... Discriminator Loss: 1.3437... Generator Loss: 0.7727\n", + "Epoch 1/1... Discriminator Loss: 1.3675... Generator Loss: 0.7321\n", + "Epoch 1/1... Discriminator Loss: 1.3730... Generator Loss: 0.9555\n", + "Epoch 1/1... Discriminator Loss: 1.4001... Generator Loss: 0.6890\n", + "Epoch 1/1... Discriminator Loss: 1.4468... Generator Loss: 0.4802\n", + "Epoch 1/1... Discriminator Loss: 1.4452... Generator Loss: 0.6017\n", + "Epoch 1/1... Discriminator Loss: 1.2895... Generator Loss: 0.9879\n", + "Epoch 1/1... Discriminator Loss: 1.3213... Generator Loss: 0.7545\n", + "Epoch 1/1... Discriminator Loss: 1.4087... Generator Loss: 0.7632\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvdmvLfl13/f51bir9jyc+Zx77tR9+/ZAskmKpEhRtixb\ndhInhpI4iQMkzgD4KYEDBEiM/AV+ylvgwBkAI4OFBHHACLBNSIolizRJNZsSyZ7vdO545j3vXXNV\nHtbal2yHErstUe6HvV7uubWrfvWr37B+a/iutUxVVaxpTWta04qsf9kdWNOa1vTJojVTWNOa1vQh\nWjOFNa1pTR+iNVNY05rW9CFaM4U1rWlNH6I1U1jTmtb0IfqZMQVjzF8yxrxvjLlrjPlbP6v3rGlN\na/qTJfOzwCkYY2zgA+AvAE+AN4C/VlXVO3/iL1vTmtb0J0o/K0nhC8DdqqruV1WVAr8G/JWf0bvW\ntKY1/QmS8zNqdw94/GP/fwJ88Q+7uREGVa/dIiugZss1y3ZwbBcA44BxPACyPMMxBQB5Lv96tRDb\nkk+xbUOZ5/J7WRLHCQBVkVDZ0ni90QbAtV2sFVssczBG/ixyqjyW9yUG25O2K+T3ZVwQRUsAijwm\nzcofPVeK5OV5Do4l77MceUlVFpgfE8x8bzX81o/6UcgNxuZ5W5ZjU1Vyg+f+6F43rLNq0LKkb1Vm\nMKv3YXHng3varMGzV99XYutY6CUcxyGpZDx9A6Ve920Ho/e6WORVrvMg92ZlhbMaNypK7bOxLAJP\nniuKijiV59JCnivLEnR8gkYT15E2omjCwl4NRU4nCuVbdKgWWUyl7zaWhUHH3rYocvnbx6LQ4dSu\nUVYlVDpGpqQy1vN+1HTtFKbC0jk2KkHbtk3QkLVn2TVw5W/fgka9D8AykffaTkW0yACYTBZkeaTX\n3dWrqfk+nqdj5Bkdex+vknWa1xymyQyArt3GtUp9t0OcyZqsG1+uGSjyVMZ1mZCUcm+VpVS29DNo\nNp9v8g/u3r+oqmqDn0I/K6bwU8kY8zeAvwHQbTX5r/6Tv8aTUcnLPemS3+yw0dkFoNa1sbd2ADg+\nPaHvTAE4H8ngXX3xdTrNHgDtts/s9BKAi3jG++8eAVDO7hI3uwB8+St/EYDNzg6NhkxMsRxilAkt\nZ6ek53cBOLnn0jnsAJDn8vubH0x4++0fADA9e5fHx3MAZvMLykgW/85en81QmE9jIAs7W8yxVpum\nMly7Iv1xCAjqynguZSG5PYdkLhPe6DfIc2njYD+kXpN7tz/3c2DJIgzq0rf02MEdBPJ32eBf/ZVf\nBWCeeew35Z7FYkGr3pLx0oXZ39jkKJ8AcNOGuS/XbzZ62B35/m08LrMRAKfn8u9xVNJTJhRbGQv9\nfs8PeeVAnhvPCz54eArA06mM1XK5pKzVAXj5q7/E3oZ801s//DrfasoYTcpLfvmtT8v8DeT333v2\nNvG59NOrBfiObKZFI2R0ruvBbjJTBufI/mGZxli5bJTUikh1c0dxzDVf++kVNG15wI6k3Xa3w2u/\nsAdA2HwF9vYBeCEs+fIX/0MAvvuBzFlns+AH3z4B4Ov/6NucnL8FQHNjh8yXb3r52nV2DmTz1g5k\nPgab19jLhHkPX9jgN+7+JgB/tfevsVOTwyfsDnjn5D0AvuC8KNesgvnFEwAe/MF9jhYL+b6Tx+Td\nAwBe/cU/x0APjl/6y3/1IR+BflZM4Slw8GP/39drz6mqqr8L/F2AG/v71XZ7Dyd4gj2VDd/u9Anq\nsuBpWiymsklno/vktiwmvyG/j6M3aHRflnvNAK8nC3b+/nfIcxm0fJqw0ZGF8vTx7wAQNH+ROrIg\nvHaXYvEMgLAosVy5vvFaRlHIQq+QSZwMR1yeyuc8eXJBJ5aJqyyHcFsWW7/m09TNud2Ua6bfw72U\nvgVXrrAbCNOobfjUxrJZij1hbu6sYrYjC3N4/yl+e3WyFbg7NwCIL49o1+S0cvRfczVGD0+sMqHT\nEmbSWsBAN1bP8khcGbvck5uH1SkL7cOo43PDH0jfuhGuUYZTy7EeXsjYTmUDWlnJ3Jffa9OUUiWW\n0PbwPOnTzkHBRCU2K5aF+yh2KZby7vEH75EX8t3f+M0jpokyalPxRuv35buXrwEwWMJxJGMRzWOm\npbSbVAmFLv6hv6Cq1eTdpTKsosZoLvdOi5yklDktDTx2hclQ99kOVGIxMmfh2Cb6ntx7Of8mR33p\n88OdDf7CV/9zANr78vz8vSn5hZjN3Olvs+lIH7xaSarST+lM2NTx6p4JY44evc3X3/k/ZVwe5dxZ\n3JE+H35AqyfSwc/t3OZBJWvnxa+qBMIuu1vCpHgRrDvfB+AocpmWMk/nj+9hlDl/VPpZMYU3gBeM\nMdcQZvDvAf/+H3ZzZRvylk03sLn71jkA4WUTuy3de/zWCY/PZaDmhcX1gy3p/Fg2+eT+Q3hRJo4X\nrzMby+D9wXe/D3NZKNvXe/iVMJN/9o3fBuDydMov/ZJoNa3WgDwRjSdNfApP7rW4YDKWifbCzwAw\ndRKOT4RJPb44Ya6T3+/WaTgy0cZOsZ7rBPL71qBDuCkT1O0d0nDl+5ydALcx1XcIo8jPplihTP5w\nOqHK5DvSsmI8FkaXJBfk+68DsOlckbEs5mTRGwDY/pcJVTQODgqejWUju1lGqy59Oo+l3eVoSFYI\no/jiSw2u7kg/H00u8U4fARDvB9w7lX5+MB7LPMUlfltO182ySWNTVn+el6Qcy3XrCgdbIvVFM/km\nKzslGcv7RsdDjuey+CdxRbkyfluGR0uRlq60ZDO6Vo0olz5QZCx0hKuqeq42nWcF212ZB8tTBnI6\nI82FKcQV/Lh5fZ7J2mlaPeauqxfl2qQc8uzeEIDFPCKdNgC48+CMaUPars9kHf7vb/8mx78vayUz\nQ+axMJad3KVUlddKJzx+Ir1+756+43tv8mYhaza+iEkD6cM/e+87hDuyHt6cPeTGn/88AP/omhz4\nf/3KIaaQtur1Bn5dDqFROuf8QuantEqWj27wcehnwhSqqsqNMf8Z8HXABv7nqqre/lm8a01rWtOf\nLP3MbApVVf1D4B9+pE6UDr1Fj+HlOX6m3D5fMjwSPfTk9B7BXLjnp25/mu1dEZnePhWufPq7P+SR\no/p3z+bRY1ED7IuSwYFoMa9f+xWmhZywi1+X0+q3j77D/qaoHYeHKf7KOmW7eMlNAKInM6aFcGBv\nKiLZ8N4RC9WNrVnJ9m2RKvpen7Au3D8Mm+yE8ly/IyfpVqtLtyV/B6aJ1RZR1Z5ZOKFKFXpi2ptt\nCjmg2Ah7zBfSrqHF4kJOh3me44nUTZmohDG6IGuL/aWc5dwMmgDMoiWLRNSci8ojHslZWSvltLaz\nirYr3/GaeZXoQtSjh2+PyS0ZW3eWMRnLu81c+m6FNq1SVBTbN/hn0p9pFfPdH4jU9+IGdGuijlzb\nFTtX5A2458g5MRuNcGKVIOpAKmNh7IBP7coHNlTEv5wvSNSMWA9tVeig3wioQvnfq71NbrZEddkN\n5bT+Tese/VK+Y3K2INClnziGzZa846A74EClhrsqjZSeYZHIWHU8h7kaSrfDBo2RvO93vyGn8vTb\nbzJJZY04SZvdLbl3p7aPe0P+ruwBs0LG9gf33pQx2QypYnku9JqUajx89XCXZVckule299gayBz/\nu9tfAGCzvUc5OZK5qcYc7MuaXXy6xz/+ztfkO46ecR3VXT4i/UszNP445VXGeXFGTMFTWzabe+xi\nuTIxdtXkylURP28e7uCpVXu7K/+aVz/NyweyMAPLsLMpi7v7xT/DwbZcb252yE+k7a2bMqjJ0Vu8\n9QOZGD/ZZvOqGLVabkURiipRNpZ4M9kA/lI2+eT4hLEunqxVEai3o920aKou22qHDHqyaHY6Mpn9\npkOzKWK5BdiqVuTOErcmRkfLVs5k2WSqwoRBEzuTDZbMC8Zj2dxBa0C+kM0UL4SBEixxCt1gqceF\nLmLT8DmZiQiexhFBTcTrhXoWtryADbV9WAOLpyfCnO7GCwa+LJOW7ZF05bpfynOdfYewkuc838Ga\ny6Y/G99l9Ej64VQRB3sydmF/xRRnuI9X3gkYWjI3n663uYNsip2wSVrKu0eZrIVxscRXu0Xg2Xz6\n5iYAhz2fV+1rMme7NWq6sUo1+39+s8vdQvr+q2GdVNWKQ/+QsRorm60CkHF59I70PbUTXPVUnMwL\nwpqoDxezCe9Eoo69OZW5eY/HBOfy3na/QaMhbfnXr9DOhFvO86cML49kvGrKKLo2rxSi/g1Hc25s\n3gbgxSs73K7LGpgHS167Ipt+oGqCFUxwVraPWQe7LvPb2z5jgPTzfmo4uVB16yPSGua8pjWt6UP0\nCZEUcsbxBX46o5MKZx95JS0VezrNLlv7cuKXbUOhJ2EYiMFx/7UZvRsiMvuVj+2KYSVrj7ALESOr\nrCJTDMCVL4ooWj+8SVdP/GGVUpuIOuKEt6jFemKHBZZRa29Pnj/LjwktkQKa+OSFekMsqHnCxduW\nR83IddeIROB4bUoVYak1IROx020NsFK5boXyjMkjgqY8l+UBNfcQgDg5J1Hvy3BxTsMS9ag9EZG0\nttOnasupaxubopJ2a0lB01ZMQ63JYqCn9Klcmw0qWptysl2WGWkiJ7rv5XR3ZAyvNbcwI8WGqPQw\n6DToq0tvEk/obMo5U3u0yT+Zi0Hs2XmMH4h0s6Xejsbur7K4/vcAOP39O8yHosY09kKMzsk4zegr\nPqOUoSDPK2o1uba71eYLhyLd7bYsDkI5HReLOaUvKuZ7J+IWPDVLmkvpc9hr0DcyT1e3rpIn4kY8\ni2OeqJu7rcbTcpnRPhTPxxP/hyxmIlXMFhnfUU/M2R1dN9MIy6gbutpgXkg/l4++zVkiale4MCwX\noheeHB9J3xYuHTVWW/0QpyZ96Nze49CRsR+5fdptNbZuilTpuzllpmvML5jPZd6b9W3qqmq0mmfE\nE/nWj0qfCKZgG0PDdxkuYyIxB7Doz7hyZRuA/d09BvsiJnrGoliojmcU/NK5iqt6qGODn6m4b9eo\nMhngtALPk418PRAvwuHNisl92ZgnD2LyWC3qXpta/wUA4mc5S/Ui5AqO6ZgGE1vdWIGPcdSW7XrU\nQlVXWg5BXcFLDZmUIsmfA0zscoGvBoEqNxDIojD6DuPWMLGIu0EYUBaJvmKLpapVs8UF+UzEUmtP\nxM9o9ARf7QhWUXHYVS9KbcFkKdeP60v2e/K+dwNZ/L1ZxM6+4DsON15iz5N3N61tnFDuqdctvty8\nKv1XfEeZGHr6fcbepVYXcXaWfcCTubzvznnK8VxE7KglIvBrB+9RWdJn/5tHTFR96CQuJ44CnbIU\nHBmPWaJM2rbpKsLtUzcHHKrKs7O/y3Ky1G91sTz5lr26rJtkHHGq6sNoPOWVHfmOqLagHMv13Mrp\n28JYMplGLu2QciC2qA43mC/E61SYGddd6dvvRWp/WHokKsLHnSGVepKS43MWrjCF4nxBqAxu5QKJ\n5ilBU8bzYHOXvSvCCA7713GNbNGOcbEbYpfx7ecIP8jlm5N0QRTJO3K75OWfexUA980nfGuqhp6P\nSGv1YU1rWtOH6BMhKVSUlGZOOZ4xHQvXDRr72JWoB42mh6t43Gxs4yova7oiRgX1CsfIqeRbXSxf\nxP2idEkSta5XPTxLTqC6+pfTzKV7S9SO+P33sMZyukSTmI6KosW0Q16TU0wlfGbpDE+NT1XqEVp6\nyqcVvoqMtVoHHznFbDX2FUWFsbU/1HAU5WZbNWwj1/VgwLZsLIUU+5b1XMJwLItQRcZ2o0c1kTbm\np2JorLKcTK3pOTGtQH6fjnIaakXfqveZP5VxnipcuxF6bNgiil93t0gPRJXYps3Qk7FtdDswVgv+\nUAyxJ7FFqviPnUGHXl2+dfTybb6SiAQRxe+RzqX/0amM5T9NT4lPBMU3Kofkhfw+zefMl9KGneQM\nc+lHaBRL4Ht8alPm5rXdQ651RU1oeA6lJfP+dhxTPlbwzkj6m1wOOYsV/VlVPAwFQ3FAyNOxSH2T\nKCWN5H7fllN5nCbULDFyU1zSbsk6vJxUPLsUNWB+pkDBeYXvy1qYXgxYKpajHD3DqNG4Kn0S9TDl\nkYLz8IhUUqzOBpSh9CF7ZFEdSD/6VoOuUSi04kka7h6p80T760Kq48YeXUckM7P7Ptm9FZrjo9En\ngymUFcksZVo4RApy7wYxm6Esxna3Rb0SUSxtLJ6LT8GuXJMJlIG2SgfbkQkgaeO3ZNHn0wmuiprl\nWNqttV1KI4vxYBHy9A1ZbPnOjMKRTRa0XQa5WNQrdXuOLkqmiuUPbSiU2UR5SuLIBERVg5on/XMU\nEWg3IVT7Q63fxfVVtLddbMW+G1VxKBJqPYVXT6HMZUOX0QzPV7flpEkZyIKeHckmMPaSnZdkEVuZ\nyzNdeG6jj5PKWLi1guFM1YYXZCHtH77I1X9FrN5Zo057R5hl+PYVaueyuNtNn2N1y/KOMJ6gPsZy\npA9mv8lCwUbBbsirHbGDFHsFv/V7IsLWmrIZk+X7+Jcy3nQc/KXadiaFRh9AXqswvjLLTPrb7zlc\ne0HsKNu3N2m31V0cNpjHwuhq2YRoIf3YWshzs7DDTU++I6dkoijVxcmQy0pUzMU8p420t/T0YGnN\neDaRubFLl41S+ny2ccmlgpDOz2VuMtdQixUp2ZgSevJ70trESmTNlsHoOTPw611t1+C78l4nLLm2\n/fMA1G9v0NK143chUCYbrA6QYEZND8Yqj2i35TuG0RPiTL0g0xdoBw/4OLRWH9a0pjV9iD4RkkJZ\nGZalS7Pfp68xBa3aJvUN9ZuXNSJPxE6v1UdtXLh1MURWRYZRC3g1vcR2VKpIp9gtOY2T6RnpUDj3\nZSJtDdxNAj2ZB9t7jHbEUn0Rw5YGB7Vv7OHNPgBgoeF7l+mShXpJqFLUzY0VJGRLDX5aplR6EJq6\n3Nuod/HUyuTWG7hqXDP25vNoP6PSBdkY1EdPI8dZSD/LtoWnQCV3+oilpVGEHenE1u0vEw7kxZZp\nogcmzdyhpu9ejFKOl/cBKN6QMf5HfED3fTHKTcoeX/2ixnlMLxnN5HQ/fXuE2ZC2T0YinracOtNC\nwU3REy7VTXDrVpP6vkgbh6Mlh4FApe9+W07g75+ech5Ju8sqx1Evw3lRokIRFVBo7MKyppGvueFi\nItbo+ewKR0uRDq6350QXcr06nTHJBTZMIuMzN1P2VQ2aehVdfcmTAm46IvWcN6GqRAq7UKh1eWmY\nqNpRuhHHgaqSC8NZLtdrTZUuRjapxmJU1SX5SCSTRRbTqsl4WqVHx5Mxj1XN3drsYDRya7NrcTYU\nqerP9D9L15Pvbjg2SzWs53VRKUxVYVRdcVo2tYVIDeVxwfkz+f43Rr/JuJL3fFRaSwprWtOaPkSf\nCEnBmBLHS3GNS7sn7piwcJ67AE3iUKodIZ6kxBqKbEUrkQHymXDwKplQnYlEsAxSsvcUmrx8i9ET\naWPSktMg2ig46AnXddst+htykjw6HjM9kHu2NxssC4UKv3MEgG8cxr7ob/HCkKjem1Y2K8/ZfDEn\nTITn9tUQWZQejoYL27aFsYWzmyzFuArt1XDpsu5TalizoaBYaN4Ap0apGIGgrBNN5WRqqLvKbZRY\nK6ljEeNXinLzU1Q1ZnJ8j0RxGG6q8fpFg//hf/0mANc3DBdnGp47NnhqP1ksLtl+R97ztCM2l8vT\nFvVddQEX20x25XRcVtDX8OTdzlWu7cr94/cEQXoZl+Q6WFZok6kR1AZW8VDGNoxdmYcttcD6qUcc\ny9+PHj3mxab0bR63KDsi6VyvKnbURb1U6/DezS3KM+lPfdvGra4CcLs1I1HjdjkaMqykjSe6M2ZP\nPsA80qjbhfscO7N0EnauisT2Aw2pj7PRc8O2lzi4Gozm12tUGhnZ8mz2O2Kjun4o/+Zzn6UiLPNH\nOYsdkRR+72vf4EtfvQ5A1N3At9UVPRZpzWsGeIrctBwPo+Hi5eKc9ETWvTcNuLgQW9JHpU8GUwBq\nRYmdVDRcGXTHj9DvJV1EzJ6KOJ8Vl5y1xYBV16jGp8ffx1Ef7WD388Qz8SXfuf+IC/WPXxxb3BnJ\n5F6msqG/fPM6f+6rfxaAnZsDTnSDPXznjG5Tnut15lRqfJqr+jCNj1nZjSlsSo3T97HIE7XOP4Ul\nonacjmWS99tbbCo+YLDVpN6UDWYDtvquMxV78+M2y6VsiNnohCyS7y+sFpkuoJk7hJFY5xM1MsX3\nRlivyKJxohJXneHLqORkKIzz0lgk6hGpuRoW/OYTbB3vP3in4uTN78oYk3HYksX/4vYNKktE/ukD\nWaAXwZLFUMbnZPEGT9QQebVzl1++JZiE7XpATfMU1G+KShF8MKGrzO3cZNiW/L5cRjy3NJbQy+Se\nRqkeHDviUoPwa5XPkRoEX9nqsqGi+2Znj7bwcXY+LweIExvyPRmXxHKJRjKGZ2dPOb5UBmk7NFT9\neX1DmPfJxRbvKsQ6LxcM5yu8hMXsUpm2qoFlEvEjCEFIp76Cf1t4dXlfUIZURtbqKqL2tVd3mHek\nw/OjIXcevA/AvbMjHj+UtTxc5ByPZGx/5cVbAHzl819m74ZidgZ1somss/Eo450L8YjcP3tALWrx\ncWitPqxpTWv6EH0iJAUqQ5V6eL0KX5NttDwHayGn43Qy52IiHPwsHlGUcpo+u/MuAB+cZry4JSfN\nKx2H7Fg48dv3hzzVHAKJUzJVjm/ncgo8mU94413JoPSZbANrU0RHq7rk/l1J7lG3G7SvSuadhiMn\nd5XbNPoydFFQEumpNHUCjK+pfooag1ANP0s5Po7OH/A4lOduPBlw8IK016i5oOmzhk+F2z+bvcNU\nT3aKFk5NjnEvSCk1srHqbYClEXoX8k3Z5IjtnvShMAMuVEQ/6Fo4mk1pUpZ4CvPFlv40izqTXMYq\ndEoKNaINo4r9UDMF9We4lcKfZzJWj8oxZ+cinj6Kx5SJfMdpMOe9EznSm6+9QFHJIH3llkgdVXiF\n0/dkfqP2Jm+ciASSRRHZKp2CZygVZ5FmIn7PXI+b6srb3t7gWKW/40fnXKr4vExLPv/ZqwB0NGVa\nGPQ5ORZjZ1IueONIoM1vHp3wbC5tbIUet3dV5VEI/S99dZP3zsWl9/BRRqwZrjIfMmQsRqmOt2dj\nVF3zaw0K9S5PF0tsRR6OkzPcVFGvgayreebQzaWNKLMglzl58+kFtaeyBrJqySySBr+v29YapPyK\nBoE53ovYloyt1zqn0LwX/eQFEkfG9qPSJ4IpFFRMrRx3atNe+fRbPrkmzZi1XC4uZUKn9pJZJAvl\nnblsoPfOx3Rui+71iwdN8qb46c3pjEohwZv9Hp1Y026dyWIMmz7HC9lU++UmO2rpbX96i8WxAFPs\nPtTaMqHdG7LAhrMxJhGRrPJcFhrPMGvZNFvCAMbOksWZLNKGRv31dvcJNBZh3FvQ1cjGxuYtHLU7\nZE0BUC2PDeerxH7llA3NK5mYDBQnT3wOvmzuKpXngu3rZI6mdGuOWag6U6UBlqb22mvVKTVCb5WY\nZD5cUGqItKFkpvpRaZU412RDv/7STVzNoHR4XeZgP9/i7pEmuHl0H3cpD97Y3WRvQxi8F+b0NOYh\nKWRDvPK5Q275Mjd3IkNSiSr19fPL5+pDVRjCQjZpqy3j+qXbN7i9L/MQuANC9R51OiE9jYnZajbo\nb8j8NANRGVzboZnJc7NHI+yaehfKiJfbcm/h17nUNlwFJFmPSrZU9H9geI7DCHOX0wthJtbKU5FV\nrKKUO51DwoEw2eKkJM9lcweDzefJUCojv79/7zFXtkUl3r62S+N53EWd2hMZ78ssoq/Jg3Y+rYyr\n36B2VTxwNbegUMZS79VpXZHxrOIJL/ZF3fjm9yVR0U+jtfqwpjWt6UP0iZAUbKBJyXA5o1GoONsI\nydRie3p0wrePRFIoK4dmU06Yo3NRE0bpnPORZmruvISjYpt3633sN4R75smIaSnc09uUE2OSOdhj\nkQjeOpmxe1MkiY7bJtAkp/NkRD2V0yY6EU5tWz7zqeYV2HZ4oMaufjNaZfHi6OyUaCnvztTY14ta\n/Pwt+b7dacKpWqrbk4T6jlwvCznNSy9hqSrTsT3kvbflxOg2HQo9dQ5esGloJGa/pxiDYkGQSrvO\nqEGguQfiaoLf1cQqQ4dQg4NShd/SrOgqvLi96XE5UlcFJYOGnO6Hn7pNXZF5sVHE4MlD3JnAlZ9G\nVxmOBHY7iwrmmpX4zijk5QMZi21NyNKr2cwPxOiYuE2+f/p1QDMUr9QHpyJW78Lmtszd9sYW7x+L\nhPjB/fvPUaYvXL/Jv/UFORF72ZCaZjx2PRmXKpvjPBUcQ9spuLYjJ/PM+Cw1aU1SRpzPZPxnCsvu\nZDOM5iwI0jlLPcWXUUm5UNVUVVTLLag0lVrjhTpXD+X73v31Uy5UwvLmxyzVSzLX+Z+OL3h8KWv6\nP375C+y/KnOz+If3eVuTvTxc2sznGvD0gfwbJCeEGlT3pV+4haspuAdek4MNWeMvbn2OyejjIRo/\nEUwBCiwzJc1T5jK+HOQv0Nasxe/OwdZoR8/aZHdLRKYbV2TTJOVb3DiUqLCtxg5pTTfpvMnDUOW5\n2KJRU7Gso+J81ueKI6Jx82afnoq7Tq1J0tKOPFmStOX+6amKwCYhUPO2M3e5HgvT8JcVnX1hLLcj\nsA51QWro9cZgm4Fa8utJQqVY/WW+oFFI38JQRNldx8W7pZmbrBaThuyUDS9jpJDooMzpORqBqcxo\n9sEEK5AF4XmGjqPenKjEzkUw3PJ6LGP5JruSTfoXP9eGpfy+0za89UiTkZqSf/Nfl4zQ11/4BZKh\nArneEe9E5rQ4sAV2/KVByHhD2q2HV3lJ1Z9JWBCqoSBTl+xGY5uOZqI++cFDzEzhwfAj70Nucagi\n8c8rSOdGv0FT5dtur4k7lu9/5fYeWwNZF2Hk46xUL5SRR/PnSWWb1Sav7Mo8Xb2+Q5LKnCyjZ3zj\nWwJgm7nCeG9ceZHrjqyFm/0Jv34ioC971mI8FLuEFYjq5s5qbLYlFuNz+1/GVY9Qcf0pm5pG60rY\no6UqzWPlrPGWAAAgAElEQVR1my5mSzxVQYqGYcsX9XfitalKYbLXt3dovyZ2jp+/+kvyzX2bWk/h\n9q0Wnh6iVRGy05a+eZ2U8Gybj0Nr9WFNa1rTh+gTISnYxqXhbULjkrgmolOnG7C1KyLjVzsNfu6Z\n/N3e3WGhFt6tHcES/PnT1/jCFyURRru7T5KKeHl17yqZBoZkecxYg5V6tasA7PTrXBuIBXhzv86g\nqem8GhWXH0jijNQJGf5AwStj8RN3qjaxFjJp1EpOFc7arFXUNaX6Z/b7BJox2W0pBNtPKGO55nsl\nnorrzbBOlWjKs7b0x7sypqX5HK8uBxR1zQkZ2lSV1k5IbXL1KCzfl28rzZhgJGNV9ivspqZ0sz1w\n5d7cs9nRqFOj6equXmnyyq3PAbDRhJdKOeX6ZZvrLwjewG5U+K5IIekdOX36VkXtdQ38Ss/IH0mO\nhMSec+OVz8r1ToP4bVH/VFDAdcZg5FvhAYtS5t0Fcj3kbbskqel/+vLgtZe3+Gwkp/F0NqUMRLIa\nDAKCFT7azjCa6s4K5XStJj5eV1QDpxlQ74iE0apqLHT+LhyHX/xLooKEqUiCg8MaSw1Wetr9Pl8K\nfgGAr339W7w1krGLpwq8arcIFIK882KdG5+SPl8GV3FjGRerA+2xpnh/JmrJYnJEQ3Wmw/0euQK1\nfvGVWzzSeTrth1wZiATxuavyjv2d/nOjpF/vUtVWhXqe8dLLspbnF02eWP83H4c+EUwBk1NZI6aX\nOU+1oMUrV6fkubie2vU6jRdEP9vYfAnbiLi2f0UmMDMndAPxPtRrDla6Ci12uDXQGgnBGakvbeSK\nhLx98AI7fZmg0N/DZKtknS5hXcXrZoPpmYhi44W8d14tadRko9t5HV89CtNlQluLtmztXaEeCPNS\njx5UPcaJuIcK36FZ6oQGPr6rSEYFNLlOSqC5D/NkgtNXEI5fgSP68OLylKkCmeKuAF5qdgNrSwuI\nbFg/wgEVFRUr9aHGM0vUg1gjCxfdTXZf/zIAu1cyDiaiSpXTY5yGbt50SXkkGyhNFeOfWmRbIhr3\nG20S9YwMmrdoD6T/SVYQa/g5Y2VGm9uMAmHqD5LHOL70LQPKVexDbmipK7Kl+Q67VYOB5nls1hs4\nlqwXy/GpFO1mNwY4qiraKpbH2TmZlovyWgY70LD2aI7RBLteGVN6Wgfkivzu1nfpbqkLsdljofPU\n2Aj4m19T1OCGJq6dRYQdea6I5pgnsn6b7g5WJN9fuygwmiQm9jQdPBkNV1TNlrdBqAC2tNPH/aKo\nZre8DYz6vgdt6WPdQOBrvY8io1Tbh9+t09BU9LP8wXNP00eltfqwpjWt6UP0iZAUysoQZRbPno2J\nusKnRolhxxVuZ2eGVktOCtcx2JpQpa2Zkx3rEFtzJlLFz1nd1nYdf6T1+ra3CRAJwrslz3tBj1DV\nAK9WkczlFExOUvxAOPfImTByRFJ49EhOhrpbx6nkfc6GzUSLmsxHI05jORFem8/xNaOur0bJyjXU\nE+nDLFuQ+1r7z+9ibSo317by0uDXFePuWlSZVlhyvedHqdP2KIeCdfBrclrNyhxb4bXFYkFHr5PF\nTFQlmA+H2Foh6fyZwoePz2nZYqX2zOcxXfWGhBsUT0Qdi+NHZOdayepArfTffIjjSeq67d1dyqam\ngJ/UsH1RK8xojgY7EmtEZREf8/Sexqv4DTZV1XKMpM4DwC45C7X6VqxJbWqGQlFBgZNia6ZsE3uk\n6gUidalQSaYlYjQvDUl/U1LKB00Hd1PiDsq4xFWgltMbUOTSD1ulP9uaYGl6v+7mS3R6Mp5hMedA\npVcr+oq8w/khgUoNl9GMmeYG6WQlpUZGLouEdiHtbdZFuk04YWNXs137DUJN81ZbPKDREcmxvnmV\nekPaqwUqpZoSMgWyOTnZUOHY1ZzK1hR5zSknDy/5OPQvLCkYYw6MMf/EGPOOMeZtY8zf1Os9Y8xv\nGGPu6L/df9F3rGlNa/rTpz+OpJAD/2VVVd8zxjSBN40xvwH8R8BvVVX1t40xfwv4W8B//Uc1VFQl\nsyymtdXB1ySYXmVYPpVT0HbD5ynNTDTGLUWPKjUQJWu4+Cvor9/m8o6m4rq4xJqoEbC7i6vuwPmx\ntNutJ8QN4Vn5PGXyTBBfsySjeSCpybIPlnzwSAOT1GWXFzGDmujc9WpAojH4l7MJ55fy7ul8j1Cj\n2uqBItjiEqMnfjqbkgfSxuLxhFJ9zJaeiPH5kqAhkkJpj6k0UtFthqBYjvjyKVMtprtUFOPAuY7v\ni1GLaIuaI+M2n+UYbXsJTEZqrJzLuN39Tsn55+T7W7XXsUpB9BUzm/EjiWw8n1mYJ1rsRDMEPz2J\nyS/ETRma3vN+VvYZKoyweHSP7FL6mSr+w38U8J5CjWdZxKYn85CVD56XdCuzivhcIz6XWtdidE5Z\nV9eynWJGuoRNSTGUuY6jGLcpc2278o4yXTLVWpLVOGVrqjaHWocyFfuKFTlUU2nDKFw7T2sEga6R\n2hJPpZ/AuUpf10D4qoxV7f4VbI06Pblzyg017Lpzn6gULEedXWJNp/bOWwLTt58tmVyX8TzLUuxL\ncXuOHj+jfKaZwbwW1kyN1JoxuwxCUp0/rISl5qdYzHqcaG2J3z9+m7Onf0pRklVVHYMUC6yqamaM\neRcpQf9XgD+rt/094Lf5KUzBwaZnusztMR1L1IR0Nmesq8rNCoKrIgbGyYJIYcXpUAxVRatNmIka\nkDoPuP8HsriP7gdc3ZJBi8+HWO/LoFUak3DuPWWgGYz9rGI8Uez8aM4kl9iH48cZy/saGqyhsA2r\nxuVcU5DZsNSKRVlRMj2VRXiyOGC7L5szWxUXrXLGyrzGkxRPC7yMooJ8IdZ8y14Vkp1hSi1M61aY\nVcioWVDF6kXIm0RGjHw9NZ7WP+PQ14ImlQsz9ddnocVIw5OLImKqdQ5jTWN3vMw4eiTgno1rdzCl\nqAEnP/yAt38om/67H7zPnhbFtdnUeXrGmYrGVfguW/tXAZgvJtTOpG9RWqA1eLEq+f7T2XvcGQnT\ndGptyuYqLf2PGRotGGnqsfdn0s8vGIegUE9MEFDNV/iGEjSeo3A80NyTyVRDi70divIIgNnZkM41\nYaK+FeCoupVGMZbmSiy1IqxVyygrWSNeeICD5r8sI641RAV584nGZYRn2JrI5+p+i3CVbq+qEYxl\nTlrBjLlW1/JVDfYaDXqaLMeavcP0sVY/9ypi5PuKOw8JFPL9ghoqPbcErahWxQXRSL75yfwui2M5\nUHqXu7iFMJ+PSn8ihkZjzFXgdeA7wJYyDIATYOsPeeZvGGO+a4z57kxDhNe0pjX9y6c/tqHRGNMA\n/i/gv6iqamqMef5bVVWVMab6Sc/9eCn6q7ubVepZ9OvB89RRSb3AUZdWYNeJLa0wnUA10gQfqZZ1\nr2Z0BiIOpkcxpwoNfWodU+/KCbw38ChCaeOZBuQHZQVPVLR3YTiT5zK3xNdgprTt0LiuWaA1Vdr8\nG2Bp+rA8K+moXzl1LSrN8pwkBZcKM7RjTWRiaowVmj0uFnhDFed7BeFcTqOu+qJbpqLUSsvVMkfT\nDWA5HmVLMwY/uAuan8FSeO3gxmeodeTvIvdZqv/bil0yRULaJqCoyyleX66Shrg8UGnj5dOHJBfC\nqB8dLzlR2LQ9NtyZaRLXTZmbXjNgY1tOTGfQJssVMlwk5CrpTRYJkaoVrUje9yy1sTUYq2obvEgM\natnKfQtQwHIkz735VE78f/tsQXZNC6AkGSjcmqpGtkpK0UjIR2rYi1cl0yr8F0Tt9JMFthqY7cCj\nWGr6uiAmU8kjVVeniXvPs3V7bkhhy2kchy3s64p61AjXB9+yiGwZ4057g9BXCapImataEZc2ZSDj\nudQUg0EYc6IFT779dsH4VFS0wc4uh4q4zSw4uZQ+bapK3HJcKq1cnmZTZhrMNY5Cyq6qP7VT2o7M\nD9/iI9EfiykYY1yEIfxvVVX9A718aozZqarq2BizA/zUShRlVRIlCy5jQ6abajiZ06vJgJTpgrmm\nrB7PZihKlGgqotx+z2F2LhM3t0YsVYzc3IVUMfzZIMFBRLSlitzDYUKZaxruFMoNYQT5vZKWxglM\nypReTwvNaCaoK5sbjFINo7bAUvGzVQQME5mYxxdjDtoyGXNNT55FOSbQTNTLGlZPht/UfKqa5gHU\n2pBZ6OBk6pEICkwq9xZ2QaJMZtaNmJ9o1OLnpVBu6eSUnvrNizotVXmSWkZjlTVosqCpCIZIs4JE\n85jjd0WXPT2sY52LhTvc8jicibC39XrONNFwb4UJz58saaiXqFUfcDkSITF6NsZXgMb4rMTSMTw+\n100a2LiKD1jMUh6OZX6tH1MfADJb2jidiLr2w3TIxkzGNXQqTFdtMUtAMSf2MCGuSyOublKrETIo\n1IM12MBVG0ZljUA9RlWekmqmJh1u0tFDwhdU2HUCVrmmLx8ccXvvUwC8cVdUqXH9hAT1zvQnWJEw\nr6haPgeOXYwvSZ5p9G8i62L0tMLT50blJlu3rwKw7Xbo6rqYpyX2obRRaR8myQJnIm0kXszFpXiX\n8hIqha/XOk3sp3U+Dv1xvA8G+J+Ad6uq+m9/7Kf/B/jr+vdfB772L/qONa1pTX/69MeRFL4C/AfA\nD40xf6DX/hvgbwP/hzHmPwUeAv/OT2uoLGERWVSXKeNCuN2g1SJT40vOGDQqsVomWKFICJl6HwrT\nxNfKz33vFWZGUliNWhNiFSN9zyXT3AJNLdgyn6ZEaslPqwmbS00A0ixZrNBxF+BtyEnR0aQabvU9\nLFWTsqjELYUT12sp1ir3YRIxLkQKceZyksyGlziqajQahk5b2g2cAJVQqalxyqn5JGprycqYmvbZ\nK7ukWhimHM0p1Iq+qnNWHCXMXS3VjoWlJe/swsGKavqOCm+hhVFUGtlpWgSpnLTerM2iFBXLf9yk\nFcqpOyhvMUcCdIZat7DubFNXiW56dsLFmfx+cTpleyDSRKNZYdTaGgVaLKdqs2eJhPEH43MePZZ5\nL/95ZXOVcQUtaPJgQexJn+PmElsTjziVi1tpKT+7pOPJ2NpdNeA1IbekP05Qo1hI//PqkvRCVZAi\no1JJz1ZpqygboEbVolgwOhHV9fd+9y5bv6reBU+knNpdqS0KcCW5TdWUb9qtdoi0inkr6fCdhzJG\no0fSVpFPMFNZv+/dtTmL5N3b+z9HdkNrPVgeTl2M2CtJoUhillpDIi8yjEaMFhdNZkZU66lzSX72\np1RLsqqqb/CjeLZ/nn7547SVZwXDkymzZM75UCa2325SDETM9xwXFNzSKCvGWuSzVKx3NKoz6GqI\ndGix5YqYmH9/QVlpssuzkEkqE36k2b/PhtHzwirdZoNmTzD1p8ePuK9JWsNujyulXO93VfSvH+Jk\n4oaaZAsWmuI7mDeIdRM+G5W86oqerIZsLpKUeCjfdLDVJ9S4BTfMCTWde6Gp49NsysWFLDbbVFga\nCmuzZJmI/SHPD2ls6QLR/JIz64j+VDPzuH1yZTKdOpT6rZeTgkRzJqLRl5HnsdyWMR5VCQrn596D\n9+howELD9ik1g9BkId9cb7pMVNaupqekWhx21PbYrEmfnM1NCt281qUwtLkVcK6xCpfzE05z+VbP\nh3QVtS0fLOMRy72/nR/zevGSXByE5I+00tVyRnMq8253nJUjAmcoDbgZpHrgpGOPrFTPyPkpZsWI\nwznuqpakpmRvdbpYGok6ezrCHsoamkX3OVRE1rG6hU+KJ2x2hYEs7OGPoPB+iwFiKzo1D7mvuRZn\nUwVbdQLilgCZmg2bay2BsaedFqr9MZ4taWq6enblYlZOQXOaWllIooVqTpNnJMofd7PrxIMf8HFo\nDXNe05rW9CH6RMCcKwOpa6iiiIkW+jg5s8k/LeL8fudl7EqO90mzxXIofx+dyOlyll5S7Ain3e6U\nFCM5Bb3QJhhpEZVxyVDbeHYuts8grNNR8FKz12K0kN+jKGeowVH79S0OrgqHrmuCkIfJ28yHWhsx\nLtgPVGAKDEkqzz2ZJ0ztzwOwoeXl08Tw/n1RbRYXC164Lc/1XMNSIduhJc8vy5RzbavyAvq7mggy\nN8wzOQbuL+7z0p4EheWhliHv3sDb0ACfWshloWJR1WISaSm0eAFq/Gw5Cokm4VJxA6MqwlZQ0NHd\nSxaxGA93N8ewlHcvtPhON3nGPbWHbg0sqlDGe6fTw2g+wzyBWJ1QjiNjmDQaWOmRfMfyMbGKwR+S\nEqRj0ifNNVk9GhHdUtWm8Tlm2/KOyx+8w8VYvQHNlygdBX6pOyMqwZ7LvYt8wWwi3/T06IIXX9Og\notIQZaqydWTOAtel1LyaZfaMx56Y8P2XPC4VW6HQGtIYopmMj+2NsWzFizTG2JEGWpERVj8EYLwv\nKs6vfulXuflZWYfT0Rhb8yz0+y2WiaigMy/DaOXxq20tl5jVKBRuP41nWJrqbrYAVAhZXnnC5uFP\nRAX8ofSJYAq2KWm7S47ziBMtvumfX1LXQW22QixNlhIfzwnVkjsYXAUgLFOchg663ybc0TqJ7QHm\niuhZTmhzaMv9m1vvATA8n2G0FPtGc5Osrp6K4wteaIvo3+1YLOaiKixUFLXGNrECRdwQiqZc33Jt\nhqfSt+PTiDtviR659RWJMvTbPdq74iLNzmO8bBX22qGum8nVVOZVvcaekckvTUQ1E5160Qw5e6xI\nyWyBp1mYujsSOp5VQwpNSV9El8yfyb0RUyIV/T1cPrOvjBNZjPfGQ+KnsgCPTh5zc0fTiP/KVZ78\nzhEAnZpFpiHFE93kXlUxcGUF3gwPOd2TTegtFzRV5WmmTfKOLPRIIz/rrZi3jtTjUiR/qB66IkfV\nsrOLhDvH8r6d3RMGGvruHt5irineXb9GuC1ivGNWqNAFuRaS9fyL53agvdsDvJUftJtTaK0OMxS9\nvwoLXK3wlZUBkXo+ruUf0FZ7RdgQYF3VyGioxykMN5kU6rVJ55SejMWVdsmXXr4KwHd+IKa4x9/4\nGtn56wAsvfrzGpTTk32CHU3wsnfA4RVpT5UIFsspuSb3LZw581LXQquJ5pOhlraYpuc/ZXQ/TGv1\nYU1rWtOH6BMhKVRUlGXOfBqhRZFY2C7ThYjUMxY4hZ6a1RhvLidzT/3cjaBOQ+P4fWuDLBArrR0V\njJaams3qUzTlpNzS5CWzZULfE4mAZkGm+RojFnQa0naymHL/gcbha6bpyXIs4XyAl3m4avg0nTqR\nZm7OopinU4k6fPBYJQxT0NPsy7UDm0Lh2lEwo9BM07amka9bPRz10ZeWRaypy+L5iEWimabnDtZM\nJAtHoc3J8IyF5hLI/JhY4b7zuCBeaGXuwKMfyolm6tKuZVU80/gS53fOcX5ezqMXt/ao/4J6LZY2\nSwUk7c41mtUt2dcMzlndUFMj2tiF1jORJlp7hvJUxuhCReB3v/GA3z4SXMRwMqZYgZYM8GMeCGel\nmWlinZPZgn/8TUkF1w9TXlObY91pUrsvBr9L5xkX70qsQW1TjYizmMlUTl2n16LytMpWOCDdVu/D\nzCZbqQ+azjqajWjd1gI/F2fMfk9E/7Nxk8c/FAny8ROBEQcXDU4VyPTo3QGXr2lOxWGPpkqh7aRB\n1dGcE5o+zXY9rg1E2sg6BY2WSDm7u5ts+Oqh2g+wbY3vMVrh7MywzOQdw8sp2WQVN+SRePL3o6dH\nxJOPpz6sJYU1rWlNHyJTVT8RhfynSjXPra5sDMgyC9eS/syXcxzVW6uq5LAlJ+wvfPYK/8bron9V\nfeGcA3ePWFGFdSdjOhLpwGm2mWhk3EYvI9IMvaHiDmZL2Bwows7eJtAMQ3k5YvRAgoC+9vfv8e6R\nxOE/1KxQ//T+45/4HcYBa8X9c8mAAxAg1zZevc3yTPS7XdvhcqJBQLZBs24RGtE9ezubRIpNmCYJ\ni0tNGTa9oFS3md/cp9kTA6vXEUkjGQc09tReED8huvP/yjeRkSiWo1zG2KWMUWnJmBx2euxqLc2g\nsHiip875eMZYMxGXVU6SazCOfmee55RaDZnqR9DlpMzxHDmN67U69ZrMX15JHwK7wCg442B7m4ZW\nxP7vf+3XmI9E0ssn93jr+zL2/93f+fsA/O73fvi8ZiKhzW5H0ZStNqc6P9koY5Yt9X2ryNacpuaW\nsMuSyl5dLzAaoVqQk6tEEil8OrRq5L5Cm902iaZu2/BbvHL7LwAwW4oEskwjlupGTvIpqaJeRQrS\nIjGui1GIta9o0qIosIyKSsbF07Eqsoxy9a12QKi1P1aY98CvUVRam9RySZeaFSubMVMblGPnlApv\nf3Z6/82qqsT6/UfQJ0J9AAPGxqkqPA313fcrPPWlN8OSv3xFAEu71/ocvqrZimUf4LltlgrGqeYx\nxoh1OomPMFr7L0996soA7aZsiFrp4ZlVwRILAjEuuXEAN0Qu/XO/PGf4v0iG32+d/tEhqFUO1spQ\naIHRqMtKi6Rm7z+grunTaiYk1AjG7dIDS5haWw2OznLMVDM8m6Ii1M07yW0qjWDMZxfYmuIdT+tr\n1ickalyclSPKhaga+bIgV7l84JUUvmyQfiB9fHGjS1fzFuZZxULjSkzi0lB50rVCNMM7TVuen6QR\nkSZVzEz1HFgzX+QUOt6eyclyNQLGOha+S1tVl/nsgqjQGA7bwteqUNVFzvK7vwPAxVNh0nmRovsW\ndw6xitK1RYGloIZGnjFdVfotVuqRRU83f248UDUhrVwaZnXdIc009kZTm1VRzoVuzFSxDQAX8wmT\nsTCvaKwRmUlMTUFWcW7w9YArsHC1EldQq1NXw2WgaejzPMI2K/RaQahzOl9OWGqdUse30Ix15Ao4\nq0xBqJXDojwlWGjsjm3TXBX5iWfExccLOFyrD2ta05o+RJ8QSUFKbyXOgkw5fNu1uK6s8bWX9rih\nadq6ixhHI/Uc9f/Hs0vyt+UkMT2PsdYsuPvkFI418caNOu2aqAfDUzkFB6Nzkr8orrxyPGdYCn7B\nDDdovCInr3+jzrEG9lhqGPyjaHUa+yYgWyU31VPn9Pycjb4Y+N7Nz3mprolafEO7plFtMzmNLqYF\nZ1qYpKo3GamI2qwHDKeidiTpjGdaD2OzLrkbliFkKkaW9gWOqgyzfI5ZpUSza2xqyq9XBmJo3erY\nnE5VTE4WXChuwPdKroQitrb7AZaKtolGTnZGDsOFvGNZOSSOtDtdLqhWUZKxhaOBSbkGHDW9GuNI\noevJjEas6cMcC1ddzj94+h3+x9/4JgDHqmqVJc/dbZQlo0jaXdoWtmZ+TvMcoy7MSt2NrmczUdBD\nx/PINOEMpiBXiabmOqhWxUhzWSyKET/pnK2qapUJjfFc4MqZSXFUUizLkkpVBtu2MIoH8UJwFC0Z\nKBy96beprfAilUWVqyRQOriqQpa2RbKSQmIZV8+qM7zUdVPGzCJZO37QoNBo46jKKMrnNdI/En0i\nmIIFhFWFjSFAPvJ6v8UX++JDv+U7NJoy4fYsp9IFYilWvzgekaq06J20qZ0LMMU/SRnr5LsXVxhl\nYgt4ciw3L3Y92u8rbj/+Hk/vykB2v9hlt5TMxtHdX+Nq5yoAbymeHGY/8TuMMfRXurZbsKHw4EtL\nFu4Nr4ur6tFup01Hxd3dsEaiOmUUyIQ/Xab0Q41kLOZ06jJVk8rCbchzx+MEV9d2pSHJJafUbd1s\nzg5zFR19x8JZFYOpNTgINT25pou/mBYca43NYZLQUkb2UqvJreuSUXiwdYijeRAvlTE/bSw5X+jg\nWwkXWtZ96g8ZK2NxrZRKsd6+wnJZ2uArUsn2SFUnMJUhn8rifvR3fot7yhjnyQoLUjBXSLhtlxRq\nl9gb1GmrDeNgr8nFQj1CqtrkZUW/oV6n0iLV6MKnswLbVRXDD3jhhozL985l3FppwNFc4yEq85yB\nWLbDMtbITvUSEeUE7qoiV4Wtf/f8gE5Pk540urQUkj/QsOdOq07oynsrUqJYx3gSsFAsS1ktOR1J\nn04jWX+LJGEVE1JGJYEr91ZJgO/oHjGGRG0+P3nV/v9prT6saU1r+hB9QiQFkRCqMCbTZBQb9ZLr\n+4o6G4R4mibL2lrgbSnkd6KiYbPA0vJilefgjLQIi+3Rbmi9virikZ46j7VE2WfTCtPWlFmnJUM9\n8WoPnsCfF397+IW/xOcv5QT94J74x7//zwHEbDVUtTyHjiY92W21mKh82VKDUq+06HvaN2MT+prE\n0CSkajyaaKKMelGyslgHrourSWbageF0KKfV0CkoUzlVk1zQcXnawO5qzYZqQqjBPAtrQaWncU5C\n2REprNTT/GS+ZKF9qLs1bm2JFXf3SpPdPYU0t+vElqYQ0+Cwum2zp1E7s2VJTaWpd85g/LzmQsoq\nNYStSV88FyxFDwZBidG0a1VVMp+LivHN+H0czW7d0uCxFx2XyBF1Ji1nzBTIcL1v8ZIWYtnYcJgt\nNUGNImRnKaR6oneiJSM1xMW54cSIVLFpZ9zckDb6oWRqfm95h6aqNhfDBEcjLUfZEEuRo6lGw5am\nZK6ivzEGf5UpvO0xUO/ZwV6HrsLQm6FIY32rTl2h1BYe0VIrpfsTMvWeTFKXVNueqmEzLgyZeoMK\nKyXT2pSWUxBrxmin1qBKPl42508EU8CUVLUIt7LYVleRT4uaWpa9YICrYajNrc/ilTKopWaucVwb\nZ6muwIZDpObyzesuVqYVlwabjN4U3W9vR1WR5gaNbdlAVv2Q1kKiyR42Iz6lOmV3x2f/8zIZ3m8p\nwNSMnsNym47PFRXtdzwHtyebZqfTIlIATE2VeccYGhqR1y9/JHbOk5zGKjZAPS5bocVc8xl6xidT\nYJEXBkRa9WqzhGm1SgAj712apxAJQ6s5r6D1ZiiWDoH6PauihqWQ50hLq58my+fi5149YGNfNkW9\nlpBoVatpuaTUIiqeYu67Gz02dPFPFil1Vxjdw2d9Kk1gc5nG8Fw9kP5axiFQRmDnOZVutoIl8bHY\nh6Zl1NYAACAASURBVN6NY4pK2r7tyvv6Tci25bmnZy43LIk+/MyVFodq4U9nOT3d3BdGxuK6XyfR\nJKfe3nXePxFVslfEeBq5WeHzVA+lK1eF8Vx/0Mbe2dWxOCXTGIbpyYhcgUOrYOGyLJ+7lmu2RdPX\nw8DzKZU5+1XApkKeV14dzw9ws1VZLPMj1+mmoVRwWuFb3FTm9P+x96axumXpedCz9jx985mHe+5U\nt7rqVnXdnjtuu+3Y0IgkshUlEBQLkcjiBxJRJH6EkF8IESn8QGAhFBAgMBGRSQIiiRXSTtxt7PbQ\nQ3VV13zrzvfM0zfub897L368z3e6yzjp2y7HuUFnSaV76pzv28Paa693et7nsQv5/sFZgUOWPY0C\naMpFCGnDMcjtWMVQ9Y/2ml+GD5fjclyOj4znwlMILAuf7g1w5k/hMhtyraMuyDvs5RAhEzGuNYG1\nKuCjekYYcJJCkRuwqTSCFbES7lKEesyGqIGLO//a5wAAu9SJ7G8UcJfEQgfdH8PmVcE3nL39CFUl\nliTofxbLV74IALjR+TW5HqVgmZSbWxngKqG0rZaBkPVmp+2iJoVxw8Rfx1mHIiimgAmD1t8LTTRM\niLXIztugRqCZ6bdzrBFj5gQGQluslW/MMWQoNHbEbW+KLmpK1839I3yyJZDZD6IDNCOxJIOuwoKo\noLblwK3GQIuu+OZmDxGTdmbgICGjsGe5KGkKDQqduF6DfiSWtBXlMEz57CvLPkxSz711FCMuaFWZ\nnXfNGvUP4AY0s+WmchEsy7Gvrvewd1eeyXgg13m93YY9Fnc/67q4yWTendtfREUNUePpCAGTazc+\n8QU5ra3hzCUB7V11cPP8JwAA7x4+RPU6ocJlhRf7Qms32JF7SioPs1zwK+3u5/FhI12uJSq4xHqk\nTPwVBi6UrZWpEIbsrg1crLTkngbtEC1WzSxac60aKMKjVWRBswIX1R6cDue5cdFhOGkwLG05FVrk\ntdibJlBkuda+gTlJd6BdlOaP1hD1XGwKytRwug0wVBcioVFnCR2Cd/yhCW9bHhKqHHpOUA/JVa2Z\nhYwlMsvdgHdOjYAlBzG1CP1oExsExay9KovqxArgdqUb0LJC3LgjP7/3MEb5lLvTWgKrkZcwIw5d\nmbsIQll0O9DYyuTndV8hoMtoZj6OLIkNTS3u3rLrIWDn524yAlieM6oSbYKXamLyW8pATeJXzx/g\nmKSyYabRZ9L+TmcN3yDaLiik+7LOHyCmS1lOVpCbMhd6msOrydFY9FCSlxCkfe96DlYXWXG/jX5A\nUVxTATZpz6HhxYx9uWnkhQlSNMJKh7i2JPc3vbaNcFdi2WyU40zLBj8motGFB40F+5GDmKXDpp5h\nMhGdCe+RhWWGNBszWfwP5hlW+ByDysAXbl0FAGz7FmZk5zo1W/BZGvWP5BxBV2PM1mnnLRvzsWhv\nXrMa3Fdyzc10hIMHYjCWWPnZO5xgzpZ5Y/kpAuqK1lWDLJdnYrNyVNbfDxVDy0MnkGvf6i+hHckc\nhoELbxHvWwutzQIljxHMLHi+nC8uJ8jZFOLHFVxHJjolb6NVJfBy0sUHJt5JZGHklYWOIZvstK6g\nmHd41nEZPlyOy3E5PjKeD0+hMaByB004xYjgn6irYW5LhlxtbgBUBUIToUok417T8mk0MMiL0PRP\nUbJ4b5QOzKtyvEbtw7wjAB/7XHontldrGC1JRBlLO/Dbfw4A8OWzUxy//6vy2f4VuOQF+InbYlH+\n218xkJMIY2Ql2KeadccDIo9cioZGkIl1rGxxF0eeRkkgifINaLqMca6Q0H3ukBwkRwaP91w2KQwC\nqLIyQ0nuw9Rdxo8Re/BeKtf2nfk2FKnOa+sUIPil0w4wbcu5o8CAkYvlnRjMZMOE0+F8uybSllid\noI7gEZpdN8UFnmI6O+M9O2BSHOH2EsxQrPVtYwsfEAptT2ZIiIFYJGgty8G4lvtwrRaUJR5NMzfx\n7vcIb98JsXQkS/RBIh5Gz/o+RHu9F6KkqEtlxPCIC3E6BTT5Chf5u3ExQkz1J29gwWwJiExXx7gx\n4GvgOgip/zmCXM/N7QzvErOQPtyBziScMSyNmuCYOSnoGqNBzUqUZRvwmICGD7i+XJtGg5w6l0VB\n3crGQMUKSGpYmKfk+USNmpyRdmhBEQMzyLnWVYE5n6/SGr2QazKtMCNFnuEG0M2zIhRkXHoKl+Ny\nXI6PjOfCU8hQ4R7OcXc/hZmzb/5pBToKiIYVEvICqMaHcsUKNFNJHOV1G03FzsjzOSrGwPkwASjN\nVUUHMA7JRMyy2k7zKZgud9RoCk1r3OxcwdEDYWdaq1OYjliK1S9QW8H8OjzGrO0mxEa9KBGGsBkb\nT/QMZUIEHXvbjcLGmGSfGhop78kySpCDFgaZk7UdIGHOwYGFFktzTRihoVc08B0cj1k6pRKxb9/F\naCoJN3vwCnaPhpxjDynxBL1tG8xxIqXEcx4asD1yVmxswGYdv1YmpsxT1fUpDFs8jIMRE5tmiJT6\nFa69BKcnHktkztBbJUVcozAj5DtnPsTpaPiKcnvVCRzmfkpvhtaSeALvpwVSJizKkjmQpobdFY/n\n2vISirGUlJP0GHEl1n08yQAmbm1+L04nKCnXNg88zE+EFyE2PGibHbbRCjxiByZ8NcrHNiZDmc+j\n8W/gaUqmo1IjYyemQe+2aRRMNkF5hgVSYKBKNNKI+S/lw+KztNkkBqXRpgdWNxWMhVScCqHYsJak\nNVyifeuc16YtFGQHN3UKt5E59OwOUkoSxvHpBdT7WcdzsSkYGvByhVGcIOLLMfJmF/LrpRtjSmCG\n3h2hojT8PGX7a/UIQcJJDz30OyLSkSznGH1TOhwPjDHySjALx2SJvndvghd/XFz/W6/8FNw1vlhe\ngJUNJtfqMcpF8vaeuJ+h6SDgxtNqm+j1iP1HBpNdmaNeFyeFuG0hs/pHcYrKlL+3LQd875DkNtyI\ntW4uqsJSsBo5RxYUaM0obuJXKMjaW6gJdjx5CTMSd7x17xrOPdlNDXcE15KFMhqXiNbkZbvvVrjR\nkWN0Ima0DQdFW1zqdbvBKKKIyr0xYnYJqsRETUbs4ZRJxGyI5S2+VC0HGanT0yzGOunDrmzfQMCN\nakEJZ5k5ugQhTRyNjC+b1ViYuUKQ4noj7LT5EhLabCUm1h1xxffSFM47Ug3I3RBjKoPhfALvhlSg\nIr5gc2jMhxLyTLrLePNYfh8MYlxXMi8tu0FBtzuiupOpjrFsy1wcxhoGn3uF9GLjLBcbulFCLUIt\nU8Ni8nhuGADkXrtNgUM2WHTHMvf96z3MJ4THFzkMShe0mw5gsZPScVFANuKMQC4zbbDVlvt0bAcJ\n4djjfAJN9mutQuS13Pezjo8dPiilTKXUG0qpX+H/X1NKfVMpdV8p9b8rRRD95bgcl+NfifGH4Sn8\nZQDvA+QDA/4LAP+V1vqXlVL/HYBfAPA3/3kHSMsS7x8cY5Y0IOoW6WmCYiBW5ezhPmIKERS5jSld\n5eK+WKsOauwvOuB6PTTEGGT3Yrx/Lsd4OisAJrN2j+UkffsAb+7JcT9961fwudek8adt9bAa/CwA\nYHr0NoakP3vwoezUjqnRpvX/xCBEj3gCPSvwhH36WeLjZCY794SoQa/xEBL91/QNmJVcx8B3sWkv\niFPofmoTR6dyf6NTIFVyH0sncwzJ5uyvtmDuiFfQD24AAHremzidSDKsHq4CHUqZRy2seYJZ+MJS\n/0JP4d0TuSez5cCay/m+ejdGTKvbPBhDEwq+aUYXBCHFmN2XXoXvfldoyZ48SNClCZikYyy3b8l1\nnBwinMlSO2TL4dzVaJMNOaxbF0jOdPy38B1yKJy+kcHsiWX+uQ0JE+5PzmEQuagmLg6J+Ou3cvTp\nLeZeG2Et8xL5LOklIZ5YDAPeP8cBPU8zDqC78pmOsi6ShmuO/G600cJGQI9V2xgeHPFnA2W50OYk\nNR9stNmd2YEDbcpz1xMNrytYiLemCbDHZ7KAXec9tFienGQlPCY7VRcwSD14dDrG6Eye+4Qs301Z\nAiSWyawCI4axuXJgBUQ6Jjks4kF+L1H2P2t8XC3JLQB/EsBfB/AfUUrupwH8eX7klwD8p/ghm4KC\ngq1MhNAo+tTcWzFxwhbTUalhnpMnz0tweJdMOalMyFJj45jx5FVUSDtSs/d7LSQUcS3yDsbshjvn\n796LJ5g/Edfqg3c92OwZ+NKtO7DI2xd/d4RHb8jDeH0s9PPXgwBOxGur5tghOUk+8GCcSqViMsyQ\n882rSlnYR1UGhx2TvbGNHmvXvdBHtM6aNV3R81GJu4VsBCfnCRJ+z9EOagJz3OMSq125194Ntuw6\nPXh0/YfVGb4cykaQ+wFeGMjPGRqMWcc+pSt7/nCMx4vkQZlDu3K8x5MUL7HNelLEsNji7VhiA1Te\n4IMzCascc4SKPJbtSmFrQ+Zrb1biCdmb5tw0T+JzuAbxG1shCpLknHzXxvvvyc+Tqxq3mT8xSV++\nvWEBx/K7PNDwLDn3eKgvIMaZmyNvZI6GMTEGukS9KJM4wJRz6+YaU0OuWTvVBU5kpmRe7iz3YL4q\n7Fa/+Svv4dCT63+7HMEg3qAgXb4yGnhUiKrcWqi4ANQdEyZh4e5xjtBjDwM7f5tSw2cviWcGqBK5\ntkJnmHOzPEaMnEzYCwBZAAs11+HxZIKCuJaqKlFQVMgyIhTNQmT32cbHDR/+awB/BYvOHWAAYKw1\nESrAHoDN3++LPyhFX/1/tMIux+W4HP+yxh/YU1BK/SkAJ1rr15VSP/Wjfv8HpegdU+mTWYGiNEAN\nFtQPSzyiw9NasnA0Fyt2/HSGb9LlXXT11brETVYUzkyNFSIIrW4GZ0122vPpBPsT2f3vUmKt7SrU\nmXgEZxUwprK18YlV+IToLr38Wbxz/3+Vax7S5WyZWO2Jd/Cq5SFqpMKxZAQoB2JJRpMc22x+OqLG\nYYsdhgCw5rroUwBmw/Mw4N/mhAPXLrBN0Y8lHWKNCayRtnBEKbxJVmJC1GfdkfOu3FR4Sr0Jz165\n0F1cbTmIavJP1AnOSKgyGcr9H05mULGcu2hyZAs2M2g8JfFIbVrY6Mq8vPoyUaWJg0OK6Iym8wsv\nxogGOCTa8jA+wSSXpGtOSXqlKsBh5cNMQAcDx/glRDOqMp/ZqPsyB9Z18XKu+1PElIPf3Y/RZGIR\no67CCpG9Zh7BISLRatglqWN0WjLfa90B7HOqPM8KXKO3tbzewqSUe7HJq9l1V7H8SZENLD0fT39Z\nQqyh9nCYEpG64FzUDhwmKFtuC6HFLsmkwDml5kfxU6QJk8OpvH7n1hEKYlqura8j6BC6fDTHwT4T\nunOFjGzOATVWn+Z76JQyP4FXoaBUvfY24Uv+HJP9PTT1j2Z0P67A7M8qpf4EAA+SU/hFAF2llEVv\nYQvA/g87kFIKlmFD1zX8riy237Qa7EQywUsdA+4mBVXGu7i5KZMzryX2mhUxpiReeaFjww1lUoP1\nDtqnTwEApn+OJKWIDN329V6Ep6eyCE6LEl97857c2O1vo31HSDnbLR+rWwJ6GhxL996Xd27AZTPC\neqGxtUNREHcJgwPKzicFnj4peJ1s0/UVbpN5aVnXGHAR9zoGIkqnayoM6SiE6cs9n1ePcMJW4LWB\ng05X3Nnx8BArnoRNbZN5BrMNm1qERjFDV8t8dhwTESsqONdwFySfrBGWVXPRi9E4CsaC/6Rlg02E\nWO+YsAiourkm57CXJzg8kJzLfmIiZ/XE0HPs9GTBnpkOmmbBV8gFqmq4bCP3m/YF/2Gn+Wk4R78i\n57hRo47Z8bkic9HMPRyeyIvyzpMRbHbVXumuo39DXl48fojespzb5gtU3H+MTdYI/a0e3h3JTb2b\nzXD4WHIiLzbrSBlKfPJFAoWudLG6JM/fL9Zw9iW2rf/GP8aUojQl79kygNUVuadO5MMiVOtwOMaI\n13yEAiE/f+VVWQtvxVN8lqQ3dtmCTTDVfPYAj0liq6t1nLDjc+8euSHTIXyDLGJti1UOwGjFsIzb\nAIDAbjBS8qyfdfyBwwet9X+itd7SWl8F8O8A+JrW+ucBfB3An+XHLqXoL8fl+Fds/IvAKfzHAH5Z\nKfWfA3gDwP/0Q79hAuhqbEQRVnzJGv/8Cy/gFjPHrtfGco9Z/dUIJROMn18WAY3x4RGeMCFzxQrg\ns4FFJwlaHfGjBphi4InbeXVFdvDeldv4HMOSr99/gusUlPHtDZiNJB218RDhokmJ/IQTf4ROLBWQ\n0LfgUx7MSQGbru2S76LcYu15Tuh2fxlrbPjq2glMhke+qeEv8BkEqJiFjWV2ibb726hW5RqWei3M\nzxr+7MDg/c1m4gJ3zXu444qVfGL2YRniKVWFBeucCtteBweUlC9zZshRX7jBltJYXREvLLYUXr0i\nFrid1TAXHZMzSqu713CtQ0ixPoEXi8Wft9vwE3YJeoCnFx2RYocihGixXjWwFRrKuGXNe9j+43L9\nrff6uOPLs35JU7xGHcDsUtLvs23cNuX+W6GJoC/PLEssOAwtFyzKnRFwSNCQde5iLZL7Wx4nuEEp\nv7VWH0OGOSXh467nwi7lmfhug09RknC4fQPf3f2unIPNYR5cRLXcxxUvQOWwQlMA/o5cZ1Oe4urq\nC/KsyKGxbAWokwWX5inMU1mH8bRBTtGdwZUWeo5ch83msJOnFUxH5n6r1YOuGUJnVzB4VX5/dLR7\nQa7zrOMPZVPQWv86gF/nzw8BfP4P47iX43Jcjj/68VwgGluGhZ+J1jAJPPxkV3bUrTBE57rs7J1w\nCcjEAumRg7Pi+xJbANB3biCMBfK8vr2EaE2O0Q99xKS3eXmWQZ9J7LhoKNn+tAn76CoAwOpYuBIS\nohuaKDOxsIbdx0ogn7m5RkLRaY6ljngBaZHBDBYMUAECisK+HLjoH0sMuLUj3x+VKWwCMazahMny\nVeB00CzLbl4w+RTVHpyBXHvQaWNKkZFxYsBbknkZHVYISdBZphJnJkYfy58Wyzc+fg/BY2Io7Dks\nW37fhD5apAQLmKD16xpdavatb3bQ78hc3Ny5Aq3EU9DpMWaJxMZ1IZ5SZ30Vn/wM0YZ7GofSeYx2\nX2OtL8lB5Yzg7TKuJaIxCIGG928MumgbMldr4X+IIP3vAQBX1ubY8MULK0nyWs9LuMxGX/U0WtfJ\niGx78NkQ5Gw4SCg5qHl/1voAfiZeR7SlsU3v7d/duYnAF69Bt30wFw1PL5CNFXQp8n9m0sXyNcml\nvJyewf2GrIEFHL0xK9RK5qW/08HOiqyFz6YWEooSxfYnMCNfglvIMyh1CmUukuYGIuYXQsvHFpPN\njq2wyoavqi95hLbqYPmqeNY7/St4MZH1/c3TGLOnch1GHUEp5qnwbOO52BQay8C86+HT62vYIWfB\n+sBAkFJS3TahmTBaX7l68SLUrNtOWwodLUCZ1YGLiJBfjGP0mKy7vjWAbcv3hqeyqNrHFcy2uG0v\nl5voXlmobRjQqUy8zgKoKwQ7FfIA3nz7Lvw5p65yUYxZ545MhOH33f/1Dfl9SAn4vuEjYa+Bb9uw\nSJbhuwGCZMFrIP9ORlMYzIB3lAO3I67xLI1RBOyrVzNUVJSymRlcaic4mcq1W0kXU18W7OlRgd1D\n0W78fLfAiPX/gDBo5WUXHAq3Osu4eo0cjmij05YFO7YDhKQg249lE7o2u4JmSf7eSzycEwjUtSzk\ny6yIJC6Ol6gCTRh0N2zBYVa8zA7gQf5evhyif/qSzO0bj5Cfky+ABCrVuzHcQJ7ZlWAZrYVCiqlR\ns4HEnq/A8VjFYfVhnKcXHBCWDyyTp66pc5gEDtm6hEHik8XmpbUJA7KeVJChimVut9c2kFskSaF3\nXtUKHvERLbTRIS+CHQSYsBJjVhkGvoSFC6KaLAdqHqTtBTC5XlprbUwS8kGoDC2C9r58WzZpJ11B\nj0lJo/Lw4bGEWN3UwP5YODvPp4dYiEw967jskrwcl+NyfGQ8F56CagAjAQzDxiSUXXKltGFSPdnI\nkou+eNuo0QupqccEkG5O4LA+HjgdOCbdrKCEmojbvex10N4QbyJ5gS53PMQgEAulN67CWPA07L+P\nJrzFEwJhnwy+jbD1RHYXw6FYIr9dIrbl52Xbgc1OS2UYaIhkdHoL3gSNiGVIpzFQLFSQoza8dfme\n9xb76tsOel25Nl9rVMfy2UHXxoQlzs1uB3PyIays0OrEG4gNSSKeV/t4lQS0j5oDHJ6L6z9olVBk\nIVplyDAvbAw6Yvm67RBLtXggT6M5olNyGWy5GB/LDYxMsZj3Hh3g9m1hrHp55wZu0+ru7o6xuiEW\nrSraQCzX3xyL52LbLlQhn01zDyMtx+vmAfwtNv4c7WJrnXqaD8S6hq0GlrEI83z4pOYznTZScjnk\nwzM07AgtJ+wsXPLQnC3UujsIaXXTpoRPuRfHXUaxEE5ZaHwMZ8AKWajGOUyf5KnWGVpcn+e07Mqs\n0IQkgbU1THbSotRwKQWnLQOWL9dvUAPEnFVoKDTkqRBOV67HPAOWqR+5vnMFGyQFjtjZ61kWDML7\np+UI/ofSSDY7P0S6JyGDafnQWBDMPtt4LjYFrTV0WaAaVsgI8Yw3WwgIS21wDoMgndLM4RHpUjcy\n6WETol4wTukGIE2b4aoLVg8r8KFPiBs4ltq+cgdAW9xkbzhByU1hWGj0ntDdazUo2K14fl9OkpWn\nUKa48/nchDUlnNWqoLDorjShwXZvXntQN9DcsJKigkH3suW7iGzZADy2ypbpMRye1+pYCKbsyDNi\n2FNCYosACXED8Zncx3T0LZw+lDDhaJTjqSdx5pt7JTSxDgMnwtVwQeZC7IYBgLRyKm+QKdlMnacG\nHlt0Z3fbiAlwOjuVf+8NjoFKqgG3VzJkj+VlOo4TxK/LdbgIsJXJ4n7MF6FRHqpa5md8NIXLUsTb\nx38T/83X/gkAYOUfJhi9dBUA8OmWvBDNkgf7jBtZXiEYyealdYyKdPCzpIAmD6JJ33lQ9HDOXoVm\n7oIQGLimhZgANh0XcGcU0uHaUkEFRXyLMavgkncxSzYQz6ktekHrbsPMySWaWYinMkdObUKzTdyy\nA4TW4rUjm7du0PBVbMwCNdvIVVnDWAjdpgUCkMKdtPWGaaE6ZFjlWzjkvT4aFZhQp1PP0ovejPoZ\nxaQvw4fLcTkux0fGc+EpNDWQzk3cn55i/4y7rrcNY0V29oE9gOEu5LpsZNx1a7pOurTRsNEmP5tB\nM/lkFgoZVYRR5ZjWsnMnJH41jAwBlYPLdhtFzorC6RFqJRa2eOIiPRXP4nceiCz6jWgLGVmEMS8x\nIlLO0R4cJowMlcHx6MJy760c9X114XqMck5ikbYHRUsIfifKA1TsorMLDWddvlee1cipYn1eViiH\n8pkDV0Kbbz6tMEzpxZhPccDGGF8Do7Z4AueugRZ1F6Mt8VCKB8dwfSLi3AbvUf/g6GSIMcRarWXn\nOCHcepox8z45xfGTN+R3ahtTypy9f7SPzpShQtSCZlJxIQat7AQZG4Mi1YNFXcW/8z/cxUOKobwb\nFIhyyt7Z8hxfuLqNyZ54Mf2ygjU75AGBjJDn87SCz4aucJWUZyqCTabsaTFBSfEgy7RgsKmoznLk\nbIRyWZFonAw1UYNlDVjkLIA/R6BJsFrL9VZGjlPyTAybM2xo6bo1PAs2KfkKy0DFEMWkBobWBsqR\nrPVZGKPLhLauK4wm8vsoOkT1mFwcJG6NbAXDpcdXzS88jKKeIGO1wzEiFOpHo2N7LjaFUmkcGimK\naY0t5gbKqkKq5YGO0zG8iJWIzEcZ8uXVsmAq1LAYFx5mGXyyNymrhkG+RsfP4BMIkmi2vGof8YRS\n7ZMEqbVQ2GnhgDkDo5rgd7kZvDeUOA2OhXUlsawBGy5jlzg30eLiNhrAxIKtl/Tzng9jwWjUWJgV\nkts4PxwhpyrSaS6/G8cTEBOE2rVhcMFXeoI51aJmTYGyIY6empmuNcYslw1Nqw6+t88uyAQo6T5O\n0zkOtmQxbZNHsAzURSefMdiGyqWEGJs2WuSNbK856BLPX7E3ZDnxMCaDdQUXTyfizp5mJVL2XXTL\nHDXbgRt2J2qYMGuWGd0JHFPCgF++/zrG3+GLVzb4u6aUA9/bkjn8y48ShFfkPtpxgDHzHamaI2c2\n3y5MJJxbZ7RQnkphsloF24GayrPMGxvaJadlVFwYn1IzB1KuIh2TddqyEFPnMTcDzLhRLfQqdaOQ\nc9dLcmBuyGYRGG2YFQ1AXqC5AMmxT8LuoOyyH8dZguLchm0b4Ux+nsc1JoVshmsd+X7q13CpFTqC\nhUN2oo7VJnRf7jsfp4BaxNbPBmK6DB8ux+W4HB8Zz4WnYANY1gZOkgylOAR41c3hkCarLoGSEmO1\ntqDYBNMQ1lnaMYZPZGc/aWKs0L1GVKAmE+/gRRc9CKipbos1OHryAMVCrcvqIGAG38rHqNrigu+d\n+ZhQR2HBUpHlLvYS+d3SqkJq0nIhR04cgtdyUM0pDMLEkoYDg/qRrh+gT26CxjAQN+T7I8Nzv7t6\nUT+vMEFCC1TlDebM5BfNBCMmz3xPLG3etFFbC1bmCjYfcV2WMEgM8wgZokquv2Amu2v5cNkBud0H\n1mPBd+gXWtBHEmKtuQYsJk1ziwnhxkLIsCRJuyhpjSZ5Cp/anBPbQdtYsBUz2VcXMMmIDdcAMrkn\ne+QDtPKAkIcAwD1yNnzntoWvDAVAFIcJykSsp+13UA3k/ma/fR/GgLRpntTum06MLBXLPegEqCBz\nFJspLHI5OL6LioQkXsAwNhuhaCSRmjUlRkyOnuztI3JksaYERRlWjZI4k+kMSKnA7SxXsogBNDCh\n1IJvUz5bJTWsgGu6mKNk9+jB3vGFJzszumgYNtSUhuz3fHQcubajcIrdjPfROsBkJEA1T52gMDmf\nC0KDHzKei01BaxEWrZIcKdGG1dSDyXJMWQ/hJxQfQQXF7HuZ8i7rBikZc/yphbwnk9MdWZhSOGz0\nuQAAIABJREFUR88cd1C3F7MiD/PeUYaKhKI3uiWW3KsAgFGT4N535WF8+OE+5iFdVGahn44n6LMj\nLfvQh9uTxVZ3bfT6Eju6cJCTIWeR4YeRYkZ2oKIpEVJlyjJdVOxVDiEboRU1yHlP8yKHSRGWrEgx\nYhiENES4JIs7H0oYkZYPYTNLbZdLOGdIBFfIPABgWdm4wpxCb8KekjJHPZJj2RMLDmnBt08neDiR\n+9g9ScB9DBlXmG4NwPcHZXCGci7fq3KNOYVMXh7YiFK517tEdHp2gIirz25MpBQsOd//PWpG3I9L\nS168u29FuLUtIUU472GzR8LTPIfFDtX30wT9R5wDSo6Fto8zlyxMbgSbwsPZ2EGqYs4F4HFT0CRH\nnURz1CcEpx1VOCFVyDsfnmAWs/pA1SsFC25B/Uj4SCw5d5S0YVqsapg+DG4QyZl8f57EUBQhPp5P\nkGjZAOskh2eQj9PUUCQnnvKzzjBGSbBVENyAFcn5Zq/P0bAHp2im0OWP1jp9GT5cjstxOT4yngtP\nwbdd3F67BbfzGENyKs5UhpQCGcHaMtQiCVbneDySXXdKa71hLsHakN0zXNKY2WLZ/HQJk64k3VI0\nmCSsAgwJnY1MjCaLHbwFkO34/OEE335XfLQH0yE+FbIDcY1JpGQTQyXnKM+fYETZsTtGiIB8EEaj\noSneMaS0V1zO0VD/0vQDFC47Ma0UbXYJ5qTwMooC47mcY5gO4btyjkpXmNl011seOlq8qV3yIxyU\nNpyOuNe6k+Maab/NfY0RTUAYuTAIx92j5S9UiJyal9+6N4K5Kh8+HyuAHAOZob7PsE0AUTtO4Q4Y\nahQZamIrarsBGJpMOgYmpHSrqEo9jXNYWwJuWjaAgGI46vdCculkVVypj9Y0DktxmevBHA6/l/oW\n1BH7MdY2MaCwjU9tS9MMUGeSXExbDjJ6obN0HzUT1qm2YLfZB8E+inlSY3gm53g4blCx9+OkGqFL\nK35Ay97oAqfssjzNR9ipGNKZNUz2YOSGhZxQ77JYJP5clKxKxWUCFRPrYjnwKcqjCheHVDEPSSs4\nCTTaLZFT9PoBZol0rua6QMMeGq0sKM65fkaSxktP4XJcjsvxkfFceAqNU2G2fY4rwz6CVHbPVq4x\nm0tcH9kW0GIcZUQ4HD8GAHzviXQybq9s49UdSSh96O2i90j2uierJZbYGbjrKTS78r03PpR/P9dr\no7MttWS/KjEcSz368HiEp0pKa11Hob0plmLbEgv1j/b3EbIhKlA2+tzxJ1mMuhHr4PgagSHW6jQl\nldzxCRawibV2Hw9tsTrmvILrk3qNOICHszFmFFwpAbz8opx7PB7CZnddaHUBSqidUcLMKA7QOC7P\n8XncfSpWJc4NVOQ0CJwKT/n5AXkDEjNDw1LuG8ZDeEIyhTQpMFh07bUCtDKiLNmUlaXnuL8nzyGp\nz/CY0mx1lqNYJcfaZIpHrO8XZCQ2Qx8vs4RWOQ0Clkbr34vIZThMGAqcxxnOrsiHdsYG3uAXToZ7\naIgmvW1GOGCy2T5mOdh04DGW349s9HJBW+Z1jU9uEPLcqtGLFslrohhTEydUlQ7rGPcKub+50aCm\n0q83YsK4rEDGNORmgpqoV8+1YJPEd5pWODyR9VDU8hw3+z3oTLzCZDhGnC+YwTyc0JMdDg9ROjKH\nayG5GawQva7gW0ZJF9/7p5IQnsQxSO6ERmmgWYj1Pdt4LjYFozYRTUOgbWLlutykZ1oA67VZYaHF\nzPL8xMCL6/ICJfviwp7nMTqWuMzXr34JMMk1eE2jSzzBC+4Uu1TKaZNkZasAXCaq8nMX+3wws/k5\nrjFc0b5Gt0egDtWWmqGBs0WV5GWF7UquWTsaU0KsW0vZBR5iuSuhweTAw5FLpeK6xAr52OpUYbIg\n5GBmeTY8wXQqv1u6FaDLZJbRjzCJmSSzUszZ27HuyJwUS5/G3GUtvaMwZ3klzRpYVEG+b1r4MtmD\nl8nb6OUm9qnWXaBAmlIluV0iZJLspTBAxtDFWcioVwpmJC9KdaxxQuKQVCv4BHIlezMUhhwjqeR7\nd1ou1taIXWibON/7fsXh9xuKZClxGODW6lUAQN8rcDOXTe313MBpIxuOUxd4MZRNdBSwpr/URutE\n2rOdIIdTEjZ9w0CHmo5Rz0BN0R2D81M1FW6syPN7bAA5WcPzsxQvrwpN211HHlqZxVhfZE8bG6Nz\nYkdaOUZ05y2t0KIaQuEu9DoNuEsMiYouVsmT36l9hPH7AIBt6xqcLVkDHXbMFs4IPa6LN05/Hefn\nB3wmGhdxl2mg+RFJVi7Dh8txOS7HR8Zz4SlUVYmT0xO0zTYCW6znZK1EIV4piispcE7+flXAJy3V\nypLs4M3TI7z/PUEddt4zUBXUd/jqCUz2rm+vmvB3ZIe9Tsos85oLm9Jdh+kenjyQkOGNUYp1dsOh\nY8M4oNZBJN+bxU9RFGweitbwhHDsaKyQkvLNGHbRX2Jmh0hCvw30D6gV0J1h9Ei8hqIyEJOExF5g\nF9IU7WW55yXVhyLMWZ2aCCljViYNZhSJqeaUD+sDJjsD29UmDNbNA9gwWAL9hGWiPRJv4oTfP5hN\nLxJZ1VDD9OQcIQKEm+QFcFtQLuHkUyIlQw/lnFJyHlCdscRpNjjdl5/PrBLjOWG3RHTqqgWDSEg7\na6NLrwEmgB9INhqkwutSHu9T6x3slY8BANN8A6upeG8oEvhzwr/X2niJCdsuuSBasxhn1qIM2yCV\niAHB3ETKptt61iBkZ2PGa689A/aY+IfRBBZ/NgwX45mEFT4Rtrc6q6gjitpUDZ6W4kGo7Ar6bGxS\nnoZP7c0WBXW0mkER0xBFHlqU5jPCEv2JPPekHcNhaF3b8v3jBzl+eyaUcP/gd76FGRuzNL4fMWjd\nwCAF3rN6DEo/Y+fUv8jhWJZea7dg2CZcuom6qOBRZCNpcrxCaOef+/N38JWf/DMAgHJFXOfsjXNM\nXWoVPh7he+9ILH7ydIxzkon8+EtXgE1ZCZsvCUde02xjbVWOcTY/wcbSHQBA/4UvwXfZUg0Xi8BW\nk19x8+oSxssUmSkKvJZIBnij5eNBTVblaYmrm6xKsOW16Qa4o2RjKsMMIYlc3j/IsE3X3uoQvNQJ\nkS76QNwE7xCu7Pk1XEPu49qndzDlC5mxR+DB+yW8Ru7pQarx9X3G+LUJiyIiZVVhwCy7RahxhhqW\nko2w1zJxziD+fBzDqxbip8VFz4BPKvM8S5ByflRjoc0Yd5ykMAj0afcj/Oy/+ZPyHL74GgDg1noL\n40eysUZ+jAk5FZe2bmB6LC3AneoARcGqDEE8jlHCvyFqWNVYodVn12VpontTNERh+rAo6lvN5XnY\n3S50HnKOS+iUWX2/g2osP1vBFDqXtnNr4ytyLGVAOVQ6rm2A4DJoE//0ocz9G7vyb6ddISIgq1fM\nkdly/y+srKAiF6Yz+gC7sWwWm55UbYL1AQZtwqCzEhVDrHgyRTqS3MeHbz7A/hO5tsMD2YxWghRF\nKe+LY/t4ciJWdO/sFKfsiRn4JlI+96++//B1rfVn8UPGZfhwOS7H5fjIeC7CB0CjaWoYmYEoEuvx\nQqeCExGuW4zx8y/TOt6+hlAKBqhPZU+zomNYR+xNbzr4Ulus3HeWR/AOZbd+8tYx7G8JgeAslc66\nm7duwfX/JABgy9U4G/8mAKBXfhZwxWoqw8CFp0AugLOTFPURL10B533Z+a3Op3GHjShdp8CVdXHp\nf3xdElLeSy46xDSYjQ2LXsXOi1NgJslRN5Dv+H0ftSHWJTkcYkrFZMfJgHWxxlkxxkqxwAKID/zC\nZxLkhzJve2dTlE/oopaASUKVVc9AQ2ZjhzXsZpojZ2J0lORIiIIzAAzYMFRZS2izmbNHTouDUY5T\nJtHgFzCJLbGLDLNSrt8cJfjd7/0OAOAlSq7jz/xb2PiUzFsxdPCQSMarjgXdJmbh7SGsHj2kDpGp\n9QCK3pGhU+hEPB5/JYJixci0ImAqz1ixE7EZP4XVFpo3lSkohiV68h2Yhsw50jOo9sv8vLjlZvRJ\nXMiDWwpKLTobNcwxm9vobeGwxvqK3N9634TbkkpUq+1iTnyH7W6gVYu3aFKCzg89eCYJeZwc6US8\ng1ZXo2sTD/LabWwTIr+/LA/BmYxQduW5z+dj9CuGxZVCq0Uuj7TAjLqZzzqei01BQcFRBkpkF22l\n/a6LLQaXP/mVO9h0ZFI7Dw7RDN4CAFSHlKSPTaTffgwAWPqJFaSFVBz6ezFmZwKJfQtDPD1hhv9M\n3K9feHEX1/8zWVTlgY9vvf1bctz2Mu689td4be4FCd/Crap/T2i2T3KLW46LL31GvLPW/ADXPVmE\nO7fkBbTXgouYWyUzBB0po0avriB5IK6hOZOXzbEj1B2Zi+njPSzRHS6WB4gjeWHPTk7xMBV3fj2S\nTdPcrnBE9aeN2oPNRZzb2YV6U1Yr+JYcLyVefpZlMBkmJK5Czjbjpc0Wusvy0twKu2jvLHHu5fvR\ngYX2GVvSlY8TxrXzPEVObcO8bjB9Q67pvxy9DgD46z/9OewoCQnOj/bRoUJWo1JYrGA8io+xFQhJ\nr+nJ4s+qKconEl5Y7hI8As5UFaM4pADwzIAOF5qOsvFWo12EoVQ4zKXeBbCqPHkIp03i1cgFsu/J\n7w+/AQBwNxQsn5sGUuiGiS5ch00CXZst4mMvwYw155v9AQLCqnU6hqfl/n0vRcWweHYi4kPWKEZz\nRSxdmZ4gGcrvUZpwWvKidzeXYSj5TGtP5n5vvwHYM+HVNR6ZDP/W3Au2r733jhE1P1pA8LHCB6VU\nVyn195RSHyil3ldK/TGlVF8p9U+UUvf4b+/jnONyXI7L8Uc7Pq6n8IsA/rHW+s8qpRwAAYC/BuDX\ntNZ/Qyn1VwH8VYhAzD9zGNDwDI0lz8Z1WyzGS8sr+PElcvElLqwOm6DOc+QfvA0AcEvKtz9NEd0U\nnEKQfAouhMn2al7jKTPu3djG64W44MlT2alP7AD5fXHbZpN7+PD/Fkty5wUDoFYirASaDSgXe6jC\nBahGKQtf2JDw4E9tavTJ0GwYGm6L8l5t0m2/pzHcu8/vmbBfEffSfS+HZvgwPRNr56604OyKC1yd\nFaC6G5ymg3Va/7qKoJmgiuZyjvqtFC2qOc/HOUB5ctcy4dL6tyIPeUo0EP/u2zbWlmQ5hB0b6xuS\nBLvRXsX1HUnsLUcWCiYgU9bu9/tdxBQyUfYMd3fFC/vtZo7dE5nPDPUF+Cgjh/rxNwJEm4KQMrpr\niMcMGQYB4nclDHBqoLZ446zHu2kJEFfQKA1Flu/sgzMUR+JBaMOAvyXXrMcC/a1mQ2QMS1o7X0CT\nfgAAKIdnqDbJ0bj9EyhTsdLzPeo26nO0SbWPZgZ4C1c8Bwg+WmE1wLubYP0zxNlYEfKp4AYs1AhI\nN2d715CeyTm+9rd/FQDwwvVP4jrXVnZ6H/tvi7fS37oCb5Mhj3MGzybcnJDpdmuAjHT3WnUxIKGM\nX3YwGcvaSdsFyuGPpjr9cQRmOwC+DOAvAIDWugBQKKV+DsBP8WO/BBGJ+eduCqZS6FoWgo4sBAC4\nMqjRvyMvenetglkLMjHpvwkzkpgME3mRwus7KNntWPePUNGdU3GGMpIDBo2CTeFSRUDPY8wxeUOk\nLof1m/BCUm+PD9FocW2NxgZIarKo84SGAoGJ8H0DO2yBtbYsLHe4uJWPs5G4ruffYdz+aIhhReaU\nZoZrJAXp2T5SdrUlZxJnN6kNj8CiODfhspxmOUBJXcZW34Ye8cVrUcA0cS9yB0W7hkHi1tqqkLKz\n0clSBCy92VzQy5GH13ZkY3np5k241LVY616BRU0C2/fQGBS0TUnrbtbQDduTo6u41pPr8LIT/BZ7\nTd6LxygYgp2dSu7g73/nb+HHtFQLbvhnaLMkNxo/RezIhjPtNlit5CVU7GGAZcFdlk2vmaaY3ZON\nYH4wQsHuULfIURky93NuQrbpwc7lGEXzBEkif7eCFqJdubagtYvJnly/Ybwqx5rPUE12ee5HsKwF\nc9YmXEM2hSnPMbp6Agl2gHRewzJkcyt0C/WuHLc0H+LDr/0SAOCbb1LHdPg7OGOS6nw8xHwi9/GK\nncFpSX4hCE2Ac49aXnhtZzCZ+4naPqpS1sLMniMp23wOfZgddnM+4/g44cM1AKcA/mel1BtKqf9R\nKRUCWNVakyMLRwBWf78v/6AUfXkpRX85LsdzMz5O+GAB+DSAv6S1/qZS6hchocLF0FprpdTv+8b/\noBR9y7W07dXo2T4+5YuVMLAGPxKr4rVeg9qW/cuO/zTqiSQaVZsZ5NYGbAJ2mmqE7EzCi+OlCp19\n2V0Hr61i63XxJqYkLDlMA3ztnvALHpcJ7ify92veh3gxl93fDx3AoF9A9adK6QuGXA8OWqVc80pT\nw6iZ+FIVFHnpY/LlTS1cELbcWt1CSu8mM3LMz8VyNexe9EdDFNTEdIMcBTvyyrMRUvYfpFWCOevU\nk4MJ58q6oAHrLbeR0acxcuvC4bFMhQ6z3VskVrm53sE1Kkn3u5vw6f2YusbCLcrTFPDJN8CQwXMj\nWOw/yIoE7S2xnp+ZvIrSkg7Vow9SHNOaMpeJB0/GePm2QIYn5RRhT9z9UXoAnx7NmtuBtsV7sVm7\nb0IHpkG8RWYhpWucezasQOazt3QNVi7XZCrKAKCEZr9Glc/RUDezqOYoqdKdnR7C6Im3WBxJQnEe\n9GGffFXudfs1NOxXMZwac4ZebSYUl8N1KD4nxzQxiomzST/AlH08d/+fB/jVN6QK9uSAsOSNDVjf\nkOs8X0lh01afmBlaM5m3ZKbR7hMPwmpQqy4xNWWNmNUElinXXs4y6IaJaXOEwPvRXvOP4ynsAdjT\nWn+T///3IJvEsVJqHQD478nHOMfluByX4494/IE9Ba31kVJqVyn1otb6LoCfAfAe//v3APwNPKMU\nvacUXrR93LgaoM2Gm5vLBfyV2wAA88ZtKMbJynwCa1tQcWBHIpQNfV9iryoZwaJE2WBvhvEGm3n8\nGV74D64DAH7jH8huP5qOMBlK/Hb3TOMprcv5h7toqncAAHX9AgxDEIsGm0wsGND8OVg1sP2SWMfu\nygpc0qqluQtF2jSb1tU2bXSXxfLFc4AIVhRZhpCxYcWOy86qg84CK+EaOE/EqhTax4xexdwpL3IG\ny6vixcRNDjtj89A8RicQ65EUKZTN3Iej4fPc11ZlrpbXWwgofe14CqCsWlKlMMkHYTo2GpYwlUGt\nxqZBQDxJ4HThlGIR/TUbW2xua3SBX35dYv+MOIV0foR37i0SZ8vYPxGY+p/+N/515KRec5sADlmZ\nDS0W2KhrKPIf2Eqhasl1tIsMNsl9zbKEtcB72CTbNTWajN6GZ6KOCZvv+DDJ4IwmgmanaBOJ12Ek\nD2GtSZm5mt+DGVEfEzWudYlCXObclzmGWmxgByUuZLWLISbHch/vvv0uevQg7J5cezDrYOTJPbf1\nMtrLMt/dsoWypldU1PDoeQYRxWRCCzUh0aXtoc214Lh9FKeyDsNDE0fZMxIpcHzc6sNfAvC/sfLw\nEMBfhHgff0cp9QsAngD4t3/YQZShYYYliuMaDrH61dYqrKncpDpNYGwzm+y3YBTBRw9Qmqi0vOj6\noIvZb0ot/PzeLt6nqMfV1zpYi2XR/Mw1ue2/exLBHTGJlgPXEpn00btLKE5Iz23N4BhcKGQA0YaG\nRZ7IXuzgBqGt4f4IJslEQliIAz5ESzavdsdAqysPdFQ0MOiX52PzArwyISfhwFtG0GJSEis4tGTR\nZGcpLLbhhqWPibmg9pINSGcl5mRcPo9zZBVBUYYJk6FGT3m4YTHksZhBt9agCUvOZnO0COe1bQ8Z\n6+omDKg52bFdOYdWFlDJZ4s4gUGXuignACnN7rg9vNuT+353JskwVwOjB/LMjrIuHlDF6GfzElbF\n9mwLFwQvVbzQbczg0h3WeQXHk+t3EcLxWRlIXdiWnE9Ro7MpZygaiu02EXqs2tRlgYL8n9a0hNHh\nBr6Aox+EyCOKG8caFsOtGhOA+pc9hjv+gYVhKNf+RtzGvBbsifvgAd57JJWvs1OFVrGg4SOuoFjG\ngNWSwNcImOQejjJUrDisrrbgMqQFDWTYW0d9JMbCd2oYCy1NAOY7rLANZ4iHf4TgJa31mwB+Pyz1\nz3yc416Oy3E5/uWN5wLRCG3AahzkXo1RKdbKXXFgviB6jmr7CuCK263MEMglAampq4CpBZjk6V97\ninRN3KU33i9R0/18Wh1g5cfE+rtrgiv4E9UU978l1srtxDj9NXF3r/6Mh3Isu7x2Ejjbn5Dz0FNY\nNy2UtJRLQYMx0XNXBjk0y5ZO6WFpQ86XT8VqTZcqBFqKMS2nQsrOubPpEOmBXEcroAWLchS0rk3p\nwlyW79XJIQ6ppFynNWpXjpFRnTm2PDjscDS6NQwS12YG4NLiz1WBmFoOGVWia68E2H1apimyTdLb\noYOwRbe01Khqhg1EK7rQqJlo85wBDJbsvMzCpBQrlgy6aLWlbAkSu47nOVKWXK3OEO0u9RYK96IT\n07EUGmp/VPVCo9NGQ7KY2m6gKPOG9daF0I7pGgAFesp1SrCduTBaiw7UGRqqNZtnPpTHkObgDGlA\naPaMeIN1G/Xb5NxYuotB/SW5/9IFq6U4OJPvTJwpUuqbjt69D31dyt3jYxP5iZQcG2sMf0k8hOsr\nrwAAOq0Qmz25p8lqif6M661XoWbYmBQa80jC2LbDDl07QXiFHk0GdOl5TlMDdiDeqaWOUbvsJH3G\n8VxsCiVq7OsYo5kLExKfeaYLvajLZhbgifulawAMFUCa9fJwF9k7AmeenbyH3Xclq/31UYZVuvnv\njgu8/VcEf//1SB7yVwY94Jr8/ebYx0OK2z6IK2Q9OUY/eAklBVttJZtJHWhsknjlk+4aPtUTDEXP\n1Sgbdt+1HbiefL5oJM704w5S4jujvI2qlAx3UNoXbqLFWLdUCTJSjzdWCT8nc4/ThjmTc+zFBdSE\nUFoyWG91PJQUK0WsMCfbkGO7CDifXShosjzX7J0wAg0vkBd3Xs/RI96/shVqdq46bgGforANc9RG\n5UFXZCOq5sgqcldCI+NG3tSnSNgxuGCUrgyFPjfAaR2jp+XcU1Uh5KK30gaLLt6CuRoTCiCfpV12\nkLlS/XbTFip2uzdFgDonkIlgOJXVMBbX7k3RTMjBOJ/BNRfqTTUUsSML0Ro0S5jtfBsAsPLSX4AZ\n8b5VDwkJdRZKYM0kxKMTqbicnb6Op1+VKti99D5utmRdh5XCTk/Cjj7ZocKBj3Qs63t9o48okA03\n2ryC2anc3/D0BOen8qw/+Unp8nVrfdFqr+caSbbQ2ByhsyMGZWVaYrT3R1d9uByX43L8/3A8F56C\npRVWCguzskCfXXGuUUJ5pOiyUtSUdcfxY4B0Yw1pyabHv4vZV8VTODdiGLSeG30T4yPZze9WwIN7\n8vl0WazP/3k8wV/8hJjuu5aLPBQ36/atAoMB8RJWjKYhOzKt1o7r42pbdv7XvthH6yatblzDJRlI\nHQWYPybCri+uXD1y4FFDoi7HF2hC7fTQb8lnixGbiBIXDcR62l6CgsksY71G2xILnNW7mBzL77e4\nvys7x5jaCqNpDpuM10Fgo+eLZV4OgU5LrHGnS92IxsWIWAJfW/hwIXDiz7EdSagRDDowaXktMmar\nuEJCKEqSV5hRDGaUF7BJNxZ5vQvBsorVB9vUqOnRjE9SWDE1GUwbRSVWc3Y+R9T7Ps5ADtYFdVxQ\nHZsoWCUp0xz+soQm1tEYtbuw6ITJ2AU0sQfVhoNyLveRdifIyFWR9Es4TB4GN9iVqir4jlhm7c+g\n+HdVlwg9UrZRFOYD/Q6+9+3/AwAwPXgKNZdzr64FmE/Fiud5jopEQq1NmVcvbVAyeYx7QHGNuI/H\n+yioU/nhOxnOliVsbn0olZUrfRcBw2PVNVCeMwmauFjalLDidvUJHB4vUAPPNp6LTaFBg7hJMckN\neFRbMsoSzROZnPT46xh/V7jqvv1bH+J4keFPZVFNixhvUmb9imFjjQvvM34EZ42cgdMYc078aMYX\nKTKw+xvy8/3jKQqWrNz91+A4Pw0AKPN3kc0kfGgowNrzGtxZlpX5Qr0FZyjHTScNds9lc8q0i/0H\nsrDOfbmelc4WVh/LlBce4LCs17FrRBQgBUtMZ5MRpqeEuPaa70NYTRfHjyR82jspcczwwGQFIMhL\npATmzAoNTfGSllLYsuRFCMISbVYRjvcFwvvd7wDjSlzmU1XAJLHrqh/h1TvSB3F74yqWVuU8XZLX\nlJignrJt/WSEo0LCruE0hx3KPZ2ezDAZUz6dLduGNpCSKQnKQcoW7iofI2EXYDw+QEmR3YAtxNlZ\nhop8juNRiphQ8qi2AIYYrZaHkCxZviWftVSAEQlX5mcaDWQOx2UJk6GScWYiXBV3/fyJfHY57KJ3\nQ+61eX0X6vPy3B1zgLJgj8mEVZT/6y6O35O1chaPEVLgxkhqrFGI6Lp5BTuOEK8GbAgxywSuQQ7H\n2RDHX2ffQuhiN5H7fvPtt3E/kU3v7Iac7xOfvI1XrsqGtBSZSKiylWUNgn32RAQ2InPR5XkfzzIu\nw4fLcTkux0fGc+EpeIaJF9sdeLpGm65qXObQj8SKPfz6+3jnQ9k97xUJdukSLqTbkrGJd2lh75kF\nvkio7b//c1/B+QNJOE0/3MM3TsXzyJm0ezqr8fh9SZLt5Rm6TPa1BgmgyDVensG1PgcAqAlB/vG1\nbWxtkCzFTbDPXp1hrJFV4ho+fX0X4z7r/nNKi5spjlK55uFoFzkl5F55YRMvf1Yy0RXl8U6ngKYM\nWFUauHdKaTM1x2+M5Pf3RzM4JH55tODkm3XhLZH/ITQRskKjrRqnitRkTYgh0UtrhMn2lyN8aVWy\n27qr8fAD8VLOJ2PE52J1zrp7CIl16ERiJXWSIyOmoXIr+AJmxfz4Edy2NPy8czJEVi+jqI1CAAAg\nAElEQVSIFylJX5agdw3HMeHT+0tnISomh4eOCYeKzrEv5x0nCWw2Is3yEsOxPLOH0yOUc3lmA7/B\nWk/u68VNuado3cajoTyoo5MUXleOl84t5EyU9oMA5VSOsbouyWMfEwRHgiE4efgtXF8Vt7zur+H+\nUDzVf/RbUiF4szjGuBarXNSAuyFe3E1zEw4h+2uRgrEilt6ppbq2vlOj5cv6PX1/it+5K8/36fgc\nN8kEvr62hvxE5txk52iV7OH0gKI2vRDRjIreToM4lvfINDto93802/9cbAra1KjCHF7WQmeBlDu3\nkGh5Edov+ljNZeFdjZfxXktKPTHJXO/ZDV5ICP6pC7ToOoZfseBm0om3/L/kGJCWfDiUBfrHuhHe\nZju1+dhATDf/9IoNg/hy1/kiSsXPUPDWux5gc00W/0A7OCV6LB0PYftUmQoTnJxTxNWR6kPsW+gT\npDO3Erw7YafeHtC9RrITLtxffescJ9QqHMYZuiQiLV2F0VAWTVqVMFlRGDNMyFsJSPeISPmYWbIY\nVeqgx2OEUYQOF1ubdOLjgxkeTST0SbMD2EsSMmxt+OiF8iJkRgp2oqNiviDLG0yO5T7uzk7xwQN5\nQdKzGb73gHToqUJJ2n2fiNVS27CYJ6itAjkp9cfjXZTH8oLMsgSFT9IW9o9U0RynB/I80mmMe1PJ\n9p/PXDic274bYMrqQbEA/BgeLJuaGukE2YQ8iCXQJavT3Kmx2ZacgcGyb/jKK7AiCV23jNtoInZR\nhsc4PZVck0ES3yi7gZTt8obysXxNStK9DRM9R1C49odH2L0n6/fAk2OtvPrHEV6R+S59B8EuW7Fb\nDm69KuVJfX4Xo29Iz4/ZZXm6OUdpSn6p21TwWNUoimPogTyTTpXhpU+QquwZx2X4cDkux+X4yHgu\nPAXHtLDdXYGdNWjdoupyr4azEL9rGQjo7u3fPUCPOofGqli7l/oOph+Ii/vpqy30r8muawbrsFmP\nXzMzrPy/7L1nrGVZep73rB1PjjeHupWrc/f05ECK0lAESZMamyAFWTZs2RIEA5YN+JcFw4D8wz8I\nQ4ZhwJIlwCYECfIwaShQNOUhOSSHnOHk7uk81ZVu1c3h3JPPznv7x/edO9MDjqbIBqQScBfQqNPn\n7rPDWmuv9YX3e1/9nWJYeGbL5fmmnON/PUsYKpddFnwVo/yIxhhcxAQ1Cty51ViirbTnjinR3lOF\n5hTQnPfWc4scfUWyGf6C7HalhXUuaf54+AdfZKk2lx9POTrRqj3NHIydKb4GBhdf2GBTXZ7Fa/DV\n3xO3KumfkOVzURYlHoliCuXqC6cRXZWzHxdTQmWj7i62WeqqOXEiO+JedMzwjvT3sZtQ6cq1f/pH\n1tAYJ227SaK8mLO6WFWjXspOJtZIlHikuuON+qeUqyrKMwzPcQ1RoaQvFYtZOOeBtKho8L3IC060\ntiNr2ZypGvdyTSsOxx67VeWpuFNwMFW9TtthsyFuxSSMaOp8KZQUxWn5RPvyfLN8wiCXcWhveeTa\nX37TIiwrH2dXxrReRCyt/4ie9xGhdkbpbMolpXNfXxVNzOCZEYN/Ls/c373LbFN27r/2ib9A15Md\n/c741/mXvyPByPvaF06py1//r/4aAJWGzawlY9JJbJKSWkLJMwwa0s+eUvDtBRFnidznJz7Uppyo\nsI/TZaoWUnWlTbgtltXjtgtL4aJdtIv2nvZEWAq2De1Wznq4yqYjO02tsYFRlBcnARvqWwbtOkeq\n53dFV9/Jzinxsvj4L19Zorwi+f1ynhLHUhm5WF0muiOr6nIk/mapusGmBsNqwJz01r33AuZTmgx3\nYiyF2mo2DccdE6heZVHxCUey06TjMa4qN7fziIW2itWosN/Ht1ZBGYGe23yaLeXpz7KU0bZWeZZk\nd9myF6helmDXMwslRoqm7DT2mKwp2jKrMdWYQqoUbZ3QxletBA+IUtnZJiGchlrMNOsyNxSCmuwu\nV8IG+VOy055FQ5auSG5+uWhT9mX384KCKBfrx+5pajWq4A5k1+22Frm2puI6let4mrL7ytfe4kQR\nhLdVhCZOMkLlSGg2Xa4uzPs7pLGoFZGxxVpd2bCUv6Ga5rSGssMemoiSpjKfqzUxCjF2vYi6FsIV\n+szOWYajupv1YUGssOrr9S5VV4KD6y2fVCtFKzPZle2sglGOjOx2weia/M6zBhSL0ncLq2rFhdeJ\nOz8OwMPhV9n7l8Kb0Nu8zjMvyfNd+4n/gERJb/+/tyQI/szGJymVZdzDsEfjbS3iWm7CI7n2mhXj\n3ZT4QiOT/vbjGVZJ+qLtt6h2ZJ66WYXqHXl30sxQOvtTeY5+YHsiFoWSV+bG+nPU6j7lueZe2cLW\nnLg9uEU9kmBX177LxJKF45EjE2yhuomttGvNZz+Ks6WVbv7TWKof6V9e5yUjL+G9b8jkT6pHHO8o\ncUplQCfRsu1P2BTIYmFRwWilXq5M02nikSlGPpgYnEV5CbvdFUbHMjBLg4ytigTu/K4Myih4xHVb\nPq9cWoDLKhp7eEhwJgtdUJOXYKle8FBxAzsPz3g3Ek7BVlxlWzHu3UYNWydFpPUAYb3EqjIVz8oJ\nNU8mVWqFTF05NmtN6a7oRFElrM2FLqlSpgXWOiNPnrVLjj2vB4iqmJJWlYYyMSu2y0JN2ZxbDuvZ\nnDZujzyRRfupp1bp3Jd+uR9sA3Dcjyh0sfzItVt86EfqOpaLVDqqCYmFqzUMnlKpTbG5pSI7jWTK\nhMtyXm+M21NsginjK+xj+Yb83a/V6Bq5xqVOj80thVKHI9YvyQu7UGlj1RROH8nYWF5O/FCZr91j\naiMJ2hUVn0zxIMeuciZulDBb0q/GlImG8qy/8oefZ/O6LPDPr8Kn/87HAHj5D68DcPnFFVDimLRU\noeTJtRdbDa5dUgh9HBCGspLXtZ6jYm6ArYtCvU65kL4qZjnBsizI42jM2JrrETxeu3AfLtpFu2jv\naU+EpWAcg7dcouG0sG0xdy1SjKLZ3E4ZlHvfWbxCxd0GoD2TlXo2G+OtyApeulZgTcV9SM7ewtji\nVozNW4wUzvrlUzGB+9/y2dZc8tWWzfA5OV+jvg5K42VMDeYCJkrBNsh7DLc1/5/7XIlkd0hXKtTa\nape3jvn49U8A4M0lJTuGXFWSq7XrVDSgNFqCV78k6aln18TdGaQRfiQ76WHwiOc1LVhv2HS1qmow\nnrLaF1P7TBFxVxplympSZ6MS00hcpmlkk+kx5jgnVeumrQVApW4Fy5LvCi8iVUxGEeVga+C2NiTR\ntGaeiCXVWr6JmcnuWoonuCq+cnlzEauu6t5nHr9na1HRvlzj0AlwNb/Z+EjIZuemdlJCt6Xp4FlK\nkWlBlKaTm6UylmpAVJ9qcazVh/Woxb4SlVTsOu15Wlp1Q/2xT13nS16LKKlEXlY3NFQXwU8PcQuF\ncQdyrpJvk7lCuNNY2cBuKeq1WuVIsReFJ2N+djc7p9ujFJIMZeBfef1dBsrsHPfX8ZdkLndvKQFM\nK6A4knEyxZRkSa2xBtRuyfjWzCqzSNzGkloxnomwUfcqCbDQYLPbw+8oSc7h9LsQ8cdsT8aigMHN\nXOJghtFcszfrYcryIph6AFqqbIVT7BWJ9toabSX+Nq76um7+ApmSZmTFlPyLXwRgcdDgYzWF2n5U\nBmv7Qch/viqd9x1Tp7cpZqKXvo6lDMaYgvNumgt0xjb7KktfXa4RKG9f06ycZ0nKxSa+vliO6k46\n/iJnCgP2gj6exkSq9jJrV2VhcSxZbDa7HdYa8vyjzS7Bu5JxqN3Y4Gwg9zmzj7jzVcl5eyq53mxV\nGSuD1L3TPtWymNpH4zGuEoi8m024NpVJ3+rKBHPLFr6yPlmNFkWurEjxKYVyMOaFR+4pqKehE/o4\noJTLS1puulSUCcmZhFTWtQS4M+Xmqbhunysk529ZBY7GM9pundt3xb/+kRsfwhRzNiGDoxqMlkLU\nbaeg5CjxSi9jSQV1vNAHrRhkOqNRVqGWirhPRSuDd8QFW/ZqbJSlv+0tn0wX6lLDwnOVtGVD+sJL\nI+y24BFm6SmugkCsJKBR1UVGiWoGi4ecnoqylGNsHK0uvdZs4KjY7CTq0Y2F89mqSJzIepSTbqnp\nfxayfFPd5rMBlgwTVq1KVYljnEie33JKWCpEZBcZzKHk5Qq5r1mUTkLv+CL7cNEu2kV7H+2JsBTI\nc4gnBA9CUH09b8nHHKms+xCsuq74SQqKIMvHijTMR6QKh7XiPZS+gLyISDzVGS9mzPqySxcq9NGg\nwuyBrKjPVivcua+CLPtbcEm1yo3NHJqbK7HIqH/ErvIgtvcynl6RncINLeJAeRlHE7KKHOM2xPzO\n+gFephV5kwhLd6VwL6U8U3dEvY+cVcpKJZacjukpJZxHypIqO8+GhuGK4hTOFOd8FHM0kefY682Y\naUVps16hpcIpl7Cx+9LPqSvHpnULW2XbvdjHzLkKJxGhBmtxy3iqbs28vzOPQnUY7F5IrLoOYcXC\nO5TxSY4PmdzXQKrW/FtYLKokmjNcZ+9dyb4U13IsRRumSUgylzyLNStQlLFUOyNLQlwNpFaikLm+\nTX+Y0VNEYvNIrlu2qgzV/ds5OsT1ZdetFyntNZkjdliirEFaR+kUYi/COdFKxBOXdEF2eTfvMtcx\nmKXSx4e/u0NlWtV7K3AVnRvuRdz+nAjA3Lr5McZ3pTCpUDq2/HILhnI/40kMpzI/7+8Oqb26DcDi\n0w7BSPrWKqRfq+U2ZYX6F4xJUiXXiStEDxSang4YKw3h47YnY1HAhrRBtmYTHSqHXxpCTQcobIEv\nA5pbIZmSWwxG2wBU3C6qd0r49rvkFTWzilVyZFKMMsMDjVEcxPL3oJVyVSm5w8sFt6KPyvnsS8A8\nEFAgrHeQq2BqXlqgpK5I5BhGmqr07RmF1gaU0hKJLdd2xjLIh0GIeaTnaByTvi1/TxpdnLKY5bEu\nGpPRu9RakqaKyl2KMzE/xw9PmWi0O0sMU4V/R5YCj1KHAxVqibycK0o6e9seUNc+Oh6HPCyJ+1NX\nN8EyLkWmNQyDkJlKUhWRTaKuVD7tk7UUADYV1yYOMhKtv5imCbm6LrPjGWdjhXGbGpm3qGMl17Bi\nyBry0hw+gDcHsmD/3MRCGezJgwRvLoTry30WeUaq6Ua3VJz783klZ6S1CLujY7K+/k7ZpBYqFqc6\n/u32EoFqMPrUCTW7VA09Rkr0WtIalpQhDV2wk0pEQzeqvD7m7n253p98YVv6e9wnnmm8Y+E6+UBc\nosCq8s2ebBY/mr7OwnWJGwW7co18khMdCXHt/b17HN+TORS5OTsD1a7cL/A0dWp0wTMMyHVuOgZS\nrYlJrWOmU91wphmUvk/89Ie0C/fhol20i/ae9kRYCrnJmJTG1IYetqcchY5PouzC2DbZVHeE3Cec\nSHBtpiQr5nJC/YpkGdKTU1BSlHSpjZfLjlZeP2Ytls9fm5uUnkd0VXaBK1efZtSR3bq69bK6DYBx\nKJTgxHhizodxgKeUYFlcUE0VrtxcoDgR3+WUE8q5uCADJfObzmKijlx7tbN5XnTjVF3CoZrzGr8b\nR7Nz62A07jOeZy1Mdi6hNnXr+KpzOVPCliwbk6ocfK3c4ET5Fuqee54Lt4qCMJHdfRyIZVKplQmU\nCi73B0S5ns8usNR1CfIEX+95lKoMmheTjOWZ6/kCg4k8QBS5DJXrwK3YfE2DleO6ckYWDbJNGaev\nJNvs99TCKCY46ge4WXYuGR9oBL1iRWT23JSoEyoDd5QWJAppb5ab5ErrkqoCziyb0Vm/DEDnSkhZ\n+RnSLKVeVrCUNaKw5XMcyL37rRUiT3b8ytJzFHNuxzIc3Vd+hm3pi+HOq7RWxGxf+cDHKD9QZutZ\nD09/l0aXYCLWRIb8fRyGDPrijMSdmNazirfIKyxdlnuudirnKt7zuVmcjQjmvJTZlFQh4bM0Ia7M\nwWU5LcV1PG57IhaFIi9IZzGpSaCrqLTwDK+Q1FteKkTcE8hPUswVTWWtXJYTrMck74g5HLf8c43J\nopxRvKtxh2c96h3xBy8tSyT/K/cDbqpkkWVusLUkrst09iUKBGBicJgbVJb6t563SH8s92Ndshjm\n8mI1JiGRahLYyzaFsii5S3I/G2s3KSoqGX97ROjICx1PJkSZ3P9IKwTjmkukKbSjYe+8pNdaqGP0\nRSi6I2bWvPpQuRatKuvqZ57NRiSqBXB4FmIrT2LqJkTq2w+UbanempLNS5lrJTxlNErrAZM7kn7s\nl1PSh7LgTHwl9Ngf01mUxcRbWCXQ8vO9nYfUl+X+/bCKq2SyJ5oubTWGHN+Uvlr67DGe1jYYy3A2\nUBPdmlFX4pv2/GV1cyxFjWZpjdiSYwdjA/OUa+HS0CxQoyUvYKXjYym1ul31sGylgC+Pzmnp86lL\nEEp/1FqaFhyPKT0lIq+FXZB6em/jgKsaa3m9r65W7RFxJn2/uuLiVp8BYOFwm09d1vuoOvi5zLNI\na2IefukOcVNZmjoN/FvyomfTEq0NmS/FqGAcKMoylbFxHYvZRF1U32CPlZuz5RIqF2ZRihke/NkE\nZt+vFP1/Z4x5yxjzpjHms8aYkjHmijHma8aYu8aYX1FNiIt20S7avyft/ahOrwP/LfBMURSBMeZX\ngb8G/DTwvxVF8cvGmH8E/E3g//xh57NyQ7qb4ynluHFKZMpmbHkRtuadYyKsiUTzUeKRfDJldF8D\nbiNgSdmTx02GM+UdvF2jd7INwP2HstPsn2QUd5T19keheKgkHPd9rq5pVM4L1VqAOBQTr7rqcilR\n9aNJFUtNezvOcI9kV3XTgkkxVxCSf73RGUlLVu2zkwFz4Z66AVtVpSNbrYBBgVEwjjuz6Sn1XGsQ\nUq9qBWC/hKb0aZyrV9VY6oqF9fbU4zQSS8lPw3PVp1FQ0FW+xnSgFk+jReJpnntaJVWm7HyUAFoz\nECb4pXmthSpiLzRY8jX7ULGJDmWHOhrOCJSmbaV8SLWQc3RDCYDtHJ8Q/9LXARjGGflItUItSEYK\nJ88LanPogcLY7REUoXw5jacE+tzZLDxXiU/KKV3FTnipBiiPDaG6FG6RcaYUavUNl7amfLI0IlM3\npVDl8qie4SrxTfZwyvSGHFtOely9JJ+f+qDyXX7rJp7SrrXDZymd/LH0fW7YnAhRy+LNdaL7yhU5\nEOtwko5Y7ksflturKMKeaQFZXyyTyXhGlMzh5ordKDfJA50v2YSZo6be1MY7lvt4kKVMxMB47PZ+\nA40OUDbGOMjMOQD+EqIrCSJF/x++z2tctIt20f4ttvejJblnjPn7wCNEl/h3gG8Bg2LOFioitOt/\n2u+NMX8b+NsAq40qJlvEvjbD66umQysjV30Dq9nAWhQUoxkecbwtAZ4Hqay0t8ovkF/V4FQaMy3L\nSlqz1kibKoThbHBW2gZgu6e7xzKUlIJsFO4zOROo7WztHtFAjvXLTeySVjsqw/GHXvrPuLssu0D0\n7UfMVODkMJywqBBdx1tidiQB0duvauqxdshGTXaMvdExqpBHrZzijGUnjbU+fpyXyHuyO8YVn2mi\nSsRxTlZRa8pPUHAb04miA1cr5xBff2OHG8OXAPhK9jUmPdmCnEqFzlRTditanefXaLflhvpBwamm\nOKsD/xzaWzJlkpr8rhsow/PaiFZZ0o2nwYhxU2nqajYzX4VRKg6FCt+wr/57nJ5PvmQB2iuy63pu\nl/pl6a+0NzsP8s6UaoySR6FxgpiQI8VbnFgBngZ8/c4SkSU770R3/nrmE2r6NX0UEVWlD+2zCeUV\nDcS5QwotvEpduUZkStg7qjE63KO2K+dNvDpXF2WsOyrBN36mxXQs8/e1d7+OCQR7cau0wesaHNyY\n3eawJRbu6TfEzMvaHmeZ/P3wcEB6Ks8RmD5nx9K3aSklD2RMWh3pe4cxaEDRLlVxZ2pVZBb3C5lH\nk+GQkaWEGI/Z3o/70AY+A1wBBsCvAT/5uL//Xin6Zy91Cmt5SpUyjgZt/EmbuKHBNeNTeDJYjr3O\nYSAiG99WwMvhizZ/8SXBGETBPSo7qppzKWN96VOASHw/eE0Wk6/N5OX4QKNC9CGZjA8f7fHbd0WW\nfmU/4MW/8HG5D/d5Ig1yotVr3vWMzalMjn59wGhXzMFhDbpGFhZ/ucGSro2/+YZAX0cHAVfWJVJ9\ntbPCTOHY3YnNOBCXx9JJvlckhLoIpa5LVd+JXjPDTTQSH5Zw1XzsVeR3ZXPGd8ayEM6OZ1hPSf6/\nPXQ40apEe5ySdDVYp9yWTjHELWSBHEYB9/cf6jh5vNSSBfnUG1J7JAvVrnJpLo7KvKnkH7vb93in\nJ7UIW4nDiS5O1umAN07Ebdq5q/eW5aBgo2IG6Vhh5X5CTcVgcstAX17eoYKs4kmJiWop+nmTvorv\nPNo/JFeCm5tFi90lLfE+ULr7ps2SigCdlnPSUIlahjM+vSaBxAyXrJjX00iHN5YqRJ66jWmbkiRM\nqK1cIlf8xqWPKV/ll0Nu92VOtryQ2a64bu+aeywuyTW+/U6HSl+e5a4Ksm+Em5xo1WodmKpIzDX3\nEpOWcpaG9zjTStqFtlzPykJMWQVuUmg0ZH4OZyeYWGtebP7M/sD7cR9+HHhQFMVJURQJ8Dngk0BL\n3QmADWDvfVzjol20i/Zvub2flOQj4GPGmAriPnwa+CbwB8DPA7/MY0rRmwLcGOJKRLGqUNujAZU1\nhRr3K1Cap9xCrj+vTLWR4AqOzAwTytqzdPVjOErAGi7GlBVJt2yfsKU7zLOqk/iBao1bunscDRNO\nHsmu2pwaKoUW5FseOZq+0ry74y7hX1HYbfaQ+JEG/ooUK9ZA1Gqb0V2xCp5SQNkONcpq7l1ZrNHd\nlPvPHkVEdd251TXaWvLoyc95fbpHsCM7esvLKamZ7LZzyn3ZCS9p8ZV5NOagIsfu9Cb81ba4K6Ol\nIdNYzr2UwJoW9gSxEsi0yoSKD9harlGMxWqYNA2bS5cBWLyxQSFdRLEuprgflVjWdf+S71DakZ07\nOcrpLKgux8M+r2/LD8NUKwtBQ4Rg2RZnI/m+3m3Qm4gll9YzSmN51qWmuFfh1EOhGYxPp2gMl5PA\n4dAR62AQhzQUITpTqHjoH1AcycE9f0atKoHimx/cxFUsA06VTCtoVbICL4xxFiWVfVzco6K6ofZ0\nn/VN2aWfuiYVuifDt7msxDKn0VsEbWHojsNjRqeK9ahYDEtyjLchu/mGs87lp8TSze2YSbYt/XIa\nUlWBdT9fpvK0umyKIbEaLlag5DM1D1fhzAv1Lt+ZicUyGO5wNp5784/X3k9M4WvGmF8HXgFS4FXE\nHfh/gV82xvzP+t3//UPPlWUkowHTN3p4iUbhtywad7V82S6w9MGycoyt+eiFikTZk9fu8vaBYgGW\ne6ShmH67r93modZJBNWYbw/Ft6oMZKLs2Dnf/Nfy5r3en3H4lua8KzXOHskANNqHJMcymeKK/H12\nMiY7k8lTC5Y5uilmYP5uynFbfErroc2h6ir6OnDdDNw31KScZKzpApCaMZne04Ga+K1hnZFCcaPR\nmPtq5q+duczmE/ZexIkK8vYOZIKdhSlHSnVe2B77OwKfjYYjmhpHGFYNE6Wanyqs17/vsbKY6zNB\nVZmcgtfv8sqOuATtP6lTUU5LX92cIzsh0crWAQX9vjzfXmKR7cg9fflgwIHe0/dOT2eeafENyxsS\neorHAbmOU9DzyZblmJoyKEV2QnQkL/HEMeRTfaEbMeV9WSBPWzOmuzImqdYyREcJYyXnXIoLWquy\nWdTDJbIFFQw6S0kyuXaicaegHVOf12vsJiR1cQ+DpuF0Iote1ZF/X4y2+GZZMyfuMpM1qQg9eu0d\nBlp30ukNKRZVNFbZkXY6Zzx1V8qz7aZFSVmmBmWLrQVxCeorS7QLWUxYVCWowDlnxE6TnMiRMTm4\ne5+7uzJmJ+MZofdnQwW8Xyn6vwf8ve/7+j7wkfdz3ot20S7av7tm5vqI/y7bSy+9XHzh9/6Yd3cm\n1Cqyu957a8Kv/9oXALj/7u8SZrKjHRzu42lhS90XE7DZ7ZCrzFlmEnyVQ28udelUJIp8ab2BHcqK\nnurv+wdThqr74KUV1q+IyWlyGOvOvPfOgFIuxzxUhtw/fOWb5JFYBEXwkN6+mGqf+yef5bf/hej2\nXen47CmIYKQmfpLZGEdW+WkK3ZbsHm4KhboV+xqEsouYitqOG2tdVhQLEBUDdh9JwGnnuE+qy/pl\nDUiRGZZWxd2p+iX+/q99Xq49vYMTClw3zQzJvpjoyaEEbc3iCme9bbm3u/vsviPjUF5e4vC2HLsz\nPOWNBzIOgWoYHg0isnkFp+Vw64pYby+trvLSR5Tl+GTKeCS72KkydC+biKEr93zrZ36cqit9/7lX\nc+6cyi6XBo945inZmX/hg6qbsOjT8uXYUrWCrTDu0ckr3P1jCRQfB1OqjoxPoJH8s1FBrpDu4+kZ\nbz7QjJAxjFS+bcNKWb4s2ZjnrkvWpnO1SdET9uXt2xZlVRsPkin/y6/+EQB5Ic/R7Swx0AzPJDkj\nVHfNtSu0tsQS+vT1WxwW4m4dKdq2u9nlM89LkdRs2OeOStYdTEc4Z3JMP8+YuDKvr9+SPi5Nh2zr\nXP76w23cPWW2nkzIFEdShAlVnUfT/uxbRVF8iB/SngiYs8Hg4lBqhvTfELMv2bvL4I6EI9LRKbNE\nGW/yBEchvXOa8nqthK1cdeHYpqX+Z9vL6SxJRy6WHKpr8v14V4U+FjO8I02FlWsEiCl+MzMcVVR3\n8VZA/1Tx5ceB3q+4NADJYMD2v/gsAH/yxa9yrGZyYocUWl48VD+6aQpmugg7WEyUE9KNhowV0hxM\n5BpBnlJRAE0Sgbcq52qvbLLakmscDAqKiUq7a8VhyY45OhITuHBHWM6c83IGWtac5yNMIhH1QmHe\nyfAuySN5kfaPBqDiqbk3Zkk5VYe5z6JSuwehZgXsHF9jJoXJaSmNvOUklBqyKEooXb8AACAASURB\nVFSqPdxDedGdu/JMRWudRIMmj958DWddJr+bPkdXJ7S17PKpm5cB2LwmRLJW2cPMyW5sF1urBCtL\ni7htyfL4rS7LM3lRZ3W53uydE4ySotxcfIbuFXn+nYdHnKjmY/Usp31VFtRiVdzDblTHWxKymOri\nHidvSx99azghzdS3V3x4lE9Z0TTRu8czUGJav5bz9POy2Pzcpz+I5dwC4OF9WaRZa/Ezn/w5ACbp\nA47f+BYAr/f7dG7LmH3zwS7TSGJsS6rOlfZm9O5qGXUfemcyd2QIvsu2NFVhnMdtF1WSF+2iXbT3\ntCfCUsCCrGLRnhT85gPh8nvzd77GI+VL2D8ZUVFor1MqsdhSgowlWTk7jsHVghmr7rGwIJ/bvk2j\npqItlsVE8/exklGkhaHekIDTYDYgPZId+I9jm80rSmTSTjlUk1AZ22UpVWbn17/xG/yPvyRAppN0\nRqJ8Ci45mfIfTuZcfo0yM5Vfr+UFYSznjaY5QzVhLa2ozIGRenbjyYj8UCyF50seC7bcs+9NGCpl\nfC+Ucy3UG8xm8nyjYUhRyC5hijH9I+lb6+AS+RUNOo7FjL539x1mR2JtjEcBrmopptmEWqHs12FG\nQ7UUj3dkx9wouXS1krGo10krcp+lIiHcFzKRarXLyUiBQ8ooXWods31HxmP6+yPWNuWz87FnMJbs\njpdXEq4/pXDlumaAjEUSizmfFCXKCrKymGIbOfa6f52sIbtmXkigrha4+J6YPO1mi5c2BYdysH3A\n7XsSELz3xj2mU5kvs5EESbc7PgtNhdunMXeUlt/ue/gaxMwSha4HE860P5M4JFaG7ZabsXBJKfhf\natJWl7bdFEupemmVckfOVXGfo6mVwuvRkOO2uKPN51Z4uKtwaqXL/+3ibU525T57qSEs5nqd7689\nEYuCKQxeYrH39pDRH34JgJ3wTU76MoEqjsWlkkzGS9c3WaqrT6mRadNLqDeUxceHVluObbgJTeUo\nNK4hUsz8WHUN89whVYahceTQ1xevu1ihdCaLgh27dGL5HETa6bkhPpMJ/9n/6bf4dl8mhclcLlfl\nmIap0VpXJGQu5l7Jn3GwJ5M4L0WMtAJwkE2oKOKt2dJUX14i1hLo0dSm0OrCfj+l5MmEX7e6JK5W\n6Gldg0lTXNWpSMMpJpLvw7f3mHxDqkPHrUc4b4iPXjwU/9Y9qNBekRfoSmuVvupFWCc+piPPf33j\nBU4Phbb+g01ZkA/HU9YbyttYijk61dRiw4ZAdTnOelQmmmlYlBL31aXneKP5LwDYvzMlSRTU9cGI\nhZac7wNbWyx2X5b7UJaiIk8YnYmegsMGpa6kA5OJIZlToF+/il8WlNHoVMYpbl6nWZWXsbmyjqsL\nRPkGlHTx7lbhkdYMpKfyzN3Li2z6HwBge/fXKTxxA5LZMRWtiAyVxGTcz7GUuDaIMyzVrlzfrPA3\nPvUTAGw1X6IwyoZ1Q2nyG7fwqloRnCX4CnRq0GJhQRavnVf+gP6pLPCLz8h7cav6NK7GFL79jRN8\nLZ0eTJI5Wdifq124Dxftol2097QnwlLIKQhMxttBwueN5GuTd/o4qQYEXYv2mqzcV7oNGg0lmVBh\nEm/RoerLTlItGaoa+arV6lSVkKPkpYSqCN3UijsmBaFG/U9OU7L2PGI75RjZVXejHKOlesNETMM8\nDXn9y5L//7XTI3KlYi/7BVsa6b229TTPXJfVf1zVoGSSUlNhjn7ex5zIvSVWQdcVq+LFF2U360Qd\ndqdy7O27AaGt7CvRDE+rIL0gI1JZq4nm0id5mWXdPSZORBzKOYaTOq/kSiN/ew3WFCxlyblWXrhG\nRS0M04Z6qlTnG+u4CqH2Fm7QDGSnnCrP4DPmhCLU3dMZ4SvnW2oNsctq2js+o7Gco1VRV2q1Qq0k\nVsNWqc+ZI9bbtaUGPTFY2Nxax3HmU1Tp+LIDDt6WAF23k1JRi8V1E9ZvyG5cbdbJNC3jKt1ed7GJ\nm2sf5hG29mfNvcTVZ/SYlSb2a18G4PRQQUp5H9OWY+328+SZzIuKneIpH0Zfp1OSzEhTMeeLvEAJ\ntnnppR9h7ZZYNF4lwVam5TySgKNb62Ismb+2HVMogY8xNkaff/HGKktncu2uugk/dv0jPO0LyKxd\nvc9X1PV+0AsZaDA9NfY5OUuePR4t24WlcNEu2kV7T3siLIU4L9gJYo5371E9lt2llxU0tISi0yjR\n1HTSNInIRirTVci/YTLDU8UVk/pYilMwUQy6+1u5Q72sYhkq94UVEWvuOql5OFpXfy+CUDn0HW9K\nbCRm0FRLI8yP+c6XBENxNstwNaD0TMmjqkHOxRcjlhdlB11Btr5ZGFAsSkCwd9JmZUPuY3ficeOK\n7A6f2JI0cvXaIm9+TfLuXecR+/vK2lsqE6gF5bZsFrS6Mq+KH16pJOzOc9uTgjiSwiZ7tkM6R8qt\ndlgpyc4cKMrPXx9QsWXXIXBJXdmBvcUBriX+uZ2fYmuuvHpThWN6yxRakTc6izC2PF8pqeKp7kE4\nihhkes898aM3l9a5/kGBAe93vsjoVbm3+mLMpUWRU1tobvBdjh7Z5U5md/jHr/8DAP7GZ/5LuirE\nU1gNysvKdlzewAzkeEdVt237kFwFYIokI58Lh1ZPcJQQtYnLlac+DUDkflW6ot3A0hR4tR1yWlUa\nuixmpLqTs57S4wUTck0/WxY0VVvi7Op9Pq+w4x+NFmk19LU7/QMAsvUPU/UEx2DZPmjMoaCC0ViT\n7W+x+oyMZbkQvYhKLyNXeb9bdoWzjliFtnWVnd+Ucx+dzUg0Tfy49K1PxKJgG2gZ2B/uM1CCicBJ\nQTHpnuXRsuWlyCyLmebvUayAVYSgQZZ6s4TRQcQzGC05LlyPZKqR7zmevFQn1wUktSaQyaKwcGZg\nWRaT09GEROnTR6q25GQph8lb80tgO8oH2LJ59il5OS+7K1TbMtn8qZbYLi3ghuKC9Nv7NJtiojcu\nbZFq5WNdsw9tq8B6RgNObplqLMG1pGljkPz/sJrwYKb4eVv+HXzgBvXflszAiUlwlcNvVDxgPZNJ\nGkwPiReua19IZ5QsC0cpyY3r4Ko2vFNuYc0l490ulkKvi6mcK5kdg4qheImFpfRg45MDOsVl+Z2p\nMh1JQHNPMy4b3KP9nNRlfGxyTLAkC+DV1edoaZrHr6wyz7dnuZz37uFvceuWvOg32h/G0hePtEdJ\n5eWtJCfTEkzX0exTXiJS6jmra2Pr91ZUwlLGb6/WZnlDXbpI+scxFmXV96yMHaxT6Yt7vSHLLbnP\ng74EZbM0VfEg8FyLlz8qgKSbKx9ndiLu1qi6Srchi2xckvsdDd+k1JVF2FCcK5EZMwRkTpYaTVYL\nCXgWM60pSUM2K1IFPJm9RW1P6N+avduMmi8AcDp66xxo97jtwn24aBftor2nPRGWQpJl7I6mHO+8\nhjuWlbFmKpS1HC7zbB4OxBIoRSNKimIrz2QFD92C9hwFl1kYRahllk1iz8VHgnOp8kLzwIVJcbW4\nqpaXyFuS/x+HPQYjWf2rx1MOB7JbBcqfNjz4f/jmmyoskxm6qk/xk8+/RHNNLIW82SBV1J8/Dyz1\nD0lUPs14NTYXZZer+uskiHl5NJTflIMhHIo5vB5FJAortHOHXIlYqmcOr6hwyqEqUbfe2uU4UpXk\nPCedigjJ6N4pg4daXbnmY/XUJegoI3YJ0rESj/g2VqiFNvEZVqyBzWYbNC9uqnN9zRIoxZoTpTQL\n2fGSln/OlxA5MbZSrO3titvyyudPuP6S3M9sdUx8V8as0+gyN/QMNoXyG4wH3wTgH/3z1/nMJ2RH\nrHpbGJSEJDOkgWAdTDKGSFN8Kl5j8pRiju60L1GoLL3thxSKLLVo4SiHRVPVrqNJjqtEqfbQ5uBI\n5sDhyZQzRYVOzyRVmGUZlu7y5VKZZ54T8l8nPab3hny/vfWIZVUeT3Kxnurla5DLXC5MCVKF0Bsf\nSy0a8vBc9yGvqq5mWjB5KHOkbVmYgXIrRGt0rsj3Dw7Gql3y+O2JWBSypGBwlPDuWzWCZXmAaq8g\nUh94Oo4o5pyAU0O3LQM2yKWjF8oLVOoStS9yc05+US41cFUcNg9CrFhz+nqurFRg1Dz1XA9PMfxt\n13AwVYhy6DFLxbwcakXi2VsNHqliycICdJX6/TunCS8uyjXqzRIHU2Vzrsgg17KcoKKVbnlONKdf\nNymmvKm/k8UmrSY0auJnjkcH3BzKsWMSSqG8CHvZkOVAvg/P5JlrsxijJCXlqiGfyPWyyiqdLbnP\nmleBqkygkmYLHKtGoqzUWZaQqxhOMaviGHmOJO9hKbdjpq6WcQtSFZs17TKORs7rIaSuZoHsGmvX\n5fkePpJai6+++lX8qpjoH3z64xSfUPZkv4GtdRUUBYXWj+zdlTqDv/78jI++/D/I9ZwmhVai5sUp\nRSrPmk962ArqsprynF56CbrywjseOA2NKaRNcOckOj185Tksnapg0Ok2iWaMPK/Ktc7zAJzVj3mg\nVZlZPF8gwXJ04a0v4a3KuW55P8W7NwXfsbbi0ZCkC+XgF+RDpcCZh05MgvAXQUEM6trYvouZM1CP\n5YUvFmY0bMHkTGY9VtalROB4NML5usSzqqbLwByc9+fjtAv34aJdtIv2nvZEWAoROQ+zCQubbYJX\nxfwMJxGhmslJlhKoVNjiQna+I9Q1t98oOTS0gKflV6nqTllyLVwNgjl2Qab5XTMnqXAKjJKTUK3i\naBUlSZnMKHrsUptgT5lF9HejxS/y4VUx5T4/GtJVPr9xbrg/kMj/KE6oKWYhU6RdqzwlmGl+vNEk\n02BeVg1RpXVqm7LC14rhOSGJ5bWx9Fwdr01vX/LVHEQU+/PqStnNDvIhhwrjdlIoWvJMy89+nEom\nOfjUW6NUVQyBRl2TtMBotiANxudR9CyNqSzJbuTEAamax/lUniNPLLKhEpnYIxKVYPNpE9tzCLKD\nqyzdlfuSnXlnPOBd1Zcs/+jrtGti/di+h2XN96qCVHU0KsvvAvDS1n9CpSXFUcbxyQPVGzXLOCWx\nyEx9BUZyf8XcBW1MsDX7FKe75KHsulPrTWplCQj6KRSOzL/YbAMwXAxpR+piXrnF9R9/DYDdpMvg\nrQfaB9/dgTP9bMotSjPp2y+f/hY7lszVa/ZHcS5J9iCx1BXzbIpUsQmWS6b8FMY2MMcWFJCmaiH4\nqpExqpBZYikNsgHTntzn3ps2WSp4n5PsiD9reyIWBduyqVfrFNYiqVYAz4YTUlUjylOHBZWib7Tb\nNJU0YmlFUmitpkNNKeC9AlJ9ubMsx9NouVuq4+lks5TY1Y0NuR5r7IKKmsa+W6Ej7wGT3OG4JzeV\nGIkzLDk/xdW6DNxzL8UcfVteyOlgiK0R/qSdYKtLYxKtWuyuU6rLuXw7w1KAjTXMMb6KyKiQDdWE\nkYqnFuGIQqvvyoHN8pIwAYWlBTp/LJWBoaadzDTDURWmIEwxyINY3i6Vdbl2dP8hbk0zDYmmFu0h\ngcYzCnuGscXHdashRtWbimaNQqtAc1cWjeR4RqrEIplbx1ZRl6Rk4xby3CavsnFLYhh7R9tyrtdH\n7DyQOMpPRD9LkanvbCzOhUFNQTT7ZTl3Ii/r4spP4ugiXKQWqaULeZ5jqxBNkeZkvgqqqBpYyDHj\nb6uu+8I2wUBKso/cr1Gui9l9a2uTZlPmiLMimZHK0QGjRDIH9WqbZzti2h8srn6XOup72lyZqn+y\nzTce3ZbHOGvwjZZkV557JuSll58FwNd40NA7oPAUfGeunpPWJKMdMlvmVj6rkuSy6GWZ9IVV5FRQ\nqQE7Y6aqVrZ9m+BIvvcLn4iLKsmLdtEu2vtoT4SlECcFu/spUfEQ+0RMTjtxKDQzUKnXuNyVHe/G\n5WssaEXkqtaVGxPiKXNyEc7OI9bTJMCsK6V4tEamHISTqUptFQlGg302FdyOrPKxN8HVYqXGfkhV\nI9XlWFbzYPBF1j8g97D5+5eY2fOqS4sillU+SxtcKmt2xBGXoFQus6rBt261gquEK2mQ4KmWZLGm\nwjNTQ7CjRChxSG1FYcfOIoHmxe34DNOSPnAnSjXXKBOpjrrveRSafUjvH5GeqeVVS8gzMZkjlVmf\nMGOmGpXJsaGUi1nqlDNqc+u4YiiUaMZSerGkHTA6li1zHMxINdNSFDmFRtTTOKZ9S9ytZ5ckc/C7\n0SPu7yr24Ph3+Nj1/1TGEguK+e6fEIxkZ/aNFAYZ0yVVgZd0do+TO0pKk4cUmeyq9dzFuNLn430B\nG+2+/irfeEdM6i/fOeSVI+HA6AcjbtTk3n7sL/8In/mPpADLFLIrD27njOvSR5Vr/4qNJRmzGz/e\nJfuHf0rgTr9Kp2OO74sFcrj9ZZKp/OEf3imz1/zHAMx+/7cBqG1e5Rc+LHwKK62Ah7/7fwHw8PgR\nrx3LvN89HdEty9z4sb8gVszyys9iRfJ8b739Kq+8LpmtR6cBocLGgziYQyceu0bqyVgUwpwHdwLu\n3Z4S+ap+E7q4tmoRtqoMNfL6rZNHtI7lBWhsiBm5VN3kqevyciwXHkZzYQMrp3+grEDePienkgIa\n7StZShUWVbuyW1miorLuJi8oadR6dtQhUTrwqXLx1fO/zGT8RQBy55T9SF5COwSnqTTix33Gmg6b\nqvuwuVen/JRE3FeWFqgrSYwTZoRHmi5V5qUiL1NWjYUwalIoR6VZS6kq8aed2NzakMl/VfUGToc5\nH27KpHknfUg6k0kVpDtkRia37yyjFd70jqSO4K13+4yqCoo5nNLU6stma42tdTnHlajAdZU1tSNu\nhztyGd79DgBfu7/DtprEqYlpa9bi6tUVip7cc/WyuFdLdplHR+IjLwz+EoWrIfk8AXvuR1u4mmGa\nhYrcnO0xUi3NO9/8Jn/0pV+Te6u5JFPJcDx1Y4WN52Sxd7TsOQnLvKskOXcHKWkmz9d21lipzcFQ\nEdauxAnqz8oiVLo+5tGOpEODrw65/smfkest6sL1A1qWF7w9lTjI4qgBqzI+5eIBD/6ZxIS++prM\ni2s37rOy9jsAbO0u8M5XJNbwxumAqWYaLD/HlCUW8e3fl8Wm8+yvspTKgjZIE5oVje24yTxpgW+7\npJpePRcL/SHtwn24aBftor2nPRGWQpSlPBr1sNOUQmHOTl7geEppXW9RW1JK8hmcoSIjJ7JDJ/23\nqGrOu7m0TF1XfnfqMNAMhj06IFGG4kKp2xqLLfJ0rrbkwZykwq9CJDvJyorFiUKJq8cKtd4I+NjH\nhZL71Z1d4ljBSW5OviYBrmA45mFPVvmZUq2NSqec5RINdpc+QWNZIu7tepU4kGscTAWAk4QVdlTW\n/lsPD7la1kDbvsW1TQmSdW5VuPK07MBbmVgMmwOHtYZGSc0Eo65ErbJJptThcalNrNdJlYSms2Wo\nzFW10yP6Q8mi7G4/wluVnWZpbNNeleCuq5qSUWaRW/J5mIwZKMHLU9e2sFKxeibZmKm6Ma2qZA6a\nWy7+qbgBx/59PtlWzjdjM4f2YgLGvliIWf0P5X7LHySYSQbg4cqbdBTsdlibMlBVr2ojZNWSXbWx\nJdDgaz/b4JmnFPfy+9/k9p5mbe4dEyxKH756uMPC8/K7tQWlUtt4ng/nkud/EOdkbXFBKsGtf6M9\nnsYZyV2xTO4dH1EoVMCrGrSMhZGC4kbTKXH+OgB/66c/zn5NrIo7pRnVbbWUxgXOVCyMpCV9FbyS\nsLkqY73o1c8VsOKZRVQofiVNsOYVpo/pQFxYChftol2097QfaikYY34J+BnguCiK5/S7DvArwGVg\nG/irRVH0jTEG+N8R5ekZ8DeKonjlh96EbdOqN8inNpnubGkaU1FFjla1w2pJduDTxOeRcgTsqfaA\n4w8xyoJjBwFXNiSIllf6TO9IHGHs1JjmKtpRkl3Qet2irlwBi6OMZ29qUKtos644hGQU0uhpLXxZ\naMDKtQ2Kptxn5zo4X1DpNd+losGg3nHCSEVbKras4JHvM4rEatjunXJLtQ4aVptpWXbV6bZqF2SH\n7M3kmSf1Gt/aE0vCP014oPGHTzQ2iRK554aKm6yvXaOshTpfv3+bLFYOORNRLMix1sEQTwvBLEV8\nxu4R/buakqxV6JXl3tJsj8GRwp9fbGLNtTZ09ynigGpDArDt9asUaxKgbPmrZDOxiobjGVNbi4Zi\nGbtrtVXeaotZuNW9SXymadvNjHOBMWNzdCIVkQNVTu4sBBiNOzXGbe6taAwm6pAqR8KjhzU++gHZ\nQf2OUp91nuPF020Ajto9tkPtl7MSB7E8S//OHv1CqNkuXZMU6uWNM1odidFceWuXiiNW2uGZSob/\noGYKRmdyP0mQnoMJ49Rga1XtPKUZzQrsrjzz+rPPcubJ3Hrlc3sMFBU7DV0CRy2L22LlRcMZt78j\nx9745BVSrag0Tk6i6eWS7TJJv0vi+jjtcdyHfwL8H8A//Z7v/i7whaIoftEY83f1//974KeAG/rf\nRxEJ+o/+sAtkWcFoEpGXd7FU6KPkOdhaOxBPRuyqOlN1ocmLazIxnUAmY491OgruiawxMw3wNUZd\n4kQ6cNwfUV6Tc7dKYmovXVqgolF2u+LgOlpTUcuoqg7iytGI+xpxd8byXXj4Cj29RvrtE3wFyFzv\nLnBJxTsakcdEg44vb8oitVCyqCqnYLOxSM0TszUuDMGpCssGKrMe5ly9rCQkRYfTRRmq0nBMUpN7\nTsKcsSpnXanKZH1qcQu7JTOwOTU4CpCZnp3ga/AwKdskPXmxPK2MrKYdKpdVu9NxWUNeprM4Z6Uh\nLkOtvI7JpQ/zoao45YaGVjU+F18mtCXCZexlCq1B2T88oqu0eJWqvGDXnh3w4pk8R9VaoOSIK0Vu\nKIwWTeQ97rx+GYDtfTGpL908wbHEBbnRXmbpU/I56oX8yehzACz3tqjmch1jyWLJ9IBxT56/f5qx\nVRV37NJP2NwoSbn0817CbEX6s92VgKhf2WBxQ+pZ7JeT8wBl06go7Q9olgFHnz8511sGDHiKuUmV\n7blaL/F8ReDTt7of4+ye0PK3wjYVX17o9cUqfb32Wl0WrGz/lDPFt9R9n+KSulrbGbYMH/E0Qct/\n3iPE82+89x92QFEUfwScfd/Xn0Fk5uG9cvOfAf5pIe2riK7k6mPey0W7aBftCWh/3kDjclHMQycc\nAlrUzjooj5m0uRT9Ad/XvleKvlRfJeuXmJ1lZFqQMs5idGGkP9ynUZNVsO23efYjYtqWxrLbHZzE\nVDQNWSQ+JcRqCAw0lbpspeozrsuO/0JX1im38KhqoM23DNW6WB5+7p5TZo1rXZyanCPVnXb6Rok/\nfON3AWE4fl7FV154YYubV8UKuVNJqbbl+2XlWFhvb2AOVNbdP8VxVT25ZlgIL8s1xuKidKwSudwO\nS94lQtV6mKUVqnW5Rqd5GScUngWrJtbK5taLTHa2ARj5Ebnu+PZGDIHY4PVql0Tz2CWFM1edOpZW\nkWbNCjNL/l55uMyGEse4dglbg7W58lRUyyUSLQLbdIfEiaZZ0wkDpXpzvJSOkrZU1YrpBJf5xIdk\nF7zc+gSxFpvlaYpl5gVRZT790Z8G4J2HkvZcdMsYR/gk8oUeXk2LnDYTFs7+rlzDCygvqTKzMi47\ncZeXXxCyWm/6iHcUBn3cW+HKFXnuF577JE3lU6i3hMvC9lxyI9ZW98oKsSNuyVEm4/SDmuu7tK7J\n+NvvDkj0mdZutvnAuvRd2xdkalqL+ZmfF2q25mbAjw//G3mOn/kVelqk9mBQsGzJ8c0lsWgbVLA1\nNbrcusXOo98A4O6ORazMz0Pf4UyxP2n6eIHG9519KIqiMMY8Li7ie393LkVfWblZnLr7FF5E3peX\nxnIMVkkefsHq0mzIwF3vVllQwE2kZmatOGKq5a/ewLD4rEyIWjjgaCpvVtpxWG3Ly1Quy4tSdTy8\nUAbca7VFEx0oLJs0lc52GjlVT0zl1UUxk09Xv4W5LRP6C/0zfuKSxBxefOkypYaYqwveHm1HXqYr\nHZkcrWqb8Ir41OEQ/EwGvFa5jKMCs8UVMaOTNMFRfkm/ZjAKnLJMDUeZm8Non6ol526oe1FZqbB9\nIutyXEDuzgVJWtieVgNWKtiaBcljV++himvL4kUyxdVYRL58RnlRMw61EvlIcQipUsc7Pm5ZJnnT\nbRAeCpjGqtZwMjmmXq0TJTIxM+3Xxc2YxSUBCvnt7BxbkltgKUOSsQrq66JA+HxX3crSZfJczutU\n1mmoQEpuV2gsyqLnli/j2PMMhp7LPaW6IRmqp//iB6kcCNDnT16f8KGPyAKwuryCW9nQ51Isi1PG\nruvG4TxPHki/VW/p+X9AM8bmqS3pz4MkwtIN4mf/yjV+/mUpqT6IZJyKvM4ldVea5eeZ3RBG809d\n+SvnLlg2rDB8JNmo6pK4qGU/wc7URcmO8B9I5mQ9+Cr3dJx6aQJ/Rub3P2/24WjuFui/x/r9HrD5\nPcddSNFftIv271n781oKv4nIzP8i75Wb/03g7xhjfhkJMA6/x834gc31HVavL/DA7pJoZLlwDJ7K\ng9XqHtfqGmU3ZQLdbYwjq+/6QpmpKgAHdki1Lrtt5ZrB+oqSofgenZasV6U5ajKu4NaUHyBPcRRB\nmY7ANMX4mURjum1xNxa72wC0K9fYPxI6NtuZcDaUNdFetagcyfXqvSkrL8kOU/HFMqm0a1iaH48K\nB0sZqJ1yCW9RrApbA3huVOCvqKVQtrG1otJ2XNB8dJIZpt+Q5E67Kb8v2jbNqrgldXJS5XPM4wxn\nQevxhwFRKv1pVN/BLqU4WlGKA74Wh5XjCFexHFa5SqYy8YklO6k3ckCL0Vy7hKV4g3Q6IFc0YuHW\nybWYLDmTPaKysYy/dVnuwbUYvSvFUY1bKUZxD8aq4xZq0fgSrHWNg6Uwd4wNvpLrYLC1n4vCw8wt\nhVzDa5ZDoTiGutfl5pL0xa2fq+KWxTpwyx2pTARIA71Gdm5tYFvYZbGgVhT07wAAIABJREFUvOEP\n2E/1516nga0I0SvNLu6K9MuL155ivS1B0EUjrsjnv/QnPH1l3hdl/IrM37y/TbUlx5jOBs0Fde+U\nZ8SKHWxPC9pGGb0vCTr1LHCwA+UlWXToHwZ/+r3+gPY4KcnPAj8GLBhjdhGV6V8EftUY8zeBh8Bf\n1cN/G0lH3kVSkv/F49xEFocMH3yH1LqHCWQCuiWPzJ57JTZFJmZ5UkSUNa1X1VRfMTEkWqvgLWxS\nbsmEmA1sDtSHHzt91lfks21rRWIQkc09nwhSLZeOiojsRM3S/T65xm3bSCxj7/U/4Otvi5m8v5Nx\nSbMapW2fmaKvnHENTxl7Srm4Ldkg5fRdqbg77J2xeuUyAI1mQqG441Tp4p1ZhlHiFNOKKeZl336D\nbKKm+PFD+loyHQxlATr4V79Bry/VeWFuSFXApjg+OS8jt1z3XOfQRBqdtx1yFdUl9ikm+rtxQObL\n9eJpxEjrFRJ1Ddyui1Ha97zISaN57QdYyKJWJAnWWPoldpXP0WnjFkpkEuTc35bswmKcYek42FL7\nLdfJ5i9pmVyJYq18BlolWKQB4fDr0nesYy+I/uNcvSk8fp10rHUbjiHPlMS1N6a8pAA2cgqNqRf2\nQ+2fGlZZz5VGhFo3E5xoNev3tTkl/ZZtaB/LWB6PZiypLEHFLRFmsljc/j0h/33tC/dpaVVnw/k4\nO9/859KfezHP/MW/Jc/fyTDKXlUE8kxFZBMrb2hv+zvs1nQTXXVZf0Hckf5b+/gKugsfk+L9hy4K\nRVH8xz/gT5/+U44tgP/6sa580S7aRXsi2xMBc7Yim/KDFul4QqGYkiDPKCOr68wJGViye6w6Teq6\nuc0jxaNpifJApdPLTQYzxUqf+ISO2HPNconZWNmYIzW1K2Ay+V2aQKqaj9F0RqiVj30rJ1OW4FlJ\nduWzVy/x4KHQigVhyr7uQAezMluWWBOzFXCUZCNpiemcHg2ZadQ+6BcUi3I/0bhPEap4iQqMJM6Y\ndE6PNq1QshSqmp6RB8pEbLdpeyrfdiLPcefwDp5azN2OQzaR60XVFHesgb/WBpk7twSUCMU0vhto\ndQIyHYciaeNkYpHlk1MGWjCUxWLKVqoVYgQMlscZmVo6aZqRaEAwz2MszYJUlM/S8y3sZQWLPTxh\nwVPY9GCGaUi/lEpLWIqjQBmzrTylyNV9yFMKo5U/2ZhCi7+KNCWrqdcaz13FdXwdvzAek6gmZJSX\nKTmSiXBWPYza/yZU2LVTkCuXIrMEO1Jra6jkPN/X5riksDDQlGOXRy5VparvH8K+Xvt0W/p1t284\n/Yq4oLveP2DvSyrUkyasvvwVAJr2c4QqOWipBZ06J1jKM2GlTdxVGbRPbT5HpgTOodPiX2ff+FPv\n9Qe1J2JRiPyYBzd2SH5nej5Jfa+Kowi8rilhqblbRBB7isxIpaPjaEI/lE69e3zAFvI7NwarJYPX\nNg2qys5U+DpyToaZ6Hltj2imhByWw1DLc7NKwWQoPRwrQrH9kz2uvyb38K17PRJlLPKXS9RvSaR+\n+J1TTlRsNJ/KouL4MFG0GhuGgb6EbZNRqDCrpcg23zHEgcZXCgerrtLwE3Nuws6sAL8hz7p7pEjI\neI9+Li9prV4n95WchTYu6p93LRzlPizKc6pzn0yfIzs7OWeIKmY51lUtgZ4GzJQgdujLItQur1NS\nfkHTd8nnwCPbwVJNgjRqMdVYdL0hcZ28VMb3lRXp8hS3oS+/O5XVGsiZYdky6W11NXAc8ljRj06B\npaxIeeHhdJSMtVzFZEpiKr8ib48gk3N4YYWJ5rv37x5RsWTM/CABV0105PmNs4ylxLS552CUNLX6\nYZWx+v6WyjiGxmVTyVCOOif4qluSHleIPqCKY1dkcXs29jDPyCJ92OzQe1YWjcvXL1Nu/f/tvWmw\nZVl21/fbZ7zz8OaXL+exhq6q7upZtNSokdCAEIMJLEIOgyFCYUME2AEBtBXhsD+ATeDAyARGxmAc\nNkLCSAI1Ek3T3Zp6ququOatyqJxf5pvve+/O555x+8NaN7sSutVVTWdVRviuiIy87753795nn332\nmv7rv6Q3RlH1iV1twqs9TugZhhrjuRXAjl7/65U/QeVZQWZ+/jP/hKJ4Z8nBWe3DTGYykwfkkbAU\nWmGDnzz5Kf4e/x1WT+qkmhEp9deBCTkSaHcnz6MbyelYbGiPvLYl21PzMkiIB3Lqem1oK0V2pVxD\nGwJjjXyvJDG00cuoQ6z1/+PDDGdOtMPeaMTORLTfdQ2W/fVn/1N++sf+KQAb/7TLYCBaJXfvkvcl\n6LZ983UijUVNMQiVxgq5Eq/0bvaYYj0Pb8e4DdHi0ZZ8V6mW42t2xdZisvGUXzBiohyMw0rGUOHW\npxfl/0E3pFVWOvh8olWHMOpE+KfFuvEnAwgUbzaWSSYcUHQ1J25jxh0FIc3FpPeU6q0BpdZJuZZV\nZVEe9rHKiVn4FbK63pN+ipmW8WPJK2L1jLtiwtu5U/fp7aiXOZJrF2w/wOp9MG4NlJIPM80mGIzS\nvJF5WE8tvSTHMWI+5wcOtiIuSK5NdtLBIb2L2mHpzDxxJJZgVDog0uBoyfRxp5R06oOZ7BBbjnQN\nx1QXldIv8ac9Wx4gSc51Pv2DLtfLgpsI9g15Ktc/dK4SdgX532wLruD5e6+RxwKGcuMasVL0Dy4X\nxGfW9T4tk4bK3ZjKHooZcqD3b4OE1wq5p17wy/zG/nQt+rxTmVkKM5nJTB6QR8JSiIq7XIz/MkVt\nCH3VSpGHrYjW9DtL5CXRGJETMF8RLT5RCjNnAGFdPnekMkd1Tk7gPOvi+eK3VashNhNtO1ZamjB1\n7geGorgg174PRR16SqsWrR9yvSNBq962FgyxycKKzOHxWo11rVOPR0t0NiQoNbxXppuJ9t/ZFQ29\naGIUKEerYqkcSmDsxvab+KmyIyuK84RzgqzQIBkxkTYpCYYFE2UwDg5dMg2kDXaV+brTI1bYcbXX\nIgjkFo+2OqRV5ZNYbmCUzbjod/QuDMl8sapM0STuC2uQZwJsUy2h/Samoz0e1OeOM0Ou7ZUdIpIp\nNiEN8dSjz+MejrYAdLQwKu/65NuqHZ9cIQjlPhnrwrQ/RzDBeBrwUw6NPOuQK6ux585hrPa1iPtE\nA+WqmDi4seAaxodyPzp71xnuitY8duoMJpIxJjEMt7XfR7VFlF3V69aUZZETH0oM4Na9l1iwoo1r\nWeNbt1FQbo3YDNm+KvepkRtWlHpvuONz3ZMY1fq13wRg41aHvpIsvHnrMgt1WcPgqUWGdwX1ObIj\nJmOND7li/TgDw51b8l2TvZjMk2v91z//FcbaK9Om7xDOyCNyKBSpYXLXg7TAzulTGtaIhvL66+4W\n2Y5Sny/PsVqVh7qjD0e2a7B6KHh5m64+9M2yIVRwUuI49HRRi6E8YKETEirVuamU0CJJkm7EXaV1\nf25zn96Blq9qYNDPP0G1KaQYzz6xRveO3IwXv/B1ji/LgXQvKhPqrvnqS88D0Kq3OaIQ64Vqg8Gc\nlnsPfWq5fA4FvCRexmTakOZ6Qs3RdvB1i9WDrlwOmWzLQ317Xx7oG8MtnlQwTrfawRkq4UyrS6gb\n1kuPkk5hzopHyEshbiSvx8mEQOHalhKKXSIPHZyWwpt3lBk6hFgbsuRk+FV56DPHkE40s5MPSFwt\nr57Xhi29CWOtH1i1x8GT99NxjutOMwolAQ8hJdwAee82uZVDyK3moBD0YtIhviafi5MBZkFPX20g\nHN9YQcsgiBOPQV8epkq6SqDuT5Z3CHyZh80lkJgkO+zcewWAyc3blOtSozDOJQvz7STJLDeXZK0+\nlq8RtOVe7txLuHZH9k52Q3EF1YCSskQfm7MsK4V9EIRs3RIo9GB4SLQre+PcE3IwlUzK4oo8/ENz\niL0pBDDJcILtvuPKg/sycx9mMpOZPCCPhKUw3u/ywv/9a9g97kdt8qBLrrnd4taY68vCm/8jc+eJ\n1Jhwlee+k+9S70r652Z9F6uIP6fss1YW7eH4Lr6yFbuKtFs70bjf98Evl0is5tDdJiNNgeb5VRLv\nm5YFgF25zokTgnL7lbnLDK7J3742ucOCah33GShvyfftqNl6uLnNcE1wDEfPXsBvypzH3T2GiotY\nCKWIJvJibm6ICb+5s8/3n5EKucRp4KOQ7nzItNvYYVVM6mbJpat8C2u+i7cqmrZZfRw/FxSmWwZT\nyHhRSTkrsghHi2/wUrK+/L6f7lFoACtYSO+TdxSaIq06CRMNouHlRKlo5nZzlbGmQ3eur5MpPFjR\nxSTNu1RCWUNTd/E09Zh1O1gNGFIkWK3WNBpwHGeGYVdM/IX6UwRj/VxW5e5tMcfHnTELvqxzXJOg\n5OXtESttLY66scFmIBq4Fw85cVw0c7k+h9U0dz8WS2pruE8WyrodOXWGyZpo+WI4XflvLUVucW5q\nB/EzA8pVSXve2j5ga10g3Yd9ubY/+IEzfOIPCkfCarbCfibzPHn2LE7u6TxeYb0rLuKFhqybFxck\nB2IpRrcz9r447Rfx3VsJ8IgcChQOZlKGYszUhs8cl3BqOmYO3Y4s8As7e/zho7IosTIoVVYiyltK\nLNKoc6jMv0k2YKi05mm5YKEmLkh9TW6oa10c3axZPMbVzjs9m9NuaEvxosIwElPTm1csgfMUvvpv\n1XZCK5ExFqIhB9r1KN0NGSVyaC1WlP2ndRyj0WvP8Ti2ok1dWLrf/zJ0ZG6TZIe1puT0T59dZqkQ\nPHxS6eN0ZdMcZnfobooZ+z6NgXQqGfdimcO1nSGeNhmhFcEU8ny4j3dEXIxwoNH5rZh4R2MYR5q0\nL5yU6zvc4PDLwq+Yr3pEmpVorsrB6hlD67RmBuwSUUvWIuwfkipPoImqVEtKq5/JPWuu/CBohsA4\nFayS4VhTYF1Zgywf4GjbdTT7VPI8rDa7SXYHUNd72Sqz/DHJYGx/aZ9CS8nrnjxsT8RbTLSeo7pc\n5clVyQAUk0NaJa0DqdYoxnKgjnYFjr63foOjJ5UTs3WcXKHEm6+LS/F7SU+ZuYfFOZKuvD7VqrIS\nyz58UxkFanmJp499v8wtXOaEYiiyIKSi8QXjnuXciiiMeqBxlsYBS1W5ztd6Pa4NvzX0+p3KzH2Y\nyUxm8oA8GpaCW5C3I5y4hrVymreqVQplBp4QMVbo8ouX7nA6kBPT8URLRut9EsUV+MN9fOV2rMQ+\nlTWxV6uRR3VRgmdl7XXu1h2SwTTZbFDWNTITMdwXs/MwG95vQ+ceShCqd+tfs7MulkL55QhliqNp\nLF9Z0Lzyur3ftOTpeeXOO1aipu3eN/d2WWyJpqzUfUxXTO0o0cDZIMW48rqahiRNmc9kZ8D2ngTo\n7l26ypfWRQOvlPR8d11CdZ+iwmAzJfro75B1Zf7xHJT6igoti+ZO05S+Wjale8H9rsxuaGg+rc1s\nSkcwpzSLoN2unbmQki+aK7Zdoh2ZZ8fLyLQ/wzg9hK7CrdcVav7MEibWqsZRk0y5IvMkoNCcfWYK\ncqWTqzakiQxOdr84bNLPsKlmTCpdXF/vdXMPXwulRq64AclSSnJPeQubx/F8Xa/QgUSh5aMyUSz3\n9WBD3IuDy7ucOSlaPMsiNu4Kqc2rN8Sl+L0k014dX37tIkcWJNM0Xq2yYGTO85rtSropkWaPKose\nhVLeOWMHo1ZFy6vhaB8QpyR7ZbRheGNf1urX7lxj+1u0sftuxNh32Lv+Ycj7P/BB+4Xf/iqX7/Xo\njmSxv/rcm3z9i8JudPfSixxdEPPZOhlhLKZmoyWbaq65xtae3Py93g5jLS3FOKBVee8/d4p2Y0q4\nISbntSvX2FAzcTw2rDbl+5pLVfSMYbjrsaKMSx0tw/35z/4uW1vi7+9e/S3evCuniZ8Nufo18Tn3\nB0MiZSla1BTSi7f6THIxr5McGtruvR8ZltXfbep8XRMx0Kq42HPpKknJeDwmVz/Tcd37actseh9z\ngTcDeCWH3/3KcwCMom1quUKXa03caem0L7GIzJTZWxdobOfG73Dpi7fl940SnevTCPc2hzv6cFfk\nwLt5d5ue+vs28mi35f1xlDOvJnyjWiFUOHVPTdzDeEivq8AjcnJdqy+/8irjrvjck83nuHlX9sPd\nq3KfXv6NK7QVYfxGp8eNLW3omxoihRiXMoeJ1fWaKP2+kYNPXls8BXW1GxWWSkoQXDMUmsqrlGWP\nlJs+Hz8h6zm/cJzHv19IX3xvnuqFTwGwtyPNYr5+8Xle+uqLcm92Nnnhjqzth+fn+aM/Jc1l1moN\nXv26HCxf+Yas8W6c09KakMQ1tE7JfOosUASyFq87IV+7I+7Gs6mg3g63O7gLch0Ly3X+/F/9bwH4\nwcf+AG5ZU7xOmUKbwJTK9RettR/iO8jMfZjJTGbygDwS7oO1kMeWzvCAlz8nGjh9/V8yuC6aq+x2\ncVOt1AsLfIXBnjmqwaTA3HcJbF4j9cSEjeIYR+vb+71tqgp5doyc/HOVjK62CK9UMybKxbeylVN+\nTIgwVs6NQCPuF7fEVLdFzlg5x9ffuI2zLif4nhOyPhTz89q9fUrqCoXnBEizcnSPzXWNppd8zi8p\nf2I956mG5sfnJaC2VNR4Y1+0pO3kXNlRcJPv0zfaat4Yhlqtl05BQdGAw5Fcf6+f4yuRS8WLcfYE\nYkxRwfgSPC20MnR48DJ33hDL7MU7+1S0cGtnuEWtIWsU9zLyedE6o8O+ruWEYEotXrc4CmrIsoRJ\npFRwjbJUsgFVnfskaFCZl9fb+wcMlLmbLCXXwO721Q3u/doXAHhFrb+b3XVGaq0c9CLWBwooMwZH\nG9QcqdUoQon2F4lYEiZ16CjxSJG7JJqJmveg5sv79UqTLNSiOOWWKG3lxIo9KTUzkkTmNigZYrVq\nbzwn1tjLv3UNNm4DsNmco6lrnAdjxoqHCSoNlo+JFaKJDALrceG4uMRJcUClL/fy4uYWL9yT/XSl\nDyOtbL1V0faHhaGkGJrbtyM2XhTCHeeJP46nwVprHDBvj0dhKjNLYSYzmckD8khYCjhA1SXa2+Zz\nL/0yAHsXn8PTgijfBNiqnPjhqHofeThFcJqwT10z9qfnG/SUxWjQH1AMtenm4JBXu/IdVV81ODCn\ncYTxcEhHi0teTGIu9CXId2QJDjbkxK9rgMsJHZyRlAK/cOsGh68rAedcwWuvyOe2kz7Nmvh1jzdE\nqzbmFtneEy1+6liL82uSFrzwA8cIFMvQOCJaydtLqKZiPVx/4RqVvmjuYR5RD7Wpi29xNKZQasg1\nbQ7KjLYk5hKlCVarknzXoxeJ5VXN6phFba5zU9TVZ17+Ja5c0UKyw4KlFUnlxfmAVkOCXb3RPug4\ncVeZiUpVGsrAHS7ViXuKEdnL6Uy0z0R3QkuDZH0N5tbmXTyllSsGJdJEC3d8h2RbaMV+4V99lq99\nRSxHRxGroz3oFRpriRMGhWhBz/VZnhNLob22xLwGHetzsoZ7VzusaTu6SdfQUX6GvEiJFJPi9/sY\nDUDuKb1fJ805nkq8Kt4OcCryuSPHzpMp/eiXf1MQq1/bWqc90p4jDYenqmIhptk+hy/K5649eYNw\nTqwY9zHZK+cih6VjMt/FlQv87r+S4GHn2gYXY/ncJClAu7BPm/guLXj0DnV/9yL+2Ve+AsCf/Ol1\nXA0wG38Jh3dmKTwSh4ItIIkKrt++yfDrskkdP8K18qDXm1BTso35uRILTQGmLGonJIYxtbrc8JVa\nTmzlQe+Xy+y25SHcOYiwY6U00/+X59q02rJpOvEW/k3ZCL3QUOrJ0piLYxIFO/WVpIRJzHDvtvzt\nc/vYE7LTOxuwN9JgXg4njorp/qF5yYnfiG9wrC5z+5H3PcnH/4DEfAKvDMsKotIHvnSmytqOuCWN\nfkCcycMxGJdIUj0gixYTXzZWL5DoW9S/yk0NLOVpgUlk7vFWn+imbOL05JexdwQDsf6aBMnC5wPe\nf1oCWGu1x7lq5Prs3SbmrLhd7185yeauvN9YkY09bPss1GQNg0YOaua/7m1ya1fm5tqMPJGHbU4D\neE5apqr8DeVgRKnQSss4Zu+S9Ip87jdvctfI2hYb+vs8IVV3pV52Oabw6VOnl3mqLYfsk2ePs6Cu\nRF8h2LXlJSZWPleqVMk04Lmz1aevHBAH3ZQDhT9bbfYSNBySgVz/aDBmV9sA1MOMzW1pJX87kUN4\ntGE5rQ/3af8Id7WT2WAccSqWe/ZE9ftYnJN5nmg8KWOseLRDuX+TYUr3UEBYzrETvPCyBFhbVBlp\n97EfP3VS1tUU/OpvSdDyVpRycEnrdXp1Al9Zyt05rFEt+jZl5j7MZCYzeUAeCUshzwsO+zG/+41L\nbHqiHesDS0UhuAtewLwG5R5rtKkpInFuijeohSggkNxPSUaiEUJqeDvfDOyt52omBvLHjXJGqybn\nou/VieaUoHRnh3uZmHC33DalsprBWumXDodcviXa4VJlnSO35Tu2BhNQc7bklzmmzEK2JhqzZCOe\nfFrQcU8+vUBjWV77ZkShmtRVn8j1QmrLJwE4+ZTBUULYa7sFhSI27w3GFNM0m/YZ3I1qGCtzy52C\nOJPPRRlczm4DcOH5JexxWedsR7TIqQ99mNVFSfvmhIQjZQle/TCVkmjrxFukXtHO24tiGueDXVym\nnaFdfCWtqLoZZUfWe7c7JFJXYqwkE5V6ASUZr1FpMqgqwereLv/8X4ubcynp4imgMdcbHBjDkqY3\nzy+FzB+R73jmsUVOVQSuXGtZqg35m7WpFZMm99u1hf48hafz2eiye08Qm1u9jOuK6jzQYruULpt3\nZT038wn1NdH4x+bn2X1ZMCmXr4l7kWYJkfb2vD0eUtPq2adOvJ+Pfd/TACyfXaNREWi2F4nF6y8M\n8KbsT0sRHxlIX4hT7ZTff17WuZOkrFTlOxrHZI0TJ+b6Lbmn915N6XfEMtm6+RJxLNe/dHSJb00c\n9+3lkTgUhkXGl4d77Lx5DUddy8I6LPpKp21catpwpFyps5wKEKSk5pRTjL8ZYc1LRIG8Dlox9Zos\nduMgI1CCj2Ig5mLVC6kpmcYgsrSrctgMqmUOtFAvqA1IC/lh2ndx19+ic1fMzCzy2Ozpg+y4eEr5\ntrgQYFalZmBvSlneXGQu0FqM0nGsdrjK3YBiopyC0zaKpSEmk+v3a5b5RfHx0+EeOzXlnbQj2JW4\nRdgUk/T4wpg7PS2bjWE0VhxCtEWg+IbtdkGjr23ntYlM+RyEqXxXmnk0A6EBY+EylUjcimg8wteG\nOpkedEl1mcN7GuFPXJyytq1fnOd9ehBsVkLubcvf7ysuP85CmlW5T2WvoKFNe+6MvsDV6xKviDJL\nSUuxG+6UyMVy4pys51J5ldWmPPTt+gqup1WZhyWSWKtfdVt46RhTmtKqrYOZltTDkXmFfLv7TBQP\n0lEAWNFd4bYeIM54xNVClMX5+jPcHMs8HYWPD/OC7X0Z8LF2QEnX6uQnDMtH5OFuVhZx9KAzRu/5\nsI0pT7EeKdWj8n1+8yOgdTcnD/q4bXH5phTwaWvID31UQF1fuPU8JpD96zVPQVMO8jE3CdAK3Lcp\nM/dhJjOZyQPy3bai/9vAHwYS4AbwX1hru/q7TwN/DmlW9RettZ/7jpPIYb5rGUcjclfbnjuGoZrE\n86UKS1rBWGvXsdqq3FEe+4QMo6SqnuvSairENUkIFYJMy6Wt2mNYUuZnCqqKpJv3Qypt+d7e4Rjl\n3GRsRkSqVQ8LObXrY8uBkRy1oSDXdvaBG/C4RruPz8+zsCIuT3io0O3jK6w1lDJr1MOZohDTETaX\nMTLNMrh+CWPVkhgn+Mrgu3L6CK1Qri9w6lzaElN76aRol6j2GBc3BAXXjToEyhnW693F3Ze5DRpb\nlBalGKvui9apVY/gjEV7RqOYkvZWCL3F+92Ky+U6jvYsmJLVZllMbVnm0z9IKCaioVzg1CnRjsHe\nIYWyao+19Vlqh2Ta1CUM5siNWF7Vw4ygJMHhiu+Qa8ZnrGzWa9WQFQ1Wzi2WWFD+hlq5cZ/GzKEA\nbZdnErEwYtel0MxIrRXg6/wNOWV1K5aOHrlP6qIIe9bTTcpDuSeX8wn1LRl7/8ZttB0GrhbuhSVD\nSeno6gvwwWe0O/ZCi5ZatWU3ACXSsYXiVLwcE8j1uUFIMNTWdckeVlsPlo48Q6KQb19RsX6zyg9/\n8o8A8H/82kX2FTm7Hf0yVe8nAJgkZdzxtIHb25PvthX954FPW2szY8zfAj4N/DVjzBPATwFPAkeA\nLxhjztspWP3byHAy4fkbV0gn2/ixLHqzXqKiEeA89+hOFKjU7VPRtNi0A9EoK6ZUhNQIKMaaInOa\nDPRBrgUB5xUfa8qLOm5ES5vBlAqYqOHUXWiQKWU63ZyRlhRPtOHM7s4X2R6LGZl2C+aVdfqp1grB\nvNzEY0cXGGidQ7klD80J02RZS4ddt4GinHFMHceReSQV7f6TlYi7WlmIwS9Pu00tYG+Lub7qwjVN\nwDjaU3FxsDfdcxhrKKycisNuh2KizVkWj1LOPyjX1FYQkxNS6Fq51sFYuaZovIMz0IrR0AOlqDfp\nFIzkEyhAjNCQ6/tFYWiX5Z45zQpBKv7zRKtWr3f6DLdkjUv1Ml4m37G7/jvcHsuhUKQOodqyy46Y\n/guNKsfmxSwPgvL9A7KZFUSaekt9j1yVyDQlbUKXVIFak15KnsoYpbJPpvB1Ly0IdezjmiWa1COu\n9bRJUCelr1WZ98Y+nX2Zf6Lfm09crMaRPlg6xdNHxbQ//dgcJU++zwnL2FTm5Oh+s7kLidLWpzmO\nr4xilRbORPZ4PuwQNjSWoDGjcHACduT+PVFz+J1d+dvOFZ/WkuzPhdYpDmLNmr1N+a5a0Vtr/521\ndqpAnkN6RoK0ov8la21srb2FdIr6yDua0UxmMpP3VL4XgcY/C/xzfb2GHBJTmbai/z0lHRdsvhjT\n63u4VZnSxLX0EzmBi0lKuSsar9qqUKuKGTWetixPLYHVZiJ2gC0ObSDDAAAgAElEQVRpn4Uio74g\n7/vxhFg1tuuI5m8OcxLlQgjd4L7lsRSG7ChEeVh4lFw5O8caDOq8dEBHqQ2zFcNSS81BypiqaIG7\nvRS3qcE8zQAwX6UaStCu0ajjKLzWuOC46mp4Ck/NIryKvE5H5n7/htRPKS1rtaYTc2Rermk7ULbg\nsceiI4HY694+ifJYZsEileNiTSxUQ9AmKlWt/AomZca+0tt5XYIFtQ62yxQN1f62wCiJjD9Qdu3Q\nEqim9Req5Eohlyd9/FA5LuZauMrrcNAToNfmHnQV6FOqhtTnFTT0fINtNXVKZZdce11uZ3KvK0mO\nVb7GoNIiXlLwTssQjKaEKyl2milSFmjjgaftlxOT47oK3S6nuNqx3JYiSqlmRBo6t9E26Wsyt16a\n3G+n53hd/ETuWayNikqeS6KuZLe0xLFz8l319mmcaVWmSTHaF9T21Ud1hqCfM7YBsVoutTFU1Wqo\nL1JoGW+ohneR7lPT9nDHq6s4ZQV9/YvP81dOaylA/RmM/x3buT4g/1GHgjHmZ4EM+IXv4rM/A/wM\nQFBrcT25Do5POlDCjiAgr6q5NxzTUSDTfKNORV9XS/L7mhcQ+Iq/t1LiClBkqSwyUHUsRpGOgRKN\nEs4Ra7lpSkQ4kYMnOcgYqym61KjQSRUIksrG/vrdz7K7roClw4K+o41jminVSDZxt7dNKRETvKyt\nw0NOEWsD0zgYU9LGKsYu4movQePJ/1mck2Yybj/v4SoLlY1dEu21eK+7wUZX1qCnD2awUuLgmpiU\nrjX4Cuo6/eT3k+xLtHx95NKoiatQrWrPzFJGaBV/P+nhaqyl7/YIdU5p7wBXo/aZphsDUyMPpqCw\n+D5AyLHlb1arWshdObQqZTmwas0czSjjBwlVPRSf/0TCwZeUlj4aEGir9VDjSyU/YKJp5BP1EmGm\nDWDG+X0uSQdLria9pzUOeA7G1dZiZkwSy3y8uACtiTFeC6cunyuncmjWnUXyOUk9LkQB2aLcs/Ja\nmZ62o5+M5P/h9oRaTxVS+R5+LFWU1h5iQznITVoC3atpaRo/ckEPW5v5WEfn43uYid5361OE2kMz\nFD3rhQX+WN6bnLVESsW/m3TZ1IZItfoO2US59t+mfNfZB2PMn0ECkD9tv1l//bZb0Vtr/6G19kPW\n2g95Wro6k5nM5L2X78pSMMb8KPBXgU9aa98axfgM8M+MMX8HCTSeA77+Hb/PGoLYJ0szTElBJZUc\no92lc8+hoZWRBzHYjkRTVxpyQhdzLrnm/MNKCfrTvowpRSInqeu793kUvGyqwSyO5qDrJqCrlWWJ\nk+NN8fzl6n0ClEk8ZYM+x6SjFZzLcKimfcW4DDdFXUXJhEQtgUhJM/b2cwJPNZEHmWpxJx2T6d/a\nSKnI6gGxpkCicIzRDEipVcUiFktYmsdqRHq+JtcRd1pUQvlc7hzez12H5TrGF0tg47f/EeF5AcLU\nww8AMHQi7lwR0prNi69T0x6V7eUGmXZoLjOm6GvGJ5w2d8mhotiD3JBrlD2PS/gV3Rppiao2Sakq\nS/SJpYxcu4ZvxAcMh2JhXdiLiJeVaOZqitWofKH9LBvzDeZ9ccGKShNHLaTx2GDVuvOyGE972cXj\nKfDDMEXxBIEh9sX6yctjjGYiXHdCoACupjJmL29/mbW23KcdC3XNouQ7EU+UZOx/d1wLOjZSRjUN\n3N7chUysjewgBMXGmHAbU5f5G6OAhWyMrcp4TpJRpGLR2YMApy0Wna08hqsM3HkyDURaSmuCw/nE\nj3+MX7whkOjM3ONfulKP8d/vzdGJ3xlN23fbiv7TSD3R542kvJ6z1v6X1to3jDH/L3AJcSv+wnfK\nPMxkJjN5tOS7bUX/j3+Pv/8bwN94J5PI0gEHu7+L8Qc42i03cGr4ijYsu7CgGuZkc4FQuzE3tRGp\n14tBg1r9/TFYOUlda3A1ODgOfYz6+2NtuFkKMjL13/ykB9ospd6qUFE/bGdjn71cewdEookG+TrH\nzojLMzg0HNNYhRnF3FLG3YPhhKWeaIKLqjDzksOdN0XrPnX+GOdXT8o82hHliQYztV3w6OYiX71+\nBYArr74Knvx+9fRRFgpt+BrvcqhxkDUkbhHMR+SOYgWsS0lRoY6NMBPBVux0Co4ele+INCF/9auv\n8G8/+xsAvHDxMitNuaaG5/GBpwXTsDp/nqpqN1fRnf2gx84N0Z737g7oxjKfhabPWkO0brvl4yte\nOR7K3FaqAQddRd11D1EWOv7mz/060dYUvwETvVdLmo67cHxxWizIYNhjry9jr1R8Strez2tkuJqK\n9KaW0jAkbmkX77zMRHkY7H5GpSZzqzdqhNqIprIoZkVj7jFWjkh6r3k3o3pGYh8mbfErX5bAXr+r\nreZS6CtMevv4Fts90fhcyjBz8v7Xdgrs3hfl+7I3ADh95DyPfd8fknVtdrGbYglP2CS9LunXrd4N\nbCHfVy9LfGLh7LM4SiB8uuJyYiLxmitXOmz8j1Ks9Rf/+BdZPf3OEI2PBMzZZh5pZ558ElBoxH4c\nWDxXLt6di9lQEo7JeJO6lo5OA5GLWZ2wovUMqUNJc8l5s3Gf9CPuZYz7klm9qqmDYTZmSbMdc7V5\nzp4TU6wSlPACOUDuxTn9kW5orab7oYU/yeG8VLKlNqc/5ZJMMnzdse9bPcqHP3IWgEwzCpPNLje1\noo50jKbxWZu0mCg4Z6AdlQ8Ot+h0ZXNktk5Vad37kz28sXxHPyxR0YdGcUA4B2Uu+FJTcdXrUKjp\njxcTbcs8m4lPqyKHRTGRTTUYjim15IBcOFqh2JMxXhzkRMol+Oyzlqaa7nXlwby1NeG1N+SheePu\nHfKx3L9aw3JSG7+8/9Qiyy1xR0wi965U9zA9OZjMOCTz5FTY6Nj7+A1cMLouflMWa/1kjrOh7ppj\nmKjbmAwKAiVyWaFKfU7Nce3MFNuMTOnfEgq6o329DZZ5rbvI0pBWRaL55SdPylrt9ihpgPnQ2+YH\nrHRsqrbq7E4xENraMvfBUa7MeCHkG1ekgnF8LcDU5RD6N6+8Qeea3Ncd7Qn62NIGf0Vdnyc/8gTm\nngQr7432eH5K7xYO2eyKC7Xmy+Fw+okrnH3y/XL/zEke/6Qc1Jd+IWXwNVmXu8/65OV3FjqcwZxn\nMpOZPCCPhKWQ50O6va+QxwOsdoy2lR62qqZ9nNBRLb9xuImbidaYV3O/ywatmtKOVXyO1sVsDROX\n3Ykc47fu7rPdEY2wqeQti4FDUMgY1XpCkSoWwCszUmxCvVIwVJMyyUVrhe8P+HguVsBLrx8ysVJo\nlbcdFhUmO9daoqpVgGZOU0m1BUraBbhWg25PipXqJmSiue5eqmNUF1k7JZr0yHIPRy2QSZESarCy\ndLDHXiLzD6paGPTYCqXdi3JNt737xK5uFDDQSsvK+XnKCk02msffya8zLol7cfzoGGWeIyunDDX4\nG01iVpWMdTwWN+Hm9jbru5Kyy5MITwN4T8wvYFbEOhiSEe/cBrhvuTSrTRaPi7WxbF3CsXIWXASm\nuaxcuDYA+op/aG/47CsNWmcC7lAsgrlSRletLONbWovy/nygJpRr2NBg5u7uFncPxLrZutflvFZa\n1sYBH3xGW/L1lLpubZ65c6K5f7h4nDP/iUzu+MoRDv4n5a2YRs2ybwaVX7g84sQxsSxfePMy+0rK\ns7nbpafWXaQw/R3b44sXJXD9xJOfwK7K2J/5lZd57lXBdRjXsKeWyfvOyb27fMnnzFD7rZ4/Qf+q\nrNEksqQaS7/+9/p0zrzJO5FH4lBwrU8tX2Uw2QdtyDLEUrVaUVhZ43hLbtbgYMI061pZUPBHtMfW\nvmz4thOwasW3Gvo9OsolOJx06enBUde8ervVYE7xAcsLbQoFEw2yiIU52QiDeEChIKmdoTzc9cZ5\nQk8rLZc2cfQwiZaabL8iG+/L117lq4XEBFpluVmLR07zxGMy59oYetqIZd54xC0ZY7ApB0WvXafz\npsztyzuX2NqQm79U9fGrcn0febrNkdPyfWsn5AErVdY41RDMvRdcJIrk+m2vT1JVUFB/ghPI2OMb\nEtH+nRe+zrWXxZVYaWT0dxV2HSQMNQs0t7TG0lEBr77SlYPg4Mt3MAoNDuuLxIW8vtjpMacH8o4b\n0FqWB2C63i0vp1BMwJnVY2xtKWX6v0cuXigMvdYQX35r5y6jfc04xB5uWa5vcW6Jtqa2S0lOXCho\nrSU++cSOGF2Xh2MYJxxM5PDeK4/o3JF9djRyqVg5LExb4eZ5yPlzUqHqze3x2NIZvY4j96d6f8oO\nTKatUFdPcnFD7uXzt2/R0+xDQUFJqzXPnpGHu1I41JuqABdamLK8n17ZA82e9Gs1sqbcv4t3FfOx\nPeTS6/L7yRt97t6Wuef2fqM1nAR6txLeiczch5nMZCYPyCNhKRROxjjs4FV97ES0R8vz8RTaerzk\ncXJeNGKvWdxnDz5ZkdN+48DjtZ4e0cWIIheNUT5IMYW2MKfDsraC+4Cr7sXxc5xvTpGEUGmpyxCU\nWEpFA63klu1FGeflV0U7drde5faWUIZdf7GHV5PvfWKxRFoV1+TNA0sYyPsNbfN1ZnGeJStaYKHm\nUElEe5pwQLCj9p4WflU6VUxbfl9P6swpim25lOOUZV2OLiyx3FYorREMggl6NJaUyMQPyPbF7bry\n8u9ysC+a8sQzH6Y6Ee23fXhb1vX6mKEW/uzE7v1+Cd1BzgWFUteLKkoOTahclJudmFjt52rNIYwV\n2p2XqCuXYn2xwqLCnNeaizo3B6OBs8biPE1FqeI8x1spBRtaEfmkBmXbaUB3JO7M/EKd1WX5vtOL\nJ4iUCo9RTHIgVl06rzyfw4w8ly/xCnjqtLhb5yYV8lSub9nLoK7YEv18I2izEHyz0Kq1IkVOpWwZ\nBZniZdPmpi7PnpT5/MxjbbYi2ac32tdoaWA2CCa876Rkc/xVWeMj6TJP1ATzV6q0SVNhZS6X55hr\nyr74oWc+wr4jLkg8lr0Qdta5ONBW9N0uYaC4HRvfV/dFAb7uw7fL1PhIHAq+qXPE+yTX+By+WFEk\nRYrR6Owo3iNT57KdlWktKFxZI9Ytr0nYED+sVWtRPyrm9VI1wN1RFqLuHomW3HVX5GadrUdYdUGa\n7SoNNQT9tM+B4utPzJ/liMYBbm/dBmD9xYQvvSQR4J1uh/O+pANb9TWeuCBmbp77pOpitBTmvLhW\nYikUt6QRpmSHWibujrGRzGN+SeZ27PwaR5SM9gfHZ8m0fmKSulQUqOSH81TU38dTjH+5woXmUwCE\ntS9wsCub/LUbNwg0lvKpH/8wpQWJsh9ZkL6cH378NIHWfmTxkKQqm/EDKx/gk0+LO7J6epWyUsmv\n1OTzy7UKA4V5e2lCfU42bKmwnDguLt/acoW18km5l1YyP/FhhqcNduv1GuNC1vhUyeG2pn59z2VJ\nsyTL2vhnfj6gojD1wAtoLcgYtVJGW7tFDYjwNAbjlTTm4qXMacOdRr/MWEur17wWuaZLHd9jXg/A\nhTl5SL0WTDq6Vk+WmG9J9sES8UPzMrdXR6ps5lr8wFOSDXjfU4/xwTn5rg8uN1i/cxuAnlfBlMWt\nWl4T7k7r7vHYSSkz9xoOZftHAfhTP3mHG6+LIgrONkh3JfPTU1JZ74lnOdGUmEN/2/DidSFuvbcF\nmrXH/T4Xd1OuO1XS4O8kM/dhJjOZyQPySFgKuRPTr9/Cr3nYrp7wXnI/4m4OArwVOY2Xm2UcJVSx\nGnJ8tfMKvX3RmOV0iZWqnNBFP+KYNn65PR9QLkTDHKpZ5/o+sQKMfFNi5Ihmz90aQSyaeWEetgox\n21qBaJ037UuMtQpvEDvkkbweBRGNtrgKH206VPTv5wKFXddWaE45BrIUf0Eb0ZRy9nyNdjeUmnx1\njkXVyu5gRK705GY8Jk00EJX1cBzlnCjJe2GlyaWamJ+DNCfR5iaDyEoPeqBoljChUraJtcvqDyzS\nOCracS7fJKyJxj/7wfM0yqIpzeGELE91HNHmz5w8zq2RWGO1SgVXsxMrlTLn2jKnxfl5jFammoHM\n9zC+x9y8fFetnlH2JCCYNw0l5Xl08PmgMnavnZR7V6nWWMjkdTtoESouwNQDnLJCqYcLtDUwWdc5\neN1dVhTCXDQLIuXSLLIRNfWJaq0SVV3/QrEZhGu0zmhPz5WP4bXEmrJFBZQm/xNn5DPvq57lU5+S\nrNTSSguvJpbQ3McDTlwQS8C0R5hY/n6igIyw+SlatYqu61mMJ+t57Ef/GM3zwm5eeAGHb4p71FgW\n68hbMORDGe81+zpvvKSFggUMp97o8zm12hT48fbkkTgU/KDOytEfIFrPyFYFJWYGk/ssPyOG2I7c\nuPYRF/ShD5RJZzGo09UDYm65QtnIgzmag+yiRLWP2nnGmtZaWpCbudUbsqjdj5w8v186fbC/S025\n/6h5uOprH2gk39uokqm/vHQmxNexo72IYyX5XBgs0NCeEvWW1g60m3iajkrHQ9BKQ790gfCo3PDu\ntCZ70qe0IOYigYMfaaly4Qt0DsjsELQRrlkVe3G0A1bbt48GCY42yWi3qjhN8ZPzuEueKQWGlome\nqjZxH5fNVowcqk3ZxEeWT+PpNokGE9JpjUlLuxwtNFlVpqva8hKu+t/VAkraH9GnitX6iHFHTXXH\nI9DDMihn7O/I4fX0XIUXlNuxaFj8RRnH1wO2XlSpLclD1fLa9xmLglqFTG3mogxl5LqNKgLmqlS1\nbqPwY1oLU9ajCZqMIqiWcALZD5NMFcThLUpnBAzm1HJc5Yq0aUJTK0mpyWfajznUljWL0Fok0DhJ\nRkJN+/mW2qt4nriTidKUjA5GBHWtLq00mJaPeoc9ShoHc8sLNJ7VwkFFqjn1MlbJjRvmdUY3lBjI\nGtwparftMjx8Z/1iZ+7DTGYykwfkkbAUbJGSRRuErQh/R7v8+FUGyrm3N+hxF831t5s8rad8odOv\nXLe4quXdcplU6+b7u3cZKsPgvSLi5DExg/OBaMxarUqWi1ay44xEcQj9cf9+85JSHHH5nmjxzR3l\nQSzuYY2c2sc5QaMqlkR5mOFr1V6lElDRCsxGTRu8WMtEK9b6vQGOcitUvF3iTW3k0VF8wLCEo9Fy\nzJh8KGtR9HOyAzFn86TPIFVW5UuiETd7u/z2b0mDl2yYE2pmYKHw8LTuP4ozStota78vlka1F5Ar\nRqRRPk2idNb7N2/QVMqzZJAx3hdtnHbl2rI0o6T3plaUCKYoEi8nSKe09RHDLNW1lbXsR0MWNHef\nLLQwSpCyn0ZEWonYHlepGE137Cm0+VibMFYMQmlEpSzWlGNchgeieeNJQaS4lnig4B4/I8rkO3w8\ngtjX98EqtyG5JT9QAFskAbw0KFM5JmscJmCR782LCbFCtgOt56DbItXaHbycXHuaZt1DMnU3i1KL\noq6w+E3JBm1cfpPhtlhmJytnccviSsb3bjLZkjFcM8AL5HOlo+JqOeOAwaZY1hvX7+AuTRvVpBx1\nZT9cSWPaajUdRFOytN9bZpbCTGYykwfkkbAU3KJEY/g417svEVZFS+xnIb72fCycjL7iNjM3onZE\n/bpALIbS1RrjvmiEaC/jytzr8v7Y0FMehsVSjVyLY3zlCjA2J9UWa1vDAakSs+aDiD0xGhjtL9Pr\nydmZKuJxez0jKikzz4kKc5r2OjQRjgao3HqVQCG2ruIqbA6aZWU8nlBWpKBZG1P3JMgXG9FQ8f4d\nJnUNKHllion44pN4C+tpIHVSoxhp12FXaulvf+kO9lBQd+PsGwyHyhVwokR9JOtZPuyTFNoPYkeL\ncwbQGouW7PR32Ny4CkBl9Synl6VQLIn3SLXoaKJFaZV6SKqB1m50SEmtm8IbkTtaCOa7JOkUgitj\n2DTDKMmpOzakVbm+Y8MWryqS9dCbcKkQLZ0diuYrLxoWlXnJcStYja+MowmZ8jO4YYGSWDNRRmwn\nr5Jpu73UjXCVYtTrpwRaWGeHMVZZuxxH9khQdgnGooFzugQai7HGZy2W+NGtnlh5uztX6Q1F45cb\nPRpIajzOqjgaP5r0ejgjZUsayPrcuTlgdElYDO3hmOba98n3vnSLjjbwWWudoKYMWKvToGS9QaBI\nyCcWHucPfUqu78O2zp2rYlm+r7rIy5fk+g42vyXf0X8gj8ShkAeWwamcYCMk76gpGlqctgbq4iFZ\nWQEkWY0hsvC+blDTrFPdlw3RiQ4Ju9r1iYC2I6/DIKSp9Qy54hWssQTK+mttTqJVkMmkoKPw2pXF\nMTe2BD46UhbeoTMhVI6/3hgcNWfDRoVMI+fElkSDVSPdoa4bMtGH2zEGW1YSmaJE3BJTMy3LGBl9\nsljfS+L7dO/ZxGOilOMjMybWjk37sUShOeny5h0pgc4dhyKUjbJWWcO4SsRSiWmUtDGtHnSe73Or\nI+O5+/tcPpBDY63pM6/EKaPtfZJpUFUPWAeXVCN1aXRIR2smqiWXsZZfN8npRFpSrkHQfppzQRma\nMzejUAj2b1+wjJ5TUFcy4VakZc3PyP8fzQqKaduoKGSidB2TIiZVN6YUhBRT+v9M/rYgJ60pzHtS\nkCg0fZKklJWt25QiCg1+DrRxUG3tzP1GRPXqMUxJmZjLPv2zymNpxS09SH36jsLR3RpxqF2vxgPM\n1L0dO1gldeloeX6wOsf4qhzOr+xtEVZ/B4DwXIXKUMBSeSskO5R5Zjofr5SSp3JQjJ6pcqL2A/J9\nm19mN9D+mGbEj35CSqcv/fm3dyjM3IeZzGQmD8gjYSlUK1U++oGP0v/aVXpLUqCTTRLKGrSrlX3a\n82KK+a06u/tyint6wpdaFVzV0CXPEsSa0qlYrC/aKMkihmMx1wojJ3jgB/ebjSRRRFxMKxUnhMvy\nud1BzCBSvn3VPkFuiGM55U04wp2XFJODTzzWvosln0oolk6mxCRFCmldtFW6bxkb7cp81zAaiwna\nUVjy0tIxJlPCzWBA3pfXEztBu5SRlGCgwbywJgjLq7cWmFPwwdX8LvlQNFS3k1KqynjdbZewoqbt\nrmi2O7deYnNLfh+Uy/QjsYTOzFU5vCXX1JtETDbldV9btEV7OYES3Hhhi1TbnI37liV1BbuTOmOF\n2u4disWw0qhCs6rfFXGgAcw/Vqnz8552fp5AryKmx+5tWbed8wscT+RzpuqRFWL95CngyxolwxhT\n0uYzA22CUc2Ip5RoJQ9fXZfcGWA1LesaS6wM0weKIDW7t+FZsUwjelQ18OnS5EklcPmadoUJGyXc\niuI/CpfkQC29IsaJFSMy75DofgrVEm73TlH+iPJQzNWpLcp+StcDvJNyrWG4QuGKa1l0Zb5p6GF1\n3y8dO8FvXPlVuZc3dukr8c1P/7UP0R7/MAB/h5d5O/JIHAqe79JaqlI55+N/Q0kuyrvEE2VRDkMa\nGjgd7kaMNMTb1ypDM0iZb8qiL5frLOiGz9IUx1XQT5oRaQVfoN2WnBQyq9H0SYZXaHPUaoirzUkO\nJgOGXb25WpdRZN9kDj7cAndRsQC1eQ47gouoBSFFIA9Irr0vh4dDUm36EsdDjGIIxgNINDbQ0IR2\nheMM1PRNhxGpkoJwGHI41mh4eY7DUDbx139bm76427y5e1nHLcinDWyuXmIQyeZ9+pPLLB+XCPZw\n8iUASkOfhid+dGVxkcG20IKPd2IKxYu4BzX21uXQ3p6Ie7GfFDS1f+ZcM71fMdjPEmJdz4U5y2Rr\nrHPSvoxui0gP96EN6B7KvfynX7oNUzSuhZHWhOwvKQhrv2CsD3c0d4BXl8xOMc5IFAxkTIqfytr2\nIzlknUP3fsMdp9JmopmDLPPu82OWIsuUvjPQkvJy8xQ2ku8aHewQNLQRDbA9kIPx1m2NIzV9ig9I\nzCFIlzjY/xoAntPGncYtiup90h6r2ZBqBZYb0pzHb7k4ZaVyP7qEvyh7Jzm09Kvquk0rRwOfQg+m\nul1h8prcvy/9zpD6lI+0Zjlfm/WSnMlMZvIfIY+EpRA6Lmcq85jVMxTvExNpMBrRu6E8BU6ENxBU\nWdJKKRLRMNG8WAe9rYy+sveW0nn6WsBUKdfwtSjJsQ65NpcJg2nA0SXNZYxxYSk0iFYPKxTKWXDl\n3jpxIqaYowHKU+Uj3ElEU3aGe1zui7nu+x6umhB5f8jSEdEqsWZOtvp9Ei2eaS01QKPlaWqoNiTf\nPlHW473tbcbKOZinGWgu3fU7VKsCQY7LNfY9KZi5OZCc984bE1ztPYAZkvdFK+0XEXd7Esx6Ym+P\nONJCG1dM1V7Yw9N1vXFxm1tjee3eXuXYBWWPrmcsTFmHt9UC29vCrUuwKwkrHIxknqNhF5QXwBnH\njDVDEVcVah76VDX67nr5NwOslgc4FaxmEfpj+fznh/f4o4ognGu04FAj/6MDokjm1GpDoCWMriPz\n8cKQalUsmnEOubqmrudgNI8/KI0pdJ6VuhZ2rS3iTpRVO3+Fpfz9OjOP75v/fQB8vfd5Wbe9DUaK\nUozCEo4vWRu37FJXfo7OcMLmbbG24kgsgmoVqtsybt031OaUl7EY0db90om2KfXFcl76+FH93jk8\nDTqm+038tnzfqSLkB8/K+z8495dJ8jneiTwSh0LsWm62E8rHj5JekoWk06FQCOtkNOKqJ3j+k3tN\n+toy/kQirkZh9zGHYjpuL/UoKSlnL+rR1OrKTp4SarqpWZaNfeZYhZ5ugiTOcbUhR+BV2a1o0xPb\nYYyY5hUtTY2XuqCcIPEwZ9JVoti1jMGOxkQ6A8aZ+KJox6qNziWubcmDebqzRGlR0km2GxGpubei\nPOTXvJyB1hT4C4t86LyUOo/HhsTTEufOAc+vy8P9jYvSVNYZRHQTNU8LS/W41gm8WeeNrlC4v3Z4\nk7P2AgBGqyFrYU5Hy8w7dp31dXFXSos3+PCqPCDWifH2ZH4tJSFZ9Y9zWanMN/cPWN+XbMeJWoO8\nJX/bTWKuR+pW9ZQQdWGeQusv0smQuvr46jF+UzR+0h0qrOPgYZgAAAj1SURBVPzWAfuP3dT70Waz\nKQ/NzfVttnblw8d2ygRax1FSaHqMYU27fo2qPqEqgPZ8hQvH5T4VpgClbe8p6K08zqieEkW15H4U\ngmnK0mfwh5SD8e/KJG/uRezckgj/06dbGO2sZfwCT2ndS5lHvy/r9cI1uY4nW0d54jE5QG1Q414k\n+7dFwL3Lck2dcO8+xdP5stwPt71Knsp8Lnf+DZ/7hriNF/6ziJ/6kf9KFi5cp+w9zjuRmfswk5nM\n5AF5JCwF33NYa1c4Uj7F+BOi2UrXTpG8KNplbKvkCpbZTAacXRFCka4G6oIjhpMdOWmPLq3S6cjp\nOvIOcTSA1woslbq2gZ/TKKHrsjgn2nE0jAnUrfA8w2JZTuuScWlox+ewIctV6jlk2nIdU+C6Cp91\nDUmmpmjPcPOOWBhPPyvuxdzKSVYU0LPgtHjsvGILsgqR0TbpU07CZIco0b6TJ6u0lKTE1vYI98SC\nen2yyWtfEppwZ1fmm8UW7bSGBeaVs2DtqRXKVyX6nNzbIdeMQWNBtM7R0z3MFVm38/MrDLUWq+Ja\nBsrDsBK2sBppz5RKrRqUOak5/0raptKQwdtJmaU5uZc3nt/gUMlAQm1Td65Wo6H0YklznkizIN9O\nHMWb9Acx12/LPV1orfP4kZMy/4XjuFWxwlbtIufOC4DLi7TqsTLCP1R6uHiL0JfrXjwt7itA6FRJ\nNDA72r4GwKA15OxHfwYAt1bDOGrJFjHZdbmvh1taxGcybl8Tbe3//g/genLPoqLPeF0slsZKiw99\nRPkudB+H2yNaDQkGzi+tsupq8DvKaVbFqliqH6GqxWaOVnjawCNXwNlLz32We5tipf3Nj3yS6ulP\nyjyDZ8j231nX6UfiUEgmMXevX4ewR/2KgpT2++RjedBjb59eX9ukx2XQyHdzSczrYJJRUu6/7q0J\njpYMpH0HX7v7tB2X5hHxrQIFzThNQ6jug6l7OJE6sKWQwZ5s0olTMK8+c60sG/r1jUskqaYnrcN+\nqn57HzbV9/fjnG4q89w81Io9M6Gt4J28PWB/TyL8Ti3E78vG3NUW6bVqcf+Q8nOXKJfNeng7Y2tX\nwFRf+NoLXNWaiVh/X2BRdxljIVfEpjcacDSUwy1rtUk6Wqo8pxtwo8W1LRk7GcT4ofZL2PJIjmgP\niNMX8I9q5eOebMD+nKF5VVytvWCfWk82/83hkP2X5W9u9vfpdWSedb05cZZgtQ7E+m1KWquA4YGY\nwhSZWNYXeZRzSZF5iZvS15hCO2jhbytNfG1C8oLcv7pG7+eCGqkSubhZjjunmQi3yUizEiYvGO6J\nItq8JffO3dvn2Z8QxeHmi6DENzkFX/zSNwAYa1bKTQxXtT399Tf2KQK5T8RllkvaAayU09Aq33OI\nO3dl/xovbYiL0jxewVVAku+ELJ2Ww6tRrePrIRMrGa/tDLi2LnP4t5+9SXJL9uSJ438S40qz9yxx\nSLy3y7kkMnMfZjKTmTwg5pu9Yd/DSRizB4yAzns0hYXZ2LOx/38w9glrp7Q6314eiUMBwBjzgrX2\nQ7OxZ2PPxn5vZeY+zGQmM3lAZofCTGYykwfkUToU/uFs7NnYs7Hfe3lkYgozmclMHg15lCyFmcxk\nJo+AvOeHgjHmR40xV40x140xf/0hj3XMGPNbxphLxpg3jDF/Sd+fM8Z83hhzTf9vP8Q5uMaYl40x\nv64/nzLGPK/X/8+NmTYjeyhjt4wxv2yMuWKMuWyM+fi7de3GmP9G1/x1Y8wvGmNKD+vajTH/pzFm\n1xjz+lve+5bXaUT+V53Da8aYZx/C2H9b1/w1Y8y/NMa03vK7T+vYV40xP/IfM/b3St7TQ8EY4wJ/\nH/gx4AngTxljnniIQ2bAX7bWPgF8DPgLOt5fB75orT0HfFF/fljyl4DLb/n5bwH/i7X2LHAI/LmH\nOPbPAf/WWvsY8IzO46FfuzFmDfiLwIeste8DXOCneHjX/n8BP/rvvfftrvPHgHP672eAf/AQxv48\n8D5r7dPAm8CnAXTv/RTwpH7mf9Nn4r0Va+179g/4OPC5t/z8aeDT7+L4vwb8MHAVWNX3VoGrD2m8\no8iG/BTw6wiotwN432o9vsdjN4FbaBzpLe8/9GsH1oC7wBwCrf914Ece5rUDJ4HXv9N1Av878Ke+\n1d99r8b+9373x4Bf0NcP7Hfgc8DHH8b9fyf/3mv3YbpZpnJP33voYow5CXwAeB5YttZu6a+2geWH\nNOzfBf4q32wAPA90rbVTQv6Hef2ngD3gn6j78o+MMVXehWu31m4A/zOwDmwBPeBF3r1rh29/ne/2\nHvyzwGffo7HflrzXh8J7IsaYGvArwH9tre2/9XdWjuzveUrGGPMTwK619sXv9Xe/TfGAZ4F/YK39\nAAIrf8BVeIjX3gb+CHIwHQGq/Icm9rsmD+s6v5MYY34WcWF/4d0e+53Ie30obADH3vLzUX3voYkx\nxkcOhF+w1v6qvr1jjFnV368Cuw9h6N8H/KQx5jbwS4gL8XNAyxgzrVZ9mNd/D7hnrX1ef/5l5JB4\nN679h4Bb1to9K40afhVZj3fr2uHbX+e7sgeNMX8G+Angp/VQetfGfqfyXh8K3wDOaRQ6QIIun3lY\ngxljDPCPgcvW2r/zll99BvjT+vpPI7GG76lYaz9trT1qrT2JXOdvWmt/Gvgt4E88zLF1/G3grjHm\ngr71B4BLvAvXjrgNHzPGVPQeTMd+V65d5dtd52eA/1yzEB8Dem9xM74nYoz5UcRt/Elr7VvJDT4D\n/JQxJjTGnEKCnV//Xo79Xcl7HdQAfhyJyN4AfvYhj/UJxGx8DXhF//044tt/EbgGfAGYe8jz+P3A\nr+vr08hGuA78CyB8iOO+H3hBr/9fAe1369qB/wG4ArwO/D9A+LCuHfhFJHaRIhbSn/t214kEe/++\n7r+LSIbkez32dSR2MN1zP/+Wv/9ZHfsq8GMPc9+93X8zRONMZjKTB+S9dh9mMpOZPGIyOxRmMpOZ\nPCCzQ2EmM5nJAzI7FGYyk5k8ILNDYSYzmckDMjsUZjKTmTwgs0NhJjOZyQMyOxRmMpOZPCD/H0c8\n/onzFIOhAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.4724... Generator Loss: 0.4925\n", + "Epoch 1/1... Discriminator Loss: 1.3801... Generator Loss: 0.7973\n", + "Epoch 1/1... Discriminator Loss: 1.5132... Generator Loss: 0.9511\n", + "Epoch 1/1... Discriminator Loss: 1.3006... Generator Loss: 0.9248\n", + "Epoch 1/1... Discriminator Loss: 1.4002... Generator Loss: 0.7541\n", + "Epoch 1/1... Discriminator Loss: 1.3821... Generator Loss: 0.6088\n", + "Epoch 1/1... Discriminator Loss: 1.6036... Generator Loss: 1.3762\n", + "Epoch 1/1... Discriminator Loss: 1.2994... Generator Loss: 1.0744\n", + "Epoch 1/1... Discriminator Loss: 1.4678... Generator Loss: 0.6439\n", + "Epoch 1/1... Discriminator Loss: 1.5260... Generator Loss: 0.4740\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVmsffmV3/X57Xmfebjz/U9V/5pcZbtttzs2SSdNOgoE\nAkRIBAFSFESi8EAkkJBIC/HEU17CGxAFEYFQIA0CBYSazHFCd3pw2+22a676/+s/3vme+ex57x8P\na51brqSbLre7kno4S7Lr/M/dZ+/ftNf4XWsZay1b2tKWtrQh55/3ALa0pS19vmjLFLa0pS19grZM\nYUtb2tInaMsUtrSlLX2CtkxhS1va0idoyxS2tKUtfYI+M6ZgjPljxpj3jDEfGmN+7rN6zpa2tKXf\nWzKfBU7BGOMC7wN/FHgGfBv4d621b/+eP2xLW9rS7yl9VprC7wM+tNY+tNYWwF8H/sRn9KwtbWlL\nv4fkfUb3PQae/tC/nwHf+O0uDnzPRqGPtVBWNQAuBjeS4UWux0ahaWoLrvzDYACwFv0EuBbHCq+r\nmwbbyNe1qcHeXCW/N87NDx1jqGt5dm0tG/3J90OsceWzXnzn3h1uBmQb6kZ+N19fMZmsZJxZTq3P\nbqz8vcLFsyUApQWn1rEBZnO7326RXF2rBiods+8Y8OQPrUB+mXk9dntLvbjF6YPVZrLyP8C34Ona\ntvX3dWOpa11XR9dGx7MZG8bibr7XL401N6LFNg1pofOrGxr9nes4H89L180CrquTinyiOAZgJ46w\nVS7rleW4OnGr83Nrc7PXdWVxQ/mX07gYX8dWWXB1cSt9rNNALX93IhdTG513QZE3eo292ZPNpKvS\ngq9PrC1pVug0DE23t7lYv7MEelZM5EKjzygqGl++z9MMq2toCplnaWpMLfct3JjYyv6tczCFjKM2\nBsfRtdPxBKXF+rKPrdDFjzry2XPBtADwYgfHles/eOfBlbV2l9+BPium8DuSMebPAX8OIAp9vvmV\n++SF5fx6AUDPugxe2wPgpc4uVSULsloWOB05eL4JAaiqmkA3wPZrwiICYFEmVCv53cJbYAq53ho5\nBL4fQSAbFLsh8/kEgGXZkBk5HYdH9yld2fxDV5brv/7v/hucRk5bk6cs0zkA/8+v/lX+l5//h3KP\ndx+ySmWuq3wGwIUzZDc7BeC0gvZcxjGzDkEln/V8fnKtXLB6/g5SmAQy16NWAKMBAF+7JWvyzv4f\n4T/82X8AgHPnJ/kv/+QvAuD6IThyMPdq2H99H4CvD+QgzZKK2UIOpt+CwJOXtPAgLHUgXknfk+tL\nVw60X0fYWJlpkvHmY5nfySIja2Qy/bhFgXxudB8raxl2+/L5lQPe+MrrAPyZL75BfvmBrNc7j+kj\nh7t6QZ4xnAZ4esjnlzndewEA3aSLd9SVsV2lmIG8WM2l7G/RSnDmcm38eh9v7ss9liecPBTGmbUb\nWrJVOIFs3uW5xdmT5zXLmrfefibPKH1WP/tH5drG0e9K7sRDWe+X+thUnrF6fsFyV75/+OZb1JFs\npv9U5nnqzAmXzwH4qPsFvtzIGfrlDy3BU1n8uQlot2XNsyO5762TivrWGICvvNjj6NXfD8BXdwa4\nwVcBGLwe0RrIuf9jX/s3H/Mp6LNiCs+B2z/071v63Q1Za/8K8FcAuu3IlkXF6qok6OnG+TFDV17u\nylp8TxZnuNeh7espLeXAtHfiGwmGXXP6XA5338spd2WKnQIWjbwUYVsOaFaHBL5sfpNZwlilbQFp\nIszpo3c+pH8szGn00qsAmLrBKmf3vRA/lXsM8hnNWsY8v/S56sjBTOU9IatPOXdkPEVZUTkq2eqG\nwmzk3z+tK9gamMrnJwZMJp8XL7ShKxt+/kjW4t1f+xv85X8k4zw5vcRtq6RJaoZ35CXcjx2OA3np\nI33J9zoF4yNhMK20wobyfX9vSBzKODu2YjWTz92h/N5tu/iNHNbTZznDXTmkDx6fczaTN6ywMW5P\nmGiVyt5VtuJiJhPpPr7itHsmcx2OmX4gk3U7PVoDYQYDhIk1aUXTkvXeu9dDp4cJPeK2vmw7Q8xs\nDUAeKZcdWpxj2Zug9FlOrwHw3BZ7x3LmzCLhopTrTV/W9d4bhtWJMII3P0g5vjuSNbrf4u+fXMqY\nl/Kb+9+4xy1fftcK13xYyPeD2FCpYKjWz7n8wTsAjI/eAGDqLOCRrOfk6lt818h5S9bnZHoubJOz\nSvXzpazh49jBeVPO6eDlW/CW7O9rf/h1fv3DXwDgheXPci2851PTZ8UUvg28bIx5AWEG/w7w7/12\nFzcWVlXNdZbSasuidvoeVSbDm+cZ7ZZwxzvHHgfDlwAwOvzhyMWthNtPLlvk+7JQXhOwE6ra5nU4\nSxMAklwOTLqcsZzLoUvrlEol0LqeMV/JIXaCimolhzdU1bGysErkczvKcWs5VE++dcWdnqpt7TFD\nfd6bkWz4XjtimcqY++WKVO0LpynJN9LYbvTX35oMDo4nb0LwGOJjmcuDpdz3J//IGyyeiNT9s/8B\n/OW/9I7+rsbzZA37/S7+WuY6M7JWe90ROwNZq/7+LWxbGMSwF+K5Mg9TtRip8hkpD/ainHIqe7be\nmROUcqCHYc77Kpc+yi2Oam+4olWlucfGepguag4yuUfChI8+kpft9gt94qEwmfWZzNMfGFjJenbc\nAt9t6YB28NeyD24rBUcZwN22jt3Ba8lc84dXrJFxVHOfIJJ7z9OC1k6s18uG2CYh7oqU90OXFFnD\nncpjrYJoXcv6fM3vcjASxvT+o2dcKJ/vhxCeijV9fr4icZWrv/c+AANvwsPZFQDjg12WF7K/cTuk\nVHMsMFDWssd+JN8ZN8LryBla/+qazr/8LgA/+NsrildlzOfvPeaNPyoMnr/Kp6LPhClYaytjzJ8H\n/hZiDf9Va+1bn8WztrSlLf3e0mfmU7DW/gLwC5/mWmMhKCyOLTGFcnuni4mFo5omwu8I2x13X+TO\nnnBBFsIxO/0d8rWoZ3bnAk+lhx92MOpcMgS0VRU7V7X9ZD2lcuQZi1lG1VZfxLSmqYT7l6VlEYlI\nm1ULnVxxozLXF9ecn38HgNXVOfP8HICH6SlnlyKBso2jymnT6+p96wZvJd+vSoOrDtbqh62IH/aL\nqlQNG0uhX83yJZNHau+KAKM6gS/viNZUdA6I1QtoA4eO+l1IHZaezGUnEjs8Hid0G1HRez1walnb\n0PhElUhPv1PTpLqevvoI0oDCii+mW2W0VdvywxF7cjvyScL5Wua9fi6/SzvVja92na24eCQyI/jy\nT9Nvi/nQ9gc3E7e+SPam8fDaMoYqHREO5Xluk+OqlukWe7gj2Vebi8ZnIpemUP9Ee0azlL97gYPr\niDYRjjwK1QZd3bN84dJqyz26cY6J5Xz20pAX1Mc0b8m5aaqc7zyRqPvDp4+YqRP33K35jb/3oXy+\nSqgr1RTUQW2LksrKM/KzBB/5vrQfO8frlkNHvaalpz6xpLjRNuf1Kf/oW7KnIW9RPZDFvdXvw/E3\n+VHon5uj8YepaRqWaYoTOdiW6qVhhl/LSe/1exyO5WAeDRz21FPd+LJB/qAg1EPsOy0Oe2Jb0fbJ\nLsSur21NtyWHoq+HwK6mLJbycvc6DbUeqrkpSDJV7cOGWlX6dCYHs64K3n/2CIAub2Mnou6eHlUc\nn4j6POvPSRay+R2NhozxeeOO2KR1UrAayiafzVPWpVx7PZfvsrqW6AIQGRffVT9I4ZLqC4lxUIc7\nTSNjDx472KGoi85bQ9S/R6/v4o7kmoI1+3rvW2NhCjtxjOfLWsQmxtc5e+4aK7wNx+ncHFjjy3+z\ndUPkyTEKOh6pp+7+ombfF1Xa7Zf0ujKmh2pSddyYaqH36jiU6gQ9m5/jdA/kd8cRlbfS9VJ/EIZQ\n/U759YQoUz+C34Yw12dPcdsiOIyrTGFsKM9l/zzP0DbyItc7lnwqZ8RzelhlrgTqD7pIqCr1o3R7\nhLEwjaaT01VnrN8TJmaalOTxEwBml89o+/fk+2584/sIqpxKzY6wpz6zNKUu5cFhEKJ+QWxVUW3M\nybbLvjpd80bGcFbmVI2c+1VZ0czkc1IFoL6Up0FF/Uufyr94Q1uY85a2tKVP0OdCUzAGfM+h70Z0\nHeGYbgFmJJyxM9jhuC+SZhgO6YzUebThvp5HMxSua52GRv9QmoB5JvdrqhJvrY5C1OwYjmitNaZv\nI9QPx7PCZV3KPQZjUAFKu3sEwFk15b2ZeK+/HAb0PdEOWtFt+l+XZ5w/fUI12gHgxT2RKIcv7LPb\nE09d05ozeywmz7eePCebyMOHkWgM80VOXm/ACy6doWzV4NrwzG7wFM6NJpCoStrsOrw7kXV79Q+9\nguN+C4DdTp9DVaUbStyOaFOxjqcTGtC/e6mLo5EYigij0Rq3qahUw6gWIrnTOt8IJaCD0bBm1WTE\nGvrtmS5VJlI6dmQtroqC8EDmPChd+n0ZTxAE7NwV7aVT9inmErqpElW193Zx1IRxiwmOSny3E9E0\nqiFZg+NqRGEg62YzDydUB17Ph0quXS+XN6FatyioVGJbNZkau8RRE6YfWi4SPZ+HLitf7ueUhzLP\nJqNWDM3CGfLKvyAaT/XQYDQyMtjLaYXiPO305BmVVzGfy1lo+ZaerlFlV9RL2ZOJzSl0HLVq0HFc\nstSwt60cskrWvi5L2LxHK5f61iE/Cn0umEJjLUVVYf2I/QM5EGM3pLZyuKNxxPFrEma7HRoiR/Wr\nroI4HB9XjerSVmRWASbThrbG9OdFTarfLzWy0KsrOnogUmeNXehhq2vqXK6dTGrCQxmH2RNmMptc\n0TiiBreODxidyQH8fS+fY1Ql3P9DDvahqJJ3j74IwOEbd+grLmD57IRJ+wKAftSmmIo9+Ej9EM+D\nKXEsY/MacGuZ83XPo7jUcFpW81hf5Eq91Pl5yuqnReXuvx6A2vhZWWIjYaZxtaITytaHGskwYZuO\nL2NwQ3B03ZwafAUIWTysJxyymcrYIg/sxuHh15jK1a3xKBayRkFQYWYyzlDxH73Q3gCZAidm7Mn8\nVvPkxtzy+wN85AXJ1/K7MLS4jayxN/Bw9MU0HR/PlbMTtAOMhn5NV8FEqYNV3IRTV0S7ipEIAjwF\nlKwma9ahjHM1U0ngeliNYKUdS72WsbUnhnfORC0fHskYXwy/wr4n+3donxJpJCJYGF65I7drlV/i\nzqvCLH7q3l0Ann+wgI6sfTdu085FUJ1czlg1cr+mY2jUHH33B/L399sLvIWMfT3JuM7Vj+K4hAP1\nu8RHhGONPnxK2poPW9rSlj5BnwtNwTgObhDj+B6DjnDXjtdlrc7D/abFcVdVpuZjybWBqoZBjNXI\ngC0awlx5namp1anjexbjaMy3EQl2Vi5o1JMbOB6u+vXDVoOZq/QrXUwukjcYCifO1wVf27kFwGF4\nB/viRwB8YdIly8TpdKf9ItHXRG3rH6t3e9gnMDIPZ9dnPpH7ff3OMfmhmCYvzQTj9fc/qGgpVHee\nO/iKv7VlDapqr7opJ5ciNYyGLRxamNUJAIvuCb6n0RwT4KsT8CDoYNRZ5yoGo/ZdavVaVjYjUhXV\n79V4qk2VtsBX9dpR2HFlDKWaY6ZqcNWxl8wzlrrOEdBRT/wtDak8sA4t9eqdJHMO9zZo09dJdN5R\nOaEdyO9W+ox+usTryNgdp02tYCNKg9+Tax3PYhVbgaJYjQFHnYROaWjWoqV5VUGSy55d1NeUiYx/\nncjzvLJibkQTSDwYOqpB4FLreg5rMcF616dc3lMt1HhED0XKu5OPOFKw1yvW8oWvvgLA3R3Zx3uH\nMcupanG9Hq1SfnfrzoCZguiqKqQaiwlm+oJ5MB+UlKlgBM+OnvHeR3IWsrpk0H4RgOAFny9+WTSo\nf8Sno88HUzAQhJbeMORwR+yt8vySTCM35bAi9PUwFgm2VBVW4aVNJ6RZK17eeBQKO7YR1AvFi2cZ\ndSo3rMqNBz0A9ayvnYQ8l+Uoa4+xqs8X1qUqZWMeFhJlyJYTioEs9MuBi0nEvHDdOYF6y8P7U8JM\nXvRWRyIOFStKnUdT9tm9KxuaTCv8I1GJdx4qmu16zSNdgGVesFZGFwZQDeVzMHFxKlEfY6PmgzWk\n70uI8P/+le/RimQe3cjSVWBVm5I95Xl5S9YiKGtKhSD7kUOt4Vu3zikSDXvGLZpCVVS1z+t1Q6MJ\nJkUyI1c/QuMbfE9+t5wvWGm0olJV/JbrcTKTl3QcuvQPZT13R6ARYLpuBxKZX3+sfhTHUDkKLFta\nXPV92KTADOWaJm0werKdpW5wr0Wz3uQwLLFLOSNOvsRTU7GpEppUfSmhPDdbO7R03Uzl4XU1Nyc2\nLCdyjw/7woB+kpT1+3JWRs2Mh1O5Nl68Q74SYZd1U+YfCsRwlYvQ8NilE358Jv1IgGP9apcmfwjA\nwi8xRt6NQ0VQlnsej0thet1JxNjKmG1Q42qUa+BNuUyFIX1a2poPW9rSlj5BnwtNwXNdht0+B8O9\nG3hqYQtCVR1vu7sEvnqWk1TEJUAs15ZJQV3IVCrTYDRDzGYVoUYU8iCmF8jv6r5IhmHlMB8pmGbh\nMtckmHo/xiSaaZlekGtSzfv/7SP57t+IGAw02kFIpdLRhFfstL8OgNssyRUsZMaaPMRdsidiHtR1\nSNwSzh8HhmoTaRjLgMf3RzjnCrmNH3GaiHo5jGO6Hfn8fvmE8A+q5P4ldYYtp5RrWYuP/ouHvHFb\n1q3d3SXWqIWtLKWCYjbJY/4gwK9UAhsXXwE5RW3J1cXdsgmOK/ez+nvPpLjqzDTOkKIQ6VlmxU2y\nWdAZk58KjPdCzbmdwGe8J+tWuSHDHdGQuqMeXQWwBXVM7Yh2ZlyRno7XoVwpPqUpiWKRlP7ODo0v\n++4kGaatWoH+vbENNhNtyhmM8NVTn01LPNUg+36HlWY5PjlRbEqVE85FE9h3Q3I1XfBqsqdyj9wV\nYNIvzr/MdC57HdqM67VETo5XbZ4rnH73Zwz7+uzLuWiVw/GYlmqmprAokhp31xKqVtyL77FWgNN1\nX1Xoac6dgQKrrnc5v6vvACWLRvI1DsYvc/0rmjjzKWmrKWxpS1v6BH0uNAWDIfQ8gsAw6oiEOk9h\noZmIxvOwiITKzPomAaXWcMwg6GBrsdmS+hm1+hdwWjf56NOk4ar6OGQDwLIh9tQJGNU4vtx3NKlI\n1T7rOREzTX4aqBPpV773fe58RTLcXn6pwF8LHmH2vRat+2c6zj5Xc0lQcd6ReJQfntFyFBdwO6Iu\nBRLdYGhWGg5VqHVp9nkwkDFMkj3mM7lvnfu0HIlp3x13WZ7IXB8HMrf2cMTFhYb99gyBQrpjf4kX\niA1bZSmrTK650PoOB0VMo0lA3iqnE2mcv/Lxu2LvN06B9TQ0qNmVbiei1P3IioSVQs8XueVMnXyr\nJmWh2Z/HbVn73mDAR2rv9yrD2BetyXc7+H1FUxoDiYw5WYkGkgUhvkrr2HgEmqHlDfp4RrQJ+jk4\ncm/jbXxKAUQax5+lNF3ZM7do09QSOnadHvlKfALlhYR987QhrmXM1yH4y80jXM7OxFm525fnXttr\nQvVb5FO4dU/WLWkGvDBULTS5zVx9Rfu1hCZzr02nLfNfXC/xFUFpLxo+VGStV19TreWsRnOZ0/nF\nlM4tRen2Djlaa1LgxYLGCqLz4tJw+CXxMX1a+lwwBd91Oej2Oez2WeSyKYtVTa05wov6iqdnDwCo\nr6dMCtnwpb4c48EOh7EA7U3lUK9EbfPbt7leyoK8/Rsf8O1LUfOmCiX2nQarlUDcomapkNFikVMq\nzjw3NZ561Mu1qGG2abEbyGaU6Zz1WpxB8+s3OVvKmObP7/KbHwkO/oMLeWmGByHffFVi0994/RuM\nhgrYYY6jkO3rpTzj0YMJz5B5fP/NKcuZnMZub8bwucKV45LJlazFWose+J5Hu68pl3FDNxKHUy8c\nMlDcQ20NS3W2dtXh9jSrGWkadrqCYUtzAFyHnU39iqSiTtVxpwVp3LBhoWrwWXbB8+tSP6+4mMmB\nHrZjIgU97fUVGjxy2VUz54lJmX0ouQ+dOz9LmCmIylmijn+SS4VgRyUow0qbkFzxBI7/nL4npoZb\nOjdYFhPLeXJsTKMMME+nZKXCg89rkoXM6eLyglQjVKFGXxxbkGgUBWJC/fvYdclrjbQIb8CNZuTK\njLxOhdPIGXnhVsRJKUzh5OIZU+SFrbpypm9dV9iJMBCC5+RaPOP54oR3fkUyKeeDhsu13G9+ItGH\n0lTszDX7dPicZC17ua6XrKdqYkTXLC6P+VFoaz5saUtb+gR9LjQF44LbtTS2pKXhrW6dkRqRCMlJ\nzZUrnPbJW+9xqkk1dS1SYqczobgn6l7s9+mg2XLBmuu5SI/fnD7lybmGJJUXtqOGyBGu7YxK2pnc\nL88q7unYqnJFplJ8ryVq4pt/6x/ywUpMg9d+388w0qSi4Z1jnAeiVsd3Az5Yinr4pUOVwDNLpSGk\nq6unAi0GvNIS7si862s1P+IF0ULu+5Nf3KcpNUv08Ij5VHAI+cUZgSII7wSq/XgdShUeSZkyVCht\n1LNUWrrLtYAmf9lK5la2LBczkf6tw7t89Fg0rLp8yFodgl7Vo+2JBlF6spalsXxwLteeXE3Rkgb4\nsc+LvRcACP011ULWNrAy3rgw+OrYHVQlta5xOOpQPhMnGd2SMBc1f7An+7s8nZJr7P7BRUij+IXF\ndM3oUO49KBNuH8mzB6r9RMMBaSZa3JPnT7nQ5LYkrZipI7WsQ/YUFh0aeZ71IVT05+K6wh3L2Zm6\nFkeh8KUW2SlquLcvZoC7zOmECtP3B5yfyTiv10s+PBcN8PlH8t9vvPERF46M907cYfCCaIvn5xe8\n90yumZwH9NScdCPRYjp1hzrQvVkVuLVsfGRz1KfKIi25rGSun5Y+F0zBNS59b0hQ+CwLzUg7GHCn\nLzbUIA5I1QOceg5uLYs2navqXIQcHmvxi45PWwEyJu7ihXIoxr7P4lAW3mhuRLZImOpB2XFaoKph\n5bjUmonpNisChbbmCmzZv9Xmw2fCFL63c48/GAkYpX9/l9ATk+D8YsZxXw6It6NZePePuLMn2IS2\nXeL6qiaXJYWq85tMv5+4PeRr+z8BwLXf5uKJvIS97Jr2fYFNn/Z9jJZCe5bKmlzOUqxChsf7YwIF\nNbXdPr6qu3Ec4mnSxDSRNXxvmpKoV7z76Alr9S8MhwGjltjt+z3wG1mXepNNmC6Yq4l2UcLsTA+u\nB1fxe7Iubo+WJ99vajEGg4pNQuzjqqZRnEWQOhg16ex1l7SlZascYRqNAxPNmLSDFrEmXlSFS6nw\n59bhAX5vU6xGoyHOkNqTCEh2/pSJFvCZNUMSX3/nrEgnsn+hwtgTbwFq448ig2fV/PE+rn1YKXx+\ntV5jc/19CKWCsK6nS0LFaYwHDh3N4u2GImTieYf2kez7IqyolxKJmWcrdve0uNDgDr2OmAFLZUJu\nNafQepaLdMGpmphrcq50DRsbEoc/2mu+NR+2tKUtfYI+F5pCXpY8vjij299hfKBxZ9fHFsJR016D\nm2qdgWzOo6miF5WDf2HHpdcW7jo+PrhJJCoWlzx5RyDID6cLzL6o8/Mn4vV//OwhgUqoqj9gGAl3\n3XErNLeEsRkyCUSa3tsXdX716Jr9A1EN93ZColDHmRxTtES1f/D8Ae9+pAVXfllrRu5M+Fd+QsyL\nu4cZjSbouPdeo7yU5JrHvyi/WfVqxvdFunz0rW/z9kNRZ/figj0tDrp/GPNqVyRXORWJGLTaFFYk\nX6eOSRWiXdmaRtXLebmkpxDj6SYz9L1r3FD+/mFV46hj8JvDAa4rGlu6rhm+pElqqlW8+WzGtRbH\nzd2IlTq7iiyjUki3ieYcaf22zrHcd3FdM9GMyvllwbCzwROsSLXOpdeOKXOZaz7RqEBk+dV/LBpI\n6TssctnrYW/Il2KRvKHvUCvWwbz4GgC2WrN6X7TCdR1iR3IWnjy/5OSheAr38hp3IJ+PFR5+eORT\nr+QZwThmNZFzGOUNoSaCeZu6cqamr8lHu/WIoiXnpkwyVmcy/2Rh2VOz4uV9dY57GYtnsr+j12/j\nLOUMzd58TqLmVue1DqdvyRlZqVbZdzOsRnPcyhJsslULQ1vNsVUTU/6Ir/nngilgLRQFznJNfqXq\nbtEi6qo62/QoFLjRMft0dhVYpBWQhwcNsS9vcRCGxHpgi7rFSSkvhWcCbqv5MG1p5l25ooswmKEX\n4qmdnVyeM1fs/MoU5LXce2rlXreDHs7hpuz7mOVUQlqmXFHPRLXr+iPu7CqefaDmzCAm2pGD4jj+\nTXn2OnlMei0v04NaVNyec0TfyKEZHOe8rvX5OkGGKTRftjF4WiZ8rt7tVeFSKG6n22qoFAa9TFZY\nNR/Ictr7wgxfjcXEyQ+PyFxZl3bUoFop1pZcTbUS0ssHdNVfU+nLaCsYaR3Fw8O7fKCFVRaTJ2Qr\nrVa9WnKlobVLLam4aiIqHfskXRNcyxo2mUvRiB8ozzyMVtEqwk3ae4GrRUbypEOgpdONm2N8+d18\nGWM0Xb2biPnhuQ1VKGPbf/WYnZGo4nU0wa8kCmCiJalmPhYqFVrZiJUCi4o0JatlnzqZj6dMNNS/\ne05DqtDnatxipJD2NAgYa/HbMmwI97RO5y35+2KesCo0L6VZEyvwqm57N3U1e+EOw0NhkIknc+oH\nI5ZTYWJBt096LebDtZlTN8oUyQkdjaN+StqaD1va0pY+QZ8LTaFqaq6SJaHb5fauqOi9bsNeX0A/\nr+wfE+2JavieZ3E+FCnua078vaM+RzsiBby6vCmiUvkltzVZqYoCRi2R9K21AmjuHDLX0tu3D7vs\n7YlD7eHbDdW7amLMczzl8jsaffiJn3iBharlXmmJQ/ld0U7Z1YrI0U/F3H4gKm+igB9TNuz0Ojo/\ncLRwiINLM9CagXOREp2dPmEqku+Lo5DEEymxml0x0hoC3m7MdxYiEZdX6jz1K+xYnbKN/3FznQqi\ndn2z3p1Stn5nKOP9mS8PefORaiDzFTu6nqFxeWlPk2tqn1gzKWvFRRz3XbxE1X33gqLRas3tAQsj\n47gd1jzzyTkbAAAgAElEQVRXD3+m5trIjXk41zL5gaXXE4m4juckiaxRZ1xQa+ZqX8tdx7bNv/YH\npLZGmqxIYjEbY8ejr7UT/DyDtZouWirORCsChXSHnRbuStb2J3cS7ij4bO6m7KijeGm1x0Lm0W/L\nPZL1iv6mjLWbc0vXxWoVHps3N8l21C6eQvZv7Q4ZKbjs5WqHWhPFolLPiuOQeHLu+15MqBGTu0GX\nmZZ133FSort6xist3lKsGCqIrCgMcV+1g2uPdls+e9bD0ToTn5Y+F0wBC5QN8U6PsSve+b3dNYdH\nsuh799o3aqL3yiEvv6JgDI1OdMIOjqp7gUlJFUxjipDWsdbC9yu6A2EQ15luQODxlbYciMh1cLQa\n0ZO6zYXmM1TGYhpZpkZDei9+9TZLTxGIlxG5q6nVUUH3njCy/nzEKNykXGucbplhNP/CK10YajHS\nvGCZy4afqpl0OEgIezJ/lwVtRzb/uBvTFKIO5p7HeiVq91KRi5O6wEnkUI1GbaqruV7rUNSbKlQr\nai3OEre0atDOC7Rb8qKkpU872tQR7DHS2pYBMxwr6+wqKCq2Vxwp5n6WeQQdLbtvYr52R+Z0Pc+p\nPxLATT2VlzttObRHCtha+LiB7ImT+3gjbcQyyXGRyMbtIzFRdtwj6OshryYEjjyjIaPuaV3GVUG9\nEKa+OeGF6UIg8xsMh4T9ewC03JI9NemCfEyeCSN7/lAb0pw/Z32uxXzaNb4ymcYx9EfCkK8VTLfO\n1lzOtGR+32PQlizZYRDQOZC5RqND7FpTzTcVeI3POtG0aKemMDInJ/RxjjSNvN1moPNrr+Tcu6bL\n5ULGdjpd8kSL2pSuQ6Gp9pXzsT/u09LWfNjSlrb0CfpcaAp13bBYrZkkM/pHIhHH7oiutoXzrEMc\nC3cMxrsUmyLnXZFypkpxtIOULWLCkTjowtM193flmqfnl3ilqrPH8nc39Wi31emYL6i1/Hq3sswu\nRcrnWXXTpsxT7cDvdImtqK3HX9/FP9GKw4sLHJWUbruFq1gARzMO3WAPjEZOljmNSvemd0xrLtJ/\nMJB5rs8L6lKcjsP+GE8lFC4sNZ++8BcUWt5spmiV1A8pL0QyPHOmdDXCUa7nN+XAq6pgnm0WX64d\nhS5xKM9etUOituZoRAmxljI3pU+tdSRiHc/u4jaPz3Kd85SRlkD3Yxc/EukeljNuH4jptVQQU17W\nXCpWoK5LAq2JOHn46KbdHE6HcKHQ3vdkfYIvrugh93JDF2djznh3KBUWnxULPK334B3KGOrrKbX+\nrlouiLTeQPvSpYk3dTSam3qUA4245PRZ57IP9WGfQmHc3jzhzoEUMikUcDZbZay0/sM8qWgiLRsY\ntYhUA2zVAd2xQN0jzQJezB7iOPK7zs4X6akiNH3tDZwrcfL2XI99q1iNaNPn0yHWTl5+e05X8TeP\nkgpfM4iLWUw92HQa+nT0u9YUjDG3jTH/wBjztjHmLWPMf6zfj4wxf8cY84H+d/i7fcaWtrSlf/b0\n42gKFfCfWmu/a4zpAt8xxvwd4N8H/p619i8aY34O+DngL/z/3cgYB8eJGUVduloypx218ZR7elmK\n21Losm8wdsPZNU98ucbR5i3Gb4GG7JwqI1CodGMS0kSk0VBRbt12D9TpM3AsFzPxL1ysEhaK6Cub\nCq0jSqLhvWze5otvSDm2dtiiPBD71Z/HMP1Ix7GHq7n5VpvmNv38JhuyWD6jsDLmcBxSlerYU1Re\nUk5pnE0ptZxQYcW1cYk1m/PkxPLkQtZgruG9vLCUmoO/vC7pD7Qmg4moVSI6U7BaoDRUWHmzvKbd\nFhHlORmuFfvbz1IKrTfQ+A7jkWheTb2pBn0KE5Gk6XlFmilysQhZqq+lG1i00xkrdeA9X1dcq3+h\npmKaaVUr5xBP7eEohEbPQ6E4DKda4hrt3xC2sHqt651TrzdFaqcY3Suv2ITjAhaZahuFJc61aGwc\nsYnhOn5OoEVTI6s2vr/mXfUz3HqYkyi03i4zSi0cvONqI9kAlurbytMSm8sYcteg3d1wnRrT1S62\nWv9hmSxJFGLf7TbYQJGOfkCrlH0KOn0c9WmZpXY29w3tRsY7m8PZVMPobg5abWmVXRNMFEfxKel3\nzRSstacgaXzW2qUx5h2kBf2fAP5Fvex/BL7F78QUsHhOQ2ZT0kjbc1PRVBqjfj4nHqhDaVVSK2R0\n9UBextaLHs5yU4e9RT2VHWjd83AvN73IXZYfCab+ZFcWfdQv8fXFLVYzslsCIJk21U0bcYvF1Vjx\npi363/wbf533n/8MAH/qj/80sYJ0snZOJbfAHyVU2hWp1m5D9cMlzq689On1mrlmA7bXGa2XhVko\nMprr1KFQfEA9PCLTatXp/Ir8Qg7slb1gvlJzRHMjrOvSjmXduv02tRZOKeqKdldehNQvcQOt8Jur\nt9ytsDN5XtAbgToU03GC1XTi63lDqJ5v70syhpNfWXGi6dKzswus1lIzscW/EhNkUc1YaARmM48w\ndMiMNvelYaXMeb0+IdQq3uP9NuVTOfRuIL/35wlGC+PYosFqwR07rSGSl8WfXZGdqimRy157Rx6j\nXUVqLQPMRJ5t9nZwVXDY5ZxaMztRp7S9SjkKNNPSb6GQE07CCq+RZ5xopqkBGoU2lzGsEtmbfqdN\nqSXfbM+SaTXxpJD1fvsH7/LOUzk4X3kScPxlYbyXpyecXyoM/2xGNdbCPkZ/v1xyfa4RrnJ64whv\nZmZT4Z0g8G+co5+Wfk98CsaYe8BXgV8F9pVhAJyBtgv+p39z04o+9H80TralLW3ps6MfmykYYzrA\n/w78J9bahblpqQ7WWms22Uf/BP1wK/p+O7btVpt8mvDkfZHm3b093FgkUNTpEl1rr8gqY37yCIB5\nKlKkunwFRz9HF0vytaiz68e3OZ1rvYDrM6ziAlbq4AuKPn6gXL6qWX1fK/lOE2pVq41nbrIqN1mb\n5fE+F11tFffwjFtdDdO5LkQqmScTGtUsNtl5RZ5RXGjxi/Nz6kQ0Ca+Zc/VUzKOHEy0+6jYkC2H3\n+d6KeCV/LyuXqZZue/hRwURxCJvknFYc0daY/8HObaaK0Etrl65WPo5rn5XG1pfabs5d5MSl2knp\nc3z1di2WbbJC1+3yhDKU0GL6ayJJH8yvmanm0gpiclWfmwKiQKSfa1x8DZ0FGt6lbWi7aiq5lpa3\nMZ8M3UixJbM2fiz3DhXfQa9NpTUU/KED2cYpWWE1PdQGMdGRmDe1K+HC5IlLqfvYGlVYbWNnnQQ2\neBEnoB6LAzI9EbkWOT6HPW0+FPZvMnRbQXCDdEXxBpX16SvKNkkScn3e7DqhF31cKq3R/TvRvX7W\nBDc9G76/fo8Pvi3nZXJ5RqC+yr1kTXesmpw+1is8am0csz6dUKnWVwTgauk943hEXXGKw6drH/dj\nMQVjjI8whL9mrf0/9OtzY8yhtfbUGHMIXPxO96nqmqvZnNMsYfab8uINvwGups0a1jQK87XTC55o\nkYlnGic+Xl3C6gcAzKbOTbVjUy5IC8GRRxYWXQWvKBgp8yY3VZJnpXjB5Q8lmYJljOfQfUmzNffl\noP3a3/l19rN7APxbr/5+vJZ4k8uLFKu2f5pcUE61eo+mJ6f9Pp6WVO/0Q2YKlJmxEnQRMLqlFY2m\nAWst9LK+cmgUYr2oKi5Us7pMGxRuRGM2ERIYx7JurargUg/gar0gNAoKCkBNZ64y8ZzbizGZ8oTc\n5DcQ7CYJWWnxmafTEltJjclcMxVrt6RRuz4+3qF7oXj/smSyaVTigeJxCBRgFK4saH9MJ3boRLIW\n1x9eUNxVUE8YEThaTUlrH9oDn0KZpZOHeC3VMkdtQsT2CoYj0NwFQm2mkjdUK1lD190FjWw1ZY0J\n5CVsspCmpY2DUaCQX7C/JybTdbAg+TWNLlHxVJsTT0utSj2OcLUH8XRVMVnKPwb7e6Adq/I1N02J\nKu0mde/4FQ735QwxrOhqCf/TDw4ItJJ2d9wjW2r2qD43cS2LRvep5WM6mgeRODQqLAhiqmRTlv7T\n0Y8TfTDAfw+8Y639r37oT/8X8Kf1858G/s/f7TO2tKUt/bOnH0dT+APAnwJ+YIz5nn73nwN/Efhf\njTF/BtFX/u3f6UYNDomNqdYrzi9EbXvy6JD2a6IJhElJrNDeqkiZhZpdqGpkdmdJaATl2EQh60TM\nh1EnoMlEynsjjyMUjquq1bpOKDQ+bhsXG2ltfs/BarkxM/JodYV3HobC+deHX2f/nnD+qqyoNg1C\nwohCO1CXWUOSakRAax7UpU+gcfX+8FWG2ojmIq9oFBIbqur89OFj5tpYJlyVDHwtFVeXLNYyjqn1\nqXQLHW3BVroBs1yUs9v0MBtshTXM1xrBqC0LTbrZmamDsj+lq6r9EoOdyLPLyCfQJKegv0PQU7Sk\n9j/wTcxaEYF7kctcJe10vmClKnNkoNQajX6xKfRS4WmTnH0nZjiWv/e6AyJHJaKX4FbirFyHGqkh\nIdRai3Y1xu6KFDfWYALVJuouphYndJ3q87pdrGIFiulzHJWwjrn1sarddSg0oc2qOeoPoNDGN+tT\nwyqXcey2a9Zai8JV9GuRBuyoxrYoC2abPo8moXJlH9YlLDQqEel3tw/v0eppj4yWh6fn6bgZMktn\nOj+HRB2bjmareV6Aq0Vv4s6IKLzS8SzJtCS0LRO6rX9GjkZr7S8C5rf58x/5Ue5lHEsQ59jUkKun\n/mQ25XApB2L3tneDmc/NgnzjMXcUGht1MHPdgeQSd+PF8ApasaqaV0sutdZgqinEe16M8TaqVUCm\nbdafFRD5G29+jK+FYB9pgY0/+dN3aO6LurcTh9hUC4IGGUYLaLj2MeZM1bxEfRHehHpfXrDq+QLF\nHXF59pyJMpxGe0aeP1nRP9KOTaVDHmsr+jxjqnDWRXGFr9DljjKTzBY02oA12Td0PGWEUUOjabh5\nUdLXtPNVI3O7qNqkmu13fZ6SRRrqa+2yp9Eef+2SuVr8Vv0BftsnvJIxnK9X5PoCxcM9jBbe9eua\nUguo+lqevVsU+KoaV7stnmsB1j8YzPFOZS06bouZhiJ7fYE7t6qYYLgJ0RQkjyQEXK0d2NUw8kcW\nq41ZZ6ncK37Rkj+Sl3hyXbN/T5639xVDpOnntmoI1up3eUFb2Ce7kIuJFSYZ+7dlrl3X5+rb6rvS\nCM+du22MMv2uE1HUwliuloZcIwP9Tk2RaY1RDbcuVw/ItBhrHVvamsJv65hkpcLAmTFWP8jmrS2z\nhAuNPl1mczyNgkV+QKKMw1qHRoshf1rawpy3tKUtfYI+FzBnB4eO1yKKYaFlwWdlRKFSM4oObspZ\nmX2HoS8OozdVjV5fuLz+wksA3K/vYNUpuVhO6WuxjfRLE87eEwdllomzrHf4U8SH2mAjn7CUYs9c\n5RcY7Q4dfbWFvRQO/PYvyO/+0n/2r3NaipkwTSZ42p7cq68IBxJdqJsSM1SordZ0OJsvWb2v9Rva\nK0aeljVvR9RaWq6tNQ12bh+RaSZmyzF4uajaWZHf1Ohz3ZBC4+LtgcJ2nRaNOqKCuE+ZiSkx6B5A\npmXDygXrTQt7LbZibUOk4FMz9EgLrar9+DFX6gIf94dE1+qYrTZl9i8wMjRqp6SvMfTd/XsMd0UT\n8IuKpZpSj9ci8ct2m0g7pK97O0weiUYw+kofe1eci9Npha1EGkd9AYsFh3dpUs0GdBK0cyBFeEK9\n0oShoyH+WBLrYm3I0gR9HIWx9zs+danJaG4Lo05Fd9dgFZDkn2pEYm5orkXS7vZ8Uk3iapUxPlKt\nO9Dydx49utppunYb1qnu+2yO35VFGu8PMQqAevYDqeMwm2bsxKJh2p6HqxqpV65YaVSi3Yq5fyTR\nfUcb8czSKZnC1MMswFdnZu9on3SummcUc7gr7Qg+5Lt8GvpcMAWw1LakNi3uj8U3YJ02U0VrudbD\nU/BLYw44vKVNYRstYrKzx+4tqZPYaXmgXuZbZkV2LQs8e/AdRpq+W19p/8SDmFptjYtqyT/8QBat\nWNa4uvB/eO/38+RMQz373wdgVbTodERdH7QOOfvbwizOn3+XV177ptzbLmhiBa8EckDd0MW5o1VG\n4jFxLAc9DmoOKrGBJ6INM3n3lwi0HmLUahNHcjDN1ZIcbaO+OsUPNuhOLcNuCoxadfOLJQp0JDko\nuLWnoPrzmIWWwU80j8LiUmqYchh6REbU63tv3KaqhHn1O9DWddmUPS9mPolV771rb1Co/iCi0QOb\nOi3yTa8OLQZzVSW8vveHAXjn/QnPm02/DAc/lHnv3uly/styj8ffk3DaFwYv4mn5+arjE9aaderd\nIt/g1GxEiRZJufOyPDebUSjTW07fpashzqBjMJo/UOc5tQqiWCNDzU4P0xfGtNeK6Kby98urFVFH\n1rNST//x/RaH8YbT5ZSZNtB9ck73BRnPaF0Q9oTpvfKqnNkHb10TKgir6/pUVgREnoOrNubO4RGo\nKYxG+edXhkTPyMpZE7TVJ3Z6ilvJtUHTw+//lqiA35a25sOWtrSlT9DnQlPw8BjbMWVkCPvC7t3m\nmsVUuzudvkP8ouSmU6yJWsLxjyLRFKpFwvl3fgOAWZKyRDQFO7M8eSKi980nD0gqkWjtvnYHOnlC\npurzW48e8PiJAnOyDF8bjvzms4fMViLFC00tdJ8/x7krEsH1Ut5uC0bi+//vh3zvUj5/c/gifc2C\n62tO/N5oRKPVla8vzplcSAOUqjVivRRJf3ImY3h6/ZxYKxK3V/dZFYJ5uLyaca0alGMd8ka1mFyk\nfBobzELj8b5hV+sWuvOGSh2ii/WS67U2uElEy9mdtfCWsp6HO0PGLV1bm3CtIvjR8zXttkK61f5Y\nlBlWpVnYMbRbImHzyRRHczcCNyfTcuhn2sUoqRze+0gwJN97/9ustLx88Af2aWnfxWRwznwoc33y\n7Ueyp+7P88KROHm9dg+Gci6cToR/Kteu8mvsuRztfEeiE/V6QaaAtPzyAhQL0e68DI6Mw6ZrGivr\n7LiiHTVlSL3QcvfV9CafIYwNr2idx0Sh3beGA9BM1CunxM/lXtV6wdMz0YSGLYdRoWAorbOxd6dL\nrtXKbcviZloWb7/F0Mj84o7LMtE8B63mfDFbkmn0IXA7rNVpXCwLck/7gs4uuHp3qylsaUtb+jHI\nWPujcZHPgl5//XX7P/+1v0aSTvnwuyJpX+r28e4opHTZxtc4/nIJl1YcNN/9x9JS68PHbzM5FQl0\nXayxWs24oJZ+hIANQ2KFKS+1l9/55Jql9jNsxzGeSvZu0L/xNYRhw/NnmtWmef7/6p/4Y9SFPG+9\nSJjO5B7Prs/IlzLm2XyJVTi1o1l0rU5MpL0tV2Q3DsHi4HW+8ZPvAHDaE1v+lX+ccaF+hPLUZb5p\norzr0RlIHv/91gMmJzKn/Viedb064M5LMp7FrX1+/n8T7Fg2ucWrf1y0kAd/D14SM5mnOmfP86m0\nm3XsNoxfkpJng/NLCkWAFrMCRxOXKi00apuGQDsfX3PIF/qimZ222owfKbrT80lmihbdhHqNoaWf\nq8Zw1BVfy5/9j/4864n4O37w3Y/o6sSrr4nkf7V1iFspBPt6Smtfvl+vMmyhvSyul5Rdbf+m8fqq\nqqkS+bs/tGiEm9ki4/pa1sv2XI5b6nQsRAJPrwyrUPssuPD29x7J/uUVf+F/+HnZn6loAe+9/V3e\n/ED28cG736fQ5zU4hHr2pqsrXEc1BcVNmLqmVnRnPx4x7Mm+j3ttCk2kmhU5i2vBjqwacSLWac6p\nlrTz0oJ0U835h8i4YF/Vf7zNd6y1X/+nr/okfS7MB1tV5BfXTJ4/4UBrHI4Px/RdwWynzYRMq9bm\nUcn0uXy+Pt9gwWtu35GX6XZ1QKI4hv6oA1pR1xjD9Vrbi6sj0jYVRtOMy8bS7cvB3OkMWZeiqi0n\nJcO+dnhSyPB6MWGpZbdsBOu5jKPIVyxVLW+aBl/7GbqRerS9gJ62XF97z+Ed2cV08j1+/T05KImC\nY6Zf8xg/ElXcP2yDtni3VzAppFTY7cF9nETut/OSqJzvXvwS/kP57nt/9xnFJjWNp7z3P3285u+p\nz8rTQidV26O+lJejMpZirhWObx0QTjVnYMfF1UIfoXq6l+0U75EczGT1kGfnsoans4rqvpYgm/o0\nO3IPT1tRJnnG9Fq7gfV8lgo9MJMlk7dV1e73cNRqPNb+is7So6pFnY/7BqMgswgP09JW855Pmck5\n0sxjArcmGMvYTJ2RK3ipE4fYA3E09ssUq9gXdyg/fHHH5epczsKHj+H+S7K2CxeuNGX8+uGbAORX\nc8zpJmOy3MgQTN1Q+wqi8xwCR9Z8MFLTzgR0O1qExXb42ktiHt27e4f2UM7Q+0+WuEsZx989lUZE\n2fdOuMgf6jNaoGeHH5LztgYNknxq2poPW9rSlj5Bnw9NwTWUQ4cPfuEZP/2z4kQcj2JqrZHgehHz\nRDPHPnrI1RNtxb4j3Ne//QbHqmG0und5vBZxFAcVgWatTecZz7Rr9PWVJrJMXGZaPswpoNbEljxc\nMe6K5pEnV6gWSKyFO86vpiy1OGxZV1SKUFtMMgoNTxnXpasqsXtLy8YVczzNjIwyw6Wqj73dMWt1\nqvaO5Tfh/Ig0EDFfXfSoByLaL9YFt7Sg7fvnDffuixP05Jn8bn9wn6VmVH71D7X48Oflvk4gmYsA\njnEItTio8WQ8QePRqMpd1j3iHe2PGXfp7qqJ5e2TIGu4rwn7aeNzFss9/qVXX+W9U3nIG3spuvRU\ng5RN64FNkhd4N04yv2gw6mi0hx7P/qZoVu5LF9xpiWRurrSXR1zgagVj18wIV2oqtgxo8Z0w9Fmr\nVhcpwtA6EaGGMm3dZzHdwJiDm8zGZh4xVpSh1YSqtXdJZyCO6fHpgpX25tz3U04ei8b69jtiluWz\nU4baO6Q5827UlDBy8R2t9TDaZdiR8d9/Ve573IQUoahKxwe7fPN1CVXvtndx2rKv9149pdEEM/9X\nZH3+7vmUl43M/9H641C05cdzCXwumIKpa8LZit3uiri6B0AYGcpaq+QunrIq5TA+PD2l0uIkt47l\nwNw/2KejCJrwVszwRA7CsrhiqZll7U7Gvk7XRxbaKfdwjFz7ZLK4qeuQLWuGXVENfVsRaa29uNIi\nFumCXF/uhW1YT+SApVmG0XqGoevhaHTEKrY+m6XMS2Fo2WJNpdiC9czg+2pKKGApyBLWN1nGT6gW\n8vdluSZ/JGrnXnzCw4dqBywUGtsO6ev8vL32zRo3pcHZZLG3GtqFjH+p+RexzVkoPNoLEoz2V2zK\nKypVxa13TWuTDt6S31dVje0rbqDV4Uu3ZG+uPIv3RO53Wrm0N1WQlfFaEgL11GfWsFY/z/AsIG4J\nJsGrdwk3hXZGwvxM2cLVkuueCXDU34Et8dV3Y5sWUU/Wtql1Tn5NvtR6hkFKpJEItxXhVwoMc5fk\nGl3YNIfFjokD2ZNJvyDWUvudsMezc4kenWuEq15dkCvGwvO9m2pKTfFxLZte0PDKodhEP3EsGIoR\n5qYAzN7wLgc7YjZ6ucVXvEVk26RaaObLampc3B/y9HRjB64h/22YwaZcSf1b//mfpK35sKUtbekT\n9LnQFKqq4OzqMW7f4o1F6tpyQa4q+vzKI0divvUsZTjQXg7alm33oAfK4b3GQzub0WqFtLVeYyvz\nGWlS0W1Ffk2toacSYxA7PNb897LOWC1EUrb7YwYam29qkfKrq/SmonSdNxTqqW4s+Bpx6Pa77O5p\nzVotUvLcaW5UPNe4+Jr5SdOgJQtwlU+vqvImCcpaD6uZll5dkCm8+3JV4CjOd9OSnlVGeqAt2t7N\ncdXD79QevXBT6KSmpdV+vZ6M3ZkaWip08qzBU498M7I3mZi15+PqPVobFd51OdBkrLho6MeytsOl\nx0y99l674XxTdzFRZ23h3mRwmqCiUBj7iblg747E/zM/Z1nrvmtty04rpq/FGdJVSqP7FwcRkbaR\nr2frTZFqKu3zaAOHJtaYvnXZ2Rnp/GPYaGFpTF4pFkVbFpaTAl89hqOdEY7WuWxMTVErOlMdjmGT\noNo+vufSUWesU+f0Vdt8dWefb74oSMYvvComapyuGeyI+dDq9mntilnRXC1wW1onw1jisZyn17Iv\nALAzhOBM3pFf6r3Pb7wrn1dFxSaoaG7+D/JPaVZ8LpgCxoDrcjjeZdS+D0C1XnJ5KQfi/fkJyVuK\nAe+O+NJr9wA4fEHgw367Rz3R8F9dot3nydchbiBvWzt1KbThSKV48rIXc88Te99vtajP5dpnFzUG\nLfjq5Qw3DVwi2ayr5Dn1pmFHvrx5kWtj2DlQk+a1fUyq3YY8MX06ScA827Scd9BMWBrX4qo9XKuK\nbxyHJtGD6ebUE+1HiUejpov1PMpUXl4tNYlb+WRzudd43KbRikwNFal63P3Ax1V13mpOguM0bCrn\nx4FLtOmPaA2xArxwDJ56zgsdm+OajSlP6d6UdsRxa0YaWssLQ1dTrSM1wUxrjdUXdl2ucDWt3VQO\nA18YTuXGnGqTFDStux70CDYhvdrSHSucN2zja23KpL4g11Ce8USdb1oRRsPIbuzibsISpYN1tDhq\n4OIY9QNpVaVsndBsajjmFUbHXA5dlmoKbbhpy+3SVaZ4vV5R+bI3rbpmpyd5C1/+4i1eUqj7SOuA\nhn5MrOsddANYb/a0wtFiMMQOVteudagdu8wRP/UN8Ws8+6WU9/YlEpGcNRRqmrkYXD0DVJ/Oftia\nD1va0pY+QZ8LTaG2lkVV4nQGWM0AbC4tp29Jy/FpsSLeEUnyuhOwNxZp7GvZd6/2MKHWyStyrKrM\nXu3QcdR52A0ItZ5Aoir+UewyGmgpsShgrdlDxi5Ya4JKvTQsFT7azzUZKC0woXLdfgtfvcLG8xge\niqbz6kuvcHUqDqj0qUi2snYIQ5XQmXeT4eeFPkYTjQL16ufEuFq7wKxdalf7Y+YGTcrDpBWo+lwr\njPavHiMAACAASURBVNj6luVCTLBwGGJq7Vu4F7I3EAfl7azPrR1RXa9igTkv35my0ApmZeXQU/Pi\nIPZwVLUvTbhB8eKpxz6sIdS25wPfx1dvv9PEoM7KVpJzqfiNk56sVRIXhCt1wM4NlY4zdddcKay6\ndkt81dK0LSVt4/L/sfcmMbck6XXYiZwz7zz84/vfWFVdQ3d1dbPJ7iZpCLRJGLYkWIYhyIa1sA3Z\nXhgSDHhhy155YRvySubKXniAFrZpQQa0sCZTojipyBZ7qu6u+c3/PNz55pwZ4cV38r4qq8h+zaLI\nJ+APoPH+vnVvZkRkZMQ3nO+cgBWFLWSwCb4KIgteM59BCwUFeGp+aNJnZDlxYcDLoaockE4Brgox\nJ24lmct8RqGNmqQvi6yEIX1fuNSoAhaskfm5OxpjTMPmEitoiuvcGA3x2r58Z+C1UZEr03AOjVOj\nARGaSkM5tISsHBpNNitCc4Z7Wuans7WHL/2MWCY3wg7yC7Fc3kmfIOGbncRqk41o6Pd/XHshNgWl\nLARuB2Z9iuWx+E1Z8jF+eF/MIacf4tV7jLgHA7jk5dOM1NeWQaFZARmvUVMtyrI8GCLFbLURZ4LP\ntFhZaXhcVHtdF4t9cQ96rR6ekJ79yXoOFTNmQE1Fy67QorBpJ11jPaB/HXRwc09KuDvdEE8eEnDE\ngEFvq4c1laBgSwYCAKLuFlrEqhd2gxT0gJzRdH+BZNVIOpVwlCxGz6tRNCg2/msKQLFSsahnUCza\n81su3shI5PG6j+1SxrLkIja2ELgAQKFtbFEhyXNs1KyvqHWBLqPrNbMWnu2iaBiBMgWLbkltNAKS\n2AbdAMqlr060qapraBKvJG4Cj1LzdTbEZS6pWKu8xGgsVbNZw+IEBWVTA8K2NqaxBWzQlrABVdNV\nyppNyqAgCUmJDDlFiF0TI+WLpy0PFlXErKamoAJqNMpa2UYXwlZdDDvcnA4kmzCOOlh2SWJ7FcAj\ns9LBfhdtxrGKOke2FvBVQRSq5fiwqS/pBRnQbQITHtQmDhDDITNYzfiMX/sYDGU+g5/6Bv7cx1LD\nYX//Et+lbolWBg43oTM8X7t2H67bdbtun2ovhKVgGY2oTlDWMaaakOEHh0jacrrsdboIWbtu93yA\npmi+ZrCrUyGf02rQGoY4ez20UK0ZaCtrlISB1nQNlLFQkdY8WWkMaGq6fgeGdQfrRGFNnUZNVaXJ\n1Rp2R3bf7Z0AAVWJ98MeuhHJSZ6usCR1eMyglxvWMMwl11WbaAIArRoomP8m3sLVc2QRMwBzILTk\nHoUBlE9KtAIbt8PiiaKBDY5jdVmIujWA6E9vY/jBOfu/xLQlp9wlgVxP1wk0Xa3AVVhSE/HKd9H1\nGWisS0z5udUiKzNseIy3zZ0UNqnuAt8BaSWh7Bw+LYguXb6XPAczcmm2nRAhyUvcoQN9xpPtAgjJ\ngbG/K1acGxi4uVyjNgaG1aG2ccDyGKgaUORmhMVn1/Zg6KK0HUBzHGWuUZJ8RlcpXK/J5sh8ZkUF\nkGJOeQ4yKjibOkWf2JKPyaJ8p1gjX1B3MrmCF8qadXUNi9/NkgJzkgS1SB3fq1IoKko7ixhOTyxP\nq9awvEY2G0CrCabTBVUuLNZBuO0Wbg/Fdf3q9hEaFp0fLc8xK5qVRoz5j2nXlsJ1u27X7VPtxbAU\nHBvhuIN+uI1S4l64KDOMPUm9vHHv59BmINHNc9gUO9H0T3WdQeuGSBTQDNQU0GiStH4ngGWLpZAT\nu5CVBQzhXrW2kHIHnpkUFf3oyMo2jDeKfuFisQbT9biaVLjVF1hqZ89Hh/oEcRVjRjXiNU+iMvM3\n2hK1pRFQodpb1AiYWktdymSsc5SMIyhjoa6bnL4CXUoo24VprIasSTtpGFoV5VkOm/GXi7/zBI8I\npZ0se5i/dsy+sZKx1vCZy+23PbgB04Lw4PBzxy/gki5OMygJY6GkOklkOnAZtAtCHxHjD7YFFDxh\nY0K7w1GAm5Wc/kdThRYDlEmcIzmUOVzOMkxa8qxe7RL/EAzhsNDMh0HEteB0+9AJYxiBg6jdKFoT\nHp3lCJn2zNshPIJZluv1xkIqVIFi3VRxMuAbAdmC1YxxgYg8G6kNtEmn56+ItsUa+pLBQ1UipDWV\nI0JOC7HwV6i0BHlTxhFagQ/VKJAbgzolaa5Vw2KaVXUCKMYoDHVHTVADNuUUpwncV2Q+x4uXsLuQ\neNxcDXB+/ydTnX4hNgWtS8TrExQXGe588RYAoOV/HbYt1WBBpw0/pEZhDVRNsIrmlElscL0DqKAZ\nRLIqCy4DVPVqgYIrucjlswwJNGHQMTwkZG2OlIKh6afsEinLoV3mnfW6QPqhLITctWHRtdlXr+J4\nKS9bOqmQrGRBTi6obuV7QEkMwaALp5R+ZqpAfCobiMUgablYA2SGdjKDVpO1yB1YzHy4hUJM0FJF\nfINlW9A0k20fqFK5nt0L8O5SfjcYlDCZbGQzCsla2obN3WZmPPQIPththRgRLFRaHghPgMeNsm00\nFoRYn7kaPkVierqG4XyOt3uwWas8aFEH0WojothsneRQRP0Yr8IpcRin0xhvvPolAEDg8UWwQtQ8\nIJRrI2OVZ9BxYFOi3TE+FH0auxGPVTaUTRKSPIFDbdKo1Ud5KapkpXExI6R5diX/qjyHYiYGbY0z\nVtoGWYLyWIKKASs1Cwsb+PssVwgoKNTTFrKUFPxOhZQSPl5bgudd30NMd0VVOYIlcS/tLri/w/Ii\nKNY5wG/8JLXRrrTNCTrEMdzev4VzTzbk7370FG6XylASh/yx7XO7D0opWyn1PaXU/8P/f1cp9S2l\n1H2l1P+llPJ+3DWu23W7bi9O+6OwFP5TAO8DpMQF/nsAf90Y8ytKqf8JwF8C8D/+QRew4CK09zHe\nSqFjQTG2DjrYqeQ0C/IZlgyoFdM5FHPz0bacLm7pIEAjMuKgJBzZRgCLEOU6D2DIqqwIVbXVFhKS\nsJRZAtBktIIaiunOpFzCsLzQJ9M0AIBVjUZVuIofAwAWhylmPd5vViFmeqsmCtC/vYM2BUScsIeK\nisolZtAs+Cq4TWsNRMxjR+MQHqvvvFTDMHW4NHMoQqgbAIExFhTTsMpVgr0GUD0pETCVd1WW6K6Z\nGiUmwAZArwop4o1SsSkjGM5RWwfoteXvnPeYL9aYkonatkusaeIuLQuXZMS2Fg7oVcDiXLrpDJRB\nRFHlWJ/TzJ8HyOdNMHaJ7S25hqJ+RZ7OoNI25yhFklOnc3UBn2ndA3cb4YABW6IOg6CHkrDkWmtc\nXUra83AeQ6+l/4vpFHHOQDEt7jYUnKyBnmZQKxn/wLcwow5pi6nqTgK8WzKYl+ZYxDLHF1dnWDeQ\n7pmD/ohYh215ZXadXVgLEtlkc3g9sTzTNIbzgCQ4N6YIQ0l9akNr8mSOUouVU1Uu8oRryElwHktQ\neVaewcRNZerztc+rJXkA4M8A+G8B/GeUkvtXAPy7/MrfAPBf48dsCnVVYj05xXlp8BoXYBgF6Dam\n9FxBESY7fbyEe0tWU/q+TII9tuFS+LPf2YZq6MdVipoVfldZiYtzctuRq/F0PgWUPIB2bUEbSqOv\nPZRUoVLKxrJ5sfJPTC7fRQOgIr/ij9YnyOeyeNteGyvCSmua8OnjxQb05O2n6J0zY5LbyAlasgim\nqAugovmZpjYi0qwHlgc1lr/vGR8/YD56zfLtvFQbIIxveZiRdVmFFrJmAyhSlLYs5JKxCtgGHlE8\nHhwo8iuadoiI7sNty0VM+O+KgCXj2qiaOgI3RNEEFdIE+20K3xiNmjyOFmMf3b4Nm/M28DzUrC9w\negZnfD6uHeImXcQbLB2vJ4C3I5vCxekMeYuVj1MP4VDusView/iCI7FX8ln7AFgu5MB5ePIYHzyS\nF/ZoNUPJTdaKAvTpQlVUiHqUaIwJ13a9Llqs58irGDXN9dWC/VUVNF3CJEuh6ErFboIl61zqldow\naLPrGJsKex7rIAoLq3PS4BeP8eARWb/qLey+JeQrZiUbmtfahUs+zsgLkBiC5FBgfU4o/yrdxFqe\nt31e9+F/APCfYwOdwQjA3DT6XMARgBuf9UOl1H+slPq2Uurby/XzpUqu23W7bv/82x/aUlBK/VkA\nF8aY7yilfuEn/f0npei/cO+Widw2yvIQ+Ux2V28SoiA3f+0ucDqXHfOss0BwKME8bsrw0i3cvslC\nFr+GIVldahxMM4nCPv54gve5Qx9diokYhW1QvgFa+YhYp156FXJW86XrOdqMvmuv/WwAn8GHN3UN\nbObNi6xAyQyGab47v8SKnA3p2xm2xk3A096oTvMnsG2NsjFFY415Q5uQ5xjQlL60A4RblIs755iR\nwm+IQrS9uXc9KZCwmMfWPrJ9mtVcAoVl0HcbTooufE+CYHt7IfoM5nkDBw02e00dh27oYs5T/mi2\nwvRKnk271YIibPxg0EfAoiFvwCChZdBW5C7oeFCUNqumcwwZiVdhC+3bUvQW9MR0nl6+g9Wp3Pvh\n+hiX9yWIZtURXtmX7/QHEXxCNUNaYDodwmuTXVo7GFDZ2RvuwqZlWRUJsjWtQrpPlbdAljKYG9cY\n9glBjmw8hYy1dUei3PZVgA5dpovz6Ua5fL5MoflM4OSwSADz7n35rJNptO9Qdbx/B2GHNG0XQwxd\nWas/mH6E6Q8IeW4zG3b4ALeo4t02AQ7vS2A+Vgb1UOY2tVx4Yy6eCa2OH9M+r8Dsv6GU+tMAAkhM\n4ZcB9JVSDq2FA4Az9we0NE3xox/9ALc6A2S7MiGOXiM5p1hpnePhx5KqW5dneMyob2WJefqnbnbh\npfKwNGx4t2VxrI7PcUwXo3D7aH1Brh24YkYmsxhDSq5fpRm6E3lReiODWeNGWgEYREfH+QR2vFHR\n/EQ1qg8PNX1mrf/ZrygoaMYAtJehYp872yH0hASldAOMZcNuy2ZkJS40o95ZHKPKxGSsghZ8ptO2\nmNIbd4cwhbxgVpBi9oCw3EjBMFPR7ke4sy2qQReZEI3qyRo2wVnTszkCmu1qOIRP3/l0WkH16B4Q\noj2da1Qs0VwUBdaUPQ8cCxnhtbOljW4oL07YCH2GwaY6MUxmIJ4M09ViI69+dwB0HFnQLkFYqT3A\n2++IKE+2OsMP3n/CuYjgsNbgrZbCsgkK3LnD25XIDuWlWKQu9J5sppMHT7G+lPH1LYWcMaiCADAf\nCuThQTWyMWdsayur8J3fegcAsPsNyZi9evenYD9uql0DGErOl7qG35cBZnkXJQlcDig1cFVaeDCX\njemVr9xCuyffPbm/wGzK+FHQxz/6p78tHWEKaKfdwcM9eQfeQBf6ROILT+YrnAWyRuZWvNEZfd72\nh3YfjDH/pTHmwBhzB8C/A+DXjDF/EcA/BvDn+bVrKfrrdt3+BWv/PHAK/wWAX1FK/TcAvgfgf/lx\nP1AacBJg6ifoMhpR2A6a+pauAm5RabhQe+i0WVDC6P7ujQ6qjDDSW4BL0RZdLZEY2fdaowhv7QgM\n1COkeB5NcLAju/Lk6QlqAmy0ZeCQ+spNVnBoMpu6iaFjc/wrYEN3te05mDMLYGmDuKE/a6rh8GwX\n1rWGYU1/3xvA3ZZocXbJE9qEsAlF9p0UhhZBXXoIGckOAwsec+SrkYzDLm1UDXW8Yzbmis6BLoNo\nqhVjH2JBtMk5qEsHTxpShlqjw4rCQBU4mZFurZzDkP8xJdWYqwAnYPXlwMOAufSu52I0lCBuhHoD\n0+7QX3NKgxaxBLlXY9i4gpmDNoPN4+0WvFrmwPIZlAxLvHogJCxpfgteKM9Sa41X78jJ6/sWShYV\naUq5wwxREG/QHQLBnoS6Bt0RisMzzgswO2LVKC3u4rRCRjfHqRT8Wq67FQbQHvErtAicD/8ppvRp\nu7aD/pAs0W0PJeXoYs/GjaFwK+y/xnEcT5AWBKqVc5TMrlSVgbMj3/2CFyIi3dyc1aW3drrAmTzH\nO2EL0zb5FN6rcb9oYO8F9Ce83udpfySbgjHm1wH8Ov9+CODrfxTXvW7X7br98bcXAtFoOQqtHQf2\nMoFhqatt9+FGLM+N2+i9LttdFmsMqRfgW3JKbI1ChORFWF+lGxEWV1nwWBgSdIAwkdP4FfIjTHwX\n9UR22rsDBxdMw8VJiaAJgrVszIuGQmz9rM888gNbYUhI7c+PbsHcke+2cxfffSwWzdFKimTWuQWP\nadZKKxCkiZdec/DK8g4A4B8kcmpVAOo+o4Qx0N6mhsRpid1dOT1ubg0xnUnM5PRMxpb4FpYJLaWV\n2lgKVttGm9gCFCXKQk7QmijAxNcY0FLohj5GPNkdq0LGMunFwkKvI+NzGYupK2CnTzhzUiMaURC1\n3UabjMjtwEXIwp6c6T8nsDdQ411XwWXp9PadPkb35fN27W6QkF0iEIPVTbS/Kum7eJHi9kvyXbe2\nMN5mgK7MMLuQU7whYHXabXhlAx9WGPGZhvfG6Azkepk+hjWUcX9w9hQAcL5sIWs4FOoILbKGJ+UK\nxYWso6cnsoaG3QmSKznNB2GAvb5YSv2tPlYJIc1xia6RdRQyjV73bbRdxtIQwaJwcscPccelhaEi\ntA/I8cHCvrAVoXdPLKmxdxPJdyRW1i2e4Oh96ZupMyTDn+w1fyE2BUcBPctGHgRI1pRZ7yyxB5lU\nZ+TD2GL6ddo17twRUFOjcGz5PvgnwuwYCXP98TpA6soQ90c+ujTHHYu18osFWsRH5+s1CkVp+7P5\nJvuwTHIoBr7sBu4KgExaMMqCw4X3jdsBghvS51d272FwR4J4b38k1zqarNAupA/H0yUcBp+8xRby\ne6yYY4568HqELJbrri9WsIlxv3W3h72hkCRsHTgYnJAApKCOYgxUDf1WlG+yJPWqwsJuuCY9TA8k\nUNg30p+o76PtivndHdlocd6KykagiaFwbMCV79vEdPh2hQEj8rUVo7Rl/J7Xw4D98GvAIXaiYrAz\nLQ069A8noY8WeQF2Ag/b29KPZVbjci3Bs5uct862h4giQWWY4Gb3rvQnL2EF8tLnsxQOMb0NSYtr\nB/BH8uLtLxLYlIaP3B6CgczFnvca0hYBXrYcOO6jt5HPSM9uR4iIuLIjG3olm8XifdlAHoQdFFfy\nEm9/s407zJwM/QgW4e2Ob8ElZN1jZWh3nuFgyHXfdTc8n61RiN6uuBiVG2FESL5iMLfV92A3tHnB\nEOaSgkC/Oob2ZO1h5WD+zk9W+3BdJXndrtt1+1R7ISwFpSx4Xoh1vsBqIjv1QA1QkPPeciJEpNcK\nI3dTjGO7sosaa42K9fHOwIdly+edyycYduTkqi9qeLv8TkqztjPYsOro9hruFUlFPQPFU04VDlLC\nbsPsGTLMbTe1+TZuMBj0xde+DueG3GOr9xJ+JpN7T5kC/eatfWTUVnjYPYVqidn6za/fQve+nIST\nUMx6NcvxlRtyYq78NmwSim4NBxiQsacTWrhPptRtitpou4ecNfZJOtv01+5ZKHlatVwfUSVptLIr\np+QbQRetMRGYrS0oxuf6rTVmawZPWz48Vk82Iita53DITBXChskbGbcUDjkCPLuEpulekVauMAoF\nU4g9N4BNQtv+9nDDbJw+XiAsxSrKGhEdO4Td4vNQAZRNgtZOG2CqVjuA36XFMpC14M5LdBqaM6Vh\nukzPBh4inra6ymFRU6JHyHsvjNAUGYbtAgsS3QbxEiXRpMNITuisbuPVe4LuvFuO4JA2bafbg8P1\nZIIALoPfHitmly4Q8BpuqwNckS3M7wPU7GwN2+huyRoxBStDAw1DGLfODTqnJAouUrzVlXG/m6zQ\nHsk1Tp+TeumF2BS0Uci1B6uooOhzZ1aJDs1WVWbwyJ3nt7qwyDVnbMlR67ULQzgvEhddKgEVrRFa\nbZmo2l0ACbnJXObu12pDxVXGBfJcXqKwKFGQX9BerFDS97M95nsVUBG7oC2FdSST7igbISnCK51B\nJyKWWzgkWxkr5Et528qywH5b+tndGmO1EBzG+++ITmR7aTAYyEK6O3CREUMwtHL0mOGorkrkM6ly\nnDF37fgF6CXBqZ893nppoPhCpsEaEenmnC6p0+sQDe3kaXKJASG661K0EAFAK41RKH3KliRyWa3R\nYfnydqeH6UKeTQgLhnNh6gJ5yg2e3OupKVDxpVIo0WZ9SDa3sFXKPU67MTIqUul1UyE4gROKwK5x\nbWCTMTpBNSP5TjXfQNJ9UtfBcmBRbNbul1BrVjh2PLisKNROB3UhG6oiP2YZ55jzcOrMYqxYaal1\nCRajbijtXts1UNsyr37eRcBawFapAGai6qJAwPnKLrje6hZgC7amLn1ULXmm1dqGW3LebAW7mS+n\nw7ksoBOBPJcpsL4SweVKJ5jzYUY9vakVet527T5ct+t23T7VXghLwXIUopGLHB245NmNlAVFPi+d\npE3dEqrZMQzl2Opz2dWx7zyjaPN6CPjl4PUJogfy+aL2EF9KFsAjY3QcJ1iSzDRfneOCgjLV2oZm\ncU1sOagYoNsUgZtNQSXydonJsdhl3x69g71KzLYveDEcujdv3iaBSqIw7jey7i7cXPo5OX4Kn1Da\nFlWdp9MYJ09YMTreRm+bmAdrjZinhz3oYMFgXZE3oiE2Rox6z9NGLwxQlkJNi8WKFU4CzkUmfbvb\nH6A3FnP/1sUMSxLhak8h4z2MCbCsqEzdYiHWVGOylP4ceC1sUbAkj3O4TWVrskZJ9GJJeKiKHLgQ\nV2TcN3DoEiT2Cc7pBmx5IbAiJmUkcxkubJguI+urBBUxG9W8gDUgs/VFDNUhfRvn0xnbqIhf8dUQ\nmkJDtWtQE06eJTFyYhZ0Rz4btNoYEyrdCVtY8sS/msaIaN00cm3L1MYeXcaVXSGMxYRYbPUQlERm\nGgfFCdcZM0rOyqCzLW6HqmzYI7GEsum3kLIwq/4gRHu3IQ6manonQD2j1exkCMcy5i++tgvnqdx7\n3mthxaKpow2H9R/cXohNwYZCT7mwYSM38vBzP0eX6bJ6YZBQ+j3oeijmNJPYfWs2xoRin0X2BKYl\ni+PirMAPHwkYxdQJvrgnkeoW2Xig642YyrrwYJH8onQNZjMSZxQFfCKVOt3hps+alOrpuQKxNjha\nnsM5YqyhZ6OsyFAc0Clt+ZhqgRe3hh9j5DdkMB3EVDd641Xp4+TkECGzGg9mK3w1oDlvHNgsnTX5\nEinN9YZnsPBK5JmY2n7QVLMDptAoSDhiA5vahxaLKpJoAjyha9D3kNOXnaYRNOvbMnuBbiBzUMVk\n1A40HAKWjPKhWTodtHw49L9TY6OmrV2T71DnBQIlfcjgoNPhUlxVaM3lRbgMIywtuUZJeHjhAg5r\nCoyyUJTkRAwBk0s/kqyAFcrnyULWjRPuoGCFZl4+hWNkQ8ovZ3Co5GRWCThFiE9Zado32O9IjGO9\nrAG6FYVlw2pYmPicz6+m6FJ8xhuVSFPpT3wyR4dxEgQ5arrCTx+xEjctcJH/AwDA3lYHAyVrIE1O\ncMB4R779Hsr5qwCABovk1jE0Xd58XqBg6bgyCjkffXIJKIoF49E5nqdduw/X7bpdt0+1F8JS0ADi\nGrgwPgKamduDPjKyNftujtladnxvksPq0Ha/QRKWqkIRyIl5epbjmICes5MaGc3gaF1j2nD5F4wW\nJzGu1rLzL+wUS2rOK6cEa4qQKw1NyTK30XIHNnwKtaWR0hL4vUsbC3IKDi9nWE/k8wkDbseqRl5I\ncFQt1zghuOf18BEUJNDU0nIS93ZrnFyI6dz2XMyZE587CRKeTHbsImbwKWZ0X5UFNHP6Jv10AddG\ncCRQWNQSdFWRmJnadrAgsOhwYXDExIUbLpHMaV4vU5yRV3CPXAnBeACbenO50TBzzrFXIaObkxmN\nlEQlAQOmiALk5LNWqzXsS7nuiTnEewsCj5IY55MO70cLZNgGVtKfejlHwfVidnZhxbyfWiK5kmtP\naY215xcICpGMT+drWDu06KIRDIOSVWWwIu/DhFW5blpgh2Z7vIqRTAknr2pEVOVpKCnKrMRkRX4D\nu49+n3R8tYJHLged21jSpSnpwlzEGfScXJnzfby+LZaSNwhRNjiLbgdlzABlpwmC2tAN10dRwYll\n0Y7yACPKGp4OY6h1oxnyfO2F2BSMZaOI2jCzGQqanE65C02mJO0lKLnoV/pyUwXYXRHl1+5hsC2i\nm46fwSKCcNjNUK0FsDKfnkHRMLoq5WVZxFNcUTSkXhUoCdiJbBdguigIHAQsdw7tZ+AlfIK3oioa\n9aanuE8yzzesNiol/T+mTzdxx5gTKVc6FWbH8vm7TxVubsvnWyT00CpATNDUnpvD4ct0WTrQrD5M\n6gQrxkQMU6tWp40eZeId+xNMUZ8IQNd5icGZuFWFw5dnVSJ2ZRE/PAR0X8Yxij1YfPG0ylATCbji\n/IxSYOnRbK1rNLulSgwywimrNEHCzSuviMpTKVy6D5Yp0Ga69PFlgiuSlpxHBjtPZAMYhZKV6bXu\nAESe5tklqpCpvHQNeCzPbt2GS0HekhmjoTva6IPWxwlqIy9eVWawKFRTBgrJOStw6R46dohYsaq2\nzFASLdpyFGySqnp0bSpjNjUMc13idCVreeDNkXDe1ksXBX8XDaS/X9y+jf6AXJNRG7d2ZVN3awV3\nJOOrKhualY8Va3Fs1ULJqlod9VD3uDtlKc7bZPW6KjGOrrMP1+26XbfP0V4IS8GCQWjV0Khw45YA\neiKTwuLu6UQ9FOSfS+8XuJjKzlfaEjipNFCdyXfjYoY8kZ09nifwdkhRdWIhodBHwSxCUruIiXmI\nIhcWzesisZGTIKQOfKSEldr6We3DZ6l6v5un8J9KwPOlwMWYMNarEzk97q/ub4JTnhvBIa69rCy4\nRk6EVkms+1WGmLqLH12GWNC6aXubRAsqU2HFaLhDQEy5irGsZcxB91n2AQ6eWTfa4AEDVOWU0evM\ngkXYtc5swMiJqfQQ/ba4NH7hoWaQM2/EVnoFnIJcjKpGOAz533PovCEscaEJsmqUtGtHo+OK2Yel\n6AAAIABJREFUiet5FUriJT764QPMCZYa93t4vBKTv38pFtQr+xZ84jf0eY2YTNt1nGJwi6Q2V2sU\nxL37XWYfXlrD9eUELs/OsWTfLi4KjDiUuIyR0erLjczPcl3j7FDmYmVqrFlpajwLHTKFJ8xCqALI\nSKCS1BZ0JPOSwMOM468sBUNKO1Qy/jKZIWEWqDtooyLZj3Et5Eey5pamQItcFDaxIqqroOm7lG6O\n6Uz6ocMC5oQ0+MUSkwa48pzt2lK4btftun2qvRCWgm1ZGHgR0mEXbk9iA0Y/gMNa+UgFcG3Z7Xo3\nQqRzsRCeXJJJ53tTNO5+xwlR56zqq3KED5i7dru4mpDNWYm/1enuwCOrUDsMMKe/uEKxYSnyixI2\n1ZqN+kRM4TNaDMBm7OPYqRBockCMeXos59gZS3D0L/xbfxG39+UU245uY9BrhFDJYpRk+F//5v8B\nAHj33e9gQkno7p0xQh7580WAjCzQESsE0Y5QU5W50XwAAPz/amImDDK0Cd1e9gwiIiCrUQmbv71a\nP8WS1ZOtjgOfZKV1InN5vlBolHEGbQ97Nklc4Ww0LDq+izwhtR6hoFZuYAXyu6XbQz8isrKcoCR3\nhGPGKDKxBM4ZdC6CCJ5DQd+dAhX99hOzRIivAAB2fv5l+IRjNxadVdfwaSl4//LXUXz4Xfnd+++i\nN7rLWblEi7n+Ruynnp0h6EgMYKdy0W0/s8zCikHFhEVSQY56Tjo+U8CLpHDLdCr4gVzXyha45JiO\njgWNOLZb2NtmWtTXmH9Ikl47h81S2nm5xis335B7t+RaUdRFxvVS1i5OA7FSL8LbwD2JUXlPBzh9\n8gkL9znaC7EpKM+Be2eMttPGq1+SyrLZIwfLy3cBAOH4Jmz7MQCgM+wg6spkhwzgFS93AVvcjm6v\nC2smgcYKC6wuyZl38QRnR1JxlzEg1Y6AisrOcLvoMF+dhhn6vjz8UXmAORWQ4vgTPsNn0LHZsKD5\nwU5iI7gjC33XFRbeeGUBpBD3ogqRkRd5/Mo22qRcn2SyAGfFE+z1ZVOceW1E1LasixzKljGlkznQ\n6ApSvKXn3sDphIzDBL4AgL9jIT+nmatqWE3QTVFVKQ8R7MtGsZ76sClUMuqkGI4kU9GzFApS37c9\nBq8qBzUDdYPeeAPnNQbQNKXr2kWrolHaYuTdTtHtyj3CtkZjUQ9ubwEz+e7P/8KXcfqxPMsLHgCz\noyW2XyWPZ38H4x0GgdMarV3J4HRu3YbFzI5N3IRlalSVvGzr+QWyRLIaO+ObsKhvWRkXcc3KXMLm\nHW+E2pEXPbQd3NohJ2aucUa1rIA1Dq19F5eZvOhZmiGdyrOuKw81wWctd4Ac4t41NQmj9h5u7Mlc\n7HZbCHrcLCc1aockKt1b2N8WkiB/lxT3qJEw+/D0/gMcfSTPZDqN8dbNLwMAvm3W2L4lFZMnP5YY\nUdq1+3Ddrtt1+1R7ISwFBw4GZozBoARJdKFHDh6/LW6CWZ8jIoMxCg1/IHvZ3kBM1cUsx9nVIwDA\n6p0TlDzx8xkwuZITZpJdwJB41Y8kwLPEEk6LDMamQs2UZFk76Go5pdN+AJdBx2G79azTnww00mpw\nAdSENyZxhsVcToL9HVbFhXsozwVG++6v/w7iLTmBL6cTDCCYhAe0flYfn6Cypb+72z7WVImpcxuJ\nJadYYQympEXzp3JinhWPMeeR4OpnJCv5zIZl8XT3NJxC/s55mi/jC6yeymnl+Rb6TBe22zZqUoyd\nx2vYRu5dMojW6hhEHtWVbQtkh8OyWMKnaWsFNepGr5EBUWtV48qTk/RWq4Uwkrl/vXsH+egZJiHs\nyBw8fPoAAPCd+/8Eo/5X+DwCdPfvAACi1gAWMQLLD54ipLRcTfo32yhcPZF5+fjt30LlyXPY3b2L\nNOMaWcSYL+XzYxZXPZysUNJFcbYiRMRn9Ds2ho9lLqwbDDhWM1zQaiiLCo9PP5Rnow/gkKBn5+YW\negwwqx2mwIsMOhY3cO3GKHwSrqgVerRGonAEd0DpPKIc48mz/p4cT/HkXFyG2AJSR66XBCfI5z/Z\na64aQMufZPvpr33NfOt3fxdG50gnhKXmFo4sqTLMHs+x/LYw5548PMP2W/QpU3ng3dEONM3h3hf2\n4Ntk4GkDxZrljOEK1YzwWG4a65ME0ZB26+MJdCbEHCfvXyLpyUJJrwx+9zfeAwA8XdHc+4/+Q6At\n+PTptI1/k6XT2z8/woBqQcWqwppgmpklm9v0/BCXj2RxHE4ukZUyvg/wJbxV/goA4Dul9P1L8wme\n/txfBgD85W+8jfPWLwEAvvx0jjkFRotqiNlCNsuTirZhMcYP35e/7eND/J9/+69v5pmVw6gSgARK\nSGgrWpZCzR3EsRUUX/qeTjZ4A5PVSGhcerqJ0gPNXlPBQkC3orCAFqd+bbDBSXzmarMA/Jz8+eXy\np1FD5mCS+Agp5oJbFJhtjVEHMt8d00f7Denn/kiBBFGITIWhlkrDE/ryLwe/jY9j6mMerZCxvN4P\n+7hiBmYQlujydgOHm3PWhstNSmcWfvsf/h4AYLGYQ9ElyBjDmicZXG6y1qiLLWqMrvMSNoFa7Z0e\ntg7Enby1dwcA8NWbr2D4BRlTzw8BVmWGVheWTyBT0IXTbBCNUK5KkDMz9q1/8g5+8++9DQD4f9/5\nu0h4WMSLFBYZgS6vTr9jjPnpz3oEn2zX7sN1u27X7VPthXAfYAyQV6jTJXxfdlcTxuh+X3brh3//\nQ8SPJFpsH+wjZsAsoCCJ2lrDoUCGPemgMILy8mIFltBDnc2wupKglSYhie/24C9ZtJNYAJWmD36q\nwPn3xBR7/7spbr4lGYMDiWPhw6mL7FLM/V/8pTfx1j05dUZDFynNxPxqDqstJ8jZuUCbHx4/Rkg8\nwjqc4/K70o/T+f8NX4nl8eGR3HfeDnHyD/87AED55r+KJx98BwDwr/8nI2xT/u7WV7qIWBmo35P+\n/OiDhzBjOYn2vvYG8LefTXP1CSGuVcPdaBpTAdgQBGgFwxOojp5lAFwrhymIMyCqUNclnlmbGkRK\nwwBYk+fRaLORWof+DHSdBkBJg+prATKStnTHN9DaEvPG8olHqGL0LfJEjisESsadzj3cC8QdW3TO\nUZ6KBXH68T+Wa2VjPHggQcDipRJ6IdZU/54Dl1D4dmUjveTaGctpPB44iJcSoP7Bd2a48YYEuW/1\nd/D93/uR9Jmo0qjlQzXq0abEciGnvOs6CFvEVqzOsbhPIR1qT5SdDkKSzKjMx3gkQfPWwIchzZ6O\nl/DGMiYnEPcjrA1ymmBf+fIBBuG/BAC4qH6I3/kdcadtVUO77j87539AezE2BaWAQKH4bcD/Bqve\n1gY/+g1xGUx9BexI2sjBfXRnNMvkXUV6maBFBpqLZQrVEVMzvAjgdcWMjM8WOJ7KA3epo9juzxAX\n8lnb6cFakxVIxfDG8mD8cILUE/90h5He3s++ieo7shhfvRdhe5dw4lJtKu6uWh7WF48BAKcfsBJz\ncobsUB7QcH2M+xcCsvqZ27fw8YU88C/dk3+PD2d46eWXAQD3j+d489+Whz/5/jbSSCC/em5DE7yz\nUMKkZBUGNRmXkvr3l+Nz6W6BacPIduFwnGWnjYiVpkPnBtaxuFVpYoNQfORM2VpKoSRximMDZK2H\nrcxGmNaghtHP56aa/V3gAculdYWwQ2ahOa/lOxsxnPL8BPnH0o/gyyG2L8iEtJNgNZXvf+PVrwEA\nTh/M8TM/Jenn5cUcK0/mfvkgRo/uQZWH6DZKVRzIqjiDMrLewhooCd7qGGxUnxIlO6GrLATkiVwt\nK+SMy4RtHwPGNiq9jStCrI8INd8NarydSmzg4N5NbJGX0dLpRmgnqSvYhrENw/Vmu3A82TTHO9uo\nLmTTe+uNb+Dpmdz7o/cTWE0Z73O2z+U+KKX6Sqm/pZT6QCn1vlLqZ5VSQ6XUryqlPua/g89zj+t2\n3a7bH2/7vJbCLwP4+8aYP6+U8gBEAP4rAP/IGPPXlFJ/FcBfhQjE/IHN0jb8l0+gCgkM5flDpMtv\nAwCm1RJKUYp9qTG9Ibt8XUtAKkWC/IIgpfYMppATwXZdzI9IBqJSLDMJYra6ZEBehRg1st7hOXoU\nNckXLvpUeR4PEli57GtDqmp0/AEOb1A+zPfgNaIvfopFLUHF1F3iN96VoNTbvynjmEzmyHPSgMXA\nJGQ/pgk8S8y9kxnNYW2wnMp3e9Uh7n9PLIz97EPEjVBL4OKEp9VOJGM7LxOEvuSzt+1n/A/AsxPA\nuMCIp/uS0O87QYAllaSLsETQI3+iM90IXPp1jZR4iZAZmWVVQ9EgUZGNiO5BUpkN+UhhAPPZIcZn\njYfZjj3GU5cs3SpBwaI3yxZgThJnqHbEEkyOLqFLOXWj39vCakcCt6PzEHVXLnj2WMZ04FlYpWI1\n1rrAJCForXZg0/LsjSskrITtB3TzMgsHhCir7hpbtazPcThA35WTXpOevvIsrIkTWpZLKNUokEeo\nCV8PIwuPKV/3rUDm5MF5gt4WK4J3AlRkI09TBy6tt9n6EWJ7xrmQddrpB2h58oxd+Buq+p/eGeNX\nSRsHZTZVoM/bPo/AbA/AnwLw7wOAEeG8Qin15wD8Ar/2NyAiMT9mUzDQqoLq3UBZCtCiuHyMw6W8\nIAdjhTZ19z766BAV3YA+K+uiu30YCoPaGvAt+qF9C2VKsFCi0d8SYJTpkEzkaIoz6gqMtYIfyoOZ\nzWKkrDXo9Npo3q2SoenWOMQ394niCxwomxV5RYJ6zarDxcc4+cF9uc+lLMaDwQjbfbmYXhokNdFv\nWiNgyvWQpclzr0DCF1e5Acy5/H1cz9A+kId/lFYwV/x8W/rb3b2DypX/blvPah8sKHSpvdCyauxR\nX9AiK9TWKoT1kvRhdaphSNSyN/Zh6Nd72wWuiIdqxGGTHNBEHi0N0CIW/3i5wpqckMdJuSnx/f28\niGbDKmsf2zep4JW1YEFeXouViF3jwZ9z41lMAcaVhk6IvVz6aes1XIoJ93N5ucfbfbCkAonOsU0C\nm047hMuKT6e2EHRk3AFjVKvjGlfcpLYPxvBCao6EJUyjYMaakZUC1kxfpusKLdZzhH4PYch6BsdB\nb0SWJQKsxp0MX7kpG/nPvPwmAqaJbOSwXen/aPs1XFKv5OyJkAzpkzZ+7g15LzzfQTQk6nffx5ep\noflgMcX6cPLZk/77tM/jPtwFcAngf1NKfU8p9T8rpVoAdowxp/zOGYCdz/rxJ6XoLxkAvG7X7br9\nybfP4z44AH4KwF8xxnxLKfXLEFdh04wxRin1mWfDJ6Xof/prXzOAA+X5cCo5zS+u/g4mZPXdvfMV\nFD+QCLCXW9gn6cVwizDZzi5sW3ZD5VlQBIcYrwWb5pfvV6h8OQUKKhPZXo4sI8mIilAnpB2LYzho\nNA9XmFKRqh6IJbGvXHRZ7djpRVDcwRfJGh/TnF09niOzxKK50Zd98efe/DIiVi5W2QzppZxAF3qK\noyXJWbZZyaevsCLvIhwNjzDmNE2w/FDu1/3yAhNSk50cyzT3eym2qCxl3f3mZr61bVAwUj0KPdxl\nBDtjJL/Xc6DmVCYaVigjOZkHlg+PAC/XquD2WT2ZiyvV9SrUGQsrigR6QU6DUMPj+JysQrFJOvw+\npkIDsioMKopzjtvAekECFNMELSt4dPM6bRdeJf3YHjroMcDse1dQa8KpGWyNsxYsujY3+mPcpBiM\nG7WQrahapRLYtJCcofTBtZfQVIhylIbPGF/iAa7TRPWpO1pUqMl1oS2NiHL3r718AMNnmfc1brqS\nwbi3L7Uxrx7s49ZXJfs0GPmwfVK4l4Ci1eCGOcakkEs68u87F4/wWnEHALDrbcNiFsWt+7h1S353\n9+k2HlKiYHL+fBbD57EUjgAcGWO+xf//tyCbxLlSag8A+O/F57jHdbtu1+2Puf2hLQVjzJlS6lAp\n9aox5kMAvwjgPf7v3wPw1/CTSNErjcJYKBgM9Bc3Ea5/EwDQnq+hbogftp1dwOOJ59qMKcCBReQa\nfKBJvduZg5oSXTA1PH7fp/9eb3XhMHWzUhWu6KtavQiuI7vrvAyxICqydU4m4o61ocmyYMMY2dlP\nDz+CapNvPwjxxkpO1Z03pLrtlbe66FuEWD+qYF4TC+JsPcabkHEffiA7/AM3QH9J+rdWhOWcRU5l\nDVCy7exKY8gCnfZEfOvpdAkVysm3lz1zy7zQwasvb3MOPfxrr78m1yNDT7BIMKXAzeGpwo1bkuJs\nux4CQx/X1lAtwUCgwSukBTxCild1gSKWSNuHhwM8CiXNlmmNbCV9vsobpqhnTSmgTd4D7aQA4wfr\nhYLDOE9IejhrV6FDKYeR9rDVldN2pxXgtXuyBuppCFC+b5rL+Hb9AK2KiM1uCwFZp53RNoq5xK5W\n00uw+BMW8SSDVoaCGgrzSYaMYjfdOENK7oUmOJnk9eaUDV0XWzfl+R68fhf5Q/Gozxcxejfk2t/4\novT35mAfbU9O/9C48DQDm9qBrhsWrWDD/HWjL7n407MFFqT62y5r2ISW7t7r4S7Ffm5NFIpC5v7p\nfTxX+7zZh78C4H9n5uEhgP8AYn38TaXUXwLwBMBfeK4raQulipFNpTKysA/hdMT8yi9nUKQrX+Y2\nHEZhAyOL3EuO4HaJC19YYEAWpqgAwm5VFkCTfy9fUWwjX2HNHG6lYjTEjLWxNzTwS3eFfTL45qQ3\nG1gt2DUp0OsYVS0LLzm6REmh2/LqAruviyu0w1qLUAdw6RJ5bQC2mMa7UYCM9vVqLJuDzt2NPPu5\nXiMFeQl1sQm6Xc7uwyGnIzJ5qRanZwjIKZl+4c4zgVkouBNKvB+M0WpT83AkfXe2DhAsGUXsVTjY\nlkV698YXUKTEBZQV3L583qa0+nJ9BU1KMCvsQ8di2rfdKW4QVt5WLh4tZc6XD+UeefnpilOHxCGV\nrpCuJDrvqQXqSuYoJpb/Rr6H8bZ8d2/vLdwI5aW5M9zClifPb90JUbMI404pkvM6nQAt2UCClkbX\nk2dSmRorMmWnYQf9Zp5J01c5OSrWnSzzFN26MdFHcJmJsSkeWxcJqub59lvYZnA8vTpBToKerbGP\nN/fkmd3blvXR8QHDmhK9NNANvb6joMkIpFwLxpc+17lsMCvnCPNjCi+PUng2VbSCMXqp9GN4cY6X\nItkg38bztc+1KRhjvg/gs7DUv/h5rnvdrtt1+5NrLwyiUdkWskTj8SVNbmcPP/tlyQOXOkZGspSp\ncZEfc2dfCCYgfGmA1ZXsntbaRYcSY96gh5z1/+nchqIUu8XjM6pzlISo+mEbRYuWRBLAYWHL2Bsi\nukf2Z6ImW10XLqXUylIB3JUt5ylatZxMwSJFkIiJavOUzNoWPJeBIzjQvHdZZMhZzdOoZ/uLDCsS\nkhTLDJoyb1WcwwppCUw0ChbHhFtycrfKLcTUGvTydUNvgNErPdzryD3udD0EzONneRMYNLixJUi6\n/hhwGMR1uy0MBnLSaANYjTvGQGXnMkRFWfuyrpEH0ueXjYfeUL7zyH6A3ffF2npf8yRWNapPAO1W\n1GSI52ewydyduREiTsiQY+63C+zFct0928brDCTbPmA5co+R1YZFxmtFboLC6sNdkCDFKVCULLxL\nQgS0WqKqQuVTt4FWgJtt4yphWEx5uKS53rcKOIrOQmOBokLNKsmuiRAUsj7jh20UdGOC7TbGihaL\nkd/pWYaCmJS5PUd8RqKX2qCkRFzdytHZFhi3zSKxvWWNzAiE/tgtsR+SDKg8xmIl706+U6NM/5hw\nCn+0zcDAwHNcBEoKDOL2EXBbfPHeVYrz8+/L5/YKwy7LfrlQJksFi2ZWZy+EarGKLAcKiuJ4fQcl\n8eUN/F6VNcY7xJNXISpfHnJcH8PzqYk4clBFEhnOK8mAuKZGRfEVq9VFbFGpanQTPVce+KGfQlvC\nLzjakYfVctuImB9X7Q5qVhpmU42CFZhulwt+dwxDWvQlpliR0SnolChzcvE5GjMyIbXRqBjZCElk\nEro7UHSPVkcZ/C3qFdYl8huy0PcbxufRGDde+oI8DQ2kLTIVV110KSqjgvWmrLKoZcxWdwiwxqG8\nygAjL+nUXaMkq9N2v42HdE3UgDjpaS43AkSbk2Xm6WIBQ0BZZJUAXYKKuIEILvpUf+o5HlyK8G6N\n92AYG3CcHhziCWpb+lklBjbVpLy+gc0NOc5yeI70udcZwKJvb8jFmHUdrFjWHMRnsFpi+p8HbcSg\nG0q8QZ0A4EbhBi6slFgHa8lcFnBnO9yQwaSa/JH1AvmUYrP5HDMeSJVeQ7F+xkOEdcLnzvqK2lSI\nSeNfF1dIyTtQpykWzDiUC42s+gRX53O06yrJ63bdrtun2gtiKSgopZAYFwkJL265r8JUQlJhzWoU\nd+Uk6WsLFnkUwq5EYVuRBY8nsO12ARaRWFYBTW6WoCzhDfv8XD5MY0AxwGeP+hspc9+14JLyTPVD\nlERLFuc0RR2F0qZsmpPDJwxalzsISQ14695LmEJMu+5YIv2uVcIjQYZyXKSsPtSug0byud1oFwSt\nDfrP81toWXLSZspBSQRlkucIKzE7HVci3a3dLoK2dMLXU9isTrx1p4fpQCyBbvsQVkuCXOstOaHu\nDm6LJhsA8+oBvIqFNoMunFROtMqeoPDE/I88cZPsQiNfSkdnwTEWT8VkPj6cYUZiyHVlIyQHZXTF\neVMKhn2rawOHmY9CZ3Bo+lfoweHvWuyPP3Lgk7LPml3BjsSkLgsfnR2JuJu8hmrLvRdHMj/Z0oLP\nOV6tCmBApel6iJJVmZmrYVnM5pD0JdwGdO8VAMCjqsbFpTyHu5cF5rR+Ykb389pGj1Fuz4lwNJd7\nDwZd7JDy7fSyhHkgFuSdXboqK4NpLlZHcpUhAYOx0wXmrPh1+n1sUxNlQBfzfhqjoqXb9wJssbJ1\nbgosOfeZDlEsfzJE4wuyKUj1tOsY9HYpDnujh+hbMuCV9S5aNaGveQpD3cGMIA9XVwhIJOEihU3w\ni7INWkwX2o6GG8rCajT3/HyAIm+i/Uu4FAEtXQc2Ofqs2oJFQldtyUS3EEE3EOR4iaKWSQ+WR6gj\nyZhMrnJMWI8RQqoa/d4OSlbf6VW+SSEF1QqKtRYVffVRL8SU/veJB4RUI+q2bNgrmpqOQcp0aUlc\n/7jTQosmd6hKGJr2WerhC0P5jhWn8Lig9VjmZFZ0UFuyKV6+9xD9obxsXkvBSuRlCvMMDmSsji8b\nsmvX0MyuWOkF5i1xtR7Yv44PLlg6vHQwI3GIcmX8daVBiUooZWCYUbFMCItl2U5g4HKJVo2oankP\nTz6ScXz76j3ov/tbAIDdgxBfvScv782dHeyS39Jnxahp9TBdyt8n0wnSQ5mXR7MYJeM1QR1guC/u\nyBuvS1XuQd/F0JdYSyv/IbypuCh5ZeC4LIdeUkEMMSKKt9ieD02d0mk1g6FbGPg3sJjLWGeQzeGV\nqIvpJcl4jx/hsJK3frnIsWbmx2lfIJqIy6dI6nJWrnHzkYxz/+sJdrYlBZ2WbWTvSS3N9MkVzCeE\nzZ6nXbsP1+26XbdPtRfCUjD833ePL2E/fAgAuHv7q3BelqCdTgewGUQ6mgGPSIRxayIn8N0v3oHO\n5bNxOABWcvobG8hWcrJlCtATmuCMNE6WM7Roag/sLtokwiinOVwy7aoLA4uy66BwTFYukefiGuik\nQEhzbjDI4FCmbmwWOGbB1oRBJD07hEeWaBPP0SGpi69suEOa7kvp2+nsAmeUMMMi3gBQfMuF19CD\nTYBZQhZoEs/cPHgDe4zIbzsJfGZaesaC6kqh1G6kMCW9+n4qJ9ssusKjbxGWfGsfPzp5DAB4/O7v\nYZ+maMvrYI9u1fhnxRopqw4uOa+/+2uXeNcVkpjf+fY5mKxBtKPhsRhrQHi4XVa4ZKCx1oCjZPx1\nlqLNuWj3BrBoyQ0Y4EzPLwFC2utVDYdB5dVK4fRMXE+TxvD2JZgXUGQl2CtxlUug+NHRBE8YdC5T\nGyBPwcHdEUKyP9eXYtmcXSTYeVPm6ua9N3HMdRjrlZR/ApjQhfOqClHDLznPcEKtSC8aICZZSnx2\nH/sHUvyUsirI2p/CXcocX659TAq6Eus5Ts9IvhLlwJTIKloSurDQvSd9e3o0wb1CcDsr9yGOqNbt\nWzXK8l9ALUkYAxiNm32N5atvAQCsVhvWQB7sagHEuayw1NVIbNkA3uHLdvHDD7G/S72B2qBLDYE8\nV1iX8t3Zk0tcceGlLIFWrS62qLoTdhU81kR4LQ8eF3StlrACVh1uUbMgnUGz9NZtbcPmw+0u34Qi\nk1PiLDGgWlJZiFlnmxYMNcJtHcMhnr80Ghn98phaAl5V4+6u+O1b3RLTkJ87NTTlzh/gEHElJmVB\nfzK+msPZF5OyMxzD2HQfQg8dihl00jYCSs0zFwA93MOdV5kW3FujPSd1en0HaiYbdWYuMe8S3bkm\nqYt+gkfvPQYAfHt6jPceXHJMPtpDWV4v+z7msTyHhz51GecWaqbkAIWqEciFQUW/vmPXsNpyjdyR\nvr0ZBdgeMHV6O8TW6wT0lD5cbjLx4X2Apd2KKk6wW2gHskZu72jcMPJMVW2QUr9zMB7DZbqq9qgP\nalzkRwQsJWfo9eTFi50UxUMePjEVxCwXNSUFdD9GfibXWq8zNLwoq1rjdCpIz0ck5Hk02sdrd0kd\nb2FTMevbHZS7rNxdADYrUH3qPiSdFFMiRL97/xSBJ5+HVQ2/ln64UQ1HN4TDj/A87dp9uG7X7bp9\nqr0YlgJbYO+g15OTRqUVFCvWutt7OHxPiEqsaYx4LbvgEXfoZFnB8+WUOM4d2K9LkAxFgZT1DHPV\nwVUolsKcppq+OENMPgJzax+KJBWjTtQgkFGHLrILOaUbivRMF1gesWLyaw488jeU9QKGRCWptnF1\nKDvz+VTMNyvI8MoWGairChWBPrUfAgQqrY7kJF0vAdyW8auyhEf+glFgwekT/O/0MKVIWCiqAAAg\nAElEQVQy95KpaKfjIEnlfuuLM9jMm3s24FFJuizuQ9MNWG3JEli9/128PxOr4zd/dB9bOxLh/6Wv\nfRMeA2rlpIAh/Hs4k1MyvTjFlNaRtzeGcyomfBiXuO2x4tNLYDPCH6158qscIYFQaW4QdhrOxxp1\nLtfI0y1sM6i8wyH3b7hokYRkPjvB6a+JFWb5L+H2TRlfyxddSAAI96RWw7Ny6FP5XT73cdLjHH10\nH7NcPr/Z6qL1klyj0bl8aSdETIMm8wYIHXJqtBz4zP/3GNitoTDYoz5m7mNdk09jVaBVywCKrIAi\nR+gV4fGed4bwkLU9r+zipbb04fGTh8iXYmIs3DUMKew75MQ8vZxhpWX8ve4Qg0rmO9qqYbMiuB0o\nXKyETu9527WlcN2u23X7VHshLAUFQBmF7Z4NFdwBAFR6hTqRlI1pn2LgkuW57cMbS7fvkO6q5yis\n1uLjn9kTbF82DMAKmiStzjDCVkW9vp6c+JVbwjB4MFsXGAZM04UBDFGBejWFT2JOoqThmz7qkASz\nWQHTk9OzKucoc/EX43mGspTTOGgYm3pD+KzT17GDkkFHt0qhWbRSRY2GpYftjpxyC6zRTZje7JRQ\nhG4fKwuhYT8tGYdnYjg8jVPHwCGTbw8BKgbE6gyISTBaTeSz07SEKUjBNhrAJZuxVqdIKC1X9F0o\nwmfTUu4bqwK9SE65n+/u4w1H/P2js6cYvCT9OPnoEJNd8lZM6OvbGro5klSN2hXrzXZDqA3QMYbi\n87NtBmIXJaa2BPtMbqP2+N87CRyyFJUWEHhU8SbWw7GGcMdihbVcg11GU57czNC/Et8/33Khcvl8\nQEwDLAttqjb3rxbgEkLp+VC0oHyiLQ/aIfao/ZimLrYJUZ63F8iIXlWuhmuR7YriQ7qoASpX72CI\n20OJW6TL1f/H3psFW5ald32/ted95nvOnW/mzcybQ43dVdXd6pZo1FIISQiBERhbAocfbBMmcEAQ\nNi/gJ14IggjPE9gEdjjACgmEjYwtMEhI6kaNelJ3dc1ZmZXznYczn332uPzwfed2lwKisygjEsdd\nERV569x9z157rbXX+ob/9/9zoEFed25ItEt9jRsmOFSqLZIy48jIc6zOQhqKuTlOK8qF6MZTtmdi\nUxCtEEuVVXiam3dyj6JUeGkacPN5Mal23x2QN9RM0vqDqOEy7GsVZZZgNKpTjyNSX0ZyvVljMJTv\nbqoJ35z7oBWQnVlArFqKth/guFoxOKgoanJNmSilvDOhVPKO+WgChby8+XjE5Ehp0boFly7Jophq\nhL8Rhvih6hJGAaXWHfieZeprtFjrAWrGIdYS2vrlNnF8FRCm6YN9ifDPj0+llBqImnKvTmcTows3\ndENiDTQu+facJ9EJPWrq5tRDeaFbOzXSofRh59YqTSVWIRtTV8hwNTcECrXtn8oLlp9MqDSMvrQx\nZvOmfN/l9Zy9Xdk4d31YrOh6pc/slwy0DNlxwOrmFtfa1LTy0TMuXcWc7NS1OnMpZN2oUOxygVVh\nmNCCrxtgVZlzoh1vLv11GmMansz7lWsdciXGWd2OcFW7ki50Uq2lUMq+MHUEbg34rsVpaSm3Lbl1\nTbAaT/ZkPjYaTV5cFwZutqd4Hd2RJil39uWwOOmfUVfB4p66s+2WoV3KeG9cctjoqET90jWeTCXL\nNe1Y5iqa6yh4zZ2lTNTt8gKPltaUN/0cb7GZjveYJx8NqHDhPly0i3bRPtSeCUsBLIYCP3SgkGDf\nLHmPSgk1w84Wyye6I27s4y4IORQZdkyBp0fslu/jqblHVeIpgi6ux8Ra/DPR0sFmraSl8uTecoCR\nw5ZifETVV8JQk+AUytmvNGcmcyjVAklmNVIr+e/CFIRdzU/OMjY3tSJStRXKosQJ5N6B71MpV8Bw\ncIrVEy1Ts9ZvWZxAFaGrOb6zIAH1OERStcYmNJR9xDS1/n90QrymhDPLPWq+Bmt7KzQKJR3NfPwV\nOaWW1MLwwhrUlQuh6VFpMK/wewTKZpyMTjkePADgYF81MxPDqpLGRm5BoMzPUVqx0pV7PzgJGc+V\nlVj5LSZ9h6zUE8waqqEGIq/GuMGCayEh1zRxrSf93Ypr9GoyrrHj0FhapNtyMkWvptn4XJOUppKy\nmhZuW4Kjy+3gXIE6zi2Z8hB0ah7BqqRzfXUJ0id7WMU0BMGMhlH+irrD2qriXQZysid5Rb+Uat1L\nQcytLXGl8gLKjmqHJC2Wl2XNdV2dx2xIGInl2cIjasp6W+75/MCGPN/WwTbTQsbzTKsel1f2uP9A\n3AS/7XB1SS1oJ2SoVl/qjUhVQ/Vp2zOyKRgwLgUBgTqUYbHJSfkeAPXCBc3pxm51ro2XR8oINB0T\nKFFGw60RL3Dth1MChfk6+YRAeflaudZONC2euiBu7GMXGA/Po9TCg6JZo3wsE1YdqGvzwxOqakHS\nUYAEyzk7zVlaln54tsRXfGmomoLWq+NpFsGdpcwWikz1NQJPFuxqT9yk/omDq+awmVVYzZ+fTick\nhRKj+HPaS/IsqfrWE7dgV92klaUJNY10T+dnnKgEOnZKo6+cgQ1ZPO2gy0LD1498jKN6nT6UKjiT\nV5YoFHxCvaFgKi8gSxeYhoIgUnfMiyi1xiQqnzBFXa+JgoOq4rwuI88sUU++o7OyRTVX6vTK0taa\niJq6WvGKQxyrO1Zm1NQEL4oY15Xxtm6Aj2IH1D1yxyWB5uvzaUqwLBtns/BIFhyMVYWj2QX0pXI9\ne17Nar0QR+tggrjg1iUZiyNlyOrv7oJCu+d1l6BY1FeUXI/lsLNBjZ2rgsVZ1rkbHe+RaJxoY2uL\n5WXZmBopVAN1t7YcNlYVf6OsUF98PaBh+zreLutaRj/KKx6polY+TqkrRP5p24X7cNEu2kX7UHtG\nLAXAGiLPLNjDsO2c+ntyaha8Sam5/oIKq9Beq2Z5MU7wNHpb9Swm1VPJJOcBLswcT7UOXFUUroom\nqSL7/LxPpbJxk8kRmSLi/P6YUK0Gr66BLBvTaipJhx9y/0SyJIP9h/ienECdooGjJZq+mtQUYwya\ncM9GVCrS0UxzZrlcWwvFpLTXjuk2JZBVJqcUo6PFMGH0NCtSw2gmVoHRE5VRiWtUz3J7hUhz6I0q\notLCrmFa4ipfRFcDlWU1paYEMIFrcBczkeckCqst05JVhQEPMzFVwyJjrjn/drhKuDitwxFWT2A3\nL0j0+wZKNZZUJcW5CISlSDSY163jD9VKGUxZxMhOZxK03Bgs4RklIWn7ODpPTpCQj+V+xvrnEts1\nX/pZNnMiZa7OvfE5B6dHBWPlQ/Dm+LlmSZQBxhYzqbwFvHJMQ5GOkd/BpHIC31So9Tu1kLOZBGBb\nx+CpFTYfnZ2jV/1WE7+20JjUwrbsgEotQd+7hJOc6r37tFzB7ax1L9PuyjNNRvJdl1Z8FNxL058x\nKyQrM5gbRveVsm0yoht9tNf8mdkUSmuZzzNClRvyTJf4RYV+vhtAJDb6+HGfKpKJtsrlV7oJxVQF\nQVdbGDXLg7U2xVgGKvcc7GxRqqx28uQMo6Qg+WRMoWm9wVGCF6o+YN8nuCLft3ApclIy9TMbLkTq\nsqWVYTaQ7+j1HIwSsVSZMhc5KVUsfc6Oj5mtygZQy5ZYfU2JYT7Q9GcjpNB0k1vzOVMfNzk6Y6Kl\nsPvJKblyM7b1mcJ47Vyxqh63iWN9MWOfUmMxZjzFVXM8U8ly6/icv4FRTKXlyzQzjMZuTNPDS8Qc\nX3lJaxFuTxhrJmN+ckL7ppjJyayFOxM3YHd+Qqp+8ELQNjAumTIWyfuiJCq1mCrRjazdxteK1oXL\nkHgWR1PE1VlJuaHjdpQy0f22PJ3CFanW7OYy9s46zN6SjaWghqMHS+VDoeNZ1FsY3ThR+Hs2qjAd\nZYIalhgl+MmZUSjRzFhf6LU4wlcClOP5mEhjOCvtJcYDzXx5S1RKqHOqzEyPH+4xmsgiqud3YUfc\nh/6jPpkqeMXZXQLnBbnfUGtxjub4auyHfv2c/3M66HN0JN/tBpyTyDxtu3AfLtpFu2gfas+MpeCY\nCmtnFEZN/Ag8K1BbakdUp2KiuyYk13rymYpxTGeWlu5vlilogKtMXKxSsZvCUCg8dDCSXTvEnrMy\nB7lLoTJngZcRqMCJ3/RJ1eQ3WpySTTMcrZXPa10SpSHHNbhoNN+0cXSHLpWboShmzNQNGk0yRsdv\nyHfEkP6amMyHWq9vxmOubIglsXK5RaxBq16tyT01L8uJh6OSZa26niiktNoS9fZaa6TK7Gyd+nnw\nrExcZnV1MQq5Nk1mzN1Yv/eAQElk7LRBoqd85WaMtaBpfFvG/snBEUOV93vpxZfoqUyfGee46rrU\nZg6zkfRvrlRj87KkOgfVGMpFZsSx5wChgpi5BijHqVYGHntUCo92mxFz1eZMshF7j+U7jsZ9in1x\nt8bbIrFm3+mxu5Dvq/t0FTdtnZBcgT7VfAqq4hxqANMJOHcr8eZYJXspgjrziXyfO9M1FtWxE8Ej\nVOkYV2Hes3lGqkCnljdmpuu3rzwVo5llopW9b509Yq+Sn9PDOZFSem84HfbuybOM1RLM+ge0m1qV\n2+qciwuNRwlDXeN1LySub/FR2jOzKVS49G3AkpUJiulSeTKocXOFpCebRXn3DpWiHo80c+CnBYe5\nLJ6j3xjR/cQCy96k1LQeNgcFvfgLNF/pYDN1DajIC009OQa0XLro+mR3VaxzIi/Kg7VDKgUpbUcz\nXMWcR94cT5FwhVNJbTMwG6jv6ESkhcYtqhl6O+4czhicybVppnUW+wWJ6i04jZBYo+n94ZhdXUzD\nMmFD01DdG58AYHo6xWhswHMqziYSnX7cb2BdidGseAXOVBbygbpgcb2N9eXljkpIND1ZtwW2pmXS\nk5xH6hLNzuSFOJ3MGDxQbc+NOW1d/L7JeNgXc/2N4wFT3Sxc3RSM5Zw/sgI8LeUepc55lWTY9pBe\n8B0dyJrPrCZz6k6OoZRN+NRvU+vKPfJxQF9FXL+mNPNxMMPvacVo5jDVitmahUT5GMtZidV05yLa\n4QUlmfY5qzmkA9nUgzLn9btS2/LwQDr3yrXLNOpi+j853SU1MkZJVeJpjCJNcgrt/0Ff5vrs8QSj\nZdgjd8SxkugEaUnjRA+nVxo8mOr3Hcr93t3bo7Os2TXjkCvV/mg6plzUa9iKZEFU+pTt40rR/yfG\nmLeNMW8ZY37OGBMZY64ZY75qjLlrjPlbqglx0S7aRfvXpH0c1ekt4M8AL1prE2PM3wb+KPCTwH9l\nrf15Y8z/CPxx4K9+r+9zjKHjB4SLXLrn4i7o0bYKPKPmXhwxKfREULWltLRMZnJyD8dntN7VINL1\n6yiilNnMx1cgQlFTDgXrM1UYcJn2qbTq0jMVrZ5Elk0/wV8ELpXDcH+W4GiUOXyUgHIt7g1P6SgP\nZFb0mUzlmoW70ndywkw59ZpXqN2QZ13PCpIFm6+eBo+XdknVato9cFlS+rf9Wc4TtSqGs5KrbTmZ\nNlbFCjixER1fPovaLhOFEqejOSeaRWjGJW5bVbo1K5AXQ0ZqVE1nBb6Kk5hsmaghgKyGaXNFKdOt\n4gqq4YR7q2Iy16xh2JdnLYoDTu6LlTIdpBhVkXIWFAoJWOVIMKXFan1FXvfIS1mWbVOnpRwImYKC\n0vZ3ODbHZsTwUMZr3KgTW7Eabl17gfyajF0Zyzy2/Qaxnk9Or8LXeOIsm1NoFmEWlud1JZVZZIly\nZjUN4BWT81oMUtg9lWvHqh7+rT2HH1ySvg1Sw6nKFcwZE6h4TjIa4WoWzGr5pRe4DBRjYEqHlmpT\nBjWHPQXcOfsz7k3E8hoqFmJ/mnF1Sdyk5dyFRF3FOYSKcQldl9j9aOfyxw00ekBsjPGAGrAP/Aii\nKwkiRf+HPuY9LtpFu2i/g+3jaEnuGmP+c+ARkAD/CPgtYGDtgpKTJ8A/M8phjPkTwJ8A2N7exhhL\n5Bg8rSAz1lCq1JZrAtZeFV82f+Rx96GcQGelpF2iTptQCVNXems4mmZLg4Iz1VishgWOnni56iAW\n/imu4gNsbgibcnxkM4/KkR26zGKKnnyHq5V3v/XOe9QTpeLabLCdaMFQ4jFRfobZcrpgb8NoAK9F\nA1+1H9tRC6u8/2WZ4TTl9G8qK3W938aqpoO/5DA+lmvfO9jjUP3aeZBzSenkesrGVFteYqzWQRD3\nmKi245OzU0xNrJix8Vn1xMqKmprSKzOMwo6LuE5NA6ZZq4av6cnSbVJX9etCsQmms8rqHenb2fgx\nuWpxHPc97g/Frz8sJ8zVIvEcHQt/wpnm7nELaCzQfxmhlTHwLy1xQzUSqplYQreuZoR6Ih7cjnii\naVs/m4JK4RXTwXmgsKXxlXrDYPxFpWVFqfdOozlFqXwXnsHXSktXMQ3TYclYg5mV02OusZ2qmPJw\nV07pkbKCbV9tc6aWUB4YJot5ci1zLaBL5y5hpAJECnfe8Cyhkvw6hcNMx6jbcNjSuEtqAuKaVE/e\nH8j6L8r8HAuSTQMOx2JBPJmMmanOZdAMqJofrSDq47gPS8BPAdcQoO8vAD/xtH//26XojQXPd3E1\nyFRVU+aVLCrXbRIEkqOttzK2rkpV2tkdyYOf5iGrbdl70ukpI80cTN45ZHtZ8ubOrSXsQN0O5c6r\nFQ0aqpRkmiskU/k5jkrCofIgFmOmq/IyTRrSt+Ttk/P6iV57jbOWfG9UW8FX3H7m1KkvS59i5Rk8\nzEYcPBDCi2+evoerUehxOsMovLutVHHlukdLX8Ct7jbHvrJLP/mAsKZ1AM2YW7c+DcD69nPyXcld\n7EhM7rC5hlVjsPJCXGWS9r0lJqqVWFNT3HEsrprMTjRnrNWqh187ZDCQeYi8GjWtK5mqOxPNUoaF\nXBs1PF7a+SwA/apg+kCeO6g7LJfSp3c3tLryiYedaqalcimeyMvWCUNGqse5fetTXL6kNOipRtmz\nM3LNRNTbm2ilCfdGp9xXBuOy8GkrtHx9SeY6OnOJF2pgay1KFemdnQ2oa3BwubtEpPXcRVPl4GdH\nRFMFy8UltiOb1O7wgDiUzXCmr1GWWU41gFmYdZxYNo0yHxMqgChuVIw0uD17JM8/M/Y8QJ2NQxTq\ngHsUEi4rfH08YqBis7nO/0rNZ+2S1k+0G4z2lO05qGh15ZniXg3HXeKjtI/jPvwocN9ae2xF0uf/\nAD4PdNSdALgE7H6Me1y0i3bRfofbx0lJPgK+3xhTQ9yH3wN8A/g14N8Cfp6nlaI3gGOwNsAofZi1\nMd+8I8GlF9Z2yI90/3p+zubhywBMBmIuvnHax6qJ5DW6rKladb1lqZTopOiPcEdyeqxe0iq7KsZq\n8C11C1wN6jQ6DSo9mdN9hyWFUGfK0zAuc+xUduvOaw2WleugZafEihcoZ/3zVF6oFGbxrM32DeX/\nj9LzasD+3oBaR7EAI+nPYTbC2xRaORtFmImYog92c+bKPfDZWy9w81WxEOptuXay63C5p4QsQUyp\negpJOiXuCjzYX90k0nRZqnwFy1F8bq3YtCTqCcR650W4+7aSkwQ++VSu76n7UGZjiKTvvWufZK4n\n4rQc8vo7YmHM03PvgJVKsCcn5SM6a3KP6X6Gs6Zp5JdeJm2IVfEHP3uVUJdodbQoKusSp5KvL9Zb\nrDRkjI/TiDRUy6PVZkUDvkuV/F3tUgPTX0Q5K9yFpbPVxKvLPYIA8kqtJXWAqzCmUKm4erBJqVbf\nZB7hKeWZp9WunlOeE+tcWzKMM7FSHxzmNGtKAGMNoWILNm+JC8coIkTW73g8ZUtJhEI/xlXZuLZz\nhfLogVwzU6ZxLI7KFHa9GKPu5tHejLUVZSmfeYwV9v607ePEFL5qjPk7wDeBAvgW4g78EvDzxpi/\nqJ/9z9/72wzGGjxjWGSIM2P52b/2/wDgrOxy45GYXJ2lOc+/IoMdXpLB7Z4MsSfi9613e3i+kq+U\nGf0jZReeTmBZF30iJlfmzUhVCMS6UyKjbkLuUAzk5Zwwx5+ratCGvNzbXo9JTQEtxuBdkYmxRxlz\nzUQEWU6mtQ0dZdiJy5xEaweaNUMxkZemUS/wlfFn6osp7hchlRWz9WhsePOxRPh9U7C0LAvs+o0r\npOJeEkUK/rElNY1VTAqP0Flgfx1yra4c2TPqCk121A9NWy6eJrfL0qWRaT+6DbaviC+bjwakdRln\nM1YQz2qNENmEHX/EnUPp0G9+8w7zqc6lZxh48tIfK/x2Vs5BMQ8EKaXGCT6zsk7ck81rNYoZ6Nj1\n78gmNM0OiYYLfciKtr6YW2s9yomM/WxWkioRzZFuUu1HKyjim6XAB42lxM01Si2dtkZqHQBmVjMc\ntiI7ljGcrc5JFG8Rt1zWVNDVKBamTsWkko1pHC3R0lRLtxN+RyvUNzR0x1lf1ThQo4UdK9y8HVLX\nw8mPfUp9HwJnRpktSH70frUl4prc435/yBN186p5ztlUXWU7pT7+aDDnjytF/xeAv/DbPr4HfPbj\nfO9Fu2gX7V9dM9ba733Vv+RWb9btC6++SHNli2uenDTjAYQ1sQjaQUSzK9v8xuVXuXZVzM4ral7H\nrRBX97exN2GiIeC3dvfgUEy0o6slPUdOoK/cE8j06bfPOLYiKFMrSg4eS/hj0j+iqMTC6F15geVV\nodi6qUfN//Q//CUWCZYqm5/zB2ZVn2KkiDcqCkd26F//xn8NwNe/fEI9FYtn2B/T0ADlB8Uar8y/\nBcCvDuXEf3F6yM+lYmr/qU/f4xdjsVZW/+6M22q5dF0Ho6b2ViSn7qPBGr21BzIW15f54l9/V/qJ\nT3dLrJvBIVxe8P25Mm7GN1RKYbZSj7n06VcB+JEtj+c+LUHe2imEPQlaZROxMHrdNVIt1UsNjIYS\nSF3ffpXtnasAtNo7+CpQU82VE6A6xq+JKAo1S+jKyfyf/rk/w7FSvT24c0JDcQEjtfLKwzmDx2IF\nTKo5hWaSmrU2jkbqsQWZKleHik0osGSaRfHDgPV1se6eu7bD2qpYQmFVYiZy0lczhYFXDuNCTuBk\nlvP2+/J8aVqy84XfA4CrIbTa+ITDQwn2JcmUQaKW2ThhrpWyjTYcV/JMHa18PUzBmytTuOPRrMva\nmvqGZdUDGdVjfu9rck3vp0SN/flvlNxT8ppvfP0RTzTrtNyN+ZM//YcBuP4TP8aNtljGN25+7res\ntZ/he7RnAubsFBW1fsIkeURfcfsNE3HrOVnw661lttT/7PQ22b4kUX2/rew5jRWsAj46iU+iUdqN\nlVcxal5macZwpJ8vSUyif2PCbl82ikma0t99CYD7j+/w8PVfAWBw531ClWWf3ZLKO/ISo/fz/ZgF\n02hQ+lhNPZXZGaWCcPa/KS/me1+Z88or0vfW6hr+rmLjk9s8MvLivf34Tflsv8WTA/Gd/7Ov+5xp\nFV3vkkN5qvDuT7bY0mj4SiT/fnn8RSbCLM6DLx9xrrdCztmj74z5E2WqqmmVaBS5lJqRWGsE7Ggl\n3g/+5B9kBTXnfyQCJRmJNmXDprRYLVUffPAOjoq/ZnlIV0vNo1qAG2lMYFGjMW8xmsombFllpq7W\n2f4xRw/lxWws13AyJUBRt+Rob8BcXzbHCVnsA1le0VA/OsZgPGXJUrYiz5bMUTr/KmWu7uHp6T6e\nVphebRoKBbNZdVuaeOi7xt4p1DU4UkYVhcLXzwZyyLRcD18Jbb21nCCXOWkcJ9yZi/s3PsxIFf4+\nKGVd5en0PONgKVBPAovleNGfecIXvy339r8sB9boP7pE92taIn41gbfkHoPTEX/3//4KAH9wc52V\nTy3YqZ6uXVRJXrSLdtE+1J4JS6EEBqVlqVFgFIL84pV11nw5jbrbDW5ty0na6a7iK9ttEWqIOCvI\nUjHbbeUzV1O03aoTaJVkUm8yV/q2LQ32baUx63MJFh3OS3yNhDT/SczMlYBa8eY9ihPZ2RMlfcGD\nXHkTwrbBKD1cmfTxFrDc/Iy9f/zfAvArvySMvOHWGi+uiStSzyZ8U1mCP//8TZ48kef+cS1w+odP\ndvnkjjz/vaOSz9xUkErUptET07YYxHR7coImyidx6/pNbv9TMQk2t2cMb2uXAyg0P+4Z6Dny3F5D\nTvkb7S4v3pLnW33td/FDL4tr9upzr+Aq8YjXbFAqPX7UbJxPXlVobv/yNkFdOSTmMD19ID83dmhp\nwNNRs97ahAKZRzsuWN5QJXE/pL/Q5iQjUCq0vScC8Z3NxjjqijRCQ+oJUsExlrZmIjZjl7lmiuJI\nrBwb5SxpgO5kPOdI+Q2GR0OCueAbZp7PzmVxJawKvRwwBhX7KetT6r5iQPIJh3vKWRCJG7ifuVwK\n1bKZLtEPNYibp7Qz6U/fFPQ6yvI9kc/CKiVTDIljhLEUwHPAURe0Fjm0AhnzH/+jKifIF0ieF8ty\n9XiVo6ZYWPuHCW+pG3Pti+/zE9d/gI/SnolNocKSmJSu3WBdK8jKmqGrfIctv0FdiUnxC3JHTT8t\nafWtYXomf1dzhpSBkpr4CZOx+vD+iMdaRhxqlD2Z1zhTKve402ND2Xjuhz2u92TBntYqJloafJaI\neWaswVPWHEqD1SizmfcpPHkhj999mz/7X/wyAN8+kZf4h2tdhmOZrOPDBE9jFPMqZasmL/dXHfm3\nMjm7SuW9UkuZqNm9RZORxgF2uiWzPXmp500xKY/6I/K5+MAj7zuGYFEYGgulp7rlSq7ErD1daFe6\nbLwslZYvX41YXdMK1SiHSPUvvRTf1cpNs2C0MlSqJOvNTsld+d7779/hW7vi/nzhp7ZoqJiuszDh\n7WPmx/8IgN3RMm7j9wHwnNegX5P5LWY1HhxobYP6+p4PDUWWxnEHV4lubZGe16b4S1tsb8oYdZdk\nU1hurODN5fmTKOXuXYkl7T8ZMrGy6XuOw7GKsXYUmRlPuzStzNmgyOmrlkPbyXgw09JpXXtNt2Ci\nRLiGIaNjJWeZppyNdPM2FYUqn7m+bLY2KzELDLALtcW0xdBWly7twCVNW37jnj6gVPMAACAASURB\nVBwyz3tfYqogqytFm8eaBdplzORENtHf+I0v8vt/8iU+SrtwHy7aRbtoH2rPhKVgrMUrKqIgpHvl\nJgBXt7v0VmSX762G5FpfkM+OGc3E9D3TGof93BCqeenUQrbWFfBiA2al7OZ3jnPGCiDxdDefTFNc\nX07KtZphVWXSX7jeo3KlH9ODjAcaGCpmWidR5ZQLlWRvjFmYz8WUKhGTcFA9IlVQy04o9/jR13Z4\n7Qe+D4Dy0SPqChk2TkG0JCfCi18Tc/BTvTu8rbTnyckIjZvh11b49LaYuOu2YFd1Fw/lIGUDj6lC\ne8enE9RTInIDLmlgtmUyri7JGHzfD0hg8IXaOtdfkM9W1jfxU60B8DNINbDnN6Fa4DN08ooJqHQ6\n7hljDQJ+49d+lV/8denUrvuz/Nn/UCLmdUfxEeF1vOoL8hX1b9E/k7lsLcX0tuTeT3ZnFPNF1E3G\nsuW12VwTNyf2G7ha4ZgEGddekCD1rd4yz21qQLcjY7W6FpP2FQsQZby4KoHro+kBr78pmZ/5IKeh\n9SEd5dg7HJ/y8EjVpaM6va5aOv2S+a5YFQt8RxjXSNWCqhyHclFTYUpq6lbU3ZhuLPO+ti6DeHY0\nPJeLj52Qz3RkvbxwMyaq5Fl/y5kw3VXsTCD3OHh4QPCcUtK/+BxX57JOHw1OGSTyrKPQ8k/fV7rx\np2wXlsJFu2gX7UPt2bAUDAR+xdKKyzXVjFx3oKGCJH5S4Gjly2Q25dGepPjeOtVips4VokxTSGlK\noRDetbWQ+QIVOPVJPDl5l+ey24+nM8bqGte8iq1Q7t3AYamQn6/dcKgfy895T4JvJcW5FoBn6sLq\nBGQ2ptB4R/qk4oVPiS7AH3jxFgCv/djPEDXEP686dQKt9SezEMrPL/5u+f2lT1+j/bb4jo/vl+R6\ncm30U9Z3ngfA7SzjvyWpp3kuz+y/+FnSdcn/H37lNzkeK4YgKhhpinStV+NFLe7qaS5sfb1BOJRT\nx9sK8BtqEVQuRk82XAdrxQ9mqvwW8ykoZJjCY5bIta7Z4XEm/Z//na/y737y1+S5PnldH3kF/4pS\nt32wQtZQNOVmC+dITveoukeeq06GBoyvvHyNFxSu3R9bgoYWORFxU9OFm0t11hbaCa2F9oRHpFD4\nWm+FtYach5ecJr2eLK7TR/s8nIl1k/nSh+HtESfKmhSYio7Syrl+C6P4jFwLo9wowK/EpDtLEjpK\n7Va4c5ZD6c/SVsjOZbHO1uqaDgacSObP8R0+vSpjtH3jJnFP1t7V23e594GMxYMziXF8a3qb4ycS\nU5rEA4JCg6D1iJpaLN4wY/COztlTtmdjU7AGLw+J4xpXXpXc7mpU0Vgo6LQsjir6VFXB/TtK7bUt\ni6N1GuJ3NX8+9UG1CG0yRPcBtsKY41WZhPqCB/J4Qv+xmFy36zU6GqhK/AmXr6kWobNJpIy6pimf\n5UVKrnZ56FbnmHPfpKAS7+2VTf7NbdkULu+I+EdcM0SRbgReF0fxDzgORokwfCXbaAaX+cMrkg45\nuLXL0R0JYFbXK9avyqKpH1v+6gdqzm7Js/3Mj77A46PXAPiHpwfcfiR/t9QKeXlHNrXNKuAzn5Dg\nU/e6PPNm+wrxjmxIfi3EbSzp3DiCSgKsU4COHbkm1jOHUmHVbm2NNvKiPB86xKmMywdHR3zpr/xN\nAD77Uz8KQLCREr0idRvD3g1uxQt1o9Y5V+SEikhrM9A5eGXnKtuXxU0Y3L7DMFfMRjeiqW5Fzw8x\niRKjhMrHGXWIFWTm4RGvLupflmhqsPJ+UMJASVIe6+bQDTnsyxjvun2mc/mONRMShrL+FlTuve0d\nqkeCvVgipbctY3ilFbBk5Dkuda/z/PeLK7W1JeMdJhVBQ37vL18m0M3N9bqgdRlfePH38nkt0R68\nL3P6F//Kfwe59LPMZ+cZjHpZkCq+wa91uPmSjNfTtgv34aJdtIv2ofZMWAqu57G0usKNtcu0fBXp\ncEMmSnpSN0PmCg19dNJnb6xpIz3ZO2uGfKJkprYi+UDJWdZG9EulUGsVeLuKTFSJtndPhrz7SNJm\nq+Uqbixpqm0PwmU5dcxsyIqi7dxYLBfmFm9BQJr7oErSvrcKiezi9cqhdVV26LCppvF4iGWRj3Yx\nSiFnoi4oXFdrYYTwY0VOrSv1NVqashwMBywtaS68FtBzJVeeaRDt+q0VOvp34eeu8Atf0jGuHGoD\nLSrbWKVSKbGmypfTrs41D4pyipfrebHZxCpfgh0XOMqgvUBxWkZU6SI9O8A71V/XHeJ1TUOeJfzv\nj78NwNlbggnYaH6ez44FIZr3/y/M5r8t4xavsxyKXOCxzfGVVXppWQKA6ytdQjXns9CjoVW1m70W\n1zckeBgmJ7hGxmtBqhu4GShxjmcLHOVkcL0Io2zba42ASvUotxYM3qMG7x+JVXE4HJIUMs5BJ6Ct\n0nO9ulga61HA6YoqRj+ZcEWh6d9/ZZUVDXxeXquxfF0syIb219gM4ynuo97AWSwCN2QB2XRdB7Rv\ngZLL/hv/zu/nG3dkXOu7I15/7y0AZpWlo5RvvZphY/WjBRqfiU0h9F1urDa5ueTiKVFg5cwhl4eZ\nlXUmbc1d3xvjPhQfqa4vm9lPqPmyGqdHM5KG+GfvHzbP4xLz+bsMtsScGx/K4M6yErsrENX+bML7\nSjhSW2ny0pIs9KnX4rgnC88pVJwlcJkp40+Mj6OT5UQzqhPppxOPQDkmkxOth8ifEASyUThpiKvZ\nADM8xt1Q2PBE/fN4jFHmqaDZpFWXDak82qUaarT/8jVeWZHF9sbpBwAMPzikqxDs7tIOdTW/P/n5\nda6o79/JcwrNGBzs6QbTPMGbqSDuZsS8Ly+VV29j5sp56fo4mT6fAoXKwwHpUK6dJ3tMtWag17vK\nz+zIJvvXnDlv3pd7H+3LPP1J+2V+VqsMu0c/z+3L8oLcvHaJr38g4+bOYaOnPJarsshXah7BQDak\nuhsz8RRY5VuabWWtqq1QKm/iXGMScyI8VaEKW02M+v5hs4ZB5qQzOsXJZM0dBfL317Y2ODyV5zsc\nnZBqbGMYVNQUfBWonm8nrEEim/RSraKpmJuaW7DeUxGdyzFRR+MSTfl740bnsgS4HmgFK6XDedqp\ncsGXuXSNrJXv+8Qmj5/8pvS3C20VFu6Ohgz1IOv2fLyebEJP2y7ch4t20S7ah9ozYSn4nsPGSp3Q\nt1RqzrrlGZnmyifTCff21D14vEujKbvnkhatZGZIpgUu9dqcYqymfTbi8VwsgZEXcvaGIhNVeOTk\ncJ9MzcFJv0HZlj2y0dphe6ZVeUUfTzkDjVHqMtcQqqyYLWNssDCfffDl2vFxzhnyeT1WOq/aClmi\nJmCQnVsYNsixIzmhjKfigEWA21SILiW+/tzo3cRbuyq3M7DywwJhvXxbZdzyQwi29echvo7R2d2U\nRvuS9jNhuix9Wk0kyj5PHCqFIldBDA0d23SOo5V6btvHxPJzlWvVo1fg1hX/MalTqGUynKXsfEHc\ng09XMf/gkVgNH1yWfv7c1wLeeP+vAfD8Spdf+JuSnfgv/9J/QD2UbMC816KnQczLW2JVXI4vcTQQ\nF63Zcqkp7mElXCHSzFWjHpIvuBrGMo/pLCPPlENhOCHoaDorMbiK/KzFDWxduSMyFXhpOVzeUJn4\nD445mYllMogiKg0C2kxdqTKh1HXR7DW5uiTf1b1+md6KjEW8sYmnWSyjQWnCEFSBG+vIfyB4dEUx\n4lSgFc1Wrd9aVOOzz0s1673X3yJ4WQKYR2bGB/tCUHTmpIyU9u1p2zOxKVRlxWyYMJ6cYZWINLWG\n+UzVhOKAZiw+/vIty9LqNQCMctXVRnMOx1r2PJwSeZKyqVyHZbPQoHRIQnlJZ1pl6E6OGfUVFNV4\nTDmRRVXUcxbkf45bsawVfpND2Xiscc7JUaNGgVFp8GI+YnYg93776BFn98VEf3hffr+1Zbl+WXH7\nzSZRpYCr1EPnGaOsOvn6CXWNyDtmiUIp5bPWBlY1A70ipteRhX5zTSDK5cxn/7ZsrMeze/QUsPXJ\nq212Z2Kudp0j7p8ofHZbbvxJf4tTjeSboxPiDRnjpTDGxMobWSbnfq0JVKXJ71BaidGUG1sU9yRm\ncDRKOErFXTua3WV1Efk/kr6/OX6Cd0MW/ze/OeQP/yEpSa41NsjqMvjGndNry88bPcm41Pw2uaYQ\ni4MjDpWWPymPuXRDrqmCLnNX+tRXvcZsmFFTTsjJ2YTVHd1MGqs4GptymxGhpg47jScAtOojJrGk\nlFf27/HoWwqJniakClOfJuIe3nMceroJu7QoNGMS+Ts4ms2hcQlCTfGGWr1YWFB9TKoCFjTylcUm\nskYq16U80hTo6T0Avvw3fpm9UPpZFG1+eEPekep9h7sqs3V8N2UwlGuetl24Dxftol20D7VnwlJw\nDbRdCE8cbCQnfnNpFbsoovFi6Golom3hKQlFzReTOqvG+HU5MVbx6czk2rE7J9coul+fc1lFXTwN\nAD06S3CUcMAfZLg9MdWOjwN2B3LiX84TpotRUjizY11qC4GNwsOqQrXJJ5wd/VO59+4+J6obuZBf\nv+tYJgqg2UmfI5otTpUPCDwJdh2cPQDg6DcPcT/xdRkLu8VIzeHRm8c0t+WUv765RaTcjVZBPMOB\ny8ngHQBmJwOSSPp8egbPueJKzfyEyUBp2dUyu/vkHoFyB57OA7ZSOV0+ceMGcayU8amlGkhRmKeR\ndRPNQV2GxEx4cCz3+/X33+D+kYqhHFlMrEFOhR3cJ6E4UDdvbvnKN74BQI2AVzfE7E5aL7LckTnr\nrUig7rFzj7fuSlD18d17HGkgsb06odkVS+d33/w8Z2OljTsTS8F6TQ6nEjA83T/k26dimbw4ecya\nBuJavodnZJyDStZWXowIh/Jd+eGctFpU5uZ4K+puJnJCN6f7+Lpmq+KUvYG4aCe/9GW8S5IG2oqu\n8dqPXgXgxmvfD4DjdDCqmWncMcZR3o5iQn4kllcS3eHsTQlM3z+WNfa37r3PYSqWS9cG3FC4dfz8\nGsFjmb9pmvLmewKdf9r2TGwKjgtR1+KXYyrVBnQyh0ZLVtCdd/Z4/4PfAOD+6SndQCLu139QQEHP\nNw2BSpY7tRKbqhqRa87LZdtJxaECOmLVN1jyfXBlIRUbIemRIhPLQwYP1PdvNenFSoSoIKXSVkyG\nYoqGniVQ8syinDO6r65JmHCscufDfXkBgwPLm5qyO9455HImvuVSFNPclqj93v4DAP7J63eZvCdR\n5s1rhxzvK8cfPtcrcQNqdkxDo9ZBW9yE0cMRJ6eyoT06GXBdy8W7rqVQ/7tXFUwi+buZMve8ftQk\n+ECeaenlF3l/LPPQnD5h1dMXr9nEy8ScjVWX0RAxuCt/9843H/OGkXs/fDDGtqT/zVdnvHYoY3Q8\nV7PcnfHrp1onYCvKoYJt2jHjUrkrVy0/9NnPyfWx9H3vwR7Hx+IvH54e8+RM+jY9zXh45SoAz3Uf\nsBzIvctYNpjaTo+ZCuwefaXi9relz2/c/zor+VcBuPnSJ3lZS9d7z8sLPxt5HGqFY5/5eSlzWmVE\nM6Vz1+rTZlyjcqTvnSKmOJJrt28FzJEX2t1Y5+F7shF316QPQf42cSgbsksdd0sJaMs+udZPVIPv\nZ+WHpG/JG7L+f+wnv8RXXpeUejSa4WgK/NKbE2YKOHMKSzn9nVWIumgX7aL9/6w9E5aC6xg6oYdT\nVTRmYrY5SyWh1jPc7LoELaGWqw32sFM5Hd5Uk3O84rKzqsEgp89Y5cCPzzIWOOfcK8mVKsuo+EdU\ntVhfklPHlG2OawoZNRkHB2LOxVlITTFLdaVsd12HSGv6yyKnUunwwiYcIn3bu11yoFwHY2ULTpMx\nh7cXHIAttp5X1t7mDVxPvntZTfhPPXeNA82rry9dZ0mVjjqbJQ3lL0isR6l8hjXNYRerKdVUTuUr\nWzW+clfGYl4aCDS/H3WJZ/Ldp2dy8h86T9jZEuhzbdXjdF/+7mAwJ1ZwD7PH+ModEW1ckbHwPSpf\nKce3AhgKrj+4WuPVVTnlWvPP86QjFsSdIwEm3d+FRPH5rjUcqYXluSW3Lkn/L5sf46XXxBqcz8St\nPLt/wHUlUDGNNajJ2B/1p/z9/1Ny9vaHZvz0j4hIziUFCEVbO+SRfG/6qQ6Ho28CMEpT5qom9UGy\ny0ZH53UoVt40OWakJDuttEVbRSjjwMHMVUo+lwDgJLdEymBdXprx6ZqM0Y3P/Ai9ZQ3WXvLIT3W8\nCs0+zGNMXawR4wYYT7MaQKWkLtPikNG3xMr64qMFdf4+v+v67wLgky9ZHBVBYg4335P18K1DSJY+\nmkLUhaVw0S7aRftQ+56WgjHmfwH+AHBkrX1ZP+sCfwu4CjwAftpa2zfGGOC/QZSnZ8C/Z6395ve6\nh4NL7DbxmjUaV2X3rIVdZofK/NtbwntHIbrzmG9r9eB+XXboh+9WlFqgY5sxYy2eqrV85hJn4kl/\nwrGCxgKVDCvnOanK1Hn1ikZHTox5knHkiI/fsh6eBuUWcnPWllQqD+b5ISbXarhJnUir2t45G4Ky\nELUjSaH5UUhTWaGMB6UrVkHruR2W9bQtHkrfDzyLo+nEX/nKV9H4FxvvNKlty/2uBjHrjtxj8Lqy\nSl33qan4TOiEeJWcGLljGWtMoU7C2qr4pRM95R698QbvvP8AgMN/MD+vHPxjn/4cGxoc7d/eZfmz\ncnKvdcTaKg6nJGMZ2Ec24It/X4KjB6dD3lP9DaK77ChMvVSqtXGSES2r3z6wrC8pq7TjcjSQMfr8\nJ1fpronl0X9fc+1lzlx+zc16k4ZVRKc/ZXwi1oSp2viKQ/C2xMzznIp0QTB7eMxIOQnuP3yMUasp\neAeOX5Y+v3BHrIr66ID3x7KIhvWMhjJemyRjcCKfNxTxeuz5XFNWbTsqGayLdfTgq3+P37gnP//q\n4xO6a0It+KOvCsbkC6+G+ArHdq63QLEz9AuKhxJo3J/X+Ou//osAJN+WIOmm3yB8QYLHy/XfRy2S\nAGyVvU+hhLWD0Rnu6Jy996na07gP/yvw3wN/47s++/PAP7bW/mVjzJ/X//9zwO8Dbup/n0Mk6D/3\nPTvhOSx1a2ykEbGW97rVjCwQM+ngcMb9D8R0OshL3osfyN9F8lKt5nAy0Amqb5ENBB8QtNvMGxpw\nObY0VP1npMIrZfqEU60yM8cVM8WZh3nBLJNNpjOtyFUNaVOhvRQQ1uRlM46DdRRqG/usKIPxp25d\n5u1HYnZGNRWTaXS4sqzS8LOK2NdKy/kEo7qRSgeIs7KOO5BFvNmKKRQgtBn3aBm5aGclxnfEzH9U\nifmZVTVwZfMKN2MchcnGucErNaga1fB6svCutiUQ9+3mgIZRsNRSxVJb7hHWRhwsGKoDl+bxG3KN\nRtxLPyXSF/dzOz/I/L5UPj6cfomxAo/e+K3XeTcTN+1EXb95aXEm1fl4nmr03XcCXruikObOOsqB\nQ9zRuoXGGb2WfDg59cg7Cm7qtsla8nJvXunSrsnO4asCGH5wHrRLyjqOksT4USFjBiQND6vQ8npd\ny+QLg6dKZCadM9f1WbdzxoH2WQOOS/78PNPkzh0KXW/TNMFbkbX6cn2V6LqM840XNYjoz7HKxm2T\nwXdgznFJ2NCaj1rIn/7s7wcgu6HuzM1tQg2et1otykTel3BpDtuyJssHGcmWrJGnbd/TfbDWfgn4\n7ZCon0Jk5uHDcvM/BfwNK+0riK7kxkfq0UW7aBftX2n7Fw00rllr9/XnA87xf2wBj7/ruoUU/T6/\nrX23FP1at0mj1aDjtAlXtMiJiKWuph7vlVz9Q7KTDh8f85mxmr6xpJ2q6S7oDj88SJkoRdeqrbAq\nf+ZGhjU9mG5dkd9nyQZ3xDpj3+2TDfTENzGeVgEm+QwnFathTwN8BeNzCXCn5uIomWkYrbK6Kub1\ny6+NqdT8rzQl5NmE9ZbW0HdarHbktPWKAhSxWW9LjvqGNyCYq0TZqkOjI1O1vLpJtyk/r3Y3OZW4\nHQ0d9q+/43Ll0gMABuNLpBp8qq+5RL6akVVB25M+by7LKf8f/8wmZ6fynLMgo6anf82mdLQfjw+m\neJmyVWuVYZWcnQfMNvwpf+SPiDWV7P84wxPJj/9SUONrX5br+5oObnoViR7XZVBRTLUwC8i0WMmP\nczxlMK4pscpz2z/OUfGrAOwe3ub0LcVvAC+syzO9cHWJQK1I4y7IYjI8xCK4tN0mdwSx2ew2sBMl\nUE0DtpRte+cFWW8n9xzaJwv1c0OumIVjmzDVdG7Tk3WYrtQItWgubMLOkszptU9cwuracbpNQqV8\nqy/pWgjGGBTrUq5hNSBsspBA9TVWRrDyqr6uc5kD4/lYR9d33cOcSN9rk1/h6E11t1sVneuLc/np\nLIaPnX2w1lpjzEeWmfpuKfoXttdtWLl4tYB8oqWi9VNcR0zb3kqbQiGcYa/L8qEM4EQhzKn9BFMF\nq4TeNyn2ZCFUWYBdSK67Y5pacrqmlYVOFbEUSte/9r7BUb3PRuUyUbbjWWExWr5r2zJcnhPitBbK\nSjFY5eKLDdGaAGEu9T9BWcqLGigDTzSc4amobBW7xIp8NV5M5SwYhhQ73+pyTV+EzmB+LnqyVncx\nCqV1jEfRVtWnB3JtsP0ErES93/mVCZUag4kf0lTwlu9ZQgVcbW7oAn3hExirwB2vAYpHyMNl8qG8\nQEXys0wSrYicKRHIPKS3pSw/lzfAk3s762CWJWNUj7bZe+t/A+BbqrZUnXhk04VQKlSFfkcYsbGt\nm2XUBK34dBuysbZvXuKVyVV55isjWJJ5d+MW3/ecbMhXt66ea2saLZc2WIKujNul2jItxVAsHY44\nTTR+FHjEjoxBXUlYqvlVrinV8u35IfvDmX4+w1P274GKEa+0OiyX8ncv7sBznxLoebe9Q6Dupttd\nw2gGg4YKCM9H2Lmem2UfcnnpcTzcuuIX6iVWwUlWgWxOPcBmKh47GpOOBG9xUoD3ivbzTsijL/3O\nZB8OF26B/nukn+8Cl7/rugsp+ot20f41a/+ilsLfQ2Tm/zIflpv/e8CfNsb8PBJgHH6Xm/HPbVVV\nMpkNGTjQmGjkPPVw2rITO02IpmL6hdUAu6QIskCwCaPijEipqkx9g+mynEatakbdqvDGKTzUU6Cr\nCLX1oMGwEPNg5hxQV4ETJ5vi6imWhAFFsthpZbfP8hmO0qYZL8CocIhxPdATr5wZ1nM9pWpK0XZt\nh0r5HAfzJ3ienAhuZ4vqUPpsjcJkZ3PaXZXQizOsBuJC36dUcpZympGfyXidTeV7X975JA8fKu/i\n1pRKMzhFlZFoFLPKpsyPVC/hU1pUZvNzcg9/2ccmV+XzqGCiit7VbkLnNcn/d67IuJWHDZJ7MlZx\n94zahgQanatNKj1ho3qJW5c+dZXo5mE1Pq9OLFKLr2zHGId6XWnO4hCDclUYrcSMY5rrYo38wMkZ\nX/e0enLrFq99WuQAGzWDuyjcUhOryhK8uSJLg5JGJf25fmOd6zonjhugbHJkcyWcmU4ptIApW9on\neVNO5jKDrCnj6fqLwqf6OUI2eTyjVOq6YK2Hp9kOp9MEIxawUW6GKi+olKbPlpcxqi1h/AirEoi4\nBqOs4I63KMxzMbkyl1c55lvi5v36L7/F/p5WAh9n/MirYvX+E56uPU1K8ueAHwaWjTFPEJXpvwz8\nbWPMHwceAj+tl/99JB15F0lJ/vtP0wlrDXkakqQpXlNfjqyLrzrrpioIawtyjzpWJ9QMxMStZyOm\nU1m4vuuwvSaDGjlL51x7jc05lzTTE6qU+bg5x2j565Wax1BFQGdzj6mmOMv+lEIXd95R7scUvJrC\nfK0BNSMd08H4UndQ9Z+Q12QzKZXwwosM5ZH4dY+fHFO7JvdbbV2iHssiHCle3lYJjkbv/dzBLIhc\nbE46EOMrK6Nz0Y+TuTxncmAZpfJ8Xp6cvxRx2MZR0M98mnKsRK/pqVxbdfYIlfbcrSz4svir0mM0\nEUPw24d9fsLVBTlVDkf3FKsAsOzUp7YkrgbNOdWib+/+Jg9OZC6Hqbx1mYUy1SCPhUIp810c6pEu\nftcDR8dWYyBB7ZBY4wRRu8XyWO6xvBERBrpGxhWVzolKZeIVUFi51k19YqXzrxUORjkaC2spci3d\n16h+nz1Gu/J8Bw8PONUIf91C3JJ1VtMYiK3n5FrZunc0YDLRMZweYmI1oCsw+lKj6WKckkrrddzW\nHFytojQWs8hEFCUo2xfqzjIrsJlk5crHpxw/kVKAf/jBjMeJcneW8M7oo2UfvuemYK39Y/+cX/2e\nf8a1FvhTH6kHF+2iXbRnqj0TMGeckqo+oirqVIGciOkgoVIQkm8nOMpEbMdjKiWkWEiL58UZ5VhO\nvvm4oqZsuHEnY7QQ6hjluCoRV3bku1ZbNWaHCkhKxmR6CmZ41CMZmv40P4fjovHUwiQ4WuHoxxVG\n5c5N7FGcqIx4dMLkTHb/tWVxE2YP4TjR4qG79ygeyen5wjWHdktOBzuR4OTx7oyNDTmVakFE3NBg\nZc0nG2ql3nqG05Z7rGZq4o4MVzQbMHUsfT0lTscT2sqZOM8L6oG6Lo5Gvf0u5Ym6SaYQ+xjIa0dM\n3hPrp9ifkb8nY5B9QiwMjgxFqs/3+ps09Dnc+RrDN4WK/5dvPxYCGqChvAp9k1NphapFLDwA61gW\nhYhB4AjKCzCLzIlpguIR0nzMhi8Wiz0dUW2LK5HnGa6yJ5dKuOP1mriZmPM2DM5FZtxoTKHzVPmG\naixrxF1XjgWW2B3IcxwePKEeytrqug5HU7nWaGboNK1YidWSImHU1wpN8xJ2pu5tWFKNdZw7CnSa\nT3AW1Gz5MsRqCZR8hwtztAdKg8+x6nW6huJMrJgqcnjnrgzcILcUC68jsJx8l9r407RnY1OoDO7M\nx80MhZqOZf0UV5l0rB+QK7+gE9bJRzIQeaIug9dlZUNrBzYyqkArABMXU7UvzwAAIABJREFUt676\nj70jVhJZFO2WLJR20D6vS3B9BxKNE6QVxpfFnZdzlK6Pelt+77s+rqsTa53zicMN8DXddLY7A32R\nKy1PTo72ePu2vOjvH8zpz4Qs453dXfxKnnVJ4yhXmg1KVU1qtlqsLGImRUgxU1/8xBIrAUq7IQu0\nXybkCoQyjTojTaeemZj1hcBsEdMv5cWa6KY5H59g1UQ3h48xrox3ehoyWNCaX+vQX1Y34NuCnvOG\nKU5D3Jn1m69QRbpwJ/sUo7cBiI5rGNXfSJU9qKiq8zC3seCGClpzDK5WHWK8c+LShcnsOIZMZenT\nuqWpdQJuZMmGikwMwah4b9BclHg3cdTttJ6Dr9Wz5bw6v0cx6mMz1dhUAeHSznCV77EsLb6mSFdX\nuxyrRujpoTxb0MoZOcr3uOSQazp48vgB3jUlac0SUBSqVU7MaujhLLRSI4tVblJbGIweSNYfQKJj\nq++CTSzZQ52Pd4/5rcfSnztJRbVICBaGvfcWQpVP1y5qHy7aRbtoH2rPhKWQFhkfHN/nlCbNqZii\nm+v+uSR3GcUkE83jmxnoKeCua6I/M0R6Wk+dHqXurkU2IHQFElqeZqBKPpGaVtadMlHNvcM0Zz5f\nMElDridzVRU0FYS0qrTZw8EZYU0iyGHTgFnQnnsEPa3ArPUwY6WC0xPlyEbELTkdbq3t4IdieYwj\nw2qg0WfF5/fimGBD7pfNK5QSkf58RuXJ/4SlQ6mCK2GlNGIrDWbqlkyPEiYaRd8/e8LlrlgxK1GD\nSoOq47EGXc8SSn+hGZlSKsY/rVyctproT1bYVUhvWzEixdkZyw/Fqoo+9QKVgrrYn/L4ngQVX08n\ntJUMZV2X3D7fyZ0bFza25X5lWZ7zPHoYviNaqWCxMORQFagn3/oGZz2pI4hX67inSldW9CkaCu9u\niasYTc0503LulVQaxM3nFk+thvk8IddgXnYonw1Pzngw0gBmEOKrb5ONJ5SK+yg1GDjOG7TaSvE+\nb5MpXVsaeyTH4oL5ewF2SesxlCNifniX8h1B0Xmv/jDBSCtezT5mKM8R3FqHkax7o1DrZLjL4aFY\nwrP7T5go58Y0t+eUj1VlCSK1+hKeql1YChftol20D7VnwlKorMMsaxIXGUFNUiwm22HekBM2LgEr\nP8+yAhNofKFUGLH1BCMAZMMZc2WEno5yhnoiHc5zIuVWaH2nRobMkxNzLfbZWwi1nFomY7mf53qs\nqb/XU71HrA8q0UVZgb+AZnu4kZwe169e48mj2wAcjCV4OG7W2OyoPFr3MuGGEn8Wc7qLnP2ZnAZJ\nM6MY6M6fTChV08CvapRWLIHCROQKibWe5tr9goHGO5xpilUf3skDxmPp24prKZQPYjgSS6mztEup\nxK1O5eAqAo+kQaOjQcnLI9yanITtpqZs3QaHV+R7b0z7oGIx49G7nPUl1nB1taLbvgrAWV9iEc77\nopsI4FhLFahFYF08R2M0fDdQdpG+y1hL5PPD1OP2Azn9ezWIlPy0PoH5AlqeSx+W4za21CKhU4dK\nEY9eaZio1ZQ7EVbVbDIE8Xg6GlM81qAqGVYrP1s2JGgr89Kp0rX1DzCVoGWHsynjXOZsdPimmJ+A\nZ3tUM+EB6fRE3s8N24yUKcqZ7dOpKSw58chWZS698RCrJMOlFr9NjgrGmopP4wmDtsxlfmjPs522\ngiT//75K8l96K2zB/9vem8bamuVnfb/1zu+7p7P3Ge65U92hqqu6q9o9YYiNITYQC5sYR4kixRZS\nICARJCRIFInQ8ad84AMiIiESIUEhiRSZIcGQWFYSxzZOJPCE243dQ1V3jbfudO6Z9/zOKx/W8+7u\nIjauavetuoj9l67uPvvss9c7rHet//D8n+ekfMIku0b/ukvktGZOLNoxU1iq1E2a6ekpl4J5lqrd\nT17YJX4opuZFQ6kFpA4KIvndk8rDF2vvpYAwSR7SCOLamrwjKmYVeYSx+yH0KkaSbW/2JXs+fxd6\ntwGwptl0OBJ4BBJt6d0d0H7ZTdJT4T2Tw5g8lss5fYv7T9xxlD7MEue65wpbzqeGs9Ld/DsvjNmX\n+G0DeGr3rsyc9ZmbCEbkJ4N6SMqJzrOlVXKt9AylEXGICbiiZNWqEI/k6YxKlYhVDqHvQpv2OY/y\nDfd3i7fOMDN3/NWuZO3DkPYNN8aR/4TnXnRtMF4c0Uq1KrqachA7/MLwH7uwYz9a8VjJwyCtMNfd\n9W6aJY3o9OIwxig0s0oGetEeg9/lrv3O17+AfezGCJYp8Y4DPfnRMasn6htZqOLwQkDYPZhBTNt3\nx18XLa36GZpwiVFn41q4kS++/YQvzU51DAFWzvXRsKZcujHCVt2XdcrZfXc8r1xvuXboNoBemRAE\nrt3ZG40w6sGoM1Wc7GNWb7rrshveptwV5DspaU+ELQlqgtB9phLv5OJiyVwdumb/Ll84cziFflBw\nXnd0eRZpIb9v24YPW9va1t5jz4SnEDSG3WnIzijGVs79WgcX9NU5GHjQDiTEciOAJ84lXKsZZLYa\nc3Db7Si7QYOVcvD88WtYiahkn7vO/bVb2RdCpbXhgB258AcZzC/ckvrgwRGFRD1uP/c81a50HQSB\nHewcbNxraz2Q6Aueh6fuPH/yCkfZr7jjv+J2j7iXsjhzx7y8XFF4KodGAWXpPIH1Y5dEe9Bcslg4\nr+HgYJedO84DSVLDVF17l82SVo1ZE3VzefikIh/NG7NBBLaBwZdWxdrEHFl3MtcOxSUQxQxF/eWZ\nOcvYeQfHr055cOpKp23UY1du/MMTtxOdnaUMbrjjWTZnsPeCvmOPO/+m+75+/GmSmdNkeOfIkbDk\nTyI6sQvjhzz8aRHeBj1a4UVaDF4XQshTMEFKfP33ufd+1xvcEhZg4l/lQm7yYJ3SH3adlkr81QFZ\n6uDRZs+SC+NSN2uMOtNSHyrVn0tdzy9NL1mLk2H/uU+wUiKyuHxMJKh70UncD3c30OeDz34nN+64\nBq12+hgjmrZwco1WYkS/+hM/C8AvvPqrHL/r7kd/8hP4a+dt7acpdxxqnDvfcZPb3/Ovu2s77DgU\nSqqFG+/412oeH4irY+ZjbdcRC7b4YP2Kz8Si0NiGRT3j8UXJJ66p7lwe0sYdQGBnI8baCyYEuy5e\nHMjR6e3vMr7j+AUjEtraPViD+VXalQtHLi/vcfFVl6/oDxRvhj3mK02CYI+1BGWaOqYU3HVoQ8oz\nd9PfPtFiEvkgyLDn+9CFD6bAep2Kj2UkcpXB2E3G/mTEvHEx68NpTax4pceAoVifTnJX577/oOTO\nbRdb/u7PfpKxBEqrxQov08N0OmMgMhFPuQyWNXc6DsqiodFCUF2c0w5crdzeuM3lucMQHJ+6hfLq\nYEwj8ZJBL2Vv6I756l4FX3bXa7GsmEh+fTQWS1UzYiVmomxwm0a19KWtefV1te++MCDUQn2lcMfw\ntfKET0j16eFjn2jiXPDK1CzVS9LDgO0wC7quWKzeyybX2Ou5p2Yv3SVT34zZ2SFK1JWoluUkM5uK\nQ+td0HY5ozKkEtS9CJdcVloMvuKqBe8eTZlLvPiluEdPWq0Pipa9664CVetvdm/d4vrLjjMxMzXp\noTvX3uEui/ud4EyLX7lr+OIfcMf28B3LJ/+gqiGLkIEQ0atZyVVVjA6ef4lQgLPVoXuvvTgjloqa\nZ19nN3eb6JQn7A3d3DuflqDQsm3e3+KwDR+2trWtvceeCU/BsyFJe0h7dsqjI6c5OLwypp25w9tf\nlgSiI2vsnJ5Wdl8y5PZkzpPTX9V3+RRWHY6nZ0zP3U54vjqlVAvcoOdW3Hm74uSJW61XqwXnl+6z\ny3JOlbvd6I3jM8qZ8zyspNr7Zp9Q7MvQYjsYdFXSSrOgPjmmUjdOphq9X0X099yOcaMZYdQQVIQx\nvmrlOz3ngXzqygF74pDYGe9QtS6htJgVrHM3htdGeIINe6Uy4G0Ogmjv3RzQ1fnnFysehWpcqhaM\nVWk5U8Z+MZkSNW739HspsXgC7eCCq5LnWy+nGAnxzN+S1xTfI9UOdHbyZXxpad67POb4vrsuR/mb\n3L9wSbCvfOVVHWfDvamwIF5F5+0Gjc/A76Zls8GqoKaj1labDsbLJwHrCxfaHO0tGFXOK6zfukdv\nqMSl8CvZcIc6d/ffCxraQAri/ohCFajlWcP90lWKfvGffBGA84tjWiFBH9RrLpcOT5Cfz/hD3/eD\nAEQdBPvGNaKJm1vV6h2Kt1zCNxg8ZC3+yNiLQQnkQEnC7/m+5xjedcde2R1CVU6asiQShDqcBLRl\n14zmEp/NecPFucMw/9w7v87lue6JsSyFSDVhywbr8T49BdOVrD5Ki6LQHl4Z009HGAF6wlVJJlrs\nUdAwWwp2WrYcXHXu8TjVgxkEeKW67OKaUerirAqoL9zf5ckKXwpPy0Jlv5XHwW3x5Y13yfRg1vMd\nml2VJ1vLz/2jfwbAauYemv/wP/szHD9ylEc////+U3KV9dajmutqxd4b9qnE89hEUnFqLGcCwqyX\nOf7E3fxr2QAj8FIo8M/KX1GqZfvkfL4h9/AGMd9xxbmtbW6p1AdxpoTHsp7ydUFfy8ay+7JzNe3B\nH+BHX3Yd7r/0xZDBOy40mUtEZ06J1glu3L7JrQ6EFYYM1DGY7UekEmldl8L9L0v8K6oilENyLU6X\nU0shgtWxTWhKFzZNL+TWBhckCgN+5VdfZ6FO0n/v3/kcF1rIv/T1KS+IT3P4wy7O/v7rL1HMXM7k\n8YOHrBNpRs5zzgReOj2+oEjdPc7UOzFd5RiRmabjcAOlfvTgYlNd7h0MmfTcnDOt+/1qVbHuBFmK\nmGXo7l+d9vm1X3ALXWPc8bzwmSn3XRWaO7nHNHTjVS3UnjuOfm/MtasuP1Qv3XzKUrMJjw73r5Bo\nUQxtw7E2gNXKcn7uruFl6Y6nyAt2++4iR6YhSVQ5sTmJWK2Oj5YY3ML45vHFF6y1jvnmX2Db8GFr\nW9vae+yZCB8MDsBSlZbRvvrchzGJ3OA0SIi0q4QHfQ7HbjUfqhlouDOkFYtuWlfkIp6IBgnNnnu/\nWM5ZC6K7MxDIw8bsahesLqC96sY+uOsxO3JJyS/+RsGtlwQm0c53/vAhr/6Gc9uqsCFXpWKS+3gS\njPECn4M957E0SkpSZRzoq+qmZigZuqWF3kjJU5FtLKcXPDlXh2eyTxO4ZF5arikbd9571wPGN9xn\nHjx26/ubjyL2B8JH5CXea87DePDmT/C3/6kbPJwP+OQPueN8SYrZ67lHPHA73kvPDdhTt+Oot0+i\nJqedLGApAJQv+nrfb8i0tzw+aSgzJcNMQDZ1u9w7D2q8Xbdb7V1142XvHPMF8SvevjthJhq6rDbc\nf9Pt+Leeu8Pt593nXxw4nEM0T2nkfo9vJnjy0qK2x/7EAYCqa3tcrAXZLrouS59+h2MIcy5ERXxt\nMOd06ca7vtOnEPgqEDVdXrdY4RveuJgRn0pWYHaB3cCGnXf0xi9A56q/M/E4FB7By1pSeRM37wz5\n9B1H2ffcnkvmBqHHoTs0iircJKjnxXoTarz6cMlS5EBfP3Yew8WTd1guFKIehOwMXbg5P3/C0ZEI\nbmKfSp3HG36038a2nsLWtra199gz4SlYoMLHsKZaqn05C6gkCLoIDf3Y7brX93vcfc6ttCgBtL+T\nbRBv7cqjWOu1aWkUW8ZVD09w1jJQz7+f4yuhGBQLVqdut7rXPqBvXW4gqZegxpa+1JdPy0v+2Vdc\n0s6mcw4GbjdbrX0Oh27H3x8eMBy5eDfzXDzc+CmxmJgzCip5NIu1wRdRbCIvZhiPNrFskDXMdJwn\nTxrG3fvlhPPAjXFwy+0S63bBqXX5gOz8nCPFrZ/41ITL6W0Afv/HPMZrJcR23Jb58ZtjbqiEtnt1\nhJHWwdW9DCMqsSDKqCQbnemaeMxBlGl+WrAs3K65ai4p5m7HuzJYMRWEet64hFsvHdP3xYGRpFxJ\nBUH/9DUu/7Hbgvs7l9y87o4pftuNuxxfUCmhWEVPNsrd4TjFKie09D0OxZkRCNEa9n0GKmXj38Dr\nu2TdbpjxvFCdtk426NT12nlYi8Up5dqd32E/4tVjNy92+ks6MHYycNciX3j01Kx2y96hHrlzfWF8\nyPMvu9Lpp37vH2Bf4r6fe9mdW1i1+JIFXCxyQiWVV4sVK1wp+trNipWYyPZfc4mLXy5X1HWXPG1Z\nK7k4HOxyPHf3ta5bkuZfQpizsRA00AaWpnUPRb60RKLdik1EkrnXu70RYz1YPSXyeklCoIRSleTM\npm5SVbahbtzDkg7WJJrcZde7XydYsSGfPLkk6yTV5xn7pqPqXtMP3ASbiFn38btnLNeuO60p4Ubf\nLTLxxNLrq++/lxNa9/mxkqdJnDLYcTFI7PmU4i1cPV5RalErRJYy7hVUQ9HD7R1gSvVGmDdYClab\nmil9UXeNlCXs+7CnRcpfZjw0btF4517L9x46qC0Hhn1du0AiJB8fT+gpSRo3CzJhOXr7Q4ySn2Hc\nYDsBm7E6J/M9TKwkaHlKLgbuRd5nrTCmeXtNVjjX/tHaLTZpek5vIG5Hk3GQuLE/drzDa2O3WAyq\n50gfueOY3XW4imCW4A3dGEEeUOs7pkWJ6SoKRcRwLAo8bSbsNCxOhHVI3yHruB/TlH7orteCHDN1\n1zzUfWyXCbm6DJumIlOLrQnDTVK/WAsA1/OoJfZze3nGY7GH/9E7L3H1Ew54dOemYaj5sNuTOlnp\nQ7DUtbAg5fXM+DQCTl2J+9jQ3as9dehOvF3+4RdcsrMXZ9TCLGT2hEjgrLk1RHywRWEbPmxta1t7\njz0TngIA1hCnIZXq7mW9xqiZp9frMRbzbc/PGQhVnHpqbPLXSOwZLwroe4KfRgW1Gox8PyTtKTQR\nvqGaLVkqBNnxEnIhKBfHS057Snhev0IUa6fAuW+PpsfU6moMMwgTd0CpGTIQy9IkSwlVF+5r556k\nuwz2u5qxh2fUYLUTUIgtqph39fOYXup2klVWMlIZzk4PWFW6ANZSiKVnOZf3Ew94cd+N+46/4jUR\n7HvLmtJ3u3VoLP6uhFFuuh0x6ln8vtut4iYgUtOVqWo2bHRegi/uAE+UYbZu8MRanPR2CQfuRoTH\na6JGSde9MRfStYjeUgh2XrJ7w4UwFkujZO09c8Gnv9NBopdNwWokurELUeyZAYHnxj6enrASK1Q6\nSSk66rK6oF65Y+rtKpTEJ1fysMpDMu3Wo2FGIK8prQLqvhiu5OL7pcEXKe5sGbMnVeon05JIDV2Z\nGKtu7O1xEKjh6+qEF77D7fhpr8etF91573nDTZNeKFyIsQmeuD5MDkY0IUFj8EQwa9oEM3DnN0hc\nSJFVK0rrvKqvHt3n+NwlV5/cW+Ml7tqm3iV2/S8hzBlj8COfKM7IBBNelTW1cgCF9TqkJrby6Viv\nA9GqRaYHyh1YQE2QBATM5AslUboRoW3lTrWhT9elGyYJRqGLrWqmS924qAGFMfO+m4CLYk3ccfUl\nIbUEZ9Y+BFKAykqzubi7ciPH+z3ioQspKGZ4qnxE6Q4dsfHKdKI2Ma1i3UVT0h64Y3jR7DPXorCY\nLnjwUL0Uokg3Zk2oCsb+uEej3oEyaDiZue++Nb7CoBNXWekaRg32VJWF3Rh/ouvZGIwWWT9JMDpm\nu+yuZUkQi8o87NHUoicfhcShC10i/wqBbtrjyL3n+7tUYole2RW5Fs6siNmP3AK49EvO846ZWlWN\n6ztkkoBfVi15p1S1SKhx969t1pSFsBVSo23rhlKLAm1CopChR0It192rINBC7Il3s4guKbTgtmbF\naN8dx2VzSatrse65a3VeTtkVZV8vMZTnXW/HGesvuge2/tcmxApBmoXa2v0+plSFKjPYS012ryLo\nCcZOCMpXJDtuvOdeus7vDdR1+6UBZ6cOO1OGPlRuPviVwWrzeb+2DR+2trWtvce+VSn6vwL8UaAE\n3gT+A2vtpX73eeBP4Vr//5y19qffxxh4YYjnW2rP7cYtDW3pVsTKFiRD5zKNEkOQyB2SV+Fbb7M7\nNh7YTGvdCvYkzlGVBmJJiQk3MAhrAgmBnNuK9bnbHdIkpBKZxuV0Suy51XokFNyyqSm1QtteQKKk\nVdiEDDReNBiyK8VnP1GmPooJOxGZnkdjO6VlA8suHJFke9sgti+CRctetxuPQ84q50G8u7LsDdx3\n1HKHV6scW7r3spXdaGR4xrB319X6Dw9Tbt50hfF4R7oQUUpoFJbEFpOoQpPu4Ie63kGKER+EVf3f\nDz2s3HYvTQjanj4a044E7BjOaY7c+V0due+9aAoK7YhfvXfBZO6Oef6ZS+ZvqrFpN2Q4Uffnsbtn\ns1VLEaihzTT4cvVMaoiFubBmhS+5uAs1tiU2Zij6s7oNKSTas2w8RgrdqtrSdJIK6lAdGEuujGKS\nZVxKKXtvYIlUqdgdO+/h7s27DKS5sf/cARy6MfYn15jcUfJ7Maf2xLztd4zRS0p5xV4c40lV3A/W\nGPFamCRzJMFAJLi+TSfc1bHPpgVHD1wi+bxZ0qxEvnJUEn+wPOO3LEX/M8DnrbW1MeYvA58H/lNj\nzMvAjwCvANeAnzXGvGg3fZy/uRljCD0f33rfINMIUkwq1uUwIROWPU17BJFIOEREF/RDjB7uAJ9Q\nF7vNPOq2c+2XUChfIdRJbQpylbEi2+InXWwZUoiL72K1Zr+riKjFtjQ7eJ4IS9Y1pSpdpC19VTCG\niUdPQJhE+RDPyzdKT21TQy22pCAQHyG0HWuxKWk7evq2pFH8GfqGiVzDPAvx5K5XejDni5LlhYtr\nI5pN/iTwYrylG7vXGxIpzNnBAWGiaEDUugnW4KH1jDiNMRLD8X2LVQ+CJ2CZtXZDuIxt8cIurm/x\ndC1C25IKkn44dA/r6Tzl56cuR7M6mWJy5TBWu7wu2forszNGu65r9IH4I/tPKuyuG3sVwFylzKCe\nEUnh6sAfUvW1uKp8S9tsJAPqfkjbumuRFzl1qdxUCKHWxVow4UGQ0KiScTnzuLxwx5w0Bi913xck\nYsFerwkUBq2Nz57KzOneLrUIfiqzxJu6Y0p6DryUVys8LUJeG5GowxGTgXItNCs8KVVZsUuHTUSm\nJ/jjLz7Hg3uu0nZSTXlNYjBFOyf8gFKv35IUvbX2/7bWdrzRv4TTjAQnRf93rbWFtfZtnFLU7/lA\nR7S1rW3tI7VvR6LxTwJ/T6+v4xaJzjop+n+hWdvStiXgb5iRA9uQCiba2xuzK0hz4ifEoXrlA+kL\nBuFGbMPPog0k2uwGrE7dqlrQ4ml38LW15as11bTjOGxJxCdQeR6RmqeiJOU4d57FIHe7dT9MeGTd\n9y5b6LbVOzczYnVwxn6Mr+yo6bLi05JGDTXVbAWifDPLAq/b2eZKTkUtrN2OEiY+oWTPvbaiU2JO\nBoYd1f1ntXNbB7ElENR6afMNF3IYW0Zikj4YDUiVmF3p7yNrsGoUC/tDaBUepAm+ztWEyabTzojO\nrL2oQNwFdl3DpHtd0CiM8eqWMHV7SOg5VzsIH5KqgWdpW5ZrJfsOcsbCCqxsSi5wUk9e3nzXsjhx\nx/P4ZMqpwo4bBzEjQaWfGPDU/NRK4n3pVaSeMvl1S6vdlrHPQMIx4WAfv1KoMHS/94oWFWJYlIa5\naPPOZjmB1fwcu+uaBnv4Cmnvzy+4VCzy3OWM0cTtm0HQslb37MqKCIaayuv4HwyIerBdrp23ANiy\nhbTbh5U4NDmBNCTiwZLnxw6/8MbZEZcDqXGP+lTdub5P+x0tCsaYH8P11v34t/C3fxr40wBB4NNg\nqGxC1tW//IA4U0myMkS6oQkeoSiuA4GYQpN0oDriJCJQXsJ6fOPB80dIro/pQheptGQ9ueJF4pSR\ngNxbsJLrZ9oVnm7eUtnibDikf+Ym9/JyjlTZGfs7XBu4NTCiJFEoEHVxbxRQlCqLVTmxXMO2MTRd\nq57G8kxA1Hcuft1WeJGw/KVHuBFdDfH6YvSZumsx8kKyXedmNrnB1zEkyYB9kZX2GrMhixqoJGut\nT6C25yTMiNUC7AU+vtxrLwtAmWzbuaRxhqdJjFdtOvKMb/Ek1NJGKajPwyrsIggZiXiXMGahfIZ/\nEZKe6z5kAY+tWE1899nTRxVnEtM9mV5C3lHxN1ijvAo5g1aLjNeJz1gqoSrjyJJqIfBsDxtJzt0s\nKDR3Es+Vb8vh2wT6deLV7F9zQLY6uiRIRRmvVud2rySXA91vCu4EDsmaZYcc3nA5HC8JsWqiSRL3\nf9D6mxKoZxJ8lc9Mz8eIat9LPFAey2jRdwuYwq7LJYhY+BNXr1NJXChqjzmd6ppzn/dj3/KiYIz5\nE7gE5B+y3+i/ft9S9Nbavwn8TYAkjj/6/u2tbW1rwLe4KBhjfgD4C8D3WqsUurOfBP62Meav4hKN\nHwN+5bf7PoulxWJsvtkRQrOkzN0uvvZrSiUVc1OQCiziKZvshZBkbmUPonojGeabjHCotMniCUb8\niTZUvbppKLWzFT0fc9mx8zak+u7HM8Px2n1fR8N+7e6AL7/WIXp8dndcMixoY6ra7RS9UYDfeQKC\nYON5eIIrh+loI0uPB6263UxXdy4LWiWy2iLahFWtHzDTblQvS3wlK1OJkKyrBcuVqg8NREp29gYe\nveuuZ8TrB1TyyGZSZ96pI6ywF3bUw/bkzoaTDZ2XtQtoO8CIXFjf0ojz0kQRRvwOddnQdv0o8Rhy\nh0nokrmT/Rv0b4hF+a236SlJWKUFU2ErXn9wzrXG3ev+wHkuT8qKxzO38wVVRaYd/3xRYaUVmtbw\nZO48Bb/LmoUNciyZ5gZ6+l7jKloA0/mU4a67jiHCWLQxiUK7q0FKICBQO5+RStSlkwqcJkP6hQhw\nvOvY590xP/exV/Bwr8NrLb60PjPhV7zyOWphOkyRY6zCHBvTVtrlwx08VXasvErrNZv+izDscf05\nlwhv9jLmvuvtOJ6tWXff8T7tW5Wi/zwusPkZSZ3/krX2z1hrv2I/fnzDAAAgAElEQVSM+V+Ar+LC\nij/721Uetra1rT1b9q1K0f+tf8Hn/xLwlz7YYRiMNQQmwAqWXFQWzyh56EVcXqgJ6MBSrVRuWbhd\nsumv8BTBRH4MagbxUm8Dx43KwSa5VPldt2RCVUg8dJ1vNsHAjwlXbuWuiopGO69yQfTqPYaRmlmi\ngrsHbheIRxlL7YhRukukelHb7aqtxYqHIPVSyLt4d7ZJVjba+euqpMhVsisjqlIUc9OKuWrvjXU8\nAQCxqOJCsybWcQ7DHknkdpc7o5tcm7jx8lVJrrJtps66RQS5ErHVw4Z07t4/vN6SCdoc5hGk7piM\nr3xHkVOvXNDd+AWedva6rWjyrvR7gsnFqBW53WxSFGQiUk2DmN2+ciLxAfe6PEJxTql8xqPKjduW\nBb7uTepH7O64Xbc/3qVRQjQMCzpQoKnFEGUMnhJ0RVHSKrGZN3MqibbEaUhfeaPgmhiYqggjKHnP\nzrmQuO84GdLbFzGvFKMzf0q5che/2rP4u3cBuPAC2sYV8KavrjZQ8Jtjl5/YHd7CLJRzqRYgSr58\nXbCeur+rdh4yGjqmbKOEeDOtqCpHR5efGiLPHfNuW3BFUod7ewlDq6aw92nPBszZttRlTl17eALh\neNaQCQ8+iKAVbdjDh2tuX3fu+nTa1WsbjBV8drhLLEVlW8Nq7W7ASX7GvXvuAp8o0TgrFhA41y/w\n1jRTN7lPZktqZdlDP+wwI8wEGrr7/BX+ny+734/rHW7fdMfTiywruc/BumR64nDpraCz/qokGSvb\nHzRkvksG1cUSP3CTd7YSMcn5JY/EtFxisMoMRsGE/cxdl9gz2LILhdT+a6NN+/V6XnJr353f7edH\n7MYuOz3uL6F0D8WZiFz85oj1sbQY05jeSKwfxOyIHXu4ext/2VV51NV5+ZiFFqniuMXfcw/I4vIR\n/o6rm5tFSyMIshXV2qKesxYJy0EWcnBNrvRhwMFt55a/tX68SaqmgbtW88BuKMtnocfs0j2Enz6A\nm5nL8PvBBfW5qg5nUtW2K3JVQy7zgkKVin4d0FuqVftgwnjfPah+5M6jKI+oVlLMntlNR2hscixa\nOFSdSHu3aP17AEwOdjncceFaL5rw6jsOgjx9+A7T3J3rD/6AC3n74QlxKH7JyzWtL63Mo9f52j1H\n9nN+lrH7SYHhpup27e8ywc2FKIVcc71pDWvNncM05eKwzwexLcx5a1vb2nvsmfAULAZrfLxwwNWB\n6vUm3KC5gsZs9BprP+VMBBLD1q2AQdBDhLzspAWVylFVFTO1zp2/vH9ErSRmp0Ts0bJeuc8mRUg9\nFAFpkVPOBB+er+kFHXLSrcp72YCXrrhd0JuVeJ1idFIyO3XJs4sTaESAUZ26UlCxrsmO3DHfuDHg\nUA1diR9uBEmCQrvS8SlTaQe2QUA61s7lW5pWZdbQ0qjkGFYdR0ROoqRdmxkODkQQsneXHfFIRDMo\nlMzL1NRDNMaXV1GlOZ5KfbOzGYGufZKdEnXUXuqAbFY5SwmynE5LVkoCzk1DefwOAAfBgNFQEnmx\nkqt5yk0xdJurVzj4mNtVk/OQsfQ/bx9cI8+c9+YJPl7PlnTaJhcX51C76/3TFw9IFf/duXuDG+J9\nmIj3oZ9NqJfu2CrvhAfvujl0/2jJUkTAe/Mpi7FDU9644tCGjYFE1ztuViTinAhGKUizM4/dPY2H\now060qZzzs7cjv5rbcnFA1eEi4ILnnjuurz1NTcPD54v8SQJ58clNpQIUnJI0LrjOZ6/zZNfUVNV\nr+N/OOK2GuGuDvpYhcI9Jgykc2nWI3bEDfF+7ZlYFMDStJZlMWcWOjdxkLYMOkBHP+HJsXONzs9m\n3HvsMqsTkVR878uvsHNHYp6XNZm4EevlKef3HBnK2RLWV5xL/Ohtd6Fff+NdYnXvjQd9YoUuxqup\nBHppsoiLE7mMoti+zFc8J81Imx5vehgWJw3zxk3es9MLfEGaz+buQchtwF215ta5ZSFx2HA/I45z\nHbMWo2hAM3Gfvf/whPWRW9zu7A1oBYO92h9yVQpRQSLsQp1smJGTsmT3Soc9qKgEeSa1lGoXrlRl\nuHx8zFQdie8eH2F9d62+5xMDRtfcJLyYXjDypVTVU0x+mTNduoXliRny6/ec+3zy9rtcVex7f3eX\nT153f3dTsORlm9IbuzH2PLi5L9bl9SOeLN25DP2MG7F7cM6k3hVGZ1RakK5kGXu3XJv1W6dv8vBV\nt/gm2RHxngslbr/o+j0+/vw+5ydfB+DLP/uIR2cqmoWGVP0mvj9hKVHfVeQe0htJhK8cv9dvMcpd\n+WXFShWhntrlzcHz+GKzvnj3iK/sunl2+X/8Bg/mbuyT+xcksVi9PuXCzuvxbW6+4I53NH4JI/Uu\nlhckCm/pRfyTLzpW8VxakqxKvrrnnpfPvvASL7vokKpYMFcO6mJZEIQd6On92TZ82NrWtvYeeyY8\nBYMh8AI867O40E5ZNDTCNM2LJadzNSsx4Kqy6Gkm6POOYS1kXpTVBOfONWzigFMVcr2kx0TJnPOx\nW31HOzN2Uof+q/MFidrJ/NbHKh7JZwvW4tk3aq6q1zmT6x0arcfygXPronBFqo7IySCjLVShmIjj\n0E841LFXbcRSycPdVQEijCmEZtsZR9wQTHZe+3hnbgyb9igF7a3CNcjVtNIVCIoVidz9XtQnnLrj\nSWqfXCIiVVkRaDwk+lKUBVkgjsa+hz9y3xuOKy5nbqfJMp8It0v5vmrifk2iYz5IEz79/McB+OIq\nYH/c1dUvGIq0pj9y72XxHveOf8393uSEp3LF9wZ4tas0XM8KdgZqkFPUMvcjzk+FTZidEikBfdXf\no+m58/NtxP4154VcEcPzeHILLt25vvj8Je8KFm8Dy0ghqwl8FtLluKcQtHfTp1BY4s8v6eva9oOI\nYOjmwHjHVQVYnbBYddiTnOC+m2fJYMqocOGRvX4Fo3m294rzzPKqIgrdPPRgwxMZRAHpxN2H522C\n/4nbAJxeOKTkaLdHKz3Vj4/2GEXu2PPhmLOHTrTmYnXO+PCDPebPxKJgcTp3gW2xuZvwZV3RE3vM\nnjngk59VTL00GKFQbgTuhu8MLPXKhQmry4JM/QcNNVy6m9Tr94hq990v77qbeSu4xVrdhzs25UJl\nuJOmIFQHXxwn1ALCrBRnm+IxQ/HoXbndYx64eHGxDtmRG3/QH3J+7lzJRN15h6PehoXJUtAIZ481\nGxKZgVphwzQhFplKENwgGmlhGbfsinK89SCz3ecFGlpA2BeMe7VibyxOSGvxKoVHdU6qCR2vVOG5\nNd7MhrvBp+gLztwfhuRz97Atz9f0lO0OtVA0taEnHkTbhvgKD8y1HVCr+e3djzPcVyv2VG2/zEmV\n4xkMQ4rQLeSnmA2EujcZMZZgazNyB1cWE9IX3fl/5WFM/VD083sJ/TvuYZlc3eMVkfv2+1KI8huq\nA+df36me47tn7tp+7eKU4Q0RwZIQhYI3x+48nhz32d1xx7ye+0wiN4dmdsnqyI3d3HXvvXhlwNtP\n1IsQjfjM827hHOzscv9VV0VYnZ7Rkz7kdx240GdvN8Wq7E0/AeVUwmjARGxYzTzAP3TPw20R4Iwm\nI/rKKQ0P96nXbr7NTy9pj9y8Xq3PKM/dtX+/tg0ftra1rb3HnglPAZy3UMcJPWEMQusx3HO70ksf\n3+W6atDRtYpMcNxQiSwvjCmEWSinM0zX4F9HVPE7APSGOaPEuZSNdvM9HzJRjWH7nB6675u9+Sa1\nyEkuZjm1pMNDVRl8WzO6K6Zmc0hrXBIw8GpGcve8lU+cqQFHNG6DNMWqAtDUAyI1XYU9n0hJq2jg\nxh0kKZPWjTEZjWkUwuwmAZ520rypWErKzoiRJU0aIrnzdezTVxekH0dE6pmMooixEpTxrtslrTci\nUMjUH/Y2naRtlrAUOU1QP8ZKV9JUSmx6GT15HcNezFogpYPkgFRYhihs8TO3o5Vd31ddMYmUdKz2\naOXCh6cnmFY4k/QaU5HIpGt3TuPJIcObLvk49R/w8E23A89XJ0wm7v4e3rzG5EpHmCPpvqJgULtr\ndev6dU5K57pfvtbS5u5aJCHMBJseDl0LT1gVnAnzEK7XmFBhU9riaUefSXimne5xK3H3f+9Fj8++\neKB7tsdnFMYEsYeJhDnpq+lseYkY3rF4GDV2Bf2A0Y7zfsIoZ3jpvrvudEeHEUEjXMwwo9L9bXYs\nA1Uo7l2mrIuNas37smdkUTBYPwBb0fjuZu6m/oagdZJFXDlUDLyO8DMhFqWUFHpgxalnE59A+nrV\ndEFQd0xGJcmO+7u46fjw+giYSF2XNNJu3LUBC7E+NUGLp4A2VDXk4vSCwLhuyP6n+ixn7mYt51/f\n3KQwagl6At4IoRan4w0oirgiiNSmOx5hLqR0VImwI4LeVef2hdMSRFDqBz6luBv9lSXQA9TxOZpe\ngNjpqaZTitpN4ovFlFQ5lWToYVdSeFKps9ePidXVGKWACD2qyuOycFn0witJxARUqsfDFJZA7dJR\nv0c6TnU8KUbxvskbGonshuoCzVnRjt11S9ZHrN51ZC/eYUJduO/LZ3PGQkBeSoehrlqihXvvrm2Y\nKyey9AZoneP53oBdzy0QtapI7TrftOKX0xk7rfIgg5T1pAvj9mmG0gHRfaoo8ETqY8KES1Gu1w/W\nlGLq6j677htuZh8D4DMjuLLrFoWDySFG4Ky6sbR1F0Ke6JwCTKAWaWtpzjpobYRp3ZxMBxGBQGue\nSvVhL8UTV6b1S6wQonEDsSoqD5YLsg9WfNiGD1vb2tbea8+IpwCmtcReSE9YAd8EIBozs4RWqtIx\nJZ6QvZ5k35umpRbEs8prBjviZfQzOtK9elXg4VboOOhYdD1Qosa0M0ytVbc0VHLX66Iikgvacfk1\njJmIf68qLL4IQAZEBAoJAusTChfgdxyOQUkrWHK9KGnF9ZBUBrF+4wsoZfycSLRraWQxSigW1hBK\nFapsZli5rudKgiarmkI0brZtaANdz6KiFDHAetljILo5b+g8jcT3iTOFGomPVVI2ryouT13SdXpe\nE7XutVVPRWgK6LyGyuB7XQdf1FFDgDnf3L+6cckwm0ek1iUwc7+hUD/KIN6nti5pbItTmo5CTbyE\n66bEero3cYsRH+e6ntFUEkA5OWJ0VZyWCju8Qb35u6CZshTl23x9jP/EeX292wHNvOvfc+c/vTyj\nUS9Gc3xCIm6MyE+wcad67vAGYyCVu5JMehvlZ79p8RSOmfKcsnYVnOKBO39qj6Zy3q0dTiF3XpPx\nA/ywY5eGuKPMUcjrLRqM1L+pYqz6btZPZpyv3Xc0/gp//9tMx7a1rW3tXy17JjwFgyXGQgs98eYP\nbcFB5uJa09QY7YTVckWoWreptKpHNSwUUwch1Uw4hknLRPG8DWM8NQH5mdCIbUlTuffqywW5vIM8\nL0mURxgMQy5UknykLsuDnZhsqe68GwWeUIOe3d2QmHpJgJmqpCjWKDutUehINa/xr7jzC4qM8IZI\nZb/g4sxmkFGfuZ3ExtCKiLMKY9oLt+PX1YpCqstdI2ZTRazpGrsW7N0VRNfGGCU+I1NilUxpBPNm\nUmHXHTVdj+rYfUfuXRAu3GeuHk4Yi9cgVmm1eXKJEUaiWVzgq3vSrlYgtGR7mdN2nakCjuS9OU3b\nJd9KHr3jdu7bL1RM9sVp4DfUi47IV/kVU2FL973F+TmRTrzvWxbK0SzyFVPR8HXyacNxjK+8TB34\nVOdqlDu6ZH/Pvd9vniNSrX89dXOoqD2WVYemTEDnWtU1gboSw8pdq3h8QOw5LyBuM2o1WrW9S5oL\nMVyFIavXnLdUHjqvKzzpkx4I8l3UWKmq25NzarGBNXmO19dnzuTR9g1W856kYLXStTWG+xojXy15\nbfbB9v5nYlHAOLYuL4jxpFvotSkrxQmlV1AvRV5R1VQz9zpIlbDJI9bCfeN5tKqPFxf7tJGrf/t+\nTWndzV/LNfRWJa1gzrmNWIkTsWhKIomFlKslS+EXekpg3vr48wzkPtPGBIK+hik0TfeA1Hihe13L\nxWuThKoVTXxVURy7B6GOTuEtN+kfye3rffURgRiQbdujJ8CLbTy8unPRfQJBnsOFwoj5mrk6Ji9t\nyw3RoccrSCWaW/srjFqmO/e0yWsadaU2qxOK0H1HNS3opRKzuTUmGx3oOPRwtCGhaN4IasqmE1yp\nMDMl+ZqKTuPUDtSrUfdo1EZ+cR4yCwX9XRjiLvzJMk7UMVhP3bW4PG/oCdq7GPdgrnBkdcH0sTum\nh37JxVe/DEAkOLctbrEv0FrbronF4znyY3wBucLlKeq0JuuS1aMAXxtAWVQMfD0yg5TmTC3Oe7oH\npOy1rlrgDS1lK6zAwzVGYKji8j652sDvf0nVErsgfsH1SURJD5QEZTghULjS2hVVLvbvjlE792Cl\nhacpqPVcVCvLbOxO5KtvFNDfaklubWtb+x3YM+EpWAtNC0VdItVvJlGIUWlqsSyZp251TG1JrVCi\n0eFHBmqxE1cmwnRc+emM6Kpc0dqnUS2/LjtykwIrvbZZ1XIylddAi9UuvV7klEpWJhpvcWFZDaSe\nvBsSTdwunz+6T2ndCh1an2jtdsKVGGPLtMUXGvEyn7J6VxRcWUKdu7DBF1SX3BKp023Q5FxIF6Bc\ntVhJn1fLhkw17yB1nz1dVxyfuJ1hXZWMFWI9thFXlKx7PujTiCTCqsxaNiV1h3mIGpbylIIwohaP\nxIPX3qB3zb0eLIQ0TBZUF87riA/GtBJZsV6LJ5m2Ngypl13pVJJ3rDip3XU5m1esF+7aH82OaER/\n155E7OxIdVreUeF7zNxloy4esZCH9GBeEErzc//4nHYguTixUp9Na/qt21VXizPmCp+8QY94LGKU\n0GCkBF5IG4R6TuyL4CczGP1d1jZUHTWb4PiL58fUMzff2mpBYZxHcHJ5SvjkdQDOT6acp+4zVyaa\nYxePefzr4nS4cYehqAWNLTc8Iq2fUZ65+9PKgzZrNqzbdtawEkHM8uSY5ZF7fblYbMhs3q89E4sC\nxoAX0EtiQp1kXfhMe+IRrCoKMTKZekmtdl9Pmfwy82h6kpzPV9SN2luTAb2ewop6yUoTtjKKo9uc\nRoxH08sZc2XOay/YiIicztbUcuHCrJMv32HZuthxfmJQxzV1U1N1rE82Iq9F9KEqhF0Z/MidXxoM\n8ff1h17M8KoAK1IHIjY0QvrMm4qFFphZ4FEfS1kq9fHEoDSXgOt69Y3ciBfAVG65v1xTnkpm/daI\nfqIqiZiBvdCwXovdaNGwit0EjOIhVYc9OGlZyl0PBJAKmphS9fNqNcNIAKZtfQKFI/XydJMxX+la\n5muf07kLlZb+ikSQ56LtM7t0sPFleUSFc8dnqkRlVU0pzMOjxwueVG6FKKoC63WcnTvUWnw7la7Q\n1FjhDYrJVQZnrsIRZjOGHXO1l1Dl6g9ZKwzMmw0Dd4DHjo4/SxPi3+1AVIevfBaAG+uUVOCzRVtQ\nqWqxE/msVX25dznbcIXe3ndVC7N/QKm8TZHnMFR4WJU0hXRPm/WG2b1S122NhxUBTuCPyEs3Xv32\nlLdThc2pwZfW5fu1bfiwta1t7T32THgKBse6u2oaksKtmFmYEMntKb2ARcdgawyFOtHK0u12yU5F\nkCu763k04t8b7DfUQp3NL1bkWuUbVQAGYY2nHWWRl+Sqzbd1wImy+mXe0qgS0YjWarxjqMSIZa/5\nRHMlzzKzUSuuCzbJtVKoMy9oCZW1T9qI/q68g2XFYMeNkeuPjl5/hydyB08jyxUpLVeDjLjTyvRq\nLtQdeiT3+7JMOfXUXNPU1CeO3yBfZbz0gkhUzAXxjtsdkw21m2V1Il3N+YJGnIHB4Qhfia3gcIe9\nHZdo3HBWlDXrufNMVqeWQh6IX50TNqoerYFMYYOQmyf2ErvssAs5R9JgzCpA8HVrM4x4OHsDd61q\nP9togUZhjiIbvDgmEatyYCCV8E1/5NCPveeeI5Nq8zphE66YrGVH4UhyM2ZauuTfPFAyuooQVw4m\nCbHCfcxtg3cpDcrrzhsz4Zz8XHOsl9L3HZdDO7tPu+eO4/zX7vHu+ZsAlCfO62qnJywfufN84cU7\nRL9fnA1+Ti49D0wOYhivBNFuW4OvxHXdgxO9ng5OWH/R/ZlvDWXdhQ/fTLz+W9uzsSh4hjCL8Lxg\no2HYxiHHekivlisWyvoOJiNio9jQk+sYJezvu8mapkOsgDmV8fCVZU8P93n8yD0gkYRHkmgIgsEO\n2gEoU/+ofYe14l2T1MSZ++7AewWALAvw1dI7PzckEiBMdw6pO1LZ/BzT0zF5blY9ni0InIfO3nCf\nyaort4UsRfEeN3pY7445/oK7s+++9Yg7n/suN/awIhSIZd2uKJWRTtYdyGdKIGr4qhlsekJW7Yp5\nB8dOeoQDQYwVs7eLlrDvJmmWVpzM3I149OBtrFS0Uq9iuSctxfu6PguP4Io79mVZkQn7n4Q7RBIn\nqf2AQr0kHUgrLkd4gau+5FGfJ3J9P7EKv0EjH/bIB4KNZ+6hivKc7KbrSzBhn9p7F4Dj05Lx0D3Q\nyeGYOulUmOTOr1seRSLO6V1jlbnwr5y1eBMHXrpx83mixK32uVr4Hy1XGOVrUj/Aizt1ppZYZcST\nr7u/We7cpJTCV3L9mP2+QqbmDsG+21BG3zUnfNN9/hfvu+P53OQm1z+rlvLrGaePJERUnlMKALWy\nl/T6hzoOdwzZIKCtlNfAY91z+ZWL7GXsd7iekOT1AafvatK9T9uGD1vb2tbeY8+Ep2BbQ7M0eD1D\noiYZ3x9xduF29ifeksl1t9LOB5bdgds1dkXNbfyApN8lF4dEiftska9YScdxcfyIUPXfRICmpA+F\nJL+KtE+zkhy4N+ZMTUAH6SsU+y4bnP4udaxdu0KnFffKZ26xelPsu6dLkBBNW29UvMjUvbe2GcvG\nrcO99CoTycH3hxN8udf51O0YZ4/eYjd237v3iYRDAZ2wJblEZMxZRaNuxa4WPaySTU289eGJOioX\n5xF3v+M7AJhECQtBYoeBu96tvcCIqjxdxQyVnPK9llLXcGcyJind8cVKjJbnOb66KHdSGO/3NHa9\nqewU65rm0iUVazWjLWyONS5RV0wfk8r7CVJLPXfntJv06Heex568kfUQlFwdXn1uQ7s/iGGkKkIQ\nXKGZigVZcnUH3jELNdDNjk4J++56fvxKn9ELzs2PxiNWAhxxrm7V7AqeKg6TMKPMBbcuS1Y/74hM\nPvWy01B+vQjYf0FQ8Ydromvu9SdzS7nn7s+t5vvxJ+7Yok87T/dg7xNcm7hr7+VLfPFOzi5vYqVd\nOSobAt3L2v8GFkSvaBc5+bGbp0ere/ye7PsB+JnZz5D0nKdQvr/o4dlYFAzgW4+2ajcZ92VzyVLg\nl7fsQ8bK/Cd+Re+6m0xhJyO/9lgcOXfQq2YEIgltqJlKR698eMq6r0496QTmXstS4I+1zVn67uY/\nqp+QafIWt2M8PRTB2yIkqft84tA9FKk/IL+u8OCXLrDLL7nvq30GyqiPrjr3dJT5RMLWt8UT8ndV\nshusqFRyvP+qK109OPoKbd89KDdvv4DfumsxaxvyS7dgLYuAqfgYrR6qpBfgiXrcjzLCIzf5T8Oz\nDZHsbFJQPnIPaSg9gthPqdUl2pYenhEi0A/pa3Ubxpawc+c7UFS2wpcLawZ2k1OxbUNedLmfc9Zi\nrcpDITdnKy4CdzyL/BG6xGRmj9q4h8J4Lf7YXedELeeZH1JJH/K89UjV9mwnDZE6JiNvRthzD9me\nxu0PQ1ZCHl5JLfWBCHrSHtZzC1m5suQdR2b3tHkhtRaW4/WMSrmIxvdom1cB+OovOv7FK69kPDl1\n9+nKW/mm0/ZwN92omR0EazzNT+9IgLw3Timuuu9o1pZgx13vsKzx1JVK6GH1uHaVsXzZ0ARq3y7g\nzSM3d75+f8G7PacHcVk8JF9sex+2trWt/Q7MfEMb9iM8CGNOgCVw+hEdwt527O3Y/wqMfctau//b\nfeiZWBQAjDG/aq39zu3Y27G3Y3+0tg0ftra1rb3HtovC1ra2tffYs7Qo/M3t2Nuxt2N/9PbM5BS2\ntrWtPRv2LHkKW9va1p4B+8gXBWPMDxhjvmaMecMY8xef8lg3jTE/b4z5qjHmK8aYP6/3J8aYnzHG\nvK7/x0/xGHxjzBeNMT+ln+8YY35Z5//3jDEfrPn9g429Y4z5+8aY14wxrxpjvvvDOndjzH+sa/5l\nY8zfMcYkT+vcjTH/gzHm2Bjz5W967zc9T+Psv9Yx/IYx5nNPYey/omv+G8aYf2iM2fmm331eY3/N\nGPOHfydjf7vsI10UjDE+8NeBHwReBn7UGPPyUxyyBv4Ta+3LwHcBf1bj/UXg56y1HwN+Tj8/Lfvz\nwKvf9PNfBv5La+0LwAXwp57i2H8N+L+stR8HPq3jeOrnboy5Dvw54DuttZ8EfOBHeHrn/j8BP/DP\nvfdbnecPAh/Tvz8N/I2nMPbPAJ+01n4K+DrweQDNvR8BXtHf/Dd6Jj5as9Z+ZP+A7wZ++pt+/jzw\n+Q9x/P8d+H7ga8BVvXcV+NpTGu8GbkL+QeCncAjvUyD4za7Ht3nsEfA2yiN90/tP/dyB68B9YIKD\n1v8U8Ief5rkDt4Ev/3bnCfx3wI/+Zp/7do39z/3u3wZ+XK/fM9+Bnwa++2nc/w/y76MOH7rJ0tkD\nvffUzRhzG/gs8MvAFWvtY/3qCET38+23/wr4C0CniLALXFprOw2fp3n+d4AT4H9U+PLfG2N6fAjn\nbq19CPwXwLvAY2AKfIEP79zhtz7PD3sO/kng//yIxn5f9lEvCh+JGWP6wE8A/5G1dvbNv7Nuyf62\nl2SMMT8EHFtrv/Dt/u73aQHwOeBvWGs/i4OVvydUeIrnPgb+LdzCdA3o8f93sT80e1rn+duZMebH\ncCHsj3/YY38Q+6gXhYfAzW/6+Ybee2pmjAlxC8KPW2v/gZH80D4AAAHMSURBVN5+Yozr49X/x09h\n6O8BftgY8w7wd3EhxF8DdowxXbfq0zz/B8ADa+0v6+e/j1skPoxz/zeAt621J9baCvgHuOvxYZ07\n/Nbn+aHMQWPMnwB+CPhjWpQ+tLE/qH3Ui8I/BT6mLHSES7r85NMazDg56r8FvGqt/avf9KufBP64\nXv9xXK7h22rW2s9ba29Ya2/jzvMfWWv/GPDzwL/7NMfW+EfAfWPMS3rrDwFf5UM4d1zY8F3GmEz3\noBv7Qzl32W91nj8J/PuqQnwXMP2mMOPbYsaYH8CFjT9srf1mVoOfBH7EGBMbY+7gkp2/8u0c+1uy\njzqpAfwRXEb2TeDHnvJYvw/nNv4G8M/074/gYvufA14HfhaYPOXj+D7gp/T6Lm4ivAH8r0D8FMf9\nDPCrOv//DSd/+KGcO/CfA68BXwb+Zxw38VM5d+Dv4HIXFc5D+lO/1Xnikr1/XfPvS7gKybd77Ddw\nuYNuzv233/T5H9PYXwN+8GnOu/f7b4to3NrWtvYe+6jDh61tbWvPmG0Xha1tbWvvse2isLWtbe09\ntl0Utra1rb3HtovC1ra2tffYdlHY2ta29h7bLgpb29rW3mPbRWFrW9vae+z/AzYs0lxZPjKLAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.3717... Generator Loss: 0.6639\n", + "Epoch 1/1... Discriminator Loss: 1.3463... Generator Loss: 0.7220\n", + "Epoch 1/1... Discriminator Loss: 1.3487... Generator Loss: 0.9054\n", + "Epoch 1/1... Discriminator Loss: 1.3769... Generator Loss: 0.7837\n", + "Epoch 1/1... Discriminator Loss: 1.5438... Generator Loss: 0.5937\n", + "Epoch 1/1... Discriminator Loss: 1.1925... Generator Loss: 0.8585\n", + "Epoch 1/1... Discriminator Loss: 1.5108... Generator Loss: 0.8107\n", + "Epoch 1/1... Discriminator Loss: 1.3479... Generator Loss: 0.8114\n", + "Epoch 1/1... Discriminator Loss: 1.2299... Generator Loss: 0.8803\n", + "Epoch 1/1... Discriminator Loss: 1.2651... Generator Loss: 0.7570\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvcmvJFmW3ve7Npv57M/fEBEvxoycamBWV3WTPZFNSmyI\nkgARIECBEiBQgACuCEqQFiL0F3BFcU1AArQQQAikIGlBgCDYHNQUu7q6q6q7KofIiIw53vz8PZ9s\nNrtanOMvM5osVharih0LP5vw8Gdudic799xzvvMdY61lIxvZyEbW4vxxN2AjG9nImyUbpbCRjWzk\nNdkohY1sZCOvyUYpbGQjG3lNNkphIxvZyGuyUQob2chGXpOfm1IwxvwFY8wDY8wjY8zf/Hk9ZyMb\n2cjPVszPA6dgjHGBT4HfBF4C3wH+C2vtRz/zh21kIxv5mcrPy1L4k8Aja+1ja20J/D3gL/6cnrWR\njWzkZyjez+m+N4AXX/j/S+BP/aiLfc+zkR+AaaFtAbAGenECgPGgrBoAygqKugagLuXf1tZfuJt5\n7d7r/xljCFz3tS+ttawtpcA1WEd0ZMdz6fS68v2wT+BLO1qkbZ9++AmOIzfxHYdG7+EYgzHyOS8b\nLPLZ0/saA1Uj92jb9V9/tKx/53kOgX7GMbjagbptr9q/vpdtLa0xV8/Li5o/Kq7rEPky9foPLubq\neWEU4ug9lkV5Nc4NLTT6PPv5GLqujoXr4OgYe8bB6ve2hbyR+Qsd+XvSi/ETGWPH8eTeQF06OJ58\nbqzBtvVrY2HblqIo5HkNOL58X2Y5y1Umv2s+77OzHnvMVaNL+/k6q7VdMl4GT9dGux4rIPDkHn7k\n0vEDaUfgcHyylGfobwLHgPniWljfzH6+EK1dDyG1fmiBWttmrFyuF1/Ng+eYq+d4+sFxnKu/1439\nfOUbS6MdaUtLpasjLeoza+02P0Z+Xkrhx4ox5q8Bfw0g9Hx+4e59XC+jLmXCWw/+zNc+ACAYGV4c\nzwF4edLy6OwMgLNnpwCk5SWfn4KMLAAV19GX3ve5MxgAXC3WuiwpddHd6kcUUQjAL+0O+FN/7tcA\nuPuf/Xmu7/6SPMeuAPiPvvarJLEM3bVuj1mZA5BEEa4pAXjw6oJKF+ek25E2BPDqQu6R5jXVWgG+\ndoTTCTcu444oo52thP2uLEYTh/SRz2erjLqsACiQxV0XDbkuYsdz+fjx8b82LoNuxLv7sjb2x/Jd\nB5dJT9p5/+27dMIYgH/x8AnTVzLeS1vCXOanKPXFrWr6PRm37XFMp98DYCvoUyfSjjqzfDqTft/W\nZ/zCb3zAzW/9qoxbuMOFkfk9fZEQT+QZq9KhzOXZ27HcN1tkPHn8KQA3VhDuyPev/vATfvv3/wCA\n2fSMVl+cfkf64RHQ1jJWr/IVjSqQ89USx0pffN9jpEqmUOXdd+DWWO6x89Uhv7J9C4DyXsL//Hf+\nJQBhKNfejX1qT+ayF/lXirxZ1TiBjlfdsCylbSdLWR9Z23BRyPy5Lax0AzRYOqq1x5FD4olCnSQy\n/1E/ouv7cq9ZicwCOG7L5Vi+Xz3POXBlTX7307NnfAn5eSmFV8DNL/x/X7+7Emvt3wX+LkAviSxh\ngRtCGMvgebsxd74qzbv5zXfofFc61s0LHv/WYwDqgwu5V+Nd7QLGC7FqSfi+EZMDGI8i3n1XXjKv\nlfs+PlowXcjELcgxhVz7j2Y51fw5AN+cnDI/k+fMGQPgBC2TXRn0TlJzdqqdijICffFC32J1Vxzv\nyLXX44CDpfTDayxVuTZZGj7f63WX9x0aR9o56gckRj6HsU8U6MttDVUkv2p1Ya/ilvxUlFQe+zi6\nkOrGEgTSjiDyuHZT+n3nmrxU3nnFPJLFv/Qy5pX0+aMPDzi4nAEQR7ClL0Cu21nWgG7cdMqW2Yn0\n76hT41hpc9x6TPMFAM9See7qyaf85V+R9rx6/jXmRpaLyc4ZjWSeOtMVx5kq1FC/qxacWNmhPzyu\nye25jMvqIXl5KMPpGMqO9Dvoy1owdcMqU4untvRlKlk0sMqlLwU1sW4YmSrsF4XhLJXn/eWxy8cf\niQE8Xd4mSuSaLZ2DaGQ5L3XOewYf+dxUDVMjr2wnrhlO5Przx6KkqsohCddroaZWg7ZqXWygimDo\nUdfSzqkajZEtqSO5x3RWcVjItde6NR+8J/f75x9nHFQ/md/w56UUvgO8bYy5iyiDvwL8lz/q4qa1\nzLOa8ZaP7w4BGO/3+PrX7wKwffsXqNqnAAw/+5QHurutdFe+CA0D1ZPNyMdbyeL2r1vezmTR33mv\nxy998BUA0hNZ8Gbximn5EoBOr8/5XHaPxauK7/6+vOlR+ovMYrlf2l7Kv0WLk0gbLh0Pz5OJ8cip\njCz0NoCwlUnaviNm8q06pvtKdszQtDSuzG6V5rSuLDBXf5MMI7526xoA+6MAdGcuTQGu7BSO42DU\navD1d93tkoNzeUurvMTowoycks6eLI5f2B5wcyTjdWNXnvHD8085fC7tuSzn1NMUgJdnU2qrJnYI\nncFInqMLLcsd8lieN5xs8eSJjG09zylWcr8//9U7rGq5R/pQxvjbv3fKX/4LXwXgrGmpnYfy7GWH\nu/mOzEk/YhBIO7xI+t9p+vzBQr47+vQB82fy7DudmNiRt217q8e8L+O8O5L2nj6+pC7kdy05YSJK\nZuA3rFJRoosqZ3csSsis1CKaNxzpkaBoh1zqG7OYn6D6nes7ehTrh+w1Mq6jScN2JGvvB9k55Uwu\njjoGd30sjmVMfLfFJLKGhm6HrNCjTeYSbsk1e7d3aM6knU+P5V4v5invBHKvy3TF+UKtEdfhz26/\nJeM9fkp1ImPxZeXnohSstbUx5q8D/wg5lv2v1toPfx7P2shGNvKzlZ+bT8Fa+w+Bf/hlrjUOhKEl\nIcAGog3v3r1N6onmr6cejmruk6c59vgpADcj2YGHtqHrioYfdgy3xmJtdK+57F27IZ87De/Fcs2T\nXTEjf+Mb75P8vpi1YXKfH6QSMa3HCeRiMj/6w6f0fkV2rq3qPgCR79NkMnSZm1NUormPZ5ZJIPfu\nuR69gVgYi7lYFQ+zjHol19rGIdGjguf3aUPZKVo9h75/Y8BvbouN23Zjji/ETH42KxnW6ncpodLj\nUajOuevLigM9Sp1XlkCdsEPf5x3dHb9+Z0RuxaJx1CJo2w4jNYNXZxl+LhbGvUlCqM61Nvb44N3r\n0r9E+raqXRaFmNdjOkyn0o+DpaWv5m5bR2z3tgA4uy2+g2pxyO/8s+8BsP/LNxkXd2Tse0uaTJ2c\nccG1roxBfSztzKqAvlpjg0mCOZ9KO0fvcu/XZa65fg37Uiy9Uo9wsXdMcinj1lsc0wlk7cTJFHsg\na2C0nDN2+wAkA9ldL9KcxsqcffJ7NbfuSJ/CWc1WLO3ounqU9GE4lkE8P7eUkawR0/HptOqrcCva\nXK6/fUPmIyogV4fhzvaQwpc5c2uftJU2j6Ntljdl7K476mg/rjnP1L8wjEnU2qQpefwdaX9/4tE/\nk3bICvrx8sfmaPyi2Bby3LLKlozV01/OZxy3YtrPHy35rQ/lhf3odz/h1bm8sIlRR53jMx7KQJvA\nZ9xVp40NidS7bJYttZqUzStZYE43Yfsr6vqYW07OxNxzlysSPaIM7QO2p2Lm1lsyQaZxydWJWFxW\nVKoUMiy+lcmPogCjzq7Zubwozw+n5Lm0pzuI6CZi2n5zYHjRSL/vbEmf3tm7x+1t+a6wAU5XpmrJ\nMauFmOhZ4VAaufeqlPuelXCpTqtFXV15uksPck/6l7aGoJTFdIyM5cAPyEZqBrt73NuSl/7lWc21\nO/L9cDjklr5MhavHtTzFqkMxmkKq/pre9IBafRRbkUMWysv9fiG/e+rl7Azk2f7Jfao9WfB3k338\nQJ2mxudsJXOWpeJw7C8y6kIdsKMOe6HM3zeuO7RjcQIWcUp7ew+Ajvowno865As5/n1yErKv5+8j\n03IDeZH/YOqSlDJgp6oUu64hV2deFNVEL6T/ZneB0Rc9Gsi/Pb+Lqy9st2tAX+iocQldue+Jjbk3\n6OpcSj9C11Cov+et8YDCV2dz1nCSSf+vmZZn6v/anci/QTKilWHhedayZeRodoaDoz6MyTRm2pWx\n5YQvJRuY80Y2spHX5I2wFAAwLX7sMBKFSfPsgs8GuwCsvv+Qb//uUwDOLo6hFU0aqfm2FXgk6i3u\n+pZQPflVWXCkYcsm9lkVsqs6+vfiJGW6lM/z1RFxK1r53F9RzCRk988ffcZ/fE8iEVTvAOAFDqWG\ntyJTk+kuHXqGUENSxhhiVbknjjqA/IC+RlfiIODWTXnGL4zHvN2TY1NnLhreJAHbEzFly6gLp/KM\nk3nG0wsxd0snp1qI6b7SEFviW05mskM1BjyNYMShz707sjNNcHmmpm3XlzBtbBpGI3me29mif12O\nTPexOFZ2Umc7IMykU321lC6sobYyFv6g5f6eWAcFI6xGTFYk9GKxpma3pf/VwyE/mEufvxbMWWno\n7d64ixPLLr1lWj47kkhToxbWcp7he3KvrWDM9RtixYXXRsSRfL94HlF70teqJ2O1PctIQznCfO16\nzOpCrMW9vMLvigWxu8q5bOTzOnyJ7xLo3vlktSTV0G81BV8tpGEk47OfhDy+kD6typLZQsboPC8Y\n9+WarcLhuJR29tUicJ2EkTqEfS9gpGtoGcR0KsXiELFVylxP1yHsNGbuqNXrGhq9Xzcvea5H7LNp\nzXLdly8pb4RScIwhMTGOaWgVdDHNKk4fStz5yZMjzmbS+dABL5ZrruuCT3Z9dvTYEQ88utqti9KS\nphoZqB16agZeaAxtEnhcWLG/up0Ol2N92R5HnM7ERP+D7xyw955MzP2efFcZl0zxDYsKrCqpwLW0\nGkLajgJGQ3nBe7G8bFl3QOnJs7ebLh/8CTF939q+wWKmCmtLTn5p2qVUT3Y1N3T0qBGaM1JdKE+f\nT7G6wJ4W8u8adLOWfqDgndhnvCsm9SzPiEIdgy2J8PiOR98Tn0uRBHRcWcRx4uHWMp5t7dFPpH8X\nM1mgruPQVrqg+zGNL7+7kSQ8mmloeGLpaAQnOJc5+CwFrEQ+HpoxQ0fGdifqECkmoyjPCVKZ9/NY\nxucuKWkk7bzZxkxV4W65LYdTeVl8z+fJQubyK9elDU9WAVtjOT7ZecT1jlz7+MTlHSuKcZ6nXA/l\nmqrW0PHUcGxkrMrW4TNVZN2m5Z2OHAP6+sKng5DyXMblaL4i0jBxQEAcyrVNr2KgYWLPk3ENvD7+\nSPqc9HtY9cX0sFhH/GMd1+eilLGILmXzqp2GYU/GMy9zektRWN87LXj4StrZNM2V3+nLyub4sJGN\nbOQ1eTMsBQyxa3DqgGalUYRwwac/FI2YP68INM496AdsqVa9p4CWII4Z6bnDNDE9tdvLvCSMFLoc\nx4yHsmMP115/x+Hdoe6tpXsFD76sG+xUwF9OmnP+mURTb+7fBsC1FaVY6zSlwVfAi8Fh5CmGwDT0\nEmnTB+/LMWGn+zaues5NWrF//w4AvSBgMRenW11v6b8esQKFimVBUsjucffamO9+W8boICvI1TT8\nUfCUdeQgcSMqdVR1+jXdWCI7uz1pWxJYmlYdrV5GR3EfoQnxNcqTlRfkGpuv1ZlpbQBqubhNSG8g\nO1tQJ9R92f2vT67TuS73OJrLHLzn/h5xLH3uNY+ZtPcAGCUJUUeW5WHew92VY8y1VnbJzn6P/ZEM\nfjg3tIVg4qZ5RbNGWZaGviNetcu5WFgDpyTIZPfcGlQ0F2rROV1sII64/WHEXKNDO438ri5TRmgE\nwHVZqKXnNnBjIH2JGxnj2auCbCFtuzgvGSsOZWtUMywUyerHDBQt6nfEwuiFPn6g+IagQ6qWiVc1\nuHq8czFMujJnlwtp++2tBZkCJ47alOOVzMllWVPpsratvYJef1l5I5RCC5R49FNLruG2oyag1PNS\nN7QYV5r6zqDD3pYog76CeGzHYxApIASPUF/SGEOsL2k8CLjelUmokRfTCyPaM/m8E7hcvC0v5DdN\nyu8ZWbC/nnj0FvISdjxZPK1xsZmCiaoaV8/nSTfhlsLbXOuwd1c87m/tvgfA/WGfxpPF5gUtUSjm\nfC+xLMNQ7y0LKW0aQgXpLIoGFDTk25qdoTyvfFX/2PwJX83rDjUHUzkq3draYjyU8N22Ksqm9rGV\nmsmNS0cVZFN4dHtrH4WHr3kQc1VSgVNR6JEpyWpuTcQPZCKHfi2L+O2RT7n9NRmLGzIfoyhjqKbx\nih7VWKMLowGhQtMP/SXDnlzfc2Ush5zhNBqGdReU5zJuTlpRa+Sn1ymZXsq89jT8sjAuVpVslUEP\neTHbpKRNpE9927KtXvtKX/6Ju+J3juV3+9GQIhfFcuHN8XTe20YU83JZMJcpI3Bdxl1pQ9/3SSJF\nlpZgFJqO+lxi1xJp25Iyo1GItRdaHPVhJDbA9GWuupGMiZcPGGzJfU+KFR+u80dai706R9orVO+X\nlc3xYSMb2chr8kZYChiH1gupPctEHUpl29Bq8k3gG94aiWbf6yR0hmIVjB3ZlYsWola0cpOA0c89\nHHx1mPmuoU01c0xBHoXv0lPM+WW5YG8lw3HqtdxUeGz5pweE6mlvC31GbVnv0W7QMNBd4M7IYUc9\n53HY4+2JmOb331JTfXADWykQqAkhUoum08X3FetQy1ZTFwVuodPjZ7x8KSCd4+NDuoGMBV4Imoz1\no8R31Cz1OtwZSD92kw6TLemfqxaYrVrmmuHYti5tqLu/Z6l0Z6vrklzBUEUqXvqVYyj0uxPPJVLg\nUZ10aTRn4JXbZ+QeAZDflyPY5PY9Is0B8J6kvCwiHdsaupqv0qkpSrGmYleeEfX2GC3kXku3xmr8\nv458uvVU21kzUMfmTOeGVXG1e/qxi6Nmue8XVOrkHcQlue6qW0azctuQ+41Yir39Bl+dyks/ZKVH\ns65aD1WV0VWsxyBs6KmjedR6WLVYXdchTtSa1OSrOjLUeqTNGw/baO5KkNA0aqV5DlUr7Wx68vuB\nAaPgrNH+de6cyD0eLXPaYr0uDJ+nBX+eEfpvk42lsJGNbOQ1eSMsBcdAEjgMOhWdXdGuybzg5bHm\n7ocQanruYJDQ01BQtI7nLqCM9VrXoxetc+8dTCOaNC0bZkZ2kvNcd77zgkUmoaubuw7npTjGOs01\nuomEy3bbX2cRyfn7XNN7qyK/cvC1pqKv6LiLjmWp7Rj1YVfT4a7tyW7X7exQpaKti7LCILtViIeN\nxArxNfuwKnJW6QEAnz1/wPMn8uwfvrSUS0mHTsIu2Zpbov3XeRMAnEDvFzVsJ+K065v+Ver3+nw6\nzTMiDS2awCPWZLMch0oh36fzmljTeo81VGjKmpcrCaPeweFyKdemxYRafTv7O1M+KSW8/N7yN2Xc\nguvc2r8DwJPrR0SZ4BFmZYldKmw4HhC1Mj9tJjt/GM+YOrILnr+85MFKxuVbA4dUQ879QY/ZqYzH\nuBEH3yoIcbsy3vmipnKlzW3oUHryu0Xt0VeIsUZWGdUuzxQSbp0+TVfu5wWWOpcxyBNpj6ksseIt\n3K2QSP0TFounfqx+3NDbFUt3OVd+h/Rz34EzNtTqJWwWc8411LydZExTnWsNxbcmYjKQ+RtGO7x7\nX8bqUX2ToxeSMZp5NaEujVTb++PkjVAKgWu41fW51w/wFCY6LQviVgZk4Dns6mCbYsXqTAbwXM2h\ny2VLX8aGbidmqPHohpbiUszcg8WSA3VQPVfP+bg7o6se4Im9SbinHum717gWykTf/Or7LBUqHaWC\n+59lqytzj7blRaOm/0HOHV1Nny4bbtyRF2TrgTjRhmNDpQqp072GaQRYlfWH5Eu5ptLFP3/wmGcv\nJHPwo+8e8URBNc8uSmwlkx/bikrNx7pdm4avux4DXdCJHzEcamTneh8qzSWopb3zWUqqCrQOXc6O\nFnq3M0J14DVtSuvIQAe6cMuswluq8811WKmJnjop2wo9b9pdThcyRom+HO/f2MI2a7PdkhQCQsrz\ngkCaiZe3DNTBmIei0C+yhs+eyFh8+MMLFvYpAEWnTyeQtr0z6hMkqT5bxtPxDOlSMQ8XJ5zpnBau\nQzvXvrRwXkr7lqWst5qa2JF29mzM6G31/E8DFlOJNOSqKPOyYaLOx6Z22NajpEk8ugr/Ts0Qp9SN\nr6+G+qLB0chJXbV4yocRWIeh5sQk8ZAbE5nb1VIxLfFAvKbAjn9G2Ujb/4O9Dqel4E9eJnMydQr/\n8LGM1Y+TzfFhIxvZyGvyRlgKjhECj84oYOCJFr1w5qjlROHA0bFCkGOHUB10mWr+02lxRTwy6gcE\nSujRjRNWqiXTsuCWUQxBR3Th13dH2Jti4u8RcOiKE6wdDejtSbjsnb0JZSxm90IdYFXT8EWypFLD\ndBem4AdTeXY/yEn/P9lBf/v7ApP+IIqZvCUa/Pa9b+FqPHp3dMj0UuPbuqP+kx9+j8tHTwEInR7f\nekvy4//0zV0uvvdtAP7eRy+YaDs/eyVx+SrPvkDnxZUjNcFSFbrLtxGXB7LbnquF8oMXS5aZtOew\nWLJr1LnqRdy5LkepZNJlFEo7YyWIibqwatS0XxWUjpjG74Yj7v2y8FfcjBM+PpZ+93cl7Du4VzFR\nNiV3vs2sJ5bAPM+JlGUrmbg4voThrJKXzB6c8vxU2n4xfc4RCmO+PCcfKBoxrOl66mD2FR9wtiLP\nZTf+7qtPePaZOCvjOuH+LXG6Fl2PnXZNdaemfWOxah1di11GrrT/ZHvOqc5ZV9dT0yREGma0notd\n40vrmlpDw1njU8ylf6WGfUdRiDPR0HmS0yo3BrZi4a7p5CyLE/mdyeXaenLJjS1pT5TeoD8Wy3Qy\n32bwi7KOnpzWLFeyNr6spfBGKAXXNYw6Hv2JxVvKQFdZhac+gzDyyDWleFG0tK6a4Ik0Pyoqujp4\nseuQqUe626b4muLbcwPO1DQ81izLmuf0FYW0HCQkOqilbchSybhbDjM66l0PjNi1wob3+Zt3xZPo\n1KzUfu52IM6UFSeQhfmD85RJLp/PqgsSI9GJ40lIdiEL/dsfydn6e9MzQo2iuOaU9JF48rumJeiI\nInvfu6BRbEGtFF2HZcGi+Rzs7ClQJok6bOt4Lo6nrHL1ds/Fj+KVJd1E/j6OPFqrUZKiJK9P9ZoW\nT/0S47GMyeqypqPe9JVjOTqRfjyYXXLyfWVs+tYvsaURk5NM09Pn9xgqXDm7zDgsRCkYN2IwkY3B\nr/ssdbzO57LIf+fRZ/zWt/8pAB8ffMJIj0dFABPdGOK8x/YNUfB7PfHnlMWMx0/Fj/Do4QMqIwpk\n7ixINNPQlj38NfbAkyNBbAxdcWFxVM1oV9LvcifADzUjdM3tuVUR6CuVB7DSE+bh4ZyLWjeUasm1\nvqat69ztjCfspZobsbtNHMsz0sAlP5T+f2wWPHgpQK1CafruLANcIxuj70ZXnJDb4RJXc2xuTWsu\n+qL0vqxsjg8b2chGXpM3wlLAQtu0VAtzRUW1NCXbXeWc242YXmhiy4WlakQ79nzNpvOCK69vt2cJ\nQ81UrB1cI9fM6xWPTkXrnhyIWX+S+wSZcDb8J8k91OFO/MoQIru8OfW48NTTvr025eCLXMyGNcNx\nC846jm94qvDXUnPiV7XLkR55js9Kxj3ZSbP9Ec/Phfvv6YHsZrO0vkrKmS1WfE+98M6LMxKNoXdp\nub8tO/eeWkcv5yl8wVK4pbwInV6Ikg/TJyPX/P2LXHblh0fHVMjzTmzDta4m4vQDGo0GFGFJvKdO\nMDWTMy+gVKyE7xkyPVaczUu++0DGduCMGGfS1/NWEI/x1GfyvmzBjw4OsX2lK3O3uDRrrMecsJXx\nWGiyz/nygI8P5Thms5oP5+pIxuOGHpUeXjR8TQwufvOXxSL46PkTHj2RI8Ph1CEL1ol3GT/URCMv\nfMEHQ7n+1jU5toziAb7iNwIcXizFhO93BySapRsO1QKbgauRgZ4Pl0pj8PC44KxSpGSvIonFeRqX\nsuMfvEpZbSuCcuwSuDJnbuzQqLOyaX3mkWJnjPzus2xO9EIs3XFSkymcuaktdxRZa3otRe/fHJn6\nUfJGKAXHGJIgwK9cjpQwNHQ8Al9BI/ic6MTsRRmFZpltDZRnD5eJeohDD1jIhKcdh4nifPw04hvX\nlbj1nprlnoenmiDZ2qOOlK0ngFGiXIOmxWoUJNAzuaBgrji7P+8HDoFyJromINIMxXL9994AqwCU\nV6Wh1d/edodEA12YUw2JuSmOgqnGvQGZZnYmQYajJnNdG1pfyVXUA960r+dJdgNZ5HE0wFF8fdMd\n4iyUY1FZhXqRT3coL+wkyrg9Ej+Cn9T4ep73Ih9Xox2uzk1bZthKlEI/GfOeEsH2oimxjuGtGxOY\nqv9goNGOuuLsWF7So48+ZDmUyM6vfmAwehafnlm6mkmYX8i5eCvZ40/dfVdG3rQ8PnkEQDCvKHWz\nmBaGQsO9F620c5VFvFor/c6YbWV5jkZb1Hp0G5klk658v9tTAtauIZsrD+ZlReJL28ZuzVL9X1sa\nIseZ4xXqX/ADbkyUX/G8YEfnbOpX3N3SkLrm8FQnZ3i6SvLLhua6snGXFlvKhjLaus4v9uXY6Gn+\nTGFmbCssPkk8zIW0zVnOyNVvgVfSXWp89UvK5viwkY1s5DV5IywFi6W0JWkJ/koTbWqPo0yJQ1KX\njiOatNN3yH0FMqnjzNY5rtKJF7VlS3kS3dAh6MiOfreIqZRLb67sy7cCH6OZZ8N0zkOl+nbdczJH\nTLxBXdPuKAVZuC5UY16DA6wdPMYNcTVD0x11sOooXBdTYb4iU0eWH4TUStd2vbfC1azFwX3ZXXaP\nU1q1fs4Dn0lHuBfaexGDS426zFO6VtmRn4q3rGxetxTevikm5/Y4YqHOrjos6S1l576vyWW+/SqT\n6wobj1z2dHNZ1jWxozF9Y4iUBt/VBK7xzpjTXKyYQTDiopEd6uZwh87OHQBu721zeV2PPLpz58UZ\n7YeSfVof1ey/JdbGcLdLcya745PZZ1wfKC297sB/8p1doi2pK1RPLxj8rtz31cXHoAlvNgqxHbUc\nMwF6jbp1WUqkAAAgAElEQVTb/Ilt5a6kplTCnaas2VcY+mi0y/2B9EvxaARZTaTWlFfVjJTGbmcY\ncabc/utiMRMn5lTxH3mWMUrkXm/tbuEjayB3LTtaoKdwlR80zMg107TvpLiVck8MQ/ZSuUeZ5bR6\nnBxur2tZhGypJTX3ayp0XcQXOLVGmlYOi+TfDoX/o/JGKIW2bcnSlMJaHOUcnJuGxl9XPzKMHV0c\nPZc8UjINBYS0aUuu3mJbtlT6koZpQ6bmYDwJ8NUD3lfmoqATM1PU07Onc2ZLMSMvtwqsEo2+F14w\nzuWza5SByPFo13E/YzGarbmzFXJXcybG98dstXIuP1TU4HDugJK6vCqgF6sZ6U94f18WxeEziXqc\nc4arbu8PEo/OWM643lsjJsofOEuP+ewHcr/ckfO7+bwQkshIXsKumeC44lTIXq2Iezp2Gv7a23YY\naMZk5VsG6+zEMiNbFy0pMozi9UONyFQmoK+hwNJp2PdkjM2eoVawlOnFvGXlmpWSm1wsDcsbykCU\nW3xVzgvbXEUAOouKxw+lzfsdPa7ELm9r1MkrblL/qubBdLfIZkIE+2rRYyeU+5lAIjyj7RnHlwpk\nsit8K329P3S4e13uPeqHjJREZrmStXCc5pxoKDNuZuw6cm3ddlnlEg2oZupHGLiUumG58xJfqdz3\n3YJWI1evnJxMmaqa2efHnUqVwnRe02Yyp01eUKjvxvEM/UiuiXNF7E4SZrW07fzVcz46F2U6nV1w\nd6LENydw3luXiflysjk+bGQjG3lN3ghLoa5bzs9T0n6Fn2otvrrG1Qy3bt+unfq4WGL1To+UTvs4\nLVlerneuGk816XLLZbSmxAo9tpUFd6XddgjwNA6+vR1dwZWbkxFtIjtJcO6Q3xSN72heQ5j0sJqF\nVvst25q1du/2hF/7QErd9RLDjVAshaUrTq9uEPJyKibz/tOCVEueXX83wQ10Z+sLZn11kLA100iM\n3+HmroJ43C7drTWXQ0W0o1yDSjgzdV3smsEaw6Avu0QUwvxC4bGZ5ZVCZe/21fysoBMolDzoXsHG\np0VGoVmSaWFplSk7VVZmwoxCOQvctsJVXovBaEKg9+vHEyqlgQ8aOZbZ5y+YfldM+4ex4c901BKs\nXdxYozZbCdWlRGWeGMEbfPMsA0csqPF7fb7xVOHd7+/z3SMtkfex5UR3bG9LcxHOxvTUMrm8aLmr\n68Id9rizJWMf9AISddy2WiLQX0Ctx6M26ZIF0o68LTjScM7FQNmX2xG+OqCTbktH8xkap8YqB6O3\nyBjoejldf1eUKL0DaWK5uJS11WYukeY23JjEVxaG31NHpHXAyrWXq5pybdEtW9I96X8+8jhc/GTR\nh39nS8EYc9MY80+NMR8ZYz40xvy3+v3YGPOPjTEP9d+fDDmxkY1s5I9VfhpLoQb+B2vtd40xPeD3\njTH/GPivgX9irf1bxpi/CfxN4H/8t92oaVvmWcZB4dAsRSt3HAdXHVw2dPDVaohtfUUFhtYtzEtL\nqtowbysCvdYe5YwKOZ+Z2iNXfoZUvYRhkBJpfcFq1Mc2WhchHtPuy3kx74R0wnV5L3U+hgGRhuai\nfkNPC8je2x7zju5Mnf6AsToHo75YDH7r0w9lB3pZXzLqr6Gt1yhraecgl53orUmKrwla1+send5Q\nR2tFqckzy/mc7ETi+JNYdp9R2CNrtPqydcBK2/zekEQdn8ssww0EN9C4ShU3hlDJRb2eh9EMv2xx\nzFwZil2TU2rCFpEiLIMJHWeNw4CuFpDd6XdJ1KFLCzZUUlgNna7KGY9TZXs+eMnpkYzF+GZIT8lI\ne+l1DhsJazp6zs6CiKE6c/02YK8nlsncbhE/kzEaBEve0e+dUv0k7gnhTOZ9LwoYb2ldhHGXviZS\nBY7FU6dweaG7/5lDqpbC2I+5ua+1Hbsuvnbv+aHiNPYu6GuYsq0irDq5kyjGU5+CV1hC5biYdbS8\n38K9orSzFxG1XRdZdjBKi1e0Cf01vUakVmy9pNEyi65NqDRBsHXPuXi1DlUXmJ/wNf93VgrW2kPg\nUD8vjDEfIyXo/yLwZ/Wy/w34Z/wYpVC3lvNlSV3BfJ1F2POIlJYrzyr6WrU3sLBcVzjRWnwXy4ql\nDupp2VBpvsOrpuBEYan3hz0mSlpSsB509yqe7VdTTrXaTncXBodqBmc5oabWNkrOEuLQH6hi6nTp\nKSHJYllSpnLva+MtEgUINcq47HstjSoevz6lnSoF1405tfi1cB2B+44cl26pxCNdh9iVF/2yzrFz\ndcYuFiwUC9FoHsGNYcxLJToJqgLP01wFU2L7+kI3BUfHGsHpqIlbdkm04vfF+eKKuyVdZFcEMNaz\njJWEpFLHb69juKMVrJ89fMbqQPAE/Z2AZKy8i70dllaUEKqY/vmTxxz8K0mnXoUR4e9+H4Bv/cav\nYxV6nicZ20MZ23yqzuN6xuJI2ty5Y8mnct/qcMpQAVfDnYZMjwd7I2l7VUQ0Cp8u0pxtIy9WZGLW\nPCzWaynVgbxSPElZLLC64exth4wU2pxSUGmW56UC0j59nvPVfXn5w9bgaf6FG/TpKFiq6ITsqmM2\nP5N+lmEJK1l7ncDiKXmL8T08zUEZlDPikRxzOgrwK4yDntBYmgBXQW1pFjBYrTlLfarJvyel8EUx\nxtwBfgH4NrCrCgPgCNj9Eb/5Qil692fRjI1sZCM/A/mplYIxpgv8A+C/s9bO1zF7AGutNebfTCX7\nR0vR206fdFmS7K7Ldxsc3R2xYDR7rYgsjeIJZmsyiramUE3ceC6NJqjUlWGqPazaGn9Hdoqz56LZ\nV6GhdNYhsgk5EmNP4z1+qOSoXw1H3FNzr1a+ga4P4zDQ51WgEFzGKbXzuZumWZvxGvZL/QpXy7Qd\nmYj0VHZV+zhi9oNPpH9jpUSL7vK2wqq3ZilqNHCUORw9Fwzv0+dHnOmWPqnkvkunpqMmunFdLpaa\n3x8MiPpybZrW9GotLKLEKmHbcqQw8IvGxQ/VAqmnpIrk9COfZ/q8jqawVnXFUsOUF0XKUvv07FnI\n7UDhvJ6PUXzDspa/n/6r53xvpaQ2mcf44b+U5/Hf42vIeTSLOVYiX9PKc18cr6hePJF7HEGmJeTm\nRYljZf5eXEKj7UuOlMimLjBab9N3IdP2sFiSNtL+1nWwaqkWpYStz72KQkOBT8KC/pm0uXFHtNrv\nVpcpTsWJMirvTSxLtSSy2RmNhqpza3ipx5FKk5lyN2SpTsljJ2YQKeFKFNNoODEPY1y1SNqukgQ1\nIU2x5rWY8UhDnC+XJccK9e9HHWLNXP2y8lMpBWOMjyiE/91a+3/q18fGmGvW2kNjzDW+RAU7P/DY\n2R9x72zF5UCBMGXIqZJfPLUliS7ejh9BpCmroZhIw2FMOtOBLHJSzYPwIkuuJCK11xLvq+mumXxh\nBotQ8ygmPltaVWg63eFoKanKnTxkYeSsXaspZ8KQpiOfE98nV9ajqqhYpppp6ZU4ygg81xTb4WrM\nPF1ThFcc5LLALr9zwtGRQH6dZ1owdLDi+ttSkWoRDYh70s6PXi04eyX08w/yS1wri+axwlpPZylz\nfZHqHD5+8EPpx1st+65AiUeDiFON4Hiq8KZpAZ7049VFwd0tjccHPrFCt18tVjQa5XmSa81E/4jj\nKwVRcDCTs7/3bJveUIFYb0VkxzLmzYUs1t87eM7lSvo0dw2LH0qfXDegVjh2PinoT+Xzy1Ta2y+W\nfHQm/h57knFZSzu/st8FPa71+h4fn8hz4lcSvbiWDHG2pB99r4erjEzGRKw0XyMvGkJ9OVdz9ZPM\n6yvexiDp8ELP8KRLbu1q1qzuCUVrSRTUhTJpgRzBgpkcV/LQMlTY/FQRUh0n4DDQFz22tCNRpkEU\n0VbSjsBWzBTGHaSi6GpbcHkqCvI7Dw45UjzFZd2iRNKYeBczfB3Q9uPkp4k+GOB/AT621v7tL/zp\n/wH+qn7+q8D//e/6jI1sZCP//uWnsRR+DfivgB8YY76v3/1PwN8C/g9jzH8DPAP+8x93o8Ax3EpC\nRvugIVoq1+FClCQJLq2az0lYUFyq2aYsuk3b4mssPaot4zUJC5ZEE57Oly7pgZjMzlh2/t6yxu9o\nQH5nQF2o+2Pra3z1W+I8m97YAV/ZemuNOIQuXT0mtQ5X+fapC7VaEOHEJVGodKHsvMu2oe1JVuPd\nxGH8rkQa7KcL3r8rbpg8U37CniVTh5Pbrni5UCdgcci0kn541iHVaM1MIeHzomClKLfGwlSMET47\nfEGgDtabd4eUhex4tdYf7BiPRkvs9eMGo9bWaNwl0h3I6Tp4Oj+RFk0pSstEzWvfdphpZCgdW8Jb\ncj/XFngDcZJ9718IF8J8mdKoM7BpHC7V2uhvRVc1FwrbYbgrzsoglPlo51OWh7JDz+eWW3vyORle\nI7mjdTEPDMMbSmqyVMeoXzJRc75uHUq1ihZujquO6cXJCk8zLWdqlhsvIFBkYnaREmjRoZFriBVl\nGa7h452SjuIKqjrC0RJ0/W54FRHzMbgKbx8r4Uy7qBkN5bteL8ZTJupe7tIoGjZ1HC7VUT5WyOpl\n0PAs0lqSgxhf+Tj3g5D+GvexM6dvdYF+Sflpog+/zeepgn9U/sOf5F4OhtjxGHUbIoXJrtKWEx3s\nIGyuyr3PcWn13O6uC5200FUP6yB32VaP/KIN8HUCwiDiXI8NnoKQtnf61KEsuiJLWUw0U++tPtdv\nvw3Ae4OEJlCwiWLgz+bZVTaiH/sMW62m5LTUF/LCxk5NR8vZuwrxnR+fc6FnztFggK8v+mgU83Ap\nC3q3Ly/3tLIYDfW1fo2v1PCVa+grD+TRxTmFEsGeK5Hqsmxor3DODvOpRDMezA5x1Qfzza/fJlIs\nfqhkKpnT0jTS9tkrh3UN+yptr5iFttwOiXSFbKwwacdSF5JROV+2mJPvAHCv77C3I2xL0c71q0zE\nmRKtlk1zlT5iLGhzmCQJtfb1MlnS2ZbFXcWisLOTPm+/r5DoZ5Zc4cpOWVCeix9g1IyZx9KXsRLy\nnF8uqDUVP3dqGlWii8uMbqQ+o35FrePZWN0ArL0i8Nntdehq1MUfeBTKotLb1/VYNIQKqw+qkEhJ\nYJsgxKpfaVXljLVealzr8XeQkGtORcevMKq8HK8gz9eFZ5dczmTs7K6+F3WHXS3Ztd1zuKOQ9mdt\nzbYWC3Y8c1UE58vKBua8kY1s5DV5I2DOYDFtQZi4RMqbQAJbqXIquiWuamUzhOF4TUUul05fXHKo\nEQnf+ByNNBKxgEwdR+H0Eud9MdcmWk6dWwNK9bITvc+OxsQn33iPXa1U0mz1KNSUrLUke1GULDVe\nfSsqQb3Fp5eGhTr5VoenjG9IcpNRopNpZZh++7cBOLsMCJRp+On5OS/OJKKQa83MMvK5e13a+9bd\nbTyNm/eDkFOjO3qa8/RMIyaaeWdfo39pmetOcpSmdPgMgJMXd9i6IRZSo1GLjjV44239ruVE4ea1\nSeloqTvHjwk0869JxYqZL2Ka7hqzMaZ3In/fe2eX0a6At7yOi2elL9/+WByRtrVcGZqOg1VeAGss\nQVfuse9v86hVx2smlka8/U26Wuov3GpBw9ll22NxKUlhVAYy+b7SI5h1W14uZdxMVbGlx4TIaemM\ndMQWFqsIIaeUcVnFIT3ltbADS3ipgLnCo7FrYhSt93i5YqYmvtONJZsWCFNDq4lgg9IFJcRxlQ6/\nMiNcdfg2/f7VcaSNXbKLmX6eMNSZ7dyR40CZhZhdscZuzM4ZDMSa6k6nLDVCYV+4zI2078vKm6EU\njJTV812PULPUuj2HvoYLj04WtOqdbbsJwx0dHM2m2/m6x5MzVQRZxUwBKKM9h1b9C93YZ1vNzr7W\nB8jaEaWel995PyK8cR+AW/6IIFF0X9FQq6IaKvanrBsy5WJcBhHXuuI7uHCm/OFTWTTvfitkW2nC\n/UTOpJNthw9+7U9Kl89LWiVOufjekjBRj7P6QKaVw9u3FJW322WpSLtu0XDuSKTiIC04U4IT+1pq\n5Oefi0JpzfOM3z+VsfjWi3O+cVMUwJov0PgtiZa77wYDdpdrc78g0WxOm8SMtTpX7Wi6cRGS6rXZ\n6ozJB0rWuv0ujh7dLIZTfSEfzX9Xnof5XCcEAaGa623pUKsir7yWkYYi13UxbFwyfk/a093/Gt5c\n09OXZywnEq3Z9q9hfI00+XocW+5RHcvnxy8/pNZwaLKXfF5FLDRXx5h4zabVBoRKVT8a9om3zFU7\ncTQWuc6z3hoQKzjN8Sw9V1/0IXiemvNVQ6yRD6XJxLcBriop3w9ojda6yH0aZXLyyorRHVkj3dEd\nAJbNgp5SCoxHd+l05Rg3ntyj1EpjL9oTWg2ff1nZHB82spGNvCZvhKXgOR47vV2cGmyieINlQKyR\ngXEIp5pl1yEgv5Tvw4Fi53d73FI+hdNVTaK1H13TZTJSVt79XQKl40pjccikLwt61+Re85NbfO3G\nN+QZyYBAnWtF7ZKo6T7T6EPoJlRaGv105eGoI6f1E+Yr2RHOHxiOFQo92VOOgTZAqQCwUUtaSLGX\npV+RaOnz7o489+ad62gQgcpm+Is16tPjVD3q87K8IlVZHxoMhiv8mIWVOhJLMoparvnB4TF3TsUq\nGvWVb2Ho4mg0xwQJRjM7Iyoa3Qm7cUx2oUzLyjjsXKaEat0UbY9xpBYP21SZWj3nFf/oH/8DafOp\ntCGKgqsKWcNbEwLFgmAclFKDfh1w3IhF4l7+IQDHx108HQvrGEIlVjHhDZJXcpRaVnOcTD7PpvJv\nnvmkC6m4lVYFS90Px3MXX52LeexQ5rL7u9qPnuNRacw/zjv4ylMwbi0XHS0YowZDajx8rUbuJyG5\nQrrDriEyukaiEOXOoTsSqyIygDI0eysHo9wZzWXBza4yO1/WxEokxLk6GqMWuxDrYH//PoEeH4Ly\nGafPxXob9BZEF2IVflnZWAob2chGXhPz+ln0j0eSKLHv3HmXclEyU0Rg0mnwXXUStjWpIujKtsWu\nMxQV+eYHAYE6arxOn1pDfUeXpyy/AMdda8D1njvsBGxtyW71/qDDi5k6dbKalVJfrVzIcmlHrT6O\nv/2X/hLNTbl2/9whvSm7QG81IhrIUx4+eAnqiNq7eQeA5cWK7z0UPMK2k/POu4KaxPc4fCZ+glKh\n3bvdAYFCVV+ezHDVAVlnlulcxuKsLHEUuut2NNx2XJGWYlWFvZjPztVJltTsqOXxJF1eOXQ9ddS9\nuMxpNOxr8TC6LooWan02xjDUuHmrc1AUOYVaK6FnrkqoRZ7DvRuChfjluxOqnuyK25nsiHYUcDGW\n3z38Z895MJNsz3/5259g1UnmFA2ZIzv94kAss8+ePeOv/Y2/DsDs5Su6imIMW0OjiWlZ1nCuSWi5\nOqBb21z5MHzjMdKs0t1en6/eE2tk/8Z1JoonOFc4d3pZ8um58DScH6e8XGg90brhb/wVwejNpz8A\n4PuffMKBltAr0pJMaz82rSVYF3XxvCuGcU/nwHUgX9cOKVpOteZjUbVXWI7XRZ3uxmWg/YgDh/Ha\nWetAo87My7yk1nufL/Lft9b+4r/hhq/JG3F8ML5LsN3jqDwlUIIQ25YkiTpfWkukTisThHT0WDFR\n51yTeOz09PPuHbKXssCWD3zyqbxstvFY2+OBFqBtLSjZMc6wZqTm2QtT01Nn5d6uw/f+UBbpQrEJ\ny+SAd3Y0ypC7/MFnsvhvX5vjPJF2Pj6/wHiCe1hqNmS6uOTTI4HdvgjHFEdamHXss8jVsbeUo8bx\nbMGuckp+dDalLhU34MBcyTTKsqavqcrJ+iV1Frw60zqKRYurzthbt1yWSrJyNGuvoLa+LtBFUaJB\nFjpxS1+dU17b4mhugPUdxqoUVop5qKy9Ks/ejx2sOm7rouGFes7vdX18jY480NyPrw887r4vg//g\nn6QoEpw6PyHUvJMm7/BbStXOiSjTb//9/4vzQ+FGTGsXmyhVmuuRKwt0J/GYuqoMNRpEa64iHH43\nonJ13K71mOsRy8QlmY65Zj3j9lruOpF+13CqNVqXVUtrRFksjcxdVVWsVCk4rb3KYGxbQ18VVtwN\ncdp1no4WMDIOlT6vyQwXunvVaU6j2b+vc+zJBV7o4WiZg0nPxapCnkQOrpxAOH/YkDYbnMJGNrKR\nn0LeCEuBxsKiZbe6ZKkJUbvWQy1i6g6UpeivvW6fW18Rk//uWFCHmWevrIbuznWyiZiDx27B1gPR\nntNOy45CiNsdNZMPc2a6RU1jn9lCtHyegRnK7vHu7T6/+7FYG7USsrw4OuXe+78hjds6Y6Lm9aoL\n+xpOK1+6bCnfw/lCdrmojMi0KEi3E5Aq1mFy7R2ydWhNjxyP8kvU10nbBCidBC+yGftq8j8rGtRK\nZuFK2+9sBXz4Qod1XrLSuPrg2hZnKzXL3Yq4o9Dlag0Jr6nVEdkNHG5o/Qbbg2Gm6MVug9Gq0S9e\nyo5fVB5dRQp+sLfNVJGCTx4seHgsYT83b+gpEazR+geRM+RXwl+Xht63hEYSe04++R77k/9UxtCm\nmOJjAD7xpL7D0Ytv064rjIdwrydr4Vs3u3x2qZRvrsVZSv8WrQzieVyx18jRpfNuzDuZ4lB2K+7o\nDas0oz9WWPGa1yN0yZRnY+dmC4cyf0FRcnwiY75Qc7/MSxq1MIexQ6hMy4W1bCn5yuhaiKfJfQu1\nXHvGAw3Fh07A8kATwi4WvNLjb70qrpCJwRq70XPZU0xH2LRoVgCr1rKrjM/lk5x6bW18SXkjlIJr\nK4bFAbUHkbIKOabhspaJ2XY81izpcSegdbUgqDLrFrMSR5mWk+MVe6EoiN/oJRzcuiPPiDNudsQL\nmyoM+lH7hO+/EEBPeZpykaofoXEwytIz/STD0/OZs+Z22d3hdKY8ek6Er3yAZw/OSCYC0rl3q4Ov\nlXwOtArVojHc2Rdv8dbWNhMtjDItPMKbkgfhKCx3fNFwod7ruG+YlxpFaQtWGrO/PghxVVmulFsw\nn7oMlfr+JK/wOvKM84MlZ8VK++Fydv55sROATuTgaSrwTi/kK/fkSNRGhr6WOC+znAvljTzQc+0g\n8uiqObwduIRaa/Ksn2H12PT4MsfV8YqUYKR4suTj/1de+L27IdWJzGn01tepFNPwvLpgKScFHv8d\nidQcpgPeGetxbRjihcpLGFe0pzJ/5Qxu6hiN9uS+VS+nE8jvtoaGW9ck2pG5n5vLVZkT65orNESQ\nLUrqNb9k3rK3PnrGHtWpbBbTM/n7ybJmjYUzreGmVpCaO4ZdxYN4JmJ7IC9s1mhGcBgQRDIuo26X\noSOdPowTdi+1QK4D7VAUbq1Zq91uw+1aHvjSFtQadVvmlr1XmgvkQv4FOoMvI5vjw0Y2spHX5I2w\nFJrWMk1LSlI0kY+FW+Oqgpu57RV3wsq2RIdy0fGB7PJF2iG4r/RZzjW87gMAhnFCeEuz9toetyay\nU5yoiX99NeHBkcSuz2ZzLtVb3DqWlcYoLkyM0axEo6XjvSYmWpt1BjJHKzePPYY7osXz5QQ/ld9V\nS7FoJn6Oq8zBkyTCKLdjL2hoWi2rtqfw4k5BpHwDZ5khVFixEw65phGHtvEoFdexVJ4Gz6mE5Vfu\nQqEEMKd+Q6Wl4gqnoFRveKCJOF0TMNFMvfE45F2NyiQDn0pTVL/74QHkgrbr6TEgjBwaxYt4scFT\nJF3HDUCdw8uivsJYRo38PmkaZoUWjplu0+xopClwWadKudNjTo5+B4Df2/4uALdfGgbbcmwcdk85\neyH3yy5T1sXRop5L7Em/vrKtmZhmyO5Yy60tHXYVQ7LCB3VALsqQpNZCLY0eq1zI9CiRBBGOOiI9\nx3KhpCdPtFZohYP6/Wh9H0cLy9wgxNeakN2gy52J3GNWaI2QHR9XeSFubMWMfC0+9EHLq4eytnai\nlseXiqztiMXw2XFOk8saK+clZbNmj4ZHGqGqa4PDTxZhfCOUAtZi6gIvMLRaDr1TtaRfqJPnKqno\nkJj5ugDGQlNh03NOPpIBvjlZstQU0rQsqJT4suqH5GrO9zUVdit26CUyGcvZAqsAk9pYEj23p80c\no/UD1wqr7PSZqbd8Ahwqi8/Qc1gpMUybLjjKJEMxVTIV0+kz1pRk1/GIC1kcqe8T6LmvVZ69SbdH\no/DorZMTFpr7sRsFn4OaqlrgwkCkkZFps+BEz1rndYOvJcnLprk6BlWFxY30ZdGXoOM7bGuOxlvb\nQ/r6onecLi8O5OXNZjmpUsN76uRoC0ukEYzA99EoKuOJi3co97PV6gqGnasn/NKr+VfffwrA7UHJ\nUbTmoPQIHHnZsvOWv/8d8SXUj4SrZ1k2jDQ/Ic9WtEoqdP96F/90rRgNpRbo2evKBZXXkqvSnzkB\ne3rki6xDxToN3rDSylGtzkdd1bhKrrOM5ji6FgoMR6VEHWod+27fo6N+GafnMYxETe0MuldlCVwb\nkGjIq99XeDUdSGSTiQnY0WNHVbeM91Rpd2oGHa1UpWS8ZbniUGnmTeQQKbguszWpwt8b2ivl/GVl\nc3zYyEY28pq8EZZCay2rsiK1NT13zUJrUBoDgsBHLTGsZ3ADpYFXr84BFSMFlbyql1eFNy7ajCgS\nx581Ho2yHBcKTBkPhuyMZSeZXfosqjXHgLliM17l5gq8sw73lrMLuCVOyzkw1nNOlXRZJyMtq/oK\nMnuhAJpRr6HSZKxOHaKcJmzXJacLDSPo0SCtXTpKXlLEId6OmPOHx1O21alYYXHUw11pVuMidyha\npfpuDJXiBprQgPJYlo29shoCtRiubXV5eyAO2ru3Rgw68rzZoeVSjwyprSiUem6hfYp8n45aY3EQ\noIhwbvd6vLsvO/4PHxZk+jtPxye9LPkw1PFZPmeuALHl8Slm/wYA/6J6RPFEgEFZIW3wbXnF/Via\nhH4kE7U96jLZ1SzPvCHQxKVupuXmFjDTwilOBVWlrMyeWSdaUlY5VFrSTb8zsUOwlP6ljSFV669p\noGIX1GQAACAASURBVFInb62O1mHPx8s0+hB5bCmEPAlCulqlmw70la4/V+vBaYKrEgZu0KHty/qO\n8YkVsxHWFa4Vq2C9RkZ5y1Rh9VvLCk/Xy3JZkypxTFU1mJ8MpvDmKIWsblhZg6Oe0l7XECoxxbCB\nbmeNwLP01ft6c0ew3jurmFQXd+pknCpfY1WCOs656wmlO4CWDSDwA97Zl3uUywysmvtFS+nLxES1\nQ6UcfetU2ChvafXcXlUG1tyOiwzW/P5thqdm6bZO7LDTpRfLggj+f/beLNaWLE0P+taKOWLPw5nv\nlPNQVV1DT4CN21gIm0bAgwUIHgBZ4s1C4gEMT0iAZCQkaF7wAwgsMDKoZV7cnpo2/YDt6q6qrq7q\nqqwcb97hnHvGPe+Yh8XD/8XOzOqsrszO7uZaOr+UuifP2TtixYqItf7h+78PGjFb8grlwSeCsuJ3\nIuSIqL1gu2MUmQCditCBT5Sb79iYX8mLd7mWf1VWo1It0KlBnwtW4ChUvA6oGkx8wyO4aX/g4sUH\nch3TqI+wJrGMtYDN8OjIizB8XV7ILanzXa3ghNTr9C04kBddNT6+vicVlXKm8WQrc1sy9mlUg81a\nPvvOJoehLmhoGlSVhFuP3rrG+hF5HGeMnac2SuqBHPsWPGpQvna0h6ArL4hXFLuuygDyu/n1HAPm\nCQ61BR3wfEmBiqCfwtIoOB8pWPmqbKQMaf2iQM5VTzfN7jkatlqhxkW3K8eyLR8Oy1VB5CBk+OQ4\nESKGNBbJVJqk3rF6VZ4Fxc5I3Who6qla2seUOa2GFTrs+8hyuU/P1i4qso9FrtotzkmDj5HufDa7\nDR9u7dZu7RP2nHgKQNo0KAuFOVdo23LR6ZGkIrTRY+LI9X24VBtqd+AmHKIby67z+CpHs6BbigZ3\nyIGQ+l3sESeumcgxrsaEYcI37ivUTD7l8QYfrGVn2mxKGEKMmQOEG3bRa1dfO0BSyThcy9pln5M6\nwJSUZYEjtfujyIZi912ocng1gUx1hTUBQLbPXg2j0SEMNgsamD53/xtvRwBSpA1SEpyUrEuX6wwR\nPQK7sXZMxA00NCsOWutd4q/PpN2dQRc9xQpI5KFRbUeoi/5YkrxNp8IJuRU2Pe58sFF05ef9OodD\nT8h/dYRDUs8djd/H//4twSTMb2Tsy9oAhGsrZe3gup3h/o5PwS1ukG6pEMV5vdsPcEzuw/HYw5gh\nz6jTgU1aNa383e4fkS5e70VQDLU2WQWXUu3r2sAicEhhgJpVnBtiE6o6BUic4sUGHsMxz9Q7YhSP\nFZd1VsDnszDdc7FHHc+OChDQAylgQzFUaugduL5BTdi5Lko0pP1rtAXTtJ6eBUWSnybkc5H5uMv+\nkUenSxT0WEyRoaDnWdcNPmfx4dZTuLVbu7VP2nPhKUApNJZs6R6hwY1ngQsf7o5cjKgNaJwePKLi\nBh3ZgW0/RaPbGvwIH5aCPRgZg7IvXkV/z4XhTtLrye5yvV7DYqOK6oe4m7On3wt22gPn3hyaCUPD\nmDR3DArGxmFTQnttYqhGbtoOOAfOiPgEnrfj9sHNGo4JYZHAU9UGHYdNTEyA+ZGCxzjbSXJsCG11\nrM1uR0S+Ro9baMDum7VVgzQGSH0g5O7Y8bUkGwFYykZOnMUJr/Nup7tjtk5TFz16Jh4UNBW4R1G+\n0zFsPaxaZ5iz/BV4Y4Qs2RWIsH+XiQu1h689FBq2t0kPl6cFVCuYoC1YzAFsszkqS7yJ+dNLJGy8\n6pMvY9L3cDwlMnFo4Ex5T6MDKE3GIj2FsmQ+DZ+rYJ2gZMJYGY2arEiRlWLNuWuCGprlviERjWvH\noNOK+vQUonPCpmsLDZO1PuHqttNgyPs76FiYdGSuOlaAityBtqNgc84DSqkr24JHT7iqXSCR8+We\ngUtUaw0bXig/L9obXMbwR0ShRnqXuB4rhbjVfSiB5mP8Gp/FnotFwbYd7E+nQLJF1ZeJOqmtFg4O\n3e9jQBe20h2MCXM9IL13kvZhiBsobtZ4jcCUd5sch4UsJp4zwuFUfs74MHaHDQq6zH5do6YUff+4\nhnPJrsvTGldM5lVtZ+B6joKUcKoqoTO5ofMyR5cvyGAyQp/y8F5XKiDDjo+cd8iqAEMuvsDOsWVP\nQcCHuCxLuK5cVFInO1e7sm0oPjTGqtEEH0GTAeD8GtiwVt5VFkwbgth6R1/X3djYEt68N6UAa2Rh\nQTp4f7iFJnipDEMMCQQq0gLdgpyILqnFixBuKS9jNG5wTY7+d5+d4nAjSVwTW9gQL9EdyfUd5w5q\n3ocqcDFlT0iynuMxj3F5fQZVyrV6oYzhQTfA6IAvoRvCr5nV9x2ojcyhdjUsm7qLXbmnaW7BENyD\nRsEn2/PGaDhNC1iq0XADKNmDoiwbk1bQ1a+xPyLoabOC64k7X2YCXhr7Gl3qR3ZcZ5fErWsFj52W\ndmijQyn5NXtKTF7tKPVdVSHl9xwoFAyDdLhFzsS74ULvun2kZKTZaEn0AkBjGmyKtmX8c0cPXzx8\nUEpZSqnvKqX+Nv//gVLqt5RS7yul/g+lWnrVW7u1W/unwf4oPIX/EMCPANZ+gP8awH9rjPmbSqm/\nBuAvAfgf/qADuBo4CWyEXgc5kV3VOoXNJNnYcQFXPAWvMbBKqjFzh7aV3qHqXt6PkEX3AACRmcFS\nsmP4Ewu1xWYcItGSOXbdhzGAYdS6yQpOyJJkfYjZleyEp3Q/vRqoY+IRVI2KrvTsZo5zNrD0LtY4\nHshO6QXyu4uBBZdr5KTTg0WcRWW5sKs2uSTHSuIlrhdy3vcfn6PmjlHWCh/1w6VwylYmXn7Tg4MF\n6/FZbtBlZ51tAhQxZcq8FCGTZ4roxx99sEA1k+M6HY3ZI9bEvQ7usGMSyxpFREgvO051s9lBsOfK\nwXdPpUno4TsN5hNp7HntK3tgpQ4hYeC+9tFLZGyZ66BkEm19eY2rRMK/99+5gkX32ecumTY1Prwg\n1DowUAyr8mwDsDNy3FdwLJLJJkyS1jY0uxPr7Q1iwrvrpka5ZGI2q7BiIpFyC/D8Goaa83uFi8E+\npeeyYEf7V1ttQhkYkoihjEtsFuTcaBKolm1b+zvdjpp4k0hbUJQvbPpduFQ3tysLKWn/ttsREt7X\nGzaM6aLGkjoal2mJbCO/v8krtFXLBj9GxfAZ7ItqSZ4A+GUA/xWA/4hScv8CgH+bH/nrAP5z/JRF\nwdIa/U4Ax03BRC5cu4BLoo80Bhwy59a1QVrJg7eriftj2BTh0LmHXocvRdyHx5fp+nKOq5U8pO89\nohahadDQfX6z19vFbEGvh9CWh8kyHfTeEzKNg1yOGxsXDjUD68bC2Uxi4Pee3CBfSuxsJTacV+Ri\n5oS7Hj0r0RsIMEftZegNJAxy/AoZwUvpVr7/4fwpHr4r47y8ynA4JU136GJP8SVMa4AL54Cdob1o\nA0NZe1c3uGY23b/+CO1a1SUsVmBa8pZ8W2NRyctWrwIEjYxj0gOCfYGQO9MaDtuEG+ZU8iTHOdlZ\n9jYJcC4//8JJBy/+BSH5eXEvQKuG/rtn0q/yzcsN+o48xJ3I3QHEkqzB2bvS+53d3EATUGYR9FVq\nwL6RlfOxWuDZpdzTY1UjdCWUODo8wuCOzPkdwqfzOEdOXMTbZ09Qp3K+NDYYEN5ddi0csat0yTDJ\nqjQKxued0MOrM4aSwRYF8QQZwzXfcnYMYMvM4L0PZA7fudxiTR7IhSkxopiRR6DeGydTDI9l4e3r\nDH7UCsqEeHwtL/0svsTpWp4/27AFfNzBIGA35LbAOQFL12WNsiUrMh+j0v+M9kXDh/8OwH8MoMVM\njQEsjTFtA/cpgONP+6JS6j9QSn1bKfXtvPp8/d63dmu39sdnf2hPQSn1rwC4MsZ8Ryn1S5/3+x+X\not/rRmaoaijLQkZqq0gr2IGsulZoIWWmNy4NDCXIwO41u1qiz4y0W9twyQtQbzPcgGIo6y3W5G6c\nLaW5prvfxdAn5NRRQAsJblYImFCy3BgHzC7XbQUkdNBQRjyOgSvKeZXba4x6suLvDX00Vlu1YFcc\nSpQcu+vF8IlWK90QWSzexuJa/v7s7DE2XCu3OsFy03bAdXdNOcY0cMmraFMAp9/RqLmLpw52VRKT\n1VAedw8o7Acty7Nc21vzGGeUSHeqNS5nMub+YIYccn2j+10cGfFIhkNSu1UNYnZzvuPc4B/PZece\n3ziIf521/i//aTh9wqYvZbzL1Rx9cnDmzxT0VDyz6+0TbFIhpZkceTjbyjiHe7J7jgcO4hv5npPX\nSHiv394YpFvx6Nx4gVfnEjY6P3MCAOg4wFVCL+zyAlvu6PEm3SFkh80IUZc8C3TFLctA2ZSe82Ms\nt5Sbqw265OPsaRnbvcDdydJbWsGUMp9ZU8Ei1thzvF145xGO/ngzQ3Imn33Q07jLpHFcr7BeCpL1\nOi/wLj3SIRvlTpJ0pwux1GpXHWsqC0Z9bKP9Ewwf/jkA/6pS6l8G4ENyCr8CYKCUsuktnAA4+2kH\nquoKy9UC54sCBV2kO5GLO3TrAq+LywtJjZ/ODZ4k8pBOCUbq+l28QPBSvx/ipCeT1jQZGt6Msqh3\nGPUZKcvjuY3zTB6UF8Mtoh5FRqIxONcY2iOABJshxUVX51fY7lM/MctQrWVsnuOizwzwk6c3ePaQ\nOH9bHtb9wMOgS4nz8gA90qT3Rg42Gy4KM4YMFzGe0OV8eLNFaRjvezd4kYIsbxyOMBizSsK8RZza\nSFsS0EohJSimqUsYtk7vOT6CPcJ5iclXYY0pX5RNaFATWJWmKX7nQ7knX21cjA7kPAFh0KVt7ZiH\n6sSCRWWmdSfCP/xAwrzv3/wGLKYonjGfM9/mO7GY/rSGtWb4tLFxdi4v4fJyiYhu8MsDCfP6w2PM\nbuTv8wDYMDwa+gEqLhDNeYUnFFRZs7JQXKe4OJVxbkwAxcrBauPgkrkWp1pifSPHo2o9XCdCxcrJ\nXjhEzfxCZSvcpaKWxRBFlRlsAq8OfBfLDR+iZymumFNZmBRTl+5/l809aYNLI2Nb1Q2KUu5TWsY7\nCv8EAeZ8xlPmxjzLRTyX+dQpYBO6HdkaBavBFbCj/G8+4+Lwhw4fjDH/qTHmxBhzH8C/BeAfGmP+\nHQD/D4C/yI/dStHf2q39U2Z/HDiF/wTA31RK/ZcAvgvgf/ppX0irGt+/WeKysaHY8145Pg4z7mJr\nYMHVvGuV6DFxNyX1WRTaqGtmoYsGKx5Dw96BhZSp0enI5b50IizLxg5R92SX7xgPfcqDGV0hpyxc\nmlUYMnzw2063ukG1lB3jarZEypZKz47gkpDE6hQYsjLg+/K9g9EQlkN337GQsbEHlUbMJFErgd5Y\nIaZM2Zc6RE2MhHZSHA8k8TccdeCzZv1QnCcUcYWaiaUCQN7K0jfWbgdYew0iehs/d1cqNW++7qOk\ny7n2KoxyMlFfn+E6FS/Gm/RQsnV17rdT4SGk9zMZHOGNYznuwbhBXogXdjEr8Nu/80iOR7Zj5Aq9\nDrEemxJrArm6yxmmBB5FwwhdZvaPegJU86wBikDGs+/uwyId24NgikLJvXzo3MCly+9lrD70fbiE\nF7+k+gh8Gef+HRcNqfc29TnCFqbcleM6boCk7XJduxgQut7bAiGTtT3C7pVfwudcLDcOpoFc08FB\ngT4Zo69VhQdDuX+HBIgtr9aomIYLChu60ype99E5FI/t5aCL6VTuiSIk3B1kWD+W6Qy6WyxmH9Hr\nu0xmmqZG0yYaP2MZ4o9kUTDG/CaA3+TPDwH8/B/FcW/t1m7tT96eC0RjWTc43yRIc42GbcEXSw83\nLFOljsHkjqyuXm7Qd9s2W5YssYXjto1ECi7jergDuNyB7lk+DBl1211p4GkY9uYHcYm4pVtDAdgS\ntwXaYOQQCcnmmstNivhcYrlOZbAgGq2ynR0Lsn/nGMmNJN3mxGsfWDWqUnauXmgBHEddxlCEK08O\nGaeOG2xWLCcWBmOWQNE1eIkMvllZoSL6b0Gth8fbeFemDBqFmDGuqetWOxV1qZHbhGDfl4ScPerh\n4qnstOVygSgg+9FQ48FQxnxnr4ejrYxpS/XpkRvuGoNGdhfLQlqkYWncuyfSdPdeB5KNeA0B+Q8e\nJYDZyj1bJw1UKDv7+IVXcXgpzM7VvEZI/ElBfYdhJ8ZLQ0kOr1Chx+YhvZ5jxSamva5Ch/mmHjkG\nNrXCEdvk7wTBrtTZ3W5gs5V5gzsYxLLT51qO5ZQNHJaqw56P44XkubaTDrosmUcUP04LjWAguSbt\nNxi1vdWjfZSNuHIL1NhnHmRVyblOeg5US8bbs+Dacg5/WuMFekqW38FVC/ElCMH0bezfleufnWqY\nQ/ne2XkJwmWgjW5FrlvisJ9qz8WiYKBRqQC1NnD44mVOANuVB8ixBzjqEDcw8bBsWuA9M+ibNZZk\nOx4oG4qQ2aBjAGLcnX0bniUP06BFG9UWMib7XOOiIa9dWtfIKCKSVwso0qFDkeOvybGq5SbnqHaQ\nUr8qEWtJiJ10ejCUqb5o5A5N7TF8m+o/aQHFhFKZ1VAR6/AbdvpFFfoOwVSqgtMqOkUNpoQdb2Zr\nLMjxvlBtX4ZoLAJArj7yGBuDXa9FYzsYs/YO9kD0tQV3JA+0GQcYGSb2FhkKcp65dg9gR2SYyfVX\ncNBltrxCgX3W+X1VIzpgV6YK8eUDWXyvrmUuQkcjYyl6UTRQZDWx/AvcfV0WrDcfD/HwQ3k5cwL7\nZzMDl6ChPS9ARb5DLGoMKc4yTz2Umdzrivc/9AokJIOpqhK+Jde05xQ7iHGgbdj8vFrJOG/SHNfk\nPdhYTxEzIWpcCyV7SfKVjL3XV3Daao9yd0nCiZOhNtwM/BqGfRz9VavBacHlil27HjasQHm9CWyC\noQqtsdf2QbQlfN9DzITpyA2QEArvQ6PDpKtRzUc8GnxHfprddkne2q3d2ifsufAUtKUR9bsIVzHK\nrqxqbww9eMT8NrreNcZYDuBzBWbfCHLL2UlxFZFGRaac2vHBTQBh4yPwZOfetHqHfgmfUGnf01hy\nF09qB1vuCFVjsCWUtvJZd15t8IQZTKsE6g2hsWMHPTYg9ToKQSi7Q8CmnV7g74RF8tUMGzLljLwC\nFUt5BRORRaZwSO8hd10M6FI2qoJLzgl4FgxZjw6Jjps7FubEPIdGY8tOPFMbmFaoBM2O+Vi58n0n\nc6Hppd1BB2NSfj1dVhgRVl6VBVx6TTMy/mirhMX56dsKJXdxN+ih60lo4g0inB+K53FIT8i5qvAj\nqkfbrgXN8Gl68hUYI7t8p/ttdF2K+RStkrgNVmrR8x0QdY1+kOMyIxlrZiPtURavR+TlogPDumjc\nOBiw8S7Ju4jYKVsXORyWBpe5nGS1MNiSpqrnhbjICInuKvRJwJo0gquYzWrc3Zf5zNx0Ny+NbhB2\nyaaUNvCYrP0Rk66bhcFkj2V02+CGz55dXcLpsCO018WW3qBiwlyVIRwlOAarYyGw5Rl4kDuIE9L0\nqVrElgDif3+6PReLgqM0Dm0Xum8wOaK+Xq1gs2tR5zlgtVj9Ei5aYQ35vte4qJhncEwDm6zNtmng\ntBh318BmVN26Vo0KYbfgy9JCveWLucmwzSmz1PgYUO68bUNeu0s0ZesmFkJkAQCpBvii970cISsR\nAYlJ7MZgWchTrBR2DM5pnqFIBVBl6F67/RDeQB6afjjeyZDnSQ7TYu7jBmrDGJiZ9YkOoVi1yKoG\nz6jYZGSwAIBVlePpBbEF1LPMPBcdn/mMukTDzzp5gIp5BLvZYrFhNp+dkfW6A9tb8hg9NFzcgskY\n7qptXx4CRl7YcSkL5LzJ4bAXIV3H8MJWKNXBwUsyjhe/+qdQrP8RAGDQyPfn2xohgVfaWJiQdzJ0\nfKwS1vqbGAdcnFVCUNugRHMh53D9DC67Y4OJD1WwFwFzlKksXhVxIdpawyNb82pRYUBymbEXwubr\nk/FlbPICeczwwjMwBGd1PBsRQ0/LcXfEKSErIHMdI+R4kblwGG5WmxIdR3JpZpPtujlV+1mzgOKm\npkqFnGpnTQX0eP/SukFxy+Z8a7d2a1/EngtPwbYURl0XHdvA5eo5qBsULX9BmqKim2wZvXMRrNZ7\ncGzUTAyWRY2E7MN54qPPzLDjGQRk6rW4spfGQ94uupsCm0R25rSeI6Hu4guHPfiNQHSvSnETncCG\nxw63q42C4Qpelhpe1UJYfQyIwrugXJvKa4RstOkEFgpmAZt4g/X5inNBXEHSwFvKruqpjxS4jTI7\nWXoT5ygI47aY4HowcrCfyi6o8wTfmRHdaLCjYEuyEg/n7K5jx12QZrBV21lYwOc5qm2DPJaKwvxx\nijcmMrebWnblUq2Qdqi1qLeojcxb9qRE9hXBQLjVFi55LUoS276zfYY4pTaitjAhv0NneoSQO/fL\nEw/lsZC/LhlKHgYlUoYgrpPgOpdxWJdAxM+MrAKGntWYuILa9bBmdaLOC9i8PhQFHIvYmKxEs5Hr\niws5btAYJBS+uT8M4bV4mL4Nn3Rrivodp9sGNWX/rMJGSBxCUfmwuf+u8xX0RubZ1nKsfTcH5SZQ\nNwVylg7qWmPRZdXG7kDzmjSToWmhkG75rMcpNnydl3WBiu1IlVbwPmdD1POxKACYKgVojTqWCWtq\nICfDUFa5sPjCWoGCZnyt7JYnsEbW+jyW2jHjWlgipcZkrj24hO7m1zKRmZdgw6w+VgW2c2nZXZQl\ncoLYE1uhw+678zO2TgceeuxOsyyDx3y+HMtgFss4J4slSo+8iTXBT2EfQ+YttkUX6xVpy20FRxHm\ny3xAJwqh6CZvNkuUGfMLdQOb7EVJtkFKdzWEnHdrStTMQuvQ/lS8StlUOL+QcOV73xSxFa83hB58\nBAlfEZcf1wl+xL6Lq6s1nhYyZt1qLoYaQ4eEJr0e8rUsNvHiDPm78pmgs4fZShbU761kjmdJDr8r\n5zuJXHTJxGwD0D053v1X/yz+1m+IMpS7lkVz4x5D0bVfXRfIyVw9Q4OU6lPvwEC/P+eYHsnc1zlu\neP0WAIulb12voNkTslzHKNYMCVYy9iRIoQjqmhc5ptQhhR0gZzhqawmpxv0YW6pG2b6HDYFoVZ6h\norhtmaeo6c4rLvRXuQubBbF+WuGKUP/MqnCwlc/0dAc54eSGpfOkKDAjl+h1WUo7MQBUNUxbldcK\n2roNH27t1m7tC9hz4SkoGDhWiYsih+IuV9qAzQx/Wdc7YRW7aVCwM7DiSlzkBTS3RG0bhH0mfoyL\nYimXuFpt4VDT7MMrJpGCCGtbVt1BWiKl62u2QEahj97xAB88lmTcdx9Ks9LXDifYO5aQYjNbYr3m\nrmobnLK+nf7wQ9xvxPU93hN4aqADNFyHi2yGyzm1JsMauscuQMrYhb0uXF9W+PXcwnIu4zR1gw4T\nWKlSSJjAm5Po36qBCyZo2bz5qbZhh+nvXcu13Z/fYH8gHYWFV8CndxNHBvfGEo7M4ht8OGcijbXy\nsYmgF5RiH3ZwedEmIIE55ea6+1d475F4JufcBVeVQcCKSWcyQUgyGOWMYMidkNuPEHL33wSskkT1\nDoLeqAJXVJoedCukJDIZ6j4+7Ml9ePsZOwu9AH5bkfACWIRBF6ZBwe7Zi5t413W6bOS8VuxhwWdr\n2nGQ0ivQUQOL1HmG1G1VY8OxCRVP090OnccpbCbHa2OhM2Qz2ZZUemEXK1IUbV2FhtRzbmPD0AVO\ngg2WC+pTsMlttkpwnYhHtFknWBLa7ITV7nud0IbPcPsRgW4/zZ6LRaE0Dc7yFB/mDdjchkkXmLL8\nU25y2AMKooYOCoqmkgIRxtdgWA8FtUOalY0Hw4na1gUuKxK1UBQmLWrUBKbEdg6HRC1LFaMbkqPw\nMsWP3heA+fmp3IB/9mSKPktodd/HyQM599l1AcNYtbQNRqyIjInb7wy68IgkzJ8Ad3hDe+4+DFF6\nQQto0hqaoY3jW4h53DwpYdPdVaGDIJcH0mrBXbMYhZaXZpP9ZLBKG1W8zQrBn17EsBx23JUR+qRR\njw7GMCuZl9H9fTQXXJw9rjhVhNyTm9axI0THki1fugt4LF86poaOCIC6kpd0TxuMOnxw9zQ6bD+2\nAwc1y5ALvwu40t9yyOtvLA3FXE2VrOFSuNXAg0NE38uI8AqfjQ65GvtTB3gmCNNtWuzue6FK5Cw/\npnmGggjQTiT3qU4NLIZS6TZFdyy/t2IHVcDSd78FwxXQhA9Wq0ZWaAB2EMJx2NvgdNBlFQtTfj9P\noLTM/djpY7Anc6jXW5iWlh8VNLs1r5+xY/h6gYztkLU2GHLTW+QW9lmWzy2FtP58AcFt+HBrt3Zr\nn7DnwlNojEJSWohvCiSs4zt2gIgw0jizMMnIktt1obiW2aTeVoVG6LbMuYCZtzAND16X9OuNh6aV\nUSfOHF0Ll0zgDUqFImiTOho6JDW61cXyTHbFOpfjZlmJYiljuNMP0KcbeWFfoU/YMIzZAZl8AmU8\nL9nxAR5NfPS6r8jYTIrFXHa8zJJzqQbI2H1Z5hU6PUq/90J06ZY6DRAyzFmmrL5YNkLWwadGyDP/\nIFtwx1ynK6BmmLPOkYWSGNzEfXgZE1/nz+BtZUd7ynBlOHVgfGL1gxQHJJ/p74dwmezqBIBiyNbu\nYHGscWdID8SxsWC3o+O40CQnCasLfOlI7vtTql37YQXHEch0rmvkCfkK8xJpSnfR9eFR1k5ZpwCA\n+QIIKS2Ymhy6IBiszHddidM63PEhrJmI9KCQkESmO+7AIxfHtrNFN2k7Wplc3uujoneQxSlCh4A6\nY6PtUS2MQcFnfHPFatcqx4pVq761woaey3BgQXUpQVBmcFP5jEuPYFOVu1DaVxp1W9kqDQom4UeW\nvQM7fRufzW49hVu7tVv7hD0XnkKlNGZuhExpuBE7yLSNCXeMZVbiKCbZ5f4IwZ4k1wgYxPrdC6RK\nVv6oF6Ku5O9G1yhW7ETMMxTsduuy0ajs2NiLiHXIK/hMGFlaI2Bn40VzhitSYq2JbLtebdCboZXl\ncQAAIABJREFUkOt/GeKCNGbz0zU2gfz8ShmhUOJZOKRdSxqF+JqksfYAuu3OMwb5Vs5xMZeYO80z\nRGSXtjwLIePXke0DHAcchTKSHXHAZNizrMb1EzbwtHDoP8AaxsvVZg2PdfzOfg8JS7nV7zxC5XEc\nVgg9ItfBtVznYrmGIhN1dDeEJompM9AYj8TzsEKgTym/Uy2f7ZYbBF8ha9QzF5pUV0aVADtCj+6+\njr+19zMAgPjst2Q8eyECJhSd0MIdMsKeLivgRnI0KlDYkNzU8ZlXyVdIEyb4qgYWOTKqIoc/kN87\nCABSszVs+MqdEh7zAXW/wOwtmfvzRYIvPZDy6vCenGtsfLx9KnPYYAvCF+BnCpXdsmonKOhB1jdS\nJHVshSn3ZxNo2OyijJMMiozQ1tQFWuZuLf92YXbs2FGmdpSFMyjcGbCMfloharuGP6M9F4uC4zg4\n2N+HfX2KGZOEr418YC0T+WRRoTORn48bGxFvaJfJNfsVCzWFQKLQQsgeBx0ouOyM6ykbIV2xlInG\nrHYwu5GX26o2O+7DqNdBQ4DTk7evsG4ZhRWrIUmCZ6fy87BvsJ7Jg36ebgF2Wkb3fSRM8NScZi8p\nkUVMHC0LNAS6uLkF40mica8nf18UKwwZ5ljjDkL+rBoXLrH4epChZCL1kJnWM71Cwtr95qevCfD4\ngF4vM3z4RF6E1746wGAkD/rwL7wJaMKfG8CK5UGuDNus0y627P0IDpe4vGzl1TsA3XJT1OjekXt1\nwIpKLx3gcCDVGdXR2DxpezRslKxsFEGBr0/lIm6OXgYArDcfIrwnc9Xr+/BuZGF52d9gQer0wJkg\nlCGjR8h7XC2AuYxhqefwGZrWwy48ho2JbuCywK+ZqFyt1ghtQqWtQ9yMJRx57xHwJkOMIuEmdM9B\nJ247ID3YVHLSAyAMCVdebdFjXLX/M3cAAI2KdlqaVpJD3ZM5LhHsBGziYo0tG3kUc7z9oETFlPHk\nMMANVdJersvddrDqWdjGn29RuA0fbu3Wbu0T9lx4CnZjMMkNrNBFtyUSzZydyEatDa6YiHs2T9BX\nUi6cEgZduB0ERJrljdolIp1yAIvkHIPeCIpJIuPKUlusFGyuqbltocMynO8O8XQmO0J6lsDtsW5M\nAZRBr4+SjU8fVjYu2IgCY6Fh7T3UASx2taXsMlR1Cs+SsTv7AQz1A+ObDSxqF44C2VEid4jcED2Y\nA2jzl6HZaUVmtQVTyjEu0xY958CK5Dr7scGznzDnHl3KQ87xRVzg4aXsUIfJG+h2BbNgdYB6KZ5X\n+ux9bJYyd42ROY68AuZErnN7PoUiKUqdZsgLxTH5MIXc1wd7wtlgTSeIMpnvbecUHYYVVW1Q8nt+\n5sPr/CkAQGD9bQDA00sPSomL7g57UPQWvcBGt0OBGjQwLRkKEZhZbcEl5iGIeiiJkHUiFyqR82m7\n3iFEG5YNHa8LTZXneFbgjFR/QVkiPBQSmYAI2jhuUM7l79vLJ9Cco+GxhR4ly0uns4M3K3ZnVqlB\nxmTmJo6xooc80AnMhGzj8wbXkPFX2zaD2wW5brAMAoyJs9kUHgJK2QVhA7f+yaXpTzNlPq98zB+D\nTbpd88vf+AZ0do53zyS21naFb7RsznaFL/HhffnPTLCOKd6RyiT8Xz+6RtKIS/360R66Wh7Av/vD\nx/jtD8h4k+f4/deqoPkQ3+/5OCCW/chu4LHNOIkAf8t4nRSN/+bBa1gfSOz/lXmJ30nkZr17VmBO\n11elBncHJN8gS3RVW/juTStqU2BAd7djAetWHZQgnonlYOi3zEwGd/db4hgf60TG88MncyTMlnvs\nFpyvamh+bxD18crhawCA5XGOkFWUby6vkRDOm7dMV/MYihWFXjeEz8x5UpawOUfDQQRivfBks+b5\nCiTsKSnLGg0+3wP44/bs8Rw1ewby0uCcWI7ztyRcWSZr/K+/9msAgPS738Txy+KC37FCWCMJR/pV\ngv37Em7skQnrBxdbBFthl37twUsIycD8nSdncG+kojI0DnQh53maysJjr9fYe4EL9Z27GFPC/sYr\n8N/8F39Dft+XuXylF+2UmbyOD4/MS9/7cImY1PC2FaBLpmhGrrJZkBVsELm4pjBQVSWYdtjNOQrw\niOxaEQFSv/Dmmzh+UWRVHm8NOqwkPXjzBZz87FcAAEf3vwKHubKv3HvzO8aYn/1p9+A2fLi1W7u1\nT9hzET7UMNiqArN1CouZ+kY36BzL6vnVL+3j4FJWzGrvBKtLWXXXqTTz/ODdNVpE73SQ4uS+LMVm\nNMBkSZTXpQGYJf/IFBSTPmvLwWtE2J2lNQ7I7XcyUfj+hfz8jJiA6uUVvv4VZt9/p8Lfe0SEYZZD\nM7loHOAhZc0HjownVAViYiuKxkXNJKHvNsiYMIrJHLxsGrzOJOC8KvGU3TwnsNBjJ+XWGFTcxWP+\nW+oGN4SKP3UyHDiC4nvzazbeYgXg7XdLBBxH22pfqgI2sR720AKnAsW8gWaXXRAaRJRRf1qJt9Zr\nLBTkrCjXGUCPDaYVDft8NptfYzIlFmDm4v9+W36fJ+Rz/N0fYPnoXRmbHiNmQrAehZhMGB4699HZ\nZ7ftoYRrL9oVLldvyDl6gMUuQoMcD68IbfYuMFqL17DKxENZrF3cscUT/MW7Kzz6QLyG1eQBXFL5\n3RXAKsJBjXOSm+xHBWxH5moytuCNBZnZcywMhuSWuBBvZFFE8Jj8Pr6rEVEY5u0rhZJMQm+8orGg\nWFFLJvN2mcGtqDnSCfGolGvuYIEvH9CzenwDi1Wgz2rPxaJQVhWeXczRlAk6HbnwF/pD/MKXJZ56\n8LWfx4e/9y0AwA9+8wN8fys4+vWlTOp7SQmvbV7rGNw7vgsA+LnlHG8yA/6//K7B6pK4fMbvulYt\ndwvujDysqjYmq3HEt8I56sF6KktOSqLR7/3oGvtvilt+Vl2hogbj4MTCm4TrfmtZIWXeQbMNu3B9\nbChJPg07GL7MkKhzgIfvi2ubs9KRBTFwLA9SdbrGgkCZm6sEXz6QY8TKhtMyQDHMNF0bSyooHcYl\n3n8oi8Jg8XN4b/2WHK9JYVgF8bnQhQMHPh3HYWRjxFJtkuc7cpmDPRd7uVzfDa+tsgyaRv6+zRss\nGUqY8g+3KHzv9Ar/4l0pQ54XMZpGVoVnlszPcPkQnQGZnqY+7ruSo/gzb7yOmgvrKjHoskX7hNqd\ndtlBFbdtxjU6dPkH5hhnG3HLv//uI/w8N6U1QVpx7OMHvCd/tnodT7kQKHO94+bsDCjA24kwZITq\njhIMlby8s1hjSoBbf6xxcCAEsttAnt/zZY5Ek8dzbx9VxnAmBrwJ7+XJG3i9loXKZ0i8Srbo9CT3\n43WOYJOq/mJro7uS8OE6NKgw+2yTT/tC4YNSaqCU+lWl1NtKqR8ppf4ZpdRIKfXrSqn3+O/wi5zj\n1m7t1v5k7Yt6Cr8C4O8ZY/6iUsoFEAL4zwD8hjHmryql/gqAvwIRiPnJg2gaTPMNtKXhQLa8L7/U\nx7kjO6X3wyv82t8Xd/f/fXaOC0ploaI7b0pMIq7KHwDLF2RHGNUxelyh3+wNcLWQY19QljlDg4iA\nj2mRIaXEnOMC5xsm+d5KccOko2azkjvt4extWeXfjbcYkl15deFj9UB2gYO9JSL2ws8Igz2aTnD/\ngYzhzvAlYNx6LH3k3G2tqVzTZvUMdS2gIdWtkZOoJdkUOCfgaBJpLDLW9NmTc898BLLapiXUS3KM\nRz/8ED9kM1IVG8QkOgynBHRZBhG7E1VRo2TGLNAWQt4TtdVoCOMdEF57FVc4YAxiRxHeIdR4VRnU\n5vMnHa3DHh5d0QNs5ruKkf9bck9XysPPviCe4J3xffj7pNjbj7Ck9+JXewjGJF9htWd630amhfQF\n8XuAR3bl/RTW5D4A4OTxb+MDJoqdkrwKuoHPcs/vfusKhy8RsxBb6PTZJenIOaI+EHXk5+XcxYAE\nMV8axehb4sJn3TX2ifsoj+VZOVwHKOMnAIDGTKF/lozY+/dgb4UW0FYHePB1CQ+CVoNz/TZUKp5C\nNzKwxhLHFMsf4dETgakn9zMM4q99tsmnfRGB2T6Afx7AvwcAxpgCQKGU+tcA/BI/9tchIjF/4KJQ\nNg0ukwS2X+GlkYBR4DrIGTD+tX/wbfzGI3GB8rhCySpCy9HoKI2MoKf5XR+P2crr+S4qxmTjZYOM\nceKc0gR+CVSVHOQ6LpCUpEDXwIpIOFM48Jgl/jgr0jVf0uwMAHH7vaGP146Z1c9fhrcvi8+ylBf9\nz7/8ANlQHoiwo5FzkQnXDT54IG7u1yiRPs8sjEjg+U2dwpAT8dlWIy5kgbzaGFhtR2Tbz5FWuCTi\nr7ABn+W9xaYEdj0hFTKWcNvy5qjjoeJis93UO7WoKHAQUAlp0wAxRU7n5G3MLIOG+hvTEdCby/UX\ntYU4a+XQ8ZltvzPcAXK2aYwF2a4+qH8AAHjTCfDCna9yzBsUVOoqtnPYJGrR6hL5NcuTgcTWfh2h\nY0so9TRZ4Ohc5tOr1thzBWX6Vqhhzkju6jL8MQolhVs73Qa9rYQKWZTDp55mfyjX75kIpsOWcnRw\nTFp75d1DZLeAMgt3IL+PmbfKCo23iSA9XjTQLH17boOzkdynQTZHeUVUZE+u+V2vg3ouHbyPigm6\nRhaQaFAivXxPrhtfwnx6/hlnX+yLhA8PAFwD+J+VUt9VSv2PSqkIwL4xph3FBYD9T/vyx6Xoq+YP\nF3/e2q3d2h+9fZHwwQbwdQB/2RjzW0qpX4GECjszxhil1KfuEx+Xog9ty6Rlib2hhXtcUeffv8Tf\nd2VnO384R9yy5JoGhqCgmrDjQd9Dj56C5frYXrP3Ps5wzfpwVBR4gd1iFVdiqBKzlhk3UEh2tO0l\nHLrEvTLDU7qlGVmbL6xm1znpWA0cKiTd7/twipbBeYOILNCvgnRlD/axp8T93G4q0CtHblc4oUJS\nwnP0exFq8iH+olMijGVnTuMNrigAs80rtPI/A7rqflNhRte/qIA5L3U+W6BRLV+j2lUXPLqiVlXB\nb3fHyMH9fQrRuD1k9DyeJnoHsc5bvcqyQkglk1HUx4akl03eICeVfl03aOgutMRgP8l5+HAD9D3y\nXK4svP1YBF4cVggwdVEb+V160+AZO1+TZobisZRost4h+jFBTRRA6QQaH7IP5vTyClctI/j2KS7m\npxyni5i/tyq5v4mrMCGe5OlmA7sSj3WW5fAJm7cUFcAGHq5W8ix0PYX1hrR4NzfIyTFarAye9Nb8\nvYztJk+xuRYv5n1zhYodnudNg4YqUg+jS4z4fK5rmZ9iWeCUXg6uzrE8JvXg2Rh2IAnaweIaSfmL\nP2G2P92+iKdwCuDUGPNb/P9fhSwSl0qpQwDgv1df4By3dmu39idsf2hPwRhzoZR6qpR61RjzDoA/\nB+At/vfvAvir+IxS9KZpYNIcH8wULNJIGaNxY8suf10UOzSigoKmpxBxlx/v2dhj3RzXWzxmjTxd\n1lhTostkFRzyECiuuP4wwIR7l+/Y8MhJsMoMtiw/nhmhiwOAVt5hsy5gqJi8tTXGlFYJJh10R2SL\nykLsj6TwMqI69ngyQNF275kUK9adB36Jxwm9nqHsVIXWYOUNi02IwYEcy60qNCWl57Y1WoHIDzje\n71cGBROjpgHWjLm3Su9EcBplADJHgZ5Z1HEQkNGpGwU4HEupb9wJcU0quJG9wWzbYgGoAq4saDag\nVb0A3ZZx2LWwlc0PaZKjaJvKON9lU3+qt7A9v0I5mfBarmE2koDbsDPQUQWmgeRlmqxCPRevITEW\nnjEB3V84uPAkNzCl7NwyBLK1zP3Veo179DB+aG7QY5drUW9x1JE5uKROwzADtlQEr7SFx0nr/Wzg\ndqXsOSIUufQCHHKcmWPDMvJzVXqw2D1qPAWbgjPzXck6xyImN0i6xnkrBFm7qKkfeThKkLLpbcSy\n8FW9QVVSBGhbIKLC9vlmhvBGko4f7GXQ5bc+ZaZ/sn3R6sNfBvA3WHl4CODfh3gf/6dS6i8BeAzg\n3/hpB6kBzGtgvdVICCnudyvMCf01NaD5CFlKwSEoYRKR17AOMSBFuFmUyAggWmxLUIwHjmXjRd7E\nF9kWff8FHzNWJ67eLvDrZBpO6wZZqwmIjwky8oHu1c2ObjtoLIzClkuxQEqCk8mkQV/uEbo9ytMX\nIbTTApamGLb0Z5WLfXrHPhOjxi0QMPn0wl2FKUFITc+g+x15MP/x+gZLMjsv+dA1zY+9amy39UwO\nwu/haYCoaAwZUkWexv2pDPjo8C4e7MuLl9QBnEoys9q20dHMvjNpZwBMyeE46Ye4JIwstjVchi6z\nZzFOC3k5Ky4O5Y/jyGieXwKNnC85ncPcEC+SyPksf4gNL9GpatSblOfz4FMSvt+dQoXy+xVxKtbG\ngWEY8GCcYLGV63YvPGzJ+TgNPTQUB5oQY1AbjV4oY++bHL4lidYkVdhrBWwYBwZwYJigLTY5Kj5b\njmXB4/3RYQ2LlaYO28XXVQaXKk6NsTAgaQ2M2vF09uDv6PlsMncPtbUTeilcDwsmrgO9gp3JmOff\nA9KnyadP9k+wL7QoGGN+F8CnYan/3Bc57q3d2q39/2fPBaKxARADKIoaGV2rde3tiDAiu8aWnkLH\nsTBkffhFyrGZyIPNrc8yNkL2tF/7Gj1qJ1iRj7snUgoa+PK9yUvDXXfhUafCtzeSRHq6zj5WRvv4\nzksCkTDAMCJ6LrfRNklOhjYGTBhGqouo7YjkjulUFQqyL+uwgE1PqOu40H0JMWyPB3Mj9Nn11umG\nyOjO68Ud3Ak/AAA8/ru/jRt6Cr/PQ2hHXLdKxdmOD6JqDIJAxjFlE9i9Xg/3TsTlnA730KMqs7I8\nmAPxBOp5gAdjmeeDsVybawBF1Wm93mLrUkRl1IW+lmNMVYgtWZfXhJ0nbdzzYzYNeih5/4xTo6kk\nJeWz+3RSBfDXdOc3C4TkP7BMje5ExnkYKnQd8XRURWTmoEIvInFOHMIhB8aqb+/0Kv2nEfbZYbrx\nSfmXNVjyNbnv38eAz+Tj7GLH8jPyWP5U9U793KwNPIaSTaVhVCt86sAi74Hhv52eixG7SFXswQlk\nDn1otKKfhzoCUfNQrTdp2Vgz8bvKDSI2RF1WBWYP5bMfrudYXyw/da5/kj0ni4JGpjzUqgK7SgFt\nY0A+v6C0EbGJcOJ6uHNP4utjhxndWiMigGihGtiOfPjE2Ogxdm76DfyKEOOxPKx668KmcOmkb+EV\nYgVuFjbenzE/2nwcgMN42HNgM8GwP7IRsvKxH7nwGxmTWzWoCSWuyARVOCUaLkJlYMNlGKP8DsKF\nxJFli1fWCiagq142iBNyVyoHwwP5/auvjLDmC/R94hjMj/Uc5G3MYNdgCwYCbaPPduAXR/Kk3Rns\nYWzLwuSHvR19uVeU0LYsps54C8eWORwPZFHI1ymujbiqo2AIQ9btpIrhRuLm+h0fq1TGfMMwYlWU\nv2+sAFAUGbwRK0a/d4nrM6lu7w0IKsIJyqVgD5SyoXt0qc0+umS68m0XYK+BlcsjPvFzKEfuey+y\nEFV8wxJgcSnXunesUFIevtOK8+gYESsH22EBj/evsA0MMSINKfWRJtL0AsD1q10biOOUO7Giuqx3\nKmgOWjkDG72JzGdsVRhzgbctD06fwLDcRUmNyQ1Be6pnIyfnp6O3KJjEqW+WeMJOykezGI0d/755\n/oPstkvy1m7t1j5hz4WnYFsa416AeB2DZX683I3g0lW1lglu1syAj7s4GoqbeG8gWerTVQ6XTU7T\nRiGyJTzYFAn6TAhmqsHoLhkphvL3vHTQJyw1skt846704PdrD//b99mteH0Fg0/W2IeBjW6XNWin\nwZ6iDoGdIecKnasS/g0TpQNxBzujEKlF3sbCgmIYE6gKGY+nWJGo1yVsStdtVIGMSalef4Ahuz3v\nD07gfkU+/8G3KBvHCkprOT2hpFE71WkfFrr0UtrknDMJEfjkd3A9eHSfmyBAh9R0URzBbfkmKX7o\nOD7Wl3LOdTPHlpwMddkgJbmH7wAvTuhhMPv4KK2wyiny8THIY1NVmC3lPt1UK1TzC56P+9d0huAV\nuf/xokR5I98dTlJ0xzKfnSDaoUVHgcxhNbR3WpNl4sMds9NWOYgYMsyWDl6wZEwz8kIMfQ8xWZK7\nXogFO1t16aFpxXzojG2yBrpqhYEqdKlRWTsKYdlmvDuwQ94j3XoMQLoihHm4QlzJ8xRYEZRFlm6d\n4NG1JDm3dDua0oJPHc93Hj5FOhOP4LurBcqPR5PF5wMHPheLggVgCI2u56PL7rXjvoOQVYbAK3FB\nncMHBxGmXYl9NV14nZc7CHJv2MOQD/QiaXbimlFTYbOVzzxdCuAj3djod8Q13hu5GGm5AXd8G//S\nicSk/2SZ47wmxTsf3mFjEGYUajEaAd3kh6dbxHzQ+9MQUS5Z9C1ZcExVAuSMtDtjNAwJishFk4nr\np8j3V5kYWypMJctLbDdyjsYaYxvLZ4N0iRO2Sd/rykP1QVah5ANtoFC3Zci6BJjhjiINr6GcO3sm\n5k+XmLGE5qoYEUVWoiDC3SNZfLth2GKlUNBl3sznWDySsuBqM8Mp8yQdR4NcMAg8B1XDUiZLhV+a\nenh0zpb0OvloXdAVFMOR+J1rFDfymbbj9LJKsH1G4tLGYEwSEiuwoFmes1SDfk9CDCcSQK2bVTsR\nYpXeYJNQtj0ButTCfPM4R0kNyS5p2OtcIXLpfscF+swfjJohFpUs9jE5KtdbjT4X0KqIsWQvjbEN\nllSDskwDdrDvyFLsJoeruMjaLhy2ddt2iYblUlMBBbVQ12RpGnY9VDP5+/kmwROKBZefnl76zHYb\nPtzard3aJ+z58BS0RrcbYdJLoSNZtb/6Yg91RSCP9QwJd8rJQQ9DNpqsziQZuFxn0Gxp7+oavUD+\nx3NdNISErtMa6bKlEGslw3xsu7IL3DEativegfP6EMevyTHC4B/gV79FtV+6xuvaYECqLe1pXHHl\nXi4MrjcCte0uQ9zpiWu+XcpxJ84caS5j11mCgmBPNd+giFsKcNnxH+dLhCuB3/7e6RVKJp8O7u3j\nVVYMLjOFpG2kYjJpmf4I1+ReCKBQ0zsoq2aXM42zBgUBYJdLcgMuMmwNk2uFRo9ZsnFnhPKV+zJH\n908wZIOOlbRhwhYpae094+LlHsOxsYWEAi7FYos5m6P6DO3UXgg7kmrP/IMSJbksRlYHH95IcvH8\n4j0o6iZOSFk+7UTo+3IO215iyeY2LDdo+uKiZ+4Cdsl5piuUpDUs7ux5FsPKWqLLCns9Cr9YY9hd\neSXOZmStzgusWCgZeAE65MO48VYfVURIPKO9FPFCMv1nV1toS3buUB9i7IvrPwsVHHqeniFRja8x\n7Ms1dTslrBaolwMZYddNkcEjxuPVCZOkgzEiNuCpd76PvP70is7ntediUXAtjZMoRN+xcDiVG/Ry\no7HoywvyYeJgPpcb+vbbN7AYw7YaA3EdI1SMzyMPLgk8Q2XQlFKpKDyNmh2DMZV2KpNgSldu07Xh\nsJw0Lht07sg48pM+fv078r0lY/ImtOAztGkMkG1kGq/LFc6Idy8XS3zwbeY59uQhOL1wYG9/CAAY\n3RlgS5K+F/oRrKLNdsu/P7wAntzIQ/XNy2tM2Kn4DS/GOpUHfp0DI2ac9xj6HNk2NgwfbAtwiDwM\nXQuGfqWlBbUIAPeom3CpFQbM1G+Vhs/kjg4aXC8F1NVZRegQkVURVbnOcxR0y5t+H+sbcdunpxob\nzlHftT+iqGf14WW7Qncsc/zOY40VSU439RK2kvvTUx+VBvceyGYxGfuo1/LCxrmFJSsOlh1As6Tc\nbH3kVAazSbZSrrZYsLv02foaWcx+hqszvEUxXd0xuBuRdr7tA4GBYr7q6fYah7UcL44MKo5tQz1P\nrSsw2sF1Pt8xbq2KGRaFvPTbNEeXPSj7WkLNJlEoCHrKrAEsSsoXTY2UYcVGOXiHVZf1Y3lGHhzM\n8MqdV+U6xxNY5wSI1T8BGfYZ7TZ8uLVbu7VP2HPhKTiOxslRiK7joNPIzu7tjfHgruxmi+0CsyUp\n2Dygw668cZe7mZmiw0TboNfDgHDmIlZIwb7/bYobgl5++FBcPLcb4po7tGM0DvuSwAwGnZ04h9+5\nA8uS3V3RU8A6R3PCDPi2QcWwohsAIQEyp+sMS2LUe5GM8yoaIn8iO/tvn16i9QKvZyUskqXogezy\nT5YN3mGH53WmULjsLziN8c5T2TGGmYP7rlz3yQETn6cubLrtro3ddTTGhiF23rVt3LsjGe6oJ/gB\nvVpiQ4jvWbrGkS/XdxC5KGs592oVY0IewOVKxlDlDWyGBNfbBh9cUBhHV7DdNhOvEBESbPly0d6w\nwV1HduX9KEHNZGwZV7g5lzGvigU6JKgZUE2ryTQe0rU/vYpxs6K3NTnB8b6MI6oSbKj72Tbpzs+f\nYBaLx/b2ZY6a1/G0LGCoR5k0G3z9QM53fCjz4xQaJanlTM/HGV10bRqkhJCXpOBbbBpEKRmXtcY6\nltfrOw8/wLJVtm622Cct/WtT8R5e6vYwYujmOAYeO17jyuAxqeJW2sHDuVzrDSnpi57GKz15vn9+\n/AqWfUn4ns1vPYVbu7Vb+yO058JTcC0bd/tT7J8E8Kj3OPZ8xESgHe6P8dIBe+UbA4s4g7t7glob\nWAoROx91Y8G0NG2Ou0MQ5pkLqm7hlXuS+Ns/GKChfNi97gSdlpC/qFGwIWboakypbbjgLlEYIFtT\nXXiTIyXUtIoC/PJYSmB2aCGaMvafEEmHI1y0KLZrg04ovw8bD0FbvmSDi+qXeDGU3XovUnjxHmHQ\n91xEF3I+d7mCiWQnubiUsb9i2zjldRoIrwEARKG3O9+DfRf9Lkt1TGzqTo09X3ZVvwpwbyReU9Rr\nUMby+ww16lw+n9ls2vELDCPxNga1wbgvO2y+WADMNXSNgWbTGEmLUS4T2EzEDSY2nA1NPJnTAAAg\nAElEQVQFZ6olDBvFRk4P1kiOMe3xfLXCqr2mYIIuOzRfenAIjxDkbB3DragQnhKDkLlYt9Rujg2b\nUPke7mG2lbmv8jP06dG0ZKyqrtHd5PysBlMUKBIFlxiYlk/DajxYIWHn1QDWVjyJMPB2+iIVFI4m\nMkeHZGzq+hbcFiqtLSh6heV8g4bJ9qPBAOZV8azOryTHczz0YdETenWS4B8RsavU5lPRop/VnotF\nQVsawcDFi6MuCp+ae6pCuRB3rx8McPeOcNE1eYqKN2zCt7w2FXzKc3suoJhQapQLl+78sBPAJhy5\nx2L7wbALYoKwB2/XG2CqGlwT4IVD6LbuS1zEk5s1JqTS8i0PKzahxYstxq/IOY5fexOOLQ/9JiUR\nSvY+bkrJQt/3gTvMlt8vKjyiYMz9gZz41VQhXsmDdHq0xQMmXV94cw/uVE74T96aw8woAHIiY+9u\nfbw9k787gcEZw6NQKVgMY/bGR4iOhTPwmFWUYDBCw87Qy2aLIYUoq7JGj8CqoBvBdeTYpWa9vu8i\nZRjXpICTkc7+3hAx719QVVhm8j17K9dfuAosx+OXrA5OCSaqNsD6qVCM5TrFfo9hYV8WnrHr4quB\nLJCmUUgJ1hpaCobAKrdvIV0TqKVkM2lKha4nx9pzh1hRSCjpznBI1aqwv4e9hvLwDmn7NzkcuvtH\noy4yJqbXeg2b8lsjhqjGVlhxXxllPvr3GIIc30VUi+s/bzSOufjahC2PHb2rntm6gk1hmKgXoM/k\nuMmBkGzOb0QM7d4c4kX21/u1jX/9z78OAPjv/84S2faTILbPY7fhw63d2q19wp4LTwEAYBQsp499\nsjLP5xs0hMRZToO7zMqlSYB8IL/vslvMzjU87ly+G6Bh6a1KMliEgfZ7XVgRa928aqt2kJiPYMlq\nRdlvo2ET6XdjNrjmDprRJaugsCZrsTdVCEjMmjQaCZtd7hxoDAbfAAA8azsjrzf4merbAIBHywYb\nIzts4lvY88Wr6GnZtfIXehhxN3uj3gDUnXR7RwBLcmoWY7lk+bElcA1L8HRwHI2cxLQWgGGfaMpa\nw11QEdmS3408B1VLTacbuNzGk9UzsFcLkd2DCtjwxSTiukyhy5zn6+1o3uzaguYuHzUlNCXVC4Yf\nszJBWTC8mPi4z67NZfkMhgI9o34fNWnoiNaG7vbx/7H3ZrG2ZHl612/FHLHHM59zzx3y5lijq7ur\nXU0PFpbdAmNA5sGy8AvCWPIDIAuesHgxEjz4AQmQkBgkELKE3DYWSBbGoqWW7aZtd1M9VFVnTVk3\n7807nvmcPcWOOYKH9cXOyurqqqwuy2RJZ0ml3LXvPnuvWLFi/afv/33ba7FLD4estsXgXHk0qTXd\ns7Smkb1rG6Exd58xy6wXehlAcmS9jbcGLiNhY9pwwUCWORaL8rXb0ai0eFncUCmReuY3lMIbZAvr\nSUyinPna7kN/sMLDrtU9FwKhcBszI9I+GvWhLQ5eZn83iQKMPB5T+iBqungn4fWi78q01z/c2iYS\n8vSojZl51hvbTsacSR28+SPIQn4iDoW2rsiuT7j8VglH9qFo3Qwz6JlpfFb9tQ0bfAmYbCdiDh4Y\nIpGbUDd0qu0WlCR1DzIyTETrXYmXMA4hUMy21eWcS52pDQIiQV+fPvsW14Vd7L76sF6XnIihJ1p6\nNNeCW49rdsXsXOclbmsz9PvaHP6+y/kr6UueO6yEy989HJHGNjxK9HD4rcfWsXUT5yuzIVyhSFme\nWZj2B1flhkTmUEQfj1YOudqFt8bf1bUZVHTKnwSBT1GvtF7irSxb3MBu/iEx0dBu/g9eFCxngpC7\nNXt7Uty6sCdF6sxJWusm741r1upKTXyXtrWH8KArySNl0eXWmjJkKIxEcdKAhH5XLwuuzsTcvb5h\nV/d1JSGX0h1QqWU5bDIc8S6GQcO1DsC2qCkEMU6OpM2ZTolVv78aDLgrIBDViK2kx0hMmKr1+0q5\nikHR0qwFXhsEvBBsPCfn5ZU9FF5Tz4U7a4lVZQiHhgMJE1/cOAz1fU1XsSsa8ivNZ3VdMBBUPo2H\nDGUsaqei64Vuu5xIBtOoNyKYBYRiy8qGJfvYeXx2POFSlOVN/aPT7N+GD7fjdtyOj4xPhqfQwHrh\n8Hv1DW/oBN8/nGxgxXlRkQh26zkenfQZTCP9xLoAKfXO/Jaol203FUUqbr/xlLawSS5H8FTT+Bhl\nyCsTYaTOW6UtF46FGN9cf8gl6PbEz45DruaqKiwQlQOTJqTspRQXJa6aqgJBVZu0JlKyy4QVe0Iv\nrtZDRqpK9GFQMK5B1Y6kCTD6jvLlDTdyxZPWsKcfX1VK1DWwpUT9w8TjmZCJOwcx90Z2PuOwxihp\n2hS51sIQaDuE7gjPtVY+rwxzJQnDxNtQozSVtUQXp9fsSKrwzlbAWJgGr/Mx4nJwGgOFaMWEtb6p\nUuoLqWOHDl0u5F51Qhza39szQ+K+GpPaxZ9T4eq+d0VA0CMPnYAy1fsETJV4bmR1XR+qwnpHdw4S\nxsKyTJIdHM++dtIXlAoLWzlSRWooltbj81YuqIktiQA1xV0KCTuoHaqir7J4uCK4OTqKmArLMApi\nnKX9jhtJxaVpzsSRwMuVSy1vpc2gFMoUA77g7Y4QlvXshHZkPcyzy4onT60H2Tg5Uc/9gSgFtTIf\nZ3wiDoWmbVmka9Ln15y49ib+2T/9KYaKh7oGrrTYoVPjbEueW1na65czTtcC03QOlcRgyqrhzWOb\ntfadD0U23Eiy7oPphv3GbWoc5Q7SZs6p5PcqU3FfnHmRblzatFTaCF+/hDtiVtodGUJH7bLJmEIH\nS33ak7U2ZHaaZGnG0/ftIbW173Aq9/HOfRGaBNt4pb2Ous7Jlbd4en5NfWOBXJ7vbioGJ4q97/jw\nxpZ1L7cexnzziXQgg4A86rvvEswm9hdRiBMT6c2VWZGe2QPLq112tU3WXYkZ2PdzHcKLxZzUtZv0\nfuARTuXuDnxywX+DusRXHK1uYuLW4YFKtdNlyzfWtgzZzVesr+yBk7UZhyrPmb7EtlqghksGg5is\n1wXNHRIJupquZKWejjSwYLHrtcH37HovzjPe8Gx5z49ClHbiunXpViJulaBtXS7IFVYe7gw5FIR+\n1q4wyrsMVOHpEocd0fpXq5httaUbP2ZLcd7FxSUDufQHgnabQcepStz7ozWNWrV9x2NP/TNkKxav\nLDhpqFZv52hIrnW7uTjlQsCpi6zGVW+LMQajQ6H9mPmF2/DhdtyO2/GR8YnwFDrHIR+EPD03HCnB\ndXq24O69ewAsy3OWcv0z12dqrKewVk257bIN021ZGpJd0SgvFmRyYf3QxxGhSjYXP4KzwhGBYlfn\nLHtm4GXGPBOYKF1ypDp1qCTi87TEVyJr5DSUWsaubbm4st8xfe85ycBqHrayNE1acTaz1/GPby6Z\nz3o693NGV8I0qOzx2mgLX7XyV0/OeHFlE21fm6dMlezyBzUn4hp8pFBrN3H5hT3rKYwmE2JZKOOB\nSIB5cXPGPdHdIwrxJm82FOKV77KWWz7YhitBpdP0htlaCTMlybKmIhYce1HVhAvrErdFhtFvrMuS\nSlZspdp8GOR0vv33916u+aqs7db6Bt+X5T1f81K/06qSMffGBMa6W24Inlz/dVzjKBzLUljqWsbS\nhAxWV1z198zryJWY7dI1alAlXc0oVIFaijr+qsxYSqhzXc2I9B2ZazgXOOn5E/u7x7sd+VT8HYFL\n3dh72s2XrIQtWKdLMvGJBth1K4OQQPf6pqkJFEoZD1pB+v3S5Uzw7itVX+77HhOt4VUOi6X9vWad\n4giLY1rDxvY3Hw/Q9Ik4FDzfZfdgm2pxTXjf3uTDh3ukgfT3yhEvzy0DTzjuqBv7gLjbQsElMVOR\nuFLX7Cf2O9z7uwhXQhIm+CJweabQwLnKCNX2exA4LAR6KjqPXC6X1zpcSTfSiHVnEvuMRNw69Aze\nQmWoYYc3tjfxYjljeik33la/WF/kPNJDM74acS3q8AyXlRBv4UJ5hOeXRJ+2JbRHV2u++W17zd8p\nFrwpwErgtXxHwKhX2khbnsuFI9BM3DCZbGkNl+TqonNNydlImfOBchw4Nk4DFjeGQuQei1WBI+LM\nZyuH+WOrw7AWVr9wPHoNsDxf4opkJK9cVnrAxl3FWgQgpXo81kVNd2Dv04vfX/C1S/vZL2ZzZnLh\nb+b5Bmh2tVSfwJbZAKeCpqEUWWkUdWSqqBgHcs0j0HXu7R+yJ/c5mk6Y3IhZK6/IStuq/eqmoruw\nm+N0KcNRdFypa/Fwx+VCkMbcnfNqYQ+nRmTDF/WIL+kQzrcq8ko9FeuOtXIDWZuzpwd5rZxDbHwu\nVYZcNN3mwHVKI9VJaBKP5+rdKF7Za04XHQefsff6arUgc/rSeEfeJ386NsxhH3f8uFL0/7Ex5uvG\nmHeNMX/LGBMZYx4aY37LGPPIGPO3pQlxO27H7fgJGT+O6vQx8FeBz3Rdlxlj/g7wbwN/Fvivuq77\nFWPMfw/8ZeC/+0HfFbgur01GbL1+yNab1iLsvLPP5UtruZt1AVtyfdqGWLDaWNZg/86EKLevJ3VB\n0ocJ2TVqWadc5zgLwZyF28/rnJWswNgNCELBdds1lVSBXl2uWCljPhBhyX4csaVkTxh4hEOBd6oA\ncrnX2x3bWzbx1YbC0Yceb7/+GgCP3IwDEafsdTGjxCZEtyfyOg5GNDcSchn55OIeCG58JhN7lg8C\nj1SglytVHCbDEbsjJd+uYbr1OgBnyy+zPlNSNUwZrYSvl9CLm+zRqMKznDUbpun97Tt0AjXlzpK4\nsRWM2ZG9pndynxutYdoZHHkQ3fxDd9aNwMjrC5SsLTOf1bfsb7+f5yzzXkvTZS0zkhURrme/b6zE\nH7sDtkaiYIs6IrEuR8QUjjzEtuauPDZXlHaXecXOzP7dsDCIEpGiLmhEgZdlN1T6vVC8EbNViek5\nDU5vaCP72qvqDZN2Li7KLC051tqPgpDRQMnxKCYUdf+RH7MluP1S2A1Tlhz5Pd4i5FJYam++ouzs\nvhi5HYke10vR1Z1Xc8ZX8g58l5UqJ2XA5p51NXSiwYePh1n4cRONHhAbYzwgAU6AP4XVlQQrRf9v\n/Zi/cTtux+34Fzh+HC3Jl8aY/xJ4BmTArwK/A8y6rusjmhfA8ff7e2PMXwH+CsDeeMh4OOb+WwX7\n+w8AiKYhw9JCQ73Ve3ylB6BVNbU62RQOk89zGsnGrS5ymoV1D+ZpS6CutaYYM1hL7bdnJhpCJAJT\nN/RI1MnnVh7nL6VPkOYcKiR7W0m5ZzVEwhBMag9fnYZxUrHlWUvRpnBZ2WTVeGUjw6jN8DNrBf7E\nOwOuLq1XcH+7JUtlKY7Vu+9sM18+sfOtS+5ti2h14PKW5pHRsBSi7Z6g3V+aOMRrO7duO+fNibWO\nJ+mIF9jy3Judx1rKxt1MmIeopel6kZEc6dBggKkriG44JCxszJ1J+zDcn5BnskpVyeLGzqeOHJxQ\n5c62sQAKoBMXgFNWZK7t1PSLBb5yB3U6oFEuYl6tcbSVVmqu8nZCto+s9Y/CIQsl+5rmmkqal/FN\nw4Vgvi9ObA7kzK14PbEeZDQd8daRSp0jH0/w92HV4cXi81BCdJyvmakcPj0YUIha6ZoFWY/1EAP3\ni2rBeWHX+763y26shj18jMrgVVYTqRN4Lc2GybClXqmcmqe4akYr3Q4Hu3/P1xl9pnhHZdFgN6DX\nAHK6NWN5r+WVRyuPzfUCOums1ny8JqkfJ3zYAv4c8BCYAf8b8Gc+7t9/txT9O3d3uunWmgd//E2G\nN/amrMsab18XU2xTG/vgLZsFb0fCw4tg5PTxdzYah84oolAiqo1ariXftFrPWaorcaBaeuLHhL74\n+SIfv0cnjTtKRIkVdNwRHuJAdfWvnawZCx4cJBWxYNNR7VFG9vXV04zhu/amD3/GHjBOHBM8tRiD\nq8YwkMjK+dU1s5V92NYvdYgNXhBK3WqWrqmU9X7rToiv665vrtnathvhTfU1nE5CZl+2D4S/21L/\nyyKiOfpjHKpO/+T5Ba1Iaz6nUCuKI0IJw2wNanqejtnNkkD4hjT3N1lyvcVFlrNa2O91fZeBILwm\nculbKUIPskys0nLPk12Dd2Qf9KvfbcgFZ575AUvdh+k0oczs2t2IiiwvJxvdRY+MWNyObdzhpiKf\nGexSq4ckmvTs0i2eXHRv7rHqgWhtsKnyTAdDSrnaA1V4lvspvij2brwZnQ69l6aklupT29n7tBe0\npKqC+X6DK5DcwHcwE/sZn5xGPQrBYqZ1C0mEe8kTQy0wx8UqYypw2XB/QChjEAnIdncacl80APXp\nkqyxz8DEhCCVqXUdUuUbNh8+zvhxwodfBp50XXfRdV0F/O/ALwJThRMAd4GXP8Zv3I7bcTv+BY8f\npyT5DPiXjDEJNnz408BvA/8Q+PPAr/AxpegdOmIanJlDM1Vyqo1IWpvsORjETO/ppJ1tM/RtGWZX\n7n7w6ft0c3u+NabahASMHeqxdTVfZkum4izw1ADj+4ZcbvRgMCZSA0tprpj3SmBdi5tI9k3kqb4x\n+CoblbXPyLUuYz3IuJIlYeTwfK4SmLAJr99NuPfz1jKHV/t06i6cPa7w1QjVbVkvoJs0bMu6PLko\nefKyJzNN2BcS7iz2GaqDbyhqsA/OrvmWXM7yVctPRxbr4d+c4Bzp9fkNl+f2uv/x+zbU+sXhhIOh\nko/EbGk+cRCxowYct8pgISSjpPnuu3sEfo8qrAhEHDIOQjJRrHldx0AdrWLEI3IdSsd6hYPJDEcQ\nZS8fMs5s+Tm7P+HOhf27J8/te+8+XnLnTTuHPX9ENBI7tLvGPZClHO8xja119LZFkHN5Rf3S3qcP\nzDMCAbYHOyHjkeTcaRnpvvrSEekyD6+196Qp4My33shN3m74N3rkLZMBR/sWdpy6NaWSqsNdn1g8\nIVM32mhJZg9Vply5jEcqX5YDtu7ZfX2x2iEI7NqGA5elaONyo33oj2h9e/33Xr/HYNd6nvXWF/j9\na1tmfXTu4wgh+uji40nS/zg5hd8yxvxd4HeBGvg9bDjw94FfMcb8F3rvf/ph3+X4MeHR5/GyXbpe\nNPLKUAmksl5FPDD2hq/imlAswY3ctsFWQhArRnY8GvUBOGZAFOjGOTukEgBJC9WBswZP8uRZ5ZHd\n2O+YPyuJ5AZubY948NC6ou+MtUHPGuJeFSUa0EixKTA+jkhGLrqSXbl+lb0/5M6Q3WPbfRmEMV2c\n6is8Vqq0jHUw1cc7pDObkwiaa3Y1t2TbsBIUvEgzjsTYc6GYlesS/TPDuqMUA0wxPGCSiqLeOcJx\n7dqeCufw+KwiDAVt3pkSuQqxuo5N4HoJ1wv7HZUolFw3wy2l6UlFrfyCt8rpdGClXUmtB6jy7cO6\nXLUkZ/aaq92Qu3NVeNolpXIR4+WASBiJQPmQ07zg+VP7d0GbEg3sgxB3E4yg4PPLGWuFR6kO9zYI\nCRW67I4cXN8+pJMg2kjDe8xIJTrjqJJu/DFGuYE8N5Q6QA7agADhIoQx2PZGxK79DVP7NJn9jraM\n8BRW1uGAQHsn1N4L4pKg1CGctQQDKV2NUwphGbJivgF79fT68eEWq7U1MmZ7CJV9Rt76tMfut23V\n6Th6n2eqQD36nT7//4PHjytF/9eBv/49bz8GvvTjfO/tuB234/+/Ybo/AgnDP/dJ9JS7H32XSCjF\nL+2GvCMU3+FWyLfF+nFt81S8WOYIrMjrh1tsKZu8WLeUjbUq82VJXqkrUc1DW5HBU1Ir6DpaZchH\nnksi8orccTi5VI+9Z6f54N5bmNK6ZMtFSrHpWa8RwI6iaViU9vPn0vIrmg9JL7qu+y6kmcFRA0so\nCz0KA+71fBFVQ6GE2ryqGcjqOgYG6iKMe47KsUfU2NfFyOFff+0zAKTJnJ1Ta9mukpZ3HrwJwHDP\nFof+x//nN3lPDVrXq2aDG6BrCMTA/Mt/6t/jP/urb9vvky76bFaSiSrNf9nym48s0cnXvv1l3j9T\n8vMr/4TF+vd1rT94v/3nf/HfoTy2vz1dGX5PSNaLMxvmXF/PefzSelCmrhgOVTmIA7zAvo6bikhe\nSrAhlvHIJQVXlQ1Nz9+QlQzlbeXGbBrdluu+e7Sj0D1rq4ZC62xah7/0S38CgObI7qvt3PCNa3v9\n7sKwlpbD85MbHG2M7XFAI2/kSm6MB/jilxzikYq3oyhK1vJCaaCQx5b0naOeQ6TXy7zB0TUNA4+f\n/WlbMfrz/+a/gifBoF/8M//p73Rd97M/8AbwCYE5A2DMR4RGwWFk9xpD39tc/GnZ0YmFqJL8+qIs\nKLDvvbnjc1d8htddzcWZyjSDgkO10Z7qNGnLjqKXE/dalgv7+r2840itt8d7Dtdn6pzT/XnoZGQ9\n1bfX0OiGj32Diew8r1cugR6AQDmA8ruaWGm7TZdd24LTs8qKBPRgP+Rhr+cInKhM92qVgdxVrzFc\nKGuvvc/nH8CTb9j5vKg8+Lx90D/3Ts21PvvuIsCs7EEXdfahe175mF0bD2d+QHNhS3nGgSKwOO2H\nf3yb8eHnAJiqBLxdxvzOlf3x+U7K2cSGWv7eFE8U55yE8NwyGVHP+wXg+41l+4xPf9Eag+dfrvnq\nC5WR5zZ86PL1Rpyl812SLftA39uPaNVSnbcuE3FPvv6a2K3ODO9f2tfJuGAS29ezyzWdiGEMDRO5\n5q2onoznESbKUS3KjSRAZgxr38aF7/wxO4ebr9U8Ucv1LmtMryUZNFQKg8zIZ1vbvNbhUAGBwlzj\ntIQyIpUPA/WdeF5LplCvVwtzQkOS6LMpvJBa1lWT8+nMVjZ+7ze+yq7fg6U/3rjtkrwdt+N2fGR8\nQjwFg3E9urrezCj2fd4Yi+34wYSvPrKncnnhc+euPqSaeInDtiTOH7xxwM9+6ecBePbslN3AJtTm\ng5wHOzbJ9813v2P/+/iCSzVX3RuHLGcCphQ1RvyQrx9NKZ4oPBDU9mqeb2Tiu6ohVjfg7gCmas5f\nliW7Cgl6EpY2czhRCDKuPRZKPvkraHbtZ98prQt8PDV87jWbRHKvW2IltS6dklAchumqpVqqvi0Y\n8fTeHjdP7TWX64KTp9ZiPHj7TVaB9QoSJ6dTM1Y4EIV6HLJ/T8nF5g4nv2F/Y3nnFV88sizBv/xL\nd9k9tBWM9bVIYYKanxpZa/XoZIVTWg/jP/q5u7wrPcdvXef8D//H79n1evlVuxb1ku8Hu/3ae+cc\nPn8LgOeLp/itxVwU4rD005pAib9B4HBwaL3CN+69RtXZezJbVKgnjnfesuHOo+aM3UZud+xyMFX3\naOPgSOfy2WJOIeBXrpDQxaPTe8nIo5RkIVXJ05d27zxY/AwAF8UpQWw9m2QHJjNBkN0Qo9B1fxgQ\niip8pfAhcR2IlXwkZqWEcNK1VAJ7jIYD5iIMml8rYexW7O8pdAsyLm/sfbipKs7lpX2wquHsgz+w\nzj9ofCIOBQeIMBjjEMjtm0YBXizQzONz3jvVQ0jGjbLd+0KG7U19Pv/Alh6P9o43JcLX7nhMJ9Yl\nXpyfM1RZ6As/K5KWyVOePbMHRFz5ZNv25s/qgkzkJa++2TBWr0EpUs8gzzcunNe1HAgM5VQw1sab\nDgx7YuZZRwoDhjFzYzfVwE+oemn7aYS/JVCQuuyKas1ddV/Otgs+O7AHRP68pCkkMDtZ0qoKUIg1\n6uU3S0ZSmSpTQ3hgr7W4qaikopWcGb7xFbuh337brs8vvO7wM2/bcPM9N4Kjz9vv2M249+CPAfDZ\nvQOCniDWteGHazp2+o3rhzz6B98A4Os/u2L/U68B8OZP+XztXfugf1OEsdfp79Mp3/Pdh4O/N+Hx\nV+zB8mj+gmIlshPlj5JRwGuKwQ53xvh79um/vzfAn6qcW2/RqvIzcW0489pnPeKhvWaT5YwC+zCF\nh6+4fmlBPem6Iu9BRHLVG5MzVHv9thNwpj6HhemI37D76Uz5jhMzZ6r+i/ZZQ62D/oCGobQEjFux\nr16YvdfsvZuEEStR1Q+imLzuOz8TCrWAH2xPuJLG5uVT+99vvrpgz9hycTjyWFibR36ec/XCrtud\n8SXNyQ4/yrgNH27H7bgdHxmfCE8BA54DkQeeEoY7vksjbPhvXKekYsl1XMNSYcMXdq313HUGfOGn\nLY7+wd4xh4IoF4M9diJJ0fsjDl2bwFoKBn0vbPl/hxI6uVxy/b79u5FXcNUn34uOY0GaHcGrL7OC\nNhCAhoBaVGFD32VPjMmfKTzKiWDOUil6Z9tnoS7K3R2P1dzO4/WdkJVc2NHEWqjLc3hrx/7uPK1o\n1RF6EidM5WrmMw+3V0RWMnPbN8yVUJuHiw2xStZULIQLOE8veSaLeL9PUN7/Ig9+yWask8Vr7ChB\nmfkxh0NrVV0/IVNPwfzEhiWtH5DcsyYq3Tnl/3zv1wAYvx/yU3/h3wfgi/5zPvXTttrxqU9ZQse/\n+Xc9mvN/AkDTfkgZFhRwJQ+ieJFtOCQreY3jZEA8sNZxZ8dnKLXxo3CAH9r3o8mEtWDKx9LKDPMQ\nb0+hZL7kobpSu27FMrBuSE3DUq57Jq/Q9QwL4QrOqpqlksdV3RAr1Gt63MFlTemqb2OrYiw6+yEx\nWxP7flMMuD/WPAc9CGnIQqCpnUFIIRiz7ziUSnjuj6eMKjvPUWcziuddgSOP5jrr2FXvytXQJ45V\nwTgF/7PKQH7Mcesp3I7bcTs+Mj4RnoLpOvy2ofPAk+Wblg1PkG5h09EqmTcIXe5P7VkW7VmL+PZO\nxJuCM8dtyGJpzV9985hM3AmRH2H2rVWZVioPhRWvBWLacVaEQjEmrs+6sxbqpFwzoO9KFAEmDUOV\nse6OHBT2kSYtrXINg8Blv+kFauwy78Uh0vFg6g3ZUjlte+iT+OJk0GfZDSnE+V93Oamou5qs5Tu5\nndv1qmQmiEeP9Ph6OqfWPFeNoRIC7+RmvsFnlMZhN7TrfLhl1/Kt12HYqUNwHDKZIy0AACAASURB\nVLC//4Zd+7QhvZIa9eyKrVCaE0r8np1d8Okv2pxDtXqX+SMr+faN5YxvPbcWKv2Fz9E2tvs1aex6\nx/N3e4JnGj7EbFy3JdUr642UzRojLYc96XwOIg81yTIKXWJJ4QXRlIG6VSvHw5c2xKqnrlt7GO2n\nQd2w0vc6ZouhZy3w0N3ixre/7XnqgGxAFBd0QYkRRLmFDWnsjSi8w0HHua2cEuBxs7K5hjioiFy7\nDydBTKvMc49oNI5LJASlV0f4ytHUZUCtbs28qAkq8Yi4YvRizWVjPbq8rMm1Ll4VMpO+qZnf4L2n\nrOvHHJ+IQ6EF1k1DVWwS/HzTh1IPJq5DJEDH1mRAtGMv8p7ETO/u723ovRf1nC3V8V9c5SCxUvwj\ntiL7etGKmCNJSHyb9NmeTDjYsZvj2SylzO3v5XFHqPDAE43womzolO2/MQHjTt1wSYPRwdK5hk61\ncDVDsu1EmxuXTPcIhIUYuR6V+CZruYNdWOOqzn3V1PgSR63amnVr31/VNamEcdaqcx8PIuYi/3Cd\nlutzQXFfTyiEow/igKGerOkd6SsOj4grXUd3RnlpAULzZyk3LyzG4PmqZXhuN+E/+sA+/K2bcHJl\nk4v57IZzsWovi5Lli28B8L/++g1JZ5Wx7mU9aGhG832ATFeXCzqpTxUVJOpTCQT/HgxcJv1D5UaE\nQ2sAoiSkE8YjSFsKPViuaO7OywJPdHOlH2+APnRwcMcm4rZncxD25VLufFQ6FD0xTOF+KEvfdqxW\nInKZWmOzMmuMYw/vm3VKJHq/cTjijvr8k7HHtkAljaQKurrDV2+IH4akAr3htpuOSN/vKHTfx2K4\n3hqGjDwbQtf1jPWVvdbTOsXTo/0462jnN39gnX/QuA0fbsftuB0fGZ8IT6EDis6KwjRCutUOhCrp\n7QUug6F4A+5N8PbtqXv32JabDrcOiRq52q5PLsEV9+oJlUQ4tscOmRKGkercbpmyLbd0sXZJZD13\nPJ8TYQzc0pDL80hkaboOliLivFjAoTyBauHgiD82SBy2+saezr65f7DHQE05cRvhRL3OZYC7FCeB\nuvNWzRKjRp3jSUKu7sQ7+y7dtV2LV01AqhLhQAQHYzpmIzvPoOxIVO0LUkMnK7flGHyV2aaOnfyq\nTPFu7HtXN9c8+8C+/u1/9NuUmvPV+fnGrf5WL5l2d4wMIvvxgB11Y6VOTa6YZnWRclNbv/qpSnp/\nGJlouU4RKJTYGAbqCIzlpcWOIRLJyNZgQhzZtU2CEDdRN+PcJfJFtqu1HyUlzdp6hYPJGtQ8NQkL\nliJxfWvL56q03ud2bT235bpmrVKgWTYf8gAYGHhSHhdrc1GB8rdk1xmeQo1RbNgSPNqrPTzxQdRK\nnpvO0LX698gQaJ9VTQPyFOrCwfRlcIWr9yYjlpH990Xb8kxCNZPS4Ne9GEyNP/vRpOM+EYcCfAh6\n7TdLWXWEAgLtTwN8wWr3j8ZM98Vn6PeiGQmJsvZ57RGpS3J0vE+oTbryDf7C3txOLmUTuhRy8e/u\nHIGqEqenS1ZnohGvOqYCC+2JB/Hxst3I0z8uWhLlLb54N2B3JHfXc4nVg+HqxjqRT4x1Hd3IUC5t\nzN3lE9QFTjsQfHpWMhIm34xdKmH8s/OGu3pQ1r5DLBbkZ3J3D/CIpZ/5YtSQqipxXBvmOghWi5y7\nO8JqiOXn2ZOnnApK/OXVt/jKr9q1+s3zRyQ66Rwn406vHCUZrqmTYDTPyNvhzj37Hdmpx8u5ZOfL\nFXXbu+s/uPehrVprEYDROAFVH1xB20fThB0xKO2MByRiShrg0qhlPhw3FIVi+B45Foxo+rCkc4n0\n4DFsce/ZNbx4ts32nr0RzwV3dqZr3jux1zdvFpucUdd2jBNLcDJRmJs7OTOBlAB2FBLsBC6mPy2c\nllpSAkZ5htB3qBUeeyXILuC2hqXCyqSJUHqExO+FXkLuqlo3C2vqsZ3bxSrgUNWqbl1YBbUfYdyG\nD7fjdtyOj4xPjKfwvaPrOhwRBY6J2D2wbu4b24dsK2wYB/a9wcBj4EpuLe4I5EbuOhX1Wq6Y6VjJ\nDXZqqQinLaFjPYXSXeMrqXU0TZgocVe37SbBk8roFMbB9MjFqANRuo0Sh31RtvkVdL5cC5G0GONQ\nF9ZKtCVUicg2GpdOrl/ZJxGbkKASiKDJN+Im3cjQCBG3U2RcCAEaK0GZ7qXMLZqZWWjw5Xk18xRX\ngix3Y59ITVy1MrvVzOW0sInYX/3dkkeXVvJuWay4Fnw4Dh0aze+n7khJ261whdYbsOTnP23vTbEO\neLkQDLFrgJ5RuKfv/P6j6lpc6dnvJIZcSdxEDWO7/pTjLVWRphOMqPK6LgR5iJU7wK/tda8lptJW\nGZ0awoLYJxa603NgPrfW+HCckTv29b74DMs1HIyEGqUDhRqdAdOXkkZy68/XVLnYrOt6s0cSA6lI\ncNbGQxEYg6HCCM/fCOfUIbTqriSIMerWLOuGdWk9r5kSwnm2pq5EwpJlFH0C3XPwDtRsN6+5qTdt\neB9rfGIPBehYCxs+C0t25F6Nm4g9EWQ82LfuW+n6RHJrk6FhZyCRmKoGkVmuzy9xVYmYZ2pZ7Qyr\nrGfP8XFNL7A62HzHZb5G6ulEikNdWqKe/NVxeNPvtSZ9Wm2UNgkYirHIEQ15HDa0/UFRu3QiifGD\nlKVi5rpVyBCVxNsihbnpaLUR1otio9FYZLBuep1AVT2WIetYfmbX8urMXvNjt0IcKrw5HpNJ7aq9\nse7+2pvgrRVq7KacPra/vfRhIJc/DH3uK84ZjEU6O45oJHx68CCkEMfkw7tTHs9smHe9uqLZeNXK\nuP8hYURRNbS1QqzJAE/sTY0C6dFWuAnLqDxa5S1Kv6CUmK7vNKQ6qIKm70QMcVRFWs5qvMQ+YA2G\nUCHkYBTiqjyUKdQqBuCqDyZtQrpOmgEdZGovb2/sumVejNPZkmvdNHQK88qkw9eBFFPi6lCrRTjj\nJQMcuftt6FFmfcekz0pt8BeXz3n/mQBlqk6s6fipA/tdi6LEkSxBU3V4gj/nXc4i+zCk+TjjNny4\nHbfjdnxkfII9BagE8Xx+s4KvW7DMZN3x+8/tafz+PWtRtr0Jn33rIQDD7R2qzMJuTZWRL+25d/Py\nEYVMfieyjTZINrDVs6zi9PxGr+cM1Wi0bAxrpUFd1ZXdpqEVHiEyHoEouJx5x64Yo1cHLasrSY5L\nS3J23VFLJ/EgMfiBxGKMi5uo5l2LK6KruRI1/Gn2krMX1iq9WhVc9hYhirk7sXM7EqRjNIg43RLP\n5XPD11d2DgtcXLnUq67iTYUE+1JqTuk2tO7RHO554rN02BDR7G8HvCaP5FheTl0VuGI7fvLtnK+e\nWM9jfrZmqlAhd0JqCaoY2aG8syLp3zs8YxgqgRx6IZG6OXuAWFU2XIlOz80WG2+rKA2l6TsRp3jS\n5KwbNUn5FUUvz14teXZhrz8vS6K6rwYYFkow9uzStA2+INZ7V4ZvOf370MmKr0X1fn2z2givRBiG\nPW1g5dLp7+rUI1spfvDsHHbdEEdeqtMNUURLl5csriUtuCrJdB9cNQKOTbDZv5nfsYpU7Rh7xG2f\nmI2oFj+h1YfvN/otc1HVFOIaLF9c4GBd4kfv2X+PBwNWV/bf375/h4cPrZtVhCMWM1tE+t2nj8lf\nWN6+qr9xSUKmBT4u4dGF/WxdfyhXH61LChFr9BUSx2HDs1dUBiqFDG3HU222+mXDN5XN/0DxPtlL\nfMWLX7o/4fiBfegfdDGhkIxL6Qr85svvID5UTq8rKjEyfatu+LRmsuhcfIGsOukYfP7OIfO5Zf/J\npyteCI1YNM1mQb99k5HWvXqRKiDBhG0daHXsMNm3G/B65nIkzsAgcdjRg7UuJEbbLHgpcpqx67JQ\nteBTR8ccaW0fPXnMV89tfmFn2/7Gk7M5XfEH3VrXOMRCcg5ih3Kh/gLlFNK6wL1W+7lTUIn23C9n\nzHI750W7IhmJu1EVgDbLcZWfeFrPefpEOZNXa453xcHoOyT5QtfXo1cNkWf7aiZ3PMITu7da0+Kp\nqrSci1A1a3DVXevHAY6AVV3rbISOaypyaULWXc/0BYloAqI4o6y1tt0aM+3vU8ID9Xzcu2uNXhNF\n1CfWWKanOYnWM4tjPvu2bXE3ly1fCdI/sM4/aNyGD7fjdtyOj4xPtKfQj67DmmfALRuYWKt4I5Wi\ndTXna+dWTcl1KsYjWes24slL+/7Xv/6E84UNH26UIT4YJYwk255XDkvVm4elh+sJMx93SJiaQLwI\nbmY27t7RlqEWv56JWzIJi/zay5S0t1yigbugZSp4rTsvWD0VIYfjsTWwc8olLLNIU8LEWujCN2zb\nggOvuQlreQfrVUqixGZxYyf5aHLCxaW6RBtDI3x929UbsZvM8TCJnYevBGYY1IwFmXbKlGZtPa+h\nX3Eo370OEobCC8SquOSlIVTSsghKBqG9Ny9XczzN7bP7Y2Ziox5iLf+5V5IWolX7rjAiCgNC9Wsc\njz3ORa/e93OMvAGxQpHUcynFtxA2LtVaHJNrDyPFrEL3pmprFqqGtLMTtqfWkwhNi6MMfl5WeOK/\nTIU3CKsaN7Zh5f6wJPHFf9k4OMKOtCJ7cIcdjUBIe3sJrx0J3+G5LMWCfVPnRJ619EN5Oa/SivGZ\nDYlNN6VVQnTmGDIpiq2CCedr63levNeTvoSM274nKCAXUq2pc85bC1N/mc6Zl98/qfuHjVtP4Xbc\njtvxkfFDPQVjzP8M/BvAedd1n9N728DfBl4DPgD+Qtd1N8YYA/w3WOXpNfDvdl33u/88Jlrp9Lyq\nHBzVbhPFXouVoXlkT+tBfs6BOA3OrtecVDZmXmcVa3UtXvcw07zDPbNdcRdZRyVLOvAiGnE2DMMI\n5eLYEd7gjuMzVk3cTwzvSG7taFSzlLX94GrOE5WWbqRfsRskuBJcWaUB3xR70ZtBxKgWam4hxuXS\nIxR67t2Lkusz+xt1fM07fSdlYDBC/zWSZTPzhErWbisOmKo8WXcFxcS+fhOfN3rdTGE6nlyveVcd\neZd1Tpj3pT5YC/79xtaAe1vWyhULeWkXM9aKo1s/4L1naohqGzi31vZoGlCJcero0JaRcxPzzdqy\nXuVVjaOSc+M4LJTvSBuHY1l6f8+u/Z67z+MP7D29mN/wnRubX7o3mnKg+7M9img7ey1be1LSvplR\nzOxn63KAloivP7/h5JUk6VhyX7kbR8nOg9GAWJqlw+ABjrF5KdeFVgSrrUrni1nGrprYjrfHPHz9\nPgDPXl7xlUd2Pk+Xc87EyPTGoZC5NVxJKzNMXBCmgdalS+x+cZc+758Lh5EJ5Tmo+ONjuy+mI5fd\nkYSGugBfmpbPV4/Ju3/+icb/Bfhvgb/5Xe/9NeDXuq77G8aYv6b//58A/xrwlv73c1gJ+p/7kWb0\nfYaBDawYCgq1PkfiunO6NZl0+y4qwyyzC3JWXm60/Zwk5m5sF3gsafnE92iENxiMio3IaezEPJMY\nbZC23N1XV6a0Hak77kf2hg73Xd56qARdFeK/sBusHnjsi8HX7VTH3xrylhSgHngQKVs8KGLcA+Ew\n5vaWvDadsBIGYbALZiG3Fo9U0Na9GJLGfvfM2MNkRMMbh9LgbD2qS+H2I489qSU92A4Zag13xFWY\nOw7HwkqMiBiLLt3pCvaO7GbbivbYUrt6Kgq6eeBzpEN6EE8I1WtycnVNrU7Ft+NdPihsfX9fYKvq\n4YB9cTj+TrYka+w9m4QhoVz/5brm/q4IXozFpnSlS692c3c7wQx6ar5dYrWfh11MMuw7EBXyNbDK\nrRHxvBFCo3O4t4tRUrEqO3Z7qvVIKmKDEF8h3Z244u6O+ituakZ91UnyA/PUx9fhHDkJgSjy1m3I\nw7v2MPRfOTxUs8y+FK28VcsqtQYinWf4PVt3WdMpib0/hC991lLaLU7tWlbdgmgosFxQUytcc7uc\nJLP3ejIZ4Bb2Wp6L5/OHjR8aPnRd9+vA91K3/DmszDx8VG7+zwF/s7PjN7G6kkcfaya343bcjk/E\n+KMmGg+6rpMYGqfAgV4fA8+/63O9FP0J3zO+W4r+h40WQAgzPwiQAd2UtCrjEMv6d2XKdmldvOet\nx709a+XuTOBMDMTPxMS8NfYx8jaOTcOl3Cx3mTERScfYd9md9fVfaxHf2Iq5PxXHQhfSSorcPVtt\nmm6+MBriiOA/lfV5EEUE+veHbrfhRdjxSwZG6tD37Gn/GRPQKME3Mj7xvn3/STngrmi3Tv0GT97N\npBY1XTLEr+XaRx0vXsnyBS1b8ir2A3dDY7Yv4tPcuDSB4NpdRyDQwvXSYUfJxWRoSFTOdXeslXvb\nbdgX4cwb0z0eH1uLuDh7wY0Ss3fJMd+xVvO1AzvP0t1hr7bJNaeckl3Z3zg4nhIEQu5dVbh70uNU\nx+hgEnA/soQ6buvhq7t0rwpZi4Is7DoawYY731rgqvUJe3YWIJ5aD+Ohc8gDIQxfXAfclQ7nXHRs\nsVdgBCs/OrjHn7xn1+WfBk9ochHfyMp3jUMjfdDVuqBK7fd+eneErxBz/pl7HCgkKBV2rbqXnMxs\neDFgQNPY5HcwKDkQmnI4GRBLHMiVZuR5ueCOJOcv1wWuyF/zOmE7sPP/pcOHpELyfvXlJR9n/NjV\nh67ruu+v8PRD/24jRf/D/t4BDsZ2g31he4tXajl2hV1YlStqxfKuGzNXxjpICiJBTd3jI/ypXfhD\nEWH4ZkAjF36PnK0L65Y9v6k27cKVUyONEV7N1S057jhQZ6QbZeTXcuG7kqGdErumwwntpuijDt91\nSDLrdJXRGCP9wJaOdWo3d7oWhNdfYWq7ie+4JQN1agaxu4HPjmYzdB7xShnman0FuvfxdMzB1G7i\nh5GLI4BU0I1o1H7sGoVGuxBuWbKR067kYAOf7sg24iMOrnItY9eu8Tr02FUOJ97u+NKO/Y7qzoQz\nz27S9rLgXNTopboWh9dXPLxvP9u1IdfK1OdNymRoH8KgSnn5ws75/rEO2FWBLyGeeHJIN1Z3Ye0x\nSZWPuelsRgtgWwfatOKVVIPL7Jrp6B0AjsaGLuhd8F2G+u5wZcPARdVROjoo2qckgncf+wekhb1n\nA5Gs7DlDFqpkNHWzgaxPvSH+jr3XvlNt+lGqS1tNeJGm3Cx66HrJjkSWz9MO8bgQdi1DteJH/V5g\nTFTZD+yWN5wpFF7kKY9buwCT0Zg7xxazwD/+Gh9n/FGrD2d9WKD/nuv9l8C97/rcrRT97bgdP2Hj\nj+op/D2szPzf4KNy838P+A+NMb+CTTDOvyvM+COPYeDjK5E4iUJGqg9PDqwV+MrTFjGtUQ0jfHX+\nFPl4k+13yoq3d22y6rK1GfRx4m3YcndMxVrHcuflDEv73Z8+PuTx0p55L9bWk3jjYMhIbu3iJuhb\n/ll3NY4yorOu5FAn+khw13tDh4uVtf7VvKZQRn7mBlTn0hsw9oT3xiG7QrMtl+BPlXDCwXF6ebSA\ndSlIsJJeQzfmWmFA1hp2ZPGjrQmms9fnty17d6WZMbIWbFGNOFDi644XkQhDcJ7fsCMX9rrOmR4p\nqSo0X0ZNrSSoX+YkYk82W1O61IYHZ+sFy9Imbru5kohXS64UotVNxyvBeX/qFz61IbtZLk8Yq8v1\nQjLsb+2MMAphRomD29r5D/2WuRKXVXrBeWW9wjtIlbmJyOXuv1rmHOR2wwziAbH2U+e7bCn0eiXI\ndLlqyXLrNRRlwjKT7J1TbKpZI9dugJ1BQCk4c9mB3yOi3QLdakLXxRNadi2Y9Gy1phA1Xxm5FKH+\nfbHiTBwgXrRkKO2PsTpDzcBlKnzLRZszFHdGtExxVWHL246DYd+h+vHGxylJ/i3gTwK7xpgXWJXp\nvwH8HWPMXwaeAn9BH/+/sOXIR1gH7i/9SLP5nuFogR94hqnIM0d7DmFPXKnKwn60YiTeu/u7A/yp\nzW2+3s4xmVy4fYehMtWRsuK+GZIndhO46wJnLfGOIGKhG5a4Cdvb0qZM7aEwCSLIey5Fj1Ul0Ezj\nMlC8+Pkdh91t6x4Pxcw0rEISMSU9W2b0uONu1hIJFBOIlLWcO7RizLm7PSDxpInYghfZ31i6HbEO\nobKxh0m9qomlQenjslCo5WQO8biHzAa0mV3DdtJnqRuizrrtbtTSFHaeSeYzVzdg7NWwUlyrfoBB\nBk1p45V86dOF9lAI6hJzbt9fnWaka1VExDZ0QYf3SrHu+Zz3RT7zS5Of447YbE5OOtKldTR9xerF\nOmZ/e6r5gO/aB8VvOi6kJpWalh3Rp/chWkZFIwCRSUs69S9PRwnIBR9XHb4eLE8Ze7/OqTN7oN2c\ngHR1OVoNuVZYuCVhmSZwST1Zp3VNKmBV5ITQC9OWHk5l1/BG+60rPMbKmZg6ZjYXD2TusVyLQLaF\nvcTeH8/tod0NiPC1W0e0S7t3VvkMrxdMGhv2lBP5uOOHHgpd1/3FP+Sf/vT3+WwH/Ac/0gxux+24\nHZ+o8YmGObtCmNSBi1HSZjlzYCyghzyGaTzkUMCVgyhkGlqrUp3XmJHILa4bjmrBUseCn/ou696t\nm+dM5Grn5ARza1WOHgRsSQwlG9sk4eUqZTiVC1dVuJKVi24ctsZ67Q0YCWS0Lq2HESaGbfXrN1sZ\nz04EOCpqkIXKxGG4YsUwFL1YBeGBREquQmrNrShbfE+6gyupZI9DHIUt547hyXPrdm8nMW6mpNyg\nIo2tex1g1yIyEY46C6+eLojdvoHHw5Xve3aRMVUGr5J0HY7HQt2Qg4uCZWujxXo75r3n1mq+enzJ\nq4Vdu1q4gXfTBe/Oexr9lEoYiYeHe4ylpFwWK8xKXpG4LIahg6PGpsjxN1LtxaLAFZHLvWHAi9Re\nn6NqAmVArGqIk1b4okTropyJwpXagHKmeIKxJ8CosWv0md0p3zyze++3F+fE6tB8JfCTN+wIFOaW\nfrlR9q7CiFhNbCb+UDI+LiRKtL3DQt2ch+Phhi9hFDksIvFAXteUoTgYD/UbrsFRjj5zWhzdG29Z\ncUc4i+14QPdDiG2+d3yiD4VGZcZ8XXE9EHpssQBluGdSK+rKnEx38/n1DKMW57pe4vflNO+YQpj6\nWm6dG8xY94xHyyXXud24H8xSzsRr95uvThmqy7Ee2uX6vdMb8tzOIepmrFW+qhKHctWX3Na00lZI\nlRWuV4YgsDfupGk5FSIuv1yzpTxAOu5FXtsNH+LscsZC7uC1V5L0bFFdyUpgtZlISLy8gbW4GIdT\nbnoSktxsCGeen3ccS4XpRiW7aL4mEu/iLGtYyb3uOocr5ReW84Kv6aH31AEYR4ZCAJt8mrBQee7Z\n5Sm//g17f66ur3i2UD9GZud5kaXkQqQ2bUsnJGAbDfHDPn/U8H5jMfyhwqq8ivFFIz/rctY9t6Hj\n0wi9el13LFXiu1nb63Saa0rlYmgd8pXmPChwy1zzqFip56PLeoBQzpYEdD/orviHv2/zJI+yGT//\npr3XC/2N10KpB9B0HUu1Ybvemkahm8+QUtyj7VB7z41oFcKsmoBdld+XyZRo+QEA87om1jV5fel1\nMGChPMl6dsFSWg+NZ3hfSlXtdUY7ETHMxxy3vQ+343bcjo+MT7SnoPI4J2VNImbgVzHE6gJMdfKf\nLnIuJR1+0zZU2/aUdL2AvSjRdzk4om1fClvvlxXLTPDgPOVc1midNswUVozalpc91aD+/p89m/Nr\nr9Rr0RheU7Z4+42Ad+TROHXDShyLN6IA392rWS/sdxxNt7kRCCkASqWqU110nJQsJhKfySOurqxF\nWNBxZyhasaZFpXeu5f0cvznkcqFEXbFmKfGVK68mGSpU6Frm6qjbVTdoVTRkgiKvyoJJYK3Z0kkY\niHAmP9ila7W2qsfHXciBavDxwZD0xH7Hlx+/4r1T6ymsqZkrq993AOZ1Td32DBVsWJ6rLmJWilvC\njRjKKi5ET1+UBU7PTZBVLAUrTjyPUrBiF8PKt1b8g5mdw140xlenpTOMaNwPiXYy7Z3LmxVhZa1+\nzwvRdj7n6q4sCfnG3HoKsywjUd/BeiWJ+KuUWL9Re4aLQmCJ0mMgafgir+g1oFNVVpp5wSy3c3/V\nnrGSarprDJlAWPtdySpW56qqHu26I1RXZlGkrJRITbuW9dKu15fTdNML9HHHradwO27H7fjI+ER7\nCv3Iug6n6AUyKl7IKr45sif160c71KIo26pgemBP2vEgYEfc/NGRx1rcAfHUnsrZAvKeTN9p8YRs\nS/YcBvqNalUw2lV5Usm152VLW/VYazgRK+nbzzxmao45uhOS6P3u1P5u0I0IDoRGayCu7e8tgoCl\nEkpbr4QPWAYs+3xBHNKE6oxbO+SKv0u320jLBTrf3VWHKzRmcVXQKvHVlo4q9jA88LlObV6iE3Py\nYBJh1DBUxC6Oa691Z+jhyUMa7DmkS2ke6voTVrRCkHLd8J0zmwP49rMrOmkWjAiYBfb3LoU3aP4Q\n4tYuSljIij97fIYvtumxSqtN0FCpPNu1JYUsZUBM04sAdS3Hqc0vzCQo9LgqmKaCDOc+a3lks6Ig\nUm5ntVqRK6laS9m7Xq/IlO9Zvzyn7BGLTcuO1s5RHm9edjR94roLcIXeNL7BE3N3tapplUwOI3W+\nrucE4m+YZw6FGukOk5ix8kdNYDadpFWm+bCiEuu48WISJdu9LuNalIWruuSg1774mOMn4lBo+bB1\nus46HNF2D8Z2cePpEW8q+Vi7BdtyNVdBzKCXbW9dOvU8LJWZrhKHQNWCJIvZkRLQuIFSDLgP9iN2\nxXcX79oN8V/DR0RN+opB6ngcqHvwaBJBY//uTA/K6bKjPhfSqfNZi8asDAsy4SI8kWZcr0p2R309\nO+fua3ZzJHsDRqrKxHnJtQBJs1VPQpLwSryMF+uUKrMPxdlySTazD83rh1u4ysRPFT54g5BaHYyL\nFwtmSrSVp2ccSrMzTAY0wmRky54DERrBmSs358tffh+Axq0/7HMoWz64h9ehMAAAIABJREFUtIdB\np3o9hu+haNShlrvcXNoHer485XUpeJWqx/tVRSN337gty1z4jEXJShWTLW+MI7zIrhKpbu4wOrTz\nuUkdikZrdJKzLyo0Z+DgqcqFXPGojWgEp5/NDLX4GA0de1Pbg+GrPf3VLKVQ8tRbu1SC0Dd1gKeK\nghc6dJl9YAOR79x9MOFtz37Xziiga22Y19Gymqtdumm4VFLcyIB4rUfbd1QmARMddOPUI1CylrHH\n23f2+VHGbfhwO27H7fjI+InwFACQp+AUJW8dynoIvtldnnGhhNvhnS0qnZhmteBanJXLsuFipHq0\nrOvITZiMrUXxPNiWKvPKC3kYqIwTwTiVFRv0cNGPmrmWviZcU13b2ry7DdGu/b37x/bvVqahFfx0\na3fK6qG1wPFRyezbSqReC2HZGZ5LJv70fM4bkrSbjoYb0pfxVUWrbqv7sb2mdHvNb33VWuVnWcVY\nrv9VZjiX/uPRakQoy4SsmVuv8GNrSafxkoUvyq9xzOufe9t+JrpHIOGTQgKSixeX1G1P8vqYQp2m\n467j7UM1GiU+V09Vaj1T2bNebIRx7HLaizrLa14JWbmsKl6I9GRHpb6yK2mW9voODicbYZhZBV1q\nS5VRfMCu0LD+2MJJE9MyU1nUyQ3Dnrw38IgkyuIVEUYJUTluLNyMeCi17q0CngqFiqETP8HuscLY\nVcK7z+SFOhVZb3PTEmfPzn8vHoLCkeapTYJmZotQFj8NhiTyRorWI5fcvUvE0baQjPr7ougwvR5K\n4pIpRPFSQ6C98+Z4xP3Xvrsd6YePn5hDoffWX9QN2wLv/PLRHQC8w4jjbft6FEaEqt3WkU8vPrIs\nPAKJv851wLi+iyt46TjJifWADfEZ+NbligYuuXQlT2Z2QxvPpVPbK6ZjNLJf/PAoYd3rP8YhbNnN\nfez25Bc+cwGgFrOY0NiDZ7QKqXbsw3QvsVT1A3PB7In93ftvj9nbuwtAOO3wlE3eHe4RSXY+Fj3Q\ntyuXUqSSdeHRCW8xX7f8M4mWJM9r7n7RrtHeRAKt4QhXsuZ33YihmJka0xH2+ZN4hruyv5OqryHP\nYtaqWrz42nN2t+x6Hoz3GGlOw/2IN0r1VdwVK/O3a87PPwBg3dTEhSj1VwFPv2olrm4iw76qIKFg\ny/OTOZ6C+LIxuKqM3PETEonkRNcLFtKudFb2gX3OmkaK7MtwxaGnTtqJz0DkO7nX4ug0KIXNqGYN\nawHOloT4An2VeY0vTcuROke391ccqM3+Yp6zWNjX89cc7oqUZ7I1IFZ+ZKD91C0cGumbegtoRXwT\nljWZWupHuAwP7X7qaeSvrzN8XWfj1PiOAHWeC1q36PVDki0JEH3McRs+3I7bcTs+Mn4iPAUX6BkX\nyqZhqeaZpaTB7k8nxPKpO8ej8noqriGekofD6XAjdjKUoELbNBgh96rOx+9sF2UwKSiFhPPm4I3U\nXKKTP3QCGuk3BKHDsToxd+KQWInC8+uSY+x3lOIHSOqCdmFPfrO4Jr+w8/e8hnogi6BEXheCUpJs\nh7ubrs2yKCiuJHCyE+FKbuwqsMnM9HlKqrN+7BiM38OE1yipz8ubOcdX1hOqBf1u9jx8hVVOOMAL\n7fvD4ZBGTTmBOyY9kaBOqpr/1ZJsZhmzL9chsaznbjSmFMz7xbmHo+TvSFRqv/ilMfzWlwB4tvcN\nLldCYc6X5BKqGZ0lnIvvIahtWOYXLrU8vWwGnvgNGgriwK5zeNdhJ7dhgyMOS9MYypGde5yO6LQH\nymXJupY2RAClcB2LpteCCDmprIvhDD3iAzsfc96Asfchu7ELu0pHRLLcIxcK3YdukVBJlGg1HOAK\nn1HHO/qsSyco/aCNCBTG1c0Cv+4hzUta3YdearItCq5LITBxN9RtAdDENjSdDLaIc3Vxfcxh/jBN\nv3+R44s//TPdP/1Hv4EJC1q5bbWzoHhmY7b52Xv837/+9wHIvvMe2yK1cERrXkc+teLMpjWMdYKc\n5xmlSDV3D7Y5EPHOb5/aDXb1NOVsJb3GsuBKsOoJLv/qT1syqS/8xS/yuh6gZ/9fe28WK9uVn/f9\n1p53zXXmc+65A6cmm+xWWu2WLNkGrMg2LBmOkwB5kCEkdqxACGDAShDAcUNPedCD4cCJAziOjdgO\nYkiyEsexOgIkuaVItiylJbmlHkh2s3nJO98z16lT8x5XHtZXh7xKd/OyxUteIPUHCNatqlNrD2uv\n9R++//dtuwfW6/1nsCc3MzccXjhhkeFrJ9jEPcqv3XtIecdBgkPFek1TgtqFm4uMWmIpfljx1i33\n3WroxghbDUJRgF9MM0L1ZWRVSSUikMF0QaRS7VK/Ne0HWGlCntcZv/4bXwLAJAusWIoW1Vu8+aXf\nAODnf+pzAPzSq9+gpfM/LpzGIkAj8FlTVeKT2336YrI6Vyb8wWjBaOjOOctqEvErXtvw6QnUVc4L\nbuk7E1VqCiwLgciGtsJoIf/086/QvOquy3c1+5xKUauSvmTYtNy65x6Eeja7bLNupzG+uCuT6YJD\n0f8nAlYdn04I1OiStnqgVvQH9wZ46sA0JiDQNT+duvfWLFy54R7ea3/sJV658pI7/rWIn/+8m0fW\nurl3NB6QHTrilLib4gu6fHI2oFQ+x099GnYJIV+qSb2z8fg1HEipjMWEUjmhKDIMBZIK1GmbpBFN\n+foXs5JIpVU/sJSCVU9OcgYqjT88n37RWvsZ3sNW4cPKVrayR+ypCB/qqiS7OCPZLC995tFZwVRC\nGMc3H/La7zqNuOkUOHUrdHu5S9bnlxqMi7qmpW1zlI8phBX46vA+VyQh9mXVzKeTklu53Miswnju\n9zJbcfCGc8d/4s3f4PgN5zXMP/4KAL2P32H/ZdHFfz3gN78k6qt4RH+yTERdMJer3BRnQ2LbhKKC\nyyMPmgIseT6bLTf2XUGjg2ZFWx7RrMjJ1YNfBQtCEcOYKuNEzVZdZaSvXIm591X3+VEORl2Enh9j\nU+fxvPGVA/7F551n8oU7jq/g9qSEZcY+9ljX6yKEoZKn9UbEFXlI0wN3PGnWZKAKxmJRMVo2gU18\nnldGfW4qcn+plCyegsDQlwd1cFpyLj3HT6dTXrgqPc58xM0z97rbchMjHhouRINWhwm+aPK3mhZP\n4dqoCplZ9/62qiXz8YLbwiA0wyEvrzn3ejAoOJu5a17YBevqZqxEWvOVqcfZ0O3+r/RDbt9082l+\n5bsx5V33e/vub44nA+bK6a2vh6yrYhT5CRPhQpqbATvCvVC4BG1tUsy6O55kDnEkPM3YYJruOu+t\nx9x+23kQJ+fu74K0pN2QnmVZciyMxHYDnn3JXbffPSwZLd5fl+TKU1jZylb2iD0VnkJVFQxHD9lu\nfIxKdWLPP2PouR09LYaUsVv5b8xj7gsL0BNL8v1BwW66ZCOas9V0CafFLMBTw8zbdkxP2gKRcAdV\nFTETY9F+6HOmJKFdWG5L7CS7uMqdxVIPwe1Q9x8+4OrgBwEYZMf00jcAMG3DlYU7ptNOQlEv2UPd\nTnRjt0GeuRV8PinJlgjKRkKYOq+gq0RV3oZmV3H9rEEghOX9YUFfpbeqLiiWrcgqkf7RxjavNl3Z\nczGZUIuWzLc7VNpJp6dfYtpweZBC8WkeWFSFZKcb870vujj6oMxJPCEhv2udF555FoDRq46ibmNj\nwV7u7od3nPEl0a5Fp3BXDWbdwON8WRqWc9dresR77loNzwpy1eYPFwVl/Jy79iZgr6+kYuR2yU5t\niBRntz1DLI/mWnubiYRex4s5o6Uyt3QoRos52VQJ5qTEhu6c1ho1TaEsX5sVbInlORcr0vB8xoMz\n4RSKV3hbIjHR/BZvqenoE/JS/cYWaw23i2/vd3hRZUivnVJpt17veTwndqrpWE1ZuUctDEzixYQq\nOY9OR5Rixrq632NSOLToce7u/8l8RidUArrMmeVq7Cp9vu+a8wqrbk6lZqvHtadiUcD38bo9FvmU\nuaivFrMA7/ccW/w3zmNuJA6HkERDZrqJY/Wdx/0UT7x1/bIiE5fdditgfOomx/a8ZNp0Wdjt2D2Y\nw6nHcyfuwY3imLbKE4cmp1Ym/hf/9Rk/8Bn3Gy8du8v1ex/rc0vAk9P8bWLxHrQGUCjxda1bYIVh\nn+bu5odBivGFbygq6qW6sNege83hE4ySp/ligKfeiObaAh4KJrwYMMnfcfDSZJnwVMhwc0xDC4uf\nVfiqBlhryTN3bd+6M+SLP/M2ABdD992OMbR1Xa2FUhDcfsPyTM9VZfw6YSacwu6u3mtUrJ0qe98G\nKw7Ko8aI8cgtZE2gI+CNFRw7jgzZgao5piZTwru53mcsaHajaWgvsf/H7v42Wm0+eU09Kl7KUPGm\nF7axwkhEVUR66M5rNnIP4Pq1AF/Vo8l8zGLu7tnOCy2GJ+7afewwJ4rdYnglEQmLveDeiQslX/3X\n99n/jBi6xymh4N0nB+r8NMfc2HCJyL1Gj7ZClOfTCF+dn6k3o7ckttFGNp9CQ52fsd+mvubOf7oN\niXUb0VpnB//TqlyJqv/u/TtLGA5BmhNpDpRZzemXJUrTDgmOV12SK1vZyv4Q9lR4Cp7xSPyYalIw\nR+W9yQVfmt8EoJGfEQodN7QPOJcbuF0tobgRa0uXKwvZVg2aRsqGXWoPNNiRcvV83e0YLyQ1Dc+t\n5uGi4p5W6/WFAUF3X+5Yrg/djl8853br9bRHLUotZguMkmtlZGk3VB+fbVN4Lpk3VxNUWPr4Qp2l\nLShUd+6HDdLE7bxp4XbzW8WUONDtGeaE+ZJ5qGA6VgdnbQm8d7o1AcKkSfHQfV6SY5fHWVqGX/8y\nALd/5dd403Pu+NVgSTkcUyvRWuQe+dgdx6ZN6Kt02l5L6PqilguVBE3GjNWVGaQXxNIv2AhKxkJy\nPhOUbIi67Jaa2R6WljWWkm4GTwm+RtVAzX5ElU+tTss0dcewtpFSjt3YrTAjEvVU1xpKUbrtxDGT\ntruv1yXCUkR9itCd05254WXJrdmgvCy5LnoNWoJTz7Sz923Ihaj3Gr0J9dvud7OdY0wpwlZ5mI3G\nPoGawOJ2my15WJGXUEqZuh57RDOxhotWzgQ5paTrtmMIE9fZa9ctlZjH1/yYpuK73suS7KsuyEUP\nV5cJLbEtTauCueDPrXmDSKHXpRbGe9hTsSjUFua5j19l1AMX93/hzd/n7BvObcuOHjI9cTHs8OKC\nWpPwzIij0ViMauyd2L8ElTSqjFICqlc3DE1lfXfVLTnZhI7i81lusRPFnA3v0t378nFOY+EehEp4\ncu+ioAyVOZ5MWSzc7z6/vgaKd6vygrJcQpCF+0+bWAmLYAz9yE2gKO4SCI48FqlINAyocO5lbANm\n+jsPn6nOtaryS3x9W4pAw2rAsHQP0nxRk4voo57nHNy6467tw7tY1eGHCjXCwBCobyEMc2rF3Ou9\nBl11ZSbTDueCAYfiH5yXFbEgtVGvzwsC+oz9ArtctAP/UkXriuC8syKjqnSc72IR9FoBmYBMm02f\nE8Xra96SSs/gSTy2IiUS3d7Mb4AVMUraZF+gpjJd8njCKJRSV2gYCN7eG5fkUuIKMzjP3OtaEPR5\nqyI6cYvCndMTRvp8VPeZqYW5d8XN2Z1ei6bEfHZ39qjUR20mBWiMugzIhaeo5q6qURqDryrZtAzA\nUwg5Dal0/vN1n0bgQpvetkLie7scChSVehMWF+7+tU3JifI8c99i7Sp8WNnKVvaHsO9Uiv5vAf8e\nkANvAf+ptXaozz4L/BhQAX/NWvvL7zWGrSvy+RAzC3grd/LkvdkhN2u32kWLY2aVe92JYg5FdLEb\nimzCBqCdbRzX7PbEC5A16Et4I48CtlQXPxXqbrOIsYG0CFshF9qZy1nBqfxxr5vy+9qNnl2qFp8+\npBKT9LCsuNGRnsBGi2DkPJqyKEBal5mgs1mrAivkmi3whWNI2yEnA2EERIoSpVsYX8ky4+NLpq0o\nz2lKt2JkIFHScaL85dhPGC+UrC0rFjd/HYBDW/Gzv/V5AM5OB65pBkDufJybS8JUAkNPPnyr18RT\nyFMFBbEITsaq41dhTa6GoXZjyjxQ8rDTIpZrH3cqKmFK7gnNly9qbkk7o6gtVpWf2lg86XNcBLAl\nroJMYVKrhqJUExcRw8B5LJ0gYyBy27VmzKE0EnbURXkxt6yp+vLArtEwIrOZ+vRFAFMBzeYyhHLH\n1pv4nKghLK/a/N7Q/UYjzLC1Qr7ENau1N7tsCE1rWh5M3bWdlwWB0IaVrYjEYTFVwtvP68vGp81m\nfEnjF5iaiVisN4qSsTApG6mk/jZ3CJWYD8YzOpmbIw/n78yH4XBCXb2L9u4x7DuVov888FlrbWmM\n+ZvAZ4H/2hjzMvAjwCvAHvArxpiPWSu/9FuYD7StxzydMXtL5BfDMZNj94BtUZFKACXyM1LFYpHK\nODvtJm3F356xJE33EHejkFCnGGJpq3W6p1jWTiue2xBrbz7l+raUed6c0ZWoRxDCyx2pL+naHuQP\nsYmbjN7FnHRTramzGQuJfBbjGVZMT8GSqbiw1Gpx9m2LVMAT30toRO68464DSjV7M3JBdW0GZ2KC\nutpLmSsXEZaGC5GBdBLlJ7IKqwfIWBj8q98C4N9UKf/yF92COzdQKS9Tinkq9IwLvYBur8HHnnVx\n7V5vja7ENBd5QCx2qkwVlZaXsCbIcK+I2Lui7kPvnB0tyGdnE74YusX3WOQsX54XzARzdtVD9zA1\nvICgUodj9c70rAVFtp5HoJ4KM6sJtQiRRGyJbTvImqylAjsJsLbpQaiHyTaHeOUSMhxhhm4ObPVC\naoU0lUrEJ0VBv+tySY16QrwMx45i4meUg1pXl2TaYr/r5mlYlyCa+FYcUQl8FpoBYeiOo61yolel\ndDUvklYDVEG0BSR9gd2swVdZOlNOaSf1yNTtWQQZEwG11usJnrpO72Phgw4fvpkUvbX2X1prl2Hg\nF3CakeCk6P+ptTaz1t7CKUV97/s6opWtbGUfqX0Qica/AvycXl/BLRJLW0rRf1szXkDcWoPhCaEy\nqKEp2Gu6nWanUXE6UtLO81mTC9sRyUrS7bAmT6Fd+WykYsNtBEQSS+mOLGmqbLFW6Lo54dmpwz9E\n1YSGJ4qxs5KF6uKfbnd5JXG7Rq5mp4ntsSaG57KfElx2qpV42uWs59FUFUQbPl6Z44tApNOoyY1I\nTYKIeN3tMEu3Pq8yGLkdKsygVbl1+d6kzVYu3QoTk7Tddwaq7Xe9NXakpbnw53zuX/0/APzMayPe\nOnLYCp8K03S7x+YyjPBr1tfcdf3UK3tsJ+7Ykrh7Kd8XZZYIl0iMgraufYGPwqBiQiU4sx/t09oQ\nBHnQ5Pir7tr9uqixR1nF0qu11uKp4H6l12VXFGxl6VGJzCWQ9ka8EVCOVbUIKxI1SrUin0IgqzSE\nonTXs6t7XQYBceqOM8o9tDEzak6pJeYzelCTqOqyUJJ0M7GE0qt8ob2FOXEezx0GNEN3DTZm8pR2\nLfHS4zEerWWoFAa05AnOpgmJuiQjScp304BK4W+n9hlLlKcyFmHTSBY1p0oK20hs1mGbTTFK51VB\nKJ7Hk7OUvkLBRj1h/j6bHv9Qi4Ix5ieBEvjp7+Bvfxz4cYD9vT2qekTdKWkImPHm7SM6kVsgPL9B\nqji57YdEL7ob3iq7+rwmlruXNAyJJ2CNnROpnTZPazxElDl3JB5lbIjXl7LgLSKN4bctVqjH83DG\n2YmIXruiHp+fsH5VWWaaXMidq+MJDXVletmCmUqgC/mDOX2SpQBK2SaQqGgRBpeder6y+54fEqbu\nPPZ3CqqRe73TPWWs2LFVLzDLWFQxvr9dER2LsGMS8E9+15V4vz6ak8tlNsYQCrGHEHq9bsJL4iq8\n+kqbPc+VwqrMu3yYauORthWasCQwhbHo4hv0CANVH4y9bOVtrq2zu+ne/2ToHvLX/PKSAQsMSilg\nErCh7vtizrlKlYm31JLsU3tugfTjLr5+wzfRZXm29GoCHkU0hnV22V3YajSJ1KHoRxUThSDb+zVn\n91TBGLiH/6jKKLR6La5mFG+7OTIHGtpwwn11hrZ88uFyIRgzU8erHUwZqWM0C+f0IrcRtbylpmmX\nSCQyXhDRGi/b+UtCUQJ4qU9fYdPBkdsI6tmIStWusMypajcHtns+qcqX3q3qEuD0uPYdVx+MMX8Z\nl4D8UftO//VjS9Fba/+BtfYz1trPrK/3v9PDWNnKVvYB23fkKRhjfgj468CftNa+GxLxOeBnjDF/\nG5dofAH4nff8QQtlbZjPLRehS/Al8fAdmfXZjFLU6H3ToRYnwfqu8xTq0CeVK1cbj1hApjwzWK3Q\nduYRNNzKvZSP884sk8nS3c04FbHK4KJiiflJ2i1elebfjiTlRydDir4LRbKOIRQU9WRasiERkdFs\ndknqMpT8eu/GObbpMOlp7FGKeKRTV9RLd08VifmiIpR2oF1YWsqQR82EtVQcAUVJX9WKZfhQeQ0q\nhRqeb7glZuR5/agLWddL8Rn377SynIdujGS0QfMZt5tleUFTO2zY8mg23e8of0dhG3ilmwLtayGV\nVKDjewWBvI06LOhtuN975SXnVbwYVdwRdHtuapJl34ln8T13L4d2Qj10nsD9TFBx07mUE8yLjMw4\nT2A7zfCMYO9ewkLJ2DRcUvgnhMr2V5VP5LuxS+MTKTwI8gaNjns9PHDjDc7nXAi/svXCFqy582sy\nxor4JqxcGBAkDRa5g+Y/GEy5Jnd/cHJErjlbJQl7a85TzSJ3fWyYYRWuplsVVonINKqpBJwLzAWT\nkbvOh2cOv3P36Jx06s5jmOdkuTv/eydDpvKwBtniHRmDx7TvVIr+s7gun88b5758wVr7n1trXzPG\n/G/A67iw4q++V+VhZStb2dNl36kU/T/8Nt//KeCn3s9B1FVFPjpnXI55/asOGjy6H7GYu8TYvcgQ\nCaVYjAZUmdSctXIGaYOrHZWgmm2sv5Q9qSjUgDMfDRgL8XWhslJQRQyluzaoco6UwDovIGCpMwEv\nbTkPYVu0Vg83oR0ukYkhmZSUZ2cHDASVNlOfXB2akVB8g/mc+NTF1s0qwROfQl1FBJLAK40gytWM\nIxHG3nl4wEwIwqj2mInh2JjgkiGp67nP48GcUL37bT/isP7mSaZa7x/LW5mez2m+7hB2g8Hr/OD3\nO4+tG6zxsR2HpIu6TfxM4iuCRM/OKx7edd17Z0c9RifyTEYGXztz0osoRtLDUBLx391qc0eCNLej\nMfV8maCzGJUqp8M5gVCI1SzQ8S4w8txMAWnb7cb3j2pSJXZ7fomn61jou55XsxDCNM9mTMXfMM7G\n1Cq5Fhcls7FyO8I5EBmSyJHUTu9Nidvuu7vnLeqNSNfZjbuYZSwkjDMf3OKBGuIiL4Da4Vp219eZ\nq2FvJo9nYxIRRG7HL6r2O7wWJiIJ3bweDwoeHuj+nEiVOiu5kAc1ns44Flv1nfGY8ULq5bnl/e7K\nTwXM2VpYZB6Dhw9YzJz71cBQCu/+YD7G/7r6B5qG4dCd5s6Rc8P6vSbJrnPnezvbNKWeHJVNFmOH\ndTidP+Tk2F34M7fusNNLOVR2OxmfU6ty0MgLPGWtP9lv8/Gmy3lcJO6ib/s9tnVjbZgzLt3iNZ4U\nrCkzXNeG6wpTRhImaZkZ5/LXZ3FF6rtjJjrDE1S6UrfnYDHg7MB1Mp6fZHS6EjrpN9iXS3x3FFNL\n23GgrsbOdoOe6MpO6/cm11gs00FlzYno59u14c7X3TldXa84M+6YfL+m0RUBypn77ZuvfZmf+8pt\nAELqy67G569skVwXQYgHx1pEyi33Wy+GW/yRG27yv/5gwFRaoVEV01Tib7/V5GLkMAQLMXiHs2Mq\ngZdaUc5UPSPx0dElqG0rAn/DLWRqWiU0MVahxsXihLMDN3cOHi7YUm/D1Pj0VGG6oUUhaVluSZ1r\nOyqR8BRTf8qzHTf2mqovLEYsZu53j45GxNpY7p/MaS2cyz8+3eI5zYtKwCq7W5ArHgtyj8wKGLZo\ncpC7yXrwjdvc/rp7bTS/g82Adc3Tw7HFCL8zzWsmwjS8X+ASrGDOK1vZyv6APRWeQllnnE9vMuEe\nfcFrvxjMsbXbmbs2xJPwhikC+lvaFaV3WORzDi9cqaiqffqb7vPs4i4X2i0Pbt+l6rpkV9lyu9LU\nFAwlSJLmIRe5SDoqy0RYgN+7e8hG0x1H+bxb2U1aYnrCEAwsR0M1QVUDpkooZcMx97VaW8F2X9ra\nJA3ccU7Pc1AJqUgsM8Fg53IBDy/u4QlGO56fsDhy7x9j2ZBb6vsFvtiKu6n7+7g5JhEM2vqPryFY\ne4aZOhxP++c8GLlQ6e2LMfcnLoz5nnqHKHBIx4mUtE1YECSCY08NJ6IYC84rdlWquzvpU4roo32s\n5qP1EjNw3sO1oiLclqhLsqDRdp6OmZW8+kCeiXXHcDgoqMZqRms1aQlXsNNPCRe6T2FMR/d9KQkX\nG0tlRJV3cUqciD06OePwvtv+KzPlxhUnklMJTRm0oSmKwFNbMnwoLyxd8Mm22JWbImsdWd74qjue\nN+/f4lzJ04vDEQMREp8Vb/CMSrzPCCty/7lrbO2KT+O5TaxCsLcPT/jde19152Q2ufvQ0b/1fQmY\n7Dd5Vs9A7EdckUTia0nj0lOweFyKez9meu+pWBTq0jI9Lzi5XXAkNtwdO6Ut96rjlfzekbvJ9y5g\ndOAmyPMCf/RsjX0olp+NQ3ofc/Hb7OSYgRSJvnpuSUo3mW4eusnxxsMFg4WLF5/3I7q6qFQp80uN\nvoTXlm2tqrvfvnmHzS25fv6c2LhjXnQTqol7IN+8c8J9sTdN1C03fnHBy9fcQ5UuSo4eOpcyqSOG\nQ/f67L77rddPL8ir2+54D04ZCR48YcE1Qb73Nvvsbbjf89TXYZIbZMGr7r3H8APDpbZjWXNhltUe\nOFIF5/is4BvH7pg6SZPnrrjxqlN3TouqxhfT9CC3vDlwk/9rZ1O44jMIAAAbdElEQVTCh671/ZPN\nNi+IGOWTibs3Poa+RE9mYw+rTtLZYMhZ8xoAo9kpPfWmPBSYKB9ZboqjMxrMGajE88nn9nlZOp5n\nJzlT3bNr19znzQjOFKLcPZ7ii3b/dFDwO7fcg2yDGZkAUBtyxcdVjV0S4+SWty7cAzuZecxP3XzK\n9h0+77y+gzf7GgB1ML/sbZkVHmP1qNw+P+JUUd1Bxx3D1VNDs/kQAHP8At+49zoAv3H3kHsSjGl0\nzjhbYmBU8OuNPBbacNaSkOaGC0evXRRk6v4dFTmxqg/68/e0VfiwspWt7BF7KjwFYyu8YkyQBGSq\n/aZ1SH2ulXYxYiom3o3Ax8e93uu6lTb1C05zt2rPKsjcpkuV9kh9t7Lvd/oUOl2JL2OsxVPm+ciz\n1EraJH5AGqtBZVby7FW3Aq8VosMqA7KJtBdmE/K5ugSjeCm/QGN9zLVAbp4ow55fv8ZsqRM49yml\n13g6rTlR8vMLd9zxnk2GGDXUzG16KSvWNhDGbndI2yGe5NATVS82C4+96y7JdjafACff/JoLCXdD\nRCgnWMLQvRcYn+6a+w28E4pSvJE2IJ/ot6W16bf77O8KxxDljGp3/G0vZCYUop80SYSnyOSZzE4s\nlSoAVVzSXsrIN1vMlDmfjaHdcNewKbxC2Mz5uARwQlJOxeP50u42W2pGOvUmdDrCEAhKTttnfCLq\nNhvRaTkvc22vwZWx49iMTcr1nvOEuruqzhzMSdR9ydxX85bDkbTXpZUpXYXDYcbQd9iDhICF+Dpb\n/R6Nhc67URDOxJOhasm9i4q+Oid/8+GY1x84j+b1ownzeimi06DbcVRvtRi69xtzevLo0sTgSXdy\nt2MJ5u663ZvPGKsjdJo/nqvwdCwKQUi6tkPj/h04d+585UWUOpn1Rs1Luw70s78ec6iJ3BW8OMuh\nSN13z60lFgmLP09pPe9uUrc03Dt2E3b30E2OT+23OLTuZjXHE95UHNooK7qK2z/eD9lVbB6LZOX8\nrSHFA+fudboREx1PkETsamK2N9YxYikVNJ7rgcepSmU2mjIaq0vw4oxDpbVTLRRVZZmq43LBgjgU\naKbdQs2c1HVMLBLPVL0Ku+0eL+g4p1sDvvD1b3/tRYhEZHwMS5hwwfEDxcmRYTMRaU0votFQV2bu\nHqrW+iaf6bmxb716n1G0pJwP6Ggh2IkC5mrRPhP01x9NOVfpLYliOk03+bumw4Z4J6M0YKSKUEu8\nhlvPB5xJqr3j5xxLIGU7CUCcnS8+s4W64Gmr9brOE/ptlyc5OLxgduRCECZz/vimm1vhc00+KUr1\nsR70ZD0kU8gzuzkkVRs5FLQk4JKq47RlA3xBtA3w4pb7/GwtIRso/DvZhws3xweq/MRpwbEe2N7R\nWxxOXXibej61vuNnllDqYRt9d7zrL2xxQ7mkajKjLt65FlnbAYnLqcVfouge01bhw8pWtrJH7Knw\nFGpbMi6OmVkuoajfeHifa5tuh6qrdVqtpUZfm0L8BoUyaWcPDnggivNG6VOr889rDxlcqHZbFyTi\nvnv5htse+wRsqFowGm7CQBBVP+NQXsNX753SOXEJw17bVS8uzhccSgbtSmKwAgJ1Ap+o43aVK4uA\neM2NM2y77zZmLdbvvQbAvdGUXDseUZ/OptsdjsbuePJwQlGoycsPCaQJ2dk2pKjTMh2SC5ATxG6H\nejC7yfjMHU8dvPftLeTCt9ZjPq6ddra/QSAvhijDE+twL+gwWmobStTGm1qitgsp1vYqPqFTsiQ0\n5IVskTAfCBdw4f7ulqnoj901vmEsF301PKVjLPJM/IybCgUXRpJ3+QbrAo41uhuMmy5J2Gx06KvZ\nqvYMXiTvTTRuxDOqZbdn6oE6X19e69ASF0XcbhMLT8FQvAmJYeIJ6NQ8J1PSbuiXTCT8M+6J32M2\nIhNZzlpckau573qaUMubOkp9/KYLR/3jrwBwmJeERmApk9IMXSL9woJVmFdGIdtr7jvrfXd9rvVa\n9FRpKvKai4nzfhrtjL7k+ap7BdPy/WEVnopFwfdieulzHIRDTpTRbWQeJwt3819pZRTS5bOJRyS3\nPOm6i3NwljK5625QcsXHiOQ1O/IZT5yrNkt8XlBr8ESdiBthQqIJ9kI44CvyOZMTn1vSB+ylLd7W\nw3lVaL7DwTE3zyTrvvYsHZW3FpGlseQJrD1aAiKZmZBtixlD4dqrsuRc8fDza13m5+7B2knd8d5b\nb9PXA3seJzzTdu56GcV8Yt1N+InXINKCNBJ9+2wOD4buNy7KbxdDur8TORDBecnkmjveTROwtu6u\n8f2pYV2hVJE0KdVJeiq6++5eDsr0P3d9g1RkInu0yYTYiwcjXlsSzgRinpqX9LUI3co9OmIbmszm\nZNJLOM4rPLFvidyJIMqZqpckbPjsNd1129poUCykzXmeX5ZePMVaZhKTBCLUiUJiLTI2D53IBlD6\nhs6GG+hc4WgUd0mlVJZPai7k5td+zbmqIC3xQE59j7XU3dODJOGKSHSySUBv283JG2ebbPhujvx+\n5WhI9g7G3PHdNdzdDVmkriwalg+4JXTnus0oVeLcU+6rmiYkHS1ijRg/c3MkLU5YzJbCwsdk5fvD\nNK7Ch5WtbGWP2NPhKfgenX7ClWd6pOsicZrdIjp3O8IgztnUThmHFqttY8t3K/xxu8dax333xU6P\n1LjvVv0jzENlqoMUP3K79CduuJWdaYtW6dzauLHFdSXRkuaYY2EMZtOMq1Iu3hL+vlyAoAeYIrjk\nF/Rn5eUVbaUB6bIXXruxTTOmy0byvOaFvjsez28RCfueKpzZTXIa152H8kpnjU7ThS5heEFL3Xem\nrKnUlUkm4NVxjKdj6Hnf+vYu0c2VqOJMXYIAL9WkvMysr8WGZ9fd9dzutKnVd9Ftuutmxj5JRzyP\nccoz4rJomD5FKTx/WhJeqBqwpEGbl5yIJfrqGvR8t5sd+h2soNJZHXKxVNSS1zMxCXuCWrebKS3d\nm7W0z0RcDlm2IJRaUnWu80sDmuqJ2fIyxrXzFNJmi0jkOylz6rkAceoJmZ/nHC1caWh2OsOTZ1Zi\nL7sZI1VD5l4fqzCuF8xo9txcvno9otlx2IsdU1OeO28r+6Ib49b0gC2Jz+y2d6lqd23DCzCB84DX\n4zYvfWwXgL2uw0U008klkct0Dp7VnM0MbXWJWgPvF+i88hRWtrKVPWJPhacQRDHrVz6GF8Du5q8D\nUCzWOVcTzLVgghDIxF5JEYmWSvHddt4l7Smn0IpZEyNvw+5jn3e7+OHFhJZO13gq720bOHdeg5kf\nMxVvQGILriscf2XLZ09EsI0NSX/FHr50DE7zGVsSHPGjFOWsMDagE4p/QfXj/DSnqcRX3feYCqLc\n9CvGkfMKenturK3DiBtNt1sHrYTnrrj3j+c9rs3cbvv2eMxcuY9KO0OnbTkX9PViMnrPa7/kWfCD\nmpOZiEjJSRdLerCU9Y47tisbMetNt0sPrHtvXk0ZnrljaM8qanlvReuUxZFIbE9PGV+4eN4qlu/l\nFTc6Ljey4cW0xULVixtsKEnY3FgD3eP5A3cfd9KY0Heey5XYv6QriypIlQSNwhFj4UFClYCrGhAy\nsdkN8QdCUJ4P2JLgTLy/TrxkXV56TTbnVOItWVFQKk9i65pW4u57MBHkPa7Z2XPXvi49dsV+lPhb\n7LTcsQ3P5tTiSHi+68rl28+ccm/mPv/0XpNQVHddr6YpnYkXTZetrhvv2RvifKgzYiWmzwZnWF2M\ni1HG1GquBhFWWIfpYzZHPRWLAoBHRX/zGn/6P/iPAfjH/+vf53TmsN6nI59y5tLQ83nCQhyMpQRS\nZv6AO0s+r7cG9Hzn7rXCiLOlLzTzGA40ST11VzZ95pmbrOEFZEocHeRTDkShFo4stdSi9q65B8Hz\nWpeCqNVszIWEbq8kUCiJafMJUwnTLqQJOcVixUE5rlvMxeRyPFtgJMya62FshBV4SwpxQ6mFgGDC\nRN2AZjJmVLnFcKrJc7ebc3jsxri5mLz3hVcYEeDBUuI+9hhUEtj14WDuMBTd2xGeqiuVAEaZ7xGL\nVbuKPU7vOnyDXy84m7lz8s4sp2fuN45Fe39qSqZzd61eqic0dqXk5Bnmao2fl5aRkoctT2zQ0ymb\nSwh25lOq5bqqLZHq8ReFR6GW+FtT1+2ZkjAUmGpWZ5TqVj08fMB0020SewZaSoSO1EI9qmbYiXt9\n4c0p9IAtqMjUGj+uliQtGcOZKlE1jAJ3DePJfYa4McY2ItPOYQo3T98chBxOXOXrl70FwYWbh8cX\nc85U7TjremyrfT4buOtqWj4L9ZpU+ZzxzN3vuJwzaYhkJg6ptNlN88eTpF+FDytb2coesafCUzDG\nxw+7+LHHzisvAvDpl5/nZ87cjv7WfExH+NJTu6AcuZ2iGWvVXlSEldth32RKc+J2q+fWr9PpikCj\nXSJwG/OFOt1OS07mbqddmy84U9PRrUHGsbKDn2g0uVu7RFSgmrGXmksy1vNhxrPKW+ahxWrnHp0X\nBJk7vuNC7rUp8EVyuhe1uKvdygsXRJEb40bbeSMPZx325WmcBB4jdXMeDwpiyd4d1JZZ7nbYU+3m\nzwU1X7sQXdfZ4jGuvTunRV4yFqHJZJqzqXLaaGS4G7jjPzl8yB+55napTtNhPppXEgLtng0SrEqq\ng4OM20MRtZznvK0wIFdZ94iKa+7QuUeTQOXXw/MBvsK/2SRns+9ev63jTLOCmcq+2WzC+cz9bmws\nQ2EnytwyUZPWmhJxE6/AFzVfZFKyrujWjjNG9935nY4Dnrsq3MpU/B2dDifS3Dg/D1kobZeXMBe5\nykRNSX7dZrOphGjt4RXueE6yBWtCqr5xaNlN3Dk9lDhNzYI3FKIsbh8xklfYafiUQoU2mnOOFvIQ\nhy6hOjsLacj7GWZzZkJb3lsMUf8Yxvcftzny0p6ORcGDMPUghNAozvreP8P1B+7hLe7+Jkdy14s6\np6uLM5y4m2F7G1zvuTPfnvqs77ssbXu9w7pIMWZel6nISUrF0V7loaY3xkXFUMzGUSOhI3XDMq54\naceNvSVAiK0MgbLwZWXJ5Z7ZOqCol/TcMDZqAV7CoNNNmupbyBcez2/IXTdbmCXT8JlYd5Kcue9c\n5ricY8VKbMIJUoPHM03mokxv7wpbf5Qx0iTONSm/naWKH3JjWGrNHp1l7Or8rq53eGnZzWgMG10X\nz3c23EE0OwlThTyLSUauVmW7qCkV756mFXEm9S2VPdqUZGInvrbjsyYtzJM6YqCFurbHdFtusQzP\n3QpSJwFry1jdm9PsuPMODLT10NdVTSpZ+mbg4vdRMcMb6IFOIjZ91fHXNnk4duPNoxEz5SX8jhiU\nsopFV8d2a0SlHpM6qIl76r1pCfMxygiWrOLFDLHP40UJMy1qvbWayUw9E2rTft4uaL/o5r03WjDR\nfVub1gRaQKLEx4i6/0Khm/FK5uKlLNIYq/PwPY/s3M3DJLGU1h3I+WMqzK7Ch5WtbGWP2FPhKYDB\n9yOwNX0l4r7npSv8mzWXaPNuFhRCv7XHPudqAglEW9WzMbupk1tb9GfUQozZ45IzZYtr69PUqjpR\nI1XUspeSX9UQ+jvCI/gex0rK/LHvvcKzvjuOYt/tApP/6yGtTHRsnQxfIhz5vMJbagHECYmqAHMl\nBm09ZXqmZq0JnPhuZTf5mELw2nVBtOeVJRDV2iIoWVtzx74Vp2xGEhFhysdaLnb52oULmYYPDpnL\nk/Kr9xYBWeajo8DQU/dpnefkI/e3z+9d51MvvuLGuxqTiN9yoe969gKrjH1e51Rn7nO/WXNjT9wJ\nI0OiMK4W38KDac2f+oQLQfaTHkYVpTt1Siq+zWDQodtw4+yLRboVxPixduOWz3ypFG4WTM/dPUsr\ni50qCagIalRmoFBiPoCmoMtJUvE9m27HtpspG1J/Phu53+o3LdzRPZllJGLdNllMVKkxS9fZ78xp\nyFdPFimRELll0yMVDmN8Ao1YzW9Svr56dZNW6e7fdpRwvKw+tAyn8vqqs4yJ767tWkdhXg0NNcr1\nFxmpkKBv5ufYXHNgYUgfYx68256SRcGCLfCCkET03kfJdR40RIc+6bFZOze516vZ60ucRC6uV05Z\ncrKPxgYrzr2+LaikJlUUBVOjjHrtLu5mv0/QlXhqc4tqcguA+XbOhliBrF1QnbjvV113cefTikni\nHth9DKcDFzsXmWHvhrsxcWXxI5XZdFNs6OGL6CUK23TVohhvNyi0COWi7C7nM8rKTcBmJ6Ch8mQ7\nbl8CaOKwIpdm4NXcff52Z0opwZnyMWArmX5rLfC4om7ORddjqDzBraO7vCCwVzS/AYm7nuWBy1tM\neymzufoEmhUnQ3efrjzTY3dLILLDLtG5E6UZt9w5X68NaeoGNAcz5pv6jWhBopxJPR3zcCwpehHu\nLOYZgboF49Ym/YXyC54lUceol7apde1aV7XonwyY6Rrb6YIqduHIWjPg6rNuQwlMB0RXH7YUBtYt\nkmuO57NZ79E8UeWAG4zEkjVeE/vRfM6ZlF2jOqStSlRQ5njrLjxY6804Wrg5bg/uAHBULS51My9q\nH+O0mjl76DEQ2CuOS/qq8izngpfX+FpMm22PsdrLs/mEC+UrFnNLZlYw55WtbGV/CHs6PAVrqEsf\nfEMtN3rTH/Mn/+hzAPzWL1pQsmvvRkovlqKUwDYP3jrgVAIZk0Z9KXlWpCG1uv2Oqwnbkj5f23cr\n7d76PvNK7m4yxbTcip9M24zVdBK3O5TOu+Q0cF5AXVty9dCPyx1atVvB7x0d0JKW4t6zAWnkXLuG\nuv7CCGzg3jOU5LXUsRshUwFrvLk79tP0kH3BfTvXmuxuOK9pOqtJxTU4HsdUAvo8vOXO8+5pTbkE\nHxgPlBijfnS3WFYdSnEojLOae8r678UNepKOP53nDES9tv9yQdR0u3+4Jwm+qmSxVHM+G/DMdzkI\n7k53G8SrmYQlochS9rTzh0lJKO6C4eIhb4puz98+56Eg0fOwwfWW+7tI1ZD2yFCJDCYNu6xtSzow\nNBQ7oqTzt7AiqGlvKZE6n1MowXdw/w4mlyZmK6YbO08or8ATTVs9Dy+PoV26xPUzLzS4+srLbrxZ\nyPGxuw+VGo72b6zRaYqibZ5hVKEyvZTmlhujuVijV7pdfLonToq4j58J8l4eMFm48Uxecf+WJA69\nU7wN9xtp012L6iwgVEJ86hVMBAwbLkoGejaGVXWZWH9cezoWBWPA97GVwej4i2KdbbEQ5XaN0bkD\nemRJTPWSWxQi5Iq325ilIKjZoqWJl6U+tVzRvZGlFuhlw3M3wyxKImH/y6llI73uxq5nnE7dBZ6d\nwFDgpR1xOPo0mSgEOT3PaAs9ls9L7ojdp9OraalEZhtaCCwECmcWXkYtHYrjBxMK+WyetBF7pkXS\ncw9E3zTwlgg9WzEbqXW89hgLn3Rf12deVvgNodkKD6uyWTX3qH21OxsPgS0xChNKa8nU7dhY77Ol\niom5mGE19uRuRJm7xXcRqzJ0+5xaKL58HrAj5qJ2FpNJsyCfxnRDraxr7hpOpgPmN0VSWyzYECLz\njXFEpurD+BxatWTgb7hFsZE1iFUuDqqcKnQPilfWlCIyuchuYxeic7+r/pOWjz8T0Kecs1BIt161\nKdV1WzUMQ1HXL1WVskbNM59y5/RC/APsPeNenx13+a1f+SUADnJXho3GLapN8VyWJceVO4ZdIqpU\nILnuBrZy80GpE6rMML1wpD2jswG5JAyyenIJcMurmKb6bS6jQs8yVI7nZJEzU34lqyz5skriV+9X\nSnIVPqxsZSt71Ix9nzLVT+QgjDkBpsDpR3QIG6uxV2P//2Ds69bazff60lOxKAAYY/6ttfYzq7FX\nY6/G/mhtFT6sbGUre8RWi8LKVrayR+xpWhT+wWrs1dirsT96e2pyCitb2cqeDnuaPIWVrWxlT4F9\n5IuCMeaHjDFvGGNuGmP+xhMe66ox5teMMa8bY14zxvyE3l8zxnzeGPOm/t9/gsfgG2N+3xjzC/r3\nM8aY39b5/5wx5vGlot//2D1jzD8zxnzdGPM1Y8z3f1jnboz5L3XNXzXG/KwxJnlS526M+UfGmGNj\nzKvveu+bnqdx9j/oGL5ijPn0Exj7b+maf8UY838aY3rv+uyzGvsNY8yf/cOM/UHZR7ooGGN84O8C\nPwy8DPxFY8zLT3DIEvivrLUvA98H/FWN9zeAX7XWvgD8qv79pOwngK+9699/E/jvrLXPA+fAjz3B\nsf8O8EvW2peAf0fH8cTP3RhzBfhrwGestZ8AfOBHeHLn/r8AP/QH3vtW5/nDwAv678eBv/cExv48\n8Alr7XcB3wA+C6C59yPAK/qb/1HPxEdr1tqP7D/g+4Fffte/Pwt89kMc/+eBPwO8AezqvV3gjSc0\n3j5uQv4g8As4ycFTIPhm1+MDHrsL3EJ5pHe9/8TPHbgC3APWcND6XwD+7JM8d+AG8Op7nSfw94G/\n+M2+90GN/Qc++w+Bn9brR+Y78MvA9z+J+/9+/vuow4flZFnafb33xM0YcwP4buC3gW1rrXSfOQS2\nn9Cw/z3w13kHvb4ODK21S0bNJ3n+z+AkqP+xwpf/2RjT5EM4d2vtA+C/Be4CB8AF8EU+vHOHb32e\nH/Yc/CvAL35EYz+WfdSLwkdixpgW8H8A/4W19hEedOuW7A+8JGOM+fPAsbX2ix/0bz+mBcCngb9n\nrf1uHKz8kVDhCZ57H/j3cQvTHtDk/+tif2j2pM7zvcwY85O4EPanP+yx34991IvCA+Dqu/69r/ee\nmBljQtyC8NPW2n+ut4+MMbv6fBc4fgJD/3HgLxhjbgP/FBdC/B2gZ4xZdqs+yfO/D9y31v62/v3P\ncIvEh3Hufxq4Za09sdYWwD/HXY8P69zhW5/nhzIHjTF/GfjzwI9qUfrQxn6/9lEvCr8LvKAsdIRL\nunzuSQ1mHInAPwS+Zq392+/66HPAX9Lrv4TLNXygZq39rLV231p7A3ee/7e19keBXwP+oyc5tsY/\nBO4ZY17UW38KeJ0P4dxxYcP3GWMaugfLsT+Uc5d9q/P8HPCfqArxfcDFu8KMD8SMMT+ECxv/grX2\n3eypnwN+xBgTG2OewSU7f+eDHPs7so86qQH8OVxG9i3gJ5/wWH8C5zZ+BfiS/vtzuNj+V4E3gV8B\n1p7wcfwA8At6/SxuItwE/ncgfoLjfgr4tzr/fwH0P6xzB/4b4OvAq8A/AeInde7Az+JyFwXOQ/qx\nb3WeuGTv39X8+yquQvJBj30TlztYzrn/6V3f/0mN/Qbww09y3j3ufytE48pWtrJH7KMOH1a2spU9\nZbZaFFa2spU9YqtFYWUrW9kjtloUVraylT1iq0VhZStb2SO2WhRWtrKVPWKrRWFlK1vZI7ZaFFa2\nspU9Yv8vXgo3LqcZTikAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.4447... Generator Loss: 0.6179\n", + "Epoch 1/1... Discriminator Loss: 1.3410... Generator Loss: 0.9721\n", + "Epoch 1/1... Discriminator Loss: 1.2921... Generator Loss: 1.2052\n", + "Epoch 1/1... Discriminator Loss: 1.3283... Generator Loss: 0.9427\n", + "Epoch 1/1... Discriminator Loss: 1.3041... Generator Loss: 0.7806\n", + "Epoch 1/1... Discriminator Loss: 1.4502... Generator Loss: 0.6852\n", + "Epoch 1/1... Discriminator Loss: 1.3364... Generator Loss: 1.0475\n", + "Epoch 1/1... Discriminator Loss: 1.3068... Generator Loss: 0.9476\n", + "Epoch 1/1... Discriminator Loss: 1.2938... Generator Loss: 0.9685\n", + "Epoch 1/1... Discriminator Loss: 1.4735... Generator Loss: 0.5542\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVmspVmW3/Xb3/yd+c73xhyRmZFZc1fPjTHYWBjEi59A\nBoSMhPATAgQINzxaWFhC8OBHi0E8WEJGIGMhg90Yt+223U25ytVVlZWVYwwZEXc+83e+eW8e1jon\nIru6OrPcnXZaOuvlnnuG/e1x7TX811rGOceWtrSlLa3J+6fdgS1taUtfLNoyhS1taUufoC1T2NKW\ntvQJ2jKFLW1pS5+gLVPY0pa29AnaMoUtbWlLn6DPjSkYY/5VY8y7xpgPjDG/+nk9Z0tb2tIfLJnP\nA6dgjPGB94B/GXgGfAv4N51zP/wDf9iWtrSlP1D6vCSFXwQ+cM595JyrgP8F+BOf07O2tKUt/QFS\n8Dm1exP4+JX/nwG/9JO+3BsM3e7hIZEXgy9dsnVN01p93bKwKwBWkzkYA0AQdwFIBh2MFYnHDw2u\nLqVhP2c1ngHgbItVqchTVhhEId00ljaSA7xInm0IiAN57Xs+FrPpB8Dp86fgGnnPtdha2vMM4KTP\nUeCTxtJGvyP9tE3DolzIOIoKo/0prGMtsK3lNs+A97vwbM9BoH0LA0MnSuR1LN/122DThnWW/q17\nOqZP0vp5bS39nZZzLp690Ic0tLWOzzps++O/2zToNssBBnztsu9D4MkHvvFf9t9I35110MrnlWs3\nfQ6iiDjsAZCmfWy7lDmqZE19aowuoG0cZvMMgzHyvgebtV6vh3UW1p8bbzPRjW2p2gqAumlZFc16\nWJ9KA5l6ltUr49cTFQU+sY30tSHQPje2oa6kT+Wmby/bNBg88+p/LzeG1df2Fel+PceBMZuFsNbi\n6wIFgY/R98+y/Mo5d/Bp4/q8mMKnkjHmTwN/GmDn4JA/89/8BW727mL6+wAsTk+5XhQArM6m/J3F\ndwH49l/5Gxg9FAf3fxmAN//4zxBmsnOHxyHN+YfykP73+M7/+n8BUMwXlLWsXqcvH+/f3ufnv/wQ\ngK98+U+T3twDIDCHvHYkczeMBiwCWdD8dA7Af/2r/yFtdQ5A2S5YPpfF7cdgyxyAmwdDvnFf2viX\nfl76ubq64P/54G8D8L33H2GUyby3rLC6M3Inzxr4htgIw/I9aFt5P7WO/V2Zo5O9iJ+7K/0/udeR\nPmQHKI+iqAr+yJ//76UNA5uT7By1MtzFuTDbv/rer/EX/os/K58nYxYvrgDIyopsqlzBQqkv14ff\nOohCeW0M9HVuRz2fvZ58acffY81X0nBXfldUuIWM73k5p9Dx79+7zWtHvwLAV7/xR8nGfw+A959+\nIOPjiqQnp3E5qYiTQNcpIvSE+UY48kpPai3jy5sSE6TShzjB6XyOV1M+Hj8B4HSc8e33zgAoGz6V\nfvmeMLt/8ExHF0LvQPpzb7/L/fweALf3YvYTGeskG/P8ueyRJ3UGwKKweMo3AwLSSOfTRQRIR7wK\nlq7UvslcOSx7+uW9JMAqRypXGT0nzzveGxIm0vif+/vff/Lpo/r8mMJz4PYr/9/S9zbknPuLwF8E\nuHvvjgvHH2F3D+leSr8/qGvOHsnhfvHh+0xfyPvNdILfl11oAhmst3RkoUxw54OA2alIB/O3R1x8\nTzZF0qRcFTKpOz3ZmEcfliyTr0hbbxV0Xuhk7zcEuWyqtl/TShNUXTlU8bTm8cVU2jUFw4EcyEHP\np9+/BcBrAfSTIwDSriyQdSEvfl2e8cEHLUeN9P/Z0tHRsVgrh9VLIxpPNlsnSHBWNkeZhLS+9G25\nMPz69VMA/hUrp7F7IyT76BqAceLhtU7nymyueQfYWl7PFmMA/t5f+i7nH1zKmNqGeS5jzQmolHl5\njg3DefXMONnjtIBdymHr+g7/cARAndYEXe1fJZt4NBpy5aS1dn7FTPvzZnTFXl+eV5T/L2eeTP7p\nRMY5imL6ofTNdSyBLz0ZDYf0dO6aEJjk2g/Z4nVeUKTyjF63pWuGOqY5L1phJmY2x7eviECfQh++\nJ89byh8CA/dL+WeQ9OnclHWPq5amkdf7DHjkSd/mS9mPCxuwk6gkYcCpZBX4IYNA+tEGAYu5/q6S\nPu74dsNsfWOYL2UuQhoGXRnTajLjNPnpjvnnxRS+BbxhjLmPMIM/CfxbP+nLXhUQP9njfPlXOJ8O\nAHh6AS/Ovg3Ax+98xLIQMdIECWEgN/pQJzL77kfkO8IIwvNzrG48u/oOe3uyGaf5lKOetB10ZfLG\nX/4G+UomfXEasjyQKbbzK0aqSgQtNHNpL+/I51eLUxojaoCzhoNUmMKNwZDju8cAHMUd/J4wr6yZ\nAHCdj7nRkQX/w/cGXMxE8vhGJ+RpI21XnvzmKAm4HcvGLcOas0r6c8OFDCNpI7vONipI9bH08eMP\n3wa5EJkl6UZ0BLfZ520L47EwgH/4G8Jsnz/5Fr0DmatR0nDgZK6unj3jYqFifuPwf6f6AJtbLjYe\nvZ58cPjWIfcSUQP6ySFto2qV3mwHzQ558xEAfhDhapEK706+RN79dQDen3Tw5jKY0Ml8Fz4UUzkc\n4VGfI09VjaYm9oXJNKbHia51mcvce7VHkEpHd7yIqhVmGMQ1N3Z0IDW8O5Hv5KtPVyMW+umrSt58\nIP39SttnL5W1rCvLQtlpHGdkygxDXySeUT/mZChzn3Y8ejbV9z32G5nPjybnXM2kvSqSSyH1O7hI\n5jXLSlo9zTttwOMrGV/i+0yIfo9R/Dh9LkzBOdcYY/4D4K8DPvA/Oufe/jyetaUtbekPlj43m4Jz\n7q8Bf+0zfdlroHdNNUl49933APj+O9+lXciNsCxr/ERE0YO7d+gefBOAIJTPLx/NWXz7HwGwGOyQ\njIR77p+8SXoot/jO+ZIbI9FobtwU7ntRd5lfiIryW2+3PEheB+DwQcrzWri46U7pZXKLecMbAJTV\nnGAtR0eOwwPh7LduHTFSVaJz8zWGpRpHS/m9XXV568tiXxjcekTy/jMAutOCcCGSzriU22c38ekk\ncnscej4HqYiaw3zFqpXbrAot3Upu0EpvkbIbUM1lfMaWL68xZ1jfe3VT8v7ff1fm+UzGv3PyJr94\n40sA3Lt/iJ2KTeG3v/t9+P7fAWC+qMnWBl1P/gaBT+qrOHu0x688FDvKnftfI8hFpWvDhkCEIjxf\nJKJ6npHPtA3fkOpOjPdyrC+3f352hUHGtdeXMXe7LUbVOT9vMPtyawYx1LXMPXkFKjLHyDpaD2ym\nBr5uSYU0kgZD4kReH9444eiZ9HmlotBqtV7oH6eu/p2Z9digp3OxDEoejUWNay4cbSM3d5R6+L70\n80t3ZN8c7Y3YGYlKmyaOQA2RfWsZpPJ6N/RY5iLd1RNZGwKLK+R5c2cJC+mrCV9KBk+LamO7+qz0\nT83Q+Co1bcH1+IfkdczVU4EyTCdXG+ObSXyOvy4H8ud+/o/StLLQ3/lNMdq9OH2banoBQFl1uBPK\nxjy5v6DfkYM+jj/kF2+Kjh8fiKHu7NF7/I0njwF49ux9LobfAeDh9JsM3v0BAJHZx92SBeuGU31G\nSRjJYtw9OuTGSETV46BHR42SSfSUxMi2KdR2MNrt4t2Qw518eMzlSDbNsLScF7L5w4Vs0MvKYiNZ\n/GTgg+rOi7LFDNW20ThSTzbNbCV9O6wH9PTzyA9eSvlGPDAAs8uSv3kpqll1Le8d/8wxDw+EKaTA\nt/72/wnAvP8OjXo2mpUjMHqQteE4MMT6+n4AX98T9WkvSZirvWKWBLiujLtSndtGLaWe4bSJ6Bk5\n3JW9YC+Uw3JifDIjvxsksuZDxJovEwNZLgchqLoMlHGY1tB4yhTUVtMPG+aBqmg+uFzWxgtK4lDa\nrlcVe0NZy+tI+l6dGpr6x5UIAyxe2m2FLMxVtblyLzBzZRs2wCoTTeIBb92Rvfzle4cAHO3v0xiZ\nl2Hr46nNyMtr1HbKbhvyjVJVaGUqT1c1gZXvGgerSr1ZkSVSZtoPQR1sn5m2MOctbWlLn6AvhKTg\nWks9K5hNFywWIr75JiJMhBUfffkb/Mov/3EAvvYrD5g+k9v04vo1AM7f+QFeJBw+7nRIR3JbNYMO\n/VCG2Ovv0Du+A4BxIssWzYoik5vmbDZm/FyMUvmkpOeJtOGHf4/uUtv4kvRh2AvoBSLi3h528Afy\n2qYt8Yla35uQHcUneFZuq9YkeJmoCW2/5cv6+Q9TS2cqfbpSb4FXVVyt5GabF1A2Iinc8H12c2nv\nYC/mYSDj9gO5abqR4/FUvju0PmvE6isQCpq4YvZUbpK7PyfS0zA8YDGQmyg8XTAvROWZvGdZLGSO\nrAM18OP0tna1JdE5PptUvPdUJLYwKzjqyI2/Wk3AyXeqtSEvW1LrmF3tNurYrhexpy63thfQaNuh\n+kC9uCWvpO9e0dDrya3ZpganFtZgYPCcfKcNpWGfDmEobTgDpIpfKWIiNSrv3DS8oZLJ3rX087ur\nS8a6Rxb5S4nBAaznc23AdTArZM1afNKw0OcFxKH0cxR7DGLZL/u3ZO53uz2qSkV8V9Kq0TlKRjQT\nmU/SkFhVjH0FRizrOWPFmdimxTNqiGx9+om0Mc3AVT/d3f+FYApVZXn8bMGL4pzrQjZK0N/h4K0H\nANz/5/41fuH1+wB0Onv0D4Qp3Hgo4tfVg59FPWjcvRHzza+/BcCd0rBSq2/n9n1qBcAEp2LVn5ye\nExQiwi/aFbXq86vn7zJs3pG2jaPbqL/dPgLgwdFXSdbicCciL+R3gwOPna4c0kHrkagdJEwVHLME\nO5HFWtYF/UP5bvHoHH8i7S1L+a6tLZmK1P7c0VdddeE3fGUo4u5JEuL3FJ+RqReigbCUMV8VL+0I\nzjmqUhju5Akc3Bd7RTwQ9Wo4e8H8VF1e08fkmcxLnFs8ddNZHwbq4kvVq1E4x1zVkuVqxd99RzBr\nXz4ekhyqy9gfkAUylmIljCeaQdFKf7pLx0rdr27gkwRymBb1gp0DdRfqyZvPfFB7gB/28VWt6Hf2\nCUM5FGkvRuzbbFTQYlnQUe+DZxxY8WDlq3MB/gBt3eNQtgYHyowWjSX/WHX5pqVdMyxgrVWsWYUD\n1GxBmVfECgDreyGh4hS6Sch+VxhEt5GxudoncGrLKCp8BVDlLsO3si9WJmcyEZVm2agKGli8NRNq\nG3Kdw37jMdVeHWBZ+j+u/vxetFUftrSlLX2CvhCSQmMrrlYvmF8ssbmwWr8fcvMrXwXgrQcdjk5E\ndAq6juVCOP6bAzHYvPUn93j9nnw+aPYYjRTiSUOgGIGzpwXPT8Vw1w7UiNgrSRTtFS0NjcqDq7Ih\nU+5aVY7CV1CMGpF+4a0unVitxalHP5X3mzwkuRbpIBnGxFakHjvWm8hVBEa+exAZqlysxPeChPie\nwqofy98nq5pCDUfO30iqpLGhsMLLX8xzvqRowlqRkNOlY64+9nlTvDSCOQeljHXhnxMu5JZqOu9L\n36IRzeWp9PfxkmQpN/owTbnRFbG8qC2Rmi776oOnqHmhN+KiamgUjp49rzlv5Xc7w5JhKDdlsZDv\nZnVGrgAxGwfUKm10qpJS1YPIGSYqWaVysWPLhnwikkTXD1kpdmTHlsSqSnQ7fZzOmFUVzO96tEZV\niaLA+NLGfjykLdVLYEsShaYzkr319WXAai7ffWc+Q6eeyjkUC8WMl9S+cik7lSqM39Av156YA5Z9\n8RjZSqXiIKLRo5iXM5yuXzm7JrBiQH4+W5JX0v+ikDn2qganUkVhm43och1bAn12ZQxN9Rngma/Q\nF4IptNaxyAsWjU9vKPaA4M4Bxx3ZCTdMzkjFq7AasFKU2yCVDfrw/oCb+6JeeE2L18jB82tLY2Wj\n7CUV04FAk9//SKCs9bKmanVS/YZaV7QGdP9QO2j0/bVYvihbSisi5X07YhdlBJ7D00NB5NGsNI5D\nscFt2WJq2YC2U3HzgWy8gjOqx9LPxUjG+aK0GLUTVBbUgUHkWVwsh2kYRlxPpU+5wpZnpaPTlZ17\nZ/cleMlaqJxCf8ctVS0IwTvnR/rcFxSXsvlnFzOmOtZgHw59WZPJdImvJ2GgkOG8UxJdrMX5jFqN\nDlEHVipLH+wZjIq2Xk/me3XlmCouMrI1taL0rlYL4r6giW72BlwZVSsm8nknNewOdG3SAKMMu9OJ\n2OutYeEetpH+Nan8PrQ1pYrdxkUEa7vETkmuY3GziMaT7zjdF/v3R/ysupQfX2QsFFkaObi0Py6W\nv6pKrGMUSiwrZVIuv2JvJft6tSfspBMPoJYLIsSRZXKRzV1OO1W1Ml8xqeT7eauuR2M3sPIg8xjr\nHsjLlrKVcd+IDfFPqQ9s1YctbWlLn6AvhKSAdZiiJYl8RrtqYb37Fq+pv/1WMiJVSGgbZYxi4aq9\nL98E4KA2BLFw8JYFRi3V7ewZxq3jJBYc7IvV97Inv/+NWc1kHetTgXFrMf9l1KKFDbTXqDjvVxHz\nlYh+73srjh/IzRbEPksromE7qfEUKhwoHNv1fexUX698ikZu2NFwn74VI9LFXJ/RBLQKRvE8w1D7\nMPBCXC5tdKKUQVfGt1IYsWkb/ECsZbu9VKIDkZgKxTlBH+yVtF3dEjUhP1swcSKqFjsZJ1bmNr8o\nuPGGGHwvl+fUKpYux3KbtVWfbl8s5B3A6o3/5s4Bw5FIP8MhBGr4y8cybxPPkE1UDA4DmlpFe98n\nVOmgyT1iBUG0I8UbxJZuR+Z72oDprWMGGhr1Diyihkh/FylOIa4jKGWuXJQxiGSfNfN849koBlA4\nmY9ABb5uXeEeShtfvZzy6FzW6SpvcfxkUJBxbKDgvjMk6oHa2z8gUUBdp6N/3ZBWJanhoI/RdWfc\nox1Kf6yzNB3pZ9XK3FsLqGE6ii2FRnvOnMGqN2O+gtislc/PRltJYUtb2tIn6IshKeBhbYfZbIwd\nyI1/NNrhpgbXJMkuy5Vcc88qR6RumsOlYAmi0NCowSVuVgQaJOOSQ5q5GBfTxFJPRZfrh6JH7x8M\nKApFQtqUiYZWZ4Xd6MaeBbXhUShacZydY1UiKAYNXMrNXNxoNz7mq7MJi0bsB2lfA1zKgFSRkFVh\nCAdi+9jxetw4EaniG2P5+15vRrwUHXmJI9YgKD823FH31t1hj5k6+Hev5ZacVD7jUObnK3sPUQAi\nddtyuZRA1fF7jptDmaOTB4L1aL/3Ll1FBB63Oxy8IdGe8fwbDHc0Ymi5ZGWlz89/JLfVi+IxsTsB\n4ObxMWYlc9h0a0KNBmzbiF1P1ue3FbY7rBfsDuR5rnY4zbMw8GJatcuceYYmkgFEGkZ+eQZnA7mt\nS7+D90jGtOhXXO3I79poxK4aDPd2ZM3LoML5sg5RbZgsNAy5GHOh4eN2ULHXyu3tArHteF7KPUWs\nNq8PcJ5Gz14VTK9UnPjdyECqEkg39fn6W7Lnvvn6EbeHEpl7PJS+1fGKWPMtZPU+RS6GgtBdESpE\nOTQBKkwQV9LHcZ3R0UA50zXMNKKykzmuI5VI25ZyExT32egLwhQcvqlo65LLj8UYaK9XFK+JIe7i\n+vtQyia+sgU9NWDlsRjLzPENaGSx+p2WxGkIcJTglmr1bRaMrx9LG4ohz2cF+4kwlqYzZajGoHNy\nMj3cjW0JFaLaaEhr6nlYJwt34/A24b4CaKpLylw3W9kwV2DJ06fq8weOj+SAJU3LrVTg1qFXcnRb\ngFUHVwpeigKO90TcTXYgMrIxozajn8sBqe2S8FQO23Qlz31/1eCrEe1ry/OXUX6VZXWuRsdhxuGb\nX9N+iBFt53jI/KkctjAO2FWV58atA3ZjeZ7x+jQzOeiv35H1mF72NgwrTvtc+3JQ5ucTzqaCWShn\njp4yoRuNHI6qzCnVANtMShoFZ6WuoVVw1ukko9UowUEpfTifL2kvhREOei2JhozvdEtK9YKEZoEX\nivG31XBj1wlpG1FdlssFpcZllDWs1ODZjnMiq4CjXelvZBy7e8JMXusdcLkj311mU54pXmKdYwVe\nit5paIgV67A77DAYCJP9R5cZY0+g/F/xZC5GSY+4K/sitQG9kbT4+PmMt78vcYRXi4yJrmZXD3nt\nSkytc+95oBG/DY7AV8i3g2n708U+bNWHLW1pS5+gL4yk0LYNtq0INfIxzmp61yKiDxYlZ6X40F1b\ncfqORrBV4lr8TTfm5qGIwfcHe9xRUXxwO8WuhO+dPpnx7b8v+IR/cCE5BH706AK3NnA58DS9lhen\noCJsaNwGKrzG+Lahx/1jueV/8fWvMkykjTLr01Npo+779LXBYSCYgMU0o9WAoN6gJfbF4Jl0OzRq\nzUw68nnY7HIzks9rP2CeqVh+5ih8Rb9FDqfG0TU8etFa7g1FUrh59/VNCrLW9ynUGLtf9IiOZJ77\nmWyB6+SSKlRD1YsriplIbJ0v3SbeF+TowAtIOnKD1uozbzsxlzP53fNnH1Jkoq7No5DmXJ4dhjmR\n3lZRT27d44MHzC7ld0+LhnauAVGRz24qt/+dyvGxSjJeImu6XzccRCKZJaOQCnm/Y4fsa7KUNPHp\naN6GVnPl2ToHxcDs9EcEmvgmORxQZioBloaFuh8nS5Hu6npKrVJqONjlS2+o9Dbo8Jsfi2T1Kvnr\nWK0Abh3KOP7F19/i4R8SSXD+3oTLqezrp1bS37lbe+x2ZBxhEpJsMqfk7N0SFWPPdrnZEeNo77a6\nNF+UnJ+KtPzo+ZhC1bVF41FooFQ/dJusVp+VvhhMwQE1tOXLhB2D4x1SxYuPr0+5PJVFejo7Y3kh\ni3E5lgW8vD5j555s4p+7M2ISS2j13dKRqbj6o9/+h/zWh8JE3jsXBjMuW1qnQJggJVCL7aptNxGF\nzlrUGE6rasRuari1L+Jg2raUyliur645UphslKeEXZnezkB97E1Av6OHP03oqjoSDyNmlyLaRgp9\nPXBjvvVCGNO74wlXhSzyobN0FeP+iz1Ld0c2XmedJ7Jo6XflQPQPh7iN96HFRHIgD762BxOZz+6x\nzOVhldAc3wXguZezGMvGffv5U8aZMJPXRiMGe2pL0XDybAVVI+pYJ4iINatV2E04OJSx5HbJKFOg\njjLCJvH42EiSlZ6JeVHJhjZhj1Y3sQsSDhX0tLsjeyHd69FeZrp+lrniBq6yS5ZzsQ/tVTe4cSJz\n7/Xkb5NnRBonEhJxOpbfXf7gu5wrBuKrDwb0j5QBavhx5u/QWWMd7vZormXu7+DjI5fMq9CgdTbK\nQehzTw/xz3/tq5x0xYNT/ULGk3MJmd/Z00Q+dbjJtmT8HKtJWIaDA05uy4aykw6RRsRejhWnk/jE\nN8Se44o5L2bS3rxcUuSKC8Gj/Skztm/Vhy1taUufoC+EpNBax6yqaIOWJNF0ZIObhOp9qNMRTz+S\nAKXxbMVyohBOtcx2Rkd0VURvVies5BLjdB4xruV3C9cl3teoxblwcJ8Fba03SeAINMrOMiVXw1fj\nLGowf2lQqiK6qdx8YXeHaiG8tTdw2HXw+mTGbK6wYv18Osm5eyScPSYlVrEi9EMmGpX34VKDiyqf\np4Xcyh+vSpZqwKw96HkywGmYMorl1uxrGrC9lU9VaI6/5cEm2L+2LWmiqlkTMDjQYC0Vy4en57zz\nsUhSdlJvoMT1smWkTvtlJ6Kbiyi9Ui9DOV/SavqwylX89juStOXqouHmiUgxrx/0Ge0qtmQoN37V\nwKgj4//ges5AJQFrW2q1nHupI0g1W7VGZbY24NpT9cnbJdeAt8bVPFdMStfm+Eh76iygNT5WozbP\nVyXvvhDp5v9795RSsRWlV/K6BrfduqWQ6a7HjgZatVlEqWJ5oZ6DV8kg2cQBur2YsCN74UeTa374\nTF5f52+Tar7K/Yn058t3j8kVQeoHjlkm2IRlHm4MyIVt+cEz2cvnz2Qdv3wQs6+ITucbgp62sXDk\nKiH6rsXz/hn0PjgsrSsIXcrtvTcA6PcdRpOU9IqGr7wm1vL6oWV6pac00wPRj+loMlfSHe4NZAHC\nMGL5XKGks5r7gYhwuxqCOl6MGS80XLgx7I7EAvzBk7f54ZmIonUF9SaZhophnQF7qSQk6R/dYB7I\nYk2eWzyNbYh6Ibu6MRvNbNqYhO6ubKpu7xCjbrpqEhLqwToayMJefJTRKoPY6ycc6sLudAMajfYc\nDCxfUit787r+dRG1hiln00cbm0PUwqFmjvKiGkXKYjSpS932SVT4rdMUzUdDdycltpoEtF2RaTIY\nNIlJ2F1iC7Ud2JajY/Hm3NwJ6PcT/WrJUPM/7qyTmFyN2U+EKbyxV/HBSlycTV1RaI7NmavoGIUg\nJ5pNKPNwCkLqBhn7qq500y5O81umfrA2pRBpApWgDTGaojmbrfBqWZNv3r/LRGNa9vZHGLXaN5rt\neWgCNA0iNZZQ3dK7UYtqikz0rzFwoy/zMup3iDVitpmVLH1R0wbBLr7eGzvq4Uj9EdbKPi0LH5tr\ngpj+mCrTzWdg76YAyrxKntgbNZu4hri3w2vqUbm4zgi0ykESetRr9J2+92m0VR+2tKUtfYK+EJKC\ndZDVLd3RgJ/9ZbmBb+4ekCbC+dLogMFQuHlld8mGYuG+uBQR8Pioz+Ftyb/oNznBurhHUeBrau3w\nIOG4ltv0zVSCp4KwolZD1uTDKaH6uS/5EO9affqVo/wdKNGJs4wVxFOFPqXiWZvKEmmRmHAnJtEA\npPuaN6ElQm2A9LsWo8YlVy0IEmHjoUKj93ZCpr7cCDcCQ/+2ft44djVF15sxDN/QKE/Nc/CHuw84\n/VjTdpVz3FpyjAOMGrBM5VNpai9PQWG2vSTStOfd3gqjkOFRHINGkvplQKEGwVJvWr9J2dmRORzl\nHq+dSPBU77CDp3koElPTWXsrtGZH2+uyr/OS5Y6rudyUF/OMngaCRcZgNW15Xz1K0bBi1z/ZjGlw\nLGs5SFMCnc/W5psIRV9zUuQN5K3MYdzvc6R4g4MbQ4waI7uuQ7ROC1do7GNT4VR9KOcLgkah56aD\nCkio/RnfQLiGxK9KGhXt7926yw1NGe2nkKoRu6vgpiAoMQs1rjazTe7RfdPdQPNX146Hmp9j9aas\n06jqEWviaNFwAAAgAElEQVT05fLiGeO54EKyADJVH1wLkf1nUH3AeBi/S69zyFduCdpr526XRhFj\ng9sjrCeTGtInK+VU3PfEA+CtDK2KSI31iGJ5PZ3VePp+WTsevCWi7UEsoqzxa4JaQ3pvt3zrN9T+\n8KyHV603WPNj4pTvQamJMq4/zhgr1CzohLQaVxE0Cb4u/roYR69niLsqzvrQaohs7a8otB+7iocv\nKOj05YC1dY5RtSTMLOFYD/fQx35feme+Jlbz0YOc6XOxB4zz8mUdiQA6voy76lkWc4lzCHcVNZrv\nsHciz8hnfXx1gXYSyPN1QtAAp7PRKmim9Zb4iazHzrBPR7dUaC2+k+90dlucAmuqpYw/CSr2D3Xu\ns5jvPtcwYxdQFOtU7R5eKs9bqh3l7mjIUBPlpmlCaKWNYBTTaLaoog1x6hNwgcY7UBG1uu4WejfF\npexlS1JVGVpyTCi/S5S5BzbA6ppy4BFcqkrUSTah08UryVYyBaxFLuJ+JfNyvNPnUNWY2FUkvXVM\ni/zOVo4mVjtQ5Og1e9pGRhRKG7fejPFUpTG+MAfmoNojT/PdTTr8ThtRK/Ny3qsVpz4bbdWHLW1p\nS5+gL4SkYIwhCmO8nYY8EW7v5ymBgoLwOySlivNhwK7G23vK4et2xWKdSKKakyZifBp5IY8070FS\nT/DXwCGV92zlSDV1ejnus1qIWDZt5pRqBPS9T9b6A8kgPFmIr7kZeXSN4uuP5/Q6crunZQma9yFS\n33zc6RCq1bJdgqcVq1oL0Rrjr6LsTS9hqqWppnmLVYPTwb7H4aEYDKPakqulfqBBDtlHBbkanOJs\nh3WoXgtYzRJMkdBVw2ygQKCofropeed5ZpN30RQG42msvyvpa+Ebmyvcd5USqgGvMwiI16XbbEs0\nUF+5TVCNjkqLs9isoViod2X8iGydnaS2WM1cPW0CUp0jq7EKbSySFUDHDIj7KibHsJH4A5+eVkiq\n1KrvuRoXKTy606PWXKBLC8bI+Dpk1Dpfsda5tF5LmGnqvYXd5CbwOuGmWtamlKaDpab0i1YloWJS\nok5EsCt7K/WfEcWadv5CDc01JKnCq0uPMNZ6oy6iF2j+Bi/EV+g9lcZwdFeUVtPRmZhdLSgzGpxz\nopG0pYN2LZIsP1uylX9sScEYc9sY87eMMT80xrxtjPmP9P1dY8yvGWPe1787n9bWlra0pS8O/X4k\nhQb4T51z3zHG9IFvG2N+Dfh3gb/pnPvzxphfBX4V+DO/V0PGePhRStLuEgWxNn6J2sVopufEaFYd\napym+QrUIGU6Pr768YnMph7g8KDP6LE0cn6+orml0NU1/K90lL5mwG1qqkJusaJtSDwNOiJ/We13\nPXCvy5mAIsnfjDnaVaxD8RYa8k6n2+DXwrkDRSP6DVg1tFmbYyu5rZoaIvUXWb3usuWcQLMP7/UD\nGMnNdzPoMtxTPPbiks662Imm6GqagOG6jmAwYX2P+S34ns5b31HNRRl1mrjWM0eYVuDf9WS1yQ7t\nexGddVm4IKKjGajjjjy3epIxm4n7djhM6PXWgTgtraaLMrak1QouVmHL9fxjmmcyL+fjjEUtNo5B\ncEhsdN56DYXiE3LNPdG2Lek6OMxBqzelvba0Kln2fIhV8go7GhiVtQTeGgOSE2nBFX8U03VaHbpo\naVvp36aadVGxUNzAap6T7qY6R9cbl2Smf1sD1qyzdzlqhZunOzFxoVJY/xhfq6I3XTWIX09wM3WN\neyGewnrtMmOuuGnjDP2urplKkM5ajLblj1L2b4ld6eazc2bqOs28gmpjaPxsksI/NlNwzp0Cp/p6\nYYx5BylB/yeAP6Jf+5+BX+dTmEIY+Jwc9Dm6NcQp1Li5qskLEf2X5QJPDTHd3pBOqNBPrS/YT1Oc\nFohxWUOeaeVg3+OD54INP3/+mKO+Rpmpocp4uwwU9HP1ZMr7j6Q61SzLKDSBhjMvU2wZPWAX2SUY\nAS/9C/UD+h31fFRjBmrYIijxPPFNGy1J3rqCVisH25WH0eJ/dZ1Rqji+thpnrU9XxWi8lJ6Ks0Ua\n0lVxNmxDSq2urLgd/CRl71CrZ5cTfD1UlgCrwJug9fA0CtK06xTpFzTaSLOouNZCLgfHe8ShCHuj\ntEesapXTlPq+n2A1+YydLagUABYnCa2mB2vrhmqpuRunWvy3Dmk0EcrtwT4LVQ+jYcKtQ/HHH9Ue\nT3JhWkbjD4hafGWWBofT2Ia69egpDLizt8NQYzTWHpdBuGJ2rRWiqJhdy/jiIsDvyWGyQRejDHxz\nuH02Yd1NvWKpRt7nqxVXetbWmo9xUGxS9+UEc9m/ZTaj7KtB1LUUK2GsmV5kWQG9PQGGBLYkbtZA\nL8NsKsyidJZE1yGK1LrYtkRqzE3bGUajLq/8d3DKyXvtgEzVws9KfyA2BWPMPeCbwG8BR8owAM6A\no5/wm00p+lR1rC1taUv/9On3zRSMMT3gfwP+Y+fc3LyS0ME554wx7nf73aul6I93jt3D/a9T2Snz\nFx8AcLpzF5trqrBqii207LcH++pyXFtEXLNi2ch3q9PnFCptfPzeJX/nW1IeLfEcg3MxQFbq5hrs\nFbQKQf54/JRHzwX/UGUlzmmyVftSQli7dnb8PgtNAjrOLOGJuLfiyBCnIkzWkwLfKaDAE4mmdo5a\njWtlBrECpx0W16zrTWrC1KAk8USMbvKKSm/HtL7Ert1btqHQWoKVFpkJRy2Z5mRY1N7GaBT4hmqd\n/TX2N65aP5R5TWcJYVeMpEX8hKjR9HftjEzBDsH1nGIl0oSt5RYsLs8Iah1TZ8A80FJ3TY91tbLW\nbygVF7HS2zGsK4b76oadBRz0Fb3qd4lUSivahkgz3ASatdk2HpUmFqltjdF5M50YpwtkihKjorbV\nVGRBbwcvkz6Hy4RWM22/+DCnvaXFYIYWTzP2dtSl1xQCdQewYcOLxzK+dy/Kl4VxePnXrdP7EbDI\nFR699FhoGTfbhvhaoKZQA61JQgKVqoJOiqfSRuKlFPNM2/PJkTmsPZHu+nXLughnPbWMtS5Ep3Ic\najLaxPd4176a8eHT6ffFFIwxIcIQ/pJz7n/Xt8+NMSfOuVNjzAlw8WnthHHA7bv7PJpc8c5jEfeP\nD25S1QLGmMVdoqUsYp5b6lg2Qrwu9Y7HUg9HtmqYnkkbH51draNlOTwZcOOuMIVaE7LMxxOKVib6\n7ScvuNCDldsSZ9d2BEewXnU9YcPjIQd3NIHGgwOOdhRM41tMo9F513OKpURuGl1k1xqymeyacrba\nFBbxPEOkcN4GhUkT0Cr4yQ+gWatVjcWpKlGHHl5fvhPPFR/QOIp9GfTFi3aTzdnzfALdjK71CBTs\n5GnMSKfTpag0aY0LSBWiHK0cdqDhywZCTYCi04ZrR4wUYBMan1pDoMvmbAPOMUnASjNFr/MvGgJo\nZayDPZ9uo7k0fQ9bCuPIi5Za+9mNpZ/z3NCP1PZTOpJEmVsdMl5XtQrPMI8FcxJFomqurgvO9Hnz\n8dnGgn8xnxCOpf+JZ4kVzLbS3IehaclXoo6ejcdcjmXg35u/FMlfhQGstXbbtqzW0bPLGZ7Cu119\nQaoZoNqlJpAZDvE9rcDbOPylMkKvw84NUU1b21BpWHdby99B0hPDCmDDkFm+Bvh5POgos+gYnlyu\nJfFXk9H/ZPr9eB8M8D8A7zjn/rtXPvqrwJ/S138K+D/+cZ+xpS1t6Z88/X4khT8E/DvA940x39X3\n/kvgzwN/2Rjz7wFPgH/jUzsRhuzePmZWPOd0KbfEexc/ZF9F5nzxAWEkoq3n11QaCNWqD7rf6THS\nW8n3ukym60CTU24l61Rad4gK4ZipRsvlVcZS/eb5+VIiWgDPOWq3LrcmVmXYMGXu3XuDezfl5vra\nN75BmEp7uEOaa8kZWJsIXzMtt3M1WjY5ocLg7LKgqjScs/FoA/WV641ydTXZlBBPk5B0XUPAObK1\ncdEv2NV8fVZLySWuT7XUHBFmsbnFPAdRoNWVW0tTrytTq/XajBhoxuy642/KrCdpTLwGAPgt5YXe\n9Dsyx365oNTx+R2DiTeABFaqOdqVw2qNxlR95mU2JbtQlcmWRF1V11zJqpb5vC5ybE/6lKvBsBt0\n1wmM8Zoap0l0ys6KUFGWi/mE+Uy9C42YtwI/wqpKYVYxtd7pg96AjidtZ6Wh1LKFQ82lGYcelab/\nS2YW9Paf5DlacmETZ+TYbCH8CKx6DmyU4FayZ40JaBQq3tuXcXajnFj3gt90cLvqUfF8ltcqaLcW\n+rJHjJaK89MQXw3FdVWTzUS1KZdLllrrtDSOXvhPSH1wzv0Gn5ScXqU/9tO01emmfPMXvsbrbzzg\nWz/8bQCu336b50PZjHutw2i8g1l1qI24r9Zl1FfLa4hEr68WJUkqIl6adTnSBCd5NufZTBb0aKkZ\njTowuNQkHXlGroetcW4DWHK8LDW+9ux86Zfe4K0bEnG5PzrB01BezJxA4bF+PN1kWapa6bttQ3oa\nLuzvOzz1StTzq40JezaWsTWTkkBLtU8mxaawyE4c01fA0tDv4CvIqDuQdoNyn1JjvQeLFxvXmsG8\nLDZroVGbSKSAmHhQc7cr2YFac0GpWa/CMOPihRyUctnSqh48WguZkyn1GvrsYhrV8QNXEaleGwfg\na3GVNeIn3Rti1W4xfxHTtTJHV8uKRF2Lx+Eu55rgJf9YrfonS4Y3xQqfVzXLufQzyDJGWrD1oDMi\nvKsMYKCw8k6XXLQALg/PePqulnAfZvQ1ES6Rpauw4kRdk7ZxRFr6/SK/5LGe+tJa5r+zFD0vk6zg\nWlJ1ZYbLjFi9D35bEGjdz46Gi/eilEDtBAEJuSbDKd/5gKnaERYGXCvn4Vg9Fd3hPp4mtO2upsKJ\ngGE34U3tc+EHqAmKv7uJ5/y9aQtz3tKWtvQJ+kLAnD3f0OsHpGbAQSXi86W/y+JcrMVHhwckGqhS\nrBrK4GX6dYDzq5zJXPLdefklaaoRaYVlogahIpszyISr7t2WZ3SnRyy0LJdrLFYLdjj7UgR61XWy\nNjie7O5ycleDi+oCozH0gQthqOmxag+7kKtpqcFA1hgqLUtGPSQI16L4HTpqrDuIBGMwOr7P2UzA\nRGdPL3F9jTgMu4QDNcqljsCJ8dRpsE/Tn7N8T26500twOgKD2RgdW8/w5ErE0oca1ejTofO6Bgk9\nDzB6XzSjmh3/oa5TwUw9IhHr9OZDGk0Gc51/TNeogTINCNX/EPc9jNaxtGoQntUXuFgjLb2IyUq+\n+2JyTaoAryROGGvEYK7gpt5gnzc8SRsXD0eYUoyj82zK5VORNqJen/BSjLxRR8YUcMaTU+nb+8/e\nZaoi+Ouv7xPfFVxEp7CE3kznS+atzWKcpolndEZ5KlLT1cpuIiJfTVOw9rj0W59Q8150kiHdnTfl\n8+wjSlXHLp6LId2Fx6Q638FoRKuqXe7tUGkym1M7I1VQ0w1VA8OkQ6N7NitLUlWf9kLzsniS86l+\ndwfgT6QvBFMwzmDagHn1nA+MpL9+UVebfIaDBwdEquudZwuWmlTzZl8OxHDvkNyTTX5tHUbdO+mu\nz14jYvVVsiDtyIZuUzm4P1hNeW8leQI/XM7J1rmVzEtROzBs5Km1jnhoRkT6ebsaU7SaDtxbkfZk\nEyb5kpmKpfFAprkce6yeyjjquqbJZKN3evvMnssmzpQdhfWYgaI7/f3RJiNVJ67wojVS0Md1VWAN\nhRG8+N4Fj19IXMbFwrIuYmQ9u3GtvZhbnubSj1utxFH4NqNVe8DBbY9ZIXNbPJ3i35RDb1aGoaou\n109kY0+XliB9DMBeOGTYk7mI0wq01Lxxu/iqVq00Me3s1GO8xv6HYybqiv3u6QXPO3K47x1MaQuJ\nbP1Qa2gkFx3O7svr23s32dFYizLfZT6W5/XMgHRvbedQlH3nNUz1IwB2210atY3cPr7L8a4e+vH7\nVBpqXy/UQ1XXtOrhuCDgfY0fCeOAWo0bGiGNbyDQiNjaC3iinpi3P37O0R0R+aOdjEjrOlz9QObw\nqrriUG1CdZkwm8lleJqdURlZ11GnS0f1gI6qGo1fMr2QufjBez9goUx/f7jHo6W07Yc1zfinKzC7\nVR+2tKUtfYK+EJJCY1uu8gXjZ3O8RxoTXn+IphagGkOwr1mCJ3MCjaEPa7mVvAOPcCzc/PLZkmeZ\nYsMTR6K3tEmPGA3VZ61y33y85PRUbpdpXm6qSztewb4bH3UMMEiEU3f7fWLNC+DHXep1hWYTbypM\n47WbNsJA+h74JaGqCc15RpPK+2bZUGnkX6Ieh+qyIe6qmtTZoauALc8PCbRCsY1rnFrGpyvxejz6\n/jP+75lW6O6L0RQkInSNIyuaJeGV3LAf6m1+e1BSPtUYgP5ddnflBhrPz7AvRAwOvAHxldziuzfE\nADZYRdjnooL0uzXJSNrwmmQD+fXqhkyzZs+u5XnnLx7z/EJu0vfy1UbuzmvLR1cyB7MqY1crhnVC\nLTVdNcy10vZqZw6aWyMsp/gKPEqrnNiIhJEuZc1NP6N/rnk3mx6HA5nvk/1D0rWR1x9iFauy0rDO\nZdmyUvVoPLHM13DswGe4rkGpumYvha9q2rlns5aF4iZ+9IPv8+CGrPvDhw8YasGZgWJ9g2VIs866\nlmXYUPrQj1pMK5KnCUrioRhPg1ikxtlkzpP3Bex3eXpJW8mYLuycC834fGlb+slPl1BhKylsaUtb\n+gQZ91PmhP886PaNI/ef/Pt/ktv7r7E3ErdYJx0zfSGGukGUM9qXmyLu79M263RjIlWEw5TujtwM\nYZjiqT8xWy2pNMAl7HXw1bjUKv4h6vibcnNVkVGoO62oW7xI9P308gS7TiVWC/f90Z1vcOIL589c\nysUjQc9969t/i0ahtLfu7mJXIqVMNKgn9mJunKg7yQ8pNWVPWS0oNWJyqMk+R4MBTtPDZWVGofrr\nIluwUt9oGAcQamLTWLESq4RGA6l8a/nP/6s/+5nWwI+ho+nMbu2GJJr81e9Dt6+4DxMQBXJzFerS\n9NuISjNMVZWl0NtqnteEGsR2cvsuNx+KHSe9+w0ADg9j3kp/BoB7RzeJS5mjP/ff/mf0PLkRB8MB\n42uxj4y1bkTYVKRD6Vs1y1nommV1RV/tLvu9Hdp2nepODXF1TrPOLeEMibpLTWDJNWLyYpGx0u9Y\nzSS+9/Cf50/82/86AL/81s/SPxDJpL8o+GO/JIFUZ7JVMB4oQJTOIGDPiL1m/+iI/ZGM6eHD1znR\nTNCx5ubLZ0us+moj65FoIZvAhKT6nWjleP9U5uK7P5RScrPFlD2VHrqhz0JrPYyvznAaYFdaw0JT\n533//Ozbzrmf51PoC6E+BJTseR/hVcdUmRgabRCxLMWjcNI/IrGaFGSxQIPWiA/UBz0vCJt1HcEx\nbl15yc7xnB6W+TOioUbDqTjo2R2sph2Lw4BmocaZyQKr1XbYbcifaabhNUx4mjAevS7NfvAdfvtc\nROonFx/yuh5ON2tZ5FravZINvXd4n/1EOh8FKU7xBE1pKTQnYk+rI/XDmFY9Lk1ZbUAxTWg2abna\npiaIdF4C2RB1v6RcKtRYC5p8Jqog1ziB6diCgo38POaGgpOGN/cYagrzRKG6hghPIyfbNuBqorj+\n4qULJ3Yp6VyNdT8ScdcrI9qHUtVr8uJHXGvMSLed4Wlm6+X0EUuFeueFXARdP6GjKdkra+moDS2s\nQu5pNu6Tg33SzjoVvTCNfDpjiapdzuFpfcy2ylhqtKpHw0KXfa5VnFaPP2b6Qjwc9c98GacQ5Gtv\nU0/nZexDC5HivFI/YXBfU7kPBuzdlrHu7PXpbrxVmjhmkJDo3Ps2JNKiwdZPGGruTtPvcadRUNee\n7OOhlxOv80v6kBcyh7d6jiqQZ59enTMt1+lgPhtt1YctbWlLn6AvhqTQxOxe3WdafYvJWBFl4z32\nFI3mpT61utCKUR9Pb51yKRDWOCooFAU26nq4RpOXrEpKvUm7yQi1QxGhiTdMS6iqROsV2JWI/rbo\nEWgm4tkHb9MuxF2Yq8HQK3+W991fBuB7j66pLtfZgCtirVUxu3zCmfLcnpW/O75hT116QX+4cdOV\nLdQzubk6PR2/71FqcYbSC8m0+EDg9zauxbKucFqvMtG/i2pMoarIOjvz70XryM/I9/A1vZ0NHXsa\nbNZNB9x7IAlyX9s9ItBSeJ7Ci4u63JRcb9ucQGtGTpjS1TqPSbSg0VoNRutZxuNb/O2//j8BcDR0\nJImoEmbeJTOPAJjWjrINtX+aHNdYfE29N0gh1sCfOwd73BvJDRrt7DOKRVIY57p2SUKladdGvZiP\nZ2KYvTg3+Opy3A0PeDwTlfV0LhJGOfuI5+8KXuS9k+9xMBCV4PDmwe+asqRKZQ53Ozu8dkNU4bvH\nr9HZF7UrZUlZizgRVbo/4i49LcoTBxYtE0IdOfrrhDJ+QdgTy/utt6St7nREs5AzULy4otbUgqOq\nx3srkbKXNLRrv/RnpC8EUzA+xEND3++iiWTo+RmDRH3+abwpAFKcLykLEct99dG3wT7+2fsARCd7\n+CrausDgzyWc1O6NCFUcNz2FGmdLWJcetzmeJrGIkwvChRzIqrOgXmP7nWAhSndNfiWfT88uiXUW\nj2xAd0faO39Sc3EhTMbdlOd1opCO6pOBKwlVVUhLg7klffaUUbR1hlFLdzLapc0VKr20rIzm7Ytj\nAs07uGZuq8aR6AZrzaeLjeuCqL6BVHWUnTAh0Xx/v/TmA954IBm2ja1Z18la2y32jKFV20hWNXS1\naEtv0mCtqF3T5S5+LesQrGMAwi5pIOv48UeW0dF3ZHxuSa55DuerjFCZeqSZsJJuyzog/CQZcnOg\n2Y5vD+lqlu4wCKg0piPUfdP2DT2FWnuBR7JOWmNqjNpuelGHZJ2vUfNSusWcxVjwDc3piFq9Q/Uw\nYa2cbY6cgV6qzG8Y0Cojb+ISV17qHEVE6tnY0ziXburR1dDqTgec4luyLMP4sp8SwNc6l1/XNSiT\nBUtNlnM5t+xcaXYnmk39yNa6TVj2Z6Wt+rClLW3pE/SFkBSc11CnEw7jASMVL+lZBuqbj/OcQjEL\ny6sJHy3k1ryz1JqQt7ONuJ/PCnqad7Ht1pvk+rZd0i7kVnGxiFwmiECTjPiZYx0Xs1q0lE4RdHmB\np3iBrBIRfdK8T6RRbbe8mlz93AfDAYOV3BsfzC+ZKMJudCCSQr8T0tF0wJ4fkWgNiNAOMAqLW5ek\nr1YGf7xOHTym1Tj/ZVihAg+p12DXdRf1Ztw3EXOtZV6Yn5zRyv8d/3sGUrW4+3HIPa15eXx8gKcZ\nk/2VwVOvRF81kyCMaAutlTA2JIeqdi0W/OBMRPeVKwgVKryrFbOzyWO6tUK3uy2h5pOY5EtqtcQH\njk16Pi0tQdfEHKhF/s7xDr2+/O5wZ49QJcR5WVEpxDjRyuWRLbG63W1kONwRKbQsLGfrPAReSW8g\nfXqjkr31dHnFhVr7z3pDzENNc9bZ3ZQTXFsaDYAG1VFeYRD4NNWSpXo4aFruqiqhyHXS0IAiF8Mq\nQqcI4hgbydza3NLriLTVjqQPxVlG0IpBNI5WRIk8o84ydnXtb8Q19TrZ6YLPRF8IpuA5Q1oF9DsV\ntQYYtK3BXmvE4FHL/IlmE5rkuHM5bB8fKNzzOmK4Lr9elVS7mgLeNdSKE/fLBrujcQ71uqhGRFjq\n62GyKfVjJwfUVvWYoznzR5q3T0V7M3HE6ubpdn16GncQhjBflwu/KCg0meprfVlEL01pVIkfdHsk\nyoX8QSJFKwFTKtiqguBQM/7MuxgtMx7VNUWkyTbamlYt0pG645odR1cjGWnXu+vHyfyOv1HkMYhE\nD793/4iTEznE/d0RaahJVIaGQBOVBN66ilOC1aQ3xofiVF73YkNPRf/racmOWtGPjoXZeH6HJJH1\nzTOzCY02DmytEHMHiepmKiUz6Hocaw3G/UFKrGHwTdDiNATaJCkDde3ade7KpqRQhJAtDElXXu/a\nPtOP5fVVuaQpZR/ta/5ILxryXM/50+fvcZgKdzIPf24TC7NR0hw0mq8y8jo45RpNXVLrnjvsWoba\ndqAgOtNU+KHCo3tWylkBjReQaN7MYDfY1O/0unK6e4MhtMKdD7yAMJP3F82U8EA6fTlpiPIteGlL\nW9rS74O+EJKCwRKwwrYt7XQNUfaoXgjne/Q0JLuW9yeDPTTLOLta9r1nOwSamyCwHp7e/mGTYkZ6\n08xXeMrlm0zTi+20eAq/9f0DqEXCCJKnGIXBkvdJnBiJVlo8cBlPyLSG39ViwonWUoxshw/Ppc9n\n5ZzOQG7bk7u/AsCwf5PYqcrQCYn0dvC9LlbNVkbvHT9sqVrpb5DPCbUcmYk8fJUAltbgafboSCML\njfOwtRj42p+QW8MgRW4AeqrODAcRb74mqb+OH+xztC8eh0HQp5uqZdzV+BqUY1eCG4hNsgEF1dGK\nQm+rKnd4dn0jNsw1N2PdkXGmbsaVivizfIp2H4shUoktx9FTCehAS9gfDAakGiUbxgFdTXBjqwCn\nSlE8DAg1mGwdxFbOa4x6gRK/odUSet00Jx1qbolLn0hVpVojW7v+HsNM5vPsesK3G8n4zZfe+11t\n+ioosJgVeFrqbjFe0qo4bwbexgtWaEGaKozpqNhhqg6uXktbO6QKUXatx2oqHrggUFUjWDIaiCdt\nWeZEN2T8R88jrtRAuT9t+NFPWTbui8EUHASNg9Kn1Q22eDFlXmsh2fcz/JW64Uan1If3AEjnoveP\n9kMOuoIUDAc7+BpmGyQxSaihxYcjPCPtxcfyHm25EfHs5TNco9bbZkY70UShq5pkoAynknatrTcA\noqHfpVAk2Xk85exSD2Td8vM/Iwfrxm0RmXtxSdKTzZjEey9FeFvjq6htNLS6yBoarfTkRx6mVGZZ\nVAS6HSM/wKpNxNOqFJ5p6ayrI7mlJlyHV5N8hx50NPV7L5LD83A05EQNBaPRrY061hv1N4fUtwaj\nYGdpaQMAACAASURBVKJIn2GrhrbWpKyrEk+ZzM5OzO2VjLUoV5QKrDl9KnaGg9GAuZafbxvAX27m\nwioaMQkM2k0CBU0ZW+JpoERjWjLNYpT4KYleAHEUY9Wu5Nb1Fnpd7ExrTwQFTnX8yB+S+IpCagua\npfwu1EjUyBX4qqLlszNmWhtk9s4pHe1b/QooeO3ibXzH6bnaebhgN9X+D26xGGhR30w9HWHJollX\n2So2tS3N/8/em8XeluX3XZ+1533m4T/eqepWV1eXq7vTttNOnAhCwCBBwvASIQQPgCJ4i5BAgsAT\nDyAFXiBPIOEI5SEooDwigUjIYIiEHTu2O+6xplt1p//9T2c+e96Lh/Xdp7pMt7srldgV9F9S657+\n1zl73mv9hu/g7dD8gC0rQtXYcqWuYe1TqB7S1oaBzmnvVbBy21gGHm3z2VqSd+nD3bgbd+NT4wsR\nKVhjsGFMVmUUtZvtLrJbCoFULjcZ21gx12LA+dDNtCeqdMdehBYGwqSl1Ypuwwk2dvgFsy5pI7dS\nGGQw4g0OAoxt1dAKSlusCnK71LaHRCNXLZ7IYWn/1BIKJttvBlRV58o8gcRViL/+8Jif+7ITJzkd\nucLYMA1JOgspk0GHz88CTCyTGOmGt8YHhbu2qfC8zvuxpdbKnbT2oB+ZisFZ5wVWHYJ+EnYKEZ/S\nzRsOPI5iFdTkyzk/PWP2wEU2J03CUECZnu8fuhI287F1F85K9KZuyKSpGLQZw76gvXlA+0CCOWHG\nZivTFikS5zsoG3cNR6OQdOp+96T8mDPpaj4YDUiU5/T1qI6igLmuYd+PD1qa/Qn05FqFb2h0vYxK\n+b6xNBOlOXWMJ3BSb5Qz3bs071W6Z7N2z0ArWTabpVjr/hYYj+ZI3Z7zit3vkmMzfBIpNE3G6sIB\niJooxpu66PRRVmAWUiOfCJDVhgc7+/x2TTSVsRElSHzGCyye2hzxYX8eXiSjIQKWArVl1rDXpZi1\nffoqBH86Xvzx4y5SuBt34258anwxIgUgB7zaZ6He/H6TcLlyn3/tsibU6nGCx+Cxy30LIRPLIKUy\nshVbLQiFcjOxh13JhGMX0iauUGNVqAvPEig6nO8OK2Vcb+hBK1OXo5r2qbj8YhGW3h6/K1plMfHE\nrXJbMuZSHnrj7TO+8Y3HAIxP1dIjxwSd3oKPPFZokxwrD4hWS78XQHwsVN2ihzVdBAGqT5Li0dZd\nu9P9rYlCvKUKqb5/QN3lfKI0PI8DfvENxyq1U6eFcDSZMZO3wsm9CT2txr1eeLAma3vmoMnQFTGt\n8ajFIg0nPTJBzMeD4OBHeXPdI5aTciWSlh1ExBIisJ5HKvfr1Hr01Ho7Ioa+IgFFggPjMQoFwY59\nmHcWgOXBwCfzarSAYvpdlNOSqLjIfkc7kqVdVjFWlDLfzbiRmniofxd+i1WkdJLOSUTWivamg7jw\nw7jR7vaOTHIoKO7zknbijtkbmIOVndW2wibC6IKauCbQil8VAb6wLMnQ0qwkXtt1mo0hUCE1mI/w\nFLLEqYcRVvppURB4n63S+IWYFLAttthgE1hH7mSKfsi+ci/x2XTCVj3o8N4pcxW5+jJX9bKabevw\n5P10S5S4oqNpI6paqYR/QYsLE32FYcWmxMsddDkMjzFFB4Nt6Illt3u6JF84Lb2mJ0mt53uykTvO\nTe0xEo16MOjR81yqMY0G5I0q7beuuNbi0fY18QQBUU89/2aEVXW+M4hpyz227dyYMrJM2AS7xhMu\norElSMrb7/KIuoG9227dBt08RgL0VbUbjodMvuLUqDtpr0lyxv0HovqeDGhlYuobQy6MfuQVGJmz\n1JmKdrlLMQBqzzBSR+hmWxD0OsMZyERnn4sWnHgebV+y/L5HLQzIpA05SUVV9zNGEps/6blrkYxT\nMp3rYreiEpsxL3KOztThiOY8fOiOqSeqd5kUFHIGCltY6zrv9xtuO0DW8ZTxreTNnsiMeDCkkV+l\nPw84at21vS7eO1zbTo7NA6y4IWE/ZSwcitfGvH3f8SDGYcNgpGdAtP3KCwj9jmkaU2iS3dqWU00s\n/mhEKLxLlQtvY0uQ72Q/6FElKgKbGVXfPXMn+5xpvys3/2M2g+mGMcY3xvymMeZ/1f9/bIz5VWPM\ne8aY/9kY8xn4u3fjbtyNP+jxjyJS+A+A74IocfBfAf+NtfavGmP+e+DPAv/d77kFC14FeB59uUDn\nlU9/5mbzoc15XeHX+cPHpFIUtmrZZVGOzUWYsUeUUWdLX9EsOi6bjycrtFDkI5unNIoq6pUFo5n0\nYkerULRaLMgXLtqIxFosg4pGK1/ZsweCTpLDduVWrmTSp1261eZZIyOUuCXNXNgexxuGpSzXvSsC\nac/tN67ltd9dUAg+3CQNGxXGmnZPLFVfIojVIvQqKTFnO3o6z/224Fy+EI2F2Zn7/C/84jnH2p+N\n3W2bjiLq0B37y8WGSn4Q/bhHI9fiWRgfwlVfpctds6WVT+Qmy7mSV+bFq2v2ajnerjJq9e0qnV8d\nj2iFjmQ8xFMuNY5bUomxmklKOuzs+1REW28O+gDefsh16fadry0vMiH61pcUhdO7ePOBu1bj2Ry7\ndd9dF3ue3To25Gq95lrp1mQ+IK0UhXrabmHZDsQCXWzpSd5vcnvF1Li/X+rY/MDwcK5wv43xhXV4\ndDxg2tnH7wbcOrN2zhJX5E1Dj7jp8BZrVkI03mxa2i79aRqG99y96iztNtkKbrvWcvkJxqVc4W/d\n/Qt7Ian5bISoz+sl+QD408B/CfyHspL754B/U1/5y8B/zk+YFFogs54T0BDM98o0DHwp8Q6zA768\nus3ZKQy8Ncpf53OmnSnppGKeqfo+79Na96K31QRfPev8qV68laHS39JoRqQUpd7V+ALLBMGU5EQ9\n6xPp7337OxzrpTgbW8xOL960f4CwPpz16SuuLG/ctm6qF2S+S4kGvZi5REHGvT5J7B7CrWi114sd\nhejicRuy1cQS5B5GGn1h0FB30umpHoI2pur4EFhUhOdkHPG1Y5c+feX0S6SRquvqWiSMqHQNb1/s\n2MuEJI8T+sMujUloxdD09ejs8pqbS+EUtgtuVuqiVA1R0/lj5jQqr1fqx18u1wwlOJOYkETsyuum\nZKaJbFq0ULr0aDt2vz8NGh4LZBWnY7aNe1EuLl/w208dxfnD2xeue4Mz4QVHsS71olze3LKSwc3W\nFEzUiXlr/AbV193LOz11tZZvvf8xm5ULxbf1gg9GSvPyhNx0XqDuGhssudi1abRmKTyFWV2zkm5o\nUFhGekaSb7r93u+f4GlbZeMRdIre3PCdp+4ZenV5zeQ9dz0lmUm7ybkvB62yZw9MS6+NGZ66v79l\nWi4WMiv6KcfnTR/+W+A/BrqpaA4srbXd8vwMOlbIp4cx5t83xvy6MebXV/viR33lbtyNu/EHMP6h\nIwVjzL8MXFprf8MY8yc/6+9/2Ir+zdOpLdoWW2wpcxla+B7bXL59VUOzdSv6ZR6QCvp6rTDyZvUh\nx3OHGozNLZOJC9GrLMMTS64pbvn2D1xR8em1E9i4jVK+duY6GP2k4N5EUOKeR5KrOv2oT/6eiyx8\nOS4nm5jlxs38Icecn7gVwRYl11pt//7f/y57ITKNVlczO2LekxZEep9GYijtOKIVwcgIcJGYiFeS\n/losnnEtD4HjNCQUpuHRYEqoar5qfdiZh70VJoCK+ypsDpKEo7n0G9qIcergscOJW4nHR49ZaHLu\nNVe82KmrUUFf0l792BxkzFpZtY/CHlXqVqViFxMaMQ6L5uBVcX82pZTsXSUEpRfVB5GSXV0RaF0x\nRNxcu5UynfY4O3fHH6rYd3Pb8vyFE2F5sjMMJGnXxEOqtewEjcd17q79k61Lq452KwqlnbusYadK\n/av1LZu9zjX/PlHfRW+1VJ1bP8DzXDSyrNaMnknPsVzRqlhZd7aCDSwX7jz3kaVR9+VimzGQZfzY\nLzFC57bfc54j80ePGAm62O/3GCktboMpue/SnA+eNyCk7nbsIoaH45BLpbFJU9KoSzQchhijbsbG\nMoq6QuNPNz6vwey/aoz5U7ji9gj4i8DEGBMoWngAPP+JW2oa7GqFSXwUzdNYn4WgsTfPliwkFDre\nprz5VYX2yrNvS4/hRiH+owFBopBzVxJIfGTxcsXTD12O/9t6+CezCdtXCuXGawrBWfvnW6LIvTTt\n5Zoqk06gZN0vsws8vbzB6oYHD78OgB9kxKpt/PpVTuFJ/LXnHqpZtWAsUVKPAb5qA7EX0azdg5IL\nvLXLKjKJjn7nssDTS7XDMuq7ye3odMD0WC0yBWdlEVDJOGe7KUjGbhtvP5jwjdfdxHnvfEipsPrm\n0r08FRHPLtyxf7h7jhUFuDcKOSmU+44TIsGYs6X7tzIltzduf1eLFR8/daH2R9viYFpD0dCTYetA\nebg1FZEAQmVeshYEuZe0nKodOoxbJhN3fi+v3H//zadLfl0dh1VhDtfw7dMBZzP33bLyWebu/qw3\nqn1chBShe8HqLKeWm9L3P9iz0uy0XVVst06PsRGILB6MkfgRs+GE6620G9MIyWp+SoHpRhyVoC44\nmrl9Hw9OOX3TaTROwoD3n7pJbVO5BWm9rIllfDSbjZBlJOtVwfWVUuXNlo9XgnSvJJcfWc6VSqYP\npzwSmI81VAvxOSJL4X22hOAfOn2w1v6n1toH1trXgX8D+JvW2n8L+FvAn9HX7qzo78bd+Cds/OPA\nKfwnwF81xvwXwG8Cf+kn/sJaqFoKG1DInCT0+lgZq2Rly83KFbMGgxuajYsEHiQCL41zxlaQ2f6Q\nUHLPBoPna3tBn5lWkl/6GddxOL/3NdK5m2mz1XN6Q7c6jtsj/LnbXrFM8FSMCxK3qjZVRKvZt25r\nmlbyWrM5p5H77nD4kku5YvcSB3GdRyknpy61Oen16EsrIKhbGq3ckZQwUgOnshL7E3/s65Cpp59Z\nblYuAkl8S9A51XSekbaikhK1NWu+NnEFs8f9E46FQxifPOTpxw6C++SJC+T233lOoX52Fvv0Yrfv\n+ekJE8nGJUlIU7plzFO/PvK2NNKN2GUVVilDsq8pBf++3BUYmdbcV/VpMu9DVOrILaWIPb06ODBe\nt2XDy4WUQYRNeDwcsZC82GYWkUqqfTgcHZiUP3/PJ5w64NgbM7fM3z8+Yb1x2w3vHTGbuudptyp5\nsnQRxL044tdeuWu7V3pxOhxxFrv7VxUxkQBuNj/+FGipGx03qgFqYTpeOxnzJd2nyRuPOc/cvo9F\n7IvKU5JjF201tc9qIWXvpKU/cMd/agyDuUuF5oqeJnUI0tY4fdhnIiWaPH9OngnrEMCo/9ls4/6R\nTArW2r8N/G19/gD4I/8otns37sbd+P0fXwhEYwOsraXvN6SCfm7WBacyeMmzlrmop9984xFv//F/\nFoB2qX5teU0hfv8oHjKIBIOeLWgDyYCNHhDPXSvLpG62H79j6ceunx0kDa3aaWxrjAp4veN75EvV\nK0L330uvZazcOGlili+d3sJZOmcgmvU35g+oX3cztz90K+0AQ6gVOOl5+KqfeHlGrj52vRcOoD9g\nJDLMPA3wJ6IvNz2+IoNcawtCI1FZrcDlas1uJ9ObanAwtw1mAXnmtpdlGYnvrtHJqbsmQT/FlzZB\nEA8w6s2f93pMB4ISbxsK5eK5vAls7pFM3PU8b1oeysX61eUTMommfuvZCzLVKDrCVF3lpJK329T1\nwctjQc251tuJSWmutRLqOF8/CfiaooOtaTBSzzbDgmNpNRy/9ZhakeN85K5nfzjCV12qHq9J5Q3y\n5nRAo+JAr9/n8Zk7l49EWuoHAUjm7XQyJ3gs+PfJEfWv/A1+3GgtZCqOv6ivmLdOdPXLac7JG+5c\njn7G/a1/MmRw2/XcWwJZ5cXxfd45FwnvJmek1vDo2N2DNAxJJTAb1zlVoULkZkfed9GP3Rui7J9A\nNWdrLU1dUuw5AHZsDKWknV8/PmWgC/nmG28y81XtP5dc+ialVG837Y/wXS0PfzOgrwnAm8L5O38I\n4MCW9KIB9kY8geacVpj7tnhJ3klYPbolea7KeOIe6GnsM5Bm4sAPaQLpEu5ece+hY0YOBw9JY/c7\nK7B6HLUYgaJs9Ynar/F9GnE0fL2AaVjTO5akfLnHE/agud0SB52RSUktDv1O4J/bcEMmGGyQDDk6\nlrR40GO9dkVA/zom0gs01ktc1/4BwjysMtK+u4iTyZS40/7LdiAwTb7o8Ao1M3UkktOAXeY6NVHc\noxHcemAMrcpXsQq/vXTERhoRG0CKb5yEPnPd3/tJRC3RgjRyacTjh48JZu5lsoGllsdkOi6IpB7h\nzwYHU5fhkY6z8khlSz9cbIjedgsOmz33T90xLbMGX/oMVysVl8uIUB2c+I1z5qUcot5wsOXfa7Qi\nm+RrC19293IwPMKfuxTsQizK821LNOyKuZCmLvWZ9SI8cR/iL6eYSvoaemu96z1px+FYrml2AqX0\nelTSr8t2Jdb/fSo03o27cTf+/zm+EJGCaS1RXhPEJbXofp4XUR9YdjnTuYQ405AwknfAVOHUNqU6\ndjNtvxceVjyCkFB955AlvgqGqGXZlpeYsQpZwRGV9BTKUYwvd2TeCwhCFe58t0r02pCpuPmjQUog\nibLY8ykXUhCKX5CrldcbStg0SPFlolL5HkayaQQzfCEWS0FS+15DLDWEwLS0SgnisUcj5R0ySylS\nDY3bx36Vs92rvecPmKt4OBi1VEJe3u4WxEKL9sU0reOKSgSu+XjMaKqVK2tAeJG2yqh0HIXQga0N\nDm1PthU3C7XQih2Vcpq9MRAoBRsoqmhbFkI3Vq3PSNDLYeUTBbq/aY84cb87Gis6NA29YZd3TYil\nvmzSPqHs36qqZZ4Kbh4rZWwMlXwohucJ9dYd26Qf0y7dNZo+6LHsUshrKUWFO+ZIem9b8YYimtnx\n79bD/v8OU3UirgFeIP2J4pJ0KGxJIw2MuEfRqYo3IZE8OE0U01NkGYTxwaTDF6w8mnhYQZ7bnaGU\nTWFoA2K1ZNtgS9B8NvrRF2JS8DxDkkQ0+5pwqIr9KGUrBljZ2xGp4tqP4oPFu7mUkEavYTAUroAc\n9PDbaY4VgKg2LXb9625/vmMIGluBclLKAYSS5boKqBv3AFX7nLrs1J8lDd809LYulZjMhnh6MLPC\nO1R96ywkSARCyQQpbnNaTUjFdkMmFqi/9/Am6na8cN2AuklpGodHGEYJRv14m7cHMFTd5DQyxqn0\n8PhVzenIhap1woFTMQpCdnP3kC5LqPdSBJZc3emjOZE67oPejImCSH9gDxNAma3YS5uyEZNvl63Z\nS8OwzSyj0D2kj+IANY+48gOMUoJ24yavl0XJS/X8k0HvULYPPEu1dfcv75ckYlou1O0ZtxWoVpEc\n2YPAiZfvMaJ+G3xq6R92sGwbQLFz9+/qxQ2Z9hGHlmjkwvmB5/PmzE2SXwpd3ebVzUuu6/fdNm6W\nfPVn/ygAJ+qG/bhhgFYn1RQ5zYV7DrfpMZ6g7LORm3hn/YRIkO96XxJLmi/fr2mF9YirVySd7uTa\nnZsXW/ydnje/wIirbbcbkARb7Ifg3cmx3Y27cTc+x/hCRAo28GmmQ/x5jdkIrRgmzIduFev3c3xf\nariUmJ7co0PZkN/s2F0oZJ5F5GvN7Bcp8UQW5nmPeCzSkBB/0fgxXk8irkWOlaFM6W+pahUdNyVG\nYW6jglpWZrynMLrawEyFxJ4/ZSffgFW2Yyp/RxupG5DVVJItvlpu+fBdVyEOyo8Y3nfHsVM4WFcX\nfPm+k0fz+x6RzFJaPOrO+r0tyTWvFyomxZFPIpRbE4ZcCVZs+n0S465tYl6xl2nNrS/MwyqgN5R6\ndNvSihzWNtXBA2O7y1hJmHa7Egy4aWg63VObMxyoytvb8lyReBJu8VMdpxCbL7db1mUnQOvhi4Ga\nB1BLgHVPgGqx+NI+a6ZQCqcQZA026qKmFY1MefLWY/l9d5yp/9vuvyfwve+5QuvltmQs06H53GPS\numufHaXkEkDZSUD3+f45VsI/69Pn/Mq7zjX7Yeu6Vr/XqHWcL9dbHm4cWavZ+Xgj9/wWSkte3VwR\nS7THBBVVK1eiJMCsOt/MAaUKvklXaM89THfd9gH7ouvK7KHn7sOZndP4Vz/xWH94fCEmBc9AHHvk\npU8eFPrbgLHAKEM/orUyNA2HxMpxa7W5sqtXNAK8ZJeGTL6LZeszbFxLcn40pLJuMuClm0D6+TMS\n2YKbUfqJElIeHMJj3jTYK2HjjUsZnj67JBeY5tWTa77+jgs15+cpgURGgt01aeQq+75ouHUc0axd\nSrC42vDsXfeg7LyKweUzAKIjdzMfPjymVT69s2tySdHbKsNKWMXYkFImMqUe4ugIotq93JVJ2euk\nwrylkT7ivqwwkrtvFe7vljWFgElNtoe5++9xY1G5A98zHJ27Cv5AE91muSfqu4fbtjFZ6a7t84Xl\n4lZphWfpyW9y07VOW0uiY0tbQylV7TKz5OraDFpDNpAoS+Lux9prDpT0NjgibN3+msQjFt5/u7eU\navFmXqfkVfNS92FV7Misu4ZJGh7qMubmKVuBk25Eyd7dZAdI+HYD1YdS2/4Hv8NPHJ3uYlFzda0u\n0Zf7eFt3vZ695xaFxcJSaKGKeyHnj9wxnD56k9ennUmvoalFv9ZE3zYFRl0pGweUgkHjWwZn7rpV\ntxWp/fFOYT9q3KUPd+Nu3I1PjS9GpOAFDPsz4mTHVgrOpf8JH9uakFqMwv1VQyDzjkaQ6NXSUMh7\nYNCu4citcrPZEcHsnnaywIvdir6tXcGpWg0YlW7lDvZTmi4CqXx88dSDMmbfuu931vDNNuNbWgaC\nbEf7odv3V7090+NvAtDmPrVITk2qarENEM+Ge+MJ0S+4EHRdlUzUb29k7jFNA/oCUO0XGzIVPr3W\no5X+nolbuvAmEVYi8VIaFQzrfUYlNmPpQyXtvzJOqSXvhsJ5P31BsnfHMD7pYXYuKtq3OXbXXe+S\nWit+uXSRws3Vir3uQ2wMFyIEvbtcUeRuBY69mEKaBYUKnFQNkWDefhyyEj7gS22Nr4huV9QMQhfp\n1TL42S8KYnllbq1HLNJRVPfJ9IwQ9Gh7bjXd7N21WF8u6DRdclvx2sidn8kj6s72rvb4B0+c2cv3\nXroobt9UhxW/Bl4qari9/snGjJ5wCp6BWJ0vE5VMjp2agGqPbL1bfHUc4pMh09TB8GfDOUNFBVEa\nsnuliFP4nXFYIwwdza7F9Nx1Gex6xN19P2vxP/7JnZIfHl+IScF4HmE/hTxgdu5O2JjeQS7b1AWR\nQEgkK5SKUqptNBxDKMWj/Lb8xLxkfkwjhOAqyUnVkop7DrjiB4ZSgpnl9TPC7sYk4IkubLKMdORu\nYpu7cC83llzH0HrwgQBXj/o1rSq9bW1pFIJ6qiNUdYPRQ9VrWs5DF4qPb9bEP+P21xppCpoLNlIx\nqluc9iKwrytamZHGcUCobcfiTscmovRkShouKCXeUfjBoU4Qm4hWdYlWTkKVCRkZpW5NTNF1RpqS\nWqxEu9yDlUy+2qLDfkCsOhB9n0oS6U1TM1PrbTicHazRN7omifE4CjuVIlgp9A17DYXSley44d7Q\nHXMkNSbPr6gO9vQV7Uadn2xDGEp5aFsR4dKD3kJt36iiWXedrYjF2nV5dpuYrdCi03TIbeZ+t+98\nKflkcYJPRFpt80mY/aN0jTzDQaUqNT6+npGgGWGEMHxr6CbhiS056rkF6/j0mOmjDpyV4KmO0O52\nB1cvalkRBClGjN/W2xNKsclWO/KVO9Ji12C8/Y84wh8/7tKHu3E37sanxhciUrDGUHgx/bM5kaTU\ninqHjbvQ0Gcg6XSb56yktdepE/dmMxKpBK/7FWGtgqJJKTcu9N+uSlZiTA7P3O/iXkyi0DDEfgJu\nCnYEkVR5e2cE6giEOxfK/cDwiY+ghaVEMy4XrzAbSYSnlrZ2q3BRCn56UZBJR9AUMbZUF8UWFB+r\nT71z5jWX1ZoicOcxuzel1/ESTEugmDGNfXyBXqK+O7a4CSl1dCaLDwXYgIhQGrr7uqSvlbdV2hX2\nanIjjcNNTlNrFW9aQnVlfGKscAaR2HvjZQFH0sy0PW61cn1pPuBRZwxzMgGkQbly51QFGWddJOj1\n2UgUJQtbVhIcGVZ7GhnN1BPt1xsxEAfAULDveB7bHC/UXdnG5F1LpFPEHoSkioTefbrm470AUv2Q\n12IXOc7SIy6bJwDsKsHR+dHjJ/EODeDrx76F5dad983f/w6DdxxEOpVWf78ZsFOqNVxv2OxdtGiL\nq0PhPaSk11M0OBTAL2gJQn3OWoxSSLwcI6OhoAno1T+Kz/njx12kcDfuxt341PhCRAqttWybnJ5N\nDtJWTeiR7bU6jPpYryMX+Qd2ZCFLsGr/EhYOieYHFd7U9feT03PyW7cS2vXHZF0veCt/hygiUjTi\nj4YH4422Smg3zv6tObqCWvUFyY4F9Sd5pLEgUhvD5YCgK/hFljCR4Yry73yb8fTK1SVG9QOOjtwq\n4M+nRDPXvrx1nUnyj56xVGQzHs9ph+pdNx6RLN2iyDsUCq1k7Ir+guJW/gB4ByPVwmYHq2nrg1Ht\nI4xlwmI+cWgmSGhk6Hp7scXTdWt2CzzPRWzljXQHNpZSHhDmqGEjtN3D41O+IpZrOhpyLTtmT9ey\napbkVsYwu4qXKiR8rY14euPu7/3+hIEUjweRq+uEaXDAjfjJHE9YlXJsufi2wyHsqwwjqT4z1vG+\n9HmuGs0Pnq+wQkqeBh6vP/iKu2emTy9QO1cRq7U/xrob6Mp3P4wX7FbZGBioKNYLQzayyPu+hYHM\niSsVaKfWwlau6r6hvXDPyBpDoeJpkO459VwBci7/hzAYECi4Nb7BX8i53G/xjtzvbl9mLNY/Lt75\n0eMLMSnQtJh1SRWvaEWnbdoU0+m/5iFhKwpwlDI4URFl6V62i2/fsti7h3TiV8xeE2txX5OpkEoq\ntwAAIABJREFUUJWaiumZe/FCq3C+TQk6K/oqxNzKodgzhMaFe/WFh3ft5LPanutk1BFEXUTmQS48\nhZeeMOxcpaNz/OATaXcAv+0xf991F7LmFqsXOvES9i8dyKbMZRzTXvL6O07Ca9gP6EpctS3Auv2Z\nfIdReOwrVVnf1tRrFdeSGbcyoinwQVyS4fCUnq5LIlr3rsixufwjhzU9KTH3hn2MXt7h6QRP0Nxm\n7a7VfleQb10H5/Ki4NHR6wAMzk4ZvtZpTJa899KlB+8KC3HRlsiECWs2B9/MD5MtJxOlPLZhIQOf\nsW5ZkIbUpVKtHCJBe3txSu8rLiy/XWdEAppFoYp2oSX+yM24ntew7QiFgwkvjLsnL8MN39UboawL\nv4Tmxyikd45b5oe9JDVTNMYcMCJZU5MII/GtMuPN3E1w9yQAcz4fM/Pd5zDt0XZK2+WO2LjJ4uz0\njEDF5FQ7MTaj1eTFNqNGiwwtuxduqloVNyx3n03i/S59uBt34258anwhIgXjeQRRD6/pI40Vgqwg\nllFJ4FmI3crkU+GruGIUxE9OfYa37lTS4bkTxgCqScWRZvGo92WiLkIYuVm0rlp8WbDZfYuZq2++\n2YGk3sJiQzVyv7O+WxFPgoRYDMBR3/LHv+HSlakZsRcQoQ5z4lL2XmIqjiJL8ofcymfXLXWh4iAl\nmXwuR2ID/szsn2Igdel87lOpD9sGKYFyLK8/wBcaTybQBOs1+04cNdkipTgWeUZFJ7a6JUrdim8F\nMfRig1GhsVylBIJox6OYSpJo+5uGZCOPB19o0us960J2bHVFILm58XmfJhfK9MUF3/u2+v4bCYHs\nK5YqgHlRwESCsJEZs/PFDPQTOreAbdUpaVc0aj0G2SepTVL08U91ja733Cy0bcG4N35Ns3XHPJg/\n4Ext6+Le2aHt98FLw/VH7vuBvElbv6RLEGxrDx4PaRKQKNLriF8msMxlenm9aQ4ivLapqHTPxssZ\nG2EuUj0XiR+zldzeFI9ccnqDEKLe6wBMTIg/kA2fmLRlAV73jNnywKQtNq9YXbjz+MFizb732dZ+\nY+1nyzf+cYy3337b/vJf+mXO/WMaq369/QFPf+c3ABiXF2Sy7c4+bghlS+9dqjYw84hb97Jl6YC+\nsr21ueHimVyPdnuMKvSn9xzW/bWTtxjO3INb5+GBo7CrLZ7YmtPdOUEg8xXh7G+/8g0eaGKqwxAr\n+OntR8+IN6p6TxuUgeC3wp5fZdTKUduypLUu74sI2NYdRFcvxNA7cBXyoMdKtG6v59Ok7oGd3zvG\nS1ylenTsJtCj/RlGD11brvhT/9Gfd8duxqRn7oVdvf+ExnP783Mx9r58n74q7j9z//xwfv7UHBiH\nTV2AcvVXW5eiLK43XEpfsdwFLKQEtV3fEEhafH7+kKM3XchsY4GRophB69K50f3XaJ9/H4Bf/q//\nvQMGBICuzKFwfhKEpOJ2+I2hlcS57/kkYhQGUURfDrM9AcCqpibTxGrLklwswso0RIm7zl95dMxb\npy4F2SjN2W0NVtd+fbPnmT6vsoy/8tf/JgB9zcg31xv2Ny5de/ns27SaQP1egxV7Nsu2LMUfeSbR\nm9uL9/hYqfBHy4KeWmLj05Qzwc3fHH8dq+e6FPYma2t6or73R2MQ0Gu5u6G6cpPFy6sVz189AeBb\nH37nN6y13+QnjLv04W7cjbvxqfHFSB+aFdHqfyOb/vNU7znd/XWv5Affd5DTn+tlmJVbHevt7iAy\n4Q3dShPs1hiFYvHGEI2FfluXNK1bBfybBZV6xU+upbHwhuE145BkaZrSyP6saiy+0G/NmU+9FPtO\nMNLyZs7LiSs6ji4KMhEDb7I1r/dcwa9dtVj5VqDowKZ7PHkY+pWH6YhGaYW/dsdmZQDTrmpKYQGW\n5Z6scue/GjQc6by9NsQbSEnZSj5t5lNduVVna28ZykRlU2R4L77jtj2xNBJi6RyQT3yPSFoCo3nE\nyH2kXxbkIo0FpcdO0Y31hTScRoy0cu9nEWMpTT+jT6Hcxe7XtNduxc4nsqSvRvgSwPEv3ueiM5H5\nXdR/r8ORKD0a9HzGKrhtGo+Zqu9RGNKq2h8mKVN1kkJ9N9/uD4Q3L/CQ/ATLLGcnNepqZqlPJYyi\nbsneNIx7woIw5NVHLhJcFRXtpStA3wTuGm4uPmAvIl223zEO3Dk165Yqd+cdeBV9dbFyFQM/fNay\nW6k4vrX4wtz01jBJ3b3uDyy1SHhGRDmTFzRlp+1Zkgfu+Y19S6gbmFy8x6r6bA5sX4hJwd9FDP/e\nQ15N/wderHVIVwMiXxNEMWX70lFW2+MJJ76rKCsNJRjMqe+7lztZR+SlC8/yRUCkC/z2O3+I2/V3\nAfidj9yk8L1nT0nV1Tg+ialsZ0w7YyQb8ct3v0+wc+1Joxs0CL/J850LHT+6ioiMaxX1ejs8hczZ\n5imtcr9EFvdB3WC7roUxhArhm2JPs3IvW3fjQxPSvrrSVw3bgdvW1A4ZGnf81m4w5m33d2lNfvTk\nf8K+735XtW+Bdcdmkt9mea03qz8mUZA4e81NNtM0YnriJpbTyDIRUWBUedSSbff8grHqMuPGffc4\nDRnI4OamvubZM3UO0luu1DqO/SW7S3d8tarsCWOuXv1fAFx7YPtukv3dyWwn6HqqEP/rx3NK8Sti\naxnoGsZJgpfrrU8THo7cwrDRpFjlPgOBf07CiKu1e5luMsNGdYvNOiOSWG4j4dc4zjjGpbRPNteU\ncmEiNLRu/mOTu87R5ZMbYs+9jKlXEgu0tthdHHrY41GKWOT84Ucu9Tspb/h7L129aryJaQbyKX38\nOm/OXdo1OhlRLTvOh+T8w5St1LuK2wKh95mUc959+W13TO0WP/hsEu+fK30wxkyMMX/NGPM9Y8x3\njTF/zBgzM8b8dWPMu/p3+nn2cTfuxt34/R2fN1L4i8D/bq39M8aYCIdl/c+A/9Na+xeMMX8e+PM4\ng5gfO6zfUg53tNuIcuHCaG99yURajOFJH19x5CwImT9y4VePTgH5jFZCJ/UoIs06YpOHDV1I1cYT\njpZOaTmKnG7fy/wj9rmDQX+87jEVxiAuXtLu3coVpBmFVHLb3M3mJsixC7HwUpjLWjy1JfvArYRe\nHJALumvElbdNQxjL2myzoC3FzqM5NL3jLixvfEpZiQ38AUYrXlguwHMFpe16j3f7fwAwvv9z7nj5\nkK2ATHX621gxEevVEEJp+FExO3GR1clr7pxPx/d5OHG/O0sTRoWLjibzI1r5mFVLc0gbJj3hSRqD\nL0biOBsxUsdosqq5Fdnqg3zDcuO2kX/s/k3ORxgZ35TVhL5crlMDHVyoF8Obr7s15b4nLEgAmYAD\npqwpW3ccVWVI5NfY9y1X0o6oqs4GoGbcqWr3U47EEUrD1lm6A+9eX+Il3wLgvC8l7WDHpQBp6+X2\ngF/oV7Bv3X3NBDyKwoTe0D2z6VVFLTBL0+Z0UpoW7yC3Nj97DYDWtviBi7byxOdoKou9h2+i2jZh\nENMqND5SOtDmAU9kbVDsVpQyHyqjFmoxV4kY936f0gdjzBj4E8C/A2Ad9Ks0xvxrwJ/U1/4yziTm\n95wUWlOQx084KgNqIQk/3K6IjyXyaTP6k05cM2R85l7YWHh6L4loqq79NyDYKiSebWhjd7GrsmEv\nCfAu1+8xPYSR2fIp6da9bG0/gsbli32b0ESdcKl74LNkcZh42D/FTt3vgrLEFzW4rjZYtdFKMTz9\nrMLoQcrrAitREH/b4KvF1+twcr2GvirWpHu81v39Vb0keuUe4nGcsjMufHzxsUtn0osVMS70b703\nqdVOS/pDJpKoN8eGudCgb0funF6feUzVeu3VBWN9txc2ZErG66ShVw51fN2xQaNK/tjvMZVg6tHg\nlHdxEubb5z6Z2IyFWKLXtx8QKNQ2PUuusLwfe0xVBzhPEr6kdMWKZbhMA5rATZaxMeSKdef9lJOp\nfDZa2Mj/s1VHJQqgP3QTyOM3H0HPPWc2DvgbH7l7stjv+fBjN8HbYzlWpQmlQF8thhOJmviGg4bm\ngT+TbGAvfUlb0SylTrXNqIQQbRji67UL5CPSH084cTg1Jv0Zvdhd4ygCG3QiKvWh4NL0pKwVVQy0\nYK3LmlxAp1VdYHTdzkcD/M+m2/q50ofHwBXwPxpjftMY88vGOXOcWmtf6jsXwOmP+vEPW9EvZZpx\nN+7G3fiDH58nfQiAnwf+nLX2V40xfxGXKhyGtdYaY34kEOKHrejfeXBm43VK3C6II/f14+MUq36s\n90bFqFKRj2MiraadirKJewRSTMbvE3xZmPryBLvTzL6/JJTtvBdKju2Fz0i97YvdmrKQ6sXmhOFj\nrWJHNc1SqYlWiXThMdA2jtIelcA2MQk2dX8v1wGVgCWzVFLmQUNRSSykqEjVY6/6YFAZ/VbMUNMS\ndFXmCPYS9RhY/6CREI52DBadeYxEX14v2bsFGjNdMx24OTm0KemJuBtHEQ9kfHPm6lgc9aeksVtd\n+5FH3Hfba7cVRlFK0g8PHpuezqOpPTwBtoJTC6qij3N4rZN8G42ocqdfUGWSnE+mbANpRFS3mMhF\nW2/FIQsVEjdFxUsVD4OOk7C3B8fveBhzrJRgNJhyJrZmFARspBR9IVBbz7bcn7mTPR+MGb0pLYv0\nJd+7cIXZ7xUV1yoK97YuEprXloUUrM9sw0ahSRBU1AIcpdJe8JOUZadnua/JKncMTd7gy7p6FAYu\nB+KHuTSGk7Fgzn6Ir5TPNhWVuiAtIUagvExpZ+n16MuiYLQ3eLcuQvaPfXrqeFV1Rhv+rpbOTxif\nJ1J4Bjyz1v6q/v9fw00Sr4xxfT79e/k59nE37sbd+H0e/9CRgrX2whjz1BjzFWvt94FfAr6j//3b\nwF/gp7Sib23Jvn3CfnvFx69c5nF0b0ajFbi5PiVSEpL0BwdmH5UcgPFBas9eVDsPB8AULUYmJMGw\nhdqtUqGKU76/ZyxbstaL+X9+zWEIvEnApHIrU7ZO2O2Vf3puhp4EV+xVlyh3H3N6/I7bRpNRLpV/\n764P+2OnyKZpyK/czF40LbV62j0T4CkvD4UbiKocT1LG5XZLo+igLUr6U0mbZdCbSYA0c8e+KfpU\n62f6bkiv/7MAxKNbculQHPM6D0/luygn7l6eYxqtwKEh1ApdberO8JnADwjE9rOZisBNhC9or2kK\ntIgReC1TGafsmil/92ORkXyZ3lR7dlK9yveWeOHWjmJXct05aFPRLN01GiqvD1OfsnbH0JscMZu7\nmtH9o1Puq43cpi3Xik9LGbIkdcO9YxeNjOYT+ircTvdjrMyDWttSq3d4vV3pnCBZu+P8FWN5qNbi\nOoQQicZqBd8tXmEEXd+ubil3XSQBM5ngxEkfanl4lJ3V4RRfGIskHeCrkFrXW5pEmhzWsJeLt6d6\nUMSekVrgq3BA1XdpeFAFLKX4sM1WqMb7U4/P2334c8BfUefhA+DfxUUf/4sx5s8CHwH/+k/aiGkt\nZlfTbjxS0Xerl3sa6e/tV89gqpArLsk6MwzxBbxiiJG0eJt7eI08E8MJbe4KcfVmR6WKdKdxmEQ7\noqYLjR8wTl2I+/2XLzg9dVXvcdvQR9bo+l1RQtwV18aPAHccZVXRaAIxtSWWLNpaeohlcUsrnUdT\nlORZdxP9g3BI4HXyWjVhIYqsrZkJpZNceLSCMa+3W26X6oh0XpP5DdPQTWiLaocZatJrU1J1CWxb\nYGRbHgg05CcRkUrdbQm1cefh9WIS0a/bskYEPoKZuBPVjlruVKaxJGrC17d7AmH/Uz8jURX9pUxe\np0nBy70KccEYq7B96Fv2XfshhFgp1k5syAiPoO5wHzn+tPOmrIg1oQaVpVWFv05VwOyPGerF294u\nWUqPs1dmfHPuXqyLVcKi7ir10qLMWz5W5yurobMYjRroeMv9jiqQznh+7Z691WKBFShqdNxjqFSh\nKCBSN0A+NfhJH0906sCv8CQe1PgBiD/imYZALlqZJiPTtnid96ptaDTJeuRQ6Phrn6r4vY1rfvf4\nXJOCtfa3gB+Fpf6lz7Pdu3E37sYf3PhCIBpb25LVBZFtuT92K/5ilbGVdfq9yYz+SGq49Yqm6aTL\nJDR6BKi1aPweoYRAmnhBI2fjqqpp1Kay0h4I6hHxQxGbzISvnLvV8cmr7/DeU7eK/cJgQnis/rcY\nlaP5Gb1tV+DbYBO32u4We1abTiSgJJOSsKdwcXW7I4i0OlY1naLMmgQjhptnXWQTeDGF6azNWjzB\nrgcPJmwlN9fLQ7bX7vs7FeeSpk94ppQpC8nkcTG1Pif33DJ/dBYzE7OxL7OR3ijE7LR0NQ1Wmg1B\n3GJUtAq9lEhWfr7IY3VdgsRwaGs6kwiTF/gHy7OU105d/nfzyh37RdviWVfs86bH+GMX2n+7gaLT\nKWggU6QQilGZbyFIm8M1molANp/EjBVtNbsIe6Timn4XhAG57nu2Aa9x1dheeszPnv0MAN+9KfiN\nhSs6Zlr997ZBeqjUFqouLbHgha4Y3XbK2FXIbiWDIuNzTwIxp/MpsZirrTc4wO3DrrXYgK110mWE\nsltaU1LKlMh67QHLEqjQbgkOwh79NuCiM/jxWvp6Bx5Ox5TS3HDNwJ88vhCTgvE94lGKH3nYZwpV\n2w2BVGtHJ2ck0vsLBwOMMPM2ETahTWiVZ3pRCkNJq1cNjUxhbbbHDhWaq3Jug4BGHYKgnzO7J/zD\ne0+pIuVyaXjoPgRS+ugnOan4AKP6jCJwdYJ1siJSp2HxwlL/0EsNrieOsA5VtsHr66WhpVEeWQp4\nRGwRQpu6BoNC9MIQWLfd2dGQlRicC2ETTLhlU6imkiQcBRJTCT9JUeYnCYme9LjfaS7ODy9QaBpC\nAafMuqCqFMLGOV7HK8k1sSYJtR5GmzQ0pTom/YhWE7L1Y07G7v4dK4+uA0tVu+PcMaZM3QRhGmg6\nf0gDA6USI9EkV9bSdLNG3RBJd3LZLCg/VmoWR0wEp5jdl6mNDbhWOrO224P2YxnXnH/d4YP/xO1j\nfrB1C0Ou+1G1HPwqP9VGsxDqvu50PMW2wvOU2pYVR3L9GvkJu1THlmQYXaNI9S4vHGAiXaukxUhp\nG79H0pPJcOJTavLty4+0KmoaQa0nkz6x9DN7c48pchzL4NbeiazcjbtxNz7H+EJECjQWu6zx7Yan\nklVbZYahFC288KRTIKNKEuxORhxW4Zt13QOAAA+vEsWv2NMUXTTR4El2CxUMq6QkUigeeDF+68Kr\nMvHpKzQ0gU++dyFls1VfOS8IpBlZ+jsqhX4ZS1LfrXi95JK1lI2t0oSqrqgLlz5cFzBUqlFiGARu\npVgLDzuhD3KiZgKZIqF+UdLXXSuNJZk7qOxk5WzMNiakUWGpDQNCiaUcD0vCzDH8xtsJvViKzzN3\nvPnNjkJFzpnngyz5vCan7dScjYdVJR7pC9qmIRRmo26ig9bgslpj1N/3/B6tFQP1VN6W+YBWjthN\n6WFSpSgpHAks6QcGf6JrLlOUeFti1C0YDHtc1g5bsnsSsqrcfSp8+PlzF02+9ppzGG8zSyLPinTS\nY911HOoxa4Xl1Zdqgg9V0BbD8yz2eS4UZtt+Ei20BhLjjmkpD4nnr94/sFyPjMEIE13ahq1EIk68\nAiN/kVQLeIMh1APetj6+ioRRZAmFWcBPDmKQW1nl5SYnDTt044jTB4LKmwib6D4VhrnsDn/a8YWY\nFIy1+E1GUCeU0pkb9TyOjlyeGZk9tcwzw92MXeEebrOTeMk4xlfI1ZBilOMFk4RW8utNGFALB48M\nTP0bDnp47TUkApCcZHsWKg2H5h6JhCwWMjrx/QlxI2n0ySn1lZtY+vGEQDyH8XDObuNYnjcv5Bm4\nvKZVq+/yekOk2oiXLzlTtfxq4yaseX9AcurOuXlVkm87P8uaL7/pWKK+N6FunSR8XajNWt0Qy2Rl\nvc2JUsF1GZDKpaner2iVm+TX8qgMEraqgdhyQahuQDqBvDPdSWPw3KRtAoFjtiW1YMlVvWEfqUPz\nYkegfNfjk5C3/MC1nOthRB13ik0P6ImJGA3HSBKSwQjOxq4WsbpxC8EH65Z7osl/43zGUm3rTbM4\nuCKlQUwj5ay9pNMjryVRCB+FfbzKXaOr8paLJ+6Ze/HxBl+w6ECpn/FjJqHSw7LpNF/wPGg7F6Yb\ndZkWV8RKTSeTPmms+lKagtLC29Jj0EXzg+4tX+DJISyoSwI9C17bULeiXxcBtYBx/l5T077A5Ko5\nDEpn1oMz+m0kB9WmpxyN7iTe78bduBufY3whIoXWQl56BLnhcexWhrZYMJbpxfHrPaKHznfRthPM\ntazKJWu1iwyeYLTG+xKB5NrYG7xK3pRFwfZSABkVpNZVyT0VuMJhTH/goNT3Zse8e+O2t764YCho\nb6twsTcekSI2pLEkJ+oM7M9o1sIkrDOWv+V0Cb934fZ7dbUjjsf6/IJIhKl9tedCleitClzDxY7T\njYqkbUMlUE2QGB5N5cb91cdkr9w1uFFKFFd9rARGjBcSSmfhNBpyKq2+ZAr5R66gtkXaC/S4EjR4\nvRwS9NThKDJiaQbaoM9QAJnwVOdfRdRq3q9ubvl4447n4mJJT+vq4DiiFEhqPnTn//Fmid0qJXod\nhjMXFVaTkPOxK5JN0yFG+76o3PUZ9CK+Lmm3t966R33tIpAPJ9/lnueOafr4Ecmkk4/Xs7K7ZC+7\ntqI0BEYYkFXMWozC/uwRD0+VxilSnEcBH9y6Fb/e5Ae7ewskQ7fvUPgPrx3hCStgfJ9C+Jbdbc5T\nWQ2sFze0iobnD1x0dJJOmQuTc9wLCZQ15gYqRQLkCxBOoRaQqx8fsRdpbkTLbOo+L8uKQSPY9Ahu\n9wLR/ZTjCzEpGNsS1TtCE5MLSTY8Conkn5g9u2D/gbtxV3lKqC7CjfL3ZHVDNFGqsX1C/8jl2SbL\naQXq8ZY7roXC+wcffQDAt1+0/Is/616E14bHTBVSzk6n9F66SaFuPOrSXeBCnnxeWyMoO6ZJCH13\nc9O0h3ns/kP9m9d4YnEatU7zKuLVhUspnmc5HXmt9EMa3ehK7UuTNpS3ChebljhyD83rSUiUuNpI\nuAlYqruyFYCoOWoo1DY0acqDufv7NGwZqyaSD5uDT2eiVmYYxgwFHDv7akqG2+7ggxd48oSslwv2\n0iNMl+4426hHduMmvXdfXPPutUvtXq5yXlea1jQl7dLt5+Gpo2y/ahdc2i40XhPIcv3RZMpE4rVl\nltNqf7UUhjYZfCTBls3f/YgXS5eaFWXNH37LTep/5M3XmIbuGhXiSFfWYySDYdOWXCv0f1lf8B0J\nnNybTviXfv6fcfur3aT5O/sdS6li7SkOnYjKWpqtjIozV9codiuMJoibErKd6NtlRS29zcFDQ9a6\niTESJ2EfQq9zqRyl+F7XcvSpRCnfWMP7z10b9f1Ld04zryAeOtHgR2c+/Z7bbkVGT0A0j4gw/Gw6\nrHfpw924G3fjU+MLESlQWtqnFVlwBQJrJMF9AvHDX/xqyd9ZOL3GVXtEI92pN1534dQ7j17nVoUx\nQ8lk58KltoCycivJPg9Yrd1K+X8/czP080VN8y03m//TT36NX/iaOAyDBF8OSq9ul2w3bqXYSBLM\nFFtaQZC9GDxV+JNhQ5Q6Yrwdfcx149KHF9JY+N7llpdLt63romKQuHN9e9wnHrht3IpG/uFlQSH+\n/Nt49E5cNHL1dMtrj5+6z7ewCFXB18q2L8ZU6nDYKGRWuKJkFK1Ztm5FnC6OaX2XNtSpW0Vefvt3\nuBZv4+l3Qh5I7j6MWkKJ2dSmIdy548xUUGN8y0rnt9tZXkjybed7eNZ1APJ9yehI9+RIP9vA5V5a\nAFdbRjcuwujn4IuhOYlibiSGcquaXBgHjCW9Vw7uk0ld+ip7wW8t3Kp677bmtXvqWggz3ewGmIlL\nS/bLj3klDsqvfvcD3n/lPq+8kON7bkf3Y3fd7i0+5KOBznVrSJQ+VABWxd1OFtA3RGJADoKAnQqt\nF1e3LJT+NFdD4r7g33PJ6PcSanEVAi/EU9rVNAF76zZ+k7V867lLzW7V4XhpSoYLp/txPD4nEOx6\nlBg2SpU87wbrd+Cln27cRQp3427cjU+NL0Sk0NKQmS3LZyXxwM2YJ8WadOJm68nPn/Gn1+5z8eAN\nSlllDazLe4ffuI8VSabd7gnEIvP6DZGYaoaM0yO3jX/lj/2C23HdZzJxM3/vcs/4DReBPLgsiRqX\nn12+uGQs6TEzEay6N6WjA/qjnsO8AiYcEq3Vgz7/KmfV3wPgXeXDcd5QCu5qjGE8lCJTOqdWG/Fe\n5PLTWyxFKYXjNOBt9byT4ynfe+n2/a3b7/PoxOXiw0fu33ybHxy6y2xNMnVFud7eY69VbLffE+sa\nGflAzoZDzo4F+c4DIhVr0zSmL09LP/wyYcfNl9dFYxpGI3kcLq756iN3LTaZ4f5DFym8v7jg5kNp\nNagHf9Z/zPsbF/1hQuqFu3/TBOLGXYtV6rFQ+7lQi+1sesIffeNrAFwXGZOZwyEsXs5582HnkXAf\nP3S5fS3lojjlgE9Z5RG7tViSZzNeE/Pz/LUhD6S58faXv+H29yzkxTMn+Ht74WFlJZ230PiCiPvu\nPt6/f8ZqudR+DanW3OP+hFTI07YJ8YS5mKq4Ou2nB3SkbVpM6u6l3a4OBLreYMIf/6ZjvObSGbGm\n4ebKRXzxxGD0OmfrllDozSYJ8crP1pL8QkwKlYVXeY2X1sxUFd7d3DKYuIctOZty/6vOBLRNI6we\nbitIqhcXGOGVmsgSyIXF4uFLnn04O6Z/K5qtzFz9uT10A6I/3ODJiCb0e0yHfweA1YtrVjKa6QvL\n7/cGeKWg0tZgQ/XCNz08HVuYRozUBYgjuU0NX/FQleVe75jXzjoTkvuMpbi7Wrt9JYMXvPuhSxMm\n+Jyo6j+NPHJ93oYhb/yS46OtnrnJxN831KpYty0koZsg4oEljAT6SkqivZsABxIN6b9eN5cWAAAg\nAElEQVST0vQVcq4DPHlNhtuKqKcJt4gxEhEpBQqrLmuQievo1Gd+o9A/uaWvguibr9/wXBX88IE7\ntuXFS3xVyJsg4pUUs9+oKwJpNyZZxErcjNUB1FVip+44j6pT+qG71++cnzCWaMvJAx+hhik7ngFL\njNKg3nHIz4WuGP0L7/wiTz03Od2bvsOxGJG+wE3NeEdfnaE2aNmrO9Q2HFIX1FGJij2m7O6N4Vy0\n5uPH59jUfa7wDjTpvsBbXmxpOgNea/BUdDaJR+JPdS1GnCqt2ndM2qrmKw/dNW7WBXsxgiu7o+2+\nU7QE/mdLCO7Sh7txN+7Gp8YXIlLwjCWNK4K8hy+Pxno6pCpdKObd3+FNVOSrowMhxjx26UC7X8NO\nUM6mB1PxxzcneAM3u6bNnvDn3SrsiQxjeiWsJPmWbqnkA98shpx6btvf2b/Ea2WbNtWsnG3B7xyx\nDa00BIxfY2QTvvjNS97rzD6eut8XhLyl1fPkvMfPfuXrADx8a0K5dcdxJOHPi/NTPpZmwW/9zrv8\n1pVbleLrjP1H7vM3fvExk91Xdfzuuq3mv0F+pfCSgFbioLWXYlUkDAMfKwEX756uZRiQClVo5zsi\nCeWGgwCr5mmzW4FWq813BeEOeiQSdn30jbeYP3erZsmSLHMrbH45Y9SXzsLGRWnT6CHJm++7a/gE\nSFzkUhQtodCpS7snVsE3Fpw3icdsV+48Bkc1o9ilDPORx0RRZlA3FKWixU50dxuTCs48Mi33ftYp\neqeDU1637l6bLXh9l648+a6L0rbXPdpr97vdHmzb6VNYdtpHo2eWKKXtu+Mp84y+BGCG6QyvM6GM\nA8Kos7oLdM41WVcL7IX/L3tvEmvLlqd3/Vb0Ebs9+7S3v69/L/tMlysLlw2Wy5QwQhRCxsIjQJY8\nASHBBM88QcIDJISEBBMaeeKywTYqBBaWjGVn2eVqsjKzss/X3f6edp/d7+gXg/XFfvlKZedLJ9iv\npLOk1D253zmxI1ZErPVvvgYroEKS+oSdBOD9IXYjTIL8M+vrGpO6P5yt19iti9iyyELuIpbaGuzv\nd9j5CePTsSi0HtmmTzCZUzZi5NkRwS2pL1/WGBnD2OgOfqbYsOMyLBtq5VAmusbEd/V3OSaUeMUA\nPE2Olwsevd3iHepFKEOaU5erv/jmd7iaus7BeZmz1AS/s3A+g6bY0ISdeUtE6AlwFaQ7t1G/aqlj\nd/PvPpDJSmw50IPy5tuv8VrqztOkGY06HNt9qSMN+xyduE7Gvr/i7wg3sZnmxGNdtwf2ljt/79x5\nMZpqSFO7812WlqwRGMdbUAiCfZTdJujrBeIjYRIEA46jGL+TAG431HN1M4or2sq9vEkqsJEfkBwI\nCDSoCefugb58snYUQyDKUlYybSlvuUXDbgy95CEA2XZLE3cQ65xLgYmqKmCmGoTXUai9DZVShiB+\nSBa7VOPwsM+wEFSYktK6dKQRXHk4yihVRxnFHnHcwcKneKV7znqTlMUzAco+cIvC9977Bo82chTz\nWmp1H1rPUM66+olbSJarBY14z8PMB2FI2nqFVZqa0oBe6rZT6w57RIGg+VGGqTrlqYQ46Z4nMF0d\nS1yabGjIBYDzmxQTuO5S3y+o9R2Lco71JYH1CcdN+nAzbsbN+Nj4VEQK1ljysGGySYjFost6BY18\nHpvrAk/6e96hhaVSBRW9TD/d7SS29GEmvcaTBP/cRRh1mcBOeV4mMmkDQjGa/pi2cFXm/+fv/13+\n3gdud3hZtERD7X5nTmqrCROM+t/xXkqnV23bnHotJ+lwzM/ddxHEkdBqWzPg4R910cadB29hxURc\nVAFB5nYmT7tHnV+QblxEcO/WHr8snb0q9FnsuXD3OBqzOXfXlOdSO754iSf7u3oNa3kkhNuAMHE7\n4mo7xyjlqUoh3wYHzpQGsHUAG7cbt6akqjtxmgqj8/N7LpJoyymbC5nWzI7wpcPQ2/fwz3TOXs3+\n3J3fe30XxWyGd7nUufujE9Ku4GtbThcuwpj5OaUEIjuUX2FD1urgvHUQsB+7+Ry2Fb2JtOKamupM\n5CcJjETjEYXuzaqtKBX6R/GQzErWb2vxVKALJ+6e50WBFamuqnbubxgLpbwckOCO51W0rYv0agtl\n5Y47zEb4uiemCQn0wNhMxcy2wVMKFtqAuC+y2mLBRilD0FhSXXcg0Ru/aQn0d35YEsv+zs62rBcu\ngrq8WtDIVOmTjk/FolBaeFk1bFKP16KJPmuIJJFd2zGelILayynW6EXWhTMaU3d1hni8oypTGNrO\n0qf1MVIF2hkUNiOsjFlZWy5/4GCkf/ODSz5YC+/vwVC012Qto5C0T9CJi/oBjV56b2mxldh1Scbh\noWsHXs3k99dMiRt5A9YJrR74ZvESK3akX7qHMQze5jJ3i5RnUsJbOmWzx3DPhfAnf2TgFHkAb+YW\nv6TOkQcs42FKqQp3SE6/m4q4oZSa/TaVk1DjE0pS3mszKl9zW4P0VKg3GbZxoXItNuH04mxHrT48\naIl7ekg3Hu1IC0e1JHlF7lsHLsR/t/GxPdcBiEbHO7/DC9+Qiz0Z1B67bFj05bwtaAuxXSuD19dL\nE4UYo9pNU+9AP3bdsR7XtFogoyrGl7OS8SOMRGm2tmL10l3flWTffzi94lHV2dZ/BBdOPcNANaZM\n9Y7ouqW4VlppW+xS0v5egSegWmt8SrF1jURmFtMVyVht9NBiRnL4MiCdGmxV44WCwNNxGXwa6XyW\n25KNAHytH7BSZ6QoWrzop3ODuUkfbsbNuBkfG5+KSKGpaq5Pr1n5PumFWzH3PjOgWrmdPTuCduZi\n0WAwwUgqzYr111zMmL50u7x/Pqf3WceoDMyGZqC+f28P/0TbbeUKMpYxtK4gVTcxv/1Np03ww9l0\n51c4MB6lLOKuu9B+XdDJE/ttRKvq87ZoiYciJj3fUEtrDxGigjwi/tAVDNdmb0d2mZ/OWMvC/YX6\n+fvkXDx1u1UeNjxXVDEOzjgUJsNvAq6lyZCjivUtg5l2Yin7nKto1fg+ZaPCrV1Rq6e/7SnMzi0G\nsf7aNUEmLcbthnmXYqyvCPaHOme3I757PScsO/n1/q6waSuoSzfP4fCYyW0398Oxw5vsNYbrY3f/\n8nWfRClaU3g0ksS3vk+qKCyQdBnbnFJS9WXagnZ/m9qdSUq+KFmJlegpcqlWc2oV5YI0YZW7yKUN\nG9aVy822jy+5VnT6vefu+n7waMVy2elRQtjZ3QNBF7Bo529zu9NMLJuaxnPzXeQbahV003CNJ72E\nauGiktOzBc2Z7Atv3Wa0lHp4mxCJdVnEGTmdlJ07brRu2Kg7Q9PSdKItbYtU6hinHkGmtOoTjk/F\nomDqlvhixbOw4ipwL+kv3n9IqtJBeX2El7oHvSk3eLG7YYFxQPr6ckoau7QjfpASDlyI7m8LrCYk\nnAzwZJneWuXO1YudIODmO8/4td/4xwBM66ZzdOTMNgwVxBYKW6tqRRsoFfG9nQJUFcX4pdqX8yVn\n567FWQ7lyxgveSEwzQ9+/WvkyjPXjWEhzsAHhXsozXLKYehuz8pvmevlT61P8cS9bPGJRyS6bO9E\nepYNO8ouScFi5RabqqyZy17+INgjrNxDWKgVWtpyF1KHmSGM1dZsLYnAWQUh65ks/iSN3+8fE0tH\n0IQ+tdKndbnEkyKVjX2WE7VaJRTStvfp7Qtt+NQjVMo3OUg4lFHsorFM886JSvWXtmAl5a1wHRHg\nnpfKTGg6mry1xHtKw/Qylqv5zsOxKVoa3b/zac503Un3Lzmfu/vzwyfOaHa63VLJAcsaJwgEuM6P\nxGVa1RZmiwtKieH4Bkp1n7bNilyowkkaMxZrcauUODvs4+k+FNscq25INgmJBIBqfUO11MIh5aWy\nblkZbUjzJUF3bgaStbo2/XjHJfmk42e1ov/PjDHfNcZ8xxjz14wxiTHmFWPMbxpj3jPG/HV5QtyM\nm3Ez/pCMn8V1+g7wnwKfsdZujTF/A/j3gX8T+G+stb9qjPkfgL8A/Pf/rGNZz1JmFS+WNeW+W2m/\nnKxpPbHh2oJAgKOwnmF8hcFrt2Imt/pktrOAP9nZ1puHe7Rrt/vZ6oomVwlf3ogUK2rp9m3eLznz\nOqYlHbsdC3QGO7nCsyIIiTV1UX/SiSA7RytxAvzjhNG77j+spjJsSRqW8jZ8cnrKtHU/74cNvcDt\naHuyXDdJw4ORMATemt8T32EVxrzcut0s+UHDK2+4HXRfuIFmVpL1FLnYikK7R2hDeonC9aqm6azt\ntVvVcbBzvjZtj1Zy755fY6aKDqylPHXfXajo1V9BpIinSlfkhXbdpiRRtpZncPnEnf/1gdvl45OY\nXqfFeLzHnuT3kyDBSo07tDmVoqWRoo4y8Kl0d6zZslVU1G6mxHKuDk2Or73IFyemdzCiszW1rcVT\ncTAoG14uXAH5aj3n+mUHepIHpQfyaaFu+EiHwoMq0dwtpTvZP2R65ViLzXbFSPyROEswlXRBfUul\naKK7H70wpn/kwFSx1+J3UnnbBquOQ9WskQwp3lbRQb1msZLBUVjvJPTa5Zb1ykWsk96QwvvpXvOf\ntdAYAKkxJgAy4CXwp3C+kuCs6P+dn/E7bsbNuBn/AsfP4iX53BjzXwNPgC3wd4GvAzNr1TB1JrR3\n/qC/N8b8ReAvAgxCuB5anpYNPdmxvXgxp5+6nPx4ex+v31XtltRGSsQXHdT4hHoqObbAJ+wrl10N\naFfuGIxuY0ZCh+ViCI5u4deuFnH1+P/g/XUn/vpxjf/u56LDI/QPCLv2lJ/QKldfrpZw5nLc0UnG\nMJMdmTwozbLllbceAhB4G55JO6LOt/Tkx/iaOuEPx8cMV671+MHylE3gEJYDr+BIc/HwQY/DeyJg\n+e4cesc9CrWjmiYmwX3f0DSkMpqpmxXeVrvm1u3yfgSVrnSzKdloB/Iqy0aF0s3KMJUexFxF0vK8\npBVacdCLMPLmPHo4Zi9yPhrBnTF7Y/cYvKGW5PMy4BXBqotoQG3c8TaeoS8S16Q+cBobwEDMwmWy\nIhLsvFpfYsQ+LKuKraKCqA0IpWDVITO9KAK1lv1hD4yKgxFMlauvphW5ZNgCzUsYgUylse1OUJnC\nWvq6Pm8kpWoi/Pfc83Y6zbmrytTJwwyjOlbdbFley59BTM7GjyguVV+IYowAiOW6oFYxPSAglQlO\nJVUlW1l6gv+z8iklmrustvQmIvcxotqqvfwJx8+SPuwBvwK8AsyA/xX4Nz7p3/+4Ff3tyLeDWczF\nZc12z01ks/GpCgf+qYMUOqz+4B7VlfACMjfZLB9j9HLb2RleLuPZ7ZJaWHTv8Zb+F9xEJbIsD8Z3\naH/gJvJ5OedKofQ/rSzTKfmu85xo0EFVIxYyXJkvDd6hO4+BnxG/5rog029+HYCiTBnIJ/A0vcf3\nHjtZ9qJNSFYOOBDjQn/P9Biq8vwPPnjBB4JP/+lXJ3zpHUcdzm4fEkgWbjFzL8rx3RL7UuFs26Mn\nSbuw9XZhaxVCqLDbxir8edlOWKYst1QdRXibEyo1S95K2Nu4e9IXjHbae0Q4VYU/XlPMlvp5CCev\nALC391m8228AkKau2Js0S3wZxDw7a9jKzzGAnZFLs6q4Ne7rPN29eXbdEGgxXeNB6oBc2/IlSwm1\neGWfdu0KrJMj8QHKkKZyPwdnLwkO3TWVsaGu3ZwHYcV4oOel59KxtL7EVwo2b1s6vFJUQ62F0Vdq\nE20TSs3Ly+spb0mNPMv2saVMitcFlTAUF40AYosew4n4JcOIWOItpB6VDF42/SWBXJ98VeDDKkdZ\nJ3g+m6fud+erJXfkXdluG74jWb9POn6W9OFPAx9aay+stRXwt4BfBMZKJwDuAs9/hu+4GTfjZvwL\nHj9LS/IJ8AvGmAyXPvwS8DvA3wf+LPCrfEIr+jq0nN6teNVGVKlbdT+I7rK/loCnH3xELilrQhVw\nAtxKHLNPKWv16PYx0YF8603DdutW6Lb3Ln7ownFTulW02pzx/PrvAPBffe23KdoO/bazefzY6D5q\nLq+Zq+ddTq9pJDo6b2cUMqLJFi8pZTNn77vv+9E3aloVR+u39xgmjhCVNWPunrjVv2OAHqYJ148c\ni9BO+gxXsp8f9PC1y4V7EZV8JIb7kh1bDPA7JOiP+RaujGEr4k66yrDW/dzE+t68xjNdKtISaktM\nqx5zAeiaTcXRHVcQW145mbvg7jv4mQuZ83XLWi1er9zj0SMX+u+/NuNMCsbvKuLpxftsdR9Wy+d4\ngWOEHsQ9PKUBTWbwZZJifBWVW58fXbtzP/hgyjhWm7U/IhyqML3ZMupLeDZxkURS+2x6EsmhpZX4\nSln08Q/lHzlbYjYSXOm7ubgYpnyvcfPZ/4jLxDbw8Bt3blPjUrtTc8ZUlnAVhpVer+lmTjBw15r6\nFUEnInPhop/cb+j250kwphHUOm9ayFyZexgN6EvjwZcgyybasFX7sl0vWchm0U9jliqml9klZ88E\nSf2E42epKfymMeZ/A34XqIFv4NKB/xP4VWPMf6nP/seffLSYgNe4e5ATZu4m3x0PmMvp6HJ6Rib/\nyLTakgoy6glzztGSUPp11HsYqe/aWxGJ+AVt75d2eSbHys2uSn74NZeKvDtd7Qw8I2N2IWPb2l3e\nsKdqsfVjogt3jCj0OJ+7B/Yg2aeeu79b+UuWL9zNPagdvfmW94gffcc9QFFvyd0jt3id2CH9zIWG\nhaCxs+tnTJ+7n0+SQ/ZD93AcHrxKWrgQ3Ds/JMkUMuNeiHp9Si4156Jd01bupffrGm/rHsYmXRGL\nzWfU1bFZjVXXJggH9ErVOyYN8/cdL+PdH0750HM/L+VtOeplxKIF7/kB2V23aLRJhc3covfyB33m\nB+6e+AJ3ZSef51KYh+g0ZClVpHQvIgvcXLzMtywFYOurm7AuV2zFWr08f8p0z4GhxgcFw0OF/rOI\n0Ozp7/SMjFsSsWSb+g5B4a5vOVxyS6ng0ycjliu5TClEb4d9QpnGVl4DmqNeFJILv5At3flG8y1R\n5JTCJ0nCNnfnPm0y9jsP+3BI1NU21E0ws5zl1N3fuLT44l34oWFg3ByOTEO8776nroSRifv4c/fz\nMtzQWHeeiTU7rsi3npdsm39BNQUAa+1fBv7y7/v4A+Dnf5bj3oybcTP+5Q1j7U+Hdvr/YyRJbO/d\nvcvB/lt84cu/CMB29oSF9OnSpOTVL7sd4ejBfb5y9DYAJ/sqEHnBztmZvAbhDTZtTt0INj0eEGvX\nKCRPZcstVoU4v265uHQr6rOLU771HQd5vnz/msVYXg4Xbhc428yItZMuanj67rcAKMs5xdZFN0Hi\nUclnIpRnQ0OFyIUEacJIuozj6KADCDK/ViW8yHd2x2HkY6UFMBwk7B26kPjWgwknb/4RAN75jPvs\ns/2fY7gn8lFbUx67lCm1Bd/6vpOY+7X/+R/x5IPfBODphw5Dcf9Bjy8fOwGUebnk9FSIx7RiELvI\nZNN4IBLPFW7nj+uCUqQsQ8mBdBqSbML7Tx00fbPtUSilOem57/jiyQmVIprvbK9YXLs0bxFWHPTf\n1DV9ieWVS6HawM3lQVxx+7Y7n4CERIXbvp+QDtx196OQWsW8Tt9iUS7JVx2GwtulAUVR7lKJs+s1\nlXQTx/fcvw/f+DnuvOI6J3ej450HxmBb8J//uT/h5lZqyQdZRK7o4HKd0/Uq0tijVFQx37T0BHNO\nJddnjU8mRfChb1jICf18sSaJVTQGCoEkVp39oTUE+y4iOrq1x/i+UyN/8MYtHvrufRllB5iti35+\n6T/4t79urXX6ff+M8amAOfvGMopKxsYQBC48De4m2JmrUe71v8hXvuBUio6PHvBQN3+4p97NtsbI\nyKRp5ztBzep0SSODTr/0CCcCA3Voo7AHpWDFQbLD6m/KkLt77qGvb8P1uw7y+kJV5l6xYl2KWXf9\nQ1oEba5XhFL/oYZOwi/UE9gUBr/vzmFcG/bUnhvHAWuFlJ1DVFDViJxHaQ2+WmVF1Oww9+1FwZPc\n6QuOK5c+Pfyj9/BeuJRiPfKYrF1IPZvNWP5Dx7rsry5oBTK6L4PZA2uppMyU5lt8gYnIYf/E/c5b\n98eE6gI9UmpT+wckF+4hvlifEcol544Xk95y3Zf3Tp8xe+kWmbkVKGgYYaQUVPzo67y/cefz8FZE\nJLjyevUtGonJLuUGdi8cklWdvH5Fqhd6NPRIxbuI6O2q8uHQvcT9q4o6ci+QqXMiUcfnywobus9H\nccy1FpHiqauZzIIPubXn5rC5nxFs3fnMaTns2pqCdge2oJbSVRDmpGIzjkPDUtlDFrQMU3fdfS0O\n/jBhqPZl7CWU2ljiwKdWylN7BiNL+VzMX2ssiTpm1eWc08J1s8J4yb4WNTs9Z+H/dDWFG5bkzbgZ\nN+Nj49MRKdiQUX1MGH/Ac8FMg4MvMlbR6is//xZv3XVS3v39QyYyvfB8FVwCQ150eCmfUmCUsiy4\nFDFkMomcbDQQi2RSe4Yg6boaLYPA7Yij8DFHsQsZr7ffZD13EUuF+9512We1/R4AL09n5CqS+XVD\noApx4DdU0icw0gLYH0UMZL4y3J9wR47XSRTubNs3SjVSL6ZQC2Rra0oVjtLKkMm+Lq5ClpXrx88v\nHT7i1//vv8kb6v+P7n0Bz3efP/q9r/HNbzgIrrcOeWPoMAS9E5deVPmSy8Dtxkl+xX15MY6yPW7d\nd0XMh/t3WMk382HPAXfKcEV01xXJLmzI9ZXbZ1bG8LbnvrsYPOG9x24Oxj2XJtzNXue3f+jSrmfr\nGa0gytH2hDb5rpvbF0P6Fw8BGAwlpddraAVXT3sDxoJB98qKTFGD7/n0pKUouAWDcLy716mfUdXu\nGKOit0uF7qcjYuM6Kd87dxHk9YuAV+863YfT+j36kg0fjMeMW7mCSyV7fm2pBY8eeiGSj6QuKird\nv4EXUUkyPxTbMUxHvCrsjG0slUxy/EOfSAzc6+mKc5ndmFRgMTPEKgqYXl+zraWb+f5tvv34fwdg\nf8/gBy5i+6TjU7EoeD5kI5/e3m22wqRnQ8M7X3IgnS++8pDJvqvUD+Jgh1vv1Jaa2MM07oFeFkvU\nFWIZBPh6YVe2JNULZ4Mu3KuxUq4xQYs/Uii6hn0pkhwcVaSPhJPXTamKJVO5Cq3WM6zQjXEcYyP3\n8Oa1j98JiXYiHGnM/kh8h15Eo5rJ1WrLci0uQpeHBh6R+AVDYtadcWmz5XLtjhd6hn2pBvUP3csd\njkueXorNOfo2wffd9334G9/k+dylZm+9dY8Hkjhv5HT1dFsylhntaODxQJX8V95+wMErXdsyJ8vk\nSXDgagNJ+Ixm6uoZB/maR305T603BJ4WltmYYewWAxbu3+vTS9pcLbTWJxVs0EQVRrLmdV5gE3e8\nUW+oc2voq3MyiTwGifuOzGuJetKrrEqs1z0j7qWKD/uEqs575RZrFObHPiPkYUHGRqCfQ/E5VhfP\nKQu3mMbtPqWcnGwdM0m0aCudWdgNcZdihh5GgfhVA5UQkps4JJTDU6Fn5eB6hpm48x2nEVXkriMq\nPezQHfsw8hlE7h3wJPYz8QMe5/LKxNCcOwCcjT7EvyNp/PM9ov2fDip0kz7cjJtxMz42Ph2RgmfJ\nspL9kx5WMdfdLxzxJx44NeMHh7cYSPQjCKLdCmytwEFeSalwsUwiNnKuXlXnVLX086oFlQpbnuh5\nxosxCrm8Fqxxf+cbQzyUqnI45I4gqKV0zp59WNCoTx+E0Oi7DS21qJQtJb7SFdQZ6ROSKKqINhUb\n6TMstjW5ePGjQDtfFpFop+1lPR7P3Y756GJJvpAQS7THJHXh7Grm8A+jaoAnnURvfY+n738NgG89\n/h6D5KMKt/Glw6Bq+rE/JZAgydiOeeeW25UmDwP8PRUVQ0N6Lkn8kSvEmeSAIpAb91WfZs9FbPMs\no1YV/f7DQz73wn3+WIYlz9bnJAL5n2QFrdKqpt2wp6q8byak4lJMfLerHtYhnRRjP/BJJL4SmRA/\nl5Zk0OIpUki16yapoVUxr/ECgrU7buyfUYmDUQ9zetrFb6mD87LZ8Ohdlyq+lr8CA0Hvo9tsVaxt\nMzeXSemThGLaeoamUw+nwUrT83le8I5k2e/r337r4+Xu2Rp7A7x7AtcVCYyVYgbH7D9wkcD4sUtz\n5027048MNgEvpDPx3WcfcG+pIvYdS1YLC/8Jx02kcDNuxs342PhURAqBZzhKPE7qLbcP3Sp4K2m5\nn0kSLYnxlRv6no+Vik2HwGtyy1Z8dftixVptM9bhzjG5nQfMJb3Wk4pRlO4TCK7Yxi1W+mn+8IT0\n1OVh+2/12X/udrTLhXaBZk0gkn1k/Z3yTuSHBGIMtqWhL/Wio77rNR9lAUdi7QURhJ1cV53TqpbQ\nU/HxsB9wKPh0EPTYNu67r2cl02vlp1nIeM/l33Ho8vo4uKIQ0jM/sDyeux093VoObrvCn0l7O9Wf\nUn4a9/eO6MkS+uGtiHSsXPz+GwSSo2uiEfbBhebeHcsrAjxhE0w4Z893kUt7tmUtuPLxyT6ff1Vq\nWE/dHF+VBWkHSPX3aDpjFH/LRMzHXgKB5m5Phbo4NfRi94epSQhVd6ltvdMeyAaH9BNJy0m6jijC\nbqUI3kZUKi5WyQG+VI/8siZTTWHSd//dVHssBEt+dvWEk8o9e+O7b+ItpdwtvlFUBwQdcTdwyFiA\nemtotP+aWc17nducWrlvvuETSVx1dS+jH6seMjlmT5MUvdIjkWK3P3DfO33/CalMdNL8gljo1dNN\nSSvUYzHdkA//EHpJhhZO6oAwuCR75mbYvLMm+aG7GWVakm0d3LO9fQhLiVsIdjz/x8/4YfNbAJz/\nox8wPXaT88pZzmKk0Dbvs7rnmtfDpQO/nPyJz7C3pwds8hZW1WQ/uqKfSeJ7fsT9pQvN32/FF6ig\nUmGssA2xFh7Pq/GFl4gsu5v7qnAVd9OIsezs87JiqEWjLp3cFsCRzGHvnYywSuKJGCYAACAASURB\nVClSP6UvavXRfkIsdmiv51MLe5FV7txmV5udMe1gMicWOOv41iEciSZdZ/Q8p2mZWfcwHvolB+I1\nDPdboqHrc7P1sZEEbJolXl8w5plLtVoivFpajHaAX7rPo8DHiOo7SSLK2+7t/O6VC4HLjWHdwdiX\nG+rMfd+tw4xEOofXmzUPem6xS93aRxYNif3O0Bd8SaJFbUyg1LM3PCCVfLova4B2s8XuBNpzgp4K\ns5dTjBYZjxWBjl1LyCcIIjwVqF+eLnj5A5c29o6e0xME+6mk3c4WlnKs1HbjsRCFP177bIcqLvqW\nN0SZDo3+jYZkKqTGfo8wcT9H/ZDRgZRq4pYw1wK47xbyYXPAA0kNPFs3bNV1a+oVs8ItatfnG072\nJvw04yZ9uBk342Z8bHwqIgUbthQnG/w5vPyyXKJXL7l83SEJe8VLwomDbbI2lOoVz88djPbCX/Li\nG06z4JurKbMPdNyTHn1Znv1WO+Dykfv9X3jL9ehHVz3ikYPUetsZnnABzeyaeelW4+3y+2wm7u8e\nCm/w7V5DPRe0NwhotANVxicW6Srz4EiWdT0RhvzIc0odQOR7FE3XfgxoY4WXsfv7aV1Rq4A5SgvG\n8lAIyjucFuLmm4rllSsuRfIfPL2eUSvVGh8+5kjWdOmthKqntGJxTjmTmEjgoorxnRP6+4Ld1RPa\nprOfj7GeDE5WNaZ18+JJNq4p1lTy36jrFYnavWm2wF93VnCWka7rdRUJf3e9YrnW49dmeIoasrhH\n4gk70q8x6tNHirqMLXaW615g2azcd/Qzw0AVyHjcw1Na6Cmi8wcZRvNdlRGeWrzZYEihXTUvWiLZ\nD0apjluDV7qd9vFsxlrmQddXV6w75ueV+5uz2OJ3gqley1o+pX0amOtZyGLGA3ev3jx2x/rM0SHZ\nfRcRhQxIdB3h8RGh5o3KJzqRg7iisWURUk2FbzlZc1eeIe204FSFzXUO85cuhfyk49OxKGCpKHiS\nz+m953qwl1nN2QvHPzCjBa+/Jvv56JBvvetu4tVT5WF2zvW1iy/PHq2otu53r9bw+cyF7tvtExJV\n0ZdbeSOGd7CX7lgbPkMrD8P19D1evO/gw+9+91uspg4gdC2m3vXWo5KaUtTUGF+W821LJv3AvdBD\nrXAaqQUDlGJ1Wz9F1o6kkYfa22z1MOdzSxK6F+U6z4kzmaruxYxUU5lfl1QrcRTkbXmx2OBrMWpK\ny+Fd90D30z1yhbnTVR8vdce+NRTFeNQn1kPlRQ10lfwKsJ1Go4eRzb0Vlbm1G9rW/Z2lIpQYyjAY\nkoeC1xaW7MAt5MW+w0e8e/GYeS1hmfSA1x64hbpJnjOUtf3d0JApvesW1izziWQGFBhoO6hwPyMQ\ncCgwDZ6o9p4g5l5QYhFcOaqxGzdfHuvdYuHTdvg2UtU4NmVIJK/MW8u7zKJOX3HMP1F34dui3Ocb\niE3naAWNUsLcg4HqJFFTcHjgru/Vd9xcTN66RzKR0njUkqi+EIwDjCjQJmmwLHVPpFx+uyI5dGnX\ng9EIc+rm/gPvGxhNfdSLGCQ/ncT7TfpwM27GzfjY+FRECqb2CC97LJ6uuH7kVsnF+oq5doF/8Lzg\nUIIl5/UTTCVvx9zt4PvpENCuE/UJrCrEJuG9zK2u4yTGO3Mr99a6lXZ1PKP3jmNcltsL6kv3HR8+\nWfPdH7qI5ev/5CXpRpVvYRri4oBWUNQgSuhL37/fhkRNh0xsacTWPNPu0RJwspQK8n7G/oGKUmFJ\npZU97rsdI0oHNHRSaS2+UokgGFIJsTjot+QqjtZDFUkvp9B1FpqQ8R1XUGtsRfPY/d1B0GCFrByP\nXFErjRMC6QGasYcXShMND1uokDos8TL3cy02oL/qYRRq27ilqT8ioCGGqt3W+IIpn6xc4ezw7Ipn\n8ljoeSMe3He75vX8mkHfXcso9BmK0BZ22ITMJ1YUYDH0DhTp9AYEHdrSGhBewEs7i8AAfysNjCQA\nFSDroiGqdTyvoaiFP1EBMw0izEjCK6+fEC10z/ohT+U6fd4h7A07HIrvex+J8vgeQSm4/WG0K3cu\nV26OF/MaI5xGsu/jRZJds/ug6zepRyP5ts7vJAn3aYSVyFiTvuYi4P7zMa/Lb+60Sqk6I51POD4V\niwKBhcOat4JDypF7cK/XDVPlel/dP2Sq/C3wRpxKSPR+p7xUW2q1yCZRxh+54170++OWbeQm6tgz\nRBPHn7A993A8GR7Qip14sh1QVI6me/34u7z8nrN2XyxyTq8khDrQ5KZDhqoc27ZmYNxDFQU5VjDY\nKgzoK4zfU+g4iXocH7r8YXz7kFAU7m3is70KNRfu7yeTFE96hkVVcb4WnNlUpAoTbWToqxYRRu6h\nukgCZkoprmYLuHYPzfriJZuNyy1vH75Jkki8ZCw1qrqhUajqL5bYRB6bDbTqgpiwgtylad5c7dm6\nwle3w/qjXVhelOzahdbEWDEY6bn/nmUpVwLsbLxzDg4cUM1LnnB3pEW0qkiijyDdAJ7tUwk4VjV9\nhnVXl/BBc1/WPtFWUvtibdKUqKtLW21plAY1q5JVxwglJ5I+4lIvVR0FRKLcm36DrzbkIGhou/qQ\nUr8K5z0KEHiWnt/dG4+JxHa9KEKaPLxUGtv+qCHbc3OYLO7Qpu64BWeYnjtGvTXUldLJqVrrJxGh\n6OB1e44/cs/Aq+OAxwt33ZerFbbLTT/huEkfbsbNuBkfG5+KSCH0M+7ufZn+q+y0ARkH1N93AKJo\nP+LkS67a7flf5JnMVTanbpc/uj3ETrUqxwP2VbHtjwYkuXb5MqcS82+TuJ1h2/YIBINmWpMNXA8+\nuQq5WLvfOV2Vu0nyFH4mgwxEdvK9La0k5/3C0CqC8LyAoUhV/cBFEuP9lH15Kh7cyej5sr2zLZuJ\n+76VwDHFJudMEnPfvZpx9kRkF7uhmEnm7bDPnX13drfFHB1aj7WKlevzGa1MX56/+wx/4H7O3qoI\nTSft5SKQcpxBBxvPDYF68N6+T3nuMBBRnOIHrhPjd4ClpqJReFpt1lSJdCHW+c5duV2H9LuUTnoK\nR2FJo5B66y8Jmk7KPWSoPv0qzrESj2gEFivtmlJS/BvfML1y2+5wNWJYufmkLOir6BhnbndN+jGV\n7t/2ako+ExmrbynpYOo+Rmo3uTQ5itk1PQGywqAkk3ajt7jgUFvqc+UDlQeJnt9BENCXLH3qeTwU\nxPy8sLz30t3L9Vzaj0dDbOIk+15/26c3kZjKYsOLU9fteb6cs5i7KGWrFPSVL4553bgCbTDakn/n\nWvcvpmhE/jIJE0WFn3R8KhaFIAoY3R6zNxiQ6qEK04jBl9wFh7fSTj4RGyRsFu7/vPame4lHd/dJ\n9RCwSLCNm3QvBk9W3c3pCK7dBBe+A+6UtWEoEY7s8JhKbLfNcMX3Zu5he7JukBcrfuW+945nSfUC\neUFIboSBLw2SF+Tt0YSDu3pRNy7kDg4NPVX7wyQjVUhpjEckd6atmJhFYdHX0c8NV31Jyi/6eJqj\nOi9Z6Pcn8sy8fTAmlFpPGYGJBAAb+IzUXUjDO7Sq/NeIfzFbslV7i03AphW3IfSJxZMY7e3TH7rj\ndb4XdRmxFttxO29YlO7nD6czeoITToYBykAIJHZ6dPI2Xug4BUlkOLrlqNgvT3+Ap/bqpDXU3ULV\nVfWLLb1OyKa1rBbuui/tlIU8KWK/IZfGYq/nPhtse1i1i6vC0CmOtXVCqzpC6vWoFTz7jWoOecFK\nPhO9OsZTdyU0Az5Qxid/XUJAGRNB0DLWYnl/kPH5I5feXi/gfat7XLsDFNMF3//Rheai4K5qO+ti\nwfJMwq1+zdHIXevgNYnc3rnDqCcuhvXZHn7T/XxV0DW8RpOA1w4do/WTjpv04WbcjJvxsfGpiBQ8\nvyUbF2S+z8jKobl/RHLcGYFEXH8ot+bNnIvvOlmx+QvXITj8Hcu9X/hXAHgY5fT2HdDJW79g07qC\n2fTyW/zOtx8B8N6L9wD4IZZf+ZxbaX/+9r+LtDL47rsbzj8UFqBw/XCAWPXkvRhqFQ/9egsDl4Ic\njDxeFTDlj711nyR2Rbyt0pYyr4h77prawKNYicMxqMjVfQgFzDo83NLvuYLpQe+M8JnbYScPfXLJ\nf+21M85nAqlIxs1Yj7lCjNK0+H2BlGqfVtLhredRix9SyJV6O29Y5pIJS1teuo8x0w85vuN2moGp\nacVHqbqd1lRUS7ctnc1z3r10mg0fzj0eHrmLmoUn3FczYyJJ+d4yYiBc/6SXEovDEU7tRz6Xpb+T\nM49UzfPxaa3bMeulZe9EHpv1hF7uCnBxmNGTUnKwg5LP8BR1BCZkKU3Ey5dPefTYRYXHA0uJS12O\nJ3LEHvZoFQlyGGEupMlx1JKVOnYna+8bxirq3Y5DtsJILHL4vUuZ63hrjEwhjSK+bHIIfXcfLzHs\nyVAniIbcesVFGy/nBUap5VNpXw6soXxN8OgsJb3nnhd+8CNiRcCL0rIufzruw02kcDNuxs342PiJ\nkYIx5n8C/i3g3Fr7OX02Af468BB4BPw5a+21McYA/y3OeXoD/IfW2t/9id9RG+JLj+zQY3wgpd7D\nfTLlr0FyRKh20/rphvYtl3++//VvAPCy57F810UNr/78Z0nVOgz7n+XqpYsq/vav/zq//X1XS7jc\nSE/h1gOeZk7d6Y97E5i6COLZxXfp+lctoHrYLsdvq0NyGV/ltmWgnevwbsRrJ/JPPOzx4ZmUfZ+I\nWbiy5G+6737z8BbxvnAB0YC13LEFc6DM4ZGUdH77N7/O+1N3PlkEX7rjGId7x336t6RQfKn2Xl3v\ndv9lMiRV7/6VO/tIZArfbzFLKQv5bud+fPo+c8GnPQ6wYnsOg4MdzLdYLEmEEPWE5ivamlxCq5Xn\n8cFT9/PptqHJpUbNYwb3XLSR3nUR32JYsREWICxjfEmpJTbCa4Xci0IiEdNs5Xbz6+uW77/4tvuO\nRUry3BUXjw/X3JXIaz+KsfL7MEJCluvauYIDeVPSGBd5PZlFfCCvxcslNHMnxzb5ilidEw8jktTm\nes6VHLiT/SOE9OZAhjyhD+HYPbNnFmoVaz8sCnqCPwd9nwPBza8VubxVeyQjB3Me9QdUV0KNngx4\n+sTVdr75vXPeVdGxd+zuR2JSXh+4e713OCI9cc/QO198lRfCslwsLrhc/nSK7Z8kffhfgP8O+Ks/\n9tlfAv6etfavGGP+kv7/fwH8GeAN/e+rOAv6r/7Eb/A8vLRHEoQkJ25RiIMAXyIjoR+z91BsucOa\n9kh6f/1fAKA8mHOQuqLj4ZvvkMVdABRwN3L97/2jA96Yuhfkz/yCq/R+/nNf5e4X3Ut8a9RnZVyV\n/auHQ/5xJAv72u5AKN1R44OA7XNNndcQqfuQpPchcTf86ionEpX3SKIhyWHKg/uueJoaD+P/mBqw\nXrKqdQvBYgVFqbD24W0mJxJAGfeYjNzxTg4zIskEP+WR+/sPF/Qz96IE6WanJH28P8GosFmtcnLB\nmD3Js+8nIw6OZHu+SLBNB7YZsR/L5zAPsfKs7EwV23ZDfunOMzApn1fx905dMFCHY7q4Zm/kXhCj\ndC48qzhW8TAOYHrmHv7INyCwVJV4eGJ51nqpGmOoRX1/cH9MP3PpVtpL6HUsycQn2Ao7YrQB9CJK\nwYa25wuC1P33z7/5OodD91wUZcXZh27jSMXAzbyUQuZDm8WSUGI/tpxzv3NzEUbET+Czt901z1+W\nPNJG1lQlcejO47WTW0yEP5nsuev8Y6/f4bW3XFcqjjwCYa2TUUJ9x4G6rpZbDt92afEr992/73zh\nCyQqykb+gih374h/L+b1191z9O7vzLCl7tknHD8xfbDW/kNg+vs+/hWczTx83G7+V4C/at34Jzhf\nyVs/1RndjJtxM/6ljn/eQuOxtfalfj4FRPPhDvD0x36vs6J/ye8bP25Ff7Q3wJqKqm1p125Vq5OA\nKFAIlx3vYGNh0/Lmg4cAXI5dKBqFhxzccmjFLOlj5JGAbUnGbtf85T//7/Hi1B377c+6SKF/PGSQ\nuVXbVhuKQ7lVJznLUDvTj51z55vTbFs20vwvqUj3XUHxtYOMI3HzDw4Odm1Sv+d2sz49jLwyi/X1\nDm9QtxUrXFjaib7sTXoMRLT64iufYXjUEXsykkpqwE1JeaAIQwyY1XsLNok7RhaOqEXcCl85wJOi\nbX72Acu5+77O7fjW8R5BX1Zpxx6NrOh7/YhE0OblWU0ly7ZW0UNdtuSdzNk24pbaoaOs3ukl/Nxr\nY8LKHWNx5qKxy9xnf6xdPkkx8kGM0nQHMW7zAluoXShBhTRO+ONfds9Ff39AT/Jo1t9gt+6+J2FF\nXXfPi9uhvf6AZuFC7bLxSRRSjwcZvsRsiq3PZ/9VmdmEbsc3A58rEdd6TYyNuvswohXa8K5apJ71\nULBJZn16utcP/D7/+ufd3vjZt7/K6Han+yBJvEmKL6h1wAqjtDIejXhF8O+TN08olu734wfuudg7\n/Bx+IHTn5WOapWtfensxt9S+PNgf8PCuY8p+0vEzdx+stdYY81PbTP24Ff2b906sMQF1FbEV5NRU\nhrYVfDZpQAxFL23xlurNa3Jje4s4ln13UzvVFsA2Wzyx3e7evcOdt91DmAhI7ychiOFmgpxClt3P\nX0YkW2Hcd0h16BDkxvMwOh/KlibpFJsm+AMBYSqfSC9OuBFQZpTTzBW2E2GkwtQkFdHWLUipUh8v\nTokl+x35Lb4+r2Yrwr4KD8sVoYxM0tItbtd+y1p4i/3JiNq4a+pn+xi509RRgJWQSXQoA5h4gtd5\nhgxi/GP5GW4LUM3EBFuaUIuQQtzWjslGbpEa3u0Ri3pszTFr+SdG0YLTM1eDmc51XK/PZ09cnSEv\nDNd6oE/6HkWnZOSHu0UyEAAgHoe7Okm/n+J18Pe+TxOpDtREND03557SAKqGMBW7kCWjV918ZZ6/\ng3rnVxvCgQRJVCdp1slOd5PJBnsptzAv5ahwc1DIQGYdtHgSwCmt5S2Zvvziq7f5yhffAeDwaJ/0\noZ5xBBlnQ+c+H4xS8N1Cl+xN8ARKG9x9i2ajllDmzpeyAEm8e74H2gA5rWkeuuvYf3TFvsRzPun4\n5+0+nHVpgf491+fPgR8/gxsr+ptxM/6QjX/eSOHXcDbzf4WP283/GvCfGGN+FVdgnP9YmvFPHbat\nyVfXbIOMYiGUX39MOpC5xWwFQoe1BYRivsVaRYM22IlmGLyP2gR5SCut/yjyQZ5/vsg1bZ4TBMIK\n1DBUj/pPPrjH3/qG6wVHM1DNDUW1xHGPnnj+xdWWjYp917MVtySGUnqGXLbmPbHs2qKilpRcGxjC\nfgcPNqSdzqMMQtIUfPWxvcKCpLh6/ZBGnZGm9NmoGDmrXdlnmuc0OuFx9irth67gxFFNq8gk35Sk\nKnyZdWdYMwOZ5IRNi19Je2CbUxbqBrDc0RUreV6CR9bpGPgBZul+tw0tk71Ec2RYnLqo73Hh4utX\n7p/QrF109MHmlKUgvCd9uyOFFU1LnAg5qs5BuwFf1mymDAiVNtkqwa9FHioMoVJIX8VO2tJBXIHx\n0WgnUxdS4yvViAaGUgjQeuGOW6chPal/18GQxlN6u71mpQ7OuwqUhzm06tp4NmZPGhiv3x0xPnKR\nyd6rLf5IaarSx7JuiQNFNuFDvEEXyY7whW4kSjHyE21EFPSSwGGrgWbdUCmtbEJDLgbmwcEhD+78\nf5w+GGP+GvAngQNjzDOcy/RfAf6GMeYvAI+BP6df/79w7cj3cC3J/+iTnYbB+BF27VEfy0Aliqhq\nN8HB5pJgz02qHwdQqi3WgUYSg9cRwYzFNnrpzZRWKkT1psRTftkorPMCs6P3UlZE911YducrX+Ur\nX3O6jNfrKSaQ/LpucjoM6K1k954MSdR9mNY5MwGADpMentpi+VKU3XbrwjwgHFma0j24sW+Je1r0\nxISrK3bXFMQ9rELUtrWYtnNLaqnP1Kq7cKWc+XXOO6869uheWlNoIVzPSoK+wEvFjFznFoUuJE3D\nEX6sxaZodnWZNmkppQaTb3OQiKunhaAtC8pSqc1yhue5RcGrDF653f3OfOoW2XLl5vLCHzKVYtPj\nqzX+gWOovnn7AY3cvkzSUEtMN5dIb+xtMGonGg9aKwZjWVCpT7QuVtRbd13BvDODiWnXbuFs6swx\ncwF/zyf1u1QoI9AztfBVSDAtfuA2i2RjSDN3bqvrU5ZiSUp/lcsAXhGILI5bfNHTvUGEaBC0XkLY\n2QCoLuX7Cfm5e96SaIwR8KjdzvD6YnkWTyHUdWsBsXmA6RoLkaF+Ka/J9XtYsWrvv/Y6wwPxez7h\n+ImLgrX2z/9T/tMv/QG/a4H/+Kc6g5txM27Gp2p8KmDOGIMNQprUp5C5xWL6BFO4ymt4NMST7ZYJ\nAzzpACJzFuoliMlGU2H1u+32BY0ceqlTthsHIvKWbhXN9j6LJ+krY40TAQB49Uv0PvePADhYVzQS\nLRl0NSs2u2LfvWGI36UM8ykriWXMBxXDptsJ9B1egyfpcbsweALmNM0WNR8wEgdpNwFWEUHZNLSK\nfipT41ddQc2lLADfuRLPf5LRP3TYi9r3aWoXSay3EKjiXlYFG+1oI8mXl9bfFdd806fSbl0by0bR\nwbIyhKjgq12yXFfYndbBlkA6luE6xJuIYDbLmQkw9kIhdzWf8/JKugDG4450Cds4JlIHw9tuaTos\nhyIzr9eSq5gZ1EAnK7lqWEnmf7resrqQyIpUrnsrn0R4g7YZEkVd2piABGwIM6yIYn7m7lOZG+Zi\neDYt5AJkXa8avqMml+MmgqkBMTHvtjmXjTufb798zuTIHS/yDUbpiG0VSc7OYSVSmfd9QlkReCML\njTREk3Nsh4sI3Wc0ayhlZ197lL4r1l4uA3wBo24fWAL+EEq8g8Vrt2xWBqOHsQpSCF14GZoSv1UF\n3LcYIdCQmKctc5quDbkpKGVr3pxfMr90dc5kcMC5cmN/I7rtZw7Zk1ahnxqambuhVx9O4bk7xrFn\nyFWjuJawa5Yb6lyaieMJNlHOSUwj5hstVMqHN6rUF2FDLLERr7Gg8NpkHjtBx1wU8XCFFTBlu1lS\nqDxdF3OXQgHNZk1eqnWo9czEGZXy4ceLDW/Io/B0uaUvaObgdki/1HkO9WCWLRZXvY77FW2oesBm\nzUodk7yy2D3VbnTuuTUEaScd79MKhEXsU0mpalpYVrY7P6Vueylp4NKcO8N97r3xBgC2mlFqcYrb\nirrrLutFClKPhViZuRfiicFZUdEWXWckJlGrVZ1FvLzGqnWYjIb4WrCsXdP6LjWtqxWVVJ9q8VK2\nxpAvRAcPF1xey3OhDljpUn/8ldPU8wLD4dYtXs9ernl+2933LHxKjV5uHTe/yIkkBtROPbKBa196\nTUMooZ42vEMrQZUWt9CZbYk/cpths96y1bO3Wm8Z3ev8UvsUq486aJ9k3HAfbsbNuBkfG5+KSMFg\nCE2I32xZCDSzniYEkk3LFxti2cCbxkDrfsfMVcWdn1HLyr344AOuVFxa/tYjLnAFrl7PMPryz7vP\nSxcxVO+fMRSPwvcTirnrrP7wvd/gw0eu8PPDdcFQO+xc3Yfcr0gmbkfZNguK3O2w6ThlYd2OsFl7\nmEKYA7HsvDxgLU09giWR8A1JvEdPIKp13jlV5zutxWqzZZ67c44Nu0Jqta65VvGs44Z4rWUlma9n\nK4tn3a4TrWdsxAMY+/eJG7fbVKuRznFJUymSqlOs+u2b7RarsNtUBYqId2le3m5JFu53h8OQ1bVE\nYrwKq23z4nRJqZ03kDFJf+8AfyjW6SimN3Kfby/nNFv3d8vGkqljYCWssqot+CoibgxZqlQj+0g+\nv58N8BVBhAM5RXlbylaKyrFH5Mk/cnON3eVuNVbmOI2cve2mYb5yc3yRX7CUMMq6zviD9t+dsFvV\nUiiVsI3FqKu2GW9QxsryqUs8zqZLioXAa8M1rxbuue7//JdpjEtnguCz1LXTn5A8JolnsHM3V2Xh\nUVfueKOwJZUO6XY94/y8A6B8snETKdyMm3EzPjY+FZECQGsC/GBI2nf5YuvDXD3v8eECAreym2pF\n2wlwGkdese2a4oXb2RcvHjNXe45hRiat/2DfEmlXjcduJQ7ic2wjSbTKox26XSUr1rviUlW1XHR4\nzVZElbRPU3RGLi1RJ7RpDZ4iGi/znRMHzucQIEpyEvXB17M5S7lH29UKc+h29CVS8l1uicMO3ZiA\nJOjWJsd2PpZtw4F8CM7Verye5WxVwFvaljj5jPt5FdB71d3uqijI1fOOVi6SIgoJ5dOwrQytCpc2\nsvRTWbOVCY08CpNOaszmtFJbqnMfo5ZrMd+wWrrzeHR5yUYY8YGivyjtkS0kzfbgFVTXY3nBRz4S\n0YqVtCM8STfFdoOv3nwZLElF/TSFR29PXg/biFoKqtWpri8JCHTNZb5gY6RZ0PQIZXxjUovVLpyO\nZT5TL8jP3HVsr86pBbev2SKSZBdnuHPu/vUB3T/jQ1U69uXqIqOZCoWp5zucr9hcu+vMggYjuLZ3\nnWJH3Xw+oukEZK1Km+l96pl7BwhCempZBuOYWK3M57/xm/zg+Yf8NONTsSg01rAoDbcOjwi4D8CK\nOTO53BydT2mFLcBCKfBOJR1F2pKqUe/24IhJ5roLfi8mV6chfz7ltz501OhSbYRf/vN/Ftn64cUB\n3tIx9cr+E9ZiDy4au7vTMivC9+OdGjK+TyNcv63XLLWY1Nkt5rVCwpV63ouQ0b7C02aJX7tCW9sE\ntCcqfM0eAWBsQDQWy3B+ytkLd/NDz+do333e81t8LQb3tNicz55xrmr6uOcRHYkF+scSgtbBatvt\nlM3yQufRvXQ+jQq0ZeZTqahFmBBEHVs1Y5DqhRRXgeseG9m+m2JBKLn3ugmYXXfCItCT0Eyi7szk\n9oSDE/cdsd+QeQ7yXNqX9GSMElR7FOoeNOo4NKsNgbo9fmuopaXoFyGtSuWFHgAAIABJREFUCmrG\nL7CSU+v33GYSBAF53uEwWtaVUo3edgdViesEX6lSE7p7Y/INz4SxqJYlbd+lW+tqhUDHf+BoscTC\nxUwyj6mETtYfPONAePJB5EJ837ZMbkvaPwIrzMr68deYP1FnZC+BobumwYFj2vqeJerpGcLDSKkn\nPQHzvvAUbcyL5x3Q7JONm/ThZtyMm/Gx8amIFNq2Zr2Z4pdD2srtAmtb8Hzhdu7jwX1u12Kt9Su2\nZ27lnk5V7Fqes1m5qGH55EfUz9xKu/WueO9dFd3sBe9du59f/7xDLv5SfIg/cKuu6eUUM7erFB9O\nyJZuasqm2U1S928aVoQyYbFNy0aQ4aANyCUOep0nIKaapzaWN2pp1vIjCO7RJm413ybHpGPH/Gtq\nF/aNgpg6EFpxMWcjPYGIAm8kT4ZeH0+eFJfyI3iU11hRt6pBglHDLB722D5VFOMP2a5FVxGnP/Zi\nGoVEvjFYFUHnl2cEhZuX1INCxLNi5eZycbnmfO6ijnSccXQg1F3ap1Aprp/0uX3sopTr+y4S3Ltz\nl+M7bpdrrlbEd1z6ZD/8Rgc2xOYVue3CdUU//YRQCEPamrYUVNgLmL7nIsF2HdEPO4k0oQMHPpcX\nbiddrF6wd9d93+e+/DZG4WLbbiBz51lLDfls1vLyqSv2jcb7+ELIXq6bHUHux5m03TMysoa9TKri\nccLo4HU3R/EZzcKF/z/Ss3DgjxkoXUkfvE7ywP3uNqior9w8b4YbCnl4DN5yUZUXjbC+0u2m3KEf\n6+dT5o1LV777u9/m3XlX/vxk41OxKNRlzezpBaeBIY3dhW3LMdutvB2XLblUiCIzxLPKS6WzV2+G\n+EjJNwpJHzhOVlotKWUcEj0e8q+Jcvsn/9QfB2AveQtP/opNYVkvlPclKRvZqPdy6ASyVfRnvWno\nx+64+XaL33Pft6qvqeVe9O70ilvSIzy+464p3HoE6t03WYpRatMO4OoHTlWnVr3Dmyzxc/egHO/v\nUUzdg7RZv2Sr9CkqS37j0pnW/O0P3AuxXOYkqfu7V2zCIFQ4XM2YScCl3vSJxPmIEpdetNWUQmrP\nQZ4zGiqcbe6ylA5kPw6JxY9AVf1+Nie+dMfKw4xQ4ohzv+FK8O62FzGP3XW1E7cgT44T/IH774Mi\nIlUaFGxrcgGLVu0MUypt7NoeB4d4OyWsIZGekfEoYbTn7sNVe42vOQqs+95iVRDKscvWLakWN7vJ\nod8Jxlhq1XlmUk16d/WSNpOZbpqwrlWL8L2dklXHETaAppthP2Sk7y7LmFBS9elrcPl92cdrQT/1\ncr4Uu0Xq4R99jWQinEK9IZLo0KbeEAiGnoXH+r4X1AK4bS9XFBtd3/qUX/91Z7j8nYsr9kTd/6Tj\nJn24GTfjZnxsfCoiBQ9DRMx25VOpylw3z3jQd6FcYkOqREjAvMVrXYEmbdxqHj2MODh1UlTez53g\nzcXwm6w5+YGDSlfH/297bxpzW5afd/3WnveZz3nHO9Wtoau63V3uwWksG4fEsQHbkTGyxAdHkXCI\nJQspUgIChbT8CaR8iIICQQohFoEI5AwQEmJZgo5jQpAIntqOyz1XVde9dYf33nc84z57XnxYzzld\n19juqnbdqoty/lKp3vsOZ++19tpr/Yfn/zxTgrFzu178Vx3zc7p/QCvoaHn5YCv97o26pNIN8KYz\nArnVHXVqdqIU5ROxwRCv+iafYS1NsDJuqWbOdR3tO5d50mvwavE1rkNMX8mslcVOnOcRi2U5me0R\nbI6gtODaDXc/D746ZwMPfH39iK98zYVSd6TZsK4a+hrHc00N6ihNqyFj6TnOyxNMX8VycT3UARhx\nI7Y2AWEsknFEsxD2YpZvNQ9rNVRVdo3tuC68sZ+zkkjG9HTKQCzX06ymEBT605KGv3ntJVIlxuxx\nSCFdUM9EeJsmtnVEa6U3KV5Dr/ExOtmjtkRym3gVRGL/PiLHriU3p1O+DhqGkpA7nLzEoCfODR9q\noUJtNGajbjfXc0qbSw5F5DLoDzj33eeNZ1eMNaZs85gC+Oxt0cA1MY1wIY/nj9mXjmkvOWaoRriu\ncaFBuVhw/yvuet3LLxC/5PQbugWMPvOdAAwntwhfcWt5Q1/S1COaK6F72yXtlbve+cVDHmhdLJqG\nl0bv7TU3G1GMD9OGg779vs9+mtuDj3H7BVdCy2dfYi71oqG/JFVZLF9aGqmxNnO3MC/KnJVyCqfr\nYgv6yUO7xar7UUQqzsdCZbxVVlAbN2GD4R77L7vFnQR7NGrfDRcJ1diVLSuVdtr2Dv1USk/XPkK5\ndg90NBxwbSKwzNGIh6cubk/EaDSKYroC7ywvlngKRttlzVxgm7fecqXVXpzQOVC8f9wlzN29H14f\nsjd2LFPp4R6++kBeHDk3c+illJJAZ57zt3/pHwPQjzvUioLz8zOmKmUF6kQdT/ookY8XFNsO1F6S\nbDUvgyR1uwdQS77dC31GQze+OO6SC2w0tTVzrS0zuM7eDRGKCGzUTWKO803fhcfq1C3un/0f/gZd\nqTTNgyVv/6oLiy4L14HvVzmf/Nc+DcBHDz/CrUN3GPR9aNEGV9TYjWqXSppZlvHowoVPd88uyJZ6\nYcs1VyLNrf0Bhy84It/0k24jt1VIpTA1nI2w191auPzn/yd/6z/7cc25OlErn2zuqiXf+OprZPfd\ns2wHGdP77gDLykvO7rp1cTJ16yZfQVdkw9brEYvnsylbwg0cKkig6zakqapZRzc67B26Nbt3NKDy\nJR/Qt9xYue93yx7Z1JXof/w//skvWGs/y7ewXfiws53t7Al7JsIH31b0mzPC9kXW+a8BsOz5XL3t\nXKDjqEPPlyR5st4wqGGVOTdvz7HKsh8ElkaNL5GtuVLN1wSWjpJZlZp5TqOGbJO0bNakV+56s2hG\nEG/gxrcwj78OwAO5mS9yhV+7ky+fv0aujHW4vuTy0nkCg2zFTK5vKOKNqvMCg3STZd4jVfNXEgU8\nvO9OjTNl74PHU86+6E6d9q0O3dvu9Bjs/yHERsZBVdJEgtCIbMUOQqwOlyxo8DOxQ1cDjLAcS1NS\nar66ier/dU7RutMsth6dRFgAUxAINBP5BvT7VjTyYTCmI3hxGFVkmQhZyoSVugAjf4Y5FWZh4D6r\n6o6IN4rKVy1fEPR8kD3mYum8iavlG1SR0rya+6ODF7gtGbSDGwccH0oMxc7JLtSYFcb4ouErddI2\ndsFg5J7pR9oxi4lEZh6uqDJpN7ZrlmdqoHtTXJpHQ1rjnm+Z9PEfuIrYCR7tVIlp0bPXdy950Lrn\n8LV7b3GwcuFBnTVMM/d1sVzy5pmeia5lwy6NWKk7fou3dp7E49InEKT/oHuNx99wnBOvq5p1UkZ8\nxlO1KrQsjFu/2Tzdcm/m67vcr38n7/LvbztPYWc729kT9mx4Ck3IYHqNVfSbzO67nS9txww6atNN\nQxDaLu76JErwzGfutDJtQUfEnmPPp5Er0VqPySbRZkNWSqRNhY4bGkt302hlr5hJK60+6NNfuPLl\n+eJXWSv55/fciRAvxlTBVwG4OhnQ7bv7zFgxb9xu3YQN84E7YXqpawu+3oc9oRGTUYeJFK/bao2R\neMdJ+7obWzFnLRjso9e/Tlq6HvpP7bekmgtvr8epBFz2I3etbDGnmLlTubIGTy3SRfYGs6n7O99P\nCXSCxsIjLKeXNMHGGwu3MXmQpFuNhE4UUEocNUxUOg2SLWluUCyJ1HuTNRX7KsmW9gFzJRVN6HIx\n18qGrz1Wg88bd8hnbr4vHjc8uvrnuqcVbcfN+bWJ+/lnv+dVXn3OfX14cEAqCjLfNHTEw4BNCZWw\nyQXLDm3MQDF5OhxxpvKzlw05mbpy7/wyZF19CYB7c+e59T79Kl2VFi+LL5KrIaptLf6pO1PPzn7J\nPbt7OeePJOSS3aOQBOKj0ze5UA94vDbUmfMAp9LQ6F1LuCbEblbNeXTl7qfoRhzGLhmdz+5zLjap\nhby8wdUxbSEF64sF4aHmdtFy583PAxCVayqzIVt/d/ZMbAp4LX4nw/P6ZOox7/XnjKXX2EvYEp0k\nlSHZyISLQ6EbW1KRhiRJjFUhu6jbLa/ioD9AkHIi8f116gornsezOmOpykH+YE2jjK3vzyAXeCct\nt/+34jCkqFk0LglWNS3LDY6+M2IycRiAl7/LbQqfvPkS1/dcLd3Dx1cCz69z0sq91E3jFt2MhESV\ngYtlw+KLbrP40mGH8UvfB8Cw0+dY7nUcuPq/9RtyMfwGBGQC41ZFia86fRBmDNtN8lA4+8uSi6lb\nrN4oIRVpjT/ZY9P713geYqYj6QmiW9VYT7wQXksvcn83zM621HK+79OsNmrar7lncONT9CvnDi/D\nHulE4dPiAcsz93nzbMmxEomf+UMuC//qx465cSCKd7PC+hsVKp+k58KKtlxRqYuzFW/jYNShFqbB\nb+bsC7C06Pd4fqwek+WC+5qDZe5etnVxRfLpH3Jz2LyNxY27n0bUkWj+VWVarafU6sodlhVtz62n\npgh4dOY+d+CXWJH57I/cuhqYDl3xNjZXMxo58OWDBdlNwcNjQ5q5uUgKl/AO7IxM0PVFHuKfuaRs\nv3NMkipcmUcEE/HOv0vbhQ8729nOnrBnw1OgpSbjuDtioNMz9mv2xKyUVNn2RPDbhlpybAMpOO9F\n0Va1uYoCur5zy+OwBKlAl2uPvdaVk8axOzEuarhUY4y/iplJ4fjSlEwzt+N7dUAsQFinpw7G1Qmp\nyvyX6xXruRSq85WKYnAwiDh61YVCH9PJ9vzxbRKVmzCGQLJppknwXnAewid9B3EtPjLimk7x1+89\n5F88cGWlf/aPLpkIC9D7QZ+bhzc0he40SOsudSx5tEswEmTx64pELMhh2CXaUNaJ+PXi/ISrlbyt\n1HOs2ICh3tJYt7alJ4hxT4IzbdIhVDgXlFAnSi6WXd5W01WnaSFwSVcj3og7F18hkWZizy7JIucm\nk8/JBF3uDCOOXnalwdvX3N+9ON5nb6DGJ3oU6sSM2y6BSqCFF1CKyaoR65WtahDkGb8mUoPSYa/i\nOw6ce13nZzxU8nAtfoO1zXn7N/+hG9PgFigBbdN9Vu3bGqu8lfyMIBD1Xq9HIDq+vFiRCW1YJCWB\n8DejrvvdXpQwvxJVYG7pbijm+gmlvF5vHbCnROmqdut4Vtc8eiC6ueMGRMGWtvfw3ccx6BZUzftM\n3PpBmIdHx0b0G4+h8OJhAoFYb4u4IRHXYqqQAsAI9hkGCeEGztsLSEX51e1EeB3n5meLFhM4l6qT\nSaHH1gxz94JdzeZcKhwJlj6XAojM2gKz6XI83oDyQ1I98GFlaUUXvioLen3nEr5680X+yK3vAuDm\nnnuISRoSqDJiTQDC15s4IVCrXu/Q9WIkJzXeR52S1af+n1/jt99wi3ixXvO133LZ6c9+9oL4tntp\nPPWMmEFDtNACHCZ4hXs5+m2L2QjmtAY/EdXbSrXy8zmlNoJxf4RVPqA2lo5c7TSK8QR6sqKk9+oE\nX63hppNga0Ge1wvMhnewThk73A1R4/4+aDp4L4qC7K0ZlXD7SWiIvQ2dfZ9PvuJwAx993oVivW5J\n5G1a32OiVj0xPpT5hn7dgLpcy4FwFcuMWi3XYWVB9PoGjz1R/X18nXHxyI07070XVUMi4pW2vdy2\n7YfdMfmGB7JwOYBOJyS07gRZ2xUXmvvpIqfSvY1TGBy5jfxopJySBw9UfVp7DUZ6lZ0ywM9ERR9H\nGNHwRQL4dcuafOrmuzzM6YkYxksjoomAVYuGOt6RrOxsZzv7A9i3K0X/l4F/C5eBehP496y1U/3s\nc8BP4ZrH/qy19vPf6hrWg7bnyEsv1Ql2c38AYvKlCrbw304v2p626jEhN2CkuxgOI6LAnSR+2hIJ\nlpqmBiPZ9cWV+BZsi6fTmkHF6Zkyy4ndYldXyxWZaujt8JFuJ9rWv4u6olBoY/HxBu7U+cTLH+H4\n2B2P475LAgbEeJryprF4CoPawuIXyojK7Q0OjrCVOyWe6z5PUTnoa+IZ+so+v333gqMXnfs/nOjU\nLfep1xv3ek2k321jy1rSbGHUo9Znn5+7ROTjYoYvuHIY3aavTL1vU8xGtMD6IEqzOhfRS+Dhmw0h\nQcvykZur+cWS5UKu7dEeyys3L3uH6hysMu6Lui27OGM1VcXET6gFvYhHAbdTYRIS9/e9MMGXrlxd\n1/jy0qh9inP3LK+yjLYSLZwa4op5gZGcXhvUWOHUy0UGtTAZkeGmRFtee+CSxzasWKs6UXshWJGn\n3k8oSneji8xd4/LilF5PsngYphrffHVB0BGhzOFNru9JFk7VntP8YkvQOjUtrajn/DigLy+tMDNO\nHi40Pr0LoU9HsPPTizXxgcaxqrYViqpdUM7f2cf5re3blaL/ReBz1traGPOXgM8B/4kx5uPATwCf\nAK4D/8QY84q19ve9K2MtYVlR58GG3IjH0xnDvmJOv6YSGUiT5BR6iJFi8jatiUWm4cddQuUGwnCI\nFXzY+jGhWnlTufjlNMNXT0UYxjRiX04aw7Hgz/cvzliLa+/ykVvkwc191PXKomrIKgGHfJ+RYsrB\nXsyhWIaM2bD51RgBfQI/YqNOaUzjyBeBQDFk07a0KifevtXj+/dczL1qIREH5fn/9RqPu26BHfyA\n458MOMNTm7HX1HhabHHTOqgssG4qVjO30C8u3L2365Jr1wWv9T1qKWsNOl366owsWrOldg+0oJPU\nYgXCovToCo5+uO8zP3P3P728IllL01Jue5kOyU6+4e7NT8lat2E1xpDgrnfY/wjDiXIbHVUTwiss\n31SNKsT9WJkZtXgq63ZOlilnIil6L/RBILI8X20ZkoIwIhO/p5+DJDs5Ev3+w7ohkgpVfrEg6LpN\ninlGKbJEqxxIYGJyCedkZcn5pdtYCioOYumeBgmtGjZ8hUlxbehEbkwTG5F3FR6EKbHyavlljaIR\njNZb5CWs1fNSrHweK/fTH/do9MthFVBsCIHepX1bUvTW2n9srQJJ+GWcZiQ4Kfq/a60trLVv4ZSi\nvvs93dHOdrazD9Xej0Tjnwb+nr6+gdskNraRov99rW5bzvIVkfHoKoFlCAg32dQoZCwJcJsZjOCx\nvsKEybBDMHI7cVFZEk8ddZFHvUns2ZbYc0mpeKDTxyZU4hCILq94UafSW+drZh31+scTFto6C7sh\ngKnIVe7wTYEnPQhjDLGfbT/PSsXaDt2eaoseVjwN+CO29BxNTrNy1YW2ENho/ojLR18E4GT6RT45\ndt7N2fqSeexO2ItpRF06DMT6zNXPk3BM3d001Fg8ufambTBqMKuaAqO5tar2HO4fMBYN2p7XJ9b3\nB50ukaToo7pFWCDCSGNuAhJJyNVZRSo6s/6iy3Dswqb787cYb0hEzIYluiCcuSQp43zjlbPIs63s\n/L/ymRsciTU7zEUQs3iIidWMlR5SiBauqjxHkgLEUUUtkpUN36PHklIAIq/+5iltKPBVPYiGPknh\n1tH1Qxf6ZVdnzAQhr9ctrXgoiuKKTM99I5wTlpZcsORlU1FtNDmChERhRRT3CfyNnJySiNk39SU7\nC4vyjLSVj5FwRRiXjI/EvH0iLdVOSqXwYRjZrar4o4ucrkSHRiNLW240Fd+d/YE2BWPMzwA18HPf\nxt/+NPDTAN0oIGg82iYkkAMSDnw66hOIUw9PL3fteVvh1UTtr0E/xYjEw++VhBLFMHEA1Ybsco1J\nlO0XW4o/qkiE/ltGsHfNLcZVPyVSHGOCiOqxA7I80udWD6fUai1uGsuoJxc9Cdn3RrpeQla5F71Y\nupejHVvCDZt4bDClQiJzSa1cykbF6uq1u0xFOc8qorvvFtX8UUxv6hZpmva3giJU7ufn4QW1SEBt\n5wZW6XJLuc0HhE1NI7KXNFT5dr/PcwIKHd/qYdpNd6kHagEOohDTU6VB68yz4ZZaPdnzaVbuc4+j\nA5BY7tlrZ3QiLe6hKOcDw1p1s9WsxUtUdSoNSU8dod3nSFSNsqoGtG2JjSTFXhd0Bm4zbL2GciX1\nrfNTgqHo8VWSbMoGTxt5m8b4qi7ZxKOjjtDsqmGoPpYb19wcLhJoLr6JnM2FJq3iLo02oaVyHOHa\noxK66+rkCk95i4ODMf0DF/4lY5++NqpGIU7h260IUkG57UptbYyVENFet4NJ3PcPlO9ZTUtqPd+9\nYZdWZLXJKN2CzLI2huT9zyn8rmaM+VO4BOQP2m/2X79rKXpr7c8CPwuw300+/P7tne1sZ8C3uSkY\nY34Y+PPAH7XWvpMq9ueBv22M+Su4ROPLwK9+yw+0Br/x8L0ZM7lW1/0Ovvi263WPJtgoLVtiufyl\n6s6drKAyLokWFyHVpoaeV1i5mtG8oBCev7jjkloXiaEWA3DSDXkwdyfCfBxhhEIK9iakS2X4JaVW\n/sbrvNmqj8AaDhMBeqKYW/vOzc+zkvMzd1Kk/DYA4/alre6iH2V4G0KFoIcV07CVVH0wDEg7Dsh0\n8HKX8tL1WrzQNSymzsV9M59z79RBXm+dub24vXHE26I1932LL3/feC2tiOWawCMRM/Bex91vp9sj\n0Em0zDKqXKFPW4CARfsDQ8/IE1JSb13n20qMV/lbivSMNaGk2UYvHvJYEGMjbst+WTOfSMwnX2JW\nGn9gOBy707oTN3iigW9a5zUFkyNYqPITpgSxzpM2JhC8u/BCaiX8WvEpBCQESqG1TU4l8FJraq7W\n7lnayMPrCd6ujlJTpwQrie80UwpVGup6ilG3Yr10VYGzy5xSyexFeY5diwwmLVgr8Rev1jxWD0Mi\nEpqiavC3pbSYTN6IHxUkSpTnTUBPfSpetKn2zPDWbg6joGWpnh9bVATCQNRkFGvFI+/Svl0p+s8B\nMfCLxvmRv2yt/fettV8yxvxPwJdxYcWf+VaVh53tbGfPln27UvR/8/f5/b8I/MX3chPGtnhlznLp\nYdXVWNuKppRGQpCzVswZeR1CnW5GsdkqCihWou3y9/DVqBIHPsGGuHUY01FN237CJZGS2ZLlgdt9\nH51ekNVuZ5/dzxgMXFIntBmTfXcKNxK2XYcZzUbGLPa4KXLl4+vDLY3b7GLKaOROvKV6+/38Lr2b\nDpln1nMiJd28eoFRs9LGe4gD8GYSXnllTPd1l5QrVwGPLhxe4vV5yfLL0qr4TneinGVfZHGhcdTT\nbYmzbQy+0KBdA40Sd5E8qV4vpBfrRCkLri6ct3H3/gVt7RqXPvHRl7l+4O5z2Hf5h2x+wUInZdZM\niUWVltoRicY3aUpOcjcHJxcS8Nk7orpyp/FovEcsSZVu3OOFI4fqvPmRT+J7LklbSUqtzmfUSpLe\nf/yA03P3eR06xNKkOLs/o6txhULCjvsdckG78+WCB+euXLguck5U1vMDKCPnha3UtDQ9W1MrQVnl\nU0wjQtsywJcwzEAJ7GliOb/vnke2mlPIS8uzPqXG/Y3lm6xUktzkyfY6E46vufXWp8EXR8a9i1PO\n5b2W1hLKs+oLtmyDZsveZeseJ+JvSCPol+4++/GAxntvJclnAuZsPAh6hn6vu816d+I+qOY9WxUs\n7roFdDI/p1Ir61AJqevXRxyqTdm7XjJSPdr32MJgmyrAiOarkGv88N6UVStuw/UQX0zM8Y2URhRc\nL3ZfYjB2L3J01z3Y137t85wrwZNaMMZd73a35WPX3X30b97a9koEWkjz6YoKl3zs9rt4uLAjiGtq\nqSxVAlBli4Ly0i2IK5a88ctfcb87n3F/Kubqsc/oeZd0y9pND4dhmbmfr5oOXSWqImsJzSZcCeik\nbhGmykjtdWN89Uz44QvUYjM+y6YslBC7WMOhRFaaDRak01I9Eh5jvSa7UojWegyvuUp12n+Rz37a\nbaxW4eGy9vCu3EbXJi2l5Ncnww6f+oRo4Hs+gSDN00v3d/liTdk6jEVVVhSnav22S5ZrwdGbBb7E\nZfJIupOmIbDu+S/OKy7uud89WeRciIjGKz382L1YZsOqXeVk2jRsXkJHYVWUgja93sTN5ai2fEkM\n3cuy4domRItDIn3efDrk8VT4hbVYsgeWg+FAcx9RzdxnRFc5C6Xr9hOPZJNIHG7a4QPmgubv7R3g\nq+Ly4PEVB6Lki44iiva9VR92MOed7WxnT9iz4SkYn9jvETYeqdBzUZzCxt33PNflBjRBSDRQU43K\nXFU2YykdvdEqw47VtGPsFubaPK44WbgT4belsfBwbdhXp1p8veLw0CXUot41rNBq8WFEV2QnvOi8\nADM3LDY9Jm3IzbWQl+FNSkFQZ2+ectUTrDh0BZhH64ZjdbodvPQKk8KdYn4nIT9zJ+Xbj90pMX3r\nq3zxDff1r3/jy/zmqfMkem3Ordh5Hn90OAS5u2/d+S0AsqDiRKSk5fA50o1egvUJ5P3EvkUHNivN\n6+LhKWf33d/1oxPOryRqc/4m/VuOKDYJzjDd590cCSlJf0IydCfR1y/PuHjs5vZrjx9zMHCNYMef\n/sN8RuQqy57zbK4uT4mvK/E5tSw67vNu3Jiwt++eQzqvqdQp6guDaLyGtUKJdr3gpRup5nZI/YZ7\nvnkZ4O+7+fQjB5OJvSXl0p2wTTElyYULqDIe6Pk1rIkVmkQbjUoi120LzDODp+dr05ZWjN6l7+b4\ncppTWucd1HbB3tB5RzfHY3KFR6lXYnGhV9uRd0hKP3XX63YHWJ3y0+UBtnJl2+XKciopv4f3pTRu\nSkYjd43nOhXd1q2L6WxNJdbs2njk0Xt7zZ+JTcEPPMaHHUapoc1UYzcGFMs1bctqQ/3uxRiUMY83\nTDopifoILqePibpuMVL4BFshj4pEoPruTQf4OQgrjgQ/9boNo4360X5IJX3Ih03B2w9UVe24B5BH\nDQO7ad8GPuo6+cY3XmGtUOLubI5VlaCQutPSrPBeet797mVFpTZcao/TR26XeeOOu9ZyFrFWLf2x\nGeKJTKVpApZ6alXYY1E5V3R5T5x8w5bTU7eZ1suAA91P0AkJlZcd7CDGAAAbxklEQVQJ4iMqbXpr\nkdMsbcjgmnPbw3hCOnCfGw4mhGKKjpJD8tJ9drm5iSRirrbgddTlqnaw6/6LfdaX7uXO6pB1657Z\nqnILO2xhEam7dHVBvnAvwq20S0cN6LbbJQrcSxb31M2apfzGb/0KAPffukTRH4WXEwnjknZiEs9t\nPrcP9ZKvJ8xrB1N/cG/BXamF3bm65JGqS2lsOPA2kG0pa/ktxUpVBlts+1G8esLjh2oN3woBlwRd\nt4Zu9I/pDR2G4mJ6j3s6V1YXMy5UiUnV1p8edlm27tnspyHzUmHcYML6sZuvs2bK3ak7RFYKFcPG\no/DdBnFydUCQKgTxY5a1G9PJxV1iYS/ere3Ch53tbGdP2DPhKXieoRNHjNM+azW+1HmzRXaFrUeo\nJphrYUKgJNdR152k4+4LxIE62ZqAQJnu3t6IclMxyOZ0W+cpfPZluVlrHzNwJ9hy/jaxmpmCoqa/\n/xIAl6d3sOqu7Ev0pe/1KGJ3kuzvpbz4nEuoxXsJ1Vyw4X5DZ+I8lvVMsGyv5AVpS4ySlFip48D4\n7AnGfFy63f6Mh/RT55ns3b7BxZuuGnC9XxFKxu07bj/PauxOna+IwrmYLRiKC6GKLOhUKYG4t+l8\nNNSa217ikmSDvk8qdo9gYJgE7j4HL3W3WIbW6+DrZGqUvEpNy+GBOgOTY577uEvwBf4Be2pSCwcx\neM5rumici2+CHuHSPTMb9qnFOBztHeA3Onn9Dn7oTrwk0jNoZrxyw93brcl1Hii5WOY5ibyJa/0B\n/cB5g8r1knoh5YWg6XFKJTLJvaNj/JG7jwNijODYrcKHZbUiljvfzmp8EbWEZc1F5v4ukQtvSBn0\nXfVhFE0YSgm82r/Otch5JnmnS1+s2V111CadMYkaxdbWo/KFfuxljMVYbjv79G67uW0EWx6lCa1C\ng8nNfVZKVh/O9slXat4jwdTvDRv4TGwKGANBSDyaMBAAY+ovsIIV9+OEA7HVxJMuvuK2gRSb4nHL\nauG+Ps8W+Iqz4xhqQYmLIiHVprChi4/2W5Yi0Rx1A9ZSi6oOwabObbsejTm/qZeiEQVT6m+hsaEN\nyB84ty6aPM94rKx13aMzEgmtYm7j+/QFjukMAvxMHZx5hicoaioy18HhHt7M/f31FGqRZhz3B0wO\ntTn1DskHIvz8ZacdGNydcqlW7uW6pNSL3gtKglIAolGPoXHudRW6MfViQ9BXXqbbYyVJ+V7Ppy+Q\nTb5cs566hddM3D1Y/zqjm4JxnwU06mwtozlHkw25TJcLbULPSyj4wXJJ5233d9MQZuoD+e7xjCDd\n9C0sCTabT1+qYPF1Rp9RZaGyvCTg0WJ9ykib7Pi55/A2QjMr92zyoiB4JEKW/RjPup+PK8NE+Yze\nKCDeKErJxYeKx5cbcp1m29tgmxVfft2JvdRjd93hrTHU0qjstXih+/5eOiEWoC7sJJTiG41Eox/v\n9fAUxrVFQZi6ryfeNXqq2pzeXdFRKNRG7tlMekP62ngbW/FY2p3nF1+lo56J1PbIw/e5S3JnO9vZ\nv1z2THgKBneKNk2Nr+pDv1tSKKk1Sjr05QfGNsCK98CkzrWszqdUIkWJTEsiyvVgmuMJsBO3NeFA\nMunyMKJ1Q1e0ZI3fJ9xTdt4+h507byO4dkX8VXeiNxPnrRynXe7rxLSVRyPt9HVUMpIXMur26aRu\nLL7gqenIbLdhr2poBZDxU4uv7rzJgXr+Ly557jM6aX2Db1zGOvJAqGrq5YJmLpo6AWhMr0spvomi\n32OshJnfRKSJ+7yUlkSUdZHEZ+J4SFfzE/sJI4VmZhGQC5OxWq8odIpForEbDixGLvXtTxxsohVM\nfItYvAhN9E3a/a5xv7tvWu4fu7HO7lyxVC6sW0+olGBdXs7oixI/0BxHRzX+SpTy65agceObjPeJ\n/LF+N4S+gGHikswenhOImq+/t89129UcVgyP3EMZBX2SxLn594S92MtjnttzP390taJWErBtPK7O\nnZfyhpifX+4cEe3JC83ttkoWBikDMeGFQYCnud2I2VdVoa5Z6PRTbObmJYlgpVf01e8+JpDsodWY\n/HXIsOc8l7cWM3JJC+4FEwpxdpq2pow+wC7J98sMhrj1MVVGoc6yNE3obLoh/Ygocg8g8PugjHpZ\nCCizrjCqPgwbg79hRVpOsQeiKg8Tkg2nY+4+q2g6dFXVCG+EXOTuIS2PGnqK1Vp/j7rnymzVhoiz\nbpBkIokP4ULkLEVDrL7XKE22hCqJSlZencBM2Hm/h6dORS/qEW7VlNzqee7wgIHak1MMVuxPyahH\nXbv7vLz/iNO1qxJk1hGOnpsVb73t4tpg9DzeLfeiJ52EVu51abuY2i3+1Ymb7+FBvVWWCvoVoQg7\n6qVPofh6ulgSyuUldDvTqrRMFMsnNPjWzdu6bglUZisqy3km0I+Y8TEel+rEvLi8pJQWqB3OWBfu\nGl7Q0qn0/FRm8IoRXrtR/WoI9tTbYYbbdvAiW2BLF++3iQs7gjrAU65lb3+PsKMuybbB18Y56QUU\nelG7IqCdjRqMKlHx8IxMh4HX7fLg9A4A3zh3+Z6WnE98p6PfjzoXGKN26bChFplwZBs8HWrFwt17\nWaYkQuF6fkyquV/YiF5nE3Z4DPQcNvocyTBAexTrs5yZ5jMZdllJ03I1fURVKLHyLm0XPuxsZzt7\nwp4dT8H3aSoDUnuOyhJ/k/VtS6zCAOPXtMpOR+LIq8Y5XLoT2OsUpFY7435LT7LfVdTbcjcG0kM0\neYkv/kFTxhgx415Wd6nU0JDlV6ATxhPtllfXFBum6b4H1939ZCZisvHUKn/LNt2sRLHdLjFinbbN\nFARRtZkl2RMZyLlLXs2XU3oDnYieRTKY2DKnsu7zHnzpLnfmUmO+8VEAFnem1MJQrC4uMc9JIMWE\nW+KRwPfJ1WG6RtWZ85ZDuckje4wvHIPpdlhfirrt9OEG2UvntuvgNNOGXF6Dv5zhKeMeGkAajedF\nw92TjWCM+6z98SHTcxF6RSGxPMS87hNtVK4HI3K5L1YJPn/5gERKXb5tqRdiRKbAeqImWyyoBcrK\nRdeW1VPmG63Qi0vWC6lq74FRJ6JPF1/XSZXYXuantJVLVjZZSaw11AkPaSo9q8L9zclsxqtd91m9\ng5u08v5a08cI6WRNTKUejE0FaL2aUYnyr+wkhJHzlKaXjyiv3NfdAXipg9vnql5MBl2W4qJs2pLl\n2w7j4nldkNq68Qck/nsLH3aews52trMn7JnwFPzAYzDuO3ZbYQGstahl3xH/qAToNThRCABxE9Rz\nn5lO8eEwZrl2iZ9eFJFnqnlHBcUG8SuUXGgMrfIPVXZGJoUXv7ePL9anYT5k7G86It2pdFVmrCRd\n1/U8FkvX67/MRqzFPhwEU2rVh7PSxe/+6YJ4MtD4OnhCAgbRGaX4/U8l7rHIVhyr668djEAltsq0\nTE9dc9SdYs6XxTY0VAOT7exhcsnbeSGmo6RcEOIXSlDFOazd91fS1fS6U/ZQvqBuaQQPz5uMhTQP\n33r9TaqFTuOpFMGPr1FeuTEd7g3oDTf0YTdYqQx3fn7GqRqvOp6L8ZdXM5YPhdwr1ng6NdNrwy0N\nX+BVrKWXsJ6LYDYFqw5PE6YUSyUll3cIxSxVVj4rze2icLmWy7MZX7/v1sXyIkM5bKKLKYka4bz+\nCl+4FStYdVZkPJJHsy4rgn3nQfijkMmVWw8L8VQssjXm3D3rfj/A0xpa5jOiwI2vsiXz5Ur36W7i\nbJ6xlmThsOPT1xwuyjXzuTzdXkIlusBUnBTNwmwb6fK8phCV37qcEYpubq83oe18Uyvl3dgzsSkY\nPAIiqqLCsxtAj6HeJNq8mkaQ52IdYcTr0kQbOrOW5VTuYgZ3Lx2gZby3R+q7lyw+uIk3VEu1JMs7\nPUMiwFLtjYgE7ummx8Ric14cNDRaIHHgHlYxy8m1SV0uPRY3nEv8aJwzStwDDzoNUamKgPQlo9TS\niGCjsEsqdV2agz1Wp84VXelzR6MOqPuOvgHV1asHp9ydubF+9UHGQ4VSiV7WshdilXT1O+Ot0GpV\nNBSaw1UbsFkntSjubeaRCyBWkm8FZvNsSS1Ny4gKQUdYPHYvWxgbhs+7e6vjgFaJuqxdcHXiXqZH\nWUtPUNuZ6JKvpivygboPH2T40YYHcn9Lt7e8WpAbYStySR4FLeWF29Rt2N2S06z9ikRjOVv7BDoY\nqN0LX64bTh+7UKtdraka9/JftleU4q4sD2OeS5yL3ohS3i5TpqJxC6KAgXGbmokiXhi4EPMyc/e4\nWhdcSDPzuNqnzd2zJvVo1ZsTGkurzlVbKSQqG6x1n1FVXRqdXkVVkej5NeuAVhDxtebKX52QC3tT\nFSWnSi5WRclInKWVnxBt5Mzepe3Ch53tbGdP2LPhKXiGoB9h1j5VthHC8EDstFlV0xcLcmnWGCXJ\nitztuOtVTtl1p8ej5QWRGIUzf75VRx7mc66Js7/dJKRaj5hNaSpgLln3q8E+Q9G/XfkxGzGKWCXG\nuqql5QzLPOO3vuwUoTu25vr3/zEAelOPJnAeTcdXaTL2tqIvnUEP/yMiJZ10WGssntzF/RcO6QgG\n287P8FKXEMyzK77+ljulv/R4BhIvSW876K/XLuhq/E033hJGV3XOQki62Pdplfhq5Wb61qfWoEpT\noFwm83W2TUru7R/TCQTR1WcF0R62dJ5C4odb1fA8tlyqlHdVGc4aEY6Uc82Vz1Kei1kW2xJgTY9W\nLMjteoVXSKvizHkK7SAmmbvQZW4sfWlTpntDKlG3ecWSR+o2nUkj4cFb9/iGGphsY7fdletlj0pc\nDstZxLnKq7lQs68zZ55vyFpLvPKO+92zh3zs1U+5exq7OXzz3sVWeCVYVxihW5tysS1nR3FIb+hO\n7qvHKntTY5fu+V8GM8q5aOomHUbiCRn3gq13ui7VAboqyFWevDO9ZKFkbacb46d6JlGL//9HkhWA\n1noYW1N3RQFeNBgBUzq2oRBc2Usymku3mDLRvpdtQKyM7bXJ0Za2PE4jfN+58F6VMb10LuUmGXuU\nDslrt0FcsmYhWLEZremrvn2WXTG56dpvI7lvNdsUB7UHj6TGc5quWYhfr40HGNXWA6XsfRPQO1Q+\no/ZBUFTzsCC+rgUk2HU7v0umFyKOU2rh9ovFigePH+riFUORcKRSljr2U8w1CceYFmM3LccewSZH\n0XqwDdPcXPbjfZJU+RW/oBCRS5vldOWixwQ0gv+GQxfaRKVHT5ufaXN6fbeI67pmrc20DEqGubun\ngI3ql2FcurF6BwmxDoArfEbCKcTdfXLrMCK5nmm9uLdtAY+MDwKAheucSOQj1UlOJMn4/J7bQNMa\nbkiLsbKGoN300sTcX7ucUBWuqQQLb33lfqqYnniF1zmE++7e+mXJ8VhVED3nyvYplX+alhkj5XBM\nHRDpUAsbj3AD5BLkfRxGVKHrLs1XOZHUpHITbNmsTRRtAWOtnkFVB+SBW29x6xOXAj2lXUaCm8fp\nkFAYiHdru/BhZzvb2RP2bHgKfoDXP8B2KhLx/VX5mlyJmKBt8eUHN2VOI0RfJaaTZDCgH+o0TsYM\nxWRL16dUPfrsrOCx+tFHAhMU64iO7068zE6JXnAn0MFHR/R77utPrJ7nRNDcsHCu6gMDm8Yz08Jc\nLuOj2QmxePLiwz282u3iq8aNybusCWqRcGRH1HOh7i4WLASF/vprr7mf9wfc/owLH46u3cBE7j5P\nzxZ01MBzazAhPhI1nVBwrx4dcSXI88X0klrJ0W7SJVQirmBBIOBDvXL3FvlLlA+lMmuMqMKaixlx\nqTAmy/HmmvOOu5/Yq2Gm02xQk6jbM7UN/lJJ3rbBqmkoEIrz5PGUQGzH/nJOqSrI3mBCKMh64J0z\nv5LehXT6JsuKdqyTz0QoEc/lyZJYmJPVhcdaOpbRQFJyfsxzx64B6+ziAVNJuqW26wh9gL0wYiSI\nuBVmowhOt/gOz1uRq7JTZgEvfNx5kHtLF5bW4Zf4+ht33DUeRIwV2vim3nbumrhBjZ/EWrP9ussq\n1piszyJ2c7Q6nzJXiGW7PZJNh6bIhaLYUCshPOp3GE5UlWuWxLXzdPpNQRO8z2zOH4RZoPFq6kVN\nq/JX6dXbTHbpF0QbDkKSrduVifhyfX7G2XJTIThjMXYPYzRMWCpWn52fsJYbfGPsXFnSiCu1aufV\ndSZDBwA6iD+Bp3bp9HrI5YUAVV2FIhtpSJnwKvSvekSqWnS6KbZwi221dKCSy3XB2T0X16bBmvaO\nKg7tiDO9hP/3A7di5sU5P3bopOiv3Z5g+mIuKn+D4bEjQ+mGEQ8E3jm9dDcxO6pZXLiY8xtFzjUp\nE/X8El8EslUVUmuT7Yq+vRMfsNhURvKMkXojru4tuHzs7vPy7G0S6+Zl8NC9VKdYCkGw/80f/WO8\ncuBIcQszoEndBnI4vk4euoV5X+W4aj1jqD6BxbShDBSW1BFWJdyLq8W2HbiauxdoFfoM9GxM1bJU\np2mRl1wI3p23HYKNvmfXbV7FMuP80m3Sd++tCeTmj677BKGbg+ODMbe/43kAvrZw892eXSNUNWA6\nz2hazaGXk0zcmJKgq3Ee8Ztrl196cHHCx15xnzUehyy1+Tb1esv/+fAtlxtZXOVML8QT2elQtiIM\nMu1WCLe3X3P0gssbDaUv2fM7eOovuVwUZGsXVk7CliR0a7asQ9p2o/D47mwXPuxsZzt7wp4JT8Ez\nTtI88wsuGndKdNYdIoFCChNDLfhpBIm8hsFE0OAmZX4umGxQ05xJHg6PmZiNH13O6UpkxBoRqzQp\nJ19RJve7Aqx24KWN2Be3wnkFwWKt6zmXrPZABQV8Dyp1F3aiMd2+YL5tnyYQ7bwIWQL/ANu4U6ky\nOe3AJaoO/TGREmavFO5kXGAZyuPxO9c4ye8A8KvlCYu5NAV7LQ97qqcP3Mn4z377HsuZO4Hycsxz\nn1QC0xgaZcBDbwCFm+d9sU9HvuGx4NjT1ZSuxnp46xBfCsyjUUIH93njvhKH5QnTiw1ALGGtOv39\ndM0d8TfcGkbMJCf3QGCkxCzJpUpt1nMCVYGuLk9Yiv7sZPYW40sJ/5QuGRiN9qmFG6jxCLQueumI\nay857oHLtqQUCC5J3H0WRzP2xIswOuizUiiZDnosRCJzkjacXbm/+8LSAcQWqSVT19He8Q3m95yH\nRG8PE+tZdlXpGEy51P0sFx5TQZfjIawlEuPXJUNxIOwfu67VMCyIxVwOCTYWaU25oPbkbR1MSDdy\ncuq+vapqHj52XuiXz9/Gr+VBDdItXZ7fz/DXwru8S3smNoW2tazzCjtbU86U/Q1yBlIs8lYr1oI3\nVo3BSB+wK3LRJvIYjtykr+sek40uROxhjNqB6x6diZByffci5XWBL5BK9lZAIHWnaFliVQUJ52sm\naueuhJIb+z5rPcP9PvzAp5yr2Wt6nM/dgj5uFsRSkQrEF9iLR/CSym1nEVe1st5nV9TqAn1R5S2O\nfpBbQ3Ec+mvO3z7X/fRZaZOqWp/9sTaRc7fBnL75+hYx55mG4LMfB8C3wbZnxG8z0r5yDXbD/pMw\nUeltcZUSikZ/dHtE3Dg3eV5CR+5qqLDkleQ65uU/AsC1/hGlMvWzh4+YLN28ZNWSWh1+t9QnUM67\neLlzd0NjyaWM9fC0pH3b0eAna1iMXbjVl2akKSLMRAQ3DYS5whk7JBAZDo9mnE5F2DtT+NEJ6fsi\nv+3twcot/VlbkUkNqri4zuuvO/Her95195DVFwT7rs8jvEwYJ0I09noUmzbqS7dWOmXKfk8dkDXc\ne+Tu3SR7+PlSc2+pVY2KR+4ehqWlXrrnkAY9SlUfjhJotXb6SUSr7spa/TynpxlvfMOFdmeProg8\njTW4QTV044+zDr7ZbDjvznbhw852trMnzHxTG/ZDvAljzoAVcP4h3cL+7tq7a/9LcO3b1tqDb/VL\nz8SmAGCM+XVr7Wd3195de3ftD9d24cPOdrazJ2y3KexsZzt7wp6lTeFnd9feXXt37Q/fnpmcws52\ntrNnw54lT2FnO9vZM2Af+qZgjPlhY8zXjDFvGGP+wlO+1i1jzD81xnzZGPMlY8yf0/cnxphfNMa8\nrv+/N0XO93YPvjHmN40xv6B/v2CM+RWN/+8ZY95b98p7u/bIGPP3jTFfNcZ8xRjzvR/U2I0x/6Hm\n/IvGmL9jjEme1tiNMf+dMebUGPPFd3zvdx2ncfZf6R5eM8Z811O49l/WnL9mjPmHxpjRO372OV37\na8aYH/qDXPv9sg91UzDG+MBfA34E+DjwJ4wxH3+Kl6yB/8ha+3Hge4A/o+v9BeCXrLUvA7+kfz8t\n+3PAV97x778E/BfW2o8AV8BPPcVr/1Xgf7fWfgz4lO7jqY/dGHMD+LPAZ621rwI+8BM8vbH/LeCH\nf8f3fq9x/gjwsv77aeCvP4Vr/yLwqrX2k8DXgc8BaO39BPAJ/c1/rXfiwzVr7Yf2H/C9wOff8e/P\nAZ/7AK//j4B/A/gacE3fuwZ87Sld7yZuQf4A8As4caxzIPjd5uN9vvYQeAvlkd7x/ac+duAGcA+Y\n4KD1vwD80NMcO/A88MVvNU7gbwB/4nf7vffr2r/jZz8O/Jy+fmK9A58HvvdpPP/38t+HHT5sFsvG\n7ut7T92MMc8DnwF+BTiy1qrThUfA0VO67H8J/Hlg03y9B0yttZve1qc5/heAM+C/V/jy3xpjunwA\nY7fWPgD+c+Bt4ASYAV/ggxs7/N7j/KDX4J8G/rcP6drvyj7sTeFDMWNMD/hfgP/AWjt/58+s27Lf\n95KMMeZHgVNr7Rfe789+lxYA3wX8dWvtZ3Cw8idChac49jHwb+M2putAl/+vi/2B2dMa57cyY8zP\n4ELYn/ugr/1e7MPeFB4At97x75v63lMzY0yI2xB+zlr7D/Ttx8aYa/r5NeD0KVz6+4AfM8bcAf4u\nLoT4q8DIGLPpVn2a478P3LfW/or+/fdxm8QHMfZ/HXjLWntmHWvIP8DNxwc1dvi9x/mBrEFjzJ8C\nfhT4k9qUPrBrv1f7sDeFXwNeVhY6wiVdfv5pXcwYY4C/CXzFWvtX3vGjnwd+Ul//JC7X8L6atfZz\n1tqb1trnceP8P6y1fxL4p8C/8zSvres/Au4ZYz6qb/0g8GU+gLHjwobvMcZ09Aw21/5Axi77vcb5\n88C/qyrE9wCzd4QZ74sZY34YFzb+mLUSLfnmtX/CGBMbY17AJTt/9f289rdlH3ZSA/jjuIzsm8DP\nPOVr/WGc2/ga8C/03x/Hxfa/BLwO/BNg8pTv4/uBX9DXL+IWwhvA/wzET/G6nwZ+XeP/X4HxBzV2\n4D8Fvgp8EfgfgfhpjR34O7jcRYXzkH7q9xonLtn717T+fhtXIXm/r/0GLnewWXP/zTt+/2d07a8B\nP/I01927/W+HaNzZznb2hH3Y4cPOdrazZ8x2m8LOdrazJ2y3KexsZzt7wnabws52trMnbLcp7Gxn\nO3vCdpvCzna2sydstynsbGc7e8J2m8LOdrazJ+z/Ba2AmJPuW4/EAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.3093... Generator Loss: 0.8099\n", + "Epoch 1/1... Discriminator Loss: 1.3734... Generator Loss: 0.6992\n", + "Epoch 1/1... Discriminator Loss: 1.4837... Generator Loss: 0.5886\n", + "Epoch 1/1... Discriminator Loss: 1.3110... Generator Loss: 0.9667\n", + "Epoch 1/1... Discriminator Loss: 1.4147... Generator Loss: 0.9200\n", + "Epoch 1/1... Discriminator Loss: 1.3674... Generator Loss: 0.6883\n", + "Epoch 1/1... Discriminator Loss: 1.2852... Generator Loss: 1.0330\n", + "Epoch 1/1... Discriminator Loss: 1.2894... Generator Loss: 0.9344\n", + "Epoch 1/1... Discriminator Loss: 1.1895... Generator Loss: 0.8798\n", + "Epoch 1/1... Discriminator Loss: 1.4130... Generator Loss: 0.7914\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVnMrWl23/V73vnde797/ObvO0OdU3NPbrfb7W4nbiuW\nlVxhbhIIEiQCKdwggYQQEeKKq1wAEQgJFEEQSMZRRBIyEBKZYAc7cdvVg3uoU9VVp+rM55u/Pe93\nfh8u1tpfdQGhq9wuu5D2ujn77O/dz/uM61nDf61lrLVsaEMb2tCanD/uDmxoQxv6dNGGKWxoQxv6\nEG2YwoY2tKEP0YYpbGhDG/oQbZjChja0oQ/RhilsaEMb+hB9YkzBGPNnjDE/NMbcN8b85U/qPRva\n0Ib+cMl8EjgFY4wLvAP8MvAUeAP489bae3/oL9vQhjb0h0qflKTws8B9a+371toC+BvAr3xC79rQ\nhjb0h0jeJ9TuIfDkR/7/FPjKv+jhOAptN2mDhRoXAMc0mEakGON4NMjnoiopy+pDvzeOg7UNALZp\nWAs/FgtGPnuOwXOlbS/wAfBdl9CTKbC1xZp1gxZbS3t1WVNWBQCV9ievEupC2+3mQAlAs6qp61o+\n2/qDDl4LYwZX+1DXzfXXtrGYNXted8KAozzb9cBx5XNT1TIuHasx8nzgyZgcoDKNtmEwdt2cg/Hc\n6w45Ol+u/t5xnet+eq57/X1DA82PzGcj31dU2geDdg1rDbU+7Douvr7P4FwPy2rfmtpidHye7+Fr\n/8P+CBp55nRySbZYANDy9SWNwdf1C/0I15GGjQWz/iwd088fzOd6fI2tqXV98zKnLHQs1uIGkbSd\nhDoXPq7205YVeSPPNk1D0ukC4Ie6r1wPx+gcG5cfWfhrskCjG3S9jtJfc/2dY8z18+v+2x953v7I\n3z548oO/1BYW+Urm8GpKnS4ByKbzC2vt9v+jU/83+qSYwo8lY8xfAv4SQNJu8ed/5ZdpSoeZ2wMg\n9uYEmRw2P9widWURn1485dnxFfAjhyZq0RQyCWmxpCrl2YoGx5PPW+2QUbcjn28eArDf6XJ3NJDf\nzUpqXxc0KKimKQDjZ2OOr54CcLWUDXH/8k8yfyrPbv+pd6m8MwBW37piOpkBkFczaj1AKKMwJqCX\n9AFYTJaUuohZXhLGuulLPUiuIXYTALqDhvagLb+7HNPohs6KFZ4ephe2ZK2jBi48mQvHjwl0Lnxi\n3L0hAE2V0bUZAC39fbsTY3Rjbnc7dF05FKlNsTk6nwVNKlvmspE1qFYO3Y4yutJh0sjD/bjH7kj6\n7zsRtS9tZ478PZ9X+E0MwOCwz+72PgAv/8q/Sb2STfxf/N3/nnd++xsAfG63JWPKfHZv6LN7L9Fd\nH97SELbkHW7jQilthDaQzntgK5mLVTllOpE5un/8gNPnMpa8yBkevQTA3V+8C8Cwd0TXkXfnJxc8\nWl1IG+mSr//8LwGwf2ck42iPaMWyfx23jVUGKReWMlMLWSM3SlnLfnKxYPVyshWBI58NDq4j61Nj\nqaw8X2i7IT6+u2YL9poRTjPLP3v/9wH4q3/z73P5vW8C8PY/+CeP+Aj0STGFZ8CNH/n/kX53Tdba\nvwb8NYDtrZHNSp+ivYRnMvByu0PpyudW/ZTzM1n8qpiSz8fSRltvuaspblcYSJbX1FYOdLN0cFrS\nxnHqcn4hXTjM5gDUX7lB4slBGW5VFAs5mCbzyV05yLPtKf1L2dzFSDbav/T1c975W9KH47MJaf89\nAG7Fn+VYzi7LCw830D6XctsFQZejwW0Azgc55fIxAPOLOUFXliLXE7jttKitbNxOMsCN5BD7SUyK\nbKr6whAqI4sjmYu5ragv5e9uUlP6ukkHkGQ6+b0BppgCsBcrw/J7uMp4kyik1xaG1VskVD29rUqf\nPJDfeZkw00Vo6Lb04DHHTKU/rutS6o3eC2CZyefAKtNzXPyBHLBgOqK6LeuUTZe8a54DcPrttyim\nso/9ra8BcDRyca0yiKLC1NIP31zCQtq2viEwwnAiZZC29KgDGUeLFnYkk7E9G2Fvylgvpw1FKnvj\n6vhc2nX6tCJp96pzj73nRwA8fKEhHMtlEHqyP2LPw3EjnYsPbnFjHNbilothUcuYylzaHYUunrMH\nQGMKfD2Wxv1ADrC2xFOmHaBc2gQ4Rva9a3wcI78btQx3bspGPGrHTHZ+rHDwIfqkmMIbwEvGmBcQ\nZvCvAv/av7ATjsOgE/FgMiOIZZCL0wWlctSzYkyeyQG7qpZkyjHNXBbTayxFqVKFaWCuTKFxmc7k\nc72or2/YMJBh998LMJ5MWOq22OrJgl6UDlzIJm7mMHhdDlb5WNr6G//pGzjLtag2ZxTdAuDo9Rb7\nr2wBMD2viHRb9AJZ8EGvIbor47j9nQP+q98TDetzdYeHJ8JwDl3pT2EcBtrP4sow3ZHPSQ/OWvLu\nRephHBVdQznc/rRglaroXNYcviR9n2QFHRGUaC4aHF/G6rZkjntNjW9kI+2FXVrIWAc7bWpXpBuD\nw4UnjHO7L+8tq4q2L787r085GOnnaY5ZyrO1MexF8vKxlXn1Og6T8hKAYGtK+UwP3tdK/tFvvCVt\n3H9MZ1v6ebcna+4kfbZVAmk7Lk4mh7ewUwaxMIgqD7BGmUEs4+gmXZpa2srrkraK+b27+1ym0t77\nZ2e8eXwMQOeBqAan5buEzW0Z/3aLw69KG4vHMyIZCgTCHNzgda71VSywViFd1kyhbnLenf5vAETv\nyVyZF4eMgp+WJ0NwVDrAljSVqqbNHFvK83UgTMFpSupA9oLvbmNU8nSN5ZXODgD/wZ/7Jf7Lbwsj\nf/Ov85HoE2EK1trKGPPvAP8YmZG/bq1985N414Y2tKE/XPrEbArW2n8I/MOP8qxxavxoSrIoWe4J\nl8yuTvEDuWmWRclCJQHX8whdvUEdtSPkFS29lW7sBng35O/TecDxWD5n3orlQjjs+iZ1G8PhC9qH\n2sdTMfDOScGkLzfM4tEI51B0xiCeAHBV9HHbohJ4y9f5ma/J35M7W5iWiJe325d0kfZeuiU3bZD4\nxG3h4O8XK/7s/Ka0Fy9J3pCb6eYXRKzNLl2Kz4j0sPp+hv/ZdwB4dp6TLfQGKlMKNQJeqX1lQUWt\nhqw0bCgjmbcoE4MtQNnOOFLbhjEyTjcMGYXSxrBl8Uq52fvb26C2FHfQwgmP9HcqjSxTzEh+508P\nMZGI7U36gMLKu1n1KHa07ULe58Uu6VikmHzYJ5+JOnY1fpcn35Ob9NJO+dLWHQB+6uufB+D8foVr\nVFJgibc2QE9bzFX18ldj2m250ZuJ9CcLAVU7vcCjTGW+vbBmuyXPxgfbNI5IctO53K67zyI6nz8B\nYHZVk35O3h2V79G/8xCAQfmnZJyOw1o6ELvm2rBrsKryNdWC3qW8440HPwBgq/1lmpvS96Aa0Lgf\nSAJrW4NXJxSzua6DturF+KomWSoMvq4NBI708/b+bf7tz/9ZAP5H/iofhf7YDI0fotrAMqAqAnI1\n+iyKEjuXiZymNbUvG8yxEW0VYa0vG9ePZrygYvm/8jOv0/Nk1h7H8Hh8H4CTN2Z86x1ZaKejasRh\nTQvZ5AM/ZKWHyT/qEj6XxS2Hu5i2bOQ4kUPsDH8Hz8pGemlU4G7L37+432XUERtFEh+x1ZWFCdUq\n3pQrfDXKJS+E5C+IwayxKdGflcVd64iZdSgbYXqTr015X/vjZ29Sn+uhNzW56p31pfyu4/lUHdlU\nad4QzOR31SpkZeY6jphYRdCeGtE6UU13S8a0NYhpVdK3yF3h7wsDwYloIfNcu3LA6tGAfCr9bOqG\nvBbG2W9vc5kJ4/SLkEANjG4i7wto2GoJMy3tBdZKu7/12494+Jti++nZJV/6ovRj3Z+4nuOkonZ4\nbZ9K7S7FvCBU42IZ9JjVasfJVO2YzDFqxG68Bk89IwEzGr+vY/L4nDLL9zxRI/IGiofyvn7ngGIh\n9oDd7mt4p7IOjhpBaeag82kBrj1QhkbX8vHqXd5+JMbonS31grUGFLky3nyMq5cdYZdGDb40hqCv\n3gq3q82u9RfAlsINpMVrA2Uv6vHazYaPQxuY84Y2tKEP0adCUqiqhvOzjEXrlNWVcLV0tcBz5Qa2\n1hDUYuGOgoawK1x1aeXm3woNr9+QW/nLX+7jdcTY92rV4tSKiyn/4kNuvSVegkdX0u6BN2TvrjhJ\nIhrquXBwZ2lZRsKNgxfP8Ge7AGS7IkZSlmS13LoXuxWfceXv7Rsd4oXcoFvtGC8VVcAdra3THeza\n+Bi3KNX3busBfiA3/dqf75UlVSHLE7b7ZKn8/dn2Dg/fl9vYGINNZSyl3vIr32IrxXo0lqxQbEV3\nginaOtYP3Fd1c6nP9ml7Iq249CEUAx5mi0bVNUoP60713Sq2OoZGgQpufIFfi6QU+gsShZNk7RSj\nRr7GyrOF61Nsi/eBaQIqubz9zXtkU3EBh3sD+v2XAfBbcgM37j2CUOazXuSkhYy18iY0pd689ZKy\n0WdckTzdZR/riCThpjGBlbX2g4C61pvZj5h3ZF3DRo2kdcxsqe7ZnUsOTqU/2TYUKpE2nnrBCDDX\n0oHH+s5tGsvlpah/733vu1w+k8+vv/gqALOnM9y+9K0IZkSqghTF+7QHr8l8Ow6eeoTqWg3s8Yha\njfGOyTGmp2vjX7/bMS6+q5LMR6RPB1OwBeP6KbNVQaqgi2WxorMG1kSWsC2bcDhqEam46rwkB/cg\nS/iy6nqDukcTq+g0+jp7nrpvFl9l5+7vAXDvHdkoT8pz/Lbs3BCXmx3RX6eTK1ZLeYdv2vi6u52n\nsgDWvcLUMunJsuJuKAyrO89o1C1UrCocR4E6widYVilBVw6mmwwxjWzoxk2JPBUTVTVyZxlpvVYZ\nLHuJ/O6wv8X7wQMAHqbV9eHOLqW/eWJw1PVWlA5NoiJu4TNvZMObSYFti+jetKW/deRQ5dJW4S9o\nfPneicFXJmNsRe2q+1HFWocGP1Z8QNihUnuN73gEjTw7z1eUjYwlCGUOi9ywyPVzvYSFML2Ly0ty\n9RIlRcMwlzYWz07l77ZiJ1PvkrVcZMIg7XxBS/vc8m9c4yGseqpwM2whfbbODE9dlT3aBIkcJs/m\neIqzqF3Zb2Mycp3DZpax9MVjFD13aI7EY1AqqM3Dv2b68r2oMGVleaaYhAcTMOqJmb4n4wh2ah7e\n/6cAXE5OeG1H/t576RVW6Q+l+/Ep3cmBvOdI9mmTNeSOzGHo9IjitdvzA1yEMQHBGn/zEWmjPmxo\nQxv6EH0qJAXqBmYriuWc1VJE7jQvMb7e+MMWPb2Zdv2CQn2zzoXcPuHOmJu5GAz9HYvjKI7BHNNy\nPifvGLjcKQWBZg/Eur31OKWXKPgnH5IpAnEYtjG7emPcb1G5ItqhcNimDqARLu/YFD+X/gSdhnCp\nHLqswZHbvUFFbm9AlqrKUEwwCjiyRUydyFhcucyxUQapvC+vmmuj1daoRe+W3CSH5wkXmbSRG/n7\nfOajyG2cDLxCRdFVQ603WhM1LPR5UpVy/IbGkzHlgYPny/d13cBU+9/2qEv5vnHlpvUAX8FL3iwm\nL0Qsd2uLpx1p2xZp8YHRTf5ZshCBjcxd4jey7t7YI1Dsxd7uLvNQb1O1yPuFS67ic01OoMjMyEtw\nKpWQ3AtQQ1ucyr4pjcWoyuAlhrgQ6SAILabU79subVVB2q7c8jERRSRjffKeywJReSarlKj/p6UN\nelyTekAsHnUli3n//Jz3vvu/yrBPHW6ph2oWiko1ef6A8bmoa73SpejI98HZY8LhQPuzg6vGUZuJ\n8dxtvUyrWcPmJziqVuEKKFrIwbEfSC8fhT4VTKGxDctsznKZU2YaZ5DnWNVl+1XITYWzLsoFK9Vr\nw7EM9qjrsFSMfDZ+BrFAVKM+sBYjibClLO5BR7wI4eESUvUylBmtWBGIoUdHreEDU5ErwCcayALV\nVU7s69+jiHxt7T+pCbflwDrFEhvqoVYEXlPm16g6TIjNVH1wMqwygEDdWNW0plK4b55lLFFmWUwY\nqIeiNfTxJjJHTS7fxWXOKpcx1YWlruV3TmMIHfk+8hrIFI48FBWs23ZxVe1yjMVRG45xCvDUHlBb\nKl0f21JvkB/jqirlliVRV8e3dGj0oNe1oQoVt29knD3XJwvl0CwiqObqetuvaOmB7e8llIlwDv9U\nDlJjLjCqlhV1du2Sa0xDGKrqEvTRR2gUYRg4JfjybNhYrFmrLjVG3ZDRwpI0Mgc2FoZ+mWeUCobr\nRg2rsaAt7dgjqHRdNVbDqdPrs1jakulEDvrZyTd5/wei5myNEno9GUv3XFSiMu/g7eQ6xw6dlsaE\nOD18VfMq6+E72ngubm3aKdYRe1ZgVthG1sS4JR8+2h8vEnqjPmxoQxv6EH0qJAXjQthzKXsu9rlw\n3yK117dKXWSclmuxLSeYCZd/Giqg6SJg55lw5XbYoxx+VxpuasKWQFDxt8lcsbSrLZM88wjUuLa0\nZ8SV3PKt2qVeKsx5qyC5ktt0pYAl4xiCSI1a+21sS6HGQw+vUrXC+BQqmaytwjZ2sOsApchijPjE\nM8aUKw1M8DSuoYnIUzUeTmYsI7kxz55mXKg4GJuGdiK3X6XApJVfUFyJOGzrBg3qo+k2xKoqOK5P\nWw2MtpEbzK8SfK/SviWYQIPOmiGNGj/r3Cev5HZzlgqT9jLQKEETLNGQETynwnPW0ahL2v46slMN\nm8ZSDmSs8anPRMFQXt7QVTDYwWdf4yKTBncH8o5dz6GY6a06Cwg6sl/a4Qxf19X4DaViEqyqDIET\nEaoB08YxtaqE1hrqStZ16XfwIt1zqWJWspKrc/WIbV/SeU/hz4mlyPRGr9b7IqApxaqc1yWPNdbm\n4Q/vcfFE8A1J/BnuR/J5W+1/C8Z0LqW/rSOPXGNlLmclnoKewv0DEoWhl46chfZiF9MSw2fLaeFY\nkbxsHVxHjFrbUCvw76PSRlLY0IY29CH6VEgKfuSw/WrI+1cOzoEi7L6dUU6FW1fzirPncjuUScG7\nF8rlNVnAxCkYPxVu/tu9C/xAWPAXfzal3xH3HYfxNeJru3tb3mESLtaGo8niOvzYD3aYq6vHpC7u\nlgZbTTVXggNWkYRD2yJU3rq6nJGP5KbpFi5lIc8MdsV3n1UpcSvRvkc0anSbFivaLQ2vdERamY+f\nM1UEYhJYnJnovds7Pidj6Vu2XdOeK4KwJ1JHfnrM+Tq/QQWtrkgStetQqoE2psTXfBBGXZqzoiCY\nSFstNyBd516oKxrFW9iyIdMdE2iwluM6OCoRNb5PoMZhayrcQqHXpU82kdvPqn0mjPv4hTzbeS2+\ntg9tObcZJhrt53a4GMvvtrfEjjRrLEGkmJVVg6/Gunxyid+WPoeBi9EApNVC3aUth7Ate8v4IUvF\nS7hVjQoQVEvDxVjmIIr0Wa+Hs6d+/rome0FtVGczJqdy47uIZGN6DbmR/n7r7Clv/LN/BsDbv/Y+\nS0WAns5/wFUt427pzf9iErGnEPqtcZfeQP6elivOM3nH0+VvcScRW0SyL3YEOj/AdN4G4LN7X+X2\nZ8WQ7vrHuK5gdWoiyvpHcnt8BPpUMIWihOfPLC0vYKEJVKrLEke9AeemJNNEJ8GiJtAF9TVXQs8x\nVGrdno0NVjOg/Oqv3SNdG/Bahr1IMe56SO/uddl6RQ5pPx9yvCPPtpOCruIiJqeGZlfDua9kwZ2m\nodJcDzZ0WJ+UBSX5ufTjyfGYtJR+7FyJyF3Mt+jdlt/d6m3RPhDV5mA+IgtURJ0Kwzu9mHHyVET4\n1dk541IOZhEsuJioOOhGxJWGde9qLMK0g6fxDKWTkcTCZKxtqNZYgbQhW1v71ZvgT1JmanF38pJ2\nVyI77WhBW8MBvZ5Pp5YDkKunoslW17gQUp/Sk77l0/I6Mc4qzZlWGqq8VBUtmHKYy3rYKCRP5dB8\n5bNf4OZA+hnHKx7+nwJkqjqyF7ypx6On0k/mz4lb7wMQLuGyLYfsYGhxlPm0QsV/ZBWTQtTHSVUz\nORNG9vziDGcpcx71DZ7R/t3QWBRvi131gLTtAauuvPv0/gl2Lr8z23IAq9xwsRBcwTtvPOC7/+B3\nAPjW+xOaUtZyee8ptlLGot6Z79cOR9uy3/Y8H1vJ54U552Qs8xnYit/SuJI9jRxtfMOBeq2+e+MR\n/8ZfFMZ58OIX8WNVY1YHpM3HUwg26sOGNrShD9GnQlLwjcd2vEP1qKbliMHwWcunUohu0glo1AhW\nlBV7iXDKfcUY7Ax8fPX5Z4RM9SI5qWZYva2vZpZIM+9McrkxTF4QqBpwMOgwHMj3JAlBpe9ulxh1\nAaL5Fuo6x6ohZ5EvuDLCoS8fzng0FpF/OTklncnvDpSz70XbvJKIO8kedohLueUzp4RMA2YmDwH4\n/bfv89ZjuSUlAEzdr4OEn000g1KUc+9UVZdqHUjlUXa1D1c1iapSXpngeOrixDJfKjxWXaTdXsWl\nSjz5csJ+qQk92h3cngYjRR7FXPEbqc7reM7VQlSw6STDV+mgsh16A5FCgtJjoOnbwq7cbC2vodtT\nl17kUrbE0Pb1l48IMpEqnv7w93j1y3Jjbw1vA/DmgydkjgZatXySkbSRFTm9RMdnHdoa5ZmpCzVq\nuZwsZY4enzznyakYICvTMPREwmhvOTgLxZwUMs4Lc8lIVbedfkKp7ufl4AZzNVJ3FiIJxp5HrgFo\ntuXhx7JO24MrxqciTVWuJdSMU2sDYOFUPL2UPTRxDUlL1So3IhnK+t52hyw1OvJA8S+Fk2Pn0sbp\n6RmP3hIDe7+/Q29L4PsmSMnSjxcQ9algCtQWZ5rTOk05V1iyY0t2NHPPRb1kcan+9pZ7DV666KsY\nlTdUgUzUV/b6dF+XCWk/eMpUvQFxWvD2c5n4QCPSplXNqCsL19pziHc1lNepyeeycEW/JEnXFn5p\nS/IdSh863TZ1VyPjnBbJTGMJnIC6rdGYsYbvZnMWlzKm6cNTkpcVXtvJMOrt8Go5jLd2B9ep0hZe\nxpVyunkdstKNENPmqpRovoXq1s+ilOZC7SFOTR3rQY9X9DTrUQ+Dr5iFQpPa2NRwoQ6Qoi6ZxzKO\nvWcVfiBz5HsB1lX/vtpXxqtjTs9VFJ8scTRewx3AViQ2mrAa03Jkc1eZpsoLIqyGU5un/nWexKIM\nie7I3LbMK+wpLmg7En36av+YR5qmrrrMMEaxJdEMt5R3V1c51basiavZu6zXwlPGG4QttkQLYica\nkATCvOJOnywTa76nzLRYljxW3EcQ32P/RDEG+23GZ+oF0Euq8XoUyoSK8QnPNWWdU/m01UaBreio\nGpsogCw3Szq6NkXccLgr/Xnl8AbPKtkD79x7F1dzl4VtNQjVFcdqHNp55PKDhTzwwmRFeCB9q5sB\npd1ESW5oQxv6CehTISmUZcXJ8Zjl1OdiLCJg1XFZaYqxeVOQKShrt9Xm1V2Nw28pmq9vrjM4v/y5\nL3PrlgSOvPziq5zV0t53vvsW3x5/BwBnpZ6DUYgt1Bo+7BDvy+8qM2KsCToXzYK4Ldw61/yRgRfg\nRcJP41ZEM1XRvZmTqnhcjR0U9MjTY7mhLm1O566I4oNVhftE1IPBdgcTifegrQlMh2aAHUof3vrN\nb3DvkYioNq/4horor790RLcvfSsXMk5neU5ai7RlcCi3ZHynl5Y6lNuq71ryc3l+S70MY+NyrMlb\nrgg5UzXo1RsxK81XeCsr2NrSlGCuvtfpkmmM1MxUXK1ELJ+MJ3R8iSpNgpqXXhSL+a4iBsMqpVnK\nD4sgI9fcGWmxYHUp63Nnv33tSVqjNE8dl0fvyI1YzU+5txTI76LI+MKhGPy2Gp+djqavC0T9yFYV\nK73FT06nPLyS8f9w8RhHg7z6Q5+tjkh1W75IR+1oyFJVrfFkRXQgt3+QNbz1jgTYRSgqtFMw6Knh\n1rEYzQU6CByOEonWfXt8RqjGXXS+/V6HPZ3P1vaSV/ZEwrr7pRc4/9uSiOX+akmgwWFf+4Wfkz6c\nnbH7kkgBo8kho5sixXj7I2a5GmA7X6UO/n8YJdlUhtWlz6S9Yj5VyKgpr5NIGM8hVt13P+jx2pdk\nEZqJiGGPmdA7l6F85vNdOpodqDWYcVDKyey2HfxIDtN0KaLxS/FNfuZPy2bdSV4i1MWIVh6djqgK\n8+8f0OzJu1e1uDfjbostVW2GB/3rhBZHcZtqLu+bBxe0Y7EfVAqpTZweL7ygsNRFQStWfb8KyXI9\nyDPZrEMnwgaiF7/+U68zTCQD9bI8Y6DZeH72tVu868kzJz+UzTPJLflKw2bdmvfuyVgbE9A60MzW\nqWF3X7wLLYUJt5OcvkZ7xltt/IWK3z1D+0LjDkYZZar6rIbshp5DVzH3txLo6qFqrgxuIr8LK4+j\nRA+OismtELKZMNkrd0W5jmFwU+xz1fdfPqK71OzYVvM5Tgr6Q40iTFq4GhNh5w4DtTs51sA65sNo\n9ugsoFFRvGt8tj2N7dgd0KplPuPYEmqKd28dBdtYcg1Iyc4r7PY6/mVOdyp903wuVKsLpiu5AB6c\nvMPsufT5vB4wm4unKe9AqbaypUZt9uKC0UhdssmAz/+0qL/BYUjwmmaZmoOrsPlKbScvtw3hF27L\nvGXgl+oR8mZ4CxnrU+8R8UqT5HxE2qgPG9rQhj5EnwpJwQQOwVFMJ61IVU+YLmp6PenebhwTaVDO\nnYOY/baI2Gi6s+DK0tnWhCTxEW4pt0PXg0CjzLZe+BovvCwi3PlExPZ+N+P2zV8GkNveXQfDNLgz\nFfGGVywVJBUHcvN3jGEvkXc3p3OGA7GG9ZKYVldUm3hnSLurUW253rqmQ9zX/P+RS6Nw5dRalipq\nVupFGA636Gdyu77YbpO+KjffKkvpa3z8YLiL+1wCdJ4tNPfjt56QqxHR5hCmGkU39hkpHsnthARL\n6dOtQ/ldf9dQqM877A7wPXl31WlYdQRY47gVZakGQ4UJR0GLF440b0KU4PtqXH3VwzVrMFHMWoIt\n1dhnMkg1ijCIAvxA5nB+OqZYyvtWWwU3RpqefKrBWk3Ijb7MfRLMCVVysZFLFGg0qxOASohuLVJF\n6E2vC+beNa5SAAAgAElEQVS0/V1u9HWsXkNnVz04Gbh2HQUqTdWhuYaH50HBqlBYeBmTGlXZtjXv\nRxwwOxVpcjWdM1djbJWd4GlgVkyPbZVGTCLSw26nT0ujgG9vX3Lnpqgu8Z27fO7zokJ+50HE8TOZ\nu++rl6EaDaj+uYgp/e4Of/JPiPrUCXbwr2Q+R9Qsyo+XT+FTwRTAYm1N0eToulE5DZVCzYY7Q75w\nQxZ3f3fE0aHo/pnWdDjPHToq83i5oV7nK/HaBKEi2uIhR7clFftOLRvN0CZoyQIY61BpJifXujTq\n0jI7fcLHWlhE1Y/K69AMZGHHaUHck++PQp/QFzE4KcC3IqIH6kqypUejrryi8Wg0zXrpGK7Gmk1K\n0YNbrk9noDEOZZeqJf1pqhxfkY5V5nGpyVYnjeYnjHvYsWykxtaodI2TZpRaF2HqTekocyoUxNR2\n+0RDOWCODT+I8DxbXUcBGuNTas0BU4XX37WVQXZMARq27uBeV29y/QZTaRYiXadF47HU2JVg6eNr\nDMO7E4/ddfr45pCJ9rlS912y7ZM/k3fnU0unqzEKYYbmkMFECX5HmXaxzhPZIde5arkujsbB+Bgq\nvYh8QppARfB1aQXj06yrYrVWeGeyZlm/ZKTJV4a3ZYGDaEYzlCN1Y7/Ndk8Y6/liQq3z1skqmlD2\n2UATwLSLU4axqpihoT2Qi8UfDnlNq6d8+XbM7+hYbimadHt3yTsH0sZ42uIXbkjylcA5oNAo1tX4\nORcnknHso9JGfdjQhjb0IfpUSArWWsoqpcxLagWEtDz3unzWqDKEU03/FSekU+GOqeL+0wdTzA25\n/Z/df0B7KLfE1tbLmB3h1o5tcENpL+AVYC0iqqhdNTi1iFw1Oalaj9LMXmeS9tSfTWTRgDzywifV\nWywdz6mHctMcDW7Q3lKI8UreMZnNqdap0iyUegPXWc5Kx322kBtj++KU9pHc3K3tLdxEpI7ydMFS\npY26X7J9Ib87eE0MmC9/54x//lRdMbVzXdsxtAn1O3IHtF/ZwtW8gvWuelZyB0/7VuUZ+UpzFqwa\nrMKcbeBRFJpQJVRrudOg+VbwWj5OJX93Q49G8SBpmeOqWlRpMZjCbZhcKIakFeKXGuex7TIJZC13\nA4eVSr6XK4HtTt2UbqJqQBQRa3Rlnjl4ia5P5koNTLguIhTEDS1NHGMt4CvWoSiuPVee17DSAkOp\nr5LXwqOK1UuStjltyb4oTku6HZWKcvFItG6+yme6sofaf+YWzqV0/hu/+japFqfZLa3kswDOFCqf\nuhazNrT2O6DgpqB9k719ERVuHD3iVi0Gwzc8mYunZxkrjdCNVwGDQNq4yN6ikTSQLL4bc7UtkvVH\npT+wpGCMuWGM+Q1jzD1jzJvGmH9Xvx8aY37dGPOu/jv4g75jQxva0B89/SSSQgX8+9babxtjEuBb\nxphfB/4i8E+stX/FGPOXgb8M/If/Xw3ZuqGY5FhbYTQzcFWbDzIIuQ7HGu02f3pJo9mUVlra7OGz\nOc1COW3kcOCIbmV8D/u+cPZw1+Jp8kxCLYRSj3HbYlMo5xmpFgAJ0xRH0WbOsc9MC6qkS41XL33y\nS2nrLJ3SU8yCu5XRzjXacVZj1rURXOlbHHWZaNSfCTxorfXsgEtFQs5PxM217BuaXKQca32cM4Vm\ne1M8zeVQlRFniqG4+rb08f6sorouyl1TaybiegSFBvv4XYdGMQu1JlctcxdqzcNgIowq/8YDVzP6\nuLVHW3MnZPpdnec0mm3JVv515Go+ma7rmFBlNQvN9LSuiJZmBagNoEngfKy2mM+12VWjm0ldnj0R\nw53ny6CSq9Y1PNjPl9RaT5TUpVSpwS2gUvek62optcZg1H7SeB6OJn5wqhRFv5N7gSSRhevEvUEd\nkWuihnJR0Wgw0/l0xmf2NFL0uaa5e/WUQOuI7Ps97twVI+73bh+zeiq/m3Ybkq7sv+OZYE+qeYVt\nS9+6b/e48aJERtbf/8fMNb0fYcW9iUZaqvv6eV7z5F3ZF+4dl8+8IWjM115ueHwu++yHTyNebf8R\nGRqttcfAsX6eG2PeQkrQ/wrwi/rY/wD8Jj+GKeCA26npOBFdtTQWV801cMUpLUZ30Mw4PL2SRehq\nFuFRLyJs6+Yu4GomE2yKJ3j7MpGhf4hzKTUKfU3J7g4DNKkvzazEOmINLh0HR62VQbiio5WqzEBE\nufHs75ON5X2dQcxqXbGnPqSq1OIcTHA1s7OjFY2qKqOn0XDjtEZr2XD6NCVWw9BEw4Yni4pioSJw\neI6jno+mcCi0tLhpe+RvCSM7LtQPfj7D0YPpWZ+uFioJ8gE7Lyi38BxKhX+j6dpK6+AiDM3zDL4m\nQ/EjqDT0NgwtVlOquwr5biIPd12evWhA4d/W9bDrjCt1g1G8QKMGSs+r6LY1eUu1ZKzAoqPOiECN\nruXiVJgHEKtaslqVxOtqS75/nSQnLyyepsn3g4BQU+s5qvK1g/y6MliRz1hMtHxAk+MGsibkBaTr\n2o3y76Vp8PW7lgko1AAbBR0mJ3Lwmp/WJDPTHZyOpvsfDblxW95x6ysPWGhyms/strDrwi+qul41\nBW89Vtj4MuPeqazlK3fGjG8rcOq7lxxfyGZ9X+uOzlKLYr5IpparFwXy7r/4Cq8uZEx3f9rB1Srd\nH5X+UGwKxpjbwBeB3wV2lWEAnAC7/4LfXJeiD4OPx8k2tKENfXL0EzMFY0wH+FvAv2etnZnr0lVg\nrbXGmP/XrJE/Wop+sBXb4WstLgY9bqt8mf/6fRpta2ZdBqGK5dWS1aWWklfxLYp8zDqLbp4yVfhw\n98YWqZZG9+OaSi1iY5U07FlG5EsS17q6JNZy8B03pLKK3BvF+HM1vfiKDixcUiu3xNQ6bB+IYWx0\nMMJTuHEchdQKIW7UdGNdh3odMLNKma6kH0+mJ4wngjcYqF+93x9Quqq2NAEmFYmgaBrcWm6gyarP\ng56qUL8hEtEkzWk0a7P1GpxE2hh3JvRHYgTr5CscNbQdX8nv2sbBUYknXzj4qto4aU2pGIrSTah9\ngTzXGsBkvA6huktrd8lyoleXY3BbIiY3dXnt+F/XQlgYQ7al7zhdsVKUX3ZW4x9oOrJxj3Qp82IU\nS23qlEbVyrTOKFTVWBXntDQYSxLgKHagUndyEl8nsXUbi6e+2qKy1JlKXq2YhaqkK1VHK99eZ48+\nc0+IHqsxc6dDoTiT8UrmYjTPqZaCLG2aL1JoBu5Os2CvJ5O7u9fjTLOQ3xnIftxvtelrRuy9jktv\nqQhSs2TwVMYX+z28W/K+paIf33sr40L3k1NbRu3PSnvOPmkgMOfV7W2q+WM+Dv1ETMFIKZq/Bfyq\ntfZv69enxph9a+2xMWYfOPtx7fiJw8EvtXnn/oLRq68D8MrScPJD2RAUBadLsfDaMKBQ6Gt0LAxk\nuwqZaCbf5ZMZxaF87mY7JAOx2ldOw1KTVxSagGOy6LDSw+jblDu+1k8cDkkr1e2LKaj4nC9UZHZL\nrDKslgnYV9XFyy2XoaYLP9vB35EDWSrEtTYNnkb4uXEHx+hGLxLutAXPPujImCKnzUxLtdcTj6nq\n1FymNEPd8C1LW8XxRH3l5ckzxhppGfsx/a/KOx59o6TvyzgOOrdpcvXcTGVMzy6vOLRiX/H8klLx\n+YEr+SYBGs8h1y0ThDKXUadNo/aHvHIp3XVEaHWNETBuiafZhjJl+sa3TOZajambkKt1/v2r5wSa\nccupx8SFHM7jqYjfi7NzRnrgg5aPXa8NXKtuzWJGqVGl6yJC1liMeie8osRvrUOrxywVEl3VFad6\nyCYKV+7EEQv11Dy8LBioitI9rjnRHKLvf0v6GFR9hi+/CMD04jGrQmI0Xrr5GV5V/MODZxNcBT29\ncCRZxztuxM0tqXQ8vAXxSi6AXnuHC0/253Q15yjU4keBXHr/U3Wf5wqmGiYtfu6z4mU4n76B80T6\ndPTsZdJflKpWH5V+Eu+DAf474C1r7X/+I3/6e8Bf0M9/Afi7f9B3bGhDG/qjp59EUvh54F8Hvm+M\n+X397j8C/grwN40x/xbwCPhzP66h+azg//jfHzMr2py8LJyxfzHlYE9RgyfNdU7Awqk5Q4OG5iLi\n7yQwUHE37q642xODYHWzS+3K7WdHK+y5GN2qWC3S5xfEegP7C67r8rnLC5KBSgXHLiuFW59eqChb\nG1y9PZPtHmUgYnLnIIYrUSWqzFBpXoNaJZM67bFGnHbaQ7pbWlfSJHS3pG+LJ4JGdFoFU/W4zOox\n/bZIGE5nTNKVG8Hu3ODYytS7moLN9lzQlGduO+L3/pFY7xc2QmOfGL53xZ3Pido0P8v07wVj9aiE\nw4DWOlmKZ2hSrVbduSJ0BErrbilicJHR+Jo/M0uoNdlN5Lik6lExhYsWqyZU1aaolnSWmq5tWIFW\nj56Xx9iJSkulIc1FvfE1JVrsVFit1dG0yms1x8/A0/wVbreNryXk2o7sIVxDnov04AbuOl6K3DTU\njhp5i5LFXOZjqanrho2hnGtehJXB09Rzp+M5XxppOftz+e7x0+foKzAHFWapyMRWRbIre/Xmbs17\nJ/L85T3ZF+1em8ee3PhnJ1PsTOaiv18TxzL30XaLwU1ZwLL7iwC8dBry4L1vyd9f3eI73xDvQ+ac\nUqhLZfn0W/zCSx8Pp/CTeB9+G36kcN6H6Zc+VicKh9GjhOaBz9FUJurMbbN4KpsqCg3dRDZ6kddc\nnmhhFE228rm9fW6q+Hz75dtM1OL80tEQv6/uQmebhcZETFSXL/wV+6HYQbvRiqEmJPFGIa5G1EWD\nFakn7xt1xQNg/BIvkkXO24ZVpP0cfp0mFp07tc+YZet07tL3apkSKmR2PH9Gt9b6l16bUMu2OwqT\nncxWzLR4bOymZOoK2+0P6QyECa3iknSlOuVnJIryhYdHPOgJNr5JW3QWavV/4rF/IarNyeGI4D3Z\neCMtDZ9Oliy6Cu6ZlVysROVpzBJfsfoHNgF1r7YiEY0XS4dabRyzfE5vJH3zfEs8lE3s1P51cRbr\nr2MSYlK11bQ6U6pUE402bY7V9eYkY4521PORSj+nzRXDNQCsqakX6wy0NSNfbCa+P8RTtaFRvb4u\nK1LdrUVR4CigrCgtVtekl0SgKfhZSt+em5xMsyl144SZpxmSGsPRHTn0h3fk4lkta1L1DPmmw2Mt\nlDuMehSRjOnVuz9Nbyhr/Ttj0fXrfEHLkb3gXViapd4cTs5Cmcntls9LL/3LAMRjsRc4nR26t2VP\n3kxc0rlcKNXtETceyZ7b2dvCjz7eMd/AnDe0oQ19iD4VMGfKBud4zsFlQP6OcNqTwYL+QsSziVcQ\napDM7gs3cB8JBz5XPMKpgdvq887Dhv0j4eDDV79E2KgFPBxRJA8BeP/bInJtz0N8TaXW8X3oyLs9\nP6Qa69QkDr1zkUKWiZaAjzpEd+T29Lsu5xO5gZu4oKvw3+WVwWpp+9VKE3400ASaM3ACbU0S44Yp\ndi6cPVVRdXo+ZzERz26wF5O4MqZk0NBoDsazVZd735PEMfMz+Z25fImFvreqn/GFUm6SOHXJZhrH\n791nZyiSxTtqye/7DiO1kC8u4XglY/Uay00NeKq6bTKVFDqBiKTdpmRVaxRodkWuQT75OMMdqFE1\nsKCQ3nWhSzfu426LtFLMcgJV3abWUt/UepSThDwTKSzW4KlBXJApfiOs4WqxzkeZEu1pSrPGsEJu\n41zFfZNZCk/addKATKHJVVNw1Jebvgh9ak1vVmgAE4VDpSrRdG+J867ss3ndEIUyt+FtNYy+V1P2\n5XPbRHQ1TdvTyzPaD0X1jP2EsXo2nn5PVL8337viUPfh7W5EoIVzoocOwbbC8O++glVD8Te/I797\n/3e/j9F5zS48Hmv90194p01LJct3zVP23lOU2EekTwVTyMuG948zXs5DvAea9GMcUQy1voGtWF5p\nIox+iNdSpN9MFvbbb15ySyMnvcmE+FC8CIuLEjPQIdYOppLFf+lQYx96GU6gVZhKS4wcimLZ0PRk\nsudpQdjV+pa6ALs7N2l1RdydVhG/eyai4c/NZxz5Gmk4fAFby+fAyOYI+xEdzZdXxQsaBd2nF1Os\nFjmdaVxD6ZcMNb9/pxuQJmtMfocztVX8zpNv4j0SMX+umYRebs45XynykoLnZwoKKhOWx1qYdRHz\nvoYn05H+XCZtDp+IGnCw26K1EGZ6cXzGZSkq0XI5h66qcSriDpMIZ6ih40e3cDR0OqeiUg9Nk9d4\nWmVqjSrMq5xIMwmdzCyxujiH7YCnJxLNerRXsFLlP9CIWacJGWjJdc+CZ/VQ1A2nGp58uL1F1ciB\n3Q57Op8FaJr5i7MTLi5lvrYHbUJ1dzemotbMUFW1BkgVDNZh8oXH9K4ctvajBakWGZ480WxNyfY1\ngIpkSFsjRrePSx5oFanv3HvOkdbocHtif7L+gueLdV5Nj7uaLWriLMm13smDxymL35dy9X/n7whT\n+P1vPeWmqrFXzy/Y/wX53X33Hl+4Es/G4Js7ZD/38TIvbdSHDW1oQx+iT4WkYKyLV/R5HOa4qXD7\nWzs+p7lwz9xWXGrqq/tnc1qN3NJOrHUbazjRClGvfO4Voqlwxrl7RTFVf3OyR6x4gpEj2IWZ9x5R\nrnBeH2qNADTuORZpI6k9pplIJPlKfOU3dn8KR1WN3Mtpngu3PluU7PfVAEmOo1DbSOMLYj/A0bL1\nYWuF0fTyXtwi13wDPc1B0Km7eFqSfVVeEWleiNXc4/RS4uN/43/5Pg/VeJipUfO79TtUaEVoA+lC\nbrl3giW1QoW3epYTjUXwFH48LCpO2xrh12+RJJr6axbR1vRnN27s01ZR2lOJiA4Eitd2WhVLLaxi\n4wp7XZbdUiomo1LDX5kHpJEY7ZplTTqQ+d4ejPjFtuaLcA64UkivX8k6hm5EpR6Mc5uSKnS5EzfM\n3xF165utR1QLTauvcRlVe4hj1LNQzdC6KiTtLVwtFVBOyuv6pY4mVHCXDlFXxrodW8r5On9Dm3ZH\nMSK1SHR1khCrdBCM9nkplP373s0Wx4/EC3T8nRxvSz07W9KJlz67h6uC2wud9nXlKPtyAZpPYnnq\n8bf/6W8C8O1viZehmFZMFFg1GN3hoeb4aF19nh9oRe9l3LD9BQ04+Z/5SLSRFDa0oQ19iIxdB5P/\nMVKv07Jf/cLLeI3B1yCaqmquy2sFtmGoaLRRu8WupmHr6c023OrQ01qMcezTqH766Owhz8/kNnJo\niNVlFY/k98PukEUm0sbx+YSTsdw0ZWz5rN4OL/ZbDL4s9orBjT8FwH/8Xz+gUuPhsv42ZycCbZ09\nuWKZ6y3tezh6+6fKeltOn+2RtFt5XGcj8uqClUbnFRoBt1itaNTXvCoKSv3swrUPPvQdXHUXruHT\nWVVc96Fu4L/5tb8jz1LxYKq4gcUpj96SSLxLLUe3t3tIfyA6aVl3aGu6su2wS1/TtEXxTWa1GMzO\ntbL1znbA7e0vyQBjF40zYjab8uBY1uH+Oz/gzTclwH9x8q6M6fKKWittG89cZ9X+T/6z/5ZKId2/\n98Y/4t69bwAweU/cd7NVSaLSWD9qUa5v9tIh0L2TNZYrNf6WhdofXEtX8yLYqrku5JKXNVWp7klr\nKRQNqvZigrbPUAOmhqFHranu8EMu03VeB9kfNw8hW4ntoJwtSDWHhKWi9tVAOUnxNOiv1xZJo9Xr\n0Nbo4ND1MRrtmdUNpxodO1nlNBrlG6pbN3Q9HLXV5Lag1DveX5WUamtZ5gXZuvzi1fJb1tqf4cfQ\np0J9AHAai3Wba4NUEDfEuSzGaOCy5Wi0Wydhryfi6qgjm7jdbeG6aogMQnLNKTiadkhHCmpaQjxS\nv7kmwvCTmCQTsXUVrViqt+O0TJktZQFObp+SPFHx8POy0W4fpjy4J+Jg9uht8lwMcSFQaYGTcOZd\npz4frG1PXkXka5ixs8JBk3c4KYFuTFcNVU5pmOmzXuVhNN29Czj6feAHWEfVEbWyZ26Ne6bl1GnI\nz6TPZ8MLIjVQcrNgX1Wwm8oU/NY2W3eUYdUJqZZw7zY+R4cacu3EuGpsjfSw3XnxgGgdf8AKW8uY\nDm51yWJVq+pLwkfC9NyuvK8uI1ZGxGB3xXXyGcyKi7F4h6Zv3iO7EN+70UPVG0Qkvqxjq5eQKzN0\nm+X1YUm6Pr6mXhtrYdsOLt1dLcLSODzT+c7OSvJ1mHVWs9Dx5Ro6b7OS2hUR/typaCuk2w9L1KZK\naMXQHNHC0fRwYbBFGQqDr2Y5lWKofOPSKGMJdf392Kelqfl6LR+nVGNnB/qapu54uSDVgkilhoM7\nOJRq7LSZc10o1/MNhRpjnTNDzccrMLtRHza0oQ19iD41koJ1gbKks87N70eMFOa80w8ZOHI79MMO\nHb3x+7FmyA27WE21Je5u4fY72wmJq0lHCSk0A3Ev0NRmgSHVxGpnq5hI3ZDFKuVKxfLLB+fc/Bkx\nNE5+X2623/17bzJ98hCAdHFFd0dVm11YKoT6MmxoKWx4qei5oeMTaISnHTrEXeHyqV+gZSSotaJ2\n0vGINMAnjfxrtaKXeCwU/uzHhkpFw75WXK6mFTZRt+e0oNbCMKfPprysyT1qb8HoQOtDatLZXueA\nPNKM0ROfRSRG1W65R6VSyNCNSTvitl0H8Lixj6fSykWRc3sk7TpRdV0d/MmzbQ73Ze6fByJh9ao2\nGjCJN/QpFLr8w995k7e+LdWan779CL+vbj1d89p1iXqi/oVNcJ3shbRkX0vUH+wnTNWId6bBVXe2\nDtjSupNx6XKuEa/TmQNaxfqt45z5qazJewtRYXK3IVsX1zEeHcUesGy4upK9s4Zg3DkLufNFcacm\ndxqmmrk6i1fMVJXw3IorrXi9pehVGpdhT6ScgzjkYFsStbRDn1Ln9nJ1zJXWRLl/IpLpYlby7Hxt\nVG6wrLNxd5hcyTi8loOZXGfd+Uj0qWAK1lqqvMR3XKwCenrDNgcK5+16reusvUkTkCgAxi9kkU3k\n4azUExE7NIWCZkaWlpZtd7cjson6rEMV8VYltqMZec9H1NvSxteeDwnVu/Dk7RbPf0qhwt/7LQCO\npzXN1jrLj0dyQzbjYMcnU6V6PluwmsszkeLvm25CkWluw52KTCP80rK5th904nUe9gDFATEchMQ6\nDmc7ZqwVqaxTECh+Q7Ug0hMfLXiE55bUIzncB48qytvS4E1nm/27Es2XGFGZTsixaHj27V1ez2Vj\nLpoFR1rQ1AxaHJUSxbrQ4FfPiSm0IOoWfS419PjAtgg0YcytO7ucTEUN6BmJuXgyPmV2LAzGb/Vw\nK2nvrbd/i+cKD86dFcme7IFkKOAtr84pNc/jarJcwyzwuj1+9o4Asu585UvUC2HkMy0wfPeFXUyj\ntTu54ulE1ndRWE776jEJZrw1lH6070kfAm/GStepXja0Nb+iZxpWyux9ZUBVe5/oJdl7ptWmMxUb\nletaivG62llIonD6nW3BzURNj4Md+d1B0uHgSC6t0LrXdpB5fsTCU5zMmwJzfvtyQqEh6ZeTMa2F\ndz1vxTq5ZWyh+Xh2w436sKENbehD9KmQFLCWpioIgpBtNfsOY4/tRK2+QZuWKzdQu9fB0zyBnlp/\njS2pvXXgk0Os/n/HlHhHWrbYi/A0Km9Ram4GJ8DXKdgKEqwWQFluuVhNfXXo9Zk/FYu7vVDEYzDH\n0ai+rX0XtWVyd9RhqfmxwqrBqkFp1BfRcK/jkWgJuiZ0WWpZd6c2OJqQJdECKttRiKeRkcnIRYUi\n6jIFRV5O2wVLzSi8eCLGrj0/JlVMQ7PICaWcI7OyQzeXG3FwZ+faF77SuarnDadanGWV9kg1+Otm\n2Gei2IKocFlqopLOupy6Z5nPZMxPlx2clqouxqOFPOMHLV5vC3pv/oIay56lzPvyDoIVy5bM0Wz8\nnKuFGDmTtkOiEtTRtqL8JhX1pRp2TcWNfZEgPr/X46tfkdycO5+9ged+QfpRqATph6h9DssNtp5r\n4JpZMGnL55v7HQ7uq2Faka6PjkuqU00yY6FY4xdcH6vRla6GgA4OXVpahKbnOLg9MeYuZpZIRZqu\n8XHUeLivwWO9bsLhlhizB3GHgeImOnGHqKX4jdJQOCLJDe1r8t77b5NoNu9vlitm2h//uKBjVTq1\nS3xfdVNNY/fj6FPBFAwQAKFn8TXJpOc61znsrD8n0BJDxoRYtc7WnkYINgFWvQ/WCXHaMjmhvwPr\nQh65hUgPoXo1yrTAKrAojybYxbo4KBDLApx+7oLW+8JYVppT0TYpjYJGWkc+4bb0ORhF2DPpW2wb\ntjRS7+5IXU+eIenLOGZFQUvtDyd5jq/W7ibXAio9j44WSe2ZNot1RSPTQfPEkoQNxxr/MY41359Z\n4ikAzPFcTl/Uwqx7FYOOVMhaZTkDjSX5oWYmOq8rjh+Knj1KujzUfTRPYjwtNnsU9Xnmi3h9qElW\nLmdP6bqS8ee7+VssKun/59Metw9elXXyLaloI6zelTXz9/rYQlSK4rGPSeSA5FdPcDQ9u7ftYXZ1\nXdUtOn34nFw9Jnf7W/yJnxaV4bOHtzl8VV7ibt/EdTRkvljnn09Bk+zUqxVxT+0EC8NS0/n76Qkj\n9QK8oFmqTJVhNBX/8SqFQl2A3gdCdlHIHKbbPplCwvfj22S5JgI2GXEsDH67B3FLGOTWjjD3yBsy\nVDd5hxxf7WPGdEAvCcct8UrpW6SFY/Z3tznT4sWDWZtS621etBoWCuwL5t51IZqPShv1YUMb2tCH\n6FMhKWDE9x45BpbqLQgrrFqvy9ol09QNtmhwauGU1pV/vdAQtDRoxbi4kdZwDEKsvxalKzIFuhTq\nd846huVYuOuqXq6LXFNHLtNS2jtNz1hpdF2oUoB1StCbYisY0PGEKz95OuWJ3qrDTpvPK/ffV9E3\nn3vEmlp9K/I4U4CJ345Z5dJGy11HABZEKim5jsuLbblVLqZLFGmMszCo0MSFGvg8u8RqpB/Wsv+a\n9FATVXoAACAASURBVP03L8/obQluZZq+y1upqBvfvngDgPTJAVlwD4DevGF8KeN7pzjEuA8BCB5l\n0BcD3M/vfF3mavAux1qt+juX7zE5FSDP9M6MJ2MZa7f06A7l++SGJmRJczorEf0LclYTmbeiqWg0\nGKlTdWk0svPZQ+nvs9mCRHMjHu4l3NkSa3/3xQ7eQLN0x11MKVu7aWkqd+f/Yu/NYnXN0vOgZ61v\nHv7539PZZz51aux2V0/uxI6DsR0hIBiFRBbDBaBI3CALiQsIueIiSEYCEQsJcwGCSBAlyFJMEgks\n2yQ2Vpxuu8cauqq66sxnz/ufv3lYXLzP95dbctLVKbtzgvaSSvWfvf/9Detb33qn532eMQwp39pN\ng4rSe6YxiFg9mpYh6hMqkhNk1gv24RJYtH5+ik1Hn1waKJpUU5I78e0K5g3xMGbLY2gCsuzSwqRH\nzoZgil4XNgypQK4duHwVrUjD8sQjMHaLkjKCcGqottNLFZd17G9wjfDwxwMXa9PJDGq0DJUzFKir\nfwGrDxqA3yq0DVATEaJqCzYBOz3V2/L3q2IDQ62DTjxU2RZqsvz40xB2SYINp0LLCkDjFdtqRUG8\nf5mtUJBHUJctFKgt0Hg4p8bD6pkLBDmvU9zEtnUQERyze6jggBngusAe18zgIMRr+8IA5TAMqAcO\nrC2xrQuPaJOs52F2wWwxhXRHjoLFeLLIajzOBZAV2yEalhE35xUGE/l+PWd3ZaHRkijEbg3+h1/9\n+wCA2cMRPvqLvyJz9EvfRvy5NwEA669LhnxRtrCo2KTvfw/9GcVvwyH0uZQR42gPw0yqGX/3FSIa\nBwaL18mO9H6DhRLk4ru/tsTy534eAPD53h5W1+RluXsu17lnWwjZn1DmLRzqZUTDPmpu+q7b4uSC\neh4rMmEtC2i2yd/dm2L/lU40dgrNuq4qCqiAYKmGbLR2AWVIZDLawKnlhUw3j1FQi0OrGjbJZG0y\ni/Zgoe20LBqFTjpENS0qalAWoczFQs+RkJxlCGcbElp2ib4lG8H+2EMcUxqehkVXDbyIbGCIt/57\nmxtYPf6jGaO15Z4ars0o8DCcyrHurkJEnuQwFmkJzKj3UWf4IbFLV+HD1bgaV+P7xwvhKQAGSpfo\nWzZGFFAZ7gYIyQzsuxFsUqIp7aKihe04FQENxey9KmrAla1R2S0Uuj78GFUtiZ88EzeyLhs07ORT\nFeDG4kbmqBETLHQrz6Felr3z0JL68a/+/hO47IC05yFCqhRVvoXhgVz/nZ0I455YP48MxrYVwSHr\ntHFrVH2qYWUl1rYcL2MtOqk1ihWJQjIDxYpL1isxYpVkvGNhQ7UsiwIjw6LCplNmciyoX5dr2Pz+\nM4z+L1KopQrVe+/yXon1Vy0UwQ7qGxdwicvdjQxAsBeqGYZ9Sea9Vsk1HHr38PgZn022h1u51NAf\n6gBP/97vyNy/9AX8zG3BN6jXmTg79dD3JXywhhUuSGPmlRpgn8tFUiDvdDrporu1wYCJuOHEhUVK\nOyt00WXXlR9BddesiCzSETqTqdR12Mv3AABtu0ZBLoukauA6HVxe/r/KK9gF1auKBjn5MKAAm2Ho\nWIvXcS2zEcRMCJcxDsi7GTclHGJuelEfoSfX7BAUZgY2bFaD4CsonkMPGtT0eqs6QcPqEVt7UONj\n9u8bOyPUrK5M1DEG9HrnMGj1P4k18Y8eV57C1bgaV+P7xgvhKSgADixYA6A3IN7AM7CIXGydFWzW\ngmvbgspZZiSXvl4o2GNabmcMi6y+yhRw2DyVXhRoKHWWUbyjKTKgorW2KtgsdWlTA6S+ujzI8PmN\n1NOnPyl1cFjHILANazvBnH3zE+2iR+hqL/QAJszWxMHGscKATTCN4yNq5Nx5bwmfHs3GiGUI5hs8\nIzahShoQ7YphrrAxZPj1KrQVscLsdl1bDVTBOXQVBs/IxFykyI87leMCaGW+ukSlDwepkrxFkDod\nbyn8wkFD7oGg8dFQUKd6KEH3O8cniPiFlfceasbZyl/gpYXMW7P5BtaMja2vEfGZAIiI+Ev1NonW\n+4UYuk8l5SMD/X8KRqRHC548L+ETkRpFLtqyY4c+hs7EYqsoRtfMqLoV3rQAuQ7QFDAh18BiA4t5\nLCe1kBA2rbsOx3qOiusltwC7S3grwCdHBEm54ds2klIwMJblo8tEun0LumOurQxahzmMTLwDywnh\nsMQLuwaaTuDFQt11OTUNyq68DgrVVB97UL7bYuCTxi0KkUXiFTfrdsvw9UnHC7EpWJZGr+djYtvw\nfVmspjSoyB+Yez4cwjlro1Fw0jLWoINCYZQyyRS6UGSs8KfXoVxx1YydoiAP4giSLFukDSxWO2aL\nC6gNu8/6QNiTBZbMTpG/Tnc1EHfXmAolS7+nDy9x+2X2SSQtWkLjw7yGx4yzcj5+sA1fes93oLW8\n9a1pELmSELPZLu5EHgZMytXhGg4zXOdJgYb3P8gcOEMCnHpkQJ4ZlF2Cq1b46EzQS8PWwRmBN07j\nQHGR3qSYTKGAL7pS23/UrnGDm1dWtpgSA/IcOYbE7X+gJbH7kr3Ct1I57o+F+0gI3vnK/l18NRMy\nGC+vcPQ32ar8ZXkGC2sFj/gNvedgwBb2+z/r4Le/KmHO3r/xFXgHcn/l1+RF2m8v0PPlZ8mxxkkp\nic3iMsftl+mW20vEUzJvV6TM9+7AUPG2ts5QtOywvfkynCNCostjNOcknzGErnsx9nfEbe9lGSrS\nwzVls21hHxFLMDxrgX25hs2whMo6+jsHDUOCGzd8NDlZw3e6hGMAHgraVnC59kwLVJ5cf7LxoRuG\nyJlcY24aLNcyb3XuYBTJ3B7sjGE9Jg2AaX/0MGellKWU+qZS6u/z33eUUl9VSn2olPrbSnE7vRpX\n42r8CzH+ODyF/wTAdwH0+e//GsB/Z4z5W0qp/xHAXwbwK/+0Azha4SBw0VMBOunJellgSd1CKx9g\nSZcxW1ZoIrGUCRuDUpPiBl38Wwc5nFw6+FRbb0uAKhojn4mH8PxcPInHj84w7BqJVjViUpDtNSM4\nsbjHw8JGSgmy+qkQkwRwMWT/fxX5+OisCx8AFUtZqPUDVOQACHVXOvVgiKHQGw3XF6vblCFSyn8t\nz4gwTFbo/PZZVQB0k5u2hKGLjqDBXU+8l4AivW2lkHd16UohagXFmIUZnEQs0LTnIafVafuSZAuz\nAbI+objJFIkrYYdaK0R7cv1vFArWjlip46cyJ/+4TdEY+f2TsEVTyISGdyr4T3b4fE7woCsZs8ur\nKhpcPpZ7rh0bOpOf/8p/8w3kHzHhu/v72P9fZT6+9LpInyX5M3hKzvHwnW9jtiNzUTUhFrPfAAB8\n4f7n0E6pL1GJB1Y3T1HxuW/qc6w/krVzPj+CzXLnPJ/h7FTmoyAVYGQ5nZA2qtZBbcj23AAOiCcY\ny/UmdQ8Dho8ZSnjM+J6v5mg2cr7ByMaAZLLnTGCOkwW8a3IMqxihoKxcuVzinPM2O93g+XNZk9lM\nPJtNcIniUp5HHPRwk52vrvMMLpvwbJ2hrH+EOAWl1HUA/zqA/wrAf0opuZ8B8O/yK38DwH+JH7Ap\nWEph4FrYC0Iw1EMe2ijJZzhvMnhcTHVpw2L3nU34ab1eYsa/mzzJYZPB2YqBzYW8vN/5xjfwt//g\nHQDAySUVf7SH+9dkQd8ZTdHQLQvdCExLYNy0SBimOGOZ9Mmtd7G3S0puxDiqJO4trDFC9isY1Hjv\nVFy/PrPUU8dDwziyORhhzE3DawwKq6t8yLW5ew42M9bjpz0goyai16BlmFNlCSq+TPeJVzi/M8Rb\nJ7KwZ4sKk5t0g42PMfsV4lEK48vmVTKpkJ+u4TJz7o8N9jmHO6UGJQ9xvXcDxpVreu1YNux1usQq\nE3uwM+nD5gtbTStYA5nE5ZkL9xr7QAjkcEoHdibusylr5OyZsP6BjfaRvEC9by5QTWXOv/tMmJcm\nBwE0KwP2zT5CS65/trTQMKar0KK5kHCqex+K9RKrUwlLToo5Tt+VZxNYGtqRay6NjT4rRtSqRVFp\n7AWyhu72HHxAmPOqbmF3dP19MikNG5SE0g91iJg4k3WWISeuZb1uAIrb2sdUrBoMYC9I8Y8Smozs\nsyzFMVu4j5+doSbHpAnlWU929uETs6PSNUpWam77Mb5wU+Dff9DWOOVmSEaBHzg+bfjw1wH8ZwCz\nZMAEwMKYrukXzwAc/lF/qJT6j5RSf6CU+oOk+OF2sqtxNa7Gn9z4Z/YUlFJ/HsCZMebrSqmf/mH/\n/g9L0d8cx8ayXFg7atv5aPsBbNW5xCmenYp1fHz+AOEz+c6KfHjjJkG4IxtLduEiDul+pTXOL94H\nADx4ukCRyfdHI3HfRv4E49uCOswXZ1sv5Xz5GGkobueJD+ydMQFJTr2b/RHuf1Es7YEVYPWWuHWm\nTuFPxWpalwolcdNr3XWpVXCZ1bZmFYb7cg5vUMLhfQdDuqRVjYqWxlYG3kDmInJjGC2egIqMJJIA\nmEw8FPe2hZhNUrNFjREbfFynxIgWzx6NYROavNdKPb+/s4eyz846t4L22GhzUqJgZDgIxvBusXN1\nT+bwOPVQncr5niaXW73KE2PBY7JucC2CQ5xJ6sg9F02LZSOYBt8EsHgO5yKHS3KZfAXkuXA67pEn\ncaYdDN+UsGR093UMiHXA8QfoB6xwDIZQFAEyhKAnVY3VhSRd/eAAhlWui6zAOhPodptECFm5mfJY\nqyyHRfq+5LxATIbt2jEAsSVN0DXEOQhZRZiOJnA4h3ExRMaQYJ4p5JV4MTHZl/XZHAGTzsG0QFHK\nccvlBUIt97F3w8eGmJpiLl6aq3bgsanMGdjYLGUdXjYGtaC/MbjwcHbxw9n+Tysw+/NKqX8NgA/J\nKfwygKFSyqa3cB3A8x94JK1hxwGU8qHHJPSoC5S5TM5lpvDuIznMs6zAhsQZVk8e+Bf8IQaBvKTu\nBnDzrqzZw6amkEkQwB/KgjxlN+Djdo3JuWRp+3aN/bE8mN1JiDO27x5vSoAvZ8qOtMEogjdjWeyg\nQWPLNYfax+v70hloxwVAiG5SyAv/9OwIPoVH7NwgVwTb1AEUqwBeKAvs7Pgcj0jYUs03cBkq9Q8j\nTOjg9UIPYY/uI6nM32x6aNkZuVweIRrITjfyNF4Zd112MQxh4wdUXpqUATZk/0ksH+9+JPN9bW8H\nO2ShGt/twx/w5R1LTDGFxndKqTJ8cP4cEyroDt/YxaWWUOjGYIq7u9L7MOOz+daTj3D+XO7vMHYx\noEs9T0oEjNXtpkFBUppn5FR0L1v8v+8zI79/jp2R3Pfzx4/x8z/2pyEP5R6yhTwrY7HEaFz4t78M\nAHj04AzvUWr++TuP8P6HsvF4SmHAMvFPfFbeqsPrB9g9Zz/EQYITVoH02QYZm1D6BCHF2oHP5+da\nQC77AObrChvGIydZDthyr58fCOFM6Pl4xtAmrkZwNfVEMweZS/3TIsN7X5fw98lzWdOwDEa2bLz3\nru9iQii5k6RbnVJ/vIT97EcEXjLG/BfGmOvGmNsA/m0A/48x5t8D8A8A/CV+7UqK/mpcjX/Bxp8E\nTuE/B/C3lFJ/DcA3AfzPP+gPtDII3BZO4cAQgFEvSgTkVph4Lu69Ii7jrdQCmO3dI5XYjXs+hhR1\nsewGQ8JIVbZCOmOCqwxxM5CddDkR6zFcGwGLAHBNg77D7srWw+pUKhXteQXNnpqTp5Ls2p/s4w5Z\nm5ubCue/LpbkIIhQs0uydsYY0dUMCcbpm2sYD8WqjBIgYPIJhUZJWKpbdwQxFvYIfqluDeGQc88P\nYngNE21xi91Q3P+a7m51pDAZyTVoAzi2HO+mM4bLeSsXCbxWzNjigjLsxmCqxTrqwzN85kAse/xS\nhINLcdHjHQNDcZIqJry6Acb7TD6WBzhnV+Lt6A4+/4p4b3ERQe3KdYyfstGqGiB7Ts7IwEfN6kpb\n20hYgcpMiD1Sl2FbAUgx5Hx+9vB17NyS892xvgyXyVF1CVgj8ihY8sx1amAuJXwIyg2u53KMxSTA\n5AnJXvwMe+yu3DkUr+nW8BoWBD0dna0Rv8znUyt8mBKcRExHPXBQkzrei4HK0PvzK9wiP2YVa/Qt\nWbdTel3BJkVLaH7shCgJSMqzJWrqTrZljZjVhTue4EmUnaHHdXNzd4A+E+F5nqB4IN5EXZk/1IT3\nycYfy6ZgjPmHAP4hPz8A8ON/HMe9Glfjavzox4uBaFQaAzdA3/G30Ob+OEJvV6yqVw3w5oQcCDm2\ndFY2sQKBX8KifFi2XsP1mGTSa4yIJuy9eYjXMrFcP3ZBpt56gzUbiqK2hCb11+nFHC2TOrf6Cru0\nQAWVjLUNrNjq6z5pO6Q0ksTAXFL2bTeBRUJTl6Ks0WQfiuw4uldtEXatsWHIgGSFkqi6Pt3B3oAJ\nyl4FfYM0YeNwa61VUyIO2X7L8p5/O8TqSKzkdwfPUVeEgo81YhaJZnEJwzKcRbbjaWBjfF0+7937\nEsr7xFOUBoaY7mxhoVwTv1CQYyLcx42XBf5t4hpLtizvTn1MAsGL2MpHrSW5Vt2gJ6FKnO3JMeZ1\nhgvKzVmug4AEqwfagTcgB0IpFvNG7OEvsNz201+K0b/9YwCA8tUVLLa2q3pOenBsRWZUXcClFsLh\njdGW/PfVO2M0b3xFztHPMKB199fMSxkDnchz/zOvh7gk4jRcvIP33hdrrFu5pzBrYEUkFdYODilW\n5E36UFGHVYlhMYFuu0wSxzaaFaGwdQXNpKwf1+hD1tm08nF/j57Vm2yOWxfw+EzDxkLJ/MnEi3C3\nL9d5dPEMgdPhB8nN8APGC7EpGABFrbBxMwxaMvxO+3AoAONHFkK6X/FIwXgdMIXCHHGNgmQqTVYj\npe6gOtcoqXMYwYEe0s0N5bsXjYdmxURUu0Kxocu5Z+Bm8p3LsY3BQib+nCpOZ84QvZf4YBIfOfEU\nzlShmVBYxJ6iKmQxKQJXKvsUHuHFltV8jFmwKjis76emI5npw2IoBeWiq/o2Gwt+B4UOLZA3BiXh\n4TMnQ8Mk6KhnY9awUjMokXET2oQ1DscynyH7+Pf6NsKhhAyBDuGyaSAPUqTkbkTW+5gJu5br1drA\n4YI/vOlg6MtnN9iBRwXnsl2hKTtxFWpCZh5GY/l9cVHAVnL9Ljz47GwMXY3oFqn7udmObnn4/J+V\ncKZ3uAef5/NCBw11M5OLr0EbCTc74pwirZFT2Xk4PUT//j7nWaFkUg5VA3smm3btU7SmvoDFzaRQ\nNSYUu7l1a4TyLfnumi9b62Lblamh4ZP3YhSMYChgYzk+VOfOd4pWhYEmRqStSzQbNm5ULSziEALf\nRUyCnoq4l8zPoLk512iRpPI5CxWyKeHY7wIuw+JPOq66JK/G1bga3zdeGE+hVi3yooBDwRa1MkAl\nO6PTd9CyJuxf2wGJlFGxY69da7QkxizrcIsY82MfVkpIdF5hEtMFNww/htG243BxkgAMHxxt0LjE\nJqTAKb9zfMIE3790G8uUSaJejsNdCUvGuofWFeu/TmaoWXs25Gaw6hIOkYt20AeNONJls2UNcrir\nt42C1iQJrS24lCsr5ik0E7BeHqFl+GDY4VkXORq6kdPQx1O6+0+PgTGbp+rIxWXX5cm5cuoIU5Z6\nvXIDw2TmslI4XzGJmWeo6bHsD1j+akJolv/soY/QSNKu1CHOlqzJtSViel4NdRQvqgRLZg/TqkZL\nbySwW/RJKzZpKtwzMrfpRH5/68YugsEX5Nk0A5hMrKOxNQwZp9ZWH05n/U+ldp9XBnXnRpcAkcaw\n3AFCJu7y4wUqig5pJgzb/hg+n1/sXELT5XePGlTkb1gTEj2f5egzmZs3Kaish7ZpEMYSHjjQaDoa\nN8hc6NDHhnwSRdXA5XMKkwh5Lq5g0KsQkLEpplyiv5ghZYm0Rg4SVyOwp9v5rB2D0P/R4RT+2IZl\nDOK2RpFYmNUkFmlWmHaQYXsHLdmVm5MMoLtqMbyocoXyQuK7stEI2IlYeOm267BBCp3LAvOG7E6b\nz5DzYTjIUBZSV1dFg+xUfj4rSyyIEThayf9fbqcYEWRU2y0UjxH0B7DdrpmiRlyxjbhr9a1jOD7z\nCDpBW8j1axvIGfs33PBUqKA1Y1JHw5Bx2PNd6KITFW0Q5ZR2b+UPN0/WWDAGTqsWNsMAr3CwYCue\nuy6ghyRXKWWD2bQNpkuyXV+L0eQdfPgSD1kXd/whBi6p1lklwdkaFF6CXWhkJCyZnz5ES5pxtShw\nSQ5NK5XFWiQN0iM5xqbRMKSDN0ajdGrOUYAnLueWczm2K1gkqrHXc2iqRZlqjGwleIPy3bcRXPus\nXBTBRPPNEaxTcnveNtCl5EGsXgzDvhPHaVGRpbskf6ZOC+TEB2+ez3FWSFXqa28fAV2LOrEZjaeh\n+MYrx4PT0igoDZXyHKM+PPbCFDwX6hQOsQna8pDz3HZbQWmGoNiHRaIdK5GwxUKxFZjNVwkU10Km\nlig33NRatW3h/qTjKny4GlfjanzfeCE8BSjAUgamqbFhR2IYhvAiynJFDSzWcWE0GhJdYCUWxZ6G\ncOmW++sHaEnQaaHFxVosl6U3UMQFaGbn3L63pd1qk2wr9HF5OceMaEKvVnBGcu4D1sd7poXpuA4u\nNsg61mmrgSaBauiXCGJmnClw4xYKRpNgdQNoqhJrFSIkl3/mcU5sBdVBogMLlk8dgtbAYR3bRr4N\nJQIi5kaRxpSe0sLvYdip0GnAW7OxK3QQMjTp98iybBewRrTWjY2cXsxykeP5EUlaezVql+QkFbks\n9iIszhl2nSaYs6VwWZZIaUGxthEE4m10lZrFarbN2u8oGzNqYFheg5DErDVSPH8k8zJid2l+7KE+\nl5Cg2b0HzQjFNBugIUlMaCPoUReUc7XrAuqeHNcP+lD0RlSTAoSCq34Di4lnK5Hz5pXekrOYusUH\nl3Lud08zWAwxQ3qsvQSw2azneD7UFt5ew2J4awc+UHVy92zoKzRAj8DkNiKK+SwKZ8udYbclVE1P\n1hnzuDnqXMLGstlgSXi7CXLYhXgTrmtgqLn6SccLsSnUjcFsU6Dt1QgztpAOPTRkNi6qHPaarriT\noSaph+kIkF0L81MRf53NN0ggICNbK8yOxV3d2fVQ9SVrXSWcyHyFli+H1XpwGAS6JkOPsfpbVgWb\nC2tyQ9xBPzVYVRLOXNbAxbm8IDcPbWBI17YCLL4gTccO1KRQjFWNVaItGX/W6y0deEVmaO252x4H\ntD0ovmBu2IfNHIfnRDA1odCcy+bAAb4nm9EaF4g0Y+tejozhSG15W2h2x/Rr7BYlOSGXuYvckQVY\nXl5ixCx5rxduF3JEZiq1SoE+8zm7wOZCfp5sKpxT2DSwC5Qs9W0onDJLSixaYvgbG4pNE6PQQUyF\nJOgSKz73gICmx1mNM9Ke9zZncDhvum9QkbxQqxqKmXptdyU7A1tL+GgrHwjJxLzewCTsqESMZi3X\nVzGcq+s50lrCzYfRBd59V571SbKBofHJu2fQd7ZGxtQ2SuZrisZBQZi2nbXQ7HaslFxbmSTICJrK\n8goWqxnpLNtWZQp/iXQjz8xUJFBxIqTUzFzPN0Ar6+VomeE7cwlzLs42UPYVR+PVuBpX41OMF8JT\nMMogcwxQOACTekma4WLDOnZvjrFFZuR4gNIVF65sKMH2zhrniVidjx5nqEPqTtoO4muUra8tFISl\nrijusZo3ABtj6mqFDemzor0ewM/LswIjNrkMWXdX2gMSacpZfPgAoBu5fL7CUUzxRn+49RTKpOOG\nXMGmxTCqRMXs86YuP5bFc8V78LRC7YiFCpRDrAJgihKGPAyu7cKJWZsvxHVu6wJn+YcAgIfPz/D6\n5wT6ausCBTkjx24PzC8idylIY3w45FbYpGtUDjv8Rvt4bU8sV9TfRUuV7olP8FZ8CE2Yb26AiPJ2\nJzhH3tXNFTB2u0QiraO/QZZSlbtv0FyIhT4cxbAGzOqfNmjZVm8Th/GkTvGbv/MtOUYdY7gr9x31\nasSeVD6s69dRJiRL0WIxQ+829FiYqHUJ1PT+SksjYwa/XMzQEOPSCbwUiHCei2f2/tMFHpXkboRB\nTf2QnFWb4iwFBtToLHM0naZpbkHZxA00MzgRG764phFGyM7E85xnOWqGpogtBITva6VRXBLXQN6I\npkmQsPKxrCrk9MaenZzhwRNqZa5z6H8eMOdPPUwLXayQJyGsgVxSs0xgjdkZV/SRD+Rh5OkZKrpa\nyZpZ9rbCcCiu4Y/HPfgURy2xABK6vjsOCgqh5n15yFm5Rpmy+pA2sHa63MEY85U8pPDYxo178sJe\nC8Utt8cu3Osi5W63FZJHzBCPcpwTpDPRJTKSqq42LDetajhUKQp9BwFzJoN4AsN8R8mQwgwCmEuW\nN0cbBCTkCIYK9kLCgHyvRp9Za6vPHoa5A0UikOfLHD/JfIZlD9FY8nJblo2ApU+3lk2lMCXsUu7Z\nWC2yLqZeZhhxoYd7GVBL9aFiBt0sVrAGMj+bzMfKyAbYy3ykbB0O2wCGYZpLVztQCUaUlG9qH+u1\nuMQ3DhyYPdlAVJNBbWRBX78rL9L93gRLliyfnyzgsG2hOAfSUNrkdzc9+K/Ii+NtBP2oejdQL8SY\ntE6LdCkb7lm9gDOT79ZNjqb7TBCSUQZVS3LcqsUuy4GmarBkX03LHEFla6Qkee2HBXxqlmaqgZvJ\nmnMHDuqMuS0Sqnq+j2vXBbQ3Ti1UzBM0uoBLVqu0WuCSbdIN+yESU6BMOwp7jZg5r/SjHFXGTahq\nkFdXUvRX42pcjU8xXghPoa0aJGcJWlNgf0fgqVYcwCM9u1sqaLrom6zFfCW7bi75IXh2gwHJPa7f\nuwcEhIOWLlYLCsCcpbg4laRMEZMXwbfQu0YSktUGFfkbECg4qZzvzYmN21+WbO+eLRyH/VdeR+6K\nW9oLXwLeEVf1+dMSR0dC2LF3cA3DgfxdTX6tvFygZE+FZ00Rd+5jqoUSHIBHqvOsAOhRI68W4z0c\nWgAAIABJREFUcNgT4ff6cIjb72kHddhlwMXS7ExCbA7ozmuFPuv4w2CMDWHXbQi0FB9ZNWK5+46N\nOVmgm2SJkglRVVaYdyIqZw6eHIsH0XQ0GZWFnDiMpLFx/Y3bcj17Q+zUcv/lLAfods8oBehWPmxf\n7mlTZniSyO+/GChYFDhZ7w5RPpNnNWf4tP+ZHQyo56giH7NH8vvz5BjTNSm2Xxliv5br6FiU3cNT\n5At5ZggHmJ3K4pnrFRSBX4HnovW6cEq+mtUaFi367d0dhD1ZW2cnR3jye9+Rc5BP3nUt5OxbaNQY\nYNbfRQtDOfjWdZBt5DnYBKQFXgCfNOB930PlyfMttYOEbOP1soEbyn2npHq3tA1NXoygdnDJNasd\ngx4rKhuVo+4EbD7huPIUrsbVuBrfN14ITyFrDd7dlBjt1LjbFbJ3R2BojDrYwGdS0YscNIx3Z6kk\nU4LCRVhJwinU30bNcpv2HDw5Elag+ZmD40ys2+5ArM7NV16DRXixRoJ4h+i+gUE2lKm52K3wZs4Y\n97ag4NbFAh7VoQ8Pp1iy+Wa5OcGzxxK3Hg017rmS2PKI5ju1HmH1kKzNYYJkJj+vvBDTkVh6ZbGx\naT7AxUoSanbkILTYKGaGcGyJv2s3REAy1pzsTu+Nn6OcdckpCwmTh97eBvYFvRBlbct3ETEWWVYB\nVL4u2xanK4lfVaYxnLPkdugAtjyH/X0yNT86R1rwM57ieC318TfaPlwmQWf2EmuWezWtsudpbNgB\nuXxvg5zW82TcwAqJ6Bs6W8mCWSEenxcb7NyUZqbdazGWJ/RoPijxkAnhm+cNikGX0GSJMfFQLjpm\n5D6epTK3K9XgNchzcj0ftZbztMx36DZHwnJw6RfYIeHt6nKDmrmEpWEuJgJSYmhWZYmwoeflONDE\nHlRZsC0jLsnOvGkfYjyQOWxtC5pIx9Rc4njJ5r3yOXauyX1PJ5InmWcb1FREt2wbLYVoFrrBepeI\nxguDpvnhcgovxKZgjEHRVLhMfJyM2N754DkmfUp1xy0MM6jB2Me1A/l5FBIG7EaYejKp/tCGzypB\nZtm4q+SBnzgZmjNxqQ4oPe7GPbSKHH6egemUiIMU3i71GvMQ2ZQhzVK+u1iV4LuIz92/g3vXJWl1\ndPktfO07XPSnLu70ZdOKKfpReQMkjFAGUYRoh1qKQQCnL4stYAv4LNPwDAViGgWEnbbhMVy6q5Mi\nQEo8RUbcwOI0REYXeNizoFgrvzzxMIgJk20qbDqWeHaRhpaD1pdKxTKdYwZi55dLtORa7C028Mey\nmRSXTLiFIWz62n19gIEv96p2/a22YVbGWwGTrHOjywx8N3Bep4ipBZqcKYBhgN33tjqc64VsRh89\n9nDzpc8AAKLwZcSvMsGaGqhHEh7YL92AOhCqs47e7uJ5AVPK/Z1mM1wcybzduXsNEfsSCqdGTt3F\nkOsttW14lIYfVztICTiz3RV4yTDsks3mGQxDsJW/Qb9i+GsHsCqGfyFgYlm30SHh+nUNxW5PJzTw\nSQxjLcdY2LKGzEkCm7D/lizSVqtRbaiw3hoUrTyn2B9hL5dNNrFTGBqw6hOqT1+FD1fjalyN7xsv\nhKdgKYWBrTEqAYvuZbZKUZOKS9XBVh26ViUCV8xtR1RZLhXaWlCMxTMf2pHvtmqA/KITHFG4eyC7\nqhuxrOasUdMyR9pG48q5i0sFjx11X7JDGDb/bJ5SJ3CisLtt4PFBxC8cu49Dmo82LfB8KZ8PYznH\n3nCAZijubGtZ0NRQ8JChpeu+JuIvUB6C2/J7e7kLNSXBS6rh0+WHamEI2W55H+6zM5yTtdhkBpEj\ncxUEIVJyNqj1At4umYS7Xnsrgk3m46gqcGvKJKEXoiRmIwyCLR9EQTq33kGMyYShTeRvxWCaKIez\nYPIMGiVhyg5LoLOsRUsRluw03bq449bH4lKe2SJaoloTQt2VXM9zqFK8EdsZwSdD9Wt37+PpE4Yg\n35vBnEsI2baiyTGzhghpPa/f6eMlhoKBGaPuy3faixYx76+quRbyGVD4vP8GFycSgiRpg0h3iUS5\n9llQIO7iHadCyQalwmqQe3JPuu2hRyIWwxBFtQsUbBTzsxKblszk5QY2k+K39yew6LEYEgM1aQOP\nDYSLqsb5UsKYk6Mlcl6HZbWA7vgUPpmroMwPKT75JzHCIDAv3buNnhshZmvqKkvRUDLethX63CCm\nkwlevSEx1d6euPvj/gSeoqt2Yw8V200Lb4kVexGmsQ+bk51QYer65B7mK7n/9x49xVcfPAQAzI/O\ncfpQ6McX80ukBKc0LAn/9V/8V7G6FFf19x49hWE1YOKU+N53ZaE/nF+i4GaSZsSvawejuBOgDXEy\nZzXAKARs9X08k3xBa9koqfQURi4iW0KY23cOMfEltoxuVAgvWN/el1Bk9eQCuMkMeG+Cf+cv/gWZ\nl7bFY8XvepcYXgosvEmoE9mmSBbEVWQLLMieXbUlJgzTdqcR+iQLcbnZOI6FgGQwVVpjTdhxvtmA\nCF1UWb1lbzpZy8vx6KMnOD4V1/g8yRBwo/6tr34IY6iFGTsYXJfwb/+28Ee+lBjoVgzA5WqFhJ2d\nk1GEf+unpTPyC195E7s7rwAAvD7zKNk5NOHaQTxBupaN4OzyAsORzOdo71XMT+S+j5fsPjQr2I1c\nW/tojksyMZdlg7/63/9vcg6bod/1e3BJ3z4NWvR9tmrbBk+ecW0dn8OjMTjsy3F7voWWLemxY4Fc\nOKgM4BIAVRcNZoT3pxQsDm0Nnz0/bs9By2pOUykYxgplU6Fip+xvfe29rxtjvoQfMK7Ch6txNa7G\n940XInwADFRr0DbF1sOJAwsOFaOHEwsjkn6MbxzgxqFYzYhIup7tgnkcNFWKmihF01TwG3HLYjNA\nQQ/hsGZ1IjSIaoYB7nMMUvajDxq4tDAmrwDSYzWd3PvZGeZ3xKpeexLg8a4c92QWAJFYCnvpoqWu\nQ9C5zpZGj1RyttdixI66dBxh95ISYzZd8WyFC/I3xEGJyhLLNlAWEk+s2WFyDdFdsRQvhdLt+J7a\nwBBJ6fTWOHvKysFLc4y/ykz1Tx1gHlJXshIOAvM8RlKIZ5YmJXJDlGaWQfWpxWGHcNHpKMhc2MaB\nriki46wAQpdhtaiqTv06RcXEXUhP8Pp4ggtbwjHvbYWSdGRW2IB0lVC6wip5BAD4uXdkDuefAQZs\nJfWmAXx6hXd3HNy9JR5NMIzhsMJk+RJKxTpGTfi0LjSKSLyN7OEa6po8B9/S0CFRsuw4rJcBZlR2\nXobfxPR7b8gxvqShyAWqh3I9o9aFf1M0L30cY6zFKyrWI5TEg1QWts12e9dIROEACUONVZFAM9e+\nthqErHxUqFDQU7U6FXOt4XUKrraz5VawPRcZQ+HpeYSia5X9hOOF2BRMa1AVJYoyR5xJGDA49DHi\ng437Dq5NZCMI7AGGnFRFTLoTa1ip3Pj733sHg0JmSp2F8KmDqNUKAVmd4pG42svsEuURW2gvGuzs\nyWRvli3GLFXODdBQaKXu+ByrGpdvybFefbmHi0fEuPsx1gQ13bweoyEM26FgxyhW2Hdko1u0FSqf\nYc4oxcNbsnj/49+WhfbXVjMcMndwfNHCYp/E4myOg1ji/e/qp7h3V+LId11xT+/Xh/jNB3IN/bDB\n7n8r9//N52vc+Yxc5/z952i58I5biZEd3cJhN6eua8SENo/i4VbAxi0TtKw0RFrm2FYWalL+tEpt\nuyg1LDw7l+vQmcaUHZq9CY97u8LpkZTk9A2DBfMW3YYASNOftZL7TihIc/9nC2TPWEUZAy9N5Dpu\nRiNcO+SGGhqYVOYlIew69icA80TKcmEyWQOj6RinLbUrL5a4YGNqANlkn2YFckKtz/MKd1+WF339\n0MYheynSQF7o3TiEy0qEDRe71M1svRLP5520/QivsPr1xRsSthx5wPyBbJDvLi5hKJiTAKgYgqmy\nwS6JfbrOScd2kDIvMXICFFwjQRyjWsoDHt7soSI35Scdnyp8UEoNlVK/qpR6Tyn1XaXUn1ZKjZVS\nv6GU+h7/P/o057gaV+Nq/GjHp/UUfhnA/22M+UtKKRdACOCvAvgtY8wvKaX+CoC/AhGI+ScOY4Cq\nMojjEBahzcEkxnQoVmUShphSozHaGPgdjyGbh6D72ypDP/Xgklo9OAxwSCm44WEAcH8i7R+CRyWW\nYznW7myEUovU/P7cRdk1vsDZZm8d1nuH8QXUh7KzZ/encBqxeJN+iOmUCa6JC0NyjklB9mldwKGb\neLRewxvIzv/AajClFfub1Iz0zjXm7MIzrbUVRcmwh+XLYs6qU4W3IJYwZKff4+gEl6y1O/eHCK9L\nQvGN352jfY2y9O/8Lg5vSh1/di4WvHUUhnuUo1v0sWIC0g8MdEJCFccDqg5CTaKarATxVmhLjSKQ\nZ1an5whJeLExQEZ25BukPR9GCxwcy4NI7jRI/4CgBXzc0dfCx02btfwb1PZEjcJ6BAAYPAdufVEs\n/p3+FPlGEpd9pWHdImUZ1Zxx4zmGlVDO613AtSQMOBk8xPW3pZEqvvUuSuJdHhLodO0sx3pKjMW3\nJtjclfOdffhNVGSjjtdi8fPDERx6k59/5T58AraCHR+H+7Iu7h+O4UI8vYAexrXTNZ4yAZ01azwl\nt2W0UEg5z4UB+mQh3yW9mq9bKPKnZE2DGzY5OF2DTU6Cn7gPzQ7iTzo+jcDsAMCfBfAfAIAxpgRQ\nKqX+TQA/za/9DYhIzD91U1AKsJ0Woedj2pcYfy/2cX1MQtTeAGNmjq2ogUOtQUMtP9uqMDyQl/ja\njQm8jtvQahCOZHL8fghNhhy0jPX2+2hWsuBvhX2kjSzimdfArCkCChcNqd27luX1hzWmStz859+b\nYZe8hQfhPpwDubZgAuzFzF2w3NauC5S1LLbewsWANOu38xLHsdzLQ/IIfkPtI2bYodcNhiO5hvHh\nANGhLMa33jrBQ2pY1OyWVJsczqt8MXsG/UZefjW4jeMTCTHavR0UROMVXfXJTaBJWhr2KoDdflZz\nCZ9t3WVTwyo6tiiWiN0YNRNBbdnApZCqsn24ffm7gWW2mgulJiFNb4Kfe0Nc9OnFt/H2PV7/t55B\nEbTV0x6GpCr/0muy84wPDL7+TJ7DtWsGd+7IGglPatRnMrftNITO5dgOeSkdY2Czi1CrAyhHNqlx\n+wTJbcmvbHIf9lO574HPOvPdKYInks+ZBhPUhXweD15GrPksHQFT6U2G6K5s0m/s7KI/Zu7DXcKn\nIPH18VdgVRL2LueSz9mZ1NifyWa0f7nAo1yueX5R4BHZ9U+LAk5OzQm2kZetxm4qayQLFIKePMuh\n8uGxo9exc7TDH85Z/zThwx0A5wD+F6XUN5VS/5NSKgKwZ4w55ndOAOz9UX/8h6Xo6/YTQq2uxtW4\nGn/i49OEDzaALwD4RWPMV5VSvwwJFbbDGGOUUn8kEOIPS9GHnmdcaLi+RjQV6+K6EXxyATjIoQjh\n1G4Mmx1zbthlmB00VN2x/D68jkbd17CYoFI6hia/YJfmcJTCIKZs/cEJ+hueW23gjSi4sUxQbwgQ\nYtL3raTEMpafHcwPoe6Q7r0fwGcYELg9qJJcBkx22YHBkOrYe9EAPoVjqrWHXXbM+cNH8rNGoyTv\noj8q4NHjCXZDNJ0q82SJkv0fDTksV8MK+7Vc+7IqcX5GufQ3LuE+nfC7l3BG8vM+SUxWtQObDM7G\nVbB86fZUhYZm2OSZACC7subzqPMSposfdApNSLRCjTAUT6hUa5QE2ZD4GknRIrspYVC4GKDpix3R\nyoFCJ6jjIhrJvNz8qRsAgMv+U0y/SSCTVggNMSA7NirqgrahA0VswSYi1LwKYFE4xdEDGEs8LFfv\nI28kyduuXcynBKgRrhzkCrVLpauf+jbcJ5K5TiYbtJl4pNk1CR8P/QmuxbK2Du+EiEn24/kHCPeY\nKA9GaOhtdZUv3XfRcyhw8+eWuHUs6/D9x6cYfCDX8fvrDC25Ex4T99ILI6SueL0DYwF87jqYIHhZ\nJtpb95HEHVnfJxufxlN4BuCZMear/PevQjaJU6XUAQDw/2ef4hxX42pcjR/x+Gf2FIwxJ0qpp0qp\nV4wx7wP4WQDv8r9/H8Av4RNK0SutYAcufNuBWpD52KvRsImmgEHNJIttApFTBqDIsWA7DjyX+pHQ\nMMw/aDeA3SNDUFWjJoTYYkJGRxqKDM5e6GLnuljx2yMbJ2S/wfOHaGmBmlzOd+kYVOxdL14GUva8\nI9Bo6EGEnoFLpGNL3gflK1i0YMFkiE4txOgN9tnzHn1JcgB3ZjkSogOLtMKMjE3a1ZhlYoGmwwF6\nC4rkTGR/P8rWWP2E3N8A15CF7AxMHeS+xMO62GCXOZE1782zInQtiflsjaIgK5Ttw7c+7t9vank+\nNr2xVjlbAlJL27BJPOvYMQwxDWVRYJnIz4sBSWdLA3slP6tdoOR82hpwjSTi7ppdvET8QlJJ1+Z7\nj49xQg8qTg0ekzQ3Uylu7sjcZlmJVfldAMBqLpb0zrXPwOmLt9LMHqP2BLHa5ruoWF69yB7hOUlh\nb+y9LtfmNCimch9Lewfhfbl+cz4HtX4QjeTvXTVCNaS+pDuGf0PmKHQH8AJZh7rWKErJ7XRsW8Gg\nBnLJAw2tMfrMqcQHDW47cuxy/zkefiTr4cklYfx5tkWkGivGkAzVK3eFlF6DikpUJOT9pOPTVh9+\nEcD/zsrDAwD/IcT7+D+UUn8ZwGMAv/CDDqKUhq89eNpC65FIYumgHVGxqOmDpWTYbgmHLrqtqcVY\nW2gp6KF7HqyMiTFVAymz0EMLVtVVFBhGrDN4gbxUQ2uKli6u53l4skdgTdVHQqp1sBX2hu/gWSGT\nfnk2h5fLuZubA+y08rK52t0qQ3WMHaoJ0BDua+pkqwZlWT40WKHI5FhwnW14VIRrmJl8XmOJgAQo\n49bBnpbzfcS6fP3AwnIgC9tZPsD0ZxhWpAmSS7mnw75Bjwnd2amEIqvzFHHDl1ulcAlIcl0Nn6GN\nsmpoYha2OiZNDY8iJa4ZQnW6ilUGmx2KEz9CyeqDz/bM3qhE/kzOUbotesyoG2Ohohht5u3glVuS\nMNzZkY1w570CqSOf/5wzwp2Y1OjBAWyCxNzzCzQUAx7xfWjdt6AYYmnfQC3Jklx9iHYhoYupLPhn\nch0XEJ7LQduDw7mKvufAm8q5N1kKDAl/5mQ0kwSv5rKhTe46CHtvynNon8NqiRVwT+EYqVZAiRNt\nJ1OYqYCp9HKEdigJyCg6RJ+t3NWJg2ItVZJjGpnaAORjQVE3YAQN5WdQF6TZG2dATcHRTzg+1aZg\njPkWgD8KS/2zn+a4V+NqXI1/fuOFQDTCtGjaFE4dI6TkuD9x4LGEGEY+YnIIWLaLlm5uSSSddhxY\ndlcsr1ExSaSbDGWXdExKNJBd11Efk11qfnYBjIfCAtqkM+zTso2dBgndREpNwnEMrrPJ5NEyh2bJ\nrk0UClZSPHsNv5Fr2tJhmQI1rW6ZNkDEzkZ4sFgi02TkHXoV3CWbw1xgyVKermo4rVjr3cDHvZJN\nY7yl45WN9Gv0eKIWYJnVrOYwRlzmG9NX0HM6clQSxaoFSjYiBUbDo7LxoG/gEA+iWg3F7lBFGG1l\nAhjiIkzZAHxOjufBp95A0Pe385x0mUbjbCnPhrrFATknLKvFMJLmpzdHt6F61Fn4kM8ptvGVRCz0\n4FUPOpKQT7c+Imo12CHgEU7dWfHArqFtQVgqew/lXJKLVWtgyOCMPEczk7m1A3lOjWtDE43o1iUC\nXyx+PN5FriSk6aeCbIz7BbJXxYxb9X0ouxM9ddAwtWbVIWoj51ajDko/h3bFI7LzE+i+fDamgUt8\nyuBojS9/TjyM9VyO9U6SQ1Ga76BvoU/Eo185qCk6FMBsS8OfdLwQm4KBAHRSvwA61iT7YwltTzWw\nyQOoq2xbiQCrCa0DMEEOhR3YpFZvTQnDGLGufViefFbU+FOmgiEvo/YzgG3bDmz02BarrguQCABS\ngnFWtoPlQBZ3dqHhkVNwGLvwWf+3tb0lcOlabxu3gEsCGB250BS61W4Lm/qBDRl6rLyE8YkJmGew\nfUKs1wapJcd1VQ/NS7KRRQ9kw4tbQM8YohRHuJjJi9AMT3HQSJw8nr4Cl/0MHSX7ZlOj6aKdfowo\nZnZ+laHmfWsrglLkF6Rmol2XgN/1j1RomO9BU6EmW5by6q2mZegQH1HW2PjsKTkeQHHTs2Mb9W22\n/f6UjeNSXPvbrrjlqu9gOpZzx70+QgLVkqhFckbBYcuG84yMTIdyveW8RCUFAJjVHJddH8uDBRLG\npsUTF34sc6u4maqLGKA0QLV7BPVIKux6YsNihy3eEICYv38X+5b83p5GAAtvrZtAUXfSWDbSiOvi\ngnEAHDgUcqmrj+AVZOQq51hTzOgkn+N8LmtuQ1Ww/tzB+YxhkqPg7XQxnYXMkefX24xgxj+cQtRV\nl+TVuBpX4/vGC+EpSPXBApQPhGJdQm1DtZ3F/7gu7voDIBDrUFpEwRUKFa1ZXqYAm3ICN4KhjFdT\nFyhoCsOcKsF2Dk0LpZICNl3mSllAKGZlaHyk15hFPyp5Xhf5iXx2A4MeJcr8JgbY+Vi3aiv2UZKI\noVYWQjazNNpBQz7+Ahnsrr5PVeomN8iJjygrg4Dhwaay4bLjblFd4v5arMDvrMXL+TNNiN+gi14X\nLkr+oe0e4u7nxO2u7RItNTbPKVRTAvBoMdtNiZxhkOU4sAg9rqsWJbklehQ0cfsD1IbXWfpb1WVj\nKiwumVyz5nBZlWjY+aocg2xJjNuwQjSTufD/FFA8kWt7ZgA1Fdf8XSotjyuFVSrHSIsYa8ZND77z\nDIf0yKaDZutldXyI93d2UZzKz6rQxTefyXztRNeBc0rZqQbrMzI7k89yOHZRBHI9+QbYMHPppils\nZvYihqjTsEVzQFn6tASUeBBOY6HMxGOrzQl+7e/9XQDAvV0JE7C2scPO3dnzb+PlG+Jt5KbG957K\nuf/Ruzl8wuJ9rr3HiwoVYdVnDwq0U3qZcSOCRQDs0IXdudGfcLwYm4JRsIyDHaeP3oRQ21LBZikM\n2kK2lJs/zz6CYYykE/nuym8xsORn8chCQHBS2iyhWb6rowA13cB5SsLM5TlswZ/AL0roCbsynQMM\nWA498KZYkf8w4YvSL2ocSziJ0irRJ/W26jtIN3Kdaau2PQMWVZWauYvzqSzAwUmBpkcx2spH2UFw\nc3bWmRwNSWFSk4GHQosMLeGuqnHxDtu9NxD+wd8el5gn8nfTkcIBlYlgDxGwh6OZn6CO5Rgj5gOe\nJgX0kmIprkLTyMabOgF6dPmVThCQQLaoZKHlq3Osc5njIgXOyWOpFwvUfbmOng6BgRxv32MvQtgg\npKhPO3Rxxnmb/24G5ch1fOvxP8bZ+3Ljr74s8fTQLPFdita033iES+ZiNvMKirmbf3kvxuhzMucD\ndl9+ePIM+gPZWJYv+VicyLmPesfYfIubGjR2SllT5yGJbasWzkDyHThvsb5BRbGTDYLRNV6TbLbr\ncoP+hyypf2WJfC3X+eEH/wjWR3Lus+kGD35NFs/f2UgL/E80Ee78LMWL367w229LyfLRswpvk2in\nKYAlS5gROyOzZYmMvTQnbYmUxiBwDIJcnlkWlAjKHw4xfBU+XI2rcTW+b7wQnoJjK1wbergW9XGN\nib/+MNyCX1aLDKoSUMjlWQM0kqAJCQSq2hZZXxJRQzVBvWXpwBbEsVqeYnkprt/lUlzKeVphhwQb\nB/YALmmuVHyOQSA79Jev34FD3j6rJTDHGHx2yjDA+Pgsuw+N9nE6l8TQan2OZEnWXXJGxo2N6Zzy\n5LsHcEx3DKDOaYEyOW/eZJiz2Wnmn+OEoURVVxi35F3sATO6/D4bkZzTAuq2nON2PIUpxTLHQwc2\n++pza45As7OPUucWSrQEgzWOBWsj1+OHNexAPKgo7CGfUZadeIT5OkHKysLqokZvSpd69zp8egrt\nyoYm1LtkRcKvasSWPD/dVziNmPCtFLARW7X7Gxuk5LJILinI8upnkNCjmVuXiEPydUaAMyHwKLQQ\nuoR6E2OyzBqcPJQ5OjqqYMiCXFUawZrXOQbuRaRR76iavRg2tUdrbaEj5LRCF5qycVPClf3kFM8i\n8QheW9zDquvpyWKYnlQcrmMPP/0y/+65hBSfue1tJQnV6xozNuPNLme4RUxO41hoyIRNXwsfWg1C\n0oNrS2/BI6HyUHctAraCY5GB6BOOF2JTsGBhYPcRegYOM9kWJCcAAK2ToabsdztMURv5zuWa8XK2\nhEOdyFoN4A0pLw8HaSIu2uZE472zRwCAVSKbQ9QbozSCOd9ULaJOhaq5RM2uvuYrBsFvyjQFkZx3\nWRhcG8vD+tzrL2N453MAgHXhIdp0+pa7WBYCQqkWssBOsznSVI7laY1xzFZer4RhpjrTsvldPNvg\nQSGb18V5jdWCPJF2gciTRbxbB+j3qU7E7sqH8wSBLQvCn1q42AgYqto9xY4j7buT/mehyAD10g0h\nMP1e0uJ0JYjHTRJisZbrmMw1pvvyHKYHMVqbOpx1l+8ooElPbh3UMOy0zOoayOWZWe0KXq8DZ1H/\nQLkA6fyD813U3HBRN2iMvHhHZQWbMfPdNenZ10ssL+RlStISd7nJfDS28AZDrHqocMCVPfqsxIfv\nf32OM6ImZ1mF4xX7KyprW34dLgO8zTb4z7HUWTY5SvY4NHsJ4iUp1f0QLlWvzsbvAQButEPc6LHH\nYT9EvJE14vczlCTNjYNDLL8im9OfP5Hf79y5jkks56unHrL3PwAAjPceIzuVdfhhUuDoSIzL12Zd\nl2UDEL174Fm4pFZo2+RIWDLuJz3U9pWW5NW4GlfjU4wXwlOAVlCBA+No1FSJbic+jKL6ka7x4Fzc\nr+88usSMLvacMvI3xyHe3JV6/Vn2Pt74gnSyTaM9tKG4gzNniTPy3T09J1Bos8BoKZa1tqz9AAAg\nAElEQVR0N1b4Uz9+W64nUrCncu7TzTnWL8su32eIEh1doke8+81XPgd7LNli8zyHFcjfrefH2LCO\nvWLPRF02sMmRsFdbSHP2YlguQGr0TIt1vdQ1LitJcD1dJzhnWHLguDjy5fMg9HHfpl7llHwFqxQ2\ndQQP4x5+7923AABx6uAXfpIcA34ITaxGSur82fE5Pnoq4UrgpvjOd8Vr2HVDfJGdeCq0oemK5tSy\nb7XGo5ncx6OzDU4fvS33XzTosz7+ym4Pn31V5nYUiyWts0tkCclL7BkqJnZr2wDEetR1jcCIlT5Z\niUs9uVR4+Eye//rQwjFd+LMqhaEQzSCpt8C3+335+x//yWs464nndvmNCnOHIKSNC4dEO6tNgYAI\ntWc35dXY8QZImNhclyUC0gKaLMfmXOZlv5BzvHzbRUgPMksW2FQy96E3ws5YAFlFEwBnkki8+a/8\njMx3EMGjxxoMKvQOfgwAEH3xbTz9dbnmt959Dxnp8jpcjMpauB1jtufh2Zxw5irFnFUwuBYC/aPr\nkrwaV+Nq/P9wvBCeglYKrrZhtx40hTLKpIFHi1hmJXKy+7y2fxsgBHXkyA7dn/poqJeQLOYoj2Rn\nt1+7BZdlmrhpcW9EGixqOzYbGyqW+HQXIcbcUFt3iAe0zE+/c47vkvD1pULKcddjYJ+xsxP4aGdS\nYrJUA8US0WAnhPJvy3lIqRU0tzBgM8++9hGyGcuGh6qSenRByK1f2rjjizV3bhlMIRbKc3Jch/z8\n5t4ECZuRdsjd0Pd8aMNSrlEIeT71wRrL1yRe9to1nJ5YLo/xO4IGkSdWcncYopjI79N8DS9l379V\nkxoUyNkt2eRL+KQZ3oGGuide0/XZxzRtPnoo2UwGMm3/f+y9WaxtR3rf96s17rXn4cznnjuTvGST\nTTa7pW6NaUkdRBkMKYDhJEAebBjwS4IAeQjiN7/kQQYMOAECOECQyUBsWVGEQFMSB4bkSFa3WuqB\nU7PJy8s73zPus+c1r1V5+L59uunYadJ0ZAo4BTR4et+916pVVavqG/7f/++To7Fj5p05k6WmGRML\nqoGQ4NBVBOVgS6pHs6bLF35MxnU0GuDsKXnvaYZ/VayN7e+7vPxVuXZvT+I2cR5z66Gsl7PnC1qP\nxVr84KDNxlI62tt0aSvxqquowUFdEWm6uDUZUg8UPj1LCJTFef9M4gG95zvsHirx8Csu7Vz6WT7X\nIFxrejLl+dVPy/ToOo7cPfxNhSLbNraWOJj3LGFTA7evbg1pqYXQPVcNy70ViVaflqxo6OxU3ZqB\nQtMzt6SZfTJE42diU3Bdh+GgRTNs4irFml97tJprkZUtrqsADHVIpd+pFKvfiELOjmUyp4sJoUbn\nvWhGS82551tX2EoFCPNiIguQnkORidk2HDUYeGJex2djekvNf/9BSldpv7fuCK/fwe6MfVVQKuYL\nXK1x8NKaq01xY/b7IblSnK9ZB93CodKKynZYE2jAtKwzMhQYpRiDZsejvRRzeNh3KEbyd7mIaa/v\n160xKrbbUkDXlw6GPCzls7l/TmchL+mqmnLv0RsARO4teuY6AE8eS3/G0ylGA3EHt0Zs3ha3yzHn\njEbyrKEfUGjO23W0viKA6w3ZZK92PBoawHRfDUm1BoXMEmo2wNEqUbNq0OlofUFryU5X5te4DlQy\nYh3j0Q4UGNSX5/uLP/4qnRvSH+uucFUr0zlwad2WjbV+aUJTKexD7ZvXLPnyl8Tlu/1TPd79A6kD\n2X82o3FD7rG7sY+rdSwto9msyCVWUZ/T+dMLuHLtN5mOpbKx3FVtyDIi3FZ+UHeTeuMr8vz5hFrZ\ntiPvNSJhgcdT/Idb9DHqVlbLJ9Ra8WpLj/BA1uRzmcMokA3+VMFWJ7MGZ2fKnt3sEymf5Tx0KNVF\n9qIWVutbPm67dB8u22W7bB9pnwlLAQwVHlmZkhXrUz6nQnb5qBsQKooxXS2oHNnLMkXoxTmc6u46\nzgsWigtg4VNr9WTUimgUqhjsy2leey6e1eq8psGvFCFpByRjMeGa5DQnaqKvxFQ9LZo0Nf2zGde4\nCnhzSoemCs6Epk+qbsfamq8p8SIlgyniCx3LwqbES1WV1kq/jjekUAslxKcbKEqz7VFbJZ6d1CyU\nJKbSksN0wyXXfPxZlmCGCiseFSxU2/FolpI1xG3KSrlflBc4Kh1vHRhpqtPzIwKFjdvao1zjIZT/\nIPOdiwK1oF0RaqGRS4nNlYfBSUARkqZYP3NErGIw5tShrazbjrWsQbkFNStH+ve8UvAVLUNvQ10e\n06a5rRRz3SF2+T0Zg/khjpLkFD3VpDiDWiH0A2+TV39BUpx74yMyK3+3cUGfz7palTmtKeaKaRhW\ndJUYxnE8rKe6mddkrNqDEUEk1qjb2MFRARyCR1hNzzp+D6cv116L9tTJKZwrPL6aUhzLOsuexvha\nxNW9vkcTCbb29ySQ3r3/DqWSz0RRRGMk67ozDzkbSqDY1C72Qkvy47XPxKbguA7NXpu6MMxWygFo\nmyzLtYipD6dKVNJqYjSqnysBxXSa82wiE1N6XUo1GeclOGoM1blDoyXm1Toy7YyacCQvWF3lFwQv\njWrKk2O59m27xVPVo1yJxcnwRoNnT7WU2Z/SUlAJWY2rgq9+FNIIxQStlorDr5asA8FZFV4wRxWx\nYZJJP/JMpqQwNbku0LbbAmXVMbXLNFUwVZKzUn9+2FEiEG/F+JosgtNTB7ejXIV+xanqHDJvkXTk\nhXymsZio1eFqTzbQZtYgUxfE9UbUlWwmcZGTLPQFaKmbZwx5uV7kKY6CZoI6xKpLtEoDauVSrLRG\npTI5ChUgDF0a63VrwLBm2bL0EsFIzM+kv63zMfV7El9ovW4xT2S83O1jJm8rfsGai3FpnsnmYMsG\nmqghj5cMrlwHYNB4nUrjB7PDY/Kp3Kc6kRc2beScaaXm8SIBrfNo2IDlWF7IVMsvW24EqvCVpQmu\nL9dyiiYoFsKWK1BG7zpWkplsciFKNFs9pHikG30woXcu1wtHOY2mkLY0euJSpIuCwZkyb9Uetc7N\n48UhC4W/h8YQfDLv4dJ9uGyX7bJ9tH0mLAUAgyVyfEpfTLLxdEKkEudlDEZPHdek5Jort4qOW5Gw\nmsiu3PaHbA205t0FU0nwyYQ1VhFmlcrOcXSMqdf0wjVZKfd+eFIyOZUd+Kzl0t0QHoLwJSVACU44\neSL9uWfus9ORnX9zsAVrl6CucGYalNNioChrkRjpT7WIqbvKs2D8C7hxodBov+XS0yxJ6PgUdi2N\nvqKYyCmYVEsS5WFQmQaqwnJ2qgVTC5erW/JMWV5SZQrz/uAxw66Y3b16bQ67eCrD57ULKhXnTG2N\nVRRjmZZQyrVVlQyTZBh/PYcdaNT63QmValHUac0iW3NAyHcJXFQ1D7PRoFK6srqCtQOxwsML5PmO\nG3KTRTwneiyiPc2oh7Wqjn0y5ejrEsyLj8cUXXHTtvYV61Gc0l3IMwfPj7jWUEUgd0Klwd38dEas\nLuKZ6sc5UUamepX+U4fVjuqNLlegAbzOB4qK/YmQ/hO1dO8kOKW6Y1WOs3ggz9rZplZ3ZXlfAr+z\nZ08xDbE2zk8dDufy3fKtx2w+Jxmjvb1N2rckoOk8kbF004qmYjrGVUmhSN35PCNNtJK4ldD+hK/5\nZ2JTcF2Xbr+PMzH4VvJUsfFJlEuxsilRR1/osgGa4nOV0CNq+QzVTL6yZ+j3VWi0HTN7qsSkw5pK\nXYVivk4hWkLdIOo0x1H/OknOOO6JKUpyQqHKFfcUPPJKuIWnpv/Dp2MaSpfeCic0S+VozFYYVf80\nmuaqi5RCy56TMsdTMdZ4VeJlCtPWtGCaLi5Kcv2hodZ4R5qdcnIkG+CsWl348xtKvOLMLT0liGk0\nXSLlsXRNztPH4me2ui18rYN49kQ3gjijqZHzdtnGZvLWu35BUqwFY3xqjcvU62fyfQKj37XVhanq\nll0q3cgdL8dR/sfSUeLXhoOrpKOeV1IbhUqHHrXGIhpYYvXLUyXdbQWWyFUwWDW7IOMtFlNGL2ka\nzoT4B8oitaWCOyvLo3dkjGw+ZfC+gII6/ZJCRX4IQ4ym+FwFdU2rlFhrcEyzoqV5VrvhkpfijhWa\nBWsel/gvSn8842F8rVKoC0xPs2d0saX6+601YU1FrKns+ycPePKO8oouCqbvSD9Wj0sGH2q6el9i\nB2dHxyQKoXfLlFjfl6jfIFDyxrDRAv+TveaX7sNlu2yX7SPtM2Ep1LUhWTkYf4nR3L1bphRqRsZ5\nTqSq0mV9TpLJaVMo30BdOXgayZ3FHo+OpUBlIw9ZnMjpMAi3MBocmx4r9dXJEZvXBNwSVTFxISes\n68RM7klU8b3zFVc78v1Ec9jnB0PiTSVeWcKJKyf3oOrgKCO0k/pUGlCqlECjqGKsBtGc0FAlGqAL\n4ouAaFNPHZ8Kq1gAY0dkhYrWVJaJlSDobJXT6ssULrQ4Z56XzJVwxQQeZ4/E8ipvnLFSxmjPhYUG\n4hytAHRNSa0VpVllcHw98ayDW0uELvd8gtaaE1ILuJLyQpzHd1dQKvisnlNo9WBVZlQaoHPVZUjy\nCBvI83XTPka5CM2uiz1SgFDgkmsmabQrpvjJ0tAbqKz74TnLp4o52W7T2VGdyo2SRIO77680Yu9W\naM0c7bs1H/bE1RhsZJR2bXlcI1Mm6aVaIPE4JXPlumXP4vtKROOEtJQmv9zRMXafuxAlomqDEuqY\nsLyQj7YVWHXBIk+Jeq7eInLl+V5wE7rKqWGWbRJXLLnVakGmVb7LSgvlvudCV1W1K8tK3eqycnC1\nwM6aJU4h6+/jts/EplBRsyAmnhsaawSiMawmsrjP7BleLaa4G7VIVQ8hV7MuWVS4kfz70d0FT1Qz\ncTPs0NMKv3K8YhhJ1DouZcAe5U84fVsAKP0RGHWOz8uSSjeeVZpwV83jVSzux6rzCtNTebnncUx2\nqFWL9YxELcZu0aYVaXQ5VjPTzfGVEcd1SxQrRF1LOgvA99eZhRJHp2c+TRirKtDRvOBYS2TjvMJV\nc3451hclrlmp316uDN87FlO1UVhGCvqKWk3mWuX4WGGF+4UDidYzNBakmlFohz2qel1+GLLUjTrU\nrG/tG/I1wVIDUvW/cUISzWDExsXWa50IjTM4llLZmEoHHGXF6v09n7OvrUlhLa3rkuI7UtO40/Z4\ncqgxEyIeabZgYFdsKWnLB1PD178rL9P3I5mz55IhNz8nfmCjyi4qSc8fn9EMlO7evovV7E+05p30\nOqwCrUpcVbQUjxVUS9qKvk3Opb+HT5+w/YqssTJb4HlaM1J2IRSFK5vOsUroGlz9t+ViWPyVGu1d\nh+1tiTkU8SnH78kB9yff+ABPAWpHj+UdeX98SpTI7w6aTYLW2s1LOZtKnzp1n0bzk5VOf1op+v/U\nGPOOMeZtY8zfN8Y0jDE3jDF/bIz5wBjzD1QT4rJdtsv256R9GtXpfeA/AV6y1ibGmF8D/n3g3wL+\ntrX2V40x/w3wV4G/8/91rcpWzNMFaWqp0jUtc4LfVkZd06JcE9UWUxZaJblQfsHSBnS1jmDnlRbN\npuy01BZH9QNbfUulsu2ZL5/Z3DKOhUevGW3i+uuTbYETKFVaKyRR8pVUMwPN+RlTxe0nWUExUxDK\nVo9morwP3YxMATS1EqGkcXFRtxFUHaKmQlFTQ9lUvsaJXKtRWSaoCVhCoVWJ02SK1RPROpYHS412\nr3UUPZ98otPaMbRjOeUWmcVRV6PTBC8WrcienuZFbVkpl6RXpRRqmc3iKUa1K2t3hrtQHMVAP8tK\nIs04JGV0QdPW7hSUsQZPi5p5taaPV+1H39DWGg4ch7ma62f/xgLlb6HyKh58VzINO3cEsPPW/SNu\nbkrmoKZEBZoZ5yHRUO5xY/s6wZfkOz97rqzcvkegpDyhm/OdBxJIfnA+Zs9fiwe1aSpXZryQedge\ntvC1z72xJR6pC5os6PXECr2OuKBHXsDiW2J5dn+qZq2tbJs1rKH1HqCapWXyQPpWOVTKJVpmoPFn\n5vePOUzEBR1vGabHYnk8faxZpCxhU+HRh42U28pZOk9LFlN1b4sF3U/4mn/aQKMHRMYYD2gCh8DP\nI7qSIFL0v/wp73HZLttl+zNsn0ZL8qkx5m8Bj4AE+IfAt4CptXatU/UE2P9n/d4Y89eAvwbQbrVY\nLQqW45SGinjYdkSsOgyLbEVXhVOqIqJWBuZaAzJ+WBKoxsB20KEdreFxGXEo/pRX1hw+kJz2aSrH\n/NyZsX2gyshlju1JQOn4yQy/oZwERDwMZZc3S2U5Wi3Z1vx+2nPwGrK3Ot0mpTIr+UVCshZiUWEO\nm+bU65J34+EtVOwlSRlrfvx4vNAvWLaUoszbd0kvRFggUALP8wymGlAL1zRnXs1CdSWTMqczV2vK\nrWi15ZmWeUVjLsHD8VQ6dLPjXMiuefikU02X9UK6HR3P5ga9plwj3JN7LGcQK8Zi8jjDhEpyG8eg\nMRXHVERq3VVKL4ZjL2IRnpNQrPUwMpda5b3dHIymZf/n35M5+Pd+zuXqUmI04X6XK8G64jVjFMrJ\n3OptsdmWqqNcT/nEJiKKAZzX2ww/VGq6rQxXi5x62wHZiTxrO1V27WZAR+d65pc4mg4Pm11uXpc1\n19+TuEdj9YzlTeH9qMwXMCpd59V9UA2TujgljmUd+ko9WBep8CwAb37wHqGmvh/cf4vzu/LcD+KE\nJxoczipZIzujBiNF6bZrl1p5NFq+4biU7yzLmvRULOOP2z6N+zAAfgm4AUyB/wX4xY/7+x+Woh8N\nhnaxKMmqhIWVCQp9h0qjwqfTYza6EqhptWqSubwAC1eFPu6OmVRittWHHfy+mHUdmhTOul4h5NQT\nU0yZzXhxeMCV2zKo0+mElb5A5/NjzDXFL1Rt7LcFQBJozcVTazl5SUw5940WhZKs1J7B7a7l5V3q\nWl9IdXPmqxnTQ6VfXySg8Ohl5VAqrVamXI2L3L3Isry8v4/XVYn7hYurIrbBuMDVnH3Ule8+rXxW\nh7oYjUu8Bi91EiLlh5wnMVEk49JQQZ0iSXDVhJ3VKeNz2Tjd84BDpaFzMp9CK1cH9zQDZC2J8hkm\ns5j9AwHheF5ItRa4cXJQEdpAGbqT0qFwZAyDaZ9YA41uUWPVbaqx5Pp5eCbP9N3v5XzlF8Rcv/nq\nBg++Li/hn55P+I3/UoKqVflNWpHcJwykn9YaluuamLBLPFI5+DDkJ164Lh/3NjjPZcPJ9EDyKueC\n59L0jwlSuV5qINcKW3tN1pU/DikUY1Ekc1wNKtfV8mKDKAvwU7medyCgOOf0HFerS19zD8h7Wvqf\nLKifk8179qff5J23RTR3V4tpPtcf0N+Stb6qEwLNXMVVA6OCzKYoyRZ/diQrXwPuW2tPrbUF8BvA\nTwF9dScArgBPP8U9Lttlu2x/xu3TpCQfAV8xxjQR9+EXgD8Ffg/4i8Cv8rGl6CGMKmzRJ9CTy7eQ\nKnZ3MY9xn6ioxy5EoZhJW0qPllxr01NY7u7eHk2VRMt9h4YKv7Q6DfKjBwD0HD0lrrRxA9m1z1Y5\nh5rrz+KApiv3GCYOTx0JWvU7iqrrwPhM3A5/33D2UE6rRWuX7W3VigxLVor683tandeJCJVDID6c\nE/Xk3pHvXxChVudyej4+OUVrvJiVIQ1PLaioiauQYbdR0tcqyRvXpD/Ok4Lva1C243qEgd5vEbKO\nPwZhyKFG6JJQzO923aNUbfVGzyVWK6VtmhSaDozTFdOJXHys+AZT55iOWi5Om4aiSW2Rs1I5+yyu\nCNUKQXUojHVI1HxO3ByrqdXSWkJNVYrNICderMHVfFnx9l117a6WOArXjrwGB1+V8bxetxipKzjS\n4rnjfp/VQwkqv7Wc0ZKfsd2OKGv5bh7nzBdyv7bS6gW+dyFPmM4b4P2gCrTOxdo6UfKWQXufJ4r/\nrk+m3NwU5GHXbYEv/BTGr6jU9TIqEW/aHUorJn6j36T8vlgK+9tf4Vglpq+7BwxTCY7e2pJxa+8P\nsYrr2bAbVL5YmfMiZ6B8EMfphLrUyO3HbJ8mpvDHxphfB74NlMB3EHfgd4BfNcb8F/rZf/ejrmUs\nhAUE4QpPK/IWdUKpakTkBecnAk0+6QUMNcs5UjWltFdg1c+iWmByGWw3G1KrRl93sMPrfQlv5JVi\n3d0ZsWY7TLZgtZSXLc5LEmU9WiYxjubmm0158Ta3Q358rKZ/36XzWCauMUpZl+I5bkJD88Zt3cQ2\noyZ1JX0edzKKk7Xw7ARK5fbTir3GlSbX1bcOAu8H5nfg0VNTMx/luAoQskMt2T0+ITIKfqlcrm7L\nYrxWJKzZ5bNJTVcpxTdi1cEMG8T6nI4TcmMg/SlNg6ZCk9vPNXDX4Ar1X5fZlFoh04YU1GXKsoy6\n/AHJjFU27lRrHGzh0dJ+LheGxF1/t32BP4EmN/QlLDRDcK9esncsGYlr32sw3JS+/czr+7z/QF6m\nydmc2YeygTfWgjrvL6g6skY6+w6fD2Wj969tk1di/i+XCV2ds2YlL3ojKMgVZDasc4paN1O/Ykvj\nGXto7Xx3h/ZKdSWDJq72mUYflFzGL5uYQFys4smZXuuc4kSrSPPvc/oNlTMIn/HWd+TvZ9UR/Uw2\nrKCtdABsMGhrJsq0mDqyaSzvFpwmsibHZ0vMuor3Y7ZPK0X/N4C/8U99/CHw45/mupftsl22f3XN\nWPvJOOH//2j9Tsv+zBdfpljOeHwqtetn85w4Vg1Ga9HgOr7vsKb7C9SkLm19cbaYEgKl/mpH3gWv\nXb2omOupkesJFoQeHbNG1VlmeuJVLvRc+d2w3WCwKyfB3hUJdh6eTtEgO5tNn5sqDHNna4OgLadD\nYDo0taOdfbEelkdzOsoMHbZcBkMxLyMvIuxp1qIrn5moj41l51+8/XWOPvgjAN78P+/zh4+VGKWq\naYzkd101qqpFwbmCOpzdFn9wrid04VDouJRlTluzAFFfTq0rWxtELalK9aIutTJfr6YF3/7mH8rv\nggYnT8WN66glMZvMibTiMKwavPIlsVj2bjzPUCPjx4u7nJw+kP61ZA52/YCbXfld97k7GC3i+rW/\n/TdJtf/XWi4/eSD9/+IrwiEw6DcxVqyA5tUdWh0ZW3/YIRpJxiHYuwZrbU5fiSIBx9cMjtsDlEyl\nLnE8PenxsCo0ZFWCzlpLrZWv2ekfcqJWSuF3mD+VsZufSIDzrbff5HSts3E+w+SyaHuDkKa6cWWc\n0tKsVEPRxwaXk4XiTQpLvqbmywyFZjuyVc48V1SnclbsbrUoFIVquy6VEgp1u22Kubhj82RFqWP7\nN3/rjW9Za7/Ej2ifCZgz1FgbMzMrrEJ4Pa+ioRx2pTFEuit4oaHUwS5UucnLDGYtP4+5KOUdtX1a\n2woKCRxWOqjBTPH+TRgO1fzuWIwUzjHLCkrdQE6TGA7lfk1doHVekij0OSqgt2a86dW4GtX3Ko9w\nqNWTCof1nZIayWSUZyV2TZO+W+E51wEwGjV3PLBdhXy/fJ0rm8rCFAfEb4lYyOHjglJNWy0S5dvD\nip0HGtdoZFgjZnA9qOgru1N1MMDTqrwrqpkY+S51Q81o5nw4Veap4y2a16WfvSTGzqVPAwXxmHbK\nq0querp6Rnek0f7NDwnPxGCMm48opvK7RKXTH1QlRyM5AF6MC7o/LqI0oQGvIXP5Qi9g+KLyH24q\nQU60YrAlAYFwp0tjQwkPWx5BT8hmaW5irOLNHXkmY4ZwoZQUgbJXGbcFCvrBhhglyTFWXiRLhDHi\nljgbh/SO5U1ejuDJG9L/80pcBlxLaORlDBo+3Q2tAi1CKsTfH3g+vX3ZsDwlV104KZtKBJyXOXms\n5dBhRVvd27QHK8GbkStTT5hU9Hvy3WVl8HQjK/Ka+VVZhxtvtyivXlK8X7bLdtk+RftMWAplXTNe\nrZiervBVOGXguDSHsmetrMVTVyEtKjK1JtaQ2qbrsuYe930H05bvvnp7wEi1Iv0Z/NETOaWdvuzQ\np07Kz7wmgbiVqXjcl13+u3ePcKdaoZkUlKESnNyTE6PT3qAM5eS76Xe4YuT0qJIc21CykACGsRzf\nTyaSX24euSRvyu+COwNaIznFGtsdjFZgGqN03HmJaWrOv/8CzbacgnvRdX66K31763fu86E+91Lx\nKUlY0hzI888eWbYHctI+TMdsKo14GpeMenLabg3lWt1Oxkzh33/wR0c8fCYmcV1YPq+Q5+/MFwxL\nufbDUzGzb5kef4IcYduEfPvX3wRgP9zGtoQzMXrR8lC5KubKM5gfp3Amp9yWF1B9Q+Z022/gdGQe\nfu71TZrD63KNUEz85sEZnS1h1Q527+C4iiEYdjGBWBvWczBarYnKsBuzgVX+DVMb7LqC0fSxmt+n\nzKn1pHeMZgscKxWPAO5VWi/Iib46vscsFlfq6J7yQK7KC33Q5qCBKuVRzmMqLbRymhE9dd266l71\nGhF2IGO/jM8wS7XMfI9KCwSL6TGByiEel+sKVYdUiWw6dUigit5hK+L8ngQxtzcc/MWfQ47GqqyY\nnk6JsxytoKXXidjYlhekPc2Zq281PbFkZm3yqjjswGOoJCx126GtJcB3nmuy35TF3/1iwf49Mf/v\nJjIB8YcBN16XBe/7e+xpbcTgHwY8eiAv7Af3pqiFznks//7KLUtvppmIVzdoKiFJowGT+1oHsOkw\nVQUkR6F703xI0ZKJvdOvCXtqai6HF2XWZq1xv9eFlfjn+BNMrACZts/WrriFN18+5bnvyPVOrkjf\n7n/XZ/llWeSTRyXdF6Q/g6chdksWdPex5fMvyrjsr4FJvR3emCsJZXlEogB8Uzq81ZCxtc4mSVdp\n2eey2TzpliQLucaH/jlGU5ls5Kwi2QC2X/Px35BB3NYU8dStmSoz1YPTGVuFxE+u7Xo858kme+3n\nXqJ4T8z83q6Y393VPt6G9N2xK5y2IiQTC774+2bZwLTVn1q/0P4MoxkefIPR7N7hj3YAACAASURB\nVIJlDKrZab0UU+7q39J3JzUYpVYPsivkXZmf6o17lDOtK1Ggl/EabOqB0zUd4qn8LrU1I3Vnrm40\naCnIt/uijNvW2MHdlgMgm9+Akazv8knN2Hwgf79pmW1rLOV9GYuYlLlmn2jVbGaacTE5wTPpx+rL\nlvo9zcx9zHbpPly2y3bZPtI+E5ZCXVuyOAdj6LdUA7DfpL8GrkQe7ydyYjS98sLF2NHvvnS1wXN7\nGhhKXNbSRP065SUprmNj5zp3mvL9142cSicHpziBgpDYIOpppeGtmvRITv+TMCZVKwXNsQ/KgHZP\nTr5+XOL15cSzOCy1KjN/tkLjmjRUTGXHrYjuaAR8M8B2NDOS1HAqp02teohMVhA/1AvMcDQQhe3Q\n2pKo/e2vvEi6IcGujXfl9+FGzlEgbs6tXY93HLled/sauRX3af/zQ76wLQE6f1fOhfawQTeT02r6\neI+zUvuTugyVTLF17Rp7+xrMOpeTr/TPeO+BajEmNWks4zbNUqKRjNH+9CYDFUypFEjjLR9jlA6/\nXCVUnvT59X6b51SIpjntsWro2KoClrexiaPVl0QOVqtAqSOMSXS8ron/BqBQY6oMFG9BXcn/QAOO\n+nnhsk5t2VIAabWNMApucsMDvFz0ITutHukjGftiJvdtdkuapWRwem3oah1PO8nYvy5je+Plm0SV\nYkqGYv15Bx2MAvEoPGwkY1TtxGzFYjUd1A85Xkjwd6yguA8nKcszrYYMKlKt8xmdGe5oxqFZrMha\nYiF/3HZpKVy2y3bZPtI+E5aC8cHftWSjgNFL4tM5ZwmdpjLNLHLC+5qPb5Rc00DilRtyCn75c33q\nLfnuRl5zrnnercqjsyvFSr3tA6KrcmoEpfqknSkL9WvnFupEq8y6EV/4nHznKJgxFSInPN2J4xxG\nW0ou2gk5XaioiXVIBuLvlcfNi4KYQKnLJmaBq7Rc6dwjruUU8NsLmGvd/0TTW9MNcqOMR7VLcHZP\nvtvfxoZiNTkxNCLppxlpevY/XND/XWWkcnJyvXe+v2Q4Ez97+8YmN1+Xe7e7N7UPTXa8VwE46G/w\n2qtyWs8ePqahwcqdakCtsnh2IX04ok+/JX17dz7g5K744rO4ZK64jwcnBbtX1QpLxfrbvDHELMVy\nqc89lhr4czc8glta+eg3mBoVZTlVNfItS3WulGiBi2YLMYMFDkqUa2rM2irwFeJrfbgYzwi7tirK\nDraQE9uaAZWR8a8KsRR8t4erEHrbO8eeKHuX+WMONTZlVZMj8JrkWg2atxNKFQMadfvs7Kr10+nj\nKcVaoKzjZvM6Zg1aqOMLtGjdWeEcaYr0hQT/nvQjiiX2UxQT3izkmfykpqf4h2zYYvGizIP7uIdV\nQZyP2z4Tm4Lfga2vuixSy+QvSBCm+daYuYJG/FVO6MjCDCfwFcXXv/xjMtCD3b0LkIfzaIrpyILd\naG3S3hdTzTa2oCGBvU79AgALvsmjd+WNf3KW0kMmfLR3AKWYx7fNjKOGmsRWc/BuilY68yiec6h6\nhovckp3LizDyLD3dvKp8zec4I+rLRtYyfZJiLY5qMLqgrfJ9xeMxk7FsNj4hGxua2z47IlRlJceP\ncLTK02vKgthownRXFmu6NMxUOarle4xuiNuxt92g15JKw8a+1meEV2kqbHwwuMb2i9+V8V5a3K6+\nFKchk0qyC936dXmm6IRf/skvAvCH97/BH/5vkrX4Pz78kKaKAlf1gquRjHmxI2Myrh9zrmXRdatJ\nuq6M9HwK5ZM7Th7z8FwWd29TNq8iWVJppaahh53pi16NaWw+J2PR8bEK8zXKh2i84cXLZvMV9bpO\nr/Sp17SKyQOWhWSKTCHmfNCbEwUy3nXlULWVb3N0nbwUYEutWIKqU7IWhSpnPo7SoLlRm4arkOfD\nFOd5VYvauKr/3YFCjXa/LxJdgGm1qLW0PbrSxdXsUL2nwjG1wzBT1una41iJdoIq4cNzeah+OWFw\npK7Sx2yX7sNlu2yX7SPtM2EpxNOa7/5mQml8qpvvALD8nzLOvqC79dtL4qEWF506OK+LydxWeKqp\nWrTOVfvwekBLgzONzSFNT6DJbrcJmZyUqSLwqsUGy6WkmLaKmuVKzNksLfAGcrrvZh1mioBEiTc2\nrY+n9fYfxCfEWkhlPEuoKbfzoKA7F0ugyDXV6XUJlXDFGc8IVN6t4VzBKC1aqQStflCy2ZXpWc1q\nigdi0fiDilqZrYkqPHV5vA25R+v9HsMtOa2fvVPSD5VibRrgD1UKr3eH1nUZQzcSd8DxAnBl3LxO\nTVB/We7RW2BUB7LeO2QzExfDIKdWZF6m/aKY2l/d/EWK4O8BMPmtDrmqR99qdtndlrELVcK+c22H\n5L48x2G9pKO5+e3IJ61lru8/fML8kUqs/esqvpGNLtyqYH6Cs6V6EVUXq/wNdnoPo2Iw1PLvtqgg\nFjfH4mBq6Zutlpha3T+voJHKOK6yt2W8kxbc0DlLRtTmgVx3/Ah3Lmsur9e6HgWp6nqETsUolbkZ\n7PsY5Wmg08F1xXo1Wmlqzx9imppCLWqsXdOaVngdsYrNEuxAdSOX8t2NqMFAKe1O6hWOyt1PqxXp\nU107gxg7+2SIxs/EpmAqgzs11DH0/payKlUR1Tfk5e2YkJ5iEwauh3tPTCa/K35ozzSxV/XFdTKc\nSBdgY4DrqlluB5TKk+dovYM3i1lYWXTtYpM8l38/fbakq7GBaJmy0VVBkkjBP6cr5k/kd3lWEGzJ\nv18fNikm8ncVllSh/D3Q341Mg62Oxka6Pm1P/m4MDX5fTMqGTon1C7I1W5Gd4tTrvPo5JlBGJieg\nUhZgZw279jN2XpIIeGfW5P5Mq/42C17uSH92rzTw/IGOl06CE8j/QOoQdOOEEMvacd/AWIm4Ozqu\ndRJTKT9mbVY837sNwOPnM773UIlcum2ujWQMPMVjO/cNhy25bnziYnSsKteSPhVffPx0eiGjHqhp\nXCY/WPxEHuiGS9TEKdaLPwItRbfrSk13DsrOhUlAdUod12B107PFMb7OSThea1+usKosZYocpymb\nYae9wwoBZ+UKomuMa4xuws3AY9SXDanTgbAhm5rbcS6UpWytUGsTYhXcZVxfAFMALhegNuoj7ELr\nVTZkLbT3cm4cq1BNIyJRJvCT1CGvZD00PZfOBZvzOR+nXboPl+2yXbaPtM+EpUBtcXNLWZYX1V2x\nv2L/VMzZrOfQWWn+OPJIP5Qd9l3nAQAvpTGdq0qE0r9CuqE1+7a4ECFhlrLmmijUdEy8iP1Egj2H\n82OaighrDRKO5nL6Pd0B+4GceOlU7tupRsRdLdyaWnyFXfc8w/imBkefFWSareh1xTLptkp6yq0Q\nbTeJjJqMngNalemka+LCEHdt/SwmoIVL1bxPohJxdZ7gKslKpjwHcQ+iJzIW7vWC5Otyvaiu6W0K\naMPt7lA76yIgPWlMjVFOCmtLKrWgjF1SpWK22rpPVaucnn6WzTKmU+nDn771LuexjOGzZYKvvBdH\n2SlGsyRbmxJInn4wJenLyZUcFzixancWhtgqv+CkYFdJazwtZko98BRKDnP8lcxfFaUYZYTGTTHZ\ndRnPaB3Vd7G1WCY2q4XEAyBPqVWq0CaWylcxn0QDlI2c4kwxGxsu5TOtNF2sKDTD4SuexncDUi2f\nbYUhdV8rLWcFxZaSB5WbVMjYOkrUw8jBWNWcry2oJCGeA3M93U2GmcvYG1fV0ZcBtQazg7TA9WSM\n5kVNrLVh20cNOqO1gOfHa5+JTcECqbW08KgKVRKqGqhVx60iZLqWXPcDzk7kb7cli+DdxyuufU3M\n76C9Tbevpqo7uCC0mJ89YKYpA3thcXZYFPK7jv+Q6lAJQw8gGCoU+uE5s3UKrBBzcMuLmc7WkV67\nhtfzZJrx4L5M2O1hl+Zc/mEayEaQzHI6V9XPtEP8DaWitwuMxkecHVUdqiPQdFPgxVTqkz59ckhY\naaWiM6T5ig5irjDZ5QdUTV00JrjQF7wdRmwcyGaR1wXlRPzraSEvd9u7Te5pJePyKc8eS6n2RusV\nxpW4DGQN5ve+JZ/3xRxOHln+IJZYzPe/9QjNirGdGu6pL5uVCXdVPv3mL8rL39kN2DuXF/bMTJiX\n8qy57TObKZeiF7G/LeORzWUxlDH0hjK/drRDpuxOJIaWZqvM9T2sI5tQvc4+OGAV0FNV51SZcmy6\nIUah8GU9xaq4SrWQ/hgTUOhh8OjNu7hD6XPT2yZU0du1pukyS+mqiEzDa3M619J/L2R0pHIFYUZj\nR9aRo0Q+nr+JUQl7mqeAuAf4IbahYx/s4K7Ztdab20tdmieyTrPTc9Khpm+jHvWZ9H81dC+UqD5u\nu3QfLttlu2wfaZ8NS8FCnRkWxhJr4ci1RkjVlh3z8W6OOZId+GnHUmgEe6U78XeKQ175thKPXNkm\nPJacdjlq4Z4IGGW1XJGcy3dmR2IOnjHj/J5Ezhu9lLYqND+/8xx/3JOTOX4Sc3oo3282NBgUNelZ\n2fmLoKRYinn24XLJUqsr3zrL6Stt+cNt+d3VoElbg0EbTpNoS+GnuUP++AEAmXJFnJ5OKA7Fsnl8\nOidV9ZlJPCHK5Rrb3Wd8rlRXoavSdMcp856cHu6zgj09ga64NwhK1UR88oC5VgMevicFN2+9/xvE\nD2Qs3k9WpApCet/8NjdVDGb0esjBTPr3tCHZkMbE403lSqiTggd6yhtjyZSTIsDhdwvBN1zbVjn1\ndsksleebHi0oFca8ODnh5FB5Dv2SZiX9r7SK0J9CphWH8++9hdUgrzlssOxrgHX+lNbn5Bq+4gPq\nzMN4ax3IgFJZopPjQ/JzgZPbdEylEn/ZVPrm1hVTzQJ9+GzKaqkSgcERoVaMruXv5nWOORPL5XuL\nexy0FZMydJj+kVhk3s88j/NMXKjqilyrXac4V9W3TbsXeBqSCShxCklBXUhWyZ4oSMac4SlAbOEu\n4a66M9cNw3WG6krG6ujPoftgjMELPaKqw3Pqc3eHDm5bzLK9nsOZLy+WnzkEfWVFUrltu4w500lc\nPjmjvipmeSuvqRQV6ddt/Fj8xbb66uW4T/dnZNBv90b0rt2R6+Gwpz71g995m6lGxq8NJEWaJimK\nY2IrbWAUOJUH5oKvY3cQ8NJQKzRvaer0eIBfCmjm/HhCcCJ/R82roFLtJ+/JJvZu9YzpUyVQ8Xw6\nPUkdNm412dRMhD+dc66pvI22LKRGu4M9UF7CpMI/kmfd2vWpdcPJipTxSrUanklcY5nPubIhmYPG\nxoThFQEbDR/d5aCh2QXr0lL6/Ju6qawaMUMlC8nDiF1PhX7T9Ad6Cp5DorXdb7z9bQBevNJnT1OW\ns82Qaal9W+UXRCcvNjp0fXmB5vflZT2fxFTIRvbO3QlTT16moAzZ6MtYfP7mLV5UFqnOSEBarrMC\nxMVKloc8vSup70cffo/vfU989X6U8HmtCHV9jQ1sdsiUKNc+Kzjfkc8XswWNnmzqptAY1bJgrBvd\nTrPFlS1FkL7SxV3KvYONJom6Qt6pfDccNjEzmXeHHUgV0TmbkKxEumB+b4zVjEm+VBWxzQl7r8vz\n/YQbM7ui5LZhRl8XqLsfsTRrGZaP1y7dh8t22S7bR9pnwlJwMDRrlxGWlppL4TBhL5TT81mcsxyr\nunJgcM9k5z7uiOm8Uxl6moqdj6fUhez2TqNFcq6ApGmHk7GYcM+O5WS4f/qUrkJKR6/eYu8FCdmW\n2y+xk8lpvHH9Gu9/R8y2WCsZq16DQPUTy9BeBET3N0Ju7ElHbrQjGpUE17p9JexogK/B8PzZjPkj\nOT2DVyaUWlHnDuQE3zkfEgnuCr/uYpUa3TMHpAs5YaJRTaUAqUklF05ecOgfq5x9J6M4VkIOU1Jr\nEG3R7WJrOY1a1+UE/mL3Fl5L/n6utU99U6yUV668TLqrdfxxh6NaxjBQTMBJMuP6FbHuxiyYHYkL\n8o8Px2yrZbJ7EDLUoGuhafd46vNQ4eGVdXF13qfzOeTS//ZVn7G3dqEkuPb2JCY/lXvH8xWpI89x\nmq0YHa+rWFOagXIyfEH5ONsbEEnQbnxq+cffFUvh7r0jKq1+zUqPN7QC80uBWjF3ClYnsp6e3Iwo\n31BAmptjlCuxVh6OTqfmuYa4v6+/dhXnplg5z+4t+JOn7wHw8vw2eSBW6F4mFmTQmuOMxRL0etlF\nfUg6vcvRfbEKjsZj0loDkxrg3HGfx9wW62i3bXG/fV/H0KN+Tq4xjH3y1idzHy4thct22S7bR9qP\ntBSMMf898O8AJ9bal/WzIfAPgOvAA+AvWWsnxhgD/FeI8nQM/GVr7bd/5D0A37XsW5/tVPyfnbJP\noCw281XBmebxM1wqrYV3Nd10/cYN2pHs0E8XGa8qgaUTRDhDOW5PHt3jjw/Fh3/r9zQdt2nxTmQn\nnnSfcedrPwtAs9HED2VX/unnR3x9LrvxUhl5z+KYgzWqDnCVPNMrQ6ZK7fV/PZxg9HTvPJOT4fa1\nDV69KViBYm+Hb70l/fipqz5BohqMuZ74YYt5KX27d++UQ02Bes1HbKk+w/XdDlevan5bx+34yYR9\nLa6pFwG5skUtVgnOQL7TLBo4A+VOUFhvzjmBxirm4zFzxJf9/MF1dm++CIBdlrj6nabOx67r8OFd\nOYGPj95htZS+jdouQyWmHW43ef41wRNMPLnfyeGcSOMhV24NOFVLIj47x1fy2toEnCse4skjSbF9\n/dkzjg8Vrei7tPVEH4xcKtVheHMc8fu//ScA/BVF89260aXclb8fTc55rGrN42mfpy2JS3z/6IyO\n8jrc/sp1APa2X6Kq5N5vf/O7JDq/jcLldc0crpRCr6Kmsy/j0t06YKrVlb/23Xd4dyFz8s2FQ9SR\n633t2hqi7rK9krnulgn4Mjexu8+5L7GGB/WCk0PBLDyeKqOV+yFf1OrY514Y4rwkY5x/84xKVdPz\npcfyeI1O/Xjt47gP/yPwXwN/94c+++vAP7LW/oox5q/r///PgX8TeE7/92VEgv7LP+oGFqgql3lk\naRUK6PFdDpTNeWs4YPemcvjlr5LfEBPuqgJe9l7ZozjXHDUnNH3NAwcj/Kksqo1mlztdMefKnxDz\ns9He5lpLXIMvHjxPc0vcB8fbuah2e/nn/zK9juxrk1pckeUkJ1XtxkY/ZKow1zRxLui7Fx1LU0VC\n2sox1zYbpIkKwZbgqub64tk5DSVXWT7Uazlz3Eye0xw4XDOy4KPBgGAhm2Fv5NF1BC+QtqScdvSs\nSbUni+b0/hn7G3Ld8Ngh1cxAUKwIduV6VyP579O9jL7mxxvblnIhwdp2q7ioV3BHDkEiLlG9kHEt\n5iualbhBm86Q5Kp8/nz2HFc+Jy/CfvQCw9tyjVcValzc+T7v/6EqGo1cIhlaDt/8EJNoFeRGwhsq\n8PLuuXzXmdegwjHNssGmktb8zNY+GzeV0/Jsyfvfl02NJ+LOdH6ix2oh473ZaPCTGjD9/TtLhh+I\n6f7e8IjbKl1/66cV2uxucO+KBDa7b/tMVBd0eVhRK53efKIitn5MeSjB6Pa/5mFKudZPf6XPS3fl\nfps/v0H3TOpH3C3l/Jw6BAfyfLYcUFnpc34yx6hMWG/hMFU+zR+biNs8+PyCa6po1bkzov1Isxa3\n5+T31F3brAhP/yW7D9ba/5v/N2j6lxCZefio3PwvAX/XSvsGoiu5+4l6dNku22X7V9r+RQON29Zq\nZQwcAVrCxj7w+Ie+t5aiP+Sfaj8sRe8YqNyMzUGP59qyM546M3rK4PvVg232NmV3dAZD2BOXwCg/\nftSOSLqa284D/FDRY5zjbYqZuNW9TtHSkzIQhFram/L5banB33vtOk6oQiyOg6u6itc2t/nl/0z4\nAr77+2Ix/MZv3aWtCtQ/PmzRimRX/tIXtthQ1KNnLZGSaFSqLREkhsZA/j0+X9BQPYl27RIoccpA\n1ZA3d0b4E7GaPl/HOAfSt2IY4SleOzIOlcK/w7GcSp1uQqwswZujkCqTsQj7HquxnEDtzRuEbZW3\nUxn5TtcjUJ6CVn+LVOnYTGHwtSKUuk+ayfSmuRztJrXsXJNAajRKueNIP1f1mP4VSfEuFzN2BnI2\nDHyZxyJp4tyRay2jhDOlt5v+I8NI4RtxVrOn/X/xmvS3yyb5hlpKtkv3ZVkL7X6X7g0xn5PTlNWR\nMExfuy73a/R9XMWZdO58nttfkr799NEHLA7leu+8N+OqunzdnddkfOI2N62kN4v9Pl9vy5x9++EZ\nI3VZM+XbiGYpfSXjDrOK/p5YBHt3XqD8ObmHt7tPoUdsoc/mxRNctTBNucLGSpxSVezsyedb5YDX\n+7IeWp8TqyM88AkaSizT2SDXNHqZ/z7XlItjOappayAYTeX+qPapsw/WWmvMGkj+iX53IUUfuI71\nfQf/hSHPb2sUdjnm1oZM6I1XbjHcVH/JW+Kq74jq6GWFhVgj+VEFjgI3TImnQqHtdpOrkYCaRk0l\nzRgMUOgBUec1jPrJmBxQ1qRwlxu3xWR+9I6U01Y1qAQj3VHAaiTf3XJG7B2I2dn0h1RKS3/BODww\n5Mjfy+o9vGotRpvRMMrCo3USzbBLQ8mcvWoXu64STD1cfTw3dMhTrdbUKsusV9C9J1+I9n2equZl\n4q/YsnIPO2yBEqCEWp/hNlKCprgPQa9DUMuLUNcLioW4I/V0jlsr/Hepojeeh6eVfOH+PkZN31X3\nZzEq/T47P6VcaKXlSEu2i03cbdl4nOOapisbi/UdUsWWdKlw92XR742kn9eimzT3ZbzLbk7QlLnx\n+zcpFah1UvwBnXW16UgxIr6PWc+HW+G35LpB92WaN2RDHm59TdR9gGC9eXWXtI/kfhuv3aT49TcA\nOJ9nLDOdk4nWXJSGpKNme+jRVIhysHWTEE2P+W18lZovFY9Q11PsXF702plQxfpaljkdpfl3bpb4\nW7qJhLJo3dDHaH9tGuOEcj933iN7Qeas/zDE6/zZkKwcr90C/a96hDwFDn7oe5dS9Jftsv05a/+i\nlsJvIjLzv8JH5eZ/E/iPjTG/igQYZz/kZvzzmwumBZs7DfZek0h39O6Em9fEaui12yhQDjPoYada\nqab0VOUMskghtXVEqVVoxaqN66yDjhmNpsq4vfwXAMi8FL9YF98EAiQAMAFr7TmHjM8d/JR8/O/K\nbv93/tu3SfWUSOOKna7qR9oWlUKCKxc8tSVdraK0q4Q6UjRl0KMOFWlmNqgVdeZrLno1tYSbSstV\nOXhdOQVNElOrMnc5KakUAeqsod9HMZmRcdlyBqSqmTguHHaV96BMPJaZnFaeVvoFTo9gQ+9RG/Ay\n7XNNoWO0mC5JZkpzZtYnX8FyrlWU9hn9tmRXes2I80TuF1cOs4lKqBnpT3Y0YbqWWOv3CSstaKsM\nDTU8Y3IGWmkZZnKyN3cDGnNVjL45wqg+RV0vqZ/K71blio4VC2FwUxB/JoxwVJOiXuUYtRSceIDp\nqyt1YCjWUOKFslUnJxRWC4qOF9ip/F1kDrV6VUurkPEnS9rKdTH/fkLUFovUjfcuCqnsbAmsSVu0\nP819ai1yq85nlJpdMpGPUbfC76f4lfTZ7cnzk82xilmp85paM2Z2t0lypDyPaYxd/UsmWTHG/H3g\nq8CGMeYJojL9K8CvGWP+KvAQ+Ev69d9F0pEfICnJv/JxOlHXkCSW1bEHWno8/HBBpBBX0ppSJWTN\neYLRmggvEtMqPz0hG8tibd7s4npiihZpTb0SQ8Xf38Eo4YZ1lPh0NoNAJsNUr4ECiKgrUJ1KHA9n\nJRPjTNYGkaGhkzXa6dLRF7ooFni5Tkzt4TlK8KHmcB24VDr5q/tnRL48U7vVxd3SiPpKXrDU5FhV\nmHJbPk6sPr7jUy3ENy6rGWiKLJ5oavXDE1w1T+vzMe1NBU4dwoO+YuaX79M/0LLdXKsJQ/+iss7d\n2KVebwRPT5l8INqVS+sRzxXSvZD+bHU2ae3I4g+5gq+gLvKMQElxbQKxEtsMJvLiur6HO9bU28hi\nlFCmLEuOHmvqtBuSNzSzofUF8XmA0foRfxHBhrxs7rAFWjVb/5MFrZvyooctjRM1axzNmBA5EKtL\n54FZpjq2Ls46neuI/108PibTTbjwR5zMZYzO5wW5QuvnK+nvUVVSP5Y18qXjt9kp5PlsusI+VkKV\nTu9ClMaua/lP7l4wRJksovQEXGcfntM4UOasfA9HxZFMrM8ROljdFKvZEVZrgfLVgvnX5X7VzYTs\nic7Jx2w/clOw1v4H/5x/+oV/xnct8B99oh5ctst22T5T7TMBc7a1JUtKpu/PsP+rkqxsdog1Wjwo\nA7ye7Kqu18FsyGmsDFY4zZjVWKPGh49ZqYluV2OsFvN0oopaORitK6dVVde0tbLOtqeYYm0dtEHp\nxqgt1RU93VOFmWKplX345N6C4VUxfdtbDRylVDdOTu2szX+5VD4pqNtKvOGnbLTk1An74DXl2tnG\n+hQx+Osy+Ogcp1YTt/UDfEM9S0nn63uoGTmbXgSfmoMtXOVdrHsu5YnSz+82MRrw9FtanOOAVcKW\nehmTJ3L6F/WYTCnMsX0WlboKylCdujO6sYxhOPRpqPlcOktmyqU4O6nYvuXr9dR9qANSRybQjSty\nFfh5tsrIc/k7SCvuqMvn7hU6NeZiaqp6jtdcq0uXeKp43RjBblNP/0xcSRYpVq0VmjVUShZTl1jl\nWLTmDFIJlBorlpdbedCWdTM4aV4EOdsfuEQd+Z1qtzDLciYLmd8P33vGq1+Wa5j8HAIJ8tZFjdWg\nuLFKCed7uKpKXTk+rVh5GEYurlLRO94KR+fSqIVsgwVmoeNStyjU7UpO3qK2ins4r6mDP4dVkhaJ\n6L95/pR3K3EDBkmOXUq6MNup8Qud0IYjuoFAraazX8LmSD7rDjdY817W8xJHJewd61IOZDXNvy8q\nP3W+pNn+eelDUmIDLft1O6xjsKlTc6YTc6aRdc91WWg24LRX09MS6WtLHux3DgAAIABJREFUaLY0\n+JG2cCayWhK9VhxXxIqETOMFbldM97hcEOkG4GgqNHIqPCU7reeGQtNUVRBRKitQFVdkS4326+/G\nzZjbau72nttgzY/S3IG2Iuy8ThtTKWGralMYHEp1GcxqcUGCGvmWrQ2J8Get5gXpaOzLi+I6HvWa\nArAOcFzZIEtbEJ9qdWE9lzJgwAbiEq7ihCTQSP95xkrZsMaZJVf3YORVlCqqutCKy/PxClPpxuMt\nCQZaTJEuqXuyQbTzHD/q6fXEDWiPe+SHqp0xvoVzVV5SJykoYhmkdGypplqtmMk8xotTinN5pv/h\nyfu8/aZu5J5DUcikeZsKIHrqcraQdbE0JYkjL72fetRWwFT1dAOj8RrM2tVaYlWLpO4v4Fg2Xtft\n4wW6mPs+FKozoT+zaZO6kFe4WlQkx1L7cPwEHivQaes0o1Dh2Y/bLmsfLttlu2wfaZ8JSwGgNpY8\nr3n0+xL9HXz1i8T7YsIucgh9MZ+tH1Cr+ZWqepDb22VvX8AogbdB3dPah51XsHoaGRtSK//hmVYU\nLhyP5lO5h7fdILSi5ozTQWn3mGVvcc+TXf7oeUFsX7n220xVDvw7RysOtCLv6GyMu9BMxGJ6QaIS\nB5qpMBnpiRyrnW6PRKPz9dMT+koj719Xd2bpUGvloI1yCg1mlYuEXJ/b4hLtyMl9NBar5HFmaSld\n/M7DM9JAMzi1j9cRCyI3PgvFz7OtQdRyH5oCMCrSJUbrTqLW52jsSj+S8YLFjvRj0/856UO7ID2S\nMcyWU3Zq4YeLnYRncxk3b9Am6mref00ik41JNKjaMl0W+nxFw0XLQKgriFVo5ehYsyHe+OKEbXev\nYo/kZLeupXhH5iGvW5zeU5qysRCoFI8qasXWXo0ecyv+gox39yZTNf8f/ZP3sO4DGa9cs0hXmtw9\nk6DdN//3J8yUYm6jF1Dr6+PGmkWpLLH2/f6xz2wiv/Nb96kdyYLgTQkVAOX5qlF57QbFiQaHjcFp\nqUjMVuciIGqzgFoxJVaFiupJjl0L7gQdsrZYdMUoZ3xf5qSKLSSfrPbh0lK4bJftsn2kfTYsBQu2\nMpSR4XAgJ/CPFcfUDUEgVmnBSgMnwWnMrJSgWqKna9gKCJXY1b6UYo4VxdYGjjUaeT3EaiUalfy3\nV+9gPNnNKe+gWS/AwWq8orY9/lSrJLvnkpobbffoB6rfsAurexLM8t0e50vxI+PDc3ZCuXessOvV\npGYRygl2NWhy9WUNHPWvQUethommDX2X9ExOxMxfEmhKNmdGoUSyGQn9dYDyifiTj+4uuPWaWCj3\n3jsm1Hr75MkG4XW1CsyU5kD6FiQStKrbS8iU06FT4azkGjZa4iYrHeeKrVj1J7bVsa0C6psatykH\nrFQp+3Ts4cZacbh7G1d940yLuZxyQX6isZoyZr7UAC0llSI9va7HmdKNdRsy/6M0ZOLK3/H5Y5SE\niGfvjy+o7G5vDfEPtEIzFAtl0R+Taco1HuSs7omV0vhcTv5U5nr87G2aGidgoPiNeod335OYw9GT\nBUFTtTDzLplyWTzTYJ8NDK7GZIsgIVccwjIvcWffl7G9uYWnmA33igKBzxL8tqR4vdX/096bxlqW\nXfd9v33mOw9vHmrqGnrk0GRTnCSRmixRkhUYVgwKQuJBgGDEgZ0ggGNCyYcA8QfDgRMbUBxLcWzE\nYCzbkhUrVGSFpBRaEymyxanZA2uuV1VvuG+48z3zzoe17mOXLJrVFKu7gNwFNPrVffeds/c+++y9\n1tr/9f9vwxMyf8v9E4ySrpYnDrmeIjuqwF6OppTqYU3tiPy+yhBWJjyRyNyaro05uac5jIe0x2JR\ncBxDteZztrbNVk3ZjDshnor8ORWPXAenSFxmivO9qdTb7q0B40gSbhdmm1Q3FbCSO1hNNBYHKbtf\nl5faQVznyralui0hg9uo48wZdY2PUdDMsrvFf975CAD3Zjox3/cVrivl+O6Xr3HDSNvOjeBiS9o/\nqx5zoK7mSMHuN3enp7qS7vYmW+vyQoaegxfIxMw1UWVtTKzn/P3sLp2uamku13ASaX+YVUlScSUn\nE100sdxMlRm5KFnXd7fdcmjoRK/UQ4K63DvXM3qf4lRT0fGqFMpnyEkOisOwZQ1P3VWj4K6ikmFc\n6fO0P8Gti9u9f/wl1i5IUrHVqRMoKGvakQV0NnXoa1l34jgMVROx4hiCef2AMRhdUB0NfVzjkGob\n+nsxfQWw3exNmL+RS7WQd6guKJuqj7naZaCMyuXX7zEqb8m9a+vEWhq9/WSdQGn+MxVe6V2L2dXn\n8NRSleVVWbwv1qqYE1n0Qj0t2O667E/mwDqDr+XS1SVLHiomozckGara2UjaFlQMHrpB1C0mmKtX\nJaD0cMXIw5SKT9GNzGn4OEr3H6QNYi0ND4/6+L787NRzCBckKwtb2ML+FPZYeAoA5CJvXvclWTL1\ndgl9Tc5EKcVYkzZBFTtWnIK6Ttdu7VBMxG1tlCNWZ7r7bXRIXhK3rV+PmM3EvVp+XlblbmONoKvk\nJYFzuiNCcRo+uGWdVI8Wuze1qi+Z0hrITjnouHz5huwulzb22FySIZ3enBLVZJseK+rsJM2pqyfR\n7XRIVIdgNN3FO5b1eVJIP+K7yxw5gsacmYwVV45ng+YSRU1c33RiiXNJzJ6oVxKfd7F35VovpjM+\nrBV11Y0xti/39jbOUuYKpVVUZVpMCbRgKJmUpAOledvZo6E7YdDcws5FLuoKA77Xw5wTF31KHzuW\ncakf5Ww8K7tcs7FKrHiBUlmpi+GIXHUmyoOUyUhdeAONNRnDhqmyPxEPIlZi22M/oZnIdWdeypGK\n4MQF1NWbqrsGq+IrpRbPVbbbLGuC1ll/mllTCWbv3SNSzIlfL/C3NBwbybi99DtXuarJ6OBMnfMb\n0tfJUUypR6dHbfn7bcenqqQn08iyU8oR6Er6EcIlPQ6/3mf/QEI9o1CJzYqhogrU1I/xltVlO+kT\ne5IoLmY3CVWfohoISpWocnosmmYnMoeBKK8wWFe91Ds1jlQu8WHtsVgUrBWhomqesPd5eRHcYJXk\niriGTlLgKuS3tBHBivx8TuXXPevR1eByVkTkgca9J1XMmpTA+uOM1feK69del/qKiX9yel2n5hCc\nkillZI5WAWYtwp+XiZAMZRKf9Dqs9uTLBy8ZTjRE+dwrE5pKEb5eaRBp1eXbnpV6gKBym6mKjq5f\nukjjopwcuI2IWBE5rYHkUY4bAwZfkhdiuZ2SN2WyjUY9JsqyFGUBZVVBW55c9wkXdrQM++bemB9T\nQduh26KxrgvZ7j5ZRVLxlYa6516dIlJMfSUgd+bn8WtM9Nz8aDw+JUCpznTihl2m99Th3OgyHMpY\nnHTOs1qV/vWnxWldSU8p/A/LA+4pWjcooEiknWvNKu2aPKd4ZhjqgrqnilZ1vyRSbsROtUpnU0K+\n8+0ejgJULlxco6qKVJW6vFTTvYLGtrTH81bwe4Jf6DwzYnioMgAnJYnyPOZaqXjzyLB/JP171oGR\nAq7unkz5vnXlh9T6Es/12FT6/ey4xmu7sghtpQNWlF6/tvkUsV47UfRd2aqSdbWGxTfkCkjznA6z\nWAFnXp3IkUXdKkCs8A0zhZ3nNgBdFIJKi0yVpY6SE9KJvEcPa4vwYWELW9gD9lh4CsYa3MJhx5sw\nKRXRGLS5p67mdhhimBNPVPC0aKWuK+P22U18hQy33Q2crkJciwZOQ1yndn0bV11eW9FkWTzDupIM\nM5lLpomqpByQK5+Cuddj5wvy/Z0fl9/f+Y0D7nvKNB33cZV1+ubBkK8p9drq+TVqHVnZKy3ZfZ4+\n0+D489K/vVe+QnxDvKL2mZSirQI2Y90ZohHr29KPcLKFaSs8+PgEX+XkkskuR3q6Esfy+/NRyT3d\n7QqnpHtuLmO2hlBrgj8+IlKtwVBxDAQ1bDDWz87it3W3dtuUc246Zw2rrmgx09MJb4qrmpg5MfdP\nJFNfCTJMpuGKO2U4k3YY1XdIhymhJvonboFRgpeW41FX8pwyKPFLZW5WWTlbNCh0LzNNaIXium+s\ntIjvynfG+7sUe3rSUIoy9LA/ZaahXfudT1O/IF5DEWQEQ/m8POyDamF+WYV4Xrs7YKSS832Tk+jJ\nVZ44rJ6VMfqgclbkazHJbR2qM1BNpG3J1+9i36W7v3eWlTX5u9FIBsCtZERdeQ6uG2PrmvAObtC1\nith0KjgKTaeqPEZZhOuLV5gPDXko8yUZZKxoMvrw5Jhx/sYKoozUML21Vg89+47NFplxqLa0Eswv\nTtmNIq9GXbPQ0wBeuy4QW50vVD2HSLO0xopuIEDbr+IpjLey2mZ0Vx+CTqQvX7vFqJQBG4xTwkjv\nMZ3hGBXWKBMamr1dP/ssABdWnmJ3Rz47+2MTylRehOSlEQd78tL0kyEaqjKezbP3nAqbZiWUGicH\nrktLaxCsvoCTScw8wxE4louqP/hXP3SJpz8klBVL57aor79d+qe06LN7n+NAQTN26Szv+KF/8I2B\nnr/bfkS4KhOvY2V8ksk+rt7bK0tKVcCqV1xq6s7nk5RQj2K7NZVsDwMmupAdT1P607mEu2XO9xOF\nLi0FSbWVDOYd9QbHSrwyOJox0VOLOH+WkQLAWs8cMdWKwP6rOsnHs9N8TyX0CXx57rWwQasq4c+N\n27eIfbnfQEO+VifEmeuG1iNItRoyGpIpzf9sMsHx9EXWyeX7AZ6K1hQ2JysUneR4vOftfx6AvVtK\nAPNTPQYDIeKZfHKfvuailkKPd2/LeD/9/vdzGAsj09PvlcX09tEIJ5DnyBQ6a/Lkv/BvvkhckVxD\nNhxw5fuVQ7MlodELGxdZeruM1Vq7RiNUYiATnIYAuTVkhVyvEVVftHaO0PvmtggfFrawhT1gj0X4\nAFBiKVYKWirBNdqo07snCZJuPqB0ZJUcZJPTTLSjZBS+FxJowiyPS5JcXQi3pLakvAeVhEgzy66G\nBpu2z7inmeUStlry+3sdl+8tZGj+bS9mXT24ysVXAHjuuZD2b8iOkR1k3CiED/BCvsn+nPpq5uBH\nsuZqtEKGJddKTGNLXF2SHd/gaZZzHsI4qUupK3xmDHuaZf7cdEg0Fk9ppVgnzSSrHxh1HTtfoXpV\ndpLhhRPmhYH2dYxcZRlz+UhFRrbk79p5he0tOUtfNZaZ0uh3/JBUQ6JKMiZzlFdS6cWOgxR17ggS\nB6+nBUxpgqsuW4FFnQlm2o9m0Od4Qz68NPApluTzsytD9l+SZxIfz7CueD2rDaWNq7qUSnDTqAZ4\nqtPndGusutL+IkqoTST0vKYufKtRcFzIWD3VXmVPsQlB5jGaA+MyQ18rRZUKA+PnGKX3K5ycUhOJ\nGMO7PiLz4bV/pidVvSnHg1sAXMxrTBVA1Ulg64cklHr+Sp1BX74TrEjI6NSuseTKqdu12Q3WXJHs\nO/OjezyxJ57Q13Z+j64vm3yl87vyd9X/hMMTOcIIyieodMVTCoIl0Epgl5DSO0XlPZQtPIWFLWxh\nD9hjkVNoRb794HaX+17Ouy9KwuXm/YTUahnqeMhKXbbrcVJypDF6RZl3n2jUqeouP86mDHRbqkce\nz0QSR948TIjmVGmKb1hOGvzqyS0ANgvLPVUi/oDT5VOF7FZvw+dlFG2na2it2caMNIFnU2p12Zm3\nLrnsVyVOvntnRCVQXgCtdZ3GJamribYsO4XEBpHD5pKqI+vjiKcFxypsmiUWqwIpL3SrbP6Q7Igf\nec+7cFelHefV+7l395NcbsgOdG0c8f0/PWfKe9CeVI2H912UWHe6scH3flCSrk+HIdO+NK610cZq\n6bgXpwyUxs1occ5+L8HXfEaZHTBQGPMXdw5JYtmhvngyI5nNy4WlH1faTW45cq3vO9c4heJ+ea9G\nMJDxahaWlSVp56V3yXOcdA3jeQVTkjJQTMogzUi1+O3DvWX+9x3J+D2tNHWvljEVI2O07gSsRjIX\nbmZTfEWTTh3oueKxjNUjCKqGquaXYltiNTFTWkNbxW5SzYE0bUG9Ku189yVD+bzkM8ajnD/3NlVQ\n/2LB0yfnAXjtVeW92GyzpyI6Z881+drXJZH47Noyv37jKgAXEsOnZ+L9zFG/l/wG9r2SPB4ENV74\n7yXX9JPLP01rRY7BHadFMcdhuOFD5RQei/DB8aC6XNI9MuR15R4YT3BVRTjEJVVgTVHa0zPyjuLp\nG50akSeTtGIKsjksN7F8VWsiplNLrhTvTiAv1U7XwxvLC73jz5hM5fNP1zzyqWSnX7QHZIUmjDS5\n1ptZSiUyacWXufS8AoCaIbEqToW+oaX8iRXV8mtnLr4uZMaWlJrkdEuHC6vK4edrTYVX0FduvZPZ\nhOlMfl667PN0ovx7RY+tl2SyNd8j1zp8zXDve2TyHH7u6I+NtFLi45NGktjaf17G8h3dDmdVmWjr\nXBdXadQrayFGT3sICxI98i5U5XojOsJvy0sxuNtknErWfiVyUd4bTm4OuXNHFtmWhhF+MybakRd2\n+rzL5Lq8jEeTCqGCvorpEt/1YXkOy5poZTig1PqDvcGMnpYl7p8klIrV+HiRMFMhnpc1MTqLl+m2\n5e/6WUS8roQyRwFmXReZoxmOp1ySxZy8JGCmzyxOIVClcx/D/kT1RH19+dMz/PlnZOF51/tWuTFR\nWXvviBf/SPgbsmGJ15HF945S8bN+n1euybU+e3ifHRXcfDHdZxTK870RHnIv1mT0ksyxwyznfc/I\nC3/7C7d48jckrBz+hEOz81H5bvA85g0GBIvwYWELW9gD9lh4Cl4BSwOXmtfgQOvgy7IALRwJCxcv\nl91/LYhoaH3/+WU50tnuQk2raGamys6uHGPN4ox0pkjAasixJu6cFVlp44FLW2vs7SyAjqyR/TLD\ntrSqL4N0ft4cqQucWFwru+rFDUOsx1crfkCzISv71HO4oK5vVQlh/TgErfZzHZeBFgF1So+Wog3D\nUqHBWwFraLETA67ell2gCCznI9lpru4ccFvJSN//y7K7FEfL3PkdQevFt1+fYPLwNTm4HDn8+HPy\n/R98lwAWWpV1Ll28Il+d7Z8KzviUGPV0bGSolDJlcl9Citp2BKrv0C7WmekYx5VN7uuZ/08et/i/\nN+XzSSrXjW4XnFMJuepBTL0uz/Iz3gijbv6TFw3LClNeaslnUQ47E1XBNgZPQ8yAAleZs4qZxVMm\n7KYrf9ckYnVJdvya79NUSrfsTIHRZOW+X7I+k3l0X5/1uMwYqc6lb1x89TwcF0xN7u0WEoJd7loc\n5WbbXt7kySflWV5/reCszpFBdZNc5/Lm8/L/g2spJ1pUd3BwwtKy9K8b1Fh5QvufudxuyjycF8/V\nOw4XFNPgvSdkqKmAO5+6yuZPK4tWEIOdHw4/nD0Wi0KO4chxOW5PyA5UzNUaOo6eFdcDQlc6Vo9C\nLqjK0prizC+strEavzejKs+tieuYFgl7x7LI7B9n3FbNv0QrIHeDjJW6coklBam6146TMCkFezDI\nZ6esu30FsRjfJVPQyPFWk65WqnmNJcJMfj5Xr9JU/sCunowUxuJmWtLqlYQqgW4cg6d123OaSK+w\nJKp5025tsqF4C7fhcTuWCf/ya1Naigu42JX+37zc5/APpH/TdMopOAFRvpLxdBlflkXtUPMvV1YN\nkwPB6ofNOp6GSrYssIUCjzIXE+kY5HMuSp9SYdep62FSweU7QZ+2o+QzF/o8mUjsO9Gz++PWmF0F\nmbVu1jCrykuYZiR6umRbJfU15dPUsujDwRGOsnI7rktL4c/VbpNCY//MFBSaY6l4stguhS6Nlvzc\nqgcsKTFOu5bRi+UFWqu53B/rwjGQ53F9nJJZeaaDLMPT6+KEuHVpf5opoOlim+0Vafv2M+fI3UsA\nXEh/i3BPdp+uCSm2pY5lrBR1N+oF9YHUsEycgJZWQ97pHXG+KQtEWvN4SoWC5mFEw/cZa7XuU09B\n1FEx3fMfpAhVaKdMsbrIPqwtwoeFLWxhD9i3K0X/d4E/i6haXAf+srW2r7/7GPAziC7ZX7fW/ua3\nukfhWE6iAsd4pF1ZDeNeRqk1+2HDpamJxuWqd1rV1tCCqAKHqmbyO1GTcFW8Cuv4VNriXndXHNiT\n3T8/kdV8s12hrxLvse8SJyon59dJFen3Ui/hbqL8BHpft5JSjmU3dnvQ3ZIz5mCQEugO5PuGtiLM\nfF16fZPjN6RPpnQYTVS8pJhxpJReaS5fPkkcNp7Qqs7AEOgpg/WrHJ5Idno0demrK/qbE/luepCT\nhLLrToYOzhzFSIUNxXp8aPk8543sbn4pibyjkxGhIvvq05JSrxG163gqMlImGY7yWuRafFR4CYqo\nJfZLCOfeSJu6krNcNilpJIm2V28K70VxkDJR2rgbtRFNVQ0vbD4HgtI1XRwloe0dyLM7mA5wNAHr\n2QJ/nsx1CtqRegVuh0IxErlWdfplRk0TlKu16LQitGZ86nVl/G75rIfyrK+vSXzhzY547Za0Z3aU\nY614B7YAo+5//hn5fTryuPjdQlPnTirQkf49cf67Cd6p43VkGA9lF68rtPt7og0+dSQ3mZUDVjVc\nXW76dBoy9quXCy5FzwGQNcQTrmUjDtWjc+27qT2vQkrd8+CIJ4hTxeG00u+h7NuVov8k8DFrbW6M\n+TvAx4D/2hjzDPBR4FlgE/iUMeaKta+Hzvz75lpDu/To5yWFHsO5GViFFzuZD3qU5zrF6WJgZuKe\nZ5WMUAfPcx3yROPeYEJDM7y+W/C0I5DR8YY82MOjGE9j3DIaYibi4hkz5n6uIjHDEqujNFcjmh6X\noEpHvfKYgyP5+cnNDepK8V2rNqgH0s5Is9c2rGOUIGQyybHFnLEooFAATaiLkePMmCmL8CydkWo1\nZNiGilYUdsuYwMoDr2othjNpcazQ4ON+glVnsCRmrC9I4g2ot1RjU6nMSyqEQ5m4XjjANcoVmXuk\nx1rjGxiIlTdSqy/LNMOrae4nb5Mrs5TpHRCprmISNthU2XZ3WRambBZTfl03ADcl0fJs53W58m4r\no7cvYVp/oOxWeUKWz4+kfYy+pLnj4CtIJzUxmTLGpHq0GLqGVj6n+Y5JxhoeBfEpIUnczVlRuPWc\nfGZtfQ0vkpe4/+WcmW4ixrr0PyVjMGe+3knvc+v3fguAD/zgB/BUILhyYZvwnrZztXJKnDLIlEHp\n5UPWNDdQqx6Tani7ZkYkyu+5ctDC+6AeE+vCGl7KCSfS9lH962wOhWqgulUn0LL8kvKU9fxh7duS\norfW/j/W2jk0/7OIZiSIFP0vWWsTa+1NRCnqu95Qixa2sIW9pfadSDT+FeBf6M9byCIxt7kU/X/Q\nrLHkToYzsIS6k7ZdqPmyk65Zw1JD1q+Vbo0zmhzsqqvu1FOqvmKRPXA0UWOmEDR09/MrGE8FU441\nu+uWeJoYcrIOY6Mu+KDgQl12v7zZIFWKtGNkV82mBkcz563dktkZadvgTsam1ti3S4uvnoIptc7d\nOlrrKZoVnoYXdeNj1c/36ioxZwNi9WLimSFOZFz28l3cE9l1G4Ul0XP6ZKJEMPWUItRkWdvFmycX\nzRk2XBmLPHSJ78h3lt+jydDChY4Cc9zKadhRJlPKObFKWuJp+OB6Ot6+oUSr+qZTjLbTuBUy1fCo\nplU2A4Hgeuvy99ev3mVZNRpHTkFtLqVtUtoV1cUc5fSmt2RsVRbvXNtjRedCUhj25ryS44RDhXpX\nKj6eepYt5XEoHMuxjn46dqhr+DPNM1zN5ndmEW1P5tSGCg7ZVpVEhUyzWcIXryvpi7WYuUqqckpu\n3Sj4mp4AvPyJlHd8j7I1x1PMkiQdqRzjpHLvulEpwM4aLzynPAzn6gx3ZB42DqaUmoy1acrks8KO\nfaTP3O+n1M7J6VHv+h7T7BcBONNsE2xJGOM4lvINAhT/VIuCMebngBz4+Lfxtz8L/CxA5LskicvU\nJig5DhmWsFTsfyWmWZWBXGq5dNry4CpNGZwo9wlryknnReSFurZxgqtZcqdIQQky5sdqI3/MfLyS\nOCdNFB3nDxnO5BpfDS1WhWArZo7rL7EaD8+ClGMV6XihskGg7l49+sai5sZKqmFiPI2R2+2Aophn\ny128oSwQocaIJ8mYWF3fk8zhrq8L1s6U+z0tX05zPCW6necvbn8I1j6jeYuqc3pM55qEXMdol12+\npykxvt9Sjr88wLW6Egwj7KoqE1mfQF8am0egtZul0oab0AVFNOaeIdYTGo8UO9DqyumIxNewKJO2\nV90K6ar0aemuT64nA0E/JdpWVqfViFeuSVZ+TbU7Kw2Xip5EDBlix0pc6pfU9YVeXgnxVSSlomCj\nMslAqz29LGeg+Y6asaR67UYMY6Vfr8W6uG0nbMwlKN/tcyaWMeyVVe69LC81WoNztxiR7ks9xE+8\ntMbhM3p8WV9iMP4DALKyYKoxfktZoxx3QqUmznZzuaTj3ZB2XrhA3JfQbbB3AKkssjszmW/VQcHU\nERanyXHBzj3p0zu3/i8q20JhT8EpSO5h7dteFIwxfwlJQP6A/QZW+qGl6K21vwD8AkBrjgde2MIW\n9pbbt7UoGGN+BPibwIestdPX/erXgP/DGPP3kETjZeAPv+X1HIsXljjWkswx515JoPDaPC6IlXbK\nrLgYPZv2VAeyahsEVcnIFsWAgYKX6vUWpQJTyjDDVehrwxGPYHInIVZw052jA4aqIlx4CdU5zfjR\nmFDzU74Ciw5WC8odbVvfslYRIZrQJFQqKnoyjBmpcrWXqstdq1B15nBtH1uTne14NqPdlbAjVs+m\nWi25VcpOlHohhSYBZ/2MfdWEdGaGoirfr52Ta/WGMfywXCs6jHA/I32yPZeanna8zV5ivTtPJFZO\nx9gorsJfBqMlnF5uYA6vDV1yPaHxq0pjV62eUsU5NqKufaJ3yPBQdrThJMHVOoHqpuAVlp8uaX9d\nfj+eJpTq3QUNh1pbvKmJ5xIp7DvUk4PZzCFT3kZT9VnTmpGpA9uzViB1AAAgAElEQVQd6XfoeXhN\n8QoOFTdS9aoYTYNlgcdkrqodl/haS9MsPe4ZadNSrv1LHYqOhAFv70Q8/R9Lbc6X9gpe+uSXpR3S\nY7yipBjJHPvt29eZfF7c3u6nGhy4ct37JwWXmnK/JysfBGDrR5corapkNwaU7nkZY2eJbEfGxR9a\n0ol4Lysq1NO/M4R9eb5Xb+d8OZQ+/fov/g5/+QNS+1G4PukbU6L/tqXoPwaEwCeNFLh81lr7V621\nXzPG/EvgZcTP/Gvf6uRhYQtb2ONl364U/T/+D3z/bwN/+w21ogBvYokMZBr/jAvLQGWXg6JCUlFF\n3f0JEy2OCfpa4HRlCWcg8VaZDajr0dMkHRGrmMiwjLl/KLvG7rF4Cr39EwZKrzU5ik93xw3PcKRM\nw4fjhImWLoYap8Yn+amU9K6B1akgAfPOU1w/luOi7DhneEPzAMr0ZEqDr6SjXT9geUkTpUH0DSFR\nPdO5dXjI/bHE3/ePhhydiHcQpzPqc4akqou9Idf+3SWtVPp6xt236/n4tYBkTz0sp8d9BUy4gUvt\nnKDqXBWTGQ775COJT6NxncCRHdFrltR8Ga9qPcRzZAeNtZpwei9nEshYjQ4iRorpcPcPmI4lH5CM\nfSqO9O+MenfLWC754lXtnulxVysGy8SlHGlV3/sznrgn7Vtqz/UPMnp6BMi0wNHI009Dxi3FVmQO\noXpQXeVCcHFxVXAmqQakSlF2Yzri8L60+ag9oztSJipFWD6fXWZ5Q57DUlwhPyN588iJ+CWF4FjN\nKfTxWdFE7B18yi8JnmT/fsbdWDys3Tjnoj6H9ars5h/tXWHjWcnxrG+eIVBmJeskFL583j9X8vJV\ngbqfqHjNqD9kXdW6e0nK4bF8/lvhiB9/9RMA5PbDDKtvjE/hsYA540BZsTStR5HJwxhOCzTXh+tk\n7O3KwB+Q8HJPK/Gq4vpeur3DU2eVGdnO8BTWaUYpO0fysvzWS1e5eqAJM4UPtxKPSldesKjmMtSz\n6XuHBa2qlrLisKMTL3Q0MeQYbK6Vmo4l1Yf8tesDzitG/2ujffbuyWTL0I4khtxRJmY/4HmFY59b\nblHf1PBBk1BHaUKmXIWJV1JRINfKcy7vD+Xvgs0Gv/+HMvEq16UN914r4KosfuN6eJqFLzOfWqoA\nKb9B/xWVVlqXv+sd3+DmLTk3X1oOCcey0G1cqfLEWcmcV1JDplWnwyN5Bl896PGqUt/39lJqHVno\nzjgtairbvlJdI1BeSYV00LQe7zkn5+r7JqQ2loTa/auHnE1kIVj+Q4fgjLwghaoxxZnlUJOER8OM\nQkO0FT8k1hP2otZhy5Vn3Q00DGi6zJSirX885EQBbNf2jthVHc7bI8M7dU5tLsnzKJ0BTYVxd5sN\nojVZLDuNJdRLxlWsyBkTsFHX/q8s8+4zEnb01o75wEQWk91OxuZEk65D1UQNDJmGzblTUFUW8Die\nMNBamV5vxmFXFqe4p6chG5bNylx9zOVLGoJNj6d4X1RsyZMvM7Eyhg9rC5jzwha2sAfssfAUHCAs\nDLZqqSodm5d+A9k2ihzO5FoXvxQSu1poo+Qf1Z0xjUDc9lVTo7KuRJvTDFvIdxqNButaYLWxrLRd\nWYZR/obJvUOKUgufipRkJl7BsObij7VYJ9MqtRLmrKyJzckKWcGfKba5nshuu7c7Y6SkLXZe5eR6\nBErcavOU1Mjv690K3ZbsKvf7Sg0WeEyMXKtIwdOKvLN5SHZRdtIzm1c40GKd8Rek/+O4wN+X7w4P\njuYCzbhlSqJHb3cne3TXhPJr4IlLOuof014Vd74a1ZkgO/PBvSkrpXgCzeACnkrPFYpsLJIpoR7V\nRrWQRkV2WL8VEXlyPTvKiNZlx07Hct1jN2KvLuO6HjfpKS1c8FqfpK+cFN02gZLLtCJJxN3zj1hV\nCTqvUpAp9Z7neKcUaqMiRSEQWB03p/DI1VspJzknGh7aHLpN1YtoeHQ0vFvX4qPgTMBkT9p8Z9jj\n2VjVzYMruKf8FPL/rtOguirP993PbuNrNe85VkFp6J5trlCbSvjbUjTmMN4hslq2WWakU+l/f3rA\nUNP4SVCyflE8tqFyPnQrdTpK6vLCjTt8Vu+x6Qe81LwFwBONt9FUHZSHtcdiUSiB1BWeRFcxBK5b\nYHQS1w10l2Qg9/0aLS2z3Y9lQk/9KqUjbp+3FFCpqRs5qZ9WuJncUFYVFDOWz3rDAXZPTwicjFzP\n6euRy7a6ZWsZvKQvdaLuomMKlpCJGdqCxkAGPUirrJ+RSfHanQGhgoUS5qpKDuuuljhnMwK9Xr3r\nsaRS7fvK+HR0/T63B+JeTnoZUUPFSe7NKDpyKlHbqPBUQ16Krz8l1zK3LQpjIAoiHF14fCp0lMF4\n9WCJ4YHGwWsykW7ulxx64nI2g5Seius8u91htdAajqMRnUj6mufKHNxcoa5qSvfyXXa0vuT2dUvq\nCGvQmlvh4kjc7o3zEiMf9PYZIM+h7oaEiYy37wd0S3XLr6f4uoDPsQs1k+Jlcjrh52OGWgcxzBJK\nPSbyXZcy0jyO6jLGsxIbayjleJSphoRBSLUiY7HaahA0NCfS1hL4EdzYlwXk2I3ZSmXso2xyumm1\nldHr6SJkeyJQ+nbUJFaRoJtXd7mpIc/w1quEGsb8mStyet9YDggcyYlFdhuNUsmi7ikT8wyfIxXl\nGddkrnSTGu26SiK89yw/pbT9s5sem3UZ5yiIQLU+H9YW4cPCFrawB+yx8BRsaYlnOWkpeg8A8ajE\nqLtPHlFVToKnqZIrIUlwV1boQXHCeFf+rrW+RhSKqxnXh9S0YKRRTtlShtsjpWvzCp9EQxCbWyo1\nlaGbBaSKRpzgMlE+hXwO4S1rTObQ32KNi6ql6F9aJliXVfl91sFHPnfUFY/ThDUtEur3h5xfkvZf\nqXXo6DWschBcb/bwj2TLD6KStWVxE5+s5LQrsotdXm/y1WOtntzTsYj2GCm/YklMoScmxs0Yl7Lr\nessuRUth3Cc6llWH5ypCsuIsWZ4ppTjszLmQdVTSrgqRUTRpJB7GshMw1Yz7tqlzvC2/T3s58y2v\nEji4ikiNNEnq+LsEt9XzevYbxCG1JMDRitDEr9Otqdq06jE0whbts6r+PWgzVUZoE5c4vvS7OrI0\nI7lGqXLwhVNgSq0WtDFLjnhstTWXVqQJ0XMBl1S+7/zbZQ7VOpdZb+iO/4X7jK/Jznwve5F5pVys\nSc0j1njP2yThbToVXOXmrDYd3uc+A8Dx8/epIom/2qaGPgOwpXhmyTTGjeanOQk65Wg7LiebMobn\njqQqt755n5Zya2y+t8qHr8u99+s7+HNofdWhVIGlh7XHYlHIS8vhNKWau3QU1+7jzDk+eXs94L0X\ntFy0ukZ2Tl6K2ZKSvF5/ma7WGQTtNr6SdTaqVS5sq/x6tUqmL0uqHICMDJNVJXW5M+B4R9zn47zP\nqsaZSxNDTyf0vAZgJ4b1SF6wy6ZBc0UWjbPnKnxwXSstz28w1eOw/R2BrU6GHhWFTLfOLtFsysTb\niJpECvMtldnnueNVelqdeGhTlrUq8ckrXV54VohZV5/8C4zu/EsA/uDHZEzW9ny+MnwNAJu7lBpK\ntZxtruix4Dgd0dvV8OCiHE2+a3UDUxEXvazkhKru1F5zcFPVSnRK3FRe0lDh082lKlcU3LN2p0qp\ndRfRMyGJVoFWwgb1YK4opbyM+0s0lCcxKRPW60LOcvFKwgfPi1vddroUXcX5a+i35KwTNVQBbNWS\n6oJlRg5JqTmYMCfQxSTX98F1E/JgXjpdYUVzV2lY0mpqn1yfJ87I81t/QnIuRa3APZG2XXlnhS8N\nZKG+cf0W2iQuqDv/QqfBpvbpwrpP05Hj12C7S6lzwal3SDR8LVTjceoMyVQJqmI8bCxhQmXqUl2X\nBcTPG5zR9lfn7V3LWNEK3Ghjk1YgtRGj3SEd3RiDcMrBzou8EVuEDwtb2MIesMfCU7AOlIHDNLRs\nqeiHiUvCQiXWlny21mW1LpsBniZ2+suy4m4ehKx1ldtwuUM+J+GYWEqjHkZtinqS1DUlX7g5Fa3j\nX6pWqarWZFJMaWhh0jh3WFVpsopKj3/hyMFosrPR/Aa348jklEqf1cpbTBWw0l6bu6IZ3omCbUKP\nmvbVcUPcqTQuUvm4i9ttrh3J7uHfTNlS2bEnNpp0nxM3sdrx8d/5XgBeuPpHALxSdrimRC0xCb6r\nUHA3IGpI/05aRwzm6XndiRtlSDp3rwuIavJ7Jw2xetKSpyGpApWSyVzmLqKhxU7VJ0Jc5XpIghpW\ngSahNadhYaHM2LXWCgNfkpKbs5BkXcYifMnHLikV+2qXiWI8ikT1Iys5Qa4hSjamVZG5kNXAUQXx\nopowF06L9YTDT6qkkVLHN0KGqYQd1SRkpoVpbhlTVsXrKbXtZeBTMeKun2ynjG4qxb1pEnpaxFaV\nezXOhbRUcKjZ7FDR6r6a65COhA/Cc0JqS+JlJipb4JrklG7Or6WUJ+JVOf6YSCnmnGpCTUO3oKbF\naoWPo1wQZuyTaxjjNzKGueqUDnsY74295o/FouC6hlbb5cgtOFRgX73qEyqpSZzlTGIZiM7yConq\nNmgBHG2vRWtp/oI5p6QS1mtRq8jAJ2ODo9nuMtfstZeQa11C5vpUtIrwStjG0xfLMqVQUoxWQx5K\nvX/C1ob8vNQMcB2lC09TciWbLe0Mv1RdzExRgLOvY3WSR1mTOTorC09gXufRlxfXMz6VukyOzTNN\nnKZ0Nqidwc/njFP3eZ/i6H9P0y9PBxV+N5EJlhuHaFkRfUmVQlGRrVaFuvavTLV2oDDEWuFZTSJm\nM5nETrWC25B2FF5KOpC+5gqyspGDSeRnr27xQxmXml8l1/LqdJaQqz7DTE94bCuCsfTV6UJL61Ga\ndUM0VWp/v0YRyTXyecwdw1TrGaKKT6b1HCUxxXTOyASl1kwUWquX2QxPBYnd3GDnhYNeFVcXvYgV\nYi2TPtzTmplyiaCmzFpuxMXnZJNZilfp1IRQpaXHpqFNiIy014lT0NMHmwcEyxJimIlPqRW29lBZ\nrAqfbC5PP57iaDs93xAPlSB32SdS1J1bl4XL64eULTmBy6ZT3Ka0zW2ukbtKO79znZ09Pe58SFuE\nDwtb2MIesMfCU7AW8sIhDHy8VV11j8DTpGM1MziaIfb6I3JXd4RCVsCg3qM8Uez8+hiUQCN2BrhK\nqOIXCRWlGHPm/ACpodTvWpMLNwBQTmAwVRboGVSUJbepO3cYTqkplXvz6Sr5NQH3OHGOq9Wckzw5\nJVfBl2u1vTapryRW45iJFhTWKxtYJQuZTWWHPhmdnO4kB/0BqwPp6+zsAWYku07RGnOiSas8loTh\nr7i/x44KSDZCy0wJYuJ6j5piDM5HDrme6VcVu+A7Do1kTuU+w2qNgy0t6fBYx83F12TltNTqy/0c\nuzb3fhp4TfXYJjNKPY+3w4TJRNxuv6LclnFOo69hXAPGY3lOTlQST+V+s2ofb6QnPpqgLEqfXMlU\n7CRmXgZhvcqpF1biiMIQUK1qqOEOcGOt5vQLqpnWOBRjHPWa8maGP1VRnrpWdSYh4RzgFkN7VRKR\ntV6Vpt6jUDKcfnXAdCxJwunQJVRPKYsmVAaaNQ8DSh3zIpMs6PjOfQglodhohsS5eGPZzJL6ikNw\ntnCUN5OTiY5FijtT72fdhVQS72UQER5L24bNGb//e0L5/7C28BQWtrCFPWCPhacQeC4by018U6Oi\nrL47/hBULCV0XWaHctzEBZfOpqzWmdb5O+Ma7kBWz7wYk4015sKQol5FtYKnu6bb0jg7i5hp9Z3T\nGzNTzn+HkkhJY5fGMyotiX3D2lyMwxKpFmF4UGGmHsSgzJnqNdqVFEfPykMtknGSjJkmlAbpDHYF\nHVfJqjiKG7h6UzyFw2BGfyY5gL3eMUMlWH3PQY3sjIxLsHeIc1v613ha8ywvHhG25OeNisdgnl9x\nfGZGrncyc0n12NZVr6IWZThKb2cDH7RAx5gBU9WH9MwI43X1c2WeiiZU5roQfnHKWeDUGrhaSeoO\nZvha/lkoqjCoWipVJWt1Sownz+xCs4KvbU5em7B0ThLMmVKp+ZGLVYEXm1gcVV5zYzCKc56OMuq+\nsk/Noel+hNVEcTmd0MjVIw0hV8SmF3i4pV5bk5nDZERHE7DNKDpFy87CKo4eB1Z9uUe6M+JwWXb2\nVtOlWZW2h1FJrlKH1rNkCpu3jvSpFlTwtDAvcGo0VKa87wRkucDXOTnAXdGcgnrNZTkFpZsrY4fD\nI1E/P+kfcuG83Pu1QY9PvSp5h4e1x2JRMA4EYclwltHeVMrurDidsL0xzCbqGroO+eGc/kvPz4sE\no8me4a2UnpYAg4QlIC9mpDyO7mzOdBvgqbPklwWhus9xEePNhVqCEkfZg6eaDEs3LS89J23YPruO\n81mpKHSKDWaOtKlp64Ra7WZjDW3IqSrwyIlc7Ewe7owJeV8exWQqi186SUk14TSbGazWZaQTS9yT\ncMTaCs0tpZ3fkQn2+Zd3KLS9/lqVtCn9iN0TWucF39Dd73HmHUIHPtVS9QZ1FPZPOoihoguBVxGy\nS8CpbFPWFYQ0VDq2widUWHJRy5gNNAMeDzFar1DkCU45T6pJ2DGKa9x3JExo7IG7JN8dmyqxMmkv\nR4CeHjjJXIRljKenUoVxcbTuIHYSPMVFVKOIIJPOpJ4qXVn/tFzaBTJlx/ZiA3rSRJmfMmEHmpR1\nm91T0p58+T5d/z0AZEGFgVKxG4XSNyoRS7k8m+3pMrNQCWnGEaWGvGmvSq6CxYkSpOTxMfld+bu9\n2iHdioRuozRgsC8bR3Md6r5WjCqYzpKRqJBN1suZJvLyV32HA63BeO2Vkv34jdGxLcKHhS1sYQ/Y\nY+Ep2AiKZxwO/sBQvSZN2oi2OHDkrHVsMvbuyUp69uIGqdKUWWX9rdafJG/I7jIdTBnozpyNfDwV\nC8mLnLHuhF09V/cIKZRDYRIXpxoBy2ttMkXx3bPH3DlQ5Nl9WZVnHx6xe+NrALz41AW+b+0DAMS9\nL3A8ELezWfcIFTY9niiRSzqjFWgo0mkz1DP7/iQlVaLQfaWHGxYFnnIFJEXJTI/Wbtw+orosu+6V\n6QqtDz4rbdt/Se4xSQj0iK3Z9Qn+G9nxRv9Zn/0fUJq6K99H7olHEppV7X96WuSUJiNcZdW2iX+q\nBD6xOZnKzIXqBUTLPooex2YBhSu73zixlANNqgYT7FxhO5Jk7/G0zxdvq1BPAasD2W0JDbGqOWeD\nIa4nnAtp/xuCPIUWMwVVfy6/QZwkOKq92a6HBEotlypxjsk8Qh3PtD9lMpW5VWY+FfXIJqOEo1La\n1JiIRxdthQz1GDaND3nmCUENTmY5hcK4J5mM1eHxkNmx3PfQ38VXkl4/bON069rOGZliPeYaGI1o\nmeF19UajGGekxV9Ly7QUkzMtE6ZD9Xpa6pntpRR11SKxhvyCzL2t6IfJGvIc/O2SaF1DkJe0Uu5b\n2GOxKMwGBV/59QFTPyBTIMil2RSjh8m3TjKe3RbXPx6PCVVSvjxRnsELBfVUXKvKE1U6T0gmfhqP\nGF2XFzKtG0b3ZeD7yoxcHfbJNO6NZyUjTybecqV2mhne7xdcU07E3an+/58kEAnw5uYz/47nX5TJ\nsXp5iYMj+buNbpVYz9aPZzLRkpGDVVxB9ahJ6cniVXU9Ul9yCd35GXVuONYz+GrgUmoYtJcf865S\n+r30dAOjcebJi3Jf15QEKgg7u1Nw9Gf1rUkM08/IhP53X/44H/5vf1LG9qqcnJzprGIVI5+blDCX\nlz7vJISFYg/qBgqpvrPKfhUfjdHCT9IE4mAuwnLCNJH+O4MSq+5zXSns43GPREloiq2QuweySL39\nQpt9XUtMs0aiRCSl1VLnBGaJPD+ngLmeVJEb3IqCkAoPV6skQ1WZL6sF9kjnTTA9xRNM8z6DkXxp\nnAyp1OfYCs0N7LTY3LoFgN/oMlY26muv3j8FSDmecjy2PUrFY0wmJ5zsKQipOaGRyc9TJ8HV6t/o\nvIrtphtUvkcZprJVZgrUGl/r4wTynaQP+yfC1LQWK/6lMsI25DkN914l6AmRS+v9CaNUMAut9Zx3\nbMv3Zdv41rYIHxa2sIU9YI+Fp+Aah45fI9ircGlJdrl+x2W4r9ndKGN3V5Nd72pRX1aXShnF/DwB\nTxJg5tBlqrX5aREQH2tm2BT0+spjOJVdYKvaJWoqGi+cESgP/9F4RqqoyWlqua3ItJG61P7MpTyR\n+zV+ccK99yts9Zalod7Nvf4JjaWLALRUU7A3TZmUco0gKQi1ws21lkhhzp6i9VpuREPP9pt+TqGU\ncOu1iJWGajlU2hyeiMfSV/HsJ6/UybS07ngyhulc1cUQfFJFbdot/tWviPv8F16Q8GM8i/FWVrVt\nhpOh3DtKUpa74h2YlFPkXVHK70cnOel47pZWmOnOlnkpflca5U5nhJr4i3UXtNOCFS1air3kVBbw\nHd91mf66eDSETRpzD/FEqelGfQr17gZpgadoUx+wqocwLizRaC6qozBob4w184pJh1ip6RI7Y1iq\nwIsPnoZv7pL084Z/g+9tyg5c3dziNuLRDNoBT2zojq4SdYVbkCivaCVsUtW4Ki9TCg0lrHEIPUkk\n1rRS0yYe7ol6XkVAVgi35eBkRqEkMfE442QopwuRkuFsry2T12Us7pk+y3PdzMoP0nClnc9dfh/1\nn5Xiro//03/Ew9hjsSiYvMQ9nrA6LnF0cowqE3z9+SDPuRXLCjBaKqgrljvJxM9M7gUEfcWkb6yQ\npEqsstGAjrjl08Kjr8c7DYU2B60OhZUHOs1GRIEMarcOY2WrOchn8CWF0s5JQNMMr9Dy1t4u129L\nNeOT57+HW2M5+Uj3djl7WVgvfK1YK8K7HF2VB7s/zggVp209l0LBSzuJTOzDWcx1zdjH04znluUF\n2z5X4qrKUr7m8dn/V6C2n/nqLQA6f2aF/kviXu/89hBTziU1LLnmJQajPcyrEhK82JbxeffTl9m6\nLKXT6c0p+VBCnkFs6QxkQR6XFWa5/Dw91oVucJd9iUDI1k7wFP58odEh0noUExUUenxnNFczzEuG\nW6pSNahxVUONaHWblTMy6Wej8LT82pkfF1cycn1x02SCVar2/nBCel/mQJj5NLtazq5HlkEZ4Su4\nKTUZsSqABb7HbCR9yqspd1V41tUTno7XIFqRFzpdNxxdlZe0YQIKzbXMFxvqDkc696IGmIr8nN4b\nM9XcxmCQ8LW+LMj2ywogG7qsPitzJPW6dJ5WoZ71Y7yaHC2m9hrVQ3muNVVIs7VtXtv5EgBffbXH\nT57VitFgwMRKpayTXeSZjXdI+3i4RWERPixsYQt7wB4LTyEtLHdPUi6nEfU9WQXXPJdjX9mQM3j1\nRHbpz366xwc/JLucGah7WqkSnJHVOi88ylJPIr4yxtFz+oP7MRN1QSMFysyKiFJ3mlngUY/FfY4r\nUxwNK6q9AZHK09mBnjXnlg5zGGxA8bKs0Pl2/1Ru7tV7JY1A8Avf9ZyArZrtdXhSEkBmOKWhACgn\ncAh0tzmvJxW3BkfQF0+oWIqpqhtpMp+ehi7ZzSm/80fS173r8vcfcVp8/rZ6GLk5lXX3Madn+jb3\nuKGhVDBQ/MfNLZY1S71sQvymtDl0HcJt2XVdU8HXSryKnlQ08lUq58Xb2LtdoaqEK07VISllvIrE\noaKYDa1Fo9mt01TV8Hh9TPKS7J6NzU3G8wrHbEA6lZMmL1CgWqtDeqQutYmxCiUvwxp2TcVsEkvY\nlZ232p7DnVu4er4/nY6YKmR4cDBiV0+d4pGlrMh37igseSOc8F5PwsODex5ZKCHhUnuFteZvS2eU\n+OO1l2J2VZDl7e2c7WXFwFQ6xFqJ2dxaOT19uKvcj41ayOFYad9rNQ5/X8Jbvzbj/uEtAEbuhK2a\ntGOUK9N0FvPKobT96v0WR0recqZc44YmJd1qm7qeMD2sPRaLAtaBtML9IGaq9N5nVmocTmWAo8xQ\nKvX7zZsHPHNZBme7Nj+RsEwUpJLdnDHLBcQx7FWYLMnCMjiJaURyvUqgmfV6Rqb03nVcmkuKxTdt\nprG4opdsxEFT5dX78/b6DBXRl9gK79mUxekaoBgrZqMRX9SaiHXNgTyx3AI9Xcl8Q6ovpO/kJJrh\nj5VhyFkzvE2BTpPcI42V/YkaXk/a+auf/wy//4fKU6kY+K9M+9zVF77MwOjilVNikMVk3ffoR/Lo\nX96V65azV9hZ1hLvZ86jhZGku0P2VHi32ClxVHsyK7TqL0igKc9mq+MSuNJmvzElV21Ox01J9dhu\nFCsobJZxuSptuDdOqcwVqYKArrbTqaXsH8mCMxxp6DadQqTgNcfBFBryeQ5OXan9i5KqYp3qqg3p\nWKCl7r4fUpnJNe4WKWMFAMWOg6dEPHOpgeXhNnkh860+PCEp5cUb7h6T7Ss7l9afZMmEQgFNX90/\nYaMj4+mG5SkBbaXpc8HXo0id61P3mHIg/ZhMvko8kcVtODlmrKjd5RWPdlv4H4umaj3sHhBqfcyz\nyxFu/7z83bjEuSN9moQDspmQ/DysLcKHhS1sYQ+YsW9QpvqRNMKYHjABDt+iJiwv7r249/8P7n3O\nWrvyrb70WCwKAMaYL1hrX1jce3Hvxb3fWluEDwtb2MIesMWisLCFLewBe5wWhV9Y3Htx78W933p7\nbHIKC1vYwh4Pe5w8hYUtbGGPgb3li4Ix5keMMa8ZY64ZY/7WI77XGWPMbxtjXjbGfM0Y8zf0864x\n5pPGmKv6/84jbINrjPmiMeYT+u8LxpjPaf//hTEmeIT3bhtjftkY86ox5hVjzPvfrL4bY/5LHfOX\njDH/3BgTPaq+G2P+N2PMgTHmpdd99if204j9A23DV4wx73oE9/67OuZfMcb8qjGm/brffUzv/Zox\n5of/NPf+TtlbuigYY1zg54GPAM8AP2WMeeYR3jIH/itr7eDmg/oAAAOASURBVDPA+4C/pvf7W8Cn\nrbWXgU/rvx+V/Q3gldf9++8A/6O19hJwAvzMI7z33wf+rbX2KeAd2o5H3ndjzBbw14EXrLXPIYxo\nH+XR9f2fAj/yxz77Zv38CHBZ//tZ4B8+gnt/EnjOWvt24OvAxwB07n0UeFb/5n/Wd+KtNWvtW/Yf\n8H7gN1/3748BH3sT7/9vgB8CXgM29LMN4LVHdL9tZEJ+P/AJwCBAFu9PGo/v8L1bwE00j/S6zx95\n34EtYAfoItD6TwA//Cj7DpwHXvpW/URKB3/qT/red+ref+x3fw74uP78wHwHfhN4/6N4/m/kv7c6\nfJhPlrnd1c8euRljzgPPA58D1qy1u/qrPWDtEd32fwL+JjBn0lwC+tYqBfKj7f8FoAf8Ew1f/ldj\nTI03oe/W2nvA/wDcAXaBAfAib17f4Zv3882eg38F+I236N4PZW/1ovCWmDGmDvwK8F9Ya4ev/52V\nJfs7fiRjjPlx4MBa+8YkgL9z5gHvAv6htfZ5BFb+QKjwCPveAf4jZGHaBGr8+y72m2aPqp/fyowx\nP4eEsB9/s+/9RuytXhTuAWde9+9t/eyRmTHGRxaEj1tr/7V+vG+M2dDfbwBvjCj/4eyDwE8YY24B\nv4SEEH8faBtj5tWqj7L/d4G71trP6b9/GVkk3oy+/yBw01rbs9ZmwL9GxuPN6jt8836+KXPQGPOX\ngB8HfloXpTft3m/U3upF4fPAZc1CB0jS5dce1c2MMQb4x8Ar1tq/97pf/RrwF/Xnv4jkGr6jZq39\nmLV221p7Hunnb1lrfxr4beAnH+W99f57wI4x5kn96AeAl3kT+o6EDe8zxlT1Gczv/ab0Xe2b9fPX\ngP9UTyHeBwxeF2Z8R8wY8yNI2PgT1trpH2vTR40xoTHmApLs/MPv5L2/LXurkxrAjyIZ2evAzz3i\ne3034jZ+BfiS/vejSGz/aeAq8Cmg+4jb8WHgE/rzE8hEuAb8KyB8hPd9J/AF7f//CXTerL4D/x3w\nKkIq/M+A8FH1HfjnSO4iQzykn/lm/USSvT+v8++ryAnJd/re15DcwXzO/S+v+/7P6b1fAz7yKOfd\nw/63QDQubGELe8De6vBhYQtb2GNmi0VhYQtb2AO2WBQWtrCFPWCLRWFhC1vYA7ZYFBa2sIU9YItF\nYWELW9gDtlgUFrawhT1gi0VhYQtb2AP2/wFGxyLacxrpswAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.3060... Generator Loss: 0.7511\n", + "Epoch 1/1... Discriminator Loss: 1.4302... Generator Loss: 0.6394\n", + "Epoch 1/1... Discriminator Loss: 1.3354... Generator Loss: 0.7412\n", + "Epoch 1/1... Discriminator Loss: 1.5316... Generator Loss: 0.4699\n", + "Epoch 1/1... Discriminator Loss: 1.3360... Generator Loss: 0.7564\n", + "Epoch 1/1... Discriminator Loss: 1.3748... Generator Loss: 0.9328\n", + "Epoch 1/1... Discriminator Loss: 1.3011... Generator Loss: 0.7149\n", + "Epoch 1/1... Discriminator Loss: 1.3411... Generator Loss: 0.7330\n", + "Epoch 1/1... Discriminator Loss: 1.3431... Generator Loss: 0.7667\n", + "Epoch 1/1... Discriminator Loss: 1.5367... Generator Loss: 0.6442\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvdnvbNl13/fZZz6n5vqNd+x7+3aTbErUENvUBMSKgzjD\ni5GXwEmQKEgAPQQxnMAPEfwX+ClAXh0kQQIECIzYSQzE8BBGHiRZEkWJFEWymz3e8TdX/Wo689k7\nD2tVkW2RUksUrU5Q6+XWrd+pc/bZ4xq+67uMc4697GUve9mK96fdgL3sZS+fLtlvCnvZy14+JvtN\nYS972cvHZL8p7GUve/mY7DeFvexlLx+T/aawl73s5WPyQ9sUjDH/ljHmHWPMe8aYX/phPWcve9nL\nn6yYHwZOwRjjA98G/g3gBfBl4N93zn3zT/xhe9nLXv5E5YelKXwReM8594Fzrgb+V+Av/ZCetZe9\n7OVPUIIf0n3vAc+/6/8vgJ/6fhf30thNh32KqqTtOgCiMMAZ0WKMdTSNfN9YR+D7AARGfu8MOCuf\n667D6F7nBx4Gucg3gGpFrZWLrbU03fYz7HQmY3a/290YwJP7RvEBlrU8r2wIPPmldR7OGf3c7m7o\ntD3GdNDJl85ZLH+wlhb4MjzG93Cd3MNigW7XNM/XJutzPWN2W30QhHzmzTfld11F21R6D49lPpd7\ntPJ+rrY0237BA6vvZDs67aPG2m2vYIzZ/Rv4nj5718UYDN62C3F4OmZ+GMq/vrfrW9O14Mm7Hh/f\nwblCftc50D6oNku0Y7Hy+tSdpWl1XrQtdd1uL8GZbUu1v637zneOj42r0XEN/ABjtD+0P/Fge6Wz\nlmj7o8CnI9Q/fGdMjc5Z3/PwtAMCz99OHXzj765ptV8dbve561q6btuJZtef1nV0ugY6+11zcvsO\nxuzeQ7R/bQfgjHxfFOW1c+7o9/34X5Af1qbwh4ox5heBXwSYDDL+q7/8b/L1j77NbL4C4OHphCqS\nTvDLlvOzWwDONh2nkz4AI33ZLjJ0Mo94uloQuET+ftAj9GTghoHDbxoArteyoNdFzeViA8CmdNQ6\nAsaLCHW1ma6mdTLZgqwHwN3Xf4Hc/jMAXr17xmEif8+7lKqSaVPWM9rtgnOpvEe4xCxqAGpbsO62\ng9t+V7/Iv54XcDicAhAOetQbeafCFTgrC6StOrKeDKFnpS/SICLoyefxwRG//A/+obRt/m2uLp7K\nu5LxD3/7f5O2XUl/1y9KXuWFPiPDFtLOYrNiscwBuFwt8XTiJZE+N4g5nki/JJ5lO18965PGck1r\nG5LxQNp0dKxj08ev5b7hbE7bOwDgr/zVv05bfkPatCgwU5nD7/3Gl6R/8oZ8JZ30crHkxaWM5cXl\nNc9fzgBYd5bWk3HwnYx5WdTYQMbUdrJJAvitIerL+EwnhwRG2tS1ujR6jkLfqahzHuk42dGYTXAq\n11Zyr9oWJJ5c3EsShjo2h9mQKJV+G6UjwkD69nYuvyupmN3Ke8yWM1YLabOLot1GXRUbZpeyBta5\ntNFYi9tuNl5E0JP3aFuLQe49stCmMne++jtvP+UTyA9rU3gJPPiu/9/X73binPubwN8EeHh36oKx\n5dgP6GQd8NaDJ/RiWSxXsxUPdcHelDGvnYwA6EI9JqsFi4V87jctZSQT4mjQY5TE8nkcYfT6di2L\naj0reHopE+m3L3PWlQxWQIyX6omfG247XciVbFLr+h0urt8DIC08al8WUx3FmEoG0QszAie/6/wS\nAOMHFJl8rtYt3zmDvrtf5F9Ly6qUSRD4IYmVd3JmQ6sDHgeG0MoEsqEMfFs3VLn0m5f0KT39XHk8\nv3kXgFH5szxIHgPw4a28R8eCUSz9OupanG6mmyjhZKqb4dwnr2XKxAPpi14y4bCvGo0XUjSyydIk\nOCvvWuYhdakTuZbfDaKORMdsddxymN2XPrQLzFreNd+8y7CTaXR67wkAV08vaKIrAEIvIKhlnPJl\ny6qRZ0RtTBPKs9tK/r6pSrxc5kJNg6daRWMcfdVS1sGcnvZjifRrz6UcjWSc2sse3R15v0fHj/nm\nmdyjXS/kN25OL5nI76Y+B7EcXv3MMcn0IBtn1LqpVUOZN307JFWlI2gdQSjj3k+PCSJ5drGsuR7J\nRc1SNc9uwXIjn0tTYrwMAC+q8eZ6OE1vSdshfxT5YW0KXwbeNMY8RjaDvwz8B9/vYtNCcOM4zyGQ\nA4MXVzcMQjld+rZheConzGeyIa/dlwmy1oEtl095FslCGQ9T1AKhCQ19VdVO0kNcX4/hvkzGIktI\n9fSfVee8M5fBzauazMrgLsyCTtVAq5rGneo5T1/JBFxWGzxPFlOvqrFbVTIwNMg1sZV2VrbmNJDG\nPTW/f0P4bnEdFLqA+vGSCtlgfJvjtqqma9g0MoSB6tSts7hK2rm8viVq5fPvvtdy7UkfvfuVv8W7\nH50BcFtdAJA5S6xaQK8X4fTzeJyCTrZ1nLDOZVGEifThwKUcjOX9l2W50yD80tEEMonnbU1ZyQLI\nz14AUCdvsNFFEUwz8qW0zcuXvHwlm3Z4vOby2T+WvmvltHC+pcmlj/PcpwzlcxMHeKqRLTqo9cTO\nb+W+nWfJte0mMUSltDMaQaV9OCtqLq6ln4cTeT/XbqitHkLxijCTfnl6tmTVycK7nssituSEQ/lu\nugmIx3pQhRG9WDYkzwZsrLSjrkU76FoP9F6daQl9nadtjRfJGgh6jklP5qQ3UvM5fUD6gZiBs+qM\nfCH91pQZa180QBdYmMs8/KTyQ9kUnHOtMea/AP4BYtb8D865b/wwnrWXvezlT1Z+aD4F59zfA/7e\nJ7oWg7MRLgyZtqIF2CikX8mO+tnX7zA61F3SjjkZy8k11ROxigwnU3VaVTHhVFXfrmSzlNO/T4Sv\nWoNtZFe2h45yJKfVyeCYf/rOhwB8+dUlnqrladhjk6v6aOQUebm8ZqDG/8LzyWp5no039CI5VdbA\nsCenW+HLSRLewI16qqaJZZar4+97KA2e9x0Hnms6BhN55zoMOFF3V12sqJ0MYdmoX8IZOnW+1V5J\nfi19+Hcvv8zq18T3Oy8uKC/lve+8JidRuDbEap+eDHoMJ3KyxV5Eo/6VNt+AGQPQG2h7ah8/lPc4\n3BisahidF9JVosL3og3BTPpzpdZFuZ4TTOVeQf46VSbtXz19wbvX4q8ZnU1BNSu7lLabgyHnufTx\nxeYjrkp1+Pox6fFr8uxyzfxcTIyi0zmyrsk7aQ9VRxKJSp2VPfxU/Q5Xt0TqB/FK0TpcOiRdyPhx\nb0hayJhu4or1R3Iyl62cygElUSR+hqjnobfC8xPmnTpB53Ou1G9WqXk16g2ZJtJv2Z0DctVMbtYw\nDOV3STIhSkSNDmMxceK6YjGVh7x45vGRJ6bwbLWi9lSzWjjySDv9E8qfmqPxuyWOIx6/fo+2PmOl\nA3A8PeB4IC/22v0BWXYIQDoI8HwZULsUN0U7GeE79cySEfRl0TTO0i6kA7u6xYvUjszl76G1FMjg\n9wYtldr4JrR8+1qu9UsLvtrlar/eNDG3rdqTDRhkkEMvZuFkkjZNSGlksRi0DV6FbdUGbMCPVEWt\n7C5i4KvXO0ojnKrovpfhOVmkjx48Jtq6313OZiYDvlTH4KapaXUTs52lCOXGT86u+D9+9zfkPUwf\nfyITL1D79qgXcDCShX407RMHsT67hko202UcMcp0MY172vaaxUbu0Q39XfTIWEen9jmNw6nanbS3\neq0hXUg7R0drRiNZ0FdeTnat4xDdEkayEBaJTFVXethENvqbfMmrM3l2kfh0PTUZ5g2hdAc3Tvon\nrys63SCMM7jtOLUdRj6C31Jvr9E91rOQHMvmlSxDTHMJQG9wQL6WhzRrGeeIll4gm+2kd4eg3ka7\n1rSFbADXjWVxeyP3buT3UzLihycAxA78W3Uaj3xQP1gWB/R6ao540vceAzL1v8R3QkK99sX5gP5G\nxuHam+HZHn8U2cOc97KXvXxMPhWaQhh5HD/MSLM/z/Pf+nUAkkHG8URUW5whUzUySk53MWQ3/CwA\ncWgxoXrnN2uchoLCNqczsgM39RV1LveLfTlpjO8Tx7Kzd17Ea3fkpGyWD+gSORGenXV0GuTo1rKH\n5qs1nWoVYeSzDSn6QYLR+HdjSrZoUc+XEyEKQ+p6+znCqdc7HFhaPQmzXNXI6XCnHbQHJ/zkmw8B\n+OyDOySNOJfyesHiSk6gK404zK9r3r44B6BYXLPMxZFI9hbnt6Lu2rjixx+q2aAnYy9qefOBOHN7\ncZ+qk/bUbYfV0G8PQ6aahylVHfYtVrU02phAMRRx6KhbdY7GMYFGQbJYnbyuplJHqusl9I5FA/Ha\na0aHYkJurr9JoU5ccyD9+vwbL3j3+QcADBxMUrnHkHvkiWgmfmZp+9Iv41ZO+SadgZ6eBAbPqvOY\nCs/o9xhcJ9+3nmgYVVGy0HH0Gw80/GzinGYhJkrTiiPPTWJ6Gi2I/YZcw8Quv6DSuObCNNwu5Pph\nIs/NjgzOUzPn1lE5jdSkfZJI71GBMaLVxhreDOgIWvmOcQWtam+xh/dS3qPuam6r/w+aD74XcZA+\nwoyfEj2Uzun3J0SFvFjvMIBOdDyz2RD05OWtopdMGOD1tiiedAcK6myIGcj33qLHDmuiPgVv5OMH\nWwBNw5F6oVeHMY988WE8vX1JeSPmwdYk7fuWpdr7tqqpNf7ttxbPl4npeRWdlQe26hVPiPHchbbN\nkQ4kTHV/dEQRysA1uqiSYMgwlEUan97lc699DoDPPT4ifHWjPXfDRkODF0/l91/JPJJb2fQK47NU\n/MY3qwtKXZBJGzJ7KRvL+HX57nRwwkjDnobvgKE6F+BpPw/THlGofa990diCYSSbqfNCUL9NYCyJ\nqvCNsWStvOtQN8Jvnl8yz67ld9eQhmIenqQ3WB3fxD8BT363jfbM/Ftuz+SlqiZgcqiq/f37rGv5\n/sVtRp1rOxt5v01TkgdbsJjBKJjK2hY19/EDML5uxBox6tqA7lJetjiZ0+h7d1choS9mQ+rrfPI8\nmk7a2+QtnS9za35ZUDQKyLIepi/zoghkDq1XNToNaXo+QSdtHyUxnc7VNoZGQ+Zu62dpwUTyToPa\np4710Ltt8EYyZ9sXBY363j6p7M2HvexlLx+TT4Wm4AUh6eEJ46jlwVhOxJez5yS+nAInqwz/ONOr\nDS7XWHgq6psJR7hK1QDPQCE7o+f72E2lP4uIfPUoDeQ0aKoaAnU6di2enng+FYGqjFGX4PQa3ygg\npvaJVc3sfJ846uszHKFGKIzL6BTS21ltg+vwrTrf0ppUT6jKlRym8uxC8QhN4XBTUffT1ZiNQjYr\ne8n4WNXEtWWzlhNhFgru4LDwSVt5xmZgOH8hpsRHz96mc6H2t6NQNfc4kD5+8NqboFENr/FJFcYd\n9D02tbxfGPh4tYKlfMVjFNEOzmvbAqfft7XBqYkVO59KoxVxJBpY8PKKyw+lzeHwLjPVbtpNRan9\n7KI+vt77pZpB3XLJyaG0xzU9vAM5HU+bKxYaiblcdAzQyMdAHZTdkJWCtPO2w6k22dTNTrtxeHiq\nqUVGx671qXQ+mdWK1BfHZ4DBNOo8TeQ9704OGB5Ifz67vaHOdSxth59uTZCW1BfNcRTLva7KiKp9\nBQDXMZND+XsdxjRO8RtNQzyQ79eFmpgx+OrwNlFArEC9XrTA3ujz0ohotTWPPpl8OjaFKCZ7+ATz\nYQ7qsR12b9L1BZXpgkPs1rC3S5wCU1yj/3ZGjC7Ath1ma/cpKg+A1mI1tGZ1ohnP4pW6gcRDArXf\n+odzBvNYrylwCnPWuUMXBDTbcKH1MRpTDCKPDl+vcXSqMkbazVWzxCiYKHAxXiSf62KDsTKBQlXV\nk8zDM9o2b0Z7KYu/LCy39+X7ofXpanl2eSUL+usXr5jVEpqqqhbjFOX27ALfKmAnCoky+TwdyySO\nfEPcykLyXITVUFjgwp0foGlbIgXhbKUMSzqNhjgMxn1HRd9Or6apsJWOXyubzXhyTDSTdjazD4gG\nAmeujg4o1mIKDccjNlaiFT1VtU8OHtB/SzaCm/dnZBo63JAzTuX7e48zylKiGaUiTJvMwz9XX1Rd\n4DSE6xuBEAM40+Hx3TkmYEKH0Q2iKT1i3ZztxuDrBhiqyRH6KY0iNxvTUKHXliFqVdJGEbbRMVYI\ntkschY4Nrqa3kefV7ZyFmrSZB6jfQV1mhH78nRQOC576QZIoJfDlMHA3OZVGpj6p7M2HvexlLx+T\nT4WmYHB41LjhKdczcYC1xvLQ192+qEh92QXbwQTjtl4uTTTKV5hQwSaupCtFvfR7ASYQddW6c2wn\np2Zn5bRyZYjn6W5egwYwOJyccDh+BkDfRqQKZHI92e6TymOtB1+QxGTBNiszIwnl1Fi2lkKTbhrF\n0ScEhKrODuOEXk895ybj+EjvoRGHIByhuVV4SYLxRX2OvENidT7VsSOLxBl5PpX25s/n9Iw4IvNu\njTVyYoxO79K9L6DSdRVynEtfpKpy+5sco7kPlSmolpoHElrMUOPcrmChHnxf39kLA0LVftrW4FRF\nD4KWptT3rxxFJ+ZBXCtwzKzoZ+oQXljaUaK/q+n0d4vLOTZRs6ORvx+M79MLZKyH9/pYdaLdq+7Q\nDkUdv3t3QrtRqLdqBK+WByxU23p2fsGqlM/rdcP8VrSRotyAws+TRE7rJGKHFYh9QM3UOvAY9Lbz\nTN5pcDQl1iSG2fmMUvEi3sSjZ0SLue2W9I28kzlSB3QXUmkW7E19SasJb8n6iGKL9QgcvrYtynRi\nhC2ulf5u2ppQo0SDgWVkZFyfmxYb7h2Ne9nLXn4A+VRoCuBh/CGb9QXrlZxQ8SG4W9EI/NNk5wdw\nIfhGHXuKkmPjIFYnWuVj1F6mNnQahnJ+n0bRbV2hMfbEx8zlHo1b0yg60B8nvHZfsvM+l89Yviff\nX5TqfAwNC7X7mq7BhNIez0CtPAQmCfBUoUl0o87CgF4mp85BkO44It48zegd6om4kb+fvHaHspST\n4dqljDSO3zYBS03cmtwdkqeiWf14LKfO7UlBp6nOXu0Y9+7K92sPFFbtRY6pL1pBeiC2fJE1tJoC\nHLqY4ECRctaj0zYzG9BparFV308Qhfh68gVZiy222YcrQg3VLf0F+VqTn/pybTJPaHtyj9E42p2C\n9aqhU19QEkIvVaewxua90QanGArbWkYTRVimU0wonysv5OZZo+8izug2j8kONR2eCtMIWjavWq5W\nok19eH5NpUlKgSYlBX5G0Jdn13VLp4PasxEjTW1fK+Jzc7vBVz9Q4TfYVN4/cB2Lmdw392ouQ8HA\nhLVoYP6yR6OZveW6ZKNIWEdK7476xYxHpungjWpjayJBnAKh+c5STrwx/aOZ3tujWf7ByXf/onwq\nNgUhmWh4+uwp5+qFPokquPsFucBYrHZasfJ2E8jXVOZwcoqn33mZh1EwSec51jOZpLezBZsbhdgq\nKN3YFZ7eo+sK0i1UetVCKPf76cf3d5P0n35DMvwmSUa9kY3AhI5W1TZT+EyPZLGVvkeRyYQeaEae\nTeGOL/e6am9RuD/hsKNv5drDqSyagzDjuicXPJw8oj+QidczHvmlgmWKilAdrPFE+udnbz/LV+9q\nirBbQSfPOz6Y8LbG5m/zDW1f2lnUGr34yMcqEMN3DeFQJt703im+pkuTlmTaTiL5tzABleY45POK\njarrVb0hUyeZ1/gEsbzXZqk5E+6SU0/U/enBF6h0bKI3HzHSLMI4H3J2Kwuo0Intldf0Rup9twf0\nlDsjsQ6banbl0qc9ls+x4hQm2Zgu0A1rnfDiuWwWL4qG8a04WzO/43qjADaNQuSNI7Wy4d6Eczba\n92bkkwViElhf8BZl5VG9lO/y5TWRckjM133mM4kuuNoyPZTN686NYDOI+3RWcQx9j1vFm13n5/Qu\n5d5eL+XhnXvSt9ufFRWHumdkkQVPTc+o5sFQTO/3ezkftXJwfFLZmw972ctePiafDk3BGerW8PLt\nd9ks5OT70Z/7d/EOxGHWXCy4mssuf/3yFa2GJENN5nnw5wpG0zsAxFGL05BWUXpcXcgO/XIzY3Uj\nu/z4nmSyDcIMX09g2pRiJafLZjmj1RCaS/o8PpI2nR3KaTavLNlQtujKOaItQnLs+LCSa9yVR6OY\nhVCZbzxGLDQMZRvDRDMRh96IbQaPr7Hrd2YXfPldOTKS4+d85t7rAHx2EpFrVp5vxxinhCTqGLx2\ncP/JW/LOV9/kcCzHygRwitKbZhMCJXspbjWhaJLSaHh2UdVs3pb3GK/mHE2lTYNhypaSIlYIXt0s\nuJjLOF29usaog26QZjSqVBjfEjlRlfNM+jhaZwx7cm1gXlDNFAsxmRAVipA8DLELUbtDhf6ejgeM\nAzF5/GBCqM6+zWZGqGHr3FsTaCgy1TjyqN+j1RDhVbUhUBKdMR42kblTOI/r5kz7RfqzMh0DZfpq\nbi2twh9jPyI+ku8X56LNnL+8pd+XvkiDAQNfTLeh12G3GJE45iiT/mwida7WtySqbbpusIOQV5sr\nrmcKi+/FmFIh5KXc97Unp1QKH0824HQOxW1I/0A0wTeO+7z//o5E7hPJp2NTsBV18ZTF1TX1Y1W5\nP/+Y1TOF8OZnhApoKcOIVS6Tt1GAiv/82S4jzfRinEYAynZGraroZt0xu9XsQR347OgeOv8wWIJU\nseXtGBfJZKxshOep5/tEIhnZbEWhi3FdN6DgkLCCTLHUTQYHoailQwWjdNYnv5L2TA9SULq2592a\n3iv5PHxNnnF1WfHhXBmGmiV//keF4vLumyN8ndxVtdltdIliJZIiZ6MwYW8U0uYyYcfDQ6JMqeni\nmFPNPtyaXV3e4NSL3lUljDQl2xQUC1E/rW3wlUEoUixI0DZ4ajJEYUym0N+DXo+m2WYcBnQTpSaz\nsqBbf02aTbTvYR3LWPaTkCQRtfv5xTsEtzqhffnOLyYsNDW86j5ipnR61+2SVDeISZpxMtG+15yS\ntO+zWcozVouKUtvZmojEyPiOD3t8tpP23fSlj9sixOimvphd0WjmajKISCslSdHNn6jBaE5Frxcz\nHMjv3n76nGKjGJDYMdWciNWFjO+6WtEbySJ+eOcENFdhmQe0mpsTtBBpDo3XKnPYZYBRyPOylzDU\nLF4z9Rip2Xjv9IS798Xs/crv8Ylkbz7sZS97+Zh8KjQFLFC0fLh8wbEmRhpTU2s0YF1tuFSP+2LT\n0Cqs+DpXZ5Bf4iGnzsM7LaniCbr1gEUhanDehFxrVto7Z6Li/drvLRiq0+akN+BzTzRuHIZkdptx\nd8PiVtT1SIEMZnTIQOGl54sVValhhsmYk768wHA8YPlS2twpwQhJhh3ICRU0HUbp0fKLlkq1m1mh\nKuVdj4NcvNsVIa+MnP5HLQz0cWEc4Ss02faUnbm3Zj4Xs2MzzzGJ/P0qv6TTrMSgbxjp89bKlny9\numB+oSpzY7B6Mj9KE0qNbJimpFU8yFyjRHXbEWril+vnfOu5Eo+8WzBRTEbQhZzqc9JYojotCWGm\nfBNmQVtKO9OmJR7I/fojy+JaTubekWSJbppbXp0p3uDDDRdGHXiF486hQnsPYwYjVauV2bQlJtdE\no6VtmCmnxvnyinPNKvX8EmUDxIvVrKo7jOLRKyBWfMbYRIxS0RT6K2lvXlUUmuSWTft4GrXIwoZa\noyidMVwr/Hmgjs/bfIOnCNlR7zG9R8ohUeVsFFYexj3Ob2Q9PH8qkYVx5u00ovuPJ3x+LGYQS4vV\n6MNkmHCosPBPKp+OTcEDP/X50bsH3EtlcV+cf4OLXNT8yDoONPSUDGPaQibs3RPp1OMAglRJUhnj\nrWQiRZ0lVpaaxKx4MhRb4QuPHgHwavGKTEOANp/vSEAL2+FqTZ2tDDdbIM+WWdePsRoC8vGINEPT\nFDU5ymG4KYlUq8zuSnsPpwN62vaynlE2GolYzugpiGiUyMR94+CUx0+EXPXy1tEpA/XViwqrWPzR\nJOGmkI3HalZjmN2nnL0t3ZrUFBv5+8zNCdTePxyljLep02vpQ+cGDNS/0q09TE+jIHFKoKzaBvDV\n7xAHCmGOfYYaiRj6Ax6fysQ8my+ZdLLjNsUNBz25Ji/kXuX6Bi8Rldn3jhh0sjD9IMJqP3tXA6ZH\navufaDhuNaFQaHOLz0RBP8WyZXiiALauo1I4ddVoNGFWcFGKKj5rLYFmX04yj1wzCvtNKKwqQLeU\n94xMh9vIwXLncEroSb9N0oi2lrnVV1/NJu7xsC/+qgd3D4gD+bu9e4+joYa7jSVIpV+27OFVVzNS\n022cxZR6ALz20IJCqYPxIaUCmSrlhDyyHn2F7j8YjnE6vm1b4N9oCrhvuX8o/fxJZW8+7GUve/mY\nfCo0BWMCwuCAn/ozr9NpwkkUD7ku3gcgHsYcJaIpNIsNyYGCZWIlMekFDFrZJeN+gENU6SAcka23\n6npFrJTrd1PNDOwf0iigx48zfN1p880t+Ux25bPFmiuF3U5icUJdzHJKhbv2/JhC1efM+LS7E9Qj\n9eVUfL1WvgXXESgWIogTfI2F94d3uXcqJ9ep8iM8SD0apTxLP3tCpDDfOOqY3YgGtSwaPHVsDjQz\ncr3ecLBVVQ9P2VSKkXg+YxDJ6XF/NCHW82CiGaPhNKNS6K/t93bciGHgEyggy+tnRFr4xtOpk3U5\nVjkWfM9nqFR4x0lKmSvrsHeE8q2wMsqh0A13NPJ2AA8jIczxBwcYBRONRgGjgWiOoTof+8MeDx7L\ns29e3nJzLW2eN9eEoZooxtDTJK6uUrCVNfRaafvnDk9o9NTtTMvjmbIdz+HGqGalJmM7u6J08uzj\nUcBd5VJMex6/+aHMi7lTTXHUJ9J3ytIJkWZi3j3sc6uJcouqAaVhi4bqVD894f4bElFIshFSdREO\njiI8ZXBeWpjG6gieyneP+kf01AS9N0nwQyUPmsdcaxmDwTDi8UQ0zk8qn5JNweInOfd/+t8hf+93\nAVjMIwKtN2DKJf1QNgsz6OMUnBT3BfefDgK8bQrjck2z1s8nOYMDsWEHmyW2kkEYj8RmS+OaekuN\n3k9oNcdc49IlAAAgAElEQVQBk1ErWrKY3dCttkw4sqhuNxtytQut50jUHkzGPXorGbj+MGSgfom+\nbl6LqqKv6a337x/yTKnMg/qWuwp0Ob2r5Jy9A0YDYY0anZyQNkr0Utd0tWxOefeURDlFC83qC5qK\n8ZE8Iz0I+fBMTIkqsIyO5N4nJ/foBdK3cS1t6Kcd4UjUWtNjV5ug5RoTbtOeU0JFYW693nEypVUO\nS1PG+Kr6Z70RsZIf1lVG5Ymfo6/EriZsOVfg2DTIiXUDrNob/FJBOD1LOpTFss1LiVyGGYqZkIY9\nDk9kIaxXB7hMMxs3C6xmPq6VE9OZxS7L0PR6VMpTYyfNjgi47uckS7m3p6CwfnBI4ymorfSZHG0j\nAIbVlWzOtdabGBz1idWPMC83vBFL26PM51gKdXF5dUuuFaAqzam4c2fKm3fF7EibPqGGFkdZwr2J\nzPHNecJa518/1FC8s3iRRjXIQetBlFG3I/IdGcvwQNmZPqHszYe97GUvH5NPh6bgIKwdBCHJY9kx\nF/4Z3gvZwQ+P3S7+H8QpRguOOFXbws5gfd3tmzWdqvDePMcp+/BwcEIeSMw+0lqFWTIiUHW9KAy1\nkqGsy5pEMQaD9Jb3F6Ly9gbqUKo7Cq3FuG5bRpk6s9YVnUJw2yChViKWlTIjO6/acThGfkKgp7Qt\nU45PxRl0T4veBEcZsWYRxomPQU7xtruiWGmptzXkWhBnOVfsQrjEV6DMOMqolXH49tWSUHEK9AyB\ngoF85XWPE49Y1VY/ivFizXzMA6ySAQSeIRwqtkAdeXg+RuHMLilp1UQLqoBISWtsscRsQVuatxAF\nMNGkEFv5lKpS+0tLUUp/T4cHRHo6Gs0G9OIGr1EN0sRkyqEQpT7VrTqHYygulYE7Vk1wWZFEcmJa\nF1I6zT/IQyI1CcqFo9T8lli5NYyX4WnVKxetdzTPq0VEXoiH3yrd//Jixbkydz+ILe5UAUtJjVWo\nezIaslqLhuHn8rts8iZxX+ZbcZ1jtapVNE0Iavm+fy/gRCtOTbfz+3bJRuem8VvKUnkvNiVeJOO7\naEKMmhKfVP7YmoIx5oEx5peNMd80xnzDGPNX9fupMeYfGWPe1X8nf9xn7GUve/mXLz+IptACf805\n99vGmAHwFWPMPwL+E+BLzrm/YYz5JeCXgP/6D7yT52OSEYYGTwup5vVLskhjrVGfVHP9u5W/QwIS\nKG2Xd4BttjX1Qjx16pgooLhSEtOixleWolDj7q4Z7JiAPFa0G3keuUehZbcILY2GqWa3+vfW4rZE\nOWXHslB23q5ioJlxlB75toSclmbrO49opLiBy1vqpSDaorAjnP+IXLvN9gxnwDaUNKNR1t62aGmV\nxLamoNyiBrf1CkxApA6pzEuoCiW8PbSYtbzH7e0lMyMaVF/h2p7NdlW+bd7iq91q4wmlFjTtXEva\nKSOV+hk2TbXjIAgcpIr+tH5Gq47LzjZ0Wp/AKVTXxpZIHX9udLDNP8NYj3Yl42onIV2tdTg1e9Ey\n3hWf8W0fo/4Mnwar5QDLlw3trgiMaHRVF2K2FGxtuUuwjUOfcpvk1S3x1e+A9rfXdrSFPK+KGrpS\nQ8qmotYsVl+1iiz1KFWreHr+lDdO1TnKfTYKCw/WFzSq0VjVKtIkoFK/Vble4HRMnR0QjlVLYcKh\nzttAw6x+5PCszMm2rrFbdmy/2VWo3hQpZrMtbPHJ5I+9KTjnzoAz/bwyxnwLKUH/l4Cf18v+J+Af\n84dtCgC+Rzef4wpRg6fNEXFPPqfZEdGWkCN0NJqXUF4rLj72aLTMurM+nZKabG48mlYWZLFcsdpo\noQ5Vv6d+xLYLauNhNYpgzWaXntredpxqYc/JSMBEN+RU20rUfkHdbanLAlp1InWbhttKvOgDBdB0\nScThtipxb8PJPTEJXjtIee11cQLuFuDMo861aMh0QFmKCrhcXXK7ko2uaTqaQK7f1po0JtpV456O\nM85W8n79ImK2FlWzuinxxppmrDiFkopM1WjTT8iv5XkmCii2baImVQ9/rDU4i8WaQrMrJ1l/R8gS\ndtAqt2XdNJh4y7C9pUgPCdQ5Oog7xgMpMBsejhlWspC9uATlRGz0ncIyx2VK+84Gs2WS3tQESrWf\nDZJdpW9r1HHbzXZFW9ZtzUoXZhKHu8IwBn9HbzaIZMyXbQnethBNSqbJH4NRn0PNfTCaIj4Y+uSa\nRt05H6ckK7VXslFoelk61lrzsdNao97NiqP70s62zWlWWk2rvWWlxW4u7BVMZQMY9sUBHbqKlW4g\nYV1TBfp+eUepUZDDgSGyW0jWJ5M/EUejMeYR8JPAbwAnumEAnAMn3+c3v2iM+S1jzG9t2Zb2spe9\n/OnLD+xoNMb0gb8N/JfOuaVRpwuAc84Zs40Vfly+uxT9T/7YW66tFpRtzvVLwSYM+qf0VVOwtNht\nKMxF1KpNrDUrzr+ZEag+H/cPSCYa0ze3pK8krzxffECpiMar9zVWPrjZ1WkobEunJc98Ajol+G/q\nir5m8w01Iao3z2EgJ2KU+dQbrSJsASXJrNPVzlkVKf9/GhhyZVFuXMf8Rnb+vPLxF6oS9rQEmZdw\n8JbWJTQVrSeOsW61wGqSV+sCVFEg3PKpto6B0nxlWUpzoad/r0dQq0PUiygUOFDrKWiraofmK5Yl\nrdmWjfNoNPnJNoZSE34aNUucc3hKidbhaLaZegG4LbM1MUbp9HpD6e/WWgqdGWkakJwqPVzfkj2W\n+F21vKbcQsgVsVk1FrNUHErPx65Emyo2Depfxfc8Ii06Ybd1UMIenpoUZ/MlGx2n6PwMozU+2hCs\n9kGba7JTuaKp1JS0hiTbFvCJeHgs4zNUaHvv/oSzbwjZ8PPFJbeKSZkkMWGlbNVuubN+XaWZv/P3\nmf2WvEdcFaRqahRhhtPiO77n8/xc5v1BJu+fpQ40Ocy5klAh2KlvaVU77Yf1rsr6J5UfaFMwQnP7\nt4H/xTn3d/TrC2PMHefcmTHmDnD5h92nqyqW773HN148Zar1DEeZT/NSTQI/3xXCaOqARsE0Tok7\nbhdnNJoHMR08oNioz6B9xbXCgANTc0ch1IVCkdd5QKA8iUVZYOzWXEkZ6OT3vArXinp4O9ffGaiU\npagNLNsSUnm9wSlDVGpjPE3fzZW1+XByAOpN//aHt1RLARmcB4YPpvLs+z0h0njyJCS5UU++uaZW\n38em35HPpM2rdc1cy9Jvq5m6qGahVahC8l11p6Dqc3IgJsNoFNMqF2TlthmnUCh1OKmHP1T4d5lT\nqm8krDpuNeoSK82+SWIGiWaPDlOsFmRpuw6nB4S1LaUSsQQK4zahj6/FUTsbUinQKSTDKVTfx6fR\nxWs0KkDW0BT6u7zDHyjRSezwSmXnSluqpxqVWcpiu10tWKj5cHl2xVpzRrraMAhkHOoISt048s22\nJijUapbYFK7U9g9K6B+IOZnqMvKsT+5rsdrOcrFSJqv4Ek9NrKKoOLwjOBNbyQZ5kc+JFpLJ2Bqf\nSDfOfpcQaoQt7ftUemhdXss7TaYpqa7gKPCINULnp+C2hEFeTKXVwz6p/CDRBwP898C3nHP/zXf9\n6e8Cv6CffwH4P/+4z9jLXvbyL19+EE3h54D/CPi6Mear+t1fB/4G8LeMMf8Z8BT49/6wGzlnadoN\nz55+yOizqjquX+1Ox8h2bInzmyqnU3UvUAdgZEIWyoBbPXufUpOAwiDAU/SbbyDua3GSTJJ22uCS\n+lbV4HZDqEkpeVnQqI7nexEm1dLnL9XxF9SsFe7brjvc1rOcQ5TJ86IoFm8bEGkSUUlDu1ZN4rDH\nUHEPk7BHpByNkdZDrNYNHzphaD5op3gaH7cRBJGcjm1cMc/VyadJUgQhjWoul6sNncKji/ScVGu9\n2W7IZS4qsabrMz2Y4CungWk8IqUxs0cZvRfSz2Fck+hJGivtnFcNMIr4s3VOoGZHYx15rjgMt2Gg\n6ai19pvvz7kTCyZjdP9nOXv2kdwvMnhaZ8EzR1hf3FMuUIdak+A0g7EpC6jVAYlHoCXkvHWIvS/P\neTTXMR3FzJVX8zA9ZlWKA9qagMsz+bze1HQadXGejEcVFkStJr8FIWkmfb/YrEi1TNtWc13klnCi\njOEX53StlpVL+7iNare2ISrlmsFr0odx3ieuZc5mg4BgIG1etVOKbRXvtsZoiGaLdbG2w9vWIw1C\nNor16PuWvkagnJlStXLvTyo/SPThVwDzff78r/+R7gXUzuPynW+zeiiq1cPsz5I8lJfxZiFGy8h3\nec7iUtS9D5XPsTeBRDu9/0bMQyTNNppOcerJnd885+2n6tUeiE9hQEKo6vxgMsQpWaeXt3QKR24W\nDa9efVue91IWzcFnH2PVi05XECsZaddENHqPoRdR6kI2St5yW4a8cSJ+1/nmipFmCWZJymtj+bxW\nE7oyt6i2S1WuGGh+QRiG3NRbZh4fo4Z0pQCqznQkCgMvvZSlcjCevbqgWMrn7DMlw56ovq1Cqb00\nxGjWZu46rl58CEDyYkSl5CRF38fXjEhPCW68zhIcKrNUF2HUHKOLCDXFvaurHcHLlhVr8vAJ45Fs\n7nHwgtPXxfdDMIS1hGr91JD15PvNXIubdAG+psBXtxtKHd/OdYy3s3FZYjeyIdXbgjx5yFA3ND+p\nSTN5/1m1Ihqr6ZV3NOq76G3Df21LMhbvvQ0NgTop0jRjpSUDloU8y187xlPZ/HqTglwZorzsgEBD\n1fXljMVGDpdprlyN2T2yB0p6YwsSK5tb6Jdcb/kvW49A3XOZL3Mh6/XwNOoURwaj2ZXhMNz5K6I0\np9v80VKn9zDnvexlLx+TTwXMGc/HpGNM/4Dffud3AHhy56eJjNSVtME7ZKqUDI5+hLwVlfLVt94D\n4PMnj3ntR4T5OS58qpVoEsGqpFJV+yzv8fUrKWH+o0a9xo9HRKriRWmPutqCdHq0Sm6RFB4zLYBy\nXuopZxsGGgfPhzVTVTUHJ47FCwVDDSx3nZxGS6VFX5wv+EDV02rTcaVl73r+jFdL0V5OehpfDyy+\n1iictIcQKYAmCCiVuu3MvyFVKrGequVmA0tN5tl0HtcvvgLA9WJBqvDupy8Cojvyu0dalbv0YkLl\nnqhn1zx9LlpVuTxnNBLn59XTOQsr2tlU8/hfuz8luZFpNOhPOL4vp39/EAk/HeC4R9NqQpu3rUvp\nyPX0r8uY8L5kSeblDLOlLitWpJMfl3FN5PfFZkmmcOzkziOamfTbhxcvSH9V2tY/8AnUSbtUU8qz\nJU499c+eXXB9IPfrhTGpls6zq2vcNqKlJe770wHx1lQs16yC7ck84eW5aF5OOTkYWXqtZnXGV6zP\nhADm8vUj3ggP9P3P+ODFuwDM1Oz4Cz9yTKT8BwPnmCnPY2AHbDSKcL28YqjRrLsnYv6OJylupaA2\nV5AoZD2NUoxiSzZ5Se2+n0L/veVTsSl4riNzSyqW/OaXngPwmebv82M/++cAiBuHGYnamviWe4+E\nxPTP3Igt6J1vSJ8oicXwiEKx8fm1w2XbrMUhP3oov/u8pqn2hx35QvMZ8gpP/QiWDl8zJutBuKv/\nSLktHmvBbdOeE3wl/VhuFnSaDr24uSVW/0IXyAR8Pj/n6a14mV8/vs/xXTEZ3DWUau8Xc2lD/zQi\nVCx7ayqcpl/fNjXPlOfxpl4yTmWyJZpTcDmbsTGyKdrbjiO1P8em5dXtlnjE4zM6T95X+zYbT0BN\nlMCz9CZK1krB4I701+GTIV27re0ov5+OhgQaFzXGkhhlp7IWz8r9mq4g77a/01oI+YR2y5Tkhbgt\nYrFaUWr4+fDkdTxdhL6+X1itsIp6DQ49Bmp2Pao7jFLq94ZjzCPZfA63Zo5LaTpZbL07j/m9F2IS\nVpuCWIlZk2FNMdsWJNY6E42l01Dfpu5INF3TD/u0WrOzVv9LQo+1mkfzzZqbc9lYZ7/q43/x5wGI\njoZUvy2df6YFdsvXPV7/Ccnm9auOUAsIb66viJ5L+2Mb0lPSloGao6EXsbRK4ktNjMaly5pSzcbK\n68i38/cTyt582Mte9vIx+VRoClWT8/7L36RYXRApO++v/OaXSPviwHn9ySnxTCnXWdD05PSYapXd\n/GLG5jfFMZZ+0SPV772DiuJCVfTlNY9O5bTKFH5KE7LWOH9ZbnZVgWZ5wqWCZuqmZa3UXFs4c7dp\nqFP5e7eIqJToYr3Iabd1LjcBL5GTqdbvrC2oN3Lt+8VTrlcK2LEd5lJOzVvlOXjkMu4ojLbx451n\n+dlHay7UjAmMR6tQ4RfKYTmvlthrJRbxLGuFXYcG+oGq0m3LmZKTBKloLgfvt3hTrZYVlxTKEZC5\njsuXH8k42YChcmhGU+WPNIYu06y+sKDRKVVuWjaKxa+Wt5RqppWKi4jtJb2RqO2dm+IrAcz67IJG\nVfemOMDo+9XllX5X7EBm5gq8qZZ1TzJMoEza9SXFmWicG81I9OqUVjkUnvo3LNR08eMxjSJq89sl\nKFYFTytILXxKjQy0I8OoUNCa8Wm1glmhkZFiVbFayOeLpzNu55fahorf7ik3xqghOpIT//ZD+fsv\n/5P/h+fvi6YQTzqGPdF+8llJnsmcHU0nnCptO1pQaHG7odK2pZ7HWqnpbtcFGyWLKW4KXPqnAHPe\ny1728v8f+VRoCou8x//11Z+hexSz+OA3AfjqYsGX/ud/Ln+vwFekoImTXfXoqpXdvpjlNO3fByBv\nwGmYxjpItFRaHERMtkk8W0oxL8TuAIHBDvprfUCZa7ww4OhAwkz3P/8TAPynf+U/Z7MWOGtdVxw/\nEMclL685nMi90+whTsldA3UQUa6pNZxYVCWhlsILbLlDHvqa4BNFPp3mwc/nOQvVFF6/vSVXEteN\n9cm1zmN/KKfIOEiY9sXZlY7u8OCB4D5uX/4O/+CX/3cAbtYZ33ghjExrhc5+VK15vtZScCuf5bWc\ngu++/IB8odqPcbSN1lhU8zUIIpw6ZV3XUmpiWmvZ9a2lIdXQ4Y2GcjVw+fvk7ukBrYZZB4MePU3S\nOtHw5XACqdFw4djn4UDCepODiMNUcA+9QUZf8QTbIjuz9RU3gWhH33j/OS8uRDsYTHr8yBNxcr7x\nxn02Mzm933smc2vuHNfb2hJfW3B4JPf9wk8+5isf/IcAnBV/TZ7xYsHrE60FOrxPFIuD9qZ5xbtf\n/78BOBqn9FVD+rm/KE7UB4cT7qiD+XDa45Wyjc9NzuV70o53v/U+f+dcTv+NOihHvZSf+cITAP6V\nf/tn+cLrP6ffJ7z3/m8BUJp38EZPvk9vf2/5VGwKjorKfsDzt7+CPxM10TMNhS8zL/YiCnUYmapl\n44nHuVE+x8aU1OoYtDicOtcMhlYzJk1gWHWa+aeTym8snRK2NJ3DqaPR1ZZ6W2imCrjxZZAGlQxy\nERSEmn2Yd29zuP48AP03hwSbbYHZGk9rEPrqXGu8DqfFRVMzwtNnd3VI6yt4Rc2HKEoptPBINLzh\nMJeJFNPxQqngmvaKSaULYav0LQuWOqr9yX1yTeWdXS5470wmWG/9kJNEVMpxJv3jxRsSTace9IfY\nG1lAva6jr3Uns8zDKn1dptTx4zgmVqxH1fk70o9l7vFyLgsvaad8kIiZYvOtJ/x7psSAcSjzOV5i\nuduTWL/6EPGaENeXNqTdgEMtuDKNDxkr+CwLMhLt29JqtKBnOHbSh+Ukp7xV/ELaMdVKTb0EbCjv\nejjVzMkzw5WOzfpiRq6ZjQerDc+q/xaAjb5naB2VOknXn+nzZCYb2WDZMtEIx5/5YsbdiZgSnz2R\nsTvuP2Z8bwurj2k+r2UJLgw3b0rE7P2zFd96Jhv519+Rv3+0nvO1r8uYnv7EJT8xUef3scfpRtP9\n7zrC4Ph79/X3kb35sJe97OVj8qnQFEy5Jnr313jv977JQkuWh/4JkeqoTZuQKwlomZ9jdDeut8zI\ntsOxDW9ZtjlCxjnUz4ZXtxRalTfR0yP3hrRKk1U1PmjosOs6nO6X1jUESs4ye19P+arjqxfSnoP7\nC+avvgbAqPdF0sMtoq8HStxqNPPORimZkxPaN8Nd8lATFkSqVQRqJuEMbpv1Fh/sMuvCtk/ky0kx\nCPskauaEWrPiJi3pa0m02atXu7DoL//qMz5Sx1aat2R90QrGWrwkbxuqSjSpYRwSa5uPJhmDVE7r\no+mQvmoKW2j3mICB1pq0fsPNUu730fMrSnUSdiuf//juTwLwP/7ul+X330dRKPIGX5F7SZ1wppre\n0ZYqzt/QbolXxn3CobQtDVP6uxKAjmazLWyjGmTZ4Ssk+ODwHo8UI1J3G5yydXfzlFbH2ipcu/Iu\nmQvcgOuuJriWMXv/y9/gR/OvA/DrmoxXW7hQ9uxHZw09RY0+/EzLw4H00ZPRY75wR07uwzui2fTi\nkMRTrERs6RTOPLibMNH3Oz2acaIJWMNO5tuLr615oUQ9X/nKR/zMgWhjo9ETXmjFcqoV8/e/9b07\n+/vIp2JTKLuGd5YvCeuUVBdFFnrcaM08jyXlrahorW12+k3ELkWMB6HYoaVX02lGXVE3hFrRyIs9\nAvVFWMUEeIFhkyuU2oYYtdXwfazyNUahj/PkHmv1yF8/e8HLXFS54MUBc+EH4UF9Dq1mwLUBxUJU\n8FQZfqM2wGmmpmsDnBPV3lQh3ZaQRM13381xOnFdE9EpeCtqbhgoBHtdWBZqz/eUQKVOLWsjDSr8\nBvtNaeeXvv7POH9H+vPBaymTRPwgB8eiLofXHZ0uoPtTjx8/ETt0kP4IQ82unGZj1A1Coanlm+UF\nqW5+kRcza+T9Pur1OLmWOP7vvnvJl/uyif6UVu/651s8978oFtrAaF8E6JCx3LJEhwEml43H3fMJ\ndcwi12G1ulbZtXjbWpEaovfbAE/zSqamJrovpuD11YJa65RW7QpPP6e53HdTpphGVPQkHrBR0+3p\n/EM8rdc4Uh9VFVk+eyqw7J94dMJbD2URR13Anc+JyXDvoMedvlYim6pa71l8jc6Y1gidNlKWPtI1\nkB0c4GueR/avyQbyzbNrbt+VKMvle5f8k4fSziCqWelAzc7vcLNN/f6Esjcf9rKXvXxMPhWaQtvB\n1Y1j1tpdafW2KHZltVbVilo5Apyz+Mpm66v3yQuhUiTdwf0pdSM78elhQrTUjLtxwAutwVdeifpd\nbvJdJlvrih2Rh+8Fu+wzm/Qo9dmdFYdjczTg+KWoZz3vkoNEToF4PMHXIiMEK5SbhFC9zX67AeUw\nbFYbFDtHhyOJlftQef86G4FqNHEU4Ru9uj8m2sjOPxkEVFpWrNH6i+FmRqg0cP3hhI/eFt3Xv72m\n0dM9KBxoZeoold+fZiHHSsZx8vCA07H0YW86JVHPXxSfYELN1jR6BK/HOw5DL/EY6Wl9dJQRfeul\nvEtR8ysfyeevqapu+D6uRgNbm68qS3LFlAw0galt6h3xyqA95ljLCcbNfFcmHuftoL1OezkO/B1f\nhheFqDVCOxbuBxkHi1FimEEq/Xk/q3kVSV+Na0tule+w8um06I6n/A6PTgf8/I+J0/mtP3vMRPk0\nwqzPqTpKDyaH3yFq0amCLXF6snvGx+jzoMM0qhX1GqZKsZa2omH8xc98jq8/E5PwdrXk61/7dQBe\nf+3nOYpEs56/uqAX/NGW+adiU8AZ/DaADpymfDZNSaOwYq+zbAmcfGOY6ER4ck+yITmOGOlm8uCt\nxyjBEvatuwRifnHVrxi43wDgbc24dM8tTa3URVjMNunTqwm0Ms+9w5/iQovJ2pXYkNNgTXryFgCB\n+RbjVG3/saGayYJs2gv6B5KPESo/oa0yrFVIsAdGGZm6rqTRzSBS1blrocgVuh10GA2XeqbC6gRK\nuwXJRM0OpWT3umNcKBM3mLS8O5OsdlcNCJQI10UxPfWitwvNYbgDb70l7Z3EI+JEJmN8PMRHi4kE\nlcZrwbGlfDqgi5U8tPFJEt1YOeKNsfIVPrjk2UL6aJ3JSnhvVXxPv4LnoDbbtHVLolO0U1Oq6Eo0\nG54nd6cMFPrb+n38Tk0+PDot0LMlZTV+vSMhab2WVP1LwdEEX0lU2qrGKZ9hNxC1PVof8s6hFs31\nhsw7jfx4PkcKPotPtBLYv/oFfuyeLNjT0SGhUx9NmHEwEbOyl/QwGiZH/TNedAQ6F2xnMLqIjYvx\nYj2QSp+gr6nRhcz/L/70z/BT1+8A8KWvnrG6kbl3VV6QNfK84TDl1hS/v6P/ANmbD3vZy14+Jp8K\nTcFZn7IYc7U+wyo3nmdafKt57sCWusH3IjKFoBr/EQAnxyM0aY8pD4gUyBMtAz7yJZOyOc92MeiJ\nmgYrb45RJxHWB2Vo9r0hoZodH9VHuFA0DIx4euPGUZ3oybwJiDXO7W4Mvqrj82+v6G0Zlu8onLe5\nodXQSEuL0h5gsj7dZguc0pPYtrTelkPCESqE11UbwpH0RfnS7rb1bfKRf+CYKZw3XtfMn8spkfsF\nKO6hqjtWcznd3ziWvnzz/n0OVTtKRj0Czb70Ix9PORRM5+P0tN1qDGQhZvuedY1RKncbN6RDee9J\ndsxfeF0cur/zLXlu4nsUW1wI3xHjmx3du9cZKtUaTKPEOa2hp0Cmnkt25d28qiXYqsmmw9vWd9QI\nTmc9jGoEpvXwtM5n0NX42xZ4HlGq9S+32Y6vdbymiWS3owsaLQdvuwmlwrFPdT4+qCcMlHglDSIy\nrUHZz3xSZaAOIh9fcTJbnIrp9TB2C5ZLhAMOIPDxOjUlwgrEl0zXk78fvDXl5y+/CMA//urf5Vrp\n/d752vu4H1Mcie9g/kejY/tUbAplV/Lt+bep6pmUiwI8PDq1ZQMiQl3IWZrQKpW1j2LSzwz2riyU\n6/Kc/oV2cOkRKN4/i2qOnohHvdLCta9VUz7cEpFWJWYby7TFjsmJ/L9jxyWjDEOsc5zalr3pZ2ki\nmfzL4gX1hYKeBsfQ1yKm27qTi3NQ4pHa+rRO2p/YGEbyfauMSI3L8attDcsBnd1ujfGufLw/uMtS\nK7azqt4AACAASURBVECFykXo/7/svVmsZVd6HvatPQ9nPvfcqW7NZBXJ5tRs9mQN6LYcIZAHwQOE\nIAngBHrIk5EgARInT35IAOcliZ6Sh0SJH5wogRUHgePIllqD1a1uSuqBQ5MsVhVrurfueMZ9zp73\nXnn4v31IQmyJFJV2SbgL6L7Fe8+w9tprr3/6/u9bldi+INWHsq4R5bJWSQ0osjBNshmGiWyaq0R5\nbm5egx3IdShdwaj43dpHzTKbYZVQdJ/XJdvlEvW6jJo3bOioFilgy1qElYWjSFzeEWP1yKhQzTKu\nhV6HEg4sZCx3Bm0fDqsy8ULWyjVM7G4JwrS7EaAiia+HEja7PEvLgCay0iZSNIeDJYlHVLWCR8Wp\nIOygph6jlZUIFDUyeaDVucLFLTnIHtxaIbClbbkONHqRuOgOBY/3thUcclum4zl8IlldtwOzWa88\nh0UyVoNCx1AeFIlmVV0DJMyp0wSMiqEWNQzmfOpEcS1CfOWlrwEAXnj2+3jjXenzWJ4eYfEeNTQv\n9GF2ZO0/6TgPH87H+TgfHxlPhKegtUZRF6i0hmbmWakKFs2Hsuo1T0FWabRNmfY8F38qnhZwqDxU\nBTFau2RwPnQxIuPzeBji4pYcuzerLwAAvhM4OE0F2DEdn6Fm+FAUBdaqIB8edBTCzUvA6X0AQDtZ\nwi7lO5aWva7jd/weTJKr1AeSCa6MMbRDcZJyBtMSF9VECpNubs6kZR0DFZNkGiHyQkKXuhaXHgC8\nwkBE9SmrJ7iD2jjGwBDL57V2kVPnMU0SJKQj69QBdm6Iy9vfFq4E0wVURglreNC0cjUsGBRLgeoA\nDjXlDf7MFXTa8A/aqMzGVdXwiafwL3ewFcpnXzsQN3pxCCQkBTHyFHWDMjNreA3IzHDgUlKecBLY\njkLHFrfc9TUsm9qPtgOLYY5jFgAFWkreU51p+PQ808RETUq3WhVwuJ8Mx4NLr8emytj2louw9QoA\n4CD9LTygO7+9ewX3v/N7AICNgh5WZSFJidmwUtQh719ooM6Y5LV60KT5J/ZOOCO01/wHwIqSMkyg\nyREaNmDJ92gS8ph1gRazrl97/ivQuQDDVNiGYnjn+hby6sekJXk+zsf5+Is5nghPAbqGLlbQH6pR\nKXyQJHIsE3lDweUpBGyS2WNDSe0ZMFiOag0rXNqWv6NTohOLVTFXcwQT0rC9Ikf0X7/8byKvxFLe\nvvdtzE5JDhp9qOb9MaPGCYJGHm02gSoaReQSc5q04eYVWI7Mo2zdlznop6EcllbrDkryPlQALLoh\nrivxchXn8JicStwUVipxYaIjlJnE5VVSoRswORiwdGWM4MTUeuhayKhDUNTAIhOzs9PbxRdagrxr\ns6NSVRY0BXWqLIWi+IKZxtDEVhhu8kGikT+VVUPRElVpiooxeZGWiMfiHWSnNsJMrOYLN28AAI7d\nByhI7XYc1cip6+EbHiySNvR2NhGQk2FlM3vqKLQo9tMq7XUpz/E78APyLBTB2kNY5Uzm2XP4EI9O\n+TF02aBbSyCnFgUSaJKiGiSgDfUQzgbhyreuwAvEO0DHgxcwP9QRr+Q4AZ6hSI7RMlAweaiVibqk\nJ1CUqPM2f8+l1A6UarrAXKBu2J+shgAKVQXostGYJKNXcQgVy3753OUdhENJOk5PZ4ia/FdkYF7+\nOUw0KgAu6jWYB5CMtMEFKWsDltNQVnex2ZFE2rXRTwMA2s95WEyEDv2ibePKJcEvJKFCfCQbdlx1\nMTuRhdrJrwIAgnYLX//JnwMAHB2OUbXkoTmNjv7Y+dpRipp8hqUVr1uEjTkwJLWXqk+ASh5k1Sc5\nxjKGQci08n0YFGktiimImYGmS62tDg4OBHhU1StEjRhrMofflQMyrzOEirVyCqKilQKExubLBbyc\ndOHRAjpr9BMVAm7oJkmYp3OYpNF3nTbMblPhsWGQ0k7BgmLoAuIqat+HwcqJ8lwYC0K3wwUwlusv\nwgm8Sj57xVbmV7afwiqWDsBZlaMmDsEOHbQ9uZa+EUC7ci1Ncs4zTURLAews530MbhCUUuYwSMVu\n2Q6Qsiek6Z4t9Zokx1AeUuJF8qJeQ8h7fgegy18SI6Jbc/SuS99G67KP5DfkoOsHMVaVJIWHS1lL\nIyoxJTbD8QtYFKfJkhI28RuuZ697Who+Hu07H9x/qwBoZOBYAK9J1wXKCZXBbHKJpi0UpazFwMuR\n8J61AgcP9+U1SX0GK/90HI2fOXxQSplKqe8rpf4Z//uqUuo1pdQdpdT/rhShhufjfJyPPxfjz8JT\n+A8BvAOgqXv81wD+W631ryil/gcAvwjgv//jP0Kj0hqGBpr0ngkDJsEHgWfA4Nli2RYezuiuHgjz\n89WihftTYcg9GnWRU9RkMHoO33l0HwBw+50fYjKXpNx33her9TNf/woOxuxmUoeIE0rGGw6WhBXr\n8o/C7lYLDacryUOlNzFnydHNpzATcauTqItlKdDebCpUcdoE3L54KWYwgOmIpTGqEiVlyY8fS6fb\nvf17ONgXT8EyPYCkIZ5ZYJiS2dhSyGgERuwibZk1tCchUZTliEkxl6YFTCbPfKvCgkm38akkrWqE\n0Aw1XC9HKxKrFFzag6NZK/cTqIYPgcm5Kq2QsCwYHURYch7JNMJpJOsyny/WjUmbxHREWwVeXUo4\nt5jOccSOUc/uokvPym5rGCydukw+Vlrh3j7LsMVd1GTm3u16sH1Z20Ib607KakGvCQamZRPaLLFo\ntDDNADnRmb3AwjCQeXRb5GaoezBN8Vw+v/2XYNf/HADw9uuvISSWY5pKGKRbEQzI3OdLCzUZqFtR\nDym7f+N5BZ/498518TCscgLLJEEtABDyrnMTJTt6s/EcSSLXFI1J8xctUJPrIlEJsjsMFXtLbBH9\nuNAdpOWnQzR+Vi3JPQB/FcB/BeA/ppTcXwbwb/Ml/wjAP8CfcChoKBTKRI0PYp8aNcqGsKJKURO/\noJcJFFmc9x/KBv19aBDVio5v4/BUOsc6W4/w/jtvAQDO7h6s5do9PoC/cV+h9CSrf3B6G2nEjVIV\naHRy9ceg9JfaRXlXFnpjkKOmKKxltxG0pY7ttHpYnck8liReWa0mMHK54YF9D62GvqjUKNnBNx+L\nO5jPj9Hl5umHIVyPMXDQRUmm3latUTRPG93erExgaQqwFn00mjVK1ess+1MXngOY2yi4xtWoi4qE\nLLmtkRyTG9A20O7Juri5D/D1zYKv5jMcHct1/vCNewDjfVQmkim7D00LWZxwbflARw4OprLIpWOs\nBYJzx8SS+aHkSKHXI60+OwtV7SImfuP48RLvEemUlUPoDbaUw0Wey/sSvnYBC0tiNh49nuDemVxT\nXlbosofm2t5l+OwedblH8mUMixT+w8/18fTzfAh/4GBF3kirkgM7OTGRjhgamHPkC0L2sxVqyAHf\n8tvwC3nNpitr2e20ELCPwlKAwe8r0wpFJOs2PT1B5cvhXDOn4LUUUlbXivfHiEl3H8/1GnOTXLAw\nmzA2+YTjs4YP/x2A/xQfGPghgJnWunm69wFc+Lg3fliKXv+o5vrzcT7Ox499/Kk9BaXUXwNworX+\nrlLqa5/2/R+WoldK6fpjMqR1g1PQgG4QfaqAYTbsweKqu7YDj8rOg24LT197CgAQGCM8rgW9CAuw\naY18KhUX5QwPTv+l/Hs+h2oqDuoDEhBDSauU/Fp+mdZz2JT7XVYzDHOJnIyRQkl9iuo0wmJGxWPy\nJqzaAbp00VWxQkWhD/RaqNjzXtZUQM5bODwRj+jN+3+AnLiBROXoMRt+c3OITUq4o/Gy3DaqmOzT\nZoYWxCK2vQCDnli/q1d2gaXMPwkaDsMZUnY7rpI5bFZDdpwcZkz8wsYIZth4AvIjXhzh/m3xTM7i\nHIEplnmrvQ0MKH+WpTAKwp8ZEk60gT69jbZtIQroCc7nWLJLcLSlcNGTezV1xdXub/RgkbU4rGOk\niXzeQRbBviVaDp2gB4sQYtORtTKjMyQnMrfH4zOsIio0mykcvwn5FjgmJDO3JKs/HPRR0/Nqty7j\n33jxywCAH9z+TZiEb6ShzL0zCDAw5DqnCwsdNu6Fm20gItoyLhDZsh/cQ0mO+3kXFpOEle/ASsTG\nFvMYY1r//YdjLOj2bbiyrlbLgs1GOd1ro8t7XUQpjJL78DjC8bHso086PqvA7N9QSv0cAA+SU/gl\nAD2llEVvYQ/AwZ/0QYYCPANYfehh/LDvoAEoi52GpYZBoItJOfUw6MEnGOXG9hZ+9qtfAQC4aoi7\nB7JRpocHyEh+mpOy/SHOkC1lo+i6Wh9CWgM221RLANCNmAZpyI8OoNiqPGp3UAXMsp+kiEOpXDy4\ncxun9+hi01daxRH2bAGxTHMHF3blgQ4dA5QjRJRRyKZjYamlXHhrvAJWcqtcc7EWcTUdAyUzy/Ws\nCdpjxOz8jGDgyra4w3f292EwZJiXCUZsjV6xxHPr8AEe3pHNDzOGx6rGS2WBeiAu82ZdobUrn5dE\nsnFPjhJg0JT9RvjObakonNz5HjpcI89wceOaXFeHm38393HYla3hrUr4BNvkagqb92dZp5i9KMSz\n24Qle4YNm7ySoTmAZ8v7FosF3i9kbftt4IWbQpke8jofp0scLuQhXJwm0GQmWqQVlgfyvvEkR9iT\nPXKJ1OnXbBc1yXWMoIuNS+yJcDSCbnNPuDeTGjFraOHAhOLvD8dnmJLCX7cU3Lnsl5osXdZRjqFB\nVSjdhU3AWV5aYMEMvz+e4Y27QhYcpXIo7AQG+pa84KvXO9DMRbiqwKQkNPtoglOC5z7p+FOHD1rr\n/1xrvae1vgLg3wLwm1rrfwfAbwH4O3zZuRT9+Tgff87G/x84hf8MwK8opf5LAN8H8D99kjdpQ8FU\nHyQnLMOEzY5Bx7XWzS5a1zDpdm5QLOXqizfw9AVxM7/47E18+Rlm+Dvb+Hfzvw0A+Ea3h8eU8Tp8\nRDervo9jYk3zOEfF5GKFGprdeU6lkZVNQ5Sc9nlWwyLMt10HCIg3cEdAixRd119+Fd4GSV2W8nNu\nZvBID2flBUyGM87Sg0dORKctlmanKrHVFqDPjUsXMD1j4m+VoCLQZ3fzOmaJVCsmh5L08jMTSW+X\n1wHsbMi6PH1hE0bR8DdMYRK80/PYgBa20Lkpc3MsBz7hxReHPtym1p8BiqGJYrLTG3Zw2RBPYrTZ\nRp9qzd/pvQtnziz67AyDpqmK9HEnboRr5B88OzvEypPfz+cFTFq/TsvHiB2FV+hVBXaAUVcsrakr\npKYkM3e2fbjkSnRNE8MeAWyGWPm234ZDEsewk2JrKPvJ9TYQk++iVdrwiD95dleAcbbdgl7JfjFd\nC52YcPJqiR0Cv1qk27ty0UDA8MoqTITUAk2mgOowqVwZGOzIWow4H60XSKYSdtjZBJqNT6XXglfI\na5678CL6G/Ld33og3lg7SpGxEpVFPpJM1vDx2XgNrDocFxgvPh0d25/JoaC1/m0Av81/vw/gS38W\nn3s+zsf5+PGPJwLRCKWgTRtQNRpfwTCwlnGzlI2AvPmu28LGgCxLG9Jc9MVXP4/rO4I3uHplhHDA\nltbeAK++JEIfnb6F2weSdHz9e1IeOrqXwnXEEh1MjlHGbOVdlSh1o2WQQzf+S+PGuAEy9q67uoJL\nvIFfWnBdoWYL3RBqLq+ZpmKtgw0TlkF4dB7D75CHQa9gMLbvM19QhSEyxu1equERbWh0K3RYymzv\nOKjOqH5NLoSTVQ5Fy97yB9gmOejnLp1gQSXii76H2pA593yx8rsbl1Cxdq/sLmxHXms7BhwiIZUB\nwBFrbBMyPKgXqCi62u1qbO1Ie/r1TRPTA2bizC0wN4ijpcTq+ZHC/YjSZr4PU8l3ZEYKSm7Adfq4\nzKTq81dZKrQNpKQ5K1ZLhPxgzxnC2SKuRVUwiJwsqQhdwMVF5leGQRthi+U92wCY5O53ttBi2/KA\nFHquOYVJiHJdLeD0ZI/8/Jd+EvlYPEDmnOGWHlolKfRCHx1PviN8ugczbfgSWigh72vazE1tIyMs\ndjVO4A/YEOZr9HmvnQslrijZ11dNeX98nIO3D95GF4/oLZppiYOmlFnHyJJPV917Mg4FDZFzUoBt\nNHLaCmFbFmTY2sBTP/2XAABfe/4l3LwgNyzoyYbvXttDj2CcttuG1YAoLQc7FwXy3N0KcWNHklaX\nnhag0+y9L+De2wKAevvoDt66LYmo3tzG6wtx0VAqrPkUmIhsexUs0p5XDmCSkKMqcyRTZpZ7BVpD\nceNVKX3umTWEMggkSV1YPHjSeYacepQG3dcUNqpcvq+/18aulu9L0yl0Q4FeFnBZdZgk8nM/mqHb\nzPP6JSwpPnNp7ypODyXU8BFgsy2HiU/BneHAh2PJgabrGJoEIcpeAeS81GkC1fAxshMTfgCTFHrO\nsg2PtOXdK88i8uXwTXSOCcVXpuQ5mJQT1IQBd+0AZ8zguwsXdkvm1LmyiU1yM1ZkMi4dwGaXYej0\nAeIQLMtDi8zUjq5RU9UpS+QQc9wKF7bEcFRbCcolAVlqDseTkC9UGjzfELR4IFsbqKiqXU1LoCvz\n+Npf+xm88c++Ie8byFpVRbYmiPFNwCPLdatlw2VYYRgV6kr2r9GS761Njfg9uU9n+48QDOXvPec5\neG3Cv/MAfp9qWYHwQGaDCVJfDEAapxiTym+VmlicUMBmnAP+jxnmfD7Ox/n4izWeDE8BgEnfvCYe\noYCJkBZj2N/FFy8/DwB4du9FXLkoVpP0+AiNLsxGW0H7AJtndKahHIrLZB30qF/wiicW5ZHzADSU\n0N/IMKvFsr1fAO1CLNRYP/4jyiV1VSBhd14SacQuE1FBG21iHbLjFSwlFsRyaRHSFDXZkLXpo2IC\nM7c1sjMSs/Yb4lOgdMQdbOtN+JRHM/M2MsqYzZZnOJ7J+04jsYixZ2L+WOqbbvgYbVJ4Fe0EuzeJ\nGzAKWJqK10RSum4AmxbfVAo1E6a6tFAR8VfHxwCJUpGT7kwVUPQk7M4SpsHmoNBH3ZPwLrt7jAZa\nyQgFxtxCj8lDnQBqn40/bgbPZxdg5CIpqY7dY6J5GoM9ZTAswPIbCwyY1OlUrgvFpqqGKNfKfQRD\ndjVGLvIWWb38ECFhzK4BWCzFGo29LDVQsXwbHcFis9Llmzdxu/WvAABe0xFnG9ABNUENa71UZlnD\ncptmLQ8AG8xsolBRI13dBwDsTyr4d6U86fcNmH7Dt5fAIWuX4Qhq1mv1YBCZmaVnOEnJ3J15mLAD\nN68rtPm+TzqemEOhrhUMDRjs2us7/tq97rUjLE8Fb7C6NMBRLGCMbiYPeb4CgjkFWwY+vJixel0j\nm5CJFzGyoqkeNPFmigXj/lvJIaJaYrXQX2E/aujIqj9KRR5VKNvitkXzFhTbep1ogpIVk47dWTMQ\ng11tqDRK4g2qukZliQueLnLMc5lHPeOOd12UzCzH4zlqYhaSNEZBKfppvMKSNf2CNOV9GLCuyaZJ\n5gZM0ppXWQC/ZNdmJ0a1bLocm97cDSh2VMKoYDKMq5QDvZJ55lUJh+3XVUm25NkZzAFFdb0+FOnt\noFwoVomcwEB9xO9jTiFRc1xWV+S1ngtQjNdEgDQn3Lz/EFXrcwCAR2zD3jALtGMCgZwaJcMuV2nk\nxDpUhUZNZamSkGLDMlAuyNpcrAC2KrtlAMXv1kYKkPK/SuSBXcUlKk96V7JphmAkIWtg+GseyIK4\nGcOykZCSHuVyrbJVBRZqtmRrq153fFZsk0znCg9OZO89Wk3QjSTM8R9/D32S8gS9NqyKeBAevEpl\nCFn5il0HLfJ0vm/Gay5QU1trJvRPOs7Dh/NxPs7HR8aT4SkoQJsGdK3Q2OWsLlGSIOPu4QyJI/z2\nx0mMn3pWrEddCXqwtGuoqbi7+w+WOI4kSZiZHq50JdRoORaMjlgPhzHDbOri1rEkeN45OUUykZP/\ncJ6i/him4WZUbgvxoXgg9oUaFUlFh+gjYabKDDVcxS5IKgCvyhw5cQrIYoD/LqsMdoOKq8RKHo8P\nkc3Ewwh2K7RP5LVZNsOYXkW2shAl8h05Xe62uwuLNHDLLEXOGnV8kGLvGSYBzRAVrVW9Eg+jzFfr\nzWC0QtTMWNemhYpwy8pIUNK91j1awbGLaCGJ1MDz4HYlNDNKrDUhlVHCodR6462dTCaYTIjo2/TW\noZTl+lC23Kc3vnMA/0g8ky8/JUli7Y4Qt8TCdowUbSaVs6yE0ZXrdlYVQJyF03jfgQFFnQXAxSoh\nFFynax1SVbnI6XEhl2vWWQSjFkiqEU7QadPDCG0cLWVtJyfiuW3tdnGRYY5rVsioC5G0Ytj0FFx7\nhJoM1IRsYBE/hqJAzPboKsIB5eGSEorVnnz5GJ4tiWCrQfT6BmpWWZzCRZfEKrUuEJGcxmsBl4by\nvtfffA+fZDwRh4KC8PiUpoJD9uXQxwcubJlhdibAo82+idN9xtcD2QSTAxPvRm8DAL7zLx5hquWh\nCUoLvY5stlF7A9tcnA470pTRwjsHcigoZSIlm1Df7uCwOPuR841nEWJD7mhycopRW9zyKhijw8wy\nzBIImtKZvHZhmCKHBaAuCiRjuabMBKyU4iMBN/OqgHYInzaWKDSFPpI5TgnSqWZjlFfkWhaMyVN3\nARWRJ7BKcHsqB9ZiVmDynmymr335Bdhk9ShI6lIkKWy6nMpIUbP6UNQrxGwNXh0toQgD5rmDxMiw\nPJbfrdoK7lKuyaziNV2/rhyUFmNcPqSn4xSKNOt+HSBhu/tu8FN4f/JNAIDn+khYDrxHdukrRg6j\nlrm18wwFW9wz5NBUasqNHBGFYOfM8dS2hU1XXHHYFUo+kZWVIGB1KS9ixGyDV3zYhmEfFclUlOXC\nHTwj1+e2cUwCn7tTORTH2Rj9p67J32sLri9zCMs2mh7BMl9As4yaZNxjsYPdi9Kv88LNPjq7VBSL\nIpSZrGG5Aipeq6FZwYotlBHFg4oUCTtpH4/1Gr7//IUdXL8uFbhf/Y3fxScZ5+HD+Tgf5+Mj44nw\nFExDYdCxsMyAomx47Vx0mPVOMhea7vziNF4ToLhkQ97d3MA+GYdffjHFD+41FFwZMoKBtPaxbOS+\nHXFxJ5MznI0Vv+MMbc0QpNbr7HPdtAN+aKRGgWhOOq9Kw2ejom+PkLAjskozmJqQZlYqPKcNRfbh\nVaJhEDKssUJJE6op19buddGm6EeyMBGT+3FeVsgpR2bWOcJSmIYX/N1xOYTDrkbXnWJJXoR3pgvM\nySfx1Nn2GiCTEM69slKA+hVte4jKEmtULEsUbVrg91KsaKUKVjvy0EUQynrqPEc+Y0epkYIYKhTV\nEtGpWNsmoaZLhYQZ+SwtYDJ8MJY3cLwv9X9tHmFBxeefDUWmz97wcHGDHZ5KwWSnbA2stTEWqxhn\nidyHfeJGlnGCMJB/90IbHSKO+l6FMqN8mwZWnIdJkpZu20I2ZwdqN0fVkKHoGoo8GtlELnQ6NXBG\nKXvX0EjoHaRxjJj8DNAGMupPZEyGFl4Fn2zVK3MGeyJrZdY2kFF7U9comuR3IPvKLB1UnryxPs5x\nxsrIwVmElPgM01Vrr+iTjifjUDAtdMIBfHu17oa8MGxjGjGDrCJodvh1VQ8HvsRGV6cCDlq1+njW\nFEDH/esFOq4cFlbXgbGiUMfuHoqCbcmVlBvnpwdYsv+1LNO1PuJFv8AtouY+LqmQT1MsGsy5Y8JZ\nkGTFyNCx2ME36KNknsAla1KwymBR2NVOOsi2yfG38KADdmWS5ahUGYpK3MvlPMUpeQmr3Fy3Bau2\nj1kmmfHfeEfyKCNrBdunCztMkBE2dzbPYEMeisfTI1xyhLjVblxSNUJOKGFRaWiCodAq4VLIxXj+\nCtrkY6za8llFaqLgIuXLI6SeuOh1sUJdkxim8rGq2M3ISkan38ZLBJMleoVbR7Ju3/7hL6MknT0K\nYHZPvud36h8CAL78IrC5QX5Js4OoIbyNFQpyVzp+Hx1X1vGqI4elsoBHzO0UZYmUkgAr08WCD56u\nCoQsngz6ch3aGWFVkmTmbIWcfIxZukSH+aO+zV6GzXDd4q8NCyFDQVM7WFI8KJvHANmrKpbRc93C\nopQKVv1oinpfDudWR5ErC7AHOWrW4LOV7D2rKmEU7JgNdzB9R0qSebLCkFWJS6OLaK1J0T7ZOA8f\nzsf5OB8fGU+Ep2AYBlodH3Huwyds09HtNWvtPJlhMWtq+ofYXomlvx+SN+D0m0gPmdE9OkRGl9Jp\nWfDoFewfnwFDqd/vXZGT8zDvIpmKVcrhIC3kBD5J4h+hky5jpmwsCEEu4hRmKRZj0HXWOIuNOVAS\nJ5/QfSvrEu6M2fLpFDn598zMhMeOOqOhVxtWWE3l38HAxkDLdRxXB3AJn3bTDXzjW+/KGpBF+WA2\nwXIpcObBMMSeL15TkWcYJxTJSVvo3mB/CKsdFVKUC5lDHJSYHwkWpDZstBtqcd9Y85K75JswdQl4\njT6mi1Up3piqAhh0jzOzwBGvdUy4s+o4uDQSizhXJY7GpMMvDj6y9gWTn+NHcq/vmTN0exRDGW3C\nLWSeUZRgp5YwRq0UlC3zjJnMdDKFfsNNpxUK4hTGZQkjJs6ib60l/mxHrs8wirX8vKH6qE3xPBbH\nKUJSoW2Rkl45BrqUCty9NgILCiiVQk6vVxlANuecbHpg1Qo9drZ6rSXaIT2MUwupId+9zF1UFOIx\n6fG4KoZBucHav4z5VNbleDXGU1clIdpybZSrRln9k41zT+F8nI/z8ZHxZHgKUAjgwh9a8Lpy6j4F\nG4sjiaOPF3MgldNunC2xJG++dyqWLzVnWB6LBer0AuzacnraT13BDvvUZ2UMaLEkp5F8bnY6QUYK\nK53lqKwmvhZ26R815nEOI6UsmZmiYoInLpbYKIXGK28pgN5ExoRiVueYPyI6TpUSXwJYFgW8pbzG\nJKvQ2SqBZlx77ZkdBAOxKhtxDpAq7J1yjgnVoxcL8XiidAUvJ5PvdIHUFw8jMB0UbJ5KKhe+9Qa0\nGgAAIABJREFULcxEKpNymunHwLbU42tt4v59sfgP7ryLnR3JP1xojxBNZL16HTag9XwkZBdeujZ6\nI/FM/NCDJhYgzQIcPPxDAMCUv+v3R8iItjxLHDhXmYv41vxj1zzj/cjmZ7h7T2LnegyApWEnnyOr\nrgAANjttKOZEbMbtZVl80ICWFogaIZ7jBD1qdfhmF4HdNILJGiZxjrwlj8lw7yIKYhIeLx+jvSld\nlyN22lpehNEmEYhGFwbnbJgFKnbEmsrB4kzu2eR96dqtlxqtvpTLVaqxQc/E97soTVnbsWtg94Z0\noBpMQKvShoZ4GLPlGG/c3eecI9iksVOlB8P7+DX9UeOJOBSgAG0rhJmJHpMiZwBGfZne/pmJOZmB\nk7yCkz/i26iUVOWomEHWAPyuPNwXj2sccBMfF2PUzESvXueDN34fVU0CirKGbpiNGyz7j5quUwOk\nAfNsE8upbO7f//5dRNsyz1ee20ZBaG84aOjDNtC7IcmifJnDuEQNQrVctwvXZD2+d3gHc0LWrSRF\nTR1Ie9TB3QfyUDw4GON0Jg/1Jg8T1DkSfkaamNjh5j5rm5gyOfrtN/8QX/ySPOg32XGoXBcelYla\nnW1c/5y4nxteDx4Tab2ti9h8WtbLIeeiRgR7zi5JK4GxMppJw2Lvw9nBPdx9T+4ZKrnQ7baFW6lg\nGoJQYzCRB8hS0m7wRwZ/9zCKUT2UzzqrDteVnWcvXccWuwuvXL+MflsMQFXKwev73rq7NM9LPJpQ\nofnuY9SpXFOY1HApRZ9FpGvL30O7uCJz+/wF5HN5SKPvv4uLu/Ig97qsBuRd9Cz2gRgmwlYjomPC\nIA2+3+qg9aw8sKt9ucGRPkDHIihs6MJNBEqtzBWMXAxAz7HhLQnwYjXI2thDTCj9D999BwdzMQwO\nHLSI2mr1Uhze/3QkK+fhw/k4H+fjI+OJ8BQMBQRKIS5jpIkkSwZeFzOWbkLTxJJNK7YBNGjVpq/e\nMBVMak0qXWOSyGm+eHcBg52Wi7iEsWKXHL0DbSTQrCtrXaybIZVSa+jrxyUcs2UGTYuSLD1MVjLn\n6XiJgtoCbWWgQ6ozn+HDRpihz5LdarZCkdJ6GjkCc5vzl1+5WwNsFOwQNCosiYo8SEv84R0pyd45\nmIhIJIC6JdbnsvLWzVVWb4QTNt3YobWWkJvMTvH2H4hCcetlQbuNkg0YvixsZJdgYyc2RyF0RW6C\n1TFMSOila5bsLBMlIcxGmqA26aXkJSZjWaM379zCZCUJuqRkaRJL9NnAU+4nyJvGJUNBEcarsWay\ngE1RRcusMD4Td9ix7XVi92w1RnQiHtRJXWNBNKlNjoGwbsO25KIW3QT1RObpOhpzIkTHyxQthiPq\nvngYZ3mC4QvigeytTpDO5Pofu7dxqZQQrBNIaBC0+wiqJumaokFMm4UJgziT1K7gsc443JI9Pehs\nwmpLotWoVzAjNlppHyl1QU01RUY4fUW0aewucfqu4Di++QffRkqtCz8IUHfky5NViMr5dKrT6knQ\nXBhdvKj/5n/0n+BxZGHviuANrm92kZHuvNOzUTyUBTycPsbJjIIqtSzI42/cxYPT7wIA9o8jVI5s\njjRS6PcI4qhcdD0JTea88bVWeOoL0pL9cz//V7D39MsAgL3tDSgy3liFhbQJJ5biUu7tDdfkJseH\nZzg8k0Ph3VmJd74nLtxbv/K/4fbB9wAAq1jc5Lo+wceXNT7ssH383y0KuSiYCPwm4+zBa8lh4jOG\ntL0M7Y64n63Qw//6y/8Nrz9FTRUmZXSRMp6/+0A2zJu/+i/x7beFfOZbt97BfPkOACBf5QiZDe/4\nF/H0nvBfGh12To49nOVy/WmRIF3I/INhjIulvPYnXrJhtMXV7rqysR+9+TreeyTfHWxbePb6CwCA\nrz7Tx+Gp5F0Q12jtynUdjbnhKwctdgseJgtMKK5jmgq1SbFce4E2GbYr5p0OVnOYlhyKFy714Tch\nUW+IITkfNzo+5o+EYfrRkYSdUyPDrOlxmETY4wPt7l3E6Uq++90jeU+d1djdlTlkRgHPpARBauGA\nObFZVqOOZO3Gc7n+VZIhY+ha5xXW4IQPaw1Aw+fhMxhQM9L1kLEvZRYXqHhAal0B7IMY2AH8DdkP\n3/i13/qu1vpV/AnjPHw4H+fjfHxkPBHhAxwH+spFbL01gRGIlb/qXYXdlZP9uz98G2pCafGDCkYo\nVu7oQE7oif8IU3oNeR0hjcXFC5WLgnBV192AyzOwzWSQMnMs9iUD/M3/t4WvD8SdveC52NoRa3x6\nsEKyLRZhk+IenqGgs6YxKIGeiCfwMDJx9zXJst9ZvomkIEpNN7z7P8or++MTm1A1KnbWGba1lnDX\neYmM0nQlKcGcqYmUCDzlPAuzYXBexShJK2bFNWZERT44vQMAeL18C2+OpalsER0gy4hpAFCwsxG9\no3U3o7GS8MEq5iipcj1bjtGqqHI9m2DqNijFHF+4IolLRV7GWQlkRCOeLTTcU5nz117poE+o98yK\n0LXke9p9+dyTswIZocZFUcEjn8QBMhi13OtaJ8ioA6IVUZq6hsMQJDqKcULYfHK5QodeRVkAOTUr\njUC8g24dwg+YBV64SJnE3un2cBLIeu6eydwOwxh7W+LpVvUxTg/oEWRnSGMx/1ZdYkUof0okpQ0b\niuFarUyU1BlRlYGK0PS80CiYbG6k/kq3QkF4vEINW8t1aDuCZsFh2Y8ALRWKTzqeiEPB1AZ6SYB3\nLY0N3ozXvvfrmJ3KQ3pS/y6sW7KAp/kcxqqBFcui73kJZh4fPPcME+YJiixCrhrtxhSGEjfq2pb8\nXJ3GuEcdxNPj38FFxtef39yDsZIYL7/gIiCRx8mx3IAbLRuPYpnnu2ev4THLnq//09u49d1/DACo\nqxiaghwKH1RG/lRDrzMc0EWFjAQnqoxRctOYZ3LNuWXCn1GFKTuAyy7Ik8UcxVQevNPlY7z7uqzX\n29/7PQDA2eF9JGMBQtlVipwhk641Cn5fEa1wynzM1lDW5PHiDC1y41dVjqKa8rXAeCVrOzE9xLGE\ndyZ7ANqVh4luiFpivLMQoRO81MeCQB+zb+B0Ige8V5AJqlgiJk9knlYw2InoVQFmp/LaWLVhaGbc\nqTalyhxxym7VMMMp12uSRnBS5ja2NrA4Y08LqeHrpY1ZKQfuzJ/BZq/I/tEEec5eGVa+zEGN+3fv\ny2cZGjOWvsfTOVLmSVzHRZQ08H1qPJoOXLsh8dUwWeIuc42CwjClzpE38yf/ZFmWiJivqo0MJsVw\nYHtIeJ/ctEZ5+KM7fj9ufKbwQSnVU0r9E6XUu0qpd5RSX1VKDZRSv66Uus2f/c/yHefjfJyPH+/4\nrJ7CLwH4Na3131FKOQACAP8FgG9orf+hUurvA/j7EIGYHznKosbJ2RIH6TFWvyvW7PbsCPE9SXzt\n3byAU0t+X5cTXA/ltL66JzXcC9eewd9OXwQA3Lr/OhYkQFlNZkgvvwQAGGkbVzfkfCLJLordEX71\nl+U0fz8/wfuPXgMA/OHjr6AIxPUvrQ245PArOoQoGzna7PPftjfxXVLFzaPXoQz2za9W6IakyiIX\nQBHXa1CUWv8ftTIbvZnmlyZg8czWAEwS/mkDUEy0lXW2/oyy4PrUNixSyqf+AjWhzavxArffEd3M\nW/fOcOe+WFizQ1zIbI4dAsfajoWakOdVlsKje90OLLRNdrGSQvxzm13QMcNXjBAPV+Ip5HUJxZ7+\nXFnwSVO2JIehZ2mEJmXbxwVmpMIzohJLztmMXGR0pc0pLf+2gZIAo60NFy4xGa0wwNQjeU5eYrfp\nUKUGZaVsRGy2K5YFjAG7D1MLtwi+aqsYJUOMmHR187iCjmiZuwHiuGFMnqGEfN+kkDl2HvXx2JZ5\nFvMIaNPNr+21gNHuoIcW95FrXAEAnJYaFzrirQS1j4ie8IPlBCePZX9OZhHyJuwgI3a5LAE0XJoG\nEoZEXp3C8ah4vaoxtehBfMLxWQRmuwB+GsC/BwBa6xxArpT6eQBf48v+EUQk5o89FEzfQe/ZK9j4\n7VuIvisxedyZIyT7T36wj2ssp222S/zUQGKk3nPMAQzbSOm2vrj3KupEsrPuNRvWgrHccBs11aCM\nBodu+rj5C/Id/+D/+j8R35PFHsw1tjYlxPDMGivmM9qMw0PXh+7KZ4yGAzxFfYrf0y40VaQ834BF\nt3rA7Pa8TlDbDCVSDYPsR2VRwyLWviZyx+uGsNgxGWwMkE5IUlIkiPnQVOUHoYliN6SGgZKZ7nxh\nYBmTzDQ5weoOS1O3pnD4QI4fNkCwBDnXeyPsrlmTwq0araWsfeVoROwNaFHTYMu1EHZlrcokxc3r\npGR/lKDuyKGY5RoWH4oZ63RDe2fdRZjEC9jsSl06CRTBYDXqD0IFcl9ulB202J5euwn8kaAw7cDE\nzjZDhURjMJLwLyOpbnnWhSLBjdMP8HgiB8HBgwlWfMgSFaAgoYzmIWbkBdI29SRSEybJdxwdYMW+\nkhYP5PnyGKZDwpbKhjOXPWKVOTY2ZA+8MNzG6Cq5K9nCbxYzXNmQ1nDVcjGh3sfs5BhvDCTH9s77\nD/H+WOYWkyez1h8QHusSkhQBUJmtNb18XZ+izn98HI1XAZwC+J+VUt9XSv2PSqkQwJbW+pCvOQKw\n9XFv/rAUfULy1PNxPs7Hv/7xWcIHC8ArAP6e1vo1pdQvQUKF9dBaa/UjqGQ/LEW/ef2GLpdzDFvX\nMBv+3wAA82SJ51+SxF95GOGZ58QCffnKdTx9SSC6zYnmbXmwtNBZ6VrD9OUcMjd3oAkvrfMcdaPS\n8zQp2asRvnJFTui/azzAv3pbKhjR3jcR2BJ22JkL3af733QGGga6pL6KByOkpGBTxhI7A3FXn+pv\n4vkdqjbRJV2dHeB4k/Xo20uUpPi25gnmO3Tdl9RRfHobu0quf3JjA8nvSyLueBrj4J5wJ5xNjlGR\nbswIqEVYuzBtZssNjSgR17GaORjekHWpPAuz+yQGmchr25bCNinwB60+LlBtSXdM9JYy//GyxCoR\nj6wfSui21e3BDgl5zipEhFsPhxohiT60FyOipxczI1/5Aea2XN9iNsO9sXQ7GmWBlieex8nRGCvu\nnkHDr7nU8NviEWyEfbQGrCQN+hhuCwty4IcAlZpmc3oKgykCj/0FyNHrymfsbtjIElYo5gbuk4J+\nxUSyqgw49BBzhNCUml96JbJaPK+wLWsxn91HQmRdyyngEXCwvRPg5evi0Tz37C6GoVRUOhSvUbW1\nJotRRhs9dnCuBkMk9AAXRYLTUvZyedp4Cmr9DBg6W2MatFXgg0fb+NRP+WfxFPYB7GutX+N//xPI\nIXGslNoBAP48+QzfcT7Ox/n4MY8/taegtT5SSj1SSt3UWt8C8DMA3ub//i6Af4hPKEVfa4U4s/F4\nOcHkvljM8HIbD+9LvPS1aw66bOwJKhdGKZY5pMKxsm2onGSX3YswGJMZhQkYcoqbYQY4tFILsfKq\nZyBg8vGv/81fxA8O/hcAwDh6DsdMNG31TJgV4zOy9dgtA7nFZJ8ZomKRebl/hCFl3376J1/Eix2x\nDlNaz9Xd5zDxxSIephHMS/K+zZMLmF2S1xi0yu2dEHu+6GDWvo/8S4L4e28+wS1Hwq3v3PnnGI/F\ng6gyWgnXgCacty5q4EAs26OTCgtbEIaDvTbSH8r7YkJndVnAackabm5v4RKvqdMHcrImdTsJggWj\nQUK47f4u6kLuTVpm2KJmQw8+whGFWkwHI4+ycRS4CcJrWPaIVjx1kCwouHISIXUaUlWFFkVd7JQw\n98s+7Jhai24bw4tXAACt4Q78HhuT7D40PQVFzcwqD+GQe6CMcqAnf3e8i5jN5Z5MklNoYgG2ezL3\n/eMVFM2adXGF8mDBtQ0RM0cVZXJNK6tEwbyFEWvsXBDPa6vt41ooa3t1Z4BOSzwhs8uMt/IlQQAg\nzmo4zANNWzZqKpMbjg2L97jkd+R1CrsRejFMlJqsWHEOxV+XqkSVfTrZuM9affh7AP4xKw/vA/j3\nId7H/6GU+kUADwD8wp/0IWWc4+z793Bw8i1kXbmwvhXiwlXZjJf2buIFto2GnT6MU3GJGyETe65R\n90iUGCVNQhaqLAH2REA50JQtVxDQk1E/A8Pkg/D0l/G3/gN546+fJnBIyJEvYrQpGR6xIUBDrTH3\ndlXgEQT009q28MWRJEFf2X4ewVDe5+3Lpql3DOwtKQF/rYDKJCQaPtdB7ct1Z32Zr69t7O7JfMNB\nB9VFuVXPl22cPCvv837tp/Dr36bcPWnStOHBtTd5zVN88y2p4Oy/8y9gXJMwaEOHOJvL78tCfrdV\nB+g0xCLpCsGWbOiRbeGsRZn4ZQGY5AmM2H15MsWpJf/ulgmukXAkyU2cEs57oQpRUwdRE9evvdsw\ncEPe19pD0CGz9SzHY5+Ht3LgsjZ/N5L3X0uAHhWS0AaKuMEj1DC7V2RuaYXKkXUpU3ngy1UFY0E5\nsDBGGIjr7rZMmEoOLD2NQZ4WaCZBb51WiDM5hPt5B8NNCV2jcoHjQ7nuOQFSWaEBJfvCCS1cH8p9\nuvnUZYx2JbTxCgsO9S/NXA6FqgpRueTdjJP1fNx5iX5f7snucgePRzKPCQFgiD/olTH8LpDLNedp\nDEJAYPodGKQE+KTjMx0KWusfAPg4LPXPfJbPPR/n43z86xtPBKJRGxq5V6J8+yE6rOlf74zwk0xm\nbV9zsGHISauMo3WzS9kXq2seGlCUYLPCAIqun6rsD5rzjRSafAFm54r83XOh2Hdumh6+clWYkVV+\niM2eeBB9215DEVmihwKbTgAkZYLLoOu7vYcvvSikqVs3NoETKV+5I/n73AjgEdG353hwVmKW6h0T\npkmU25yakqYDd5uNL4NN6IZcNKrQp+fyN/7y83h8/AYA4HtvvsvFzGGQRrm2HHz3lhSC3nzjNUS/\nK3N+upVhNSf8mQmuw34FVyp9eLnjwGjq9dpCTY3G0AgRO2KZGyLWRwenOCa9WBkk+MGh/H3PcHCD\nMPWo20UaUQQmE2u2+WgPS1K0tbsaFzuSfDtUCzw8oufh96DJpLpNbg0r9hFfkBDFmWhsMWmnlyXy\nGdcwuo2S5eDVRKyq6w1Rkd5PxxUUsQd2GCJw5T602xM4TCbPGTL2tyYwley3Vd3GlcsUajlxcbfZ\nEKRHc0wl3imA1nCEjQ25f3s9E+22XJPX9z+QqSOxLewMtkF6vNEKFsuwZXuMNjt7N/05drgnxy2Z\nz8NsDCNpmvtM1PRSigJr4l3PK6E+5WP+RBwKRpkjmO6jbQXo8oG+ea2N7Zflhm9YIxiXCMxIX0Dd\n502g0qi+uoBRUwfRbUHzIYWp1+zQerkE2PNQM5MtXXOs80OvRVw//+LOmlhEASgpSmOS8UkpDdOQ\nh6LUJhSrDze+8Aqe+hy59tJq3c5tUYSm7QHmJXHtndqCQYaoqsxQhYS8ki/QVC3UZF6xe91G+hC6\nM8Ugk8z5y16OX/jZrwIAxizrHh1NoRV7H2DhwZEcGrfHh2iz+vLDWKFwZL0uKo8/NXyikCK7hT0y\nBdltBx0K5ap8BS9r9Awl0N4xLcSMz0/PLIS8N1Wxwn5OZqlZBG+TrvuJXN/yqSWiE1mfg9iAbjUw\nZoBcMKiwXIdC01r+brU8tNituupaODllq/1uH/pN6exM8hlyxt32RVl7J7QBQo1Xx1MUJMlRs1OU\npKtPZxra5zxcee31wTbeWrKvBkCxkHVJfUAbcuAoSgNkaYFuSOawfgd7A3nQ+8E2fIOhQmJCNcIw\npYQ2pt2H227axduwCM7rYIg9MjenbgcXGY4et+T+Pz49XfN8GpWGybqBaQM2sTO2crHu1f6E47xL\n8nycj/PxkfFEeAqV1oiKDMEgwKgtp+Sm+TmckcNu+yeuISeDc1kBHrNBNOZQzgAmky91YgIPBa2m\nwgVMQnd1rpDPyFBMxmj3cgsWWIlwZ1AW68aug5z4YU9ZaySkSX0+5ZhQRC7aYY3hhpBtTL//OrAl\nFrjeTFFRot2lxXB7HdjUI1BeBZMwWbOwUBtsEWGi0SgN6Ca0USYQ8mKdPhQRjSNcx6ufEyu185ui\ni3B0eIIV4cWGEaA4Fgh2Ms6QZKz1hzY6rGmntAuGrtEe0KPpD+GSyGMwGELL9NEeuzhmg1KbKLn9\nboCQdf67ZoSEOITCdhCOZb1Ct8ZzrB5oSux13BqPZuShuPMANr/vwq4B1TBbGxq5TYIXeg/1zFnr\nXmynA5QOXe1IQZNv06iBFr/HZnNROjvDIpa5xYnGgi56u13BJe4B1giHB4IBSbOmI9HHBV/C2Dej\nEzw+ITbBaiNJuYasvqi6QEgI9gXHQzuQzzVbJWCJV2j5LVgd/tvgXggU7FT2Qu2kMBJ6MbZCSL1R\nr20Bj2X+Xpc8DaGH5ZQ6n6sUIKYBNaCp/l0ZORz8OZSiV7WGFVfYvNDBC7uS3Z13jzEjLHfrYYTZ\n6Q8AALeWCif/jzwAdSBZ/Z0ZMCCIxXUUrg5kc+w88yXkm3Jz4+MS9xMRqcVYbubVL97E1o609Ho/\n8XWAwqZWYaCk+wWrXLtlJzwoNtQHOpcX/Q08uCK/z4zLmDpCnjl9TSNmu/PG27KjBze3MLpMoY/2\nFuoeM+d5DdUIzDJRXJoZdEZXtrUBg70IVZ5iTSFZnGCDZbafuCG5jHfffW/dDah1hQfHDCXKEjUP\nAjc34XBjjUYEPakAi0Lc2nfem6BkGON6Co5PcFY7wKgSUpdjblYrPsSb35Zr3p+u4DIXMSiBR4y5\nr5sWTLrYXiUPa1IprNjJtz+NYJly0H3d3oVHUFdl23gYyfzjM1njyxcB25aHaXK6xHhf1nZvc4Y9\nlif9gQ+fpWFFkd9lFuC9w/sAgMVpiUP2aLTtHvwew7yixAHBWUEi13GcHMGg4UjNFaZn8mCaxgKF\nloO8kX23LAWXCmBRVeHBCatO0wEqU747rBQ623LIdK7JfLtBCDXkQZ5pGA77SxIHOWnkH+5P8dY9\nCRHnvL+O8mCxzK6z/IP7G9joMcSojACV9elKkufhw/k4H+fjI+OJ8BQq1JjXKwQHAfYuNZTVCXYG\ncoKvLBsj4/MAgNB7HS98TjoiHywEb/Dg5D18+1ASatfSAicDsX4vem0kVEQ+/t4+btG93GZW/yX1\nArzrUvM29BwwJKnl2hVc0p8Z2oBi+cE1yHz8obm7gYdXrknVwsi+gfnr1FrUQHIkCaqiJeZ//NYU\nZodVlKJEkDO0UQk0Y6HVXCzm0YMD3H1bru/y56+jDQltAmsDqi+WxFkWABNUFxmWuFaFmhgLpVxU\nbFaqJ7dQsnmmNHIMfLGkW65c/1N7AVo1M/y9FjKSqcx0iRZ5K9rKgUF4cJfzDYxH2N6U9bbcFnav\niudyOfPXjMJRlK8z7nkgIUU76yNfsNGsG6Bg8m3qWqgISotyIKYb7G7JfJcG8PBQ1jjJUkyX1Hw8\nM/GlSqzqU9cuQBHr4FI+LSsLFBSnef/xAR4sxAv1nQQ75Jv0TBuOlmvZXzZck8CQlQ+sWqh9cnlU\nGjkTt8tYfheaCq227K1uuweHSdx6axMWk66nyzne+oF4rFtj2Y+7uwH2IgLyDBtup2EbyLCIpCHq\nhw/fwumx7IeSSVJd17CZ8E7KGgZBC07losgbIZ4lHCaKP+l4Ig4Fy7KwNRwhcF08HIj7dmEeYGQK\nNn764DYmvMjNsyVstkzfiCSWf3XTwsk+M6z5ES7cFCTh1ee+hOkZiTb3juHHcrkvfFWQgv7Fi1B8\nmLR2oJjitwwLJV2xGhVSlnpq80OOVdP2bJhwOyQutduwPImTd60+zGdks8WBbMxFtsDJfYlZER7D\n2BNAlru1CXqgGB9L3uObf/Aa3rvzUK7j9D5u3iQ6rrMLj6QfjmECzLVYPAh7gY9ZxfkoD+b8PV6H\nhmU0RLjAYEse3i9dlDleuLqNkclN7I+QEgjTChxgIRu6TDQsdgzarjw0N0abMJjpL8YJQl++eyMo\nkHPTW36C1qZsdK9kec+vcaUnvzO8XTycNd2HJsg1i7Miw4gqSlfZWrw5GCCeyj1NjDY6LHsGpokl\nqdrPojOYhax5sUFEax7jaiAHZDaaYpHKdbQ3Q4xcSZpMzXxddnaJ2DQyZ82aVJcZQnJ3ln4Nl1od\nVePOj3p47qKgRjdCHxsEcrWUCZO9KaXbRYf5KLM157pOsJiI8bJ2tsDbhGgS486bEprNTpZwHVnn\nkS/ztc0KzoqhDypU7L/3vACGlg2VJjFK48fXJXk+zsf5+As4nghPQWkTSrcxK07w4JuE+Q4LbD0t\nLtVo2Mbd70jf1f6t+ZrZtya92lODFTqkCO/0u9h59a8AAMIX97D/DeELOIlMfPOxnKSPf1Xq2e32\n87jakR4At9XBmihPfVDXTcsKY/IcRg2G3Ptg2bQGcma17amBsEOdy/t3cHJbEkP3Sde1XIb4/EWx\npC898xRMX6zj5vYmCupR3nmb4jXzFI8K+dzf+fYfwv0NcjMMLby6I0nFr3/1WWxeE+ueE2p8YXuI\ntCXzzVYtBKm4qkdQKFinXygDe45Y0tCT+TqegfuPxUubzo5wwm72Z5/pYIv043U9RruWCoVVUSU7\nHWB4Ta7p2E/x3jv3AQBvzJYwzYaK3cWrWySXGcpru2ELs4zJvjJFt6Egq00UPhW3ogIRM68pZJ6T\nNENCGflpbOLGdZlPkTtISEeWpgYSEp/4m7w3ykKrLyHY6OZVdBz2oIwjvD4Va1ylMUBuhc2OXF/b\nDrEqZW1vTyfY9OU6eo4Hm0QmLjkULEuh5VNXdMfFwYlc3+P9t3F8SHUu5PAc8SCevyrzsTpd1FoW\n3OkOkdHjOTw+xoLgu9YoxP17sl9OWAFKywoF+S0Cz4VuaKBNcx0+lGUOI2WPxScc557C+Tgf5+Mj\n44nwFGptIE1aeDz+AeqhnGov96/DI1rrinoZu18nt8D1OfIDSeCdkrTy6t5lYFMwDb1d0hHWAAAg\nAElEQVTTTfSvigdhh1ewcVm6C/duTPCTG3Jy39wWS7txvQOzZI3aNgDiEepSr2m58jpDSUjvAya9\nXv7Q3FVd4diSE/yRtcAWuytbeojyuliCjZLlu9DHtau0tHaJlHwDxdkCtUOl4Y5Yhs1rQ3x9JPH+\nl7/aQUqIrrlI0I7Eym11gZowV88Sq/zFC1dxaffLAIDo8ATf/j1ZK8dYQbHMeqkVYEjtiF4glrGa\nKgRce9/po7cj8xn12vC7RHKedJHRMmVkULI9Ez2XZdaLNXZuSA7g/ffeR3VAGrvJAtmy6dAhojE7\nwTa1GEukeJ+s2ss8wWJO5upCQbX4enaoTs0lqrlY3bpKUZXi8VwbDOBaHd6/FBm/p6Qat++3YfVk\nX/RzA5e2ZT537y9x+5iksWmNLrUatn1JwMahhYw8BqNBCI/Jn7gs0CFNX8hOzq1hF312ftqZg1Yg\na7WZtWBfoRWvNTyStI4I0w9aAQwmtuskhTZlzoWpcPW6XFPYewGbLdlPj6ayj5eLBVYLWZcgsDAl\njmYSJchJzWbUHmyfe/wTjifiUNCmjXKwjeyBgp7Kxt18qY+XrglxCq6HGNRScXDa76JHbEESSh24\n1duC6ZLOqsxgeiSssEN0tmVxvvrKq7gwEzfRDdgNmNQwL0niSClHdMIBwDBgMtvjag8uGXxb6o9S\nsSsDuBLI5q7b72BFsNTg0hDB+5I57jGRlagU7ZAU4p6PJJYMeJlpmF05ALb2WOefPw1KB2J4qQM3\nYpLQ82CC2W6rjbiWDbR3T75jPpjh2tOyFgf9PXzrjbcAAOZkDBDyvdNq49Ie2arZmjv0AIdusHNl\niJqtxy1LSSkFwMqJ4Toyf4d0bDg5QsuWhGHSy7FLhaytjU2siKFIZpvw/j/23ixWtis9D/vWnoea\n69QZ77kD773dbJLdLfXc0RRLguQYQRQ4hpEAeXDgwC8JDOQpfvNLAujBSBAgQIIACQIjgAZnghEL\nsgAjimRJrZa6yW5xJu987hlrrj1PKw//t4tNqZUmRUemgLMA4hbrVO1ae+01/MP3f19AgVhGEXVt\n45JCqlo1qAljfjJf43wpn6l0gzSWhVP05LrDKoA55hihxGdHstBHroZqJeEjA0SQw/NJZNPzYFIE\n6ODuIVrawnQTw+EiNMweOpwbti/XKosSdUaOxhTg25gtGwQd2Qz8onU7a3SZAfA6BrrcpI73bqKk\naItjuSiInfC5OYSeDer0oMozmFzEveYKHZazT/Z6W+j5xRPJQpzNZ8hJsnORAl5EYeGowoY0/41t\nwGjd4o/Yrt2H63bdrtuH2qfCUrDQYKhTPE+6uHWfKrtdAy4pyhxrCGtfXh+OvgTTkF2w3wh2QfWw\npUNukqfQS5qfgYPw9i8AAOzuIxhLSQGmmuy9t3wYbW2+3f+gQ6qBYkF6pTUILERo/NkdVxnW9tSc\nfOY+XOoQOJWBvZeYbya+QZc+rH2y7CYVEpp7ZQ2oSoJHkx1BdGJfo4zls/0bE/hKXps6h2qvpzIY\nPEnDL4lJefyWuyWYzXcMdIg8DAY2fFNOzTv7Xbg9+UyPqbK+acNlXt2x8q0FEfoNFBmR80UfAFWc\nWbRjHxyg5tHi1x4CVjXuHHtI52LJrTonUORqiHlPYaOFBAfAgyyH4ci45Xm11TeoDAMG1Zhd/jtx\nQrx4LP0JwgA3ArGwKlQfWHqTGk3UXo+FQXkDgwVtrmdgfyxu5Ve+auBFkr8W8wQPqfeQrqk3avro\nNXJaZ0aBJCCXx0IDRC/2WbU7NkOEpsyFcRjCoasRHnhQBq0YNKgysdJKRWh+rlDmlOGLK9StBWW5\n8MgZEqgexi+QW4HCP/uPn+IkYbr4+RRXKQuzHA2HgVuj58PusRjtI7ZPxaYAywZ2JvD6B3hIk/vp\nnfvofk/y9C9/cwNzIdgC03NgmCQRIf23zhrUFEHVFz6MkWwsuq6gOBHM4Ba6pbgP/pKRcN2Donmm\nlYkmF1OstK0tN2Baa8RtzQMLGfEDWBCljK0/aBQBuh3yQ+YKNhmE4MjCLKYxDLoBM5goS+ICQg/N\nknyGNe3Ijougywi65cPptJWKBTQj0lqnMLhB7vm3AQDZzUd48r5kHJ6vl3Bb/P1pCM1sQO4EcBoy\nXCn5e7hjw1ZkLnJCgIzXtukjpex81TyBKgmSohtQGz6KUiZdGKTo7Qg4y4wtWBTRqU/7iGmCmzRl\nQ+XCCaTv5XqDKpVruHUNkCa/NkxUVH2q2ypRI4PjSt/Hno/JETde10RRythFa39bgQiX7mGpoCg6\n6zYO7LE8zGNjguoLrD48e4qHf0Ah2IQLEwrdUJ7TUitsTuR76abGTpf+XRsjOB4BJPIxamPbT8/p\nwrVaViggJxgiY+1EhGrrrlmBj4bEMZWyETLTZToxPLI1uzt0bbIDJKdywJ31UqQzMkAtarQejWkp\nNBSP+ajt2n24btftun2ofSosBQ2g0gYmBwb8VLIMb579CXwSRRy8/Qq8Y56UoyNoTROuZi15HCNe\nSfS6aEwMSjEHraO7W4KJJn0fm8WfyPtXPIGPXoGmJBqcEg158tLE3BaiZKi2W+dTRrS//qf73wYg\nuxZ0TOXfskRFZKFN0hOnFyLbiLkXb+ZYMZLoZpfo9OX3amYTVLKCRd0EQzfY2uh1BsVgXtNkqGnm\n1q681ykVLp7Le4+WF8hMOeUNO0MoVi6Uk+PZRtyNG6SeaKID6JAB2lqjG4o7ZTgBrs7FYpvHESY9\nui4bscay9Rytbr3VceG6rBItFTTNLdtSMFlVaTODk2QRIiJIH81jRKnk6Xe6PgYMFBuWDdCcd3hy\n792aoO/LjRiqh3Jb5NWAaGygqNG0up8Ui1FWB/kpdRnHC5gcTz/cR039yO5OhXAkNHVran2Ylo2a\nOBXXNbYWZFEWqAgF73TEnZm4O9tAahrlCB3C4jMfmmhR6Ap2qw2R0uXNa1QmOULyGppR0mQzg02p\nDiNtYDLL0VTEiDQKJTNYm6sGy6ncX2OkGHSILQk8rJakb/uI7VOxKZiWhf7eCPGjPdy9Lw9xYNo4\n4A2nWKI4ZYkvLmHP5IFdrb4t339c4ySV2oerd5b4zI+LvPyNH2+QUF+wSc/wzru/BwCY0M82co3+\nz4r7AOsIoN+a1Rk0UzomrC1P4F7LdPKnmkGwk2vbyDIu3sZAncvitAgUyldnKFkDkJxdoqBQquXf\ngNdhHMBhtZzlonHIu2im+MAe9KFBVymu0BjtJiL9fXYe461UXLAi6iOlnmFUNlietFyKF7hDt2Lp\nspTZi9G0Jq5rIuam4Vga63MSmy5P4UKg5RZTmZkuYVss3412UcxlcTd5g7KN8wRDWNwsNon8XVUa\n06dyr/uqxou3peblZBlhzIzBJgM0U58NAVm+5cILmVrQGQpDNq9iHWHFCkY4OawWps5YTBKbKKlC\n1Zx7MLlg0x2gJvBtupihw/TChKGmBjkWS2qT1kCXpLh+r4c5S9h7FNWtLHNbi6AbD3VMRqpOAYvE\nN3XjomC8o2ZNTYEM2ZzP3TFRW62OZ46UxDdWDWi6sQ4zQOlsjflaXIZsWaAgO1eZVNAUv61WBYpN\nK3D80dq1+3Ddrtt1+1D7VFgKnq3w0r6Pz/7MF7FPLrth9g4GlJSv4hrlHTn9vDxEoWUXdJkfL1dX\nmFJr8je+/T382rsiPfeVX/9NmEMCdjBA90hOOfcVOR2dz9toLuTk0sEERUVTHCWWLPKptYcW32QU\nP2wPVVBt1Ns2UHg04dI1PPIp5Awc1Q2QZqQuy67w4LHs8vPRFV6mrmBnTKk4o4ZtioneFBlA9WhU\nCk0q91/bJ0Ai99JaIG+cP8Cb3yV0+84RbFvgwVmdw7Fa3kXgIeS0usNYWVyW8Hmy1Q5QkUNA2yWs\nrpzGfnkEnyzPBvkKgnAAqrihCQ1kEYug6hKakfFC52hAc5yAsyLJ0aFozfiVQ0yOJEB79huvwmfR\n0cyu4NpyCncI4dVaoY5pgXk+ykgCbbXqAGRBbowcOTkzZh6DdvMTND7dALsDj0VF0aML1C5h6JcR\nGl9+Z8wit3rjYOmKheFXIUbkXSyqBr/9kIQyVOC+WACfJ+2cbVeoLbpSRYJKMeisbOSkaq95Jtd1\nvS3EKndcKAbQUTeINzI/E2sHQSXzxXJkjN99do4HJ9K3yyKBaiXkjBoWC6LyMkaJNkL+0dqnYlMw\nLBPOsIsmtuEGMsOc9AW8/Uwq/L54z0T0nphAmZ/DTMXkt2+KjRf+rZcw+F0ZhJ//eoX/87X3AQC/\nGZ3BuZJb/MVXBvjGF4RS3N+T1GQ1nUEZMtDlxQj1UEBIa8vAJWsRzLREStBPL+HCHP/w+8jWBcqI\nuoRRiWIhdRcVdRsN24fZJWFJeIQOTeJVUeHpudz3iKw7N/Z9uCPGQ+ISZSwP37IDNEyDVIsOanIJ\nXl7I97/17jkeR2Lu716M4VWidJWvTGRKFumJa+LuhSygx7z/ndBDRLn32qtgeHK9ujGwJNLTUQae\nPpXnYIbiMnSCEH0uoI7R2aotVWi2WpnNssYqk8W71fMMfDgE8SRXNZodxhFKGyvSzsMoUdE1m7cZ\nCWRotu6ThjFuNS5SWMzywDJh8XAJB9R68EykLIv2rQCKbsCmZ2FDuvomCOCw3sQj01XkGjiIWZWY\nZvA8cXPyZI11JCCispR7Wh5MUZGQxihLaKYsyxIoyDzlej2YHc4tjvfeUQc1maJSK0ba1knUNtrC\n3KKssGHmZ82akTefnOCtqcyLtFBY090uco2GlZFVx0Cz+UusklRK/WdKqTeUUq8rpX5FKeUppe4o\npf5QKfW+UurXqAlx3a7bdfsr0j6J6vQRgL8P4CWtdaqU+nUA/z6AvwHgv9Za/6pS6r8H8HcB/Hf/\nnxczFNAx8cItjcNAzNJFnqLbJ54gG8Nk/b4dKGxII+5YYlq5QQe3dl4CAIz+HQd3DsRNcHAX6lBO\nncn9z6NKHslNkw5+8fQd1JGcpIP9J2i0ZC2ytYsnSnbjsCmRGWJKn5jy70/+mRtgZL0TgBR9yB7G\niFqG6U3O/jhwDuT1/cltvHJLLJdsOUOPLNYFo+V1plGcSd2CsTdAE8t9NJ0rKGII4HqAfx8AkHpi\nVUVXNcKBjMXO+C7+6D1xpZp6vSWLKRYl3mSl3U1G6eOsQTBgUG9ewDkkOYuu0CqLeG4IJ5RTrH9A\nSvJiiHQlJ+a8PkeHuXnLKkCWdRRpAcU6Ac3ovFlWeOFQ7r8ch5gxmBn0bayp8JUU7pbXoGmtb8cE\nxuI2NlGDnLUN66aG53X5ewkCZmVC0rN7/T14DCjWTYqmJjnLYICaZDDlqoBLN6WgyR2dr+ExuxLU\nHRi0RspYo8hJcFKI1bSZxijIsZD6Gh4rLpXqoLF4iqscVionfsvVaKwclBb9h/McimQxYZEjZ3/s\neomSLs/TJ+I+PJiuUfKerKCPopT14NkGXFZibqoKihmcj9o+aaDRAuArodUJAJwB+FmIriQgUvT/\n7if8jet23a7bX2L7JFqSz5VS/wjAUwApgN8C8B0AS611m7s7AXD0w76vlPp7AP4eAOwdHuNrnRCz\nJkGXElzDO8dYrF6W3wpzuJn4+89nD3H1fbn870NSjIt/ssLViXAklLMNOqFgHb758gq75wIb1le/\nj2IoQaKdz8gu+mwaoFeIWIp1+nVQQQ7rMkY6Zzpp0oEfk+ufCtZ/9l7I4hN0kQ+EeUd/rkb1WN7f\nRNRkSE8QkngpXjRwiIQrI4V9YhIcBqf0qMGagc39sYFOwDRcowCeiM54D3ZX3n/8/4jPfqUtfOEb\nUjD20s2fwbff+kfyNaCVuEBUZFhRf+EZqca+4CmklVzL7FSYn5zwex5CIum6kzEs5vStlKnV+RoW\nVaejukFdyinmWgFMpiQL30FNMtZmKSfw6M5dRC6LvOKH2BmJxfYHT55hkYvVUKOEIsuUSUbsTrAL\nnwI2pR1jupb5skoMdHbkt+0ygWJaryY1nZ/GW/q3qFpik8hvd282aCqy5aoMLtGLDu+zv/GQMPBZ\nJoDpkt5vuUDE2EfFCs6TxRkq62ty/zuASV1KaBMVBXWSJEFJGjczEitn+XCB9FIC6ZdputWzNOsa\nC1ZuBV6A7l3px1PK2F0Vc4R9WV798T0sS0Gy5qsMFpWwzU0CVB9P4/mTuA9DAL8E4A6AJYB/AuCv\nf9Tv/6AU/ed/7Et6J1BA3UNJoEgXCfQtubHF1SmWEwmIDZIarw5kIf/B74tpHD8+x/NSzEWvdjDK\nxU148O0FdqvfBQB8bq+HH/9pIV+5qCQ6v5g9xudGvwgAmE1TqEsxg2dRjE1OtubxC5gWko8uyh8y\nXAofKEhZLnp9CURVxQL7R/J5j7l0YzpHNJfgY6xsRFeEu6oYDgNfQ0EJY3k+xXwgoKHe7Kvo3Gih\n2TZa9VCz00Waymbyv/3Bt+S6lw9x88Z/CAD4ws+8iOy//CO5YPNBsEk3wnUIAA6Dj0u7wbidjO4A\nWSrjWaynAM1W/W6KVSILNmSAM/AdzOeyIS2tCscjuf9+EKBoc/PKgUpI9z6Qv8MLoEk9V4Y3Mfyc\nuBKzX/tncBuZ/BfIMIhZr0ATP69dOIUsaF/dQu4zOj+7wJ7PismxteUlLAiK6owHqHcYhZ/v4HQq\nc6BZxNv6kG6ooRpu1NxAJ10XU9LBB8kSV6b84f3pKWruJTkhyossBjFkqBsfNenT4JkwKXScLTd4\n9Fw2AEUklOcDrqabYPegSJij4xNEj+X5nB5bOFy29REtT+YY93flAFh3QtSvyXxLkWJnJve9tito\n6pTiI6KdP4n78PMAHmmtr7TWJYD/HcBPABiolqUTuAFQzfW6Xbfr9leifZKU5FMA31BKBRD34ecA\n/DGA/xvA3wLwq/iIUvSA6FjUuYmUDMd5v4Mil63tcvYaktdkx8zcKZpHYgl4sQR41ipHn2jEe7u3\ncIfpnYPdERYPSdGVeHj8VPQi3vi/xJw6z1b4xZ+iaEj+APOnYvpt3ACKVkr+1grzOdmDW7qrrx9/\n0PEfzPYohZr19EZioCYK0SesdXd3gP1dXneZQ7F4SpnFllSVHLHo7z7HXiEndN84gEm0oWpC1FQR\nLpcmTp7Jiff0bbFA1KCDGU//83yF+0M5rd6oP9CUqBVgECn34LFYQS+/f4Ipq/3cpkIwlH4eh32Y\ndA9C+xDpTKwCTXdAqwIuqzIHFRCSYwB2iXwlN7PaZBiFLZ0cCVUXazy5lEDq8bEHtZFnma4ut/eH\nVYxzyrLbb8nYHxYZbo1l/A/dAMeH4vPl6xnit8SF9Pe7sFqNyZSCLasVFAN7gdfB/WNxK8u0gM/j\nXVUWIqINXT7HsvaAhcyh59MTfPc75DJYreG6LXRZ+pYvE3yHz2F4MIa1YID2sA/Q0hkFPtRNGdv4\nkmQxRQRnLMQ/Xb+CSVXqptiDA3EJntnA7AkxGezj0Rc+i8CVa52ePsPztbh8WVXimccUfr6Bjn84\nEvfPa58kpvCHSqn/FcB3AVQAXoW4A/8MwK8qpf4Lvvc//qhrVVWF6XQKJ3dQE+Qyr4DZQszPxWmF\nhlHmMtUoCP+9Q//PzVwsWOGYxqe4zMS9mD5VSHi9s0bD/BZFR8m5Z6HGq2+LyIyb34fNeEb1ygRX\n068CAIzqPVis1ItIcqHxxW3fxXtgTriuEVMtaPk4R3Qq/TA46bzQgab/mc83H/jtTYadsWAuBowX\nuLsOen2JsvvdDkw+qrJpUFKEdjl9Df/LP/sdGS9mEwZHn0WzlAnx7e++j5h6m4Glt7yFrmuiA9Yr\n9GQCPn73OfRew/GJcbtP7sa9IWxCtzeXb6MkgEaZ0je724ciFt/BGTQj54urBtO1PD+zqdGQXGb6\njvx7Mn8fS2aPuq8dwY4Fpn4ap0jLVmuxRsQYhf2YVOdujLumLELnloEmYh3A7CEQtdWVPurbdIVC\n1j5kDUDXoI6XsMJWTSoHMrlG2qQoCC4zCLWubIW3L2RTePPyHE8vhGVrUVVAC5dnbMT0FB5eSdDo\n+99e48Vb4s4YMwcB6xZqs0KX9Sj9XelPnGosnkjtzno1hRtTTctxUQcyHwb1CtNI+tHi2Jpigndi\nGZc/ee99bGoZz7poUCvZZHWdoG5TNx+xfVIp+n8I4B/+qbcfAvjaJ7nudbtu1+1fX1Nafzy00/8f\n7Stf+Yr+o29/GxIjbynPLFTkxtssz/Hmq78JAHjtrN5Kn7uURPMurvDwQgJjv/XuW7icihmZRTU6\nDs155WIvlFOs1W8ITAsxA3CWWSPlHrm/00WHRUxNbeAiY0EJK+u++WN38M5znpiWi5t3aOYf9LAT\nyDUu35viyVx29sFITFmVpwhZGDTqdLFgLr1RDeYLOaHWlEjP8gw1C1w818V4Ir8ROgF0TQtqE8Gl\nNdEbMXdfrzCgVsLwxl38/b/zHwMAorM/wsO3vgMAKKxj/Fe/+T8AAN79DvEBywIp1YlvDA6wT5cn\nL1PMCZk9WycImTHZ7YnZCsNGyb8niyViVuRt0hRz9j9vSlSsjhwP5P5vdPvY6coYj4wMIAXZs7jA\nOXkgj8YjvHRXfme0Kyft0FPIKDn/LIqxpHXgKgMB6dhsXWO2kpMy4HWdjo+qJW+JI5QM7FbKQrcS\nq2C9WuBiJWN7RevPP76D218Qeru/+VM/hxduChp24HVxe49cDvTL0vgSiimsKLnC6XsyD9/+k3+J\nZ5T9WycNnrwu7u/VXKwO1DXOGSjXsUbHkjE2PROK87POc6Ssjm2zF7muoIlc9GwffWaimlojz+Q5\nLFcrZBz70/PZd7TWX8GPaJ8KmPMHTW1NcQUArDiL1leIa5bQzjQ0gTxXD8Sffm4kmDKFOFufIqUa\nqak0EgovOm6DZUtgYsrkMRobKWG3RZkiJM6+LEoUHWLYCxNO0/IL8sEONe7O5eE/7a9wbyCuhmMv\nMH0kiyyKV5hQ1el4Tz7bM/egiFsfuUeoj5l9WGu8borv6LfU6cEKUUwtSbtAyA2pVhVUIQukqhYY\n5axBYAouPq0xH8qG1bU+h8Zp73+AeUfu9eq7MxxsZEIvGZLePS4wcsRXv3O4g4IT8DKeIz6TBWYl\nQM1NtiEpqakaaLQiMx42FO81TQWDZmuV17AZLMlZD7HwTPQZczmfABOmYk2rwkFBVqg9jZfviPrW\ngOb+ZpnAt+lb+13sEfJt2zYORzLe3XCAJJEN2XBkoezsBqgTAo/SJaac+T3fgsvxPHl6iu8/k4Va\nX4hrV7z7BI+pLPZ7uQX735PNuRsMt0phuiFLl1HC45JynB7KiMxaRYp6TvBWA5SxmPmzhTwnx9iB\ny4Vb6nrLJdlVDTQZq2rDQkWmmcIgzD3PUDBbZ3UM1IRNq8BDTxM23VmjTK6l6K/bdbtun6B9eiwF\nJbtoG36vqxSLSzkR3nv4Jt59ICb86uEZZrWcjqdT2c3DElhspAhqqKbImUtWVYOCAJq6KLDkTjps\nxGJYOyYMnjR50qAAC3RqhWPmmB3TguUwd00tQuvSwYNYTlhvCLzzjuAlUl1hU0jAT6/XOGaRz54n\nu/YkGCAYMuCkfbD2BrGZwZnTXXFJy+XtosuT3apiFATbLGYbJKxmbBwDESswrZX81spJ4ZHDMbua\nwaAQzcnUxMMHAoX+P/75I0yXJLCx6DLdGOEFU07BycE+npLCy8lzRORlhKUQgicej8lFoWCzYAxN\njXsH4io9m55BMYKfzxUagneySn5vE1d4TLj5vcLEjOrSutDIGKn3hhZOn0q0f+pRGr4431arKr+L\n2/sSzAsqD/09Uu9ZY+ySJ8LsiQXiBIDdJemNe4QbDGAaSqEkAMp+4S5Wa5kPZzMZz7N8hsvXZCx+\nJwdu/htCC7hTdXBv0uU9tdwbNqpMrID52RVOWaz03mmC6kzmchGMsCF3o8GgZu2u4Ftyfx0L8GyZ\nn5bZh1YsILNN9Mk0XVGXMmmqbTHWerMB6RbQbWysW7q8TghV/CUGGv+VNq3R6Aqa0ftpfIrvvS4+\n8JkNPPu+3OR8vUJWyACnpDp/tlxjbFBS/cYIeyTFOF2uUGqZCDkyGPQdNQlMd7ojzPkQTZWg5MNt\nSmBZycAfOT3YjvilNvHr8aLCiqw79YMBLmzJMmSbGAcDWdyfu30XX6EQ7tdfFkRSODRgWQI2mc1n\nqHivrnmMOzck2n95JfepigzE/mCRrPEmN8iTd5aYraXPYdBHRFJOc9rGL3yUSt4730xRsk7it197\nE7/xK7KJvvnsGXaIjf/iL3xT+ts7QEjuv51BiAFFUx+6PVSW3N/J1RwuGMFnijStF1BKFs0g7KIT\nyPtfvTfCs5n4zn1zg+eMr9TMeniwoFvFqrUNMA1pWSF0QNTk8hYuQlYtPpfvj/Y99Puy4LvDEV5g\ninPk++gQFVr5ITySwjpMG5oDF5pktGZToi7FrSjLFLkv3+vO5gjuSmpwvZLfm2cZsqckoH2/wpvf\nkzSq+Y0FvtkIcjZj6rzarJAwc/JscYI5yW2nj0tERLX2zQAdblgx63yOJgPcuyWI3SAAbK7u87RE\nQeBUmQIROSh7QxnDzqmBsxUBTbpBRe7OokhgkIjFN3wYQ8p9PcZHatfuw3W7btftQ+3TYykAMNAg\nJ647f7bCm0vSbT+Yw+jIsZk/XqGyxUQNBxJYipoU9UJ2yds3jpENZCft7dl4/v3HAICLxdWWH7Ek\nL2N1FW8DcUlVoiLWIS83qC05aUb39xGwSs5gwOb+yy8gpcjKm4/fgGYVYelbIEcKvvTiHfzMlwUg\ns7Mv+HTDWmypv3wTaBqB/FphFwe1mMH3jyVqXE4bZLUE+J5ejBCyvv/syTOcMdCamA7GZOeoSdXu\n5DYKwm7LOEPF03i4eoy3Hgr/oKobDI7lZDokJfmNo304dBN21D4uR+IGHTp7WBUSfAv0BBekR5u2\nvJN5giGtju7Ig82xKmYpxuSnWGaAzSyXoqmubA8Nx6KoE3SYu9/f20Ucy7NeXU0msmYAACAASURB\nVD3fnlqqy6yNbeEOKzsPbvmYMAsSOhFMsmpbFmDuSyDV9AgKs3vQPNG19tHQFXRrEwFdLL+pYNH1\n+vJG3IRkscZjU6y0al3i8R++CgB46eilrfJ4x2YAuonhpWIprVML56+KhdWYH2hUBpbCiGUsndvi\nrr20t4cbR2J12OYHTMzd2RTPLsRtLjsVmlhO/yBhAHrXQKJlvpyvIlQk9XG0D4eBSycE7JLknB+x\nXVsK1+26XbcPtU+JpaChoaGUjYoMzedlhTqS7k0fvQOfvv/nP3OMs4xKu/o2AGB/Z4IeKa68QRcD\nBpSeuCncUzkdkijacvKXRDkqM243cDhKtbQBqOsSKZV/y6iB2pUTP/RIOjqw0RkIj8Em+SMUlFUb\nexN88UCgy3/tqy/i4K7I3pmtirXuQ3dIGZbvoi1bbAoFBPSBC5LHZhdoYrmP0W4Dt5GCoduHc7z7\n/Iz9jGBkFDvpM7YQGlt/umwaRKkg5WbTG4jo71qeu419GG2hVHyCw5tyWumugVsrIb8dHq1hUWTk\non+Bw40M0rkpvnUwMBGOicI0ulA2U5XjFSKyVfe9D6rGVoRXG10XNgPGjtqgLFvyWwX3psRgoucP\nYbD46TZNsH7g4cax9GH3YBdeW7XZTNpMM0wzhMngcKsgrrQCHDkxdRVDNUQjWg0MBvMcfw6XrF63\nj4huffkl/O5CLKWz2RqzSwnWbpoUms/PcsRitcMBMhZzNZvnePxIYPVNPMM9WmbdnoGxL3NktCcp\n4HvjCWxar1qliMmt4BQ9xKSv21QFGsLXK8ZAdsIebMZfigcl5hRBatwaDVOVRaNguR8vJfkp2RQU\nFClAtCUPv9gAF9+RjMIsOsFdgma66xqNLQ/uZEXlomaKZ4zMHq9CxAwolnWKiIPqmw40tf02pWwU\naVrA5qSxzA4qZi2aRkNTKPYy8tDJWX3GCHq//xlcWL8t7+U5GobiXaPGz35NgC47B0ewWBdm2C13\nngFN7kOjFwBUBWoCoGFgT7vyHdvvwuKCDbMSWU/6djjeRdilpuDFCquOTJSAZnlaKASM6ie5iYrm\n7BuX30JN09jRLnJWaOobsvl1DIWKY9UxNJqujMv5uyc4o3ZhvVrBhrg8I2JtN2mFes68+tjHYCLP\nr8462NvhhvNWH5c+qe0dcYm82oPJyW0gRUP3wnRtrEkntygKmCRtcRu5/7svjNBnMNPLbTgdckmW\nBRQXpOq4UAw8b8EElYLqyLgZkUbDIDWqGsqnlHwQICBUeBzJ78Z3LUxeE3f1Mk5xSZjz9I3ZlsWb\npQ/wwn2sWRvy6vfewXwjr3d1A5cl3H3fgUlW8MNhq3TltsJbqBsFhwdSbtsIea9ZZsJiFqEgTL/j\nd1FW0rdxP0GeSt+STYmCWId6oWB9TPKza/fhul236/ah9imxFACtAY0GeSw73Lun38E7jZhq99wA\n+xNJ2cVZhccPpAhkvRTzLE43eE7E46w7xDAUS6I/CnBIFehxECDmbv3wiVSyrdZX2zywr2ooogk3\nqkTREL8w+2OszljNOCBqcJNgM20JNAy0pvHwcIJXbspn3WAC3cgR0mx591MglP7oxtiKyOhEoSFa\nraY7UChsA5+lTmEWstt3+zuwmWY1zQwb0rdpR/4+hA2E8nfH1YiIpzjP0i0ZjEKBKY8mj4FKPxzC\noMn5+J03oeJ/IZ+dTbF4Lv3PHWDsSlrzNnkjFmYIk9bNsLtAV4spnVYRrI5YZi/c9DClTN3JlZzW\nyrNgMGVnFgPUuaQAVaZw1ebvPWtLj6a7TLElFrxDGePatlHNWHSlUigGNpvcBFgQpOjawbMAaqI0\nOgFIfqocD03U6kVUsJiuRiiWhBn1MaaLorNmW9j1ZP022jO1rWxVcPAkFw6Md7KHCCiRd+OgjyF5\nJDqhi77PFC6t4iRqYFA9vKksaM1Io64RBDKelblART6PBTEmnirgmwyq9/a2+BWdzBHTTUtzB5Zu\nVXI+WvvUbAoAgLrBmqKks3ffgMfagEF/iOFNidTWb5xiRCagB6lM0LP0g5z+eRTDpj84qm7h3j2Z\nQL4ZICVOfNCXgXz3nRLLFU21qkYr4qPKDxZ6mjRYLGTz8QoSYZg2vFxmmDLVlpL8lS+/gv7ubXnf\nUgBrJhqWRcNUUNQ2hK6AWsxHbcRoKF7b5C1IR6FAK0DrQBFk1eu4CFi2nOliW2th+zJ5FDK0yuOm\nNjA6FFzEK8Mx/lAzeg0Xu8yS9Grm7nsTLB9JhZ+aKlxcyuuZq+CHMvkHtsbxC/L5Q47rC8pDwQ0t\nCH1YhCvHmx5qMgvZ4xCTqZi5pvcYADCP12gSGfDOjgtVUI9ytwvzddm0HaPB/r5sLDuDEe8zQDUl\njL2nUIBgL6cCNmQ0CtZoDC5Yci1qOABLkqFzNPThlVWCGCvo7AO6/nZz8N0FdoeSyXCfatQ23Zje\nvQ+o/QmVr+sC5ox4CydBz5M+Hx7bCCrp28jvIDDIME3AkqpqkIgZplWg5uZtuGorBuPaHZiMNYQD\nllxXJjTrLkxksJhpqdYGaq4RhfiDTeYjtmv34bpdt+v2ofYpsRQ0pDpSYZGJa/DksgOdMYd+dw+9\nhDno452tzt89R06rbpZAx8x/eyEO98SMvP3iAQ57rCIM+2CCAgf7cq27owG+/4a4KOdRtN1dXaxw\nmfAEsgHHYJ26JgQ2ewSTyD5lWwgJY/6FW5+HScbner2AwXr7RjGImBswHHJiaQfgzl82FTTNeEX2\nYjup0NIhG34DM26LuJZwezIu+vkHLMm7PTmJO9YaBoNMKzTQhVhebucArsdT0Ajgap68lDU3llN0\nJ0TarTcY3JRx2w19dMbyvbC3h+5YqgTdIyp/lwolUXdVUUDzZDb0BjXFZ4xZhqEvFsRdskDr2RoZ\neQP6jYsylD6HZQ6H2aM628CgUEvQMNhbKngVBXwaE8phheJGozOZ8l71Fgpd6dZdaaBYYKfqAnXT\niusUWwo2nV4gj8XiKmsJEpobBwOqf7sdExGtgtLrYsuwQ4shqRa4okL3kXUH45uSJQqUwnBItW7D\nhu3TJDXkWrZjwqCuRdIomCErNItd9APBi9Sxid0dmZNhhxyVWYZTZpTsskaHLmTHNVEzawNDwfA/\nXqDx07EpaABaoa5qWAQIjZoSNSm0+90BRhMKpa4VXv5xSZ3t5vRfp1eo2miz0UHoy4TeG4/gcwBN\nw4JDf707ECir+8UJdCmLYnj1AMSz4FXrfTQRcfupRr6RaHiVyWSdhMdYx8J9aKKGQcBOv8pgdeS3\ntRWhbKsy27Sfp6Cp+Wj4CkQHw/QUNLME2pROGIYNh5qJegOUOzL593vHGN2WmEn9OrAgf+SLgZC0\nJImJDglo3aaBRwLPXt/DmOXC2gU6FLLt2zJZB7f6cLV8MfhqH7UjfTdOnwETGS8j7cLclc1Ekeq8\n0RUaxjXKNAUIFQ/HXegr2SBWXoIbjA3c5qZhI8JrmpqXZQJNRa7+8U101iQyWTQwcwrN0AIOuwNY\nTD1aRgjHkPE2QsAuW2HaAUzeazv2TWyhIfehUQ1QN7LojdiC5qJXuo+GdOgZdS7NkcL+UDbAbt9G\nxhL3iPT7ALbCxOWmgmJ84jDswPEoPuPXsNpK0p0uTMKtW7KU2gSwkPGp/RwGuTJLW6PjyRzPgwb1\nhmpghOAXlYKm9IG2NVwS2vbKHUSNZIwaZcJxP94yv3Yfrtt1u24fap8OSwHMPtQaNoUbOzdDOMPb\nAIA4X2OTtpTVNpyJnB57rI+3D4YwCBMurDUskmn4fWebAYiKFU4fycnkjgR2vNtxEd3n6ejdwtOF\nWAQv1cc474jZViwMrMgtUHHnjxoDG7oSqrbQZ/CwGIVYPxdsRWgMUfF02EbZXQVzKDu/VSooxWDl\n5oPsQUOXoTCBBenMpvM54iVBTwMTXslIdtBHyYIY35WxuBkEqAndPs2XqEm2EaCHm2MBU10mz9Eh\nRNwNmH2ZHMMvZIzt/R0gpTvz468AhNdivwBSaqObH8i8VQE5AKMITeui5D40+RM77hI3WM13fkEp\nvds2dqnKvYk2yMke3bNq7NKl2dE1/C7xFC6zT5ukhXcgW8Zw2hN40MHwloxLUHfREIZdr3mi2y5i\nkig0wRp1WxnZHaGeyj1VsYmSwe3Kk8/GFw6Gntzrvd4ezvnZ995/HS0IomagNV6fw+rKM7v/tVcw\nf4MWyCbCirwepgd4tJasXRkfXdkwumJtuHmGgpHiOK8xZ/HbYr6GSeus41Mp/LBCRar+IktwOZXf\nGHZM5CU1RJWG1n8FtSQBAApQRoM+TeO/tvwpvDt9EwAQLBJETCdeXM6wPCc6bklFnB0XgSsDMu5X\nWwYaJ7MRc+K9+uRtfJ8ak5Mdqd477BwhI9FTkSbwIQsz6/ZgJKR1VwViRolLApqQmwD9aMcx8Llj\nifC7lkbCSZUPPcRLkoHE5PCLFAbkDvS9OSy6PEZTw/CoLcEOPb94gG/98dsAgIeLxZY7MHBewJTm\ndVXksKjXaHPzCycKK2YwMK9R1bKgjwYFDu/KYrtffRXeEUlpaA4//f4J0gvB9Qff2UFOoNbNb76I\nIJAN1+40MFjvbbDasU5SRFQmevz692D0SP5amvBDeV01CVYrjif96PjyBFXKlJFXbMe2s7OPvZmk\nJz0zwOfuCxgsGImvFZ1FqLsy4WfZFWZnct164eHojpDu3BkOMRrJb9fUdNDeGDNyW56fvo03Hkvm\nKnI1Rq64IAc9Fzf2Zf653PQ2+gr7Q0EefmbvFH/8QOIEk6b4gLOXm4JqFD5/LEjQuM7hjiS2dVG/\njvkj2Uwen1+i4dw5fkliYjuj27BJklMuU1RtuXTTICmkz0XZYEj2KZdjPwj2oClFMD9fwzJY2bmK\nt3Or08mQrK5JVq7bdbtun6B9eiwFXcMwLZiMlIaHx2jOxfS7yJ/CYeBnnqXb0y0mIUn1vIBbPgYA\nJDdv4uZNqVWwGxfPKLzx1htPcUGq7jWJNBb9FaINMQ2hDZsAmdDr4u5Y8Pcn9nPML2nuhbLjTqev\nwSEuYBwe4ue/IXRsO+4RMrRCHytMaaVcsh6/KGuMV9LPm0MfwVBOimCyB4MBqoszOcHeenKKbCMn\nxqRnYLgjwb6p0UdFvEGn30HIgNrhWKL6gVViTQBYbRTIcwk4TfY+ixv3pA6iGx2jzqVP64n87ux0\nioochw9PnuKsFBBO99e/hy+Ro/Do9m30bsjph6nc2zq7wtuvSgbnvdNTGD4zO+PPostIqgcTOYNn\nA18Covs9jeWKZDCuicsWRFZtsDcik3SgMBlKnxpaQrG+QhOJa9dowGMFqjnQsAmhrpILnCaCERke\nS1DaKipEuVgS33v+BE+JdRj5Bg5eksyNZWgsyX+oQO1S7aMilLy7M8YOsQe7Rz50y5JMmj7nwMeQ\nlHbV5SkyxWs0NkYT+Y3pbINFI31bvCWW6+1BhJv3qfQ0nCBL5D6S5RoXF5QjuIqRPiB+o1Uk6wY4\npBvohB0cGMScODMsScqTWApl8PHAS9eWwnW7btftQ+1HWgpKqf8JwL8N4FJr/QrfGwH4NQC3IXwu\nf1trvVBKKQD/DUR5OgHwd7TW3/3R3dCAFgJQn7LNKR6hodRYUmd4tBCrYbGIkNjM5ZeCCfDrGtNC\ndkN9eQbH/2kAgON0cDITXYR4sUGHJ+GK/mt8OYXdeoa2i91KduDJcICE6cCrPMVwyIozBjZ3HR8u\n8QY7kxDBPoVaghw8aHA5neH5CQt7MjlpDDeAorgJmhS7WnxxZzRuQxR4/5mcDCdXM8TMwT99fI7Z\nlZzcUVYgIptSUq7hDeTkbjEUtjuC6YifrWsLHfIlPN28Dcx4bSPH3a6c2Lsj+qSFiYw+vnlziOC5\n+NnzaIn3zuU5eN0F/IMd/p7EQJ4+yvA0pi/rOkgJlX7jze/h6FzGcD/o43DElCuL2awhYKYSc3Gr\nCl2S1HZdF2tbxsV3GhS1nKrFXO7v2fIMDx/J7z3LFKDkurdu7sLI5XRsUMAjGvSQaMTlLMWDM7Ga\nbMPD3mflxE8yA7/3rsydQVCjQ2Ldo5G1HR9mADEa1vjpl+V6N27dgq5bfQp5Tl1rDMske3jdIG3E\nmopQY0McTRk6yCKx9OYXLDQrfRx/ViyF3n6AiuN9dT7F5TOyMqsG5wt53cTye72+jTgXi/bWYRdm\nzfltpugOZIyKvNpWTH7U9lHch/8ZwH8L4B//wHv/AMC/0Fr/slLqH/D//3MA/xaA+/zv6xAJ+q//\nqB/QUMIIrDWMsmWsjbD/WWYZzm/jgOy0J6sLVARmmFpcjcrMEJIhN/BcWKQI126DmjLyR3d3cGNH\nTDsjkIlZ5pdwSAPmrCrs9cXEW5ce1qyknHshYmLfR7cZ4Bm42CFV+U9+5T7u3pYJ1rUUdnxZpCMn\nxoT0YPNUZpUNBwHZeZt0DZOmtl0bUA6hwrtiDu6HGSwGkUZugIsxeSWjKS5Y4ejpfWhWhy7pDhzC\nwKQj95m/UKIktPvp4gzzc1mE9r6BUV+EcPe4WCepgYQ0brUT4MbnSArSu4Halgnd8ffgNOQJpOJT\n5QAhA4q3wy5SRs4fOI8QscR9uZrjyBX3ZpXKuJp2jpf3b8s1dIJn9Tt8XWDFsXdXXUSmjJ1iBeek\nE0DfITDnKkMVtbybBW7siZvjWGvYxKT45EO0xiMcjmRcdswl7EMyYjeHeA5S8i0VdhIJ4r58Vz67\nzEwsTqVvB66J8tZPAgAGox7quoUS83mYHoqaRC5WhCEp6wwjhNWjFmZpo3tT7rtDUJs38DDwKRqc\nWDBbyLPnYu9QNvUXOhPUzFCtSO0WNjZMEqsc9HtYkttSaRdRvs/xnKN029qbj9Z+pPugtf4dAPM/\n9fYvQWTmgQ/Lzf8SgH+spX0Loit58LF6dN2u23X719r+ooHGPa31GV+fA9jj6yMAz37gc60U/Rn+\nVPtBKfqbx8fQWkGpBg7zw3fCCVYHZGX2PZS3xBQbvhmgYG5+w/RY3buBPZq+Ti+H1yEFl+vheCS7\n67rzWQwGYiH4hM56+THGJM90AZgku7yI10ifyQkTeA4+vy+n3OBIdt8fu/dlPHr9e9IfT+OY1Xle\nmMMl5LVvT9AlWelkKYGjRpfQbsARcGExYGg6JpQnfdsnPqLv34JHXMTLNxTitVgCp48mSG9Sek4F\neLSSwGS/Ju5g7aJ+ke7MEx91LL+XXi6xpGrxN25NcPMW4bh7Yn6qno/8TH7DUB2UBclIhw40IebB\nsIDN+n5FWOHB5C0EnoyPHfQQjsW8/onlGFgRY1Bm0Ey51gykXsYVmpxB5dBDtJL++8EIZvIOn1+O\noS+w6jxk+tnrYMRUX6jeRaZpWSZrKMiJ2A1cqI7cq9kG38Ie9obk2RgcbE1/a9TgRiqWnjdQ6JHe\nzXHkeajkLTixTO9FU+Me3a3u4QQNqe4sVlQpS21lAVVaY8hUp39cI7kgliWvUDJAad2QcRsPhuiS\nW0GVGay+jPFB04VpHvM+QuwMqcPZSH+sxITNAi3H9XCVyPPzjAkuCObYnxfoUp7utyEUgj+qfeLs\ng9Zaq5bL++N9bytF/+Uvf0nXuoCpFZQng9ffvwX7jLnw7ikUhVrGXxojSSmeuZAHG3UUZlOJOVhO\nB1bdVsgt8eKLIiaycqbwlhRO6cu1dhyFgFyMTdEgI/V7CQvTQ7n2S9Vn0D2m6o/X0rrXuPeSTNbx\ncAiH9Q6O8sACRqjQhO0ImMajiV+sNRDStal9oKX6hgGTNuPOvkyC9XoGi0Auf9fGmOI0O/0OElbO\nXaUNNg8JcCpk0/xsdwcjm751kCHSYg4vCxeVzxqG7gHGoWRoTJYWB56H3m3JcMCsUaU3OPYaVcb6\nicqCzlqYtmx0o8mLcOm/ms0QwVgmtNXfhaL7k8dzxLn0c1JQX9G+RDpjPr5roDOg0eok2N8T47Lb\npLAsWSxhRxYQ6gYWwWD+rfuYm7LJVGUXAx4G3n6I9CEp5enXB34Xh7dEAzTRl2hWsqmFexZczl4j\nKqD6dE1Z2Wr5d2GR8SibLWHXsml4ni8l2AAU1cSU0rCINwjcADkXeqcpYfnS/2QzR7SROTC6QZ1I\n20ePS7EoPVim/H2newAnZDlrYqNLl9XmRqeyHJr9TLMCoZZ+eJ017FT60R14GO58vJjCXzT7cNG6\nBfz3ku8/B/ADkszXUvTX7br9VWt/UUvhn0Jk5n8ZH5ab/6cA/lOl1K9CAoyrH3Az/vymNVDWyMsK\nDvkBLFfDJgTXbEyYRGg13QY2Cz8s7tRmkWPpyS4ZahO9XTGvmiSGa4upNqpCuEM5Pcaswuv53bZQ\nDZVK0VCX0DIbHPtyyscvr5EmEqBbncuJePylv4HX+Xs9rwR8msk6gWa03zRCGL5YIT5Vq027QpWQ\ni88N0dD9cYMeDMKbFbUP8zSDRRo33wLMiZiint+Fw0j2Sp+gILNzyCDTFRaoT2Ufvnz/Kfo/Qegy\nVogIm7acAjV1Oi1fTjPLsmG2nAymDavLQGK8hhXIPm+rDCaDtHoj3/e7BiyyMjdNBadqeSBDaIuQ\n7dhFFUvkPKfJXa1MLD15z1/GW4m1TmEh5/PpBw0cchDmkYx3EF4CpNtzkgB7N4Urc72YwWJ14dVV\nA91Sy5GuzY3jLemLV+5AdeRZBrDh9OW+4ZkgAhkNYddKBVuXwuzuIKF16rgZQBXvVs/RcG0oi1L2\nvo0gYJVo2gV44FvGAKYpFmdNjoywO4DdysM1EeyYUHHHh03i0MLMEBK9GpB/srIspFGLqyhbgjlY\nZYjuLq3FWOQTP077KCnJXwHwbwLYUUqdQFSmfxnAryul/i6AJwD+Nj/+G5B05PuQlOR/9FE6oaFQ\nw0Iaz2C2TCeGiSpjBVhSQDctkYWNhqCQVmuyKBoYS4I1nBwxfWe4CuWcBKxFBDNodSplEhRVA11T\npGSVIeMiTVKFrCUgbUycP5eF94DS8abdYOyRpztWWLCKcuQq8HnDgAaYMWlYko1aQ5G3URcNGir9\n1LkBReJVRT69sixRRLJoPHsCVbP00VnCZHluFVXIY46FI9cde32cEphzeRFvuQgd128LGPHo6h3c\nv0tBWlZLqqIDRbMUbgNFYg7DdICWkMTxoQj80i1ByNqEIu27oSuYFGpB6UDXTBOXBXK6INma9PRW\nhorclmeLGMsryqwHGpO2rHnZxeMzIbjprum/H1gIlDy/Gg5SkuRow0byWOZOamqkJEkJrshBeXAD\n5YIpwmoOz5TXpvcCUNLny2Nokuc0pMlvsgB1j6TAlYWCJajJZYqaY9Rw0zcqvZ2nhqVhkcmrQYqK\nBD26qWBZravA8u5Eo2AmosgbFNxY82wJi8CoUuWoS5Z10x3VTQFNbs+sjtGQqUvb2KYh4ziDWf4r\nrn3QWv8Hf86ffu6HfFYD+E8+Vg+u23W7bp+q9qmAOSsApmnA2pRIuEM7joeKxCPlMgHp7NCkCUDK\nr3QhZnJZWlhdSVhjlsyge3KK9Y77WBUSgEwzjSFpd+MOOQfnCcBccxavEVMU5KJOkaYyNFWdbeGq\n4yHl38IOhjT3pvUTOI3AnGGb0LQKmlqjJUxoWjxFtIJJJmalG0DJqWpkNYyWX55BLa1rJIwg97IC\nFiG8ShuoKWqSXG5QZKT1hpx2T9drPCNYan2WwiQL9lEQomNTzbnoQVNtuinkFNRNubWalDWBjuT3\ntKEAmv7KDre8B62YZGNeoaIJouoPAl+6TNBwepVlCtQyBtqS391EKUqyEvsGMKaF4YZjKIJ0yrKE\n27SFSeL6DJMeTI694cZInkhW4vxqjUzLJLmI5hi2kPWRmP7BWQaD1Zxp1cBsC+GMCG7V0pU12/5X\ntALyagpbk/uxzmFxvA01REl9ACtlNWzPhK75d9OGadOiaVZQfGam46Eg/B3kbihjDdA6iqIVopK4\nFl8h4rWTfAOjT5q2ilYqOtiQT0NVNpRLXtFcISHz846n0B0f4eO0T8WmAAUYBqD2A5w++z4AYNc7\nRjQnz71ewqHPaRQaObUH6DaiRI2VKYPz+p88wsmemPlHi0O4FBg1KhupJ+Ck+ZyIOUMjI7pxXURY\nJqR+t30kvLg2G+zeEPz8hhx4dROjT+2/9159jCKSTcboTraAFtPIoEn6ka9lsSVxDIOL1yyBogVZ\nOTbsSDYeRc695dNzzEm66rg2RtwgK6WxpAk/i65Q0i/trsV3XjgFnr4tYZxUp9C1ZB92XzrEC8+Y\nyhv6iFdyL7FN4M1qDafXrpQKBUudy0YBdAOc83yr+dh6RECBYs1KxLADPZWxtYwKVSp9S7INVnSF\nsoVsNmaDLfV44BrIyO5kIodD0djZo6fIWvJb9vNiuUDF15ZfI4u5Wbp9XLE+5o3mFPZ70v/v7UlF\n7P33uti/K9e9tbcL84XPy7PZLGAy9auqCCWzMWW7aRoBCqZnC5QofFlgG7tCzoWXG4zVRDP0mZ7V\nhUZFBqw8yWGw/D7KcsxW4krZjBEYhgLBrSihYbgtQ5SBkhmxrHSxoatoVvJM81phviGESJWoSN4C\no0aRy9iPBwEmN0N8nHZd+3Ddrtt1+1D7dFgKUFAwobWJgnwEq8US81iq2tQmRoeUUk1cIGMQJSJx\nRW30YZisdOudIic9VqpMqFROgV7PB2n+kFQtU3MKTSr3TZIhSuX9TaPBNC/Gdwc42iU8mrBVpT1M\nW91vKKxZdxFGFwgCcjTGGhVPmyKlUItRQJNxuDRr1BFdDReon9JsNeXkO5tdImvVh2camU2rAR2c\nT+WkmF2uUXAMVqypcBcHcENGsmc2DIipaRoW7u3J61m0QvZAgqND/RIAwO9GaForpzvcZgnyqNhS\nxNW5jYLVnCVdlFSlMAwGZesKlcs6jxooGIA8fX6JS/Y54liUysSmJhdCnoNGEYpVgsVV6/Jd4Jwa\noadn4h4edExkttyH33goyZUZDvs4pML0/OkN9O+T+ZiW88AMYPTF4pvcxHu3swAAIABJREFUugWb\ngJ5m7iCZkdvRN1HmchpXrZs0dpFT6SradbCZ0k1dj7FzLu5rRJGdXqeLsNX2bApUkVgQSZRBJzKv\ns0oh5bVbns+qU8PUbcVlDUULMtFA3nJCokREesKK1yp0jSu6JXZWw+8ICOv8/ALnG7EWnd4e1JzE\nOB+xXVsK1+26XbcPtU+JpSCCGrYTotsTfMDV/HVU9LPdfANtSQqtsjUUa+/tiLJxdg1UPDH6IdJL\n+sBDjYCpOhsOQP+zbq2OukZDoIJjGwh7Ehja5C7sUk6BL/gT3Lgn/udiw9MzW+H5XE65aeIjrckg\npAewSGJq9DpoWv+UPis2Bhqeqm7eR9anPxxlUJ02qCrf6fV8BKy+sxvgcs1AlZEiWTM9qzyAvv9Z\nI37qcHEOh0G7o719gJaH7/VxY+9r0o/uq5g9kjG6KsTn7pUDVAySmU0JrYlfGLnQjOE0agnDbAua\nCB+uFDQLxup8g4I59CxOUBCxWVcZWumBgjBwszKQtBWjFZAv2pr/ChtaJqssRG6IRQO/JTbtoCJ2\nYbXQyIkR8OIEnUAQgl/ofAY7+/J8BrvST3+0j82Kgc/CRn0qJ6k76KGIScybGPC4JDRVvKumu0Vv\nDotd6N5tAMAj9RApg4AXa6lgtQ4OkDCCqcoCBTkdUKQomVo0HBM2mbhATA4iGzkZlhorgWIf6rqG\n2eqmugYaskAv1jI+VRTDZODT6faR0GKJ0gzn5zIPd49CLC5bq/ajtU/NpgClYTcNhrvEi6ufwBR/\nCABoLhRMRl7zeY2GM2yVyo0v0w3On8uDvThZ4pIiJPNFhuOJTI7hXoBeRx703iHrBFwXLe/7olBY\nUEAkWpzjq6+IqXn3819Bb1dcgj5x/dNH7+PqTZlUz/EQHesnpM/7OzBo2sEqAQaXGir7xHGEgDBa\nvYlgMR/tOCHcEbHxPWpDpgppIb8XlTnsXK6lzBJ1l5mRaBfnz4Sy7fGVbGI37AO4VIjK0gBNSbfk\n8iFufkZs6Tudv4l/6f+W9In1B6mrtyW59TrbRq/7yod5OeMtFag4ZcKWsrwqkJMTM2t8pNwIq3Qb\niQRME2FfxpB7FJZ1hoI8kHaQoR/I9Rq/i82GZDCDCfKOXK8mN+Q4mGB3X/qchwWunslmcrpeYHYq\nBDfPH13iQPY6hKw1+Ux/icphSfKuQtCyXL8cYpf8j55dAHQt1UDG3mkquLsCkKo6I9zg5hSuvoTL\np2/JZy5ZWt9NUDrcTN0Smjga7dtouHnHmxJXVLXqlOTdXGgkBJOVZYqQbpDpaRiE4Zs6gCYeIs94\nCNkKDqtSe90dzOhKvL+eAiwXKM9OkXX7+Djt2n24btftun2ofUosBQ2gBiwFg2Zpf38HuhQSzEX+\nBmxCfvthgCRjwKWS1OPq9HIrlz4ejOE7cup43RBOJifM5ekFVj35TOjLv5Ogi5piKmVd471HQhQ7\nvUrxjb8uprbb81AxWGmFsoNPdYKokd36yfvvYfXTZAYO9oGE0Gu/geeItRFlcoo/PL3AZEady0kA\nc029vzCGsWElYlfcp6JOEbPvgVvBPpRA6upkjo6StFe+fA+vvy6UXpe1BMB2xzbcBevu3QUSiwFB\n7SGklbK/93kcvS2n/8z9NgDAsGp0B8KxkMUrnJ/L9QbOAQYvyftWqlDRXLVaqLlTYH3yGADwLHuC\n6hFJSQc78FuJvNpBXUgwT9FLqBsLE7TaliEyn7qa8GFr+b3L9DHshYy5x3SpiRwGqcb6/gDLUE7g\n6PEpPBZN3fvMEF0G8ZyxfC8peuj5YjXOovr/be/NYiXL0uu8b585xhtx55tDZWZNXV3d1RNJsWnK\nMi1KECnIlAX4gQIBixYBwoAAyYYBWQ0++UEPAg3ZMiDJJiybgEBJtEnabhI2W2SLU7d6Yg+srnnM\nyvHOMUecefthr4iqZE9VrcqqNBw/UKibd4hz9j777P0P61+Ll1vumTz50h47H3VhRxh1yLKlCJC0\nFeI+HAjmXeVUvgvNti4fcHr8svu83kTXGHOpcdXNZxUStcX47eUEuGucjY55QxRrbXFBHHT38eVJ\n5MaDWN6kzRmP3Ok/HE0pVOJsinthf6NJnLlxzoKMV5513uvo+JQPXpBWR7PkUOrXb9cejE3Bgi1r\nsnTGCiReTUhEe904rimHynAbVvLc+5ecWzQazBkO3EQ3bESrJ6nyZkUt5tswn9KOpCIiz7asDcht\nPX35BT73h64derMdcCAJ9DoOiLTJGLn7nTpnrnj/fFzzB7//BQA++MTDtASltmUTT8qjvZ5zVT/2\n4SfxcvcQNy7sYoTIqqIJkXoivKY2vDpl+IZagbsb+HIHeWifZ19zm8XnXniam+J8XNr17in9Y9GC\nZzlN1auzC+eEnlLx9ZTdC258R//WvShHsxd49Ck3n9s7PXw1AcTTjM5l933vQnfVr1EL6BX4JduK\nh9PnRjQS9/NOI1zFzLPpgEqYk0zqTr3aZ5y4z0hP73B8JJn1/IijsXvZXnjthGtN58YLr8bQn60w\nGUngsSHW5a1Nj4XGure/zcUrLg+0ceCeQVQGIJKSxfyIofpZtvKKuNSm32wzX3ZEvu6eR/xIRShG\n7KobEePuJ4xCGlpbvqpW1utQ6CVOdlsE6mEwcYtS5DLdhs+emKb91M1Pb7uDF7jO0KyakAjIZqqc\nynfr2g6neAKa7XRdiLK9vcdcebfR6YA7Ry58ClLD5lW3QUat63z5M9+7/eittg4f1ra2td1jD4Sn\nUNcFi/SYwWSEV7iTy8ewEPJwNBtQ3XWnQBRF+H1lyZcqys2KibT/brx6zkSuX5cmW9JH7O006HSE\nbhTJyng+4/DIncZ/9PzzjIcSTgn2Wag+HNQBtWrrmVh0Xzx/kUFX9faZ5SvPfRWAH/v6Izz2iNvx\nm2GML76/SriJJg1EHUh659aqa6/2LJRCS97VSTU5w5cbmWclgXEn6Y1pwOe/5lCfz738NKmgwqFY\nnStryOTiV2XJeOpConhW4cllnhxBPnKnRy3V5tMX4ULH/Tx6wqchJJ299RpzXcNrbFGoicuIBmxx\nNGbBkeYto7flOlQ9WzEWknM6vE4qUZOzgRvHscmwEq0Z3B1xNnXXeOHZl3j1FbFDv3jCDVUBLnRc\n+NTvB6CEW5JMGCuUOF3MQZ89mZ6T3Xbhihj2aLVjLrRdWBJeyNhpS3wma2I01unsiNmR+7ul2nNQ\nBfhX3Tja9aN4atgr65LJ3I27kAfSImCixi87GlIIv1KNFiwGbi1kxYyeukCXUnLFcE5WuXmd5icE\nAtQEhcfA0/tgLH3pmYSqnqW2ZKGE8K3jm5xO3TtQBx4Lze30cJPKVwXnbZpxPUzvr330ox+1n/m/\nf5vs/A3+8DO/DsCXvn6d33vBcb6e3UlXoqlFZZAXT6y238TE1J57AIPB+UpaHM/g+yqnVTUWIZJU\nFkvaLTYUnxkvW0Gbo1abXls9CuWMQO4xsXP3L178CMOhK0PdPj4kVGzcjDxmeiH7W12uPH7VfYZe\npOF4zkxQ6iRosVB1YjZLOR5Itl4t1M0kJGoudRQT2rVz4ae2JC3d747Gc9oKNy7subj3p/7Mj9P/\nsY8BsHfhGpHKs6fjF/j1f/6rANy4cZ2hMtX5VNntsmKYufkZphVlLVHdoiJUqauoLN6yy9Moxjfe\nSirTkX+4Xa+uC7JimScoWK4zFeP4Tqvu9pd+k/OX/w0Ar/7xM4wD91b/1vMu9/HSS2NCkZScBzCd\nqQRozapFuAp8coGvEuU+POMj7h3yosLqPnvdLk98xOWunvrQU7Rxz+rOLfcy3hmd8OqrLm8zm2XE\neiHjqM2f/6lfBCC1Lnz8wm9/lq51G8jxqGQw1cZZTImk4HXx0jV2D1zeKO65Q21xfs6Nl9015llJ\nrVna2N1lp+kqI63NmEOBoWodhpPbJ6TqO5kPz/B0xps6X4nBlIFFGkecv/b8V621P/gdpn5l6/Bh\nbWtb2z32QIQP2JqqSDl+9Q3uKIl28/lXSdUEFfo+oVz3kHolvhHo5O9GEWZZw419StXKvdCjqQxV\nWqWo1E8QKfnkBYQtt+vOhwtK1Y3tyLAQX0CcQyqilkidgaPpGXfecJWPRZHRbkqmbrvNpT3XdPPw\nwQabXZFQtd2pfHj4Gl7ukmRbzasYJSUPjw6ZT5c98u7nvX6IZ9zner2CxtAlK18+vMXLx8713Y8L\nCoFbbgj09MUvfIHLogGb+1tsK/n29S98jjsvOrd8NBpx4qvaIW6GCQum6nIqihmleBgC61FIss/i\nUStLG4h7wTPFiochCOwquTpf1FizJJ950y/4Xn5pHVh88T/e2g4Zf1Oe18R5aU2b0+i86V7HEgRK\nK7MKR2zlUSvkWeI0woYhEL4lLWYU8v6G3oi7d8WluXlMUwnWUorhQWFoK2FazDMydfGasM1QodlL\nL/22+97hIXnixlw3t9jSvNS1z568gw/80GX2xGzdEi/C6LDNQezGefvOGXv7zjv4xGOP8dhTH3DX\nzg1Bw117PHTP7HR6zlefdSHfrduvMD9SWMyE2W2FkPWIsnhnUvRrT2Fta1vbPfZAeAp1bcnSlG+8\n+CJf/oZLot0aTaklCGqIyEJBnmtLqd7zSuItRTBirsA2MSGZWmvxoBQM1loP31+y7lpdt2CyFISd\n15T6DFtMKSQ0EzQM4sskl2LLWXnMaCrWJFtSK+671trhkpidtx6KqOdqmT53H7BRd9nsud18MzIE\namDZxlBedh5GX+3Eu7sHlHYpjpowOHIQvWRWMBXDzs03RoyFlqylLv3l9EWmvy/UXdYG4+LQP/rd\nz/HcoSPaDmkR6MxeNlT5rRpTL5O8JdWy2ayulpkYAq/GyFsK1LJd49EJRAnmB2xIqOfmoiJQ3qG0\nb+YSvheFaHl0ztMvuHu++fIZ33jF5U/GktBLU59UHsE8LSiFRyhMBeI3mBflimXKU8K4ymo83Tue\nQcOjTAsmx+56d3p3yOfu/rd2lvRoc4q52LC8KcWSxaic0n3BeQh3nnXIxvPRnE7hnv+lJKDRcJiU\n1uWKj0jxe7vRw1dZN9TzDTuGnQ33849eOuDgoiPVfaS/zZa4EIp2Bg2hFMeSlUuv0a9dzuWbGxFf\nLx0L9uJOk1xis1m6YMUx9zbtgdgUisWYO89+lj/6g6/x3OF1AMqsRuudg4M29XhZaUgZ5O6BbQgQ\nkjMjUPbe71h6LfdgTLNBKareajbi2pZ7CYvCvTQnRcq5etRnoWWqnoJZkTpiEMBELcrK/V3YdA+x\nGIxWyTXjGYLYbVLtZINHHhPbb77gTCuvLS7CgwsX2Fq6vpFFjGDQv0wdqNNySQ5ShxTiEhhVNU1x\nNKZXJ/z7giZ/ceM6t7UxHo3cy9OYzRnfdYv8+vCQG686haxX3jhmql6DZpzhG+El2oJM+yUXpKA1\nyRdUc714ZUFb1Pedhke/rU5RvXUH222a0tisC58ThTMf3ip5+sRlw+8OcjKFfHHtnlNq7bcNJdLj\nI77wJ+4le/q5Y26oIhSJIOfgwi6ZlMPKaIqnz7NRzGKZdPRzUKLRi6S4bANKEaiYEiIJ8VRFzWjq\nsvPXby5oKcPvD/TzukGo8XUbXaaTJeDK4xmR/DRq9/J3E8PehgtzdjYa/OiHBJV/qMvOxTcxImHq\n5j4Q7b0JQjoKNVo724QdQcJriNRrEgQb2K7mftNVuIrhhKt91+X6yOsxsapkX5zfoliIO6SCYokY\ne5u2Dh/Wtra13WMPhKcwnxV87cu3uXFyk6WQbwMIVC5M5zmB3MDzcU4u7YHXPbHiYuiKOfhqp8+V\nx1xSp7PdJ1KJ8PELP8TVq66GXqkO/Oxr13n9FXdKvHB0yGtq4qmCkqX8nl/UlKK8CkQGWlauqxMg\n9CJiMTK1d5srlqKSjK566zc2nOdyZb9JY9kxWcwoPZXLogI/EgozENtzXhHp71uJxYhbYb+xQX3g\nTsGnth5n99S5iZ9/QYSoRcFWV6rEZZvfe9GVTkfpFCMnPrYhDUG2A5V6u54P0ovob0Rk6uRrtWFb\nXZDd3RZtoe329t2JuhPGBCrfZgtLHrr5Pnl9RNZU+GBmzNQ0NVPTlVfb5WF+j905WZBP3Hy/djxg\noeTnRlvNYdNiRXxqDRjcqeqZEl9eQZJGeApjapWfSyo8dW3GfnPF5JSxwKy+n+DpPuelex5+ndIU\nmjRuRJTiwDCBYSJvKhVvRLfV43LfeZVPffgKjx+4MvK1C31aokozpoknusDId+vbb9QkSkqHsYcv\nTg6TTvFaLinpRSGmrcYmzVscXaQppq6PNUPaWi92Cn8guP3YZpRifH679kBsCot8zjdv/AlFWhLq\n5dhob5BLo88rKozAO+0i4bYqA5oPGi1/Fb/2Lzd4bEOqR1cu09fLe/nA46E9584VWvwHe9u8fuCq\nCNvP9aBybuv1w4JU187TmlwxPL7iaQy+4LVBO2K75/IBB+0mgVqjW37J1pbbnHZEbtJotYiUkadq\nUyibXBSWIJJorsRParOgEGYhMhVex7mo5SzH5A701GoF7EZuo3v6yIUMw9GIwHcbT//qJqdDt2kU\nVUWojrtmo8GmXqyuJmg3DNgULqLbjqkbbo4b/S4HUrhptlpEkft+a0NdhrG/woUURbpqEy/3C3Zf\ndve5F1/nxkBUdyM3b18/nJIqvKrfsjk8e/oyN0bOBZ/mNZ7mebkJV1lJLiKUwFpsIJo+E1MEynMY\nSxAt6d2cLYocqw3NS+pV92RonKgtwFZ7A395M9ESW5KTK8/TKiPCJdzcK4kEb05id4/tC30uXnCb\nwpP7O1y+pEpSt0UUKFTwahCLcyC+zqjVJoiWr6KPVbXHS7YxwTIbk6zmyGgzMXEO6stJthIefvwj\nAPyFH/e4NXJENef1lKxeAhV4W7YOH9a2trXdY9+vFP0vAv8RLq35KvCfWeuoJ40xnwJ+Dgdt+9vW\n2s98r2tUtWUySZnNU5LA7bRbzR6oCWoQzfAm7iQ8sZZQp3FDXkU9m1BIuisYZQzUDbl3c8Z8S9oQ\ngw61SHDbm9p1Nz0ebrpM7ygLOJyq260oGcs7GHgTqsxle0tBalvNFvlSL8H6lHIf82JMKPqzJIBN\nSX6124Kn2hB/KStnYoy0AIKwXBHHeLGg2KZEzhEmrzHiemh0OqtOQ7+sCZTYelhJ1K9PJtw9l5Ta\nSclM2hl1XRH4y17/hNJzbtaGEo57vYT9troFe006SuD1+j0SdZImmzGJKMESJUx9E6+qOdlZSldH\net4ouPqI89jCPOKgdBiJz43d3x3EHjeVyc+LBUufeHRWcHvsmoBMmBAJvl3nbvyzOGUzUcOQCcm1\nhKM4XjUH5WW6cj9q4VuMhWCpTGdimkuNyUa4mtuNVoT13DymIq2x3jmVSGZMPyFR4rrIIyIlIDua\nkzC19BpuHW53YrqqPsRRSCjyGUuJkeflSwoxiNoYu5SajjDlkoQlYoWL93xWmXf3OKAOMJIm9csu\niXPeuPTINXqPuWTk7NkXKOfvfvXhl/lWKfrfAT5lrS2NMf8A+BTwXxtjngR+GvgQcAH4XWPM49Yu\nR/ztzVaWfGaJQ4/WpsRfexkvqaRXDUb4mXtDvBKmVspKit/7oU9bmfrj2RTz6ucAMKNdwkP3QLsf\nPGC3uwTk7Ou6HtGWm9UPPHSZwcjlF24eTykl1lkWIdNKLr1KO/1kg1m83Jg8uhJyyeqKWpqJnaRN\n0laHpkAzASm+6N4rfIzi75AAT1TsywdovQqvXrJCxZRzsZOEFWHs7ie2CwK5lW0tfjurSQXeGha3\nCZYdd55H3FySd5TUC/EE6oXeCFtEzSUrUkZDEPJmnGH8t7iuWjFWm2Ja5HjLlzSsMAvdRzUn0IJO\nvBDt9RwI4//0cE68FDrhTVDTYLZgqvJqGJW0FBYuNL6W59Gu3f1MiopKoB+TVfgSjbWmWpUclxqd\ngfFWbrFfVXh6IU3ukSyJU9oNNuWa31ZS6ebRkG5bG2h7Azu96j6kNaEnUFZVKRRLatrqr6lrS6V+\nj7rokoskiCAnVh7HR2pbpUctRmiTFniJumfHGVbao16Z4hmXV1kRiEbhqsqCZ/EULG1v9/jEJUf8\n89nm04xHN3gn9n1J0Vtr/7W1dpm9+CJOMxKcFP2/stZm1trXcUpRf+Yd3dHa1ra299XejUTj3wR+\nVV9fxG0SS1tK0X9Xq43HIkgoYpjoBBsPTqmUcT9LUyaZuvOymkhZZl/97IvEQ1T5bFUNwliZ5XbF\nQdMluzoLYKbqgjQlTRUQCbOQBBWbynAbFuQzd21b+/gtne4C0CTdbRKdAlSWQKd7x2MlsRZ0CxrL\n5NEyI+pVK/lyL6zxl+6gtVidHsuEaplZrHb+OqrwpFHZKCFtKtFagF+7rr69wPmORf0cCxw+oJzF\nK9EWzxhWGcEcAnVgVvIkxnWGEY5hpx2D2IXnZxVhR56OF4Cguam8NEofo5PLmGqV7LM5dHWSznYT\n9icuu/7VG5JlywxTzcVbEQsH+z9MaBwIpyp8SiWF/SVU2hrOlGXP8gwvlyhNmTETM3dlDZilaI24\nHW1JIMi7SczKNbHGw5eX6Xs5QexCkMRTVSOvqSRJeOTVIH2K6a2MhfAES42FLFgwPnQJVe9K8Wan\nbTChqeShKRLqpSr4EtKVjVZdsjasVtJzpKfYTOC0KF6t6+XvGq8DSrQaC75Cm3Z/jyd/2K3PrT+6\nzKnYnKcrHejvbv9Om4Ix5heAEviV7+Nvfx74eYBG0iAJXBdboQlu4jFcEqJ6JaLqI/NrPE1mQ5PU\nb3fYV7fgfj/m6oF7uS9e3WNX8Vtna4soVqvyspvM5uTKzpfzmrRwsXhcVxjFxnvNbY5T95ItrNxa\nU1MImxf40BAXnxdC0lN5stsl8ETOYqV3WDYwLT3QOgFPRLJ1hLfcONTSFiQZ1WLpclb4KnuW5YS6\ncEGl157Snjl3N1I7eTMKyUSAcjy6TUeCtXUQkwh4VOUepd6KpLUUMy3wFKDOc1btya2tFh1vGZdX\nlOIw9FRO9a0BuejVIqKSjHpYNZjVbnxRmTPZdd//cxfc5vDZ6XPY4lvxjb63oAqWPQMVVqpPiaai\nERlaevmzqHbktUAjbNCSDHwdGow2rVCVhTLPaChEa7YiZgJ9JfjEqijsh81VaVtVSprNgJnQm1s2\nYi4C3Wl1RFm5ys9kSXcfelSqWhVZTi1xW0xIKYYkvwGlNCbtUjWqDjHLTcNuY1SJMrWHVbXHlOAp\nTPH9ZSnmDCMWLuvPQEpXXphzIXahyQ99cp/DYxcKn9196Vvm+9vZ970pGGN+FpeA/HH7ZsfL25ai\nt9b+EvBLAP2N3vvfv722ta0N+D43BWPMTwB/F/gPrJUevLNPA//CGPMPcYnGx4Avf6/Pq60lz0vS\ns5JECbw8bHBRfI3nvsGoh2Gah+y1BTuV8vOT/ZjmZZc8/MGLF9m56FIcnl9TeG6H9ryNVT96ayaa\nt72Q8HQpBnPM6Q3nck3TOQ25nRMfSqv6t5JrWTYlUkolMOCF7ndjY/Ek3eXVhmpF1KLkW7Ogniub\nHhXUmTuhaq/ClHoUS+DKqGah5GJ+lpEv5e7PaqyvzsBBCkry7QjH0OjGHN4Rxdqrr9HZcF5TNjrH\n5MuOwZJInaKZTq1J5ZHKne/XCYGqOR2/SVtkMHHkrTyFSuQElfGwqfusRTHHKEQblQXzqfN65uen\nPNxyWI5fKv4YgIeNx3M68N5K6XFp9wpd0aSfFnOSlrv2tiDKYdsSyn2OqhZR23kSm82NVedm7uec\nK6RryDMr0pR0ScRRWzyFF37p0T9Qrb8TYYVv2ND4u3faK+Xysb9gOHEu+PxsSqbelUy0/lHcwgqm\nbtoJ1M4zy2p/5XkEpYcJlUBOpaTdjIiCZahpsALnlYXBlyJ24aVEd9y1w4sOwhyWTWwgyUILRvR2\ndemT9NxzferKFb6y7zALr/H27PuVov8UEAO/Izf7i9ba/9xa+6wx5n8DnsOFFX/re1Ue1ra2tT1Y\n9v1K0f+z7/L7fx/4++/kJsqi4vRoSFGO8bWHXI13aF11u+S1qoURbmCPDoXKO6F20b2DJttShN6/\ntsv2tku6eX5AJvXomV8wvusoyAalO0n3SWg3HXS0GNT0xGUQZikLxYZxGTFSuF/5yyTgnFDx6267\n5UhKgekMLjcFZy2aDE6GGp87ESJTEewrBlwsqIW9iGIPTwm8Sl5MWZZUklIrO32KQkrTIdTKg9RV\nRbFkRG65+/nY9hVOT1035K3D59mSqG4QnRPEbtxe2aCUcvNInaPzM1iqnHpFg+1tN45PdlssUnd6\nZhWrE9YIHZl5NWN1mp6dD1goQTvIzpjp62heEavx6mrDnZ6vtKEjMZXxW1yF/laTa5J3Oz6+ixUo\nY2Nf3Ye9gK2O8B1VE8+XZxWEhMsEpK3ZEh9CoyW8QtlnOpJY62LKsUhQi62IvcTlZfoX9tiJnEeT\nq1vtlcstZqmg62nB/ETeWzUnm0tsV+rR/Sigb51nMy2iFYltdh5wrHh+sEhp6rW7+NBVALrbJYl4\nGhrNczzjvL6zabGS7KNqEPeXiU3H0tRcJHhd5ylstA4I5Dl7UUZSufl6rLXPtjAsb9ceCJizNZYs\nqhkXBSO56FcuzHh838GEQ9q0d+SCn1sWlVuwx6fuYUR5QidbqiSHK7GY5kaPUNTh6eCEwzvOgUrF\nvzcbbtPaUBeeb2ltOlf7A5cPyG+4F+/WeIgVcUYkdz/wPfoS2Di4tM32tlsIG90ItMBy3zBRi+ts\nmSTLKprCCrSihDoWp+AoJZfGZK0O0CqGTLtRGMPszC3oyi+Rx086tPjq/2jk7mULW9Bqi58vNTS3\n3H2G9hYnR8J3bNZcTFySLCzczxfenEhw2LrpceNUydX5gEcP3EZ27WCDRKCmoOX+7qzIOD13iayT\n8xEjYQU2vGgFCvI7AZnGNZ67jXA787nBsqr95qZw7akn+PgPPQ6xL5HTAAAfQElEQVTANw+f5nLs\nXtKkt3z5fRKFRGQBRbDUbqwotVFNhvmq+3NLzMdBlJAlEks5yvBE5Z5nObkSeLYXYaSSFYpd+cNX\nDcyeBeCrX32FQriJkHiV8A5F+VZ7AYFwE35ZcNflrTkqbvDKq66icnJ8TlvkOU8WbuP5SHGJDdG8\nLc5rMvF/no3mlGfuesezDHPJfeD0ltNY3U4atEVCeeXqgm2FDL0LH8C23Gdc3erxMx9zdHOf5u3Z\nGua8trWt7R57MDyFuqQcH5PmC3pyxT+01+CS1J43Wz6VGmPmXko1c55CT/DirVZIY0dJFi934osA\ntaESzHd445zDsTQLRMZxsHeRjjgEomSGL4zEo/VT3Bl8E4Djya3ViVC23R7a78Y02y5EefLxCzy8\n4dyzajFkLALZo+eucypP5lys1FGj4MKRO9E/8YEPLWUISI1HJrk5eaTceXnO84cOYXl4eMKVfXdy\nxS2fywdqRuoHNERdNj5xJ3BifBoqQ47IYe60ANKipKF5iT1LoCaeiyotVq0Oe23nttaxx6x0977l\nZzSXBLOTKa22O7m9JZvzyYTbZ86r8m3Ebs+dgpc3Nrh1043bL2Yr8tpPXnNNO984/iKxt8RKmBVl\nW+TN+OC1JwB47MoOuw3nBnsrgpwFC5UATRRzOlUZsihZlCr9VhWeOCAuem7ettoNRkJTzl+Y85q6\nS+cRXDpwwimNwqfI3Tx6ffcc95rbTC88AsDz33iBOpEmZJwQKeHrqYy50+/SUEJ8OEhXNH7p2Skt\nKWVn0exNFKlIfINquKJYq8MNGtIs7ZQJt2ZuTK/dPiOS6/How4LP91o0Veqd2hRP3l3Q8PDTqwCU\ns3OuXnTP7O3aA7EpBFj6fsFdW1Mv8fDti2xvuUVazFOsMvxzE2C0uHs9l0fobyUkvvv58PiMhrD6\nkdekEBlIa7fNEx92fHcvjxQDt5ornrz03GdXENVqJ2Jv103kM2c3mC/cYgpVIdjuN+krK95vNzGJ\navM2xBdxxlmSUvadi10l7u/uLBbkJ8suygGPXBGjTw0DyZ0vVL2Yd1ssPLcpnuYV5xO3wLaygrlx\nYcknH9qi1XCfYZVz8bs+7U0xWL9REokivEHJSLXwud8l0T0Nxblo0yG3FAbMspqWqgUf3K0oVImx\npwM6m25DChXLv3x+h+u33ctvgg2KU/dSfa0a0hCQqVEZruhlua7w4QfY5w3f5T6olhgNiJodGuoo\nfGz7AKv2+UIU8I1mQKjKyWRaMZbISlUmK2WwLB2SLXMK22oH73XJxdbdaV6n1oEym1YcCpNxZnPG\nAwcJPpiL53JQcqL2+9zLSVXB2iy22d1U2CBwk83PGfqORr7XrimLN8FUG6oqxds7NBORqAj8ND+t\naSyVrvwhiXJb2wcHcOCu/UZQ8eoNV90/e9Hdw24jpd9x2MALV+6ycbGr+zDUodsg0tk5o3mfd2Lr\n8GFta1vbPfZAeAqeCeiG2zTiMQeSfHt4Y49YLLTNVo4pxKew1cEIJtpKpAwcBRixD9++lTO866C/\nF/YvEog/sdlrsrHrOiKvqipwOL1DrGRfA0NHp9/hYkGn7/bLRzuXeCl1blseuROl22zTV+Kz3yjx\nK3dClVFOR2i0Tn+HNHEnSdFxSb3CQiLW5dHklCp1p6BX1uRKSmZ9d2K0/S7/Xs/d+49eeYyv3XQc\njVsZRKnLODfzmOFA8nVq4GpXfbbaznWO/GcYnrtHnHgxZdPN24WNTQ6WHZHyury0x7ijKsPc0lCT\nV9cPaKoppxhYAtXQPU+yekC0lMfrBuxsOe+tZEElN38+qNhqu9Mt99x9/sb1O2wL63GLNyHYdZXS\nlqr0Y5u7vDxw3kSn6571bj+iGeiEjSt21Kxmkza+vJFbd2ek4tAcn7kQrBdvkhfSpQwD9rbFDp36\nbC3xEmlK20haEHe/E8+nIT6FvZ2LeLecJ1GZjETf3+q7Ob7QaLNRumvki5xYuIi9Rs7Ghkuam6pD\na9Pd85IFfDo8I1X3KPmA3rbja9zaOqC3TGZ+vEMkZOVXXndrIZ9aWtI1OQieIpC8naGkGJ1r/GMm\nS53Et2kPxKYQRAGbF7e4UA/obbhJ3eq0ifbcAkxsQldiGkHgEXnOTUKinHVV4StAvxWkVHKAgqYh\nDpS1x+I3JALTcotq73QLFOs2ntxiIULYTR/2h871/xp3mAtfXozdomu1E+YT9zIOzZRua5nP8ECw\n21Yzpk5V4jtz09zpt/AP3INtRxGx2rqL8ZSG+iviSrGlrVgM3Wa02d7mR/bcYp2nQzpLPcNewmwm\nPLvARGUYkuDCo9ALuTFyL2FARH/TfUY76BG2lJ1X2BU3IzYFK6+6Law+IyqhpX7vQS9lrpj7IYFQ\nr2zmFOfuBdveaLDVcy9CI4uZSImr0UvYm7nY/g+e/rcac82hQrt7KOCth1k419c0Cx5uOHf8SBth\nJ26zpbzFkBEzNY/O56dMlXcoFz57ewIfVS4EjaKA/T111bZ+kO3T6wC8NJ5yTfDvj+22qUWvfiwa\n/XY1Z6FW/POTiGrsvj6bVuxdcCFWQ/dQhT6etCj9uk0tMNVWb5ddtdHHcQt/WTFRO3gStxhviJh2\n4q+g2b7vEy3FfqoWP/y423B7hapucZPNLW0wl1oEdhnG9hnn7v7T0ZTtrZh3YuvwYW1rW9s99mB4\nCr7H9kaHqP0Q26Ko6jQsnVo0Vzaiv+tOuaBO8OSi1zq5Kz9nrhr7fFAxHTjX6SOfKPCbro5bTYdE\nS+3JAwkMdneox+4krcoKKwGR7jSCpvMwWnVEKPqvmYA0sU0ZqM59NvUIxRuQkxAJ9R03fTZ7LnNe\nSa8xqwwdnbpm28NmolnPcmLR70Xi5MsKy8ZMDV87MaZ0J984r8myZQJrhF+oMUlw5zCsmR+Lwizx\nmKtSQ1CSGDfunY2YbePuY6ft5q0b+pil1FidM5grGWZqNvrumYTDko48i0bPuaQfaf4Q7Ymr1Myb\nIZcEO+51W4ym7nQPenA6c1//2PCjAPyLu7/n4qk/ZYvsDuik3LywixVU2AzldYQRKgIRtxtkgl0f\n5hXF3M3zpW2fg55bLz15mK3ZnIY8jHCnj7/l7jMc3eBRhaGXLxxQV26s2zvOWxnfqpmKZCft7DHb\ndd8fFEP2xcXR6YrBuwiI1O1a1gWBOmbjzRaB6Nmjql5Bl0sltm3RYCpg3fCu5fCqe+69MMZXg1kz\naXPxogtBeuJqXEwzfHFgtIMGS/rP0qQUSkYnvQ5R5+Bb5vm72QOxKcRhxNWDS/Q7T+K3VeYxhjJX\nRr3XxGNJVOITq7pQd+XWz1uMFW9Nj2c0um7SykVOrRKnwae2bqL8VF2NzYi60ts4mWGFwKtMSa/r\n8gDn8R8yHEtGvVq2wvrMhEZcTKYknnMjW55PKSIW2ysIWuIzVPkvz2uNAmwYs8jVcZc1iNRpGAsD\nH9Q1/oYLUSKvxBdtUFm1KSoXMuSjlFyf2C7dQks7NZPagVvS+WIlQOtVPsXEjeO09Lmm9txYLmxr\nzyNQ92XuGYrCbax5NmY4XkqjG1Ac3BTRTZAldKRTEJ8P2dAAo2bFdlO5lrM5/dSFfL98808AuIbP\nM54Q8G8haYzykJFKsa04IdcmWt1UbL1bYdVeHloIdlx4cGADylfdfE7Smo5Yplr6eT6es9Vzz729\n1aFuuRttbQQEu+4aSdzGV54gUodqsDll8rpbN/HlmJ3cbRrffLmm1xLLlipHpZmRieQ2yAuCQICy\nwluB6OIwQJiulRbG2WLA8dyFmi+dnXP6Rad90jWbXH3CoTttMCTQodaVBmVVnmLVV1NXGfmSi3GS\nr3otQr9P0Fle6e3ZOnxY29rWdo89EJ5CEAZsX9zk0d2rTDO3Y56MXiLSDpzFNeVsqdjUXlFtBQKE\nlNGc0ZHzKk68KVfUDWj8TWYS+lgcnxKoN93TBwRJH+tL6amAQteeTguEOqYfHWCtY3kuVQHJFnOm\n6ZIma8Fw4E6EcdNQK8TojUMq352O84V6HDyPWj39pAWFiGOSqCJS5nhx5hJESSekLSxBaCtyHS9V\nOqYWD8G8ril0yo6F48hKy2IU6OtsRbJSG8uSVS1Kp0yV7TY78gImfSolVNNsulJyyqzH9K47KU3L\nsCNeTL9wLretc0jd+MJkDOIY8EpLpqz3oio4ypzb/dRld73PDyvaimyWmjgAQbNJf9N5GIvzlPPx\nXV1bUHMvIjQKKRKoF1IOszF9hTlmVtFO1Nm5kHdoOhSZW0PVaEJbgKNpXVMORMTSqfFrdzd+7ubn\nbAALdSLaosXpsVtzC1uTLYmfhU0JsppK1PLFvCCQR5NXMNF813G5Am3p8XM4y/nmqfNybuUjbj4t\nL3Q+5a8VHweg39/EU+I2lTdTY/FyN6822qTKliSUBb5Ae9HuJfTl27a1p7C2ta3tHnsgPAXjGZJG\ngp1nJE0JoNRdCpUT89SjEg6hLqbYQBoIaiPMFnCuEtN0OifeEawzT8kLl0jMTEohiTgzc/FyMk3x\nY/WulzAdu69v37rJ2djt5qfTu/g6hRuK2WZlwELcA9N5jSdpr6264mii/nd7yAWxP3fVqNIwAX5T\nScfxjEWhnIkXIFTuCmqdFwtYlmEbTUp1TOLXeBJICUzAUAjBJULx9nROs+E+48lrB/zBHXeSeHjM\nhIo8LXOeENYjPxf9XXdMLQ/KCyMWyqNMxlNOlItolCHHlbunTui8qsF0ykDsy0kcMC7d9eLRBqWa\ntby2JbgjAZ6X3c9nU5jYb000Njb7XJKIylE2Iw9cTD1WU5KPR9JQDD9JiWO5P4sJwVzYkWnI5odE\n2KuOw8BvUIzc/eShz2Di7oOOJZa3FbU9IjV81b44C+yI7IabozuzlFwoxbgyK69vIKLZhhfhL2ne\nvJRKLLfTuiQQe7YpQnKtpztyFf7k+CYLdV9ar+QsUDlxEXAqz5FgRFyIv2FJ3Br4FPJevehNzpEg\n7oPYo6O4oo7e2Wv+QGwKZWk4Pgvxt1IWd9W1mJV0lwmSsKBeQmH9gLpyE1gv3AKdpFPOF27yWlGL\nQomjV89vkSwX3nhI44Kr89Zjd43CjghE9zWpcm6fOFzA7dszXjhziyYqMvY3nCt6IkjteJAyES1X\nWhakcutGC0uth1+cWOLAub7oPr3WDpFq1xMDo5n7jE6jRbliHRbV+2lKKoCQ7w0xEhAhy5mJu3KS\nL0jVtXdz6sbUCXr82Y9/zN1bN+IPP+/k0mugVrt0i2DV4jxWlSXMIVzqMnoLAlGw5TZEuTWykxln\n0it85VibTVwTCmK9e3BxxahMXa4oxoqGx9C4zfmv/sgnAPi13/z8ijLyrVtDHHkEH/gBd/9RzPh1\nB0Rbyt0P0ymJiFwSWlRK7M4nYITViLdDDl9xf3eUKHSrQopElHVZm4kCpPTuGZcuq7Nxq4X1XHiQ\nWvf3w8MBX1F37fVXJwyMnm9cYpXkLUppW5qcPm49RbFrlQeocp96KWBkDOOR+7rI3GdtJXsEH3AV\njB/odYg2BeNfFOzuuw0yCCATKCMPltct8ZWu9CNLKOBVHcxXDNslIWn1zgKCdfiwtrWt7R57IDyF\nPE+5/foL3Hi6x8UPuN31Qs+SS5ylNjF2od0x9/GWNFdyvxZVyVbbJbg++fgm8QV3ms1HJwzE/Xpx\ndxcqd/rNpAe48GfE6lg7Ohxz+7b7uxuzAYcz94ejNF/yYVJNhYsIaiI13xR1RiZegKDy8JbScmHN\nudzVzaVSczOkXJKOeiV22ZTDFE8lsFBlrH53i0Cw5HRg8dWRV3oW1KE4GY84li7mcOjGdPFam4PH\nnctcmd6q7mWAWo0947JkpLnvSEW51ynwvGXbpmUu+HMdG4zKnWVoKZXkHOgeEj/ikR2Hx7iwuYnN\nJnomIwp5N83xiD83deP6cu06Eq/UL/LCil34TQJXW5iVjHxzp4t/6D5vIGEgG0xpFk3NRUnQlRuz\na4jPPM1LxenA/d257+anbXISlRDbjQJfHaFJ21KL6m42nlPgkorpxD30m/mYo3P38xvZkKkIV6rU\ncj52v3ty6Nbh7laIJ7m9oDbEohMMjLfkwSVPfArpXfihZPoaKb2OCHaJ6PXdfG90G3gNich4NUgu\nsF4yf5cQtt+k/6uXxLVFi8JfltFnnJz/fxDmjBdiu/u8PnuG3qkbeJhsYRK9TNZS6oXGX5CN3Eqf\nKX4fmRmNqYsBo2sRnYVbQGkyZzJw/HTFeIzJHY7e33Ldh3Y+Jw+XgJ2EheLs4zxnITc5LxIyhS7L\njsvKZKSVugt9GOnndVajTmR6ZYXfcu6cFTIprgMyxfvJtEO6L1f7JMNTC/dSIr4IDfO54L5ZSCHm\n58UCFkp7m0aTgfASM3ESPrqzyaULTmrjeDCkoZJDWud4QrcUpuBc6lT7IpCpyghP3Ie+b0kEbtrc\na9HSoho1h+TLHhRtNn5WECo3Mh8f0RST1dl8yjBVfmjaZJC4Fu5LH3D5nBf/9RF8GzF6Ewd4ItpJ\n8g1s7MKfnX23VDeKBGPdpjAtZthbwlPEPu2Wc8HbRbwSRlEjIr3OHr4Ys72oQ9gVQKjzMLmqJ4Nx\nsaJXHyh38PRoyLkEfrygSSBRmtQfM1xC3XO3ObSGhkIKUzbwKJpL4dqaudili2mNFYigEvBqmnn4\nc7dNxz2f4tg9s7pRMRCFf1hDqDC20AZTZ3M2lXfy6phZ5h5KsjEnzMQAZWPeOP/Ct8zzd7N1+LC2\nta3tHnsgPIUoTLh88DhffekbPBs5l/LjOw/RFLVZtPCp1XRUzEoW2vGP1exz63zE8NBlpze+UjBS\ndtcMJxj1v7f3Yg4uutp6/+NuL9zuXMZIFOW4Ba/dVVixKCjkd9vYrJCAKBF363DEibrwEi+kKem2\nMgmZKZS4O6oolH2/lOhEqMaUh0JYDmbEEifxSoMZuc/z5Drn+xG14LBekmIlMXY+ustM3YWpn9Au\nnQfxyCMOVdjb3cD4DpvR7veImu4a6awkkwx8ljeIpW+Z64KjyhLq66S5wUJhxVmWcnLbJUzTeUmh\nBh0j8o/OPGBHKNo7ZxnBpjvZttlkogpFGcTszR25ys/+Eyfp953ofL2oSahSS7Db5YPt/xCAyZE7\njcvTKY2OO8WP7tgVnqSc5QSiMRvNMjKFJJXkBoP5kLk8ms12TrEU4mnG+OLJKDglFQbiJJCrnld0\nWm7usyYkwkUUxzVjSdGLCZCzecV+2/2j2QpXHk1hKvJqmXQsmYzcvIyzN6HbvnQaFicTcumMnBYp\ntZKYccPnyo9+0H22OEA2OhFRw3lmXi8hVkIxaPcRJIN6ckY1a337yf4O9kBsCgCm8jkcTSisSohn\nHyO4qtbofLqS506SLZCWoK+H7M2OVzLxRdVeNYrGkWFL+YXF+YLDD7rJORAQKt5qc3buFuCN0wU3\nTh2JxXzsUQgG2xhWDOWKhnrB5tR0rdz8TUMsqHTDVGxkbiObemMO9aIPz7QgioJnv/41APLpnKkW\n4yhNiURI8nBL7ucWbGy7hfL4YxdJYlVJFgtmqdssxmbG1oarqHSvOrKNfJYyuCGVoyc2V2KlgR+B\noLZ2NGeeu/uM1WdgvQV16uZ7XlmefcG1594YH5JX7jO2my0SgayKwIVrvU7GeOw23jJosaMEzFaz\nw+jQff+5IuU3W26z6EmR6ujbhA7gsvNWIjpFdUwcXAXg4kOOjek1voKn8Gm/c5GWdZvFrRsDTm66\n9XBuKyptapXo4r3+Bpf3XO9AGU+od9yzbEwqanUoJuwyPXbrZYALd1p+l/BJCQrdXPCqNuT2zhYU\nbp7n2njaTUuhcvE0bdBSiJl75aqt2XoBniocKLNj5jmxxH5ajT6tPfe7+fw6iyM3juvREP81tz73\nH+rpHvpUgnP7UUaoXFscGGaqcNyZvEHRXHJhvj1bhw9rW9va7rEHw1MwFXUyorGY8KKovT6/fYP/\nWOwX2WSCly2TLzNCJbuaPXcKbJx06Xbdzn/lw5+gc0GqzElBaCXFPhkx3ZAYjKoP6eKMW2cOm/D7\nX3+R69ed250FHg3VoE/qBb7o1sz4TVXmWt2FvUbN+bHb8W+fLtgVGUgnLrBK/t04cXXujx18hL/4\no58E4M7xhIbvfnfqD7ECLUWCwNbRnErVh9gEzDIl1BYhae3G5Aclvor9naYo3+aHtI07GZ5YPIoR\nRXhYl8wH7hR8MXyNYMOFHfsTV7VphjFWXADdusneVXca8caM+UQSckmLq5vOI9lRs5Y3XpDVqo93\nmzR0Up6kQ05Eqf76nTfoK9n6+aUG5XeybMysdGONo60VW/VG4jyorTqivON+3mrlJF3nVZx3x4yO\nXJjTTBpsP3zVfa1TeefhDVqhxuR5nI9UZZgd0lEXoWnDuajdz1519+mHTRJ5preLGbG0JoN5hyR0\n89wVhqIqCjJfXaemJhW3ZUxApq9LO1vxR/Z1sue1RY2/hJ0SjFtnvd5jPPSQG99uK2P0hrtns3Dz\nnWxeolYcVqYxnqoSeRYx9ZU8HdzhjZfefSn6+27T+Zg/+upnOJ7eplbc+/yNl7nwrBvkw9sdylRl\nmNmcSnFWpe+F+Yi7+nr2pZvEHbdZdCYeOweuXNZ8ap+WQDZ15Cbp9HDC577hmHReOr7LQDj5ovZZ\nqG2bJCEWmw4q+URBiL/pHiiVx1xkKpPRhLlIWzYJsMvSobDs8TzHuyw3f5EzzFyoFG15MBE/pJCJ\neRQRqhfjxnHK6Zl7OW7PxtTqUegGDVBOZDhyG1M1q0DApPON26QCOmV1sUIsZtmcm9flzj8iXc7T\nXTYSN4fn4QwVSbi62WCoRex5Psa6TbQ6VW4hDqmaS13JCXPpKZwczXhGZcHnJiOmQ/e1J5amythv\nV3xgNn6OQr0rQTynVNdhph4WY3IWGlM+mZI1BGpbjMjn7qUZn50TqIqQh+4FWxyHNGuXJ8ibYDtu\nnlt0MCK9XUxLzs7UC9OQOO60YKF58ToR3FD+qGTVvBBqc0j8iEJ9CaeLklidu+ncX20Qi3lKqKra\npohXvKbH0cTdez69RahehSsXHyXcdZ/XISQUKA8hFOeziqX4eyOcYz33ufNywEszt0G+/PKU08Fb\nRdy+t63Dh7WtbW33mLHfBn/+nt+EMSfADDh9n25he33t9bX/f3DtK9bane/1Sw/EpgBgjPlja+0P\nrq+9vvb62u+vrcOHta1tbffYelNY29rWdo89SJvCL62vvb72+trvvz0wOYW1rW1tD4Y9SJ7C2ta2\ntgfA3vdNwRjzE8aYF40xrxhj/t59vtZlY8zvGWOeM8Y8a4z5O/r+pjHmd4wxL+v/70yR853dg2+M\n+box5rf072vGmC9p/L9qjNAv9+faPWPMrxljXjDGPG+M+ZH3auzGmP9Sc/6MMeZfGmOS+zV2Y8z/\nYow5NsY885bvfdtxGmf/g+7haWPMJ+7DtX9Rc/60Meb/MEYcce5nn9K1XzTG/KV/l2u/W/a+bgrG\nGB/4x8BPAk8Cf90Y8+R9vGQJ/FfW2ieBTwJ/S9f7e8BnrbWPAZ/Vv++X/R3g+bf8+x8A/5219lFg\nAPzcfbz2PwJ+21r7BPBR3cd9H7sx5iLwt4EftNZ+GPCBn+b+jf2XgZ/4U9/7TuP8SeAx/ffzwD+9\nD9f+HeDD1tqPAC8BnwLQ2vtp4EP6m3+id+L9NWvt+/Yf8CPAZ97y708Bn3oPr/9/AX8ReBE40PcO\ngBfv0/Uu4Rbknwd+C0eIdAoE324+3uVrbwCvozzSW75/38cOXARuAps4aP1vAX/pfo4duAo8873G\nCfxPwF//dr/3bl37T/3srwG/oq/vWe/AZ4AfuR/P/538936HD8vFsrRb+t59N2PMVeDjwJeAPWut\nWFY5BPbu02X/e+Dv8ib/2BYwtEsA+/0d/zXgBPhfFb78z8aYFu/B2K21t4H/FrgB3MX1DH+V927s\n8J3H+V6vwb8J/D/v07Xflr3fm8L7YsaYNvDrwH9hrbTkZNZt2e96ScYY81eAY2vtV9/tz36bFgCf\nAP6ptfbjOFj5PaHCfRx7H/iruI3pAtDiW13s98zu1zi/lxljfgEXwv7Ke33td2Lv96ZwG7j8ln9f\n0vfumxljQtyG8CvW2t/Qt4+MMQf6+QGsGEXfTftR4KeMMdeBf4ULIf4R0DPGLLtV7+f4bwG3rLVf\n0r9/DbdJvBdj/wvA69baE2ttAfwGbj7eq7HDdx7ne7IGjTE/C/wV4Ge0Kb1n136n9n5vCl8BHlMW\nOsIlXT59vy5mjDHAPwOet9b+w7f86NPA39DXfwOXa3hXzVr7KWvtJWvtVdw4/4219meA3wP+k/t5\nbV3/ELhpjPmAvvXjwHO8B2PHhQ2fNMY09QyW135Pxi77TuP8NPCfqgrxSWD0ljDjXTFjzE/gwsaf\nsta+tY/508BPG2NiY8w1XLLzy+/mtb8ve7+TGsBfxmVkXwV+4T5f68/i3MangW/ov7+Mi+0/C7wM\n/C6weZ/v48eA39LXD+MWwivA/w7E9/G6HwP+WOP/P4H+ezV24L8BXgCeAf45EN+vsQP/Epe7KHAe\n0s99p3Hikr3/WOvvm7gKybt97VdwuYPlmvsf3/L7v6Brvwj85P1cd2/3vzWicW1rW9s99n6HD2tb\n29oeMFtvCmtb29rusfWmsLa1re0eW28Ka1vb2u6x9aawtrWt7R5bbwprW9va7rH1prC2ta3tHltv\nCmtb29rusf8Xp4rS61SqtBEAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.3587... Generator Loss: 0.7105\n", + "Epoch 1/1... Discriminator Loss: 1.4629... Generator Loss: 0.6467\n", + "Epoch 1/1... Discriminator Loss: 1.5333... Generator Loss: 0.8289\n", + "Epoch 1/1... Discriminator Loss: 1.4835... Generator Loss: 0.4824\n", + "Epoch 1/1... Discriminator Loss: 1.3330... Generator Loss: 0.9264\n", + "Epoch 1/1... Discriminator Loss: 1.4501... Generator Loss: 0.7557\n", + "Epoch 1/1... Discriminator Loss: 1.3579... Generator Loss: 0.8731\n", + "Epoch 1/1... Discriminator Loss: 1.4515... Generator Loss: 0.9340\n", + "Epoch 1/1... Discriminator Loss: 1.3060... Generator Loss: 0.8987\n", + "Epoch 1/1... Discriminator Loss: 1.3188... Generator Loss: 0.6393\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVnMJFl23/e7sUfumd9e31dbV1d190z3TM9wOBQ1M5Jl\nijYlCxJsA5YlwJABC3ryBtiACQN+15OfZBgQbAMGZEuyIQkWbUoUJS4me8TZl16q1+ravz33zNjj\n+uGczO6WLbO4DFUPeYBC5RcZGXHj3BvnnuV/zjHWWja0oQ1taEXOv+oBbGhDG3q+aCMUNrShDX2G\nNkJhQxva0GdoIxQ2tKENfYY2QmFDG9rQZ2gjFDa0oQ19hn5iQsEY8wvGmPeMMR8aY37xJ3WfDW1o\nQ3+4ZH4SOAVjjAu8D/w88Bj4DvCXrLXv/KHfbEMb2tAfKv2kNIWvAh9aa+9Za3Pg7wB/4Sd0rw1t\naEN/iOT9hK57CDz61N+PgZ/5l50cBJ6NY588rzCI5uIbh9rI99YaHFZ/1Kx1GyPHDLA6aJxPHTcG\nszrZWOqVVqT/OUCtX1e1Bf2+qi1Gf2iNoa5qHYec++oXv0RVy7G0SEiSEoB5umB+OZOT6mp9o1rP\nNTjU+lAe1Xo8FQW/F31NOYFjwBqR64HryjHXUFWVjLeGyI9lnFUmBwDHOASenF9UpT5zje/ItTrN\nBtWaLyV1ueJL9Qnv9FxbW+oVW2uoVkyqawq74q7FcWTUlc5Ns9FgMBgAEMUhvivXW86fkOnPOrFP\nGHb1oeVgWUGVJgAsFjMWy0Ku6zp0I3nWOI4w+nylDq5IC6pCnnWR5qS58qiw6zXn4IGV47nOmWNr\nKmv0+xrjyLk5hv1DGX+u/HFdS9sPZDxUZJnyooIyT5XfBWWlYypW68qu599icMzqfp+sT2uE18B6\nTXueg6N8i8IAR3lfm4pEx1RkJY7u/UmWX1hrd/hd6CclFH5XMsb8NeCvAUSRz9e/9iIfPxjjW5nk\no6DBMtQJyDxiK0Ot85Ta0wWpC9N1wF1NTOyBLwvCcwOCWibZeNUnC0HWBlFVkamuNE4Lqky+X8wz\njK8TFhtmlzKhVSmT9dvf+jbjuRx77/RHvPWjEQDffO+f88bf+r/lgssJlc0ASBdLGZttkqayaHbs\nmKkKm0n1lJKV4FgtUAerx2rW7yIuBk+lQitwyMMQgGtteXmavYjRaAJAlta8svdFAN4f38NWIrCa\nfoOjQQeAk9lYxjBfstdsAPDzP/0lFioWLvMxyaW8hNP5FFPpIozlvmVSsdS3uEphWujCnM84LYRH\nOCVxJPM3VOH1ta9+ib/4F/8yAC+9dpO9VguAH73x3/BRKhP0c69e4c6LvyDX82RdjMYVw7tvA/Dt\n7/863/nuqYytF/Jn77wKwKtf+BxBX653nsm1ju8eM3t6IfP0wSM+fCi8SJ+WRFaeL3L3sOUQgAez\nHIBGPmNh5VkbzPADeb6PHZ//9L8U5ffRUM7ttgv+5N6RjIcJHzyQ42YEZ4/fk3FMjrmcCW/PjuW+\nRVaQquCpXI9YeRRjyHTmcxeqVH7nqdDfHjSJek3h4a0jWoXwaOYseGcka+/pR5e0axn/Dz58+IBn\noJ+UUHgCXP3U30d6bE3W2r8J/E2Adr9pl42A2SzB6D5YNDNauSw2l5hMX9JWM8SXZyRw5AXDdZkV\nwoTQtVj7yS6YOfK7pqloBj4AJpbv67oizuR38xyMEXbYRk3dkHG4aUXpy+eV5PcNPJgtAPg7v/SI\n9z742wB8+MYDxqfymF5psEYWRVXJZNXVJVkpnwtc6jpXbjjY9d4sVFGveQF2befVWKzVv2pLL5cx\n5+iOOa5ZZHLdIoMnj+8CsKSAWl6QrZ5H1hdeRLn8v+23eeWOLOgX/9gN7n8k62f6gVlL0bjp03Bl\nETZ8ffmDmqXuYGni8vFQBNLcr0HHYa3HVLWpXDWTH/z4Ec39bwLQub5DO5brDv7Un+fxm/9A7nf1\nz5E17wAQuHLdRXlCtiXP/DCcs/earIEXwxf4qa//28KXI5fttiw/k8pzeEXGt9ITuW61xNf1cppP\nSZXNTvqEhifaxsKOlN8ul5Xcu+EEHOqL91K0g/vln5Vr/DMZb7O8yeOO8LBd19S9S7nW5Yi7qXxO\nKkumgsqP5MaLyiF29XNtCXyd39jHq+V+WVbTiORZa51HN7YQ62ZoQy7aqh31A5KzxzInWcliIdd4\nVvpJCYXvALeNMTcRYfDvA3/5X3ZyXTnMJ22cKiBP5GVLswo3FCa0OjWRqt2B79NvyQJqq2psgxpv\nLL+zdfUpdWmJVWbHYZOW7+v9ZLGmjiVTKRqZmlplzCJ1WCzkGmVa4TtyPxvKPWoM3x+ey4P+1j9i\n+va7AIyPT9R+AeuV5LrwbCkvfG1r7MrsMJ+YAdap1nrip80I+6m/Pn08V1V66sGyITtexwovgsrF\n1rqonJKnhSzGma2JQpnuVlRxlKuA25JFvH/Y5E++9goAWebyaCk86rgZVgXkttfh6uGWHA9kDEsq\nlheibbyfTTlP5QV6P5lTepXeO2NlCyoruDx/wuXvyIuX3Jhjf154fD4J+dLs35WxjQvy+MfyrIUs\n+OPilKeF8P7Ya/LHD0SF/4U/94uE7UMAnlTnTHMdf3INgCJcMN/+LXm+1pzBTZn3WV7wWJ/VnZU8\nFjaSLuT5zj7ldZs6CSP93ms+4k8PRRu59eSPybH4mDT8jjxTOSDoyMlns/ucXshaMEXN1UCeFd2k\n/H7C7FK0yVZhCFUolHVNVQjfuk5MoyFjdnQ1DHoBnbAPQKPMmSx1zCeWeBgBENchS3/J74V+IkLB\nWlsaY/5j4FcAF/ifrLVv/yTutaENbegPl35iPgVr7S8Dv/ws5zrUNMwcJzDYpUhGW1scX4bX8UOa\noUjPw26f9qANgKe+A5NlBHKISZVR5XKNyKnxXNn+mx2fTiCfnVKuWxYOi0h2idAYpolI82XhkBVq\n7znB2s9hHLlfZSveuSu73MPLIcuh2LVVleC7sjs4lcWr5PyVSlBaqHWXdx2DmtlYH/Lqs07QwAF1\ncVB9yqnge6zNisAzUCoPAjmWp5+o6LaqqfVct3YJ1KxahjVxU25+Z1d216987SZ7nSsAXMwfsROJ\nfyHud9lX5m5vt+kN5PlaDfneeBX5XHainctLdgJR14/GKe98/BSAB6cFF+onWIXAqyLjo7FEqKf9\nBUUtu6df/Ri7K+NIW++SX4hf7B+nog4H+S69WBjzC6/8SfZfEc0lb/c4K98E4Du/8y571+X5jqKb\nAMx3L3jlg8/Jva8FvOTI+I8OAt77sfgRksWcC3X+zdX0W8wtVaETYQ1eqI5i16M5l2e9vCprZTZ/\nwuBUePVx75yDUrQYr2U5DESrCPqw3W7r8wnfqsc16VLWntt0yAq5d5161LrGu+2YbkeeqR/K7/t7\nEVc7PXl+MpJjHXtzgbMt9+6FBe7TlU465lnoX5mj8dPkYGjVIcaxqC8Pz3XohaJe9VpN9vuyGPe7\nTeKWvNzlKioQxDjuylvsoI5eakK6gTC1E4WE6kvwKrlWbQvKWv0MAbSXwo7K5uvjy6TCi+V+K6fk\nJLF8XKrzkEtidRItjQtuvh6HOobx1FcRGQ9P/QFx6PPathwvggavt2ThPVWV8sjO+c1zeabDpOBN\nffl36oqnqorHheGJOliZrsIvNZ6r163rtQliTU0rkOf+YveIz1+RRfPyF8V8ODjYwi5F9XeThOtX\n5KWptzt0V2ZHv0esqm3YUFurssRtue6tVsC1A1Fn73w84itteRH+/geP+eYHIkQztR8sMBqfAXD3\nu/f4qS+LIKje/iHfi39DHmVxg9G2+B2imfDlZOdrzE/kHp87ctlKRKh9aL7HB4/keg9P3ybS4/u3\nRI32nA6Dm1MAvrHzEk5Drnf2jos3lucLFiFPNWIyujsH4FGroE5kU5hU0KiE97OlR3AugursUoTR\nySJnuSdj+Bz7LDx14k4rdndkXVzd6rGINbpQCi/HZoHvaRQoNwQrp6NToNYKpk5oqdm835U5vbk1\nIGqp38b0MK74TParJnetrM+y3sLbUvPhmdyMG5jzhja0oX+BngtNobY1i3xBscxxcvXMBi4NHV3P\ndwiDSI/7RBqSRHfg2vFwPdm5vLogQyRjsjS4usu5gSF2NGyxiu0HOYKtApuXjHQX3281cFRLGZ4s\nmGvo01dVbpjOMW+IA895GpN5q3h0SbWK6Xs+nsbmG2pFRI5HX0N5VzsNXjoQ1S/yLTdfk53tjjpM\ng9Bl9paYJVt7Mf5Hcr/ch/xUIy3dkLMz2d3rSHlSVJQaNqzqAqNy38WyE4p20Nn3ePnOPgAvHKlD\nKgiYTmWn8UzGViQhS9MyBJHs+K1ejGrP69Bp5Vb4vuxgrh9iHdWUXEN8JM/6xy3cfSLzusxl9zTG\nrOdhfPIu1VBCp/H1FsunMn/v/dKPWHZl5w4dGU+Wfod3+jLX7T/xs7TNRwDcP/mI6qGM7aA8ZV/N\nH3OmDlWnplvI73o7V0gSNQO8MS8eqeZ4njJ/IPc+b+pufVoxUqdslhqWbqhszkHV/1I1ifCdUxqB\nhIaLBlT3Zf7OZnMGqum2D12Wp/K7s7viJB5dLnHVOdz03HWkxqtqQl9D6mXOWM2Aq7Fcq9eybPfF\nfKpyQxDI52HpcVuWEaOTp/jOynx4NnpOhAIsC4NxDO2mPLAfujiqRvmepaMvViNy8BXcEatd6/ox\nidrRBSWZKl1JywUjxyNKfBUiDVUdgyimzjVC0K4I9XsHj3osizdtpphMY+watahGBqcji7Xz8jWK\n74v6OK1na89wgKWpGALPkYltO7CvceU721vsbyvYxo+IkcVktuTFnY0u2InUUeJUHO7IhD8ZTulF\nMv7cNcQNealHC3mOyPHW9ysA15GxeziUKp1e2rmFp/6FupDFaJYJjtpHQVngqUR2Im+9YN0yxWmI\ngHD0utQFNhV7zbFgHBlPr7fD8lR4cavR5agjY346UR8IhsDIuVV4yFCsCx59dIJVE+rlW6/xdx/+\ntvD2W7LK+3tL/uqf/U/k+86Ee98VodC/kfPV21/T+fuIVP0c6VD8Gu32HdL2MQA2TQkVs7Fzs8/n\nusL7B2/MuKGRgawhz1x0HY71Wq7rs1z5eYzh7J48d4SMt3Nrm9FIIiMmdSjVafT56wfEbY0C3Z9h\nFYfQ0o1nHoJZ6LqpS70alJFDrGZxVZUUGhJPFENRJwnN3T0ZQ79DPVXg1HTMclvW/dWDAT+6p4C6\nZ6SN+bChDW3oM/RcaArUNVWyxHccPE/VfQxWvY6R6xEqgKhhPzElAnWc+T0DI/W+VwF1ILLOKTLM\nCh/k+dQKBFlhAvzUxzoaKzZNqlh2o31rSQq59sW0YpmJ1pDobuxPUr68sw3AR7xMxv8FgP0UBNt1\nDLUiz1aStxEFXGmKNA8jh1wjLUHPxS7VO+rKeJLjEmPkfnEREXfleJrmuKopZYOAJwrzDUrVeAow\nGl2pq5SOYizKENot9V5vWVoD2R1L9XTnnqj8ADat8RrCpKjpQeHr0BwMK8es7HZu6lAoNLguUqJY\nNQzr0A7lnMM7LV4dSRThxyeya2VVQVaK135+8YAHj28AMM0yTjUK1Lvtsf2PRVt6fCI77Z1Xb3Hj\nz8r8b9eHLG/I7v/KS19l9+DLMrb8Z8lOfgTAck927iDYxhvKOKf3jjFHujN3PbwzNaHwibfknOtd\nOZZNcu4jGl9eu3Q1uvSkvmCeadRiJnPguD7ZUGb7veUZL9wUjET8qkf2SPjy0fGcQE3IzMic96oI\n6yjAzYX2noKQFpaZRkOKrKRS3MfFVHg4nS5Jh+IQ9bqttWaatZtkilux3oeU6e/tNX8uhIK1Amrx\nAx9PX9gizXHbCiwKPXqKZY8NqNVA5QqTXOsSKjosLHMKxbgXSb7GqlvXpVLQeF0qjt4rCdTn0Gwa\nAjUTxtMFHV99G92EZCi/m+Y6cZeQGhEggxsf8/jbqj4bQ6R+h0HTw1XzZ0snqxN5a1RlO/DoRXLc\nb4BtyD1Cnfjt602ChdqWXZ9AhWXLN5xnU+Vcl3steVnOhvJMga1wPAW5lD4dWdt4rSa394Vx6TSl\n6MliqhoiHBb5DDeXl9Tpe9CScdrMxVf0otdoYdxVPodGERwHVBAY36XWCayXFa2+CKRgy/KFcznn\n//ympMSczXNSjeDce3JCohD0/IGhdmUc7sASfUHMqS/dEl7+pT/zOj+9/Q25HxW7A3npQ2cPTwVq\n7aQEO3JvJxfzwXVDHKMC+VWfTH0f6eIpodrc176yzfB9iSgUd9VPkBn6+n3fcei15R6jiY87E+GV\nLwU+3e+UNPbVh5E79K7K923P8v6p+BeGeY6re9O+gtu82MEodn1eVTTURHF9hzRTBKyBWpGjoYbI\nndqSOwppn8NyJHxr7MSYQC4yni9INbz+rLQxHza0oQ19hp4LTaGqLbNFTplbUJCLY1I8dVptex4D\nTeBphOF61yzVNqiLDhiRjIGxxCuNIIhZYYK6fZ9Y0UCexvmNn62dciEuXiU76ayX0/bl3p/LUz7Q\nZJxMnZnZ4hF1pQknv/mDNXbX81xijVT0gohuW3amrViu1fYN/ZbszFuDJt1d1RRqD1edh55irVsH\nLp1LjSIUKWVL1fmX9kCPJ5cZNkk+M7aqdjDVJxmlLVXtj640IRGNJk1GOA1xUDkKB8bxSRXIFXke\noZpmpmxR6a4TNT3I1CuvfC2rBDeU57OLDFvL58LPcfqCJwizLXbD+4BEQVZkV5iARcFbd+X7vX2X\nseQOcXp3hB1qAtXLkgPxxZs/S5DJPNkwp+H8mzL8cAalaAfGWeL5PyXHXVk35JYwEM0kunIHbygA\nWy+ZstxTR9xkj+xMQhgnF6rFVCmP1cEc+BGNQkzJ0AFXTTr7WG+x7NA90jnfd2moFnr+4YJ7D2R+\ngoVLR7XeSPM9+v2agR77aLikoViQ8zyn62nUbVYyR87JNflnXpacq+kSeh2smthRuM2uRnlSE7Bc\nga+ekTaawoY2tKHP0HOhKVgMaRWQlDmu7lyxD+iOt9XxaKuDZzDYorSr3Hq1df3W2iFTTcak6ojr\nNnrYpkjJQSukoza8u9IUmOJojDl3C2q1jb1lwONLsdUb27u8cim/OzkXW75YTPjg5A353JrhaJKT\nh1k7AWtjeeGaYAGaGprqWjhUB1+v0ydS34eJXEJH4dGa9ebUlta1A7lW5FPkmrU3qygqGU9164ib\nmgL89mMZW4WLrynnxvjUTRlbHuQc3hLnaB07FLrDmCM55lYOWSW7XJqUuAqPbvb7uIrfMEmBCdSh\nY1fozymrBM9w9wrWk++rdE6pYd3l5Izd28KLgx35/3h+H9/IM5eu4f6FPN/AzMlD4cswc7m8FHs9\n+a48U9P8Y/6NLwtfzK1j+m0Z/6DVEGw44PgedXFfzlG+4sS4oQy0nDzCJqIpjR4WLCvxS9z9Rz8i\n1/U31/V0vszJ1In7vptzrk7cpWNJz0SbMAqrryMI85UzsyJXjEFS+Pi6W5cVdJoaklxBrf2CoTqx\ntwJ/jb/pxA73H2rafuVwshS+XCzlvo9OH/BnfkbwHa2gIIvkuotxzn60C8Arg1MudsUh+tGHPBM9\nF0LBqx32s4jjdEyqL7ofWrbCVQp0TaK47UURUuXqPVMV3+QZ0UpQNANCIyqj23OpVIWripxH6rVl\nLtcadCLcVDHnC4PXVBXcLOkqFDVftOhqJmKs+QXNquD2VLzp35oYKlX9qGoWGnG4LDOejuVF7Wmh\nkJGxOFYdfGlBVz2mnudQhSvTRlN3kxGjkTgzx8OUupbPpoKBKx75eFDQNisBoGCismC/ku+HdkHP\nF0fd7d0rbPVEmHRbPdAoyCwTR9VykXA5kwV4MTmjpc6wqy8fc9CUF6g76ONqqrYNhSeO1yRdyNhm\nkwnDsaRqT88n1Et5/lZvh0Jh1T2N/7vGWQueF2xMdfwBAOmOw3Qsx++/fcHwTObnoRGM7sXjBW98\n+L5cd5bwpc8LAOxrP3WVG0ciLFqdbapaIdvqgPa3vgi58H75/ptcXEiK++WsQ64Ow2DQwNUIBbEw\nwPdcIjUJm8agxggLC6Gm5ZdqunouMJF5OK3mXNsR8+m4HjM6Ed76WCYKvmvoxRLHY6nO73lW4nRk\nzOenBU8nGoEKXawCGPyVEHJjsizVayR4cirRoKJuy71vvnqD2ULW5xvffDapsDEfNrShDX2GngtN\nIXQcbjSbTAsP4yoWAJ+Whu9K1zDKVuHAhOFckk6mustvN1o01ZkX7XXotnU3c+Hxqewwi+WYh2cK\nsdXQ4+vXXqDTk98lzpAo0yzKWUGiyVamW7Azlh22pRmX7St3iF+Rne3oicvHY0Xp5QWa/s4yLTnW\n3eGBkV01L0vuqRPpdrfFtSuyy/XziN6uIAWpRZW993TEmcJdZ3lGW02eRjNg+1B2Zs+mtGu5d6Co\nw5pqHdYMygh3FUJLDbcLNZ/SkEqLy5RaNGQRuTiKQahsyYkWhrn44XsUA7nfC195mXZPVX51GM7P\n5mS1PN9bj075+IF43fYKn05fS6k1j3n6kfB8eq5xdRx8LQzTCEcYJCHqcjpfa4tlDpmGPrsabgz9\nJdMT+d28snzwSNT9rbgkT0UzOWye4RrRFHov7uncfAALVefbU7z+5wGIkzaPf/RdAM5Ky1wh25GG\nRbecBWFL+NaPDdd1TX5rUtDUc1vqJJ4tF1wq5L1l4VQz804uchYK34/icO1g3HpRIdFTy1TjlKUf\nUqVqBpHjazZru9XB1x1/CzU7uxFOJfc+uLqHqzUnGlcGuIo8fcVs01Ot57/7OzwTPRdCoShTTs7v\ngu+Raex2J25gOjIZdWVwtCJO7XiEoajuvi6CnAqnlIXZN9217yAvS/KFLMIgq9jRVOa6K6ps2g3Z\nH0hqbTQ/ox7LC1l0mrTVkxssC+4GMqZOWwRIPbnHIJXP6XEJ+Sqa4WFS9YkEMbF6ibuxTH5VFcS1\nLLZhnbOl4J19t0lbVdT3L8T+e//JkKVi7ptRkzrW+ontgKIWyHM5mzNdiKDLNIri1DBO5Zlzx2AV\nE5XMRlxcyDhaV5eYpuiulZZSM2Wfy/K+8MIdUClGYuD3GE/EvzJ+cknDE96bWnhy76N3qFMt8MKY\nl7tfknt3Unau3pBzx3PGT34IwFmm8OMqozQyH++cPCacyVy2Xx9w+aHw4GK6wCoP9gZa6KX0qRQg\ntCgyRnqNby+m1I8UBnw14eZPi2lWZjrn44dkWnru3e8f80vfEmj6D96cM5srtqJKiTU9HgVQpZ5d\nvyU3bIivc3rY8SFSf43muzx4OCFUc9XbavH0x8K3+x9PKbWUWpXl3EOjZorTMAZSLdHWN+CoUB/O\nLIniqs8vxkz0Gm0FmbUuRuSp4mV2A15/7TX5vtHHVRxG4/CQnYH4XZ6VNubDhja0oc/Qc6EplKbm\nzFtw5oCvNQ96LThqiJoVR31O7okXehhMmZ+JFOyrVH79ztV1kpNna8JYd4nJiEh37jLe5ugFOf47\n35YSX9995yP+xG1xOO34fQb7spN2DnqUZ3I/Om1utXQnaKknu1Vx7H8bgGUvJxbQHK6NSNQZtExy\nHjiy44VqXhz1OvTaskP3ooqBoh/3dho4irycTGW8x0+X7Hfk+asiQ/NlWBzDZSmowFdvXGNLUYMr\n6V66MFL8RlHBRHfmYuzw4pGqxN19mMjxY80W/MEP3uB3zuVBstOKP/aCOO2ufflz9H0xc5aPxphD\nUUtjLePWsm/xjmb9Xbtyi/sfivnwznLCjR8Iiq/bcOn2ZLdqqYOzHlkKxZuf2Yx6IVralY8slWoH\nDdcjV4zIsUZLZmZBR00mN3B4eiEa4vh4gd/VubYzjg4lylGr1mjPC84KGedvfPOCyYnWg/A6vPZl\nWRfZaEgxFB6V6sueFzVP53LvJ027rpmYxj6zsZwbKJbAGofxWO5hK4+paltu5dHqypiTRc5QozJG\ntYAgKOhoAtoXbxziqQP6195/xPhcx1PWqA+bUoc+zQseTiVq887Dh+xdl/XbnTUYtESjC5vXyLua\nMvmM9FwIBTAY49Mo7bo45Y3tPlcPxB50vZBpJAvzeqtBVotOPNCKQL12Y13VtvRSUi0eOp1PcRw5\npx00aTZE7W6rV7hXwmQkC2lWPKSIxKw4bO1TN/XtLtoEbc2J2JMX4iIbUZwL071LnyrWIqjWUKpT\noSotVjMQQ03r3m3HdLVAzE4PWgpu8uuArCsLYW9LFvPeTsKtnozXa/hc2dYCGwcxmQKctu7sMP62\nerK/cx+AZW6J1B8ytuW6FHuS5FhXFmzcalBPFdI8Vxg4HjuOPN+pO6GteSfZaETzttrlYYxXiZrv\n7LwAQNC+yvzsewCcz0PGKry2Kh+/EqG4bPcIVP3fasrCdTlf56A0cJipf2GZlCxXoVrPrDNbFwox\nZ+oxOBJe3fRjrlzX9dJs8OJPy5zsN1wOXpXxRQdS4TlzLuk9lN+9cmPBlT1ZF1/oFrzoyTk5D/Dn\nck6ufqC/92s/YqS5L2lSM1PgXJ5XnKtgnUxkPdq8pkqEAUu7ZE/NxsOf3aYzFOE0XpyjQR4a+vq5\n1vD1q2LGfuH1OxxrSPnodMxHgbz0BQV7WqMx1OpVnXaLLa1CdrUZU6nfzWsGBLuSd+FvtTGJrKNn\npY35sKENbegz9FxoCtYYqiCmSjKu6K56PegRRKu4eszWjoJ7ioD8psZ8te5dsxMxPBZp7oU181B2\ns9kyZamOy639GKuJJF98WTzd2eEepWanOV5FX6VuYgx2IfdYOO9TFLJ7hAqD/nDZ56NMsvN6IdRa\nddrzvHWyVYxlV3sZdDWxq7vt0lKnpWMiPK32WzRAIRBc31UV8I8fcTaVsV3Zyel2RYNoxSEDdXB1\nu7tsxxKJ6SgkPHbTdablNK/xtYZCbS2+brZRWRL21CGmfQy+0bvNz11oGfU2+OrJ9rdKHAUZuU5J\nZuR+Zi6mgfUtZSAXfugOefnzsiuZZUiyFH71ux4mEnOko+AeDw9Pa10MXMtCC8NMZgVzzfzstX1y\nVSfaugNB4nHdAAAgAElEQVTvDuDPvS7PetiIeeXzAtKJI8PeHfkctls0r35dxqGJbaRjtq7dAuDn\n/52IhydiKvmzFKPZsfWTPsubyqRCd/lvhjzV2hGdynLkank3r+ZY+4GMLmW9+UCsZsBBv8GVgayL\nbuxz4QtvTeTiKxisrSCm/Wibr39NysXvtQJagYzHPbqBq7w4n1zihVp/Q3lyZbeFty3jfOlOiy1d\nZ51WiPFlfigttaM8eEZ6PoSChTStoShpeVrlZ7/FoCsPOeh4BJ6m+ubgdLUqkHqC82VJpZ7cRmeb\nQKMBgYlx1C73y5quqvlZLOpwUl/Q6IogqB2fWhfs5STBNSogTsZcLsWbb7Vg6Ju/8ybv/NoPAKnp\nPxBrhJ0oZkdRkYOgzVFPEWs3dDLLijgU2zpqGW4c6CJuVuCoWr0jZtKet8ONuaiwkd9dl63vbx+Q\nI6p/VedcJlItaeaoJ7uy2FUDHGtp60LKlwvCpRYOYUanLYKxrZWNrmQR1aEWdWn5OJpSTeGzVL+M\nCTpUq85Q2tPBa1+h1LBY6dU0U3n5vdYpV/dFhXWjgFPNJDxBhGJhinX+xLAscbUKE5G3zuqbJbCl\nxXt/9pbM+U+91ufP//k/JcN89RZhJL4N6zzG0bwLggq3e0M+W/G/uGxhtNR54/Dz3NB6hwF90qGG\nA/cbZImEsO/9WHxNd+djzhMtF++EhPpC7jYDHuu7NlFTbOB4HGwJv6+3IvY1WhWkDlsHup7KkMuR\nmAQml/Xx6rUrvKTl9XFP4YEImZde28LxZO2dJRGjR7LxbWtm6+CFPoMtWS/XrrxMpOjVMNjBQQRS\nMZ+R1qs+U89GG/NhQxva0Gfo+dAU9J9xQwKtP/e5g9v0tRxyc3sbb9XgxAtA1S/PU+98nXKRaw2B\nZUroy67SjgyFwob9PCAMRTKvIhU77YiiXFWGLik8kdCXxYxEu1M1Wn32dbddqofoe9/+mCePxcte\nFyltX4FHXsG2agf7/S57fdkdVuribscl0MrQroVGU7bKrr9PtYqeaO2F+WJMrMUx2t0enpo5gedg\nVCvKbYRdqqNQ27Wlbo2/bjdn0dQO2vGAfJ3b4eA7aoINRN0Pui0qrZVQjEd4RkvJNWNczTtJl0Ns\npg7WlqhH/Z4l0UrTnFd0X9bKyO3rNDWrr7AjGtpCLm8r1NxaVkpt4kCpCRRhXq01nWRpaW9r6Ty9\nxZ0vXKF5cB2AqHsbZ7Wt+bdg1QjJ5JBo6qKuESfcxajjsxp9n4Yrz+GaF3Dad/X5TqnqoY5ZoiHJ\nuGShmbuznsOZVkmeVxWlhoTyVDWN0OWG1rZs25qmwt9vvXiTSh2X753OaVhZFy0ra+HqQRMzUYwM\nE4qFth2Ip+wGikMpEvqHMieLWHEO3pR+S7OHex6uFtQp8lNCRxyttYnItNvVs9LvW1Mwxlw1xvy6\nMeYdY8zbxpj/TI8PjDG/aoz5QP/v/37vsaENbeiPnv4gmkIJ/BfW2u8bY9rA94wxvwr8h8A/s9b+\ndWPMLwK/CPxX/38XciyElUNpagptypozw6xy/sscT3sI+E6IXZUb00rMuWNpdTTRxosIglWTmBxf\nQ1mFzcnVnm03VtWZPZxSob9FSXqucWWTr5vDmnlEYnTXUDs6+vgtTKKVfG3JRCsW7duIUm3jVpyw\n0BJxqVbM2TqMcVqryjyGfCr3K7szanWkVbNVFuJCmr0AzJ5CpHUK6opCY+Wz5pBQk2ciTfypEig1\n0chYi9F6Cp3AJdSYf5E7FLobR8pDJ6ww2lSx8pcYhULWeY2CBsmWC/xY5qGYaOy7qGlqqCyoaxoN\n9Z+YmkA/O44h7slFvnRDHKbv3p2uW8h5DtJWGfA8u8409TxLS9F7PQ3Zttvb2G1FB+YLHC1tRjXH\nKr9MvqAuV34VVR+8G5AoejOb42/dVD7PcR3x7fhJQaL1Ip4+EEfdKCnwVhmjeJhVM5jKkmerBiNa\nv8MpMZrhOfMq9nXLbR24XD6U+Zvdv8/b2pn8ivqPvuHVlKWssUU2XvcFtWNLqi0bel6T/hVF1LaU\nFzaguysaTxR6uKtks7iJQjko/YxaHb7PSr9voWCtPQaO9fPMGHMXaUH/F4B/TU/7n4Hf4HcRCsYx\neKGP4/gkirk/fXjJ4YE4VMLawVVnn+O6WK0fmEzEozu5mDK9kEXavd5i2ZIXejFPuVAnUWM5Wndn\nsgozDaMOttLGn/mYxSqLbrJk5snELRsLRk9FzTvRe1x3m/Q0TXdkLYUKi7jM6ClWfT7NWE7keoeK\nMUgKw/x81UTGUGil3qlb0dIKv6aW3xTLJVYbuzYaFk/7ZvqOQxppbcNLD28pv2urIJxl1brdu+e6\nTBR/3+m0yDTdeVwt6Cg6p9TiLF6ZrRvsGjemXkFxw4JcF5V1Y2bq/GQofKvLkDtXxNl3tjhmpF2b\nXRPjFyJATKPGmYsZsKsO1VbgM9cXN3ScVdFtXBvQbMqYA2NItbxbo6887hc4RmHe9hzf05e78rG1\nODPr1KGuRO1eNfE1YYWp9KVqb2PVDHDCClOI2WhMTqkgoyfaVdx1PZqKG8jCklob8jptQ6gRn1Zn\n1XU6YL5q9jNP6NxWB1/q8mgp5sy95YKFArGivuZJhH0cR6H78YJ8Js7jIHRp7wm/JsklkZpxRrES\n/e0+Zp0ZPqLUCtV+2aSMZK1WdYi7sr2ekf5QfArGmBvAl4BvAXsqMABOgL1/yW/Wreg9Z+Pv3NCG\nnhf6AwsFY0wL+HvAf26tnRrzSeMJa601q0T/f4E+3Yredz07T1MyaopUdsEf9+9ze6i7StfBU32o\nZkyVaV+HiZybL2pSbfPmJzUNNPNxXrLQwhS+D0tXpP+qWYrjzPD0d3WekWin4XlVgra5dyYz3h/J\nrvhAk4/Gw/fodsTBM5qnhApRzr0adId5XNbMtT7/1p6GApcu6cr5VtYsE7lua7wg13CoowlK/djg\nqdZRZZZWV3aBRtjkUqHQc2/KD7U68lzNBKcEX7M566pgqo7I6XzB4ljCobOtBFd1W6s1K7L5lErL\njhE3qZUXxbCiWKpW0PAJtFZDpRmcaZ7S3ZJjjsnITmTXHTYKwheERzYLyRJRj+eauFY4dq0dSKFZ\n0e4GPZ9Es1gX85LLmc6fs5qzJZPTt+RYt0PgiMuqyk8oJmqOVU9YjFWN14za4mFA2NF7XH+Zdk9D\nqo2YOlv1Cu0yeqChyHdlpx2mBYeaddssfNJAUYWRTzXVyttqziajgpNaeLUV+gyPtc6E8zHf+oGM\n4+J0Qa5O7Fgd6dPxJYsroinUC48gU755M5qKWynuDcnHWpJPTSK7bT9xtGYtvFUvDtPDVWcmngeu\nOsKfkf5AQsEY4yMC4X+x1v59PXxqjDmw1h4bYw6As9/tOrWFZWVIbUGmi/uD8yWnwl+OXuxRJ6uC\nFpYqExXbjzX1uB/jNfRkx8FowZXdvX3clbe/DnBzeQEcvcc8KzCl2tR1Qa3qZVm7pKvU4jjE6Aty\nfqlNTuOcJ7GoyZ7r4qjXPnYrXM3mNElKosU3Ls4VhHQDZtrzsbaWXAFSQeXjKgCqjmQx58biaGlx\n41jmWgK+ShIul/piRR0uNFN0LCwh9GLavizWSWmYaqOWk0lAfaiqeNSmGKmA7Kx8J+tetZj5BKch\ni2q8HIE2GRk9SYhaWkPzWF82M+NiJNeojEu8LS9p6uRkl8KjzB1CSzpgTUtZoGVu8LS8fm2rdfPe\nMGzgKZ6gqAtOVfj86tvygK+/lXHFl89x1AAt6lKmTZ4+1MrGWcUP/pHktxTatOf0wZIvXJMX7Pqj\nu7z0p6QidHQW4GxpXkJacq6Vu08Stc+DAF+L+Ry1m5QIX3YbMd8bC1/mlXj3l0lGvuomHNXMJpp3\nUcx4oBOU5AWfV2xBV8Frk1nCh9//vlyjDhgPZfNpd3OyUy2uExjCUDbBa03FPMwntBs3hIdFRqVV\np11yAk/uYcIuuH9ENRqNqAT/I3DXWvvffuqrfwj8Ff38V4D/4/d7jw1taEN/9PQH0RS+BvwHwJvG\nmB/qsf8a+OvA/2aM+Y+QPrf/3u8+CEO/8jmrF+vY9dDJydQznoyX2FWvxDLHaj8/Rx1xbhdizbGv\nK1BtjrgV0dMMv2RRUSgyL1WXbpHloDX5nMoDX/sNFCmJFuQYFwHDubQmG8/k+690m+R92T0eLJbs\na/foo3aTVHPeazcjW/UY00L+oyxhuGp5t/S40tRqvo0WnpoY1UKlfbpgBSpMTYLRWPmkyJhp+7B6\nsOS909UOpPd1cqwr5yZppTXCYJmllBpx8HwHR9GiKL6hblaYsXrqY4eylOtmoxnuTHa05qzi/n1p\nHz/UGgo7vXDdUMe2HdKZojB3YhalOruMx8SKE/CHWoQlK2s81ehqBwr14FdYlIUkgNFaBU8U8v39\nx5fYr8ux65Mulcbux0/PmOXqBP04o9cTLAMTue/BF7r0HEFxRs0Fk2Mdx84ezaWo6/Nkxj99SzSP\ns5Fcy1Q1WqqCZeJTtmUNLMqQazPh7YWaiSkVlbOq1GyYKHZ9shySrjImPcPhtmhLW4eyNh+fTphr\ntMfUFlTbmJ26VFpcZzsMCXvyudRajEni4iXq2A2bGNUQ66oAxc6ErRamXjWiezb6g0Qffns9+v83\n/dzv5Vq+cbgaNFkUKYWvZchnlse64F/+gktLC3AWlU+i4J1itQjG5yxn2jjGW+ApD/LxnMcTfbOq\nmhNdIKlGLYIw5khrBzqNJVY98Q+Gl6RaeadoNng6VPtZi29+9YtfYWlEZTxKx8zUvPByS6+vLeyn\nPqWaJo+0Pf0WHRZD9VR7Flft+UVZEDyVa8803BhEMUm9wtQXzDRUlpQJS3XTBMWAE7VbK82rbQQ+\nsUJcTZhjVQhN0pzThWZG+jFusFKPNQyZWuwqZFk6LBWCO1u22NeoTefFG3hTOf+kljnwFwGuppQf\nzy+4UNh1/KBL9/aLAGSNC37wWPj14JHw3tY1oUZcXOOgDnVcz6Eohd+xcZkrFnquOSXjqKB9T1OV\nb55TLyXEGW679I3kNrTMOVc/pwVQ5mKrT08tEy17HgxuMXGVt3lKpuHu45nDG3e1oIwK9J4TUjur\nSl4LrurL1tyq+OJjWXPngfD72M2oFfIdmYB2T3s7pi5X9rTZTVUyWkUIlzLG1C3XDW8HLYdWU3w/\nzRjipsxTVtQs5lo8R82LnUGHVPMunGiAsXLhKG5QhiIsHJpY7TT2rLRx+29oQxv6DD0XMOeyzjlb\nPqLZ6DBW5WNqc35Fq/a++MIttr8qyTVedUZxKtrETB1cUfMQvycSvN1/eQ0sMmmK1xSJaROH5UJ2\ngflMS3y1PUKt7eg6HmPtLpzhM1ZnZHS55FJtmkITS67UfX76tgBe3r33Hr46ASdhzQulJl1tR5Qn\nsovPNVrwQT5jrlDp1PcJ1JNdL2JGKwyFltGazaar3i04TR8NcFCEAfOl9iV8f8xYq/2ueqw41mNV\n9jcMSmpVvxdVwb2PRbM6O3nIwc5t4aeOwYugrhTOfXHJ++9K5d+7x0/5UusGALepCLfEWRenWneS\nmoWWn794PCOIhVm9o5D2Ldmlx8dNfvO3/ok8lzpXZcDq+MUQrmLpsxxPPZ5pDbVGRDLtu3l8NyN/\nHR17kzyXOR3Oc77zv/86AMnHCa629StTcXx++8lTmpoo97lth6uaKRt+4wvYVySJ6923P+S9tyR7\nstCaimHsrDuXx0GAUZBYZH3ePpYy/wd74kQ9Tsa0FNxUxg6TxwqWO9zm1r7M2b3zc54+0ciGRola\nXUO1kB3fmojTp2La+G5MU7W389wwVWflnX0157rQ1bqb+bRF85quZbeJUVBe5S2pq99bQtRzIRSs\ngdytuHQneFfFs1qcFAwV+fXhkxGvs+pFH+JopZumporaKiTSNNVGp4fbEZPACyyDE3kpzh+e0Uvl\nnMGevNCdLf8T+9tYPAX3JEXFcKYY/oWhowVHZoqua19L8TQddev1l7DflWam85MC95rAMv709R4f\nHMuCPbnQMt0B3OnKIp1aS0MzAPtdn1ZfhNp8JBM/W0zpqd2fO5ZjBWFdnmfMFUc/OSmpVVAZFaZF\nXXCwQvk5LU4UkOXUNYta1M4Hj7vcuSqLrdpSdGfZpVCgD4uY611Z6PUooUR7L1TnTF1R1/2u8HDs\nnpAdy/OFTYeDa2LLe22XRNXjk8tTPnhL/DJogRAHQ63RmR0/oqGFRuskJ1DebjfctTCY67XeeW+K\nPRFbnDDj8UiyGlM34ua2HP/2h2N8DUW7rszBzxw1yPSlOtzx2LupIKRrh/xY293/D//rb5MtxcRa\n9fwcRA67irbMiwybCG9nVcFZQ859t30fgOiojbfQPIii5DSTdXqQRByG4rd4MlqgwSo6midz/VqX\n4nBlKrYIbmr+y3JKmmt0aDphqy3nO4UIleQipXVDAX7bfbwV0jddEHiyDq0JKErh0bPSxnzY0IY2\n9Bl6LjQFDDiBy36rSWlFI7BRhVXny0fnDzk/FVBJb6tJpWXY6kwkdZo8Yf5AK+BefESkPRrHVc7l\nA9kpLsfjdTv3rvY49FotllqHoE5qLjQqMUpyFqsGJ463zpkI1ZP/NMvZ25cd0WlPSDQ27yZTck3/\nelI7XAnkj7ER51vlQVPH0MLFU0915VRk6sFeQVj9Vguz6q6dpszUQblYFAw1K+/4YsLKbtAQNU7g\nUK86UjU8zrThcOSCXZU8KyumCmPuJNq5OyywU3n+qipwtV317VdvoxozXlAQamObRBW3NB9QBrLL\nxW6GH2oUqN7hvjoVf/O3fsyFOsdWZo5xPuFn1AhptFXTKUt2tXT6ME3QivhrFXiYLfnxm1Je3xRt\nhgpXvrI/IL8lDHvtomR+LNpNrA1wOllIcEcdpgcxjb3rer0xb/xDMZUefDykVieu661qE4SMFI5e\nWIujdRnd0BIMRI3/8p44BuduiVMqTiV3KbVdwdPZEEJ5pt3Ih2CVu6OZqvWAWJ2dodulaChg617A\no0tZO2lREWmpv8TVXqphTN2QNWZLi9WanxWGWu9d2kvKVDXHZ6SNprChDW3oM2Ss/f9EIf+R0mtf\n+Lz9B7/8t1nOEupYdpQ9L+b8Q4Gznp9DpyWS3aQXJIE4D0+GspsfH59TanmtR7Mxb2vDkeRyRkN3\nYLcV4qgd/PINqXJza9Am3NVKxXlJIxINxBQFkcJOM/cKrX05Z1vDYn/jb/wiH34gFX0uzs+I1n0f\nHEJNXHr54JB2W/EJ6icoPJdUwQfJLGOipbYWRUWiu79ddbB2A1oa6origIViDHwnxFOnnBOF1Ktm\nLlqtaGkdCoXR9ryIb/yc5NUPJxVahIov9bdJNSSZ6O5z1D5gR7EgBy8dYlZhXVORnwl6sXRTztWB\n5QWiSQxyh9TI851XMXEgvOoUJY72qjiZZNSKCixU45s1Uh4mcm6RLNiaylz+3V/9VTJVQ9rNkD2t\n65Do2NK8JNTaGstkRFnLrlpj8EOFutuac20RaBUe3+/06Kx6ecQ+q2JEodfA1ZJ9p4s5lxqujtXf\n43oer3/1hvDz9Vd59bokf73W2+Fn/q2/CsB8KXP6w9E7vPVPPwbg+2/+Gh9+T3b5W9U3+DnFstyd\nFkxmUgl82pQ19PY0paEIRCfwCbVZzGw8WveVpLCUCoueD4WHSZkQxrJm9w9v08hEK462co411Ly4\nf0qvlN99+813v2et/Qq/Cz0X5oNxPcLOLu9N32DrUpi+3HJAzYCd3g7FUiZu7MxwtH5epWp9I9rh\ncldTbHv7XGtpBylzwaUVAVKTMdBK0cOFeMvdTsU1u+rAE4EChEzHW8OODQnlVJxEaVcXZj/kUtXh\ndFHia7x9r+VzfVsy+L54rUe46k15IBM+ySyFNmo5n+Scz+RFeDJMpM4cn6Q9O6ZilUaSlwVWBdLC\nlGgfFhpZg0z7GdYaRSnGM2rFLMxLF++qCLdq9ACbabZmZ5dWSxb/NU0b3m516A7k+50rB1SV2h11\nk6mnuQ1BQrzKd87lWFnmtKwWu8FgElWfO/U69bvtGbKpzGW6q41JIovzQOZpUbkYrWdZ1pBpD0rK\niKCrTJjqQxuHXJ3OrutjtCVAkVVYTVufphn5Cqa+yq8w4DS1yI5T0Ii0uZBXrBsVl2WKo1iVdFVP\nPXS4r8Vu9p8MsSpZHa/J13VoTzTa9Q/+1ge8/aP/HoDxBxOaav997P0T3hiL83vy4TFWq4pfnkne\nYNfuk7dlPdm5wdG+om6dUmnJwaKeki1kTU4XMnd5sSTTyFdEzLQvz9Rq7JGfisCxocdslUf9jLQx\nHza0oQ19hp4LTcFaab0V3rtGakU1Op89pOm9BEDnKCJPRTqeL318LUt82L4BQJG59BXW+vj0GO9M\nJGo26PNuIqGw5TzlKBIp72rhldEx3NDiH41Wb93oIxkHGK0B2jOWQNXLJNBd/jijSjUUWNV0NAT4\ncmOHf/2n7gBwdLVBorFuT3efRWbJlqI1XORLPn6q2YdOTaih0ZGaA25ekjjaMxKPVMN3dcVa9U2q\nGqsVUFaQ6FbhUTgr7IHFqSW02DULfE2OYjaipdmFe3dkx7/W2SeOtS29Z6hyTSTzQlyNp1eeQ1vD\nluUajZmSaXGtLbvEKAQ9rUpC/RyXhliTcmbncq2FKeieqo1SlmR94UVR+qz3tSwn15oURj2UbsMj\nXNVd8z2MPqtfL6i0X0ReVFTaSt5ZhUDzAr+h/RKMS6CmhF+XTFcaZ+iRq9ptK+3sXBgmiu+4MjzA\naju5xzc/pFat7p2nMk+/8ct/l+TBu3LdwuXoliAsl9n3+RVFHpZJhpaWIFS13m8+4Uok2m+zbrKv\nGlteNVmoWbmsDCNPk6MU3k9VgyYGZIs5oeJTluQMpjKv8zgi6gz5vdBzIRTKKmc4esw8/wAPwZ53\nk9eotBuRSxtfQTFtt4sb6hurWY2tz2dsqWrc3O1SXpUXcza9R/+xxGuHdsquqtjDC1HbPr5/wVkq\n6vV2EGE0Nh2EUFQKgPIjXO2wE5Si9uUXZ1Rq4weOy60dUcG/9NO3uXFbQFadXoivcGOCVQ5HRq5q\n6UFu6USSTuy5x5x0ZNFM1T6dJTMuNf03s+W6J2RZ5RjtiZm5+boisquLw23218VkPALa2sLe3e/j\nzuXF63oxfR3zdlOeqbHTxldHQuU6ZJqJ6nk5zqqiUdhbe7htKepuhIej/gWTNahbmsGad7HaUKfp\nlSTayUj7o8C4ZLbquJU9oTMSYWmLbC3oyqqi0MY/gc55O4yJNTLQbmxTqd9iPmqyVHMsdyp8BWX5\nGs3a6jXZamtW7ZWYpnrwg9DQ11Tt0WREpMrzUNXy4TIhHwqY6KEfgHZ3Ch9fJVeA22/+4D0Azh7d\nw9Vozk6vTX9bTIZwvssrWo9x0h1SqT8n0A1pe2vAzQMBUPlFl6OOYEEKP2a8gt5PZqBdyyaKpbC2\nXkPpx/MneLn243R3iNty7+ZWxVZ9Q5n+Fs9CG/NhQxva0GfoudAU6jxh+fBNxu77awxCf+eCWwPZ\nzTAummRGp2PY3r0qh3VHDBoRteIKrrgNRnPZgYfJCxy0pNZep3WbidYq+LV/rj0Mj7/FxZFoCsXn\nX6Qbyr2DMqNSVN1ZeU6eitSNYo0ijGfrTLDd/QFf+LKoiZ9/9Q6dHblGFFnQzEW3uapV6BGrY3M2\nz+nui8Q/zHvr9l9PTmRHPT4uqJuiqmapy3TV0CMzWtQQunFEog61FQ66doq147PRqOgoIq5yUsy2\n3CMcxOyqihq3dWy1R65JTkWaoxsbtenDyvEVesw1CW0VIfC8ik5TdvFFmGNqccqW4ZJY60pmvofJ\ntVCJVnO+6Vi+P5MdeDTP6TZUw3AMyzVmu15X5eprBmAcu+z1RN3YazeI2qLpPI4vuCy0NfxZzEEh\nplComajXXzigq2pVz4sJdhUPUmUUpfBoOe3yZlsiBvaJaATz5IRSM2lPL+5TK1Kw27ZcalbpvYdi\nMgS9CTtaMu1Kr0MYCd/ivEf3imguX77Rh0g04Be0cYzXGHBF27ylpsP+oTxTVTRATbD3F+e89Z44\nD0vtnn1xVnKmL0aR5FjkuFs01306nWUTd18TB5+Rnguh4DiGoOnSHzXxTuUBuoN9HIW41vaCTCMG\n7ahHu6Xl0P1VzbqASsuwU3g4Ru3yaUm1pSW3rxyxo6r7Ry0VGstTjh/LAhtOF2xtibfYCw2ephTv\nNRvkWp7c04Y0jrH0dJF+bnDIzVVTF8/DrgAmWU6gzWc8hUmbKiBV86DMC5ravGSr3WekWP1GS/5v\ndxuk+m6UtsZBG5c64GhYIggiHBWMC/VJRH6NpxGJThwQadWgQemheBbCqiLydcGqAMnSnGUi9/Zr\nF0/BNpacXM8J8pJKW7tPx2KnBo2YUDtW+bZirinOkyrFVTi6bz0SRVc1tJGJVyfc6MjLYS+eYrWr\nleMaUJXZlDVWwVAtTX29Pdhi95q88INBE88V3juB4VAbWZbdil5HXrIrB5qeHkYkhbw0raiPUf9Q\nPqlIXDk+aUx4oZIXMrsQvp2Hw3Ux3iIvWI60iO+ky+lSwuDmroCpwlmHeFurIzWg1HM7YcB2Vzaf\nG3shWwp5HhzKZlOZBp2BfK4rn5b2EDVeg0hbHnSXfbpWeDefyEZ3l4zFI3mOsa2oNf3c8Sw95ZtZ\nXuIXcr9npY35sKENbegz9FxoClVVs5gm+PU2B3tiGixOPuQkVTBKEBIbkfxho8Sk2o9xvXMHOIHW\n58sTUO9sp9+nWGnXuUOk4JbXX34ZEK1jciaStrUM6Wg9PM8NWCxFM2n4DQKNWsyMRECKwtDRtmPX\nbvVpe5qRtsjIVvBYv0G5Knyi6qkpfXyNO5c1lLHsqg1rqNRzPNa6f5Fv8NV5aE2Nq863uq4JNaNm\nq9thWcluuzyXqI2xJbEmBgWNkFrVWa9h6UWrjMqCLFGI+ELj+QXMNP4dOQENX3gROG1qzYKcznNS\nhaJxOWYAACAASURBVGb7ukMXiwuW6sy0zWCtTWWTIbm3chI22Qrl/IVWTs5Nxbb2x0wPAj6e3Jdr\n+C18ranh2hINErDVEb7sH3Q56Ms9omabvJJ7d/wAd192437Q4Ood+Rzo3LTiPpOZOOq8ekSu5eyj\n3SatQnuBVjWLtvDjBVluPJn0GSoQKnAdIm0neH62ZPRUC6M4soZu3m7THgqvktGC1t6ql2iHK3sy\njq1eg92e8KK5pRiSMsJzVgs1JNRO6YQN/EgbBlUOt2+IBvHuQ/nd06dP6Wv/zyzJSVcYi9mMYFc7\nq+/sUmpdjmel50Io1HXNYpngJzVaeZzl0uH/Ye/NYi251vOwb9U87NrTmYfu0002uzlckneUdGVZ\nku+1YtgxPABGkAHIAAN5MwLkwXHylIcEcF7i6Ml5UBAYgQE5UYDAGRBDsiJrsETfgXci2WSTzZ7O\n6TPueddca+Xh/2p384rWbYqy3AbODxC9uc/etatWrVrrH77/+z4+lkrEzvpNbG2Lq+Y3W9BBS+LK\nh83yYSpmzusKBctGtuUgoCpUXTVomwAVM9lvXLuODz++BwC4ffcD7O2LC9eLLcyIehH6dk56Emoq\nAEkirzeCHiyiztIyRayYf4gBB1TsIT4flg2XYP668tAQsditO1D08LaX8v1sPMfEkwdXZTl8En14\nlg3DjEajDaqi1ZXkuOkGCWt6fhPDpbJU1pSoWJJ0Yh8FdSYWU5kwebGEzbZv3Q3QVDLR644CxaRQ\n1Cmm1KP02qaE2sYZKe67SqEGlaAWCmPmOZJeBY9VAtvI2Jc6gzJy0V5wBuuBLF51WYCETNJczdAF\nDEUiy4fXIYmr50GPqO+gYnQG8ts723sYEL1qsZW5XC5AwCryu8Aok4fXgo2YvSK2CtHvktzWSEjR\nHXQwYSWiyBV8tjiPTY18IYvMGqss55M9nDAUWZyP4JCyaX/NgU1x4iKvnrRfsw+mXLrQnG9WoGCx\n58W2AUVgmB1Z6Hjy+sZNWbHef/cODpm3cVwbhvIIsyLHOUle3QjQk8veh0u7tEv7HPZceApC51yi\nsjPktuxQiyBHl8kSL6kRdkl3rmtYdImpu4GmyaBZz25sg5ogpNrkaLgC69pDw5U7s2Xn34kSHHZl\n+7gzOcdLF3cBAK8lL8AiMOCsWMChLLsmhVdRFKjY1+DEFgw/6/s+bMqy+5EPh2GDT8x642g0peye\nQVBDkXpb6xKaGP8ilGOt73QxyukaG4U5s8zLyoNhJ19e5zBVS4FOMRllUBI0Fe5aMAT3LLIxHN2C\noYbw7FYtil2idQaftPbdfgTDBKZO0xVs2oMDn9L1Z6Uca3m6xPZAdrCZb+Eio5x9XiDp0/2psxWd\nuQW5v72uwT2f+I3MQVaSDEcvV2Q2rm/gtVAPAo+038DVLdX5GM1ArrujbOxcEfe6l0QABYNSql3X\nbo1ySuxBZ4RZQe9vBmRk+daOi8qS8x8wXElUgTyT+75sGoBs3XFZYTmXcakZltmdI+hHxG8ENXob\n5Fdcs+AwsTuIXVgc+5q9O7ZXIWDPSAMLTcGkst3A4jNgqRIBQU9bBMu99tIADzLB3GRlggWp6rNs\nuboPe/5VWN5n62+69BQu7dIu7RP2XHgKylbwOjas3F3JcnXsBH1qNvR6m3ApN9bYNgwRfa08mtVo\nlGmrp6BREyqs6gYNk45+EIMhF/wp2YdtF4MOUY4n5/j4NklV+xdIHMJ88xJw5diKOgyObcEhmq05\nceB0ZGXvuj66bLrqYIi6wxg+lB2zSacoUkJYvQV8jn5ddKBJzOr7snsMkxgHa5KIK6oJHnEHi5IA\nFSnWqrRGSkRbQN1G15akKgBUSyBnOXV6cgTPk53U2a/hKPI3VG15M0bQJfmtH6FmA1ZVK5R8DaVW\nHYUxcwtn8xR1JLucPW4QUGJu2Wjoqeya80WIvpZGNzZZIgwb7DSyi09UjIZxvVHWioLNsROERKEO\niPXohQGiSPIublTDrVs6vQXWEukItT0gZH0/oweVTjXGEzl3z+3Ag+QUiqbAggndod9BDfHeAvIi\ndIMBjCONW1ZVoWJzUWYaZD05/y7LhsoMMHaE5ShOIvRNS922BWtdxqW/9gJiziffJyfHsIRVcL7B\nQFGBW1UaHp5oY6Bh895QjnXta1/Cy6eSBJ0fRSsJRBigoigRFgG625/tMX8uFgVoA5PWUGUXNV1u\nO1iiFayuUwVN3T5ghiyVTLvNyej6XRi6xtVcw+FEseCgMVLTLcZTKE9uXkD57u39IdJKElJXO2eY\nUQ58/GAd/mbL5tvBLOdDFktSr0hr+ISoxlGBfpfZ/sCDG1DpBzZqaimWBSHItQuHhCyY1jBUuPLs\nECQBRpf6gka7cPdlAVlUNt55IDc8XWYYRvLbpW1gaZn8EYena4VYECBlLBdTiolkM4PBNfmRQdBF\nvWD4w0XM8304BLxU2RK1ot9eeaiZaMsyC6EliTiP6lXH3iOMT+T6YhdQLjsR1QL5Qh6Knb0tBAH1\nKEsZ+4v8HAMtD/fAbRB2WhryALaRc/YdYJ2twRuufC/2++Caj3yukBHaHJoI5Rpb5lGhZWex2wcW\nBoUjY6gW4WphqUYT2FRcymczxBxb/4rMi63JC1A/EhyCbSy4DF0bU8IdyRh0S1Z41irM7zHpXAAl\nKxX3z0q87gsn5KkxONjmGO4Sj2BS2K6Mt6kqGFKyW+4ShmPhBDHyRu51HAqASt89x5D4j709H3eO\n5LervIHHjdNpFGLTPjvPZp87fFBK2Uqpt5VS/xf//7pS6i2l1IdKqX+kVDu7Lu3SLu3fBPuT8BT+\nMwDvAWhhU/8dgL9njPlVpdT/COBvAvj7P+kgjQJqNAgME1HYgVqS876TwzPUanCwKkk6VptcVLCY\nLIKdwecuZlACKRN40CgX4mFM2TzVjzbw4ossCykH2cN7AIB5fYqeFryE7VgwEZNHjXgBxlJwmBiM\nhj68DnUnLQdLNswUkYNFJWHFxbHAedNKQTPh1ilcOK1CcRTBJSlnwBDlomlQ1uJJnE0maBrW/E0J\ny4gHYhmspM8DUphFnoOC3BM6LzE7ld1xucwRJCzrhV0UDXvymQCzFDBZsNFmmaJis5nn9oBSPuuo\nEJ2EuzF3QX1aY8ZO1DpUCNbEhXciCxn3nNIeoyLNnNUq9VQB8rba6NXYdlsdYrMqudoG6DG7tojl\nvdNsDKcQ17/rdVGyvNxBgCnLjLHVQTGkYjc9lzJfojmU3z5dnMOQ/HS+0LjisUvL81Cx1u8zkRob\nhYDzaVlaCJjENk2FmiFIreQ+Z8UQFj2i5WiE9x8JZHrt8QzZhXisyo2wRuq16+8I4e9uJ8Lm/jUA\nQLLeh9uGRyZHeiKM5lNT42wk3xt9IPRxh6fnsNsQRblwmYAuVIOCye+qnqDSa/gs9nm1JPcB/NsA\n/lsA/zml5L4B4N/nR/4BgP8aP3FRMFCWRuUtAJcTeqDRNtGhdtEQgDHLPVQpRa1JlOFPE7gUvAjc\nDqp2cCYXmF7IZ5UXYMFM/eEFH5R8jnAj5OsQ/kBuaJMtYVzScDsGhopMnXDKCy/ROMzI9xQKcg2W\nWYaQMb7rbwKQ47lyj7GYXOCj70qIMvRtDDfkZg2dNWwSZGMo9W6QY1nIQxVvJbhKBuPzJIfDDLij\nPTwm5DVrcycqhMt8SOTUq5bzjbUOeleZ2+h1oMg1eEoB1ov7c4xJcW/OFqiZfQ+Mg/0tOc/93Ss4\nYp7gMTkQ0+kF+mz7bYyL+ek7AIBpkWPKEOXi/hD5iyIZH5ChuuMHmBnKjFYZNtcZ2lkaOd35xqng\nkuXZLtrOQBcuGbF9x0NECvR5PUJ6T87fCYGrnixOVV/Gbb48xojMz5aqYHEP626G0O2CpSqkhn0C\nvNWmPkaHreMXqDHjeHpw4VBS/nwuVauT0QV8ktBUKNBhL4abhNgPJH+QOQs8nMg9+93/QxaFruXj\nCkWJ/uI3/gyuvSZjlWUTPLor53z3cYGMmAvFdnK79qAJemqKBRSrMo6l4LI/ZqYLdJzPFhB83vDh\nfwDwtwG0xPJrACbGtA3feARg79O+qJT6T5VS31ZKfXtKKq5Lu7RL+9dvf2xPQSn1lwGcGmO+o5T6\nxc/6/ael6G/eOjD++gDZRx/CTiQho/MclZKV1usAKpXd4cHoHsYTWURmxBv0lqfY3xDXfnvdgcNM\ndr0ocTQRF87WCeYkV7l3R1b749MMa1RUPji4ASeW306dKbw5V93YhWZaxGMD1loSwabb3Yy6GHuy\n47nKg+PJzlY1JWZz8VLmxCaMP3aBStbhk1JjbY0oRVhwSBxS0VPKCoWThdTup8cah+wCzZocexsM\nA3yNM4Il7ZbV2WlWQiZGATHd6/VeB4OctHAXj1fahi6h5JveNobbvDnXbTTn8vdFdoYJWa5nH5/i\njMQwp0fiOgdGYzSgAncWYUEFm4WZQzHLrrNNeI6My+CW/EjgauiFXOtsdIGoz2x/FGI5ljFKVIw1\nJnSHpEFzowCK3Y6jdIL5iKhW34OhGnenilZq4gMiQbVj4S7hyNYohU/Sl0VVoqQ7PwgThOzKDJhw\nPOju49bL8tnDPzjHslX/ViWSq5Tku5Df+vh7J1AMO2xdw3Xk/X4/g8+w2NvsIBnT89qR4/7oZIz3\nHskcunFvjL0D8XJOTh/g7e9KkvNbH52gvyUh1s6uIBr39zrYKcVLu/vhd6DYCGfbakXvNzmeIOx+\ntkTj5xWY/StKqb8EIIDkFH4ZQF8p5dBb2Adw+JMOZHSDYrnA0NtDaMkNah6fYZSQpKMJcH4oE++f\nvv9DLJjVb7vsQivGzBd3dtDrwOOD6QUFMJNLPJqlUJoKSGz7nekaxaFM+BvXGlzblkH/weMCM9Yv\nt5wEFcukZSMTcNgdYi+RRarxU8Ss/ii/WkmVH759F79+JDf03gfyAO0ECi+SBLbrNhiQbGPQ2UQY\ni/vokfHn/v2PcM7Fr7ICeAM5rjNXeGlbMuPbvS6Oc3Grpy35R6FBTVJMygW+NBQ9x2t7Oyu6c73M\nkPN7FnMZdhnhwdk9AEB9tkDIjjs/6cEly9R5fYEJtTldutT7cYR7dGfTdAHDNmvtaTj6CaV+SQKQ\n6TnzBXUfs7Es2A58KArt7Fx9CTUXwLUoQFcRLETIeJoVeHRH3O8zU6Egc/xL+3t47ZowdRmvgKda\nMV2yLQUdbLNKMCoNgqHMkdOLEU4XLPcebKHLys3OQB7M7rqHNyMJNd7+/g+RUo9TKQVDSHrAzavK\nFvD4MPbDDq5cld9wxzn+QEmIUX7c4MqObGA/84WvAwA6wzv47R9I+/X9x4do6i/LGCkNTdKWYZgg\nnzKM/TK5NLsDnB/JWFy9eh2dj2U8i8USHnHzuikwZpXrWe2PHT4YY/5LY8y+MeYagH8XwG8aY/4D\nAP8fgL/Bj11K0V/apf0bZv8qcAr/BYBfVUr9NwDeBvA//cRvaA2TpViqGNlIVlS36EKR0yAMfBh2\n3O0Nb2Duys61Ddl1e4MGgSYM2jhoCMipvBgepeirYoQek1avX2F92UkwWspW47oRXO7G1QODR6Rl\n7yU9eGRxdpR4Eq+/sIGDLjs0mxmiRIA5xjJQlRx7ZmtsurKjq3W5ju04hkfehGGQQBOCrE2DgonL\nhl7JMi3Avi4c3OgjrMQFPMEjbG9LmLO2sYHgtiSiTgrxlAK3WjURqQJY25IdY2d7E2HYwnkHyBfi\nCRXUpRwffoSiTXIWNXw2+USxgrbkGP68wgZd0a0t8ZR2sI3kviRP3y0/wnpH3j+rH8Mw89/tdWFF\nMrZkuUMRV5iRnTjqazhavnd1c4D6QsYtUgaa2JKM9Gqh8RCEsvNd97ZQ9+X8v7BzA9v7ZIQua2hC\n2qspIcUWsLlB/Uh7As+W3da/FiIlXHktGaKmB1XYMhZxsIkuu2TDcB2OxVDJtmGoYu61dPCWD490\ndcOki2uheBJ1UEC5cv3xmoU3bogXsnYg19nfGuL+mYxhEnmwQ7mOoXoBb3xFXr/c+HAJ3XYiqYx5\nVg4zkOtbuB1oViK01shYrdqxOohIHfis9ieyKBhjfgvAb/H1XQA/9Sdx3Eu7tEv707fnAtFotIFO\nKyzzh1BUXU6uR3ihR2hoL8SwlBVzre/CInXZ0VhWc7cpEZMdpxsNUClZ7WfpEr1Y4rdbBwEa9hf3\nN6QgogYTXC9k948GLpaueAfaSrG5J98Lugpxi0OgfNjXXj0ANPkI0gVqQpM3h9swFIb5cu86XtuQ\nODr7kngrRydjXFywB98P4LAJJlUp2KmMhgy/u7sdTA4lqRfaGSyfrEHGw5KNWR4AsIEqpDfTSzws\nW4ouk2FrjY025QKF1fJT2PDX5Jp8JiCSwT5uMdeiNnxYTFZenI5wci6/149cxGQNitfFO9oqImy8\nLImztV6BNJT7tzhZx5BK4OtrVxCR1UpTyMWLbIxriYFPF3MsLiSuP9iJoRdyT5SVodsnCpMeQRR6\nGPQl0eZqBa8nnosf1vASNv7Ma9BxhCE3g6Ub7G2S/ej6zkowpylzlCz9whiYlgqOgjsPF++t0LRW\nRyMhZH2jt46TmYxLj/Rwu7tDuHO5kZvbEYZs0Hqh30dEZrBkN0BM+D7YZj1ZONi/JsStSd9FSdxD\n5G/hjZ+Tcc4WBRy+f3Em36syhXCH+a6P8xWZsGWAhA1tVzd2cPCy0AX+k2//Bp7FnotFQXk2vN0u\nqvfPYdvkNChCxA4Zaf1NqFAuMk660GTojVgfzy+W8Dpt736Cgje8rgyW2+xHTxUUcfAej3ttJ4Td\nkxtUlRUeHRII5Hgr3Lpn+fCIQfYiZuqvbACnAkjKxh302IMRBwmcLpNBTbHS/DPE0/fgY+HJzV/a\nOXoJobjKgiG/QcWOxGR3F7t8uM3EQkz3OVrvrRJ4y1GGHmnhQNVq10tQke23zgtEXXkYVZGiXMpn\nbTtdYeo9LqYqADzStgdOB02L9bBzjNZl0dtK1hF1ZMwVCWKgS3QY5ry6/rN4eCbMxkszgsOxtYyN\nrVjq9MYnVZ5b4oWFwH2/Parx3mMBQH3llZfxhRusYk9qbHDxGoayuPmuBY+EEY7twifdnmtcOKxw\njMzJivHaJ9+AtyihBzIvOnYCj2OvGhc1F3jlB6hyksAsKSnfeJiR1GbTsZH25PfWt4Y4HQvHR8g+\nkivxEC2ieCeJcDCQ69u7sotuV64j2ehB8R7PWOEqmrt49VV5cB1oeLWMkbcdISLMe9Dvok7lnilI\nyGgnQwTHspj+87O3kZGP06gGHkO3Xe1ie5NAmWe0yy7JS7u0S/uEPReegqmBaqzRVdehA1kldTpH\noVuhkwwx8Qu2yaDJ6OOyBl/AQanF1TZlA13TI7CH8CmEMVumGBNX63eJyO5U0OT8L2Y1ipQ9/cpB\nzY60IPVg6D7mhrqUJoTvSrJncCtFyLACszGsNZap9DbsPvkXRrKar8d7WBswETl6BEWhDztZh6b6\nTOiLi9ixIyTERwSDCPmIW9B8iQ7FcOwwxLUr4kq/e0926K0mhtuT3zipfTgs6enSRkXoaz2bwLCT\nssfmsGiRwKKXo2cFPMKL+8MB0oVcd1gbJCscBvEBaoawJ2FcurmG9X25Tw8+HMFK6TKHLmKHYx7I\nmFyMzrFGr3BdAb/16HcAAL/wxa/BIhy716vgu20JUL4eJh2sMSS0ggBKiTflOT5s6k8ssgtURKF6\nTOZadgCLXpVjSniEhbt+BMMxKpcpbL622aBVpxlqojh7ToIbLCdubHr46PYDjouMyc1Xr2N+TBh0\n6cFlZ2foBHCY8MbSg9U2fJFJN83mCCjDd/PNNxF12M2aK2h2kmrTgU8W6IjUfU0B1KXgG7L8Ai4x\nFg1s9BluuWs2HhX38FnsuVgUFDSUydEMAszOZRCaPMZ5JC56ZA0QJOwWc31Y7B8wnJhO5APFEze5\nIsGEdhxEAXHkfg3flZvbsAJg1U/aqed2hTmJPnrKQc6gdFov0Se3o1KSLS6XY4SBTDZVWVD8rPEL\nmIxMxIMUQU44ciIPVWXNULP12As9pDNSqRUTGMKc9ZxQ1jzFcMCbr2v4TvtZBZvMzW4P2CXH2AdH\nlCS3HHx1/1UAwHfuf4CykAe2MQ0KjkukQ1ieLGRMHSCMU7hkl/Y6LhRdWLfjYIN8f8VyjrNjcfMj\nyrAn/U04XGT70RBTLiYdZwMZedUcp0RjST09pC6lHSXIlSwQVXqB83tynmUzXylLFZWFiNUHi4Al\nVTVwGIJ4QQBDYhhjDDK2XFtuCLMkFX1FkNV6DEXVKK0tNKSN8yIXirkWR4doKPqbk0bdryrkS8l9\nRHEXDkldIivBO8dSKbu5Ja6/Za+j48l8s6sFSmIajN0ApMJTXgOXzNSVkXENXAsVxXIWD4/g3pQF\nS0FDM8TwfI06kGtSJFkpsxIXM9lEjk4m0FTDMhZQkVxoZmVQ00s250u7tEv7HPZceAowBnZZIjXT\n1a6abXhY7zNhqM7R0PW3/BDKZuMSO92KbAqf7RbuYBudiNqHagSfSUmz08Hje7LiryTfUMGlvoFe\nFnApdx46LoZtkqyjoN2WrJRiMMUMc6pS9+MaeSsXjhgWG7fUFKtaeV21kOEZioxdhgsLir9dOQU0\nXRaX6LmotnE0YoPS3IVmpUWHAXxqJAzjLqap7GjeUn6rG1uImPW/nhzAIhlMgRQ15aq136wQiQ2b\nj+raoKYHYtkWbHYq5sspyorowMggYALWsIoA2wJiSZ5mVo3xRLyR9z8+xBabDxe5wg5kx5+NBPo9\nOrvAhE1Qbz8cYzISD7GcTJDTPVahhQaUpJNLgmWX0EWr0J3CCglpb7CCY6cXM6wxuWZc2YHz8QgW\nKwvKsZEW9BoaF57PJK/OsGio61ATrl2eI+LfzXqG2Rnp/VSJsyP5bH0u43PtZ0PEfc5Nv4TPMLdp\nSoB8CUoFsGI2K7FZ7/a9U5wdynk+nKd4lUS/rhOhx+rK+voSLjt+s7nMhUVhcG8sgOFZMYVFxm9b\n1VjSS7uYF/D7cuxntedjUbAtmF4M9zSH1bADLnJgz3gTAxua0ui1CmCl1FjM5IEozysYYs6V1UPe\ndpG5wFxLSLDIC1wcSrY4sCS+c+JypZTUcT0UFlmR/Go1+WPVgW+oS+gynnZtOHM5nyqN4MXUnXRc\nGJdsxdYMDYFBBVuSR4+naDgZje8iajsRvXgF0pnxhk/rHOenssDMzwq05Edb6z4GPXHBh36NY4YE\n81quP4h2YV8QvBWkaNirpqoaASsOvmvBZdXBpsud5dWq4uBYIeqSxCpnFS7mMvGSzgZ6vsS7IbUo\nK6tGo2XCp5Nz3P62qBj9s7e+jTeuSxXhK68PUdB1H/M8R6WF2R0JD9/5we8hTeV9ndjIKAikFwHC\nbYaI7DhUro+CLenL+QTKkvLlUo8wOZf3F6nGzq7Au0NCkKdmiplhfD5poCnem44a+FxYXNdCPpfr\nThlXTUoFe01Wt8HHJ3hnKvOpyM9gsZr1+ELm1Q9/uInXbrFl2wO8FpBWpWi4sNh+D4qhrr8gm7Xr\n4oICRjibYvpdCUssx8Grr7A8q4dIuIlMyyfXefqhnO/joxkyqgx7jg2XPTaBCREn8r1ntcvw4dIu\n7dI+Yc+Fp2CMQl3ZsMoudCg7w+hiDJv16OAiRsgkX6Nm0Dklx8kTaAchQFd9cv8EjWEGubJhD2Qn\nnR1l6FF3sLxgDz7msJWs8lYwQMgmJ6CARw3CrtVFTRKOsmWPrkMoKjQHMeBTk8DR1ipNbsYuCsVw\ng5RhSdSBYt+8pSs0XM3z1IXJZJVvBUuOf3QOMOk4GPSQt+FFYWCz868oLJws5Bg+M88vr70A+1XB\nBOTjBhmh4lVpIWGCS9X5qjbvWaQra3wYYj3SbA6LHAPLpsb5sYz3cXaKa3skc8Gc119hzGRf5fsr\n4RSUORyeW2hiTE9ldxtTrfrBg1OcnlI4ZZHBsIowWyicT5lQmxyjyVg9GJC6bdtHSZxGpoAiExc+\n7A9WmIQ0f4DzQ8nKDynIYmIHoCK7UUDDpjpHNZgRTx6mAqSTiyG0Xec4fyj35jSzMSfnRDpf4uqG\njPNZJpWvw7O7+OKOeCiuKmCx8qEKCxbDgPLRORq+1tRN3e9dQbUvc+/azhAF9T0HTg+MNLDMXZiJ\nzIcFq0+PxnM8nkkCd1FXK3Ka2AuxR6EZHUeIV1Lfz2bPx6KgNapiicZ1YVJ5iMN6iJphQpYAS82e\niDMHBTvqnLrlXOzAIrBDBw6UJuHIWgQNyoGbORKKgcwqmUjNTGFEbUd7eAS3w3Ki28OcMXq8pdB6\nXxVVk+BqeGRIsvwCDuSGqlDDMIehgxyGuPuWbsKJI7isZFRFhYrtuyZzULGiAja0mbqGzc8aVYF4\nF0yKHKcUIXG1RrFk6MKwJexexTUuaN+dKcyYhUfawPWoHwkfFmNObbf030vYc4+nUCFnZ+R0tkTT\ntolXwHgpDxupNGG7A9CLhtIuQjLj9L3eCglo6hJLdiuWLPWOqhp3qEfZoIIFOcij0TlGj5krOj+C\nKsmVGAsQaLGYo+GC1pQWqO+D0I3hsEPTqV0cHn8MALjgg2TFMWrmX7TCatELLBsWcz7LWqNhmFMP\nec/KAGdzmZO3H51iNiKasG6wdiDz5d4xcwTLCc5J2757tYecHZOL8gLJQsZWxwkq5mjmF2zxbHJc\nGcgxdvwh7C7JdYo1mEgGelmeY06+ySVVxE4nNd45kbmcL2bQnPeOnaDbkxBZJwt03BfxWewyfLi0\nS7u0T9hz4SnYCugoC3UyR3ZOHcFBiYRdi6YqUJNR2VuLEdNT0I2853oaFmvNtmUA9t4XRYqMvfmq\nv8D0RFbuxxeyew4sH2BvwNgCkp4cd2h10bS4gH6OgMk1y5NzizsBGmoYLsoMFjkje8kA4E6DsoFF\nd5bJdKR1DSuX3WGZG3jUMNT2HIZeAWq55mQ4xITs0vNRhgmBTv2uh/G5/HZt5/BySVr1SN9erols\nbgAAIABJREFULR6hal4DAEzKBjlBPMquUbDPoTAGAXfKVizHqg1qJsbKpkRNYZH+1jqu7wj+Prm2\nBqtgf4jThjslKlZGxv0U37svycOzaYmvfF3uQ9bVsCbyO2Oya8/H9zBjw4dxunB92Y0X0xnmTHIu\nsgU2xtR5DEmH3lVQTOC6frTiuMjLKSKKz4TxPgb7FIzxWHHxDB6dythmdx4iJdfiyXmBbQJ9dva2\nVvqXLUz6Yj7Ch/d+BAA4v5gjK2SMXEvjm78kDAGPTiURe/rwAT44lnB0b89GTabtqrCQ06Nz1zqw\n24qQQ2k6L8EWmbtrU2N0m/e9PkUTyn2duY8Qk8Z/wV6cuWvhguO6LEu0e3wc2ytJxTiroAPSFz6j\nXXoKl3Zpl/YJey48BTgOnPUhigdLZLnsrnGoYeek0lJzFCzZJW4Mj1z3GRVj62UBTTEY6BxlSizA\n2QTnDH7rxsH9O4LGa1I2V90YotsSsGqF4UxKaP6mAy9oGZMDNPwdn1Bkr9tFfpdMvhMP7oHs3J0q\nglMTYRf5kgkDYCC7RDHJ4TJpaTs+/JBMw1mNgkm38wVLdrMM0zP53bJUWJCuLYCLxyPyHqgaNmWZ\nNROcv3P7Ds4eCx6jv9VDKRACVGUBmyIy3iCDxRxEzNyIDg1aQYVSl8gKGbdkngJEL3rGgkUEpWLu\nZKmWmJZyrLv/4j7ee0di+bQB1nosI+YGdibHTukRjeBAsazrGgWHidumcZFS9FbnIY5d8SDGY3nv\n2sYWHOZ4jKPRsIQ4Py9w9eY3AQBXbkYIEiqBEwlZT0dQieQwzuMDvP8HPwAA5NN3kLZcD02JmN2R\nhuJDo/kS9x/JfcjHC7T7qDYKX31VIN2/tfEGAODo9kO8ryTn8vLZEOtM7C47ASaRzMmuvQ+nlnvl\njoWpOVvU8GxBodqVi9NCEpfHHz7AFudQfnMD4w02o1F74+iswIjdpWXZIKLG3sYgxlQRyzAvsZG1\nmZdns+djUagb1OMl0nMfPglUnPkE05zAIhe4uCdup35phv66zPRySiZbrwNFOK8VbCDZlL93Dm6h\nQ7bj9+7MYFJJDL3+mtzEztYSk6VMmp0wQbzFCkdzgqYk67BlwfUlkVhW4u5ZTQKjyTW4lcEi5Xh6\nUiLcYo9C7qHRrLezihBWPgz7JPyohE8SjsAJEPKcdUj2ujKEKdjJ2IvQm0v9fzqawWlBKr0+tjpy\nng8/lO99f3wHupLJM07WsLt8WQ43B3zSpKfzAjap4NwBKyelj5LEHE1aoyFlft7MMa6IyZiNEXRI\ngEIylex8ipSkNrvTDXzj1s/KbzR3sbMumXg/0ZhygT/70dsAgEcfjhHPZVHcdhQqtslXyxh9LZPe\n2SiwGElH4Du3ZYxf3FPY3WT2HhqhTXCTY2PxoXw2+OIQZc3VkECvOlhHuhQ3Op0usMVE6Ztf/hk0\nvjzIDUo0bZs0QVOPj0Y4OpP76GgL2x25740/Q2fjGgDgS6/+WQDA7R/8c5hMksBnpwvoK8QYVDbG\n5KNMjk6wucfk6aaMTzF9gNlH8r04iXCwTmj+8hgew5/ySoUZoeff+fBbAIAH7+bQhE/bCuhQTWtj\nsI1lRUxOP0GUXuIULu3SLu1z2HPhKZimQTW7gNVTUOQVaPIeqpjNRfMKj1gKM3d7cOl2+0y85HUN\nTXc3tlIo8tzXTYXx98VTOP7geysOgWCb9GJ+F3klrlpvPUBJdN98ZMHlCp3sxGgcJtcaWXHz4hxO\nn6jKkYJDnEJmlUjGROD5hWBvARgmRlVswQ1YTnV8WIadhpGDNJffKMdyvtPHh0i5Q5eVC1AyrG4M\nNGm51hMLKUVbphQxqfIc75zQ21IK2TpVpZFjOmeCDgEcqhm75J4wKFCxGzKbZXDdFlYePRFwcV2A\nzWR5SUKPooFTU79hy8FNojQrvAyLxLoqUDibyY52PFlwDEuoLrtgiwb+giS8nQbRnrjzRdqDzfs+\nzulSn5+jM5QO1a5y4QVyHmle4fixuOOztAMrFM8qSOReT7IFDim+Mv34Ll54UbyR7loXhpJu5/kZ\nKsKxD0nH99HhIWyGblGni+G+JKatJsTZXM6tS9TlRnIVM5IEZcbgYibvVz0FQ8i6D8DrkMWbiufx\nVg/5mdzrzEtRTqlQff0AOTtbwzzAiJiM4ztyrEeHJyjZuQulVsrjmZshiuW61/pX4PqsxT+jKWM+\nm0z1vwpL1Ib5Kv4afge/gqfZ5EJ2OMZOH2lOfr3mHRRUVsqJRlmx5UD0IxVxAfqpv1nSc8bPPzF2\n5OLHR8GiE7WmLLxEGOyPmMuYLT4/O64FBZ89ExaaVU6gFdDoWz4s9iUsYAD95Axb6DIsoCJoaYdi\nkle3utgdimvvhD7euy95lONlhYCLVGIpnDKLXhHu7BsLIEX4ItfijwKwjVqxQzdGIaD25C7JVgLf\nWkGCx+kcU3Z+Fo2Gz8W5E9rYCcn65BCvUDYY8bgxgK9clePdzkKMGRZ2HQWX4zLjb1RQSNqqjqlw\nPqU6U2XgsNcgdBz4PpWa2JVqqgp227XpOtDMYez011bjpcMQTc0qARfLh5MjVFycTdzBN/6MhJ5/\n/qe/hr/93//vAICcMXvHdzFwZNEIt9ZQcL7cevEldEM57sOTh3jnR9JyfXYkLn6RLrHKVdR6pVJV\nNdVqYjq2i24ixx62LOZRLCpoABzHxmJJJS/XwGbX7dpwiFf3pXr09/6X/+07xpiv4ifYZfhwaZd2\naZ+w5yJ8WOAcv4tfgYVg1eduQUFTS3FZNygaSaQVxqxWRxAFZ9BAcc9vUK9eP1ElBJqnXj9tn+Yn\nKWDlVUyMwmNiBA58WXF/SDqsZ7Unv6E+8X+tPJoFC4a1a5dJxEmTwaEnkZsGPtfvwjSrDkZHG0R8\nXbNL9GxawDGSEO3HPdR96jmOGuiImezSQLW0hPy+9i009BodKLRjCwXULQ9B0yCntzGn27qwXWhH\nduOibtA2T+oGKCljljU2HKLxcpv3N9Gwp1S5tmw8ZKNYUdVISSenQ29VaVquqkg2VhBKaLCggrKs\noEl/5wUBPNLTOUvxGLJqgpLo1RIVDH/v44tjnLNaFXoOInYz+kRelpXCkh5UM5njuw8lWbnz6hIZ\n0aJjIhOrOEDM0KfTcXBlWwhwtpMujlxJJE6mBY6PJbSpWGmyLXtVRSq1AYgdUUaDfXnQpkZJKuwl\nGb8r10BT4Kipm1VTmRMoQPOzWYGElbRntediUQAAGYZ89f9aGWgKyFamWD2kn7QnwcbTIcQnX+NT\nX/9R9vTnKjS4z4lu2Z9tMfjDx3vyqsaPhQOqfV+uSZaPavWZ6qlrbbUylQVYLlt52zZdvUTMJ0WV\nCrMZSTosBXaaw4JBzdkWJpz8DbAomPuo1crNh+2g4fE0DFyHCy4fnnlRoWTIYAMIYnm/XpRouCgo\n10VISnzPFbf2ZDLHkM92XQOKcOviqeqZrgxKrl55RvUjx0LGRbqoa9SEDNtKweOC2vMTrEcC+vED\nHrcIMQklL1EuNFKWmStTY8xcSu5WKCOqUzFP5Ft9TNlqH9YF0o+lCvLuv3gf87azsxWdrTsYkCdy\nX+3jy2+I2IsKU/z+P3sLAPDRhx+gTuWBTcgEtTaIwcopZlkOsszLvOBt1xDyWQCo2TFs5hUaQpur\nUqNoS8qVg4hPtjYF5tROfVb7XOGDUqqvlPo1pdRtpdR7SqmvK6WGSqlfV0rd4b+Dn3ykS7u0S3te\n7PN6Cr8M4P81xvwNpZQHkVn+rwD8U2PM31VK/R0AfwciEPNH2sqx5o6pbKBD9uQsV6hXu6aBopvb\n5t60wWoTVgpoc6fGPOH2s9STJN7TrsDTicb2s0+/hsZK7hvFU28+w/Xgqd9++nw/9bd/7Pu29eTz\n5qmoQ6knp6+M7OoAwEgEpjG44C64nBuo8EkFpGURrjVAzRoEfGGFBk5Ob8M1MIqgJs/AFE+SoA2h\n5S2Yaj5aouEO5TnuKrOORQ3DxJ5tFLyY4KUZ+QYiC/vXWpqwHLiQXf4EBq4n992ybORVS1fPMawN\neFjY2oMiDiF0PGxvCi6gv76Lg1uCBTjoCjx6+8oaZoS3v3Xnd3HntiRgz8/GWI5Ixa8UajaC1Rw3\nZVUISJfuJT40sScX7x+hYRKz4cllYYYFz32xaaOianpWFxi9zxBjUqLrSRXrpRfEm/nC7otgFIAP\nzg+RsUJjlAMwrMzqGgUbrHLKCDS2hZKM30VRoOBBHEdD09OpHSBbPvHAn8U+j8BsD8DPA/iPAcAY\nUwIolVJ/FcAv8mP/ACIS80cuCpYCOp6NRQNE7QPkukgaccV0bCMggUQDjT65/BfUXdyCxoJy8K8G\nBnf5oPTKGhd0P78cKtzmhL7GuPgDKOwwcHmvAPq8MYcNYKgRUcOsFoWq+bSsxKdbYgElOx99vpdp\nAzL+owTQeuilMasse5vpj5VC1jIFoQ2vxLWruerZBmj4BbYAILcNPH5vatXw2my/0Sh5/r4LOPxe\nzpZzu1ZwyTBlGxuKbrTjeajnjHFhoeaC2E5Go+u2ax2wDVTZqmmpVb6iQYUlS5g98guu2y7WGYpE\n/Q50T1zi+z/0YLiKNsaFbvk2GSZYjgOXFZCuE2LQZWnRDfCzf0E0GHfDDl5/5YsyjpsStvRf2ER2\nKg/bzz26hv/z934dAPCP/+/v4vRcqlhVY5BSWyHw26qMi25EmQBVY56zbB2ewKWj3fjyGPU7EdyY\nbfJNjW89/D6v6T2cHgnSs+MDB9QC/Qu/ID0q214fc4d5ix+VUOyDsIoOcvbgqNzGknHFgxHZpKYF\nzlglSo0ojQGA0goWq1J2ZSOr/5S0JAFcB3AG4H9WSr2tlPoVpVQMYMsY03ZgHAPY+rQvPy1F/xxU\nRS/t0i6N9nnCBwfAlwH8LWPMW0qpX4aECiszxhil1Kc+8k9L0buWawJrDYXJYUeEeCoHJTPWfgns\nbcqOMM8fwaOnsMnt8YtXd1GRU+/rPz2EdS670cHVLbz/rmR6b768vlJ/9piR//CjUwxJh+5+/xD3\n2gjldAImp2EMVhlufAJF8YdN4UmosL8eIqU7nrcsu4WGy+Gw9VNJ9MrAs9vYhaI2ngOwVl7BQNFz\nqYx5EjZBofWlM3ozWWOwpKekUKNDP2WRN2D5G2Vh2toCbOIVtOWsWIYj28WSVHjGNCv32IIDFC3O\nQHZM3Wg4xCM0pX6yK2kNi95PkdW496Hs+C+QpGVt4GGbnkI+0SCuDJZlwSUgq0hrlAVPmtfvWkCH\nxDAvb1/Ha6+8BAB4ZX8XX/qaqBWGPRuDA6kUOX577jHqTdLW9xL8FXbSjm4DDx99KOeR5ygoqDKZ\nyzVt9gYrj2/dKFyQ42NWL2HTmwjaEEYl0PQFba/C9/6J0NaP7h2hYQa1txHitSviKWwELYGMBTOW\n+xB5NaasyvS7QI+iLnbiYLGQ157TUvjPYLVcmlkhlRkAlmPDbuURUILUlc9sn8dTeATgkTHmLf7/\nr0EWiROl1A4A8N/Tz/Ebl3Zpl/anbH9sT8EYc6yUeqiUumWMeR/ANwG8y//+IwB/F88oRW/bLrq9\nbaDSqB2JNiyrQpYL4qsX7mGwcxMAsNX5Ipqz35f3WabqD7fwhX3pcHzt1hrWXpZdwt+ycOuL7Fps\nHmCHyaOMBJ6b3QMsyFnQdSucXkjJsTEJDGv9ktZ7tvhGAQi4qwxjBwPqJ94/nK7+bjP30bEdlG0p\nyxgQVQyPSDvPBryW/g0aNm9VUVerszFPpyifisFaZmilgEUhB65rBc2SljZPEpsOPQ3XNmjI5jwt\nGlSt7oMbwdJPErtt3Gqzdq+MganbzsEKbWFdKUDxTLVWqBQTnobXMUlRGvEKO2seGkKeS8tDThm2\nWjXQqwyr/BM4NjYp+nJrex/XB3J/r/Y3sU4V5yCK4HgtjwSbxwIfitfRlGOsM8f5V//yz+G370h+\n4fDBKdK6zd7wfB2DRS55gtDqwHUkRzG3l/CoBeqwzBr39uEw3/HtH97B4V3xQNwG2GBuo+daSLos\nB1PMqFEK0wvpbJ2VM3iBzJvTWQZfiQe8EQ8QMHfhklvE6SuEJM3d2+ji3nnLHq7Rpr/63U246rPl\nFD5v9eFvAfiHrDzcBfCfQLyP/1Up9TcB3Afw7/ykg2jYyOseaguAkge2qAAm0VF3fMyYwHJTDX8m\nWducdPB78R6+8IU3AQBdt4Nwl0kiN0HIibC4n0L5go2PJuJ+dnWBi3FLq9YgomZkoZ/gAz6LdTzA\nbxM/toV6xvNnGKAUEHLSDIIAU9a5DTR86ji2ArV18wQI5MFGzetwV4+a4Ab+8HJloOgAGqMR0PWf\nNwL65keg6Nq3wZ2xzEp0VcGs1pjGlKsHHRCZcwCwGCfZsFdhQqMU2FEt8GhGW01jsKDIygeHktTb\nXg/w6hWZfk5Soh7LcXvaQlW34q8aDgMdj23BAz/Gzro8jNuDLm69JrLum4MBvLCFMWsoApnaCzSm\nXtX5rcZBMKQo7Bc6+A+/IVP0H/7jf4QPzk/4PSZU8wygjqdRBvuUF7ibTxHHZPlmD063u4mAuIGP\njj9COha/fWMzwe6mLFhJMEM0II0ge3DOT3OcEVhl2TZURCbp+3MsWXFIt4AhafZsPvED30NngxRt\n9hBzhnbnk9GqN8XRHiznJ1fLnrbPtSgYY74H4NOw1N/8PMe9tEu7tH999nwgGpWCCT0U9Qheq31o\nncGiWxZEPhRJVrzmHO62vN5nE9BgvwOfQi5Kj1AtuAv2SoC8CJYXIVqTEmdK19I5srF3lZJnH3lw\nNDUgcIzPJp8hlkCtymkdrVEzszfxSaqhLby2y99LAjw6JjlqXqHD+OFsSXGWykafO7BTOajJ4JsZ\nB2P9pHZftUnMdigB+CwbZgC69LtTmFWa1OBJMsmhZ9OPPaRMOtrGoGDZ1relEQoAiqaB5s4budzl\nHQ8lMQthY2CsdmcGStOsXjdtopQ7mF8qnCwkRNvpJhjcEHhw97GPBTteTWjDh+zMCUOG3e4Ab7wo\nXAmvvrCJvT3BIcRRCLv1tpwaiplLo8X91kY9wU30XIShzIW1To43v3YNAPDdd3ZwLyX6LyfsuKph\n8bVyx9jcFC91rvpIqfWZLeR+dPpTVBzvZbpEQzj+9df28M2vfEUOe/Iudl4QpuXQabVNZwhclkLd\nGouJjOfj2Tky3gfHsxEYQrCpP5L4ISrqaIRKYUiG4bPRBUrSBdZ1iSSWMXxWey4WBcu2EfS6wPEY\npSYWV1cI+9cBAMP1DWzwVJ21PjYoDjqIJR/Qy2YwC+k8U+ubqLVMtvqDU9iE8brhAIbtu+C/C3UB\nN5G4Nm0qjCGV1PIZwElPW+tc1461wrBHKsJZRyZFl0QgutE4iGVSFdYSVznBsvMpFHGujSMTLAw8\nZEuCkOwSfotZ0EBBvMWkqVfu/9Nn3CKFLQBHzeIP/V1MvhhwUegpvdLMtGx7xQkJJeIigOAp5uRu\n3IrYFu3ZcEkhPk9zZJyky0zDd1seyAyasVBBtzzoeEiIxfV9F+ukJM+zh0/cfG0wJNCnyzbjl3a2\n8fruKwCA/YNtdAcSSrg9B6pu8ejWqn3eUGzYFNWKvt32opV+pG0M9nZkYfn5v/QNfPexVKsuTinK\nUyxXNf+xCnBCJasw6eMeuRkz5pGy+RRrQzmfYjpdqXNdSV7E3jXJeZmDCGFAsaJG7n/USbFzVa6/\nvHuK8yPJQY3SBRzO++PjEexaxvnKFVLnq2DVX2IvbPhceI0BKgLVTqYTlMVne8wvuyQv7dIu7RP2\nXHgKcAPY27fgnZ0izyU753kJYldW8AP7JWxuy8402KjRTaUqsRZIGLGRdNHQzUrvnCPZYdixcwCl\nJavrhwrxLVKTkeF5kNuYfSwV06+/Bvy+HBb3Kzx799RTHzUauMJGISs0uBVL28fD++RzNDZOJnJ9\nlmuh5Ouv7vhoWOt+qRZXry4qLDbkOh4cLTCxWFFAiQUVo4M5MP9kshwGT1CR5umT+zFrQ4m2+rDl\nKwxZd7dcFwT/wXIU+hznh5MUA3IYvnRVcCPGNsiJNn1sLFRzUn9ZU2Qt6tEAusUms5auHBv7G7I7\n1mmJkDyJcHOklJ+3lAsnJG6DyTLL0XA2eX/7A5iylX53VxqNBgYmJSuz3SIyAoDiPKacwfbYRRlu\nYZeNSW/MM/z8jd8FAPw/Y2FwXhQlGmIyTm1Au20jVYNpQWIUYsyXuY9FQ4GbPF11vO6ub2JrICHP\nnQdnyE/k85UnHu3JYoHZfQkfelphjwzjvc45zi/IIB77GJFTYmcmc+Qwz5Hb4lU0CJDzca61XlVt\n5vkEpWlxtM9mz8ei0CioqYdap6gryU5r42GaSyb4sTOAx6rEm2svYWf/SwAA25cbMFhL4BGHbscp\nmkAGstTnSJjt96+uQzHscCOZjNHyq/C2pQx5y47x16nO9GtvTXA0fTKhP6Xq96lWA8gJlnGsAlt0\n91K2rqb1Ei7ZnXYGIdxWwn3bhtuTiblby8OWNWPcJd19GLhwCNe+qEZ4QPc6z0q8fyyvxzOWG/UT\nAFX9VMzw46dO3BB6dOG/uJ+gbzFW3Ynw4YWc51bXQ4cD8MHdFBM+Y7fIM1hXDd4/ocx8AAQEGy0z\nBwrtQqZWuYi227WxbHR35ffy4hz1mOMddOAtzOocXeZ5CsKczxdTnMwkVNxPN+FuUri17sBi+7it\nNUAilrY3QrkGLfW/qXM0VKpqsgLZqbzO50fYIgS5tyHfP5svVmPWVEDRkvE2Nfy6hZDz702Bctn2\ne2gkCYl+r2f4zsM/AAB8+/d/gDqVebtGqvpB2EHAkmx3GGCyxU7T79lIM5kDR0WFhmxQyzP5fhC4\nsGyZ92tRZ0UM03H8Vau5D6CsP1vvw2X4cGmXdmmfsOfCU7A9C/GVAOq0Azsl2AQaa664/p3OGjZY\nfYjiE0zH9wAA3Z7sqmrQXfnDbuSiJrPzZPQRFiU9hXuHGPniIRz/UEKGuw9OEDPp+H66wDbDlV/6\n6gB/8D1pYHlUNSspt0UL9zWfDnh2jEKHQ7rZ7+PWUIBY+1flfJr5EC99RZJkgyaD2ZVzi+0aC+pN\nVqf0lHxgjfqCe97uil25W8/wiLv4zmyJ3+iK2/k7t2WsTsoGFuvY41KvEpQ/Dl9JmBy7QfDP3pqz\nomhbPjjGEROm3qyPU1Y7Ol2DF6/JmP/MT92SMRlf4OBUkrWLBsgIR//Wb34P7+fiec3G9apDsSpa\najMfFcOSa+EunD3CfP0IF1SENnkNm4CdHQqg7EQetjYl1Ij6m2jInnw0eh/xI3G7g60YnXW5lzYB\nQrYVrKoPWmvUFGcpnAw56dB3X7+OLwfy/lt3JYn44P4YxYoerYamArkyDvpMpGY1vQlHr8hrhnEH\nL1yXsVjLNQ5/xK7Me4foh3ItV14XisG9IMH6jiQdvfUQD771PgAgXaZw2KSWeF3EsYQgPzOQz3aH\nXeQ52b+VjwelhBKV38eYyXZYwJR7/xTPhnd+LhYFZTS8MoWPIRT1Gl3PYJOCr1teibiSmzE7H2M2\nkofi/o+E6vqHv1Hg2lVBMd58Yw/DIePTCw/f/eA2AGBycobbMn9wMpbLvn5zGzfX5MZsNjaGiTxA\nN4yHhwsWJd8rcErNR6siBfq/pDphWRodljtNpXCHOn8ThgyN0uixZbfZ7+LGUB6m7c4uphO5ue83\nUhI7OVziAyIh758WcKm38KXhBnp0xYe3NvFaJQvcW+z3cB6WWLaMHUbj0xxHC8CVRCbKqzsSwnzx\nS69hSe7JcTFCSDDR4rSC5oP50kaEn/qK5GX23hTQ0LLawM5cPvvWo49w+7dlUfvgZIycTEHb3TV0\n2RPw8FQWL69pUEIm7sIeQrNPRHkB6qwtZdowmZzTVbZCf+nmK3jppT8vx4hqNAXzEnWBMdGpPatA\n6MvY2swX6KpGTYp+UzuYL+Szs1xjRCKazZ0b2OMi+fU3RLv022//EAXbt2utV92eXd9FTmp/l+Cm\nHDUiLra9zQ42BrIo1LMlHnwsla28dLBk52otQ4HlusYrV6XSpnWNiw9+DwBwNk1Xmp92ncJ1ZLE8\nJSo0vNBwOhKCzZt7SDzJNZxbU5Tsq1VNg9i9pHi/tEu7tM9hz4Wn0ACYGRuO5wOBeAqJncP22Xvv\nbSEklHS6vEBxJln7aCkrse93EFBGfXp4iGFPGHcdewh1ITuXs+zjmy/JavzWx7JEq2yKDsRTcLIG\nm9dkF7wRAaMzJvmGSyzPZJVftvqL1acr7ixrA1XLOY9mBdQaWaDpoqz1eqh2qVzdDbEg35/z+osY\nDuU8rHcl8Xn8YYbIkZX/w8cXyGrZlcr1Ca5Siv5g53W8+ILsAjH1B2urRMWd7V+WF1U2cHVTjvHy\ntvwbRQqDF78g1/zxHSSk/PJvdjGbyfXu9hQ29kQMJerJDm0VHYxPRG3p5L0xjslb6O9sobiQXe6V\ngxfRjWRcfvU3fxsAcDbK8fjbcp5l+BjOdbmOMA6x2Rf3eJzNcYUiMXEtO+K790f41t//Ffl74OIK\nad5e2d/DC1dkPliWQpXLeNiFeFiO5cKQi3E2meN4Itd0+/sPcbuQxOXLmyNkI5kba/E1uebhAB+d\nyP2ztFkJ5mSVveoVWRKPAGVBWywHVTW8Sn77g9tHGFN06PTBYzzSpMA7lPdefr2LWxOZmweDA3z1\nZXn9O9/7COcThluWxv3H4r08oMe74ygEFPM56Mdwd2Ts7VGOGasynqWgrSfJ0mexS0/h0i7t0j5h\nz4enUFSY3D9CmZ7AdsUjKKIcUyo058US2pISi6e62OlJ3PeLb74IANi8PkDNfvXZ8SGKCXvip0sE\noSDJoqGPl/ek07K/Liv4mYkwqMh2XOXY4nG1ozBnA9a4XsIlq7Jj/dGafApAEDKBt9nFjstE0nWJ\n21/d38ErvyRsO5ZS8CrZoYw1xTyT+NtJ5dw2O3P0WEt/9GIX81PZgV7r+KtGqaaXwfetrLqCAAAg\nAElEQVQkdlbkQjCwniqdPuFNMAqrLWBtzcK/90uSg3lpRxrJgr5ZCcRMwwTb12UsGk9jPSRD8bqH\ngAk/qys7lDuxMeUuWDUGr96Q2P/6eB13mLf4+b/4b6GzJWPxG29LEm1Rn+LQpmaDa6HH+NqvnRWC\nsKN9JESA2mRsqioLdx+LF7De3URDxGbQK2EFlA7U66g4HzwmnU0cQCnmmppmVb7cutpB9oFwMnh+\ngfOW1+KmzJv+1k3YZ/IbTZ2vYnxV19DEITiEgTeNRpWvaKhwMRbgyykc7BISXXR6GHMXj8hce23j\nCvYSOQc3GSIPxOPZ6Qwwp+6pox1YDlGmrDW7nougYaPYVgc7lJubHtxF9j5hzqX5RGn6Wey5WBR0\nkyObvosin2KDcNeu1UUnkskW9s9hmOAxysYWM+Ca1FfKyTGfUZh1/hGKLpOS6RIVSSpevBEgG4pM\n+q6SRWPHSlaw5GWaICS/3rzKcZ2T/1HgYEZhjS57EVps/o+bZYAdJhpf31vHOkVGVEaotWchjCQx\nWE0yGLJVF3mGfCKvE09Co5/+c+tQ1Aa8edrAreRh0z0PGZNv65tXMWeL85sDcaPvH86weCq7OGDf\nxVIpHPD1l3sx3tyUKkh/i6zHN300U2LyXxgha6shnQSQ5wrDnXW4bDk2rIPbgYVBCyWvl3jllqg3\nZdcMvpj+AgDAiWxYG3JSb/45+fvRRwUM8f6eiaGGhGNPQmS5HLvn+nj1qnz+5dfkoVnvR/hmI+Gh\n1xQYUOlJo4bX4xKYF3B8qUTAlsXBNAWUJ+eZrPdhyJ+4sd3B1V25J1H0KkbsernLWxz1wlU3ZKUa\nJBQZ3uh2cX/Bp433wC4VGoIWsnkGxepE7FhYj2WBr3a6UHP5/I0tea8Ta5QtWcrsCCNIfLC9uYMD\nJoLz2sX4Qs4tZGv8te0teFTkenNrC+4+if/mFR460rZ9nhZoeWqe1S7Dh0u7tEv7hD0XngKMBrIC\nTb5As6Q83EGDTfbN9+MY1xPWfHfWsPMilZLb/E4aoyBxihtcQ5lKAi80XYTXxVOItvvoBbKTRLG4\nWaYpoGxZrWO3h5IJulGRIWUHptcouHQpA+uPhovWxqySctd7V7FJKHBwQFn08hwOk08qyOD0uZvV\npyjbXYcJwPWdPcQsN1m7X4AmP5zTW0NdnvG6Q+SpvF4M5Np0rfA0T7TDWKPnWRhyx/vKcAPRnuzA\n4T6Tte5VmHVBJka7r6NYynGXRwsgYideEkGxbq4WdMtdC9GmuNov3jpEr5Rr2liPsfYzQqQ6Mg3M\noZz/n70qpcw7Zo6xkp1PjwO4ZIzO8hoNBSrCOMAeuQeu7YsXkyQxgv+fvfeKtSxL7/t+a+d98jk3\np8pdXR2ne1KTw2EQKdOkRJsCbMjhxUGAXmwY8JP0pgf7gTAMGAYE2C82ZAGGGGRLoinaJiWG4XA4\noaenp1N1VXVXuHXzuffksPP2w/edO9PDmelqtkyVgLuARp2+99wd1l57fen//f8d+ZnxLBwVfSkL\nizxR2LHTxdEwznY03LFdSoVxWl5IK1zgDTwh+AHc1jLNqZxn/s49APZP9igVQVpzHJYdSYi2Gg0e\nDiWJbWmDGsawYB+0rJKwKs/ypUqHpZsagvUN9Z7Mc0ul7Rorq7TWZQ7H8/s4IznH+qU2X7whzAT1\niUtvX9a1X5P7bzYbZIGE2EutkJnC3+fbDayvKhFwbpFlP9yz/VHjKdkUcop8RFlOmMUSXHbKS7Tn\ncvM1Z53GsiziVsum7slCDvUlnwc54w/eBCCOHTpzcbXdZohXUUWiiY1bVUESVXoy5ei8Z8KxPFLt\nMjvbndG9r1BSz+HyurjYRrPX95Ul5wdHUsCZ6gqWrQR/XR560VMWI7+C31x0TNoUp+K2etVlWlW5\nzgW9OTNwtB/ArSxhqZ5lFseYROG6rQ5lXxbFwa68SPMyx9OYPC3Nef4hLc056/CNGzt4yUIiSgBW\n+XRMpm3GzD1UrhPb8bB1I7DiFMuRDbVIFniMnKKnqkn2DpYSh5RBC1fZh9N+l5VNyaj/zNbPyD39\nyRGP9/UlLUtSpYTOkpi5XnTo21S1umBnmi/w27h1/VngYYyK4eChjY8kmY2ZKbZEIeZWEVJo/0iZ\nx1hazXAaDdxChX7tkNJRshOtfGXzKa4an6W6x6a2XFdXmmR72nWp1SBjziU4ISq5orL1zz17icqm\nPMvCG9Jel8/rGl62aj75WDaY0f0UW++/46TUpjKH6+t1thoS8vlLKsCbnRLp76u1NlPFuBy8c4Kj\nkxG6JVGx4Ll8MvKgi/DhYlyMi/GR8XR4ChhMYWGRE6WSsb0/8xgbVfA9bXF1W6yYE1bJE5VXVzbc\neZkx1+aUeNrDtMXij5MptVR29mkwolWoWJUt1tW4AaUm1PIiZTIUD2B4us9+X3ZdO4W6Jujs7OP3\n0FDRatUixlZFZEt728sCirbSqjkhcSGYhNLKKBfMx9qeGKQ2RUcJYqoOVq6svun3FG7iokemENtR\nXyxplhaE6imURY4m2SkosfXvGmshllqbUj2z0lhYKgyT5xGFqi87fonrLpRjXMpUOw2Vt6OMQ2yF\nYLeWoAjkhH5QodqScyyRsXxZwsIFPV5j7RrJLNafnWBO1EIn4TmjcpRm53wIRisxth1jB/o8KnXQ\nezV5dK6B4dY9FuoqC67N0q5gtFpQpj7YCvx2aliaPMS2KTXxfHhPEKbRcEauMOemXcdVPQzXMud0\ngYsONDsw51oeqZWhFBCs37oKivtYmXQZaSI1VQRt4NYZdSVcuT98xJ2778m8jEsc5afo1AyXFEfi\ntMQbi08NU+WzLCtglIF7OJ0R6zyHTkg/+svlaPxXMhzPZenqJv1+hplrqnt8RlJqBryoMRzKC515\nXW5lEie6HXHP+qMjuicPAaitNThuK0R5bhPl2qpMjVkmsGF3riQXZYdUF39/fMD+gbjzh8dTaTcE\nUqvgvir2nEYfAwIpwdXNKetNmdXl+5VQiUjTOempAle6Azxli5pVJkRzzQk0lI1pmuM81M0r9XDq\nGopkM5JcrjM5a5IopSDzBWFqgaPubGAcrAVhqoF6uaADzyhHKm67ri+d5WFpmOAsVbBVKSm3E4gU\nKjxJSRU4HStIyXOX8FoSzuUnj/CQN8Eq+rgamqx1atS0WzUanOjvUzxP57OwWL0sz/ftgxGpzn0/\nnZFGCsgJFtTp7rlqElaJ8Rcw5jnZVJ57PJzgaehV6EZYxqegOSHjdUh0nZl0DItOStMi0jL4793+\nA7mnLGW5oQCqdZcqGj54oNNMpmxTgeVjFl2gFKSxsj7NxwwsWWeT6ZRIVbKaDfl94M1prdyQuRoe\n8tyabFKdKwE17d2w3BlYkudJNURNzeA8pxAmTTItOw1PI3zt1s3zEGM+WUBwET5cjItxMT4yngpP\nwXU8tpZ3MElJhoQPpR3TtMQTaJYWp2qtR9mE658VANB8IC7+bHfOvTPZiWtRRv1E3LPJ44JQe/Yb\nN64wrap16GoyzH9MMVY8wgcj9rQOfDAdcVZqHX5i8XDRPJP/ePBSDhxpM89kktGYiFWM65IwnQ3O\nKLVrczIYEqhFcO/Co13xaBZ6jyuBy3Eu5z05i1lZUy/HqTNVmPUsP+HtO9LNeVJ8j6vP1+pDYjgX\nC3HLkpkmB6fTKWkgFi1UpJNxQ4y7cNUNNpKFL85OzpNvmeuTTuT6UvVsEm/MTEFP6XiIkcvEtGKq\n1/XcjTWKROY+mki44sYRxal8OUgdlpQlOXcmhOrdTGcpu2cyB69qo5FxOHfXyzIHrRgVszmFdryW\nWUzpS7K5XFjuxCVBpdozmCgXY2mVuJ4mdMM6h48kaXr7GwIpjtKEJU0MrtZb53qisZ2fq3EvFMHn\neYIWeKh5DlOlrjvdm9J1BCNz1O1zdCTuXabJ3rbvUZ3Ld+u5y9WadEOWTkyrJmt1mvQ5+EA95PqJ\n3r9zTnBjqhN2j+SaB8kUP5E1189isvKTARWeik0B26Oo7+AHKalm+EkGTGqykFYqL3NtXcArE3eX\nWMt+jba0x2ajExxdHPN+zLqR7LS/1iRsLjj213CNLJR0KDHW1Doj1tLaIJ4yi2XSh1HKyUKlx26A\nrwsv+vGTmwMHSnQxyPo09OvhgcbOGxWSSF1Yq8/Jm/KCTFKPU1UewtO+hVmJP5QXr1pJONX2Xjed\nEul35laVfin3Ei6AVaFFtCBJzaGq6XAXQ1DVfIYbYi1YkZTFqEjz7zGvDDPRcABKbxl0UygmEzBa\nAkzkOaVxwe63ZGOKcdnqyCL2W3WyieRMbKfAqcoGn2mpMy0OqGkretM0CRcAoSLH0fxBQcGx5mVK\n1fjACihnC8KWCaA8+qWwKAFUbYdMyUkKtHJkHFD1qihKKBNXn5lDXlnICjg8vCu5hP5YNo0wsHE1\nJKpUGnSH2gdTuuSWVig0XzDJImxbXkbHs4hU4v4g6jPTPomz0y6eoht7I7n29++m7D+UjWLeTTmz\nFZy0scqBkuc4mU+YyXfcJSU3TufUKkqBX9lhPFSJgsiwsnoFgJmJ6WsYyo/o2fnB8Wml6P9rY8y7\nxph3jDH/yBgTGGOuGmO+YYz5wBjzG6oJcTEuxsX4N2R8GtXpLeC/Ap4vy3JujPlN4D8E/hrwP5Rl\n+evGmP8Z+FvA//TjjlUWJek0ZTQ+YByJS1mvFAwVuvz+yYAikE68FVYw29ofYRReuhPymQOhaAvX\n+jTq4hF4mxVUtJjYyTkZi7XtD8Ra+bMJ46lYvMenA8a2nK+fpsSKcR8mMa5mn4v04+u8qidDkUaM\njmWXD2+oi57nWB2tkuympDN18+2ccFNCiUDp6VPm54zKxvRZ3pMD+5WAuQqdRKsnoJYiCfXv+oaZ\nYi+yvMStyXFbjuGSAoFMyyVXN3fh/VjtFNIF4GVCGmvlxGmASpnnU0NZyM9tTdqVk5AlTb6ZOjTU\n1Q7cFuVC1r3skytGv9/VLtDvnpKoeEm0MSCLlBdgnhIvqOHzlL2ePKuZhlX1eE6uEGUr9s4rMUUx\nxw5X9KZ87HLB5izW2K6v4UWC7yjsAq+mPQxtC+ZS5er1h/zT3/8juSZ91KvLm/gKm5/O5wy1/6WY\nF9RKOV5aiKdQlCWlLcf16wEnGlYsd3fJZ5pULs05OYuDJrD3Z+xp0rnlV6gpLiaiSame4Gg4xV4k\nyidKDV9vYAULBu4eRyNZ33NTMp7L3K42Gux/Qtv/aRONDhAaYxygAhwCP4/oSoJI0f+NT3mOi3Ex\nLsZf4vg0WpL7xpj/HthF2L5+D/g2MCjL88zGHrD1w/7eGPO3gb8N4PpV4nmXKC3wdBcNy2WhKwbM\njmFyKruytRpTaCyXh6rfcHwPryVxYYUST+vR07tdDtJF15pLdyoMvcOe0m9V6zjayXdQxqQaniZj\nQxEvCFgLCs1ReNqlNo9/OK2VBayqAGTNqpxb6XSsyUcr5uxdsXwf7g6YafvaqMhpaMIzSWXnr1pw\nVqgG5XHGRkvu//KWx1jVtp2Zg6V1/GKRXMxzMmVeMoAJ5feu77BRl3g/n5dktiISFxiExKG0F+jA\nksKX82U2ZBp/F6bEUr2HWElHTTmmuXlJPjcywg35+aB3SBzL3wXugFEpjFPfeU+6JO9kxzRX5NpW\n44LIlQTz2ahLrp2rlgPHw4X+gljV1aB9zgidk1MsPALbJlfUYzoqMVpatBQSnJx9yLES4ZqiJA3E\nK6xFZ7j6nb1hzptnkqxrKO/FipMxmwnacBYGNPpKU1e3uKzJzHku50rs7LxaGhQuDW0Ui0sXqvKL\n6qnNUPUhK8osdvNKm5svSkkyjzKmA53DwZjxoSZP7TFjTXRnOq/rXsxQ8wTJtORYPesszUnnkq9y\nal+i4ktz1HyuC/xjxqcJH9rArwJXgQHwW8AvPenff78Ufeg3ymT3EUWc4irFec/uU12Aae4alrYl\niZR4B3Tv6w23FdCzf0ykYCOCgOmxTMKdRydECjiyPZvTmbzMbiiTOvQ87JG6wWOfVDHu3Shiplnr\nMs8IS1mQvm5GP25MlB9x6dmrNJc1+6wAlPe/dkKmzczL7ibBhlzHWVpwfKDU4AqUysYR++rDprMU\nx9YW2WlGqRvHyHd5OJDv95QSLU0LzPljzXHPex9sQlvc60k8Y6phU31ZFjZOABqOZbbNsC/XM+uP\nSacqnNJw0W5vjk4kDDCHAfWa3F/zhZtMd2VjieczrMuSRZ8NZtzTjPs3viNJyWqes7xoubRDYhWs\nzVODg8KOy1Uencnf7b8t4J6rL1zHUbr3vMhIY9k4k6igtOX5JKc51aYc2x7KJpa7DRLlPzNJTD5f\npLospirW8/7d97EmMi83N6TCdTw+pK/4B6+bUtGeCbtlMxy/K1On6lVxUbKwh4MsYdZTTEPoUdUO\nxn035+gDSWYuBzL3neeW2L4kLexe0GS4L5qnDz5IKXal0nA0Lznuy712FOad+QXWUJ7vxM45OJL1\nnRQZZ6pT6h6/h8sn00b9NOHDXwUelGXZLcsyBf5P4KeAloYTANvA/qc4x8W4GBfjL3l8mpLkLvAT\nxpgKEj78AvA68IfAvw/8Ok8oRZ/nCYPJQ0zu4lTFmqXTM4aaLNndj3jtsrizw26duxPxCpY0AfT5\nX/xl9t6VhijP1Mi64u6FV6scHIi7PmZObQHtrcix+uM+3Z5YpZiciq/WJbOwygWnf4ynTTeLpM6C\nX+AHhzFQKgS3suxgq965/SdyrMv+BoUi8Jav1fBWJKE06udc/YxYlYcfSojD6ZR2TxNK6y5GUXOz\n8ZxRKBahNd1i90AsQqQNQKYE1yyUoS0sRbPVTcj6JXFXa3WP0Z783cqGWky/CtppmvcyyoFaxHlB\nrDX95DjHUi2LZSP3NuwckSnx25Q+ti/ewX6/R+uBhoKJy+xMzldVglYvcwhVI6HqZUwG8tlLfXx1\nwVthyVhl1799RzyTV0+nuOtyH3l6SjZUMZTYI1Kimig+IkslpGmvyHU6rTZLyHdnUQ1H9Rzaa88y\nmMuxv/H2t+jYYr1/6cs/D8BvfP1/Z3JfLO2W53JVO1sd33CmEONJqVgB3yVVT2GajDmKJCy5XFo0\nM7mOgIgN5PpdTfIueSvYfA+lGa5K+dY6eA+rro1g6ZzVQDs4le06ynOMqwS7/YR4rGFlahFp0nyW\nPMIE31MNf5LxaXIK3zDG/GPgDUQH5TtIOPDPgV83xvy3+rP/5WOPRUGWRzh2wSyVBRgXfRaK8B+c\nvs/vvaNU3Y2IylRe+k5TxUopzzPdx90Pya3FRM0Jq4s2WxtHwTk9hZ/2R1PORtrJZ2Cg4J7EmI90\nvmUKD/64yXIdaKnu4oO7D1nrCg16pHXs1JniaKdaOnKY98SJSgOHw6EszNGHcv+D8YhqIGdsOj6L\npsZ5lmO0w+/O3oDbh0oJv9B9pzyXX7csw7JyI651Wlga41ZqNoniFyYDqbvbtRJL8yg54Go2vAwc\n2kaBTPX8XOjXKuXlWS4vMVcXPnNrzFSZqei5jKsSw46cKSenkjNoaYXjaBgx0CqJtdY+fzZLbZ9A\nu0CbzZD2QnwllDk8PfgAvyHxt1tYlNr6bns2RgFc8VlCrC64Uygga9JnfiT3muYp1avSKRs5KdOR\nhiu9mCsbsunt12TTSEY+Rg1EY7nN1itXAKjFGbmCqEJLzpGVBZYqUmWZxTiW+9/tHWFZCzr4lM6y\n8lEqiVDUnzLYlWsz1QEDDVfmuzGPTuUYTljFr+hc2Aq2MgEzxUXs7XUZLtaAU54D2CJiTKnG7AnH\np5Wi/3vA3/uBH98HvvhpjnsxLsbF+Nc3TPlxWmh/CePVz32u/OOvf4PTccrIKHHFmcP/9pVvA3Dn\ntz+AE7EUh70/pkzFa1hTncHlyjUmIwkfDkZjYpUEq1ZdTrVb7nNXPssrL0o/+is/K5gGUwxwlOMw\nsiKeffklAFJmtFQ9+GxqEYTi5tVVk++VV15knsl+utSpsqMJruMsOQ958tjBybRxZeEdFDlGE38V\n4+ArH2VazkArGwtaLrKSSGGykxgCrVdH2OdNSU8ynn9VeCznVovPvCRs1X/j81/mmZefl+OpZ7PZ\n7lBqJtv3Ug7HmmjMS8ZHYoH/8b/4P7j9zYcA7LTFPfc6KRW1joPpDH+hSeG63NuTJOFpf0Khff+x\nogpdz6ba1Pr/MBZEJfCln1zizffEqxiNprQ17XWmdHyTeYkWTvBsc65sXbE8ploledmycL2m/p1Y\n4F6QMjJyvvUwwPblWaZ5TjqTeR5GKal2Fzp63jjLqGjYWK079Icy91la8oVf+gm9JjnuUtXhVkc8\nqNVrO0wVVbm2skRNvYa4PubBAwkJTnry+9UswfFlDtN5Tq0uxwuTgonqWB70z+gr+nao4fHG1jKe\ndqKuLXU4fSze5psPH3LnWNbs9Wc2+Y9/XnQy/vO/8999uyxLYW35MeOpgDlbxuBbFgMr5U/vygN6\nsP+7/M7f/ycATE4PQWPAoCyYa3babghxx8ngQ1wVizkY38dW4ZHhfErdlbh99/Q2y/sqYf9deeEb\nNY9JRSa47rY4U7GNYNsmbSvsljOyeOGiaqW1HcKJvpi2z1R5Jb3xAYHSd0+SqWDzgUDdy5rVOIcM\nb4ZLVBQAlDnLZKW44IW2/w6KGWenEiMPTZ9YN+/sE2aSi4ZChnsR1YbE+/7N52ita4nXl40pmNtM\nKlqS9BoMIykhvnMn4jvf+iP5/IdvcdKVvMNMlayWV5aob8t8RuMelqo+FWGNWJmQ8nxOlsmxc7MQ\nfTFESkqalBmKTSLZqXD2TZnbKIKxAsYcFiViC0/bm0Nj0dQQyzGGgYYPXVx8hbIvNeUltThm01qI\nypYYBYBR8c6l5D0DY1XJynVzSB2LvCKbQlYYIn2mSVLgtLRzdyghn1Vdw79yBYDmhk8Y6Ys+zXh7\nLhL33jxg/0A+9/ZlDv32Kutrst5WOk0aVVVJKxxaulnWPJtjDUEeJFpaDVJCLaf61IhVDCbtVIh1\nQ374uM+7Q4U5P+G46JK8GBfjYnxkPBWeAoAxFl7scPtPJPv+T/7Bf0P/nlglJ7AIlNFiGpTY2p22\n58nvg1nJmdJ5FaZA8TyEtsWoom5r6vKVE9mhu6XIjQerFSpK0uGEKwwsSU7tmJ8kUzbn6tAld2Rn\nnjYXnHx1OgpSsueQabdfkYW0K5r5n5RkuuNvqjWrr9lsWMqYvJWzroQl3w1j2rFY26H22l+KGvyZ\nZsvNXs6TtbL8+ZHO1b10XHZs8RSWZzHeWCxoUFO5Odfj8alYvGgwYvddubY/+qe/w1tvfwOAeXd6\nTtRSqCR9GtUY7Ev9v24q2AosCmuGwhFLajkGXE1GqqXNJhbKSo/vNs8FS7qPXFzFik9myfck7B2Z\n7+W6T8XVRKpvaKoXNisy0C7Jd82MusKN316R8654Dq7KBDxTadFQXsVaGDJWzoIohMOJzP9MG7Cm\n8ZxcadsnJRj1Qm0nAldCz47ytbW8FlWtZlVqm6zuyLXdffcub35L1t5atYp1qlWHWIVc1up0PHnC\nnSWLdqD4DcdlOpE1V/XrrKgwjq/XO8wmVBXoVWs6rNUFJ1h2J1SUmi07m/L+d2RdP+l4ajaFkpL9\nNOOrtwUQMng4pFCfsmJXWFGp9tVak41VdXBq6tZNE/r6MLKliAVB0o2NJtWKLP5Ku+BkIA/0UlMZ\nnVpVqkpqMi0zJgOJZR8Udwi3ZEH3ChfXU8rxkVJy12xCPe5s3KNUBGVeb1LVB7pctrixIV2cX/iM\nZLqX2jW2X5YHF7oWubrGPzUckurnwVBejvhghNOSDdLwBkfaDp4kBekn4PF3HQ27lq9y5oiu5rC4\nwWEgP98uF/Tlc+ZjWayPhl3+UFuIH8338FOtOFSLcyanRS5qNp7RXKAcbQdfKxxJP8V1lTnKuBgW\nPI/y93E2Z5rK8/A88PTl9twJln52bEOpL6+n/JIr7ZBaVatBmUOp+Zp8brHclIu77Bo8LRMGKklv\nhzYtfZlurnTOFaeaFR9PeRfnUcLDY9lE7g0kfh/vFozSBUmOoVC0aJEbjDKAhcq76XpdYhUxPm2m\nBJasoUG3z0S7IFfXt+iEsplc/ozcx/Nr16jUlKbJmaHUo5jCwdEwp1bNSXSdFTqvh4MTjBqcsGVT\n9OX+14M6k01Zn/3TLr37UpZ/0nERPlyMi3ExPjKeCk+hLCHNSu6nE/YO/zkARZ5S0V1wfanOqzuy\nA1/aaHJrWXbgVIk5srJLMRWrc8W3CXXXXb/RYDKTRGNeDDlS17AVSpJtFkBLuQcOKiMevSUu1+Hx\ne+xclb/rBhOyrliSa0q/vlkNGZ2TH9bOqbw3WjUajgBPvvyzP83PvCSceuuXZNf2azb+qlx7MY8o\nlUW4M+hjLei5B1qFuNSjvS7Hen65zf/zunSJDk5PeOtYVazzj3cZllQMJXd6DEqxaPfNbVYUutzT\n8GEynjKdizVrzC22NzRh+MpnKToCMY77JXtd5bRUghvP5KypqnFScxn1xbuLgyk1TR6mVn4u0Z4Z\n7aMoE9Du0zL7HjdiJw/Q0jsmtnE0fFhd0nCu5tDRdeFaBelMvQ074/qSzK1vFWhDKBOtTqyUhmZN\nrvP6+goVlQyoLNu4sa6nImV5RZJynX2pFgwGE+4eSwiaZCVmQd1WWDQVfxKrfmRcdRjZDwG4lq5z\nbyDJ2j9849vYSiv3ueearGgPSkf7WRr1mFB5F9PYx1swaVPi671mWESFnHs2XtD5O4yrCk2PSgKV\nmr+8FRAjbQHz0ZSJCtw86bjwFC7GxbgYHxlPh6dASUbG3e+ckH1LkoemLKhpo8mzlSYbbRERubTe\nYHtTPIRAG+sLq447FUuzttrCXZVd1/XWqGryqWhsUO1KvOiFKsUVndG4obJpgzP26gp5Pu1iKXlo\nbVwlGkhnn2lLbb+z3iBQkkxvNGFNa95tbFYUTfncc2tsfk5KprVAG7cqLpZK0B0dHVAAACAASURB\nVBVulVK73upOSalq1SaRpJ1fNlmbyd/FN6/xzFQaYx58JyNYlAWLhI+DmVTUZCZ5TnRXrOBgvUep\nxJ6DQqzI/sHkHCtQSxOc+9qVeGyIPPHS+u4xFS2H9bV016pZLGlZbIrNQDsKo9yQTWQ+82nGibJm\nZ8qsNclyCuVmsCwbVxPFX9p6hvCOUtYlc3wVdXG1lGnHBVP1HtqBzbImipN6wJrmmHwnw9fGpVWF\nEm9uL9FcburnNUJXPod+lVi7BxOqWIsSp5a4HywdMtZn2j2ZMV5wTpRQrWtpdKxcCElIoGXPuIg4\nfFNyQslgwJqWHK9t1VjSHMYiaWt7HpaiDgO/xKgHZYzBV60SjMFRL7LvL1iwA2zFXiR5wZJ6yHZg\nqGoWt7d/QLf3I3D5P2I8FZtCUUKUWZyOBziVBfWXwSlkcThB5dwdrNcc5kpz5erCtmYWDYXf2tUx\nZSQvkzE5ZVVf9OEUH8XzayaymCfEKsjSdJq8siyAnJMjODuWiVxeXsffEKWjWHur48zQ1POF603s\n2oIOPSPUVoLV5ibuwg9ecIGnBtTVNk5GqQ/fNiELkSHLlYeZFANcMj2uj6ckJXHpUdVEU5pnJOWP\nDyGyXBZgWIR4FXGZHz56yJ26tuoeSdK14lewtHv0/sExNT3H1qXnOc0l+bt/9zFRJJvC+pIcd63V\nwnJVzHWe42rib5ZNsZR85GA2ZaDsya6yu0RpfI7jMGTEev+r1Su0msJnmCcps7GcT0WjyKyUpnaM\nNioOdU38NQOHQCe/Gtaw6uJiWwOlMwt9mkq+E1gOni592/GpdaQqk0YRrmZxrSvy7G52Nziayhqa\neTGKJyMqClwU6xEoGU4JUxXGObY7zFTVq1pb5aXLcm1+ZqBYtLMvmLRzMt00jR/glnrtFQuj0HO7\nEhBU5RiBkpmlWURD+3jysMm+xmjJ5JjNlhi7F6/c4uuJAPuedFyEDxfjYlyMj4ynxFMomaUpo71j\n0pHsU3kBIyUzGQzHxGptk4Fhoh1lfk3cr3Ylpraq9f/qKlZdSj52vY6tFFyeNyNXd93WHdVYLo5y\nJMTlKTTV2/AtumfiBgfeMoV2pRWZHCs2KZ42pdjVEs8SSzM9GdG4Jed215V5GMg1EWUK+1zmrCy+\nh5rLy5xCmYZL5WOYxSnTTKzk4eCA0ZHc8353xGyhDWg+vvvN1oRoTEKkjTb1OzG/3/06AJ1lKZt+\n5nPPsK2e1EmRUFdEZ6PV5ugNCbfms5Qc8Sa2LktotO22zp+NV5SstLVpp7BJVdp5KbBJVGciUS/N\nKZ1zlmELi1KlzTqrPmuqwTkcxcyOJdwwCv/eqfgESliyTpX2ktbua4ZqfeGZWcyV3DXVbkHiBFc7\nTbPMxVJiFNsDWxPWthPiVmRuq75Y+Vs3tnms3BO7w4h8pF2ZWbYw+FjZonnM0HTk2m/v7rH/oXih\nDSdne1vK0lnh4CzKrx3t2qVOFEni1i8yLG18ctzgXBbUtixMU7kxVsTjSfKCRNeTnc+wVMXcpA5B\nW76zdnnKelc5M1AyjI8ZT8WmkBfQn5Qcdo+wK/IAnMRhyZOFeX27zo6Kza42C5ZX5HNNXfjGqk/o\nKDdgew1T05c+rJ/XxV1CylSzsDrRhamT68IM622yY8kWj47eZ95UlqW8zvZIF3pFcAyz7hlKxsSV\njRpGIbhF1aaxI5nsTmtpoTGCrfFd4RYYFizDGYV22SUMyGJxr2cqODPOR3QLqS8PTodMmyos03Yo\n04UCVPF9UrLfGwv3rwDMXO5vOIow2lfiNZo4M3kpnFQ2uivbn6WtnYpWuMZIeRmXKjnl83JP/eNN\nHu6La78Q6203PIJAJ8MtuVEoG9FoymikTMzZHmlPQz1VrznCJj6HLueMlEGp3XmZ4UgqLb3JiFki\n119RLc2VisNLWwoaCkP8luYAcu9cVLZiDKUS4+Qac7tBgHaUM8tn5EqsUmQJRa4hHSmWthlbClFu\n1Sw29TnWwhwloCYrS2ra8zHXCk+Wz8maMm/V1OboRObq2S2Xhr7o9YaLqwzajm5SeTHEV63hvBxB\nVbkk0ymO5h9SM6VQgh6rKnMSrHlMugtwXspcafRbNcMokg7cig83bshGhejbfOy4CB8uxsW4GB8Z\nT4WnkBU5vWRAsnuAibRDrJKwrR7B9ZWA601xV4PtCstajw60RusXFq523FmdBqhmgSky7IXWYLUN\n6v4b7XCsbB1QKMd+ng9pqPjMYX9K80gztmGXWUUsk7Umu7a71ibRhpvTkw61QKzDCxt1nrkibmLF\n2WAhUWipbkBhRxSaBM2s8TnOII1KspOFPuRC5q5CdayeUGuLcKGe3YooDuU7xcckGQHyVK3ZZHjO\nO9lObZY0EfXsNbnelYqL35JrK0uDEyi8dmJxqSbWP37lCxglMlkN5Bmsbq1zZUk5Gq05SSzemGOu\nMO0pJ0FWcvtI0JSZIjfHaYSjz2ZOjqNovfomHJ9IdeVsf06uqNZQPYW1ikugXoXjeniqY1lSUAw0\n9KzHVBSmnigXBpHN6alcW3W1fo4RYbJM3paQoFJtgibxAs38Oo5LZV1C05v7Xd5VOHZZFhiFUquD\nxbKzittUMqBiio3qQZgK6bKsz8r2Gq6uOTdVC+5MzpPKBT6OrpfMn+OqB5ylU9KerpdFuFKEpBp2\nJNMQ4TuClXaTWHU5iqLGTqgL8QnHU7Ep5HnJsJcRDQ+pNGXhbmUNKoVMpBde4UzduWbhYCtv32oh\nsW5laRNLhU7MvAcKLzV+E+NqTFnOMaH+fEFSMY3IRhISmHGLzWcEgrz2zJ/yze+I+/VXg024Igtr\neqY8kGOLukJ0DTa2ZpF9Z5vtlmxehWWRqGjNIoZxLLCUvGQ4G1IquYc1B6cpG4+XKKvO5JiwJiXQ\nZntK/qGENtHIxpQLWnP4aLDwg5/gZCFxPh0T6i6VFhOGexJf2tdE+NUd3MRo7mSSPqK7r8Sn1jZR\nLgtsNj2joi9hU0O7laqPnSrt+1IFf9F1GRb4KuR79aWU60LNyNdSvee4ZO4oyUr5PZKYdnmN6VAh\n3VlKoCHWqiPHbVfreEoq2+w08RZdlK6Ho+I5uZVzpOVXry6/Lyo1poUSpiZN2poTsSpNLHX/3dIj\nVdFbuyprq17kLIWySe2sNthuaiUizbCVeLeh321UG3ierMPXj0ckuiGvVdZYzmTtJb0YXzs3cy25\nF/MhtgK9wlYbu6qU+bOSUvNfbvUqua7lRZ6lPx5TMZrPYk6pVYt4PqOppVHfqZCuLwh4nmxchA8X\n42JcjI+Mp8JTiJKE9x/vkUQnoPwHA7dHrtn398/6pAj19nq8yVx36wVyx60Y6lPVh6xVMcVCZtzH\nKIlIngxJ51pFiGSHnuy+ST5XN3m1hdV8BYCdrMXvDgV4cvvgAY1NtQS+7L6BD5avjLrRCRUk7Ig3\noD+T5GB2FtDdk2s+ySQLHU2nNNtyf/EHpygmiEvVTSqX5X/Gx3KN3/yT7/K20rV9uDfh8QcCajo5\nOSXNtFheFvww7NL3Jx+j/qJhqCRWHorMD1m6LHNw7aZ4CsU6PD4Qr+nDew85OZB5GTf6VCLxBGZH\nA45ULDLqC/S5tReQrShEO92nFsr97YRL+KEce6uZ8O/9gnhZzz6We3r3/T3uyyk4GmTESoU3i7qM\nByqvXpZYGlY0tLJghQ5loOQ1UYnlSYjpOg52R66zWjrYl+U63Lp6R7UEbBVZ8V32VDil9+Ft6mpV\nXduh6qgXsq4VIztmfVWe9VG/xcaS3P/R1D/HiCzEXdxKhqfYhTw+pa4hzMYLG+xlYt2P+zPWNJnc\n0bXgzCdgZM22kxlWVbyKcf+MYSTJysK4TNWEJ4dyn8fHE/yazMVonpwrVNf8gHpbQpNao8QuxQt9\n0vFUbApZlnHS6zIcDmnU5aXYylvkSg7RKOasb8kEri23z7Pohz2JEQePvk2nJje++fxNqlviGtrJ\nlGSigKNelw8eSVz78IFWEU4HdDQOu/H5y/iXZIHtpgMmirx76/aHVJUh6cY1zQdMRqj3TDU0FDrn\nVzcbVGLNRA+OyVJdeKfyInzr3lscfyjXfLXm85MvvAxA9FLJ8LG01n7ra8I29d7tLlMNn6r1Gi/d\nlNi/s77FW2++B8B4NqLQWHSxORhgQUQfAXNF/VheyGpbLnRptcNPvyIsU7e+IGxM40HMV9/4PQC+\n+7WHlFqqrd66gl2X9LvnzFnfkA2yr3Tjt0/eY1nJXB1/hYoSkri5h6dIQN/UeG7tZ+X6G7Jp/uzz\nt/l/78tz+L9/Z5+jSMvFXhOjyER6htqC6FYrC0ejCXksL950ZUgUC1ioKC0ubcj97dQaVG8o8M2V\nFyXLfI7P5JoHu2e8P5GX8OR4xjNNCRs3t2t0qhIquKreFXg59aYiVis2a1rx2qk1sRR8FmlVaymr\n4SzJ9W5u1sCRXIu/Cv/y978FwKQ7Y+ezsj5XbLn251ehvZC1N1P23lYWseMBD+/JZho0Nxgpgc91\n3Wzc2jbxkdxHreZS1RJ9vd6kWOhe+Bae5oqedFyEDxfjYlyMj4ynwlMoTEpiH5ANzohU3GRc79FQ\nxuFedsr8sXIGZjlzT8KKwYFY82rvgMNcrM54HPPMl8WS+Lgcqps77ie8/Z4k13JLfh+ZBu6KfJ6w\nxvSR7K6PHu2dJwlPo1PuKL14vS3ucLjcpqIY+HiSkxTiubSdhKCp2PesZKBdmf5UOQbuWixN1OvY\nbvPSX5EuylbrOU7vfBOA129LyHG4n2Ip1DizUo7UK3IL/5zarCD/c+FDCeeELAbIlTWuWnXo2FrN\nubTJa3/tFwHoLO3InMyOGO4pjd0gZ5yIVf1O0me1Kdf/mVuXaWkG/K1UvJXX7+/iasCSZwGpL67v\ncjPhlbp4N63KhEZFPD1b78neuEVlV+a7KH2M0sw5tT6eJiMdbBbtla4r11ZzfCpafWo3GvRi8VxG\nZ1MODxWb0Cm47Iv7vLbABCQJs1NJUM/imJYWl6qdbTavSbLu2a1L+Co0E6iylpXa+C2FUruPqbXF\n83iGAk95HRYT7pdV/AWJTqNHqCC7/tcy/vgryi5tGR4pTd2Xa8KfmfzcDpWbSpXntqlOZS1/9/Yj\n7j/SkDef01KLP2zLc5wkjylP5VgrlTqvfVmg61vNHKcqHst8GmNXLhKNF+NiXIxPMT7WUzDG/K/A\nrwAnZVm+qD/rAL8BXAEeAn+zLMu+McYA/yOiPD0D/tOyLN/42KtIDcWBB0lBrD3hO0UTOxWLeHKY\n8Y/f+xcABNsOzlh269e2xWJsLF3HqyrEs4yxColxrUYFu/8QgMP9Y4Yqw1aMJM8QuQX9x2Ll3UmD\nmy9KCXB9ZYsS8Q6KNGbQlzh494FYnQFzGjU591InJJvK8W7f+ZDcE8vVe2/An3TfBmA6lPu4/+hD\nnm+KxVxpN6l70vPu5VWqFUlW1hQ766QJbW3gefvuA7qpKg5nDqkyO/ND04wfLUlGuZLR2h1Wb8rx\nXr75EoVKz2WaiCzmETXViMjHEf0zMaVvHcx5dkOu87VnbnDteYmHDzVmvf1wwNt7kgSNC0OciKdj\nnJxv2rcB+Im1JW6uCpz61c+L9zCKHVar8rMrlTGRlvcCe4fVhngvk9MhG8qzsKTszK2NJsO+rJH3\nTvv0u2Kma6XNjXXxDtzVYCF9QVCX8rNlGXbOxNOb7u3TUrXu2w/2eU89wflze7yieR5/VebK1CJc\nJdPd3L7Oa6pivl8f4SgtYMOXc9RaO8RGvJw7334Amfzd1Rd+mRsvSOJ6Nkr4wmdEku7ltuiChGsu\nm1vSBUyakF/6aTneyQH2B3K89c0WrivPobkma332/pxjpYqz7RjSRcNfSqiK2HalRmqenP0bnix8\n+AfA3wf+4ff97O8C/7Isy18zxvxd/f+/A/wy8Iz+9xoiQf/ax52gKDLmsx5pMiZV1/i0aREgrvZV\n6uTiXbHcXGN1Q274uavyIq1fblDXfofCNudts97OOi1Eo2+zX8FyFaegFGx2WmWmGPjtq9usvSjd\nkC8/TPm//kygtpNpdM6gHE/kX69SkKlbOxtGVBYMzmeG2aE8xD5TdnK5vselJJQuh0tsvSDXeeXz\nP02lKYkoy3bIV+QGL+9I4q9ITnnhVaEQD2oN3ry9cH2PiZS2Psuz8/6JHzUs5Ux0jEVdqeJWOiWh\nSrGnSltWLC3zcy/9FAAfvvWA/a7SwpURlsK0d648y+qmvFhL2o679f4p7xZSXcmiHMMCkJUx19X1\n4GzIWlW+03sk1+tf2SYK5fneevYW7oOHcr7Tx2yuLNTA2uijZKTKQKvDjKnec0iLQLPvG7WQKwou\n6/jBOQ0b+t3Cr1Jb0orE3hGpXlzgWVRz+TyKHR4+kqTwaqls1ekyjrZT28tLXH9RNqTlsxbvaZ+K\nMtqR5HvUMjlHq9OmvSwb4E/84i2K8MsAvPGtD3hlXapcN35G1se1nVfpNCQkiNMTIl/W1peSz9MZ\nSsj7mS++RrEk78ZoX55HpXybyfuyoW2GFXJtE09zl0IJZYxJcHKlenvC8bHhQ1mWXwF6P/DjX0Vk\n5uGjcvO/CvzDUsbXEV3JjU90RRfjYlyMf63jL5poXCtLNX9wBMr9JLLzj7/vewsp+kN+YHy/FH1Y\nbzIZz0TxzJKdf7vt8TOXxapuv7jGkqdlqtSic0Pcy4WWWrhq4ReS4LGbHo7Wd6zCEIayS1567SbV\nQznG0qbsU+XEUKol8UJw27K7bl9zuKShyd0HR6SqC2B0B68ai+GeJIMSY7Ot7u6Vm89z45pY4+db\nq6Q9xROsi0v66P0Drt8S67C8fonA06RkOWCm9f+bt1Sw5tUKdkt+v7JkqKvm4+nxBq/fFXRj9vjR\neQPV95ckFw81BQq13L1Bj1JxH1ZeJdNe/0pTztvwoalPcefms3xXlb07ns8Xnxdv69oLz2NrEvD6\nJbGIxfPPMuzLNRyMuvRisVZJNGGnKta63fbZXpe57+yId1ANfRrXxPXdqqwTTTREOzjEV43QF15Y\noqGYjK1tmYsrlztcUiJZEyWgNHZladGqq41LPXwlk0Wbx5JkiKVdm1ef2WGsxCrr9jplpGzbyx2q\nKuWmjH1YtQJXCVA8IpJSvutbLk1HFcu19GwZD9ORZOCXvvQC7+2Kdzco3+Hahvzdi//uDo01WavP\nPXsFgGbYPNfLYFSnraHWT/7cf8AXX5PnUBSGcixeSs+WEC07qvK6Ijrj+pyaegdOYUhngm/ABJTN\nvyQtycUoy7I0xvx4H/aH/925FH17e7O0NjIcK8dXMpHt5SV++otfAmD5ZgOvoi6QbTD6sqCt1SQh\nuVKAu802ttZxrcLFW5bFa+IqvtbQAxX4LCrDc7x4aRVkU1nQ7arPpa0rAHz4qMtcGYQGM4nlL11q\ncXYoi3gYWbSV9CPwShoqKttc28B9RhlXtCNva3uCs3j4VoZdk3M7cUx1pkzRyiK9vHSFYCYLd+1S\nm0ZLQo1RmWL9ljy23+3uU/5AuFjy0Q0i1D6BWTbinfdlofzKl1/Fs/TFsmUOg7FhpyMx+aXWEoHi\n+mthhWc/L/Hu0so6US57fqcrYcn1l7bpncrPbszW+e5dSSHVGxusrsuVvLSyzAtXNCdwTRY8dZvi\nVI5x2pvS1xerbBXc3NBWZvs681zw0ddVKHZndQVPX9IsM4upxXIclAaRWdYjbCzIbOSFMBmUSrnf\nrK3QCSQMyqOAVLEslZUmnifrzNMXPiemVINkTh4RZVoFMw4VDSELrVTMZzG+gqJM6nN39yEAq3/g\n84UvyPO78uwNAlWcqoSCjzBeed4ajh1habUqbK5hGmIYTZ5QNpU9WkWYh8cGd/YVOfe8TnZr0TfT\nhsWr4WS40SerJ/xFqw/Hi7BA/z3Rn+8DO9/3vQsp+otxMf4NG39RT+G3EZn5X+OjcvO/DfyXxphf\nRxKMw+8LM37kyOKS7r0Cx7RpaU34tY017JFSaTVW8XRnt8KcIlOrokk0u1ZhNNCoZTbF3xZ31zSa\nWIUKtUxHlD3tlV9TLQBTgLrUWVySucqBdzTl7EQSkCb9XgdfoA5RNk/ONQenszHDvkzj0f23GW+K\nD17zU5xwwbuolYOyic2CzXhIMZKpKW0bt6Pw54eqa3jnIYHqEi4t7eBWxBU9GMyoqytqrB/uFmbf\n93lB6pKmCQe9D+TccxtrgbxU8Rnba2B8lVHPRixp4uuzLz/HC8/elO+Oe8QKeWauCUrvgE4gNsHd\nqPBvrck1D4qUSyuK7nMN25cl6ZY3VHilPyMOxPPqbNpMvi7H22GL2qZk5WsbZzxWBGjHkvmpLzXw\nVTPS1GvkyhVp+R5BoOviMALVfKSmXA+Rg6OaoOQWTiaeklfxCYMFzBk87VC01INM4r1zrgssn1br\nln4+oj9VnIV2vo7LnO6hJKjfOso4eEc8M/v6z9FaFUyKPY4Ja+IhLJTNyQbkuqbnowNyI9djZSO8\nSO7foopJlVeypgRAaylLdfGIOlUfS2HXk5OH1JV0CKdNFGhT4BOOJylJ/iPg54BlY8weojL9a8Bv\nGmP+FvAI+Jv69d9FypEfIA7Mf/YkF5ElMaf7H4BJsRUyezjP2ZiKk9Heb1BeWXSUOWBkIZTIROax\nT6Z9ENF8hK9y9pbxKTUGTqNICCyAcjHptiFXVzTK+pztC8T16MN7pCpRX3E8XIWPruqLYlsZmdIq\npWnCmYYXd8/6XDmUeL++AvaZMkA1FlLgRxS5Bu75jCSThzXNpoyGkuc4fEOl5SdHtL8kWeokr+M4\ncv9WNj7XOyzzHx61fX/vQ00rB5MiZap9Hgene0ShvOiubm6uPcUoW1F21iPS0MxZ8bCVLSZJjuid\nSYw7VK5GM6+weVlc4/b6GisbSmriL+MvCEmilFpDXurS1bbf2j7zU3kOB91dxnPZDJe3Kiy7AsHu\nHeziaTUgjuTZ5cMAZ0WBUMalUGBOFEfkCnbzmt5iiYCGR6VVUGinrbFzSu2YdH0PR7sV7TzA1hxM\nnu3pvOTkWhFLJjk0tMQbNJkN5ZpSVRAb9k8otaqx+9ZjDhRM9cH0a7x8InPYuLGJpQCpQrtni3nG\n7FDAYLvduxjlJu1YIVW9p8raJlaoOSHkHakOA1zd9Gu2wVUCydgxNPXv3PacNP1kMOeP3RTKsvyP\nfsSvfuGHfLcE/otPdAUX42JcjKdqPBUw5yyKOL37PnEUE7Rk95xOTxgNZEdMszGFSnnjBeckKoWt\nDSnFfXo9sYI14zCeK6HH3gRTXVBe5aQoL4AmxozrUSg/wMlkl69+XaCo37p3h0Zrwd/gYykZiKf9\n/6kV42qTjDuwsVQHMJ1HJDMJFeLRlEibeXylgKcYUag0ejS1OX5PrNgje5979+T+vvuGgFw21zo8\ncyBW0mQJM31S86TOIFqEPH+ejs0AvnI3xsD2s0qQctqn1JDh3oO3+ZlH4gbXV1VF2apzNhAv4DQ7\nw3ZUiKdZo6IQY9sKCbSJp7mssvXL6+SKKyhKl7bCvI3XwlWNxXweEygwasHnaHo5ZU0xHcZBHQW2\ntp4nq8l1HA6/zofKnbF0Xdx6U105J8kp7AyFbDCdTBgor6YzyWm8JOGKX5UwIXdisqlej2szVrIY\nN+8TBnJ/lbYhV8yFMRpeZRGZLbMbu33SE4WexxmluuvDRJ7drDcjCbXDMxkxi2UtfP2rt9kO5O9u\nLP91jPJYxqOHAMzne+y/IZyZ/+zxWxgV1LlVrfHaK1+U+2iXYInFL7QzNKqdMVS6951qzEyRAy37\nEmld7s/Hxzj/6sFL/7+PkoI8jymZMenLAhvPhniXlKrdjsgWL8Koh1WReClTDHk8sDhTVp3arRcx\nhXbGJYbEkhCjmOVEimicHYprGJU5As6E796+zZ++Ln0SDw/PaK1Jtvt61uJ4KC7jgXbZtW8u0VSi\ni6xeJVDyP9uaMXfl83h8hjZXYi+owF2beCRx6L177/Kbvyub1/3jY+7taSgRK4JtrYY9lnN8ZvsK\nk7ZUJSbFmIM78mKm6Z9/2IbzjnIsY9he09boFKaqVVFYYBz9kq+dn2nChwcClDnYGzGfybzFD4cM\nX9JNtLF+HgcHsYRBqdUlV7Kbce8DzFjOV6mm1DsabjkWub7I6aJEEKxg9STM25vcY6LgpEZ7iUSv\nrTzY4XQmm0JXy7vj4TqFdaoTe0Y6k817MBzQU3RjYY2oqaqXPZO1kLvF+YZkZTaJVjtO910aymrV\nnjcwKKGr5pGSPKNQunh7OGWgnwdZglFK/ORUNwLj454pu1WrQt2WzeL4/WPuXpP7sP+dFkV2qtch\nRi2fZhyoDmT1KCfpKnL2RolZbGrzCSaVOYw81QB5d5/5QN6BrGxThIpu3M7wZ9rCXSnB+WTMSxe9\nDxfjYlyMj4ynwlOgtDBZhSKHVBNDfrYFZ5qpp006VopwSqKBWPpwWTyGtFGjZanakLeBUy7o1xMc\nTTpmZYw1V3IV5d/rzh8zmYr1v787oKvMuKMkwvTEIlypLBNvShiTaPKt14+oOwoZXrcxarH7Ucnp\nofJBVDI8zfp6uVgl39rAaV4BYPOWTfstwTo0YsOyJk0b2kdRMSH7GtpszurEgViXR7spJ2dK1W1K\njIYKCxXoAsi0SlIa6GqFphpcwRjxMLKo5GhXEqKrWtVx/Q5HpzIXs2jEUk0sbZJb3L4nWAF3703m\nVbFiB5pkC2spp325/5pnsRJLCHbl1hZlIZ5Oc22TRbtGEi08ohJ/WboE1/wTbJW2t0wAtpy7fXNK\nItKijI4VPj0tiTR8TAOYqohK0GrTUA7K0Sih+44S26wp23PdPheISZPZ+RqphD1mQ9VoHI6pKZ1a\noL0hUWtIMVfW6e0mqUKMX//2PS59RqrvVV1Ph+M5/Z48p64dEyiXQ2pbxGNZL9NHR1QQrEauiWK3\n0Wb5RVnLv7T6bxOoJ1xpVwgUhp/lFfKJhoKWPP+337tNmEnos3OjSbslAU7C7gAAIABJREFUyWrP\nNviehE+R22Q+k3DsSceFp3AxLsbF+Mh4KjwFY9m41RrlKYwUNfh2v8u152V33T7bJ1WUYjGpUdbF\nkky1FDjOU4oDsR7Hs3tUFMXW2ljC0lzEtFIyVfjfUL2RZOjy4EgsyvuHpwxjSdTE45hTtbxlVC7Q\n1EQzrYlnJbmlxJ5eyGpLYudk3OOoK8e7emWJ4FwvQuM755SFpHJ45PKTz0i33KsVC2tFHsXbr4tl\n6J/dJlaI7nA6o3cm5/5wsM9EaeUw36MrQ3v3TQmOph8z4LCrJc5hhL8gSvVc+kPxoJwDsXxldcLs\nQPIySZax1RBL2miHzI5USzGd4Swk1Bas06MNqgpFTqMJM2XYHs9mVBVqnM2nsEjAKXmsa3wcFWHZ\neuUq63eU8JaMQuc7b36B9Ru/L8feE6+qNxxQd+XcJqueS7OZ4QxHGZsqE5dMS5LTuVju1voOaGI6\nNx65ZjbHpWF2Js/MSiagnlDZUCLgGCa2PL+wbDGxpQHpjfuHLD8jkPWeat5N3TNqmpT1DlNQmPfw\n+JTj++JtmWaLzNOEtXoK2Z1TkvfEUwy8Jo1rmtjN1ylVL4J8zigVD/nwaw8B2Ht/RltxPVurPrWF\n3FyxRKGCQbVawMHpJwMcPxWbgu16NNcvc/boPeba6vvwaIybyKSaJYMzlc9Op0NSkYcwVvjmZDBl\nHsmCaI+H2KqkE8/PGKhCVO/NxxwrbdbhWGnCvJTBXCZyv99jOtUFVuTMla7rOIvPpZ5quuiGg4hM\na83LYZOmL7/fm8JuV17qZ7sDVlVqfAFVzZOY8YEAiKbDEc2uPOT+tMr9u+K6v/5Qknrz8ZDUX4il\nQK5iOFHfBZVzt8riXIjG0n89y7CslYMTA32tKMx6Odc3BMbcqHgMp/L96mhBw57R7Mj1LvtVxlox\n2bi1xnpN/q4ZNYmMfP/KSKDPTjnGVjDRWRbS1XvaPz6l3lFQUFni6HfmsQrzVh2M6lFuWje5+fxD\nuQ/LJ0mUN3Mj5+oVIQ6ZZ0pr30xwM9mwpl7AUKsTj4+PWVJG7Ka7QuOS6k1qZcgJhxz39UXvTjnT\njezOB4dUY7mna5eWsery2VNimUFU4mvvQL4c87U/lPu7d9Dn55UmPq3KswsjC7T7dOUqHOyrjPwj\nuK9hRenWIJe/O3xdIMrm+ID4njyn43KNVCnu49mbVJQXtH3LIdKQ5+FQw7lqRKMhRiaLI3IjG0s0\nsVhRbIwVpZyNLsKHi3ExLsanGE+FpxDaLi+01nlomcUmyoPJGd257NC+s4m/rMg0p6Cnu+7RW2LN\ntz/3U+dyba1rSzgLdY7JCNtSqbikzvtfF1LU7ESTj1eqjCbiyk1HM2K1nlFWkmoIEscxvsqkWyqV\nlkYFM7WYSXCDM1c6JvN5wpF2Cd47GvCMwoMXwMN4NmP3O18FYHhs0zuVYzw6tfiDB5L4O1TL7RYF\ntifu9cnKiEtLkmSy5y6ZknsUZXleK1/wOluWTamPtePWmJ7JhEbRjKEiLPcfH7LTUvivsl1XnBnP\nLMs5vhbafP0DSUq+85UPqHxZw6DREKsuxz4ciMcTDJpMB2K5ujOfvX35/OKlTXLkeNnYJVO3PNFG\nLKfaZq7Sdb1JfI50dBybJBErHz1oMw/ECvdnYtmPHvUJNpWp2LKx1TJP76XcuibdqOvPXKKxqrB4\nXVDOOIZ1DX12EnZfF/q7u/cPuKIeUqPp0NqSJF+ujXl2mIA2uY3vDPiW0gIOpglG5d0SDbtmsYet\nHohXuNS1BJ6WJZOBeEh+4uEESoASiQW//407+HVFMWYRj/9MVL53Tx+woWjE8J1lBkoF9+5d8Y7a\nWKzm4hGMDjOcTS2/5yndI8XydI85fqx6JU84nopNwVgBVuU5Wv46g+whAEWacfeOuNLpX/8SFeX+\nmyYjZg/k5jtKluINzvBWdBLyCoWtDDSdDSqqZzi/vM4rx5L1bbwqzDb3p9/kDV0ck+GIiqoDZXZ5\njgbKywxfYzWFIFFExTmgqb2WUslloR/0J8SqFfnO7V1evqKcjrYsxrg8wNZ8SH/vMZHGtXMrZkc1\nETNl+bEyi7knv9+fTnmg3Ye9s+hc2r4sCxYCidYC5k1GoZn8WXVKqv0j5AWBJZvobDbmtKf9GNqp\nuFJfZklFSK6v7LB7KMc97UY4WrUJlkPsUj6vhPJiPk5eJztRl9tEvPqazHHLMtipxs5+jq2JmWSm\nOZ5yRtNWTcisxopyKZIZAktmeuvFLcIH0ifwppKeNOtViql2JVZGdIyEVY2tgExxD15wCVtBa54v\ncb91uUkjlpcwPxyyciYv5n/yV36R6pq81GEwpaw29V7kPmfdIx58W+bNOoOVA/m7pdBleCIhjd3V\n8NIYUhXGuXto8DX8XcYl0s3iN//gt/iVn/r/2nvTmFuv677vt5/5zOe883Bn8lIUSVWWREuyJKBF\nk8B24KYt0BYOXDSuDRgBAiQtAqQW/Kkf8iFNkTYF0qRu0wGFm6Gu0xhOWtdRXaeuLMmWSIsUeTnd\n+Z2HM5/zzLsf1nrOvdcVRVLmJW+RswCC7z3ve5797P3sZ++11/qv/1/6VF+XGo+kfpv4Dfl91Dth\nvaLi9wz+itauBCPeelPjXyeyYG+GPjsqatrZalFolmt0v898XZWjxilf3/9gi8Ly+LC0pS3tEXsi\nPIW8TDif3qTW9hjPNRruwoEWwezdvYd5QQJORVKCRtFdFWSZ9N9m+qq4Wdl3XqGrrvbci0hPxZ09\nG5xwYfsKAN6advt4jbMz2QVcxyFsVtrxdYYVDNbx8FTP0GayQ3ea3oLQwvdzfN2Zy1ZIOKlcxhn7\n53L/u0/Ljhj5O9R25OetrMlxKTDm9Tij0Jx+GIqrGmdTTrXwaVjMGJyoevQ4obB6Pw+JwVRwZxeY\n6ZHCzR1QiC7GUngPJM+OrUa7tVoQcqzy/XW3LvBCohDtVo2sr9oLl3eINOhq13WXfOs67liuu1lr\nsdaT+8+cEpTgJnd8xsoNMVQEXr3Vo1AMAanP9r7ArpNyhFdTrcWhS+3ai/L578tuNx6McTqaUZis\nUVMug2zT0teiord/t89KTTyE1acEC5G1Pca/J5yRhwfv0NtQjYgXnsdblaDpPLtPoRmf0VSPCQPo\nH8vPsWMI12Rsnyu72Klqlq4oW/dgTq4IynE6oKV8C27Hx4zFQ/rNX/2nXKwLT8jmulROplGHd2Zy\nfNw3sKFA1QubV7A7MucmqeE8ViSkeqmXey22n5LisGA1wlFRm5kdgGY4Dg7OMJMPln0wFejl47TL\nF7ftL/7ln+Wt17/HwaGkfMzUMNCXMI0NTdUSzLKY87nCdVUKvNVqUqvSO37JSKvFZrM57kwx+pFH\npum7HSUT2WoGhJohiPOCtgJ2Jod7eCvyvRsJmIEsEJ9oy3nz3/nzn+frL4s7v+af8MWnBJ/+D2+8\nxP/wd+TBTfZiripRiVHCzbP4gGNVr0oLCPR+rLUPYgL6PELHx2gRdIpdEJF6eEz1nJxgF1mHh8la\nH1aXvH9XYhhHxzc4G74k91y2+L2X5dj03VdlOalNAkZTcdFP5jFxKlfME4PRdOckTYnTCiosv6+5\nJZ2GvPwFJasqxnutGbKqRKqDtE9diUWmml0qnIJ7ZxUZbc7OirzEr/V+lBvfkPucDG5jRlbHThaF\nMi1wdGEyNsfoz45r8L1KeDUn14XcUdasMKzRcFVYuNFclBkbHCIdWz94UH7sKqPT2SRlqsIwq7Zg\nrgtrP0vYO9OMiHJ4vpuZBxQquDg4WvJeU11RJ6xzoS3H45X1Lony8h/v95kmc23DI/BlnCN92Jmx\nxNlk0f9ZxYp1tUfzc5Li/fLuKl++JhvqT/3cf/Jta+2LP/BmWR4flra0pf0ReyKODyUlczvn1vE+\ne3uyk7hFXskq4zoRRSUp75QUCkJJUvm/k9SY6G7mG29Rj+67JYXutsbkBCqFNlEP5CAt6M5UTtwP\n8VP5fbm2RX5Zdjbv9dsMlUJtT4uBas9/iRsv/1MAmnaL/fu3AXjl5SHnfdlt50XKGwp/DeeK8XVC\nclVX9nDIFa7r4GKpPlfgUZngKR4hJyXSYOfcxjxcG/n9xOgr38/BYDuyAx8ef437xxKUu+n0uTmQ\ncR6qu3wv6XPel2xAMkrJVNuxsKCbLtaWRJV346mL70Y4vkbWM5/hXHb/81qd/EQ+bzXai2dVKCx7\nVrNM57rrJilFIGMUd2OOjsSVnveHWAXhVAI4BvAVIxK6Ia5mmjzHwau0Fgu7ODa5uu85TlERO5Nl\nE5xSn69raSqfgrElaNbJURno0Mk4KFVLc15gqipPt/aeHkJlFovzkP/machaEyesly0uX1C90uYK\nqa0IcOYYTwONuUumAciJBnDTPMNm+aKNuc6td0Y53VckKFm2A9L9ihjt/dnSU1ja0pb2iD0RnkJa\nwP2R5Xg/YXAoO43rGgJfVvNWw4CuiLOiYDaXFTHQHbMcTZkpNrbZdNj2JeiYeAa3J6uywaOp/P1o\ninA8d3G0zp/MxQ9UoHO+wsGetNE5ai52jagtK/jbt8ZsvCIFJ6/ceodXarLD3riRU1asUGXJRM+n\nM6sybybBVJu8KVGdE3KnwNFdbKbLdFjAyKsCnBBXqccCiirA8C7hILv4v2WoxTzDb13lrTeFNe8g\neYPRnoxLuCK75HQ64c6h9CPMHJqqmzAbxVQF2qHJ6WqpdbMu31/tRdR1fGzDIU7ljDtxM1QhjqE7\nYVMDqIkWGh2ep4xGmpKdZgy0IKy/uU1Z6RfEc6yO3UJh3PVoKrai26oT6TPzeIDujHOwyqhVFYyl\nZUGgXkBQZBSBzIGaMaR1ea4bjsdAH4qvEOxxPCVTxOOoyBdxW5xKnO/9WaHxJSzEyoGQrykseeuc\nZ65IMVPduHQ6Eg+4Uquxr8/k7mTE3qnEVc60uqwsCnKnmm9moXExP5zSHoh3m6YF58/tf6B7fSIW\nhTJNmNy9yXD0QCmogYeKJZFlBaVTRVccbFWbr9FdbI6r1Nv1esS1LYlk7+60MDqZJv6Ytoq2nI4l\nmvz6zTPySpEJy6QKgnkJdXWf891d6jXB3a/nygI9/jqnnixew2jM2Zsq0tFPCXTChkGOo5iDQCer\n7xusTuKm7/LpNXlrZnhE+mJVLGJ+kfLGQEk84oI40+o9x3Kup5E4tbxXnDg5F1f8jeTbvHYiP6e3\nEu7l4hJvjCW4OtybU46VTMSUpMrBOC+SB0HOyGejLRmfz35KJnG00sFqNWjbqeF68r3ZxKGcyziP\nS7MI+LnKCRkmBVn14tqYZKwL59EfkmqguLTlYjFw9eXuhHW2OxIcvrqxSUtBP1kxJlXwWVLmeHWl\n79PNIo+LRWAPmy0CuptrDdoKQgp9w9FUlsBYM0p3+wmOK/0zibOg/TPpewfoq/W/G8FuR551vW7x\n9D5eUMDd7uomz70g1P7xJKRTk4zCtctXOL8jL/SrR0c07siLfkOPA/P5lFQBUnNbUuixw2RTJipL\nH3NMf7Dxnvf6sC2PD0tb2tIesSfCU8iznJO9c/KyIPArsQ0WkmhxkRMlsnL7xlaxIExFahlGbGol\n4mevP8/zzwpS7PJnr2DmCgMe9Ek8RZu9JcHA46OvYxVVOG3n1EpxGR0zZnVFdsRZEeN6qiTclB3j\n1X/0HV6+I4Ice3dz5qkG2iKDp4IxAQGqScPzWjDlNHy+0pPdcXN7k0sK1+2nLiokzJmSp3J+yO/c\nF5d6ejLmDVW53nRyXtUjQTxMuJeKb1GJu5Q8eKgF8OpLknr8/Td+lzfuS7/D4RhPWaX3htL/+HyM\nUfyDaxrMNXXqYmmr93NppcuXX7gOwJ/8GclsNWxEoQxRthkyP5cxPjm5T96X3epeNiQ5kfubq4fS\noFykOqeZxTfSnt8PHxR5mQd6CDVPdtqdzgo/8pSkeK/22vQ6Goy1HVxNUdsU/BVJ36VzZatuNXAz\nPYJlc1w9B2xvdPB89UbSgHem4qJnyv633z1ncChtZK5dsHgXxfcL8T4wB1BUPP/udo3mVcFCPLVR\nkhXSlxevCB/DuL7JimJr4sDF6pHOlE3Wlb2qfn+NrZ6ke9NC4Ponhy5Heuwq05ysqJCuMFexm5NT\nh60P5ig8GYtCluecnJ2RTTNcjdhnARQa6fUSoC6uk++5hFoXu6oyPl95/joXn5GJ8olnPs2Wvmw1\nt4td0ZdlrYuj57qVUF6OdL7P6ZEcA85mMYOpvPSNus9KV1y4iyZnOpYBDpV+69VgxvgbMjlm+3FV\nRIljIFQ33wscLnbl4X55U+7zE5stPvUVealMvUe4og95VGK0srGrcunxbocvBAJnPdiY0jyRh9/y\nDP3b8hLe6Li4h1qD8dB4FvoiWSzHWup76+Vz+m/KhK+FkOWKAZmqfLu11Cv9RZPgWLnGbrPJU0qJ\nf+3qBT77eRnbqz2l0a8lixfE8WHmyNjmjKCmXIrnhmNlrj7O5U3J3Tq1fenTLCmxej9leGNR9osF\n35G/X9PjwPMbKzytgrc7GzXWu1qKblwCjQ+VxiHsyaI+1zLzfGIgUEWxwKNTlw0gCkIyjfDnyRR7\notWc63Is2do/5NaqZpROStJY55P9wfLuLQeu6ZHhp/7tP4XR+6hv7VDTY1NrW+DOtaJOqJTsftjH\nKJ4izSxOKIvCzmaOo1DxT1+SI8V30oSZCgSbAnKNQZUGnEqoZjJhdlAB1N6fLY8PS1va0h6xH1aK\n/q8D/xqyQb0D/PvW2oH+7qvAzyPe61+01v7me7VhS8t8mmGx1BsVR31GMpMVPKqVRBpo8jyXuuam\nn1YV4Ree/RzPXJXdo73ewqn0/po1rFGF5vGMspTrraiW3/WLG7ga6V5ZiRifykr71nBMPpAdtLmz\nSqshO/o4kxX65NsxrgaaumsRA4WwJrHFq8tOcrnR4gvPiAv7jB4ZrlzapHVJNBL8+gWsqy5zWVKq\ne6wbJkl2n5WKpCR0FoVS40mGo5HvyWyOsdV4jR+M50NpibsvqTscJzSV9GM6mzJX7oiyUnD2Ippt\nrU4cp9Q1Cv+jly7y45+6AoDxE7qpjJ3RoqWg2caqKIopPbwNeTab6U0SxRZ4qz2sBnkPRgpdP55R\n6jNtBhGpIiXnmbNAX7iuQ6S6FW3NHAUNQ6By77VaHeU0ITAO9ZamO8omZabHHx3P0jckemRq1iyh\nekX1Xodc6fRim9JWeHBdqdQ+cWGNl94S+rOa6zFRlme7CCN+f2tFDs/uyPzs1Jo0rkgg0cQxJlSR\noEA9qSygUJEdv9kE1SWJ53NmpxLkns7OCVeks5dV+ftsMGSipDf1rk+qXkOap7h6tA5rdYazH+zV\n/FH7YaXofwv4qrU2N8b8NeCrwH9kjHkO+GngeWAH+GfGmGes/cG+lrWWMsvwXQfjVkxCdjHw1roo\ndocQy/a6RG2fe1Zw7RvPtKjr2ctvBqDgpTyb4lXXsw1wlLFHcaJPXX8OVyf37ZOjhSx9ej7ljmol\nNhtbdNZVOCSVl3yQJ5T6QG1e4qpLnKYPWIP8Cx6uDm+g4KfmxiqBsjQ5brjQrsSbYRZALQXbxA5G\nqyQbc5eaXms0zxcPLUosUyX6eDc7Hqt6U+6R1GQBSPsJqb40i6kdQpHqRKpHPNWVMf7Sv/EsWz1J\nvzKY4q5qCXQhx64InxI9dniDBd66Vevh60tqgxkdZbmuT+T4YfdvY5WFyslj8uqMPhpVhZ84xsPX\nGFPlDhdJQqYvZplCobGWsmHwq7SfKZlVSCU9fhBMKTSbM8kcwg2ZC8HMCmgJwEKkx1S3VtUX9Nhc\nVYbxUYqjJdzvlvZR3Rw+0Q3Z0OPm8eEZm6rBHBUFfk+FdJqSpvWwlFTzyV1IEaSxYaLVlXHCghKg\n2iwurq5wEMtzHKcZTa1j6Y9LdD0mn6eMi4c1w97bfigpemvt/2EXCWS+gWhGgkjR/31rbWKtvYUo\nRX3+A93R0pa2tI/VPoxA488B/0B/3kUWicoqKfofaMY4BF5AaiTaDQJrdXTb8XyHplatXGjU+cTz\nErW9qoQY7VqB0UIVTEBuZRezTrDgBCyaMVb5GotC9SJMQaks0KU7odS0RhimHB1JBeM4m/KiJ+3V\n6xokO3HIlZzF4OLrrpIXDp7m4y+su3zikqzoG7uyO4ZRjzKvwCbThUuNl1FWGRUVUIm6dQKlkvO8\nmCiRa62VDrV7Gu3PQyIFsjzsLzxcEBUeSxtus8AdVhDlfPFHVgOKft2jq2reF3p1nlENxmc2V+go\nIUveyHGMjKEbynElLwOItEjKlgtKMBs6+BsqdTdOcc+UVdqTgFstsByqtkThWQKF/qbWp0J4+QZ8\nnQ+hwqvDqCAqFGJtZ9io4qEoKbRThckXxDaFBhHT3DJSDYmx45KeajVuuUq9rSrmvo8JKwIbGdFO\nz+GKBrQHrRGnY/U8chaAsyoP4ToQqKfXKoOFfsV4NqXbF8xGuFunUPGZrMJjBDnGkbGaE1MoJDzJ\nM7ymeFthfYaXKF5CWanbnRbXJtL/cRww7ctcPk0TUvUOHLeGV3ly79P+WIuCMeaXEH7QX/khvvsL\nwC8AeK7L2TBhWmb4KgoSRNliUXDTlCiQF2t7e5vrF5TIQ1MtRT+k0HOmCTqUlbs0i8j1pQmCOplG\ngL2Bnj1tQtCS81kvTUiPdQEpzsh1sTg7PeHGXZk0W5dlctimR6KyufM4pdQXy7HiCgI85XW4tHNJ\n71OOHf6mJdtTgdbGGMfTly2OKStAlkoeeYFHq5T2yJrMa0q0GrRJFEw1YkjyfaofHv4k/JQsnL2T\nEcNCiVnTB4tBBe4qEoe2gma+ePUFPvmpSs/wWSJXkY67zxMjHTeJjJX1cgKtr8jnezh9PRLUR9hE\n3OM0vk/AFemKkeNM1nJIU+UizAz1UCb66OhskRkprEU/xtFF340zfH1JvXp9If6bJAmDc/28ky3e\nWA0jMR7EvHNf2l7r9XBVdGeaXVgsxLUowhgd82rhCS2rVyWmdD1OeOekAjI9pMqli5hxDDVULCZy\n2ULmWbN7AXdLFgt/pYGrcRJT6Ovn+2hICTO3zPXok9uMngoP5+cWJ9fMiFK8b+y2SHRc+4cxrzuy\nGRrXodT6iCTJmDnvr0ajsh96UTDG/CwSgPwT9kH99fuWorfW/jLwywBREHz89dtLW9rSgB9yUTDG\n/ATwV4B/2Vo7e+hXvw78T8aYv4EEGq8D33qv6xXWMC4CRskYR12neuER6Vq8EQSgkeOLtWtEgeoK\nZrITRZ0IR1fd7DxZRLWN5y0guEUJjQ1xLYxyHzJvkh4pRvx8gP+MXO9W/DTv3JVdJXAyRqcSUnG1\nOq9IQ3KN7hbWLKrvitwsMAsNd4PtnnA0ukZ3F9sm2BLvwNoEO5HPHeNiNTga1FTGLfLpfVpCNXXf\nJ1Kpu9nRhMs7yuZ7y/JeIuO7oew0x2tnHJwqz2VZYKub1jFO53NcpW6bzcc0U4mW28DBMeJt2HlK\npy335CIBUxOmZP0j7VNAqYzDpXfK+JbsB83iAnPdgds98SpmL72Bq+5zVLoEOhXjPKXQar+SkkRx\nK8rihuMEzLRs82xiOVYN0TzNWWtqquHMp6HPoaN4hdZqG/ZlDEfDhJUdgWnP6hZPlZu9eUqhRzpX\nCWLagUsT+d56t8XVVfFYv5fGC8yCfSgzFlUSbXOfT27J/tjZ6dFcuSLjZdKHMjcyJklR4Ct0PQwj\nIr+tj+YWjgK81i5cwm/JmK/NdQyHZ9StSB3mFyP2cxmkt/dPFgHkssxJ8w85+/AuUvRfBULgt9R1\n+oa19s9ba79njPmHwGvIseIvvFfmYWlLW9qTZT+sFP3f/QF//1eBv/qBbqKEjWnJPMtJK0mwpKCj\n+dwYQzFXkZR8jxUNuvmaVhsHIwJV9S1WIxyFkZrmDFfTXkUZMxzIOXI4vA3A6OiQu7dkpT2bZVzY\nlpV9p5ux+7SkkPr759hc2ZK08iwoShyriLEiI1fvpixLUi2wumsOuH0sEmpNpSjb8A29toqVZilG\nU4TODNjSM3AqbcTnGW/ceQWAt28ckykBLbllpDDnXtNhqtDd7F1Qt61AA5Q7W8TflZ27yB6wQFf+\nQlpmpKXEHNx2QepX5/o+vhLTuu0mjlZH5Z6KwZzPSVL5Xn4+gJ4i86Y+juowzE8P6N8XjEeogbr2\nZkhD+R3CmkOzlGd279YJyeLeLInGhzIN4B3bOaVqWdw7GjDRWEwyG7GrrMsXugHdy7Kju6H4UqeF\nx50juc87e+/gf0/YqGu1Op/fkfTr2lqTSFPNF57W+HieEmm553o748KqeKw3T30SLUYymi71HRer\nwcWBb3mjL2O0emefWPEwcewSKIvYyqq0W2tmROtyv57bABk2XKfOrC9xgtO04PA7wvK8rg5RVgwY\naHHf6tpVrq8pVqdTZ3qiAfSyoMz/f6g6XTMOz0Z1zguHsVOJm0Bbob9rUY2tjrpOXo2ZuoH7Sqce\n3HW5tC4Dsn19Sk1x7/7MY6oY8DwZc3wuA9gfi/PS9CMaqkdZ9I+YqQiJH6c83ZWH9P/cP+DwVAZ1\nW2GmxjTIM/lbW5qKCwbfcdntSNvPXdikG8lx5fzgNgB3377HhRWZEOudFVoXlTm4s0qh3JT7e7KQ\nvP32Tb72hxJQPB1lPK+Q6JWdFhcVsHPtYM5MsfrnOha5hQrpkQMGOY4UcbmoPqwWBGBRW9Ct1fjU\nriyK7cxjNJaXuD/LcTXA1fDG2FBc3kzxEenkPlaDZO72JlbL3UejswUgK65F1NdVpduR7z3jdriz\nrxWqtiTU88GuFzHSI4OUoatozeJIGHL3SMFGwwHnKtoTl5ajodaKrLW5UlMdRyXZeenmIW8fyFjt\n7fexilnptupcqlSn1y+TZLqInCoAzji0Kxq3doMrGzLPbuz1GWrb1cLqYai5mllIC8ZD+f2N05ir\nSihz7/Qeh0oReKUCtW2t8fwXhK+xc6HBVCXsX7t3k3t/+CoAX38a+/0kAAAerklEQVTrkNOh9OXZ\njsyrlUYAgdzvajxjEst86UZdDjjTeyvxzAd7zZcw56UtbWmP2BPhKcyKmJf6b5IHEamSqTRCl/U1\nWXUvdOtcuapBm+bKojhqGIiLlIyPOR/K6royWqO3Lru1k8+JR0r4WQb4GozstGUXCRudhZ5Ep77O\nTLUkwzwm6ShG4ns+Q5XxCvT7heeRanVlkiRYdRW6rZAvXdEKvs7VhZs/TsUVPUoOKdStmw7HXKoJ\nmcZafZNsJF7MK9+9AcDh4YhVReut76zQ1lK3S+3LJAM58nS7lqivUFn1FFwerPQu4K2KSz0cp8QK\nMcY+AOlWiM+12gqJVntO4oTcEc9keDgmWtHU2nobT+HB6ZmM6zyZk2mufHq2z7e/838B0D/ziBoy\nLqutDTY1396si3f09FaL4RXxHo4HR/RVtOdecgeqYh77oCK2pceuLC+YKax8Pi+Z6/FilkJ/LJ7C\nW27O8LZS5x1Keyf9Ef1T2blzx6IZbHZWPC5eleDpc5/7DCi8PS9lBz6a94UQAWiOYTpT/EKthlF6\nviowmuWQqKve8ALU0WWzs4OvkNxa1KaTamo8kzl0fnTM2YHs8vWNLaYHMhZf/+1vMhnJnLwwafKF\n5yVwfekLEgTerl3j4J4wWKeDQ/JQOS5a+QNC3x8ir/dELAq5gVO3YFxOH4LdFjy7qXLhQZs3Xxd6\n7r3eAFdFNrrb8v+numsEgUy6rIhx3IropEN0IlfsZwVjVdN58+U3ALh9esSuSsqvXFhjc1MwC/UL\nbUpdCJzQp1Gv4hLKapwnlEqKUtoHjIldt07dl+PIf/1rv8OJAmFWlA/wWrvGtk5As22JBxIn4akQ\nIrlKfCYTJkt8rjwreIxvfucW33pH4gufXT3kdCKTvxfV2d7SUmVNQ8QPHR8ssH8guIKzw5MFlNo8\nhNsPNBI+LzPeVMryqD+krXiDjfWVRZwkHU6pBaqPqRqc2aklUfc0d0LmmSpPOSOsSsPPyjmlkeuV\nXV2yag7XL8t4X93w+c4N5UE0JdlDSIvq5wpL0Kh5TJUMxl8PyZV+0HFzNhryLEsH7u3Ji9Vek0Vj\ns9bFvyz3eetOn0D1SLNZwZvvSN7/kytrRHpMdZTUZ7XRwpnLeO9lxaLuotNxcDzJ7JhM8RZFiaex\nEb/waClL1fHtW7yi2O1bb+5xvS3fe/EzomhVa6XYvj73wZz5WObFWpbTaciLvv3UNkf3ZIH4vd/5\nvwH4TPMdYVwCultbbD0lP2evvIOnC5bvOrR1/g7iIe/HlseHpS1taY/YE+EpuEDPOMSlJVe3p+55\nPH9N3G7XXYW3lTOx3iNV3cELKgffCF1aHcUe+B6OVoOUIbiRBAzN8GyBBfZ6EpFvTy1WKyqH05z1\nprbtr4Iju4Nba9Pt6CquAaL5NKGIVaq+tFRlRd1Wjc2m7DSv1Rtc64mns6keyqVmQEsp2NY316h1\nFPI8m6GXo9YUT2O3adjdEk9h71NT6ntyfOgFDonmnbefaVEbSb9vHoj348QPtCCwhr13BNNwcHpM\nWVGbOc5DuXVVZ4567OoOtrHe42Kjiow3qKkPauYWq6Q1VrkLovYORSpuec9f4Uc/o7vVsEVrW7yG\n7HRKK5J7jkOtWnViWpvSv7zmM1SiliY3FpRnJRZXYeOrPeWG9EIKfdadVpctIx5G1GqydlHy9/cO\nxhyeKHZCx373qWt8Vgu0Vuu3aVR8nfmYrl477HUJlSrN1mRuOYVLQ9lSGrWEbkeOYM9GPt+5IfOh\nr5J2JSXUlRejs7HQyBgNYlZ6ykPR3uAzT0sh39XPyPExDAxxptD8MsZq6efVy8+BVS4EE3CnpoHw\nqXx2agp8V44r9XZKPlMhockIzxUvutdssaII0Lvn7099+olYFHzXZbPd4mwyp65AkjUi2p6qKW13\neGpXeBe9bB27UlXAKay1CUlfHkAjDLAK9yySFr5GwzevblJL5UVf35BJMNg9Bl9eBL/msKXVl7O0\nYFWh0LUwIW4oLl/jHf3jCVn5wMVVbQ+e6a3z9CdkAl258AxOXV3edWmvNCk7m/JAzckM35fFKTOD\nBdnJpoqdrjy7Q6yiIF9wNpltKNzDDVlXcZLLWxusDOTvb7wu2YIb5zGuolqnObz5uiwK50en+LqY\n2jCgevSBgrAubEX86KdlLC53e2ys6cK5FWIGMp5Ou0GFCrKq5+iFEatKwpJkJZcLGcN8p46jLmzs\nZjQa8vfnSmTTmltGjdsynuMcRxeppxpNXtEyYktBTascG5oW9VuGXSVv6foB5YqWQ9fbOBqDunM6\nw+vI91b1+5ef2ea5TdlkXviRDSanMl9aKzkNvc+VrWcZ69FsMpQzfhTWcLpyP+P0lCtbEjOa25JP\nduWZ/MGpENkUzoy6wsevtuoLsp+m63BRgUc0HWqbMh9sSxbT070+XkOeTT2tUSSy8GxubLL+lBwf\nJmc5O1d1vqhkQOG6lIp66qxd5OWbwsFpXIuvFZoXeju4fMhVkktb2tL+xbInwlPIipKD0ZzAcTC6\nsq+3I5rrsmZtbLbprkiAriDFBupS6QqfxAXnY1GodsNgIcVuChevq6IfxqPhqrxZTYNI7RZGWXsd\nt0agrrQtx7Rb4sa3Io93VBNyMlQKs7QADToaYxaUYZ+73ubpT4qb307Wcbb0NqOKF6LESaRP82iP\nmhYSmXxIoJTizYvabiNkRSs8c2eLXInWwyBiOlKIcS3gaKz5aNXH7Jz7FBrgSsspQ6VcL7NsUYiz\n0uqQKRV9psCrXtHmU9fl3nd31miqOradG0ZN1blcbRLotRfM6wzwIz1qtOoYpRorygyjAK964GLl\nEjQ1CBz0fCYntwG49dY9xgpOm8Yxqxo0njgp3Zo8k0T5GIK05OqazIXV9YjWRdmN66XhjUO59tnx\nd9nQnXl3Te63NXXpXBDPM3R38C+LJ+CNm5QqRONFdaYjFcQ51mNSZ4anGaqVMMHbUKBSavCn/1z6\nFMg9jtLJQiag0424ppRvWxfX6PVkx29u1xfQ5Vx1RwdRQbcr0m44c0LFlnhbPp26HAlWIw9HJ9RU\nPV6v6ZPPKukDh8FI55nr0lQPuaBgnL+/AGNlT8SiUGAZkzMDGprH2WhHuGOdCM0N3KCSg+9S6GSz\nihILohrzSNzofHyG7chDNL4DRfVCznGUoj3QtFrUjLBalVlMgsVo2CzFKqeg7xhMXlWtyaKQxfkC\nseI7Lm2l027MI9p1OSc2L/q4dSUVzR/w6HkNrZnYP4ehZAY8f5228vlVkuX2vKC+Ki+mt9KhVNBP\nPkswes7OQgdyZRBSYdNrzYiTinjE+gQT+V5ZFgs2oY1ejyMFcqUKQqptuHQ7V6RPZYGrZ9IiG+Nl\nch/u1MUNFdWpbCKln1KM5BpOo4YfVcQqhjKRhczJg0UJc65aD0k8Fwp3oFb6jBItW49KZjUtxY48\nGppLKaeqCbrewdWjgTUrJIfSXnvDI88F1DaZTdlRjdCLq3JkaGytUcYadwrmuIVmGfwA19HnVBbY\n9EEpuQxQRqo1KmHUoOfpYjk+Je/JGCYTLScP/IUUgZeOQcez19tm9Yq80EEQYCqeygoVenpKmcli\n5LNFqyH3Zv0UO9TNoNclqMv8bWjtT5ZDHGsK1S3oH2kZ/TihpcjMXrvB4EiyI+/XlseHpS1taY/Y\nE+EpYMEpDb4xWPUCiAr8Sg44HeKqYIdjXYyu5rYCj7gBdY0gz2ZzMgUWee0GDBRzblwyZDVur8nu\n4dkaRabgn8aUVLMWrhcseAY8U2emoJ40qaL65aKGvhYErGpQp/ATHHXXXX8dVwErRjUHyyLG1GQX\niFruwvVzgjGlEr94Wp+R2IxcvYCgE+Aoxr8wxcLzyEZDmqFmWjS4eBBPSSt6uDin3ZRdJax7RErO\nEUT+wtvwdF9oNQ1G6+5N4GKVAKWMoKVVpb7fAOVkqHAaThpQKDTduBY30mtQW5CeWDMnHchu5Wsb\ncy8nnevxyEyxsYzn1PXp6jHHOharHslZBWk/H5G1tT4kOCPX/jH1iTXCuloLcZWaraL1z9NjBnvK\nlbbLYrcOWnVcHbw0M4yHMkdGWn3pl5ZMsz1+3aFQnoUytQRGArNNR78z71PqUTFPfGqJeDdRw6As\n/wTGp1RPKNeainoU4uo8JBw+AKKVDawGaB2nxFupmHH0mDvPoSb3dnLjjPxMx9jL2GjKUdBteyR7\ny0Dj0pa2tD+GPRGegjEG3/VJHGhriswdBUwVlVtOM8q5rPheGGFaujMXsqvO4gH9vuy02WjCfH5b\nrjvuUhay49X8DoHSpoVTgcGZoIlRxFwcD0imilhM+mRKO3bmzyoZy8VgGWMwup7WfR9f5Y7vjEfM\nZ3LtRtoEDbpV91Dk55Sp7Crx8AxHdQiyRsF8LP0eaDouDwpC3WncyQRHd4dkPiQuJEg2HpScn2gQ\nSQOG41nCQD2aWhTS8mVXbTdHKMCS3J4RqYdRIeJO8zFnt2Xces/sUlRVkk5OVHlvzTa5IhPTrEJe\nZhilqcuKGF+Zax3fW2w5WTYkoypc0vuNPYalxFReujvFP6mKkjqcahC0E1tC9QaHY2UtBvpnOkYt\nH5UKxXWbWI07eDWPeSJ/8/pNEe0ZnU65+IKkDp8qP03RVHGhdEamQjTzccn++FzvU1OWJqDUeEjp\nQRpLpwazmOYVEcTh1h/IvWUjjOp+JHlGNWyBV1JWkyi0lArjHk4kjby/f8TFpyVW4bgOhQZV43xK\nXlYK2zX8VMagum6SDjjvS//2+6e8fSjIzMDmhBsynrfO9hjONMr7Pu2JWBQKaxmkKbkDx7lM0ren\np6CMwWXepywlUFMUM3xPI+Dq9pmZJXRk0P2dK7Q0G5CalKFGcnNmZFp9l+5pKWnYp6aEFkmSL+TO\nB7FlqO5lcTQnyR6QfoBAlUwlsFi6lJqJCEzGTBeT+KyPqzTptqYvYAxooO3s8B7xVDUMdzxufVey\nCHfP5AFevdDG17LvdF7gakluPskZHkt7o3zInX1xGfd1MclSIX4BmOY5nevS/25eY9TX741Twopm\nXOkujm+e88qGlBNfurZKvaELWu4yz/UocTwhmctLM1DZeps79DZlQgfNOslEruv4g0UNQzosSCtV\nKw3azgOPey/J833zxgGBUy2KEWcT+Tx1oKvl5Z7Whk9dh7NYA5vukN6ugrpPp9RLJUZp1HGVBXpd\nMxnTIubsXFaQnfqEVI8a85s5tjpiFD7DgYq36oLsNFI0kI879zhVyPPxJOf2Hfmb4bmMRRGXtNv6\nEtsMdGFKJwWelqU7NXdRKxMfS9/eOjxiogHaaxsXGZ5oANOxbK/L/KzVjdBXI2UBAOkU7t2Stt+8\ndchQQWStSy0CR663f+8u4/iDLQrL48PSlra0R+yJ8BQskGIpixIVnebt84TTA3FRr7/QIlONQtNq\nko/E7ao0IlxbY0Xr3Gur64QdyV0TRWwNBNEXj4acHspKOk0rIZQZ6aTSEHDx6xIETINz7tyUY8Dh\nMMHTevpEb85xvEU6LXNScGXHn5/lxHrkmZkBVl10ozRo7Z0ruIHgEFYv9+nf0ZTkrMHWrnpCvhwN\nmnkHM6sYjnMyFbWx0zmxpvpyp85IYbzHSqXWDJqsajoqDRwYqrgJAQNbVSXGNOtyvbqm49Ii4fS+\n7NDx8QGsSd7cHeXE6q/ODg8xuvOaRO7N65YoBw21ep1yrClef0qplMpF7i7IYwote7xx+4BXqyou\nQuYzJcxJNphlslPO0oRYpeub+r11TEX2jBNCfKbHkt2QsVY4ZkmBo+jNXIvRti+u4ffk3k5GdylT\nZUE+jAlqFWQ9olC17SCspNtiSj0S5FFAHku/x7M+90biIU2TigAnpq9o06OppaYEN1lmiZU8iKMh\njpLBuFZ1H8oaw/vS50ljndqG4CkCUxDUqgB7h0R1P8/m4h2ORzMGWh08meQLjYvBXk7rgnpsxvnA\npZJPxKJggMA6xJSL/P+kzCi7qoo0HhGsSqTazzxKrZir+PRsmVPogHHSJw7k7Ni8eB1fwS+lt0l3\nSwYw1GNCNm8zVXac2MY4TeXqGzU4PBJ3/s7eKYm6q6jr67kumf6c5iV5KPdzWMs5vS+Y+1pzjbrG\nCazGQLJihLsqLq57aGiruEduHNZU4crokWF+HjMZa6mvSTEaAS/TjInef1qfMZro/at73XBdXlSg\n17f694lVTWrg5iSL6kiXIq7o7KUfUy9mOFE3OgQScUvLhkNtImPvNXzchtxfT8libFlbCMW6xqGI\nZMGyiSFJtN4hnmJVbddM5EW5sXeTl74nz6nMcgrNxHTijPNY3WRrKZxKGUbG6jRLWYu1uvSshaNg\noXw85U3l1by1f4ZTMTb1JLdfv1zQHQqA6B3vjKnSCTt5wepQBV1rOZEKz1bHw7KEXHEfszRnrJWG\no/6cxkTm1rlmp0priRWmX0aWYSb9WJ2fYpXTkhUf/0yZqbvSxpXLlxa4kHpYo72jLNijAkcXrMl8\nRIw8n5Hqit7rn3JbKyeHxRk63OSeod/XBTJ7WGX0/dny+LC0pS3tEXsiPIUQh2tOxI1yitUVukjB\npJrHXW3jVi5jYCg1wp2r27Z35z5GC4N6O01W1P0aH90iU6SfDTwO8ttyDd3ZTNijEhaw/pxC2878\nOcd92UrO+/1FRLmlEScn8LGKFSgs5OoRjEYzpsobGRSGsKtQWUd21XF/yOhQ4NhlbHB1x3D8klks\nrvTsQAuH4hm3lSXZKx1aKhXW7YYknuwCk7mHHek9KXKz62Rc6sgRZc/JGBzLUWvejzFaipkXCaUS\noHhbMlZ1z5CWMp6D6YhWqgjRs2LhBtu6AQ1MZueyW2VmSNiWv01tSTFWlee4wGoePjEzQqMiHRrp\nf/P+25xroVXdqxEp38BFU+fASJ9ib77IjhR6FInLkkOlJUuaMWvqzs8OTuir4MrlusP1T4i39MKG\n/H/uznhN6dhev33IsQYz12pdrq1IMHaj28RVWHyqFbFFYVHKCfKgYDTRLM98ygpyTN3T+7UmplQP\nMplJUBHAZiGxBqNzd4bXlWtMNRGzG/QId5XGLYspbks/TkuLqQhcnAETRafOtVAu9krOtPhvnMJQ\nvcbclgwqRuyyWBx/s/z94RWeiEUhp+SsnOAZl6xyRR3LQaBCqtOMjSvi+jmBj6vlpPltjS3EFqOH\n+d61zxNGUrIbBin3X5M0TXE4I9Zzd/eaYsjdFFcZ6n2/jacAkkkScKIR/nyWPWACUlfVSbKFMGue\nwZFo69IcdujrBHEbAbVVcRnzUh7iyZ1DjCsvdK+8RPOLXwFgfniX+ZlcI5vLxJ2NppzuaUoyCHBV\nZrxmDIVqBo7nY24OpN9TrYQblCXZucB9L62vMHhavjec3ONsUAm/QKTxmF6kx5nUcqRU9Kf9k0VJ\n9XyY0fFlAag3A5xcFohSy4JNCMWq0uhbQ6rxGltjAdjxnJBShW2OhuLuHtyMyVRLM2mUFLrIHo+/\nQxTJuMXFdCGWO9PFIRunhJoWbXYtNRUZLmYTVlzlKCwdXlQi1Egh6KPDIfsvSwxnNOkzV1h1vl5w\nVtcK2yyjrouMhpqwXobVFGkwg7NMyX9nMSfxP5ExcFRhykKmL+PLwxO+pMI/1y7WMJGSyJRznGPN\nns30Oc4SerESzdZ2mOYao0gPSJS49TA5Ya6sT0Zh+kMbU86Vln9ckugxh6DBdPpgUfO1dGD+g2VH\nF7Y8PixtaUt7xJ4IT6EE5iCVe1UdCpbJnrjwyYs/RjbTKKxbwyplWW9F4cr9GuO+cBtO//lbOFeu\nyOer67QVCDJd3+KZ67IDBdfElR2cfpeTe6q+XNQIe6rae3bG2bm04TqGjitu8IWe3MNr908XknaG\nDKuu7XSUUpzJ56ldodRdNajJdXdfaJBpYKg8Pib7w9+Xvz2LyJXbr78vYJTDfsHFmnw/2u4xd2X3\n6B/PF8VRo36x0IgL1HOZRjGThgTcxlFC/UjJNpKIOZVupiHTzEaoIjtXdpvE4qQw2DPsdMWTaIVt\nUg1iBnFEuyVjUNsVSbwyHizUweu1JqXm6dP0jGSqATjTxNe6/zsKkDo4nC4m32bpkfniNYy8lKEr\n0XXTCskV9FMpe1vr6x1D12kz0UrDnd4qn9uU3fH4cMjeN8RDjD2ZQ2mWE87EG7vUCPmSzgFvrcYd\nFfs5PUkXgLgVFYMZzWJMrqA3E2DONYAZJ4w1I5QbcfcJPUodq/l8yhsKef+sscyVor5/q8+aFltt\nXRQ6OsqSYF2816gbEkUyr7O9kvNSPcvDOi3lijzKNIt0b0SuEIQVY/H1OUySHEc9mvVWl7W2tPft\nd94fXuGJWBRAePVCz1BUkvMNh5FGZEd795l2NdMwa5JolDzS9JhdyQgLGVSv0ca/VnH1BdTXPyUX\nnAwJ1uTlTGJ5iDZvUypzjx/mHClx69FbQ1yNKK806uxoteKu6vq9dv8Er4rkmxJHAx6BB/cGEjPo\nH/foNoVhx1Zy6NMUqwSltrTMqzRrb4q5JxO611UwVTbD39DqvXDKWHkJx0lKogtBP04wCkJaUbDR\nZjOs8FFgSlY7mmK70sIGMqGbWFx96YOGupmNgAtI2xMyxiq5HoVzYqUqz70aboXFrw7ESUGpC6/f\nzHADvbk5C3l1ExoOzoT1563vyfgEpqTVkeextR4s8PzfG4/oqcs/swUV46RRHkhjChLVgeyP55h9\n1R515tS0rPlq0iPTepNAU5PEHi9uC9NTZ6NDd0deyJvDI/bH0pdkWjLRLIinKMbMOhTqosdewlTj\nLgaXRAFXgcaacltWJ01ya7h9TxbnN27uUdc+9U9PSXo65vtVnciMV39XNoj2Wo1cxWYHw3PGqdxb\no13DaDtjLeWf9gf0tYZ9OE1JlAjW9eZ01iTr8tTFK1yJ5HvfVi7K97Ll8WFpS1vaI2YeaMN+jDdh\nzAkwBT5Y4feHZ2vLtpdt/wvQ9mVr7fp7/dETsSgAGGP+wFr74rLtZdvLtj9eWx4flra0pT1iy0Vh\naUtb2iP2JC0Kv7xse9n2su2P356YmMLSlra0J8OeJE9haUtb2hNgH/uiYIz5CWPMG8aYt40xv/iY\n27pojPltY8xrxpjvGWP+kn6+Yoz5LWPMW/r/3mO8B9cY85Ix5jf031eNMd/U/v8DY0zwGNvuGmN+\n1RhzwxjzujHmxz6qvhtj/kMd81eNMX/PGBM9rr4bY/5bY8yxMebVhz77vv00Yv+F3sN3jTGffQxt\n/3Ud8+8aY/6RMab70O++qm2/YYz58T9O2x+WfayLgjHGBf4W8JPAc8CfNcY89xibzIG/bK19Dvgi\n8Be0vV8EvmatvQ58Tf/9uOwvAa8/9O+/Bvxn1tqngT7w84+x7b8J/O/W2meBT+t9PPa+G2N2gb8I\nvGitfQGBKf40j6/v/z3wE3/ks3fr508C1/W/XwD+9mNo+7eAF6y1/xLwJvBVAJ17Pw08r9/5L/Wd\n+HjNWvux/Qf8GPCbD/37q8BXP8L2/zHwp4A3gG39bBt44zG1dwGZkP8q8BsIv8wp4H2/8fiQ2+4A\nt9A40kOfP/a+A7vAPWAFgdb/BvDjj7PvwBXg1ffqJ/BfAX/2+/3dh9X2H/ndvwn8iv78yHwHfhP4\nscfx/D/Ifx/38aGaLJXd188euxljrgCfAb4JbFprD/RXh8DmY2r2Pwf+CosyJlaBgbWVCNtj7f9V\n4AT47/T48t8YYxp8BH231u4B/ylwFzgAhsC3+ej6Du/ez496Dv4c8L99TG2/L/u4F4WPxYwxTeB/\nAf4Da+3o4d9ZWbI/9JSMMeangGNr7bc/7Gu/T/OAzwJ/21r7GQRW/shR4TH2vQf868jCtAM0+P+6\n2B+ZPa5+vpcZY34JOcL+ykfd9gexj3tR2AMuPvTvC/rZYzNjjI8sCL9irf01/fjIGLOtv98Gjh9D\n018G/owx5jbw95EjxN8EuqYqAXy8/b8P3LfWflP//avIIvFR9P1PArestSfW2gz4NWQ8Pqq+w7v3\n8yOZg8aYnwV+CvgZXZQ+srY/qH3ci8LvA9c1Ch0gQZdff1yNGdF6+7vA69bav/HQr34d+HP6859D\nYg0fqllrv2qtvWCtvYL08/+01v4M8NvAv/U429b2D4F7xphP6Ed/AniNj6DvyLHhi8aYuj6Dqu2P\npO9q79bPXwf+Pc1CfBEYPnTM+FDMGPMTyLHxz1irVF8P2v5pY0xojLmKBDu/9WG2/UPZxx3UAP40\nEpF9B/ilx9zWVxC38bvAy/rfn0bO9l8D3gL+GbDymO/jXwF+Q3++hkyEt4H/GQgfY7s/AvyB9v9/\nBXofVd+B/xi4AbwK/I9A+Lj6Dvw9JHaRIR7Sz79bP5Fg79/S+fcKkiH5sNt+G4kdVHPu7zz097+k\nbb8B/OTjnHfv978lonFpS1vaI/ZxHx+WtrSlPWG2XBSWtrSlPWLLRWFpS1vaI7ZcFJa2tKU9YstF\nYWlLW9ojtlwUlra0pT1iy0VhaUtb2iO2XBSWtrSlPWL/Lxp24vjnwJuhAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.4152... Generator Loss: 0.6163\n", + "Epoch 1/1... Discriminator Loss: 1.4929... Generator Loss: 0.6064\n", + "Epoch 1/1... Discriminator Loss: 1.5524... Generator Loss: 0.4964\n", + "Epoch 1/1... Discriminator Loss: 1.4786... Generator Loss: 0.7433\n", + "Epoch 1/1... Discriminator Loss: 1.4437... Generator Loss: 0.6628\n", + "Epoch 1/1... Discriminator Loss: 1.4178... Generator Loss: 0.7201\n", + "Epoch 1/1... Discriminator Loss: 1.2742... Generator Loss: 0.8131\n", + "Epoch 1/1... Discriminator Loss: 1.3555... Generator Loss: 0.7472\n", + "Epoch 1/1... Discriminator Loss: 1.2990... Generator Loss: 0.8521\n", + "Epoch 1/1... Discriminator Loss: 0.8481... Generator Loss: 1.3975\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmMbml60Pd7z/bta+1Vt+6tu9/b63TPdM9mZmwcWzZW\nsOMIsBEBBIojAgpkE5ZRhBRFClGUiD9C2EJiDMSYGIjHwTKMlxl7Bs/Su3u7ffvudWuv+vbv7OfN\nH8/zVc81GU+Pxw0d6Xv++U6dOuc97/rsi7HWMoc5zGEOM3D+XXdgDnOYw4cL5khhDnOYwyMwRwpz\nmMMcHoE5UpjDHObwCMyRwhzmMIdHYI4U5jCHOTwCHxhSMMb8gDHmhjHmXWPMT35Q35nDHObw+wvm\ng/BTMMa4wDvA9wHbwNeBH7fWvvn7/rE5zGEOv6/wQXEKzwPvWmtvW2sT4B8DP/wBfWsOc5jD7yN4\nH1C7G8CDb/h7G/j4N3t40SzaLbb0rxnnEiLMBoCDpazXVTJTAFA4cs+6QEWu3XYFLxBcZ2IDfX0t\nNhDPvpjpb/4NvXCA6en/Cw6lF6WCw0DuFmVpN8ssRSBTl6cOhSP9aVcauLFcJ3lMOI31K/IdmxWn\no6MAY7Sf1uI6jo5enrAOGCPXWWGZcXR+2ccURmaiFBBUZdyVii9tmYAU6YPNodc/kOvAJ8/0G6ag\nW23IfCXS7iSbMh5OAEiThBkDaYw57ZMxBmPM6TWALSwYfRaD47py7Rgq9QoAgXVw9JnCSt9yC46V\nZwsXbC7fGA1OKOSR0+/+TjCPXGt/HHCMee+J2aUOJLf2tF1jeKTPRjvneQ66tSgKq/19rw/WvNce\nODydPf07epaB7hvYJ9R12DcuvpH9UndrOHa2VgkAsU04LmJtoSCd7QELxencf8On7b85PwbDbPiO\ncfH1D9cY0LGMi/TIWrvEt4APCil8SzDG/ATwEwBnOcsLfF3/Mzuwr2H5Pr0uk5jHAbDO05x4MoHT\nymUAko6D99glAOo//CTdLdnw/i0f8zn93i0PbikSyGeYYsB7u6cMvKLXR4zdvwHAm+ci/tYZOUzj\nK4IdeicFk81FAPr7ZZJyCMAPP/UZGu8KYrk3vMPrL92W95yR9PNgTDpjzqKCwFdEFls6lRIAsSKQ\ntJ7jeqn0JkzJMrleu3qG8lgO0zNXtth8Rubg+uNnZMylDfbysczVEH7+n/8t+fbWKsMD+V4cTPjx\nj34PAJ378r2vHrzEb37+twDYefiAIpaN5AYBeSHPuKUA35MNPfuNwxinrIcqd2h0O9oPjyc+8wQA\nZ6IalZKMe5LI/EzynCBuARC2IRvIun/hF3+OSSzXWWFPN75rTrEKnvMeWnBnBzpwqQXSJ9d1QKaI\nPNMDESVMYx2H/x4iCDwfvyzHYHGpjpno8kSR/MYZikuxxlLkswMb8PXD2Z4VMJxg+dvSTf5H3jCy\nT/+nUp1NZwGAT7Y/ST1dkX549wG4nT7gZ+J3ATgkYt8KskhyS6T7wTGGfIaodEx5kZ8iCNd1KDky\njmqpzooSzJbvYENp40uT7Xu8D/igkMJDYPMb/j6j907BWvt3gL8D8DFTt/Bp4Le+aYOBnWHgL7Ja\nnAUgzn4GgGLwCZy78l+v9FN4ue4IZwUm/0LfuwpGJBhDVe8NmO0eS8570lSBk8vU3Hzg8+YFWdCl\n3g8A8MbwBZb2PwpAzd1jyZUDOXl3xKBxBMBr//JdDkYy5DiVRcniCEe5g7qxlFM56L6JiEJBCgNX\nNmPYK5EV8v8oz7C5vLd/54BWXfr/pVdfZaN7DEBz608AcK5T4vxYiMGg4/PWWN5bPfw4dVeYt43a\n08Q9Gd/+1SEAL/zsu+xu70o/o1xIL0BR4OhhcyoB1ZVlmcOBbNzCzUgTGV9uDKNDaS+owf4bewC0\nn9hgIN2k7+/LfI9qrCwLJ1E/WSFflPGHeUE64xSMxdN+lGZL6ro4ejB9z1BWrrDbqlMpyZis72D0\nmUhfTO4PiIsZq2gxitQKwCqCKCJwGvL8VJFDbAqMkuiyE5DksiaFzTH8oLb3L/md4ABXlPv7b9se\nS7685zVvk4x/UeZ5Tw7uJDjmYi4EZxqkdI1yWw2HUAlHs97ARMpZhNLW7nBCmgoCdQzUHOnntarl\nk1b2kZcbXlei9H7hg0IKXwcuG2POI8jgx4A//k2ffrYMX7kGwdf4Rpb+lAMEcGeUwgdHJsdPZVNN\nSvdwrWDf/Dd/Cbe9Ju9/zyL8eWGfOV/HfPoPynXpRfmNHVAxwCTFI8xYoazf0LXsvysTf/zUS/Ld\ncZlR/DYA2YWCMwwAuNcbw9fke/n4hHKkYk6grJzvEejC1VyPpt7vJHUiJ9d+yGbth1Niq8gkzzGO\nbJRwGhJk0m5ayYleFgSZPit98KIr2IpSz3CCN5Tx9aOX6F+ZUfQJ9ybSRviLQjxODm9i9DT6fkC1\n2ZZ+dho4i7JhW06X61vXZV4GgkB6kykPbwrFc9OCyEg/TOZztC+IvO3mmI6KSvvCHTjVKYP7Mlav\nU9DMmgDYjFM22Lgens5RoyJ9aJZKeCoHNALD2Y5whZ3V8xS+7ItpNqac6zxaQTbp5CHlVDi6ZJqR\nFyq6kOG50rfUcfEneiQUGTmOwVq5LqxLUJX30jCH6VV5tvpV+aX/DXvWEGzKWJf/yFU8K+Nz0gXK\n/0w41aIrB/fj1sVvy/g+uVii2BAutHZmAWcq+7pz7TLHD0ScfjjZAeDNNw/ZOxAk/M7JLn5Z9kuz\nWWasHVkuApp3Z9x3yPuBDwQpWGszY8xfQFCoC/zv1to3PohvzWEOc/j9hQ9Mp2Ct/SXgl97Xww/H\n8JP/mkcVf++pHDEGPOEKCt8jcgWrJgsiv07XV7CpsO1v/fLPctUKe73+65dwr21LG/517GdExqf9\nGflNfxm2pQ1u7EHW1r73+QcqVnw+M6fKw+D1VQA+da7OLecOAP23UkxtXZo76XM8FT555CXkFRlB\nU9n9wgY0fGm3XK+wsSLUo2xSchV57KHwrQ/v7BCP5X3HB8+o0s7zCKdCEau4mFRY9Foq320Hu/iZ\nUChblPmMtwHAO8UdJq/K/FbPPsn0tszX2/dFxImKhIov8/r4Ry/zg5/+IQA+Ui9gTebo6tIlzIJQ\nG+dYWNi9YcatV4RyPSxuMrwt4sHr2z1CX743GO5T96VPNVeoVuBUmSbybe+gjaotaPgeYa7PBB4r\nnRoA11bqAHRcaHtCBpfLZS5uiZRaaZVxQpmvpLxAEAgHcRgLVX6+XWWkeplo6nBHFbDpNGWs60vV\nMM1ExPCUnZ9EVhSMgFPkeFaOzNRz4O8q5XWEWlM0sa5cF88tki+eByBcvwIVFccmBe5/LPvISYQL\nKLoh17ty71q1S2VBOAW/2cLJZe4zryC/K6LEILkCwKeuDLg3kvn+9Rde5vaOjDXqpOz2pP8305zD\nun5bVE3fEv6dKRofgcITbRMBIBvefqMG2XXIbKz3yyRlGXC0LL82KzCFyp6jkF+ZCNv6R3r71Ha3\npI3NI0wih5ctlS2rPwXnvixt2DLFQzmQkbvFjWPZsC/bgnaq8mdHEEH144/zRE82606xwsnrwoKP\nvYiGJ4t44bzDUaJWgFRZ52rCxqocjubCKtWqsLaeA0yFldwrhC0vHZTJVTlH7lMYldvz4vQAgcP2\nRFb6Xiab43ubAU4g4lPpOMN9QsZ6addjVBbdRyU+Zi9SS0NfDsp6s0ZnSXQRf/FHf4hnrohY0m2d\npdSSeXM75j28vaUHM0q49LQgnrT3LONhT/rzzh2+8JaIaV9+EVJZVvZj+W7gWZoqKsWtnGomiMAP\nDI7K1LVGnetLgji3VIRZ9wNWmyrOLDTpLMo6tEwHc1aQr80NUV3mvjWV9dg4b0lVDxKS8PQD0Y1M\nvQk7D0XkuTXpMVFxa7kiz94dWHZPpM9+bqg0pd3K2MX6omvCfkIn5VW4KuJV9n1lwk2Zz3v3HhKq\nYWt5c4HmRUEWJbWoBWfO4+vBdbwqrivEyQ2WMYFMuDcNsRdk/cqe9LG8cYvmkcxFpwRfvCdE72vv\n3OZmJB90DRwW32iv+dYwd3Oewxzm8Ah8ODiFSQ5fHYGTitEaMOTYGd9mXbxAWfv6BeodYbtqG2Ky\ndM+dhxsiJiw//Bk+paYbt/aHoaMkKm3C05+U65pQQR4fwesfke/9oTHubVUCXtjmr//CPwbgvx8m\nTHKhKoOJUNV/1N3i6Kxg7fyNfaZDYRnrHYfrW0JVy40O7kC4jemRvHdmdYOzV4SK1xeXcDPpW144\njA+F9Tu/Js9Ow4TUEZbZr8DRQ2FVR4M9oli4ivEoxCqn8Gv/QqjyH/rEv8+ZmnAgQatEx5e+9y45\n+Pvqk7A3IJ6I+NBU+/nC2RU+uiZs6xPL51hZ7QLglX2cmmivjdvCqDZ/pnwDh1qwJf9fSqj3ZZ2c\nWpORavIzt8Rrt4XLOjmRcWSFwamJSFSKLGFTxtTyy+SBcA2dZsBGS6jphnIKm5UaiZoWvSyhpMpm\ndz0nncp7phrjI3vELAjFzMcevgyJSr5Ea0G4yZ03LYVzIv3wfIIV6XMcy3c7ecpgKGNNspQ8VpOs\na+GLF6TBxb8rv4dLsCfUOu6dZX8sa3k8iciOpG/d1WW8ksyzEwrXYZJjHC7pfNdPGWTjJIByDU2P\nQrnowsp+K1FjYUP3SLNB0pJ9fTAxHO2r5SsbUxifbwc+HEhhdRH+8p+BP3Yf+F/1psspI2MrkIrN\n25jn8ZY+JfdPhBUnboKaaRz3P4FU7VejKkTqQ1X6BBwK28ayHBoGZRjJpPJiD9KvybV5HPgrAFRO\nfpOK+wcAWCy+BEDfhLhDec/JQmjJhj2z3uHM5kXpkmsYKKucpLJAS80K1zeF1c5KDnmk2ve4zMmC\n9DmvS1tOqcHq8pYMwyv4ylsvS1uvHJOO5GDlqT21w09vy+Y/2DWcaSlSyGN6ibDGxcTDJrL5Tcdh\n0ZNnqurE9PiT57jgy3ZwJzvYvrDdzqqDUdYeJ4RCnjdqDXI8H6PWAMfUMBU5sK1WyOUNOZgV+zEm\napY9HMucTI9jCIXdT9sF2bEgReMVVHVbLjVrtFb1cDbKOt91KiVd6wJwBJnYURu/LvNpC5/Uke9k\nI0Eaxk9xcxlz4cfkPXV8C46pNeR7NTwyR+Y/U51SpZZg1KISpwWFavBL+PAn1R/v535afvnPoJDD\nffKS5WZZfA8GTo1mU79tM/Kh6kz0u+Q1iETMM9UNnLJq07wyp347aQUTyDOOirNeUMYY2Yc132Np\nSx4tXkg5GQoiL9KUUInI+4W5+DCHOczhEfhwcAoPKvBfPA3mJbB/Qm/+DKfds2Wwn9b71+GO3l8R\nDM4rDyFSDXA+BKMWh8lZML+q76VQEkrJjnIaN3YgUZVs+6twrDjyxXtgn5Nr8+NQPCnXofCfjcO/\nR78mCrUHeR+MUB1veQNPFVFV6zNQg/u0IfcWSj5d5QQKUyX31W5enpCqMiiNhEI3LlVYXxON9HYY\n8kxPxl+cGXL3SDG/W4grN1DtCkU5v2qpVISSJrYg7wmbHLsRd9TJqB026Wjba570/dJWl/Nlody5\nPySOhMp54RTjiULNZDnGSJ+NaudNqXGqELb5BFKh+L6TUPGE3V3f8Hj+IyI2HamY9NbkNmRiMcmm\nbQbKeXQDj9RV/45ySrMsFLvRVAeqkx6lXH0Xqj6BWnhydxcy6b9TqZC78vxo/ED7UyOoCGeZGUOC\niE+xM6Kh1qyFJcu+ijdpLn1wfQenIvut6E+ZzAg3wJfUcnVGnZe2L0P6AgCTpMTdHeln1MzZ2pLx\nl/0y2UjmtvDknr/WxZn505ldUJ8G45axhXA8tniAnQrXY1XbmwcRWSbWp3hoCVLhGoppSBIKp5Bl\nljR71Kr3reDDgRQyDw67YJ8H/iu96XLKOtkUMvV2PF4AV2Mi9tTL0cmkDQACyNU5iV/6BofxEKKZ\nhVS1xeMpoM5NByPeC5Rocxq6YTeBm3Kd3JIuOFP6ZWEHk7xJ7gnr7rRypqH0OY6mOCW5XlHTY3PN\nw6i+I8uj0xgOrEPgy0Fvr8ruaNRrNDrq905AeF4W+fZxmVuvS7vRJMKqk423IP1pLixQVnOcyQoG\nuW6IhQoadsCEmHPq9LPclY3mhwV5S+MImiUydbFO0gwnFMTp4ODkwsK6pyqFDKOmzDyaUqilJS9C\n/LIczAoJa4siSiyui6NT/CBimqq4Ep1QxNKPTsXgqtWllBtyFU36PRmzN7G0da4muUPUF8IQVIJT\nC1UahETqfNabyNp00oxc1Ut+vYparSlcy75V5OwUjNXF2KbSVjRNSdXzNPUgUZfhmARKKqs/VF0V\n/xu4gih2+2PeyKWfTqXExaZ8o+1PcZsy7pKG87iuxVE9kHVzrJXvYQrwlIhMLMUMWc4W0kKqLuFp\nETHRvr9+f5tQrQ9ZbkmTby8Sei4+zGEOc3gEPhycgr0FxY8C3yxe4wSKr8hl+uWZKwOnnIRpAio+\n0ADT03Y9lNED7r73PKpQZAQotjcpzKLXSIBf1GeK02estrXHjxOOhPrXugnhgVC5ZOzSKwlFaDge\nbklt2iWhyu3WKnEkVHdqDVP1Y6jVKhilCE4h/2/UrtPtiOWg6U0oKmLteP3eLo4j7GeS5Fh1Wth9\nIEvZixssqVLLVGGkvhDGrNJcFFbTfZiz3BBWc7MlLOxCxVBWFt6vVHAryzr6MZkqrTzj4Go/jcYc\nOJkLpqv3qthQ18HzcDwZd9Bq0FYN+Lkrap35rSonynVUkjKJxiXUOw2chrRdDrxTsaqXCuXzs4zx\nzM3EjilrJGkdl0g5r/7JPnE6W0vlqgaG6oLMVS3KsCo2TROXk1gaDIcFvYk8czQUKn+cxEQzPxPr\nYNX1vLDAHXXSXf9z8vvQUOQiun7dqXBXHZ0adY9X7kg/GlcTriyIlWDme5KEe5DIenjVLtaov4WJ\nAF2H8gWynvqWeLJHwnBMasQ6kQbH9FR0mxwXZDpvhf1msabfHOacwhzmMIdH4MPBKVyrwU9/HD5x\nBEy+yUOqELTmG+LIZxh8CGpOo9uBE1GiUQqhUK7BsTCemWZm75c4DfQ3AVTUAzFMUac65UoeVdQU\nkxxX5T6v0qBQzqTfH9GuCOZutipkHaGK9Vjk3kopYLEmMmdaMkyHwlX4lRqJq9dleWe1vUitIvZs\nW12AplCzpVb5NPcCltM8C5EqyMaDjLwrnXeyHG8q1547wah7cGe9xbPn5DtXuxLU0yIjV5NXNuqT\n6bw4QYNC71sbYjQE2JnZvr3yKQdlcxc8nePYxVU356JwqGbCsSyUt+TZmkt5rDb/BkyGMvf1co2K\nyupO0yPvyLo6U12DoEaYzuRoS6i2/qMkIRzLMwfTPq2qUNtmSfrr1X0mU23LTbB6nScuo5G+Nxoz\nmsi4j49lzOMsJVaTbIGHrwFacZrB96ub4s/+h/Lr/jx5V0zOLyQn3CuEpT0zrdO7oCbQoolVz1LV\nb2LqNRw1Lbr+Fqak+gW/RKFRmdmkTlIoJ7CnodXWnnJpTpbjjKQ/iUlO94Xkw/j/o6LxRgSfucl7\nSU5+N7DiAg3kqkxyHQdnVTfpn/pj8FH1PfA3YfSaXP/GXficWiJO5LDh7Z4q6mjmmLOqTXZy7H1V\n5mwXkvEEmGnqOscZ8ZL0Yd+EFANxtc0aHqGn7HMzYClU23pTLQthhnNOFrwS1wmW5dk8MTQ1WcrK\n4pZ0rVUjztXPYejQPxbEMtpNCXTZHM+FVMOIA0Vog21sIUo9awI6ysIOxhDmIgb80PqzbC1fA6Ck\nMQne0YjkRDb/dnRM/VgQXXOlRTuQ+IKsOWaGnE2huSCKEnEkrtnj/hijzj1hFjIJ1NWWDKtIZEsd\nbDYby7y1K+Ji2ZZBQ9VXqyXiWZhx7NAMKzr3ivySiLE6kbl+BTSWgv0psRGEtBi0WFzQ6MnyrJ8u\nZpZbYRwzDsXyYXOPopC+JVPLaCBzPouZDTyXaqHKvixFXUtIU0v+ljgq5d8leTjsu03e7oq7+b5b\nIr0rCNmPXR4rSbyCkzcY3ZdvdNQiUapcwqnLOphKjZkfuwmrYMRilkYhxVQQXa+3o0Me4XTk//ag\nRbcposblc2v0HsjcW8eSJt+eQDAXH+Ywhzk8Ah8OToEO2P8AMf39f4VyGVAPPKqLOHptE6FmReBg\nLoonoXnuClx/Sp6teFBVn4TPRNDUpBhtcbklq2Pf/nW5DCLcJaVsz1zH/rxi//3eacqvMJbp2k73\nCarCrg9vVxgeiqmyOLvC6FAo24N4n566MW9PpZ/l3OX5QwmYWV3vcu68iDn1SoBJNcnGVMY/mOzw\n9V9/HYC04nJ/TyjQvb17uJ5ySK4l09wKk1g5lPKUJFP34rGlNxKWM6xOMKoQtbUTmolcx29rHga/\nx7Qv87Iz3mOyI6baRrfE2ppQtM1rZ4k0CrIaiKKVkmXvSMb3xm/coHNmUfuW46zIdcspU9NMVTM/\nhs6qxb+tSr1wTKFK3lqjREm5inKtRE3zXRypqNELU/xAcxr4OUmkfgx1lxJq36/VqC8KVa1lypaX\nDeGxfu9onzv3hFO41T/mgfp9DG0MibQ3M4smSU6syW5wAfX1MNbybl/W59ZDmStTOeHVC8LOP/zt\ne4xUzJmEHQZ3NMvSnYiv7Ilo8qk14Q6e+PinafxRidy1YYTdVbNuv8+d18ST9af/4VdZr8u+76mC\n+s5izuXLsjbnL3U405F9v/pYjdLr0sbgJKJQn4v3Cx8OpGD3IPtrfFPxwQCahIKOS6ZIIbXC1prz\nDeJcZGR/khBU1cndJtBXnUE6hc9sybX3MfkN7lBsqSa4so/RDW1MnfxJcXPm8zGOIwdoVAirNk1c\ncj384/F94rEcZH+0QlP7mfYSHhTiIHPnrhyEwWDC23fk3sevLfL0s5Lj7+mnnsZVV9R7U9k8r772\n29x6V9jEcrCMd0azNMUdKktyCO2uh1VbeKjRjvcmHtd9daltFKQanlgcQysQ8WHJOcI5FkQ2Gcim\nO/qVKV9xZZO/NvU4OBIk03J9Prokz175rstcWBd3845VkcEd8spb4jfyhVdvUf+aHMJKe8iRJ2LV\nU+evcP5AkKG7ptGOpbNU26KpNyNwSnKIu602tir7oOaWaGvuyana4CeJz1B1AOPJhJNM2qu4Ae2q\nbP6VfMLwRA5FRw9pNjVMW7J+8YHhRInPUT9lkqg+x6/Q3BJxIzqRfZOYAf5EdTSuJdGMTY6b8E8e\nyrre0IxPC26bu9uyvicnOb5GQXbtIqG61OStDi1HEOsrr4r7e7b9s5zZkbk/98d/jPxdWafD4Rf4\np/+XWMpePDrmzWNBeuua28VJlhhOBSHdvWtoXxbr0pK3yLmWiBJv9baJ+faQwlx8mMMc5vAIfDg4\nhQ0X/nwLfirhPV+C98AaQ6zKJWvgyBNK6bclwKlZvs5QWXTzi2+wcvl75boUYEeCPRlsw/8pFMFW\nxUMxck/YCwWzN557hlpbtMLmkkt8VijbpDmkolS8X6gbcJgz2tMgmXcPyUNRHLmmQ20ilGTn4Ij7\nAyEP+z2hfHEY43qCh+/3Ah4LhY0sZWVyVZj17kl/j273iaZCrY5OHhDuCLXaPTliquyu64OJNUOz\nplJbmqxQVlbcJhFWPd4cm1NfFMp1VO9x50Co9PDzQj1f2nmTW5pg5IU4YxLKNxquy0BdZpu765xf\nEQVe4slc9u8d8eWXhFrd3o3pq1eod2zJM3nv3vaEp/syF89cVZfxyYB6IpyE6cQEswAr36Gsbr6u\n75GpV2iuHI8NC7YHGiVaZIy0nzgNnlVrT2KnTHvyfNoXTqJUthBq/oNaQtsXK0FeucV0oOny8gz/\nSK0Sug9t4WCt7snMx1ffEy/KeFW9LG8OZqn0JuSeptAbpTQ1t+UZ19XoLdifulzU4L72kszV/vAm\n+Qsizpz/gQ1cDeKtfPVNPn1BFMJP1Dy+WAjnOJvjPDeMdC8srxdUVNQ6X68w3ZREx71+jzuRrMP7\nlSI+HEjh0IG/W8OaPYyGS1ssVn3ObaWCaQsb6G49x0IsE1h0dfPstmiGwuKGN/c5dUseL8FADn1x\n94Ri818DkPyyTNL95AYvKvt9afIKW9vfBUCn/Qk40M0fhEQa1fbbmlR1KcvZVlk9GyV4qr3Gdciq\n8ky1bjjnC9JqtOXguWOHixtyEJ5bWuCipkDvdDIKdUJZ2pGNe+lCyEYiLHwcVThRs1j3gWGvribO\nXp0HN2Wj1KuaoLUVUnb1AAUZXc39eJA4TDT560nW5hUNrfUX1MKRVFmpio7jMROTHIn2vWNjntN5\nfqrT4exjIge7sSDQou7x9KGww1urHU7UvXY4iqlWBJGtL1R46gnR+Sw/Lr/Jb6a8aER7P4wtZU1Q\nWslzbFX7n3h4mmm5WZV5s42IjbEc9Eb5DMVVQU4tLnB1S+auaUeMj2R8FY1wbNc2cXStrbNCqCma\nLxabuFNZv7yc06xr6L7GTgzGBT11g64ElsiX++N+xLojczBuanj24ZhU4zJ6XsBzXbEC/cjZi7Q0\nQLdGG78m7XWPJZ4lPfEJTzQc/NoYxxVLRTf9Hp5bf17ma22fMy/LPvrCXckPmnQsLbWIPXFxg4uL\n5+Qb6wmb12WPH9zpcN+8z5RLCnPxYQ5zmMMj8OHgFBol7Gcvw50JFqE6BBXsU6Is4ZPX8erCGpr2\nR+BNrR3woihhDC/iqINN9dMtONREICs+XBYKZM5ewLwhSrDgurCy59PnWNfIwGTQo7oiVMxptCg2\nhW07LH8B0xWsO9gTBV5UdRkpO2xde5pboLlQcHVFqK3b2CDUoCmbC4bPJhlrTaG0F7tdllSpZS1Y\nI5SwuSW+Eme7kPREZKpX29ipUITRc+c4OhEO4uXbd/iFRCj9lbNCJVc3VpilrXdCF1ezGTv+CGqS\nHqzULLGsfhFOXb67fG6TYU04gktxRObL95aNxzNq2Vk6t0TQEOqH5oxcXVnlhzZlne7v3Sa6ozkc\nqz5LS/JMc3mdZkU4vSgRar157ZClO6IorrpTKrm069spVvXN9bbPohb5Kaurebdc4eqC9LO6tEas\nQVWVUonQ6ijpAAAgAElEQVSWFuspZQs89IRDnCn4ytUIozSws1HlXEnmolKusKAOSYNaSH2WdXks\nnXgziuhraje/WiGaSP/TIsfzVYmta1MNfCoNmU+nafnM45KE5fxnP0J7VfdFB7K3RUnrna1pH/4Q\nzZp01LGXMZ70wbv2GO5l2Ttev8GFKzKmhQtyFnrpPnlNvn2mvErgaq2HlTKjkeyLJy+2eW1Xrm9o\nBu5vBR8OpDDK4AuHEBye+oDjhmSfVX/wH/gRnA05LGa4BFc1WemaaL2LX005OboLQNU7T2lZnZDq\nDoX6wNvuMu5nt6QN9ZcnS6hq0YyaTTCzCkoVQ3ZdDlnpM88SaS2Dey+Lr3vgdynUqcRmAwrND0kc\nU1+Q9+or5jQrvYf0p24KfKv5/tyIoKHOK7UVrHr/NR1Z8FFucdUhyTUOblfeqzobbJyRQzp06lR+\nUzeYLwcsMu5pdSNbLnCbimwyl+ZUIx8HlpJGbp45o5mSTMx0qEEllfM0dI4qHTCxHpSls3hVOUx2\nNod5Tqcr5rT62qfIPyK6inwUUNGw53KtRDGS+RqfzKwldZ7virVnfwwHdf0G75KrV6Qd5hRa1itQ\nXUy70aSkWyQgJlcvzWrd4GiinWjUY3Sszlyu6JoOHmTkvrZRP8fKmiL48QRHU6PXTInyojwzVLNu\nvWW4Fghyq7Yq3Bjm+m2Lp9Ghblvmov8wZVudzJpLLS5cFcLCSpW4JISl1rlA+RPSXnYsa9f/4tcJ\nLj2n65hjNCakiMfgCRHxz3RpLsu8lDUhy8L4GLemBGAwJdPoUS8KWDqNO1lm7Yz0+f0ihbn4MIc5\nzOER+HBwCl4OCz24uwaa/ILuOYpVSYPG+acwTc3EvGhwNK23MWKwLSY/i/lVUbilwTq20GH1HYqm\n5hZwHExVuQ2NazDWBfUtN9bHqi0cJyKaZU9+8jI9jcc4eijfWN5osnMg5KpXHOC4Wtpr4tMpC8Xb\n7HSoaAETUwj1cNMS3iyC05RolISKlyoNCk3IUhfCjXtyTDwSDqW73sJxRcwp5S6lQNj1zdUxlzdE\nKfX0dWHP/cgjTTT3Yxyiofs4kc9ElYB5PCTT/vuBcDatpTU6s/yL/hQ3lo74PkxzdZlNHFBxC6tU\n0gXjqluyY/Hako6saDuY8UjnpSDVtGjTu/JsftxnGVVWXo0Z3RPFbTyZwok8MykXNNTleVZ/0bE5\nlZbMW+BklEtCpT23BZq0Jh2fEGgcQKaOUBMbY5RTGLSmlFVZudhepNlSR6Z7x5QyLT2nCsPFxTL+\nnjovDQ0f1ZyWx7nLrvo6pEPZY6PCYrV028nhmIc3JCfH889eo9TQtHBegFvIXs492Vc7vSHdSBXG\nOymOuofbrAd1tYyUm1CTNS43NBYjKGOUo8krO2TJLFM2TFSsOvPUJt/ly5p94Q3xSflW8HvmFIwx\nm8aYXzfGvGmMecMY8xf1ftcY83ljzE397fxevzGHOczh3z58J5xCBvyX1tqXjDEN4EVjzOeBPw38\nqrX2rxljfhL4SeAv/64txRbuWmzpAKMppeziFHNBsWupJCQLIChBLpjPfJeaWvbOw2+Iu3KRpxRD\nMU+63jqurwJoxcHUNduvM8sY/V75YWvGp/URU3fCQV+o3LEZck/j7d9RncMPtdqcnBWOYGc3IOuJ\n/Npc61BTartQTam3Rf7OM3WTngzxM6FyJAGOo4rIYoqjCUPLgdjPq6XbHEylD+tJnXJVZf/KiHJT\nKNfFSZNPPCbU9twF6U84/golxP5lqg2uqKfgARN2jzSQzMSYRRnreCScWZ2U8rqYtHJrmRpNV/Yw\nIswEr4e1CY6V+56rqb8855RTyId3qKRqsqyeoVA39Dx8h+y2um/viufeQd8yyUXG3d1ZZezJvAWD\nkD4iG5uJS1sVmo46qTI6oaYcXW1thUBdfw198mNdXzOirslPe6l8txkbKkvq9Vqr4mmIYmB81pDG\nj+sn+MqpVWJpd6NykSITiu/eGLOkUaJ9PyIfSz+yqtZqHJlTDsPzHXrqy+Ju51Suybetcci1zGB2\nV5PqHhTY22qGfWYPU6i7dmmCNbMjOsYY9bhF95AfYfO3pI29KZmaX6fjQ95681UA3pk2qS2t8e3A\n7xkpWGt3gV29Hhlj3kJK0P8w8N362N8HvsC3QArWteSNiLRXo6ROPMX6x6AiCjUbH2EC9Z0Pyqcp\nqqwW+pjWtrmv6a7OX9glu6MWDKpkLXVeWlsiCOQZt6q1Jv3kNErSDiKKWNnr0oR9rV60G2TsZfLe\ng1g2+dLjSzyuiqrX7jxkpAerUjeU1bmFERSaK3Gi6bz6hz08RUhuVuCpFt0bg9EahZkm0HArAWms\n6dDHlsiRA9RobTBVheFueEyxKM9ffkqrbi+ew/c0HX5WY2tJkMLCfokri/JeqZnjq89C1BcRZdCP\nyXU7hH7Mwd5d6Xs/ZaCZmF97aFifCDJYXxMnpGiU0nlSEMHeyy9RSmWd1i/VqKvfQPjSW/R1nm/c\nFC37wMb0+jL+/mpOeKyIM4oYq4Y/KHtEGtmY7MpcVBtl2up7kRUN3FBlwdCjqAvy9qMapU3ZR4uF\n9KFcL+OUlP1edIm1IvR0LyYciPNVhYxKrNW3Cjl4fh6z86725yDnk00Zxx+JK/zNoeyRwUBEH8dJ\nqaliN88mvLojLuu90Ta1oVgf8sAlOpYYkwf9GwC8fniLJ9dlHZa2L+MsyvpliYuje9Y6VVB3axNo\n2kCbEd2UvZccDgibghQeDN7hqzclAtUs1EgjjRt6n/D7omg0xmwBzwBfBVYUYQDsgSbg/zff+Qlj\nzAvGmBeOvs2AjTnMYQ4fHHzHikYjief/KfCXrLVDMysZDFhrrTm1/z0Kj5Sir5StU2lg6mPsRDBq\nducGcSJUxYufxFbUjTk1FOp1moyErdu/sc9RX/7/+LkGpevqJ5ouUQyEjYonFTw1T6Lx/8bWTovP\nFN6AdBYtF+5z775c74SL3HogbQ9UWmk0z7O2Im21N99mckuTX/SnWP1GnE1IVdm1f1eowMlwD08V\ndLYYcXgobGdnoUmaC4UZqvvwzcMpA42b95OIalcofn1aIioLEv3S7XfZ0/Rtbl2LibRXcVGxBI8f\n/XOirLXTKxT/qZhwc36BW2Phpk7K8t1eqU+i9eJ3JhEPEun78WHM1/ck/dv9nSGBKu7qlS8C0OoW\nXH9VArvc0iH374pJcvNrlmcuCjdRLhfsDGSst7TW5jTq4nekn43sElMV7frjnGNNGptPcnzNaxCr\nOLCclzhQBV9tZ4hdVh+CUp10JHtv5BxxrO7NmQaBBQ44R7Lu64tXT021B+/8Gm/dFM/KqOLz9KIo\ncR1V1mbHQyo6V/+etayF8t5DZ58EGfdQldKeU8JNVHFNwEkhc/jGy69TXRLOJFlYIdbK4zvqNfq5\no0O++pL0/c9c+hptrYGRto5Ya35W5jtYxqbCeRSh7JF4kBDV5Bujm7uMPeEUvvzlHW5pVfGnL1+g\nqGjSofcJ3xFSMMb4CEL4R9baf6a3940xa9baXWPMGqfpkn8XaJYxP3CN4G98AoPUdvTLy6QPlA2+\n4mLDmY//gEQPQvzuXQCq8U0+pk4/lck6zr4KoKaEY54FIFgBqrPDoqXFsxCrjj5MyxSBhh+7LUYT\nFRkexvRSjY6chSfXOixNpI3Hn9ji+G1xOx0lKUaTnsSFJdpTH/1UEVpew9ZkA00OPI4SEW22j/vE\n6iyUT8Vvop8P0eS9nHQjDtUBxZ3ETEbq/j0JObskFpiFmrD1Vad5Wss9zzJYlEKx5vvquHc1jNh5\nkwvHMoedT8lmfTEtOIhkMx6lEbFGA+ZtQ6QJZ8IUJpoHMdKELdRblDZkLiqmC/tygL5894RbqcxL\n1S9RV5NPNJTD2vMGZIdywLyV+zQ02UuWGzzN7OwaS95WO3wk3whNRqExKIPpkLI67OQTj0zT/Ifb\nloeHsu12YzmkTTOgvSTr3w67VDXzUiV1yaJZMZscV4vbzmqTfuHgIVUVKT4SlGg0NU/irk+uVier\n1aTCdEBJx+k7OaG6pt8+3GXxllzXTUajI7EPW2fEj+GxC2/TaSuCPHOezqI4Pfnrz1BuaDWpcpsi\nH+scyW/OADNV/cPCwqnF7Ddefcj+SNr7A6stxu4sf+n7g+/E+mCAvwe8Za39n7/hX58D/pRe/yng\nF36v35jDHObwbx++E07h08B/BPy2MeYVvfdTwF8D/okx5s8i6Zn/6LdsqViFyX+N+ewx/Mp3A+DY\nf4ivXoNmMhCrA2DzjPxQMWUk/2+Y89TO/Gl5L74IQ40++VID8/2a8/H1IUVD7b8tlT8mPmm8r+0e\nkOypX0G3wnSkwUN3H/BwKFQnH8u97qhHv6n28cYm5VTLnveOub8vCp7L3SZ5qorNkrTruTmBL5jd\nX1vAjYVTiFKHhlpUnAW1CkxdHLWZe+UqmVYaHg+OufWmKLi6ay2+96KmHdMoPIodMq2vmFoLf1WU\ntYwDOHhGrk8+R1CVMZXE4EBzrUTJk/eOOcFTK0KpHfP8ihbisa+SaLm8JVW4PXV+hY669vanDs6W\nWEOSexN2+sIpVbIR52tabbsl3whokDaEsq0tLtCPZPzrE49qXf1FoiqlXBWweq+WezhaNq7qt1G9\nLYVzTDoVrqfWcFkqNAfGtsxL2Y25XBH1VrNUJUxl3VtBnce7wpHeyGOOtXDKiXomvnEnxVFl5/ct\nuuQ12TtfrGRc05wFnuaojA5HrFU0kU2rTPhQ9ufh4Qn+sfiTlD+5Sbkia1ZrCXf7l7r/DY4v3KSz\ntUK1Pkvjt0KhWcqz8QmFRp3m+7M9ckKq6QYnB2VGan057Kecq8o6/YGn/yCva2q99wvfifXhS7xX\nLP53wvd+W405AVQ34dfWwfx9uXfyDPaBWiKuHeK2xFRnHOfU/TcItJR3+SLmnuozXz8HPydyK14P\n/oFc5+3PE/6YbNLoB+VwOK0RrrKt6X4ftAR4HI856MvBu/vgPiMNHfY0+tCpRNhUDkJqU9JAkNTJ\nSc7Nd0XuO/uxszhoNiV1S3WmBXlVaylOPSZqcuzHGVbdnye+Fj0pR0TKyD28M+Ykkw1W9wwnqTx7\nubZOqjJsqpYTnIxMrR2TLGPp/9BTE2cYpBCqzX4TMxKzbelF2aD1H7lGWfMu5kdH3OrL/6MiIBrI\nNmnnEQdq4jvekW/8yu4uh78h40jLFlfdlfMi5JzK7fYogOqsRqZYAzqLFa6c+4Ny78Iyu28IAvVG\n/wqvr7kwyw6mIlvscKjVlqoZrsZBZLWMsYZIE1py1bXEhY91VV/T0UN+MmZHD7r74JD7d0RfMzkO\nmczclSsRO3uizb+lJulRHqF5XvgcOZtjWZ8XCpcnF2S+2vuC0GK/QlCS7/XCHnGmeikLoz053Csl\nh6wvup3xbWmr+sBnfCTFjt580GMhlfYWL29xvK6JZGv7XLggRYwa67Kn3XxMf2Z9qHa4a8Wq4Xnw\n3U9fBmBzYYn8rXmSlTnMYQ7fAXw43JzHI/jyr0Hnr8CRVvI9+GUGLz8GQOsTKzhqv6dcg1RrN1aE\ne/CWPcwNtd12evCjvybXv/CH4cJ/DoC947P9BcHWt1fvAnDx+sdprmsgTtcjeihs1kmyy/G2UOaj\n4zHxLDV8MWPn28RaX7GY7JCNZkE0Y7Y1d8JodIGqaoYj5TROehOy/ZnN2DtVmMV+hMYwEQaqvc4b\nTBx5/9bNO5wMhJLWlxqs1uW941LKO1Y4k8UDYWU755bItLFhnmCy/0G/91eZRU9CDlZdmlHtfHWD\nYSTf6MUxxz2heNFkyqZyaRu1Fh8/L23fvydz9dXoIeGBULwsN8xybNbbLYK2sMedcs5grOXyWkLZ\nLrQ+Q+2aKIQXkuuUr6ri8m2HsgYYhf0Ib0fmfjQrsZfUGcxqd3ohniY1sdZlqglXhlnE/UMNiNK5\nOIkMY+Wwdt+6g19WF+NpzFD9G/K8wpv7YqF4qH4R1jqU1V39Ts/hjiaiiUuWTihrua2JYC4cNdhL\nhAMxpTJtFRuno5Cv3BGl6/oL1/E1/fzJbaHs+ycD0DKnQTDmzkTLvx38Kl9/RfZD0fFYXZW1/t7v\nEevamdVF8osi/+3ePuFLX5C+h5llc0O4iuxWg7wx89t5f/DhQAp+Cuu78PXvAn5b7plF9g7UYWXa\nwbdL+rDFr6uX4orWfegsw/epJLO4BX/9J+T6L8fwz/8iAM7W/0PrkmzIRa2KZIKQyVCzOKUVUmU5\np8OADStsdSU35LNagkadf9xLVMcaDTc9ZKGmmmzjEUcaldc75LwGMiw1ZPO3/EX6I41UDFNyFS+i\nnmGQC1JLDtV/fbFCzdckLK0OmebZKzll1hel/5947KPU9X5VXf6csMkwljZ6UQz/VP32f2QTeKhz\naCg0hHPakj7EsUuiB+wsLZYvigb8KIooqzepM7UsOjL3iysiGuzd7VOvyOHIlwImZY3haJVYDdQi\nlEwJ1jTuJBQkvFh6lvZAtO9ptURLPQx7piBRc2JgM6wWkC1G79VwDFXLPh7n1LqauzNz8cqyZr4t\nsaQp492qfG/NzRkP5EBvnl+nHOXajz0GsSCy1/aOmRyrZ6HqEbpNny1Nv/7G4QFVTZS74FR4fVs9\nEx/KOt2c3mWsRXWzsuGKL6bA840xJV+9ZXuWxfOyfs1c/t+79zV8FbW2gov0ExEPXt9/mae0PMDC\nsxvEGttRTDTX5HidXEWf3Yd97j2UbzxpVlgNNGU8BbW3/81sZr8bzMWHOcxhDo/Ah4NTmPYovv7z\n2NLbGNW473sRN9T+u/z61yg9KYoTr1TDapEV6wirVrz1EAcpAW7eLsOupnDno+TlnwbgmHXSBcHG\nCwtCBet5neE9YbmGbsjwUDDtwbDPSFniJbfAnWXw1elq5Qk9I9jc34lp1TW3YzEg0cpC+0cnnFW7\neE1dtDuVgNqMQpse2VDai9s55Uy5CfW5LwoHLSlI1uzQsDLmqp9xriXPrvtdurVZBahZRaARSU84\nnnAcYv+2ilLeQ9DYDZyMtztC3SYaffhgGNJtChew0CjTWpW5Gu232FFnr8OdQ3Z8Gd9epPkW0ohn\nmsIRbV1cOa35OE2rVJR1PyiDncp8rimrfu1CifXLwsVMHyQMtcpzOgwJM+F0jocZ2Vgo81SdvuIg\nwlMnnepSE3eq/itORh7Psi47VAPN8tyRMUUnMWEi7/Xf2SWrqKZ+kNDXbx+NEwKNU2lrGrhPrp0h\nGMr/t9MCq1W8fT8mPRRHraP4TQDuhyMitUQsJA2G7VkdzDrdQL/3xtssaNIeesL9Rr0Tbr+t9UHp\nMSsU3q67nF/dkva21sgm6nSHcAFRP2ScCJdz+PIhm5rK8PvPrXNNXsM/vINbl3iT9wtzTmEOc5jD\nI2BmNef+XULJ9+1qp00YJqTqw1xYixbOxeY5uVKdAovrKnXQvruug6fUvLvUxtX7aZJRaJZjSpZk\nJBjf1bj67kKVJ58W+7GbxxjNPDRKU3aU2u4PhgyPhfrNKiB71hIpOreFlOYCaHfrVJUTKFGQKOaO\nNbmm40JX5d5WpcZTy8JhtI9dLq0K9t+eirz4ue03mWquh9gUuJWZjFxlTRWf3bdy/roVSrjGP9TZ\nfIr3Km1HnLsgHp3DKGSi9SbzLH+vnKbOq2McTmtzOoaZc7pjOE1j5rguvnrs5c5MkVeQqBcgVrJt\ny7WDq8lPTWGwp9mRNfOx6+BrtuNyfYGK1k/843/+E8QLwiK9e2PEWLNtP10TxW7l9oR6Z1aHIyQr\nz4q3eKdJf51ahfaCcFO9HeHo9h/uEatL+7knzxCp7T4ZJfjq99BdXcJX3cWSer/GjeKUnx5HHv2J\nmridFn/vf/knMsu6vklUSM1SYO2xdfJtme/FckBtRfp/9pPnsalwLO9+TTiNiZNy4aLoGZaWm7TV\nBDz0pty8Ka78B9t9xsfSXpS9Z2K0uSpw0+x0TXNrMLqujVKJmmYXu9U/eNFa+zG+BXw4xAdrcQpL\nQcZsN5Y9h0wPWJJY0Go7ruPgqeHY1cg7YwrKZWEXq80SRlNyj/YiYi30YTKPWP0F8lDrEuYFS31Z\noNVL6/SmEmsxbViyRNqrZXXi4Sw9lmwqKeCpTJZr8dWxyCsZggXZTMluRKpFaGM9VHW/zkpN+v60\ntWykgni6tZCFbXnmNU9CYYfjjKGWPTdll0BlCX8l4L9bEfHn+XtfwkzUhZrv0clMOQ0Hx9JLRHTJ\nwhJ2FpJcODArEKKFZA2SJEVuGYz+38HB1/smeC9VuVE227qGTJE02XsExjMenjqckUWk6aP1P2VC\n9fk0xKsJsny1X9D1xQ3YLV6mMxD/k3yiGawvORw8kHHEtQSjofGd5gIYTQfvlIm14lbaEkXjaPcQ\nqzkc89xjpHkZTyZjTCjz7DZGtDvSj/ua4CY1Hm1NCeJ1PDqRhkBXuoy0UhP5LJ4lwtGcmMWooPuY\nWIRKYzj/MbEYnHviGXb2ZZ9tPSN9j52UxzSi9PpjjxPsyFgf5kM8VeK21qYcvnEXgKESpGgYEmsX\npv0JjhItt8hQPEcpSyicGZF4fzAXH+Ywhzk8Ah8OTsFIijTf9Skp5arUfBJN1ulOUnJNdOKWPBod\nUWw1tPiHW4rwNYqu5ATkSuWPT25gtDZgkmWnIshM7EjSnPu7QhFqC2t4LaHGQWipaR6LUtYkWZbn\n86FQdttzwJuJJT5BQ6h/a6XCspqWslLAeMbOqknvqUtP8ty6pgfbfcAlTW124bUn8c6K6HJ0LArV\n/zt7E6Mikdeo4V4TSlL1N2j9SakZaP7CDcjUe/OKmmkvnzDjFAwWG8+Cv+JZ0WysY1VcgECTu/gu\neMp/uo5zWu6+6rr4WhYt8z3SmdikyUSKqkMxUU4qK5i5EwSVMr6aGbNhgKv5CzQ1AykW9BuFW5Bq\n3c3JIGV8Q7J0D+uHNMaawVgjKqvRMkFHuQBviWFVg+Nci68iVh4bBlobpGWEU7h8eQujSlV8n05J\nqH/SHhL4QtHDNKMUCRfiaC6M+mSFulrD/XyVUVujPNMRRrmfU79e3zvlpCoLi/zI8+Jz88mnHmfp\nrIipb+1ss6Lp9LpPaDRvVmNBq4NfWrtI3L4LwEZmOFeVZ8Kp4c6mKDT3Q+Ektt/ZozeU/t43e6Sa\nNjCdGGItAkQBjjp9vl/4UCAFB0PJulB3qagdvL7oEWg2HpqWdks2xer6Clc0IrK7LHJYYKrcC4WN\nvr9/SKGOOdWg4MG2LOLJYMBUo8tmC+dZ93RDp4cDzm1q5rggJilExh+4A5jFEqi82WkEhOjuDjzW\nL0qsxeYCrHbULt6pYR1hfetbMqYrq09yWSPy+uczmjXZeEt/toPTl43y3LYUsvljv/UKL74u7rDn\nnl7GycWmX73WpB9o/cvyMzg1ed6qvsRs9eGBtGXzXZa0yMr+dEI+08GYgLIrS1+qquiTFcQqdnVb\nVdY0AczmShtbE+TVHw/Z1XyFySyE021iq5o+Y1THqGWglDRwFLEWVMkmgnwnqRbyKRLQOAMns3ia\nV/O7x11+ffIlAKIbI+oN9T0oCyGYdDO8uhzuUpDRNFq0x7VUZqez1GCsoc+u9vP62TUijWAdFilT\nzfbsba7iabYvvILDexJG3exKfzaXU84sibiWRCO8B+qOPsxYr0ifBmhuyNynpOLMZ68/yfd/+iMA\nXLv8FLNzGU4DVg8FGZ5d1AQwlSZ+ohauPKalmZgbrsuqWswmzSMuFRLHsq1Jfe4mTW4Mb+scNhmN\nRI8y9I6J+/LFMJyQqhj6fmEuPsxhDnN4BD4UnAIAToFTeNTqgqc2K03cqlCltZVFnn9Wajue33yM\nWkvTUilhyByfdXVx3Yj3SFKh+Ocfu8yrt8Q19MHd2+y9IVGJuWa9nQ6mjDT5x/a9PTZWhMLmxYSo\nJpi2mZZw19RWPtKgnSpUS2qJKC9wdVE4ibV6wDmtXH19+TrNy8IpLNbEFbVUblHXugkbVQe/qbkm\nnRI2Fmy+vinP/unHr7L44lcBqDgVVktCuZsbDTZXtI7lv2pR6UqiDybim2EP+1CS/xOWcbSQSTkx\nGM3351sfN1DRTLnMwLXUSkKtznXrPH1VuLDHrqxBVSja7Yf3GWVac6OuykcvYFULuYRpTjFRarz/\nnoiRpSGtqtz3pzLmozARxTKAk5Joibzt6jZt1ajbhRreLA9iRbNrZyWWS8L9TDyXTNn9sutQqcn6\n9aMYqwFYFc2YXa506CcaEUtCe0XWrJufY6x5JEKbkKhYFSfye3e4z4XlLQCWwgZVtZKkb+5R2ZR+\n+Cqi5W6FBbWSfPbT59nS93y/xnis5er9A86fE6tTpytZye0oI9dSeUV/QqEFacx0fJqhujxKMIsy\nd2u5Vjxf7pM5wq00LwQ8UEX6rQcTZuUv0yIiTL5Bufs+4EOBFBxjxGxStpQ0FjZLpyxXZJE//dRj\nXLsuLLpfMdSqsgmdQJOYRBmxWgA2KxeJNe13tdrC74gr6WJ3mTu+yGTjvogR77xygzR7L4/igyMN\np23EWJXxoqCAkWywekPurZdb+MtqDSkqnNcNe+6JBh8/J4e0vbpCpbUFQFmrRnlegOPKguO6OJp6\nG8eA9rmu1gk/XuDHlgSBvHXrHX7rS2KVuLpwlZIj9QW9Zz34VzP180/Lb9lAT8OlnTdpeLJxx55H\noaZYt7CnkX/eTMzGY1HFtcfXl/j0ddFtLC5tMtTkr9MDnyvqFm00eQlll6Eim+bCIk5fnHAOTiyh\nJnSNmkPaGl5+vyma98Spk2jh3nLuoNZLsmnGoVo7wiylrOvjqi5jse4S6SEMxyfkoYalrywQabxG\nXMTk6grt1uTZfm9Mv6eJZI2hPnO7TlwyO0twA66KhW++Kmx5verxxCXRBwTnz2BVheO3yyzX1U15\nSczI0cSl7MghXlnqUG5qFq7hLmOt3VlxWiysLZzOOcC03COPdd0rBemsaG5pSBDJ+PKVgsmO9HOs\n8T5z08kAACAASURBVCp+DmfWZD81mi2afY2bGcY8UMuWTTPCiaYP4P0pF+biwxzmMIdH4EPBKRQG\nYr+gbMunWm/P+KxoLcLz64/RbmmeuTwGTV5itFKz66WUVIk0dk9wp7MiKxkNTdLRXm+y8VBSl/UC\ncY9+0N0mOVJ7tIXxRNjdwPdx1YkqHfp4WpBklmW+4VkWc1HqdDeqLLaln588d5GzT4i/gNetnBal\ncTSqz6GO0fFhgvfkH5xT/wxHHU1KpZSlhrpPn7e89KK4cZcic+qT4fhXYOVvShMPVJM9HnCaxy1d\nJsw1wCc3p3PrYgmUTS5pZuyKa9hoCGt8eaFOXWP6bZSDclZRf0htX67DsszP+toiy1Y4t7IXk6tW\nf+vqiFs78u2dXYco1+A2tXY4zhhvVlfP9bChtPewN2B6MksYk2HU3bhakf54fvvU16GS1qlqDoVO\nsEis0YpuDNX/l703jbXtPO/7fu+a156HM59zR97LUZRo0bI11JIsO7VjuzaKBkHbFI0L12iBNAhQ\nFGlStIA/pEHcL60RtMmHpkUQxHBdozFcKXYsW7Il16JIURRFirwk7zycee+z573X+PbD8+xzxcCO\nKFF2roHzAsTd3Gfttd71rne97zP8n/9fQWJtT7MM+QR3WeVqAjzlWsycGa5mXdJkfhrwtAoQerA/\n5cY1sSB36h8gcJQrM+lTKlS6qgQxjUrJ+U1xH1v+KkZh+rZMTmnjaq7Fs2ohusqzUbp4jkq+sYKj\nqtTuvMKiVAm9SRNjdt/1zKqhi1XSnjJMWDQFZNdq++wfqIq3E+A4353q9COxKBjAN2CDjBNFIBbj\nCT+yJlHf5lZCrD5p6RRkGsFPEBMvWdSYKNnIyWDIPFOCkHAFtJai5dRZbInvOL4rA9aO2mQ1RSsm\nKbkiAQPHoVCz05lMGGi2IlM/c2O9QWVDzlsN4GpDSotXdp4n0Ki9E9TAkYlpk+VDSUARiMb1eJjL\negj6MafpRIOji1CljPjhqsRUwnaJp2a5aaRCTgNwLPfM6hD2lHnKuUWgmgaFLUkUABY5LlZdiSVI\naTWKeG5HXqDtlSo1nWB2vkCD60RmTmtV7OcN5D43woD6kzLJJ8Mxb31TTdXQQdnVmacLjoeaLlO0\njYkC0DgKaX6qx+mPhti5PKehZ6jVValqW142P5zR0OrSOKqRKN17tZKSKkJyJWyjpSJUIo1JzB3i\nlpyj7y6IQrm/AEOYy/e2Osco6e25trhuw3SAnQuqcK32gEzd0eGi4HJTnu9hLPc2cTI+sKq6HY2Y\nrNT6mGxOI1BXIRmTanm1p5oWhoBSX/4imGF0YXIjnzKVsSi8YwKtYq2r75fUHSYzyUSYzNBQNyhw\nPeJY7s+fG9ylJNp7bGfuw1k7a2ftXe2RsBTysuAgmeBmISrwy8IYzIrsqk5Uo9DgUuK5jJcgDWV4\nHmcTrvclkLN7kmGW0GbfMNLqPNMKiSMNWkXiMpQNh3lfTLh8lnN0LEGwwkR0UlUlJgHFJyxK+X1c\ncfHmsqO3q1usaMag2trCIDuboXoKISZYSs5bzDKiZnk3md3SWFAsgUHUrqRNWbmkZms3gFjr6gcO\n5qoEFU0q98H/MziNWLNosBTELvIcq/oaRWlPxy5WRauVesjGuoDB4pUmfldwGtZvUOxJNqMT+Kys\nCW17TbkeKit1aufl2Ek6ZziUYN694zETDQSP3RkzFbaZKbopGWfkahVWvIBUn9nAL5mpy4ANKNT9\nq+sAVYKQSCHWcT2mosAqi0PoP3TTyqoCx9RSzKMZVeUeaFZj3CX3Y1Ew0/EaFRV2SyUfN9L3AQuM\nqlJHa+vEc7GmmvWL1C6IpZojFkNxPGOsFsFwuA8DddFSi6dELWVgmRyLBRGpq2X9GaW6BNlseopA\nx4DvabbDreNXFVOjEPswT5nrHKl4DslYrKLEZiz0+yJLKb/NEn0v7cxSOGtn7ay9qz0SloLFkOUe\nUwrQHHXV8+grTHjgeiw0xzxbLDicK6pOg3PHgxmv3hIW5UHfUl1Rya/FIdN8iTfYoLoifnBwoH69\n9SjUBU6TnMGJKhUHBhOp9kDhUsx1BS7VZ6vVCVT3oMIurVCCfH6rhhMvSzsdUM1Dq/2lKKC6TENm\nEmwEcL9tbdZ0HLkLVn1O06aYyW6UjCOytqpuN/u4rqIwt3WH+8AErn1EPmd/DIVYMaU1LHV5PGOI\ntThouyNjdfnCBvVlnGR7jUpbfpf5PuWyMCuPWas+I+NZl7GYzieEDfHJI+9Zmpd+C4Bv9GCut5rW\nDLNQnk+qKUTXL+nmWsTmuRwpVdokiZjn8hziuiFqKZmsFrHlDYOraVsnzPE8tSZ9l7myKaXhgtIu\nv9dqTuOT6udWZYOaPiebzRgXMi8O5+NTAt3dY4kDvXPzCN+VMfqxfy+goerfRaeFG0vQJIhlLFuL\nB/TGkp68fe8O5zUeEnkuZSnnjfIaFTWHXf0uS0tstgxK5nhq0VkyXOQ+4kZANtKAr17PyWZE+vxn\nkxSjuI96rUJLKd+OmFPYv4A4BWstaZaRleUpHbqz6jNXwY6j45yqojH28iknuQ7OSEzAB8dH3NsV\ns3UxzHCNmFxOrSTPl3JSJwQjLb/15bxR1SVT8EuR5+RaX7GYVFms6DFFFaP5+0Jl5H0n59K6BKKe\nfHyDhpYnu/E5sIrtdR1I1RVQyKmdlthYKxUrLiz1uEPz0JVQe98UBY5SysdOgzUNcPmmRhDqYjHo\nUpaCX3AvKpv18z8JSlnOb22ABuIqgUeuZmdccVhT8pGNrpx3Z3ObzjlZ3FYbO1Q25bMbGry6uhLl\nCXXF4nuljNUoHZ/m+b3Ip7MqvJrVtR7H+2rCu5BrkDZTs7wsM1Rfl9Www1gVjWajKUb5HCs7bdrn\nBETl6T234lWqmjlxHY9IyWVwV6i2VXAmt6SaPcjKJYjJUK/LgHfbNarqamASPJ0D8eE9YoU8F1rX\nsEgsvWNxL8bXCqLHNcNR5FQV0hzoHGvu7BCoe1RaCGuCs6kGEcO5LBbzyZjGeutd95SWU7KJ/N0W\nNfxgGWhs4S/fh7KGacu53aFeYz4gUxxDWYxY6HwJqzGl6mbm5pCi/HNmczbGuMaYV4wxn9X/v2SM\n+aox5rox5v8yZrkdnrWzdtb+IrTvh6Xwt4A3QXNU8MvA/2yt/TVjzD8GfgH4R/+mExgMsRtQlim+\n5u4v1rfpqHDI7r0bRJpu2uslHPliuht1NeaR5XGV2pqdG7CqJl5uDEFPTLRqJ8TzxcJwtKv1SodA\nwQf5vABdUY0tCKty7XoxYaQVfravlYNxwEQl5d2OR9wWxBt+hYfqJIC7FJfR3T+agxYikTgsUb54\n5WnF4GlMaGJwJprHbgasRZLqsgGQ6TWKADJJP9q3pTDKPH0bxstKzSHGFdPeCwIKFV8Jigb1S7LL\nVTXYla+UDGYy9jcfPCAYS+caYUypMNl6p4rTXCIopaNNs8LdvgTcXv7al3j7nuomvDljaGTs02PD\nErLoF8o34ZzgKIqvZ8dMdYwb6YJMeRm81SrNqvIJ6PNIRj3aq9LnRn0Lq1ocZVmAozssDhU93mo6\nuWYCOm2FlZcZSSapvtnAcjSWfh4eHTFZSFC1Vi5T2S6eBu3eOfgyzfWPyznchK6VeXhbodjpky2e\nRebhzmadUPkk3CDADuSZ3JzcJ1GLralye4zrZEsWbDfDnpL5GGYTsU4HixEnhxKgvH5fxnh/1GNp\nYsalwaoFHJgKF7sSTH/7ek5ZfHeBxverJbkD/DTwPwL/tUrJfQb4j/WQfwr8Et9hUcCA9Uqc0hAG\nyqTjwFvviJ98I91jMpBJc+vkLjN98dY68nJ/9GPP0rigzMkbmyR9Bc0c9Jgoy03//gJnKL5qqUAR\nky8ItCQ3mecsa4vL8YIlL4UTBnjOknlIYxyThH4kuIAPvPlR7KbiEBoWbmnkHxfu6fdj5eT73UPQ\nxY0E+CkFHH2tgE+oL3GgD/DXXiR781elP3UHFCAz912CtpDnBD/+GM5luUbZe0X6uIAlyV+aN0k1\n/1295OCNVR/SKxgoy9QLhyKHfuN1H+uK0Fd/vmA2WYJpHAJ92T75g5v82FMSU9h4QjIVWRrxjz73\nOQC+8tKNJXM8OD7pqWoVeEsvTsVjs2nKQFmyHSc6hSzMsjn+lpj2ncYWdfXnS+1DOnfoDZXKfXqf\nuSMnnt04ZqxcixMv4vxTEnc5py6DiSNO7qr8vB1x+5pA3meex1AzPgMm9BbSp31dHDLfJVUm5huv\n3qFTlUW42vQZpqox2tb76K+QbarmZ2eH3ZtyDssRd29Lbcqbd67xR7qIrG+Ka9RcjXjm8Ytyf8kJ\nFZ1CiYXbx7IAfPErr9PXDM1ClbCymoer8gI7qyEVdTWGlYxcgVw2L/90yaY/pb1f9+F/Af42D5Mo\nXWBg7bIcg/vA9p/0w2+Xoi/L724lO2tn7az92bXv2VIwxvwMcGitfdkY8+nv9vffLkUf+L71rU8e\ngqc5/UmScvOuRKxtETDcE3OvNzpgpFmCu5p3fnC7z7MfFyn258Nn6VQ1/zvfOy146h/ts9AKPnch\ntz3P+1SV5iyLEhaaJbCkxEaCa2XYJzmQNS/X4FWvTKl9S7a2O8EXeWIixzrTFyj/338ln2/MwHlJ\nzp2JNZKbOZ4GIl1Twq/JWLjhJvyT/1L+x/s/ADg4uc4LyH32e/5pReELWD58X/r/qTeeohHLuKxv\nyLi5n/oQLJ4HIGj8FqFmUVqVNaZV3cUWNQIj5mWwrIhyciIt7AoxjOaaXZik+MrS8cIbCZeUG6KT\nCQT7RnmdF18X9+FoMiWK5e9R3RKqhRV3G8xUXKVUKXu3nFNV0pM1r86RSsY7Xky3K+futgJKdScP\nDuXvbpQxuq2QducmN+6I1XBydHwq/FKLS8a6w8YfVdeuXmdhZTwPD8Y8OJFqzyyvkLTld7NejZHO\nlyN1nxJTMp/JPHstOaZxX+XswxpjDRRuKKp06ibsK2/E7Ovf5M51ucbswYBbR9+S896fMV3IeDZb\ncq4PPtZiciQYmcc2rtBQzciD2ZCb1+WY/fvH4Mo8WlVRdYKIqYraTPccso6iGIfeacC+GkbU1WpY\nJO+tIOr9Csz+rDHmp4AIiSn8CtAyxnhqLezwUIHkT28GjGcJSp9IUylJlGCHClwJKpSatnMcn1Rx\n8uVMH+D+IdckCM/T29u0LolpW+5ssEhkUu3dP6C/qyWyUzG5x+OUofqTeZZTLFNB1jDT+opgGJNN\nl/UKMnmC1OCoRmFatum/KGm47kGb4m1hDQpsgqMGlKeVd641WPUdc5thVLHJmfcwwe9Kn6dS6j0i\nobMkUjWWYzVxb2M51lTnb+bf5D9Rz+Q/0PyfP/ZhUzkOh8/QRCC6tdjB0/SVt+awiYxRe0P6MJov\nOBqKORy7PrH6/vUowVGzdTuuEZVi8mr1MuG4Sc1XPcqKh1HK+WqrQiOVPjWpclTV6kgVBTapxVX3\n4umowd2JXG/f93A18j9dTGhFcqGmCqbWiipvH4op3hsfcaunYsOOy9XzkhHq+g4rXV+fgy7IacJQ\n61wGgyGzqbw07/TvM7uvY5AW7N+U/nmxfFeLNkm11D45Cri3LudwjmY0dFGoViSDkzoDbrwjz2//\n5oTF27Kp9U4GTHQMe5MppbqpSw7S24cZ9Zq86RdbASN9+YfjhNv74iocTgoWSlBzU4luatEAT5nF\nKk2Pix0Zq53Yp13Ks37qylO84Mgr+OsjIe35Tu17dh+stX/XWrtjrb0I/IfAF6y1fw34IvBX9LAz\nKfqzdtb+grU/C5zCfwv8mjHm7wGvAP/kO3bCOLTCmDI0RJo/T5OESku6d2mnw0ZXdqPR+AJ5Imb5\nQnPba50aj5cqM+6XVD3NFpgaXYUEu66PUWsjVLnwclYwc2WlzZKcUndjpyxwjJJb+NBTmKvVKspG\nAGuuBJyC8CbZruAfipMpvu4wTlLH6I5uFAYLE7BiGnvcBOUP5PJF+Km/K7/7Ixmuy9/6BuddCWbm\nxXkOMgkImrKgo7nwKS7n1Rpxl5RbJxMYC6eDcX6bc8pnGObxqVDJdvMC9alCwV35Nx/2uRqLqT29\nfMTjE7mPVRNQGYmF1a64PHtOxminKVH2ViPm5/9dGZc/uvkqnsLRFyR4vny/EgVE6jad9Jc0aXOe\n8iQz8qnKJjerAk57c6OJ29HKxuMTKmvyXDe68l29GHBhRQufWpdorEkw2vUabCut+04zwmoap6UU\n8E7oUWiVVNQydJR85lI9ZqyWYH/SYxTJvbYuCHz86tZVbt0QKUPHSQk82a0H/ZCPK4nK+iV5jm/s\nW64fy32acZ9NJd/ZudQgH8u8fu3eNebKDv74qlhrP9Cp06iJdbC9XpItxB3dv3/EXEVwnCDALMRC\nDjQzYkxJVS2zi40WH1KwVBzAyly+3zz3MS7Hailce2+WwvdlUbDW/gHwB/r5JvBD34/znrWzdtb+\n/NsjgWh0XEO1GWH8gFKLiDzHEMey6m50WqyqOvSDxZw8uwiAq47tY+st1tdlda1EbY56kgoqcvDV\narj45Arnt8XnbEVy7MHeXb5xXfzTm9eOsammKoHdG8oivAluouIymu8dTly4JEGkSvYU/lNKgvpD\nz2E+q1iHw1dhsExPKpa6SCFUXojuX4NPS3qPX/hBeFYpg/ek4Mj9wjfgNz8v41P02BnL7352cEip\nOgMsHMKpBPm8xVKV2UAh6UnyHRqelOm6lTnnWrIzXY3qLLR0utvWgOpWl6FiKBY57N6SHbhtAp5+\nTHbNxipUA9m5bU1RfHGTT/y0oBgXXxgxmWrad54QRxpUTHPGIxmLuqLygjLgSX0O55ttVg9lpxxc\n8VEICDO22FLYZ7shu+6KX6MZqNVofNZT+XuSZESavmzGTbxYLJIlg/d0XJKr+Otqt86akqNuLkpG\nM/l+L6kRKp/FxXNq/WU1ZhfaOi4LFqkK/EzndD4sx9R13Lorj9OMBS9y5flNPnL+UwBUFj4HU7Hk\nNt+qcWdP5tbjikJ9rnaO2rYm7PKYyUCl6SoerbZyQJQtVrcFer6msYyommCV8HWrXqNTlb6bvSHZ\ngbwD3WdS6kcyzu+1PRqLgnGp+HWKFky1IjEfT7GqBOTFPkbFOxr5jHM7Euzaqsu/F9csk4WKcCQ5\nriruHt69zf5QAlytlQ0uPCUPoaNBtKMndhgqEcbR7qvY0RKiaii0tmG0H+I3ZeAzNdsHzYDqsbzE\ns/guTqGiOz/SwPyU0JjxzmfgwRfl801lCzYvwtZ/Kp8/4sEPC0Mz7ZpwrAM09ZFc+CGcTwspjLPq\nYlW7sTbYwwn1fAf3cP+nfy7HvPKb8l3vAIxyK5jfpN35pI6xYUPHsFkZqSAMeLG8HA6z0/qCoB7R\nvHwRgNjm5ApN9qpbBAqhHp8oa7NfwYsl6/zcRz/BsC/5/+GshS1V03I2onwgL0JtIWP5ZKfDf3Re\nAqIXu09y6P8BAPXqJaZKrz4+OcTR4Jmr2RcTgteUl79eFFRa0k+vLHE1u5DNc4pCgpyxakqmw10G\nfQkSho06q2vyQldnGWgEP0wabH1AKz6n0vdv9e8xu69w7XPOKeXbOBtiNMCaKy/j0d27TPZks7hQ\nX6PbVDjzSoVc2cYvLh7j/CUZr5pyaSbMaa6LW+n6AVb5Nitem3NKdZeeL3lMXaiGBmibfhtHM1Rm\nYokyCbqa6oy1WD43MAzWXuC7aWdVkmftrJ21d7VHwlLAWBw/h4WPFsCRdmKqrlgKQVYSRqoG3Kix\nqkwy61pYEvqG2mJZcWaI53Jb5SRhrmnLS37AeWXPrWugsZp5rF4Q83rtWg9fzcBROiGZahFTaKhV\ntapSU4jeOKGhoi5ltEO+rfnfK09AJLsfzzhwoAnlSJGNf/Rx2NJipSdjUDNQqiQVdrZcpq0BvX9T\nCaGx1FnYOOVFSLwq/kf29RKaI5x4UNFjjy7TUBcsKFOIlI06CKjsS5/jluzAue/Tbsn9RVmFiVLI\nRck9du/LjrbmdTFN6WCumA/nwMGNxUVbz33Wtn8AgDu969y9Lc9k/OCQsboVa1vSn+daMe1zsitX\nr1xkZfdHANg9fp1U4d2dzSqOBitnY7FWmn4HX5m0A+ucUs85afN0Mvft/BSdWgvlGnltgf9A7mM6\nhNWmnsP4tHzZgYezITVXLEBPqzN5dcwwk0Dduel5+p6Md/+wx0SZwCOl7vMzh7WGuLldZ4VYi8CC\nqMBRl6d1NX8oAah9P5ocUVE2qUZQZ1aTAGxWDHDVem3VAza6YpG0VPciKqsYTUmbSkZixeUrswNM\nrOd4LGH2FZ1n77E9EouCa6DpOgydjFQhzN1ah47GCRy3JPJl4NtBm8ZFjQ0oECYbT6ggg3AyP2Ix\nk9y8SXJCJUvxfJfYXfpnKiZic7YV3LN3qYLdE799sXuXtFTfOLHkapYu6xMaicFRX248P2LqSCYi\nv32E/wFxV8yievoiW62S5IkhbOpC4RvMUmWqLB/yNS5FQvdGFLsiIe5Wnjhle84O+0xvChz5td//\nlyx+72UAPqNw7kodMLf1Gvfp1MQFSTPIfTF9s8ChsimT1GhdQ8OfsuqJopFtDIm0bmF2d0zcV2r4\nSy55T6LvdUfMXfsYODqN/CqkSlhSz6rEoZjMu8mYWMfinCdjdfHpJtG6ZDuKSh37QXkxW/eHvN4T\nrEBhN7mk2Zx8QxbTUd6joc+xWT+PdTUOFKS4ujDWbQIVmS+emtFdt8GmwuJNw6dak2dSMxUyjSME\nZnIqK1CfiWtab7xB8UBNdPcevrJ8O65HZSBjNK/KeM+Gk1MSnRkJ/aEsIOsmplMT19WEdVCotzNb\nEvl0TglnMjMnVzdvdFilp3yinVkENWW/DuVcnh1ijPRtMSoZTiRzcj85ZqEalPbgNq/Fktl5r+3M\nfThrZ+2svas9EpYCBoqwpEjBaMCt3ghpr8juUTa80+KKIlpQjTQCrpDUKIzxupoByFYY9nWXqznQ\nkB2xW28ym8oOVKmKVeGUC9Yui9Vx/mSVhRUEWv+4ZKFVgNZYqkviSyUAOHEyuu0lyu8y06rYcInv\nY96U3cFtdSiHAlFN7wnGoJzNiZ5Vco+KRz7Q3Sys4l4QmHY51mBZr0/yqkBjw+MGyVACeK+/fp3X\n3vkyAJ997Q0K3R18HaFP4hKGEmgs8xj1HrDVgLJUDEie46oCdZHIWMX9gOKC3P9stOD+NTGZ7+8d\nMtTCrptHR1RzOceVx1QUZvA4Gx8VC8utBafoz8PjawwmGmhMDec7cszjFy4CcKmyRTnTnXuzjqvs\n2PfmRxyou+I0QnrHMkab26r3GGT4IyWDiRei3wgU2ZRCLa9RtjjFiHhTuUaWz5mri7bWhlZdrhfZ\neMnty9Sp0LsullBSkXGdDFNq23LA6vY6mxpcrDgR74zEIvV1TCamTeGrIjZTdk/kczhp422oy9AJ\nmdyVgGeq9H7HgxFuQ/qWpQHHuzLe94tDjvbE8rSbA7JDeZizdfkuMDAfKFL0uGRvIBbBteMBt9Xw\njEzMS9PvTkzykVgULA5FGeNWC3w1552witHahsnQ4YGVh9SYezQb4lbUdEKUyRTjaeQ8atJREItf\nOMSHYsLGpYejpXiDgbysiyBlpgtIbXuDqpJt5Nw9NeMdY1hkMqiO1nndHS9I9uTlHXgJpib9CbI/\noK2y5ZVpm5O7YuafvC2Lgr8R81hLIs/TN17g5POSOvS9CiuNvwyA68qLGX3yJ4l+9Gfl/k7mpLfk\nZXvpi1/iK2NlBUpT1jLVgtTUq+v4GKs0yuEdkprGBqpN5gN9SRcpRa7Vk8ocfDw6JB7JeO/2B4xV\nNWnay7llZeJdf6fEah3EygPp549c+hY/9fjPyX1sPk++93W557vH3NwTH3d94wJXN1VktyoL+tZO\nhXghn93FGv66uErjlwJOFrrIvpFTn8nYru3IouBVqvjqzs0H++RjedmcqMJCU4vXj/aY3l/CrfXl\nPgm5uy99vppfotnVKsJswkxBQf3+gqHS+d+7JdmSa8M7VD1dvDoNolzOu3GpyYuvy/kmqnM6cxuY\nnsy3skgxKiAcVlJ8BUuZSZOZlWNGh3Ldt3ev44ey2DRX1hkr2U/vxgQpp4V2+Aw3xuJKzA/lOXXX\nZ1hNwx4m97g70HLwiUOiBDD35yPGZ1L0Z+2snbX30x4NS8Fa8iKjGaxQXZddLuxY/LqsiO0yplRX\n4Xg4ptEX89LTrIBrc8pDzRZUhgzuaXVeckQ7VKjxfEDLl+DYUsr83mDErbcF+jnOHSbDpSZYiTJ+\nkZU5o4FyBqo03f29Q457YgLeWWkwO6c8/vNVVqZiJjvJV3ntNTH5+0PZEVbu1ol3xfR/cO8VtobK\nNZjewU3/vvTNEyvHiX8RnhQ3x82gsbgNwKcnGxw7rwLwSmIZWNnxN5YiOrGPWZEqSe+tVawrAbr0\nKGHsy64Tug6NQoOmKpqStCxHM9nBEmfGVCHdO5e7VDXQ2FlJmKowzKZKkP3g2jbb6wJecvorbB1f\nBODx6dfY1yrI896cD27I92uB9KHqruLuqsZFVhB9UcYtsynhEsabFUwUvn2i+K/NSgTI39MEUKET\nQ4daRe6pXeviLc1xNdHDuGBr7bzef4XZA/1dPeI4EcukNxiSK6XZkmzFpiFRrDqYY5dKfUmh1uf2\nHbE4TxSjllUjAgV1VUyXtmqeZo0KR0r2E9QmlEqCM1NQ23C0YKDS8bX+ECeV+ZZ6lkuaPWkwY01p\nBocTmbP1xg6uwrgLa7Gukui4PscTrYwci/v23bRHYlEw1uKlKcadkiIDVqGDq8CNaujiaJVcOcqY\n6QNL9SWt5gZflXLyPKXwtNqvt8bOttYXbDdwFXjj6iTfGx7y4K74Yf3C0iuWYjANrJp72SRnXiip\nhS5MlQAOx/L5oBjywUAi6odPjKloPYY5GbJVaFS+kAXkAi3aUzFLN9Mr2MU3pT9pSVgqRn/JHh0q\nqAAAIABJREFURPG5Eh6o2fdWjOkKGvHpgyr/jhLR/KHNqeg1vCUpjLsF039f/qfyWwQjMf2PTqY8\n0IPc0iVqy+LrqphIno/xJrqA1EqI5EVorDa5cknu7/lWiNvXqsWJ+NMryeP4Q/kumY7x/lDO8Zh9\ngptz0ZX0XMP8rrgSzomQypqtFkYrLs3Xmxgd28txhLMm50vjCqli+I0C2QKTEmjcyXcCskBFguwI\nU8jvzq3vkGvtSqEI2aobU6ob2BsP2T0WgNBatI0WytLPZ8QaP1ryLz5WCbA63oPhO4wVFFXOPIyW\n2mdKajMpclpjmW+9TsrKTBaeJK8SxXpPhaUMlRNyIQvQVmuDVDMVi1mVtl77L7WfYGVbq4aLNZpK\nnz9VpajpdEypc3PRz3G18rMZODhK8joJDfGGLCxfEQ/tO7Yz9+GsnbWz9q72SFgKWVmwOxsS7uU0\nFZO+yI9xlBxiZ6WFp0HHgb1H/67mpluyC1zprFJXi6CzeZnLWvsQ5eaUbCI3hvk92SmGQ9m19t9+\ni2Qsu/jEKSiVIrzwFyyWdOHpQ2o2o2voPHaYKs1ZlLe5Xsj5NsYXuH7zPgCbLFhX6blMKw7t4AGB\n0nk5gxvkqewOSdlXsTJAFYWZ/S344+Xj+Qj0l1wP/4JwyfXgljyvluFquQyhe9BU4M34g1wf/joA\nfWfCYKB8jHZIoAComVLFNQzEF2RXckuHWCnrFuM+uw9kjPYO9rk/lmv7t2Un+pR/nadekL/zoEes\noJ9gI2cz14Daaw5TVav2IrFc3PoPYF5UIFclwHlHskBP/eJ5rnoCgHrl/gGDW5IFaWju3uLg2NMo\nMKlmFPLhiF4u5/anNbxIXMH5VCzPuyajr2N4lLzFvQPp2xMf/ACeapbW6nUmc+WV1GDfNE3wNW67\nfy0hq8l5Pa/CVDM+qQYD87HHSK3UaL/BrmZDnlxvkFXUZShzkqE+v4o89fPbm1x6StzG6bikMpGg\najiOOf66ZJK+9voLPH9Onk9rXfkqY5hPJbh4kow5Uii1hyFQlutntmo4Gqz9Z0i153dqZ5bCWTtr\nZ+1d7ZGwFIqiZDhICawlPZLdszZ0cTXXfL65zYqqB8+cKvfuSyro6JZYBPmlEbVMd+6oQRSqeMnd\nkFwhxhM75fCB+PAPXpMd5dr8DoEyPdU8n8yXVTcKXea6I9qCU9mtU2mG0qVINF4wSogOZOV+y45o\npmLdDAcPB/drSrT5SdMgGAvU2mv0MUeqxEyOc3p2tRT4Ag+pL/8QNKAIhi9q5V8bj4+oD9xYXszd\nh4FU6hH8PfYLQQ2miyYLV3ZBM3E51EKaqmoWDKc5563EF+aRB6qMPL01ZZzLeB4cZ2yrpFu1qqrT\n81tE+3re9jHhoeAtTip3MDWl58zmVBQ5GSmTtukew0e0vv9zn4bWPwZg/eJHMZeFq+He//ciu2/f\nBmBfA5xr7Tr1SHzuzFmAUuvNpilzDfil+Yw1Vyo7m4+JheIXAW9V5XpvfD7nSFOHaeUmz7SeA6BI\nApyqjO3d1yQesmuPaO1Jn0fJgMW+jEWzlbKUFAmUtblIckqFY889l0lFju0dTKjruC2KkKlWTLpG\nTNCL7SZbOzJunU6T6FAJZtM9XvoNmQ/3Zy+zcVtiMGxIf6x3nomS2B70eyzUylmpr9LQojJDRLv7\n3e39j8SiYDBEjiEoPCqKB4+rLmakbsIoYfOymF+Oe55AswFjBXbMj2cMO3Ls2rjAm4r55a87FKlM\nJm+xIHxbXqDAyGLzTH2DFTWZbzoZt1W+++hkwGKp4eenp7UGSzq2+SzHUT3D1Ck5Vk691jSCTGnA\nggpG9SZ/LJIswpXGFbwfkAnoVp/BfVWUpHnna2CExgutdMMLYK76kKYGipEYkPOqLlLfLAt+2FeQ\nVUNdBlpwQV5uXnqGOFGNQsfBU+nzGQtWExlPT/Edae6wCJVmPYzwQzHt1zfP09PqwqtXW3QUht5y\nJdC43h9Qe1zKvYvP9snr8n1QdnEVL9KIPPyWsjI/phP7oxvwG5IN4rkJ/OFPAFBrdilHWpsSOdS0\ndHgx1rHoVig002I9S92T+654beZKJT0fWFptyTS0V6QPAzPgnC4s061j3EIWBQcLCpVOghbZkZZc\nq2KVN4GK0tofDhbMMo3wx5wu5K7WOLjFAqvVnL7NqJQagC1T0EXx4k6HrK08pHM5V7ezwroqrFc7\nbbw1faEflFy6INd47mtNzl+QMVxVusHri5LBQJ7NeJJQKlS61sxQz5uw6uEvHjqn76WduQ9n7ayd\ntXe1R8JSCF2XC602RT0kUDXjZhERKUmHMz+hVNRZx+2wXtXdpqnaeUGNNeR3jXpIcF5hyYuATElI\nJnf3OWhJKmcwVMhpw9BWNOJm2eO+Vlc6c4PR3G7k+hSaJ7Sa26+WHmPVAUwGKUfat53uMU9oHnuN\nkEoku845K+Zeq/oOtqeks9kYHKWNO3eIUyiNl8KPcWtwrLtjGZCrafwPU4dXNXc/oeQl1dvsq4DK\n6toBDD4LQFG7wwXnYwDcM3OGb0mfLS5TXwu+XM2rA9FCdrBGxdJuKPP1ICedy7jduveAiSPn2E6l\nDx/oNtjUtGH57IyDPbFMDvyMRGmHizhhUsr9LdQ89yYDnI9J0K54NWTyvBR2rfAzDCLV9LztEhux\nWCY9scZ2XZdoS3a+RlTD04rBRr1GYyjXOArf4vBlCfj1D2R8HvR8bpyI2+kelVxuimuT+wHVgbgj\ng91dDu+LxXawr8rkhXuqM5FlJZ7yUMRFBUcxELkGnbNphlGhFy835In8fTKfUaq1GZgqrYb0ua7a\nG2b/NlPV5Cg3I4Yncq9vvvJ57nxLAtcHmyUrl8WFdhRu/+DwmJt3xFo+WSzo1HQOOS5VLUALFgW5\nVrG+12bsMpL7b7E9Hzxt/3j1VzGHFqf8ZQBG3pf5G648mG94KT1VzXE9l7oqL9WVbORD6ytYrSK8\nlZxgVW3o5v6M8SltO9hMjunU5MVdbTaptORzNpxz50gm0mSekmnprXXAVTyEq3LhgWtJMqUAX2SU\nqixVbcQYfTlrYYCvvqajJn6WZYzV50yyAtf7NjWppWy9eipe4AsFEuDmhm4p/fwRf51Yqbodc8JL\nZkl3Ly/p1ecv0f30TwLQ3VzlV//2LwFQ+O5pKTaeZbWjEW5NHCR2xnQk55rlMxERQVixjIKFwmqD\nyC4p2qXvbdvigx0BL12cl6yWas66I/ZVxHXiL9hFvvdiOe/W+Q2e/qD40VeufphqLNmHv/qLf50k\ne+iuWXXZ6hqpD31ohFo6HIesKKX8moErJ7LAfzrf4dng0/KsjiSb5dZG5BW5v1vhy7zRlQXiXwyP\nuKc1GmMLqW4G2w1Vxw095oqhMBWPuY79Ivf5+/xXcsiuMj8n/4oX/NsA/N/BiD1lDT9epBhdvDtB\nTFzI8U1dYB6jxuMKj38qnXFJIf3naNJCSspDbmJYciwuFXf+c+AfSt84ZAnqghGwVGu0LKNhBudl\na60yAv3p7cx9OGtn7ay9qz0S7oMpdwmS/wFavw3HS6GWlK7uDtthSENlxC+UEedWNGOgQajWJOZG\nU3b5pq2SO7Jj1Ke7KIMaSVmcchZkhUqNZWPiVFbURWhPA1iZecjt55YOpUbflwmCGZZCd5QScFTS\nLPA96uvSNzsvUC4NSg0+JllBoSexxsEuA1WBS6kBLGcpUWctzXC5k2T8F4XsOs8Zw54rZvc3U8M/\n0wj2VF0b78Yx4YfE12hc+iDzpeWRVjBV+R/ftik0u5JqIdW0l5Aq/gFrcZxlxsXBVffJd0oanrgP\nW2qRfsZO+bhZBjPfJpzKjvdN75B+KQn+E2fCvqL+7ImcN6zldBMJBlaDlEituwwoltkeB3y1pnzF\nfLRaVSJ1XRqhodWSYz9qI/6Sajue238Zz+7qOEtu3uxuM62IdVC6W9xUQZZh08F3tWiMlHpN7mWs\n10icDHdZuRtHdErVkYhb/EQiBW2T8yIA5H2jxl5TMmLrUcxINUempqSh++/jocNKIWP4l1OZN58x\nUxqadXKdHkGxzETtATf1c3qan3rY/vt/7f+X1ZDRv37gd9UeiUWBcyX8UgI/vwbIy70Z1nn2nIqE\nnlvF00mzVnF4uik4+fZAJt20OyNQRiA7cVmoeTmfLJhtyktTTErCVEEfCjsuc8NU3QC8Gl6gOPmy\nZKH+oLWcWmuF+pCmcLDqXhjHxdFJ01rv8pSmlpJsxHgu5urBsRLJFgajlZ2hb04l7t3Co9D78/Rl\nDKOApvILPhfmPKXW4GrcpvGyAquc4Skh01D7c9SfUXlNXoiofg+jt1d6i1OST9w+E3UbPeV+zNLF\nqRiOcR18R6nFPYOvNPiuX5LrYEwirUUJ4L5SiHNkiF2N6luP21bu+zixTLQqM1UzendvRprJc3An\nM9KRvhTWcPpOuC5eVcarptmV7Y1VMvXh8+kC1EVZ1GrwlK5UkxRaSmH/vylpqTcg1ij8veiExOrc\nSgLcusyd1UZMkMl9z6z8fp76WH0mziwgqSkcPSrwflpck8Z/82G5VniXHz8nbtAL8Yw7mqGqlgUd\nVeK6sLHO6khh73XNtK3keAo4c3+/BsEyluTA0+ryvQhohSrLoseAh+vA97G9L/fBGNMyxvyGMeaa\nMeZNY8zHjDEdY8znjTHv6L/t71dnz9pZO2t/9u39Wgq/AvyOtfavGGMCJIj93wG/b639B8aYvwP8\nHUQg5k9vo5Lyd6eUj4GZyk47+fCE+KpQWv/wYItmU1bX1taTFIUEYmLVnfSmlktKA9YpMhIN4Hxi\npclqV8A7jpczUxP28JaAe/74pRvsqqJwVKvgaRCtPwoYj7ToKi/IFSOwBKs0w4BxKddz/IB1FSz5\n2OXHuHJZmZbTVd64Lzl7V92WbhTiq3vg+gGzmfRnNB+g7G/K1wiNRkysXISzGnx1XXaog6gFRn73\nu28ZZida2anBToqULQ2M7bglVcVbJBQUCt11vfg0GJvqsWVZLtnmqEYhgcLDS8DTYJ/rFqRaxHOs\n7tzvzHP+5WypUA2+Wq5usbT5xCJLyiXdnNUxnjG4qcIxjw3JhmJSd+MKY021mMBje0Pl1BTGvtUM\nGQ0VFJSGZGoV3o4jvqqBvUVcpXqgYj4XFJsxM7yjFP2fa4QEyqV4/kLEeV8AZSZaMExUUnCiXB3T\nklTHcFHOSNXdLP0q2YvKC/oJef7B3Q+TPyHcGSu9E3YCOYetWGYaCL/ZNYzX5J6+si3fHVUtmw25\nxmanwopavUG9h9kSTIJz8Sb2CcUb5Es1cw/zvy4r4XiIriuAZWHd99Dej8BsE/gk8PMA1toUSI0x\nPwd8Wg/7p4hIzL9xUciygsODPiMTs6bqP9nHP8OW8uuV53LcnpiBcbygKOXB2Ioi++qbdHVQqcxx\n1JevFCtU67Kw5MkxY60c6yuQxiYJL+xJCsqPQ7Y7Yg6+fR/uqN/n5h6ZvnDTsfxb+AWhkry2ttb5\nsLoMT15eZ6WqfYsM2QUl2lSseitsEsTSuclRzsFUSm+P7kaME1novFy59dyC+tINCkpua0rvuOGS\nqn7FrekCq+KnZrFUxbK0u7IwXa60cPXl9cryNKXqlimFko065TL1anAVmFT3PIxi540pcdX0nWUp\nuQZpCiWsGaYlqcZcjGOJZ/oyGYdC4yQllvA0Aq5+9izhS298BYBq0yNV+qOgammo6xI0WmyuynPf\nWFK9+5ZaImNUrRmqNXm5K02Po5nc95fcEW5X+nl9Vc39UcE9fdEr1Yjuc/IcrtYf45JyfqbHI96+\nK/2r6RwZBiekWpLdXFQJ28ptuaiQ7Gvl7k0Zez+7RVAKIG0z/ho19e0cY0lUfr7fn1G7Kuco2gJq\nm1+qM9dYxv6zOemRbEjNtSdxddOyn7I0RzJX3YuqHdKcYr+sb/+3LGYpPPth4HN8z+39uA+XgCPg\n/zTGvGKM+d+NMVVg3Vq7p8fsA+t/0o+/XYq+l72PZe2snbWz9n1t78d98JA16W9aa79qjPkVxFU4\nbdZaa4z5E4EQ3y5F/6E4tM5uSnPbEtxRso3j+1Quykoa2g7eOVmNzcwl0eqz1Y6YVpHxKANZUYPN\ni8QN5QrABVUdziZrBG2F9k5lEWo1a1QfyA4UNx0yVTtu1kqaVdmBxtkMJrKL+Rq1C/Fx63LsxmqH\nekf6E0aWRkvW2d4kZ8WR653fEaBMYzVkqtmVw/oJzr6sl+2ay2SgVOSpBkbzHFd3a8qSRST9qfkV\numpGPuG1uTsVXc1Xb4mxbnGYTpRApBkRKjFH6swxy0AihsBTXU19Hl7pnmYcHMecZgB845IqBVlZ\nOCyjroVaHVmeUZaK5ccnUoy/h0eiLkqRGWK1QnIN1hZFzvGh5vHfeovGljzrRhDhr+iOXqux2lGr\nQeNtjSxirAHalXaVVkN+l9RcKq5yUNa3ODgQ0M9MuRir6w6xamJ2Nxo8e1l29I11n2ooz2nkOnxI\nvb+9ffHnWmXKRLMEWcPDqn8URwGVQ3WQPij4Aef3rzDv/Y6MReFRVQr/btjmZCIB2MksI8qlz6st\nsTBrQZeWCg614g5BV9mssxplJn3O3XOEFann8G9rMDd/gKvK1WZtjD1U6+5L737lvlsk0vuxFO4D\n9621X9X//w1kkTgwxmwC6L+H7+MaZ+2snbU/5/Y9WwrW2n1jzD1jzBPW2reAHwPe0P/+OvAPeI9S\n9I7jENYD7LUt/I6srvX4HCu6G+HX8JRqKm/MqAXLykbxBcNugFEVGTds4VckjmC8klJ3XpuDO5Ad\nprKiBT4XNrnzQFZda0L6WuEYeA6BJ9fzZj6lynR53tJHLqga8QvX11rUq0vGm5A1LcSJawvQCkaj\n6UJvEZD4CiEcIwI4QC1fp7Iun1ONDWTZmEwpurAZYV1Rc506cSn3vXl1wTNTOf72gUiDLTLLTOGz\n2eg+qeasnNzBV9SkcUtC/RwqxsC15WkAMysySo01+KFPqLt7mpUoxINUP5RFxjLCZYG8XCIPC6oa\nG5jjUFVUqNVYRFE6lHq9w9GMUKs2XSzVRO61c75Gq63pQrV4OpVNNpQE9ny9jqexiHlaMlARlSCe\ncX8hfR7qPtnplDRWpD9PRJe4tCnWW73jUZSaDs4rFHOxBMKuBCqP5g16I6ncnZQe2bJQLktxfkZ2\nbn5ZrA7TukekquK92U3mqkGKG2A0tpMnKdlQJd3qYh2utGNqoSBMo7iL58pnKhnZVK2fg5iTA2WH\nTqVv5XiTaImOHN2AUuMPieG7tw8etvebffibwD/XzMNN4D9DrI9fN8b8AnAH+Kvf6STGuoRZk+Lq\nDOeOTHib96g1FDtvhrgaXHTiFazmiqnIC+16bdyKDKQJLHhqnBQtTODo94a8KtkAR7Hs6ysbfPgH\nxDy7fXJEYmVyVKYuQUODcrPFqe5ioCZwJfCIawp9rnh4anI2V2LabVVLCuukuRzTn0jQ8mTYZzCX\nCVEUhopSjJk4w1FYqp/KNWapy2Sg5mnmE8yUjiz0qNdU3agX8NQTEjl/43Xhg7y+N6KYyP0PB318\nfblTU5yCpWLj0aqrma/35hT21L1YUFBq313XnoJnfbck1YUzL5ekLxZPXZHSlgwXen+5Sz2S7+ue\nh1HXpFDyy04YcM6XF6wWORQq7FOLXAiUXzCb4eZKxd7SwG5jxGZLFv1Ot0qiFPC94zGpun/5Xhcz\nEfehFioV/ahCU/ko20/WcR2FXWc+8VxqafLGhEWgpdE3dXGLIzLFmyTFMQNdbEgjinu6SfyElFk7\nX3IY+HLdO2ZKrs6ZdWpEOnesTUmG8ly9E5m/rQsR1XgZiL2LO9TNJAKUYdxyHacnY+tqJsM1Lv6a\nbjLXfXAVtFA4SArie2vva1Gw1n4D+JOw1D/2fs571s7aWfu31x4NRKOx5G5O+XqErWuV4HSNvKem\nf61CqqugH42xgRJ1pMvglQulrqJOm1J1Do2fs1wxTdXBLSQA6TRlNffziHYmq/nuzGI0CzJvLBio\nVFiaZ8SKWHTUBMaXtCRAnpW4jsqkrzVpqPtgrENZiJmXzMRSmFCSqUtRVgvCUO6jKBMiNfPLJXza\nZgSKJMzzhKkr9zcfRVRV9yA3cxZKNktbg3MDl7KqpvNgiqOBKLc4Vb0j9h3MUv5Mfx9bTpGEoyQ/\nxRN0SsNEkXl5WVJoxZaj45pjT1O2pS1PU+UzCjKtngxNfuq6eIpodB2HQFOu58IupQZ/rZeTZGrd\nTUt6DbnXWiam9mPVNSpV5WbIQxIlQS1bBVVFbJ5E94h1PH0lRYlKQ6ToyMBJGcxUO+Jok+aqqlH3\nI4Y3JtpnGZek12cxk7/Pg4IiUAspd5nr9eZfVjlCe4M7ukHv2YxpVeZWr+wx1LlAUXCSKX2b0rhN\n+zMco1RqzohAn4mfV8lTJWYdLXAv6zgvdSj2FtiaWjQfs7ipkhSPUvj6sjLS8rDm8b25FI/EolAW\nJdl4xmLtLp7St6c37jBeER3E3MtwlKPPOXRhTR6coxH5+fgIp1Da95WAQKPJZrz7EBoarmKXgq7K\n/Dz1JvSGMqgTv86xI8zO43s5pVYJ1t0YX0uVHaWLL6IGhRrVu/v7tBxVIcocUNbeLM3p63O5rQxL\nB/05s0Tp4isVIn3pK80udiDEKKmyRvl5dFp9iU3JlT16d2//IYBmntMv5HeZ+sJukJAqK9Te+IQf\nr8tYvLlIWa4fTccw0phAusQ8ZTnzYlnNaU6BMKNpyVwTSIvM4jhazq7PzoVTOnxTejiOZiKsQ671\nI7ktT3kVS71Gq/R5QunJz9uMY4Weu906RpE343RKZU8+jzRmVDRiZgoVH2RDBrMlJNhjqLGB/nDB\nTF+Wi09/HIB2I2OmkgDTrIpJ5XpHh99iciyg2+nBMeFUqZ2P5Xq99gOGQ1mQ5h2LrziTLM4Y3xXc\nwIPu12R8bpR85Y7Atfc7NYY6P/vHPUZjjVdFhnBNrte3KkQ0OmRoVJwndAnUDSqcPhjJxuXddTwU\nF+HIHDru7FNxhZzlqXqbbl+rat19TE8XoT7MtQqU8r0tCmdVkmftrJ21d7VHwlIo3JKTRoJzo8FC\nTd9yZx2U98CN61IcArjNDqG6EpnqQhjjkuluVlsM8R0JThknAVUUtoXFFIpGQ0VPegUPjqWYJ5vP\nefBAVuteNjjNp1M6XKjIOU6O5RqHYUaqEvezyD/VUGg3N4is7ALj/IjxSFbr8Ylc4+BgdprHN3ZB\n7MpuVvE8fE92oFgr9rLhMScT2RGGg4xCORrN2CVbCLFGYhIOT1S+bixwZ1v6BKrUPE2O+RvnxVL4\n8rV1zmklzf3gkM8qFRi6c89zy1jdp9SW5EuroYDQU5MfSxBolkfxClFpT12NrDSgMnSYnEW6zDSU\n2OUupZmYgwyGCrHOThIO9xQq3Y2IFYeQhw5FTZ57TV03M/UpVb9ibA1FLhaiqVRZq6q0/VaDy3O5\n3uUPCv1dK64y0QBmttdnuie7buVCyKQvgdm0ERIPFZG6IdeoDdtMVI+zklc50YDgIF2wW5cd+PbL\ncsDbdo83tULxaAH9EznvYjShUGuzGtS4oJZCt6YanCsGoy6v32oTKOFmEZ/DX8LNnWcxGnQcazak\nWMzYU60LJ6lxzoiWxeqFJtFPyLmL3zvhzcmS3/O9ka08EovCooS35pbWJcsiVnWgRk6iDOD5dEqo\nYKJG+zITxGybD9WPbkLYk4Odmot15AVx8hhXBUGtYylcifq6flX/LU4x4i++s8+BZh863grumph2\n+Y381D/Nleu9iGocTuSFz7MJV2uyKNQaMbNcFoBplpDoCzuZq6ag67K5Itde93aodDSOkGc4Rus4\ntD6jttWiWVk+HkuUyn0cmRN6faUvH0wINUbhKOzaOi7tSK5Rb0Zsfl0AXhf9HT6gCljT/D5G76Wq\ndRkHeU6oL2zDcZgsYzHWsqaZATcOSdTkn6mGpbXlw4XFQqDGZ+zWOHTkhZ3Oc2Y2W96KHluCirPk\n+YB95NhaeJ65pjtKpnSQ1KGnG8TIDHGUzt7N18iUtKWcZXR3lOHK26KpKd52IJmFyBnRKiRTM21X\nuXnwplxvu0EUyGIS7Wwz3pTahelIOjodRJiGZMSC9ORUrac48nnhUFyQay3590ZakGr6er5ImfXl\nnhdZiqMBm3qzQbsui8Lm+Z3T51Rq7CSq1PF1EY7LbYxqgS78CslIXMUHR/Jsrt2wlDOZ0yPrETck\nntWapgSX5FlPnClfXCoMLXmAv0M7cx/O2lk7a+9qj4SlMDWWr3o5GybgalN31VYLT7UWC+tSnap+\nYHGPnio+X78hmop+VlJT3r7nV5/BjGVX9epbWKU1zz0Yvylm91RVlF9/4Q2u3RSTazicMFPNx+Bc\nwVSj1keTk1PswLoG8IqdklwjdGHhMVDl6v29Pkf3xGR889Yhb90R+Otb92WFD72QDykFWXilwoZC\ncINZhcSVe/LUbak363RVUdnGE8Ya1h73+xweyfVG88WpC0VlyVRtaG3K7lIrVnAGsgNfHu6yilSH\nPpfBF5T/MlCimicCl/NKb1dpVLh1pNZIbkkU5juOS1KldFuvqkthIFJ6vIrT5sqOgqGSgM/flF33\n1oNjvJkGK7V4KnA8ZmrdOE6LQgvQFkVGVlF+wcRjFqmwT6Am+u1j7ELu9WT2LW7fV1XpXsJzV8US\neOoD5/ihH7wo/dDS1vSkzWhfIOFvJbu8+KoElS/tNAmURyNYc6ErVsPefbEaX77RZ/sJMb9b7Tre\nQqvt/IQv9GQe3T0WS2GUJiT6PHrjEdniIRWgo/vvSW/AH78s+m2Xz8s8/fCVp2muKDYhGbHYlzFM\nirfpXRMX5Xd/b5dA2bZv7Ip1sJsdM1PynavnfdZXJejY2KnRUfzGfjvm5VtL2YD3hl14JBaFxBre\nSQ292GLb0vHHUx9vWyZHJ1jFz2Wgjk/e4YuvCAjp9VfEVK+6lgs6uRtBxrM/KBHnMus1njwxAAAg\nAElEQVSTq5+8/80T3r4nTDnfeFEG9+u9V5mM5Hedi2t4XXmIm81t7u7JglOUlpqqRfnqkxoiXEXg\npbOUmyN5SBu3blHMNa05n1Lb0BfvWF7S0fExL78obsdi75ByfBWAJy9eolCyzn6uZKb7FRIF/AyP\nc8bLKsgkolmRiTubJDiK9PRU/yCOq4D8vWj6XC5lQVoNvkllIWP4wKasN2RCzlvy77RWcmDkhS8r\nVfqaFnSqKT2VTC9ilwub4o60lAzUSSNq6vcSJEx68vLeGN/intY29Bfp0sPAVVckDB3OVeXatZ2Y\nqprrheeRjuTco2zOTqEsWqqw5EVNem+LT52nCXsHSuRyPGSoFO7O5AHbNRmXnY//qDyn0S53VNvy\ntz/7Oq+qQtTgC4buliyGVzZW2b4sILjrx/JMD+Yzgj3Vl+yskulziF2Xe0N5ZoepuEGp42LzZb1H\ngVlyidbreMrXubHdZk3XlckDmQvTtT1abVnQKvUuw6Es3oPxlHtKIOtUdimUmuTSj8oY7hw8z/5I\nNjV3YTmcyPuycmypIsQvh5emONcV4NR/bzGFM/fhrJ21s/au9khYCpktOUgSSutyoJjhxy4GxIoN\nT3qWBz0JLr5y9w6//6rStqtL8fhjbYE3A7P7C3KleLcbPvNDWc2vPbhB75qc74EjQSaK5imEt5q1\nqa/IGtmv7XJT6cFyLOc1572pFOh7jqXiqSR5BCdz3a3Gc1oqAFJah3ysoJ98GVCDVkd3vCA4xR7Y\nfkmWionaV3KQoBPgjWWnGfanZAogSqzBKsCpUq0wU1UgT9W01uJNti9LDUC+yDFPqAT6S10cIzvG\nxbBGqfyXI43qjyaQd1293hF9tXi24y4zIyZ6zXHp1sTlaStu4HD/gLsa7Iozj9sT+TxfzBirpHqW\nl9hl1aVWuKYlvFjKGO8kbeZqxTizHE8xKcaPyLXepKY1FRWqJOsSPByMArpXlIhmZGivqEVGQHKg\nwTXloHEcS9mXMW5GFS6p5uXL2R4Hx6rqVB6xeyCW1UpVuSHjKhUNTDfHMYeZ3pNN6Sn79XipQWrt\nKTwoz4pTfop21Maq5WISn6mO7X3l93i+GuM7Mu9rlW3KtkLJB3dZb8v3rSvP8OK+uKM3viHMBElx\nn0D5P1efaFC/oFiP3MU6Mkbrm1fY9pd0N0PeSzuzFM7aWTtr72qPhKXgOQ6rlQqtsIGrpJWh6bLM\nX7lOQqaw1I3oPD/8tHwfR+L/Xa1XeFqZdorBiGQkgZxG4xOgzM6NskJxRXbmnzMikPLO7RsslEqs\nth7iNyRF9LVbLbxU/M8Ih2qkJJ9KNdYNI2KtlpvXCyKlbY4dh7on59uuu1xYFTm1LdVY6B3Nuboi\nfvROWWFRlV3cD2d4GjMJJ7JLNP5/9t481rLsOu/77TPec+fhzVO9mrqq55ndJFsUacmSTEuhTTpy\nnBhGbCFOkBhBJjiGA9j/xImC2AgSGEgcxIbjAZbkOHAsa6JMSqJbHJpkd7MnVnfNVW+e7nzvmU/+\nWOs+qo3YrHYjdhl4G2jU6/vuu3efffbZa/rW951zqXa0688pc7crVqCU9ukOtOZdVKmp8va2lgpb\nDszp3HYqCcPb4nls+WMWU5nnvWrK0kVdFy3Cn7gFlzVRdVS/xfUtTdANYpT8h8WGw+bSTDpPOyrT\nkDgSi9+NCgZaUo2nBdWKYi5SQ6yvB+qZ+F5OoXJr3XhMb9Yx6gCZxuL2lPlE2YkUEdiq9lhQNOby\n6iUuzEs9ftAeslGX+7QRJ8wvyBo4vuwbt6izVBbF79//wgphWd77me0+W4eKl6gMyYZiVRcUe+JY\nMYRiYafmiHCsnpzxmakJziQ7MDa22tnCSnE0kXpxaZHzm1IuXDtXInxfcmFPNKWEumkWqSos1HLG\nBDMofLuDoxgJc7EMb0sjWObKHstMgUnFs7lYq3ExkByV3fuA0lSuo5y1+eSK1vb3eaDxUBwKlhF0\nsKmE5BMFHqUTyoUsgl3NuLgpXIsrgcdGKDdsxi/Yth3aCtgZFSGD+7JJg84+RmvCq1dXWdEehVk1\nYXNlgXSWMCxldEO54SdWxK8pGKrs2TyxKQ+yq/Rb7/opJVX5SeIKvib7FqoBG4oRsMsOdkOuZa0r\nD+NecEBLOwPnfI+pr0CtJONIQ5CdqbjqzaJGxZKkXn2hSUdpx3qRYSfWpJyfcKx9FagmpGnH7J5I\nqHUwbHJNsQe3Eo/nFZuQlNtU7ZkuoazFxcInKcv17921cfUh7YdjRtrCbbXLhEPlisyUqXqckOhT\nMcYi1tcntkVF6cYKewzqdtvatToZhNxCvq91aPietoCfm8Z00ZDIrzCIZF3yQg7WllNjY121QitV\nEu3tGHtDWprB6+TgLGpSLZ7Rw1VprMt98nODdnCzUV4jfkIOr0m2Rah7qqwduv37u9w7FLd9a3tE\nuS3fMV9qk+ipkBWzDtCEvJiFdh4VDTE/cXGDH//MSwB47Qz3ihy+LQXqNdqLGN1DySgj0TmbckFF\ncRhW1eWJF+UZuJxuAhCVEoZdqYBUi4KSMl6n03mm+8LoXW90eCIT4wQz6pN/8TgLH87G2TgbHxoP\nhaeQA2Fe4CUWU+1Ii29NiJ6SLFGzPIenPPxONsRX/Ue3rDXxOGXYlxPzxv6Yee1O4+4dXEeSMqXz\nV6gviuUyWkoaV2KsQFxK3JDwunRPpncCXLUCa1aV8yVpzBqtyumbOMEpzZmTjfGUPNXOJ9TV7cxO\nYsKhiI8ks5AAKGLxBI4pYQrxPOy2z8mB8jrclnLrOM948XmxiI3Qw7bl+mpBneVNmf/hdshYVaq1\nmY7dvZiu6i04nSaBSs9lbp88Fe/gzrRLTzU7VxpybdWazWQsNiKeX6Dmilv66uEJk4mSekxKHCox\nyt6JytNnIbmKnhjHA1csbLlsn5LCtmsO0xPVZ1D4cdmNWItlDU2Wnzau5a5Nqk1OWTFheqKkJiqW\nUu9cpKn8FV4wxXiKeFz2MX3xRjKmFIprsLUJLo1PKPT3eaVDc008SDPokWr4Uy1auMqkPN6X+fT8\n/qn0YDtwqdpyfUHJx3Llvs8eonj6A4XyoF1lXWkB5/2cwVBKh+vNc7Q74m2YQtZ40rsDnoRBbjln\nqjwL3eE2pXlJGHZWAlzVS3U0h1qxmrQXJTQo9kckkfxdmPcIytpAWJvHfUlCYd7igcZDcShkWc5g\nEOKmOU5JNsHd0T2aexqTtjoEGgN6xsZo6yypLgg9Rl3NAB8mWCVxu02ckE6UjSacYiubr6MPrplY\nxBobp4MMM8vwV49ORVTm6xatq+oGf0N5Is0xNjM9Qxdq8nqp8PEThStXPXzFDviBbvhuhakKoHSP\nI1DFpuTegFFfYdPq7ocnIcc35IAw1Sp1d3arJtQ0TzKpjumkerBoBnxgRVi6a+LpDjtl+Xn/2GdX\nxWSDZhtXxXRjDSk8t0Km8Nqldk7Jkrr5fK1Hr6cx7CjhzrtyyN5VafhpnJ92fkbRCVXdpG5m42qs\n3UhsLGWEtsvyABapRV6SA2LBCnBSrZKkOUGqNPJFROzI+8vRrPU6wFe33MttHAWnubQpmrrOZvGU\ncMRS3kbPlMibcvCarKCKPJjWYolUw8a0F2NrK32MYCFMXmZZc0qJXSZpqYiOVZxS3/uKQZhM49NQ\nolmu8vicrOGFhXPUZz0v2ZhSRfdnpuJEkwFhLAeE6bawyrq3Evu0F6ZidbAV6u0XArvOJhFGxWuS\n6g6xttQHc/PY89oRvFbF31OGqAccZ+HD2TgbZ+ND46HwFFxjWHQditw6rTIM93xGK2IlavEWpVzc\nvdLSCkbReMboCX83p6ydTSsrJfxAwo72YJ1iRWHT5TquMi3bKhduSj5pLG45wSG51p2t7Qpt5UX4\n5PwiC035bmdDrEdn6GHPEIFJD1fxBLZlyGyxRmWvdip5VpoxSgdDrEPlbzgcgYYgRSNl7lBO9seU\nasxb9FhYku9YdX1c1QVIipyJCtGMpjXmKpqVV9mxPPZ4dFEsUZcaMVKJmQY5d7WD0RBSrakbP/OU\n7IjqrCt1Wqev4UPZdimrB5EmI6baxGQpzLuUWYSaXEviCcWJWrlGHctXdGeeMhor6Yla+U4ZXkaS\np6vlnNc0UepbIqkH4OYF3lg5E+szrzDC1kSrP7+BrS584YyxtPHMKjpYpRkfpaJQY4+gLaFiEd0j\nN7K3fLeJq4rXmbdHmsp+cKfiCVVMyIF2OB6H+2R7KiNfq1NSFfKgItc0DidQSCL2fGOBJzfkc9uN\nJm5ZvK3a6iKWraI8kTb/zbexexraBHtUlFCmVO/gLssauY0CZ+Z6OTNehZxEG/DSoxNQLzR2cqaB\nNlglNvFLM0GIBxsPxaGAgdzNSSsptiUPSl6aEg1lI02Y4Gt5q5QYLIWVZsqdF/sxWXm2wOBqGSsq\nx7gaA7q1AkvZkoyW2CzbPuUOjA8KDsfXALh1+AGLCpp59HxOQ10/60QOh1Fln0ZdMfxpi1hzFFGS\nn7INxUWMo6QehfL+ZbFP6Eq8H9ZzqvMKdZkYLBWT9VfkOpYWPOY7cs2toIVfb+nnDrF3NHYsTxio\nUOpM73BpwWN5UUFPt0LabZn72qjOJT1EB6nHvR3lNkzkIUjiCCuRsCx1HUZHWkVIpih6lusnhwRa\nZhspY8sk/AG0Nw9ThiqjnkRTfFW7ck2Oqw+9o2HQZJgTt+SDm6UyLQV9Wb6NX5H3ekcBA71ZRpVy\n7UmIFWiFKs/JXeWHjF0K3RduJcZuKmfnVEll0wFZLg+NsWySqayFTxu7pWpfQY1sT/JGmYYr02nI\nVFmTBkOoKf28lxpi7T6sK6lueRAwUfJUd9mivqBCREsBvbGscykZ4eset1WQxytb+E3NRQ1cipFW\nkioZnpZZ7VIbS8mC0YpL7nlke/osJCG2tpRbjYBMy+RTJ+Ig/2iP+Vn4cDbOxtn40HgoPIUU6GIR\nhjZZLImjOVx6HbFWdb/BxBVr7PWuYxJ1JbV3PZ5GdIdSOZjSprQkp2R/r0d+JNbf3qjgtwWclE2k\njp8mKWkinxGV6my9K4CP/lvbfFE9rk8vvYKbPSvfvSKNKtsfRPRsJa6wXELlTbi1fZdWoO5s4lNS\nWu9EZc4mWcRAG4IGWYGHfEl1sUGgHAHdW0r6QoBxxHrGSYSv+pmO7ROo9S+NHKYqvz7UhGrVJOx9\nT5t5ehmv/HfSHPbK1nPwZ+Wzi/CXeXxL5n+/L3bh3fMpJU0+Dpiw05MQrB9loBiQgoJI6+mZkrTU\n7IQ19Yj6DYduX+ZhJxEzm2M71ilJTlld/w4JLypEt1MtsaBUd3uOfXpPbBMRDOX9g0N1k+frJAeC\nwrG9LtFQqwzFlFybhyb2FEvZvZ0Zm/WNiL6tAjFzG8ytyu/t4ft4me4np0yuVjyeSEI1M0MS9Rqq\nDWgosMqreSS5rMtACVJyt4KnOBTLbRCeF4/1g/2Qb37r6wA8Fl3hJ5+R/RQo8/V4lFAKFJNTdhgd\nyf6MT3rYHak+BH6NQqHshXaaptOQWMFZ03HM2FXyIKeGoxU6cpux+9Ho3h+KQ6HIIRlnTA3k2kHW\nr4V4Oj2/UsVzZQNF0wRHM9KFchUaNyEoa0Uh9/GVsMQUJVDdAN/UsLQkRy4PYxzfISlmVOcJu+9L\nCdGMpvwBlSTyvt/DHKre4q8rUrB6gHciLmVtrXNKurrTH/NIX2PRBY9cW63DQjbr+CgjVLBUGOec\nKFHLcDwl1Q4/19F406uBVkOcsovR+ZgcAu2W6ywVlAdy3SOtBhzkQ7JDcYG3toaYH/k1WauNJUws\nXIIcvMtGJhto7oqs5c6JxYkjoU1aiUknsxZni7rSz4cmJVFNCV/LdBd9my9p7FxEbWIlmH0/2uZN\njcszLyXVjkGvKi5zo7AozWtXXz3gsoYutwYxsTI2RR6MfHlPN9IH/jAnkeeHpBuTeGJESmkDJ5Br\nSbaHREqPn9+SmDxOjpk0tftyWFBRRi5v3iK7J/chqwXYSstuqWaFM5qjqlod9qTCOFAAWDYkUiak\nfKZt6nnY5RmXZM5UdRoMe7x7T8KHhXvncK7K/IPTPpkMS8uJ5eAilfNadfMtgrqK35oyM3WuAplP\nYUd4uSqqzSd4iRwg+XQCmVxH6tnsbWsDyAOOjytF/58bY941xrxjjPl7xpiSMea8MeZbxpgbxphf\nVE2Is3E2zsa/IePjqE6vAv8p8FhRFFNjzC8B/w7weeB/KoriF4wx/xvwc8D/+i/6LNfAcslh4sBQ\nO+TqkzJWW7OteR88cfFs2wP1GnLVWixZHucuikuWejkoG65TcvFqcnqaVpXCku7KYiQnrpOl8tlA\n986U4lgs1OfTElWlgzfXn4V3NGmVivWJpxGxusEWdcoKlMmaDsehuLatzMVWcM4wEesyNTGWeg8b\n5UXChliS0cGUREONjWWl1FqpkSnG37FLmEyl4ycT8kA7Qkc2jMSquAofroYWa5qRP6gAn5aQyeBB\n/qOyntO/hFF74G3JZ60GGa66af3UoakQ5LBcZUGFb/pJQV8z3E0VU/mCfZ5PB5+WdV0/j/uOrOdy\n9hsktlRrbhUhh1oFKI9lbhMTkR+rTSpBq6Zdm+MJE12v0HZYscUNPlR5+u1kiwVkL5TKLurZM80m\ntFxV+V55EvOUMmx/QtbVvWEoHpO1GrsnxCoJ4OUVUHr1tHdMwkzmXe5pvTbiUH5NYfeYqIfR61sY\n7eeY3Ru3BC9efgyA5xfXGPQl5KmmJR5HQon1S21QKrtSo66X/yRG1bzzWgVvKta/NOdTaKUpjw4h\nkXtVKG1gHo2JESxLEaX4ipGI0xArkVApTqrc3P1oyo0fN9HoAIExxgHKwC7w+xBdSRAp+j/0Mb/j\nbJyNs/GvcHwcLcltY8xfBu4BU+DLwHeBXlEUM235LVDmzX9mGGP+NPCnQZqOhmWIkoSKJWWXkISp\nhkLT8pRKSfMEzRqJJhhRCrMs97GVH8BxEhKla0t3jnCXJH9QmCmpxlZ2Ry973mWq2ITv/PZX2FL2\n5J92DX4icTtHH4A2DxHJyT6xEtDatd0LKTfUYqTz7CtHQmswImuIRxJq9800muIq229jzmduQUtM\nHcN+T6XSNPF33Ouzd01OeHOpzsq8WvzAI9Jy4bDospeLpUDLnkWeovQPLE1bsKUSe0UB/DX5DLoU\niMycrboXfm8TK5XvG9QM5UBeL1UC0r42+YQR1VCs0ZrKyp0LHYI72mj27g54ssYXYodGKp6Qa0KM\nltEijcn9LryfynWcT1zWtcntILzLVC1vOazTb2uT2rH8/V4+oRCnECoOmXJcJHYXV/dLpZ3hepLn\nsLVEbDpdcm2YcooJsZKumoaLVlTx6obwQLEj2s0ZjsfYmlwttyrESrE2cWCiJVBHMTK1okM3kbzG\n/Wyf5oF4B53LDk9efRyAS/NrHGwJTZ11S655qe1hqyxg/PX7pApzNs/bTDe0NMqYqnZaWg0Vk0kT\nRnvy3ixziWzx0k7Gx1hd1Zwoj7j2znU+yvg44UML+AJwHugBfx/4qQf9+98rRV/33eLoKCL2Mlpj\npe/u9ripLaT25vKpnmNOgTK1k3WVWXj7Hpkvrlp2bEhRWO7dCK8kN2BS9ll4WdzOKsKTWJyf58ZX\nhHDlb716nSuKi3iscLGMElI4fxeit+VnSxJ1Bp9UXbnouE9/Ihtza3VCWXHtO90udlmFQzRheDSK\nGRxoj4adUbklB09jeRNLk2t7Srxx0LtHdE9cwNXyJo15pTELl8hcWaOjWyO2d+X9hbr+e92Em+oC\nLyyvwv0/qCv+T/45d0I2WKt0wkjDoM6kxEiFSiYnGflMpHZi8YgnD9PTyk580VyjpvqYRWkPTpRa\n3LvNUiGf916eEuoaWD3Zcq7JuKpCsk4XvKpk+6dRhmoCU3JSigN5z462mc9Zh3RvSiXGuuQyVoKX\n+zf38K5JN2PJXqW0elM+xJKkK19zubMpr33TzZiravfs+XlWL2v/x8o8QVkTwdtyQHb9MaEmHW07\nPcVFVOI2aTrrkpR/zcGU2+M78vu8RbAgoU94uIizJms4HbR5/RvfAGDReReAn2zep+TKoR9lv0Wx\nLX/X9bY5vCWh67SZ096XLsn243pwlZskmriNDiNOFIh3uDempxWK772/x637ugYPOD5O+PDjwO2i\nKA6LokiA/xv4NNDUcAJgDdj+GN9xNs7G2fhXPD5OSfIe8LKRWskUEZX9DvBbwB8BfoEHlKJPspz9\nfkiWFlCSkz/1C8ye+IOrlTpRQzkU3Bhf4bEzxGDtYptcxUQqj23i54sA2I/tEyvjc7Pi4+aSdKSt\nfefjEb/4ZWUc7k6pa4PLaBHqyyq79boHVQ1XRpsAeOaAfCbPPhmT+DOptIyKJj9N4WCpGvOitvW1\nGi2m80rAGrrML0qjSrDcoVDtwsoH0k1nxl26E00G2g6mr+QmtQgFwtGfjjGRvKejDT638kOmmgTd\nmLTgf5eaN3/aA7X4v3fkyuo8qZeZqLaEY9ksN7XMaIeElqztvG1zKREI9eMLsnUqowhrU9/7mzWi\nqrq+UYNUm7HqvsMs4rOUjq1h/NPk47xzQjyUe2qVJqf6BCkpmYYdTeUYiCYZR5OhzmeeBSWwscdQ\nnJLNegTKms3XNmVunzth/qZ4fwv3DuhsiPWfr9UphVriG7fIxprws+T72madciBeSj+bcmcs7z2y\nTyhSrf8rN0OcjZkoDNw7ymjVJOm4/kiN9RlcuZqw21GY/lQ8qem6obIsPwejz1E8JxZ/eHxCplod\npdICoSVrOzlWZvMJOCoilBNCql2UjktvV+Z8+/07dPcfjIZtNj5OTuFbxpj/C3gdwR+9gYQDvwL8\ngjHmv9XX/voP+ywD2GlOlMUMNAYsUlhWqu9oOgSlAHeSxqlGYUlJSpK9hMk9iZHvfvMtSloE9Y8g\nVMDK3Poj1NoqYjoQN2x/5xZvfqBiGmnKm5rJ/utDlz+j2el6I8IK5CYVMxfWtDmayuZIi5Syakku\n1eq0E+1kK1s4Co+1MnFVq75HVWvTxgmxlBreqZbpnsjn7b8vD3H/xhGRYuR7k5x6KBuiiGGkRCZ7\nRxPCRDbFirIr23bAqt7Waq1L8fPXdJU/fCCMNQfTb8hiveYYPE0F3ckzUs0NxH7zVH5+2zJM2/IE\nTALZxCsLGa4qEIXzx1zPFcjlTdnS9wwch3yq8be64paV0tWM+xv9Y0YVFeJxA4YzuHICVcWWrOk8\nG3lC1JW5JdECQUkO+kYLYj3HE5PTVx5PS2nRi1HK1MjcNuY6NBQK3vHmMFW512H/gLEmsronyn7k\nTIm0n2FiOWRdhWbToKoKX2E+AxUl+Lr2n6xVubom1ZdFq4OvfTDTg4QgllzDeCJO9NaxzaAn7w1q\nR6BdolmlzoIC3Py1EEs7JmcgpuRgQF7XztDCUFY482h/gncg+740nGI/oLDsbHxcKfq/CPzFf+bl\nW8AnPs7nno2zcTb+9Q1TFB/tFPn/Y7xgvVB823lN8QV7+uovkZn/E4CR32H46L8FQKm+QT4vJ+ZU\nocGHyTXeuCUw0t/pXTttfKmO6vxsItRXP2r/F7hTxSyo24ozJq9KF2Fy5ZCdJ8Vy3/Df56ApeIOT\nKynXX1NSlkckUfnTF34fIy1O/OPfeoO335AQZHRvyPBt6S6suBCp2EGoeAOrAEtDlNyzmT8vru+l\np1ZYUF3BfiBW93v/9B2OtPpQJPlpw1RzcwFLO0lHR1O00Y4X/vCLAPz3f/4v81RbPCFT2PzUH/sZ\nALr9KXtbYpnC7gD1jskUgem4BkvZh52Ki0nEI2jWAhYXxVo98/xTtGtiKXfvynXu7XS5fSie1GSc\nUbNnnZiGbi7XksQJiZK9JFrbT/LiVNnbsW1c9SAqDUOoybxwkpGq19BUVmM3NtS1gzXDp7ooSblW\n4NAPZV26R2OcmqJhdYHq9SqjSDxL0zI4Go50pxMylZTvPL2GdUd1Q3NJfMblKl/8z/44AD/73E/R\n0qpMEua8vCkhbaRrlabZqVr30kaLaiBe46V2h8q6hAzH6QRfq0Oqqscgj5lfUsyCl+HuaXepn2Kp\npkYSxuT7Kl2v5ZLIwKg/6wJNT/VUa+0yxldkZZRhcpnHq6++9d2iKF7gh4yHAuZMcReT/cdg/TXI\nZ1DODFshyHXLptrRmKDhURxJtri3/w8A6B7UeC+SB3Mr9/mUkoz8KWeXS6G8jvk+WBJikEhph+wu\nViQxcvy9E965L3HoX8l3KfSGXzo+x4lKwm/s/TgAv+7s4/XlMz64F3H4u9r52D8mz1QYJC7wtHNx\nBhRKixyjnYOkKbl2DC5vPM7aghxYuwMNKSo7FJmCpZIpRuPX3m4fWxl4ppOIXFuY3/lVyZ1YP5dh\nlMzVsS2OtL9gmnrksbiUeZyTKe8itvZnZODp3CzX4FXlIezMB1y+JDmaJ55YY2FeDohzbSmF3qsf\nUG9qb0cBjJS41Rlh95TJCYthV1z0SMuzxSQim2Xvo4hcJewzU8VO5QExZoDnKkmK5hYWL7SJjpUs\npmHha0v52Dac7GlL+WSI0Ye+UpXwKh7mhBo+WL0Gli0HRH+3O8O6Yd+exyrJA7f3XWEripyE3/na\nZwD4Ey/adHRPhp7Q7QNk2l+BMbgqjrtyvsZnfuJ5ABa6BROd57Vel8xVvsllmYM9GVJXId21jQ0S\nX+5T14pwNMTym0sMbYHhe5bCsicxpTnZF9vvHzHM5BAukphaRa+7m54aogcdZ12SZ+NsnI0PjYfD\nU3jGha/OQ/sikpIQ97NQ6C7ryxSrcqqmr58w7or13zkSF+8fF9vsq2Zg5OTkDW0Gmc+hqansl6bw\nV5TqWrO45C65kTBhf2z4P5TW/a7lEI0l4ZROymRz2sFY+nUAkm9UmexLTfz6268TH4srbWX5aVde\nYBmM/uyqO1wtVWjUxGL0rBKb8+JtfPb8KyzNSzzymydSUy6yb+Ba6gJaEZkmV7kNeisAACAASURB\nVKNuiKu8EHZmkWuNfNZ888t/529y8b/8CwCUnQqpNjPFR8dMR+KFZGmEpUvrKrW473n4LdWgbDV4\n8olHAfj8py6xoC76YtBhcUHmnCxJo87guZhjBdDUizmmmjzbTo74ztcVVl6v8O6BJFAPJ7Kue9dO\nGIUSluVZitHrcwuPXBN3uW9wFCS2uCHeyic2L+Bf0qpMUGJ3oLwQ4yFD1dPMiwq+gsTmVBHcKyeM\nJuKB9Ed9Qu0qDcMhaSbrfHT/Bg1l/J5pW+Yjm+7XJcQcfikm29TGrhQs9RQKVe42ZY/KgnzHZz/z\naf7UZ/5tAEqlmAP1kFqvv8bygqTcKlXxBO9FKf6x3MdLa2uEc4KnOC5BdKiYk2CN45Z4aQe5eDPD\nrRFZpJ3CwzdJNFkNHvlEPe7AIZ7OpOgfbDwch8JJSPELH0CwBVO5+VQOiJ+SzZiELtfvygZ6P9nj\nl3sKAFLk246BkrLSTH346qykFRr+zLxu6IGF/5J2s401LtyO+Qvq7n41yemqa2icAnIVdN07wNc4\nOf+mbLRL/pQvv/cmIO2ts7ZgC4NRuvOK5bCs0MJXNiSv8annf4xHLwmybT/KIZDvuHj5aSqqhhUM\n5L1f6/46UyOHDa5NpHoD2AlWJje85lbJlOhjBjA6/sqbHH/ud+W19ae4HIv7/Zb5PqgOImmBqy3e\n5bps4lrg0J6T0uLzr1zgC5/7LADPnLtAYWasSRa+ryxUc7JB51OLzVXVlXRzzEjCoHMnO6x5GnP7\nI54/kAP5lmb1v2W9xTuKtOseHBEr2OZqbZ7tSK57OMlp1mU/PL0gmgZPPr7MqlLHJ0WNwUj2xdEk\nwULek45bpJaiWvXQc6YxB10J865tbbGnSlBZMWGsD6QbRcQzdGIg7ncUj2ntyqFQXP86ztyn9e9K\nLKi+5az6UJ+v8sqn5YH/oy9+loU5+X3J38TS9vonLuc8ck4o19tK3hPF8enhnkVjbKWRn0ZTQmXI\nsqwIp/0EAId6zcdewjAVo+aYTW7eEFBXbEGioUR/YHEczwDGDzbOwoezcTbOxofGw+EpFEBcQHIO\ntLOOjUcYahXhreyY374nJ/v1ccZ3NJk31tl7lkXqiQXyLY++0nndLrl8+6IkdR6Zq+Ovy8ld2ZG/\nv7+3wj/4FQELbRcFJaUYM3FOqlTmaRCxGspnUJK5fWdnQhYr6YvrUuhJbIxFoJbpE36dP3L5GQBe\nXBcF4MqVJZrPC3B/Mw2ItePQ5C4l1Zh8dF7mcKFtk/cUzhousxuL+z1KUtAOxjmnwaryA74zFhf+\nZvcGN157HYCFvsckkNetcYKxZvMscANN4qpK0cZShcuPCFHBlz73OE9ckJ9rlQX0krBKBsuSec5y\nV6KIpPiPOAWlBJsvVXC1u3IyOGG+qXgC7YDcq+zRV4q1NJ/SOxRL6qwbFobK4+h2WNaqzKOPCdDr\nysYCyzXtWg3ajFW7Eq9ExVcLm5cZqYjMwbH8Ox71sPbl/k0aIW6gYdOW4W6o2ozJEFuh2fMdmcNJ\nEtGLFU/wu7/Gxce18WKaYDeU/bojXtBTL7zAlz4hyf2NjTX8GWtAblNWoppHN5botMUrdJRp2k8z\nciXtScYWqBq3H8akyladjUYYpWbzWhKC1RZP6B/LjajWm3SWJaR9//iA6FhVy+oeZDMp+gcbZ57C\n2TgbZ+ND4+HwFBILdmvwaA5vS42d++/iqQZEZgVoCz22ZZM5GsMpXdkzS1WoSYxrNRJyRRD+5Cda\nXDonHAKdi1PKnpQyS+ppNPqHfPF7fwmAv3FniKUmMS5ytN+HcOxwoN1nSSQneDkOT/MIvmVT1XxG\nyy14wZPT/9+rr3BJhU9aqskQ1DaxPbFyxQXwdhXd2PGhLJ/dlPwe/9VLX2L4pEK3WwFvffXvA/Cr\n3/0aB6mqNVs2R8ozUFOMwU435uvf+zYAzzXOYSlbz7iYnMKjIcfTmHljTZpYL240qM7mGbYJXLFm\nVv4DJWVDA0vpxtAcAEWOUYi1qaQUlvb62zEV7XwsLTm4ylacKV7hUnOVwTNa0kvHTMaSlGwH8/QU\nC+CUymxo3P7IiljdtWoTr6I5nCympLKA5UoFSxm3JraN1xePxJmT79tLx3S0zJpkS1iXKzp9m8P9\ngc5tQK7lbAvJr+B0GSrL1q++9nU2PidNTM25i3TK4mU98ri89+kLqzQCRbHaGY7qQWTxEeyqtuPS\n+ikrs5lhhLz0NE/kVaoUWi5ObYNR+jd/wSPpablb8Tn2pExnaZZ0zYhdxTFEKT0t8frHJaZ1PtJ4\nOA6FSgvzqS9R/A9/GMOfB6CYtCire3mpXvCdSDbewJ3izXDpdXntqcevYF/U9t3rI5orkhl/trTM\n3KacJo3yC3gtwSQ4+vCnlW3+g2d+HwBv7P422ypqcmAsjGaW0ywnUQ6+qCSZ4HZmaGoH56JXYlX7\nFv5Q0OLZqri551Yfgx0JTRzlDrRebcFlZZ3eyzEzlt0sYHYKOUrf/eQrn6UI1C2vF2xekoPg5b+X\n8603pfry+qTLWMFAFXX6sgD2jrRasnvISME/eYRwuQGWZVNyVXexJofRpYV1mgqKsQcj7FDW02oG\nMMuuY2MVypc3kynCMAPAGVzBJgN27KIM6DjWAkVV1mCqAsKeDZWuHDzVRhPbl/XsRf1Zjpe5OZ+N\nc7IeS22ZZ7W2gO1qO3hkYWli1yGg0KqMO02w9F4WyhlJMqGkALC5WgPHls8YVvao1xV6XQQkei25\nVh+qrs9Emxtu9ab89m9K0vHpF208vb4lI4ff1bXyaS+G79SwXU2au2NKTaUONBlM1UEvz/pkrFOK\nccs0KBQrgXHIFSpv8jpFIMbJCrXqQYanMPdaOWZetUf3dvYYH6vGqBWR6EH9oOMsfDgbZ+NsfGg8\nHJ7CXQd+bh7MN6D4D+W1/M9iqzs4X3RYV92A9yc5DbUql5vy+zAds7IvlsQqF6xrTbh5N6KhbnXp\n0RbWhrq574nVdd0lLlz+AgD/47td/uoNSdC9mqXEqsUXYZMr+s0Zi/UsFy4tdQ2rocvnPbF4n5xb\nZvGiqAv71jOYsp6599VaffIt8NV6BAFofZz2ALTz0yjC0LtUoqiryz2IqXqCtsyfucqLFUmMXX9z\nwrGi+Baa4g4ve/PYy+pmZhMait+wTEah3o1jO7Qel3nMrYrr++hyi1XVUWwv1zCu4CUslsHVuVmq\nII10gcobfIzWzYt88IOwwo4plJwkL+5jqctbUbbkshVSmRNUpJdZ2IrJ8NOMUJORo2xKvaIhiJYh\njRPhqgti+TWSoeIJzBHFrCEq8UlS8eoyxG0vZRaON9N1H+D78nnd5jLxglKslW8yTZVcRr2A7lGJ\n0oJY6Epkc33vt+T3+xU2m7Kfmsqu7RTQaMh3OKUAPNlndmZhLUh4m0xH5Er/ZufKuGxXoFA0ojU8\n3ReWDdlMJNQaMHtcjTKCp04IqrHpeVXmlPKt0aqyuyNrm6QRiSqFP+h4OA6FNKfoDjSjPeuvCqQl\nEBGV7asLt2+mVNQV6yvTb2Zshon0CTSKBukd2QhF1cV6U6ChhWlQXFd9QN23LFSxHhH39EJ8gT/o\nSbx4L0n4fjLrUbAoaRY5UNWhjmlSnRGyWCWeVJGOxnAN5w09ANofQFvcOb6om/HwEmhnHcMCFvRm\ndW2oa3wZq3pVw6JQ7cvicI/sjsz9qNvn9q58xv3xhMNENlOknXUbjxVcNLI5rFHOSNms7WoNW9u9\njWVwWvLZzfMy96iVk9RlLUprLfDk9cIuYzRcM34JTjMMMyezkN0LFLFFMevtyG0KR0FkYYlMW8oz\n7fwsz1cIBuJqD6+9Q6IS8L1kihXIphdacwWdRMpPWMrIlZzFBBaWwnnzJCQtlLszjyk0zDHa71Cy\neiQ654ZniDWsWmxkHGinoduqkynoKZooi1EGgRonajWGev1vvbuHo52bSUfvqb8AjgrVuCVQZbA8\niyk0xjeBI/TlcArpx84wruY4kjEokKvICixPrymtosJmFBrG+jTIZ7RRiUemLM+NckCha3h875Dj\nsfJOPuA4Cx/Oxtk4Gx8aD4enwG1M8SeB+5y2mVGAEjiFjuFNdX19r0p1RU7ulZpYYivJyQ/E1Tb1\nKq4mZMzugMQR/W3zxjVMSd7jdoX6yno2pnClHm9tfIvGjpzgW0WIbYLZLDDqBpPJfF5oeuS+nL4v\nHU1ZSsTVDqJDjK2JoZ0XoKnw0l3BKfCsA/fVIkyuwz1BqJkLHlRUzKCqSaRJhtFElD3XJHtKRWS+\nvcvJVL7v1mjKnlo801ORlSOPzReVhCZK8CwlcnkyIP5AGsLS4z7hRCzp/lTWcmeckkzvALBwcZ16\nRVzbvOiDci2aonKK2Jzdp4IUCvW1vRJGG7QoZRTqxVhBiWQo6zVRaxZPqwyrKhzjd7AD8YTizMPR\nJi7XyXEmEh4UKhdPXEaRyBgvBSWZyUxKqnDe0fCE3li1IwrV0wgtMkfq+yb3KWvSseI1sDTEwMzh\nBho2zhK0gcFG+TDqm7ie7IETN2NuTgleLKXdy3okSomWpwvY3qwd0iZV3ERhW9izFlXVACkyB9RD\nwXZBu2oLOyZXLkwcGxRHk2Yy98kkx9WGMcsakWmG1s1aOCVJsEfde8TxR0s0PhyHwoYFf74E/1ED\n+IGrU2hgdzhncUeVgg7sjLaKfPZVU3Gu5HNxQ2GymwELiTz0dufwdJPmi1WKD/RB92XzOKMp05GU\n7/benvIt/e7QFCTa4VgYyNRdHSqrzuhCRrAnD3e3EjLUEml7w8Ncl4OqCFxQODWzWPb9FixqO/S6\nj1lTMsJgFTx1y7VVlrSgGOrmSBzMQK7jqD9i71DeezwNiXUj7Gu4M59NeCaWsu6db9+h8+ObMveR\nR7agxCmNNhPdeCVNoa+163glmbtnStiuPAi2lZPPHEoDxih4yf7B4V1oTsHkFQpHN3pYoVCxXTOd\nw9I+lpISbLYXxjw+lCpR+DLc3JUwLwsTFufkPec21mmrklOloq3FtTUcJYjJC4vclQc6GhZkKoQ7\nSXIKoxWfvoq6mIRqPuuoTMl0bSuOoaPXsjUZE020IqBVoHJsmDryWe3qGo1lAWFtnRxRU+GYcwpR\nby428JVg1/bKWM4P8iCpPmr5eJ/CmWmMurqCOUZ7PCynDrOqU+qRJie6LjlZIganO57peCa0lOi4\nwCMb6yFc8dmsisG5uXyfu4cfjXnpLHw4G2fjbHxoPByeQt9Q/JoDSxH0VMRxccDWFcmM//b7U+4n\n4kbWTIXjY7HoPa3hth2H1YpYnbgW4F6UzHoa+0xuK1zZSkiWNBscitUN3BrfvvcGAN81h/xthese\nZAWeJoaqVkC5ro0rQ7GC3+yOZ3kvfief8qzSnv/hSs6Fp7TXf3KEtagNQdvCdZAPfw3rjlg+t7+E\n84iSvixPYdaTr41P8beus/Orf1fms2MzHAnM+7tbN2h4CnMul7jXE6sxw8FYx4a5VQkZsqWQl+YE\nnFR73uLtigqLbOWUF+QP7m1rhWDRZV0BYHneJJ3KWlnlFvas+uAYTjl5ixl4yaLQJGGeJWRKdDIJ\nxwy0MmDyHRytrpQ95WOoruNeEk9ven+e7zbFS6mMDqna4vpWVnwWtUnLUTqzzBpTaEVlEufcuCVs\n3Md7J9i+WuBeiDcD9VS1OjGt4CgPwXQyZHdb3Pxe4tPry8+D/pDuUK6rod/bnmuQKcXepSVo1cQr\nGp0Yzi3Je0NNOg/9Hn5J3Xm3ToF6gsbDC+Rep45PEU116ZQFOquAJmIxySlmxaTODEFOlgxPvbO6\nAsvcTkaaSENUMc1P+UesZIpni0caOM7p6w86HopDobBSoqBLQQ13Q25m9/Pn+ZWuLNQHts3PKGvS\n0twKWU/c+Q+USajpeXSUjDVPC05CcZcapsx4VW5AZ34Tpbijell1GTtzXH5Uvu+D+Hco3pD3pnFB\nMtGN7o9ZLuRB7mo33K3BmG5fNr+f5UyrMp+XnQb1iriMS09cwF6WOzq6IQ/0zq0TBjvSw9CKmlz5\n7NMAuFULUmlJTncknLn2D/8h//A3hVL+yStLrGmMv7LeZE6z4c9PM97TWH3Wi1Aaj/G7Ms+FWzWy\nPy7XtDRw+EDp0vs7+ziqY3mwI5vq1cky+x2Zb9Zc5qm2HKzPfOpHCRbkdbc2d1oRKmZhWdIjVIr3\ng/feJ2jJQTge3CVRrY54WlCvaDwciyvut1wCzdG0GiWevio5levf2aXzCd38dodCXfREY+79u1vE\noYQBW/3r/MZvyYG7f2+PUkVzEc0yTz4p+6Xck4c0qBXEypD0/YMb3HlbQqncLZgc60OdT4gVGDTS\nHE02iZhb0z4RJyXSUmdwnHLQkAOnclVyPMtHF5l05PflcoAWe8AU5KmEUkkyId0R9KbvSYhmNcFt\nyf3Px33QQyiLe6el1dHhgET3397WHQC8RZ/+gewt165TqAjx0IvYRcFLfs58WUufDzjOwoezcTbO\nxofGQ+EpjKaGb77j0K8VXFQ38+ZbIb+uqsTPLT/D5SuaJDy2OVJ1n2eU8GOtOcf+VLwGq+GQl8X9\nHNtH+FOx3HGtgfsJJWLpihUcHt7gfl8s2/qPvMznAoEP//3f+T6h9ke0bJcvnBOZ4Gt7YpVe7ecM\nxpo5tyDO5fvCKwtkbeFDGJcdBmPpWnvtUMBG346nzBLSjwxHrGnir7m0BtrPEKZize9fgNonJYlk\nL5zjm31hZb62k3D1Kfm+ptvhfE8sQhyK5X/FTShtyDU7z/0KefJjAJQvnKN6T5Wph7epnZP3/Igq\nF507CfnGzlcA+ODL36Kt0ObP/JNX+dLPSM/I+Z/8EziBuNX5RKzS+OQtbl8Tcpp33/sWx3ty/8bN\nu9RKwhuwuFZi0ZEEXOOcisHY61S0W3Ch53Ppglz/zXfeYi4XoFYT+1RwZTgS78+exETKJ5AUxyTq\nit8/OMHXLslWOuWDD5TCfUUsfvnY5sauWOjvf7BHpPDwUurTHcvnmQJaLdlnA6WR99Mxj2QSjj1Z\njkjHWnGoHPC7GrO9PJD5ZtU90p7sycjfxShuYvD6Lq++9b8A8Hd+6Q7jgVj3z6zLXvniFx9j7adE\nR6nU3CDbkqTruLjDe98UarYvv/smX39NXh9OJNxZXl3k6gWZz1x7iYuPzum9qTBS8pXpwKa8qpvu\nAceZp3A2zsbZ+ND4oZ6CMeZvAD8NHBRF8YS+1gZ+EdgE7gA/WxRF1xhjgP8ZUZ6eAP9+URSv/7Dv\nGCQ5X94d891JypNKfOkt+CS7ypW/EHNwVwK0w9tdbh/LSRloCa1YrlLriNUpFRnVXE7GyK/TDeXz\nDu4d4Eh/ErfuvgrAvUHC9/XUfW7jEi+/Ir3ybw/2ufOGvP6IY/PT2rj02LEkyX6TrVOmHFPYOIti\nXUpLT9BVqO296zfY0v/5u99XNGKY8WllLKr9xCp+SVmXnTlQ2jS7JvwBzXOrXKzK9X3/3Zu8uiOx\nZT+KOR/LPD/5SpXIkc/+7pfFCuZmCBPBI1hfXeHgBU3Q9lLO1cSKb825PHfxRwD40iWJ5b/+2j/h\n3i1Z4+s39nD0PriBwzN3lL2qe0jN1u5BNSf5ns/BffEaTm7a/Mr7wvp00o3xG+IJPb3+CF/4onIk\nZEqaOw1pDMXKWUv7bKSqsWlKmFTmnJbrZIr7SBRPYZkSx7EkKK99+4gb15XmbTwlUJrkUu6RqbJz\nd0u+d+TscWdf8kAn44Kqoi1HWchEcw1+4eAoHDtTbEYWgn8gOYOV7z1FdUlKsqsHT/J2+bvyfWW5\nd26jzslAPFav1MYVB5H7777G+78h9++dk10s5d+4bcm6vfO929QuqW5oe540Eu/g8O4+h4Xck836\nBd5YUCauXfH4Gk4TSxXUm21DognPaZFQ6sp6nT+3TPdY6QcfcDxI+PA3gb8K/K3f89qfA75SFMXP\nG2P+nP7/fw38AeCy/vcSIkH/0g/7gppx+Yy9wom1z6ORJskGNfxz4j7XHJfwloQMNavNoyuzh1Ae\nsHIKC77WsUcpXqYMuPs+TFXK/OQ+gS83NFd8e290QGSkDrwf3yMciJv4TP4yQ/NrADw5dVnblmRV\nrBLgAZ6IzALGscgseVAanRYt9dQazUVaCGjp370ilRHSBk8tict59dmfIqifl8+wC9CHwnEkQbZy\n+TkWr8gNn19cJo3FNR6f2+HpZ5UxeO4qP+WKC3r9q/8NAO8PEx59S+aZrezxaCTX5K4lXGyIm7v0\nqT/I739JbsvldQlFgnRAZiSsWj3/bTbqcjj97JMbPPKo1LzdtIbRtl8SVTlqVKjOidv6+OfmWb0q\n33f7YEJNBblWOxWe2JSe8NqCvHe0v8ugkHCs6JVxUnmwXj6/QFMTkOn2Ad6yhHfhUOnFxvfYelcO\nQrdc5emrsoabqXP6cJ6zGtCRdQ4U91EKr7CXa0VlwWa+I9dXzgpu3b8ja2/neJ7ch9FEDqMgz2me\naLWKKXUFzJWXXT6j5Cpzin/wDkKqCzIf62gEbQ1B1x1e/ONyCBc3lrCPZP/+yCMSUl1aXqRc17Ck\nmZDfb+v1TdisyM+Xnz7H8uOyj/bfEgOwuNEmnsrBstxYIJuTw+3ujW2sEwm3sobB/YhJgh8aPhRF\n8TWYQb5OxxcQmXn4sNz8F4C/Vcj4JqIrufzRpnQ2zsbZ+Nc5/mUTjYtFUahzxB6grX+sIljl2ZhJ\n0e/yz4zfK0W/7PisNBd5uT/iUa3dVmsVooZYlYFfsNaSevvKpfNMVDNw4stZZY0KPNUtjH3DaCRu\na70+h+eLWzZf9ulsyCn+6GNyQj8VHbB9X0pyI2ubobILe6t9LrwrJt+NYhhIwnC9J1YymUsolbX8\nZbt4npzKvimYuyJL4Z6skM6LNVoayfeNnR5LsXo06+uYqrJfpDFol6DtikXsLC+cNiLNWSXWNuT6\nnZJF4IgraltNKoviPq+o69wLLbKRuLDFtRrv7wvB7Dk2efIJKYFe9s9z9YISxrhi5VY3L/KlNXHt\nv+BcoZzL3FrVjFJLiW9MTKGe3AxX4TVaXH5UvIPCqeBclet4pebjKMWYsS1KSj1mlHvCrwfYRwpd\nd3LmlYk5nV8hbYiV9r1zBJpo9JVRmpOrVJ6X9QwHDv1NuadxmJFr01yj3maYy94ItazdKw2ozilK\ncc7mfE2utWynrLXF0xt7h/SPxcvaH8jfmyTHUbe8hIO7JuGW+/+UsS6I5znO5R74pc/hq50Nlhex\nbfn94lMVqpF895XNl4l92attRzyG6nzjFLMQDwenUPDctlndFE/BrtfoKDHt6LxcczbdJjyU/VbY\nBf2BEOHeH9/jSPEiy615Oq48Rw86Pnb1oSiKwpiPqDbBh6Xon662ioV2nbXxiLwrm6o3GNB6RDbj\nBatKVTkF/fKUIFPJdH0wE8uiP5S4KfczPG0tnRwfcHhfXM1upU7nknyeq9DeICxYV5fMrT/G4L7E\nbL13b3F5QTomn9sfU40VLOVI9jeNq1Q0PneqkCtuotwsqASbANiXQ/JZG0BVHuhOsoithBcmyikc\nrSU7DrnGu6P35SHukTH3tFQGnI6Lp/0FtuNjKfNQ1u8R3JPP+PxVqXl/4raDtT+Ddn+Vg6EI2DSW\nLQZag2/lOWieZHbwOM0K1aFs7urco7gKzbbiI4quMhO5Fm5H75/2GeTTY0p1uT63VsZWcFOeZhhH\nuRTtlEKz+Wks7m44jvEaEhIVe+6pnHtproqtLNBxeICrh4Wti+k3fKyaEurUpngjebgtP4IZozeG\nfKyt2g05KAZbCWNtyU77HsN5JepptrBqMrc5e5FtVw7Uxi251wsRfNZV5aXmCSZVabCfeINIuyR9\nJTcZTt4ndzblmljD0v3pl8+dUtXnyyvYejDaaLu0XaFQfVCThowiyWfd39/ikYufB6BcmSPYlHvi\nRiqsMwywA7G3hwd93rwpc37v+7vUtEV95FtUOv9q2Jz3Z2GB/nugr28D67/nfWdS9GfjbPwbNv5l\nPYV/hMjM/zwflpv/R8CfMcb8ApJg7P+eMOOfO7JSzuCRmOD2CvacnJ7us8uUFsXtaZaXqagun0ki\njNaYjSPWeloMSLUxyIlishM52f2qQ8PXRFU0hl3ttNuQU7RVOoeVKczRa5C1xE288/Qu68rzWL4T\nEHfFWln3xIWN8ykLmr1+9uojtFwJH+pFC9tWshenc8r56MwgrJENahHySR+jlZHi6IhsX0ojg18W\nFGN3tUpHr9/ptDGq00DhYVQuPQ2nRJZkqheeFTey+hPr0JCwJf/Lj2JUTCSYb7Ch/JGNdosimnEg\nqGvslPB8dY2dMo5K0xWmRToWb6vwbREwlIsCwKZy6rbbhY+lKEbL95iRQprMJtf3FwO1jge3Ma6s\nVdoKMV25N3Ec0UQsrFMLCJV8xNI+OVPu4PsyB3tcptxUFGpWx1ViHDfJsdIZ9ZzskWonwlNk3/b2\nDuFAPLLO88/gzwh1JiPGR/JFicr0+Y0MVxOY5sqn4We0ue0vPsfQ/tsAzAfiEQWdKqnqh5JYmExD\npoqNCbVj1p9iGSUcdWY8kZArL6MVLFNflfWcG5lT0R6nKLBmyXQlVpjmA4yGo9Osz/2+rOH16yes\nLsh3OJ0u0Y7M40HHg5Qk/x7wWWDOGLOFsKD8PPBLxpifA+4CP6tv/1WkHHkDKUn+yQeZxCQp+O7+\nlKPLPiVXNmO7WePcvFyY7ZSxlJDCLlnMoNxZKiFDMh3iz0pkLYeTu3cACFhn7UkB3rQnPnZTy3PI\nzfBKc+SOkrV6huhNcduOb9QYOdrB1nGZJprJVSl7d2pR0Rv05LlLrGtHXuDbzJhwTFwFzRwXKlpT\n+D2K2xrvdyekJ9J3wfgtrGtSRTAn/xSAcvMl8khKXjafOj0Ai2RAGkk7eLYd4Rba1vuEOGhp7Qky\nFUfsv9Tn8bKEIEuLOU3tVOx0mtjagZqM5ZpLkYurmpAm8MHS0GYwAe355ivTMAAAIABJREFUsJpz\nmLLWXPUfq+xiKvp3Xo6xZk0YLiTasmv3YCh/YGu1JykG9BUMNthbZKx8m/U4BuUoHO33CJTdyK7N\nDqNtmM5IThvMNoNFH0/vq1+tU/Hk/cpZw/l4mcNzItRyNPoVxhoSJeEJTb1PE2OYKLdjxZb1qdkl\nBjMK+x/NMbPn64+GtN+VaxoMxFHOfUOmpfEii8kyFWqZ+FjB7A8rMMu1ZDMSSx9bW9KNE1EuVGhn\n4/HTjlCcDMuowVTyXM83pMruZJHhnszySlPsI/m8uc02lfZHCx9+6KFQFMUf++f86sf+P95bAP/J\nR5rB2TgbZ+OhGg8FzPk4ifibOzcpuR5XO+KKrQQe5wZiHSflDFshpbaJMSU5jcO+Nk+FOaYpbnAS\n+0ynKkJiRTTymSiGRawcAvmJMir7GZZ21sV72xzuiYbfJN/nOyMFmwQWl1bFzR0rliC6e5etkzsA\n3P5gmXNXFP8QhmQqOGLKaxit5Oaq5pz27xPPNCrvXOfwbXFhp69PqM3LiZ/Zkjhz5z2iO3JNgbFx\nbLFsBSnZtgqEYEjrMs97hSTwauvQWBBMQNSbo/vu7wDQumkxWpPsdS0r4WnibnhX/i6vWFRUQs6i\nQqaJwSw6IuuIR+bPL4GZubzqtrv5KbtyTo5RL8V4Eczk9oZT8lSuJdMOx7yccUvxFJNql2wkP7dL\nhkyZjb1KjTRWnkqFXaejBGLtNIp8Uv1cYxc0lE7Oq1ZPw6NMqeWd5oCFBZnzY1ab/TfUheiHDEKx\n9EfplPhI1rZe0sQgCRMNffJxDcuVdStulHh7W/5urBWZzcYi9bF4ggv2YxSqV5lZBZZ+hnErzJon\nmXFSOGApUQu2izVV6LrXn+VOoXApUtmHGLkOp+QyTTTpSMhIQV9xkXKsEoFRWFAMlQv0AcdDcShE\nac7Nk5BGzWNuXcKH1ZMUO9DypL1AeiSx88jaZ2LJgzWcqKDmwRatttzkBb/M+SsSi7uxQ6CkJlm0\nTKFci/lUBWGTMnGo3WvRMQfX5Od7uyOOCtULGC1ilpUodF1d6tvWKbjlmzevcc6W7PMzT9+mrJvJ\njAagLcWJpf0XkyMsBcdMLtUZll8BoPljFj6bAAxcqQAk9jLVhmzyyNwhVcr1rHApyvJz/842b92W\njPNvXVOil6WnaV4VN9n7/IDsmnRd3ggPSN4ScOnjkw02Hhcg01j5+w5279GZqh7G+idOKc733voW\n33n76wA89xN/jPMXRPVquieH3/7JWzQviuR6vdTCjeR1J/AxqnGRFxlpKAfkIJIU053rXb6v7eDO\nbnbaHZtO49P4umQiyr4Yg7Q3OxQhnWrbtrNPokC0Rq2MGYvbHZpdDj5Qdqpdmc/9mxnf/kAO4TE5\ny01Z2/27OyR9lZ+3EpJEK0mKbLy1d8LNjjwmr+Q5HMtTmj95wrdflwPn+IYcmte3I+o/In0yGws7\nVAO513bkYNQgJVkFV3NMDjKH1MuYdrUbspux87r0krz+7td48mdeBOCZZ/4ATiHPQKqhdDyOsbXU\nO9jf5q6WUaPQItXwaTgt6KzNTpYHG2e9D2fjbJyND42HwlNIs5zucIwxAZaR035hsUJVuRGrSZuk\nLqfg4c0h72tyzI7EY5iLDuloZ+Rco409lCy6XSnDPTn3CrcGCwKuLJQbMHcTcjX+5s4UWsqcO4y5\n9Z5WCdJdFnLF6Psq2EFBrG7wQa/LB/FMPTghT8W9zpyQoiueQlaVeTrlRRylFZuvP8/is+IyWk4T\noxDqhRlbSpZitPPRREOyVPkF05TCCHjHW4r5jV/8dQC+8poArH7mUg9bcRo1p05bFZbIOwwPtBPR\n32XpgmA2ak0JxcahxU3tyKvis9KWtQrLPjfuSoLr4Cu/wQtHypo9kHXdLScM9gSvdmXRUGi1IOlF\nuMpvYFMBpcAzyhuxN36NpKuVgScabJ2IB3GyH5GpQvPyRpnFFU3cqZvslFqEasomo5AgmCXROowV\nC9C/0ePGPZnne69KH8h792+z1RNPsFxvk2p1garDvZF4Z/f6MbWS3JOeYoN74ZhBqMpSaRVbE6bZ\nqzbdI/FejhXw1M9jrik0/1NPhVQSwW+kzoSpUvEn1jaBJodLHdlPvev3ef27ModiO2LYlTB2f3RC\n+z25jovntigry3OkHnIcBLiagM7KDkmsCUjboVZVcFq7AcksXnmwceYpnI2zcTY+NB4KT8HCUC5c\nAmyWlMD06uI6Da0rF34X3lecwklOqskja9YVV2tT730KALu1itXVHqwvL8BLClf9zhg+rW5BX3UR\nLnVBVYttZ0Jb1Yz/3/bePNjy9Kzv+7y//ezn3HP37tt7z6aRRhotjCRkyRKgBYEBk7DZxoYUDiaF\nnUqVgwqnKk5iVznYJE4sY3BscBGMsDCLSgloBbRrNCPNpp6t9+7bd7/37Of81jd/PM+5M40lNCNP\nz3RVzlPVdU+f5be+v/d9lu/z/d41cvlcrF1rSUG/LytsVYVO1ipVtpVvwSdDw2gGCyFJpHkO4+B6\nilnQPAJ+61Db0U3msPtaUi25eMqt6ZTkN4XfJTdTdt4ITwUB08kl3KZqOVxMWf/CZQC2NSZtZBOC\nUG6r61resHJCNrzms3tRzrU+DvBVkq+kDEtFd0K5JMc+GKcoXQSV8lHe86bvB6Bj98GX/MmiQnxP\nHFllrEnQ3IkOOQ3o9slHkjOw3ogi1Wuu8fA4toflyYBVrl6Te3Nqd4NrO3K9R4sLrKjGoqOlPjcd\nkmiiLcSQK7PxJBsQX5Jt9EYD9m/ITcmVuaiK4f5QxlB4rI5ViHHDlAlUI2Kc9YgKZfDSMnJSuEwW\nxVNw71/FBpr4nNugot2OuUoMjhopBwPVInEjMqMcH4lD6CnKNPNwVSQo9MW7bbUi7l7VJrCTHpVN\nSQi/Y76KsxbqdwOcdIpVEa9qst3BbeoYy31KU82QwKes+4v8mNjq+HuBdltMCmDJTUoaj6Zs4kyy\nPm4mYYDpANPOx7SE6csNLx2XB6U9ejWu8ta55x+AT6nLbHP4F4p6SZ+Cz6owzJICaFYGjJfFtdor\nH9Dri/v8hRtXGPdk4FWLlPtU/LWmQiDpsTpDbRfujMZ8SdV4vudr15k7q8CT5gmMKgdNE2fJ1tdJ\n91W4dX+TbFNCgv2vXsIqJVhoZaBcGZ6nU5dtPfBjb6dxpwJe6hBfld99/LE/5sG+vG5rYun0d9x9\nKAJrEp+spozKl9o8c0Wu287WFxgtywP72mMymYbNCEcFU+1gwDO7X5L9XY4IFeZ75K6AxeNy/CUE\nFJYVMFT3e2sw4FRdEm2lakypJNvL9hMyneCGyvB8o7zLlT25p4ONK+w/JvemfDRjN5L7k/UyLu/K\ncTbVrU9HMYGK1MZOyH5PJpDx1V2qzWl7dZW14/IALR+RhOrd/Ta+0tpf3dvi8WclBE2qPonycRI6\nh5R73d0p8Ypl+ZRMCrkX4Gk4lo+rbClM2b9DIcVdn88/K0nCn8tHpErpZoxD0JRJMS8O6OzIONOC\nEW6cM78o23Aq83hNuZfOyjzDoXxp9+HzNFVlytF7XV+qM1FNzAPbYb+Q70ZzOYWeU2evw2JZFrsX\narPwYWYzm9lNdlt4ChaRGevlI65fFteot1kmfbXMdvXVJfyr2ojZv0h3S0tW51VLoHye4JwmU5xn\nYSQlNC4cBU8QgqQVrKNycmNJ9CQTy3hTZt+LFZfPb8rq8MTWLt2pLoKT4yhZykZVPr/r+N08XpYV\nJe702dZS3ucevMCZNSUM7V7BerKfIlQ4706H0aasEpWxIQiku3DlVT6ZhiC78ScAcJ92qSBeQHy9\nTnKfegrjE2wmsnp+8DcfZneg563yaZOiRl3dWSoOQxUy2fUzzDVZ8R49d41sXq7nPT/5dgCqc3N0\nlmR1vbHRobsh136crrOyJa+X73kbniqxpNsS73x260k+9nnxKrxJzPt+RFaue0/fRWAUjbgQkW3K\n97e1e+/64xPO3ZB73VpvstsTj64Sl+lqBFa70cUo4nRQk/tRNxEThRKnBezoly+t91gdyjU68ao2\nrlLkKTcqQWeBzV1Z2b/27BWuaEfskl8ijtQTtC4bmuTsa9kzKDwqJ94NQFIYvEsq9fZAk+HHtLFu\nPPViBkykEsqz16/TUAIbb2fCUElVdye7bF6U1wuqkXGkOk/QFs+rNBeBJq4P+s/y+Y9/BoCtZx/n\n/vteI8d8nyRra607yNQj2NreYaAhj+83SRR6vrHexz+hYccLtNtiUjCIy1LKA+Z8cQGbR5YJ6icA\n8GqrOK+TQz3ufS/vGIorNtGHxou2KeYFUuq+6iz8wl+SDR8bw7pSxpdjiJWqXGvUTg4TVZ7aOehz\nbkcett0sncr5MbI5lzPFNQxlgC7UVzhlJeewlRfkKvG+sbHLSJmUTXsVV13eknb9cccpzEmttz9+\n9VBByTinCFbkoWldEYxB/WyBX5fztEcg25ffxdWCzcdlcru+0yfU/or3hpLp3nnwPPN33aPbBUYS\nny73AwaBTCD14AT2sjwIyYEMmPJqyMmm0sH3HYqTqqzknMEOZBC3g2NUzBE9Jpl47t5PSEsK3nmg\nxplTwgoVeAkmlXtps4RY2YU3n5D7dPmxIRtX5Tyy0pisUGr4TkQ2kHPa9kZc0a7ZpYkce6UGqYLI\nHJvQVA3GEyt1FhZlBlgoLeJprF1MNMcxN8L68tDcd/eAQgVVnMRQUkh7bW6RvW3hwsymOj2ux+a6\nQMh3HgtZOquw6o05tIMdq303Ns4ZBXKely5v8/pVqfBEy4vgKPV/Y5GlM3IcUWs6PloECul3khCz\nKNubuwFvOC59LAfdPq1lZabWiSCNRwxUcn6wuUNF1aQWAp8d7bVwqwZvKNf2hdosfJjZzGZ2k90W\nnkLg+JyqLGDcjMWG9sFTJlBdP6dqQRFm7kqP8pLMniOtfRfDYyQ1/TzyMX9PVlWz08aeU869nSZp\nJqt7uiQufuoMefqCrPJf6fR4SjsGh9YezpYJBeuq4adIW167nxAlKixjnpd93hsxPC8JM3NqDV9r\n3Y4i2NxKgumL15DfMSTXppV87Sp2T7wY9w0qyzaYJ21LqJGMUtJd9UYeeYqPflKwCSYrOKlZ9P9K\nWZkXd/cpzslq7JwOWVbVZW8lZu8h2d9K4bCWye+GCtWN2w3qmqVOTRVTFw8qmlTwanJM0TDDZBJK\nOVoTbzuWN3kqa39smdJU0duBdH9Xr3OHnYckPjr3OekC7W7s4ifTripDSZNn0dAlzxQpeCE/lAtc\n8uX30VoLKsrQXPJZWhLvYM2rU43ktV+aEO/LNoaOeGDXL4/Y64pnOby6j6OJ6+2DEVZRk/4oYhRr\n7KIwcOO6tDXp7PV2SC6qK+4mHNGmuL66lcnIo6lNWd6lG4zvuAxAo34PfqRdm7ZBRXVCnOFUAKZH\n+pRWyaIJaU/GzeDZL5KqaE255RGqpshUOGZ/Y5dnLgmxyqVLA5rTakY5oKpPdhWPuejFVR+MnYJl\nXkEzxljXcbA4GG+qQGSJatolmSQU6qIZG7DYFHduTbnx1tIqb56IW/tO/820tXznuZfZKKQT71f4\nCk964rZdcrWSQR2jZarWJKBsZSC9rpjnB1vfB8C9tfdS0rZk+5QMsK9/LGfsyu/+4ec/xFf/zw8D\nUHEM3YekBbpeDrDK556qMhFpdoj9z3xoz8sEcWRhibNnBJBUKKjm6sXzbF2QB7YzHNFXHL0JHFwt\n0y3O1YkacsPbWolZWpknVgKUzPj8ye9KfiXLLWim2tqCMNLJUstqtrDk+qAUtiDT8mthLUbFZEuV\nEkbfj5NpW7TFM1OdSMsR7Vr8Eeb5cSO05QtFgMPH5V4qQa3hbcCPyHVhAlqqba7+ENmc5mI4SqEd\niqff/D0AeF91GWXCUbh79QlGiVQ+SBJcJextcZT/ofIPAHjfRKohK37EVG4pjsaYQiasYnCRSOn1\nfb4H7Kf0mH5V/65h+F19XQa0Vovlw5+R1umiJffgS489jlW2sO+64+189MNCYhttf528Iuf9iUe+\nyOZXZeEYa2m9KArc6bg3llB7RvANeSLXOy9yNE1AoVWwIPDQyBXHQqGTU1YUFPqBLRAdAiAZpw9b\na9/At7BZ+DCzmc3sJrstwgeAAgOYQ5lu13UJUABG5JCOxQ2u+Rn3hLLiv8vKbP/+zGENcUu95CGs\nFcgvkzZ9R9yv15syuXa4raoE21k/JtfEZuhe5O6hrFZ/ydumMS/vm+hfwyP/i77+AAA3kj9jqCCd\nZHeN5JI2ybhDokVxH0eDHN/XjkBNWiVxQaEZrHxiGCj3wni5we4lxRMsqFyZCaitSLIsv1EQRepy\nOuawK9EaS89IoimY6CrpgadQazdsEk9X/xyM8gC6jkOuDHpeSTyGZJRQHMrMOxilR3Mth/ck8F2m\nC5qr0NmaU7Ckv3u3yflZJcBZsNcx7h/Il83WoT4iek8NjwMf1PdcrC6Dw7SN35NGMa8W47jK//i4\nAL2CE/vs/OlFvZ7XsBraOTbmpDJs/0FxhdOlj8r73t+RXXR/FKLfAMBPvguKj+nhNA7BQPA/AXof\nmNo5oMY3sid7/xaA1aYkFOfuKHN3IWHcWrPKD7z/HQA8+odwVUNBvhAw1AasqZduHBej4ZMTBIfC\noCbycVXR3MY+mULhUZIVayzoWEhTi+LCsIAp5DuFzQ/1KF+ozTyFmc1sZjfZbeIpGAyOzJi6cvuR\nh+fJjFlxAkKlVlpwA9qLSjqqnTFOO32OhD7axahkGM6ARRUovTPwqS5K3P3MiqykZxYixnuyrfJ2\nm6ikELPlEH5YccefOQn3qufxuwKfPjAuFy9offzB8+SFUp5Vfc6WJN/hHHUp9PJevCRydHE6wGis\n5xSGVBObo6s7dJoSXzaUlHY5LLPSlhWoP79HoExAWQG+wphv5Lt0tVfeaLLTrnt0tVbm+AVWacms\nAWuf8zbQUqxRgk8nADOlBPOc5+DYriHwlaG4FuGp3HZFPZBjIby+KvmVBxJDY06Tsk3gfi0Hf9BC\nvavv67L1P5fgrynsnJAplZOTlSgmcr3jRpVgrDR1KsHmPZiTj7V5KB1hNE/iey5rqkxdXQsw36ux\n/796h/xd3IJM0I3WewSGCps/0YOhjpc3eJiP6nI7DeBhqtPzXDpBLR0rLmAi+33twms52pIxVso9\nzgYyFurf805+80OSq9i4sIOdktQqOtJvV+XGApV2lYpmtGMfxrsyLpKxxRlrM5aK/BrHwVGPwA0g\nn5LDGkOePpdsmAoXvVC7LSYFxxgiL4LAw3EV6x1E1Moq6FEkNJTPzi27dAM5yXPKj+BmcP9JqeHO\nJQ7V01rHdcuMKtrNeHwJVzvHVqdUZH6Fa3Ulo2gYdm9Igm53lPLmr0qmetUd4/aF2Tm/Vwbod+YO\nj10R8hLnsU/SdmS7ZxeOs7woE0vVKXNpR9mR9WHMLIfU6KVyhBtodWKY4vrygBxpyqB67b0nWFqR\ngdvsnCBXNvjBxKGricvhZInOvnYwKjy8N+pQ1jr/YASRJq1SYw8TTpEXEIX6MKnrn9qASSrXqlwK\nKUJ5uEteSKOuCkiuy9j2DrcBsLBQorwkidhr4YTLKs++2hwSHlFI9w8NcRUezavVjf6ORfh5ddsv\nrMCX5Vod8dY4cKV6kly7RqAalFkufQTrRY+J4jsym+P5EsZFTgOzIOf09bd8B/59MqHW/0dNpGYO\nO//P4wD806sdKlrH/6mjPidLMs6c5RJ2RRcGZcw2dxRMBZz5M26yv7pwAoBaTUO3ekTFk+R4USSM\nygrjfiTmT//fX5dzGuzTqEiC+a1/Q8Kke9ZeT9wV1NPm5U0cBTUNt2MmTa2S7KdMNvS6KMnMxPbI\nvWmY5zB9nDPHZ4KM6zQtyHTiyJ8/0f0FNgsfZjazmd1kt4en4BrKjQCCgEQrpIHnQi4ros1yGnPi\nPq7UyhytyUzbnJdZ8nTTUm9ISTKo5AyHupLsT3BWBZNw0q0ympdVY3mgpJ4GUHmt650J2Y7yIpQ8\nnj4n27i41eXeszIz72/Lyl2425zVPv43fs8dZA+Lu16+o0Z0Sbvrwh5JV5eYXFbX+chhTpF2taiM\nLekMnqccV/Tia86Iy3l65QiLLVl1wiMlXC01D+Ie3b7sI/OOsbUqiVRP6dPanQpWEXqjnYzPBpqU\nzDOskqq6WClxAZ56LkURY7U2Xy4b6gpnrtd8ap4yQNkxNS0D1yPZ1qlWi3ZDuw+rPpeVEmwyamOv\nqpZFy+P4hlyjuRVZ+d2HEnIjK6y9t8vlvoQaYTpgrqdNSW5IqIxNo1R1I8YpniZMHXwWavK7+aM+\n3/2dUn5cfPtfwXmtCKYMerLyZweP89RYZPw++xt/xKCm3Yx7BT+lCNfFdUuoNG6ljqIU8eAtU1f8\neW64dTiypCxNWpIM/CYon0Rvd5tL/1owBJ9+6D+weVW8zMBx+Fvf/wAAP/PX/7ac52DM49u6Po+7\nOFauy6Q34EATum3Ho1iVc+0quvWpXpcsVdbp8nOP8oiYssY8uW8ZjrQh7wXSKtwWk4JxfEqVZfI5\nj+JA6dGSIaVQLvaxuTlOKavv0XqFkydUPn5ZQEyrq20crbuHlYVpQhYnjElUlzBJxrSMUrRPBAgz\n6DrEueIKasdJvksu+rHHqkRWMOfd4ZjsURnonZK4b8UkJ1mUh3fxrgp7qonom4xBReLhtOuQKjin\npopWjabP0rJ0rNUqz7ngi/U2zRU5zpMLMjnMtatU5zQ8siUKXx6wstug3FTh3TwjUIGXoCPxxaAW\n0+srKGrUo645mo4ZHRYAXAeCkj6QqfZw9BMtakPN81hQUczAegSuqjrlHp7mD8p6b5rNFuVArn2p\nXmM4kt9tJCGJTlTpOCJWLsXVh+QehI1dRo9oviP3OKdVlKrXZr+tFYV4QKwT4GE1xAVXeyo843Fk\nXiaZd73xr/L275acj9M4wkShveVQ8ghe6wxhUyaKs3PnGO7IRHBixbC/p63RgydpWwlT5SyBG8Bn\ndUC5GaQaBnkHzB9ViZNQxiH7ATiyX/cjn+Kh3/41AD60fZlRIudRDkLepjD0mivb2nSGPP4l6bQt\nrq4TZ3KjmmaEG2tXZrQF23Jtc1/bwQOPIphqmtpDzUjXi8imDOJ5RJ7IRDX880mRb2Kz8GFmM5vZ\nTfbtStH/EvB9SD72AvC3rJXucGPMB4CfRtK3P2+t/di33IfrYupNwkmKtspTmIRIkXKrc3UW52R1\nWGuGLNVV8ksRj0HYxBglyQwq+CoAY8oJrq7GXm+bpK+rDdpQ08ohFR3BXuxhStJ95p56CjuU1WM/\nP2CSCx7i+kj2e6dbYnlOvrvUWuXhTFbKx774Z3gDJYclBhWa8VQf8ki9wclFScqFtYyKrrB3nLqb\nck1Wo2pVVoNqycdHkZllF+sKys8rUlwVUQmdDLQDM0mVY2LUIlWylMzsEpZku17fx5t6Cq6FfNpU\nI9ckTXNCTUT6roMzJTAtefiKacjJqCrrcLWpHkPkUlG0nskjxop4tG7GUOXg9yeGvb5ci/1ENTS2\nMx6/IiuXl0w4r77t4M4Opq8iOhOIfXk/0ox8ySnTVPId1wS8K5CQ4R2VVZaUyu+gu0H3nDZjlZS4\n145oGLmG7yw/wJORJDabWw2KOXm9u13HUd2HWtLTfVjY1ixvmnP4yGSrEMgYYE+1GbaBp2VbwS9/\njmBbqk6TfILqzfAar8zCDZU4vKSI1csPceUhIZVdtDnJdCxUCkqeiuGMynQrygOi4UVlMsEod8bQ\nmil8gQDIE63i+QWuq/iGF2jfrhT9J4APWGszY8w/AT4A/PfGmHuAHwVeBawCnzTG3GGt/QvTnp7j\nsliqsZ/vECuPoDPJiE7ITay0DMvKVrM2F1DWjLpJJGNr9gp87TLzizKWy/L+OhiN4c1oQNGXbHd+\nXWeeOhgFvwS1IZNryoTktUh8FQvxDbuJPDhf13jxvW7IyQV5EM4nKUVNB78pyJQ9eGHBJ1CX2ZmX\nB8kvOdimUpk352lNBU/rUNOJLtL43QYOGXI8TlrBUeZf4wKanfZyn2og2z5QskmfvUNY8jC21LVC\n0w9SjMKjK74LkTIWdXVbrkNLhUdWFkoEOml4ToG2lZBbFy+Xa1BVifdyJcXTECWd7JKPp7TmzuGE\n1IpjQgVteWj3ZRJSUrGY3WHCnsbGZn/EKJZzGSYJYSHu88KcTEKvah7lrcclZDhqK9xxp4rdvLGB\nOdDs/MOX8Ofkvldfp5WfT24e5l3eUWpxell5Pp/aAy0tZgwJtMtR+VOE3Cef5hIKRPgM4HOwrhdm\n+sS/FdBJKNr7KlUtHS4DK7rAfVd7kYY2zcab0pEZX71OqGXtoGFontKcmRMRj7WF/2iMyWWMj3e1\nH6JqGXT1epMSar7H+AWBkXMaJwXGvLiA4NuSorfWftxaO8VJfQnRjASRov+QtTa21l5ClKLe9KKO\naGYzm9krai9FovGngN/R10eQSWJqUyn6v9AsGam3zXB36zApYq3FU/8iHhpMpDXYwJDoLBgnWmNv\nOjiqP2jcCXZfkpVO7GF2ZSPJaMB4U91qxX2aUYjV3nQ76FO0te88L5EoyUgvKDHSppQrymvoNdxD\nSLBNSmzvSXjRnVwg76u728xJdds1xSOkoYunPl5toUGpKqt8UXHodrXjs6119zyk0NXTqZTwp94R\nLslUj9FJGeSywiSOrojlOomutHu9Plbd7jAzWDN12FyGuqKnSiYTeOCqRmOW5kQKkKq4lpRp+ACO\nfidX3rxu1yOOlbqMEYkmV0dhiJvIPZmMRzSqqrSsepb9G0OGisvdtTmX0ilwylKMFZBTjvB0G8sV\nCfPOLC7wnW/4y/Jea47qPcqN4fhk6sVUkirauImnfAru6QUCTS66LhSfES80be2S1eTYnokNgXYu\nLupf13qgYZyA7ASzYgnh47qm/h0tmRWXYPB/y0vOs6SQ7u/1DMfgGNGRAAAgAElEQVQq4rnMn2wR\nHlMPw5Nja5xZ4QENMZtnqxypSEI0akDOlJOiz3BX9tPYl6rG7pfPkZRkvXa2A8aKLYn7GX1NbLqZ\nIclfRvCSMeYXEWT1b30bv/0Z4GcAvCCgP/EYjixTfU7XuJTU9a8er5KOtV10OKLc0Ay2cgqOnTFp\noiSgo8khGs8UGWYk7twkdkkqSu0+EJc0c2Ckun6x38TUFbCSRXhH5Ia98dg8yZYMpqeUytw4VTzt\ngEyGHW7sCLBmdHFEPNbqyVWfPJ+SqCjRx3yIzi/YLCfRjPqgE+ApaYvb0bz3YomqkrTkeQrqmCV9\nS6bdnPGkYMeKy3xpQwaBUw+IBzqhZRMiLTl4fopNp5142WGlYYryN56D1YnFBs5zeYIiJ9WyWG4s\njel56zXezxOi6cQydBhpn0SYOXSn5KeeR6A3tq2lIXfe5e6u3IfBZoqrJCql+gKDieQdXBPjadix\nqNWle+ZKzGtVxlvoYfWBzQyoLgzj8gRPSXj9VXHFg+MV7LZc4/JeCzOnE+DmPazHcl/PD3ZJVZ/0\ntdppysAwFVU3aQys6HXbxCwKwI03vVP+finBIg+sgzlsOTjZarFwl6h2LfwX91M99Wa5zvMyoS/s\nH8MelTE9X19iYUWOPXMqh+GtzVx6JeF/nFTkGq5t9UmvyjNybbJOmKpEgTcm0EUkySaHuYYXat/2\npGCM+ZtIAvJd9rn+6xcsRW+t/TXg1wDCSuWV79+e2cxmBnybk4Ix5j3A3wfebq19PtfTR4B/b4z5\nZSTReBZ48Fttr8gLBr0++WjEdOXyGxGeahsyiTDBFNrpUNZkahHoapYYCoV75mOLY7WWHObgKn6h\nNsEdSbY4belK64Kn2ZKh9ci0u3Ay3saNZH/Ne45RVvm68oaECa7xcJRavJZCpaudatsT0oGGAb3x\nYUdhqqt8Pi5YUNr3kucfStGHTUN9KgOvVOaVwiXVmd8Ze8QD1UZ0RjiuZNn9SoG/oxcxFgiv3Vgi\nrcr5bXd2KbSj1E8jUiW5dirO4XFOtc5dxz2koAOPTPEdcWEopgAnm5B4iqLSRGVuHDx1f7ayjIOu\nXDffjQ95LnEiPHWlB0rSshQUhG05oKO5g7cn7w/SPl5ZfjeIC0KjnkdDK0d7VYZfV+/PGeAviadU\nOXaWWPtjnEqLVEOQQjEdeeBjVpSV2TnAnpOxMKqPDo/zy5euc0k9uTfrvTu9lMG7VDH63wU8h2AI\n4PvUNfmhafT8fqaPlMEyN12hm4u494n6uRPeSfmEVi00vFyuZTRGylc5fxeeApH6qaG3K4nrySBm\n3JP7cDBQ6P5+Cr6MEd/UGUTKD5eHuHpPKoFlPHyJqw/fRIr+A0gXyyeMxKxfstb+19barxtj/gPS\nb5oBP/etKg8zm9nMbi/7dqXo/81f8P1/BPyjF3MQxlr8NBXWIZXZrZRWaZ+Q5FK6EzCZqgvv5SRt\nZU6ShZuF44uUNYZ0Q0hjnRljQ6CJrSSEia4IsZb9bqwPeHJDltrxMMdOk1q1Cm5XvlvtdbAaU/d8\nmd9KOIfMNqVRTGNfu938iFinwCiClnop9xyTiOrEQoWTbUEsLrSOYTTus16Zckn20TJCtOrMj8i0\ney9oBVhHttXp3WCYajltHFLXhq6y1soz/xKplvH2rsY4yZRtCCbaRRjkdtokSah5hFIYUFZIXL0S\nEiiqzncdqmXxDsZ5gNGkVa4eQeQEpOo1hDZkTUurrXqLzUJW8YM9S6rIyUA9kDDPmS8rY3SRMlYI\ncdyLmYxk22M7wKbiWd3Q49yq77KnZcOVaInSmRU97028howXk0B/V8rV3Z54UEHPx9MS78H2kN5Q\ntRf8RToVKZ557SfYviaewGesuJCnxgZzTpPKzQx6gpCkuAqf1+apE78vfy9/N5jfkOvjRYSarB3f\ne5R+X2XvnD7NnkTU5bZkQ8s0cUrqYbgwUl2IjccmPD0R3IOXT6goXPlYVcb6m197J+cuyncnSZ+F\nRLbX8/bojGR/w3HKi12WbwuYc1FkDMe7mFJ6CCwqnITORUnkXDx3g8c0qx3lBalqTM4ZGTA/9MBZ\nXn/3u+S9tyzDhvxudHCeUVe2t31wid9/UC5wT5Ns28MEFXMmjwqaSjgyPjrHQiE34Nlhh7Z2maF1\nYEtGnmrVIrcs+npsfp9UQVR+nuBr0q2risn9IKJvNXEWO1TaSnAy6TG8Jt/1W5KocrMWA5WJby60\nGGqFY8+9xpVnVSBlsaKUzUBNs82NGl99TEAze3vreNpum3kGNBwZuTmFttZWQnmv3gpwkyldW0Ck\nEdh8GFIJZJLpjbv0u6qJqLRyWAhULGd5fpGlMxqCHWTkG/LdfnJASdvgfQ1XNvoFjkYwYzLGGqKM\n+gdk+p08MQyVKq1xQqDE5TtXiCrifhepw74Cc/aevYDjyXUZpn262km5vSVueSkIaSiehHpI45hk\n+I/fe5yBDoJ3em/ihiv7K74iYyhxcsJCB8lwDlQmgGIVe00v0uVXy1/+GSAP7IQDei3Z36dv3ODx\nJ0TTMv/KV3n9vXIuP/T+H5BzWyszt3xCdrF+la9/RrQkv37+swxdKd7dHS2xdLf8rohlASgmBTVl\nwb6jWuJA8TQdwGqazksKnBf5lM9gzjOb2cxustvCU7BAXri4Xp2wqcjEsMJoS2bBdhhQ1pWt3Mxw\nCm1sGsvn5764zvH0TwHobDYpVyQ8yNY7dCoys1+8fgNXyU/nGjKbr5506OzKJbg03OHaJdneZP06\nZ9Qtf5+zSlPJUe+bU83EoiDXFTorwGgz0+LiKVxVNq5W6zQ0PJhTjoTmnGV/XbZRzx/DdaRMVfZ9\nhrvSmHVtW1zj/e0Jewfy3fFOSO2IciiMS9imfOcga9E4rtnBAym92cUaG4/K7ybdlIrGCdZ1D50K\nD/cQKadIbDr7+aHy9bXtLhPlZJg0U84e03JZdYGyZjb7e/L7hucSuuIdjM0eX/hTWZk78R79jjZr\nVQvqqtUQKkt0c5LzKk1aXvF85rWD84pTQwhSRd/T1eOPu3IMI7/B5x6VlfTCtSd4UrU6tnf3adbl\nvp+cX+XutwiNW2VekrJpssMoEI9md29IM9Rk3ScNf/SEEKx+5esXWFHdz9c0NCTcrUIqiU0aQ9iX\nhCE8jPkdSTDa8s/LW6OAabFtZH0eHivS83VLXP+47K+zu8XOSLyQr12RY//etx7jL//wDwJQ9+t0\n+uItdrd32OzI9bxuDMPPSqi048rn5y/3qSiXw/Jqk5VVCU3brSpMxKvd2tsg0DD2hdptMSkYDK7x\ncYwPU5x90SWNZaAv+RUypeGeHKREKqyhSuA0SjGbl+Ti2UsdjrVPAVBaLeFqKXmy32ZVW4of6clE\ncW1rjz0VBdkf9Im1gtEvF8zHSiyyNGb1jGzvvkeVWTezh4y6vpOxMKXWDutUF2TCmatVSJBJJtX2\n5d0Dg9MQtzboGkq5si3VjlNflW2PnhDXP0kMc4lMJo8W17j2lHYLNkLOBvL+sRNVyiN5XV5UPkd7\nmkogLD9uzeKNFNSUWlR/FENGpvV/G2tt27X4ymI0SlOubCnGIPNoKb5jccGj7kvcTkt7PPoFXcVj\ndK/6XNg70AuekSlj0VxeoqmgrHpJtrs0Mcxp63S5FHFKWaCvOi5uLsdkvRKON70P4jq3kjOslyRe\n7iURHQ1j9odjYnV8S84e9xxINSdoaIUnmmNXAWKPPn6JpZJsbz1fZ0t7EbJhTlCT74QKHLPtG9DW\n8OGpEhg9P+rYf6yPz2t+Wt/7j0JhBXyBAdeMXLc7u6/nq2sytg76e+z3tJKWyuB88OmABxSCvlxa\n4q67BUqdTXye/KQU78Zj2EO4KadJgqIoaGj1YWmpRlOVoBrrBd1E2beSHN97cRX/Wfgws5nN7Ca7\nLTwFz3FpVxqYUjRlK8M1lrKuHn7Qxx+Ly3xnucLJNcnm20RW2lNxhSV18YejMYvSOEe19VbqXZlp\nDzqXSMqClJu/LDP443FGX4VHcAu0aZFjTgPryHcq+y6liaw6rRVZJdwsPqyS2GLEyBGXxW9WCMdK\nzTVfourIKh41dAb3oa2XPMpy4r4cj39njUi9CW9OVo/WErQUxdfeqLOj8OnSQkBTlT6Or95B7Zic\nd3xZjmHf2easMk2f8xqsVGVV2S8mh/qIZdcnVexFoLizasljoSru9x0n57iuSc65ekCzqViPAlyl\ngpuiHD3fYaTYkmAuYVkFZQaDlPqyVhrGPr5qbcwrrV69klHaVNaPXsEx5YFcCJeINQM5HDuUFNex\nUpfr6rcLwimvZmWJUzVtBBuHlBXLMt9uo4BMGgolxvi0Q7mnrfo2TdVuPFk6yrmyIiSDjKPagVrs\nSlK62Mhxr2lS1Ywgn4YPX4NrugL/goQzfPDH4ZjAnOdvhPzYq1X34md/guVnRd37S5/5EI999TEA\nSgp/ePc9pzmmx1lpl5gMxds8Gp9lbVth4+kO9yoiVXvgcAKXJW2qW1ooC/QaeKa4wY2rEvLcIMcz\nL+4xvy0mBeNAEIIbZGSBxI7LeJxckcG41gtonJKbdffcKvNKVMKGDNxW4TK3dC8AzeFl3LHEVt4p\nj8qClJvuXoohk6z1vZlc1fdu7PPQukBcn4m3KFSFyY+gfl0e2K/Fmxy9ITfdvzrtPtzDKG4/MZBn\n03zHhGCinY9lWNa4tNoS97MSG9DSqrWG6oJe/sAhUeSQXZVjW2qElLTDcbG9yJmqxMZekeJpabS+\neDdGW59t+IR83jvg/jdK2SxeOcLlz0gnXj6wBEpxXzGGrk5qDaV0Or4aPcdiVK5QP6EiOSVLWaHS\n6ThmOOVHVFhyfxJjdPKqlivcuyC/6y01qGi+Ik9SmmW5Xu22trg/GbPbk2vcyFNer2XUP66MUeQ5\n1k8PSU4HHZks+9crjDR8HNU8SpmEbpXFHK1wcuLICjU9l2k46lRT0FDjyMkWJX0ijzdcykvC53h6\neZFIy5blz6nmZxzDroYPcQF8TV6zAPeLbib/Xjo1edsTcJ+wKdX+8NdZ+fH7AGieXeKtWnJuZG/g\nvruVJayQ/Mx9999PdVkFhxyDq4SuC6fP8MaJhAE3dpocUzTc3EkJfZp+lXBRCW1HDoOelCevdzeY\nrnBLrRLjWO7fxW+ILf5PbRY+zGxmM7vJbgtPAcfDrcwRzHnUtTttoR2w0JIZ89gRS2U8Rdv4pK4C\ni07JDO7bhNyR7H2Gh1UF6qRbpefK7DkM67Tu1Blak0ymt8Ubb0gocleSk3cEUhrfSCisUPe+9nKI\nd6A8CxVZjbdHfapawUj8lNYp8UYW7AhUaj0oYK8vvytp3d2vVdjfkSTn/kaPsmbG47RC4WzqMYs7\nHNcrtObl2ErLI8KRJOjC5gK+Ehw4WZWi/mV5fU25G4ID6p787v475tj/vHg5gwpkylrveTmqPYJV\n0NBoYOnksu+S77Cm/JEOLuNd5Ud0LPFYVtCtffnuOE2o1cW7C8o1ctU5nHMdSlXVdqwkeAp2qqon\nXnFHzGsI4vhlVrVKVJgWVOVcqsOSCJ4AdpolXasxtyde4cnsPBMjYUDFXqJQOLnn53hKRJKrmMpw\np8+GErl0iDgxrXAsNTgeyTiqLTpUtcHsjFY1/Ms9cLT64ExApenguiDiAH5Jm8t+7j1w5R/L8Qwj\n/D3xWE3g4yin5cJKi7WGakVqU5kdTXDMVHCmTlqd3qgWJ+5/OwDH9nssNFS5WmncorCMV5UbOd64\nhI3l/boTcEIh5HY05uBF8incFpOC6zrUWyXMKMeUVXmobmioiz5fbxMpqUmjUaKhYJko0ZjVT0iU\noHMSD3DOawXjyB6Zuu67V/uUyjJAwtPKKrSyxFomF9K4DXrLMoGsz32NcCAPfeqnDKy4cLt78jBG\nnSGOVg7KxnJ2ScKSpJvQvyqxaL0UU8RTLkHtk/DL5L6WS4OUujO9cUOsdgzWNL6NUp8o0EFQncNt\nKsIwquH62qlnC+z1VXmJgGO88TFqTXnAGgsFn9aqTTmJKFSKPSj5ODrJ9DVX0/R93Iq8t+xWOVIX\ntzzBYfNAHpBBMmSg4KV9pUgnyamreOpkb0BJYwYbZVQUTBOaADdQVaOGhk91h/SInGu12qC9Kcfh\nug7ZvrZn+w4NFXF1R/LdyTWPQHtXIqeMTeV3p5ptUldRr3l+SFI7VQXeHVmGWwqKKntsDS4DcOLY\nPUTK+ZgPxxoiQKeprF9vGeEpsxZ/7InAAkBagkAmPX5Bexn6l2D7bQAcHT7D5NOin1m87n4cXyab\n0jBh4Yjcs5qiNXFdjMb9WTqBVMZINXQpK1DPXfGpVXQ86RgiTXH0ePOsjnFFo7LlOSyVZMHZayck\nvkzqL9Rm4cPMZjazm+y28BQCx2Wt0mDf2aU7kFWgu+8zWZUZehDH1BUbXgrr5LqCJoWSjdwYsrt7\noO/1iVSEY44Ipy2udOSMGV0TpuWmisxUjh4h1+x86l/BuygufBC32FP6tziJ2VeQyYNGZtz/Jsnx\nAsWy24Bjq4rPX6/xzLZyEFZS5jQh1rhDgUV5fkhScqS9TKMmySUnjwlcWd1bDV11GpYp44EXjPBL\ngpUwfh+LKiQNXfKa1K7Hvhzj7v4FRrmsRCsrJ4iUVg0/R9nPqOBipxqE2uORpylLvqwuK8stqtqE\nX0wSRupt5GOHgW5P4RY0ymXWlN+iXAmINLRbqDbw1GUe2QHpruw8n/IxzEUMB8oPGbn01uT9BVOh\nUxevbzxMaQXisdRK4kkldp/gurJLp30KhW7n3vCQ7CVKa4y0SnL5Kcmu5UVIqSFh48LRNtVcEsxM\ntrFKZ7+fb3L14mU5r025H9XtgBNK6uMcTeFAPZB+Do9o9eRHFAzzX87BUdluNHZJH/mKXMOPfZro\nTeJVLJxcxXNl7FgNHzxnGaugjsHuJQ7UM6stnqamQjxRYXGVys7V0CcbbTPeF1xL59IBg6F4Cgf7\nMTtdwe3sZX3iyVTi6oXZzFOY2cxmdpPdFp6C40E4B36ndKjEm6UOI9U23NiaUC8kXizj4WgReqSk\no+nk4JCWrLZYxo2VrHVpmeiMrNJHRyHd85J0S7aUmcmPSafdeeM9xjsSn5p5lxu6oj25OTjEMqxr\nkqybrNPoy3th7U5U/4R6FNMdaaKQAaHO8l3tbitGY67tyKrSLJU4s6L1fZuQa0ku9TTuTx0SzQxm\n+23842O9WE2y67IiFGbCSBGEaV1jz94CR7TUWXEqxFNmpcTBVbbmzBaHNGyJ9vSPTM7YKIOSfU6j\nMEsLci0/jvMEV4fMqiIFG2FIW72HqORS0np7qSLK4SDl0HJDtlfWDOf+lsu2oknbRZ9nhnotjg8p\n6f0pwhxf8wSxdhbuPZzT0fMoeWOM5kFCO2FPUXxXtrfpX5ZtX78hq26lFLJ8VO7ZA3cY5iriYaQj\nn13VAYlHPTpKznug3aDLZZe2sktX4xCnJtso+m3cZ9SX+/uqp5B+HK5oBjd7nLSjyMWvfwJnXsqW\ntvEmskiZsa5KDmt//FU2PyVezqOXnuHGFTn/k29Y5Pve930ALC5UMPvibRSujON8krL/hMLKh306\nfdU33bvKxT0ZZ26SH2pDvFC7LSaFAofElDH1gMZ4qnvXpdeTG9D0JhxsaW3eQuTKQ28juQHu9Yzy\nnlycajpHVZWjqqMO5QOlyF64g+U3CB4+flwqFXZ7k/5I6+4LIZkKpHhFiUShqFeGlpHWeXsKg764\n2WWtosAkp0eiDlcSzFFT8dq8O+JyT27SwXlJMpElXDsvD3TNeLQ0QXn05BqDvgze8VDVptpt5iay\nrSi8cii269ZLFK5MEMn16wyV/uvqOa0WFJZqU5SQMrfJWJN9Q5LnOC3TlEk6VcxR/kgssYLF+jY5\nxDRMIgtKU1elQegp27ZCkYOwEGAHEPiWUSYPqdc3hC1ty14qU6hQKrHCvId9FhSC7SURda3Z5xMf\ntJsxnFhSxQ0MleYujBLMaBpYTXBVxzMLC6wKDvfyIc9cF/e/25PfT3Yt6yPZRtFMeOBVMhZC9yqD\nnkxkYyfFmZNw09WZPj9wSRU4YX0gk8+L2jnc7X8nh3G/6ETyxddD+kcAGKeOq5PsMBnQf1omtbj1\nKH5LJpHzTwvf44MbNzh3Ra5brz/kmuL3z4+vsHa3JJW/o/SdjPoPA+ArwU8+MQxVFLlzvceWJ1WS\n85c7bG/rBB96hwnvF2qz8GFmM5vZTXZbeAp5UbA/GDHa6DDSJEzb8ejmsnp0PIPREqC/P+KIQpAn\nV2Q1X9vbxVWPoO2U8NZlG1HwCE5dmkvMwn1wXZtrKlI/zrcfJeurVmEloRNIwiludfjqlsJEsxGn\na9r8o7Rrnc2tw/ZCd96FWJJhXWePMJNy0aDa4bp2XRZdSQwuOCGdjqwIB2mPRx5TCrXAoaWcBVGk\nf8sFrqeEqVlKrJ5QkC5gBlPdixTnQBKQmxc+B8Bc+W4WXq9eQ14wTFW+fGIOVaWd4DkF4mljl+cG\n7MfaaDRpUlFuiRyHJJbtjbIxWgHE+vK7InMpKcmKTcrkVvkbwgkl1TMMkjKOQr0JZGUrj6BV0vuR\nOyTbsvpnR2LQMn1KRqgYAqurdTGpUmmoVgVV0kxW1TiLWDsqnldQXaGpkPSDK3J/N7qb2EyVtpMy\ngToujfk76dUFf2K2q0Tqaqc9ub9d28dRwRX8MvgqYb97FH5Wyo/8r6+X98y/wFolYQmGhwQ2aRd2\nDmQ8HTzucfQ1Sq6jhDOtICLI5aTnWm0CjUbsvIMfahK3MXfoZdmBhAZZMSZ0xZOImhYmEl7s7D/D\nZlfGWasJ45sVGr6l3RaTQpEmjG5cY6/TO3TRUy/AqgrRYJDQMjLYTg2WGcZy1bJrMhgrN2o0SuLW\nBVdPH3aqOc+OMI9oTb+dPtft9qh817nr85ihuHXdt+5z7biEBMW1RTYUc56MC159XLLWlzULHexu\nsJsq6cmwTJDL5/XqcVpHlF33mYy+Yl6qd8p28zhkbVkepuNRg5WjMplEGCJ1mVtt6UIsCrDKs+dW\ncvxYyWfWz2GMZqGvLxIuyQBp60BZXbnB4tJPAjCMOmQ6EeQ2J1XYcWgcQqWdjycKDjKWSHH/NnCZ\naIcfXsacsil5dYck1Jp3SY6t7ZUpN+Sh6cUd6SUH6IeMtP3cOpawL/uJCgVeGY+6qhg5fY+a4hj8\n2JKobiZZRq4gpMLRbVUDRtogE3o+cyrMm1FnWcVrT601GPZUUOaMTujrO1zdlQev0iooOwoAMmWO\nxdLC/mzvHLsD1b9UkNmRDY+xVmLqhQf96TW6Dp9VR/tv68P6L/8BrAp4CVvFV43RsmOod8WFd966\nSFRWvdD75J59f/LXeOebhClqFN7J8mRbr3cN58hAL3cZtyLjJRvqRB8PSRLJh5hxRtGR69aPLSXF\nafgGJpMX1zo9Cx9mNrOZ3WS3haeQZCnr+xukRcFYyfv38xRfIbNRLyaw4op120Nql+U746cle5ua\nHM1HYbcuYGL1P20Ofe1Bv/E0FJfltdFs7JchqcqKP6kEdOtSqXDP7nFDZ91RkbMyL+9n12UnFyd7\nlFZkBXriSsR4U8KA9/9gjbkV6aJr7m2zWxHX1tPsve+7HFfo8l3LberHJNQIE0ui+9sZKs2bM6HQ\nZJ+NPdymJiDrddIvKPpvNT6sDFTXZAVb/YF3Uj4p+Ad/f4me8iYUIYfiLDEFVnUYplyNeZEwmsgK\ntDvOcd2pHJnBV1xIBrgK0c2Uh+FiL6allZoiTkATt0UNqj31+roZ7WV1u5vKMny5hBnI+ZdqTe4e\nqaJ3GFN2ZUWM0y6ZokH7miR1+zGeEqREpRLzx+VcK72E4Z7yOgy7jHsSejpK5GJ2xzTUM5lc3+ZS\nT1bm5aNzh9iRpy9e5dJlGTtHVQruVbbAdVTKr9OEqngYTmcRNoVPk1+dakF8GLrvlZfOr5BPm+ZG\ne+zsKFtz/yTuPSpac028wvaZEu1EWnuHNzrwWfFS7NouPeUhzU/3abdkP6alSd7E0t+UbeVRmQMl\nHQqspbmgQjM1/1CF/FFemN0Wk4LFEJuAwvEoF9rS64BVGe56ZFhQKM9pP+RIJO54sCBAkZXRMl5F\nwgDHOQNGT3+jAVYZ5uM7AcneouU/a0YEVvoh0rCJiaRFeudBh15fHooVG3FyXeL2Df+LAKyHIb5C\nUTfTCxSOPBRz5bOceINMFr31Dluh4vk18361f51YBUAmnQFnCuEJbM9VMZm83x3Lw9GbpHjKNrXS\nTnFPyXfdZYv/WqUqv+Fx/rxMSBcO5Mbf1TpzKEbrtl20W5qyF1LyFGtfZKQK3bVK0Eoc0ZvI/rr7\nBbkqFvV6QyZatrXWpaKAm92BTHijLMO/IQ9g03cP+zxeXYooWQ3XyhOGPZmESprLqDSHVNZlEnK6\nEUEobnCWHyVqycM7P/JxfJkAykpcW675GFV9qlVdWiqwGwcbdC6IWMp4vE3oyEReUw7/cT+gN35M\njz1jXvtOwvkl1jvynQvXt9nWsONORz6/p1qiHmjlx13H7Gn1ofwE7kf+mZzf4m/I3/WzMBah2MJE\nhz0HT95o8Vkk/HnrM7t4Clm/cunTcgyf/ThxR85ptHGBveuyv2f8Ds825Xq//21v5NVvkq7L2lG5\nvyYICddkAt14dpuu8pi22iWq5WnLuGVlSePGF2iz8GFmM5vZTXZbeApYBzeJcIoyWaR18CKn2ZCV\n5nSryZomTqKVMvNHTgBQelr64L1aCdMRd5DvuBP+SEWq3rIFF1UB5UgLPqwxhp61EyS4RwUSXL6v\nRpHLd7908UmysTYgeT7X48sAjFSMo57P4UyUJ/LaJoUyJqfbKfVj4hK+9t7XMHpaVtC9TH6/k3ex\nA/nuOBgQqnLz4uoajmb4zRVpbHKHE0Jthjk2f4yKrvJFUQVPVrGivU/6NUlyBh2FIh8sUSg+wCbp\nc/Lz1sWfshnnhlSBYX6oVZTAEJbky82VkJKCl4xfphzK9hYLLjQAAAdOSURBVBaiFlVNOk6BMhs3\nDggTWV1HnQG5JjYno5hUVawDDJl2XQ6RcKYc1Rm1tJSxv05XyWmsBU9xA8ECVMvqKk+FwsttAsnT\nUY6aOI4cfyVqEcmlYPPxPcjE47JD5Vqs9mj0VLm8fYSVu8T177Yto6+JpzDo5BSaeO0qxmCvHTNp\niWfqP+5h5+Sept0l/HcrH+CfCi4E8wzkMmb7TsIFK8d+aTxgV/krzl+8Tvm0vD46JyHDYPAELRUf\nWvRPcOo+pXLfMdyloK/7jp6lsqCJ2ZFiL6wHsezPcw3tupzrqyoTNrUjNIw8PP/F0bHdFpNC4Pgc\niVbZd3bpbGrZLCrRVmDNQj2ipN1gA5sw0gqF8ya5mW5xZCp0hLNQxvx1CSVMtAiJdrJtLDFtJih2\nJEyIq5vsKLV20Wiw+5gEcP3zuzSM3NCzkcf6UMKUq67cjHcELTR8ZSnxaVqZCOZMF0cp3okDoiWN\nqS9M9R0ixhMFqQzH7F6W46x0UpxI2X/0YTtqAhbvlJs8v7yGV1UewaRHopyI/a0JVrUP75qTUpjn\nH2CGqmEZwbJ2GWaRYaR6Cr51CEPV01ShWIs5RCAWIwc/nOLlY6yGUlu723RrSqJyILH3qJ/ghFPN\nAg99SWYzxrq/3HcptNy5r/0Qu9sjalox2d6JuRjIZNk0VdyGTBZZWsdN5PtBqGXBygTPists/T65\ndjhWVyKchvIy+pCp9iipjJHScInSvapPEczBoky4zz65zuMX5f72RjFxLsfxjMbyv0fE3o6MyVcV\nPfJYQVG1Ed/9cQlHTVsAaQwMuSJSL2cBzyihzqOFw0DLjxfWt1h4UsZI6bRUS8qmwXXlDW3NpyyV\nVYr+9BmWV1Rs9kSGm8jYSJCybn8TdrXd//LVDvGBaoCEHsd0Law5FcL6DLw0s5nN7D/DzHPasK/g\nQRizAwyB3VfoEOZn+57t+/8H+z5urbq1f4HdFpMCgDHmIWvtG2b7nu17tu9X1mbhw8xmNrObbDYp\nzGxmM7vJbqdJ4ddm+57te7bvV95um5zCzGY2s9vDbidPYWYzm9ltYK/4pGCMeY8x5mljzHljzC/c\n4n2tGWP+xBhzzhjzdWPM39X354wxnzDGPKt/W7fwGFxjzNeMMR/V/580xnxZz/93jDEvjmXzxe27\naYz5XWPMU8aYJ40xb365zt0Y89/qNX/CGPPbxpjoVp27MebfGmO2jTFPPO+9b3ieRuz/0GN4zBhz\n/y3Y9y/pNX/MGPP7xpjm8z77gO77aWPMu/9z9v1S2Ss6KRhjXOCDwHuBe4AfM8bccwt3mQH/nbX2\nHuAB4Od0f78AfMpaexb4lP7/VtnfBZ583v//CfC/WWHnOAB++hv+6qWxfw78sbX2LuA+PY5bfu7G\nmCPAzwNvsNbeC7jAj3Lrzv03gPf8ufe+2Xm+Fzir/34G+JVbsO9PAPdaa18DPAN8AEDH3o8Cr9Lf\n/Et9Jl5Zs9a+Yv+ANwMfe97/PwB84GXc/x8C3w08DazoeyvA07dof0eRAflO4KOAQYAs3je6Hi/x\nvhvAJTSP9Lz3b/m5A0eAa8AcAq3/KPDuW3nuwAngiW91nsCvAj/2jb73Uu37z332g8Bv6eubxjvw\nMeDNt+L+v5h/r3T4MB0sU7uu791yM8acAF4HfBlYstZu6EebwNIt2u3/Dvx9DrswaAMda1Xv7Nae\n/0lgB/h1DV/+L2NMhZfh3K2168A/Ba4CGwjh2sO8fOcO3/w8X+4x+FPAH71C+35B9kpPCq+IGWOq\nwH8E/p61tvf8z6xM2S95ScYY835g21r78Eu97RdoHnA/8CvW2tchsPKbQoVbeO4t4K8gE9MqUOE/\ndbFfNrtV5/mtzBjzi0gI+1sv975fjL3Sk8I6sPa8/x/V926ZGWN8ZEL4LWvt7+nbW8aYFf18Bdi+\nBbt+K/D9xpjLwIeQEOKfA00zFRK8ted/Hbhurf2y/v93kUni5Tj37wIuWWt3rLUp8HvI9Xi5zh2+\n+Xm+LGPQGPM3gfcDP6GT0su27xdrr/Sk8BXgrGahAyTp8pFbtTNjjAH+DfCktfaXn/fRR4Cf1Nc/\nieQaXlKz1n7AWnvUWnsCOc9PW2t/AvgT4Idv5b51/5vANWPMnfrWu4BzvAznjoQNDxhjynoPpvt+\nWc5d7Zud50eAv6FViAeA7vPCjJfEjDHvQcLG77fWjv7cMf2oMSY0xpxEkp0PvpT7/rbslU5qAO9D\nMrIXgF+8xfv6TsRtfAx4RP+9D4ntPwU8C3wSmLvFx/EO4KP6+hQyEM4DHwbCW7jf1wIP6fn/AdB6\nuc4d+IfAU8ATwG8C4a06d+C3kdxFinhIP/3NzhNJ9n5Qx9/jSIXkpd73eSR3MB1z/+p53/9F3ffT\nwHtv5bh7of9miMaZzWxmN9krHT7MbGYzu81sNinMbGYzu8lmk8LMZjazm2w2KcxsZjO7yWaTwsxm\nNrObbDYpzGxmM7vJZpPCzGY2s5tsNinMbGYzu8n+P8fGbpO5FWLJAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.3439... Generator Loss: 0.6907\n", + "Epoch 1/1... Discriminator Loss: 1.3787... Generator Loss: 0.7232\n", + "Epoch 1/1... Discriminator Loss: 1.3393... Generator Loss: 1.2362\n", + "Epoch 1/1... Discriminator Loss: 1.4625... Generator Loss: 0.6389\n", + "Epoch 1/1... Discriminator Loss: 1.2682... Generator Loss: 0.9903\n", + "Epoch 1/1... Discriminator Loss: 1.3393... Generator Loss: 0.6646\n", + "Epoch 1/1... Discriminator Loss: 1.5688... Generator Loss: 0.5454\n", + "Epoch 1/1... Discriminator Loss: 1.1573... Generator Loss: 1.0297\n", + "Epoch 1/1... Discriminator Loss: 1.1199... Generator Loss: 1.0091\n", + "Epoch 1/1... Discriminator Loss: 1.0635... Generator Loss: 1.0411\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVmwZWl23/X79rzPPNwh7825sjKrq7p6qJ7UkpCtFlgS\n5kFEgG3ZgRERROiFMYIAFPAAPBD4iTce7AACAgM2YBsRgWSFDNbYqNWDuquruqYcK/PO9575nH32\n+PGw1jmZaQ1Vre6S6uGsh8pT5+6z9zftNa//MtZaNrShDW1oRc6f9wA2tKENfbxowxQ2tKENPUcb\nprChDW3oOdowhQ1taEPP0YYpbGhDG3qONkxhQxva0HP0kTEFY8zPGmPeMcbcNcb80kf1nA1taEM/\nXDIfRZ6CMcYF3gX+EvAE+Drw16213/uhP2xDG9rQD5U+Kk3hS8Bda+19a20G/D3g5z6iZ21oQxv6\nIZL3Ed33MvD4mf9/AvzIH3dxI45tv90kwJBWBQAVhul8IZ+rAqMaTWEhK0oAVlrOs8qOMWCeufez\netDqe8eY9cWuI3wxcB08z1n/KC9kHB6WopKvS/19BRi7+myfPt88HYwxZv1ET5/hu4ZKH11Zsx6c\n77q4/mpMLgBZluNU8sS8KsnLp/PxdfyOa7D6jLKUQfrO0zmX1pDluVyr416vhbNaDat/N+u/Gwvr\n4TgGuxrzMzdwVktlzPp7zxg8X8bveSHWODp/Q6XPKQu5WV7mBDqPynGwKp+qIqVlQgCWkSGIW3IP\n6wNQr4HrBwC4rkuVFzqiilznClBm8jlw9a/GgiPHvVjm+DrByshZA8izEse1TxcBKEpLuswAaLgO\nxWrjHY/aTlfXSL7K8oo8HQOQDFKW6VLumxbrPXFcB2d1zir9NnBxdd2cesB6CI2AhhPLJX6NSNfI\nINe636dM/+Y3v3lurd3+oOs+KqbwgWSM+UXgFwF6zQb/6d/8K1y2HvcX5wAsCfmN3/8WAPPFBU4p\nmz9cwsPzCwAKfVOKyj5dX8/BXR1oINfv3WeYRT2URTWOR6teA+Bat8bOlhzAMis5uRgA0C0yBpmc\n+nEpd5gbl6iUG8+KJZkedNd3sMpMAtfBuHJ4+7UIgEutiKWcbRaFh03l816rSXNfNt+6MobDJwdE\nyykAB/MJR2NlhJVlO5abNNsBRSn3Hs1mAOzHkCvnGeYOjw5PZM4YZs7qQDv40eqtlrnVcMj07fdK\ny56ukRMYrH6eLqs1I25Eyrx8n/lc7nEp8OnudQDY2rpN4cnYtpsO00J+N76Q555Oz9gPZB5prUZR\nyVolZ/f4qeg2AG/dCbj2qb8k9ysuAfBjn7O0tq/JGDotFqeyT14x5ejsGICiNMweHwFwpSXPS70C\n25Sxnb5zzKUdOfoLz2HhChM6fjyg2ZT9KyJZ78Ew58Fb7wPw5VbEIBQGYeI+n/93fh4AX6bJ++dT\nDu/9KgCv/693effdd2Uv75+S66Fs1utEO3LmSOQZzrU27b06AOEXrtHNlJn+c1f5cvNTAFzf/jyv\nIGfENW0AWgSwZhQ8Lw3/CHKM8+hPvkLoo2IKB8DVZ/7/in63Jmvt3wH+DsCN3S3r5jOmtsNwJtz1\n/L0TkokwiKzIKPQwLvOclegulRMY7Jprutbi8pQrrLkuKH9lfS+KgtliDsAoMtQzORwhYN1Mx2lw\nVUqbsdzBb5YYfYFca2mqFHPLElvJNbXA4ZXernwWgUKTFkFbx1Z0GHAKQDvsUd9qAhA7cnG9GJDO\nZHv8wBKUMoiL5QhfGUscuMSFvliBjBc3JFppFeMSfXfpGB/jyIG3yxjfFY4UqvTc77h0+3Lo5rMl\n3VJ+OCwcTocr7a0g17X1a/K7etuQZvL3SQbRQvamZXZZTIUhWadGoC/FXl8O/3R+D5vI8/zCIU9l\n7W/tOzjtLwLwqd4pvf97T+b61+RcxFWHmitvoedDoAwrdUoaDWGoQe4R3BjK+HR+LS/ELHtyjxsn\nBG15XoOYvFRp7MwI+nK/yMo+XPFz8vT3ZBF3r9M/EkG7/L2YbvhJudaVd22y4zDuKmP9lYAtV17+\nsRPgB/K8WhjilKLFVEbWYrvbY3f3SzKenYBOLPO/s7fPbf8WAD3jE+gJVh70RzACwx/6CrDP6csf\nTB8VU/g6cNsYcxNhBj8P/I0/7uLKLplnd3kUHPPOiZzo6XLBXKXxsshIUjl4gyRnqfpqqZP1gNKo\nDus6FKoIR8Zg9aWIXQdHD2bNFQaysDBbyn1PkyW1c1H9jGeYz+WlOTApe8pwBpHc1xYhjqtqq7XM\nXdnkfi0gVjX+5m6d61fl855KqLmZs9MVLu9ELsnougy5WxCrtEpWO5LvMtkSpnFp0qVzTZ73ztsF\nc1/GluYJuVFmUMgYHjpzdjK5ydAtqHStDrtLQnmvmDWn3OjLgd21cu2r/W1qDZHWT+YH/EEhzLKR\nGQ51TgaHTiTjjFXKz/OIyWSqi5zi6z4dtr/O3pbIhdbVGeOHcv0iFckeVDOGtScA1KsuTl+O+l7/\nnEc/8Z8D0BzcwfxV8U2/fPM/BKD3Yhdh2+AlMZ5qIAsSai15tp8G+EthENGOrKEPmFLWLZrfxtlR\n8yDzqTJhCrGtUcmtmQ9lTr5XcnMk+/dN/1d5IbgCwNs7A35i/F8AYAefkPu+U7E7uinrNvyPWKg5\nU+8FWJX+k4XFngkziLdFaPTGP0/Lew2Az17cYe9VWauXjcPK0vDtyiT9Z+gZ0/WPUxTMB6kQ/wx9\nJEzBWlsYY/5t4NcQAf3fW2vf/CietaENbeiHSx+ZT8Fa+yvAr3y4awOq6grF0GBV5fTaPsEkASA1\nUKmpUJbV2jzwVPI71rLym4Wew8pcbrgOYUumuBX5dLZFIjRU5X6YJdx9JLZ4mmTMVlw5donVxo3r\n/trh11QNZJZ7K58VEdBvyv0udWIuqWPo1vU2V3duyPNikRhR8hK9qyIRzZUe01N5tkudUB2Ms548\nY7sWEdREApEmHHcnALTDh7x3IBK2mOTksVzfyxoy3jCnUO3HCw3OUu6757tMFzKO9nWHlzoiEq8j\nv7vcjakuyTwOhgGdpcx5kma0PPUv+Ia9nvzu2lWRdt8ZTfFWhlkFeap+l2WJsy2qSX//ZcxUJG+m\nplvzsInvyb1M5lJ1RS23/Divnsn9zlLDtX/5JQBamTid04uQMJZzMewbioGcF9/2qEWyZ+ZSRViX\nuQSpaGOmtLClGxy5mErG75QF2e4IgLCYU4xVAxzJd3l/TGvrMgC3y5/g+L6YtM0v9/jeSHwNeSWm\nipkMeetcfAp584S4vQVAvZpyvBQtJTcz4pbMpbUrz1pE/5hmJHv6tvcCJas532I3kHGCi8/KXP4j\nyJqnSsMzF9j1fz48/bk5Gp+l3FY8yVNq8ybNSJyI3rLFUbFcX+OvvL7WrL29PfXYVqYiUydgI3S4\nEsmLFzYdLu+KHXmlv8vnr8nmJpWYCRdOh//9H/8uAIenI4aJvDRumtOJ5YB1EoNbqjNn5eh2nbW6\n34hLutviD7ix3+El/dzba3BpW1RYdy7X7rdeJLgs5oPfv800koNXj1oscnGSNeM+AAtnQb8jByLJ\nD7kcidra/MI7XK69A8Bvv/HrJIkMyg1l/ru5zxly6NzKxavLur0cd3iCqO779iVeqgkz2e/L37e7\nFVFfvvOutPhSKM+2n5hzN5f1PHhk+dwnxI4+nKuDbxhCJS/KVXeHoCnMZMv7GdJzYZD9V76MefHb\nAATKee/ufZWORpcuipKuJ6p0/tqPspcKM9y7dcIr9suy9pF68usZSXEmz6762LqsbbMZ45ZynIOw\nQdke6zVqvy/neOGO3MOm6z3NiylBImtbuu/j+PKCB22Zn8nqDLZljW+MdgiasvaDw30e3RNH+EtX\nZO0H+9+jZr8BwNQGpLE4O/27Bl/PcsN6bO0Jw9q7KWZJ/XZJ1JFxxrtzhtVdAE5Mh1Ylc4rckHId\ndXhKT9//p2++tX/Yq/D90CbNeUMb2tBz9LHQFGxVUk4GjNOUZSBcLUkzbKh5CCmshHRZWOw6Viz/\nRL6Ho/62vXbAjbpI4629BldU9Xvp1R1aKvHKTP4e1Epee0W8zGk14/RC1bnE4ugNI8df5yeoD40g\ncKhFsnTb3YjrO/KMqze2uFIXlTG2LdqVOJ38y+K0azau47Y0tl2v07quUr6ymJlIjcqX+8Y3fGIr\n0sNMW6SeqMw7VyqshjjbR3XO7otEDLqyJm7u4xVyDzer6Hh6D9enrp51ZzqjflPMhvpITBhnEdHu\niGPw1S8cYe6KBA4aBXs1GduTK/fo74nEG7wu5sBwfESp4yw4Y6sj8z88+W22Lsu6LBvbBI5oHm5d\nQ5ndipaaTDW3TtkS6flCfEJ9X9XulxqUqWgFjp6FPD8hWknMPKG+vYr2FJhiFWpe4qjJ5unJKQNw\nHFlDN1rgVKLOu2aCTWW9jPcEL5L1aFi5djkweKVEF9xunciXdSnvFXz6lmiTbEm4tBtNye78ddmn\niyGDA1mrZe3bNC7Lenl5SaMp56IuSiHu/h2imuxH2dkmMTL/zPXBkXUpcdZawTqfhOfpj9Ia/vD/\nfTB9LJhCVVQk4wWpWzA8U9urKMjVrl0UOTP9nNtqnbyzVFs/LC2OJ9+1mx5uV9TSXiuk21e1zPXx\nA9lwT2N6tazOlbrYsld3xgzO5dnTsmI0laVPayk9tVeW6oWveTHNWLz3vThiry+q706tiePIM8Ka\nQ1wXU6LmignjtBvgyAvt5D0C9XoTz1nFDo2VA1HmM0wk8zBOgVlouHTepqsxqetb2xydyuFdaB7D\nsrFYJxYVJqXQ6MPD+JB4LGs0rZ/Q8OWoHMxE9X/BNkh9MXd435DrId4Od+hvvSzfn5fkS7lfP5Gx\nFTmkypCX1mJV3d1t3aLhqE+kcRMvk/vt+nL4n6R7lG0xFdu1gHpTmEbHcTH7soY27RDWZY3yqe61\nu0fqycvYHG0TZTIPf9sBjcQ4BFSFrJerESOqOY6j+QGpu87O8rySMpHfeZOQPJXIeamvngkqavfk\nXsO9nJmV8ZjulE/c+jH57MmcB93LRFbWpdYZc3LjPVmj7pgn+v3W2NJoi2DIK2G2fuclbKImRXgH\nX023rfkWM31Fa4Eh07d+FWY2sM7Jsdh1lMHw1ASwQPZc2toH08Z82NCGNvQcfSw0hdKWjNIpRV6u\nY8mEltAXnjVfGqryqRLkKnsMVYL7jksYyueGE9FHOG3N2yHwhbNXuYtXilZgVI2M9ixXlqLDjf2E\nowNRxSd5gl0lRhXOOltyNQTfdalp0kw/rhNcUt6alMRNkfSNuENlRPUtMtEYioGLE2uqbesRZqEJ\nV0WFsSL9iq5404uzEle1I7KSrCZOq3K+wHPlHpcvX6G1kDh8/p5Iu91gizwWlfnMQj6VuXpnDlkq\nEsO5XDG/kHW+7okW4wUFxYWaIh68UIqK27x9jfRFMX92zmocz2UcTdV9a50hyUAllB+RTzXv49MP\nSNVxnrVeQKfF+Kp8aPZrpLmaaMAoEEk6Yoj3ULWGPZ/xDXm2d6I5Bsn2WlJO+gc4yPhreedpclo8\nwuj9rDofHSrKWCI4VTnDKVbmVkbRHOn+XeBnamIuxNG4jHLKHVnDznIb5qJ5Lj+/pK4agtV0oo5j\naCJ7XTW36VYS+dh69Q6FZuTa3KfraNQlkd/NQsP5TNaw1XTpa0RoVC1YLOXaOd46zXkZ6Pl3zCor\n/mnCHqIdPGsylB+T5KXvi6rKMl/k1KxloYZ7w61zoB7bWVas1eBnZ7yqI3ADQxyuQog1Wl19Mbc6\ndGui+prCx2mKL8FryA/7foi3J97m/v4djt+Wl/h4eMh0lXVWVMw13rnIZQw7rsdue1+e3fVgrupg\n6BBqaM2tx7ixmBWZlYMS+T3oiMoYsEOKHHgnM+TIXF1lIOnyglhDgUU8w3PleZU7pK52+c72lJsX\ncvin8VsAXO31GZVyyGtLy1Tv2zQxw0AOd+3sNnlDXqagparqtYrt9h0Z7ywg3BaPvI2v4o9uADA5\n+0e09RAO9n8bgBsXJTYTE+Sl658hD+R5N7x/nfdPZC9b9icxu7LOW2ojX9SmmIWo6qPJklqhfoT2\nl9ipvwBA0k7ZL8TPsfTV9ItLcs3MbNLG1RRz0wjXiVqe6WID9aUYTQ8vclxHfQCMMZ4movljPE0f\nroIK2xVm4Ms2UM9TbKgRo0b/qe5+to2rL+/qdezgrRX10lgqTacN4pcJNNqxyAtqK3PUl7HFqUdx\nLuPtZC7DhfpBBoZzXc9G3eNE931L0+dHfUNPs5tMCCpvqJyng6qAZf5svOKDaWM+bGhDG3qOPhaa\ngrWWMi9IqEjVWVQmDlZz6rO8Wqvuxhg8ldyRKxwwCDx6WpWy1Qjoa5FTu96kqkTCBK0mlCKZ/UAd\nf3UPLxApv7RDtjSnIbp/uq7WLAvDTO0HLbyjHrn4WsMQN6HKhZuHvTqxcnHjR2RTTU5qi0SoSvA0\nb9+WpxCJ5C6WCWj6cFnKvZzWFJaaNxF5oCmztW6CW4nTLu7E7G2JpB/syH2XVU6m+RthBZk6ZW1l\n6XREjnXsnK0XZY0uq7ob15u4VtRrN85JJrIPC++CSU1i7+7eu7iaqLWn+RSvOQGtnqzVC3dq5Lon\nd0/+T4qeSPlR1aTdlhyBoCPOzNYdD/OO/G4cJiSO7E1UH0FHzJhOz5AX8jnUJC1jp0SBjN2QENZW\n+nOJo882mJXTHqOREes54Kw2EKhWkZ8Uk6op4YUYNT1XqUBmBm5bEousawkiubF/VK41hGejAE+l\n7NNkIgdDbsT8sTZlmcl5SEay16UBR8eWFy7Tkezv0WiA0TP7Ni0eDVf1H6KNejdaXOvKeWttNej2\n5XMQeHiBjMQWlt8bH/L90EZT2NCGNvQcfSw0haqqSJZzMr9krvZUHiwYax17VlRrJ5Ixdp1iXDnC\ncT1cfA09BW5I7svvcgtaWUxZuZQdDWVqhaBb+OQzTZmtxjiaSrsoMlKtxEyrililbamlx7V6TKsj\nEiPMQ1o1sUlbps4iGetIE0wh/gNXMyXLdkpdJVutvk+ly+/UItZyR7WSKjFkNZ1HtsRazWOYBCz1\nd8ViSdeKxO4Y0XgO8ntEa2iG+RoXIt2ZsaXVPp/4XMgndjX8mEgmZTkMSdVZm557nJq35R6TiJNM\n7P1m6eN2RYptaVHZK5+AViWlzNdebVPVFOvgOOLRm2KL91o3iGOxv7crGecg3Ka6KprJ7eYl/IZI\n/04WUevLvcu8x04g88sWKmndiGqp++DVMKva+KZ9RsS52FUW6qqktKjWFazVzGDV11DMCqpUperQ\nYEM5MPlirGvsEpzJ2g+bBwy09r10B89oCH/4k6ksnjq93JkDWnW6HCxx1T9SJRKS9W2LtpW9rvs+\nlSfO3Hz+kOGFXDM1BxRLOWejE3XQLm6T9SQX5HynQRGI1jfeabC/J3ty+NDwy//ThO+HPhZMAQyl\ndbEVmGqlatt1xMExrE0GB0O0SvDxV4krPs1QDlXo+Tilur2NodLQ9MxJmWhZ9vJQNmVi3qPQhJdZ\nccGjkTKWwMNRjACvelqdtkq1bjdaxJqME7sW/5ICmWQpS016mj2uGJSSrlrL1Jl3KaShXuitOwWR\nOhLdRgdXD2wey+EvyzkzrVRMjlLmmhs/P8/xQjmwo7Mps1gcY468c9QWDdxVPkXf5ehMGF1jHnJT\nKxFv/fQWjbkc9PxYDt3ZwZRxJuvyxndmHC/l2UdpjqP842duvcidS1LK3NsRB27tC4ZtxaEwvYCD\nb8kBPCq/xVFPGMRR84vc1jWoLmkKdr2NDVdraBjG8mJeVDPcM3H4duKc2a6MycjPsLnB11yBRXxB\nbS7P8OYFniNMiMYFJBrZ0bJom5ZksaxbOUuwaipVw5SyrWacs8RRHI10KGNInDFGc2CCoYW5jCd7\nbclyXZir5od9mmRnM0uu/2cWc8ZTcf7Oji5wPXm2pwKw2kmoh8L8PK+ih8wpu9rGDOV9KIMmzlwY\neNoXUyyux3iaVh7kY2bIOZy+u+Ab58JYHvzDJ/zab/9XfD+0MR82tKENPUcfC02hspZ5VtHFIVdp\nXOYupRZ2OI6DClWKShCOQNKNAcKmT6mx+bDlE2qZpBsFlEY48MVowsl9kbaDmar4ps3QqvZwfsGZ\nSqhiWZBa1VgqSy1YwWfJP816g6ASbj0rzmmdiISqOgXJhYTZHOPQdmTQF648b/6kxhV1DHap43ZF\nxQuaPjoMjEKNLTggPdeU4sEBsSdqd5GWeEtRf7xggD9RLUYh6ppRyKzULMdJQVNxDz7Xvs2iJvPY\n+94vUAX3ARg+kkq/b7z1Dr+rGtS3znIK1dIqA6FWLQ6Hp/wr9isANHqCrnf95CcZPZBwqDf2mQx+\nE4DL5t/lvXekeKhx8OMEN+V+nUq0lWY8oabHb74YcGNH5u2cXyYei4Myj6C7kLXN1OHmlBnzuaxn\no+ox02xE/Dp+Q3E03B3sCrIPmX+eJFRzCREvp2cUC1E98mJKuAoDJ3Oyi4k+T/51Co+gpqHlscXX\nMKJ5sM+DJ1ootaOmgQNW0zvPZ3OCseSQnF+ckz6W+711dJ96KtfX27Ifu8MXGGjocWurxnQqc51N\n64xC0Q4Gjw8ZjCXHY5TKPk1ff4/LPUmxdrsLdpoStn7v7AR/Jmfr977xDvP7319I8mPBFEBMBItB\nHbMkWQHl0/TMKNBEEeuyty0Hpa+efi90QPPXy8zDVnIQRtOUyJNFXUyOmJyKCuc15EDs1gL223rt\nwlJE8sI2/SUT92n0wdGXW10YRJQUWnGYsqRytYLPi3CPxW5/bzEnV6dv3peD0i0tKKagk0wJNAkl\nsA5VQ55ROmpn1ub4RhjMrDzFjOX7pZlhn2h9SDilUuSoYEvuW0+2yY2O7cmUV9X3cbPnkd/RhJ7D\nb5C9rCAqWlHZDD1uagLV236+rvOwBqzuw3B5wle/8z8AcO0n5RnZ6B5feywvf3BUkdXF/CmSt7h0\nS55R3/ssvcarunjy952rEb6aFEPPZdJVJjy8z9SVMfWjiMXs+VwAY0YoLgzz6Qzrydr6ywxTk3NR\n5lOcQOZitUqyrCakiplYmQWVgr0sszOSgabTl2fEmjbudLQSM62R+MI4i6CGKYSpZcdjHi5FRTfq\nZ+hPI8aaZDZ49xyTyTOODo+5eCD3e3TyNtuat9K5IwLLSVPiXTHn7HHGmaR0cDaa8PihMO/JyYT3\nKmEy2yo4/NacqpBD5i1qDGsjnfMTlo6cnax4h6R8wPdDG/NhQxva0HP0sdAUKmtZFjmuZ5mqt3xW\nWhKVUBWsY7upKVlotmGkWWl+YtDEPvanXfZ3NTYf1VnORdL83veOefxYuLVBpMswPaGpeaLGJAQr\nDEOnWKMZp0G1hnGzmho7ms/YzhXEo3IoFM9xnM74re9KTP/1ByMGOqaa4i9+/uo1mjPJ1tu7uMSy\nIZIiutTBqgPSm0oMOnn4LudvyQ3ee3iXx+9J1uCkXBAo9NrelTqhRjisBuZbnyrpGvmcvZGxrT7X\n4Mfu0h1KHkb7sw8JShnz1wbiDB2Ocr6zVCCTomKu4sJzZH8AXGMwXY0CFJqOPX6Bt998A4Du1Yjd\nG6Ip7XY/B/fkebfqu3gKRtEoZD+Wfky9Jqrvds+nUPvw9d/5R+QNefjRyRX2IjGVirmo336rxmgm\n+3j+cEDUFqm51QiJKrlmr94hqCuYjaajLyfvM1GvfZqkpOpoPDk651BV+9hN6CGf+2oyBr5D9UCj\nFi/BfKhnJz/g/j/4uuzfrRcBuOcdkk9Eck8Xj9gNJVJzdnDAW49kzGdHM0YdNeMGYiY58QRnKvdw\n/QnHA9EITu9XOKqFNi9ldPQsB4VojVtBhyuXNKMzTPA0r+XJ6C7VTM5AlQyo7Mr9+eHoY8EUjDG4\nxgEHXAVL8XkGW87adYViFAeETfEo78byQqSzOWNVoxflnNa2fN/qdDmUr6msXaP+WPUKpwZSffu7\n1uHKrhzAq7tbvPlYVL9kluErQxqoKjqcJIyn8qK3Sphc0bTb+YJaU17qKJrz0p6mPHfk4N7ce4Wd\npoJ5Zm/iamJVmOwSaCrtLJDnztzXKUJ5bnu7TpqrebR8n+aB+Bde2nNAfSa5lhbfaO1zmIq6O/Pf\nJG6JPXz5wT4dX02Xz7o4XxVV83SpJsM448Zl9dSfpQQrPEe/WqNV334hYF+Tr3a1xH25dUC3JevS\n273Gp2JBDbq4HpLdUD9I6OIq5uW4L2OIo5BmXUFqfZgpqvT76RHLB6LCN/0D7r6mCTkzTdI5bzPP\nFSSnX9E1K7zObUIdZxJWeJ6GcNWT7xYVy56sy+j9FKtgtGcPTjjXlOhakdJVhOWoqWnJzQm2q6nG\neYf4RMb27t4hw8d/AMBv3fs1+fv9jIWGbK+2r1BtydrHyxOuaMRgf+cSzUBe7k5T065Dn8KX/RgM\nCtAoGTsTtqww1jq3ud4RhjRqKNw9NRpqPsV2TqHnrGOvM+loDRFnGHdVNrsCAfiTaWM+bGhDG3qO\nPhaagrWQVRY/LXF4GvMNtNijtNBR7tjtN3nlsnhZb/aEi55dnLLQ5BCCFr1Y03y7LtevSwz9K7Mv\n8onbApaxdVmm3bi0AxOR3Htewmj4EIDRyTlnWjHoYDgc2fU4AC6mS7xUflfVDaFW6vW2L/Ov/rSo\nxD/zF26x3BHp4Co0fKsf09RCqt3Lr1BoirHvNShXKduOaBdx7SrRyyLB9msvsrAigdKzfVqp4gR2\nmng1qcQbPhTJ1+5e49235O9m0eByTfIKru99hYXGx5uHXyKJvwnAT70qmsanb72B2REJ9bWvTTkb\naDSnMuxuiQYRbu9wuSFqbvNFcRz23B/jloLFfObyF/E6Iv0v8SMsD1WDunKZsimSq6mOOj9OaYdi\najjG0NOoUz6/gpPJuk0uw+5cirSWOmfHXdDeVgi51h61UqVjs4Wj5mSztc8KfGBVUWt9S9tolWzz\nFEedcltX2jia9p48ekjfExPKi1VaN+vM1AyMF/tMS3EkNt6+xuH7YkLNZnKveyffwug+fuozM7a1\nE01nf4uzKUV7AAAgAElEQVReXbSGtEhpaGHWykna6r7KYqI5DZ2Mw4GYGn52iVpLxuZ6lkK1nlvb\nnwHgYrwgrMn8RuO7hOtklQHNlfmQPcCzYkNmaDXoB9DHgikAUMFkXrLUxith6K1x7h3H5fY1OSg7\nt65yfUcOU13Nh/EgX5UOcPmFDpGqXE33KiaUzWj+yDZuKqAY4QuyeF63RVCJuu6eWc4eyIvyzeOH\nRG3dmIUhVZts3SEpT8lU5XRjn1C9yXt7l7imaEvRtS3snjCI2Vg8wW4agiL3WBeiWE5bWRV4Rsek\nmZm7V3fwSxm7MRWpJmwV7Xs0tLdCVc7JjbywzW0Jt54vHvNkphGXZM7122qCdQucjtii6YM3cK/J\n+HfP5L693c8TduSlcX7i1xh9RzEMPZeFAsNs7+e0FdvRTRRmvf+Am59TX4w9ojLio3gwfIuDC3Gj\nv3X813ihdee5+TUI8NSf4xhLpmaA5z9kGmh1ZSNnOpXxdZqa8VcUdFtX9dmXCEthllHoY7RM3glc\n1gWRGp4NOpBm8qLXtwyh2udO1EHz5Wheh1CZjFvJ3ixPD0g8ESYLNyBXH4X/yMMxYvu/l4gf4Ww0\nwtdq3TRNmWhtQz++RNjWCt3hkLKQudQU4CcIcrzuKmqT0FIAn8pUa2baOiuxPWHgpZGXOwinLOby\njCSDi6Xs+7Q4Zamdqvy4QFtOsNDo7QfRxnzY0IY29Bx9PDQFa7GVZZGXpIpZ4LoQaxz/Rifix7+g\n+fUv32F5ounIHYVoO3WZaNutm81L0HoIgOdmBAq5HtfatF6Re6xyUS0dvEy4ddV7k85DuZ/vPSY/\nEklxUC0IV/VuKs1mWUbQEwlV80PymkZDojqKWo4ftvEz0Vh8hV2rmimlVjsWtrN2dplWRKVpzo42\nMWEJnn50PAfPivRwohqextCLwwNKhSOzJzL/92a/z9GhaA2OW1KLFD7ss38AR6K52BslgWobo1Ck\nec32OT3V5Jjv1En7ImF7QcVC60DyYY32a/KcfCrPKOMWHe28tPzk+zCW+Z2dWh7+lmhI25+6yY5C\nod1wRGOIHI9AcQUsEK669kzHLG/IPSbHLa5uy57UHKm/6F1yaKhG47tbmESeHXbCdYNLxwmxqSYv\naSTGNUtChTyz85xgVVcySTCqXrun1/BuypjtuUj8ZeZTfVfm/+TqE85OZJznxuK58ruGFps8rlbO\nPVgsUhaxrG3P7+BrZeciT6h15R6x9swM3Ab5WD7nJqehUPXJaEFzqDU2rQmJAsYsRUFhOLOYQDSC\nwWJBOZI9mxydM1STpl6zdOryOy2+/ED6U2sKxpirxph/aoz5njHmTWPMv6ff94wxv26MeU//7f5p\nn7GhDW3oz55+EE2hAP4Da+23jDFN4JvGmF8H/g3g/7HW/i1jzC8BvwT8xx98u4qyqtZNXfwQthvC\niV/Zu8ZnromEidu7FJE6I1ti67bGTbw9sZeb/jYs1TYeN/EuqwRauLiaHhxomWVau8Bo8ZTvhgSp\n/C4D5iqBXUJmGtOPPHU4Gm9dtRiOA/wXRUKYKsdTkNaACNNVROFV78t6QXWh+RbOXQqFY/MaTaKl\nAra2xEacTxLKUqREu97C6SkSMRGONm51wzqVK829x4mIgfMHsDhXm3XPZ6IQQv23ekQKx1b+i0P8\nt0UTih+InerOcwLFWY3fC7mh3Z6n0ymOIkL7jS5mosVP2uT0rHyPNBH7vDu7TX4h4xhsfZd0T0OE\nXp9AofCqFb4D2gkaafBc6udZFaModrjjOaf7EvbbLcSx6eQ3iBQpiWi6dvRYMlz17Vh3uk4/raqn\n6dGmqw7YeYrRSrman1FoGJHc4JUaRj0QrWnBXc4dddAueuSKkVF+1tJ4S87ArJSzFwcRqFR2az5u\nJWvVrNcJW9pgthbhq0NwhQhu60dkI0XZ8jPiXH5XdAYstdFMwzRoaOXnqZHnzYsSk8jZW5Zj0kCL\n6YylXm/p/Fyu1eWMPzyW+X8Q/amZgrX2CDjSz1NjzFtIC/qfA35SL/sfgd/gA5iCRQBIYtch0002\nJQTqye3u9clrcqi2uIH1tQrQlwNt+xWf0H62LpZQm5863R5G4bzyRYt8Ii9spfUA3vQauebAm6rO\n6UTSQbPjHokmKqVZTvxMb0oA129z2fspAILe++wFX9Lvd6ChYClxm6hSdV1Te93SpQrlxMfss0BV\n92obR0t8fYX4mrlTFgOdRx7SQjti5wUm0HqARYDRsuW0JvUHs4NjHMQx1lhE7LZ/XNaw/hmSphyK\n+vAF0ko6IodXJAGnVa/T6WhJ6bVvU9OS5Vb7lK6aNMvUozX7CzLvXe2A/PAqQ6OQdhdbHGiORPib\n/wLxA00PfuNfonxBq1i1O5fx1t3eKZ+peq7bfeIzrVFoJNweSLPVqL4qgd4lT4UpRlmNcv60sW6h\nnYA9L8YqiIpjNS2ZksARiLm0OsCq6k7LI9bqyqJ2sS5dz5uy1/XzLp2OMF5z7EFLKxwvGtQ9YUK3\nmxIBOq79+hpF2mZNAq1XCbu3aIZS4uw1U+oa7TAK2+/NO6RaRt0KLed96Z/Zm8RkS3WEey6l5k7E\nlZyRbHqOq1BrhQWnkJe/pEujIWenmmfs+ytl/Zt8GPqh+BSMMTeA14CvAbvKMACOgd0/5jfrVvSr\nsugNbWhDf/70AzMFY0wD+AfAv2+tnTzbGddaa41ZyYPn6dlW9DXftXXXCJSXZh1WpSVRKK3ZfE46\nFY45iEviUDltIc6UJJuyXAgHD5oGq04b24rI5/cAyLw6k5H0uK2sFtlUDo7KqGz+iJOhSM+T6UOq\nSDsYZ5ZScRtWZoDjlBQ1kfjblxwqc65j9kgPVNUOSorl801rLDnWiHSosjmuVnaWkxTrazHPUuZU\nVhPmGq9eeg3ypYw5igOipdwjSYaMZiKlp6ei5Szcd3AVk6E6n9O6Jveogkc4TS0CGh1QxQpT90i0\nity5jNVEjKg/BC32CfyISSGhrqxcMlVoL6cuLdKHRxmJdsHOqDOKRBU/ODrhOJdnXEsaBPHPyLxY\nORcNxaoToIVMsQBc+wgvkDld2YmwhRRb5a4CjNx/gF+XsG/lBKAh7GJucRqyhqaorfspWtQ0MAPy\npTa+iU/X8HaV26bU4jZTy8DI9U7tru7T+5hI+jcEWw06K2DeBy26igJ9XGrxUVkyW8h6j4om+Vz2\nKV9MSTNZw6JekVr9bFcp2O9yqv03mmnA2URMl8PDGaFC6FWLDvQUtGeueS8ND89boRj3KFPRes+6\nC8xCNLPcGsZzTev9kPQDMQVjjI8whP/ZWvsP9esTY8yetfbIGLMHnH7gfQBjLe3AxeqLl1Sw0Fzu\n5fycNJFFK+cNSoWBLzQqUGYTzo5kw6OBR00RivPQJ0TLmp05dfX6Tpay6NXYslR1sXCPOJvI5p6P\n51j1zh+WOS1F0FEoPzI3o2jKPawTQ6i2XDUlV7sumcWgPgGrUOBOvSJXdXD+0GU5lcOf1c+wJ3LN\nYiRjnyYlvZuagMKCqSIjL62h1pC1GB2fMNEmKQf6ch+ePORMW8OfJEPSmfpUrv0Bi3PxWzipxdUc\n/UQRlSN3xlQrC49fn7Eo5eC2mwFpLqrv/fEQ6lK1l78tL833ThI065jWl3x2tCfkw3zC4YkcxrPh\nfdJcmPYqXdtWHoEmFiUlOJlGX5IJZVfxIUfXqDfkHvOJ+FqCWkx1oE1kvG08zSdo3dzGappzOaqo\nFGoeTWRLxwnLC/l7VcSEWhRis4zKyLyraQahNhxW7/28OSc+E0Z2fPUh0YVWxHYPOHsouTOVYokm\niwmTqfx9cpIx1aSnUVLinoupkacpvuJcLgvZp+nY8viBfC7rAyZD2d8H9yfs7W3p887pnss+uGom\neImHE2h0KR9j57K29WHBwpX9mxU+58cfLmlpRT9I9MEA/x3wlrX2v37mT/8X8Av6+ReAX/7TPmND\nG9rQnz39IJrCjwN/E/iuMebb+t1/Avwt4H8zxvybwCPgr37QjawB6zj0QpdQPeSDAOpaEHUymJOt\nYLL6YJDUXVuummokWEe463Rqmc1Fdaq7GYum1psHXebTFS6fSPOBGVFkwrXH0xPOz0T6z80Cq36t\ny6VLqpGI1WLVuyEn6pHeziO2Vi3OWUCieuv8hEzb1BWamRknW/iK6pv331+rl67toPUw5GqWRG4L\nP9C2YlnBoCOYie40YjnQi9OcSvsTLLVHxtkg5fRCnpsXFe8PxAyoP8pxtcGJ+5dntN/Wvghjmdtg\n8oRpXzEs/RSjYxslC9ItEXmTWcnwVLErn8jf3yGh0DZunZOYg4FIvHvdfN3mrLyScjoThbGhzQma\nYQ2flYlmOFdTIylzIm2R50UnnHdFmwpFoaFa1MgRbWW616avjVhqyW2iSCHmgilW8TccrSj1yVh0\nZS2cqUel6X3GFqQdcYha38VR0JbsQqMarQJ7VXEwZw2yY003/0LO+VuynpNzGWORFlhHczqyC2bn\nMuds2OFU8wn8KsArZNPcTJ2kWyOibTXtli7BSFMsdxLGiZxJNw3JFyL9ey+KNuZbQ6Ad1qcnM6YK\n5rMkZaaZjqdPhlwohNyHpR8k+vA7/OEelyv657+fe1WVZZZmhMYnUZOgZXwKvf3ptOAdTSZ6YbmP\n2xWVshXKxD2TUVMsvqWZEWnTk8Tm+HPZgFmar9F2zlbIS27MQtNgs6LkbKnYhycZKwA+m1dUigC1\nco/svvwJrC+q47AZ8qIrTCrwcqyWF9pGE6+pXnRNUhofNQm74glu2k9TVvKib+12yI1CmUfiLxkP\nzsnGMvbj4Rm15qcBKKohtUDs2kVwH1f9AMelHJ6zwYBCqzkzW2Dn8jtv2OcRYhvfeucaaSbRiiL+\ndRnvwhBqJeJknhEmCmTTDXis3aSODqfrBqs1bVb7s86n+d1TYWQ3T77C4+Q3APDP9km1TsDJvkSm\nZlysYcNHScGe1rZki4RCQ6q1+Co9X5j6zEJ0KutRlFq16tYwVn7XWnS5UHOkftGhdGVtg9oVqqms\np+uufFQDGo4yjXBAoYlAaXJBOJeohClnazxGX0FrdoKXsFYrcC8qZk2ZU/XQZXkh4dJ2IesW+hAp\n8M+4hPNMBMe0rOgu5bykTgBWojm5UT9YeolAa0I6rYr0lqzxjvsqi6XC7i8WzDTdPszEjJhXKWhY\nO5ke4mlLrtPpEmehgMTLGVMtif+wtElz3tCGNvQcfTzSnJEclIui4kKxC2xi6Cvm3iTPGQ9EEj40\nKZc1+rDUvn6LBJaTVcx3xlyLWoLjEa1Si0h6OYuxqtjqYW7U68SaVzAfTxmOVxDvJbHiEziVw3iF\nw1AID92qNxmUYjH1G5/EuSJSLBxsE2sMPfRqeCpVzVycgEdvP2DvS18GoHm1TdAXieFeGFx1Ri6N\nJjx58Pjt/xeAkTflauc2ANuxjynkedgpr78nDr/7b8i/RZWTqwprCoe49zoAj0cBky3RDo6/t8v2\nNXleeKZJQ7WKYiTzOz874uSBdnnuuLw5kTEdzDKu1mVt+9sizYdnb9FRh5nvWF6+I/d98M53qbV1\nHJfeoN+U6spRrE1fihRFvqdMRtwbSdp05M2xGvlpxBmV5iE0FV/SKQdstW/I2OoxhYK9nF38FnEp\nFaiBF+FNLvTe6hhMxhjF+3eaJa7miND2sMGu7lkdctGKgo5K1/mE3FWNp5Xhe1qsdHdMXZv8sBSt\nabfdwl1qQlpVcPq+jKH4TIpBPkeOz3T0UMaUyVpOswvmqr06paHS9O/JxYAql9+ZC4huaHLWRMwS\nJ8gYajWvzcfYuvyu7qY8nsj4Z+mcPPv+uk5/LJiCBawpeeJnKC4mVVCReuq9dxweXYgdPfUsQXtV\nDScbeP/+ySpniNutBqF2GMqnPoNKATvcLeKuqpJDURHnswq/ubKjS+4pMs95WXBV1cj7rQKNslHo\naj38zhY3L0mG3Wj8hBMrD2/1JxSuqHvlpEtTS/WakWzmtVf6PHlbVM5a0+At5DDZ1vuUAy2nnUvC\nkzOPqanDIMJhO5XPxp2SasjxO99+nb/7mxKyS47kkF/4GY76NfKgXHeTCj73NtPvykHphksSPZDn\naqzPFx7nc/G/nAwzTtuapZkYCllCnLLiXGHJ378rhzUrPTpqv9euTngiXzNNE9JDTQBrX/DWSPwA\nn2vekPHkPo52A5uWM6qBYmXOzvC1XX01T6lHwjjHp4rF2E558kTGudtt0I0UyGSvJJsrOGyrj9+S\ndcx6Eoae3l+wfCJr5JjL1BVQx0Y1gkRUe7scUmooZa7RrJwhxV15CcfBgHMtBx85DkYzE+MdMZ/6\nNsdoxbVNQ1xdw6S8gLlmjoYxnp6LXGsl2skOiQK+5lXCyVD2ZHg+p12Xs9XZXxAruFBZynjmU0uq\n0ZeFl+MoGtgyTzgMVs2ScxSyFHQfP4g25sOGNrSh5+hjoSl4jmGrEQkGYEM4Zrse4Cju4DS3zBWO\nbTld0Fyog1HzGNLUEirMWXzpOpfaIlUH9oyRctLpIiXTdOVilWdvlpTqIj+9mKNIcDTaAaFmv9yq\nSlKFsaoUWv40fZ3F6a8CcGkaEFwRzt2sblJpF6a4mxJ4qlZbcUQ6SwfznqTMPmke0G99AYDavECh\nKRk6/5+M7Z2MrCnz7LS6FJGoyXlpGDwQbeTrXz3k6EQxErRTUuRFLD29mQ9ZR1PB7W2iI42ufH6C\nOVMouLGk6I7dU0JNhNm/4XDzWKSSt5WSabr5eOFznska3DuUuU0qQ62mpsRFxBvvyXgG+RwnFIfo\nG4c7XNsXiX6sKvx1QlA12cxCpploEmQlAzUZnGVJ4otZ5KYK1X7sEygUnO18m9DRmogkxzuXe8+7\nv0+jElg4oxWq7hTmOzK22qwijTVV2i/IFIE5n2RkI7lmciJrlToTpieyVqOi4OJI4ddvZGxfk4Y4\nLVdwN93yAscRCT09SSi0T2myKBjWRPq3vR7hyhyttHGQd0yi0az5MGM20ShCVLDdEedhq3WTQtd+\npCjR5+cJRqsviWvYUutqbBcnk3EWdo71VvGADweosNEUNrShDT1Hxto/Mgv5z5ReeemT9u/+7b/P\njon51l0pBqn8bf7L/+Y/A+Do/e9Q00rFeW7JtUNvovkGRVliNXwZuM46xRUDlX7vIu3gAOrhCrrN\nJ9MGB4Hv4GoDmCKDhbaY7riGVbvCmQrg7Z0mzRVuQmHBXVUtVvJj4Oh0zlydpivO67tQaAZlkluq\nVYWfhUDrP6wOPvIdOooo7PkOnvaeKAwEqkEFTY+rX5Lw1E/+4icBuP75r/BydQOAR+X/wc+2/zYA\nDQyJagK+79Nshbouigxdq9HZFsn2Yr3DZ25rk5G6C4FIq/lJxievyfdzTZOeLD3eekOk/DUvYFrT\nmv6szr1DLcAq5jweiU/o8Fj+fp4sqGn4OTWGuVYAfu6l67i69rNsTq7O3SDUVoGOJY5X6EgeaJiu\n6bkMVRKeTUvq2oX8ek+0xhsv7hMrqO5seEGnEA3y7uCMdw5E60lKy9WW+Ana+/K7xTzgYiiS+XZg\nOVdpPCtdfu1bmjuifrzKVBhFk9rqN9nXAqbRouBCsQ5C7ymCV2/lGzMOvmqhNxu1de7J0RASzWW4\n4vmk6khcaB7HsMq5qvB3/Re2mB/JGr37+F0+qw2R3iwrDk9Fazg4O/imtVbU0z+BPhbmg4MltktG\n+ZI3n4ja9r1/+sscvPddAJbZlFK98yWWUp1dxTPotC2FCK8H7lr1d1zDlkKEp05BT5NsHK2SjJoR\n5+qdrsjINXEq9QoKrbvwHIdEn5eu8pzLikhNERMaWholySaGRaLAKUWJr4de+QBFIZ2wAJaFxTVP\nodNXKdvuqhKzsOvS4tAHT1OCvQxagVYDpgEv5Z8C4NbFvwXA9eUNOnU5VZPgCN8IU6i7Hp6eXi9p\nUNd6haYjB+zLNxu8/CXJadgNMvYUfr7e7ZFXkmMw3X1nvYaE4ukfDUu4KS+Hn0Z0NDI0u6iTdMQh\nOLlw6Chq9kLXfp5WOMoIwtIyWipzLjNAmWlV0dYGNZ6uRdeNCfUebbfOXFvV25lLrI7LTuZSj2Rf\n2zqeeqvGjjrqxpGDMxSmcWkWk2q+xKm9IA7lmo4Cnew4dcpSkpvcsMWu9q6s7nnYVUWvsn3PWiJ9\npfw0Z7DU9Pg8o8z1rFroKFNXvze+cXC08rflWCJ/heFYMYplTr2ghl+TvTpXJ3G6mBNoCn4ny+hp\n784nwwlZIM7TS1PL8eRD4rApbcyHDW1oQ8/Rx0JTwC2hPWPm/DL/5KuSYXfw8JC5tlhzqxJUUqbL\nnHLVrn2V/Rg49Ovy9+12SE/r6l/ca3C9p46Yok25VHPDE3V4kXk80rb1k2LOqcaE57ZYayFHJmNV\niJaqtJpOKnql3Nc3CzKrvRuzgkQ9hjnVulfFKkq8yC2lZiAWFlaRIsdYPDVzVo1X5qWl0t1p4+Br\nMxXjSQYoQL8V87Irzq473c/Jd9YFzWq9evY3KO2/BsB5K6WpTtVxY8DuvmT3vRLLKH7stVd58c7n\n5Xmlwd+WOfluCooLsHX+GuayfF8OFXTWMdyaiqNt+sL72IFI6GlwQk3zSE47Y2aqwh4r6ElSFsx0\nZXrGIdfMw5wc4ykwiltRqFbUaYkEb/gp7ZYiX/sLahoCPKpG9BU8p92J8WK5fltj+33fX6euO8Oc\nRUs00kaesF3TtnHnEdG+SlXNlFy6BbGGC79l3uZFdVwetDLyx5pTo47dCEMWaYasG5Dq+TXVUxCZ\n7UZAS7WmazuaPRm4lFr5SKsi1MZAnR2HeCLSv7g2oan4GsGOghtfOKR9CYfee3xO3JS/e4MpX92S\n769kAdO6zukpWtyfSB8LpmC8EK/3Iu/f/yzl7HcAmNUKooHa3FGwKnZjjl2jc3Qj2eXX9uq8+oKo\nS/3tmEu6cS/f6tB+QUBWTFmu891TTcaZ4PLwQg7gyeyMdx7JZjwcQK6mQuKU0tcSeXkBijIhcxWX\nsahYpKJwVdZSqQPC9wy+puMu8qfNalemhGvWID1s+84KS4jZytQAPL245VTUtYGirbk01ZQaLhfc\nffPvyf1+SzjBnaO/grsvabtf+/2HBK6s0X4QrBndpU8FfKoptvOP9uTam3d26dxU5ONpie+I2u1V\nLlxTWPbAYh15yQrNs2/dSYk0t6LuXWJcSKLW9s0lzkht/2XI+KHk7deUCRcOazj/qrDrdu6eE+CG\nilJkSlpq2686efmFT00rAzvdLu5cGHkn2sEP5d7BjQ6zM+EWkUaD3GpOWZdn1Fo+tdoNADJ3zpVY\nq23fPWeiuSOZgpf4DUtoZAw3wzrpWPNeeiUOKz+BmkEWatqbtCxBAwBExnBrT9bw5Z2YLc3DaKkf\nKe7U8StFfm5sEcUy5uJWwOJtmdOgnlCowIla+q+7JFUfx5NhxgpvJrINrigQzyTLaV+Sa0YDTXr7\nANqYDxva0Iaeo4+FplCWDuN5jVv5X8Rt/LcA7C6v8dCTmH7YAkc5oplbulpp9xdvSrbbZ35kh1du\ni8QLnDo3Ozfkd7vQ3pPGGXZm8T1VE8cCppK6hkiz3K6e1YhV0sTHlpGy3frSMFEn0FJV+6LIaern\nSVHhaqbY3MIqmlNVFblK+pX54Zk14DB1F66G8j83AlgVxm2pH6/KDcEqbwJLr65I05XBaHx7kRUc\npDIX77v/CwDu/LeZPxLn4x/8/jcItIfAy9Fljh1RKV+u/jK3VKW88kmBc/P6Ln6gn5shgTYvMRW4\nLcllqEhZA1sjkt81bfwtUcVDW5KHUv/vTvewdUmxdooTxk3RLGZzbQEfFPi54h9QEah8MoHPtmox\nprlgq6+FVIp5YEnQQAT1XUN9Jg7P/d42qkzg7d/kXCHiUK2iMGMibYxTsVijbs+rJ/htmXfRe4/q\nZKLjk99XGbjatGZ3BmeZAtgk3noz26qNLcucUPMwUlvgGNmzfsfhi6/KunxhZ4+9tlyzVKCXKy+/\nhlGMxq3mCyysRGpM+xWODwU8Z5aUHCSyni3zoq73t5ioifbYfZ10qNotDrfORXOmGFEr5fpH/BM+\nDH0smII1FZU/4/3R9/C6ijk4HxLEq3x3B1/Rj3y35PIlOSg/98WfAODya9dpBnI4onZOL9Cqt2aE\nXxOEINPJMNrPMJhrTYIfs3NZkmOWdkCiqv90fMilnuh+40nJPNE6CA0xxn7JuR7A0lqSXHPOPYsO\nE1sZlqvYqP+0w5RqxtR9h7r6QQ4SS6nMJNYElVd3DYVmU8VuxUL7Ae40DE/0miK3XCiEfXIqYbXR\nPOHSnmDxfe3uA/r6bCeo2FUbtjG7R/+ahOfqkbzcQdLB0fCs22vgaOKVsX2wWlVaK1ghqhhtZIM7\nwGwLs3FmKX5rVcL+GBsKswiiMX3tc7inHbnG8xQN9pAUrJlN3Xfo9bUxjh/R1oY/K19MMPOoaS/G\na/U71GXb2a71QSsfi60ankYfrPpXlguPVZ5vvFPHqN8pND0SrWyNuj51rX2YL5VLTw2p+gnq9Rhf\nwWDy0xJX1f9KI1+hW7DUhLrAN+zVhFn8xCf6/PSPfgWATtdQn2okyZVz2Ny+hrcva+iNjqgrs1i4\n3yG4LuHe2qigret5NtRajMYQ5Vd0ZxXva8n8oErQvsK4ocfcKoP8kLQxHza0oQ09Rx8LTaHKLcmT\nlDO74PCxqMPZUYajyLiNpqWmMfYwCPnKpyWF9fJnhBPvdEPirrZ19x3CvvBJQ4irEOcUGWiFXtBc\nhRNKajOVSvUBV3ryu9mlBl//rnD/ebZYO+gKRQgOai7OZW0Mc69i/iza8wp9fAlTdUxWitXohhCq\ndLSxZaLmxTK2XFs5ibbkgitbPtENRe8dezxUUTo5q6jtKLZjUnEvEcldPZRrD69/j8+diuq4mKa0\nVDWZbh2zo/HtK59ecuuyrF1Noe2s60OmGLtnDlVDYb5qLs5Yog92uoBVS7NMUfamMfZY79GaYFRq\nujVQ8DgAACAASURBVIQEMzle4yyjVHwKz3u6VmOtCPVdgxalEgbxuro0qELcXPYvURi7wECrsyo0\n26XpKqR6o7POX/EmO9QWClnWUw3MmWNdUeGrucVok5zQnlLpOOPUrhv/PDkWqdt0QqqxjPlBb4Sj\ne50GCyJt5ReoaWdnsKroixyXO5dkDJ/51DWaTTFdwvnw/2fvvWItu9L8vt/a8eR4Q91QmcUq5m42\nOR1mOs20RiNNsgXZEGQBsiBAsB5kGX6wJT8ZcIAMGLZkw5AA2RYEWYJkSU8zGE3q6Z7Qze5pdmQs\nkpXvvXXjyefss+Pyw/edU6wm1U2KUrsE3AUQdXjvuXuvvdbaa33h//3/OOuyDr1ELdYA3Jn0zT87\nx+2JW1yYMk1NJZXODkGVtBc0bv07GRPlA8nijNBd9KPgnqvU8G6ZJP+AaQdtj8SmkBFzyB2+953v\nEI5kspK1A0LlLUymGU3NLK6s+lz+rGQU1tckHVexDYzyJBKHmLkuiHodqlq2F/uYXEuVFRnmtUcE\nhQy0l0KmEeet7YSu0p0fpBGjXGt81R1YXQ9x1V9MGtAWb4bKxKei34lNTqwAqIWU+5prqKjJ6dfB\n0S43Lby4LX3a/rz4m9tOlfqVBbTN4WJdJv+NP05xNRsyMikKaONtNZMvljZIVXsiio/oVGQsWlOf\ndUV01p4DT7MH/kwv4I+Iim/IZ+thJqrX6LfIW7IBFPkYZ75gRdL4TH1IrmSlThxQLuQ5eqtHpFO5\nRxAXlCpqYmvJnnPfZUE8Pi4KcpWiD8oemlzBywxTrfabH4mvv93dZqOuuoy1KUY3PTsFV7NRyeoO\n7rFS9y9UmMo5w1BIZrKjCc5YF1SSEKsSVxoc47rywrmFDOiBHeNodqGZ1ohzcTWcakwYLARy5e/n\nRYHRNHRuHa6dkU32wso2eSGmfxRFBEfSf1+lCPLy0ZLHk6yJ31Ja+tUhgWYwXNvANKUffdWRrc/H\nBHNZI4PhnL2xxjsMVHSci7ggrn8wCfpFO3UfTttpO20PtUfCUpiNCr7z2xM2DjcZVmRHXfXXuKdE\n0NN0TEeDS5+4cp7nLooQS6OjbLpFRLkmABpjDa5CdCl7OCrYYdN4yR2XB0pckTWxjgp9WHAczaWH\nTRLNdqxYjx2tiUj1FLiwfZlmTc312S61UKyNLJ5S0yj5bnRCK9d6hQWYquThKZNvXjRpK23cCxub\nPPGimJdbPyPPZk5CQpV7n4dvsjLV6Lz7W9zSakfy27h9pe5yxHoo39tg7EsQsTRO6XQk8PfM6lkc\nJQVZG/4pnKqYl6atWIKqix8K3iBPUqjJM9lKC1eVu4n6uPVF0FSDc+4F0pIQpJiyR6Ys0C22mWQC\nf27Vhgx8OYHLU/nXM2AUm+A6FmMXQJ4aZdWNtLUZiQKubEn8q/ZWk9oZCSTXty5jIwXs1EOsjn2l\n0iAJ5bmDUK0Hb0jVlb/rZ/eoqjr0yBkTurK2qmUPf03uvXtf1t7JYEygAjadNKCvllAlruH5AuNe\n1WBvP8wIjVggpRKsrEjWJpq2aGjFqFexBBWVl1c3t2wfxyp7tHduE9StqjkdvEAkCpxmQJCJpfOY\nBsTNykskGqDePT4g35WxSgpYV17QCQVmrqasEr38uHZqKZy203baHmqPhKWQO3Mm1eu8Mn+NQvNU\ne8c9kpH4kVmcUdYE/mf+w59h6/wFAFwN/JnEBUc5FvwQg2oGem2MOnymZEFjA4tgkUlS/Lae3HdH\n5IEySR8c4Spise9kxMWi/l36W6JNyb8NQNgoiFWjkMxyMpeTcELEsSpoX9BqOb9qaa/IaX1n94Qn\n2zL8F9YTNq7KaROsKy3XaoZVibJ4//vs9JWObvY231UC2oFJyTSyaRQpOBm+uqzqPE6HfLErKd7y\nWkj9rDJi996kWKT9NJAVBGs4WmXotQ2OovzccgnjimPrNiMMOs6ZnD42mGM25O+K2ZRQfe75oE+l\noWSrJ4dYR9GGWuG4WXPpx/I5cRMcTfuWAkviyfMFboKHBhXXFK7cWKdSlZOWOMZVyLC1I9yFSFDQ\nJ+guwOUybv7cwXrSt/pKDIogDPOITJmPw2qfBXVSvaVqz2OLqynLYVIQ6bpwCgg0/zxXBrBqYXH1\nlO+2QjJN36apw3Asa2Rrcx2/qjDtujybcV/DaalITnaMo5J9uXuEc0nFfIoJaU+1OhQq7tf7JJpC\nrZQcOoFc99DYJdzedxxm6Ycjbn0kNoViPmN8/XsMs28xHSwCMjm6vggdlxevSeDr8bUnyZT51paV\npjyZ4uij2MSl0AAQcb6UIrd5gfVUHFQDYNPeCKPU6HNzk3ksExBXD5jNZLDvTcfEhcKUdTMZ7NSp\n7f2cXuurxCcy6PN0xFgpxYeDfLkpOGM191oWfywTZzqWTlf6ufqnLNXH9CWtqd7l0CHVKsIkz5nG\n8oLtTqbMNqVvwxs5YwW0pwqgSt0Z6xpcKwUFLaUAr5wf4mlQsdsqU5rIM0WqYYmNcAoVge05OGdl\nURXFFKOL1MnauEr3bhUrkUeWoq80YbUTclep06shZQUyxbURxUJQJ9TIe8ty5ZyM1XObHV5SUVyn\n8PH0Rc9GlpIv196uyfj4fkGqACKTtlkYu6bWxGo1iRO3SGbyEjo1Mefz+YxCr+sbn7Qta8GMC1J1\nCUZ7GWlZafe1atOmKZHSvu8XPaqxrjPHoNNLbjS4mEKtLPfYaIaU6/Ks6dzBKUmJezRwCSsKm9dD\nz13ZwIk1bbVuyGe6ZsdNih1Zn3F5j2RBJR8p4czdhIHKCJSylGa4gOEX7KuKWMP1KNyfcKDRGOMa\nY75rjPl1/f+LxphvGmPeMcb8M2PU0Tttp+20/XvR/m1YCn8deANUFhn+J+B/tdb+U2PM3wP+MvB3\nf+QVXBfbqJL3WhTK/5/GQ6ziA9xqyHpHT53ShMOpnOhV1Y+sRT5mU83dOMTL9OSaGhKUBHMv5u6x\nBL6++9sCFz1YGXM2kRPoymqFekdO6faFkEvX5GR+czBjqOSvC53M3d7X0JorotGcmfIpMIO+uj9p\nZpfoxYULMx5abukzzWoFP1A34PzXj3FvCHeE+xlBWJrek9DRYOB8wupjMryf886xciwBo28OBjSV\nfGX3SF2iFNJFgY9TUDhyUtYOGlQ17VV8Zh/vjiLzVCBnNq0zjVWa7yinfiTjYm0dV0Ch1DhPtVB3\nRVNe8+4d0kRP48mEZE+rJFfHzFyFNFcsti4Wy+aWnJjd6ZD1FbH+6n9yyLGmZ80/spjZglshw9Oc\nfqFkp/G8z/ye6nqYd/BiJc09E+BrAI9yRnasyuTqBrglj7ypPByTkIlS+vWvj7lflrk+6Pcpx2K9\nHBwr3ZwdUUy1P46zlKZzWj6eVq66GsJ2PI+VdRnjM2sN5sryfDjpEaspd3xnh82hWF5ltWgbF96k\nU4gVV7Et3IqMUbr16rJCNcwcSuckmB42ZP798CL+oayX3Td91LjBFCwRomlhcRekQh+wfVQtyW3g\nF4H/AfgvVUruZ4E/r1/5h8B/y4/ZFOIYbt5yqPY6GISd2M3MMrIahj7uqgxkLTlPkcrCnKpC6XR+\nwnpZIuSBDQitLNIMh9lQNpPh0R7j72qkXqO+X9z8NPdVV3LWO2JyIpHz+lqNoCQ+c9WG5EsaXJn8\nO70RJR3ofpYy0VzyNIeSTkYpcKhpBHhFWanNyJIrgUhtUuOGmp2/+5sBTZWov/xlqVvYS96iUZO+\nXzhn6TwvWQn8XWo1WcSd7rc40nx8oL7+vO4QKGdiaTZn1ZHNpDm7TE+xCbVvXyPWupJ4IhHtkjui\nmEg/79yakA21z2dLXJn+gtzj0mMEnuCKU3Vnip1n6d+TDW00K5goBLfce4yjkVRMmjDAV6YmTxND\nz32my+Dz1wC44n2MqicY/6/9g2/hKc4kdwtqM3FprKcxnqRPT4lxeqOIaazQ7ZtVWiuy8axXN3G0\ndLqbq35m4GH6El85uXsTfefp9wfUG9IPd3gT9mXOxocyPqNRwTiW+W9aKOuG60w9aqHc76yK3+bl\nQzaNCtJEkChbWKMc0NZnyoqM3dc0M9KQ+b88+CTjNaHwt0ePQ0OFcN/+GDNlds4jl0zjSnkhWan9\n/kv0xrJ5T0czxgMFtRWWstZlZI5Fhbg+cPuo7sPfBv4rHlAGdIGBtXbRjR1g6/3+0BjzV4wxLxtj\nXk6T+Ufsxmk7baft31b7N7YUjDG/BBxaa79tjPnCh/37d0vRNzptW64fs39yd0G5R1Hky4rCctmj\nphVuE3ufdkVOj1CpzRzfwRg55Z1qF6OnsU0jCuXia3XmdJ7UANyqVE4GpsOGZhb6vz9lsCoR7uE0\nWsrOT22OxshwdQ/NioLbGmXysoJI3Yoss2itC7MY5op1ONYCF6+Arhwu1EzGBYX0HUxnjLTg5817\nKj+fWw4WDF43fVa/Ky7Pxedr1Fbl3u6mQ2NNTiBVMGPD1nFVDCZ2p9TbmgHwDYUvp/jJm/tEV+Ti\nwV0ZtyMsg0Ppw02GWC29X/c8Sio+kjc2yQ8eByDtiiVxdP+Iqaokx8cZenDh7x4zSFX4xZujsVou\nX5QA7Xr7Oa46UiRUa0LdCNbhpewrFJolcktzUq0eHJRlYewfzdlRte7jQYqvCtXO2LCu0oGsHHJx\nVdaIny4CdTlRImM4SnqMF6zNxZSRKnYP0x7+QhUbdVuSGUaRqWnuLOnWkllOVSnbMpUvbIWGSEtm\nR7OEtiJPUzdkrFJ+WRgzUm7RhmYIdoc95uWvAzDtdUhXdU0Oc0aHYinceW3Ivqt/pwQ/cSWlNNPA\n9jyipC+P50LJWbg0DlH6k3Mffhr4FWPMnwZKSEzh7wAtY4yn1sI2qFP/I5otLFGcYU1CpikdgyHU\nyPhj3TWGOwLueCtaoxyI7XdWiS/LpZxKqgCN2CVYlZc/zSYU+2I+D/ojZkdScfb270iXvv32HS5s\nyZv55BmP9pZcY317k9aOmNWFn7JgyM61BnqeFcuqxsBCvGANKlhCdF3LkjJ+gTy3JcjVBZmWCtY0\nGj4+V3BwW++h0fujCObqohR5RqF6gMG9NdansqkVk1eYnOgmsqjqqybYE305Rl0mfRmr5NkDuCPj\nkrTuorgwvn1PPtw7SnlH3aAhltWm9O3jgxK9iWwm/d/PufpJTc/el7G6e7fH4W15wQpSpnrrycTB\n13Riq1TBa8uCbbYVpPWpn6VWWVDLQBnZbKajPqmK3XhxSFyVv5tpHOHWcY9JJL8f2JC1UObXOjGD\newoAcn2uFeKGVS9rqGsK8UBdkP0b7I/lu+/sH7KrZvdoGLGqlau+8i9O8lSYv4B5mFLSOc2cnJWO\nbDxNNfdLfZdw8fLPCxqbKv7ay7mvKdmDeyfEyiV5Tqnqb1VmPK4Zlcc+lTPak2f91hsD9nYlbmbc\nDE1i8fJE5rTjOqAbVpsH2bGygdRXMJtxseYnpCVprf2b1tpta+0F4M8Bv2et/U+ArwB/Vr92KkV/\n2k7bv2ft3wVO4b8G/qkx5r8Hvgv8Xz++Fzlua0y8l+KpdeCu5rRrsstfefYiXU9ztM4+TU922lCZ\nmts+xGWxAvIYAg0uMklIGnIizAYHTNW0u3Mkpuq9yRGjXTkey3GH9fNi+4blMnXlZDjfvkPUk3ur\nshtpL8LRE7/sQENra0YWFK1L6BhStSZWtKCm6jucXyRozxvO1cUSGI1zhhoNWhg8FQxnFPRUzw0q\nUcmVcznVsxJxTm4WZCjdmJ6C9TTg7aH092g25vZIKkqvXV/HU6th9vM5q/cVZFOV8b7dS2lvK8vw\nFK6qOva1NZdeS0+/miXOZLzaiv+YdXsk+3ISuXNDqAzGRR3ClpywlzpV1s8pUclloaIvB9lDkuWL\nz8NZSk2rB1s2p6+m+cGx+DOzqKBckmXbvdSmW1MYu3Vpazbn3LMXqV1VJfCFcAwzxgoGC95OqUyl\n/w3js+8p1iPMSPSVqConaL3pES9EylNnycA9Dyzbii1xAplU32HJpWkPPcqJTObMH1FuyN9dmDVp\nKMdkRyPU+5WcqbqE9VqZalst3UtDgol8tzIxrAYLjk2tLvUdVjTQulayxPqsvSyh0KyULcAEP8Hs\nw6JZa78KfFU/3wR+6t/GdU/baTttP/n2aCAaU4/ooEtrZUZNscTtTpPVphTofPZLT9OtKqNwZ50K\ncjTXS7JTp/ExngYiR3f6OHp65N6QZlPSN43Hr2EnElC6ckUe+y+YVfo7Emg70wiJte68FLS4ePan\nAfiLP32N3+H3AXhVobFvD16m5i4KgyxNLXzCB9/qzh4UdI3c55zSdT2/0uZMV/7uhRc+xfSmnFz9\nrM9++VUAjPrhh3nMigrXVo1la0WeY7S/RsuRsbh58DVOVNG10FhMPJoxTxYqvYZoICbGWvg4g1As\nhZXd53ALud9Tzwl09okrRwy0Unv/hkPFl7HfXFvjmcc+LX3aPaE5U2FWFfHdLLZJu5JO3CSGqloN\nlXViPQnPb6xSXpO50mnCVfXmRVv4sdE0BqvsR4ED9yWQOlJgyKVuhwvXxBI88+TTZIqLqLY2qDTk\nfpeufg5P+RI0M4kp77KhMGcec7nYkfTek09WeTGSvrz5/Vts6am6eyy/P0wz3lL0Z24tVgV6yoHP\nlSd+Sp9FJebCe6wuipVqPuc7FwBYjab0FU+Rt8dUmvK5fUWsihcufZbpiczfZu1Jpp4wZ72Y3OT+\nuhREVSr7KAkVz3pSCDgZH9PWgPjQ9jiaq+RiyWOtIpN5mKV4WrB39+g2H6Q9EpuCMQVeGJHlc+oN\nXcQf6/KZZ0ScZGtjjbYvQJdwpURdaXI95U50TZlx/7Zcyx+TWXE7glIFq+ZnpVrBD8UlaLrKORi0\nWdkQSXln15I7YnZHEyh3JIC3UYermeS3e6+KCbvnGZRekSizDLR6MvQdShqUerztM1Ns/FNt+f3T\ntYjzT0hwKs9eI63L9Y6GEc2GmIEn6kZcvmCpKg6jHjp42rda7Yj7Sps2GE0ZLfLRync4iA3jBc28\nzQmVT+IwPMRdkyxBdDdg9aq8eBsqpV175kXcc7LYRk/+gGwiYzVPYHQkOIRqO6LQCL8NlROgyNk+\nI/dbK61QWVOorTlPnsmcNCttSmVBQJWcj8k88f4mretaAl2WB3lKrGQnXc3UnG2UePKKBCXXLp5n\nUpdnKtwJ9apsZAQ9FlnyWA8Zzze4q0oy8/wFXOUwnCW7rCg9n5/fxD2Rz4uKy5Ob4KorkU9dTHWR\nnTCsntOAb/bHAByZCU5LxnWrF9LdURdtq8TZTObduAPKyoXpnFG4cjGmtbUAJFm8HcU3bIWsNZWj\ncq9N+dLiWeRn6awgflsD09Oc/Z58HnhjfOWzr7gBY1Uw+6DttErytJ220/ZQeyQsBZtBdpBxZv0K\ncSBIsvrJU1SOxeRsX1il3pbdrlw6gzOX09/XdBVRtiwiSUcNTHdBzJpjNEJn5gZn8f2pnLpOEOKO\nxWrgwg3ckezA855PqafBnrDPOU1V3tqXk90AKlpMMgVVXqOUFijCmmSeEiuF3D2x0Ln0pRmxypzd\nn+aM9uRUSbZz6ioAkqtWxHmAFXnO8mHArC7BUXdep5vJKdbL54zHcpJqNpGpLZYpVN9lqWHYe+EN\nwgPVb1jbJQjk5NKYHtlsgh2IdVC+f5XiqqbC7s3ou3K/Ul7BrsnPi0juODVtQoXzmifGVDNFI24M\ncI/kNC519ymduQiAt1DAWY7kw80WCX3Vo7x9e06uFZrbJSXm7ToYLcZy5zU4Udm/2hBKmkacJiQD\ndUMvqc6nk1JMlWUr3se5IAHo2ttT2BTrbvv6WUZPiovZfElO+eN0tEQEBhV3+QBB1qHsfxKA9ED+\nLe3+FtmBpLuT9Bb5plgxpcyn8bRCsA+v4m6rtsRILpz44E9kHTqdGVixGjwDbStugPvTO1T3xc2Z\nNCSN7O9X4OOyljuvGMrnxVK4eC/kLU17xuMmqxW1oHjzPeP9fu3R2BSKlDQ+Yhqd0NYKsF7xfYbD\nzwEwGsSsKHTXNCcYLT21qgjE3CUKhNtxMgqpKJy1VuqSbUrMALOO8QQKvSATsW2HQst3TfAY2Uzy\n8bZ7g+S+vGzNygqh9ungs7LQ/tVvQagghI5j0HeUtu8s3YpO4DJS5SFHTXTnng9dWWzz5gyvKc+x\n7gScr8rb+QNf7lsrytTVbG0GLrFG73sHARMVhSWFhgqpFrHqSxpDFGpenZwJ+vvbKzhjBVE9M8NL\ntUx6Iv655wa4DYkHxOUMR/Uj096EfiIxA2M3KU2UUGYi/Zxv3mV2LOOzMb1CpSE45qQ5xS/ks3/m\nKq4rL7XzkNvwXnFjh3BR1cx0NiNX2v25xhnKRUA6kxfhMH+N3lDp0J1iURlPPD/k+Lb075yRPqy1\nrzBek6xNMK3QcoT2PPC3qW3IRscTbeqKRRl+TV3Cxpx0oLiJwGE+X5BpnrA/+CoAx1YwLc1ggK9V\noElRJj9R3tC2R1gV97cIU9IFuG4gB4S7tU9QFXUuv9qiqlmEev0NRieqebn3HGXNbLCp2aDDB67E\nNNmhptmJXhEvxYVGmUtyZviecf5R7dR9OG2n7bQ91B4JSyFLc453enSnq0xLEiGvv3OVewpBHjc3\nmK3LKd8cdbCRysnN5YSKerfwDv8DAMy0jx3LqRT7OeVIrQIK0Io5agsasCpo/Ty5gbZYFbXsRZKG\nnCq1Vod+rC6NGBIkObSVRXjq5tSUjuuxSolQo97GyShPZec+W5XdvuNefKCf2OuQ6UmROy0O+lII\nZidift9PhxSKKkzClLP9FwE46r3NkVKa7U969CIl/VCoXZ5BW7MdhRPQDmTcNkcfp7+gD9v5DFat\n2bQspqhpdinHQoTrlvdJD+XvbPr7VHti+mfMqHrynUwj/dfsFYYldcdO1ok1qBXcfgIbLQp4Krhb\nihf4MSlzNyhzRVWz+42IuVGXx5X+FOV1YqNFUne2uHNLXLqV4zbuuprMezXuvCaWwtpMlNen56u4\nd0Vvc5pEhLmKy9QdKn1xc9Kdu5j8S/rcf1vuG8VYV8z5mIK2Fj81/AaHO6onml+Qzvu3qWqxXtAu\nLYuynOoV3JnSBbqQHIpbXKQy9p34Iu5CSTwvE3bFVdwcfZ6hFq4lOzGTbRmX8htPynWLOxQDsXLm\n3q+R9xc6nbcJ5jLB03gGb39CR/e7P3rwtT0SmwI2J7MD9uIJDRVW6c8HOOY2AD8Id1l7/JcBMLmP\n70l2wVHhz97kPvsHsuDdVo0sksF2/TqxMt6UW3WKWN0OT8uCzQS7lG8asmR1YUZpXbIPpuKSHYvZ\ndvMVSQ+5BkbpwkQvmE/k7y61IFPp8PHUcldf2C0FuQyCG4yU8OLo0HKsakSzQ9gfyjUmykB0ueVx\noryMZypl8olEuHfiiP1EFnyUPpBzj5RGPsAnV7eqcHI6CtgZ+G/hb8riPrmbU67J5hPuifmdly+Q\nadmwKWd4yPOvXG3g9VSopJRScmRnLJQJadZ7BWdTrpEeXmfvSF2U45cotWSe2nYTdywgKuz7G6dL\nR8J18JXi/eJWnYmCd8qhPEfU22dY0vjL7C6JoxtP1iBX5FcynpIV8mKN7sqcraw9Q3Qiz5yahN6R\n6jFeXWWmLth0fkiay7NOCtl4fcdSViZqL7HUtB4+KFm8jjxrr/eyPoRLd0O+6yQhhR5eM28HxnIA\nZPhMVf9yEutLfOsPMAvux7JPouxdu3eOcNoaP4mmuErRX4u/Kn0olzCLWsTqIX5ZrruT7XJ/JLGN\nkRNiF0W+H7Cdug+n7bSdtofaI2EpWFuQJzFzk2KVYyB1fWZTOVXbvsszu7cBKKXXSBWWakpKS9bf\n4e0bEgw7012jeVlOlWS/Sa0lJ1TgF1gF+BRa4VhMmihRMyYMSBMleEmqDN9SwMrF17lzLLvu118V\nXYRpmrOz6HwORq2NV/cjrnTFZOxNEu5qkdKrt7S67acC6spKXTpbpncoP/fdAqMFMXPt2+4gpbyi\nWgmDlKGamvdPMgazBTgpZ5ovgDXK8eemlNVGD3OXSK2YW6tv0bgr5m6lucP2UMzLUSKnfPkQrKoy\n54fgqMQcRUo6lmvPezGjVQnoum/Iab47z3BGcr/65YJiItbBPE/JNYhbLqeUN+Xn5n3BzQ8+3Tvp\nk6nYSZBYFgrtkapI1zJLtVD6u8RjOpbPpY2M+ERcifFOwd5dOTXdNflZ/v0hSSDP32issbGiVHeT\nMdFInvvgziHHViyPkVEMSRJRKBjMoyCPFtZUwehYsxm9nwcgDV5lorLh5arHyrqMUUQGimWxaS6m\nJiwrgucHOXv3b8vPrCUNZU729qZsXRTrZuuKh9Gqy15f3LX8XsGsJT+bxz2GGpS9259wT7EsXlCl\n3jriw7RHYlPAGHBdjOdhkwWu25KpkOofXb/JM3/8FQDCLx1Q0boE/TVH9+7SL8trmo1HtPcvANCN\nAoal78iX7Da6ljCuovI6DiZeSJVDHsuLGVX6nJRkI7jxg3f4xj8Xf3/PyouZAhO9t7GWktpbSVHw\nzkhuMoosfTXtpoqUHE99Ol3NdlzK+ESkBBn5lK1E4gBf0TSVN7McLyQc4zmZVlQW1kElCLGpYdVf\nUJjLz9IMct38RgXc1rjGmVs1fNU5LC7NmDiaWlMuv9HkkPl9zT4kUNvR+LXNOanLC5neDykNdOOI\npJ/3nSGOpizNpEFLr9dv5EwcebmbTbC+jKdFov5ipL43+3AyibEaS6pm4J+Ra/dPxNR+ZZSwPhT3\nKQlyAq0rSc06qSpVHcVTxrF8p78rA3P75C7BWd0UHYfY1z5PBxx60ufd+Zi+isAM+joWRSYioEj2\nwSoHY6nqMTSyto6akup7zMJc4wiRv0m/rxuZP2au4r6eCfAL1TR15OUfd2ZMF8/UyyglOvEdB1MX\nN82ZNMkjcd326/J3k7HF7Ws6OJ7T03rcUVpg1QkolwK6VySewds33jPe79dO3YfTdtpO20PtHrsl\nXwAAIABJREFU0bAULBSZpZzmS4hu29Y4UUDPfFLwr16Tk6YeXOXSJ2T3zGI5iYbzlK1QagNK1lBV\ncY/CD/FV/uykHzFJJKDkKFagbs5hNWcceAHxXHZgp7zBUEExt7/yJvcHcmpUNGSfFHsolwgpD2Th\nDmZQ1UDptMhBg0ev6G7efKvFsC9Dfn5vld6+mIFemNJsSD+eVI7HW1GODgUHqUOzJ3c8iCPmqfxi\nkmQouplUEUs+sHlGTqvhSUqutRQr4yrXC5Ve+85FDrbldEwj+VnoBZQ0azEbwVAj5ART+lOJ/Hvz\nmJUtJVlRYNVjvRaHx5KpObxfo9cUs3tt43kGim9IayHTbRnbxpLX8P35fGdpTlWZtHMHumMZr4Xk\n+sk8IlEzuZKVCLRC8eRgQqhSdms2hJrc56pWc05KGfZErnWYzzi4oy5Bw+BYedbj4WBZpXuinIr3\n+zFWKyMxsKmMO0GQYxLJcj37mFiu4/5bOFrvkYQpqapVn4wKKqpWXZRm5APpf1mva0ur1NSdqV0c\nUVJZuc3mBifKtHP30CHRde2rtVUyO+DKdW/3rnNwKNc4nFvOVOQal7cvsvFZodP7g9/4nfcd8x9u\np5bCaTttp+2h9khYCsaBsOwS5ZZMi4AGUYavsmKzLOH+oWAIXjn4Hk8rOiwqJN1Yq5UIG7KLrgQO\nwbHSrpUgG0vgKKjOSVSh2U3Ft0yzBM+TkyafWKwnp8t0+BYHr/weAH/89stM9MSvhZvLPme6naYW\nUvU5Q9ditf8N3zCyi/7LifGHO3do9DUG8MYtPA2vVYsHzM9DpeRNsKwYLXZyHWZqFWU250hp6FLL\n0ndcpL8y41L4GnQEQpVr201ipoGc4nfuRqxXZQy6M+WmSAtKcwkGdhuHHB+JZZaOY5xcLQg75+6+\n6iL05AS7d79HrDkvJ/RYP6eBRj9lRUlO+/Y6+duCBVh5UoVQ3n0cvSv2mGc5E8UVN0sOiTIZ+UpU\nMU0tZY2zXlhbZY5YcUfTGSgwsWUsJ8qtMJ0u+h4xixSl2jki0GdqbYeUVZQlcFJmM+nYkQZoh1FK\nQ8MrVa+Eq0rTeeHw7J+UdTjOJfiazzL6Kyq2u9Njqkqw9WqB19JCsWmf4YlYTcfahzkx07nAq/23\nDGsd7U8xIq+K5THYGxNXpE/NmsS2VsopE9URaVZgkKt4kpOjgFRWzjRwW3yo9khsCq5jaFR9vPKU\n6L7MeOxH1MwDqflMo/Kv7R2xP5BBqSi1+rB3wrrSXZUrdbJzslkc3i+T6tvb7JylohTfuQYA7WFM\nosEZt2yZqSvRH1f4imISbk7GVDXvX12XjSmxDzYFk4H1lVXag1Ct7hUPzEwJOZQIw61ZcnWJZlO7\nHPzCcehrKDpLF6QgFmdDQVZuQU+x7PkUUiXsSCeW+8mC1FI3prOWsr7oswCOlQb/3lZK/qY8d+TP\n6Tqa06/LSzc7Mmw3ZSw281U2fkYW43yvybbSucejLmNkk+kpi7Tjumy0Bc5bWTMM1dwdzSbMjAa+\nZnv4Cm+uHgsp15WN2oNMxLvijfM8xyoltpvnZErNZpWLcOKlvKHBztUnhlxU8ZwoH3P3Te2zE1PO\ntGKwrPiGyDBXgNdqvcFGZUEGY4k0M+CYjJu+XOOtY30Zs5RQKw7ThsXUdC5dl1VPAGVPd+XfVw5+\ng/vC9cPNV97BXZM++J0yuapQmf6cM0/IS7//qoxhMp3hKYt06sL163oAhDO2ldTz4k+FDPZUdEYr\nXeLI4agkG/33d6bcHOphkUP5sgYgz5fplD4cnfOp+3DaTttpe6g9EpaCHwRsnz9LkOekM0kt5qFD\nOdUKRx8yRS/uTsZ877Z853Jbd9dhzG5ZCUrHZ/CP1dTsHZLobm1OCvyySrNpOjEqnZBqIMuNfIaJ\nnEBvnVzneC6uRsUPWeloKuuCyqe9tINZ4Bsci9L/06o41FY11WcNVVWCVmAifsnjjAaGzpShrhZI\naB1cDa711OqwuaVcVUm01FLXist5yaGjvsbdUYpV/oZ0IVIyDDjStNnUyZlZrVo8LNPXNF1p3XJ4\nrIzJjnQ+DFOqi8rCTZfmVAqlymlBuiEnU5b7WCUksZn0t1jNKBQjcTyKuK+pw7ToUS7JeM1Oakz3\n3tbxegOAs3/pRcruAxNhcZaFgcvCdIhdS6CBvVz5DTxTkJkFd4TFuyQWT3vsMq0qcWnNJ2yIu3JO\n+3bSO0E9A6qhyzxUVuYcEmW/niYBO7vj5bUBcscQa5VbUQ7xQ+VbKAUUbR1DRbGGUZNbrrgB40GP\ntBArplQOcDTVHhAQHqswjhKhbJ+b410S9pnCJgzelADt9WCMAisZnARY1Y1caFdmlTL9iczHK7fH\n3FXUpPV87MbH5X7nPoG3vqiS/GDNWPveXPFPur3wwgv2Wy9/672/0K4VFLzeEzKUm9HXmf7g+wAc\nrMhS6v/BHt/77usA9L4dMZ/KJI+SjEij+V7JoaT+YKOiL0pmiHVB1D2fkoJNxnsphycCfrniFRwo\nkcnxTBddNkd5Uzh0C6zy4WUGinzBqOtgXQX9KCQ6ye0iWEz18ZCf/asStX7mz/8CP+PJxFVDMUWv\n8XFAy2Zxl9yPxjrvV3H8PjAgcUFOCjEvfRMw0xdkXBxwOJRFetNK7OB3f+vv82pDFvRTZovtz/1H\nAPxCWOVSIMxLWzRYGJeLVRMzwmhNXkTCD0ayoG/tfYPf+B//lTz37R3eun1Xvj9XJauKobohL8el\nxza4H4kvPn1pgK+u4kmasCCRShZ6jVmB7ymUuF6muyUxjHN/4VN88QviPH/ymb/CZ7mmo7HIcjgU\n6h66uMv+W4rlZw/nXT+XljJiqhvTKLnHb/3dfwzAO++8zu/8k98G4HGdnDfCgnJdD5BalXIosZY1\nv0qsm1A4TfFcZVpWl29Y9cl7Mq7XOiE93XAPXY97yuZcTCOaCojJdWPq1GqcVZHicrPMYC7zEI9m\nfOGMjIXtdGlfE5zCn/7P/5dvW2tf4Me0U/fhtJ220/ZQeyTcB2kSdnpgt9jloWesg6lcACDNeqQK\nEz1OZKd+q7/HvgbA5hSESv83G2ek8weKwJ5KzU/V/PRLDihhhymDFysKrOKABoYSv0JdrY1FgZJf\ngZKa/qZIUb4RCjcn193f+HapXZ8ug4dg9VQ5O2ryeP7nAPip9OepK87iHGLFuD9EV2be8+E9//Oe\nZoCqERPWJycwiyBZh2lZ+t/SYpmS+RP89NPyzJ8ofYmLFTlpWrbDqvbFvOuWizuXaCyfCRxWa1JR\nOb14SPcTFwAYT/v4t2Xs2kY5F6M54V35XA5rUBJLwbUFoWZdyHKsBmlxHvBFLDIRa7UK3aacgteC\nyzT6fxGAJ7m8FO55d3OUM/NdSwu7VILU5/qh5/OoUnYW1aoesTo6yQBa6jbWFedQY0Z6T4VaVibk\ner+t8xZHOS7CNCGIVOpOLdMVp0zfVXRjDFb1PvyBR1V1QI7zgomu+7JmuJxgTGHEUqo1fPxCrKI7\nwS0O1MRaT6rEL/17KEUPDybh3WbwwrMxWDZmsrjHNz7L1/5QFt7R1z8FwI23/nfyuZJ7mFeYWBmE\nIs/J1OxMcoOrNQFG4b5O4ZEVC0n2kOG+piyrBcVEJv87tQGbOokjlfomhv2G/N6MxHcHCIxkUkD2\ng0hTlYuNwsNwRvngv3j+v+Dj1b8OwBOHAS3NWrj/uhd9sVuaH7cVvLsZPL23U7j4GkvpeE3ynvy8\n9KoAYT7Zv8Qn31QymAuwrTeprrCks3+oH8s7PKhmKFmPTRWmDXe/wLfuSfzgYPxr5EbG9gBxy4Jy\nhVIgm8Lw+EnMWLQy4/S/Y+zI/Ewzy1xv6OlGUcal5MnLVJ+egV2pben+2l/jl78kIKu1xUD9cHsf\nT/k93/qh77j4hDqGld4Vynsyf8nhHvO5mPlf3pLN1O0bJl1ZexdWW1S14nU97BLnUu7drezTvSLP\n/di6/P7IafCdl1TuvjTmqtXsxGrObKZ08Gct6xp42dHxKdwStWt6qA1mxC25RqlX8JIjgLLPDw/Y\ndV5974P/iPaR3AdjTMsY8y+MMW8aY94wxnzaGNMxxvyOMeZt/bf9Ue5x2k7bafvJto9qKfwd4Det\ntX/WGBMAFeC/Ab5srf1bxpi/AfwNRCDmRzb7ng8P/qcAeqlgBP7wy7/DH331/wDgzh3hUBhPx1TL\ni5MkI2dR/17ga2QvwWI0gq+FhWQJmEVBzTAmVk4CkxS4mpuvWohUQqyiloLNLFUVPZnmOZ5G0R3D\n8ugpsEtTVLFEtH2XzVX5YVr6HofO/wPA4fwXqCgZTFiRLzvvISN5kNO37/rRj7MabqrUfMmBsnJF\nHuQDjlWnrn9LszZmzJv3L8h3O20yX8zSC406VY3VvbdP2iXtUGohdxRMZO/RPit+VffkKpWefK4e\nKkTbFNhEfJeD2b9kR7km22Gw1J3Mi3TpRPk6mKFnyFRh+97kTUwmJ6It/RGbf/Q/A/Ar5S/R3tBx\n/CF34Ifbjxu/AojVXD/mFr25BLn3dyb4Cju+pnR7x3FE/apcsZVmFMobWm2nPPOzGoDcqXGmJbZM\nU+8+Wevjvi5rbNvUuFASS6j8YpXdPxKrAi+hdSKWibMt/247VTZdmadJFGE2ZC67pkRF+zRNDO7V\nD8fm/FEEZpvA54D/FMBamwCJMeZXgS/o1/4hIhLzYzcFLDJDS2fv3btDwf25RK9v7v09hqoJGSiZ\nnxdmrNZ0IL2Q/kwXm2MoKXQuSS1GCUms+vo2N3jqUjgjiLSmwMkMC2nGxqBEqnp9Ya4kHW6fLY3k\n3yLH5prWNHZZFlvxLCvhYqOSn336apmLH5MU2ie/ENFtCgjrbPOIRMlPg1DcoNy6S2pxa8SFer8x\ns/qymId/vGz/7O/+FgA//3yVWVU21r37v86NI7lfd1/M+d1yg0D5GgdvP0FN+RWL8ud4fEV5HI27\n3ODefY9Mx9Pkc/JAgGON1luc+5iOSyXA+BKjeONlyXb40wJP1ca9wCfWiHte8gjUXHeNXRQokul6\nmBc5qQK28sxitNbk1r23+Mf/6G8CMNz9AU/+yl8C4FPnmnpdh/LClXSgtnwOb0l0++5xXMioF9Zy\nnEkG5+TG3yeuSTr8pNgnq8nzPeuIa/ta9Zg6QmGfzvdIOtLnc+drvPixnwFENauxKUjIbCbVt43u\n8/ANqUvYWjlHuS4oXLv9SV7fElHckpcwb4g7dn5F3OdiPqecy2brt25xJpV+9GonRIeyOYemINhr\n8mHaR3EfLgJHwD8wxnzXGPN/GmOqwLq1VonL2AfW3++P3y1Ff3T04eq9T9tpO23/7tpHcR884Hng\nr1lrv2mM+TuIq7Bs1lprjHmfI+5hKfoXXnjhgVH8roDau+3kZkW6uvbUFWY3ZLd25mIWzfOYUFMO\nbp6S7SkMuAYllYEuBXaJWUjUTZjaApR7ICXHUcjzLLNEasPmJiPQ82OmajxNF4ZqUqYGUvVHXHcZ\nJGet7LG5Ln16+opYMS+8+AKPXZFTovPcz1JrSV7ZD+v4VmHMqhDs4FNowAlrQLES7w2MqUtj3s8Q\ntrx6958BMOlssaliNscXHXLlCyhWZM+uHRt6FTFrnZNjXm8LhuLpTo9xV8zkJiWKxTmiR2lhiiWA\nqrAFrhI7VILHuaiq4I2LKwyP5T73doQnsLd3mzHKsTmekmi5p80NkX4uMMvAravHeWwNSaZsyIWD\npxiCYRZw6674R//kpX/JJ88rRXtTOBfP7aySrogFec5fI1U8QQlDqC6k9z7ORGxS0kSsn4PSNscH\n8nxRXGUNpcVTLETWcjjauQ1AezNnUxm2Lz7+PKtbgptwtw5xp3II+jPBoXjNY174C3It9/geidbg\nHud/zOrT6h71UvzVRWWr8DfU1zLCkeJiKobJibqCxREltYoiG3J0/cMduh/FUtgBdqy139T//xfI\nJnFgjNkA0H8PP8I9TttpO20/4fZvbClYa/eNMfeMMVettdeBnwNe1//+IvC3+FBS9D8UEfohpGW3\nKn7Rc7+wTiWWz1YDgByEZHpaH7w2YHNb/rY7NahxgC1yVKSa6VBr25Oc6YKazdgl449jHlQ7Ttx8\naSnkyt0WAX01gNLiAUTXwDIwVtiCQmMCvirEVLeOWbkimhSl5oRQMQSuv78saCrykj5+mcLTz/gY\nPT0cfBxnocP4rj19mb81Dzn8b3zj9wEY7ZR5wxfrwBu6rC6YhgNZAl5a5u2hMAmVZh7bq8IifJR9\nns1cxrvqOniae1+MRVEU5InmOu0cm8tp5VgIchXzaWxzsSXxmO+XtXrxcMJYGYxLxQO2qDi3zHRE\nCyypPoyjOhtJViyfL7eQq6WQJDOspgjHuxPsVxUhWcjzm1lKnErfLzz+PJ97UhCbq41NzlYlXdhw\nnGVAcxHDiArD7kQskLuzb+JVJbWabgyY3pD+f1u1NONDcEuyArbiMufUUlypXMH2lS3sKKTYlNPf\nUZ5gt71KLfuiDOGVMd4dTdse1Mne3pLvXp5TOVCLpS8ox2Evp6tr3T+0pFOdm12Yrymqd3/GRDU+\nPmj7qNmHvwb8Y8083AT+ErJS/19jzF8G7gD/8Qe60g97Ge9yHwyGaijY8MdXf4nyz8kC86YC+Jjf\nGLNzLMHH8dGMllVx0chjoOXQSW9OSYODEyXj6LkZh8r9N+VBhWKcZUuzFWOWPI65eWCqm8VmY+0D\no9NCSRdVq+KyuSX3u3BFAnXnux+j1fgz0vdGB5OLSe24yYOXfoGvyR+88I4t8WC78fnRMfOHx3Gq\ntR2D/YKVTCLV/rMNEkf65EQSAIyOJtSUoq2z3uGZNeEdfKr5SbqO/J1nguXVF+CggoSiUJZsfNxM\n60u8KaYiblMQz9lsCTnL009IsPPt7w2YKSQ8TudgtewXQ2Clz7HJcRZQd404msI8yOp4LoGKtdab\nddYuiF5l43yLjWc/A8DKGX0xd9tEZTHRneEWRSTPVNgamdabZIHBaiZpscdOi4Q8lk1jWHycoiYb\nQJj0GRZCklPZE/chTAv6q7IpHkUz/kRFAoLlep9Z+Tfk3kwI+zoPXfmX7gGFuo8mmuMt5OyfvQFT\n2URblU18vfbNq3Lf7AdlUi2Zr/gJmfJRhocO9VgrO2cRr/sxH6Z9pE3BWvs94P2w1D/3Ua572k7b\nafv/rz0yiMb3nn72od+4alZvJJ/CHYlJFdTEnLrJH9Etyc/c8Btsrcvpl7oDXEc+T+/3qNblVNnR\nYqd4kvNaIifXJHcYDpVbIbEYNQVaTrhE1eX54nScLy0C69ili4I15IqLON/u8suP/yIAm8/JHtld\n/wwEYoqbSfVBVDJ3lieUmT9wbYzCeQtjcQrVcvAsRuXBCEVc5OFhezg52b+vlXPHLdKSnDrtyXlm\n65pmRU6oSTKm0xSRkWb3WTaHUpgVjNt4yhSblcDRe2d6yhdJwGgkz+HHPomSxDj5CpESgDiRT78v\nJnM3kkBrEAZkYzn5Zmm61INI0gJfLbLC2qV7sPQmjaGsaeZmvU73rFgHl9afgpJ8bvU+zcGXZY7P\n/IFYRMP6iEp8AYCdzoDed8Qy6V2q467K2tp/1rKh8zrS4rfJXZ8f7IorNT4akE0Fi1f22wxzObGf\nV7GfQcPAWCxam+SsXBEYe2X7i5RK8tzz7oSwrUHxlo6P18F60h+nXJCek8K0s876ksOjsRYyKsRK\neV6rh7+Tf5lSqoHp9m06J9L3wBkSK+pxve3zrAoX/Tr3+CDtEdoU/vXNAnPFJJzkx5jyawCMc8l8\n5qXbS6bbC1crNLeVTWnQYaKLPnANkXIQapEdx1VDRQU24kFEuy6LLc4c5ouXy7UEGq+YLbIM5gET\ncc4yHAAOdJR1udvy6IeCrWjwbQAOj2LqRrD6Ya1EtSYbhBd4OJ5Wbhp5zmwakQ2UyrtUJpstIvKW\nCmJ2umfWKa/qAlt6Gw+7D1mmYjDFGFdfPOOMCXdlLBZeSuH4GKU13x5G3O9pP3Y/zXwm9wsrlWVd\nSa41I/NkxHwkuXIzi7CaJUnzhPlUouXZZJcil3hz5imBSJEx1lhElCVLrkwfD89ZYC+Sd7mQ0nzj\n0NGS47PrZ1k5I6CvWpAxV07Ik+gGqZE+3daS61paJZrKhrUSwPWpuASzI593clGOWj3apLmIFR3J\ny/b28Fvsf1cqdKNwxHwmYzSc9KhqjYKnasMTf8j9O9KHyppPkLwkffc/Rl5Skd51u4w7GKX7t94A\np6Y10tFdvJqqYgUR61U1/dOYhW4RQ+nDY88P8O7L53Q2X7KIVVYK3GMlIGo4+D0+VDutkjxtp+20\nPdQeHUvhPWiGd0UaLXiKNqyaiJmy+VaNVpnV1mlmq/rdPZqrCg0tjSjlYj47eZvZhuy64U05aQhH\nRNeV5qvpUlFyljAElEotclNCtRp8f2EdWGJN1KfFA4s9dKCulkI6ShhoLfz8SJBr82dzGveE5q21\n/QR5R/pZvdDELeRzUgiaLT24T9FRmfUoZ241J75zCCUNtHrPE9TERXGr74ayPqgBTNS6cYBEOeR6\n8yHhAgarJ3SjHNBTXsPJUUD/Dfmcx0PoqORbqcHqiozdVKuritFkqZdRLY2YFjJPUX++FFGZTQ6w\nrjwXjp5syYRpquF3W7CYa8dYjErr+Y5ZZgEW7kPFs1xQkZwz7SlrZZnfpj9kZBbuHRxMeno9vZYN\nSa0EprNxDVRLcz4zTOb/VJ7p62sPVKcVx3F79wSVwyAeB0QauB3Pq9SMuChfb6kLugsDVb4u+yUS\nxYXnowhqYmJFxhCWxYqpLBCyaU4xUoEjv4+nMuamVMH4Mt5p4xg7k2vMMsmGNMOrzC8KIsC8E1L4\nYpnFGRwFSqgTBZTrH+7sf3Q2hfeB8S4WQkaBp+SgPsdUVSc20XLpTj1g4gl5ZjqwTN+UQQs88Ldk\nYiqra6w2VVT0KbnAuVLE5aZM0MHkLr99R/zeUemEI+VMlBdewS0qEW7iXARpkeyDWsx0Q5fPrstE\nP7NWYe9AXoRmrvqS5ZgzVy4A4NZCguA5uUZ8gtGaAa+hDD0bVyFUPcN6mblyNGZVH9RtSqOEXKPT\ntqIsVebBWOa8e3swqGgQEZCpz7MoQ7eJ6F8CfOden3sTAchs96ec2ZCNbHvlKaJIxq7uCgzark4p\npnLv49mMnTckFXj9+BZlIwu6tmJoqUBseVtcpkb1Oocj8Z0Lm+Koy+B4AdWlnZwueTND/X2nUuJ8\nSw6ArAgxyjw0b7ic0fRqeKbOxVhIdk1NTPRyGhOpuR+nOTO9R3znTU5SWReTmUNX2XNyTVuHpRLO\nvrquoyNmE5mfyOaEWm8zP5K+9ScZiaZLerOIuwNZh/WXf5v9i38AwO2XIemIK9WNdc6euM/HciGy\nOfdkhVp4XufpJrdfl83i60df5/qXhUioeE4Om8vDLa5dlveiOMlJujrvb7n4E8nAjScJrLwvfvBf\n207dh9N22k7bQ+2RsRQK+6CiDTS4qKZvFs24t6/qyO/UGGsQ1a1IJNgvgz/4gvxwd4/ZVHbom8Nd\n2qEUouR5Tr0h35+olPtkfIX7+5I/Hs63mKjkvBltkBeCe2ilVQoF1jiKf0ickyW8NjEWR/2Hkl+m\nooSNbx36XO/LfXJXqeh3C365IgUzz2/9NKxI7t5YQ6ruComcbNF0zs6BmMblnV2OhnLS3nnry8yH\ncsJuXo548RefAcBrywns+w/SEQaJ4AMEGMYL3ckMYv28sMZKbrbkiRxMIqo7YhG8/s5N6hWxCjrt\nN3nhMZGiv/yxC/Ize41vvywm7P3rb7K7I307STyKkiyvlfYWnXWxyLZWJApfKXvUArUwTIqr2ARj\nci4q/fy3JnPSYoENkX4Ok4Sv35J5KhwH11fIOw5bGnRtNbtcPSsgsfNVxVg4ITaQz/fv3ebua2L9\n7N/dI1WL5lYW09SEUJTJ2EdpzihVfodZwVz7k1mYKz5DKRoprKVQrswsatC7KxbN9+ZTsgO59x9/\n6waxrot5U4rDrv3uJ8mfkrXZ8T7NvCYXHN3e5v/+3wT7d/3GjIlS6/2Z3l+VeaocEO8pP6T/Ft2p\nZNqSkk/vQCUQE2hlC+miYz5IeyQ2hQJIAI8HL1jCnPFAzO/h8IAffE10GN74zuskx+LDHbsS6WU8\nFVUgoN3KaKkk+b3BEdMTkXAfejM0E8mR+sDGlsg02l/NDZn6stZxQHn0jDdlKxTz8p7Shge5i1Ff\nNXpX6CMzGX9wTxbTcdJjoBj9rrIcNYIRX3nj1wFIk5s86X8egDX3EieKrz+JVIvx3i43X5bneyO6\nQbMti2o2OqKrnI+jvMH2p8SkrEQXAPC82hLck5HjmEVa031QHWohUCOxG8jLv70ast6QewyDhHSg\n9R42WeoUODbh4I5sjOeuyf2O9m7y8tfFNN65t4sJZIyutS9Q3ZCXtF3LcKqyqdU1c3Dx4nmO+/LM\nvf4Eq4PYDEr4+pIWdsSijtrTVGjTr3C+o2K1hUei85RF2XJjadgSZY32N61sPEnuMBzLvE9GoyUh\nbG21jp/Jd9oY4omM/3SotRY4JOoqpjxwcgv74OXRaSbFLkFdP/WMwyUVij0uJbxzS1zTZnmAe6gb\nnWpWJPHvsf20bHSloEJ2Rubk9tsvEVd/TebHP2blqrimA++fyDwdT/jaHY1P1AwrGmtq1iJq2tOo\nCtHkw2nRn7oPp+20nbaH2qNhKRQwiwtqvmGmQbkoPmL3puDW3foOjivmfOniiI1N2UmdiZi1O9+c\ncTvXCrIY1n5VrrH+ez6/qXhxe2xZv6yPu6+mqj/n6EQ1CvOcIF5QqZklK/PISykvOBb1dImLjGJB\nrJJBprntw3nMjtZMZJl9UJPvLTIZBfU7EmSqm5A8Eiq0z//i4wxuy3Fz5xtiHRhvwNOrYgLPRm1u\nvC5Yh8HskJnm4N3LNfo3/zkA+ecVRGoWpiI4uMsTOHNTsXmR085VYZRGTX5Wrzrcj8RUlokhAAAg\nAElEQVSsnY5UPh3wSwZfVa7j1GNi5URzKxLsdKMmo6GYYL1owGwmz3E8e4OzM8EQPH5pjVJF50RP\n8/VSRE1FbaqhS6YcCaFfcFIRCzEjZ4FzXqhLz72YSE/Y43lCR6P6iYkpKdtxqxGzXpf7dAS7RFKu\nkN9WJatRSqDEEJNBwvFI5erjDE+txZke/+MiW5LsJFhCDczmxi4lARbkM44Fo+vi2kYTU1acye0+\nka6du3sT/JqqUY+VWOXxBpfOfEL6/rELZKo72coj7rwiY9FqzqlrReSJqlXv3JhQCzUrd2I4DsUS\nWq2mTF3JPrQybwm6+6Dt1FI4bafttD3UHglLAVOAm5AaC1Z2u8Q/xnOkvp98lbWuntKrlrM9STJv\nRbLDT0Y17l2U0/NCVmGrK/5kb/U+lUBOh+COw1Md8R3rerq8sTFh43tiKSQmx9Gd+GaUUo9kv3R9\nlyxb+OXSnaIw+O4i9lGQLU7j/EFNvnWhrKfR+prcdy2o8rRqHVx4vMbWswuBkNtcLsmpcvuCMO20\nJgbTl9jJ+WnMoRKCllodnlqXANZnnuqw9eQvyTUWsEprl9wKczIcPcbcwqFYnP6Bw1ZTLIpV1SMY\nRjnGlb6tdny2zqiQCfDOgVgC89SSKHNxdiwnv9eZ8dg5lY0rQaDaj3OvQXVFtRTbXc62GvpZju4r\ntU1mej87/gHXBwrzdQPQNGOZEzzVcWypoKObucyVdbtT7bC+oqjQaUGzpRoerS71deUqKMTMMWlO\nEaoGY9ujyCSwVy087umJPpzPyLXSshsuLAXD/kDW0IyMsuJQSAsyzfGGihRtO+C05fcb10psBdLn\nx56pcO6iPP/dbx5iFbJ/uStr9tyfuMq582LpBU4Vf6bIy09O+OwXZbyqbplttWKmm0p592SJrmp6\nbo4t+yqONHonojVXUSJielUNenzA9mhsCtZgMw/XOKQaaHQna8SpTFYz6S7FG9eOfp7kSGDOq6EE\nr84/P+XFLYGqnnz7DhsjFc1ofpln+7px+G+R3JdJOjGSS+/OP8+N8dcAuNSoMqtrsC+O8LUuYd2r\n0s/E3HOUTCO1Iyq6EFwjlXsAvuPycVWTqjctG+clGnx5XcA/jbWQC1elz1fP/SrpVO7RqZY5qcuz\ndlQQ9cbRmJVCNoWViyv8Z015+e/G+1yuyKLwuwllLUV2FeJqzQN25dB6S/fBNQ8i+BUvYKUrL83l\nhgSn5iVDZSE62yizpj+fRglpRV7uG7d7NBvyEio/CJVGlaeflYzE015KksgG4rX+P/beLFa2JDvP\n+2LPO+fMMw93qro1dXVXz92ySIoSB9kSDNCQCcGCX2wQFmzYEGDYhvWmFz/wwYZgw4DtBxuGQJiT\nLUAEJNGSSIpikz13sbuGruHO95755Dk57txz+GGtzNtFUq7qLqF9ZZwACjcrT+bO2BGxI9bwr//f\norZyvd3BFnMVbA3aMgeR2+bnX5QHwRlnDL8vgbisKon1YfM9Q09/b28gm1S7ZWlrzUCv1+b6NcEj\nOJMErykbwLWtl2jE8r1ApeVPZiNqBbgVNmNNPxs3IwaV4ALuHj/CUZWl47GshYW1BKrIZVyXNc2o\nFPOKkdZ53FDcfDdyaHZflXmY/wIv/LRkmtztMdfauhmu3yVui1vYVS3U/vZfXpXHGmpqX/rwAp/i\nF/99WTv+/IQMIahprwthy+TBETvrUmtR1ncYqZDlw/Vzyrel/4UbMQiWGamPln24ch+u2lW7ah9o\nz4SlYAwEXkXhpJTKPDFv34M1KShanA+hK+alDe/S70iOuY3sks7GNcpcCErr5uscKNvvRXjGhYqM\ndK+fE82UhKIne2E0/gbtvpxsUzNeodWmaY4qc1FF2TI7iV3W9FtDpgn+2pgVvuLl9Yi/cVOqNf/c\nX36Vxpe10jBUuPPFGv4ttSriBVEueery3GNRPgBgXMhnt3bP2ToWk/Pav7FPZ00qADdGF5ihCo7Y\nS6qZWB7FWLUHwjZLJtLC5KtKy7K2uFo11W002O7JydWNxAq4ubXOzs2b0t94hKdou/sHUyYnGuR1\nDc1IzW4j99lv7rLzkxIwjXOXoZ6wVWPAolAdjQSKhgbl1NrqbXaI1+U3tvZfILgj2JJWUTHNxGqK\nWhEvbUvl5s0XxcJoFzWDtlgBvRvX8FpiKQWuT+ua9C2K2oRLpWUtgqrqgqzSnLQ/xi3Fiot6HbTQ\nkHbLW5Hc+Av5t5FURJ6si0HQIFBimGo2WXL00lB4dW8tJlco8sYLQ/xA3JWw9xpxRyydbmvjKXeG\nK+aW8XOMuna2LjHLgjAX9j8h42wu+phQNSEDeW9j8w1MrfDpowqVmqS5PcV7LPd3VtZkRz9ekpV/\nJc0xhsANcExIqWW6TvkylPLwZzffIj9UCffejIYCfaLrAm0OpnPyUvy+NLFMtuRhK6pDMkfJO+aW\n9BOa031dbvuse75iTM7ilLmumdpUdHWiZ5VdMSu1taTiYl6vBF5sDY5eY6sXsn1T+tHbXdDcVtNe\nF2DrBRd00Y29BzjHWlF462t0Lh8AMF2XqP61S0P/L0k2oFe1Ca//gYwLA+rOG3LfR02Su78HQPOm\ngLTMhkGRwbhpsHIfrLErhSg/rkDJZ+qm4jT6GXFX3xt3mChQ5mJ+yHgsY2ickFCFWKya+Hbao9UT\nEz1aswRaAbgomoyV6cjvZhilcw9LWcR+FuIU8r3O2j69SOJHveiUy1rdo4XLzedkE3llU9yEZqdm\nXTc0r9UlPdI6ga2MtkK9g2YLZ6qbdlPuIx5XBEjfvcRQrsv7TT/GUVbmsm5gQxmPSmvSHz1Z0NF7\nChoVhUK6bZZh9PB5ot9pJgXt16TOZWP3r4HGH4wTYCrZFOosxDQVA2OWupyWFW21m2OtzHtdRRiF\nsTO4R1DJGNWhlj2aHfAELMbDO7xzT9ZIdFSSBPIZm8BhfiVFf9Wu2lX7GO2ZsBRE3K+gNg5GySFc\nv8RuCgy4yNcJe8J5n4QpxVDMxEQpvKrHM+7nEoTJ0x77lQRycjyayr1QJxHpUE6VRFGD4xgWYwn2\nBLnP8Wh5StQrXkbXccjVHA+Vfdk5m6IwBlyeZhl2Nlr02mJKB7M9fD6pd6e6CMYjG4l1cxF/BycX\niPJa/Sp1IlPRXddI+FnAc5cSGAuj6wRW7onmOpVGxrN37lM25SRJHn4NAL/zl0Aj9UezMcuSKGsN\noQbE1vpt2k05bdcUKr7W3CFWQpqiDXFXTPTzuymVK9iEVuDT0GyFv9BId/GI9kL62W5s4SgOYdFP\n8VQ2zfoO7UIshLqt5ryTk6jLE3uGtc/J34P3fPxjfR259G+Kib01EDepEzdY18zJrGOxKukXdtZx\ntegyjacrEpg8l5x+lrqMQxmrUV7ARL7XKB3iXXHTdvw+gZLg+Ev6O6+Fp5yILafJmWZJ0jrBWwrU\nKIO1dQwvbss9x41jHA06O3ZErRZwOr3AKWf6G/JbTt/B1BLsNEyhUDi9d5/RWOa6aa/hZGoVbYqf\nYPMethBr+uStI949EExD+92Izq6M2/nlHMd9Cn3/KO0Z2RQMrhHg7VIE1DUBvvq7RWi4LD4LQDtx\nwIqvZi5kcA7vfpX3/lAW99373+NnPitR7Vn2bcIz0SiseZ/wiXz+IpUKwO7pJrW+np9bLhNZVVnh\nUyjgyFmEtJS5Zr8lBCkP3SHuEjJc14TqJ3fYpm7I4q32X8EJZYMwHXlorNvEqtT89vl/xOgt8aP9\njS6jSzH9bp8K9PnJxRuMlEew7bzA2h//vIzF6Ah0g5g/+F9IE3E3FhOBGlfOdRYaZX/jn01Ybgqx\nFxAoY7xbx/ixjK2vKT3bHxA64qvGjqXjyoI+XD9moyv1ClHgs7Mu1x7siX8bNPYwkfTT8RsURsY4\nLtrMa5knm5fUCrhqxrIZJVkueVvAeDO2qxfkehs+17rCbXh39JBNIxunG8jvxWsNFNFONxjg9+UB\nC9yYzJPf9hZ9Ls9lXEIj/V1k7xMn8tsXk0dkqtFY9lN2ItkMM5NjFODlakYpNFJtC+CFGY7+NrVh\nXeHvn+rLAzi2OS/yt+T747+Gp5WkeB6OlsbbRZP5E638VDWw4GKT+Vuy9tovXqeMNE0+/xLDe3J/\ntVMzVWh9f136m05SylRiTXf+8CHZ63Kg2PYpj++K+9B1LLH3w20KV+7DVbtqV+0D7ZmwFH6QGn3Z\noQBDU9mA8yon0ej1hXOPcEt2xFwj1ncvvsnvH3wTgOPZCY9eF3h05Jaoghx7axGbugVONJo89h9j\nEnmd1AWVhhQLCiaaXWjUJbe6suMHvtKhGwMaJCqwlAqDPa+mnN6XPu1sHhIPJPfuq+Xv1jPCNQ0u\ndQ7ZGEhAybu8hz2SPp8eibvT2h4Tn8kJNOUtiodyf8atsRcPZCzOjhiq3Nr0G+8D0P7u2xwU0t9f\n+dpXV9RmXugSNpT/ER+tCcNP1fRNK0ot4Ak7MVMlKTk5vyS5lPeLNUMylAGd7cgJ5mX38GOxMLLU\nZ6EBuspMcBU04xQzylDp5lx1d6oZxUKucZJcMEklyvvF7T6RVmWWJxWZkuSkDTGps+EU2grMcRbU\nqu9pzBhbafAzeUK8Jma+L/8wiXLqB5KJirwRjvJCJJ2Iy5FkuZzIXQkCpWpJGBvj1HLPw3HF3TPp\nc1aWfHJTrKzPxyqJ510wOvwdAOalT3ZfaN3t/jXyjlx3Xp0QZCoGc0NU07P8XRZb4gbYgxb1hgQU\njw9OOByKhTV8/xBuKK/HA4Wy5x6zx1IQ9607f8R7c3EfYmNpX8hYZGsBi3QJuP9o7ZnYFOBP07YG\nuBjdKhqOz7yS15tJi+MnMhDZXB6Eer7g+rY+bHVIMxZTrFEZFhp5XVSWoifmnnOxLHtOOa8lXZPW\nJaG6DPPSruoEpqbk/kge3htGwES1rUU3EsBCqotxOhwxbshiG03OaCvPoaslvf7aLraSxRGVfcpM\n6hyqwSGuCui+o1mI/YuKrU/JAxE4LqUCWpJjAzr5o8kFXzuSvh0ojr7XPOXRRB7AO2fjVfYhdGuc\npbnOnKKShz5VotgsDyk1DTmdFxycSIbj4OIe5xN5YI2N+ONQxv75gaLuomtYR9WN1iFRnL2Ttlho\nNWfcDKl7Gl9Q5qLZWcVU2bSmo5rJQyWLiZvsXFNCGbONr6hHTzkhjeeQL/luzx1ydePyxmKlR5kP\nHciVAqmW8RmdPeTbd5REZ7pgXzfnTuhRauq0zKFQbca5xiIuxmPONdb0JMk5nanmZV0TqMZoMpCD\nID2qeHAi7uj46y+x9mlxV+bJhIkMEeXZGde/JJuFp0Aoz18n142pat4jUxWte7/7Fu+eyRjd3nNw\nTyWDMTqQe3p4OSU5VZqAoyEPzmUMOyNWjFs3Sh/f+eEe848rRf+fG2PeMsa8aYz5VWNMZIy5ZYz5\nujHmjjHm11UT4qpdtav2r0n7OKrTe8DfAj5hrV0YY34D+PeAvwr8XWvtrxlj/mfgl4D/6Uf5jSXN\nWVHX+GoHnkd3qCPJBS9Ukc7dGfF8U0yqV/dDHNXwc7Mx376UXb4fgb80nzUglaUOnkrKN7yAdCYn\nlG9+QEbeQq14/kdzrbgEyqeyxCt2mPEiYXqh5mVyRJbIqREaZZFOprgK5i/iu6THckLNpt/h+Pty\nL7Ou/NbJMexdyH7ajhJQFyQMYjKlOzSPYc2Vz1wqZ+LREO5M5JQblTlGf5vKhbl02lkrUQwOs7mM\nTzQd4Snb9dnkkjM1n7O5T2+jreNdQ6oRcGVwnkUP8Qr10Q4jEdQEikEMara6TgcnlclcqAtW+mNS\nrV2J7IxZJNbIk6SieyaWlTks8L8w0Wtoh21IqNbDPByTLdTSmzg4KqIyDCaUcw1A+qrzOA6o1VIM\njSVWTMOGG5A05RrzifBCArSU8y+0m0yV6+LOWUGmE2+BkWJV3n0o3zmfVXiBjP3b9/8R1Ylweax/\napeTazJGG909rN6LWcic140e7U9qP+ctgkAsmvjlS1qpVoReBpQnqlSVKT3cKOX0TNm65wVTzXJN\nCotCITiiJPghj/6PG2j0gNgY4wEN4Aj4GURXEkSK/t/5mL9x1a7aVfsxto+jJXlgjPlvgUcIF+g/\nAb4NjKy1SwjVE2Dvz/q+MeZvAn8T4Pr163/67zzdsTwMU0XHJYdtck0Bzlw5rR7ZBZvKZtwrO8x1\n549GET/3nASt4q0OtifdSpVj4Xw84e7XZfe9nGdoMRyOfUoU2vMcSg0q5hp8zOqaQF/n2JWm5WGa\n8/ZYgqCvNUIcZcLJL7RoZb6Br9RuRJ+nVlqxzuAm7ivy/n9sJfV4/PVvMzzQQFy6YMeT99OjN4gy\nOT3SbE7H0Rp6rZD7/kWOHsr4rsNCeQFM5jBSBB7nJX5HJfcWGqsISzq5XtdGBLX89tq+Q5hKIK3X\n7fPavvjJQShpyObmc1wojdssLaArP96y2+Sxnu5ei1kuJ1rUlpRt6jn0dxVPcXlXUpTAN995zE6u\ngirNmjiVNHCqllCrVT0t7Ir7JIkKygwLdnZlvPcat7icSrxm97paOc677EdfBuB733qDseJT3j89\np+XK94KmQ+ioCEyqVHphQaEACJfiB5lwOdI+z3VKF1gaiVgY/+LtDPuCjOGr7THdmaSnh40t3FO5\n7w0EmxC4n6BSFuwqOOd8JHNTG8tJIFZxdTwmWlfIukpEjMuShVodqVcy0WCLBZIl4tZxaATawY/Y\nPo770Ad+AbgFjIDfBP6tj/r9Py1F/2d8Rs2hjJTjSxE/fS97n1dUG29jS3LX5isL3n8si+7Y1gxU\nE3E6zohSeUifdyN2npOortfQQXJ9qGRxv/mNCU5DqxYdQ+gqjXzuYDQA+XDyFC66RJNXlqccXQvw\nNHfdrlv4CoSxcwFezd/6KtFtWRxRZ5P2FxUyPCqJviT5+NmhZB/a40tO/4kGsLZdpmeCQ6i9CdNz\nMbXz1JApA8rlpYzJwbxiES4p6R1SFdC9rBd4Op7OZEH7UFZWrO5Hp5vSVMq0RlRTTOS6pyPD2Yku\n0r2KYapVoEoZNhndw9GH388Dgp6yPHNJoJRodZESagDW1VqF9Szh/Qsxnw8fv8vpE9mo42zCez0J\nZu5HHeqJQNaDlgLHTE3Yk3m0vkM5Vzj2wydc/8RfAGB3/zrPvazAIK138fY2SLVasLfd4B//faH3\nOz6dEnbkM2thh3qswjZKuDOLm6T63rx4SpwDoImrVU3MwrWQypt2VvHV92UzufWFJtW29HNy+Taz\nd+VeHodyGDqtBtPH8hvWTPjuE3Ef3jm7YDSVlbZWOivVoayWjTdu1pyoyvy0Bu0yTVdAWQCFY1gs\nlrm9j1ZC/XHch58D7ltrz6y1BfD3gZ8AeupOAOwDBx/jN67aVbtqP+b2cVKSj4A/Z4xpIO7DzwLf\nAn4P+EXg1/hRpOhXzaLWGSfThK9+Rcgq35zf50Esp9hPaBXiz/zkT/PoHTGDG6djWgM5lYYP7uKu\nqWDM/iY7nxBU5Ol7cnJfnBacq+z3uFnTuNT01sCQncmufBbn+HNNYWqgspjXq5GzlehJAgyDnLNN\nOQkfV4dsLyT33PFFg7f5qRvMT+XUNW+MSI8EdXcxe4fTb38LgHemcnpGyYRbX1B0Z+xiA+nn5PGE\nR4EqG89S/oGmnoqR9P3At0QaPA23LeMHqu/gZXhqd4+8yTLVTxDLPfXdEHepYznxcfREtycXpBOx\nwmaO5WznAQCLkSBIG/WA3qa4FL3rISOFqRfDKb6vp3u7ItXTqqfJqDSZMe/IvZ5MhhRWTsrFfMrD\nREzm/XiPIJRr+66SrNiaXOXu49kGm5HyJtyY8v4fv679nxIsNBWt1GXl+YJjhXRWxxPcZRS7RMo4\ngaIuyddl0Z0fyin/+mjMuQb7pqZ8Sn9tYK5jP4ll7OMcLjWIPZsb3lbD8v5vvsNrr4nV93Kwzu2f\nVa4OJYWJT/Y53ZLfTeKC6ETSk+VFRKUu3dFty/SBjO1ID/w1AyctVVB/UpEpFdx201C2NUU9N0vu\nW5be44e1jxNT+Lox5v8EvoMM7euIO/APgV8zxvw3+t7/+qHXAkpE0l1dOhbW8vh9edB/9+zbvPUt\n1fabj5j2xOd8XixuXuq/TLj/RwAcP7EUhxKeN48MrTVZNH1/m/lQRVk0qn8neYt7mgdOWyGFMga7\nnmWhD9Air0h0c/LiJQ15sTIZrbEs7aLauMxR0hJ8picSpGi0xXR0zx/gP1IsfmNMoSIkbn6fXltm\nbPc5ZTR6q0XUlwtHF5apkqnMp5Yske+dZ+WK7OXdmQq7ljWu1mq42y7+wbIM15Bp7KPRCwiaqk7l\nic+dVRGXKrAbtgOaKqG0sx2z2Rdzfa25Qd9RRiNf+pOFBnRhzuYZwyNx1y6qCesDce/63oBQS4dT\nTx7+JFynuhSfe5pAri5PMw6Y5FonYTv4nWX1oHyvyAzVYimtnhKHslmYsEU+lIrBi3vfoqUEPI5u\nIPNkwbkn62ny5oRUmawGYUQZycExKw1Ucr3xsuT6Mmc6UXxHaUHZjwyWUHkjlxyIoVcT630kBZRa\nzXtxUXGqma1P3ApZr4QkpTOS+7xwv8rB+/LZ71+c8+AddYXjBUZx1cVJQZ7L/JW+9OFy7JEvsyHW\n4KtI2OBayMs3FOB1FybKHPYNzVR8WPu4UvR/B/g7f+Lte8CXPs51r9pVu2r/3zVj7Z8Z4/uxtmbg\n2Zc32nQKOFdMQBy3afdkJw29iuFITpXLacE412pGRR36riFbprGtXWUOosCl0syBMZZaT/dGsIT7\nuiu6ru1+i5dfkcBPEGyQTOVE/1K/TdmW0zHQ4qFvfPcJX3Lk5Pt6cEGKBNfOz89Za0o/d7aewxg5\njaeKb3CTKdNUTry8tIxmsnN72YJUIdZVKSeD67s8r1ySdbdLjvRhZmoGDc2393pcqJvz5ExCN59t\ndhiva0XezPK13/sNuQ93jeMbevpf+ykyK9f7wqvy73OvPE+mnJi/95XfplKth0ZQkYdimd1/eIed\nltzr7jXJSDRf+BwFYh1cf+Uan9/VAqTA5Tt/JNDsk/fvcf+7UvB1dKR4k/NLfvIFoS77wl/5q7z4\neamI/e/+i/+Sn3KEO+GNmz5BU+jIzhStd3s75eZNqT51gi6PHkpgtjh9wmUuVkGWubhqcu4r7Zq/\n1qTWMSzmC66rsnPR8Sh0zMfzBdGSuqwp/04XASen4rp9ZvcG0abcX2e7z+gb4vJ9UfUef/P4O5xO\nZW6++/7rVIl8b7/XpKhknRm/YqDJuULBIsNZjVXG8P3YpaWcnqXTxlUr5FPdGGdP4c0tsYKSqcOa\ncjkULRgei2X66P4Rn9FK2sd1zkx1Lf6H//ub37bWii/7/9KeCZhzbS1ZXpLVDrnVCrKZYWxkkhdl\nTpKpSk9eUpZLSXhN0ViLuncYLEbfr2rhhAXIbfVULWlJye1CUSyFYgPyUk3KKGfmy4N8Wbh4c9Vf\nfyCLZ9DLmfg35VqTKSffkMkvt85o+vKwxJ5Lp6mme1av+rPkoAzykrESaCySBZnGJZqeLJ7amVGk\nyurStHhKZhoGQ5q6WUSuYe26LJSp8llap0U7U+DRXX+1yPvRF7FKnFL/3jqzF4Qy/sjKA7i1fpty\nVzaWZH6Ep3h/p7vHmlaJXm4YmrXy/PXl4dgZhORt2WxeXO8QDSTW0GkU3P7zkmkZ3FgwVTr75ELi\nOcflI05O5PcevHmftYZWX3Yd8oZWxE7vkPyBTuAL4mc3+tuEpZLRBnPcsayRPM0J9QDo1i3mOn9R\nLtmlThDRrGVDSzaOaWspswk9Kt0sgm5BrBuup/GQyjPMR8omVbeoxvLZMs0IXdngHhWSWrw8XfDm\nVyUeMvPP0UvhOSHX1qQfs+mQrpK9aMaazdRnGslvbPltdlV42Ck3GIWigOWZHt1Q14bs14TtU4KB\n9Gez1WRdYepp+j3crmwcz0+7HPzRFcX7VbtqV+1jtGfCUqjqmlGyYNyoMYWe8o0zag3EzZOCQoMs\nWVXjKf2ZwhGwFVSaQfaMETgu0KgthdagF9UP5DfUGvEcZwVISv2SJ5r0TfMCO5ft+A827/AZIyfh\nAw3kbIQDvrP7dwF48ocRw5acqq/svkoQivvQMQmFQm3nEyl2GiYnVKn89ugyY6zS76auaKpVMdQT\nOsgMxwM5VTfdNeo1ucbm+m0G6zIu+byk0oq7wVxOre+0/yFbC3EDRoOchprr//iV32B7JgM2+/RX\neHlXwFDzheA/pkfPcfxEbnDxKCDQk6v92gmzmZzSLd+w1heL7dXPqtzcngOunOy3NrqEy0rSymFv\noUFJx9Jfk9z7oVaGJu8teHMseITizgg/lOh85Nzjd2/+stzf91tk12V+Prn/UzIua+d4rlg8ySUY\nhTaPymM2FG+QOXPCJe3+hsq2N/ZoNWQs+lUT05W5Ces2da0FdGUXVzNMc/VHnbqkN5XfuOP8Duu1\n8D5kRZ+O8yYAv7/1KwB85Z9WHFu51iDqEGnR3P6aByoTv2k8FpH0YydQjMlawX6pkm97lm1dqfPe\ngtapVgrfOMFNZR06myqhl3eIr8n3zKFL2RHXdOuRy1eTPwbgc7bDe9flfcSI+dD2TGwKYHCMS2i8\nFRmm5zvMpjIxdf20FiH2HVpqEjuqcjQZl0tcB64DrSU7kGPQPUazBPI/7VgeqkYjWAmYBpklr2RC\nz71zttQP2/Gvkyzken3l7q/Hn6d3IenGx+cHtPblAWq6Of5MHoST+IA6kAmbZPIgDGcV4+HSJaqp\nVA2r12jTU42ETGu9vdqh0VNy0SrG03hA7Ib4Vh7I0rXkDVmw7UjcgA2vyWIk123c7FG/J4vqRrHO\nnSeSlWl82eCmaoN6ijBsvcP+a+LXB7tr7O0LEMizh2SxuARZPuFT1yWGfE3Jb/3eDTzdnVuxITBL\nifuS3qaCpbotvjSROEDVFzdnOFxQFjLeyazmwmqmxvw8t8/lof/e8IS+KLTT1XkqIo0AACAASURB\nVHyac9FipCpV0y2PuhLzemPzOr4SuTSuxThjud5aLBvkoNOjpWPoJRXWiCvhFB75QA+U4YJMadvr\nQmsq2lM6y0043yJTkFj5+QGN81+UcbkvrkYy/C5uLJtm063oOeLmNbySVkdSq0U1Z08Pmb4yQV3/\nTJ/WuSp2+T0C5c+cvxCSaXYoqX0CPcyKHa18vSjwzvWzw5J6R+5/rbnLa0pxP7w/Ze+2rFv+qWzM\nH9au3IerdtWu2gfaM2EpWCAzhj18hshOWy4CEmUAxhpi3b4cz8FRufVY97SFqQhVCclxoa0ZBc+D\nueZorW/paOSnq5HlIIpWGQnwyNX0K0cwbsjpET16qgWZGQ0+vXiDvUMp6bgX/TrtCzGfaTgkrpjz\noQVHT5tczVO/zOmo6FWSxDQXSud1+0XiHTnRmzOxGC5PzrnZkMi7MUM6kYAyrGvxtRJxEZ3iT8Wi\ncW7K928frvPYSgCvVX6Ky9vS9y9GX8K9LjyOe83/ikZTzOr2KzJWf+ELLtdfkGO5/gw02iprXl7g\nB3LKzfKMdaXIs0YrSoMGlQZPQ895Gsw1hlrHuRuGODflVOxtKCHLk4r8geAKRhdjupqpuXezyc6R\nWD23Nwp2MqHWa6xrdqZ/TOXLidjubtF9Tsboxvo6rmL8/c5NMsVAbKsUPXFFZ11N/9Fi5V5M81Mi\nBUCN4xPhSAQynUc7j6jX5J5vzJucaVVmI9vickdo6p4//jcB6ITfWcHDiXxYU6j8FjQ2FEzkXuMV\npaRzFXuysfdljBhsBF6TLBXLcy26wbyvNRhlTOLJnLmJULDl6V0K5Y3wmvcJ5nKvWd+wrzyXUVnw\n+OEPx15wZSlctat21T7QnglLwQA+UBpDrenCRZphNGAYeWbFmGxxWWgasdRgkOcaQo0N+L4jgQW9\nsFFmnjh0GbTkVOy3VVsieCqrZj2X4aWceBfjGVmuNGZ+xEWgugaJvPficw850Vxn3qxYnEkgrktE\nY6H+aTcgCGTnXg/lZNts3WDjBfntM9shN+I7/8SLn18Rqd45k1PiqFmxuSbTk/ubeK4yNnUMgaYv\ny4WDkhfhFHKiBL2IXkNOoipyGWjt/Sxs0HlVzBRn/Bb9z8kXX1Ur4MbG52i0pQ+uU694BZpsUnuK\nrIydFcs1RiwU47CKAxns6rU1NY0llYOx9PqCbiz0tHv59vUVm9a7jQPmGgRt2hNSTafFvS6eCsOs\nuEfHc/o3FaXauE3nyzIWe402Xq15/EYbe0NxFrXqNGBWMaiyDY6esE7eWJJsUeNQaIlpNVvS1Hl4\n1QO5/26PZlexDllBvyP38qYjvnrdiCkVEu7EsKNszYPGFmtNsZCu7RuuteW11cImL6yxTa2uSie4\nqnvh5PcJ1hU2Xlv8C1kb07MHOpY5dSCf9coxxVAG6SJ9gt/19BqQPvjhdB+emU3BdWDi5iSqr1iZ\nP/kBhY+mJYluCkYf6MiYVWrBAUqlR3OsweqM166hUDx8ofneoLbUGnwMHB9fJ8lULhMtrS3iBWGe\n6fvygH3Oa/J2R4Arw9MRsdKMt8uYMtBIb21ZLBTPfyn3tHnNsrcvOe3nG58muRTY7dpOh4Ev5nPk\nyt85G9BSzUTr5mAV/xC0MWo+lxW4mvOuz6Vvk40pzlT1Gv0Frifvf23jV3Dflodmbe86NyLRf7Qq\nwDtNfOozhdTOalpiGRO5Bk9dM6/yMP5TGjqZA2c1WcZ9WjBqaoMmfnAIiPX+eo4AxDaS25ieZlSK\nDYqWws0PC2aaMQhnES15rmgprmAeNKlT2dza9Uu0NNDm3AzxFBTksy489YAKWkEJXkMCfNU8ga7C\nybOMfKZgtqJirvR8gQrpNkJoTWTjLLccnEqrL72KKJN+NG6pxmherWj8rjdb7KtL1+s2uLZzE4At\nLyLalfVXnWog1h9QT7XWpPFURcsrbhBNlLm8Z1Zy9vVU8SbljLmWlNuFC+quzu8l3NMAdDiFsfvD\nbQpX7sNVu2pX7QPtmbAUMOB5DkUOVtMufmCItJIt8B2WcOzC2tVrR82DwDMr+fVm6BKuBFCgVPeh\nicVXxNtSKi7sBCuBFIJgBUU9TGYrvrV5YjCaZlvoKXmWH3P2XTFP83FC8JLmkrsV+3M5ParA5fJC\nC7AqGeZPLW5QTuSkGW3dI3bFTO63fdoKOz7WKsTGo5xaC7DiJGQyEOvAxdJpabDPlgwVVr2s2urT\nI9L7nO96XPxzLQj6do9AT4zkZ94jVbGUHdUNmJzd5d5ENCMvzyI+VUmwb3dnA+vL9wI3WLFYP+Wt\nrVd0dBazMhVqU2PN0qLLiZQMJOmIO9Dez8gOhcB0mzFTdV2ODk/hTObBd2rmN1Q74lKRmUWfpupE\nXvjfYKHp4uhoHSKxkBbtEQ2FDVdWLBTfdChCqUq1aYKn1Zq+tRQbGgguJrQyhSNnct1xfEzdkjGO\nsi5BJZZV+UJAYsRtmL8lAdNO6TLfUCj9boNX+xLYvLXZxW6IVei4Lt5UgoBLl3C+9j7MZf6cUQNX\nC9fma69j9fT38g4hKn50Uywsjuc0ZjL2qZ2wUKswDy0beh92kfPE/YjlkdqejU1BeZa2PZcjT+ME\n+NglR6OtVq5CUdcrqohV6MB7arbWWLxAF0TB6ho5oHwidLWmIu428RVWHIYRvj4o8emEi1J8OVNZ\nNtvil6r1Rl502PSk0u0oPiFIRLzEJCF1Qybfjz06sUKTO/Lwb6y9RKDR9+7kpxhqmfRguE7Sl9dx\npsQb4ZuryPncP6WnEfI8zUHdH8/1GVi5tq8MzpthzDiShZt7A75S/xYAL69v4L4k1/tc9z+hh2wy\n0aY8bH53wL7mz1vXLL1YXlvPI1qqrxjR/ZQOLqnVzaqaeDUJgGNdSsWem9rB6ng2M4Ez+16XrvrR\n2ztblFpF+f1v3mdXax/SeIR3KsxLVSXmdeNagLfEb7ADWqptoj6ZloG37P6Kh9P3ZLOp6xLPaDyA\nMY66I3W4INLYVYmHp7UEU81keKM2uboiO619/Frh0ZMXMMqO/apKAPzz4HXiTFyNvfVbNF9QRqed\n5+m2ZY2ENsZTPtEqW7KO91gguBcnMBDLpteqBySlxBEazT6lL7GrdY2dTJwjojUZ43FWUZ7JBtJN\nW3jqCh/WCdnl8jG/kqK/alftqv0I7ZmwFJZxxIx6pQpT1PVSUZ2ssqAmVY1ZyXi1FK8QRg5KcYfv\nOhQa+LKmxlNToeW7eIGc+G09+Tu9zspSMMayaIopEXd8vIny+1cOU+1UpXxXtrwgU0jpYC+moR2y\n3YjyQk6YNPJoKh9hHCkXwGiEt6sFTPZbdJ6TexqmD6gK6Wemp+1gvyQMxdROQ0hzeV0YqNU0DNot\nXNXTLDSPH4dQaZR9VI6p9GTrxbfZeFFl28tDomvye0vkXhQFuIor6HsRjUhNZr+NddS0NT7WLnUx\nlymHGrOM8lrLKuJraoxyD1CmWCVRqTTj4s1nBIrfKINNTKXVoTan7srYN3sZZSqWV1e5JZqhIVAM\nSV0d0Wrpye1ZwoZWGNkDXDULy1LN9jimRlXAY6gdLSCrn2IuTJRiKtV5VMGgsJpQpRL4LPIAbyBW\nQVWf0FLE5teOBVLsNAtMLf3c2e3SdWWug1aMo8V9UdPFBMprUCsvRDZacWY69QzXV4Xq4piwr+rR\n4QlxqRWRGsCuw2yVqQjrklgzJ8POkKJaZknmLC5/TByN/ypbjSUpC1JjqTV6O6krvGU5NBBosVxV\nW8JQ05PeMmXprFKZvgvzSgYhwqGhC2iwHhN0lHLcW/q6C+qFXCshZzGT701GNZn6pEVV0tBNplJ/\npVcE3LipvIXFDt1SFmA0zzgsBEpsT8H1ZEKDmfzedOce+2c3Abj+0mfol58AoHn9AhtKmDxW8FJr\nHlMhC7SbVwQjMZkvRlO8riyabJ7RKSTVVx4LUelka06i/mlQhVBIH+6t/TbjNwVqbAYPaTbERC99\n8bOL05hORx6wi7yityWD3yEi1liLg5R0A9TK8uM5zgoAZhxWzETGOtRa51EXFarTQjlSv/+85nwp\n1HOYMSl1c8IjjeV1MW6zp27Fppr7rZ5LlmrWycbUmuzJ3ZRI3bXAaWJVPKZSwdsys4SebBp1VoKy\nJZXpHAqtSrxcULgKmFPT3st9nKH89iP7iLYeEEHTobch8ZhuRx/yhUNf87B9v0GoGpN+ERKEGmua\nujh9ub9qJr9RlyHFWONkbUueCnCqLDzsWNfezpBCyWUqZQILM5dCK1jD3CVRiLV3YHk3knU4yQxn\njt7TR2xX7sNVu2pX7QPtmbAUsEInZaxDUS8xBqw4Emr7gyy6Fl+zErGqXPiug6+mQiNwcfKlhJxd\nkagUpY+j1NgP1ETsLjJMIbtvHRQc35f3Z7MMq9Bdz3FWFO6pRtLmrmUzlYChYcT7sYi+1CcWX+mz\nrg/aNG7KaeyeqbXix7S0Tn+9F9HvaFR/sI2fSj+zl9T6aVtczVczg6ma/oMnDvn0gbw9XnCu1XeL\nWsxkc5Fj50o/v+VRKF/j6N0e55kUEtVfmLEzFrrzpsKujx8ckHgiw3f0zpzOppyeg/UNrt0Wa2Sr\nf41mT1wv38ipnPgZJw/kxBuPzulppqVxw7CjRUeBN6WaydimWrRkOFsBvY7PX+d0S3EhrsFO5MRz\nqwr/M2Lmh7mqNkcNKhXDuZO+T6yB+GwvIktlvLt7RwTKgRHZJZlmTNqXftq5C0pwU+cRaawLowwo\nF2I5DY+FI+M8OyFXfsxi6gLyeuN2i4tKXk8fybU2nBat19RS8nJmQ7HSmm6D01J5ES5juudLXIRi\nDLZy6kQsT89vUih3SNqZ4CzEgnRnOZnSCWZa4enOPMxMsTCjhEKfBzeMuabanXerBE8FhpAufGh7\nJjYFi8QKmsasAthFZShZmqJPwUle7eCZJWeeEqoCiUL7Is9QqemfFxVLNr8kh1o/76p/t+E3GauP\n268t02Vl3LzA0+fReoaGIiELzU7YWY+ttqB7vjH9ZwzPtBrSm7DZVwKYfsRaQ1Jusz1F1fktXM0o\nxM5Pkc+0WrPfJLfq+05UFn1ySUOr5dLyDMbiVhTJAVZJVGa2pEjl/XEm39+t2pxmS07IDoma82t5\nylQ3w+zR5xldFzal5I6MxYPTN4l1XB8mY+b3ZOQG+x7F7C9K/7/QZMtdUrgrUnJa88ffk8j56Dtn\ndCTIzk8cfZbzW1qjEGZ4oYydn8nDurv1MrEqT3XchxyU8vrNwfdY9+Xhnkdj9p3XAOhFSppbDHn4\nRMq909GCR0rxPhx16Klg43OTT9PoyJz1EpmbrFyQHsvYnz65y+xIdpOECR1PTfvmiDKR6xktby4T\nF8+RMd5trXPpqELW6Q65Zn5uzX4agLfCQ14e3ZR5HLuMfeWgPHuDaqJpba9go5YMxcYnpG9rrZeI\ndyXLQuyQP5DNxjm+zuhQ4hmTyZx0LBuWq9kQJ5wSqo5I0SiJIlk7/a2YzYnyibbPuZ8skYAfjaPx\nyn24alftqn2gPROWggFcayisIdUahloAtPr6Kb6+xGL1M6lmFrKsWmn8hYVLoLUK07JasS6HXkGu\nZshSOv6inHKRyMl+Wtak+r5r3NWp2aHN1kCjyJ7s/K3OJY8VtFCZc1LlYGyuuezWKrlet5mqEtV7\nl4JBuNbcJ3hVjtK8fBd3U0zDsmpSaKA0z/XkK844P5WA05PRCPSEyooxg6UvFdV4KvoRhioQ47ss\no3qzeb6idS8XJbVmAObjd6mVdXqmVGN1fs5YA3iDtrvC7W8M1mlviTXRb/p4yiScluK2VOEFN/fU\ndZm5eLsKU/fuMJlpXcmdGk/ihTR74j61NzyiXCyz/TBkcaa1CrOSuC2uUqvlYB2xeR2Ve89OHpMr\ngKiqF2ztyrj0S4hCpeybvU2hkX8Uv7EwUxINbKbzQ8xcxsiNZ/iqSTqfL1CuF7wt5WaoW8zUfQhd\nlzXNPpTZEKchfbuIl0pfGWdTAYDNq02cC8241HB6Jvfkt0uymfzeIlIci5PR2RXL0ylqClfmZJ6f\ncnIqvtLw/iWnM5kHXwFbnVsuu5VYoY0XGqu1MO1fwJKtu3bpn/4YVaev2lW7av//ax+6hRhj/jfg\n3wZOrbWf1PcGwK8DN4EHwF+31l4aSV7/94jydAL8B9ba73xoL4wKqrj1qh6/Mk8tgryy+MtiEANJ\nqcUeocYc6polLYLxHAbbyuA7djhRBp5xbukoJ7+j15rkBWPV38urGlcDF65r6WqAstuHTzz3k/J5\nTQs2ueBdI7JjB8fHeNrn24MdYtUCSNIxZ6rofKB9CFgw0FO8SltMDrVKbjOj9DWYOdQ+LByilvy9\nY1ymj+V7DgU2khO27TVWcYn5SO55FF1wOU50YAPmqhVZOxMWU/Xr3UccXAoE9/49iQccHz5eqW43\n2h22dsXvnRyUNLzPAXAWBDx3XRCJE2W7Ls8c5vckHdoZDMk0pXq8GLJQBu6e69FTFF40EXYn6xcr\npiDHBPS0mMmpDJ4yZ7l5i8ZM4jLLtOeoiDk+kXjA7HxKOJb7nnYsPRWM2W5s4ikZKzvLcc1IVCqv\nnFfkahLMkpLDg+PVb7vKqbGufnvXNmkM1dq4Ua4KnirGODrMa105zfs2J1/IXM9Ou0RabPZkOOGd\nQ/HnB+0YKpnLW09kLLc6PoEnr+PWFsXFdwFIHk95ckfVuE9HnGjfjrVY7znjc6qVtJ+c79Dd1srV\ntx3eWpd7cudQBAqF/4jto9gV/zvwPwJ/7wfe+9vA71hrf9kY87f1//9r4K8AL+h/X0Yk6L/8YT9g\nMASeg+9AuBLbeCpe4lCz5GOLfZem0nN3mtL9elaSKl32jWtdPvniTQCOT0csHivefVHQUpzBEvzk\nTBxqq9jyyqGltQ0dr836bVlgvWTAK9fkGn/QlOh86r9CcleCVmZ+ht1XTsi1Bl4q35vmC4KumODX\nO/Lg3t6+zt6miuP6d1cuQ30e0+uJfT0fyEMcZxDX8hu3O00e72pC/tDQWOL5w4qztpbqKo3bYjyn\nVtM4fqlJqkFXOw0xit9wYphrCN/quEWtiKZS2De2G+ytSyByvR3ibwjGP9zeIGjIGO6r/Pyjjce0\nlUqt6/VpNFUtywZwIp9tnsbs7WilpfIkumlKfaEB4yIjfElej98aE1yqSxD6XPTVZdMgcZItGKwr\nVLrfplYFpW6rT2+ZaPAK6rbMa+zIRh5EDUbbcs/lUYarrMxOMcVVXUzSghuJjMGOytZfehZ3yZuZ\nRvjKCZl/MWP2WOYqPVQuxqDF5Wua1WBCVcpaGIQp13Zkk11vhfQdWb/XbqihvnFJ6QsAqkwjfMRt\nXDTPsS31FS89Sg1WBkojQNPlVi3rZq8ZkvR0bLcMW9ma9mPB1jXNPoiA1oe2D3UfrLX/Arj4E2//\nAiIzDx+Um/8F4O9ZaV9DdCV3PlpXrtpVu2rPQvtRA41b1tojfX0MKJkUe8DjH/jcUor+iD/RflCK\n3nMMnuvTcWsuVnJsK+MAYwyus0wn+niaL+xqesz0UspM3ltf2+XTL4nGwLVr4A3ek44cnGErOW1D\nTfUVbYeGmt+76w473SWxRk1LrFbc2xm9G5pGfEcCS5PDJpvKe/Bd7w5RIieXjbZoqZbkoL9PPJCL\nRCpF9tzOJiaWEyoeXOfJgezsYTOkbCqRiyuYgNpmtFrLASh5LpCg5Lg4pBFo0c5sTFuH3mnKibI2\na5I1JJDVrHapNdC4HobMVCBlfbBHtyn933xB0nHpq+e09gR70XBDdrblZCN3ebEvoi399i7rTen/\npJJTcr+1z9myUsw/o6EQ8lZnm1Ll5jY+3SeMlqQ18v3qssQoj0F5Nqar+fg4OKPlyG/nUcG6I/30\nlBLv1kZOs6XpST8mP5Xzaq/bJV9iCJov0NBxHkQydyfJPdZDsQJm/SNwxH0YDDboRkpeOx+yLVMF\n+m+EQ5DI3ze7+5wqHN2c7ZFfiuU4UOXyerPkugI/2qaiowQpPTZ5vi1rK7js0F+TdRu2FSG79gLF\nhVh3QZySarq3EyQ8P1cdDSfjU119rf/6eYNXtiWV6e71wdff9h7SOJD5GXPE5kJpyNEo6oe0j519\nsNZas6wt/uG+t5KijwPPhq7LLC9WICXXPt0IPKDZUFCMH9PV12ZJaFIZTCSDunejRaz8glHgs/aK\nUnn7CwIrRstlLQ9j1/dZ09947nqX/EgmI3IGJBoPiEevsbihUvQjEVB5OT/mTKvw4o2I2Mqgr20O\n2C9lQfe3XmbtVYHB2rks1qbbJFPjLK3HdPtyjUYUEzUVFOQqcCeChro7bmONpbJI4HSxicKDM59a\n8QmRajROO5cMGloFGjcINGvRiDpsrctievX6F/j8LdmwNmJdMO2I/ickzlCki9U9lW5JpyvX2+h0\nCbQyMErVdfMidgdS2dkwrxDvNrTPLkY5Cr0ixaqkOlo7YcNjWLJFrYWUgbpNUYZVMFHc9qlijUt0\ndHxmGXFbHgRvrUuxI3yUXhqRqCSAEwT0t+TzgbpPrSRikkkcpO91iJVv09lo0VZxHVMFRLkSoJQy\nZ9WlBY0ZZB2fSKnYq6xFvCbAqpmKwniRh9XS8vW9NbZ1NcfRGpG6PM7OExqhMth4Cl4KFkQ3tL4E\naFbSn6Jzk4ZmKHYG+zhaVRppmb3XGuIoOYuZn5GqlmYRPsJuy2eDiUP1lj4nH7H9qNmHk6VboP+e\n6vsHwLUf+NyVFP1Vu2r/mrUf1VL4LURm/pf5oNz8bwH/mTHm15AA4/gH3Ix/aXMMRIFhWlaUy+J8\np8JfBgZ92FDu/SiymKWLsTytcbFqnm60O5gteb8/uqSj4h7NqEvreTkFPucIF0K8tYe7lG3PTpgO\nxfO5uDxgdyCnUfz8qxy/Jwi749+SCPorX/weTiT7oF+4tNQM7PoxnpIHN0NLd4mmS1RGfd3iZ3LK\n23SN4lx2cP96iKMwbXcmFwg98HqaLalC3EyxEkPIl9VhNsObK5nGUE6Uk9T+gHbGHF+Lv8rOkFA7\n99x+yq2eWApbW2JVhesD/EDM5DzJcdtLirEhMdonYgyqS6EVh84YwiW0eXODwNF7LUJsptWHzowy\nk/Eq52r6P2pQNSUfn1YBC61KNWXISBm9Ly4NAzWVw0R5L1o+RolxGl6fRMEnzobFjOUzndYmDSsB\nOLctFoh36OAp3ZzvGsJtmYcyWVC6cn/etEM20ACs4lfSvI37WMboaG8KrkoI2gkbypGQ9kXUZnTs\nMjDiooTjJranjNdxQaOvmYHRTeLbYk3WSj1Y4qJLGbefoDAMoszi6XjXnx5Sv6dB+JasG2/Sot5X\nEpp7LkOjgc9HCY+vi/ViDxzupsts1EdrHyUl+avAXwTWjTFPEJXpXwZ+wxjzS8BD4K/rx/8Rko68\ng6Qk/8OP0gljDFHkMUkdfF3RQeASKDdg5PusKRijNAG1MvqkWlmXjgt8Tybrewdz/DWZRKYxj8bi\n95njJs9viC+3tf4ZAMKuofaVc4+aoQqCmtqjnCl9/P07fPdbsue9d/rbAHzG/BzZRBZgI4spNmQC\nknRIpD5ww3awDZm8JdmpF4S4as4mwV1stKSLWcddaNorEBmfehHR1PeiuEuu5deld0lRitlapSkX\ngSziy0r8RT9JCLWSMWvPcFSfPJ34GDVLmy2PrtZdLP3apmNATXWTZ1h1q+rxHKtMR7YMVuXHVvH5\nef4Ee6ruWtnAH8h4lutT9KNYnpAfytlwWct8ZCdzylAfzLqH84pseqNsTjpX98HEjG/JGGzHEmvx\nvICOxgaKbop/qSS2k4SOeiitboqn5d5Gge5+bXH6WhF6EhJrnCcio1rTDNXIEo5k7JID6duJ+w4j\nK+PiHffwdU7dzxvyRF6nhzIfzmzKSVvmYX1+i3aum5AXrCgB3CYYZE6irmy8aeMYZyiurWPaq3Xv\nbDyh1HRoY76Bo+C5rC+baXFU4D1Q+v1HR4xaskFM85K2Mnw9Oh4zCXVgPmL70E3BWvs3/iV/+tk/\n47MW+E9/qB5ctat21Z6p9kzAnF3Xpdluse0VVAomqhxoak48aECp1ZN1WeGp+ehkykWYl4yeyMn1\nh8ff5+ybSzlxuDgVMzkvDhi/IQGxR1uymz8f/hSmJTn4fjDhyYXQXQ3HI/w1CebYx495cE8DQqlK\nlk9iejMJyp2536Y1FjOyzm9gNsTcNWubNH0JNJZaDNSMmqSeWBXrPM8wkHx0x+tSKny4VanMeJ3g\nWjFrq8DH1wCXxcNTaCt1jjdUk38mmZFWfYPhRI7o7PsuYaCgIS/mwsqp6S1uU+Qa+tFsQGEjfFUt\nruYuuc7DyeOMzqFYWGkvxVF35GQovzE6NBjlfqyTmjSXJdWdtFaycKbYY6wArnwhojZn2X0czT6k\nvkP0SPkqgxqj7krRHLFTSebDKeRk97s+pVKNhXmT2UxP/3pAqRwJG/YWdqSq2Xr/mRnDVBisk/yc\nUCHydX+N5kyyLoVzTJ3KGOVNcSX945i8knnqeWvMPaWHPtwmUnr8rcubAHz90a/SUdbt8+dLnHVZ\nL+1Gl66uBb+5Q6AU70Zdn7ZtURUKFS898oWsw3j2aRYTqcBNp9UKI+HdEzBdtXiM1Tmre++zMVSO\ni+wu8+8rL0fyLhvzJaX123yU9kxsCnHk88kXd7lMe+TKVWergCCSiXNyS7Yk7FhYKgUZBRonjWOH\neqJgleiSy/LrADRnLoVWPta25uFC0pPHJ7IYH7v/gEjjFm2vYqpoNJM7FCMxxap0zGEiCyWrlDgz\nPeBAN6YsnkMpn83dc1C0mW8SjBWz0teKPZwMqw/QIj9hqgCik4MmlQrMTmVt0OhDpgKt4WADq79t\n4gmOVSx+IyFyBbk2ysQsD9KITFOv9+9XdJdjWGdUmiSajB8zq2WDjI8lpbcIm+jexei44nwo171/\n9yGNuW7OO2u45/KA3JtL/NjOMzo3lI1o2CfUCsCB6RJrFsQ3czJkLJJKy/uxiAAAIABJREFUCW+d\nU9yFbu5rfeY6xs1ohtPUOoGOAV/6UYfyG4vTKamvWYa0YKh1J3k6wldX0Nx9RDZVv1uZqYaPHnF0\nopWog2q1AcbrAW4uD6FnDMrDQsOXMc6GCbmzrGcY4ypZyuLAJf6cjMV7E3H5HqcPyMdyH9s3d+gc\nS1wj3ekze6KqXbdyHM1GOaFkJLLyMVWtqMPFhEQFfefHZ3gKLqvnNVOVNnBVINXxLJG6zZ45JHXk\nnpP2Yxaqy9HyK+q3l7XCH61d1T5ctat21T7QnglLobXe5y/80r+L01vw3O//PgBvv3FEoey0djRl\neKH0aE5OvqRpsxrsqsA6yl9XuViWnIIeJtCaAeuvqMEdVSaaLCYcLmMwtsTRrMY4Lak00FbVUOvn\nlzzS/WjAqSvmenFoibRuwa1dqoZaFdmEOtOcvFav5a2aMlWzdjLAO5fTYdQ4wF0qp0wl4GTcDgvl\nCawm6Sr7kBzWONFSir4gO1HY7RM5XeeDEYXyEw5nI0y9VNHKmCmH38nhmIsHyjq9VJNqTmk8ktPl\n5PJwRSW3fT2gpSTAxltQq7bhpiN/P3g8wXaU9nz7BDOVgOD5MMBraaVex5Ap3j9b8pmcVkzUIsim\nDUKl9p+PRsRKq5ZlMZlWNiahBgwbEYkrF/HOLIEjS3j9xg7W1QDeuGZxqIrWivu37phQdSJ7jR6t\ndV0jC8hyJVHJHeZtjfar4nke5XSeyLjd23iAd66w8EZONhd3pDFQd64qeTJWK+0g5fpzcn8VPmWt\nQLvxq3h9cZWqofStPPKYHH5V7tm8z+SeUu3PxrQ1SN3djkkudP3qnLqOS7Iu9589STgK5P7O35jz\n+rpMWvuOx3jFf/7R2pWlcNWu2lX7QHsmLIVmw+cLX9gn8bqka7JPbX3pLo/+QE7js28fkSTqZ82g\noak8qwg2awoWSsEWei61nojEhlAh0XHk0dfce6YFQ9O5Q60BTL9ysfraVC4L5WfIClhoBV+9FDrp\nAkqp1Sp96k05lVxnQZ2o9Np4xGVL4iNeJO/FeQ9nqUOxe4ZXqO/MGmYmJ9RoQysAp5c4p5ouLCbU\n+xKXSIMprvr++fiSk0jGyCx1Diqf0ydyAl2mI8yyqGxRsDSxjpLvMky1qKqSMWk5LYaB3NPUXBIo\nXmJ/I2KmaEmbz3FqZU7yxSKY3QyIlay0nAV4ikYcNxeEmtOvJg6+YtYTTeml8ZRE+RbSRYH7mvz9\n/PvHhMoUZJKC9/cFpddXue7GSYKjcO1ZlLKpmhpbbBFqvGbYeoTTUnJU1YsIspBwfYnvCKiUZ6Gs\nx6Qd9bmHEM7lkUjGGouIRhSa64yLLrMlMvNmwkEpc3X3VPqY5S6ZYkguJwvOj+Q3uoP7sCFjH3gp\nzrmMrR2JtTas3yJ5pIxP7hRPi7zKcEpVhjq2NY7KIZY7y/Fpkqs1PRyOOPIkXnO8qHGOZU7O05rJ\nEtfyEdszsSm4bodO82foOZbmrkb1+1+jc+8rALxxesi9h0qMUiSMVIq9rVRUxjVkOmDjtCJSIFBa\nGWplWraeR0dpzPJldaI11Er5llOs6NaOi4pa3Ye0sqtg5LIW4/bmn+c51T78vx7+H7QvxQTPTMTU\nyIR2Ao+mpxh+I4vAt01spYCWfIcskQh33HcolXCk2xKG59Pzc6qZKk+FARuJlBxn9jGu0XJwe0yd\nSGQ5VXrzZpqwmCV6fw4T5UYcEDBV4MDhpcN9JQAJehr4K+crTMPh9JD0VHP3ZoPT+ZIibsjNLQme\nXSgNWhhHDBVXcDSZ0tIsyXbnmmyegBtElK6SlhgJrpVxSlfHoiyhk0l0/mT8ffoaVL4ox0wT6dNw\nTza/XjpbbbI4EbNMTH9OPNo9MdHHkxsMJwJJ7yjGYD4+owjFBTstLwnUHYs7Lu1IMlSN9gJHS2iN\nrwKtFy28hoz3bhpx3liKxGwzfl82va3xZ6UPxR3CXLIkh0nJw4VWeE4WBPf1IS1HlFp+nSkfZJl1\nyDMVfUkcnFrmdN25SaKCQdPKISuUx7EUF3ORJgRKHxCGJbcnWvnJMd0D6f+byYis1kA3Hy3geOU+\nXLWrdtU+0J4JSwFcPNPBIV8VAUWtmvAzYjL2T67haGAv8CPCpSCEmrKFk+FGWmXYsESqA+h7Fbmi\nH2On5CjRwJ2qR1vf0NWTYTa2nGtgcF6ap5Lq/097bx5saXrX932edz37cvfbfXuf7p5Ns6FlhIQE\nwgSJIlAYyoY4NsZUkZRdhZNylWMVfzlV/oM4ReJUOTiUSVJ2ANvBGAjGYCEWSwhJ1jb79EzPdE/f\n7rudfX/Puz354/c7d7qFBs2I6Zl2+fyquu7ps7zP8j7v8/zW79caFr7IBXflfRenPHdDMwxNRGsk\nfctG6wS57NYmcXH1JHS1YGbe3ifXKkLfq7J+agEmkpNoYdJsLCppwAH5UDP7zpzHeBpCK46YDuT0\ncNMRxars/rWmaES7r3SZaHjLIcRZOPCceEGPyXQ0p6zZoN5wwWNQprih0M69A+av6fjO7nDqomgH\n1VINbyLthGpSDCJLqqQmR1dehqLGxBtlGkVRFYpujgnVrNLYvCnMGCxChHWPOJKTcja4xlAdY/Fs\nRKJ5A2drmsXY9Sid1nj8asDBjWcBaO09xeZFyb2oNXbIjIR7x2M1/RhgpzIBmZ3ROZD4fykO8LZk\nfPV0lTDR4qhQQU4dl6lmBPqVgIlqlvP2jPWH5OR+9kui8QVhSqY0dsk85eBQvvvwuTmjTELGpckt\neqOFOSZzEkVzJi0JWbYmFrck4+/t52SLTNYRmLrcq61ItZUgJtJ07Cwdk8zldd92mGoo2jMw7vwn\nSEWf5zCbOXi2wDjW6rz0h8lf+KcAXDtqM1T1upfPQcEm6o/KYGtDl/G6emaHDiMl22jGBndFCWvL\nPp5WII6ek/fmVYdQaaiOwoxOSx+gHBY4FpkrlPVyEfmzvnaKrUByIZJ0jNWFPpoPSEQ7JmaC0Xz+\nQBGcXa9GW8ul7csO45bGplf79AeyiPOJqJ+e43H6QS2xLZTxZf3R3x/Tn0nM/6h7xJEmVPU0Pn7N\ntphqzUF5JWCgXnS/HpMpKc20fJOZL3kKWU2WQOJ5cCBzseU3uPxfSIKN46yyqeZPOEnp22dk7rqy\neY1mMbkqnKcvlMm13Nuzc1LtR1yMiTQd2ai/Jx/PcE/KNQpxk6IjG8TNVo/aliz+XrfLrifvT1Rl\nPnUqIFd++XCckihSVfWCx9yR+QzqbbyObF5HVnxRvb0pfYVk31xZZeeMmnyOxdMc5NFszHCo+Iia\nxp2bKlFH1031Gu3ZYnOecbn8QQDu+9gt7XvG4UgRoiYZR1q5O/HmZEN9uCcp2zsazRpLnsO8mhFd\nU9/A6ojWV+R3+0HKWSXB2bpsqWoilhfKOKeDnL5uoJ3DmF3lv3zlIOWa+lfWZoZpQdfvm0xXWJoP\nS1nKUu6Qe0JTmMQpn9/tMXXGlHXHfLX+DN2XxHv/2n5Cq6/cC7OYRPMGAn2v5BRxfdkGU9chVUru\nwdyl7os62J4ZIl9O6YHy/TnGMNBrzQcZ8YKQEruA4sMxBqu2hNHZmtWKjPe0ujCvMV3VU27UYaMl\n71c3ugw0rbim3IHBNKcwV6TlYgerJoM3T6kpdmNHsfUqk1WcTDkFR0N6wXUADtsDuhP1Mk9y2pmc\nbN2eqpGjgNyVeXGrVapNjah4FsfVuHmxRF9xLmepRBH8tEismZClRoHKTB1xjsO8JKqvnddAs+oc\nJbXBmzHbVarzSkhZU5CH8/4xzYAzfp02LlPymlpQpYRoI67bwC1LfyY2IFGt57BjibQIKFcqNbNy\nlnouZs40T0gKaq7NA04p/RuZhaqcsAVNOzZOxtxXkpU4YqJFRyE5Y6s5HhOY6fg6erJn3hBXoeAm\nMUxVXQ8vQFnxMk52VFNac3n+jECS3noxoqMe7RudOXWFqZt6lqAofQs7aib0hmgKAnG3yFg5TJy1\nnHpF7sP6TomizmdUVATyG3MOVDN5dRjRUqq7gxhijSRNLKzW9ewfvLnCKGOPecTfPSkHnn1oo84p\nfHarSh6aBsw0GhC4OedOSPlysbR6nAPeVDzH/WGXsdqLo+mMVI3nYtGQWl28Wcrpkub566ROkpCe\nes6boUseyHV7RzH7XVE1T4cwVOCMjpa0/p2PvI8fCSQn//fWb3L+41IMOr+ece69UldRaZwlDUTt\nvvKF3wXAOxhQURhyUyxy9U++BMBWpcKREp7u9uSB3r014dEz8sCefPI9lNelveFhSrGqlaRrVdqq\n8r/8nADwfax5huRh8aZvPXiZDz7xKAArhEy0vsL1qjSaooJv1DTsWSzgaOTA+CNqGvbr25SWwpP3\nhx0cLf1u1OW7/XmOo7ySzYLPxuaCFaqGq0lWG40qmzuaHjyU/h7svcZ7C0qis1LAr8pc/fTP/jyh\nIjnFrsVzlExXyX9NljLSkHKcQ0UXf7EQsLUm93fn/We5+ORZAB76i1K39x31Cs3id0nfafK6kmyw\nLHBBNSx1u5g//dZCfuIvvw8AXze09GbMTNO1u/0Rk5G8bo3nTHSzyVKLp3FpR01Xzzj4wYL70jKd\nL8CELUVNp6+EPiUF4vE0F9sUS5xc+Fo8h1lP+rE/alFZdLJQwhjZhD7/3Je+bK197xuPSGRpPixl\nKUu5Q+4J88F1DI2iQ6OwyUSxAkYHNby6qIzr9SZbDaXuWqszGWlxkDJGrxDSUM7Am9kM1DxYLxe5\ncFLAUmIzYE0JQmaacBBFDfbHYqLkTn5MdLLu5oxVLfe9ApXxQiORv1u1GSP/2+TzbM7h35T+9H7k\na6A4j/dfuo9sQ52Hnmgj4YkYzxcHl3swpNhUbIIsY0NPyvGuqHitUptpKu8FQY4bKTx5YUCqfI5V\nt8oJZYp+uS4w60dpRq0vGsbsixGppsTmjoefq9d64mAWNPeJnj41Q1CRz8edCQNNrOrMYg4VDGZu\nI8qLJCRNimJuCIoKekOZTM0Sz01wUoWWC8qEvjoENQpxUGzRVmo+Z1Qh/armk2BxlYjHtSloUtpc\naeujNAWNADjmmOQaN02PYer83YjwIZmDMxPJe5mXH6P0+vl5hwZwrCHY296/Q4E2X/8TLBZftdB6\nLjkb45WYtKEkM52UTM1RN8tx1FntGovvLqgJFrwEwFwTubLsmHndGAg0X6biCfUAQFEdh1EyZaaw\neMZAGCyK38bkc8U0TRKi5LZxvwlZagpLWcpS7pB7QlOADGvHPLvyHLM9xf9fPeCRc+KIurxSYHtF\nYn2VSoCZyCl1M5JwU6lomDqye24WS6zoaXRie4v7TgnWQdGZM3UlnpxlyvDsWSo3JTTXcUb09yT+\nHwUDCrrLv0CHmiL4DjU/opR/lV/80F8DYPZUkcoP/zIAj93/P+FpWKjdLTN9StObE0F6qjw0pjAR\np13XvYmvHBHzE7cop3IrwvPiGN0ZrFJ+jxKuODfJPUnnrUyaBEpj12v1SEbSt5Mai/7M6V/g4ysS\nIhuZsxjltehXDwkVes7UZ2SB2KKRhvG8eMB+WxGt5im3uuI8tVN7bA+7xqApIKyoM8xicNRmzQpz\nPEV5NuR4gYZXi1Na+1LkE/jyXafb47dLTwPwnqzOTXeRQ5IxCNX3kUCi+RCoAzPL8+PT0zeGoqJM\nZbfRCdJfwX3uhwBonPh2AM7/JXOMgKUd/8byde+/kUvBYGBvW+dL1tCg/xWmmpNy1J4w1hyZSZYf\n0yE69nVnpqNI28ZkuOpnSDKLp9qYYwxVpUBsNAL8gk6++iKiYcIklDVihwmory2Ppwy1mM6PXWK3\n9waj+MZyT2wKjgkoBztU45zXFJ34wv0FHjwrD8KOu0K1IotpGkqtA8DpkjgfV9YhLCu4STqnmInH\neW2rhq8MOqXYo5E9LO0pHkOyFeArLHh54uKp6uumPvZIF2Ywo9NRDr9Ab4bzU3z4imAzvHh1zpn/\nURb/+ks3GP2RLOLiQ0+TPynqf+GW9M2LA/pXXwBgUJpQ2pTrrdYfYgFlefph6fvWbpFCoLyFnR6d\ni58HoOrv4HUk5Xl22KO1JibKusKgPdn8MfojiVpsv+8JSp443yqlgHkkG4BfcIlV1e4r3kTBJFhd\ndPMoJo+lb7M0x9HoS8E31Iu6SNUB5gYuRUWaLrsejnrq/YIlUOTmpDU+dgQ7NU3LTepsqJlwoxVR\nOqmU62aApwlsSZIeF5zY21TtBcp3tR5Q0roLk0B/Lp7gVzovYY/+vszBUJzAawc/xNYJMZXcRdbv\nmxB7G+O54c49ozeRXBWTiqk1m86YOYq7mFsUahJrDY5iWbiOwVmk2evnaQ6OzlVoDI1QSXKKLqcV\nqGX7RIWSIwfGvh5qcTLA8TQBioxYTejQ+hi9RhzlZOatPeZL82EpS1nKHXJPaAp4Dul6hfV5mQvK\nTnyu+H5OVuX0K6zNCHTbTWxMfVNCMmuKwLO26REU5IcmK9FUrSHGUChp2m3sUHLld4nGvk1lleSk\nOBQb0wRKEiJ0OwXmJ2Vnf6Sd8IwnZspQQ53T930X7z+QEyg8/1nOt4Qgazd5itZFqYvfXIWdgkCP\nmdMyjnx8i+K6aA8bW99F2lQ6srUA+mLabGx/VNoYp+Rl+V2v+yxBJnyOJD3CguZCbHq4sTjURmfF\nKXu6sI7VlOhm+hgVTV0+7ZV4JRftpp422R2LhjTRTFFKLiU95VfLNWqeaD+zdEK5Ln2uOw5Nhchz\nNU06qBaJNB4fpvb4lLFjh0jzRdJRQuSLZlJsy8k2djKKu3LiOZOIWLkmvcBjw5NlecsmoLBp1i5M\nGIdCQdrbrJfYasrpWbOWTizt3XeqTnFVvnMulXk9vPUiKyuiKbq4xwDB1ojDEoTd/E+fkla+hGoJ\nx45Iy2FLHIwbiqfRjWLm2cJhyHFaucVSyDST07EUF5qQlrum+evaz04xZGddU8mr62wpqc17Tu/Q\nHkt71UDuuZMf4YSqPUyuYiaKrRHOqaeaFZonx4zlb1buiU3ByS3VWYpxLcUdJR4pVilqPoEdJcRa\nvhz4ZWqbanfXRb323RJhTSHB3IjQlwVmezFeLovQbXpocAHH6OeepbqpOeKzmMZU+QNnEFmx1fLA\nwVH2Ji+SPjx+sse0rGmytYhnv/yvAIgKPcpHUp0X7NxHmOjvFOHX5K9SOSs5BK4zhxUFXInHWE2y\nwhFoL//sAVaJSSp2zLAlG1O+WiJTXMVaoUG2J5vljX1JmtlcO0XjAaHvTMyUZlke7pgZc7Vbd7st\nUq0q1XpDNkshOxsypvpqiVX11K+ddPGU6cqaDume5nIoPNxobPE1P9/0XBwlvzUZmHCBGZhhNJFr\n3tbYfT6hbGTMsWfpdsRsDD2HfLERGEOeLzYD6WfoulxQ/MwHzpzloffIA9IYlqmtyQ1eeeBJChXZ\n+EtWTMx6OCNSMphCWMGxuiFlkC2eghxyZ1ERe3vE4Taj4baXRoFx9rW+pJPmzI83ELtwg1BwQHF2\ncBzDSEMmC1ydNIeG5otc3qzz6CPiP8uKJcqam0CQ0XCa2k2Z45XVAomvKe2zgLGR15NpjNFNwfcM\nM/vWSqeX5sNSlrKUO+RbpaL/h8B/CcTAK8BPWCtHqzHmk8BPAhnw09ba3/1mbVhyEjPBlCdsKVpu\ndadPTavsxkc5Q83yqvjbrOruWasqp56bE5QkypCN21hf4brCFFc944W8eHyKJZHCvA0cnKlqCp49\nJjWplItEbWVP9gY4yOmYKSZAvVKgdfnXAXjhXx/hCSA0Z3eKuDMll4lPMldM/qwnGkHl/Q/hKrmH\n610gbysF+mnIFYk3T2Uc3tU/xnlUoeTyCtlETtXx/gAK4tia9sHOxJSoaNp1byXF7Sm2QsFhoykR\nnL3xC3RH0rZNLeq0p64vNlZDVpqqgQRFzp6XuV3fWsdvSK4Hgw6DLVHHm7uiVb3WnuLO1Jm7k0Ak\nJ/BompBpUVGSREyPqe4U8q43p6/ZqzZxaGnlYMFzGDsK75blx8A2rmaV+q7l5IqMb32jTN2Vtk8+\nMWW9IlWSlc0cR0FkKCrQTRqTdhX+LD2Fp6ZpisWmC30JPNXYrGZSus4bPyLdSLWYQE2GFGZqEriW\n46crtIZcndtZBpFdOE/lc+vDyRW5Dx/4uOGJRzSNO1ohuqmanjNnpOjYwVwBYlqG8oLMJ+kwUa6S\nbJAxUE6NonXx3jDU8o3lW6Wi/xTwSWttaoz5WeCTwP9gjHkQ+FHgIeAE8HvGmEvW2m8CEmfIrUsz\nr7Gj/oDimRrOTPkcTYFcH0h37QZ+SVTGMppSWygSVTWc2O/iK3pO6FVgTR+EOAENLfo6SdPGAXmu\nJcQ51DQN2lZb+Hqj150qY8V5LNblLs7CCe1Py3WrX7nOjZ+QyMHq86t821ySZcruU/RcoRcvKWZi\n8+hxvDXZsOL138HG8r4bn8bPFe14U0p63f6MwD0r/Q2PaD0m4btw1+KMZNxea5+bG1qWreOvHzyG\nXxckoH4jwRZlfIPdiCRd2LAZvtrtW0VZYCebdYoaWSg3AtYrkte/Vm4QbS7CjwVWjJDdpDWxb0fN\nFvFNWdBrjRBvplGGdMC0rck0UeFYde9qElLip5Q0ySwZx4wXJXyuQ6zISzkGzOuJPABl41NXH4cb\nGDQbm5XkAdZKMl9u1X29INDKQx4MSpia9NPmFquuf8cWsIvcJeuz8IosNqE/Sxb5W2b+upERqsFR\ncg0mXKAuc5w2Nc+BSAlsdB02Kh5PvE/W/fsf+wCnLj8JQK82Z/g1OQDiNCe4KutsaPVZ2B8yVgRn\nJ88Z57ImE6CiJb2ONaT2rRkE3xIVvbX231trF9VDn0c4I0Go6P+FtXZurb2GMEW9/y31aClLWcq7\nKm+Ho/FvAP9SX59ENomFLKjo/0wxxhAEPid3NqAh6pIZNI4JYCrblmYo0YVKaYu6woYVG6Ke23Kd\nolK1J6UDClbVwVqGpzXoeTzFUS9xfIzwXGUey35XcDNcxeoL2+vMsusAXKw36SpO/64m/2TT+7hY\nlwKlF9//G5x75RHpm/si0Xkdfv1+NkPRPNxQkltMbQPUJAomp8jUmek6q9gNeV3yRB3MVyMcTf6Z\nF15ic/YDAIzn10hdiTRMN55hdSz7cUe50ysbNbySzFUjeg99TWo6yTrXHaX1zM3Cqc9c4cVspUBz\nR9o+s36Zcxck4cp6IauZmA8TjihotV9nTfItLjiP0p1JQtZarUhakr7ZkU9XYaAdPyJS73tvJr8f\nt3NqjvRt7oFVDogozQidxWmteQIyewAknsGWFGNg5T7WT94n426eZ64QaoXRWfK2aFCuomtHeUrp\nSJyOybiIV1HSzzDHUU0uD3I89WjmVemnX3zjBCbN38Jmui4yg6vaT+obXCUrClNLstDg/fwYw+Ns\nQ8b83suX+MBlcQ7vPPrjFNaUuXzugv+cXM/mJHUBlFnryPgn8afJWnKtvpNAKs+FY8aotUIEOP43\nKPT6M+TPtSkYY34GSIFf+hZ++1PATwFUCgH1SpFSeYWwpupSf0ZpU25WvWgor8hDXw6rFIOFK3qR\nYJQTz2XBB5UpjhEV3S03cNCy3lJ07Dk+trHilKJyKjIeEygwRSmPqGiJb+aXycoawdAagPLGiD3d\nTIL0JfqvSn9OPRlSeUWJSmyMpypoaVN8B66TSyYcYHkWd1X7YW/gaLKJdZUoZKOF8WQD8dx93Iks\ncr85IHSU6clsYOeaOFOUNoq2hL+qJdJ5n0RhzQ/pYRZYk5nFV8SpspGNq1SqUa3KYtzabOIqWakp\nlLC+mEHltQCrNdCVhm68dkpwSjc/G2OVQLZoqjQVgt8desTql1lV06BYnhM5izBdhkkWSEGWXB9M\nzzGkCzLhRQJRDuVQH7YwoqYArabUQUstGGf7RFrN6Y/l/ofVMu5MvhDaMpH6A3CL2LJcL80z3FAp\n6mPx7dS21/He4JlK1X6Y69/Y5niLrMIMlImeWQb5gvQ3dQiO+y9zuL7qsHpCo1mTFq5MJ7G5Dmoe\n+iYjnKmpkCg4TanH/lDWoevGBA0lYcbDUzxSP8+I52+/T+EbijHmryMOyO+2r9dfv2kqemvtLwC/\nALC+KDZfylKW8q7Lt7QpGGM+Dvxd4KPW2tt5rn8T+GVjzM8hjsaLwBe/2fVc16FRLxOuTylmou43\nN5vU9DRzHR87VYoxExLP1JNdVZaS4YzEagpr6qHYJLizCHeBqxb5JCWtJRjLaTcd+8z1WlHaJ50q\nnJdfpIQ4qF4b7uFOtL5fQUjcTofiWcEv2PuPDg0FPVnrraMI75Su90m3NHqiNHWF+2/i9lUzqaxj\ndAd31q5iNDUZpTc3tolSKuK62/jKVOzvWewZOcXdW3MC9ZKVu9Lfg9o1nJfFXDl1dpthW747Tnpk\n2SJebamoZlKTA4qVqsNKUU/J3Cc1Cls/tngKZJLPM1KFEc/0NE/GlrkiLkdJh1gJTsbzDJMt0LYj\nfH8BiyftFV3DtaloMckIErVnDA6Juqsya4+rIBdhiIIH6zoXG/UNQlfmLai6uNMFhp7BQWnjKrpu\nfAc31YrRLMKtL3KQc6xid9rRkFy1RdR0I1qF8uvYC7fLVB23jtY4GAvJIrU75RioJ3TMsflQci0G\nOdHHA1nf/esnuPkZmZjG9ha5rr1G/bsIPMlxSUv72C1Fpo7lfgSHAXM1QfqdiFxzFkxu6RYUSTpy\naWhquWb0f1P5VqnoP4nkvXxKkzw+b639b621zxlj/hXCZJkCf+ubRx6WspSl3EvyrVLR/+Kf8f1/\nAPyDt9IJx3EpFBsEcZlQiz285hB3pCGd3D2O0/eyKf1XxI6KfTnN2hOP+gOym6+bk1RLMqy8X4BN\nTbXtukRa2DQ9kH1qXJmQ6MldMDMW21daTiltyg58ay8j7Ssyj6b4tm3G7IuyW594KWT8VyW1OX31\nAjWFiMurY8aZZCFGX5M+VF5zGc7UEXl+xnomqEiVBzfwi2q4VuSZG4Z8AAAgAElEQVRksL2HQVF8\nsvYRk1UBTI3CnFCJZ/P2LuMT6ih9RexMO16lfSAOqeCSx1hj2/HQwVc+DFOw1AKZz1ARsfNZwH5P\nnITxxFA7VKbsYpXKtsbsZzUS9bX0W/J332sz2FVIqrRPqli0pfWQZqZOVTIiDVWuaYryanlKR9Gz\nW1mMOSbCdYVyHMAa7MIw15ik77kY1SR2u68xU7TmcZSxUZBQdWFbSHEA/LKuhdGMXi45C9PXLMPn\nFPE6mZFtyneryQqbF+TEDvqihUaFHsWChIAXeAYAMyuobwCeBvFymx/nHmS3GcSOtZTVn7NV9Chp\nLkMhkJO9O7lCb6xUf19xaTwhKe3p2Rm+FkHNc4+4JX3b68s4BoUEvyK+tul8im0qy/dRQFG5UUIH\nnOKiAmzIm5F7Is3Zcz1Wak3KZhOjnIHh/hpW0XCT0RHxTFwT817EtZaoxLO+qHjpdgH7nFKWbwbk\nU9G7YzPG9sWjfni0C2NljdYkplJ/nblGALIkx1GotGKpybqmUM/6CVeMetQ1dTR68Tz1jkQcBvZT\nnPwtiQyw9SrG/wwA5UpAGMn3x2fl4Wh95ohxKDeuduN+plvifimMvxvnolYdzhUUZjdiEfONgjr+\n0cdkrDdfIduXa0xSh8JrkjeQVSThpVqoM9WHrdb6TmaTX5A2MsNQ1dyS9TGq/rfVefXywT51xZe8\nWZwQqOd8Y6fEhaFEIpxqAT8T1b2neH+93gadiUDcu92MTJ28tfkGk6KaLnFOpm2HWsl3YXONMJHv\nfq7XJtWE67lJCbVvQ/Jj8yFbZDHZlJuHWu5d9diPJJnKeSbhzI5sjBfb76Vck4esphT2w6M9big+\nZvf6AV95UXI56lWXj1z4Xmm7PCB5Wq5BQ+pETl2cUv2O75RrbZaP96uob4nVHKto3cLUWqIF+wCv\np2YXjaGi+RbVssclPbSM4i9WKivkSEVwPXg/1pd7ymvrtJ+TKtjBJGXQkbV6YeN7AFj5Cx9mrhGu\nf9v9Z7xyS4B2bk1fpJFoFCSHSq52KEe8GVmmOS9lKUu5Q+4JTcExllKQkzl9CkUNBWaZ8IkBzvgW\nV6/LLvfaM11e0jTYVeWI2CoXmWloLt7cJJ6o0y6E0UB213H7gLwjp1velC08zfdIlWevlvj4W5oF\nNhuxouQyo5pHqSbtNBS6rLL5J7zWUifT2u+wvycq3vlzm5iXZLdudUOsohwfaHgvvZJTksJJRsNb\nVB+UUF/aewqrjsZEWY0noz6R8gGWHztNrFmMk/JNQo3PlZpz7L6iQEdqMmQliqtn5VrmGr4iGM/T\nHE/j41nqkOqRNlfAj2k9wq0oldx8iDdQrahepeuK6VINVzDqVOzHorl1JxOyRHkQhzFpU9ob9NoY\nDQEGPQsafvW1EMktJQQL0NiCR6TqvuNZJvntuQlaVKV9L3ohuZoaR7MO4SIOGc1INMcj4Xmsp0VF\nSsEWJQeM98UkWN/2+B51UNYu1FnTalU76TO5IpmlY6Xb2zv4DGsKPmP59uMciS/tvoizgPXT3qYc\nRyFxOaYJwTgw0VyG10YRIyXUeaQsv8wLc+qXxSSI0j/EKUu+X2xuMXFEo7ne/g+MtIJqvSf3pn6h\nRnVN1v1HklXizypWxzwj1IrXJIXOWKm+36TcE5tCbi2zZE4QJszHou5VqxZXU5CvvHrEb35FCgxe\nac+OuSBLikl332GdiyXNLX/JYHc0imCLxOozGPenxIks+vZNuRnDnmVDUYlXGg6NQBZVsRwSaApy\nEJZp1ORWVwNFFO5eZ3jmDwEYfXXOtgJd1HOf3kxu0qtXD/ncy9KP67qwqw148EWtNahPqL6mUYkP\nXSMayILdvyl9vP70PrXHZeGGBx2ua5n4auRw6QkFPYk2CbaV0egFRaNaaTHdF3Vx+9SENWUVusWE\nROsPUjJSBTgpahWlXzT0dH5M3xKp9367OzpGvz43LlE7L0s9vKno2dd6DA/FvErTEWZPltRz0R5V\nRXNeMS4nmtKnuSIvhVNoa4quNZZiWaHvRzEJC1an1w1zX3MaqnUYjeTBvTGb4quZs17xKWhNQJS7\nVBS70Dup5sNBzO4NBZmhTm1V5u2pLx9xvS0VptXcsF4VE3NjU1T7zL+B2ZPxlRpDoqns6nuDK8Sa\nn6AWEcbelo9gQAM8FIylo9/154a8qJWtiW5ofpf+DTEx4498DbcsCVkWh2EqVbe5n3DtJUkS+6OZ\nrJXVp3f44CeUYzTKqE51w40tYyUcxho4Tj5+c7I0H5aylKXcIfeMphAlOfWBoVQXVS4/XcNT9OSu\nZ+gtqiSrheNU1PMlURE3yxCp4ta1XUqq+q76BSK9HuMEV51kNU13HucJeUN260LWZEMjALNqQhbL\n+xumga3I3jl5jzIH5xPmvy8n35lxn8Lf1KrL/nWmWhzTbs8oqNlxRmPfD1BisyqnY34SrBwIpKM5\nbk9UvGhFFVAfCorKnBbmtLbF4VQLVvFyyWUIp5ajFVEvIyNRi3jSZKWiOQ3nDjl5VrSNg6enWKuw\ncr7B0zS9jaKYJZulIgNdDlE4paaYFOfqAWvKP1HbrtBQ6vdTSkJy61yHTJmWvaGLr3Nb2ShjFYl5\no1/gdFVezwJN0XVSVhPRzKLKiPSEtL33VJdUoeAcazCKvVlUersL26uc3BTn2qi5QkPnu7lW4X7F\n06meq+EtKi1HiqswneCekBM2q7mEQ412TEbAIiuyTEWxQC825P42HnmULJTx5+PLuJsyz+7ZKyzy\nFtzbwFQWQaSGZ6iqydOKLQU1NVaLLh+8T7AdLz8k92bgwkQZqp95NmBtSzST8qU5iWYsen6D+zfE\nAdmei6bkrLRpa2HbtLfPXkHNuAxKoazVSZoyzd5aVsA9sSkY6+DFBSqNDZRqkMpkCxuKSvX4QyM8\n9WqPSwmpljWX1basVjYpKUDIbOrSqItq6JY96grr7mRlgnUlbC3LoroY1qAr1zq3WcSrK0KNqTJS\n9brqrXKzJDdhYOTz6ugE72lcBuAZ7/c5d/RhAAJ7lcYjEp78vvfVCc8oPPl1eWiiYYKnlZ3r7/s4\nWU/TmOsz5kbswdM1ZQT69iobFwV0NK80eSyXCECy16GitR9x7SlOaDqrCZRrceUS6aY8eCvZt7N9\nTsyure6QyVAWXsFzObGuD/1F+Xvh4UtUy6d1HD7NsjywXmnAxobWtBmXsoa6zET6e9lp4qcCyroy\na7GtVdYmDxm0xZ+z7bnYqrQz0D06z4o8msjDtnm6z35RHprPxS2K6jNxHHBVN6+XJLry6COPcOaS\nzGHp/Dah5q9tnaiAmiMrJ9/PbFdNBUfMuVG7w+MVLTMvbrC2Ld+tbhb5qP8R6Vv3Jhu6+eQFMSOc\nIKJ5Qsp38hMrFLT27wPu/eRWIu8LH0+Mxar9UHFd6hqGLFdyNjQF+ZG1Ot/1XjFBvKasWX/jYb70\nh89LG6+cpP9h2ZiKvQdp+rI5ndiuMj8lYzpvpYJ1NoxY1ev+29HPwZG8Tj2HdQ3bpK6L/2cx2nwD\nWZoPS1nKUu6Qe0JTcExGudgnKRapbiklWhQT6sldXTtB83FRmSsXznLYExTd/FBO4HES0+or2MYp\nh4YvJ7BTCEk0+WOlMaGeKOCKIjxnxRo2Fi2gAOQLj/woJ1qXaEdgUzYWKa/K/bdy/3U6RW3P5NiZ\nxOkLjzapfkVOseLaedwTchImjX8v/YnOYtb1JEoneJui+ucjCHxFJVZ+yULzNcKqnP6m9jy55mkU\nHhtgR5qYU+2TdrVg5rxEMrzgZVYe+EF5nQ5YUZAVv+TjFXU+V8pcelxU0YeKovGc3r6PyrbkTZT8\niIISiHj1SzgVjQy4ESiLdVDXE9Evc14rVLdaDYpNxYgI6mytS/JWoe/TVy5Ip7coHjogXFWNplpk\neqjzkuXH3nzXdY6JfU5eVjzOQsAD9z0g47h0mWAm18UpkSiBjfXGlE+pGRrJ38ZmmYnmKRSSGzgt\nvd5OA5PJGllb8zBdje87olW4PIHTPaFzW8HZkbVQdPvH52+sDlHrcFy5tVVyOKcFcR84W6X0HrmX\nFS+isaGmTSx9v37td+gOb+kch9QKihfhNmk+LJErfz6krolfSVlyKQaDq8wGMuZGLcEWFH+kDjNN\nzbcWouStwbHdE5sCBowP1XNj/FxsVnfFp6SltZmpUCqr2jqfsdKSm5SeULrwvQkVTQQpO008XcTY\nlMBobnweUNhZkIrKpJvCJkRqiFY6zHqiiya2irMn6mW/dAOjpciJeuQr5ttwn5SHMHluh0pFgTwO\nM9hUXElukWk2ofOMqImF/6qCm8n45rmDvSVmjPfgAKtYi6kvD3Fw4MGZP5a5aF3E3daMxXYTe06z\nHvcDnHXZAGsvyviHl/uEiSTe5JkljOQB2go+xh7/n3w322B1Lup485xWojaqNBuyodleir+tdRm5\nj9GaiCBdY14XEJjGQE2qHGpKl16+f4jfU2xDP8GPlCB3q0/hhm4WGg0pXyuxq8AyfgSDeKR9zsg0\nc9ADXI18nFmTDevcB06xfkHGVKidI5tr+HndwdM+Zb6Dp/6KtCbJTcV6CvvKLNYZ45yTBzIc1Anv\nEzPHb50kX5W5SweyRpJkn2BdkpsK26vkZgEccz+WhYouXfAyyNTBMCEjL2sW53rCyQe1JuJwnaiq\nQDM3FNuxX+H567K2Ll30iaayEVTjGBZ8qmfAH2h1pael5fkp9qr/QfqeHOKqzygbJRxmsgGa1FD0\n3wKmPUvzYSlLWcrXyT2iKbikpokdlikvVP/zEe5QTmAv2cLTCje74uFM5YR1lAAlbt1iXJNT3o3B\nUUpyjxKTqpSG2Y7BacspHaiTLVlpkWnuvI1mxFpr0S+9wjTVKruhTz5QlfmM/G5enWJa6jCcxYw+\nLFBp9voGwTPiaQvKI+xFZQdWxmU/fwLUO0/4J6DjcN0zUNBKvZIkP+V79+GNJQbt1RrkDTFn8nEZ\ncmkjv3mL0VlpuzORz81wFatpM7PHrpKYorbxPKtqBrn12TEcm8nlRC2lDfIFS5NJSIaKr3jQworm\nS2BOQE3mIollLrP6a6T7BW27hK9RIFt1ybs6/sgwXzBFFyWKMspn+Kq254OMVMFQLAZXuR19Y/HU\nnV/c0BOzViIsaGlnmJFq5CAZTMn3NGX9RI/QFccsmqSUj1exBdECJk6D+kRzUpwCruKCUihhKmKm\nxvuideTrhnwmiUWkTUyohDnB7Dh5aeHI84w9JnpxcdnU3BInr1DUuQ/PbuKsyDWO9kQjeHnwAoOZ\nnPKTeZPpLZnj4blrBJqmX2hVjzXceEPWdNz1mGXSRhKVSdcVln83Ios97RuUyktNYSlLWcqfQ+4J\nTcF1CjRLFynPzzN3xN6q3zxFXhInihckoOm6JdZgRUE3lak52apR1kL93E4oaZw+jxJCrQychDlZ\nIKdGlCib8401kpFClDHFlsT+LGcbzEoSZvNnMbHy8mVd2XGL7g/jJnLKDcxXqF75b6S97leIylIF\nGdTuJ+Q75P0dOdny7BJEyvzc/nHmTykr9YkV8kxel1zRQMhnOBOFm2uC09NwaWeGHWgKa7VF+QUN\n3734lMxl6X6m6QKNZ4vm5DcA+GDto7zm/xoAG+k6uZ6gpiztJeEG/lzj8cmcbFdzFqIeZiChyll/\njl8Se35/KqFOv3CWuCMOxanvQl1OuXL7BBFit5vxlDxQNmrFlkgmIxqagTeIcyLFg3Ach62C3D9r\nUqorEr6rxlIQ5he/h9yVsKA/L2Mi0cLyXYc0kpO3ON445lU0jjhSo1cblFvS92j2NINrapefK1G9\nLiHXdLiHVRKc+eyz8vmwAsrvmRVdjIZIvaRwzPlY1fD13KbYTF43/DKlQDXEtccptIUwiGxEpSDg\nvpPGHwBwwVQYrsh6+9hj/zU7O49L2/unSNT57cRFpsplanvvk/vxbAendD8A43FEQ4l2CsnnGc8U\nO8LNqGslLLw5Tsl7YlMwToxbuknkJ4SrmljU2gdPMXBnIzyNm9tpglHwldyKGuVXLLkn6nM6y4kV\nuiwHoqkSlAYpUSKLd6xQ2M7cI9S0W9+NcYrq9+6PSDN15rkV3EA2nLnWJfgnnmK+Iqr/ePbrXL8u\nC/DixSbFz0idQHz2JGYBd1sVb7PpvhezKrp4Yg9xL8kXbMElO5L+Z0fyoARrPlkkC9pJq6A5Erbp\nYseiJjv1DqYn5sb4ff8GgFXzAKX7RHXudzaorspi65gppUDV0nGbwUQ92Prw95sV5rl8NxuXYKob\ncs2n7CpRy6UKKECNHUvEpX/UwjTlu8lBxLAo85nGe2iYHs+d4AZKroP+zruFowlS88xh/5bcJ99x\nCF2NwBRS7ETmaJ5Kiu/hjSJbmnZuKv1FdTnx8Aa55hWPDi1JIn2O22JWvrb/NQ5eljY2TqW4kUK8\nRxvEezJuN/RxVf/Pp3LPCuUKRistTQRoOv0gPMRzFqjTajK5HFdODvM56VypBrjONBamg9JWjeFM\nzJjZVMwSP9unvqY5JMlzxEpKNNt9jkDJity4gq1IexPNrZmuRSRqdpQqE8qh3NM0TPCVuzN0nNvA\ndd6cLM2HpSxlKXfIPaEp5FnOdBjhbbVIDxUow7ckmqKa9zrk6nxykgp2rLu5otRG0w7xQFSkUdTD\nLyixijPBqiPGxcWofyrTUyAdu0RWtAOvMiGbyIkXDXL6GiLaK+5RbkiG2UuvyGn3Q6NPwJbElTuz\nHeKOaBUzJrg7yi1hhjie5CE4+xJO8877x8CtgXOJVLkdncoe2YFcgxXlOYjXsdsaYps4LACs0tYh\n+bqCqvb6TLSysfNF6Vv0F79AuachPXOJ3qty3dzt4Hky7s5wzt4tmYzzJQ0BH7So7iuStHNERTka\nsxmkc8WfmE1BC4ZmY7nWoNfBUQo6pzYj0/kej6ekmqIcujHjscxtV4FfB3tznmnItaJdw26s17A5\nfau5IxP3WNsIb6nz+NqjHCgvpT9pMBqKo7W8OcFT02xuDxgciIbRTuQ+tY4O+dyhaGPv9evUTkgb\n7iRnWlJA1EEFVULJCgrWO0zJM7n/fhiS6f0rR6ePQ5ILjAWTcowb0Z7H7FXlPh2M9qmoc9SZF5iW\n1Nwai8kYzWDekd9dvfUcc6O4H94GqxMJv7unZkyG0t6wpWBB3ZxpQdZFxIBBT9fFeI7DgiPR5TYW\njDcl98SmkObQnaQEu1NMUW7c6BFLUb3+Ns1gLJOW1yakSq1tNd05jjNGgZKiDFOqjnp6TU5aVFPB\nL+Boea7uGRx514+rKMPYw8xk8Y/thEGsXImzKQcvi6/hykjeO+xfwdwSVW2tO+CZTwhe49kX10hu\nyfWSRptMy2UrO+LRZtzGhnKNtPoq9qYCpIxHmIluZEVZrPHMIT+SdnFaRBUxlbLpDHoKmnH1KjfO\nCAT4F1OZt1N7TS4rTUf6oc/w4q9ofHw0YaLJV7GX0B3Jgnz1Vb0HwQGduqjUoRfieJoLMh1zJZFr\nd9sxJlmUs8umMawecVrh99fq4C7qCKqQqwqbT3NSBVSJctnoo9Ay68qmftCJFujkZMYQKzjNNElw\nfPn+V298CoCS/SqX+mflyxtQzmQu1uZ1aspveY2rHBzpvVR/UNRPGStK8sEkZ2som1fFG5NuaU5G\nmBMYZV8aynzPxzeZe5IvEscfwyhAyqAQ4apPIdS/GTllrXcIrWE2k7XXGqSEh7IRlFYmeEYGOx+p\nv+tMh6irSV0Ty+SmPgMn2zhKYptHTRzNgeg9IA//PHYZ6YZ888Z19hJZO1GSU9DdNMshz5ZpzktZ\nylL+HHJPaArGurj5CgVOMVYMhcatDSJfvNd+6RbkStiRhbRbWoevtGRxmGEVcso1I8KSxoeLIRWF\nq5qnGfFAC5McRREeb5O56gDLU5JcThrbn2AypXcbD3m+JafV8x11RL7yPVRGog4+3X6O4LNCS99L\n/h3T7NPSj16Fwq54yUdDOXVLnSdxNUvTK30nybNiPlj/AvlIMgWDNfFMZySAlFEmXgcGosKa3at4\npyViMF+5yYnrfxmA+zu/CsDmjY/Qacu8bZ74fq5d/0syn2lORwEUs8zjYCpjDVw1S3oJZTWfEhPS\nU9zFjWaJelGwJE24y4oeI62B9HfTnqA/kvb2OyG2ICdso9KkpNnhTpCRKLGPh+JXBA3m+2pSkNEs\niOkyYA8vlz71bYZSXPDiLbnuqD9jUJST/XKyzkyL39pfnVLL5DvDwv3M9bS9cFHmflL8Y9Y0+nSw\n3+alkSz92cmIh30ZXx52iIzMUW8kvy+uxVQ0jTsrxYSOOEe3HIujjsY1zXLsmhyr6NqJdbimxDf3\nmxrpoWiLrUOPklU7tnodgDOzi7hVmcOLpzbZ2NL8nPrDHB3JfYiTCgctWaur7iek74dXmDvyu6dv\nfIFhV56dYZIQKpS067tY5z9B8wESsLcY+xa/pn6E/TlmU23jHAoKhmKCMoErdvIwF9UqpEBQEdvY\nyRPikTJAzSYMc/E+z+cJUyUx1cxnKtU6qwU1RcaWsYZ8RvOMmQKODDqWG92F/SwLu/H+z3DtBVEB\nr85/m5YCs9YfCSn25cbFZR9nrNiOsTyww1d+GV8rNIO1bRwFVsm8IpmGX+1Lvw2AW4rwZ7Kgg/NN\ncl/G553N8JAIhndySu6LB3v9w1KdOe5+mfCE+DB6WRnHk+vuT3Pmx8i0HgW1h+OhLKQw86go6U23\nO+CwK5tiuHKG0ydlk90prhBfl/k6I9E9BkclqqpwvvD5Zwlk76LhFikosUoYG8pK3LPAqGz4Ma/m\n0ka14XKyIeG7a+3DYzQoazNSRUKN5/K7fpJQ1PTp2kpOyZP7dHC0S3RC7snZ7SK1hxUqv69coeVT\nXD+QB71aMOxf1dCQU2YeiO/HdWIiDVZNtWYi66wyuy5ViXa7gaOQ8cHxDMKAhQ8LrCK2mjwnjhem\n6RSrSVuhZ2gdyWHgKgTAoO3QnuvB82rKcCL32q9dOa5nmHUTUiVHoiRz6VU7vHxFqiuTZEq2IEeK\nIdZ9wDeWZPQ2c0kuZSlL+c9L7glNIcsThtMW/kaPYKgAIY0KsabBkrvMVbX14xmegnd4Cms1mAxZ\nralTL1jF1VTceOhSTUXda6yFjMeiYUwipT6zBUJNPIkrE9qvyjHxUvuAcV9OsWe9IWOF0srV00uU\nU/22/0dePnODRioOutFoBYxSuvkJ47HkEJiWUtzvuIzbigd4c0A61MjHZsLoOXm9r1iT68UVzvyg\nnNy59QgjMRmGr3YpPqix8q+1iUOFZb+p+QEfukVVKdF2tnvUq4qSvH5I8rQ6Ab0ET6Hn/KpCddUj\nornMd8EUOf2Q9Ll3dMjU/5yM75UZtwLx5kd/JH14LY+pFlSlDi3Vhryul0Mscn9mfkK7Ja9bVjS+\n545u8Fwmc3HC8XnoPXJyf+ZGzkxTvvO2QLUBRJqMNK1Z9ly5NyfbU1aaopo89IGTdG8pO/jNAe3P\nSFLajalcd2+/xa4nc3zatzz0oKyzYKNMXtUU4/2I3bE6VQfSXq/7WX7wQ38VgFNewOt4JT6RrouW\nMpTXLESqbTquIdHCrj846vLR+8TJfam5yWEmjsI//pw4BruRPaYX6G4M2U3l87XuKXZWRVts7qSE\nZZnbmqZa7/b79Gcyh+15SuIuCggtM12rFc8e43Qy4E3JPbEpSMCwRprVFjgZJOttJoqgFI998rKq\nszUHo5iIxhM/QtaPOQwkGjD0LAWlos8mhqwodmYzWTlmIVpwPM78Ppkn6vxkMOdA2Y2GmWFqtOR6\n7jMoyftJUT352+dg/P0ArO7+HkcflWzC3afH7AyUJj6YUNLvaxPQ8ilFSg1fbjNQjojpdEZ0VRbs\n0UkFkjUVYuUadGcF+p5UZQ57ltkzYnYMDgcUHtCEnAtiUmysPkiYSFTD2yqy9sBZANJbFXZd2aTS\nYsrEkbZXA4Wyn1eIUoWf94swkU6fCRxWFR/Rf/AUm5n0aT+W+Y6DjEyxD53tIusKAGPClIluetE8\nZn8s/bympd6tQUzBSB921tY4/4CWeP/hALcr17PMj0mZEvXwxyZgFEkbB304pVWp9bFhK5W5JbiB\npwxQGwsy4anBbMh6au772IpicE4zBsqm1B1aWrHc9131WyVuhac/K/d3+9T7qJ6WeZk6OYECzixq\nH3I/o1ZaJMYZFhXLrSjl+p704+xWQKUo67aipo9Xz9koyQN/qrZGqMlZs+qYkvq//LCC0YXUjuX+\n746GtDVc7JareJpYlSQzyo7yeObg6PMCinDzTWRpPixlKUu5Q8zr3LDvYieMaQEToP0udWFt2fay\n7f8M2j5jrV3/Zl+6JzYFAGPMl6y17122vWx72fa7K0vzYSlLWcodstwUlrKUpdwh99Km8AvLtpdt\nL9t+9+We8SksZSlLuTfkXtIUlrKUpdwD8q5vCsaYjxtjrhhjrhpj/t5dbuuUMeYPjDHPG2OeM8b8\nbX1/xRjzKWPMy/q3eRf74BpjvmqM+S39/zljzBd0/P/SGIVYujttN4wxv2qMedEY84Ix5oPv1NiN\nMf+9zvmzxphfMcYU7tbYjTH/pzHmyBjz7G3vfcNxGpH/TfvwtDHmibvQ9j/UOX/aGPNvjDGN2z77\npLZ9xRjzvX+ett8ueVc3BWOMC/xj4BPAg8CPGWMevItNpsDfsdY+CDwJ/C1t7+8Bn7bWXgQ+rf+/\nW/K3gRdu+//PAv+LtfY+BETvJ+9i2/8I+B1r7f3Ao9qPuz52Y8xJ4KeB91prH0aY2n+Uuzf2/xv4\n+Ne990bj/ARwUf/9FPDzd6HtTwEPW2sfAV4CPgmga+9HgYf0N/+7PhPvrlhr37V/wAeB373t/58E\nPvkOtv8bwPcAV4BtfW8buHKX2ttBFuTHgN9CknjbgPeN5uNtbrsOXEP9SLe9f9fHDpwEdoEVJLX+\nt4DvvZtjB84Cz36zcQL/B/Bj3+h7b1fbX/fZDwG/pK/vWJJmFOsAAAKZSURBVO/A7wIfvBv3/638\ne7fNh8ViWchNfe+uizHmLPA48AVg01q7gHU+ADbvUrP/K/B3gQWS5irQt9ZqVdJdHf85oAX8X2q+\n/FNjTJl3YOzW2lvA/wzcAPaR0pwv886NHd54nO/0GvwbwL97l9p+U/JubwrvihhjKsC/Bv47a+3w\n9s+sbNlve0jGGPP9wJG19stv97XfpHjAE8DPW2sfR9LK7zAV7uLYm8APIhvTCaDMn1ax3zG5W+P8\nZmKM+RnEhP2ld7rttyLv9qZwCzh12/939L27JsYYH9kQfsla+2v69qExZls/3waO7kLTHwJ+wBhz\nHfgXiAnxj4CGMWZRrXo3x38TuGmt/YL+/1eRTeKdGPtfAK5Za1vW2gT4NWQ+3qmxwxuP8x1Zg8aY\nvw58P/BXdFN6x9p+q/Jubwr/EbioXugAcbr85t1qzBhjgF8EXrDW/txtH/0m8OP6+scRX8PbKtba\nT1prd6y1Z5Fx/r619q8AfwD8yN1sW9s/AHaNMZf1re8GnucdGDtiNjxpjCnpPVi0/Y6MXeWNxvmb\nwF/TKMSTwOA2M+NtEWPMxxGz8QestdOv69OPGmNCY8w5xNn5xbez7W9J3m2nBvB9iEf2FeBn7nJb\nH0bUxqeBr+m/70Ns+08DLwO/B6zc5X58J/Bb+vo8shCuAv8vEN7Fdh8DvqTj/3Wg+U6NHfj7wIvA\ns8A/B8K7NXbgVxDfRYJoSD/5RuNEnL3/WNffM0iE5O1u+yriO1isuX9y2/d/Rtu+Anzibq67N/tv\nmdG4lKUs5Q55t82HpSxlKfeYLDeFpSxlKXfIclNYylKWcocsN4WlLGUpd8hyU1jKUpZyhyw3haUs\nZSl3yHJTWMpSlnKHLDeFpSxlKXfI/w/9ljCbs+pmggAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.9337... Generator Loss: 0.2622\n", + "Epoch 1/1... Discriminator Loss: 1.2560... Generator Loss: 0.8398\n", + "Epoch 1/1... Discriminator Loss: 1.2232... Generator Loss: 0.7815\n", + "Epoch 1/1... Discriminator Loss: 1.4801... Generator Loss: 0.6008\n", + "Epoch 1/1... Discriminator Loss: 1.3070... Generator Loss: 0.6860\n", + "Epoch 1/1... Discriminator Loss: 1.3470... Generator Loss: 0.7634\n", + "Epoch 1/1... Discriminator Loss: 1.5236... Generator Loss: 0.6591\n", + "Epoch 1/1... Discriminator Loss: 1.3827... Generator Loss: 0.9191\n", + "Epoch 1/1... Discriminator Loss: 1.2797... Generator Loss: 0.8605\n", + "Epoch 1/1... Discriminator Loss: 1.3069... Generator Loss: 1.0828\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWnMbWl23/V7nj3vM77zfe98q265qrra7and7cQODkag\nGCJFAgkBEnIIUiQUJIIsgZUPAQkhRQghvqCgIEAgWSBLRnIS2wQPsa0AjtvdtrvaPVRX3bp1h/e+\n43nPuM+eHz6stU91IUxXu7vi++GsL/e95+yz97OfcQ3/9V/GOcdWtrKVrXRi/6wbsJWtbOXlku2m\nsJWtbOUjst0UtrKVrXxEtpvCVraylY/IdlPYyla28hHZbgpb2cpWPiKf2KZgjPlLxphvGGPeNcb8\n3Cf1nK1sZSvfWzGfBE7BGOMB7wD/IvAM+ALwbzrnvvo9f9hWtrKV76l8UprC54B3nXOPnHMl8L8C\nf+UTetZWtrKV76H4n9B9bwFPv+X/z4DP/0kXx4HnelFAXTuCUPYpz/fo+do855iucwCKqsW3BgBr\nPPnec9S1aDxVXdMpP55nMUaudW2LQf6O4gCAwLPQtPK7pqXVLdIaS1s1ALQOGifXtNpe3/fQjzAW\nOm3LtY62bTe/63QwbQIGg9W2OxyulSustXi+3TwbwDhH9yJ129J01wJGr3G4D5+B9kVT03T3aj1e\n/9Tr8n1rMF13ti2urvU/+vvAQNO119FU8kVWzalXlV5bo91CXhUAlGVN03R9ZbDfesx8Swdok/F0\nzJqmpnXSF3GvRxxK405Ozzf95Zz5lptov3zLvayDKAw3feus9H1T1rhNn2tf2E134nCY7m/jaLVv\nu3/1h9Jea7s/AYPnS/utZzg62ENfXP+pafUhvpP5B2Csh9N58eEoshm9tmk+fCDS/yDzyXz4ocwJ\noNSxq6pq0zt162i6uVy3tLX8XdJu5lndNJfOuQO+jXxSm8K3FWPMXwf+OkAv9PmXP3OH80nLzbsx\nAKPdEZ/bPwTAlTn/4MvvAPDe+ZLdXgTAwA4AaMctl5M1AKfnU6pSnrGzE+MFsgHUqxzfyuu+8toN\nAG6Merh5BsCL6YIyke/TKCE7mQKwqh3XtWxIuc7Ww3GfIpO/g6GjWMuiqMuC9UKuXTcNlW4coa/X\n+jFRIhOiaVqqXBZbEsfs7KfydyDv71cVbSODeZ2tmK7kpWIgieSadVtT67SIvR3pi9kFsx25Vy8b\n8tu//VvS35kl3pVnV1lOfXkh7SilkdFxAHN5fxtWzE+lP7/87Dc5++JzuUd1welEFsVXT98F4Pnz\nK2bTmfRPFRL2ddo3YHRiGj/AT+V3w6gv7zSZsnYyNm9+9rO8dlfG+j/5L/5rQivXlpWPQzYf68vv\nAuPj9aQ/e7XjlXu3tF9CyljafP38ikY3jsjIXAl7Hi7XRePV2Fza2UQN65UssmWxptVNz4/kBv24\nR9gtPRsy3h/LfQeWn/33fgYAl8nYFMUlWSN/jwuf0a6MQxT2qXJpW+0MGBm/ysrDFrMpvpO+bx14\noW5ueYmvh50XRJhW7nFyfi3/npxS6JycZjmThfTV2SRjeTmXa9o1eSbPubiefMDHkE9qU3gO3PmW\n/9/WzzbinPt7wN8DGCWhu7zOuL0/YBxJR6bTPm3UA+DxfMKi0Am2KpnraeONZFFdXrRcPp8AkLc1\nPV0008YQL6Qji7ZiGMvvHumEn5zM8bpd2zSULpHGLdYsPOns3TQhb3SSzuV3ZVkw6EnbbBASFNLp\na6DxVWMJHOOBXDPoyWk23t1lNJLPAi/AZbLx9HojwqFMXqcDm6+XVJW0ob46I1/LtWkcMExkgZhm\nQZF1R738bml9/Ebev836lI9kcvRf7WErGW6TTQj0vcN96UO3jrBOFrfLBjSRzJ9drya5K4uX5g2G\nt8+lzfv3Abh/OCY7XUk7B0MW2s7VdM1stpT+Mo5M1ZB2qp95NUNdgKuLS878WN8Dikq1Hv4S8Mvy\np5N3btorTDEEIPMc64X0Z8Y1xZW8S1Y0RKp51L48JCiHWOQACBwYX+bTurI0qvU0jdmoE7lqShQZ\n6EZ+P02o9exuFoZSN8Mols9GqccQmUPDgzH9WMbdD3vUaxnf1sS0VjYh40kb9/eHREbeqXYZXqdN\nVgXkcm3rNVRL6duqWEgfZjFnS/m+sS2Jtr2XwFLXiLU+VaGa3seUT2pT+ALwmjHmAbIZ/BvAv/Un\nXdw2sJ7BrRsFr/pyYlQevHghi/APz2ZMLmUyzSpHNZOBnixlI1iucvJGOifwI47SkdzDVCx0AKrS\nIyvld9XJKQCnzoB23v4oIW5kkMvWo9adu09OoIspVnOmXnuM9bRKGrhU1XBVh4ximdw3xpZPv/oa\nAHdu3pXP9nvEkbQndoa4J6d7XlXMp7JnPqmvAJg6n6yVd543LSvVNoZRn119RjlZUJWqagaioSzX\nUOkkzV1FotqP306g0E2hLfCGovq2uhG68hlNLRNzfXHB9Fqsv+DJnGH/gfaLZTSQBbJfSL/FB3eI\nPi1j1vQyrh7LZvLBxYx3TmR8Hs0uaC9kQk8ymaCtNZRIm08ev8PkVCa6OezhTv4qIv8zqDbo9qUv\n2pnD35ONgMpxdST3qJ4VWB1rL4lJ78q7+AtZmIEFkIUZGcN6Lie6a9asVD1ocRhV+VGTaFlXBK3c\nowhXBNfSt2sbUMzlXULdKHxriVPpz529AwLVUpp8QtSXOWnSHlbv54WySflmgK8HSL1aQyOfN3OH\nG0g7q9WKLJfP+4EeNv2c84n08fpqzirTppctqIZRupDC6RcfUz6RTcE5Vxtj/n3gHwEe8D845/74\nk3jWVrayle+tfGI+BefcrwC/8nGujTzDvR2fqh5zkYuqejKf86IWVfX9xYU4BYGkZ8jWou6dz+WU\nsA7iUHbrg90BRdzZnDFFT3b8nSSicnKSuM4H0DQYtV/nRU5Vq//BrIlUnZ2soAnUxHDybxxa6lhO\ngbrtU0SX0o5hRKyOr8+9fo97d/YBeOXuPQDS1JCoWeLqFWlPfD6VK5leqiMklraNz2qu1tI245Ys\nK9GaIt8SjeTzfhZRWD3xKjlRR+Gc86JzxF4R7ks7TWtxhfgRrG+l0wCnp6tdW9bVNwBYzF/gFfKu\ng1fuYDzpF39SUuppe3AsWg7OEHfaRmwJkXc2hxbUacysJfFEm3qSqamx8MlrOcHOJgtaf61jcxvM\n35XfDe7D+om0z5P3C4KI4eGr8ozVU4Y61v5+yu6h9OfQg8PXpM9ZivZXFYb5QsYpMgmrXNoxO1vi\nx9IXRVaxyPVkrqRfyrahRT47WUIYqM8k9HBWNIWykrmSDA2BmgzGGFpP5mc0HOCcjGsyGOGF0odB\n76a8c1ngh7sAtGkO+rwyvqBdhdrNDV4p/RyPZNmO8xHhWDSs4NKj0j5sqh5JrGbHPMcYtdM+pvyZ\nORq/VYLAcOdGyOV5xvO+NOnJ2TVJKZ0a4hj1RP2ybs0yF1Wy8/reGvd481gcQJ957S6Pnsvgm7DP\n/VJUrZ1hj6yQ+xlfOvfqckquTsSz+ZomlmeHeY3vycazyiyDVO7RqOPvYC/G6UTwbwXsrWSB3O/D\nG7fFlfKZtz5LXydQf0fNjzagt6P+gHoPXydHXTtiumtkEtQ7GZcX8v1JYFhdywKaFwV7Rtpz55Vj\nvvhYTKErdVq2pqQfyuTI86TzaVFMlhCdAOAVtz6MRavpnK1rVpeqtuKT7Mk7hV6Iq2QB2UFFvVYz\nzZPx8PMa68n361VNoZtJkve5tS/X+tERN2JR53unz+T9bhjOz2UcpmvDNJdx8G9aXPU3pI/sz2M8\n6a/B96k5d9Jj51D8JKEbcONANsjjG4e8cl82hds7+wz25HeLU/XReHPqTBZhENSU5zKH1m/WnD+T\njePk+QVf/EDMprNW2l43NUbjTuuiwummH9QW9VtT1bKI28BStOqjyeZ4A/GP+UmMh/RXPOzj6aB4\neq/W9LCRmhRNIF5awJQBjRXzoCymm2jGMBbTLz6as8ilX+29ksW7Mr7ZfMG6kDFJQkOh/owMXTff\nRrYw561sZSsfkZdCU6hrw/lFwGDsePFcdujp9TV1X3a4/aiHn4h6Nb18xiKT3T9UL+1nH9ziX/qJ\nhwAs55a1RipiL2U0kBNjZ3iI9WVHTwPRKlaXZ7w7k/DON55MmavmsS5bVhpOc7amrtVB56ka1gYc\nHsgpcGN/n/CufH5wY5/b6REAR4eHRKpt+Kn8PvIgSuUE9sIA10EFiivCQk7/vWN5z2o1wAvUfCDk\n4kgckI/OzxkcyKlze7THPJMTtinktMuKlIU6JZ2tqBbyzo2dECGOT5M2H2IglvL+xVXJ1bw7gSO8\nSFVRF+KMaiF+QKgh09CXPvTSFXXdhdDOCKyqu8mKVMOIu1FDOurUfz1115bYl9PseeuzfCamonuW\nQvX72i8WfyCdlM6lf0Z3D4jUbKwqR7ovp/8br+9zZ1fCk4eHQ0JP5k7fEwenCW7iKVAjdQH1PdGK\n2hKm+9J378YfUFkZsy8/lX45LSeU2lee9QF5vwZHUUrbdscaXbI7hEMZszCEKO4cmwlWo1W+n4r5\nBli9l+l5H+JMvAoqjVoMa4wnmkBUXFOvZM65fmcOBNw6ln71TMUH74t5OC8zMtVqC+vh+SHfibwU\nm0LjHLO2wdQRTy7FC39e5QyCTuVKyUsZ3IuqJKulUwahdOSrD/fISvn7crYk7XfoloLGl3u4QcCd\ngaiXVpFHveCIuQJerPN5dHEGwOOVoV7rRG8Nq85cUTs8Pj5kTz3gB+OIwUDU4Lt3bjPU5/n+EqM+\niFAXim+DD4Ep5Yc4hHbtYT1ZeLZWsySJaPU961HJIJHP+9GIKJfPZ2aCp/b8eF+95Ysr8kiGNYtj\nrD7DejH4S32NMRpcoVzL4rhafY260UWTpni6gbblFWh4LggjUOCXqzR8WXnYWt7TNyFVJPczXkSg\n7zq0Q2jl89FQJra32+c1K3313ouSi0hsY8+FeK2Mk3Nfxsvl/fqtbDBHQUzZylzou4A/f1824U8d\nH7PTkz6KbY2nkaKeYlr8OCCoZRyicR9Xqg2fLRh5GkYu+hStRIqqtbz/9WJOqVGrnheigSbypsHX\nCIV1GiI3NVGhG0g4wlOzwwu8DUbGmBas9qHRMHsDeLopOA88PS1Kh/E6/1BKMNQIjJp5RRsQ1NKf\nprximKhpk6Y017Lhll6FUz/Qx5Wt+bCVrWzlI/JSaAoOR03FB1O4UORXTktfYaS37vSYPRbV9uvV\nGR2W9vYN2e0f3jpiupDvfd8S78rvjvcTilKuHccH+D05dXxV+1b5goGquPmh4ZWgw8ae8f5ETor5\n9ZKlnhq1HhN7uyN2x/Ls3rDH/kh264E3JE3lpIgCR62OUtOKVmGSoAuY0+QF6Clv0h6eagrtSk+f\nMiBVBGJdreh7qgI6x7MrUXFv7rTs78kQNtfyzmfxksZ011Y4Pa39ZA8PPd1NTjNTTUi1gyTo0a5F\nZa4KiNUx6CeOUgFJjhCjMXKbahRhvsKpumvCGF+jGcUyw3SQYNujp7jjdSFtXy8s2UBOsDd++B7h\n+xK1ePL8jyia9+V+pk+qmpyfjHRsetx7INfuehFvHIpj93BvzHCkoK16iaeO4FBBTEGaQCNtjl2K\nSQvt+zFBKOP0ML9FGHUwbJmH719fU15rNMAIJB2gLVusgo+iWMcxbHCe9E9ZLfHtnvZbTl3q3Ari\nDZTdKmqyrdYYNSUwZjO/mzLDtYG+dkqAArXOFMRUgvqXWRc1I53fg6jdIF1pDa2iLD+uvBSbgrWG\nKPaZXuakiv5L2oSfvC9+gttHPl8vxab2zz/gUBfTX/4BsZHf+syPcf3kkdxrtyS6IxMoMSMq7ZBm\nXVGWnZ2sqmW6y/5YbFkyy85Qnh03PfKFqGjrqiV30vOFhqnu3hpymIpNvbsXMVbobp+K0MrfNs/x\nVG3zFYpqMVj1TmPDTovENnaDa0dDbyassZVsNnUTsp/IIh1yypOlbICzNGEcygIZWpnYaezTU1W0\n9cyHuPdlhe0pFr+KcDPpz9VS3v+6XWJ6qtovGmrdnP3E4KWiznstm03GtR2uf4jR0CKl69IncDYg\nLNUEMY5KkyaaSPqina+4tSPv9Mrtz/Cp+9K3//APf4Pe9X3p++LFZlHotGCvsvzQ4SsA/PCdu7zy\nQMKTcT/GKiQ6zxt8Dcl17TGmASNj48cOazUC4DUECr4Nbp3iqaOn2JX+eTDoc3KtkPC6xVdzJHKG\nRNX1di3vtAxKyrVuPEVO1ahvZ5QSxKrmew0tGpXRTaWtPTzd/NpqjdF54VyKF+gb1OkmEpNE6nfq\nVyyeSvTp5GzK+ULu2/NaRrGMz9qHovnODIKt+bCVrWzlI/JSaApF1fLkPKepKw4SOSlvj/f51BuS\n4eebJQ9UO/jxyw9QvAo/9WP/HAAH0R7xfdmh07xPpFgArKVyclrNzi9YXGjsWbH1cRrCWKIB6SjB\nKnBlt3VcKmz4Kix5qgkznbfZcxFRX/HuVcJoR9S6eJDSoWSt7ROkco2nwCofs3Ek4teYWr93DW7d\nOZoUxNO2WI122HXMjsa0x3HCs2txOC0vWkK9vjqT4yWfjzlvRBsJKrh+LLiA3t0akx/Lvb0Wo/fr\ncj+GqzGtNg2zRFMGCLIUEypW349pVQU31xpl8FfUqpkYW9AKRIQwqKi7SIWDWiMY4VLeeTKfYvvS\nb/eSfcyRQtCnr1CouWbdIa0R52+UiUY0OEh584Ek3L725gPSXufMq6FS7WVYgZpuXpclW7YY1VIo\na2wX2SkCrC9tM7VPqDiZPc2TeWMw4GuBYAUmrtnko3heSKlZib2eRpnmPslBl8OxhrKLyiQEA/nc\nWYePjJVVxyeBo8vEsgC5zpeoxXTvFLbYLvqwq5BodmlqTUw7mXGRicY2TEYcjcV0uSwySiN98XFl\nqylsZStb+Yi8FJpCi2NRV8QefOq22K+fe+1VhoFoB7UrqBZi1+3vjLg/lAScvT3NaswXDD2Nmw9S\n4l2xVdts3uWWYP0YO1Inl56016t2gy4bp5ZIobjejT7HM7Hb3rnKqK7FQVfrbh74dpPiHEYW1yHa\nihgvUMcfJW3nzIs0ZTeq8RXl6JoKo6FKz3cQyr2dZrQ5F1Lm4vibNpdcaIbf4+uCa/V3fDNfcf9M\nrn88V/TjYspCodtDc0jY2c7lAmJ1fDqPNtE2VXKvk8k7mFLaM9ofEnY4Bi/6kAMiL+iICJpAbO5q\nGbJWDep6esazZ4Kqa9uQaCBa3zCBspDnLOounFaw0izR6fIEz4y1D9/CtT+uffizLDVD9dmJpM5/\n/+7rHGnI1SznGDXAzTDchPis+5Bfo1b7va0XMNXQaZxgdzRUbbNNurTzPHFIAv1Dafun3zjiSxMJ\nl85eXFNVirwMUlzn5VMHH7Yhu5Z38nwPY9TBNwRffSp+HKLDjlWnpqlL5VQA1xYYdda6GroccOcK\nnGaxVo3M4+npGROdm++cn/Fc8TvHux6+hpGHUUwbfWdn/0uxKRggMg1elHBwJOq8SR3LQF549vSc\nadVBcA3TVDrw/TOZgEcHEXEjk6M/PgJNJ3b1mqVmll2uM06vZXCfnYtzZpUVDFJZNId1xO2epucm\nA/bGMsHGO1dY2Y82xCppmhCq+l1HsFxpOnBbEfiawedVuJUMRjFQ51M9whr1HC+XBHHnvd7HUxW9\nuJTvl8uG60v53fnJU840s/PCLvlgprBjAs4DefaZ5kZM6wltEGl7aoJUcxuSPVBnlmtLnJpKFjW1\nfI+Lc+nPy9UJBzuSO7C/mxOWiqEIIsK+jE+jJsNVPuNEIz9n12tOVIUtyiWhkTaNiyG7ao80uiBW\nrqDW+94slwSDDv/wqwhRF0AEminabTzN9ZSlApKe/fEH9G7K+A17O5hErq2nBevqSt9bHbcscEsZ\nj3yR0V7IweIHFcX0WvscVkpg4pfSL9HRHveO5XlfvZzhqeNWNnLdnAJ5qcqrKZSzIWhqTCSHU1Xn\nLBQkF4U1USOqfdBXJ/jqko4Bx4QDfDUb2/WSZqpp3a7CqeO20dTpteczUfCaH3s08jGTbMlAnZiu\nDrD2O0ud3poPW9nKVj4iL4WmgIEm9DBFTaCOoSYL4UyO6LKY45Q3gMYnP5eT6Svl1wGo7CvcVsdK\n35bURZctVpEpycr67DnzK/GCtaoO93ohDxSuvLu7yziR0yq0fQYKDZ1cZ3xFk2eeacadH3rky07d\nm1KspG2hV2M1zmhDWK01Dv2BMjf1IzqwZdhrOHDS5qK8oNFEo7NLPbUuJsyuRCMIDxNu3roPwF+w\nMF0qFdoiYF5KH3l6Y6+Y4WlYM212qVWDcJMS/4aquU0IMw2zzsWJVlcFthUNI84KLs0LudRG7CvZ\nzdA00A70epk6y3zF+fty7aOzjOhQNIjR7og9VZnfW0xZOumDINI8/3nD4a5cu7M7xNbSF2YwwWaK\nN2gaOkKyVSVj9wdnDcnv/BMA9jPL8VMZp6xcU6oZ1/fhqFOANhBzj0rh74/ePeVENY8qirGqvhTl\njFQ1i4M9MS/GgwFHA/n7OA2Ya4h01N/DKZ5gLdMRu9MyVa3RTeasp9K3zShikUuDiuU165E877An\nJtP+vR32BuJI9euCspKxya/mzF8IZiPLaow6ZjMlTpg/vaCn4cs7O0c8muq1eb7h0UhCj8p+Z8v8\npdgUXAvNuiEODWtZdxizxumCrV3LVPHu88spZ4HSmK3VA+4idn5U49ltTE9talM5GiViKcopRuGo\nVhdgEroN8Ug/8Ah1EZtmSVuJmrzXf8Fbr90GwDvRCbhYEagJE7uAUG1AYrvBQFxflawuZII8XcvC\nPTgYsVQT5vDhAZWRRb9zvEebT/XeOiFsQ6WELE++MuXs0WMAZvWCQ03rvhpYVjMFRuUdA08fELV1\n7uYUl9Khg4cBLJSwJMxxags5p3Rns5q+4u/LtmWg0N/8MqMYSpvW/R3sUmP2Z7IAr9473XA47oxS\n9uK72m8tNpX+OrYVlxe62Sk+wrYzjMKHV9cFcU9XVultuAYNA5yR8av02ifrBasvise9n1eMNUqw\nO7BM1fa/vRfxxj3plx/5/KcBKJ6ecfFEFtPT+QWVJ4uwdBlGAWVZXtPv+Ft00y/yJZVCho/jFN+X\njXPc67Nayv2iHfUNZT1GmuHo3XP0I4Fgr4qG9QsZ33eWzxn64jebPBKT8FPmDtGx9Pfu3UNaNQ/m\npwsea1bpoxdrHn8g8+mDZ7IJ52XGnuZXTKr8Q/o7D0LFziwbh1G/yseVrfmwla1s5SPyUmgK1hh6\nYUTerHlyKbvgjR2fspTmffXJjN/6mnifnTEblTLoknrqhoMdOTEiEqIj+b5crViqh/ti1vLsXHbg\nd5/J7ps1Hnc07/4Hrnc53lF49E4fVM0dJCN2SzltX9Vr27KlUCqx0jWYWKMMy5jJVE7Cr31wxrli\nD67Ugzy4mPPpgV779IrdQJ1gwxyjnmyn3IHluketjqOvPP193n4hJ2YvDHnzWPkd2iXLhZxMd94U\nMtqnf3hN7YmZ0OTHRH15hq1aqlwISygGlDtywrz4upx2v/5bf8DJXLSGwd4OrpXn3TkY8vlPC4Kw\nlyaEVlTe8/orAEzKnLYvnzWzit/8/f9b3jmDOzfkNP6BhwPisEuakmc8fGWP2zfVZFgXVEpKOvjp\nN5n/6p+Tdja/hA3lVI1uKOKvaalRLsawpVAn39XSw2oy0uTZjDdviyPRKGlpc+U4n8lcWM8CYmka\n8+uS3IoW06xbntXy980uwQzLspYTeloWFJpg1uuFzJWDsoMXu8RiFQpv4lu8/1y4GX79N77Eu1PN\n/o0Cel8Qbeun7svY4CyBJ9Gu0WFBrVrFow++yVdlqlLWIU9LGZP31Xk+ilNMx/Jdt1yrudYLEtbK\nG1oUC4xRs/FjykuxKfjWspNEfON6yfulDMrdZo9dxYGctXNiBZUc3zhkd09ZqtXTe9Rb0iq7TNnW\n5DLvqJuCVlN1+6M+++onaBO5NitaDhMxUZZeQOFkkCsX0s7FHFlUNXvq4U6UrMIYR6Phyzx0xMqZ\n2LYeSyVuJYzp35BBv5/I5O8NbnLoZGEOGkMYyfclEV4ijS6ajqgzpHcs8NtbF4/4shLThqFPo7yD\ns2yJUVW7OJFnjKMrJqH6NapHROrVN3FIo2xDVT2DRhZN2Jd/737+VfpXsguN/QMyI/DhPfscdOF5\n1t/kcXhKehP6pyzVCz/FslazY7pe4CmXZnjt8SCQRX846GiWU9pKyWrdhLqDT1++iR//kjxj55BI\nwUuHA4WVx457r4mJYlrHKJfPn1xeUyhIx9iIowOBwLuBbg7xjECJTA52DXZX/S5pQK3hYNsmOGVO\n2u+a6WpOlXL48WJFbeU9+vEl61zStjMNf07ygpXGwMfeHgudW8ntIYO35L6fOfgU92+8BcAd800A\n4sYSxrKp50WKVTDcwjUMDjVSsXeEf1PMwjKU391Mj0h1I3CrSx5rOHRWVDxZd2S0Db1kC3Peyla2\n8l3IS6EpeJ5lPOoTz5b4RpNyBnvc3ZPd/Mfu3+RHNLowvrHHWLPSZkoscji4x3BPHY3W0awU1lkH\n9H1xGA5HjluHClN+RdRh2iVpJKdVEUCszM6RB62quTfaPqOeZiA2shMPQw8qaYPXelgn90jKggcK\n2Hn9B2/g+0qQockwramJGoEae8EaXzM429Ucu6leohl0xYrXb0vb7/3kj7NcSXu8RUGmXHwmD6m1\nnZUyUSehz1hBSnZ5c1PAxlQFVgk7XL7Gqrp+e08ddT/4eViK83AwGDHJxdsfFMeMx6qZzQryXDQW\nbyWn2bh3yFBhuwd3cz7/1k9JOwBPQTPnFzVV+1jauRKHYlrk1EqyUpY+k4VoiG+82Sf0/zN5XPXf\nMVxJUtzrPy5vsvPccUdrZIQupplq5mpWEaTiEL6xE/HwrhCu9LpaDzdfZW8on00/eMZzJVOZG7up\nMxEGlnTY4UzknZazBVHH1oxjpy/PfvPOA9pStILlufw7eLhDFIpmsmstr74m2spfeON1nn4g73fn\n+x7SqEarV7AOAAAgAElEQVQat/JuQV3StAphXlxg1OQ7Pvw0PU0ETHYsd3eV01GGjpt7HkEuGkh5\n7fOF9+QeJ/NLKjUf0l5I2NHnf0x5KTaF1kkKaC8JGKnqe6OfcrgjnWBfLUg0rTkaDwjVTiTSMI4f\nYjoVaXGNVYx7k39YTSeNh/TVBAmNqL41IYEi5kzi4RRMYzyYKnnmoJfSS2UxFXNRE42piYby94gA\nT4lHYj8mThQRNzjYEHtazZY0fkWgEZO2v6aaaPjKazCaE9HXzLt8WTFQ1qi9bMy/9qPiRT959IR3\nlVq8LAvmL2QDWOmicsan0gSMKFyynusEDApCX/ozHEZYxdf3W+VOrHuwp/yL1zXpntr7zmLVk13X\nC4qF+HyMqsxJZCk0NHeUBoxHt3QcXuD7GuI9sJSKEK3U31G4DKs5GvW6pNFNsfyjh9SKfiwvag7u\nyL335rLYDu4EvKZkOWk8wiWysbx5c8Dermz2492IWMO2tZK7tN4D7B3Z1HfiHiMlg1lfLwnGipxt\nm00+ylojR57xCRVluhslxH1Nme8fUq0lemDG8pti7knCCRDEPYY6F4aHdzl8RdoT2X2czi00CtYE\nOcULMZMcITTyu/RGiJ2IWXF464BIgXG3buhzVw3zmWS5nnoBA7pqaDWJkswEfg8/+M6W+dZ82MpW\ntvIReSk0BWsNaRxxfJgyUPX7RpAwPJITPYruQCZqZ2JT3IFCd1U3rmcL2ryryxduTijPd5RdfcTY\nIwm6RHXRv2K/R9vtrn7EOpNdt5jWNAo7jXt2A5VG6dQ94zOMlLDFOdBTKTk+JLGiwgVhi2e1GEhX\nx670KEt5j/Y8x21qMNbYrrhM1HmkV6wVvJUe9rh3U2LefuFzuVIuhMU5hd473VXSkDmMFL/fVkOq\nlTgPozDGHCqAyAugp5yJyvpbR5eYa8XZxxWe4i0MHigOoaWiqTVDL1Fq8dzHqZbmNT7LmTjBfD+B\nhWhhua2pNWdgrX05uVjgaSbqqmgp1MS6fPfrHOZy4pfNGS/W8i6fVUfjw+M9jjUK1LMtFeoE3h0R\n6skcVlNQh21yoM7cagamI4MJGGshnqif4ivtXVWZDZ17hmhe6wzivmhNbzU+zVCcv+l6l8cTKaIe\ndpyf1YpStc2jowNQ6L0BelY0DNsPcIWWEmjERGuWbnM8G+tjQjUVy4q2y+CsShItBxgi77Sulvhq\ndkwu3+aRaoV5bUhVUwgpyNTc+Ljyp9YUjDF3jDH/2BjzVWPMHxtj/gP9fNcY82vGmG/qvzt/2mds\nZStb+Wcv342mUAM/65z7kjFmAHzRGPNrwF8FfsM593eMMT8H/BzwH///3cgaSxymlEFCeKDQ0V6G\nK7tQUU3YZcaZEk95VGtl6HJ2TVnKh349wqZqc5/PKCYagy4bbCC7dZLKTt261cZ+a5sMNBGlMBm1\n2pZh2sfoaVoolsD2Qqzaxn7Q0qhtTNHS9jUe6oxk5gG+cv5XXo5N1I7Mcjr21Da0mC4Rx+uqJPso\nFy3hYEyk7MT1TkQSnmtfLDdVno1iIny/RgmcMeYC13EdjIfYQLNHqyVu2hVuVZbhJKdaiWbirosN\n1ZExlkZp2srLlrXOmK5qcxjFlE1XcyLY1E+sigWxlfPAHxpKHaxSj63r9SlNrTRmObSB8l5kbzMt\nhc05MIYdJYidKHR9cZmziqQ92XqJVX6D2STgxv2O5TuDSP1GSrpriiXVomOBLnBdZuQqo1VUYLlo\nMJpdWGqS16LNSBN5j0Pj0wxFK6irEqvh7lVXzzH0aRVqvby+oLghfpC2mNNa5aGYHdB4neaoGIry\nZFNrMr7ZxyjWIXQF/iYr1VKrc9g41e6Khkzfb3p5tpmHzrWsXFcuESq9/uPKn3pTcM69AF7o3wtj\nzNeQEvR/BfiLetn/BPwW32ZTaEzL3FtiZn32f0icYSdnAUYnUG/HYZcdd5kP6sDrGHcr12B0BcWx\nqvTAfLVkOlHVfnZG06n/BzJYcb+HVZx5RUOp1YM9atIOkBL4zLvMx0A6d1UumWeywEZjw0oBLUm2\n2mRPuqbG08mkqRb4BNSaThukfaw669o626RgeqE6p/oeQalqpG/xI3GuDQbP6ampYduIVinIfK8D\nzUQEI+mr5mqE1XwO21hMl7adWSiUOKXDRazXVJ1au5xRa9+Hw4hQoy/+dE6gOQzKYUJjPTgVJ1mT\nhhitdDRMethOFV95VFrPcKrZi9kk2/Ah+rs9MoXotsOn7GeyoGe5x6l+/kcnshFWixWLhZgPI+tz\npGQ3SRiRLXSzLyOqy/cAuKx0A5kVBMqlOfIsNF2VZ0Nfd9ZkvWSi1cOeatXmZ4uMAzUV944qgtua\n+7FMuJypQ1uBbIt1w0yzee9eTphfStbpICiwVrAVbZDRKl9jVzWqzCOWubJZTy3BWOZWMDzmhma5\nRr6Pp6nhTaGM3/EF2VTBeVcryrIzoVtKBXhFkb9hoP648j3xKRhj7gM/BPxT4Eg3DIBT4OhP+M2m\nFH0afWe89FvZylY+OfmuNwVjTB/4ReBvOufmRrMcAZxzznSFDv5f8pFS9L3EzWY593dT6gsttTay\nRMrgG/X7tGoemBDySccurLfOW5zG2OuwoNWMu6vTK07PJHwzSgNuaq2G2YmGAu9YEiVyMVVFovH2\n0GtptZZDVracXgik7blW+A17Q2LVRoZFwFA5GWxssVoKjrLF6SncKMqvdQVG2YwxBtexAXsptZY1\nD7T2ZZyEG2KO8oMlhZWT5PrZFbUiE9PQ0NcNtYPaEgecq1niooxatQ3jFRjVbjw/pNVEqMYoccfJ\nglWuyU6LBU5Do941FOeaxx9YEjVHOkLcqipZaHGTgfUwqkq3YY3TZKXWLfC0jkaqZeXiQZ9Uy6oF\ncZ9GiWCLaY+nHbct8Ub1vdBQ7nxU8s5zafN+Y6j68rybR4f4ofTR08kLnj0T5OiVakSTywUPv09U\n/3s7A3aVqMebF3QQkcY1GwKediHPbRtDoclvoT3EBZpIRchMaf0Wir04bMYcKZO4FzQEysBdX64p\nFUrtpwGB9q3x5Nq8fszFM8n4nV0d0U9EE8qimpFiXQLfw2rFbnzV1i5WXJxKZuTz0yWr4kPW8VjR\nu8PRDmiIl4lmG34b+a42BSO0N78I/Lxz7n/Tj8+MMcfOuRfGmGPg/NvdxzXigfWGc9bPBC9+kce0\nOzrR25LlSaei+jSaS9Bx61kaciUbmT2qmCsJx+/97ld5R1mKHuwdUvalKQPNTmxNgT0Sc4UAnC8T\nKPRD1o0s7re//jb/5++LKop6yHd2fYZKyd6zBQON4zvb38TYXdEQdAa//lsUFdVC1OfGRVjNuPN8\ns2HxKZdKoLI0BLvy/ZI5meZUXBU1z5RyfLKuN/kf8Vj+qHIYaIpw4w2wnS+5KGmjrqhNuKkytH5X\nJsrl5WMulBk42uuDMj1drefkSuoSRocYJU45m8gGMpnO0P2FO3dTjJZOb1wfO1PilKRPtpYS9YUW\n1AniAU55ElfrglqLnjTNnwf3k/I3f4tcU5VPC1E+31ulvKbKZ+TNWZSyIedNQLCU9176llPFX7hI\n/QjhnJNLaWha9+nf1YI5szl9JwvWlAMWysB8WinoyfhkyuL9zRdPWWaaS5LdpdGoS93KvfKkpD/Q\nLEkzZnIth4mpdxkooG7w4DbEmtmqzrHeeJfBobzT0lVUkYxD4B0SmO7AaT6cI2v53YvLKW8/knXx\n/tU5y6rLhjQM1bezEycbFqqPK99N9MEA/z3wNefcf/UtX/194Gf0758BfulP+4ytbGUr/+zlu9EU\nfhz4t4G3jTF/qJ/9LeDvAL9gjPl3gQ+Af/3b3cgz0AsaTuoxl6VoCjtnIddaJbr1a9ye7OBVUdNq\ns5vOgXcQEhWKwPMNqtXxxqfvsa8n+g3/YEN/ttSsx/bqHE9V/3hvgD9QdS/zWK/kpHiRBWSa5DQc\nieaShwmeFTVyUV1TKiVW3PdwdYdvcBsuPUuXlJTiNKHGOp929SHvf9GIJmAKaXwwCDdIyHn+gicT\n+b4uEzQwQjzwGWktgFTxDbO8JFJTIokiTNsh+xKs4htcYGgL5VbQeH191KOt5ATL7WijxTzJv0w5\nVQ5Krng2U2yBcgMGtibR8njt5RE3NXlq6GV0VSDa0iNTU+9qqijGsKG1XYJZg/U6Hf4LwK+hb4hR\njcU50eiaRctFXyMDU7ixL+13y5BMi+f0ewd8ysh8WGhF6YObAQt1Rgc7EY9O5R42zCmvtcpz2nKl\naNm5AsQLE7Jaa4JSM2OqyNFyMWOvp1wcXWm6ZIRTTsxFlHE2VczJ4Yy13iPCEGrWYqsRAj9I2Lsh\n8PddG+HUpKvXNZ7ye7aeRSEZlDqmy7zk/Fr686Koabual54lUFxH6/epyo9XbbqT7yb68E8A8yd8\n/S98RzfzHF6/obqouPeDAus8P7WoRUB6x1KVWpBktt4UmH30NQGPmMZnHGpFI69ioIv/5o/+hU0L\ng6Ll2ZnYmV9XCGvb83GayeaqmFa9wXE0IlQq8z36fO7zPwbAbC6D+HuPHjOayWS8M75i1ldYKg27\nmuHmrT1KTddsOqhtuyKOZaIk1hLuyGYR+DHOye/cUsEqNGQr2UDe+/ol37wQoMvrd+9zsK+FWy96\n6HrEXysEu1hvwD3jcMx62QGklvQGcm+PPr4CuQLdhMJ2D6MAo2y+5sk3xWSqdhJuaVrvrYc9Pltp\neHVXFv+Ldz/g5O0vAHBycsKpesMf3tjjlqa5Lis4O5f25+qd96uSWgFnwSCh6VxP0dmGH7FxZVcH\nl/Va1OQXmeGykrbvtyEfaH7FZPKcQS4q+F27S1zLoneaH9PmQw611qRf9MnmEhkIEker4KSzizXv\nn8qin2hhlWm4Yqg2vnUFfa0A1mR9ppmS1E6UlHU5odaIE9OQMlXwWh0zNDLuu+U+7amMw0rH5uKb\nM1LNZ2n9gkWrka+q5MZDLQCzXBEOlZhWixEvZzMKhcrPs5ymi4JZS6igtaUfU1TfWfhhC3Peyla2\n8hF5KWDOTeGYPC749MOW12//MADv3nWgnIHWNsRRl1c+Z7UQE+NKuRN7o0N2X5MddfAiIFR+A28a\nbUhLltdPyCcdZFS997v7BJpxGcQRkfIOOleDwnlfe/WYaiyq2B8/FfX76a/+1gYLYFe73H5dNY82\nJVJugdAmUqoMWGiJ99VqRa68i6thwmCqkY96SaDO02ytQKBqzlKjDBfPznB6ZC6mK2aqzle+oVKv\nfkcJt5tEVLkmw0QtJ4/EO337jQHNuZoMe5Y4ksSlKpG2jasbXA8lujI9yZhqRmivuUe7J9rUsHwV\n25cTLVFK+cv5DWxPYckvHm+Yhoso4UojFet1Tn2lmZvaJy4asjeS7wtnaLtS7LWhdh37cA8Ubtwo\nKGjlga8JSkVdkZ5KvxxHjsmX1ZHcRNzpaO4VY3BpZkTKn5m9v+KOlow/2tvB6v2eXF/ySKMOZVdJ\n27cberhe0CdXnMbaxbRT0XpmyvdYLwNu7Ul7V2VCciT9na9TPnVf+nB92ZLH0kdf+9+FkOarz3Pu\nKEQ73UvIl8oLMR7SXsuce/X1VwhK5YaYi9Y0+9Jj3lO6vWlRbcwHg8c41IzJssFrvjNN4aXYFMBg\nXMDRjZjvH8jiPxwUsK+dnfvYRsOILaRKYf7mj2jqaTLm5vEDAKK7IZ7WKPSrHq4RT+7ieUz5VDpz\nrUQYAYZSy7onicGqLV7lF5uJcOOtY1wmG8S0lgF4fnWG1h8lie4we64gnEGP/ZVsSCaOcFrjwNd0\n6J3xHn4XRq0MiZou+H1QRKOnoKDVpOVSwVlBtEusdubZfM1prmCZoqJRlFutNnDkD+ipB3xVr5mq\n7Ty+FTE6kHam4wBvpBuHIiir96YkGiI8eljDoWwaxemSQJmlZtkV/r7i/J/KeLzdXrDS94vSEcND\nTTMe9lkqb+TZbM1zJb31NDzbby2eesjXOGJFp3rHKc1zGVd4BIrkNFqnojGQ6IJv2ornOhDj0S5v\nBrJoVnlOqGjKg3258aCB+VrUfUeKd6yHzO6Qr6tp9uvvXZCrCr6v/qPY1PQ1e3SZl4xSOXzCgyFn\nZxp+VRP1rFxz9kL6fhSFpBfSL6Ud0qzFZ3C4v8/hK+KPeuuzUuHs7r3npGNJ+072+rRq+thiTagm\nT3Qc4zRH48mZ9OVvz6Y8K3UTa6pNiD5MI/JEIzuza9qufunHlK35sJWtbOUj8lJoCkkEn3nF5+7w\nLfo/IQ7F4EnDSp0o/cM+ocJ4m7qARE6rQd3tgCXXj8SJ2AtioolmAO4Yinc0nj4/o1Cm5NEdcZzl\npaVQGG1VWlpP6eBLSzCSk2YnfkA1kpP5aC6nS13XnMxFA2nPa15XR9yNGyMOd7RtLDeFQ7poicUQ\nak1BmzsSpTTz44SqUtIPdYBNTy94qjxgSz9nqtRmZ/kFJ7OuFHlJpRqG+lYJ0pC00NM1yOgdKPCm\nPsbf7Y7jPZzyVgSIRhAd+aQL4cEMU59xrLwItyasT5XAZtTgGnnXYijtrN5/wfKZtDMchezFCu0O\nQq4UDPVsec11K33olFgm8xbMlcq971vCQk5Pt0rAE/5HG/bwVSuIlaY8sRAl8n6LZbapgh06j7ov\n7XyxvOLrSoPeTB7r782mzue927s80Htc1jVfuhAV/Wy9JlNMcKsU6XdGIyItE58EMZWq+aM9xzPV\nCtbqoF0WFbXC5q/WAVWtEPvojHQsWt/3Zw/ZKUSjSW52UTQfJYEmn6wIlZ+hduCrVtzMY+aFaLpv\nvy1Apz94fMKVZg+3uI1TvfThLBMNwrmKlq2jcStb2cp3IaZzYP1Zyp07x+4//Jt/Da4Cjl8XuzY3\nJeax1izoe8RKtFmua2qtAh0rMqwNWrK5XNu0FtMVv7AVi2t1jCUJ/VBO+tFNTVrKPNQnSd0GpCPZ\natvC0GqFj8WqotH6BYGV5x1++tNkj+UUOO0/4Zf/x18B4Btvf4FGHYVEHrU6D4c7XdizoVQnWlU0\ntAqDripQWACt7tOxb+hpvUo/8SmVVixb57RqxNampVY7s1XHKIsL6jtKcrreY1WJBmWbgJFWRG6d\nodYiOZWWIksHPVJ9z904oqeqR9a0oHUDjntDIoVx14pBWKxLLq40k3G25lzDqKt1TTzUcFrQI9ea\nj4sTcXxeOo9I6cxKv0+sdSz/2t/+G7TPxD/05/6dz7CeaPKXlgg8KOH/Ujjv27/5uzx9LtpNvbYc\nvvUmAP1isXFoLi9VU3orYWetma/1NQvF2d79i29yoP358BDW6my+8WnReAZtj+yJUCo/PUuJ9fNo\n6Xjr8+IUbzTEeLb6Pf7Lv/13AXh88Yh8qmHGtt3Qu42GMaWyThcaql6vHZ6iOxMTkug4TJcFS8UY\nrPOaVhOiOoCOsaDDQJj4DEJ1tkcRu7dEG/nP/9v/hleUhu7wwa0vOuc+y7eRl8J8aMqa66dn3Lt7\ni3DaEZoYYiUCGe1C6Hd1HteUvvI4BlqIs/EwmnFXm0jq/AGRTRgq4Ugv2WGsDshUO6/ZqfBs18EN\ntYLgK7Og8lS1jXJyxeU7TQ08/9ozxmOt5/fN93ny9h8BUMxzYlXhFnGPWBeTZv3i++0G8jxMIyr9\nPgoCgrhTUWXyJL5PT9vu+R6tLoSLxYq11mvMnKNUWva5r2zQK59QocH1qk+r6eBp1McqZNYvG9C8\ni1ArKHn9EWkkv4vidOPY2zOOVHfO/bRHrDkhbpMiPMdT7/tyXdPMtJZkVW+4MnPTUocylkvNTrSh\nJVOnbNK+Bpoz840vnfLTPy2TeP+9NVfvPZZ7fE368PSVr3F2Kt+b098jv5ZxHx94mKWCzFYTprU8\nb/+G5hxMRoxzdTTnjtu7Sik/Z8Np2VwPObypNHyZtDPNLyjVRLlz/5rMicOwNpe0K1HRIyeOysvH\n7/HoG98AYFqsNmp4Fafc0ipbNvaJdNxXS+2Lut0UwjWmx2W3eTUQ6mbiJR5rPcA7UpiyaTc57HnV\n0GYyJyfBgkgxEtPrCXbv/zMn8U+Urfmwla1s5SPyUmgKpjUEq4iRPyWYKuQ0TuklQn1lfYstZDeO\nBvukqu6tNMxVzi+JlQbN74VEysqcjgL6VpNn9vc28VqrZcLqpcUpeUtTlDS53G99XVIrgYYrndRJ\nAGYL+V3ajrl+KkfX7/78b/D+qTgdk3CA1Xa4MidXz1agiDLfGEaqSgzT9EPuhNgy0p39cCQnSuz3\nsOpcLRdLSnWi7YcpF5GcCFfzKeeqxVgNs87LhlaTwLL8hDv6rsNBS6Thu3nRbsyUkWIwTBKQpvLs\ngGDDz3A0jnlwKOGyUb9Pq1wW80txzgVJTT6UdxpNW1KlElusq40TNG89PC3/VihFmXfHUWRK5prm\nGCXQ3c8GvBH/gfRFG5DForo33Afgt770hHfe/00Art0STxGWe56hX39Z7hes2VNkaJjL7015jVM+\njXiaUIda3fudFbNb6txOjvG1RF6o/dksKjJNghrfXlGffVPfaYRVPEj+VObHL/2nv8A7Wj8y8iMS\npfRLI0t0IH1btAFrLTjTFXJZU6GKFxUr1PKh9Q2DWNGpUUzRan92hDOrNZmGG8u8Yt7dpIHHWojm\nS3//f+Hhv/of8Z3IS7EpeD7s7EM17dFoboAxOU3vQ1MiUjvLBdfYStTOXl8W0t7BA4xR1uZgD3Qh\nJOMhppWOitIbG7adjmykTJegLMplsCYIlbmmXNNqqm7jD2ly8S/USqaR2Et++be/CMDvnD4jU/CL\nTS1eLG02pSFX8FHbl+/3h0NuHcoiHA/69NWM8cKWnUQp01NdrL0xpRKTNFlIoaCZdGmItHJW9V7N\nVNl74rVS2fcXnGuUpanO8NXLvmotLpe/M7PYEHlYTXsOvJjJlSwUbu3x2oEs2AcPj9hXrEAYjljO\nJtqHmhZt7aYsfZD4xBvwls9CPfl1m29yLXqJQq2jN6lH4kWvey3MZfH+858ZwfV9AE5fXLBQRqZH\nuWwUX7p+lzCTDenw0BLo5r0bgTfXAj29Ai+UjdrXwjl935EpRqLuXZFpbsteuGSlOShpGBBcyeeJ\nprC/qHLKK/FnLM0ehRUTxOwUNJVszv/4dyRX41cv3qesO7Ich69Q8Du7u4wVADYvK7wuS/JKDzfP\n0CjkO28r+p3JMAi4f/seAMfHPSKl+T9XJqyry5xn6s+pqim5bsI4WJTSjl/+jS/z8HWZqx9XtubD\nVraylY/IS6Ep+L5hd8/n5OSCdE9O5WG7z0iZisPUx1NVrK1aIlWZYy2akQ5S/EhO/CDu4dRh6Mcp\nrlWykDimVdISo6eLZ/dAPbpe1tI6RbEFCb7pMAsNvhJWdNwETTTnS9+Q/P4rU2A0ljzE0NMTNHeW\npfL93dS6ED9895hXXxGTKPZ8vA7d2FrSUacmKibAb2gbOV2KJGe21LoX1ZpUsyeTm/tcK+/g9VS8\n1NY6QlXxi7KVytqAyyvKA/VerwL6SpLS19oSSy/jQgu9HHtj7t0QTeFofEiiVHFBaygUNpzuyPfO\nBrSa4TmdLRhqMZVF1lAq2s5VBms1u03fyZs8J1bHZ1O8oMylb9/6qRG//Au/J+/y6owdfgiA14y8\n02f3R8w0qex+BDtG5svZvOGDa9E83CogVG6MTFX8VeBjVAvzrwtq1WieLUr2lQwmpCFU2rtL1dKy\nxSVGYaYnjyekNwTSHVYe14oX+flfEUfzRZVv6pze7I/58c/ItW/df4N0pPD1dU616HgtpA9XWcu1\nmmuPn15wfEs+fy29we17olkmWQ7KDTFT7eD08povvSca1lc8x1efaxasczQ6ZpmxXF6oWfEx5aXY\nFOrKcX1RMdptuDmQFFk/9QkHqpYai1X+uca0+EMZ3DBVW90ZfC0A43sh+Er4akLoaXl54wNdCqks\nBBOV0BWDsUs8jQz4kcO1HcV5RtOV8g7lef/o//hjlkZUx17ap1BGHL8XkHeEoEFDTzeDB69KeOhT\nb73OTaVqN2VGq5DauqrpKVFLT30Hke9hNd6UViGhgo2W4YJAwTImDHio6bkds9H7teG8UyOpqZQP\nMOlZRko2u5+2RJrZ6TT6MrnK8BWk8+DuHXaV9MPzR3iewnmxhDrZqpX6bQYNjQKSdoqMYacG9yuU\nPpJJllOo/dyoX8PMDNRa3Qg2m/Pv/4McO5aJfqd4nWgqIcz5gSyw0ekToj3pz/Lsi7zTUcebFRNN\nRS4Xl1w5ZXUaaNEbb0ycy7MbP6RVrsx0f8xKx/LCReTqVxprpad6XjCbKqy8nBNqxbFgXPPNXxT/\nwjcu/hjQQ8OX573y+g/yl/+VnwDg/iClcLJ5maom1cNlfF9qSjbUWF+el0+vSQ4UAJYXNBqSLPML\n6oV0aHlTNqPj0xGDsYK3vtZjrt9fLYuu3AyTcs0fTC75TmRrPmxlK1v5iLwUmgI4jKsJ/JBaub36\nLsDX4h1Nm1Mo0AUT4vT0a0M9wZIcU6kj0i83gI7GLrGZskBHLa1GAYyyMpPXOHU+0VislVPC5MUG\nGuq1YDv1WVu7ahtizbH3q4JzNRMWuSPx9HhsKw73RPX7/JtS8u2Vu7cItQBM6Qx1V8Mw8vEV5+p1\n2XlBRKDD05oGF3bvHG40iNKt2dVamJPb4jg8zEpO1xpd8T1qdfalgWWUyD3ydUCi9QUniiU4u7ji\ntQfCOPwD3//9jFTL8RuD0WiOcwGuK2uu6nmzCOgdyqk8Xs4ZafXs5TCgUXZo31jOlgrC0X6NPQ9T\nKFy7NRt25cJWBE5h6JMJE1WlVyeiGke7EXUu1G4nR7tMvyIopLDXfOhUjoeM1Im7t6/M1nmDr+Xm\nQuehihlV3ZD3NDHN1KilSKU1HJdNTq1jUrgVpx8IGOzY/wGePhIYt8I0MMYQqFnyg5+7y2fuC3Tb\nyy8xGiXxx9DbE5yFvyvvZnKwmozG8Q5oZm8zXVMrp2cdDGkT6a/1tc6924ZQ50VjnnJ+JtrGPz25\n2FSsWz8AACAASURBVGBE3GzJ9O2OR/njyUuxKRhjCIKAYTAmUU5/z0KhNqnnR3gdCappaWq1VdUm\n82JDrbkDeB7dyFq/2dSDsHaXjlTWaKiwrjOMU1MiDAm00o+fziiVzy9rHE7NCk0GJAC+T8N0j1eX\nlHOtVd4UhGqfPtjp8/qrMvivvCpl3aMeRGqulJXDVy+z8QI8BR91CMOgDrEavvRMQKiLJg5D/h/2\n3iTGtiy7Dlvn3P7e1zfR/fh99pnFKhZZVSqUSRUpjmTDAgTBMOyBbQjwTDDggS175IENyCObmtgD\nN5BtAbIgwAMblBtSKoGwVEVWn8mq7PP3EfEiXv9u3xwP9rovmQKt+sWkyE8gDpD4kRHv3ebcc8/u\n1l4rYc+HHwY4lctAeSGb5kV3DSsn6Ckz+54RZTkAXd9wVCIlfdPjS8kjGDS4dU8ONjw6QrGRBW/B\nQkk0pe1GMCQTspmrCN0aKpYF34kWiCJxk6Oth4YL1sCgz3KwYQhnaxfJfvPW0ATmlPUWviWbU+Q8\nwWwn2f6YFSeFMV4lsrSMn8G4cj7b6uKNW3IdWV1gwE1hGAjYKDje4CohqYttwQ3bnMgGCTVGO54H\ndyJh05BguJWxsCKD1nxhULSlSqvCkpUYixusahJQmAnT4wM4FEXuJA2qXcJnGUGRbNcijNXoDXTD\nsNKt9xqkxk6gY1YiPBuWkntqOq2BDGFO5LN31U28fl+e2QerLZ4QWVtpg00tc/i84zp8uB7X43p8\nZrwQnoJtaYz6IcrsUzCG7jZw2M9Q9Bwouteu48Mx3GnbA+QVFHddVRd7joGmsqE16/FltifvMHWr\nM6GhaAWACpoW2NE+Knb47bY72JQfr0mZdu/lHs7eE6tz1mxRMWHYs0ocUMH41/6VV3HrhiRNB1QE\n6pg+Gv7s2F1oYg8ay5YEKQDLlbvSBqBRQo0CNUMmu6rgMpHo2M3e6wmYWroz6mHB/oQP8wyW1bbf\n1ShaWrjUAgpWV8jNMOkFeOOeWOggrmFD7rnTdVGTJzAMPXTZgWkdyLyun3ThRq1k1xBVI88sbzJY\nc7GkjqPgRiRcIU9irTbQtIhBBJid/D4KNnj3DySBl39ljN2clvJdSQYOTxfYOuw/6KU4nTNZqUus\nWcHwmxoBiXR0n5yKTYAee1uKqxyZkt8jcOBzPfRyFxFFVJhTRr9rwyKb9YN0jSm5FA91H/+EymE1\nOyMtW8MmZuMbt6fo9Kht6R/ApqiLaZpWiAxti46xj6F82udKA21VyvRhRaRlX0eo2lbKWubeD1Lo\ngvR43QZHA3HjPA04PMnBJMJrJ+IB/194vnHtKVyP63E9PjNeCE+hqmvMl2u4fo0uy2K+bYPSh7C1\nDZclJrc7QECdw4B6ga7S+zhNAQDZblVsYEhWaiobDrEMiqUwFQKGmAe7ydE6DaHrwt2LNBps1yx1\nsV79+MMUmS2Wq9yWsFluC30bXzqV/MFrb34NxwMm2sjHb9k2dFsiDCpoIzdYoIHDEqi26f+UBjWt\neRMruNQYyFwHnpLv1es1cpbhLJYFO4GHLml/Q3+JjCrIRdTAreR6ep6DHTvtOsQd3L59ivs35Nrh\nNAiZoAysLuDF7a/hs/SrU8K57TkyQtO7nRrWAx5itUHMZi1HW+hHEg8f0KruYoWCzM+FE+zVnv/R\n988w0uJhbD64gYfPhCg8ssRLmxZjBCyjWkWNYkgZN10hZ4dm7bioidTMeB994yFrOyeLEhkbicZu\nH+M+G+VgYeoJcbDFMnSTufjphRw3tIFV20A3sLG5mvH5ke26aeAFbRPfPXicW10EsLqt5FsG3bq4\nBSn9IgPFnIoxORQboqxQw8Qk9PW20OdMfpP3o8yqPSN0vS3RZfdlUFdw6YbYThfw+CI953ghNgUN\nBd+yoWBQMtPfJAkaTjCURk7X39rFaJhIbJjpr5QLzfp3VTV7wVODDIpQY/gRLLquFsE/duND8Qlp\nq4YhjFnpZi9Fn8YlVmR2rlrgjaWRruXvy/kCJc836PXw8j1JYPmqQjmXRVhRAMWy633y0Mv7qJh8\nc1QDxURjRVZmxwn2PRpZfbmHUivbQ8V7rZsSFRd66ZP7MC32zM6Rb8OlAGvkKQTsUfAV4GqZw6Mx\nCWk6PnZzCZlSN0fDjJnfFHA499oJ4IUyB6UjCb5sDiwJMvvw4yv8+P0PAQDvPVngyUY2zkngYTKQ\n74WsZKSqQs1uvyquochgrGwXTk+y9vYAuDiXeRmVzNRPA2xSeRnTkYcA8r2DrgVDRmSv40MZArwm\n8lJVrkaHydXR3SEU9Tg3SQ5lZBPtdrpg/hEegWy7eIb+S9SgfGTh4kLuKTuqMO2QefxKcABlVcJv\n18JBFzY7bSv7CWrS7DUFYBM701Y6lAOYokUWlFBOC3YRkhQAUK6Nxha4dbaUOclqoGwp/M0GIG2e\n61swW26Aqzmy5OejeP/c4YNSylJK/UAp9X/w/+8qpb6jlPpQKfW/KqWuhSKvx/X4czT+JDyF/wDA\nTwG0Psp/CeC/Msb8PaXUfwvgrwP4b/6FR9AK2nNgey4s8uo3lo+CXoMpFSpa62RXYckMXHcl27rr\n7GA3sisbnUD3pR5d11fYzuV4l8kSdSm/D3usZyuNQV/KRr3RAA412Mq6hqL7WTYBUjIUt9RYvpMh\nZo192xT7vJAKPSRMUG2Wa1ywk1D3xBofGBv9iVgdXeTIW2ZjbcGlBV3Ts0l1gYLEp7v1CjkFZ9zI\ngd0KzmgfIG1Y5YvlThuzLxcGYYCIyTDtuHsPywksNJBrKpds9qoaPF7KPVnjBsGOqDpviYjNZl4w\ngd1qVlpy3O1mjgdzsdyLYodWxy7Vxd67O49rwCWKr22YykLYhkQTdbVXz743OMDwRCzwcnaO88eS\nEGyOadmrESJSwp2ffYSQvBCN28PBWDyMaeQA9ARs6oE0pkLM+LC2IlSm7Xj1UdNurco1iguGTTRl\nRttgbxT8/gl0LeXn9eYpIgrplG3jF2rQCYWJHOSVWOhyl2D1CZuqnBTDviR0h2yMsqsGyuq3J4Qm\nerWJ12iIkGwaDwWh5Utqm14lK+Q5cQq5C0NSnlJbKJmGN00D7dBNec7xebUkTwH8qwD+CwD/IaXk\nfh3Av8WP/B0A/xl+xqaglYLnu2jSBpqApLTMURAjnuYxamIMbN1D+UR+/7ElIJYqTXFIAZS7Jwfw\nO8QmFBG2pNi5erDAli5vQDGNg84A0YAvpmXD2C2lPDAkF9+4u0JRyrGLRrK4VsfCfCUbRVPVsLgw\n+8pGTdfvYnuFmJqPai0Z5IdPzjG6IYt06o7RcfhSaAdrYuZ/8kQWz+OHF5hv5PvDYxeTiFnvcouU\nL3ff0vu6OUhNPum6ALPeaWnglBR/rXx4hCsvUhvxTKDEu528dN5Zg09Cmc/03CCmi3vrQR/3b8ti\nvFM7qCoeey7Xvlqv0WP8Wvc6CF9+DYDgKR4/E7d6mZYIw5biqs2/FLCZIbe0gWJod+eXhnj6Y6mr\n/2j1GDEX/UgeHZ588ARzooXSzRw1W1+77gITzu3LWR9HW+ZM+vLCXqRbPNrIpjeb7ZBy6vNBAJtS\nAveGChGJeI7vs5vVDXF6LPN9PPwavhjIfXz8QYyHt7h2fkxqdQP0bPmeW9tIyd61urrEg2ekft89\nxdoR6PbrF/JMjw+OEfUFp2BrwPLIPrZMsVvL+r08m2OeSnh3RlEiL1vjgt2QWtdYlXxfygqaG/Lx\npItfvPlLcrP4H/A84/OGD/81gP8I2DNDjgGsjDEt+P4JQGbQf24opf59pdR3lVLf3ZBk83pcj+vx\nZz/+2J6CUupfAzAzxnxPKfXNn/f7f1iK/s6NQxNnOTqBhs9kntYxUib+qgYoqCiskGJNdyjUYrUe\nfnCFhOiy42EPh1NB5jXna3ilHE85MYJYduOCO+r5skFVb9obQkeLC2ecBjVaKe8ICXvkE1q589ly\njzcI7AANd2soIN3I9+ZXGwRM8lWs89f1Dpv35NqtyQb6WKzK4biPdE7NRGotdj2FzoFY6IP+KQ6H\nbNyyA9wYUOdwuUVOhekr+q1h5GBbMnloElgEZw+mNvyU3BF5jm3JjDrxCF73EHc6El41oYPDAyZg\nyxo2PYGryzM45FK0Z3Lcss7RGch17kyFZ5TkW20a1ExWdl0gavkw2MBUlTa6FCxZVTEKEog8+GEM\nOMK7aCcGAYlRJiSDmYQarY/u+TnOaBFTXePZA9KqOTtcsqLw1oCI1bhGQV7KtCwxN62Yj4u7U7kO\nXw9wMpFrnmZyvVOlUX5Ehu6vK3gMUVQnQvq/C9mLUq21tjB5nRL3ykFNgZ5818ClV7RCgslY5nlF\n6HaAEnkhXtWgdxtqIV7fk0cf42Ip6/qqqABqfY6oveG6h+hpwtQ/WqHYifdaxyUUq2p548A+agH6\nzzc+r8Dsv66U+ssQ6csegN8EMFBK2fQWTgE8/VkHMk2DPM0AY8GnvHxZbJGw+7DcJfjkiZBmXOUW\nVq3WHsFG8cUZ3Cfywr7y+pu4Xcrfi80CF0/FFf3BA42zC3GP1xtxyTI3xNd/WeLXbR7htbvyEofK\nBrVP4ZUeasiD0Wy9josG0wGFWesFYvZUrLMKlw/F/b/YzhDTlbTIa6i3MYasmNRrD92OLCB/YiOm\ncGa6lsXRG05R5fJgv/eTd7AkbPVgPMHrt5gNDzQ8V16a3kRegkh7ePpUFodvGezos3kWgEjOvbhM\ncRmTiIUb3rPzJyjI7RidnKJHQdsv3TuELmQy0qJEQVKXMpHww1IG4YG8KGGp8WjxMQDgJ4vdvqxn\nmXoPpjFMst866WHNkqs1T6Bdlom9LqpS8jzF4sdQBD0dn0jL+TQqsPhEwE2P7Rj5Rv6elBUqIy9T\nDg/ZpZz7Pjsc02qLivmVk/4p3mSY8PbVFWJeZ+0oROzM7bIE7CQZdkNCqfMK0Uqe2WF3jJduCsHs\nD98TEpNNtsaYHJXa91Es5Gb/2W//Y/yIAi5XVYOjjqyn33hJCFR2VomKKmLdVwyKWMKcx0+eIqOC\n2W5V4kfvfVeOwZDq5ukN3Ju0ORAH8OX5eo7eq5OZfItTm6S+zzn+2OGDMeY/McacGmPuAPg3Afwj\nY8y/DeAfA/hr/Ni1FP31uB5/zsa/DJzCfwzg7yml/nMAPwDw3/+sLxgApVFwG41NJrtrUZQoWiHi\ncR9TuokFQozI7Kwq+ffKz5Gwc9C2IjR9ynAPYuhjsaqj7Q2kTOx5WtzrYdfBG29IT/vkzgFIHg2n\nqNAk1DlMMsC08mCsSNQ1bjBDXro2HtPFK5GCgsm4Pz4AmDwaDsUiJFdLzJ8KGOfZJsUXINbB6r2K\nZiUeTU6Yd3cwRM5SRhXOYJi2MX6FZQvIsYFeTyyeYb16uzPQ5Arwej6aLcMAJ0DCEGzjVahqCSXW\nayZMywZZJd7Bl8e3cNgT6bbDOz66FLvJNhfYsUHHpmU3RQIig2GHIe7ekRTSVVzCYnLYqSt0mcIf\njwhtLsd4xxD8U9XQBICNBykeXsk5Ot0uesQ6LInjKLI1tpyXvuWgmoolvaE9EQoCcLVM0ETUtKzF\nVdfKBciUfXhnhKEna8Tp9jFjVeLmKMRhR7yeyZRdm6sNbD7fi4cu7h6I59E7OULXZXLQbStfGyxJ\nzlOmVzAk8zm428OrN8Va31n3MT0S+Hvk0Yk2DQx1Lhu3B/Da1+kWnZFcv48uhreZuDwTj6esS1ys\nZd6GUQWPDXauZ6Egj2mSZEgItHve8SeyKRhjvgXgW/z5YwBf/ZM47vW4HtfjT3+8EIhGGEA3DdLL\nAooCpevagsX47JXjMY5ek1LXfJHAEMUWk1C17PwySrYI3zx8CZpJO8cO8dKBWOl+x2Ce0BrHYg38\npo97jAsHnRBkdwMqC6bLun+6Q74V879m6SrBFv1GYtzXbzr4zh8I1//8cofbX5Ap/dUvv4Y1k4Bg\n3B4PHWwtSYI+Xizg0xvBBvDIIRCGtFQNwJwWbo+/AM1gvOvaKNkQFnYMtCuWydkQJRcZnEzEWruV\nwmzF2H+rER4wuZZ56BIV2T+S5OqvfOXLuEvJu7e+/itocrGIkaXQUCh39lEKWBIba+pU2IFCSC/l\ndOJh4L4CADjsj1Gy7lcmCWwmjWtCcXVT7IlGXaNgs8Y+utXHOx+SnWmq0SUbt7NgYxO2CEmrFlke\nhuSIcCobNclvK+RwN0ykMqcSjfp4tBML667n0Afy95u9PsZEL059jYDt3r4tHpjqFdATyXF4XRfD\nm9ScaIaIZAmgQ5amrFnBKeRYTR7DzeXkX3r9i3izaLECXRRtsjWR4+o6R8F8t72pUDKHYzCCsxQP\n6+X7Id569Ztyr2mb2N7g4qnkojblAg/SmNdm4BEX8guvnGLUJ0zzOccLsSk0psY23cJSDoJly77b\nwGI9ftwbYdCh5qE9g0qYlJrKgta3PCAifXdWwiIoRlkhokOZkKjq4YDgJYu4A9PRGHZlJ/C7HuyU\nblbHQ0nc/nCoUCUywY1P/cFna9RHTOqUEfoE5HQ0cDKQsGI0vIVOIUnHfEXm4KMBlm0Wxy0wPZDP\n2t0AXtKq+5AGzqkx6Mr9KdNFk4oL2/d9WMQhOI0FY8niXfRI97XZIBiQLt6EeMYsO7oNanY4nmgP\nGJMJm9yQX3rzazgmh+NI+0CHkPCdQkkwlONZ6LAnpEpbvssCisQxw05nPxeq1nuFpJV9hZY8oWYP\nwNWPdvBqqk0pF76S5/Ct//cBFrkQmZxObqKnJMRoWPlpGgOffRthVaNqqPgdlkhZvzerGF2PPQg3\njzhXGkehbCypqTHmJuToCAc2q1mDAZwWf8sNPdADlJ5cu9d3oCuCgsIMKbEHBwMmj9M+3FNmqC+X\n8E44h9khTCVzYeoQNbk/mowdjvYG5QWxNaEHZIQ2mwwON6ehf4TAIQdEI8bNsvrQB5yXhzFGKXU3\nawtTCvgcnB7B7lCh6DnHdZfk9bge1+Mz48XwFGqDeFegtlJoIvCMNuhZLQoOqArZlX0dQo1IymmL\nNcg3l8hnbHwaDdG0lD5uCpvAKOe0A68QN89updKUA9tvyWEBRR6CpkxF4BFAtS1gWLIKQcu3SnHx\nVEqkb9w/QYc1+NPxGEdTcQmVlcJjZ1+pxDJo2C0qGRMrgheJu25ig4wSZGVKi9EcwWlLgfkFXMJ1\nldOBZg26znfI6LqblgQWaq/EHIUKKev/xtEIPCZMjYeK0N4OqciafAMvljKrGjXQkGuv6wV2G5nD\nXa1QkrPADpnAXOVwjwm7dtSeW2IShVjxOrQZYEmBmu2Hcp/fe5jiciG/qyqDkrR4fqcLh81PulJw\niTewY3YnFgYbX9bC1jhwmlZQJ8ByJeXcbtDF0YCUVAwNqjKFS6ZtxxoiYrK5sbbw2G3rGxeaMO2M\nAkBVVqEmrsAdlciM/L5JNL5+V0JPeyHJ6v/t+9/Gs3ckXEsdwMupMG4uoIh7qZ0GtqamJzO01TJH\nU5JnIt7CIidDpGqAGBdXNWhS8RAasnc1lUZNLghXpVjG4i1vtYLHMKjXKGD+Z5Bo/NxDKWkZrm3s\nWCsP3QQxadfm6x26ZHBWpbcXg0ltyZbXZo2EClLu1oX7ssBHm9UKxVqgoU3QgTPkIlV8GasrmITY\n+NB8ijlPc5RbqkItY6SMr222bIeeQUIv8cJVmAzletyeiy1dQ8uyUVfsVyBxSlLE0FNqRcL9tLW2\nZwC25/psnbZcDY9hQIQBDN3ZTuDvu+HyCqjpxufMoMeNgcPzBZGPHuHabhQBpFSHncCxiJnnPSfZ\nCjm7CLV+GRY7NAunwiyWDXBTZbC6rHkTE2BUhozxez7Q0C02wdrAZ0a9Cqq9cM+6Jy/0KomREq7c\naIOskPmejgdIlbyEdqFhs/tzwS7RsLQx9eXvqMo9niSHhYAqW01qwxtzM/DkRbGbEn261FYIOHyW\nncDZt89rr9zH8xXBaYnboGvLz9o/Bcgh2oQW7nxV6OdLUs7/zu4HOPtE7uPx27+H3jd/FQCgPB8V\nCWeUHsIwD2K4SSXLS2SEj4fup8LxtmOQJszL2BpdhnT1phUcGsIJ2V9RayTkqKxRApaEhWXuYLa7\nZnO+HtfjenyO8UJ4CqZpUKQpluclrNtySWZd4U6b1LmbodFMEnYnAC2wciiWstCYnTFkCOfwRpJc\naozGhtDQnilgk9C0rEm4WXhQPe78sYIBSTnTDA1FRopkAc0wpqQVn476iHK6ol0bdkc8kxNYIN8n\nGt9AMfFjOyRabcyegsuaHsIinkCVDjok+ewPWPuudvBqcWu7gwEstyXYyJGSDKaoaxS0aCaX++8F\nXXQIg62sCKM+JfZKH84hJeSqBlMmB28cyd9PJz1EfislZ9AwmVc0BvGGiTinA6tNWm35nKIIGckC\n0u1qT0ZbZREczqFxgJyoz/MPKaJjzVCTVVtVCiUFfG7fC7FYShiD2zukW5mXMaXSQk/vm5asaouQ\nCMs8d6ACma+grzAICN/mEndGg70J7HsWOvRc3AZIWBkxaYyY4Zbls/vU1QDn1tUBgkNJeOdFH4OX\n5TOTO3K9X/zOa3hCnci0qJA8YkJQxdD0muzQhiFXR55T06HxwaZNlPEOMRmc50kHfkbXP9nCm3Jt\nkJynKtcoKD2n3QoXK0FCZlmGl4nPef2lW6iyPXHhc40XYlOomgbzXYKtyhA8ozy5o2BCsh3nLmqK\nu9bdFDlFPRxmhW3b2vPe7ZI5OhT00Gm5J1Fx0YHLOBL8u9ExTEXiFE/BcPGbIka+lgcWhDUqJdcx\nzyhiW1moKKSKR8Ax49DxQX/fXl3OK7gUpWlakhXHwCVdeJM1iFsX3G2gSbgyHMnGFXghAkJcPYSw\nQ25e0ND8nlcCNZmNU0Jcu10XIVmOsiZE2vJHug10Jvdx7NUYsW33tHfEv/fgRg7vP0Xd4pHzBg55\nFxENMOjJC5CT6cnth2hScj9WFbJl29mawyNE2S1yqCu5joc7OcfjcwczVlxqVUG1bdZPcgwn8iJY\n5QlWtcCmw5581ukUsAt5Dr2qRt5WC1QOL2BYWOTYtNVgKmd1NzYs7th61EenJxuIhQp21bJOY9/x\natd8S00PFftntNVAUcdTuwbYkiSHjF6/+NZL+KePReQ2X2RoyNpeP8rhd2Vd1MUaypI/VFfMs5w/\nhjOR+mYFjXgm92/0Fi5BYo72oDh3iv0gSgNoZON1Nw2OWiUiKNi2rJ1t7kBFRAE+57gOH67H9bge\nnxkvhKeglILtunB0jiJlF6Fx4bIHf1VsYS5kNz+oBjDsvXc8Jg7rAkEgu252aWE5k371CC767JgM\nOn1YUUv/RY+gzqAopWZUgaYgXHmzRJLIbrxKLFztpFZ+sZKEWz/sw6N7uVg9w6YQt20Y3t2zTl/t\nLjANaY0ME0SeBVARumwWe0uT24DF740GYsGDcIjIJ9EJUtR095vKhqFStrET1C2NF6sJympQ5K36\ncI71TryqbrRG2xfjd/pwKHGeEfBSpDGUTwtWZ8hY85+df4yPH0qiypk42JHjom0uMkahR9q80M1B\nLxlNWqDKIj6fEB/99CMAwDs/FQzCWX4bpbncXyfYrRm5HRRaqkRpMsec2h9dwrl1pXEek5as19tj\nJKABzWqH6mkE7MAcDGmuqxSazNfKjtAq66kGULqVCHTg+C1XImHl8SXc6asAADuMUZMR224GWM8k\nFIoccevPfnyOnIlB694YyUwS4Uhn0CRRUUUHhh7keiahxtPLOSaWhKC6t8C8kPW22+1w6+Y9zmGO\nmjiahpwd5a5B0WoPOTFiYkgukwr1U7m24w9/D2+9LgnP5x0vxKagtYVu0IXtBPvyl1dp5AeycC+S\nErliKWitEIR0JYnv9twKvUOB//WnPkqqN1lNBUU3OE9X0Fx4VUgOx90OFktWjtWBCVq8u4uC1PC5\n8vGTD6RF9sFMFsyd4xEcSou/8/h9bAg2uepqDOnCjewMWzZCeBHj7yZH5bE6kVp7rj7llrC5iFXM\njr3GYEdSEOPnUIydldKgB4tSGaTsmMvY1xHHPXgsnRq3hEUGnkJ7SPhFz7egulxYnMPcJEgJkPK6\nDmL2kiz8AmbUbjgx5q5sAC2cPmpKkPkeqttBwyqQ0RkK9iI0WsPJ5cWpaio2mRUAhiXQAOP6oNeB\n7suzPPtxhYCVn4ybPlwfvi9/b8oSGV/euCz3wKqBq6D4jMuW29NSKNhpOl+tkTAkGPgNOszq27qG\n5gZnKBOwLjQ6mbzc6eYVuAHd9cMhnl6JkTAk0/lhfomIocEuU8iosuX5IQoasrIo9vTy60Dme3o6\nQv9IJrFwHdgMNwfdEAWp/y+3CVISB/vsni1TIGNZs2gCzLl2kqrEjiQz7283eGvY1jOeb1yHD9fj\nelyPz4wXwlNQuoEOCqQfF3AmsuvuGoX6iVjKXSeHZ0kSKXG3QCI74hlBGWefnOMGvYexDoC+uGqF\nH0IRzup111ABQT0HpDNzB4hGzKbnNhoCYZpiB4diIsX8Eu9eiNU8vxTLd/ALHVTnYjFCA1wQN4UH\na1ydintdbxXynliHfix7b7zcoCJIp2NF8KmajTzfu4HlTu4/rWZIqVFZNAlchgeDgY28TVY2O5SE\nMWdXZGJWCcKpuN+58bGjxcvfv8DR/ZaVusYJs2DdY8J96wqGVOXx1RaPyY14sVqiYQ399ugEIQVH\nwltMjG1KLD94AACYZY+gWMFp4EDxeEl1AgzF2j5qnvDvNdCqeUOhtU9+t8CZ5OpwlX2ILCPTMvkR\nYn+FmpTyKipRJrIG4rjCnBb2kVY4nIkV7pBFeqA9BH1Wq7YlClLfows0taydvg3UJb0zei5F7iAl\nVd724qcY3X1D/r5u8Lf/l78LAPDeJpmKeQqb8GrnvIdtQ2i308AwGV2UCa4eyDU7I/GejqZD9E7I\nVt3UaLpfk2u3zlGu5D4uZxdYxuw0JdzZc0skC2p3FjGWdQulbsDoFl/9i7+E06NfwM8zrj2FH3T3\n/wAAIABJREFU63E9rsdnxgvhKVSFwfJpAT/I4bBf3wdgGNdGno1sx/jbKVGTR+GCTMQfPz3DeijW\n8WvjMcaH0hkZFzaW5Gc4e//RXqH3tJIy3Ph1C5bDBBAKqFVbmkpRbsRCJXWGBeXrYjJGf/C9c9wd\nkW/hska1Eut4fr7YJwFXXog3bsvOvSOFWZrmeEYGqW4nQp1S/DTsoGpomTKxdus6xmol563zct+4\nBLuPIKJuRerDZ6KxZpfkYOzg8SNJVC1NB/Nncm23egPUF4QSn5RwSL7dswkZ197eW6lMgquleAom\nC9HvkdItvIEuG6ncrfxupRao1kRTbhP4LkuqBy4UqeDOn76Ptx/R6yPRaqtn8OkQr+nDj5dYbX4q\n17mIEG/Fs3hGglrPL7El5PlGUWPJhHBTVqhY//cDD3WLU2Drq+f2ETIxDe3BqolSXFTAgEzhHReR\nRXGZDa+v1Fjz56B2kT6SecmOzvG7/+R3AQA5n1nXH6E3IUXgJ1cYH1LouAngEW1Zr2okiXhNRqYE\nSWeJ2xfkkLjTh2aep+9PsSH1YLm5gGkbvqikXcCDYtJy90hjQdi4ox3cYGL29uhVDE//HHZJKiU6\nfN3eAdZrgltWBdZKbjI2HSibbp1xcGcik/0qVZL1ZYUOYbmRPUWTE8eQ9RA18gCywEM4pUAI4c5W\n9WkCr7ZKJJmcY71d4ZIb0tuX8724yuEhE4oPU7ipTPoqz3DJUOPH8wXuc1HlZoklcQF32A8xiSJo\nyl6tSweHNinqow7IrYJdJptGWlQoWLUo7AJLpsubVYEsaXsYKsQbJq3Yk7BaJfjRAzmG8gMsqXbc\n8R1YFCqJ1jbiMUMJ9o8kuwYhk3O9yRQvfYGcgh9fQRXsUVieI2EJI7lgmFeXaNg70I0ahOwrgW2Q\nxvJznDT4xH/CeaHr7+o9NZsMeREGnQnUyesAgNnubTzgJoNLAoiKEoBc+y714FBJenI0gO23L4uG\nsuRZZ7FsNos6bYmk0Y00wm7LGWkhIZZDX5VQBIMVHpN5yRrrSkLX1AEuiXuwOzvMydZMcScURYmM\noK6Pko/w8rkYp3pQwaJuqFN6uPdlIbCxqeRVZQUiS0IJ/94BmiuyXKdPUPL6canR5fq1Avl3t66x\nJhPRjxef4Jz4Hd+xcXpb5u2oP8ANfv55x3X4cD2ux/X4zHghPAVLA90IcL0QDRGBcbbChg0jq3mM\naYvssgcYjdgcxBLT4IaDeiGfrSY1Kvauu2GJEVFuw0EPDrtn/DFZbxsgazkUTICE5Be7ysF8TRGS\nZYLJXXHdbTZSbfQ7eLiQz15WO6yo3NxsLjFvxNsY2C5iJrBaqq3MKBh2vZVJjQu66FYTo87Y7Uhz\nVjkahvds20BJ5uq0qVHRvUyrHTKWrDKa3Wdn55gtH8s9qdEeHn0ZJ2g6RICmKWKS0mwoKeZgh4ac\nBr5jYWgEVu7dLJFf0UK51l4joZmIlXS2NbqHLKcG1r4EvNmmmNGLeRqnSBli+UyYpsbaw8qhbYAe\nRHBiYG8lrNpeLFE8kXvZpBSqMQoDyrzlusEhk7led4CIJeVkW2LDNbAheaofOCg68jzc0EWf6NY6\nTJFkMhdeXcJXvD+67VU4gqEXtlkqJJRu0098NHQRatLjGZNDkUvlo8sNnhGleppViFka7rgaAb0t\ni+FMdrlBnFKvtKpQOyR5/eQZdiwTdwchokOWS+lVLjdn+IAJ5o9XS2SkvzuYhBhFZDSPn8EY6eZ8\n3qGM+fkgkP8yxnTYNX/1176EcqfgBvJyrIod1meyYF0bGHQJ5DEGMaG0NrsBFUpsybR8uckRkhUo\n8h3E/P1stQOIr3ccdggqCzadpUG3C4d4AtfzsWrjt0xBndyRc1eywC6XjzGy5XomfRsLAoAmBwfo\nEjufNBmqXBb9cCif7Ud9DEk5HmpAsUW2ymts2Bq+uCQFT12gSxamztjdq1DlVYaYOQr/MIQmwMvf\nELhjjTF8VSoDTmnwW3//f5JrzxtUBDJd7naImUDI2W5bmgJc29COhkNot9EWErafp7aB13axEtor\nCkQEVmUVFPM2gePhrfsCvPnyS3fxF/6yAGg89lR8/3d+G996R8Kc6HSMGyPyZh4dYfdA5uDZs7fx\n/R8K2ClmSiWf51gxPEyKDDXn0NM2HHad2sbAYmu3y1Z83WtA+kRUZYGctPyNblAzhKxsBZstzl32\noKjdFbZdOXmwXSC2yJa0bXDrSwRcmT7ncofVjhB7B2hymVs3sGDaPIFrwaUYsuu1tP0KAddmr9PZ\nd3suVgnOLuSlz+IKMTs0EzIv2QAidrl2bvfguXKdmw9nyHi+0WEfVSSf/2e/+973jDG/jJ8xrsOH\n63E9rsdnxgsRPgANGpXh6HiEho0onZ2L6WEr4xZAEaXYK1MkJEOxO2KttnEMtRQzsHVKaGbUM+XA\nIbqvF3nQjrhtbf3cJA225CFoDJCxUqG3BSoKfDg6gCFnQUV8QJXl2NE99TDBqMOe/byGcsRie40D\nP5BE4oh6lcejCMNQLJBn5aBWDMpqh04q3sSQeAvXsjEYiwWyLRtVy/NYVcjoapeehYZe046NX3dO\nNQybnTTWKBjaVMscScuPmOYwppVsk2uojA2P7khZS5MSAKRZhYL6GjB6zypdk3dg7BVI+L3Cavau\neLot8N1MmpkmToSXH8o8hxuBoK8Xc9zwxAPZZB5qIv6SqxmqDbUzljFSakNsZgxL0hwZmZ8bNHvR\nkwYKupI5dLwUtmElwqKXk+o976SBgee1UvUKTSs7X9ZIqYRdarH4rgEsitrEWReu/pLcv55DQUKa\n+FKOm2QuQpvJTl3BC8mX4QfwWRnphRqjqYShNsOdbtBDz5ZriMI+4NGrOJvtuTgW2xw1q2AJ/92q\nGh4TsZuNBd1qepoMr3bFy6wO+9Dxn6KW5J/YqC3oZR+TSYWEnWOVdnH7tpC1DsIjXHAxjaIDFHyb\ndpd0I5uP9gQhrtNDSkKS0FTwyKt4NJxiGrQQW3mRHl3EoE4s4l2Mkos/Ve5eBl7bDRJ2VSaVHGuz\n2aImEGrg1XuBUk9L+RQAVLfBkIw9B6dSAg0bCyPG8l7XQ8MYsNwZaLI3ecyah50hbMacdZ4iI3x6\nZ+x9vLzKFthSeBZGNkJTzFA9ZCgRDrCYiSteVxUsxgclKlicry7zFhVq5CQ9KYoaMeeiqmopDwGI\nHAdgbiPscBH3NKxE7vlyblCV3EyKGstcKj+/9f3fRys+PqWb/GyZYUAdT3exwJbw59iuEV9Knkdf\n7fYw3ra1ujTsDgRgKxdOnzkAM4HF0MXtuPBtboDMBwQFsONG51ouIqJ7/FJhw7butKpQUkQlTQSu\nnRoPo66Eh5vlMeyx3FOzybC4lN/TlsB2Y6TsxXAzH10SuRhLwWeocOPoNqYk5XEC+eL9yW2MKC5k\nDJBT33OjNfo+RWVXGbo2hXbm8sw3mx02LitG2yW2rFSUjcbGlYVtf6igun+K1Qel1EAp9Q+UUu8q\npX6qlPq6UmqklPp/lFIf8N/h5znH9bge1+NPd3xeT+E3Afyfxpi/psQUhAD+UwC/Y4z5W0qpvwng\nb0IEYv5/h9YGYa/GqvARRrIzBj0P3ZeIQ0iBezfuAwAaq0SkxMVO78nOOHnsgRKMWG+Bt8+lJq7y\nDYZdsR6vHd/C6Ab5CchS4n7yAPUnsqN+eLVERbKQ0q7g8xzQxV4Gvt1C66qG1fI0WF3AZ///uEHI\nrPbp4QTRgEm5ATki6hqdbtuslSIgRgC9DnzWkttGnED3UFGEpio1NLUf7dSDotVUTokFqcMN8QgX\n6x6sRjyhwXiEnAlFA90m+LE1JTQTdCXd/a5l7+8vqQsUdKMtAAN6MdODKSaslQ8cKnHrHbZnrL70\nK7R01VmVwDD7frZK8Fs/+H0AwN0DsRFHdohsQ6usGoQbybKHToCnpMJbphkqeilgctgzDnqEEkcd\nD8O3BAvQ8yo4xH3sdk8Q5mxCI2FJsauxykhIUmtYrGzlW8Dqi1cRNAorNuQl/F6NAmUm1ZCDlzSK\nAxFySd/+zp4MxWeCs+v1sc3FylduS2oP9F0fmiGBc+ihcyDXf+dI5vAwHKHfEW9yl63Q7TN5mjYY\nTSUU3EUV7n0kIUHuflvu6QMLa3YVx7HCjpKESls4JwO5la3gmZ/PU/g8ArN9AL8K4N8FAGNMAaBQ\nSv0VAN/kx/4ORCTmZ28KXon1Aohekzh63JviVbpf3sSBE1DYM63hkl/Qp7to3b+/582PtxnufyQq\nTHkW45AP7PDmARTLTDYZhg4tjV/sSXb3f/79HZ5ReUjVGn3GzlVVoh60HW7ygJq6RMEW6ODOGh3y\n4d2NAoxHLVW7C5chRp9vo+8EiEiB7llDdHrsOFQ2rNaNb+m96xI5cxnasqHAnEpgwc3aeLnGLiFh\nTCj3ttjmcLmQqgIoyBnpVBYckp50S2cveMpKGTynQcl+gDwvUTFu73o2Tki+8sVRH2+eSkjU4w6y\n0H1sWYebnZ9hRlWkDzZrLBjLzvIC80RetpDqT4cHNS6JFIy6h4hZlej3PVipPDN/qOBfyQXeJqpy\n3OvheCwv//HJBIODdnNzUJH1aBscQ0M2xoaCv8XUYLmWa14vYyjmHMqphausJQt2cEgy3SdXAqI7\nW8dInoh2ZW/6CiaR5Dtm1RGKXJCXDcNKbe/gkHJeNQl8rrPeMABlRXE0sPAGN8a7t6U603E8+OzO\njLcBrLZsvRrCZqWiKncoJ1SWIuX+Owcf4B/+UxHjzdwK/pygPFRohdytjtqjgZ93fJ7w4S6ASwD/\no1LqB0qp/04pFQE4NMac8TPnAA7/qC//YSn6pO3/vx7X43r8mY/PEz7YAL4M4G8YY76jlPpNSKiw\nH8YYo5T6I4EQf1iK/qAXmc0yRf/Axps94cC78doN9EOxSqpI4PskLJk0n3ai0b22zQT1qVid/ipH\nd0puR1N9KoSxy/bUVaYWSzN49RaGrGB8cz3Ht96X7O3ZKkVN3H5tubBD0qszOdXUDWyfvIuFhxsv\niWXr9zqYDsVqdNHAUFnEYd3Z9xV8Ctw4kQXHIxUcyr0eoeWRUbqoYOyWHq4LS0lSq25ceOR2rFWE\nASsNm5TMz2EDi4CtqqyRZ62X4iIitXg3KKCIT4lI1ZXHDTZM0NaNgcOyxNG4gy+8Kvv6690RXn5d\nrJtPN/vOuMHyA8EbzI7vYDmT793drPHTM5nP715eYM0E3FOCwiyj0O+SMTrN930u/sxCjx7NOOii\nZuLyNbrtX/yFu5gyAeuFGuuaQLSJhWJHkZjQAyMo5KTsq8oCUXsOBbBxFXmucINJ5VKHe3bohBD7\ny22Mil7O1WyGzJNwRXkKBbEhbkuwWHfQ6dDTsxv0SZgzHkaYUNjn7t2XcMLqw/jgjlxv4EGpljgo\n3hPm6MEOuiJeRG1QruQzX/1Fef7H4x6qUtbke1dLrCqxxavSwNB7q5SDovgMnvxnjs/jKTwB8MQY\n8x3+/z+AbBIXSqljAOC/s89xjutxPa7Hn/L4Y3sKxphzpdRjpdSrxpj3APwlAD/hf/8OgL+F55Wi\nNwZ10eCg76N/KrvhwLgIaDWNHUCTWcjFCB75+xXrx9rzYZWtpkMJh3qN8Es0VC1ueg0Mobt12Xae\nuQgGkqt48+QufvRYko6PFynA0uIxHCxCOfZyy1KS5cBiadG2amDVouAijDyxDk6TQCnxBFoth9Dp\nwKHGn9vYcGwmDJUL5i2hGVtLLxR1Grx6D58tTAGfH26sFJ2WLaqhwA1KzLZto064Txgqt0Zkk9eh\nsUDjiJD5mXWxxpr9/5ZSOKZ38/XbR/gG9ThPDg5wwuYuayg5jjx1oW/Kz1GywemBHGOz7sMiFVry\nrovvnQtceUeRnafZDqMOC1OVxo7ltGg0QmivObcaj1y5l4BltRtRDiemWjcGOGAStCkqZFwDi6RE\nTvwCw2/USY6q5WAzFvw2WWuVMMxNOVYFlx7UAeuej2x7z/BcZzPUc1mTXf0FrJmWodwCjEmhCcEO\nPQejfkshVyCi93Nr2sWQaEmHKtiqVgDXiLJCaFvmQucdWNTNVJUPdyweiwFL3YfAr31VcBOHH76P\nb8eSP9ostpgQWn+RZsja9tfnHJ+3+vA3APxdVh4+BvDvQbyPv6+U+usAHgL4N37WQbSlEHRcjCa3\n4LOC2QQNSmZWqzJD2KGSkRWjabn/GBqYUsMQamwSH3DJduv5gCeOilqGaPx20ct5a2uzF5aJugd4\nicpTDy82cOl2ZwMD35bPDIl5WHoePNLLO76H4Yhag117r0LUCyd7rkSPHIDa0fAozoKmBghFhW0B\nmolNQqPR2AAhrFpZ+/vTSsOJ5P67gYWElZQtqxBJZcNNmDAMAEeTIKRqsCYwzApqaCbaWkUnaAWf\nnx26Fu7Rxf3Ka3dxclPu9eTgFsKDVo+TlHbbC4wq+V087MEQZNUZxEAki7/jjLGistI7T6XOb8Fg\nx41uEBQwhBoP+wEMXebHuwcoK4kDfCYw7SDCcZ/GIrSgS9kUEssgYgXHLnOUTMZmDDHLCKjY7Tre\n5Viw5TrLU2SErxutsCLooOtQdDb0kLMfJa9E8xQAXO8ZNOerIrahLIaYHlHRqd+FpvrYcOhh1JNn\nFnl92F5L/U+G8qKCbjntAg2LRDxGbaHBjdOroLjp2dywAivAwYls0mlziEfPBFsxqwqYLTfAnUFd\n/nx0bJ9rUzDG/BDAH4Wl/kuf57jX43pcjz+78UIgGpVWCAKNbhPCJYHILrUQrMTKu+MOFLvXLHsA\nw1RIy0Gg3QSAJA+tgYFiH7+p1tCUhdP9HFZKz4IQBEvdgl2LW5unNToUzag1UJdiMW4GCjaJSy92\nspvPuw56bJyZ9D2RcgNwo2uhT3cWpb23CKAVtBtAM9kFEwBEJlY1UFNwpGorhVWOmnV+ZddoWibi\nNEXV6kNa9T4x5pPTIWw8aCY7022xtzq6qADqBQSlj0MK1Cii/La2gksswMj28bUTudeT4SHGpLfr\n9SJY9JBAcg8/VnAP5NxOXsKw4Uvnhzi+Iee+EXk4e/oAAPCICEttGsSEk1rKgkc8wsJaQj+l5XY1\n8oQCPCSBPen5mPalpm9QAby/blFhzY7RequBgPOp5XdlMIE9psW/TBFYch2zosQua8mCaxzR+lt0\n4V3Hxr4bDQ0UsQCBZSOmfF+fZLbaLhGTMHXQNbDIddBpNMYRyV5gw3MZYnotGtOCRa/QavS+0Q+V\nt4dCm9wB+HvPk6Rrf+qiYsbuKBzh9VsSCs/nc5yTMAja7L3Q5x0vxKaAxqAqGoRdBW9HvHjfhj9i\n16LdgWvxpbcCKJ8PTrViMf6eXtiUASx2WmLjwbR4ysKFou6eYVzYNPO9RLqPAj7x9yarUbTcFqs7\nWD95BQAw4sNscn+vUuQ3FrxWsSgK92xDlhvC9Vq4MVWKLBeukhcMbgNFEpWmyWHo8ivN+BUOQHZi\n7BRcHiO3AmhNQFKs4HPhmVYHEiWajDqCZYayFTVRBg47Boe+gks4dcMFP3Fc3GCuZjyK8LVXpd32\nzp2b6NyUUMIpaqg2Pl2yN6SvUV0xfvdc2FtWPvwNzEY2kFGnxhtH8vyOPiI1flki4bWZdYUeOQyf\nPlgiZC+Cyhr02O14eyJ5ouHkJkICp3SYoKAQjfaAWrENXinkFOzN2kx+ZeCw57jUDQK66z2tYbFA\ntnALKLeFP8tnp8bGJ9wTDICKrnjmGoCM33HVSg100euyIuY50G3uJxxhciydq17Qgc1qha651kMF\nm1ybsG0ohpWq50AR9wA3heEGqVkx0pWLhr0hVaZh7VhyyYCShDpVAaifs55w3SV5Pa7H9fjMeCE8\nBQ0LEfpwkKGgPxTlHTjUhLQtF6WmTt5qCzUTK+dNaa16h3sMgq5raNKKwSuh2djTzKo903AJCRmq\n0sHijJz+iwyzpUBtZ5tyz8eokwU2SzmG59yR41pduLm4g9k8x+JDHqN/hN60rRhUKEmb1krKN0GJ\nErTyaYOCXAbGKWBo5Qw5/Zs0QEbvJ51dwZBp2tY2osO2VKH2XY42XWdLF4ip4BxnFVrX13P0Xscy\nVhVsNiA5hDQudIYBKy4HnQk6h+JiuWEHYUScRl5ADeU6cmohoKqg2RnoBjlQs/KxAxIiDFFPULeU\nbuw+hbJhmDhLihimFA/q0LOQZkwa1zkMOynDY1K+TYdodrIWqixDRhRqYTdoGIJ5jo2a4Z3Hjtq8\n2iFlEtHp9nGrK15MsN7hkmzddq325y5ceiC+B6hWIMZAc766/hew4TwXqWBrYvsdPOGzxtqC2+Pt\nqwr5lawtfWMKpcXTUUxKO9qCpkSgUtY+pDNlBWV92gVqwLklIU+VzpCTwXm1foAZhXo2JZAz4VuW\nOZqmlZN7vvFCbAqOa+HoNEKqPaxbUdIC0DWx/7mFLCeJae1jp5/K994jM1H3XdRzedGHB8foHYvr\nGwwOAcVNQVWoln/INQewvHiG9+cCWz3/MMFGsTfC0lhwM3lWXCEq5NgWZGEOxiEcAoHyQCFgZrw2\nDQoqCJkMWM0kG1x22b697sKe0K272mJLJSDX7iOg2Gq9pTKVMXsNQ1PXcNkCjKBBfEGuyZ5C3RKH\nuMw2Vx66vPaN76HDUpexNLYMTZrawPJbDkJSpxug4Ev1fbPBxTtCbvJN7eJLXVFICoMBFBM52ieA\najcHtMyLTrto+qxqFFfIyZ+4XC2RcGG2m5BnATVj3byssKPYz2h0G4/PZNEv9ByK4d08lPOtd0tY\ntSz+i/cuMaNSldcPELJiEEQuQGp3sF3a6bpYM/RZljssWE+8uLjCozMBX2VVuXe1jywJL4ZBBYfA\nIqgKLZek39vBPJNzN+YDznEfDjkerVEXNvMEbujhnNWO8WaDgiQ501Ag9oHtwnOFeBhaAaxm1Mkl\nFNcZlIIhoY4hC1XhdLBtRHlrnRWYr2S+07pEwZwYtCiw/TzjOny4HtfjenxmvBCegm1bmE6GMLEN\nsPlovdGwM9lJ/cCHT4rzprERVeK6X/kPAAAPv3cOYwnEU2UVXEOAjXKgSUWevvM+Fk/eAwBckC13\nEcQozsVCeV1AkSugsCrY7MdX5jGGQ0kSne6+KNcwyTFgFtozIWqSl5TbHdZ5Wz5I8fQReRhquTbL\n9+AMKDiTJAiZ9Y6dJxgR3FK1YjCZQtBnw9R4ioqWZmQ5qCLZ+ZvQg2LzTI9Wy3dCeBM51vIyw6BH\n6q/MRk0rl5YGXXIptjV6X1kYkBQE6xwfU1ez7zxFyNDk5fEY3pSlm514dE0G1IV4RFmZYD2TYyzz\nBMOgFeLJETBzHnWZLNsBOYFa2vdRU8V6fNLDZkmBlzRESW8i4LxenJ0h41x89HSBRwvx4pZFg4OJ\neFCv3zjBlAnD1loXBjhfS8jzvR8/wB+cyTlKXcDhc/ecBm0bDuk4kal6X3tQACZjCat+4/XfwONU\n5AR7peA0ynKJklBrHScghSievZ/jE5BL8Q9+gqIv5/vSy1JF+Mprb+DGHbl/29aoE5nb7cUFwHWW\nr1LML8VDeHQuHqZdp3i4Flfxk/M5nlLIpqjjva6mazlIy3+eTv9fPF6ITQEGaPIG/UNgyL4Edxwi\nJEgnNRmefCgPf/bjD/GMeg/elLTmn1zhlVfke6WXQPVIpLlJsXnnJwCAx29/Gz94Iov39z9mtyQy\nRARAfWE6RL/bZvA1CmZvzxsHWBHJ2EjY0gmjPXrOr0c48sm379UwFChdPtzgyYcXAIAnrQvbt7Ge\niet7b+jh9ZdlMb164xaqK3HXFyu5t7M4xicfsTdg8y4CAlZu3ZviS195GQAQZQ68riywdqOwtY1W\nrHXYK5GzXTjyNfpteQ4lDkg4g5CqSZaHI1ZXllGDDl3OZZxi9kjca2+2wq0Os+hoy1wF5pnMyw9+\nusFPWoYlx8PxoTyTkwMfIVuHT5h/eKQyuASD2UGADXUvsmUKj6XRoHRhEXBmiFA0AZAs5bO9jo0O\nDUCy3uLZYz6H1UPMerK0X2cVpUkVdlcy93mT4TbBWYcnxzgYs3pUuNglci+zMzJ5VVnbSApbWQiG\nzG3caVB9W+a+BTx16imijuRRgkghcNmv0xljwOuHX6E3lnm+WLSci2skW/JV9oao2T26vJwjSWUj\ne+9iie9+WzoiE3JtTo4dHN68AwAoa4P1mgYlBVyiJXXjQJH6/XnHdfhwPa7H9fjMeDE8BShYsGG7\nKSwq+/R7Q6iOwGQ//s4P8A9/W0g6nqwdXDJz7MzEBbydZbA/ENfpfvc+nB1BP6sVasJ4P5772CTi\njs8a2ZWvshrHhhTwvsEBOQaCBggC8gUkBvM2ObgQjb+veY9Q22IF/KMCuwPxOXu5hzKTazqfneER\nXfSHWav3mGFDsZuLmYcvvywWH/kW6/fFis1atz4P0FdiUZ5FF6hAinfj49mc9PMmQ5iSXp0hld+z\nsUvIoVBbyPf04xX8FpvgAGAHpyLO4Q8uz/AuPYVYu5j0xYu5e2TjwzZh2vgwrtzfSU+AMhhHOH8i\nntQnZzt8dyGJWxs+7rMe/97DDW5ULViKdHSOix5xGKZnYQ12DoaH6J/Iskw/2iD224oBKyDrGrOP\nJbn2YJfj2Y4YEG3DYwL58eUGh6nci7nDKcYSK3qYkekiZDg6X84xOxPXfhpGmI7kWR4SI2MWHkb0\nqkxW4wskSHk5OIQiSU5dUvTFexcFGcF3WQ1HyTM9O1vDpSJXcHOK5l1x/79yT7yc+cM1BgRTmbjC\n+gO5vycXz+DfFnIhrWucJfLcz65krZ9gisdP35Vzr2d4TGBYkgG3BzKfYZFhtQ+Anm9cewrX43pc\nj8+MF8JTsBTQDyxob4SS0ODULRAxmgsPJ/jqr0s32Ou9I0wy2QUfWWKt+89+iHu3ZH+bHvwFaLLV\n2Pc2UGQ0Or39DFZ4CwDQZaLn249mOGSz05uHN+CXEr/9wrCPb89ZqnNjBD0pF1nZ/w2KURbgAAAg\nAElEQVQAKBvgpbtidW9OPVRMGFp2DcPEUH/Qw00KlYxpxR+f15g/YT7EceG7ch91aSEJxMJ6gViU\nG8oHeH+njYuEIINXDk7QORQrGKgSaq/NSD3ETYiSTVKRF8Fnwmmd16AGCTq+g4T24KcryXs826bo\njcUivvzGXXz5vsz3cb9A+YHkO8pyhitCxQ+Ix9BhgP6JHOt+HcE6lGO8/7jAtC8n9LYORh1Jun6x\n4kXsMqyYaKzXDQriG4b9ECW9mKl6hmAl92JTXbqaNPAieX4Hrr2nt6urENtE8k6XpYbd4RoYseFt\nO0YnFA9x1O+A4TdiU6PeydylZYqrJedzww84KQZuK8SjsNvJ369WH6Bqu1Grt+Xa/D58Pv+k0CjI\nw+CFATChjunpTXSPmF+5yaSr6aJwWC5vbGQdedarRYJjntsejPHWL0lpWD+RdfrS6C561NzwNgt8\n8i2hadsVW8Qk4W2gfu6S5AuxKWit4LsWrBSImMgJ3Dt7uuw33ryPt776SwAAAxeGmerdUl6k4Nd+\nHS5fGlVGKOeSkFH2IUb3xUXz1l3cuvkj+b3zFQDAN+c7BNQJhL2DzkjwcnEFey4u851ggr/4DYE5\nq9/7KgDgqvrbGK7lYUXDAjvStBl7h06LnQ9C1KyLZ6yld0cNxge/CAAYDh2EJFapsxoHxxJKtIIm\nqohxEcs1jBsfO5LBRHmCXiUbR+do8KlcEBOYi0rB89radgAy2qGIgZKhRGrbGBMDEjGp99pkgG+8\nJQQq3/jGN+DbFG6d1XgWkfvvyoZHLIBLuXtluQgJZHrz1Rpv1iJ7/is35+iR2l4lC+iF8Bw2JCbx\nnz7GNpEEWKEBUzOc6ZW4BwGt3bz1Jn5gfSifp8DsSA3QvSWhTbr9VNvx8ewp1mwdng4CHDDc8En7\nDpPimKKrfu3g5kTW0L36/2PvzWIky9LzsO+cu99YMyP3yqzKqu6uXjkczsadEoc2IFIWaAOGLAF+\nsCBYLzYMGH6w3vTiBz4YEAwbsGHAsqwXUbJlgwIoCLJkQpQokOIye890d3VtWZWVa+xx93OOH/7v\nRk8TkqaGbdNFI09jUDGREXHvPffc82/f/30dVNywFmWGnPh2srjhyVJjxGvWEfCTb7wHANgZ3kVA\n7EREcjFXXyEfs5sXY6QM137qx9/D3qFc/+tbx+umnQHbwVU+RX7FFn+vRM7u4Mx0YNgdu9Er8JU3\nhN3888dy7wZdH2FG/s9uiu89E27Sk9/59pqcJvTWZNwvPW7Ch5txM27Gp8Yr4Sk452DqBv2ehx7l\n2IJYwYvY+KIdvNGxfDgEYNgodSCfVVUIRySZe/F8DWe2TzyoTbG2QW+IIZtSvKnUhzdfK+Au5LPG\n96Aei5fyZ48+wEfPCKXtb4GoWuy9LgmpF09LOEW237HGcMTOuQLo7IrVCN0cAbULc2IQktDD9r5Y\nGm1maFhjLhOD7kqO7UYs9a228PqBeC6BtbCE3Xq1hu6LNdJTA5tQRIXErgZTJGzUge9QU8AGoYHH\nrstebRETQ/Au9Qa29kf43NsyL4f9FCpno80wRNoRi1+YDKMjyvfxdwtVwqOr3hvtI2DpbWsYwifx\nS61CVKW42re7Yh03Aw89YgkeLXM4dm2ePTrH7c/J9b0+vAV/X97foieYjmLUxCzUagHX8i1EDrcH\n4vX1tyPsdamFSdSxKUPsbbJsbXJoNmBhViMgYQ58IGGT1nLRNkRFWPCavPgunl7I3O4dTlGtWDIn\nwW5gfFSaUPooREKy2e3tN/G5tyV0HQUDOCIyA4+eYs9HcS24EKM0VoW8n+sKdSCvD/fuIiapUEMd\nEt8Adiivl1MPXZLtQgGOokQq6iFgcxjW/NL/5vFqbArGoZ5X0E0Gx0n1FxpqwAy3cbClxL666QGU\nHFftjVUVsJBFbM7OUE1brPoDKHbwVYvJmuzEpbJR+DqAZUyu1QHcPuu/j0f4c196BwAwXRa4+2XC\nbh9Lp97lmQelZaKVDrG6JlOOjkF9DzSegk/8eUJ3fmM0gqHcfVlO1iIiUD1QtxUBmxBj30e3yy47\nXcGbEy/ve3Ak5yirJcyKAi5s+16aHDUxDaGvYLTMRT8MUbPl+jyv4BP+PGBYMuh1MGI23Q8NAuY7\nspPnsFxTzvVhc0Jtd8k1WTioIfsuPLdu1U6CdN0FGiYJHN3/hgpYmZ9iTCn32lZrTsg7yRZ61EqM\nPYttLfenc0tCiggJDOQBijo+0kwe9C1doWiZqz0FcqvAtOeuLCI+VMUEqMh/2VQreGTD6iKFn8ix\nJ2dyvuUswDMSnajJEo5t3aXaQVXKsVGKIWjwf+FsRVp/7UMReGWQoe8+gWB7NUNWYtSLKkJDpqRm\npeGzu3LxYgV1Vzan1LPwfeZXyKDllIOpZeFk2WMsyIMZefGaRMercyh9U324GTfjZnyG8Up4CkoD\nfseh8oZoqPNYZSW8a7EkKvTgUT3aJM+h5+KKgQhEVTi4XJKLZlpB0zVWeQzLzjIdapicNFibxKh5\ngEcNAUR9gMi87tv7eJtu26OoD6UkAXf0Y7T8Dzsw3NkzreDT/ZxmM/gZcRahhik+4UcEgGxZwu9S\nd7EqUFPqDUGBtCVkoSvqxR5qmjuvblD7YjECL0TIUAHdEHOi+yrSF1sE0K18tKfRC1oZuniNWZit\nKsxoPDaZaPSNwaoQD8q6Q3hxSw8GTM/ZDVivMCA7ctXqTbgaih2ctvi+0AYllBFPz2AGxYimYGVh\nZio8ZSLWarfWxnjri68hoqWso1OkCxLfEJVnRho+PUW9WqDXp4vViaEt3ayyhE9kaeGLZ6ZmFob6\nDmVToG4l5DQQk8ixdN4a5qzJbzD3Vpi23ndZYzehx2OewVSPOQey9rRKoIjM9OI+YrJ1T6oZZqVU\nPjbUjyDkbW87WIt8uk4MRtubUHP+Rj3BYsJO09fvI3BMzC4lKamaHpTfSgsaFOSX9FIPPpP0zlho\n/cPZ/ldiU9CeRtrrwGvUWvh0Xi7gPX4MAAj2E+hY4l1ttgGKrLgpW0zhALavertzeC1Jx94A8AVY\nEs6uYK+kdKTD9sG7A8UF6NQMDd1WvTXA/rkcb+8rO9j86lcBAIvnsvh/zVrMZ3LjdnZieI08pAM/\nA3LZ1JZKISQhaMobF8Ye8hZMFPbQY4bbSxL4XEBtbB17NfIV43pt1iQcyhTIJ/J7S5Nh1bDVlyIy\njerBHzGXYX20z/a26kLvyAP0ndNz9ChoyhAf23GMsF08dQmVyma5yhUuCA/e6XbXhCQtfNpFKSLd\nMkTVsGQxVXoAxxi2XjZgGAyrZLOdFNWaEWiYdLBJZqK7n7sHVldx+WCGK1aBBpRhNx0fjlWbGNGa\nylw7H2pJ3siks3ax2/uhIx8RY/zwskCx4AaSeqhrhjmrHDkBbOfs6nyornFnW67153aBt//Dn5Nr\n+t0t+CPmBmaUoq8yGDrfgfKh21yEMaiWbbhZQFFstqXZMo1Fw7g/9JcICeDze1vQDFMjWyMima5P\n6YPGzFBfcO5DBY+GKrEOA8oRzJ0D/hjFYG7GzbgZ/z8cr4SnYAGstMOgaxCWshuGiQ8wg4qmgZuy\nf793DRSU6epKNUBld1E9l0Rk9t2nmD+U9/WkRkByDr1v0RfjD5XJTuvKaxhmfevLczSkam9WGVRf\nQobB1giBlR24cyi7claUsOQ3KM8P0GNXYhOGCOiKqrlZu3AFa/4mG6MYU0ptnCNhdWJjc4B+l7Rw\n7Gr0kyFSQoKbeQ7NJBOiBIZCJcGqgo+Wpo1dgZ6Co+UzQYgJwUb9kUPErP3IBzbpxm9RJi3ppujG\nTIBFHrKFYECy81OsCHN+vJxDUR/Tr2SOR/feQLwl1xGEXXg8hotqmIaVnXyFgrJ+Fy8E5j2rM8SE\nJd/pjxASkITAh7dJjUZPo7vLShO5ClU3QP1EQgKdDKFjut2lh4QhQbk0WFKtOumR92K1QLFsdR4B\nn/qK1bJBwpAoW81xtZLvZSTDGegYG7vixYzDfRSZ4A2qzQq2JKiJUBHPbcEjGVCaJjjcJbS5dtC8\n1wg+WRdNS9y9OseKfCDRMEX9XP7QiTUSgpA848Mr2bDHShvKAH5KVfFHEaZTlskc0KOLWHk+QmI5\nXna8EpuCaRxmlzUGwRk0xVo7KoUJWEIsx3ALxobBJjwrmWgwk63SRwjeklIffqdEQ62Ab3zwz1F/\nLOW0o70B3vwL/L1cFrR/9RjzR+TycysUijHbNIK3x/JW/BCoBbzkGW4wzqHgfvX0+hoFs/0Dv4M4\nl5uodYEeM8CdXLLXtSmRtbT1vkXDv6t+iIosPGFK/kjjrftAmnKBqmE5yXShydZamxUUs/0htQjL\nDpAt5b0GFcasygSYrrsPr/MCXQJyDkgqWy0L6EP2HCw8zOm2P35ygQ/m8htDF2KPLnqnT57BxsCn\nsKvFEi5qVbSW6zbi1WSKJdF93z6XBXrpNHb6cg5vHm5iycx5fVEiCHlPyiUyshu5Y+l2bMZzLGay\nFkIdoiABSlHMcc3yclYUWDZkSFrKgzlfXmM2n/F7EUabBImFFrNMzuls3ODMMM9Botgdv4eD92Rj\n+e5qhP17DNewh/BIDEf+4U/Ld+zfg9qS4wW7EULuA4mfIiHLlm4sarI7lRMxZOPzS2gt681lFnFf\n1tDhsofb2/d4zhUUy6WGZat6WSEjCc2Hj34fz9jbEQQdxBFDl6VB6P8xhg9Kqf9cKfUdpdS3lVJ/\nWykVK6XuKqV+Ryn1QCn1d6gJcTNuxs34EzI+i+r0LQD/GYB3nHO5UurvAvgLAH4JwF93zv2qUup/\nAPCXAfz3/8bf0kDQAcpkCL91jYoaqRJX066G8CNx/dzzSySvU2OyI66cSo6hDS3Dl0fwfl28jbe3\nNvG15/K6Mks8+HUSihzyvckZikysf5MF2HhNrEfWU6hPxZ3TX9/HQUI+gUOGLUEEX7UiKwuwwAEz\niJG2ySVVImDmv6p4vBVQ8PUg6cJCXp98UCIYya3oX8kemoy68Mn35+IGivRaqbpEQBUqlXio/pDQ\nx3ISrolTbOKtlaemZY26zazXDUB3vSL4KfcbXF1IKBXuWCyZ8C1GfYyY/Ox2Q+Tkb3BL+bFsfoUl\ns95xf4jNDfJZ+hoVrbjxO5jM5f49pQdirYXnixd3XgWoCJYytsKKZqQMJwiZ2DRU+jKegaFi16qY\nY8Fw5WqW43xBHkTPBwgXB5mv57bGJTkwhl0finDrpq6wpLVd6QqVo0o1w7E4TqFqgaC/8bk+4jZ8\nun0Ne9Xe6/8DABB099DtyTl0Bz0MqX9adjIsiEmoqnJt8Suemz8MsZtIbBtv7wIkjjkaGISkka9Q\nwgX0EKzMRWmAZSEe5MnlbM0qPdhIUTHpWDUZdMsI/ZLjsyYafQCJknRqCuAFgK9CdCUBkaL/dz/j\nMW7GzbgZf4zjs2hJPldK/dcAngLIAfwjAL8PYOpciyfDMwC3/lXfV0r9FQB/BQD2NvvY2BohLAy8\noKXiChGOmWTpnaMmiSkyheJc8AQeG6KweA3N4+8AAK5/82NUK2l8+taFwu4RmZy6WxjT84gzos7C\ne4ioHTGuzzF/TLhq0MOqEotXBe9j62eER8GSxu1iMoNfsUEpmsPO2TFYlVhScKUaL3HRk108bglK\npwWSTeou9jpIUpK11nPUc8mTUCoBxekCmoxOxbJARATigW5QE6ZXlxUMiT1dKfO2XFkUrdZm4yOi\nHmd5XaMii1FdA13KioVbLPXVCUqWEMvrK7Tm2s8NZmcyF74fwdBrSCM2rm0cIjuRhqhFOluzZw+j\nW2uZM70IcMYux+dLIlYbB59NWctlg6ZkUjabIL4SD2Lnx76Isz+QJp9gRum9uEBID6pwFm4u+YBm\nVWO0KfH8oJfC8xnQswR82O/iFu/HfJzhfCoW/YOrazg2KL0ZR+iQ/XnJcrLqBTjePAYAbPdfx5sH\nkl86uVToHEhuI4A0uRnzLcQUIurYGoaIzdVZB9dsUb21O0dDnMFyQp6Kaw+7r5MjJFvBGKqqRwEq\nkg0v3RRRX+bTZvQgvQoZaeUenE0Q0Fve9h1WU/ntvFYw9odDNH6W8GEDwC8DuAtgCuB/BfBnXvb7\n3y9Ff39/x81PVjg63EDCpFy85SFAK88ew2sIkAGwGj8BAFx9Sx7y7/3j/wW/cS2vL4oZehQPjXUX\nbiKEFntxBz9xJJO9fyzdZi5QGDOBaa8VFGQxfvvxIzw1soB+8XAb9SNJUJXHcjOuJ0tstC2reYjG\nax9uoENI82pWY4cby4TUbpFn8fDb4ka/b57hLqnQ9jZ7uGa9vU3U5bpBj4nB7c0e4n1JRC3TaC1M\na5pgTQG+oiZmqKaoKz5gcGiIUrIwWLaU8wBqdgNuBPJwh36KqKUODwyWrWJVkaJhUvJo9xBvvfYu\nAGDYlzZe1W0wffRQ7pPNMCgJXqqncFT1WjVjfO9jmcPHK3mIPeXhTaabrhdTGMKgzx6c4P4X5Dd6\n1duo2REZvBCXugoqBBRxtXYJRZWtuGrQkJQm80t4JcMAYi8iNUDKasd1pHFZyHp5cjlFv4U03Bng\nzojdrwwftPMwIiX7lt9Bc84Ncl8jJC19bSS81EUH3YTAouUSZkvgz9nEQ7kj871a1ghaYNSJbEx5\nucTeC7nO8GAH+lquSccR8ufy2y6v4C0JKiGWorxyeDGWpPnl1Qp12eqRpugy+f24rKHNH1+i8d8C\n8Mg5d+mcqwH87wB+GsBQrdEZOATw/DMc42bcjJvxxzw+S0nyKYCfUKK3nkNEZX8PwG8A+PcB/Cpe\nUoq+aWqcXbzAYCuAT1XmxImIBgA47cFNuUMPaoSFwGf3viRexWBjE4f/UizJuV3igkQZcz1FXsku\nn3QVwq9IJGP7VEmOHmJO/EP0+bs4Jy3X9yYzTOdijes7S9QdEn42YsEq5yPots0wC3yPpS5vZXBn\nV/bZTi/EByuxGgVr32/tbOJgS6zcVVNjqcUzGXcSXE/E21i2tf1Aw/Tl7/ujCI4IteWkhGEZ0moP\nmgjC6xW9h7CDCyIhHTQiSuxVtUZOZpFMW3xUyTW9Q23LxDdY8dhB2cPtYzn26exjDMgSvDjx8T5L\nqmj+QM6hB2yN5LNv/8gRNl4X61heK1y/kOv+zhz4jVPxJnJGloM4xKUv56C0B0VeiM5CY+MdCQOi\nZBMjeltlT+Zn8eQaLyZiPVcLi4yJXd1J0fIuV2UMR0/Oj+VeG/gYUzvkuq4xIQRdewqWjXVnWYP+\nYatPIdb8/m6M+z8n3BHd+w0ijx2vro+7b4qncFqKh1KXH6CkvN9iWmHTY8OTZ3F5Ip7JdGMHtw4l\nqbi1L+tx9vQpNJGeKjBQLDkndomAXbfBdm+tY7mgNsiL7BLfPBHP82y2wpJzOLbVJ12s5RKu5dx4\nyfFZcgq/o5T63wD8AYAGwNcg4cCvA/hVpdR/xff+px/8axZAhkVhkPQpub6MYCOZVK+Kodg+aJoY\nnX1CSWPBHST7t4CUQrKnV2g+kpChv7+LFR/M7Z0O+oE8yFNPmISefHSFJfkc+70hSgJWZsbAJ8sz\nLt+Ea/HlpsUEOFTMuC+Vj5IAE+MKPGUsvuWlmLGe7Gq5jrOyh1vsu2jOgRVv8vnFDCUf0oo5gjdf\n38fxseQZBhs+Wlj/LJvAeITr9iPUBLQUbXyeNSjJE4k6gKGrOV+VaNijYY3DBdmZPs5IDZ9oFCxP\nxHGO/kweoN3XOkj16wCA4eEeFLkpTfGYd26AvSOpAm3cvgNF7cdqluDkRPIBv/Xtb+G8JFKHvqkN\nPExLWay9xMGxynD7T48Qxz8CAFA7CYIrOeelpqpXFKGOJQyclos1+2CvPwQYgqzmBcAQarWUh3Fh\nMzx/SgWw8RTXvG6kIXLG3KWq8YDHe+e+fH/r3S9j8450x3rVMZBSK1I1mF9S+MUTY4JIoSHEPq8s\nTqdyH9LNM/hLOefbiwW2SOPvDeTh7+xswJEtzNo+MJJ8gC4jhMTi+GGEmvmcfCz/fvD0Bb72SIRo\nFiiRc32+WE5g2TFafZ/AzcuOzypF/9cA/LU/9PZDAF/5LL97M27Gzfj/bijnfrjM5P8bw++lbvjF\nN/GFrbdw/aFYifOTv4nee/8xAOD+TOPFhuzGZ9/4dWRsiEFDC13EWOb/Ut6Ch5Z9yqkYit01yhsg\noF2xlPLW1QW8UKxAJ3Z458/+JQDAz795hHu36T4/U9j7WUp6kRvv2W//t1heyW6/qGf4+JG4s88v\nrmGYwItCDUPXtiDk1lRuzWZcOqBmQ0ygA+zsiAXuMnxq6hLTKbUH5hbzlVi5lVYIuZfXNoFr5H3r\nU18TBo68CGGt8J0P/7n8/coiuiXzdXZ6hif/9P+Uc6IG59QUGF/I8V7f6WMwlPPJp9dYsCPSjgso\ndqBeURvx4dUYKfEYB7v76BClmM0XePhIrPvTyxxZ6877TETmJRw7Ub04hGJ32MXJBXJ2s25sdzEn\nEnCxEi+gD4c54aTzokBNrgANjZTWVgMAqwcN8RTWs60aG7q9EI73yY/0WknaaUCx1h8ymSsch/xe\nmuLLX/kCAGB3e4Tf+JpUvCJWTjpRjuuFnOfte2/iiOI6tV1hci5zsQgUhmjxG8RS5A1iUrOlXoJo\nQ865nlgY4lO8IEHliGt5JEjI75ycYcbksYs0umTjrlYlKEIOpywKXvjT59e/75z7En7AeCVgzp6n\n0B+EePi7RwgufhEA0KS/jXIsk/DNi99EdiILaLx8AnBSHX1q6wK4tTiJ+4TQ2vnr1844lOAGkbMd\nFTl0K2Zal3j8T8Rt+/rDMS7vCrX2u3czNONW3Yh6hldTKHbfzcocizFLhFW9BqZkCNaAo5yMR9o6\nEH2LyAGVaq/fR4W2eiALJdAOU5b3VjZHSXly5xRybiYKKRwBUAotWCVA6n5e3tPPsHoged7N4x40\ny5DN+SN0NljKdKx6ZH1s7skGMRpsoEsS11HHojEs740aNGxbPtyWBbh9vQGPGf6N/UNoVlqKjoeQ\nIU3a/4RINF+QSDbR2CaP4jkslszhZEWF26QnX9UKAQlsYhqvVdVgTPIWv3Fwuu0HwJq0JjE1SP+I\nkvc3txYB70NWRejwnJsmhlcS7OVrML+PnICfqKywZEk5VhqTiTz03X4Xizl/u+AG0xvgiCI0m8qg\nb+UkxpVGyRufBj4GrLpsaMkpxMceBj255rhjkCQEvR0WUFR3arTClMfWzIfMlgUsWZxWCqgyhhch\ncBzJ3F74NfJZ2/v9cuOmS/Jm3Iyb8anxSngKOu0h/bE/he8+/PcQ9oVGPei8Be+97wIArn/tFE0m\nyUNjMuGEB/CJyF8FEJsADcC2lzXHet/TC7TOhKOuHxxg8AgAkJsIz+Z/Q473MMatiTTg9Pe6+MID\ncaUnGxSTOV1Asz5+9WKGyxlhpxYIWB9uVgUyegpNS5PlhwhaxKnV8HluntPotPR5tGbW9ZGSi9Jr\najT0FKznwYIkCbhE6zXpluFruotll8QyqkLCjtKwmWL+dREZuZqfII4kbJovyblYPcT2jiQ2O16E\nhFRyvisQRPLj+rALR08gIyhoIx6hYUjgBwrVREKsKkzQu3cMANgtMlxdyfvTc7F2z5c9eCQNseMa\naORaV1MHL6VKd2UwIVDrOmuJUAzyholUTyFgpt7BhyPByaQuUbHRq6Sltdai5ILJFwYlKw5h1cC0\npDRKw1B7sqXSm1QVKt6/SztD/7GwS3f9FLOJWOkO9TwHSYRNhgR7gwH8lmj7/ANM2Cb65nuvIywk\nHL1HmvzdO7cQ0sMIVjVCVprc3MFRlGg1m6FTS9J03pV1eHywjZpNdS8mE8y43kzpo1YyR34Rw1Z/\nAqXotd9FvPUTuP0f/AMc3RcSi2f/818HnvMG1XM0be5DOax7rHQbMqRwjg0IqgPQpYbuAbZtGw1l\n8wCAT5xEgIhGhRKKnXHlfI4Zs8jf+O37iL4iC/q1bXlo6uUUJ8Tiz5cNVuw1KK2G5UPjnEPdyraz\njJXGGr1UHsLSLOFWdKWzArWRGD0lYEmhA1fQ3W8UNDMlxoYAJPxRKhHNewDayiam42fQe1LGUpMX\nSA8JZLpoMJlLabHIlmscPUZyHZuZh8iT167J4dhaHfRT+ORJDJSCoVpSP5JjWGugqH5UuQJRyI3Q\nZmvVql6SokuWrA8iXudphgnJP4wxMLxuT1f4eEKC0lWFMUFk4zabXpXw2NARaAUHrgVXwjKQLusG\nDSsKa3lYrWBMq5Zl1n0CtXOAa5mqPFRlW5JkFcVWYBsIrlYl3KmEmGHvYzhuJprVoCpIobq8fm+B\nJyT/XWUVBgSl3d3fw/GezNfRjoSoXlMg6cl8auegKcZbLa6grWy4XgSYWu7P3btSku91+1ADQfXW\n33W4qsVwurrGJTk7VzZD0bQA45cbN+HDzbgZN+NT45XwFHb7Mf6Lr76L+ORnEYWiGfkPt/8Uyruy\nC/693/sDlCSvCIIECam8m6LlHijhSALoRkOYsVh05X0XrmRHZTyHYwa7DT9cnUKxdq+chmYiUhsP\nZS4W7aOPv4vgrvS0V2Nm1m2BJZN2c5ujJMa/shUsa8VKKbSQ85j8i10/xh57H67GJWqfdfW8wpIg\nnbxoMRglLBWUGlXDonUBV1CtDrLLP3mdC/ZCWx/+pYRdrtDQXfm9Bx+c4ONMekLK+RD3YpnPlvsj\nSofrBGwUhUhJrx8n4dpy+FojIEGI3mJIoUK4Sq6jynw0zNrXiwRgx2uoIoQ9cZmLTWpDViVcJede\nbnYR1rIUL4Ma1yQFWfU06jkZkSsmRJ1DwgpIGIYIGI/ZqoJr72Wo0evI+RfMzlewWCwJlsIn6Wil\nHGx7o0yznmXDipFt7LrTtKgNpgSGPXpyicGW4F56FAPa33LQRatjWmLCrs3xfIohE7PHvS5e2xUP\nISERilY9BH157blIFFwARLoPW7A7uAihR5Q/8OTahsk1fALZuhYoa/GWz6YZMskTkPUAACAASURB\nVCpXN4kP80NWGG88hZtxM27Gp8Yr4SkEzsOB6+G1t2rkJ8cAgIuvfIR/9mtS/zdKQTOR6AUekj5L\nOUPZMStPwTFR5Q7uwj+g6IdOoWnF3GKBkrJipWXdfZ7BUeXZ0x7gMTNUFihZC5/6OSanklN4dCDW\n+HJawxJvECJZ6zlWjQFYytKeWudDk47s8Pu3bmHzQDASSZygeS7lwrwwaHNBDcusZWFR03sw1lvr\nUzhoYG3PNBxzH44ehoEPM2dc7CU4PxVr9Xz5AH2Ix7McLBDuMs/BEqjNMyiKk0QbKcJWj1On0Ozp\n1yqEZiJO25bTIQSYO1CdGfw580BJCLMiGzcqaE9+78iJFxeUChUp3UyTwlvI3xcrD5o0fEGuUJUs\nOzOnEmkfR7uSP4m9Fa5X7f1TsCwHqybD4Y7Ms8ec0XVlcPL0A5k2p9Z5aeVHMIV4EMYpeAQlNDye\nshUUX3sKoFOIq1WOzQNZf0e7kqM6TIaojFxTVl7CI2w81TWOdtjBubODmOxaIecEiQePTWdwDTSp\n4tA1awRpqJYAS8ONIguu62B/n01s3gHmL2SdfrOa4xmh6fAjVPpPYKKxG3n4idtDaFvD+mzvPfsC\nnvQFJttp/hnYFYqDzj4+d18WxWvHsjnkdYWINONHX9rFW5vC4FzMhrh6KA/ktfcBCpLpPX4mD/fH\nT0K8mEk22TYe8kaOl00Bw6Rj4kewpJ2fkO4rNxYgiYWyFjnBL7WxUCxxaKOg6Gr3CSrpdDcRplxs\naR97B60QTYALipUuSHfmaQXHBeq0XefClK8AQ/puVwviBoJfkBcrgG3dRhkYsgQrf4DLWqjIQ8RQ\nkAe5WrJfLV8hZddmZLvweB2qWUEVpI1L0vWmB7qk2oQAOzWV56A78j2vsGCrCFSxgMe2bNJdor/Z\nRY/Z+/mLGTxPHpocFn1yoPvWYd4KmbTAozgGVeTh6wFmS1alnEUYsTs2SPHWbYFe3+5I+PitZw+R\njWUtWGXX4jOlqbGoeVIAUj6o7ea8bJSwAAEItG6LQ8jzAl96Q4C7YSlVgWJyiQ+v5IFVlYal+M5u\nF3iXPI87nT4CYiQUWoq2ECrgD1sNR7FZlAZQ7XoK0WKdwowVqtjDgPc692bYIYt3Jy8wqGQ+i6JY\nG5SXHTfhw824GTfjU+OV8BQABc8LAG3XrlpnMEW/SxqwcAv7HbEeX7z/Fj7/U8KHkE7EAo9eA/KB\n7Ia3B7eQanG54oN3sByJBa4WbyCfy1b7lXvCCXBaGnzjseyoi7MKK/L3P7p8hutL+V43GaBTkbqr\nJGWYs9AshS0rtZZjs86sLajzAiSBWKDe7jEAwBv56EfUZRxUiMlJ0E0uEJJw4+ypWB0vDJFHraaD\nQ0aIq4WPlsNG6+5agl6RRsy6Eo6wVuWWa0GZ7XQXSMQTmk5zXFOCfoPw2o2gRsikpR8peB2ZW99z\nMHTRFSKAYUVLGGvtEtpSXTrtQRNe7JSBR5i36wOakm2W3lOcezBOEslVNkPJ9z2tkJLo5HJuUBEV\nqWmtVRRCU4ItNkt0QzmfeWmRksjkoAfcYgeqr3n9nRTH24RuWw+GSMg6L2BZOs4rC5/hUUIsSGUu\nYRmCWGtB+AKausJrr4kokc5k3q5Plkjo6ebOYqcvlvvdwwHuHEnJ0VOAJXbCo+S8aRqAc6V8QFMW\n0FY5YAkFTwIoRfh61ja8KRTUKe30Uwy68oz0kxR5R657WseYkwruZccrsSkoBWjPwZUeFNVJ4vkR\nPnckAJvPb6XojCRk+OK793BcymQvfMnMZkYjeSqLo/ulBqZhfbgu0TC+Vj0F2wpy9GWijyYJNt6R\nDsAPvYd4wM7BoQ+s2F2YFzNcVhKrRZfsZTA1VJt+0A2almhKfZLl9f0I20OJa19/W47xuU6CeJvV\nh/MErfbKqXZATJFWZtN3B13MWTN/9ugKH5+T0clWaJs7lM4AVjvgtZuDgSL7E6y/Zh6ajCdYENMw\nq0rsnMnmE5JHMN0cIGBI4VUVNNl/4Gto0hKrwIei7qLm5qeCTYDqXa70AcPO0DKFoguuVQjwnAKK\nykaqwpCgpzjUWDE3YnUDw9xPEJWwJIkh8RSGcYAOsSeNrREzzCmVgmNOaFlFOLuSEHExI1S8BpKe\nXNOWn3xCu1/3EPO3Xyymn2yMfDLKMMaCcHMY0+75cK7BnbuSu3rxewSL9SzqsWwgm9bikHDl4+3X\nsLcn4YzfrKBDtt234r+VBx2zDdZogBgK7fpQIY/dhIAjaxWrDy4eo1PLujFpgO2hzGfn0Qo9QsFj\nv1obiZcdN+HDzbgZN+NT45XwFJwDbO3gXAZQvGTVPcOM1F3hKMJ2Im6+Xzd4OhErF4XiFnWrfXT3\nxKVcrRyKUtxkmwMzWsfqTGFcisUPLyQRWaoroCSzbr0CmHCqixqzFROeKFBTIu6AVn68UAiINFsV\nV2g7TZVS0FS23tr+In7pJ6Uh7Rfekc7PQQyAStLT0QZOzyRTbXWGIJMd/862WLM7nS3kS7Ee36hP\nsCIa8axcomlr7J4P2ybwWmi3UnBoE2cNHj6V5GLpMoRX8pmh1RgQL7ERSiKu423AZ1bcg4KXynno\n0sBRrkz7HlTLCK2pxBx34Zgwg87hnrFqMQAMm3K0WUARWGpqujm2RkDLrhoPC0q/FwWwZKItW3lo\n84wBUaFbyTZ0JJY2dZdomPjci1KU7NZsUON90pStyNkQpRvrKkoQDdChi570tqAZExTwUGdkzW69\no55GQz2FhS1Q045qpfFCIj6U5P3AI4UBvY5B6GN7R5CHo9FtDHbEUwjSCF7ATlHTqqCr9XXCKCiK\n+bjAwGVt+GTguCYDhkymTqBDWSOqsrA8T1Nb8SgBFI2GbrEsLzleiU0BEKipcoApCTBxFeYUCd3e\n7GChpEfhyfMMO7fItTiSBT0Y+UhJsqKwgu63GdkJApKtNoFDjwuhmAgxRb1skFPKPU0CpEO6uycK\nDdP9nvLRIV24z5btadYg5GJsXIG2tzbp9XF4WzLSv/ALX8UvvXUMALh9hwpK3hIhYc5ZESIieCm5\n6uGYQKUWJt2JNhC0PeALg0u6++U8BDlbULkxCm4GPvHyRW4kMAXgEMNO2TNgNKaXVNSyK3TfFdry\niBTvVllYCrYgGkAVLYRcQ7H7zoUKij0DrsfdoSnhiL83tkTNRVovLqCMzJtWBcDMuWKYEw97CHsS\nGz+6muOSJdXKWOSq7f9o1m3LoSLct1a4vJI25DT00GV78t5WFzE5NrW/wsWklW2SB8iNLPxSzvPO\n0T52W/ISp/GMkO502CC7ppCvlirCdJngbNISlixguOE6+Dg/lfnyzmWTmi+XyPhEvba/j8Md8kum\nFpaVFlN0wP0U6LC3xSmoFq7tK4DAKVTVOn9k4NB4NHDc6MrKoGbHZFktURJiXhkP19zcJosVjLkJ\nH27GzbgZn2G8Ep6C4n/GONhcsuLF08eIu7J73r/3FvqUHJ+ef4xou5U7Z1Io9ZEtxZczcQm/Fghu\nEPgIQnInqC42M4Hapu+IlTh/foGMmdyryzkOG7E0D6NLKNUm0mLsbwngZuuIdW6zQkHeO0+Fazm2\ngy/+NL54SxKib73Zx+NTIeG4IOIlWLk1Dbkrl6haAZthgkFPjr2cUUrsbIrH52LZT55dYFnLddS2\nRGVbfsE+koB8jIpKxHiKRrXu4gKN14ZBFlkir8PrT/QP65aHYX6K6ROZi6YToN9jx2TaIKGZ9/oJ\nkn1JmoJcAauTD3B2Led28uQKV0zKhssC+/ToRsMRNrfElbaaUnihRU2PpnIVamb4YS1yNpjVBmBz\nKAqqZD+YPsdWXzL5g67F5q5gVfqRh+MDVkGWPRwdSwJVET6d9hUuxwLk6vVSOHqIxnjIxuKF5baz\nxpkMUqH6M3gIz2/Zoy2cbpXOAetToIZgIp2k2ApJwbY9QNnIms3nBXJ6FdiZYaM6BgAk+wy1mgCK\n0gZ+PJKOXgD55RkWszHnKEVNyHNFYZ2sKDFn8rypLXKyWQe9OYrnlChoajQthuUlxyuxKThrYeoC\nJjNo2MPgBXcx1ILhr2yDFTu9FqXC9LlQvD9v6WUeefDYOTkMPahUXkepglcSubdRwvLBevaRTN7j\nx08RVnxvnGFJYs8ValhmnDfjAd77srjatZbvWVWvJ87zIvjUGLiTjnDQJyjo+QNMrymUSrHWr59c\no5yLC3jncBM/ek9KWv2kD1PJgzC9kgXx0YMP8OSUZch6iaCVGU8qeG1LtWdQMA/SOFk8ShkoiKvq\noNZcks8+eoLYJx160oXH81gxrs+XUzx9QhUjO4GLxUXv7QQ4DGTD2d/uwo+YX6D2wvP3n+Jr738P\nAPB0YhG9KQ/V5w7eRRrL751nC5innIteC4ryENFtP0g3oQg8+hBP1/TzytPrbL8meqmwOSY0HB5S\nTKv35fori+6Hsnnd7W/h8DYNAKs64+cG5yTYvfzgHFckHimzAtczOc86UDjaPgYAdG/Lb22mQxxs\nyn2fzjVKloy0UVjOZB2ePeNcFQvcoqisl9eoQ7kP9baPhnT31YtzPHkkOS8XyjXtDDaw25fNMtwe\norqWc/vwyWNMLthyrmP0d+SctlNqmhYFKoadlfPXPRN7GyniNu9gFrCf0A691LgJH27GzbgZnxqv\nhKdgG4viMoNOFvAtRTzSBeYPBML63DxDdUY32Na4mlCKnFvao3GGg5Hsnvd2euh3ZUedPpmjYSLm\n9P0aJ1TTeXwtO3isFLY3JNQ43g2xbCsf4xIFa+/Kc1CGu/+AtWSn1vwOntvFiBwDQ2VhWf/++OIa\n3TEVkwkzvd0b4gnl0I1rUBBwdLCRImJhvCTT72IyQUjoa14Osaql7p5lBg3JNHyXwNGNb3nenFPr\n4wEOzy7Fil1l57jly3WM9iN0dui6slNvcVaizskivJ8gpgLU7MEESU/o2XcP3oVmQ0czFu9n/K1T\n9NmJ+ebwFrZDCRMGDRCwvfDNo13U5J9Q9ZLXUWA1Fpc67oQ4Goplb772rXWfi0aw7gL0aL/CMELS\nkfBhmHqYVnJPLmZneHwuc/s4PEf32WM5533KAfS3kNH9fn55hTkz+cusxIpcDbZScJpeyAOqVCVL\nWPbV+F6IWrdCPA3OK8n2P5sKVPw1N0LIalCODB4xG8WHJZornmcMxF1ZL5OPpbdHDc7gvyOYlv2D\nXTRT8SRmzycIyEOxPRihIW7ljEzbWTZBtyv3tLGAx6pFqDprRTGn3BoY9bLjxlO4GTfjZnxq/EBP\nQSn1NwD8OwAunHPv8b1NAH8HwDGAxwD+vHNuopRSAP4biPJ0BuA/cs79wQ88BgBPKWjnQxOtlm5G\nUNTX6zwLMWf89uzM4rKQ3XO2kB1zVs5RUVPw7Vs/hTmZhp88uALIeLNsIsxzeZ2xe63QHgK2J143\nFSwIY0aDkKW33VEPgRELsxy3XUkKoqcLoF9C3ZeklDpWePr8WwCARw+eYMH6VMvgHEPhVk928FGY\nIj0WK7i3uYmCHkJRyTVdzHNcsnZ/sbjA6ZTSdbZZMwEFuoLPXIr2W2hs/QluwvlALZ7AcqlRbYll\ns2EX8KWMli9k3n7rd38Xv/NIEptbV3dQjMU7WI3P8dqGWLa3f/Jn4RGFOGdZ8HJyhkkolvvk6TWe\nPPgaAOBxvcRPvyHW/y/+mTexsSt1+rBDklQdQbW8AQAOGVMDQIdQ6jhOsKrlukbbYklTnSIjjdtV\nY5DXn5Cnttc9zSrMSiIkmQS+tbWJfNWyQvnoUmMzbxq4tvXRKSyoB3GeP+R5DuDIrozrYE1H5wD0\nnFzfwpO5yLdmMMw/mJXFOSUJPzq5xAU94EvXxzat+JGS63j46AV+mvdpozfF+XNJfH7z44e4+6MC\nyW+uVvjGd+QZeDyX+3h7M8BOV46xc2sA1ScaNtxCxJyQtYDv/T+v+/A3Afx3AP7W9733VwH8E+fc\nryil/ir//38J4BcBvMH//ThEgv7Hf+ARFKB9B7gAjskwzz1EzBsahyk22p6BdLpO9pxMyXGYamAg\nkxp2U1wzTDBRDU1MfTgIQawT9n25mdfLFWoCV05fGIzo7nqhxib5GIO4h3wsbnVEUg04BUVqt8Fo\nB1HKrLDZxnhO7MHWBsJtqVYMSSbiFh56ibinTbqBYEvOQ7ktmEB+Y8KFa7sxwlBcw0T5SMmGrJyF\n4zmncYqIqJeKYiMz1zJVAw4GAbEZnm9RU+7eG8RrANTSEVcwAHYO5fqO7txGsykP4enTMQyTVn7S\ng2HFYG7l4QnvRBhtCRz9KnC4mggP5PI8w0dn4h7/449S/CQ31oMDCUuqhUFJ+uWjOwMMN+XYSimE\nxINEQYwVBV4U+yF0VKPPMKguVoiUhAf9roHRcp6rZdGy7CElLmRj93VMClkAO7f7oK4K+lWDkzMJ\nU22aIO3Lb795TwBufVPDTqnkdf4PUZIm2lRzgKHE/p7M8dbmEIbrV3V7GBCCvrPqwRAMdhBsIPLk\nnMOFJGhXoUWwyd6Q3gimx3b2xEPUlc8aHaB7VzaAuzOZn71OhM6WbKbbGx0M2B80vgowpSqZ1kDA\nhC5yVkB+wPiBW4hz7jcBjP/Q278MkZkHPi03/8sA/paT8dsQXcn9lzqTm3EzbsYrMf6oicZd59wL\nvj4DsMvXtwCcfN/nWin6F/hD4/ul6I8ObqFBg+Z6BVOIC5tPN2GfSQInbArcfkMOcXi4hfuXYjWH\nPfGj+/4dHN2Rv6fQiLjVHYwO17t5lTnYEYlRErFsqjGomWR6cTVFycRe7HVwu2JiSwFj0rS5CZuE\nYOERgTZoFuisxKre6wT4t39K6vhf+Px7iDJJYnpUoj558j143hfl3HWAgzel1InCYkXOgp2OeA8/\n80YfJpVzOJvVePhQkk9VJ4GZ05L6JZ6cy9S+IH0clIPWLUFIjLvHcj6XZ5cIKKHn3CZ0IeFITCbq\nn3/nbUwIqe33Buuklnf4Rfj0DrzaorlgTX4hOIbdfheb+3LOo+4pfvLen5Nj1GMMGQY43UPUkeNo\nlpzT4AJ3DsUKbs9uYUF0X+MMDL0iPylQUkl5lYm39trBLXTo/b24BJbkvRgEIXTcEsNYeHSZXxvJ\nPTja2waUhHm9MEVFhe3zq2tUDDXURoJ3jqVz9QuvC/6hKXNMKS14cnEXHpOxF5XCwQ691xfHAIBy\n+REqJvs6YYWYhK4/89YbmNBzCZsIORvF+gfvyffrKyQzojjHS3Sc2NHXdqa4Q4k8s2FxkNyX17l4\nIJ2ORZSIJxRFHkJ2eKrmDEqLpzCMu+iTOq8l7v1B4zNXH5xzTin1wxVC8Wkp+h99+123vJ4D9hki\nxuph38OQMIQra2BaVvZeiCaTmOouIb73f+zLGO2Ie/ni/WcY9Jkhvx6g4uS4JMb9DbL3dORm2nqB\n84zZYguUbD/se3MUzLL7UQ1DuG7cX3PEwxDvP54Ax2/IZ18bHOCn3hG38/X7X4TjZmKWslB2Njwo\nJe6z788RGNau4xr+tRyD+ijo+BvobQo+4L4L8fq+vHZqgHwpbuC0miP0JCdwdSEusO8FMC2PfKkQ\nJHKeG32NkGxJg8hCT+U3etQzDMsEm0NS0a98hNSx9IJbQEIJe2cAsiJ1Ri0H4gIR3f17d/cRKXmY\n6myMhHNoUwDXLRybuYxQoTeUUKqz2UGQMSdigMa2oVKIoG3RZqiR2BS9gTw0qqyRkbTG9kJkDVuj\nqycYsnfh/rZ81tRAzN6I7e0ddKkVujU9wNYeGZGDGLc2ZW2EFOfpRQ4bz+UcPnd4jMsrOUYyVqjZ\n2RkM5D57Vz6GQxosRBjtyQPbCRJsJdxYVQLF2CYg+U7uPNhHrIilIeymfG9k9rA5lPueHo8QtB2R\n7OHwsgZGE1tyNYdiXun5tMYuNT3roIc0pMIZHuJlxh+1+nDehgX894LvPwdw9H2fu5Givxk340/Y\n+KN6Cn8fIjP/K/i03PzfB/CfKqV+FZJgnH1fmPGvHZ7voTscoFpdw83k42mSIt+Q07v+sMCwVYFe\nxbCULnvj9tsAgN2tDjSl1LK6gqrF29jY662tTjoYIibk9/xa3I7aROh6coyD3QMUZMPNggaGDUFe\nH4hpefsb/fU5KzZM1c0VyplYo/3tLRztC0ox7MXQlVh/E8rvht5tNGSldjPAS9m15xLEgTR8wYo1\nU6GHIBULtbXVw10yAOc6hiHD8aOHH+JRw2YeYjO6WYKaXY1ZtcLuQCx39cYU2dkzzmEFR/ERx05M\nHXqIW7e9EyL06RUVDppCNWqgYRm6gLBjL1vC02IpO3YIa8W99sIYaOXtCkBxDs2KLqxWa2yFaTKo\notWExCf8FM0npDseod15XSFwrJIcbkGF1N6c1ng+lt9OMo3RhoQmW2yaM3aFciwX0j3qYLMjc+SH\nGXQj3kvhO3RIuFLncowwC6FT8R4+F9zFNT2dr/kWAzbKLTvinpdXpzi9ku9v7AA9VkPCLEcnlc8o\nl6CzId6GbWTeihc1QM/ELgNYapgE+QI+G9Z6fgTNpjJND8OGBtWSnlQ4RTYT76/WJW6N5Jwvz6Y4\nJ+7hZcfLlCT/NoA/DWBLKfUMojL9KwD+rlLqLwN4AuDP8+P/AFKOfAApSf6llzkJpRWCNITTe6hW\nbYlpgVNCfxcuxnZIcY+6wD5j2J0RgTLdGGNeeOQFuLLU+zMGKUlB+nECn+XAe5SWn8OgnxHoVGeY\nU5zkpJoh5GYRDTbRp/jp7QOWHpWG46ZQWqDWAkX1tQdFCKrSCpbiraqk26dy2JKtzm4CR9WjKqjg\nuGH5lmpT8y6qLXlgzSpDh4vDlT7mWn7XDwHSKmIrEXe5ux3ipJQFluEDBFz8g/1thJQscuUElpWW\niFToUZTBXrWcgRYZQVhhHCLgxorlEOhz42BZODUOPjcTvROum3RdWUKBZIobFnYiJ1oVMlf1dALL\nPmzVxFAxeRB9vRZyuSqLNdlJ+/dCZ9gnSYkfKSTM5LvtAhWz/Xk9x9FdCX+Ge/LZcjUXdTEAURyj\n32e1Y2GQ9eW3X7y4wGwp13U4IBlt36B3RRGgi2ugJyfUiQIU7Rrpibvv4gMESkKRebnClImEdODB\nkpg2CBRsxo2O97QppjAsEduehaXQb1TUqAi4sukW/LbUzHWliwTQJJypC+RcOxVivHNbenCeZh/g\no/OXyyW04wduCs65v/iv+dMv/Cs+6wD8Jz/UGdyMm3EzXqnxSsCcoRV0GiBwXehb4ooXD1K8E0iV\noNoqEVB37yAMsUHuw7Qn1qeulnAEIYWdBnYq3sbFYokhuxK3zDU67CTsHImn0ZmssLCyiy5WS8wr\ncX3LwCFhuiVuYoxel8pGh9LpaT9GYEkgEnjISJCC0EMzl9q8G4TQnngNrks3elKgYRdedpVCKTnP\n6XyK04lYh4KS8jbPkUzIcTjoww/E/QwjA8ME67CnEcfi6YT0frp+jKuatPa2QZc1b1S7KLfFklw+\nmKJHdzXtkRswK2CZva5XFQzVoV3kIxhISORpjYb0+M01FbXLEP5cXO1gkiDoiIX19QgubBOtFk3V\n6j+KpxTFOXTNhO+oA8t2yM1OgpyVD6scNLkaRmzEurUxxOt78r0gjBCz0uLbbRwN5D7sbqU4HIgH\ncbQj59OUEXJa2LePR+jEYt3noYerCzm3+nyM2YIhBsMEex4iIrflpPMBqpIhpAsxZ8L7xSNZQ8Pt\nCpdjOZ+jwhPGGADNcBNhT1z+WH/Cf5kTcDdfeFCBfHagHAy9vrMqQIcAva15Bhsz5GGyGsEUakEt\nTeNQk+W56y1x756s9fj9U+R1K1T6cuOV2BScdWiyCjpcIWCfQWc0x+5b4gLdfTbB+Ewmx9/poya+\nfJVLfrOqLF4w+36dZTAZO+oqIKbLPPY9dAecHPLne3a1bitd1QtQhAhx6aNg6aw/UoghE+wTCKTj\nu7DcCLx6gZCbxTJv0JAhyMwLtN6za/uUzQo+uxqdLrEkyOpstcDlpVzfogVQBTMAcvObswVqurhN\nAJSFlB8j42GH3H7b1KV8sMjxgtUJ6yzKObUbhwppJg9Cd3+BOJVbr8kb3lxfouKDW2VniHelimLG\nFcqFPPT+Vg8qIiNTLJ8N9w00QWa2rNAsWPbs11AJ3V2dIeCD7iiOWm+E8HySzea6fX6QBilsKzyr\nRJUKALr83u7+LtJY5jvxOgi4GYaqgeGmP89K1BSbrVid8eGhw++h9uFzow6MQpPx4byerqny/Wsx\nOGd5hn/xQPI9Xz9rcO1zU1zNce9U8jWZk74UexZhoOR+rEwIR9JVez6Hc7IRFBsKCXMmFfs2vvnh\nExh2ie43Bg0Ri1PVICNzmDMebE5gG1u1ndfAUTc1KGqEDCXUqoIiKc3zqkJLMfmy46b34WbcjJvx\nqfFKeAoKSii8jYL1Zff0wgjRfbHWy+84nIzFhfO9AF2y1sak/y6rCiuGD7NVg5VHemu7xHRC/sC4\ng0Epu/GiERff1jkWrDIU1kfBzHmjPWwSPtrZ81A58hNosVZleQt+/gUAgFH/I55fyfHG9QLZSnbx\njo7hE5fvWsZl5dYiJJs7I6Qd8QQ6lcPGpug8PnrCBF7/NuKENG/KIc/FeuQTiwk5IMp8Bo8Q6lN2\neD6bXaAhoMc5QFf0aLwCIRNbKvNhYpnb7Fw8icv3vwejxCr1tzbg0eUssxKzSixh5+Iu9LbMRX4t\nLrN1FeJhSz6Tw+bkEPATeEtqJcYVlNcyO9MO1TGqUq4jn1mUDa1/N4LmfVpVJWpWHTxKzve1RUVi\nnE4cAtTpLKAEegzAaYcZrfCT53KePaXRJ1w76sWI6HmszleoqMR1uSyxycTr9aV4K+9/5wS/vyTM\nuXwIA8KuMURDD3AybUlhLjEj/L3TT7BJgJQxGTxyIcQvBiiVnFNJirbuLR/LnKpmSQcFw9iwCTAc\nSgitfcAtqUSmSA7ZpKgJXS6bGQpibsZji/GlIAEuThewzQ0d2824GTfjBlLUJQAAIABJREFUM4xX\nwlNw1sKVBZq0AS6Jg/ILqFwsabB7Cx7xC2WnhKVVJLsBrC3hs3bVHXXhlRQyCWPM2cCyQIaPiIrs\nUUAjqmvkrINXyiH1xHrkXQM3oNpxNkBC3vzOAWPn/ClqK1ZOe1tI6JlcW4PlTCzFcKtc18VbzgLl\nB/B5bNWUCOl5uAbYbt6R14R1BNEAXsAyZTDF4oQUXHaFgKzLTRPDsDOuJO3YvM6/T6HaoWV5XSYW\nfiPlwCDxUZC16nIm1vVSz9ElMnEZKmRMsHjuHCn139xmgZqq0k3LbtXpwlHGLp9XqH2WXMdLRKTC\nC5IemMOEY8OXMQYVWY0bWyAncjH2YgQd+e1cA5rn74gwPz8vsbXHEq8r11atahQ0vTDd8RGyqF9R\nOCYY+OiyK1MHMQyhzXVqMCH82w8BR46LRS3ez6R5gGVDBiz3AlgzZS9h1s12ch3mulnL7ZUbXVBy\nBJudLqgKiEVviRVLhAkRiD/yhc8jikTns4lirHLmKiZniIlvWC2X8Nu5JQWbbRYwVNquegEaMoNV\n5x7+6Td/T+ZrddFKf7z0eCU2BVgHm5WoLxKkd8VdwpVGMJJJf3evRrmSh8XPDKjXipIu3qSoYZjI\nikyFrKBohuogpGJPJwxgmHGZzgm2iWLkzO7Wi2INqY17KSKq+NT1HNGh3Ji6XRz6ISJN2LFZYnIq\nD9P118c4MbKoklghLNsNRxbB9HKCMGE357IDVYiLZwYx8mULV24TYy+gWBloUCPmgxd2FFDKE5IV\nC3z360ywVgIZhqqgWzZnE2FB2u/5RwXu/IR8Lx6nSBLZcC9LYbae5j6agszOyzmeX4qLevz6DvYO\npX8i2OgjIOTbHklFInt2hWYqIcjSWTwhMCwINY7usstz7sORoThgNyvmM6Bh5aQ/gE/q98Ir4S/l\n/HuuwRUTqJeP5BgnM4vmkkpJow14fCgWpoIjJmWQpri7I+to2GfYAqBPDImpV5gRC3A+vsajJ0zc\nFT4WKRm7C5nP0+YpLBPJ2jSw3BSU68AZ0vc9kA2md2u+np99460Nx3jagd9jd2UunacA0LCr8/5Z\nhI4WWrlVDCiK/k4bHyHPI3QVFNvOE0128DiD41y5xsBfyOuzDz7Ao3PpVm2aCu6Gju1m3Iyb8VnG\nK+Ep2MZgdTVHOPTg54IabLolPCK/BgMfx4lYprH5YL07wokFvji9xNPnsqNGNkbC3f7SLdZaDdfV\nApv9Vo9Q/l3Oxnjadg76MVJSW3mVQk5y1EFawlC6LGMS1FUGeUPqMmwgZfLp2fX31qXM2joEROFN\nz8X6/4uvP8W9Yymz3rp/C0N9LL+RGvTG8tl0V65pdn6OF6dixa+fn+LWIfEW1QiOsOn5Y+BDytnP\ny7ZXPoCiBYIFTk8eAwA2NhJEYxGl8WONkI1nKUMRzAAbiwe1qAzKimzNVxqL14nZ+K0L5Cm1DJi8\nquMOCpbppvMpnj0WRN/e7jaMo3cTpGunu000Nv4AAZuravuJ1mSzqBFRU8OvYmh2sV6ROMfLHK77\ncuxbVzModpB1Ot66FHvSnCLfldfv3WODVqeP8owEPo/P0OvKunj+OMN3vyfK40VQYJ9o+rOJvJi6\nBrZpUag+QAJWpxxInYEuNU9HxSHSWEK0q/MV/u/23jTWsiu77/vtM59z5/umeq9GDsWhyW6Solrq\njiRbjh1ogORESGK1YSByLEMxIMDOAChu6FM+GIZjw4kDOI6F2A4cKJITuSN1JDiKhm6N3S01LTWb\n7CaLRbJYVW9+97073zPvfFjrPrIEtZpsdZEV5C6A4Kv37j3n7HP22XsN//X/b/TFg5iVc0J91WYj\nl8GJYlKUWMfbKrnS0karKKTQcvf6mmVxLMcjHhEq4jR4SK7Bd0OypdzcmxVWy/Z3XtznSNHAZVWe\no2/frT0Qi4LBIapikmsxrsb4TuBh1f0OGg16YxnkK192KJTiOlFBzfUrXVLNLG/3L7N1QSbu7uER\n47lMpthroJqhOCo4s58W3DqQF+zCxSZtbVUui5K8kBsfbq+TaliRKlYfl/M4unbGzNRt3R2cnGd9\ni50r1J6cp68dcs89f4lQY92WOyfQ+Lx2Lf6GhChNxTFMzszbTEEUlKovaDsxqQKEfu/gVW5NZSLU\nGi9XlQFHJoF1PHpGjnvlqT49lS+qPSs6k0Axkcl4UuVM78iicH27w+aWZNy7nQ3WLqhwzLU12JRF\n2x7KdZ6efo69l2T8R3cXLKEAfgz5mcK4GwtQDUk0h5HNXejItU0XM3LFgISNJq1Yfj88OWWoGIlM\nq0uL+oRYq0EHC48oleN9qHGVWKsrdw7n3BpIWJUoXHkHS6KVivbaJsGOxPCv3/gVdlP5bFDHbGke\noO4pcOLQof1xuZ7TL3pQa/hQJ2w0ZMHpfEhg0NVgj9dmslIczTKuLfVBvZzRTZmzV6IGH/n4RwFw\na/lep9PnwgVpiw7WCvJcxXWKVxi8KvPX5tBUkSNfe1uySU6qmpHTsOSzB1Il+kw94Ohc9LhchQ8r\nW9nK/nT2QHgKTmQInoxwnC0IlwQhYBX6GSUX6T3yHQBsHRfcUn2GYqla3HIJh4pZmE64+Zqs1qPy\nmKNDcdV62zmXOgJvtprIOT04xipM1joRvlJmLU4nGF2NfX+TWHncak2G2dqcQ5SNH5yrTeczGCwl\nxvIBLKXDFY79kL9GpWNKTyecZbJDOVUIm/LzdFfGdvdgn9ESPtwyqHYJB4MTXv2KuJS/ffNFFso6\nXS2Xd1ODhg/Gy9l5Vna5TuepJS0j9axkvkz8BZK1bV3e4EQTsTMvItSe/7La5+zGLQA2H2tRvylh\nWuFL4vf2r7/Im8fajJZY+sr70Gz3hHwRqKzLQlGoCqGgmGc4oQqWmBlVKhcXhDBVhuq76YRMORGX\nTVKTvDoXw5mHLh2tDO1NpjRbqlAd+ASKN0jVAykdj6CpVaBmwmAgc+TWwV1m6ZI3MmBfPZJI3cqL\n7U0WrnSoZskt8o6Mz8yPaV8Sj6xfybw6S8HRKtnYlhxox2tQlLhaaTCNgETp0bKhICV/94XfIFV9\nkjov6T+kXA74rG/LHLq0tkl0WdGwihhfzKdoUYMbt0750p54FXvTKXm95JK08B49BbMku/wg7dmP\nPG1//Zc+RXmSM2lKrP6bn/o3fPZTPw/AYlawbC+YLioqR328XLP7fkWtJbZqkVEspbxj91xMxKsq\nPA1NllnqvCgpllTuNbRUkSoIAkZDmZhlafCXC5WqVP3G73yJcqiTZx3mS2jv4RGogtCX3nqBX/i5\n3wZge0MmT0jC/qGEF/MKHn9YsvrdbheUkOTugXYRjs9oau/EtesbJJ5Mjl4rpNQXNi3mvPm6vKSf\n+50vAPDiV99koZ18F7qX+cwLv/+unsG9ZjAa+/tJk0T3jkYzJFYBXa3eYqcVC425ncpgtBowz0sS\nbXFf63T4D//LHwLgua3nZMzDlD98TcKA6eWaeii5lH/+L/8Fa6G8eHHlUmjH63LBbns17a4CgUxF\nNtHW+CSmp12sW52ahipRNX1ZHGZ+xtmxVgPSBU4ufx/4BUdHsvjOC+f8Pm8/LaFBox1SnOiYxg5G\nX9LZ0QGLVEBwYaEVmWxOUcmYtvo92i0Z/4V+myjUylbtkuji5CrpS57N8TWPEicNliKi88WMWoVx\nPD8h0wVwMNb2dM+joR2a3e0mQ082Km7XZFMZd+uJHrVK3n/iL/2NF6y1onr8J9gqfFjZylZ2jz0Q\n4UO1yBl9+TbtR8E7EBfo4HO/Qz1V8I/ncKb1fyedM9Nkaq1u+3xRnVO1F8aecyHMcotfaNLNs4Sa\nBVtoyFDk5ZIHBMdxyNXfdTNLre5eN4oplSa+Uk9j8cY+LdUqdHNwh+L622ZAdqb17TsLjg9vAbC9\nIRWHzsUOZU91IGcBW5dkN+o2O5RKauIur+HSNhuqL9lea9BSyvkkiXH0s7MaGjrWsXIm7h0MuK0N\nN9PhH4W3LmsAX69DxpzTpZO7lEuK8DKh1gajYqKJzfmMucqex55Pod2ORVowVpf/Uidi+oaMa3xb\nKMEmUcalNfnsm0GHxUI8hdB6LFT5ubZ9dtoa0mjy1I8dklxCotBfEOqzbLYd2ouGHmNKrF2O4UX1\nYs5CUm18CquYPNR47MzgaBJ7niU0trTqcFfBW95dBpnsujtbCakn3ZfNVher3BCpAtaqLGatL2NO\n2iEX1uV61hpNokCO2/AbJCqeE4dy3Kps4WlI6wRvu/uzmUutcaF1PRZKyrKYKXgrbBC2lWQnCKnP\nxIM4CRM2lP+sjiLsQkLSd2srT2FlK1vZPfZAeAo2r1m8NSFpH3P3X/4WAHcOjrnQlh32uIhxp8KR\nnzsOueYMSk04VfOMaln/NoZAtRCCssZdCoLaAEfVmP10mYRxsLosOkGAp/kFx3HwtEHHdy2Zourm\nCqz2Zw5+JatyPc+oVQoN/xFevCW//5mf/dfkqtrSuSK5g47XJlaW6ORCREcJOj1iqlzLl9uyw8X9\nDboqXBtECxwtkQatGKPj8KYnZEoJdumSlNjazVukp7KDnc7fuUP8U+A/+5Mew9tmAEVFVr5HFWuL\n81pJtlDPS9mW5mVGWakgbGVxtfW7rmuM3s86mpLuqUjMQoVboydpXJf8SvzqGSdasswyh4XmjLqt\n24wV65Eor8JmOyIvlpBvQ68l98ipDSbS8l3QpBUqZZnW9sv5hPGSusx6kKmy83yOwgXwI4+Zjqs4\nvSXXE4CTimdSbUwxe3LNtpGg04ijSpmSgiM6inVpJTHNSEmIqWlr+bydJDRjTZCrBxoELYziNIrF\ngkKvLQh71EpjV1Ylvt7PvKX0b5GDp3R0buDScIX346RIz5Ww7e6cwpPPv1t7IBYFxy1p9U659btv\n8PJbyjhbwllXJuPJ/A4NdWfzKqNQMPd5B13gnGscRo4n+nlAhHtes3d9w1mqrLualPRde658XFCe\ng20mNsMoLfswrxgqgKasNLl4MaRWirVy7lNYpY0bH/HZiWDOg27OZkuSUo2L8rDCqqCrSke2rkl0\nQudeQFcnSqAvxFrvcRwFWYVuSTVXyjfWqDRr7zqWcEcm5FbxDACPfnTOVz/zWWCpNrV8xF9vQXBA\ncfsEAZ4ussnFTZp6vq2NNs5MqwiqxXjqHbKYLN39mmqJk/Eh1pDnbGY5OpBk3l11Tp/yEqbHinWY\nDYi7OtFtQVOBRRtxwhwJK4yGfsNBST9RGr61gkBhxbFvznkQ+0lBQ+dAqbwRjVaH2VQW7OFwyltK\ncW8XGYF2hzpOQr2QZ+3pQEZJBrUoM7n7fUJN/ff6HXI9R6srY9pqbtDvyPn8ZnhelQpb4Tloyw09\nfB1f1JTr9RxwWfbrBARatXCmE5akHFmdgW4oTZ33CQGqDEAQhkx6cq8CA6Mz2VyqyYjWtpaB3qWt\nwoeVrWxl99gD4SnU5MzrO/zyr36WO56sdlF3nXVtcir8mrKpKyaL87ChrW7t1a0OmhfEFJbxVHau\npNeimCmrzqJgV0U0rCLfesZFiZIY5c4SrIbJS6JIdo+zaU1ttCuzVAbjrstoX1zVuXmZfW3snE4t\n1aEkGp//jue5viXJv48+Jru4NxujwEvK3CHuaaIpq0iWoYRiG7xGiyVljuNZKiUrNU5FqdwKfquJ\nzaTxx9uRHez5Dz/M3QPZ2V587YCDXe295z8Afv5rP4QQHKU8C3oRLW26euTRkMe0Nn/58hrT3ULv\nhdyf3b2AwUA8sIPB2dLXIHRDrnS0AcmPyV1NpClQof/wiH/7RbmH/UcfoeWJN1XNF3hWdzZ3Rl8T\nr13kOXYTiOySy6HEG8uOH/YbtBQB628EtBR67SoMup6MaDVk3oz3drm1p6VfH3qqPN6tJxyqt5iF\nKhyULdjsizd253iKpyjM9MxbqolCJbt8M87oqDvfCypiFcNxfJdaPVYnMASKr/F0Mhjrn8sb+rWH\nq7qTdeVh1TstFvZcgbvblmvwfZdjlYczWUpLr33zwpSvvqUQ6h2HQiHP79YeiEVhepbym596mdcm\nRySqkNRrhswbMuD5nkOosVXHC4ibMsjtjrwoH/7QFXraLpxnluO5TLwgalCcyEt6a7xgvoR+OnLz\nWrbG6MJCXpAv9WNLn0KFNzw/w9OsvaMx3WxcsjAqWV48wjQVDd1ZldNTbMHDjz7HE1dkovdVfMaN\nQnzNOOPVeL7y/ZkKN5RFwaj4qHFCwbbKN3EizZZXOW6gsXoOZlNWQ0+FSR7eaLP9lOQXDhYGXn5N\nj/HpP/7mK9bfBM45FiAxa2xflTGvr3W5dEX6TrYbPSaR0pEpCKnfbHN2LIvUWvuYTLPlba+mF8nk\nrZuwc12g0tXtWwBMj7cgkWN1GpcY1rKyVkVJpZ2t/iJgXZ91kelxk5JESWbCkeF0yYzcXsBEXt7C\nidHbyNpTCjzLoFICnJPhmOmSEbkIKEZyvEH7AvUyZNMqSpov2D1Syjp3iltK6DIbTQkVWBUpHiPx\nOrT62iUbhwT60sf4hMmSUj7Gakv8EgxnQrA6J3EzHMU9BB2oM82POSmu6oX6sRK9uAEdXWwCExA1\ndH6Xl9jaEAyF429xNl2RrKxsZSv7U9g3KkX/94EfBHLgdeA/tVZ8OmPMJ4EfBSrgb1prf/nrnSMt\nMl7bv4U1Lp2ukptYl7N9Wc3TfAqa1V7vN2gpoemVS/L/i/0WSb2EK3tcUvLN4/GYXRUvSaKSLd0J\nh6UyEZcWV3EMPT9kvFA6K2oyDVF8J8LVersm/bGLBcaRXfBwfoPdffEa8nZMHMuu8/h2i/Vl9lm9\nHMcLcVSv0rEOjjYxGRNjNFFqNOuPAyzdaFNjKj2552NQr8Kd4qvGQ9VZ1ugdeorZ2PAi4Ire5Rki\n7XmvLeXgO92Yi9oBeHEr5NLDkhDtriWs67mbvkvoiNdDKLtVict6T869vRYzztS7Gbv4TdXZuHiR\n9gXZ/b74muxDt27t0e7L+RbZLjdvpzpUS6weUsODmSbXlnwLjgNTRZDOTJNsKrvx8NhlpNDzrm9o\nJrJrTu4q58bJgDdUqOUodTg+U5i3V+Fqo5g9Snn0oniqY6Tbc6+sSTTJ7ScRmSvjroi5oEQzLSWF\n2WjGdLXhLSKgqcnqMDQErqJlCbHqTWVKyurVAU5DO8lyznEoJndxtWnOtTEk6p4pUMfELk0lv7V1\nARoqmzChraHgYDHGUcGgd2vfqBT9rwCftNaWxpi/B3wS+K+NMR8CPgE8BewAv2qMecxa+3X8F0tN\nziNb2zhGHtaXT444nCjHYVnz0XXtdus1aKjL370kE/TyxibFROJTz1uXTC3QqyuKztLtdnE1Lm2m\n4qoNpnOW9ImVqTFGQSFFRu4uKdMtvorJ1krektWWUGPHRmE5G4mrdrxocP3KE3Jt3SZWwTK5akn6\njRh3yXycznFU+5DAgJZRqZdyTI1zcVxjDFa1K7E+KGORcX3cplZX1M1c+A6+Zur76wFv6/3+ERly\nzYZHGsI8+WcvEukLu30horNQ/ct4g96GfKbrNc8Vtzx1d6t4gpmr0Gq7S7mQv48nA2a13KNuu8Pl\nLVlEb8USzhzOz2iVStRyOONY+yc8x3CmcVwyhf6aPMtlfD7Pa3x9To4HUUcrMV6fVqwLfGSIm/JS\nVEZ7O6IFFzva1t7M2Joof6STkWX6sgVTdO3hoYagf06GXyVf5pKqAOdUWamzDO8hWUDaKgHfCKLz\ndnAvNoQ6T5M4xtF+lNq3FEvG6CVrUjrHKJGL6wUYZaiuC4vRblwvauIo8U+ueQabZ+cKWX5UMdMN\ncMGEUqsZ/uiQhf/eSpLfkBS9tfb/sXap7cXnEc1IECn6n7XWZtbaNxGlqG97T1e0spWt7AO1b0ai\n8a8B/0p/vogsEktbStH/iea6hm4nJCgtizXZPadvndFS1940DVvX1Cu40qEzkpW211925DXJVfbb\nLYtzGjR/rYuvYUfXKThUspQzdS3bUcXBseygi7lIlgHgWUqVd0saLSJ1sUcq8xYEHgNl4j2xE3aV\njmx0csp3XJMknx8HpJocC424sF7pc9466HTOPQHqXEQOAKtwbuNUUCpQyLXiIYDUvpeIKxyMJ7uf\nrwm5rV6f7TW53tNhH1SVmLoBqoINb2s7hlZ2n+BNw4Ye98NRn9a27DTrnS5RJde21jOUqpTtLRO7\n0z6mKfezmiaUfT2e06Wl4ViYDsl3VcovkM9GxRlnh6qMvJEwHapcXpnhKSmI37D4c9n91tWD6pQW\nT5uyLsQh0yOVE9wes7aQHXvjcotESVmy5lLPs4nCGPhwf4arbNYnpwUv67lPpycMHAHJ2bYCjHDJ\nFEw0SGtC5WeoFimNSDwFr1AocrygVI5HN0sxodYnvPwc02COLYXSqjUbsT6LCKOZW+MaXH3Wxkkw\nOm5bu1QagniJNmAtUqyGmLVxMCqL6ByPmCizc9UzLObvY/XBGPOTQAn89Dfw3R8DfgyEP/HNw5St\njZpMsUvJvOSCqvs0/JDHL14D4OFLW9h1mejNpiwgTlXheiqAUnpY1Z0MJwFWnZysdmhpDGhVL7Dl\nulQNeQAj32OhoKZGPeOsWBKrgNHcQKxx2vHJgJmVUt98N2RyR1+8Rkk/kTXQq7v4ysLjGpnYXpjg\nKJGojZy3GZJci9EyFP6ytuqAvrCU/ttPqkaYXgFqF6NqWa6vzD2dBnFTrmFR3Hyb8ZQZbx+kPMcp\nlboQzodzwnWplgR1kwuhHLefxLiRgmXqBGv0i9ov4Hvlebdq2YXxQL43PDjibCATfdKrONmTStHu\na1JluLm7oGgIOrAsH8bpiJufFW+cq13FNmJLf+7pYrnWaHBR270bVZvDruRweskWfkdFftKMabGU\nh1c+xDIkXywrEYbtrox1OjpgomW9oS04mCxDCb2ebMhgWc1yKhYjFQBuOpS6aVUtuRfJPGJtW8Yf\nhzHajIubRThK128C6REBiEqtRAVvh2NOneMo16LxUioVgHH9OeZUF1TVHc2MC66Oc+rhq2LV4STF\nhLoRDTvvqGK9O/uGFwVjzF9FEpB/3r7df/2upeittT8F/BTAeiP54Pu3V7aylQHf4KJgjPle4CeA\nP2utfWcG69PA/2aM+YdIovE68Htf73h1bZmkJWtVg6lSpTmJZfuC6Eq2nZqp6iPOB3NCpU2rzFJG\n3cdfUnOnKblKo4/S26SqDTgrK5IlhblKbZ3kLjMVS2kEPq7SfDm+g9V0S1ZVBJUcr6megls55Kkc\na1SNOVGex8s7DxGpfmIx3SM9ldXaV5CS7zp42tVoSgeUps1UAWjtesnObllgK13hqxI0FDGuj1l2\nLRpAa+WoS21yn1Othtx6eR8iSXyy+AngP2b5RaNde76CdDpbPtNc7vEJC9Ycca/DRUZbKyKpm9Hu\naM1ela+rqWW6L9cwbtzl9RduAfDC0YJZJuO/OItp9+UelQ3llkg6oH0UrSzChhIevlz/Hm0F91y8\nEBBpAjYqxfdvtQ2fPxPI9I07B6CVpMcezQiUP3I7yQhV0/HKJSVAmae4S6Ra2qfT0+s4y4ibMpYw\nDfDUe0tdwTTsZwXpEkTnWmrdgRvENAKZDy29Xt+v8LRaEngujvY2zOsF+cmy47dJ1VKVbuWFCCcV\nlXq3JTm5JsRd45wnGmtbUqHUe6n2/BQBpQrgUJWkqXyvzjxqJfMZ5rtMy/cGc/5Gpeg/iQTHv2IE\n7fd5a+3fsNa+bIz534GvIGHFj3/9ysPKVrayB8m+USn6f/YnfP7vAH/nvVyEYyyxWzApUmyi8X4e\nQ1tW0uO7AyaV7A6zo8m5UnK3IbtZs+kQKfdCHvjUynITNhymKjabuYaDYznGeKoyb2XOPFKOBFtR\na9LGDTLiSJt8nAItFROGS+JWS0ubteojh4YyNq0/1IVI4vmKYw4HNwAYOYoIzGo6S4GXyuC6srO5\nYQhacqxVaswaB1trAstJKWayIxivgb/MI0QtKFVPQBu06iym05JxbO44sNjTu/zDvDOnYHTXbGoy\n7MLlLZx9Fc6xBa+9qGxEH3HZzOV83bUYMxCvx1P16cPbdzkdax1/ELK5Jjvz9XjO0Zl8JqsN2225\nB8GaPCe/E/KqMlE/823rtHdEhu+3P/9zWO389NodfN2xx5k8j4O9mq+qWvOkqKkVyXnwxjFxLWO9\n3PN5uifIw+1cvM2rO12OVULu1D1lOlfPy3hoqokqrdhVCPnOUDsjKc8T0IUtsdoIVpo5UST3oqmJ\nv7Dj4DiKwDQlSojNfLYgV0/P7U3ozBTe7olH13QCApXQI2jhenKMvHKg0DlnDKnmF/LJMilbUKjn\nGQUOZ8u5bkpCxfLEsyFF9M3HKdx3sw6UicPB4YStS6rXWDgUd+QBnaRnhKqZWIYR3rG4fn84kxp8\nFVk+vCkP8XInpKFuvhN45MrD/eYrA15XGGypYJPECXGdZdLOI9GXe8OJSZW3bz1pEKr7f6TSyFE7\n4viGPMSYnEo76pr7DtHT8lJn+YLdO5okOnkZgDtewNWRJLguNDbp7Si9tK0wmWpani0nRMpU1a2y\nesZsrN15622SnrjardqeK2M5sWb9d6Zce1Ou97nWx6D5q3KO6bfxdiTnEnaUfl1hsuW0Zi3Stud0\nxpHyJHbyHi1HNSZHOUeFLBZvfUVwBTfu7BNoOLMdJYxjeRkrHzY0OXgQ1Vx+RPpANhQ+/e3585y8\n9hkAHv3BH8ZTMNjf/W9dnlcZ+ecu9Dg9ksldlyq8Up1yuSX38LG1JkYxBr87GzKeSeiW2wLHV2Xn\nSubQ3p0Fbx3LovCVm7cYzOR707JkoAtOnqcYDcMWtfZaeDEosczhvCQPllWunL52R+r+QZ1NmSpu\nvD4dkSnewk0CfAV9hWnFTCn6sz1lqO76dLVi5nQyHP3ecDgjG8s4UmdBpTyXnbYSvYQeY1W6qiyg\n+KdgPGQ21CToVsJsmTx9l7aCOa9sZSu7xx4IT6EsLYPTlMCtWaglKq0SAAAe7ElEQVR76lOw0I7J\nclowUfe6GZRMtGx3NJXdc383JT2Rz9qrGzx1WSC6FCm+lsUaUUmgbZDTSlzmPEuZKqSxExsi3fG3\nHIeJIug2mwmFos26Wq+fnY3pqBtc3LpCcyY7bBTk1NrZeHJjwLGiLCPVf9hpXefktvwcb9e0duQ6\nPdOgGqvrPhCXcjy5za1DOced3TtUCpl96KmEp6OPy/XXJbS0k3JZ0qwNayrzduHJPciUwpmbLB+3\nMQW+ll/pL0O0IXvKyTLLp2hOlt2jAc9uyc58eMHl8tWrAFSK7hwNF7ylHZOjxYDhQhiKm55HU3fd\nZ57apKFeyFYiODd/w6Hdl5Cht3aJpdhk4gTsbEpYeKW1TjAXtOhirp5i4hMUcnHlac1d5R5oFjWL\nZfaqSHjlUBOhLSkLx1WXVMl4F56DE4tHmqcOteo+pNYlMcvOReXnKHOGit9wXQl15R56aH8cqSvH\nbdcRjiary9ih0jlbjEKGSjeXhpaNNU1GKoNz4nkstCQZlzX+kmB4mlNpeHs2rymOtFv3QLy047Ue\nvY2l0EYDo+KViyKm8uXcdpjgma9Hv3evPRCLQm0hKyEJPVz1xbKswgnk5d2fDdibykM+67ZJVI/x\nzWN5ALNZeg74eGJjk/Vr8iJkNwd8eS4u5f7QUOpLPS1kMRnV9XlGuolLo7WEl3p0FnKz58Wc8ZGC\ncAKZSK6FSHMHxfpd7p6KS70+/xCTvVsAfPbzv8z/9QcSYlx8SnIHa8WAC46M70q/ww89JC3VYVQw\nVxGZO6/LS3UahXzxdZlIL/zOl7h9qkItz+7w7c+Ky/g9z38LW8t4ti/XVjoRpq1di60awo/JTS6u\nAf9A77hDoqQulxO5l50A5l25F8PjmEUuL9t6t8+bpxrSlDHToTIJn2gV2Q253JDFrR2kpLUyHPs+\nm6pXeXVniyuXlBilrVqaawFlIXkG0yrJz97GIVzZks/YIKJQ5uojfTlOhvDSQu5xSptlA+Bms0dP\nIdtOA8608jMZqy5lp2SowilOvMUVDZ9Oj3fZXyo25ZZEwW5WN4gjKtIl7Nq4eAr6wvHPQzdf1cSK\neoFxFYRkfEYTWThfeuMNXjuWC51mPhc3BAPx9EV5BlemEU8+LCxjXc+VPgYg7MWMNC/xxit3+OLN\nLwNwMJLnf3Wrz7Mflvu62e/gacXBqVuE2u15NDtmsWzaeZe2Ch9WtrKV3WMPhKfgGmgHsNFtn1OQ\nHRZzNrRPfeZArJJZ/Z111pV/71STLLY+oNIdPwwjJseaLHJhsEwCxRCrC76lXX/tumSzL7vL1lqT\nNa2J+6bAqcSNf2lvzkx3iv7mMovrEKvAy+6NMa/eEXcuHt/khx/+9wH4lvo1XnNEo3BrR7QOttpN\nFvuCAr81O2W+kItrbXWp+3K+eU+79/wL9K7Kbr1VL4g1K/7wU49z8XGRGGtd7J8nKCulJcvzDKM0\naG4bmH9Zr/nToI1djlMRaMfo1a54MRvrCUencu6r/S5jVxJ/zz1ykaZqL3Qyny+9dQuASGXPN9cD\nttbFa0pnHs9flPDgrcUpz6mL/mj/Ibyxsj+3NUaZrONuyDWTQq1VhrVmyPFsSXAywGvJz7Xyjn21\nzLmp7MleY8LjHfFS1q88zrqi+zZxOYnEYxnMNDFo4FCVvZvrWxSuhqlnp+c6IcY1ONop2tR7uKhU\neQXw3AirMO+8LMlL+UyojU0VBn/5SoUxvlZRyjog0ObSTdvm6rUP671TOsHFjHyhOp7zddyk0tti\nWWjjGt0eaw+JZzVTD7nRjhkrfiOZLWi42rjlT/Dn4i1Hi5T8nMX73dkDsSgY1+A2QrYbfbyeTNyb\nkxkXu/Lg+s9coKNw3e5Oj4a+TE2l2PbWL7HVlRf+sVaH+khc3NL1aCcqQOqVtLYUXqqMQFntESsj\n0NZ6l0Q764p8hHMsD2nPXRBriW97CcXNp6Snctw7wwF76qo2P3+DzR+Ryb/z3PcwGco1XdoWkGfk\nekzjJwF48819fHXUzKzEN9rb0ZEFJEo8eq6M7889/RdoKrins7FOoLG6H9USewHWyjWYskWgEO12\n/DimLy+HOX2WuhYyGKxDoGHM4lBCFK8ZcV2BSVeiDkYFZa50Clo67lsvvcpGIfH39pa4ra2tJr6O\nf7AxpFDCldKbESmXZmkOKGayiGRnMo7IWDzkGG6ri1WB3Sc6EeFQXnrnQkg7kRLn8xeVkcvCs5dl\nEWpHbbYvidvdqGsC7YiMwglv3ZBnfGcuIVzux3TXZG49crlBTxfFS83rvLknpcy8rNnSTss1DasW\nucOpSspnZclMWbhmkwJPId+Zwo9NtMCoYG8nS1lXQp3v/9aPcFuh0u14jQ0N9bQIxnyYk2s15LAe\n0mopHD+I2NDKjt3p8MQjz8t9Hkm4uukkZKn8vX/RR/FPOLv73NWybR4a3qtC1Cp8WNnKVnaPPRCe\nQllZzkY56VZFU1e+hxtNHtHdqNFeo+crf0HXp9qTnenSuoJc3CbhRHaw2ckM5UchGxo8ZXDuxAmX\nL8iO3epLNt3rWEK0Uy0McM7EVXSTJpOu7DRPr0+YKHFGW/n5dl95iZ2HZXcYHsww2oS/GBWgXXmR\n1+djz8kulmRSo3fjNmNlF442OzS9ZeOLIXA14bclyaI43KKzKeMPvD61Iqh8z8NRTgbKGr38c4Xu\nqD09F7WJ2jPsVKoFth5xLrvNlCUNcLqjVPZ+k3UVn+l3WnTasgtueFsEKvbiHeSkhWIncuVYsDGm\nKzvflWYIgdzbq17BfCxj6Xk9uL0kl9HMWR7BNQUCTUrKSDtCrY915Tl05k16HdnlGiqEuX59jXhT\nOlGLvMQqBHuRDmlPlP7N8chbslNGCnl/axLTUFGU+d2KJ59Q8pK8xfM9GcuN4ZhZofLxyvO56S04\nVdk1g6WoFP9QF2QKJnIUQJWYmEYgoZaXRjRVbjCJ+wSheAKtzhZRLJ/3Kw1h4gWFdgt43oK41u5K\n39CIJTxa29jAV1bIYVNp2VJDvuSSLGZ42hF74jaxoSSuO1lEEL+3ROMDsShUVc3pLOXoZMzOk/KA\ndoI+/R1Bo22Ec4yWwKIiYaHEGt1cXpqaklSBKwub01Fq9Xq6z2DJo+d5BLG6Yorxb7lbeEqhbZ2C\nXEks0jSl0sUpMQ5Lv6yrykqvfemQ0z15sCevvizlCIBeSHEsoYu51KKlakK+knu4tJirLmF/UBF+\nm4zPwVAvNSUUreb3NnGsZuG9DFfZc4xbg2bkjWexuWpYaA8ApYcx4u462QDMM3qXP4HQXUBtDQPt\n1xilSnEf1EythCvTKqSrRC5nzJgdy4L7m4d73NUXaxJLDmQxiOkqVXnf6zHWnojiuCRHFsNGfpmi\nq58/le8nV2ucM1XWaji4iUx+13OYK4nI/nSGK1EDNpRnuna1g1NpZ+T6GngSMpSLLqPyFgBHkxF3\nFKhkYln04lbFXPMgPgmOvrAXH+vyXdU1OcaNO5wqXX2oosLjICRX3hu3LIi09XFBQGGXoCB56eZZ\nRjFYhm4FXQXRGbekm8j9TAIHFNSVzrWDt+BcZ8MuAGWkinNDsq7MU1503h8TOhI+2Spnnsk489kZ\nqeYU0jplpp2fc2YYVbh6t7YKH1a2spXdYw+Ep2Cx1BQMqxpfFXkvNrPzvnHPSYjbcqnlPCNXDPte\nJruSW8xw57L7D7IFCtWn8OfMlx5E0OR4qAka7Z0w1Ryrve35fEyuu6B1DJXSl02A9ExZglWYZG5f\n4cZQ/PYsz9nsyco+n815+Vh24O+62MaoULhJxWNIy7ukruyO7lom/OIgZITqXtal0pfnBkdh1w41\ndSXXY6smRtmOramoc7nmSkVarKmpl82VpoT0N/Qu/zyck5JPKAq5n7l2iaYY9s7kehPToaN9HnHz\nlFePbwPwWjZgV+HW3kSx+mGKr4Qkg3mX9Z7s+CNzyGwoYyqmIcljEo4ZFVupJmekKsQTxAGewoBj\nz2M4kwF0rcXTvgPHk+/NpzMiPcYiz2jsSFjhxAWVVo92R0ec1XKdY4UJ16lhrB6iTSwnJ3Kd19YM\nV1Tb8eFmH8eR+3lFq117ZkJLpQFS16WvEGvPFmTal2CVIKdBRCfWkKKumOnr5WbFub5p4Hqkeh0o\nFyN5QZ5pd601NBeqtF3nVBP1MqMQR8lcXEf7Y1KIfP1sK+ZY8STT4owlpaefOuTBe3vNV57Cyla2\nsnvsAfEUILUwOJ1gFV5auRENTWq1d7rnXV9VMiPXhGCkyatws4+rMefspbvsjTQ2zg2VegJllTM8\nkV2gpVRc9aLAdSSu8ysolcygsiW7b0iZyqkg8SUm21WKtjfeusv+qeyqH/vux+krXHlwe8qLv/Ul\nAD761AZWa/3WyPWauiYxmuzzLp1zAVTTlFI1DFNN4CVujaNwV+MHGO3gND7YJb7WzrBLyrpA5dzm\nsNAu0KMzA4GMw+SPYa1qQFhDrfqHI2UmOhl22VKsRzfI8BR2TF7SVU2K73jocVQKkmeekKTteqfP\nZqxeUznBLiHfRzlrSqC7Z36D21+SY1zoKuv0ekl6JqI10YeexnUVQbnRoFTk4aiYc3Am+9bjPdm5\nnXGBr2XKZrRNMRTPakHCQCHmNWBUmi3UuN+PXVzFaWzaip42Uvn2Gk4oScnr3pyoLfc/UGqzeV7y\nVq7ajr7Dw5fEUzizDq5RncpcXqNpMmGhuqP9IodczuF2Ohg97mIwplJ6v7SSv6eLCqss2KlTkCpp\nrnUauAvJxWSzJq6KWQQKu/eLBcyXHZczbLL0IHIK5fsI+o33/JY/EItCbS1ZUXJiZhzclkTd4x/q\n4KmARuQlONrpVWYTFgorTjTps9m6znj2OgBBENBZ0mnblPUrkuzqb/kkDflZYeG4BoxKkptFTXCq\nnXOzEVN9SEGQkEfadam9EydHt5kpVVpcX+EplZT/rYNf45W9V+UYb3wL7W3lD5yKa+gHMTaUaxjt\nHzBtfBWAcHudYqi0Wk1V/KkNZglcKQ3GW/Lk+phlZ2f5diWiUkHcmgGTkUykg+NjUKUnyzFLKXpL\nQaUw5kyhzZOZR1fr2ekFSBUePszh4E1NnrYMT288DsDVDakAdNolnnJNRmnJXHksszrlLRVfuXN7\nxk4sIKn4iiymk/WMckNCBlPEWIUxn7od0CSgX80x2u04XwKy4ibFXO7RaDGiVHBTXhf4hT4zC6EK\n0zYUu5DNLdmZhDzjxMGqEKyxMNZq1q6Z0dIwdcmDOR0MmWumseHEzBdy32zsM1fylUzjtWBhiBrK\nqp26dLTF3UwtmQoIzzzvnE/HLBeNWUamL7xnLaWygPuNiHRJ2kJKpRyjqfZqJL3knM3bmVXUqpS7\n8GMiJfCJ2l1q570FBKvwYWUrW9k99kB4CgaDWzssioybKvN29axF+IjS7zow3RUocWEzfKWoal5T\nmbNGSmNNfm75jxNq59/w7uscziQR0/bWSLRTb0na7AYWJktXbU6t1FbjdMbrY92t4jGRSsg58TLB\nF7Ek6s3qXRqenPtCuMYfvCqowV/6rT4/8OFvlXNf1TDCaZDnMr7d0VeYv6XyYJMRflPc+MQI4tHa\nAqsEKlQVy/XbhJYlQs3WM6y6trWGEdPBCW/sCbz6ZFQA36l3+QeBv35+x3NFgw5VZj2vClJNYB6f\n+swL1Yo8O+Q1VYxuTGJGrng3N39PdqtrD/e41pYdv7sRMtBy4f7QcsdIWHVYJcwRZGU8lp17pzuh\nuyUlWa8Vg0KGp6VhQ2mXO75z7i0uO1UJa4Za1qSxOO+qnTKlVlRgEbjM1aXvRvL/0+keAxVfeSK5\nTnNHG9pGLq8vhV+mJVdV2MZXspRZZXEUQdryQw7n8vwmow7f/qyEEkv9yIgMX70mrwmpltGP6hRX\nuThCP8LTEmagnkJqUzLVbJiZCcqXw7bXpBtrk1cE04E8h1P9/wXzCNrMy3R4zFSfWdJfJ1RilXFa\nU9ZLhc93Zw/EouA6hl4jZJQV3FAI56OzJgsF0IQTSxFpxnloCS5LxjnUzLN1JmQHCrCJPYZojXlU\nMFVWoNqdkClcd02z5VmWgfe2rHumMfX+JKdSMM1bmYctlbtR47TLaxH5trITD8ckiQJPntnh+PMS\n435h92X+3HdKh2KkOYxsnDKeCzFMnTRxduT2D50O675iKzQOT2en1NUyX2AxpWb93S2MqgIRBNTa\nflulMs7RmcuB5jus1wT+jd7lX+BcOBKLNXIPalWYOjUL8n2lwD96C0dRUYPsgNxT7MHA5cU7+wDn\nCkwP7fb41ieEB3J91KcYyks1rDJuaDg2Oj7kme1rcg+Usjw7WYcduYZytjjX0BxlhosdVQVwYlJl\neCLQl/TIkOs9Or07YaxQ8OOFJdD8UfdCTbNWUNOSGT/0aDhyvt6VPiMFpJ0u3uD3d+UYkeeBxv5j\nla3PnJKudqI6boORMnwtygrHUY5GFX1pegH5UhTYycmU+bnOM+pKvuf2HRoLhakrQ1gUeLQUYBT6\nm7hGFueo2cDXMMcah3JNrmmq3Ze5GRG6Mg9rr0Kbf/Ga3nmXq1OXhMEqfFjZylb2p7AHwlMwjsGP\nA+w0Y6QN5C+8fMpfel5c0XKjoCwV0pzMqJRW7e7vSKZ/984JJwrbdU9nVNrYUxXluVz92Y0ZLWV2\ndi9rc1WjSzVU9WFbMVJRkNFgzkgJOQwueXdJ/KKM0a4lPFT6tGSP9LYcL4pCFiMJA174w4r9b5cd\naH1N3OtX/+DzvPgFce17ziaPPSTuZzevwWh1Zax0blXKYCZJS3cjoqVcAU0vZZlnxMxBWaxR3YvB\nnTc4OlKIr78DZik3F7DkgQTOvZ/pUO7JV/7tjLa6tZ3EJVesAHHIhvJaXGx1OPZl595qypie7T3F\nI9vPyrkPDzk8kXt4NPWZ6q7pNlLevCPhQ64NQ/3sBOdFgeImlz5CqQwpX9q/SXZHru35rYwTvabW\nVJ5HYGYMRiopT8mLR3K+ydQl7up1Zj366ulFqme5eaGF72loUHu8dUMo8n7rjRvn3bZ/ZnuTSKnZ\nXt2TuTcZ1fSVQ2GejqApz8ytHZraPOWrdmdVjSkUs+CMpuRaXTLGYaaNa2evnWC0irW5KcnXzfYm\nLVdRur0O7SsyF+anGemphCuFtbyxJ2OtlAgm7gbU2uFZ1wGJzjNqw0SfXxUYHPf/gxyNVFBNStb8\ngEONvYbzGZMjeVhx10GRr9RVyUjbTHdVJDT3N1jrSRy6fi0i7itQZpiQleLu7u2/SaiU4pnKK9q1\nIXWk2fJpwehAf57kOLoAbIche9ouGyoA5c54zEe2xO0eHMVMNVNfOWcs9ezv3B7z6lDO/aT9dwDw\nOy0qxcmfUmB25XzJlQ3qVCb9caqce4cDZlZewK6zQ7mtxKxFjROqGGvpYBUezUhhspNTylwmxLwu\neDtkqHm792HGOZe8/rkqc4a62CwyS0/ZrYp5zYFOMG9R8bF1qZ6017f1ejIGn/99OYYpSBwJ0d46\nHrBnZKFyFj47VlvNPXGBX37lhPCSPLP2a6+R9eV4x3eP8RVW3spbXFyXcOxEdSk7jRL1nplPK06W\ni2jmn7cq516LmcLCey1Z0LvBDpFyTR6e5Ny4LXmEO3eOSFTcN0k2ONbw9eRM72tdY/Q1qcua2UAW\nC+P2mGpFzGgI2rY+oQqvVHFCoItFXSf4UwXDDRfsDk71GJJzufh0D3cqL7TtOdRzKbk6rZwzBSTt\n73+Zo0NZRB95RMrBfmuT+UyOVWNxVSUtJcGESnbj9ajNCry0spWt7E9hD4SnYIwh8iJabcvkSFbG\nw7MZnzuRisOf2b5GobufYy2uNrZc+bAyP5/VOEpFdfKHc25oBSMoAkpPVn4il82WfM/ryFo4xjI7\nUNit53FTGXxv2ByjJYp9J2deyO7QVOLCqogJG7Ijxp0BLyr013CGMnNRpDW/8EufA+C7P/5RAK4/\n8xgPta/JOMZ3aW9KksjdCahfketY9yWcyS/AWl86HP2WpR7Lyl/WMUYb8Z2gQT2T309PxP05rqYU\n2hlK+BJ8TJN2n/u7wI/rHXcxqo5sFBOw3m8zPFMewawi7Mn3nltb40yP59Uxm89JdaSvMnVlcsZG\nV7yH7vUux6+Kd1SepWgDH8nVj9BRHIKv4czG1THmQ/J32ysolUdwls6ZGtXpNC5n2qDUUwGUqwQM\n1S0/MwscncK9jYREdSoXdYqnfBFTBZ41N2tmhcyX0fSYY22l9V2X/oZWYAg4ULDTsXZD4nq46iHu\n1zNyhVI3uzHOUntvKQUYVBSa+J1NF/jaEDWrMgr1zLrthIniGu4OZH5v7HW4qliYfrdHs62hZDHn\nSFW8h7bmsYfEs9h+RLpvqxKGCoke5yWBygnOC4eilrk+LQu85L295g/EouC60GpbstzF21QX6Kzg\nxVvycl+82qWpbnJSQVN7DaJMLt9rzZgcyPf2omNOtGXXS0qMTqYkjphqx1yoD6hYFEyWyL6i4KZO\n/t0czrQkdTwtibQv4VTJTteaIQMF6ezlObNSMfWhQU+H49a8qi/ZmzfFVX32iSeJr2i3493LkGj7\n3bSFe10eYrwQ1zGKXRyl66mDE7K5LG75IsOgi4kzp9Seh+Pbkr/Ij4bEsfYJzFrwirywmL8ORuGI\nxsFR8o5eQybgtetPcvMlibNTJrS0B+Xhpx7l9dduAXAwOOLTL0jJtavqXFG7wXd9m/z81MkFxopo\nzMuaUIlKLvcszzwtLm+AvIBXgpiLE/mdcR2s0pdjLIeZ9qCklp4yS80TFaONKox2s47Kmr4SpzTj\nNS60Fb0at4iXkvCVMnnt3+L4QM6xv3/AgSIh47UGuXIYvjE64PVD1apg2Xfjs5vLvBgsFtKtCIT5\nENcuVbZkHlauQ7GsrlAynslLWmQ5rvYfdC5t4mkVZDKVZ3Zya8Kj12W+RScO4ZpsQrPDOQ3dDJ5e\n32H9SZkPnoaBZyc3z1u8i8CiUplMqimpzlXr1pgl9/u7tFX4sLKVreweM29rw36AF2HMMZL9OvmA\nLmF9de7Vuf9/cO6r1tqNr/ehB2JRADDGfNFa+62rc6/OvTr3B2ur8GFlK1vZPbZaFFa2spXdYw/S\novBTq3Ovzr069wdvD0xOYWUrW9mDYQ+Sp7Cyla3sAbAPfFEwxnyvMeZVY8xNY8zfvs/numyM+Ywx\n5ivGmJeNMX9Lf983xvyKMeY1/X/vPl6Da4z5A2PML+q/HzLGfEHH/6+MMe+te+W9nbtrjPk5Y8wr\nxpivGmM+/n6N3RjzX+g9f8kY8zPGmOh+jd0Y88+NMUfGmJfe8bs/dpxG7H/Qa3jRGPMt9+Hcf1/v\n+YvGmP/TGNN9x98+qed+1RjzPX+ac3+z7ANdFIwxLvCPge8DPgT8ZWOW4Nf7YiXwX1lrPwR8DPhx\nPd/fBn7NWnsd+DX99/2yvwV89R3//nvAf2etfRQ4A370Pp77HwH/t7X2CeAZvY77PnZjzEXgbwLf\naq19GhFK+AT3b+z/C/C9f+R3X2uc3wdc1/9+DPgn9+HcvwI8ba39CHAD+CSAzr1PAE/pd/5HfSc+\nWLPWfmD/AR8Hfvkd//4k8Mn38fy/APx7wKvAtv5uG3j1Pp3vEjIh/13gF5EexRPA++Puxzf53B3g\nTTSP9I7f3/exAxeBO0Afgdb/IvA993PswDXgpa83TuCfAn/5j/vcN+vcf+RvPwT8tP58z3wHfhn4\n+P14/u/lvw86fFhOlqXd1d/ddzPGXAOeA74AbFlr9/VPB8DWfTrtfw/8BCw7aVgDhtbaJUPC/Rz/\nQ8Ax8C80fPmfjTEN3oexW2t3gX8A3Ab2gRHwAu/f2OFrj/P9noN/jbfpsD6w+f8n2Qe9KHwgZoxp\nAv8a+M+tteN3/s3Kkv1NL8kYY34AOLLWvvDNPva7NA/4FuCfWGufQ2Dl94QK93HsPUSz7iFgByF2\n+KMu9vtm92ucX8+MMT+JhLA//X6f+73YB70o7AKX3/HvS/q7+2bGGB9ZEH7aWvsp/fWhMWZb/74N\nHN2HU38H8BeNMbeAn0VCiH8EdI05Z8G4n+O/C9y11n5B//1zyCLxfoz9LwBvWmuPrbUF8Cnkfrxf\nY4evPc73ZQ4aY/4q8APAX9FF6X0793u1D3pR+H3gumahAyTp8un7dTJjjAH+GfBVa+0/fMefPg38\niP78I0iu4Ztq1tpPWmsvWWuvIeP8dWvtXwE+A/xH9/Pcev4D4I4x5nH91Z8HvsL7MHYkbPiYMSbR\nZ7A89/sydrWvNc5PA/+JViE+BozeEWZ8U8wY871I2PgXrVV56bfP/QljTGiMeQhJdv7eN/Pc35B9\n0EkN4PuRjOzrwE/e53N9J+I2vgj8of73/Uhs/2vAa8CvAv37fB3fDfyi/vwwMhFuAv8HEN7H8z4L\nfFHH//NA7/0aO/DfAK8ALwH/KxDer7EDP4PkLgrEQ/rRrzVOJNn7j3X+fRmpkHyzz30TyR0s59z/\n9I7P/6Se+1Xg++7nvHu3/60QjStb2crusQ86fFjZylb2gNlqUVjZylZ2j60WhZWtbGX32GpRWNnK\nVnaPrRaFla1sZffYalFY2cpWdo+tFoWVrWxl99hqUVjZylZ2j/2/2pBfRe05gTkAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.4493... Generator Loss: 0.9787\n", + "Epoch 1/1... Discriminator Loss: 1.3226... Generator Loss: 0.8376\n", + "Epoch 1/1... Discriminator Loss: 1.3657... Generator Loss: 0.7043\n", + "Epoch 1/1... Discriminator Loss: 2.0819... Generator Loss: 0.2141\n", + "Epoch 1/1... Discriminator Loss: 1.4158... Generator Loss: 0.5562\n", + "Epoch 1/1... Discriminator Loss: 1.2893... Generator Loss: 0.7726\n", + "Epoch 1/1... Discriminator Loss: 1.3175... Generator Loss: 0.7764\n", + "Epoch 1/1... Discriminator Loss: 1.3040... Generator Loss: 0.9346\n", + "Epoch 1/1... Discriminator Loss: 1.5212... Generator Loss: 0.6124\n", + "Epoch 1/1... Discriminator Loss: 1.3328... Generator Loss: 1.0946\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVmsbNl53/dbe65dc535nDvf2317ZLNJkbTkKBIiO/BD\nLAGGEcQJAgUIoKcACZCHCHkJkCc/BclbYGSAAyQOAjiAHUS2RCeSaFEhm2STPc93PveMVafmPe+V\nh++r02wkipoiW24HtV5u3X2q9l57Dd/6f9P/M9Za1m3d1m3dVs35F92BdVu3dftytbVQWLd1W7fP\ntLVQWLd1W7fPtLVQWLd1W7fPtLVQWLd1W7fPtLVQWLd1W7fPtC9MKBhj/oYx5gNjzMfGmN/9op6z\nbuu2br/YZr6IOAVjjAt8CPx14AnwA+DvWGvf/YU/bN3Wbd1+oe2LQgrfBD621t6z1ubA/wz81hf0\nrHVbt3X7BTbvC7rvAfD4p/7/BPjWn/Xljc1Ne+36NYyFuq4AyLOK89OnAEymM6pKrruugx8EANS1\noJyyKHBdkW++51Er+qnKGqNizxgHY4z8rqrl77ZiBZQsFmPl78axWP3sOQ4GfY6V39XWYpC/u46D\nfsRzvct+WAu21ufov58BZdaC9scAK8S2+o759LZYwOq7WmNg9Rku38noi7rG4HqujoWL9eTvtqqp\nSxnDGovnyNS7ofwbeAGe/q4uckp9epokl/2vy4r6svvSB8d1sTo3dW1/6rqD0XepsZf9N47c17EQ\ntVoAdPp9GjqnZ8sMUp2/fImt5PtZOpVrVU5lq8uBcXS8DQ72snc/NS76Hs6nw0Zd15cDbbGfzosB\nZzXq+nvXGFw3uHzeaj05riEPpR/lXO9VFbh+LF/I09UtsKZmNZuua/A8HwDP0zlzfMzqnXCo6lLu\nW1qsrjljXDCVdlPmqaqry/tWVYmjnas/7T5YqPUeWV6cW2u3+HPaFyUU/txmjPkd4HcArl69yh9/\n90/wLKSzCQD3Hoz57/+r/wyA//3b32E8l0XRbTa4ev0qAItlDsDZ6TGdpkzG3vYWSSXXJ+dzglAG\nygta+J68bjpP5O/JBbkKiNJWOLVuptBSV/K512wQlgUAwzIFIMlzXFf+3o87VIEsip32gG5b+pGX\nkGby/cVsCUBRVKzWX11ZCKQ/flldLvS8kP4EgYuv3y1dyJa6UByHOtfFSE3gBPp92WBN12Ow1QFg\ne6tD2Ze7FPOU9EzGMHFy+o2BjOcNWSPXNg/Y2u4DsDx6zJmOxftvv8dEN2QynLPQtVsV0p+436QY\nzwGYLTIqK9dbrRau7tFFVVAkMhZBMwSgURie+5VfBuBf/9t/ixevXgPgv/7xfcwHco/Zw9cpZtKP\nex/8IQAX4wdMs5nc2FridgSAZxpUyLzbyuL78rtAhV8QemSZ3jdZgo5zUZeUugYcxxDqhnVc+V0n\nDOl0rwBgipowlt3WbAY8vCXjcv49uW92cURn92vy3cN3UBlL6Sc4upG73YjB9r7Mz6ABQLu1R5DL\nvWzdYJyeyn3PSopCxrYR9Kk9eW/XtmVckzEg8z+aDYl9GdusBj9Q6VU4LCtZfx/ce/yQz9G+KKFw\nCFz9qf9f0WuXzVr794C/B/C1r3/Neo6hLgtyHclZ+YAkk83okl+ewJub21zbvw3AvY/fBMBgaTSa\nAFy/c5ezwyd63WdjbxeAbrvJxdNzAE6NTHw38KkyGbAsWWA9WWBh1+Kr1O04DcJNuXdjKcLk6N4T\nPFcmYPfaPp1OV+6XBcxqmdDpzKACmkCH2aUgV8keOIZyKe+X50t0D9LSTR55ltiRZ5S1xUbSn0Vt\nKYsMgASX5ur0c+VeTeMRlvKMsChxExUtaY2/vQHAQdMj8mRh+ZH83Q0CGvL6eNvXOT98B4BqYchy\nnQcvxOiG9F0RPO12kzKXxT0avU9ldTNt9egPegBcnB6S1CIsXV82blIZnt7/GID7T0+4desOAFeO\nurz3T/4bAN5rnvCtM7nfqSO/K9s+C/mIcT3aDXl26LpMVVbU1hIpIol0PbUaMX4sY7hs+0wnMobz\nJMV6sqlDz+A5egrr/PcbTeJYx3C6pMxXc5lR/nMZg/Tp9+WdHGh/8qcANJoxQSR9mBXVJRLIaof0\nRED04YX0vVU+plTEViQZy1wRZl5Q+nK9647xVNA1SlljUTPAzeTveeUQ96SfvSDE5opY+w38pSKd\nz4D3P7t9UULhB8AzxpibiDD4t4B/+8/6ssHgOi5lUTIeXgCweCNlNpTF2Ir6lKFIzN7WBnFHBidD\nJjYIAjY35OS7cfM6+1dEsnuhw85VkcqR6/H9730o1w8fAJCkE7rtHQAePjqhTGSHNaIlG305Nesi\nxBnIvTNvCMDORo9MT5SFG+Kk0g+7OOJwLp9La9F9SiOWze34MXFDPnvkjM9lFVsLcSyCZ6srf2+3\nWthabuBbA8hJ6+chh6crU5BL5Sik3JBNnqUF6VLGavg0Y+dbggTG8zm1I4ut4cds9+U5RVOeG7Rc\n6lSEXp6NOXx0DMBZNqJeyPUw8ikcGSOvof8WDn5D+lZQUSpGb3cjbl+XZz8IKmaJ7ORmLv+eL2fc\nfyTCe/wP/gdubwhSePu//J/44eifyesZ+KizKe/97HMAHHgDLuY/BCAOHO6+KAdEGcwpD2XsG92a\nXlMEYBgrimvtc+e2CKnl3Oetp7IWZh+P8K2g015rk4dLmZNirsK73wJHBNphMgad6/HCcnL4E7mf\nqi1ODQk6Z1lMTwWSSSqaen0nD6jm8n0FrvikzJt6IOUVkdXNX0McynU7WRLXsrmbVu4V9Qecd+T9\n8nFJM5A+x/0mIMixjEPSY5Win7N9IULBWlsaY/4D4PcBF/jvrLXvfBHPWrd1W7dfbPvCbArW2t8D\nfu/zft8BSpvw+Aciff/4R+/wQPHgxu4e/lgQhLEFjx480WfIb7uDNr0tOWny1NJVleHatW36GwJL\nn5wOSZ33ACjLBQBh1CHP5fNgEJPN5dQNOjG1qhKVnWPmI/mOGh+rdpdpSx4+Oj0hUCRwvJjiF6rv\nly7WWVk55V5bm22ilXrglHh66vjbHTYbcn2rK6ik7TnUig5sbvGsnOjL3NDoCSo4G6bMSjkFikTu\n5ToRF6UghbLZYHMm71fWC/KhXI+6e6Rqg9htCgSuZy5n+RiA2eicQu0nbc+j7kj/6zogDuU6lUBu\n3zd4nsDgXqvBPJXrnUabZk/UqmcbPhcTQRuOr0bLj494ciga5dE77/H9f/QdeXb8A3xH3i+eFdjr\ngvoytQFsBi6hUTtK7HM1knnYu3mH3ZdkjHavXqel9prcqtoxTmhvCnpYzpfsbMg9vGsJcVfmaTqa\ncfVQoPkPP5E5dxKXiSNrLwwbnCeCKvyWoauW1ELXRYTDdmsbgEHnCi9ekTF+eHqfG2rb+eaghX93\nT95vIv11Bw6Ovp/dj7CPRKV1o5JY1eYqhvoTWVvOriAJZ+5yL5B5L954xELXnlnkRF35PKsKGuHK\nOvX52r8wQ+NPN2stZZ6zTEr+4IFAw+9/73WSVGwAUX+LQCf58OgEXcfcuCKDG3QiTCSLcVGec3NH\nBMHBnS0aRjZs1Ovw6IkIjgefvA6AOS/Y2JdBHzQ3qPuyaSYXKQs1ri0mM2JXFkLqyIM7TffSIJou\nZjyRn+FZQ7JUw6UpabdlUex15N+b+1vEK09GnbPbkMV0cG2ftuqU3ZVdw7f4pXx3uZxwNpJNdTbN\nSdTwWZmceanGs6UuDiehTEUQLE1K70w27EUyudSNF/mEZiXPyaayaebzY8ZjEcJ5OmevIbDdNs8Z\nq3fB8Tw8T8bAqpcobgRsX5XvDvpNpjPZTPvXBuztKITPNphtyFzOpWvYOxnv3peNWcwnvPnu7wNw\nnC5JVBfPGy5VJv3f3ZRrZ5MJnivjcn27w6vffAaAF7Zvsb0vG7LVGuCqfWRyKhu63MsJC5mHYmMG\niwOZsxcTHNW555sPqBdy70ctURXfPx0zGcsmneGTZLIuZrnDuZr4g4YIP6IIZ/NvANDbmmNaMt5/\n7bmYb9y5BUBz3yVuy/ps6poOGh2wMr+u38G+KILJIaJQo6MTdqmeOQOg0kMmmR7SHkkf/BdL/tk7\n92UMJ0v6oXqdXJdMbWGft63DnNdt3dbtM+1LgRQqWzEpprz98Zu88afiNUlNRlWtLMELJnoSTuZj\nglBOq5effQGA5u4OQ0QamiSg6ytEN/1LhGHqFoE3189y+oyTQ7wzkeZx1KeO5HmescRLkbQL11KN\nVeoO5FRNZy6VQsYyMZduxiqrKV2B11kGewO5961tMbi9cP0qNpFTx2ZL/D05YXf7e0RqJIoceQ/f\nhni1XFt2IKwF8Rg7oRrKM0auS89RI5+Kd1vkWF/91VXNeCQndOk7mEJgedhuYxXRTAI5idJphuup\nMWyjS6snY9y7tkNWK5wtfSa5npoTQSh7my122oLYko1tzidykja7fQJ1qRgXQNSiK/tq6Z/W/Fi9\nOpPhjKOhnMylm1DNFQm1m3T0xHZn0vfZ8gxP9catVpuXn/0qAFc7A5qxGBLdhkelXp7YUcOv5+Lq\nuvCLHlYNpU4ZkNXyjPQwwFgZz7ASVOEuhqSF9CfL0ksvUV2WlzEXVKoaRR639o8AuNO+w1c25Xd3\nr29x9Y6otPHV23i5rItgS+bUjTYxapS0sxy7LevTsQFVKu9tRzl5IPcrU0GpzDxMJO93Z2eXT54K\nkhiPz5hOZZ5aponr/Wzb/EshFGxdkc0nJEczljOxelfG0ladNJ1YDk/f0y9XHLwieuZz3/zXAOhE\nHo+nEujU7rTZ6d0EIKwcWgrL09rl7rb4kI+eE0h51DFMh5k+ryZbyHcdP6LuiwAIxn2qrsDqlVvp\nrMhJdRfmrqGqV4EuGVbdgYWtL33yV+88C8Bgo0MxlWc3nA4bm7KZWs0IJ1ltPHXdBQGOqgbBvMRs\nq7+62yTwpR9paXBUxTCh/DvJcnIFgBkFhXpJNnb2CQfqWm036et1qzi7G/bwfblHs98g9sX74gUB\nuUJbv2GYTmXxuuqFSBcFVj0gzbSJ15c5y21JHcr727SipUIvtLJx840LdmLx/JzEF+CJkOpYH2PV\nnea6lKq6oHp9VUGusP2lq3e4fkuEQqMyBI6MlzHuZeBU3D7Q300xlQrLhk+2kPvlo4T5scZh2Jwq\nWQVDSX/aXoteV639WU2mUuEimRKpvt/S+ICo6dI0Mm4vXO9zsCWCpTewtFt7On8HuHqoubFsfuP4\noPYn69VgRYBSWFxHxrMqRhhVvVwNlqoii8llbvrdiJdu3QDgvZMpBunT0q2oyp/N+7BWH9Zt3dbt\nM+3LgRSspSxyZuUR47Gc3MZYvEqk3fnoQ9JMYxJ8jzCQU67f1+gyv8eOnp6bW1v0VAJbY/ACOR3b\nfslzXxcIF27/dbnvo2d4/Z+/BsA7H74Fidzvan+Aa+R3VfOY6VRPvLlC/8JSKszMc0OkAQme55Jr\n1JzrOmxFYvjqhRpdR42bycnc32jQ68nfo8jF6mnjGPm9U+eg/nPKiK7R06oJFkFKhTuh25JT7sGF\nelSaIQp+cBcz2mrkvLJ/FRtrVJ3fpd1VCKuBXAU+3YacYMv8KWi4bmVCBi2J9UjsgjiWUyfL5LQK\nGzVpIiimcpcUpUJ0QioNPjN1zSryrtJAqHRYY4uVN6RF6Olpaxesoqgy4xM2FK8v5HdFvSRWBPbS\nV3+dhgZ4+Z6LyVYhyhVodKPrry61oOFczo2rc2YqX8KegcXsMXas/W/KuG32MpYap2GimuVcLf8z\nwyokyNX7kkDbyhrpNw23bghqiBsVgZHT36HCDfWXpb6b60uQA2ACF3SNWDcHVXmclotVlca0FFUW\nCaYr825yh/2OrIu720+5t5T1Oa08jKren7d9KYRCmZeMnlxw/FFOVclCyeYFdSkvM5xOKNXa7RuP\noK+bXmFmox+w1ZIF3WqABtURNDwcDXCKwgatLVEr+h3Z8Petz8Pua3pfy0LdbEt3RhjI88I8IPbl\nHiPdmK12SHIhzw5NgruKYbcenuYXuMbS3tVgE422bIYh0XXZbN3+gEA3qe83LiffKNKrklNsKlC7\nqk/JVwbkyCEK5R6DdsU4kx8Y3TRulhNroEzpW+KujFVuLuhYGaMkmzLLRVd1ClUHwjGpI79zqoJU\n3VvdbsIilP6P5imJvt/p2YmMRe2R5ytbjcGqS9L13MvIythr4msk46JSda3MqTX0d7fTorMtzzj5\nYEE3kD5nHhS6uI9HoquPFyl3NmWzHVzZQON4KKhxVRAUk4RSN32Raw5L4FCM5V7GqyhW7sRqzkTt\nK8uLBROVw9OFCNuTOudsIRuvcgLyRFTJpEgo1JrUKnVqBoa2Kxu31QrwdPM3WhE0df68kKrQfAwN\nwaeqLlUwY3ysHgymdLGr0G3bplY1zqa6wF0LhQiQ4uKUSuc9jjw6KmTnZ1Myu1Yf1m3d1u3naF8O\npFCVnEzPePvx95hrcg1ZySKdXf59FajUCCK2twR2o7A1jq/TctQfP7lg+fgRAL2tbaIDOR2DKsVU\n6omoFDqHBtuW03in0WaoyTxYFyeU08Mlwl8Z/IJVFqH47AF816WnIaomgSSQ73q+x+19iYvodOUZ\nDePSUo9Eq7UNrno1Zjnm05hXAKqkgaMvXTsNvKb8fVkmWIXgvoGWJu7E+u+EgsDRfAbHobzQJC5T\n4Sr68fYqTg8lUMm4EgiWDUtsQ589rTCRhAFH0Qa9m6I++HHA8kJ+V52pF6JcUihiM2kJGmfR6IQY\n7VPDzS9zIpqr3ILlkkKTqgIvpmHkhG3EHepVxqsfEqmXZ5JI36uiolarf1UahhoX0UjB76yMvAvG\n2r98epmCRlnKSTuanpCoB2dZjSgvKh2jhPlMUVamRsncxdWw41m+oNCcAuOBq+89z/QEH1p2X5Hn\nRiWUx7p+ywV+KMgsnWT4mgXpqHfCcT2sGjCdFAgVHTgVVaqG1kVBrQgCDYuwJz71UoPTrGWs6IYq\nw6pR0ikM/FT26Odpa6Swbuu2bp9pXwqkYCxEGWzUHUI1uCxNhXOZE+/gqAtsc3PAq8/9FQD8hhgO\nsyyl4clJM0nmPLyvLjLzFLULceNgHycR8blKWsmzmkFXfnfav8FpfU/uUWa4uSCMfqeDqyfT6aFI\n/gp7aSzyrCXXCDPHXxBFojw6QYhVI57vyxEc+QN8NRq4poGjBrWqLsBT16K6GB2g0pTXKmtRqSHV\nCwOKpZzWHiFttVccHMgzhk8POTsTd9s8KQh76jotE9JAjYTnBk9TdQsdiwSfrVT6u2ykqu3DxobH\nN54RpEDQgi11h93SiM5pwrEmYF2cT7hYyAlcVxZbyXdniwzjyrvUGuad24q61qzFKqGhkYtxM2aa\nr3Tg8tP4lFxDvrFM1HX69jtv8JwniVLB3MVbqD1jYpg3Nd39XN/TzxmfSjxCki04fiBoclbldGqN\nIj1oMVX9u1IXqlsYdnuaDu+koKgiTwyFnsBRKe8R+Q5eKMe43xmQCTigChwI5B5Bf4CDxiEo+jO5\nQ+0qCghdzCocMytwFAHXkYtTasxCqnaSzhyGcq3Ohzi6nX2nSbejtp8qoR6vyBU+X/tyCAVKjHtB\n4Y4oNB+gzOpL0CPIWpbpdm+Hw08kJuH0qUzslVGbr96SmIWDwTbzO/L3dLjg4exI7xdwdiqQeHEq\nC7oZuSxPFMJ1SrZSMWAt6gmBQtiG6zBWTO/muiHSglBzFVI3wHMV2uYVjVXoarPF6Egm+viaxPg3\nOjW1hheHjiXQvGcn9qnmGqa9lA09my6YnD8AYDpfYtX7ErUNRS1wdW4sjqtGzIYGEy36fHi0St+e\ncyuWDPZpMuNMIXXZSIna0s/+hizi/c1dNgYiIPNkwXghY+Q6Lq5C92t7bbw9JbjJJCBrkS5pHEmf\nzy9+zOETzZC3lq2BCFY/dPHUY+SqmjBfTHB0I5iswrHKs+AsWaqAvJgWkCkO1uxLzwOrxsPXP3yE\n05L3aOHSz+TeAQFGxyXalv5mT1LuPRFV6fj8nLmG0NvMZ9iUtdX+eMHIquBP9Zr1ONbDyZ8bjArR\nyEC6SoNXg2E/bnBLczX8boGvB8Q8dMgeyxi1mh4NJb7xKllvjmdw1NCMX4GuEYulzjWoKTAUqoLl\nGuZeFA2yrr5H6cOF3CMMDXammZuVJfZ+ttyHtfqwbuu2bp9pXwqkUBQ1Z8czhhclqXII5HV1GUZq\nXfeSJmtcFrz1rmRSjtTQeP2TDrcH1wFoNK7Rawmkeu/Dhzwdvw3A26//gMVCpOpoLJDy5ZvPUCh5\nh82CS36G8XjOUH3o+WZBrmpHrgbHvC6JMpHgsWMp1ChV1YatvpyO3/zaHZ57ScKwg1Sk9vFwTNdX\nKq7a0myK+uM6IVkpfTp8IoazWT5mdCwnu6kruhty30bLIwzE0FqYY/JKsxnVr751O6B6S975fDKl\nqRmcJ4sx5UwQRtmc09uQE+3Z25Koc7CxQ2tDVbCLMz74UMZi+fSCT+oPpM+ez5VdceuiBtXZZMnp\nSNDB+HzC/FTG2OsGEKnxMGiTLkTlOawEgUzHIyaKfmbJkh1f7pcuSyhlvEK/4lgTtjIErfTCGDRC\n73B8SPyO9mO8oM7k2b/x8nNsf/2bACxcWQuvvf09Xntfku3SsqBSg2G73eJOX1BPa6sNI5nXUSlj\nv8xqOqrmzco2dSHvkScFgZKebHblGc+/uk+3LfEIyXlOpYl7W+EBi56sJ3fprUIu8NUIHHca+EqQ\n4nsxVrNjs+GCJJHQ5aefPObpPSFJSZayRjY2QoJS0MhwPmGWK69HYLCaPWktRNG/hGHORZlzfPaE\n84snZOofDzxzyTlna+eSzmo5m3B4JALiYi6+8myyz5FaYW/XBReJbLDN/Q5RX2Pmz0csVMm7fl2g\n6MbeAclUwqqd/FP+wCq3LGcCI8/HE7KZ6vuaU2AXFZk6yJtBQKxZe5NFRUsJObq2g5PL50eJQEfn\nbIm7o38vSqymg4dOmwJZbHEs72/dJs1rAi9n2TF1Krrl49EJ4YX0M6nnlxZ8T4ln0klOoWpOkhe4\nmdyvETTR7Gs2+htcbYlA2oplTKIip54qkUvQ4Pq+CItwvwS1vk/PU86MqGZhexUOXNLXzf+Va9fw\nas26zF0ayrZUzWaU45U9R//NLLkGBRUlLLSfpoZKVYUiB189Qp/SMhoKDSt/eDrCqcWzszi/z/mF\nbJbnn7nOzb70+ewjzQcYHqEsfexvdehGIgiarZAdZaSCnG5TYbxS3lVewNyuGI1SLjRMPZktGWgY\n98or1U0HoNR8i+GEjUgyOOOOxSlFTTs+G7J8JGPguUoc1N2+9PC0ooI61LX39CkfvSe5QKOHE54s\nxOYVh+LVSppzttVrkUwtua6FpHKYqfrg1g6u97PZFNbqw7qt27p9pn0pkIK1FUk5YbflsLMhx1no\n94nU/390dMxoIifpcp4y8UTSDici+qMoYWMg0rPV2eGOGmrMxhzXkVPgzfff4q3HAqnqC5HQ92f3\nSBdilNsN2uxogtKg0+boTCDxex/fZ6JZaUZPhLyy1MqTmDs1/UhO23bH8lCJYd789ne49aYSyzpy\nrVdW/BtfeQWAK1se6Yr7kCW1JsQkC3nG0Ks4Usv52x9OePddIS5NyyF9NcEebG5x97qgiZYa6vav\n3GF3Q2Dy+08NpaoPt7ev8yCWk8bvbuP15Hf3lHglO08Ya3z0RVjwvBKpvnjjOqFZwfwFy/OVQVBp\n3MoIvy3v784jTkafAPDx/fdXQZo0PZdA4zD6GoKeFjmJnsa4lnZP7nsxqy+p22rrUGpsSaWEl51W\njKskva3OFhvP3QXgwbcfUCjauLJ7lb0DUd2KEyk1UicLXrguPAbPvHSHcEPmenz/mLNj4SFoBwFt\nJSS5dbDyuIAfyBp6/5MPefCRGlILGGysQujl3yyaM1eVtrHd4eNK1uyTb3/E+2/K5x+d3aMTCbr5\nzW/+OgDfuDMh0bHf793CS2UtPPpkxhsXgsxmmcvHAoyZTYSbtHevpFMIctlrD7hxTdCP4xe0MnnG\n1J6yTH62OIUvhVDA1rjZgmvX+hRKhPHMSy+CK7rzj9/4J/zghwJt+3GPuy8JLOtNxfvw/Ne/xpUb\nzwPQaRqKlT5Yxgx08R/sXeWJJxPjH8gkFpnH7D0RMOck+EqCudPtkCuha+B8RK2Zeh3NxbCmYqlU\nxWXi0uwq83PUI9A8h7QoqRyBs3e3VbmsmxSoDnxR4w2UQKNxQLaCzJoCvnx6xEz7M9iouXZTSU+m\nFZkySQ/aDbY2NrRPct+tdkmpAf91DbEGCw02Ap5eSP8HfufSldlUCvVkYIg1i7KbZMQDuW8yLymU\nWrx0cozmIlShhpp74F5oME5UcfWa/m65hR8oM3UY0tFx2WkLjJ5enBKtGJdbEc/sibry/Y8f4+oY\npbkB9VBonBeBU7O7J3r7frvHSx0N592PyHWun7n7ddpqu4mtks9EFS/flGdc2z6gUndxY8+n1FDh\nIC8v8xhCdZ1utGPm6t57lg2++5p2JHS5uy8bLxyIUAzGoJnzhGFJqmxTJ+Nj7Ka8x/NRi+qG2GUK\nX1nFZw0aurmDdgFKiltt1EQP5NlFp82zm6LyPX2iAVkXE+arUgRNw0DtTpPhnDjQlPrckClB8Odt\na/Vh3dZt3T7TvhRIwVpDUboEzj4vfFWk7o2bL7K1LajBKV5mMZGT++tf+Sp/9Tf/VQAyTVB6Yf8K\nW2o5z6s5ea2Zlo2UWA0/d25foXt7ZbXX7KJlwOMrIn2HTzNOP3wDgHGWkqmxMnQMRqFroqcOnkOZ\naDhsvWR0ISfeqy/d5fnn5H5/K47oDjQ8WPnjjIkp9fSogynBKpTWm+MUWhchlQCbGzs+dzeEC6B2\ncmpfTrmLk/vYQk7b5cXJp6HE6oou8VmeCkKxdUWm3hzqjOsdOdn8sGJDw60PBjImxh7QjOXEHOcz\nfM3jn81GlKU8Y5H61EqHvhofW6TEGiPxTK9Py7+h/W9cZk96buuSvGRFob531GKs/JibG02evyMI\n44//uLzbAmM9AAAgAElEQVQsWmNMjcY/4ShUcGrLc9vSz6+9us++grDN+lW6kayRjc0G5VIzmwrp\n+51ei4YrY7/V9ilWHBChz15HkOd4fIbROIpSQ+xrL2BHA9VeyxYs9T183+P6gcD11Mrfl9kUluIB\n2b59gzsvy1i8wC1KDcgapwm+Gh1n07H2t8ZV5OU7FWUlekJx7w1evi3ztLl35bI2iPsrotrNho/I\nRrKGnDIhU2S2vHeCpyzQJsup7L+EWZLGunhlj1l2yoUy+uyEh6Sabho7LpuaAvz1v/ktvvGiuJuW\nmrHWjAdYTyY8nQ9ZnMmCsKFl0dSiJe0Gm2oN90KB4mm7YqJZmeOz96gyGdR8OCTVbL8gimitlONV\nVlvtM9XsPVNbOnr95vYmX92XBRb4uWSxASZX1qQ4ouzJJl1kI5KJZldODLahOR/KFNTwegy0toR1\nPUp1PXbDHWqtATFzNshUbRgP5d/TNz5gvJB7OY5hdCiLNGjuEBWact4ZEFciIJpaLKUVeIRdUR86\n84haPS2REzFRJiRv0cDTICtXCU0sFVYZsqKsZE+rPrVDn2K2CkQrSdX0vyi0ZoFps9GQOdvbv0o8\nEGFqqppyVeGrgpYMAeVC1Zzi06pI1/b32FBBF86hv6WkJWbO9KEErZ0+FHuBTRzSdCUgazoqRCPT\nItVoUSfqUuoaWGpVKD/0WU7l2vijD1iqHQjXoa3Ri0Zdq6OsJlNbU+zFNJRhqREaEvUuRUmbYEcO\nvmtXNPq11cKqm9yZpZhS+t7pTOhHNwDYDmLMKkhOt+12fJXSk+ellJxm8rt87HCUysGQ5iXFii7q\nc7a1+rBu67Zun2lfCqTgOi7tsMPyXoZTCXw+bi3pXVMG3OYzRHsCqa6079LsCtT0IkESgWOocjm5\n5mVCtyuGnFl1TrrUnPdOg6ZZ5aFrNl1ZYDXe//SThEMtRFNnM8YX0g/fhMRqZU4Vy/ZCn1klJ8Zs\nml3C65gGIRrGHLcJNSfCaqEWkwWYqcY6zGdMCoG7zbiHq98N1Nre6vQIVnUgHZ9IjYflZpPlUE6B\nwDoUGoIcrQqyLEsCPeV6vQaH6g1pLy3+jhy7tR8RaFGaoJa+tbotGg1BUmVckU3VeBhWhHr6TXsG\nr1yFaatBzjUkelo5RU3saoy/45Lr/ZJxTTkXhFCeaL5Hs8nmrqhHYb9BqQbPRsMjMUoDH4FRTgbX\nV3KWMuc7b38EwCvXX6HzLblHEPRx1RBcjucMJ0rfVqx4NnoUCxkLzwtot9UL4uZECu0TJ2B0ppyW\nmopQThfYWPpzPplfBtFFrQaDfUE36ZGslY4ZU07UEJk3cbS8mx+HNHcE8vNC65IzwxSqSroOuS9r\nwTct/EACy25svoTTUaKWfoO6XCEd7VvdZZYIArGlJVO+0cPlDJPpmvUWVOHPdvb/hZGCMeaqMeYP\njTHvGmPeMcb8h3p9YIz5tjHmI/23/xd9xrqt27r95befBymUwH9srX3dGNMGfmSM+Tbw7wH/h7X2\n7xpjfhf4XeA/+f+6kesbelca1NsDnI+ViXlzwEJ9772DksFI9LfIBARKSqmEQNjaI1UaNOYOppJT\nIluOmORKq7XVIwhWxUPVwOd7tLWwSOZMKSZaPdnmZBraHDZcfM3A7GqV4V5ZM22s3EkZhZ40My+j\n8jSbr4gIY82YUwOejXwS5TooHyfURnT/2q0vI/ZMpQauJMIo14PvRjj+KmsvpVTGpsXYxVV9PlMb\nyHDxBKthrQf1AE+ZiM+OH+MojdsN12K12EtDIxqDsI8XKCUcSwpX0EhZuwTq3us4Pnm2IorVwr1u\nREONmVXgYnUeAnwcRVZ1lGFSRQ3IfT1KrtwUQltrMqanMt6tCLJVPMiiJlDauGi5qjReMD7TrMyn\n5zQjzVS8E+Mm8i7FvMSpZRw7WzJu3bRDrs8oiwmhlqOLG11yLZ7jjmakTUEQk7n6FouMizM90b0c\nX12rHS8mCmRel5ol+uFyzt2RhsTnIxxHS975LTyNTTCBi1VeC81rw8ymON6K2dlSK7NW58oz1Pol\nv7MB9apPmj1sp4RtQQqTM4+JwpvhaMnCyPtHrZh9NXi/zucr0vYXFgrW2iPgSD/PjDHvISXofwv4\ndf3a3wf+iD9HKDieT9TbwiyaPF1K2LF9/Jj+dZlkL9pmqy9BI8skJavEKBP5Gp7qWp4eSzjrd7/9\nGnOdmJOjT9i4IjkR4fZvclM/W6XRcgtLqFRrQe4xyeUe0/mM03OBhE0H2pEslKItE1eFHk2lDPOZ\ns1BVoipyzHK1WfJLhmI0dbouHOZqnb53esoqD7RlahKl6l1ciIBZcoSvVZxamw6uUTO7s8RRI2FW\nnjFJ1Kev/IRZGbCp7IHTZkmuhB6T+Rnbamhc+FvMM/E6rAKoGuUCk65iLArOR1q5e3ZOpNl5VVl9\nWmxVDZ9V7TPNNETb9Ehr2SB2WVNotmNRh0wXMrbnSjnvOz7Blmyq937yLs6JBOms1AgAvwajxC/7\ne0orl8UYDX3ubxpMqrC7sUlpZV2Mzp5g9MSwtfQ9TCznummmwwsqLQIUbUQY5SbJg9kl/X+Syzqc\nZRnLRElUnBYtnfe4E/BEaenf+FByEk6mF5x0lKq+Lqm1KnpdzakT9QaELaqZ0sblWrfyLKHU+BRv\n64Ba1cr8KZTdY+3/Dq4ydq/4Bk0AFbIuFvYxHzySkOj75+d0OnJ9sOFw5XmtPv+P+VztF2JoNMbc\nAF4Fvg/sqMAAOAZ2/ozf/I4x5ofGmB9OpvNfRDfWbd3W7RfQfm5DoxHH7j8E/iNr7dSYTyW9tdYa\ns2Lg/2z76VL0t2/fsIUX8sEbr/MnfypEqt1OwM6eRvRtOcwei6Hxk8m77E9EWm9rGbfKcfjuT/5P\nAP7pD36PXc0c6213KbV24ejxfTpGDT8Due90VjJVboW4mdNuCPJYzIeXCTFLFyL1aW91BdYtxxV2\nRZzSCC+LwZwfwWRHTlDHcfAipfw6lVOyTDzGanAryIm00nTQjggidalqhFo+thRKPlo2EoyWASvy\nBeVcyVqzijKRZ4xHCi1tk6YSx0zTBBTaVkFNUzMGwyjm/ERO9+NSTmhbdi6L5ZxMRzx4pIbBckwn\nUEZhDyJ3RRCisRvJIRdaf3Er3iXaVjWnjC5RwyIpWB4rdA/lFMTpMnwqR/TDpxNmroabdz1G5/p+\nrqGtSWoNPfnzbkp0ofB6MKBSwpU6MczVBfro8UdkuZLgZILu8llKHCs5bupRKYlr2eASsZW5pcik\nz8VyRfxastRScg0vZmtL1khre8CjR7ImPzyXvs8WCe+M5NqvnRcMFIUa9xSrkaDF2RMWStZT+Kpq\nTM/I1WCcthIqX+bmj/6371yiiV/7asD2N0UdWVH2ZcmE9FzeYz73+VhpCOfzhLAre+PO3Re5+8Iv\nyQ/4+3ye9nMJBWOMjwiE/9Fa+7/q5RNjzJ619sgYswec/rn3wRA6AbVxWGiR0/Ii5qmWjJ/YiJNM\n4vbb91vkX38VgFqLeyTTBYVSnDc3N9jqS3nydhCwNdBF6gXkKy49TY+tZylL1a2TiU+u4dFl5mCi\nFQejh+kpW5Au0Lkt2dwSVWSaV0ymIlgelTNOlJyk0XQItMCL0aCSqghgrAVXbPPSKDKzJdFSM+2U\n5aez1SVQvsM6gWJVIt1YMo2RyK3Bap9MT0lBvD3mT94H4PD8ghs3RE3YOLjOoqs8j7VLV6H9qmBq\nNHJZaQazfETckX7EYUxrVU2KKYXi+TiT/mwGPYJdzeysPCIFn3mdUml4+HCy4FAzRT0VKrlvufdI\nhOXp8ASnqfkjWy1KTR1OWDI90+pMmhsQNwL6V2XBnw8LPLev8+cwfSj3mz05I+2JYPR92UiLyKej\nLFT96/tUyuSVnC6p1LtSVg6VBpTlKiis49LZFXVtw/gkGjfR6g/IE7GPNFsyVqN5wj2d/yeLOfsa\nKu8sG9RqoypbU5aFxtEUGo+xMAx1DZ1cfMxCmatNvODmTcnXqHdS0gsROJUGus2ykqk6JJ5Oznn4\nVJ6XOYb+hnjmhmFBXqzI6D9f+3m8Dwb4b4H3rLX/xU/96R8Dv62ffxv4R3/RZ6zbuq3bX377eZDC\nXwX+XeAtY8xP9Np/Cvxd4H8xxvz7wEPg3/xzO+HARtNy+4Uu/e/t6VXD2amebPl9hodyyifPZizH\nIqETX0DIZL5gb0fQwW/UMb0N8R/bMCVSf7zxCtJSUMjqVMIrCBcqF+MLjMYbmDAnnGuhmTDEU8NO\nqDBylmcYRyR7GcS01BgW+BVOU35XezG1QlCl2aOul7hK/bV//Rq9K9oPP8bx5fSLyhX91gSj9SSW\nwzFmqmG+rYq6pSpK0aKhffNWPIP2jHcfiXFqOFvya78kWYR7+3uXUW5unuFvaQk55Q4scckjOf0b\nYYg/0PsV7mW06G67h6dZhF6h1nSvpl0rOcv4DNTb4dQGtfFh/YKGJis1NArwbPSQ0xOhx5sWGbu+\nWMgHccKGehwWk5hIvTGpcigkZISqPjmmQTqTNVAvZmShQP+rd1+i2VFvRaSl6fIxkXqfrFeQaubr\nokzx1GNSOQ6pJim5WkSoE0OmkaWeP2Shp3Q0qbnSlWdc1QjFi9mCXEO05/kQsyvRrcUCqlL72XQv\nE6g8zRh1dgZ0PPEMlVXFvBB097L5FVZLtSwcilTWb3qqRuBizoUikPmyotmROYs8l0KjUBfHE1p3\nfjak8PN4H/6EVbzp/7P9xs92N4NrPL76wl/h0b8jE/CT114njlbZYA0qLXL64I17fPe62A9euSIv\nfvj4AW1lELlycwtXN8jh4Sn3HomeFW+1eO76DQD6u7IBi3nK+ELZbI4nmEJjzmeZ1PQDjC0uiUNy\nzU48nE/Jn8i1FhFLHcbpxYzlUIdkuyLR3AxWBBuPjxifycTeuXbnsqZgGHUoPbVhHArMTsuUsZaf\nXywfsRnK4o69ELRQrB9OWCgByrZC0bcP7zPUIq9JVWHaqlu3FgyUhKMu5njquXFVQa3bBbkGJJ2M\nJswUqpLWxBoK3eiE7O3L79JCvAjjj0+Yzc61nxlj5di8u7+Dr0V7HMfBs8pkJXclyU7R2CY6qU+7\nrbUpbQO/KWPULw2FBpx5iVLYp/Vl4ZsiGHN+LN9dnC8pS5nL25vX6V+V8Sr8lj6jxWKksJ2Ekapd\ny3xOPVVoX8FSU9c9dYvaMKBeynieX5ywPBfBWncqdnRzP6Mpy2fzjJnaNY5PnhAkMu9ud0Y6ld8V\niWHFxJ5PZc5jz6fSnBK/jhmrS305PmPc0eI5bkBSioAMjdLBN1osNaT90YN32OzJeAeR4VRtV/ZJ\nQeKt7P6fr63DnNdt3dbtM+1LEeaMW0FnwrKKufOiGFY8N+fB94V916ke0FNOvezoCQ/+VI1dAzld\nnvoez26+BMAsfcjJAzkFnhbHPFYq7/i+vSwMct0Kw3HoxoxnAgcXRcZiVc4rcNnUWpJRM6RU2nKr\nodTZcMkTzfNvhgUdDZkdzkLuD+XU3Mpb7PUFEq/K0Z0fpbz9+GMAAlsThnLiXdQDnIZ8fvhAjISn\n90eca0ZlZ9PQ/aoWwKlrKuUrTK3HYEdOwsdvyunyzusPL0u7VViyIzkdx4MtTK4nye7Wpzn7Gj5c\nRQ5G6zIulilPzsRot3H1gKsvSLj5RreFVcbkltqPg80NomPp58VP3mIyeSDPc2ramthkrItRHarS\nWot5ETJR2jjckKUGdfnNgkEl7zo+ecJBW4l2FspzOZuQL+T93vnJY67ekbks7IyPHgpSaBylzJTP\nMD+Td5ptlnw4kzFiNmfhaUm3uENHMXroQ60eqlVSVts4HKnn6+hoxuGpGkzHKb/+sqhQSSj9vZ7E\nfPCJ8GN+8tEJy1+Td+1tOYSOoIlsPGf4UDw+T4eyvrtxg7Yimqq5TaSZvUfugvQtmYe5rYh3ZLs+\n86Jwhzhlg+lY7rGcVvSv69z4TQ7nGnyXDDjRZ3/e9qUQCi4hbXsTr5lwQzkM3+8YvMcCe44fdWiV\nymc4bBMpzfhS1Ytn7mzw4i/dkHs5d0hvyyY+SzY5vSM2imkxu+TbH45kUhYYzo5FaJwfHzOaygQk\nRUKs7D7tyDBbASpNNhsuEiqUhMX3mCoff4OEj05lEd686LLbF8v31oFGJs5u4k7l2Vxk5E8ER9Zh\nTa2eir1MI//yQ7yOkr4ctIh7qyhOn/lYyWLqkqMn8vl7n/wIgHsXF58Z22EqiyMapcRbmgGY5yyN\n/K6jm6NJk1hdls/dvI6nkZ6JLUj1Hqnn0++oYKkEGlsbEA3knaorB3S0ZmQcxJRauNUJDTPt1+m5\nQOBhfnFZ8HX7YI/BlizcenhOigQAhW14qBD7XD0Ey6Km0hqjf/zhW+y8I+rMQR5zS1PUe+EugwO5\nflpL0Fv25BEtZXQ6rlLqngaAFUPmmgbvmIjSWRUIlrF/eDLizSPJtDydL5hmmmOSLrmyJXYAT/Ma\n0pPXeGcmv/9oecHJU7GZtLcPCNUusb3Xp6O5KVfOVbUrGsR78v5+swPqEaszGHpCmrv0DVFfxivY\nlLFfjIc8VvV35i4IM83+rS2ZpvuPvYREeTU/b1urD+u2buv2mfalQArYGqdKaSc+Xlck3HP+NezX\nRQI/bM/ZuRAIW7ow0fogVV/pvy9y7r2pEnVqGBUCqYI6oFpRk0UuuTLxzqIVh0JyqV4cnj4m0UAR\nxxqsprJVlaWpFN9tNXpVVU2mPvi8qsnVq9FvRDxeCNQ8Pd1gvimnkafeBzecMFAquLDYoXtDUEzc\njajnGg8faYbj863LU8mLXALlpcxyjywXleBinPHBAzkJ//CHonY8nY/REocYC61YCVLOTnFj8V3z\n9BTnqhq5Mg0VT3M8rWHY6zS5q6ff2fiC7IGe+LsF1VxjOTTkNsuGlBoI1XQt3o4Y+LKqYKRxIWfn\n55yfyml1Xyns68jSjeVkv/LMTTY9geCnn3xAqj77yWzORC3tqfIvFtSgodBPzqb86DWB641X91gq\nE3hVnvPWdyWu5d1Hclo7pWV7IO+//WLvkra9rCCpZWxrh8tKZHNVK09OH3N4IutmNJ+R21UhlpqO\nxn04M0E2dsujqWw3VZHy7j1Zkzu7HsGmPNuENYEaVaNEUGG2yLAryjTnAkq1wJoZsaKCqMpwlEio\n1GzP84szkrn0rQwqPlbUW1rnkqgmn2SMXlsjhXVbt3X7OZqx9v81Cvkvtb3y1Vfs7/2z38d3LKVG\n682XDtVcjHbDWcUPv/N7ALz9k/d494HQplmlwQqpqVQXnE4zSg08boUNNlVXDR1DrTpuqyFH98Zm\nl7Zy9+eOw0xdVo5X8eBjkbpJZRlpmPJCE3H+we//AUYl+/233+GHP34PgNMnH5KrP73MFnIMAVml\n+nCWk6fK2OQ4rIwUFqgr5elXt2fgBwSq1xZVylhrGizzjLkaLqkd4s6q4rOcUK/evcnL14RjYBYb\n/uHvSwiJV1jqQmsyFBmuxkBo8iVnkwsWCw1BNp/q1K24QTNSP73r01GG7UAzKquivBzXbJFSeysE\nUdHSsOIgiikzeXa/LUhpcnZKpfPUDjx2DuQU/PXf/s8p1e336K0f8949mYeHx4II5pPZZfxDWVi0\nHCVV6eHrXNocmjtaPEcNhzgJtlaOgeUJUa2Er3ZMpAjwX/nlb7D/y8IC/Y2XJWr27tVbtDUb0mtt\nYjVs3qsCbt79htxamY2i5tZlBu7mq3+NV1+V2JnOMzfJzmTet6916G/ImnxOkYYxHoeaKFdNPd67\nkDiT8XsTPppKklN/scnTTNbn0+/L+i/sEK9Q92QrouUL2nrxb/8d/uZXBIV+9SstCrXHfOva4EfW\n2lXM85/ZvhTqg60tdpGTB5ZKi3G0woqxJwEvRx/9EW/+SODxg+H7eJrZF+nmbrVbuKHmSTRyxnNR\nD4IwZqCWZWM8cvUVO7oBe3Gf3T2B+MV0ysTRAp7RGM+TAKjJ2RJnVUxjJFDNzUpmE4WMscfGptY+\nPGqSzJSSe5bg645bpYN4VYlRcOa4LrUGSy0XUxT50mhqPkQLWppkWbgBvhLLJLMlreVKeEW4jU8L\nzwIExpJdEwi/32njZmKArOoKT6OsdkxLS5TDJFVG6Qo8FUih69BStueNQY/troxR4BkamuKL0rW5\nuWWhwmbpJJwsRWXo2hn1ikxkcUapocDBTIyr/ZaLuwpaiCOaWlmJWcLDN/8vAD5+9BBnNNbnqB/f\ng0zLszvGoPWICY2l0FTt2HFxNMtzkQmEn7oubU1xdxoeqW6mosqIlEIun41pPVCvSl/WULI9oqkB\nUNYuQGtUGkeo40CKFQFEey1u3PoaALu3r+HfkPVb+UtcLTu/iGt2NbT8vtL0bbYmNFRtObZTXC0S\nFFyb8YpSxWVnGV6p5EKOeB+G99/FPjm9fI9WS1SNnnvGXMllEmIGwV8Sycq6rdu6/f+zfSmQgnEc\nvFZEepFhFXLXjkN2IafK9/7pa/zgvR8A0Mfhxi2BRlvKpovr0FGDmuuGPNXTxRITKZxLlzmVZjY2\nIpGi29ttrhzIvea9Lk0tZW4KS1vZdZ9UQ1LNZlxqmfKw1WJ4TyT08N4IpezHqTMWM4HgSb7AdwR2\ntrSegu/Gl6qNKUouZnIaTZKaUqMGayXndIAyUK4DE9BX41T3dp/HR3LKzZOYraaezLtaTyHr8/hc\nTqKiDKndVXm3AkejHwvfElTyu6miqqLO6ChKu3ntKrfvyOl4pbNBp6nsynnIQqFooeHYs3zKYClj\ndR6mdCeixjw9KomU6+B8nrOxkO90t9Sttn+Li7GgrdSm6OHP/R+8w0d/+GMAHtUTtPwCjUBO3dqD\n2ophsNNw6WtG6PZ+TKxFW+bDEx6/J8a4RxOB7S3j0VtFqXZ6WDVoN9OAF67L2L3w7O4q+JQPx+Lq\n41FN4xlBMWFZgT7buC2cSFyArQ1BQc/96m9x8I0bAPwSDV7bEZXgZuazpQWDxllBSzNzy47ct1HN\n2NyXdXinGTDbF1dn37NYjXQ1TsmDsbzr07uSjHd4f4fv/4FE906Mw9XnXpZ3ahk+UcLasKr4yqFa\nuj9n+1IIBcdA6Lqk/pzlkTIPxS0+eFNUhpPhfVwtnrmxf8DBHdHVeurHr+Y5PdV1S7dBsy261TLL\nQKvtZMGSjtKWR+ozjoIYNSbTils4uuBnzibVWOwITlBi5qpuXEJ0mNei9x09epdEC6IO5yOMTmKr\ndtjqizCIFZ52dpqUmg05W0xI1H6ysd2ho5TcUagqTJVc+sz7xmXQVMYmU7J3Rd5vOK5pXpGFGSnL\nT3Z0TK0Lwlw4OEoQknkVifJWtFo+F0ovXin09wzsdmR8nr22zzOaXdlceMSKJ9PIu7RznIxknpLT\nlPNUq0zNK1KdpzrwyBSINnYDKrWoL1V4mcTFhupLP0tporkI7uuc9pQT8mlCoHOVOvIevSiiqVmn\n13oNnt8T4dW+c3DJYejFIc9q4Z8ilg2UfFLgPafCOfGo+vIe2Sjnm9+QHIXB/g7zTMb5wVD6c+Rs\n0+2IN2tj8ypurfkTrZjQypw1DsQzNl8mGER4TVserwQyl7e7lp2ujKefTrB35LOjKozX2qNdqgrS\n9fA8tROYgFrnb5KkzDVWp7crz2g/njB57qsAvHvvxwRa83Lyxvc50VDq8hXDlV99jp+lrdWHdVu3\ndftM+1IgBVvXFOmSunAYaam10VvnfPiu1MxLTj1aoZy2cbdDVzNpYrUg20aC76mBrhlgSo3+8z3s\nKkPRaRNrzMKKZ88raypNWrK5S6mxAOPjEfdOBQksZynJSGDubKyZmrMZZSKGulF5zPix0o4tElD2\n4Y1Oi61NUVP6So3V7XZZ6DN816fbFPXnys4egcYnVJn0ZzoaE2hUYZXOMXp9DvhmVSDEZ6Heo6WG\n8J6fneKX0s/jLCTTcOyqqkgLPdHPgFWRGIXtG62IV56VE+zVu7tsavXsYBs8/Zy6JfOxjO1Ya25k\nVc5S6eiWdUWmxrcFHrkW3XFMDKFGRU41+tMdkWoU5zJJeZjLGCdekzNVweY2pbGU8dxSFWy/6fLM\nrvTz1rUeg205NZ1ll0Ats3kU8OyenPTNW1K7czl/TBDKeNv0At/qempV+EpIUiwWFGrx7eRyr5Mn\nD5lnoiq+8Iqlp7ECtjLkgRLY9DQMPjzmcCmqzze7N3leIx5vdHYJV2QV85JRpDUodQ0tIxdPCxg1\nwgY+KxZvF83to1F77GxqUpjyZA6uWr6xIag5CyaEmtmafJTz0VOpJ+pvBzw5FXbzz9u+FEKhqism\nyYSnkyGjI+UUTOYcncjEut2KlqOFVPtdyokyEnVWmYwOvhZsCWxIoTpBXTtEyq/YiGPakQyar+HR\naZpSaehrkWak2cr+MCdV+DhMJmSqPtTqhTgaH/HOY3FDntxLyHWD1UVJX3kcW/02fa3z2NP0baxL\nQ4lBW50G+5vy936rh6OCqkhkcSxaQ/KlBuNkMYlarONkTqZcioUXsEofiDVluWxaqkfqFm0uWIHB\nqq5hxRBeFqjpgn68qhTV46UrotdejXsoxwyBH2FWhLepQ6Yp45ERQTHotbBLVeOCnPO5eiXSIefq\nqnQXcwplbyqMCNvSDah0A9rcJVEy0/PRkPlYdPGktLRULdzriDB5/qDNsxrQs78ZETdEbfJaIY66\nQ/06hh3JO/FUqDgbB8T6HtmkjafeKieA6ULC6YdnCYsLEQDZUjbuOY84uq9ZsKbgW698S37Xrmmo\nW9bTGp1my6c/k2cUowTblAEfz89xRJbgZEsSdWuuigVNioqFcm0WOPRVTcVxLwsUzZczpkrXf/xY\n+vj0wydMIxmreJhS+xKodRpOMQ/k2cdbP+Kt4lf5WdpafVi3dVu3z7QvDVKYTcdUE5grnVWeV4Tq\nX23FO5gVzE8sy1hr6mWa6eaby4puQSMi0OsDzydqiIiOei16avjx9UTJgxnLWKBfluV4Ey05v7nJ\nY2QeeyUAACAASURBVFUZgqrEtgXOLjTXPpstKIYydONkRqSnYKfdoqPhrI3QYDWQKWooZI57lBp4\ntLu9xfaBBBm1vRCjtQvZ1ESk7SWlxnMnoxNKhf6j0YRj5S+YLCD6v9l7r1hJsvRM7DvhTUa6m9ff\nsl1VbWq6x3A45NBzSKwArbQSoJUlBEnY54UAQdCaJz1IwOpJ5JP0IEFYyGAlrVYPFLkSSHFohzMc\n176qy1ddb9Jnho84evi/yGED1E4Nm0vWAvcAg75zK2/kiRMnzu++//sIqDpiVtyxNhGvS5I0qxKA\nSSuzKpGy8lErrOC4O2uCQbi2PcB6n3Xubh8OwRWW5QDs39dGicaOOLZYx7W1DuYEJqWLJUZs0Dqs\nKwTsLh0tlzC5FlVBK6nKFUW6Mg0kbHKqigSqlHlaCuh0ZU5v3JZk3t52Fy2yMnjwELZIo256sD0S\nwJgurKghgSFFeuDBroiBueGhnJDfYXkKHMr1TKMGMjJa55Kpyy8KHJB2Lf0kQESG7c/3uvD2RL6w\nvcOQwuviZCmw8/ntEN9bfAwAeB0RQtLw+YM9+JSFy1kt8TKNsCchjFEukFLCQNfWqsO2mA5x+PwZ\nAGBI1ubCaSM8obZllKAzFmh6683XoVK59ig7wpP3JVH6suOVOBQAA8r0UBonGB1J78B8ngDs4Isi\noM64gXSNMif7DUE1Hc+HS1CNYzowGrXVDFCEv5lVBbsRiKIEemC1YdeNWlQLrkOlp8jHjFn5B+oB\nHj0lhx91FJVlo/JJZJImsEnY0dnYxO6WxK1WUSEiHbipmu/zYNKFbblduORgNGDAZPnStLixa4XU\n5UERhCuiWDtyYA9JXnI6hdcQfvLwaxtzPK/k53g6hZk3ZCIpKt0QkFrosyX5DVYvdjcG6NrU7oSG\nTyCMLlwU1BtwbANYlX4bVawIg0oOzTR3sM4qydVdF8dEJh4tZhieyzyXpC+PCwM8VxAnJsDDwjCr\nFTGpWSlcJVHqmzekRfp634ORyovu2QYsgqjcXh+aOgpGbcBuZO7bUp0wLBsGGre8hMm+mVr7cLiP\nWuUUg6sSpqZkd6o8hYsncgjPjo7wMJKwae/WGwhImT95KGjL/HGBKJR1efekh5tfYa364ipMsl5t\nfnSE8As0ZkOhCdjaHiAg0ax2ahHRBFCWJnyiJZ21AW4w5LOa8vVJhos92YeDQx+5RxKZZ5uoWrLO\nle5jfvzpztkfNi7Dh8txOS7Hp8Yr4SlUVYnZdILj/TPsHwgJyfRsioKZ/PhshOlEXK6oF6EzoMQ7\nwwsrAPKaII9siTyX01UBsAhYiacWcmIWoo78e2gqKBJa2JYF11u5Eugxk92KWhiORbtwOGt0+xT8\nmn0XtkZJmrOsyJCzf0DZNUDvxScJixt6cAjNdgITNRp6NAMWE2omxBLV1hBWzs66oIYiCMd1XbTb\nMv/ScnA2FSsWnhJUpCysM1G179QrpWw9r1ciKko5UOy7qKjbaFYVCrIoV1WNlNl3ZSRYkkY+qSuU\nTb8GE5wVFCpWSUyzh6Al/6ANBXKCwJ2GcMnf8GIi1x2PpljMaRELvRKtiVwbNr/D8gw4DDHKhMnh\nrEKfawVLw1yJ02hYjYdoOKhJb6atRrlboU6b8GmOipn/ogaSjF2SGjDpvTVYCNPRGLNr8zy7wJRU\naW/c2kVhCo4mHUvI4PgK3i2pOBiY4w4rA+vTAcy35Flak2NsbMvv1wzxYhYqRZZLVyfMPkzNyo+p\nUZFbwvd72KCq1ZPn4nU8PXoPNWHQw6cGxqRuM/ae4nVb1LfqjoX5SD7zB3i5cekpXI7LcTk+NV4J\nT6GsCpyNj/H+R+/i3nel1FcrIGeZLR6dIonlFLQiGyQURsCykl1qGIx7l3MNkJ03dw1YKTkXVI1Z\nJdZqfYMMxn0fQUqBEDVDbTUQ4zkGPUkOds5PYdfs/GuUreNzTGOxGHlSwaCox2Lq4EITVmsH6Hel\nnq4a/gcnh8WyqKodFLRWTm5AMzZutCjLLEPF+9C2RqLogUxKVOz1r4waNPQIIiY+Mwf1IRWjaw2T\nNcuyLsGeG7R9BbeBPzOpl6clNOPXRQ3YzJ/Uxg9k0xaZhsGOQsW4VpkKM/67sayhKZzjKRsWtTS9\neoGc81gyKTmzEoxickQkFUDL7BkWtGIiWdnYY67EpTAOCgug5+L2O6jyRgIwgRWxg9Fz0BT467Hs\nGx3EqIn1yOeTlap2Xk9RKWI5kgKq0fSk56nTKYpzUtplOcxM7vvJg2NUZ2LF65Jx/Y1NXLsjtIB3\nOxGu+5IHaSNeyQki3EZYSJ6kVI2kXwx7Krm0MsrRIbtVYTowJ3JtK1SY0CPdP5aS5P1nT1DJ1DCc\nTlHW0sS31bMxId3e3q022puk8nvJ8UocCoZW8CsDZwcjPHgq4UPLa8FhHXcW58iJo6+BlXBrReHT\nOk1hkeIqS6cY86VxfBshlXmcsLUSReXeh1kZsNsENKkQDhNmdaVRsQrwZfvH8dFHzwAAzyhPryvA\nKyU5VdYVigU59YoLlOy03Flz0GlLrXvzGiGu1jpaTbiCaOWCl4aGQ6HYFdlK6cHgG++maqUQlWXn\ncJlZ9/IlXNK3WZFs/sho4ciRTs3zsxS10UBmDVRsKSyUCduSRz8n2Og4nWNtyArG+jpKKmQVVQwU\n8h3KKxDTBVcE2FRxuiJA0VUCW4m7HoYWPNLZj2Gh18i91zL3hQbOn7G6UqUwC5lP2ArgD+VFMAwN\ng6zKig9tWsYwwMTvyIZL0d/UKRGmhK/7NgijgME9hKyCJtN0pTWUycRmbUGRBcdwatQUvmnazJEp\nTEiPlhcFTpcSrj169hAVD6zXBvJ8/6V/92ex+7YAhb7afguLUvZLsQ988HVWjOpzRDuC1Zg6tBbH\nOW69LqHB9c46EvalGLMcGStG9jSBCmX/vnZTPrvpfwnf+r5A2o/02eogbPV3YYZ8R7I+lodNO+rL\njc8cPiilTKXU95VS/xf//w2l1LeUUo+UUv+rUupHI52/HJfjcvyVjr8IT+E/BnAPoPwt8F8B+K+1\n1v9IKfXfAvhbAP6bf+YVlIZpV5jNn2C5kDKcyjX8TSnvbXgmpiOSgmgbCWXXy0I+W4YuemwkKnSC\nmqVFo/bR6sjvzU6IdkvKTQ49BkMFMOhJQFUoqdxsKRcRQ4mga+LKTan/uu/LqWxbNUxfkj1K1agY\noniOg41IvmOjO4AqKOayEAvV7pZIVFM6VfD7Ys5MWDBZOq0DqihXHsDavaEDeDVdzqqP2VASW+bM\nhcW6egditWo3QcFEXTrP0CI2IwkspCvKL8BiUtUiSjOrLRyMpXaf7p/CpPts2jY2e3LtTtRCA87M\nycdyVse4YLdnli9gUwuzqEL0yNlQGjlMwtB31hoPpYJzSM+lqgF+381WiCnDu0Wi4FDsJrPlO6Kq\njZS8EGEVQpHo1zfWUNGSlkUIwglWuAgFD3UD6TRd2KAqtb2G8kAs9zJZYkZJt5LhVcuxYRCZmZcl\nHDYx5cPpqoxoOnKf/arGW8V1AIBTWNh0JHx4FD/FxJEF++1/+ifYP5USZpOIbts+/toX35E1/jct\n3Hnrp2XOgcKYDYL3Tp/Bonc3PRUPwxpq9NmtdrV7A3UoN31yf4x4IOt1p78Os/ujveafVUtyD8Bf\nB/BfAvhPKCX3NQD/Hj/yDwH85/ghh4IBBad2MHDXYFCQxG87ePtz0r02m8VYxoQVX0xhvSuZ2ueE\nK+/t9fDzd6VbrL++jrjZ3IsFzsYMuiYhlCFutUPXd9Nfw/Z12VS20YLHjedrD1Ykn2n3X8PW2rdk\nnsz0IjOxrsQ96/jGqnOuvxGhE1HgparxcCysQTgW8Ei7dYY9Qolfu3oFBrEJlgIS9hKMD8nyVE8x\nJ2vz9Kxa4SnW+gXmrETMihEW7B9wujKHoL0Gk3FJWqXw+mzvLQKk1HNcLjOkzFSXNV8q38DCk99N\nH+3jxekx16XG194RFqI7X3obBuv/Kevuk9k5LoYNmGoJl+GKVStEAfMBVgjPY9diJVvuta02Pnoh\nL+bh6Rw5Ex6DWzexQzr/Q1zgfCbxc/tUXqCineL6GjP86w4MT74jqxTSE3l+bpHA32ZvA/9dG0ss\nKByTOxWG5xTTPRpjRjBYtBbCqmROoNpUqzfAtR1Zw8nhBTTh6NGmwtm+VKX0Odvsn2yh05GDIIs2\nUXUJXgsKBNfkcG5fi+GQzn30gApn1jF+82PZp/b+JrxN6exsOX38wQd/BAD49d9+iGf3pNpRUcXK\ndxR6vFZiWIg9CVeQPceWKUQsZbqAAxLYvOT4rOHDrwL4zwCqcQJrACZas/YFHADY/bP+8E9L0U+m\n8884jctxOS7HX9T4c3sKSql/BcCZ1vq7Sqlf+FH//k9L0d9+7apO0gtYLQNRV6zn9Z1dXFuXBM6j\nyWNkbA6alqMVD0FKaPCH911sUUb+Cz/7BbQpHJJlM5xT1OTk5AEWlNhqsvobm+t480wwD7ev3lpV\nHLyBDYsUW+lyBNcUa9qwOs8nz/Hx4UOug4vXbkjyrN/ycGVNrEq3E6I56k6pZv3w0ROcUedRxRo7\nRAX6tYtlJdnnp4fiVTx+PMKSXs7x9AyOL2HJa1cdbJEXItMFTF88E+Zccb6coS4bPIJCQARiPFZw\nGsiz1ivp84ZHsqpyqJi0cssYx+eEedca+VsMaWyNesEkLpvOzKpehTk9J4LnM2HYDlA0Gpy5XjVj\nNZ6Ev76BmztiwZ49Ha4o3RzYUEy0xdMlhrV4d/2GJ3IZ4f6xdACOFxoXfE55aWLXk2vsdq9g945Y\n251teb6GscDxcwm7HhxeYP9A9sXB7AJRIGHqlTrFZij7yG6g1kaG9VCeb+DN4YYyj8jtAxcCYx6y\nqe63vv4I3/ymeGNq/wXGWp61uSgwY9NcYLRQrjNJS+zF0gLOTsTz+q1730F7TebeN0/x/pF4m8f7\nh2DhA7Yv70VRjDBitSp9PsXcY0UlKWAytDG+/HnUGwyRX3J8VoHZv6GU+pcBeJCcwq8B6CqlLHoL\newAOf9iFDNNC0Brg9sYtPO6w+tAeQKmGYajGlO6150Rok6Vm/lwW5Gg6woPHwpTzs3/9a3D22KOQ\nTrFXymcvzs+RMU+QshNxcfgCI+Yl6hooE3H9fDOHvcZcxMyBzwT23ra4loYa4OQZxU3GI7z1hsBV\n77x2CwVzBu/vP8b8XObxgG3YpyeHuLkhD/SNt17DCd3urXCAnKXReERFI7+GUcl88sTHizNZl/O8\nwk0Kw3TcDfQtuZec5Tbf2kSH7b1WYOHqrriRs9Mpch6GUEBCQpKaB9PZYokNW8A048LEJJWDteeY\nDR0j2p0eCiWVgeMTOShMFcIkS9U8szCek2tw8gxr1DaMHBMOw5/NNTnQ1nav4MuEHX//w32kY27o\nzEJnSchvXmNesXTKF3emYnzyXA7QPPXxiBWjq7vX8eY1IV11fI0htS4dSmJGoYcFu0vTQMHckOsN\npxn2yQB19ngKX0ve6NqWHCZ3b17FzjWpKHRnExQsjfqGjYJ5h+ZgPZ0c4OnxRzK3wxkSlmoVfnAg\ne2sVIlsMh97mvcXlqu3ZdQfQFasF0TFCCvRsv/4mcpZGXVcOtL7eRcFKjNHpYEgw2Gy2QMpw7eNP\n9mG+2zjuLzf+3OGD1vrvaa33tNbXAfw7AH5Ha/0rAL4O4G/yY5dS9JfjcvwLNv554BT+DoB/pJT6\nLwB8H8B//8P+wADQMmuE6xYCEl6YNTBmoi0rh7DYdLQ56OFzdwTCqVOxWs/jOeKGfzCZrTryYBpY\no3XvDHsoCGG1I/Ew4BlwKAdeRh4ys+nvrwGKniC8QMsX6/b5DbHcvY7GkjXoUtfYbdGSRB0sSXlm\nZwqddbF4n++I1bm4uoX1FqXCrDXkuXgQueOCbf8wtikVdxJh0RX3+tb1LpIncq/2xQT7M7EOznoB\nn4nNhucgCipsDcTi3xxsoEvl5xoxCi3358NeVRHWehJ39FIfbZtsyL0Q5lXxsNpmgYDkJGYVr3TG\nC3Yq9tcCVFosn5GWgMGwolRoM6YxQxPblHa/SSq51tVNDDYlJPo/f72HMxLYQJ2j3CWr9NzG9o58\n5gqrFpHlYzGRe67XbVzns7nypZ/BdZudhpMTTAgo8voyYbsfwS1ljfpnAaBlAT73jsLZRLL5ETLh\nh4d4FgDQa7sYTcXStiqNKYVootpeJXQXS4KwnpZwmF4rCw3mzFHXCiXxILPzBaYEJJkNLWDXRmcg\nFa6fuavxOisqxZmP11vkg3g7RfWQIQ3xFpaOEKzJO+JXPXToEHz4R8+wpOr06dMR+kxyvuz4CzkU\ntNa/C+B3+fMTAF/5i7ju5bgcl+Mvf7wSiMaqqjGZJSgTBU1TdD4dQlcS70/nJSyWwmzLgsnfd1iv\nHvRDhCzJxUkJh6d5GLZA5jLcvbGHfeo2WEo8ha2tDZgdOZXX/W10aP3slgXTbpBwBjoUTrm6x9Zi\nZx0m4b51XcFiqdLVBZy2eAJf+tIODNbsswZViBYaCQnDKhCzPVd7KVxm4txSPI2r1wJ0NyXBVXsG\nfvxzvwgAON5/F2opFtGqC9g+qbto7YxliW2KolzZbqPXE0tq1AZMlv0820SXDNWv9cnaPAihiB83\nLQdfnMvvz4/34UXUHliMoJn7cHlvplWgd0WseTfPUGXiYUXtDlQq99Rr99Hns+r2xVNoDwZYkvh0\nLbCh6cWczWLEc7Gqa2GALVPW4Ma2fMdm38bdtwTOmzomlrTingnE8Rl/nwrzMgBFZKZejlGeS55h\nu+tjY5OkqlUAtyP3lC8uYBMVaNPjCXsD+EfPAACzeLbibBhse2iR/bowyWkQOFjfI4x96aBFirXR\nPMOw4cbIS+m8AmAyWfXWnQhf/pp4Yz/3xVu43ZX7O+9+CB2JB7VR3kCVPQYA3P9Evm88v0BFgZth\neoycnAyJMYMyZZ0T8wzD438BVae1USB3jnHRuUBF+KlrtXBBN6moMrDtAJZtQpHGK6TYim/5SMix\nMDy7QNuWDaQMDc+Wl2LvTgveoWRyF0Mm5+I5XMKKjc02FK9nuA5ybqoiG6KkwlOPgiW2k8AP2NV4\nscQpk6DrsbNaULtWsNnM12O1QK15MOmWTosRSh5SyWwDLg8qw2k4D9roshMzbLVQs7fhqmUjoZbg\ndLjEZCYhyJz09Bf1FDYTfzevXsMJ12VRFVAMsdotd8V+7XLGtnKwHsq62d0InZDJrsUC04wq3cMW\nDNKU1Uv+u2Giw4rRFduGYoXGtF3Y7GdohyEcJuW8QA6sOtWI2flaA1AMDyfnMZ4dyfdp0wYR3eiQ\nI6LtdOC2SbijLJQkZYjTclURGacxjCV7MywqSiOGx8O747YR8l5h5ACp4FS9jiY+ytnDUmIGtSTY\nTQO6aMhiPKx7cg23qbjsefj8DcHL+NkUm6YckPcfnOKYCeH91IJPy/BaW17Wn/p8H1/sStVjLY9g\nLEm+Uu7Bx/cAAOniAu9Q0sDkc3z8R49xfioJ9jxxMAxk3fJ4gWIsyUj72hbaPy94H/xPeKlx2SV5\nOS7H5fjUeCU8BdMo0QnOEF27j951cbNm8y5aU7GU00yhohVQlcbaFTlJw46c1MOLBSrqDSwMA21C\nns3SQEj2I6/TQofJtXmfUNbjdaQhG2BsAxlhyUmcwvL4fZmNiFiA2qdO4N6buP26lL+ODv4QGcVX\nqo0+Wq1wdU/ba4Lb8rbE3OmiRk7cRI5SZKEBuGENm8ye3lDcU9cN0W7L7xwzQlPoT9we5lM2F+Vj\nlET/LdnepypnpRehLQ9Oi0ImXgcmuzkNy4JD2PF4Ke5pWqUrdulWdwsVXd/47BOULtWv34zgt+Qz\nPhW8De2hG5IroFtD6YafwoFJuHm1jFEX8j3lGZvOjAJ6Ife65XcRkhdhmWSoeU/KqbGgSgwpMlDH\nBkBoumvYsLt81pMMBlmgl/MMJUuuIZmuHNfFJr0Ur7e26rStdQiD7Ne1ayOhrF1NdickHkqf5L6q\nxoL47udHJ/CuXQcAdBvOikGCnRuSdL0z6UJ9KPvii5ubWEYSFuq3t5BZ8nNvXRLUQW+Gbe8an83r\nSBmaOb076FEv41l6ipow56vrfEduWJh9j+9Iq0Q2ZfOY0YZ7XcI/e/s22sRZvOx4JQ6FpCjx0ekF\n9s9SzKl+FGOMWSyuaFpOkLFdNl/EiFhbX9uR/z5ca6HRRkWSIaB7aRYamqAYX8do9SSj3nEJ/tgo\nsCRlWKprFOzkK4oKJcEmpq1XLM8e+wiibge337kOAPidr/8xHh+KC3/teh/9ZuNZHiLS0nukb0/N\nHGd8CYenF7CosoROjspn/btpH8sWMNkK67s2DMaOhjnFlJ1/SWajIsecTwWi0gQygrt8x8X6deE2\n7L3ZwQVZkmsvhN3QgVfkKhxqqCvypvjACi/fH4Q4Y4wf2j20Avkel0Q16WyBmrkDv9WB3TifbKEG\nAMtzkZQNoYp8tpoCNft+O3sDDJ7z5TYq5IHcn1OZcAjDzolH0LBQLwOuhQ0rYLt0N0TJdan3n6Nh\nXmvo22FreGhaynPYFnMtjguQVq3MYhRNb8eCPRxYok5oDFoBzs8k2//w/mN0t9/hPGQtlsf3YPBA\nXn9zEzv/vig2dew2DK5tOW+h6kn4t3zEA7K1wOhU/m7yjUfo78l3dHpvArXMc2Q9RXoq+8zmPu3r\nDuIdyaNMHs+RzXi42W+gfUWo7b/6S7+IG1RB+2283LgMHy7H5bgcnxqvhKegDROZ34HzXhdTUlv1\ne9cwnD4DAMRxvUr8HczOMWGCbo2otMhxQDoF7Gy20e1S3MObomb2WZlAzcYl1RCapOaqGy5dlKhs\nqifbBgxKwalcITeYBGRd2TRMXN+R8KHX9ldIwYvRCJueuGp2qJDkcnKbpXgM42GOZycCsSuSGOs7\nEl74ro8lk5XVUix4Vo2QkoQkhAeDFQzlApqsxKVaYEJ3dsI6vyo0Mi0WOIaPDYYuX7r7VcyeigVy\nCx81Ic0xE7hlGqNQMgfHARyfoUS/hadnMudkNkRAjghN7+l8OIPXFw/EDQNYxGGYsFEzK1+mJgo+\nP+qYoI5z5KB3MC+hSZt3sogxn8nfmaaBY8r3JZmsVRJ7cBo27lrDaky74aIk78E0MVAxeVhpqkQj\nQUo4sqHmMAyKBxkGkLBbEyVyysalRAoen05xMpT7Ny0PNZ/1KBvi7V2Zx2Ygnounb6Hblue3rBRi\nVnY6G5tAi5UB8xBnEwm3LnJJDH74jcf49nuilXo+muJO7zoA4Jf/ja9g9015DrcHIe4xtLz3RNic\nDz7Zx8FEnv/x2QwZPejW9Ru4fVe8mDudEFtEmb7seCUOBWNuIvj9Hobv7+PoVDam9eI7sAK+6VUO\nNIQkqHBE2LDLHWYsF+ix90GlKSyGDF6owPcHKgfykbwsMy0u89lwDtCdzfIENUtFdQBUVD2yW0Bl\nssrB+LRECjC+c1SAcSEhyMVJiAvIi5f0PNjMTs/oth4eDfHiTF4gsyjhWPJA/ckJqkA+czwWmG2Z\nVFjLGT54JkD+xDgbI6EoSJVrJCSfSUiNn9aA4gsYRCZaoWxG/8o6ulclbtWjMxQNQQ1j7/NZipps\nPZWpUY9kjSzHRqblBXn85BnUZvNI+OL6FjT7UupZgpSfVZYDxTxQHpfIEorV0L1ezHOkVJAaZiVy\n9jDorMQiaw4FCxPG+8sZqwJGgTiXudWuhSwVI6KNMebUtLy4eIYhey38VARS/FaGmCFo0HFhdEhC\n0h2izH8gzpIveVgSEn02HGFIsJjpOTC4bkulED+W3+OuzK3b8rDRlmdm1gaqp3KgLZZjGKwujI0l\nxiM5ZD55IiXGf/qHv4XHH5LFSac4JBDt3nAfX/sZ6VD9+Z/7Seyx72J5867c5ycXGD2R+4/nCxjd\nq7xXA1XWyCDYqK78aK/5ZfhwOS7H5fjUeCU8BV1XKJIJ4g/aeIPnlA5sDF0m1OoxUpJwJEmKlDXk\nzCbnVm3j5FxO3/fe+wDLXbEuETyEVBeONqMVpVn+nM1AowWqDsEmhoslLY0240b/BEXiriC9bmuN\n83UQWOLW7W7s4uKhdEx+cjaD57D/PzHhM5QICSaCbeLmOtWhl3OYldzHyWEOuyf3HfKRWDsbyJn1\njy9mqE0JJS4Ws5XW4jirkFDSbsmEoVId5I5YMNuxsCS8tr/+Nn7ir8m9/t4/+Q3sE0xDhwhnixiz\nsfwuLhRIeQmnamGNwDHTs5BwYRp4+GbbQm8g1hHKQjanirWloSiSU5YFkkaNugkfIoXFUK41Gg+x\nZHJ0K2wh4LWTrMABqwEjhleJb8Ai/kGpDAW9uCRdYMYW/FlWYZ+Z53HxLgCgF4bos9J0d+8dWFQs\nz2YZcsLltddCRp2MJXkqZjWgG5EZeCiJpwhsF+9dPAMAPPm6/PfNL9zAVx2ZQxi0EJPH05934VXi\nCZgKCPj8fvHnfgwA0MYY375OirZH53g4p9y9KnCSyNyejI+x3hIPodOTPTa40Uf8nWY9LfjrAqe/\n9bW72GPYsb7rwxj+IOn7MuOVOBQsS2NtrcadX+lh9LsSO7Z/oYNvvEswxvAhNNlvVFljdiQuuLcu\nbta1m9soJ+KWOraDupKHuNhtwQuk0qA7LkB2o7hPAE1twWyYT13Ay4k2UnqVPQ+7HjQ5Cn0y7BhG\nBrNFHP3ebQQjeUhWnGGeU2UKFhZLCSuQRZxbiDaReV7aR2uNxCG2Qs1uwNqWWNczKhgWRV10gZKs\nSWk2w5RirGWtoAgcCpiltkobGWniu7WBlsGOw6sJdjzp5rzxy1/A4tfFrY5tEoWUQE4Ox8nxIcCy\nYBUGuHJDNqPbMeEwt2Gy23FghzBDuqomQNZB6LKCrRjDBxou5IA0iBStTBNpKmKsHx8dIV3KNXav\nRCiZDzi6WCDNed9gibDTQkaGLKg5cnalZqVCydLgnbtv4SrkkDQ8IWQp1ALbHYnlww3ApALWEPKO\nTgAAIABJREFUeWmg5kFglBkStp2nBlmRwi5GFO8dn52hIJOTU1iYzBpCV3nOxXtL3GlLpn/9dg+B\nz7yGYyBjyKP8EsEtisGEsi++/NUv4+qOhJ0nb9zH9/5I9tPTxTGsx3LtD+zv4LUrcn/tlvx3cRrC\nUryupRGxe9ZKXGx05DOFodHevAwfLsfluByfYbwSnkLteMh272Cj/wV03pGTr5NtYDz6DQDAxw+x\nSjTGVYFjVh9GpNT63J0dWJQBa/U7aFPaq8wsTHJJ3AVrt5CTqffsQpIzxTRB2JbTNV8olEx8uY4H\ns+nwqz1YHXF9G4huldbo+ZJx++LP3sLzY6GHm508Rk0F5trOMddy4lcTcY2VLoC5XCubJ/Aj8Qq2\nrg9QKHY7ziU51Wo7cKlOHOfLFRZggQx11XQipjCJ0VdcoDzJAFPWooSPKUFIv7j2Y4g3CV4qMnzz\n25/I9z1nItIYYjSSrPbG5hW4gdxfNj5ZEav4XguWRzDRiO61nsFbb0hfKtQGqehzwNXk1UQXpssa\nOstEHhY4PBKPZzyZYEkcu9XzcLsnrm9easynMv/hSNxy4/obsEiVluTxip49qxVysnh3W5sYDOT5\neRRQyZIIBZPKyzFwci4Q60kxQtjAySMbc5ZjxrHMTXk2OuQ+fH5wH0Uq37F31cHRR+KxGgShVfkC\no0TC2OWwi/4m5xApKF/25PH4MZ7fk3W5//CfAAAe3HuEimrrrutiRBh7jRwPlXjLkR1Cj6RCceNz\nck+z4Qus+SH/LkC0TQrB4AKbvoQS7wTAJ+MfLXy49BQux+W4HJ8ar4SnUMHA1PIwfPQ+XkC8gK+t\n3YDtsAPOtqFjiroUFUY88Q+eioU+jVPssmvxYPIEF8nvyWdrGxbpyG7f2YXDRqma9fjN/iZ2yfmv\nS6CgZXMdC4rKv6mRw2W5rKLyae1OMJIQEO3ta9h9W+LI06OnmBdi6Qf2JtqEYaeMU+PhBAkTmLay\ncE4o7bOPZ7Aj+buGzKeTtOHTuqblbMUYbGoLBrkAXMeGGxFowPU5bs9hpBSxtbpYuypW8FmZ4M2O\nWJivfMXGH/8/4iFMHwmlWBgqGEQS5r02imOJlx98/AliEp62WyE6hHxrTvQ0n0CxPu601tDZESvf\n7rbQJqu08msUjRBNJFb37MEIzx5ToTkpkDNn1A9dFMyrdDsKy5l4L885h6xyYYWSfAv8LnKK0oyf\nHeP9e3IvTvUuuuxGS2z5XeprnDa8B7MlWHnEjfU+vvLFLwMADM/HspZrT5jD2VsLcPJc1nMUxyhI\n02a76/CZ20kd8QJc10JVyrOZJRViMN+TD2G7klMxMxsvnog3cf5IPI1B1UHQF+9nfet1LB35ObQd\nnN6nV6tNXHMo6kJEZzLOsWQDl92q0TYk93M4KfDBP2Hn7k99gg8PmJB/yfFKHApWAfT2DTy/t0DJ\nvoTvG3PUJBlZFnqlmFxXwHJOsJAvrmV/NMT6m0I7duX160gpNZEUF+gFQoziXTOAkirQTAaaboB2\niw9xMofRuOVVAYMdk8oMUBM+2+guhtY2qjbpyBaHuBLKw/rAtJDxGifjc2yeyaGwuyeuXLedwaB6\n9PbeNfjbVKh2QxSJbPolJcuPzx+jpvpRYGuUhDOXVgWDJDJ1mWPagGlS+XsnaGPp8hCyC+wYolsI\nL4NNNzdwNrAGmdMj9pdMcIGn+7IuV9/QWGcX6I/fvYVlT5JdrhOuoOB5KQfrVrCLukWqsc1t1E3L\neaXgk0ZeqwQ2w5imq+/B+Uc4pXpTDY2K5CSDtS3Y7NdYXiR4QkWpDw/l5Xh8cB9vXidjtmOixfDv\nxrU9OCQWyRYWNl+TiojjyGcnszNUicznZH6EbJut01e34Q7kEJo9G+HgVDppUz7zuOjjIhYXPisq\nNI546S2QsKXec/mSGh7uXcgcHKNEQDWwet5C75rc6/beDfwcwVf156jnad9G+VT2U6lTHJ3LGsV5\nhZ099vfUCQ5SOUQO9uW6H5yeISfGwm55mJUM/7Id/F76mwCAb/xqieR7LDG95LgMHy7H5bgcnxqv\nhKdQI0OqHsG9uUD/VE7MNIvx/Y/lxMzIZwAAWmss6So/X0ioMc0zdJ/J6flm+xqivrjzW/4ONlti\nMaw1ICe0V/2pLryE9FthVaJsKJHrEnZJvMBiiZKaj1XlNZNAQMu2VBUCsj37ayFqwk4dx4Kh6HmQ\n7LPyCsyYHM2zDFuJWPSwHcKmZS4WYg3sPIdBtt/W1T40uyTnRY4ilu/I6gqzCwk7ykzmk8ZDmORa\n8+oSbeptBtqCQ+i2VdqouoJunNFT8qcuHhyKR3D78QcIyKRdeTbQl0RinBTImcS0aR07V7fgsDxp\nGTbiQtzvPE/Ar4OhM8REPR6zqecbf/IYz0digZWlQSgIQk+hnrLE5wEOUaQZG6K+8+wh+pF4P1Y/\nRD1rkrgW6p7ci3JNVKTeKwx2cxYVfGpN3rlxA2FfvDTVD7E8ES/k4PQpTok2dDsS5pwfHeKMz8yE\nhiJmY/RkjiqXuc1Lme9saSFlmdJf9uEXUl5v3XLRKkihlyR4bV2a1GYL8QKeHUzw9W99FwBwf/8B\n6qau61SwI/FofFvjjCHNPglcF5MaJRvCnHMTeibJ48U3HyGPGY6mGlW9wI8ylNY/Gi76n8fweuv6\n2tf+dYTahuPISzw9egiH8hGhqnFxLq5ROjuFIlTWYXdaksQoSDOuNeC5siHagQd+BGmaoeMxxq1k\ngy7ydKWJaHgu2h43elchZcZ2ux3CIab+hHLpJ/MajR/ZDny02S7da7UQBGzrNS2YBF8ZrIM7YQCL\n3+d3HDjMeve2BrB4Pkcdciou5uh0JQ4tlguM5rJx7330HId827JYo7Mp99rJ5Fpf/OKX0WfmvXQc\n3PylX5E1NtQqHBlOUzz71jcBAM+Z3f/ke3+MhOCtRTzDgrDks5N95FzbPK9RM5fgcmHbnRBtdo+u\nb3Sh8oZ8pcSAEGuj2wI9ZvjUJZk/y9DvCBjMcWOMCU3/+re/DZAr08oDnKckomG7uGGZ0Fw3xxPw\nEQD4jgmD+8VyawRk39rssJchrVDyTK+XNSKGNmezAhcUbrVqE5shxWDYz2AsaxQUCq5rC3euU0Ws\newN/51d/DQAQEjaBPMPJqczn4umHuKBoz+joPkxWh6rlCA73mVEsuZYlZhO5T8cJMB3zUESFk1M5\nALqDAWxWbjpkC1vGOWJP9kscK5hkyFqOgJ0dtmV3XGiSEv2nf//vfVdr/WX8kHEZPlyOy3E5PjVe\nifDB0A6C8grq/BT+62Id1279BIyHcmKODv8ASMSKeaGLHhN7yCS5ltoaBbUUVZ6vUvgb3Q66dL88\nYwmroXRjOJIWChabbzKtEQWkwepmsDrMhrsdOAO5xhU21Pz27z9EzVCj1QqwtyVZ/X4rgtaU9IKF\nqCtWx2qg27aBkKSRXs+FSaQkqgxe0+FGxKDT7q46NaPARMtjJ9K2gvFCkmGl5aMwGvZhItjyE8Sh\nWIme10J5JveatDUMeh6hXcF+TRKzF7/5PwIAjo+OEFHbst8ZoChFlCb0XLRZYzcrAwvW6RuG643d\nLtZacv+L8fmKNq+91kKH1rZKC3Q8+Tx/hehaCNVY9t42dm35efPDj+HTDdv4sS9glEm4kXxHQo2n\nswmWjYSe6cEnN6dv17A1+SOjCtvNsya9n+f5MCkF2OppHJHbcRAaOKInZ1YaDrs1NXUa+ls7iGtJ\nVhfzJ8hTdj6+9ydQxDTEjWfjKfhrJJMZtRCfiAbEdP8FfBL0hIGHbiUeQsDQVZsm+j15NqrSuErc\nR2k6uOLJHkrnORTh/S2bcPs1DwvC3FU7wnyNDWiuC5fCOKo/QPgj2v5X4lCwQx8bP/42Tr/vYn5A\nUdbgAB2GDIuLUyyZnY+UjzfekMz5+Qv57DgZ4/Vb8iKoWiPsyG1dW7uCO9vshpvmOJrLxqpYbovW\nFmiTq+/+6QnUVD7b28rhs4vu/BSw+TIhkIy7dgxYPsuTgYvYkp87RgHFjHRtWehQUKZL5SlUNnRD\nIe4HcMgKlWUlSr5NbZb8HMuBabD1uvbhMKvf/akB1EC+4+lZDKuWObVsMvAsDaTnslZet4WIpKrj\n8wzFBcOARYLzexJ/vvhYYs9pmqCdyhu7seGghtz/Mo1x+4as96DfQcH7dgi22ogCaFYI3nueYMH4\nu73WxmCdZc+4QMPg7uUMk9YCzBLmCzwLLRKmvvH2G3j+VIBFj54doq7lWV3x2AdiWGj5sm59x1yV\nHs/SGCbFX3fDHDuBvOgnQ/k7XVdwm7KoqXDI1mjtWrhLEpxO28FTJuo7HfnwG3c6uCIFBfzvXz+B\nOpAy5NN0CJ8guTm7b+NZipqHZnIyxBnLiQfnT7FLUpfNW7voefL8HFPm3o88+BQmRp1Ds0FEwRCi\nVwCffPghLkbsK9FDznEbDqHUM6eFviLT0M4AueLeMioUTX/8S47PFD4opbpKqX+slLqvlLqnlPqq\nUqqvlPotpdRD/rf3Wb7jclyOy/GXOz6rp/BrAP5vrfXfVEo5AAIAfx/A/6u1/gdKqb8L4O9CBGL+\n/ydh2dhc38Zy42PMHgqUs7W+jdFYLF5dzaALEp1YHWi6ey5P3F03xOdek2Yfx14gaot79Wb/OtqN\nlS6XuMbGJOumnKjtrgGqo6G92cbzj1nrb0fQBkVLolPMx6wIEBPgwkDd4AbyciUrV1kW1kISbpg+\nLHZxKiWhjalqZE0hxbBhODL/wG9DNzTx1IwMfQsWqxpmnsGh6+vWGq+/Ja6/UT/FkPMAWZbVLIZ1\nJBbFNNbgu2IFM2+G/Q+lf/+iLvDxQ5GhC9hEs5G1sNGnLqUfImJycXstwrUdaSraWe+gtyNVC+bs\nYFselguxlAVKLDpSfbiytwObrrgyl9DU/czIkWHAR8QKTzlarkhyNgchTkgKkj18jk1WZU6ZqXxn\n0EOL65nnC9TEjtyKHFgkz1jvG+jzegO3ScrWKPmwizrHVZrDQCt0CHBDaKE/aghzxLWZvzvDHw/k\nnt755asYf1v2YdFWcMnKfJHLvx998D4U3f2jg0doNkZL2+i3KW1vFggDPmN6Cp3Qg+9THdsD6kWj\nBVoi6smNVMUOrIfi6ZrkcDRUvqIIHJVTWIEk6QM7gEnPzE3i1ZxednwWgdkOgJ8D8B8CgBa/OFdK\n/WsAfoEf+4cQkZh/5qEAVKj1BFEcY1rKZp0cLREoSqePYsSJxGG9KsbVnix2dEXiOzVP8NNvS5mq\nuxHBIgGrF1kIDer2WTnMXMpQtSEus5oppASEjPYdmEw6nJ8vMSRpSXKxgEm3bEzwS6oq2DVjNhhI\n+QKFCGAoedAt31z1CefMrBupsVIVgmmv8PCB0V1VVAKHOpChhkXSTsufw6SEu22maFfyIu9uBqjJ\nJnKcyXyHwwlapLB33Qia7meVlxhC2ogffreNijVAs5QD1DDOsaDG5prdwY1NKaftRh62t2Tdtnc3\nsBHJYem2G4FaE8sNmU8v7GESU1RVubiYcBPHDrohOR1r2a2zJWDN5Bpde4FlJvddF3PUp/J3A53j\ngi/I2315kW46XeRaDu9pqeA1mhyej3ZA6nfTwgZfHFQNgUqCudWUZA0Qs4WuUcPymHfIayzJwnRM\nA/BRdog3u0KR/nFZwrwjrvuifg0ptSIX53Io7M8eQD+U9ZyejbA4SnlPGqVmRUgpGJS7t7yG6MZB\nyeqEWXpQDjVOan/1nLY2bsFivunsgZRNp8cvUNvUInEDwKWkcQWEPVnPqsxRFuSpfMnxWcKHGwDO\nAfwPSqnvK6X+O6VUCGBTa33Mz5wA2Pyz/vhPS9GntDSX43Jcjr/68VnCBwvAlwD8ba31t5RSvwYJ\nFVZDa62VUn8mEOJPS9F3tl/T4+czjMwldConXBg5ACG/cb1cwZzbbQ93b7wOAOhvswdgusTuHUk0\nhl4f9aJR+9VQqlH8caCY4UZzahtnqMna2zYctMhfMIxzBKQWPzFzmEPKncs/o8pLWBRTUbkFo8E6\npApmm/Xo0gRqOdl1Kr8rVQEUTR+FQkVQVKkKuG0Cp0iLbsCASUITZdYriDWKJQziJfygjQ4z8WrE\nLsp2hYtHpGRfG2E0F8v27vl9nDyW61l9A2pMDH9PrO7sKIfdFm/My4pVR6jnDNAOJNHqpC4qmwk6\n9oy4ngnVcEEENdY8SUrOZ1NMjtivMF/C65IaniQlusqw2GRvx1jD7YpXdPrdE8zZX2DOXKwTjtyd\ny/cVwRSziazFRt/BpiXzdNYcKCY86yyFxUSb7pIb8vAHvJt2aSKSvB/SkYbVEFBrE+tdWdv7z2Q9\nW6rChFR5wdMJzncYgjx7H6cTyUC++0SAR2cfDOFTtGexmEPZ5NbISvghFbjN8AeCQeQKtTodGPx3\nFAZMhxD6qA2bbDdVrNBnUnGRybqdffMF5qxkYGMLji1rZZtA0aVKmh2ioDrXy47P4ikcADjQWn+L\n//8fQw6JU6XUNgDwv2ef4Tsux+W4HH/J48/tKWitT5RS+0qp17XWnwD4JQAf83//AYB/gJeUoq91\njVmZoI77qFw5ws1+gNEDifcVTNQUO9HKRe/NnwQAXFtvOs+O0Y6klmyH7ZVVNeoZDEpswTJhNpUZ\nNvMYoYZBS2R5LRSVsBAVVY6Pc8FIeGUXVZ/8BKwT56jApkXkpsaCSMEwKLGknJoZWCsOiCogrFo5\niAl3NZYFSIoEx/dgN5bX+AE9HJpwuDRgkAS1cnrw2IAUTYBKEYdwVf4uerGNx6lYrvLgFLMlO/mO\nbYzZibjTDWD2JNdyeihzG42/DccRK+99ZRc2G4mm6T4KJnbLToCE0F57QSEbw19pUAZ2hKoUy5U7\nCiUt17wukJJirO9JDLwwE1Qz+bmMpgjYgPbuZAIb8t0XUYIbhBu3eJ9ZWcOn9qPvtxAMJNewmM4w\nnRLX4Sgsu8QsjEm0ahhwKGnXavlYUMDHsIDKpUdnWjCZCNb0iI7qCn/Dke843lli41TyAe+/SJAw\nEb44I1I0n+GWkpxC29bIiTI1jApsQEXUbiFkMtn1uG86PVhke1baXD1r248A5jt0asBZyB6xbxCT\ncn6BRyfiVeR5DZdeQ5poRIVA/Wu/XnlnLzs+a/XhbwP4n1l5eALgP4J4H/+bUupvAXgO4N/6YRep\ntYm8iFCUI4ACMFjGcJlNnuoKJnW9+/YmWmxvjUgE4kVvwW4OE8eFoqKPLjpQjR44cqCpTZeNWx7B\npO/ohiGiNUmibccxRkwq2mWCA9K45RdymLRtd6XBqJQFn9ReVlUBZEfOkgJ2kyWmpqDnKJQlgTIK\n8JhQinwfFg8DGA1lebXStoR2oHkoGpYJh1gBv+6j4Hdfy+WA9LdP8JAYi7PTcxhknTbqcxRnsmnM\ntQIB77U+IdnKMkNNnURVlOh6Mg+jtQ6XuADb0nAYKlTMnNfa+YForqOwZMt5ENS4siHJytPjU8zJ\nvN0nFZ5t+wg0CWmKNmoybHe7Lnz2cVi6h4i4jiZf2PYD6ELu1WubyAlZr+0CmSnrEpY/OCzrLrP+\nThthVy4SVMAG19kYGiB7HxZ+DVIsQpH7sTIVxrYkvO9+ZQ/T53If83UDXAqYphy8uJghjVip8k3Y\nzd4rohWMXZcZLGpPmpohzgLQEUMmz4ZZsmLmVFi9z94SGqTqK+VAv373LmqfRDVFDa3lYAk7FroN\nxNy2oZy/RI5GrfW7AP4sLPUvfZbrXo7LcTn+6sYrgWg0UaKNKWZjC2VFsRTdRs6ONFQAaBEKe4qa\nJT6Xwht+6MEgTBgmUPOUhwmUhIGW9QIgD4MmCtBICoBWvNItOANxZ83ZCeoDKVvO6xLLqbiJB/zv\noOuhruRkL4oEKRtb4hgIrKbTcg6bVFkW0XqocnQi+dlr2WhaA5NsCs1yqMnEoc5zVAU7Na0KJhuN\ntLWEUrRAVgmQ5RnsIgy7IXab0CB+Aj1tYqYKdo8ahLMUAQljnn0ohaKz6QV6W+L6WtCoWeiOOvbK\nnYUukXDOJRXB67qAQXhxuSgRk7W4XFYg/wkc38V80RCSMMxRfSwZatjGrGGpw93tHgqyIA/OcwzZ\nzLPgWjiGDd+lGrkVImHnYFkoRKRmK/xq1fQW9OlB9VJoel5mnsLLxZJGOsU5w6pyVmE6lGvkLE3O\noxJLJqCx/TmEvsC/1xIbk5MxHwMh8VsBsoRhbrpAsEoIeys9QMNyUFKXAyET3lYJk26HLjQ00as6\nsVAzWYnUQxULvL1i85SpFdo9cjksYpQk3CkKBW1LqGuHNVxXnuvLjlfiUNCVFn49dwlTy01uWQ6e\nsUehqn9QwIiCNnSPcucUL1G+BWXSFUOJikxHZV4iJWhmsr8P85jafY5s+HbUhtNibXuZo8rkZ6uu\n4dDtTqol5jNm9qkDeb3jY0nJ+DzTUGUjUosVRFUrGxavYbGi4LoOAorGBu0QmgdLli6gybWIxuVU\nJeqGXboDgB2eVaxgcZ61U4tQDoCKCYxJmQFeA+5ycbGUTTxRJVo9ASHtbgyw/z3BAnxy8L7MoSiw\nTsGSoOXAYtHIcTz4kaxtmQG6kPVMDdnQhWmjWHA+ywJ5k+H3DSAWF70TKMxG8lLMhjy89kKUvP96\nrKCYJ7COE+ii0bQscDtiR+SS7MpdBwZZpy3lQjEuL7WPmD3HHdOCTRFah4zJfr+LgnTp5kjBbnOP\npDX0gnH5rMZ5LHtuxEMlKl3MyCR9dG8frR+Tgz6KRhjOn8naFgwPDR8eWyYnkwo5n01oGej4Mg8V\nRFBUp6rYo1MrDwXFZzA1gUHDg5+jYkXFzJ0VXFm78vd1YcEshZXbqRyMWXUzrQpL0gQ4gYtS/Wj1\nhMsuyctxOS7Hp8Yr4SnA0FBujiSrUPhU31VdTAltLiFdjABwNpnDhLjHBeGwdlDCYhcaHB+Wz4SZ\nYa768CfLFEkqlqQYi8XYzWu0ia91Kgcm6dr6vR3cvEuE3TjBwdkfyDWO6cI7gNu4+UYJGhf4nok5\ntSu1lUNTQ7LV1KAtBx5DG7s2oHmNynAQsN4e0LuAF0DRO7AdDdAtVTaQpxQymQOOJjyW3s9GexMb\n60JO840nGhaRkH13gHydCbG6gycP/w8AwHBGURgAboeEK60+Vnp7Vg4zZnberVdu/koncoqVa5zX\nWLFgL/McJTP4TnQdufOBrCGhxt4wRW9NYLll6KCinsLBDCsZ+dN4iRY9x7eZ7ExKGzqSf58mCVpc\nrrOsxpLkM8uFjR69yE5f9kUyt+Cz3KM6FiZs3DqNFeY5+QncAi+o/zmvGkh0hg1m/cvbz7HrC8Tc\niu/gGRN/ViFewKI8RtlgWuIxKiaElWHgguFfPVEoPFmXASHovhVBEfdS1hrQ/O5hjYTyfMnwHNOZ\n7FuDrOOZuUBG72GSKyBlWL2xDs9q9DASZOMf7TV/JQ6FuqiQnM1QuwtU0liG2D+ESf45U2nYdIGq\nqYXH974HAOjQRdoIrsINmWVXCnbTwVjk0OyP0L6HbFs2U0xuwIm5RLGURbXtFCUz0q7qYmOHJa1+\nhd/5I3n4jZCsmZXI6OZX2kfLbshbajQwkUWqETOHERMDP2j7KFl6VLoNp8WqRQootn5Xir3FRrHK\nLyzKAiWFZI3aRMkuudwwYOak+CYwS1s5UoMH2qyETSjtOhYY78t3z8sTjGfyUvgE0BiWjw1Lyrrz\nJIHfaGLmFix2Eeo0XYU8INHJMs8w44tUJBkykpuEjg/TbwhlbHhteXFy5ggMDUQs5U6VCVs1MO8M\nx1R3qjIXNSsKjwhzj+wC9YLErlYCY1PudWujh3xHjIV5MIPH52eyDKlrjbyh39cKWSFwbCdwEHZl\nbuV4iojU9RaZoqyixneo+fhLgw6cz3NfXDfQr+TgIX8rDg81YJKe3anQYWdkARP3HkruxuqeYhBK\n1exqSkWnTQcDll6ddhdE0OM8O8bpU4H5PDl8gJwhW9SSe+r6CxgEmS2RoOZBPgg0Iv4+L3OUDLde\ndlyGD5fjclyOT41XwlMwLMBfA9J9F1b5DABQpwEsgkpapgufGeKf+vw1FOfy8/uJgI3eMWK02WVm\ndTooyH04Hp7hg/c+BAAcHp+hKMSirZM+zei20OqS/izrQ9UCWFKOQsTr9V9/A72NPwQAJHRr56aF\n5VLmUBkpDGIrqjjG6aRx0Us8Ik/gYF+qGuvdAfb68t07vRg7b4mlcJSNgiIis1MmMM0c8ZwkM6dD\n+KR137zSRduVudleCqXFsgWsfWuzgymrJLN4gvmZ/HucJUiU1NBfPB1SwxrosVKxzOc4HEvYEbyX\nrzoAa53A3BMgTLS1hoQYj7QUyzdcJjigK75YLlAuxAvrhV1sXZPM/07/Cq5uCWDn8YUkPrXfQslk\nplcvUdA+zZfZSiquUBUumFS9YDXg4HgGwhvgQsGyxDq+sd7FFkli7gQW+uRg9KjUfPzgA0yeSda+\nrm3McrmPcVzA7tALGUT4CkOli1hc1qNKI6Pr/95Bio0zSdD6F+uw3yKLNRPJQatCPGeopTRsErWs\nb4QwiRuotYKdyZwm53weZYzMklCqvalRNwzWn9zHiOJAvfUIPj2PjauEnesp9p9LdaKaXmDOylA7\nCdF2mIDWMQKXHHgvOV6JQ8GsFbqxi3hxhCXd5K3RBNqSDVYqA+BmPF4cYXSf7lMDGhqPsbklXZJ2\nnuL8iSzUk4cf4hG1BSylEIWM4Yj8yrSPo4m8jK1htALQWCbgb5H9Jplhu8kcs9IZD3NMKUCaKxsG\nwSET6FX2PSsqNASRBw5jQTyESfDSZuThzXsSn77x+tsAtSieHch8R5MZMnL8lTrGBjUKz4oDvBFd\nl3l2FVoMR2xfvneaT1GwyrLIKxwPpYw1TGoYfNm6kYZbNASsck/5zMS3PxJtx8cvOqtYXRU5ii9+\nAQDwhW4foNR8Uyyp4hSnj6Wz9dnzQyyYdPBDB+sPZG53rl9HxPyBRZ1LI9OY+8zalzZF+dC0AAAg\nAElEQVQsciZOzuc4oqLWsjBXL/2c6k95nsEh4Czy2phSUOIbz5+juifP4e6aD5MH/PV1di2eXmDE\n6pEReDhdynXvTU3YZPUyj+bQjMvRsELBxlkqP29caDz+phxqcfIh3rn2OQDARSzXTeCgtSHXDU5a\nMFm1SIcGava5DE0XO5bsp+s9eWa9/hbgyUGfnk1Qe2JYokij9tnCb5tYULz3kw9kz6beIdRhU7Wq\nABqcNNG4mMs7YAchLOYuXnZchg+X43Jcjk+NV8JTgAaqQmN+qpFnYsVHdbii6bYtF4/Gcjrm751h\ncFtOxOmJWIMyLfDFn5SEjE4DjD6Wzz4/PoBTibVKtx28oBv4rW+L2/bRg99HBTmVd0yFqwOp4//0\n53dg9oSGe2fwRbxB3oaQLvo8ybGcMXnj1DhkJ1tZFogbUI+q4JBkxSC82jU9WKxdF7MC5YlYnf7t\nDVyJxCXsd+S/p+UMGUOG6bTGwZnckzNc4hv1PQDAlfYAP/62WODrXSGZcY0uSojX4VomFlOxxvPR\nEilBW+3ODrZ35Z6eE4Azio/gMHEGK8GsQVjHSzyndudPhBG6xOIvFo0y0Tq+975ApadVjQVDtHRR\n4Gwq67zUCm/Y5N68wjAv6KGJAypvBp+utmG4qA1Zr7gq4JFDwGWosb1u482bEhr81Nt3cU5P4X/5\njW9iSE+vH1q4dyRew5RAqJu+jYVFBevUwdbdzwMA7h+fIJk36lsxLsgHkXJuw7LC22RMfoEjzL8h\n62KfBfjKvy1rmAyFNvDoxQFu7orHurd7baV5+nsf3UeaiKe3ny2xSeXxf/Ut8cB+dsuCS6SXZVSo\nCVdeC7uY1rI/v/loig++J17f86fy/E13iq/elvBvc+8WNllJs10TdSHvyHy5RDe8xClcjstxOT7D\neDU8haqEno2g+kuQFAm6VyOcyQldqVM0yGWvLPEzdyROnF2VBMqbG9cxW7L5yHiGjGVIO3Thbkpu\nIBlPURBt2L0hJ+o11UU2omUP/z/23jTmtiw9D3rWnqczn2+89353qHtr6qq2u7rdnfYQx21LOIAw\nIciykZCCIvIDEBISKP5FhMQPo0RCSEggARGEH7ETBsUBImEi49jtnttdXfOte2/d6ZvPvM+eh8WP\n9zlfdUUOfcuFzI30Lal0T53vnH3WXmvttd7heZ/Hx4DCKPt7u/A9Crm0E7hkLt4L6PcVORqygLba\nQM36/zyt0LCAp9UKCmL1OEwzmmENxxV/0jGAkBwKNw6GGHmsaiN92NVkhHOXfv/AxZKouXJSYxUT\nCxEZ6A7lpHCI7Ov4CXo7Mj5XHk8BMh1VSJFQS3F/CNjXhH+i96GcOq7toM9KvatXh/ANeb1anWFr\nRwKiuljCJiuzR8Xsrf423viCWCm66yNZkNLOtrCYifW2f+M6rl2Ra1wli5NqiwvC1zxRF0Itu1sW\nCqbeHBiwQ7mvEVNsB1dtXGEK0fNmuM5g9L/05W1UpYzFa0EfoStxnGFflng3fAlg7OPeaY5RIPP+\ntRu7OE2oqp05iCNZOx8eiZWDSYGjSiyQm2sDMS3BeH+F3gZt6clvJckaDgvXHN/CFtPkO56DmpRv\nu2YXJq2JkPoP6bxAS0GZyI6QEk1pej3YT8W6G7oDfOEnqfhtiIXZniQ4Z+o0mK/RZ/rZcWIMWWIb\neRH49jO352JT0IaByvWhzC5aXwJtTWmhP6Cw59JAj5DQX/liH7/007Kga0Oq8PTZAsdPHwIALHMB\nl3ng0LQuYLkv9UOAhBuD4EUAwNYvfwGTheSgXdyCk8mO1BsM4bCmoC018EQWSERo85OiuYicN9BQ\nHEYvtGFQjLZAi4bBvA0dm5lqOMwxI7DQIbHIAD4iLiC/kEW+98IIHdYzNJVCEMk1llUP/VpM8YNB\nFzeukLyEG0hS1OgySn2w60GxdLzIM2SZmLOr5BT7I2Y+vI1wjoU3Pi/8iy+/dA11Iw/eYmphn/n/\nstGIiSHo7MumsTUI8NNf+qKM23gLdStjGIQjLKm2tD+6hYj37TNom8Qaq1Pps+NUKDluVuvipSsy\ntld7Fc6YfbjFTeGl3QG2WT+yvRPCJF7ier+LgJu21Y+w+oaI3TiufG981UJK4pyiNjEkJ2Z/sYZj\nyOusrrC3Lfe6odJ7mp5jwODoaZOju9GKWXVhkDxnyAe+3/dREZxlFkuMie/4hc9dxfaBjK0z6sOx\nJHioSPkHswEYuM6zEsrccGzO8cqe3OtrW0OUSub1az8tbu6T738HJXku0zJBTECZuw6gWLvih110\n7E/3mF+6D5ftsl22T7Tnw1JQCtpzUDfzCwLLYbcFtVSg8whzip5cf+UAL7/xVQDA/LGc5kdPTvD2\nkaAcu2Yfd6g3EJQxVtRSHL9ygJ61KbRhPXsd45otVocTdKBdmm2BjfyUWpGPfoiC5K63RnIqZ+YT\nTLokcX1YYIfVkK67i5d25XQ4X69RJGJWbmj3TceCz4o7368QEIGWnZfoh2KibodyGuyOh6iZQlTa\ngmGxmCsp4Zly+plxDrUQSyjmCfVg8hA5Kdj2+1cxn8vJncQ5kBOxaYVomTodRNKHURThi1+Q4NvL\n13Zw/6GYqPkkQsXUcLpcQ9kytkNacZYR4tqNA7mnbg8mKyqV2WB5SKyA716caOWaJnCZo+KJaJQ2\nDH+Di9CwWrqNTYMD6mLepoXx8v42HFt+o2c4sBmMrv0eDHJStJgisjeCQbKeLPMKIk/cGb85A40D\nRJGP0bZ8bz0rsCLV2ZCm/V4U4ZjzF2Um2orsynaMw0PByRwyhWo6AUxafI42ENANMpSFPqtgB20X\nID9HRej2+ewjtKdE1lYeLF9csKYbIuizgK6xoIg+7fG5GO5cxYT8pqfzEuqCjNfENJb72HF6yDp/\ntiQr/580wzQRhBF63dvQipx0Vgcm/VZ3obCoZULvvjuDEYiJ1+vIgjmduLCOSb1920S0SwKRsxwW\n6x26YQ8Dinds9CXNWQ96a8P6W6Ip6KsvUjRaHrbqrIJHqvXbt8RXX59+hOyn6Kv/A4WEJbk7/T6u\n7opZftOrEXHRW2Mx99OkwWou/TmZPMGID6TnOlC5XGPclXvzht0Ls1ZbQElYch0UaDbw6aZASc3L\nJRmOg8LH3kDcpzrSeADCcoMSBce2bm343uahlriM0z1DyGxJuDWGRQ3D89m7cOliuF+4hsiXbEfL\nGg1fdWB3CNG1htDMfOishn9V3o9nGeqSfIWEOVe1gmNSqCes0PD9o1WNL+3I/M3aAkVKmPY2Te6m\nREsSlnW6Ru9AxrteTJAtSKKTJjBY81Ez9vPgO99DSd3MaDRCzYd/rUsEKxlPIwNWh3IAZIRg+5aB\n27aswyf1CibrbYylj3NW4JYNYeWGjYwVo4XrYbBhpIpCdFqZV/9gF+1Kvtc8ln/tWYt0I2vvWGjp\nEkVFAJ96m57fApxLa4MR6Y+hSS9ftYCpZZ5KH3DZp1mSokMcxbO2S/fhsl22y/aJ9lxYCgBQmyb0\nzQrePTk9+nfG6LTyuljdR93KSXJ6fw2fhVKgCRvsucCxfHYr9DHkSZOVp6g+ksBlvjiFvf0qAMCl\naai6BjSr0FqkaMkjqJvqorik7sZIGXTaVnJKfuO9CtmHhCMvNPxAAni5sULnBis4VYubW/L5zjUx\noxvHwr33BEo8W5xhw5JltC0UswQm5e7d2oFDV8NAAI8FM/VyjbIj7kGT+GhjOSkcniKq08Dw5fS0\nbIV3JwLLnccnSAk+0HstUvJPdMINKYjGmiIy1kuAQ0n5VhcXmgWe66MXbkRwyHVR1vDNDWbDRbOp\norQLuCQLScz04gQ1WanoQsOkpRTPXGhaOhoVskbmZGCHCHc2xW1Et+YaLbkVtFmirBe8bo2ayMT5\ncYyaPJ0OEZaLxoBJohbfsFGxolK3PoyEHBEwkUD6ecTvxYsaS0vmxlX6go8yesFEDRbIKYoWJS0S\nZipOnRojU67lWX24RJ56qkXLLFfekWuV8xKuI+8ps0JNi9WwC1gWX5sRDFLgGRBTN3AqeCRnKSoF\nKtbBUDE6NCdsqwvD/HTph+diU9AAWtToDm4gfF26dPv6bbwSyqAf1wd4y5LFvdVPUWfy2u3dkAv4\nGgv671/ZeR1be+L35osB3icx0XSxwA4hrBtz1zJ8aPqn7dxBSRBSUTQoSFhhlAEaLtKjRh7+Zheo\npKQCpdbwHTEv09MzPHoqrkK/a+EjGmL7VIIyeltYxLJoZssYI/rLeVNCK3md0U3Qbg3DJ+lLUcBV\nrNQsG+Sn1Nss10iTzaYm/zpuCEuxXLxJcfRQNqGT+SlMRuJn+TlGjQBoGvrhq/UK9x+/L2N/2gEM\nlgtDo6SwbpNXWNCt8ui/lskKRU0GocJEwzE0chs1KyYXy/KCDn3DGVnXFXymUbWRIGEFapZWaCkv\nv+c7SB15uMuK9RBLHy53U8t2UT3lhtxGyFl3sNANwE0hn/DBq2sYLMu3tY3FnHT3RobE3MwlkJIf\nseTudlTk0CxVn7gW+jwgrKKHo3cFtFRnskmHPrBg7cdWx0A+p6KYH6Mm+W/bKIA6nKtEUqSHT6bY\nuyYVqk1coySs2oeBYiVul2MNoJmu3lRRtm2FttyIBAEl2WGzVYnbZBYejk349qeLKVy6D5ftsl22\nT7TnwlKwXAujm2NkZyuYoWAPXn51hAGDOg+NGoaiWnHQuZDrAuXajp9+hCenDwEA997v4HokYJpA\nTzAcywkTVhbwhBJq7ow/7EOTtr1ZZ2gYyc+TJfKFnEYpGsTkEkwJqb1yz8bbm++1wHpBxFU4xoD7\nrFt1EDBAdfpYfq9RKZ6eyGebskJJ0y9fF8CYlgDEUkgO16hoNSRGi5zKxj03h0HTv2xLZCSfKRJm\nTgY5QGjzSVUhJg35/DwGLVSoLMf08UOOnZxWybrAR+eC2Xh0dg0GA235+RzvnMtv+26GFz3Jt++8\nLtZWmg3gLinac25hVUj1ZLpuYLCCLD6ZYU4m7EbJfDhdCyURaU6t0bIgqkgqfPBATt4vXx+jy6Db\nupDx7oUlmjWp4GwNe5OhSnIcNpTQi1OcE5Q2IznNGi1ujoi36DUAVbrLeI0hMRSl1aCkZuUkYxFR\nYyEm6Uk31Wj8DSfDDKcTcU3jTH53bHsY7onL6KQNMgKkVFJinG+4POYophLMPHlX4OGzySmCAQuf\n0IU5pMK2aWB9KmvHjscwd0k9R1h2sppAEThnNRYcAu6yWGPBwru+M4CmvumztudjUzAsDPwx2m2g\n2xVz8GgV4eyx2Og/+OMzTOj7v3d2ioQS7gGj5VHuoWE0+el0hrc/Et5BY1oiGsiDt/3iDbgEwChq\nFjT5Aq3JgU7WyNbUh2xrtANW5Z31sExksBe02yZejo0wD4AL9arHlcYDag8ovcD0ETURD2Qxzmcl\nJlPqDp4sLkzNk+kSr3woi+n2vizQwcEtDJkCRXKIh4csVe5q2ARy5a0B2yF/JHH/5VGA03PByM8r\njc5IxmhkDVGT7CU3bEzPxK04PGbZc5FfbFgPz57ixZfeAADYro/ZmZj+bx89RnmVac3Hsnlf7ycw\ntPTd65soHkvf1tMVFraM17rOkFKn0iMO3/YDWHS7apVBM25hmgbemcomtGpL/PQtuXZIoNB5qTAc\nEr3qGhvBLRwlEyw2XJmGB2OfbsMZYyZ1jROiH5vzEibdg75nIPHot6sAR8xygW7lma6xTbWpeT5D\nn9mQUvlYz+X+Ci2dWBRrjNYC2IJRXjAeXRvYKErZnN3ERhnL532Kw+75QEtCW9Xz0ZA4x7MNKH4m\nzxewz+hKsYw8M4El3aS5CWQs5y/tECUJg+ZxDNf9dMLvn1WK/j9QSr2jlHpbKfV3lVKeUuqmUupb\nSql7SqnfpibEZbtsl+2fk/ZZVKevAPj3Abyqtc6UUn8PwK8B+BcB/Oda699SSv3XAP4qgP/q/+1a\nhmWgM+5gPfwI7QPy3l1x4ZxLFVl+6++jlZgOlnWLJS2Bbl9M0v7LXfyV4V8CAFy7vQcVSoWj7hmI\nPAn8Bb0aNvEG6ZJkG/ESigGsxszR2j7708Kgh5KpI5ySCkwVrJybXYg/yXX4b15XKNZkT84T9Bgc\nPGTl52Eyw5JRraHnYWtHdvDtrQgh4axbNwWCPdr34JK1OjvrY/6m9NmrbXgX1XAR7A6DmAyMNnaB\nk4Wc/tNFin/lLwogaddxseRpPe5HWBFAoyLhTqwaXOD6p7MTRITgXr+9jYjiMi9cC/DCizInoz0Z\nV2vnBShmMDyjg7QUM1hXCUB+zBotPBLbhLRcOg5gsE5k3ZpwtIzRa1suVsRsNA3Qkl+jpiQ9+h4K\nsiGjrFERHjy3c0wKZlfqFB0S0VzdpzT8JEUyESttUp6iu3FX+iOEtKAWzQqLOV0vMnhbZYMJXTrX\nBCiWBXugEfSkTzEDsVleAgZJbZSJMS2apnSRsiak7mooWhbuSPq27QUwQulbbdiw6Eq6jYK9ETZy\nzYvsQlJKfwqjABMqsJwQRHHDMnOYGa2YSY46+rPFKVgAfKWUBSAAcAzgaxBdSUCk6P/Vz/gbl+2y\nXbY/w/ZZtCQPlVJ/C8BjABmA/xPA9wAstNYbBZKnAK78Sd9XSv01AH8NAHrbu/DHFn5u+2eR7Es9\n+7YZQZsSkPl3uv8m/rM3/xsAQF4lePutrwMAOq+K37R67xABfdLwJxRCpiR14AAkZrVMCzn5/aek\nHcPZGgYVusyyi8aQ3TpvG6xjOZnTsxgN034rkxBdBxsFOt4L/UGd4+G5fG/Q0XiH5KcNfb1J0iDw\npG+DvT7Ge3Ka3dgeYOhJR+4+keDT9okH2/0IAPD7f/w+jFj6fu1z2wCpxIw2xarcaFXQdqk1YlZD\nKlejcyBW0+eGPo5XEjNwdYC9SKyU8lgq9p7cmyHN5US5f+8J3tgWiycsAYepsGHoo8sxsBgkPX78\nJvJGYh+hKjBPJTCWruaomCZt2xJkRYNtbDgNDDQUctHOEoqB5OH+EK9tvqc1GkLP3Yx0bVrDYKxi\n5RWIeY15DByvZf6mRoHhcqPHKGPsmiZaVkCeHpcX8nw7VoPjlLn+SYkFFa0boia1acDhyW75NvzN\n/Rs9RL5YPb4h450VJUD0Z+g6qFaMVw1qrDfp5dkEbS6WXkVZwbAOoFiV6ocKFSHh08Uc+Vwstu7g\nNpYxMRmMd2RKoyZmx0WBfkfWxfnCxGIu82DqGOn5p/PgP4v7MADwKwBuAlgA+PsAfvlZv/+jUvQ3\nPv+a3n0pwiJtMe7K4Ox7fTSsIhzfcPFr2bsAgG/8wZv4YCE3fOWbEoh8a3mOa3PCOv/2IdbV7wMA\nykDhXiYDudWzYHZvAAAGt8RNONi6iX6xERdtUXChm0aN9bkssPeTGQ5J215x4ZqFuhBfkXuRRawB\nqFpMuyoB3L7cS1yTIbgx4FHz8o3bvwzzGnP25gCnzO9nrGs4mpdYnsmm8M779/H6y3fkngdX0MhP\noDKbC93MjJiAk8k9pIzUh6MRuixJXvg+hsPPAQCuDXzkx9L/1Zn4ZVff/BBP6FYtpgn+8JtvynUD\nD2OOy6OzBX73jySIWROA0zQVXrwuUOmX915BuL+htQ9QJxtwTwMz2AjnSt+bukTmETeQmjACWbi7\n3S5GLClfnJ/DIQbC5aavCyBh9smuTIxJQdbtOthuNzqXFsaNrJ2YtS9pSsEhAN6sRMhMxMAO0GF2\n6X6cIyfl2YKVrVarYFBeftC42Jx2llNCU0w43VR4qgC9noxFz+rADjaUfQUa4gZqy8cp1cfajYtz\nsA03EjhzlvcwuEk/4Po+zAWp9ZIc01zWco8Hi2GYsMkb6rkePE/uI1ikyEtC4VOFCQ+OZ22fxX34\nJQAfaa3PtdYVgP8FwM8A6KvNtg9cBXD4GX7jsl22y/Zn3D5LSvIxgD+nlAog7sMvAvgugN8D8K8D\n+C08oxS9DRtXzD2kWzle8WTHNKwO4ppQ20Efv/Dn/zUAQPJgDKsV899IJNj1ht/iym3Jn/dfegHZ\nCSsHF0/x+kxqz586c/QPbgAAdvYYnLMdWNSnj1dTqFZ21PPpFL/34DsAgGW5dcGd8LQg5dsnwowf\nt1orHG4EFLMMEc3K3a6cqoOBC4My8tnVCl95RYJ2w5s9dFhRB6arHn30PTz4I7GIugfbuPGKnGzb\nQw8rT06M5axCQ63M6Vz6dnI4u2CY7ez4GPck0NgfFIgCKjS711FY78i9GFQwfmkXybsMamlgxiq7\nqK7xpdeFL+H2z3wRYShuR5rJHDi6A/BEdJw+XArAFJWDhNDtumrhkAqvaT6uouxQqr5yAE3oruoO\nELISMbfWOJlKn30Gew2zhmPTRHdMhMRsOH6N5VOZy/N5hpzB3Ywp57xsYZBXYNTrINoiorFp8M6Z\njPN5XOKURVU55HdrU+PAlH420HCYA60XGo2Sa9QMjM6KDIoQ5aEu0GExli4L5NT0vPLCAEZfxms5\nl3UawsbWNVm/7v4QJiteq9TAdC0W8vLwEGOqlIchBYA8oOAYZ3kBTVdqnZVQvO81ari0Xp+1fZaY\nwreUUv8TgO9DRJz+GOIO/O8Afksp9Z/yvf/ux13LhEZPa+w3Poa1DPqyseFQS7FRGt3RzwIA9l5u\n8PQP/kcAwLdMYR++oUMER7KZmL0pDOadw+1dDK7Jot8aadjEN1iM2LfN/KKs2VplWKaycD98dBd3\n75MmvTlFxcC3JsuNzxv+uP+bppBl8WZ8UNCvLVmlZrkG6jMxHZ/+t0/x/d3fAwDcvrWFnZ5E7cu1\n/G4xX6KmCfvG53Zxuyd+e40S9VL8zDJrcb6Ua8+n8r18HaMzkkV84I0RbUhB1L5osAOoSx9TKjn1\nI1mg128fYM4H4vR0jnOa1PHKwnePHsh9fzDAaF/M436fZrLpI9oVLIFZ1GhILV6kGUrGPvy2gsn6\niJwgHpgmrJJjZSgoljgnaYl2JW7M2apGTIAayaYQGArR5mE0W3h0JdymRseVeQ36HYCSADbFf6vz\nEoqbebcbwGaNw9N0hsMlS/CTHOckKskJVDMsE4s1s1yhe+H/pL0CHR4WZSrfdysLZsJKza6JlipT\nWdFivpKNZzsfY7BFkZi1rKJkmWNIsFWdzNEQlhyfnsIgx+TAMdC9KlBok7GRdZnCooitRoUVYyqO\nspAfSWzO6EcAsQ7P2j6rFP3fAPA3/qm3HwD48me57mW7bJft/7+mtP6TTeE/y+a7lr69F8F0DOzS\nPK06GmMW5biuh8lMToRUJyhXchr1GcjzVXuRK48nJYZdMT9nsxSJ2kA/awxpxu8Ect39gwgqZs6/\n42FOnYVVssbJlGakZaFmsY4KZIf+j//mf4StbXItVldwbykBwer+Qyyo7fit3/8uJmsJp9z9ofwd\nykRLVKRWLQqamo5t01gFNDn+iqKBTTxC3bYXVaKWaWMwkJNmMBzhYCyndEz2YcfrIl4yj50s8Wt/\n8zcAALf7XURKrKbvP3mKe38kVsqTQzld3n37Q1SxIDBnkzOYzKjk1QoVOSnqqoIbiMvmkvqsKlco\nmUB3/AhVvuFLWABEGHZfuIbX/4V/AwBw52dlfncfe/j1v/yrAIDh2IVJObr/8D/567j9igREf+rK\na7CGMgZdQqLd3gCDDReE5WEyE2j2B4c5jj8S0pNlluCM5DKNJk6lTDHlqWuhwIwVh13Twu3XRX/j\nywe3UN+QCtM7tNxGgQebffPc6GNRcCj842/8DgBge0usuJGzC4scH26tgIDw4qa6oOxbTu4iB92m\nlaBUK9VgdiTumBpeg89M0mjURzWjuFDUh6Y8n2nKtdZHEyyJ0qyrDB41PdMHh7h6R1w+d4gLfM6t\nl9/4ntb6S/gx7bmAOdsAtpQFx/PxwhuvAwCioYfgRB7oxycfXjDl7HdH2KbgzXhLBne324XRo0LS\naYKc4I5mnCMjDDg/T7Bi+e6Iaapx2IMdMNJdNugP5MLVVoAh8eeTSYkl3f15I5PSTiq0EaXKX7yB\nlytZeBPjCt75R5I6fXL3MfJKFiEzRbCNFi4BUq2nUNO9SJvygu7comCNYbcoaX6WpYGUoBmzUaiW\n1CvULpybcvGDgSxMnTcIIlnQ04kBZyELouhY2DuQTfT10RVY818AALz/9m/KPU+msMg1OPAjlG3K\nuYmQ0Zet1xkcjsXOvmxG9v5LwEzuYzU/hc5lLBbZhyhnFME5XsB/h67Cz7OfRo4npTzEXfN1OFzo\ndqrgUfMxuh6gT//ZolupjAprKoAZToPJhGvkwz/E3e/KBrG2wgsB4MVCMlRFZqBmvMdvWySpbICr\nykfyWF4Xry1w54FkV258RdzV9Y0uIsbjHXgXD7cCUH1IHk9X7tm8HcJjgYnWFipmvsokg8Hfzhob\nVSK/B5aDK9dAvyubUbw4gsMMVZM6sMjqVczOYJCIpeHOpEIP5rnEkjwrACgiYwVAXD2Un7BvYnAp\nRX/ZLttl+yzt+bAUHAtXb4wQGwGOyV0QHgHjleyoT2cJWu6S13dG+OLnXgYAjAmZdQMTfZJ/WK2D\n1dlDAMBqliIk8MY0LLz1gVQEpsQmbI09hAGDMOsUbSWneIQxrt6Uk+adj46gGIiqzmRn337tJcSs\ne8mfnl+QbMzf/jq+/XsS1Y/XMSICS8Y0KS1PQ1HcpOebaOjOHK9iKBJhDHkUjwIXM0q0rTIDbi2W\nSd4ofEhJ8hwFxszvX9+XQKvVHyBjAc8Pf/AWXntDwEvTsxJPTljQlZxh8oN/Ir/9pgQRjbZCr2Yk\nP3IRt6wMbS3s9UgRZ7kYs0brz33lawCAL71xC11PXIJv//DbePxY+nly18Hde3Jyv39yiu8+Fnel\n822xtr508DJYqImwu8TLpNG/9blX4boyr1XaAgT9OHSf3j99ijWdrendCd66+wMAwL0//AZm5Ifs\n2DZsZhqWMwHAtW4HES0eGAYeHYu5XtUGBmt5PZ3ew/8VyhgMc1kr/zZ+ET+9L0aEyV0AACAASURB\nVO7MHCV6PiHKysTOT0nGoCrEwkyrFi7BTSgqPHhAgpsyxs6EQckIqJkZSUnCsh9oWErmfVk1WJEP\nw55OAGb3V6s1SkrodUjzpywXZLHD1KkwWtIddTrIlmIVVtEKjv3pzv7nY1OwLOyNhmjaEk/eFZPS\niDr4YSpuwMC1MOiLiXZtdAX9HlGBjA3YqwYRwSGGbcPqi/nct1IEQ/mMaXvobYkpNv+QlXC+hZyV\nlldaG+tiU33no+EDeX1nC2uW3y758G+PD2BriRecPfxdVNR1+N1vfwdbBI8NHA+mx8kjgCayaxSM\nstttg5YL/UpgweSi2CUr59bQRkAymOm5AdsjOGmmkFKF6bxIETOYv7stY+Luj9HSnWlqjSvUcjDL\nKT64K0K5R2cxvvnmHwAADvboXqwb9HuUqk9ybLWyYVWWh919eWBD08OQmhI/MZT+vjC6Aof3+Zd+\n6auIKZpaBp/Ht/+B/N7f+u3fxslEzPKTB0LyWnzhz6M3/Z78xoMZzDs/DwC4uXuAgq7L/Xe/g/n4\nJQBA0sicLedznDyWGM3R6RSP35GNZ5HEKJhd8HstUtY5lDSd+w5wcF20NeJZjCtUmUqeZgi4Oa/X\na8weyxwfP5RM+j9Md3D91wU4ttUmSFldaYcD+Kw+NKjTsDq9B7cjG0WSzVFlkiWqzybIWGuhK3XB\nD2kyQ2K5Diy6T307wIJMUMoNYJKKPnAs1CTo0ZQa0GYFk6Q1mCeYd1kR6wYIUlb5PprB3P90pdOX\n7sNlu2yX7RPtubAUAI22bTA/mSCbyW54fxFjZ8wou93HdVJdb29H6FHWO2yYBx82cAhiUYGCXTNY\nN0jhuHzfq+BqOaV6r8jfk3mKFU38vAQswpGbtkJryenh2R34Lck0qGjUJiusM6GUr5PH+L3vnLM/\nOVQhfT5pT8CgNfZZheebLgxCome5vhj8jrKx05N76YZyAm93+hgwen3lWoEpMRLdoYujTE6o7OkC\nGZWFjIHc02svvoJ5tanv92HR1FbtDPXyuwCAh+8q7DJX3q/EfWr750iYOXjptoUxQU1WmSKhEpIR\nteixhmEcMpJfxPC7FKSxXQxeYNXpahfbf1nu5f5bP8A/5Il+0Mh7+d33UAxlvP1uiTIR/gbVTHB0\nLHUX9x68BcMQuLXBWoTVcY5sLTl4u29jixWFt2+8hHJNgNO2DZtiNh4p6PZ3fWwzY2Q0IWwChJbn\nZzhMJUD36MM53kvFlUgrCWYu3/oWvr4v490bd/Aiq0M/d/3LKBjwzYg7t9QpzmJZm7WZoT3jYKU5\nqlqu4XQsjAlvNm35nlF7F2rlKjYR0JqsagOVS2X12kGgKRhDkpl1u97EKuGZJcw1IfLrY7gbi1RN\n4NufjqPx0lK4bJftsn2iPReWQlU2OD5cYl5VIHgMQWRiVLAg6qoLx5W88rjbR59Wgc8iGzewYJmb\nBLIFzSIhQ/tgfRHQ1DApOKIZDPL0GgW1+nwUSHM5rZ3QhVPI6XiCHE4kO/smD/z4/vt4rxTrof2B\nCd8XP7tcrKAjIiGTBjsU4fC4m/tj+yIw5JspDFo03WGIcBNoZPA00CEaR/6uKxPdIQOpuYeDoZzS\nT48TzJiP95kKK7WDoC+vd181cU5qtu8ff4jZmx8TnvrkVmiHcv/zeYqtiNWQS43BLTIHnxYIKUE2\nUiP07kjgckCi2Xo+R70g1HZ3DGvDfhROganc05e+cgdHrBjsXKOPvzzD2avUcjgxsHxFvvfRW4/w\nrQ/+b7m/t85gdeR0Nyv5e4E5bMY7tpSDa3ukh3thFwEYE/Js2LaczGZEJu4mgAWJMyjloeF9e/kQ\n61TiFea6QUDkpVHI/Z8fv4Vv/w9Mp36pB3PwcwCAvV97GWeHEtt47Mrfr017cHapKzlfXzCslpYD\nm3GLEAot0+Cqlrlu0SIju3RiNGg3oBVoWCRxrRwNMHiqaf3Fh3NUTL0i7MAhl0N29BTHhJ7vpiH8\n/qcriHouNoW8bfDhaonGsLGhxnM8DybN1sD1Md4AlSwfNlWUFINzqm1gsBQWjg/FKLSBEpuSAmU5\n0IVMmMVAnQMD/ki+Fykg31Q4VgaKkK5JoTEkrmGHgb/vPr2H5bH8/e6jd9AdSc6+is8wJdmJZwIt\n3Zua2IOiAlZcuI4TICLOwlc27Iiy9Z6Yw9rpIqduY9kaMMi5V3s1dncF7rq7Bh4vJLD33qOHAICX\nX/0y2kp+t9N6eJ8Vpe98e4EfkF7+1ut30CMGomKQzFUl2oqD1Q3AkhDkXoh9isP2b7+B3U3gkkG9\nIm0QRwz4PjyFQfIWZwQkjHrffOFr+CrrGd68L3Pw7f4Uf8H/JbmndorzpfTzZP4Ej98RUM/pfIpb\nY5Ynk3BmpMcoWRo+snrojET4ZjDYu5Ct3+qP0FAId6PR6FQJ/FL6njgmXLI5K0wxyMX92b5pwiHe\n5XS2oQFvcd+WcRsddfDNc9GovH76BRxTe1SVciicIcENwqfbJkdNopZOaMCqNtkHGxUrMW0C66xG\nI+W6qAsTNsnKVKmRkiYf8wwmgW26oRtrKMzI42kUKbpkB4+LFOlarnfYHmFYynp51nbpPly2y3bZ\nPtGeC0tBtYBdAI1ZwiL8dOTa6ISy2/VsF4GSU9UqTDQpkXI+yVRSFxQGhtmxYIbEHpTNhRQ7bEBt\nqpgIn1Z2jc1GHHb6KFm7n6xKlNUG31Ajp2lu0+xQjsZ8ITnoapkhae4CkCKpLpmBoya6kLNPae7Z\ntoZL+PAgstCLpJ/jXoiAefrIJR2dZ0ieHkCbZtC0hBzXxJh8A5+PbmD5SD5TM1jWNEBAkZGtUYT7\n53JSHp1/hOxYAnTNTYWUAU2bUEm/6KCh3P2T5QwepD9Xdrcw3JLg2u6oD9dkhR5P5WpRwiXvhaot\nlBVRfBOgpj6D19foHQiUuD4SfERwVqH+oYxbcbCD+Up4HeZPJphMxZwvihoBLZKXbkmQ2LAbgMHo\n8c4QI7qVoeWiT3zDuL91gftAQMsrCWGyctCJc5S0bkw1xu5NCs4c2Wh2hxwvsRSSk2OEZPbG2RJT\n4hjefffriEglbdLnXWkgjSUNaRslKoPFSq0LZZO3Iyvg/Ag6FRAuDwJv4XgOVEENSqOGvRF5MBvo\nDW8DsRKdzELBVHXTmqiZLu35XXiGBLTjzEeRiDX5rO252BRgAI2r0JYtOqTYth0DIFijbQy4NLVq\nu0BDAdKKJY5mz0BL5SGFCqom1LQtAfIq6nIBvabIKfnrqkSjIcOiagKAjD+Fp5FlpPquWixZWpuy\nYi9MGmRaFnE/qHB4yih6puFSqFLZFc6ZY94m8Mi3++gQsKJtDc9nNWcYoNuhCe7RDUoyFKx9aFFj\n2cqDEMUehiN5SJ3uFo7kazjkQ+qFXaiNAVgBi2MxxZvyMbp0Yxb3ajhkTPYonmu0Cg4BYC+ELrYH\n4pPv7V5Bn6QeZjxD3VI/sSIztjJRPJSNIK0K1NyDq9ZCS7xBeDXCDvECLfkjHz46x+duS1wmOG7Q\nRjSfmxjOBpbrWAiZVYmYDWpVg4AEL8OtMUYkNelGPezsyLj0oh6aasPwJOPSei0sQo3bIoVFoBac\nCjZBa8PtBjHJSbb78mA+KVaoFyRTWR5jV1P45/we/NFrAIBJKesjgokqp2hsnMAlp6KtHOR0JW0F\nqHZT5clgU9OgIT24anw07UaRykVLMF9Ta2i6JgZrZmyjRYeZhWW+REMXJSk1sljm1XcMGGrDIvps\n7dJ9uGyX7bJ9oj0XloJu5dRvDPOiQ0PHgctTPrQtuDwpbNNHjQ3tlny2bisY3H0Rl9CNnIKwNJTB\nE2iVo6U+YLGp5KsqFHQTqrpGSVO1URZaagKmaQlsUGMUAnn44btYPmKwaG5hd0+i6MWTyUUALikq\nWK6cco7NzEBdQzM63xt42Pbkex3Lh8eTqyX1W5ab0CVPV6ODDgN8dVMgm1OhuD/AwTVyIDwS3PW7\nj+7jpTtiqreBjcMzwQesZin8HnksX+yj/L5YEPVGOj6psOPLqbu7P0Zni/wOlot2w4KdJGgWJC0B\ng1pVipwYirICzK6cpE6nC5tITr2uoGjG731BLJD8+ARPa5mnA/M61haFWuYrePyeZ5jYiiSIOxyy\nSKip4ZO3cSscYdylpeB20fPFUvB8FxUttpJSgY2uUdcbYk0Dmiez6bYAKUUjbaBONxap3F+/a2Mv\nIs/GssKcCtWLaYu2FpRmQtfONGskxLoUyQourVfLMNHQdTXNCqRhQFMT8WoqbAQsVL2+4H3Qlom2\n3izy5iL7AEvm0bENBCRyKVsXZUXTBA1qShUm8xrL9aezFJ6LTaHVGlnTQMNAyXThPANubYu/WLgG\nChJoFI2Coq9t0Dy3TQWDA2W4HoyCA2y30DQjYbuoGVTYJGhK7aFxZaGUWY2K1XdNUcPiRFtOhqgr\nA++WMsnT1EZKqvbjeAK7kodmK83wmPQrTdvAOpIN6QnTpY5jIWAJ8JdCB84eS8OjCCbvT1MbsHSz\nCzrxVLswubnBj7AgAa0frdEFhWcHhGLPp5jMJb7QcWycEnNvOdewDqTOITlKMCQRLDoyxq1jIuci\nzoMAC5ZD+2GKei0PpNfvICNpSc30RJPHmBGlVaCGzTHUukJvSJN/aSHckU3Ni+Xh/2iZYzyRDeJp\nN4FxIubuPM9gbtKdlkbODFPIh9+Ehs/nJHK7iLoEAikHDTMpbaZQVfS1WedS1Qo1y++TYomGxDeq\nqlBSAapFBZvpbpssXKGzg7mSSkvdBDim8K567xF+8idl3muSmBROhpIsTHWZw2DfwjCCv3GLXRua\nqeiALrFdBchd2SDXeQmTmSHHAOzo4/nRFJutC2YtQo2WupRuVcJkJWkZxiDdJtbJGdxTydA8a7t0\nHy7bZbtsn2jPhaVgAPChkdYlaubYVV1AW7JjdpwO1lT+ffrkHJ0uufZoLmqrC4shXQ8KtGzRtj7K\nUnb2Iq+Qs8hpQVNhvYqhGcgpqhxUjUNZtJg1NAPjFEuHJCskv+gNDHz0RE6afJ4hteV1XLbo0xLI\nGwv2Rkac9FqO2cLs0LwOtmCPZZfvDPsoNE9pioZMkgoPSKn1aFWgZrDSVi4G2+RQ8BVsBtcM3vTj\no4e4eoUng7cHv8O/Bzl6C+lH1UnQDkgvz3/btQuPqsyz1RJpSQukNND05BTb8gOA0X7ToLWmO8Ba\nXK3D2QpJKZ/NaqDP6snrNyyYxBNYdIOKAvje974BAHjV+km8PJTKV1QF2o1CQGPCh/yex/mN7A5q\nshNXRYMV9T99z0BNF1MHwCbET9gEmtpF7ZAqrQZ88tTpwIXXyIfi7CkqiuAUmXzfzBx4DHxadouG\nrlJ8soRjb6ww6UO1bLG2qbtpa3SY4alKhYxFTrBadNTGGiQhiyrQ0M1RtUZrSt+qxka5gdbXBeZT\nWas1P2tZJRQtU+Xa8BiYr/Piwv19dLZAXn867uTnYlOAArRtoC0aZFTbOV3OgUzQak2l4ZLUxDEd\nJFwUxVqivu50imIs9tIIBxdlqFV9gukDebBWeY4jiq0mG/l2RyFg9VqbmchNliTnFUpuTokyMJtS\nL+JEJvzWax46TIEOejaWzGZsRT569Ps8x4LtSz88agE4no0u06FzlaGgCav37qAqpG+ztdzHNI0x\nZ+yjaUvYrPa0LB+ZlvfPTiYYDQU4s6o2pdctUoqOdtYx4ljSezuuhibCcpK72OVD2mPa8CRJcHgq\n/VkvZ8hIsGoWDfYHskh/7gsv4YVrohMRF7Lofnj3Mb75nvjWH02nqBjoGQ0i7NxgnbW3j9wRVa/j\nU5mPMl9Dc5N9eP8BdgZyH0VbXWwKpqlgOaTPp5bkLJ/BItnNvK1hxEwTdwbYjuX3toY5PEoFaFYf\nxvUCyZwqTKiREdQ0/TBBncu8jrr2hez8WkuMJl+36Eakl/dCxEQepnoO25FFoJnBsrwaupVrBVEP\nHjf6s8l9zAlkSqsMimvLtTcisA66I+mvgwgtYy2raY0ptR6Ojo4wo5aDb8laGAwDDENS3Pcb2KQX\naPUC81xcyCcnEyTlj4iUPEO7dB8u22W7bJ9oz4WloKBgawOG0ht2cvimh64rwSVPacyPZZd8Ms+w\n3piENPFGXo1qIQGspCgQejSJzRyLmDqO8RwVv1gYBLE0PcTM//u1cTEYVm3jhDn2s2mNfC4nwcmE\npv3TCRoSGUROiIBgqXFRw6Q5FyclPLIOb072ZWthyYq6bmHincdiFZyuvo8WPKUJk06LHD0CbIbD\nHsZdMa9zH7CoVh36BRpe+5zm6ePTEncOqCXpNSiP5HSMywL7eyLWdWN3iPDrDwEATxeC3z8/XgDe\npv6iA028wTR7imwtv/HWu/cRzxloZFDv/aMzTJcbrINGyGv0uh34hOCevnuE9li+Z+/y1EorrFiL\ncNv2EFty4mVxgZyBtK7rwWPgL53JWBmGhk2Yb6ULnK4p2764j7fX1OncH+GAYKcglDW0XhxhcizX\nOJxMcPRYKjEfnJxgw8e9PzSx22E2w5P3BvsRTFo/VVOiJuBoXZTARomLVomCj8BjULk10JITslyv\nMZnLWCwWKxRcO4qZjigwMNgXy227t4WGqYq7x0/x8ImA5JJJDBhy3x0C3eZLCzFJdna2XIx3pO/+\n0IVFNxUw8ZTCRs/aLi2Fy3bZLtsn2o+1FJRSfxvAvwzgTGv9Gt8bAvhtADcAPATwq1rruVJKAfgv\nIMrTKYC/orX+/o/thQJgGehYLtJNoY7jIGIQ7XFyhLt3pfikrHw8IuIrtGWX/PLWCOebOMP0HOOe\nWAKma2LNU2AJB3fJjHv/VP6N43cQEjIaosZVwnkPru3A16R66yaYLujjEh23tG3oWqyDk2IKFJtq\nxvzi5DZMAw1LIleEu/qOj1GXYiqLOd4+FL9173SFcIuBLUesnPvLCofUd5id13AtsVL8noNdSsG9\ncOsArztE2N0gw7HZx4o6BMn9E8y479eFi+Jow/izwJVqU0jDlKyVwyXM27Y8BBzDbW8X8YmcNKvF\nHI+Ja+iSxq7X8XD9ijAa+d0eHnNsyyxGSYagozLFsCtjd9sRi+cfuW+iplk47wDWhOzLSiEnl4FV\nlYgpIpPRL35ydIxJTLh2YuOQEOMsLxAwN/+ydQO5LxbEnauvSt9sB0tqREzyGaKRzIOdpigSuaeT\nLMVZ8lDum5wdV80WLdOTs1wjIWSz1QoJ0c9XWHzVOi1qBiIbv8F0Lfd/fDzDR08ktvPR2TkyppQ9\nWjy7wyHUSCyirtlHTkshzxvMqWmatBVqckAsShnjbqUwoxU3SQb4856s2Warh9d/4qsAALOq8fW3\nyCb+jO1Z3If/HsB/CeDv/Mh7vwHgH2utf1Mp9Rv8/78O4C8CuMP/vgKRoP/Kj+2EArYcA4UNHMcy\nkEPlwLdlcMJOF9ORTLLd8bFPYpDeFZbxFgoOAzy1WsMnCKe2PTiRXKOXtIgI893dQGeDEP5GNMR1\nLjaIyDaRWfLQvOAMcPRQFuGaoJlRaOAkoBl82MDxNvTzDfoUjgm1ix4ZSRw+mEEUgZwumCxW8C1Z\nHD/1uVdx8zUJ4LmcWHz7PZzQ3DV1Bps4BSdvsGJwMF6c4XQlD6TjyMIcX78Og9V0C1Ug4FhM5u8A\nC3m4B30LLc3/LVYf6uUYE4iLNnuyQEn8wt6gj3bEkuuqxu7OBtQj1+1YJgIGYFOoC3iwAY0u+Sbv\nXO3j9m2Zq8aV914cbuH757IpxndX2HlJHryBa+Ocgka2ZaDPAGrDB6ipF5hM5PdMw7zA86iBg54j\nfbYiwGa5d29AaLAOoTrEqTxcwe4KKOoLn7+Ds5xS8+sMqpV5HZNG/+bQxYQuytn9hyj4OrACmI1s\nSAWxG01qQHGC42WBkBDkrYNtqA2oyzNwdCIbYDyT8a51A4Mb6HgUXUDsZ9sz7E1krS/sBhkDrDYx\nD64yUGxAWJZGQyq/nq3wys2b8jp08dHh/yqDhAd4lvZj3Qet9T8BuFo+br8CkZkHPik3/ysA/o6W\n9k2IruTeM/Xksl22y/ZctD9toHFHa33M1ycANpCpKwCe/MjnNlL0x/in2o9K0buWgRQtotZBd6O2\nYRXY68nOvz24ijs3ZGeH4V2IqBguc97JBBlJPCIzgLmpTV/MgFxO21tXe9i9Jp/PMzHR/chFtmL+\nuDFQUy/CNHwMlXzmo2WCGSXZYp4SVmNhd5s6BQsfS1ayXe24uM0Toe966NygPFgj97EqbXz49KHc\nf0/jJtOCr/zkAXa2JFBaQU6Rr77SxW5fdvvFIsH2NUnZTfMWDtGPg94W2h2xLMxSxueVOzeR8T6C\npYOwI9NhbXUxm4jZuTxbgtIZ8Ili3NpqoHMZnyvdFK5FTEMzx4gyZXUGbDM91xPrG8eHj6GpWZGv\nMrhUz+4OIrDGC7d2tnGwI+M5Z7Ga32sQrigRGJ/jw3vvAQCubQ/wcLnBChRYVWKljWvhdOj2Qrxi\nSOpxvO1BbRSYtXlRaVjsGXAZdIxYdKSVDZP5/WHPwY0DuYFRL4AdyjwslyuElvTT4f3brsb6gw8A\nAOtFioqycO3IwOGZBFhTwtFHnRA1OSQ8WLhGQZmelUAz1b7sO4hn0reYVokRNuj0xCLoRx1YNlXK\njwqMt8mzEefI6Y72iH9QRgMQ/fnK7j6uMtA46HkY9WXt2XaLn/+iWKH/8//2bTxL+8zZB621VmqD\n5v5U37uQoo8cS6erBk3UQDFiP7BC+FoelGEQXZCBWNpCQ2HSkqwzqW9hTt/TigOAg92WK7Q07SJj\nD0MCbypiyy3bQhNuKio10oRQ4zDCgjqI+dtPcEruv4S/UZYZ7EJW/N6tLg4GMnE3Vxn2qVOp4wYh\nWXtXxKSfTddwWcpsdRp8jnh+u7XgaLJFUT+z0x3jJhfm2rIFHw+gUzqwPHkoOr0hVr5sBlt9EdKN\n1xlyQzZC3bsCNSXQJ1bYf0nINrztHQzuCoX5hrgD2Qo/QVDYXn+InDUa5+cJVizLDhMXMWnuHbpi\ngRmhYnziejhAL+RGfmsIj2ZwV/cweyCfSQLZYLtWF51QxqesTSRU++m5IWyChZpGIyU3o008yRV/\nBwUh6H0/RBTIw137Jmw+LGakoIhQ06Q6b1SOfkSuyaaPg0geoPGoD4+7SWtHqAgsmi02a2gCxBul\nrhqGJesiCPpYTiROsFEWc29cx9aVG/IbaYKWLg9SEx7jElHSImQJ95AHyM2rW3j1imz6fcOCQdzD\nlmsiGkr/tzz/gjcy7LAmyDAvyu87QRf+hvux9BA/Edes9oCDlwTv86ztT5t9ON24BfyXnOk4BPCj\nNC+XUvSX7bL9c9b+tJbC70Bk5n8Tn5Sb/x0A/55S6rcgAcblj7gZ/8xWNi0exQlGWoE1HTjTLVgw\niPI8hzOg2WnY0MwSVJQits7XiCesO3cVwpHkqKvzHDbRhm7Yh89gHYluYZkAelQRPp3BYg66iAHD\nJ8lKaMJlsVWfOejYCtCQOOUsmcFn8c1NT6GmRsSgY0Az+uwG5Oczc4Cm/1XPg0dT1crURSFUxyfj\nMHIUm8KnbgNNdWFrO0RlbyoVNQxKnKcHrIqLUxR0Ca6NAmQbjT11gGnDysjzCaaPJE+/cOTkVlUD\nn7RzHT3AnDqYZ3mKJS2oYSdAwOudk1LMD6/CJaFH46wRMnviaYXuUE5xvVgiZ459vZS/J6aNPQaK\nD5cTnE3FunnlK1/Fm0fUiDiLUbLCz6qondENsDWQ03OnO4ZBrYqqruDwvmFkaLdYHMS6L6sqcbUn\nLog13kLPl+8FlnuBhWg7Fs7J0Nw00p/VrMWTWCwlx/DgkHVbBw6GDOw93OAxltMLXMQ2DJjZpnCp\nxlVWgSrHhHsovzdhoPXVgz1cGYqrETkhFK20XaePlEFle2xhnonFajHgHXl9DLqyXpTRYKMtqLZ9\ntPXm4VG4Sjf0WduzpCT/LoC/AGCslHoKUZn+TQB/Tyn1VwE8AvCr/Pj/AUlH3oOkJP+tZ+5JDcRZ\nAYfm/Fj5yDkx5ngElZEpJ3RhEB5rMFBf9l3oe+yvV8OlWW6kU9TkMGyyHM6OmNqacFCj+Rj+6UYe\nkmQDilkgI4kIshg+mYzA93rDEFPIw+QUGl2W7aUO0CXxqrMK4fKB65GANdzdRp8pSadoEHLjiewW\nNku/N0QgMGsErJALbBdK069vfRSUez+LM0yZddmKaC5vW+jTjOx2Alhq48sfIaVClnXFgWIK16s2\nQC4XE6YnLX2OimZ763TQYwFBG4ZY0KxuAqZZ4xCaQ7UqEzikH6+LGDWh2Z6nockmNJnLnIaNh5LK\nWVnsocrk/Ss72+iSROXwZIl4uVGqkgdv1/LRsWR+u04HDrMZqVlh+VTi4at8hYLjWa0kRmNFJqIN\nmWsD6AtBFg8e2aRKy4LDyL6lWfmIOYol6xJsdVEG72YKr/2ElKjPfyAQ7unyCLv8jXzHg8m+BY2B\nkA+vU6cwhxsORrnWnr+DgbPhIHVReHKvHc8BaskYueEYrr+BujMF3tYXimN5ZqNgzMFeJfBI4W8G\nIwS9T0fx/mM3Ba31r/8z/vSLf8JnNYB/91P14LJdtsv2XLXnAuasoaAtA47loMPcto5qpJuI7UmG\njr1RQe7B4EnZ0PwuFfAeLYLO2sCtV0nuYRt4OpUTrV/O4CVkgWaxj2pt1Fp25bb20HpiOi4mGilI\nohIOcDMQ0++QUOT9QRdXDxj0WW5jQfNz9zyGTS6HsozRME/tM0DkOD3YSzIAWwYKRu2n6xqGKe8X\ntEbieIaqZtDRt1GQk6EqE8xruV5WG7C2WcEHsRh2hkMMaNZGtg27FZfhahfI9uSEWdkGBpH89lWC\nsM5XCzRkz86zDDlZpU8WC3xwJOZzuj5CsrkXnlA3xhHuvCgWWN/XOOfvDXoDoBRLqTZ7F0VoT5kB\nmZc1upZE/evTCYpYTkTPdxGRa9E2DRjEqlia1mFlwd4EBssUVS5rYHm+xlVMWAAAIABJREFUxpTF\nX4ezGYwlFbtZcJmoEntdWlOqgs25GfVy9EMJ8jWGi/WmgpaK4U8mMT48Y8jMVtC0oKZ+if5I1kWn\nkXF7uJihGcs61amJmFhxq2vAq8jnaDmoU1ojrJIMuwFMBpKV7cEhmU8el8gLmde8cuDR8miMDfGK\nwpTFekrrjxWqDQdqLGPrDU3YSu7vWdtzsSkoAEorVK6FiHUEO94VFIXcZN2UyGjuGnmJkunHGjJI\nmd1gRbP0JC6x2/kjAECDAotUFubZ/QhhTI0+hzh820BLMc86B2pGyyvd4pQAmaqxMLoji355Kg9u\nO88ALb89CPbQGZNU9vwjFBQrzRZruFSnMljGmyYzrMnnmNkFKsYc9MCAlfi8J6ZTUSMg7XttatTc\nLIs8RbKUxXZUJ8gt8hIOSUne2nA31Xu2BSvdKGC16G0LZKQ78mE+oJaBJSa3lbfwiaMv7QZ1zLTZ\nqsWKqbx5WiDjhnQhHR+XeDmQB/PqVh8dS/rRH/UREMizPC1wzviPyRSiKhe4f1+QdnULKN7fZDn7\nuKrUtC6yTlXKqlVzBZtpTaMFEtZEzCcxGkPWyK6zDfsF6mRQKWqWPrlg3JrMUvT0hukqQZmTycip\nkRMsVVH3wdAFeAZhrTVqTc5HDTipXKOx6FJNaixC2RSHjQEN1nOghccNIlklqJeyJl2Wn8/PJjCp\nw2HbPaxZMXt89AHOONdQa3T7Eq9omYkxmwYgw5TrevCuyL0myga5buBaEWpmTJ61XdY+XLbLdtk+\n0Z4LS0ErjcpuoMwchzmBOTPgSzdkh1tPSiifJ6Gq0DIXbjCiW8XLCz7As1mB37krYJNo3cIbMXo9\niNBQ01HTpmzKAooR9zReI91o9ZWASdlya2DAYcS8zFlZV5qYvSOgmm/iHAPSsvePHiEkzVmvb2Kb\nFZ9tX06U6UmOjMHNLCsxJZ4iGJY4nxOQxQBed3sXJbMMabpCNZUTKFEuZsRyTPwWY49Y+1D6uMIa\nHcLAgzLHGZW005UHK5IxDBYNBoQBPyKpixdZMByeQJGLvBRLYjiO8DOEShcdCxazOTEzKnuDCF/7\nqrAah45GwMo/Oy9g0B05PTuFH1AkphDLpjQLOW4BeJ0ALvP48yyHTer0RhmYsGp0nhHfoHN0fQnm\nNbWNirRwbaBQ5PJ761UMcueg398QpLgoODdbXQ821cd8q0aTkUdDW1gQ8jxh0HkxbZCQRt00HWRM\nZxQZsKTVtJdJtmtuJ3h6KhamZUYwmT5zrRYtVZqMroZFmnibbOTZYoLHS3GritRFQ66Kpgac7scu\nwbQikzbZpWuFj5+FtsSVRMa2vzu6qMvw6ga+utSSvGyX7bJ9hvZcWAqGUugaFgrLwIxbXNxbYU2N\nAbfXomKFmG8o1KykRMgdHj5ee/HzAICX7hQoSWY6QYY7LNxxezlSYqwqMt/4tYJBijZ0NdpMduW2\niXHMkyJbJjikBbFO5b2+Z+M4F188PslQhySVXeW4QtmxTHtIiWhbnUl/G1MBHQl2+qqCQ1Xp3miA\nNXfzjUJwO7IvVJSXdQHWbaFqFArSpildf4yyjNf8N8eCoi56YCPiWCzrxyg/lM9Gty1URIuCsQg9\nN9CSSHQ6mSMh9sB3I9g8Ka/7DjwqMM956u5Gu0hjsWLCsAtNERZr2KImtmDnagfgyfzgHmMA8ylO\nGcxrO9sY9SUw1mRrKJeMymhRkFvB5nWdjoEmIzGvlQEbQRWVXbAZP5keIudcrfDHAICODhEybtHx\nHWxtsXDLslBR76NuLVS03vT/096bxsqWXfd9v33mmqtu3Xl4Y7/XI7s5NIcWKZKaSUWR4yBA5Cjx\nIAVCAEMeEsAxoQ9BPviD4MCJjDhynCgJEjCyE0dyFDqKRMkyZFPizCZ7fvN456pbc9UZdz6sVZd8\niiR2U/26H5BawMO7t6punbPP2WfvNfzX/6/JTrfm4ps5h8KUk75C4XOHlsoIdr9fduj275/lSK+F\nTePThOCIgjb6valPaVlLi0o1F/QhVZU7v57Rn6nn6S2x5CufRJ5ypMxRE2VmGqZT8jnJaxEyVciz\n8aCkjWvWrUNJu/TepD0Si4LxHNzViKjnkyRKmjEpGCoxx9Qro2rnTNOYVHsNTnblBp2MDTWFvob1\nMmGhABoTMdW+hc79KX2l5w5UdPTc0jqa3KaYRcTxnPSkj6Ms0NY12I6cx0hr5ufXmlQdAZscVe7R\nn2o9egSxZngCUu6VFQtgNbMcRpTn5BeFg68y44PJBM8Rl3+UKER5r0mh4xxMx3iqUhU4lkAnQiOo\n0lyWiTdvsQ1YwVOYszdyWdYqyfbyBe7FIuvOxBBqT4g/d+HxmXpy7UdxSq0uE92MJxxlqomYetRq\nqteooKGpO2H3lkzSu2GPiyvaXVlqEaIQ87V1xkcSBtw7FBGd3rSLr+FKKQQ3kkXqdm8X4+t1c75N\n+zZRVzzK1nGV1nxMQacni9PBaEBHW7zvjgZEc7ITTxnBKZiqVuikZ07h0zgZVSXlqTVqp23LbqaV\nr8kAV0Mbk2UUOi/8yGemieTV7LLcg8s5+1+Sjefq7h5+JmNaawUMIwk3PQJGKiw71wrNh0OcIzlf\n33oME+2STPpsbEtokhi4c0/C175yYlYbZWJNunomoykfhUqNXCnbnDr49q0tCovwYWELW9gD9kh4\nCiRg7sJJckKi9Vqvd5eDsZbkms8z8bXUU9nkZCA70O1rUtJ6efeQqjayTLKCQa68CJFDzfl2ic/V\nlf3cqnbWrYXk2hA0SSyHygzsmxJ9LVVOjl3u3VMqLZV1j2xCpLtLK2hjfHXhRlOsCo7E+YQ62iao\njU3dkymv3ZAdOrMZaTKXD/MxWoNuNuR7Nyp7uLrbVU1O64yURZ0owigaL6xFjCMtoyYCmc07a0Sq\nnTGsVjmzLN932Nvk/DPqhbgNRscCJXaV0o7ZAF/Loc2lMkPtBswnQ1a10ejZs0ssbSuaMJT/3+h2\nmNyS89k7GTEbC5TYPA6hlh+LbJWTXHAk3aGS6DgpJV/cv2pRItPvywYdRkNFb+KgvUHcP5FxPrcT\nkVTkfvh5wQi5J/1egl2VevwHP/A0O+uSdAwjJf9Ndrl3V+Xejzocq3hOlk1ZVy1Mz4RYLX0eKx7D\npgWofF+SjUGvkV8pESzLz/Nr1axeoNkSzoKru/fYV3bp1vIyrrq6J8MJt28KxdqtPfFi89xBUexM\ncE5FT1v1MidGwtTD4TH3b0u5u6Q4lIuNKnUVHKptVgnXtRRdiznWsDKiQhKeatu/KXskFoW0yLk/\nGYiYh4J03hj0sHdkIq3WX+WyeOv4yznr2+La1mLBzu+slDDaDBxEAekc5OGOqecaW5kpiWb229rT\na/2QyYEsMN3RPbqKRb85AK8hE/pWfIf7fY3lJvM23BIldffvxnfoabxMd0boqFhIkjHRWHyrLQ8m\nXjHXXqFVWaelPRylRpNU8wBN5Sp0/YxUwTYrlYCgJhfg8GBER3MttaDCkuYgcl++y287hO68G9Ch\nVRfce1hqcaJu9+2RoTOWRdbMuQ8nI0JfHszNlQr1shzj/gC6d8WVHly5Sldj7rlD2mqVaSkT8fPb\na6xekimVZzlJIZ+ajU+4flXEZHdPZJxOsEy0KQ/xKHcZHd/VMfXojHWhS3OGyrj0yq1XAXhiw+MZ\n7RKNijLbG5qXKcONnvZzDE6wd5Qrs6XAo6OUqWqQnnTuUxrIQrazU6OhfTVxahjmcv/uHIq7f9gZ\ncHQi12KYpHjK3bhxrsGyf07Gom30zWqPg1vy2jdHr3NNNSZjxswbJtc2W+ws6b1SnEKpvI7XlvmU\nJQVjZXDOrUui1aqQHE/xBi1dxNprS5gluVZnztTZ1I2qWqlg6yq864Z4+aL6sLCFLezPYI+Ep2Cx\novVn7Kngyiib8sb+VQBMvkf+lKDxfL+FtdrJNhdXdqZMxrKy+26NXF0/RhajTYKrK2ssR3N5cm2i\nGXfY7Yg3cuXuXa7uSa14d5ozO5DzOOgPGakrlurKjk1x1HtoUSXV5OjIy4hVEzCwHiNd5bsjDWHc\njGSOYkt66IZPORkRagNPUlKZ9bPLtJQnMKwuM56qPmY2o64dSCulFUqZMl63NHs/CrB6jDgYYXR3\nNN0JjuT4mHQnDI9k3OOhJkZHBkqys1WKkJUV8TbOr7UJ5o042dHpuLcUSXf58jpnnxMXfWVrjVzF\nS/qdKScz8cLu3N/lG1fkXh4pwtQGVWIlKQm8iJlKuB8w5r52TA6znHSm2o3KGL3XP+axbdXgXPJx\ntAri5RmrCmUZHifUlDvBU5VrxxiKUM5tNbRkm4qzaDYoqWzc7vCQ3X1x7Xfnc+FkSKJo2swUrK+J\nN/XM0gaOcmC0VbzlaHpCrs12Now40HtWGhTsdsRjieoFns5DT7Ewg1mH2nyOzGKsemPM7KkytZMk\nnFuXY29tyvjPrlSoKft0s75KKRZvY6m8QglJcnopaJ77TZux9i3zo7ztVqmW7FPPnCMyIVtLkkI1\nyw4rnpS/VrY2iVwtt9iEo125cUahtjbLQB/Mw5MTZpo5Ho5muOpK59Y5vRmDgZKglnzObEsIsry8\nxFThvE7uMFF2p8bSFtVNeTgrCi/97O9cZXlT3LNnzl3kqYtCcHLpsXWacl9I4hlbbbl5vlYO0gyu\nXPkKAOWKjxcpQUZti8GRuL7GkZXiGy++yLoSp+zdvcnd+18F4JtfvkmurcPdOzHhkny+e10mz4Wd\n87xnRzkqGwG//ltfAMDFYUOpwZs7FS62ZJHdPKvsQE6Jlmo/Du7dx9cW7vGgg1EuyWLm0tQJOezJ\nAhJ5BV99UXI77VqFJJaHeJQPSDRfsb7eYKiAm3nZ895+TKrEu0kOnuYt8toOhcKAJ70uSl2Io70o\n1RXLE+sSPrz/Ezv4Rh7I9sUPkCokuNoqMVPyWr8hD0eUG6qrMreK0QiqKmg77lEoqcvo6CYobHzv\nWy8C0BsOefVbsqDdG8bcv6Nzr+qz9u//AAAHr2jO6PpLvO/5fwOA4Ovf4Myzcr3f/8Ed1i9obiMM\nyHP5OUpkzPev3mBSk/Dq9WmZ/g1hoaqf+wS9r/wuANvlcwzHcp2PtcqyH0+ItFv85GCIpwmY3e6Q\nur5hrMvRWK7nH758/WvW2uf5LrYIHxa2sIU9YI9E+ODjsGnqBNUKT75HILPL261T8EsyusdU69Gh\n51JWSG+uMNPQ87A13VKKJTraMemXnFNyliKtcnwsxCGO7mbRWp2VZYWGlgOqSsWehyXKqjBNmuKq\nR+Iqb4KXVOlpc1Tz02WefK+QTZ1ptsg1O21nPSIFKoXq5Qym92iVld+htsaSwoCL5JBlVY2OA/GO\nPvYDl5gN5O/Wti9zJpPzfM9jL3Hlm1I5mLhnub8su8eqVZyCM6PYku/Yqm2y4XxNxhqWefZ5oVe/\n8MRZqr4kq9Kphl29CcFUdpp6u4mdKEjHJswUp+BkkNyWa7jsa+WkPOJxpZzPx1NqbfGgstYKju7c\nkzRmvaxu9ZJWV2oh9w5lzOPUZaTcnIODHnv3JYPvBrCjnX+tc/J/pRlycU3GV11ZZ7Ul136W9XG6\nMpYTN2K5puAsrQZVgxVc5SHwWltMtVu1mI4xdVUN39pmdqjCKRvn5BwaR1xQr2P4rWvsKuGOwSX4\nqlSE9j/3DwC4Xsu58IZ4fBe+/xznLgk34ur6OuUV7VoMYaBw7NsduYa7SUb3ZfEKv/U7v8g3VCbg\nfOc3ePqDIuBTThJK2zLu7afkPh7dO+D4tnBkpK6hUHq7nYqP6SusvBngzJRC9eXrvBlbeAoLW9jC\nHrBHwlMo18o898n3MkgiOkoeWhpkVFUKbVTEBIpYXKqUSLUJpFyaC3wm5NpuWgtH+KHsEpM4RUvF\nDMcjYlWS7iay8i+Hm7h1JRdttYkz2cVms4RItSGmcUoxlvjZdrSRpRLRWJZy2oeefoZn1iQvETgu\nqSZKMz8kcrVUqdRtedKl2padrVk5S6CcBUU0xnUl3nV1nMZ5mmJZeQPSCWkhOxtnnuPymd8E4Oor\nlu2uKl5XxCt59bWYe3ckqVWshjz/feJ5TZ2IYkPO2S0iKiqUOlKcRlD1cJUIN3IgV1gx1RLLvlwX\nY1MSbR7S7mbKUZ0VzdukQKrt7GHdw1mVY+zvnpApZV1JUYztS1UcX7ybfuzQGcv7V1+/Q68jxygv\nRbQfl9zH5e3H5O+eWCPypJxaL7VobEh+wesNGa7J960vr1FZFREYdXLABthUz7OIOT6Q3MAwn7Jj\nZcf3N9Zx9J5Y9Xj8coijfAk3ru3jhDIXHM/j65/9rwF4TeHa5WOHvmJSJu4HKV2U8N1GUzx9vVTa\nItJ7Va2LN+btfYObvyKaSX/wr24xP+UDY2gP5P585GdXCc+Lh1A5K/djabUEKqLTLeUs1WXuZJUG\nuTa/uYVPPNcAfJP2SCwKjvGpRKtUGHPvriR1ksZZjrWTrxW2qehC0K775Oq6GqXOmvRyrLp1XrlF\nsKNUWrOYRCsR6XBKrtlwX5NdnucyUen0qHqWrZa4akeDguGxuvk4uJoBD+Rtnm1d4Mwn5AF7rLmE\nNXNFEhdfmXo9Z67lBxRyY0v+KtWKgHtCr43RrLd1aziOPoTz78LgKkm265bxrCQPbXDCmff82/Id\nwdfpjOW6vHJNFtDlW99gf1fDpK5hXem9C5swUpfZcSOOlLRmzZfvdY2PVf1M14NAYbK1eoVmMCcF\nAavVDneeIc8mNNU1jifj06ewiAKK6rxfIcLRsQwH2lOSTriwLse43ynIFdJd8SaMl2Vy13wfo+I4\nfc3CP1aUcNdkgchNgpPKNWwubbKkicSoeg43kDlgle9wNtwnH8l9zIqYktb0x4cJeVMeWCdz8JrK\nm6m0gFm6wkQrA63VEHtNxmHyhE1fzvlgvmGlAeXnPgJAGjdwtdoTP9WCsYYukaHQuRqopunlcz/C\n6r8l13VnJeOl35P7VL98hs1t2UTKj5/B04W6oaQp1dqA/gWZlL1kTDa/N+kxJYXCj8oF58pvjWRl\nET4sbGELe8AeCU+hKHKmkwG9w/vUjXb45VBRRqNW3qSmpb7Ii7C6cxl1SYtgzGiiQ/FythX9N05O\nGGvP+lG3IFQPo5i7sCsV9u6LR/D0WkJD3bJWFJ52Rh4OpuSh6hPoLv7Yh8/yyccfB6ARRASaJDPG\nYrQoXFiDVU+g0B04COp48/DAODDv0HTKYObsOPP/C9BSmcEF7aI0toIfyM7caIckQ9UvyCTh9Fo8\noLsnO01Wyfgw0qyTjQe0VVshTQwlbczKxtqVaUbEShMW1F0ayoobhCmpNgE5bna68yq6GCcDO9f2\nrAYkudKm+SH5VCn0IpdcmYVsSZvDBjmx1ukroaWk5KK74ym+dpp6zRIjxQi0taS5d7jHjoZ54bNt\nHE0eRtEmXqmulzACbWKy+dzb8nA05MnHE3xHPluvDyhpWdNxHXzVFDGuJC1tnBNEytnglIm1c/Uk\ntxypdmWwLLt51lwm2RJPoXGxzrGGWmfSkLJ6ZDhlUBiAr8ljlis0fkiu64c+/iman/4deb98maqV\nULC5tM7qss7xlrJBv3HExo4kKLudWxz3tSvzJGWQKrvTgWWs2hhv1h6JRSGPZ5xcv0o3zDEzFRPZ\n8igNNeO8kuLM6b9ch1yFQscKlMHNMaoWVQsKMu1FiLyIkgqlbhy1ueFJpr5R0orDcomj124B8Oq1\na1x+VnIDjZU2g4nq/U1TvKYKivjaAbi+REPh2K7rYLW11gBz1EeBJdd22TzT8zQRjoYutjA4Cni3\njgUFwuQa1ztphtVjOEVxKlXPaJ9kJgtZsmcYJK/LNTpRTsnVAv9F+btOFDM5FOj2pFxgThTjX0rI\njlQYJxJMR5pkRCXtxMxdtC0DD0NakWsfRg1yFT6xLQm7nFKTQAV4yQy+Ut3lZZeSwqbjaQ/jqLiK\nZtYbZRjo7IsiQ10xC3X/2xexcBzcOQ2d8vIn/RFTJVaJR0sY5bEsEkPhyDWydiwMJAinJUCaDnAC\neTB9v0x5SWnSN8+BtpfncR87d54VnGW9glC7DIOywdU5kDAh12qU0Y7TIiyxsiUPsReXCbTvJu1l\ndJpSMWraNWaOzD/X045ME2Ha4uKbkylLT8ii36xExIcq/NMqgcoHnNz+HAAvfuXLDI/mWI+I3Znc\na3vjmFTnmZs3mCy9td6HRfiwsIUt7AH7XqXo/y7wbwIJcB34K9banr73GeBnkZT7X7PW/tZ3O0ZK\nwT4TGtXzmCVViV5tUCt0zXKk+QfAjR3iORagmGvqNdlQyrPCc8jUbZskMesNQY9Nz0Jdu9My3Yoa\nRZuKIvsSr8SeypqvlaChDM6dKCHQrjX68nePrWzT0p0tNA4ec0/BgBEvJSump67rXKAiT/vMJiqY\n5QUEviSJHK97KvYyx6TmJiKfqHcwHVIU6s7mJYySbOTZLlVlCT7Zls9upJe5f+ZVHX/OsCznUwmX\nsU25Lp4f4iip6mwmO0rZDSkV2jxW8shj2QVjC81gTthRI9LOR08bscrVFrYi3zG7dx+bqLpyucBp\nyLWN3JDhsXgKlZm6zit1hvtS0w8SQ0sJQhquT6pQYRMWZEqcUlO9jDf2+txSQplPrW8wO6eeRPc2\nJWWodlyDNYrI1CY33IxSRen46m18JWgNCp95iaqIapipNpNp4tevzCguSHjw2N33st0SzywZFTRz\nxa/U5Zqsn1/mklZ4dpYb+HVNJDcCyrl4I4VTIVYMSFDVOU2B0cY9nAlLLRlrOS7TPi+eQta9T5Ko\nTOuBzAVe6vFVxcscB2W221JFaTgO90KZy9WmoRy9tYDge5Wi/zzwGWttZoz5ReAzwH9qjHkK+Cng\naWAT+B1jzGVr7Z/qvzjGoepXWMozfEeZknIH9dSInBpZLKeapSNyZQUyWgpzKWGtPFRlz5LpH/qO\nR1Xpss9uX+DDT8oFfP1YykqFD+dUuDbFoekoo7Jp4VXE7WxVG+TK6TgpK2ApCOYdtIiHqL8YTh9q\ni0Oma0KWiLufDvsUEwlhvKxOruXQqJrjoA+e1fKfZwjmAKE8gJFMjqJI8X0551rb4BUaSkyV8ae5\nx+0zstjkVw+oK7tTNc2Y5NrKnaQYzYOE3pwxOsTVGNkLJ5T04c9twGyoZdvmiEA7/MKyMnq4Ca6W\nXoPikHSirrhJiFY0jm45ONqZOonlfLPjAWVP4/dmFUf1KC9tlImbOi3LJda076Kv3Ignoz1O1GXe\n2RzR3JRFtrpUIuuW9NxCsnxXz19ia3e8TKZt5s5kgl9WcaGwjVFR2DTLQFmYvEgeTEMNP5eQYOfp\nFTYfk67T2Y3rFErz3DqreZ2NJc4ozn2p1mZ9XeZCvdUk1E2mcDL8itzXvrKMNXyXqYbCvntMrDqY\nyTQ45WusNw1FT5XR1uT+Dmavcu9QW8eThKgn4zjwK3Q1nDzaH1Btavj6Ju17kqK31v62nT+F8EVE\nMxJEiv4fW2tja+1NRCnqQ2/pjBa2sIW9q/Z2JBp/Bvgn+vMWskjMbS5F/6ea4zqElYisYmmFslJP\n4wkz5divZ+a0ju243+4rLykmwAYx0ZwbMJlilHgiJMfoLj+b9NlYVdk4hRAko4KDrhKnbEacZJIw\nOuuOQTn+RnGXTJWrvUR3cXJ8rRIYHE6b0CzkGgakyZCRcgH0d18BIPCrrDi6Y9RGeJ5WCaYzQk+S\nnEYJMYwdYQJxRX3HI9E6v5l0SYp5Rt0lVicsU72JwjNsNyTBd7J6SMlRlueih6ehzTg1ZCrZ5qgg\njUvKRCXrmrmHX1EPo1zgK0bAFBa/qbvtXCfR8yimsmcE9S0czaxPnAOyE+k0jFZbuNo9mmn1Io87\nTK12HxYpnup9XDpbJ1C5uWHJx9eE39VXxCM4OoqZKqvx/miP167IzTx75ixt7YIczwxxX8KGWHUv\nGmsOkZKhuPEMZyIVqvLKGFc7SbPRDFVewwkV/EOE68rxyvU6jz+7rO/3ufuajG9dm64uX36KVkU8\njDCYUESys1frbYxiE7JsilXY+1Ik5zYwfYJE2bqHFaJCzj2pJAQqnTgcbVHXztVsLOfunTP0viGz\n72AyYZQpjsGfMFFszOqWZRa/tTbJP9OiYIz5BSADPvs9/O3PAT8HUC2FFCcnOFEDdz5JfcNU6cLH\nxQyjC4Dvl04n8pwY00k9jFK8J04Vo0KbRSkk0wx+nBbMNN71PLmok0qMfV0WhbQWMFE3eW80IFdg\nSlYYEq12mKWyfldOruU9B4OnWeY8z3n1UMBXr/7Sf8e/7orG4PmavP/9H36WVkncbruSwZEShuYD\nGAjePyvrQ1dx8Taelos1GXK8r+I0N66RqviIdzzj9r6UIscqZDPYqDG7Ki7noDdm2JXJliSWSIFc\n0UYVZ6KhgrI0eW5OpF2bhAGu0tZbYsyc/7JcJz9SrsSWhGhebZlCs/pOUYamPLxltnA97YycghMp\nTq+jT10aEORyPYu0QqqLSWCrFLrMjg4hV+WrWCnbJ0VKPpP3791N8HKJr01RId+WRTSNU/KOMngp\nCWzQzRmrwE/ClFpZaeRtiKfkO+PuADOVOeXOK1ihA8rziJtzZkfuST/v0bmtIsSq83ly9xD0Eo76\nA8LrAlSbrN2nWFKq9iwF1aOs6OJ+77hP6MgilHROKGmIlVfqlGtzktdjBjVl1HpROmY73xoy0bLv\nYFowi9WhX6pzpiwbw/JBxki5Kd+sfc/VB2PMX0YSkD9tv91//aal6K21/8ha+7y19vlId/aFLWxh\n7759T56CMeZTwN8CPmGtonzEfgP4X40xfw9JNF4Cvvxdv891MdUGS2vreEYy5DaBULP+mWOoK+FI\nJYgwJVn9+2NZqX03YbindXAnJ1OtyKgZ0lIqqllucDRx50fKN9Ab0Vd3fbPRxCpdmTeNSecVjizD\nLenaqbXyuCgo5m6w45Drin97cMjf/8/+JgD/169/EU+Zndvr4plDWAEGAAAgAElEQVT0XrzPpmbR\nt8sprJ8DYPK1m5y4chmPb8o4TlaaeIVci671WNPdatJ0eVJDonI9AKWiz8+pO1ypMlwXl7N7GBMr\nhsIxlpmrGIJZTrmsnBOKf3BtRKxEJ35WZdyT61KuRZxblu8OGsso9OBUtAavQpGpxNzxdU72dJdz\nD07d5NXSAFdhw3TkGMF2E3NVkoAnkz2GQ9li84rLaKxQaccw1gJMPgd9MSNtyJj6swkHWi2Y3rjF\ntSPxihqJR/Ws9seoxOCec0BxX0O+jRazTHbV5rhNSzVJi4ZhdltChZZS7J2pnhBtSBXFzQsaS0pb\nP1rjRlsBWZrMzSOf1/fE4zvZ7TBIxVN8Y32dWKX13GbIeCT37M6unO/o5T0OCzmfFSdjzuf//PIW\n6xcEfLYWBoT6HV5XK0Zhm2YintJ9JiS6N4eETDWMvT8u5sLVb9q+Vyn6zwAh8Hkjk+6L1tr/yFr7\nijHmfwNeRcKKv/rdKg8LW9jCHi37XqXof+VP+fzfAf7OWzoJz2Vttc56aJhpg481Cb7G7YFbBU2C\nuaGLoyi3ku7Wx0lK50S7JP34tNzm1cpkCoPNcp+pcg4calzcn/Xx67L1VWoh25uXAPEkpocS9QS+\nR64ipa7ujnFuiVG5NRuRGznnk90OcSjlq4rj4VXl/Jyh7NAv3Zviam9KadkS9qVjJtlIuPmS7Nz/\ncip/P3j9GK8s57kSNuGc7Er1QZ07S7LTlKc+yy1VT1ZRlFYVLixL2exO/YAl5Tow/YxpOhcmnaCh\nKL4ru89uPuT4UK5PVC4IMrlu62ub1LS5a7vt4lbFa8i6yoI9eo3br8g4vvmtP0DTGZRLHg319M63\nM7a2lDZO+77qcUF9RTAkvWmXsbI71cchqeaSehPIVBT26FjVlR3LTLkusjRl90Duwyv9K5QUN7BW\nbnHJyHmeOS/JZXNkeWMqCbzBl/ZBS9X+zSalVRnfRnmZ45kkbLeUFDg4W6Liyt/55Rkz9YrC1KO9\npIIy6khee/06t28IcvHgYMpSW45hfIe2Nj8dX9/jzq1bANxS3ZJp94RAvc27pZydquZoKoZgngfa\nap2iYaur0hD2ZNTiY1ru3vvGPbrKL7LX7zNVrsIgCwkV+4M4Jt/VHgmYs+M4lEoV8ByiYF5l8ChC\nVRoeJ8SaJLqzN0ULEaeZ91F/RkUrCqVmk51tKXj4gcNYYbn3947odMVFu3ZDbnxuIo6nkkE+e6bB\nirLk1sOIdKR9Er5Dmqqk+EQe/m7/hK2leQ+Dj2JtqJQtP/WxnwRg6/gLlOaZ+BO5+aurPi+clZTL\n2mYPayUkSlttpukfAnDlhpxjfejx9EWZ2O9bvcxjH5bFy3QDBgqbNuMEHBUGqcl3NTcfw63IJLh3\nf4VQsQmxP2BJF1bPm2G07dzV/N9j7WWe1eO5EYS5dtzNJkRlufZZmmImCu7RDtb+zesYrU584D0f\n5v2qRlS/tEFg9O/2+8S74lb3R3K9p7OMQFWMyisrRCOlGBt2T/UvZ0HAXa0Y7GoF6PhoQqrgs2k6\nw9e02GwyJdaEcLI5YFtxAaYlC/rB0V2GoRzj3jRl2lN+xO4Vai25FuV6m4aOZfkDqhg9bZGpUMuQ\nPuN0T483RNn7SMtz2no4CeQYQatEc1MWpA2nReRJWJJ5KefX5F4lQwVmrVZYrkqlYuvyMtFU7tNS\n1afVkHDT81fpXdMKzI5cwwvv2+DjtR8G4Mt3fo1BR7UmbUZHVbRakYdr5i38Pd6MLWDOC1vYwh6w\nR8JTKJKE0e1dgtynEuoK12zgJJrsC2JKWsYJ84h9TVbdvyHowP27uzTXpYnkg/UWviIa2xsN9pWc\n5M7eXa6/IrvVSFfoaZTR3Rf368ULVT6hkmG1oI7bVrjuYAmrnoKrZc/UZozVVSs7Lq6WJFtlS/aY\nkJo884EbjGPdYfYkGfT0yhZrl6RMtby5ibuipbD9ER/4qLy+dkl2kZ0zm9Sq0onpGQs1Gd9k6zYr\n++LyW39CrIS13jwpG6eUQ9kdz26do6/kM3HiUlEClGqtgaPnFijJikmPqI7kGGMLM+0GrOcZk7H8\nXCp7GGVj9ppyTYLQp6SYDb9eJdNa+fj6hIFqRyyP64TnZVx2V8uNeZ+JciuknoNVZOVwcnAq6Xat\nP6bTleP1DuR4vdmUTOHvhRnRaIlHMC6GpIomrT97luc/It2KumHSeuFDnFVuhutXrvIvfvUlALqz\nlI52lRa39wjVzY9UcGW5tEFrU75kkhnoyrn1xz3SeZ000bJ3PGPDkWsYtj0iDTW+eeUat75wS85z\n4jJSsp+mQsV/4Eee5j/8me8HwCmtM+6It7h7u8+NPRn3q7//B9w9FC/l8n3xQNpn6xR1uX/ba3X2\nFRczsDn1Qjy6SiOitqwxm4A8v6s9GosChonrsOGVKWmbatkPieasSSNDoXTps5Mxh5olv3ukyk1x\nRlvblEvNJmur+oC1G5QUNv3Pp3/IJJeblKoOYuiWmCKLwsHYcKDioWvVhGqwrJ/pEKowjLenAJTE\nMFO9PxslWI1lcVyYygP7xdcOuHNDXt+8KK7h9I4hSWUCvrCxTa3yXjln7ybr25LPWL8s8aLbbjPq\nyfH69w958fdFB3Lkj6grHXy71mZF2ZmiZYFBO5MIE6iCVKlCqO3edjZmor0drXSFUEOznsbv9250\nuHtVlYviIaGq1jx/8TE+tq35gFGbkqM+s3ZUevUdOgNxZ1+5fsTtG3Ls3dsHDFx5/aPnAt5zXmL0\nrTWZrNWVNkPtJRmfdJimco0ya+nrQjVMJ/S10pK438aF4KoiVxhw4aOCGzg4mWG7ko/55I/+JE89\nI271/kz6K1brZZbrTwJwbv01hjP5u8pXv8iG3t87t96gd6JiNwqh93yoVM/Jtdq7SprINfS6UFWo\ntNGe7JPcZWlNxlGuLZNPNWQ47rKsRCfTSo53orkGhXA3y6us1r4PALfZIg01n+X4fOmGtFHv5w06\nsdyfI+3LsOYM/WPpc2n4ZZaXBFi87YT0PZnXpaTAH7y1x3wRPixsYQt7wB4JT8FzDcuNEKY9Mu2W\nqzUinEAJPaouByfKduzHVLQGW19VtuRmQGtHdqKVpketru5sqUFF69vnqiE9zdRXlzShVslJcqlB\nn3nsAq1wvlt5FOoyL9WWmI4UjbY11zpwKDSJRhqg2iyMe/Di1X8OwDdfvIVq1tBuyi5uls7hqXhH\nMg7JDyThaaYJaFNRpSE7ytHdG3T17/v9DnEgbvT9owPuanfozqBPJZxrS8iHg7JhpMnVIE3Y2JBz\nnxzm9FANRlKs8jdUlejEyaHUUjXu3MNti+dSKlUYKFqy2jsiWRP32JmoqnE5INiXHbpcbbL5uKIU\nKyPc2/L6Hx70SHMJ9cKKcgVkU5ptqZJkTkCmMut+kOIOxHuZjGfkmdz3RKsrbmAxypVg3RlLqnJ9\n8RNrrC9/CoAf+8BPsKTj8pTroFzeoqaw4432Bs8+LztpET7O4+pZrl6dEiBewxN18RR3zm4ymsi9\nrvgjdo/nsvU9Kq4c+15P3r9394iNmkKb/T7+ijxez+9c4vFVGevEj7k7kM/0D8WTeuGZZ0iU/q7h\np0wz+bndrPLUWbl/ab/ExUsy7qd33gPA+uYZmlMVM/pmjfZQlb0nM6yGwl1TsNJ4a3v/I7EoOMah\n6pboJwNg3k3XI9RSWOCEVCPlV8yrVM/IRFnXNlXr5qxtSMWh0ayTOqpX6I5o1eQzz//IU2xcl8+c\nDKRs1IlDDpfkIV1bjvDU7a76Hp05AUrkE+vEmijH33jY4QmVap8VGSaXiZL4R4wUkDId9Hnfqnzm\n0++TheeZD72fViTjKy/VcQoVmy36VJZU9DaVB6ndjGjvyGdzp877X5BFb//uLZxMFoLR4U2qVVkY\ny3N6eiCeyvd2jrrsLMux+8UxZl61GY9ZUphyuynv75xZJVCXeUICgbw+7R3jKI4+SWec7KnSUSiT\n0XoFLW1J/uDm8ilLU/aRVfavaO9G6oJqbDZbEl4Fwy6p8jya3KGkD3FvFJ9CjFfbARMtS7c1pOiN\nAxLtSymvBTz//fJA/8AzP86OcmyWojWsakLmys7VKDXwlKhnZXWLT1Tk2p5tTkhTOc87112agdyz\nlUuSl1lrbFIditt+tVtgAmWTypo4RnspjFKrN0o8+Zycz7OXz7N54QPy2bLFDWRjGA/uQ1k3pVgl\n7oOQXM+3e98Sa3t9s7bMJz8sC8Czj1UYdCT0LK3Ic7G1UiIx8v7Wxdd45YbkzByTkWkLwHLTwwzn\n1Yc3Z4vwYWELW9gD9kh4CjbPSfs9rFfGV3e/KJzTKoFrJlhF21gT09Q2R6skFfX1VVytFefDlMkN\npRqrhDgVeX1tdYOsK7vGqmZss3aT5VybpNyIXHfY1E7wlYl41inIlehjXBI3scqMQS4/16JlQq2M\nNKo+m5dk13nvWoVnPyG77Xs2pQmqaS3hTHkZT/bIE3Hns+4YRzUd87ImCZubGGXkdU2dxJXwYae6\nSqZdN7VRm0KrIPlQs/rxAam6s44b0DuRHT0emtOEaGZSvFx2REcz1mk/YagMz37ahJJci3qtoK9w\n7WSSY1Uf0Wq3pBuUCJWuLsgzjIZ8cd6jXlUpeiOZeYCip+43IaMTbVDqD7CadGvUYrqKQzi8PqKi\nIJyZgqk2qoaOL2P94Y+/j089/oNyT6vnCdSztFmfREVu6ChPZjnFRlppMSlVdf2fvPCDZIr72L/+\nJV79gki2DUKBFyfP9chj5aBMHCqFHGOQdYiHKveuuIJqWOFiJGHCZu0SNe1QLYcutizHi5wzpNpA\n5SrRzSTukQ3lPhzvH9JVgZdks8vOM++X717xQfkZ0AY0100p9Nzc3GOo8WpvGlPRilDagTSXMOXN\n2iOxKBjPI1xdohq08dQVS+IYb95nZVxqqviz5Lg49Tl/v6L1qj5pVzn0a3WmWoHpHfVYcuY6kBeZ\n5YK8q6zLTTnXvkzjg/Lg3h11iJWNNEwKjLZtB6MTDlVS3Ivl4Y+CEu2SgEoi31DSCVaqPc5HX/gr\ncm73DtjytYKxKQ9gMT4g1e/wVkskSpSazBJcJVmZZ4r9nU1c7dTETvE0ZMg3HGbHMtbQbzDThWya\nyzn2OzPGGuYQGWYqtBq5y8y0cmBHIamX6t9pmJS7VBLlMDy3DhoSMSqYzcS1jZMZrqNowkzPMy0I\n1yt6jCmU5P0gLRHLM8HUTkmHco3cUCZ2nPZIR/IgjGcp0TyfQ5/7K1pVcixD1VtcUVCUY0I2tYLx\nkfd8gK3198nfWYeZEshOejfIRspINJT7tDG8ybKryFQ/wlPmLNeE6BrDkrvBta9Itn/OA7rit3C0\nypBNU/KBEvyMAqyCxHIl2E1Ty0BLudnIp6jL+6a9IgxPQNCKSOc5E+3wzA6GjGJ5oIthTve+bACN\nmU/ypHx3pcgxFZkDRlWv8nxGLNEcrokIVD/SjS2xhr+93pg8nlOfvDlbhA8LW9jCHrBHwlPwXIdW\nrYqTJ/Q7sqoN3d5pL3mz2qaiqjqVyMOZu/YqPNLpx4y6yjLshrgKXe6nHqjra8IGRpNx0678vdsO\naJ8Vd3//9gHTRC7HFMhT2cVTr0eSaw+GrxRtXkqey8+RWcNRenbr1GisSKLphR//94hUHTvUHZO0\nT35Hjp2MHAZ74rmM7u5R0068cGVLzzfGqci5OUUNNBFlujMiVf/JayWymVLL6TnmXnzKcVjzQ9DO\nzzBzmSovYWZzYu0bCRVWXmuu0dAe/MpqHW2uZDIYkdzRpKIzxVO+RlzlkLAZhZHzcaI6jnpNlgJT\nVu7KNKbQTsJE8SY2n+LpQeqlJXzdrn//62PuKIHLoAuZqmudqFcYBQWjY/nsjT98iaMXDvSe7fGt\nr0mF4/UrrzAby7V3tYr0iU9+kA9+RDy36vLOnD0fmxqSoWy347sH7I6U1k55Ng6qu+TbOo6sw1h7\nEWw4paJdt3O2s2nskqkWZW/7hJomVe0whXkfzAxcrQKhHJx20qPky9yLlgPS86JuFdZaeEpE40Sr\nWCXaKU5bDCsUVeGMTIsRnvax5MW34czGc3DmzAQxb8oWnsLCFrawB+yR8BQMBtf4zOIRxpVVdJZa\nrGoghLMp7kC59bPqaeKv05c47MbuPSZamy/2Qip2LliSsr0pdfGlyxvs3pNS5HAsu8DG6hNkA/l5\n2jmkuap4AmsZ6Hcf9aZ07wgqrtWQ7+qOBrQ3tD/eRLi67TiuxRj5zPbm86QNwSHMrvw+AF7lcfxz\nmgDK7tP0xDsol2tYhbyauZbhZEahtHPGKSDVspKXYAfKPVAcMdOdJFHkn19UCHxtVsrHuF3ZJmJ3\nSqTx/rQTM1uXXadllcaumGG0HJenBX4guZh4usud6zL+LISVpmoWKJNSjoc5UX3F3Cc8JcxxsKGy\nGferGHfOMiXvWlPC190xaHgYFfgZRx7ZTYVsmwIv0qa4WLa5XgKJejm//Jtf5A3/PwZgq/kB9mLx\nEK9d+RK9K8rYpLX7l75+wM//RTneh/7d/4BSKFDhyeyQm1/+CgA3rr1MoeIzVw9kTF+48SJLXclL\ndMcn5BOZF81ak4rmvAaaJMwcjz0ruYzK+A7hrvIsxAWVVlPHGpBq5+ckkTntGB8v1ESYt0GjLerQ\n2TSnrzR7rrdGofDvzp7MYyc1xOOqjgOOFEEZFwWOliS90CGwSgfFmyNWeCQWhSzL6B4dURgfqwy3\n1YYvIHygSMZMlDjFeiFTZfbtHclFiAJDeUdhvr5MThCexKguFy1JDclMHri9W+K2v37rmzQzuXG3\nj0asPSmTcZQW9BWffpgOsHqBh0rushz3mYxlotiSEWp3AGuwczCAC0bFPgqlHi/SFoPX/wCAk6+8\nQftD4iZGeRWTa4JVXUtzCKancuorM4q+JrUmR6QD+eysO2XUU5n0kVLXpQmpPjRFFHGkxCOeX6Kq\n7mdlo4U9ETc/D2VCT4sAR6sPSTah0LBkMNol0QSlm1a+TVuvCkyD6YSRAsvSkk/l/ESP1yYfaJfk\n1DLWhXis1RfrOIRN7TRNUrJEtSvvhxwos3OWQzBR6jl3zjNoT93neDzk3ssSPjzx/T22NuSeVA6q\nvNaUD7lKorO90QJlos6nYzL1pU8Od/naa/9Sjhe6nF+RZN7r92WBefHeIecn2l+SZcyzkmN3xlif\nsYGOyU9ypoGMY3QQM9Ssv+/NQBdL6ybMhlpJS5XyL8oZKc/l0b3XufJlgS7fONzn/LaEdM8/XVB/\nRs5/0JV7UI5mdPraB9SxDAYSNhi3oKWkPLnvolw3oAWZ72aL8GFhC1vYA/ZIeApJnnN3NGK7fRY7\nJ0jxIwLl6Y/TgrJ20TmpASVjDdSjrjd2WFJBDr/qndKDVT2DcqxwMjmhvSm7gC0pIjI8y9cPxRU7\n8T0yTzyJ7mifmhINBNGrVDTR5BQSGkTROp7WoKf5FMfIQUwRn/L0u3YEygvgLwuyzR2UGeyKy/iV\nr9zksgqAhPUmrnoKS2uSqPQ3n8TorkMak6s8ewZMThRhOcxwVMAFLT2aNDrFP4yLnNc7ylDdrjCb\nS8SNHFxNRnUTZRYOcoyKlKS5QwnlGAgbXFiXJq1xnJN6CjfvKKah7uNUNZwJPKxS1k17XUZWS4vj\nHokmfNVJpqhacvVu8nGfke7cQeEyUvLUkinmt/pUadwPitMQJCwMNdVpME5OLZCGoLNs03hWPMfz\nijzdOfcY29U1PXhBpqXD9GjGpU3huIgvPIE/lbLs7d5v6fUuWFU4/Sjbp6n3vVprcTiWa1hXbzSz\nOZ6nDWg1S65eY57USU80menVGRzrlq0ZQI8ae9oB+a1Xj3jtJfFkD9MjZqHch41ph+S6enp18Q6m\n0xI37oq3fO3wLsOZXIvGUh0nkO8uZhnOPGv8Ju2RWBQoCorxCKc+wuq0cQwECsDwahWs/jxLuvja\n4bfe0Ie87JGN5YLEE4d0DjYaQRaq2+qPaZyThWN783kATmaWSEk1VldWqVclxveiOndjBTj1LT11\n12lKRvtiFjMZy8N2EsQ4SifkZAar5CP+sI7TkPPMjyUm7x//Gnf7AkXdXK+ws6xVjQ8uE1al18Bp\nygQM3BC0VTsbJcTIpCoyD1vSisq0jCnLgxVqbGmSiEmu7n48oKRQ4mRwctrWHPpdJrqQlcryf+6V\nSTVkyjKXrNDFLSxRVmBRZdmjUDhyPu+5CF20ERNrygyVDOdg7zq5cls6foATiDubhXP26BhXp9/Y\nKTFWEM6FlYBcW78nhwbbklDoutb2Y2dCpgtPWqSnPROXt0bEhVzn47xHekt1Gt8nIcXk3og9T1x0\nU79CtCTH8JZbPLb8o3qNpsTbcp0bFeV4DKoUOsC29ZjOId+VjIayJYW+XJ+ZdfC1EjXrdLAXZBEq\nPHvKuhz2fDxt/7VKfhJGNZZz2Qx+6OPbvPfDF+WcB2PqCr2fNgpQ5q9CxWqdoElSkurDcbdDoDmo\nqmuoaMg7rhla2guEYKK+qy3Ch4UtbGEP2CPhKWS2oBtPWRtPWFJJcpuXKSLtjIsNRTR3nxMKDTEC\nZeG9e/Mmd1WXMMfBalffvd4BvmZkZ4XLsx99DoCdbdlJh77FLMlO+X1PPUFrRb5v2OthJuIVvPbl\nHsOhNqKorP3TPz9ibS5Bli2RoLuSTfEypdoqT4mQXWp4ICi5z/7Sb3N8W3bgH//oGu77xC1vPvl+\nvLLsFPPKirFDcoXBHt55Bb+vCbpgSqpMw4XbY6Yw54l6M8ksI9cOyDhNKRQpGVRzWlolyYucoK7U\nbArzNqWUWPeIyXhENpDzrJVCMt01TRbhZvJ98VSFTIYnpyFBpbXN1T3BChQMaGglJTANPL2XiUq0\nTfsTCsV9WMcSq5cyrNdpryieYGdKRyXs61aSdgcjB1fRemNyXh3J33UO29zcFz2Ef3X1Or6qUV/9\nklzPjfYxz+WCtzjiHJeeFDjy0kYJVyUJ471bDJU/8fwcCVotsa5Yj6snOaakycHDEr7iQXzV4WiU\nK0ysCgBNEhxFi3ru7NTzikcdvEjwJ7NE7tnhndcZnCiRTeSTzlRL050y1ZCvVjRIMxnr8hlF8jp1\njMbHk3hKns8h5jkV5fdcj2qnXBRv1h6JRSGPM3o3O9y2LSIF0DTXyxirsE03RVsiyBKYDTRzPJDY\n67VrL3P9psRkUZrjqWDoZJrQ1/g6MB63vioTtqYu+vDChCcuSV9Cq3Ueoxdv5sLVm3KT7r0+ondH\nFggbS6nouZvfR6csx1hfmbATCNS2hjvH9GDylAQl8RzJ3796q8P7npMw4T0//zeotbVUFLdhLpwS\n6A2ctTjRrrerr3yFlUjc9cb6GtkcterVpUwBGI1PZ0FKodUX4wUY7R/pVspUyrJgLW+vEyrc2lem\nK6fsn1ZtGI3p6CKTFj75XGhnYOlrJr5SVbhyw2G5kPj9hIz9A7lGS2tnWW6qpuXYx23IQmY9uU/H\n+zN6WnKeziZ0VIB2eaVCMZbXb3lddpRQRQtRDArQQgwZlkQJZF//ytfZVQKbZetSVQjyksK1XX/G\nleEVAK7/+kvE+9Jm/fE/9xiFhjR3brzI1QMR85lqpaYZBdxUbs/h3pDuUDP8dpenPiBufhppX0Pm\nU23Ide3u9eh1ZBFqtauUItlw+pMJIwU43bwj59s7OOTObemMHGURQU2ud2Ojxop2h7bPVlhSDtFS\nSToj0wxee/munm9OpAAxvxZilKQ3KRWnjFRv1hbhw8IWtrAH7JHwFAojdFt9Yg51ZS8XCdFc2C+c\nESrnnOf4WAW91LQe//7VNbaMrsSHfcaJ9t5P9nh8+wkAts9uUH1MdrTjiazUjbjC5VXRvy03Anw9\n9sSxNFQwOchGxF2ldldelX/9hdcI78kxPvixhKWnxfWvequME21mSbs4qQBkdpZfAOCZ577OtWPZ\nEWa9CfW6QprdZK5gj6MI1bR7m9lrsmtdbDeorqqGr+8yUiGTaXdKop16uXb61ZttJl3JbvfjCei1\n8vyQE6VHK2UblFR6zSq1ukks3ly8ZWWFtCceVv+kS60lHsZGe5OLTyloS2n2bc9yfF28g/2T+yyr\nOMvljVXOPC04jGHvGtNjCeOG92Uf2tvvnVKr3799yJWu7KqPlxsMChWMSRxe6cv5HWlN/yjJSRTy\nbIGehnSff/0KF+qS8HvmwjZVlQCMFdpe6e9ydkfmwtaf32D1GaHCq9ZzOspT8OUvf4HXrsk1WllX\nPUvniIYGSHcGHfZPtIt1FqDNnKdqokEppqzU8sO8w9GhhLRbWzXChlRBaqFHobR/Z5YkeXpx7Sk+\n+qMfl+8I6ozMLfnsrImjGpRdc0Kg+p5DR7yq17/1El/+pnR1Jqml0VaCIreK6ynDtJ2S6bx9s/ZI\nLAq+57GyuoKdjEn62g1XHpNr23NIDVQm3XcsFY2dPO08a595jqcUc5/MuvS0XDbuHlBRdp/qyjb3\nj9TVOpBJENxZp/whifvLSZXMyMT0Bg7ukTxY22caVLoq8b0sT+z+9RsMvyE/rzdbXIjkJp27CIG6\n+b7bPHW7o7GEDN/38R8i/GefB+DG/3yF0qfn4CsXV8texR15zYnGrF2WxcZrvRdNDTA5PsQ9ltCm\n8BIyb95LoIjA8fG3KemnCasK6HFzQ+jJz7U8x6mraK5WdabJFDRP4tVaNFfls/FsRKalyqCYoRwj\nuFrtyEYDWg2lfU9CypeFMLV9cYdQ3WAGNSauXPOhq+3S44KDq5I578Ujxvrwj3Po9pRlajijq4Qq\nfVVVyovitC/DwinK7/hgxGqmodC5mKEm3I+H8pA/FtVY09Lp1tMfYGlJ4/rBgNe/IprIr97q0clk\nY1hz5AFsTB06fZ0Xfk5Tqy+2AtWSokGtdpQWPsVM9UAanALZBt0+uoZS+CGUtByqSlj95Ab+XQWO\nTUckvTkJ73VaW5JfKVc8irNyzfe/LmWE3/6/v8bdjoSPaSdjbjEAAAS/SURBVG7xR9r/Eg9Bq2o1\nzz/Nsb1ZW4QPC1vYwh4w821t2HfxJIw5Asag1MrvvC0vjr049v8Pjn3WWrvy3T70SCwKAMaYr1pr\nn18ce3HsxbHfXVuEDwtb2MIesMWisLCFLewBe5QWhX+0OPbi2Itjv/v2yOQUFrawhT0a9ih5Cgtb\n2MIeAXvXFwVjzKeMMW8YY64ZY/72Qz7WjjHm94wxrxpjXjHG/HV9fckY83ljzFX9v/UQz8E1xnzD\nGPM5/f28MeZLOv5/YowJvtt3/BmO3TTG/FNjzOvGmNeMMS+8U2M3xvxNveYvG2N+1RgTPayxG2P+\nB2PMoTHm5e947Y8dpxH7+3oO3zLGvP8hHPvv6jX/ljHm140xze947zN67DeMMT/2Zzn222Xv6qJg\njHGBfwB8GngK+AvGmKce4iEz4D+x1j4FfAT4q3q8vw38rrX2EvC7+vvDsr8OvPYdv/8i8F9aax8D\nToCffYjH/iXg/7HWPgE8p+fx0MdujNkC/hrwvLX2GcAFfoqHN/b/CfjUH3ntTxrnp4FL+u/ngF9+\nCMf+PPCMtfZZ4ArwGQCdez8FPK1/89/oM/HumrX2XfsHvAD81nf8/hngM+/g8f9P4EeAN4ANfW0D\neOMhHW8bmZA/CHwOMAiQxfvjrsfbfOwGcBPNI33H6w997MAWcBdYQqD1nwN+7GGOHTgHvPzdxgn8\nt8Bf+OM+93Yd+4+89+eBz+rPD8x34LeAFx7G/X8r/97t8GE+WeZ2T1976GaMOQe8D/gSsGat3dO3\n9oG1h3TY/wr4W4C2P9EGetbaeTP0wxz/eeAI+B81fPnvjTEV3oGxW2vvA/8FcAfYA/rA13jnxg5/\n8jjf6Tn4M8BvvkvHflP2bi8K74oZY6rA/wH8DWvtA7zXVpbst70kY4z5CeDQWvu1t/u736R5wPuB\nX7bWvg+BlT8QKjzEsbeAP4csTJtAhf+vi/2O2cMa53czY8wvICHsZ9/pY78Ve7cXhfvAznf8vq2v\nPTQzxvjIgvBZa+2v6csHxpgNfX8DlBDx7bWPAj9pjLkF/GMkhPgloGnMnOXwoY7/HnDPWvsl/f2f\nIovEOzH2HwZuWmuPrLUp8GvI9Xinxg5/8jjfkTlojPnLwE8AP62L0jt27Ldq7/ai8BXgkmahAyTp\n8hsP62DGGAP8CvCatfbvfcdbvwH8Jf35LyG5hrfVrLWfsdZuW2vPIeP8F9banwZ+D/h3Huax9fj7\nwF1jzOP60g8Br/IOjB0JGz5ijCnrPZgf+x0Zu9qfNM7fAP6iViE+AvS/I8x4W8wY8ykkbPxJa+3k\nj5zTTxljQmPMeSTZ+eW389jfk73bSQ3gx5GM7HXgFx7ysT6GuI3fAl7Ufz+OxPa/C1wFfgdYesjn\n8Ungc/rzBWQiXAP+dyB8iMd9L/BVHf8/A1rv1NiB/xx4HXgZ+F8QhoiHMnbgV5HcRYp4SD/7J40T\nSfb+A51/LyEVkrf72NeQ3MF8zv3D7/j8L+ix3wA+/TDn3Zv9t0A0LmxhC3vA3u3wYWELW9gjZotF\nYWELW9gDtlgUFrawhT1gi0VhYQtb2AO2WBQWtrCFPWCLRWFhC1vYA7ZYFBa2sIU9YItFYWELW9gD\n9v8C6JUakGWNzJUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.3074... Generator Loss: 0.8244\n", + "Epoch 1/1... Discriminator Loss: 1.5227... Generator Loss: 0.6513\n", + "Epoch 1/1... Discriminator Loss: 1.3824... Generator Loss: 0.5856\n", + "Epoch 1/1... Discriminator Loss: 1.5399... Generator Loss: 0.5881\n", + "Epoch 1/1... Discriminator Loss: 1.3308... Generator Loss: 0.8962\n", + "Epoch 1/1... Discriminator Loss: 1.4280... Generator Loss: 0.7422\n", + "Epoch 1/1... Discriminator Loss: 1.2792... Generator Loss: 0.9444\n", + "Epoch 1/1... Discriminator Loss: 1.3914... Generator Loss: 0.9070\n", + "Epoch 1/1... Discriminator Loss: 1.3808... Generator Loss: 0.7781\n", + "Epoch 1/1... Discriminator Loss: 1.4229... Generator Loss: 0.7619\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVnMbVt23/Wbq1977f5rT39uf281rirHTUWOHUMUhUZK\nHpAiGqEgkPKEBBIPGF4Qb+GFN1AUESQeAAspFgTJBKJgCyexHcuusqtu3bpVtzn9+c7X7X6vfk4e\nxlj71FVw6parrn2R9ng5++xv7blmP7r/GMM459jTnva0p468P+sO7GlPe/p80f5S2NOe9vQJ2l8K\ne9rTnj5B+0thT3va0ydofynsaU97+gTtL4U97WlPn6DP7FIwxvwrxpj3jTEfGGN+5bN6z572tKef\nLJnPAqdgjPGB7wF/GXgC/B7wbznnvvMTf9me9rSnnyh9VpLCzwEfOOc+cs5VwK8Cf+0zetee9rSn\nnyAFn1G7t4DHP/D/J8DP/3EPH04n7u7tmxhTgpMuGT8E4++eca7VD2CxALRNAYBtWny93jw/BSPP\nGudh/OCfb8OKdGQ8j05Ssq7GNdKuwYBptO0KP8qk7SAB4LsffIhtpS0viTGNthd5UEkbFoft2vPc\nru/GN/K5dTjjtF/gdQOw2lljcbaT4tyuz2HkYYy04RmPUB/x9ENVWcJI2vK8gOcXGwCiH2ja6u8B\nIi+U7ngtnvP0syPyYgDi0MMYGbcfQS/oyw/DRscRYkJpLw0ifF/60bQtdV3Ko75PUVUAlLoEq3xN\nkcvf26aSMQLOOmLtWwM4s5sB6a/xuy1CZDxMKg+4wlG2tXxuoO2e7wZqwHjyQ8+HxJcxWc9iOt7o\ng9E9161NgCHRRmxb0Ut68p8g5OnFSvus+9G9XHNnwHSdNm43+c5zGB2U0y+dMxgdoTHe7t27BQNZ\nc08nQ/eCw+Fhdp+7cRjPI+jGGvgEgXw/n88unXNH/BD6rC6FH0rGmL8J/E2AOzdv8Ft//3/Gjz6C\n5gCAcHQbEw31aYctl/LJwrqVxVhcfReA6nxJvy+T05t8EcKFtFFmxJMTAKy1NM1MPm9k84RJH+tk\nc+fFU4pr2aSRDXHhFQDF5QP6939e234HgF/8q/8Gm5X8PXvnTYJLacO/mWKe5wBsm4r8eg1AkOrq\nVi3JWLa8XVdUnhwUWxuSoW62QjdKWNFu5NIzWOxW+nZ6p0ccybKlYcpJI5s4PZExPX6y4vatgfS3\nf8B/+d/+NgA3PdjontoGCQ7p893kVOZyuCbL5fKbD3Ne7b0mfz/pEwVvATC8Dz99+OelkZNrALzZ\nTcLb0ocvH95h2Jd+XM5XPD97II8Oh3z/8ccAfCx3FL/5zd/lO+9+D4Dl9WNsI3NRbSvuySO8AOpQ\nxtodoJvJCDeWz7eSjOQLcmKr9wu+vzwHoL5wrJw8c08Pkg0NUf8QgCRreevgiwDkyRqfVF44MKSx\n7LnKk/k5CnxevyttVIsnfPXNr8izh7f4z/72bwDQrGXNV23FSte8MYZAmQWxxW304ug3hKWMqUHW\ntCkNJpBn46BH68kcUkGr65R4EWR6XLfybO2VJI181xqL5/V0fD3GsZyj4dGYg0MZ39/7tV99yKeg\nz+pSeArc+YH/39bvduSc+zvA3wH42hdec83le7jpIWYum8fLArxQbnPyFmvkIphffo9v/sHvAxD6\ncmjunE4xxavasiFsJwAEaY2zytGCEL9ULmekK23b0DjlDNsVtpJNdfbsCossbn55yeFcFi/4C7Kp\nenEAoVw2vY+fMVdOMjgbEZxLn3rpmki5v1F+1foeA+UCud/i641fNi1BIe8rtLtZZHBGfp9EFY0v\n/RzUFuNJfwa24rkVnnjPysKHrUc9k8uv3w/JdFZqY7DIpkmt4fhU3u1V8vvj9JQm2Mpitce8fiAX\ny+TkZ0g2Ml/Hd16jLZ/L5+NbMrbrF5yevg7AYZbSO5V5GYdbbt4fA2DXlv5rcvncOZcNP3i7T/Xf\nyWF7L3/BWuc4Bs60zxWGttbxneqXuWOcyMUaHqdMliOZ28M1T59LGzlLDnUetypBRTZjvRVmcev1\nPquN3E79aY9oKfssrxdkI9lnh7r3ns2ecVLIvrGzMR8+/gMA3s6g2MpLylIuBVttoOmk0QYPWbOg\n9KmdMoBZS6vMoJNKEgO+Smz90CdMZC1rr6ZAng29iADpU6BSmrUJLpD3NWGEK2T8NFtWrYy7t2xp\n+jf4UeizuhR+D3jDGPMKchn8m8C//cc/3oK3odmkhOltAGyRgJPJrotz1hdy2L7zW9/kH/yjfwDA\nX3rjzwEw+fd/icCXAxu4JW2tk9c7pO1UhqKhaWXTN5UcUlsWVOsn8udVQbnR74uG+dNLQLhq1pNL\nZv1EtusrB2NehNKufx2TPJNDWJZzmpEcw7e5SzGQA7Cq5cBfGo+hJ30bhI5cR7/0PSa+bApPOVTl\nSsqhbI47wYCebqTBoOSJkWW7W0UkPVVXlLlwu8+NWtrKqhjdRywKQ+bJHN4eR6wWMtbRVDb8Ol9j\nMzmk/XTLbCWHP1z8U1axXCaPfmdJqd97fyR9G7RDvlgIx38zvskbf0X4/HDwJkEs7ZXnNdN70sZw\nIvMz2bzO+/+qSH9nl99hPZfD2HigEjghjkPVIGfX8uHWacRSVT6/cBy/IuswKgZ8JZCD/tHDNS+U\nM5cX0ofIq0hUjH5xEXD3QLmtC4luyrNHScpKp/FuLPvp/t2IppV27a0xQSuX0IsHJX6tl0Et+8pt\nwKtUtcNQd9qvg0aZU2trjJVnhn1dpyQm1TlOQ49pXy7kVd1S6eEubUurF3gbq3SIodhKW7EXsE2l\nH3kLnsn1c8pmW/Gj0GdyKTjnGmPMfwj8n4AP/PfOuXc/i3ftaU97+snSZ2ZTcM79OvDrn+pZfCo7\nILEzjBWuSjPGFqK3t4zZPhaOfnG25eiGcLe3f/EXAYjDV2l9uRld5VEr1yyXF/gqigUB2EBu42Ir\nD/hBgCvlO2NHzK7EY2pLaBuxxwyoWFYiIZj5FADv+BZf8eRWvrTPeSFSKVELeuHjJRmhjmWSiBjt\n1S1lLhzDCxyp6oCD1KE2OarOSBokZGqgzPop456qD3HMsdoUNusaTxgXcS1i+/G2IRjK+J5crqg9\n4Y5NCKG28eHGEA1EBF+qyHlwMKHtVJTxAcdTUQlO34j55vc/knWofdZqp6quhftcbT7kD1cigYTb\n9/n6858GYHr8R/zCnxNbjNc6XslFgrCRcMeGnNfv/BQAvzE9wvBA1o+X9jXfh5ka5YJY1vHZNuA0\nFSknjW5ypHPYv3vMK7/8BenT//QNvEB4/pOhrIFvLG0gbZSTMZeBTNwXRq9gezLPq/w5rpJ99G21\nT/zsW1OqSqTX8TpneihS4YtNTl2rgVINtyaytFWp4/BpOmN04O0++37AWO1Hd09FGmnzlmEv0aYM\nqRoJrd9iVH1qW0ujkk5bqlE5GWAGKilan1r3dVNvqGuRbq68AD/+0Y75n5mh8QfJNjXb+RleMiYd\n3wegvHyMp6J4U4TUPbVeJ1u+8NYvAJDeEV2pLtastuLs8M2QppDJi4cjbK4GrH6Ct1H9TE9uvl1S\nOHlHVa9Je2KcubY5myM5IFXjkakcuFi8B8DRaY/1c7kJ4nhCMJXPo+EJx4ksbt1aSl28NhVxcDAv\niFUH9LyI0VDeHVvDupC+zXRTlS7isCcHNxtE9IYypmFvgN/Kxh0Oa9a6ieMbspThyrHeyHuvTY4r\nVNTGkG/l3YHzqRZyqWWJ/H1TtyTmTQCKcsGT4g8BmD/rc/5MxPyyuKSo1CYSyXs353D9SM1F1ufR\n/JsAHE7e4lvPvgXAl97+KueFrE968y8AMD0MmWTHMm+j17D8nrbx0k9etxDqgWs6fdmvqUuVy70+\nR6eyZodRn+t35ZfHwSn+TJ73Qvn7ILHETg7hurL0rMxXEtfUtVwyTWRYzeTSHkzkHd++3vDKoaxf\nHRta3SNpcI315ED6rVz6lVftDNetMTRWL4iywbbybOIHjJVRpWWtQ/bwdP3DKCSMZMyZ7WFDWaeq\nrHfG4bbWfWVz6C59u6XR7+uqoFZvT5HA1eqlF+/T0B7mvKc97ekT9LmQFJxrqOtrinGKsSKK5p5H\nL5AbmNDDTp4BkGQ+k7dEnPOM3NqtW+Ibue29QUp/IGK+SWuc3tAECU596J0RJqbFRHJru6am7fAL\n65jWCvdfrnNmahI8UhH2sF6zOZTb/OGLc0oVcV+/OcAthat4vUtGkYj0g1BE5pkbsSgfAJCaAe8c\nqcdgMOZiIeLqfCn3dBgFuEjbMhvaVrlHVONUunEsaGtRpXwnXGlFxKX3AoAKR6sejMAYkrjDSET4\nvkghyVTUgaSGXiYid5QNMQPljvNntPlM+5ESqYHOLlp9x4pW2/LSkFSNZ015TR2LiP79ixZTiEkp\nP5dnv/6zv8CtGzI/P/sX/yLv/xPRNNflJR2UI/TAKd8aqKvQGx/TC+SB8aCib2SPHN84YOR3Vv17\nPKtFCgmdumeDJ0xHbwCwvawJxuLOGKeW0pe1zgPDM1UxIjUGrmyNUa67jHxsJepIrzZ4RsZq+yql\nzRsaI/stIMYpF7d2uZMgfC/gQCWFni9zaA3UiqzwgwGB/s7FEYG6VuNhQp1vtQ1Zg8La3b7AWoyq\nnng+Tj0f9bahDTqT9qejz8mlAE3V0mzXFPUFAOvZjK2TDVSs5nzwSGwK54s1U9XnFxvxEIRcE4Qy\nCQ0lxsn39eUCE6k7ya8IVVcrc9n8xpVUlVxC5fqS9Vo2v2sKNksRmdOsRyAfKeeysNcvnuGp/ja1\nAUYPhbnwCBRacSe8T64uvs51NfUdWSQH5eZRyCCQ/pwmIaet/LAcSn+3lUfRaddlj6aRTvgbHz+R\nRW5Kx5Evl8HZUwUp9Ya8ag51nM/xVcQNY59cQTZZ5Ih6alcpZcyjg4w79wWbsKShLcSl/eLFimys\nuvhBn2wu+IS12kvGicdanDMEVyX5izkA7WDNH35X1iG++hbv9WXO3/ia/Dv9ssdJK7iPL96dMnxT\nPNjbf3aJnnkaB71E/lMrs+DijPBVOdCvZCnjoRzM6WDIbCF9e/3+q9z19JCpN6ffjDi6/TYAq00B\nvszF8uqMa1U1irMF00bWbN3Id33f56NHsidvHd3m8Egusqa5INCDbBWwts0tTi+ThgqnF4SPj9H+\nDLKEVFWinqKiqtYjVnuBZxwEspcjz+w8FWFRE3aXiG4Ln5ZW+2utxbMdaI0diMxPPZz/oykEe/Vh\nT3va0yfo8yEpENDaE7ZlRViIpb9aGZ5tfweAj5+d8cHviwErMgl37otl/PrGB/L79SWHp/cBKB9c\n4SLhRvZiTXYoaLww6dPGcjM79Sv7JsWu5NnN9TXL56KiOOPjNwo8WjouVXopr+WKrtIjmpVILpNk\nTV3JNFb+JXFPuerGo1KUWqKGI+N5TBNRbe7eHxBvhItFqSOJ5X3+WCSF1WLL9VK4/7Ja0R+IqhSb\nhiBQieWqwfWFe6ROvSh+QBkIVz3b1jt4cDo1xOpdqM5KJolIJpNU2nr9fobXKAJz3PLgTNpogppA\nrdeDxnA+k7nrQEV5YBl6it7KwEtlHGVZ4K/lffliCSpqf/O3f0uevVFx6Ikxs8cxt+/IuJ/9LqhG\nh/Vgq1JWHKpBjQWrhbR7/9ZXOZnKu0OTM+nLM+nREXUlKkGgAKHUBKSZNDxOYopc0aJpSLiWuaiP\nS3rX6t9/IFLHwoasI5EELzdzhrF8f3bRsG2kPU+NrngO1+q+8QUWDQKh900HY4brSqS+VjEr6SDF\nuc4YaEAljKax+KaDMTfEKg2n+u+2sWxUvTBVTaGGyDCMcE6NmEVLq9Lkp6XPxaVQNw1PZ5dsnlVM\nhqILfnzxEd85F3Rj8XTG47mIpa9MT3h+oS6yrRyaoX/IulWIq+/TrkQkDuyAnqoa3mkft1BxTg9E\nXW1YrWRBZ5fXrBUgVCwsG13Q59szSt1AVU/dY9mQSgH67XrAWmMwDkyIu1RXHde0gSxMGsniH8eG\no77YA3phQP9IDkLsmZ2XxNN3NJEjUz9l24Z4Q7Vel338UL7vHUdczmWs17Ec0kU+e6nm+HYHl0/P\n4TLsNqnPi6XMJ0b68O3zJySKEH3x3nOqSkXRniO+VIiumbNdyzOt9iGoIq7mMod+a6kGaiFfeRTP\nZO5DDPO1vNvXDf/rf/t/53gg9oD0TkL1TMFbBnryM84Nu5iWopbfB4GPieTzrV5Meq02qPWWfiwo\ny2FT4Xp6Sap7Oh1lUHWIRwfqlRlNM6x6VNLKsjlXCPkN6c/DD9ecz2WfPV/4vP9YD3cCUSL2imKl\n/5YbNHyE2lqcxmIY8/Jwh84StertUDXAlB5hT96Hi2g0QMT4Dl+9JAM/oTMfbDtPRuBwocLirUer\ngn+er1HHByZp2AXIfEraqw972tOePkGfC0mhsY6LPMd5MVsrHP+3H77PB+8KpNYPN3hq7GtMg13p\nXRYprj2s8TSoJQsjGCsHSgZEsXDCIA7xVH0wamSqXNPFltAODZyLWFbkOa1yvOrC8ehaWFcZyc3/\ns68M6b8qXOnscsnZQxFVI8+jp2JgkjSsO1CTiot1NNqpEok3JlQMe5QkOP2+Uo7ikxMMpC2/9nCK\n6YoGHo1GNMTxikSNnJECdL2Zz7VayAtr8Rppb9Nz+Ko+tIXdGbPmnbHskeUMUZ/qusHoOOLGsDb6\ncucgku97KjpXpn0JpvEtKrDRugaUS7exw1f8sI1LHVPMvBIO3FxWbBRv4TmYKUeUoFM1mHWBTfgc\nOVnT0q9ZNtJwPx3Q02Az0493cSOdpd4HFI5AXXs0ahA2tcWkGhG57OEdinrgfyiSRtBcMFIoeW3h\nQlW+cl1SrUUVpNdJcYbNVtWHpsQqHDvwIVaPQmwgUGxIolKT8X08fdYEhsjTdWrNTh0zDAl0Qnsa\nJrpoSnzFxfirzU5y9quQ3IkE5RWWRuHtn5b2ksKe9rSnT9DnQ1JoWy6vNqyDJQ++K7ruu7/7ERfX\noi9/7e4pr94UV96bbx9zcCA39M1jcWPFoWF0ILYI2jUe8ndbbUH1+aJqMbHctOWVoiNdRV7I7Wqq\nlLwQrtOagkqlkXXj+OChwK2VueLuG0ytYXhrH/dcPi+Wa+JXxSB4Lz6kacQY+WwuIsMgGxDH0p8k\nTl/6lcOMdqbRmoFwUrP1SRBd1SYBRuHTJmpwirAcFlPisfTz6oEG7biKUS0cM68rmkC5UWmoVI82\nvkesg0m3sgUKv2AwEu7fjJNd4gOv9QgVZ5FXNZ66zjp/vFezU9z90u0gyoM4pInVx25BI6A5Phro\nmIc8V2xGU9eYLq+FB6omU7cQKWihSy0R+T7TO9LPmyenTDKRCsMkZtg/0DYCylJDmDXKcLH0yPUd\nq3WJUcPlcl7u1rVtcjINebW6V7702pgPH8u+OG9LmpW0t902WCtGcbcRyaVtg13ih6YuxL0ITKI+\nA81xMR4OuX+g2BC1SxnXp9SAqcIzZL6Mb20NTqWYUTTCqYSbefL3uFhS5fLdyoY4lSCKvGaja1K7\nFld20XKfjj4Xl0JrYVU6nl0t+OB9MSI+fzHDJLIxb//0bX7u9pcAiKM+kabhuFyr6BhkpD0NvU0i\nPBWpmqqh0tj1J48e8eFc1ID5c7ls0l7NNJMNn0Q+TaeOuBHRWt59vV7x4FwOdVvJwv070ztcLUXU\nDtyKlVp6XVtyV3dYsbYsNMoTTfRSNI5AYbJBmuKrf7tZOyo1pBFIf9J4QjaRcWRlyfVWLqb8yYal\n60RwS6DY91EgKsXZyjGrZV5ezEra7u6K7ctMJS0ksQZVj+TLfpJhVDUYupitjukwTmlVdO9bKEvp\nZ96T+dnMCqJYjYRRzEDjK8I0YqzGMw84Gcmlfusr4uc/fO02/8f/Kh6lq3cfsdWAFWvZRRd6iGoJ\n7AA9QeLxi298Tfo5PaJV43HZbPEaWSc/jsGX9rrw+9XljItSvTKPz3mhRkCPkF4sk3R7eEA2lUtm\nUIjKt1ykLJeixl5ezLBOVcG2odb160/l92mTUBUzOupy2URBQqOi/1UOkap3d3zNdxIZYgVnDLMM\no4fbS2vOZzLfT6MZzspYtq284yjqMdT5Tr0RvVhBZL2YxUfCJIrl9Q5u/Wlprz7saU97+gR9LiSF\npm25vF4yXyx2/mNrHK8dy036c8Ovc3IknGZdtywKeeZC0XW99YJqLbfvdDJlOJJbt60MV8+Fw67y\nLavHoppMTmTYk+SA0VTE2aZa0Bbq1ltckGtugehgiAa4UWoCDdMb7qC/s/YIZ0QMnt4YY9Rv9Gh5\nzdkTzbOgSLM06vH8TCDIvaTdoRtjz+IfaMafLiouibjSZCmLywu+90J+t2lDIhXSh/0Wfy7P16ci\nwh4MDI8eyDiLpKXLy2sLt3NpxZFhU4nUFKxEXM4XpcjuQG0XBIFiOiYNPQ3o8o2hVY69uZT53m4K\nuuRu/WRIolx+4I/wFI2XeSmRojftmehBHz2/xMykrYKCQqNHDRB08w2Eu+x1OpDKcX0uz37jG2cU\niHRQhoabqYz7eJQyVVxHp4tstg3Pnss6Lesc1AB7cDrgSPNlHPYHeI26V61w6PU2oChUEswNGJX5\nk5pIjZieGhdp13jmJZ+NVEoZTfuEVqQmPzZsG3V3alCa8SpO+qISTCdjfIUoP316xWIlY7rcNPga\nXZmFumezkEEme6gKGxpdm9T4+Iodsa7F1j+aS/JzcSlY21LkS8qiIlOL+8FozE99VUJhD74wossT\n8dHFQ5ZzWaQxAnc9OPCJVHcOQ4OXdHpojVFgSa+X8XYoCxooyGXZrrneKLS53OJU7Ka2OJX94qbZ\nRa2VmkAjNRW9Y9lI7dlDaoWfRo3bhdMar6Fn1MStYd2BF7JSeX6+ygmmqir0+zSar3Bdqn3CXbKZ\nyTgLE3D/1l353Hfk+r0pzylX8nmil1g47hGE8l1VW7r0kNYDP3i5YQfqFq9UP/VMiVNxP27BUwiu\naxxNpVbvXko8kY251WxD23WOp0k/wizhaKqekTQjVG9PVSUYq/Ya5B23jm+wUHfAk+ff36k2MS9D\npyMPNMcIqfY3G0248uV3NQucqjMTN2KmKsE4aukdy94I+ppVad0QamKc0jlsq7EBZc51F68Qlp1D\ni1Dh72ld0++p5yCtONCLrs5TgkbGajQcHB+2W4XQG4uvl0IcZSwUjhzHE+6eyFomrUSXemvHie77\nk15KW8u7jwYBYSaX/WvxCWNlYFZVXn8T4St8OqhyVgpeir2QRC9yN+MlLvpT0l592NOe9vQJ+txI\nCpvtgtAZolDEocnYcNyXxByPHjzl9/5vMUp99/ycsCc39FduS8DNNH2TI416c64lVINZW7aYLtPu\ntmCuUWbn78rvPlqd4Sv89s64z82xxuYfDHiyFMty1rTcUKzDi1raKhYLclUlsnUPt5Ab+nm9YPhl\nMVSdZOnOSl4pouy14Q3uHIuXJIoKmqUayfyaQpPJFlvFRNQNVlNtzecNLxbCVUpbUqk+k5mWQ/WR\nXyyFY9780invKGLz3F/xUCMjTeXtLPjTacyBiqBeJsFTeTWnnykyr61p1PA5CAy1ivDD4fAlB1Lj\nWr2sdtmV0zRiuVXxO3fgOmReRKGBSZtGIONB1CdsFXxSm50NdJhBqxlmt9YxTNTAqIlVjkYDvvvk\nQ+nz+5WIE8BBGvPaWMZ962e/RDLRvAepcOtZvGKgKoX39AlXGvD29OmGZSNGuQMXMVHD3asjWcfT\ng3vcVOt9ma/wmw7jAltVadYKR6+dI1YJq2wCYvWcPLt4ylLh2klmGaj68Kp6Yg6jlrEadid+g9Mx\nzVY+KHwdGp5+JHtyozk6QxOQBSL9no6mpJqB/Gr2EF8lkzAMqHY6ZJfj+l9Mn4tLAQfUDesazjRX\nXy90Ozhv1J5w/xUJl37nKz9PoaCfY/XpRCYgUI9D4Dd00dJtY4h1UyRLy2Qki1Ceyu/eHB2zyGWi\n13WFSqX0pwPiK/l+cXFFrGnEJ4WCn3qHpLWoHcODhkoj0ub1imIruvYgmzC6rWnSu4U7mBKrNyTw\nk10G49qBbVT0U5F72A5ZqYV/snWE924CYOsaa+XgZYEh0QswUhF/6PfY3hPVZvi9C6zqp2HP0Bur\n2NlL+PKd+wBMb4r7Nk7vY331YMyuKRTa22srjHpEmh6cb8SOs1RXbpYZik6lrjYEGrVYrlZ4Kos3\nZU7ZyvcmljH3spCbennFcUCoLkIXONTITuJBrjaKoSa/PRkd8sY9uVhv9e+Snuia1YZG41hu3nuV\nLJWxWL/zWvR47Y4wnCDq8aZG4J7nOYtLGdN8/oJnK1n3V0fyu+ytMTeHwnAuLp+Tah7Io8bjfb0t\na1Vd69pSaYJWP+wxGsj4xn7IWF2L48kh9w/koN/QPo4C6CXqLfALglIvwGFMpKA8ZzIGqvZ2div8\nHHTfDJM+ub7bsw2VRnn6JthFin5aJWKvPuxpT3v6BH0uJIWmbblabdh6DYu1WFvXrWOo0Yw/deM2\nX7ghol8vHaH2HWpNi263BSooCAdWLtZsC5xmwD2YDvAavYFflX/9tkcZayb6ssIzYuApLi9o1Hft\nhTWvHMkL3zeaxCMIOBhIKrjrjaWuJfIvjmBqhbUdDSwnmXCjwVQ4m+8MaIIX13qYRGsabGqMGr66\nSJbIGQ4Hwl1ODw5INYlMHfnEiVrDDWwuBS+hjBgv8ulvhftPT1I6sSkNImoFusReyEgDhr54LBGn\nbrBlo2ncNhfPCDXI69XbPfJcxlEdVizeU+xF0+Vv8PHUul2VFasrNdZuoFGxNU4SAk2nl6u34IMH\n3yNVo12/H7DdyAAGRUug/oxz54gUtFCpeD3YNvyVL0seyLujt/DvSnvFbIPXamDaqEfQBaypgbqX\nxMSKzeiPB+QrmeeTfE18Q+arze4z1CIxQ8WIeNucSAPszg49KiNtbJoVQa6qmapJVbPF6n6zTU2l\n0lt/POBVVbteuTth1GVj9jVH58DiqYHZtVBpDow0zjhVg6mtEtaqZAWqulpSXJdyow04azvMRkup\nkoLxX+Zg5SO6AAAgAElEQVRZ+LT0ubgUjIEgtDgX0qhIvVlUXC1UdxouONEJDI57O+RWq0lXN8kK\npxh+z1m8LtmSq1hrAsukiMg6l04XhXYUgrreTOvIZ+KymtmKhRacSfwUfyR9Gl6q98Hl2CNxl7YX\nz3YW7snY52QiG+z4KGWgoB7F7eBKj0LzC5rA4NRybCMI1E0QqfciHkCiWYAoK6wRHTjyGwxi46jm\nFi+Q9zWBbNymNkSxHNwv3ppgjaAq68RjqHkeR9kBk55catmxiLgD67HqvCiv3MRXoFZ/6rNaStuP\nK594pOtwLYfReIaxZh4qgVDMNay9LX4r3/sRjHQs/lajGs0l285FisdIVbsIyKKudkLLLFePiIYL\n1ycx96aiSp78jI9Xy+fKu6LtwqQnQ2yhoZaaOn8QG5xewv1ogFOP5WmV71RPYrPzNJmZZt4qz0HD\n0w9HU0Kn6dzXCR+rN6tSj1IWNyxL/Tstlbo3+3HLn/+S7Jd7RxP6Gj7v+xpHUS1ZzmReVtuCSO1g\nfjphpEl6/VGfTF3xtcal1I2/A7sxn+E5navIw3ZVpCz4XSqrT0l79WFPe9rTJ+hzISm41lIvC7x+\nglHxO3ANLlcubxMCTYEdei8r4USpWmarirrVzLnNS398nPSJZ2JEas058aHCSjUKzcV9aoW+2rKm\nUWhz5MGx1kwMbjS8qyCk2UJF4MUVwZlIGP065KQv/Xjn5j2O7wkXGJEQquW/w8vHWQzlS0uwrbs8\nBXaX0stXOKxfecRqJPNCi+vGGjgaFbvbkF3exfJSsRebGelK+nAvqLBqcfadJVer3fjugENNLx5o\nmGhpKkINUAjDHlUoatyDy3MW17IOZ15B3Qh33Kq0VedbAi1aM0ymNBoFOQ6SXb3GLAzo8rB0Kcsz\nr9lhLN4cjqlfkfl+9O0/ZKwcf7ZxDPs6z56I7V/IDog7SLsZ0mpimGQ0ptBU8w52+RF3RSVtgLfR\nSFIsvYNX5M/1CtPXXKBFA8rdK023RxCQaeKU6Sig1rntBdf0M00io0CobR1gdM381jBV4+mdo4wb\niu9ITURf4zFiNXZetQG1lghMrEekqt12MWeplaOO7g7oKQCsVvWjaSz1WkFojcdEj3MWBERdDc44\nQIW+T01/YknBGHPHGPMbxpjvGGPeNcb8R/r91BjzD40x39d/J3/Sd+xpT3v606cfR1JogP/EOfcH\nxpgB8PvGmH8I/HvAP3LO/S1jzK8AvwL8p/+ihowBP3BEXouvxqnGejxfapbd9ZxJXxRzz8aYViPg\ncjV6VQWRQobbZo4JNeuOq/D1Vp09OaM3khwIg6H4sVwV4xXyjmpr2ebSrvFSxrEWcIknPP2WFIl5\nrpyo8VOqrcCOEy/g+LVDbXeAUT06b308dVklqqu3JqHWEmRBGNIWanQ0vMzaq8FT9WpFqZym5/UI\nnLqmqgKrvlPjbQjUouZvFVI9D3BGPpvA38GcnWfJRvK7xNUYNeD5WWf4NMy1vuLlcsb7Dx8AcPbi\nglWjCErfZ64GsblCdPNlyWqpSUmHNb2+v1vT8VDGcnM0IB1pdesLxWHkW2Zq/BlkKUM1xP1hbUlv\naERhL+T5C5EKEtX7XbrFU+nHs/4uu1Fe1lRll0Ogj1Xu7itKs7U+5YVm54rPd/Uaw3gM6mqmvMbq\n+rUadBa0N4h0PgkPWSGw+bUpqdW6u0N/bnNKzQuBNRjde+Nhj6nu3xgfLeJNq8loA99/KQn3+6hX\nm0W9otF+RNslme7rUPvomhrndxbmFl+N44fjKVkmQVxN/jKJ66elP/Gl4Jx7DjzXzytjzHtICfq/\nBvyyPvY/AL/JD7kUrPPI25iqZJdmvQkdvobeVustuV4QEeUu/KzYyAI5LwTF8jfOYhca1di2rDXV\n1vPVnOxCgDNRohme8/VOumyrglZDXYt1QTuQBbjaXLLcRTDKP6bYcjiRTRz7CTc1xdobr93hRA9I\n7VWgFYE9LepSbUpKNaS222ZX7t1tHLZLB66pxgI/Q93O2MTQBRjYIEWboG4N+QsBNW01DDuclMSR\n9P3sfEWoRqZDl9DoAVq2Fc8fvq8DV89Ir+ZiJhvpvUeP+L6qTLmt6XKM1W1Fo3NUKxjHNpZSC1m2\nriXXkPPQ8xnr5i3CkCP1pESRHKAiafCvFbDFlsCTwxS1gKY8mwXVLmZgtpGTEm8Ezw+wfv4cq0lW\nLi9meJrav2yviBQXXSvsuM1XrLr6mBc1QSSX/vBWiN++THDiFDzmSrXkLxY0Xfi972gyWeu8N6PS\n9G5dNGTb1ruiL8YYDrTo0I04wde5901Dq3D5SlWDPPRgoJiF/ilksq+fbUuOuviKdkmh1YeN5sws\nbY1Tr1VJS9V0ZQACQi1HgCuxP1qG95+MTcEYcx/4GvC7wIleGCAFhE/+mN/sStHHaqXf05729GdP\nP/alYIzpA38P+I+dc0tjXro/nHPOGPP/Kbv8YCn6fj91JQ3zRQ1dxlr6hCMRy7eBR64pzfKLSzq7\niVXoWzzsYTR+vqTE0/j/2rS7upJYx0ZdjqtMbvA6tHid+NUaWpUINq6h1oQW7bym0KCbSANjIrsg\nSPRm7xnCkZhN0mmGr5Bmd7Wg1rYbVQls6+GpbOII8dRIGFtHpM+EypWDoSFSd5PphVjN02BTh+uc\n03mz4x4ukz4mTYprhdMUVYWvZqN25PGqRprWRcRFlyB2KRx4tCm5nilXrVomytFTL2CtnDmwjkph\nvtOBzH3pG9T+hfM9+gpLzst2JxWVoWXcaJ1KhSsXucfc1zqPbUSjCWFHZsA8U3UkMFxroJim0OCZ\nD7Vyx4IlC02MU3gNaJDWpS1YzXRcqkbEdY3CXqidYbuRvRC+cJiB4lbihHat+2gjhtaSnK0nxmoD\n9HWfjXsZVlOe1U23pm6Xgs14jqanRtJhTGu1/FsvIYrEDazeWc4urnmxECTld7ynnJ/JXn++XPGl\ne/K+d5Jb9HWNm640Ye7RaoLdti5p1IDehBn9oRjVZ9WC5ke0NP5Yl4IxJkQuhP/ROfdr+vULY8wN\n59xzY8wN4PyHteNhiFyIsQ2NZgdKghZyBdOUJbO6K7m+xdeN189k0tuiYTPXA3+xJNUwVOcBG9ko\no2yIVd0+n8uhaaKQRq8sz7KrtejYkms8QzNfc6CpuA9OVXdcN7iNbNZlaSku5d3l1W0KLWI76k9x\nulnqUsXvpqBSf3SUeTjNnZekQ1JVMQL1S9OWeHpRtE2L1ZBctzTYSg5CeX1NNtTKWLrwxjoavQi2\nl1vQMSdLwwdqM7jx1gmpRvA1CsA5a+aUGorqTMxAzcPHPZ9c1YDZZkVxLeNuFPq9xWH0kqoCj6Sz\nXVuHp2K5Wxf4x2rn0TWrZobmStrt9SKikUYDvnXK2YeaLSnYcnQqz8xX8u/5bMOHV1Ko5qjs0fhd\nxqaAai4XwWW54kLT9aca6nx02GegF9rhyRirzGs5X+LWsXZ5BQqAalR9aHqOfKGRtmXJ7akAHHwT\n8Wu1JATqPDxB5BOoB8c4R6DMpKxLFgpvz9oQr68RvTpXk2zEWmHz5YsVvbGqHQbGN+V9zj9hpbid\n1blcGo11eGpf8glpVd+8Xsxxqm+aMKRpPl3MQ0c/jvfBAH8XeM8591//wJ/+PvA39PPfAP63P+k7\n9rSnPf3p048jKfwC8O8C3zLGfFO/+8+BvwX8L8aY/wB4CPz1H9aQZwxZGLLp1VzPlbuYhEKjyVbr\nnMDTGg+9IZ4abdpOVakaklhjzYclRlGKbVUyOhQVZGwmoDUg5itpa8QRaG2GPG+xpdZTSFJK5Tof\nPnxOo5zwlZ68ow1Szp6Kge+qNMwvhHN/lH1IduvL0k9CPA2UaTU6s2zsrtCH72rQ9xWhh1MsQxqq\nEbSe0QadldmQTMU04/sFfqBFRCKftK8BTWuZt4VNefBCiuT84/df0DEJ77gkRNSH5fdnPHtNPDEH\nB8IFT0xJFYpKVNuKM43gDHx/B6UdRvHO+NvpZeN+jyjVgCDAanbps6cr1orM2+Q1PcUsxJ70N5k2\nZIoEbIqQ65k823vtdSZ3pE9j5/HwfUFkemv1jBQV3/mOSApf//qXCOgqLdf4aqy9M7rFYSdxpfLv\n0IRMVOxO0wy/JxLBclXgbTtjXUGupv9dGbcgINUclW2bEI1kfMvrklox1I1iawz+TnUFj1L7sygc\nI83K7EzNciuG8Map18NPuDmRfXr76BinUbBNscEN1LvUbHfBYSqk4jxIdrVCQ2KjOIwgYq3S5PK6\n3KUR/LT043gf/jE7m/g/R3/pR2nLGsPGi2nqGsXlsCo2PFG3X9O8RqBxBC54mfY714jKYTQg0yi0\n9OCAQH0+m+2MUoueGD9kcaXl0zcifiV3Unx19QW+Y6Ohp/Wq4YVatc/qS26fyDM//45EKi5dzZXm\nbfzo8YpSLcRX8wnXsagmJ7dOu3KFzNSiXaxLDo469SDHaMIRuympUgVRqVvUeh55V0DFa/BGGu3Z\nRvharLQ3HIIm/LSqv76wVzzUUN6H63xXrLV50nIeSt8Sz8GHco+/vZbLJj4yTBSuvFhseDKTNlIb\nM1Tre9W0BHoAWrWdDP2XtpGqdbuann7fsF2pR8QL6Gu4+0htEXa5IVVX3lVZcLGQ931tcpu0lcv3\nabXA5TL3q1Lw0/35igfqfn37fMbJibRnimpncZ8OPbxU9PZIUze5sMFHlfiooNToQr99mXY+tI5Q\n57ntPIvzhg55Fdw0OI0fCftQKBCLjkn5LcZ0RWVbcgWqrY2Pr9GsVeix0PDyUl3rphdRX2jOSOvw\ntQjQ0i/xVlq4yNTYLjxGLylnX6aOX9cVs630bdEu2ZSy7+smx7kfzSW5hznvaU97+gR9LmDOAPiO\n+KDHWJN/XD8859FDkRTOvjTjphOx0wszPK0evTgTq/Bscc7BUv4+HvfxlD0Wi5ILLTe3DJY8eyA4\nhUxhyafDtwhUNKkoiDpOeb1gthTOlJdrXrktPu3pPTH6PP72EzZanr52ayL1MkRJTRVIn2IOcGpF\nLy5FUriYX+AnqgbEOX6mInXSJ426tOwa9Wccq8cK5+0Z+l1a5r6HVQNe6BkKta7n6pNpthueXWkw\nT13h1Hd97vtkmkDRbLbYUC31ykQGzZBUU7NFaUKo9ShjG+yyUbdtRZgoYEdF5/N1jlWQlhdHJF0O\nhQZC9dbcuzHhriYU6ZKtDHt9bioYx7lHnGvU4uD2K2TKbbP6BbnWdrzQbNZtBKEaoItwTtSTWqF5\n/oDihazZcr0g0+QzkY6pyee8UPzKhb1kq96Qk+EJt96QEvVJr/8SvBQKF7++XGC6dHqmxRnZT0ls\n8RUv0HbRi7bd1QQtGsvSiPRzsVkx03U6yW5Say7Qq2eiGq03oAIUI9Mj01Ppt46PN2f6jgA0AOvg\nhqpBvRRPMSnF1QzbRV8OpxiVCu2nTKzyg/S5uBSctbh8TTaJqDRv37ptWeuhP3v0gvynRR/u2Ran\nWWVOpnIR1EG+y8wTj8Z46poJMm8Xbnp5eb1DKZ6eirvG0rDRdNt52ezy9vlhwYfffwzA0PncV6BL\nrEk8ysstjWa/mRBy7ImIN8xhoxb+1XrLQMOds1RVn4MhVnVWW65ZqzuQ6YaNLsVWMfCLfElPPRmT\n0zsYzcZTkmPari7jgCYSVejxe98HZIMaPenV3OL0gtwuG6wiJG/cCHHXCgrSOpGjaMvd26LXZv2U\noxPZTLeyPj0FZ13PFp3HmNsaL3C9KSijzkVYMptL//uez0BReq9Op0Sa0cioW2NrKw41JXkcvsHZ\nTOwgp0d9mkRrPl4ccDSVQ3F8JWsd1lsKo3j/3KPW9OtH09uYUAFu1uBrnsokkr5HicdWKyhFRczR\nQC7n0WsnmJ7Ovd3SrDUqUQsMMwip1ZXtNf4O/WirlrRTzbTiU7s2RN2luXWwkn4+Pj/n9bGGZKdX\nHI3lghwsZR+eFxd4G1nTUy9gcCRze7G4JlE3eW8ypFJAlu3SpbSWRm0Hvm8Iepp56cFzmlz2hWn4\n45X8P4b26sOe9rSnT9DnQlLwcMS2wawMvkJm4yjEV/DOs9WMxVKj7+IKTwEbfqZVmQMHaqha1uf4\nYwVxVCGVFnT0to7RVC3KkfqgtxWbhUJ/8zWlxlJcP5uRqOX8cDgg1bRaXbKRto2JfM2Bl8RkmuvB\nHYx2lZCezy9pNBtMrdOc9lJahev2N32SQ0291k9wajzN1HA06QVEB8Jdekm481pUyxJjuwi+JcVW\nOIK7VoPTZkuhYKO459Nea86G2NGKY4PLpmXga2o6TS9W+ylzjcsIHUxGahhrGnwtjHK1zNnqM+ut\nGt+ct/P2lDQstQp01bacjAVCnR4NuK7Un66p3BN/SNCX9d2GllszkSC8ekGiasXCy/E0PuLwVLjn\nYlOysbG+D7aaf2KUGiorqkK5XJE/kfWJxsJJbV3vojJ7oxGTeyJ5JlmPtgNDrVbkc9lTXeoyz9W0\nlfTNDSraTBPcNCljVR9qzYux9n1qNfxmWUZjZa6uLpdc3Bapd7iKdhmjIxHMuNEOd8CxsldjWul7\nHXoMFW5vRgarsOpdjU7Pp1QxYLttuNa8k+XFjGKhyW4MeBq52bafTpXYSwp72tOePkHmR3VXfBY0\nHg3cL339pwkwfPxIjC/ny80u4WQS+3jKVSgawmHnktEMNFg8RQ0m4+GuoMrZ03NylSCSQbhzgXUZ\nfhMCQkUErtcl11rgxNWWQBXGuqmotBhIrTkE/uq//q/RqFvJpjFO8zAEwxCjBqXBpIevqYWu1Ti1\nvJqzyuUGdxtDdChcwHcRs7W42eqlFghJfEJ1rbaugp0rLKSr7bFaVfQ0oenoSP4NPcerb78DQD8Z\n8Pi3/y8A7h8c8J4WQ3l41VCofm0UEXh4Y8DdgXDa3kFErCm8emnESCWdIDb0VXobJF3auQGRWsnq\n2nKl3HizqDlXffjJVc2DMzHylhppmkcl3rVCgsMNh0Ph3P/Vf/OrXGkm7d979wG/89v/BIDf/+Yf\nyO+3212SW2ftLtgsCMKdO7teb6nU7mJ1zfwoJI60xkU/5XgqOI3+wYjtTNen3lKpRKoAWvwaikY4\ncFsVtOoubMuS93/97wJQXf4/Mib/mJ4v43h29YT1ueyRtslJjcLYj0fkGjS3ruXvsfUIdX+3dUOj\nQVWJMTi1OjZFyarbG4pzCKcJhQb8bdYlx2pUPboXUl/KfhqcHJEdiDH2p/76f/H7zrmf4YfQ50J9\ncC00K8N5OaNRa2naGIxmr+31EmJNpWUinwM12nhqOFxWJZEKPbfuvcHlWhZxvdpSLeSgp77PsNv0\najgLnGE81eKgdk6mFVLKZUncVR/ZBrRdqjM9mIMgIu8g1tWaNuoWMSRS3LTZrvHVnzxx0t/xwTGN\npuw+7E9Ix2LsyucLPjyTzV3EsuDxoE+s4KWqbLClGpSSMdcbsbL7RcN2I8/XhSZhaWPWT8ToGN++\ny+lWxvcgrNlW8o5+UaP4J4yCjW5l6S60emwsYy04knoet47EyHdwIyHRSyTUtHJBPyLROJDluiDU\nUJdFDKUa7S5mV/jqHelKw4erGFQVGTUhtebHLK9nPF6LqP3o/W9zdS5QYqeBC0lr6Cx8rvIxmq0a\nDB3KqnENXtOVgdfw9dAn6VKbOY+Rpnx7/eiQ3hv3ZZ69lLOnHwPw/KnsoU15SVjJ+KurDbmi9m3h\nKNdiHF02kkex/u63WGnG6JIYN9PcdNE1baxl68uI3HTyv6o2UYxvFJpPs1MfqjAiVNW0KXNMIx6F\nWJO7DJOWMpZ5GxQ5y1rmrb/Kdjko22JBb9Klif90tFcf9rSnPX2CPheSQmMbLrdXLGdXOIWlmr6h\nrynR4iDFlQpzHkScjEVC+NJdqUTt05Kq+NV4PS4DcfUM1zHvap6FQTbkzhckc/Fx2xV4qCnXmprt\ndMJwLTd7MTpnqcEzjGI8rfxba1TfYJBhVPSzdoCvmY8jP8LTzF7toiEcakZoNQbdO7rFwUDGdDQd\n02h5sPxGyn0tCebVXd2AhChTg+raY63oznVleO9a+rwutyzcI+mzRktGJweErXKXueFck7g+/Paa\neqxcc9pyZMXK5WvtgcZs8TV4Kk1D3rgj3O8kS5keS5LXwLaEY80XUGiuiMTg1H3nxxGJL+Nz1wuW\nTubrYDRhPhPO9VyRdjYoGQwV2pw58pmMaWtWPPlAxjR/PiO+1mrM2i49n5G6VsteQ6E47tzUu1R3\npm6JVWIZaETs/dGUXl/auJ6vuDsRzvyXX3+b1195TebA2/INLSJzUT8A4LtLx/dfCAfeTvtEKvpf\n5WfUKr2tAlVnDk6xj0VNIlrjjnU+N4e7qNrN7AyTKPQ+lTnO4gjQCNVRDJVC9m2N1f0QDEKGkayD\ngldJwjV51KmgGTeszHe5LbGHCo9eT9ic/SlGSf6kqGktl6slBQYt90cItGGHDXccq875C199nft9\nGfAb70gFqUl4E6uZfVaXC2woJ/OXTl7n2V+UZ64fVdx6TSb1luIOmuOIj74j0XQHz5/zkXoLFmVE\n9UIWKaxblqozu3kHQY6YqK7X+hVDVWPC1uyqQRnTcONEFnei4u7N2zc48DVW4SCk7XTZcsztW3Jo\n+qcKIKpfRhSaHNpQ7ASXT654TWHav1m+RzqS310tdRPkjuhADtjFasEHM7kU1mOPSA+9zX189ahk\noVyavhcw1pDem3149UQ8B0fpiFgzVFNsKbpISk1fHodDKoVxG2KMgqyipE+iWIFhDEdDaWNW6sZN\navKV9HlYRmQ3pW/f/d4TPv7oj+R17gWBqjTHWjksDAJ6Rg7Cqrlkm2sBlNax1rTzPo4bqhb+S1+W\nebuTHFD7MlezzRATyFinvs/NaRcmHnND8TDvB7KOB48CIiexFvOi5pFGl87nF2wq2XNDhZV7yYbV\nWL1AT3I8BcnZuI+vUPCxf0gwFbh8l6Mxm0S4lbw3bxoazTcaZD2c2jBMkuxwEelUfme2c1oF8i3b\nc3zNS+I99TGFMrVkxVpBW5+W9urDnva0p0/Q50JSsG3Ler6m9cGqNb0uLPgiXt+5dcjbt+Qm/eWv\nvMOp+qyHWkI88Cag0XuTUQ/UsFcfjXizFg61fGtNX2/5wBMObgaWwVjj3L87JOyL5+OPPpzh623t\nbRxm3eXBM/p7D6MicxYnaPU60jAh7eL7k4p7WlPhxrGoM0fjA0INrgmzlioVbtwralq1kisAD1d7\nxGpZp+fTdnUt7jrMhfTnnS/c5xsfCRfoaxReUgdsCuGeq2bO5Zn83YXgOmRlE7HwRFVKki7rlc89\nDfz60p0pdw9ExI2Mw9M4/WYQYQqN0+8yq3gNW+1muSmxXXIaWoKetHdga/zbiovQrMzf+HhDvZT1\n3WZbYq3Q/d13/ynLpyJBTU9u4ldi5J1kIuWZqMapMbqcpzS6JmlpqFSNC4KYX/ipLwLwL3/1bfm7\nb1hqfoPL9YK15s4YT3O8nhjwovA2E8WnvHpf3ldZx0Pl1sl2wYszna0woN1o/RA1HI7iMbOLBzJX\nJwk99Tj0vJxI8Sfu6CZHY6lVESlcPei1tJrmLVptqZcKG08q7FCLIMUBkaqhXVRqk0xw6qkI7Ijt\nVoyg7Y2IZq04hTagUBX609Ln4lLAgPENkR/twl9zW5Oo62ka+rx+KpMzzo7oZ3IpBBov4NUVtlHw\nS1DsUJ1hP6B1UvY7SM52MQqoxbqNY8YKU7n7WryzCr//+JRUMz3NrYftavR1l0K9xR+OtaWALttU\nLwoxmjw0SFr6mdZ0zDTpbODTagrxZp1S6fvawuB5nd4nF4iJtrRdUcymounguh4MJtLurdM1F2vB\n7c+XsrGvc495IVbxYlVTKZgmsiGZRhGWpqZVOHajbtrxwZBX1XZw7/YxiaZtZ+soNl1R1Q1eo249\nDQu3JsIFmpjW9yi1hHvhR8Ra87NJHX29ZCfq1ekbn0s93Ne15fVE2nty/hw7FNHfhGMCtYOMxjLm\nzYsKIrGv+CbBaG7HJIwp1BGRJUMOtbjMUjNZnb94Qa2hyhe2IdRqME8uLxlfinsyPN3QqhfA09iW\naBJw38gF+fDZgN5GokuTJCZNxdbQaLzD+SbnsapP9w8D/IWC6OKWJBL7wTBLSONPlq9yNsGPtFR9\nGGE0BscLhrt4nDj08br4F83tGCczXK17ukoonLwjyC93AKm520Ck9phPSXv1YU972tMn6HMhKXgY\nEt/HJmYHzHG0u3yGdw4mvH1DOH42jEGNS04lhdbGkCg3rw1el2DDBhjTleTOCLSWYKP1Kl2xwi+1\ntFviM/GFS7zSb/go78p9W/qa8mrptAgLLQmddTslVPFyVWw5UhH9KBu/DITyuqIvLZWqCa1X/EC0\nY0Dgi/jcAXCMi3Ca36GtLbXmd2jKlkyX7dbggOVExOt/diXPHqVDylzamm2e7hbYCwANSgpsvTPQ\npYqb+MLpmJMD+V3Q+Nha2quKmkLH366iXfm2RgFitWlwKnn5dUWgFZH7pqZSI1hbrxno3KMw4e8N\nL1isVfQNLFbLz4em3oHLQixbhR0v56LuNGzph53EsyDXDdMzDZNExtJPfeZrkZyePtMU6U2AUY5u\nMTgrXoJHH3vEqua46A0GrquELZLEyTjjeqaYhaDmrga/fc9Ztuo9ChWk5gcpfU2Bv7zyGCueJmk8\nYoVE+6R4XdXojidHLY1Gfoa+hxfIXJkkwFdId+AHmC7iUQ24XjMC3d+NZ0iNAq+Kelei3gumbFf/\nP/Q+YAAP4iQCxcY745FGCv7pD+lrWvbQphgtNtpqEg9brggTEX1ds8Bp6nSaBr8vYmdrNzSK/qo1\nes2mQ6zW/rOtT6ALGqUjEs3tV9typ382XSrwOKOn4J6wqQi0opG1W6JE3ueb4GXqb0U8Fq1jqxmW\nknEfo8Vmo2FKqKKtr/Uu7WZDq4lI26LZ4fONM6DnK2otB6qaTGP514UR66X87mq+xQ+6Iq4ZkaZL\nX3T4Dn8AACAASURBVNc5fheerElLj3qjXQUib9OS6/4rlwW+iuK+KXfVtdqii7mOCfRgRr7Fharv\nVmC1IG+ModJLKBnKQTmdRFxdSlvzZUs5+n/Ze7NYe7b8vuuzaq497zP/5+GO3e4htttJO1EiJ8ZC\nARKQiBCCB0CR8hYh8QCBJx4YwguQJ3gAoTwgAgoSihCKkhibJHZiJ+0e7B5u36Hv/c9n3mPNVYuH\n9a19fSUT385N7Gt0ltS6p89/n11Vq6rW+g3fwd2Hwd5jjh644716mvPBU9eeJOg1BwMGuo5lcY3p\nRfqjj1mZo0kM4pJspEE5TQNCCa6chCmxdD4/en/Bs1euUDDen1On7jynUkKaDva5l7v0wvozfu2J\nwFStIQ1duJ5vHFMzX3+IUU0iq5dEZrqbw8FUC0dld6IunRYHP0xAZslNEuBpsQij0a6b01XslLr8\nwM0PxYZWC3az8QklO5D4gESJgnLJZqX6wqccN+nDzbgZN+MT43MRKVgs1rSYskMFW5IkIpSoxDzd\np5Y+1vb6BQMBUjwB1P04BomTeElALypvvQYayXNHIZ167KgL0dVL2t7NuOgoJTt2eb3gSs48le12\nPPxOX9xhdqrTha0ZKEz2wsFOot3aklx6Cd5Y6c5ltutgmGpFpOJZFMQEKrD2XpJ1YrEK0b0kppOT\nVd1Bp23cDhLsudspejOYkoqzhcLdesso6l2XE3JFJljwNNG3JQWehIbtlebKD+kWnubNY9D3/4cT\nWjE0w7h3xvGp1dMPB8kOCm6yLZHaMpsgoUncdxcqfNZlgNfL2Q+gU/GMMOHVR+48v/fuhyy3cmdS\n1JUwYOWrG1IUiACIP0pJ9LycLz/mGnSSShsOh1Ryom7tgHWvHL8fcyZjm9HzU7pjuWipNhfUMNnT\nfapyVpLLK9tiF01dCvq8vWypBbUejgdEigTq0KOVN6U5CakFxOuk8OxRYoXJCUMPX1FOYD1aSe13\nZbWDdNveUCj0acWI9dJ9mkq+qcmA3LoUuchLrntjyU85biKFm3EzbsYnxuciUvAwRCYkHAaMol69\n1pAINWiHPoi4s80rPJGjBtqJvKjGU/HJH8d4kiBrmxojZpxp6x0jcMe4tOwYkN7A4on5t2o2dIpM\nmjKiN2TsGaWmLjBC/8XGYlQPiP0WX1tXOEx22IJckGifgKEchdPxPoO5nK3x6b29TG8KE4eE6uk3\nYbPzx9xkJVat2gADqXYgFTvPLxu28i7o2hbULpwdxMwlD3e2HdEIOupLDXp//4RKzM98zxJrh0om\nCUGqluowxIiN6qv+YExMqO/tmgFR2JN9IjLhAkLfY6tW+eWl2yXb0MPXzh427a4WYUvLVpEJtHgq\n7nqq2/ixv/NSrLrO3USgqizDY5Hb6pqt/m6uOkMbGDbCWLSeIRE5jGBFfely7u9drWhk9RfXPW7k\nkEhGPHMGTOTZMIgC8swhHQNBsNvJGS+Uvn81jPE7OaGPPUrl/nXZ7sQaPBUGrTclGskYyE/xFLES\n+HSenk+T4BQk2MHKrddie2fyyKfL9VwnGd7GPfe1n+1amJ92fC4WBeN5JHFEaiKSuUL7dYOnULRs\nKtYK/QaH+9BqAdAL5ocDfHEm/C7A9C5NuYcXi1Hp+6AiV9dj5GmpGwdzDhgSSuYt7aodHRovQ5E5\nRjFs11l6F5kgihnQh6otlW5iUcW7/n0hK6BROiUcuBcsGicYhZdeFGJV5Ox1+Lyug52xSEhPcG+L\nFaVeNo8ZU31mcyH13jpH1AA8DK2oyln+hEulGh4zHoi2PdG8bVfZDj5bWp9YvXTf38NX0aquVnhW\nC3XbO1YZ2qUKsZ6lXMjsZQvLpY5ddcgvh6vlx8rWsbAO8SgiURckK5fkMvAxZUOssNqYXsrY312f\n73l0WngrA4UW1CYvdxvAmYrSq2VLLbDRsPQY6N9r20Kmqn205YMfua6FL9bpbK+lkbz8YDThi/PH\nALw7/YhaK11h+7Qk5JZ02IuLgkaL1L43YyBOTN3mJLErYmpZIkqHeEoJDB227A1uItpK6dgwxm51\n4XHPEoVWpjWUPkaycN2pxWghCO2UQd4vsp9ufOb0wRjjG2O+aYz5P/X/Hxljfs0Y854x5n81RkKF\nN+Nm3Iw/EOOfRaTw7wPfByb6//8V8N9Ya/+aMea/B/488N/9k77A9wyTccr8+AAjEY9tfkkhE5XL\nwrC+VB+OmlzqujW99JVhIraf12YY9au96ONQrFvntEpBSomnNm1Bt5YYZmgIdozKOYkijHJb0e6K\nhzrfKNoJmHqdJR6qDZe3bLRybxYZarfjl25lX+/ndCr2JUmDJ0iwN+g+/nKFvfXpNZXmIs8ttWzL\ni01Hpo827Ya2c7dwXz6Rq+c+tYqggRewENvzzaBmNHEnnT+75k7i2mlx4o738sWWXJJv3mnEaE/F\nt0nHfuO2uajJCXtLeM1J1rRcPnEtvU0bYrSNd01LJa/PZbnhdOvi6mu1hQkj7sqDMy8yYsG0X60L\n1r12RBQQ1UqxRA001qevJLempVKIDj6FrjsrcvK12p2ZOzevqGiVVkZJStcrMBsYqxA3GE7wExfS\nvLcSajALdhFrlX+fhYR+Uy8kUBpbPhXy9iik2XeRSVav8Fs3x5sXFakctucMGO67guDe2GEh0v2I\nQBGBP0hphIq1JiW/dBFgvqhYn/daGxIf6hKQ34lpyt29Ces1rTA3bbul7m3KP+X4rF6Sd4F/GfjP\ngf9AVnJ/Cvi39JG/Cvyn/C6Lguf5JPGYMPgYp71aF6C8zlzD4dfcQx9Ygyf24MvSTe78KsCqaj8Z\njYn7bkAyp167m9jWFZcfOG7DVuH8Vb7CExjFTwZstWgcjO8yPnZpxerFGY10HC199yGkEJ7CD2tM\n1jsIeWyuBFedVJSlboy8LcvlmmyhlIGC45ljy41tRKgaxVoK1lVVcS2j0Wia7FBN7WSKVfrQljml\n+vAndx3c+dn2BzQfyj9yGKL1j+67He+JETnaH7E4d731+Uxr+ZFPIBqyP7Ss9bLFpw352nUATsZT\nhoKK+1pss8s1a73Q69zjQIzDfNUQKPSfx1NiMUwrLfRN61NLMzBJPNqg7wJV2ErpWODtVKB770dr\nAjaFO5/lckEnY5wgDnn2TD6Qbc5QL9Yg0dwXGZ4W3mqzJAnc7zuvoJR7VVJ1LK60IMXSvvRCQuXw\nbx2P8WVUMxwMuF6587zylV4E+9hJLy0/ZnPhnqdld8X2hTtnmwy5XblF9ovaLOKBz1BmOX4d4Mdu\nIay2DZ2Yj1cvNoSCfNe1QGbzlKqQghYltdStvCRkLYPcys9oJr+3ZjD/LfAf8rHO5T6wsNb2EKpn\nwJ3f6Q+NMX/BGPOPjTH/uKp/PMTVzbgZN+Of3/injhSMMf8KcGat/YYx5ud+3L//7Vb008nIpqMA\n3/cJFZfHYUAioYjjxyNqz6UELzfvs5ZbcZwrTdi7xshWLNg/xhds1TMrahF0FqsrFkIvrqWyW0QB\ngXADYbRlLvOS2/f3OHkhK+/rkjDW7p1LMqzckItIFOIRNHKjDmuSsRymwxGFL6hwK949x4ynLn2o\nFks2QhVO9h/hKQz0Knc+m7Jl07hwcfvsJYVCe+MFGOknmmxNKHTbiTAPd47mJPKISIKYQhX3lxPD\nYKBdvrQEtyTwImahZURfy7NZy748LSfxllaLtu/nDKWt0Fuus9iyUBH46fk173zooqqLdU2gQuIg\nGNGpO6K6HzbyaYUatVVNj28Pg4iBukNd65GJ8FTKQGVVZ6wuJXqyXe+s4saTCa3Oo9qUDHV/JrKB\nM+OITEra3bJmK6yAbepdcTgpCzppbPqKGtPpmH0xGNfJHiexO4+3ujlJ6lKNoVzJ31/nbDWJj25Z\nZkfumvZGr3OmyOxqlWEa93lf4X6VbUkFiTeRB5o3Q4fpCWvVFDNTcVTo0Cou8WTE4/tQKn2qvQJ/\n6O5ZcVWw8y/8lOOzGsz+WWPMvwQkuJrCXwFmxphA0cJd4Pnv9kUehoiAqizYCkgyjwO+cOchAM9e\nvsf/8r//DcD5azRSm/nqY/fvf/JrX+Fu3Kv/NMQSmLBFzkZAnleLC05fuPDqvSculLvYvmQQ6GXa\nn/ITr38RgAeHxxwKvfJ07uFLas9oAVkuV3h6EJLJhBjBeW3I9cY9KL/+7d9ksXLXspXBzZcf3OUX\nfuYrAOwNhxQrgZosWKUHjdKSMm9ZXbpz/8ZvfsSHS/dQTUZDpgqJX79zj3u3FGoqLJ/5HQ9O3DVN\nBzF/V0a49TpmT3/3xs+Myc7cHF7rhf/oH30PlId6cci9iXtI/+gbd7g3lcafNwK17HKZ1lQVbF+5\nl+36Vc1Hl25uN8s1rRa92Fvz5UcuYEwE8V3mSxBzMolyrLDbySDYtZTXyy2F8p+sh/h2wY5J6xkH\nEgK4NzumqF3o/3yzYaqa0P2pnMNan3MJtby7ec4oTXdzP9ci5NMCSisECkrjCbVS0+3ZFUd3nXrX\nZbekvhCv4sid7/V7GyJxGAaj1/hR5xavX/0bv8LlqcJ5E/NTjx2PZ64NcPLWLVqpgZloQKOUoGk8\nFtdunp+8+pAPftk9Wz88dUZF1gS8dcdd36Nbd7l/7NKSrlgRKy2O6wVR9+MlBP/U6YO19j+21t61\n1j4E/k3g/7bW/tvALwF/Th+7saK/GTfjD9j454FT+I+Av2aM+c+AbwL/4+/+JxaPGhqfpUwxkmnM\n/ftvAjAfjPlAbMDbj+7jnbjTfv2u6xkfxCNSyRM3ec1aTtN+F9JLLQ5MynzmtPgel64ifbvcpw1k\nP59WDBJVdffm3L/lCFbff/py19/uhE0oa59KcNaLy2s62Y4djfbYGzkBjUejFbE0IEod483Hdzka\nuR1zPIzAup2kbirMtocVi33pp3j3vwpA0c64nblzr20B1s3RvaMph72pyan7u3/wK6dMJfX9U/fu\n87f+nuP/N/uG8bHb/d976XGA22GPDtxOMwlT9vdctbxiw20pXh8nIZOhnLmbkELs0fUm151LmQzd\nrvT243vMBu4+XU8yKhU266wllgVeNBHOobCsC/ddp5c54dB932T/EUbhbtPlu0r8SK2cNBkTaY7a\nas1UVu33TobUa5melGPuSw/ilv79JNnja8fufsx/GJNt3LktNhkDFTFDz8JUqVfrrmm8d0i+FTS7\nylkaidp4KbEK3r6iikF+SVar+FgbyrXwNPmAtx475e5olvLlE/eMTEVgCvwxnsh2bdPSN1SMH+Hr\nAY6ChwSKhm/flt9qdsVTRZaTcsmD0T2d25ClUuXE1jTF7wNL0lr7y8Av6+cPgD/8z+J7b8bNuBm/\n9+NzgWhsu451XmJNRNO4ZXJrY+ZSuP3K/S9w+1/7MwAkXUB0KL65cnyv8ei9tNqmY7sUIq7N8IQQ\nnEwmu0Lb3li6AqYllOJPbAJ81REyco6O3M4WpB2tqmNW0UFZFqwuZOrSlnSV++ytZMzrt12b8cEf\n/zqJ1Kgnd9x/I2NIesYXNbWUeWy+pdD20AmnMNkbMZIqc8I9jHABXZyTqq+exCMMru6wMmqlhVv+\nxNvuHO4+uLNDxIWeYXHpahiTMGQtL4ufmvwRAO5/fUyzFE4h3u5gzoOuI1TRyrMluQqXmXaftrUc\nzuR/5o3YV5E3awpaYSvCzlCIApw/d9f/NLRstANfbbcEmbQXoiWRWplZtqZS3WHg9RZ6AZVQg9Pp\nkKOZm1svr4hjtzs+3h/y6J6LCh6Jip4MBty7736XjH+aX//ub7l7ma0ppYC0aCPSjeon++46YlJ8\n+XrcHqdEEukdzOOdQ3go8tzBwX2er1zd6nhY8sa+Ew1+YzrnbqpjH0575UB86TGkodkhctv1NZ2g\n5LQ1Y6F2X49jHt5ybee461vdPp7g8UHQYK6cIpVNfRrP3V/vZMLiUn3pTzk+F4tC0zWcbU6ZTO+Q\nyuhiu244F47cCy54465UjvcOsNJg7Ojhtw2ZNOmurja0ggzHxRZfSszjcMZAXIqRjEDwwRNPP0yS\nXZU9qEbs7Tv9xNl8vlsM7A5nX+KraDcKPdoeJ+/BTC/QcC8hnvYLi8xnghG1wu/VxTm5FoIkbwlV\nJGskRjJI9onC/meL6YUgqTEyVOmWG5bSTjiVcEwaB7z5yKU+871jbK+lGIVMtRhGXYIRRmB46F6k\nN0a3KYanOkZKItxEVWbU6jR0piDXYlAq/L5uWubjvd15zmSAU+FT2Y+hyWt1bvakWnywqFh1gmZv\noQ7di7nNi48BZ22xs1IvZAbjZQGeNAoPkwP2JY3flAWJ7453bzbitSN3/0Yjt2AlXoKfuM8ezDoe\nC9cRTQ0Xz1wl+WzbkgnjUp3rRZql3Jq6F/pgMmcQqltzcoyfykpeIK0iLUjlEDXZO+BIEPTjScRE\n+gyBjQik4mz61aEB6/UuVBYEkOoIiKTpORoE2EwSeLF7VkwSEYgT4+cFpToYa/+ctBDgrl3uzGM+\n7bhhSd6Mm3EzPjE+H5FC3XD+4pIg9LkWCnAY1vginESriHC/b28lPRIYL5ApSB2Qa0fJrxrSo560\nM6RauFW1Sq5Jhy6sNrFQfHGM1Q5muo+JKG1bMbahzqPdEaE8FaTyfCN9M4iTIZ3nVvbtaoVXul06\nGfhEKq4ZteYiHyqZe1RNRVf2/fgWIwkuT/34brsm3FOkMRpghmLiFRlII6AxIV0sjMTCfe/98QGj\nPVfUOj9/QSBIsDUNC0me3R627CnyGKwlFdddE5teVSknUnTT1R6tiF2enxJaF5lkkpUrlitytQhn\n6YRQpKQoTiiE2LOd2RF0xnKoDjpDJWUmE0Mi2bGqznbpGGGKJ/2GqlLfvbtgkLodPwpbzs/lmdj5\ndHP5KMQRjVhsYylTVaOGq8yRnbygRkh4qg9bXr4SlDi07Kto3EgvIvYDGrX0vMBjErgdv4gsy7W8\nQsNrzVvMXDBuc9kyPHZzOBruEQ3c33lejhf0eh7ShfBbSpHHPNuhbASvrfHiXr1qQDfQfEoqrus2\naAqxJoaxS23aF8+wG3cezTalXUhH41OOz8Wi0HWWrOjYFhs89ev9rc9y2XvtZUSBCwejcITpxEoL\ne2XhLalxD0ocvGSw5z7rLSq2Anpsr68ZHrqXJe7VbU1ER48zD6kyiVSEAxrlwOtX2Y6W0Ft629bf\ngXc2WUUnH8Tz1YJcduH7HOwWhVB8AJuOMQtpRkZDqt7kNRzsdA69gfr/y2vK1P19PNwTdRaMaWlF\nHW6LC0ymnFm1ivTkTRbq4Dy9uibRwmmDAIys38vtDtKdB7r+smVw5B62hgVNv3jVGZ6q5Ka1JEoV\nUrEdr7MVS7EIR8M180iSYEFCpPC5sB6dQGR7MoU53DvFCvPgtyFTLfovNiXE7iUNQkNsP5aSByjL\nlkIw76wqexcA1qHPfXE7usk+z0WJ31x83332OuFcdaBHh49Zr9yLfHZ6wVb3bJt1JJ77wmTsKvkm\nTnew+WWZEYviXa4TIrEVs0tR1b2KTKnk/tkL7h9Jyt0PiDQvpmtplFaVUnqxfkS96U1fYqhUJ4gD\nuo1g+vGMQJuZlzhgXZcHvRgdTX6Nr9QzyGPWStOyxTu7+s+nHTfpw824GTfjE+NzESlYoLWW4kXF\nSpDicpBw+tKRkrqLBitfxjY/xWjHq9YO4VVbXAwK7N07YiaLuXacsX3q1r2qKimu3XfTE39Cn7ZR\nZ6EsKSS6uV1ecb6Vj0K1YpCqGi6KR+f55BJzzcMlGxGs7o4m2KKXG8to5B3hycauXCzJZbFWNQ2N\nyC62tXSqBZUS8PSLjkBEJNP6OyOQ1nS0+kxVluRrSaXNFTqmGy6F3Pz1D95hX0SbJohZCjKcVz5N\n5Ham7Npd0/pBxnCrYqaxlD1i0auwckH2gpquVG9e8NvGyyhWEiuNYwZTCaskLZ3tuyslXux+HojV\nWfg7ZTrSgaVTd6UoNhgxCsfTdBed9d2XKBywLty8ltsNRhHbrcM9QnUanp6d86v/0D07m7y3tDM7\n347Hd57z02873MfRvQPOpadQhiWlzIhGE7crF96AWkjIpm04U3RjvJakR85KPo3II9v2GBlLKDEc\nY1ra0iFSW+uxvXT3p8hl1OP7tFmP2Gx3as+2a6ET0nG9dKIRgK/iY+eFdIJrN3lGfe2uuWwbtuH7\nAATTgKpQOPUpx+diUTAWgtqwDDtisdfiJqBTKyiLip2ab5PltEGvLCS58aqklr9gY0rK3N0YmpJa\nIiO+rTG6Sa2ouU3X7VRprO/vHIbOs4wfPXc3MTAxswP3YlUvpYLjGbZtL7MNKI+sfEOuTkXbdrtO\nQxfIPLSJsOJDeEFIKGq0NS297wuFTFgSi7e7+RVF6RaIzrRY8QQaryALJD6jPNsbzHgaOkWgV3VO\nKDhvFXTEMg7pTEw4cA/9VqI8pogoIvEyugwa9w+BH7GtpP+4ucDo/gS6zsNwQpUq3LV2Z86SNYZ2\np5UZ0ejhrcT7zkooVe9oGkPek+I6j0pUX7+JiJR6+b2uZtgiPBNlbQlTqSJNZsyVa79z8YRV7e5P\nqTpREnjE6sSESYenRfHQjzlSy9i+7LCe+45c7NN0FO+UurLSI6rdfRgl+wxSyUmNRFsvlmSa4+Qg\noVNHpbM5lbo1V4trNgvxXNROTvfmMFIHq4lpZVhble2OM9JWTa8ttNPxZOQRdD3Pp6Lq3CLTjbaM\navfMWi5Jj388SZOb9OFm3Iyb8YnxuYgUPM8wGoYUeej0GIHRvYg9dQuafMRqJX57DVZwz1DQ16po\nWUqp+dWT5ywmLjxLBxM8AUSmh/v4vV6fil513WKa3v6sYS2QxzpfYlX42U/GnKoL0L3Ubt02aKNk\nU5QEvSai8cnl41h1DaaXFVPoa3wPo93fNDVGJB/jDUkOJZU2UbEo8fFV4LKdJZdISb0pCGUSU1/n\n2Lovurn5GXkjjLwZfD/BkzXdkJRV6X4OIstUjsi+ipa5sXhr9x2mrQkFXvIjQyQYb7mFsLfIO3SR\nycTEFLKcb22EVejbrLcUIrfVxpLIA6Evel29WIMY9vHYYyNrukka0qmo6HsNM0Umpi9atsFO+ToM\nfGJpIVTWstL576Vj0jfcszPQZj45TPCEXzkcDMi2CmOWlnHnrmV7BKPSkcnGM4nQDO8xUIenMs8I\nt67I5w9DTKZU47iHQUd8+cTdv3E9oVQEmV8VbAr3LCyqBVGjqFY7fnPWUNaKbv2OeKwORjsG4TM6\nnx3bMRc2xWw7olBsvdWWUDicbFmRCLRWBQH2+g9g98EYjyBMGZ0Md8iu9UXH07F7IJZsGJ7rQR9P\nacRtoFYVtvEwEqbYu1tgBVKxXcf+3YcADJMQPxIwSpVp6w+oeoHW2t8ZlqSBYXTgvts7zTj9rnLY\njcBNfowVyrHKS1rVItomoFEnIltmxGKt5eoyrNqWSC/CMIyIBYCKJhAof4hlvOLVGxohAqu8xqAF\nrV3R37auqhhrEWnUWvzB+8/4pe//EIDNpsD0lOvUI6ykmpR3FLVUkSSSenllGd6S9MX2kkwV+ci2\nxL5C0WgAatkFfi/PPiVQy7WxLZUAZ7ZqkTYJVQtGx8llRV+0JRYXai82NZkw/D9xb0bZus+Gsb8z\nb41Eka4bQ9KnXWnKWLRm6pYzpXxh6rGvDePglhCtviFQaL9twW5kwlu3WOUjQ3vI/olcq7S4zcYe\nQ9VzNuuUQByNqqzpxI7dvnC/m06HPD5yXYvAC9AUcnF6SiedSxM2GNVX0sw9H+EgJtI1NSYHSSr6\ngxmBFsjOj2iFAPXERfHNdrcB0G5JA9HavZDrjXsfzrInvPMj1dI+5bhJH27GzbgZnxifm0ghDGLG\n/oRzhdyb8y3fS74JgFe9jjnohSm6HZ4/V2gVhQkqhjMwc4YztwJbMnzhEAw+eSYZr3NViCdLgtCt\nro21bLQqr5aW+Mh94Y++ecFCYWkrgNSmNdS1W6GzYk2zdVvCj5YXLLaOKz8bdYzV067Uj766uuz1\nMzCDIbFAMW3rkavoVi1dkbDpAjrtqpWxpPuSWU9i2kqFuEGEFazYSi341//ub3Km6vZ8NOOikgS8\n3VBoR2zLgCdXzo7tzRPHRH1VFtwWp8J0HpcXSjXClong0eSGSAzMQtfceCvWvStZ19BFOl4c4Gv3\nG9kR3sTN59W33bmtuoxcXfYmbKjlK3lyNKdqJLW/yuikw9n9tkKkp+JwEDUYYQVWyw2ZipnDSbTr\nCL28ktT7MGKs8NrPfTxhVRLrUyqCbOsSr3bzPFcEZtuARtFrFi5ZC2ps4pbF2t2z8417rr4SJCR3\n3bmlY5/qVDiESU0YCguxzDhX5+rRgSv2hp3ZYRD8oKPR/c2e/YiNp/TBljsRnFkiURgvJFDnwx/H\noKJkk8R84L3r7lOTcbH58boPN5HCzbgZN+MT4/MRKXgGb5gS7c14oNXznV+55qn67c+9c15LnOJN\nOBoSqDi2PXM76eqsoLCOzJMmIcXaEVWG4Yi8c5/Jwy3FhVZMqfKc3H6dQCHGxpZUIhpxEFFqaqzJ\ndpFJbwYTxv6uDZVyxXLr1I0uri9Yhz0WIKBW3cGfCOVXhTRCaS6zmr09wa1ns13fv1b0sw1y1nIW\nCeqa9J4Ulf2QSopOjCJWMqHNVm5H3F6cUkp9eP9LM979tlPpCacBM3k5LIuMdenm9kXrdsTDswn5\nA2kXDPYhcNHR5YuXvMiVk/olI5nroOLp5WLFVeB26NjEjOdu3h6//pg94QYqf8pzRS/fOXMRSmFr\nxorGti8yatnJHYwiGt/NV1llVIrIUJvOtilWrerIBKRCtTKwlKrLFMucTvehVts6aTyGtdSWOtOL\nTDGeHnKtqIJgCWMX6Rnf3YcguSZSOzQdDOlkANMS4g+FuBXc+TyruAodvmXEBKtdPggDzMzVqMry\nCafPXKR6+/6XAZg8iBnefgg4YleqKMx/40N84W+e/b13KXIXkewHrogapWBU8fajAblEj5fNR9aL\nAQAAIABJREFUgjp353G93LDyesXrTzc+F4uC7xlmacB4Bq3AGqmxbFQQfPIbL6hed0Ww2IsJBQM9\nEgtxla+I1LtPpwmjwL1Ayf6I7lIGLsWW4Vi8hGOHQ7ehz3rlBFcWWU0lBNHz1Qu+/8wd4/rlc+gN\nOXozmConHQnDX0RYVZQW56csrhTyT2LW8kGMFH4eHexR6IHuApjdc0Wp4UGCJ6dsr5C0/KsPGKji\nnsQWVHAr2g2tL3CrjVlUrvr8i7/xHQCy0jJV+hT6KVvBtTnb0kmD0o8aikt3HqfvSAfyqyHXF24B\n8Q/n7KvgGeUTFr2U/v4h85F+P5M24vMrwmu3KMbWkvS+kr7BF7/CeDmXT92isHzhFpiossRTF2pf\nVh2eLmk2GlFqng9HY5YKtevetT1oOLDuHLJgTWd7ERaPmSeQUVbRqLg7FTblrknY66HkB0OSI3Ei\nTMdErMVN5bEnwNVIdPBs4LPoq/1BSxw5qPxltuaRcrbtUCH+Imf9W24+L+++YioPSlt4eMK1HO4N\nmb3hrrvfvBZdSrN25xCnI1qxgJfrKe/+xq+6e/JqxaGeWz9RyjjMsb3PaTmkxD1v3/kHvwmyGmiW\nhg8/UgvmU46b9OFm3Iyb8YnxuYgUDIbY9/EryNXmiYYBofq831k+50+dO1HV0V0fI1m0SO7D8RzS\na/XdrU8qfXyfnGEved+EBIeyWwtkBrONWJ66n19mK0oxJq/Pl1y+41bx4tVmB4+ll+3qLJ70G2zX\nEPSaBZ7HB4KaPjoaMRcvPuhcUasZX1PLwqtYL/lIorLDeUSndpkn6KvxLeJD4Y9SPKEjiyynFE6h\nKlacf+RC0Y0crv0uYiCFZzOYUWrHMInZOUJXRbfzaHzZup1708zJEnf966uCgTwqm6ChDVc6RocX\nKYx/5q5/vbnaKWIHYYsv5KmtC/Kl++zZ6pIPnrk2aStcyDQO2FNYfjWIKVVIDNMBqdqoxWhEqONd\nC2PQVS30JiyVRyMCEpEhldhsmvpcC5Leu5WXjcEbSJrtzXtMDtwcvfvhOavWXV/t32UjSb40cvMZ\n1fs0ah23JqeU/2O+bPGm7vf3xMS8elFx8Uoo1rAkiN2xU9MwbNz3jccHGD23az178Tciojd1vEMf\nq9RnvFhzvHXPizdvmblTJhTi09sCSqXrbsH2hXsW7NKwlcrzVdkQDn6819z0efLv55hOJvZn/8jX\nWC5XPLtyvebNIsOT2q1vfWwPc85bWnUJEIS19rew+dgbcGL6WBNi4daDqOUocezJKwladGVI3rMk\nS4/SCrfvhTuwTNREIPpqqrz/iz/9Z6k3Lme7vH7O4koch6lhpPCzC1o2osO2vXLR1pJ77iVsTisy\nLYDD2qdQ1d7mou6ahkPfrQrroKSTIWrVFQw6+S4G1Q4IU6oGMKlTWiNDmmjI++rd123J3/qlfwjA\nf/Ff/5ecqftAKUn9ZMT1qbDzpiKW6ctwEtLkggy3LehhiwUgGyUD/oV/8ecA+PrDN5nPlbfXhvde\nOYbir3/rI37j+z8AIN9WOqylEu6jKDY7oZo/8TNf5lDqRt/90Xu8EO23EYW6a2oqzVtXWDrVgUIT\n4qmLEPljerPCoeYws2ua/GNnqd7Hs/MabNUzSQ1RJRctqX55laWRBPyBDbij7/3J13+aXyzcxtFV\nbiGfzhPujdzf/5mf/zJfe9OlGoOV5eB19+x1ZUAg4Z8ocpDqcJRSSnCnyRaYztWa0tkxOjXqoqCS\n61Ugi4Ju7x6RKPWmGuKpvlT45yzf+zX3feEhSPjlS3/6L3zDWvs1fpdxkz7cjJtxMz4xPhfpg8VS\ndy1FVWGEDvQ7QyBthciPdrxxz29pVFEOJYSR5z6BhE66BjwVu0w3JNKucu9oRKPI4ih2BaDON+SB\n24GzTUnQG4H8NlEQ33SMVfhpajEKl5dUW7c7lKstba50JANkEddFkJgeHuz+Lgl9WPbSbJBsVVlP\nG9pMIisKT2lCOoXOw3ZCEktPoBvvIqXIHDCWYIepXCG25SWHiiRe1hvQfBZNx4vn7wBw/vwdNisX\nxewPXPF1cBJy/ly7VVGSqii5lwwJpEjS+B4jMVR73ME8Cnm47+Zzvh8zE5LQsw3+2FXXyxrOV26+\nTl84ZmvlB2QqvrV1totG5tt9PsrcZ5vGZyqjnW2gSCGKiQSVbMKKRjt+EgUkE7czH8Qps1uKEGvp\nRpiGWoI7W7/CKF0ryxpfxdiGCDz3vKyWUl9mTVdL98Js+TquO+FdvMQO3TnFCkvGxZZUxdXHLBk+\ncd87nmxpZZvnTfYJSt3rykWbRenRpLKEe74gyuQz8fAEf+AijPbDBWHj0oP2jtNp8DcdftkbA1ku\n9Q6EkU+3dL9frv8+h/d/1+DgE+NzsSh0XUeeFa6lovAt9EOi3jDTH+woxVESEIm+2kNc6/ESK7hn\ntrHU6qCNw4bhSGpJhWFfyjxW4Jhu2jJu3MOzTQuKjbsZ66bYcRuCoCVVK69QG26Tr2jFlqvaikag\npkEQkoonEEewL35AK8bhwQROr92NHSRwqdZi+6qmUMvNT2RlbgMShfZRAMHcHXtbDBDVgs4zhEfK\no4Xlr9ctuWou3sLuTHjPzs/5xb/tOhT5eUESqTMgEZZ2YbGilAfWcKD8+yt7exwcOR6ArT32Xxfc\nWmnOdG9EVAjck53TXqljMvBp1QK8N3rETz10L9a3RGW+WAMSVtmUEUYQ82f1FWdPXBpTTyyR6kOj\nSv6JYULbubn3/QAjHsTEjHjjkTvP0eMh4/ah+45eB5OQSqpRtvJo9PLXmxWXqte065CtXvBq5LpS\nGQ3tQtD1y45nieui3OoCZoJpD/fdfP/C/SO+ovbzHZsSvua+a1jPaIcS/ilLmlIvtxb0vDP4uIUw\ne3WJGbr2ZfN0SzJwaVe7NQRTtxiEkp8Pm+cUp5IBiF9nPHKtyvbijNGxBF7qQ7YCon3a8ZnSB2PM\nzBjz140xPzDGfN8Y87PGmD1jzN82xryr/84/yzFuxs24Gb+347NGCn8F+JvW2j9njImAAfCfAL9o\nrf3Lxpi/BPwlnEHM/+do25bFYsFms6Vte1OUYBe2tk3NcCpzkr1jRuK3DyZuvYn2tzz5huuV+2/6\nvJTd2klkqLSaNw2sJZl+Z98VspqgxQgmOqxS8lDFvtWarfrfTe6zVrUnTNyqvF1c0fSeuhYCFbsO\n5iNef92d01vzOXeP3c93VZzy9+aEvkL0HJi573ixviJq+h3dHWN2YHgpktNBm/DRddYfjlMBlRpG\nvFwruhm7z559e4/5Ur6aB5esli5E/ccfvMNHZ99z8xkGjAW+Gh+63ndz3RAo2prOE/70H3Eh5x+7\nc5vRI6kgj8fEU5emVCLnxIeHbERQy/KOstAuSEUgQNJganhDFoCNOhXv/OgVa8m6r+MtmeciiR+t\nLmhEhEtNuWMaTvdk/zawTLQbD72QwYkrtD289Yg3ZWZzVXs0KmiuJF5y0Hkkc0U8qytypWnx4SGX\ngqF/tI0569TReuDUnhfvP6f8gruBr37lm8wk8FKMDbGKin/otrumr//kmNekazEyUJ+L0Bbv0Ww/\nBCD0EtrUPX9Xz929qckYS9vS63yuVtKS3DzBu+uKkcHoFviCnlt3Dn5iSW85GflyscaXVodPgiet\n02A/o25+PDXnz2IwOwX+BPDvAlhrK6AyxvyrwM/pY38VZxLzT1wUurYj22bUdYv1VQ+wUIhumkYw\nn7vJ/tqbb3Ew6JVB3MUuNgVDYf/LouJAtFffLtm4+eNifYFR1bYVPTsgwdfxhl5IIspq1oSUa1Vy\nq5xWkuK1agtx59GptRaaj+nEt8Z7fEFS3g9GCa8JRHS47x7ceODhW3duwXFIJ7+Bx6M3IRNARhyP\n/OqUQtdkGsNr4lFcFBsWejhWDCkFvjr7gUN0lmdPODVCehqPp+98CMB3fvU9TDTVhNc7A9VQgqlZ\nc0kiHsXXXnvMv/6zblGYpg2jPaUoR7cJpTVoxYEI0imZuBHrRUGRCmzElkLOWodpyn4qjonvrvPl\nYoGJBTi78DGaw+35kk4UYW8YE7bu2InalG/sTRgcu+O9vf9o5+WxP9ojlGrS2HisNUfHMtsNhz77\n6vE2oSGSO1WTJsyEPO26nPbC3ZNz+U2Mrcf6Wy6daRanvItqA1cTvv7IpQQ/83V3o778hfuMjKuZ\nmGrGduHAYMX6CZlUmtqJTylB4lDpVeX7dDII3myfkmzcHK+rHLtw1++zYD+VeK90PMPwLlbXEaU+\ntbog4dFdQrU9q8s5k8qlW592fJb04RFwDvxPxphvGmP+B2PMEDi21r7UZ14Bx7/TH/92K/qeenwz\nbsbN+P0fnyV9CICfAv6itfbXjDF/BZcq7Ia11hpjfkcgxG+3ok/i2Aa+RxiP8H1x17db2kYrahBz\nvOdWyTfunzAdyXxDnYXwxSumA+crubE1K1WcV8t3iCTXZU29E2UZatf1E49AOA0zgCBza+T+NKKQ\nzHi+KallnCLsCIVvaLWTRF27K9odjA0ziajMgt6/2DHf3IT5hApbzXCIH+sbNx2mp0+mrsgUzYck\nku9uFhd48g/0rrck0jmLn5/z2m13nq+u3bUtoglZ1TtkVXzn1XsAvLAvaOWyVNsQPMGtVVyMRoZJ\n5VK0P/SFh0ykc5m2K3zt1l5b75h4RlgImySEgj6PvQTJHtDZAziQq7bvkax6Mxh3H++fnPDD54KB\nz2KCl5LWaxqMuktYg6fzHPh9ajPknjwc3757lwPNSzK6hRGWwbNjcgnpWOkapn5HorSkrvOdwEtz\nWTB/4KKN+jQnU0jfvad9bTbjWurRYTClERgq7gq+tudSpT/8NddlGZo5myvHTgyOQjYbqW7HlyQD\nV/gzt6aYc+laqKOUbAMGt901heu7WGFOeDohdkh4/HWKDWWec6lz2K/xAve81PYMW7vIxUTnoKjQ\npi8IBw/5ccZniRSeAc+stb+m///XcYvEqTHmFoD+e/YZjnEzbsbN+D0e/9SRgrX2lTHmqTHmLWvt\nO8DPA9/T//4d4C/zKa3ojTHEfoiJI0rVCcqrC9AOfe/2Hj/zBVf4OT4O8SQkalQUigYJgVpoXmco\nFy7PNrVlNu538du7Xa5QsShJLKFIUFWT0SpK8aMBF3JPDhclnsxQWvk4DIYj6lIeEQZKuXdUeY5p\neyHVfYLerkvFMoKSLnW5owm8HZoQk9PJ38BTPh0kU0yv/NwmdFI6mg1T/Cu3zg72Jzuh0HnqEIqv\nkoylYLDbosUs3HXEC58yk2BtlbMVkebebXcO4+aILnHXP52NQPx/E3oYwXm72uBLSLUVWY2kwIvc\nvKRpxMdcrQiqUHOU0envboto9VGUMgjcdQwbg6/ro/NAhduyaeitNwcjFXOHHm/su/rEgzszRkNX\niIvmAVZK0cHkgE5KTlhFNGWNN1Q9JA9AUUVRt7vzf1AZsnNXsN4O1OLF4g+EgA2udjZ2eRfyJw/c\nznzYMyqrDd2p+96rZx2Xjcvxj5oJnvAr6xdrahnppF0vJDuiqdz9iKKI0BPpbB/aXqS3eE5bqC2r\n2ld9dkmgCfInA7xQxj+bLZ5UvFPzJfLi99ZL8i8C/7M6Dx8A/x4u+vjfjDF/HvgI+Dd+ty8xxiOK\nB4TjAdtX7iFuypowdA/pyfEBD47EfOzMTnJ8rZfca1sGe70UduHQMsAwNdzZd6HaNBwQiEJ6regs\n8GJqqf4ur2o24hQMBoZpDysehFyowm+lvluHLUXPmKwzPMnEb+oNTSOjV5tiRUtuZNvehlOMzEZM\nNMWWl5qAAKsFzgjnYOolvir1vt8SKZUwYUUnmGxzUXJH9ON7F+5YH74asj11i2JdlzRW8fxRzOLU\nvYRN3dCJdemrzx+YmnTUV84/rlZ7wYBg6F5CyoJWgKOu7SvdAWF/TcEAbyTDkmAEqRyQ6hDTuDm4\nc/wWAHdfy/iB4OHn22LHYbCdwZfBbFs1NL2Eu4q1XzmZ8PiBW1gnsyGJ36czAUYYg8CPsJqwTpV3\n61WY3lgm8unEpYhiMMILMLVkktBbrNWFGFquRdG8SlMuc3cdnsl58Au/AMDgrrv+YPsBwYfCkyw+\nIhJFP8taMoGXglsn+FoYfZnXBOWQtpDatV+TVtpwtjFN711ZR+QC4ES1ux/WlthbsgEoZjvMiWk8\nPOl7dukC+2PW7D7TomCt/RbwO8Glfv6zfO/NuBk34/dvfC4QjdZA4xu6bU2u0L6zLVHswrqfvHuf\nVoq0TXtNpzairzbPOPVJVXyrmpKpCCxHe2Me9Kty6BHrcgdy++26jrKUuUdrMLIyX9DBUuSZxtD1\nAh/adcr8euf3ZwOPUmYbl2cbKonEbPYyBhcuFE32pQbdeLS+VDkvtpi5fl94+EpRyN0u33o+Xd2r\nQHfYngRj2ImxBmkN6kfnKs7ZDmoZDDZNy1bGDouPKtYLh8Zru4ZaMm255O98m7PXS7u1OY0kvMzR\nCDLdE89ghacIhbz06ks6FVe9utpJsJmuwSrSC4IBiXAdnpyRT46OCFLHnMyrNbUiD2PBE4y5MxWd\ncCY9M3A/nROplRtuXuKJGek1Hp5g5d7mgrZXjRWK0ZQVpnE7rfWanTVbFCa7tDI1LYcK8+8k7j6u\nqitKtf2SKsIL5fVpYXTHpQ9N7VqPZrFP1brW8Cb2CV5ohz4OsWpr41kqxKRcuPu/MFdYQd6NV3C9\n1jV7NelE+hr5Gg8xgXv8x7pjVco7Iggx8i0Z3p3SXDlMSreaUSeuTf5px+diUTCAj48JU/rU0sNw\nNHcV1LfevMtMN3xbN3gC2URS9pn5hkqGsDEhU3UODscps7kLNX2/QsRHJjI+LRtYSH64jT2KZ8oz\ny81OqCX01ww2MlERFyFIJwQjd6IH/oCVtAGN3+BLM3AQgVUu10kUw0Ql8pGlymqsVKG8boiRgaqV\n2IoZp3iSB7JtiTfozV9rGl2IF3SspPo0VmU92Z/Cj0T1xrJq3UJghgYv6sNIg68as6eXNR1FTPfc\nNc8GE3zNcZhGOzt7G1QEklTv2XkEBk9y8bQRRimarTI6pSGeGe7wIKHqNnfvPeKrX3TV9P/r//k7\n9IadtrOgTkMShUzUMbktnEowawnlrNU1DUY1miAe7WoR1lpsLCp5rvMcdhilY23XYLTgenG4u2dd\nnhHN3WIwO3bzFjUNw9Q9h9EgxORafGlBpjtB4r4rj654GrpFYXXtY2Xsk5xXlJkUnB+tqTfu89mV\n6wxts4Zp6s59Mk1Bna0qMkyLfg47TL/YC5C12i4JpfJdplt81XD82YJo3AP0noOYwp923LAkb8bN\nuBmfGJ+LSKGzHUW9Yeh5O9hxFIZ89aHTZTwep/hXbkcPD6Z0jUgyI7ftRgTkWl3XG4u351bGYTwi\nFmmqqzYEqRh+jdB4cUOxkYJx2PGkcNXi/KogDvoiX85AG6GV8/PJwy+zrhzjcLheE2jXfDCMCMa9\njbrP8OShO7bOt4o7qBVqE1NeXOrYNX4i5txAPpiRdTEq0Gyinf5g3uSIT4PdhLTyXTz70O1aR9Yy\nFyT8cmG5Ovt19735CCubewOMBiPNnfrjRc6e/AiCQYK3pyJpWxD6iraMh9/PpyKaNvSpldrZ8BpP\nMHVr7c4iL6SkzVVIjFyIG9shrz924fc4DrlQBNF1HYGwHKEfsTd1O/dcyEtTpXTqDPjHr2MUeplR\nB0bGMX6K+EXQFyLbkE5RjjUdfZukiX0aXzh0b02YCWId9HJ0Z6TGpXShtyBVFyXroDxzz9N17Ob4\n+//Hcy7ec8dbDlIGYuveGnpYCZ2cnq0Jtfs3Kqjuj2eEYxG7ksFOzTntOhrB7Ts/wEovoZHLt5fW\nO7vBWQgzRaT58wZ7X7qi6306+sjx043PxaJAZ2nKEhvDSKHj/vGMr37B4ewjLwKZtGZ+yPrUTcpS\nL3FAgh/0nYiSuXDyYeuzLNxisjldkEl8ZSixz/k8IFEOWW07MjEKc2N31e77yxlXFy5vG0zcpH/h\njUfkMp31Xi7IBKm9N40Zz9xLvdkMsTLvqZS/NhcF45l7yA/3wTM93LqhlhPSlWDL598+5dXu36c7\nYE7QJXidTFO7dOe32T8wdVZzLLt3i2F96cLZvLkiVtjdlhGx2nCIz9HkPtet+/f3L3KyxqUld6cj\njh9It3AwwOjFqsUoXVxmfPubTkfwo3KFJ6/I6TRkpk7EaNoRdK51OJeu5mw84yBwc3V4NOfJD891\nzh2xlJWOjob8sfuO2v36fZcXh0lCp7Rqsy7xtSia8xWBUoloOCZULcJT2oIXYvVs1csNa3Xp1kXB\n6VJtW+vT4K67XLlnZbwXcmftztkMx3RyIrs0FVXh7sO3fsXBoN+9WNC/fwsbc1eCM9frkGDW58UJ\nZ+pWnZy4axrujZh6bnFrV+udHqcfz2nUicg8Q6ZWfK0W96iKaEU3TIuOUt2e8rJipWN4nFEuf+9g\nzjfjZtyM/x+Oz0Wk0HYdmyxnEG8YqmB2/2DGm1LDnZopm4mLDrarKy5VzFpI4zAyPmPtpEfpjFGP\nkqVmeeWiicJrSGSrde+Lbtfysw6/L2p1Hodnbpf4wdkZS+2E0yYkHiv8V3X+5//4Vzi/kpKv9z5N\n5na5Jq0or933be5ZltIOWKswdJ5tmKs3/2jV8WhfAicHCe2Vi1K++8PfAuCD8w3rSqHs4QX7xp37\ncJAQKCz165ZSVfa10qeuK/jy6+76xmchV6cuUjp/3u0KrfE4phZuQJKR2LnPtaKNb773hHcHbld6\nOJ3ypcxFG2998afgyuUuW8nfPXnyIecbt5udXzSMH8oTkg58F21l2ZqgdX/nieQ2iu+yd8fRYn7i\nD73Ft/+RK7qZBkYqbN4+iHn9rosmhPMhX8bExxMd75QehvH+h0+4hYP8noz2mM+kZdArW09GZIr4\nFufX/P1vOam4D06veXLuzn9vdszjE8HJO2l55CG+fDUvi5yhis3Gi9lcyIFa0dPXfvYtsidSc25S\nNrlsD1NDJu2MjWkpVTD0xHxtOp826QFNOWaiwm5jyQWheHXWcClgVK/zGScjZhIOivdCcj2zYeyz\nfu4izjgew1AEwk85PheLgrWWpq7pPMPrkj3/2XtvMD92P/szj7Zx4dW2uOB65SYzl6JRGmypxAqb\nzlKO1XEo85bVVjl3mbOt3ctb/9Dl8sttQaowMxnPaHubeGtZqU013o/wz1w+27fxDvc8JjrGqjnk\n2jjm4+rikk6h3bMXCwpJv2cCsZQFBKpOv3+54dFX3TmP9n+eMnHX9Oob7gF91VQcT91x9wNDFogB\n1zRYK0r56iWZHoogEPhp4HEkNh2PDS++4x6Oqy4jVqoUbEKs6dmM7nsH4TFroQA3xYajWjTzWUeu\nxc2UBb68KqqFy422m1MapVJHexbU4r2MC2zrwFJHySFz1QwCITaTaUM4c/f07bduE6eqRVQeqVb1\nu/NDTg7dAmflxcjcUAbu+vL4grUEbIbpGxzK59HaKyrJwKehO986O2Nx4eb+6WLBOHW/f/AoYE9s\nx6ANmY/ccSJ5TdZTGP6WUJNpTFLK0JYG33OtyNuP3N8EyYjv6RkZFhPOvq++dViRSar+R8stq96b\ncuLmde90xPMDN4cnace8cte36Uqebt0z+94PcsSk57FEWELvims938moZPhxc2mnMdqwxu/BZ59y\n3KQPN+Nm3IxPjM9FpACWpm2grXj8lluV337tmHnkduP1ds0v/T1XzHrn2QueKAwcCuv9+O6Ux/Ja\nHE/2GMRuB8qur3oyHNlHK54LhLOQvJbxOiJ99u7shDuHDwEIug8QFJ0q7uiEu99cCptwdIuXTwTo\nWXaEC0UpbcCycCHlN3/z3Z3L1IXCz/thxPRYGPhshRWPMp6/jWncLnZ34MLdzaJkc6Gde3nBpaDE\nB4Mxs4nb5d6Yz9iTB2F8x53Di+0FVaQd6jqnlQM3z3MYCfQU1ITqpMy0Y2bLM4rO7bpZVbAv/ctZ\nMmLgu890jYfp1ao3LsIYmTFHwueXfsiHH4g7EAVM7ijUNhWDsduNR1OpZNuYSOYso/OWSGTao1t7\n3BJY5da44dFrrhgXLNx9WhRLfu1vfgOA1VXIU8G/f+L2Pidf+BIAXn5Gl6g4PHDPkOdFrM6udZ7V\nzq15c9ayqNxnYxvSiEn75SOX2pVBhzdyhUQGHRMZ2JjLkFjpqI3cbr751jmja3fuC69hOJBhTptQ\nJe76VuWGB5777kcP3H9f/fB9PhIEfZnEPBYf5eV1xllY6T4d7fg9iTA0Xjrg8tJFK3fPffZuud+f\nba6IB0qfzB4mV5T1KcdNpHAzbsbN+MT4XEQK1jrR4a3tyJ/LY2B/i526VXIQTHj7rpOdunv8Gu89\n/QCASGSexK55eOB2lGkc0CgHrtuWw6lbjbP9msnECVuuhmpBdR4MeyThx96P6VFCJauwzEashWhc\nSTLMtIZWjMJrzmhl3nEyHPFQ0NfE+nRqMxWq89w5mpCK+RlX+8zGruVar9/HypzlJ3/65wDYP3mX\n9bn73WW74PpMRCsvolMfv6tXxK6cwe3UFe3O37vmm991u/VV1WDlYVgfDPCljl1kJZM9tyN+8Utv\nAzDJt0SBbMkGGY/uu+s4bhNm+iz1mnzpag2e8A1333jIsfwv/XiPh7edDkGHT6I6D17NQHiB0Ujy\nYvmK4kP32ebylCMZrrx2vMexrumnXz/haE+Rgjw35vYO9bnITgcnPJbJyuRWQimbvnGZQixUoPwV\nw6YEqWCnW0stpaeT2Zi51JUDSoz8H9OpPEeCkOGh22mbj8bEa3f/wsGWeOauBXlTmFsdF4pCl6s1\nowM396PC3zFmjw/nzO65Z9JKHrDdHrP5oSvEJoMA8fIwo4qHkbv+LvB4YF1k0kpNao8Bjc5zOkjZ\nF8S+7QpqKQ/beEmz/oOIU8CBVqptwZMr90CfXaa8pmLe/OA+bz9wIhWbVc7JxMlsW2Fez+87AAAg\nAElEQVTI7TbmcF8Kz6OOUnLhkVeSJKpe3z/BCrRUCwbt+zUegsYOYq5zPSiXA/KqzzvgQpTjczHn\nmuqCUTvS8U44e9cBmdpJwcEt9yBMv/YV1qrmWz2A/mDFWPRrr45IbqnKvDil3robPT12L+nbd2ec\nfddxA8IP19x/4NKAnCGBFiSvtgQSmhlLzstLYs70u8y2HOnlnccpFxcu5K+KhpGUqf/oXH6Wjyyx\nVch5MCAQPyTBw5coTVtlNJeilEtYZjga43l6WJuG5MT9HMcjEHQ38GKsFg6vt0unZHPuCr4P94/4\nkrQt357e5YHk1u5Fc1LdS08pWGRivihRk66KsCqw5uWG8tr9HEQWpA7dYzo69hERldF0yFTzcr0u\n6IPrKEhIEnf/TNCbwuREYlcOiOgmLszfXNVsLsQVUQeriY4oA/f8dkOfrnYHnBwNSQWQ8g6O6dQp\nq4VBGA1L9o7cdz04GBEJ1PTq2SUj0dZtVTIV52FPnpmbrOQLY/fz8WsHdEpvg2jEUjyP2MY0Pa/m\nU46b9OFm3Iyb8YnxuYkUfD/AGIhUADJBTCDV3viw41DYg2FkmVY9K09x+VFK1KvhWounldZrNyxr\nWdRH4W7HS9RCI/wY5UYYEwQu9DsaDVlJmHWx2u7cqGt6Y5WCYM8dOx3t8URmMMNhwVZGLLMkIZXQ\nRTBXO645oZGPZbu4phaHvvMDjEJCEqUwwwG3/l/23izGtuw+7/utPe8z11y37nwve2B3kzRJSdbg\nmAJlO45hRw6gGMlL7MSB85AgQPISv/klD34IEAQIkLwkcBwkluVEieQhhhPFpuxYoimSIsUme7jd\nfae6NdepM+55rzys7xyyBdvsNhO5BdQCGvf0qao977X+wze8+joAmzubVIisleVklTvX/OJ8jRdY\nIekaD87nEhaJDeGmNBKWAZO5C1Fnk2K9HHg9V2S70d8gFbS5tzF0no1ANluuQ9Eqt6w04mIBB9qi\nJVKrMwwMHUHPvSQCtXjxQpqrlRemNC3mz2kEMR9sW770+YcAbIdbbMmIptsbsJDsWyRZNc//vuo0\nnZqKlfDuiJ7YrPUsI5M3RCspuSCqaVeRZW4YKq2KsFjpEITGEgqy3izcdVk2I26/6s7v7uUZ//jr\nLuWZ1TmLyqWxJpIU3mzME0VEYadLIZu3ytYYsUcjZiynahdKBdsrWna2JZaz3yUVzHlvO2JL0Vbc\n6WPG7pySROlv5EGjSGK84Eq6CYugBD2HZV0SDaUA/BHHJ2JS8DyPJIoJIshk8jryGxIlV37ZYtTn\nTjsRRkapkezgm9rHkxcjxicUb6HxIpiucPkNsZR/A+Xvcae7FgtpSdhRJf/B5jbHJ+44sggC0YTN\nYkVPrghq97uDzd21ss3585hiT04tXkK0I8ERMQCjXk0jeG2+HDtGozsSVnorGFdN5son3rjn/u7G\nAbUg2PH4jOBCzkReQhOvQDGib18sKKfSnYxgKD/O9O4tjg5PdPwXbIh16bcSgMlTAs+9EO1kRqJ8\neH4yYzF1mIT+VkKgvv9a4b6a0MxXAJodrKDkJumubdKtl1Gv/EhEp/ZLnyYXc7LoEMlXcvelT+H7\n7mLUpcWfKOZv9eKGDSi0j/0UU63g3/WaBZmFCVmm3/e1sPS2aWe/A8Dp6RHDz7hzDcIGf8XAXBhW\nqOhW7MMgjIl17KOuvzLcoix9FpJwz89denn+NCd/otRgA9oNpS7TTYwWpOmLKzoSg+lJ0HLkVVxd\nuMmr70V4ivZ3C59YtPyN1AdpjzYXUnOOfXLhO7JFQyE+yslyTiKuSLfpUa4Wvo84rtOH63E9rseH\nxicjUjAe3TSl20uoZXnWhCGNWUl0NQSBQv46okWGI1rxs8mUzkBFxBqQz2FLw0LVfr+sSSLBhtXv\njbweRitsZQNqCXJsjPYZdd1qdXx2xXK+goqtnK236IxUrLy8pJUYzIuzKWeCFW/c6+FLnMMXuixr\nA+aCBGdRTZRrNt9KKeV+PT5zISkXNcnIhaqbNx/iyWfBLGsSFQkLP1vbrY1lQ/7+2RWZClJbfkoS\nrqKimM6uO85wHNEq3WpZdRMMYSzmZFHRSh7NDxs6266zkcSWZCCWpIpv7WJKrkjC63YIBW02VYxt\nXWGzLX0qaUWu9CLqWcNU9vOHp+9y9MJdl1dfs4TCpyyDc6zOJZEvRjhKSeU9EcZd/FSEqE6fRqkJ\nnk+2ocLkhmDOoy1GLznF7/dO/hELFfsO+gcEQpxar6RVWrRcuG0FkccQpVVel0B+GbvbIZkwLhcT\nF4HN2imntViZFzBqXSQ4GS7wpir4mojuhro5SnOLmSEVwzH1evhb7p7tmMKlbECcdAi3lB7MZX/o\nx2ujl3HpUQ3EHl5skxn5ZkYVWfZ7ZAbz/+XwfZ9+f0gUh0TyTCyXJc3KsGNW0IQrSfICdAGLmcv7\nSjKsbmJ3a0ClirUJI0woERUvYKkXqBeu6s0LWt0YW1ZYQXDTNMWXjHzdAsK7V0v38xpDk0X6PGB6\n5S7jomh45djtb2sQ01d+2YncwzOnYCl9yXJhCRI38fjViKpx23jnbTcphLMQ03OV7rvzBV2Bmqzt\noAidRV3w4ty9kG+L47G8WvLSXRf6379zwEzXsJvP6cj81PcNoXLV1NdL3vHJlLO2cYm9FC4/DmkF\n157XkJ+6F0DdPcr6BMYSnwlTfPkqmkVNIwWscrokFwV4sWJtxiUXSwcKOl1c8J2xAwD9RDGlIy5B\n7UE5c3/nW3fssV2CPrftHCsAFPlsTTmuwoSFFoxeoXytiLAy4ayaCjtx8G9/p0+gtmYTptRyi2pl\na2+aEivocj7P+OmfuA/A3t4+rURyQs9NrP3NAHMi5aU2ws7cdbm9UePJsDgcdPHi1QKmzklcY3bc\n/W2xa4OXZV1g1REyQCBJADzpmMYeS/mmtknL8syla0WY4imFNm1EVzT5jzqu04frcT2ux4fGJyJS\nsEDjGRZ5Tiikz3kbsVSI2/FrfPV8y6xm0bjVOFeF2A9yPBVv8uUl6ZZITjRcTpWCVAvKWgrN8oak\nqLGVYLs2ppbGXVnERNIeqENH0gGo1JGY2YiOQCPeRYinynJWZ7xYulXjznSBp5Wp7Wkl7XToj1wo\nfuVnXLaS/Fpe0fRlyrLq//94xLB2YKvW83g6cyvbMOrSFi58nl7M+fahiybeEQah8Gru7bpI4VMP\n7vHr33UYimdPl2TqkkRpircy1BFjzxY9zhduH/1uQ3/ojtO0KU+1uj9+/jYjkaZubjlw08aoT08C\nIVHagpVhSTWjlvJzXbSYSkW53J3zc+acC2w0rS7JcnccR/mMgVKC5mTCQLDj3rbSNS/EKNBrm3at\nSm2XMeV8xUo9Z3wuqzdFa91oi/MzpReDGGUE+Ck0Hfd9kTXUrVZxaYXO6oRc970fdzm4IVn3z30G\n77ncCzoqLj6BpSKUnYGldY8py2VBqRSFBBp/9Ry6r85O5yTDlcdoRWjEYM06pAN9bwIaScm30qWc\n5SWlhGUm8wwRbQmDJYlddfFyBtsO4/NRxydkUrBUTcN8OWGuaO/R3jN+/KGDtg3CDkYtqbwuyOYr\n2Wu98HVDV2lHOy3IpfVfFwVG4XzhN6RdMfHUumqqkFI25EUzw7RCIOYzlkeip9YNfYlnXimvvRhP\nKFdU17ChXOX4c4+LTbe9y8Xy+zp5akgM+n1CybMPwoSFOipVPaATuAdrtOMmN7/okYtC3FxkXCzd\nhan8hoWEY6Znlyw1WQYKT+syX3sF9OKY6kLHk19QiV9g6wbJSnJcuw+9JqSROWxSd0E1Gt/3SLSP\nHT9gNHQvxfZdF5J225jBnkP2mSSgvnDbq2NDo4mgWuQUE3UipId48v4xRlL8myYhkvDu9959xsGe\n23YnaNgQK9MKddgklkZ6h01cIj1b2nJGobpMaDa5sevuT6AqfHLQoa9c/l47ohKSqSjs+npNxzNQ\n63cuX4tl41GL+Rn7I9ItN1lWlcE7db/zdC5dxiOPriYCr/XWTMWBHxN3JPc+8wmCFV/d3euksRTj\nlc9GvVby6iaWVsC3WV1QXGoxk0JWWeVrxyqvqUlVE8qNoSs/s71ogB/+HqYPxpj/xBjzpjHmO8aY\nv2aMSYwx940xXzXGPDLG/HWzEuO/Htfjevy+GD+K6/RN4D8GXrPWZsaYXwL+LeBPAP+ltfYXjTH/\nLfDngf/mn7sxa2mrmuUiWxeL3nl2yUyqt0U6w8jzsCVUiwGWCpcSG4DMW/ykovKEjY9aEukVQkYk\nTn4lN+QyKGjUUagxIO9KY6GVMrDX6bAUtDeTdsFl0eWFQpqDs5BKQFk/CGgyd0knZ9CVA3Nh3fIx\nDjqEU9dR8MuIhZyHjvzntF9z4f/xiSTmNq8gdiFwMTecqog0SjdpQ8nGnU+YThRaddyKGvoJC2kM\nnJ9ZUjlC23nLdKF0pmjIxYN478ptN7ys2ZJ+Q+EZxmMXNfhRyo0bLo250Q/oKnxO1LUIA0MoVmNT\nnpHp3kTeJkiKvbUtViIwXVXst4OUy5mLRl40J7x77I4t2nrBswv3/U+8foNEuIhwpZCeBFQrrYM2\nom3cNazbDlYiOPHAJ03kq6jj8Rcl0Uqmzm9YzLS6X4wxkQxg5gs8ma+s1J57vSFTMUaP6yO+/Y/U\nHRoe8m8+dOdij9zv7o5iFhOloEBf3YDKGArhJsgrcmFErIRu/H5MVLkTNBFYRZ5xGFMpWlxmMwp1\n0sJlV/uIKcQU9iqPvlLeoPKoBLHPugHhdOWC+tHGj1poDIDUGBMAHeAI+DLOVxKcFf2f/hH3cT2u\nx/X4PRw/ipfkoTHmvwCeAhnw94CvA1fWrlQMeA7c/Kf9vTHmLwB/AcDzfSaLGXVZUak49ejxU777\n1Dn43tn8PCA/R1NQy6F5hZJLdhIaiae2pVk1qTB1RZlJbakMGZcrtqP4892EQexWj046pFLNIT88\nYSLTltyHdgUxVmvqXjfhcuFm6/NiyoYEQ2edXS6v3ApbHHjMYreN6cStGJNnzxjtaDVb1Fy856KC\nbR+mQhZG8iqMuylnh+7nX31vzLmQmXdu5GuX6+PxFany4eENl7POLpZUrTuGZ/MnEMoMpzOh0jaK\nLGdhdH5Ch/7myQd8/pZbXTsHXZYnrtVZtg0He+4a+VcLwEU9y9a1U6NeTSbMQjm7XAUHcKNwmGvA\ntBWBFI1yrfJlxyfaUV7/bo2J3Hk/O5pwe98dU287wVftJlRExxJafWe8nKZdqUBbatUBTDyneCpF\n6EhSeuNLvI4jK5VZh6cTp36dW+jsuutlipZt0U49EZH8ToQREvZ7v/aYNw9dpBC0Pv/O618A4PVX\nHUGvmoeMX7jtTqOQmXQ28lHCTIWleuDjrV6PVTQae4RCKwZ5g29UP+ovsYqA2xpimQB5QxWpLj18\n1YmiTrQumjediEXmCtBBAeHHRDT+KOnDBvDzwH3gCvgbwB//qH//g1b0QRja1lZEvYhQ1duiyPn6\nIwf5/dmfepneXJXjqEfYdTesWUoS7NIwieTz2FoQxt/PfU5Ucb/yLal67wMVDvu7GwxWLk1xSiG4\n7rPFOQv15ge7HcpjwaYVvm3u9Ik1MW23CxY3BZDxEvJD9+JdzltaxbwbN1xxKjARvdLt+7w5pzXu\nYZsELbsj9zAGW24fNz7/gPTU3dhZ+pj3Tt05be2knL9Q0a5u8STjFcl6PB0t1q5PTyeH3Nq7B0A+\n2ud4LJv1pqVYiuJbuGs4vnjBo9Sd8/0bb9AgybvjY16cqB8fT1mcum14ejGrZcFZ49KckC63brk1\noNO5gxVDkbALmZimz11jvWimCHrBKGkZ7LhrvNXzeOlzKpINNrlEEOtwJTDi4ZuVeEuPRrjj8eWc\ny7fdIlJbw3BTgjh9sTY9w/jY7fuD8ZjnR+563nrt7tqFiY6lu+merY6MW+vBNrlVmhCFnLyQuU5o\n2RLLddR3oKjFyYKvftcdQxR46+KoDSpa4dtjIjx11c5FHT8+myMle3aDLl0dzuISJpogaCP6u5JV\nk0BOulUS55Lox2MqqLg1GbFMdIJ2Ad7vncjKHwE+sNaeWWsr4JeBnwFGSicAboE0s6/H9bgevy/G\nj9KSfAr8pDGmg0sffg74LeDvA78A/CIf1YoeS1C3dLeiNVJwno05evYcgNPnM+KbbgaPQrtqhTOU\nS0txPsX03YrRiUIizy1BptMwk3ry8vmEnvACW2K1dbwugcQ9qqBlOXYr8PnhKZ6ENg/2t/EWK5aM\nGHn9iAvBWb0U/PgeAPeHhncv3TF/59EJr+67lWIYue3u3oiIJex67+FDwr5+vrsFc3ecme+Kmstn\n52wI2vzGYJeOIs7jx2OWEvXYa2MieUNkE7eiduOKF++6/c1PF9yWj+D2bkBH1nqFgXom9Jug3XEQ\nMjt2xbfL7T4vPXwNgDs3tmkvFMJv36UvNJ7pulB98fwMM/m+GM7wlrsneTujFo6kLXyaUqHtwH13\n/o1zbhp3/ntHHrtiTN7tpvRjt78Xjx+RavXbfEmIxhu3MVKwruucShDrze4mwzecedDk6SW9vvAe\nisbCJKAM3T3bGWXsbLrVvX9ji0reGW1e0iryCCSgkkUF7773HR3POxRT3fcIOrufA2CWuhW/fOst\n0pmkAJuWrtqi/aZLKEOg2WzJttio92+6Au6mnVC0LnLb6Qd0VxiSvKQWOjfZiOgKul0Kum4WEEnZ\nuxv0KYTePH02Zbuj4qLX40oEuY86fpSawleNMf8L8A2gBr6JSwf+NvCLxpj/XN/9dz9sW54xpFFA\n4kfUkrduywW1Hvjn8zP2PQcvjTEY9eQTCVfYtKVTuIcx7kSketmMrUnGboLY2W6xUglOpNiUeg1N\nvvKoLDi9+ACAbLkkUY7XnsyJxEv2RW9+MavpbAr63DEM7rj0YNKdEZ8IKNKeczl2N/q2aMN1b06g\n6rY3D4iEV/Y7l1C48Do5lEDK8oKk5/Y7sh439VI9uWqoJes73LBsCwvxolB4XRaUgnMvTUskKG11\nXtITi3AZhqhBwcnYhdS78ZCOrNGPJjXb9ZFuzj42dCHz8jBgIfMR7/nK/HZOLK/F3mYHmwgDkl2x\nnMrVKs/WsuRzyZoPyojgXN2ZfsKDXddLT4ZbhKVo68uclf3l2aEUkQYViV4EU5SEKwZq0OJ1xYlo\nWmphSppUHZcqRPo27Gwe4KsrsyxKzGzFGO2SiRMR6e+zecTp2+5aLGbLNUXd+IY5ivmVotLf4MFt\nBxz71tkV6Jm8Kj2QGlingbwvbEnPnbO/FVCduGsxbyC/kJJT0jLYls3BRod6RY2WmpSteviqd0wW\nFTMB9fy6Q7lysqJi1n48kZUf1Yr+LwF/6Xd9/T7wEz/Kdq/H9bge//KGsfbjhRb/f4w33viM/eW/\n8StcLs74la84pd6/+8u/yKms3G0VrgVLiqwilxhKpR59Vczx1NtNR30iFVbawK4r7qUt8KVW7K/k\nzGxMI2aPLSwLFShta1kxIq0xbL/8CgBf/tk/BMBgcY5fu+La6OWf5FbPrZS3b72Cp0Lp4dGMyYkr\nlNbbKj4+ecyj9+VUvCzYeCA/AaLvk45kcFMGFk8MuIKWuXAKL5ZTzi/V1Zhm60hn5ZxsjKErGKzv\n+Xznf/0f3DFMfpkcp3NJWXF46NKc+TN5Hy6ecPjc7fvR1ZJTkZySUQSCNi+tpW3ETJUX43JaMW9X\nEYHFCLPQC0Jee+ik3m7vbLAzcmnMgeTDCjIQ2+8oO6OVld8XfvJLmNIV6y4OIZPAy4NX/wAA/cE9\nfu07XwHgl37lVzgSmrC5XBJoGbeZoUrlY5kLFRrkWH32U7iRuqJd6xWEcmW2cUEtbMxUhcHtqM/m\nrjv2ZeMx3JD93SDhz/78nwLgybN/AMC355t87dedr+QH40Nmj10quJiO19Gb8ZygELAmLdnW4vkr\n/YcAJPrSFO0aLxMQ0Fh14FZIXsDoebOeWT97Jg4JFOlWzLAqkOfL5dettT/GDxmfCJgz1lJXBWdZ\nw8WT9wCYnR9SykizZ4bI45R6vqCcrMInAV5Cj56kzDe2drihinMdREyPHZ5/3tQkEufweu53t8OA\nSA/rdHrO4+fuRZ+enVJKfKWuSopjFz6+/95TAH7mQQ/ju3wyenIIn5P5qRcSn7pjS+JDvjd1rkfl\nlba1uODWyB3D6OZNBoISB0TMxOco+oLGphG1VIMW+ZIrtdbCq4iykChp7rFcqg2nB4LWo5ILU+sH\nFJNvut9tbjD79f/bnd9tw5Vkv7NvufRhkpzw/Nhd74sry3m9Eget6chqPbUeU10XLxefw7YkZgUf\nb/BXGqF1wXziOhXnXkNfvcparcmhjajFGN1nyFj5fpUdY3A3uw2eMoqcyGlgXKg9vrjgO8rx33/3\nbQqZoWwNRnQVSm8MEwqlU1PP1RzmsxhfXJTU9kk0aQTxYA3jtqOIhWDvC9V+5sWSjkR06sZgVPPK\naKg9932+5Sa/xTf/CSdH7vmdP59TzQVB9ltCXRjPM3Qlvz4Q/b7OCvxIC5bnrxmay6uMSg6ytnUG\nv8Ba5NcLfawmaWtafL3OvhcRKFUMvSHjRi5pfLRxzZK8HtfjenxofCIiBWtbqrbg+ftPOHzLpQze\npCINBOjodPAVDtkqo1mx/QTKuLO1x8Mb9wC3Yty+7wp/fm2Yfcp9Xkwt0lahr0bwcDMlqFxh6PHV\nc+7E7vNb3jc5vHD7GLdXVEu3ok1P3LHd/eIXKEcu2ujOErbGqnTvLsnvukvae/8ufub8ChfPXcow\n6Az53B2XiuzuDJiNHQ6hc3tEk7noZtR3q0hASCH25ezJCU9E4LHVlPOuK3B1sohZ7ULUVTGpCANS\nkWjaxtLOXQQyKUqyXbeiZd95Hxu58zuTZFh45DFUz3vh1XSVEqX97z8klbX40keMu1oxy5ZMAJql\nTeirCOxVNZ5g4VleMZ1IW0Gu1LZbM9zU/Q08vKU7f1Pl2NoVT/dGL9EJRIhStPKV3/5b/MO/+f8A\n4E8bdqQP+aWXvsitu+6+Rnsez77nVscPzt35TdKCshDbcZBwSwXaURARieWYNylHO3Ip/0ARQ1Ew\nn0oxuzeksu6z70Vsq4t1KQBcLx5RHroUrFhkzvIeGMUJvjoGie9xY2cl++f+ftqWhNK1mHoNkTQ4\nD4MJV9r3oi7peNIe1XMchV2WAogFTY0kOWjLAk9gsG66QXblzm8qVfIfNj4Rk0JR1Tw+POb9p2+x\nKNyL4g1SBrrocXdEK31Er/FIZVX++oOXAPiFn/7DHMhtJ26h0Uthc4g2JJjpNwwO3ASxqRtAJyA/\ndyHza7N93oldlf2Vh6/wm7/t9Py+/u43yNXqmZ+5B63q3OBldTiqaExXOWna5Jxfujs2uZzSV3W5\nv+PO441XX+HhyOX1yQ2f4sXKM9AjlBHg6KbblrcIqIW5z0ywRizG/hG9oXsI33zrBXHfhcFSC4ey\noJXI32xWMC/cQ+NNXzDqida86XH5gXwt5GNQtT49aV7+1O09ctnIL64aGrUtwVALQbhC1xXGIIIj\nQTfGiFGI9blS++5qWTNWNf/9U5eCfWp3j0gvxSgcMrztQE/Hi3PS2F3v1t+nve9y+EffeAuAX/of\nv+K6AMC/8Ye/xJ/+wy8DsP/Ky/QDt43TxVMO77m08f1jJ5mfnZ9xoXSz10nwpeR1x/SwPeXqVxX9\nc/d350/d8V5VGVdKV3M8bqYO9Rk2HkaelqPYTcy3N/31i2lsTaj7t512iCWz/tqNPq/ccPd4y7h/\nq7RiXLifXxmPoboar93f4d3n7njOpnMGchTzJJB5nIe0qxc9jPCUauSdkKpw70veJCSJ0FAfcVyn\nD9fjelyPD41PRKRQFTmHj97m+O0TSNzsGwY+g97KWGTIydRV8qPA46Vdh1n4C3/8jwLw4M594kjV\n3cCnleFIUbVsSDE5irtsbLpVJ4xcgcdEUKjouDHbIDJuhu4+f8EVTnJ8UV3w9guHX6hat93hVkLe\nuJm4ww7gZvNk/ydplP4cTT5gW+CdBy87qfbPvPHjK1k+8C+oH7joZlTX6ypQnAhI0+2CeCBhlRAp\nRM1f80nO3IofdH3efkfCIvKPDK58JmJwVm1LUUnfoKoZjRxg53n+G2SC9ka1i378pmYwclHOxp1N\nwsQBa8r+FVa6i02TEAvjYVXsrMwCSSWwtbmF8FGUi5pzRQKdk4wXYl0+OlJHqclIrty92X25g7/h\n9n14VZCpqBgNRhy+7VKv/+lv/R8AXFwd8YV77rr9p//BL7C1KWfyTkWrCCLudEhblx5sy1K+2Ohh\nJbJzdnKJpwr/YBiTil05CxYEUgX/YNtFgk8fn1AFbjW2s4qy754XO+ripYpCl25fVXOfVvcsTmO2\nlWJt9AI29aZ9dnuTP3BPLtepYNLdmKlASmVjaOMV6K3D4Zb7PBlPyBQ5F2Jivj1Z8uTEncdJXZFL\nCd2vaow6FJU/ZvkxcQrXkcL1uB7X40PjExEp5GXOoxePOIvmLGXXVpuYOHWzcl2BJ/HUUTrkx3/M\nrbwvv+xW856FolmZqcR0Iin32JzhyOWZ3e0uUSqjEm/Vz03wVr4BnYZdoedO8wUPrCsImi92mHki\n85y6VTWyOc2Gy++uDsfEghLfTAbEgYsaer05Bz0Hu7390BUw44EPEgbN5z5e331Oog42Xs3mqnfY\nOatvmnZJpVt1MEzpyQovjGumV271r+WV8EG95Cr7Pt7CGFejqW4nvP/CHf8364ahWrzzD9x17WxZ\nhlJVGoXJ2rxk3kvWxJ60Z7GNBGsVMUSmQ9JxkUnS6yDtW/LYw1NbL2gLZlpBn7zj2r7N2NB54H6+\n11xwc9utgv54xEAF0VE84n//1j8E4Lfe/K475xb+/X/dtdr3738BT2rP1l5grYvMTGlIO2rPIdvA\npk+gtvXOzS3ylfBzmeGLHTuoB2wW7vcv5Gz+zskhZ2r7FlgaRaSdXkrouesZ3v7niQ4AACAASURB\nVHaRwrGZMl15hUY+bSuyUuLTFQ5jey9iJJHWRNDmZHOfoWD6ftSjvXDbtek2G7tCW3ZfppYt3LOx\nO7b87ccsxVotjy84Vk0hMOFah8HzGxLv96GXZFvXTE+O8U5zAikAU1dr2bWN7R5UrkjY26l59Z4r\nMHZSgXQoCVcXoW7pdPTS24h0oBAvStfhGivwh2fwfVXLOyFDvSlbvWPef+KwCZ+5ucflqStmfWXy\nNQCa+YRQh7nV22MpbbN8vGQkV6sv2H+FrnUAoUhdFOv5oIKT5/kYeVp6nZhWijFNvJKa89Y3JyQi\nkSV5nYVsiglbtR1eF6vvcuoemI1eyHLuXuKsLbh44SYFe+TjaZJtnxd888ztb7jt9vLaxhZbOzJF\nCaN1IS4IN/H6KwyEwYrzsXLLMqlPYF1a5gXlGjcQWZ9E6db2RsyicL/zVF6Lx8UVC/X8aUvyS3Ew\naIhX3RPT4+1//G0Apheukvqzn77Hl/74nwXA70B7IX5FUtLIyattS8J61dmQ3qOxBKm7VnEb0xPc\nvBovafUit3lDJDbm67fuAfCZg7f5R++4ZyE0LaFm6qwp8FaCMksHoOqYbC0R2FYBrbgPo3CDuwcd\nXYstUvEFI2ETkv2GyLqFI/Azmr74Jbf6eMttXdsZmfQtb0nabXHcxVeKmp1bxqL4l21GqhZFmIQs\n848HULxOH67H9bgeHxqfiEihauB4ZqjCmkZFFBqPeOBWo0EyIlLLbmeUsK1WTyvWInVDb+BmWlud\nkAopGDYecU+rsV9C8X3bNwBMFyO4LoFPHLuV62D7AR3PtcDaIiTouiJfP3Szto12KNWmW14+Ieq7\nsHvZHrIQj71TF9iu9j1XZNJtMarEBYMudiJLOy8A9b8DWdc1TUYrBF4Q1HhqozZ5S25dZBLVlk2Z\nnRw8k0RbMuHd0q3GTdsSqk03mT9jcezgw997f8KFlrw0chFYloXMxHbsewHlcIWKjIg3ZfAyy6hX\ndnFaleNkiKkkZFI01IrL426Ip99t0y5nOuaVW/XicslvHbqV7+47G7x220VVneQVhjuukDh9b8Lj\nJ2LeC+L7J778h+gOXaHZLiZQKLJqDfXC7cN40Zo9aPWI13m1JraZpMFKOrTaSPAaXdtoQqMQfHfL\nRTZ/7I2f4FsnfxOA82nNkyPXfpw3HjZ2x5kbh2JsvKt1yldSUC4kLJPWNKITNNOCecdtY2vonpXQ\njwlKlzIYAvxoBW1OMYL0N0uDL3JbT0Xgm3cr8Nz5PT2ccyFB17qxBIqWJ7OKvP6oWEa030/AaJqa\n2eyKumqppCREbInUBw59n1zhc5u3zFVlrTLldAEEtYxVwi6pwkSv9TCVCzut6VILmuvJKcrWM2y9\ncloNQaxML4TZCuY6eYfJUtiJntSdTMNE21qMc4apu8kD+2lu9KUGPDGUJ66+UA/dttoswJNkuT/P\nQHUJk1ta5X0rWXgbW8zqXnoxSLXXDvskys+7O7vEx+68L8VOvJrOKKVz2WA5lJnKB+NTTp8pry8z\ngsDte8+och5Drkk26Ydrj82ibGmvFM77Eb5ezlUu3xY1nuDjNA1GEN2qKWnilXx+y+BAOJIPnHLR\n3LugERvwt4+f4L3nJta9ewdr4+DxGCZzd21T9dr/5Be/iNG1aLIprQxoq1mDXd2/PKOVx2aj+5R0\nOhipfLdlha0kVDLs0hRqmdiUVs9WR25M+/d63Bi55/Do4pwXYnlWaYYvU6IQdw1Pnm1ipbVYYmlV\nH5vVGeen7rqdpgH78ulsxHdpry4wm27h8QBjV65mp1i7Mk6uCVboO/mKDneGLFUT29ka4pfSq5xW\nDEv3d0ftlKJayWF9tHGdPlyP63E9PjQ+EZGCtVDmNbYDQ2kkBP6QUMSR1rckG262Tv2IRrDaTBz1\nwUZMOnBhd7K9QxCsEFwNVj3aJgxgZXwij0qiHyCU0GKNtPeTluGe2953X3yXo1MXbVQrK3NbsiEY\ncOQtGB3cA2BrJ2bQd6tALxjz9vmbAPhCY3b2WmT7gA1HeD0V6/waK7EXq0gpDCuMzqPxlxRj3aqo\ngbWS8oJYvPlP7bi/Pz7q0Kz60tYyq12Ibv0Rh+VjAJ5MK16TDF2jc2rCPrOF24eJKgoV+6JuuNbC\njKIcX92HVFGT33iwskvvdYkl4zbPWprSrehVG5CoyBtIcZgK5tJNeHZYcl96Er1mTkcp3+hTJ9/3\nRhBRrPfwpzGKtur5bK25YQIPT1Dwxrc0zSpVXBGGKqwKfLYb4CXS4vAzapmvLJqSRmzbZialZQOf\n+ozr8Lx9MuZK9oR5Wa6JYvtbTkPjD/7cff7nX12pNjfUSkW6oy6nMqo5zRa0oRSxdyXws6wJhq5j\nFHu7+J0VQxesSFdeN8UXk7JQmlRnc4yAL9tbHhvCLCwjj1rWen4T4Om5/qjjEzEpeAa6YUBrG/oy\nMO2EJcFKLCS+JBN1eGt/xNm5e9Af7KzSiwHJhrvQUTLCpApbFzMnCQ/Ui5w2UOVcdQu/36etV50K\nS1toQoos26It+4sL5jNXfa5V3Y1Z0tPN6MYbjGSIemNnB09hbq/a5Nng/3QnKEUTbzDAyLDDS2Ks\nbMat8WglO28kQ96WpwQCcgVeBB1Jh2dTEMNxYEZUI7X1jt1+u2FJoPzVYDh95B6qSTJhqY5DP/Px\nz9x5j/ekeDRLQC/u6QLQhLxhe6SxqOj5zEkOAVEgb0sspViEbRtic01kdUVRuBch6NVsRu7FubuC\nh9cQiha82Y1px24imB/9PbLXHBTcNjdIxVO5vecm26hraRfuBSobw0oh2LOWVu1cayuyuWt95nqG\ngrqDSdw9nc5m+IJp+4WHpxb2eH6CUY0im+jVyM95WT//zo0u03ckCNsYOmpxeqLZf3bwCn1dn7mt\n8HqqfRmfhRo4TxcN1abT47TqnnkDu65lNF0Pz3fPMmmPtnSTpWk6WKUEZqTFpFqSSCDmwXCfd3qO\nEXoxK0gTcTR2NynVypxdfjTuw3X6cD2ux/X40PhERApRGHLzxg51VbEnr8W2XTCeuUJi7aVO4xoo\nC8OFRD8ePXUreK8zYkthIlUOCrtt2dLKU2/x9JCFVulzaRwm6QxfYaYXtWv34CQJObjr0oe7v32b\nJ6krNHZFEhp29tjeE5mnKhm+JNbiYEirEHW5HGN9t5qevuVmcNM+YkPAnN6uIZRBiOkkawOQVoWx\n7CyjkBZZtlhgG1dwY2qwEmwMcksoluDNXXfd7j2fY3GdEwvY1G13cdSw05VS9o5PV16YXV2r0yvI\nhSvAJtRa5U8XLbuSyOtbg/HdalNJfrhOQ8bP3e9eLC2VhGxKb0lfcPJuGsNKHbvjuiH72x9QSWfC\nZl36yqveezHjc4Jee9mS17alOSGthHnZ0ly5/Z3Px8zEIqyKS0LhDXw/ZzEVfsF3+5hmF5w1jwF4\n8t4JYwGH+skGe5JzHwQD6tBd51xC1Num4Zas4X/2pdtcKsocdHqEqaKl0D1PW5/aYuuBWLmPjkFi\nKqfHNTP523mdlG+LSRmpmzUY+gSKGuP8klTaC21kyeS3mVVTCnWxCkWs9dSnUGH6sizwhb2ITcZI\n70M03ENPDsdPXvBRxidiUkjTDp//zBc5nTwhWnzfeciqIp+0W2z9nAMsxUVLd6j8VDj11oPpU9cW\nsoMdwo67yYQpxUw2457H4sjdvN6+ctK8AQFIlvXVur2VTSBRq277ls+N3IX0t26ubuKQjtSN0nFN\nqBpFEPewpRBteyn9b7j9vDt0x/DWd4+4c+Q4HHcPPO48+Gl3fl4IAlEtJDQ7LnLekVx4k5S0Yh+G\n0YD+TN2H1Cc8V51kW9Trz4/xvq5ugIFMaVB3APc6rpW1tzEm6qom0rq/W+xkvDheMQObdapkFwU7\nG6Kohxskd13IvNALeHU651Tsw0kTgWoKi6pgVrtw/mDg49lK19O1+vaf3uBw4tqQZZizFCjq3eNj\n/v5fcV5CY3q0mxKCnbpH+7t/9zfYveG2+9Z7j7hSl6FcTgj0MvW9ir5au4HsAJ5dzfmdd90zsvDA\n1JJyHxnC0G2vtzmiI6et6ZUDJJnzGTd27rntDncYC2R2XhV4kUsVYnFDwijhNTEg87Km1n06yi8o\nFqoNeAHfeOaegbkYji/vtGyK7zAa9GmENp2dPOdCC9gkD7iq3DZmamUHfn+tHHZ8fsz3RPef1S37\nauHTn5DYj4dovE4frsf1uB4fGp+ISCEOfe4c9PGSbZ5/T5p75Ix23SqxlQ4JVbU+u3rMTBXwL77s\ndPtG213aleRUMcHrrnq7Bk/9e7+zwfZAVV2pMi/sFW0lFehmEzN2+87nNYmcf3duj7h7JbfiV130\nQJ3RCd2qG22e4ZltnYnFk9aDV3gEt6SBcCR2W1OufS69cINIfIdowyM/UZg7c0XU8/qErZtuyUj7\nHqXC4KAd4C/dKhAtjykEl9kUI+9ueQu/s1oZLDuh8BuDkFh6Ce1oh451x/ToSJyJdyqe6nPV+msH\n49vDknjqrlH/Vk1/U7wLrcrj03Mus5WIR4YkMZkuc6rWre7PpiM+ve/+Lg7cOW0OO5z33D2tPI+h\n1JXLr1f8k8+5axDvdbl85sLuRsW1782ekI8c5qHctWvvzmwa0xU7dtlM2d91EcnWDVfgnNKyeMdF\nXsFWyqbvIqRhv8OR0pXptKRzpVfiTKzcecHD++7n9z59ly9b94x8+/EYI6i3p6LzYLPDZ/+I42XE\n7zzmzW+4cP308BRpy9DpJWwIDBetPEHnJYkAd52dIZVSgjFTzhNFusGQDfEnEsm4LRclyxWWxSxY\n6H8aaqbqCNVFgVkRUj7iuI4Ursf1uB4fGj80UjDG/PfAnwROrbVv6LtN4K8D94DHwJ+x1o6NMQb4\nr3DO00vgz1lrv/FDDyIM2du7xdUi54MXTs2567e8/FM/CTh8wN/52669dzG+IJUcWVetvl79Ohsi\nPnXLYq1GhB9B47632ZLZ3BX83vptx9F/PrmkKwm2u3d32VCe3R/kFDO3ym3YgLs7WnVWSlBRi6dm\nWDS8TdBZXUafRlDUy8cv+LX/zcmGvXPucA5blaHvuf2ld/YJh67o5kURefEYgPlCDtUnEyaFW6Gu\nnk84K90Ktd3d4uWbrqV1Z7TFqKvVRsy5h3f3ud11+emlmdCtlZPXBdGlWz0e4NFI5uw7ubsmb37z\nEYVwA5kfspm683jQ22eZu+/nk3qtML2Syosqj8mJNB1KnxeCShdVy0ytysfPx2z7bwCsEZ+T0xmo\njnB3v8etvrsWh90F3a+rAHkrI0jkk1GJ+ZoM+fZvu2fk9MqSK1IqFufsquV489ZgLSe3vecihdH5\nBZsiq00mS+rUhTSPvnXGeSkBYN9jRxiJT/Xdv5sbAWGrnn/ZkEykOVFbjOQAjV6j2Av4jJ7NOw9+\njir73wA4fvcZISsnaZ9ItYZIEW81KNnd/bS7rr0OlZSebh3c4fIr7wBwFpTYC/lRBu4aZ/PF2jf1\nYdrnTJJvVWDYUjT8fFrwMVHOHyl9+CvAfw381R/47i8Cv2at/cvGmL+o///PgH8NeEn//UGcBf0f\n/GE7MBb8GpKdHmeZdMX8lFj4/L3oLg833UPz+f1X2Xvoqr4vP3TU5KDxQeaxVbBcwzrDyuKLGRg1\nHp3I9b9Vk2PYuUulanqaWvpKO5J0C0+W8eNHh+wN3AP28m2XrpxVMzLZ1g9nfYyKOk2du4kIiLod\nvvgzXwbgzqmqzZdj2qX73NnYXl/8tolpkG7kyE0axQI29l1aUkbn1Pae+74qiGRcG3UKIrEk68fu\nWo3fPsKoU2OAfYGwjibnlAgGO/OIhe1//a5jgF48K2gEoMojjwe77jjuhAmBiodxVFEpTWtVDesO\nNrgjFO2y6bAt3EQbJOALTFTWPNh096zsSco8tpxrAqwvtxmt+CxlzOm+20czrbg4kdTZLXfTbr90\nm4dKNeog5jxzL/fs/BIrOPrD+ze4JfelVPyT3Z19vvBpd67fff8Ze113/kV/wI2Jis3NOUIus7ft\n/u72nW2WZ+66PXn7Xc4lzbedpq7C7c4KcLf+Cz/98wBMTp/Sq50IUPUgw0gy/l/94qd5eM9R/pPG\n4S02bj5gJLGffHaK37prsbv/M7z0kvu7wdJSxCt+hLvGVeJh9SzYWca2lMJ7NuTgQJiGTsrR0ceb\nFX5o+mCt/XXg8nd9/fM4m3n4sN38zwN/1brxmzhfyRsf64iux/W4Hv9Sx79ooXHPWitfMY4BVeC4\nCTz7gd9bWdEf8bvGD1rR725vcjV7QTj12O26FSqpp2zJCOSg4/FTL7uo4MHtfQ5ed59Xvuf1vKb1\nFGZaH2RJTuhh1B9P+z1SCV/2P3vPHUPpIWsFvKhZERVp8xOWnqzhu1Ne/awTdRltulX35PyCvFQx\nbxhiV9bi+XINRe31+txJVSi9r7l3b7ReMbr9BF+iL9WsoBJmoRO5fdy+M0A2iHg7Q1Ix51q/wBMa\nzzY1pYRGL2JZ04U1D264COPtx5d4Qvnt7BRcHql91Yx5GLnze3XD/Xz7y19E9pk0nkFIYroeBFJo\nrrJLIvX3WzlKbyZ9Nj7nVvHZVctMVnmxF1AqhB0Oh3SE7pvP1IYsM5BY6cH2kjDVPcs8JCnBs/KU\nTAInjF3E8Fo8InjNrfIXx8/YkrjEolfjK508uL1DfyhBHRUfNzoJL+04y/jY91keumuRhyUPbqil\nOOixL7RhdyD/zPyc2dCtiafvPmdvx6UjwWaClZK2EWzZ81M2By4i8v2QT+26gumf+LHb9OWQ/tkf\nv0HaFZKxkSL4aAO/41b86tn7dA/Ufu9F3HnDpV2jZ8+Z6ZkMJCaTbXhYhTbnj0q6sXsuXrmzxSuv\nOZGg7sWCduAisr//NScr+MPGj9x9sNZaY8zHtpn6QSv6e7dv2qMXJ+TdlL564tEkodBTWkenPLzp\nDvXO527SGwk0kit/TWoW8kQs6zmtsP+ebUAVXj8N11XisJTOYOKv8fBgaCVYMZ+n5L57mHb3hmuH\noFC+fu2Tr9MmgqraCzyx5Ag8xJwmLmDnFTdXdmVqwxQamcbGmwdYsQvboMKv3EtWWIFqhkN8CX7E\nfoMn7UbrB3jaRnl2xES4iIvKdQ6mRzmbCuH3RzFe7CaN1ouoA3ctjmzL/VApj8A6D271CQKXJpnA\nx0jjsLRjlsfuga4i43I9YEWICEYtcaJqemfARiQ1oUEHLxRt2YZkC/eCTE4FNS8yBnqgtzsjujvi\nfMRDZjrOqA1pVLsZCf5eby8ZCRTm3e8jW0W20j5Gtu39/X2CVRAs2/p+6FP2BTEP7oKeM4+MdNPt\nuxMOEN4Ko0r+eP6Uk7m7hiFw67Z7Bsz2HlU203krH6XB668+X7GI3Fp4cD/gzoZbyHZubeDLY9Kq\nRmXChGr5VNfK0LLC30yJhu4aDepNujL1bbSSpYtDatGzizAkHrrP/Y2W0nfPMgW8fLDDxxn/ot2H\nk1VaoH9P9f0hcPsHfu/aiv56XI/fZ+NfNFL4VZzN/F/mw3bzvwr8R8aYX8QVGCc/kGb8M0deFnzv\nySN68RZdVcXDKGMuNGI87LOx4VbmJOzhq0duE8X+WQnSDDRtBJVszwMPT9qN7XKBr5nUrrT54x5G\n0SlevWYDEgekMonp73hYWd5nU8Gdk4pald6CCBW9CaIe1EolbIvvfd+oAyDc7FGORXzyDajv3LYL\n6mIlbuhW7sZW9G87dp7ngdmUlNpijq1EkrEhkeL84ANFGEWHzwcuTP5OeEQ9lv08M+aylL9RGJoL\nd7KZlIr3zQ6pbOZtW+J35Lp8YakVvSQk9JVuVFOlFGdLFlcuCugPDdHAhfb+sIetpXtQtJSZ7okM\nYkLj89qWO6eHr++wOBE5atQnUPQzSyEUG/NTEl7pzANqMT/p+gRKD+LNLla6CH4cYVawceWEZW5p\nLtyKb/OcnQO3ctdtTSLVcLICs3Chx/JU98GriRcuwuzvjmiNpNCOLrCFi6Da0j0rfhhhZO3WDW7R\npC5C9Nt4XTRv51NCdTiqmdtu45/SGkWFu3tMz13UF589wleXx48MRtcw2HLH4JUJdeiKj6PA8MXb\nLtJLgi7GbYJtu0sieP5HHR+lJfnXgJ8Fto0xz3Eu038Z+CVjzJ8HngB/Rr/+d3DtyEe4luS/+1EO\nIssrvvP2IdsbC7ZldLIz2FmLabShJV6xC+tgHdrZRO5BtASh+3ldzGiVJrRe5/svXrGkkWyQ50vi\nvY1gRYduYmytB9bbJN1yE5LPS0yeuZu/kJpP2L1F0JPJ62VFrFZXYvfxVvDgKscTlyKy7gErFnOW\nkl+P7I21JLklwSg8bioBq8YT+nuSbe/3MZle2Pkl1rrPxeQxqFJtxfBsG48zAZ2MSYiHq59bdkaC\n6J5bJheu8r2iJi/8yboe4puWQuzRZT7GSjglCnz6W25yXspAZTK1ZEfuwVxMj9lWXWYYdfEFA67r\nBk+8io607G/3egxV4R+/8LhU2cl2U9J9dz23jj2OxWF4Z+yu99V8yd6mu49JOqSp3DNSF9m6lhQs\nhzS1/B9VRyqyOTPpRy6aKd2FO+ZeMsRMJfJqJ2u9xqZ018ev+3jih/TihGcCNb353oxP/0mlHaWr\nk/hhgudLGzKqCFI3qY+fHzKWBP9wGdCE4mUIpNSEQ1p1arz+gMtD+V/+zle5uesmr7DT4MeyMRAT\n1V8uaVWLaqkYCDiWm4YiFJ19MyHuyVj4I44fOilYa//tf8aPfu6f8rsW+A8/1hFcj+txPT5R4xMB\ncy7KgvefPGa+2GWz52bBsq3JFiq/Z833e7PzM4w09eqJTF+Wc8pa5heVIdBK6dUFRgITnhfjST/Q\nhKuWwwKrDkdbZbTS8GvtgnhbfWxmfPN3HFjmW++6VeJP/amfpeu50smMjPGbXwXgC+kBkbT/mtLQ\nytq+Fm5ifHYEgfrRV1dYCZ0UWUUrfcgV4Mebl4xkSx9GHTyzkv0OqCUJllvD7MJ9NgeuANY0U3qn\n0iYIS1qFnCEBiSKdvJqRycU6XopEU5xQTa+0vw1qWb41cUGwsuFLcryO208y0ko8PqFSQfH86JSy\no+KvLUgiF84Gdrl2mPaE49i42aco3er/3bP3eXIsZed6iK+Irsn8tav2s7PHAEw+OGer71IJc3FG\no+0uJ0si6VWa+SUEsrUT67T0KzLJ3YeTEpO6wnRgWoJKkvjWo5X7d6POVj7O8Tdc9DqprvgH33Up\nyDcenfPvLZy0nFc7/Aqtj5F2p8Fnf9et0N/u/BpPvucq/8NbC3piv9rUFbDr6QybuL8bn09555uO\n5Xp0dMwf/ZL7/sadfVI5dtOsIsxmzZLMq5JSqttpN6LK3LXv3umQRSo6fsTxiZgU2rZlscy4XE7W\nOXkbhBgBXRq/WSsElfOcSqw8JH5R10vsqrc4CDCrooHXYBUem34HoxbgSqe79Sx29cBXBk/fmyAi\n7rsb1tQ5v3Pibv7Xpg4J+ccmnyEcKseP5jx6270gDz97zrYeWM/PsLHy9nPpKy5L0j3Zj3sey0u3\nvTDo4gtN2KzqIXVGOXEPYB41eKqcE0ItxmHdlmQr1SDta5GFnPh6wJY52aoGvOlTF2rDNZZBILFV\nqSNNx1Mu6tVlrUnFFhwmHfK5m5Bm5RH2hTgaytW/8+Yz+hvud6PuALqi8laHpGqdhXWHVm2C1f0Y\n9rZ5+5F7Gb92McXKK3PZ+PRKd59u3t7k8IX7PM7d8X7l/Cn3WpfCGNNQqG7Rtg2lLAEWvQWnzx3v\noMqUDswyZkqZNnseZuURYQxF4O4fdUhdanKSTmLVMRjVrvJFypHssBatxZfSkwlXr1HmBD4BPwoY\n7Lpn4f7rB3zw648AuPKhI0XbRsd7Vi8oZq4e38kHPPgDrkbR6S/oq9kfbFQrCVFqLXR1U2FyMYYT\nbyXjyVUIuefOb+My4rz8eMpL19yH63E9rseHxiciUjC4A2nLJZczN8PdPLhJJ3CrxKKpmQjbH0Ux\nnjTsjABEuakJ5MYTlBCNJPGeRgRSbvbDiJXmeCPQjPUDrLjmnoFGK6kNaurC7c8WzbqDkUhAZD5d\n0pXm3qSoeVMr/o/PThiuQuagS37lVoL53G0r7m7R1YpftHPKx9J+jH1MKomtTNX0YY8qVtHxbEKw\narvbiCZToWppSCVvNnvXHcMk9Lh46gqbl+clZ0/dOV0eXtCXNF1/6a3doy+lEzmYlVSq2NcsCWUm\n0vyA09Pk3NCoA8PIbete3CW+L8ej5hYdtXPOXlwxy10o7gczuiru+nL6eu/pd/n6m65A1+tDELnV\ncTl+iifsRFnu0lMRdyEMyXvPnzKeCpgTWZYzrdZtSKNi5OKqZPHCld9L8TaILZFC+zTdI1jJoS8q\nComh1MWSUvyYQvc6i3Iu5Ky1vKzZ9V1UtPnSHt2Rgyt7ZmVqU2D8ZP2dH8vufuMeWeV4MPPLlmLf\nPZNNu/IKNeTS8YwGFcORA0Pt9y3pUFqSUZ9cGA8zWFkcpNSNOhxBii8ezMUHBe8cOa5MlFyRDD4e\nqPg6Urge1+N6fGh8IiIFz/NIuilV2XIkv8bXb9yio1Wi9OH4xM38G7s71HJSrrTqeLnFpFphi3Kd\ne6VXHfybboVq6wmI1daoeOUNtjHKz20Q4akWEcYbq04f46NnnDxzK14/dDP/+dTj6F1nIffWeU2u\nKOabX/1Ntr/kZuVe08FKUTfQZW4jH2Si0om2MAeqYXRDSqEzN+8Jm1AWa2/ESbVkMJOIa7eiElOx\naWtaYTb8wv18Pi75jQ9cfjrLKkopWH/lG0u+/GNSGNqPWaysNxN3fRZjKOT7kHYalo0Ku+MlqRSj\n+52YpXAB6dRd+72DbRIJmNYmwyzdOVe55VKaZlvpBm3ujnksn8uLWc25Vvnnc3h4363Qy6ZgRy7Q\nW21Dorbum9bdg6+99xbPP3Cw89e/8AbehYsqZtUEX5HjqH+T0atix8YSlE2qaQAAIABJREFUkl3M\n8eUREdkU1CYuzRzU7q2ahtlS/iKq1djK4s2FPC0WvPGKw4B0B3v4sStG28LVnKx3gPFW4rFzKkWv\np497TGTmY9uQqlhZxrjtJtv7rKASUeqRoMhj4ZMLt5JNjqhU//EuheXxDNlcpLMmAuuez7qdcmPb\nRRtHEzjPfzd16Z8/PhGTAsbDD7q03pwjiYwcTs945Z5jRpoaFr67oaktqGWDvtDLHRSWjpRuvW4X\nrxBMtLukmbgwqg0MuR7SRhX51G/w0Isbh5iVj2W7wO+5l+z4/C0QzXZDYKSvPTvk7OJ7ADy/yEHU\nWlr4/PbPABDd2sEXe9IKljy5mhF3xNokp50JzlsG2EWuc5XLUQrFdEVZXuBFMq5N96hEOc6MYXIm\n89vQfTfvmbUMuW0t54IjeIEl7UsMJI4whSC2+nd032deyovQD5jKJzEJGzxNCh2vx+bKAUupWL7I\nePpb7vM4z5zvJ0AcUwlzUYeGwneTzLlUWA79Kbnk7DudluoD96IkQUPynrsWR8FjNgauy2MlNXb0\nfsWvP3HS+a9/7lNE6kqVuUdXIjLploeRl6QvZFnrJ9RiZQbDJZmk98qji3XXCdPB0+EXq1SybKnE\n4Rht+RwcuGeys3Obcu7k3QKzUlzexHTc4mX9TSJBtMukYCGbgPm2R6tu1MqoLO5fgGTe6nJKqc5P\nm51S1O6Arjy7qmHiI7etosKo2G6H6ZrCP2hj/Fbq3v6YtyWe81HHdfpwPa7H9fjQ+ERECp7nEfdT\nUt+Qqf11kl1QrXnqIZ6kr7IgX8Ob27GbatONLolEXDfv7ZMqZAxDqCQismhrrp67zz2JpiRxZy2Y\n2tbZGtNAlKyFUrPFc54/cu2t/m23Ep3PoJK9WOLlRIIxPzuZ8/b4KwDs9L9AKqxDT7ZjVxeXzD9Y\n2dsFTDPZ0dVQTlW4lE5DsXGFnbhzjqOIrU3HzvOSEO2OYjnh+aWLrHq6JoYFiRCIeIbXXpXN+naX\nTRUaD9uSXQnKrOpw1odQ6Y7xPI5zkbgmOZOpxEt2O+xKF2FDyNPlNOek71bx5VFNR9HG6GaX+yN3\n/qZOmS5dhPBCRdfqSY/Yl+3fwjDtuO8Pii52z13nG0mCXbrr0d1y53F6POE3/uG3APhzv/BHScQI\nTesn1GfyPZgu8EJFBVqN/Trn9NKhJpvNKTOR7ap5y82HTnsh7kNcuTBf6G9On51TyYYvGTbs3nCR\nXnhwg/zQpZCJtB5M38PTOut5XUL5Zdx+tcf/9avu2Tq7KjnouqgPibleflDRkelLhwhQm9nLOZ26\nYmy3O2Tzs67AWiq6rYsJvtCWCQmFisejW126pbtP8yDEnH00v4fV+ERMCsZa4qJgtBNxkbsTLk+X\nXEoz8eCV/7e9N421Lc3P+n7vGvdee95nuvecO1XVreru6sHtSuMJFCCYYCMHFCUfjJACwZIVCQkS\nRSK0/CmK+IBISIgEJFZIkCIzJJiA5Sg4HiBRgLa720N319RVdevO9555z3vNbz68zzpdF2x3Vbtu\n1bXYf+nqnrPP3nut911rve9/eP7P8zythXABhU8gBt/hTsOIA7Xc7vT4Lv6WArRViywTBXg9YSxB\nkc6BcwErPydfuxvFy1uEgTDp1YTThw6o9M++8hVuSSZ9O9PFKgv6fbUFj3vshe6hOVtm/OrbLp5/\nPt7mhhiQWrtumsfrXVo6RmB69BtMQxVTqI4f33PAlXsPz2nVYv8Zd6hUN1/OHlLosi1nK04OBQ8W\ndt476DEw4vILPZ5Thjw8uMfk6+4Yo5VPsqsKzkg5lRPwgibcibghHsBs7uNJWKSc1NTqriyzJvbO\n6MzdDf/JdkJHi5M1AXWl82RFpdVnJuWlM0rstngZlzXB1C0EW69ssb4lqfYWXH7FLWRv/1JPn1tx\na+oW1qOvvsv1z7prun1pn7otjdHlCun4EjVlmyrBP3LX9PCtFYlIVuKtkEot1/kypZB8gC/GruHV\nLpM33KbQiocELfe5IF1QnbsHsr7hAF1+9Dwod0JYUqmytd3bYqjqy+F0TrHr4v0rLznSF3O+vOAH\njWufWqzN1UnOoFF6GiUUgoivpWq2PPfotd15tgcJyVCYnNrgt6WsNekSFw0/0/uzTfiwsY1t7Al7\nJjwFz/PothP6vQChNml7AaUalIrVmragyUleEymx11LizIYB4dTtuj6lE4QBKlMhWgTanke4I185\nFzlG6ZNP3K5Thj6JZNrKxz0eHrq6//HJkrCUwIuQa+0qYCTxkkHQ40jceTy3xevSC/jVN04YXXHH\n6SROOr2977N+7F7zJodkR5KTaxtyZaSXUpEOs4DOyO0IYeLhpaIdm6w5Fzz4+PQRC7nlkS9SkEPY\nlVDL1laHTLJrY9tjLYZfU8JMjTSB6vGTZUWr0yQUoSeMRNXyiOW9ZXlNoQalxelUc1kzGKrDbxBg\nRDhTrc1FaDLNMg6nDZzafe/eVszJodt1V6aAF8W0PRhSf6HhOih57Q3V4RuJtuSYTB2lXzl5na21\nc/2Tbk2uxKW3NBQTycL1vkWVFzcUclHKcN8dI25HF/iUxawkKzSPTQWgtrQ7zhXvtwakS43PCyj7\nbsdvy52vjcELhIStU4pMwjKFz4Ho75bLOTocZahGq/G39D8NM+xaScLoCp6c3qofs1Lj1lJq1mkW\nkepz23FNHLs5CipzUeEobHqh4/l+zVj7gflRPnQLo8BubQ9pRaGiXiiqgL5utlE34kgx7vp8QShq\n8KFo2Me9AVHtLn7h5YQ0MOaIYiUMfzekVNVhqXJbuSzxxUu4Tg1LgW28rOLmSzcAuLa3RVcZcCPM\n+meyf8ny1Lmia6CW/HgRtslFOX6elSzX7jj3RYG+SLlouV7NCyqRrBgbkKk0morUkwAClUiroMIK\nrltSUehpq6joiN0pEcV7r9diNheIZ5bS+oTrZ4uCLXp/8D9wx/7VR1RiFjL3XF4j6Jdw38Wv7U/1\nyB+6RfF8+ZiWqhnJp67TETPUudSdqrNHLCTxHpQ+q7XIQ4/fAC2yyfgqlz/1PQC8fCCykasjdvVQ\nmEsD0mOXnf/81oRvPngNgJ/7yq/z9V/6BTeWuboWraGndnFjvAvlKM/6WPW8UHuEEoGxDcAtX7Ge\nN4K3BWjDqWx1cf2sB8Y2gsPfslhkMP1ewrUbbhF64do+f+O/+dsA5IXLZbz+1mP+n3/2/wLw1bf/\nJb7mYtAyFOpXae8FVLofcmlpFrOctUBfWQZIuNZbViRb4o9cpLTabkz7kXsubj63SynlqfkiYFdj\nSg5OefCqC3m+5/e/zKVrjnb+cz/yX33VWvsFvo1twoeNbWxjT9gzET5Qg13V5Lag3ag2e/4FaAaT\nM5QnQBAwVsXg+ZFzl/bHI2KJsAz7Hl7hfs7ylLXcq1nhcXLkVtVTdUvOTN1IHGLSDKtE4ny64ME7\nApikS67vuzdtX70BQN8uaI3dznz67pRDVUZGY4+p6vAFloVcuFwewzo3BKUbU2Sh1O6fm4paLmFD\nyGKsRyQX3rcBYbuBY7eZe5J7T6FaawcS7LgTR5S1c9XThYW169RLd58j/iduB86jM+oHqmmfOxow\nuo/whCuwr0VEuPBgu5qyf8V9x8HWZbqVuz7pQE1Zn9hhLQVqzs55+Nh5HrfL+0zO3XkU979GKV7J\ns1DJzvRFij3nG8dlyrZYl6ug4khUcCfv3mJ15jyEWgw4SdxiKA8yqHwC8R2WRU2q7T1dFxQCIZUK\nB/IyxxYCrXkWXw1hHj6Ns2wCn8ZzbuRTyrSgFO5l4a2YnTqP5nTUxTQcoUrsFuenPDj9ujv3u0cM\nc3du4fMhfqhK2Qr8lngm1OQX7nXxxWY9X9dY4WWKbkEkqvnjrMC37prkAkhlqxMIXOi6Y3PuiGfk\nxqFlPXHf8e5Xfo3dPckovk/beAob29jGnrBnwlOwWEpKwsKjsyNIbTuiW7pdaZqlF0ScV0d9Xrri\nauyfveogp1e3+rQUW0eeT6FVt5qsmKdN41LOLeGf44cuWRZ4OccqZQZ+QKQS2qoqmIrLYL+zT++y\ndjRJnnUWEIid2B/36CtGNHHA/JJwAWcB+cp990qcDbkfMpKgrQ0qVoplMyBK3O7hq9ZsQo+OdsGR\nHyHkL0m7y6PUndvd22c8aAhr526XGF++wkjeFuUxuy+5ZNjDzGBXKofev0ctb6MUC9DuakgduSRp\nsbxLYt1u9Jnrn+YHPvmCjj1h+7Lr5d3dd95D5YXk4oC4Mx2zvH0DgJ/PZ/zzxZcAOEtnWDEWbR25\ntuftEvo7TuwnyXtMBSiw1uf4vivrnrx7SCncQ8MK1ev3eE6M36YdsFLWbhoV1EvlD6qUvGnV1i3e\njVoY2/DmGWLlJVpFxVJ0c8YEzOSpeaKNW7GiUFt7XUKhJGe1KjHyZFMxWJ9P2hS3pJi9KshaSlrO\nduh23AUM/Jpe2+Vl4lgly9GQXM1aizC6UCMv8ilzMUhVBz3GK5VfO+qRLiaslTu5lo642lPerTqh\neN49I/1pzPLND5Y3fCYWBYAai99pESjDX2UllcBEdZ4Rq958ddziQBn1bUmrx5VPR30NcRVQNsku\nQuK+e6Bb50tsT3yF8qayrCBrSEg8n9QKHmxhIWnwO6e3eKl2yaWyUYUaR3QEXuo+b5ieuof37tRS\nLKSUPWgzUOgylmx92O3SFZPvNF1S0dT6DUPfndRgy33XoBVRKyk5aveJBdeNww4TpcF+8Rd/jUWm\nhUfEJPOzE65eEwFMVTMNnPLQzb2MR+VtN7cnESPjPpcId9AuM/YG7ny7peGmeP0+93tucnnf6PU2\noSjdko469nohZu7+vrc1ZqYelMt7f5DrCvN+4e1/zsOZNDLPnXv9mRd+kESkJ63QYxm5rP3J4ZSj\nlQP3rPPFhTsf6r64cukSO2P3Xj+EVKrL7SznKHcL5LS2lCLdCQVRHnUTBDGgGwUMe26eD+KEiZJ1\n54v6IrSczNxx/bnhXIpNRVYwW7oH8uR4QrZWkk/UbXX0mOS62zii08ML4utBu8NzBy7U7XrQUnWo\nVLgW7vl4c3f9x0HrIqHt98fMzt13J6s54UD8jwOpfD8O2c2FkfEzOvsKTR+/wLbAcPFwyeMHG5jz\nxja2sd+BPROegrVQlzW+qShV5w5zQ6Y+o1YUkLQb+GiNFaJrrRr99niA3yQlky6edvkoGFyw+ZIY\nErmao76SN6sZNmuIVisCJfOClU+qRNVkseLWQ1eqe150WOZSQiLMQ3/QZem7XbA1CGgLwepHJftt\nV5Ib7jpP41J3j1aTRMrWLOWKJp5HoERc0lNjVxXRSRom3xaedrzCerSVwHzl8zd5+8zttq8/cjvK\nIkvJShcSbPciopfcHD3+RkSaO6+pbt2h1RK7jxCdw2HAbuxczpt7Iy5dd+e+11tTGtF5Dfcwvtsd\nPdt0EZZYJcPCxYp21+1Qe1nAD/xxpxh48o+mzN5wlHZngmVXq0Oiyu3454stUuteL6sl87vqgs3S\nC52JRIza18ZbDMSXsd2N8DUv67zia1L0rrMZS3lpQ3WBHuwN2BEOY2+0w0HP7dzDUUSmDtU76ykP\n7rlxvaXGJmMSZpKmK4qapRqpDqenFEpMl+fu2g23n8OfrDSmnOti59rZ8bnUlybDoEdLY1mp8cn3\nK+yOm4tO3MY04Uo4J+q4cG047WK85h6QMrtfEk4kFTf2mK6kWXrJx+/I0zFdMgn3vF97JhYFz0Ac\n+8RxxLClB74sadLCSdJmnKjlmBZR4xKKqyputbGVaM78gkK5A2tqMtG01V5NHrr3eJGL08KohUfD\nqVczEFx5GcYsGkhpWXGktu3da+7CDUY5LeUZbNniyLgHMmuF+Hro48Bje8v1K1zZdS7lcDBirRxA\nuoppCSvg0cZkEhap3MMYtS2tnlphVyl54UKQspxhRDN+sDvipSsOsv32Q/f5s1nO+MzdBAfXxjy4\nLfGVq5Z0qn6AYEhnIGBU6nIOrdF9DrpuPgef6BHF7pwfLY7wazFNDyzj0QuaLzeHpu5Siql5uaxZ\nK49SdgdQufm8+fL38uqZoyObnbmF+a3Hx7S/S5Tl9phdwbG/fvsWs1rU6bUFdTB22hK0DWM6Ao5t\nj4f0ldupbYCvdue9wBKJym/QVZ8LhkAomJsv7LI1cLkNv8pZyM23y2NsKCj7fffe+cKnOxTupZxi\nBDfPVjmZdDUrN4Us3yn4uuY4r9agnFjiB0SeCxnanu8aTXDkOu7cRwxVPQuiEKswtrYjxm03zzYe\nkKo7+HThvisxM4wYBpPQsMrd9auqGY3G0bl3Qq+lE3yftgkfNraxjT1h36kU/V8B/j2c3O47wH9s\nrZ3ob18EfgyogD9nrf25b3cM3/MYt2LaXsl6qlU5r/ETt2blaYUv9F9FTizklhK6tMKISjz3q0V9\nsdIZLyaXsMhinlIt3S7WF2XWdtTi2HM7UVVmFw0sW1GbVSTuBWtIxV9w+lD6DS94hInzCFZRRDZ3\nx358XhHL5T8YjNnbdiv6qOO8Ct9WlA17y8DDqGsntAVVIgo5odlarR6RzqfyPRBZCgXYRq7Mb/PK\nJbcLfLnj2IJXtcWU0hCY5JS126HzewOSwIUMuTlifurm87KovV5MXiYciYl5Ab4SeGuvTakqyZA+\nqbocK+2CRWeBkfxZmq5ZFm5My/mUw2VDTuNx49InAfjazHUWHk7v0Zm6sW5fOuBYNfv08AT/UBDq\nBpvCt9TqtgYxB0KyXt7rUwt70DYeZs/Nxc3dhEjaH+1Gw/L07IKm79J4m44UxueTOZ6Skr065rLQ\nzRNdj8dxzZGS3Ek7ohDJTJmVVELA2rWa0eqS2UO59quaa9+9rfO8RKCk+KIq6UqLIvSU5G618ASr\njmwNXtNUZrEiz4laFQg52hHXRbEKCCW8GRBxVVWJBw+W7ElacRRfJ29Qsu/TvlMp+p8HvmitLY0x\nfxn4IvBfGGNeBn4U+DSwD/yCMeYla23Fb2OBbxgOW/hhgS/YSIghjhuFVTgR820n8PBVFkPZ+bqy\neHINfb+kkkoPucXXxLdbEaVCiUqQ6V4rYEflO8+CFelJu21YKrcxWS+ZCjZ891CtzsmLpAKKlPk5\nj0SG8s7hgsGOWwDGJiTfcsdenelBqu2FClW4m8CxLq7nYUV93uDXq9qwyFQ2LAtM0uhVVnhaAO2i\nZHvXucGfuuLm5Gv3Tjg9XWt61hyvRQqyfURciCuy7BPuuDAmVkgVxjl2pvJsnZKKsKNYz0n2lLav\nLIgspfTEkuwbEGOT7bSplJ1P64xIy3M1imn6vVdqF86LirfuuTzD6LltjO8eoOXpjFKMWlDj6Vp2\nlbdIYkNPrnbLb1OrtboMLAMtqOPdq5SZKPF160W9Du2RmyNTrjlT70aRV2Riwwpin44EbHpHIlZp\n9egpJLTtipVK3Pm6JJdA7Dpy4ePj41fJ1o2oC+wofPTKhGzhFpAuCaVCZE8Vo3arTSSIth+2aJoj\nol54wYJd5iWV+jk6oQvtbJBS4+7f9VFKvOvu7+1kRN2IIBVrJrom79e+Iyl6a+3/bS+klvkSTjMS\nnBT937PWZtbad3FKUd/zgc5oYxvb2MdqH0ai8c8Af18/H+AWicYaKfrf1jwDnaAm8CKmpSTljUUk\nwnhVwEQMxt0YCu1Sjf7iwmREUpL2485Fg0ttLJ4EUGIbU6paUUoIxS88fDUSmTJvFOawVYAvOK9N\nU5aVaN+kDL2yHplc28nDkMOp2x0eLwoOdgVCiguyhbokJQATmIhK4Uq09KlGoitbrfDrBrzjdpRl\nVlOoMmKq+qLe7vktfDUBRZ4hUK27Jw6J6GTCuZJ9YbkiGCurP91mJa+p9kr8iXv/OvgmAPfLmLGa\ncoaRTyyXOur2GUkKrdttYXW8omq8tIqor6x/5RG23S62PnuXtcBgi2LGmRpJj+WNJN2ahwIp/dpv\n3Ma/qmRl5kHDaeB5WM2Xrx2/XRpsE0qlE2LtupHxLqjXRlHIImv4NqWHMQ9o+c5LWSwBhR155tFK\ntNuWFZFCuo5Ysk31kGUpkpLYx3qNTFvNau68jenSeQp3b63wdW/GUZtI2pZn1TmJvNDwWkSwliSh\nWnh7cUVb+pK+6ZCX7vuCKKeQDLZdlljB3lHI4EVbrOQF1DuGhcIKbzji0dLB172pJRNN3fu139Gi\nYIz5CaAEfuo7+OyPAz8OkEQ+W52Yuu9RiW1onlVkQgJSm4uSnKm8C069XP9HgLpm8auCUJyIVZxd\n6L3GcU0tzHmhzrlyWuAro5uva6xc3LQ2JKbRVfSo9XqhSc9siRF9dz1ecf9VudRlRUex48HlDkd3\n3c2USEg17vt0mgXNK6naQutlXNzclVqkCcoLoZqw/Z6L6mdUQhsGccaidue0P3axZ+h5F/yC6zSl\nkBZr+7rFf+y+e8WCvsItW7jPVeYxeAoZOgOskHLj0KMvAFinHZMF7nOlGLICb4Svakjl5/jGOZW9\nTpsyVS9F6dHSjVwqflosah5JzLV3eIe+5ihdnWF0reOkfRF2NIjWIkrxRaRYrmvaAiHFsUdL4QOR\nIbns5q5nXUv99nZ9wdjVv9winbjzHywqSuUXupV30da8KxBT1LF09b2rIsDXg2nWBmItcELQjrcD\nGLq5aFcxM7W473ljFo0i13JNI/Q0aoBq4z2SXqOQZchjIV3zmkiVLWs8Wio1pMpLeemSumn4CC1S\nHSCMU3q4985apyAGqPdr3/GiYIz507gE5B+y3+q/ft9S9NbanwR+EmDcjT/+/u2NbWxjwHe4KBhj\nfgj4C8Dvt9a+FxnxM8DfMcb8VVyi8UXgV97HNwIeXh2QaXdZzQuIVMc3Jd3QrXxhZJlppVzKhW15\nBl9uX1VVJO0G0zDACkq8Wk5YqCuxrtwumC5zJsrkV7WhkHdQZQWFMvixH5ALruuL3yCbrIm0e3fM\nZczyNgDlwiNS0qoTdhjuu88lO+rLaO/RFb/DLCuZPHL1+MpE7GZup7S+dtSqpCvpurAT4ul7U7Oi\nED97sEpI9P5E3k/X9+kp8941EfNAoij3e1SFG3d5FrAUxVq2576313mRfk/iJElClLj5Hl3ZoTNq\n+jJqSr/BFjT9HjG56PHW05ysFF7EWPLauSm2igk9lxC14rooi5JwqhBkWTOZOw+j3eoyFIR6Esfk\nEoEp1ANhS59STNLJ9hahuDmTxKdj3LFbWwl+6caabDngmMkKqkgkOcWKVLvn2qaUgs3nixWBwoOD\nkQuDnhu+wze+6fa1YdiiUGI68zISycRPlTwNyopYEHufmpnvrm8x6RMEzmt4dDvnUy+4uR1Gzovp\nbffx5aVZz4A6HH0vopKrW0WGYtWAl9z32lVxAb7z0oCOei3m5ymBEU1bOaKe/rZ5/n/NvlMp+i8C\nMfDzxrm4X7LW/ifW2leNMf8b8BourPiz367ysLGNbezZsu9Uiv5v/Tbv/0vAX/pAZ2EM1g/xTYmn\n2DqfWqxkzDqeTyW9gXYv4lREw3fOXYzsd0ckDd2C51NoHaptQKoE5GxekpUivAwlpUZ2QcTZYY5d\nNgmugKqhIzM1K3EgNKt2pzegO1KnXh0z2Har8uk6gEiCqIc1xyplrWbu791LNUa0YpWXUWQOVlxV\nKxah27nbgmDXuSVXeTazEUvpQoTlkBzVx6kJlRB9bs997wvdPlMlGiNryMrPAbBzsCA9FAoxhN5Y\nsbEESR4czVlIm+DtRxnVG+58Xrx2le86cB7L9s42ldCLnii+vDzg8G3nEdw6ml80ZkXlilis2p1W\nSFBLgMI2jEeWydphwnfTy5RKfPqBpVDDV9iKaKtEaAIhCU2NZ91YT5cpiRqXJt6MS2PhELaGdMYj\nfYdyJ4C18gge3GGSu5/Pi+KiEzNY+SwlwLNQx6UfJWjjoyo9ArWrGgyDjsNF5EpWd0Y9anU+WgNG\nXGrTo5psqALeAu4/ctDy/ReEDvU6GFEEWtPClMovBJZ6rq7MILjwZI3KkEHVvRjf+uw+RmTC7aKN\nVTm/SDJOp9/Ce7wfeyZgzqW1nFUl4cpnrmBkUdYECh+6SYfenvCcZcB98f1N5TLnVcDOWNjy9oC2\nQhC/U9DANspxj/nE3UCvS0Hpq7cPqaUTOQpbZEoC2rC6gKKGhASBmyajZFEedZjP5cJ3OhcPSKcb\nMnvsBvAvsmPePHQPwlLqQJcvX+aTLzmXcbft05Erem0wxu+6462lJXnml7x+34mNTA5XTKZuJN3W\nFp++5urto3ZFR4nSRc/9f+ma5arc6PO0YLQr2O1xj1yU8qWXkS0lV++7uRiMt2ipUGSuWG4fuez1\nV2/d4413HADq6pV9rqrKcfmSc8vv37/Ng5kLUQ7PJqQNLDmu2Bm692xHKSdSR64aCvSQC7DY6/fe\nxOTu3PaihKUAUnj2ourS3Kl37k1Z2dtuTGWJJ0h72IUvFNf0uTOMPtDT+Xh+l/mhAxY9ykvu6uc1\nsFSrsteOaalXppF4z6qA4oIyPyed6R7xLHHXLTwDCc+cHr3GeuLuzfb2gCB1CdH8k23q20oODyJM\n3z30YSyylcl96rpRHV9faHouz8/J9fPs8DG+1MQbJm2/06VU/wSDmJXCjnCnRa77gioAVYfer21g\nzhvb2MaesGfCU6itJc0r1rG9cNWwsJ66lfG8lbGjpIwXdEgjlcOUUFtWFYNMSaueRZsSxSpnmqrM\nWFruHTu3+m3BlZepRbkiFn51wQLtGQ9PXXaeHxInDW++GlnSCr/t/n50PufksViEY3jxBbfbhoMu\nl0/dLn13Ke2JZU2pMS3nOdevu/fuvXCJ1dQd+413HBnJV4/ucvKg4VsoGXccZHr7UkQdKlmXHrEW\nKYun+v9LV3Y5qdxudfR2Snbuxh9fyogeStnYazOQO27ErjxbveWgtMBO/RIvX/0MAIPyTW694byG\nb77xKt7vda/vG+lHJmfUor+78tIWRv3/Ewz1yu34s5Mlnn2oayYyvqQNAAAdHUlEQVRUaVUwVeMP\nyxXxVDD17Yx16r6josAIvRgqSRh3Q2jEfkyBUcJ31N+mK2zBigXHj93O69XOxfe9lCM1K70zW7GQ\nBuNpuWIqIlx/1SJUt+1W4byfwSBmuOXKz/M8paWEr3cGvvASge6P7o7Bquzd77YojLumR49q3rnr\nrmuarvh3P/tZN2zdC36cYtTJ6Ic9Vmt3PqfTkkORwk7Oz+noNpTDSndQwAW602d5JtzObEIpDY91\nucCajxCn8GFZXVmWixxvDZnq520Ts1hIjNQecaQLs99NaCeKP3X6SatNRwuEV3gUynCfHc64e+Li\n1qXnEeHc2dGeYw2a5/lFNrxazOmJ6KTIU1aqPmx1xvTFinQiePTD4xP6AvoczVvE+o5B2cFY90A+\nvnvKvUfihxRuolzMCUX00t7y8UUdH9EiFY7eCKfgn2ZcUsVl6fksxAacZ8fMcK7v50ddAgVIjx6L\nvfcHPs+/vXJz9cZvnFENdTPevYwnzL3ntyjVHZro87O7t5l77iF9dHjGwci54i/uDGjj3OBpfcaB\nKhg3dl3leT2vmKzc+SwWGfN7Lr+QhvaCACZJdvnM0OU23h6+BcC9s1NqzafFUAhYthdf4p6wDPlk\nTVC769Dfcsc1Xsarv+4Uolp+wlxz+NzBlOuBE54NKkMuwFGv7eYiivtkK+UzVpCm7hhvvXPKsUBm\n2AqjtPgPvui+6/qgB2e/7q5JJ0Xob0LjYYTZMOLg9KYVsSDfo3CbSe0Wltf/v9uuDRyoQsNDxfgP\n1eOxLmP6UhHzFhVn2iCm64wzAaPuHy5Zi//zZOJyEknERR7l5YN9Bjtuob71YMKw50KbtmmRpx+s\ndXoTPmxsYxt7wp4JTwEDxjNga2K5l3XbgrroVqslp3fdDnT5pRFXtNNvKQGU5GBazr32KIjUUVnX\nBYV2mihI8CQrNlITULq1w2LmVus6SukIzluY6sJTKOwSry39QDVUles1uWS/PUl8AeShx1oJo0tm\nxI3POI/mPFeGeG6xatTZ6niMx5IU70N7IkqzPRdSfDKHTJLz00XNSjBYW0MsVl8/sNie29r21+7v\n3VaGkYxZr+WTn4lfcviQqnBYgV5tGO+5n5/33Thm0RKrrsb2Xv+CPqwfjLm0I1KTdcD+gTvnSJ2R\nV5/r40fyhOya8y1XqbB5RpoJh1FlROJkuLznzu3B6ZSFILpbo216wmSMhhFD7ZrFKsVX1+Xz11wY\n8PmbV7kRunMb7Vwh8zVv+2P2Yve5FoZKysypEJ/Z6pxS4d9ONKKz7+YltwnrmbvW63qJFUfCi8+7\n8623t7n0Zfe9bz2aEyn53Q9DrKDgpfglvcQn0XWasyY40jUJE1658SIAV652ufncvwXAcq6Eajug\nLR6HKg5YCsuCV9GVqvT1K/sUE/eeTuJeC+w5tTy+IitI+kJxRgNiX+FWtGIx+ZBxCh+FecYjiVvk\nRc6qEOlJ6IHyC3VRs5TaTi9YsavSzG5L3WLe8oLPMTOWSMCaKvKZzNxD22qXtJSpHukhb28PeCB+\nPmNGGMm5T2cBQeMaBj612q8bpZrSeEyUZc5mPugC2HnO1dqVGXdvblEI+74jXcZZZ0WWugdobzti\nNBAF+MIjMBK2cUMiLQpOT1wZqzUMGajUGYYJHRHIdsOc6ZljhbI7KsFthZiHbhw3D9q8JYakYn6N\n0koZy48JpHm4PXZz9fJLvw9Pbvu1723TFkCozksCxfOvjF6iI2KYeu7Gv1VEjF5xClirO6c8EjV8\ntjohELg193yW6rvYe1NKT6Ghkf7pDEf0RmJW2jpgeeDc3TfTGlbuOC+M3ee+96WXKFVkIPAI1EZN\naPFVOs7SCWnTPq5qXFlbqsrNy3B7REvZ+WB7i9YVlfqCkrFajocSx12lD2n13blfK1oM1Sdx23hk\nKv3WAtOF7QFe5ebn5GRCLLf95qURf+DTbo52X9zBqvX/dCUIc26pQrdIZfOC+cS9Xvol7UDcnX1L\nMnLn9ukmR2AOqAt1g9ZrsjMXKg/GHUqB9qqyJAs/5C7JjW1sY/9m2TPhKQS+YdwNOC8Ntfjy1rnB\nazrkDBh1PvpRi5745xLVX/v0qOKG+7Cg4aLqGogFhMlWc3qxOtG085U2JWpUlP2SWt0wfsCFuMw6\n97HGvd6Swq9X2IsGne5Bn30lhrLWMWbk3jvoJKSC4K5EzLHT6mHVMDXaGl+Ae0wEgd4bZdrBRwmh\nauzrLLsg2Eja9qIBya4XFIVz5+uxqOwXJUvjdo/PvrLNT/+CCwk6+108VUNW2ZpSLaimFrVbZ83l\nTzhvo7/XwVdZppyckku1eOdyG1STz2YOV+Bvjy4Sbt7OkANVNQgSCu1Wed3m7h0nQ3coD6Wsa2Lh\nO66PttnZd3Jyw45l56rbEaf5NpNHkoHX99bFjPHIeQdxd4zXkRp5HrKuhMlIQ6qmi1MhZrVYkYti\nr9uybCdurLvdDoHIfKJOq3H6QBwYD84KYnWl7vldPr/tPLb9rTZLhRqpwqdeLya8IkDT8TnzifP0\n+q2EXVGuj9sJy3N3nr46eKN+TL5wHlFJRUvzNl3ldCQ61KagLeUiXwQ/Xru4gHMXacWx5+5v/BV6\ndMizjMD7XQhe8j3DsBOzmK9Y6YGu6xxfD14UBwy67ua9Pu4y0hh3FSN2TZu5yC0Wy5wyaghRfbaF\n7Jqua7pBw0so3H66Qrqs+J5lIQShzS2BZrUbBNRBo+mokt6w5L2aO+PL6nZb7jMQAYZHRbuvh34u\nuvF2hdUn2+POBZ29sTXVSlWQY5ex9rIlW0JVnq1TbKOEtKwIpQrkVW3GW0JpqiQ7O1kRP3Q3x42d\nmNXp/+lO0vsB0lkjsOqzVM+EIi3iOiI00iPICkIBi4reVSIhM0M8ELI0kEpT7q1ZnUqPsuzQUek0\nDz2CRmx2ljM5EfBm7sYXYdjquAesNdrGStehPxgRnOk9pU9PRDq5SHZsWhH2GlalIVYlwiosWIls\n0QY1kdiQQl273HosJe6blBGDA1WrQgjaAsZlJZXi+WLZ6JEaAoER+0nMTsvlYpZnx2Rz933ntZSb\n8iV9hQ+0dihG7ny2koRQ4e3y9D5R1y0cw7lbKIK1hw1EjFN6+ALUtdIULxUattPFV2XDax7+IsdK\npcrLArrirlwdzagbqqplgH38wXIKm/BhYxvb2BP2zHgK/U5EQsZEdNrz+QKjbbwTxTwnSrAv3LzJ\nlW5Dfa7MX2ahdjtwYC1lIwQUFlxRgqq1juiKWrsJRZZpiPX1s2cpVVevqInFmVfENbXcr6Dh1rMV\na1G8m/mcx3dcgqfsD6nUBW6KnCh2GXVjlTiKImrteHUOdS74aXtAISKXWSbAz+EjhlsOsLXV3iJK\n3A5MNYfA7cD5cooXiNvv2H3XN2+dcfWSwESjaywnrmqzff0OgVzqeF6TiK251g4Wbo3x01ONrw/q\nFgzjGZ4qLXWdUa7ceyphGmrPcnbkcAqxNyLRblUtYhDv4nyRc+ee2JyVOIziFlsan1lnTBsat9ww\nWYsLk5K2SEaQQrPve0SedvnSo5LCV0GbUpTrodeBSNyFsZu3Vjcm2XHfu1rMWK/dmAbdPn7Ta5CX\nGMnKF6GIVVYea+3Qi5OaOztqvPFbzCS4cuqJYi5fMxy6nph6FGHO5G1kIbNHbi7GJsP01ZsijycZ\nDy9UprxWgvLghGGNL06RIPJpCy5vlHy05dyxngPZ8ohQVIDt85S5CIhm9Rm3zsR5+T5t4ylsbGMb\ne8KeCU/BWkuVF8SmZJ03NFk5CDewf2mL77rumoAutTp0JQyTa5XMDVS1ugiTiEZKOopbtOUdjK1l\nLGGQLFZ8lxrUGElWlBRKzmTGuyAM9fEhbPClbvXtRgmV5OZevX/KvRPpKRTQyV2caAYBVSldAH1+\ndX6GJxzGanaKkVcRtYbUXUFps28AkKYwW7pdOYktoaduv7hHUboYPiUlPRLKrVbNO5nwwisORjvc\nG9PqOqwA7zwP4RvuO3otzEyq0Yqdp49C+qJaO/NOmcxdM1Zra48qct89PX6HxdQ1UG31XF0wzc95\nLEGSF59bUKZu9y+Lc4yUpB8dHvHN01PNuTtuvz8m0d/fOrrL8vgWAN9z/XtYnkpVez7DEwWeb9wO\nXC1SrMqo+fQ2pRKfq3qB0TzbNMcopvZEc+d3DC2VuP1BjKf7pUojgoaE1tZYlRcL/e8vCvKG4bmY\n8yAVh8L8nM/fdslTf8vt4ONuj+f33JiK8DJdNUxV9pyzczf+1jCifSIkp9Ct62xGu6/u2awmbDzT\nuEUl6H29tvhKOtpYatcYjMrIfuKTSYim6PnUHYn2mBanpqFTfX/2TCwKxoCJarIywOoilnVNN3EX\ndm+7x/5lYdiHYJWg8ws3SVWxIhfc1ZYrrBKQnoFQmfrAW1LkqtnrhvHjiEocVkUNtWnow6BUVWKV\nl01LBHGli9/eZyHY7TiN+fJvOChx1A44F7R1WF+iUsfdOmuSeiG+qMPrqmY5ce5sHdwjFTXZ6kQP\nRD6Fc7fArHsZVvyCXpRhC/mX/gmnM/fdx8LqBx2PrrD44c4OVjKCs/17dDo39csadqRkpOrF2j/m\nfOkyasu3W0xU27aTBacrQbrzN2jVLvP/aS0UZeozEVSgaLfo6Yatu+aihfv++THHi0NNooBQ40sM\ndxzsPKWi1uo8KybMjTu3tMoJqwboLxq4KKVWcq1Y56z1cJtoSCgcShnVFEoK56KHK5cGK5c6HHbp\nqIU9SnxsQ+bjeVSKDiqpNB2XE6rQnU9mDMXa/fw4XbMSJqOvKlI/iBhcc8C6thcSDdwCsZzDg2MH\nQ4+qLnty/5m7sHKVdcl9N6YkbBOqSmKNT+g3kgcTimbXMko6e2tqtaL7EZQ6t6BTEithf/dwxrT+\nYIvCJnzY2MY29oQ9E55CVdUspyl+nROYppPPoy2KqkEcMNYOmy2XhGpGqpUAypdgVAryQp9YYi+d\nTptQXsHJwpKLcKVsyluVoaqaen2B3zRoeh65UGdFXuKrE68hJEn2D/C12nf3Skol5c6mNYfnbvfY\nbncIdB61ZM1bUYegYW32zAWJzOzOkkI7XqKOw7LtUcmtnS5rUkFpMSsiEXsWa5+eGmLe+DW304y7\nHoWIOfKjJXVTTzvcYx45z2T3xi6extTSmNbLgvtKVqbhlLWauDrXY4warA6u3uQzHcfmf+33OITe\nyb1HXO8qYTrrUksYJ21bTsWz8PDwPqmoxGK/oSsrydRI1I33KGJhDM5T1trx0iwjUmWtVjdnaQ0L\nJSK9sI0VPZzxS3KVQNNsRaHGsrm6ZK21dFXWHg2HJD0lbusVtdi26zSlFNZhce5chun8lPWx7jdT\ncltQ48fHa3piqw51H5Ku6Ko5LmEbVJIs5wseyiucxwFXDpxrlaohql4tWWs3D5IhSatJKHpU8jKN\nV1LI80LHyPIVpmq80JJQMnTFaUarJ2Gj3KM//V0qRY9XUaxz4oZ0JoBYN27YCZguxERcBHSaVjbd\nEKEPychVJ4r1Givq7DI32KoRiWlRVMpwrxsh0hK/EjbB8/GbjHsNmTALeV0TNLVn5TC8Xoinh/Fy\ncJP22KkeLR9PuCWSleutjMHYuY+BdeOovYJSLMHtehtFNvjdEqzyJ4IGdyZ9Ut3QWeFTSO49SSJ8\nudL1+hRP598wNlVexINTd6PkJ2+TCWrduTKh4wlDcbokDF2OJu25nMNsHbAtRp/arFgJ1z+qEnaG\nLlQIEkNVuS7Hx19x7vByZhlfU1t7dUQhvkZ/2cfTol5WAVPh/JfKEYzrEHGNYMMBvliK8urrpJoj\nP/IaJnbWumbT+Sm+Qo3uVgwt996qarHSYlEUHpW0OXN1uCahx3igEDRfs1THYV2XtMQIja0wuJAt\nlXDOydmUUrDidV7zzrHL58wPV/S1UaXq9pyvUtYLVRkuB9B3x7vzq7d5LLrxKyUXLn+gipLXLrFN\nVSoBq76SwBo8dcpWVcFSCmehuEKNZ7GBqj2zQ1ojdz5bnTa+MCdnuyeclBucwsY2trHfgT0TnkJZ\n1xzNcyoK4oYfv+3RHYlPf9xhrkTc4uwRvb0GCSbmYFsSqW5uijW52GuXi5Rlrcal1CIYApkSVbMi\nZaZqR2ZLROEIcQDSeMA3FHJLs1TdiStDhTJ4acCLknD/UnXC5ERoyc+38BvGZIUi8/mCSPDpnAn2\nkZKHXodMepXzSgQwucdi5U7osDilt+d2BN/2CUVD5/V9QsGi9553O23ZWfHNe243O1kf0pLEXDTr\ncC5dyTq4xtGZ2x1HKqysox7pwO1K02rKrHCTtZX1WTY6Encf8PqZ++6JXGrPg4MXXChxfW+LKHFz\nQQvMyLnlRTu6EPPJ9L2m7WGEN1jVPWxHFYXzNSMlCT3PZ6Ks/dHahUGLZUx3KC/OzqkEm15mFXUh\n0hM8eom6PCXD5w9qwqzhL6g5P3L3U136jPfF8hyPyQt37zQQ9Vv3ptQ7Qtku28zuC7pdleTyemrf\nvff80GIqQZvHn7xArDLqc/yqCH6iQ56fuWRkX3DtKi/wgoaB3L9gfq7qFL9uMBSGPJX8YNsdN7RJ\nA1kh6AbUUvmukgGTSN7yugUfjGPl2VgUfN/Q73sE/QQrQEh0DrEIVuu6IOm4G2G6PmO3EIGEkvDz\nd484EYAoKxcEmWbBr8kFGV2ZFGsbMk69llYshfMtQ+9ChSjwLYGyt5HnsZSmY6YehipekeXuZh11\nb/CJ73YP5GvTe5wX7qEhfZlqR+SZCjtWk5z51H2HNR4zdcnl9UM6lYvbU13lagQN01M+q+gq47y/\n370INcoi5PSOO/9R37mOvueR31DM2c4Z/LQLR0yyw6jlsv12OcFvu+7K1Hc5AlOdEnTd/PQXLSaK\ncV/90pc5E7Cqqkpi3Xh17M79UrfDVKSjv35yygt91/p99XMvXgjHhJe71CKmbVSvfD9k1dF8L8/o\n9Vw484mdESOFOY8WOf9CJDkniq2PWHDQdm55NAixuk7L04zYdy5zEOcMtgXkUQUrMjFrtVMvw5yT\nh25B7rbalFoAKr8mU8j67l03prfmj6kVgsSBR8PCYm1NkWuR0WvLcEGtXpt+lBFLmelzn7nBV15z\n99zX755wtfcaAJ+6+Qn3udkMX0xJaRYSzdwcz2xK1JWu5CIky92iMKjcXPnd/ELuniokVYdxZauL\nHNskXZB6m/BhYxvb2O/AnglPwashWVlMv6an7PW+8QjORb1tM/ZFNZWdTZgcOVzA4Man3HtfvEJ8\nV6IhVYu4ljBM5HE6cQmndLGiEChkrU5Mz9bU2v2TdkJbwKLFasUa0bnHHmvVtxt4dD8acaiafi/J\n+NTArdwPxpc5ydzrr996k892HKVXXUoeLe6QC7ZqY5/ksnO1wyIk6rqd/u5dBxp6eOeEWArPMYZI\nEFc/TPBR2GF8dm+41++/4Xa27RstLg1EprKesP2C82iyx9ssxMHY2Q9Zih4/V8NQMG4Tl+58sihn\nv+9+9vKEhYRq4p0VB5Uo6PuqzmQLFqEqKlHIaNT83eNEjVLh5Ii4bJKYyqYnKT0RsgQ7W1jpQH72\n0ueYbrlr8pVf+jot8RWm0uv0co+84dKsR/gC5uxttckXAv30wSpMsQI35Yv1RXXCT5e8cNmBoVrD\nHTLPzcUkO+JUhCvffM3dY6vTKbWYu+tuQCRms9IarGjgrby7eFJciBYVdommlis3LnFD5Ctv3j0j\nF3GMkYfRjiNs06zX7RI0lKATy8NH7vqNTchoR4lJ0d5XJoNCHZdFiCc+kHy6IBwIC/Egpzr+XUmy\nYuhGISxy1gKrdAKfQJ2BnrXMhJqLYsOh+ArbY8dVN+ztUkUiRJ3WpEIericVU4l5zjGsRcY6U3/F\nLJvhN/KDscFrqg+RRy9XHBnCQq+XKqeZuOLAV17DL4jUf7D76ZfhnkMk3n44Y3/HPRRdyciX9YJS\nN1CYtfA9sRj1fYzyHP2GbSnwqAVc2QljBtIr9EowgfoBshN85U/GAxefdr0BtbQWt8Y9Jmv3AMXX\nctpJwwB1hoc79kngQEWT+Cqt2rnqgWkzviR04NYOrXM3h6fnOd/w3MNS31Frcragdd2588/v9/FE\nYrg4OefWN90C+Suv/yq56MmbXo00vEq8o0UxGFDO3LUOWifsSul3OPC4oq5LVKrO5q4EDWAXBb6A\nQ1FssUa6FichS/VopGqdDmNLpPJzP4xo7Yvhy0uxgizeuf2Arz9wYdXjd94FIK/ANG3m05yeKhV+\nBkttHEa5jFYrxA/cmOYlVGvXd+Jlfa5suzk638+xjbLUQhIGcUCoUCvpdWn03Ht+Qan3RolHIKIa\n2uo4XXpYVWryOr2QsPdnPplIgBZpRhB/sKTCJnzY2MY29oSZb2nDfownYcwxsAROPqZT2N4ce3Ps\nfwOOfd1au/Pt3vRMLAoAxpivWGu/sDn25tibY3+8tgkfNraxjT1hm0VhYxvb2BP2LC0KP7k59ubY\nm2N//PbM5BQ2trGNPRv2LHkKG9vYxp4B+9gXBWPMDxlj3jTGvG2M+YtP+VhXjTH/1BjzmjHmVWPM\nn9frY2PMzxtj3tL/o6d4Dr4x5teMMT+r358zxvyyxv/3jfmAEsEf7NhDY8w/MMa8YYx53Rjz/R/V\n2I0x/5nm/BvGmL9rjGk9rbEbY/5nY8yRMeYb73ntNx2ncfbf6xy+Zox55Skc+69ozr9mjPk/jDHD\n9/ztizr2m8aYP/I7OfaHZR/romCM8YG/Dvww8DLwJ4wxLz/FQ5bAf26tfRn4PuDP6nh/EfhFa+2L\nwC/q96dlfx54/T2//2Xgv7XW3gTOgR97isf+a8A/sdZ+EvguncdTH7sx5gD4c8AXrLWfwXV6/ShP\nb+x/G/ihf+W132qcPwy8qH8/DvzNp3Dsnwc+Y639HPBN4IsAuvd+FPi0PvM39Ex8vGat/dj+Ad8P\n/Nx7fv8i8MWP8Pj/GPjDwJvAZb12GXjzKR3vCu6G/HeAnwUMDsgS/Gbz8SEfewC8i/JI73n9qY8d\nOADuAWMctP5ngT/yNMcO3AC+8e3GCfyPwJ/4zd73YR37X/nbvw/8lH5+4n4Hfg74/qdx/T/Iv487\nfGhulsbu67WnbsaYG8B3A78M7FlrH+lPj4G9p3TY/w74C0Cj47UFTKxt0O5PdfzPAcfA/6Lw5X8y\nxnT4CMZurX0A/NfAXeARMAW+ykc3dvitx/lR34N/Bvi/PqZjvy/7uBeFj8WMMV3gp4H/1Fo7e+/f\nrFuyP/SSjDHmR4Aja+1XP+zvfp8WAK8Af9Na+904WPkTocJTHPsI+OO4hWkf6PCvu9gfmT2tcX47\nM8b8BC6E/amP+tgfxD7uReEBiJTQ2RW99tTMGBPiFoSfstb+Q718aIy5rL9fBo6ewqF/L/DHjDG3\ngb+HCyH+GjA0xjTdqk9z/PeB+9baX9bv/wC3SHwUY/9B4F1r7bG1tgD+IW4+Pqqxw289zo/kHjTG\n/GngR4A/qUXpIzv2B7WPe1H4MvCistARLunyM0/rYMYYA/wt4HVr7V99z59+BvhT+vlP4XINH6pZ\na79orb1irb2BG+cvWWv/JPBPgf/waR5bx38M3DPGfEIv/SHgNT6CsePChu8zxiS6Bs2xP5Kxy36r\ncf4M8B+pCvF9wPQ9YcaHYsaYH8KFjX/MWsmHf+vYP2qMiY0xz+GSnb/yYR77O7KPO6kB/FFcRvYd\n4Cee8rF+H85t/Brw6/r3R3Gx/S8CbwG/AIyf8nn8AeBn9fPzuBvhbeB/B+KneNzPA1/R+P8RMPqo\nxg78l8AbwDeA/xWIn9bYgb+Ly10UOA/px36rceKSvX9d99/XcRWSD/vYb+NyB8099z+85/0/oWO/\nCfzw07zv3u+/DaJxYxvb2BP2cYcPG9vYxp4x2ywKG9vYxp6wzaKwsY1t7AnbLAob29jGnrDNorCx\njW3sCdssChvb2MaesM2isLGNbewJ2ywKG9vYxp6w/x+UAP6dGLoegAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.3483... Generator Loss: 1.0495\n", + "Epoch 1/1... Discriminator Loss: 1.3219... Generator Loss: 0.8450\n", + "Epoch 1/1... Discriminator Loss: 1.3759... Generator Loss: 0.8250\n", + "Epoch 1/1... Discriminator Loss: 1.4419... Generator Loss: 0.6523\n", + "Epoch 1/1... Discriminator Loss: 1.2803... Generator Loss: 0.8917\n", + "Epoch 1/1... Discriminator Loss: 1.3013... Generator Loss: 0.7574\n", + "Epoch 1/1... Discriminator Loss: 1.3968... Generator Loss: 0.7108\n", + "Epoch 1/1... Discriminator Loss: 1.3129... Generator Loss: 0.9058\n", + "Epoch 1/1... Discriminator Loss: 1.4153... Generator Loss: 0.8783\n", + "Epoch 1/1... Discriminator Loss: 1.3831... Generator Loss: 0.7992\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvdmvbHl25/X57XlH7JjPfO6YN29muiozy+WyyxMtg9pA\nW02r3xAgoUZCsoTUUiPxgMUDTyA1L/wBLYHEQwuE1EBboqHptmw8tIcq21WZlZVz3iHPvWeME3Ps\nef94WCtOOUGmbrkqu+9DrJcTN+6O/ZvXbw3ftZax1rKlLW1pSxty/lV3YEtb2tLLRVumsKUtbekL\ntGUKW9rSlr5AW6awpS1t6Qu0ZQpb2tKWvkBbprClLW3pC/SlMQVjzN8wxnxojPnEGPMbX1Y7W9rS\nln6yZL4MnIIxxgU+Av5N4AT4FvDvW2u//xNvbEtb2tJPlL4sSeGbwCfW2s+stQXwPwF/+0tqa0tb\n2tJPkLwv6b3HwOd/4d8nwM//ZQ8nYWBH7RalMVi3BYDxK0wuUkzRFGAbANZZQVmWAGxkHAdoNi+z\nYIx8NBiazVMW0O+dzQOA5zibh29e2FgLKkE11v7g3ZvBHdwDPwAgjANsXQOQLzOqKgPANxWVle99\nK+1Z2+B7rrTbCgiCWNqoS/J1CsB0OQegzJubcQSeB56j/fUw2jeLJatlLqi074BRXm9dw26/c9Pv\nxupYnQaKRp/fjM6CKw26xlAW8t6ibjD6M9daykqedxx51gt8PNybObyZWcdidNw0DY32c9NfU0Kp\n80NjsKGn7+tSN9JGbcFo/5xmM+YGX9tuDHjaOceA40g/jO9g9NU3S23BevIOU/GD67BxaFxd68rS\naNu2lgktqPF1fK4Bx0g/beDRLBfyWRsJvAA3kBf71scN5HdO4GJ03amh0f2LK99Zp8FY/VxVNKW0\nnddr3MrbdJMglP3ixIH+PALTbKYea3R8uDcLYRswrvTpz/78O1fW2l1+CH1ZTOGHkjHm14FfBxi2\nYn7jV3+FM98jH3wdgOhgTPBJAcDj1TOaWhbgnY+e8vz0AoBaD2PLc1jppqGyOLq5Q8cjtTLBpjY0\nOmmRr4vsOozaOtFGNiFAXpZUpbx7nVdkjXw2ykD+y7/332D3bgPwypt3yecTAB79/keMrz4AYD+4\nYFwvATgqpb06X7G/2wdg9LU73Lv3NWnj+oSPv/seAP/b7/1zAM4fLwi0n0ejAe6gDcCwu4OXy5ga\nU/PB5FT6Jl1gTk2AjKno+/wnf+tXdb4b1pl8bzor6ie5tO1IH11KbCKbreeFnD2T955cL3E6MjHd\nsuFivAagHfkA9O/ssuMMZQ59i7NRR6OGsJBnmmzFen4OwCfTEwD8C8tZLm3bzKW8MwJgcPfXmK9W\nACwri0GYZWslB6ly1hwm8t7Ms+woY41cl1YkDNA/jvAXyuB0h5vSoRjIvPnT+ubw2iwk68r3y6uK\n1Vr6VC2mADxrJuxbeW8ndIj9PVnL233y3/sd6UcYAnB3eIfeHfl8WN6mczuRubrTx9mRzyxdirPn\n0qe27IWitSCwMv7i6ozl2TUAj2Z/TnIlc5vHDrfvf1Xe97W7sh7d18CT+XGwVK5eQqYLnoy/LsBJ\nZO/ESe8JL0BfFlN4Btz+C/++pd/dkLX2HwD/AOD+wcC27zgUyS71TBZo/nxJWwf8yqjLBxeyUa5n\nc9JCNnSvI4PdHSZ0lUFExtCOZLKtb5nN5XdOU9PocAsjbdisxPH1BvZ9mkq+D0wttyngWoMp5Zm6\nkg0f3x0xGUnb06bi6Xc+BODs029xpFy8yCxRKc+He9KH3vGQoBJJyHdqiqVIFabxoZHPe1Y2/Dys\n2O3s6zgMTbW5wQpMRzbYbDW9kWiCgfwdFD3cnvQtDDxcX+Yq82MapI16uSDqyVgPfZmri8U5md58\nvZ5H2ZbNPX92SkihfQ7od2STEuvN7RmclsxPz++yduQw2coQ92W+fXeX3JsBsJPLIfbvlHSuZXxL\nv8BLZF7WHYfTUuYQv8Rb6sdIxn+nM8KPZEytynI0lPcl/QOM0RsYi0mk7XZb+rsqZ/iNvDfqr0mS\nI5mXOmOh6xD1cvrdQwA+9mTNzLnF7cjeCt0DnKH0Y+gWnO9Ia6knH5aBjx3Lgd570CE6fBWAfLbG\nLuQic1s5ZngfgOmnnwBQxTVRXyVM26XIH8s6zUM4Fsnx/u6v4ezLJVGsZPzVICV0hWFV1YRmIy2G\nczzvQP7hNjgqNb0ofVlM4VvAQ2PMfYQZ/HvAf/CXPZw3hs+yiKP7t/FV1Kk/DPio+gyAS1uTLlRl\nqDKSOALgV96Qyf3KvQcUmWxck8S0d2VY2bUlX8hGX1KyVGby/Ew27mo+wVGx3Hd81qkwoaxqqKy8\nI/YtjYp5zeYAdu7w6kgljFnO/EwY8KOTdzlHpYPhkD09OMbvShueg2OkjebUcpW9C0CZTslm0qcH\nsTzbP3bxh7Khp4sVjl55Nm+ofXmHm1bcsgMAUuEDrNySXi3zE4UNM2UmSa9DTxlOOVlTmqX+ThiM\nw4B1KhrfpXPGeio7bNcLKFbyO69XMDiSwzuKRAp1ancjBVMmFfFamIyp17RDGb/XbrG/lk3anch3\n6zBl7Mna7OddvFAO7GemS68rcxFNG1jLM6Una1c6DZ1axtxNYJjIoYiGLVqV3I7lLKfRuXfb8rdT\njfAzvUn7ezh9mTBn5XFdPwYg9wIWkdE+CXOIp4ZKZfGJN+V2qpygWTFOpe29V2Vsx5lPXMj4eXrB\neVv2RXM6xW/J/kzaPcId+dxqy1o3pqFYqXpcXBL4Msdv3P0m8asyudHeEc5K9mqpe8heTckHKhHU\nBTSqgtGlcmT9PC/EOvL8i9KXwhSstZUx5u8C/xRwgf/eWvvel9HWlra0pZ8sfWk2BWvtPwH+yYs8\n67uw161Zn1zQ2/spABZvnJKciAhbnWU4RsSoV27t8uZXRTP5G98U22Xk9WkqUaqbxqPUG2HdLqkr\necfFfM7FiRr8RsLhs7imVFWCuaU1lNsjXUE1F+7qNT5q96FUo9err3S4XIm4N+OSi1PRjBJnhu/L\nOxb2lENHbrS+1VtpPsZU0rcs96nXVwBMrzK8UL5/5ZuiNz70OyxnYwDGi5R1KrfndWXJ1/KsG/u0\n9WbzSrlJV9alDuUmanoOjtpByvMp3rHcTEWWUVci6Syv5SYuioxeLM9GfkTTl/GbIMIL5BbvJgOS\nobyjHeq7qpQMkUzyRQa+tB20Ckhk/OQerYE8M4hFwsiWBUZtJuRQ3pe5zSZr6qlIhUHPUKlFsOuI\nRBNYH78tY/UDjyBUw/RsRSUCDf7AEGg7fqBGwEEL35U2ovaIppT1s26JE6huXxoiVRVNKc/2nZpK\njZmX15dUyD7M9n265yq9TUU1it84wnz4sayZF8E7IukevO0SZyqRDlq4qsYFr8o+tNWKbCX9rNYe\n4UORPHzX4gWyd4xrcA9kzTxVY03k06QqvXbb1KXMvRME2FpsP9ZfY5E5elH6V2Zo/IvUNFCsLDvt\nhrML0c87ozmHx2J8aZWXOI4M7Gs/dZtf/Td+CYDDPVEflmfPyULdgJmDUcPeeDZlVoiY7K0qklA2\n27iQyXMjg185+rkGtS8s3YhSOcGyzHE8ORQrtUyHccbq0RkAv/m//kPcuQhB63XGcab2jv2AcCTt\n2LU8WyxS8pksVng4IlCmcXznkFhFycHrwvDqaUU6lc0an15wMpONVF0tb2wqU1Oz8KVP84Uc4mpe\ncZlJG5GbsDq7BGB/eMBiKZ+nxYr5XC3nF7Lp1q1UXALAMKjoK9OoWobOjqo0nSFJInaALJdnncDg\nq+HT4jIrpG3P5tix6NFJ1sWoHUB5NI7fkGzsJ86KyZXMcXn5OV4jDGQ2u6Kv9gpHPVEd28FVJXlN\nw9VU2ojyGLcr697zhkTqXYiMMBODAd1DtrG4Vtqo6hwvUobju4R6JGrdF/MyY3kuzNtfGS6sMADP\nG3D5saz77kDW7D3GtBGVofqjmMNJD4CLk4rdr4va4V7PsJWohe6nOid3h5iJtBdYbrwh9bCDWagK\nVneoh9Jnp6u/b0Ks2j6aMgT9nS2vsamr6zTD74r95EVpC3Pe0pa29AV6KSQFx3OI9zpc1CXzltwC\nfTNgYeQWGHT3iWK5VcNRQOiLEchReTGM+zeGqrJcUquRJe4mpKci7lE7FK5atdWY2SxgjbTXcUPC\nSLhr2zpMArl52ya8wSS4uTy7aODbf/g7ALzz5DPeUFG0tinXKoruOiM89SGXhXDwpH1Av69tfH2E\nV8k4+rf2cT1xdTWN3OB1dY3nym0dh9CzcpstmxWZL/2YrNfkMxE7rzO5MVZZjgnk2d40oG5J3/Ow\nxCTSt9VqxvOxuAhjdenFtFiFMuZ8XtBRsbXbT4j3VWzNPFwFALihtGvKgFolBePW+Kqu5JVPula8\ngZsSKS7C9aRvVZlRq/vP3TUMHVnL3K/xVBLyRzsEKrE5qrplTkmwkm07D1JWS5FYur02HZUEmnZC\ntZEEQnmv63s4UaDr5GFdVY8IbnAPxqmpG+l/S5/1bchEpbt8cY6/L1KTZ0tsV57duMOfpZYmlT4s\nzBXf6IuksJPtYk9VbQxXDF95Q+ZcPTm2bVkovmW0P/wBpiMbU1zKHEU++LVInmEge8X6BU6ork7X\nww3UVTtfbCAn4CY0TcGPQi8FU2hwSE1EkeXcc44B2G07hIHqXt9o8VB93vPPxlSXsqFztSyHfgsc\nWcQmsKwbOSDtVUCu+lSPgEUo72vPVX+rLQsVg9dOQ+jIRhr5EY7q3xfXK3S9bvANT89W/NGf/zEA\n7pMP6Y7kcKdNCzeS98XtlEgPsmnJNPcHLsO2qETt6GfxjoXROb0YV9vY6PpOWpPnshkDL2YY6WYL\nQ57Pxe2VT1ekirha6cFcrUta6q8umgoUNLMqYGctB92e1SyulJGpu9SvA9xrtU90fZyeHMKduEOc\nS58dU9DooQlUnLeZpaqkjcuywqqhu1nWZOoxWIUFnUbVIwWhGadh5ukFUPUIa9ErYi+hVpXojjug\npeNaIjajeVVCqmrZBFbKpMygoW9kfMEiwaobMVPYRLsMIJPxFXZOZdT2YUP8DbbCg0ZtO34geyGo\nmhsA0XmRcZTpHGYVUaYMLpA1P/y8xEFsGZfrBu8VYcLB2ZhhR9yTdeqTN6qOPBKbUSv5aVx1Zdf1\nArtUP2xesT4XvMhVUdNRz9RBW5iCiTo0nvTHcwKMUS+RiZgVYueK6eOrevSitFUftrSlLX2BXg5J\noa5Yzi45ee5hHgr33OkccEvRY51WRDxQTjqbkDjS7UA9DkES4zhqcQ862Jlw+8qb0Q7k1tnrdVlW\nCuTpyLvWGSRqbS5qQ6aGxt2OYc8RrjxfVRSKsGspJ/7DP32HD94To12rXZF5Oo1ecGPMDDs+kd6K\n3UBu+bjlEe0oN08WuB0VAxcZtRHvAqWIlF7bxZ/IDZzHKZ76/Htxi30FL13MZ2QTGWupOI1pWTCd\nicrUaWrqRvqzmlWEoeAQsrQgVmjuMFADnh/jtqS/u0mMuvGJhi3iWNqo6xaVekQahSUHLZ/IFyt6\n0syYq4gbBD9AgLqVQ+mrC8eqVTwIydQImJYN8YEaK59HhFZBRkMXq5b6aKkYi3rBTQyf79EK5GYe\ntGOcSPo5q69J1uolUXWs7Dds0MWe5+GkKikFGaaWcQfhkKCUtS4LEXli4xLoe0OndQN7LYYNuY5l\ntpL13X0lY0/BWcPRK/Ruq4H2fkCQybqa2yE23Ui6IjFE64f4u6ruLEryQiMEnnhEqhbX1TnhSNrJ\nJ2LMdHbu4uYK7W4ZyNXL4CwozuTdzsE5QfMmPwq9FEzB1g3FOMWPY1LdEHUrZ28oVt1k2OLJ9z8F\n4JOLKfduye/C8K6+oabx1DVVOrhq1abxaNqqXK182uoaLHOxVZwvF+Sq90ZOSKo2g2ni0i0VX5+V\neIpLpyvT9d3f/QOqUjZEa7iDswGKmISOiteRCXGHIj56oerF6y6NAovSNMP7RBbflm2WapeIRmrd\nblwcNdWXqUOpK9Ub9tlfS9vP/TYntYwly/TQFRWpDnld5Jh8M8trJkt1twUr9oby7l09VCbKqXWD\ntaOIqFTReG1ZKFjGy1KoZH3SQhmFt4Ra3W1liF0LQ1rmc3rqtQnrDpnOwaSWQxfODazlgC18n+VK\nxXVr6UZysMoix3XkJPv6t1e3yVyFaNcevl4Q7jghVzvI0hY0ueoxK+2vrbDKIBPfIyjVkk9GsQmQ\nKBrQ70vdC6tmiVXVbjduUVbSxtW0YYSMJSpkLofBAbcfyO/7Zkh9Je+wDnhfUbVkeYUzURVRgWDO\nYHJzuIsP3mWZi+jvxS7thayDO4G6ljOw3lc3pHFxFVjWRA51JaqGY2tasYw1XWS0Fcb9orRVH7a0\npS19gV4KSQFjcUILSQd3IF0yjYvpq+U4d/A0gKWqC5xY8feKe3fzmkY9B01WYDeW8bBNNZebt6wL\nMqsqhkYLzhcF80xvj5ZPTy3ciwJsJM+2+y3iSm7mpJE2vnM2ptzgH/z7NOplyIH+nhjlRt0Wnb5w\n+aglEoPb7pDlajxttShXwsGrvQonE8BK0FZ1YGZoBgpGmfUIujJWu6ho70qf9+ZjBmdyEz7XwCHr\nGBr14zs5FBrtZx0XZwNucS2toVjGE19uOZs2rNXzQxXSqLpWNHPCUkFdVY7XlpsQNQy6dUOjMR5R\nKyCZyppVxiVXCcKJLFWqcSUd+d3MzjEaX+KREdaqVrXaWIWep9bDz0UqCNRjZCKPcCHjiPZ6RI76\n/9shViM7Xd9SK/goTbSNrMRTr01aeFhVCdzCxbTkd3Xt3kSjGsWkdJIOgSviemk93I6sX7IqWKrq\n6XWk78+sw7HG3Sy7Q8Ja9l5jUmJP53kQ4um4ne4d+eslNJl85w/btDIxXHtVdjMOE2e4yW0dq66H\n7eL31ZNWm5uAvtnZMxJVTT0/pilE5XtR2koKW9rSlr5AL4WkYHHITMhO3+WhJ5x2mCc3rplsWDJI\n5AbebcUsp6K3tlZySziTaxxf3S5pxpKZvrig0SCRiydL5noLoIEzkd/mdCoGvnUxp9Zbqb4ucA7k\nd05e0tWgIl8NbpNPPqFW9F/76pKkLyi/slpgHLkR2kmfvqPYA/WDO9Yl9OSGDqo9jLuJ7w/w1d+s\n6SRo7JLlZ4qLuJwQtBSxGRvCWKSG11+/zUThzU8/UJRjnhKoPcTiUjWKdCx9DhqxH1RNQ5PLHM0a\ncW/uegEtRVjGLZeoJ3NrZitQ92OeFSxTRUtu4v+p0LQBWK/DaKAQ5XXCQkOjy8DiqhvYiN0PYw0Z\n0ufE6eBn8pJWr0VWiSQwXISYlcxnlolRufLatBSOvWN28RRKnTUFXMlYyzqn0nDm82uRUEZBQNLW\nEPagYuZKGz23ojXXvBb9gkpvfUeNjx0zYtR9BYDT4gP21TVcrAs+PdOArj1p4+iTiihW97TzLa4m\n0ufO3CFayzPTxYpOS6W6d2QuRrfukrVkHzplijmX/e3ZLks1puN4lKtH8r7ql6W/ezPKXbVLzC7Q\npeb66RPKPVnftj+EWI0iL0gvBVMwpiEKUvw8oPJkUcxoSdvIYgVZl9VAjDokNScf/hEAn39f/h4c\nHTA8FGbS3blPz4rVdx1OWH0glt6LxSmXGhq9TGXCei2I1Kc/W1SsNAY9Ci2+kfflxmLDjW9d/j+d\nj3Ed6duV1+fJXDb3oGVYqR/7vbMr6ucCb846qhKtUo4Ux/D6w7fZf1OswpEX4mqka6keh+nsU54/\nEYPTs8tHJI68q2m3aClwIvBz9ruy+Ue6kqvUY6FAocwWlJlstuWiRe++ApJMwPVENp6veSPmHQtT\nETND73UWlxLW2/YTjKN4kMi9yU+wyZ/i1iGOzlu5mpFqYgfjOviq8qXLFY6ChWqNP0jChFxVmwoH\np6+GSyrypTCeVceju0mYE8q7wmpFpjiFuf+Ybluhy1mJHSpmofAwruyjRBlP3Q0oNX7CxjnVWMZ6\nYacEGqE4KI9hrh6TQH9XQ28oqtQ9Z/fm4ig6DZ9cCFN4pIzHfQC73/o9AJ4vC9qKnUmZ8vCxMN/z\nVsjFE8kpsVZv2FeSd0hu6/4tGtrHOhfpJZepetKqjLSj3qinalDsddn/nkD9D7/RpRrL3J89WzD7\nTPZZf7/P4M4DfhTaqg9b2tKWvkAvhaSAdWiKiKHXZqWc+Pniins9iRiMOkNWa4XzBjXPnsmtOXkq\n4ml7cM1bb4m4++ZXukSa0WY2Lfjd9/4UgCffvwCFDacDuRliHIJNWjFjb9xs08yy0sQbLQfanhjX\nNkY2xykIktek66OI6wtxC8ZFQHGl6kj/AZUwcQINZvrs82/zxyrjxe9f8W9diAHr5157i+ZKuPzv\n/v7vSh8/esTVBm3Z7XJnV4yre55HvRSpybo1jcJ572v04rKZMlOfZFbmZGNpOy1rJjORFLJgzfxK\n3WltmYur0uNKffTm/SsShQLu3hmyuyNqx607e3RUxVhbWadnVydYFdtPry45rzTdmu/T1mi+qI6w\nfZW2NBnO0U5AgEbBYm7WtxuWhApfL/M1mUZEeks1Es5rpuou/ODzZ5Rr9ekvG3Zuy/hanREj1SZb\nrszbusi4UinGzmekE8l+NJuNyTWSsvfoMYcdEf8TRZuuGo9uqKpNGHGm0Ywnlz6NjvVBS7NiDVpc\nqwE6ODV09wW/8fDhW5RDkW6OzteMn2uwmaaP+7Y757WxvCvyW7R60vYiyCjORaJ597LhnUzWslSD\ncJ1bXvNl/N+YvM7ggbTnuGB1DqcXJbWvCMkXpJeCKRgXvMQwHQWE6lONnRFVR0RD1y3xVcTzF2s+\nvRbR92IlYuZe0iZtyUQv/AprZXMvZvMbH/rKqfAUq+705QA9Oztjops0TlpE6vkILSwD6UdERF3I\nRugoDDrs9YlGEnkW7+5RnD0FoFqFoJF66/NT9u+K/aB1KBsz9L/O13qizjx7dMonuYiUX3MizFpt\nFEMFBR3t8IpGxVU7h3iqgoRODzuXjeJkU3qaTchX3/1VmnI+1cQymaVG3rsMHdJU2jOPZ9SavOSO\n4jji8JjdXen7SZmxmG4iSR2SlkKoy+omGtroIfVwuFTvzNzmNJqmrdNrExjpW2B8WhsYr2Ie8AK8\nXPrQ1DmtcqPXRxRdtQ1YS62ejUZVokVd0dasUO39Hf7wu8JYn4yf0VOd5sHuHcaldHTYlv6s01Mm\nE1EbT5+f01M8SX9Y0e8I0ysHLZ47mtVJPRmdwzZNKt85hcswkf70n+cMYlmTwwPhQIeHt1g81ijJ\nAwebyCG+XI0pFFb+9HzKdBMFOdIEKVmLEwWRvfL6CBvL4X52PeN7qmI0rqHW81BpbMTMzZkoVJw9\nh+CW7Lf4k4zuSMZvrMWLfrTQ6a36sKUtbekL9FJICkVleXZVspc85zUkgmy362FLuTGenc945//6\nEwD+6W9/QKmJVFO9rfZHFfvBPQD6w31soRz6yQU9X26gg/4Bn2qA0fV7InKdX80p1Ln76q7HcaI3\nexlQKvIuLdY3CUidWLl2dYxj5F33n4y5WiseYd8js8LFy/Elz0/EoPSHz0Q6COOQv3n/dQC8rMvk\nUm785N9eEeQiFby9qyjNw9f53iMpk/HxH7zPqcJyh72QI819eHfUY19xEb4u5St3L1mqpbt2PGaq\nErmmoVD/fjFd30QGfvdE+jD59ud8pBF5dejyykCkm9u9I3pIkJqpCnyVBJqVShKrBlcTiFwsa56d\nivp0Ov2USAPB7ox6vP1AjF13djRBaTEjNzKmromwtebPjHzijeX/oqSciTQxX8t6zJYLZp9rtmMn\n5uK5SD9ZVRDMZA6fzi+Jbsnz3rFGuGaw0IS/nz9/zqVGx/ozy+pjMdz1hj3BKgB3eiI9/LVv/Aqr\nWMa84Jw7bZEQd5OYviaf2evLXPZPZ7SN7KHLaMGlphCcff4I7T7vrCv6Grn5hnqqZpOaU1f200k8\nZtho4uFJzXiueRGylGcarXmmwlbpWuY9Gf8vvvuYw7d+Qfo5HJO1NUfltcGPf5DR+0XopWAKTVWw\nmj7hk3ca7v11iSa7224RKnb+cnrB2pcJ+ZnX70KgIrYvk9duJwxeVWtzq8+TE7EjfHz9hFFXoxK7\nPfILzZCjKkXoSgpzgMN+n15bJi+sU+qFtFE1llIzdmzcf9Y3rHUDftqruT2SQ/PVez6JRgZenoeE\nR9L2/USYxlv3bvHGK/cAeP/P/gXuWNOIX05pHcomdDUBRzRM2C2EmazrHrc0m7OloaWZkZtWROip\nrt6S8R8fjDgXdZkn+ZLVUjbNNG9hFf7tGMMru+o6W8i76quK49fFBTKe5RzcFix5uNdjoS7ejtsB\nhWOreQa/lzDSMONXeg5RW8ax65XUmrFozzPEfY3/0ISqThlR5Cqoeg6MNE2+rUAh22Yo0ZsA7UBj\nUco1M1VtnH7IsJFDehQHVGqPGl+OKcYKLrutzPTOAZ9r3sX2YkWlcQt5XeFrLEwVt0CZhT3QzNDt\nEl9VQvOooCyEsbBTsaNZr04vNWnubcODvoaZ54YPl8JwP7guKBQwl1MSKiT/SjOtFuGKawXRnT6b\n85raRoa39wlOxA7yvdRyqpD8QBPP9LsRDzSjlb8PxVwyiVvHZ/pYM0S5OTv5Q34U2qoPW9rSlr5A\nL4WkQG1pJg0mmXP6TIx2rx3cxWou/GBVEqs//cFX97jdE1CQs5LbY+GnuI1wV3e4x+pKbpJPPp1y\n9HPy/W13F9R3vdLU8Hl0F6s57hzXZaUyXlqndDa3au3x8UTktbOp5mloG+xabiVjS4b7wq13BwNu\nKYbgq28d8DyQ2+q1+78IwK1bLVpaZ+LZ44BWIKKmv2ixMqLSOCqttKMed3dFAtkfWryRArVqHy/V\nTMzFgjqX28jVYKd9d4/ecCOBrJleSN+vs4K1s8m1aNjrCeDq3lDayO9F1AOZb48OcUslFheiSnMu\nJCF2pYE7mtQlCC2JpsLzPJ+9riZW6ca0jaxPFIcYzV/gFCJ12EVK4mkmapuzGMv6NtUSFP7dJBWu\nSmmJJmdAvB++AAAgAElEQVS5Nzgm390YHeObZCj5ImOmIrh/N6SjBtT7OwINdgYd3tALcy9pMxmL\nOJWtlmR+qfPcY5SINHH/ra8AMNzrko8l4rD2Q57OZe6frUoGis/oaeq2IIxwj2UvPPBfwzjfA2DQ\n8XCOZC7qMxhfSITtXNP63zlqs4ljbH9e8/xEpLfjNw/4d35Z1K5XPj7lmQa3Hf+07Jtb/fs8+Vie\nnWcNTy+1RkYzY/mh7Ivzjou3u+ZHoZeCKfi+y62jDuNogB2oFyGrmGjEneO67Ggq8tHtY/Z2RO/O\nNerNuZjR1g1dVR5LDd/Fq4hrLchxnPBAUY/+Qz3wns98IZv0Yj5hOtGaE5cRXqKutaXFaBGZTeSc\nGw3JkYUt3R6oBdjr+uwkcpgG+wm3VTWpVL8LQo8LPRSPry4YqLXc7BzfgHeiQAE4jc/OgYjwVehg\nNMy4bhpQVcG9ylmNdQldjdRMLVNFfMZFTa0peNa+w9Rs6iVEZCp2fl115zAa4Q3lkFoCMvXKTFaL\nm+hJJ+6wqcUVaHRiU1kChWHud/t0N94F25LwQMCLDXWuAKfcv1k7Vz0jjklpq9Cat/qkK1F5nNCl\nq14CT8NE/VGCr/aVdepRaci8346JNKFM7Djs3BLGHw1kTL1OyK4y1slhCqf3APggPyGfyVoOvBB/\nV4vLJFowqHZw1SPhZRlWGWRiC0YDsQmEGt68LiwXCmRz95fs3Ja2d02f1o6sZXZ3wuJM+vZEEY9X\n13NO1ZPWdxwONanLblPiHkuff263y0O1D7X25TvPiQhUpV0vKqJYSxScRpR76q1aBngbyOkL0lZ9\n2NKWtvQFeikkBc8P2Dm6RxDCXS1u0l/3qGcKMGFKqEadZOHgxnLbBpF0v+e4hKlwa4cUpy23Rzev\nYaLx+MeGlgJoNqnNos6Aq026suUVjhb9aAchM8UNNHFDpJZ6X2/dpkgpc7FYH11a7gQioubPxzSH\nKsL1EiIV/0v1Ly+apzjn0vcqtdw6FMOe254Q5yJe2lREQ++wwdMMz1HUBeSGrcuUrBCLfOi6PwCy\nqAcgK5Y0c436K2smM/WJhw1tzZJcrS3LRyISu5pleBB4BGoAo9fi/FIrGk0XBGxuXajUkOrnWiwn\nC3F7mnG426aF9J/ao3Q3KeKWBFpcp1ZAlpuWzDVtvcXH1xyNpna4WMkcHqSGQvMiLDV/hRe1iVQy\nOUgG+Bq0WZQF++GmZid0tABPkmiKvahPpOCzo6MDlgdyS+/UIybnGl8QeZRq8NtRS2rUQKFp3D7I\nHtNRA3ORuTRrmfNZqYbYtUOtZd6uLh+zScMx8gNGb8seaewBflsMguv3ZH76ey4nJ/r5bZ/7rkq3\nZkhVKWbDW3KoqQrNWqTiOlyyVLj9rdjFV9Da4+cf8eSJzG3i9bh1Szx6L0p/ZUnBGHPbGPPbxpjv\nG2PeM8b8Pf1+aIz5Z8aYj/Xv4K/axpa2tKV/+fTjSAoV8J9Za//MGNMB/tQY88+A/wj4LWvt3zfG\n/AbwG8B//v/bCc8wGhnWlxHFkcb/h5Z4gzRblLj7iipjgVVfcq1SgOta2ppvwHgJZpOubRdMW11o\nUR9f9XmjZbQcExMoOsxZuTe1DExV4yiCbuVaCvUbV5quLZ2tb/Tsq7bPVAu8HEWGtf5uXk5Bb29H\nI+eY+FyrvjwKA27ti7Ev9AagUX1otFxtRlgtHsugxlFDm+N5+CrRFG6DXWn2Z9W9r8uUiaaBCwbh\nTWHexcTFUSTgulgwnsr78qXmmBg1OBr5aW1BpjUbLmaXvHpLbDhx0sFR+HetEkPlp7hozct8itlk\nwPLa+AoPj5o5hdoPjLr8gnYPo2i9fJnT0lqY58uM8bnMgbtT0p/XX5h7b70mV/RmHFiSvszt6jql\n0JwLTpURaSRpr5H+BF1DpZJJVViuT2RuszrDqVVy7MVYhRKj9RTqS4unNqPZOGN5JfaHatSnpzDn\nq4UGed2GOJL9mzoNsbvZhwHF2Ucy94HHu78ltU0+uxIj4Z0kIVZp9K7X5c7bcrOXdsnKFSlm+m6G\n8aX/XcWp2NDH17KIfq+geKSQfeBpKnalRbri1lLaflH6KzMFa+0pcKqfF8aY95ES9H8b+Nf1sf8B\n+B1+CFNwMSRNyP7BDpNGFvPMv2DXiGibxG1mC9kISzy8fBNyrAk9Sp91LvEQ/qRm+q5EF85Pas7b\nMpH75+ckuyKuGxXrKuPhaCHEruczUWay8B1yTys3lxlqX2SlEWuBu6ZS3H5qDE9XslGO5wNq9QLk\n7Ya1JvXwHVnY9OxT1s/U+h54OD2tfxkmlJpAcHmxqW25gA28dn5J2JHF94IQo+J1Nl3yeCrv9lVW\nrdMW1pdxLBcVnU3UKZalGuiW0ylPnqnadFf6uBzmlFpVyKwzsjMNPy8bik2J96jCpHLQl2MV69cF\nyUQYnee2MJph20tq/EjmyEkdmkbet6zkr4PBy9VzYCvSueY+NFdQyME6n8yYamh7ooVUAxPdeGiq\nrkOtlvyzp5/TKFgqbkd0VHWp1chbFwlPx7IvJk/nfO+D92UdQp92Vy6fh/UegXqjVsq811yDMs7L\nixUTzf9pqpKfUrzAju4FmprrQtWysaF0dfyVx3QslaMePX3Oe49kTIuO/P7OTo9IozLjXkyhxWav\np2sm74oX4cOPMoZ78sxeRw78YLmmuZb+Xjc1H82k7fxZQTUWBrHwXMb5Jqnli9FPxNBojLkHfB34\nY2BfGQbAGeg18v/9za8bY75tjPn2fPWjxXtvaUtb+vLoxzY0GvGV/SPgP7XWzs0mCSZgrbVm48/7\nf9FfLEX/6t1dG3ZD4iRmrbUV7Dog7asrqDF01IhUBxnzmXzfVv/44PYuxpUb7PK773F6Jpx0XdfY\nSr6f1zWB1pHwjHDwmoY0VaNcbGhpIpBJblmp621VwkTVA5UWcbvHoAkv1rXDxVJE7Y9PGjo70qf6\n8owDrT2TKdNbFxWL6aYwguG7336u7/0+bTTdWk9rJ0Zdgh2NapyNaakrL4gj/EbrKcyuWc80KacR\ncfdqveaDK7mNFykcHmt6Mc8njGV8q2v4eCLP/5niQn5ht48ppD/T64JMC+c4sUOja7oYG+qZYiQu\nNClIz1IqQjT1KuxCbquw6uKGm4Aol0qzIxtNu9bYCjQtWT6/pttTzMbeCCfSGw9DpXVB56WqVZVP\nZyF97+UwVgnyej0m07ZH0T5pLVJmoTUpdldrnl3L+OZTmGqG7cnkjEhrQebVip2uRNj6ers6QYWv\ngVvZtOBaUYodx2AiTTarSV9cz2GhRt6rqiBWZObF84LrVPr8W4+vqFS921XJ9MOLOWGiRuxqwXAt\n0s9HJxlnGkhlOyEnY+nn/kL2960Dj/1ajI6L6zkXqmqtm4KdVzQdW9SjPfrRysb9WEzBSPWJfwT8\nQ2vt/6JfnxtjDq21p8aYQ+Dih7/JpXG7JG5MpxCrcSc1zK5F4AiKLkNHw0LnFbn6ihsFnXjLCq+n\nobc7Q37+l74BwFfu7ZBlivuuW1xfq0Si+IYwKSlWMsFlmRJqhZ1BGHM9F5GxLks0BeNNyvImdai1\n6o73+flN+vIP148IFAbr2wEtDcmd6QHLWJGE0p/dXkSomPRJ6WP9jXdFqwZFUGg4sS3hUr0BkWPx\nPBWNlysa9dMvpzK205NLxlo0dt0Y0koLkjgQFqpW+B5rFYm/9VSYwqDfwtdM2itnwRtvfg2AneT+\nTZ7Hi+9/ylQPaW8lhzFaDnH31MZR5TfAI5MuaDTLddWP8XNhxJFmVcrJWWk0p5sVeLpMTV3jdIRB\nhGdLFlpL8WqpsN3KEug9M5quGWviHMdAqX78z6qnfPDxYwD+WAsIB5XLpmxS3I3pdYVpVFnBpYLW\nirzG3pbnQ7VbJd2SVO0hl+mMcqHenihHI8PxNaNXsyppSs1tWVpWGqMTpDkLrXqVmYYg2VStkr+f\nXGcspvLspVvTe6yFdhwPM5CJee3BDtcKovpca1CeXFd85ZaGuKc1/UIulu4rI+4evS3zXM05uivx\nNi9KP473wQD/HfC+tfa//Qv/9ZvA39HPfwf4x3/VNra0pS39y6cfR1L4ZeA/BN41xnxHv/svgL8P\n/M/GmP8YeAL8uz/sRU1Zkp6d8Mlywp2vSobb4WGLoFFRblHg3FdL9roi8iTBSbV+DICNxpTnyrbj\nHp0j9at7h2RqGJrW4CnUtvTk2Spfsykv2Qo9jJE24rKiPpdnn4ynPFOpwaq4t8oLKkXoTcKCWtOD\nHfZ91nrDXDgZ8VLE1TzShB15RrPJY9AbsndX/M52z8fR322wZ3k+x07UEBn/ALlXhA2VVrZeexle\nS35Rab6JP3p2xTgVUd0PAnJFNz5JG4y3SRLj0NPfBZqH4iTP8RxRDeLAI9Ggs+5Ol1QTfQQHfTqK\n9PQKMc61ipyKTYbnMbnWxiiaHFNvLLoltRbJMVrxuwktpaPw2yCkGMmaXCxy5mMdd+CwUvyCVd+9\nZU2qiNUn6cWNOhJHfSqt++D5FZVKclNVNXKbEqixcse28TyRrPykRaM1+0wMlUoyLc11kDQB86V6\nAJYrGhX988gyUwlyUxeiO/LxFPrspAFrTSt3WWdMVfcchjG+5pZYqhSzzioCVcE+D3M+0IjKt+91\nefgzskf8rM2u5m04n4rqOp+u+VCjRP2BRzDQjOe9OzzS4kF7wx3ioVb2eUH6cbwPvw+Yv+S///qP\n8q66LJg9P8V3dnnnU/EipHddvqYxCiadsrzUpgZHmEo2r81kQ3/0nc9YpJIFs2v6zNRt9HSZYz2t\n83d4RNwVPauMZdYrY/HV3ejVIb6mO/eGDb6CmtZ5RaWQXzTtt60uAGFY6+oZnrqTqqTHMpdDWKxH\nnCjz8ZZqeV+tsBrVOE+nFI5mbLr2aenm7+yK/mcbQ34lh3/hzXBVh2m3PQqNVFysStxE1C0Ta4jx\nssDRilWtJGCqKcKX65zK1WKs7YCoqwCZUJlt28NqQpNsbXn6vqzD4rRhoZme2t0Ogw14RyG1ee0R\nhupaHHvkmovRepaWxi14TUCjIv/cV/VhObtJCDurLemZ2gYuTim1OtcidvFUpfPVG1SOG2Ktjbhw\nStaqZ7v1mn2N/Kz9GmckbR8sNdGqzWk0Q5JrHFaakQrb4KoXYTQKb/IqhmqLuG5d89131Z2YVjja\nH+sHLFR1SdTbUwQeK4187DQt8rUCj+KAjYPCXdSsNI5ns05xL+GN+9L3LtBTkN1Xf+lnaKvK+tkf\nvMO7T4TJVJro5dALOP1Uvvu/M4eHvyg2/YfDER+fCSO7aAU8/OltKfotbWlLPwa9FDDnioYpay6O\nQxbq207LjA/UOHMvCnHXIvplt9ugVlYb6i0Z7TFXfMPsNKNU0NByWuBqsYzL+ZJAReaeI7e8bdlN\nHBHW94jVUFWFLebNJvuwxVHgjF5yhPvfpLiQEl4mLrGVwo6jAakaQVdVyu6RQFsLxRuEnc5N/sHB\nV24TRMLZi2DFUUvSiB+8Jjfx4toyfyZJVtZnT24qDseDDrlay+OypHsgBrN3HmmK96rG0zqPh3GP\nhUZR1sbS2I0XpSHVhDJeX4vQxD32XhEjZ7Nc8/RcxvHkdMa9NyVSL0iGnF+KYbI5lzaio4r6UsZv\n05qNr2lwa0i0KUhpM2yt2AqVzD7+3gmOSmP+UYyvqlLZ7XKuGIimCWip8bPbUdixNSQKbx/02nw4\n/y4AF+ucWnMoJKPwpramu+nQwgeFOc+mBauFqi5uwxt3RR3dvTUk0rT0ffV2XbcSPn4uno+0rOjv\niZTS8gJyVR86CiaqK4epGlqdoeEwlrXZMTn7alR8cn7G8+lGbdDkLIcRzzRpTb7TYtWoSvTE4zIV\nY/vz74z5RMFsbx5rGYSvj1heyLsuC8P+N2QcnxURF2ORkH7+p3+J3QdaZ/EF6aVgCnkBnz6tuPVK\nxi8FOuluh9mFhBN/mja8pvkVw8Ue7loRaAdyUI7vvs7rqnNWJzUXS0lPnj/7nEax7/N0id1kU1qr\n+NYEoOg4Wh5GKygtno1ZKlrSVhVmI4Kri6l18CZeX3Rq/9mHpJEg1Jw6oVCEpC0s/VLBK6pnhjsu\n9kqmfNjusauxD/RKwpmmKleXlvv8GjV3cKd1TDDaZH3KKRVh53strp8LKu7b74n9olgXeHrYFuWa\nhWb/oaqJNGrR2pL0TFSscSwH98FOwI4mMrnz8C7jHWEmn/yLMQPNTdl3umSKIOyqWOtFDQurMQyD\ngv5m/dreDW5/na3xCgVLnYpa8gfvnXBvTxj9zzn7fHQplvXg+IhgJGM6nLjMFNRjl5qrsSlwtG7H\nkd9lPhS0ZZbMaLfkff3921TK7YtGixDveSQ9me/mICCbC3OL44j7D4QZdiOYjdXLoXEN5fWY82v1\ndtHwalsT11LzTO0Vay1F/6bbwtU6I8X1FPoybwe0KLrSt7yqKRwZq1HvUisekataGTs+PS0vX16e\nc/a5qJipWfILe7I+bxyIGzI/n7HS/XbHS3h1IZfQ2ckpKy2K/OatAW1fmMiL0lZ92NKWtvQFeikk\nBUONw4KzTzJ+4ReFT3Uy96aCkM1qVpFw8PblczoD4fi+GnW8qIu7MT4m65ubLfcPyTVVeWUXTLRo\nx0qLwbRtjKdVg1jDRBOSfPh8wlP19V+vYKk450KNfXF5jqew5LLlE9QiXqflYxxVY04XZ+x8KtO7\nd/iDuIX5c+H8VXlGvSsSjVN1MVZuNGcmt0HYW+IN5Hdex8Ep9KYpJjcxBfM85c9O5MZ//zO52ZdF\ng4YwgFPgqHG0qow484GqsqRjTaXfknZPhld85Y7cLo6zg7OpyNQ8x3yu2ai/1ua+xmhEewqrXlm8\nodz+tecQato864fUuQKOSstU8SCPT+SWnM1XnPpawXnPpR4plsNMcbVOZbgXsKvVqKcTgSV7RcBC\ns3WbyQUtLTiTW8v1XOY2L0sijUFoFKjmRBXFuUxMUZbUgXy/ExQEqdZ59Cb4nsz/+FLG/91Pn5Dl\n8q7SOHyu3pNOt8O6lDlvFDI+v+dvCpOzWC9YaOSu52cECn/vrUoSVaEm2Saf5ylGM4ZnZwFrNWZ+\ndj3l0aXMoe+67I5kD0wvNO4kXxH35Nm9qM3JO5LU5eTZjGs1IDezMc3ipvT4C9FWUtjSlrb0BTLW\n/mjBEl8GBX5gd/q71E1AMtSK0pWh1RHdibqm3d9kpK144558//mn4iq6mk3w9Xrc8UPamvLs4cEO\nHU2eOrBtBlpbLTCiv2dBSqVGyzLPaDKRNp4zY7+RG8ONLH4pOln9QHMPvPZr/Mk//68AuPyTb7G+\n1kSaox69PbE17B/dYbSnBiGN2KsbcwMJjnsJTaFRfV7DxkJnNf+/n1tcjbKrMof3TiUG/8PvP6Oj\nt9/tY4dTraR9u1aYcNgQ1WLAzN/Y5f/4P38fgLPzS+bqGl2vSwJNqrqxP+yNEtoqBbRd7yab0PGt\nPbo9ma+uH93Ub/A8+WtaLm1Nc9eOYtDUZOPlmO9/X/T2y/EUakVcqg585A9oaVXxqOqxHMnnv/nr\n/zXf+cd/F4Dz//33mY9lPk4129TptOJUUZUdHCp19VVpfZMhq2ccrhVP4Gm27gxLpRDE2kghIIDc\nsRjNgOW5ho4aBBvFabjYm4C4NC9ZaT0Iawy37gjqs1KDuOPkLNSAmeY5jWbecqMEYzeu1YYiVcOs\nZv528W4AKrausYqgtDVUbNzhVoH3ECuepggMaG3PrCkZqOA/MzVv6FxcWXtjEJ3An1prf5YfQi+F\n+gBgjKV2fWojk4f7A9HXCWNKjZzrtDx8jWwsNRWVSVc4iuvvtULefl2ssLePegSRHMgEj729TYFV\nBbSUAVaLvjjhESfXAgoZjDOSth5eO4L9TUFaaff7V5cM/ki9E1WOF4oYfNAP6N+Ww/ngcI9Nzdvd\n9lDbbUhnGvvgu6ApwsMgpLRaCFahsaHv3qgJRasguZSD2YlcWhol+Hm2ZKmhvncV2BIXB4S31BDX\ncUh1A04XS/JSw9Kx+OpRGQ6kv71+h34kG6njBQx6wtAGoz6+1tts+YZRXxm1YjCKekVLIdqDdodK\ni/Gu6oDjrjBW3wQ8mYrxMNDQ8mTXJWrUwHcQc6CegXcvpvR+U0T3pyYn1wNQOZoerqwp9bAVnqFQ\n9XBgDZX2KTIOjhqHfT3wtWOJFeZcGwjNpjKY2YRg4HoOyiuxaOyDcQhaCuOuS1xl6lVjb+D2ea4p\n4SJucCgmBzfS8Qd9XF+ZKTmtSEFWVg3XXpuVFrytlzNy9Xw1RU2BqkFFRaVjCdWYW5saz2zg0xUt\nBUPMTIGvzHft3cBrXpi26sOWtrSlL9BLISkYHHzTxotCIjUyuWVI3Yg4b6oSRzMDB/6cQvPfX4/F\nb2vXFfcUSvy1h7f5xV+QtL373j5mA7p0cvyR3DruUmtKriegPmbaMVgxYMZTi1W8ROPV9DfBWOqy\nbMaP+F4uN1/3dZfbmgvg6NaA4egeAP1OyAbw2WjthWZvRFeTpbhEN7dKMEhwrGaY1sAmPwxx1J3q\nlPDwWMTExDU8U9dq9jRnJ5fbNtVkIl6SspfrOOYw1ajGLM+o9fYMjUuiKtZuR8Y29EMSo2J5EnN4\nIO896HSoFGfhRoYdre6d6G13/vgpZq2RfCPLQKHgOT7xPZHMekWD+1SkrKVKSn7UuqkrmRQ+bS3v\ndvbJR/xxKYbL1U8ZOJU5TxcyF3XVUOkt7ruGUA3FI9dysCfP7FvDp6W870ArZseJx4FiUuahT7gx\nCK58xpo0dVobpipNrVS1sw74oZZ7r3+QCLe2hkLh5g0q5a1cGpXVPTck1oQzjhvTURRm1O7xQIC1\nHPcFabhz3GZ8Jf387Oy3eXwial5ZrShVP8qqGYu1jjuRvrWsD9p26FTEsQZ/uYbsuSYbTsATW+UL\n08vBFByDFwU4wYhQN6mZz6kVolxlEPTFat3zRxRT+Vwoxj8IDN/4afHR/uK/9tc43pfFaDsJRis5\nuf4+qNXaGap1uwu1KnN17TJScTe6V1KpGrPIFgSqXxaHsuCfvf+cI/UMhG5CW6s7rbq36PflEIZO\nwmou/aysZoW6viBKtOhLz8Vx5HPUAmcjGqrs5oRd6kL63jgug11N8R5ApeAes2vZ6ckcDXbk/5dO\niiKCcd/yWWpmnnVa3tgPup2YnX3NhakZq3Y6LfYTmZek36Wvalc3ifH2hAGEcZ+9XWEKcUvVFacm\nVys6Zk2oqs1+2CNV4JGZpxSK/W860veicrjUpC5O7ODfl/n+9vwddmKZz8m1SyWlGTlV20HuWEIV\ncHf3OuzeEnXmZ3uG3o48FKfw9i3px1f66i3p94gVmNS0OngKNV4vI5ZX4rX46HTMB5/JgfzeQmHc\nWcNMk9PUDXiaK9PxG4pMPCqNqhQ2NPiBhlOHbRKdwyh02Fcme//+IT9/KFxhU2vUVg4XtzSpzR8+\nJM3fBWB+ZZloYEWxMKCxEjia3aoTE9bCmOa2YFzJ/i3aBYHGbjjTbJM1kwUvRlv1YUtb2tIX6OWQ\nFAyEgQU3ptQc+yZeUC209FducCtNXuJOmV+L6O6rBWWv3eLtr0nd99u3eriaNq1qLgi7WqjEB0/h\nzbXCkm3YwVNos/UMVqG/uVtSaqx/bEPWeiNU1/KunfMrLh8It36rd5exlh8fOTlFLrf/JMs4U7E6\nUXzDbusOpRoXCYY4ill03R6l1r/M9XZ1ioZmrdLK6opKc/f3D27jONKfVb7imeaccDeZkacOF7ua\nB/K0S6a3eG0hUp9+1Aloqcegp4jGfjdieCS32dCL8VQNcBzDcCTqSCvu0G3LzdxoMFA0GBCstdAL\nu5SZpnQbJMTqHx91Iq470o+zXOprLhZT8kuZ+2fdFWlLoLgPiiF/sivf76xj3ldVKV+pNGJddrXM\n28+8ts/PPRR4+N6gReIrjiTxSHZFcuy0N16ZEqMWRY8YtBBLuVyT3hWp4vBij4fHorocfiTGzj+5\nnpA90UI1WUOkekfpeBuHCrUaLYMwIIlFMgmciLYnbe/vubz1lvTnG/cOuadVyH31dMzXS0oNwBrc\n6TLIROqbr8bUmlW8qCo2jkKrxuNuFNJoSrfePGGk0Oy9+gFp5z1Zs5XhbJP44QUdjS8FU3AcQxRH\nrG1zk1PPWRsKDXV2W20iTViyTCdcKLBo4xa7v7/H6K7AXcs6vkkq6qQOgeq+hgSj1nVvk6zIqWlU\nh6x9gxvKZ79MmCsYqimm2LaKa9rfs7zGXijYpN0lvBdpf4YYDXF2bEhLQ1n9c/m7imBXXZ2248GV\n9K05THA0ms/xZWz5oiTXGo6LrAKj7lRrsZqlKbQuK7XBfHgpzybrgv37Mhee39xY6i0QJprEtJ3Q\naGRgeyDfHY5GDHrSn7YXE6k7NGlHJENVFfwermYbctUe4PghxtvkmoywtTDe0q8oVd9dXy8w6so7\nvZDxza4n1Ev5/6TXp6dM8X98/zt0JeSDyYOahQJ9UnUttnzDkaowr9+6zehAQouH7ZpI7QdJf0g0\nlJqkoapSZr3G00hUJ2xjNpdPdoKTCbP344A797VAj9qR3O86pAPZF+OsoFSvTcfxb6DJaKxCkCRE\nGolpyoBAyxL0do+5fSCMtXtwgAk2OUY17B1DpgVgnHiXViJ7L4oqGp3b2hg2TslKVZilqWElbeS2\nZrwSZjMfrEhSLXzDc5yNW/MFaas+bGlLW/oCvRSSgjEeUbRDmaV0rrToSWqxpd60YUl/c01b76YU\n/d5QroG/9c2vs5MN9V0Las3D0EoGhEaAPK7JaDZFjtWI6FQulaf5D1jhavbdsF7j6A17Wub0K3nf\nJkrylr9m8YrcVnuHXaozTcISGGYKme25Hu6VPJMWWv7O6+Cpga563sc1m1upR9TWyLnncqPmV5Zz\nFXeruSXQXH3zVsk1mlijNPgKvlpm8ux4veL4Wt4RRM2Nj9pzDX01gvWMT1dj+XuxFlbZPSRpVL50\nlhNW4dYAACAASURBVBCJGtSJ94j+H/beLEiy7DwP+87d7809K7P26q7qdRbMYBYSBAFSBEWCshZa\noq1wKOgI2wrajwzZfrBl+cUPdoT8Yot+sR9sywyHbEqUI2RRICVuAAGCwAwwmL17eq+upWvJqtzz\n7vceP/xf5mAiYGKGQ5GtiDoRE1NdlXmXc889//b935fREzIzgJgEi7wDltZQc6nzWgUGa/ZWlsAk\n+crQ2EUxJdQ2Fu/gydEEI4Y8O7ZGW8lcBR946G8KdPvHPh9j+B6l+qj83ExMvLIpc3wZJhxCqa2K\nj0ZNjuGZ7YVmpZoTrzgBTGIeDFVKzArAqtahmPA0rRRmKS7/xrKskfRGiSOCk47PxzhiOJaUCjYF\nYwzOyZLro0aswGl8jpIJwRv1F7DMUFGFM4Rs6LIJ9JqOMoR8ZlF/inAsIdN0lgLz3GJZiGQggCIW\nb8sYJlC8tjLN4dmyLpJhGwGlDZKqscCOpOnHix+ejk3BUDA8A1biwvSZpc4N1Dnp1XoAvyMTPDyf\nwqLbtU5X7fILzwBthhpFC/SSYVccFAkpt60qFHn+SnYZKm3DYFznpAVikp86dgmTgJWkD4xm57wO\nIv6aS6hSFahacZGxmlHmDmCRd9DwYNMNXLFlY6o3I9gOSVbiD2C7ImLqTHtQFZK0kneycAGTrEmh\nzhCTWMVIamj4dB8xgkUsfk4y1yE0plzkYTBehJG+68FhGVIFFiosly0FzNjXLZjzc6g2MNc/WNIw\nAiLvrBrUlD0mPmnflQGLRC/QIyimTAzPhO3KBng572BWlVyCTRJcpSIMCD6z+wO4vLbHRh2tOzJH\n3znPFilzjy9xpeYAtlx7vhRC5/OX3oHy5XzKK6DmjE0zIlbNDJqVKNttLASCoTMYNkMJR8Gc0o3n\n+brtJlY6clPZrsK4J/PtIINJdKfnMkfg1zBlhSMaDxEw5HNXK1BNAqssB2bOvAsNXV5EMF0iKcMS\nsylJcWHDteehqY8im/LzDAfidNGVm2QFevN8R3aGGjfZKBnAzT9mMoHjIny4GBfjYnxkPBWegmUq\nLDdtHI0LxMxe+3aCgJl6pwSq9N3P7RQukz3PUsQjGgwQ0e1bdn2AQJE01ogJMjKTE7gF8eyk0zb9\nFmwmfXTkLpKOuRMv9AqLOMc+OfOqpIhfrVWgyeAbqwwxKdhanoEwZuefNUBpkFugIP6h10bPpyBL\nZwNGjwIgQRXTmVjsu4dy/zVVYNYji/B4iohW3OxYqLP3IdcVvL3/OgAgY5edV2lif0CF58MELjEW\njUYdVYJ7yjBDlUI1bcKZVRoioq9qJhZay1R9cgPktIiYFgtGaz2HY7fr0HqODa4CinyHTgM2uQfa\nKJG9I6Q0D84kuz9NYkwG9GimJUItIcNP/bu/gD/6B78NALD2gAbDH4/hUa3+oZ6lLhXYaAk3q0HN\nlbxSBZuEOiW/F8cjOExMl8qDJn4jz/ZhMHFr2eaCz6Jk8tBYdrE9FN7QNXcP91gNmZYaVULkU4ZM\ncTlBShXzMI1whUnumulDURfUVDbUnNOSFRWn1UWrQq/jzi4cAtn8qkJhMBSejVHmMrf59ycOGfIZ\nUOgUcoyxU0Ewk3UfRAXiC5jzxbgYF+PTjKfCUygKjeGkxCQfIWaZp2r5qC2RTyDJML/ULC5QZcdc\n44pgE8rMgm3NIaAOvKbs/Hmqkddp8c9NhOaYxyNhZi2CGbKD0VNQZM3x/CpmA/ms5xQozyj7di7X\ntnHzc8hLoipnYyhaY1g2XFrKYOggfoYMUTPxYoqVFnzmNRrdBmz2/KeeXiDlrlwXtJsKI/RyalKo\nHBHhrolvICSKLdQGyOiFSIvVbTsryFjGypJzeCQVrTWq8IjYTGZnKOeWqc6EoekhZXONX63D64oX\n5jg5KNEI5Vsw2D2pieIzHOFOAKTEq5jNNQIXislMOwvg+Xx+RDZmyJAQI2IgQkZP6eu/MUSF4b7l\nL/Ri0KKzEiY5NPkNdK6gIzJyXa3BqLIZqQQ0S5jaZLI29VDQwyxzwJpfT1aF1ZhjIAIUy9QWpUZG\nOVIoIM/ftEzQUUKZaxicmGLOQmWZGJNFOilKBCuCvVi/fh0B0aKGctDyyfExZpNYu41jQpuLRguX\nOsyZtQLsj+TcSTSeOwVIiXTVjobD90KrHIYjayfRCUqqmKdK8hCfZDwVm0KWZzg5eYIojbFuisu5\n3mzBIrvwODrDeJ68ngHd2hwUIi90szDhTgRU47QdaGMudB0hPJX23fM3+zjki9PlS7N5/izqSxT3\nqFY+zE6nNqotmeBg6xQ2tRunBFP5HpCQLrya2Tjry++zcISTgh2KyFEbyDVpMm/oQsFN5JorpxZK\nuokj20aDMOcOKyfJucI+33ijP0W3zkTkxETsEe8OjYRtxJMJgTBBjI2QiwY1KHaURtkYVydyzZOk\nBFgNMKigFbRaMMmubKUlYtLWe6ENTXe1KEJEhHfX2AFYTgvkM0kiqnoHrjGvqOTAnErNdNDqyDOr\nUE2pmy3hoSkJtTItURJ27Fv7iLjB/+LngegNeZLplhz3+LhAlSFm/ayKkNBz23fhM5ufjyKkhbxk\nZ+kcN2LCYHVpODpGhT0cZr+ENZZrM7o5wjn1GgFuWeGg6sgG+SMbD/G9A3mWgyyFZTDBPO8/mFVR\nzD507a9ekhBso1aDYcrz0ypDTgyMoWiQBiWOvyfJ7Hfu38KVhiQuL/ubGFOA0bddqArJegJZVzFi\nZIZ8L4OF7aY8a69oY9OSdX+WK0Tsq8DHDCM+dfiglDKVUm8qpf4F/72jlHpNKXVfKfWPlZrnoy/G\nxbgY/yaMPw1P4e8AuA2hrAeA/x7A/6i1/jWl1P8C4JcA/M9/3AHKUmMaJygKG2qV9cQoQByS5itU\nOM0lEaWyEnVSTR2fyN+vrm2genVebqpgeijUXacnB4jYUGO2LdyoMMHoEc6sjxDlkkQqJo9hkUrN\nqSpUGXZcV5fgUn798Zyp18ng0SszOworqRxveHoIl8i8SZShj28BABqnO/zwDLpLtOFqiEZHfm/X\n6nDdOdGHIPRi8wg7pVj2XllBzjJsMowBdhoWs+OFhdXszfdsC54lntJoJYNHeop4WuKIUm9tX0Mz\naVWQZXmqPKQTaQyqdTZgxfKz7qyg4GctI4CnJWzShExPz4eYjuQ5WP0KfGpCVrIOLOIG8jACJvIg\nrtbFyqV+hntkHD4bxZgycTmcxFhhre7rd4Evcp73SNyqfI13DuV6Dmbfhn8kxytUjueuydzWKk3Y\nLNtW6MWNXIXxsdTxHz7Zhf5ArHytkeGqPz9GgGQuUd8junXVAxoy99c+fx3dWwwlpxlAMhSDScn+\nNEXMuTJ0jho70w5nU9x/JIlWY1yifCLrc6tOC15dRjiT+fzcThuVljy/cuIAmazrQT/BNJJ3wKfX\nUSBCkbFD0wT2iEItNi00TJGNy7/1TTCXTn/mh49PqyW5CeCvAvjvAPznlJL7iwB+kR/5VQD/DX7I\npmAaCm3Pgu0so94Sl6sI+ijIqRiHISYk5zjJQgwfirv6hHHY6TDCX7dEf8a5oRAyDrtzt4eMcfL2\nqL6g9X5yX7737uQQP7pMGu7qFtrXham4plpoNeSBLtktZF15eScUPbGTHDH1FePBFGEqLlw6TJFY\n7MrrbMDaJmx4QDUms4uccXael8h7Io3u6hxWl6K3pTBYm7lGlfmJ0LYx9OmWjhPYID1500dOQPyE\nnXxRVuKI4rFTZWKb3ZD7kxhTyta3mgF8ystPp+wDOa/grV3hjBx99U1sV2Vedm6sorspPzerHqqs\nSsTMB7x15w1MH0juY31zDV6dYcdSgqUlAotKBYsvXkJ48da1VXyR+Iev/MFjnHGj+7d++W/hW//D\nP5HrHADfoMvbOGXOqAI8IobizijFCpW8hrtTvPCizOcXb17BzstynXlffrf/KMIfvSes29YoQ4Pd\nnPjsMvItMmcZAc7m7EVUtLImdWxdlr6FVvA+Lq+IQTo4juDwJUwY7E/Lc0RsiKhYPjYYCutzDycD\nma+ujpGQe3R3LE501yqw0RGb+tzlyzim6MtX7n8DRw/l+o1ihHZb7unm9hZ/p3HaF4n7k36BqwxH\nlivPo1X5LZk3fCwx14+MTxs+/AMA/wU+jFaWAAz13GwBBwA2ftAXv1+KPs/zH/SRi3ExLsafw/gT\newpKqb8G4FRr/YZS6kuf9PvfL0Vfq9V0Y6kJKBsmUxBxni06l9rLHdRMcUVryRlCir0ME9lxX3t4\niFdoYb1kC6M5CsxxoElQ8M57t3DnruyZJbnx6ttd5DVJ6pg3lpCxcxB1B5pZcqf0sNKVXdyoECuR\nG5jF4opG02zB+eh2UqwT8tusVOFtiXXs0zqmeQ3LNUrT1Xykc0k0t4qMZCjTvriIZ4d9KHo5pVvA\nIFS1XA5gRzIXDW8FnTXpHjoaindw0h+jvSEWykWOGsOgk1mGlCQry0sNtHbkM1MSx5wfH+CQntfr\ntx6iWpefPxfk+FFm6i/56/Btub8yn0vAn+G9PZn7GTLUlujvp1U4x3J/lys1RKlcx9amNCpl9Qku\njSTUWL/UxoO74rb/3u+eY31Gyb4gh/ggAOk1EVRNnEwJE7Y0YiZSTx0T7xbiCVWGd4B9sdidmMm3\ncootRqbHSQ7lijU+OT5BotiYVQTYrEoyb2tDrs0Mmpi15LNe1sEG+TbrGMJhFaxkpcLw0oV5tCoB\nvG1JVleXLGyT56057goVHwCdcw3lCRyiYpeqXZRtWac3WztYf07W589dq6PRlaaqQbQLAEj6No5J\nNLHU2Icivd29pRzX9iQsHhUPPrHl/7QCs/+2UuqvAPAgOYVfAdBUSln0FjYBHP6wAxkw4Fk1aafl\n4k7KFA7BIdsrHnzmAfb3NI6JNY9CKenoGPjm/yshxfgLX0eb7ce1SC1i8VnZRZ1COTaBPpa9hMmU\ndNoHZ9ikpHxLBYjapFxvGKh48nAbzGgPsnjRcVczqzAIJk5cd6Hhlw4e4eQ35XE8GEp4sbW+hr/x\nhZcBAC6uoWzIYnO8EXTE0hlbemdZicMzEXgZj8/xwbvy0hwNBwgqcr7Pf+YmrjdlIbxTyN+Pxz3c\nGJHxSC2hsU64bhTDifiS1pbQIlPTg9vyvfNogMFwLt7iwmvLxpolHm6/LzmDfj+BxapDuy7Pw4kN\nDE/ENf7m6AHS9A6fjYmYXJhXNwK8ekPk0CcDCSn29oa4yR6Gn7yxhBNS1ePsD3Duylz87S8A3xPe\nWbRYfUiPSkyp/lSPPdyjdmWzY6I5krl40Juh60kOY+36MwCA9XEFM7Zcj49TfOdIrm13dIrA4rPs\nuHhxVUK+n/9xicmbvgt7QgCU9Rg1lgs9y0A2b30nf2SQW5hogsWqS7ALeel73z7E7Yfy82wQYRTL\nc32OIcOr11/Fzqa8xJ1rS6jVqSK2EmA8kk3q7bO7eOe3fx8A8Oa+EBabCljuynNYXW9jh+/FnaMU\nQUlYeWAgmycTPqZD/icOH7TW/5XWelNrvQ3gbwH4fa31vw/gqwD+Jj92IUV/MS7Gv2HjXwdO4b8E\n8GtKqf8WwJsA/rcf9gWtFDLbgC4cREzwuIkFz2MSaaSRkkOh3QxQDWSHXfuipCu2Oldx+57svhgo\ntHbYXdmsQrH/3ygteASZdJS4DMZWA0ZGV84bIbBZe3fOkdOS4v4BKjcItybdVx5NoMn77bQ0nD5D\nArONwhVLmIwMdF4Qd2/yUCzYpStNDJkwPTh6jGW6z3bZgyY5R/+U/qer4bODcRZaqGwSjKMTMKrA\n1EzRoMakR33FSVJgRpKZ6tUU6wQb3feq8JjMvHTlEppUnZ74khUv7ptobMpnR/Y5dshPUWk0kcZi\nxWfTCfSQVaAWm9Wa17B5WTyomZ5hmrLb0SkxmrADtSxQ0u1ub8rzePJwhJWGcBQuX+3id26Ly3xw\neIgu8Sn/4m1gc4FPYeWoq+AzLOlu+TBncs2d7hqCZVZd+keoEQOimb236h66TSFkGV/ex7Au66k1\nrOPyNQnzlteXUYvFq4NH8R13gJxgtwItxOdzoJLCNJprXpKLM7MWMvM3Lm2gtUWt0Cpwbe0q7/sQ\nS7Ecb94x6z1Tg0/IfjpOMQvFe4uGAUziPiqxAe+KrPebdUn8OjiBLtiAV23guC5/7+EB6pasuSx5\nMCfe/tjjT2VT0Fp/DcDX+PNDAJ/70zjuxbgYF+PPfjwViEZTadRVhjjLkFEZ2fULJBMJgu5ND3Ft\nXazql65dw+a2xF92lYhBy8WAlGjtdhvdQKxcND1BzsTlWreJQIvlDWiVmztbC/FYI1lHTGLXWXaI\nrCeeh2EZKA9kNyY5EiqFD01WKJUolExa+ZmLVzsSO1cue3Avyc/4SZKdOiZy9sqn6C+4DlQZoByx\nBMaW5FpcBcN3tB0DqztiST678yxaS/KZarON3b035XxvivpyXGTYZ7PP5JGJn/6cWMfnti0YhJJ0\n17toG3NkIpO2wRjDhvz95roNh8xMvl0HfDl3kcTwHArhkuH50voK/C//uMz3JEVGT0g1FOyMTNH1\nAAGp7p6cS2I0niS48bmXAAB75xlsisO++KUv4f4/+6rc3xR4TCv3PJmMNRTWG7Jsr6+00CTdXmR7\nqPNeKisVdK8RA8JMZW+8D29LvJXPtC9hY8oA21ZYeUXmqOFdhgol9s/YAq3rBowRUZ/GFAb1GYZF\niYSYlIxJ4HrdxHJFrPhPfPZ5XPflnsMkh8ly9o32c3CiZwEACYVpm60GzK54NuOHR7jzvqyR+koJ\ndlxjvd5Aqy75kdFz4j3UtYuUuYPBwMI6MSLrpo2Hu0LH5uoCoz8PT+HTDw2tCpRmgpxgd2WbmJDb\nMM4UCrbDrW7cQGtdXrIyJbR3nGGdgiteoKFJg1avrqNkEshsd9Fgp6Fi9cHIE4x75FCoW1DGnDeg\nDs1Kg5l7SEg1n8/FO7o7yDBXgc4RlKQrawTYqMu1NRvLUC3ZtPJo3oWnkXbk2ganI1jlXIjGga3I\nKs1NKilK1GqywBKVocHMclEP4c0p5qwU4bGsepNwZ7PMYVoEtIxNNNcEe7G9soKUbqtvB6h25SVs\nkQhkaxsorTl2XqGImfA1E4z6Mhd9FHB4fwGBSYkzQpv6i421AJkz5wrwFlwVFQMoCDibpbKh1y8P\nUSnknlrtEpuB/P0335rBT2TRD30953QBE/xQhrlge/6Z7S1UduTco2GGJ+w7MGcBzqZ8UckbYVaX\nEJCvUS0D9ZCsyxsBgqrU/fMigc0Esks8SRK6KEhYkpseBn1SvOdAinlHJXs8/AparflOvgZF/sT1\n9XV02CdRZj4Un/uEGBGj6kAz7BhDQ9uy3hq1Nlyuoc2yAwQMY0y+5XmI6FSOu9ZOMGWH7lt7b2Pw\nWAxfmOBjczPOx0WX5MW4GBfjI+Op8BRKrZFkOZI8RhDPm4ccxDOxVqaR4Do5EnZW2gB31ZMxXfyZ\niWvtbQBAUMTIRrKz1/0KLIfINc9AYslOOreqeZzDDihkYhtQiRy3GCei0gxgYs7g0yNxDcKguxWc\nENFoj0MwkoARTOF1xNp6VRcW4cYFLyFXCQx29VXtJnIiDFNjAJdERzaZhMyqBYfJwMBQQEol7SzF\nNJZkZqPWQHd9TqQqx53EIYIzzqFvoqSFajsVtHy5nkasodgFatTYoNVqwyaKsYCJ6VSSXd40RM5k\nV5kDGdmLtCZLdqRgJERFVh3U6EGYeRUgwxV0DpuWt81uwW3vGZy6Uq1WJxZutOV7v/PWB0hsMW1/\n44tA79tyiOYa5/gwx6UNOdYLl1cxJuHpQB2gRhh6YNbgFpRyI2y+W27AdQgfNkKUBD54Xhe2IdY9\n0yNoCr/4ZI3S5wOkJJuNjUMookwt00BBFimLkOpLy2vYrEjytJpkULO59FwM3yeTuFEgmV8biQ5m\n0xk0E977+3cwvCel9s7UAXYYTl5ZQ71F7guPvBBhil4sSd7AKeFDIOjrBxp2nSV1T6H8ZKLTT8+m\nMEsjZGkOqncjjyOME8ZsSY5jUlENT3vwSVpy+lBAM9pysMJMb63SQkH8ArQJbZB/r6zCmBGXTohv\nYWRwmRUvdY6Y4jOOq2A3qTs52oXB+NrZYvXBThH15WFERQwzJMFJex2K1G26GkBXCPMl4MdIc0Tz\nHSSZfUg5Hmco+OLFpjxYx1gDyMWnLBdg6OK4PpqENjuBCc+Yt5zMwxmFhC6wV7XRP5W5KCY2Gi/J\nS6FcBZOutEUQksoTYE4T5lkwuCFn6WyhjFVEQxT7FGYlCU0YTxFS+zDb70MVEstXag6suZhmPEaZ\nyfECgniWLys8+UDOVwQ5Np+VsCL6ym3UmGv57XeBGyS4Od2b61wW2CRZTuaOMRnLvZ6eRZgwfHhx\ns4WgIRucRd1FN3ABhmZlqTBvu9VOBuWTYk3VUZ7PadrI8Zj04BCR9P6jY9zekwvSSqOkYVA0IDEs\nzMjGrcsUObs5s2UHiuEYHBsq5NpRkr8wi2WwZQLWrMSpZrja30WFm9fyrRnWdpY4t6TcbxhosrN3\nWJ7jHtmxD93HUCS4QXayYCH/uOMifLgYF+NifGQ8FZ4CigIYTZDECXLCVmt+jjk/hA3gJJR/3Hly\nhLVCLPDJgVjlYaZRIYHITmsF2Vh24r4awqBWZCUawib1mN0gOYbpLCTCMcmgmMBJvBIG4V+GbiLU\nbGiCeA9uWYVPubX3PzhCYyoW4RkrQaW7DQDwvBkMKikbtFYaMfK5y4gZLCZSq8urSGfy89kT8X6M\n3gE8yql7jSW4TTmWbWnYGff+cIqMrMUTeg+BZy90HvuzGU6JFNzYuoYknROAKNi0mnOobpGIWw0A\neb9AePoQABCVBgpyPQReiuZlhjec71Jp5KQwe/z4AVZnMi9r14CAzM0eNBR5FHKiFYu0wITnm+QN\nFERQvvCLP4EH//Cbcuw+8GjeSEhVtXZFQRvybHZPp6gxHCnOZ5iSrXhYmSDYEfdZJeKlxZUMc28q\nnxmIKUSTYgKNOdzcBlLqdKby/bCqEI/lmvfuzDCj3VW2CUW2cU2SnRwhTsm6fXpyiGx9GwAwUzOY\nFc536iEf8Wb4zNPgDKtkJg8+dw1LqxKCHIx7mAyIaymOMGWz1eUVejwzG/lU0KZhpLGWyr2+0HkO\naSzox4qh5+1zH3s8FZuCYSgEVRfmrFzQsOezFBZd6sRUOOyJW/ade4/wTCDZ4oNcFt3R0Slau7JI\nXSdASqiwnyg0V8VNjmGgmIvB0IU1XAfFWF54q1FHRoZmz25B89jKU9CQ4zl6DlhqwmsIUMQ2DlFg\nrtiUYkpMaTXXKOfMStQlzKGRJeIyWoaBMqUQTeLD9Ml61JQFGvdspKQ1T+IJnAFbo6spatSEVGWJ\nkxPSelONyjRd5EQ3RYMIQUsWSrC1jWCFVZtJHxOGZjpkfiVLUCRynecHEzDtAqUGUHMYd2aCivJw\nIymFxWWJVHODWL6KY5KTFPspqmR57jTrMBn+5GSNGkxivPuBHCxzD+FTQPi93zLRorhr6pWYkhRp\nnnDvAXg4kmP5HzzBjEv4dDDD6YTl3lzDqEpl44UVmZ96asMh41E0M5B48mKFk2jxFjjVCmw+64Ls\nTuEwwvmR5Ff2Mg2PlQ9Pmxil81CDQpemg8FQzvf12/u4/qx878Z0Cc2mxMWzOIRBBm09pOBQrvHo\nD6W0/HC3WHCJBjsu7I5swueOiynv7/FI5q0SmnDmeqVJhGEhn7032odxQHBarhbKUh93XIQPF+Ni\nXIyPjKfCU7BsB+2VDQT1ElUqNEfTHo6GAn09nQwwi8QJerB/hJxdbRk1DM96E3zrex8AAB49PAJo\nSZ/pdrEx4667pACDicszEoEES8g9CUFUowObpCZlOEVCMZhhmKJGjoQ5tNl0PKxdE7l7oz/Fo7ff\nAgCcHEaYGbKLe7kHi1Da0heLULgGSlKeJcMCA9JE96NdNEh/NjojM7AVwZ3LkSFFSe7+bBZCrYjV\nqaD5IciG1gV2BpO6D2mWYVbKZwPXXojaxKM+QsKV501CdW2jYAPPcBaisSOJOh0qHB+KV/DgwRkG\nmfy8Rm/Lc9fQeF6ShO3VKpw5Z+RhjtGxhELl+hJqDSYmC7Fs33j9Pfw/X/sDAMAGArRW5HzmdBNj\nugX/8V8FfuefyfHm0slGVOKI7rf9Xol+XU5YC0wsu5RtDyf4vW+K5X2TruezlQCbTTlH/fkaaqz/\n2ypFcsS50MewPPIhkOglGk/w/n2Zl2Zm4pUN8Wj2YoUHAxK/MHlsTEPkA/n+SXgf77wpye/q9jpq\nBRvMKoBB8Fx9iYQzyDGx5Ger2UOQEXx25iAlIOskncE8F8+jTco+u8xQmvI8gtjCKqtr+rCBPH0P\nAOA3FdhMvADL/bDxdGwKlonucgtRZMKgr2M5GSJyxQySCKOJ5BEOYhOdqbhGJfskjKqDnKxKbncD\n/gpzAJ0tVOgym8YSFMlWp1V5iGl5AocvjZ72JcsPASQVdBON6RBug5TcNbm2QudQ8/6C7S5qp5SJ\nnxZwFGN8VcKMhSfPM2VxGJGJnESqruNj5dqcV1JBEwjT7sk9R3GGEZmnstICcorP+C0o5jiifIjd\nQ/m9ozgXysWYsWpu5Dg7lrLfvVuHsD4j51ZqBLcpiztn7HwWjzCeS7XrKpaYG5gkISYTmdt2sw2H\ncfmUm6ZVBQyGZcW0j4wgrKlxBod5F8MvAEqjh7fkHI9efxODU9m8IjuFRUBZnvbhkLTkV38LuMww\n5pyiMJmp4TDGH1gjWOz8LDtVNJeJWK1asMfsfyE5Tbhmwbomf6+trCA9l/UUuzaSSNYFTAcu8zUG\n2WMHh3u4fUdexhMrQ2LJ2hslDkrmfHQkocb+yQAWn4NOc4xo1EbOOk4g5XPPWIU9ld+bbLN3Jh6W\nr0m+qvWMhyKUa/ve2yfon8v3zvu7MBzyR47kPlodD8VU1vLB2RhvrMv6fVu/hVZC4N+shD3H18lT\nDwAAIABJREFUOuHjjYvw4WJcjIvxkfFUeAoKGg4S2EYFR+w8a6/7+MyGdDMOJ32cD7nzlRkmhC4b\nQ9kCz0chUrqJTmeATUvc2W7VQ60pCcFqxcOYFq8/Epern03QzAnbnVZQVMlabGVQ5Fyo17sgJQOi\njLJk0xQGOQozN4DblZpw0ChgRgxBDAvxRHb06RnrzskMQVUsm6VMgFUCt2IBhLwWDA0CK4dxW6zA\n+4/3UCMjdHe5gZI++mj4GA8GPV4zE6a2RkwvRpcm9vfE22i1+jjita02/MX9lbM5ftiEUZW/D56c\n4cmeeDmOYYFUD/AbK7hOrIZBbsiivbJIwD54Yw9/RKv67E4Nr35GrF/ba0Oz8vHaw+8AAN58dIaa\nS6+itNAnu/SL//Xfwft/T9j7jBBUzcSiMzSzgQn5HA1DocJkrjlN0SKEvIYaNq5QXp4JvtWWgyXS\nqlXrAU4PJDm8vz9Gp8tnXQHIrYMRRV/e6E+wO5STVzoezilBcDYdoaRXpFmRiMopGoRVlyiRRBTl\nUSYyJiP1eYjzc/HuLPba2JaN1gl5N32N8xNZL/duvYteLmv17HSGjJW0UhxTeJUSNhml86qBV1P5\nQ772E+jHvw4AaGoNMlV87HHhKVyMi3ExPjKeCk8BSgGOjaMow4jJwNWihiaTYH7FBainoGEgNUnZ\nxjr4NIqgSKW2v3cKOyK3wJ0zJC+TBisAnBoTd6RoQ30ZeSFxb+Iai7KXajcQkb8hMC24rIWb9jze\nDDAdym6fpDUE7NSrZiUKSDzY8jsInpduzd49+eydvROsZeLF7Ly6gTyXcw+TQ5i5WDbNhJoZVdFn\nY8x5NsGN668AANpba5hNJIG39+4x9k/nTFW0mIUFvynWSuXpQmBs34zR4vmaloHAn3f+UW+isJBf\nYkPU7F28e1di2W7rJirPCcY4TAIc1OQ8TepsrFyvwc+lrp4dmOjdku68v3LlFaw/84JcU3aAnJYy\notsxzDK0iCa1N+qIjmS+3/s/pnCJi1BKI+IzWaO31tdYkNVWXAsum4RMx8aYcfRyvYaxJpKRUON4\nohCFco675SmSkSSY94+P0WwKy5LRdpHTimcTYh5i4CHEy3lhYxn1tjzrk6O7yNkIZbBZL2g5sGsy\n91bkYFSlTJ9hwd2R566mGn0yR1Vn8tmrL9+AyQT7bDCASV2Iq19Okb8h87Y/u71Ajt64JB706qUq\nkhPBkzimi+o1WUO3BofYSOVZwh3C/IR6ME/HpgATha6h09FYOZMXtlHzYLPbz/NMNAOZNGiNCfkM\na9QLfM5pY7kuJBYba+tYWZMHt1apYevKtnyt4i4y2DO63MlwCoM8idqwUKlJ8s3yXQyKua6kj8sO\nE4UmobE6wMyQxdNMcwwImsn6BSJKkdfSHH5BUpNtCWFGxgw2tSKrfgv+qhy39DdhUcikJDDn9M19\nDIm5f3XjJrYJhLF8E2en4vp+++vvYHQmxzMYPqVIsU548cR14ThUCirH6LK3wx8a0BYVicgA7Dg2\nGg1ZSK+8+CpS4vPHh8fYrMuGdGV9B9aqHK9VsDO07qE8k2veudbBf2r+AgDg5ssvwCbOYjo8wdlj\nkuCM5Li+4yHx5SW+YdgYMfxJR/8ZZsRFLDeBLhe04rMbDEGoEdAqLdSpDxk0FK6Riv3F9cvokiSm\nsyPhYbfSgsmN8+DtWxiaspnu2MtYalHFejjB4Ylc55N7koD94PYQM15D/3wERWzBZBihyOZrR7be\netTGYugU/SNJYD45nOHFl+QcneUqfDKF610xIEsrTTiuuP7TmzXUnrAVX7egTyQE258M0UjkmV1r\nsyvV8fGYEPz4eIZ7fyihWXs/xJkrm15sqY+dYJyPi/DhYlyMi/GR8ZR4CgUMTBGmAZZZgzVKC2ck\nvEgzwGENOi9KDIZiKUdkxb3UXsKz5ONfqdvokKC12ViCQUizchKEVPlNZiTSGOcwO/K7RmUZJl3R\neDRBTtIWDSBVsutWWFocxaeIT+XvFa9AXYs1ivxDtKiIXJZ95CReDba2AQDXVgKc0/pPPngPJfUi\nTHcVqEnYFL8j1qV///fRYtPO6s4OfJKiJOk5jp/IMR6cDpEQL1Cw7pTmFqZ8rM2VAJUqdQvPFSKi\nKTteAyD4tULYsfIAeybHra9WsN0RC/yNtx7i/Otia6pfiOEMpOFJrYglzd9SSEpxYbdSA9WrYi19\n30eey/1FUwuP3tsFAOwdybwFgYmolGc6tSpYuyY/P/7OMTxiBOJEo8Uk55vkWEgNvQgle0UGxa5a\nNdU4YLemHbyByTFFXfYk9MkaGnFP1s3xw/soCVGu7zRhUWIgSjNMpvL79+5xjschIuJT3r8bwWIZ\nMipL6EJ+P+9CPJ6FqDGksNICx7k8/1t7t/HiQ8G1dH7kBhrUi8g78v/w8AlmVbm2o8djjCaiv9F7\nP8PjUOjy1HAA15frzEYsOVtDTJ7I+n370T7ePxUv7KR3ChXLZ0fT8uOqxS2G0p8UA/mvYbz6yiv6\nW9/8JsoyREJc62R0jnIiN3l8/4/w2m/+cwDAo70RBhQSNZmxL3WBMYlAjrIQBuvGlmPMvVXYnoIm\nq21CV9XUDlJmkK3CQDIn9JgVGLIzUGU5Csx7T+W4P/ezX8bjhwJY8kdDDAlIMqFhmawM5CZ8blrz\n3odsNsOY0OYvVS7hdkOOu5M9QW8sFzckUD13gSgR97RXGrD4AoWGCbYRwLVK2MQsaDIieWWAjHyN\nGjMcnbCTVBmo1Kq8bxu2Lz87xlwoViOmBmUaTxfy6oZhoM7rT+wcZUj4N7MVShso53D0tEDCF8WC\nhdxiv0MUouDSrNE5naAE0wQfWbS7r99HRGr/42kVINX86F+J6Mm+vocdm5mSzhI8XqeLBDn5LZ+s\njOEcEmdSZd9G2YB5kxWj3RIRmabTqY0hvf6t9g3cfEY2vVaX+Jaqh5ILY5wWOBnI+Uo/x7M0qQVJ\nEMPEg8VqCHoFhmRFGj64i6+89Q4A4Ltfex3DM9ksN1YkrJz5M/TuSUirDRdffEEYqZae8VHpyfuw\ne3qCVkBxoSsSHv+1n/wFrGxJKOH7JsaZbIT+xEXpEHMzqsF9QfIZzfbaG1rrH8EPGRfhw8W4GBfj\nI+PpCB+UgmEqaG2iIG+dY2gMzoTffvrgDMeEtp7nI9y6Ix7CCtFnfTdEPGSCLslQ1bRQfok8Jrff\nBFAlrSoteOCqhTBHiQxZykYjR8Fi7bksCljkXzC4hx6eHiHrUSDEyAF6G7ZloN6WDPByZMClNSYa\nFjtOF69H4navti5j35Kfd47OcNcRt3pGz2bDVbij5/3/BrTBR6VNGKz5xypDyUfomHL/0zKEq8T0\nVSobKE92OckWwKRqURhQdJkNWuUiBFLKseVFDnrwUKa5kHMvC42CSEaD9XoDxqK7VBt6MceOFaBQ\nrIgoAwXvJVssuRTEiYJMA3KOVopdcgvERYT0HbG2mS86Dl+8/MwiLEmzEhTjRqX1DLKuJO7qZR1g\nXtoMJFE3ng5QDGRtVVs5lj3xCAazEwyPBMsxVg/gmDd5L3Nv0oTNZF7DtlESW1EMEhSKoSCTyyEy\nVCjZZ7gxbELWB8fn+O7XpPOzf/QYuUvpPXpVcRjCdOXnTucynDZ5KAwHalWe2bPdZ9FLBQm5F8ta\nee/8fSxv/CwAYJoNEJOM0a1N4NiSaNU1G3aa4ZOMp2NTgNC8K+XAJky0rOY4pA7gr3/j1/HuibxA\nfpbDIN/fhD0QKQpovhR+YGGF5KehqTEgueYoKRetyuDCtosUJnkEM1UuJNddqwKLOe7CSlDyhbS5\n+KPBAIkp19ndcmCRAnw5r+Hlq0ICmic5Ll2Tigi6cqxrN5/Ff2BSct0ssD55BADY/58eoctzOA/l\nPmY1E12+mUViw1dzspAq0pHEqmVZAKyIxOQcrJguXENcX8fxobhB2p4Jz5A3KEszaM5dmCX8nYYm\n1Ng0TZgWy6+WuSDTLQsNmB9yaAKA0iU0Y2Sr0CABFEzPXIQ2RZEh45z7/H5cAMl8rSpAceM8m5lo\nkJa+4YYYnsocHYcCpho1HXTaQjJSM89QNQgVbjpw6lIazYcxcpKTxMyZVMclEuaBDN+FvcRHs3oV\nLZ85jH6JcCaxfX2JVRkYi/b63CyxxJ+HlSlGFL21qeLbsQ0UBcPf4RjvPJR+nN+7fQsHPdnUqvBg\nMI6tELxUKxvIViUkuHSlgxvLspHVGwE0ofz+cgPbkbzoj09EoLb3zkPsV+Uc9TUbNoWNSmsJkc2y\np1GH/si2+8PHpwoflFJNpdQ/VUp9oJS6rZT6caVUWyn1O0qpe/x/69Oc42JcjIvxZzs+rafwKwD+\npdb6byqlHAABgL8H4Pe01n9fKfV3AfxdiEDMHz+0RpHHmKsH6kmJ6FgkyN587xRnibjrl9dbuLJE\nWbRSfnc8G8MjMKm53sTLV8VSpoWDd96XRNs7d48wITS3pLSX51pIaAWzMEcxByfpHAnxrnnmLNxj\nj5mxOB2jahD8ow34NUqVX9nG9lxpOq+j+5xknBvXxXtoqRY0qbzNogVdiDv4ZbeKbz/8DQBA//+W\nhNPveRn2SF5SAFi+LFn0xPgMpoV0F46KU+Tx3CuSa0syEx7FVBqlhzkXl2FUUKh533+CefU6oTx9\nUWZwWfO3TQPgvKgyX/A8wgAcJrAc8hG4hbmY1yzLodXcw3Bg0eJnsxCg5zG1SbZo9XF1JBbsXgEw\nCkClXuLwgSTM7KrC6JJcXz0W78BzLJimuPuOAwTkRLTKFIbNprAlEzYTswYrTQlmMDpioe2iCkWR\nGMcqQZQ6zKU2LF+uySXvouEqGLbcv5sBKT0zp6wgJpgo7kk4423WUSTzKtAYj96Ttbd/6+to8U27\nvlLD7VMJheNc7uOZrTZWV24AADo31tGkrmTdtNEkO7TtNuFXJJnc7pJ4pfcEp493AQCt+g78ZbJn\n1ztISESEoAfD/z78xMcYn0ZgtgHgLwD4jwBAa50CSJVSfx3Al/ixX4WIxPyxm4LWBfJkiiwcIGep\nbHr2bXz7DcnYJmWCFaIKf+RGF1+4/lkAwMRlJrw3xM4L8uJtXnoFispSZRTjp/+SPICTr97Dg315\nSI/25Ryn9hjGRCbytaMeeiQqmRgxypjdk0YGi9FvSMz9emkj9BifVrvYJuX8lz77HLrLsnjNcoDu\ny4Loq3gSRiinhEHxW+VV8RIoz/4XbPylS7KBvGX9mkzK7/bwqwXRanmB2bmUKq/URjiwxLUdzYCY\nDEoqJ7mlAbiF3NOkGMHji2lYFpJMNlzPzhYtcwueQaXhBfLZzaUlHM1k3nRSwK5RH9H0kWgmPVhF\nQVWhNZN5iZJ0US60rQQVbpxFTSGndsJWQDLT6k8hrf02AKD5JAfDfaS9HjxS6r9z9w10udm3KB3f\nzGuwKCRrGhZycnda1hJKksQUMFCypFxGzJNEOVLGKEUxhpfJPUVxuCAC9qoWbFfmVn24my4o0k31\nIZ27aZeYvC9uvO+IkTof54u29YPTI+x+73V5Dv0IbsCcV3SEfl+uaUCh3K2lAKtNmYCg14PFGqe7\n3YGtSMWvTGhyN66tykveMDIUFZY18whgmdUcP4RdyjUlxQjuPFb6mOPThA87ECKcf6iUelMp9b8q\npSoAVrTWR/zMMYCVH/Tl75eiP2OJ5mJcjIvx5z8+TfhgAXgFwC9rrV9TSv0KJFRYDK21Vkr9QCDE\n90vRv/TKZ3WEHOn4ZEHZfbh3gD94U5IzcVri+pI4mI3mCgrCRLdoHNuXO1i5+TwAwK+vIiPoSbsG\nfGoQtv7CFVw+lbrw8Fws5p27u7h1KC7cytDGmNn3SapRsBautYHCnisNi9VqtDx4LJUvr2/ix35O\nYMBra9dRI4jIGLXgOnTbXE6zqaCsOa7fWtBkWeYVeF2xwFev/jQA4OzxV3HpvmS3s3ECo5AP76Z3\nkaYEXGgfOQk+5lgBQ9WQu+KtVJsteKdvACA7ITPcOi+RMjyaQ1tMw4RL8o/W5Q56u3PAvF5UVFqV\nOmJmsikIDq0SoMpkpWkiZdjRarUQ2aQiH2go0r0PtLj74XIVtZ54d0N190PMQtvHuCcVh6KzjO48\n5InlHElNw84EEjzDCSxWjOyqCdOk2IsPlCfEmTRJSOJbUKU893xaIiQOJR9lMMkC7bk+FMlqbFZn\nlKEwdxWUUnBdWQNmVmBckXPnxZTn6CILZX6+/f7reO9E7qOMDexT7WzcD5Fx7lYchprXuhjQsle2\nAxjzuozXRMwySqQzmOQCNT3S8tdWkXJ6EpQYsyo1OB9is076vqUd6E+oBvNpPIUDAAda69f4738K\n2SROlFJrAMD/n36Kc1yMi3Ex/ozHn9hT0FofK6X2lVI3tdZ3APwMgFv87z8E8PfxMaXodVEiG08Q\nFg/R2xfk2jd+83fRP5ekj2UZ2Lks1upGpQuDLERlRfa0pXobHkt2mE2RstZllBkyEnAamYsKBQVc\nciFUKldQZS192j9HnMjOf6yMBQQ3K0PkcxJTxpM77SpCNt989rlLuFLZBgAUg32c8HzrnS0oxto6\nkdJqWfdgkFxTGRo6Jp4CCQwlSaTqung8z6z38RcvSdKxe6LxhArOe2dDqJLWWiu0TclXTNjA5DgJ\nfCbAKqkNm/mHJJnCi5l8Q4mSVmVuFRzHhEWnbjQaYG7OPMtAnY1UlYqNOst3XcLRkWoYpnhYG40J\nHHaw2naA3YFcx5kqoFi27DhSTo0OUrRaZF7yTCmvAnBKG5rCMVdmTTRouUe5JM7OlYLJ+r6bNgCb\nsHLLgsHlbMycBf4iowaGqQxo6n6k4x4GZLqyUsA7D/jZaBHsziHMyJUkEwAUSsNkrkEbCgU1IkJ6\nlVthgZTaC/vvnOO0FI+1ZpeYEAkZ5hoeE9qvdsUj+Lz1DErC0a1Yo1GRtdxIPWSleIvnaYKaRRLe\nWK5dmRoJmaWSMEN8ypKkGePcl3dkPU1g+p9M+eHTVh9+GcA/YuXhIYC/DVln/0Qp9UsAHgP4937Y\nQbQukRQxBvdmeOddcTy++s3HUJT4XmvaWCanXuaeo1FKc4NNymvDtlBqWTSqaMCke11mM4D6kKoR\nwAj5CiTsZVAKq1QbeulsGWd9EocYCntcQIlhIqWoh6Y60nJ3HTUKpu7s1GAF8sAnD4FoKvX0xK/A\nHEli065J2OKEITSpy8rIBGxqTBYJlCHHqNflwVd+9sewtEVSlH/+Vfyfrwke3kGOaE6sUeYAE3A5\nAS1m5TkMEiYo99+GxocEfcX3kZOU3OnmjqVpKsRs6S1OJjD4l5WlOrZvyjnW7SvI+QI0GRI13Bw1\nrrnjuI8aodnad9DdF/f59kMLGc93xs0kn0xR8aXunhQncHhtpcrRoz5iayVCQlrpuQBQ0R+gqBP7\nP4qhloU4xYhOkXM569SB5otnEndQFikMit1YlolGwtq9F2BC2rTqsAl3IEbJYIVLqwzKYLK2wAKn\nYWgTMyb+jCdSvog3T3C4Rwq23glMdr7mRYaQfKJloVGtyPF2NmUNDWpH6CayRtz2aKG7iVCDekGI\nzo9gL7G9npJjjpHDZkkstXLM2A5eeDZwW469slIHzE+GCvhUm4LW+i0APwhL/TOf5rgX42JcjD+/\n8XQgGosSejhDHkxwdCIW+ngygUeU35VubaHbdx4nqNfEpWor8fUS24BBshSrnCFl0462rYVKMkoT\n+ROxGtPhvKffQHdDdujgQQ/LLdl1JxNgFNEaJxFychzkpMN1DIVKne6+X0eeyQ5tY4KlG0LYEdSW\n4Xbk2JZNnoaKA8OZi4n4AF1tI63AmssrU64O+SpcNvN8fvQYCVFzX//WY3zzTO7fVz7qhFg7piTf\n3OIUtin3GUY9BITohgA05skzvUg+GQudSL1AiBpjjc6qHK+ztoaV5wQSvDltYKqI3qvKs2lt2vDP\nxBupTZeQZeKxlZ6FaEyqO8fGbCrPLxjTu/Ob8ElKGpiaNCaAlwBrm2IpzyYRKqa4we15QjRwkJIx\nOfJsePOE4IGDok5ei3IKiwlrg6527mYomOy0MsAm/DkuSgyVMHD74QhOT/ACxRo9LKfAPFeulEJJ\nhCiUwvChoC01j1sceZgSmq8Qo8Zms1mhUDCT6iiFuin39+ScWJGjMTpNCRnsSRtGKX8/rh0BD0mU\nO8thpHwH2CQWjAy4DUlm22tNHKeC6zF7GeKmJHHPDktYjU+WaHwqNgVlmbC6bdROm6h64uq4prng\nvrMMG40GZbjd5gLvby3Jy2YECaZsby6OMwQUTbWqbWiyIuXjHIkhldIsp1JS1cF4l+xNJwk81t51\nbKCoEIdguVBzfj3yRwatNVz97KsAgMrKOuKBnDvfbKCyKTkB11ZQrbmeoVyD6XgAXzwYFkAQleEE\nAMVQNLP3MCIo5xkAQOvZYzzTl7/fPRrCJzdlp34ZbvUaAGA8lnuuJQcoHaoNJR7GDB9c14JDkJVO\nEszXtmaIZphATm7HvK3x7CvSWffTP/5ZJGRpsicKl5h9X6pKOKfdBO1tOV8aDZEey98Pe08wZRhX\nNwyM2CvBpD+ypkYtECCTOe3BVewZ8G14JNTJkgmyPkM3YigQRrCJMbA2cygye8fNfCEc7C65KNgH\noBsEIWXZokfFsiwoVjWsfAJOC8q4QFIlZmHeG2Li+zZQE8Y8PNcaQ2b+o1BwE8djB5MjCRnHeQiQ\nBzMM80Uo7NgKAVW56kty7dWuiVpdwqDlV2ooZzQWEwc5gUzdLQ3fJ6sTJQPMrAHdJDWAUqiys3My\nOcUqRYCcCpBnn4yl8aJL8mJcjIvxkfFUeAoGDATKQXGlhRevilX6Ss0BpR6godGeQ2btALfuyM43\nZxm+eubDIfVZapwheFHSHMFyA6YrbuK0d4beiPqBI7ntqtuBye47t2PgMRl1jxKg64glrFdSnM0R\nhLQoluOjsyZ/77YvYcgGl/RxBjOQ3dxutqBcyqklcw3HIRRht4bbAlhFsGstGObcBFEq7qiP0YG4\novlhiM46LeLDEKfUg6gaMV5l5eMyod2V8gbODLFs48MzTKcySRVbY5Vszb10iJKyeFrJnNiWA4uI\nOAM21FiuORgWmD0UNOV+f4q8K3Px5R8V76fltvHkNUlsajOGWVDifmphnsvLjRSKoAy7kNCnmizj\n+bZ8Vl12cc5krmlacNjNuZMFUKHc95hNYLHXQIfu+lK6Ds0GulD5cEPx2Iw0gEUgSZLJunHyEuyZ\ng+kkKCpk1UYA75yIP51/KJzCxK0RrUC78y5QLLpHTaVw8liuOTHkmXaHQ1js1nUcC6E1n4AM8+iw\nEnioM4T0yR/Zvl9B9pJUqNzkJei63NOoF2G0J/NVu7qJkqQ9ypCQoZcM4BHpu1SrIGDxP4yAEdWv\nl89OYLV/IH7w/3c8FZuCMgDLNeHNukBNbnLZDuC1ZHIudzoIDVmMj/bexp0Hslu8cUse/M9+6Tpe\nWhdQTNCpI5sKW00SV1GeykLplxHsqsSizZtSxqs5bTQDiSGjyRn8t8X1m6QxtCWT2uguoxwxD8Ae\ngEpLoxyIyxitnWLySB6WYfrwuIDgWSgJQZ4k8hL3Xv9dTMfyIljmKmrPSdzXtU6gGKMXkWyK50cP\nYR7LZ/2VAA229P7UX36C3/1H8vSfzEZ4d7gLAHh5+0cBAO5GgPRE5sc56sImF2PgBPBYMfHzEPb5\nPE4mbNe04BGC7JYZ3n4g8fLz7RU4m/JibV2tYkg2qMdPRIHp8UEbJxP2KkymWGkSvFSvYXVF5i3P\nSqSci4SiPRVzAuPSZwAA47dPUKMCVq5niIcMJdomvJBhQykvghOOoAJ5juUYQFUqGOnBXUyHDFeW\nNlCxGWs7hMJXAD2QuUjDFJMzuebZeIYjwt+XjSbcdamOWM5PAgC0ngCWbLhFWcBcxA8GhpAX+eyx\nfCfpujBn3HlmGRIC5wZxJv0kAAJT4fGIXJ+QXMYXVnK8WkiomBXHCB/Jcb/71bu494Bl6fc6aLdk\ng2wui7ExbQ86J1TeTOGRmHbDAaaPJb+QP29CB+zW/ZjjIny4GBfjYnxkPBWeArSCqW04jQATCKNw\nbJX48k3BIyyv1/GAMl9f+97pAtTkEPprfuchrOfEq3i1vYMZLcaT797D6ERwA+kwRCPgzj2QBGCW\nv4WSDLl/+NVb2KMEV5aXGBCE0h6N4bGHb8SisaddmAQITfuPUVTYF99YQWaTkKS3j/cfSkPM/pvC\nslsxmljeJpx1ZQ0WE3ghYpgZ6bPYkdm+3IT/PKnHjRAFk2TPm8/is9+Q4x7df4DziGrFt8Uynk03\n4ROY02v48FJ2hPoePGIk2ssB0plYm5AgJcM2UVAZ2imBlBTnX9s9xC+9KknVZy+/jA9OxcK++754\nRydP3oXFxp6NShNTj9UMVSJNOV+WjYL1hYDJwO76ClYZBrWSGQ4YCup+iCrneX+Yoj5Pqh2LZxZP\nchiU97sbnSK7K5qJg6MeUi7nxvYZnrsinuNaV+bbahs4n8qznh0+QZ/XMYwSnPNZJrMIyVvyvfp1\n4iaaGg4xK6XpoyCDuG0CmiQqKb2D80oDG035+9JSHQ8ey/25roUasQnbS22MSQ5UMiQ+tXyMON/B\n4wKH9+V6fufkCD49upVVD/V1SUauvyLeUduswmECM7FLHAXyTBplBiMiC/RugfoNelsfczwVm4Iy\nFAzPghM3UQsEt//S9jZuvigu1f7BI3zwnkzw/ukUA6oJ+cyEG6cTzGKJa0/LAX7+8/8OAKBxqYYB\nGZv+1Xc/wCFj491cvr/UqCGOxeXSgxjlomQHpASpjKAxJxWvkklp/dpV1Hbk2gqjD9ecbxomij3q\nX8a38C+/8jUAwGvMgXyhewMbviywRjZAjew+V6urIAweYY8kK66DLWomRtkJbr8l7uD//hv/F24f\nSAw7zQtouqL3A3E5l4cmHEsWzcalVzBIJJSqNJbQviwh2NLYXJTWesfkZYwimOxwNGv6tVtUAAAg\nAElEQVQBEtLWP3i4h/un0u356ucq+ExT7rvjSe7kfXeG1/9I7u+DdAIVyzFm5RCP78sziacpnHnb\nOUFKT2YDPJrIdZ6nagHSgVMi4hqeIUV1zquZMQdixliuyou7+kIdx0wspdUGVphfsJcqOJhRHqBL\ndGfsIWQO5zSawSYCtlEzURpkUDqNcMru0Op92fy2Lq2h4LpwDPVh96TWSBkSRCTyMYMxklCex0yV\nH7JXaQMEnOKoBDqspF1ekrBkueHA3GB79moNzzSeBQD8J5tDjKkSFgc1FARDvfdQ5nWn0sRGR6pP\nlZaFapeiuaMRVtj5GbRd2HqATzIuwoeLcTEuxkfGU+EpAABKBdOpYoUJJ9uPEbMzbnf/GPtDSRi6\nhoLHLrH1FdntX77exHffk+Tbb712ir/8giTo1pLLmJEU5JLdhnFdsrDakL+vBCme7Mq++CQOsUlF\naD+1cRRymx/NYJDerRaIy+3ZPkxKlicHIQaHbwMAjvanGI7+MQDg248PkLKakZOFd7//AWY9sUAv\njafYLcTaVjpXUSG5x/EHcm0fRDGuVyXM2V++g9MPRHnpnb1HGFMZCyigyG+gJ+I6TuIIDZ8CMe0f\nhUUKNscrsQb2h1RLjE7kPCeFzLEqADNlL4nfXCgfN4MA69iWZ1JWYdL8XbLl2pLuMr43kYTZxK8i\nY1+KHSeYMruuqwpNUrOdTuiKnw6QGAQ6mQV4asRJuugfWO0nsEhvnbIskOQGBk/E+xl9J8Thkfy9\nvrmGzRWxsJVGgMNQriMk2MpNDCQ9si6PFQ7HUnWaHoY4JZO26aTwNuUZXz7cBQBcHX0O2hOrm1ga\nNkNWZSj02ImZRHKu7p6PmMzOs0mIiKAM3zCgCTwa9sewYnkmGy3Na7BwaybJzm5Zw8ameFAvtX8S\n7/pSgfrDbIjJHaFe2yPpZzMAfvbnxYv5sdZL6JgCljvYPYXalLl9RV+DN/tktv/CU7gYF+NifGQ8\nFZ7C/8fem8Valp3nYd/a83Dm4Z4711zV3WyyOUgkW5RlRbKjKBIsBWYUOXlJZEAI4MBA4of4JXAe\ngkAIAiQBAiRAEiWQHyzbshBJlgzIokRTlihKJNUzm9XVNdyqW3c+89nz3isP/7cP2YYdVqsTuwTc\nBRB9eOucvddee+/1T9//fRoaWhfI5udIKvEIdhtb2NiV/MK16S4mtFDRLMeE0/7C54St6NruHo7V\nPwEANB6scDGR5FNvtYmNTUHm/eTP7SMuxUrPC0nKJdlTTN+TPMM3v/aH2CK//x8vYkzYJXdiGtC0\nbpuMSWfzI5SvSxw6zQ8QH4qleP3uISZPJffxB48u0GKiIG2JxdjSJr7x+xL7OzcrqIXElNc2nuDd\nuVjbN/+57PDfnMTY5925u1rh/EDOcZ5kqOhN5VpDkYx2xVi4cCyU7FoMT04Q+nUyrEJJWHXfbOH7\nbsm6hMQujNMYq1O5vqubm9i7Lp7A3u07+OS/J+XOdncD548kni0sWcsb29fx6g+Tfrnpw/IkeTpZ\nHuD2lnh037r7BG9lsl7psqZuu8ADcghMJyUsXtM8P8f5kXhN3WEDoSt4iJBdq+nyESo2bo12NzHc\nkTJr/6oLh81YRVuhu6iJV9kx6ztQocxtsDGAQanFiZejZRBvcJ6jf4UJwRfk2curQxi2JPiSRYZw\nIN6drlxkbJAr2EW6cnIoJrnTcYSMeZle08H2SK7DGHRw+4Yc75Vbkg+YPn0fwyX5Foo5tgmnb33s\nJm63SM2GHOd3ZZ2XbXqHqcYnb0p+pb8zxPyMzFMVsHwknod66UWoDu/PM47nYlOoygLx4hTILhAz\nA75Sc/gtuYk3rt2EQ2hoEjhQM7nhI+L60/wIVwN5uP/iX72KrULu+IM338TNn/xBAMC19scwORA3\n3x/Li9e49nGUQ9kUnPFDfO1NQlRzDUWR041SY2xTbYcEI9OHJ2suv96whSt/QcBSP/iFEKtEEoI/\n+c772NiT6smTiDTq79zD3Yfy7zvqHGHEltulwimJX4xUwqD8tFhDkfuqRIt9EEornFfcFGr1WAC6\nkhvvmgV88gjO8G34xP7n8QyTU9l4Pvb9N3Hz5mcBAB8/p/jto6cYryRheHW4B4+4iGsv7eDKluAp\nXM/F/A+/CQC4mMk8P/UDV/BDnpDM5HkDpiEPZt65inIitf7f//r/ja/9olCcW5y77XoYsjP0TFdg\npAF9GGHbJaVbXiGgWK5PNhEnDGFusgu2tw+7kudCrRJExGcUKBDSiDgMH/Ioh21KCBMOttFjfX/V\nynBBQ4T+AkZCLkzSUh+Nj9CvCIByu8j4DBiODXshG52igtTxUYwm8S2LNELBpKrtGPixL0hos3Nt\nD6YnL3LI58r91DYGRyQRKjYwX0oieWPwfdh2mdhNxsj6BMn1CDJbemj0mKF2C6yOpJM2c2LcHoqg\nzPIsR+l/OIXZy/DhclyOy/GB8Vx4ClmR4f7FAVrTFAfUTJz1uvjaU0HVhfMc1/fFcrX7G3D7hBJT\nafnd03fRaYpbe+WTH0NTs0b7+DG8QJI2lmMhDMVt83fFbbO8DpaVeA+NMITDstF8kqHgfun4TShK\n2dlG3XCzCbshO3Tr6gaa+7Kbm40mehCU3uYnT2HSR20figeyvDeFc1OSZFeqFtwfEte3+qMTLMey\nm3sTsWauKrHN6+tcsdFbkSzE1lg8JZWYARh1kw+p1EzlwW+I62u7TRiFrEtlWqjBgVGmUHgy/+1r\nsiatjT6WFHLpbA7Qoss82BjCZ6I0Lgq8G0nYUCzEdf60t4um3BoUsxJu3e3nuUgK8cK6b4bwzA/y\nNyQ6xSSS689hArXmRr+JjJLyZtiAza7LOsHphS04hbjiVegDGUMGbcIaUSMhKaFJ3msRN2EmBbJa\nxk+5aLZknlY2gYplHsbQxyqVz0/OxWvqDq4BWry4TWsDplFrXlfIyC2Rq+8I6yxiWZeTJF2jRb12\nDzc/Lt7knY/fRloLGx1QGfp8AdOS+Rj7PfgtCW8Nx4HRZXObGsLX4g0qdt1W3QyK3aN5biIr5PPx\nYoGX7sga+UELVfrhSpLPxaawmib4xq/fhfuZh7i1K+7Xa7/2Np6cUTp9pjAkcH17OITrsR47IK5/\nYsKBbBSbGy+jN5SX8YV0Bo+EJKbXh79PfUG6lKWZQiXyt6llwKkZaiwDLR7Py3McsWMOZGzqtRvo\nsAeg2+zAoJuo4gjaJ0w2aMIkv16vwe7EzxS46hAcc1ZgPmZxvjmDpo5jb0P+9uPXB7hCjP95I0X+\nhHHhqYGw7pMwDQS8voydnC07RqjkIXB8B42UnXXtJrbZRu4GIfSC9XS24W5t7GLJEEbNXdRM7K4f\nrhmfDx5+C7/9W78FAPg0OTP1+RiGIVWdVRyjvUFRm2aIiqCmC28Kqxbg4UNcFhYUmZi9NlDWncpW\nAxnp/NupDfOcosClvKT2zhZMXr+at9cKYFG6hE8whGG4UOxtyLkpuCihE77QToqkZqqCD5Pao4XW\n0CSP8ciy1TwxkTN7f3plhX2/Zs1WMNlX4VmEV8cu4EgYe1CdrFu1b7YcjObk+dQWSuY53Lbcm/5y\niCZp5LOqgFXT5B+3YGzUlSYDJjcZFLVGqY+CzNcqz2ETs+IvG3iyktxV6KRwsg9H8X4ZPlyOy3E5\nPjCeC0/hIs/xd58c49Vvvw/9E1KXLd88wRMiuGA52LDErdu4/h62KnGNsimpv9oufuIv/zAAYHjj\n8zDp5rdenqMsH8p34EBR1wG19kBuwgnEqjYvcoA7bV5WcByxaIdmhSV/Z7LWHsfnsB+KlWg1u99B\ntPkOnAuxAroZooQkjODLMu++/B9iunxT/n18gDgQ66fONjFeiXUcU/rL69vYbksFoOkrRLG40Xc2\nJgCtw+O0RFon0qibsKgCxGO55vZqiu3rdJ/Nap0tPz06gEltgZ4rXtfGZxrobMjnzAzR8NpceoWU\nidKDB3dxdCTzeN/KeKxzeNdJWDJRiJf0UkIPLpNu8ZHGmEi/pEYEVjFOa32KRYlaSDpzHBQnrFTs\nZDDP5dy2J2tRnh1Bh+SdzAuottTmvTRfc2iimK/DDTfm+doeMooHlVEFEIdR2QY017NcaBg9Pg++\neHRJ8RQZw8D4QYwem7EC1UdB5eqCIIu8WUDHvBGFRllQgTwH5vTe9gtvzYhta6lUhYsYfo9hYLIC\nKvHoqs4RFM+tJ2fQNdmLS48OPSiutzJSBNTZ2L05hFdrYGig3KhV059tPBebQsO18fmbG0i/9Rs4\n+h3h9ZtMM5yndKm0xpe19DB0+z1shbIQAdVzbmxsYLAtMZvT30dFTH10forxsQjK7G8CZU0owrbn\nKlth9m3h5DuNJ3jEfy8MAzlBKuU8qzVo4dB1nDw8XBOPhIcDWH3mASYurJEc20gcWOQP7PgyT+Va\nGJVSCiyvHWMwl+tLPvUm2n8qVOyvvSU5h8ZkiD7Lgje29hCx5fjm/RR3D2XOr78/x6NTeTnvjVm1\nqWYw6ky+cYGGy5brssD8WI5hdSN4bGXeYHksM4D+luRf7LIAMrk+SwXQjrxAN4IufuTVVwEAn7oj\nuZPWrX1YJIiJvATLUn7nZSsUzMqfnk+xZJ6AXCtw/Aaa3Fiy6jvMSx3lojEacE4Zlh6FfCfM5Ns+\noqjuShyC7xo8AEUia/D0+AgT8kP2QipyWR6esrXarSo0Q8bloYOYnZtFoYEz2aiWfUKi0wmMmbxg\nO6NbeMJNsd91UC1YfuRGYLk+2i05VhBa6+ufJhkuYt7rbIH4qWwmd99mvqefoPVAni23P8R8ISFd\nrj0EtWBvCwB1TxVvsEqmqOV5i2iOVMnmNuz3EbDUPJsniJLL6sPluByX4yOM58JTmCYVfuNbKX72\nnw8Q/A2ptT79Tazr8askXcNyX3t6gpfYEHXtCskxqhUU3b0qX2L+8KsAgAdv30OjL5Yr9x2AyZyS\nO/h4+gBvvyOW+d33I8TcUBd5iTgXN9F2XDRMEll4svu6zRBWU5I3maHWrMyl20DJ5ilDAYYnVlr5\n8jsoA6qWZ9eb0EzKhfkGrvyw4AaGL4sUWVXtoYwEV2CtHPiOfDdoJQj3BRfQ2ngI6+tS2Rinsm7W\nokBiyYU0zACKTVdZnIKSMDha2ViSMn1jIJZmMzNhUDJNGxaqWpzSBGwmXbtXevirP/1FAMBgXzwM\ny/ewYlOSl/kA1y1PfSwKMeP3D85REZCjCb4oiwLxktTqZgRFvoX2zj5K0s+vihSYSbXDXIqVjzMH\nHqXZvMBAOqVr3N2AbRF6fl5hRi7IFfUxnTgD856YzoFiwIQoNBJ2cxZFAaNdczfSq2q1UVGZ27ZM\nlKySZNkCrkf26Ij6kUaFmJ22FkzAkjUcrxK88ZCVtJ0hju4LuO7sQO7vX3jxJnZfJJ/n1i0ErjzL\n5qaGnrAyEmbQSz6gfGt1VQAgw3OVwevRS81PYZMwJy6X8FBXTJ5tPBebAmIXePcqfq1zF//tq7Lo\nA6/CU3ahqVgjZwY8frDCu/elD6B/nSCmzkswWJ1YHNzDG7/xewCAg9fv4wt/5ccBAGa4gbrslVCB\nSF+c4vGBPGB/OF4iIdAnzRRMkzx6toWQ5asr+1Lqc5RCg7zmjk5RXbCnwFsip0S9afhALA9WpeQ6\ntJVCZ/KQl4sM5ZxZb5wDKxKyPJKHp1yewaaEvXZLuC4BQlojZ09Iu5njjk+3tMuuxWyMlFx+w14b\nBvkoHa1QavmdYRbr1uhlVAvCGsiJNrR8EwV/52cxNJmQbN1Ci/kY7q8oZzEyVgDKVQplSBnSLDVS\nxtrH5xNUDFcMTYr0skJlyvq4TQ3uGbAdF6CyVHflYXUi1zJ5JJu37mkMLuSF9/svwmDuIPcM+AQZ\nDTu7sK7JRn5YiSuuljlCLQaiGllYKla20hIzhibLNIPblRdvsJS4fpB3kVLOfpLEaD/hM7nnoNWU\nFzZRssE2cw8eDcSxOV9zO/Y8C/pEjvuV3/ldPLgvG/iIObPTr7ax/xk5X+vWVXhtedGV3UHVImpS\naSi2uWsivYrsDJpqaSrL0WBPRWS1MCtks/dgwTFplJ5xfFQp+v9cKfW2UuotpdTfU0p5SqlrSqmv\nKaXuKaX+PjUhLsfluBx/TsZHUZ3eAfA3AbyktY6VUv8AwM8C+HcB/A9a619WSv2vAP46gP/l/+1Y\nGYCHhcbegxh/62/Krtx/BMwadDlLBU1gxml5ivlDKaIvp2KVdve6UFRmqqDQvCM9EZ/95KfRJTGF\n0dtEekSaNkM65NKjFRpkbVZJgVnMdJcJ9NgR2d5pocjrkIDmLFkhnRA047WQmFRB1n0oKjllsGGs\n5O+18lK5vMDiWLyc1WkDETPEeHCOJwv5+/GBuJztYQtbZKvOixWcXbGOTjLC4om40m8fvo7ZVCxM\nasl3NzobWFARuxm2keZyrbP5CgvWx2GZsJdynnuPxGptP2xDkbxke/tjaI4kPLI8A/kZadLNHqKF\n1L+n55LsfHC2hLkrOIXmykKsxTJ77TasirRxpzFKhoKaUGNtAqhJZlYxfEYByvZg8j6ohl6LunR2\na+XupzDI0I3eCr7LROl4hvO53N/4sIBiV6KZiRWPswKJkjVs5HtrISG4HhS7YNPSgNOOeO4t/tcC\nSE7z+MG7WJJd2U1ewM4madpOxFqbdo7sqTyTbeVi4lCv08hxMJdKlDqP8HQiVrzdFns5zc6RFHJ9\n+fx12AWf2U4KTf1SFSXQ4jShJDGQNg2AVR1YMWxfns/Aa6JaynMI24P14SgaP3Ki0QLgK4FuBQCO\nAPwIRFcSECn6n/6I57gcl+Ny/GscH0VL8lAp9d8DOAAQA/htAN8AMNWaXU0iQrvzL/u9UurnAfw8\nADSH2/j5/+oH8Ev/wRLmn/DfNcAyMEwTKAiTPVzkWJRiKZ0HshNnV09RUQDGLMfYHVCHwGoic2Qn\n9dITnD2QBOQJ+/E9dwCjxQmZFSZE3SllIWeCLh5HUIxFp00qYj94jO1bjE+TEnlQ60PaMMj8XC5W\nKALu4iTUrOwchib0+UYPG20RWVE/eI72Iynx+U+kYcp9uMIxGZYenGdonMvOv93q4vBcrv/JYYQ0\nk3M8mRA9qJdoGRLrjgu9FlqYxRlieiyuayJJxIq/+V4tlBnhB2wmVPu7aCm2EcLA3BGP5+EffxW/\n/X/+qvzujLXyRo5//6d+FgCQNzdQskmtjMdIKKKTpEWNTsCAlm9w/fvQSF4DAOgFsKjPVql1wnOe\nzRG3KSHXk/kYpz4Ml6VMq1dX5PD03ffw5rflvprNAsZc/mE1k1j+pFhiSe9h0I5gKTmHt91FRB3H\nPNWwDyU/tBywFNi1EZ2KtxHNLYyJgQkXOYbMKYxnTKieLmFybhsbIWZMup5eREgqySUFqxRGKuf7\nNnNKZ8kZ+lpySfOpgf4NmXP7igm3KeVZo8xQ1s1m5NAwLQ+gbmqSpMhKaq8qGyoRt2I2u4Bh/mui\nY1NKdQH8FIBrAKYA/iGAf+dZf//dUvRm90X9v/3iMTZWFjIualwCIWc30xoVkzbLvMJFj9nUTXkx\nx2evITkgC/LsbQR3JbHyXnoIvy+4gHlvgu6CtN+hvPw71wOcURTkIi/XakmdThPuVbZXz2K4dbsi\n59AYdTB6+SUAwLB1G0WDxXLdh9tgj0JloxrKQ1OytdbSIQJiAcowR0FsQXVRAI+YPGJGvqmb6BK8\nFOwaSK9Lx2X+vg2s5IXeuvIC7hNHn1HENpkDHvfkIPdwVNOShQE8Wx4a03JwwQqMmcvDP7OaQFea\nGEqvv86c68rAciIbzzu/93uYU6L+UcTeAHsX7x3KPfvMlTEafbnmWVHgH//Tfyb3LKltBHB1INex\neOXzsL8slRP483XfieX7yGtNS7OBcFOSuy4p4JMLDw3S2pvbTSzeke3kVDWwrHkeswwGMRln7EVY\nrmaIGXVMHybw2mINdsMAzo5k7U3fRm9b+lhG2/K3ckOtlcFauYdN9t10WgGaPTlgeSKbtzYSOAzL\n/MBAn2sxP5pjGssG0esF8OLviBwBwLXPbSEcvCLH+uQmDJ/NJFddFBMqzqgZKgLb0CZcv+whU3L/\n04WLjN2l+TRFTJpBpS245od7zT9K+PCXADzQWp9prXMAvwrgCwA6qu4EAXYB8mBfjstxOf5cjI9S\nkjwA8HmlVAAJH34UwNcB/B6ALwL4ZTyjFL1TnGD39H/EsVmgR+nH1hQYc3Z5ApSsJcfjBF/9XXGx\nP8uddr/bQq8jHsHyjQs8WQk12fHiAh02GlVxA+lQdl27ILz28X185SuSaDudxNB1WSzJ0IvEPU6i\nBAWtZk46r9DcRoeWZBBsoKjEehRnCxQsEVqGBbeWgmMno24ABhNcbjBaMzcvm0DYEmv6iiN99+W7\nKd46Ee6C8DzFHVrY88kjzFNZmPj8HMaCGAGWND1EaBLuq0oXTw/FijX6Dq6zM9KychxMxeKP2QSW\npBN02fmZaBsLgjY8x8TGhljrT3/6J6C0IC/VfXHVP/GXfwymKS73u8abCL4uOAs1Osbf/aUvybVU\nGpRVRJSLl/Pi0WuY2fJZ2QYUvTjTtFBQdLm3TFHalP17IPdsqnOYDMe6yRAOk3lXP3EN1/fFMmdF\nhSnxF3cPJURJH89gMnm62jaQhOKNNJohNgImKwMXw6Gcb6fPcCWwcZ/XZ+zluOVRF7RTImgJpuGl\na2QXP11hTMOOSuMqSWbUqsQZPZ2W04VP5GGPKuifdn4Au9c/BQAIb22g70pm0Om0UFHZOkojKCId\nLZLTGKpCTamhCgcmYc5ldga44i03lQvTIufCM46PklP4mlLqVwB8E0AB4E8h4cBvAvhlpdR/w7/9\nH9/rWGmW48GTU3QMEzMyGPsFcER24aLS0GSxyVSJ6L64xP/7b8nm8GN3tvDKFVme6CzBRSQZYMxK\njGNx7T0jwpyciC4JVF57Osbb75PLL6/WePlVXuD4UG50qnJovnAXjrzQnjdD+UA2Df3SBeyEOAR3\nDGMlD5Bu2tBTeShAyKmRZFDstDSSBIrCMUEK6KaEGMWpXNs0+RNo6hKuihjzewJoyaPHCGYS4z5e\nTXFcx86GPDwt04VBGGyMEjlBQeOzfC2GY8GAToiLYDR/dnKB174hOZfKtjE5lX+/stuGV5EF+nYT\nLxhkir5DvspWD/NCQDjvv36EhyeUn/+nMxxyDUtgjSd4sJS5PfrWt9Bml+F8EYHpDuRVCc1Kkulm\n6FkSQp3tSR6lf5RBmwwlDu/D6stbuGk4QCCbwsXBGWaGbPamI+viDEoEzE802iaslsx/VRZYxnIv\nW+0hOgwtDZ/8mlPAq3VFSwNuh0pWZRd1JiQt5Dqa7SYsAjgW5RxstUCzEWBKlbBsMYPivUZD5mDr\nGVAJjN+aAhUFdarDBFUgm7pTlChZoqlJXUr7AgZ7OGDOYbG9PrdXUKz2mM0cZrumyn628VGl6P8O\ngL/zL/z5PoDPfpTjXo7LcTn+zQ2l9YeTqf7/YzTbA/3pL/wVHLz+j9COCOUsTXSZUAl6bQz2xEKN\nNptr93hCFWidmgiHsuvuNTfgd9kTr02YtCRB4WGeyq46fSJb+BHOkB0x723ZaDMzPu8o3CRsutH1\noVZi6a0XxW1L/8mv4o9qUZSDGEu6g7tViIh8AVGZYk4V6ymhr3FeovajXddBq8mqRVFgzE5Mga4C\njmFgHjH7phQ6DVmL7VEfDm9ZoQuUTOKtmIUukwqg6M2o4WAykWOcx8Wa4CTKCxSkGzOMWizGWVsX\nrSrYRGGGrQAElsJ3DGSc56qU88VJsm7AKotiDcfOygKKTWW6qNbVh/O17DRQMbG7OxjiY69K4vbn\nvvhz+NPX/zEA4Ff+4W/j4IiIxJrSwjaw05J1G418dNkwtFQVYsrP+y0XO23BGSQ014cXUxwTJtxx\ng7WOp1FWax3LIinXSbadjpwj2Gzix16UytDOjX20HAqxfOoO/ru/9V8AABj5wGuFcIiraMNfa1yE\nIQAiZAPLgUEP2OmIB1YYGhsmuR8NBUVEZ2xkMNlIlcFAyXsyz2S+cVzApoyf6y3xhB7PJxtDBCHx\nLu4unE9IAfCL/+l//Q2t9ffhe4znAuacZinuPXgfnYsKTcJoM9fARo8kFrf7eGlHbkZ71ECTvqYm\nb1+aVWvmoW6ni06brDpWgZgdYp2gjS7bUDttcUXtIxMFuwhdfwPjTMIOvVzAdAkW0puohmRA4s1/\n3E4RM8tcGQpg+JD4JUbsvrs318j4UufcKJRpCuAE4lKn3JCVLpFzMyjpOmvfRMl/L3WFGTvxnDhG\nh1T0VVVAUUUlZzm1QAHUCkSZA1AgpYBeC8DAMGARD+9Qtr6EAYNCuUWZQ/EcUZqsIc1pCRQsgUbc\nhLIsB59VOMpE3aRbKaNGKyNsOIgYrhgkrKmsas0aldgaKftZCm+M994RYNTFNFqHPy7XbdBtYbAj\nuYG2X6HDnLZfKpxGBGcZFpa87jHzD5M4wvmYrdxehtBji7plgA2csABYjkz6ghtaFGeYp/K7zSyE\n0Zf18lUJy+K9ckl0AwVd93h4BbokXMmQwrYoKtuwoCxuAGwvsc0UBuHxjdYOMn7OoxxkjIdltHBC\n8tvzJQFWqkS7JfM5z+frluzSSRCaV+V3XYWtD9f6cNkleTkux+X44HguPAWUGdT8CY50Cuea7Khb\npcbWruy0252bCGkpGnMXcGWnHGxLlnan30PBRKS2HFgdSs2XDqYTsf6uZaI1ku8PqN5rqgxmeVWm\n0HPhvk+dwNxBwQpFFlRoU+ZeZeJ1/OnBEqAl7bd9bNM1TMMUoPvczjwk1GI3bbqiYQMJKw7RKoLF\nUMKwFHzSgC0KWolSw+B3y1KjKMRNWcxjICTFnAZsJvBqGjFLVajozxeGRs0rYxtATl3JBkxUtG6K\nFZwij5CTEbrSGjmBPlWZo6hh2qZGSQ8hzWtatRIGraBrK6CoWZRN+L4ce+i5iEiOT5wAACAASURB\nVOj/u+SsmKoKCY+FZYZiJWt7//AR3rwv0Oz5MoPBwKNLi/j9N2+g36jXaoZ4RZEY5WCL1ZNUl5hS\nezSmTqRSFVI2FJmmjSEhxoPAga5DpbaJgs9ZQn1ILw8xy+W4p1GMnRrfUSZYlfRSSPriaBsuNSoz\nHUGTY9OCBcMjR6XWMLlGPtdCr1xYIyYrWx7sVLxNJ8+RKrm+0srQLuX5fJrL8++6ARTBPOaJh81c\nwtvC9KA6lEbM2nBmNVvFs43nYlModYV5sUTP9dAihZBamDi5IbHQ3u0Cw1hKgEHPQGHIxY+Yc+hv\n9ZBSwzDJFayUWXY/gyJ9R1m6MJlT8ImYu3p9H05Aqu9kBY/c+0Go4WqSiroJDEsWuCIvo7Gc4Zh+\n8qC9h/ZV+TxJY1gzeYE2d0K8eEfCFcsVd9GExvlCbuxZtsAyo86hLrGktsQ5FZHOJjMkfHhMQ6Hi\ni5mUGUp2OHqBswZ41aUp27NR1ZyDKOCQ0miRG+u7HXgNzOmX5iSlLXUCg/6s9Z2vQkEh4MudlTmi\nGqzK0MZzLJhkofEsC4ErnwNHwW3K5xZcDJqyEbcs2ei/NV7g4TnhiFaFmSOf3/5nv4PHDxc8n8Ye\nY/tPfFZKtb1uEz22VpcLEzFd8I6jMCDduWqEePOhlKXVKeeuM/gUdNU6x4K7ZdNysb8lL2HftXBU\n56mIaB11TfQC2UDz4hToUrC2swvf5j3hhu2GrXW1Iy4UKm6sVlPBo7GwbQdOrU3JHFan5yHskmjV\nKhE25Xxhp4+c4VGWpZiSV3NKotm06cCmUHC3nWKjS9mBRmedwzG6BfS179ICeIZxGT5cjstxOT4w\nngtPQVUaRlRg4gI3SV12nGm4Wd0ZeA023T2r10KL+oi9oQB6DMOBTcKLAgVqPOUyWeCcIJxqPsae\nIdTuRp/Mwq1NNBqStHLLBNG8PkaGYiJehb2ysQhkB25QafloVsCB7OaLVoReT6zfTbOL9kj+3uv7\nePlVqcy6iu7n8hgXx6zddyxYM7FGhRVjfCF/f28h9eo3vvo+Hj+VGvVkUUgCEYBRaWRM9hVGiYrX\nbddEGkUGt05ENm0UtMZGYSIP6ux8BUVM8KSQ9bFUhg7xFB0/hOGKvWgGPjZ35J4MDR/ffCigpSOK\nyIz2WggZXpmmglULoHQyqIjwYMOC0yKnJdfHeWIiiknXlmUw2V9y9PbJOukaeBY+9pJY5itk6EZU\nYJrJuYNOgFs74k2OOj34g5pSvYVrOwK4uvtA1vP+2RjM72F+luKCidtVOsYewUmjUYgRPY/H9ALO\nEGFnJuEMptt4PBJMRnfrChbEHvj8/apcwaxIv58XANXNEyfDDATAjWME5NX0u2LxvUYAm56gnVbI\nId5ic9iG78q6FPMVDHJ+tjZYJYsSVLyOxMwQU+4+LmZonoWc/xj5cY2oerZx6SlcjstxOT4wngtP\nodIacZHAKm1E1PtrDz30NgUr0N0s0SK7cLPVQJuUWTbLkLblg3kvlEkFi7UwQ9no7ImFSaYLGIw5\nDU+8AxVUMNj1puMSIaXp7KmP05lYBM+K4IK8BppIMs/CnLt90Guuj5daFm5eF4m1Gy/soc1EqMU4\nup9torydcA59gNajWCwwo3Lx9gNB8IW5Ru8NWYtH4xnmS/ndJEoRsbnGTCpQeQ4GLZvvmNBkjx76\nDcyp7FxaFixXrr9QLhal/N1jkq3hN/ACeRG2twfosbGrFXjobcicLMfD1lDM7VP29O+N9hE0mZ+Y\nRdCQuS2WCyxm4qVEqQeLaMLAkLUwmy4Cr0abAlZUU8VF61Jle9DF7U98Tr4TUPl5foahkvnsb/Ux\n2hd4u28WaPhkQvI0lmSRur55FQAw2unjlUi++/rpIf7ojwVnokoNl5RtZjeATcxCt6yJW0u8fiT1\n/xs9E1d98h7YOWImLlN2Q1bwYTOPoHQFg/mVqlJYMO9g6hJddleGA8kj2J32WvHb8ByUYO4DLqqa\n+VkZ2KLWRkJ16bdefwtvPpS5uf0GmqEcd5ovUWm5v6E3QvtDmv7nYlMANIxKA2GJnrzv2F01MNpl\nMmsRoEHSEz8OYZKLL6M77ykXmlnmKimwZMuyFacwFnSD7RE0xU/pIcKIbFDXFFEZoWI22CqBmoPj\n0Eiwx01GRaxHGy4sj3VzO0QjIs68nWBEwc/hlduwuHEYNgVBm32YJjcmM4Rms0XRDOCuyI/I0EDP\nYig+mBvjEEdn8gK9++ACS7IL51kFn7DplK5sWNoIujX2wodm8jCwSgQELO1VDmwmD30mtT51ZQ+3\nR4IF6d/y4Vhy7r7bhWvL8VIvxWbvKgDgZZcS70ULVpMah/ESihWF5SLBipqIE1MjYfdnxTCobxdr\nd36gfWwQkDQ5qOAzdHlxf4gbLlW0SJBStQfY6ct6j9pNOEpetkIrgKFQ/ngFNZdNyx3K9V/fuoGA\nbe0bb23h6PHvyPmOU4ypQXkQ57i5R2o9tpG/9eQUJ0xcGwXw/Y+kmlXuaqQ5N8PFimtvrgFglVUi\npuCMUSi4dRdo24bdlmMPXGn0aeZNGESkmZ0ATkwm7ahE3ZCjmwbaFN15aSRrde6e4NemQs4zmnVx\njZtJ6pe4IPiiMYlhupeJxstxOS7HRxjPiaegBAFXWjgnVdW+bSKcU7usdQ5NHbPcmaFhSIIRY3H1\nFkaBiJdiOCXcRI6RLVYwHBJrjK7B8MQiuAb74B0NR8vuGqYKpSHWxUaKgIQqi1WBvMbpEcG2iiOs\nYjFzTmcBh+i4O1v72OoThdlsAsQcKFoonS5h+Oy4M0vAYjtgEqCiUMugLaGI+bGryD057/nTcwzo\n5RiTFMfnYhGzVYGUCEGDJbQz14TNdfGTOaqalNny1/Rfvu9iN5FE3OaeXMetG1exPWDo0nShEhLZ\n2O5aTs+2Oihr4gOjRmlWMKn8rGMNcuHA9iw0miSU0R6KAeG6Nf/DJIaCXJPfAbYY5j25ex/gGt2+\nuQ1NE1tlMod+aCMgn4bOE5gkS8knZ8gdOZ5tZNi/zk5DR6xy+8o+mpsCpd6+eobckPDw9776Pu4d\nyJx6DQ8v3JB5RHT3/+DhMeDIGjcbFvxrdG86QMry+aruN7ISmPSg7NKE6dDztAy0CT3vNjvo+qRv\no1NiuAlcW1xkMy7XpVxlVHD4rFp6CtemVmZDPIwXtxtwU5IB+UtkM1KwuSEmJN5tFiuExik+zHgu\nNgXDNBC2QlhVhbBgJ2KewmcdvxluQjOTmzabiAgKMenCq9KGP5JFdUoX0fKhfDdewWnLAvqdJsxQ\nXoSqxuIagKJrbDrA/FA2jXvnDxFfSK08WcaY1sy/lABPswol6/wXOoK1kJfUNkewPdm8qjwGDOY2\n6NapRohaX16bLhRqcQ97jY23u+Iad/3ruLOuKLyBWSrnuP3xAV47k4d4Ga3W+AWPcXE1T5Cw+/Jo\nWcFm9toyPRgMGQojwgYBUFeYn9nqeHD4EJtVCjMnhDwvgaY8jAEsWCSlSauahn0KxHWPgwGdkf2n\nY6NpCgakbXaRsmF0wcpP+PpjaIY8zc4Itz4hLFRvfPnr6Axlc8pdD/cv5F7eLuXlUO3OuovS3Rsg\nyGS9PM+AQ7EU5/YVhBE3XALEnO4IzpBqUu1N/NhP/pTMQ/0mfsUW1a6tcoQXr0ifw2NWgeZJjEDL\ncRvKxdkpQWtXMyhiNSzC2Is8h8E1bDkWFIFQganheoRHmwYcPg85w8NFmUOxghM0WkgZglmhg8Ct\nxZRtgCQ5TktCqmuvfhYvfemPAADfOlrhjZXkSbqPHOSa8gGGj7x1GT5cjstxOT7CeC48BcAAdAMd\ns8CWzSRhw0OwLa500AgRMKlYBA4Ck1YgECvvmw4CUl8hNWDbYhECz4LTIKS01YemNVbULit1BVX3\nDsYlNPUU4uUSq7m4z7ny1p2BNT4Ajg3N7HxSxhifkD/SNGGQs99wWyjNun2Qc7MN6Jzaf1qjYk1f\nKxu2W0OXa+boFK1ALOYoDHGXitBVVGCHHZPnToSc8O6C3IjQDiqyRBulBshUXNgWEo8dSpVC2pFj\nb+4IwYgdGkhXDA1sBy6rQFU8hpcw+xt48BpyHwzN0O34VKDXAEqtoFfUZLAUXMqou702dMosOa3k\nWbRCTMhww4nRYgiyM2ijd4vydZ6HxVjug7kv93rn2hWERCYGvQ006P25TgAo4XJwh9tQRKQahszB\nsnswTPr5AdC99gUAwL/1M5uomr8u5zNdDK7KehRzsjb7X0bKTtSW20JAhu24WoJwClh1lcHQqHtR\nTc+GVX/W1Vq3pDBMjHPxQhdH8jw1hyEMVguMMIRJb8x3HdhNmb9t+NBEhZvUlvB7HWwSp/GNp28i\nGVPHtJHAYdfltJiil3442/9cbAqWaWDYdeAWJbZuyEbQTyyoFclBCw2/VceIHZgsXy15raFrQ00J\n182xdu0bwQiqphQ/j5H58tB7DvUFHRua0ObMMpHRJY6Pp0goHZ5YOWzmFGYUPi0roCKrrLMycXYo\nL8Lj198B/m1i0b3uurSmCMKqDAcgkKlclKhSyc6XrgHH5svGvgWjSsEGRnR6fXi2vKSPz6cAcfSu\nBWS5fO4Qul0UE5wxY72Cgsn3vOEk2KVQbM/qImAOwmAtphduImY5Lc1PETEfEmYaxoW8sKXKUJAH\n0CxqdSQPBlmqdKsJg+FaaG6BFTtEsxmqgpyBDP0830YEbibnHvILWYtus40wlDXoLzLEOd1gKjbB\nKNFoyxo6tofFEyGiWfRcdChRr/NjoBQWQHdHSoi230ZFMZzs8RhpJZuzHzbwme//AQDA/L0Y/kg2\n9b2ebHp3Bj4ePJALOcQML1DpqWwYsAhdNuq+E8OFymuhlhIZN/1WO0TIcmmj6UIz95ER2r46rOBT\nLb6aJthgdcKYKFhtbiyGB83NQvOe+Zs72P2E/LD5TRO1zTqbZFAU2ulbDnyyST3ruAwfLsfluBwf\nGM+Fp6C1RlKU2PQ9JLRAlbYwPpWdVL14AWURopxN4Q2Zob+Qvntd9LBIxXq4dhse6KoOt9d1XrgK\nJv0vw2diDCV0QFDJNIZevCvfrUx0SdoS+TMU9Exykqm07QwHTPSOjwtkBBOtzk5hg/RY9jZK6h+a\nDrkal49QkVcgSy6gTbqGhQkVCL5BUbdQmQU0w5ZyNcMWgS7lao7Dicy/qwykrG/36MKemAGKKdfN\nBjIeb7G0cEJPyQwXa+mxkICM0lWobPk8uLIBl/TsrjfA4lzc8jRzkB+x1YaQaSseo9mhYnKzhEUe\nyCgfo7LluufLYzis2ftkH95wGmiw0WicRrh7T9ihN3sFDsgrmbdWeJlyeB6xHpg9xnEui2+eH+Kt\nbwol3/H7B7iyIfPY6Q9x9RWyMq8JCRrIqTuZRg9hEIdiNq9hsHmDl/QEHklnFAFp/9Hnb+MrviQd\njbJEl8zPbqddE14D9Ajt0EGLxDEmNHwmPgszh6pIezdZ4ZS08z6p1zfabbQy8YTVYoZVR54FD22c\nnwouYvZwgayQROKNVwTQ5fQHuLkpCdpu4yuYEzbecM21DuuFEWEW1gT6zzaei03BMoBRaKAx6mJ7\nIO5bNEkxKFm6MfbgUMsg7S6BmSxUNGUfwdEM5VB+17YaGLx4FQBgOCEqkqxonaEkE1Kx4kPnLNbC\npigSpAVbb1WJzpBcixcGzlJxNY2ZuJTDbh81Zebb7x+jZB3uzugGYIn7nM3meOfJlwEA4QF5ApGi\ntOShsjst+Kx82P0+SuYziliuLZnPMH4qD+P7hxM8JmuQNjRC5lQKM0GD4KXNW5IjOH/7ERR75ErX\nqDlWEDouQsqkW26OHnsmlgRFHY5jfPXRn8o84wxXAlnPnZttNEJ5McOOizClBoZH3srpU2T35BiT\nKTBhJn5u5thn59+m0UVIwE2zJ3MYtAK8elNyFV+9u8B7idyTVwMXBVu4D44zXNmWee6wu3Ru5djc\np3rTvovPm3Ld9udegWLOpDFwECSy4Xib0l2pLB9Gh7qa+R50Uzbs6PEjJCFFcaPZukoAlm/vfOFF\ntAeyuR2tgDHpP/W1dC0JYDFs8VHAY7jaMhUyOuKTeYJ3T+SH46dLnJItyWLLeb/h4A7Rtre6fez8\noMznOAgxY7jy/v0ZKoKdvjiSTazxQgz9VJ7Jk6VGynW72m3iyUP5+yMUuDb/cCwrl+HD5bgcl+MD\n47nwFAzTQtjuotPpwjPFbdvaMeAEsjMm7QqHZ+8AABaTHJP7AsZYHYqF3m6a6DAjbW4M0ffkdzov\nkSRU6bn7Bgo23+dMcAXDIVRNMJhZaDhidVqtDp4cyU6rjQQRk3mK6sr7o87aep4sl9ALsUpXf+Tm\nd4BOGVCxSPLNg7sAgE64jU6D8OEe4DKTrx0bZULswbm4iO/9yRs4opv56OQMj0/FKzqdLBBQwOXV\nnSaO2Ofg0UqWoV5v9bay1nX6IPDR2WXPx3mFgoCrOSGw42WEFqHGB+cRzpaSqLu3PMUnX5GegVHr\nCqqunHtKFeWVMnB4Lmt1fxLjnBWF4TDAYI8Ykb1tdDpUeiKGwilLfO6Tcqzj1WuYHsvxGp/YgF2T\nl1jA7jUBqg2Y9XesDsKefC7dFKteTS5zA21iBCq3gkM1ZsPmNZs+FBOiq8lTGAStZdMlFqWsxcps\nIGhSGIb6kU53huCmeD+3ZlvwR+LaT51iTb2WMaPq2BZKziFzTLQbMoctL0SDvPVJXsJlArKufNmm\nwhNWJzabDkyGI8v0FF966xgAkM4S3Lwh62lRB2G5yvGNA6GwH09idAP5Xb/hwvHonZoFvDqEesZx\n6SlcjstxOT4wvqenoJT6RQA/CeBUa/0y/9YD8PcBXAXwEMDPaK0nSikF4H+CKE9HAP5jrfU3v9c5\nbFNho2Gh2/YxZJKl7eo1h/5bX7uP9x6L5Tp7nGJOmrMR+9F/+oc+i5DSumWcYkVWW527mJ5KL/zh\ncYTDsbDxXCzoBczeQDJh0qcDfO5THwcAbG/5eHRExWgTiEh/VWtbGo0A25tiaX58eQUl8Q+jYB/H\np+LFTN9/H7/15a8DAB6+J/Hy9s0l/tLnXuW5DcCW42auA5C49OyplNjuPTzG41xOuEgTPD6X+Ryd\nztEi3PWLr9zBPWpozkh31pxqzLhu7baP5VSsku8W6B+THBQhumyOWjKJ6qYORoZ4StgLcf+JrFtW\nmTh6xERVeYoZ4+B4wm7IbIXpgqSzpQVViLWKFj5WJJDVhYKTEtMbkzzVz7BzSzAGP3S8jd+/JxYx\n92xs6JpOykJnHvD+sCxq2bg4loTw9OszPKVAj7vZwMd3Zf7d5j6wWdOfERdSVTDZJer5G4jYPaot\nFzkT2uX5HHFLrH83FKyEF7jIz9nl+mKIYYPajkm6poqrafNCy0HLFK+x6VkImEhuOSZmp5LPcJWN\nLTZ0dan70IyAOTVF2oMAXcg1T8YFcoogjbMKj0/kXt//9n352+wpvvQnom+RZxncBnkd5hoVaeFa\nCtiviJN5xvEs4cP/BeB/BvBL3/W3vw3gS1rrX1BK/W3+//8SwI8DuMX/fQ4iQf+573UCA4BnGijm\nJZ7yJW3u9bDZEtevHI6x4Iu3/2IPB/fExd4a1g9KgMSlrPtKYflEkjOq3cZsLA99o9NCz5bkUsX2\n3XMrxoJZ8UBn8Fri4rXyNqIzUTo6XM3heXKjG+xB3fNSLI5kU2hfvYFXPymVkevXXsQ8kY2nO9rF\nj/812eDufVM2tNGogk+CGOXmAqoAkF88RpnI/JfcHDq7Q1iQhyqZd2Cxzm1/+13YZPPd6G8io3T6\nm+/IOfJAAzNyA2oTnDpCtw2HuoytKkaPPJbUOEVhAm22JxtThcFL4rZLkUHm2XJc5Kwe2B7dXddH\nSDHalpVBZwSU7XTgspcCSYWUYRPbR6AWJfRKNojhRhfXeQ5/tUTBJOHWrS56V2XOg5GAdEprgvGJ\nfDfaGaFB0Za93SasUJ4XJ2wBIB7kWDY31etBV6xaOQks9ofk0xQFKy3olHDo5ttUVbKMAF1DNueB\n9tEYSnhRpDlcbpB1QjHshthgmNP0XPj8d5WVGG21uc4l+hvi/g8HYsgujp/i4oT9F66PHjcNOwjx\n6c8SJJYuMAxZJenJHBJHwyZA7MYthZcdOd5Ep8gsSWzavgF0a1z/s43vGT5orb8CkPLlO+OnIDLz\nwAfl5n8KwC9pGX8E0ZXc+lAzuhyX43L8Gx1/1kTjSGt9xM/HAEb8vAPg8Xd9r5aiP8K/ML5bij70\nXViqQrRaIpmIG9l/6Rp6fSEsGQTXcfvzhCA3+9CfqBuJSECBbN1NN34yhmY/+qyaIWW3W6PZR6Ml\nO/RuS/bC2NdIztl01TTQ6rCDMV3gmCQis/MFEsKKc5aeuleGCDtSTmv1m9i8IrVi22ihb5GIpTPD\nsCfW9oWdz8hxNRBP6K24GWzyN+SzJ5hOJOyo9QF2el24gRw3KkvsJ2IdfvDqDkBknuUrjL8ldfoV\nk13twkVMRKDTMtGiRN5+2IBJYZR5lWFDizUKiLZUfgq7IRZ6W5lIMrGqYd/GyqC8ut9AQWqvsZbr\nSHyNfWoYdqER3JBHYeOFPeiSUniL+TqpNlXkGFjkCIgE9L0Rru0Th/Ha67i9K57Htf2b2Pu4NCg1\nPXHnlZ2iM5CQ4NrgNhS7VQ23gI6JZXA1QCixYhdhGSVASEVwc4iwW4clCk1CxM2ogtNngxwbkSzf\ngiKE3t+8hYpw7Bw5eoFctyZCtm268Nmk17ObcJhUNVslOp4cd3fQhk/au1qrxHLm6HflPl0JBqgI\nIR9e6+BHbwocO18YmK/kO0sIbsRPG/jc3i0AwBkSFJF4NPmTBG2T57AaWKTs7HzG8ZGrD1prrZT6\ncOlNfFCKfthpadNyUcFFVrGj0FbwNsX99H2FIbP9RrC5xvtrshVVyDA9k31nZuVQvtws13NhGeLk\nGHaIIW+uJsNxqXykXXl4nHwJu0nikKMcsyXx6UmGZoeaf8STD0YdzDvyEG9sXYfDcET5JpyWzNm0\ntgGbf6eGpVY5PJKa5GWEYsEHN2miGVJ9yiWn5NhAy5cXrGWtMKipYTY6UHP5znz6EKtHspk8nsuL\ngqaHJlE1lgbafBHcfhNuXzYWP18ibtTwZrkOL1AI2NLrbyoY9QtduWhacuwiddDY5LUQIAXXgUdS\nlD17A2lAcg84mBEqjQJg5zMK5gtKW8Eg5bx2gf2urFt0tYvwhmyGG9c/AbtuNWcru2G7sPrSnwC7\nA7RZg9cF0CDrdrFAyReo7h033T50zcptmrAYmirbgGPUePICJrEHtZJNZViYawFWlcsEppJ7WuZz\ndOpNoUGuxdABKP5b+oDns73ermDUHbNbGg6fC82WdGtmo6JqlNUM0OyJc+13AgB1KBGgTbYsFIK9\nyDsV/E/J2n/t7j28eywhw3wWw2fFYdB31hD4Zx1/1urDSR0W8L91w/YhgL3v+t6lFP3luBx/zsaf\n1VP4dYjM/C/gg3Lzvw7gP1NK/TIkwTj7rjDjXznKqsQ8WmClYrzUFJfbPraAkfzUsHdg0kobcGDS\nMuV1gqg0as4PrB7HmDXEtd1qtGFOaZmDMfRAwgfHYmNJYa/p0TIVrRtbbB2jon5DXKbImNlvWPLv\nORxMlhLmfL/zKYRLWgHnGIq7vGEGUCQAqQViKq1g1RqGcGDU8neDFAETbd4jKl8vjpH35Tq6fhuw\na6IWGxeFVFfyUwOo4brkJFRejIyUZ7oMEZLGznUy7BNC3jI3oMxa34B8DLGJNj0FxwKqWhItz9Gk\n8vNKrVBTZfctXmdcwh4wC28rtBK63WmJIpdznOgcFbEVivlgyzSRUpPDKUyEbPbJHQ8+CUl6XgBr\nwoa2QmyLbg6gKK4DrQDFG68UUFv5MkdJpKam52VohYoddMVZCT0Sr8lqlFB14xosVLZct6qFcbDC\n0y8R8fgXfxPXB1KhylQTvi9hTt2h2mjawJyNefEMJa8jNBrwPHoYtoOCqtku8RHVTCOekfLtTok+\n0ZQmdpDlMv9CR+iYJGIJud5BhXhbFrR3F1jVydPYgEXuzU3lIVh8ODbnZylJ/j0APwxgoJR6AlGZ\n/gUA/0Ap9dcBPALwM/z6b0HKkfcgJcn/5FkmkeclDo/G0FphcU1Cgnl+gXQpD3ToPwWasqiwE8Ak\nYIUxeVnlKMayqIU6R0MzhtIm5mSdaZc9lCupDFQgXbhRwQ5rVSh7rYmIqgPbZcZ2XiLnC5d15Rzp\n6ggHd5kVfinBiEImcJpQ5AkEXGDNyCNupkpiaL7QhtmGRVdbL3IUfKDDnpwrzyzYrIEqsweLOo/a\ncWExdl5cHMMkK1CP13FYlEjYqQc7RbdLEtDEQkSCkxZK5HTts6JWf0rgUxPT7rQRTeV803iOTpNl\nODNAXtYsVIyHgyVQw8PjFCV350pbsG2Cl5I5Zqpu55Z/9xptjCey6QeehtOkMtPZKfg+Qt38DBTB\nQJrH1ZMnWJdUlA+QFBfQa91MVCbgyDwNhlW610DBPhDd7gCFxOV62YZi5ye8JhQZixQ1JZ2VCwzl\nuXnwuwqNH2GH5ugabOaaQpPw+WS5JlqF7q57ZlI3gENeUUMbsGNWzZgHs4oMLYaHu10LrZ48nynO\noEh2kzw4Qhay1ZqqXkqFcNhp6dolwPyJ4wWw2N+TWhaWrf+Pex+01n/tX/FPP/ov+a4G8Dc+1Awu\nx+W4HM/VeC5gzmVVYRZFqLSF5Vzc8uNTB32bli34NGwSgCi3giK8FAYTR1GCiGkNzw7QHUlaI0+B\n89pdLS1kZEyulZqtpgEjqYlQSmhmyA2zgsPGGM8v10y7SzYtpacWNrclQXe8OMUGOy2NsoDVFxfP\nMFbQhF4rUsnpKkWtugaVQjH5hLJAFotXsJqIJxEvKvg1NNZKYdNFVdYSFa3709UMF+wC7Y0k2fXw\n0QUupnKSrmniCv8O1YBBePfCWUBN5Hdmwt7+noMpwxlzFeP4QJJW3z67wS/r0AAAIABJREFUwMdu\n04pdDRCfkX+iIKO0o+GSZ14VDgomebVWUGwU87WJiMY4acl9bFgOXFZAlkmGrBILPBsvMAgEm7B4\n9BD+dfEW1YQuc78HTSEbZVvf0cuzsA5tlGfAbpK+jUniam6gckhgE3XWz0C5yGCyMqDSEqrmoGTC\nu6xOoUhU0L/Sw2PC3y+e/jH8Fpu0TuTe6eQUDun2VkrBJ849CVI4tPiGWUATGzOfiQV/MDtC9kQ8\n5OEfdDF/+gdyjKBC25Nw2io04pKhUIvU8NEYJeHmR9MFjpYE7cHGNpmfp4WBJ8d/DrUkKw2kuYYy\nAJOIsNi3cUZ03FCncArKbyODrnsRiCRTZobuhtzYpgphE79uuxo3b8kGYSUjmH3eGD5JVVWsOQ4d\nK4SmBLiCxnIhC5mmGiZRZQVx/b1hB8H1O3Jcr7FGWLpBC27GeWYlDLqlxURuuHLbMB3Gr461zjib\nQQ/2WIhETbqiJwdjRNsyt227gFvKA1YWKRaxnGM8TnBOEleQCSrKqzWNuqW8tW5mVlbI6grGqkKa\nMgyo8xozIGIO4GJi4/1Dce3vH52iw16Dogrx/mPZfCv2EezsDtAfyrqEzS4slmSNyoJmqGDaCjYp\nx3Oi9TID0AyrijyDwQ15YyuA/6LcM7M7gLZI3FpvNo4PsGwL67vy5MpAHf8py12vva6GvMwxTJ5P\nuy7gc/NWF9B8HspiAZNkNzWwzHCbuJhSkWrhILGlEvHa5AnKhbycBjdyx06hCE5LlELCnJeflYi5\nFtAJDG7q6Yrit7DRG7AU2nexYHVt5RWY3Gde6UofxkrO7ZxxJ0wr3D+Q0Oa9d46xiNnir3O4FsNU\n3cKWW8exzzYuex8ux+W4HB8Yz4WnYCjAtQ0ErRA21YnN0ociPdhiEiEkVl0hgKaqk2rWLplCw7sK\nACjCFXKQKs120MxIkR0EiNdWnKrUdohySaxDu4JN/rNsfoKIWeQ4T5DVWXJuoSrs4eYVAVYFWQhN\nFuhkcYA5Va1aiQ8zYhKPlQpr5MBkSIAsh47ECmTJHJqdc9EDOVZ2MUPclB3eGHmoCEI6ffwAh3P5\nzmphgKXpdS/CchGhQZbhW8PWuktSJyUwoxU3DWRUtI6peuXbwHRMtzaf4MGJeATpMscFaeiU5aOi\ndXZqFuxsgCQhN6CTg2JRKNIUuSlrmxg2zLz2Uqiv6BXIaI1HfgNd1vqPMhf7Hdb98wzVIzlfGcp8\nlNeA4RJwlZWAEfGm2ADDI2QpUDBUZPeo2uzDBbtnCxt5JgunVAE6VqhWGSp2nYIh6uzxW7j/bfnC\nE+M92Aw3p4UDzSoCaKE3RzYCMnDHqcaS69IKclSUg09VjIyVppJkOe2ihe0tgXG7DQ8dkvJ00gYW\nI/ZMBB7ysVj/SU4+keUZvkXOjck4hsmQZ5UXuCCV/jA0YIzJ9faM49JTuByX43J8YDwXngKgYZQF\nirTEoxOxnr7t48a2NBqZwQUiIrt0egaDDMUWVaJVYAKxWAmr1V5jAcrUgFPDal2NggrUCS2pWUxh\nERJsa408kp3/4WEMi6jHruHBIwtR2CGa7+IU42+L9cetbTibtOhOfy2ikgdtlJoWrU1mYbNY4wL0\n8hQVIdhGGkEzmRn25RzDqwpOr85KuiiptGzZBUzSqm1ebeDjE7GIbzyS8xZpCY+amH4IVOzTX6xK\ngNwJyvGQ1vBfdjIWVoEFrct4Osec2gpBy0JKWLVjAoMbhEezy7LXayAl9Ve6WMBhT39WVtBc5yxa\nwSA/gUfvb2kZSJmL8bY3wN4vmHGMhDJu+uVd5IRm2wHZlrKn0Oz6q4oTKIuJ1MUMik6Ynk6gQvEK\n1p6E9qCrmvzVg6KkXWUpQMtn7QIVy4hlJI1Uj796//9p701jLcuu+77fPvO5873vvrmGV2NXD+wm\nu5vNbpOWKCmKSEVRECAIZAiwJQsQggixExhwTAj5kA/+YDhw4iC2EiNOgsSyhigeCAmWTFKyKHFo\nks1mN3uuqq7xvVdvuvN8hp0Pa91XXY4oVtOs7gJyF1B4r+679+6z99ln7TX+/4TKP1J1LL15OhSP\n/W1Z83mW1pSqxBVZ+1qxRGFO6hL7pFpNGRqX2VjWdqAEQNVGhYbGwRxnQlAUKyxYdXGnkp6Mwinj\nszKn0f6RznNKNp9fnBPk8jwE4+y45ib1fTpziMD7lIdCKVgMM+MwS2fsjCSY4hzAR598EoCN2UkS\nDWCZcYo3mQNZaLR129JXiDa3v0tZacgHaY/WRB6gVSdkpoArQw1UFgoe9YoGotwZ05mYqKN+h5WG\nuB1h2aVYl5uRxfJA3GwdcumkbOi9QYeVopbruhlWsSInwylWyxc8rXnwndpx5Nm6I8gV1r1UZNKS\nfPpIr7EcehjlqDycHBwjOBeLDVa0CGnasASKj1jc0wczzxl2ZIyrez0+sqy4jEBvDj3HjERRrPv6\nsxPAQF2Y/eEQo1Dz1g95XWvq/cMR1Zm8Xt3SoqhaiXimKNijEfva5er7OVGqWYLMYLXrcFyTB3Pa\nH5Klolg6OYwUhvxWZ8Km8jiOJ1M87VAsGMW5nEakR/JQeM4aVmsTTDg7do+s4xyjdKOuZHLnKokW\nkXl+nenhVblPuSU45t5sYDTC32tdB+BOa5tzW6J4zq4X+cOvaBZs2WEylIetnym5r7U0NeOy7EE2\nEU039hMGmu2I8JhoEPuoJ2tx6uQ6XlmuN+mVuXWoSNS3QryyvMfmHom+Z6b3sbxao3lN9ubU9plq\nHUbR83GUx7Q9mlGYE+Pcpyzch4UsZCH3yENhKYDFWosb+9S1+7Bvprx2IGbbo082ieeIufUijp6U\nw45o6sH1q7Q6ktI7/NYOzprSz+8eMTwtJ+lRvk38hJigde3CK69VCPQEym2LvKdgG6llph1uW/Ut\notPynr2OmGq7O12iT4hWbnp1Rka0+SD0KWtjTyEukmiQa3QgJ1t7/4BgIq95ZQMzDZ66DihQSawl\nrp3DhNSZ98EbKmckWOSEEfGKEpy83SLVxqaudnACuHNyktSw3dF0WbHARINn2cwh19RoqkHUZJbh\naYWedVwGmkKLnRJLpxSi7PwZtk7LGtZK8lp9NWbYlfeOsteIu4qb4ISYknYfziyeUqjlWsfxnbfv\nSF4SaMaPoLeUatHDW5PTz5ROk/sCKJIGclq7VQfHqMtQL4FaGNk4xVGXKI8TaGntgDbSUTyNKYk1\nObjcpztUNyBMaOqeM14THEnFTrVE3WxWOff4ss6pSrEp8+6EY37tVQnyZWoR9TtT2pr+W12JqBW1\nuhNzXOaMtXQVO+PKZWkoHm8PSTYUjTwtgabfK80lDq6K1XDiRJ3QUbcikJ+pk9MvyRiDLMVRvtFi\ns0CkLooTucQVrYe5T3kolEKWWYb9MbmZ4W/Lzbje6vCNg98H4DNbF6icl83oE2HUXPOUxai4UsN1\n5cFd+tQzTE5pnKCVEW9qS+44JltRE1w7yCKngNHa+WliaSkm4q1r+6Dp/93wJssVLYvuyYP31k6P\nzhtCAf6frz/HSHknt197m/ijcv3FcIk4lg0UKT/kzFjcmeaPwzJWwVKmswxPUYBLvhLbdt7lTkk2\n9sVTKxT0ITzqHbCncZfrr+3w1puiDFM1nYsuLGvJ8+likdfelTx2s1LhfEHWIggSBlpLPPNlTqU0\nwNeOSbuUcqggHV46odJXZXJ7n2uKjr3mih/eiWZ0tW7fDTNOlGStXC9hrAVOThgd+8zjSN771o0j\nYnXHPuM38LR0t93zOFTzeWnWvNuqXJQH0Dt9CU/L3B0TYZRA1noGm+7p603QGE2ubfLuNMMtiGK1\nUYtpQ1unzYRIFY41M0bKC7r9tmCCMnA5cUn6HUbRDs9rPCMpXeCfxP9c7p+OFQ6nJEfy+Wxpn0mi\nCNaVBl5kdH4tGlpz8cK5LQCMrRIr52e16dCoSCwtiEPKyiEargegNSxJLD+PjlLGR9qjMklAlVNh\nFhFqVmk1cljTZ+N+ZeE+LGQhC7lHHgpLwVrLNEmZHeW84mrufjYjV/KL7779ErUVwTYMDLixko9o\ndD+vBARKweY2CsRl0cphvXmMzZ8Uulgl+nDmHYBTn0RZQUZHHd58WVCXL+8PGU3l9fEd6CYSlY+r\n2tiUT9l9RcbrPXeEk8jvo8kd0pFkJVKnjD+T08goToOXTckDfW2WkhfEavBnEyjLqRoO5Gdppce5\nJTUpi1WszrV34wbf+I5gFL791h7Jvp6I8+BTHLKhWH2lis+72zLGaNynsi6nai0PmSkxzpyqPQtS\nTKYo155DoazAMq2UzqHMv3O4j692flfdnJAIUxA3Z/PUaSgqFVzmHJd3F+oxmVK0337nuqzPUY+W\nmr63ju7gK+9Bkg+49hWJ/K88XaKkVkGiFZFxPSJvaLfgcA3K4mq4qcVqJolpF1vSmhSFdsM1mCP5\nPTjVo+nJfcjTGWiWZDq4yvWvvQjA1a+KpdCwVYzep3qyTFgXS8ip1EAp8FJtJEs8g24xhv0xRUfG\nOBiOKBlZi/ZBh0y7bQvzbl16DNXa7OEy1TkXwhKZurHZ1Dl+Wic9WYvd7S5XD8QFbY9moBWrve6Q\nkvKsJibCid/f2W/maaMPU0pxxX7k7PP003NcePZnAZi0ewzbEpHPB9cpFGVj7rVu4mt8oaBR7wuP\nXsB4Yma1exlJX0zmk80ql4/EJ+0dJpTV7LrYFDMyWvK4uC615VvNAmg0vG8T2gcKTNrqcU1r1A+U\nw/6r5/4nDv7P5+Ta0vmtkKbIxrx7NzIUdYck8Rz9BzItJrpUqDOsKpLTtE9iNYKvzE19xzJVn3tg\nBRocYJreLVn1PIdcy4Nj3Ui5sRTcedwi4Cee/xwAo8pTnPmsoBj5pFz7uijfy2/K5t9cMeiU+Q9+\n7BEa2tXnOoZrSss+fOeIksKWX9I29NnqkP53RHnPsiFGMSbb5SPGuwoz7mfU1U15c6qdkbswjmVO\n3qBC8ogohV955BJpTcYYuRcJlhUB6+uiKHZHt+6SsdYqnK5oVmKcHLsStbMrlFJFHtJO1KSfMI20\nyKoHeKK8WtsddpXCPcahrH57qq7PiJxAS8xnyZjRXAHUC9z8+H8DwKu/8TcACF/6IrGuYX+5RksL\n4F476h8XeIWRz3BO5GvmcaCcXNO6aZaDAsLm1uLoexwMrhaO+Xqvfc89NvVzIMvmXKApqf6e2+Pq\nb6az9CVr7bN8H1m4DwtZyELukYfDfTAOmRfTsQE7LdGM/b1tIoVWb6Yh6aGCjEx8glhOuWpJGmdW\nkiW6JTkdl9q3efTCxwA4f7rKiR0Jnl2/+gYXlxU+vqoadTajqnUMjfgErp7GVS+noSf3sBzjbctJ\nEWlJ9O3f/i1+UtPgX+Ruo95JA3v6e8kINTlw3NVZ9TwG7pxqzD3W5oVeznZRTpJUi4LKAYzmyMc4\nGD1JsJZMMwN5nstRAMy09Nt1HFBTPa4WibakW+7aep1iX97TvnKN8Y5YU+sVBa+pZTR07SfTDhMr\ncy45MwINupqVMRc3BArMd+RFM3KpPiLvrRUvMugpLN5RlUlZgpXl8hI7fXUJ1HqoPuWQdLX89lEH\no6dxsJLQK+nrrRG7V67p4PJdj26uctRX7AU3paRWWGljA1+DdV7NI0ZO/EJFAtRJekiqJ3QSj3Ct\nrIuXvMngshaf5Qn1FXn/TC02P59S0AyPsUvHmQMbhHxpR+7ZR78hVs7lzTHBkbg2jZOWl78pgeLx\nZIrV7snU2rkhcNyVa/O71rrnuuRqvdvs7nuMcbBzw0KtB+s68yp2jDG42miVOi7peL4rLdbezUzd\njywshYUsZCH3yMNhKVif6WyF1eoTbHRE2x1MN5i2Jeiznb+D0bxrEFqWPLEETinz8ZmwiauY92s/\n8wJPXJSKxvpyg+e1PHhwsIu3JN+R3xKf9OjOFZKesiE3C8TKSuwUY0YaoBx6QxxNIcUjhRp750/4\nkp6ejgc1PdHHLlTV5Z9a0Epp/KrCoHkOJa1dKBdTunq67/Uz0Jx+Xa2LNA6oqYLvZC6OxlEyk5Ip\nU3Se3T1h0uz4V1w9ecpRTBYICOr5uMBWKp979UabnatCIlJUINbNyTnOn1P0qr0hVyevAXAhbnBK\ng2Sl6inqCr1WybSnPzV4oZzs3pKLMxDU5X7ZMJpqKqzsUNxRkpWBQpvFZQ4ciRlV/DIogtR2K6Oy\nrEjZ6zHJH4tVuLMvKeBts0VTa0Hc9i3sVIPKlbPUFUPB9g1eXcbzVySFGKZ1sq4EDLNsMC8mxS1c\nZLwjlaz99gFGyWZLWoFZmzWwGhC1vos/0DLumaV5JNbWm4EEmhvPFagoCfHldo2hBo2naU6k8YCo\nEJMpOpNmDXFdh1DLpwuBwxyUOk0TJhpD8jyD0TPcV7Ifz/XQDDaO65CqpWDTgDTRUv/UHhMO3688\nFErBD0I2zpwjiVaITsollb5coqTU4rOdJln8VQC2/GU2NuTmFica4it8l48+KvgGqz9SZUlJT7ww\nIEYWu3qpTt6Xm59pxDpeS8mmOkZrh0iBUxKTEiribj7zCLVbcUWZmrNTf4H1a98AoAu8oPP4QghL\nc0XgOrgKJeZpwLEeFnCWVbGYCkVXv/eEx0SzIE1VCvu1AE9LZmcD8DVjMrEpE73J1ubHgSirYCsZ\nkM4xDQpjzj+ldPB9Q7CsGAEly/pHRNGtVoSy3d94BzRSX4mOCDoSXK08csiqLyb16lqDXOsbHC3M\nCXIoN5XgZmIxqiGD4jJ1zXCkY9DWB5ZKWqI9nhD05sVUMNxQpRG6JNsCleafO0u6qYxSOzKnsDum\nvCYaubLVYH1TSuGLTUOgHKJm3cENZQ84eg9MGOMo2Y2XrWATUUg+ESc/8TgAnRu75POuUe12dcMx\nVtmtJv0OqeJ1Us95TWkAnjwrSmySVUi/JX9/lzE9ZWkyGTRqst6O7zHTJ3nOXF6PIk6fkL23vFol\nm+g+8zLaLZnrdJQwmuNk6MGTY477Z2aewddCrmQ2vKsIcrDmbnD6fmThPixkIQu5Rx4OS8HLWKn3\nmLQntN8Qc7HQuI1zKJqxMv42aOluI+5yrid5+j++dR2A29sZ5wt/EYBT6xUcTzvk1lKcirgVZhpi\nS4oC3JVwYNisYAayBKG7erc7r1TDnedxJn08NVFnChT749EKb9blc58upXxTrEgiCz11O5YDF09z\n/RdPinm9Vi1TCyXPnQU5jysS0PBElXCmDUrKH9nE54qm3nByUrUaTNthrPblzN4NRDH/mVpm2Rxq\nzLBeVeDSQYGvfV1M8NULfQqJmOBLe7IWw70JWS5UeW9fvcPFWNbKvVnFPS1B3mR0G0dBRyeR2rjl\niHFLCXeiynE9RVyp4My7QEsukQYE23pr8tuW1bFCyA336ezJeo6qY0pKxLJz+8u0BnJ9A0WfXkvc\n4/Lv5vIpCksaBC6fxWozk1fawiigq+NpY1c2wXgKu5YbUAIXm+9T2HwMAD+ukQ5kHSda2Wg9H6uN\nT4yHZHr6jxzDM4ri/e66/LzkPcbXPeEP3b0+YarmfNn3aTTlOhthhVu6Lr6e4B9/5jTPPyGkLo1K\nk1wRsNxqmemR8on2xxx25F525kRFe2P6Q1nvzmTGgQbmp2MXrSrHcQ1Z/v7KDh4KpeAEAYXTW+zt\nHTI6J4uzOTbsT6ST7cCZsqHcgFPT4ltdWbShop6cKjVYfl6i4sNHmsRahxCEpWPornzSwRgtdKkJ\noEUwHZIp2awTWhw1z6ZOQq5EJWGlSpiJu1JBTPGvTgq4GgH/hoH8OJfsUNdCpcCPeEwj/6e2xLys\nOi6Zlu3GfhGU8NTJS3hGbm40kI2bARvL2u9hOzhGHpTWcHRs3hljjrMP+dxcdCDXSHdmDKYsazEe\n7NLblAf5ufIWKAdjuy2mesHWefNdwQbs7e1y9onnZR71M2RNUQpHo5y4PB9PIdmtT5LPo/MzQi0K\n8qyPo1Bwrm8o+FogpIq+5w3Ic61jqBpKmhmxq2X2DuWa+jPD4Ugh1hS8pHGySdNI3GLk30HbTnBX\nI4yvPQylKibXngetjzB5eAw9R27AUxj1bHZc6u6VXGapdOkmbfniUX8ACj6TTifYOe6kW+GPx/K5\n4ruipG4+MWVfWW86vdnxcOViSDmUvTfGY027Mpcaorg++bFn2DojoD0m6RLkWh4fFEkq6o/Oxgz6\nohQOD0Qp3Cm1mSjAy063h7+tzGeNjIHCB6QmBS38SnlP4OnPkYX7sJCFLOQe+UGp6P8u8B8CM+Aq\n8IvWiq1rjPkc8EvIYffXrLV/8H3HSD3CVpXI3uCxt+WUWD29RtyVk3nX9IkmYkZthTFXpqK5T7jy\n87O1AhtDCTj58SqOAquY6RibaC95FmM14uwoiYeX97G5QqllE6xqV79bZDxS2rhiAlPt/NM8+PLb\n/4Su8hSc33LwVEMPSz6x0oZtnWry1JKcaJ5mHBKGFJw5n6F7jHac+gUKgZwaE+UCyNIJaAQ5ci0V\njdS1+yG3VZXPsrs577n34FvwNf5qJoZCKmNPnA6fPJDrf3J9nVSrO/+wKK7Y7J0dPM3w1KISy035\nkogZcVtO4MPxgL66OQUrVk7JS+hpIcNsVma5op18mQVFubaBj6eB26JiS5Qr1WMroDip0p+J2zgc\njLilICL+MCa7KRZUfVlu3uysS6CgIdHOCcyWZgaCGq6uIXnpPSQx88W4u0aQHXOHOEEVkylYT+CR\nlcVdsbfUXesHzGZSuj6yCUZNf29kOa9dvKMfF6vkqdUZ1/5YyWSMxZtzjxZCjN5LQkNNeSw/oU1+\nJ4pNnEzBZNyIuCBWRcGrYF2xUtPEIdSsQ6DXGwcOQ3U3C1FEUd3bmZvRUTDZqT1Gm7tv+UGp6L8A\nfM5amxpj/g7wOeC/NsY8Bvwc8DiwAXzRGHPRWvvn2i2JhTuJYcIyy5/WQpjvFGgpgEbRLLMZi1nX\nG47Yz2WaP6IIzucfr5EvfxcAZ3YBV8lFiQpY9T+dQgEzRz3RTlLHjfDPyncUb+4waWqqKGnjaYai\nd+sa+wrgUlS+x1bSY84Vc9A1nNDiENd6RBrhtiZiUtd0p2I/OkmNmSIhBcZg56ufJMzmG1Y3c2Rc\nXN1UoXUoRbKRTlbbvKxP/WiWcVzRMi+vdgwzNRc73RZ3RvLAtnpVzjyuvmwEibZqJ0cS9R5kL7Fz\nQ8zSi2c2aVQUaZkhHS1zzvICjnJs5g3NCiTBsULzegNS7T+YZBFuSQujxgm5Ny+u0k6+CCrqzvXp\nHmcwRndu8rWvSZCmXOqxVRBT+qKS9danXcKGuGX+mZQwOCVjZDfAFRcSZ8gxlFM6h0V6T1rO9e7C\nJXkZZr4fasVjWPY0UuzObAJFOUQ6reu4quCDRsoAyVA8siPX2PP3mR0o+a+1oJye1vE5ykWBbBbq\nnNZsRfOUFN/Z2OJkovTSzDDSTJRNMyLlq0xHY2YjLT3XjVMuV3BnWoI9GxMriEzPnXLttjwvrf77\nVQk/IBW9tfZfW3vMYPB1hDMShIr+N621U2vtNYQp6rn3fVULWchCPjT5YQQa/yrwW/r7JqIk5jKn\nov9zxclHFIevYLNz+IfiMrjha2xOtcw573PCUe6BkynP3RF9dC5TIIxRjrcpp46f7uEEErRhNoPy\nHLjPE5oxwE6VoTkwOFYi4F7UZKZ08EP3EG+gTTlXe1zbEe0/iuTEXI4sE+0WbLgZjgb2ysbBUxKZ\nUtPBs3qqaOnyNLXkquWHJsfXw2o4npIpKaSnefVqZHDV3zEmZb0mp9XSp9f52h3t0ByndyPL+d0s\nRJ5qJmOUMx0KkEfaH3N7X06uM5UdKtpMlvWuA3B0x8VRBuf1Rgl/X9a70IShp1iCrk+g0HPG0eBi\n1VLM5gVEFUI1VjMvYdZTA9Gx2EABbHKlSksc6goll+QVBoozQatPqsjde6nLhU3FrmyoteVdoDuQ\nU7Cx8Qms8kraSYkcXdCCg9EaCaMdiZj8rrWQ22M2ambpMT8FXoyj5CvT6WUALu9cZW1Nz7yB5VBx\nPPOpyy88L1v7xd+XcWevtQnVTah4DmNdo85sQl27Y1eWYs4tiXVjtBz9cDhE6+qweZFE700UTvH7\nihnZ7ZL5Yul6juzpQmEJMrHY6mUfsypr9JHM8lpN7vvtwzGZfX91Cv9OSsEY86uIy/LrP8Bnfxn4\nZYAornIrLVLo57yhC+ntvU69JJujMYhwFFL8TNFSuSjfsbEsYBRmLcApi//urlRxVlZ1kPAucUhq\nj31K4ypyj58dxxFMqYargKdRoUaiGyxs1FiaKNag4ifa2hZlbaduRtkxyUzmFakqcIiX+6i1d5d5\nKstwIgX98Dwy7a8cpjnDmabTZkqBbt3jwhSyKWPF3CvGDuvaqXjTGZCoAmDeZ2HvGn8RhpZCku/e\n+RbjtoLSLDXZWJLvmAyV3CVJOb8macpLj14gUiCa0CtRVeSlvJvg1fUhnHfsBS6uL38vLcW4+ZzK\nPcEoXmXmjY4rD626RJmX4GhGKQoHNI7kQbjT79IfaLQ/gkFP1jZ6VDM85pDyVMzvoGpxA/mdOAcF\ngDGuD6lS1GvchtyDOSGx9Y9bWy0WIv3P1GDVb3dUqbhuymh4R8eu4PmyJ9NkykCp5tdvyjzazZSq\nFriFuWGg+2aSJgRK3tvYOMHKCYkleLlC4OcZ43msybOM1T2eZCFmTkSEh6uw/LGWypokxCjSU8F3\niH2t6Lww5ezbsg9fu9FnOr2/rMNcfuDsgzHmF5AA5M/bu/3X901Fb639R9baZ621z/qamlvIQhby\n4csPZCkYYz4D/E3gR621o/f86fPAPzXG/D0k0HgB+Mb3+7586jB8N6T4iOGFSEzj1volTmvRzHS6\nwwlF+D218Ukmq3Ki+QUlvNgaUKg8BYBTqGHceWG7h9EiJOtZ0F4Ba7s6cIzRWoeUBGuU5bkd4Dni\njqydc4lcOWFvKKbimdstnED+vrppSJUufZoWmGogkZlPu6VIybFB83VMAAAgAElEQVRiMRpLOZPP\nhVhmillwNJ2QabdmpFUn+4MJrvYclIkpKP7g6soazzwmJ8K33jm4m3yYn9DkGC2JTk1G0lIsiOtv\n4+1qifILn2KirMyNVbmequfzSFNP3ZHLQGsz8CZUAjnZsmYIc7dBiVwmRy3QzNCoX8FnHhyu4sZa\nAFR08RS0xtP1ydOMqS9uXKFYwjGyRrutFvua+bnkrVDdFwvxykvSZRk9XeYZvWZ/uAWZYm54TVyF\npafngsK558pR6Tg5zK2opIv154FIi9UT2M76JFNFim7KHstfy+kcqMvT7FNI59dfZVUZqmfPyFoe\ndgoEip5d7UTsKbejO4baWHsmRgPa2qFandd+5wW6rsxjYjJS5cScTQOObspeHRUtG75YE6eVgd1b\nT4jDOYCPwdfA5kb9NB99UtzNr15u0x9p5uM+5Qelov8cEAJfMOKnfd1a+59Za183xvw28AbiVvzK\n98s8LGQhC3m45Aelov/Hf877/zbwt9/PRaSOz35hkw2/QnJBSm0vfW3M1jnR9pfLy+y2pa9+euOr\n3N4Tv/uywof9Sv00sStBQAoF0KYd3BCrOV1rhyS3xZPJ7LcB8GcXBREYcNMjPD3R8zw9xiQoDw3J\nOfEdI6Vom5oZawUJxA2shUTJPdKMSJtdjlJLUbkaooJyQbQGTHyFXbOWXPOQs+lExgR8Tdm1J31C\nfS0Pi4w0ElUuFWhq40+eW+y8IUrX0r6HbMTNc3Yuywm7ffM2xbKsW5pM8bTysGAkHjAM32XnDQ1g\nLnncUG6FU5WAJ7NzADSLj5FPFAFrKGt5+9s77LblvVFeI1lTFOxwjZWz8rnITgm0U2xFSUqCcp14\nqvMftgmVwbmzc8Dejpy2Zzbh1MfkRM/3FEh2uE8Wykk57nQIAylRZnIbQkV8ToegiMfzWhDrxFhd\nl3y2TaogvGlrG0/ZwW0xJu9KjMWZSr1MeTljuKdl49MEL5a1T066HEWKuhyJ5Xa0V6C3L1bThHxu\nmDJOMlqKP7F71GaipclPPyqBymo0BK0nGYyH7GowKpgFLH1E3vNCvcbyKUmBOgMFhw0Mhzek6pfE\npVCRAWuVTZ5/VsBm/+Rbd9je027N2f2dzw9FmXMYZpw/26Vz9SpOQbwNW9lh75vykH7naMoNNQ3P\nL0HrumyaF0eyQcfZHf5ySR7SR194nGhZsqBptUb3unxf/yuv8Pa3XwGgsyQPwl/46C1qpyVqaXZu\n0BvKou3ePqJeV5CN0COzinenpbZu74ieUsPHPYduX/EOXYe6IiI3Gw1mygRNR/EVxzP8icyjlfdx\ntAU6dRxCzenPIVtWV4rYIw1QOjFTpTL3ihU2lxu6biGZnRfFyFhhOmWgwalxDr4yHVWiJeJVCffU\nT5VoaIC1PZFIPpM6N9zrcgVvdbi2JwriSuhyQ4lq/uIYlldl7IkyS73Z2uboHXmQyusDvJZsXLs5\nJN2TDRtOElaMUqNrfdGSO6JcERP9cDigNZDvaI0yRhoYe2O3R6+i5dSvy7rdGe0wHWtWZ9Vn+uXv\nAFDNfZYfUQj/j2xRPiHl8n5NFag7Yff1L8t3Xd4hXJX3uquPUlQ8Q9+xWCPFSz0N0N4+yKnUtQBs\nHDFSukpz5LCp3sjlczJG+a1lrieiLK3xjvFBsYZOTw+Dq7e4pW0jo6Hs36eWmpw8Ly3uzmRGZ1fr\nbPIetUDu0+5+yOGOQAvuDERBrjguzliDtRWPWlE6Q30KbF4Q6L1PPHuDL7y6rwNyX7Ioc17IQhZy\njzwUlkKawX4b4qtf52tWzLZLwz7nFOG434t4bklyxR//6AZ3fky049NtOR1PbFnaBTFhX33jm3z8\nZ38aADcoMyiIevxa+zZPPC6l0I88o80+KzmTnhKION5xXt02fbb7clIG45iRqzlyVfyJyUFZlB0s\nngbfHMcnrsqJ301m3HxLUlm3bsrpE/gBzZqcfPVihXpT8Qtyh1y/fKOppvHU4Z2pnPJX3r3JtkLF\nmdCnogzTy4USPYV6a6ur4ab2OPXm5FBeEsul2tyjsiknc2JTOhqAbc3EUhjvH1HWwNdB5OFrJV25\nVCLU07YXGS5tSQ1IXV20vfZNrnUG+t6Y0pqS1qyEOEp8Ey+tU9Lmn6CmgUrH4CvacTEas35cup2T\naCfRwVGPK9fk+pobYgn6yRGxlb2wdukCX/32ywB8bdDmUxps9T0P21Ieheq8M7aLG8l1dpwprkLy\n5QxpDeVkTg4P8fflPY4ra3XysZNMNWA8GLbIlZotTmJuz1Oc12SPdbKAPJP5DbJMoPEA3/MxWhfR\nmjgMBmIBt16WcYcnx/z4abHioqCMTeQZ6LVG/M4rfyrrMkxI1Tp97iNiBRUf3+L0eflctQDlZa3x\nqTqEyr26USlS1eavzn2aCg+FUvCzIev9F9l1d7nTEYy/p8p1Zq5sml985CQbj24BEG49S2lfUXU+\nJjdl9VKdnT94CYDf++qXePoFiT8EzYs0uuJnPpqfwlcyUvflt+W7nr5IorXj7cM9PG1N3Vjf4I0D\nKf74avdVqooPWToh/p2XZ8d17VHuH3fi+bHPRItNEi9lrCxFQzXn40qJpQ0pXGlmCWtF+dx0NKKs\nGY6awtdPJhNaiuLT7va5/q4oiH/jzTgdyaZ64ZFl3rwlD81MaxCWzYhJqLUAHUvkSxS6sdzipMI1\nz8YZ275EwG1HFNdgeCTQUQjoSU397PMrmzxSFxCSyJRpNEXJuGrif2R1DVdJdq5mfd76068BcDTJ\nqNflvc89/QQNR+a96ot7YbwBSSgPRWx9An3YOiNzDElUnXrUrstcmmfl52+/2OHrf/hHADz55S6/\neU0QpApLdZ5a/igA48trTEsyr/IZjTnkGbYr233SLfKVLwqy1M1X/4B39uQ6isWUzQ2Z93/6zKcA\nqKycZBjJd3XCEcUjRVCaxmS3xQ/orcp9blzdwWpxljUOrhYNOTYn1fllE++44Gygsah373S4cCT3\n8WxQxtV4RyFNKRdl73WNh1GkroNtcR/e8mPK+lpz8zSFkdZyVIbkNY0vBB5h8P5apxfuw0IWspB7\n5KGwFFJi2tkThIVbnD6tDUE7FZafliCgXz1BXtFKssMW3knR5id/6tPydz9m9vI3AXDSI9IdMbmC\npXXCgphXJz/rEGXKaO2I+ek0a2RaSj19d0IeibtSoUNNTftkO6DnKXNxKgGb0M1JFWwjLwUsq2m8\nUqkQalCq3wtwIzFdi3oSra5usLSslOP9PSqaMxiHM4qadfC1ZLgUFNg6L6d8vbxEfVkCdZWmT3JZ\nc/B+wG1HeTMDOc0aZzbZviGZGN+mDHKFIKuswJJcZ9w1eL5aITty6kSuJdbIerxcYaMm58VacY36\nKWVrtlNmhwpjph2QtcZZzp4Vk/vwYMQd7ZJ85NwSZa172FxvEComA47m7r2YfFeDcnlG+ZRmGaYz\ncq0baGxUaDyiTUcXtgA4a4aE3xWL5uLP/Sif+JZYAs98osapolgjyWQX05Z7mStIixdXsUggrnG+\nzse07Lq6cpYTSsc26fcIR3pNjTmeBmRDmUfRvUYYyLwHpTu8ot240y8KidArr9/BaDNaseAy8ufV\nq8ExdkKtUScJlW1bMSNN4uFp4Lbr9hhaWc+VZomqks/0gpSyVoD66qLW1hoU5vR4QYQJ5J56SYnk\nqli6wSTh0mlxhd65rfU530ceCqUQ+oatNZdR+Ud45KOyqG4FTEXM/VvvXCF6TElOnwpYqclGSF+V\n+vRJcYdrexKF/tTzlwhT8a1mV7+EUUr5eu08yaFEcqctUQ7hSkSgUN4rtSV6ataNfB9nWyK9Kzbh\nylhuQlk76HzXI9EWYmNzlmsy3oWNTTxX4hyjoM+pdS3uPCcPZhRGjAcK+x37FLTYJDpymCjAbJbo\nhghL1CNJ6RXONAjm8QfHp6NK8aXvjnj2QGIfbzsyz6dWDugeyAa73AGjSm/dPYVRTMhxvc2ygqoW\nNkXZhHaVwhlVQm6V2FUEpSjGa6hrU43wFOJ8fCBuXrFR4EJR0l/L49P86JNapLS1SZDLdxd8B1eL\nmlI0sj7oEaivOxpCV/E2l2KfxrxQ68I668/KGm6sSAfkf7G8TPcxuX/m3Bq/GD0DQGnNQT0vpn2H\nyZyivqdp2Mk+gfbBlE6epjIRBbFi+oyVgNVLfcpFuX8O2nrcukY+ljmdXH6aO5ko353DIWfPy9r+\n3i3Ze7feHuGpom9EcKDxhakLJ5ZFKZw6s0xbn82iMkQ5rsvSpmRDem8fMpqnlJsFTmgsIl1dZnNd\ncRzVjY3dCiVNSbv+GJRNKp30SeY8nqbIiU15dgTl4PvLwn1YyEIWco88FJaC8TzC5SVMv8dBS0yk\n24MdoqE28HhVjkYKXtJ4hPhR0fLzhptpL+TUCTn5mo0mzrowYznNGnmgHWLjGeGSIBcHGkzCDckU\nfivcPEMxEXNwlI6I1+SUO+OUaFnJbKwURNt/1/PJNEJuXEOtLCZzpV6m7GtDU+rhKk7gLJLTJx/D\nWIt0uv0EFCxm4kzIFcarrEU3UaNEQ0lR/FqN3FeatmBI5TWZ92pwyCuKLrw9EzP5VucRDlJxH1yb\n4Cn1e+YbJhocbYw6eAoSs+TLqdOoxyw3lSClUiBR0I9+MsbVYuo02GQSqCvlyalVLISEWhJc8QII\n58VUAeOhdkya9LiTNFULa0YPN9WsTTimoefT6c0it7X0PAmKhIqrGK3KWlarZdZPC3I3zbNwUt2S\nbMZMS5v3BwNSbcBC6z9cN8LVZibPjYkrcv2l5SHW0e5Za3GUBj4f6pzDiFn7ps61Sax0c8uJ5Y+3\nJXhov6MWKJaR1gcls5zeHH6+AE29D421JkmmGIuJ7JXG8hI3B/Id/X6PkmKJnlzeOMZeiExA3NCO\nXi3RHk9SEp2+zXOmGihO3S7mQN1wx/D8KWkW/Iffv+NAvv++3vWAxc4SJtv7OFGdYF9ubCE5R+9d\n8dUC74BiS3EOwyUc5RywBY1eJynr1R8HoLzSwCiMuknHOFZp5CMfq3670Y406yREChI6cd3jun7b\nHuNo51xYK7KiKaeTc3CPgg9jJYJ1I2quEsHahKLWpRf8Go624nU0ZTewYyLNREzGlulYQV/siKWC\n3N26+vXRUolAfU8/SwgV13s4CdhtyPc1bgd8XKPPrw9kTTznHaqn5bXOAZiprkVuuaAbtpGVybRw\nZo7AVMhdKso9kLouh7viHiSF4LjjOA7bdNsydqwPcdYv4hfl99xx8VXxMAvJzLzSEzzt+HQH2pfR\nHdLVlF7RlIhmyryU+MQKCvuUH9O4oR2tDWWK8lbw1F1znBpodD6b9Qj6Wsk68wl1aZNcQXqzAuFI\n06WlKY6vD1hcYY6yko/6zJT6nVxh2I8mOMos1UpuYTuK0ZjFnOrJd+dPy3dtDX2uvCgPd+47RHog\nFV3LaqJ9N72Ebk/iMml/TsBbx1PQ2WHaZb0o++lcbZ0VbZl3SgGFeA42q9idZgKh9rOkAUlL7uk0\nO2I8J0WOqqxrkdz9ysJ9WMhCFnKPPBSWQpI77A1jitktWifExFtrbeF7ag52Uw6WJMCz+d2XcRVe\n3cu07Ljh4UdznL0uZioRddN4DDRjYG2O1VPKFJU0JHMwWkYa5iEdI0G7vDfDWxLt3x5dI23IKVZd\nUQy83oC+sv/0awlprOXIYYFcAalykx9Dq3mBsmTnPl3F3COdYvUEsoCvQbBcT93Yr+Nob0dGjqfR\n8nq5yGAiJvVBNOaL6+JKHV6VEt7XbobcUtYrcng30ROvPaR4cg4s4lFT1isNoDMsDbhzIK7UwMl4\n7Y3rAIw5ZAlFSb5xmdKBgohsqmVTKrE6k2yOSScUy3KaeeVVsjn24XBEIpeMHckaO37MVNnB04J7\nTNd9pz1gokjaxfoS/qq6f46ekqNtUCYo/A5GiXbMbEKmjNZm2qNYknviaVGXdWfYWGsznAb5QFwC\n427guHNX0OLOOx/HWhrcG1NoSgak379Jpve38pGQb92S9zypTNXDUsyeHrNHKeRaIGaCkGtW7nvp\nyHJV+zhStR6eXlqiVpNg4FFpn66O0c4OCLUDN+37VCpy+oeK4ejHEelAnoFhdoh/JJaLW47p92Su\ns9kMT13h+5WFpbCQhSzkHnkoLAVjxwTZa3QOLGFPTpJucpvtifjyZ7MMuyLVaoetCf7vCcdkcU0C\ngOaJGpe//q8AKM9uce6TPwaAs/QKSVV8tdD/CEYrGnMlljF+hNH+eNfpYXI5/Q7DXTJFAmLgs7ki\nga3yqpT47nUGDDRtNEgmtBXMdGNYpKDwbtNsghcok7LyH+SjMbn6vbN8RKBdi35eJdLGn0wRlmZZ\ngq+BuNyEJIn2zfdSQitxi6GT8JNaKXe7JKd1JbtCoLnyoYX0UE6PbLhEex5f9XJCBQotj7TqsrTE\nkfq6196+ChM5zUZ+xtWhfEf3T/coKVzcksZXllZqnGnId5xcrRNrN2c0hEjLw33HkGnq90i/N+9O\nqCigbTILGClS0iSzlB250PagxetvSddsaSDxgIq/ipnKegflHAdl4B4c0tUmrt5Bm/VTEvx0NCCa\nDKcMh9q4FkwY9+Q++DUItUrTkIN2Ek4GshY7o1sU9WRmWMUo/NukW+UT2h2ZPSf3/DkusftdIdwx\njks4VVyPOGKnJZbCcndKqStj9BUVrFYd8xOflpRr/+AGuwr+mjXKHLRHui4hrZ5Y0eWSspXHRcxY\n/p4xYKTkQfVBRqIs3vu9EUc9tXruUx4OpeD7uMtrTG++wrbiz5nBIacUAXg3PElPgSJG7RmTstzQ\nE54EYQbfHvFPX5ZA1MrBDj/lykaqn3dwz8sUm3FA4bzCRboaYc4nJD1RLMnEY3Ykrw9Sl10NtE3T\nIme18CbWUuTpLLuL/RcEDLTzsZNkxIgycdLsuHgptfMg4Yjh/AZNclLd0IW4SKTBrjkOyOBofIyH\nOEsGoGxShVWDf6Dm5U6LL7+rJLVtca/IQiYoWAyWWPEFe4dTpqEE6Eaz7buYiKpA+nv7HGmp7TsH\nbT7+iGzSM+eWqHckv90/sU61Kg+nW5K13zpXYqUq9RSlIhhVkGaSYjWL4MbRMeuRow//cHBIWNao\nP+Pjop+4FBJWxF0pFwvsdbV/RN2H9eVdytol65ytYbuyF8ZZm9EtKQUPIkuizF+TlvzdpCP8ZRk7\n2XfouQq3tn+ZaqoFZRRxFIYv7yo8XuAyPtQ55R5lLUhaqpX5l+r+lb4jnxkvgbFyn9qDKRWtC0nH\nM/b35D0HlYCCtkx0RvL5l17Zo1CRcu1vvHyFZCSfe/z0JlEk33c0PqKo4CsU5NoH/R6hle910w45\nElQeew7pSNa2P+jQH91ne6TKwn1YyEIWco88FJaCm1mqg5z+UoNyJid0GD9GPhJTs+H5mD0JnJSW\nTzIZiFm2uyQn2GBnynNnxMQ/df4TLF0Uzd84c5Z46+MAePUGWarAni1tinc7ZG0pB+0dTXADrTzs\nOdzYltPWBg7n9vX9J+TEsI6hol2EdULSvnYqdlsUFWQlqpSPTdHBQCHmRi2mmshud8dk6roUag6x\npgvTnujpUSmhpK6Em2X4NQWN7ZZJPJnH1cMdwjnkl5JZuFEPraSmexN8TWRP3IxzNxTIpe2y0xar\noK7s0RWb4msn5sm1JptnxCR2Sj6rMwmkrZzbpNKQE7upwdpydYuldQ20jXp4usY2K+CkyqPhZrhK\nCxdpOe8w99mbaSOR9Um0ZqPXN7haC9Hcn9I7kuu7HIv1t79e5fFAzGR39RQzV/aFOV2jrGb++M4O\nN98SHpAjPUlPzALiklRHxheXMDV1x4xleijfl422sUqL52hzkX8Uc2dXgpIDJ+N8VVyGOAXv29JY\nd1WBXau2xyiXeQ57KbmmZE1g6GsdwiT18Yuyd2I9+e8c3uJLfyp77PKV28d0cy/+6zeonJLTfzZK\nCDVFfaqojAslj2pV7nsNQ6yNed3xmMFM3YrplIO25mfvUx4KpWD9mNn6JU4016goTuLRqyNGoTz8\nB15AsiIPZMf0GGqdwd5V8XWNGbCqBUIXP/tjVM/IoofLjx8TBGVZl7Slue5IxnBHA1BU4jA8ZBRI\ndLc/aJEoPLvnOyi1H710XoqcHuP6jRyHoa8EL06Er+W1iQupkQdkMlMfMXVxKhIPiIxHlsiGL5Uc\nKGrJq5bcRkHELNFS27GlFMhDU28mtK/Jrnnz8A7vGHEJpkbe63geLQVnqeUwKighSyehvyGKZXpl\nSEkV4EhRpPOow7IyYJ2+sEqvL5v0a1//Ew6uKNJP1MfmWsOvqFI/cv4Z1i+JW9YslSloZiiwHoVA\nS4aTMRNFHpqzdy0tVeipm5MmUyZajtCZTpjsyD3ZbexTKWk3qqItxdUe40DiBQfuK+RW+xlGJaIz\nch0bS3Xqp3UNfDHLo8kK5VjjNn6D2JMHKy3USMbiQmYmx0/V9VK4++LQh55mlCYjvGUZb7Z0RDuX\nNb99RX6+2mszaakitEJyBJCMEmaZEvEk5hglq6T1FoWggD+V++EUXbJc5n/bdnB31Z2ZjSkWFPhH\nCYDqYZFoKHtoVoWiItznScpwJm7qzkGb7x5p7cV9ysJ9WMhCFnKPPBSWQmgs592cdngGbQpj5LZZ\nG0vX29rNW7T7Svyy4eNpkG98WyyF13tt1rQicOnFL7D/ee3Hf+JF6s9Kp6UXe4yuirmXNuZ4iAWs\ndgnm0zH9O2JSv9neJR/JCbt18jzb+6qttVYgsZa6nrRZmDKxmqnwcmYzMU167TFWuRhyZSeO/BJR\nXU48v5pR1WpKQwDah49aEoHrML0lp85Bu8Wy0r2btRLTAznFspHlaR3jzlmp6Hx29gVeFowOWkBD\n8SImsyKvXJU/1OIuaxrAim5KV6BfiRnV1dV4c8BXvi0ZnrfvbDPSXH/Bcyn6Yi0FNfm8fe0t1rfl\nO86t1Vl/fAuAZnWJQHk0nIlhqhWLA6XxK3kO4VTm2kqH9PuynrPMcDSWk+0ru7d57jHZA49eFFMi\naPt0tIrR2QmxY0VzPjTH9HVZMiCqyvWdOCnAOqaQkGtFoClEzLbVaurtkyi1XFwuEyvpUObI9Sbl\nO5TKck+LK5e4pd2X2UvXONOQa7upwcfO4RCrLtjKWsi0K/d0t51hFbAxzXJGx1kQGbffgYmWVxcy\nn1D3chB5lDVYnbgekaNWiDY+ucYhtupiOoaWlnHOjvrMtAz1WpLy7p37646cy0OhFPxSxMYnH6Vy\n5FM+KYsQ1/ZxdsTXSw57eDUpIBlVDijpYhYm0p0XHHyBG33ZSP/id3eJR4pn+NJ3+Pdva0FLNWb1\nnEaZE4mg29gFfdDNxCVTjEa74jOdiLuSWourRB7zIqUktcfmfnGpQaJgGWMnIp9zDbo+Rj83UyLc\ndDJluCc3aOg4OBpxH40z3JmyTGmWoduZcNQSE7CfjKieEH84rFcZxBIHaacjGmXprutHMqel1nNQ\n+kO5hrHl1McE++/6ZBubi9mdDbfBl3m3lTUrnxVYuyA18odX9nCqYiavxxUe/biM/eSl56gty/s3\nffmutHCT2bsKVnv9NtYoCEvBh1jWe+ocknTUxVIMyyRJSeZt1JFH0VUSoCAk0xLyzAG/qe7DpsSM\npoVtVjWdWv3EUxxeEaVw/cYB6Z48FKvNiKq6ZqOuxCKCdpnsI1pBNTRYPViS0ZSKuh1BEGC0YMxM\ntHQ7LrGvYKyrqx10melv9/FOKFGNFpwlWUqgDGDToMY4E7ckh2N2Kus6TPX3OX+o50UcaomyTS2p\ngsxUCj4zR93GZUOsSFVl7R4OqhGOuti+72B0DW9PdhgqpumhmRzHa+5XFu7DQhaykHvkobAUgtDn\nxJllSk/7nOyKhjs4fZrpi3IavT68RnUoVsNq7Tx7+4KjkDXllPioe5qsqdHy0TZuQRuGaqssKQJz\ne7+DvSSnqulKkMlkEZ7CpY86OYnSwp2yVbyynHL76YgtzXk7Qy0ZznMGY7me58ZrDBUYpdveZ01h\nzMJyiagk5uxUtX0/dgmGmtXIQ0oKE2+KUHLUbfDkJB7236WvUN7rK3WCaF7rMGB/qHUWyYzb++IS\nNXJ5bTvep6LlzPmLKZuKmfj08x6tP5Uz4M7GI5T35LuTorhMceaz6cganjhfpVkVU3X7Wpdzde3U\nuz5lmCj680iOudPPX8BVEJbk/ArKEk8QZeSK5TDpdUhHGrjVHdcbTtH6L0puFauszEv1BlMlBCqk\nhu5tmfeeK/gWzBKWtCis0Ctz4aTskY2tVcbfkZO5sLlB+aRYNzMFyAnGPpSUpu/V2wwKcqHL62cJ\nimJB2HTAVK23dF/2Qv/dXcbzYqNCl+ahBrkPx/SU2zH3ZK3i1JBpg9rkqE//GPrZ4isGp+9AoPUp\n6yVZkye2nuKoKd81cKYUfLEIKpXw2AoNvTFVLccuu7qIkxm5BrY9r4KjRG0HY8tBX/kIbk1J5iQ5\n9ykPhVLA5thszFIfgiVxDVbaFW4uS8zAvhaxnwim3vaLN5l5kobKi7LpTpywFItaYfhGj1yzC0l3\nyq7oD8Itn9me+NSO+mbuoEGuYJ6Tzj69nrgaBVODRB6g8cxlWlQiVFeuzXcdhl25ATujGRtajehm\nCVaLXwbpGDO+l4zVneUYdS/iZEo+1QIiF3L1tdsDpXIf7+OEavbFPgPtzuvutfnCFyUF1hqPSXP1\nKTsKPBIU6FyVDV91crqqLMpBTnxJ06h75zkc/xv57kNVIOkddl8XpbB8qUioyrTECPe6+vunD9hs\nifkfnhBzN9o7gbcivxfckLEv9yydxmRqPg+HCYkrD4g/0KzNuE9npmk6MyFUtyTMHcoKqU/gMtib\nt4bLjVw9XWOiTEnsvYN/SVzIYpZjlVODvXew2jcTKLenW7DMsdXD7Obx/MJS/bhgKc0HOJp9GI9l\njw0Pj8i1g/Gw7eJoG3m+abj6umQ2br0hn+lMU3I1vvPRgNYcy3EAAATqSURBVCTVrlwEqBZgmt1V\nHLsK/V8fvkuUKZOVDUmQ9Rx061jUBbEugbqvPuoeO5bUigJpT3MmIzkkB3c6XN6T7z7ojEjmiMP3\nKQv3YSELWcg9Yu5yw36IF2HMATAEDj+kS2guxl6M/f+DsU9ba5e/35seCqUAYIz5lrX22cXYi7EX\nY3+4snAfFrKQhdwjC6WwkIUs5B55mJTCP1qMvRh7MfaHLw9NTGEhC1nIwyEPk6WwkIUs5CGQD10p\nGGM+Y4x52xhzxRjztx7wWCeNMX9kjHnDGPO6Meav6+sNY8wXjDGX9Wf9AV6Da4x52Rjzu/r/M8aY\nF3X+v2WMQjA9mLFrxpjfMca8ZYx50xjzwgc1d2PMf6Vr/pox5jeMMdGDmrsx5n8zxuwbY157z2t/\n5jyNyP+o1/CqMebpBzD239U1f9UY88+NMbX3/O1zOvbbxpif+ncZ+4clH6pSMMa4wD8APgs8Bvwl\nY8xjD3DIFPgb1trHgOeBX9Hx/hbwJWvtBeBL+v8HJX8dePM9//87wH9vrT0PtIFfeoBj/33g9621\nl4Cn9Doe+NyNMZvAXwOetdY+AbjAz/Hg5v5/AJ/5t177XvP8LHBB//0y8GsPYOwvAE9Ya58E3gE+\nB6B77+eAx/Uz/1CfiQ9XrLUf2j/gBeAP3vP/zwGf+wDH/5fATwJvA+v62jrw9gMa7wSyIX8c+F2k\nAvYQ8P6s9fghj10FrqFxpPe8/sDnDmwCt4AGUlr/u8BPPci5A1vAa99vnsD/AvylP+t9P6yx/62/\n/cfAr+vv9+x34A+AFx7E/X8//z5s92G+WeZyW1974GKM2QI+BrwIrFprd/VPd4D3B5R///I/AH8T\n7aYFloCOtXbesfIg538GOAD+d3Vf/ldjTJEPYO7W2m3gvwNuArtAF3iJD27u8L3n+UHvwb8K/KsP\naez7kg9bKXwoYowpAf8P8F9aqywdKlZU9g89JWOM+Rlg31r70g/7u+9TPOBp4NestR9DysrvcRUe\n4NzrwH+EKKYNoMj/18T+wORBzfP7iTHmVxEX9tc/6LHfj3zYSmEbOPme/5/Q1x6YGGN8RCH8urX2\nn+nLe8aYdf37OvD+gPLvTz4J/Kwx5jrwm4gL8feBmjFz7O4HOv/bwG1r7Yv6/99BlMQHMfd/D7hm\nrT2w1ibAP0PW44OaO3zveX4ge9AY8wvAzwA/r0rpAxv7/cqHrRS+CVzQKHSABF0+/6AGM8YY4B8D\nb1pr/957/vR54K/o738FiTX8UMVa+zlr7Qlr7RYyzz+01v488EfAf/Igx9bx7wC3jDFK2cxPAG/w\nAcwdcRueN8YU9B7Mx/5A5q7yveb5eeAvaxbieaD7HjfjhyLGmM8gbuPPWmvfS8LweeDnjDGhMeYM\nEuy8P2roBykfdlAD+GkkInsV+NUHPNanELPxVeA7+u+nEd/+S8Bl4ItA4wFfx6eB39XfzyIb4Qrw\nfwPhAxz3o8C3dP7/Aqh/UHMH/lvgLeA14P8Cwgc1d+A3kNhFglhIv/S95okEe/+B7r/vIhmSH/bY\nV5DYwXzP/c/vef+v6thvA599kPvufv8tKhoXspCF3CMftvuwkIUs5CGThVJYyEIWco8slMJCFrKQ\ne2ShFBaykIXcIwulsJCFLOQeWSiFhSxkIffIQiksZCELuUcWSmEhC1nIPfL/AiWGDH1aBMUnAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.4230... Generator Loss: 0.5748\n", + "Epoch 1/1... Discriminator Loss: 1.3313... Generator Loss: 0.9232\n", + "Epoch 1/1... Discriminator Loss: 1.2939... Generator Loss: 0.8525\n", + "Epoch 1/1... Discriminator Loss: 1.3392... Generator Loss: 1.0006\n", + "Epoch 1/1... Discriminator Loss: 1.4827... Generator Loss: 0.5120\n", + "Epoch 1/1... Discriminator Loss: 1.2983... Generator Loss: 0.8530\n", + "Epoch 1/1... Discriminator Loss: 1.4825... Generator Loss: 0.6011\n", + "Epoch 1/1... Discriminator Loss: 1.3184... Generator Loss: 0.8947\n", + "Epoch 1/1... Discriminator Loss: 1.2802... Generator Loss: 0.8693\n", + "Epoch 1/1... Discriminator Loss: 1.4412... Generator Loss: 0.7739\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvdnvZVmW3/XZ+8zn3Pk3xZhzZQ+V3SqjpgFblqw2toAX\nM0jIIFm2hNRPIJB4oAV/ABYP/AGWjMQDEgKBxOAWtrHaLdrC7arurh5qrqzMiIyIjIjfcH93PPPe\nPKx1bmTKXVRWV1c7Hu56iRv3d+4Z9t5n7TV813cZ7z1HOcpRjjKI/Rd9A0c5ylFeLzkqhaMc5Sif\nk6NSOMpRjvI5OSqFoxzlKJ+To1I4ylGO8jk5KoWjHOUon5OfmlIwxvwbxpjvGGO+b4z5tZ/WdY5y\nlKP86Yr5aeAUjDEB8F3grwBPgK8C/4H3/pt/6hc7ylGO8qcqPy1L4ZeB73vvf+C9b4D/EfhrP6Vr\nHeUoR/lTlPCndN77wCef+f8T4F/5oTcRRj6JEywBJlQ91fV0qBXjwQbyves6nHcAGP19FIX43umh\nHtT6MaHFePmdCSzGm8/9zvUdbrgJD0EQyfnigNrI0KRxTpzGcp9Wjs5368O99x1EkX6Oodo1AKz3\nOzq9/TgK9T4jgkA+B4EnDiN9/vDVvVn5kbUGawK5NQdGh8VY8L0OUdnQd3K9bVkCsGt6en2qOA5Z\n7ZtXD6gP/lnj0JjDJz5rNdrhD0Z+Kr/zGP0+0PkIjaHT37ne4T/zs8PJ/av7d06O7Z0fTivX1f98\n8MEvHm6w6z0h8rCr3QqApqoIevnOGRgumEQRRsfLWgfBq7GTWzAkaaRjGB6ezxIQRHJz3tpXY9Dp\nOESGdnio1tO3rX7v+Oa3vzcM1j83sKGFQB/aG3P4m8ccxjC0ujbNqzUZGIMdvv/MKa0xtM7puMjz\nd84d1q+1lmC4D2sOA55mOUksa+75sxdX3vszfoT8tJTCjxRjzK8CvwoQRwk//95XSG1BshgD4Ja3\n3BiZGVN60lkOQLm8YV/KS5no4F3cP6dZbgDoTIev5XfJaUHcywsdzcYEjRwfqIFU3V6y00Vqu4Dp\n/A4AZw8mfBzK2P3Mw6/w5s+/Jd+nWwB+8bf/PoEuuusrz8N7MjU39wzf/Z2nAPyD3/1trmv5/v59\nOdfdswtOTk4BGBU9b1zI9U7nJyQ+lfvM5CVO44A0mQHg954oU6VRWLqVPN/NHz5jdfkYgH/yrT8E\n4J89uuXWV3LdN075B1//SEfcgZXF1LbgAzlfNCxAa2ibYQVCrAoyCD19qy+hc4T63NNpAcAijbkp\n5XrbbY0LdDwNGD0WZwhT+VztawCWdUenL55r64Oi+/W/93/TtXLMzU3PgqWM59f+LwA++u63mK5k\nrnfGYHtZwm9fXJBEEwCScUM4GgFQNkafPuG992UewuyUJJJ1Udgp0zsZAH06pu5Fufor+d3oIuRF\nK8f2L1pWn34KwPhOzQd//t+Um9ZnC1wH+uKeFJZZnABQRzGuke97DHEgcz2fyHUzY9BpYBrHjHL5\nPgDaTn6XmpSXpay/y/UtAFdlSa2bYTYaMRnJWJg0wYQyP+9++St86R157v/6v/pvHvEF5KelFJ4C\nDz/z/wf63UG8938H+DsART7xhpi8uIetZXWUYUTsZPJN6PFrGaixDSgyOWY0kgc/z++RFrLCyuaK\nXSmf8yRjnE4B6POQ7UZHXpVGmgSkvSiYSZax3MqC3tozHsxkUd2bn7Bb7gE4GYnCsuch5yN5ocO0\n4kUoL0XV5nz7o38MyGQWoVoFOsrWQVHITpPlMbouGZuQMJdnjdWyCVJDotPjRxuCRHfBbIy9lXMU\n9zxVKPf5weh9fbZv8aSWYzsX0Ha6sxlDpLtHFMquCGBD3fl7SyRrGGeg07fUuoB4UByBwequEwZy\n8yZNGelOWrUtTu8/DGJQq6ezDlQJJYVcJOl7Wt11CQKc3qcJA/JQxrmb3/LsVsblihuZs+aaVv7M\nvCoYPZR1sSgKVo28LK42RCN58fpKLIxnN5f40c8CcO9Bx912LuftnuPnD2Tsc0OoCu6x+5bcZ/kv\nkaoCzCPD7ZkorHa5h0Q1ma633nB4udvSkeXD40W4sYxbkgTcmctL+uaZbBDTPCWN5PlHNmdeyLF5\nmuCRuSzbhNVW1urHz+VV+v7VC37wTJRmQ0vrZGyDyBFYUW7Pnz0jzuQd+KLy01IKXwW+ZIx5G1EG\nfx34D3/YwcYY4jgGU9K3MimursmRz/vOYHT3i+KAJJZVEccyYA9HAflEJjmk4GojC6Fcl/RGXmi7\nbCl0xlwgg5elhpGViemqnngufz9LDfGZHLNx3yS7kkVxbU8AuL28IXi+kOulG1yyA+A3fv+f8P9+\nIjvJl9+6w9v33pBrp3KuUZpwVy2e05MxZ6dy7WS3w7aysCJ9aUIM7vb78nsbY8eyAE0PppQXJDEt\n07ncW53JVM7u38DNcwB2E4MaQmSRIVB3pfWGcaxKQXfzJITAyN/jwLAbXtLAkurCTKKQTt2qLIv0\n9xFNpEo2jg9z6oOEwbj1tKR6vXonL1XQOryawcbbg1uV5gHVlcx1Vm9p998F4Lt/8AfyfNc3/Ow7\nb8sYjkYE6m66/RJT3eo9xdT6An3y4RUAlStJvieDUfWP2N6KVbE4i1kHMl7j5l2unsr18rvnABTB\nlm0t8/uDT77PtJaX7Wl9CdUr93b4V/UgqTHYTuby7iLlzp27ALz9pRMeRLKO3j0X5RClMUUoY2y6\n6mApRGEOiSi3m5eXNF7W/Xt3Zd3cffSM3f73ALhcb/CtupLXLV2rjkVvqJvXQCl47ztjzH8M/H3E\nCvrvvPff+Glc6yhHOcqfrvzUYgre+18Hfv0LHeygrw231Q2rvZhD42BM6mWXj6KCLpBdZRpmzFI1\neXW3StKatwrRoiaKKFR1X7cd3V5+tyk3OPU5KyuaPw5G9BqfmI8mlL3sNGb7hG4tmnbp4NaIif5w\ndgFAPhvx0SPx4c3TjheIdfB7v/vdw275/vsf8HPvvAdAH8juEgU9U+Tv54tTIg1wBdMYu9IdVHdM\nv1lhWn3OMD4Ep/zNp1hkB4r8mFhdl+Ba7n0U9uwSjcv4GqM+btWaw+fZKGY+kXPEGpt6OJ9woe4Y\nked2rfEcA4n6wD7qD3EHo1Za6SFe6T10IZXes7dQejlH6AI6dSsSdal669G4Lc77g90dBhHXgcz7\ni8ff4uM/+k0A2j/8EIDinQcEXuZx27cUS9kd+3DPbqduTrSnfC5jTiV+eErMs2fPAJguR7TjJ3Le\n+h6Xaw0cf/IR5wvZxe3H4rbctt+grWTOfut7v88kkWc6md8h0bdHwwXEwH0NKl+cBby/kHF758vn\nfOmN+wDcf/OCeShWyGSkllmYYUO5X+MmBOqO2Siga3StLiKaRs43HYu16eotzy/kXF9tWlaVjEW1\n31NpwCawIS+eXfPjyL+wQONnxVlHGVfY0hJr0MY0W7qRfI67jjyWkd+0z1iEYg7dH8m/98ZjuvIF\nAIVNODUyibOLc9aX4kpMpgGPX+gAOzGN+7Zj7+VlzNOOu0O03O1JkUkKkhyTi2sSaPzh2ScvWMTy\n+aNdyNc+kmDfy/WOL78nbsUiCokbuadYTdxZmJOgGYfbS+KRTG4UxNhUgoqmlJebaHRQBDaawVpc\nBtdb1JrH4DBLUaLdWl6kSZTj1CctK+iHSDdweAvbjqSTMTpLdREHnkmvYxHlnI9lAY7mOUZN0c5Z\ndrUcs1H34qbe0+giDpOYThd66XqiOtTLedpMlEldiZL23jPkH4z19E7PERumsYz9D8qaF38kn9c7\nfRmjBL9XV7Lf0auS8U1Hocu5ut7QbOT+BqWXJJa4k787PLm+vFvfklYyoJtdR8RO70meI09y6kzG\n4vTkjKgVhWS2nljjJKlG/R+EYJzM9YmNOMlEOd+NA2bqx82jkLmVMUxDDTrsrgg0hmWNYUgpdDcv\nQLM8kTOEmcxZt5Q1vRiHvHUm6+ayq3n08lLGag91JeO135W0W1kbX1SOMOejHOUon5PXwlKgc7jb\nLcX8DrFTSyEwpF60dh81mEajs8mYu4Vo7jfvSKBmUkSEpe40YU97IqZx13aYcznWljdkah1bNHdf\nt9hOd67e0aqKPJ9FRJFYAm+/+Sa7QDR6s5fzjruGaSpBxNQ+5kkvmvj+OOIvqstwb2aYFHLBsBRT\ndJykxLkG5UYzwkI0fxBPwck9GcR8NcaBkesZ20Ot6ck2ode0nmt2xBN5vvMzDVRaiEZyP811h9UM\neBRkRGopZNYz1u3o7kx2sztpyNlEdkEfWNJCPmdFTNDJNSpXst4pKONaLJeu97SawTjJJtSa4N93\nAV0jn21oiTSt2fSRDn1P0w1Z9vAQtTct5MiueWfU8/sTOcfPnEnw7f37CwK1BCdxhlmLJVEHOZ2T\nz3084yyUMSq9rJtwXBDp73AtmY59G9vD7h7ULabSQ07lupP5KXEi156+/RXqTlzF73z78ZDEIlSL\nYZkafm4IKj+Ycn4hAUFjDKaS+2ivl7i5jsG1BDjjKMZX6u7E4cGlNd5hdIyCeEyj8z6kkQsbc/9c\nrrHLQ+perJF12bDRgK6re7r1K1zNF5HXQylYCGNHxp5MzczK11gvL8qu3HKSyEA+WEQ81Fz/TBfj\nndkYe6ET3sJyJ35knATcBDLLNhyTXotvFajfu/MNodH8cVcyVvOMfkeOKIKg3pNors5k8m9brni0\nl3N8s3zGqbo5b4zukt+T3+VFQKEuTzGSFzrJPOlUFnw4ygk0i0JZHnx0zGA7WtzttV43BY2pmCCG\nUlwGax2BuluZ5rxvbyoajULbxBzuPUtjfC5jmxrHmxdyn3emMq53FwW2V6U3jegVNTOJI1rNHPg6\nBHUxxprtqAmJdB5cbOi9ptM6j0WUyePVjlrPF0VO7z3EDeAEAzBkMzxOcQotcKYWth+JW7barXkw\nl3ma2oS+0N9tG4zGc/rQ41MZj/1GcR+jFKs54N707LeqQIzDdbL5NHHC5koU+EUhFza7NZOFuI/s\nKy69mO6b6iVOFW6ga7M4TSBQ/Ma0IAzkWU8nE8JU3QAL1VJcxFRjA23f4ddyjqZZEWra13UlQShj\n2G6vwar7UMtLnqUpWSjjej8NuTyRtfXytuCpus2d79js5fm+qBzdh6Mc5Sifk9fCUnDOsd+X5EnB\nvhM9lcUxjQJPitgwPRVz9t7iDsWJ7I6RFSuga2pOHoo5v98smRiF3YY1sWrdev+UXHfVGyOWREND\npgGuySzHd2o7GkOpwJqoXuIiCWhOJ7Lj3zaXvFzLvT29XDLWqP2Xfu4tHqoJPk7GTHWHiTUKb9MM\nq9o+HN8BDTiZ5Ay6QZvLjuHNFjvSHco0YMWq8G6NV4vF1zXGy47oFXgUjCuapUb9x5MhTkWYGHpF\nWBZFzLSQ391VhE0UjRjr7mqNJ9D7JMxII9mtGteiMIUDfHzkcxq1xkwSs9mL6zKyAUZN9KvNjhsN\nUF5rNqj2/Svor+vo3WCx9ew0cNn6NZOxjGf8joKU5iVBreb+SYRbyo5vww5nhwxHjlNEplHLxQRg\nB4unhdTKM3VdDbpGLB2pBmY/0Yh9N5qyi2WMNuuapy8kqLzug1fwb4VX93WAneq9hTFxLjt3H8WH\neW/aDmPkmdCxyLMRTaBrIYgxkQLV4vAAPuuDEDcEiq2ct663GLUU6hAKtSqmccg4lufftB3rtaz3\nLyqvhVLweCoaHAYTyyCU2y2BvkzTKGCqC9ZEO9JKF4qa+3GS4lqN9I/GhLGCP0YR1WNBdi7HY2wp\nL16hcYRluyQfKVJyPCJQfxcDsU5iEo6JdZjCTgb345sQO5bJOB3NiXKZxDDLSRtNkzqPX4niMBcK\nrArCwyJ1l5dYNffAgWYD/JU8h88D0MXj9+C3L+XzKIBYlJDfWHwl5q5XJGjgpxSxmMybfUfVy3gm\n9Z5kQBWakInGbgp9OXwJTS1An9ImFCO5dm1a/EbGbe1WLDeaDVDkX+Q8O/Xbx96Cxg583WA1bmF7\nj5YwUFeDIu/xg53qXtWreByxlXGLqinxXp514+RlNKs5baQvwvrqUCcQeIvXZ6qXW3wuzxWk+eG6\n3Qsx230R4hUe7foGo5F6G0AfifJdeomZmO/VpJma5R/t2D6Waz9bv2SoWAiHLFHh6PQeQhcQqPuw\nX1WEmvHybs4kUyWKPNtuV2LVBQ1sLxoMoGzoogEZFeBbTQM3Mj67uqVXzRT7gIBXaNkwGrJ43SEW\n8UXl6D4c5ShH+Zy8FpaC8ZKHLfIxgZpI+8iRaFBrPhuhmB/m4YRsIsckqol3uw1pJ6UWWREQzCUo\n1Wx6HPJ5dFHjOoGaPk3ExB17z0J3/GKe02zULQkCZqmc+2yas9fAXeQ0D+4dDyLJfNSzllqhqHFk\nDyaqw0AsO4wrNduxyPFOdgmfZniNzpsiwjdyjNcAl692h+CidwFGXReMP5iXZuQg1+i6BsiKouD8\nXd0xn60PcNfSdsSKSTgJY0LNrdfqJvnlmgZ1RXJHbLUox4d0oYxXvSwPVpMfipkwFAq4Mp2jr2U8\nm33HyslBM5txraZCoCCLvuk+U1RoD+WMrnVkTp714uEdPvmBZGN2fyCFXe3FnnAAbxUTbCXP0acV\nZifXSNKIph8wJwqmwjIUI7Sbjj4awEKWSAOFfQWBupapVsL2Wc7ym1INma/vECVibbQ3t1g74DN0\n/gk5ncicp0lCkSn2pC2p1LRP+o5IA89DsYnNAwK17uhj6sHqsxM6rfkI7JRmCNZqoVyS7JgpaK9e\nrhkv5HfzTUkWy/W2VYtzh1rgLyRHS+EoRznK5+T1sBSsJU4zTLDH9KoxI8f5iewSsQ+I1O9bZrcE\nN2o2qK87Oxsx7dQ6IINGdoEqLnkeisb3a8/HV6J1P12Kf562DTcrOVfeL0mmWuzjR1glSairPcYM\n0FxJBW6c45sK7U1nKWO1NpI4ptHgYRP1NP1QUis7QvX0knAkn129weruYS6fY4YSxWCAF2c4LRFm\nAmhsADeh+1TiDi6u8Z0WfClq0vsSqz5+nHTEarmMQ8vFXOHab8w4CSXO0Svfwsm9Eeh3RZGwWsu1\nk13AttVgXmBxmjLNEhm3uqkYayqwqVqiRK4X2wwnxgbt2jNt1dpQkgnv7SuyAGMwVq0N49nvVzr2\nPSM1SXZoyXUFkzsyN91mi1Hrp7rcHywh50OsBix2t7Kz95E5WE1t5FndKIS+iEkGwEEQ0dzKmppq\nBWT3fMP6VFPj1YZP92JJrLfXRBrMO1WsyN3TnCKVz7PxmLIZoMaWRmMKYWt4+lTm786ZWK4ua8k0\nBV7tm0Mq09kK08v3+2qJ0TEvNS7TNLBXfEtiDWGomIbAkCgHSNYkNE4DOl9QXg+lAMTW0lQ9WwWS\nn8/GpJkGqsqWFxrgGhUFL2otqValsPMViQJF/LqhrCSA8+z2Kd94Kmbnkw8/4nYrk1Tpi3c/SVnk\nWjffzplomfXiPGK71HLo3YcEC6nKy8eCMz+ZRWx1oK83W1otXz6/aRhrLvz5pzucmnN1rXDYdEFU\ny2IMncE0orACOzpgMkJ1H7p6jdvJ9DSbCtSF2S8/JEwVdj1qsFqW54ZAna+obrUWIcq4q9V3RZZx\nL5O39GwyYxopnkKVX3pyTpIrmOokoH+sefN2T6u4jn7viVbKl6Bpjdk4Jc/lXDu7O5CvrNclW+XD\neNFXfKRYhmpwk3CvlIL3r4KOxtBrtP/q+jGXW6lRCAfgESFX1wNAqoJag3aNpQhkHkbpmFLrALwG\nlTe3JVYrUJ21GKObTxeQKvdCvV2R2oHBRs1vt+XZxzJPL3cVn6gyeWl7coVYT9UdyOOIOwvldMhT\nXCfPvN333J3K9+EoxTo9t1H3ODmjUh4Kn6U0mqlxrWe7kettdz07zVCEOsY35ZIokmvXI3eoiWlc\nQ6bzPioStqqcvqgc3YejHOUon5PXwlKwoSU5LfCNIdYKSNu2tGpSjsKEe6fiHlzEMYGa63srmjGN\nU5bfFZdgO81oVNftm45kyAXfmXJqJChz/x3Z8e+SkRZyrvb2Gqd5/OvNkm0p55iMF5yMldpKcRE+\nnkrqCNg+KUm9WC4344hM8+Y+crinijzTarnElIwy0eCp8cSaNsuyDKM7dvVUXJw23lHt5FgXZ6B0\na9HpFK+7QFMa+mt5bqO7lnMheaocCz3USqzyS6MxF4lYQne7KdO35Zh2KdbW8uU1j54q4jMN2Wtq\nzQZbukpp6OIE3w6WidxPGGYsFWH34dWG79+Iuf5yX7FXaG8YB6wSmdfGfMaU/SyN2cHS8dDJeK5u\nHfsnarrX4rptrydc91r1t64OhVQxlju9PMtpUGHU4hpYo+p6T6fFZmtvqLeKEI1XVDdKSuMdUy19\nbBViv11X7DSYWe4DGn2m05MJz8YDwYusw9NRRKEVtVEUEg+sXklEqRZS5jLUgDgwT5W3K5TigzBI\nSBQqvb8tiSe64ycJUy2w8rGswxkT9rpmq27MS4QLomx7TsYyv+OTgudXYm18whVfRF4LpRAay5kt\ncEmA0+j0PEuZ9PLwo8gwUDc6YvqV+nsaYXY+AcWvj0xLPBMFst7u8QutpIzmuFwG9XwirkbQeahk\noDqf0CGLu6kCQo0NFFnHSisUgys1DcOcWJmHXP99dlp9F6eW9sAJOeKlvizV98UE9jbljsKc37yb\nM1NSEzOZHSC/ZSX+5vb5c2528nz53Qum+kzhyNK3MuG92Q+PTaiR/tikoC5RVgakqhR+9sFbzGdK\nrGI6GuWS3NzIsbe73YHP8aMXNzzaKRMUnne1YjJKQ07nMoZD6Ofx1YaPFHb9sgTVH5zlBUutdiyN\nw6/l+UItW+xLD58LiivTkw/IQxnn+Tjmw7mWCV/LC3bV3NArPiDeWWqNH3VhiL/UUuRZQ6ovltU8\nfleWfHoj87FyHUbdp7CGeKSAucSTKdw80jhDPx3TKQ5h4R0GiSlMThZ8rKQ1icZUAmtRVx7fGLwC\nqPqmpdF1Ub24JlE3da6ujUkdkdaMjCcJvZILhaEH5eB0dUmtmJRGlWnXVhitrnWhJUfOu+9LwkTG\ncDoesd284MeRo/twlKMc5XPyWlgKURxx8dYFty+uCbUqbDFOuK85X3YtJwpRdmlAqQSsTklZ7zx8\nSHMrteSla2k1z1uEwSFwZ13LWneV65VozsjGRGoRlFVDrtVrYWUPUd2Pny/ZK8JurdFdH3j2lQYB\nY5iPtDDGGL79QqrodqsORWxzpRReWVDygQYGE1tTKPef9zWdUnvtjZinT643/MFHsgMnj65JtADp\nfBQz13LP2UnGbKqFW43CuW9b6lZM333ds1CTczaZcf62cgFUO5zS3j36VEi3l33FSuHF6WnKQne/\nOOzYaD1+0nreyDTYeibz8dXlt9jrnJk4ItLn23lHolmbpq1IY2Vl3iuHgjEHPgUMmKG4KDIHTrOT\n8YI3ZhJU3So/ZrO9JR5IUCPDjRYX3lYduXI5PFmumesOO0lkrIJxiLtV+HTjqe3AtxDQrGS87swi\nFqlySowV/cmUqJDrfePxJclazvcLb5zy1e/Jzpyr9TMuCkgUYZg6ls/EXemso1UsR9c74kYL9nLN\nGO33TDSQGmyWTPRZnXGsd/KAH338Kc+VK7TVvTweB0xmYj28ff8+sxOFyG88N07WTnEa4/jxAo2v\nhVIwWNI+I049qxcyWW/dzXHZkN4yVFbJWEk4OZEBPHmopdMnC14kylx0dclYTfRm03NxIZ8r05Op\nPzww5Zi2pVe/3adjVkoSGqUGr7DjoNuxc0OcQ92ZZsteF9V6VTHTqH3VmoHDk3XoGCuEep7IPZwl\nF2ShEqmOAupGTeb8FKOLOJnLxGcXjrdjeQFJOXCA231MO1DKdwJwAfDJ4CO31Ndyji4JeUvTZUFh\nMWsZo9ksxinc+uyBLPLtTUCh1xiNC8ZatxC2W1aaZkzjhAfn8iK8fSr39vT6KU5TgWsHjdZu3LqK\nXl2CZG+YKxCrV3blK9/T1q84Dg9KIQwJx+qiJI5sppuEkpDsfUs4UPjPDeOFuoKlYTzTTMMmQC1t\nRvpQ/SocEgqEPmKswLIwD2CAB2cBfaTHN8q0PB4RJDI3d/OOs5k8/5tv3meqMa9O5/H6xYoH7wmh\nr7UJ+Uzus2waLjRDYfIRDBW4uoZ8vWFfKzXA7AKrMaEIC1tZc/n8jEWuadSBvj5NyBTyHkzmTJWZ\nKUkc/VLGbXVZsVHagS8qR/fhKEc5yufktbAUHD1lsCH0I0YzjQSXDTvFKcQ+ItDIedNuyDuFqypT\nc7X0RFvZGvZtg10pLJmEVFl9x4sRpSrMMFcN37Xcppqd6BO2ajW0+xVec94EI8bKi6DIWH7w9IZc\nd8d5khBqHrjf73hnLjt3G8VsV3LtQkPL5+chcwWgTLqWuNVgWFXitAgmUAqzs/GEkQaRstEYq9yI\n4Tg/ZD6CvSNYiSnqInnmoLUHiDJNz0531TzqMUZdqbokVd6KB6OhWKvio6fi+rx8cc2VXq8YJTzQ\nKPtpOmKhQS6zk8F8Nx7TBUoQUzvSU6V56z17tZr6IKQfqvkUirytS6GWA4zzGH/gmCOyajUFM4LN\nQLemXJphwvhCzeR9RaQVo0lRgLJDz8clN0q4Ul8rb0LdklU63lFDFso1ZsmIbAgYGsMoHHZ/ubfy\n9gXJiez+d6N7jGYCqLtfzPEDR6MSpLjK0a1kTaaxZab3ZtOCXgOXRWgOPTcwWozma/pG8St1TZgp\nl2hVUygE+83FHR702sbAyZyHWcpIIdZJkbPUsoDT0YhnLyU4fnl9xe72xyuIei2Ugu897bLm4vyC\nTrH4oYORYu4nQUSs4JckmFFoVSI7bcJSvmTv9NjEkquvttnWBBplTjuYX0gE32rlmXUJJ72Sk+xb\nak2FBXFBqqmsMLUY9QkGmv+vX2+5c6Il0nFCouCdcZKy0JJkGwaHtFitLEAj6+k1ZkAREgYyucZ5\njE5oNBZlNMkLZgPzku8JUy23rSusEZPR5BV+rjUMzySLYgMYL9S/6HIqBfG4PiZWc953PX2pTUa0\nP8KZaUnt1IklAAAgAElEQVROBWE3jl5y4YceESHnys40iyBtxJztGyUjyc5YFhoVD3pi9Z1P05zL\nSl7kzuasFLR1rijOb/WrV92bfHBgXvLOEyjTVTFJcafyrOnH8kyTJCTS2o/R7Jy01e5b2ZjNfiBx\nTbiwukb2isA0HZGa5TeVJdYUsPUdcyW7ieKWQhu4tJp+DsanhKEqunfvM7krPSJG8wmNprvHygRj\ny+2hR0ZuI8YKagtsg82Gcuf60HOj1zqfOAzpNA4WB2AVvZnlY6ymNaN5RlvK94tQXCbna/KhmrVv\nCLU258vvX/DiWsbik+2Wuj+6D0c5ylF+AnktLAUbGJJJTN85Rpk2Idm1h05OV/WOB1YBOT7EbRTo\noyZX4BpaDQJGJ2fsFVcQ5gleE/nFyQmt9iOcqznfJo5+L1p+9fx71K3s3LkFEynoZcuhsnEgtFhV\nO9aXouXn52MWSjU/n+bkak2czDLQiHKsu/FmtSLQ6suwd8QjqezsbvcYBSQF6l7E+RTWCn1ejA5/\npxvTaMaAgAM5i9Vdp9puQWnV0sKS6s69vb4le187HbmGSCPm7UBXFhh6rel/NzzjRjMmcWgOgJ4s\nzbCaUpkWymNQJJxpk5LV5ZozdZ+a2JHVUx2vBnst9/ciHhrARDiFihtrYcBsGEM/VKWGOSN1MWp9\njrbpGSvpS9Q5AgVD7cstiUKF8zTDK1vz7U54EKsgIGSgR8totflOFgYYtd5837MpZY3MBmxGCDbV\n2o/Gk2pQ0mxvcWqQjQMl4XmYHrpCjYqQRHf/ST6i0pqPJInZKHQ5KYaKU0sx1VqUbYlVoh5iS6YB\n1n5bUWjg2ivMObAjeuUIyXJDoG7uvTvvYEYKVGo7omToJ/rF5E9sKRhjHhpjfsMY801jzDeMMf+p\nfr8wxvxDY8z39N/5n/QaRznKUf7s5SexFDrgP/fe/64xZgz8jjHmHwJ/C/hH3vu/bYz5NeDXgP/i\n/+9EfQfr2x5fbHj8RPKr9y6muE7z+6FhpWnB3IRYDSihVYhV2B+gdGWzY6SBNm/ToesWXdfgNLjU\nOa2MDKc0rewMGEOrzTodMUutlmurLQRyvoniA8LYsNMU4up2SzVUPraOQtu45UHCaCI7SKBQ1SRZ\nsF5JMK+rNvTDbps+wBnJaUex7hK+JpxrOjEfYbQfoF89PTS37bcb/FBRp0VLbVceWJTDxRljDZxt\nXEXykYzn2XmBG1iCNXjVuoBCfXWfxQSKGl1XW0qNPxhXYzS20SnyLw7HBJ2wW4VlSxErxuBkzlKD\nvLum5lqDkX+oAbCyaw6IRuc9fggwWIvTitG9L+k1EJxoWjdOXnXE7r3BZBrAa6FSVKc1GYFWF8aK\nU9jtr8kG3gTDoe9D4j3REF9wjn5AlmqgNcky0MIl0y9pO2kI5LIJe+214c8Vor0PCRcKD3eQjDWt\nnSRMvZKu2o5e8SBDStqYlq0GyifFGeVeU6SzBe1WdnwThQQauxpo3tpmie+Gal6H1TWJ8a+YxDcb\nwujHe83/xErBe/8pSGsk7/3GGPMtpAX9XwP+kh723wP/mB+hFDocy77C7QL2WsG4ulnRjtVEbz25\nHcy5GjTwkww03WvLlTZ6ebJeUq8GarKOnS6UfD7hl9//OTnfPc0DtxvChUxo9iImq2SAr7db9vqy\nzOqCTNmDB8hpRUakIJXbquGTp6LIvvLegrTUdvY2wm/kpbAjLQEPoF/JhK9ebJiMZVHFoxd0GkQy\nnbgGNnVkqSzAZF5jMwFnEXvQBjb9ZkN787HMRziY1NmBjq7fdlx8SYJSd05nhFsF0+xLQg3GWlW2\nWRBRKhW4j2O2Wmm5LPdYXcSTSXrgGlxrKbBbvWCjZe3PthVj7Yhtky2rK3HH6rLkpQL9b7vBVPcH\nM9j4Hj9kIozFDpWK4QyzEzzEuvttAAo/o9HMT9vv2WvT4Fn2qr18nIE90THQzlu9M+w1G7QtS8aD\nnZ/HtJViQ5IEe6grUaVff0IwUvbw0ZuHjAnXWy638nyVBlHvjkKqjVY4jmsiOyjOFK+bT1xkB/5E\no+7TZrel0Y5knd1glPNzt3yG13Gm8STaY9Ih53JNidPAvGuh1NqO28s1bS33f34yo3FDhekzvoj8\nqQQajTFvAX8O+G3gQhUGwHPg4of85leNMV8zxnytbX48n+coRznKT09+4kCjMWYE/C/Af+a9Xw+t\nzgC8994Y4/+43322Ff1kPPWu6skeLkg2Sp/VtvR7Jdocxay1bn4RjIm1aKrTf5e7ko8VDtqu1pRD\nlZCHudaxn89jpvfls4bsqKuStVaQlTTUGnBqfX8IghVnGalaJpmaap2DM0VNxk1Fdyi66YkUQWni\nFNRkbm+UGdilUoEDJKOIcMAbxDk4zSVrsCxMA7xRF6bcEGnq1LcRfqhGShqMmse99jEIYghHWjE5\nnhJ/R/kU5smhfV1iHK2ShRh9Jhc11ApB3q7WXGrvDA/k4auqU6c9K6/UdDad4aWi7oIi5HIjn9u2\n5tGt7Gh9HnP5iTb2UVfE956hCEquOlRPGmJNI09mE4qffxOA/CMJZramY6e/KPoerwHmNg8lj42Q\nsxi10lJNN2Z5A3agoo4Yab+IIAzIhvVCj1OLZq/Fdv30hIkWmE3OTrCLTK+xYqfWhNdq3SQNMOqC\nNvs9obqPlhar2IS234NaG1ZT4JPY4O/JPJ2d3CdV1Ghf1zjlDunagFbn3Q6QVtdh1epo/I5Gz9sb\nx2yurmvvKQeq7y8oP5FSMMZEiEL4H7z3/6t+/cIYc9d7/6kx5i7w8kedx9qAUTaialpMIAsp2HaQ\naclq5ZhNFaJsGkItgb5Zv6Jkn2h5siU+mLPR6QlvLwSb8M69OcEAq83kBdy2NUuNst/erNkyVCp2\nWAXQXN3ckqqfXETywnvjsPp5fF6Q9gPvYkxl5WUapckhI2IHkxNHPlTnLRJ6zZLcLlfkCiKKT5Ru\n3AR02lq933b0qltNGtDtB/ehw6jCajVzsn+8ZrTQGEDdstJF1a/H2NnAdmzoFIdR6cJ2OMpKATtR\nRavZjJGNDzURz9drGqVXN/r7LjaM1F2ZzU/QYeHrH15yrWQhadCy3CsbVvPDWIAU5hwYBkrBLJkw\nVmKYK72HcbXmngKIgjSn1fG+3KxJlFlpww2lug0De0vvHa0q+sgb2mrAi3garSStcFTa6zJWRRB4\nh0/kpVrGnqnGs9qNOxDNDLyiwTzHaseqKPbUpWazplN6dZusA69ZNdvJPd5sS6yuvXr9PU6uxbjO\nHhZYzbq41hNoEKbUDIk1hq7XKtFuz1bdmCCwtHpskc8p/I/nEPwk2QcD/F3gW977//Yzf/rfgb+p\nn/8m8L/9Sa9xlKMc5c9efhJL4S8AfwP4Q2PM1/W7/xL428D/ZIz5j4BHwL//o07kfUDTz8nSOddP\nJNoqXaZlF4t9Sqs4BRcULPdKarITkzQhOvAUBDblbqit0s5nZFrg7kJPp9mMutZekzZhv5MgYR9Y\neo0Qm8xRl0NArCFwCqvWSs2m3nG5vda/J1zcUe68rqSyYraVjSdVnIJTnsE+Dkg1ar9IE0wjO0XX\nJISKT4imSqTReqwddomWTmvsacsDj4SJDVb7HIa1PH9ytsFotaA7TXmilXqfXNxl/kiud546jJqz\nA9ptu6+phoh7khApGzCTlFQdrkUdstdAaVlv9ZktbqbNYvqQlVbyfWd5y34IgnUxT7QVXNf/sIq9\noWLSYhS92rk9O80YpZNEn3NBOZA/TjvctXyuwvqAMaCqMWqlDP04G+OYaCYmCEJqzdZ0e0+k+f+m\nWzOkRDZaPLdx7eElifsNW7Vcbi86wgE1qZD49fOOuZL29K6nUXN/v9uRa0asty2htovrtf/pSZpQ\n67j0Tcxtc63POiHWoKMpAjqF9bdqNfl+f7j2zvRUipBdRx3FSNbTdhIThn9sWO+Hyk+SffgtDrV7\n/5z85R/rXKGhWsTMohmJmvtmecnWvSI6aZX95mX38hBTiPphAmqWytdowoBeCVDu2g6rAJHbdYTV\nCjgzUq7G/Z6tlkiHoSGuBmx5g1GTsShHzBTm22ul5st9R9JINsDnCecanS6p8Uut1jyvDibhwFxU\nXl1RxKI0TOLprPi9sc0JY4EYmxfqp44d6ML1taHfivLy3mMGSvUmwWzV3dJjR6O3QF+gclXz8UoU\n4S8sW8b3FPS1a0iV/idXIJeLDatKF9W+p9cK1Tv5DK8mccIIk8rCzLU9u20duxsZl+vNjqVCdKvO\n0Q3tqWr/ik9lWDF/bKQJjOFA925IyDbyUqy3Mr8BCaVC2stqRb9RqDAhk1TjB0lBo3PcVwoZjhKG\npEbdVDj9T9V13K4VIo6l1/hJpSnbsLllv31Lrnd2j9jI+oyC4uDPh2hVqu0x2mTGOkM0NKBNAlwj\n99+VsK3l82hIM2PJNEMVJSmZ9ko1VXDIRNTblttLjVE5URrxNP0MY1VyaBnQbBqs1tKc33uTjh/m\nsv3xcoQ5H+UoR/mcvBYwZ98b3K1h/s575Gjgz0XMemFiPhsX0o4dGAXnJF40Zam9429vrzHari2e\nwtlctG7bG1DcQFsvKRear72WXa43kA3t2RcXGK04tMGCXHfNbBYRKcFJUA+cguaw03W156UW5VyV\nCZX2PHSdJxgphbdRApiPb6kCBbwkb9KrdVNbQ5jLMXEyFORcEqlLZNKAYKKWRH2DNVp0lRqMVc6F\nrQQtKYMD+AfvuNa8+dJ5zmptTRfGJMqR0OvOX5QJ95QG7cX1kudrBTVNRlw8FDj245fPaYOhuYoW\nKIUF15VAiR+tbnipBCKhgXysvTs7c+B21J/BDync8+5Vn0rje9q7SiumjMtpuQYtLlrkb+G1XeDz\nF5eYgegwztncyH10WlDUzSxeKehutsvDwvfWcqZkPjbryXI5R69WY3hyQT7V9oWBpd1q0dUsB4VK\nL9XVzCJzcA0C2x/aGoZJTLqQ+bObS7YrhaQr+Um+uKDRTA1xitPzxVGB28u81nXIPpVnmp5J39So\n27JWirm9rfATXQv9Y14810ZJ31ux3f4Qs+yHyGuhFIIwZHR+TteWZFpuuiPBXol5Ve8sI8WaZJMI\nX6p/qamWi6yn1lbfs0lKqKSrfWKItQdCOCoOvQAGdpwgCMm1JLtuYaz+uaGh134JbRnQadegWPtZ\nRha2CvppypJWJ+62NuzXYvrx5hirrd/zXny60Twk1thBfnZKnEi6rbnckp5/voIzM+d0Qy/KrMcO\nnaOigP6l1iWcjTAKrGo7RQFe99CLObzelYeF9/GLS+7fkQq/cBoT68u9f6KZGucZnSvjT1xQvZTF\n/+AsZnJfMiPjBxO2VwqyUkr6q31OMBMT99ObFTfaqQoMTafZDtcSa4T/R/F9eBylAm/auqRWItur\nJ5oVaFsWqbwI0zfnNMrMNLoNmUy0x8WswOs4r640VZtEOH3maXxKrzGO6SQhVdhr7ftD3cUbb8jG\nkt2/y04JVx6v9+TToc/C7NBs9+pKEmyjcIIPtM9pMcKVGnNILGjdTDS9Q3Qlm1oy0TqX2ZjJ2+/K\n2DchxR1lyIomBDrvyz/6DpHWT4SR1pcEIaVmuPq6xU9kLNZRzdeffgjA/pv/lGwx9Cz9YnJ0H45y\nlKN8Tl4LS8EDzhguN48xan6ObYRVKjHXgMYZuSxrvHY8RqOwWezZlWIG75ZbnG5HTQe5asnzhxec\nKH6+1qYaneXA1GuxNIcGicGBlbmKOqJ+4BaQ+xlPUqoB907P5VPZ0V+mKR+nEhA8P5kcWrhbjXr7\nWUyluWmzXhK9pWZgsMAWAxRVuzK3PU4DUUSbQ1OTLoPoQhl8E4NTnHynpCmuMPRqNbncMFa8/NP1\nmqcr2aG+lD5krzUDPpddvmkrBtYQe9Iz1qDV8sVjylrZrEdjykYzNzpPy5uGRwrOWpblIZDYGUes\n0flg1xBq8DBSLoHO95/pJflKqq5jqwjX1eox3/tQ+jiudMecbRKaSJ75pgxIlDBncX9CqpWftA6j\n7hFaG1JWJSYaagpyQjfX+6lpFAPi04D0QKOunZlKT1sMGZcdtQIxTpxnphbGVoFzV0vYbsTC2J6E\nRDr/xnUYdXWJA3qd6426H83VNWamwLrJKV4zP76rqa9kPdUeXKJZMA2wr52j1zVS7R3XL2Tt/ODR\nmuXjx3pvK7j88cBLR0vhKEc5yufE+D9OXf8Zi7XWp0lKGkecLGTn6hrHSNmO58WIVCvDQgMXumsM\nTLff3dRcS8yO/XLJ+Gfuy+9IKCvRtO+6mvNctOpjLQx68nzFRvPtWZqRavpn+jDj3/lb/wkA//av\n/OvcX8j5Yk2x/cq/928d0IjJ9RUvNUDpvTsEyUoT0ilDrNfKO4slVL82sJZAEXZZFJBrn4J4YIDe\n1LTN0B6tYauptc57AsUvjLOU+Uz83WR+T35vUk7uCqHtdGz42m/8UwAiEzI61V6SyZjzD+SZvv17\n3wfg0foKq+hO7x1jrcS8m6ecaXpy4kPeG8tOWAw5et9SKsdAXYc8WisuYrtlqei/Pa8sveFnrQ1x\nSoN278E5b9yXuMun/883iNSqaLqKkcK+R2o1jpLkkKqNRpYPHnxJvr844UMt/PHjiHCkmIuZsjhV\nPVdXUpKz/OhStl6g2ZX84Erh9EXEpVpe395ru7aril6rPc04ISy1spGM//kvfEWeRX/z9ZcveScV\nK+fFKOD6UjEg3e4Qw3naQqOw6lttq1c3HSUDySuHfp1FaBkpKfBq3zFTXoufV1yIN5ZOg5Zt23Kq\nLNiPOody97KiJE5lnL92efs73vtf4kfIa+E+AHjXY4OcJNEy4yAm04q8fD4lUz7DsYmZjYYSWTWv\nr59iI8XWpzuuH30LgFsTMM7lZfrEQKGMz0PT1funluf7gYa8pQ41G1B3fKf6PwGowj/PvhuuJ4Nb\ntiueP5FqxrgsD/TcvTWEhdZE+AhyzbcHauJ3HBrXTjB4MzQubTCa887VdFxYw43yIKZNRMfAZ9i/\nqi60EbVXxZkPlXcJa4V/J+HiUAp8Osp58FBevLPxBxgvxzzd/TMZ/6Zm6LgT945cO3VdLHIeamPa\nnxkVvDGXKPpIA3mdt6A58eXlhjfWkg34wdUVT5Sk8ZOqZKWLfiAbsYmnVDfv5mpNoM1LitRzXmsJ\n96zgucKp719IZD1NUkZqfi+CGW/9axKs3dUpZ+pW7vKep9p79PKPviP3ud0Rl/pyr2vuaqR+cndO\nPeAXrKPS+bMfKd5kYQ6Nb9x2f2jEYruaplDFqSXni3XMV1WhvZWd0gRSldia+MBsPU4jXipQKVew\nnLeGXJXwNu4INSgbBCEX2gynba7pNZNSRbIRvJmkvFDuyn3veKY1GPfHIYUC9ZbA7R9ffvRD5eg+\nHOUoR/mcvBaWgsEQBCHTScRI69wtI06morPujsekGqgpJimJUnC5vezs748Dfm8p2ncRVWxuFaVo\nYKqWwM/MY75U6i6lu+DNbMqbqVzv4/36wIYbV4Yn/0gCXL8+/Xv89b/4NwApbAGwT25IlQbLGQi0\nPdg8yUgK7QhtXjWDGWv1Xtl2B+bgzvdk2iX4udkQaa9FoyZgaCLmSsLSJDAay7XTyLLSgigbwulC\ngo6IwUCz6xh1sntsTEti5XoXsxlfeeMtAKZ3L/g/fvc3ALjV9nB3Z2MGxrd6W3Mxkd3o5x/O+dKF\nWBjnxYTJ0L9TA7TB5AynzxcFjpn2g1hcnHJHze78+ZKlFussNSX5tCtZDyzI9ZbSyX0ktT20Wyuy\nnC+/J6nat96WoOxJGnFnILd94328civUV7fc6eV6H5sV7TNJE7aa1rV0hEq0uphc8KWHkgIcZVNO\nL+R3y2XJ5koswHNFef/geYnVIG/fOYYqYOvg+08Fn3GNpKFXdUiiaNLn7FiqmzDNI/peCV5CGKP4\nBd35385maC0avTcE6j6ENmev1mSWp4fjE7XMugBmun5DU7FXH21pPKaQgOk9QlK1kH90aaLI66EU\nDCRBQMiEtVKc3xt1nE3kgUeJZ6Z+VNhweFkuIm06O+75hQeKcV95/tGlTPL7geFeJC/pO4uOmWYf\nZgv5zoUFH63FxBs/hU9bWaTr0vDon0n/x9/o/i5/9YO/BEChEel+v8Kp/5pGnjNlW5qfnjIEwEdJ\nTKLR/FozCsuNJUhaPUdM2eiC7SJazXw0GmfY73YEA924zQjU/A4zy4XXqHfg6PWet0/kpXNdQKeM\nP5NmwQfvCTbhrfM3sLmAkFq/Y/tUmpEy8CSGhokm3quw5s5UlMLbxZR7Wp49m0ck6ouHWr4bekdd\nyXMk3R6j9Pvzomevpu0vzAueKHDqU62WXF5uMdoAxTUR21u5/3dHCWuNpWQu5SsP3wNg8b7QrJ9E\nCyYa40lOUla9XPv+aAbasPf9NODT978BwLO1xntub1i+kPOOso57i3f0GiPO1c27Wl4Rf1+h9V7O\n+yD1PHomL//jNaSDJe7DQ9errz0XTMD1tifV+pF2DQPCbdSOOdWqy2QS0mnWzChz2LxIcdlAGRCg\nw0Jn4EpdohJDr65Xq+Quuw7uK+AsjzJW2mD3qqvwGne5TYMDG/UXlaP7cJSjHOVz8lpYCkEYMjld\nMJkkeG2lhemYTGQ3GjtPrwUlBT2J5oqHPgaBd3yi8NPZJOavNhJ9X4QV043sePfyhGkkEfp8rgVD\nmxqjLbvd3JIrAu9qU3NzLdf+o996wj/5va8C8O/+ZTE595U/8ESOJzmZwmuLNKYwA99fxUbdm1KD\nT/vKHKLQ1zcbKuVA2JUeQq3T17Zq3joSBgKUmvBQGefxinocj9MB1kChAbL1ekuqlXwTIn7pX/5X\nAXg4ybns5Zhu9TGdWjGRZp9cVdFooHEWBryvbMaLzJLJtkfUxCTq8lg1T6muGXh1AhscYMyuWpJr\nPj3IwCteYnD9nl1aHg9FR7llpDyYNRs+uK/EMZzgNCA6Voj5pEjI1ESPmjUnWkgUnExIT091DNec\nnP4yAO/vFG/x8Xf4bimZFudgrBmcdFoTK8J1nJ4y0TV1pgHqrzZwpgjK8FFDr9mHfR3zfW1kOdNC\nuU8IaBRj0XQdiQaEo6hlrhmz8/mCVF3IsUK3jd+DBh3bvqdVfMNmvSTRBjbRZHSAUxtFMe43nq1C\nn52xFFqV+qJ1TEIZw4fjjM78eMxmr4VSALAuoOnOCVOJXp+mIbOdml/nENQykG9cTA8pudtLZQ/q\ne5QJm3rjMYMNn6W8fVdcjNO7I/JMItUkSgcfr6gUI79ILOuJ+OeTbMSlmmLLb9d8/Tf/EIBf+aVf\nkWt0PVYrNdM8Z6JVlPMkJRo6Ia3BKRS613/3ztMo+CeZhHTboZJvT6c+p1dYdpHHjFNZ8NbUOH3B\nuqphpywkiQuYaNq2b4aK0oyJlpl3ruMXP/hAxu30XV58KgSrf/DRh8TK/Tc0VhlHESONgD9MAr50\nVxTovCjQinFi+gOxCKqkXdeDmszWhKTKsRnkxaGCz0UZsZZ7F9roZdM6brba3DcKmWpJedZ23El/\nQe5tMmd0R+4zt3K9eGGIe0kzR+en9Jq1sUGEbyS1GBYJfSPnMxpHYBxwqqxJG1/Rq3Le3JZMtF7B\nGsf0VJ67dgqlvlzy0SO5xp6eUnOqSZowVaV2mosyqrsdf6TuXIRjrinEN0bw5Xcl1pInOak2pRna\n1gdmRKd1pHXt2O21FX2a0k3khR6HllIbJH/jU3UZ9xXa1IxpHxBo5ep52HKhJeMZlmX2473mR/fh\nKEc5yufktbAUjAmx8Yw+Cgh152vbDbO7mtNvPfMT0YI5lkALZmys8FObE6jKNLMEq6bY/VnOnUwL\nZs4mWO3eMVT3Ny0UWmkV3rbMFQx1GyU8nIoL8vvsePqpBCOvb5XOK05IYm2PdnFOptDYaW7plKo7\niS1btW4iBeA02y0jNeuiOB2Ywqh6S6a7SqeFRu/cucfZuVgKN58u2dRKl74zPNWIem88M63QzBV7\nUW1aXKYgJNfx3jsSqMvTAqcJ+Zs/uGSlGIKBizJJAs6Uh+L+IiHWHnnZKCIJB5fI0+011z9UYqbB\nobelaVoCxWF0jRsQxtT7LSNtmBMoI/HP3D/hW58KAOxF50jUYkniE8qh2u/PBRi1QuIHMhb17ppc\nqwQdGwJ1pcr1NUGrjVOa6AAt39xKyL3ZdxglJInKiE2lJDmdJ1Ea+cnpewfY+OldcRWLJ9fsPpTx\n3naX9BocNOmULpSxeKKt9J4lDYVCzMPOgnJ5nLw3JlXSk3GUHBoCxUP7TGsIGmWoZkuhTNuEIb0G\nbj/tN0SK28kUwv1sb6iVKjANDU5dnwsX8VLd26zZcq58jV9UXgul0Pc9q/WayFtyTZGF9yxeee0m\n2Yy5mnjjKGH5XF7SRBfxIonpRzLQNjLkhURkF9OESBd04CsCBRkNYJsx55hKFs3Z3YbdWn3gtafR\nYxLjePI9AcD8vd+UNF4aJ8x1oM/yMUPZws5XpBrBb6OYJJY/LG+v9B4iAi2nnZlTEgW3JIwO/RLq\nQJTGvXnKYqF+e9gR3mjcIrqi0kq+F5s1S8XfF077Idqe21tlRWpCxg/lBev2Hdfqz5f9LaUqr0Ez\ndZ0j1Sj8LLSH2IHpeqy2bTf09Fq74ZVmPgzneI2H2MTRqcsQ+QSUAard1fSD8lKlMU4t95Qz8tOr\nmo0Crs5OxwRzOfbmu9f4mWQlxk/UFJ+/SVVpV6zrOdWVZAb2uwq3kxfdzQIije20SvHfl2B8pt/V\nNJqe3lc7qo3c/y55TGYEnHWtWbCPqy0/2EpZe7Pb0CpYrE9qbCa/e3krbsvLtifNdG0lIW9OZW6m\nxYhCTfs48BiNQRh1GeM8P1Tu9rZlr7yZWZBS5+o+dCEv1eVrdIwfpob3NC6RhwHNVuNOeceZluWX\nUcZo+uMphaP7cJSjHOVz8lpYCt70uHiNbyuiXPP1ZUSsfArZO+ZAa92u13R70WWpQqKzJMFvlBRj\nlkppZioAACAASURBVDLJJLgYRzlBJTuizWcY1YE2HAJLG0LN5477EXN1CVbdhlghuHsDaOfmZx9+\nQ+/XkyhuPQ4DMm1bHtoa17+igW/rATYtz2laz5l2CU72exql7nonP6MplB5MW7VTxPx/7L1ZzC1b\nfh/0W2vVXHsevunM5863u+1uu9OOx1jYfoAEeCBCCMQkP0dIPIDhiQeQwhMYHsgDCOUByUThARGF\nAEmIEuykHd/udvv2ne8Zv3O+cc9711y1ePj/arcbOenbvqZ9LX1Lujrf/YbaVauq1voPv8HhLh7C\ng6fZ349c+K1eZbFARsn13msyV9XKx5o6iY1NoQmKSs/OkM4pY7c0WHGndNoOTl0iI/hF98VxCQB0\nqfay7lXXh2ahsGAz3W6v0XSlQFtuPBSaF7tcoKSUoqk85NR1MNWKc+UhUm1KmCNnRX3marxMJTIz\naJBQY/JgQO2MyUOkNO3JPnmMC3IUtHJBXRQMXANNQR2PBTfrKFjCxk1VwKvl50laYQmJrK4/WeMw\nlpSGRX+8OD9DvuM1hT5MRXZs7uOSAj6WlVhVWxgaBuW+gkMDozwHktmCcxshphu1JrDMblZQXWqE\nmBCWheQyW6NigRmNC13JHIUEd21QoUPwkg4MDCNI23jYUXNhFBuMhwS4fcZxEyncjJtxM35gfCEi\nhaZukKy32ClnL9PlxBFWS8kRVX4E7bYqPoBhBWtyIPDbAA5aJS7TLxFQIwCNhfGlQAVvC+PJillT\nH8HrHcIyB0RQ7HX6bR1jTmio2xgkhOuefvABAMDXPjyiCm2tAKpH59kKKber3QZYcno7bAlFCNAv\n6VDsFQhZzJv4hzhnPgzm/bcjF62CWVkFqChWOur0sRvIjne60JjTbm7aSnjpCADrBVqjKelnaGNE\nhOO5hxOo1oKFO5EyCiNPrmMcOPDYV3ecCFCtT4EGiORUbM3l2tszDsvAQc0tVnkprJX5DPwOwDxa\ns12cb1NMqU8x9HeYM09+dj7D4zO2HKsGb9LP45i1oZ45wXJL/EadoybxZzC6jcGRPBeHgyMgpOeG\nlagR9RaK3hpJ6SFlVKRGEWru+LPZKZ6y+Pn8XM5hcTrH6oqiq5WCZStaY4FdzRY2vTxGbo0N59Xz\nFBzed8+p4be+otqDS/yN4UOrGgOw3qH9ErwNKMsIlq1fXwMR5/z+VI516QE5FaRuRT14xG8k5QYb\nIiHd9Qhq82dQjg0AbK3hBx10JnLh5SaHNyago2mwpMQYvBDDiAIZpOx2pjE0ZFKN9pGt5IY6gYal\niYxSDsqMpi0RpdqTFMqlhLYtMaBCSDpscCeX7oMJHmO7lc/Z0Anp1uExDltxj04Mx5EHfnOpsWxD\nbaNQsBCa561Z6xwPt/J59376LbhrwU2kzhY9Vpwr3pFh38MnjwWzoW2DmsIwcdDBkA/3NHiJR1tZ\nLC43cs2dsYuYCKLSWDRWHqpCZegErf18tV8YFV/4fuTjwQk9E+/0oVhF98bO3rzXlA6SRML/isy7\n3HWhSjL8tgW8KXMGZRD35HjFcofIZx+e6YqnFMqqpSEbdFiAvVhskfI+BaGHfl9e6juDN2W+wxFI\nr4ATHKF70n5GCt9ti3UKlvyCoiLozQ3gsN4WlwdY8uX3IwezuVzrpBdjsZH7pynak+Sp4I0B2Ap/\niKEaoiD2Yk4DV91t4HGRjT0fNVM3Pw5gWBAMYw+29Q3VLQXaoi7k87J0C8V50Y6DKCYJw1Q4jOWZ\nVCzWBp++xNNLgeMPAo0xpemchY8VcSu7+iWc7Y9ZzVkpZZRS31ZK/S3+/wOl1DeVUp8opf5npdSP\nBry+GTfjZvypjj+JSOE/APA+AHqo478E8F9Za39LKfXXAPw6gP/un3sEa2HrGjb00SSyo0SRA3/Y\nFhQdLK+52nkpcisr5Y6tsLvxAP0J23e2Amg5XtYlQGbZbrbDqlUoZiiLwqKqKbrZidFMJRzsXFTw\nJxL63h7FyBIJ7ZczaX/9yz//87BsN+6KGa6vZNfRZYXuUM7D9CZ4m1JwAwqTXM8XeGsoO1807eLo\nFWl/VUUDh8WjMpaIaLtpkOxkLta6wSqXCGO7usKQDMaH947xkmxNy2JovlmhoC+EjkLU5P83TgdX\nkDToPL2AwxSs9clsYKApJFrUFrudRATdyIFL8xXdaWAWEhUkrSRe4CLhMRJdIyUMOBr09zZ8Osr3\n6ioNPSpLYxFRHg22hMvi20ArKEKif+pogF/72p8DALz+lbd4n8YAd1jT1XtCWBWovVWadROUJF7V\nJGKh48IhFqROMhiSpzbzDbZG5uXyYonKkWv1XiVE9sNg3y5E1aClvtZujkGHxUGyRJ9nFRIyHLtW\n45BF5/PzEgV9Qnqegz7PySVaMfRjWMuCqVVo2E51fb0nrCWbDZYkinVieoc0KXJGceezLcZsI/uO\nxdt9me/fXZQ4W1OB6DOOz+sleRvAXwTwXwD4D2kl9y8A+Df5K38dwH+GH7IoKKPg9wz6ToL7tJ/v\nVQr+OTHbzhrZgjejyFBTbeglw/INctx/8QIAMLg9hceKLPIS25fUT0wr0NMEPkFBQZ3AI9UZyqIh\nzXqzO0OHYWA/jNBnr7itVYTTEQbEFXzw8RohwVJpmCMjiMpfLvBsJguO97qc553BFG4jD2O42UAF\n8tl930VNw1d7wTBSr7HJ5HzOVjNURsLa1SrFYdz2wnsYk/Ow2rP3SoBsusgJUfDlzYqX0ORXl/MC\nLEFgQoDNQS/A5opy8JsaaDkY+QYT1k/i1+5Dkcexfr7mcV/gDzZyzp+ua5QEAt2Bi7v3ZJG91R0g\nGrMrQ9q3aRQGY3m4D5MSawqPeK6Ht1jN/wuvPMArhwJ5djKClJ68xJZOUMv0AiCmobR9BJMWbp1j\n2JNQu/WiNGWK5KnM4bzJ8fhU0q3Hj05xvRJFJmNqTIYM0Sks43Qd4IJz6wOmaJ3DHCzpqznl5oRd\nCU22a+Y36LAO1j+O0OPvuh1vn0IVBH3Vyxm4dsMNQ2jyXJBskTN1LWuFeCj77pjAse79o72P5zzJ\ncElGqGoc5FquI3RroPwhEtr/n/F504f/GsB/BOwNgMYAlta2Cqg4BXDrj/rDP2xFb5s/fUm4m3Ez\nboaMP3akoJT6SwAurbXvKKV++Uf9+z9sRe/4xqrAYrbe4GOGQ28PQzSu7NAdHePWAUO/MkJFHTzr\niz5AJ9QgxAD1dgNN+/Gq9pEuae9WV4AvRakmYWGscKFmIqoRoQMby67adwdYKUkVDlwP1/QabBGK\n484QY4bM2VGGKypk1ImDObnu2W4Bj0XMTz6RYhCOHfh9CVcOwwfwOvTKbLpIqRu5WUoqMrcZLKva\nuvHgQXbVTt/gJJJKm+lnuKCv5vdeym5X5g1cqqU4ToyS677BAOVarql0XCiGuR47J27YlwgBwFDX\n6BBZuVlbdNhD92Y5SlbfW1GU8+ViL6vW644xoibige+j77Hj4Ci41KsMurLbJdkOPUZCfU8hoVFL\nz3Nwqy8RxsGtISLC20095+c2cKhEHbkulkyfPs4zhOcSsdy/P0HDBpQ3FoKTzdY4p0/po6cf4zEr\n8utdjorheOhn6DHla6iN+BOvHeC9J/KMNKmFpRq1qnI4LrUrQzlfa9coiMKNfYUNLfuaWuOamm7p\n0wwOI9lbRywYxx7clkimir3JW5lUKJgG5VBQLGxmjBS8WGF6RKzO9Qbbsi3cZvBJDgtrg6Zhh+0z\njs9rMPuvKKX+JQABpKbwmwAGSimH0cJtAC9+2IGMBUa1QYYcAd9u34v2/AMdxQjbaqppcHHKfHYo\nD2b37hiWnQgThGjarwcOarpBZU2DFzPall/wBaozHHXluIdBibvkXTRugH4mC8GuaHAYyU0/efhA\n/r13jGIhD+mrr7yOewyZz08foQN58QLnCEOmKcolN8KPce+AFGIU6LryMBbXGwxuydc7GstM3R4a\ngrTm0RaKef3BoIt7R3Lce/ePUbHCPWdN4fR6Dsv8PQgdpGynbvKX8Afyu4HpQrUCMEbOPQh8GHYi\nkshFTsZkeHQEW1N2Pk1bpjYs6xqmStFPmLcH3T034Cot0T7eQZjBI0W95UN4wQSXFLgxpUHM62jC\nLiYHIqgSP/gKwgcSaDp5C8d+ieSFvNCrLMXHF5JKvCxz3BvLfcoLC2sor08YuO54KCl0clW5yBx5\nRq7KZs+kdLWPJQFOb/bknt0+jHGXYfsn2+Velt4YBxWvtSAL1h36uMPOz1uvHOCTC6lFXX4yR86u\nxaYpMQ7kRf/zXHj82kX3kAbJpQYFm9AYB9creT4/3BaA24LSZHGzdYpbTP9uhT76XHBNFmHGzzvS\nOWznn2X5+kePP3b6YK39T6y1t6219wH8GwD+vrX23wLwfwP4y/y1Gyv6m3Ez/oyN/z9wCv8xgN9S\nSv3nAL4N4H/4oSehFCaewioM8TojnTdPhjh4S9IDXWmYpO0lH2NwRC9IhlFOXe+FPpQXQwcSYTTb\nHTSpaOtlhUlXwu5wQBh0lWPIyrEut/C5clvrIteyKodBti8ORhQhuX18hBlTiSgoMBjIzn0Yayxv\nyWfXqwYxZel92pA7gQ+1ow6BaZDP2LUIOnCIs4gpg7baZDiM5XzLWmFeSTjomRK9kFDpYIDDI8E6\nTH2BYF8ai5o6j2Vi97buDg7xrJada2dXGA/k1h8fyPkeOl2YjkRe42CAQ09C27BvoZZyrdqrESjZ\nQT36efa6Lhr2x4cmQtUy/2KNKa8/anI4BOc4NK2xhcWoJbn5et/NCbsh3nzzDTm2MdDEg7iuANXc\n4wqKJKeRuodX7t8HADxwDRS32EGo0QyopxmwUl9oeHcp/Z/kcLZy3MFDF3Gn1XqwiEKJuIZjuaZf\nDHz83kMBrT2/VigTnr+26LT4FI9w9ssGDydyncPJFP0VpdT6De4wBXX9GD3aE8ZMKRqt0TDq0LVF\nTWKTH/noduU87vrAmpiTNaMZz4ngEsdQ1goB07y8nGFCaHY+DJH+iHoKfyKLgrX2HwD4B/z6EYBv\n/Ekc92bcjJvx4x9fCESj0QrdIMRrjoe3KZUWFiGwYOEv7sAnXLlZ7xAQ+mq5c9e1h3oluTOut7A0\nmHWcGM6amvzGBf1h0eTyRbG5gu/Kaj8YduCyz1s2S/gpXXtXClN2LbvEnzq9GAfMC93kDvptSn00\nxPiartNBijonRZaf0aQVCpq61PkWGSG/nbIBSlqMUe7Ytzm6lKYbHx5gyx3KjzQGXcJ8dxkOiNyb\nnkg+rU7nsK0itIu9gGejl8iX8tnNogCIKXuTPP+7E4NqI18fBR4GnIvm5RY16xzlJIKzllZe24bN\nGwc9ohv9XoNuLMVcu91AU0Go3+/C1Cwm0IBWGUCRLn2gIvSoSfGPr9aIPKk/xIMpNHEIrcFuDwcI\nQoka5k+eoLbyc9UbokvKvIsG+x5fTW0JHaILmaOHd18B2dewlYU28j/dOETfo6oVd924W+LesTwA\nfryGpSp10xjM6AcSzGVOYqtAECv0Yo6v8Jq+cncEELEI14PLGlOZsia2zRAwQtTWA6064JQZDon0\njDohwIJmNpNnXTsuOhQjTrYlqnMWF70ADd9sv7Dwu38G5dgaq5AVBmnQQ9NlWDfsoDuS0K87OICb\nMNTa6X3/s1WpSLMUJqZ2YJrvpbxN30GXTsv12ScIJ3JzNcMvd/Qa0BBL4DqoiCO35QBnc2Hquagx\niCWNCTtyPr5xEPdFvCRV5yiJWVCpAz+UB1qHFk1BcRKG8IXK4NKFqXFc1GRwKhig5QlQ9KW32yFk\nZdmxJUZHUnzTKoVDfkG+nEMTmj2mQUhoFAJ2PTpeBJ8ahj1ngOQemaTHhzBnjwEAhxMJqbXnYEDd\nhOMggq9b1+Y1HFbnnRVQ7whBJrZn2EyRN3Ri7vbBdwrh8BYUC2NBGEPxZbJcjLLZBn324+8c9PY2\n6n/tux/jFzNJ7+qP53g9kBd2UspCoLuH8CnNNvnSV9An+9LqEE0jc2jcGMVKuk5ggbbazOFS/2yA\nLlzyB5p8iyCSFMz1U7gV8RTUpYwnE4AQ7TIvxPwGgLIVrshG1VyEJ56DY7qYDxwXw0O5l14D6IIC\nME4N1UqvURgnDkd72XZVld/XW+iNYHO6RdkahuevIln8miaFTrnB+TvkSj6v2u6QU3uh5wzRqBYh\n8NnGDUvyZtyMm/ED44sRKUAhhY+t9oBj2blM4MOnck8QanjsH9dpBstiV3Yt7SiTbaAYqvm3Jiif\nyo7hmGYvb+ZVLgI6RQdj8tm9Goo7UDm/gsrleLmvURVyvG2VQA+k111oCY29OECxbmG0JRR79kCK\nkh4IodODBiG4Cwq3zq6gaFgS+F3ULmHFeYEuUYpBl2i3wkc1k+MaTwNMEzw3RlFKuGpKBSeWnaRm\nmpCWDWKiQiPPICKxyXRiPNBSwOsf3kIcyW58666kLW9/+evYfff3AQCu9VBs6UlRG3Toc+mOLRYf\nS4c5oKyc0gqGu7FXGXQYBrs9B0ZLZFZdz+AEraGKzJQJGxgW1EbRADlBqKdrg//je/LZb/xrQ/if\nvCfn/OdZMN2kcCKJmrxII6AYb764BPgMNNaD6b/G85PjBkdD5OcS/dm8hkf9Bn80gSJGwLFDVCvB\nJCgK9ybpElEpO3NVqr1SlXZ91GS0ekyNgnGAARWEO16AgN/v9nwQCAqrfZRbeS66xHR4UQgKdiHf\nbOC0bdTAIqaPJ2Y5QsK7ETM1arpYEt/iO0BI/MN6rfEik2e9VAlc/Gj0oy/EogCr0JQKZW0wW8oD\noUYdtGmo9TVsQRx93UXttiwy4umNhqEGYJk0sMz9KzeHsQQARQ4UjVhaZqBxA9SF9HwbvcOO+Ibz\nyzX+4VIAR2lh8T67BCjlJf13KgXLz5tfn8FZ8ri7NVzyDkydwqNOYPtC9I5GSNfyvcYDqksKjgQ+\nTF/OM7QEwnR2aJGeStXQQXurXLgpaxRdB8GW9ROmUt3YhWVYPltt4NNZytEhUmpaPvzSAZbP5OXt\nHP6EfK4bw6EuYXX1GHUmi1deZ9ChdCiqqoJiJ6U1r9HwWzY1vBhwiHtwEEMz37eugmVnQBH6qxx3\nD0JqvAYOw+frZIV3Pn0kX/+NAp2RpHdHHXlJD25/HSCoy3VPYEkTN3EXO6odAzVgKGN2eF8+Tzfo\nBrIoLp7/NnRNdJNVMMSL5NsnqGhInHLRWK22+JRmwqqu0La5alsi5gJREsQ0qV3c5kLvhyUCrki6\nqaDBF9opofn9qsWaey5QUu4+iGHJtdDWgct8rOv60MSfOATn2VqhpsR7kRXYsVCS1inGaKXoa6z9\nHw0xfJM+3IybcTN+YHwhIgWrLPKgRmk3qFllX3hAvpVdqTYL1AwNsbtGTWhuTdinVjHyS1nhrRvA\nJQTZqaawlAfz+r54FACoi9ZwZomG1e3a1sgoq/b+1RmevpTwazmKUVVSlDt/T457vT7HiKrEHe8E\n+VZQjMtqjX5BrQdbQlMDwenILuH6Pupczj1bnaGhIIdRLppW66FmQc5oGF6ncTtQxE0oFzDcdUpE\n2C4k3H1B73HX6SPosujoOvA4FwoZulpC21/56q+hXgqq076QgtxZVcC7El+I5fklwlOqPHd7qOYs\n2rnxngVZs3jq1cke0VdhgJoSY3p2CUuyEpRCSRhztaZwjjEwrSCs8VFQSNb6BbLi9+T6NsBVTVm8\nCxbU1FNgSijy6mNYFqNrjKC81t27gM9KqCETU3suKkKt3dBgx0q9s1shpsBqsb1GsZZrXbNz8u7p\nB3j0qUQKdaWgWy9Jx4fl/bvVwp0dg4YRrZtne2xGUxdotkz5jnqwFLFt+K+q7T5StGmNQjZ/VNkl\nSkqzaRPsPUvtGU0h4xiUyEBVN6gWEnmmC4umYbrtZsh3bQT12cYXYlGomwbrbYqirjGdUWW35yJZ\ny42rD0720F2lNSzDREs1HscPwQ4adNeDF7BS70d7Vp4f5OD8otac6EqhIYAkKyqsCnkw08THe+fy\nIGwvMxjdyjpJePbh73wXb7x1X/5us0WzbwGGAE1qrWfg0evS8KEpiholBRsbBbhUXjKOQVGTJVnJ\nA9psdjCU1msqg4DtNmVqlHw40tUOpHHg9pFU7+P+ARSZgcpzUNKxyIHZ03PHh3dx7623AQBX77wr\n17Fco3j0TI77+CXuj+R49yZ95FXLYPTRuSVzW/EemNiB36YPrgul20muUS/kWqsqQcmuBbhoVFkJ\nw3TNWhceDVLqssDzp+LklCwMvvqazOHVB5JS9KPbKIykdqZQaLbygqTdKVRMJmW9gUMNySW5LdAu\ntmdyjCydQYdyfZ5TomFtqql22FL6/oKq4i8fl3j8eLW/f4pdGTd0UTRyTT2/x3Nzse+NVd+fI+0a\nKL69xdV6Pxc+mZhu5z5s0qadO6iUgkLWwibtZtBAsdbgUBqg2qZQbL36gQOH7UsvS1Az97YV0HV+\nNO7DTfpwM27GzfiB8YWIFCwUGqUx7h5h/LashrtZiRYJkpUrOLa1kW9QlVR8JvS5qVdI+T1cis4d\nAMT9CSx3aeV5KEmIckK6Hdc5GrLecrfCaiWr8j9NN0iJ181r2xb+YXLZJb/35HtIqR85GMToDFrT\nlxIl+e/udAjLKKRkQWq9WiFnIasuU4SGBSPboCChqSFyRcUBdixwRvESNXEIbucENZmRVuV7rcW3\nX38dAPAyL8CNHVWWo6CzdVYW6DBct76LcSwCL5elpEaX0QrbGbs5bo6FkrkKn53DjqXoGK58jPrE\nCxAmDRPv+/T5bAvVb7UfazRUFy63GZhhQLMQWykgWbQCFw0q9uB108BpHbZdjSXVrWslu/HiegOv\nFCIVGgtFdekk3SKn7Njvnz7Fk0/el99ntNIMQ0y5y//0Nx7i1RNJO8oyx9k5OypxB4WR+zejzfw/\nLa5RULrOWgu4DN/cBwiVOHdP6DquRh621NPLmgYNo78AAcBUN8m2SDP5jBMQkLdNkDI6KDMFp/A4\nRxlqsoahc3hVW1RkpymvUJgW32/g0h086ORYECSnVQG7511+tvGFWBTQWFRpg10wwZoiI2W3xIZg\nlF4awmHV2vOjvTZewnZjvqtQkx662+32D6M6vUQYyMNkgwp1255izB11NCqG1POixu/4kh789kfX\n2DZMA9IMoDlHwxx/dtaDoeHpbNmgR9Wnju9hSiEWZ1ujx3ZgkchCsCkrZAxrgyaAZV6ujQtFoQ7F\nh66pNyiIdTe2B5cl/iLbwDKMLKoMTcy8lcfthz1csR1ltYOaufxltsVLQ5lx2+AskYf+ml6MyZML\nVARhvRYF8MkyzKoz6BVx+a7CLmObleaqoVVAr+0MVahJSXYUoBhel1WDiiAjTXpvHVkUDtGdaQ1D\n4RxfKbhEE94JNF47Yd1hIvOapDnWNPDRQYCMgjKJjrBlfchJG6yeydz93gt52bQCDo/kWTi5c4JR\nl50d6+OK54TZBRya6vyjnpzbb3/3Ajndlqy1QLvgVgnGHbqETUllrzYoNN27Kg8lX94SO/jsSijP\nRcRn0hxR9Sqo9mpSSjkoIrmXThMjYCtepQoktqLgZpMXBUo+QxYV4Mlxg2kXB2SVFqixrVtu62cb\nN+nDzbgZN+MHxhciUrBK4J91cgaXYirreY5NK53uAX6P/eF0gayUkJGWkqjho5nLzlBrB8lcflC7\nDUruKv4oRs5UYR3Lz/sZ0OJyt+sM19QFmJsSe311VwGsgNtKzme5SfCTDwhoKhvk16xwDxvsKBfu\npzkaIzpeJUM8VTZwGuIQ0gRbuhZnixm61GyoGglld0WKSBGiC42SuyC6QElPzHRtcX7xKQAg8WjJ\nboZSeAXgOhqbc6mm77YXuCbIKGoyXD6TeakJ1X3+OMGI9ajrXYzdWlKUnziZ4IjpEQYTFORmOAQm\nqbRGne+B50gYpZlqh5jdB2XMPpJrRUN05sM6cowmLJGt5P45jsbrHYkKfvooABbs3NDGLY59FGSt\nVlm5T0s25SUMo6n63CIn63Tqcqf1NQ582dHn5zUepdJ96d3qw8lkh3XiEDnP4/EzSv1td9gDZiIH\n2mujoj4s9TQrwtXDwIGl7XtdNYh8cmkKhXRFqTQdwj+ktgRBWNiuYVzu+H4Dl1BpnQCWxWjtRdix\nC7Q9X/F3HWi+I0VmUOzkfPLKh6kpxNLxERHg9FnHTaRwM27GzfiB8cWIFGBRqwbnl5f4Ngt8r9+/\ni5xaB7UWwgsAKDOAof7P+pqMtbyCH9FkJdQYDiQvdHyNhMXFJrlGSQfjaEgh0pMJwEjierHGFXvl\nbuTt5cZQYY9ig5UV2i9znBwIIQpNgjmZeEO/wsCTKKajPXhdQQJGLAyudksYKlG7/SNUrDWkeYmS\ny7OnCA3OCqxLKWZOfBce4d/VLseulGt6sbjCjE7L01FLugrRkBAWDH0ka9k9uk2EXSY7zXXjAGyB\nvSTO4TK9xtFYyGOxXeKKn70Oj3HvDVFU9hKNLX0fHMJvs+waOYVUm6yE48gcdyd9qJD3rwYMoyLV\nb3f5DQwLlLXnwhL9qI3Glj3OjQ0xOZD5KInu9AYDBHwWrBPDz2Uuzp5tkBCabRBiyFz7YEozmGGI\n0BNIdLReIyEcPThy8dqXflKOh1P87x/9EwDAp9+SIqKy2CNLkZaoOffKfIzZRqKm95XM8f1hDyes\ngeyqbG/Y6+kIbkfOY1dusb0ko1exWH30JjYvRbNhfZnCmcb8uwGWL6U9622v9piaoE8MxsDCNWRX\nRoCmWpSfFmg2LerXx/Hhj0+O7U9saCgE1sAiQ17LQzMrgcZISJwmXfSoBuwcxXAyOvPQnh2ooCm4\n4vcCuA6FQFSD3i25GcViiGTBfvuUcm2OQdaVn2/UHKOU07E20G7rQlSCxfD92jDoxcj4AHaGGhN6\nQvq+QbMjwy0E/D4LVMSkLx9fou9KeKoGPQxfkZfQlDEU3ZscCr1sn/qYvyu4f/92Cbcv51PowQrV\nJQAAIABJREFUEotHlCS/miOcyByFpNXudluE1H7shWMsl1Kpr+sY5Zn091fK4sVSug7JTj7vzmSI\nt14TubkDN0XDVKouc4AdBRMp6JrAKNK3nZELt1XaXucw7Py4/RgWrSdiAoeGKS5FU7zYx7p9cC2Q\nUpm74wWICQ8veyF27C7sWumzbYPOhPiOCOjekcVZ6RV8FkqbeoqfjsU8BgX1Fw8K+EoWVmVqzD+Q\nuQju5nAnci1XSw/vfCrp2/I5N5OygVJt96EGWOTTJoWxck7LVkfxJERIfcl0vcSK3ZCjiQvvmJiV\n5ACzjBRnvsTOvR56x1+TY3zrHP170hna5RYb0rKT3TleeVXSn+FtAraSEgmp6H7owY7Z+bhokKYU\njnHmsJSt/6zjJn24GTfjZvzA+EJECkYp9DwHm1rt+VyF0Vh2KXjquOgQKedlBoqMwsEdWTmtKVAS\nuVipBBWdf6E0XMKRg6MAuiMrdytuW5kca4bam6KQOBfAnaCPp56swElZQ7XRF5GNR8cj5CWLNzuL\ncYeiGXUNtJL9yoFZc1fp0WLuVh/FRrAH11ffw/PHhAfXIUK3ZeoRbRlZ9CZkcx5MULMQtS4zvNzI\n7j9bnaEgJrYgHsNYvTcTSfIaRSzHrdfXeHYhIfGTTYoLtlkvNrLLvX3nEJuaqc9EYXRMvYHmBc5+\n/x0AwHBwgJpmPSVDZ6X1HlvRuAaGhdtCJajYA6409r3yikVSp+vtWX+b9Brbrkzy8aALzxLeDRcN\nI6gFfTg62wSGXoy9jgNNebfD+1Mo4kG2mzUs3aFrpnOhCWGIvaiwRWfSQrC/31795DvnePSICEkK\nBeva7AVbaqVgKIxjIg8nVNdZEdpsjIOM86o8BYeu2jtfwW4ZbY1cBLeph0BNCmRzBLckOjj62bfh\nEhavnj9GPGRbt46gaXdYk4xW9xsY+nOk1QpFwui2U8AjJsOaEJoIyM86lG3laf8Ux2g4sL/6y7+A\ncnOJmpLdi02OkoCkTuDBsklbwSIkbbdLfTovGiBg6BQP7+7pu0N/gOX8YwDAO998F5cXklMnhI6u\nkmSvUmStQp86gffu9nF0RxyJbvdvY9qjos9Qbvixp7E5FRrui/deoqZF+KACXj+RivLUH6M3IuyW\nOeTVxmJBXIB3AhSsaj95do1eQGepPnP2dYAH7CLcjQ9Qr+Q6nn10hc1MXsgXqx0eUqF4RlzBaQI8\nJmUbHQd/KyezzjiIu4ToOhbBWNKObrtoOgEUF56vfPknkRDmm3kuHAqWfOfDdzE7l2s54oIdhhbT\nkDLseYOHEwmTj8YhCnowJssE2Y64AKYXXreH56cEk006+NrXHwIAol//b/GUWaHX1dh9KHP+3/wv\nTwAA1QeX8GgzP/vdfwRFMRGVpbAMx8vZe1AOmZSxhPNB3EOxFUh3vdnA9YlVObiHciXwZ783wpBd\nrrff+GmZ+zc0eicCDHNyjf5YPsMtr/Fv/9LPAACaXOZn/q2X6MYS7l9e/T9IPpZnWc/mcGn8U7su\nwG7H0wumc7MzfLSTzWK2NHiXUvznyw1WvL7aanRYa5nE8gyNRjEe8JrHURd3D2UxXTsRokTua5Iu\nURCl/xu/9X++Y639On7IuEkfbsbNuBk/ML4Q6UNdV1ivrjG7vIZHyJhSGg41BILJCF0W4LomxuSY\nvWdL34QA6FEqzU48uDQyybISSGRVnt7rSHgPwCbUW1gZaK7ElapbSjvON8ABEYa+DjBLCfNl52Dk\nz3D+qYSZ8+0MByxyntwe49ZEpNviu2PYK1nxu1+7DwBY/uNncKievK7nKKkx8CxdwqcE1/Ca9uz3\nElRb2c02Aw9+T+zTvvT6FRb/UIhLm0cNfpfh4y8fCm7i6CLFSMuu852mgqI1Wd+LEdCjsXK+74K8\nI6x3Xe/wwJdCXN6t8egZYbcWWKzZobha7yXrrmu5HyP00O3JdXSWFrN2m7EuvCE1ElYbrPjtKpc5\nPDgssS1kV91eZIjOZCd9tdJ4yRzs/KLES2JO0rlU6rUzxIZ8Id/9OVjzOwCAxnsFFY8X9P4imo7s\n/qBWQrbZwXVpVha/AzeQ+ax2Br4nRT7jvIewfxcAsODO3d2eYOzJZwfmEAumf+Pa+77XSC27dTAq\nMcsE/1D3puiyw2Hud/dISdU/xvpMLuCgoM9INMWdhJB3N8UDxdTH1vDI6N0Uzd4bwyfuxYdC2Dpt\nN2tc1wJBv38whcd0O40rFLvv40g+y/hCLApNXSPZbIEq3ec/YdjFcCCh36v3XsERnYLiYIARzVBm\nVFIyyLGmhHav4+H5UvJ9V+XYhITjdsZw2Q2ICUZyxn34bKElOwsQmDLtxJjVvKGLD3DACV6M5KXq\nL1PsVqwpVA4G1Dk8Hr2C/n2phnv+DruRLBDnWh6q9+IAVxekOqsMSUHXoxLokOKdMLR89/cukY7l\ncx9sP8Hd+/LgTo96GL0mC8DX3Hdxj6CeS0UAVR3gVibXcRUt4S1kPju9DjxKrmdaI2BuvKNIS+AB\n4Vjm8NHlOd7/A5GMt7pATj/KYlcg0uwiUNRl3B+iJPT5Mtsio7Dr1jZ7KPj5YoMeQ96eIx2Xj67m\n+HQpKcqBTpBUNMnpAi+fkzPxbIfTd6UbUHwg9RDXHULNJCz3pxFMKXMBpVFyRdLTGIOxpH+7ndRf\nqmwHhx6V1r6KgKpeVQ4EA9aoJq8gttSgJO19FK0RsdayTl/CsP7wwlQoK0kVy4/kOayunqEKnsjX\nL0ugkt+d9t6EN5aaQVmVWF/IBhATJn37zglC8nii/hVe5QLxi04H12xDvvf4GVTV+liyFa9KFITj\nD8Jor3lZNVcoyZkYuA520Y/JDAYAlFIDpdTfVEp9oJR6Xyn1s0qpkVLq/1JKfcx/h5/nM27GzbgZ\nP97xeSOF3wTwd6y1f1kp5QGIAPynAP6etfavKqV+A8BvQAxi/tmjaYBdiqYO4ZMtdzDu4jaLdpPD\nCHFIWTVH4/FMdo/5S0pm2QJzggm222tczWQXN4UjLEcA1WqOtMVFk9Ti1iW0L+tiP/CRsWq/y1M0\nH0sRbKdm2B0SF0Gb+eR6jRm7Fp4ysCwAzQYl7ErYef7K4MMXggX4J5cSLn50vcUikdX+otwhb5V6\nA43pU15fl3DtvMDpmaQtX+/exRub78rfzRO8lQueIJ5+CQvqDn54JmGrk9Tosztzexiik9I6vilx\nNmcaFBqUIWG1hD5bHeFiKxPz4v0PcfFSINoKFg53oKjjI6K1Xof4gbrM4TOMnqVbbJbs6ftrlCw0\nWuVgm8jfnXsSKS1XKebzFrPh4cklcQHPgW9+V3bH2d//O2he0Phn9YS/O4XqM0Isb8HUTHPqHZy+\n7D+T0SvwjBRmW79l78DAg4CUSvcUjWUBb+DBiRlt6PdhSbKDJ8/Qcu4DjkQb2daFDXme+RQNJfwf\nnf22zP0H76ATyfWHgwjDu1+Wr2+9jSYkJuP8KQaMONHaCnoOOlcSmcbGR7OUYm33pIOEZK1XRz3M\nKKJyTYGcJlmjlXB0rIanqFt/XsKSIDevutA03fms4/MYzPYB/BKAfw8ArMxmoZT6VwH8Mn/tr0NM\nYv75iwIUrHEQOQ361BTsxh2EPQl3PZh9mHR1dY0nC8nnnzyWUHVlc2yu5EFJsy0yOvNUqoHDqrwb\nOHBLVuIp2a0aoKRnIrwKA9YtQvSwYK1hs10gIxCkt6Ap6WKNHv+s2+0hp6LP4/cv9saZzxfX+PBc\nXqynNBpdWotdu0g1BTTZnig1KqYoB2zZDYMD7OgDeZ0nuH8lL+/zXQTryosQ5zOohqF0LQuXaRRu\nkzvQwRbOgCIrVu11AGtdAQTemLLVEVS4fCHouasnL1FSechxHRiG/gM/xAl9Bloqu5dv0Ivl8woV\n4JrYf5UWWHPR00qhZNty0sgDGocxLFuITeGiWnAqpjWS51LNVyYE6JtoRvLi+ijhdiRFK6+/jc5U\nxHTVrIuAaeVi/gjTMWnEmibE4zsoyODsnHwV1NNBY+coC0nvHP8YjpEXrq9Yi0gWCDx5SVU3Q0Pg\n3Hq5Q0ZP0oOO1I5qcxuK3palu4N5hWjM5QJqLk9GvVEIWM/R5LYUV88RsC51pLsw9LgoyyUcygco\nt0LEFaC3Zcs56sJp2A51DSIqhxVGo6GUvhd6WP2IykufJ314AOAKwP+olPq2Uuq/V0rFAA6ttWf8\nnXMAh3/UH/9hK/q2AHgzbsbN+NMfnyd9cAD8FIC/Yq39plLqNyGpwn5Ya61S6o8EQvxhK/puGFhA\nIfa+7/IzGU0ximVF7Y5iVNQFKKsam5fyddKq4TYGHWIWqm2Jks5KsB5aJSrPavjULgwIEAodhYAy\n3b4xMHQ9CoMIoKCFzgNEhLl+H0NR4nAgOPr4cIyMuIDN6SWWLBjqosG9A0k36D2DTbLDMJQTeuXk\nNt4ki+52METnLn0XyerrZwXKK/l5f1zj+pHsZqcvPsX/RqXhr4d9fIW4/a9Ta67eLnCLuIplkMKZ\nMWyNwj0ArDN0YWjgUrhy7lGjYAntfpaVUKxwT8ch3rwn1/rwZLCXltOULVNVjgEFYPqxjzuUm1vN\nNoiXdPnOyv08d7qy004bD0uamoxCIN2QrflOhQiyU0YnJ8h20q0x55IOBJNorxPvj34GQyvF2svu\nCKMDiQru3XIRdyX0WLQ0g0qBtAus1XwPECoLF1oCOswXfxdNTK7EWK7/y7fvoccoZ3R8jOW2jW4S\nOJeSHsbRl2Tuv7bFYi6pRr+KYBS1HXMLzWfPcxuAjuYN5dqcYQ8dytRZb4x6TU2GuYJOWmv7GA0L\njd6RFC2rZAvftDbYzV7ApklLNNzvCw8o1Y8GXvo8kcIpgFNr7Tf5/38TskhcKKWOAYD/Xn6Oz7gZ\nN+Nm/JjHHztSsNaeK6WeK6XesNZ+COBXALzH//5dAH8Vn9GK3jgORqMx+v0+pq9IjtjxfIyowNMU\nOTpsVfY9hVcfyu/cTkkG6nWQ5YTDVlu8eCIrtB8qVEQN+q5GwJ2Z5Et4uoFHYdOryxUMf6BMjgkJ\nWCgC+ERLau6S8fAQ07cE8aaPYuCF7GJHX3WQsd3Z0zEquhJ3jyVHHj09wzceSkvuGz/3czgcyorv\nwKI7ZrvMIxvUMUhXvD2n5xjfkZz0+e8u8OJDiRo6ukS3lGN/5avSgtu+OILbk/OZDgKYcxafkKPb\nbesVHkbELJxeyd/bIkNlZZePYhc92vf9pZ/7SXzjZ+Rao1LhbCvbakxoL1QBtzUuNAYNjU5exAsE\nfTnP/GLRdntRE348vd3BdEeyWjGDsW0LrcBY0WPyVRdPzpn8bySq0PUOQ1DkdZqh35NIIth08dod\nRovHLo4O5BlZPGJ0VBd4zj3wJx92sLyQcz595xwvj4gizQ/gMErpx61RTQ9vvCbPWeQNcXgkx0jd\nC2jIPNenbAdPPESgjN9KY3ktPx8cHqJDj1S7rZAvBWfSwrWNE0CzdlDuVqgKuWdVnaCmglJeF/AD\nMmz3NoTN3o8y9By4bBcXFZC19pFuBQavn3l83u7DXwHwP7Hz8AjAvw+JPv6GUurXATwF8K//sIMY\nrRFHEcaTQwQM1bQpsaOcl28dVCzE3Du+hYfkEniRFHLi2MVqK7OwTXbIviwP5jju4D3KYdtkDRUM\neDz5XG0Bs5GXou8qnM7k6ypRyKmYnJTFXpW4dyAvcXQQYdCnQUqxhnNCpuH4DqYEEcWjEA2Liq9d\niGT5T704wVe+Ii/v9PCr0BFj20pDtxqTdL9SYQ4vpomrcaC38nA/fNDF/FzOZ1lt8Z1TPtB9matb\n3hYrehR2+reASl7iWgEei0+dIETFPrxLRmKeF3B06+0Y4c1XJWX4F3/16zikoQq2Swyu5e9MCwRr\nFGq6Kemmg4YmOa7SCAJ5WbI8xxVFRrY0LLlYpCBUAmdpjmzL1Ozv5YjuyMK4WM1REn+RG5mrnjfG\ngmnZneYYi0Jk6b2pweWQPJB5F4sFfTobmtqMXbx83GJSdvsU8zS9wouPvgMA8OvvIGBqMt9REdzU\nyLXM7ZfvhahHcm7LvAcdM0R3+BI/eb5Xq96pGq5iKukZWE/muc4ygHyOVl9TRwffVyhHgZqMUdcd\nwHYJ4y6avRlMa3YUekDR0KIgA5ygNTeu4JGJmS41fEKhP+v4XIuCtfY7AP4oLPWvfJ7j3oybcTP+\n9MYXAtFY2xrrfIXOCnAY4iM3iMmPj8MxfMpSNaVGpCXEG4aENlcKGXeg9SZFj2zGOrGIqdCcaoWI\nK7BPEdigzGBpe545fczYmrq6nmHOaOJiV2BgJSwd9WXlz4Y5ykYKSl7Pw9CRn986GKN3R2CywXSM\ncku7ueK+nK+p0A0lFK1253AzVkGVRraSY5dXIrZhhhMYT6KRxeUS9YVcXyd/iIcsNH1z9jGuWKB7\n95mc+8p9iPt6wc9QaMioi9wAdbu75xkiFh0vyS69uN4hJGvvzeNj/IW3xUJugg48Fs90bDBsPSWI\nQSizDTLOD1Cj8eTr0F8gIrak64VY0epvQxbhi6tzKLIh46CDmlbt6eEl3JRt6eMutn8gu3/nbSki\njsshRvfk56fvPUHgUwxmdopyLfN5fnaNESOWkGH5R+snuKY0XTQxMJXM7XL7IeqVtBST5iXgUOX5\nsYT4z3anOB79AgDgLBogciTliZoS+Uu2XD0+F5cxjCvns0yuEGv5XWdeAtn3OF8uAka4KqFIb3mB\nhhGbrYO9MVCzWaMibVhpF01Krw2mDE7HwKfnxC7bApRdU14XpuB5qgzbzZ9BK/q6ttitMzwvGlyw\nXz2MvX1+Wh0pdHZys46O7iJuqcxUDyqrFTzyHY7GFVwKgSwWK9w9koepcleoCqogZ6QpFxlqKu52\nuwGOqGhj1yk2DOe3ttjrClYp8QjbS5xeyAt/2Df4BYqlXM8M0kL+Lpz10TCMT1rl48J8/7ONg7KS\nF93uEpRLmn4Q81DNz1BN6W61NMCBXF9/ucatAzne1yrgA3Y2zk5FkCVtXkAdSQrT9ysY8r6juAdX\nnh90XB8h89K8lPRik2zRJ6z8ra8d4v4t0tLVbm8K65UaTsh8nuAYp+iidgi7rTVqpkyuO0YUyXn2\nRktEhGOvSL3ezXeoyVA1fg8Ob2rzqYNbb8lnhIGHS1/mIJ5JmnBd1ljxs9OXDZq1gMXOFx+g5IIT\na4tNIA/SzpFFeJdtUVKFardI4USyKKDxEDOftFmJsngi80IxlWenFzB/W+o5m69/A1uPi/7hWyhf\nl+vuxpJq9V5tcLak09dmhs1WcB/h9G04Q2Fa6tUCDkFLINVZlRUUoeSqVnANuT19F5Y4FOP4KClI\naSkN0GQiUAQAGhYNuRGmrhBR7CX2eojxoxUVbliSN+Nm3IwfGF+ISEEpwPgOqiqHJdGmhN7r8rlF\nje5U4qio42F0JEWg9FT46MPYQxNJFOA7x8ioRDw0Hiw1BDTu4tFjWblLFnWSLMGQHY6O28GBL2G5\nl5dYckd/njeoDVWXiUdYz+bosXC0cnr41lPZlfIX19hefnN/TX4gO8L9WxI6v+U/ALjzYTpA3Fql\nXWzgs8fsTBlaekBJC7ngYR/pgnbw/THq9yVMfFV5KFqbM2oh/P7FCo8YxbzVxHtU6LDXheMT35Fk\nMCzWttDv0PdwzHntRl0sicDrDQyaWqK0zqiPgoYxil4CyS5HytSugkbNLkJiSuSenNt6naMkpoTg\nSKyMhw0fv043RI9iKLuui9VC5jN0LNJUQvt0I2lEOrtAfiXRTVOcIQoEK+DvDPpdue8PRq9hOhHU\n42oh51baM6QDmdvOSQiaVWNbbhFR62Do3MEnHwmcfFXJ5+ZljYKu4Y8v1kBfCteT0RQliWeza3Zw\n1BZpIoXNpaqQs2g+thugxcscHwEkOWkKy9iyhEOfz/LsApr3UlsgoJRftdjAGbRoWImEjRth81zm\nwgkqKJrMNKbGroXyKxf1jxgpfCEWBc84uN0bYlYU8Ng/OYy6uHMgIezx0QF81hF0U2N7zhvWhuJx\nF4YUYMcrELLd5ve6sLQ7z2YZunwJC0q8F3WFxYrtPddHL5Iq7d1bBwBt4mNnji3bb1c72qFXQGcs\n4VnUaDw7k5f02ekcL+gclRcNRj35vJ+6Zn73WgfqIzlGvrjGAc8zcIYIGK4b8isaNLArKhdVaySU\nEb/+9jf3AJoyLWCMvCw+KdRlucFjpl3n2CC6J6lE4zfY8dlwtMb1hhwLgp680Ifjy+Pw/rtPccr2\n68j18OZt1kHqBQJyGEpyB1brDc6Y853lFS7Ldr5LXJLjfLnYYUM2alPKeV7bGg2BOaVy0HSoHPVU\n4+pE5v7Djz5C9om09RKmRygrlKUseqG6h4g1jOG4wVdfoTDOwW302REoTuTFu3Pyc1gamcM419iQ\nE+J2PCzn8nnV7CPcdYRXsk5lEX738gIJRWfXl59CUSymCocIfknmYv1Crnn26QtUXbmObn+IUasE\ndZHCHchikn8yh+azGo5kXjuTMbRlPSCMwCYDjHKRbCVFOb++xuoD1pWGFPdNrhBTf7GqFBp2VELl\no9zJPVnrGN4xXa0+47hJH27GzbgZPzC+GJGC7+Hug/twz5+J7x6Au+MJ7p/I7nkSD6BYSCyWKXAg\nS2lWsj883yBas7LeGyEOaRWXNUjZr14qi2vKsW0Yys4uzjGjs3WkGkzIAMRijRmZlllawHA3GhAG\nHLkKD1nVrsMutpcSwrlVhQk7Ed1xhNcPJOx+43Wp5OebHU6pPVA+fY7oddnFO0djVATpFJ9KpX/t\nlnjxkeyIiWNRXZC15zToBCyYKg8Ftf+0YjrTGBDHhU0BKKYHu8UKBcFJZVXBkEjT+nKGOoBHXMh6\nWWFBFugL1WD+UiKz+0dD3B+yQMd0J12t8D4jpbMayBhh+E2DHTHmu8piQ7GQXdWSshTUUE7Ut0vU\nKcVwfnWHZ/+rdGCsegKvlcE30g1AWuy1HX39HoaR7OxRWaCccTfebtF9SzQuum0HJJiheSpRXKYt\nrp8wyjzoo2Zq4rgpQnZreiOJ2NJ0g/eXMm8pDBzKtnc8g2xHMpYnz1XtTZBey7lfzhPcIeYkPohg\nKcmX9i1mn8h5mIVQhI6f+Agp89bt30GZ0rTo5fv44IU8W++frbAig/MuWbmdYRcD4mk8p0Z+KXM1\nmI7QjYRyFPgO7PbPYPfBc1zcnRyjWKzg0e/w7q0eRsw/3aJGWrFyvGxQ8alPqdvoZgVi4v11U+/b\nmsvTlzh9IjnnIrXYdeQBsW7rAXiITk8m2FQaJpeXIgsGKJXcxI4GNBWgRqy8DxIX5VYepNhXOKJI\nx73BGIfs6z186zZisuuqLh+q8yFCXxaFiXHQP2IIOwlQUo3n8pFU089mBRYU/gwf3MPwnlzf0VCj\nmsl56qRGxJz50Us57i3XxYTajirycEY9yl2eoybash+7KBkkeuxOTIY+Jq1MvLPbh7i+1ugxntWV\nhmIL1zLPXl2p1kALtdLwbZvvApqW69usQcJ8t2THoVQN6oo8AtWgR0GSN5Yh1q2sebBFZuQF6tEo\nV4ceRgNZmN7qvY43j+XvfO8QB12a4lYJNNOHyYHcj/XlOZakHtehxu0HspgMRndgGWrbqt4LxZYU\nxkFWYVmRORlFcHoyR7eP7sKw2u+C/Ax9jfOESMihhwlVn9x7t5HNZcHKkmu4ZJWGXbm/tnFg2CaH\nCxRLWWQWV5eoc7l/rzw8Rq8VfCVbt6kSxFVrYZ+g5nGNqhDRK7MsGzTujcT7zbgZN+NzjC9EpOD6\nPk4e3sfpyw8xiaUCfnx8GzF1C21SwtAMpO5U2KXy/dVOVv5X7k/htxLwCJBzF0+wQUosQDzqQLsS\nomXctS7n16DqOzwnw4CS3bozwBl9+7KzBlOH/pCy8OOOHeN6JbuL0ho//2WpdJ+c+NA5fQlDFwXB\nOTVTIm9cYjqSIlFXARF3dJvuoFo4K41lorse5pRmO7vc4FNWte+sLIYsxg6Ug0P2vCt+736tEVHT\noIx8PF3IjlchBzMMbHcaA+oqDgbsTvS7iLkLmqrBim5at6ZDvH4oO+Ek6mBAKXLL8OB6/j7On8hn\nXCqL+kpSHmUMtuzylKpBRbBDltK9KjBwaBbjeQ004cFf/XNdfOtvy/G8+YcgmRH6gZzbSTHEg6Gc\n83jcwNC2HabAa3cFQ1BtLpFuyd4nU7PXc3F9QbbjcLKHxT/99rfwlPdy5G4xjelwxWehF3cxjuQZ\nGowGCEc0ZJn4yGu5J8kVuwhuhrt35P6OplMsLyUVLB59D2dzSbFm2xQHA0k77g7k3mnfwiNjVMca\nhliPYDpGx5UJmMcRZhSimTGdKfM17oxlLu5PhwgpMWfXJdYzuqY7Bay6wSncjJtxMz7H+GJECo6D\n4+kYD195Bf1KVtTp6AiKyK0drqErMvzCDiLaI4/Y/HW1BU2GkRQ7eI6sxNVao6I4Zm06UMx3W8m3\nuNOHyugcXDioQKfeIERrH+jpZm9w4nCr/dmv3cXv/p7sEtlyhldf/QkAQH8yQrUmUy1fImxdkAlh\nNcMTuLnspG7gwtJCTjsjWLYRvWPWOGwfk0aKRZV9gS0VqNM0hU/U4yB2EB8R6VlLzvprdoId+9Jz\n5aK5lCJhgQamaaXCXPRGRLwRDvzm/WMcHQoyz5ojFAu5D4PAx/GRIDaPbh8iDuWcyrVcx/HRFR6y\ncBvlFk8vWXRLS3iaubPbYEeF4lZCVDsKtq0ZqQYO7eR6Vwa9qVzTs4uneDh9Te4Z6zNH5RgwNEPJ\ngdCV3XPYjVFk3BFthW0uGJauFfu4ThahO5ZIoWhKVERY9qYR7rZwelfBs22NQnbgUVijO5eoI3NK\nHNKgJ44CeB0qf1FC7+L9S9y+L/PTndxBdS3nVlYlOkNCt/u3MGG0GPqcE9XA8hmrkwqWTtud+yNs\nL1l3yEJcpFJ0pBIeOv0RuvTccP0uFIvcqFYolxJFZ6mC7v9oNYUvxKKgjUHQH6IbuXD7EPUTAAAg\nAElEQVQW8iCpJEONFisQQHFSd8sNWsMbw5BLWYuGdNPlpkDAF73OS9gVuRS9AprS56OOvBDdToSC\n2HEPav/AJssNQGGK0hrsyJnot0Cf4UPcikRC/N3ZDsW5vEBerw+zpRqwHqBh/1v3ibFQDVDR9OV0\nBhWS1hwBzZoP9Bnp1rpEpyffO5i+im3xgtcawwspeaZcFJfs2RtiIfQSmhJrccdHQY0/oxVcgmJ8\n7eCYRakeF4Wx6mFi2xmwcGI+3K6LA7Lyht17UFwt65ovjaPx5kRC6rf0AI/Znbi4eIon55IG1KHB\nZtuyMSlw4xrkZQvGqaAI9HHeyMDGDjpBHxF/x/DueCrB3YksUvXlKU7uy9dw0j23ozm7RLFiulIT\n3NQZoDqT+fT7c0wohTae3sG6kgW+gt57kjYuJdKLfJ/azBdLHFAHsaMsdpcEX/nyWX3vENW53P80\neoQuXbF64wPUhLHjoA+PMOaMepauncPQhKaeJSjpQWmg0Q9a8R2LSV+udctuUGUbxIb4jqKEc0Wm\npe8iIQUgVzVwSaTWZxw36cPNuBk34wfGFyJSACyMrTAIDrB2hE22thk65P9Hw9vwaOnWPTxEQwkq\n5cgun6XzPdEoLpq9F2FhGgRuK5wCjA4EF+C1gqFuB6ZhZLKzmK0kTEySCqwtoh8Ge/MNt2LxZtUg\nYmtOVxewDOd10cAQgup2A2jChhU1hZUzBlxCUZc56pdkUaYNNL0LfUYoxm/gH9GpGA4mb9Fdud6h\noUFKlZ8jdyXqqam3EJQ9aFbnUrcEa3lwPQPXkeuediL0Q5mjW13ZiTpOiUFf5jM0HsKawqeHXYyO\nJYR3jYuSCLuSlvTB6ADj8v9l701iLUvS87Av4sSZz53f/DKzMmvoLvbcJEUKlkxJpixItgEKsCHb\nOxuCubFhwAvD2mnjBRcGDAMG7I0Ng7AhSja8EGAuZHgAJVJuubvJ7mZP1VWVQ2W+l2+885lPhBf/\nd251EZI6i2WQKeAFUJ2v77vv3nMi4sQ/ff/3Ue7++AiTFWXs9kJERmDl5aZFRo+kJoISnkLLhHGn\nFFpyCzz/bo4xS8p6Fu9o3OJG7nkWzuBRfn4UTpEQz2u9IVqIx7ZqruB1bKQKJZQ0rcKEuIminuPk\nHYr2eCnGb8u+6MoL1LSwN5WEY7lrcZgRet9FSBVJWKIA9UpCpT0KAGWjFV7KpWGiA4zp5+vIoovE\n0zVBDEcvyx+JBdd2Hz7FddpyiShgo1w4REIodZtG0Gy2y7iPXX0Lr5Hv8HQOR0rCZrtF0odmwWCH\nT3nV8VocCp5nkE1mgPJhyeLTFStg2rvdJaKRLK6zFUCceMG4NtAdLN3SJJghLyTWM87btaE65YCS\n2IIBpSiCGl4h7vxN/QK2oQCpamCZLV+1NUIGvwkBOPn6AnHJ7HSWwWes7uYGWMt3e0MDj9UTzRDF\nrl8CZMdxyxJuRYKMcAXtyTVp3ceZDXQuD1uQTtFzeatNgEJJVlt5NQJFQddEHprr59eYFHIwJacR\nNB+E8SBDlLGLLtS7Q2FE7MW7bz3YAXYSs4/mSu5jMkzggwfVIMH2XERZ4pls8jZTMAyfTF1gX/PA\n0jkOxrJJk4FGWsr35TxAkzTElh2TntXweejPi5sdCGmWxajpdresvmy1xrGTrH2XVWgbmdvV9gJh\nKu9p6g6HZHkGcREmUQBbq0fTFB6VroJwi5psUJFOkXcEohHI5SlAG7m2srEYkLDECy1WVwRDzdlz\nHmroC1LOL/1dqDSMDhAwDPKzA9Rr+Tsbke+y9OBPJASrnj6BisgQFvmotzxl8goRX9cj+Vetxqiv\n5J7DxEdniAXZlrjmvHnjAuUuMH61cRc+3I27cTc+MV4LTwFKQRkP/t4Y9Zmc4HVZoM2ZTR1oWEKa\nvWAMa+X0DFKKs2xW0Mxet3WBMJZaujIrZETK3axX8OlexSmzse0AbUcr5yt09ECUv8KKvflda2FJ\nSF0S5txeXaMN5bMeTQZIaW29yMCnm+iFAbyY1opNWdqfwlWkCZtpqJzaC/ERNDPS6VjuY3O1QLQv\n9+HvjQFqVthqjoCNS3lu0TaUHIfMSYQClroWGETw6JYPswyGWfbIKJQbcf9DdmXGyQgePYLWv0E4\nEQvcdBEULWk+f4ac7np6TJmzfARHSrCyvISh16RWFWyx4DWXKEga2OMVmtog0LRJ2qEk7dq3/+9L\nrIl09MsK9+h59B6RrzvkDLXScgDvuIdpOzTEQChjUFFjMfHkPjpfITuUcGy5vcaUiT1/6EPl5NHw\nc0REJBZO1tT3gC1h7MMgRDgkWjSOYPY8rhU7I89eYrmVuTrYVji6/1CufbQPr5twneYwC9LUzeXe\nws+9id4+m2wGN2CiMRghIldo2OboScoDjw1Ogy00dU5RdNBEwOpxguCZzP3tKsdt9OnYnF+PQwGA\nhcMgcoj6HofzLfJUFny8HcD5VCSqPoKLejoaLqzXoepbAB3gRzLZXpTBO+MDtF7BLRnD9UCRJkfn\nUywFCoou5Xp1i6dUU1qUFm+S+67Xnfzue+f4Zeo5HsaP4J9xMw6fwXjEw6862O3/K9c042vxx6VH\nR5cbALQ2UCWBJ5cUlX3xEhFVikw6g1qIshKGFh4pwl11jfmTDwAALfMr9XIfyqPy0k2OFVWMVNMi\nSniw5C2sEffYJ9CrfHaGlnMR7HtQdHfXNwuszygw+6zAtz+QPEHEisMvvHuEs0pyMXvtFBG7PAtv\ng1u2WTdVhYahV09C41Yl2AYBrYCWLeCP25+geS6EKu++GaP8iGvGh3zfK3HElnS0t4gIMTa2QMUq\nweP5S1y87IFRkqm/NzvEZimufZ5vMCHoaXK4B8MOVJcqhAQLmZqckqs5rtkZ6fwEDbUmVduiuWCY\n5kuodbGwiJhUWEw+QHUp+ymabQBfwq52GsLOeRjyQLdPX0J/nmFJFqHj4YybFjUJbHSuoFg9wkLu\nw4UeDCtDZV6inMu9zpcOl1t5r4oMqm1P3vtq4y58uBt34258YrwWnoJzDl3bIkvewP135RRcXb0A\n6BJbZVFWTLo5H44EH47EKlZ9TITSzK/ROrHMeXuNWyYXQ6/dCcb0cF/VKigmIltbY80M96qyyMkX\nANOhanrqMrEYL4sNjt8UKfPs0VvoXool9cwNFGvTSBbYcVvkkhB16GBX8n1d28CtWIlYdbCxJNea\nlpb0tkBzINiEIM+gCBCy+RYtrXvVrHf6ly3EGsRaY5BIPduGC7RtTxDjIyC8O4g0IiZBQ8q/bYtb\nZITXFhcODYlTYBUUxXCyKRC8oLfBxi5/MIBXijW7bRQidgOuFwWe38jrL9YVKuIb+s9qrEVHejGr\nFBTDiu2zDIOpiKsMJzdwC1mTPcr4zQYn0BSwGbkYhqI2bTZEzQasyXSEkAnbwVi6JY32ESU9/+cL\njD93yDUL4LEC09Y3UKTQqxgm5QoY78kcpycHKAm3VwqIqB14kgh38egrZ/gDLnqklqgWxBNEHhSZ\nsvMf3cJj92x0//MAgM4WKL8hIUqTb1FxD3njFBUBTqm/D9fJfVuPHcHFBh25Psp8ifma0oq3awSU\nQ8yGUzTVp3vMX4tDQWuNOE3gKx9hJhPVrhfYUGr+svwAQ+LyQ0/DH0hs2NXitmqYXTeZHwyxoVR3\nq9Wue3I6GWB5LVlfnw+CdSU6lnzmiw2WW7ZZVzmuSfi6KFqErErUJDn9ig6gUllYvT+DoUupqy2a\npbjznh5DkXXT8VBRXQVNrUwTD+BYDq3ma3R0Ke0By7DHj7B4LoeCSTJ4SX+AbLEhjn6z3sCyzFgs\n5fdni0vcD6h7se0Axu1dV8GQAMRYYEJZ9oIxqaebHTvQYD9Gncs9j0fHqCO5v2QcY/K+uPaqlXnN\nNxXmBQ+9JETayHW8XG+woHalazVC1sh6wpLI91Cwv6KFgkende+dfQxmMs+fe7i3MwD+XB6IrXeD\n/Zg0+CqHT2aiZblBwNzNKB7igByMPlGVXuzQQh7+GCN4JXMfzRYNS5lOeyhZ5WhYfaiNw/G+hIqb\nOEPKTtIwHCDLZC2XLLc2W4UDCvfePs9xzf379VBh1IhBqswaivmhIJDvslGDnNoRhe3gj7hH0iGS\njKQ7t0sEI/m7mvtYFUBB0F4Fi465AzfwsKXlM54V7dBPMT6rFP1/opT6vlLqD5VSf0cpFSmlHiml\nvqGUel8p9XepCXE37sbd+BdkfBbV6VMA/zGALzjnCqXU3wPw7wD41wD8l86531JK/bcA/iaA/+af\n+1mehyAdwYQKFdlr7ShCQ7XnyndYkEQlzhz8NTP4iSScPDj4tNwm9AA55FG0FaxHl9HmKAm4uVnK\nv3EaY01LubYdlsyc35Q1tsyWa+XBEEraZ8V/5ReOEN4T6+E1G7hALIJzPpwhXdmihmYLpjOsLwcx\nDD0FzwygHojVMXULS9cPvvx9W1Swv/vb8lnlAuZI3GBbbvv8FKq6RsFs+RWtQdMWeLESa2yN6cv0\nqFuhfAcAf+BgKGTSNvSIbrY4OWb9v23gqFztMg1F/sTl02v85AWTmPfFO3jxtMT5nDXxaCWFfQDr\nFwu8IFfmbdPBMvRyVOwqPAfbhw/WomZy7eiNn8e9r7ACs/zujqczNcRhlBYxu0739RRrJtFuthY1\nORcm2R427LUYcv21bhGztwWJQkMLW1YOPvU7q+YGDZPJFfEkxlcoaYHjcYKWHlYXJjj4soC6zl/K\ntS0+KPBkX352t1vMWDFZdQqYiSfgZQ/QJvwOEPq8MRi8KyHfKAp2/A6d56Gihio8g5Yep+2FZYoC\njrDs9XqNFUOwzgAVvd4PXYc2/HSP+WdNNBoAsVLKAEgAnAP4VyC6koBI0f/1z/gdd+Nu3I0/wfFZ\ntCRfKKX+CwDPABQA/gGAbwFYOOf6IOY5gNN/2t8rpX4dwK8DwP179+AZA9XV0KSRGpf3sOgEueeq\nAJZQ4eK6QZGwJ79jVyN8gFoAm6ZFs5afuw6oyadfew26mjRu1Cosl1v07fh1W0OzoWazWKNo+sad\nECFLXS11HgeTdxCm8t7uWQS/zyhOSmDNrjZjYZl0q3rNl2iDaCYW2Kh61xmn3QCK+hOulISjChsM\nOunwK68W6GomrUwBxfvwmxCa5al2QaQgDjCvJOa8fbKBZU5hvVljNuZ36wAxE2YjVrk2VYMlOxyr\n7RS1Yn4l6BBs5V6/99El3mNNHjU7Lr1L3OZidZNBiPhQJvTaVViTmFU13W6nWXoKutLoW1G1AjqW\nKk/+0hCmL6cN3sJoLPddzmRe9ONzdOx2fVl8BFNKafRyUWM4FI+muNoiUOL1bJjvGSNFQQ8RQbtj\nTVLaoKNXYQPsErOOMfm62aAhYjE9GCFLqErdhfB8yVuMG8kjXT7bx4zX/hIGqpDPWFxfoJ7LdVRR\nBRVIPub0vqxHsL2B7bUMly3amsnoKsc2YuJyMIRhYtOsmIw2gEftPT9QuKVE4mrtYc79NAy8XbvA\nq47PEj5MAPwagEcAFgD+ZwB/9VX//qel6L/+ta8627bwvRFcwNDg595A/AOhJku1B9P1VO0RurVs\nlMX78i+sRjpgm7EtYQlL3lYtWnbDxZ3Gxi74HpmwaH+EgLLuaxWg6OT1lTUYkho+8ENodrXFrAlr\nU0ArwnwDB/dQzj1v7mCPWVeHAlpxL9Wl3MfVd55g9Cb5Hr/wNXQ30t7rrq92GpJeIpu825zthEa1\nNvDfEAKR7uYZNHswomPAsPqwR/owt9YoLLEC/mKnD7kuLS6uJVn3iycT+MyyI+1deIWyZIt3WkFZ\nCW3yq2tcrWQTR+sG/7IvlZ0/JKZjk7c7mrOb3MNBLA9KZVss8v49FsbvDxEmONGipLiOc7qPOvC1\nLIUiEK1oHcpf/CoAYP99wUe4dIV2KH+3X38OYSPzXdR7SHXPj6mxN5X1CwdyOBhr0fIwbZrznZiN\nrSJ4014afgvw+vqwxakp9Eyufbh3hHbOzz0aQJdyiE6mUol68PPv4cdzqUTcWwDRC0mEp2GMOJYE\nen5zhm/+WO7ly2v53q/+9X8dxiNY7ryGT2p8my+gb4Sbsry9hmUInTyUOdY6R0X8R2cUtiToCeIO\nEVW7Wh1ABX9yOIW/DOCxc+7KOdcA+F8B/DkAY4YTAHAPwIvP8B13427cjT/h8VlKks8A/FmlVAIJ\nH34VwDcB/F8A/i0Av4VXlKJXUPCMj2q5QUhC0LCdoyOxyHbbYDYTU5Ltx2hCIQPJryUh408tApKr\npukpims5PZ1ao2TYYVyEOBeL5zPpk6Qhqp7m7SJHw+Si72vE5NOvjEbBWvEbE3aydSnOf+/bAIDh\n19MdmYjNNDoSqZoghPo81YGPRMo9fv4UPpuxbOrDHAt5qH2vhp7JZytyKLR/MEJRynk6+LkMekw3\n8fAIwRPxePTaYMMQ5JZhy4UHhK2UEw9chJChlnYWOV30xbpFcCLXYZhQ2xumWLPTskaIEanC3n70\nJrbkiKh+5ONDJnFVJdd2sTfDvUPxpG5VjmvCw89vWtQlsQnW7axPS3vR5i26HtIIC00L/bW3fHyX\nCFHvrMKcbNOeEU/JxXNkDAn1YQK7YAl3YJARB1z6gOvl1BgfqniL6J6EFynuo16xFDvwQMcRhTPY\ncA56EcdwGKNhQ9ty4XDyFrskRx5Y+cZ2Rb3LkxXeGMjn/uisw0tmhMeTCtkv8rubn8fKEgF6TLq+\naIugz4fHDoZoUxt3CBvxSFXRwGcSMyTzM6IUm+cSPi5vHDSb3FJP44ohb1lfAsTDvOr4LDmFbyil\n/hcA3wbQAvh9SDjwvwH4LaXUf87X/ruf+VlwaNHBmgYlmYnqqkGV0YXHCG0P0XUpOoq5JMfMkHct\nSlYRNl2ONSmyXbOFZja5DANEe8Szk6a7g8aW4UOhHFZ0xdq6xXgmi1jaEAOSsuwPxXUO3vXQPBOw\nSfVSI424YdMK6pgajJGDItmJfkvi0MmvKlheZ7v9DtpNyLlMEfAwcQT8tOMc2RfkwQ3ejIAh48iy\ngyGbVF1UsGu5/vRt+a4H6xghXfiiWyN7yYOgWKNlnuT6tsBVLpstJB1+kDi0PEwaDyDEH/FbB8hy\nWYf8nX3g9yXkGT6T9RgMc2xZOXAfLnG7krg27LDrbXBGw2e3pusxUZ0D4SJQCjtlqXnrUBFu/ZPN\nCgGFbOdkPp5GX0SnhODmuvPgs/8gyyIk5Kn0ihpr5nzKVg6v6LJEMJX5DgceLDEiLm53ocLSOqwI\np96wcoAOqHvAVbtA3VIZa2NhB7JW3UDCiLr7COpGHlKcNDgOZd+4kYVlxSR7NMIv/iUejAU7Kq+/\ni7qTObQrD4a4GB1bWBL0GG8A7fddvHKfnRdhSXj/2eYKLwm4Onxrgj1WjC7WGpek63/V8Vml6P82\ngL/9R17+EMAvfZbPvRt342786Q3l+uP6T3E8mM7cf/pX/iqGvsZjWsqj8CW+eSNu1uOXNULCXL00\nwjCRE3jGk3hjOhi6jlvXomSvkR94mDIcaUONza387JNBZT9zWDLrG2497BM2/fU//xDRyZsAgJNu\nhI7cCb3233vqy4j3xdIs/TF+5SETY7HGt84E8Xf7h89gyCT9+TcfynVenuEHPxIrF+dP8PRS3lvP\nDQ4o6nF8JNbMyzLEum/E8jEkNNbPRvBYKzd6ioQaFn/4+AkA4H/8zf8d33j8TQACJf5r/8GvAwDy\ni2fwLsRqPn1+ho9e9tBrGWEU7lz8KPLh0V4kWQiPNG2xb+Dtwg1xYQ+PJ/jql74gczWeoaVVmr/4\nEP/gm/8EAPDDFwtoJnH/1V+TxOHX/uK/iSNyLLhFsQublt/6Bq4fSzb/w/MlMiYoe97JUBtsmSTs\nlINP3Qrfy6DHsk5NWaNVbKZj56tzDS6psemFCn4l391qwNPUirQFHkTkgtwXD+ok8/ABodZXT0r8\ncCVrtlYWv0/cQBAxtC23O7KfceDBZ6i07SwawpGdBXwK6QzJK5j6Ghl/ToyBY6NfUdfoKNpzldd4\nyVAqb0k7pxRa0u21bQMQpg7nAKqKw2oo1XvUq2855yQT+s8ZrwXM2QQGk9M93I9HUFr6CH5UzTGj\nKx7U17glsGimBxifsreBGfB65bBh5jX0fXh0P4umxi2BQ7MkgW8pBlJTaNVLMSCL0zhrsWrE9b24\n3sOXGD4EfoqNlsPJrBnOfHGAd0h1XmnAUay1My2qhXACNgfneLsRtqRaS4b82c37eHr2Pbm2coWM\nD9ssSaEo217Qlc2Ugs8SaaW2O8IODMKdHuNNu0KcCutPeJ/isOMAs6EcbufzHKUSl/P7738feiGn\npVc4aLaDG6pNxYMBfIK0EuOBHjNiL4Sv+83vYRDKvOyN5VDYG44RJFSFinwobmJ/FOHn3n0o84IP\n8YxgmnN2eP6CdfBa2ay32Rm8WzlAl9e3WM/7sucWC4Jz+gdlvV4i4M/GBBiN6aK7BqqTa7uq10j4\ngGhW4+LQhxv0nJ41tluS8fohlnzIsK1xU8rBsez7CE5O8M6+7ENzdo6c3JYfFTlsKNe8vmZI4Sz2\nA8rLO4eY4W9sfSiiyKaxhwmBdg8m8lmJbzCJ+87fAIZyBZuiRMs28SerGt+/lms7r0gHkBeovV4O\nzO0IZdABaPvYrIOznM9XHHddknfjbtyNT4zXwlNolcXSL1GfaZSVeArGLtGyuSYMffwST+vQz7AJ\n5GQ/v5JT1G86BFSULnQDj6fnvUGKhDwDhdqiYYJmwL50t92iZlgSZAYP9iSxN/MDFK3Uki8uGsyM\nZOJLmp3ZfgTLRqp7ex0sIbg/vD7H8oW47n/ha38Fg0Zc0X/03u/Iv7/3O+hYMZmkHgYT+dxp7CGi\nRUzoDquuwHJDURTtYdt7N12O1Vp+jpIEdkSLBnIhjBNMSZwyrxqYp+L9+PNrzJd0wVuDhImoNJP5\nSdIQGXkj0lTDksH6MB1gOh7xPQn2yJcwnsm9Rb5BxGu2myuMCJQJ9xMcHP0ZAMDp3gF+vBErt3cs\nXt5F/h42z+Sa9wONK6by33v6DPU18RkwAKtKFeXbF2WD0z3xbvb8ITJiDBYrHy09q8NJgoCYizdO\nJek6TYaIiVlZXK7xxJdQqu4cdCPW/b2rBZ4Sy3I6YyK1aPH0RvAwfqxwT0k4oocegh/JWoKhgQ4U\nAtrZ/TjBwVi8yb39AG9MxJN7+MYEY2JSBkzmWg1kDAOrvEJLfofWaRTEepystpgRmv5/XvRs5SVK\nVnAa5+D6Ys5Pjz9GduC1OBQ0FAId4JsX38T6uWT172ctAnaf3Zud4OANtgO3DmbLhaPLraIJskxm\nuIFBwyz6nkvhEwVWtgZk1EZH0Mxts4ImucfewQwJy5BFtUD1oSz4yItgdU8aKyClg8kUq7Vs4ufz\nHGEoi/j0d/8n7LPLcxgfYc3w5nu/J2Qr8ycvcXIsUz4yE0w1qeaDDkHXKx0Rv77YAowhC+sjz8lu\ndDOHIddiuRlgQa2D88cyJxdXVyD1IRwU7IKaBYUPywcriDQGfLhj5lEGvsE+AVt70xAnU9nEp/sT\nTAfyIKfDBIMRW4558DoHVKWsWVeHSK2s2Tib7cqC+7MDHDKfcbGS99bPbvF8Rbl0N8TgTTn0dVVj\nzrb1gyyAx+rRhqxKvm8QGZm34WwMv4/F4xxTMmq9ef8tDJjzGezJtSf1CJquf7G9wumH8sDmLys8\n3why1toKzy7lgdvjfQyDLV5eiPs9aCOA4dY4CjEOBVi0IenPRAGPBvId998Y48FYrufR3hjHM7nm\nYOiQ9l35fIpDY6AJXhoECi1Zn6xtsSwk5FW2Rk2Oxn/7RIzJ72KLP2Cr/UvboabGameBn04Vfkzc\n/2rjLny4G3fjbnxivBaeQtN2OL+6wTQp4Vgnvpo3GFCJd7gXImHixFW3mK8oyc0qxN7BHnwKaFSl\nRReL+6xqDwGhwl2ncExuhYL8fHsbhZfX5CYoWiiGJSd1ipI/ByZA0HMBkMfgMPbg1+IprDYrbJjJ\nv61bTMklmd8WOPuJhA0XzyUkmoYabw/F20h9g2FKV7vOd4m9Zkml5rYEYe3w0wDass7vLPyWUvR1\ni8u5WN6nF2JRitUcMbkkAz9CSwxBV9dQfR7KWgTkYRixg26W+JjEYrneGU7wuRPO7XgfhjT5g9kQ\nAa2iY5K0rdboyCvQbJudaEtTb6HIdRBHDm9TZWqP3tiT+QItQx7PDOAWYgVfrCo8HIqL3iBEuREv\nrKLXNU4iGHpT63KOpJDvmCYe3pmJ9T+eZkgoZhOw+uClPmwnnon2DRQ9pa2nkVzJdw+bU8TM5nck\nlzhtBrhxvXJ3h0cUJTK6hKbq+R4x2vuR2b02sMC9QNYpNQ6WLN/KpagbWTNQ6EXnBWJSBHrOwXik\n6C/X0MRpJMriIROT17nska8cJAh5vedphx9cUgGrs2CESavPNXnFSuOdp3A37sbd+MR4LTwF1bbw\nb2+Q+CN0sZzKF6rCF6ZyKr8xHoIt5PCnx5hGJDQln0I2DhCeEj5c5FBsBqk352gsZcCUhc9k3mIr\nCbzV+BBHPBaVFyMhLdfxw/soGCfH4WDHSFSSuyDpHLyey6FZ4bEWRNvDyOIRGX88XKMhEvBt6v2N\njk929f1EqZ32QBvEqNkZZ1iaSmqAcgPQPhBR2zCxDbQm/NuVSDYsLfZw4C5AR0IJDeCankfdWCii\nCoMoRkKOgMlA/h0FAR5QgfrBcYbpQK4z8hpEjMXDCDCBfEZLmjs/NAjIhBRmHrpaLLuxBorehJ+M\n0UQSSE9GFMi5DTG9ZldjV2BJXoRQA/uZ5AHmqsTZNZPJtMZRbDAgrdrheAhDvdH9bIDjd2QPjO49\nhInlOjUTg269gqL4jHIt/B4tW8/hmJg99TRacm4se7k93+I++4kulcOAbFFuEKEkQlQz51REPu5z\nrceDIRKiMP1GQxtCyFcrKLIuK5bO43gIVoMRmASOye/IGNR078JshNL2miAybz1AvbkAACAASURB\nVLnNoMs+1+JwU8laP1nXILofHQC/Z81uXw3Z+FocCk5ZOL9CtQJyQni/cLqHt9/5urzBVohCucvR\nfgCTycayxJbH0xF8Cpno8gDFtTykiMfoKMvukKFqZcEDUq9PlULBDfj0yQc7CXBX50i4cN28REOI\ncQ8OCQxQLmSn1JsluhsJHw4GX8Dj2x8BAPa7U4QMMfZ5bSZ0yCgOqhsABPRs11so3fcoUDvROORb\nuWc/8aBIVR8kIRyTS4nRSOmiDvgQFLpDQWq6tq1Q/ZQikx/yQUh8xARAxdx0h6MQexN52AZBAK/H\nGwQRQh6Wvk7QkrZdMZzRmYaJ5fC2XQ0XyaHYlEsoHl5tuYUf9A+CXM/e/gmaNeHKm+t+KuCZCGtC\njM9UjTUPlpNhT2dmoQwfbs9iylBjkg6RkTXbn6TQfUVkIQYApoONZP3tOtpBun3fB6hCFZzeQ/JC\n3r+kEE+rS2SJLNoPlrcIO6lEHJchQOFgzWTnYJwh5gG6PwoR8yCbJhEs5zNJPKClQM/0Y9Uon/Gj\nq6qdYbAIMSSL+Wadg9wssDwUDnSHDdm6TxqNxwyL7bKD7aXBlIajihhazsXPGHfhw924G3fjE+O1\n8BRs22J1fY280sjpDk7e/gImp9JFaLbfh2VCKTIRvCkbSoiSM2YAP6F0V9cgSElHZgcI6O52+Vbg\nhwBanuBJMsBoLL9PTYmzc/Ew8sUKUSjWvd4sUFTkU9hnj3pbY87y3ofXT9CsxAJ54QAF0YYXT1+g\nc2KNOibnoi5AUVGuzBo4eh62A5bsRAwdr1d1MEyu1tsGtSa0uS5A2gDUpY8NQ5CeLdnvGlS0Hp1T\naKkzobQHy5p2V7XoSN0Vk4g0SzLMUgmJAmOgGa95foAgEOuvgg6m10Gnv+tPTuHo5Rg1g/N7Xc0x\nmkYskxeP0VbiWZlQ8A2tbqBnDIm2Abzewh4GuCpk3j64vIKh11Ax2TtofeQsKfupAqcF6d4EmiGR\n0hlc05OxUv/TeoDq72MFQ0wGwg3UVuZAhy3uP5Q5uF5IubGoxjgmnuTd+RrvL5j4HLQAvTDHi1Cl\nxuxIPvfgYIK9VO51EHvwSEcXDjRg6XkRqGAQwSkyNVsf1nL9PIWuTxVqA8v79kAmbliE9FLOoxzP\nSYZTw+3qjw4Orft0fAqvxaFQNxYvLgoMwg4tQSfJbYlixT6BdQgdknr7/AZgppaCR6iqJRw3EtIY\nisG43VrYrYB3KlXDso3W9S51NYei0tNgcIDhRiavvaxRHVE3sh2gobtnyUVouw7r+RMAwOJyi9lW\nPvd8fYb3/4nkIrZqgYw06IdUJvJvHTryTm7LNTreQN21yMs+o85Md9vBljzcdImUoqtBaJDFsplq\nXWPFMKbN+3ZxB82N5Hk+cnaBKttCsbJTlRU0BWRDUuObzgE8YBSGMBTh9RFDtSS+sTEM8weaLMPa\nU1AkhrFwO0FbeCs0LbeX0XDsQLWkKY+SASaRuPuF32FLxarSeViwNn+1aTDq+SgrMRZlq+Az5Fkt\nFxgFVAMrHeqXZHpavw/FPhUQ/m6tgi3k0G9siKbvH1gbNAvZIyZukY1lrR5mck/PP1qjTviQ+lO0\npJHP193H2XwCy1TUAgx3JtEIQ2IafO12hqNV450mpK3k99vLLTrS1gMeOuaXitsF2o4hpFNovN4Y\n9h2cGjHnOPAjlFQ7cxa7PJhyDqqPzV5x3IUPd+Nu3I1PjNfCU7BWkmpfGI4REmpcBx6qvg9clTDr\n3mVMAUJwNZOScAEUYbLNooJHXQjnOoAWry4tFGXg+1Z5azQU+9x1BEQk01jlt7A3YoGDZARFq9J3\n5JXbAqkTl/PB8RjtmvXm5znefy6JxrUp8CtfEZjvvUisajdqUdEiqkECbEi7BR8RdR0WPWVYtcWa\nCUPbtjvLrXwPRW+hygo+lYvNRtzIqUtQaFYclNpZCU8H0L0KtvJ2wihDQphVYuDxOv0kRDgSTwKh\nkbID50izIapXs9ZmsHPZtD9Ex+y9MwE8wnmb7Rwl9RvSVObNDwLEQ7Hyw+MC8x8K8vLlTYPrNTP/\ncDC0jkzIY9WWiNlR6qsJQmbfvMwDMpKWmAaqV2v2SbXmYmjI93njFs5Stj1bQwc9q7KDZpgyuy/N\nbB/efAMdkZdH5gAbLfd3262Fcg8fNyd6rcI+sRnOduj6fbauUZNPtM1z+L5ch26pLj0A2t6jKwM0\nXU8skwKGLb9NAL+/bzagdUWDSd8xXDd4Y1/u9WpefgLR6CiY86rjtTgUlFIwgcazHPjyuwI6mZxq\nKM52vdpC7VG9SMWIGdaurxgv+yuolC20LgPqFT/XAhR0tVBobmWjeP0mVxaa/RW2dQgHsshpNcAN\ncxtuW8B6fWzfZ3RL5AxXhjrCTUWI8WKL2042zclkD0eDXriUsOR8jVFGrULXAB7DAMx3ZKVg6eq6\nzPGcnYNwLVZ0I0dNh5hlxqOpD1UTVsyVXI18jJixrsISikAY51loirhGoYfpSA7OmHyI4cjAkbex\nC1oserjvMdCRhchX+0Atc65jitdgDjg5yKv1c3TMg2w3L+Ac5eVfXECxtT3suxazGRSoNWlr3JKe\nfWscNGXpRyZDwLlPySpkXI29sdxfcjRA0ku4Nw0iS01I7e0OL8uwyktqYNhzUI5RXUkoUXRrbBk2\nhmuDphd3nbHa0W7ww2tZ67cepFBsh3dVh4jXmRJklw4ThFNqnlqN5VL+zgSAC2WtoyDBlgSyQ7Zn\nu4FFFgi4q8q3SNnW3U0yYCF76OLibHcy1iSjddrflSkPfIeKkP1Qa3S9UpnSH1diulcrSd6FD3fj\nbtyNT4zXwlNIfY1fOh7gouoA1pXt6BQVmeKTMMRizkwvCgRLKjf3ff5QGDEMaEwHQ6ipK2vYHmKg\nWjRsQKn7cMB5sMQuwHUI15JlTiYJlo/JrmtzNBRw6VivbiwA4gIuLpe4WghF2TK/xt6EnXHHM8wb\n8VjOzwXHkFqLEdmF0zYB2NiUbXx8tJAT/4qNVmULRMwst1EIn5bSeho0wChsgBFNr+/Lv296LcYM\nq4LCYs6uTHj+znpEnoeAybqcnITLqy3mQ1YRHucYkIfiZH6Fd7/8FfmMwCCKBCPSUok5b57j4h8L\nR8Sz+Q1+eCHWMdA1aiYoR6Mp4hnxJ7zeTs+xohWfX12hYbo8sjVqhgyx1yElR8AwJhzbC+Azkaw8\nh0Urc1xelihZ4ZgcHcNPCeois7Xbdqgr8Q6e/qNv4Nk1xWW6HFOyf8dxiTcrodaLKWytfYdtSXm3\nVQ6PILLOz3GwEIsdELC0n2WYDmWvAAY1N59qIxyRGyR7cADTUQQoYULcbeERAGW2DVxFDVVU6Fih\nOI0H8ChLXxOktJlfYH0m/B3z2mGPzN4fhsBOKc467PDtrzhei0PBKQ+dHuFzE4PVXCZ4duhhlcjN\nf/TeOV6sZMFvlyt0fACm5Pm/f5zi/lIW/2BvhohxptMKjsi03JYgvR4qx/JPVe5cxwQaPstCnldg\n3RGZpo4QsWOuItHLdrtFywx52YbYXMpBdn3xEilBKsVH13j8WOLkqpOHY9gYjBh/p8kAUOJ2d41D\n3ku1EymYOwWPMaSJgM2GhDI+UNd8aHSJhrFoxhzHwWCCIUVzuybHtc9Qqi53NOuDMEbZyeddXsj3\nrlclrOsPQoeQW+NgorHhwfKVP//ncLhHMdaKFYLvv8B3K2Ejen5V4Rwyh9NOoZ2wnLhZICEQ60fU\niPjcF4A6J+AqD5Av5V51YNAw5IvgY5ayGkWf9miYIdmTdVdViG4jv3++WqM6l2t648kZJifkxWR4\n4fkDrG6kG/K9p89x0bJ8OVPwWOVRncbCSdhUE20Z2BgXSuYw2a7hM2zqKos4JeFMyo7KJsZgy9zP\nqEO3ILlJ0GJOIwPbIvDk9Wg6431sd+XZwDl0PCDr5RKmJ8ssQtTMtdw8F2aq29USL87FiFSBB8Nm\nmUAreAxZvQ4Ay9xtD3P8GeMufLgbd+NufGK8Fp5CoDzcD1O8MRvj8Uu6RrqFIZw3sCHeeFNO0nfs\nQ1QBM/WsXetOI2btVysHzRNTVRor0oFfzS/h6CZWzASHUFiwC0/7PrZaPs/4U/i03MMTtRMISemh\nuLbFICEdW1ninDwLp9srvCRWf1Eu0NISjmihrdZYr4i3yFJEVFmygQ+fyaoBrY8zDiv2cISeQTAh\ng2+TI6J7nWqFw4l4CCMj8zPVYwwKduR1Dt+d9wXrEJpeSht4KEjv1qJPLhrEhCVHmQXIdmxR7by0\n++c3OHgo0PM2FzzG2eoF4kKs1cyPMR5SS9MZpAR4lYFGx+oJ8Wa4Ob9GaIRKztkCvk/25bLANROs\n48DDkACggPd8vc1RUm3JtholgWqhl2BMuatDBTRUfVJ00V3YoXpCluT1BpdkPg6qIbaFzNFZfYuX\nxLIc7st8LtQQCudc0w0ekSk7Cjs8JMP4KT3W00kAQ9xH1HVIR/JeExuAVaX11RmUkRAjXUqCejQc\now36fThEsyTLc7PF6j3xQsuNxSKnZidZwlUa4K0jCeeG6Q1Kduh+62YJNnaixce4jlcdd57C3bgb\nd+MT42d6Ckqp/x7AvwHg0jn3Jb42BfB3ATwE8ATA33DOzZVSCsB/BVGezgH8e865b/+s7wh9H28e\nnKJpgGQs1vrh/SkUocvLi2s4YhNyD2iZdKwYO5v9AD4TUhoeFGMokxg4xme3txUq6gcmLAsu8hor\nSnGtUGM2Eks5Ckos+vj66ganZLpRLEG5rsaq11tQJXzScY1mxzgbSsNMcQMkjIfH+2LNl9cLNK5H\n+QU7AZvQ1zCss/ZlQ1W1aFiGtK5GR8GECB6GhCBPsgRH1IfcI1xZdxk8En8WtkVyLTHpR5sFUmoL\nOGWRM4lrWEz3XAuPMLhyqaB83t8wwYax6Lzu4I3ovWiJ1dP7M1w9kc/68PwF1j8RjyaepDg8ZDdj\nfIiUZcQsJMQ3DFCvqQ/pRyBtAA79CAvNLlhfYzqiJ0QU54vlEmsyM433R/DY7ZjGKR4cSYkP8xUC\nT362tNyB5yPmOlZPz7Hu2Y5bHx6Tqqg8vGByeEJ2J7Ovkb2QfNWF7TAJxPs5TSM8OvgcAKCjlkc6\nNDi8T/yHr9Fwn6ogQMHSt1YxFK9/eErlcpRomdtaLi8E9w6gWG4Q8J5cNkFWi4exuhTPZZgcoDOS\nxM6iET5Q4lXcSyOs6L2pBjDq09n+Vwkf/gcA/zWA3/yp1/4WgP/DOfcbSqm/xf//nwH4awDe4X+/\nDJGg/+WfeRGxxsFXU2yuNqi/IzeTRgFa9hyEjY/nrO3uHQ/g0bU74WImcbFLrHTW7URMUTt4hJpG\niQ8vlAcoigiQ6m7hMnlQQhOia+ShuHV2R8PdNLcoqKuYscUxV0BJqvMXmwomIrCqsYhIEf7gjRjj\nqXzfwVgWvx7cICPlvIsT+AS6mKxDkInL+HAqLud8CBz2y9NUiInrH0JjQDzB0DikEanfSZbSrq8Q\nJ7KJH+zdh/9Ykmtd22FLYdIs8hFQfr3PnNd5jpDh0eA4xfHk3m6+M9vzP/qAlrnzCAraf/B5bIht\n3tvmWJeyMcPYoGRCtPU81C1dXnZnzucLlDXZjAOHg1Nxg0ezGJsthVfhMJvIQzGbyPcm4xSdZdZ/\nOEQ0k8NpMDrCgGzdNlVwEXtB2AJuihTJgdzfo69rdCv5jJUJsFzLQx0sfQSEKZ8SQ9D6E2xvxbX/\n1uNnWFIafpJl+OKbcs03t/JZzdkNki/IvCXRCBVFXcpNjsGAict4sqOFM31vvGuxvpb1r1wAQ9g0\nhjU618PbxwgjWb+G4ZzRNRRhzkVZ4x4rH3vxFQZsC5A+iP+fwwfn3O8AuP0jL/8aRGYe+KTc/K8B\n+E0n4/+B6Eoef6oruht34278qY4/bqLx0Dl3zp9fAjjkz6cAPvqp9/VS9Of4I+OnpeiPBxnWL0qM\n96fQpJyyT66hRnLCnUwyDKh9GNcWAU9dxdq93w0QENnlmhpeIS6s9RR8SnIP/GBX4iPxM4YuwtgS\nNzAMkJPmql4WaDW7+TBDSbZfc0ttBuVQtlf8PRA5uZ6niwJqLdbhZLYPw+7BiqWwg+AQGV3xSdXA\nHJOC6+oWmaM+IDvg9vxu55lM0iOEdCm9QMOQ3MNUFcK+iYnagaYzUAxRogZQTJIqZXfaEdtFhXJI\nfcxjMjUfTqGJ4nz75B4OWS6b7e/BY3dlNE2ASqyqpr7BcDLAG5DafqpG+Grbs5IChig+rwKqWuZF\nEboeBzG2C8qteWPYWO574kX4khHv5fmyg7kQqzhkTfJkMEaQyXbLtyUiXpsq8528vN8aGPKReT1L\nagCYWn7/6P7bCF+KV7GpKlxdy8/aaByTpHaPcm3eXGO9J97bP/7JS/hMGA6HIzSEoU/o/dxYBZ9e\ngz7SiG3Pup0BucybH4ZQ6Lu8WHq8nmP5XOxuGAfw6EEsb3IkmSR0k6lFPJF5ZuoYlarQ0EOuS6Bm\nCHKchfgRIfSqqaGYYF+SfOdnjc9cfXDOOaU+ZXoTn5Si/7mDiSuKGxy6U3gnsiil/xiKG2wy3MeI\nnIIuCwCCcAwoBJJW0HxvV1U7oRPYBvAouhkE8BgSDMK+Jr6P3L/kBQVowOxuliLkBhuaGIpt1IZd\nhmprkQZyneHEQ+PLg+WdfQ8eQTY2aTAbixCuu5TvOBplCJhnGO3dh6Lgq9f4GGZ00QmU0jBImDuI\nnEJItSi0JRSh0Mp1iCiQ61FByYdBzXwAWg8xQTHjIENuWNNuO2znlLN/Rz733v4E+4z3D2aDHTW+\nNi1sRDh5l+00H7v+ITc+EoZMx5+bwpIMJowm8EheUm0r1GSVbsgvuTUFNMM1z7RYsVJjYTHyCI82\nxY623XdynRNvhIQCMGrPgyZWyDYDFCQRaa2B18i9avYRYLnZ9UHEocEbD9+S6ymv8fBUqiC+vUV4\nQ3hzLRWcHA2mrDK8EcfwGHapzqIlk/bpqVSfuosCJQ/WZKNhKDysfAWTSQipbLvDDTjVt143aLdy\nMMXxDKC6VdhatEs5OOMHD+CRbzQey9qYukZDJNvZ9gKW1ayPNjUKgsvKzkcQf7rH/I9bfbjowwL+\nyycLLwDc/6n33UnR34278S/Y+ON6Cn8fIjP/G/ik3PzfB/AfKaV+C5JgXP5UmPHPHh3gVsDjb74H\n75gNPmh2TTf1eonsgJyIaQyPYUPdYwxMC0tXTHsROmITPAP4hCNHVYpqJVYsCWZ8r4Xfiqm5XNwi\npTdSewD7iFBWDpqyW+2CrmMaIS/k1N4PA1wyXPGiDI16AgA4PP4yTlgRaFg56KolZiOxKoOkQ00N\nwuYHN8hIBqPoBYW+D7/HaWiFqOdrNArVrVhB33QwTA72UmONbdCyUrOxwJhWpbAWt424qIv5Eq4n\nUaFZOJ5mOEjE4k/3j7CZyzlflhUanxoRRwEWZyKSE+2JC1+2LYKYmfxVh6D/3K5GwMRuUy0QkdjG\no5dTFi2aWwmr4tM3EJBPoFgqxJ18n4randXs56UuXmLkkcbMWJhQkn1Vcw3bYx2ebhAQCWgppuKP\nBnCOoVaSQlP0JRvN0BJP4VX3UFEmPmQDV25XGLCzMw8MLrbiznuXFQ5O6CGUMsfZ6QBejy8ONTru\nzzAa7fgYVRGimZN8ZkycSrlFHLHK0NTw2NznKYOa3aXF9RkGA5lzpeV6TauwBWHsRYUr8nRe5gG2\nPfu51lDkzkD/3p8xXqUk+XcA/EUAe0qp5xCV6d8A8PeUUn8TwFMAf4Nv/21IOfJ9SEny33+Vi/BC\njcmbMc6+f4v6fcZhD/egCfQxQbsLCXwYeGFPRCkLX20/1sqzXQuvpyYKDUK27yZhAcO4NWBIESYh\nKuo8piuNBbPlSGJUTc8mtEZrJb4MKTiTxfGu8+y8qlEwv7DdrpEzfrNlhZL4+3Uhm+DQD1Cu2Btg\nEuRrbrxKY8GcyJAdcsga+Il8n24bgLmRrq52/l2VWyhPNkjDNt6yKNGSqLOOBjt2pzQb4OJKDoWi\nqNGxtbifC2PiXRlvu1phfSt/9/jpB8ipJqXU9zAla9D4bbqw0T4CQqaz4RhZyqrGIENT9bG6gzWM\n0clMtZ4/xmIj19C8vMKWHaWTPYVRJj+vbyskPBjNkq3sD4ZQ7A0ws0dQpHsPkinanA9evAUjE5hH\nImjrD6dQW3JXuhVMXwNtakR82Jx/A2qxomT3qeosdCpz9O5wgA+2stbfmd/iz1La3iPs2v3QovSY\nMykUIlK4O+2gWA7WI4OA/S8NO21NFCFkV6YxYyhS38eTFnZDGYDRHnyWn9VWbq4yBSw7Iz9sWvzD\nM1nfD5Yr1CT0hTbogr4R4tXGzzwUnHP/7j/jV7/6T3mvA/AffqoruBt34268VuO1gDkr58Fvxjie\nOnzwkl1vT9bQR9R+rKdwfZNT+RIdabwsTWZrFcAET1c5OEqNdRugWcnJXnY5ql4whpRanq3RMHuv\nPR+WwKHbxTVuFiTbSI5x71AqHynhrF6YIGJIsM5DZJ78vrQeLik39736A3z+gZzczUJeGyaHCEiA\nUjz5EBXJYJ6cnaM0BC0NWSEZjBEH9Gi8EPWtWN3abqGIw1Bth6Jkdr2nGS9aOGIzlosVlnQ/y80S\nJTHGtmph6c4HhIqr9QotuR0r26C4EsvcrAp8+EwanubbCpqeh/c98RSOBikOH0pW/EtHBuEJRWJs\nA02xGw8tdMN6OiX/lqsKt9dy7dvqGk/OhRPxrYsCn5+KJUxqhTVFVNapWPm9q/voWEXqTAG1J1bX\n2hAdRYLyH1fYGFn34fhNuacXK2x+Ih2FxXiD1B1znmMMJuzMjSuAVjonn8SLH/wIN4F4bEs1wdGe\n4CJcV2HBMO7ekfwb+gO0bIKqBhv4XCdjRujYaanjEXwyUIMVo+JqA6/3TOwGmt2O1aqGzzAgaEqY\nkB4N+TRgazgr833bdnhGvoVm24K9e9Cug60+HR3b63EoaA2dZjg8/TrigcSsi/kTRBnFX6sAXkjk\nnfbRUiOg21UZqp0Mt1MdgkA2bKMrWFYRkAPZSBZXgW657dCu5cEtuwoLIgiXBdDYPhs8hCupVTCV\nxULZYkKa+Mgz2Bhx6x597hjXv/8TAMBHt893bFAHdCnb+BgdtSeavMPqQ2m5bhSgjXx2eiAHTJgl\nCOlGY7OBYryMwqLrPu5281lyrNmrUdUNGiYKykZhQaDLZrVFzVZlqzV86nT27budBSz5IcuihiUK\n7uDRKbID9h9EIzSkF9d7PaoywuxAYvxhPN01N3hRKJl2AJ0yqDmfPBswm0zRHMo65P4Km58IEvRF\nvsbbB5Krnk4iXHly/R4BW9blaDv5u6D2gDWJaIY+NEVa26EHRz7NzY/kIMAgwiaXPEmzrBE/2ON9\nt6hv+2pNhM1c8uJXT+SgeLpd4vEV2Y/iMd7I5BAqdIEXL+Tg+MqXvggASGf7KNjboboChoei9h18\n8oqaYQRNpG4fBgVJAEdAVhyfwIUyb+n+AHZN/ZG9vd39maS//wphzLK2p3bsXF1j4Ujk20FBqZ7/\n8dXGXe/D3bgbd+MT4/XwFIxBMJ1AxXswJ2K54+56p9azsSuMCIntAgfFXFxX0kq0DnXfhVfm2BJg\nYrwQIIBIOb3rn9AhGXm7BjWBPlerObaEg3baoOUp/+PlDQ4bcWFPWrESbyX+rgZ/MhyDEn64N3sX\n33v4hwCA84+8ndx7MmGo4S0x8+QzVqbC2Uas4816iYw19NVKLFzkOczZFRfoFh37PJTXoSQwJwj1\nTvOwZTjzbFUg34iruoTCipyQV8vFriciSA0iIrh69egwtWg24kkM9gyans3Lszi4J27r9PABFPES\nMWHHOhghZOJ38fQxXCXrV9lgxx9ZFyUsk5E9u7KJfMxtz8s4x+WNWObzyzkmiVjr/dkQAbs1O4KU\n5mUNkJ/CWzuYmBfa1PDJjDK5P4FPr+h8Kd8RNxMMmRCMhqfw/J7nscT2gycAgM3tFj0r3uVarHUZ\nxzhnQnC+2eAdJW+Ihx0uN6Tzf0F6tWkHRRh01XYoGUoE9yM4JkRhO7RXEo7ZsuZLH6twWWwQECPi\nTAEdyNzbzQaa4SRidgfbCDXFacK2wyL/KXBSjxxSu/955XHnKdyNu3E3PjFeC09BBx7SBxMoE8Pb\n8JwKHRpa9khVaEvG10EB3ZPTBr0VKVER0VhBo2NHWrHJmT0A6qbcaUl6pHPzsgBr0jG5wOB2Lif+\nQvtISe4aeA7hmCi8mDE5IiwJR863K3SWoi8x8PBtoS4r62+gmsm396SjgMO8T5y1FbYUCMnbAA3J\nUT0mFJerDfYzub+4KZD2giO63qHmaqUR0vKuqWVRBS0uKVjy0ho0fRmuaeEIx/V9DwkxGVVHPYVF\niYCdg65ud3Xui8dn2HRkylXfwGz0eQDAgEnX/c+9CcPmI1t2MEySRZ5CQ+EbGA2mK9DwOottjoZe\n3NVmgVtiSw50hxXhyLNOoSAGwrH5zakW6+XHnxvOWapWI2jC4qf3HmCwL3mg4pJrnVikx0RChgHU\nJbsWwxhrI5b75naODRuQcnoSK99DTi80CwB/JlbcTx2ShczdLdmktpsVYp+oWBOiG8j6VY1DSvEZ\niwYt92E9F0/CG46h6MWpVYi2Je5FB+hYcra5Rcf8l8c8QmPnqOndfujX6Ahjh8bH+hvAp3UUXo9D\nwUGhswbe6jH0XFzAuElhQ3H9/FUCl/a4/eWujtsRlquNh45UVYPRARxd4gESVNcykfmqguYDtIwJ\nYnm+2iUiXaigTC+jvkLRyHVMk/1dD4LrmOzyGji69oUyGDSyyNNgCFUQRDU3SGbM4PdkKksFy02T\nXy7wgrj+tqkRtPIdZc2H27UoGUqkqkPMQy+L/F3SDQBayweEMGDfDNEQ3HIx36LjEvvKQdH1VY2D\nJmQ75fdFwE6sdXlW4/m5bNifvLjEj59Lom3tA62T5OjghMnV3/423v68GMyb5gAAIABJREFUZPI/\n//YjjB5Q+Ga7gmabtQ4+Jkkpl7IetvJxRMKSzaHC03P57ov8DH/B9v0MB0h4sIy+KPcX5h2FOAG7\nbVBR2r66ukHcnxWDIQy7HRM+3Fhp1GxxdhHgUyxYeR40D5ZaeXBstZ7fyBw+Xy5QEMsx8FI4HpYi\nES9zMAzl2teXQMTktzuxaFglsMbbgZC8JELT61uSfl8rB8fEr059GJ/hw02Opt+TZbdLsGtS7JXG\nw4bhSll5uySuUgD4d8rhY1h1z/D8M8Zd+HA37sbd+MR4PTyFpkV1cYWoPgQ8+pmPjhBdiivd6TmI\n5kUQv4FtTrguCVO9ZAQvpUvlgGJFC+VpNEzsqVmJ5oYdZUuxNHEMdPQqnPNR0QL7wQSnJOM8TRN4\nVBf22OHYLlcItHzfprmAzci3UCewvP4X9gpvmS8BAI6mkpS7rq+Qr8S1L7oJDgi8bIJox2WgDMuX\n+RWMZXOVUYDpxWCAhJ6L1hqGnAyWkuTtvME14a5lW+Penljx9TLF3LGGDoFvA4AbkyXahNCaPf+j\nG8S3ggR9536G+2/Jvab7h7gdikhKqun6qhUesoNxPD6GZuk03h8j1BSzcT6agM1KrPlHGtjmtNCF\nQ8CS7JuTAf7Ml/6yrMPhKc7m5NQI5vysOSJa/yAcwtEryl8uUbyQfTFSj7AtJAHX62LYSYbISNKu\nKD9E3EejLoX/SDRLxwp4RpLaPopt4hH2qAcS+tkOyapMCwqaYzSSZqdUFWiYiA10sdPYrGwBPxR8\ng+q2sFbWuiUTtc59qCUh+26MmkjQdgs0SsqezovgkYzW6zHv1QpLhsp1nmM4oTdW1bBFv68V9Cdi\niZ89XotDAUYBewHOfu878On2ZHGEgl1oTWVhAgJB9n1EW7L+LMhlB4stAUIX82t8dMHqg98CJCcJ\nPY0B5dAfnhJjoC0qdi3eLucYsQPO94AOBJbkOSLWhzVj/KousWQfRWo2aOjOqgjYLokReF6iPWDd\n+IH8/fH0EKMTAfqs1w2uviub5sfnG4AioH1tO8wyhP2h4CpYLn4HoK3Yg5GF8AmlnbOef+Y01gRp\n1a7Dr3xF2IF+/+kS1+//gdyHbtD2Bwez7Ji1SPhZgT9DznjXX+RIjymEmhpk92UODvlUHR68i5Tz\nim0JTa5B3wNAOvT84haOcFzNtuCb9Rbf+UgARudXZ1CEm/9LP/dFuBN2h+5d4Jiw6aaWEKa8ETZq\nAPD2IzjCwv2gQzJlN6sZI2Z7dXdLfMtJ1ouFQT0+RXdNRuUvZcA9EseUc1y+lOvcksHZ3zc7JagG\nJapA5nlgU2wJkvvh958AAB68k2KckXDHBrBk4O6sQsfwT/kpOp4mQSbhU+dV8JxgPdql2XV+ukED\n0zA8ylt4PXcQ+2Qurxy+d0a5g42HrmAfjK1gfypU8Ah7t68WPdyFD3fjbtyNT47XwlNwqkMTrLFW\n1/ArsfjeYoiW7pDxx2jCnoPRwpKXLzj6/9p7t1jbsvy86zfmfd0v+77PqVP36u4qu213OsbGARsI\nxI5CEIIHR5ZIiCULKVICQgpp+YmHPESJAkEKAQsDUmRyIRhiHKDt2IlEHNvBt9hd1V1ddapOnes+\n+7ru8z4HD+Obu7qM7a5q96k6wPpLR2fvtddaY84x5xzjf/n+36duOXK6Ymju3pgydN4cYbOhUmY8\nTrp4Shh1Whk4CnLVj30SjGTLG89geq0Qy5BG+oLxxLnXi6wmtW7nStMZYe6OYxkUrK/r2GP+uerf\ngwP32gvJAZEo2g7CiN6/7H6evrdhI72ESshNGwRkV4IBXz26XverToDVjk43ojDiHlCD03K9IG8T\nsV5AMna75+hqcY36LNclKwmZ3HnPuarP9HpM990OVIcBsSTW6sASi2m6/+IOauZjONR8RyEmamHj\nPsa0yVhDUUnUJOiRS0fj7MLtwO9eXPD4UuFMYul33G79mX/jeQLBT+pgwUilpkcXStr5PdZKWhbz\nFF/iMnZirht/yvIRwXqoOVDD1+UGq++q9xriHTeeOQqw4ojIOpYCd11PJWSTzkN6O0oo4jm9DiBM\nYnbkvV5kLvmaPO4yCp0XWnUjkFJ42ZSkSugGkYeVZqfXEZjABNRS8WYcY9UERrmhEB9EEVfX1Zpi\n5ebi9vk5ty+ct3yWl+yLvyH3NtRtNcOAJ9Trh5R9wNiPyN/2JOyzn/0O+1P/2z+mSFPeve8m4Rl7\nxU++/X8CcOcrl9xUSc5bLhkeqR36tpukdxaPGVzcAaBIGjpLcQ16Bbs9dTvujhgX7mFaZy0pacbg\nRQepHd14hn5H8NpvO4YDF2eWs5KV8gCJdNH3P/+9mLFgyU2O0YU7jA1+Low/5ros1BUP4k5nyK5K\neXWVM+yKP7LukinL/kD03qu6IG45dpqGWmCpJvSJrwVWYzJBqd8ToGmdFnha6Ezo8dKeI3oZxDGl\nRGGnXY9CbEJVpXxBv4enealMQbMWjPn4iJ4ekGDkE+RuDo5vfQaAb3v1GZZGhd8ixG+huF7JvVYN\nftmQXrpjCgvX4/D68oz0LbcBZOkjGs/lA378x34cW2rBPV0TGvEcrl1OoqwqotQtskGvS6NF9PLR\ngoXu5aPdLqF87fJK+pKXKQMJ2dR+SSPRFntVELv1gTzxaFT5aB5Iu/M7n8Pbc3mUqImuuxL9Qczt\nyn1frlAsDkNqlYP/yv/6s5y8/o57bzDirbuOvzg7f8DqzC2Gy9qdWzVfYpVHIAygJYYxFl89Kp0b\nhzx75MqssUqr3/uZ1/ieP/g5AD732e9jZ1clei+5DhUaDIHg5tNB91ettZ/n69g2fNja1rb2AXsq\nwofGQl40GJtA47LG75kVm1apd7HggZIzk9M+8catxrNzRwc5e+/sWsJrHMKuGoKiwKfXc+7ccDhg\ncOFeTwbqFkx8egPRo9kVq8tfB2BTTujKDfbKGiNyivKqpYTLsZKqX3qWWKv5MjPsiRjGBF08gVQO\n99wKftgbMVAIkzYVRwpHgqYPoly3JxJsyTesN9K+pKTU0p8kEamSsasyIDOSIt9TKvx0QSM3ubLQ\nFRXXwWSPVF2gjAZMdlxVwvrynpYruqHLbhfJkkZu8iZLr6UI69WCvthnHj9wjV/zTx0Stt2QVcTJ\nubyK/YSonYsc3qudJ1CJQGX/FuSn7vzuBpd0Nm7sJt/gNUokdh9DS4wir6N3UVP1XahVexnLpZuL\ndx58kStVl1Yvfprp0B3n8NJ9PkvPqELnHUW9IdE9ieH0Lmgze2F/iK/qw/30V92AS5/J2CWHjden\n8Z3HYuaGTLT8GyV+H5UzHp05T+9+c5dUSeylqQl7rlvTxpdkLT/Fey7sMN0Vti0Q1Bv3QAB4XIeN\n6eUD3o6cBzW9cnP4S5P7fGfmvNu3F3eoJ58GYBxUJOqaXVU1pt7CnLe2ta39Puzp8BRMQxpsuP9r\nc6bWxZwnzR0Wv/YmAOuH9zh81vHp93pX3H/4ZQAeq6T1rdGIl/dVHw5q/JmL1fqdgEEs1qSooJJ4\n6EC7cuj38a5a8Za7+HuqA6enlGvnhczPH+BnEpSRarG3qLBiVMYIQQb4gUeksuXx/pQXnnGQ4L2X\nVbK7WBGLsyDpjjg6EPmr6VAWLjfw6gsuB3B2ds47991cLJdrMsXIhfGwKk8OJzFp43a5tacW6U1B\n3epeGMvuUTtGwrAj4ZTxiHok9h6xP+2MYowamy5Tw0paB0ObMhLa7sHZI5bKXXz6OUdFVtz/Tdax\nmzdWAaFITut1j6TnvJG7d+9wo+OOaeFL0HZ+yf3lV9x8LmdkojErWVE+crt1N7DUvpqfVmo0mj+C\ngTQZ0hlf/MV/AMAvfPHLvHzsYu56Oec96Ws8ozLdMEooLpQviO/RvOWu5eBGl3gu+Ptmir26494/\nddesay1l6nID2ekv0/Oc11DYFZvn3RzcPhHz1uk9fvHENcSd/sa7GOW26jojmcgTWk9JfNcOHdbC\nI6Sba4EYx5QlT6Gy17u8LSoaNWZtEjcXs1+t+Qf1PwXgu3Z2eebAPSNB5JO1nmVpWDVtX8CHs6dj\nUWhgsfH4hYe38d79eQB6dc7Jl94AYNr/FAbn+l1cfYX6yj3cN3T0r326x5G6DMPVimAkworSw8/c\nezmrqaW154mX0fczKmXAgyghWLsxstP7lCt3Y57PV/jW3YS5KiCjGBaqXXetZUfgpr1pwCs7bhF6\n6aUjpvsC3hQugReGAT2FRNO9I3qi82pqH5Oqxi5cyiAosbkLDfLugCxTP0OxIRLUdpE3dBN3My20\nEOZZTiV/v7YNXSUB02bJ+am7OV7pdUlFEGJCN0YVHzIa6oFuUpJd9WvYiETanc9VXYyoyXxVdR7c\nv0uAu8kbM+Vczqd31if9qnOPR91j5rjjXy6c+725fJuHcrUhJVZ8kK5L1gL11Itz0OJbGnftTBFi\nzt0De+fyK/zaz7iNI+oEfO4POhfdqxuiK/dQdAeiNsst5dJxQuaPa2JdS3OZkK9b7c0F4z33oPcz\ndw+V1SPKuyJhKefQsksfPcODe+67/+7Pu7Dz7X/yN5mduQUivVhiw5YF3Kd/5RbnIFvRiO49Clq8\nQo9GmJy1qTB6oG3jY0wbV3iELaBKUeDZow1vRO4Zyf7xgOHILYqfufkcgXpFBvg0YtD+sLYNH7a2\nta19wJ4KT6G0NY+LK4LeI/yRdB/ePOVtyXm9NsgwKos1y0fE0gX4VpUFd8uYSiVJU3eI+1Jl7k1o\nUiHhUo9IUGG/VY9OM0ym3XHfpxYSMH78mOjgZcAh12rPrfjpY7e79mP/WiBlx4NSJKBdAoLafffm\n8opIJb7hjvv8JOowUXjRNwWxcR5IVmUYKWVX0lOIreGZoRJ/g5BSGofR+Tl3BVcu6pq2ZbQVfSny\nDD9umaE9MsGA46Chq9248Woy1fR3emo06lR4iAkoMhwMRddWD2galyQcPPM8k7BlwHLneX42Yz1S\naDB/hzSQJF+64pHCqmG+IFbi79oFJsSEQmmuLDO1UdabSzpGFHnRmOrSjX1Zu3PudPY4ve+6Gm/f\newvxufKvvPocz0qMrF5fEkskpSfRGt92aArHvJQnhq5Yrv1yiJF7bTODFWdBnYk0+EFMqfnsjZ8n\nwsHmq0clp7vO87j66s8AsJqf06Ry1UODEUs0XkBTufswGXgE0uqYjt29XmYVkcKnk/sZtTp3sw3X\njU1l5bnMMWBti0a1PLztPBMbvc4br7rk7zP7t9hT5jKIB3xU2MFTsSiYoiK8N+N79r+NeuDos35h\nkfHi2+7wjoMNXbmUe6OXeKZ2OYVe7Vxf1hUduWrjaUS3I5x5APTVLpxuQLRpnngQ8TpQO9fRSwIY\nqrvy6Bi64kdMdinVfleozfh82VApLZwHcFNkIqNJl+NdF5p0kpCh8ARTtSzfOBgzkt5f1Othhb2I\nghG1HopS1Ykm8UluqFsuz6+7Hf0qp9ULjbI1Z8K4I5FbrI/fxqEGEKZ+eOOYomxJOAx9tdkefsrN\nib1KiRQm+X0Po/PPry4ZJw4yPAxrjIBfLQR93I0xM3fDmyTGiIOyzvoEUhv0RjfJ51d6vxtjGm3w\npQO55JQHolWzqyWjsSDK1ZqsFOZk7sKyqjgnD9y9MB0d8e983n3vZ258ip1n3f0QpzuE1j2QbZt9\nExV4tcvX1PnSNZEAftfD7zhMilmfgUBw3qEbL9ybEKVujGgyet+3nhe88dMONm4fu/OfhCGbgUSK\nsw3hyL059vvsHLvQZmArvFtiLKfttN1gFwp5iwWnS2EW/Oa6azMuI2wLdlI/hx/V9NXWHx6EdPoS\nMGrW3FDVrakh8z8eMZitbW1r/x+1b1SK/i8D/yaO+vY28O9b63C/xpgvAD+MK7H+WWvtF7/eGL6x\njKKSzd1LhmNl1qucKHSJk3fnc75FCaejyZTOPbcaz1LnDu70hyTSlwzjLrnIQ8MpeEq4hElMvmkh\nxO+vhZ6ISFeLDZ2eoLTLlEAwX98vyZVcMmXryhlM27XYDwnEyns06XJDrY9HkxFdeRD7I+dSD8Iu\nHcnZe0mMVbKyqHMCuajhVKFP06NYy732cjYrdW2+GMCZS3x5p5eU6socq1YeBB5WnZa2hvFIQgaV\nYSC4dlgvCKUeXZ8pJBpYAkm+BTbg9LHb5QNKitDthOvUZyVtBV+6hEHpSHIA1g8WNIlISkzBSrtu\neGdGvKPGHbnUQ88jFBPxPFtRlG53jANDLQEXP4op5OnUjTv2q4tz6rXk4A+mJJ0/5I4/SegJPpwc\n9PEEK64vXBIU+z50PfLGVAt1KA52aVHA9Mak95yn6rfdR2uPoKVHu1piu0I02i6zK5dg9Iw7xqPd\nmFy4iTzKGKtz9+WXXmQ4cR7iaDLEl8fZiUSykwbcv+8qHA+v3uSViQtR5qsSJu7gOsGIifhD5pqf\neNcwkHf3wvO3eF4Ykv1kQNjibOLo/fP7kPaNStH/LPAFa21ljPlLwBeA/8QY8yrwg8BrwDHwD40x\nr1hrf8/+rKq2nF1mLDcLfu2N2+61oCLccxN8GI7YGbjKQK/jM1P5JvLlhsUlSVeqT4OEKnMcf8Wy\nIZE2o+0D4nSsWuWleAK6MB1bUakfoFwVWLmzjfGuM86Dw5ZOvLkW7WxKH2/gbqDuKOBwKurz4YBE\nmpWxOjVDL6bWg+BXIbVuPN93kGSAKBH3YeARSyClqnO1HQJBwQ4qQ9qMsTzKgRaQfhxyKcWq0hpQ\nh1wYFqxnguNOGgplwHd99yD53jOEE3ecj+/eZS5KcmM8jNixl6sNK83FJhVT9WBIrspI1DPcn8v1\nHY9ZSetz2os4EQOUmOw5LR6TL9xxpmV2nZcxJqQWeGf5+B4b9XRkmrd4Z0CsHoD+cMhgz81XkGeg\nvEvQeRZqVTZUhrU5+OpKxGvwOiqjGoOXqC2xWtA5dmCg9LHLW5jE0Age7jcbSN0JBDcOePjGHfex\nXLT9tmCj6xAaw2jgPjfaH3PzSJTypIRjN4Yn4pWxDVjlrvz82c/ewOj8r7KKQSKSmYPvwAzUjyOW\nrm7nlCEu9Mm7Ff7AXcuTesHQuPABzPsyYB/SviEpemvtz9g22wG/hNOMBCdF/7ettbm19l2cUtR3\nfqQj2trWtvaJ2jcj0fingb+jn2/gFonWWin639MaKjLvisv1OUv19weXcy7Epbg/OCAei3X53S/R\nk0LzVLX9UbhPU0h4pZjiD1wCq0jXrE9E/3U0Aet2h1Scesniio70/OJ4SlNIgu3RIyKBTWxlMBv3\nfaEISQgMvjoO425JrWzyZF2TqEGJvEtYuWOOO9KbaAKQpF12eUXTdz+bICLyxVmgBKBN4msSD2Mj\nAjFUx2GXqSDd2cBy76HLOJdKVNoGGlVGqrJGrGSMOzHhdXbUZxlLbzJtSQYuYC5KtOKCUFwOPSIW\nog8z3ZCmdO/vSV9xkWb4GqSsQ6YKf/LK4I/cfHYGEb1MGg8raTUGAQZ3HXa9AakIWXyg1o5frCN6\nhXb6kRKY6w7FldvFbRRjfEHFywpSFypVD2/jq/HME0eGLUo4lX7DzhhPHYU2txi54zYBT2GV57v3\nVnczmrHzVgh62Jm6R8sZS2kylPK6/I6HyRXyRRHzhTvm5cWSWrv44SvHrC+lHj0VPH7zmKMXnBcT\njHewagJLHs2vPZpub8r0WcHs125O9vaPyK50ntOaTuDGGDIgU1NV10vw+RirD8aYHwUq4Ce+gc/+\nCPAjANPJDsXDlGe8PSa33M3/dmfA9MKFAUN7Ssd3a8uNm68yXYu2+4Yy+XlErJZeg08jzkTPRpSi\nMi+XFoWl2EoAnF5BIy5zr2uuhVKDSRe7lqs9vIkV+43x3YNgraVUZ9zyCiQgxdVyTdS6waFPLVYP\nW6hs2A2pRLxBJ8YrW2TlGE8twCgHUpewVDydLTfXeQLT+ITqgux1QvrKWxiRwA5NyFpBZF7WJGrV\nnI52CNtWXmuhdjdm3HbVFhld8R3uEhG1HXcbGIhNqNjkpP32IZOKUzykV7nv2vRqlqrCHfcPqATa\nWpk1dtWWbd3nF+++w2zp5uKyLPE89/rq0RmRiFV8b0V96JxQf+Ou+cXJG8zOXSnwtc98O4nIcGqu\nsH7bSWrwJMVuFIebUQNIuDb2wG9vhgIbvb9YWqsKTVviiRu8Vnfz+JDCXupjJWFb4hU/pt+kWIUa\ng9ASSRz3PL/Hi3Lzbbrm5KHLWzQnCiuHIatc94rnsdQidefdBeMbao0vHrHYiNNSSlCvLA1prJAp\n69AR9Xu2mWHFyLUpDUHY0hd/OPuGqw/GmD+FS0D+kH2/EPqhpeittT9mrf28tfbzg1YJaWtb29on\nbt+Qp2CM+X7gzwPfa63dfM2ffgr4H4wxfxWXaHwZ+Gdf7/tsXVOtr7h7mnNj7FbXSRUxi5zbPueS\ncOl26/50Sh26XWx+4l67eXOfoKUCz2GzcKt5mIRY7Qg2zFnP3YrvT9tau0+v474rPZvjT8RDcOVh\nxZhbNu+975Z2JOVtfUxLuR4bSs3ATjemEkVXFYbMlXVZrt3xFCcP2ZPCcX+4SyJuR9NAoN6AQsnQ\n9bzgK192ocGmNoTqxBwnPpGSjnEc0dXrQ8m/3Ux2adoM+NklkSTK8soyVsJzuczo993c5m1PgZdT\nNG6bD/sBpchQbGBYpC19PKzO5B43knNbQ68nVuKVTzJRdaU5x4jzsT49Y3ckubWN81Zur0ouhbEo\nwxBP8utZecb6nnPdQ2IWtZuDR7m71nd/4zav3HBVqcgW197I4uE9+iJ+qTYJCLzkb+Rhdc21x9as\nAspLF4J4SRcv1H1hJlhxHPjqLzBrKLR3bu7fo1R4QOzRORT46KEDEBk/J1RFaTIa0xUVu5kH/MZb\nrs/jt+7NuPe6G3ssSPzBzjP4N911Gqada6r9pip5fNfdRLOrf86lKOQaJQ5fH4UcTJz38Nx3fzsv\n7jqvqj6GhVw2L/SI7UcrP3yjUvRfAGLgZ0Ub/kvW2v/AWvu6MebvAm/gwoo/8/UqD1vb2taeLvtG\npeh//Pd4/18E/uJHOYjawlVqyXyff3JHHkHos44cDuGmPyWN3Mp9tclg4yKSflsK2hi6pURgvRWh\n1qGqzAn7LhdRD/sg+beN5NHmecnV0q3ax+M+ifIINqjIr9Q85c0w6gL0DxzPm63r65iz3jTk0ko5\nD0p8yf2WQYiVzkSrw2D9gFoCMXT72K7+frkgv+1W85V1Jb2LWUVv5MpYey/sY9RdWawvsNJ68KuI\npIXrvufmai/yMTtuV77MCqzEaLNmxexcMO5uxVrErMZ33/Uo9elpt07fvqQoNF7ZEAoyez5f4ikB\nuVRZOC79ayHZfi8kmbkEy2uHz3N/JsXvxKMxLqm6Wbo8ybvzMzIxUBsvZqg8QlMUrDI3X+usZLVw\n8/HOQnoTfcvkpq5DZEjVoVg1K9Klc9m8ZkQjirjAVxlyltHUSiTXGb44FOy0h1HM3aQpJlDiLpWH\nWV1QtQrc9dW1KFH00jHlTM1aKsRVi5x+7OZnbWuQYFBR15Tnrht3+fAhJ48lGvvAzcmD6Zyd99z9\nOzkYkom34+zkMfmVuz55UVOLwSupFPUvCtbChRhi0H14tl5TlBIoshMayel9WHsqYM74DYwy0vM5\nsZJoi9NzHj90E/LsZE3atvU+fhu/I8l0tf0G3SsmkZJBh/sYgWaaqmBxz4FCvnqRcVsKUL6SkoeZ\nz+G++P7SDNMCXlZXRMp2R4N92LTafnIpAzC64IFvMZUAJsuSM2H7Z195yIXUin0lwGJ/QCoMwQtX\nluqlfY03Zz0TVbke1qvIp5Jbvnq3YnbpbqooLukoY9rtJ1i5s7kk6QfhjBtjd8OfdIfM9YD15iEb\nVUaKK59USbB0IdwBKcvH7vzPZgvKolX0rghbHE9TUav6YISxyGvYiCquX4+YJO78H8zu8yhtcSFT\nRrtu7AsjspW4wtPiHVcQ4MKObF5B7o65WIXkgvzOz0SJZ0KWFy7p+OCNE9ZLN8e9JqIWeKea3ae7\nK5o5tZ1aa2hyqWqPG4zCrvzhCfXMJS6tn9IX0UyQ6V4o5pQK14J0RC2xyfRkQa5+jFLXvNeNGEgR\nejIegPghs3VK/kgdmrUlUAWqZc/u2IaVlMFCLF2pk33L4U2udlUlmkE8bSH06pOYzVgvJIyzmBMb\nd8/GeXMNyiv9gGqj6smHtC3MeWtb29oH7KnwFLwKuhc1Hj6Xcncv6oIX+tqVVkvuS1eyzjeMr0lM\n3YqaZh69SIShZU2gHWN9NufOmdthH68bQjUj3TpyIcVutaLrqZnHM9c7etAdELY4hF6HOmhXWve9\n1ja0mZK8Aask5+vnKcuNG+/1y7tkKncGkqZ75egWier4B2FOJV6I2CbUldtBV0qcrWcZ78xcmLQo\nYEeCMsZsGKs2Pykzul2XrGwTjR3TYygqtf1kTaE2wmw8oFbZKysy1iqNzgtpE1QNIwm1BNZwoV3e\nVM21zoJXG0zijr+jrk6TWgpBl1d5SqrWSLs/ohTuo7tXszkV8Y3ooCeDhJk4EigaOprQsFgSNeqo\npGAhyrO9lrzl5ILHD90xPHwr5UHmQsKRH7InD+n5vSMSeQiVGuKadclaXtPFlx5zf+bKgksMI1HS\nETxmXxiYsXb8mJjyXJ7AjZhAXoNvgutOWWrpWUYRx7vuevSKmEczF9KdPLwiE/7k4OYezx+5hODN\nI7mspaVYujH2BhMm+yp9V13mShgupjlF4I5zZyxaueS3CJ9xc/XCy4cMRvs6dp+eSvGX6ZII9/qH\ntadiUbC2pqzWvPfwAYGYfO064Eht1GeXD+DSvT7ohly1TLzWXcCg1yER/NRcZcQTKTkNwzb9QInl\ncSqNxbdcRrvJMvYC51K+Nunw/KGb4L3RhKblR1zMQfFzJsEWY821aKfvQyONySr3ua2F4LKpONxz\nN2lvz13841vP8W3f/a0AbN58m/m5cxkHkyGNaZmVBOIZhDQzd2Mm+t1ZAAAbqUlEQVRmSc6FNAP7\n3ZpHa+eKTscHDITL35GrWgYFUdS2GdcEUhOKbECt8Gezrlnk7lxmYlIahCGV0h3HhxNStX1ntmEw\ndg9m1w+J5PpORLN/+/yS5X2BE8IaX1T1a69mLOWkOOpRieBmI8KPg05CJEhwlHQYSIC1KNc8Fu08\nTXktZ2/1UJ2mho5ISLIwALVqX6zXiNmeYZURraT/qR6NyOuyFsf53WXNozb3EyYstIl06iH1mURc\nj1wc7nci1KjJ/GSBpz6XCI99ic0a0f13fCvmJBjfGDM6dt9x/OyKSizRzz53i5mu+6enAiYlCS0b\nY1FvSHQtN55H0HUP9zjaua463bzlMA9/wH+RQvqfz7x8i77AOp1BRKMbtJ/vsvE/GnhpGz5sbWtb\n+4A9FZ5C3cB6bZnbiocSt3itd8jgwK2Sptqj9p17FYYdpsa5UV2t2nGnYKYEWKcJ8JXMy89TkkNJ\no6/63FIjUS4Rj7pa8ErXuWKjjkG5J8oswLYiMZsFVoQk7EteDFe/B+j4cCQXdXc3JhQqcMcf0BPn\n4ws3nwPgO579TsbiS7gf32e5cee6171xLYCykrZE4B9yy7pz3q18Vmrc6uMRZOIN8GMGY7cbTaTw\nXMwLWLvz63VjSoUHy2zJQlUXD3st2tJVBWQ0GdJXJjtqYKQsurUVPXEEHO5OGXhu7JY2LqvgShWF\nBkMmNGUTpoQD4QnGHTKFMW3irywgkncURTU9wXl3b+7w8OQOAO+8c8r+vuC/qvkPD32SvioHxjLe\nda5xNwuIQiXrkoBaO2U4ONY51UyOHK7ukClWHt3pvGBTSMcxTfDUWFdXoqvrDa8p4er8gkqELGFv\nlxf2xfsgiPlqdUaihHinH7B76PgbRoOIfObGm+z0WQ6cJ9cXU3Vv1CPW8S6XXUoRA02jPqFwL4Sd\n62a0WonY0FiefcXxgAZBB18NdDQrEI4mjVJCNb19WHsqFgUvDohe2sE+PCUWlPje7AredSf/Ymw5\n7juXKb18wO7ETU4vEpHEeslIhBXhyIBkxE2WIipB9rselfD1U6kRsa4ZShx1Mo6Jlbew6zWhSmSG\nEfnGPejVpWLHwGMsMtObHTiUS3yr2+HgwN0o3WGfWt1sI8XkzdVDVnJVk8ZgjHvYkuWMpTgTL0+U\nZd9pGPTce2/sHVKrE9GvPfpqrU0CD09g0mcFRrozu8OliEh3BgPeWjzSXG3IKncTBjXE4nHsym2P\n6ppsprxGWWHUzzHswG57rsMpnqoEkboPvcUVS4UXyxJyOZ9xUxMkqb57xK5cbRYCZw0TzLqtcBT4\n0m7kKsLXdaCe0Fc+Rrgjpt09brwo6HPREAm6HUzHRLhFKCGl1EMdFgor6eIrxDwYxfQEOHtxN6aY\nu186A0tX8+LnqjSlG0wrdmOepdRDatOIzsBdn5HyHpfnJe/dceXGaH/EgTaWrh2QCILssaEnKHTQ\nQunLGtSpmYQVxUZ5mUVKMmwFhC07Yu3ScMTD6furcxiiNA+9/pSNSHD6cYL/EZFC2/Bha1vb2gfs\nqfAUmqwh+8qaoDIMO9IojMfsJW53fM6MCKzLMu8nQ8ZyjUJJxy/WOfGoZU4Go0z2dAhGoYYPxEN1\nkbXQ4L0D1yMPRI2P3xF0NwnxBcjxgwIpoRGM1e3oG6wIS/AbnpXrPt3t8akD56IGI4Mt1CU5EmFL\nnlKIddkzhokg1t7SEBRyr4UfsEXJ4bOOwqsXxkQiaiFbELSJzSajEIDrUKCo5qxHLQm6oDvkzUfi\nVqDEaNeMw5hIcu5Gu1ZTlqDvNZXl2QPnsdWh4bjnvJBJEJEJG1Iv3bgH08PrYzhf5+S6JuPhlGt2\nj2FAruRgX0zbyalH4yuZ6SdEogxrlgtuKqQ7j09JxY9543kphV9ZBoL5Tl76NLHCoyptoFazWTwi\nTl2GOWx1UOo1Rl5HzwxRNIL1ckI1XUWBhxXpTOULutwrKfSaP3ofe+DFlvDCbdkjJQOnu13mV+69\n77zzkFc/51gDSt8S9d31i5qcIJTXIO/OhB6hsCeFyVmv3bz0hyEdzWd/d0zUdeP1RdjiTSJqhSuV\nWVKpAS9LN7Ro7M16zrD7/8LqQ0PFxrsiS1fUG7nRRclrcm13d3x2BCqJBymFTv5q6dzd4SRmokWh\n8OZs1u4Bi+KEeiU/sWfxxW3XV9wede11Nr04uyBQrOEFUKokl15k2LYkJ/x+gMfxyF2gGwcJzVIu\nuDdik7qFbK8zopZg7UgqTpu6IBDrDr6hq9i4uLwkUcmxo7ZuawL80n0+iSJC6SWE/T75lVsgA5tR\nyDdscwPpABbK6t+KAyKVEMPSw2ghgAqjsKNWX4NHjdYMhknAWGxKg06HSdgSoKSsNbc7cdvjYDje\ncQ+sb09olOk2nmurBmiiGQMRxHZKPfz9gPq++jl8Q9hVu3dYs1y7+Vplb7A8ddd4svctbox+w8HY\n5Ql63S6ITWm1fkAo/9kfdalyEQC/e8fN4c2Da1IT2w9olF/pJB6eEjqB32W1dO/31A7uxRYjspzy\naomRvkbYiTg6dojTbrv4JQW/ceUo189nc84fOu2QGy88y9XChRVJGRBpw5lEap2vSpq47aidc3hT\ngCsMkYBMq80V47X0JcRN6jV75I07pyK2sFJiatQwvxJ9PLv4tWt9/7C2DR+2trWtfcCeCk+hrmE2\ns2RNxZVw5GMvYBm4n5vuPt2R24HjdEpz4airYkmdM+tQ6r2bvCBSbd7rBsSFXKqsJAikEKTwwi/6\neNIGDKmoVbXwOh0aJYny6py6cR5CL3RJxMAzDPrutcO9iH1RyidRTSEW4aLqMBBHn6+egjjok83d\neB0/xBeNOtUIX8m6HYG3zh9fkM5cdWKaxHRaF7DIaLSLp8sCsaHTaEfpBh6RPJSw49FRVttQkqpj\nsN81FKnw+q08se8TttRtxtBoVz2b51jxP8azHN9TVUIhU6eJCLVbndcVS2UER0HJStiKTugTS7PT\nV3ho05hdhVVpVlIqMUZUUnTdHN25XPLokasorMWP+X3f+Sk6qv9H4wOqxw5zElYr6qWwCc2SWnTu\nkZKywfERoTpmi+zqOrKJw4RAnav1ak7ca/kipGE52sE2bpevswd4qvx4kx69QNUVqZCd5Rf4ofOU\nZqdz3rrj7tNBp4OfiZa9MRz3nFe4FMV9UFuqU3eepu7Tm7h5qVIHPgKoTU0jDyNWJWOzqdhIr7L2\ne+R1S2N3l3VLG5dcsttridE+nG09ha1tbWsfsKfCU7Ae1N0aL4gJQld6bOqGx6KUWs9K0rVk4cpH\nzKQ6XSyFLtsNybJH+lyX2rRlLINdq6FksySwouDqiwDz4h6edmtblZRC8eWL82sGX8+O8YQUa9Q8\n5HkBvoRj6qxGmjVs/IqRFbLQzMjEkBNol8w2UKvRKKOmFtoufXhB/bhVuZbWYrnAnKh2XV2SSB/S\nH3YwSiQ2m4pMegqNmIs6WY/X1OffD8dUIgGN8UhiEdbW5hqn0JY0qRp8/VwYuNC81YFhR/Rgq9iS\nChXKpRici0vaCuL9y4JIMX6aLkkkuhMTEubiTlg4GHiTbZh2RS7ab6gEXb//+hkbNXdVpk9H8O+H\nZ263Pn/nmM3Y7cD++JS89RabLo0agrw0xVrlmMSqlL13iie0ZVrP6AYumVl3O3ilQ4g24Qajebai\n0ssffZVqI5ap4BnoK++UQ+emu5/8uw5XsNuJONhx3ztfnbB4KI8nfpc95Q9G4wH9wOWSau3s+XzF\nHamY/8ovf5lA59EbBEQiC/6XXv4M42Pn0bQNTnUxp2pbdDvwYOnuhcLP6aopkKxkKdaqD2tPxaLQ\nlA3rk4L9yUs8p0x3WvQwy18EYJFlrFbuglarh8xEorIj4E6QjEklJOoXOY2UdIr1kkBw3EnSYUed\nc92BbtagpFKysqk31JJqt35MqvChkySEkpIPdlyyMysb7mbuIgePKw7lBu4WEWVXtN22AnXP1Y+F\n2w86tM2HD6/OuHzoXMbZ+YxQ1/Y51fPj3R499TA0XkWhlSdYzK+p4MpqSaXsdK6EYRJZ9o9EU3dw\nSPlPRRzjBwx1E3Z8WIrRus3O51VFIgyFyQsuRaM+6HYY7roH/XK14qHYmi8Uat2IJpxroVhXJYjz\n0QYhtBUcv2G9ElhK/Srd3GMwaWnjBvQF+rr3zl36qhgd24DzfQfOOX7VfT5p1qzP3EMcFDG1sM02\nGtNoXjbnc4xUlpYP3N/TnkdP1aMmK4iOJPhKAYIKs0lpBRsrWs7LDlYS8NGNG9d0/pSWxFdFSLD6\n/uyKW7dOdW0yJkpG51lGVyzdx8OEUNWK1Zl7b5GHRCKR6Yw8QknVv3B0k+6Oe+/BrX36er0SR2ez\nWmBbDspBD2nPkNdX170PzcYQ16L5/5C2DR+2trWtfcCeCk/B8z16o4jxMOFfeMW5SF89G3P+putm\nvDO7TT92u+6kKonENlqJV8HUK0xfUGRbI/YzvG5EMHSJoR1/QK0OxErbtd1kZIVcrjwn1nbtdzts\nlGjLq4YDdSUayXYVtcdciL/704T6gYhEn2/wWy3JBnKh4jqxYLI2I2y0ykcBjbwY4w2J+nL3VIse\nD7q0gsM2yrlQaS6KoVy3+pGGUAIoqXG79WVa0M3UPBUuMCIX7dYhvuTn/axgKILYLHXu9dxaSsFo\nvaCiFAx4amKuhENYFWtKhTdGmIDzKkO5XMK4Sy2vabUuCHaFETGWQFJvpRWmY2+C3SiECfYIBaW+\nePBbvJ21IY3PvrojD4zzftJ1TV668DE9mWMHLRmKpb5wn7u4vA2X7vgeK6FaZCM+c/xpAHo3BuSX\nbmcOmwWNmtCaIKBuJ11J16A3Ank3+fwKL2qvmc/Nmy6Bd5m4v4/HPomIVDHNtWL07njI8cB5gBE9\nHly50mLb2JWz4nDHJS3/xaCDt+vCqmGnS6Lu32azur4fkh012nVvUDTO+xntTa/hz3gdKoXePTO4\nlif8sPZULAphEHGw+yzdnQlvSKCz6a6ZBS7+HEWHZJ2vAnC58NmbCAevcCDNZtS6wQbjAfVEtX7f\nkKituTEBpdqF85ZQeZBcswyXhaUW5XhQ+tiR6urThOgFsdT33Xh1U7NcKDT4rYLhWLmBKiEV6/Jq\nOacvGLP1RJZiPQYdHWccMTl2N4LtjIkl7opwDF5YIwV4IKHsuder9ZJaD6aPh/A4xMJ0HOx7jI4k\ngT4Yt/qkmNinEidiz7V2urHVObhJcyItFOQeY93o/thc4+hXBVxt3M2W9NXiXafMFTJEYUhH1ZN1\nmRHNBeeNMlJVlVrY7klt8VtSm65lVz0Vt6YDipn7vouiZC2e+1oxvteHK8nM272KnhZhE/cJDqRv\n2TkikBZkpAVyXXj0FJ9H4ZCmdMdm4xIrev3i4hwj2LQVgMi72cUI1GWZg3U5A9PxGO24DayR4NDq\nYcFg5OZ+97hP0Go++jG9Q/fe7OEDNqqCza/cNU/zDV/+ihaTYIAn8pb9UU2i8HAax2wG7rz3Ju67\niiQh6UmgKPSxvvhGi+Ka7r3pxIR8tN6Hbfiwta1t7QP2VHgKfmwYvpjQnOesrTuk7mZFUrnVPvZW\nlJ5bHaPeBXO54Oe3JfU+6BJK6vs0q/FrJbMOQqwolb2oc41TKObK3tcnNG293kKpDHliLoki1+HW\nHz0HLb+/Kg4m8vA8F3aE3RorFN/exiNSiBE2EZ4oy04eueN8lK54Tj30o3pDZ9+5iVO7YaBml/W5\ne+9mtWSuZF9jakLpNEShj68emKYx2FwaGD3nzYwGtwgKt/OVpxu0kdKJvGtY+NBacnVSNsIddD2P\neaVuwSLEylOobEIlZOLVqmAmXoOBkmgRhqUSjb06JYnb8KnACJ26XAREHRdKlGrQSucx/QN3zONk\nyNIXGi8Y8+KBO8699ZQgdMm4UetpFB61mJaLdYYRJiW4uqLbuF2+b7pUHXdeA4UrAz+E99zOnHdX\nxLF2z6yiWbkqgQ2q6+Roo4lrTt4j2HPQ9U73UxjFSlVW0+u58QqJrUyeeQXv3J3f45Mr/KFQhbZL\nXrhwJQjHJCfOE1ietd2OhvpY8zbP2Zc6elBk5OLmXMXT6yTtpXg9aju+xl5YIja1VL79CYlUw726\n4zhFP4I9FYuC11j6i4KahEwafp3xLf7ADXfTXNx+gzOx3Bze+DzJpQsl7s7cg5n4YyYHnwOgyRds\nNtKE3PjXLbJrc/p+fCY8bxR3Cfruwvg2ZC7gTbh3RHdfQh39KU2bUd91nzemJkvdha1PLN1n3Q12\nkW2IRaledTx8uXDjwj0cV4sSXyw/N175LMmObugmIRKMuaxadifD/VMXPvml5aVbzm21cYXvaSGr\nGoK+i2u7InDthBMqteSaKKcWiKWqU9ThzSj0rwlHNqXCElMxkmpS02uoVE5cLAoKCb9czHJa3VWr\nBdSSsNq467BY1WQqSU6SLta2/JEp1ri5m0h5q2gWlCJ9WVUFnY0b+zAZMD28BcBlaVk0kqIXL6G3\n3tAG13HvBn7uxp4/PGeprtTx/kuUj3R9FB4ymhCJ2XT18B18z+WBun6X3g3lkswaX4vXqmo1Mffo\n9LTQD0bUl27hxC+vBYITkb1WTcbg2B374elvks7dXGRJTFO7hXrYK2Dqjn/5tltAZo8s69wtWGN/\nStG4vo3Lbg+bSojI1sSRSFoXgpU354zHDmp9tlozGbmNc5os6Yp8Zv54TaKw98PaNnzY2ta29gF7\nKjwFsOAXlFcr4qu3AchjQyHSj/eqgsm5WzG7L79M54bbYYbSGezFHsGBACHzCF816t6hRyF4aVh5\nbhygo8ysF9fUClfyy5TRxK3myXN7BKHb5bNliSeBmjZbHhp7DfTxjSFfqoYeTLBKmI06Hj254D11\nyMU0jLSTxrsesbgc8mVBLNr2/k13zoPhEUbkHpgZg5H73nWzphZhSbeb4B+Juku4gfTynKTX1thD\n4k4LnCoIpMcZxF160rGcCfq8b33KvtvxisjDVxPXKPLYVCKXCXtcqWFrKLf93B9yIPdhnc0oWx6C\noEPcVYNSAxM1Kw20qzbWoxQ/RadT4Ancw7TDmcK0vH6bWDDeVAI3mbE8ozp9d+ST5fI8Hnj0Vc3x\nhh2GR+74s3tSBL8xpZFMgL94gfxENOtHMYEa5KzXIzsTUYuqQUHHUElhfPPuXdrMre0N8dVtm8kT\nTDYbaukFhekRi5W7Z+uzBb5Ech6U50Ti53hx1+3y9/MFt2+7isSD/Aw27ueDowNGNwWVp38dptQL\n3RdhTKAOzmE/pIPz6Hr+PtVKoXAU0FEo8WHtqVgUbNNQblIa/4SFdA+q83fIB+outHMatTV/afYe\nn35BQKWBe6hWzTmc6AY7njDs6ebwoJSQqik86sy9vy3frWxDNFSZLujSJALTbGq8IxF/ViWV+PwC\nAZMGgc+ypScHInXRXUQRPbXADno+tXIb9dR9/iAMsSu52u+8TiEwVJ0ajO9u2LgjH7/rM33WuYme\nCVlLyj0tG1AYZE0Nuik6u60Lu6TUvHR3QqbKhm8aQ65SbN0LsX1VV5bC6pu0xR3h+QmV8iSXtmFt\nhUKMGnpy0YtAvQzhEinDU649bOC+pPAbvNiFBHHjE+nG7Kj6ss7ia+5LzJq1USh1HOCrXPjoy5c0\nJ+66N0P3XYPkiJWSKkHaoOgCM7LQVQiWnRJK6yDeUeiXXlBJyqs2DfG+dCW7JZVIekvPUmsRKpUn\naR5f0Dtw1ySa9jCRULTDEXMtxIX6lIt8Rq4cTX24S7N0D+9mmfPr7zoUZl7N2I9cKPjKZ1ze6ji5\nZBmIP/LOIzJtBpsoZW/PLRyMYqS3zKpwC5oJLBuxiT0/3SFUeHGZ5SBUqIlCynTL0bi1rW3t92Hm\nfW3YT/AgjDkD1sD5J3QIu9uxt2P//2DsZ60V0OL3sKdiUQAwxvyKtfbz27G3Y2/H/mRtGz5sbWtb\n+4BtF4WtbW1rH7CnaVH4se3Y27G3Y3/y9tTkFLa2ta09HfY0eQpb29rWngL7xBcFY8z3G2PeNMa8\nbYz5C094rGeMMf/IGPOGMeZ1Y8yf0+tTY8zPGmPe0v+TJ3gMvjHm140xP63fnzfG/LLO/+8YIxTP\nkxl7bIz5e8aYrxhjvmyM+e6P69yNMf+R5vxLxpi/ZYxJntS5G2P+W2PMqTHmS1/z2u94nsbZf6Fj\n+E1jzOeewNh/WXP+m8aY/9kYwUXd376gsd80xvyR38/Y3yz7RBcF4xhA/jrwA8CrwJ8wxrz6BIes\ngP/YWvsq8F3An9F4fwH4OWvty8DP6fcnZX8O+PLX/P6XgP/MWvsScAX88BMc+68B/4e19tPAt+k4\nnvi5G2NuAH8W+Ly19ltw2jw/yJM79/8e+P7f9trvdp4/ALysfz8C/I0nMPbPAt9irf0s8FXgCwC6\n934QeE2f+S9Ny4rzSZq19hP7B3w38MWv+f0LwBc+xvH/PvCvA28CR3rtCHjzCY13E3dD/qvAT+ME\n7c+B4Heaj2/y2CPgXZRH+prXn/i5AzeAe8AUB63/aeCPPMlzB54DvvT1zhP4r4E/8Tu975s19m/7\n278N/IR+/sD9DnwR+O4ncf0/yr9POnxob5bW7uu1J27GmOeA7wB+GTiw1raUtyfAwRMa9j8H/jyg\njhZ2gJm1Igt4suf/PHAG/HcKX/4bY0yPj+HcrbUPgL8C3AUeAXPgV/n4zh1+9/P8uO/BPw3875/Q\n2B/KPulF4RMx4wQm/yfgP7TWLr72b9Yt2d/0kowx5o8Bp9baX/1mf/eHtAD4HPA3rLXfgYOVfyBU\neILnPgH+LdzCdAz0+H+62B+bPanz/HpmjPlRXAj7Ex/32B/FPulF4QHwzNf8flOvPTEzxoS4BeEn\nrLU/qZcfG2OO9Pcj4PQJDP09wB83xtwB/jYuhPhrwNgY03arPsnzvw/ct9b+sn7/e7hF4uM49z8M\nvGutPbOOeeUncfPxcZ07/O7n+bHcg8aYPwX8MeCHtCh9bGN/VPukF4X/C3hZWegIl3T5qSc1mDHG\nAD8OfNla+1e/5k8/BfxJ/fwncbmGb6pZa79grb1prX0Od54/b639IeAfAf/ukxxb458A94wxn9JL\n/xrwBh/DuePChu8yxnR1DdqxP5Zzl/1u5/lTwL+nKsR3AfOvCTO+KWaM+X5c2PjHrbWb33ZMP2iM\niY0xz+OSnf/smzn2N2SfdFID+KO4jOxt4Eef8Fh/COc2/ibwG/r3R3Gx/c8BbwH/EJg+4eP4PuCn\n9fMLuBvhbeB/BOInOO63A7+i8/9fgMnHde7Afwp8BfgS8DdxVBRP5NyBv4XLXZQ4D+mHf7fzxCV7\n/7ruv9/CVUi+2WO/jcsdtPfcf/U17/9Rjf0m8ANP8r77sP+2iMatbW1rH7BPOnzY2ta29pTZdlHY\n2ta29gHbLgpb29rWPmDbRWFrW9vaB2y7KGxta1v7gG0Xha1tbWsfsO2isLWtbe0Dtl0Utra1rX3A\n/m8wDChW554/oAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.3356... Generator Loss: 0.7553\n", + "Epoch 1/1... Discriminator Loss: 1.4345... Generator Loss: 0.7667\n", + "Epoch 1/1... Discriminator Loss: 1.3151... Generator Loss: 0.8760\n", + "Epoch 1/1... Discriminator Loss: 1.4366... Generator Loss: 0.7039\n", + "Epoch 1/1... Discriminator Loss: 1.3346... Generator Loss: 0.9874\n", + "Epoch 1/1... Discriminator Loss: 1.3435... Generator Loss: 0.7690\n", + "Epoch 1/1... Discriminator Loss: 1.3227... Generator Loss: 0.7796\n", + "Epoch 1/1... Discriminator Loss: 1.4459... Generator Loss: 0.7080\n", + "Epoch 1/1... Discriminator Loss: 1.3379... Generator Loss: 0.6979\n", + "Epoch 1/1... Discriminator Loss: 1.6802... Generator Loss: 0.5041\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVmsbGl25/X79rxjx3zmc8+dch5q7ipXt4vGNo2h1S8t\nIYRoJNRISOYFCSQesHiBx34BBI+WQOKhpRYSSLRQdxv34LK7bZerKmvOqsy8eed7zxxzxJ73x8Na\nEVkptalM22lfoVhS6kbuE7H3t79hjf+1lrHWsqUtbWlLa3L+sgewpS1t6cWiLVPY0pa29DHaMoUt\nbWlLH6MtU9jSlrb0MdoyhS1taUsfoy1T2NKWtvQx+syYgjHmbxpj3jPG3DPG/OZn9ZwtbWlLf75k\nPgucgjHGBd4Hfh14Cnwb+DvW2nf/3B+2pS1t6c+VPitN4ZeAe9ba+9baAvgHwN/+jJ61pS1t6c+R\nvM/ovjeAJz/3/0+Br/9JXw5830ZhSF1VNLYGoGnAdQ0AjjHUzUcajWPkuusIT/MdF8+Tz8ZAWck9\nyrrBceV60m4RuPK6Uaslzw1C2DyvAb2f4/qAPK+pG+qmlOuOD0BtGtyykGu+wRDJd6kpqwyA6eUI\n6xgdsAtAK4zxPU9/51OttbTaUOr7NY2MJy0KmrKSv1uDcRp5P9fBbeSzbaDWz6X+zlbNZg4t8Opr\nr8sjipyL8+dy71VGUem9kTH6rruZTxyoCvl70TT6DTDGYMxHa7J+SKNzhbWsX6mxFru5vnnM5oPB\nbi793De5cdDHrmQO87oiz/X99BvG/tyzgXp9Vwu1Prz6Oe3XfPRgmo9d/4jWVz3H4OuaraVlo2PV\nG2B/7j1uvvqSfMpTueRUNJWsb1EWWCtzaKpqM291bTd7eb1P67ohigK5hWPQy3iOg/FlJEVWYHzZ\nf6HuoSDy8XRPu0GE48o9rG2wzc/va/ndD3/87pW1do9fQJ8VU/iFZIz5DeA3AKIw4Otf+iLTywsW\n2QyArGhot0MAWp7LciUH03oeoR6yQbsNwFHcZbAbAxB4lovRBIBno4xWTxjAX/vGVzje2QHg7S9+\nCYDjk5dxrD5vlUEghzvo3QBXFjofpUzzcwDi6ACAsb+kdyoHLLnhEvIWAMtmwvnVewD837/198lD\nZQDJEIAvvfZ5joa7ALSP9rnWg1fPHS6X8nmezgH44cNHZBdjmavSwYlWMrZuTHcpDKnKLfPVAoCz\ndCrXrlJmudzDOoZ//E//OQDTR/f4n/77/w6AH3/vfR5dXcnYHBnjYbdPN5H5NHHNxdMRAM9nCzzd\n0EHoYXSDtXSDGgurWhlMVVMqs8mLirzRQ2EbjJHnWGX0rmnwaznwNSWlHsP/9j/7d8m//zMA7k/P\nufdA1uECuZdTOiSBfLepDcs1HysNU332OC03h9fT+1pjSQs5KI5r8JUt1NZSKWMdJgHHkYyzpXss\nbyp8fTZpTe4pQ3Z8/sd/8D8D4N//kfw9vCKbyJl7cvqYspA5NhfnBKEc2Om8ZDmXvXw6kTW7nuZ8\n7vWbMseBy2QhTKPfahHtJwA8eu8pweE+AHd35d+T14/YG8re6t18jah7W8bWLCnmSwCW+QwnPALg\n6NUvPeIT0GfFFJ4BN3/u/0/02oastb8F/BZAtxVb5iPq1YK1cDVViS1l40X7Qz73imzYxAbsxHJ4\nuzsnANzcj3FVCtSF5d7TxwCEPGe+ksNkL67wQ5nMwY4sUGhrPF8W2XX7BIlKowaaUn5X5yUDVxam\n0o00LFNOa/nurdRghsKQ/MtHPH/3AwBuh4amlI11VcnGTmqHQSCHuMURUS2bY+61yGbibnFrWZJb\nTskykvccZ1eYVO5RzCZMK3l2EFiSUMY0sDJXs05DW7Uj1/PxVaPJxqck5w/k/SYXdFUruLEnm2p/\nf0Bt5dr0aklayvN8GgJX3sNzXFqhMGpfGaixJTaV8VjP4Krk6kY1ZamH0DQ0em9fGcykqHGMMjcD\n6IHtVgvSMJd3KgzzTLQGcnlGnEQMfVm/0mtwC1k/P3RJVKrGBtJSvh+GMi8YhyqU59W1wVHmlJUV\nZSnrYPIKK6+KF8q9hqEhXep3gViZhXEsUXYJwOORHP7EVARdGU9ocp6fycFMz+csroRRXy8BXZPT\nSt7TK2qe6jiTxKXWsXuNj1PIvq8vrpjNRNidP5F1jKs9wuOvyThvnmCUd7lBjgk7cg/PoXJFMH5S\n+qyYwreBV40xdxFm8B8C/9Gf9OXGNizqnMKp8SPZdCvP5caRqL6/9re+ztdvHQNwPHyVuCWbwnR0\n+Mtr5lNZoLLyWHZkw9puyPNnwouWc8MslQMZrGSiXbfAt3Lgjcnwo4F8riscXw5LEzzDGPn+tJHF\n3G/1yYP7ALQv/yZNWzSJ6/m7pM9Fwn7933+daPV5AHaHd+V5t1oEVharDpc4uTz7+voJ7UyeN/Ll\n98fdXS7mciBWpxFn84fyu6uap4FoN6bq0yDvtB/JvRwf4kykldNyqZXJXnznhzy4J5Lpsqm51Ret\n6d/42lcB6A8jfnRPNvdknlMp09jttgjU3Gr5HcJeF4BeSxhhXhcUCxln4VQbRuiGNUku91g5FVYP\n73RyLfPWMjwRvktgDAsr73GjH/JMD/d0Ck+VWZyopL15a4fdgTzjbFTxlgqIPAkJPTlYV4uMtpF7\nLHoy3yZ3yCtZv4GxjPUAXY2umM1kPlt5hRPKvUN9/6s058tD2WdPcBi48oxHbkmnkMNbTE/lZs++\nwvUNYe7z7CnzZzL503DBdCyMh6rG7ch1b66mW+ySFzK2dMmGKYybMd5cGMH90xW1lTl8rIIgnFns\nmz+U+Xn7FbwD2TueO8CJ5HmeGeI0yuk+IX0mTMFaWxlj/nPgtwEX+F+ttT/5LJ61pS1t6c+XPjOf\ngrX2HwH/6JN9F6qiITQeTiYcuhuFfPXf+RwA/9Y3fpnXdsWed/0Ix1EHjZoXRZaTqepfXy+5tfca\nAOG84vpapFhV5izmohJfP/wQgFVnj8OXVDvwE2wu37X4uN21unqDohJNwJTCqZv929zpiObSZBPe\n/ZFw63T+lLf/6lcAOLn7EoEZ6huKb8BphhDLM9x6SK0SP+rt0L6r9ncqEr/ZyYgmwuGzwYToVKTD\nqHOf8lQ0l4VZkasQcCKZi127w4UnY3cqh8VIpMfp5DHGk3lrOSEvv3kLgC+8Lf7ffLLiw66MJ7ho\neOPwEIDBoEu1seEjEvU7tAPVFExBs2N0HRt8RNNz4gpTqKpNwfWpaCFhT02RvKJ1Le/6sBjBXOa2\n/+areAuRju+/e0m59iQORFP40p1DKjWfuknGbrsn42lF2EY0mht+TtgSjWbtn3aqDk5bVBPXDUiX\n8nnxbI80VAk7z8jncr2ZiWp/5ToMh/LsW3OHayN7qJxYVkPRtm59/lcASAcP+Ob/I/6Qq+sxSVvG\nkOQ73LgjktvPaowjn3eM/FvFDXWm2oMfkFl59rJyWZ7L51FeMMnk89o38uphwl4lVvpsdk7RyNz3\n705xg1f0xQuM8+mO+V+ao/HnyXUcOkmLy7wgV6dO0ov462+JA+/1G68Sd2UD0eTgyMEyS7UFD7r0\nJjJRQezQVkfM4GSHqi0LmtU53Y5cL+q1s2xBmor6GfoRbigbzAuaTcTAbXtQqGf4UuzCZR7SUSfS\nMv8hNpfD1E267PaEebW6L2NyYQa1ld83s2ucWDaKcRuqQv0WsysiXxbU9WVjp4Wl1VdG0d/n8ECu\nn583NMU9APKrnK7+Ti0ivFWG56sNXNRMzmc6yW1uviUbqF+7/Npf/6vyuSumxty7wvtAVNi9/R77\nfbne3x2yUvMgdyrQgx6quVKUOSaQbTSIu/QGoq67psJVNbeeNJhX5F2eXIm/5/HFhE4hJt+DbIw3\nUs/63teoAvHLPG0quur4+8YXxEHbiXziQOairlZ4HWFOsYnxYhlTkrs0+uxAx9s6Tmgq9f20AHWU\nOgc71LW8qzEr6jM1JdSMmIzHVF1ZJ/NgwWBXufDPVlycyZ6Ln4vJ8OjiHR69L0G3kpp2JM97+c23\nudlWf0fQ0KQyz52e7ItZXjGbiPlkU5+kI+8xyWe8e18c2q0HV3yoDGu+kH8vreHyQkzCRz+Y0O3J\nngy8l0l21APb3dv4xz4pbWHOW9rSlj5GL4imAIPYZWacjYf/pDXg9ZdfBsB3PRwrapt1uthCNYVG\nuL1blwQq5Z0mJE9EFY1zn+PboiZ3Aw/PEc7sdUTS5KlDcS2cdmVL+qrWWWdImIuqZmyAp2HoOlWp\nMx+RpiIlJs+veHou43nrrdu0fFG7m9kzinTNc4VTO/4+jqp+dQVNJVLViUIaVUuNxtj8ZpfKyHc9\nZ0KndQeA8KBF/opoB/PVH5CN1emo81Z5MaVKhiZtM108BCAyDjsasjru+ez7IsWW1+IkK1cjrJpH\nu1GX3dZao2nRGahnfJljA3m2F6lXvC457IuZNBh2iDQMWzYVZiHvVO25VCuNUGTikS8fVTyPRbIV\nzwtqddqFyymPTmXM41nFSVfGud/S9bUGB1mbIIzpxrKWYdTGqvMzyUOMhhFMImvuJx1Qs8PNK5yO\nRqA6Po7p6bNz6rfFlHArmYte4jH/UMY5LhbMz2VNXJvgPRI32aP7ohH+7h+dcW8ke+HVvS53ujIv\nL98c0FGNp186mBMZR9TVa/OCNBLtYZqtcB3Rijwn5o2xrKW3TAl8+f5PcvluPqr5l3PRTB4G32E3\nlr9Pl894+VWZ++5Lh9hAHN2flF4IpmCMixsmrOwYP5JD8dJbB7RDCTl6SRsJCInajW5oY2WDWRy8\nWjaBTSzNlR4Ur2KnIz6DdqeHRu1odFLLFlRGNr8f1aBAGZOUmEB9DY6LWQNSNHph/QMm16IGX/+o\nJO3LpogHb+MPdPPPlriqutapqtGDcxYP1SvsG6yjtn8UUCgzqNQL7bgpcSRMI89iLGJnt9oNJ8fC\neCZX+7ynh951NLznZfiNhuyClCqTd0qOXuUlZabj0YxoV+5x8aFEZ37y6CFW/RL9TpewLRu6NiW1\nhjA8NyJIRLX19LvdpM2uznG328YoI2vKCk8BObmFlTK9qiP3bR085/ljOdxNXVMh85I1S/74e2JW\njJcV/VuKHUnlXovQbABerXaN2+jYvJBaD73x/A2OognWZk6J1ehD4Dk4RiNYlcFoiDDoVFhH9kNp\nJErS4BId6IGdwTiVMT/NM6bBBQC/8863AfjRvRFZIGbS7kt9Xv0VwcMM+xGx+r+SuKKO5bNVM9g2\nHcJDeYY/sqyWstZNE3P8JRGMVbfH4r33AZg9kWc8yFKMOpWe/eAn9Hf7Mi9VyG4gvg2322DDT2cQ\nbM2HLW1pSx+jF0JTsAZqz6XlORyFIhlecg9x2yp1a7ClSpXGgCuf61K93kVDo6YBmWUNXHXTBl+v\nN3VGtdTPuUilZW2wXZH+JuuShap5zD08xTp4XhdXvbfJkTikruZPGanZsexdMlTPcS9u41hRr/PJ\nKTQiQfNMohdVnjCZiBR0Cxevp4jHqMv0SqSDOxfJ5h7kmJmMs2zm+DM1fdrneIFI227SIVB1fa4w\n6HRcbhB6ro2ZrkRrOu66uIo3WF0tKeYiCZeZSvD5krgnkmZ4fANfQUjNZE6h+Ay3FdFWHEk3kns5\nxidWZ5/rBHgK7c1qQ6N4A1M6+IG8S3ggHnvzbECrpc7AElw1f+aT+zyYiUO3nTi8qeCqZSjaQRIZ\n2qoFxCQ4bX125BBUco/GDzCKhvVQjWA5IysUtNH1NvB319Ybs6msalxf1t1t5N8izBkpcGpUWUyp\niEdT8qP7gl59eLl25kK/K7976+23OO6KGeDnl+S6lrFf4jgCj3YQUyWoY0pP1iOOBxRXske8YYJR\nUN7JyQ2yyzMAvqmQ/nRZ4Hvy/tM653IspuAbex3unMres/vXxL1PJ/tfCKbgGIfICekPu+yfyMFr\nHR/iaDzJFkusvjymoGpUjdecAzyLUwujyMtrVIPFdQMczUWw5QJHVTi/Kxu6KVZY3UhVVeM4ciBt\neEG0UEx5xwXFmvsK282vlsSlqHJLf06QymFq6jHpqajjXp1Qp7KIl1cCdErPl+j5wsGj6GjEZOWS\nNhr2000cNjVOJqqhE4WUetBNU9OXjxx0AwJXATS1qrvLBdaR96tMyeiBRkbaEZkv9/vw9AnNI3mX\nyzM1W2KPkxOJnAxu9Fk+EQZJ5MJKGc58REeZRdDv6Ry7NDr3dZbjxXoITUO6kMPtFQ6K+cEv5Lt+\nUBEbjfDE3sbUuj5d0FHbeLffoqVjNvqMKG/RGYiK30k6mEhh03lF3JExVRisZkW4lRxGt9XBUdW+\nKnJqKwvRBB6NRrzKsqJSJOcaJ+26DelK7vVwtCIf6Po1Ppc/FsGQxHKv7is+kZqjJ3sh9VLm3vHb\noHD6xjTYXPaFUT+J9We4ChUPHJf+TWEmjdvBUdBWNQ3Ye118A8kfy967zAr2dT0sDanO7fTS4hwJ\nw0mfdig2cd1PRlvzYUtb2tLH6IXQFDwHdhJDNnHZaWlSTlOwWjwFwHJAqDkKtPdBs8E2PM1a6kql\nqufhrJNaWjmRqoHkAbNGcfTFWhqA1wh3LY0l1/gxpUs4E4nvmASrTk7rydiq+j0ahSg/e3RGRyXe\n6tElppLrQaekUVhqWIp4mZmGShOKiuU5zaVI+VkIJhK1OqvUaTkyWFeToNr7NDrOqIoo9jVicjrB\nTlT66b+u8bCOAoiqCK+rQJhlRnkhJsrz0RXlD+Xe7b44c29/7i6v3hJYtq0n5G2VLllGiLxfUwY4\n6yxHNRMa15LP15mahkK99qVtqNWxV/s+mWobhUrEuInZHyi44qmLr7Bku7zitb5GlYY9nheqYqiG\n7t01GwBUHMV4sfzOq2LcRDXApsFTc8rq2mAamkY1PlvjqvZXkVGvkyCXNZXmI6xDTjaO6HiiCe76\nE352LVqqa31u39S8C40WXBuH0NWI0qTkIhQzINnr4t8QjAxuhdVEMOMrzqadwEJxE46lFWvyV9Si\nUu027zZEjzRqobko1apirLk0URywUFNjVS841eU7MnOcSjSST0pbTWFLW9rSx+iF0BT8IOLo5E0+\nPP1Dnl2Lbbx/eUp1obntu/km3uwkOU0lkrBQxGA1nuGqdkDjEkaaZWbaWM11L6I5zVK46to+xwtY\nrIQvZsspdqFoyuOEKhPObuMFtfmoVgFAXWW8+2MJ+fz0+yPuvqqJP+XrDAINQ86mrFZiO45XGma0\nLgsj0trWHnTUj5DWpIqQdNVp2Ry5mKW857Ip6en7e0FIoXUWitCh05NxvtSV309XLuPZ2k9QMAxF\nAxlf3ufyTCTXs+WUm29JqOu1Q7FTD4cJ+y2RiAssk7H4FJq8wleEpNcklLVoGFWhCMzGpdIMSFou\npWY1lk5BvEZy1jVlvs5iFUmcdAzPFWNRlCWVUU1iluN0RdoWWcnjK9GKXt9RNKrvg6cOw8jgKqLT\nROFHfgIsRpOArPoL3BCM+oSCvRCrY1tVOaUiBd3AklqR3mtlsryccXxT5sV73+Pdd+S73XbD59ta\nXyMSZ+juoqFWKW+jmM6uaIhe1OD48t5VNmeuCFh7Le/c2WnjeEN9j+UGT2NWKWYo85Z+AJnugW5P\n/GurszkLTaPfDVxqXafziSVpRDto+UNM7wVIiPq0FAYuL9/uc/FBiKsZa7NnlyxL2Zix2aeYyvXq\nicWJhBnMLuSQF6PnJD0F0Nw9wtNNatOc5WwN8SypEXV1rtj6B0/OyVK517xp6Khad5h2aXfFYeSY\nnEAZjvFETXz85AnvPhXn4QenI6apbKQv3Don2hEVdrx8xPNHclBnymyeTaesclWfMfQUdh2EFU0t\nZk66kkOwf95iqjkeZZPy/EIWv93zcTQt1tg2Tle9+opzKL0JtW5y67XoH8l7FKcNT54LZJa05IZC\nbPdOJNeeOdyfSE5I5s0pS02NdiOMArX8JKSXyAFBsR7TacqObv7SC8lKGf/oPCXWiEFVOth1KnMi\n951nDs+nsg71ssDRrMRgP+D4Sg7b/ccz1E/MSndqTJtMY/OrdIlx5HmBPyBQ87DOHQY3ZT+02zI2\nh5xU8Q2lrVnl8nl8PWJ+Jfso7oEfyvqVodxrkYVUivu489oA/kjAQufjnHJX9tPn10Cvq4Ynal7U\nRcHQyPo6rRFOLWtmbUp9Lof3w/clZ6ZaGE4+J8Cy3d3XUF8lxeI5ZSbjuSxypiIvSUJdA3NGpoIq\ndALamg5eBgWLSJlsK6JX/cK6Kh+jrfmwpS1t6WP0YmgKUYtXXv8y3//Wv+L9a5Gk32h3qGqRbJf3\nDGMN79x/55tYT75zfCiZYMMkpHWgnDhd4vUltNZ4NdNvfx+A56NTPnwu0u1cKzNdzCaMMpW0xqOt\nMNmLgx6Oxg5fee0m9kikqfHlud995zGTh3KP0qzwfWXtJwGLiWgH7797yo9/KsUwfjYSFn85Wm7K\noPWjiOGuvN/dQZdKpdj5pUi+rC6wWpAkHkREiszr9GNaGt873u2R1orODGV+BtOQ5Z7G1YuS/vCG\n3K//lEtXpEfXb/PSy2I29IxI7tNn3+OPP5BQ1/1RTqLw4Vu3DxloTYJOq0OiDrp1xunZ2WMenEpB\nHzdvcBU3YRuXM6MVhMIYR5OYWrHcazW9YjxVqeo79Foyjqrs4dayDl6wwnfl/bxYHZxFQ6PYCpqG\nK03WauopiYYyfSKiqZbeU1XcliXpSrTC5XVOrijTlTNnpQ7mwnNpa+jT9dRZm8+xa1xEnRD1VbXP\nDPUaO6Io1Gi3xFyIlhYNLL5qcVUecf5EzE3Pq+n0tfpWS9bmwcX7nP/+jwH46pcrQldU/3l2wdMn\n8n6TLCSPZI+EmrUa+yF1qdqRY1BFFzdzcC/kejZqcNuCvPyk9EIwBdeBTlKTOA2ZbpSgFdKcyYvN\nVqcUtWz6PC9YaUbk+EKw57f6x5RqC8Y3GsJIILzVbMb3vicAk6dPn+P4shjxgUz6neOAw7Hca5YW\nLKayuOPzCU9cyUQkr3klkY0ct2RzeKsVPbXTrOnS19j8/X/yHs/H4kd4+HjM9VQ2SKH62H4Us1Cv\nfdcx2JVswCzJKWr1WxgFaVUlgcKEO70djg8Vju05+LVcd+OAQD3nnUrezRw6LMYKCpo59Ieain33\nhEgZ3a1+RKAmzaxRLEGc0Chwp9P9CAh0fb7Aai7FsNMi9EQlHq+EERTjMYGmUUdJi0rj5gQ1iWYl\nRp02xtMMRvWcBxUkCgo7HiTsKuza1hMmUz28i4pIQWTMZOwrb0wUyly4iUek9jXTnLmW7HPNhNZI\nsQOeQr6rijTVojXTOYX6lWaV3dS59IuCUuHWtRZv6fS7qOuKrK7x1QxyQ58dBYYFCi+ePsnwjIxn\n/njEOw+/I8++Lnj8VARAMWpwXRlHmsm8lvOcfc1qPP/wAtrC9E6vZlyM5PM48EkaYSLGlTMSei5a\nFIq6LEEL2Szqkg9yzeK9dBm6d/g0tDUftrSlLX2MXghNwfECkr07xL19fE+wCcOdHo4nEiEzp8yv\nhV1Hxzuc/USk20NH1KLESXlJsyT94Q3cHTEfMmfM2UwkdxW3SA9ESl0+lXtl5xlJph7ksKTWGgoH\n+31aWhfB65Q06sl2VB2esqK9J179v3IzpNZsx6jbo90IZz94qaZfaxw+j/TvrU09w9PlGb1KpNjt\nV/ZBnYqPn6voX9SMA9Vipivqlkj2fbdDd0dvS4ijOIwkUWRm3tBRL7TpQaujGsSxzxs3pbzds8lT\nei+9CsCHWlPyJ+/e40IjH5eXJbWaGu04A03MapkW7UjWpK0Yg73DNlEl1+qDIe/fE5Npms/Zj+TZ\n+8MePYVHt9RMGB62CBO5tt8LsAp5nj6b8c2fipTrt0M6Wv4t0hoYywyKtTNvlpFrZMeNOrQU2pzm\nNU2u8X1FNOJ9hEFI4gBPax1cPLtikat26kc0GgUJtRZlk4MZyNw/OpsTavZlHLvkirm4/0y1rbml\n6GtpumaAUVPqrLzAajGYIHF4ppmpx4HMT71f843X3wSg+4UTTu/Lnu10XaZWzK7RYszVhWgbdb1O\nOrMoQpunkyWl/k/iB6zORAsZdwrcPUE3flJ6IZiCMeB5ls+/cUQ4FxXpcOcOrX3xHHdsRtTIJrzz\nyl1uvyIv+ZrmC/QpGNyRAiL+/h4YhTM7Hb78a78OwKIouDjTDMVCmEKThLiNTF4+m7JUzH0zW5FG\n8owH9zxuvqQqvQJ3gr5hV238t978CsVC7juZneH11RZ3W8y1sMbkqWY4+jGZZlr6kcVV3d8NamJX\nNunOQE78whnTTFXFn4/JNYRW9xwWWmg06HgMNVck1kNlvAhHfR+xAUfrFrYPOrzytni4oycN8Y6M\nv6sRlRv7R9zQKMJPHs1xdF5aZUqsWXZ+v0Wg2ZGhI+sR9Q5wNQ/CMy1ODmQddhpLd1ciAC41sY7T\n0YKvrt/l7bvyvNj6jNX2L+OMeSrjvzVscaim3kgzNd3A2xS3jYc7OFpMJe56tDXcucxKKs0PqNRc\nCwhw1DyqHYOv891PYqnjDljPpdRIUtJTkyLucK5u/2VQcvdIGORw2GHSU4ZUytgPdxMaDRse3T6m\npfvwlYNDip74pcqriqtHcui7qUTXos+HHAwkxd9Yl6M7si9223c4fEM/fzDi6lKEYJnJO0VVxgNl\nFO9dLFgqs5gWOQ+Xcu8sT/Ev1uX8PxltzYctbWlLH6MXQlOw1lKXFUmyz+tf/TIAO3sO3QPh7L2d\nL5Er1LhxAzqaPbnXE2k3bPdIDtbqfneTRel1+9x5Veo1zrIJO0fiELq7xj/4EZlmMC4fX3J5IdrB\naPyMfDnVZ8TgryHEct+i6RGuPdLtiomCUPLI0lf4s22VlJly+TtaYvs0Jxhoncdlj6PbIimHxsE4\n8ozVUhOx9iJGMzFFem2Db/W609AORBrtJG1qTdzJM5Fathxvmn80xnwkmZ2Q4cuSnffo8QcUGs2J\nE63teHKTTKMdJ8OMviOOv15c4WuCVUREptWYfWddPm6Aq+CuvMro90UCd61HEGo/BTci1MSmopC5\nDyOPr78/8jSQAAAgAElEQVQtsOpFveBffFvMjv7u23Q74uT1opBGHYXOOrGpdtg90V4Hh/uU6sX1\nVzVoCXeKipbCnH2tkWHdArPGrFmwmiS024lJ0PnyQZUeIn3nNM0377cf9Hjt67JmWWa4r9GsuK9V\nou8c4bkyLzdObjFMZE8SWJZa87HqP+RQa0okXdGKW53b+LdEY1s8/RC0xL3vD2j1ZP3aXp/poexf\nu1QzNympvinz+WNnsTEfoCbQ9zOTHHNLTahPSC8EU2jqkmx6Sj2+4vRCVKvZbMDRbc2Q833ailJs\nggQ0c6xUXH8rrnHWuHdb4WjxUBqXsKcFSJM9gpYiC2uxU0O/AUUNLlp9Wq4AkqbX53iFmBKV1wFV\n1/K51taLStbGXJO5TH0NG51l7PdFvQzcPjuRXPfRLMq+pdDw1e5yzK6GpJara1xVd/de1sIqVz3C\nV2TzzPMlfrnuXxDjddfRkACreQmOhtjSvKFYd70qXdbNlIzTYJcKiJ+7ZFq70dPKM53A4Gnvgd2p\ny25HzIMwqGk8Vam9alMEtFmjCl1L0BZGGNkAPfv41JvOS74fUup7Z+sMViru7oo58/70x2Ra6WrY\n8bipEYfA8yk1E7atzK2X+MT6OawagnV2oedvejX4TkJLzS1Xc2bKuqbWJAffqzHaYMQEDn20dmPg\ngjZ7CdT3EdUR12MZ22HSp3NHri+vHHIe69zKc9vJDtZoyvI8p9B08aCcE2v7ALf3Bk1XC6posSC/\ne4Rdd6+pHOxKPheRA2bti+kQdbX3idbxPBgaLh6ID+4fP3wi3aCAZW651tB3QrFhnJ+UtubDlra0\npY/RC6EpFHnBo3tP+MF3nzHWHIDDOwVF9W8C0Om28Ne9Iv0Eq5LJ0VwGx6uwirnPGwdnImZA2VTM\nJorFt4aOViAOOyoNvBC6ig94bvG0Bl7OikA5+603djfjXCrU+qh1QK1x4OvRlHIqpoYtMhqFBy9W\nV7h2Xd5MNIXar6m0fFjo+AxvyjuFpwErf91LUq4dHBgiLX3WW7Y2fQfjpE2t0QC3Dmi0HLjeltKt\n0f4w5E6NVci38QJ6d8UJWDsT7LqfZqpgpOWzjVq6M4gJ17kWtqAptBCNV216MKauOE9X1RR3qu/U\njzbl2ELTEKgkzOY5+Urb8CH/tozBdjQa9MGYh6fiROsMDkm0KvPFLCMJ5dl76+YzjkNaybXExrQ1\nSzJ02/iqCdbPZ4TDdS9QNefyCY1iEHzHp1E8RVXWWC21HvgOlao6jRZkaYqSRM3HVd/SaN3JbF7i\nxgoy0vyD1SQjiGRfZE2XRDFtZb3CK9XcCrtsZLFq9fZ8TtWTdxp9/4c815wZ2z6i0pqfh/0Dhoey\n7r5mfjp3b3J9KfO9qOtND82KhoFGfjqmg9v5dJ3l/9SagjHmpjHmXxhj3jXG/MQY81/o9aEx5neM\nMR/ov4M/7TO2tKUt/cXTn0VTqID/ylr7jjGmA3zXGPM7wH8C/DNr7d8zxvwm8JvAf/3/daPFfMkf\n/P4fcP74g02JrrP3EzKtVtPhBmgjE5oAR0Wh7wunbrIR6UKdhPdOOX9X4LqL6zEL7Tt4+MbrhC9J\nZmCk1XryscU14qip8op8LKHKi6eXdPfVUXN9zNRK2OdqRyvrDlu458K1r8dT5mtD2XcptEScZ5xN\nKbhKq0SnhUsxVzG+CDi7WIcyl3gaQ79W5+Te7i6+9qxIPEOuYc846FKWwstzW1KrIw0NzTWEWNUe\nXOtTaU0Hr67pHUoDm5feeJtgrtWSFEacLXIWOl7fg3VHPs+FdP1OnTZG6xukH4g0uz6raG6LrTsk\nIlDkaZpZUl/m1jQJmYaBV9pAuPSh0pZoTz8cMdVmu3iWZE8evvqgAoXxdlRzazke7jrCtjKgLeTi\nXg83lnu7Fx712jGrLQaD5qMO42VkaGmNhKhZUiiytLINptAO4rpmqywj1Z6fLc+X2nFA1Im50OZB\nru6xq8mUWDN4wzsR7ak6o1sV+VI0jKa+BrQRrFbeamxJ8VTG/uOf/oAf/lD8BJmX0L8hfqc7L73B\n3UzCmkP1KYzu/YD3xpKgtfYnyIDAGch8nTsNrfOUT0N/aqZgrT0FTvXz3BjzU6QF/d8GflW/9r8B\nv8svYAqrVcZ33/mAKptxpCW1BtESV8uxOdQ4KFzXjqgutRuzIwvreBB6srn7Ow3Jl0VNnpcDJjPx\nlgcDiAeqGGkzjTI9Z74Sh2I5yTjVTszPR1NePZJJrZol7z8ThpOf6ka7cxOMXJtlU/KVVuf1G3KN\nbLTbCY7WlZxMFf+wyFlqlGE2a3jwx+LYfP/pGVaVNqctm/J4d8Rrt8R7nUQtAq38bN0Gt/qoWetC\nvfmFphMW82qTJ2AdB8O6t6OHuy8FVQ6/8leYnEqGXpwLo3A9Q6OMKZvlzM26UWyAo/foDDo0E3XW\ndUWtba9GRJoPEXmQNFppmwXXWo7N5BMcdfJ5CgpyVktmU4XwGkulMfa66eEEClprpnj6uxzN8cgD\nYvXeh70Eq6XhLSl1Guo6+BiFgqdXmhvgu1Trxq3zEvdAC53ULQIFalUYHFXBA32n2LHU6pS8PJ0z\nvKV7qMrwmqGuibYDiDxqBT2s0pTFUt7fyYeUlQCW0rNzen21G8aa7epesbyS/fTs0YrvjWVeOklN\nNdfuVOmQ7LGswziQd/pX3/pj3j/XFHdg7VWOwoChHu1FljNd/CWAl4wxd4AvA98CDpRhAJwBB3/C\nbzat6GMN721pS1v6y6c/M1Mw0pL5/wD+S2vtzKxjYIC11hpj/rVejp9vRd+LQ7sqxhRpwSwVKbEo\namaaXJRExzjqBGxyQ6XFMoyGucK+v+kYHeweYdTB15teY7/3I3mg06bSsmFG4cxlHVNrUsv1aMTF\nuXD2w06LvobnHn/whHe1iu5EJdhXTm7ia1OUVRGz0rCYXxpW/rpn4Iqg0Fbz2bqGQoiJdZzRkiYX\n9OLxbr1JbFmr+6UT4mg25HKZb+oNtKp007MgZ8W6fIan2kNqK5baUzB0A3DX029wNXFp/41fIvuJ\nZI+yKyr8Ttljel9NMH9KMJd7ZGlKpXPvP7wkVI2lWCkS1K4YuDIvXlpuiuGY3T4DLTd3nV4x1sIw\n62K8nrV4Wlvi+dmUTOsbxK0B7Y7O7aom0CQfL9P6DianUI2mKUpqNf/qRQcbaQHWJsHV9YkVNZpV\nKXFPrgW2pF6ohlVL4WBANDudr7pS7S+sMBN1TJeGpdaRsG5CqJpHpb1K6jyiUlxFkhaMFJrf7C4w\n63J0y5Kpaqrtm2IG2DwhfSbv1B/4HI20InhVowoUq8wFDbVPFrIfv//+JZda8g4MWjwbx3P42eqJ\nzrND6WrLxU9IfyamYIzxEYbw9621/6dePjfGHFlrT40xR8AvzNtsLGSVw2mec/FUlIwbx5bKqo8y\nNJsGLrgeTrgunKEzFjU4Gs81vrvpndf4DZ56pAuT09Rawl3x61GnhVUV0Lu+xA5k8vabffZuCejp\n9/7oj/j2M1nc1rGc3NeWJdNziTiUeUam44hNjdUoQZ15tBX73lGoMZGPJh+S+oaTN8XMebv9MkZT\ni6cKkGrllVRnAtLZJWmpEQAqMmUyaVWRqs0d9+TGrSggm2sdyABijQC4vovufaK9Q/Z/5WsAXH3n\nuwCcnl5wnSs2I43INE8k8iyFpoNfrBa0W5rCvatNe3ZuEKJeca+h0aIfvl9SaCqzVwesdL5Qr/5h\nEnL/Q1nrh5djpto8Newfc/j62/Lsdx5QaSn2eh0BqEOWypDc2TU7igsp45piKus7Pj8jLrSUvDJC\n67gbIJTrupt8lqJcwrrSNIZGQT+OYjoW8wVJT5vP3G4x16zS5fUER6tBVesK1cZSaiZq1NnB00In\n+SzHrCNfvROCPe1qpQLCq11af0PxKYMJiRbGubgcEbUlxf349hFtxYZUylQekZEpk3Udg689PYPG\nodI+q7kLXYXef1L6s0QfDPC/AD+11v4PP/enfwj8Xf38d4H/60/7jC1taUt/8fRn0RS+AfzHwI+M\nMaqL8t8Afw/4340x/ynwCPgPftGNjAHjWkxVkWpCShoWrFRVXS4rDNqHoDPE1YYrlfYUzD88I9O4\nszM65dG3fgDA5bsP+N5cJFT78Ijha5Il+MZt8f6G+0NsKupzGoX0FMXnOT6FQoWXVUWx9hyPZAzX\ny5KFqoN1XlGsy4BFFZ4WLfFjF6NVpxtHpVXgkV6LubKcpixSjWD0phjN9rOK5nNdD0/rC7YDB6vq\nbJ64m4zK1aggV8+4X2pdgaCFq/0Nmspg1hBDDOsmOY4bEGn2oTa+pno+oVJzJe23sKrltDyoNlpY\nhLZAoK2YBidwWFYyh8twiFFkojdqKAMtZFI6lDoHlS5jHSREt+Qe81VOpRVC/G6X3k1xQ33x+JAP\nV+uCAVq8xcvJtHWb1/OJKpG2fl5TqpS37Q6pxvLnI5HsPhkdhWDX3XDTbs4WDcVU0an9CEczTAvV\nNpeVi1E0beizaShUJYa5zrN2f8NpPDyV3NPVCruOPhmHQKt8t5KAet0wSKHbtdfGaj/S5VnKQntT\nni6XtPYEht++7hHvi1Y79rWP6SzH6ppGfshQcS1l4LNQczPxoVSI9SelP0v04V8C5k/489/4VDcz\nBjfw8V2fqRbfvFpNybSbkhkcgqdZdk3F4kKuWwXNmMmYYiaT6sQL4kQWa36Y4uom/eDD9+ka2SC1\nAoTepMbT9ORsVKA1OIhoiFXl2vNiXA0NrkOZVVmT6au3WiHO2rYsHIxWhYqtR6WLPtWqSuNHS0qN\nktRlwGkgZeSvfzTGUQDN9brAqa24uyub+GDvkEhB+fUiw1kXlHFcXM2DWBuUk9GUKtTOUqa3KclO\n04CzXi4Hvy2RiECbnyzCHH+tnqYN2VzDibtd9nY0EjPJNx2pSs3LGFUjcnWI2GCM1fCcT4PxVWX2\nXdqBqvmOHLa9kz7BT+XwF4gJCRC023Raovr/8q9/jeoHYhvPUy3oWzk068K1Y4+FMovAdfGVqQ3a\nA5pNbop2slrO0HajNIuCSgucrEYLxisxzdq06WpKdael8OLAsrbar+9NiW8rrLp2qFUwrKt0BVGN\n8iuypiRYl93vD2iMPs9tQEtlLlriw/GKM6qVmFLjh6e881QYwdlyTqBp2elohv/q52T8WrAys9Wm\nsXAS+kStNTzc3TRLNkayUD8NbWHOW9rSlj5GLwTMmaahTjMOEpeVNsWwTc3770i23P7um7RvrJOj\n2kRacy7NNS57+wZGsQR+1cF9Q1TjX+reoOe+C8Dg4Zhn1yKxB19QL3Q3xC60+vDyimePxaH22lGb\nbKwquG8INaJSLNal41v0tIKvu1xSKljIcQzrYIvxLC1N0soUHFO6BatGpOfxYRfji/S8ffwGu9pX\nMu7Key4vUx48UBDW9JLAlYq8tg7wtJiIT7mBEucar/fchrnWHggcn1qjGaZqcLTcvfFDjCfP7r0u\n4JjeD9+lGws4xr11yFxh48vFBVeP5HehrUlKLWGvnvyymDJfatl3Y1mop7vbDukpvDaIu1jdavtD\nUYE7rkehCPKyblibNrZe4Ov49+++zNc9ee8f/P5vAxAlJQdtMfNs1KJy1bFbzTCFzEUxrlh7VSut\nudhqexhVFarlnLClIr1aEeh3+4lPrNGHUDVIt79HsdAyyv2Kcy1jRx1gCv2OniI3cIm00nLspzia\n5FTYDK/SDMe0YamVopfnEkWon1gWjwSwtJzNNliJTuPxPFXT9fEFvY6oGLmv/T8biFS7i1yPYbgG\ntRkyLcUfuuGmEc8npReCKVgsVVMxrl2SWHsKlit++2fCFL72K0tMrAfBneMb2VhxKAfai306fVE5\nq2yKs1p7mce8fPgrABwuM1a68doD2Y2tfsxIAejzxZTLSpjNXu7T1YV7b5Ex1ozIyhOVOmiFJK6M\nwWn7XM21PHk6ZqUNA+qzCv9YG9OqnbrTDdhVYNHOjQ67LfFee0mXUmvxFWtgVTahp7UhBzsJ3a6G\nlRrDUkFBdVbCOgKjLoV6UbHUjVt2luQKEHLyK1z9rnEjGqP1KC/k7384uuKO9h64SZdBVzaxmzu4\nkaI+ZxnXS723wgqXeUOhvp92p8O15qNM85RG/RkrW2A1u7JjtTX8zS5/8HtaScjCOpTt12AGwkxj\nv0eiRW/RArVXs4pXNHu0Lgx1I0IkCtskQ5mEsldiFdFYLjQ0ueOQzeQ9vJaLidbmzJLyap3N2lAo\nU3c0TOTOnxOqDX9Z5sweiPC5njn0viD7KFOUp7+yOK4iOosFY/UJRbVD7a9zcLp0tb7nrdcllb3Z\nLVi9JHts8t4u0RP5+09HS1LdD7bj8OFchNZDFYCTugYNr69Mybnml7RjB42Gk0Q+bvwXlPuwpS1t\n6f+f9EJoCo1xSP2YvM42zi4nh/NLKbzx3Xd/wN7tXwJgGEdouz48T6IIbjvB9LQXHxeYsXqyd3fw\n18CTxVOCmdy7dhTOOw24mIi2cTpNNxmFz2cLnn3nIQAfXE1ZaOt6NOfAMT4dLXte5Yak0i4+qzlp\nJt8pbMZIq0PXmsmXtHysolGyR1Me18L58yksSvE41xqF6PVatLWFeLQzxGowPStWrLQ5y8qpMdpD\ns9EGKddFyUQb6sRFzZU2OjHZmLCWdzVNTKVOx+8+lfe8f5WD9j7srIbseloq7aCNV4lEm58+Y+pI\npGGmJkPZjiRBAkgdaLRU3CStyTXfwYsCBl3tdtURs+v771/wR4+e6HwaXB1P5Rh8X8yYJrrEqJa1\nzqiss5CxahtRUZI62s25DvG1TXy9cqhrLcGsTXZsnqPBKkq3wKhqVZUl45lm2waWgTbosX3t0ZmF\nLFRCX10UXEy0bLvnsD4+fqhRDa+hVMxCWWWk2j7gumoYh1pj02no7gi0PFIsjH/sEl2LSeRHl8S3\n5O/x8/v4p+KAfDSb88FzGefPtBhQWjagmo3NSgKdw9L4m7JwfmCImj8pHvCvp62msKUtbeljZKz9\ndPbGZ0Ff+sqX7T/75j/HpgtsLlzQLB3e+d1/CMD33/kuB13h+DkNl5XYToHacsn+Lm2tStM0KaMn\nco/3Hz/m/FSkY4XdIBlrzchbpjm5Sm7Xden1NebtelQawM8nSx5oe7OiEc7/1z7/Jut+Zk7dsNJ4\n2lu3Dnj5UKTcyi15PhJpNcpkDEnY49a+SCLTafHSLfnuQXefQPmz6yn6zC5YaGZk2dR4mqCze7JL\n4K0r9gzxYnXcqR3u1R5OuC4Ie8CXbknV5qVTcUvDlm4rwA1dfVd5XOiHOFoLobKWoYa3bt882HSY\nfnw62vRt6O6KpjRb5WQLrYacwywTu/2nz8dMFf69G/q4qums9Bm9tsueukO63ZLrXNbvn35wRUuf\ncXTYIlEk4Ne+JO9xsLdDV98/6XdpdB06QZdI3ymzFb5mM1aKw3j65DmnihG5Lifkin9oRwGDrvZd\nHPqbgrQ21+pe7WSD3jymi6/h7mT4MvcvpK9D9KFoPKNsRGrEtzW8c0AnkHv1mwraoiE9vb5PWCtS\nV52gi1VNqRBtv0nIJ9oWMW2Ih1qrwrRpUtF65wrz7t5I+NLNtwCpoHWeqsPXP8OXaDftnSWdQ9Gy\nf/nf+43vWmu/yi+gF8J8MLbBrwqwLlrijnxyTUcbjrxkUyaal3B1veKZZiKuOxftdC3dRFNrWyXB\nrhyQ4sJnpVHm8aLGKAy0WWfWFSlFtm7CYlGEMsNejGvWm8Yl0ia06UK+ENUFK8Wch37EjtFcjKZm\npQzLrkqmz0Xt9DVm3Ds54O3PSdXe2ThlTzP5ErdDX5uBNMt1ZmhMbOT9aueaxZXErhmXOI5gDML+\nAncu72o87ctYHeIONP8gNMRqujwtMvqau/Fay8EdyOeephbvtANiVdWbyuIplmO316OqZe7zkdnE\n7AcK9OomDXNdtKJq8BdyYL+YlFyfag1DYwiU++Sqyo6XLmeKzciagMNd+Xtyz9KP5PPJjWMS7ePZ\nUUdlknS5taeVpIOYQGHqGI8glvVZrpagpsR83aWqG5Br5MS7CtGsZvYPYvra6LfrtKlqZRCHcgDT\nqsHM5Hdn9YpEAWmtBo61U9M9xSl4YZtdza7tmBBXGZ3TnrCYihPbnlqWobYBONKM0hCaNajL9end\nEAdmNEnx1PypHI/kQB2+Z8LcotOUOhaBc/DqEd6VjH2xSrm30v3SbbMbf7pjvjUftrSlLX2MXghN\nwTEOgRdj0yvMQoZUnP4ephQJFRYF9UBDXRcZN0JVmQ9EQr128jKDG5Jc1EpCDhR7cBC7DPeEez49\nnTNRMbdQdXe+8BlpEs0ozyk17DVeNvRi4fJuEOFrKbB1z0DHg2Gg/RSG8SZrcbe7Q67qxun1HFQF\nv3sgjrrXvvo5bh2IE6nq+sSKmnPbMQHrdmTa4brjYBSems4nNOq0yk+vqawmdrVv4CvEuuVKARkT\nTHGszAV1zUqRe68aaO7KvDyhx98ayjiGd7SobJ2yUmTmjtew1AQlW+Ys9Hpj7NrXuun1UGWGvbaM\neeLUDBWH0GoivvGKzNHDWcV0JPd7ei6q8cvHhh+oBtYP9xlpsZROa8TuiYzptbt/hUqhxHsDWcfb\nr99mV7srmzqgra38CrfBaOZj7RmClox5pcjLdu+ASvtD7u1aJlqnYa/TxlNswmG4x0xxD5lm4qan\nI3b2ZS8sViVBJp+LumGoazZWE7SfvUVHy+odDHfxXXGE584jri9En293+qx0bKF2QXcdj86hvP/C\nDWlpElg3qeno3lvlDb724gg1DOlMC2rkmmm5m6zh4c6QSKuRJ94Nqk+JaHwhmILFyH+OTz76FgDv\n/pPvMFuImlQPO1zckwUvS0vTF9VuxxX7PGz1MOt0aqClvQaPT94gGsjmP7hxzdmVMJnRldxrni45\nfSZqnTcZc61Q6TwryBS/0GrHGyhAs077jUN6aor02z0CZSCL5VI8wsDJSZf9E8lwe+MLkvW36x2R\nWDkURTfG08Yqlg6uVplqFC/vlBajZca9pVRUAnAiSJXxND95j1Eu4wh/Va614zfAk/ewJiHVMe+1\nAl5KFBdh2oQ7aroohLtOIUtlfoqoRVebtzQ2Z0cxC61utC5exF5f6042bdxI7Oj92mAUdjyzHbTF\nJq+UHvd/IpGkeSzv3NqL+dVTWafqlmEyUxPreJe3XxImervV2sT3d07kcOy2h/Q1p6Ja1bQH6xbv\nEdZK9CSMmg2i22pNyNqfkfT0EPoBB9pwpm9KSgWAdTpd2lq6/vyh9CD9MJ9w1BGT4E5yQh0onqSp\nmGqfzs+/Lm0JPC9gpdm8pm2Ita29N+/S1cYxN28d0dW1DGrBYNi4j1XA1mzq4VZidnZ6Ca2umnmV\nS1DKXg3b2ndzOMNq8SFnlFMmMoftYcDbjrgOCnNN9SndhlvzYUtb2tLH6MXQFJqGIi9oTp/ywR98\nE4APnp/TqFrnLCMaR3sYtj26il4MlYs2ZUyh8f0ag6+oQi/u0FbHVrVX4zXaxVnV+skkwFd1r3se\n8kxbxZ3NM3z14A/jgEtNqpkoktB3HQKVpGEUkmuN/bpqSNTJ9/rrX+W1t18BoN/XIiR5jKf5/W4+\nx2pEwVLjGsX8ao3D2kivBoDk+IQTbelWVyMadbrmYQ+3Eanywbc+BOCNL0aYjkha10bkGjeft2IS\nzaQcmJhORxO61JM9r1JSLR/mtpyN59yPYtQfSNzqiu0E7PZF6/AbS+2JxMsnFndPxhwVQ/yWdnZ+\nuuTLX5C5uH0psOX7LDAtfd6xw4mja3LrFgf7WgvhZkl7JZJwV9GdXdchGaxxDFP8REvkFTHesThx\nW/mSRmHKYbKGQe8Rar0IywpfcRPtJKRWZ7MZlJRTdXK+ItGOVdlwPhYn7lG/vX59Ys/h/EqbEUWy\n3/pDn2wq69SNQyrFaTA44WWtqbF7OCQpdD+0ROKX6YrMihnguD6OI++BV28K7ZgcIm0t11FYfWmv\nGGu1cmdwxA01iebuJTXyrtHQ4FefDqfwQjCFpq5YTq45++4f8s7vScPTUWZp6YTYzpJYTYLK7zLo\nKFNQ0EjlVpTaDCUol6Qa/gqsIV8XHa1j4s66BLZulE5FWWiDDWMo1VO9Ss9YKpx3FuYUqq4b+xFG\nvt2WZ7eTDh1V+U17SaI1Jl968zbJ+mCpStmULsbT3AinTaNhz6qoMYrFr7SVudc0m85UASVGsw9N\nuk+mnZCyVcrkQtOWF1JhKn8+5ot/R+4R7+8QKWMJbUM7Fub2+qs7lJpyvdQs0roqOdIwY1wHm8Yw\nZVURqS0eVh5eS6MONxTLv7LomcA5cGkSeafpqqHWwipeu4+6YAjWYKT3a84URPbs4Yp4IfP29nGP\noz3toNTp4EXrZ2u6/NjQdGabufLV9+FYF0dDp47XwSv0sGhVpMYu2aDe8gZP1yaMHDL1I5hRgaPr\n4+u87e13Wd1TWPHqCn+ojLx/xH6lNRgDmYvC9sl13upxQa3AstBZYbTYatCAowq6WaeGel1CBZ+Z\n0OBrRMgS4GkY3Il8fAVA1UbNIBvgafl96y1Y6X3r0ym5Ni92QgvaPOeT0tZ82NKWtvQxejE0hcaS\nZRnjckKnr7Fk75Bci2YUxqVWb0nca1EqzmCldQqy8xGutpLrBAGOJrA0WU6jv4u8AkeTZ9YNzWxp\n0QAAdRkw1KSjxbTDshQJPJ8VNPqc2qwzEQMydSiuakM8VBCVPeLwlmAIWq2I0JH7aWgb0/Jo1IOM\n42GMSEcTNpQqsa1Zt2Xz8DVG72JhocCjXZdIPeCPz54wj0SSNLmoraPyfU4fyRhuRCckmgE4TALc\nWLWR1ZxBW77/UIEypqoItLRZpx3iaP0Ka5xNfchuv0Otji1f1eEgSokSMQnybEGtqq2f1iQqVRd5\nQaqAsVwdfEevujz/qczh1dWMUiX+v/32G4Sh1mHIXRpH8SDavMYMLLlqWFGQ4GrxFjdysYoHcXNw\ntRKLWh0AACAASURBVOCIKdaVmlMiBbuR7FBqY8minlPN1dyMWijkBFdNn6QT0tmV+T67mjJ+LM84\nbFqcaKSlabRs3nXOUiNDXi+hqsXxOSgDdkJR/Z3cg5Zma5q1Q9jF+X/Ze5NY3bb8Pui39lq73/tr\nT3/PbV5bVa/sKlM2MSkSsGKFQYjCJEIIBjSRmEVIDCAwYhCkMAIjIRiAUASIgDKKGCQgcCSkhLJT\ndpVdrlevf7c/zdd/u2/WYrB++3t+kknd8jP2tXSW9HTPO+f7dr/X+je/hhGYJ3041Jxweg+K2BKh\nHDidjZAMO0pyPBjeAbv9S5j9EDn7MCS8LTZrRNSrfNXxmkwKPcpyB9F5uP/A5sObPMfNxp581fdw\nGe4GTgA9nCNfIGkMNEP8OgQUT0vUDfqhpiCdgwqRy985Uh3+3sAcfBrSWQJFRl3Vtwewk+LLUeoO\nEZWQ/K5DBPu92b0pZtGAy++gB0megOFbF0DwPDTEAbcuhAfDFKOjqpKX+BDch6M0jEeWZL2Bl9iO\nill/Hx9+YgFejx7ZmsRyUePFB7a+MLr8BaQju41Z5GFERGeaTlAy1/Yz+ibAgU+koD+bI+K1QNuC\nmiZIkhiis+cSVfZFavsYDSeCrtMQPdmsjoFi+2EiRnCMBdNsCUxqVIh+Rk+Ga6Dli+mPXbhcDNyi\ngkt3LUVEq9Opg19E7kVQJ4MNkwKG2k5lEPBeC3YT3CaCpq+k8ABB/gjyFTJOyFVTIxzZeoVL5KUX\npnDIAq2QH/w4d7dr9EPtg9ew3T9HQ0BaFykE7DLE2kA5X1DqDRcLsIXYlhq+XR8AISHZqjWOBIJB\n0deDGAxkGyph1T18iuYG/XNkFHJpVY6utMfk1QYq4bm+4rhLH+7G3bgbXxqvRaQAA+jW4PT8DM49\nO4tu/tGP4CU2tDWLHnFsV4rUdyG5AnlcVeNoZAX0AAgl4FFf0RsHGOQlOr2DoZtSxJW7Mz3qivBa\n7YCCymj6+ADLdXWP9aBST+hzV3UAWZnJ/TPE7FefpCnm7IiE6REGtTrDgprRBiC+QQp9cHJC2cMb\nM2TmCiVNCaGpReinEJpdCdXAZ7gaXUyhf/IT+3uG1JUscL20BbCLJ5/BpdCHhAs3pnx8sYfZk4PA\n/Gl+PLPyzwDGkYLL1cqJk4N7tFMUcLjaer6VUnP7DmVP0Y+mgsf7YAKFltyNQAUYEZJ+ndui3bqs\nsXlhjzmau/AJqy5XO2jetfjeBUJlr6dLVzBdaYSJTVekH6Ihv0L1BVyCgdxRi56CMkPxUSCE8Igh\nMBUUC54iPUMS22u7uH4Oh4IqekIZ/aJERa9IdBop4dhSGegtV2DPRi5OmkDsqH+gb5HENmWYHh3D\nG2TW/Rq6ZorhUqgnKmEoQyhbBTmYUHryUPgUfQPp0dHaswXcXlQQ1HsMp28gdqxoS7a8xpZ8ndOz\nGIkakoxXG3eRwt24G3fjS+P1iBTQwyBDEEfQazsLLssca/rrNaE8KAF5o+TAnHMId5WuA+ENEmQK\nLgVDlQv0w0pZt9D0oyzkoNMvkTJX1yOBdj8YgWQIhkvjCVAHFTVzcngdFPO70PXgDa0nrKF7m9tL\npa1XHYBe23xaNB5UxHaU4x1EVTUUhKT9F2d+xwV0R32AZgfDdppjNCBpKzaO8d57Fkp7HtvV4OpK\nI6vsavf5y8/gUSsscEuEPE7R1BCEZsfBoPXgw2OrN3QMRGi353nAwKRt6xVUzlrKEfNhx4Wz5QXS\nAg21J4wQkIxC+qZHQTh5ZGyUlm8qTHlsWedCc31qNhsYro5ddwmkdn+akU3bd0gY8YjQw1Be0tqD\nJPkLOoIDsm25Qsugg2mpyLUpULJQorwSkp8JXRd1y9rOdihQSgyQ1tgJEEztc1i3ARriHiQteYQR\n6KhjMBLBge0ZJD4kn0lTOugZycqQuh86gmJBWJjwYPunHQ8OZfH6VsN4LFKzJSlMBcF2o68qpLCF\niXalkHF7Rnhogj+FOAUYAVMrbG5vUD99AgD47PGnMBRcidwZfFZn55MJ5GBwQpaaUjUcSWl1I9FR\nDt70CoLmJI7SkMM7zYfROCHCmB2JrQIl9yB3GcSgjN67kIy+HL5UfSuxZ9FxXzaQBEPVmylcmqho\ns4PgCzCYndb6Ct2GxbwwgTZDQakDDHveFCnpyxZVZtOnts1hWKjqchxUiZWc4o1HludQbu1D7t/3\ngIWFw9bZ8iDq4nc+1o0NKStH4ZjFyt6xk00QhIdJKhxH0ITdus0GFcE9o9kpuoohOFMbp9ghGrFw\n24RoGQbnZYZIDuddYUs7Q9YnMZ+7+GRjr/32ZYcl2aVvdQ32TOlOmw4VsQAegVfhDPATnmuo4XOB\nMEJADCIybQTh2QlOE28gIaAGHMPZCA65JFAtJJ8Rbabobmya0hLyLbUDjxiRvqvRF4PnZYEdFwbR\n2Gs4Cz2oiJ2RZISEE4jr5FCB/RnJBNoM3A27L9mFh85YhxqCRXNXaQhK/iutrPIQAMGUqe+nMIT3\nm17Ao0vYaHyOkN2V9SZDKihp94rjK6cPQggphPhtIcT/xv9/QwjxPSHEx0KI/0UMS9LduBt340/F\n+KOIFP49AO8DYHUE/xmA/9wY83eEEP8NgL8G4L/+p21A6w5ltsDtJ0+we2xbbNm2QUTvBQMP6zXD\n0nILJ7ErXsDowfc7BCxURTMPhmF3WW2QMWwNAh87snlqrsC6chAwnO8hIYmgbLRAxZWkR496Twg1\nW151rPFQ2313uca+oVjnQx8KdoXqq1uUK4awVN/NFxLVxhJtRDvD9F22L8MLoBrCVur1BxXqnV0l\nym6Lqmb6oLboDq7TFSaRJV0JbSOsYpUjTu1nG0g0xFiU+wrl0u6v8AS8gC7djLC066IkQ9XpDGJF\nTv9JivKFTX9M4EC2NkQtKGPX1QrBOVdBrZBVlvi02rTIWTSFA2xZjCxZwB2pKeaEQirHoCMitWoq\ngCup6Qvsn9DGbWRXyfToHpAy5dsLODN6TDYhHMLG28KBiCgYkxHZ6DoQJUP0Ex8eI4keAtWVXd17\nrdEQ9t4THl5XKZSkzZunsdvS/k550GzrHhl7TcYTB7il3sKRQJRSgdtbIX/JSDBx0LSMIEiO6/cd\nAgq5CJXAoOL5uXB8SgiaCLq1z1n2fCDP3cD1eJ/cCpqO314kMS4sDL3o1wcjoVcdX9VL8hLAvwzg\nPwXw79NK7i8A+Nf5kb8N4D/BT5kU+rbH5maD3/vRb+Pxla2gmlbgkqrLQABD/8Bl1+PmGS3Omeul\nnkRCZZtkkmDMeH+9WeD6ioYysULXM29lyOW7LkIKUARaQvKBEF2Pmh6NXgc0tI8fKt0XeYgX7An/\nAjQS4u+TKD3kgwJTbG+tT6Nifh6kl0Bp6wytv8HyY/uyjc/3SGOyDh3LZWhrDcHURmVHULH9rO4k\nEoJRRKdRkBkohuMtK0TsjCjRYzKcXxTg8j4zcD3CxLfXtidefrMucbu2eoD6gxrjI/ugn40mcAWV\nrtwGIVWQO068WXGN7RP7kG6XJXYE72xvMnhMq2YTD2pwuCrsi7D3BNot/SNDDY80gWrf4pT7ns1j\nOCXhuoPyVrXE+rH93svrzzD73P59OrlAKu05ibmC3tjPBIO7lfSgHTJttyWya6skvV0v8JNPraOY\n43oYnxL2LvnvSB7Ed26f7fB8a881jsaYEZMRn9A6IE2RDtB0P4DO7L2p1zVudxa+v/iogmHwfCKH\niTdHsyRGZqwPTNPOPEP9CV3S9h0cGtxkJdmSMsD4nFiYfgTH2HdHBxVAZ7Rw5hyo1q86vmr68F8A\n+A+AQ+dvDmBjDJM34BmAe3/QF4UQ/64Q4p8IIf7Jdp99xcO4G3fjbvxRjT90pCCE+MsAbowx3xdC\n/MrP+v3fb0X/1uW52S+e4+XtGj/4zM6urhtA+HZVmkQGp2fs0bbNwayuIiptt93AW9vv4RMX945t\n1PD4eo3Nyq680TRBTN2DcMYOgS+Q7+3MXyn/4BOonC9Qj9u6Qk4R/QE1qfwQK7oPr3bXSD0LK3b6\nHPvlUOzaYsUKtvO5PYZs9xjKsO+eGExHg8PxDDUlz54+seeRPVnhurAYBK0CdOzTRwqYU49ydnp6\n0HQM+f1Sy4NNfNY5mLIaDlVjouwK3PsxCmXPG/Q47JcGYWrRfFerZ3j623bf38tzvH3Pfu8bb93H\nvQt2FAiPzrY5sp1duTZlgZcbQtCbGlN2RGIRomyJ1SCcOXuioVk4q2s9gBFxEQFHc+oSehFAMReH\nOpdCnkITgTg7u4f+2qZoH/3gQ8jGaibOzi8xGVMH8YjmLGmEnue6+uSHeELr96vFElvf3qepkci4\nvXZsr+F4OsckJFHM97C/sfdy61a4T9MhhwAXpwWUZ69hvf8IYmtX8SCK4R/bZ27sZ2hv7fnl0qZw\n2TrHjIzgCB4Y3KDrgXpvI8S8VCgLu+LvShvxTLwN3Cu7Xf+BgmFqJ9dLSEmNyqVGf/SzIRq/qsHs\nXxFC/CUAAWxN4dcATIQQitHCJYDnP21DvdHYtzl0ECBnDqy6CjlBQ52ukd/aB6+DQDa49FCwI3Dk\nwV+w61ukxxZYMzUtPntpc9zsZYO9a2sR3mN7oaNJgFPmp+OkRUlQkFs5GNOU5sn2C5bkwJnYagfn\nxFrfTpYIx/bGTF4W6BtrYJNla2StDXkrVpZ/d3WFR7F9UB7EJxh/3YqvhEcnaDe2JmB6e8M3aQjv\nnn3YirKAV9EApdR4urXV5LIS8Ei1vv8GU63QwYpiMjf1AkQVo2oN9h49E70xZnyAboeXNdCQ1dAN\nCdBS89IRAW74It8vfOzrgalHE51thpq1GhOOsHhuJ7XbPoemgpDaewjoeble25cuTiuUg2lsJbGn\n86zru/ACu28pKuulDmBMfkWR5GhW9jyaIkU6tfdaxQGizubRUeBDMIXUrDN03QbV0u7bJAFGj+z9\nu3JKbG/thLPdZgBFVL7GZ2umHSQzTiyTFEvWl4K4Qlba+/vsuX2uprM1fIKiAp1iLcjmvL1F+Zzn\nv9HY0w3snOnAKAIEz8+ZRYBhq+baQJNeuli/xGeDEQ39P6M6xbvv2MnrmxOBBKwPJQEkjVHXVzmE\n+Kmv4JfGHzp9MMb8R8aYS2PMIwD/GoD/yxjzbwD4dQB/lR+7s6K/G3fjT9n4/wOn8B8C+DtCiL8J\n4LcB/Hc/7Qt9b7DZ1JgmIQLOjI70cO+B7cF3vUDHBrf0PVv9A+CwqCMKcwAvKaUwHWzHzCU+HH1q\nP6Nd9AQiRCP25kMXDtl0m65GS4zAPImRjGx1Ot7sUFAqrKHG180ywyiyl+476iHSzq7i5jg9yPKe\npinuv/ltAMCOugLSSYDMRjzpNEAyYegXnKBLKaX1yF6T42ULReJL5hQo6B9ZbhYYZfY4bp+8j4aS\n6j1DysyT+PAzW3D6eL3DgzO7eixuGgSV3cb0ZITbHa/hAJDaO1AsbDomwdRmKIjjHdwhCpMCPS3j\nvcQeux5XaBt7PKkb4+2HTPnaPZKRvQ9zRyNgZHFzbI9hUdRIqBsQTkP41FeMHiY4odJ0oiU0TWng\nkT2bAYKwY3mSItI24tFCwCVgqd93MGRoDoQoRyi0oV3RdZ3C9+2zcOHPUI/tcVTJFgGJRBE9OMtt\nhqDh78bhoUu06xzEAyaFxjhu3cJnBGkiwNVkmhYtRucWZKZRIOD11GsbHVaOj+4bJLkZB0rYc87D\nLZolLflkiiPKEDq1jYjCiQ+liXVocvRkjNarW1TdQAUwaNWfgJekMeYfAviH/PlTAH/mj2K7d+Nu\n3I0//vFaIBrbrsOLxQq+4yNO2JvXDs4u7WqUBGOgGeirPfalnR39mrm+aaBYcJOix4ztSYxizL5v\nl7xcdoc2Wj2o8migHoRBwxjulESjOEZT23zwYpWiIXoxJ6X3avUS18QQfDf8LqZUCjpKPFycfN0e\nh2/QsUYRsv9ydPounNKqLqfHc3gUEkXTwZ1aaa7p1tYDuqKCE9lVsLlt0Cu7ukRTgwf3qRJ8z8eH\nP/wd+7Pk924rPCMZZrXO8U2aru6VjxELlF7TIOGtd+jfEDyKIQga1okLU9rvjb1TVDQ5dZBBsIUZ\njG0kFYglWhZdUzWGe2av56zyIEmeOglcBDFrMA0NDroOEdGIql5hTJm6/rqGMxncqn3kq1vuz17j\nyXgK9569VjAuPBZr0+0MsrL3vTEdakrLaVKZRTyFqO15aLOGqmyd4PztC4Q0mG3al5BsVyfESiy3\nFTAncvG2QUetDgcGR9pGRduQ7eBwgoBFSxUKuMoWHdW9d9CTTHd+MUXDukS7t9+vqwYOlcT7toIg\nIUrJHOSDIdIznJ3ZZzwhfdv3HZzP7P1LZw8PVnnFvkP2wj4Dcu5gFtAb4xXHazEpdG2Hxc0CU9nA\nZSW36zuUBPIkyoEizyFWHkJ6F3ozcvMzDaXomuOF8Fhx13mLM5pzXN3soAMCeXq6BAcSKcVERrMA\nDq3hQwGcUNxCH0+wvaVTE/vqfdsgIPQXvQYpFVDFHh27s4EwcFy7ba+2k1ujegRj8i6SMQR1+foO\nX0CwR7ZwNs6eoyWM+8Q/R2fsRBj0CaJwMFk5x/m5dScqPrUpw+1ihXxtH+xNZvD2hX3xHkiBMXED\nOhghIkw5pNlI6iQH+LQpKqQUEAkShYICL+vHC7i0g/EpRZ8mMZrMhu0qbHFMr0hVdRA0SfEiD6az\n1/A0thOd23SHdCW88eFH9phnaYmAx+Y6I3icTHqmFwgc+GSa9qGA2hBzIkdQx+RoaAVZkrlIBynd\n5QdWYlrXMDFh3EogJEy7WwB7por+yO5jdhZCMl1r1RZjnnfWAydn9vejG/vM6r7AvrGTzRQGIqC0\nW2fgsOiqdxUUQXIO9SQ6OUVzZQvU/a04OKx7oykSgqjkSEByMonY8Y+Uc1CflrGGru35mWcKVcWJ\nenKMaGKfqVcddyzJu3E37saXxmsRKbR9h5ebFW4qfSAowXwhc+UGMSS1B5QboCcy0VDFKIlcONTR\nGscSHltFbtrj9IQIvBaYUIp3Nfg3uBJjqgR70kFIJScPAjO2A5U4xid7uxI+W5FXbzQWbJ3WJoNL\nxKLZzxGkEY+5h2LLDdRYUK2B7AaiTQ/NwlD+7H0EJ3Zl9tmm2lYNYp9Fq2OgIUnIa2t4VD7uoh1G\nRzaMT0/ttm5+1GL93LZcS9VhGtl9bxMPO646ntkhoiWdJPrRRY1QE3Z9GR0Yk2huUe7tKu0HCmDP\nvh90CvwGNdOHtq0wMbwWToMx23rGjZBRSqwdCDyixrOVXcV3RYWjKVuIOw9XNVvHyQI1i8Nub1dg\nfyphiNnw+wlcpkSOG0MYiyFA7UAmhKFz2WuqDVz6bmIcAJrpprOF41IDYZqgJIFKM5z3pYd2an++\n/bSApCzcLArgGXtMe7Ju880GiuKqVXoPPluPjruDQySrOFXQDbUViP4UfQszYsu5M+gHopTjQ7CY\nLrsY0ZwsydoeQxRMIUka7LcNOkMouReho5+HgobL+/6q47WYFLpeY7nZwas7vDO2QKAYPTo66XhR\njEhQ0kw7cMlXqHjHVWuQMAwOxwnIvIXTSKRkp4VejgUBSTFZlr704DHEN12Pivj8um3RUxswjCR0\nOUioMZ/2/QPjzt/fYP+x3Ub70OC8/hoAQKQSoCagEJQWF2OA++766iDH1uUVWsKxnZktQHixc1Bc\ndgsBbIjYSuuD7bwbNAhYqW9oe59vBDKa2pR9h35mJxbVaNQ5lYFHDpqEWouUxnfcFB5z2WAMKFJ9\n2/opisIe/95pEJNRKCif5jpjaDWAakpcXto8WhYx4NuHWykJwdDX9emw5G2wXNpOzMnYx8WR/Z45\n+YJrsr9do6HRqySUONw7kISSS51AEcbtyAn0jizQ9Qqak89gMNvna0gK9QSnMVTPiVoZdATJQe4x\nJvW7qewkJscXuP3cdrA+eLbAvTNb+Xe8MRrJhYgWAL3oURCwFhwBEU1sI+VDUEPUkf5B2Vm00WFf\nvUvWZqtgSvsS634MwWdWOS6UGPGe0PogKuGQPar1Ek1FIFq7QwQ7CcUqQRQPWm+vNu7Sh7txN+7G\nl8ZrESlobZCXLdZlhnFlZ/v59ATnLFpNPQOpaTOuM+QkezjstfeBi4oWXdUnS/i0IW9RYU9Wm+5b\nxJwCWxbAEqWgSKqKhAPFlbtEe9ANuF1t8HIQDuHxGg2AYdtCm0ORU+1d678GoF8n6EtbBDTk4MMF\nDFdmY1YHVl889zCIPLc1GYnVDh0r/QYKmk7b3VogmjO0F1P4nb1e8SO7gs1+6310XEnHwgeol+CP\nJFKWsrs+Rl7Y70Wu3ZYTT6CCYTUfo6FlX7Z2oA2dqdMpkhGt+pjuRPuP4FMYpq5K1ISET1MFENFp\n8goitKuVU9gQP+8qvCRz8FvvjfC1h7RCq0qU7Fr0Ex+m4CNKdWIVAdKzn3WCwQPbFvl69ubbKoOb\n2mNKKaQr53No3ncpHMBldyIHjL7i9nxEYxZCWWjelms831vylK8aPHrLRnLBaI79xiJLBeHasTeH\nw+i23i7Rj4bo9gSGz0hbNRB8lg1dsPOqgGGIn8RHcFyqRIv1IZpsli/QDfoc1AtxNmPIkORAdQYl\n7fPmj0L4e6aK8R7uIAjyiuO1mBQcRyANXCxyjZr01vC4x54Kx3mdH9Sc8+0euz1vKOm2QegfdO98\nU0PRLCUr+oO7T9loKGo6NiRPtKKGmzGE9wUqhmp1V6IilPbpzRoVgfkOFXamQYCOL3/2coPHBNPo\nYorFYxsSn73VoTcMKwsLUmmKGoqgGN3t4R/bEM91jwCfmPsFQ8dWoVvb7dZ6hYrt0JEv0fj2GgVB\niPjMPqQ6pxpy6OBNhrOVDNDxJfU6QBCo1XbpwUWrJ2ArqysoaV8ItdpgQ8DV6uVHaFlrwb3RgeLc\nFDZFEaNTTI/sOT/54Al2rD8EXgCwA6DhHqTdFc8jylzEZJ3OjicICeTC+hYOwTZ5prEll+KcE2iz\nq2FO7d+NGKHfWKq9rlO0uX25+8pAsfKvCd12ogoNQ21Hr4EtJ1zRwLC+4JkGeqAJ0Li32Ge4+ci2\n+k7NGLPUVvIXW4U1DXjmOztJuV8LkQl7jb1dDkOFLH2UQ3RU4do/hya0XLAjYXYSgrLunSlRKztx\nVjpEu7P73j7ZwZ9TcWwAcmGFrh/qZwKuZ48tySUyj76arQszINFecdylD3fjbtyNL43XIlJwXRen\nF5coTQNQVCIdjZCyOFPtK+xbu5LmVY2+t7O4onnLZlegY192lsRoKSXmhBJJTU1BP0BPwgi4OgrR\nQJBr3nU9NhTk2FUlpLGfeV7XaGnF7pBddHx5BMnZ+ugsxVDbnaYX0IQr56s9nMF4kMxIGUu4PD+9\nbYHORgJl+QJED6NaUlggdCGmQ9+9hVsNHhETCOopGCWhaFmmx9Sz3Gvsma6c/vwI2Q3FRnYN3I7i\nMqHFc9gNUrW4XKOixmHfttjvKQWX13hW2GufFApLGsqMVzYtKfoOFUPVynVQEI5elTuAWI4iL7AT\n9jMvKHojkxpHZFyqXqDObIjuRMfQBKUV+wWawF47P7aALTlT6Jj6yBDQNKfRokJNSbu+N8hu6cUg\nbDqmljW0SXh+Gj6h8n5qIGgzKMoIHTsfdW0jxdsnz3A6t8/NdHaOLZ+t6+UW24/s6v559QwA8DXp\nIzqhQ/WDNyGntN7bX0OQaNU2gCEOQ9PvUYsWIbtgRZND7yjkguRgRFT6LXrqQcRmeGbH0DFTkR5A\nafcRnBwhdezx51mOkO/Gq47XYlIIwhjv/dwvwY86JDkl170ENXPAcrdHltkL1UoH6YBnH1B5oYBP\nYdPO9fDy+nMAQKRdNHwxtRaQPsMuOQiiikMqITobQgPArq1YOAA6pRFyAhi0GE/OzvCA1fuzMxfL\nHUFNqsPVZ1aopB4l8FOLZw8YtnvGOeSOTTNDt7Mv8vLD56huLZPtln6P01EKpvJwqhqGL6xzLBE2\n9FqcTiFSmz60bFk6JxHendg0IAimWBAbPyo97HZDVXsLh0jHIS1vZY/VhgAhvYckQGj04BKPKGa6\n7xQ2S7I4P7Rhe3D6BhI6Op086mCoppRVLgSVl/pQIlvY760LIv46Byl9Iotsi6e13d/Zm2fwB2Rl\nvTg4PGm6ZfW5QoehAJMAyk7CZdsA5Ch4SQzNVFEQ0CP2T1GxcFN3BituIi2bgzlLOtrBJ8DJOIMD\nzhgeTYk+//QF/u/PbN6+aRPcZvZev7u0E3OJBb5NDk79AKhZO1AaaNkpMyqA4wzdE3tOfuhDJqz9\nVBqua59108SHFq6fJgi4GBqaD7X+GnVvJ7pIBQCZrUKsD/WV3mi06md7ze/Sh7txN+7Gl8brESkk\nEb723V/A0cUUaO1M7OwC9GA45DfIWRBsUKKiIEWb2dUgcT34dBF+snqMLLczaoUGhuFeqTUMQyqf\nzs6O6GAIsNFdh0bbVamqG4zY/0arIQltPaKhSdc3KLPBwusIhsW8291zHN+j7Vg/gyIQJmdIur+q\nUF/ZivXTj36E9cvPAQCx76M0Qw+dwh3lDRShuNAnmLMqjpWGTMiWS46gJvRMJGDr7fOH6P88K8/n\nl8h/1+pJvDQV3mCHpnQESsoru3TJdlSCnAAj1Duoxm4vOT6Cm9nwU9V7zI8ph067e3HiDUkZzuUb\n2O1pS98vrU49AN30GM/tanpB4NGq0Mg/s8e53C4wSbgKTs+QlOzQBCkkZdmrW4b1M4FWESsQ5igW\ntii3Xm0Ra7tShhcKgpLwASMJ6V6ga+x5VPktFKXRFysXJMSiLQWEIraC13s8LrF+YgVn/p/f+Am+\nR57E+OgM313ZNfUfMIr95/KXSBy7sXa/QMEVOoxncNwvug/NoJRd8Tn0a+QfsJMxctDthijlGXoC\n4GRTwiHeQFL2vnlRww2pPxLeh8OOS5WtDt0jjHbww6/jZxl3kcLduBt340vj9YgUpMTb8zneUrRQ\nEgAAIABJREFU8lPsr+ws+qy/Qb+gCGaiMaNTb4QYTUYMwcbO6teNwWhMyOlNC8GVvZc4CLP2hUZB\n8441STLTMIJmoc1IjYYyX0e+Qsj6gTQ9HGISEhaDstUaBRmO2aY4eAtcX10dzGTT6SWkoSdBN5jV\nSuSNbZu1O+CaK6XADgFJXB1VfOJWwJnbfTz8TgQ3tNoScaJhmHMLtzu0tSQt08Znj/Bt6gOsvVN8\nyN614+8wohydcuXBDMUl5G8czjEnmnL74hkWn9vv3QoXkvJgpp6hX9prbhiZuc0YAaG4OlsCK3t+\nwdk5FO3KTLA+YC66if3d9ac71Gt7P3ZHLgwVnV78xo/x8MhGS8cX34DLourgPp0vt5iTSevIh5CB\nLYg2uxbhnLgVHQE7FuiIQ5mEEukRUX7mCC9f2DaxlDeAYxWxDSpUNVfxW3ueXfOFc7kxgMMcP+g1\n3NTWdhalLZLeNjmeXtn27ORsDvmSkcA3xvBie21F+wTrp/SWqFiXwRFC2JXdLSMEY/u9sgmwooHw\nZrnF/Os2Cokca0cXTgBX2GNwvBymJYlvWcAwugujERz3Z0M0vhaTgpQuZukJRNDjmMW1x5+/xIIK\nxSeNRJgQ0tx48Al5nU0Y94UxpLIP6WY+gctCYtsU6GDDR5UVSDv7gL2kLqNxHeTsAGzWKxTERbij\nCMS8oBUaI1IYJxN7DLvNBqBzT5oqLNc29PvxR1cAYdX338xRNqx8M9OI/Gs8+ov/LADgW788xl8Y\ngE66hiDOoiFYp681doK6hPsdxuekzQYzKEWMgKmAmmEnq9tuVMCJbL+6rRXW1GsMcuDmLfuAteYC\n5pbyZ8TIm2kGwW7B6bGHlpKXrtlgdGSh5+l3vnGQwZeKpjClRP3UTiC5yTG/pOR6UB9YrFefV6hL\ne82fP7EvRF3lqMlE7NoOz0iH/+DDK/ymtMf0Z39J4N5759yPfbAvQheC1010TxByATg51Qhjhv4A\n5NcobxYM4fcemvDgarpHSJh2miQYzYgn8X3sFvYFzzhZLq5vcV3ZiaLwQkiPOIuTOV5u7QT4y4rC\nMZMFvk9OycWihZPai/hAH8Fz+CxMAoj7AwTbftZsKjiDTyQ6SMLi3apGOibP4TLG5Ny+9F5Ed7LR\ntyBJ5RayQk/F6F46UEwxXSeCyH+27sNd+nA37sbd+NJ4LSIFI4BWSkzCAI20M6Y3naK9tm26hUkx\nJjtt7PkADUXiA4w0wPULu0oU+z3awTpP6YNM2S7PD+i+iqFz1rUouJLuywyK8NowDHBNYZE48eGR\nrThmoS6vchQkFz1/ssVtZkP+TV3i/SeWPDO/PMY7D+32khELYOMLeLN3AADOxIVp6B5cmsOK5t0O\nxc4XCG4ZNcwFarbF/PMIhkVJmBaKCEMTkzF6+h2Unl0Zok2H6xUxFmWJ9ilXebeEJslp8KjMmzXk\njilM0CJObAjbZFuUz2xk4nfP4LCQZiRX1J+sUSytFsA4jTH+l2yao41E0VKGDgo7thY3FMG9RY+c\nojf7rD74Ry72HZrWnqv64ftoKWQb37PRyuSNADtiS8QqQJBQR+PoHJJIT7ONILjSm4VFSrZxhfoj\nto7lGpFDstnRCRRb1T1qQNrVOGvsM3JVC3ywslHF2mkBmg5lyyXAlR6RTRku9QTBwkas63CJMLYR\n275fQ1FQxfFKhDH1F8io7TwHfUuRnKxHl/D8nBlGM7YvpQ/vhCjN/KC8AkFTolrvUdX22NoASJP3\n7PZOAjjB4NP0akMM5qF/kiOOffNz37jArNZIHhJAU8SIKYvtiR7lglLsWqIkf0Dx4fBjDw3zvrJp\nMPEH85UUFScCxxVIBtPNwQBlt4PPiWXiqYOfXy06RBM7ERy7CSYnxBkwLP8v/4f/HQ7TDqk0Wio5\nARJjApym4zneubAh7+aZfWg+ffoUn+2oqdj3SPxBE9FAUt3JIcOi6DV2FeHV2sDn73s4KKniE8JB\n6NrjnJFyPU0CJEcWH/Hme+9g2dleerfcoeELprXCeE4aMaHdu+0eRW1f3Kws0BR23+six57KwL0x\nUEylRnywA6mgifVwTH/4uarL4f3BKAnxF//KXwIA/Lk//6sAgIf3jxDzniXnI8SpVaT6R//jv4Pk\no88BANG8R7ag4MgbVIgqNX79H/weAOBm3SEg5fo79x4gSO2xfXSzxJOFnZA8mtCUbYcfLexEcX4v\nxqOJTfMeHU8R0K/x9L1TjEn97jkpFPsMHZWV1DKEnlP92ryB/+rv/T0AwBFrXJMzg2xn9+fNRhiR\nbLNf10DIbsfGQNJbtKBu5aassGXqFhuBmve3Q4uCHJxq32JOGYDQpcHPWYRv8IXPNz1eEGTmjR1M\nC3ttR1MDh7Lzf/N//vXvG2N+CT9l3KUPd+Nu3I0vjdcifXAdgdPYhfBaOKWdwaPTFBFdMbK6RDto\nIfgCknBVxxmkwTyk1MbLeoGIitCh52JC7YW2dqGIb3AH442khy7JpvMl/OFqCIm64szeNNCF3d8F\n5bM8VIcV3fQ9JMlaEDVGHpWiZYcwG6zt7Qo1kh1SukfXGvCJi4jdL+TmBvvysu3hEVXZ1hqD8dce\nDooBKSgkPJp+KGohLFAgZyjur24RU4OyMhXqwYPSc9Az7cg7mrOUzQHFqbQHzWvkOwotEXidBiJG\nNylNWkLHoGJE05v+YLEm2hpDENppg/bGFiPlC+IYuhUqQ2TmbAykdh+XaYfHtKmTOkZwaZ+HgPqK\nTz/K8QbRlkcjfbAmG/fA6UP72flE4A1GkXvqcHhBictb4iZMANex93Ry4hwKt+p6h5okreScOg6J\nC8MIapnv4LK7FM2Adycu98G0pAsxOqeuhy9xuxpk8RrEdKh2kKAksnJDkphoa0gWQTsH8FjMPQkF\nMmLoi8jA5fMilf2+WApUU0amiQuHae5+2+NFaT+zdlx8862fbe1/LSaFQAl8Y6bwg7KCW7wNAHD6\nLRyfYXkZIKGH6TZvcTm24fxOE9xkItSk1vquRhTav0+DFDmNM86mHlqKEAZscxWdg4QtywIKwcDE\nqzIc8WK/LDsYiqWsB6afAeIZn/hdiFVq932/i/AuUw1dAhD0heyHN8XgXaYru67HsWK6kjqYEs9e\n8YVOOoEb4t5l6UDwxft+XeKysy9QFnWQhHwPOiHHlYvHuQUsbacLhKxq75saypCVGTrQNHARhIFP\nj0eQpNj6QsIwhM3LHFnBlCc3CNnWCwnhzbsCu5VN7Yo6h+bDaKSDGbddmC+cr95PrL/m9N1fgjOx\naZXX/BzM8DI2LVjMR/3Zm1DfJPs1YZ1k5GP2l1kneObj8oFNO5xH9+GwDdd/Drz9qzbVW7Hw3ucl\nxJF9ns7fnCMvbGoX6T1WW3ufnHqLntc/I58jW/c4Pycc+dg5XO9et7if2M/+BrFGev0WvJHtMhyj\nx4JwZCescF3aF3rSlqip1CQI7TZKQDBNKLTA6WwQdC3wgOC6de1Cc6J7nNln+u3EQcUJ+2yW4OaZ\n3e7FKZDt+axXI9zKocj2auMrpQ9CiIkQ4u8KIX4ihHhfCPFnhRAzIcT/IYT4iP9Ov8o+7sbduBt/\nvOOrRgq/BuDvG2P+qhDCAxAB+I8B/J/GmL8lhPgbAP4GrEHM//fwPHQPHuC9wkFL7YJs1SBjJBCP\nXPRMJc5kgpTAIZ+97X2WwWOBKzma45R6d37oIqR3bTSaQDEFKam/p1uFimQn14QQ7PmazsCwAnzm\nnaCk7NaWxU4ZxIgZ5i9EDdDjb3ykkBIg1CoNjxX+jqvygyRAS33JoC0h2EW5iFwEDuG8g2V74CBl\n2Or6EeDY34+uFXz+PBsfY8RbOApsV8CNcgQkLfXPY2wuqHHoekjZUVCuhMcw+JRCNvPJCClNckLj\no2zYASh7lNGQBzgHGfiBtblTOZa04bte3ODzp7ZjtAOQUP5spATanb0W3/tdq0Hwzs/N8W7yi/Z6\nBzt0vb1n7c+P8cCxknbOOwZPCCIyNJw5fWOG47dtBwdvtZBTAlvyOXpqD6QPjiBmdi063dq/N5tr\njC5YHJ6MMS5s6CnqCh1xESrUUB31CRh57r092glNbUZnaCnNJzwPu7ftPh4u7LacowYvb+1q/QQC\ngtJ7rYhwMhS5tYGkRHtLfm1ggJaS8tIxMEyFR9qDIQvym5MQT6lh8ckTigwdC9ybW+CVHBuEpY3G\n+kmHd1wbKa3dBmL7x6TRKIQYA/gXAPxbAGCMaQA0Qoh/BcCv8GN/G9Yk5p86KbRa4GUdIFmssDcW\nYOOWI/i8WXmW43huTzJWgEdJbpQ2tDo6PTpYncMTmEZE96UJCua+0u1QsY0oKFPuQqHIecF0jXBq\nb+4oSFExx6urNbJgmEQoQjJTB9lv7TZwW3vDL0+O8O7cfma1yAboP4IT5rWVj0/osO31AiMiJacN\nEFk4P7YZ7c1FC8Hq/Frk6Bt7LY6TBiMaxXpxCkfY8zsasYVYOviYXYYXxR7HWcTr5sBQfCb0pzij\nwMs5r+vF6SWYygKiRr1nzn00gWKHw/V7CMq9d2QRbvMS2aUVGXn+6XP4rDm8//kTnLBaPvJCRKEF\nE63IjfjwozUuYpr/lqdIfTvRrT4IcELQV/CGhyMyOz1SvUfHI/iPOCnsnhxUofrVC0h6Q4SmhKa4\nrajtC+Qfn6Ap7f40HPS17cp4J3OcEwzUmw1yiutItpEvI2GRXwC67QYRBXJRZvjgffty36eqkoy3\nuEeh2cZVeDGoiCUhJOn3N06Hjj8nbEM7LeAYek90BhHTxtNxcpDSlz0wYl71rYk9tpN5iAK2NXwa\nXMLhwvB0t0K2tL8XDx1M1M8WrH+V9OENALcA/nshxG8LIf5bIUQM4NQY85KfuQLwB4rO/34r+qpq\n/qCP3I27cTf+BMZXSR8UgO8A+OvGmO8JIX4NNlU4DGOMEUL8gUCI329FfzJJzfTFGoWrkOd2JpZF\ni7qicrCUyMjTh68g7WKDgICmYBLBpYefLDQmiV2VwiRAOQiuFPmhst8wNAxdBc3+sONIdMbOkSKQ\nUAyPOy9AxbCtrQY79QZ5SYiuSXB5bPdxL7oH37XHOXYNajLcjlj1r/0WasOilXbQDSirWEARhDIN\n2C3YAIO0YysF2JpGWodw2fmoG4GQoKVyY69VGodw6JPY5S1SipD4vovUn/IzCY4Su6qO2ecOfAcV\nr4VqC7iE60bJCAk1BpRToaFOQc/PmsBDyDTIediiLW2aULa7g6GOjCUkj7nZ2PN78fEH+E26UH33\n3gncyIKTzv1baEaIzdpDqyxnYD4aCsmXEI0tUPZ7D+gpmR+mcAZTl00IueV9jYnHUA0M9S3MIkNH\nBWpflpCsYouFgBA2BNc+5dGEC3nNZ2G7g4hZbBb3MWeatiQ2qGkTjKmPuVwUeM6oIdkXACXYWvgI\nybdpWQCciA4lb3DjGICp5Ko0iAnkcsMxRuykKcryBzuBtrXfy8MtcuIezMagZRTSLDuwmfPK46tE\nCs8APDPGfI///3dhJ4lrIcQ5APDfm6+wj7txN+7GH/P4Q0cKxpgrIcRTIcTXjDEfAPhVAD/mf/8m\ngL+FV7SiNw7QRgLZIke+sbNdr2qkPtWAhQdDb0dHJTgjmk6xdnB0eoREDUUyAS0og9W34CYQRTM0\njV1t4npwXC6QcLZelRWywcug7XFMRKOuDAxzwB0l4fqixRpky+kIR+S5P3xwhNizxa71p7fwR4Ov\nA1Wc6hYB/SKMIxEP+aKvULGomAb22E/nPV5QTWmfV9jz2Ee+QklEnN6vMCrsvO4FdtWtdmvMNVl2\nskPrMhrpHAjN3rsnobyBwejy/LfIaZmWQiOZkn0pBRShicIJ0Zc2R+8kI4W+/SLCMgkmp3bVPV5M\nD+fiCA95P6gx2/3elhrJ/nMAwPPr+/BmFh6dqgSGyLzqaYbbOYVb6SehwxJdYdcZkyVQsS3G9BMJ\nQ0akTHzIYxZIBqHZzUu0OQvFvgEkzWK6CvULu7340oFX2e/1dA/PS4ER28h9t0F9bVduT36Ikm3g\njIQp5AofOpYk1SiNJXEq17saAZ+hSSSgYqp4U7FqbACHEOYnmww3gwO38hGe2uiuTkLE9M0cEU9y\n79EY+7W9Zy92O+yJsj050bi9Zks10zAJJf5ecXzV7sNfB/A/sfPwKYB/Gzb6+F+FEH8NwGMA/+pP\n20gPYK81HNkf+udSCMR0VgqkA5dsx8C4kAGBTIS1nrkOHOLIvd5HvrYh6kT0UKyut62A7skYZCfD\niRw47HZ4KsDztS1ENWWH7piSZsqB29iCkc/i4q6pofZ2G6NZiHeIce+dCtstm9aqREZHqccbG+Lm\npkHEwlgYKnSsRD7JagQ8jg3lvDahwZYP+c26xRXrLrELtN4AepHY87qsiHJ5sw2wpBmtJwRKij+m\nroJk90VrH83gbUj0T/5ih5cbOymezAIIyr+NlnvUPKbAcw+cAEXMRiMFOv5OCIkpQUFv3z9FS9xA\n3asDUOtmoCGrGpvBIep5hs09G7ZHlwtUHxDoc1phtrD79n1Kq8M/cGJ0O4EYTFT6FIJeoWhm0HLD\n+5Dy2K4hmc6JuQe34c99gQFGAmMQjGwaU9eWz7H7JEPHtNFRU/SDwazssabeZsYJfVMuka8pR9cA\nFU1d8rZHIpi6dhon1P/02F3b+xKaOBXXVdDsTmz9Cjkl66bpBEfUihRje11HEpgd2d9trp7hUzJf\nowchQjp8VckWweKP0YreGPMDAH8QlvpXv8p278bduBt/cuO1QDQabdDWHUzXQhByikbB81icanuc\nz1nscj1MGRoGRPlFfgSXxa4sXyEkzHk0nUBQOGVXPEfIUDKkiMW+svsFgAgKOUPtm10NzZVQ9y1S\nbrshoqxZFqgoonni+WiknaGPJqfoSttOS946x/Pnti1088JGKGXW45hheeTJg5+E1wLCJQOOkeiu\nbtDs7QxfqBY9C3Wl7JBS8DNyzaHgNxlSIq87rIJbKGgWw6KZgzRg6Ft6kHS8LnIWLQ0O/fHWBRpN\n5ufaQ3LGiGW5wPDIuEzRtCdgGAX4HoDYXtupmiCjuIyzb1EzVVKMUGAcOPRdXLU1LikfVn+s4Ps0\nX7l4BLr6wQ1o6nPjQDjUSnArtMRSO3sNx1jxkb5fQpDEZXIbOqskOXg36voKhq1fGQWIWLjTbQVJ\nyLLLFuo8qUCXPtwsrg9q49ANqiVFeBnxXJc1ylu7+neOQUdMihsIKAxo2h6CQi0p26ZaaCgWh+PW\nRcV9CKnh0CdjcjTFCdvd3YYK5W6JRBCCPxnjJ9c27do7HbqdPY7zqYtkSojoK47XYlKANtD7GpEr\nUFHNWKOHz4c/DBzMLmxudTY/xvFQa8jsv8qTwKD6m9fQvb0I0UkCzRDd7BPI2eAJyX/dEVRCee+u\nx7OFvQG6yGFy+9KEcYgFXxyHACnZC6z5gO2KCvulxfW//2Mf52PSunWHvh1eIPtwrNAdYKmBAiaE\nOSP2MGVNwGOu7pQtysg+bHEb4EXAkNPzoYn99zsXpuDLQtrz76DEhuFuo3NElX2QmraF09tQunUE\nClq4rx378hsRwh3baxxMAvjKvhTpTMHzCNf1PDRMf3z3C3/NQVWpgsRAeJjKEcZTpgzOCqvnzLU5\nmZ5Pp4dcfLu9xnJjX+gH8QZCs5zvBHB81hKWtJSvFOSgbD26BCjLb9wIhosIvBEEO1dgl0GoFpLu\nVqoK0DElhMjhzSwACPUzVLdsbdE/xTkdwX1JQRYVH2DoZesif07PTuJeio1GyQmybwSEok6kDnAx\nts/qTPoHzc+I93yc+FjlFh8ReD3eObZ/r1sH99jBmRoXIanh/ZHtqLjVHpKmN96iQUJotnoBTHjP\ntr2DiB2oVx13LMm7cTfuxpfGaxEpaK1RNgU2ixqSvPPW7eCx1+pGEXz2dj3pYURE11DFTTwNsCg3\nfvM+Smo3wmsR0gcyee8EDSu1WyoZS51DkiTVFwY9C0a7ssApq+VNHcKhn0DLnnglOtxniuJO1rgi\n8eeoXaFjdXq7bfHZ0q46z5nmNMrBlitpGPp4Y2JX7jiOoag6vKNjtAw7uNRBjDYtphELY8LFzjC6\n6V24FCrJxvb7v5xL/P0xYbB7g0bYc9rXLTQravVIoujsOQ1Esne+FuLy/F0AwMX0yNrOA/Cb5iDS\nUU/G2NMKzuV5qB7APTpf5xqGeIu2bWE6W+zKfixx/SObEtTUyXzSOwdDna4oUVCuTbcOisGroitQ\nSSJcN1RwDiQkC62mWUHGNqJpCol6+YzXpYaMh+4CgXH7PUxriWJ+fASZUP4sctBTc8KRHvZXhHez\no9IriZDaE0VcYv0xi86ig2D6E7KrE3k9dGBX6641EISIPjhK8O1Hthj9xvERupAFcvpzIAxgaICz\naAq8c++R3XfbY0SCnahHaDr73Cpv0BEZwymYHpcdtsRFnAUNOhbTqysH21P6ebzieD0mBWNQNh2k\n7uETA+47HhyXFfBwCpfiqKubDoq4/IBajDo2aMlkvPfwHMGZfVD2N1dYUn57pEdY0AFkw1y3yRoI\neip6oodhFb3UejA3gld3AMP/KBgeeKAltfjEOYPii/nR4wV2ZBRuswJrqj4JhrC2QcLgzFFITu3D\ndno6w55CLC9a+0I4ZYt2M0CJO+x4p+pawzD87KIAY7I1Ry3zzDPg7Aknt6BCyWuo4GDMBF1qCd+3\n35uNbbX9eHICSdn62iywpfx4qkoME256kiKKUm6DtPCqwtAAKCWw29iX+2axQsj7tN9sEDHdWhIS\n7kt9oCl7iYdwsKg/a6CfsgWY9Ch/wlThwm53OvlnADIRsZ2ij0jbFhE6x048zbMOwUMeFOHqenWL\n/XP7Ak3eCiEj+4xUfYHqOUPwoz00jWHYREHQT1Fp2+2A8DBkKFGcoAxYMyBALhASFbsMI9/Howd2\nsvyVP/PzeOvc3utZeoRyMCze2Zf8x4sbnE/tpHd/coqHF7Y9K3QFzRQz8xS2S3sfVtd2Yp34HSIu\nFugBPeJkEUxgMj4PcwPTDyL8rzbu0oe7cTfuxpfGaxEpALbHXTY9PMJ2U2+MhDOc3+QImkHvboUf\nfciVorGrx1vTI8Rn9rPjXYwxsQkCFZY3Nvxs+hH21zb0G0QsKpToh351V0GwSFTva2z39rPHqYRi\nRXpgYrYo0YIMOC1QcPXLmxwt9QSUq3DKELYlVsCXDgz1AI1REAHJPF2P0bkNtR8ybdnvehiG+Bdv\nuFizc5K1BjVlyHupMQ1J4upsxDP37+FFbq/Px7drVDzXQEk4sT2P8+gCc1ak65397O7jCh8vLVag\nqzQkuyETGWJ03x7bA7yLIzIpffp87vsM68ZGN88/2qDY2m08vn6KJLH34f7kAsm3SG77odVTWDUt\npiMSu5wQIVfg/WcTuCQSuV8/Q/wmu1EpvRbzx2ifMeJb/R4yArzGUQJJ6T2YDO3HBAixX6/SU4wZ\nPYhYoOU+PvvwGT74x9bsZZz6OLmc8prbAqcJr2E0Jf0WBSYX9r6fHr8BNBbLcMYuQzMtDyzYX3z7\nCP/8e5bt+d6334ND5+5wGsFhMfPlrb3Xy8U1JFPMX/zWN+GxO9FVDTI+409fbHC1psJ0aSMM0Wr8\n0j17ftN4DuS24N2nBiJnEbfc4yQdJHpebbwWk4ISAhMp8aytEDFum8c+WmUf9Kk/Q0QPgenZKZKx\nDbX9DfUJpyFcIgVXLz9B0tiQuPz0KXafW33/JHwHlw+ZG2/sBJIvNIrWXvRxmCJMbegYSIntLdt3\njoeSNYOeeaaBgRRDayrC1pCyWrSImO+dnswxZbVYMuY0bQufohmR56Et7MNWtAYuJ4tRal+eWXQC\nn1wNFY+woZ/juuqxpDOWcpyDYMyMYiqJqOF+bF90t9OgZSSUbGHYRfGmLhzi5E9SK1gync4wu7A/\nd6ZHdT14E+ToK/vz9voKE4+sU0FKcwu4DDhPH5zi5WO73esf/gCfrclReNTg3pnlHfjdYLC7Q+fR\nw9EboWPdJpEVOqaK+w9ukAt2DB7bF6HzHbTFF2jDxVObHt7Wz7GkF6irNR6NyVx9i6pXX78HSbr4\n+rd+C88+tJ/9jU8zPF0StDXOkRH4NmWdxJ+lcJh2qsDFxRt2Eg7jSzxUvL/kQ8yyEAl1GU/iBAMm\nan21hYnsfXWLDD1RqAXrSFHnAkylunyHlrL7Wk2wem5Tl6zJAIdcH5emwKbBNRcvV/Y49Sgq+7SA\nYIuzL4Fc33lJ3o27cTe+wngtIgVHOggnCbLHzxFSDfnhw/sYEyAzPhmhJt98lWk8+dDCkX1Wf3/5\nfI6YeIP+en/QFzSnGsuP7Ip2UvfofZuC/M5n1jTjw+UGMUFB1alCQnMZ6XsHsZdmb7Do6RbEFcxA\nwKGD1K6q0VN4Q5oOgqt73WncsKcdk1NQ6w5n1NEbhSE8Kgwax8BLecyF/ft5mmBDLcb3P78FqQ8I\nIglDcEusJkgJqLpHQ5PqCshzu3pu2wanFH1Zlw0c8jziicHY2NC9MHbD3//oB7gm07JddcCJ3d7D\nUYRHcxtBqHAM/3jC47T3oNwsMWjlFUbjdz+z6doPn1xhs6alvBvg4m1rJR8d2TTg9maDRyN7bHEg\nsG0syKjTCluihbxsjZr8kYu3LY7BG52gY4SlP7tGPLMFvBc3azTXdhvPN0/x9oX1T2xP7f5UEKK6\ntlHhelvjhjqJ8sLFxRs2inlXBpBjXgN6WNZXLWbsdhVyhZCS+D52EGSMZuS2hErh7E1yP6IEOSXr\nnuw2WFzRgxIBRsf2ORtP7DldvhthwlTZTeeoS7vdql1B0k+02kl8eG2xHjeEtHeLJT5jwfi9d2ZY\nMgpzO405nc5T10Ce/Gzpw12kcDfuxt340ngtIgUlHRwnoUX50Q34YjTCviM6rFfYP7Yr0zNPYPHS\nzvgxNRbKeYJxb2df7TnwaNpyOnkIf2RzsifbG2x/z86eVTbkxTlKrp5ZtkEaUl14FKMMcpAnAAAg\nAElEQVQgUq5Gg4ZRQ0cyD4ywaqQAcr/FSLGX7FbQ7N8XWYGYOWDB76cjD9OQykqOQBjZ6CZRLjy2\nQw39J/e6w5Yw5+aqgCbH3nQuFFtgdVgicO3nGxa4/JMAMcF8wjEIB6KYp3BMGLeSc/Tk/RM2gHYX\nYnafjtlnCdrO1gMCreESe+CNRlAssBoi7bbqGoMuaF8rPDi1btTf/XNjlPTDOBceHp3Z2kD7bVt8\n+9Hvfg6XuIm5d4InNN9xfs5Fem1XYzdrgc7uO6eRTYmXaFd25duMfYA2e/fm7yA1nwAAflOvUNPL\nwWvIqE0v4KT2GG7/8e/hmjXJ2J3g/Mju4/zhGJMxoymSla6zGkVuaxhtY9CNmNdHEdQpyW2MBI9U\njHvnNhqVoxOExFCIbYWAjF6pAoSUaUsa+6zIownCgbgFg4C+JXmoITIbeSRjgQeEZqesl1SnCc4c\nGzXcjxM8Obe1reerHOXWHn9yfooQP1tL8vWYFHwfp+88wugnHyFlGOwlIZyVnQhE4+Lia5YldwSB\n6Jv25gYUKTmfhmhy+1LViy06Um+j6QxH7KsXbo0pUcX+m5w0ikvsKvvZkRtiTmPTz25GGIAKI8fH\nC7IrS764utXYd6xktzu4qb3hx+kUhp6Q4yTFlJLwIV/c8zjBKZWoRZEjJLVYGI2WfX9B3T7VA/cI\nmnn0L05RkXG5ccwhXBVGgOQ6sBmAsPdwzILhqQA0q94i0vh/2XuTGF2z8zzsOeebp3+uuepOPTe7\nOYikRIly4Egy4gQGZASGkyCbBAa8SRAgiyDeeZOFFgECAwGSTQZ4Y1kxgkCIHCBGYkmWBFES2RTZ\n3ezp9p3q1lz//M3DyeJ9/iJbsMOmGqGbQR2gcatr+L/pfOe8wzPkXJASN8T2nvzhhNDmg/svICOQ\nK/A1VCH3eOhoBJSPr/MCxqLOIbsejhXAoihKb6uHMJJjHFUvwVL022wU9u5JqGx4DrsHf4RBJ591\nuvgA51dy3YvQwgElz/y7O8jfkpTA2pIJ7676CF6T8xw5Y6gNN/66QRBJgfnf6CXYeVNUwT12g3R0\nCG9FM92DCbwV4e/jGPFIPmM4jtFj6hnEcr6qe4KS3Bar82CHBMY1EUoipUfsIoXjEGYDZNvy4G/0\nM3fv45DMXs830MvNsyYArAlgazmG7Thw+gS1pRnqnsyzXjZA8LI89y2meem6xA67S+N7W1DHAt7K\nzByekUUhnT7DYCTp0acdt+nD7bgdt+MT43MRKXi2jfuTCd442L6xxCqaHAl32MRy0GOBDkUNPyVa\niyKhEQATys+NFaFZsl0WBBhvEe75vEB4Tz7icCxFr7pYoCKpqnUUFPEI+5MB8qkU66A69OhoXZBx\np6GQs/A51AksmtJoHWCHLsGTSYSEbUaHEYbTNdj4xsSjEAGNY0y1QEMXlZYpU91q9Cz5OowTcNOF\nWRdQFPC0XP+HltYUsV3lM8T0SdzyAjjORjfAgDVJNLqC10qY69BeO+x5oOocHBgEI5qweBkK4iXy\ncomGaLwNpqNeNegojjq4N0E/lgJmVxfwsNFZqOEwKkq2Jc17EPmYMiw37x3jnQvZ2f7a/RVaSvJV\n/jYMI5KE6EEdDhFQzbvTHvS17P7d2INbSNQzProDnyF2TbYk1tfQ/Kyju68gbQl53j1Ajx6io1DB\n9eVrt0dvBmcP0UKeb5mnsAkxbyobu3w+E7Jux3tDeB0h+EWAIKTcmmOB3WwkrgubkZDh/cnTBtlM\n5myVrgDC24O4DyOZMvw9DY+tyI7SdPmzGiGjybq6Qp/oTutYIWVLcpxE6H7C1/xzsSjYrovJnXvY\nu3cP60tJGdLrDJM+DTv6EUL2dK3EuukFNwUnfF3CIoZ/+NIINsOzVi/gM652rBYW3wpdSBXXbjr0\ne/JSpKVCS3Vl37KxJvOtrYObBaBhN6AyDQ42DyhZYm1LeH1H2SBFA25jIaTV+oCQ2XRRQxFvYJcG\nbrKxnwd86u+tyO6zcoMp88VqmYOwdsSTHhSVq7O8Bi8bHnvlaZnjzh47BGGDH1TUh8w7vMyn7aoG\nbUFMxg49GkMF390oWmlo0nptZWDWrHdECUA8SEOhEC9xkDdyf3SjEQyoidn24VKcpVnn0jAHYEr5\ndzAY4PlCOAcfnn6Ah6eEdD9P4FFZqucsUTK9U+bLcj6RD6RSJ3KsfVgHGwp3go6LjNKiGAUAbY9i\nMvUC4MbibNkIV7I4KdVCMWA2WQYVykvWNRu6+xl0x+u766FJN6bABTT9P3MCheqygxPIMwtaA82F\n0Lg5PDpVBb6BZW0MZVi3WlfQBIuZxkHrMUXpDHRCXdB1DJfvQFPJPTl8oQfjyvleLM+wYAoGq4PP\ned1VLlLItXzacZs+3I7bcTs+MT4XkYLSNix3gLuv3MMjSpddz1cYj6Ua3q4rYIsqz1UCj+YkIXux\n6C6hrqmHWAp7EAAsbaM3lJXUWpXgpomQFeLmZH1j4e45wPKCiLjQg+o23n4tNCMMs3F07ICc8mhb\n9QSDDYtQFTC27LYq0KhJlCqIaAxcDa25O3Qx6qnsbLPrNTqi4+Yk8NieDTrXwUk0wI6DaVy4tC4r\n0aIlLHpG/Yf1fI2IHYdXhiG+/bbsxhMvwA4LhuXaYN2XuNRPWfV2bGCjleBrKEMBwnKJlkrEjV3C\nU/IcHH6vF0WwaBBTNyUsChFYOoSy6Alp+WipX1BSBzPcinCQSTHz43c+xBVFQZov92Gu6RHoxUBJ\nkxyi8mzdwuqLz4TVxlAxi67LCDajrS51YFyBEv/Qmq1CVzH60T2MGUGsz8/Q8rPLezOEWuaLZsE3\nP+3g35e/83t7qNZyP80gQpvws+VsUa3LG3+LJvQQtJyztYbNVBjKgyKDsVvL3FutZihpODQaDREk\ntBOcxtCBPF/fsRCRXVnzOtzAgjOQ61heuCgDomHtEFuhFErXvRRu9TPYfeiUQeo2GAUhnFekgvz8\nuMGMOXyUJNCN3FQnyKFqudmaIT7sEcIdeSmWjzIsV8xx3QcoLuUhts9XWBGQ0h2KqEaw26CmFHiX\nFjcw2May0DDfc4oGoPbfRmHI6A4NmZOdj5sqc+L6GLMSH9ohPOr5FRtYMjysN+F8scTyOdusqwKa\nlPGIbUrHdtHvSRdB2zEsQr5rtDdGsFbboGJPse2oI5gWNyaoeb7EKSG6/kTDJzgr6kKgkHukCMbR\n2INyaHpSaBjyNdrpEtekmq+LJe4fbVqS8m/n5GgzOUbbLtEQQm71DTr6J6Jp0DXyIkynAsF2ax9H\nu/IZz959DxXzI/t4F9EWw3lfo6OBTafZO50mAEPjun0f6jE1PZMHAF9ItMcAwUAbuftW91DP3pev\n3RY2+RqR76EmVdteaJiQkHUjG4c7PgPYwekqF4Y+kPW1jdVSrm9nR56ZPQigqIBlqRyKKZPl7kOT\n3NG2JTrWjcpOFu+8nqFdkuH4YATbkYUpt49RLzcpwzk6R+aDOyDLsm3QnRPotRshZPcoj2z0SOFe\nZyls+xbmfDtux+34DONzESmYzqApagy8BP5EwC8ni2M4tO9uiwplxF5xGyMlT98pqW5rNTCEROde\ng9iV8NLYCrovoWj/YARF27iMuo3wE4jrIYDYQ51yV1o3iF35u8ZtcTmTXWpFQQtLaZB7gr7Xg0X4\nc900yCmyWJQlOob8NQWeLW3DGpEZWLkY35XzHDkFCl6rTTm2tq6ASo63WtuwSXxyrArORmJMqZsC\nVUMcA6oOl5TlWi01rI1ycFkh7ks6ls7Tm4Jf5bMCnq8BFjDN1RmKjTBhmmLOAl56meGj9cdyu/oy\ndS5TBY+RS2116IXEBeQeVEpClLFREQzWEVsSBBMsKKyCxtxoVkx6BQpCvZ2LECgkuqmuJapqPKAG\ntRZbC7qT7+PyGTCievQ0g47l+lQlkVDXL5ER4GWmORTTLU9V8GK5d66uYZjSNd4HvJ8+WupcLlcf\nwqE+qB7u3zAbRwz3/b09NFNGFbVGtRG1aVJYdPzGegFTM/1jgbZOFZpC7sXV8RVqSrNdVgYrys8H\nKkeP6YPPtKU5z1H5EtnMjmcYBvKs54WFZyuJshddiyr4GWRJtm2D1WyOFhk8vlRVvUZO7HhhPKSZ\nXGSrGhgl4WPG8Cy9noHgMPi+j/iA7Uttw+PbO2oOsNISBmeZ/J12a2jmd806RQ35/jxbozeRG3w2\na5CndG0i2EZbQECQDiqDNXPnUAW4XMkEKmsDj4zJ7Zg54MCFx/ZV19oYsN7h2AFqhtrLTHJhs1qg\nZojbKtzo+qHSyCkBjrJDR/epHoFZy1Dhgyu5ztNlifFYgCtXRYH3H8pEPzw4wMCS8Lhz5TrT/Bxg\n1d+yHGh2DhAabPckLI/feBmaua+x5NwGK4WWLcuqBrRLj4vqGiDzsS1XWK3l+a1Jre6GDd75WL6O\n4h62CcN0wl3MUukOtafHWHVsZVrkH+QW2o5KSYVBQAn0cqRQfCiIxuXpFYym98WE4fXxCBb9Nu3I\nhmJLyFQrVFM5XrIXoqaPo4FcX2lpxLEsptjO4DEtsZIG1/QhPaba1ji5RMuaUr/eQcVrytPFTeoZ\nKgX+Cmy2WQdtAoc1h6JJ0ZBrkwQtwi15TplpsOKmVS4EpBT5AeaP5djT7hIpORNbcYfza/qZrBTg\nc/H9lOOzWtH/50qpd5RSbyul/pFSyldK3VdKfUsp9ZFS6h/TE+J23I7b8TMyPovr9AGA/wzA68aY\nXCn1WwD+fQD/DoD/xhjzm0qp/x7A3wHw3/2/fVanLKy9COp5hfyMOIWygeEu7+VLBD7ls/IWcAi1\nJR+/CxLMa8queT4encpu25wtoOiYbPkJau4qaxYwDQY3vd/Ws7C8oqS8NmhWLNrUOUpW2ruN3b3r\nIiQaZZWmsLmrznSFkLVoXVfoKH9WMGR+b3qN5iO5voXpsB9J0c3EDvyaEvWa4bfpsOB57kYNJnRK\nimIPhoAlr7XQMeTXI+ksBFGJ1XsSrTxZlXjj3xK47/F33kP7XHZme3KEcswUpNioD5foWDyMhtEN\n38NfNLCsjXDMEIb8D4+hWdN42DRlFICGO2KRGWiCuqAUoHn+7Pw8fust/P73fyD3czLGq68IJ8L+\nQgL9LQmZraJEDdlWrwgg6ncpwlQOaEURFGHTFsZoxlR2tn3U1UZPgAY+dQq/J5GZXVWINdmTQY6a\n0nPrZoVwIGmjZbFoWTlot/hMFwNoqo07vV2smTY+OpG0xQlWCMmjWAxbTGgNUMMB6BDlDgIYclB0\nI8cN+w3iPUklsVrcyO+3XR95KJ/trjI0rbB7C7Jyc9TIRnLN2XMLNhmseZ6hazeRl0GT/XRZkjaA\nQCllAwgBnAL4FYivJCBW9H/zMx7jdtyO2/FTHJ/FS/K5Uuq/BvAUQA7g/wTwbQBzYwh7ExPag3/Z\n3yul/i6AvwsAo8kQMC1MdwUzkp3UWrooN7hbN4DNYlZTFyiWVLzhmhbbIbbY/vOaCDVFQusmwWpO\n5Zoig3XIQg2RbY3KoGmxhtbAow5/Vte4pOjq6ioDaGCyQxu760WOlkWkZbOAz1Zn4rQwZCi1lgO/\nkh3ho1ORyfr4fIaC+IdhlGBF8ldiuXDDje+kXPN6nmJNvv6Zt8LrteS1/SjGcEB0XBLAo5isT9Ra\n8djCMWsfJ6sC/94bfwUA8P67x/iIcOSfn4wROBQ8ZbHMCWJo9rnXixnml4Ir8BcVHNYzFh9dIBlI\ndNajTsM0f47VNR2hjwaouBtHkQvD56MsINohtPzyzwAAf/ruB0hJUHrtG1/Cr/+7/yEAQK9+Fxbr\nMv6ei2gmkVDF5++6DXRCyHNbw7A2sD5fQ7Hu4E8An5FcDEreZRYMtQnqq2soS6I0HXvQFlvRTxco\nKeob7JNQFU9h6E/RrWuUnih54RqgSBM2cJl6ADjEsfe9FiDE2gt7gE0LuQbwUtaYqJhdtDm6jySK\n8ywbhhFraj6+wbpY9gKabEfN0Gx28ggN70s0itGbydeLqkVbS52rM4BOfkowZ6XUEMCvA7gPYA7g\nfwHw1z/t3/+oFf39+0cmrmvYDhC3Up1PJwGyKxHsUFaFZGPDbQ+RslK7YFcgUy4CTuje2MDiTd06\nGiFdyYs3W06RPZMCnH6RPeFYwRBDoF0b9VoKPEHXoGThr0IJTah0HBCM0hqEFEVJKwuGYWTXWMjJ\nsuspg15P/m5J8Mgw9bF3T7orr79xiBHNSbQdYtujqvTGHWhd4tGJqBM/vThGxO6Da9mAIhjKsjDa\nkt51u6lSj2w0ZHiq1mDkySQd2Bq44gIYO3Aoe1csJUXpRTUsT0LqZj5Desk+/rCH4R0pVgaNc8OI\ndH35+ZY3Qi+SyX9xdYJWy3no4V3YNOhRgYOOi8/lU3kGT0+vEFF27K/94i/jwc49eSara3gEWTne\nENuHvyTXVwrGAMESEU1WtN5DOyOG4voJSuo1Kgyg2c1xOcX9nTF0Kp9r2gbpmRQXw4ELhzRrtZOA\n8ohQmuYs/hGWT/4cALAqKiQ1X8wtB05BHctE/mh7uIPEEZyNZXdoNpB1K4Xvyj1sVYrpgryaa5nH\nbrMFZdG8uCxgET4dB2Mcn8siVF59gMkD8iooVKO0h95Qzqd0NXox50VqI4op/b+y4JN+/mnHZ0kf\nfg3AI2PMpTGmBvC/AvgmgAHTCQA4BPD8MxzjdtyO2/FTHp+lJfkUwDeUUiEkffhVAH8G4J8D+FsA\nfhOf0opetS30eoXVssQgofFGMcNFzV0O2wioQ+ApDdeR3V8v6bEwPcbymG6/3y2xYut61G+RE7qb\n2T5Ge1I8muxQlNPqAGoerNMSK8iueTG7xvVSwuerqoF94yVJKG5b4zKj9JXbId3Y0isfB4Gs4sOJ\nB5AQdb8vEYEKWgwT2eXi0QA+kWbJUQ8jwmsdMu9Uu4biTur73Y0FXYUOYUz7OqdBtZCdeXBf7tW7\nH0wxZVFu3bY4odjGIgXWSq7p6ZOHuL/3knw2hV09t4a2ZAfbHYUYvsnd2g5h+8SI+Ls3MnSgXbpn\n+ShjmrdoG2GPmg12CbB/X6UtVo7c22+99xYA4HwFfPMl8Te4/+LriBniRtUeurv0vwz2sEhlp2wC\nSTVMq+HQkl2vVgBFUfx6By7JZrr0sQEfmwV71e0cLT1AQk+hPqSQi5uiphK2YyIUjNgM74WqM/QP\nON8u1zDEqpSXT+EwKnw4k393p2sUuzRsqVz4TLu0yWGzLRhqBzYhCyal+3m2hEcClz4HrFiOXVwd\n3xSHna0AyT2Jokv6bk7GQ2Tt5gFe4vqC83ea3ojr9HUAJ/zJGoCfpabwLaXUPwHwHQANgLcg6cDv\nAPhNpdR/xe/9Dz/us1qtsXRd+ONDXJGpuDo/uYGJtspBQbqwXdqoDfNdClf072+hV0vOak1WMM9J\n2fUzVMzDimqFlKG5zR50Z2J0m+NVFZ4cy019eLHGKW3EW8sCkbKwWdFWlosV4awqX8He+AvaFhzm\n3EEcIU7kIapSJvRWGEHlXLzeu4R1QNnvtMN6i599TRyAWqLK1zxGhZxKxcZzYZiTYmzQWXK8x8eS\nI//+wxnOmT50MHj3T7m4ZafQZHl+93vPMKDf5mQk6UfttvAzekY6M8Q96lXqFu0pvR23lyjlFt24\nZVUXczQWKeUasPcZqhof4ALXKI1HDyVcf+vpBoTUYXwki4LbhbCYErW9GEnwK/IZ0SWCZ1yI2eGx\n8i20ZIR2TXOD5bBUAEWGJuYh6pmcE1NrWK6BzdqPGlsI6VFp7GdYfiT3NtXnMCWZouQ+hPEhFFPF\nKLmHPJLPLTIboApTOpffffL+UwSkrVfjMQJLNoPSAZwlxXPCHCF9Hu0hoftpH6akWnW2gkUZAMcG\ntmPiJmIFi7e2zemiNslREcb+6LhAuoFPlxUCQqWDUQ9e91NaFADAGPP3Afz9v/DtjwH8/Gf53Ntx\nO27Hv76hjDE//rf+Px5xGJgvvnoP3TJHSlShrVx88U0JcSejCUaerKqx56Ckc7HPXdKyNPJGVmI/\nVghpzx1GwY19fDAwiDvKfLFo6VhD5EZ22OuzDHNar/kPvgDHk53wjt6DcyQr99bgBQDA/t5dtJRj\nWz1/hI/fkULUP/nN38Ll29JLfuPFPRQnsiv+78fSfZgWFSJ2J2pjUPDed20Hy2wk1uSeeLYDTW8J\nxxh07PMrY0FRXKbvD+D1JBZNSBxS6xzvET7c6g5fGkoksECGI1at607hrJD7XBDCXFXdDerOsjz4\ndLbeUwoWGZxZY0GxsJU4EgUVSYARjWVG2kLZkoizvsLpXMLguKxR0jDnWUHEp2lhsZhrJR1ipl3u\nMsZDyPN92bfRn1BJOiHGZDbHMa3psrKER0/PUdTDDmXxmrZB0W6IVPSrrC3Ma9lVdyY99Cjjtqw0\nmmbDXC3hE/ui2KEKxwPcuSsEusPRFppQ5tBo6wB//deks9NciGBLmr6LZi7P4w9/7/dwei5z4erR\nM8yWcj7P1wVA1eU1n3lh2h96fNQdMqbNddthwvvtKhsvHEnksUc8Qm/QQ4/4h8V1gacZYeVOhaiU\n+31038POgezRf/O/+AffNsZ8DT9mfC5gzsp08KoShSkxDNmmSyJsswW4O9rGDnNVx3RoGeJZpBD7\nPefGuNQyNjRFLIJhgPVKwkt3rQDDkJCtwMBOsU0AiW9ZeGmb/IOgw/yS9QpzjjsTevtRzcdSCjkn\nP5ZLxM8eyzFwgfvkO2fX1/hDauadLuSzcnRIydHwtIFhPXatarhcLDy1SR9sXDN98oyLkGYhreMj\nreRaQ9fFSzQm9em2ZJUWIgKapsX6Rv3n/aLAuJMJP9AdiMDGkrmsCwsdw33XtzHVcrwYCVqyCMug\nh2fs/EzYkpykF+ixDdkZB96mch5bGLBlZ7XAYkP95s8frxoUXIR0ZWPAlqy7M8bjK3FeAkJ8nUpP\nabjBBjsYUtw3thW2GMIfTPbx4ra8NFWRIVttzpmsTtvBI7qFRcqGofGu72gsyIPYstUNzHmHtaas\nXsOfC9/DcR30eB6h3QOoBZrznph8diPYEmCN4lJSjdm8xpKLYZ4ZQG04ONwIOoPW2bBjO/h8JtuW\nQUxvVY0Oigt5Q7HazlZouQGOEw1LycL6/HKGpzRZbkILgzvMoT7luGVJ3o7bcTs+MT4fkYJWsHwL\nbaNwd0v6uUcvH+LVXUkfDo/2ELpkr606+IQub+Su6qZEuWK4FwVYE47c1hU0d9ggiFAxPcBiI+HV\nItoVeOkgPYa9K5GJXiocbkxGrq7R4w5rmDK0XQc3k93hOvu/8fDxnwAA9pcR2JrH7508x4fcrfKN\nl6StoAMah1jujdJy1Cqs2cHw6G25Qo0eyWGpXaLm140uMDAbvcIFUkqH19yttRXAZSqVKAuGjNJv\ndEB1T4qOs1Ufk6Xcr7sMy6cWELDvvkSLCTUf10mFgPd24WV4lfdw0RcMRd3GGE3kexM3hr8p9q9L\nHFL78P2TGa5IFZ1y578bKXzI5zTUPrIBTXQu5/hmLl+fPbjCn7fygV/3JQpwJzvYJy5k2B/jVWI9\ndl97GUMyPlt4qMkUXdN1++L0HOYphWymBRpChT2vQcXOzoODQ6R0Lz+kpN0MBsNanv924sMidD0e\nObDJusweSfqo3+5hcfAtAEC+/BDpqTz/VOWYZXJuPWNjynukN8/RNhTOB6pGIWYh0lIt9gnjXtct\nCnY+zusN5NtBSyBbMh7AECrff1Vh8ZSM3jrAcfozaEVvoNBYDia9BC8fSFV4e7SFyb48jNEwxsCX\nXK2KS3ixvAiKohJmvULep9iG5cFn2Npl55hTwjwIPPic0BbbY2XjoKESkndwCIcuRUuTYvtQFoi7\n7msAgTpFTTp1WaO8pC3491d49lg+49n8HCsyJh/N5mgZHg/oUfnCTojtHQF4+rGNdEmVpm6KdIOa\nK+VYTy4aIBAOx0C7ABekwsRIqMYzTMYwfISGngBhYEGxu9JUGtFEjv3ANpgcygv07iVQsZ12NJa/\nf9XbR0nh2rO5h7aSboFn9+BacuzxKkGSSJ2kN5Bc37geXppQvCUAkoKckImDaCHn9EKjkVZyLQ8p\nXNv4Ll4pSXcfWlDMs0/rAPsTOY8H23uoKmkjj/p0VRp6eIEOS3vbu9japfBIGyJhJ8lEIcBFtsrl\nOndgsE/p++nFCSoqZw0WU3xMAZ8H268ipZ9HyFqF0RXGo5j3YgyHKETdAhkBUmYk6WV2+Ba++0di\nVvv48QnWTJXWa6C3Edv1LAy5SawJ/HU8B4pp5VArDAl6cxwFb9N+rzI8Jsr0PJNzTy3gS6wpDV0X\n7RY3HN/Hlxo5p6t6hjU7U5923KYPt+N23I5PjM9FpKAU4CgL/V6MwR3uCFEfkbUpvlUIEmHX+X4G\nze6BKqi51+vBpTNyp2sEBNjoQYCIO2/dpWDTAp4WTEOLJRpi1VXhIrgjisGYXaHkztzUUywK+TpW\n7Ncbg5RKvHXRxzGZnafrEgvyNSrdYYeYha++JtXrX3jjTWwz3DWuQUPd9mpZIaslxMuoOvbk+gxO\nfU9+XhR4RhDSrEixH0g05QYRzolliMnNjx0HcSy70rLUmJB1GXcG44JQ8NU1AnIGtoheigY1Gouq\n1IcRaoqbeLWFmsW1V9wWfk0pO0Kiu1DfqFW7dYdgRO3K0qDd9fn8NL62Q0br2zLlHqoSIGfC9hT6\nRs75mZ7hkjoau6tDuGpjNS/X9/JogsMDOYetvQnimDL6nQ+PxVaDCsom54H14HAYIynoWHU4gSJm\nwbE1ko8ey+/sKqyPyaE5kgilW6RAKc93ECrk1EjQXYN33/keACD5+I8BAGeL93B+LB2A47MMK/IW\nhn6ELQpeqECjrgjEY4fHClwUpdyLABZeuiNzJAwcgPN3denArBkhcD6urtaYD0Rb4rWDEUaUsK+d\nFpkrUUUbVvCXt4XG23E7bsdnGJ+LSMFWCkPPwn4SYTKW1S60rRuZL13asMgY7IgYxakAACAASURB\nVFzvxv9k01ezPQWbfod2V6NjtcvSGg57+qqwUVoMFWjzVVQJOpJTyhKw5iSlaAfWUr6eXlbQbFOV\nY/l3Vs1R/kDajdcfrHHBfHCdFag62fGPhn28tiU77y+9LgXTOztjhIlcX+nVsNkOreIMRkskVLFt\n+lp1CI/YhDJt8Hglhb31h1O0dBpetz40+9/NirtHXaMmq8dWCl94gVDq4wIRLd9eeTDAFo1oBmzp\neQd3QP4OnNxD5xM34PVROPLZOitRamIkmMsq34ZHx5JOuYg3hjMqRf2IjNejCvalFEKPtgW2+97b\nKS648/mug41TTd1l6JdUp9IutvfkeLssqAaBhd5Ifu4qFw4jCe36sDd1ANWD6jYMWxLMyuoG0x1F\nGVBLVOGE3g0zNX/6NqaXcu9eost1FwHLQu59azuI6IdhbBdv/cHvy2d8LK3OD2Y53n0ukdlq1WLA\nLmoXAobPJKhtDCjS25/IOfTCADQgRxiF2N2WSCjvVlCnMg8HhyGsmkLAZMFa2oNN4eHZPENvInPL\nnmdQ9CVZn1bIpj/Z3v+5WBQs20JvNIRyEiAj4zApYJMPoCILFQE52ooAgmnsaOMK1cAlztxyHNwY\nLJoFFCexcQK0NO0oCyl61WkLN2Bnoc0xuxScvWONEfKFhvMIU6r2Rp5M6GQxuZnQH6U/QJHKpJk3\nFTpWgO/tBnjjS8KInLBI6rQ2OiP5gclL2OxBKw04IR90IzMp2vVh2eySqDmGxzJJs77C03PCv6sG\nNjEJZzQvma5LKC5ijTZ4qS+LzcPHc8wohZZs9TAMWSikGYzllvBymVSD/W0YMhUtq0RBRy6d9FFb\nhGZHLOyqEHrDf7MMVENl5NqD9aosLOXDEVaphLlEYANujZNKrjlcAknCDaBucUHw0l69wD2Lpi0M\n94PxFmyG3a4f3SwEKnaxcbrVyhKYNcQoiCcEvfkyPoTmZ+gY6HFhNHdfgDl+GwCwWgiPzw/uQHmS\nSvS0BnyG6JGLi8ciEpOeEx6/zHBG2ndkK/S2KOTSWdDeRoNTQ4c0CSKGYifuYzCU56C9AOGWzJe8\ntBHelefX5iX62/RZJacExsLao9lsa2Dom3n3KMKjE1lMzk5yLDaml59y3KYPt+N23I5PjM9FpACl\nYfsuEl/Bp9KyEw6BZINcDG6YLXlVwqbgaUtSj1WX6DbKX7YFTSdeq7BgKEbawoWlSarZiLesDQpa\nwtnOANladvzC9eGbTQsphE1PhY6CLOfXK2TvCXR5dd7A6ah1EAJgEejueIi9HWkLUYIAVuwiNJQJ\nKwFDlV3Hs+Gyj62CjZiIB4vXYVYBSB4FXBvBJWGwALa3ZUefs/dt1R0Ur88C4DN9UH/SYERR1X4v\nwRX9VsaFnLvX+HC3ZEf0RwFsh4W22TVapm5uWCPUbJGxpVehRkcGo8pcqIYX69iwKHUXjXdu7ACd\nCUPnUx+hzfQBGrraeCG0AMVpZhcFin1qWXxBiqt7W3vob/LHJr+BI6OIYRwyHBsDtZEQoD6Crloo\nEsIUCmiHfhcGcMeCVenbS4zou2HOJDKtDxrYE84FewQVyTPrOoOHc0YFVKo+nxY3JkLD/hChlnOv\n2hoZFaoRNTggInNrLD+PIgc1C6nxKkR1teI5B+jijY5GAjeUiCTwKFeXAx3hzBc4h0+INRyFjnPS\n8SxE9c9g+oCuQ5dVKF0baoc23H4Cd6Mc3ObQ1GgMNNAxN9a029Y6QOOS1VguYagNqOABm3zYNLDY\nC3d7ApBy1BRNs6HkZmg1TUaKNVZz+Yxleg0MCKfmA48ft/jeNbsaeokccgxfOYip1nywu4seFX3C\ncAPnXcP0ZLY6lgNFi3Oni29SIcXPqlZnUISz2r4BWkqSNxn6IW3bLQsW2Zqm4mflBSomqNqyUEjG\ngEVp4O5IDrsOHIRchPyJvOT+g/uwbeLsRyEUlYH1zhghw8+umqOjRqNJZAJa9RqKhI3OVNDxRkm7\ngKGOo9vvYfs1ER95QKOeb0dnSAksmxcGB2QGFnkLj+Adb1xD9+Qz9rZkVYxdDwFXyFalAC3cdQAo\n0LDXKdGRPQkurCqKYHPnMOkVDBWrEPnQ5D7YowncbZkDc4KmxmWBgBwU11qgiwI+pwIB6fMbaeI4\nUuho6jJJPHRMD/uRg5aYmsHARbhxHCOOo1yskGdyXzK/xIJ8BmVb2OLqFhgbOVMhny98Yefw2VHy\n0OGqlIfdXNSoV3KtL9ydYPp04yX5DJ9m3KYPt+N23I5PjM9HpAAD1RboKoXOcCX2rBvmYF22UB5t\n0XoxbOIXHFrEW56BxQKfrkuAUGHlNwBDOGtV3EhtgRGGCkKoteyCVW3QuoQaJ304Fe3DZrghFSn6\nD/oHW3jel2Ll6kmJOVdl5bi4y0jn4M07cN2NTyOjkRqoKnpIqBo9SsjZ2r6JaFruAqYqoUiOUm2J\ntqLrNgKEI+o3zOsbw5w+K+tt3CIhYg5dhyBmEa1qsWSnIjsuEL4iO6L25L5F4xCw6NFozQGeh/Iv\nYdjz1/4I7Xzz0ZIOtHb0w8JmqqBbQc81zQCOzx3Rs2HRwn2wJdHIm8rBu9yBLzoDTTs9rWyUm0iw\nseFUfGhUOF4vl4h536zeNnTIiKYIAZ85pA6gcNMGkX+tHKqlbWCbosmoVWHVP4wa6nN4ZEmalVxH\n3a1RNlK065DAI7Mzx130evJ8NyZBKjXQNnUvSoNgJOfQ2x1gQPm7uDMbjx8ckyjnGgtXJxIprOMr\nNJSVi+MWS7pjRz0bCZ+xvU1m7CpEkch1OOcVnELu0fnDAj7h0UVnw6cC9acdn4tFwUCh0Q4WpX0j\nnAkE6CizHu15cEm5U74D1yHzjZBi05ob6qnpBmionoOqhccURMUeFFt8HQU87XmNmjI4Zb6CTUhs\nP7HhDqRzYI6/h5LW9m5M/kXg4pcP5e/+p+OnmD6RyXhgDwHqMap1jjqkmQtx/7bjwKJ4h+XYcPmy\nKUfdKO8oXod2bKjBZoGIgBW1DysHKPnCWsCAzM3xkkKyyxzRiIavSwU7kS6DNfLw7kze6MnAwf1G\naOCaKYXldTfwaB0N0DpT3sMVHKZVauijqaWLsLFDb5c+1EgKFN7Eg00IutNZ0GyztqslwBZZv5Pz\n+fIv7uP/eCzn89G0gt/jomgbbG90IO8VUAP6hmakRe8rNErud20tYU3p3RitYC8pWtK3ANLqFbs6\nprLAkhJgHqBh3SWv1qgWNBrygJQ1rdWJLAp3VIiONHH9/DHqr35dPqK5wIr1Ic00YloukNGRq/QN\nHG4K270BjnZkwY1tG00n359PufFk1Y0ke6wr2FSXT7SPnfvyP8lgC5HD15W1mnKWoqLWZGtObwBb\ntl8h5SYyPamRtz9FM5jbcTtux///xuciUrAsjXgQILI1Rqw8m0WGigU6B0dQGxBKnkCxat9kEha1\n2TNUa9lRgrGDlgUuy27QUWLM6ssOCABgCD+7enoDTCnXFcZ9AnlMiIBh6dbOCFmxaW3IZ9VdASuS\nSOEL9QuoA+ro2SUQy/dPnuUoLdkJbeoPHk52MGYlu13kqCJW1qMROno7Ls5k13KiFP61YBPgzGFW\nm+q1AzeRz/WuGixIuuo6sv4cgz4jHh24SPZlt/7CywmyP5bw8oOPlvjlX5BjD+I35F6aKzSncl/c\nwwqqpYZECFTPJFVw7RB2IEXa7KloHjx7VmL/5wSc5Xi7KIhHqM58hLvUOWwV7ICFwi8y+nlvgcMd\nsbF7b1oBVHt2LR+71Lv4xs4XEBO6u2CU4+ABrjw5n/XqGrqRnXJ23cCpJXqZHP08Dr8uxDOH4i3a\natGwuGqaEgWLebPvHuMZpeJ2DhVs1uS6FVPXYonUCMlpsNjB9z/8rpxnu4eMOgw1O2P1GrAJpvKS\nCNsDSs47IU6n0lEYuSE8Fiv9WM7tCgskvpzvOAFGIz73do5tEr465W4SIlxfSeqa5RUuaKvXuAEK\n6mHM1xZUQXfsdYGrzfz9lONzsSg4toP94S52Rj62iftWpQ0v2SDzCuhGWm+r/CmsC4JpKLJSPlvC\nxDJRsicKQ9KeLbgwLh9YDsyeyO98+Fg8B//F238Cn74Au7sDhIb0473mZjIlgyHqXB4CDabg7zjA\ncwnrtga72OJ5LuslMJfjfX/9AxTkT0zZpnzj7hivv/YqAGAYOYgJpqrMCh1jtnVJL8kciH0JYb04\nwjKXr1WjYcj2tJ0OAwZ7OWnDx+kMC9ZXojhBF0nou/dzX8Yr2bcBAI/fy6BcWQCaUhbF5vEVrh8L\nMs96uIXxaxR48XqoOx57rWFoKV9s8PfzUzz+XUltHP9trEDeRV1g8ETaiEf7AwxjOU+XYJve6x4e\nsFPRG9RIIgrT/ojH5k5470YNynflBewPCuy8KByVKj9HnlNg9vlzPP5jeblT+w9Q/4GkR4dvygsW\njXZhkV3a5jU0OzvT2QzfeUeQibtXEQ7JeGSqjvyt9zFklyR1z3H+fTn/h3EPKSnMixXrRHUFn3YA\nL052sU9QlFtrXNDB7O2Hl4ARpaZkTLavZ2PUI9+jv4+E6k75Yo0Faw2L6zM49CSdphRbWaXwCABD\nL8TlgnWXxQw7bENWA4PmZIMY+3TjNn24HbfjdnxifC4iBc9ReOHAx/72NgaUXeusIZqp8AsW2Qrz\nY4GdHq/P0F7JLnWzi/gBIha4+rFCt/GJD4dAS4fqp2/j0TMJ8z9+IiFu7PnY2WYxKAzhxQThWA5Q\n0qjDijEZkINAZ+A5nuKIkm96/BpOXpCV+/qdc0wpFz5KEjhL9qkpBnN5leLPvvMuAOC1F7YRE/oa\nOS7qmlVr4gPm6xU+fCLXPK1qGMrMb9sG4Vh2jL29XYyGxDJwN/v+uyfI5hKqJnYIImmh7/aw/R05\nj/3IgZ9LqF09lV2ryhfIWcw7+cH7OPvf/hAAkKsaD16S3fjnv/EAtkuAzJVEXX67wvyYOo+rBVYs\nXKr+AKNE7me6ctHnDuoSPt0t+nj9vlTW/83CYFbLia7gYzvi82tz9Jg2OsQYVGdXSClucj7/GCBX\nYV1bmEzEj3JtTjGdyXW5H8hcufOLI9iuFPtMUSCtJU1bnWZYTWnhfnmM4lCO9zIdrc4vjrG6lGfz\nflDhe408nycPT2AT6LTpKEEDA8KnBx7gkKPiaQ87TLscd4XpmaRCJZW9YwsYh3IvkthDXdBPdTlH\nQcGcRZrDJ5xcU9/C7gVwW/neSBsE7NDNnlxhzfm0hgMNwqI/5biNFG7H7bgdnxg/NlJQSv2PAP4G\ngAtjzBv83gjAPwZwD8BjAH/bGDNTSikA/wDiPJ0B+I+MMd/5ccewLBtJPIGrh7BvFHNmCNh6vOge\n4/RMct90pdAQahtTVSmKXeRcGbeGd2ANNrZaFQyVcduexjyTFfhkKjnySb6GrmkKcmhhsHHnbVtY\nPclFkwio2WbUFYtkZyUuWBhsJwbzP5Fc3OgQQxrA2LDRO5JdsyHK7elqijWLU8M8w10WibJKo2Lz\nOqN0lrvqENyR65s/vcLQ32hHhGiZn2vt3tQXBttEvg00fO6kft8Wg0MAV++fo0iJX4gMbFfODWxf\nlk8KKLJOJ2++hifOOwCAD94+RfFcdtVfGH0ZlSXRW3hHCmD7owROLs/mw36HD2nKE8UW4pn8zs69\nEHZ/wnOm/8HQQ3wg57Z7nWE5lUjg3mAfo1CiCXvSIrbJbCQpK4/nePvxh7xXQFux+Hu0i1cHUudR\nlQeTUyqNqln5dIGYRVfjj3A5k7rS+1ePkLwof/fR9zWGthT8ohelJV1VwLNaaibfuC7wnW0psJ4t\nl0hIXluySDoIHRw8kGvaHuwhY9T3cPYcS0rPnT1f45Kq0iNKxe3vxXiJeJPeaIzLk8cAgNnVOQx3\n+ed5iucfyX2+JjnQzVskxEK8eecAPi3tgBTX9Dr1tUZJL4pPOz5N+vA/A/hvAfzDH/ne3wPwfxlj\nfkMp9ff4//8lgH8bwEv87xcgFvS/8OMOoG2NeMuDpwGPzWRlEqBHXbv5BBhS7faLDwCaYTR0KSpO\nP0RRUfZ7mCGiWUoYj9CyKl/MSzgMvw62pAAWmRZDht9bfgNvJWnF/DhA7w7l4+0jWKTt6k5+9613\nfhdb35dzX6/X0EperMGoxtdekkp8UbTY2pUX73wq1zQqB/D50jte8kNnUsdFxwXJI6sx3O9hQOmv\n7b0XoGhqEycOOjqyjFBBb7wE13Kv7h2Nca8nE1Pt7KOJaJMeBbj7SwI1ro+X6GioYzLChLMQvbv0\nO9QxvoYvAgB2VIuI6YpSCprajt6eFPKsrof5/I/kPC8MLrV8bnFSo/oKad1nJTpXFuQCcn2NMtg7\nlK+/vDDQfPG8/TH6NlMlZwBvA0nfYnei9OFMWFx88wg+TWWNMVAX8vy052HF+5zRE9N64AFM+Uy9\ngkdNyxfvvwSvL1/fv/sQD7bk+W3HslA8nbyP5om8YI/v1Jg+IdBplcOQp6KJTdjpDfHG3j25voEG\nNgZGyxgDOpzBGiNmatpjwXDih8CGlep5sDeplO0hptRdfxajNTKffJq+qDRDp6QwXdQdkkPiXk4i\njJbknTgRztRP1n34semDMeb3AUz/wrd/HWIzD3zSbv7XAfxDI+OPIb6Sez/RGd2O23E7/rWOv2yh\ncccYc8qvzwAu/2I7/6Osi40V/Sn+wvhRK/rdUQL7egXEFey+FIuMKVBzlx9vHaC/K2Fd2Shon6G7\nQ/t27wg1iUG+76HboHxbF6bcQJotDBLZKZ2x/O5+YTCJ5eshYijawj2fTnFIBqY3imAIXbU7tvf+\nWYaHFD1xi8cwLPCERmOLOgXugQcwdfFHG4/DIcIHch15191AeL2gg80dwaFkmGf5MPQCCIY2Np49\ncVTCN5RjiypUtKDX9KX8yquvIr4vBbXs2kLGnV3FDvov/FUAwIPDY6w/Eu2IKGT69KKDnGIpzXSJ\niCjMr3/1ywhCaRN7ez7MCQVOtsSqXacrjLflvthFh/6vUEPATTDalWLdIDTwHdnx05V4KBi7xYhR\nkf/NFU4uJZpaXs/gbMluPNg6RMz2nGdvRE7HsHtybBM42ID8VGGjGcn9cq+v4JE92YFQ+PgQmuG6\n7fewHcv5jP7KARoKvr5U7iJhZMLLx+Ct+0h25PntDI7gPRScQmP5sOkdseTvhr4Dlw7WSA0CFhp3\n7uyjIGR/0GsRKpkj44AaIG4EZ0PuMyVsoji95xFG1FnwEh/jbfk8p95Y2KdwWolotiMfqUXIc2sh\n5LthHXUIaHL9acdn7j4YY4za0OR+sr+7saJ/9e7EtPoK7fUQZULnIvTgKblI4ysEG+ckzwJSVmFH\nTCN6LrqCgiTZMzTU0O7CBPAkLPPtCMM9mRReSaafU6BH6rTGCmv6+c1XDSxFsUSdwKYeYcse/GK3\nxW9/LGvfS2GJy6Wc57oCHp1JfeGrL34FVrnRcSQ2vvARxfLAQ1XCIYAm8OwbiP46pTz7TgQ33qgD\nOVBc9BwVwGyg4FUOZREGzG5C5LkIWRVHNrrxH1TPEujoC3Ls3X0oWtcTwYzYGSLQ5J2MK3TkKgSj\nV6DIj6gv3kdHtSitNu5cwPCe4AbiF1pwjUJbNvCYHlnagWIXxAXTjqKBcYiVWA8QuPILWQ1o1lea\nJgN4PI/mMzoMEVKW3ujgpkZhXOeGX4HJPvy1PIfVdNMZyGAU8Stlhoj1GlUr5Lm8NW3Woc5JO2dq\nMPpqApzIOZfzNRLeMN9xEJPCrVgHK7oWHVVkZlmGbW4sQz9BR7amVkCfoKXIkt/Nuwx6zlSktRBy\nM2zbFaxSNoDd3hAuNzCHP1d1CGMTg6BSGMrWv+AlqLlRLTpzI0X/acdftvtwvkkL+O8Fv/8cwNGP\n/N6tFf3tuB0/Y+MvGyn8NsRm/jfwSbv53wbwnyqlfhNSYFz8SJrxrx6tgrm2kaGFsxQsQdWcwu1L\nKGdZCqqT0NbJhrBZHGypimtMho7Epw4Rlpl8hreawSNPf50VaFntD0i+adY2IiOhcV7WuH4mu//g\nS3vwtsRyz+5FNwaPupE19ET5+BtDSQPeG/0ugjkJMecGlyx2Zc934Gz6yeyW2EGAitz99fUMW/ss\nmDkRGq6rm51PGQVF3wDdtrBYzLJtByXJLnXWoIYU9ixGPOHhEJqFrOz0DMOv/y0AQHE0RUdpOsu3\n4d97idfHUOLiGg7ZhyoaoLMID3YWUPTxbKsSOXUk7P1dPrwaYBjseNvQPZJvqgiaQjWmmcNQrRi2\nXJ+7O75hHy7+dI3rKwkxnqQdWsrwHebn6DPa6BoSu1QnxwRgWQkUob1tXgPUZVS1BTuUHdah3oAp\n1rCo02CcBI61gYcvABb8jIrQKloDUgBmz5+gfEOedfMnF9jZled7NMnQPJHzD5nmzaollmTd9q0A\njd74UXbwPZkDTuzBYmFaER5dzhcYjulW7kVQe3I/x49tEOKCYJAgIWvW5bMO4j7W1Jecn5SoruTz\ndvZbPFnI715PV3iy+Mnk2D5NS/IfAfirACZKqWOIy/RvAPgtpdTfAfAEwN/mr/9TSDvyI0gg+R9/\nmpPoVIc0yOAtDVLe1LJJ4NO41CoauGxN2VEPFgVVoCR9aAuFOieDsc1R04XItAaG7cSublCvZVKE\nnBAqt4GRVPJ9pTAgh0E19+CGmyDKxWYSgpqJ33vyHG9Snnx76yvYuic/LrPvYHEuL0U6O0FE05Jl\nKef2wtFdKL4Iy6sK/p7UOLyoh+pMcvxyLg+5O3DgUljGqs7RMLxswwsompe0eobZM6k+h7sMd+0J\nylSCszRwYPXZiem+go4y8k06gDORkNjQsh3pAsaS80FUwfIZ8HmXqM84eVeXKJ6Tlail/aL7L8Bl\nRUnbfaCS3+1WDZTLFCxz0Wo6SqWy0JsgQzdjR2kNPHhNOibf/6MVNMVsfAWYmgsLN4Ku9tFlfB5W\nA4t0FmWFUPS8NE0BTbq7S3Zm15Ro+Xc6MrDoyaTyBSwu9vakhmFKp2dk0h4m6C4lFbkyK9TcIIZL\nHyvqY/o3vByDBVPJrWGJkSsnZykNhY3rkwWH9Oymo1boKof3ktTS/MEYeiXf73kJuj45LXaAeJui\nsdcUMVbzm6lZmRprUqdTCwiY6hbLGdQNPfTTjR+7KBhj/oN/xY9+9V/yuwbAf/ITncHtuB2343M1\nPhcwZ3SAWgFlnSE2su1YkYOMxbPY8290AZS7hmFYblKKe+QK1ZqV19DG7r6En72DOwALMb2dCNmS\nUcgpVX+TAhV3viQaIJl8U3737h60x0IUOhiGlJo8tZemNr6rZYf9hknQ2ds8j3cwZX/86VmBl3bI\nhiPv3u66GzXgrD2BBRaJOoWSkuO1oX5aXsKekCWqAmjqG6TLORTVji3XhxVTU3BT7Gwf4nQu53Z5\nnuJNLdGKnQCWI8c2bgnKOsCiBL4e34PhNZnWherkPEzpoEuFSBXv3Uc04L0g47RTKRSLhG1+Bs2d\n1izfQbvZKeMhLC2y5V5fooeuBbqp7IjJy3fwYCqRyfnv/FP82tfkWY/2XwaWjJzIgDQmAYxEUMZe\nSNoAQDkjGG3f/K5eUuNhY9K4ilEvHwMAXHdHJhwAuA5MJ/NCXS/g7cj90iwGqmcrYCU79MC+wpBz\n4XKQIGT/v9fKM++aEjO6lRc7a7ha5oVubHRMC6u0Q5vKdTe8V204RDknqzGcYTGXefbxx+ewaTvQ\ne3OMxuM70EhhtDIVqimZuFUJwy5KWdtIOR+urAahteFXfrrx+VgU0KLDGn4XwGE7pmhCeGShdWWK\ndqPIVIbQm7oD6a35bA7DSn8HBUNkV3n5ESq279K0xey55O0x9fbVVQU/pJ14VsHZJ3/iwRtQfPim\nVlBcWDY26vPxLr5zLYi44UWFNybyAEa9GLNCHtJwN4bHJoEid8KJIiwv5HirBjdipiZuUJBpVxFb\nX80uYegmpQca9o58HZwUyNYUBWlDeOw05Exbrp8t8HAq1zldOrBYa5E2BIFKagjdko1Jy3kV5lCV\nhPZdfYruTM6zyY5x+gdCHe6/0cFRfGkoIFNWLpyYvghpCJdhe50G8G1S269XUDub3J/hednAoniq\nN+xB2bKQJ9bvYJfPIZ7sYrUU9GlxKdfURBpuxNpI2YftbzoxBUzOVKizYRTBWRVZt2GJdEYRGVfB\nUsw7zBVotQGta2hyCSx2ONRghfkPHgMA3p2e4uxcjrcqCiQ9uaZDqhxd5BrXFPmtOxslxWhzq4NL\nhOFyvkJDBSiLPJlZbaM+F6SovVwjXchCd1ln8C9lzj39+F0YIy3egHTyZjpDvnEqaxp4TJudqQMC\nJHF8kqMrfrJF4Zb7cDtux+34xPhcRApNa3C1aBBnKdoTKZJlGCDsy45hwgolQz/bGgAMn2uGi63O\nYYhi0UmIxYXsmtOPrlFn0lHIrAoFK99D9uZLs4ZWkq7ksxwRzTac0RHAQo1SKQwdoBQ1BWfnOb7J\nndL+6glU/YsAgPvXD3DxRIpS6bJDvc2+8kp2hrTooAJZh4ehDatguOsZ+Nuyk9wZy249iHfg0mJI\nVTWUkl1Qx+amqr8sp1jT/bqcyjX/8aNTXLIQ1boKaLkjWmcw7JsrVwGeRFBqI5c+ywH6D6rwJVQ2\nbeu/8xjP6LV4lnbQd6Rj0vflX9UEGGwzeuhlAAVu7LEPNaCRi5oBTJWsDZiotw2LqJouPYWi+cpl\nUWNOq6oyfYScXoo9Fl3ruEKTyt/pqEPHYp9yOpiIhcTcR0mP0MtL4SrouoEDiTxd24fHwqV2AW9C\nc5n4K7CSewAAQyBQ8+QxzmcSNXnvLbFUrOzt2LiiKU/B871YraHp5r1Ka6SbtHG1giFwyqo1egM5\nnu/L/QmzDpMR50pVod2Vv3uhiTFk+tf5IeYLRmc1fSLzEiX5FXVR4pxzIDha4/g9+d3FskXn3uop\n3I7bcTs+w/hcRApV0+J4NoV1oUEgFiI/R/xFgbMGlYbakECa7KYl2bDdKzZS2AAAIABJREFUhDCG\n71DFRuGmHz19+m28fy0FJWvdwhiKh7K41sDgKpWd3XctjCavy+dpD5udrS1a6JD9bbZ2fnByjISt\nqV/Jv45BKD37LesJ1uS/Ty8vcPiitP0uGKEEeQGH0UY/3oUhG9CoCEnEAuvGHzNWgE3tAfsSLUVs\nq5VBQWJXm1tYEC3ZeVIn2R2tMZvKTpqXQOfwvq0jaHokdPBgbez0yD40cwfqntzvejFDV8r9dHeO\nMPyaHKPsfOQ0NZlPuUsmLQqa04yLAVy2kVt7ABUSO7KOYOix2VUsbG6VUPSMxNSg4TWFA4059S7K\nx2cAreyyTY8+dZAT6dqULgKaxehaA5Tk6yIbbcpaCr0WrSKDvSPF48bVcGbEZMRXMGTKKreE4rNG\nKuFkNbBu6kS2ZcFlD7SXAh/PhK2ZrmSOFU0Lm5Hguu6woMp327pwaLPnOh4Gm2k7lnsRWoA3JAz8\n/EPYM4mEd/wE7j7rB12Igr4OSxYiYRtUNOqZ1yka6lA8Pdb48FzOSdmA1f0MFhqVMfDyBk+zDEes\nwnsHLtpUbmp+WcKndFUbrVHSkadaECZseWhp6qLsDj7Tg8PXv4TwUibY+cdPUBG8NHsuN+/+F0aw\nTuQlXcyvoLXQZbVvw3AR0q4CWNXl+wzPf4weU4qJM8Ed92UAQPTCCs4/++cAgD9/doGvfJPpSiFp\nQD5do+aLErhAdSnFPi9xUHHyImGPft5DG8uCZfsxOhq8ZPUaFWXcLNuFcci468lFH/beRKOkCPqt\n9y/QUjbNri6hhwT0mAQd8QT2llDETZiha8gy9HvoSrIrt/fRn8m9bRwFw8XHpc267ms4NKP14hwm\nZ0pUTlF8KJNYhy68kdxbmw60qjFoUxrqhClWP5DrKDIg3cjg9xQUId3KYbE37aAo16a8Bi2Fu41O\nb8xn8vwMTSHnP9yThaCdB4iZmmGpUEZSuHTTCM6ehOjQLTbEGUOq8/o7H+DoEaXk7jjY/R45Gnsx\nLj6QY7RcmHWo0fLvV/M5rG25376rELFDU6PFdCnXZDO9KJctTp++L/c7M7CZolxXBgkXURWm6Ijf\n6FrS7Ksadib3bagdbBDdPzg/R06V617fRUIZtw+esRD7Y8Zt+nA7bsft+MT4XEQK2ih4xkIcafgT\niQg6O8BGB6SpsxtzD9+/h9WV9M1P3hfJreHui/Bjicku33+K67WEzwejCYYHsgu89KVfxdn3BIVn\n+izI9F4B6HaMH3TwdjYGIgagsKlSCW4oimxTJncO8HMstG3bPqLX6XXwKMJrFOD80/MpsmeCUnz9\nV4RZvlie4PqJFL7+n/beNNay7DzPe9aezzzc+VZ1TT2zm81BUkRKgmTLMiQZjo0gASzDQOxYgBDA\ngJ0ggGNCf5If/mE4cOIAjhMhjgMksq3EdmJBsCNLsqKAkklTTbKbTbKbPdR0q27d8czDHld+rPdc\ndimi2E11dVfg8wGFuvfcc87ee+211/qG93vf81czWomaeRYHZKtEk3QRpstTkn3xKXzfSwQNiUkG\nHbzmSk/Cst8W/8IKu9APaB67c4isj1XIYIsNLgQ3/SZe5HYNs1JnNjdgonLi2RssBs5LqU4tpYg+\nvInPXEm31hUXMplol1Bu69nLbxF03PH88AmCPSUj/QQTrYRaHGTYju9SnKvsWVWYprtP7cDSirST\netsUTVdSLDOXMF7YJS1PXk54g3LsxnM6DrAqX84GHpmo/BA8PLEVy1fE9TB9m5kwBE/9+y8ScM2d\nZzynEnagWCisvLJDIcg3Wci1qQh6lk0ydbTK+cHPI3I1OZ2MlgykjfHkznNsNN39G2YjDg6cB3V+\n4I5RnoS0A3fcti0ZCGK9nHocvuXmbL0dUd8VWbDGPi7B60uhejqiqdJoOTVcFWv49EqT6PT/h+FD\n6cEkCfAmdQbqW/CbTZYiFjE2A2Hn46aFrpts/YZ7bz0ekkjUpfGZG1xXF5mdDig1F6cP7jO2brF4\ndsu5su3NhHziJsf2XkEknkdT5phKLbCBxajKYXE37lPXd/l+5Tv2Ch8rifey1+ZcQ/r1xYR/9kXn\nEjZfcItYrbPL5cvOXU8Hh3Raru4cLC3+rvtuIZGJih2Sq+rOzEfkCo8Kr6SUa4tJLwRsmk+6956f\nDFgoC72cTWAgJqjGFC92x7PlHCtX1IpshXyCFWmN37f4Z8ICtIf0V4vCbofGsSj4Tx09e3Z2m0wP\nEq2MrU+7UMo3m3hNUWnYIVQremS3kHtRSGXdg54eDahStwP0Cstrb7nzuHJ4E9t0IU1NilWNRpNA\nC7YfHONF7p4FwQHRriDdoU++oWtN3fkmWxmMlMNo/lFMV9yPrTaeXYG2NihTd7zF1IV2zcZLFLuC\nkh8s2b7q8giT7A7pb0iwVvD3wK+Yy/WvFlNeP3ThxfMfL6kHbiGrlwVbLbeIhjW3oFcty6ZyKtWk\nYrOjKtdkTpK6a+pvbmC04fjioQ9Dw0LcnMtyyt0jV8E5Xkwo6i6cbI3h5uj30qH8wbYOH9a2trU9\nZI+Fp1BVPvN5g3k4xGrny+YpxcittEF9m6U27njuYeUGtySU4SUJKCseNipC69wr71KbxTfkPp/f\npSk4qi/4saksQVfEHL2rVMLEVoDAixj8i+hhtUE/ffkG/U0JdthzFkcuDHj5d97ktyVPPs8rvnDk\ndphnX7kFwAsvRbRXuhalZXhX9eZyQXzkdvqq71b4aKtOVZekXfGA4W0hD6MJ6Vz8e+GIXtPtiCNV\nHCanOUK4UgQWK/SfV78OwcqNDLDWXWA11u7p1y/UuvP5+bel2rdDvEKhiz2kgRqanpdL/SDBiCrN\nqzeJRApSzTpUmVz4bAOvtRpDNQPF56Sp2ymzRkXQc95fbbfBfOoG/Gu//Vtcuu7gz96uG7dm9Ayp\nLsNMM4jdOftJF39DB2nUMNLqqCo10u10MGrgtPUKo2qVjTMqTa6qlTEeuXu5OBfTdhJQHLifB+0p\n2dKNd8MryIVMXKrz1fdLKiEXq8WAN3w3xt+82SO0SrRWYxDhitdQhaTqMZOXVoYlnpCQeejjywux\nQYyRh5BNNTm7FlL3CN8dFHzxwHkE92YlLYUjflZQ89/f3m/sxYz/6Gy73rJ/5ulP8aXyiGeVhO/2\nOyRt93C3gm8TSHjpjFclkDERTHSjMISKHQ/mlpEYWTpRh0ZfhBZxTLASrNXDvZwNGS7cjblar6hJ\nw3BmFgznbrIF84JjLUILOVZ/ZN9nU1j1VlBxMHEnfWMr5hl1JS4pQNqVJ1N3wL1GTKqb9erxglzd\ndU18Iv08qtz/cS/EF2FJZCusMtXb2zF7ar0dHM94VVj7I0nEB6lhLNYd4yec33D9HKPz+8yVa1nk\nsNLaXTEXpVl1UV5J6hFWqkLD6YxCDFIbmx06orlfijVqOBtd6C/Gvn/RRhwGPoWYibw8Z6ES4ViZ\n8zCwNDVZX7iccP1JF479F//r/02lrtJlek5QurBicO5CjeHZHd78178OwBd/6xW+fuIEYEwR4Pnu\nYoo8Z6T28mpVRQoiAtGv+7U6sdz13EQsRaxStGNaVqFi1dR9nEHLjUt7XpC01T0ZtYnuuUX9OHer\nzW5l8cUmUzbqWMWCbx0fMRZhbxxFJHrQV7IESeTh6dzi3LDUfTg/O0NiaMReRCjyXqtxNb7HnqpO\ntZ1LTK1g7PmIyW03LmeLEb5CiX/+xZsvW2sdJ8AfYOvwYW1rW9tD9liED34c0bhxhdffvntBS/bD\naU4hwMdoNr9gsF0sZxdNN8upe21qQkrtfXk94b51/vOEgt2lcyO9ZpfOqp9epCd136cp+fKozC56\n09uhvWhmiSKoSYbNlG4H/sRGRaG/95sBpZJ2T7cMDe1WT1xNqOSKbsqljMMQ30U8RPmS+3JRyyRi\n64qyxaILbwUhM7EBX7pSUYqibNOL8HLpQMYFvrgLD+5JwiwwbAhAkxrDmbpHh9NTWPGc2JJcu1Wp\n841rPg295ltDqe+dlRmpPIHpwKPed++viROy8L2Lfv1a6NNouZ2yH8cYeWZgWYpXczF353Y8y8gl\nYX975tHJtMuVBaU09GLP4ClxFy9FmXbwLdJbLix58/ZN7g/cuTVrMZ5AaZQWYZ3wlIgriopoRdfm\nhRBrouU5jYaSvJmhJq4NXzJ1m3HA2UL4luWUumr+N7Y2KXV/75255KRPwhWphw+Nx3kqd78oiBR7\nWstFRWQ6ch7Gg8WcSh57vZZQF98C2ZIodHOgFhfMhM/JM5cYnVceDNx4dzKDnFDGDDmVhFwRRXT8\n98ensPYU1ra2tT1kj4WnkOUZB4e3+fFRwcENlyx5PYQfmLp4sh7n3Dpyq2Pke6Cmk48pfk+jkn7m\n4KCvLOZ8QuKh9+snTJUMakwqwpV0mTawoF7REXz4qCool0LElRkbiuuKjuGK5NQOY7fb7Wc5xxKb\nzcYRvWvueNcvNWm85PIgUSNnfuxW9u1wJfpSUB26D57mS17ccse+FYYkgjzfsS65evVah7bEXLf3\n6iyF0NvpxReNTbMHZ8RC8f3QZbdj3EstuXQx7tqM31RsSbqkiFSGxKdVqtlKqrlhEFNTIrKeGAYP\n3LkntZilPJ1W0mKj55KfT/Zc4m9qZlih56IrMdFYsOOtkh3lA2ZVRnbmdq57D24BsNlNeeXM3dMi\n83l7sWJ0CqhKaTXMe+Sle/988BoAx194g5cfOMTmreMZrUBtyGFETbuqSTwC7bzpysPMKypB0xsW\nPCFEa42IVND0tu+RJkKUarfOFgM2BESYBTlN8ULMGz3KuSvLviDPJr0y5Shz45qMSgp5ClUALZHw\nYn3SzL1+UU70Lbmuf28v4eq2wyNcf+LThGp4Sss5b910eZWDE3fus2nKN4QK3fcCjO7Tfju4yFdt\n1duUl97fY/5YLAp5Ybk/qAiTimdVS4+WDcbFKssS09x2GfCNwNLMVJuOBJO1EV3xBuze79Pfcwmg\nq40G06G7AfUgpKOHsyzdd1X5ANpu8l8q2pi+u7mDyYi5koSdymcqGsP9TPj8HzE88aq7Mc3YJ91z\nD2H4g30SxQd+rUZr3/nrRvXz1p2QrHJ1+utXr7Bou/N5aRSzOHYPvdd3N7PcrbNp3INXb1YYcUuU\n1w3xxE2wbiPmKQGuyrb7+zP3IqYDNzn2whZ//5tyu7OSUA+NH/gYQbdbUtcuwpC6FkK7WDjWbCCc\nVsSBGxeTGPY2Hfbg4884sRhvy6Oh/or0LMeIF2LWLjGZ+9y2sZx7jjvC9FYKYBmlwrEzpszvCy/h\nGQLBpvHGjF+/5e7Jy25RWPgTUq1zvVqNqOOuabPVxqgXxnjlBT5hFUcMphl2BVOvxbRExZ77PuXS\nfUfUqNESl+JcFYXSWJrbboHYPduh6ijUOJmzFKCu3XQbUjfqkBXueA8m5xehYC1ssyc+jCIveXDs\nLqCm8+l0G2xedcf90R98gZ946cfdvXlum+rYhVXnoyNOfsfxWrw8covi1750kzcnblyPjs8olWD3\ngh5NaX6aDY9cWpjv1dbhw9rWtraH7LHwFKwpKKNjMAn7pYPB+nlMXfDZpFpgBCkt/BqB2GxDUd0G\nS0tZrBqCJmxKkMWPYoaRtBLzjJ1YzEm43dOmGZ2G2zHivKShZNCgEzLULlZbFmxLaHk8kPjHqxVX\nlFzrPB8RSdKu2fTwlKDyrnwSAmEkKueZ2O4Z4Y+qDDXJqKSVmZ0Nqa5eA2Dj1DXqLKoC33PeQ9zb\np7Xii6hmVGMXYoU7m2zK1SwK9950nNK8Idf3xJKZFV1ZRE3j5eUQdN24NGvSy7BQlnKp6yEjEcWm\nRDS0G//Ip67xYy99AoCP/eBnAKh368SJEr73jvAEty6qkOHIhQfZYES1785zeu52zHuDc6b3XRL4\n1nhCXS54WVo8cSGUdkx26pJxd+851/mNt2fMlDjr1kLqTXetzTAiamg6lwGlhFjyuQhcN0Iq6R+E\n3Ro14RSiekBp3Q0O2j6pMAAtSQTOhjBRGdWaCUs9MoXt4+HCyZnKyMFZwdmZu6ZxNqYZubm12e9z\nddd5WEGUU8ydVxRfckS5P/AjL/JDz7qS7JPb1+lcc8+AF4bYfTdXt867XHtSodv959z/V17mt/8f\np/n5+uEJM+POc5lYaqWbh6OppVLT2Hu1x2JRSMuMt87v8Qlvm7kwQZt7Ac2ZMqvlnFPJds/TGctE\nrq+IUOY2ZEcqJLU4oNtYUafXCEWlNj1fglh7C2Xv617BYkVhVVWcq9afT0seqLqwUTdYVR88taBe\n219Ql4Zj4+NX8BbuZnkxmJa7AK9ZYCcuFDKVc/Ho7oMvxSq/wo4EvOnUQKy9UUtCsQf3qQSrrvWg\nWkoMZZ5dYBa8usGU6kE4U+26VaeqCWPRuUxUuUx9Ehhqohz32i6EAAh0jDS1WC2Ei2xBJsGcIPB4\nsu/Clc98/FmuPunawfst5zJ7fkIcKqew1cIU6i/ILPFCsfhmk2rsrrstSvkNf5PjvoMMf/7gHuei\nFaMqqKTUlQ8KHoj6/c47cpNPJgzH7u9LCzVBrIMkpBIcPfbBEx+ZTbTYGINVX0JYRjQ74s/s1CFc\n0buF2I4757lo1dJiQnSmeREmLFQBCFODFdlJY+GuaZQvWYr80q8CtgXk2tvZpt8WfuV8QV14g6ee\nd8CsH3r6RZ569po7dy/GU+unLUJWiBJDQSIG6v6Ou48//NIPsq9qyG9+/lt87ZYLTRcjj4U4Ieep\nZb5ck6ysbW1r+0PY9ypF/zeBfxdX+X4b+I+sOmuMMZ8DfhbHUvKXrbW/+l2PUUB8XvCmf8LVO87V\nLu7dwmuKFKMzhYUaWLrFxc49lejJYuA4CQCaQY1UmXpMTqREYz/IORdOYSCuAJOldFSvXuQwrNyq\nvJgveFIsyceJT19JqxNBDJMoIbmspB0V1Y6+r/sU9NSzbiMI1IkYuXDGGh/Gzh00FsyllWKyTzVz\n5KcrSbj4xiaFqizWG1NN1BnYqUNLDV9xQXXqvi+8oWPMxhRK2tnRXRLhEMJaQEO7ZlpWdAKJrGgG\njGZTQhG8WM+SyYPYrtd56Qnn/Ty58RybbWXXE+dtha0YL5TYTbLEqmLkN3NiFc7DxYSFGppy4Q2i\nZw3FV9TVV1RM5SnYsqISoCIbDxjdc57OQuQn92dz7qoG32s1qJlvE+Cs+BSq2LBSMrTGXVNVFZTK\nztvAEur84zAmXnlNtYRcc8DLRGqTtLDqyhyNZ2RzEfzUjvGnwikI/eovIyL56vW4wdaeCxm2tvqE\nypmfWEt/y933T91w4cN2f5NIXqhHfqFPUZULzEoxOvfxNcdrappLXtwi2nFJycF8wQMxPw9txd2B\nO49JljI3789T+F6l6H8N+Jy1tjDG/A3gc8B/boz5GPAzwAvAPvDrxphn7Mrf/Q6WW8v9oqCXWf7J\nbZdZfR7L01fdDXpiaTgQkcX+sM2JWJGsXKv9JCBXPDXDEkmP8eTBmHBFmpGkTEo38IdiDRqmiwt4\n8Z4f8Zag1ItFxalGZjbOGdREVJLruJ8M8FBbcMfiS0be7jfwCxcz22qEnYliR6428wgrKKo1XWwg\nNudZB5bK8KtUWMWWUBTp5BnZQtWHvRne0uHobTohPXULQLUh5T6/j5F+prkU0ei772snIU0xORXe\nAhuu2rbd3ykMK8h7nqV4eqiu7va5uitSk2YEeggR6Uk5NUgvFdIaGIFmBobSXz3chlxutdUCMp/k\ndOUG9z2fpbL2RZVR6iHLlnOERqap8Q5CQ03ufiuuYZUnCoKAIHD3KSu/TYgTaaErU0tmdQwgTzUv\nahXFCmMVlNQ15qZyC/28EzKVlEBSejTUm1NODedLCR0rD5GTUVcuo91t0tTCWw7nzGrOzQ/ynKfV\n+vzUnusj8WxBqTJlVcRY0c+XaUjQ0aJgNi7YslbYdFMek7TceF554gpPP+3m0+v3zkm0KIyWS8oL\nENl7s+9Jit5a+y+ttSv4/BdwmpHgpOj/kbU2tdbexClF/Tvv64zWtra1faT2QSQa/yLwS/r5Em6R\nWNlKiv4PNB/oFJYzCpi4kOCrnk92IM3HZpNK2fIHecpAoI9Irl7UDmjKD15MU45nbrUekjqwE1AM\nS5apVnTxLaRZidC8XIkDOnJ3H1QFRkzLSV4wVoE7kjvvDZt4m0pw7f4Q1aHjTfBqGchTMM2PYccu\nM2znLiPNqAmeWz9tdYCU36kGp5CoQlGos3BeUWknor6DERdEtaxj05X2oaGQNJs9Fsx7fHDhZrI0\ndGsrwFZIpDr2aFhRFqpKKKFGWHA+V1099mh57nNXe31qkduNpvffwT9XeJMo8bk4wpeX42WAMAvZ\nJGOpRJwpfAR1YDZzNfqsmHI1cTvlp168zPQNBxXOFwVk4oMIxniZ2yknuNcmo4p2op3Sg0ps1Ivp\nhL6a3zwgVbOcr4pDnIQs5I2Evkeeu505nVZUgmyPF3P6TTdGcUOUd/OKSNBnOxvS2hDOYhKSLt17\nzhSWeHF2gZXY36lxacd5N3E95kHmMDXXdvd5/oa4R2vOxQqxLDXvfdPE1JyHYepzCkHMPUZUgudb\neTG2muOLJKd/dYf4S+LW2Iroi8fxMDN46fuDOf+hFgVjzM/jvLFf/B4++3PAz4HcFeOR2wqFspRl\nydfVQjtMR/QFWNoIUnJVBlYAo1G/Tl9dZvNpxalc9JN5RqWMelL5LFRCyhS/lZQEmRuwAzPldDW5\ni5Jg6m5+I+KCKDVRdWI5TQkElgruvA2Zm4z+WQkTkYh0bmOD7wPADvRAnx/j9aSsFHYuhE2NXWJC\nVQy2P6bPvE56+I77e3NJ7qls9s4I03K5Ct9rYGLXflwO3HHJEkxPqML6FkjDMSoCPBHHmGrOaKye\nAoGXgqhJqK6+pF6xXXNMSK3dPnnDjfedm4fUBPaq1Ldgy4wgVvfeYkZNHI5lEhHoYaNekp+7h3Ap\notHlICTsuvf2N7fo3tQYkbNap9IHOWnNPQgTgbviyCNQGTX2LYFawIMoxsQr4eEZqRCCS3UU5kFG\npjjh/GzCWMK8jUaTesNl9cNGi7lK36kqGcYYQoHWklrCSJ546NXwfS2WCgPjPCBRDqAZxZTqSo96\nTS6pLH11v0an4a476YrYNq+DyuxVkWOrVZhj8SSoU1kPW6pCo4WAMsX6brDKk5wNjcv4NCTV2Hfj\nOmdCVr5X+54XBWPMX8AlIP+Y/Xb/9XuWorfW/gLwCwDhKiu0trWt7SO372lRMMb8FPBXgR+z1r57\nGfpl4B8YY/4WLtH4NPBvvtv3VcDMNyQFyCPDwgUstQg8fKU/rK0oVqrRAuNkpoatryC8Hk3t6LPE\nspwL7173iBduBx0KmxAFjmgFoAwC/JXQx9yjJ0osP/GJlDAsNtXddntBJaXl6firF5iF9oN92HKr\neTzuQ0dwXSWq8sQDEasYr8CLXWRVdRKMyFmqydc0yDlly+3W4faQQHX3wDYpYiXUBg9IJ25c2hJe\nyTsVDLS7ZCOisdiH8+lFP8Dg+JyFuCNi3x13NrM0tNNc2ujSXqk1TywjJXS79R5NiZoU0lrzWUJd\nPAVtCD3BvzdrFxT1pbHMzp37vBB9edLxKH2XcKvdqjNR/4HNUoQFIqzFjBaSi9vQ7jpOOVYl5mSZ\ncUVUcUG/zkKJ4Mk8Zyr+gpUOaNgMKQWbz5iRKnE9Gi8IJb3X72TkLXFzTt0YRl5JKDGViApS8UKY\nJTN5PXvyKo7jBXN5D3VaF2rWu+02G/tuwvS77VWOFn8ulWyTY2rC1jQ8LrAJhSWXd1tkKZWIQIzS\neTat8BMlbi3EYgYqwoyl2o1NVbJiFnyv9r1K0X8OJ6H0a1JN+oK19j+21n7dGPO/Ad/Qlf2l71Z5\nWNva1vZ42fcqRf/3/oD3/3Xgr7+/0zBgAzAlq9Zvzxoi1ZhrYUzsi5YqrKhrmSlUd5otpryjElst\nrlNruPzD840eS0FKazZiIkfAnEgBOM1RzordWkRf8l/RcoRV+WdWFISKbmaCOWdbPqPbLna89JTH\n4KtK/O0P6TcdDNj/5POYlkhuApHRjroU9rcBSE9LrEqd5WCJmbu4tFCeIdiuk3RUsopaFx6Bt7Ek\nmLtdM/Uy5qrZx9tC2i0vka6EZBtb3Fm8AkB3GnBb3ANFtsQThBzpN+CllMqvRHGTTtPtQLV2SCrp\ntuala/Q3lcQUrdr4IGN/2yVXc1OQKa6fHFb4NSUHC8tcor9TEZi2ypBCdX7vYI4qw8yqnFh5guUi\nYzhwY9TJnCdYJDVuHqkev0yprRiNGk0qNT+djWZ4nps7T4gBObOGgXHHDsvQ4bqBMocVW1lpCyrF\n8ysS27zpU/NccqDVjBjNBDFfZlBKvVzzcN+v4zfcuHhBSqvhcApx3GZyKPj7aECl7lejHE7pR2xc\n3dN3dSnFpzccDjCiEDycLrh75OZIpbnQa9Rp77q53shzyoZLXKbLc3IpsydE+Gqme6/2WMCcPQON\nyLLMA1RWpk7IhrQUP9XqcvWSu/hBmhHHK2Vqd7GH52OGRy5R1e8UPN12rvRerc5S9f245rGrm9sQ\n9HmRG3K5as/Wa4Qd5zIHB0ccjtxi8sTcY5SIDGSsCZPX2Lvk3rv7o59l8Y7DVjSfvEK88wPumrY+\niV26RCECEJlmHW/74+7n6hXymcRSCovXcomoMFa3ZMtSqUIwnabc/MrvAnDpqW26Ow6nEPf3qU8d\njXw5FDHj2dv44oEs0hFPSZzlq5M5nlqni8IjylYgHSk9jVJS+bVvff0Od2L38/F2lx0pgW9eHbAx\ndW7wsHAVldde+zLFK18CYDxe0Gm5kMlWbfwNdzMvb3Vpt93DGSr8SKcTpIvD5ec2ad0XVHiwZEvY\nkribkKmd3VOy8zmvx7HAZzePJrQEQsKmlIX7uR3F1Hpu7uxJOOZ0OuPw1NGzT5cZTYUdvV6NUBRz\nQTMm1qLWiF1COPUWzEXak89Lah0RndiQSsnhpRaHmIBN9bP0ujVY3ANZAAAfD0lEQVQKLfRvf/mM\nk5GrrkxOzwnFsbbRdiFD+1KXT9bd52q73oUQzeDOHR6Itv7B0YzjmcpVCo8Pu3Ve9ByUvt3vsb29\nEslJsRPhdmzGInt/i8Ia5ry2ta3tIXs8PAXfo95oYeYT6qIEqweGy5FKT4nlZKyVr8iYDd3KV4/c\nmjbzS6ZT91p/EUGq1dwEBC2VqYY5ixWxZeBW1HbNUqjGPPVn7IqQ5YVeTH7mvrvhlZRa/ftKcG50\nDC01w0cNH9Nw3AKBD9WpNATOf4uFeuFnX/oGAMPTMYE8An9rg3ZPu2BthrehW9F2JB7FyTc5+Ybz\nDm6+M+BYbq3PMbnk5lpbNaoVY4x2j6odwdjtKNPTGmXoSpl3/Cmxmpz8YrlSwqM0gl1HLTZVKqu1\nEwq55ZPJkqag4GZmqXrOExgcuK7FcVkQCF683d2kf9WFPHvX2wSB8yo8K61HwGjXLWyJp4TZRm+X\nFy4776fCYoUJjqs2V6WT8eXXHJ/Ct9IhR2fu/o4WKeZMSszLkrjjvINePeCZJ1wSs+HHuo4pWwpB\nawTkoXbjWYUVzXNxtmRz013fFWlu1JMGkWT/TurnIBKVepxQihw2Vxmz0eyy0XafS1qwvem8o3aj\nxhO57sPtm7zzphu7L9xxJC31m5brkpjb3tklzd09GQ7PGd1xJeXpcMnSuBBsrmYne3dBqNJwr/lZ\n6uL92PATjnR9W7bOcfEhlSQ/SPOAhl+x2UiwNXeRfepsqKIwqZyUODih0ancyyh2MdSG8TkZOJdy\nkJfYhrtxraRDqYUgC0fcF/DmUA9YEjcoJQ5aLac82V3FnAXeaiBrAR0hb1IBZarBkty6iZvfPaQU\nqKS832Jx6rQkbWLIztwDUlxz1xFs72AlcDOZntCSHHweNfEVR+alA0Jly1NOh26BmTSXLMQTeOuN\nBUcdNymeOAkvhGEuXZMQaT5leOAm+fDUY6aqxPdP27wWuXAlX3gXOIPhXLFu3aMhWnebeZhQsNwk\nZKnrL0pDuyNCkR333mfia9Q8KWRttJkIRPWtB2c0VPmp79QI1Rq9LaaniIJci2y3FdJRl2g6Syna\nqqhc3uDplz4NwGuvOEzcO187ZZSt6O4DjPApJ3nJpsBpZr/D9W21H6viUgJJWxWqNABRyr9595RZ\nLlhxYQgVKiWCpjc9g2258T69G1BTrmLWLCgLN4an0uvsG0vkvpZsHDAO3D09nZ6zlAt//+aUr5+7\n0PSOFLKaecibahF/ttGkbtw8bfY9Tu65uZVv+dy55RaLpcLfcGzIFG4+Pz1nVxiRjX58wVxtwoLs\nbAU+fm+2Dh/Wtra1PWSPhacABmNDEh/2lCzpxY1VcpeyCigmqn83axe6hJe23Hvz8wVN7YL4FrRy\nd3odip5bPc/KnOUKVSceg6phMHIvGx0PL15pL1RMlaALMp+xNAsGE6EYn43xJtqByjGmcB7BvFhS\nCW0WBpvUPqbGJe20rcU+6V0nIZc1FizlsTRNjaDjPIHF3Hkr4yOLn7hda5sWdSVBa7Ule5F+Dk4Z\nnLhdYy5m4CCpM5MwTLksWRTiudw64Ubm3NmJl7FYCOknUEDDhmx1nFeRZhWXN13y7blOwmChHa0Z\n01QCb2cp9HrcvmBJThc5JwcOq3aaVkRNYRnOzrkk4Z66av6mWxAKYVgsCrbrQnomHrn4LgwNuqIx\n8yVUk5mSp4SEtPWQaaUOzdCwJQ2ErU6fSFBh5BHVmz06W+K38A2pKkrjKUzUhOYHNWrifIykH1nG\nMyqplXc7m0yEU6hXsCKP9tVw1KugG7sxfuXgPubWscYFrlx1mL6wu8lVecN1weq7rRqh7qlfeCRb\n7j7sfuqPUgTfBGB65zbXpTPa2HJj1evUaQmyf+2pLrWOG6ve15pcEvnMvVun5OkH3yX5IZjF2pTC\nBLTUItur9y7OLk9z6n1Bk6OYhcQ7umpcmGz63Mjdzbi2X+fGvusvaPd7yjGDmQ7pn6w4zgXG6dco\nMvcQP9mAp9pukTn2C37lS191ZzZb8pbi4Ptqmx19JaPxpFiMkhuUqYsR41YXf+N593pnF+mKXDDt\nGG+K/7ybmPujbcINxeqTEV7szjmeOdHRKAzY7LvXgie3sSPh2jcLQnUimmwPL7jlxiVzC0Etitl6\nQSxH9wpqh8qjTPs0RQo7Kgoyle8SEX7sXd7l+ecdgUo3iXhOMe7lSz3e+NLvALBTjwgkEx+rTFSP\nI6zKZuHScv1pt5BtTXxKiZ3Us5BNdW76IoCxS49IJdk5KQ8mYiPyIjyJq+Rehc3dIC6FZPNz2Lzk\nHuLUTy6IW7dbW+xcdvev06lR6LvzkYBqvQaRwqMogfLYjdf+Tpe5FfArWtJV1aHddO+djwvGYtMq\n0hnRirC3COkpFDr03PwYUFHTa5disJ4ASf0+N7Qo1qIapG6B6HzGweDLwLsgXom7CaHyTv1Zgf+C\n23CCXp/9uRvnDbFtbfe7dBRKd7Y2yBUq+Zsl7TfFN9pckp6sw4e1rW1tfwh7LDwFg8HzQlKb46nb\nMbUL6oGSPc2EjfrKHSxACaNEbvnxcQrSTIwaTRaC6Eabm3TEk9dN2tT3nTs3PZOG4zxnJpqwfj+h\nLvzD5aTgx0TJvcwr3jgTyEgZfs9bEgZK9SYVxYHgyDWfItEO3D+FpuuG85WIgyWldr6oto/NnKtd\nTSvMhtvFw5bbGVrnZ8yVhY5mKULPEuNhilVX3pSG4L9G+HBrPBrKdvn9gBUKvR4bipWuYjKkGgm6\nK0rzvd1NdkXtdbnXYmfHnXNcZMR1eWmlJR0vdf7uu/zRFF8NUfV+TK9yWfY8meKLLs/b3iRU9SGP\nVvwNx3iVu09n0wWFYNfN2OKj8ZoU4LndsS7gWdgKaTTcLt6MIqzub61ZY0uUZ1G7hlWoV64wD57H\nTLiWah6RdJ2rfXk3pxIWovKjC04JT1wQ08CjOFcC06uxFI+lySKu9NycvH3swqvRbMHNIzfHLm9f\nYmfH7ejP3niSSFiVRhQRaJwbaqpLyymje+7+51VwQYxjaNJpi58wWrKjTrFE0nT12BDX3Xd5xgPf\n3aetYJPj2h2NYQXvj07h8VgULBZrStphxFCZ117cYLPmJkceZQRCjYVRgKdSECumHWbM1da84wf0\n9aBEXkS9625cuOXhDaXzd8VN3OnZiIbUlGp+Qly6hWV6eMonPu0m3r9+dcz8VLGvgFVvvjqn0RL7\nz/YhS5Wk6rufJdhWSJCeXMjAm2sSXc0DvFKsUJWPkSZkEc8olKm3vh7cvk8h8lRm7+CdCSDTbGBE\nFGv9nFIS73VRlld9H3PuxsfvhgwGbpKOivICKZjOywtikYYw99e2+uyLi3F3q0NnNfbBGKvsfGVb\nnN13C1kg2vqqMgRCgibd4IJkJOr0qEkbIs1D5ufqYZiJjSr2OV26xXk4m2GMG8NOvUlQc2Prz0py\nsWgZtTTP05R7ypnEcZ2tLWlXJh6Z8kNJZRkqD1LmUlhqZ+TSUGjWG3haDL0yINbcKkOPqborpyJh\nyaZLisIdb5TNGaotP/ACtjdUdRHpy2RR8ECow07jEk+KOWx3t82G2qSjVkimnodYXKODQUXe0uJV\nWjwtnEk7ZjFx7028iKDp5kbka05HPp5yCrbKsKpgNW5scPAV931nRYZ9n/HAOnxY29rW9pA9Fp4C\ngMUjwFBWK+x4g1IraRI2L1R8vBQSAUQyMTyPJzOG4mKcbi9BUFrjL5kfi7m5Ob7Qgoxjt4L7uzXa\nki83pyXpuSM4mRUJA3WZzZcebY1SV40ZxxsVwyO3s/U8i1Hj/HJ+Tm10zb15cwtqKwl37Y5pA5s5\n2Go5iTAtEVrZBqWUrVfS6TQ6tC/p3KIZ+ZEg1v1T/FL8isNTyiN3TdnTbpcIeZFg0/0ctFvMFq7r\nspplBOoYnJfphRrzqmc9jGKMXHwvAqPOx+XBlMEs1mVkFAOXVDX33fmmzQ12LotR2oS0xcVo8MRG\nDIH18MSDmAtANSlm3D9y38VgwY7CNRsYKCXUYs+YTR0py6o5P00tlRJucbvGQiHkjVaNTl+cj3lO\nTeQyccv9vUrnzNTtGl5KiEMpNs3HLESFZpc5pQBsC1HCjfM5ovUgL5ILJm2fOhubLry9seXO963j\nBScDlyR9YjSknEitfLYkE07BxCW2kLLZxN3/6ekDSlGsLSZTwrHo9U9ycvWxpEVIYJ1XZ3WfqmiO\nTUXRXw6ZioZwNs4IlOXuVT7jZOXJyMP+Lrb2FNa2trU9ZI+FpxB5HpeSOkm7xZ4Shg3fv0Cj2el8\nxVWJ50E5V4w/keDFvORYDSDPLA3bKzSav8ds6rQFivmQYsW62xSqzi8pI7fLxal3gWKcL+7z9sDt\ntseDOVY9Nyv5tOmBh9FG421cwh45KKoxE+zUQZBt4ymwDp1YiVTWzjeoFqp/F4d4AyXUvIJq6F7P\njThprMEYF1t6VQ/Pd81VPjWMqMT85hXi8FX39rFIV4dv4ItNiWzAyheIAqg8Mf2UFivWqm2NRa8W\nE9ZW35Hy4NQ18Nx5803u3L6j69umu+nwCdKjofALzg8cRqT9pIf1VrwXOanyJNWiIFNHZCY253Qx\no5q6XXfnSg37QJwTaYm/cJ7VbHJOdi4OCCXZhnnJlkRf2s02kQLm2AQkq902L+huiglc+JZRmlKK\nKu785AFPX3ZjVOs1mOmch9WM4lQ0bsIxZFnFqSjRlrMcKzk9E1Y0lY95VuXGSXqGEf1bu5URiylp\ndH9IWjgPMX8nIxE9Wpk5L+j+3RP2QvcdwZ+5QiVv0wZ3mRy6XExmEzzRyXlt501WwxJPSFGbepQL\nNy9mpmIubyLejOiM3TnfH7w3uPNjsShYz2AbPkVcstVy9fEogTwXu3KeX5BGtD2oVAWYqM14Op/D\nUtni3JKKyMPuZaxwpzWbMpYY5/2vugcsNLDTcbgAD0M2FFVYBogfsu8H3DdaqLRIXetDphtepjVs\n4ijU8vFtqszdRBPlmJZLtHHoHoTsm2/AVfdatQiIlKzzbQ/TcBOv8p5xnxkdkd5zi03RPMIqG14N\naniBcApM8Npu8mcn7rj5W3eJPyGFrPp1Wiqse6FPLsBSyYRCodRk4dzTKEoo5NrfHpwyGLpzfv1b\nB0xGLtnX2nuahtzrqCNwV1nQ1UJer+oU+r7Ka2DmbuXIC5hrAfd0T5NRwYYg2veGC05HaoM/P2Em\n+O/pvQPGUpnKlWiNopBex93TVtLAE+TXDxrMdX0HRzNq4kRMc3efvHqdgYRjeoWl6qqKshViBXlO\n71cYycRnolUzXkGoZGVar1MIn+GVdXY7ShrvugXm3umMe2OFDMM5R4fuoc/z/Nu8mmVKU3D5Uh2q\n5WxE9ydcm33Q7oOS38y7BOLmnBzNKQTKK9VHEVZL7AV+oyLVosBRSU9iynuNOul8jVNY29rW9oew\nx8JTKCrL6SxjLwv4RtMRkPYXXS6r4Sm1MwqRtcbtxkXdvEh1+iZgrOXtwXDJq286FzxdGuLErcbR\nbkaoZpZm133XZDxjPpFISTpm+sC9976peOpp93p3c5t33lAfvghCemHIUOXQu1/7CkXgYomr3W0W\nEnMJzhaYsdCEIg+tbrSxShzZMqdautU8W84uuBOWauwK4iXL+oqCbUGssp+t5xTadcxizlyJxkZP\nA3CtohRU2nCEp128HTcIVrJwccnoVASlgujevXfIoi+l4qpkMnC79RObdapLDjvx4rPP8dxz1wBI\nOrqmso4vHoZ8lrI4dsnDgiVe5NxcazJyJYUzCfj0eiWL0t2/V998h2/ccq//8fsneHOX8A1TSyUV\n6LLjvKpZkTMQxLzdKOhZd5/GyxlWJDjlckJdPAvb22qOu9LB5h2NRY+opnLwOIVQEPG2xZvJO5Vi\n9GxaEClkSCKfcuzOuaobKiEkJ4E7tzIvWOTuOs8WE4KJCyVHdkInXIU8XZoi1o2kMTG5m2EGrjw7\nO7krdAcUWUa04byYxA8p5WUVur8EAZXQpHaRM1X5uepm+H15yPOE2SrWe4/2WCwKZVVxPp0TUTKp\nu4nZaBsGgVy/siIXR+HZLGU5X00ETczKsCvW3ziIyWbOhbv74E26W4KE2gbehghXPDfJT9J7nG0I\nh37cZbHnhqOWWsbKEE+KMfc1UWaKBS/96R6j1wXtLef4c1dlGNdKPC0yVZ4RaDI1pBQUbm1hPIU2\nrTbZwk3+yam9cCUrxfiNbkSCCzXC1hg7dAtTFs0x6omIbEFx6D6Xtty5FcuIYijB036Cpyx8r92+\nADjteRWRau9LLbbHxwNa26tFAeQx80SeECWr1nHLYuDc+ZWuYRZUF4Kw42VGLqbsZTaj1tzQOWUs\npfqUqlJjmwHNWKI9//KM+4rlbx3epzhzk9uvCtLchQHzE/fgpllFueI4TFpk8eoRsiykMpUQ0Fbo\ntiHykl7UAMHYbVJQSOeyCGZkU/3sc9FdmB4qfvc9wtAdo+W1sZHuXwZWdFE90Xc90ahxV/yR80HK\nYeWu43TUYVOL05XEY0sgOX/mvmswy/itf+WIam7+0q+y4btc0+6z13jx+xxpT7XpEayU0SQW04wb\nhAoPbX1GmrpF6vDlOxyrvX4+toQCib1XW4cPa1vb2h6yx8JT8K2hbwPO/JBnxAbc8MOLkKHpQSLs\nQYVhuJImy91Os3dli7EYk/ubCX5DvAhpG4RvuP36Mf1ELvNcibFal7lYhpv+kk3Bp4+qGgvBgydf\nH1KI7y5VV2MY7dHuup27ub/F6ND93QuKC87HbKNHtNIOeMLhCpZDSyb9guLBAeOhQ7/5W/tkuXtP\nPZNK8hlEe4IuD/pU6gy1pxPKidutva09Eu229r6YjA8LkituZyjPx0wWK3m4IVbov07WxEi/4VAh\nThqm7DbcTnrn9lucvOWqD34joTdwrujt+ZfZ2FFnat95YCfDEedjNTNtxaCGokYtoMjdbuVXlnrL\nfUd9w93TdiPm9GVXtbi1yEnlCX7zla/RlRs8Tgpq6ladLd15DmczonP3vc8/9TSJMLzFNMMXOUsj\nNizEAn2aul25GMZMIpe4bfTaNMTgjDWUmkeTPKMQv8SGEnXpPGEh9uzJ6R1EG4pJNmhpLMI7bqwe\nXA4o77n7cJYPeULeVBRn1CR7dzY7YvplJZAnzlu7c+uMsZCuvmc5FKJzcgz2NXl3T+5Rr7vjdbdd\nGJTl9oJputO6zGTq5uQ7Z7c4uicBou2AZPH+FBQei0XBGA8vrLMIlpjCPRxpOaHKlPWvRxddZM1W\nwu077oKPpKpjlyGX9tznbNbmvjLIYbvi2a4rOba8XUbqQByfOcabztYluuqpCIqUJHLltu16nS98\n3nVJJn6Ip+qDJ/c0znKippsdYdCle+UF9x2cUMqVbsYefsd1HS7uuJju7FsHHB27CWQGMed39dDU\nBhRyc+N8Fesek9TcInT9+S6NjzkWo1p/A0/S4mHXx9v/IQBKlQ3bb90kUt+CyTssz9w1D3s10nvu\nOrbbIR1BcCdqC9+MfFoic93c2yDTYrH9xA1eeNqxQbW3+vhavLo9t5hutAPsufuO+/dvceum46uM\nvG0S9TOE9QAj+HYsUFSUV3jq7JwtC1YaRufnD8hUMTh/MKDbVU+LKk5+ZRmcuM952Zwr1xwJyyy/\nw3TgHorlMagdg3ikMHBzSV0CN9NbRyStFQHMFpU4Pc0yp1l3D1ylTtpeHUJVTuZxxkxl6WZRwxPD\nldd0Y7U8LQhVDZjNciZNdx3PPfkUDYVgZ6MR56rQLGZy1NuWrdTN051WwjP7Kqn397isMMhrdGhu\nu7HwWxLvnI+JVJ4tMkNWuo3jzhuHRMpj3c8issUHrCW5trWt7d8ueyw8hcpUpCblGS+iuu5W3+O8\ny2WpOY8nU5IVnXvg0e9LJn7mXms1CjauONfq4596kT3xEGxstKlJ8s3ee4fagXMp9y49DUC8u0M+\ncrvL2e0jhmOHXzi6FRL57jy+PE85FIvzsFphbWE6UkY6P2Ym1z5uJFRt8R6EIQzc9yW7bhdoXm+y\n84kfcd8x96git1uXaQqqi5fnyqKFc4rFLQBMNSYUF2NkI/KdlbzdDHvmAFKBGobonFO96c69LLfI\npm5Hf3sxIfKdC7uwBXV5Jn4iyLRvGU/d567sd2k3VxLoBdGWe0+ju0W8pc/NXeLMmIzMumpPoxGw\nudvRPWlTrbjTlzMyyasbdYn6lyyfv+W8mHJekitsLO2EZSCg0nzBiUKTpS8MCTAWzPkL37pD96oL\nY6p8SUNkL8lmwDMiIvFn6ii8Umepnf34eESohG7mV8Q6XhR6LFcJX3VD+mmGJ2k233qob4tZNKEv\nbMkrkuAbLFNOFYrMMo9AokOL2vyiYW2/0b8AOO1uOg+lF37igjtj56UbtAX59pM2ZrnCr8yolsJs\nCE2XZglLwftH3jmv/fbn3XlkKQ80HUZ3zjjTeL1XezwWBWuY5RGxt6Q1VOdZFDOVSKitSnzp4bUD\nn9lo9bq7cePzc976opBoN4+ZXHKMR/t7PtVbzkUPWNDvu8vd+MkX3efTkKrhXPsk2WcwcWCTg2zJ\n5++47/vGgyknI+UidLxRUVEdu5s83DmnVBmRTov2lgsZ7NU2/tRlg6tU5KieAaEUCx8QFt2aEL8p\nXLs0FmyWEuZyHZsZhUs/kPXP8c7kMu6M8KZuwSlLd+4mj8jE52j2LJVc+PP5AmNV9srnbIv6vKGQ\nYZYuyFSejG1CK3L3Yf7glDu/7th/Fpfu0Aj1ELbduGa35piOtBdqHp2uOkJ9jzwVW9KkxBcdulVn\n6Ftv3OfVE5XKAnNB2FtVHioeMa1yxnM39qvuxEVVXrRD3zk/4o4W+s1ei2bHXUtExOBUVPnK1B99\nfXrR+Rj2m3grZqWoIhVoC+tTSGVqrhAmsymZXiuimHzk7mW4yDlS2+xSuo0T45ErfCjLkqkW5Nu3\nz2lfcYuTwWKEcM1F9DKNCnZUGanOUqrIzT1vEkDLPdB+VsMotCnnWmzDGbm0Ju++ecTL911o+vok\nZaQFKctzCvP+mJfW4cPa1ra2h8x8Wxv2IzwJY06AGXD6EZ3C5vrY62P/W3Dsq9bare/2psdiUQAw\nxvyutfb718deH3t97I/W1uHD2ta2todsvSisbW1re8gep0XhF9bHXh97feyP3h6bnMLa1ra2x8Me\nJ09hbWtb22NgH/miYIz5KWPMG8aYt4wxf+0RH+sJY8xvGmO+YYz5ujHmr+j1vjHm14wxb+r/3iM8\nB98Y8xVjzK/o9+vGmC/q+n/JGPP++lzf37G7xph/bIx53RjzTWPMZz+sazfG/Kca89eMMf/QGJM8\nqms3xvxPxphjY8xr73rt971O4+y/1Tm8aoz59CM49t/UmL9qjPk/jDHdd/3tczr2G8aYn/zDHPuD\nso90UTDG+MDfAX4a+BjwZ40xH3uEhyyA/8xa+zHgM8Bf0vH+GvAb1tqngd/Q74/K/grwzXf9/jeA\n/9pa+xQwAH72ER77bwP/l7X2OeATOo9Hfu3GmEvAXwa+31r7IuADP8Oju/b/Gfip3/Pad7rOnwae\n1r+fA/7uIzj2rwEvWmtfAr4FfA5Ac+9ngBf0mf9Oz8RHa9baj+wf8FngV9/1++eAz32Ix/9nwB8H\n3gD29Noe8MYjOt5l3IT8ceBXAIMDsgS/33h8wMfuADdRHuldrz/yawcuAXeBPg5a/yvATz7Kaweu\nAa99t+sE/gfgz/5+7/ugjv17/vbvAb+onx+a78CvAp99FPf//fz7qMOH1WRZ2YFee+RmjLkGfAr4\nIrBjrT3Unx4AO4/osP8N8Ff5tpDXBjC01q6YNR/l9V8HToC/r/DlfzTGNPgQrt1aew/4r4A7wCEw\nAl7mw7t2+M7X+WHPwb8I/IuP6NjvyT7qReEjMWNME/gnwH9irR2/+2/WLdkfeEnGGPMngWNr7csf\n9He/RwuATwN/11r7KRys/KFQ4RFeew/407iFaR9o8P91sT80e1TX+d3MGPPzuBD2Fz/sY78f+6gX\nhXvAE+/6/bJee2RmjAlxC8IvWmv/qV4+Msbs6e97wPEjOPQPA3/KGHML+Ee4EOJvA11jzKpb9VFe\n/wFwYK39on7/x7hF4sO49p8AblprT6y1OfBPcePxYV07fOfr/FDmoDHmLwB/EvhzWpQ+tGO/X/uo\nF4UvAU8rCx3hki6//KgOZowxwN8Dvmmt/Vvv+tMvA39eP/95XK7hAzVr7eestZettddw1/mvrLV/\nDvhN4D94lMfW8R8Ad40xz+qlPwZ8gw/h2nFhw2eMMXXdg9WxP5Rrl32n6/xl4D9UFeIzwOhdYcYH\nYsaYn8KFjX/KrmTAv33snzHGxMaY67hk57/5II/9PdlHndQA/gQuI/s28POP+Fg/gnMbXwW+qn9/\nAhfb/wbwJvDrQP8Rn8cfAX5FP9/ATYS3gP8diB/hcT8J/K6u//8Eeh/WtQP/JfA68BrwvwDxo7p2\n4B/ichc5zkP62e90nbhk79/R/PsarkLyQR/7LVzuYDXn/vt3vf/ndew3gJ9+lPPuvf5bIxrXtra1\nPWQfdfiwtrWt7TGz9aKwtrWt7SFbLwprW9vaHrL1orC2ta3tIVsvCmtb29oesvWisLa1re0hWy8K\na1vb2h6y9aKwtrWt7SH7fwErqDr3TXcUMwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.2873... Generator Loss: 0.8386\n", + "Epoch 1/1... Discriminator Loss: 1.3842... Generator Loss: 0.7583\n", + "Epoch 1/1... Discriminator Loss: 1.4189... Generator Loss: 0.7991\n", + "Epoch 1/1... Discriminator Loss: 1.3378... Generator Loss: 0.8856\n", + "Epoch 1/1... Discriminator Loss: 1.3755... Generator Loss: 0.8002\n", + "Epoch 1/1... Discriminator Loss: 1.3075... Generator Loss: 0.8532\n", + "Epoch 1/1... Discriminator Loss: 1.3158... Generator Loss: 0.9599\n", + "Epoch 1/1... Discriminator Loss: 1.4263... Generator Loss: 0.6772\n", + "Epoch 1/1... Discriminator Loss: 1.3762... Generator Loss: 0.8854\n", + "Epoch 1/1... Discriminator Loss: 1.4065... Generator Loss: 0.7769\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVmsZel13/f79nzmc+5Y996au6p6bjbZpEhRlCjJCi2Z\njmwJghzHMSTEhhMDRhzHiS0o74bykrwkRqLAAeQ4gGBFsh0oki3KEiWTEtkcmkPP1TXfulV3PuOe\n9/7ysNY53Y1EZFFkyx3grIe+p0/ts/e3v2HN67+MtZYlLWlJS5qT8+97AEta0pLeX7RkCkta0pLe\nRUumsKQlLeldtGQKS1rSkt5FS6awpCUt6V20ZApLWtKS3kXvGVMwxvy4MeYNY8xbxphfeK+es6Ql\nLel7S+a9yFMwxrjAm8B/AOwCXwL+qrX21e/5w5a0pCV9T+m90hS+D3jLWnvTWpsDvwr8pffoWUta\n0pK+h+S9R/fdAe694/93gY/+SRe3Ww270u/geQ62lu8cxyWKGgC4vs9cocmznDxNAAiiQP7dOFRV\nAYDvedTGAFDXNZ7r6/0M1pHvbS0PsRaMjsEaQ5ZlACRZThLPAKg8F2NlmlxHeOjk+Ah9BI5jFpzV\n8xzmd5Txymejv3Mdh1pfpCjLxbPDwCcMQ71Gvi2LgiwvAciKgkonxmAw84cD6LwY12H+RKsjchyH\nopR5cYzhnT+Tscr99A44iwtq3qlAzq8xZv4fmdv53/odFy/GVtt3iByDLitBEAHQavk0mk15Zzek\nLvQergFbAZDMZiSJrHWWFjqymkjnynM9SqvvYSxJLNfmZSHPB8LQm78SxpWxNRotvED2he8FeN78\nGktd5vpsuVeczahKWYeqtos58lyHwpXxG31WXSaLPVZXtTyU//decD1X5sKT93A8g2vkOwcwOm9p\nlmJc3RdAlcvYKr1vnmeLea+txXFcfV69WGu7+A8URXFkrV3n29B7xRS+LRlj/hbwtwAGvTb/4G//\nDCsrbapcNkTY6PPE488B0NvepJb54NbNO9x/5XUAzj99HoCWFzIePQTgzMoaqW6EOJmx0tsBoN0I\nqCKZ7SJL5W8Kjm7ouuHy1vW7ALxy4xZf+8qXAZiut3HrNQC6YQeAz/7TXyYM5F7NpkNoZTHOrLao\ndHHLwlC78rkRyOZptlqkuWzu/aPjBQO4fH6LKxcvANBpyyY4vf+A6w8OALix+5CpbgDX8wl08cGh\nrmS+Gh1loNZQOi2Zl0aLvcP7AERBhBfItaY2rK+35Xq9l2cCImVe1uSUpcyLtRDoLnU8Fkw2zvTw\nTGLiKtVFdTF6P5OV2FAZmfHIdKttXbgCwMc+doZnPvgRmdfWZeJ9eT9n4GOTEQCvvfgVvv7qywDc\nfmNPnmtiHr8o9xgMepxmbX10yesvvQLA3dNdqljGd/kxWTt35hD0RYg8/eSHWb10RtZscImVzYHM\nQVwxPpQ98PKLXwfg69e/yunRIQCzLCX05R7r/Sb7recB8HXPTg6/SRXJe84mKUbnJS9rHFe+95pN\n+mt9AM6uXZR16jdoh7pmgB/KHL5x5zW87mMA9K1ldF/GdlrKXN3bvblgoGle0uj0AKjKBOMpQ6oc\nylKuebD34A6PQO8VU7gPnHvH/5/V7xZkrf1l4JcBLp3dtD3fp1371A15gdXNLTp9OSANQmpHDlO/\n6dC5JrfevvQkAEE1wa4KA3T9NpN8HwBnuk+kE+j5Pj6yoIERLcC2Wzi+HgS3y/ntWJ7XClhfkc1/\nUhjevCHXB23ZYC0XGrr5ndrQb8rG7HhNHN0UJQ7U8jlqy4J7rkdg5Z0elEcEIoBoOiFXz58FYHNl\nCwD/3GO0Xv4CAOPTmCw9BaDOIEYll60Bma/alUPslC6OUSmeZlDJ57LMVHpBq9WBWqWUSp0sy3Aa\nMt5WGBL5wrDyrMSbSznfXUhgVxlhM2rg1zKvFkuizwjbPqg2UpYZ46msw+T+AwBe+0bFxqowwuNW\nRdjYkDk63ufe7W8C8Md3v8F0KhJ72JR3jrKQg2ICwO6dI06P5fAPT/eYTGSPYCu6nozpXFsY8sVL\nLR6mcg83jjnduwHAaHfGY5UwmcubW0xTmc9RJdfGWU5dy2evqilV80q9kmZLztiNI2FYrttkxZG9\nEIcWq/dynALHkf3kOU1akRzeldVVANZWVuj6wtRLf49yJNceHTzEeXgMwMvH+/QGOkeqPWEs06nM\nRV4aylLm3m/6BKpBlUUp3Pw7oPeKKXwJuGqMuYQwg/8I+I//pIsd4xAEbabjgvZZmZDQb+Cp5KrL\nlNjIwoTdiM1rwgxa4QoAhhG1qlZgOH5ZDvFwOCIei1YRTbo4hXDo1iWV3BiCSA4sucPGBZEeK9V5\nLl97CoBb9w7xV28B4LnCeF4MI3xVAd2Og61UpWwZ2g3l+IMBgaqlppK/aVYybco4O0mLc33ZHB96\n9imuPHMVgLWeMoUio/Z0g47GjF+TjXB0HJPpwSuqEqPahinKxd+ikmc0nQbOQpuv8KK5WWFwQ+VI\nmWoKIbTaMvfdVpOWI2p+4ZaUqhXUtaXM5Hf9FZnD0HpUnuqn04oskENT5oUwRmC4P6I/UM0jHwLw\n1vUCuy9+560/P+C53g/L3N57i9e/8CIAt2/dY3VD1iw7UTPCqdl7WTSorJhyeqJmo18TdGTuP3L1\nPFe2ZC2felr+hsc5TVXLv/qHr3IzFgEwmtV8qvxz8k7fv8Y0kMPZactzrQnphHJ4T4pjKtXYCpNx\n767sM1cFmQldrDJntw6oatV+XDERZaAF3a4w5I1rmwA8cXkHzwgTi2ZtvvxV0VJLO+PmjRMZh82Y\n5bLua01lMJ7BKpMubQm6B9yyQ6p7hKDC1bV8VHpPmIK1tjTG/B3g3yDm0P9mrX3lvXjWkpa0pO8t\nvWc+BWvtbwG/9SjXVnXFJBmD8fFzkcYzcvJUOLEJmqDqnF/VkIzlh55Ihiq3lOqIyqevkSeicsWZ\ny1dfF6mTTCrC9W0Anik+CMDq2pTmRCTD6sYZQrcrt3V83FC4/Nb2BvREoh+fCtc2kUuN2vVlSB0I\nl4/DBgP1H7T6AzZ6osmkqu6NRh6UUwCevrbCjz8v2sGlxy7TWRXzodVRWz9LeOKZ75fnNT1m1WcA\nePGrr/NgJGOrjEOlkht1/Hl+C9XssRisepnqGgwiMaIgWpg2ri+/a4QRZ9X/0lkNGASqQYUO2URt\n4yKGQsSt35Z7dfwQPFW1hzNmjpojo4xj5F3TcUCrLe91ciD+gnsnhyT1lwDoPfjz7BvxCX3zxZe4\ne1c+H8UxI9HMSSqR7NWsIIvl/Y2tMFZUoUG/z+PPiznyMz/yUdZ78t5roWgK9XMV50/lPQ5u3uKN\n12Rss9OcP3pJzLRm1SSWpWQ0FD/CuCzxK9mHGTWFUU0gTsgCkfihkWeUgSV15f3T4Yw6lueVdbVw\n57Y8D1/3zmQkWlNdbvD4muy9lc0PcGlHfBwf+tgVXvrNzwPw8t4uI33Xuf82fpgwmvuB8hw1nnBm\nM6z6fjw3IlBf0qPSvzdH4zuppiYuJ6yff4zOmhzA7soWrb56d9029UQ2Smd1i6itE1HKpBtTQCqb\nzQ1W6a7LhDy1dYXVhmzeb95+hdu6mW68IUrLcLbGyoYucqdJX73hodehGQqzCCKHtjomVyLZ2F5g\nCHxZ2Nxx8SL5vL7SZuecqP/b/W0aDblHZeX357wBuTrwrl7Y4epjwhSCVhejTM+dRzVWu3jqlHx+\n68do6IFew+fXXxKbezTLSVRzL/V3DbfCYe5Z9/DUzKmtodWU8TTaPp2WLH1g5O9av83VC2Kz9vsh\noaM+B9elaAlTM8EKjjoxjR4Osgw/lM9Zd8BMvffDaES7lme3cBaORj+W706nY/JMfvf666/iN2Ru\nD+9ex3HlHsYapiPxpaTz6IOtcHSPO4FDtydr9vGfeJwPr14C4CMvfJiVVWHIzVDXrLOJW8m8rJkV\nPnfjH8v6lRNmqdjlX7r7BoFVH1QlYwt8B6N+INJ0HlCgqi22kIEUnqxvfZRzUshcVUmCM48YOSwi\nJmfOd3n2BRF8Z/pionzg4haPnX9a5qrX5KIR0/W50vKXf0Ss7pfufJVbnxVz6ytvqHnl7TFUn0KS\nGgoVDJVrCdWf41iovzOesExzXtKSlvRuel9oCtY65GUTNxwQaYC1F4SEnoQA3UaH0Iiq5fkRrmrM\nVj84eYrrye8Kp4EVgUjo16yfEel3Jawp74rZ4XtHcu3pCTNfVObZGWjM5N/D/gpoaLEddIhckdKh\nSknPb+BFou5VdcpqU6TSTuscj21eBGBltUXgiBpYa5x7cGYLz4gafGbrcaKO3Nc4DrWaStYTaVYm\nJUbDX1EU8PhHPiTX2oQ7sYz/5t6Qw6H8bu6E8hyPYm4yFJawI/dzbYCvqx06Dg3NvTijauv22iqb\noWhpYV3hagjN1iUNleJB4OE2ROJZDYU6YQurERDbcQgnE32GRzNVc8X02Z3K+kXrsk5r5SZxLuOc\nHI65f2MXgFFRYDJ5b8exogUCjjrwvNLg+PI5CkOuXpaI0H947QXOnpexrYSruPMxR7K+hhJHvfBm\nO6Kl8jDwajZ8GWfXsJg7p1bHoLWcxLJ+tXFpqsnQDB1mqsUsogGwyAlwMfQiubbdjfjE8xK+fPaF\nS3zs6Q/L96vy3PWta4Rqjnlha6E1mijANmW+nq+f4cInZV42uzInX4k8DvZlz87SgjpVjaU0GNUK\nqSylfUeCyiPQ+4IpYBzcsEFVWlodOWCNoIerC0BZIhFccIyLLWURyrGoeraRUluxEfO0ppzKyuTN\nDMeTyVkfbDHal0kdq1ffVClVKYdq/+4e+UXZYKYRM/BlHK414poHmqEeMCcATbbZ2Oix3ZdnDFa6\ndBpyyJrdLraQxWuqV7wd+vTWJO4chAGOHqZynFBZjZ6o+l3ZEldtAn99A089yI899Sw/cUUiKv86\nvE6wK2bTw4fi75hMZxSaH1EFHqv6O88N8fS9MSWOL++youGxja0VnFzm1TVArKpv3wU1nwwhfqqm\nyUBNoyTH2nnClqGtUQlb1xTKWJNpTL8r8zXT0OTm5grDU5n73ckh0wOx4e00xemIMMgfJBTq7a/m\niSo1VJqo1QgKXD2w+fAUd+WcPm+XZinrkHY0ock6RJG8/3R3l3YmY06TgtlU3u/SlZC6L+bfVO19\np+wSjOTZJSmrffFLDbbgG38gzLlqKBNOLUFDo1Kew86WRC2efvIxPvH84wCcf+IcGrWmG4rQMFWJ\n0YgR8RQTBrpMb4cTQ69Je0XMjZUd+btzr8OmXnsS+SS6TlVRUmWyfm7kUVffGVNYmg9LWtKS3kXv\nD03B1lRFSrP2CNUx5LrJIisN1wWrEmFygqtS1Wpst8wr8pm8SlIckliRVnnsESaaeVdlOG25puMK\nBz84eUiuqbGVP8Qei0TvNSY0NcXaDxrU9dzJpSmspsLXvAm/MLQ94fjNbojVBBJTGrxC07DVo+0Y\ng1UpZ6uMXDWJ2nMpNQGo1shKXqQ0NRrixDPqRDWhZMLWNfGyn5kcsPuGaAilOrWmRUGl8eqgAuuI\n1DU2w8Yi0UwUMFKVd54O2zXu26nLWY43z2LEXWgCpgSr0YVCn1FXZpFu61QOlQYtfOvi681bbkiq\nuQytYJ7z4BGoQ9FLLaUjZkfdcKlVcqf5lCKdX69JWAYclXzWM0wfyHx94cVXme5LYtS1/fNsnhEN\nqLElkn/v4IDGSDSFr+++SqoZfyU1Dx7I73YuXKaj6+6oaed5HlVPnbVJxEwzD/s+5CpSXZ0LW1vm\niSGr631eeOoFAJ67PGClJWvZmOZ46ihPZxpdcwJcjU84nYBaE+5MXVHV8n61aZGoYzN9IGs+i0c0\nNamv3QphpHNoK4kUAYE3ADOPSzwavS+YgmOgHUB31aOtdhhFTlqLalwmbVwrL+ljKQNJXsFKGK82\nOVUmh4bIwWhiilO6TNTuKwKLb2VyjNYUuEFJXsq/N2lRTVQFP1qj2ZinFbugISSr6nyWZgRNDek1\nGjRXhZE1A5dGa76ZmotMOHeexBS2KHVsdVbidOS+ReYv1ON8qjUXJseLhLnV4xMq3UBus43blA22\n2d0g0qy6ViHPmMSQlJpqjIZwAYtLSzd8nVVkej9P/TJlNsNo7YfpG2rdGm5eLWofKjvF12SvQuew\nKCrm4QBrfYqZ3KMsC1xNwQ06Lq1Cnt0O1PQzOc66fJfmm1Sa4FXldnEorDXMzeH5X2Perq/wPY/Y\nyLVHJyfcD2UOH9teZaTvN7wtB+XLr79J41TmIl5t8JEPSwTg+v1DElXd7x7c5umehlfHwqQTO6NO\nlHlnM5JczJw4GuBr1qBfavq8gVAjWFurW3zfh56Qz+sN+oGsWacX4WqIe57m7lY+VSH7t0hDqGWO\nHMfDRJp4FFY0O3KPs89J8l6eWSaJ7F/eGPHwVBjI4TSlVBPbSQK88DtLXlqaD0ta0pLeRe8PTcHz\naQ62wTZITsXBE/sGKtUUiikDjbsGUZtyIipx1dJc77TEc+fxcwerRQWOHeG3xWGY2JisI/eIHwpX\nbpYG3xfHn2v7OJoIUk2GjIdzPXiKp/F2M4/9Vi6u1lFgawKVFG1aaM4IaZXheGoKqcppXANarFXg\nk6npUjo1NtH3nqpZ4jq4rkjBlufgeCKBsjTFXdN8g2bA+Q0xXVqqdTil4VjTkm1t8NVTX2Y5aFVf\nWSVksUi/yUjmOO1GBCr9q0aPcCAaWx1nuJqzUNmQcaEJOeowrCoHq/aRjWaLRKcqjRemUuV6pJVI\n7EClVrNwcFSN9jo5nkZP0mxGPS9hwOKq09SdawfG4Gmk6UyrwSBSE2VqWVNNbtUb0NXqwgNNf19z\nG9TqfDt/5TIffkacklPr8rufvQ3A+mqXpzSF/s5QE85Odkk0GmAnOdZX1f2wJPA1T0HnzQl9+j15\nv+eeuMwFLbTqrg3oduSzG0QEDdEUcGSu3HBA7agG6QXMS4WdqINRR7njQGNVnY590XIa2+e58Akx\nUZ698XtM/+c/BOAzX7rFPI3EdcGZh0QekZaawpKWtKR30ftCU/Bcl7VOB5Ip98ZSTGnxMGrvdiar\n1Nt6cRkTx+p02xXu2rsSEcTzenWPyM4zzQqs+hGKpGZ8XWvktTinsAWur1pDEZCJGcpROmNUipRP\nT6eMVOKdXREHX9jwaDdFImyvdfEDxWGIx7QPhLN76yzi97k6RsdJSqDZf8lsSlLJ78JgBZrqzFLf\ngp/VuJmqHX0XtDLSxDGtsVYzbrXYOBapsVaI9MmTmlKLhAoKXHVgupGD0XTk0SQmTuRlH94TyXfx\naodCy/NbbQcqtZfXemSHGv+uS4qR2K12oEZ+HBDP7eGjjLIpczwdJkT6Tk5aUaqDMVW/hWN8yqF8\n1w4NqWY3xqMEt6XvXVm8OR6COnADz6GvoeGo4SxSuqeOZRRoybwpaKmi130o69GKAl4uxKE4vXFC\nd0WuPU1Cmj3N7uw7rF0RP9WtV97QcVYkp5I2X2UpSa736xpy1UyclmqSVZu2K45N0z5DUci9/MIl\nCrR4L3Tx1CcUOPLXBAG2Ul+aG2CYa5bBAovDcRwczZCdo1P4jS6NhoRFW/0NfupH5drPvbRLotmw\npa0INGz5qPS+YAq2qkinExJb8+BYmEKWTNnQ1NDm9jVGD2WoJ/EJVtW17rpsJP++x8xopOJ0Qq7q\n/FE8Yv9UNuz9g12ymUxm9FAO/IWVkKZu/iKNGWu043R8ilPLgt9veThN9eBvSEl25PusNuS79ZXB\nIpnKKxOcTGP9QYOGpsqGwdzBacmRhY3zGbE6iUbxAa0NKd/t6tjD9YCm1sHT6ePNHYa9NsX4usxR\nbMDOIxyK3dBeoZPLQc8n9bzEgU7QXGAvRK6Lo6XRmf7u5MDjWCMfL3/zdZpqamxtnaOzSGnOsep0\n9WvZ5A5wog7h/fQUavldUMNE8x7y4xlTR1OXdUB105JqjoHjGTpa6pxS4ydqxlDR1PHNvfpeDYU6\nPu+PUtx5abgz49UH4gRMphV/8Qckhby/KeZhtZvzRy9Jtev13/kGw0J+N0srWspMIidgUyNGG+tS\nz/Bm7iycwElRYhAG+eDkCDs/sJWuQcNn7ZrMS9kK+JJWgW5WOwzuyz3WLzUpW+IonwsZrx7jO5J7\nEI+PcDSa1chr8GUuZnVOGosJ5mlEzXFLQOY4PU2ZqSPZM1DpWpOlZI7WCj0iLc2HJS1pSe+i94Wm\nUFcV8eQEsDStIvsc1VSrwu2aQYtCNYF0BhXilEtPRIWvbEKs8Fnj8gA/F00g9yxHN6WQ6jh7yIW+\ncP/tC6JyR36Ir9WQw1FGpTFfZ5pyYkX6OU6HUKV/qWpY6HusnhEVb6W5yoa+R9SGQjXf+F7GjVRx\nGLQQa2frCuFApMBsOOSwlLH1qz6eVnYGoUjBOA6hJVJnfP0e19+SGnsbHWNnonYOx2OO1WG4tqNI\nUI2c1Y46FAOPWgueWq2AXCVMZHy21+Uely/LM+KTI/YPRYLtDcd0NQszSWZsaYy924mIFH0q11Dv\n6PgBL6sJsj9JMYpINQibtCMNydaW4VTG6c6r9ypDrZEyv2rhqhPXK+wCJMZaA3bu5FQHbOBz/txl\nAC6eaZGpI/F0OOK2pkr/qy+9yUOVqj/+g/qMSUigaeMnSUGsMX/juDz3hGhpz3z6eaaVaBsfvyga\nxuljj3HzNUE8ist0kXmazCyhpqQ7c2eo6+Nl8lLf+Pwf8vv7otqPD4dkakomaUqnLRJ9pSXr9PSz\nF9i+KHvyw6tXOUjk2sO0we+8+jsAHDzcY7o703WQ3w02mnz/0zLOp3fO8MZN0WK8wMPO1MFcZmTZ\n/w/TnC1gawfrGhqaA3r+/Dqhel5fvP0qR98URnA73aVjJPkoceXQnQ836K7J79bPrlC4GjcvHEpP\n1daiw5fvSR1ubyKH1C98el15RtjxaBr19JomG105FN1GB+zc066HymnhamJRKzCcacl4bFQzqWVz\nT/Oae4fi89i7Lofm9IuvsWZkkw8GAb01+V3aKgl99WGo2fJvPv9Zrh+LuXJ485TcFTPI8wPOXdWa\ngrS/ABaZnQqz6fdWyKbCYEwnZC9RDzcunh62nu/x2LrUBKw1ZTOmZkhPy9bDxhr7M7nH3bsHVC25\nx+XzZ+nofE0Uw3Jvf8rxkfz7qZNi5SxSNCsyRaRaW/MW+QuFMrG6jBZJPNMkpaeoT5iKShOVTODh\nqh+k1ENsa0say7zcP16jHWjpdGsFuyNjundwzD0dU5rKvDz/w5f4z7QOZu+f/gve3JM1afUCPvGj\nPwTAuSDidFeYwsa6RCc+8tx5/vgrcggn4wm1gprYoiRqCJMpMrXf4yEnuzflGQ/2mIxk/T3HSLki\nUo9yeizq/MmRCJ47uw/wNILz2bUXyRTV6+HRETNN3jKAp8UrqVpUhw8T/mAk++Ib4R38uRnjBQss\nydpazHdYJrk0H5a0pCW9i94XmoJjDEHo4hcVgcJWtYImsWIkvPS7L3L9VETQ1rlz+C2F+bqrXvH1\nh7RTeZULW+vMfY6HDInUU+2dpkyOhKMf1aIxtN02qS8OnivOGv6WXGvjlIFmpvllQaXwFVGuWWkd\nl75mXm5sbuLVCkIymXB0VxylN+KUoWa8jTx5DzP0SLe05j0oWd8WKb/VXCVUSXl/V1Tg4/yYyy1x\nRG1+6iKzuwKOffvmffZeFkmzdr7JwV3RoB6bZyimGWtaIVe6HjcfiMQfhzFNdUKvrzV4/PGLAASp\nSLA3iyHTqUi2uKw4fCD3aw58wrZImiu+S9eKlpIGohr7fs2qzpUtI/Y8ed7901NmWvkZVV2amkcR\nF1rwVdbMbutcNEvcWO5RVBA2VFaVLkbHV2hKuCkdbtwTTaG+t0/Dn1d79jkT6pp1mxRa5Xn5KcFY\n2PmBv8CZD8k6/Ddv7vE3f+O3ZV6GBW/uiXQPiwFtldL7N27oOCc0tJrTw2gMSDIsPcVVbHS1QheX\njk7yoOEuMh1HaY2v6eGhZ8g147RWk6Ky9SKV/uzZBsOJ/G5vL1+A51gDpTrYJyOZV2cIEyPn4qE/\nZF2L0bpOxPE8nb6sF+bNo9L7ginYuqaME0Ljo2eUMK7Zm8gBmyZD1rUS8QPbG0QNqWY8QFTD3E3p\nNWVDh9ZhMpZDc/30kG5LQVsaLjtduXmq96rHB0zui13/CmMGmfgcNvwmrUDjk9bDNmXBEk0wmo2T\nRR1BZSqcYJ6kVKIaHEViWFPzZ/sxscPDq1sodgsNJ+dDTypadSfCaqrwZCyH6kzgs7YtF197+jm+\nrKXDdTymraXFGxev8e+uC+DKW3eE0VVFQW9FnrcS+sSaeDOZTOgP5PvNbo+OllSHkfwdFNvYNVFF\nj+oZRuvP/bU2l+abv78i4K3Ayb6GSJ2I1o6GVo86tDWZKhkNqbQ+xJQWY+ZVrvKMuIpxNHe57Yeg\nyUsYg6vJYgQOqHlQadVm7bqU6lk32AV4yXajy6UdCQe28yOshqg3z0qqcdTexKyKSfDD/+C/5vGv\n/5HM2+0puy9J+PE/+dt/lUtPSIn6cCLz+eAPSloaqjUuOHM49xoCrea8vCnPrTsFZwcKoNJz2dM1\nee3+CblGO7zApdPS0nAdu29zdrZkb/63P//XODkVH9bf/x9/mcNj2ddlXeOpD6NWM9B1XRyNUAUt\nhw1PGHYdNPGGmkJfVtTFd1b7sDQflrSkJb2L3h+aAhV1OcV2A/KJJr+kkCXC7TcurtJwROI//8wF\nanU6bSoO3ygOiHxVnc43mTKXXA6rChxy8alLXFEP//hEC2NWVjkYiqaQVz5dRTMOa4NV7IHaGkJ1\nDs6h1B4eHHJzXdT8C8k5Lp6Zo0RvsvmUwGo9Nc3Ij0eL9wMwrXVCxfTvdiMGWyJVAqeBUU3hzH2R\npCsrd0FVQCcpeOFJSb/9wJU1MtHcuX84w0/kXQ5UVae0VGMZZ6PfYUPnZTiMWZs3UWkGZIVc31+V\nrLArjXMcRKJGnwtWSC7LPY5GBesLGDdDNq9snBdMBQ3Ob23o+3uUWiZZZDUxouZ7pSWdyXvvaRJS\nmiR42yqycKaIAAAgAElEQVSTcn9RlRk4Lm01R/BcynmVpKb+1qam0VRos5UuP/2pTwDwiQ88S88T\nTeDO0avsPZBJGlyVyIKJPByNPqw98Tz/0z/6RQD+7n/1S+yIA5/muXXOPS/rd7Z+BoAL5+/yWy99\nFoCXHhwuEoYN4Kox0VJY/p3zHld2BKH5bO9ZBrlorF+88wYvfU7MkaC3wgfOaG+PXAvemobHv08G\n8dynf5Iqln34X9y5wb/8/a8CcDg64EixXFqaY9LaaPORazL3Z7cucF7h3X7786/wimJbuq6Dp20M\neESF4f3BFKx4l+uixYlWKhbVhGP1nEftDhuKxbe+uQ2x/jCShc/vT+nqPqpmEV5bvbCFxdcJ7Pod\nWm3xCfRaEk6bjSY0IzkUJ+MEXxUn360xCk5SG5+Jql+uVq8lVYOjoSx4cncIa9dkOF4XX9XATllQ\nnFXVV21St+UTGA1jNZr482q4MAAtP956Qg7/k7s3OVA7c33QYWVLxhkfrPLNXWmQcv/gmHzuldek\noobv4GuPgbg0bGgu/uF4n8NETQLrU2vozFEMy26ZEa1Ic50icMm0RmG1NSZU5Kk8qajFUsLVhCYv\nDPG0PLu/0sNVxknlkuVqa2c5B5WsVb+vUZaixFMmPBkWCwCYVsOhaea9IyI03wxhr4C1rGtV6k9/\n6qP87F/+Mblve5Op4jg2CkNo5XDOIfCtfUejmsDwwU/9HAD/wz+rqKcy/qef+yGaLWHUjiZIta6t\n8J/+3F8E4I+/eZP76ndxHHC0IrYIFIB11uHcpjz38cc26ClM/NVPfJQf/yF5/2EwwT+R8c8UNLfr\n1Kytntd33pa6bOBn/94vcvmFXwNg78XXeFPN10s7ahI7Pa5ekX3R3jyP05Bo1hu7Q7qvS/WsMyto\nKEjQJH4HQtS3oKX5sKQlLeld9P7QFOqaPE6p6oTZHJ59OKOY90ecWhQ5nXw4pbchnHZQiKoaXo2I\nZqobJTnjO1rTHxqsFTW5SGaYA62l2JpXIvaI+upPNoaYeX/EilodOKG1pIrWG6Idq9yC/X2RXUXL\nxTryvHR0vKgo9Fc7+CqFrdY7lFWF4sJgKgerKdY2dTDaFzNsyxgunDtL8rpEHMp6SnaiPQXrhMmJ\nxNJvnN4k0YIFbwEibqjnTXQcw9UrAgNmHUOqUnM8mzIba6RlT6RZ43yXSJ2IuA5FIv/eGDTJp5oS\nXY7I91SOKJ5EejokVIg2Z9QkVNxBZyaVngDHwxjfnXeT1GrAPMU9lPs2OzXBHJDGeFTqXIzzEtTB\nOsd0KKoKLdSku7KDrxDuXjXAq8X0On09p6dNeZLXZJ2aH97EC+aNNw2eI897/qmfZaqwfo322gIy\nfj6djhPw1Ic+DcDTl36LSqNAicmYPFQoPI0+VPsVw6dEmt+MU7abMtDGTkQ7EtMmj0/YvyXpz7kz\nj77ssLGlGk3q4SpeY3ewwwc//EkAnr36PD+iDuQ57oWT5JSHooF4fmvRyi90V+mG4oxvuinj7M/I\n0WiMOWeM+X1jzKvGmFeMMX9Xv18xxnzGGHNd/w7+tM9Y0pKW9GdP342mUAJ/31r7VWNMB/iKMeYz\nwM8D/9Za+0vGmF8AfgH4h9/qRlVVcTKZcDyccDSTVNvxMF50T24FbYaxcMnD0zt4tUJsKRTXvpdz\nrhDtofKmGE1d3u70COddi8sTQi0emmkVYZpWjHKRXNMJnKo0c5Mco1KlqINFCCjXlNqsKskRDeRg\nOCPXfod106dWP0iZNPGceSs7TXGdFtiJdj7uZIuiK9OLQLUQR30ETT+ktyL3jajxFcCzwpCrQD+6\nP2F/ItJxnh5duB6dOVKx77K+pjgM5RnuacHQQTwmGGnIriHSrp2E1Om8si4j1rS5SdUkjUc69wf0\nXY0Za1VfepRTV+IHWvV7uA2Fwpuli/Z1ZV5Bc46oJeOdktFzZU17zRbJTN7b9z28UjSPhGoRm1/0\nw64tB4oB8eobL/MjL0gI0TEpL+19A4Bf/r3fptIx/8EbnwPgkz/6U/zgTzwLwMbGE9TqaD2+e4tZ\nJqHvkOeJtF+o0X4ZVZpwcCghy966pXGgjX/ijJnmEJzui/Ywcyyv3JDfPd5v0OlrI2NnjdVI5rYb\nVCSepJa/ces1AHa9u1zoiC+j3B5hFC8iGR1y/LKkt49Hx2w883EAAvXxeLhYDUMm6ZgHt8VX9sbd\nN2iqU/U0r8l1zh+V/tRMwVr7AHignyfGmNeQFvR/CfhhvexXgM/ybZhCWVYcHx9jXMvhicaxxxnd\ngXq1QsONu7cBCJIEPiAbZThVCDPPo3VOFjMwLvFDSX92jy3TeI5we5PtDXEIegrfXdQzHH+eA1/j\nK3yaH9YUvixihUs0h91SJ2Gv4bO6KYvY6joknjChyPoY3SjhrKTQRqjM0cKzBm5bFjzIWviamu3Y\nEKsdiqt9iWqcHt1hoqm6/YGl1tTtulvjaEeqSVWRqfkQqKliTMU8VyXyI5yGPHx1dZ17tyUa8Nbd\nI0pF/j3f0zqQh5ZKGZr1fKZqBhWZJdY6AjfPWLukil8yb1bbULRtqKxPpqottsQowIvX9YmqOUiK\n3LfMMhrX5P0bjR6+OhpDP1hURNrCYrUKUi0ibP02c969fYcvfuH/BmCl2eQ3f18O0NfefHOBZ/i1\nXYku/bPf/nd88FfF0fx3fvav8LHvk+5be69/k9mxMMvs2gHbV2SPNJpidpXxjOSeCKo7dw4ZxfNO\n0pbmvKmvekFLUu7sybXb/gZ5X0274wlDR76fmprTWEIDxydSU3Hj1oQ3vvhLAPyV21+krmScv3vj\nS9y7eVvf3/DM0+Jg/olnvg+A/jOXsEYToHKfe6/JM+Ikxfcz/TxelKs/Kn1PfArGmIvAB4EvApvK\nMAAeApt/wm8Wreg7je+s3ntJS1rSe0ffNVMwxrSBXwf+S2vteA6qCWCttWbRX+zd9M5W9Gvdpj2c\nJKR5wWisAK1OuACtjMua+9r0os4sm1sXAThVhOPUOhwdKB8KI0Zas++ZGR01CYqyzYFi+Vd78ozb\npxm+qynBzRI0U67d7tNQeDcvCDGVaA1zTP+djW3Wzkn4pxE4lArsmUc1VlGJx8MRlfaGMBoSojVh\na1Uks+cWiw7FdRWgvVkoVCuZFC3u7IoTyR37JNvaLMZf4fappgoXucRzkYpPgF4YLhyGkevx8kPp\nEbEedLgfyxyejmNcxXq4NdBn+CV+IfM9zjLKtuYjZDGFguY6SYNC8QSCOTZDkZPpmIvJkDrQXgZ1\niCkVO8G6zFRrKrU4p+msgsKSlbVDEL7dYq1QKV9Xb/eKDBTzoCgqKs1ZOD3NGD8Q7adMWxzOoewc\nh1SdeB2tbH12vcU//GHpLv3CRz9N45KGkfOEvYnMS3xwzKQv79rcFpPIb6zxQGHxHk5rThXgx1JD\nc26GyndO7bF3JOtwshoxUhDeNHlAMNXvnQpHO363Na8gLu/yR3dE9f/q//pr5Gr+xVVGNxAT64Nn\nO3hHsiYHNyTcOJke0l4VUzrpRKSa/l+GTWZzLIu6WuR4PCp9V0zBGOMjDOH/sNb+hn69b4zZstY+\nMMZsAQff7j62qihPJ2RlzVgry5qdnDqWTepWPqn26JvlHkmpB29fFysfEatHvt/tMdA06I0nt4lG\n8wacY/Z3ZfFG2hvRdypio/6Ao5r2hjAC6yY0K20UmxjSrhyyTihq3daVbTbX5HD3moY0lwWN4opa\nk21SL2d6KpvGU2zI9WydqqsNaUa3yEtNnx7Gb6MS3/66TOJxytltUbIOiozR3m0A8u4tDhVj0g1D\nHK0l6DUVerwVEOrnqBWx+/tvATB84SwnDxWX0akoMjkIW7eFKfRWI1wF7Aj8gs5I3s+sedy/J++3\n6Xs4d9WH0df8j8CnUvvbSUrSSkFmymTRaCeZxhBqRylfxttsuZR31WeyXWEK9VHkFYUy4Rqz6Pzl\n2nlExeKrh8F1Lde1nLgZTTl7Xubr/sNjChVO//mPCIbhz/yNT7P1/E/KGBprixbugyc/yfFQfAqr\nG5dpqTCwWhlrnSNaWjk5Ho9I5p58B+xQmZDm0NhZwfRE1zF2qKYicGw7J/Hkd77bIDBiFl89KyXg\nDA2eUb+FNRypqdhOcz72ETFzLp7dIFT0qsk9MTuSgynTubnda3E4kXWqM8NoKt+XdbFoMvyo9N1E\nHwzwT4DXrLX//Tv+6f8Cfk4//xzwr/60z1jSkpb0Z0/fjabwA8BfB75pjPmafveLwC8B/9wY8zeA\nO8DPfts7OQYin16aU7e1U7H1SbRHQlqEuPNGiBUMJ5LLYFWdN+mMG9oncrUzZNhSNbkecKajKcgm\no7Xx7kIUp8xJRqJ+HkxjZorrt1ND0hNOG7ZCPAX4sBrJ6DZ8+qqWFnlKpVInTqY4mv14mpcMZ6KC\nntd+lb2LK3haRZdkLg/fFFi126+9xVdui0OsoZGOK1vrbF3VDMPklLGaEte/cZ876hibZSWBZi82\ntPN14EeLlnDGcfm9Ut5j/aW3SOdx7DWH8VDMgKHmWNRJSJlpv85OgGlpZWgrYkf7GZ65tI6rYCkn\nRhFSOhG5NkOZxTPcEwV7CRxKxaC0ecFUtYm80L+N2SIrtDzo0GzNTamCItcsTQOeVjt6CsLi1jWu\nArl0AkPXmac/u2SnMt8NL+Sps/Kca9ui3fU3rmK0IQ31KVj53voBvrZ9q9wYNCswTlUzvX2Lf30o\nDr5ZXYrZANK+bt6TQrEiqGASyrzGzQlWsRuL2OdEQWm6azWmEpPAahu7jasdfvoxSXO2Y5fNnuzZ\ng8mE9cta+Tly8TfE3Bpryvh+mWJ3Zc0eZB3u7cqzDw/3maZydoqy4m2D/tHou4k+fA7+xOf9ue/k\nXpHn8vhalzpJWUnkZJamZqr4fH4rxD2QR4WBz/UHoj6dHQgw5iDosrEli3zpwoCmem8b51vEWn+Q\nTcd4Te3kpKrqiZvQUdDO2m0skmY21/vUgSz+2CtoKgjmHKsizScUtSxck3DRuNTtBkSKwVgkAXGt\n/pGOMIKq7VCqP6CYxfR2hFk8t7HNztNyrdWNvf78WYJSmELj3i6//pb4Br56dJ/7J/pORUk0BycJ\n51VxMa42hrFhwPZI1dY8o9bMqVW7yt1EPOBTVS2HzGh1FAex4SzAZu1xwbrWR3i4eNpMt6kqvi2m\nFBrJyJw2rppEVZLSHmh0od/G0YOep3KgD3dPWTkn9x25FZn6OPKiXoCs4BgKtYcb6idxjCXUpKim\nF3Dkagp6FfDWfW22m5TcuyXj/8cPPg/AzT+8y4//NdmW25/+URwNAebVkKAvJkawZhch5VQjW6/v\nfpG3XheG3PEtqTIp33OZqKnIPPJswCqA7tGbBYHWVKyu9PEj9RVVE76y96Zc84bCz6cBphahcHpc\ncFYjSadUtPdkTSIv4rwR3Eknl2dE/YzZuiJTndbcORTG82A6wtOEuchtUSt4cZrPB/qtaZnmvKQl\nLeld9L5IczaOwHW7vse8i0XiwUSlRzaG1a5I/6jl8JW3tElMLT7MD525SqOpFY702dXOzYObBbl6\n+Lv9a9zNJULR0XKzLLL4jkhrxzlhoCZBQJvjVJyZLbdapMQa1R5OTl1Qzr7Z7NJZE8eRn0QE2tq9\n33KwrlTojWaiBbTvHeIPhWuPJrtY9faX7hGHN4TLz0FmqsmIVl8rGa9eJdgQL/P1r315EXUJceg2\nRWOZV5TO0pJAnYjjOKZWMbZXVDTV4el3p3Ai73RbAUu2woCPPv0BAFZaAbG2bpuOC+7dEhWVuKTV\nF4k91tqa46qed9WDYLzQFLYGXdrFXPUPGLsigW8rWM7BxOIq2EgDh1gLwsRVJd9neb6IyjQUS6Cw\nlkjzGO4eTfHUDMqCEff3xayss5qpwpsNFYn5c/F9tn9LnLh7Dwqu/ZQUUvnrlobC4pnQJVcHnWnK\nHDrNFdafVDCcN0PQfIqG9Zll847YCgDjOODK76bROocqmC9u9jGeSPe733iVL3xdzL/hWOZis9Fg\nNZS1uRgNFnBsHWN4+VXRUhI35emZRB0+fFVyKFwMJwpCc/toyJ2HWuiXObR7qi2bYJHXMRwuysq+\nJb0vmIK1hqxyadYeHd10ncIy0zLqLM25fF5DXa7lhnqih/cV6y64zbUN2dDd1QG+dv60yYioVPut\n06J7TybK7ckkXa59ClU/6/sul9X+7DVqoplWwJ0W2DOabdeQw9+ID7i3K4ux8kJEqUCyD+4dsDGR\nHPf++bUFQKenIJru2KGzqehN3nNkodp9D1fx+6JShpqt2b2yRRDIZnSbAfu74raZjIeLZrJe5BGt\nyGFxPblXXiRMNRSaeT7Hiv5jOjVGsw3P0aNck3k+HsoheOvgmI8/L+vR7rYJpnLfoJ3hDUTNb5wJ\nCPTAtj2NVDwcM8vV032SMjgj873T6TFoi2o7mw0x2tuwUDStIskoFQnLnLXkCloTOTXz5ltJWpFp\nQlmsh9FzDYka82maMlbwkkYrpDfHZvGcRdPbSJXha3XJebVKGp2AMJAIVZ4UlBp18WlQash1eE+y\nFKvRPvltGfOgG4AmX632A64r1qK6dcBt0jyRWoz25QFHipB0NyroaPh1a3WVTz4rEz3RQ7qa1WQz\n2UMDN2JlQ/esrWkqIFDL22RwVfafg2aF7sXc1eSm+6dTUm0ZUOU5Za1YoBstylz28t4uj0RL82FJ\nS1rSu+h9oSnU1pCVLiavF1BbgeMQqCe/33LZ3BE1OU8zeqvqzMs0TlyFeOrJrl3LilXYtchnpk7J\n8QOoFRSjEwk3bzYgUW5+7YzHxcsiEZ3A4KoaefzgkFo1j9mpprX6FShc2/B4RGBFupjSw1fosjDv\n09bOUfMoce6NqV15Nqsprjro6hWfraclddXRCEcyy5moWnqwV/LSfVHzk6pY3M/xI7rq1TfzBBWn\nJlXdPnNdmhppCcMG4VntSLTVoXugVY7znIC85EQTXi47AX6g6+CXDOb4gtYumrl4gUYf8hmVpmPn\nQUa7JVKu1bLQ0k5dMYy1vfxENYZG0+CodmOnPTToRBi5VPECCRFt9kWpfSAD35AXWpVYVQuYs0FY\n8cnH5dkfCvtM7ivk/1jW8ePnVlj/gDhJe3/hOdx1NVGSgkK9+QUpmULd3T8S1f72NyfM9mWcbmFo\nKgbE+W4Pow5mX52PZqXP4IdEow2rPgepajF3DtkYyOd+2+WT3y/5Ca1AcQ52j7mv+AcPj/aI9Z06\n3T6PaSSivTHA7cpz9ndlr989PuDNh2Je3DlNmKmTlBo8dY57BKyqxvYaj0ZLTWFJS1rSu8hY+51l\nO70X5AaRbZ25QOvxF2g+8xQAVbrO058SaKyyzIlORGQcXX+L9DVxGB3f+hIAJk7IYnEyeU5NU9Oj\nNzdW8VTbGOcVhw+18EWzGA+GCXU154uPkgqqVY3GWaQXQ42n0tE3NecGIo1yCjyFWGt2xZ60qcFV\nCTydjZnNNPZelRQaNso07mncgKYRCWYBgrnzrVyEzXKvYDadt2iejw2MVl96wVP8n/9IKut6fgHq\nPCyPY6gUUdid4yMYyn31nXg+DUUC+sL9O9zQZiif+tHnuPy0gM2Wc7i6JKI0ipHQWKNQvITx3kOi\nloyjdHx274hE02xlts4HRG1NJS+bnF4Xif7Rn/+bCxt9VsIbL4lD948/888B+JXf+BVOHojtnNdv\nIxW3WxG+NprxAxerGY3zArWqenuFa2vJFzBvFbWdg9B6WM25CHS+cypC9e00mx7BVOz63vkf4Nd/\n9e/JDVXDeu2PP8+Nr0mlZljEnI5l7OPJkNGxap5xgau1Ps2e7AtT1hSqxTq+T6yQdVkKV54UH9Xa\n2W1WNDS8qghi/a11tG6NWWIJPdEq1tZqvLb4jyKnT/xQ7n3lYx//irX2w3wbel+YD8aNcLvXqFsh\n0+sykf5T57h/V9NZnQPqN7VJ697rVGoSWE059W1BS51oLd/hiqYHP/nYNj3FDBwlp3wxksP0qmLg\ncZpiFt2IHmWk6jA0FeU7rp9j9YXdFr5GIhpFiqMr1lbP+awagSI8m8qjqT0m8yyl3dPfaRenwA04\nUVRqr9cmmD+w65NqC3MT+ph55yVNBy6KelElaavXWPGFKdRJTaY9JlvrXRw9sOldOdyzYUqpHXZn\nI8PXDrUZ680pLY12mP0RxY6YMQ31kFedLRqBbO5Zw6U+kfE31tdpt+Rd9492GVfiVOtX8l1VRlQj\nVZ+rB0R97WpVxXhaGnw0PObVoThg37ov6jVptmi66jsOxp9Xmr4NLpPnFXhzmPg56ralSOc9Ki2l\nOiLL2mJ08R2vWLRtrzTJzMss3Z58Hh2fEpxRcJrZFzCJMMBkIsLmaPd1oo7WiRQF/UTerxU12NmQ\n+05xcDQSUSuUvY/HzMyh7C0HU5mr1DqL/qfTwzGZmlBm55z+rkVTS9ynk5iGAvUkFfQLEU4ze4Kr\nqNOPSkvzYUlLWtK76H2hKbhOQLd1jmRcUa+KamhuJUx9KeapTndJbkpOQpjcwCha8+pAASybHTY0\nx+DymR6XNsWZd+lCn1Dj9CezJhtbInmjG3Lf/Vswe7Qkr3dRWfN2LqcxKGwAwWaEv6It5HhIGIsU\njmeqGoYFtWh+9MKaiWosm22X5o5w9lABW+7ulfhq2qRlusgFKI1HVzMk0yDDqsSf++ZMDbXyegNU\n6hhM9kekvmgCYenjaSWiZjaTNGr6Z2QMN798n6+9Lhrbx5+7yuV1Mem2Vi8xeVXj9E+I9AmKziJU\nW85q+pdFS6uqcgHHFg9L2iva+VhTnw8mOc07ImGrM2N6vqxZmQWMbohm8pk3fo3f+d8FJOXOiWgK\n4zjH074J7TDAuvOy+5J0njWZl3jz3hHzf62qBdZDaVnA7VmqBdSbazxarbnzcJ5NWzPTtQ4HcKi+\nPK9ZMZ2pSfAN2U+7d+6xMZD1r4tsoYV6qy6DQBb+TKsHqi3VmkFqE0uiZuP+bkoy0FC2Y4kTBTK+\nm+Ouyhy2tMGRacJA29nnayWJwtHVcQ9uy1pXj43ZNDt8J/S+YAq1A3nkkicj8qHYstFWwcm+MAJz\n95T6VCbecz18VbsHXVmAQc9wSXHtLm567GgPQxJL5eqCZzVhLKmtfUc22EovIjnRVS7tI3kVAIxr\n8HTD102f1eelk9Ps2CxsXH/SoaWmQjSQg/7U2WepPFmsjZUWLcX222rvkHXmlZjyjIPbe9y7JWP7\n7JuvcPBQ7nGSJYRGmGGanuBrHYCn0OsELqX2s/T9kLRSWPvyFKORkaNRTK6bMDlQlbTX4uhQqgXf\nHN5j3ZdD//EfvEKnqepuWNEoxW4NWxrnT2+RlbIOTm8DT6sMa6ZMc3l2GtQMzgjq0ehIAHCG9f5C\nRb+0eZVSI0l5kvKVE8nJ+M1/8VVe+4Y0u8lqhe13Da6mPHu+T6I+ozQumWnkxtY18xJ+152Xb9eL\nkuyyKnnbl2ZxnLm9ZSnV1zLv7uQGLWrtA9lauYBR2Kuo3Wf6UHIZHjyUvXlsY9J78ruqMaWtJkqj\nMEw9TYAjpafmkdH8AayD58jYO/2IwJf5nrpTRppDMTtNqDJ59p07Mq+3smPO70gHrNXWDvuq90ez\nA1Z1zw3cC0zsHP780WhpPixpSUt6F70vNAWCCnZO8cbnKJVP5ckBjUydL+UuvqbEBlHBRk/bwKuq\n1/F8NtSptXOmy8BXKVZPiNXx5Ww0SRS6ym1LIVX0eoKnKmdVlKBxZb5Nk14vdPHmUHFui8mBSKum\nW+CNxMtuqNnclpj1k1fleZ/40McZqI9zpdugsyXZi8a0YV6AlGn04YcsU3Uy/dhXvsh/97/8SwCO\n3poyihSwxFhKM08lVlW1HZCP55V8HrFGXJqrHt01mZd4ryauNO9hS36/4bkUscbY+zk/+UkBITnj\nBXj6HibzqFWDmHvQy9kZZgoyMrIpRSzv3xys0lNTisaEJFEsyJas3eQ0otxUjabZpJrI+9/afZ0b\n118E4M0vf42p3rvZFanqBy5ddSobx8HRRIayLgWrDbDWYtVxZzQjsq7f0VDG1rwTYqBWrcFUFWmq\nEGp6MvLCYnQftlbNohjL1D7Hd6RILakVT2NiiNFU62mKq/cNmwFRNM88dXCjOWK0PjcCz5X9FLU9\nXDU16rWYU82/GUY58VSun+Sy/sO3hhwxb77j8dgF6RkSklE0pElM5bgLR+qj0vuCKRgiHO8p3A0X\n90iq98phRKbQ4W7h4IYaFvIMLT0IvnqbW46lob0Ky0mDREFRygn4jrZOP4xhLBu6HYvt/PELF5g5\nolrN7sBEU55t9a1hKTzAP9XN0y5YC7SdO1CpGry5GfF8V0JIH1EwjafPPkakaD1huMG8+hjToZ6J\nt99pyQGsebhIELp27Tx//UNSR3H9xi4nIzUVIp+OpvyONSnISQrQGg2ngMJTez9vYA7Vs54ZSsXM\nN1oz0vUt+UgO2LOPX2LnaYlaNAYVJtDagPWzuGozU4utO751k/G+3OOkPOSiqyG9/gZuqD0tBwFj\nrUCdOuLEiNwteh25VxgfkztiVn3t3n1+998qnuFkjK9r3dWwb9f3F122isIu6g98x6NUlC1DJbFZ\nWDRorWtLPa++fMfiGmMWbduNlYasAKn6g3xjF0lv9d2YznlhrJ3QJ9O1nuzL70+zko5GgVb8DlZN\nutBAS8OajhfS7sk9PK2cdMoGKACr12+j+Wg4xmXtVCNCRUY8E+Zze1f7S8ZdMm0gXPgR49N9fUaX\nDa3XKVKwznfmOFuaD0ta0pLeRe8LTYHS4u6nFNbgaXGRSRq4WlfuhR0CTfn1ejUrZ4Tr9sby3eqg\nRRFp4YzNqbRazO/UGE33bAYuZqz164p5cGx9zvkimW9Ex/iK8VcaS/WtVIWiBgXmsJOazMjzMiAJ\n5B5XLz/F9jVxyq2vyXj9AnyFNacqIVX05GyKVTi2WqHd6nRCfSAqd2O9wZWrEps+1/Y51fh4WLgY\nhXQjtocAACAASURBVO5CY9iZzbDqkKp8h8gXTcHMItym3M9zDK2RwtZrQZT7xBZPPicaVCe9REc1\nFrcucByFZmsOmENuVqlWlFbOAqZu/7Xb7D0tUvDaWfAUvyGsHZqarutOZbw7/U0auYyn6gX0FfL6\n5md/l4O3FLPH1IvmOm1XNJuOB9m8MUwak6ujMcsLSSoDGaMqCvN1rLGPlIwy1yZKvW/tsNA2jkcn\ntEYyjvbmNtSixg+a8tx+qyKbqPlnwJkpnuXFFp4CqgSBoaHHrrkqc1xl4KhWGIRN3K4iXs9SvBV1\neI6g1u7mfW0MdBwdUCpMYZm3OJ5IxVPLv0hpRZMbnXfZsv+f2Ml/Ir0vmIKta/I0AeeUQqvzvLZL\nWQiD8NM+3sb/w96bxeiWnddha5/5/PNU4617q+7Q9/ZI9sBZHCTSsmRKiJVAtuMoyAABCfLgxPBD\n4gQIkIcIcJ4SIQ8JgiSOHSSQFU8SBYk2JVOiKIrNqZs9d9+xqm7N9c/DmffOw7fO32RAmU21Ql0b\ntYHGrf7rrzPss8+3v2F9a5GL0M0wpSqOT7d222vCYv/B8WS67Izz8gqqdP3yeYQklJ/HJGzBIluq\nNAWOi4S9Cnn8Q+oQCtBl7O9YKNivEac5QJd5BSE6imXGgvmHAjAZqxb5HDAlH38Dmm63Ic9etjiF\noRx8PraWIJyu58Jn67CCQlrmXcqXVRtoJkVsE0EzPCoKB+cjAotOF1hUGH8P5ffJLIRVk3AnuKQA\nQ8Sjo6XOCcAMD4GUbqlfkpH0MYmkfLmYDzAZiAG8kqzD99iWXmhERGfO6OLnaoxNiv/6xQx5ISHD\nW6+8ingoz91SNlz+XQm8TI0FTS2IxSJDTnRnlhXLMMAY8274UMYKxffkEb7HOBjI+gNERascBasz\nRr+rR1noHBFzHHo2QUNLGdUl52Kt4SEaSA5gHhp0CN9sWBUUCWXkfbNEWWZpuc58WAS4Ke1B81mb\n3IVi9cxxKvDYExEwp9Kt+5jNSuafHDnzIQXmKJwScGZhHH5/efaHjYvw4WJcjIvxfeOR8BSgEsC5\nB9hrcFZZa0YDNglHjHIR2uLCJvYhWnSvgkBc1cL1kSTsH2/ZGM6obnQa44jWs+Gm8Nhdp0hndjqL\nYFdI294OUFBAI8kKFPmf7GoGlr1U4IEnGV4AyNJ0yeF3Yp2gWpPavKI6UOEpFKQ6V1CwWLvWGsgX\npG0vPYXcQUGevXQ4QsJE4pWrq7hD3cyZZaAmhFjz3jKjUZBvwtIeNCsYljOHTSq0xWSIs4Xc60pd\nlkAwcOCGZMe+/y10euLlhJkPj+rZeZZDk605GotHVMzewYh0ZaqnkZFirHhuA9GJPBOn2UEjpSgN\nFaaOB29iRgWsburAMrLbespBdUu+e37HWuIQCvIrRnEMl17MPFogphCNNhq67P/A94QBFJMxWLaH\nQEEtGY6NeRefooxaOhjfyzNYeiAWFObsmXBcByk7UL1rco3V76ziNBfPpVJNEFJ0yHFc+ESf2VUH\nhpWULC9Fb2IYYm+8RhM5Yx6jU9hk//aDOmolcApSWQjrLqKCCuNWFSlf59H5LqbE7XT8JgqGqe91\nXHgKF+NiXIzvG4+Ep6CUA9tZgdOowWZsldohihFrsPM+4obEmelsBndBq0vF6FuOB5+WseJ18M5U\nEIvRYIwxE3e9egCVSrx3EDEOs31UmKCE66B6mXXjVwxOJ9SE/EGCvYGBw7hdeR4i2tZCa8RZuXNH\nsM6lnGSxIcX0FtDc+ZTdgKHWYlZMkPUlLk9J7Jp4MUAE3mwwx7BPWbncRrdsHjIJLC15h0Em91Zk\ngCb/gTIJprHsRqPJBKNT2dHzwRgZ98LKhsT1SV7AYvJ0dDjC7FCuZ8Py0balpJosHOhVTgFl9ey1\nFRS+7P6TwQH6xw/kGN95E8GnBW1nLBdgbscpqFOQrCJmPDxbxAgc8aBuPfc09OuSgLv/9lehuKO7\nU4rBOAliegq5pWBTyg+OWfZAaW2QlGS7+nvrj/zHUv+f/AKfuwIcIlJL7ILWGi4TmLay4BMh2Wh0\nkJGVeXgonufd0wXmSs67NQ5RNEveBw2rKs9MTwPMS1ZpI/fsWQ1ovopuLV3SRNthHUjZrBUqVJgg\nD9YF3xLUu8jJ6RDnGaYLalCO0iV8vW9NoDolP8V7G4+EUYA2sBYZjK0RdrmgtQfdIkuyV4PpSw02\nyQ6gmpKJ16ScO98ELrvMZGcOrIm8jAfzY2TkwTvfjzGcyEzZ5MMzSYSCL16RF+hwAXW2Q+R7MpH9\nYY6iFIItHasYyNulCGiy7NTTGogIbbVNA32KobRTwV6E53VYlxkSnS1gMRmUDSJkdfm7jDDbPAYS\nYiHiVoABuyfTIkVMl3hDuQCFbShhCA0DzUWlHBfKKevuEUbE6ruIEKXsmdgt5ziHb0u40lzxcbov\n1z6pJQhIg6+utOHPidtnh5/OMngthnNv+pgPBW9xcvoa4tck5OsOr2DgyHwOHsp91BMfZ2/Jccet\nEzzRFsPyqac+iJ6S5/uVP/oyEj6f1KIxTXJM2c2ZZzEsJiId3152bsZFgpiJ4CVACOp7ko9YwtGN\n0svEo2UpOAQJ5DxvZsyy4uI5Fmqh3H/Nr0CTiCejyNDJaHdJ2hNETawMZY7CZ2sI2NEbhgqKTNFe\nrxQVXsCGGA1McjhN+VzpHODas6YOrDpFZ1j58esKmsnHKFggT8grmmrM9qUSkdVztHADP8p43+GD\nUspWSr2klPot/v9VpdSLSqk7Sql/oJS6EIq8GBfjX6HxZ+Ep/GcQpif2/+G/A/DfG2N+TSn1PwP4\nZQD/07/0CEahyGx4zhxxLAmn+mUX8weC1krOJpiy6cQphrh9LK5tnY1Pp9Mn8PwtcYMfD7uoED3X\nPz/D0bHsXCZPMKUYiib6sWYlsOlqdz0LGcuFPbWC/qbs0tPUlHCCJXnJzDHLBF6mNTy7JOkwYH8S\nxmcZ3q5L6BJNxYLfeCFB60Dgw+nRPQSl5U8LZKlM3/65hD53j+/iIWm3EjvA7n1pvtk7HsJliHJW\nACNSxS1YNiyAd2XCTIzpuczh7CyBV5Ud6GY1wPqWzN06tTD8boDBoXg00e0B7k0k1JifGkwoPnM5\nuQTtSpg2Zfik+1NEhO1+52QfX7gtLsvv3D3GpY5IoV17fAtzktgGWvaIS2tdHJPZ2rEy6IZc8/bP\n/BVYjjTFWcpdwr8VqeviOAE9ZnQ8D2tdmcOtbhuqK8c+3TvHvSPxCsfU+VTKWipYGygoehW5LlCw\nY9KxVOlYwFKl9wA49DAC10GLc1gxBRxiS4ZT8RSOhlMsKHvouwa2xSa9ooKgKvPtrLhQxJGEdflM\nZ2Ypq52nMTQbpexcQ3viCTo6RGGIX2Dy3EK8bODKjEZEHVYLCxTUDVW6ipPkPTK2crxfLcktAD8H\n4FcA/C1KyX0WwL/Dr/w9AP8NfphRsArY9TEsZwshY8usH8Kps/1zNkfz5k8AADbsKS6vkeV4xM6y\n9gaut2VBPPXMJl5+hUCeP5pjxJBBKwudloA4ntwSRqeqO0ajJXFheraHSch4N8qxGouRmVbPwcQ/\nNPnGa0UOb5khtgDWoJUx2N6Uisj1zTa218Ul3n31JQDAO/cd9Fp3AQCXwik6N8RNrvnbGA7FGHzj\nJcH9/+4bD6AZBN/c3kKTArKNTh3DI5mj1F0s24FrJQ4AObIyXi5s6SsB8Nh2Fa1VOV8zTeGvSnXB\nIdzZnRgcL8TY3m8s0PLF9Z+NT+CTWWlvfA/VQObLSmRBH5yf4Q+ptfjGJAFRvlitV3FAINpaX2Ny\nKPNiNeTZ3Y52sc9wpqtWUbssRuPWxjpurrGnJWgjSuXcvU253igaoaHlGvJ4hI2WGLV2zcXOE9Li\nnW9NMMnFGJ6R8Wg+LnByLNdzb7TAaF5m5C2osoyvzBKfUIYajm3D9eV62q0aFKmmJ9kcXoth7MoD\nOdcfxsjJ4mSH1lKoZzqd4B7zR/l5hFZXEjMdbkiBV4VHksrQq8GkZNZKI0xH8qyTucZkIZ9PhqQX\nsCO0axQsrlagyazl+AoNPtdxliMjwOm9jvcbPvwPAP5zvMt01QUwMsaUmY2HAH5gM7dS6j9SSn1L\nKfUtnSXv8zIuxsW4GH9W40/tKSilfh7AqTHm20qpn/xR//57pej99rrxaltwwxAJpdZUEcN1dgAA\n4XofK0zKFHuHODxnI8pcdoPn3Qp6N4VLf/VSB5X7YiXXNhrIC9mt641NGHICtmgKbx+dYK2QXS6e\npujx95daHt6qyw5TvWNj5DI8iFmKcDQiZvW1Z8OmorClLdgWPY+Fwhu74kofsZ39m2++hZDCHH/l\nM8/hqa7oii0WClNCtk/OKWteeFjQ3d09n0KzYjKazzHkjpAqwCcvYeYTJh1jmVwDclxpSZIpzlNo\nZrLnWbzcEbOxuJne2jPIIlKG9WOk7NZaW8kxnZcCKD0oV1CkddKLOVEB7ctO1AptbO3I76uuj+qM\ndGUTH6srRCHS7RpMVpAy4RapGKeUmJvPC9g26//dGmqZPJPPPSvckOt1g6N9OcZLu3fxjQcSViW6\nwJN9+fyTn7mFz3/i5+U6ydfZP9/HG6+IN/aPvvpNvPWgJFl5FxKdpRqac15yLNiWQuCXtGoVGHbV\nHp6PEGvqKRzJfQyTGC02ObXcKlzyUCRhG3kgnlWR2njIePR0T9ZvrxJhdUU6ae2ehk2PYDwZY0Bq\ntrP5GIsZk8Jcv45uIWUoUSlyOJ54W2HYhe3LtS1G5zD0vt/reL8Cs/+GUurzAAJITuFXAbSUUg69\nhS0ABz/sQMoAVmahSHKosUxUHiZwe/K0qoWD9C3JKUyGe1ARXWVCdL8xnOE6uwg/FVzG4yS2HN3c\nQHFVQobD3Soesrfhi3f/mfz9YoHOMZWlXBueI6WeS48VaB+yzKg0kLPsxacRJREckqGYwoFXlrEC\ng3ZH3NyhyjE9lwfWtOVhpZGBIY+eu72G9rXn5NyHB3jlNSGjBYlHNsMmBux0u9M/QsrqQztwlp3d\nVaNQFZuH0TFXtoXvQenYaFXl2vv3Yzx8KCTf4+EUx6ScatI1fvz6Oc5q8tnLe300SQJ6hgUURWgb\n1jpufUDUibyuzHEvfRHB/XLR5TC5TMwkt7B7LAv6SlBFnsmxS5Ym1wmRHlOvsz3D5TPyMp6ewkvE\nEDx/8zHcJrPUrac+CQBYiQcYDr8mt1pLEdFALrICe2xb//YrGh/5gLQRb1Iz0t7sYT6Q69ypV3AQ\niPGdxPESbpykBWzG9o2K3IeGAsoSb2FDKxqA4RQ2y91rY7nGpqvhkwCmqaqwqVQ2LBaIKRmvlYNa\nJGvEXpfvLvIIk7nE/XV3a8mfmc+GcEgKq04SJBT9HYzFaLhGwaWRWt1poeLKzy3bQsvhOVoWzKRM\n97238acOH4wx/6UxZssYswPg3wbwL4wxvwTgywB+kV+7kKK/GBfjX7Hx/wdO4b8A8GtKqf8WwEsA\n/rcf9gdGKxSRB1udLqmwPT+CNZVdYHP1A1BdSRJVs6qIsQDIQmlIyWrXYCgxtzhVqPg7cly3gYDS\n6KNiHxUmBDcrsnsM8mNcZt3Zgoucbut8uobTeanKrFBYJWlJKXuuoHIKgPgWVMhQYlzgUlM8k48+\n+wSmJMgoJdb8wsaoK+d4avUWvIDgrLCJI2Ia1kKx8GtPhrCZjulN3sDRXXF9C8dGSgbnKCtwNpLj\nRdzNjVLv9vuoApZh9roSLDU2j87n+G5Jf0ZXVe1P0KJoSKQUrlGOLvI0PrQiHtQzz38KvSclTCtc\n+bvaw31oLYnUOI9gXMrEuxmepq5mx3ExI2S9lFKDNUV/Jj/rWYbFsXT1fXg0wpgCLpevXUGV6anx\nUBi8m/UqLl8WMFUcRwifkPueT3y01+RZtn0f9pDMzdxd+5MFilTme3t7BYaZ/N3pBJMzmaNZFsFm\nMrneFY9mNJxjwbBxGs/RZMUgSxOEbJSqE0xm+RYs4htO4xHsiICruUIQks6+YpVq92j5kiSt+wUU\nQU+ureFZ/K7jwndJq9YKUWlLsrZFwJ1fKZCeiTdWDzuok5PBtQzAMLyi3pXQe6/jz8QoGGN+H8Dv\n8+d7AD7yZ3Hci3ExLsaPfzwSiEajUuTOPpRpwKMVLAoNVRcr2bw2gbsrFjp2HOyss698RQhTdX4F\nH3tMdo/2dh2mJhb8evo8qlfFcm/vbuN8Krv/1Tdlx38ljHDtkuyC9XoL4WWx0PHoGP4Zk0s2sCBC\nUBsyQdkaFsVClOciY9IxTSP0Wd9f3bqEa4QQu0xJbD9+GZpKJ1u9LgwpzZJ2dSn0USeis3v5CpxA\nzrH9lsY7TWpHeAYP92VX3eufYDElHHtMejQrhikRmMZGXMh89lY1PqIlWTeafgOKEngZE2oDBNhk\nDT5VPl5Yle1sLazg07/wWZnbj30SDmnFHGIhth7/CH7hs/Kcvv6tr8GmFNqljo+YybXmeohxREEc\neiYvn9/FKvMa94cJJN0LNDe7cG7JsfPXLXQ++DwAYOenJCmbPNzHOr2xam2BDz8hayAKXcyZG2iH\nXaw8Ll7WlMK1UWYhYyLo+Y9+Bk88J3M4WxhMyF40ikaYsRV7NhGP55uv30WGktEpx5yNa27Vg8XG\nvMvPUZX6pTr6FKhtrFWxVpd7bnevoEevsHF5HSYv+SCYHI4mMESe+p02fMKqm60erJqULzd3QhTU\ni7CJ6ASA7IZ4GFmhkC74czCGYrOdO3cR1H+0LMEjYRRgbOi8icKewGMFILcM8ikTMbMC22vsRFu5\ngsconKJr4n6t2h2sbkooobSFsClu5M61K6gFhOB+uIrJWHKeH3pdXNFP7G2gT9n22FYAqcO1WsdL\nR+Kum8jA4gNTeVm7BpyiXCgauoRKa40hASQNN0d7VbD/DqsBCxXDZyG/3r2EglBcK7Sx0ZF7KbsF\nm16AelfcwUsfuoYPPCGgp3tnd/CKkvvIWzHqU1kof3hPsvDDAQCr5Ccs4OQEJ4UNXGkKrLi9tYXO\nilznOeXiz50uWmSUrnobeOGzkgTtVrdQf0Luw7IKGKfsE6DK0VM38BTJQtafW0c8kuNWOz5AxSnT\nqUBrcbELktA0v3MZ7deFTMW58wAZFad6GxtLQM7as9fxzONiFDbITRCvA7VIntmVnc/AprLW+XiI\n8yPBWbQ6K7AymTuLwKo09wBfzrF2aRO+KwCpbHKKdE3c8tjMMSbf5mtHMscPjo9h+iWlmwXHZV+C\nZyMhVmUcyXqbuQ5cdkNu+Q1cuiJrslvvoeJJ4jZwLIBrMmWlYmJSZAk7JgsXLsF3jdbGUubea7VA\ntQJYNDA6WyAjpmE6T+A05DlM5gZgorQYFAhrP1r4cNEleTEuxsX4vvFIeAomT5GfPUAe5HCNWDVV\nbyObkZRyfg1uV6x5LRxhoyWJwohdlOhY8GjBA6uK2ZCcBVEdTos1di+ATlhj/4xgCTaH1zFjs8/d\nN+/jdCAexGByimJISTfLQEGsrk0L7+gZFM+Xp/lSWATG4PhUQpSFdtGh++/YsqPUkwZsNg/B8VD0\nJXl69tY+OqviJupErseeJahwNw4ut5D5ssNeyWu4Rzd5I3UAYgRCNjgZGwA9Gtg2/DrLbcMFlCs7\nbKcZolqXuVsfcw6bV9Ba2ZE/a3ioFZIkDFtdgC51MjyEiWXJeJuC5rNrIfyOeCud9RtIVqnp6bTh\nXmPcNC2gSRs3n4oncfXqDRzclvm+2ukjYFNZr76KiGW4rVYbVzeon0jFneniFA6p4pxiAUWvAosc\nil6Mi+oyrHJseeaxpXHyUOZ7dX0TDsMYxw9gK0Kw7QaS8SGfA7kssmJZis6KfLlzV902EpZAg2O5\nt8s1jbvnMt8HBxEqhZQs6880UeOzVIUDl0nOsqtzqhcw7Oq0hxmsbZl7u8jh+myImqUASXZBzIql\ncxgmjAMnw2gh3k0Ra2iWw9GMYM+45t7jeCSMArSBXmQwizOkfPEajQgZNQxHe2MchzJptZnGdMYO\nsEwWo7W6vhRdzfwRLMbRMzOAvU8js5HDYZyVcMF4ykbBzKylM/QJm/7G/RHustMyUUDBl9qhi+tp\nBx4B+JHJseD5jDboj2Uh3P3Oq2hT2cVjj4albYAvdDE/QR7JC1Q1fTBUx/jbstCSTgR7iyFFNIM+\nF9/x8PYu0kS+M50Bh5SU75PKHPa7bcFKaUz60vsR7QUINuUXNy430Ftb47URNLN9DY4i8Go2xPye\niLbMvvYHGPliTLIHA6x+gFDp4MMyJ0MHmm70YrSH5EzmyG/mcBlWWIs5crqzaV8M9mJ+D3VCnm+1\nr0DtC9BLFxFQ6lS2cwRUA7P4Uumwjpgv46R/G1XG+EleIKFbfRYPUfTl8wqrKKOjGb77puhSVh1g\n5zrbj1NbODcBJHaK2VjuZcjqxXQRISH9mwsfdikck7/br5CQVm9rpYkDVs/2F2doz4k5metl5cq4\nAMrOVf57MoyRzgc8xg5Mxtb4pA+TsHJlSwUJEFUrmasCoD5m7gLpWH4epaeos8Sh3ACzOduJ3+O4\nCB8uxsW4GN83HglPwfYVWjcCWOoxRCSeqHtbQENcuNg5RHIoiaHWqo3LK2Jhj/ZYKx/FqLBz0EYC\nO6MgyfkQDhF7o9tvw87ELVtZlX/z+R6KQo4xj8cYJbLLH/QPwQ0KDdfBOCH/AsOISsOFV7ZD5hES\nKv9aSmNBVpZ//M1vYWNHMuCNZyRzbrsOLFp5SwF+jda8do75gwcAgMFMkmXxdIBmlRWJyx0UupT+\nspfup3ZGmBjxNjzScoVOAcNqiWU5CFmnX/toC8Wy+04h7Aky0aU2hdu5CkxIR7d/B7tf/o5cj++i\n3RD3ejwbwz4T7yz9prjZZ8ffwte+TaRkofH0NakGfOSFZ1Fh16IVjZCSvi0+lOuNAsAn7Vq7uIyy\nPek0GmC1LaGU47QQMlTwfSb7fCAjt0I2ixERgp66DnzKsS2mMywielP0IN9+5Q28tXsPAFDtxGiv\ny/XUV7pLhGiRTTH3ZadPS+yzsdFpyf3bvoPRVK5jEUcIymRzT3bz0bcMJpz7jqWhCX+HiUHNFrjN\nKgz34jFd/Nk0pUApkFgOZmfsbJ0dLb2KRs1FyOqCrUhY06wDHsOS0RjTcwmPongAZ4co2pMYG7UO\nfpTxSBgF1wtwaecxBFUfQ0VBzZmBn4sh0IsBMrYhO2YFYy6wIxKrrCeHOH6dqknNZFlms+d96D6B\nPo0ewJJkSPafJB7ghHmLh7MYc1qCqlVBStBPvNAorLK3QRZYvVpHSAkhqzBIyCCU5gVi5hfeuHMH\nJxRXeZZVEse2wC5raE8hJfT1pP8QgzfEtZ3PpDh3dhaj4YoC0dXqY1CeZLIT28GQWKpU2+hVxMCd\nRfJ37kRBMf52C6DW2JG5qK1AnYvBUa4N6LL1U3IY+X2NIpa5v/Obr+K37r0CAHj81lW4hPH22xr5\nG/J3a09K/Lp7PMErI5nvSTKD4dyuZnvAQi60WrMwSyUci9jtmXmX0GrLNfv9At0dMU5vH+zDC0iN\n315BsyautMPwqN5sIyWwLFy5ipygqHQ2R8K5c9ICKz12D9YkTGi13kCXavZOP0BGJis0M9gUDFKZ\nhTmp8iPmtpqVAH5DDGGUJpiNJMyJFxHqaxJ6zQ/kOb86fgcJe0rChS0QeQDT8RT1iryYykyQ8EXv\nD+R6k/kY1UB+n6YZEoars7lZ8m1qe4qMeSOXuSo3iZGSE3I0PEffiFE4mtuoDeVZepMqOhvvVSVV\nxkX4cDEuxsX4vvFIeAq2clB1uoA2aAfiEZylDta2xOca78aIyEG4aBQYQLyCwa5YzFHwEt48k0y2\nSgo8vS1ApiIwWN0k6CmykM3Eep6fS3OVnp1jxF3+4GSK4UJ2Od9PUCEAaG4ZIOduRVg11AI53csA\nATzqRbiLBDk1IM6TCHdOxF39C5lAg11dhWqSyXc4QbJHDcLzBHO6wb1Lcr3dThUFe/pHoxSuJzgE\nN4tgUz/R0UBIbIFH6TLLU/AzSpmHDbh0/Z04QwzZKudRBeaAish3CBQqMmQTme870RvIlXggThGg\nn0uyslrUsNoRLy1hT3/NquEJalSej5uorsl1vD7Yg3Usy+tys4kRaeNiysCF6Q0s9rjLNw7QyOV8\nr/3+iwh57katA2VKgRfiA1IDxSanMBwtcR1JcYKjM3bYJikuPS4NUfWqPLPP/KUcQUPOvX1pG92a\n3MfCKPjUGHVshcpUzuMxFKl3Gggo1HJ2MkRE/orQtdBkN5q7Irt105+jHzMYSQ0O7otXUWtV0ZzS\nnU+AYiH3vcS/oEAQUpynfwpng9WuPIZNCH0xsZH05P6yKT1XN13CqnNES/7Phmdh9Lp4wOGlBZxC\nPO73Oh4Jo5AXGqNRDKsywdmBvBxh1caEOPTINYiZTf5GluKOJ5NdsSQTXi1SzMmXpx2N4OgBAJFt\nt+8x/nb3kPFlGs9kQS/mI7gEkEyjDEPGbLFlY1bqUWobeUFOvDarFrYCGC5GSODR4XIthYJx5nwW\n4f47rwMAsgPRZQy2dwDyQFoRkCh50UMPuPr4jnyXxCPj/hCLibxIWf8EFbZIn6Ux4oLdcpmDgvkM\nQ5IOlboAs9RhqJHMxUXNzpuYM4PvjQbon0kooWWqMIqBB32Jwxeuj5956nEAwLW//EFg/z7vv46c\nQqj3bwurkgpa+OSHxUUf9h3YVZnjb732x/j2roRE524XKTteLQrjuFtvIyIyT+9l0BUxPN89O1yG\nf1ee3MatDXmpayEz7spBruX36XAGK5NnOUsL7O+KsV+MpzAEUV2ljqcT2vDaFJ8JNAoacs+yodlf\nkdkpHKJhS17GLM5wTqWu4WyOjDkjL7XRYO5Dt2Rd+LbGNJLj3p33cdMlGVBuYxHLMXSuYJcMSj57\nNdoeeissG6oCWcR8RsVF4nJdRzZsIhoV+S6TaAKPlabcsqHIimW8GRbnJflOAKPEQLzXcRE+QwWS\nfgAAIABJREFUXIyLcTG+bzwSnkKhFxhHL6O9+hQcl735VhN2nZWIcAV4mx9vNmHbYvnSXEKKanYF\nWGOX3eUWDKG7Lb+C6qnsGFNf45u3ZXcccBeZpTFqxOqbOMOA2oazLF0ClXpOjjEBO2Yotf1k5RDE\n2sBDAE3QTOA7yFnTTvMcL771AACwpyWMuGU1lhxVTq+H5kjcuoNvPEBOQpI7+5Q3b/kIAvYLoICe\nyzkGUYqzAfUTswQzdhoGRnaJaxWNQcRKhL6MRSbzYq1FsMeS8Mx8A0MMReHITttSFXxsLGHAm+cL\nLDqStBp8+x5ibkernQUs1gl61MlUZzk67MvoNj188Y/lXgdxgK3HifEvCgSe3Euo5Bpm8wHOYzlH\nZaEwpC7jw70TbH5AvvPyb72OzrrM0aduSlJvoYZwPZkrN6hiNBUv5v7xQwSO/N2lrcvorknIl5KT\nIl6keHhHnofZqaFTEQ9k1bWwSuq5oGHhgOrXw5nstEfjOeaUistMAptsz7Waj4gdG6O6eDmTRYCC\nfQuZbZCy87HWyNBsSEiUKYN5RrwMpeWblTpycn46QRM54e+T4dmyMuJ1HaiJrHeQQ8KrOihKQaGp\nhXKPf3gwxs6TMhejCdBoP4YfZVx4ChfjYlyM7xuPhKegtYXJzAcKC4ox8jB00Kw8DQBQiz30nmKT\nzGYPmiXJsz1BNs4fvoWMQi/3ChfRSHY/k3qwWBYamwXePJFcRIe13V5Yg+aW/2Y8xpy7PBRQkLNh\n3i+Q+7KLmYhlw8iHz+TTNJ4iJyLO9arQpSiLNpjQso9eld06uRohPRXugcVLcxy+JF7B/jffxD53\no5hw4If7Q3gd+eyT9evIa7IzP7j7EK/2edw0glcypVKHIZ8AflvyL+Z8Hw+PPggAiKIZekZ2wY6/\nCk1y1NaW7MA72zewOJMd/9f/73+At35X5vaTTzyNZ39OsAev7Q7Qr8m5fSYle1d8ZJnE7f/Pd38D\nL35NWJH+wvUb2HZENs8JMvgbsnPfeSB5km+/OsFsKjvtugGm5JxY2B7eflOe08npFH+8J6XRJ9bI\noGRlaAZMnq6FePngNQDA7379JVwNZHfUlTFmx2SAyuQ+js/P8N23pZS5e+Dh1k2Zo51LG2h25dhn\nswRvRfKsH+zJNYxmC8wXFOy1sRSC1bDx8ETm8/d+41sAgKMkQosyb67l44yMsG6RIaBgjh1qTIn6\nPCec++RggdWKrOnVKxoVUt5FSN8lHk4GWKNA0foacyNOZSkVFxcT7NPJPnUC9NpyT09tP43m9R9I\nk/onjkfDKMQx4rffhj0PYK/KDXtuB24gk+O2KwiO5IGuBTs4jWUxhVReCurv4IYlLtLOToDpO5Iw\nm83vwSE9mGM7uEFKsIB9C9WaheMzmcnZdIaUjLtBxUFMjca0opFEZcs03fZxjMRhd2VWQDMm0LaN\nUrjYUoAmXuCLB5Jw7O4/jXUyYzleiMvX5WXqnNu4pmUR3juVRZzMM+SkeRtlC2TnYlj2d48xIY34\nPEthSN9WsIat122kEZN5tRgV3tPwYYHwo3IfHcfHjEIlNmXtTX2M+qZk7P/TX/pP8H8O/i4AIErP\nYWcvyNx/5hZudEgAoslFODcYn7Gmf9fHL94S+PNf/4ufh9MSozZ4sItkwe5J4vPNwR4WQ/m9WXGQ\nUJ3K6ceI6ww7hgu02Itw50QqJ5X8HAFDik61B02NyvPjCLWeGOqnn3gMQU7RmkM5b60yx3XCxrO8\ngBsx2WeH0KG83PH+GQZvSvgzH8t8o8hhl7BibVCn9mi75aFD7kOLXKFX/BzP7sjL3x96eLiQzWnv\ncIztS3KvdXcNTqtUkqbm6TxFzZeFURkD7R1WF041aqR3U0UTTRK/1Ilj0BGgY7l217JQqVCl/aGP\ndE+ez9bPrGBtXZ7rex0X4cPFuBgX4/vGI+EpKLARLbqDYiJEIL31HKvsSNvudRERqplpIJuJJ+Aw\nAXj5mSfxWC5ew5XLCnavLJFVsH9Hyn5RdAZ6drCYZPMBTEuBEKWlmQiA0S4chg9KV5CQrFOVs2WA\nhBRdSaFhlXqFrvArAIDn2QjZ1XZywJ0omMJZE8izbvUx+kNBE+7bB3jIEuEDcgVM/ByhL+c9W6RY\n0K09WUQYs+yVFhoWEXQBS6hdv4MBS3p+VcEhf8HmFQdeWbJCBp/cAu2W7Pxq3Yfjyz11n7+Cn/uF\nTwEA/ujLt3H7638AANjYX4V3XeDRwdNE4L3yNvbv3AYAPFXdw/Of/xl5fs9uIpnIrlvPPGiLCEpq\nEITNBB3OoaMBjy5WpepBUVyl3bEQ3pV5OQ6/CgC42rqBeZO4AjXF3JX5vnK5h50NKRGu1Dpwiadw\nenL/q1ET1dfk/ndP9uAQs5BnBnMmnu/1h3g4ZGcu1ayR5EtZOVcBDp+1G+fIHNmZL5GJ+pmnPTxH\noaG3Ow5qRLQiV4j64nkEQQjfk+9s9kjtZhcAE6LVJEEIuc7gcoAOy8+LNEHYoZo4cRVJMsV0Jusl\nb4cI53Lcna0Yn3lGjn158yYcn91273EosyT0+/MbjXrTfPiFj8PKE0zP5CWOUSyFTlxbIWDt3bcc\nDPlS5ARrJEmBmD/neY6QjMmOslCwrmzZNhIy37qUka8EHiqcMMe2oH35/PlPfBq//EufAwBsXd6G\ny8x5PpGF+1//0l+Cz56JdcsgG5BBaJHjjCpU54WBRyj01ZYs1s89fR0xX9h3Huzj/kS+2wkLFHTH\n3xqIy3ke5Uj5wvu+hT5l6WGqy34NY3JEhFWbUn7eUkBB3ET1p/HaV/8WAEDlE0SkQ99/6S28+HUh\nOPnOnrzQh6MIOddCEPjo1ai2FOeYLIiX0NaScWnOuVzk+VL0o2JbSzZj1wKaPvEGoQWP/JeWVRbW\nU5yW3ZVZAUPOy//jq1+D4YvQ7y/wxotvAAD++A/+sczP3jtocA5dW2FtTdzurUsb8CmAYhuFBisi\nFmnPJ+MI44FUlyoNB2FDjFrFD2Gzb8ZrKBR86Q8HbK0Omnj6cTnWzlMfQrsmYaqae3h4JMI9NQLI\nbBUgHZQdlQUSh1DqtEA8pYZmDbDJptQfkRjnjV3c+IDkbVy3hsM9+fyVb7yFYI1szetX4ZEr1CJ+\nJbxUQ86el8E0W3I7djYNnKrMi29XMX1H5vNj//Hf/LYx5kP4IeMifLgYF+NifN94JMIHozNks0Mc\njc5hMlKC2Q4ME22wHfjEDVjGRkCvbEEL7zoesqzsPrTRCuW77UoNScS++FmMeVp2kbEHP3ZhqmJd\nTZFhzp3rja98A69dlx1mrbmCnF1pdk3q+GtWCpfNPvNFigk5EhxtULBvfs2ysUKP5DEmiLqWxnpX\nqM0asUHPkoTpWiPA1ba4uyMmtV6/e4oXB1L/3o9ynGWl8vECEb0fFTgwuXxuM/mU5wUskoLo5EtA\n9O/JvU6P8eZb4h0MRkeY2cxq6zKzbiHkdFu+hUXpeSU55uzZDywbzNEuF07JpQAAmSmQlYhNpWA4\nF0VqlxQJ6NKTqIUWKrzO0aKAT5SepTMkc9kJT88e4t5cZPaiQrzD1TBcCuBsdZtY3ZDk4Up3FcqS\ne6m4dQR1mfuUWptZegqXyta258Oh5xIXMSpsqlJBiGJMRCkxFO0kx8M98VI3V2cYJoKabNR34MSl\n+jXVritn8HsSHirHICCNQRJN4QYkpwkrKLX1PCqjdZo9VJSsrcV0inlfQpjxYgaXJDgLa4iiThhz\njSjPeg/nx/LdaTLCGpnJCytEEInXNDNHS42O9zoeCaOQZjn2jkYo7HhJOGkpA9dmJ6LlICeRSYEc\nBcpuMU60H8KaysOv2g422SF3fbsH2g08uLeH+R5bXLnokiJbQp8tAxTsxLt/tIvf+MKrAAD/9Aa2\nf1Ym9QpkATYSb6nYdJrEOI5l8dsaqDCjfN0L8fOPC6+iycUodJptrD4nZdbV7cfxCbrJrgKaH5fv\nOqTx/tzoHK/9zu8AAP733/4Shsw1nOf50gAYaFT4lpZqgUoDmmIwGhZmJGdZvDbGt74k5cJBtMBD\n9gmcsrW40BZaLGsmSY4J52IUFe8qThmNwCkth/wT5wp5SRRrKWiGINoYzBP5OVEarlsqMskz006I\nMKfwSmjBJRFuljgY7ss13dt/FW999esAgBxyvWvtJnqXpCq13W1ihUQugRXAYv+Aqz34VXkp5gzt\ndK+JiBUl7SoYAoecegCH68nkAGL5vFqX60yHAxyfyfP79q/fRvtn5cX70PoOUjJcje5S1euxBTrc\ncHQ9RTZhiOXaqJKUp1A2/KkYmU5XQoaiYkHn1Lx8MIZNPsu1q1vLknM69rB6mW3k7DRFpmBTFNkK\nLSSKREMTF8ltAvxuTLGh5Tzvdbyv8EEp1VJK/UOl1FtKqTeVUh9XSnWUUl9SSt3mv+33c46LcTEu\nxo93vF9P4VcBfNEY84tK6H0rAP4rAL9njPk7Sqm/DeBvQwRi/sShjUaULWAX/pKJOHOs5Y6nTIGE\nTUmu48Aw++q7tDdGI2yJ9d1uhnh2WzLk20/soNURVys6uYMv/tGLAIA/eFlAQ+M4RbXk37MUVkic\ncjRd4BuvfBsA4DQy/FtP/zUAQBgKpLbZMrjL7spjbaFPF7xWc/FYIVb86pUW2jtk3aXtzfop8sED\n+e7aZdRuElQyjaHY8KNs8QgqTeAGE1KfuV7Dq0O5P5UUyJkZn7kKQchOw5ISLrVQGJK+uAFcalc+\nHL+FVzPZje7eG2FEL4VUEYAC0lz+LlEGOUOiuNBwuZPOVAGfnkDCaoGjgJQJMKOVUF0DsLVBZsvn\nWWZgOLclA/LEyWBRi7HTq8MnkCdNY5yCmI3XjnFImrawRXm7nQ2sdcQTrDkhXCPnCGHD2FTE1ga6\nlKljuFIP1uGSI0PbKRI2QVmhh4Ry9YtkhqQM/5rC77A76OPBuXTgzqsjfHz6FwEAp61jDOZybTPK\nxXf1VZyXHKPjDA6JeuzEQ0Qq5lolQoXHdnsCmy+mE+TnkmDu9drorMnO3jk+gyL8e97z0GVzWBn+\npnoPkS0nCaweJnO+Lxhj1mTVxd7EQJcE+u9tvB+B2SaATwP4DwDAGJMCSJVSfxnAT/Jrfw8iEvMv\nNQrGGORZBu0BTgnC0RnsCl25sL6M+yZZuuTIb3bFzQpdH5cvCzLvpz78BG5uiSteaVThUmjTdZ5A\n5zGJ9y594csAgN9++etohxIaREmCQLm8Ho1Dqjt956XbyPBPAAC/9O/+AgAg0QY7DbnOaeQhZjx8\nPaziJuuez7ZCBDX5/LvfktKca2WY/KYYm1s/9QL8SEIJ71ID5lUxOEnAmPzydaRbErOuHHVwrcWS\nllK4P5B411E5tEUeSLZtmppGOqI7bBQGMzm348SYHcl3JmmKiEw/ii+5pyzEpQSlBSga55oGLlXZ\nSZoDFYYuFkMGy3Vxjy9VYcyyYhLa9rK9PFUGFo3B2goz5HUXfkWW3053FQ0iQeejEwz6Alg6vv/O\nMp+zvSFhVXMlRINkpk3foNZk5ycqUvLgdbgViq02yI/pVlBQKxNOgRlzQmmWYMoXz7N9BC6/T/3P\nK11gRp3HhdXAg6GUw5tb25iwjBysiXH3wxDTCfNL4QKG5V430qhyY2hfvQKfpLgWLbL2MwSXJdek\n15xlCF3zPOSFJCYSXYddIWlsuUbql2G78tn++RkKniM1E+RsDddWgVlaWv73Nt5P+HAVwBmAv6uU\nekkp9b8qpaoA1owxR/zOMYC1H/TH3ytFb7T5QV+5GBfjYvw5jPcTPjgAngfwN4wxLyqlfhUSKiyH\nMcYopX7gG/+9UvS2bZm0yODnNgy7zGzbX8qIt4MK7JC6fBNnqQL8oesC3+xdquL5x0S85MrOGuqs\nEuTpHDZ7FBwfePJpAUa1ySzc6hRYkMF5OM2XHXX1aoB+IjvsZDLHOy9Lz8NXtkUZ+gONFqYL2Umq\nzQUeT+V4a8026rTyXmiQjomT5xRsVGrohYQEu104dMHt5iVo0oB5lD1fPHgbaSw7zVNXP4RfufYU\nAOALv/nP8b+Q/gu2hTrT+g81uQnGRuTVAai8wCG9im+/dIr9acl8vCQXhscQLbCBKolMcgu4xrCk\nYhusE0MxqGqE9KaYv8VcK5yUoihJAUXvoFAKitUj1ygw54hjKn+PUMP1tuwXCwDrm7J7ns6n2L0r\nu+PBcR8troGb3I3XvCpC3l9VVZZwZrdegyadnmsFcN0KP6fOIwDDtZDnBrpGNee5hqZSlzEhDAWB\nZgV/X62i3RY4emS7GE/IZdEfIHVIgw/BPCxmKQitgW+FCGw5d83rowOpfHiLClSdSdc5cQyZWgrE\n2M0QjI7hVqswQ4ZjXgR3xj281DQtAjSaskYq8zmmY5m3eVJDxZVr6i9mMAwh3+t4P57CQwAPjTEv\n8v//IcRInCilNgCA/56+j3NcjItxMX7M40/tKRhjjpVS+0qpW8aYtwF8DsAb/O/fB/B38F6l6A2A\nrICq+sgpbqGqGha9BqgcKVF6cRGjETKXYIuVfPrms9hoy05SdQJkI7LcBAY5PQF06nDZHHVpR1iF\nPvbBCfoLiV8Pb59hQPbdSTLFapUMQ2fnOCW56/23pGb+VJTjfMBGqjxHldJld09P0erITnNf97A5\negAAeGxT4rvLrS6az30MAOA99wLgiEdjZiewqzfkVlckZvXxJKqpxLL+Yzuwq7I7fn6W4u+/9ety\nnVGMmS3XoYkwzLRZJmhhWRi+wXyGyhDFTLQVGg6/w7AegaMQ0gNrei6eJgy4ays0GN6ltguLu/+U\nKL5sUmB/LNvjyAA5d/GiKLAkA9AGCXMXJ1SUri+wZENuX6+hTc2Jyek5HrwpiWA4GRp12WFrVHuu\naoOgZEdCvERTFnMXdke8BpMrKIvriPkOq+GjKMqkSQpVUpr5VpnbRqoS2OyUrfD+R7MF1i9JYnA0\nHGLIyFhPrsIlgtIs2DxXz5FznRbKhXXC3M9lFxWXGiW+QvGQTWE9Kpdn+RLHYc4mQK2EJeewq/zO\n7hwJSZltigjpdgPeRH7fqBS4ywYs1Ffgjsh4vZmjGv1or/n7rT78DQD/FysP9wD8hxDv49eVUr8M\nYBfAX/1hBzEWkPk2XGgoZpOVay1VmOLUQsbFpPMcsSFW/VCSc72XfeA6s+9RDVaLbmvfw2IqyaDa\ntLLUnnRCeUDVno2Tb0pmeTrow+1Kz0QcGdg8t+sIJRcAPLgtkOCDVQtHpG777mQIwxes6Sh0FiS9\nSAtcvSru5dVtqSLUP/wRWBuSUIIzhyp7KgIPmhyGZiCGQBdnqF2R1mO3uw4FMUyt9TY+2JH7++Kh\nxoRhR/lyGFMGD4A2CWxWZfx7xTJ5CAPY/Lm8dkcDLisxqdbos7oSBEDOenxRNfAIBooJFts7SzEt\nsR4wS0zDIjXLsAn63XCjFF5JvRmsAcV0nQi7qTzfytouohMm8FwPbQJyCGOAtjTchIzQUIghCcpG\npQLF5WxgL7EsDuHfIp3FbkcU0Kz/W7BRtrbmeYaCYDeLYYRjBSD7G8LQxpTaruPhGUJWHXKGndF5\ngSKSLweZQUjQl5NegqkQIzE6hy4zuqWql5UuxYxsVQe0rAsrMACh0mG7AU0MUpaIUUiTEZK+XJDq\nNGGRBn+cjxAqMVjeWGMS/2jhw/syCsaYlwH8ICz1597PcS/GxbgYf37jkUA0KqPg5xbcOZBZpftl\ngWheaF8hZWlKmxwJIbh759I4cvy1I3zoXNy6j91cQWVFElg6nwCsTXexiRoRkj7JL5zMR0rE20sP\n9hGMI557Dosl0ErFx4LuoeF+98oggcNQY+7YUET/rXsOLrVk1/jU9W1c+ajYS/+ZHQCAfe0mVMHG\npsSFiWVHNNOHS+VqBGSOVgGsDX6WHcKw/u3fbOEz18WPfHke437ZuMO5tKCQlghD2LAS8RROi/FS\nd1GrAppJRZ9+Rejay8TnrNA4ott9MtfoEHuQxgYFNS3PxrIr1QsFzV1Z2RpZXnYUGpQIaKUAlJiT\nkhC10MiZGNwfO7i5ShIdT8HpynOw9nKgRG9asjsWRQhllR5BDliUc3dU2cwIy3bgUm3ar7AL1LGQ\nJyzbqgIlXtvkgEvf3TEpwBJmzs01VBbmljyz+kodNj2IPMlgiLLMm/QqiwoKIk9jd45FIOFhNugj\nVnKdJh3ACa/zfEwuhsES0WhMBsUmJ+gEjsNE6bqGYUhU0g3Odx9AU4FdWQ6aLKOOslNMSOXXK+rI\nS4bp9zgeCaMAGBjkmBcTKEsmxFVNeODk2A4I/YdXqaBBWXLFTHjT83B1jcQba5uwO8R9754ibEtI\n0F5/fNkyXQ0lfvVqDtZOn5RjvHMPoxkhqsZFtymhRpHl6FO1qsqqxWE/gqcJsUaO64TU/s3nb+Dp\n58XHq9/6SXiPCzmJ6pX6R2tQhYQHqOzA0BCYPIKCfG6tkK3o1hUsO1izOYyhO2i/gad/WohMPrz4\nEuJXWRevUXVomCKia2wyBycjAa7cPpi9q3kJBa+EitOTRaGRsMqQ5Aa7zHDHlsFm2QGsgbou/4Bh\ngm2hx0qFUygU5Bd0oZbX7xsLs7IPgvmJqHj3xYusHEd0nz+x3kDFkYW+KCYohZqcCXH9NXtpeAwK\nwAjkOWnasMhX6VVDOGxhBteTyRJoysTnmQdt8ZmYYqnaFXo95MQ6JMzYe04VeSkOa1eQ5xLGWdaU\nIQmgF8yvmAUiSsPX5gq5K9czjzLU2A6dLRz4VwjfpwFxrRUo9uUbS0FFYhRtvw3FqoRybeiR5LS8\nitxzY62CiBudGY9Ro1CuNewgq8t9T10NS11I0V+Mi3Ex3sd4JDwFY4A0N3B9CzaTNoGykVusq09z\n6EwscGoVsAvZBWrkQri1tYOtLdldNq9uwQnEEzC99pLTv9HahMXvuyFRjp6H608LvuEj+/v4ta+K\nfuL5aIY6+9FrQRUeMRL1UDLh+ydnyJmU+8BaF//mY1LHfuLGFuo9yVR7m1ehqDOAiKzM8RSGRCfK\nPXxXHXpRgfEEmr10iVIHitBu7UYA5Ge7eQ3OmfASXg8beCWQOeoR3blYT7F3Jj8XeYw7t/d52BSa\nSVxbARbdeYthRGgDLbr2LduCTw1OHwXq3N0HGsvGpRpbKidxvkwidqsBHLIguzDIeA7bshGU3Aml\nSrIuUDIxWEWBkB7IansTV2oS/t2xdxHN5f5Oh9yBzzXymyUhiUGFNG44d6CoMG0WE9QoouIyfNIh\n4GUl0tNFRk4CN3Cg4zKLaWCI5SA5Noxn4BG6Hp3N4VboTQ4U7BqT4hETg34Gh+GMSgMUu0R67gBZ\nPuDzq0APxIMwa6SE6w/hNCh6E7lQLbpm6l0FbjNZAFy/5B6CWy2Qz+gptEM0UlmfGwkwYAKy6Gbw\n8h9v9eHPdFiFDZedekHThUsxGF8D69uyUC5VmvjgEwJp7rKKcOnGBrqtUjPQX8bnmVdDfiwwiax+\ngCCneIddioc6CDbk72585KPYIEhpd7ePHkuAbhigogh2Ykv2uWtjhUIff/XTz+CTT30cAFB/sgpr\nQPdz8QDJF4SXfvidPwIA3B/Nsd4V12/t2RqaH/2sXI81RrorMTMO5XqtJ49wdi6u6le+8l3MyMu4\nerOK6YF89zTysN5lSzlfOmWvoEJb5CxcKLrGlcJbuuLGYEloW2V+ZTuw0GKm/krXRi2QBdhqKgyo\nx3lSFIhT9hI0xVXNTIQhzxcnFo5YqVjMDFy37J60ENAALJaW0IBoZVzvhOgwB6B0gWZPFrexHERz\nirCyDzT3DFo5290zIOrSsKQxlJZrCgxgSkYt9ngksbU0SEk+RMqciTbeUkw2mg4Qs3MzpkJUMdMI\naqVKlYFPT3w6GaEgiY5NtJFXqcEqDU9whnCV7E5RFW+8wvJybMH0JDS9MpMeh3qnQuliwLZcZKdi\nZLLxPqaRVNiOdwc4OadQEvtkavU2Vq7L+i28KjLSxLt+CgNyTEYh4uRCS/JiXIyL8T7GI+EpKAh1\nmu3aCEjfHcJHrSaX12xY6FK3LyumOD4W8Ie3Id89v30Ab4fWc8WCvxC7GzSrSOlen+29hhmBTPH8\n3Sx8Y4t8eE4T6ySjcC2N2JHjVW1vSW/WaMhx656DWz35efvSTVQeF88lPXkFg9dIjPL6Q3zloewO\nv3cmVnunUkGleAAA+Osnq7jKTr76pR7UlBqN7Bb8p7/yP+JLpEH7w705LFK/Oy+6aBEXsOV7mFj0\nc0tMRxwjZba5W6/DISGJqUxQYTIrsd7FE4Se/N1G4KJhl7+3kPGeDydAwP79Xs0CHQyUCW0n8PDd\nM3FVD9MUZ5F8IYCNiCI5dV0seQJJr4goT1BjQrQRVNBdlWcZRzNUWqxALTKczQWQs00t9yQFbt+T\nUCLONPSh/PzEE0+gomUOC9tCwu5BTU7IODWYU4l5oRN4hqFZnCIaiecV5zPAMPSkJ2EbBa2oURk6\n8FkxiIIQRss5lo17no2I4K7ZoIDLhDayCIcjqTTd3x/jcl929wXXRXfDB7FZCFFHTk6Hd+7exj9/\nVbxNxwnQWxUP48ObIpeoK3MsbrOLdGMHNkmEbEQY9KlTqpecLu95PBJGAUqYg2xTIOCq22q0UKO+\n3uX6BtpV9gREKY7OxK3+ztvy0hXzGV7gBGexj+2bUvLxtQUrlIn8xhf+Kf7J7wnf39lUFspTN3fw\nwmMCJnryuR08syM/JydTjJhxbvV6GB4LyrDOctS1VhetKrUn7t7Gdl1Cm/z8BIMHdNsCD1Xi7x8j\nAm+ROtipyAuUpT5G74hRaLSeRfBxaYvVL4suxL3RlzEhccwnmiFivvTnKHA+kUVzpgHyzOBgUbbT\nxgiJ8be1wmkk155N06Uh8BWwRijjCnMjCRRy/l0fCm+PS/KVDD0SjjzjN9FhVrs6khfiADEmRArO\nY40mX/61ZhVzhgzRLIFHd361zp4R34WXyvU0HAcug/hJqhExFzFY6GWpbnYkL1K1VoHzG63iAAAg\nAElEQVQiS1XYcJDH8kyOFj4WJF1tdWOsxWKonTrLhqMI00VpFArEE6koRalCNmffiOPDrlG1ipTr\n9VoDFvUzMyfHiESpVi2DV5AIl+FMnChYdO2dsYM9Ss33nFWcDmQOB6mF4ZEc43Qs520fOrhxk/cX\nJEv2pwcPj3A0kuca5TFGRPs+2KOEwSJFi70PP/txoNJhVaK7haAp3xmNFvCtH1/vw8W4GBfjX8Px\naHgKAAALjusgYMeaXVNYqbCi0KnB5W4b9xcAe8gnDAe6XRdjKgzdH+1ifS5Wt9bsQBdidS+1mniM\nljRry3d7W204xDzoXeCFJwVsZOwYX/wXknS0py6ubAsI5YzY8hu9NgwTcQvbQjaV76bv3FmyPJ+g\nBrstu2k9Ey9nnCncukY155/8AFrbgq0IP/ATUA25NutQRE+e7WxiQS3C43SObkN+DvrZklClohQs\n9l0kzIAPixwdQpFr6w4e7EkfiOubJWdiK7Bxgzt6m9ntkcpxTpWqk4XBIeHIWmmcsQKQRwZ/7Ulx\nXSuPyS45+O4MNe7451qhT7d7lE2WvJlpplElyYrVkuPWCsAnJuB0co7wQOZt5ewczbE8917N4AGF\nZhSVmXrIYbM34HxwjvsHsvs7DzvYvk6ey8zHlPyJl8hnmDrJkv274vmw6AlOwxxJLscr8in6pDHr\nXpU1FDZ8uASvFf0FgpWyulJFgwlIh7iJAhFQ8klUgXMmF8/Cc+yOqOhtHCgmdB1yO1qBjTaVuq4+\n+UGkZO5210PsnQmF3isnZ3iTHgaxS0hmKZxj8Wy8+nfw6Q89CwC4trGKdYZSkTpDEf34+BQuxsW4\nGP8ajkfCU1BQcGwbge3DYWktnkYwbACpWHUkI7HgcT9G3RFbtnpDOiNv7WxDkXnIQYbauuzsbr2B\nnImm7ZsfxGcJeX3BSNIy8BVuduQknWADtacEb/BcscAf/6YQhlbW23h2W7j+X73Npp3Qwa0twRXU\n1+bQRDdWtruwDkoGoTGCmXg3n/+Y7AKdtY/h2k+LyEqw0YZD70B5FSCX3cGqyD099+zT6J7J7nJv\nmuDNe9I5eGUjxE9NZGeLQhe/fSDfSan/kOocQyIwT/b3MGYuohEbOMw4tTwLV9qyU+5UJOdyMBni\nYEzMQ8XCFchuXQQaObEHPdvFJYuJYGpkTBtzkAUMlUGOU5b8Z3ONhBJrRZLDZhm4wpLm1baDZCHP\n8Z3pFJrkt0/oHA1fntPV7S1MKAwzj2RHPE89BNwx51GMEqZwZTXA9SuSS0r7A8TTkg9BPJCqV8OE\naEvHzuExs1e3FFxyJ7i5hUkh50kMpQIzF16DaMyWDa3LEmiGCvNKIbUoR/EBpmfiTVYdBzs94lP8\n6vJNK4IqaqGUxpvMB9zYXsHVD35EPtu8ijSVtb7hB/iJviQSe681UVBSsd8XEaFW5mFIb/nm1R1s\n+HJPrWr4/7L3ZjG3ZOd12Nq75qozD/94/zv27ebtgWxSskhKlB1IFmBHTmQkgZEEMZDEgRFkAvIU\nv/klD3oIEAQI4ABBBhhCLCsDYiFSDEUDJEukBk5is+fuO/7zcMY6p+baefhWnSYF27xUB9J18G+A\n6J/nnlO1a+9de3/D+tbCeF/69PF3P8b08s+wIOr/q6aVgmfbcD13s7ifnkw22YB238f2SF7MvYMS\n3bFMRtiSB4+CAKuFTMbk4j24kWwKuhXAqWXRDz/zKtxteTnTxjxTBQY02/xgBDvid2/dg80ahtGN\nNrpDmbwHnpjOf/yPvor9L8s9bv7IX0bEPLUeOFDc1H62LFE8lSyJ3RMotftgDzqQ36l2BDSZA62A\nXO7nvSQUbQf/wTZGH/8aAGD8m4/wciSLY+/LX8Totlwj+SiH/7/8MgDgI1KGaSjkVbNB5LjFWgo3\nL5A1+AzfxiXL0t/Yp/7ijW28ynJbpxVtCG5WuQt7LS9mqTIcvEleQbKmvNl3cZ+UcEeTI5xckudx\nNsVhLsvLj0p4hKTvRrKprLMUJ2fywr6TpbDJpWh1XWy/Ivd+6fAmjkcyr51dmfNOGGDQkz58PrqJ\nLkvmW8MOSmIEnsQ5arBsOWJ2ybNgCAbzWy5sXw6GcQ3YowYsVGO8JW5DxkxMFFgoCpYkOzZcTSq1\nVglN0aEWK1FXxxbWDBLufOYm7j6Qcngr7OG1p6z8HO3B6ci9Fbk2W/0+Orflu9qP4BHrMbYcfOXf\n+Y8AAD8aP8X8AwGiZRkV0rCLwRuyJr2qC4vZkCpdwlA5q6w8RN61+3Ddrtt1+xTthbAUlAbcUMNG\nhYzoK10Cl8diJipbY58Mvs7NAQKmyFRGSXIbKHPZibXpbOrjVVHAbfN3rT68AeXWEtn5LeXCohS9\nttwN7NjqtXH7rqDNbnT2cXCTpxFTT++3HsKmaRyGA9jUHlCjNsDiKB+A/2ZjCVDE0nI2aUGlNUxT\nvKaN6JwD0Dtk+u23YN8VFulXXv0QRv0r8u9eC4qmrf9yjZ8iwewv/4KQyyazJXRTSFWrjR7l1aqA\nodtV1gpXxBNMaJl9aa+PvVfFGnPGbRQMZk4+PNpIxM2PNWpK6EVbcnK3Wh6GtHh2gjckEAzAZEtc\nkQwEebWxXjwiQc+PJlixSnR0vsCYqU7Hi7CiLmj77g7e7Ej/dwk7H4xCBIWM51Z/jJD0ddp2kJP3\nIrUVopwWEis8PShYhKlro+FRqCewNIj0Rg0L2qaEfQPXdn3kxM7YFpAuxTULggRz4hts6pxenSyQ\n01LsaoX+WNae7TgY7/0EAECVCjVJgowlz2bpAIqoWWVrGOIb3d4Ybleu3TZ3sHVT7td81xQlmle4\nnp7BOGJBrmZTtHfEsuwGHjyfPt1zthdiU4ABTG5gIgt5U6noVThdSOT87EmM2/uNSEcN3+bkssTU\nWCUWZ4Q2ZwnqC0bOb2komsnatmERtFQ1lXO1vSnpNasUiORFSLNz3DiQmEHQHQA9Qn5LyRZ0HIPk\nY3kZq7unsPkCIZ1DhQSsDPcBmsobZdqsBPhiGqOoPgJhIGHJoDE0VUsNUGbd6u/gkzrkCvWpuAqm\ncNHuyEv6r90QM/I4eYQ1QVGua+FkzRUfWSjp/PdtGwUp3I/fI7lLbxsRBXG9dgvxB8LYZMVXUMyV\nLy+n0Ify4gU3ic1ITqAJ/3atAdp3JNqPaoXBUL47ffIEZ+tzDtGcfS8wXUofDnohPrctY9UK2qj4\nQu7ut6BswY5sE6fiLjK4ZEm2XXvDaVmsK2Q08+s8QbstG7WWaYK95cFn3QlUAaypqBUYgAeRFeVw\nuDaCnsxNsl6hzrhhx2tEY7709QAfP3xXLpfLHMwPr1AxE1HGIYp3CSB6ZRtOyDU7DlEuiJ2gi5If\nrlD1xTVwPB+5Q8Wqqtg8n61d6P4Wx5ZzGhiYBas9XaBkfZDKLcQP5Zlu3byFNq7dh+t23a7bp2gv\nhKVgFFA6CstVgnVOcQvLwnQp2/zh2RnunYhZHUYhHCIdFQlZ0lmC9z+WXVufHyN7XXgQ/fQmjMOo\nfp1IBQ0ArJtimTmM1egX9FDxNF6ez+E7cu/R3stwjZhwJWQn7voaLoNE+eGHcFpyD2sYw1QSqMK9\nAqpNq6EjZiQyJdpyAEyebKwGGA/1SiLO2aNfl2vFBTRPF1PmsFgBiDICrsQqSk//CN/6NSm2+s5E\nItKRrlEx/69MjZhWil9Ym3uvbQ2LFF3nlLifHl/gstHEfPQIJ8+kP4frGM9mEjw7mcd46YlkQaKX\n5JnWi8eoG4MoCeEciKVgWxGKgidinIFThfxMxvjtp8dIeFp3Rw6isqGCq6CZJajbXQQDmZ9GGt5p\nt+FS0yGZLWExiBYnFR6v5Fkm6wQBg59jqlLbQQSLfAppMgcoROOw4hYAsCo3WIaaHBHlOkfuynO4\nvgWLpruGjd9/KJiSe2di/QRVhrAlGYDp7Bm65FBomwiGyMxqOsfqQtyAmND1i/N3MflNCs5YNRYV\n1bOtFb54V1y64e4Y3uiAz0KrQ1cwa1qsLpBTg/Li8AJncwlGpoGCLn64gqgXYlOwlcaWHWBdFMi5\nelStQEIjxNUKT0/EnO10PfS2ZSBcT8y2Cgne/6ZAmE8unuEv/DVZHOFyhiyTWgS/G0Jrebltgl9U\naUG5TbrGoKbgp5e72L4lE6A7NmqPIq7Ey9++1cbeS+JeOE6Cek2Zi0UOTXC/ehgAu7RdL4QcFqMh\noAhyj1MU3/qO9L98gj/+e/8XAOA9SzIWP/XXX8PWy5K+tFQXOJFrmFEX6VLw8ItHS2SZgHdmrCa8\nLHKsG/PSNhgzTbXOc2i+eLqykBEyO6EL88vfeYy+ljE+rTUaasNxpw2HgpxPrnIcn4tJXP2hyLBf\nLK9w1Aj2LspN9eQr2x14OwM+n0FOPsIViUXemc+Rslx6d+YiHcgNB5GHuk0w1PEKa8KYR1tMka4q\nOBRsSdUaqiUvdVlnmB/LGAWmg9GOvDg2YxW6KhGv5UVZzKYIenLI2LDgsgzc9jTKOYFKDYFwlcFl\n5W7U7kE35eeJxoxw4z8y8jLejkZ4801Zk8v5FTJyfs7feQcmILT58AhXp3LtK9LPF5MZ/vHvfE0G\nvGdjksgzH4wUDv9YRIFvd9rYGsgh8+ANIeIJDm7BJgtViTbij2VjmaoJEl/AW2FtISkapdHna9fu\nw3W7btft+9oLYSlobRCEFaZxiopFNLZRcBw5debrNc7IM3D/xjbqlZhrFRV38+VTDFno3t4dwW+C\nRZ0IvpJdtVrPN9F3nTEgY9tAIuZg7RaAIf347jbsWoI6pZWhOBVLYGGJaTl+6XXYY+lb/egSJYEy\n2i7gtMV8VtlHwKWAoUxDHxdkwJ5kMlS3g3ouJ8WT/+mr+G0yU2tCm+vHA9g/LZgFneeoPmAl39vv\nYcqKOwsrHNwgpDuTPgSPk43yc0u7aLnUboyLhk4BVl3AYfT9MpbfHRY5GpJDrSwMGbFepykWfL5M\nK/zOpVhhN0mtcpFmOGUdf6VrOFeUkT+eYzyUE7TdC2CRuuwZrY5H0xqG4+mXDmIChAajfRwTsPNs\ncoxBX8x/VYt10OrkKGgOFzUwuZK5vKxWOKZFFlYKr9yXeXBoHVqeQk6gz7rwkU3k5M6XFRSh3sO+\nh7wh81k3FHpATWmAStnIG2ZkK8eStGkTPlPb87GKJQCrCo2PSFXvxDksppoOcxspK3e3BlQxdxS+\n8nlZK1sHbXgk1FGTAmVHMgqLqyVOCYyzF2IVj17N0R3RXQsWyJnBuqrbUOTSnM+7WM0m+GHaC7Ep\nGFgoTBdBF0gW8nLnVQlWqaLOa6hQXujVIsOcxCkRpberwkDzy7de2oK9JvehX0Bzg9C9DmouXkPf\n0qQpFOXLVaxgefKSemEKxxK04eXbH+Oth4JuXK5luH50/w5KcvE5O1MgocvTq2Dm5PRfWsCWmHOm\nR8CSGQAE8UA7cEcCWIlWfRwwon6HePrBG29Au5QQb62Rnf82AGCxvMLVV+Ueez91F8MbspF9+SNZ\nSO9CYcrcamIZ9OmudEcGS7I6mdpBRC3JC7IqzUwNWsk4cBUedMUfTmqDlCi+rASOlhxz+sO72sb2\ngBtr7eJZSj2MPMXyjC/9WYxhn5WEzUaQZ7C4TRXBCh/O5Ro/297F6YdSS3I+fRdaS61ITPar6ukC\n1oFsFFEnQEHT+PytQ1wdSVzlrFpi+0P5TnVT/t0rWpiRVam2argcl5U1gW7mbxXC4oZTksOxVgaa\nKMzs2QzFUK7hmwGWjcoWN1D3lgsELLnOKqwvZS2nWKMi/6Xd6+CgLeshZPZhcnEkeg8AnI6N/S/L\nBrG789qGar6MbeRa1v36PXHzjFOhWMt4F9oGItZ2PCuRfks2gg+tt3Fx/mfI0aiU+s+VUm8rpb6r\nlPoHSilfKXVHKfUHSqmPlFL/kJoQ1+26Xbd/QdqnUZ3eB/CfAXjVGJMopX4JwL8J4F8G8F8bY35R\nKfXfAfhbAP7eP+9a2tJo9V14aQ/zuez2VVVDNzBQv4WIGH3lVsinNKNoAhdmigErIMfwUE9kl6zP\ndqFGjC7XCUALAQ1FuE5Rsz5eIUJFkFFdWkgmYs6/8+Rb+O9/QU7pRk788//h30RFq6GyPKAjp0px\n9QHsh3I/a9eHnZL5d/AVDloJsxBGXsQG9UK4EzqvDvBXPyfgluxIBGeyZ78D/evSX3Wjj+OH8vnj\nD56BokFYxTmuHsnpoWh+3/BdnDWBvyxHuycn8BbamCpxQYppBp/VfB5dqrBSYDwVN0IbQxo0U6vG\nNjkMHww+0a4c9+W6N3oBqm3Ci9+vEQ3FwohPSxxx/sZZCbffRP7JqOwDK2aBkoWBxYrKKsmwmMuJ\nd/V4iuz8LelfcVv6mxiMZ9K5OF/i9EQwGx+fXSGBBNe2PA9Zsub9ZG5myQqa2o79UMNyG1r6EOuM\nrsR8BYfYl4rQZRQKhZJ/N7WGHbM6Vs9hka8yCmXdjLttaFq0SbqEIsagqm0s6YINlA1QCX2+krXw\neLXA2VQCuPO3Vihp0bVe9dB+jZBo6yV4pG1f0LqdX54iTWX+6+0hyszls8Y4qsXFfPv9I1wuGPB+\nzvZpA402gEAJP3UI4ATAT0F0JQGRov/rn/Ie1+26Xbc/w/ZptCSPlFL/FYCnABIAvwbgGwBmxjRQ\nPRwC2P+n/V4p9bcB/G0ACHwPUauLrM5h17LzLbIS50Q0qrBCZyw+oBe0UfYYDKLUWPzWBbpxo5I8\nQbGS268/eAZ9+JH87vVdKDXkU1OLL68B5rzrvILJ5PTI5xmOTiTt98GTR5gTpcbaIjz6zjdRb4nf\ntzcYwyLDEsJbUPssjtruQbFKri6pbXk+Q/brEgwrLzOsJ7Kbrz96C/aa8QwKi3zj8Vuod8Q6CKNd\nhC1JR703W+Eeb6cPH+EjoimPyGwUjWyEJ0R0ujV8+rudoQX7XPzsmZvDsDKwTeduy7cRkMS17jv4\nFism54XBkLBxXRukFCTJJhSOqYGESMlFmiPhSatcBz1aFftjjc/syNifT9m3yQov7clJ+tGkgM9T\nd20fwX3AZfm4A4cFZJ2bMk+n0yn2iDBVqxZMJdbBfDXF/pYEh7/y2Vdw4zUpdBu15b9eFGA9kXko\n4gVYP4eL8yvEqZykN2/3UTegi+9BkOaMgzjdAVSD5dAeFOMES1pE57MMI8LAt/Y78JiGDYII/jPx\n/Y8WR7jM5ebLmfR9rIGv/Li8Jm5ioaBm5Dvf+TrK71IkJuxh60dYWFe0OCZ9VDOmy8MQBQui7E6N\nvbuMYz2+Qq3k3s/bPo370AfwcwDuAJgB+F8B/JXn/f33StH3O5HxqhzZMkPVwIBhMJ2ICfiNj87x\n5paUxVaOhXrOAJUlm8N3vvE1fOc9AZKMCx8v/4EM9u5wgPBVljjPEvSEgwJBizXZXom8kEHP0xK2\nErcjt128+1Qm+qxaYdxv5OxlMT6eAMlKXu7WzKC1LxPq+AfALXlj1cBGRTM3fVvMRO1vAyTWgNMG\niItwnDsIt+W53RF1Gx9PcTGVyX95N8SjY5nYZ7lGTsKS12YlrhJxV5w9Wfz3WxfY75PoBCmeckNb\nP5ttOBrv3+ri4kI2L4ub8JZSKGg4PpuVeETTXikFn9WAO2G44VVsBFngRDimaXyeGWTTnP2wsT+W\nvh14ATKa0t/N5TnOV2ZDF397J8DtvtwvdltYl7Kgv/DjP4ltVqhGFKCN9YcY0XxujbZwur4t/Xhv\ninZXIvFeZx/qjIK17GYrs6BdysEPtjA1suHOPjjGTk82k340xpJaks0LlpYVslr67oSA13BeqgJd\nQq+v+HLH5yv0OP+h58JwfxnvbMF4spZ/5Vd+G0kiLrJh9mxoUqTcZA+GHeRXBCQ5Ed455AHnLHE/\nk8D1j31eMmpesI2C4K26AkD9SKtowRvK9W7dm8CQju3tx3II/aD2adyHvwzgkTHmwhhTAPg/APwE\ngJ5q5G6AGwCOPsU9rtt1u25/xu3TpCSfAviSUiqEuA8/DeDrAH4LwL8B4BfxnFL0Vm3QzhIc5ZcI\nmCdeokLK/O/HT97HB18UhOGW2wZoQdzgyfAjn72Pu7mcDMXahcvA2NbWNsIuq+9GQ3i+mLCG+oTF\n5RVSBnWKOEYZMvVWnePZWxIE/Oi9h7h3ICbh7VdJjvE0R5cCG+64gpPJaWulgDFC1lktJlCu2IHm\ngmmqcQYrkJNPqyUc5pXr0R6qleSeFa2g1w7GwL3XZICCBY6eiBtUL1JEHblGHpZ4QEGRJU+dWdvD\nj2+J1aDutvFLvy+oyRQ1uoQ5/6VXRohJMPpbC7GOgrqEptqxA2DMKtChY+FOi9oQAw+vNxWj5LRw\n8hoPSJh6cpRiUYppPK4KBFxeVZGjIjakSaHVaYGEMm+vjBU+S7Kb/egOEsrA749a2IpuAwDOJ3Ld\no/IEsSXPvBuO8Pk7DwAAj8ePccmg4+TgJtpvyly3umJ1uGGEqKB0m1li+225RufObfQD+W6SJjA8\npdFqBGJWsIomHVqh2qf2gtfGT9+TNfkeWbuVbRCw6rTOCxRk5nb2hvBJF/hKfwTw+fY4d+NFiSKX\nsYi6Q+y1pZ9Rb4jPfpHyhasQLuXmOtSXrHOzKYIqlI08E6tX5zbyE7nfQaeNIcWKfuvrgpv4Qe3T\nxBT+QCn1vwH4JqTO71sQd+BXAPyiUuq/5Gf/ww+8ljIonBJOUaGwGiF1BUUwTbyc4eG7YnB8/tYQ\n2bn4hj1G3Pt/4QAOX/78SY3TQ6k4y3cCdN8Uk9G704Fqkzq8EtNwpXKcz+WFNssEgRYg0OziBI+u\nxB2ZJzPYtuD8dwmr7vVj7NIUdfo2HNDJL0+AM9mw8ukJrFo2CIty6nbXg6Z4h8q2YDnyTNXXDlHU\nsiicSr7b/YtjOG8QJntZw/ojWaTdnkLE/La/18XdrmxUl4ksiJcnA7S/IHh5y1H47E15jk7ehrMn\n4/XSsIWTUBbTvUtxUd56PEExJ77DMvgSF+Z220aLlaT1IsHqiJBuAsj6to+uKy/6aNtD5VKp6jhB\n3mXF4Bo4TQiMYnJ/O1R4o3GDQg8v35R+OFaOWzflRS4xgE3fv2rL+Bz0RnCa6lPLB3qyOUXjHo4e\nS9++/rWvAUo2uPAVbsLtFBVZuZdX50gIkGq9dAA3kuebXS4wo8y7Zcl1y6JEyZoZ1ytgsyKytgrc\nviubfseVZ7rK16D4GILI3pRq57YFl7GYmy+1seVK/2/flEMtiIHVUjaWbGkQkFDGcRyE24yf2D70\ngPEvckYmKJBMiAupNVIC0Va2RstnrUi4gzqnqPFztk8rRf93AfzdP/HxQwA/9mmue92u23X782tq\no2z859i6nbb58hd/FGWd4HwqO/X8ZIaU6Li0qOA1JCRabZSLFaPitm0hoHR8FPpwmmi5tmCYj18l\nKRpWk5SS5EVRNdwm0Lb+pIour5HlDOBYGkFfTq4vvSF73Y/++/8q3nggZuugs4WYsmphucRHM8E3\ntGfAR999DADYZ8XdbB3j//xVoVi7vDzEf/pvS1z29c+8jPVcrJcnDwWt9vDwA1wwd60qteFXHI1a\n8EiVFgYeNIlFak9OkcUyxYo0aJXy8Qu/9Zvy3XaAoMcgaG7Bd8iRQO0BVRpYHDfP0QjYZ8+y4JKF\nJHSBVou8B+RxaDsOpnQfFnmJJaXZirTaBBJrS6OmBGDdSLdpg9lU5vdimiEnwvLBa3fgd4gXqQ1y\n8kGELTG1s6rChJbiqqpRsajK8kI4IRmmz06Q52IhVAXZrHMF/6ZYXm6lQeMN85MzxLQWk/Vqo7ep\nGsIdW2/GxfIcDImHGfQ6+Cf/5HcBAJqVtrVRKEleU61jnE7F5VPpGrPHsq737+1jxczPP/q//zEA\n4PLJKX7mL0pAvL/fh0e0pc5qVDG5KbMYWpN8hlbc/u1X4FBHQ9vRhl8EaoF4zUrMxRVWYjjjC//6\n3/yGMUYoy/857YWAOdcKyKwS6VWO6SknPElhMeUTWBqqAdnYDvjxhmGohoJqZMFzoFGwNzWg+KIH\nngObBKuNylGgLSjOvqU1agqjlGUJzi2yokB6Km7AW7bAb7/sdnBF3PvZ6mP4pBEPrRRdKkvl8xzb\nJC2Jz8RPfe/ibSTnYiZu+xZuZeKWhJmGzX4MWxRE7e9Cs9pxnS3Qpx/dcnx4JE/1tYHT4QIiNb6d\nGSi6YIt0BYvPpKCRkJDDddvIY3Ii0jXICwOfIJzQtTGkia4VMOJG0G156ES8H83kgd/GmJvNIslx\nPJHFWKYGKSsN09pgxZfN5phYUEioD+nqHElJKK5lUK5lo1sVObRNPko+c17OAWZDXNioWFfSHY7g\nDWQeijjG2mYG5pTEK34b9pxMSdvbqJX0zW534JCzM89z6JKisA0NV73h4YFVGqwokuNanY36lOG6\nyqoUhsxNK2eGupK1vJhMYAismq59PHso6+j9b0ul6bDTh9FU7Fp3YbUoptvdRcHMl54bXGWydmzm\nxlf5OVorcR+NnSAg81Lt1bAJJK7yFFarQQg8X7uukrxu1+26fV97ISwFVAqIHcymyw2QJM8qhDz9\nfNeBR/GVwNWwGxorCqAUyiAjj2AJA7+m6dvS0I0Z6DhwyIkYDcjbVyso09BuGZSkQ7csjYJkG8u8\nQG3kFJsuJM/bMTt452uUqXv5Q+w9pkJ1dAb7UIJddr+LuyRZuQDxCG/X+OIbEgT8sdu3cPCaVNRl\nsxWWrPWvyZw82opQl2KqriwPLskltDJwGoiA6yBkZKsie68fVciXzUMbBDy5lFHIDOvqZxUyl9ej\n2R60HHQjKkp3AozINdnq2ugT4NXthQgVT66Ioie5Qosybq3zGjbFXuLzAhd0D/JlBc2qStMApFAL\nESeAyrJhcX5buodJQtCap2G55CO0muIiCz4rB3c++xKcWP7e+rF99Mh38d52gW//quT07Z5YeWVi\noYRYBEk8g0Om8NadA/hdsX6i6RWWlzLHZcqCqCrfWKFZUcNYco04WaKgJZRd0NOR6RAAACAASURB\nVA3yn0Kn4rYcLh5h8ba4kuf2HA8s+fzySYzf/bU/AgB4lO773L2XMPAkaJlPMwTMfLieDdcjvV2e\nIPdkbYAZs6OP3kYEBtWHLm4OhbrO2C0UBLAl4RqBJQHP520vxqaAGlWVY57HyBK+uVWNiu6B5zgI\naDL2XBeG8uoqY+l0lkMzfVkWgArl5Y78CCMuaD8ycFntVjNZYOcV1gTTlACcsSzMk8MSM0ZysRY3\nBABWRFhe5Esc+gJeSg57OC0lDtA+n2GPoJ99t8QFU0TvvSV+/d3uEK//zM8AAPY8Gz5Ltat6DZvo\nvw7N9qDvI7Dkmdf2Nhas55gsLpFlYopWZQeK6kwNlsgEXWji/qu83DBL1ahQkbAEqoRhrUGbQZWW\n76JLvQU/dDGkier7HnxuLHVZQZOAteLmkFUVam6sSlcIa1mAqVlCOTKGdZ6haOq2WcG6UhlWLBGu\nVCbsvQDWVYIV5eOr0kVtZLPUfsNG5MCwnNrtjhDclPRrUW7h0Vw25JN5H5Unm0LQk3/PohQVEbDZ\n5QVK3sOvHHiUlPdHHZSaG9mcNQzzElWztmqD5kGs9QKrlWw4F5m8/JcL4Mm7klp+GB8jmMjz9yON\nj1N5jm++/4dImVF57UuSKuz2RliSQcnzK7hKYh+rooRyG47NCKG6DQBYTmXtLesEGcFWvj/EFVij\nYV/CDZjNMWPM0z/b2ofrdt2u2//P2gthKRgYVDpFXaQwzCzYroXhSMzS7V6IUSSnWN934TCvvFqK\nSXlxlWAeyw5vTIWb2wQb3djD3VsSiGm5ChXrAxLi15HESI2AQ5ZxArclp1xkT1AEsgMvs3MsV8S+\nkw5+WX4XfiWnp1VkOCIVmqtSzCPp/yiZom/L56+/IizQd8e3sU1GXtdNoenm6FYXHVKfK3L5QWks\nqIeYlwqnSoJTpi4wVTGfI9vwPLbarM40PnxSil0lyw27PIwNSxe8hkFEy2vQ9jiuHna7jdK2h7HX\n0OdbqMgdoa0ChpqOdUnilayCzaCd7/moaFWk0Rpd8iQWSY6UepRr8jDUqoZLF0aZChUtFysssNOT\nebioNEpaJm2fZCvbbbRdCdB27B5yI2P0bPI+Lr8tPJ3zPIHNqszugbho8benSHUjVPMMq7lYU9l8\njt4toWbr7EbwOmSpPpdnXrgWkrmctMk6R82aiLwscfiu6DzWA9LDrYGTmLUt6znmHHp3mmASi1Ux\nPZnDowUYPxG48+PpGsFQ1tZg8AAV5yYpckQMMAetPUSktnf7pI4v7qBoylkzA5v8FJWqUHCelKlg\ndKMl8Hzt2lK4btftun1feyEshbKqcTVJkBVmk/Mdd3p47bacsPuDFpiaRd9vIyALj8e69NniEuWS\n3Au2wc4emZ+HEfqh7PyWTpEztxTH4tR51RB5KSfNLC5wzrTYwa2bqNpyWl1lCg/JWRDyfmnZgs/a\ndjP5EK1YdvD94Q7u0gfc92fYyuQECe/Jzj66cR9+w8GfZygI/W3vbEFTHbtOZIfP1iU8YgVUMkd/\nJAG1XGnEZ0TQnS9QE5NgM6La7npwG2KEqoQid4TjBahKSclpYyOiJbDTkxM48GqMqY0YWTZc/i6r\nM2gGB03tICdeoqROhaMdVIVcK/NsLJdyPlq1RkRLoewaLJtKUcrNrdMaSBjv0BUUU4Cu00c0ljhA\njRWGA84fqyxD42N2Kifs+ekhTmkt5pMZFqRjiwZ91EzVDrVAkYPPnSKnuFAaX4IAUijXhsO5drb3\nETLwWm3J8/VmS1w+kpjB8uIK64XMk1IaV7Rqq3Ox0q5WxwiI6IyMg+lC+rmIV0hOxZL1jIeIMOWi\nkjO5WCoUkDFUUYWKY9ipFNzWHn8HKIvcH8TZ2FYPmvNehwtYJD3OCld4PgDk2QSV+uGIW1+ITaEu\nS6xmV6jyAm1Wnm2Nu+jaMlADrdEeNIOt0CJFVcBc7K1XXkK1IolFtwXPlcVdRzVUStCMATQXpLfN\nmoR4jYCRXMRLxMzvx1WM/b7cbzfsYdmVhdBwRtqnCa5i2Sjy4AxBLoGhnVsublTijvTaDgZUyA0p\nxqqSCmT9RrVawe5QKWidfaJqpeUzp10gXDCo1etvzOtBVmFGLMdVfoVZJmZpwYXk7NfogJH1QKPO\nP+Z11Ub63bEU+sTf99m3btfAo3thWRo1MfV23yBbkMasACy6JppVeHlawWrYo5ceIprB9aIAYroK\nC4MuF2+p5CXWWY6cEukmrSSIB6DT3saNuxJFPzAKfZrz50bG+/Ljt/HOtyWwC73CYk7cQ5WgZrTV\n9mLYBcl1Gno7tweHL/r5uwaZz76VGl5N8pknOWxCjG3T5tg7sAayIVupgoMGk5AhbbIrBLrNzQVU\nLPftdDysJvKsT+NzKIKQIsfCmNR7LjEb2gGgxJ2pLy9xxsrdVf8S8VrW9e3BCM5I1oYdy3cVlvAS\nwspRYGokc5IsNVQtfVr0YnRJZ/+87dp9uG7X7bp9X3shLAVjDIo8gzb1Jj205ffgebJnWX4Ej0E5\nq6xQ0nxyqC/ouz4Uj+AwdOFqaivoaoOay9MFTEXdyJwY1wSomZJTlg2XUNww0ZgwSOh6FjyXeAma\n1McnHyOhZmLl1djZZSBuuUCZS5+G4zY8Whbl0WPpb+f2hmnZuD6qlKlVH6iJyVCEARurAnjf0sqR\nE85b2wbtnjzf1qqPtz6Sa7+vpT93dYmoe1vGaqeAIVJSVwVM1ehfOnCJ9fC4BNqegxah4pnONkhQ\nt/ZgkfYu0xlA4hCXFg0soGLFpZ1r2JynylhYsTLQwMBxmvmjKxIpFHx+gxqcdqioxqAlJ7PTr7BY\nSSrv6AMpHnv79/8Qxx+K1eA4gO/R5Tnw0a54Il5cwmtMZkssqUUVIjmSv1WyhqZSOOwac0rkYTTA\nZUwZwYBCPmfpBtJoWRV8ul3lqsDlkWAEXIvBTGsNaynXnZUl4kR8FLuokDeZ9jJFRUtAJWJVGg8o\nyeI9mZ1iNiNV3qlBpy1p1rrVR++GjEuUE41pucgWxHp0QsQJ4eZZAU1BmdV5iZISes/bXohNQQGw\nlYLrWbCa6LZdw3bJYqRKBAR/qCqH4gBaFPGo8myjE6gcA4e+cVaskNdi4mWZEUp3AMVcPrOrGh4F\nSJ1+BHvG6LRZIuPG4/samgzMTc1BsXwIe4sir1Zrw1jk11OEWwI2aVdjOCFfcLIpVcspnF3ChE0J\nQ1YkU2ooMk0Xa1lIRblEQfcoX1UoKzF9g14HI25eripxeSRVkDEhzGHhwZ0QijvYQk23o9AFmkSE\nrRScRi+GiC63cGB7zMqoCg4r+XShNr8LfB9BT1yvhjBeexVqMhMFfgc5x22tS3iOuILtrgXTxD5o\naruwMGFm4ai0EJO9aBFfYcaagcsLjclTKfd9Rv3Mq5NL0YLkfHQpvvXyQQuzmfTfcytMc4qxTgjn\nDktE3Dh9t0bzqKs63zxffHGOki5bSSl7t1TIGO9wAKhaNn3LtXB5yM1pLDGqy6nC8lTmr93PkbGS\n1M4VjENuSitB2QxzW+7VclzMcvmu61nweHg56wpzlqJHtsH6ifR/m1mwIrDQbQSUHR8+KQMm9QIr\nxq7itYZH8pXnbdfuw3W7btft+9qLYSkoBceyYNveJoLqKAstmqhh5G/y7WWt4FUS+VeNFKOpETbZ\ngKREGonpr4ocFk1wV22jbNGVmBExV6UAGXCrKMKaQicIXJgFuQQrC4YnhaIwQr8bwIFYI0alUJDd\nvFPeRqdBW3Y0yibiTiSh7gEmZvZa+6gYfa6QwhBWWzEbklUeMkeumyxBvi3AaA/+DvkG7Bx7t8Uy\nSaj9OFnmGB7IiRJZlzA8MVRlo6YrYdcWQHRnU3GalznSlVg/rutvUKFplsBntFzXPiqe/mXaoBVr\nWIYuQwhkjXp2XkOT+MUNI3iB3GfPFZxGUMfwUhnjmV2gupD7nT9boYrFVTieHmJ2RZgyi5asssK4\nJ3P9+oNdvH5HMhV37txASUm6sd3HtOR4XDDNECqwrguXj87w+FIQolfrCpprLkkqZKXcZ7VsXIYa\n57xEZUoUpcyT7zq4angNBDyJp4dXMJy/6XGOkmvBMzZGrPz06g4cYm7atlie/cEWBkQxLusMLapu\nOyMbnY5kXUaDDizSqvl0NVH40LSWTaFR++ImuAsgbSyh1RxzjxDK52wvxKaglYLveVAa0MTwL9IY\n8xX93jxBQrKJbJrD5STGK1kcN+4PoPiybfWGcMmK5G1tw2t8/5sFyjX1CDtMFT1dIPNkks0yQ83a\ngHWeodvAg+NkUx+hCX6qLiysa/luZ5hjQrPVfmMHOpMX9uToGC1b/OGSEWR96SPpcHFnBsbnKi1s\nlCwz1ozuL9NLJKfiey47Cj53RQ0bFolpw0EPg33ZFFLyCD6dn+CCZaJlUW7iFmXLQkGyjcq1kPFZ\nmmrJouVjsZT72aGLTkITtV1jSWhyaCqEjCmYDiHjZYmEcZB0kaIMWY+SFSi4QahVgWiH5dyME3Vm\nGulIxn6QRCgIxZ2cnuLiTFKLqzhBydxhSfeiZwUbgR/PdeGQ0DaPe7h7X3z7QTTC/ZaM1/y0Keue\nI6ZUfWEMbpIQNohnyCu592yVYLyUF3a2EZhdoaAYThxXAIFAygDLC5nfOeMQZ1dnAGHnngZadI+C\n3Q62SInfCULYAWHanvxuWUzR4mctpYEb8ky+48NuqlzrDDbz8jUzRnBq6JRuXMeHYj9HUYjykhWo\nTgKTXmcfrtt1u26for0QloLSCr7rwILCgpqI63WKNf8+yW3scLfz7Basoexlc+7K1txgi4IsHSuD\noYVR+xFs5uZzJ8eslpNywUjPk3WGipyBZlGj9hl9SwusbXI3WtkndN8MIS8nl1gwaDmrt/AmdQuD\ntoNFIafjk3c+wiNGtau1BMmsrocHfZGKG/cytEK6IKXGkn1OyJk4W57gyan8rUf7aPFU6XYipAzW\nRZctOIRHd/fkvm2vB5uBqshxkTcuQ1WibjQYdY2ybqpKOQfKQaU/oflq1MudxAEpBpBVazQwGIfB\nK50YTAnNdisFm2zVdWWQ0XVxCwVDERg3palul1gT9OQWBbrEnhxdXCBJxHyu6xI8KOHTOvSCCj4z\nQ0hzVCwU829tY2yJKxG4EaIWuTP6zAY8nuPqSCyF2enVhsezZdnoemJh+N0C85TYgqlYKKssQ+bK\nZwuTIyNcO7U1TqeNy0Y6t/kaNeemEzioOZ5mAXzwsVyj13YRdsUyGY7EOjjwxuiTF8IPe8hZBlsm\nOc4uBDj1nYdzHBJ7sEtW8d3xCPtblKcvPVR0ZyyrgO9JP/trg3reAK6fr70QmwIgPI2OqzcPNp8v\ncNFnShJA9oTEE56NyTN5uR0OZP3B+7izLRNblbdwe+c2AGB9OMf8QvzTdw7P8GRBc28q10rXGahq\njmEYomKJbLJKEfVkwXZCb0OwukVy0YW9RpsAobKaYD0jrn/xDO+9L2Ch3/3f/wDnpfjD51dT3sPF\n7IFsEG/ev4lb90Ursh/sYlnJAjt9XxzU3/v4Mc4JjimKR3CZLgjaDnbZj+2dbeyOBY3X6coGs7d3\nG/MreUmD0t6UT1rQUAQZJWkNj4xTiu7a5HKBjJTzizjZsPvYoQOf8fmw7aEmz+WSyD7EOR6dS989\n34NHkJLvOWizBDhsO0jYj5Whe1HWiFxZ5NOVhmL8IUsTmIb9yNbokE2pP5T56Ps+AoLajG3h9Erm\nNHc/gMMKx7u7BzBKxihfyws0Go6wPJEX3b2hEVE7YXxvd1NeP3fP8fRdliIzWzBd5ZgmTbynQk63\nS2sL55z3lLUhcbzeEP9ETg3NcnDPOHB4iMR5AYcZmobdyfdCDPYlixB5HdhKXI34+Bxpw6I1HGGL\nqeiXCM7r3BnCAhmpaiBuyu8DwCuYxbvUiNwf7jW/dh+u23W7bt/XXghLoTZAUhgYXaFgXl3ZBiyA\nQ6/XRpeh435rCK9DF4PuwOzkAhcnclp9qwgR/ZhEuJ24wFuP5GT+9sfHWBHQEigxue/tjBASaqzb\nwAXDzOt1iSsyGxfKQtSSXbdHJeayc4CKmIWL944wXf4BAODq+BaeHn0XABApYDeS3f/e7m257nKN\niAAitbJhx4RNh210GcDSWvp2d28bw5ZEnjt+gJp4gtpyEJJg0NM2bJquPpmRB70u1n2xtuqVjYTM\n1V6RomY0fF2UCEh3HvNEqXSJisFKL/CRNqQmcYKOZiDVWHAJD07oX8yWMRJWkS6SBBYrAA8GNmq6\nMSvkWDGirnJmgxyDmtTptY4BuoqWsmHZZOke9fDGPeEcuHWL8687cAlayzIHVSwWS1i58AgxtlYh\n7LWMfUBYdSt0oe6Je3E28XF8yIj80wmqkvye4y72SS13Z48u6u4lnHfF+ptOP0CSrdl/DwvCtDNy\nLOR5taHVC+027mxJP3vdAayGD8ItoQkM06ylcbWDiHIAvcE+bCpeh54Ld1+sgmdHzzbzc0qehvnx\nOQKCt/qDAcIOqdm8GhY5OFdFhpb7w53915bCdbtu1+372g+0FJRS/yOAvwbg3BjzOj8bAPiHAG4D\neAzgbxhjpkopBeC/gShPrwH8u8aYb/6ge5i6RpEkKBMg8mWfqiuDlifde2kQwRrJLjmbTjCjTFdK\nP3RnPEC2En/y8uoEei4FNcHQg0Mmp1eGLSSl7MYnTCdeFQn6xEJ4C0CNmLrRBpfHEpw5u4rh0r/c\n35W4xfQ8w5rQ1+nJMVYzQb+lo6fo2gzWqRCdXSLWepI/TlcaeiAnpfE92GSQHW63EKc88YjifMVs\nYca89NNyhidnpGlzPdQ8BdROhIQBw8rI+PhVjXYkqdrStpDyFDcDHymLcowpETFll+dykmbIMFvL\ndT1bIZ/w754NkjnDtRTaUxkjR24BVRcIaOWkqwJXJCjNizWGS+bmlYbqyVz1HDk9o8LgikFCu9Ib\nolTXVrAJid7fGWKLMZOYEOWL+ROURFsWLYUeMRQ38QDuSxHHO4BFLQqHlkmOHDlhx6uzczwkl8EV\nzlHEMg+37m3jtV2RJ+zfEKtCw8duTwKDgX4MF3KKQ+uNmA2IMLUd3XAGYxS2UceyFi7UFZYzFq5l\nFboUBPIIx5zlS6yoUD7SN+B0GliyDedMxujs/UN8/URStRMW9jk6x8stEed59Yufwe42ZfFyFxUN\noS0vRNtj4Ow52/O4D/8zgP8WwN//ns/+DoDfMMb8vFLq7/D//xcA/iqA+/zfFyES9F/8QTdQCrBt\nYct1yIzrWRV6FHgZhBGqJvduW7B6fNlsMZ1u3dlBRm6988Ucmiy6+awPi9Lge3sdmJksyC26A4vV\nClYoA5xeLuD2ZaUPXAsXAUe1LrE1JGnLUMz53/juE0QdUpTZHViQCa1WS3RtmfCLeonslNkFUn+9\neXAf9+5LtPhOK8eQ1wvaA2Qs526FsiBKM8NoxXu0dtGyZJH3em3YrAjtbA1QMb9f8oVO6wk0Kzxt\nP0LBoN1iukDFXL/XshASiDUKqUXptdBryQZR1jkSYgGswEWQ0XXRChmrJ/MVWbKVhuk3lagKNt2H\n0HbgslARawPU8rlDUzsJ0qaIEsskhaJrY1saI2p99nshPKZH3jsWSPHDZyeYERex1QnxylBerN79\nFmYnMnZ2q41Wl3UuPRnjq8sPkfAldfM1Dug2qskIJ1cSjD5dn6I7aejxuUmpLpwGb+AqgJtXWeTQ\n3NR1I5aT1xum8cyqANaXOHBxo8txbgH9trzI+0M5ZNpKI2e1p9mzURIXksQKK861G4ywe1fGZXQl\ncz0aunAWzOo4IbyF/HtizqV2BgCyFJVqtqrnaz/QfTDG/A6AyZ/4+OcgMvPA98vN/xyAv2+k/T5E\nV3L3h+rRdbtu1+3Ptf1pA43bxhjqh+EUwDb/3gdILyutkaI/wZ9o3ytF79oWuu0Ag8DCnAE+2wZ2\n9yjTth0ipMT3wbZGeyB/uyyMQRmhoI3bDm3YLfn31XQKwxOqNehjeFd26/WSNGF5BxmJK1aBQtqI\nadgxOkpM1FE/R5eWxf2XxaS8/I3vIqBJ1o7aiGshwvjcgx5+YiQmXFiMEQXSv1uf+woAwPENXIeS\nYGqFgCessiw4Sn63vyeBNXfbB1IxOQ9iH3UDrx22kSTyOZIQCxbwFEQQ6DBoENGoyxJNMWBV1Bu8\nRVlqKKYIt3dlfCI7gDZyD+U7WFF74XxZwHYoGIMaboeErTkht5GDfignlNmqETdq1aYA6Er5bReK\nufWQrlhRFuiSVm+S6M1pa2DgtmnyOw58nuivf1HEUjrDFtYU5fjZB5/FGz/5WQBAEI7Qb6pmywKa\n3BiGlk0YDLG3TWTqnR28WZIFu05x/oGkgS+LDOSFgR2J1VFUCXojsTZu7/bxhFD4VZ7B4bM0FZdZ\nVW5g9a9+4SZe25drhPY2AhLftPoDBJG4sY2bVKY5DLUeSs+DzXGDU2J0X57vC7dexp2Z3Lsi8tSL\nQnh0RQLlAJUEQdPTFc5n8nexNuiIcfrc7VNnH4wxRjWKKj/c7zZS9L1WaHYHA3QiD+tKFryvLdic\nuMjvY0TNwE7Uh8cFhobrbrlAnBGwkw9QN0pPVY2CEe7T0xRRm1kJp2F79lAyLhFaHRwuxSBywj6C\nvnznZjfAHUKJu31WCGZtHB+LyRmYAAf7Apn96Tc+j7/040LhHiQVNGRRKF/6XlkOwGq4OoigUzIr\n6RQ6lJewNZbNxnZ9BEPZbMaqREXgVLFYIiD70TxfICKNfAMbqC0LBW1YA4WKZnmSLGGRo7ClXBCb\nBBfNplCh6/XYT42Ayfv1+gKlzThIYdCQMtcEgHl+CE0IdhR4cJi1sKsKa3JMuoGDlBu4a9G1MTUG\nLfnsopjDmpKjUTloU7NzEHXw8r3PAABu3+Li/ys+3IqQ58GNzfMX5Se1BGU8Q5bJpoUOs1m5QjiQ\n+Yu6bTiMXbnKRofs0OOry81mV9KtSrIMFkFtr1zexbuHEpdZXU1QGhrarJKtTA2XY/GF7VfwudcE\nh9JuhfAc0qxbGjVdsySV9Xaer1ExVoM7ChYh9n53Cw4ZtiPXxaAv3zcp2ZaKDIrGfl2sURI7U4U7\nmFvvAwC0pVEwm/G87U+bfThr3AL+95yfHwH43n3pWor+ul23f8Han9ZS+GWIzPzP4/vl5n8ZwH+i\nlPpFSIBx/j1uxj+7E5aFfr+LgR8ipXx3kZRQ7F4+TeDQLHdMAYeEIyArs1uvURFebIcW7BWrGTtj\nHF59CAA4P7nA2BYzsH+TkvSmREATMI+LjTblJFk0omFoOwH29ihrTuKNYnWOcsG8erRCPZMTyEli\n2B+TAKOnoUk+osmnoKdr5Dy580dLBHss5nm8RsVMQ8ootdcJ0GJk3dnvwJDay9sqoE94mrUcVAsW\nWBFpV88SoFEnrjQM3YTaMxtuBVQ1Kp5GJQk9orsRLDJDe5YFi6i7XtdGfEmthnKN7EK+4w9pOqPc\n6EL4lQ3dpvuwNHAoZ28XGlaLVYdUcNZ1BU1I8HbQxhnn3dIpkkaTou2jTchply5KO+giYJAXpYYh\n9NdNPOgx710FqKh9kT0k92W7hE1aMlOskZ7IeJreAiol3DqwUFo8scmz4VYebArStDpDvEz5+csi\nw4SIU8N1alkWfFYtRk4bPrUjWuMuHGZdlKdQZOSVJJq0zFOEHvEyawVFaT6rrKDJVWEKCxbdDkP2\nbATZZh1WqkK6lrWTXFygfkYo/AMfHrEMz9ueJyX5DwD8SwBGSqlDiMr0zwP4JaXU3wLwBMDf4Nd/\nFZKO/AiSkvz3nqcT2tJoRR482Mi5iI2qkZJGHPUAiow9ZZHB0JTWJQEmWYbpTEwky63RCyk/3+/C\nPBTCjidHZ9hqyaBu3xE3IltXyOkPlkWx4VJ0iwCwZTHd3x9jh3Lvhow5dZYhyygiU7oYEIRydnKJ\npd0IowDeUiYpv5RU0mxpcEZLrk7nuJGKWxJ1BljMJYPxzbeEyn2AHPv3xFzcy1+Gw0i2QQmLfVaO\nwWrZaBSKWdvSAVzyCxaoNzqIdfmJKGJmFzAEQ5UWgU6WjZz1trGVYc3FtihrJFTiik2GNsls2kwt\nlEWNqontoEJAwFKuK9RNbXsJtCgeY1g7sECMtNnbUW0g62WZ4+pCxuLJOx3MtuQFKhiRrx2DLGY9\nB6qN6pfthRu4+epqhtmlnEVr1lFUaw9BTVGU2IXH51hfejCsj9HGhU1lsIwAqjRf44JEsZeLKRy6\nP/12hMuJXK/ib2yl0CVJkK0T1E1WonBg6LBVaon5XL7/9ExcyeOrKXY70nfdsmCzniWNL1Bz0zdZ\nDcX1qyjkadYL1CtZUIUDLKZyjaP5McDN2SojFBQvft72AzcFY8y/9c/4p5/+p3zXAPiPf6geXLfr\ndt1eqPaCwJxrpEWG2ilQMI+tahtOxB28hQ23YWkBtdVAggkZLhxEpOkuVQpnyJyw39qcMCeTGIcL\nOd1vUKuw4/sbbcPUOFjxpCnzGBaj11u728gKUoObMftj0CZsNZ4nOKWVclVkWGspSnE/7CF3Japt\nyCh8+igF9gVYNRztwr8pfdaIcPh7chr9+ldFduwzt3wkBCQFfojhiCQygYskkedYr3KsKVTS4AeC\nYQ8T0s0BPizVnIJ6Q7KiKgflgpDnfflsvsyhCDUulcGCrtkiKZGT8VrnBq0+8+k8ocuihopl3DLf\nh9W4dsrAJqelDq0NR6FRnzBDOzyhTW6gaQllWY6KVtrJ7AxzyvfVtCTyvIZNGn3b2HBIOGKpCCUL\n3lRdwCI/JqcR9sqGZbPArAYCV1xCt+3DooleeRbUUk5m0LVZLqYAA5tW20V/RUp8N9xYAhmp8lRd\nwwllznTfQsF1mqfFJ3L3aYInx2IJfdDoVlo+rFT+Tldf2iiBZ9kpaqqYl7kNmyCrwKWep+fCkJey\nXi0Qn0hF5Xw+Q5cFVvFsipSB9+dtL8amUAHLuEJtpZizUm/cDeHVYganklUexAAAIABJREFUNTDl\n4o8cDz7NdYtqTLWlUFEEtswspJsFGwPUiIjcFqbkzJtOyNHYtTfpn6xQiJNGCaqDdiSLvz3chsuX\nE0PZCAZbY/j0jaEusCLjz29/K8MedQXfsF34NlN5joBV1q0SViwv73uXHyH9qvT/zJvg//m9twEA\n51OJy+52XoMnVdZIz5dYMktgBVMkNPPXSQrTUFIxnXA+jZEw9eh3+wABNnVt0EATjaqQcYOYs3Iy\nWmWoif6sqwo5N+FZvIAh6tHJNAima4YVQWkhJ6lNEi+xbqoE3QhBQ2Ee2JvUIMg7icqBKbn4sYYi\naE1pGyV3kMnlHJczeYHsXJCGTltLuhOAqRxURaNJEQN0hYIogmZFYZvut4njTS2NUQEMYxx6XUAR\nGOdYCjU1GHNWuGqnApjVaGuDKWMGYdRBRWBYVTWHlMJeT2A5HWu4+ff55QXi1YLzk+LDuRwAa5Zp\nd0yO4fiB9C2tYZQA2arzDDWJYhf5CjoVFzGnixJ0AxiWsFfZeuNe5PUEE9ZH9JQL7+C69uG6Xbfr\n9inaC2EpVFWJ5fQKq3WCWjcstMCM9QwDGKyZ6AwtCxXx5/WUQSgUyKnu5Lod1FNqLbZKuMwjvLbf\nwxEr9R6eiyln7Bo+5cnrpYLDuoMyynGLFY44nsF5g/nm9svyu5UFkECkhwqnjJjNO0f4YEIK9K7G\nfR5TLebHw6WNp3MxEx8+eYLJ5YwDYIGYIOzvSFDzR1+6hW7JAgOvwupMAmdOV230FZULwGH1IWsc\nLj6aIB+KZbPTHYIMXbADjZqHtUmxgb4WczF9J1YGwwxGVxXwl3JeBKrAWZPhMMDRU8Kjd8RF04WC\nphtgKx8JcQplXiHl8vJiBYsS9YoVe1GpsaT+p7YCxOSyCB0Lc0bnE73Co2Opcn12QbWwpI/ujcbt\nyjakJmZVwrgbHwWaNS0tnvL5IENK4ZRSrzB9RFr+fR+eJkNzCTg0hQgFge8pjAKZB3vi4NyRtZNW\nBfjYyEkAoyyNOqBlVlRY0LrNB8CaY7g2Cca0tixm1CbnR1A2s08Xx8A26f4LC06bJ37tIm/TTSPF\nXJ76G/mBwjYAVcy3WgbZkYxn/3Me3OCHo3i/thSu23W7bt/XXghLwZgaRZkhXieoGRNx6wRrpgAL\nK4RR9FvzDDkJVjWVn3MHmzRdbwBYZEnOa4XOluzGa8SwPyIRKgN1edHZyJgVab0JxJmFwrRNKrR1\njuBMYhuqJfRqSTzFfC3XMiXgeHJaHV6d4huER+9ENxFcyEkRunLarWoXC6a0DqIFfvLH5fTLnA5Q\nyrM8OxZLYpLPcHUlMZA9bwcBmaidzNo8X+G0kdKfTyHPlKocmug5r23DEHtRl2rzfOhbKH2xYgr+\ne2A0FC0FO7RR+nIqWWsDEghhMGih38QE+F/d/kQXIY4zrBnQcWuDgqzapnbhZU26l8rfbo0JU8or\nncMnFsCzpGoWkJTx40eSUn56dFvut12gjmSMA7+ExeDoNMuxPmeBklpjm4hF6D77VqAgw3Mdr+C0\nmTrMbqLtS7DBy9WGFDWl4EpealiOzG/aAg4/kDlJkxVcBhUzxonqusaUataT5QW6tFKyuUGeyT0c\nr0TIQDjanI9FDjfmvM9SWBOJa/R3xxvWJMdrwSV6c5KJhbk4OYKXSx+cG1uwQP3McQuTROIWTtWD\nlf5wgOMXYlPQlkLUdWCcAPOlTEDtKlSMvOaeAS00VFohJVDJMOBWrmsEpKUqZhkUA5FOodFbNy+L\nhy3qBJ6vZIJOLi7Q7nLClUaylB1piBozgoWqIsHl16nT2JWXLTeXqEkrlmkX7UDwBvXqBCu+TKlr\nY/QZgeiWmfz+6398Co/Bx1vRDtLHBKxsFyiPCGOeiHn61cdPMatlYb5yfom7N8UF2dlpb/LU6cUK\nU2YaMgYRtw9GWDfkHYW3qSmwageKZClOGaE4YwRuIM8Zpw66tIfjNMMVXa0k1xhQGn7YbWFn2AC/\nZOks0zWyRF7MWVFhPpO/bQsYBA1M3UVZNZTxct/S1FCNq5E4sAj9LZSBJgw9TUpMm5L4XDIL7SxE\ni6zUjg6xJD5jNnNQEkI+toawxCNA2Je+t70S8zMJHj5+dA6zR9KT0oW1I66iNfBhmvoXUqLVlYWi\nEdX1Sizp2hhjo0c4dkxx47JMcEKofOykGHflJfUjF+GVfGeVz7AmMYxvpA/7nTto7cpGN967D4eg\nt9JkyLl+y2WKKpX1O6Ur4o0jaG56ynb+3/beNNbWLD/r+6133vNw9pnuVPfemqvngXYb07GhIZ4Y\nFCmKjIgCwZIVCQkSRSK0/ClS+ICICEQiJCgkSIkDTrABY5Q2drcVD7S73W33UMOtqlt3Hs685+md\nVj6sZ+/qS9x0VdO36krZf6lU5+5z9n7ftd611/oPz/95iFRq8f2Qix9wa2867pMX7w6nsAkfNrax\njT1iT4SnYDyfMGlQ90IQZVqURHie2z0X+CDoa5xUWSzc6Z6pKadTa1FVPb5drUO44rmPKLXLT/rH\na/m3uqS4KkWJlzl3cbwsGQ3dqTOeB4gpjeHNMZlOt7gjXERQxaphqGINnhq08vkeh8dyL7t9ytg1\nR2UiBTn1jviRKx8BoHtum4Zo1W7cPOTCU27Hf+klV4eMX3zIF778TQB8m1IVG7JJq8xyNxeHwz4n\ncldroorzuo11w5eToBMrdbHAEzVytphjKu4kXJG3XGjEBHWRceQBpcqwJvQYqmlscQSnUyVHVUIM\nrMFqjrMC5iopt4MKRqSjgzRnadQFuFRoQMqh4BQzb04gF9wLKvhKNnvGsBT8eXxL5KntGoUarTJT\ndzx6QDrvc/U5zW0zoqWS5HIhtfJGgJFM37mLO3zrG68B0Bgt8dSrlM8ylqvmJs1V7sF0tUa8Kamv\nECvxqVRW49bYipL52N3v2T2Prub4XCuiuXvZjenkiMld57GEz7hn3diuYaRBubRdPIUufmxIhZy9\nl08YveyanKrqruw099ddq4v5kqnCh9k0JY9X1HpNvOqq/e2d2ROxKYTGsF0JGGcxO5fcICs2JlIX\nmh0uiSQm0m5FBIrPBvoC5rMhSy3M2bhDPXEubrjlkcgdr4yOeU5dgNlTclVHJ/RP3AKcDhcEotae\nehNO7rlrHI1nRKoLR4p126UhFT6g3YxoCQZNt87BfbfYrh2M+Ky6FbfbrtvxM/sTjl53X/Tpm018\nbRZpFtPfcnmHxcBtWH7D8JktV/Vonjeci4RN8C1TYe6X4yGnquMbrexup04gtuPcpg6fgNS0BBDy\nS4OJ3Ov9oQRg7Hwdv9ZjgzdbgT1SMj2Hkoya51zmald9DdNiLVhSNxF+1V276vtoD+VgOGSkcGuu\nDT3PcqbCG0wmhlQ1+2fbTa6JLSmsQahn8tahm58Xpy9SGLf4a0lAJXHt7OZowb3f+U0AzoqIpOnC\nrVhz3+qkFMrR2LJgay5q/F5nDXxbpHMWczcfqXpDTAjTe+61o1vHbFcV7+/UuPX7CgMEpsoLsII8\nv356Y80a1e3Fa+HkS/vPUptLlUsiNEnYw6iaU989T62t8C+vYM+7Z1174z6Tmvui+zPhc0pDdug2\n6SKYsxg4jEucVSjFiu7tp/jZRktyYxvb2L+DPRGegh94bHUqNGsxcU16A5OciZhzYz/CyoUvpgtQ\nf3hNp4hfpCRqmFosjkEngjkxZKI5C7IZza47/cKGO+36qVmTUUSmoCXatckgZaLMeS/3KbV3Fvfc\nzn5up0FtJZbSa9BbrkgMLbWZ5NZMwUiSdeevuETWS3tXOTLOc6kfhCTPu5ChMe+xqLmmqZmITmbJ\nHLOlE7OXYORGz7P5ms8RuySRJsWq4SYJoaLHmgVmzX9grGGFdrVtMEuRnag7M535pEoGFnjE/kob\nvqSpsKvRqnFOjMFV6T9MhwNGEzcvs3xGIgGUILTkSn6WFGs16uki1TVyCsGnx+P52qNpXazSE31d\nWsYECl08QYmn6UPsQrRrWbpm9j7X6ZCMndcUnniUiT5PQihh6LHiSguCBbjCD3ERsBBWZZYuGUmz\nMpeL3p+m3DxxXsrtoztEIqfs+DWQQE9DrnpWgq+u27u3jrm14yoK2+OInpLUUT2jLo2OsxvumZ+e\nfZ3OZQd/z5oBmee8HC89pChEejY9pdIVMUzqnv/CLJn0xf3oRTBzayesF7Ql7BHFHaJVV+U7NGPt\nu+ZH+b7bBz/0AfuL//TnybIJX/pdh/3/7X/xRY4PnKt9MBuyq9bZWqVKXdyNnR1HblKvNPFWIB1T\nMld+IcsssXgJL1zYotV1fx+pUpGPRnzjm18B4DdeucX9vltgH/vYp/nEJ91DrJ/v0LTuIb36JVeS\nvPqJT3N419F+/4vP/yuOb7uHG/pLVDnlhfPbnO+qk1CucRT4apyGpMjXpbdK7W19RAQpzgrLUl/p\ncVqueweKqMrkxC2Kfn3I177mQE15sfrGlxj1HwTJR/jQFbeolsslc4mWUPBtXXta2ElCTTmOejOh\nVXMu5yK1lCtgmJfx3LNu8T5zybnljRLShfviHU1TJnJtj46OeP2+7i0zzFU+euryZQA++HTChefd\nN7NX3WN0013jv/mXv05F+pDWs+Sn6leYus10MBxRVfmyVq+y03PPptFsgMhgssmUUoCkQuS/y/mM\nQmHQ6WiIr41+PJ4yVQiW5jMSidf2nv0AAJ/5j/5j/swfciHKIvSoIMDRgwEfvaI1UndzZdOc2FdZ\nsNlYca/gGY9UFZrRw4fcO3Jr5/C12wDcOrrFZ3/0TwAQJwnXX7sFwO23rnPwpoO//9ZrrzPVOhqt\n8jpUOTkRJLrMOVM3qy39Vec3XuFR634GgJOTL37NWvtJvottwoeNbWxjj9gTET6ApbQZ/aMzbr7+\nDQCOOSFqud3+mUodRNixVa/R2harbdu5siYs8SXwEno+M/WYDyZ9Gh33N/VGj0bDnSqRwEZJJ6Kx\n5XbRN+4e8cYdt+ueHdwHI33Ifotj4zyBqO1OorPhGdfecLv80d2H5Eqitf2Yq6qLX97p8fyeo66s\nCX5bT2LA7fatqLZWMw6jClZVF1+PZDJKWUrt+ujojNHc/Xx3WdK4rERiZIm/rkSqKg7DabkmSzHF\ny6RytefzjKWqNZUkRnlGYmXIq9UKDbEo29xjrjms+xHnd91J+VQr4fmnXePO1lPuRAxpkU7dSds8\n6XOoprNaErBUQ9CNu0dMRm7c04dujtO9C0R9VWWmD/H1rIu8YKJkazadrcWBAvWfVaOIQN2xzaRC\nRbLulUpMsYI8ByVLcVquk7K5D4KHLxdLCv1+MV6QZVLjXmYs++7ap9dcpv/gjZe5/bRz2+v1Kg/F\nmu3HMWGxIvmRgrc/py4uD+MVeHblveWUCgvzYERL4Kt+5F7baRj8obgsFsdrbftWvcS76D7v0nGV\nu2cKq+YrIskSK6KWIvDWDV+Bb9eVuSC0lLN/zbuxjaewsY1t7BF7IjyFsoD5sOD1L9/m2r1vAbA4\nmrF91eUAWl5lLWzaavi01axUT1z8V2mD8QUsKC3B2MV4W0/vcq6rxFhk1iSllcpKFyFjt3Q//8in\n7vHK8ecBGGRn3JDi8/ROTPaH3Clex52Yb73yBt/8yu8DMJ4NSVSy3Nlu8tzTrnX26gstzgsy21Fu\noRN3CCWaazIPKwSatwzxpFOQT4TBKJakp6Iru9Lk/l13Gs/vHNBU7Ly7PWF2yV37985WTDtQlhIX\nBZbSSMiyHJSYNdYSqTW8rlbh7Qtb+BJ1OTocEgtv/uEfuMTz4oC4urdNuyWFZnlN5cIjF2O2F4ZU\nCzfWo614LbA6G2ekgfMgssCdygeDKdtfl7r0h0Zs51ICWBiWmVCoyz75VJoLUpFuJ1UaLfes93ca\nhCJVTbw5pWAWrXrMsTgefNG1ndgZSyXiinlKtiJoLZb40t4uKMjSFRu1i9sn9+/y+uvu3lr5NvZp\n975L3nPEoorLxWAdJiHkK3btGawwFvkUq3g/qXdpt9RgJ5boyeiIqHBj+sZXvoonZu4LT52nUDPd\nYJiyjFyObVm6+XkwKOiKq2NmLIVKo6PSrvMZBT52Rb/1Du2J2BTyPOOkf8C3pm/x4LYQLRNDthIQ\nqXeImqIIDxIadefOne+4zSHsVMhnEhlZDqjp9e3z2/QS55ZWayWeEoxGWWOTFwSSNf/ED3+GP37m\nEmO/8Zuv8saXrwHQfyrluaVzmSee88/euvYaJ6Jay3JLQ1mdsFmnI3x6I61QWaX7F24xBmVJoUy1\nV4D1RSGXxmSCWOejlSrzDLJVtrxGbFQTDyOGBysKtpLeebdRbTcdDPjsIGA+l9qxn5CtWiONxeiL\nXniGTMnYiqDIjVqbTLTuJj/hD3/YwWT/vU/9EXYrbmPt7lQw4jAsV51+YbniIKHYheVY+pHzgm5T\nXXu9GrYqIJM6W2/dO6Imyv0P2ReY+OpWLVOWqgCkkwIjNhdjJTJTrVCTrmgtjEB4gpqN8CorVukQ\nE7k5WiU4x6Mh5Yo5fZ5hxTNRxCGl+Ce8oKRccSMoKTkc9nnjrtMH3dp+motzlxwdlKeUhRKioajy\nyojRUiJCwwF26sZxfHiXqrRHdy9dItJ8NoML6zEPH7jD8Oq5PeIdtwlFgcf41K3JeqsJ91aUdQJk\nVVKSFRdEsMTb1oY0ydZQ8dxL1tWO/uvvjEN5Ez5sbGMbe8SeDE8hXXB4+xqL5RmFiD3jXofzL7id\nNMphR/iFlqmwp376dkOeQuDRV0dlWKtQq+tkq9aoCXlYb9fxdMqtmqvsYk4osZEXWs/yM1Xnzo1v\n/W2+fuQYlIJ0yf1jt1tXG87rGA1P1izCoTEkDaHV9qr02s4TaIYF9XiljyhXtsa6dFoulngt3UhU\nASWGrMp/JjZ4qm9GhUdTT2qrGfOWEpujs4AjwZjrW25O/HrC8Q3nfto5FKrB+5G/LskVpqTecPfZ\n3ZPoTStmIOaip/Y7/MSP/zAAu3sXqCbqcOzUMOh0zFdCPDOsGrSIGhixFofzlGbFMU7ly5CKOAAe\n5g7TcGt0n0wov2FeUGm690VRjhGxKWWOr2t3t12ouNVO2GrqnqtVKltilw6aVOSFFUVGFLvXRyqz\nBs2A5dBd47TZ5/REJcJFQaqybGwDJgo7PLNKwPbwx+pK5JQ7gmCPki6e55LRge/C3HQx42wqD3Jw\nQCnEZiVZsrPjxGwq9S62VIOSEpTe0tDccSJAnfM1kkjdXHlOreHW53OmYCxv0QauNH44Ga9xLd2i\nghUHxuTwmHhP5L3DEN+utCTfmafwRGwK8zznteMzTu/mLBX/vLh/mcsNF3tlswFN0WA1wzpRpAFr\n7SyzIUtlghOvTVOuWpJERGjBWh9Psb+nrLhXa+GtyDQqVc6/5EhUfvInf4C3/nfx/S1yjh64/EK7\n6yb9bDLHKrMcxx4X6i7D/2J9h11lw5NgTKKKyKqlNc1Zg1GCsE25lHhJ1cOIEdkXvXcxC8lXmPrl\nkKTmxtxazulJOOW+XXJFbbE3BVcOFz6DREpP0wgvXN1nhUUmurIgoC3Ny+2a2wgb1YSaNo2nn77A\n+QvP6X05YeC+kF7h42l8K0o0bHVNh28qS7xIoVRwjsqR2wjyyzGnijeORIVXmbTw1WU4yoo1LDdL\n32ad9kOPbW3El3cdLqJXDWmIu3Or06GiULIS1fH8FTM3eKV6QtSf0G438EUBfzRscdp0c3Q47pNJ\nwn4wX4AVLkK9LUE4wg/VGWpiZrfcmJaVFOOrBVoM5Gn/jFxgudCvE6jlessPqCr/ZZY+uZiiC/U1\neJ5PEbqDzItDPIUzJohBa6e78wIvfMLd85bm5PcPbvDwVREKJUta0r+ZeAP8e6Kb6xbUFu+u92ET\nPmxsYxt7xL5XKfq/CfwpIAXeAv5Ta1261hjzOeCngQL4y9baX/lu18jTjJM7DxgeD+hdlGBLq7WW\nag/zgkIdbqnt8/DAZbL9mbr3OtE64UIcrCnGsjjGaOdfjmbE6kMPpAAcBwEISegtUxLpQz77iU9x\n4YuuTv3ajTvYnnMJIytqr3SBrxjkwrkal/blukeGik7ETjcCodgW0j6MBgWelIPn09laHzKeNonO\nqzkqVaLVZCB9g6Qbs1DzzFYUkClhOKuF3BBsOBq5+xnMliRKNM49n0CoyMh4hDWxK5dmTb6yqt1X\nYo9QTWVXruzjKYzxaiFWnhXGA2XtqYpsJcuw5UqarSRM3BxGUZVqVZiFg5xd4Uy+Ks6DmbWUY/e5\n2d4CP3Pvy2bTdWWgXotoicikoUpNnZyWEo2VMFvzOvhpCg0l2pY50Sr5q6x+tW4pVk1eniUQAjRK\nSmYad6NmiFU9WHFunN66RahUfuiVTFoiW51ZbKoOVAEEjidnGHWzti9WSMaJps1ihTkps4LZfUeA\nMpI6urFTQjVwFZOIvsK4kJCFoP7mbEws7Yyqulk7eZXrovebzaaEWnvFIGUiusA4rVLuvruA4HuV\nov9V4HPW2twY8zeAzwH/lTHmJeCngA8A54BfM8Y8Z+2KEPwPtixNObh/nyj3sPkKqpoxExCmUYHa\niqp7AQsRT0yXq/JdFUTp3QwaFL5w8uMJE7liaTqhIdx6bVUKjON1XGeLJZ7Cks72efBUkpo9xL/t\npunh0GHgy6IgWrVqxw166r70g4y1omsWkYpheraQik9hSJYixfArGN1nUZYUakX2cOPIwgXBiuLe\ni/HtSj8TopZbeK1hlbYo0x9oTLN8yVK8fV5eYJSdt9aSrkpngcdUnaaB5nUrTOhtudi4094lV3+F\n9atEisvtYk6gcq5ZxW55SZEJNZMailXbcxFgVOqrRD7bAnX5Kyn6+YS58gvNaYyJV/qIxZpSPbAx\nzVC8irli/aSCWVFKewG5vmxzP8VOVF1ZWIzCzUh9GwEBJhagJ81o16SPGRi6qmwMJ1PCnnvucxGT\nzA5OONMzaW5ZMlHOT8qcTC3cntrM8/GUQsAqrx/gSTAnDNtkE7cRpJMzxtr3j8eCgfcPae+6sm9Z\nDRiJtCXIUhYSjV2mcx6oTH6qjtEHb95jOHQH1uHZnLmEb6ZpTiYY+zwuYfLuSpLfkxS9tfZf2dXW\nB78DKuA7Kfp/bK1dWmtv4pSiPvWu7mhjG9vY+2rfj0TjXwR+Xj+fx20SK1tJ0f9brSxK5v0JXi3A\nipjjuH+HZ1Tmb9Q6NATHDeOAFTltoaaXIEyoKFPvh45jEMD3oFRx2vdTykSJKPHnF7YKZqr3NQjl\nNbTqLT7xktu5f/vr32IuaKtXcSebZ836iA0ij2ZTas6VklBueTErsdKR8MS47HX2samSi/MUb0t4\ngp1dCrmJKNkXVxprDcNiOqZU+BA2KmuexLlfcKKTq7kUoUdkuKWPKvApVi6lZ7HqqMwKi8rYXNwV\nsKoVs3fOZdOjSoYaGLE2x1trNoBZFfsVtpAuIVGdPjJYzVWZz9ecgq0LVayETF7cd+Cnl2/dZ1KI\nqRhLtbFKytq1VoXFYhDoR68lpaHhOfe5Ehqq4mK0JiIvVzwDOZ46A+O6PCwvINWY6+06WV1e0zwg\nbLjnc85vc3C0Ot3d2npwdsZJXx6il1ORLqNXDSnF9em3lQSvt5lOVqHrEH9FzlMGLK1O/HJGLpGc\npajrYkoOHzjN08DWyaU0nRYz5qIeXI77nBw7720gj2FSpHgK/zAlVs/GYomUrDVFSZy+h2Iwxpif\nBXLg576H9/4M8DMAcRyRYciHGaZYuZwBjVStxdQI5ZbtNPcIBLhJtl1JcjEZEIqBJy9SchFmmmxK\nILn6eu0pQoFMAnE/en60FgLxwiqrKMcEPlef+4T7vPyfs1SYUhYrEVQPf0WCmpVUhCCMRhGztvub\nabZcu7mVQiIdjZJiKnBLEWNGAlO1YyKhDVfCIsW8IA/V1ly8rUtYpBG5ynRp65ig4+Yo8Vcx5IyK\nAFnzsevQA/BMsKbBL7OMSuYWfUcsVYHvEczd/JQjj3JLf7ssKOQ+g4+NFOPOVmVD1tqeBJYidZus\nLS2lujX9RoOwdAv63MXLbk6+/CqDsZuLK9nFdb9G4HmEytfkWU6mLtcglwhsZCjV7l1kEJRuboMI\nFnpOOcUazOZV9H48Cm3YtqwhLhgC36Mm4hQbLPHFZNTbFxL2fpXZN1yfy/TohLkAZ2bPENaVmypW\nTF+GqOU2m+qyDZ5a3Auzfq525pHsuLzZMy/o2cyfY6qS+jIDoxxNQYO5NpYjL6N+KiUq9U7YvXOc\nT9y6vzE+4p4qI4fTJflSPSMVn1r8HhG3GmP+Ai4B+Vn7dv/1O5ait9b+feDvAzQa9fe/f3tjG9sY\n8D1uCsaYHwP+KvDD1sovcvZLwP9hjPlbuETjs8BXvusHWiC3jAYDQrmiraLLSm2jagPqOhEb1Spx\n19Wsg0C0XLU684HChNDHSn3XbweEyk4HsSHyVzJm6n8vgVAJp1lGIYyH9UNeetbx/VXDKhPjduBV\nFcEYi69Tp9oIKTwln9IlHIuS+1KxVvvt61TtpYbOc+6UWIwyakpKBtOMqKcEYyoBkbRkIXdxXlsw\nlgL3fJlSKumWJDFSJ2dH8OJRDOHcJfXmQQa5S9Z6lPjauxd5ztSu5OQE/gkNiMgEr4CR5MubOYtT\n5z5HSQ2zcPdvVvv4wq6fk7cM8OTFlMsET8nT/GxGIBDO/kV3Aj+7s89tjS99cQryCOI4oVinq3Im\nonCfF+79ZWpB2INyVjIXt2PgW8pYzNTjAl99J9MT57lUt318eXRBYPCUdC39gIU4LBK/RkMMy90L\n6gKt9pgcuXv4xmu3WOhZ1/sBvjwoHewMJmOGZ+7r0LoUELk8ItNz90nUY1Pb6ZBJPCisNDSm/O3w\nNwjJJWEQ2Sqkbu11vF3sJTfnc2XdL3g5Vqzb7bOIQLJ/+dGIVIzQcy+h9L/P1YfvIEX/OSAGftU4\nNNjvWGv/M2vtK8aY/xN4FRdW/KXvVnnY2MY29mTZ9ypF/w/+LX+4hdHhAAAgAElEQVT/14G//q7u\noiwoFhPKZYEvzYLz3R4txZn3lycUb0pdeTIn04kXtVwJbX9vl92OiC/9CE/SZEUek4mHYN6/zt1j\nlxg6UOxZSWdsN91uvb29R7PnPq9b26a65XIYn/jwB/n8F34DgP6ZQzluNULUkOZOdHXWTSpLpkIY\n1gatt8udHffaw9EUM1ZZtLqNrakJKp9BJgyE4um+6TMQo9FsHjAT4Wlpczwh6CYjKCdufGPlJEZe\nTCkMQZAXBMpFlFmJQHqEnmGm5OHtY3cSxe0WZc3Nz8iU1CLlKEwDFO82TLYekzHK9i4Ksoq7z3QG\nqRLFw4f3WCqHwcIQWOdhFBJMPXelwcmrQjyeZWRVCbL43tp7G80zVhCJOHKn/MT4BPnbv+/PXKlv\nOMvX76slERWd4kkpstPc0BAKdV5MOZvKC5svGfXdfRTzObW2y7Xsly4KbkYxV6664tqdwyMGUhhf\nTCbYkbwYPbPbr96kP3Sf9WzyITxN+Oww5I1bjtC3VveJpaPR3nKJXd/MWCp3kM0CrFCtkSlA+YBK\n29LDJWkXvnJRwYyD+25N9tp1dqXJcZoWHAsqHhISrdnN35k9ETBnzxgqUYDZCwjVFvyxD34Ar+pc\nsRtv9BkN1Mo8nvLyvbsAhEoiPn2hwadeegmA5z50mXoiyfh5yPF9R1jxrVtvcuvILbzR0rnJl4Mq\nw6vKTmdPYY9doSTcmdN4xlUfPvvZz/D5L/wWAAt9kXxCQsF5rc1AIKThPKUihahiUpCrbjyTC9ts\nN8juuUXcrcxp7rovlt2qUd5299k/ckmtg8mcUq7sYnHKVLqEla2Eqmrvy+mcmXomIilPna9bTk+l\nkFUkRKsKRmkJFD7t16q01HJs1X/wYDDkwX03r3feuku94RbS/l6XnR13n5cu9djfdRh+MzrS/d7n\n9TsOi/9wMGHeX7UkZ1Sl0r3bbBMdKizS/T596RKzxUrxO+V46BZ3RkYsSetgCYFA1GXi3nc2m3J4\nzW1es8GC2yJkKWy55qDs1JtcesrFVWoiJRsZjhT+vXbrTe4eu/U07s/Wib28XLKz575YIymJf/JD\nH+fFj7u+hIezKa9945b7vDxnLvzJgxOXNvtn//ILfPiSg+abH1oiXRhe/39+h3993bXaD8spHzzv\n1tmP/MQfBaBZ7RF1VrRxS2Zjt56Oj894UEppejDH6np3D9yYo84cBsJeVEISdUP6xwNy9VdkWc5C\nQKZ3ahuY88Y2trFH7InwFIIopHfuHCY2WJUez1/apSnU3fXoPqG63vyx4eq+SzSeyuUaLTNuveVO\nuU63S007cRAUZCOh7RYe5didYqF23HvpkKmINjvVHdoX3UnqJx1ylSp7V17EC1eQXnUcBj4NJbKS\n0mOuZGZ1EXKijsjQLPGV4LGx81z62ZKTvtv5+6MpiTQnLlzICRR23HjgTp2DQYnXcb8vRglGDMc+\nIY22c32nxZRcXYtBx52MdloSNd0RZY5KfEF4je+BwrFndndpV93PS9W2o2XJ2VziO7Uud/uOgu7m\n6ZgXj909+2VCW0ragajPDm8dcXzqTtW7wxF+6cK4yA9BhCtneUEuoR0vVemx3WZXz+nenQc8PJbu\nRWaJ5IUFvo8RxNibqlxq/XX5NunF+MJCnEzGjMZDPaeM4Ym7z15XVGk24/4Dh/47O5wyFwTd5AVV\nPUvPS6gJQ7Aqb85Ly27due2XX8w4OBDS9WREXyQqn/9V50m+ev1VPiEJulbeoz902IMMD+O5uTg4\nm/Pafff60YnzCH7g0x/mxQ9+2D0/v8bg1IUgv3/zLd6872DMt+4e0g7dZ3TrzvsLsgp1NYF1lyHt\nijAn0TEPFXrmeYGncOOd2hOxKVSShA++9DSVSpPGvlR8Wg1CLaDadMm1Y+deHx0OuX/ffdFX8Ntz\nT9W5p5r4peUZH9akRc2QC5nLds/TEWe3ncv7DU36KJ2zIyx+c+lxUTGZV7+Cpy+p97BkXwy/N5Zu\n8XfjkB1VMHa3EwK1r4a+R6YHfS88ZSDXrlAHZyOIefqyy1vMypzl0m0AuwcGf8eNJRRYZatmyAZu\nY7obzTiQ8E1zusDcdONvXWrQ3nHjbgr0dOJlxGKf7vVi8lMXy5aFYUsVjp1OyLY2uhs33T28Zm5Q\nKASZzaZUVJXYvdRgWVEvxXJKol4KKwh2Ncg5r8rCyd0JXx+75/RwMKYiR7QRBFx+wRGHdDtuLuuL\nBRVhompRxmAg/sHFnEzdh71ulZbYm/a23eZdzeGhWJFOjmZMVOGZLnJqaq8PPYP4VuhpY07qlih3\nm3o38VhM3b0d5ymlGKd6rQaxWu1zdYGO0yV54DaYdq1L75w7kDzrIxZ57l5zY7b5El+98dk8xd51\n6+0gfUDcVnLkIGMgFanfO3UHWe3NKh2JwTx38RPcw43v7P4hDXWS7tUDBiKOuXniNrfqyCNWpSZ8\n9hJ7TZerOLfV4fWbp7rPnOLdYZc24cPGNraxR+2J8BSiKOCp83vs7exxf+J2w8nhkLjtTuZar8F5\nYaLqpk133/1NXT3o53b2aAlKvNd4ipqEN4IwYiGxkO29E5553mWdep9yiSOmhqu77uQOhwU755w7\n20w6TEVkMp1MUHmbUGQc7UbMtshUvBR8uXCVns/WTLgHP6ZVFwox1O9tTEu98K3CrjkaozClEEFG\nKPh0s2UoI3c6NnvnqPkrbYIJo/sufPC9Fm31+k+tKhVxxLLu7r2WxwylO2lzKFZJSWr0Lrr78JVQ\nDCdzfBGL5HtdGsbN4d5ei12dpJ1mQlRZJcQEZ67UqIne7tyOJTvnvJT28ZC6whV/OGOvo2YrQXgX\nviFsasxnAXZFG2dLCjVbhV6TlkKJOHInYjWs0hIas9Kus7/rxrSYGarb0k+cLSlV5egJ/Tef++QK\nTf2KxwVJxdU7beoiZ+nsNYmkzHGcCz6desyETM0yQyLPZafVwaiTshG4e49aFUanzjuYjo4pBM2v\nVFtcERdmpVXnAy4ioLHjPKxLJqKKG5PnWw5vOU/h4WTO8xecZ/JUc4+pvKxrkh4cHtxjKk/paDhj\nT41yflylKZ6J0XxIJm7Kd2pPxKbgez6dRo241WZ4w2Xf34yHPLPlJvLCs3s0LrryzWx4QCVx2fBQ\nhB+FF63BH71zDRJx3Hl2QQMX41V7f5jaJRcnj9UvEAc+++dctrhe7RIIEmz8CF8EJ9FeQRXFydJa\n3G1V2O+5h5gXOZFKT92kyeUPuxh35jUczhiIJWRTmoC5+Brj+QStO6qtLjMp/XhKobfiLs19Ua6n\nbXp76i4Ma3hX3AaZmZBcXZInAm/ly2gN6On1evTVDzCnAI07tVPaTRcnP/2sEzl9OofhyKFtWpUe\ncdXNcVSNqacr8pITMpUGV5yJld4Wne2n3fuujrk8UhiQDYlqEvCJYkp1/h0eu2/E8eSUTD0cjWYD\nywqCHqzzIF6ZY1ROqwuXvN2q0rDu3tLFklbPfVHm0xlZofJjuiDVRtUWca/XH9LWerl0pbPuDh0O\nMkJ1ksZNqLXcZ9f6KyCXjxEtv18p1y3zvQt7VLbdOtu64tZQ+q1XuTuTTID/kPicG9MzO88zksrU\nXnGO9ifcZtDsKh+UxcRikMptQaKuyyBMeOaKez69mmU4cDe9/Yw71Ma7rTV0vdqoo/2aZi3mvKDU\ng0nOYPnuNoVN+LCxjW3sEXsyPIUwprbzNEeTE46VUNu/vEW0pnDfpiVXLeldIhOiJarplMhHWJ1c\nvaBJUnGuoectCWO3Y5a5Jam5E3Y2kbhL0CSSrFhcbWKFX6CSrLs1k16H8Jy7TiMVVLXeXPfK182S\nrcSdYo1Gg1pbXsyiJAgECVZyLmk0SOXOTsYB/tTt8qGXEIg4xTfu9JjPQ2oC3iSBpdcRZiGrkqti\nMGCEtaJUF51ZakrabfcZzaRFXyesTTNm6mA8Gk6x8xXFu/vbWlhwpftRzWtCmLgwoDQj0pHzeMb3\n6+SZqgHCiETRNoFR0vXCJXbm4hgoPRAXgGcChta51Xnm5me6yJmIliyoVumugEe1DkZUaosyx/NW\nitfufpPaNrE6IJPGNtGqctA6x2S20ttcMhtoboMVECilKyKTwPPoCLQW+mMSeSxLJvieSFmqIl5p\ntkgFsS6CObWOe1+9u42Ri34ycfc7WswQ6phk2SJWKBUOpnT3tzXPdZQ7pKrqBb0mqQiA/EZMKPBZ\nNfIpRaXW3t2nJTKXXbUCzLMmy4ELsedhueZyGKYLLl+6DMCts5TThy6h+U7tydgU/IBWa5uTgzmB\n4vA8Mxzec65YIzdsPSvdSL+JJ8BNsUqr+lMmWgTVvQqe/HKv3gLlBrygIFF2Pag7YJKdl/iK6+08\np1QbR740lEIYDu+OuNJ1T3H4UC5z4mFn7nq1vZBSJKbT8QxfaLtkt0q8VIlTfcpx4aEIhMFytg5H\nktJSNKTVMHb5AmMLjPoPgr0AMxSVN3OGY6H/EsOpvoTzkSojdLmw62jIy0qNtubKywy5cht3zsZc\nV3mupfzL7nMXafjquOzW8TPdT+RxIjy/CXKWh27TTi66v53lx6Sn4rBMWgRbLiwx0xm+iHLzszGJ\nWTEPiZgXw9mx+9xqKyHUM3v6/DkmAmqV4Yi5XN+B+iT65SmdKxKYxSdaEcpkUFvJcS4K178B2L6b\n+97WPsdTt7nZ+RI/0oFTrWCE0uyFbWwuYJi6KPN8hicB4cX9Gabu3teq75JEWk/pSt0qp68+itkg\nJlGo1drfoiZOzMAvyCe6t4ryMpMZkVrDA1Olo4OlLFMmK93I/hZb++6QSfsqz0Y1TlSqns8mpDrU\nwjxcad8SlCmLFVvWO7RN+LCxjW3sEXsiPAVrS/LccRZGiTu5FmdzRoJqWuvRmDlXLPMygorcNdFv\nDbIli6E7BdLOLmxrJ05zciX28sURubLvZbhSkwopV0mYWcZyxV8wmXC0EmUZG2iuGJpFF+55axKP\nchmSq2Ny4eXUlm9TiYWCFVslItNhykzgpnxmIXDuY1DtEIoqLi8d3BdjHIckUI+bLNZUveDLvQ5z\nS6TKx0ThQ2s/pHvendajxQIbraTcAwLBrvujEdcOXFLx0q44Mce70BCfRLbEqsMxXSwZSNTk5PAB\n1YvqTE1dpWZ6NmAxc6FBu9qlEbrkm5mnlDgvplwsKcWFWYrX8Gx0ykRw3qS6RahT9+oLLzI4cXX/\n629NGSvh2xfzce0swohj0wvnTOWlFWPLXNyG48GcM52wrXPufqr1DoFCnwcnp2uNyk6jsXa7Z8WC\nTHObiHI+peSWWKnHYUEeuFP8aDzk5NBhPG6ObwGQmYK5vLjc7+OLDCbJG4TyLK13xmTornFn5Lyu\nrShgu+lC27gd0xYQLU4Lvv5lpwO5/0OGrQsfA8BXMnQ5PmGkbs/TdEk6dp97Npsyds4W/cF0HW6+\nU9t4Chvb2MYesSfCUzDGEMU+zasdBjfFlutXKZrudFxkObli52F5hl24nf1UEmRHo/FaQONkfI0t\n62TeWCx4cOtVAApvTDZXXVx16VbUIZBGpQ2gWLjTY3o6o2y63bXzkk/9627HDxJ3mnlFTi7MQn+8\nQOxvlPig0pLv+QTKJYRVd7KVscdSZDxxtYkfKrlUDwlOxLq8YliaLQjOKybPS+KVzFm3Sk36FWma\nkl93p1UkfYftzhVu3nblr34OOhCxQblmQjKeZZELDyKC0uFwQCiPpoi7rNoTh4tTXn/LwXIPX3+D\nREw/U7FYHZYHzEbuJO2O+hixbldKMMGKQShnJsTiQklLrGWp6837QxpbYjz6wFWiu+5Z3r3zkLkG\nsJA3Ng+WLIQI7IcZ0uRhsYDJSsdxDKk0LkrlUUbzjJv3XY7qpH/ITGXbQWtIT12LYR0CJV5zEcwu\nxlOOhq7hq3f5AqMz6T7s1Xnz5VcAmB27/Eye5uQqX9Z2qwSSv/MWNZYD1wi3WE44PZKit/Q4z139\nANV9aWtEBZ0D5yksBgU3TpxHd+P8Abv77joVzfHSW5JKLyS0wdqjK4uChVTMB4sZnnl3kMYnYlPw\nw4j23iUmRycg7Pzu0112RUIyzU85O3FudZDDWICcUy3s/ngJ6tpb3m6SR78HQDQq+c2v/zYA5688\nRbfjFt629CXTSh+EdU/TkEnhFmxRrZBJVScIFmRN98DWAp6zYk2dPkknnFN40YoboGrGYj7FE76h\nmImirOK0LsFRu5UzCbDWlpjEbYCBvtzZ1GM6UEtvbohjZf1Ti9VCSEkZdNx99qeuHr+cDhiont33\nWWevsyInXSXUkoQEt8FNZhJ8vXNEpgRYdZBSqK17kuacDd2XaWwDHozcc1jo2VQCg+8ptMsKCnE3\npiUYCaWmmWVerrQdcWOe1RksV63THm2xNmO3CLeVaGzUiVR18pQATG3EgxP3rBMb4YnKPY89hlOF\nD+MxhaorhXWHwjK9yTfvuS93lGVEiaj18oSpyEkqUUDmr2jxFI5WQuZD9/yzJKRSdeFI2Gxz/b6T\nARh/G4dlU4CzreAyUVvrad4nVy/FYF7luOnWwL7WUzp5iDdQu39oGIonufSGay7Na69epy1ofb3j\nwsO4tli3wA+nM8QSwGTicaIQpTAlsSo0iua+q23Ch41tbGOP2BPhKQRBQLu9RZGGvPBRwZmLNq3M\nnVCnd6+xuOBc/rpvyTJ34jVFmFnbr3NWuBMs6dWYX5dARnXJFUnUn+82aDXFs6A84+z4AUt13/ml\nz1B147jTwhi349/90hmzA4ey7KuENgmWBOqMnPkpU2EMJtMxoftTomc7aybl5czFDPE4oSIas8PR\nCbnIX8PbUzx1Lc6kJZAHGfO+JNqqPvNVAbyoUqw6+Co5SyE5d6IVZqNGsCsk4SLkUInWsvRJFP5U\nWjFb8n7SFUlLY0Y5dydKJ0hpFy6Z1e40uCAV74+/8AI9ibMEK0ht3yO8pFPZhKiPinQyXEuwFQuw\nvhKecn2TZkH/FWlLxJZ7p6r5376BL3xDs1dlKY68Uk1lw+MzlqJd6/oxceGunQ0NEzUxnQ1nRIEb\n61vXnTfSX0wYKhF3YbtLIhIWG/mMpXFRxjE1lWLHbYV+7QofqLmTmTIkfN51M3aaV3nlS19099l2\nXprv3SAThsAkJWYgSrTKjHnhwoBZFNA8cfN8NHfhwJ2Xv/V2aTWqcxqIgDYt2BGc3mfOW0cOb7Ct\nhLkZzLCi+hssM+aCik+nJQdHEg+qbxHX3Wcfnj2i1PAd7YnYFAACz6fSjDk+dV/MWVHS7ArEkk1o\nzdwiPc7uk4oZt2mc29rsNtkXpr7b6RFLw9E2W+z1nLsXt32MYk6rhTlizKKvGvzYMupK5HRUpT96\nC4DfeuV3+a3fdqz1I7EPHzd3iFeLPy9oya1bNO2a6MOzVXJlxmcShUltQSaVqVoSYGor1ukYCQtR\nbbkvYOkvyJSxHk0XGBGrTBZnBLl7bLdGJX2510VP3I99H9tzi7h9Lub2F1R9ySFXE8dWtY5XFe6h\nuWqrjSlLVUP8iKAiBqmdCNTP0e2xFokxhdtUgqYlEJ2jt/TJ1VGZTTNyYe6zUcpYLc5WbbzT5ZSF\nKifj0ZJSm/qt+U3SuZvnmkmJRbpzJor7auYTKqcyTReMY/FxZsFao7GVGCKRyIwkBlTMC5rijwyS\ngMlKWStL6OoLOVzM1l+guXAhplnBXHTP93RUo9lw67BTL3n1VP0mAqGZ0MNKP3I2HeH5bn2Ob9/n\nN77q+hWmRcoLH3VENd2u1kJeEijuLyh4cOLCi3Z7e42jGSxmPFS797jv8hNxpcATvH2WBKSKH16+\nfZMHR24DSKptnutdBuD3eJl3YpvwYWMb29gj9mR4CsZlx/1Kwutj7YJUeP6j7vTjoU9j1+2Y/mmV\noXgNqEtLclTipc7NNN59Og0XglTyhEwaCHmZMj+Tp7ASnDma07soZNteh2ThXv/aqzf43RO3s1cv\nlMyUKCyUkT88HWKUEKyZkExSabYsCBvupPHDci1k4mnvXdqIUu5ud69HXHHXrlZ7eMrAzSNXTZgV\nGSsNjwcP50xT52o2z8e0xE2ZP7jP2aG7N6OE49Zek3t3nau6nPbWaLa8KFkK/dZvTZnr3nY6Ctfa\nNXzVsxfenLtngk3feYBR59/NfECr5rr24sjdT+lnhPuCfHtb1M+5TD6LgkgNP37FJ1FS9eWbjt/h\njcNDdrbd+4Z3J0xS51Uc3H2FQjoM7DfoXHKe3uK2e19ULqnFK25L8NXVOCgLQmkt1psVaioJVdVl\nuVVrEMopmvoFysOR5FDoaIzjHCOI8aLvxj9cplztOgTsD3ysxysPVQ0JWjy85rzJlWxcI6yQ9NyY\n75gHPCeOhMJE1M47b+PhzT5nnrv4XuGeY9x9lkpHVbDc58WOW/fV6l0eKrF7+KbHsO/CsYkqJ+cv\nt0mkU1EvKnxT5C33jk7W4ZYtSup1UX6/Q3siNgULpNbjxqTPl3/j6wD8wL9/lU7wIQCaWzu02yLb\nqD/Pm3dc78LtOxLQ4ICW1KKSrKD5jHj7buTrjrvR8Yx5032B2soXPHP1Iltt92CsiejnbtK/9tZb\nHAnm/MzFffaefQOAk4cuVzGYvV16WiRVLmqPClp1Um0A2XJKVXG+J3j1qCiZKiSY9S1J7u6/txti\nfJXCBNJ6eNbnvno07MkZnRVxzLBGkbgFe3o64u5YMNjbEojJl2T+ijq8ZKXIkRclpXIxo9Mx9++4\n+xic15fGBkSC4p70z7h+w117sczYFfFIIzhHLh7A6Uicif05Z6/dBODy5QlXle/Y3u+tBYKLIGK0\ncO7stUP3bK7fWtLccssvCxLSVGxSiy7Z1M1zTI5/ybW7N/dct+Bw/hrb4iGteR1GcqkLckIlNMKw\nQkNgqLjurnE6mJJJYHZ4PGIsmvy48DjfU0+EadIfur+5fseNKV8Ydv/UTwJQbe3zIYUapalxOnH3\nnKXuGVQqdWqlW1sv35pwbt991rmLTWrdHwLg3he/yrWvuk17/yOXAZhnY7zXRMJSmzOfrvgzq9RS\nF04G/hxPUPa9tpuT3aSOWbhx3hlPeeWe+9zBeEFNbdulybkniv53apvwYWMb29gj9kR4CliwWcnN\n20NmKw6CuMd9SbHn85CxJMUb1QZXzj8HgFkoo2sKqpFzucJKjR312MfPetTHckVfspgzAWd6EkCJ\noFTFYXh6j+t3XXb3wb1XSUXg8pYX8NJHnceyeM41Gj38td+ilC5jWPOpqnJQrwaYvtz5eoCJ3ElR\nV2OQH+RU1LufVQ1VdXN2gzbVC87TmbwpLyezmDOJfrz0DK2qmI+nBW++7urto3t3KaYrDkZ33Vkd\nRg+dF1CpL6hJfdh6ds3pW7LgrSP3GRffct7BuQsfXDGk011UuNJw8+Z1Q3z511FZoeK7+9x93o1/\n77TJeO7+9nz3Ms1dQcHNlEIu+Hw64OzQhYWHB87FnY9nLPVMO92QVKAtv0yx4s0ski6tcy7bf37u\nTruX79xEzZDs7VYJ9RyCLKPecKdjs16lW1EFJnGftd9LmYkTs9eskitBF29HxApdlvOcB4fOS3kg\n3slaZ8LZqejuL+3QUOfq+UbE7Mx5CpGSk9XdNpeectwK1+4erAli/thLl2hufwCAP/rxGl+bfQM9\nIACuXniW2g+5uTCLkiIT1+TIMFKFwp+HnKpT9ryo4YMo597AeXS37t5hOHaVFmsLPEH5rclYlO+s\n6rCyJ2JTWBY5t2dnvHH0KjsfcW7i/I7lSwsXs+3V2kQi6eiFJWHNfdkaXcXvM8OicC5czfdYit+/\n7W8Tt4QajHxK9Qd4Eh318pypyli3Bid841vXATi6d4K/LTKNnYgLH/lBAJ4q3fV+4UtfIRXxSCX0\nqGthkqVupwGytKRQDG8VwsSBR7JSp4pzfOnk+PmCULj8StV9eerlHYqqWxytCzu0YnfPJ/MB9++J\ngDRbUgnd6yvdyWBQkJ4pnpkHJIq/k6VlBWyzhWWuoPrGQ9dn8OHDi+xfcqHBMpjRbMkV9wM85UG8\nyIfAbaxhIHz+xZhg4Da9pT0hLVRlKHJmivfvD054QyHf8Ez9ECalpn6IZtgiFErn5rSJX1l92Vp0\nPbWrV11FZXfrJcqlXPtlQEPdpc3Y4Gmew8IyU1VmKfLfyCsppUIVzgeEYlCq1XxKrYFBWXJ/4mL4\nUmFCI0zYX7jxPYVHUZEAsIVIPROxNs3tXoLnubm/d23EvtCfk09u0RRS8tzzzzPS3zfVRZuVE2Z9\nla3ru/i4jWdwcp1b16+5Rzk5Zu+i+wydeUw9n6HCtaPhaM0FGvge9Xh1UFWpx+8O0bgJHza2sY09\nYuZtbdj38SaMOcaBME/ep1voba69ufb/D679lLV2+7v90ROxKQAYY75qrf3k5tqba2+u/f7aJnzY\n2MY29ohtNoWNbWxjj9iTtCn8/c21N9feXPv9tycmp7CxjW3sybAnyVPY2MY29gTY+74pGGN+zBjz\nujHmujHmrz3ma100xvy6MeZVY8wrxpi/ote7xphfNca8qf93HuM9+MaY3zfG/LL+fcUY82WN/+eN\nkQjB47l22xjzT4wx14wxrxljfvC9Grsx5r/QnL9sjPlHxpjkcY3dGPO/GGOOjDEvf9trf+A4jbP/\nXvfwTWPMxx/Dtf+m5vybxph/aow0+dzvPqdrv26M+dF/l2t/v+x93RSM0xn/u8CPAy8Bf9YY89Jj\nvGQO/JfW2peATwN/Sdf7a8AXrLXPAl/Qvx+X/RXgtW/7998A/jtr7TNAH/jpx3jtvwN83lr7AvAR\n3cdjH7sx5jzwl4FPWms/iGOd+Cke39j/IfBj/8Zr32mcPw48q/9+Bvh7j+Havwp80Fr7YeAN4HMA\nWns/BXxA7/kf9J14f81a+779B/wg8Cvf9u/PAZ97D6//z4E/AbwO7Ou1feD1x3S9C7gF+ceAXwYM\nDsgS/EHz8X2+dgu4ifJI3/b6Yx87cB64C3Rx0PpfBn70ceksRcQAAALBSURBVI4duAy8/N3GCfxP\nwJ/9g/7u+3Xtf+N3/wHwc/r5kfUO/Arwg4/j+b+b/97v8GG1WFZ2T689djPGXAY+BnwZ2LXWPtSv\nDoDdx3TZvw38VVCXEmwBA2vtipj/cY7/CnAM/K8KX/5nY0yN92Ds1tr7wH8L3AEeAkPga7x3Y4fv\nPM73eg3+ReD/fp+u/Y7s/d4U3hczjoDxF4D/3Fo7+vbfWbdlf99LMsaYPwkcWWu/9v3+7HdoAfBx\n4O9Zaz+Gg5U/Eio8xrF3gD+D25jOATX+vy72e2aPa5zfzYwxP4sLYX/uvb72u7H3e1O4D1z8tn9f\n0GuPzYwjO/wFnAv3i3r50Bizr9/vA0eP4dI/BPxpY8wt4B/jQoi/A7SNMatu1cc5/nvAPWvtl/Xv\nf4LbJN6Lsf9x4Ka19thamwG/iJuP92rs8J3H+Z6sQWPMXwD+JPDntCm9Z9d+t/Z+bwq/CzyrLHSE\nS7r80uO6mDHGAP8AeM1a+7e+7Ve/BPx5/fzncbmG76tZaz9nrb1grb2MG+cXrbV/Dvh14D98nNfW\n9Q+Au8aY5/XSZ4FXeQ/GjgsbPm2MqeoZrK79noxd9p3G+UvAf6IqxKeB4beFGd8XM8b8GC5s/NPW\nSsX47Wv/lDEmNsZcwSU7v/L9vPb3ZO93UgP4CVxG9i3gZx/ztf4Izm38JvB1/fcTuNj+C8CbwK8B\n3cd8Hz8C/LJ+vopbCNeB/wuIH+N1Pwp8VeP/Z0DnvRo78F8D14CXgf8NiB/X2IF/hMtdZDgP6ae/\n0zhxyd6/q/X3LVyF5Pt97eu43MFqzf2P3/b3P6trvw78+ONcd+/0vw2icWMb29gj9n6HDxvb2Mae\nMNtsChvb2MYesc2msLGNbewR22wKG9vYxh6xzaawsY1t7BHbbAob29jGHrHNprCxjW3sEdtsChvb\n2MYesf8XWgrDLYVpkJAAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1... Discriminator Loss: 1.4026... Generator Loss: 0.5969\n", + "Epoch 1/1... Discriminator Loss: 1.2856... Generator Loss: 0.8660\n", + "Epoch 1/1... Discriminator Loss: 1.3118... Generator Loss: 0.7520\n", + "Epoch 1/1... Discriminator Loss: 1.2754... Generator Loss: 0.7607\n", + "Epoch 1/1... Discriminator Loss: 1.3532... Generator Loss: 1.0381\n", + "Epoch 1/1... Discriminator Loss: 1.3217... Generator Loss: 0.8141\n" + ] + } + ], "source": [ - "batch_size = None\n", - "z_dim = None\n", - "learning_rate = None\n", - "beta1 = None\n", + "batch_size = 64\n", + "z_dim = 100\n", + "learning_rate = 0.001\n", + "beta1 = 0.5\n", "\n", "\n", "\"\"\"\n", @@ -551,19 +1999,18 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ - "### Submitting This Project\n", - "When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as \"dlnd_face_generation.ipynb\" and save it as a HTML file under \"File\" -> \"Download as\". Include the \"helper.py\" and \"problem_unittests.py\" files in your submission." + "### 提交项目\n", + "提交本项目前,确保运行所有 cells 后保存该文件。\n", + "\n", + "保存该文件为 \"dlnd_face_generation.ipynb\", 并另存为 HTML 格式 \"File\" -> \"Download as\"。提交项目时请附带 \"helper.py\" 和 \"problem_unittests.py\" 文件。" ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, @@ -581,5 +2028,5 @@ } }, "nbformat": 4, - "nbformat_minor": 0 + "nbformat_minor": 1 } diff --git a/face-generation/dlnd_face_generation.py b/face-generation/dlnd_face_generation.py new file mode 100644 index 0000000..55660c5 --- /dev/null +++ b/face-generation/dlnd_face_generation.py @@ -0,0 +1,459 @@ + +# coding: utf-8 + +# # 人脸生成(Face Generation) +# 在该项目中,你将使用生成式对抗网络(Generative Adversarial Nets)来生成新的人脸图像。 +# ### 获取数据 +# 该项目将使用以下数据集: +# - MNIST +# - CelebA +# +# 由于 CelebA 数据集比较复杂,而且这是你第一次使用 GANs。我们想让你先在 MNIST 数据集上测试你的 GANs 模型,以让你更快的评估所建立模型的性能。 +# +# 如果你在使用 [FloydHub](https://www.floydhub.com/), 请将 `data_dir` 设置为 "/input" 并使用 [FloydHub data ID](http://docs.floydhub.com/home/using_datasets/) "R5KrjnANiKVhLWAkpXhNBe". + +# In[1]: + +#data_dir = './data' + +# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe" +data_dir = '/input' + + +""" +DON'T MODIFY ANYTHING IN THIS CELL +""" +import helper + +helper.download_extract('mnist', data_dir) +helper.download_extract('celeba', data_dir) + + +# ## 探索数据(Explore the Data) +# ### MNIST +# [MNIST](http://yann.lecun.com/exdb/mnist/) 是一个手写数字的图像数据集。你可以更改 `show_n_images` 探索此数据集。 + +# In[2]: + +show_n_images = 25 + +""" +DON'T MODIFY ANYTHING IN THIS CELL +""" +get_ipython().magic('matplotlib inline') +import os +from glob import glob +from matplotlib import pyplot + +mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L') +pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray') + + +# ### CelebA +# [CelebFaces Attributes Dataset (CelebA)](http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) 是一个包含 20 多万张名人图片及相关图片说明的数据集。你将用此数据集生成人脸,不会用不到相关说明。你可以更改 `show_n_images` 探索此数据集。 + +# In[3]: + +show_n_images = 25 + +""" +DON'T MODIFY ANYTHING IN THIS CELL +""" +mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB') +pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB')) + + +# ## 预处理数据(Preprocess the Data) +# 由于该项目的重点是建立 GANs 模型,我们将为你预处理数据。 +# +# 经过数据预处理,MNIST 和 CelebA 数据集的值在 28×28 维度图像的 [-0.5, 0.5] 范围内。CelebA 数据集中的图像裁剪了非脸部的图像部分,然后调整到 28x28 维度。 +# +# MNIST 数据集中的图像是单[通道](https://en.wikipedia.org/wiki/Channel_(digital_image%29)的黑白图像,CelebA 数据集中的图像是 [三通道的 RGB 彩色图像](https://en.wikipedia.org/wiki/Channel_(digital_image%29#RGB_Images)。 +# +# ## 建立神经网络(Build the Neural Network) +# 你将通过部署以下函数来建立 GANs 的主要组成部分: +# - `model_inputs` +# - `discriminator` +# - `generator` +# - `model_loss` +# - `model_opt` +# - `train` +# +# ### 检查 TensorFlow 版本并获取 GPU 型号 +# 检查你是否使用正确的 TensorFlow 版本,并获取 GPU 型号 + +# In[4]: + +""" +DON'T MODIFY ANYTHING IN THIS CELL +""" +from distutils.version import LooseVersion +import warnings +import tensorflow as tf + +# Check TensorFlow Version +assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer. You are using {}'.format(tf.__version__) +print('TensorFlow Version: {}'.format(tf.__version__)) + +# Check for a GPU +if not tf.test.gpu_device_name(): + warnings.warn('No GPU found. Please use a GPU to train your neural network.') +else: + print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) + + +# ### 输入(Input) +# 部署 `model_inputs` 函数以创建用于神经网络的 [占位符 (TF Placeholders)](https://www.tensorflow.org/versions/r0.11/api_docs/python/io_ops/placeholders)。请创建以下占位符: +# - 输入图像占位符: 使用 `image_width`,`image_height` 和 `image_channels` 设置为 rank 4。 +# - 输入 Z 占位符: 设置为 rank 2,并命名为 `z_dim`。 +# - 学习速率占位符: 设置为 rank 0。 +# +# 返回占位符元组的形状为 (tensor of real input images, tensor of z data, learning rate)。 +# + +# In[5]: + +import problem_unittests as tests + +def model_inputs(image_width, image_height, image_channels, z_dim): + """ + Create the model inputs + :param image_width: The input image width + :param image_height: The input image height + :param image_channels: The number of image channels + :param z_dim: The dimension of Z + :return: Tuple of (tensor of real input images, tensor of z data, learning rate) + """ + # TODO: Implement Function + input_real = tf.placeholder(tf.float32, (None, image_width, image_height, image_channels), name='input_real') + input_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z') + learning_rate = tf.placeholder(tf.float32, name='learning_rate') + + return input_real, input_z, learning_rate + + +""" +DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE +""" +tests.test_model_inputs(model_inputs) + + +# ### 辨别器(Discriminator) +# 部署 `discriminator` 函数创建辨别器神经网络以辨别 `images`。该函数应能够重复使用神经网络中的各种变量。 在 [`tf.variable_scope`](https://www.tensorflow.org/api_docs/python/tf/variable_scope) 中使用 "discriminator" 的变量空间名来重复使用该函数中的变量。 +# +# 该函数应返回形如 (tensor output of the discriminator, tensor logits of the discriminator) 的元组。 + +# In[6]: + +def discriminator(images, reuse=False): + """ + Create the discriminator network + :param image: Tensor of input image(s) + :param reuse: Boolean if the weights should be reused + :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator) + """ + # TODO: Implement Function + with tf.variable_scope('discriminator', reuse=reuse): + # alpha is the param for leaky relu + alpha = 0.2 + + # Input layer is 28x28x3 + x1 = tf.layers.conv2d(images, 64, 5, strides=2, padding='same') + relu1 = tf.maximum(alpha * x1, x1) + # 14x14x64 now + + x2 = tf.layers.conv2d(relu1, 128, 5, strides=2, padding='same') + bn2 = tf.layers.batch_normalization(x2, training=True) + relu2 = tf.maximum(alpha * bn2, bn2) + # 7x7x128 now + + x3 = tf.layers.conv2d(relu2, 256, 5, strides=2, padding='same') + bn3 = tf.layers.batch_normalization(x3, training=True) + relu3 = tf.maximum(alpha * bn3, bn3) + # 4x4x256 now + + # Flatten it + flat = tf.reshape(relu3, (-1, 4*4*256)) + logits = tf.layers.dense(flat, 1) + out = tf.sigmoid(logits) + + return out, logits + + +""" +DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE +""" +tests.test_discriminator(discriminator, tf) + + +# ### 生成器(Generator) +# 部署 `generator` 函数以使用 `z` 生成图像。该函数应能够重复使用神经网络中的各种变量。 +# 在 [`tf.variable_scope`](https://www.tensorflow.org/api_docs/python/tf/variable_scope) 中使用 "generator" 的变量空间名来重复使用该函数中的变量。 +# +# 该函数应返回所生成的 28 x 28 x `out_channel_dim` 维度图像。 + +# In[7]: + +def generator(z, out_channel_dim, is_train=True): + """ + Create the generator network + :param z: Input z + :param out_channel_dim: The number of channels in the output image + :param is_train: Boolean if generator is being used for training + :return: The tensor output of the generator + """ + # TODO: Implement Function + with tf.variable_scope('generator', reuse=not is_train): + # alpha is the param for leaky relu + alpha = 0.2 + + # First fully connected layer + x1 = tf.layers.dense(z, 7 * 7 * 512, activation=None) + x1 = tf.reshape(x1, (-1, 7, 7, 512)) # Reshape it to start the convolutional stack + x1 = tf.layers.batch_normalization(x1, training=is_train) + x1 = tf.maximum(alpha * x1, x1) + # 7x7x512 now + + x2 = tf.layers.conv2d_transpose(x1, 256, 5, strides=2, padding='same') + x2 = tf.layers.batch_normalization(x2, training=is_train) + x2 = tf.maximum(alpha * x2, x2) + # 14x14x256 now + + x3 = tf.layers.conv2d_transpose(x2, 128, 5, strides=2, padding='same') + x3 = tf.layers.batch_normalization(x3, training=is_train) + x3 = tf.maximum(alpha * x3, x3) + # 28x28x128 now + + # Output layer + logits = tf.layers.conv2d_transpose(x3, out_channel_dim, 5, strides=1, padding='same') + out = tf.tanh(logits) + # 28x28x3 now + + return out + + +""" +DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE +""" +tests.test_generator(generator, tf) + + +# ### 损失函数(Loss) +# 部署 `model_loss` 函数训练并计算 GANs 的损失。该函数应返回形如 (discriminator loss, generator loss) 的元组。 +# +# 使用你已实现的函数: +# - `discriminator(images, reuse=False)` +# - `generator(z, out_channel_dim, is_train=True)` + +# In[8]: + +def model_loss(input_real, input_z, out_channel_dim): + """ + Get the loss for the discriminator and generator + :param input_real: Images from the real dataset + :param input_z: Z input + :param out_channel_dim: The number of channels in the output image + :return: A tuple of (discriminator loss, generator loss) + """ + # TODO: Implement Function + # Generator network here + g_model = generator(input_z, out_channel_dim) + + # Disriminator network here + d_model_real, d_logits_real = discriminator(input_real) + d_model_fake, d_logits_fake = discriminator(g_model, reuse=True) + + # Calculate losses + smooth = 0.1 + d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_logits_real) * (1 - smooth))) + + d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_logits_fake))) + + d_loss = d_loss_real + d_loss_fake + + g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_logits_fake))) + + return d_loss, g_loss + + +""" +DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE +""" +tests.test_model_loss(model_loss) + + +# ### 优化(Optimization) +# 部署 `model_opt` 函数实现对 GANs 的优化。使用 [`tf.trainable_variables`](https://www.tensorflow.org/api_docs/python/tf/trainable_variables) 获取可训练的所有变量。通过变量空间名 `discriminator` 和 `generator` 来过滤变量。该函数应返回形如 (discriminator training operation, generator training operation) 的元组。 + +# In[9]: + +def model_opt(d_loss, g_loss, learning_rate, beta1): + """ + Get optimization operations + :param d_loss: Discriminator loss Tensor + :param g_loss: Generator loss Tensor + :param learning_rate: Learning Rate Placeholder + :param beta1: The exponential decay rate for the 1st moment in the optimizer + :return: A tuple of (discriminator training operation, generator training operation) + """ + # TODO: Implement Function + # Get weights and bias to update + t_vars = tf.trainable_variables() + d_vars = [var for var in t_vars if var.name.startswith('discriminator')] + g_vars = [var for var in t_vars if var.name.startswith('generator')] + + # Optimize + with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): + d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars) + g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars) + + return d_train_opt, g_train_opt + + +""" +DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE +""" +tests.test_model_opt(model_opt, tf) + + +# ## 训练神经网络(Neural Network Training) +# ### 输出显示 +# 使用该函数可以显示生成器 (Generator) 在训练过程中的当前输出,这会帮你评估 GANs 模型的训练程度。 + +# In[10]: + +""" +DON'T MODIFY ANYTHING IN THIS CELL +""" +import numpy as np + +def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode): + """ + Show example output for the generator + :param sess: TensorFlow session + :param n_images: Number of Images to display + :param input_z: Input Z Tensor + :param out_channel_dim: The number of channels in the output image + :param image_mode: The mode to use for images ("RGB" or "L") + """ + cmap = None if image_mode == 'RGB' else 'gray' + z_dim = input_z.get_shape().as_list()[-1] + example_z = np.random.uniform(-1, 1, size=[n_images, z_dim]) + + samples = sess.run( + generator(input_z, out_channel_dim, False), + feed_dict={input_z: example_z}) + + images_grid = helper.images_square_grid(samples, image_mode) + pyplot.imshow(images_grid, cmap=cmap) + pyplot.show() + + +# ### 训练 +# 部署 `train` 函数以建立并训练 GANs 模型。记得使用以下你已完成的函数: +# - `model_inputs(image_width, image_height, image_channels, z_dim)` +# - `model_loss(input_real, input_z, out_channel_dim)` +# - `model_opt(d_loss, g_loss, learning_rate, beta1)` +# +# 使用 `show_generator_output` 函数显示 `generator` 在训练过程中的输出。 +# +# **注意**:在每个批次 (batch) 中运行 `show_generator_output` 函数会显著增加训练时间与该 notebook 的体积。推荐每 100 批次输出一次 `generator` 的输出。 + +# In[11]: + +def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode): + """ + Train the GAN + :param epoch_count: Number of epochs + :param batch_size: Batch Size + :param z_dim: Z dimension + :param learning_rate: Learning Rate + :param beta1: The exponential decay rate for the 1st moment in the optimizer + :param get_batches: Function to get batches + :param data_shape: Shape of the data + :param data_image_mode: The image mode to use for images ("RGB" or "L") + """ + # TODO: Build Model + _, image_width, image_height, image_channels = data_shape + input_real, input_z, lr = model_inputs(image_width, image_height, image_channels, z_dim) + d_loss, g_loss = model_loss(input_real, input_z, image_channels) + d_opt, g_opt = model_opt(d_loss, g_loss, lr, beta1) + + steps = 0 + with tf.Session() as sess: + sess.run(tf.global_variables_initializer()) + for epoch_i in range(epoch_count): + for batch_images in get_batches(batch_size): + # TODO: Train Model + steps += 1 + batch_images *= 2 + + # Sample random noise for G + batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim)) + + # Run optimizers + _ = sess.run(d_opt, feed_dict={input_z: batch_z, input_real: batch_images, lr: learning_rate}) + _ = sess.run(g_opt, feed_dict={input_z: batch_z, input_real: batch_images, lr: learning_rate}) + + if steps % 10 == 0: + # At the end of each epoch, get the losses and print them out + train_loss_d = d_loss.eval({input_z: batch_z, input_real: batch_images}) + train_loss_g = g_loss.eval({input_z: batch_z}) + + print("Epoch {}/{}...".format(epoch_i + 1, epoch_count), + "Discriminator Loss: {:.4f}...".format(train_loss_d), + "Generator Loss: {:.4f}".format(train_loss_g)) + + if steps % 100 == 0: + gen_samples = sess.run(generator(input_z, image_channels, is_train=False), feed_dict={input_z: batch_z}) + _ = show_generator_output(sess, 25, input_z, image_channels, data_image_mode) + + +# ### MNIST +# 在 MNIST 上测试你的 GANs 模型。经过 2 次迭代,GANs 应该能够生成类似手写数字的图像。确保生成器 (generator) 低于辨别器 (discriminator) 的损失,或接近 0。 + +# In[12]: + +batch_size = 64 +z_dim = 100 +learning_rate = 0.0002 +beta1 = 0.5 + + +""" +DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE +""" +epochs = 2 + +mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg'))) +with tf.Graph().as_default(): + train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches, + mnist_dataset.shape, mnist_dataset.image_mode) + + +# ### CelebA +# 在 CelebA 上运行你的 GANs 模型。在一般的GPU上运行每次迭代大约需要 20 分钟。你可以运行整个迭代,或者当 GANs 开始产生真实人脸图像时停止它。 + +# In[13]: + +batch_size = 64 +z_dim = 100 +learning_rate = 0.001 +beta1 = 0.5 + + +""" +DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE +""" +epochs = 1 + +celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))) +with tf.Graph().as_default(): + train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches, + celeba_dataset.shape, celeba_dataset.image_mode) + + +# ### 提交项目 +# 提交本项目前,确保运行所有 cells 后保存该文件。 +# +# 保存该文件为 "dlnd_face_generation.ipynb", 并另存为 HTML 格式 "File" -> "Download as"。提交项目时请附带 "helper.py" 和 "problem_unittests.py" 文件。 diff --git a/first-neural-network/Your_first_neural_network.html b/first-neural-network/Your_first_neural_network.html new file mode 100644 index 0000000..1a63757 --- /dev/null +++ b/first-neural-network/Your_first_neural_network.html @@ -0,0 +1,18080 @@ + + + +Your_first_neural_network + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+
+
+
+

你的第一个神经网络

在此项目中,你将构建你的第一个神经网络,并用该网络预测每日自行车租客人数。我们提供了一些代码,但是需要你来实现神经网络(大部分内容)。提交此项目后,欢迎进一步探索该数据和模型。

+ +
+
+
+
+
+
In [1]:
+
+
+
%matplotlib inline
+%config InlineBackend.figure_format = 'retina'
+
+import numpy as np
+import pandas as pd
+import matplotlib.pyplot as plt
+
+ +
+
+
+ +
+
+
+
+
+
+

加载和准备数据

构建神经网络的关键一步是正确地准备数据。不同尺度级别的变量使网络难以高效地掌握正确的权重。我们在下方已经提供了加载和准备数据的代码。你很快将进一步学习这些代码!

+ +
+
+
+
+
+
In [2]:
+
+
+
data_path = 'Bike-Sharing-Dataset/hour.csv'
+
+rides = pd.read_csv(data_path)
+
+ +
+
+
+ +
+
+
+
In [3]:
+
+
+
rides.head(10)
+
+ +
+
+
+ +
+
+ + +
Out[3]:
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
instantdtedayseasonyrmnthhrholidayweekdayworkingdayweathersittempatemphumwindspeedcasualregisteredcnt
012011-01-01101006010.240.28790.810.000031316
122011-01-01101106010.220.27270.800.000083240
232011-01-01101206010.220.27270.800.000052732
342011-01-01101306010.240.28790.750.000031013
452011-01-01101406010.240.28790.750.0000011
562011-01-01101506020.240.25760.750.0896011
672011-01-01101606010.220.27270.800.0000202
782011-01-01101706010.200.25760.860.0000123
892011-01-01101806010.240.28790.750.0000178
9102011-01-01101906010.320.34850.760.00008614
+
+
+ +
+ +
+
+ +
+
+
+
+
+
+

数据简介

此数据集包含的是从 2011 年 1 月 1 日到 2012 年 12 月 31 日期间每天每小时的骑车人数。骑车用户分成临时用户和注册用户,cnt 列是骑车用户数汇总列。你可以在上方看到前几行数据。

+

下图展示的是数据集中前 10 天左右的骑车人数(某些天不一定是 24 个条目,所以不是精确的 10 天)。你可以在这里看到每小时租金。这些数据很复杂!周末的骑行人数少些,工作日上下班期间是骑行高峰期。我们还可以从上方的数据中看到温度、湿度和风速信息,所有这些信息都会影响骑行人数。你需要用你的模型展示所有这些数据。

+ +
+
+
+
+
+
In [4]:
+
+
+
rides[:24*10].plot(x='dteday', y='cnt')
+
+ +
+
+
+ +
+
+ + +
Out[4]:
+ + +
+
<matplotlib.axes._subplots.AxesSubplot at 0x2435e964278>
+
+ +
+ +
+ + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

虚拟变量(哑变量)

下面是一些分类变量,例如季节、天气、月份。要在我们的模型中包含这些数据,我们需要创建二进制虚拟变量。用 Pandas 库中的 get_dummies() 就可以轻松实现。

+ +
+
+
+
+
+
In [5]:
+
+
+
dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday']
+for each in dummy_fields:
+    dummies = pd.get_dummies(rides[each], prefix=each, drop_first=False)
+    rides = pd.concat([rides, dummies], axis=1)
+
+fields_to_drop = ['instant', 'dteday', 'season', 'weathersit', 
+                  'weekday', 'atemp', 'mnth', 'workingday', 'hr']
+data = rides.drop(fields_to_drop, axis=1)
+data.head()
+
+ +
+
+
+ +
+
+ + +
Out[5]:
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
yrholidaytemphumwindspeedcasualregisteredcntseason_1season_2...hr_21hr_22hr_23weekday_0weekday_1weekday_2weekday_3weekday_4weekday_5weekday_6
0000.240.810.0313161.00.0...0.00.00.00.00.00.00.00.00.01.0
1000.220.800.0832401.00.0...0.00.00.00.00.00.00.00.00.01.0
2000.220.800.0527321.00.0...0.00.00.00.00.00.00.00.00.01.0
3000.240.750.0310131.00.0...0.00.00.00.00.00.00.00.00.01.0
4000.240.750.00111.00.0...0.00.00.00.00.00.00.00.00.01.0
+

5 rows × 59 columns

+
+
+ +
+ +
+
+ +
+
+
+
+
+
+

调整目标变量

为了更轻松地训练网络,我们将对每个连续变量标准化,即转换和调整变量,使它们的均值为 0,标准差为 1。

+

我们会保存换算因子,以便当我们使用网络进行预测时可以还原数据。

+ +
+
+
+
+
+
In [6]:
+
+
+
quant_features = ['casual', 'registered', 'cnt', 'temp', 'hum', 'windspeed']
+# Store scalings in a dictionary so we can convert back later
+scaled_features = {}
+for each in quant_features:
+    mean, std = data[each].mean(), data[each].std()
+    scaled_features[each] = [mean, std]
+    data.loc[:, each] = (data[each] - mean)/std
+
+ +
+
+
+ +
+
+
+
+
+
+

将数据拆分为训练、测试和验证数据集

我们将大约最后 21 天的数据保存为测试数据集,这些数据集会在训练完网络后使用。我们将使用该数据集进行预测,并与实际的骑行人数进行对比。

+ +
+
+
+
+
+
In [7]:
+
+
+
# Save data for approximately the last 21 days 
+test_data = data[-21*24:]
+
+# Now remove the test data from the data set 
+data = data[:-21*24]
+
+# Separate the data into features and targets
+target_fields = ['cnt', 'casual', 'registered']
+features, targets = data.drop(target_fields, axis=1), data[target_fields]
+test_features, test_targets = test_data.drop(target_fields, axis=1), test_data[target_fields]
+
+ +
+
+
+ +
+
+
+
+
+
+

我们将数据拆分为两个数据集,一个用作训练,一个在网络训练完后用来验证网络。因为数据是有时间序列特性的,所以我们用历史数据进行训练,然后尝试预测未来数据(验证数据集)。

+ +
+
+
+
+
+
In [8]:
+
+
+
# Hold out the last 60 days or so of the remaining data as a validation set
+train_features, train_targets = features[:-60*24], targets[:-60*24]
+val_features, val_targets = features[-60*24:], targets[-60*24:]
+
+ +
+
+
+ +
+
+
+
+
+
+

开始构建网络

下面你将构建自己的网络。我们已经构建好结构和反向传递部分。你将实现网络的前向传递部分。还需要设置超参数:学习速率、隐藏单元的数量,以及训练传递数量。

+

<img src="assets/neural_network.png" width=300px>

+

该网络有两个层级,一个隐藏层和一个输出层。隐藏层级将使用 S 型函数作为激活函数。输出层只有一个节点,用于递归,节点的输出和节点的输入相同。即激活函数是 $f(x)=x$。这种函数获得输入信号,并生成输出信号,但是会考虑阈值,称为激活函数。我们完成网络的每个层级,并计算每个神经元的输出。一个层级的所有输出变成下一层级神经元的输入。这一流程叫做前向传播(forward propagation)。

+

我们在神经网络中使用权重将信号从输入层传播到输出层。我们还使用权重将错误从输出层传播回网络,以便更新权重。这叫做反向传播(backpropagation)。

+

提示:你需要为反向传播实现计算输出激活函数 ($f(x) = x$) 的导数。如果你不熟悉微积分,其实该函数就等同于等式 $y = x$。该等式的斜率是多少?也就是导数 $f(x)$。

+
+

你需要完成以下任务:

+
    +
  1. 实现 S 型激活函数。将 __init__ 中的 self.activation_function 设为你的 S 型函数。
  2. +
  3. train 方法中实现前向传递。
  4. +
  5. train 方法中实现反向传播算法,包括计算输出错误。
  6. +
  7. run 方法中实现前向传递。
  8. +
+ +
+
+
+
+
+
In [9]:
+
+
+
class NeuralNetwork(object):
+    def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
+        # Set number of nodes in input, hidden and output layers.
+        self.input_nodes = input_nodes
+        self.hidden_nodes = hidden_nodes
+        self.output_nodes = output_nodes
+
+        # Initialize weights
+        self.weights_input_to_hidden = np.random.normal(0.0, self.input_nodes**-0.5, 
+                                       (self.input_nodes, self.hidden_nodes))
+
+        self.weights_hidden_to_output = np.random.normal(0.0, self.hidden_nodes**-0.5, 
+                                       (self.hidden_nodes, self.output_nodes))
+        self.lr = learning_rate
+        
+        #### TODO: Set self.activation_function to your implemented sigmoid function ####
+        #
+        # Note: in Python, you can define a function with a lambda expression,
+        # as shown below.
+        self.activation_function = lambda x : 1/(1 + np.exp(-x))  # Replace 0 with your sigmoid calculation.
+        
+        ### If the lambda code above is not something you're familiar with,
+        # You can uncomment out the following three lines and put your 
+        # implementation there instead.
+        #
+        #def sigmoid(x):
+        #    return 0  # Replace 0 with your sigmoid calculation here
+        #self.activation_function = sigmoid
+                    
+    
+    def train(self, features, targets):
+        ''' Train the network on batch of features and targets. 
+        
+            Arguments
+            ---------
+            
+            features: 2D array, each row is one data record, each column is a feature
+            targets: 1D array of target values
+        
+        '''
+        n_records = features.shape[0]
+        delta_weights_i_h = np.zeros(self.weights_input_to_hidden.shape)
+        delta_weights_h_o = np.zeros(self.weights_hidden_to_output.shape)
+        for X, y in zip(features, targets):
+            #### Implement the forward pass here ####
+            ### Forward pass ###
+            # TODO: Hidden layer - Replace these values with your calculations.
+            hidden_inputs = np.dot(X, self.weights_input_to_hidden) # signals into hidden layer
+            hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer
+
+            # TODO: Output layer - Replace these values with your calculations.
+            final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) # signals into final output layer
+            final_outputs = final_inputs # signals from final output layer
+            
+            #### Implement the backward pass here ####
+            ### Backward pass ###
+
+            # TODO: Output error - Replace this value with your calculations.
+            error = y - final_outputs # Output layer error is the difference between desired target and actual output.
+            
+            # TODO: Backpropagated error terms - Replace these values with your calculations.
+            output_error_term = error
+            
+            # TODO: Calculate the hidden layer's contribution to the error
+            hidden_error = np.dot(output_error_term, self.weights_hidden_to_output.T)
+            hidden_error_term = hidden_error * hidden_outputs * (1 - hidden_outputs)
+
+            # Weight step (input to hidden)
+            delta_weights_i_h += hidden_error_term * X[:, None]
+            # Weight step (hidden to output)
+            delta_weights_h_o += output_error_term * hidden_outputs[:, None]
+
+        # TODO: Update the weights - Replace these values with your calculations.
+        self.weights_hidden_to_output += self.lr * delta_weights_h_o / n_records # update hidden-to-output weights with gradient descent step
+        self.weights_input_to_hidden += self.lr * delta_weights_i_h / n_records # update input-to-hidden weights with gradient descent step
+ 
+    def run(self, features):
+        ''' Run a forward pass through the network with input features 
+        
+            Arguments
+            ---------
+            features: 1D array of feature values
+        '''
+        
+        #### Implement the forward pass here ####
+        # TODO: Hidden layer - replace these values with the appropriate calculations.
+        hidden_inputs = np.dot(features, self.weights_input_to_hidden) # signals into hidden layer
+        hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer
+        
+        # TODO: Output layer - Replace these values with the appropriate calculations.
+        final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) # signals into final output layer
+        final_outputs = final_inputs # signals from final output layer 
+        
+        return final_outputs
+
+ +
+
+
+ +
+
+
+
In [10]:
+
+
+
def MSE(y, Y):
+    return np.mean((y-Y)**2)
+
+ +
+
+
+ +
+
+
+
+
+
+

单元测试

运行这些单元测试,检查你的网络实现是否正确。这样可以帮助你确保网络已正确实现,然后再开始训练网络。这些测试必须成功才能通过此项目。

+ +
+
+
+
+
+
In [12]:
+
+
+
import unittest
+
+inputs = np.array([[0.5, -0.2, 0.1]])
+targets = np.array([[0.4]])
+test_w_i_h = np.array([[0.1, -0.2],
+                       [0.4, 0.5],
+                       [-0.3, 0.2]])
+test_w_h_o = np.array([[0.3],
+                       [-0.1]])
+
+class TestMethods(unittest.TestCase):
+    
+    ##########
+    # Unit tests for data loading
+    ##########
+    
+    def test_data_path(self):
+        # Test that file path to dataset has been unaltered
+        self.assertTrue(data_path.lower() == 'bike-sharing-dataset/hour.csv')
+        
+    def test_data_loaded(self):
+        # Test that data frame loaded
+        self.assertTrue(isinstance(rides, pd.DataFrame))
+    
+    ##########
+    # Unit tests for network functionality
+    ##########
+
+    def test_activation(self):
+        network = NeuralNetwork(3, 2, 1, 0.5)
+        # Test that the activation function is a sigmoid
+        self.assertTrue(np.all(network.activation_function(0.5) == 1/(1 + np.exp(-0.5))))
+
+    def test_train(self):
+        # Test that weights are updated correctly on training
+        network = NeuralNetwork(3, 2, 1, 0.5)
+        network.weights_input_to_hidden = test_w_i_h.copy()
+        network.weights_hidden_to_output = test_w_h_o.copy()
+        
+        network.train(inputs, targets)
+        self.assertTrue(np.allclose(network.weights_hidden_to_output, 
+                                    np.array([[ 0.37275328], 
+                                              [-0.03172939]])))
+        self.assertTrue(np.allclose(network.weights_input_to_hidden,
+                                    np.array([[ 0.10562014, -0.20185996], 
+                                              [0.39775194, 0.50074398], 
+                                              [-0.29887597, 0.19962801]])))
+
+    def test_run(self):
+        # Test correctness of run method
+        network = NeuralNetwork(3, 2, 1, 0.5)
+        network.weights_input_to_hidden = test_w_i_h.copy()
+        network.weights_hidden_to_output = test_w_h_o.copy()
+
+        self.assertTrue(np.allclose(network.run(inputs), 0.09998924))
+
+suite = unittest.TestLoader().loadTestsFromModule(TestMethods())
+unittest.TextTestRunner().run(suite)
+
+ +
+
+
+ +
+
+ + +
+
+
.....
+----------------------------------------------------------------------
+Ran 5 tests in 0.016s
+
+OK
+
+
+
+ +
Out[12]:
+ + +
+
<unittest.runner.TextTestResult run=5 errors=0 failures=0>
+
+ +
+ +
+
+ +
+
+
+
+
+
+

训练网络

现在你将设置网络的超参数。策略是设置的超参数使训练集上的错误很小但是数据不会过拟合。如果网络训练时间太长,或者有太多的隐藏节点,可能就会过于针对特定训练集,无法泛化到验证数据集。即当训练集的损失降低时,验证集的损失将开始增大。

+

你还将采用随机梯度下降 (SGD) 方法训练网络。对于每次训练,都获取随机样本数据,而不是整个数据集。与普通梯度下降相比,训练次数要更多,但是每次时间更短。这样的话,网络训练效率更高。稍后你将详细了解 SGD。

+

选择迭代次数

也就是训练网络时从训练数据中抽样的批次数量。迭代次数越多,模型就与数据越拟合。但是,如果迭代次数太多,模型就无法很好地泛化到其他数据,这叫做过拟合。你需要选择一个使训练损失很低并且验证损失保持中等水平的数字。当你开始过拟合时,你会发现训练损失继续下降,但是验证损失开始上升。

+

选择学习速率

速率可以调整权重更新幅度。如果速率太大,权重就会太大,导致网络无法与数据相拟合。建议从 0.1 开始。如果网络在与数据拟合时遇到问题,尝试降低学习速率。注意,学习速率越低,权重更新的步长就越小,神经网络收敛的时间就越长。

+

选择隐藏节点数量

隐藏节点越多,模型的预测结果就越准确。尝试不同的隐藏节点的数量,看看对性能有何影响。你可以查看损失字典,寻找网络性能指标。如果隐藏单元的数量太少,那么模型就没有足够的空间进行学习,如果太多,则学习方向就有太多的选择。选择隐藏单元数量的技巧在于找到合适的平衡点。

+ +
+
+
+
+
+
In [39]:
+
+
+
import sys
+
+### Set the hyperparameters here ###
+iterations = 8000
+learning_rate = 0.5
+hidden_nodes = 20
+output_nodes = 1
+
+N_i = train_features.shape[1]
+network = NeuralNetwork(N_i, hidden_nodes, output_nodes, learning_rate)
+
+losses = {'train':[], 'validation':[]}
+for ii in range(iterations):
+    # Go through a random batch of 128 records from the training data set
+    batch = np.random.choice(train_features.index, size=128)
+    X, y = train_features.ix[batch].values, train_targets.ix[batch]['cnt']
+                             
+    network.train(X, y)
+    
+    # Printing out the training progress
+    train_loss = MSE(network.run(train_features).T, train_targets['cnt'].values)
+    val_loss = MSE(network.run(val_features).T, val_targets['cnt'].values)
+    sys.stdout.write("\rProgress: {:2.1f}".format(100 * (ii + 1)/float(iterations)) \
+                     + "% ... Training loss: " + str(train_loss)[:5] \
+                     + " ... Validation loss: " + str(val_loss)[:5])
+    sys.stdout.flush()
+    
+    losses['train'].append(train_loss)
+    losses['validation'].append(val_loss)
+
+ +
+
+
+ +
+
+ + +
+
+
Progress: 100.0% ... Training loss: 0.051 ... Validation loss: 0.130
+
+
+ +
+
+ +
+
+
+
In [76]:
+
+
+
plt.plot(losses['train'], label='Training loss')
+plt.plot(losses['validation'], label='Validation loss')
+plt.axis([0, 8000, 0, 1.6])
+plt.legend()
+_ = plt.ylim()
+
+ +
+
+
+ +
+
+ + +
+ + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

检查预测结果

使用测试数据看看网络对数据建模的效果如何。如果完全错了,请确保网络中的每步都正确实现。

+ +
+
+
+
+
+
In [102]:
+
+
+
test_loss = MSE(network.run(test_features).T, test_targets['cnt'].values)
+sys.stdout.write("Test loss: " + str(test_loss)[:5])
+
+fig, ax = plt.subplots(figsize=(8,4))
+
+mean, std = scaled_features['cnt']
+predictions = network.run(test_features).T*std + mean
+ax.plot(predictions[0], label='Prediction')
+ax.plot((test_targets['cnt']*std + mean).values, label='Data')
+ax.set_xlim(right=len(predictions))
+ax.legend()
+
+dates = pd.to_datetime(rides.ix[test_data.index]['dteday'])
+dates = dates.apply(lambda d: d.strftime('%b %d'))
+ax.set_xticks(np.arange(len(dates))[12::36])
+_ = ax.set_xticklabels(dates[12::36], rotation=45)
+
+ +
+
+
+ +
+
+ + +
+
+
Test loss: 0.209
+
+
+ +
+ + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

可选:思考下你的结果(我们不会评估这道题的答案)

请针对你的结果回答以下问题。模型对数据的预测效果如何?哪里出现问题了?为何出现问题呢?

+

注意:你可以通过双击该单元编辑文本。如果想要预览文本,请按 Control + Enter

+
+

请将你的答案填写在下方

验证集损失最终降低到0.13左右,测试集损失接近0.2。

+

问题: +1、矩阵相乘时维度总是出错,有时需要调整顺序,有时需要转置,甚至有时dot报错,使用*反而可以,不知有何技巧? +2、数据预处理时删除了几个特征不知是何用意? +3、不太理解为何输出层激活函数要使用f(x) = x?

+ +
+
+
+
+
+ + diff --git a/first-neural-network/Your_first_neural_network.ipynb b/first-neural-network/Your_first_neural_network.ipynb index f7f7bae..f37fcab 100644 --- a/first-neural-network/Your_first_neural_network.ipynb +++ b/first-neural-network/Your_first_neural_network.ipynb @@ -11,7 +11,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "collapsed": false }, @@ -36,7 +36,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "collapsed": false }, @@ -49,13 +49,276 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
instantdtedayseasonyrmnthhrholidayweekdayworkingdayweathersittempatemphumwindspeedcasualregisteredcnt
012011-01-01101006010.240.28790.810.000031316
122011-01-01101106010.220.27270.800.000083240
232011-01-01101206010.220.27270.800.000052732
342011-01-01101306010.240.28790.750.000031013
452011-01-01101406010.240.28790.750.0000011
562011-01-01101506020.240.25760.750.0896011
672011-01-01101606010.220.27270.800.0000202
782011-01-01101706010.200.25760.860.0000123
892011-01-01101806010.240.28790.750.0000178
9102011-01-01101906010.320.34850.760.00008614
\n", + "
" + ], + "text/plain": [ + " instant dteday season yr mnth hr holiday weekday workingday \\\n", + "0 1 2011-01-01 1 0 1 0 0 6 0 \n", + "1 2 2011-01-01 1 0 1 1 0 6 0 \n", + "2 3 2011-01-01 1 0 1 2 0 6 0 \n", + "3 4 2011-01-01 1 0 1 3 0 6 0 \n", + "4 5 2011-01-01 1 0 1 4 0 6 0 \n", + "5 6 2011-01-01 1 0 1 5 0 6 0 \n", + "6 7 2011-01-01 1 0 1 6 0 6 0 \n", + "7 8 2011-01-01 1 0 1 7 0 6 0 \n", + "8 9 2011-01-01 1 0 1 8 0 6 0 \n", + "9 10 2011-01-01 1 0 1 9 0 6 0 \n", + "\n", + " weathersit temp atemp hum windspeed casual registered cnt \n", + "0 1 0.24 0.2879 0.81 0.0000 3 13 16 \n", + "1 1 0.22 0.2727 0.80 0.0000 8 32 40 \n", + "2 1 0.22 0.2727 0.80 0.0000 5 27 32 \n", + "3 1 0.24 0.2879 0.75 0.0000 3 10 13 \n", + "4 1 0.24 0.2879 0.75 0.0000 0 1 1 \n", + "5 2 0.24 0.2576 0.75 0.0896 0 1 1 \n", + "6 1 0.22 0.2727 0.80 0.0000 2 0 2 \n", + "7 1 0.20 0.2576 0.86 0.0000 1 2 3 \n", + "8 1 0.24 0.2879 0.75 0.0000 1 7 8 \n", + "9 1 0.32 0.3485 0.76 0.0000 8 6 14 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "rides.head()" + "rides.head(10)" ] }, { @@ -71,11 +334,37 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBoAAALzCAYAAAC/R2QvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAewgAAHsIBbtB1PgAAIABJREFUeJzs3Xu0ZHV95/3P75zTTXfTzUVppaXVcGkvaJxwMcZLHhTR\nR8eExKWOhmRiZFRiMmYxurw/BEEzGSMTjeNEFC/gM6PELHXGDAyJDMo8CnJN1Ag4Cijdne7YCDR9\npZtzfs8fu3bXr/bZe9dtX37fXe/XWmedOudU19lVXWfX3p/6fr8/570XAAAAAABAFeba3gAAAAAA\nANAdBA0AAAAAAKAyBA0AAAAAAKAyBA0AAAAAAKAyBA0AAAAAAKAyBA0AAAAAAKAyBA0AAAAAAKAy\nBA0AAAAAAKAyBA0AAAAAAKAyBA0AAAAAAKAyBA0AAAAAAKAyBA0AAAAAAKAyBA0AAAAAAKAyBA0A\nAAAAAKAyBA0AAAAAAKAyBA0AAAAAAKAyBA0AAAAAAKAyBA0AAAAAAKAyBA0AAAAAAKAyBA0AAAAA\nAKAy0QcNzrnTnHMXOOf+1jm32Tm33zm3yzn3Q+fcZ51zzx/hNl7vnFsa8eN3R7i91c65dzrnbnbO\n/dw5t9s5d6dz7hLn3JOquecAAAAAANiz0PYGlHHO/W9JL+h96YMfrZB0kqRNkn7POfd5SW/y3h8c\ncpN+yM9H2aaTJF3d+/3h7T1F0lMlvdE599ve+6um/V0AAAAAAFgTddAgaYOSk/l/kvTXkv4/SfdJ\nmpf0XElvl3ScpN9Vcl9+Z4TbfKmkbSU/31L0A+fcWklXqR8yfErSX0naJ+lFkt4j6QhJVzrnnu+9\n/94I2wMAAAAAQGc476d+k782zrmvSbpC0ld8zoY65x4j6QYl1QRe0hne+2/lXO/1kj7Xu87x3vv7\nJtyeiyX9P73beYf3/s8zP3+upOuVBCHXe+/PnOT3AAAAAABgVdQzGrz3Z3vvv5wXMvR+/oCSqobU\nq+vaFufcgqS3KgkZ7syGDL3tuVHSZyQ5SWc4506ra3sAAAAAAIhR1EHDiL4RXD6xxt/zIklH9i5f\nUXK9y4PLr6xtawAAAAAAiFAXgobDgsuLNf6eFwSXry+53q2S9vYuD10RAwAAAACALulC0PDC4PKd\nI1z/cufcVufcI865Hc65G51zH3DOPWHIvzs5uHxX0ZW894uSfqykfeLpI2wPAAAAAACdYTpocM45\nSe8KvvWlEf7ZGZKOVbJKxWMk/bKk90n6sXPuzSX/bmPv8x7v/cNDfsfm3uf1zrkVI2wTAAAAAACd\nEPvylsO8TUlQ4CV92Xv/9yXXvVvSlyV9R/0g4ARJr1IyRHKVpE8455a895/O+ffrep93j7Bde4LL\nayU9OMK/AQAAAADAvKiXtyzjnDtD0teVhCXbJT3Le39/wXXXee93ldzWv5T01d5t7ZV0ovf+Z5nr\n/FhJMHGf9/4XhmzbFZL+tZIA5Ine+38a9X4BAAAAAGCZydYJ59wzJH1FSTCwT9JrikIGSSoLGXo/\nv1rSxUrmKqyR9G9yrra/93nlCJsYDqjcN8L1AQAAAADoBHOtE8654yX9raSjJT0q6bXe+29XcNOf\nUhI2SMkchz/N/DwNK9aOcFuHB5dHabU4xDm3R0lQ4SU9MMI/WZS0NM7vAAAAAADMhDlJ8yNc7zFK\n3nh/xHt/+LArD2MqaOitDHGtpCcoObl+g/f+f1Rx2977Hc65n0t6rKTjcq6yRdJzJB3unDtiyEDI\nJ/Y+7/DeHxxzUw5T/4nwuDH/LQAAAAAAkzps+FWGMxM0OOceq2Qmw/FK3u3/t977/1rxrykbWHGH\nksGRkvQ0STfnXck5Ny/pxN5tjbLcZuE2rF+/fuiV5+fnNT8/SkAF2HHgwAHt2LFD69ev18qVo3Qr\nAd3E3wLA3wGQ4m8Bk1hcXNTi4uLQ691///3qzW+spFreRNDgnDtC0t9JerqSE/F3ee8vrfh3HCPp\nmN6XecMbvxVcPkMFQYOk05W0TnhJk7R0PCDpcevXr9fPfvazoVcGuuj222/XaaedpmuuuUannnpq\n25sDtIa/BYC/AyDF3wLqtHHjRm3dulWSKjkJjX4YpHNutaSrJZ2i5OT9g977S2r4Vecp6UmRpOtz\nfv5NSTt7l19fcjtvCC5/dfrNAgAAAADAjqiDBufcCkn/TdLzlIQMH/XeXzjmbTzZOfdLQ67za5Iu\n6H25T9LnstfpzVr4mJIw4unOubfn3M5zJZ3b29Zveu9vG2dbAQAAAACwLvbWiSslvUTJift1kj7b\nW9qyyAHv/Y8y3/sFSd9wzt0o6W8kfVf9cpATJL1GyewF1/s9b/febyu4/Q9Leq2kp0j6sHNuU28b\n90k6U9J7lDymeyWdP/rdBAAAAACgG2IPGl7Z++wkvVjS94dc/ydKwoMsL+lXJD234N95SXskne+9\n/0zRjXvvdzvnXiHpKkmbJL259xHezk5J53jvh20rAAAAAACdE3vQULYKxKjXv03S7ygJGU6XtEHJ\n0McFSQ9K+oGk/yXp0977+4f+Au/vds6dIukPlVRDnCRppaTNSgKIj3nvN4+53QAAAAAAdELUQYP3\nfup1G733uyV9sfdRCe/9PkmX9D4AAAAAAEBP1MMgAQAAAACALQQNAAAAAACgMgQN8VmUpPn5qbtG\nALM2bNigCy+8UBs2bGh7U4BW8bcA8HcApPhbgCXO+3HnLaJOzrktko477rjjtGXLlrY3BwAAAADQ\ncRs3btTWrVslaav3fuO0t0dFAwAAAAAAqAxBAwAAAAAAqAxBAwAAAAAAqMxC2xsAAAAAALE4/fTT\ntX379rY3Axjbscceq1tvvbXtzZBE0AAAAAAAh2zfvj0digdgQgQNAAAAAJAxNzfHUpIwYdu2bVpa\nWmp7MwYQNAAAAABAxoYNG1huHiYES1NGg2GQAAAAAACgMgQNAAAAAACgMgQNAAAAAACgMgQNAAAA\nAACgMgQNAAAAAACgMgQNAAAAAACgMgQNAAAAAACgMgQNAAAAAACgMgQNAAAAAACgMgQNAAAAAACg\nMgQNAAAAAACgMgQNAAAAAACgMgQNAAAAAADU6IorrtDc3Jzm5uZ07rnntr05tSNoAAAAAACgAc65\ntjehEQQNAAAAAACgMgQNAAAAAACgMgQNAAAAAADUyHvf9iY0iqABAAAAANA5u3bt0sc//nGdffbZ\nOv7447Vu3TqtWrVKxx13nM466yxdfPHFuuOOO5b9uze84Q2HBjd+/vOflyTt27dPf/mXf6lf/dVf\n1bHHHqtVq1bpSU96ks455xzdcMMNhdvwe7/3ewMDIL33uvzyyw/dfvhx5pln1vNAtGCh7Q0AAAAA\nAKBKl156qd73vvfpwQcflDQ4hHH79u3atm2brrvuOr3//e/XNddco5e+9KXLbiP9N3feeade9apX\n6a677hq4nS1btujKK6/UlVdeqQsvvFAXXnhh7m2k/yatapiFgZAEDQAAAACAzvijP/ojffzjHz90\nkj8/P69nP/vZ2rRpk1atWqUdO3boH/7hH/STn/xEkrR///7C29q6dave8573aPv27Tr66KMPVTTc\nf//9uu6667Rz505J0sUXX6yTTz5Zr3nNawb+/Ute8hKtW7dOd911l6699lo55/S0pz1NL37xi5f9\nrk2bNlX3ILSMoAEAAAAA0AmXXnrpoZBBkl772tfqwx/+sI477rhl173jjjt02WWXac2aNYW3d/HF\nF+vAgQN697vfrQsuuECrVq069LOHHnpIr371q3XdddfJOaf3vve9y4KGc845R+ecc46uuOIKXXvt\ntZKk5zznOfrYxz5Wxd2NFjMaAAAAAADmPfTQQ3rXu951KGR4y1veoi984Qu5IYMknXzyyfrIRz6i\ns846K/fn3nsdOHBA733ve/Unf/InAyGDJB111FH6whe+oMMPP1zee91zzz265ZZbqr1TRhE0AAAA\nAADM+9SnPqVdu3bJe68nP/nJ+shHPjL1ba5fv14XXHBB4c8f97jH6RWveMWhr2+++eapf2cX0DoB\nAAAAAA05/XRp+/a2t2Jyxx4r3Xpr21uR75prrpGUDFt805vepBUrVkx1e845/fqv/7pWrlxZer1T\nTjlFX/rSlyTp0NyHWUfQAAAAAAAN2b5d2rq17a3opptuuunQ5Re96EWV3OYv/uIvDr3OYx/72EOX\nH3744Up+r3UEDQAAAADQkGOPbXsLphPr9u/atUv79u079PUJJ5xQye0eeeSRQ68TVk4cPHiwkt9r\nHUEDAAAAADQk1rYD63bt2jXw9dq1ayu53XSwJMbDMEgAAAAAgGnr1q0b+Hr37t0tbQkkggYAAAAA\ngHHr1q3T6tWrD3197733trg1IGgAAAAAAJj3nOc859Dl6667rsUtWW7WWjAIGgAAAAAA5r385S8/\ndPmyyy6LajDjqlWrDl2OabvqQtAAAAAAADDvTW96k9auXSvvvX7605/q/PPPb3uTDgmXwNw6A+ub\nEjQAAAAAAMw76qij9KEPfUiS5L3XJz7xCb3uda8rPLH/wQ9+oPPPP1/XXntt7dv2zGc+89Dlm266\nSVu2bKn9d7aJ5S0BAAAAAJ3wlre8RT/4wQ/0iU98Qt57felLX9KXv/xlPfvZz9ZTnvIUrVq1Sjt2\n7NDf//3f6yc/+YmcczrzzDNr367HP/7xet7znqcbbrhB+/bt07Oe9Sy97GUv04YNGzQ3l7z/f+KJ\nJ+r3f//3a9+WJhA0AAAAAAA64+Mf/7ie+tSn6o//+I/18MMPa2lpSd/5znf0ne9859B1nHOHPtas\nWdPIdv3FX/yFXvziF2vXrl3auXOnrrzyyoGfv/CFL+xM0EDrBAAAAACgU9761rfqnnvu0SWXXKKX\nvOQl2rhxo1atWqVVq1Zp48aNOuuss/SBD3xAP/zhD3XWWWct+/dpCDGq9Lpl/+a0007T9773Pb3t\nbW/TKaecoqOOOkoLCwsDoUdXOO9929uAgHNui6TjjjvuuM737QAAAACx2bhxo7Zu3SqOx2FFFc/Z\n9DYkbfXeb5x2m6hoAAAAAAAAlSFoAAAAAAAAlSFoAAAAAAAAlSFoAAAAAAAAlSFoAAAAAAAAlSFo\nAAAAAAAAlSFoAAAAAAAAlSFoAAAAAAAAlSFoAAAAAAAAlSFoAAAAAAAAlSFoAAAAAAAAlSFoAAAA\nAAAAlSFoAAAAAAAAlSFoAAAAAAAAlSFoAAAAAAAAlSFoAAAAAAAAlSFoAAAAAAAAlSFoAAAAAAAA\nlVloewMAAACacuut0ve/L73uddLq1W1vDYCYbdu2TRs3bmx7M4Chtm3b1vYmLEPQAAAAZsLDD0sv\nfKG0Z4+0Y4f0zne2vUUAYra0tKStW7e2vRmASQQNAABgJtx3XxIySNIdd7S7LQDideyxx7a9CcBE\nYnruEjQAAICZsLjYv/zoo+1tB4C43XrrrW1vAmAewyABAMBMCIOGgwfb2w4AALqOoAEAAMyEsIqB\nigYAABIXXSTt3FntbRI0AACAmUDrBAAAy33609Lu3dXeJkEDAACYCQQNAAAsV8drIkEDAACYCQQN\nAAAsF74+VoWgAQAAzARmNAAAsBwVDQAAABOiogEAgOWoaAAAAJgQQQMAAMsRNAAAAEwoPJA6eLC9\n7QAAICa0TgAAAEyIGQ0AACxHRQMAAMCEaJ0AAGA5KhoAAAAmRNAAAMCgpaV6bpegAQAAzASCBgAA\nBtXRNiERNAAAjPFeevjhtrcCFjGjAQCAQXW9HhI0AADM8F56wQuk9eulr32t7a2BNVQ0AAAwiIoG\nAMDMu/de6YYbpAMHpC9+se2tgTUsbwkAwCAqGgAAM+/Agf7lnTvb2w7YREUDAACDqGgAAMy88MVw\n1672tgM2ETQAADCIoAEAMPMIGjANhkE2Z8eO+pZMAwBUh9YJAMDMC4MGVp7AuKhoaMYXvygde6z0\n/OcnA1wBAPGiogEAMPOoaMA0CBqa8dWvJtUM3/mOtGVL21sDAChDRQMAYOZR0YBpZIMG3m2vR7ii\nxyOPtLcdAIDhqGgAAMy8MHU/cGBwFQpgmOy7NnUdXM06lhEFADuoaAAAzLzsiSHtExhH9vlD+0Q9\nCBoAwA4qGgAAMy/7Ykj7BMZB0NCMbOURACBeBA0AgJlHRQOmQdDQDCoaAMAOWicAADOPoAHTyB5M\nETTUg6ABAOygogEAMPNoncA0qGhoRvg40zoBAHGjogEAMPOoaMA0CBqaQUUDANhBRQMAYOZR0YBp\nZJ8/nATXIwxweIwBIG4EDQCAmZd9B5qKBoyDGQ3NoKIBAOygdQIAMPNoncA0aJ1oBjMaAMCOma1o\ncM6d5py7wDn3t865zc65/c65Xc65HzrnPuuce/6Yt/dy59xXgtva3Pv6ZWPcxmrn3Dudczc7537u\nnNvtnLvTOXeJc+5J499LAMAoaJ3ANAgamkFFAwDYUddr4UI9N1sN59z/lvSC3pc++NEKSSdJ2iTp\n95xzn5f0Ju994cuZc85JukzSuZnbe4Kk35T0m865y7z35w3ZppMkXd37/eE2PUXSUyW90Tn32977\nq0a4iwCAMVDRgGkQNDSDoAEA7JjVioYNSk7mt0r6C0mvlvTLkp4r6W2StvR+/ruSPjfktv69kpDB\nS7pN0m/1buu3JN3e+/4bnXMfLLoB59xaSVepHzJ8StKLJT1P0vsk7ZJ0hKQrnXPPGvveAgBKUdGA\naTCjoRnh40rrBADEra6gIeqKBkl3Snq3pK94733mZzc75/5fSTcoqSb4Lefcpd77b2VvxDm3SdLb\nlYQDt0g6w3v/SO/Htznn/kbS9ZJOl/QO59xnvff35GzPO5VUUXhJ7/De/3nws5ucc9f3bmeNpI9K\nOnOiew0AyEVFA6ZBRUMzqGgAADtmchik9/5s7/2Xc0KG9OcPKAkQUq8uuKl/p36o8tYgZEhvZ5+k\nt/a+XOhdf4BzbqF3HS/pzkzIkN7OjZI+I8lJOsM5d1rRfQMAjI+gAdNgectmEDQAgB2z2joxim8E\nl08suM7ZSgKCu7z3t+RdwXt/k6QfKgkJfiPnKi+SdGTv8hUl23N5cPmVJdcDAIyJ1glMg4qGZhA0\nAIAdM1nRMKLDgsvL8hjn3PFKBj5KSVtDmfTnxznnnpz52QtyrpfnVkl7e5fHWhEDAFCOigZMgxkN\nzWB5SwCwg4qGYi8MLt+Z8/OTg8t3Dbmt8OdPn+R2vPeLkn6spDIiexsAgClkTwwJGjAOKhqaQUUD\nANhB0JCjt2Tlu4JvfSnnahuDy1uG3OTm4PITC25nj/d+WLFuejvrnXMrhlwXADAiWicwDYKGZoSP\nK0EDAMSN1ol8b1OyRKWX9GXv/d/nXGddcHn3kNvbE1xeW3A7w25j2O0AACaUPVHcv58TGYyOoKEZ\ntE4AgB1UNGQ4586Q9Ke9L/9Z0h8UXHVVcHnYy124GsXqgtsZ5SWz7HYAABPKezGkfQKjImhoBq0T\nAGAHFQ0B59wzJH1FyVKU+yS9xnt/f8HV9weXVw656XCw5L6C2xl2G8NuBwAwIYIGTCN7MMVJcD0I\nGgDAjroqGhbqudn69FaR+FtJR0t6VNJrvfffLvkn4SHosDaGw4PL2RaJ9HZGaYUou52RHDhwQLff\nfvvQ623YsEEbNmyY5FcAgDkEDZgGFQ3NIGgAgHhs27ZN27ZtK/z5T3+aXqq2181U0OCce4Kka5Us\nV7kk6Q3e+/8x5J+FAyA3Fl4rEQ6A3Jz52RZJz5F0uHPuiCEDIdPb2eG9n+gldseOHTrttNOGXu/C\nCy/U+9///kl+BQCYkxc0MBASoyJoaEb4uDKjAQDa9clPflIXXXRR47/XTNDgnHuspK9LOl7J8Md/\n673/ryP80zuCy08bct3w59mlMu+Q9KrgejcXbOe8pBN725i33OZI1q9fr2uuuWbo9ahmADBLqGjA\nNAgamkFFAwDE47zzztPZZ59d+PPPflb6z/9Zkl4maUdlv9dE0OCcO0LS30l6upIT+Hd57y8d5d96\n7+91zv2TpA2Szhhy9f+r93mr9/6nmZ99K7h8hgqCBkmnK2md8JLKWjpKrVy5Uqeeeuqk/xwAOomK\nBkwjGywQNFRvaWnwa4IGAGjXsFb7q65KL40yinB00Q+DdM6tlnS1pFOUnLx/0Ht/yZg3898lOUlP\nc879csHv+RUllQpe0n/Luco3Je3sXX59ye96Q3D5q2NuJwCgRN6JIRUNGBUVDfXLPsa0TgBA3GZy\neUvn3AolJ/3PUxIAfNR7f+EEN/VRSelD+J+cc+GSl+p9/bHel49K+ovsDfRmLXxMSWDxdOfc23O2\n97mSzu1t6ze997dNsK0AgAK0TmAaBA31yz7GVDQAQNxmddWJKyW9RMmJ+3WSPttb2rLIAe/9j7Lf\n9N7/yDn3YUnvlvRsSd92zn1I0t1K5im8S/2KiT/z3t9dcPsflvRaSU+R9GHn3KbeNu6TdKak9yh5\nTPdKOn/M+woAGILWCUyDk+D6sYQoANhSV+gee9Dwyt5nJ+nFkr4/5Po/kXRCwc/eJ2m9koqDX1IS\nEKR87+PT3vsLim7ce7/bOfcKSVdJ2iTpzb2P8HZ2SjrHez9sWwEAY6KiAdNgRkP9CHMAwJaZbJ1Q\nPwAY5yP/hhJvkvQKJTMbtkp6pPf5v0t6uff+vKEblFQ7nKKkCuIWSQ9K2iPpLkl/LulZ3vv/OcF9\nBQAMQdCAadA6UT9mNACALTNZ0eC9n6/hNq+RNHzdyPLb2Cfpkt4HAKAhtE5gGgQN9aOiAQBsmdWK\nBgAADqGiAdMgaKgfQQMA2ELQAACYeVQ0YBrMaKgfrRMAYEtdr4UEDQAAM7pc0fCtb0knnCD9/u+3\nvSXdRUVD/Vh1AgBsoaIBADDz8k4MuxI0fPKT0r33Jp+3b297a7qJsv768RgDgC1UNAAAZl54EjPX\newXrSuvEnj39y7t3t7cdXUZFQ/0IGgDAFioaAAAzL3wxPPLI5HNXKhrCk15OzurBjIb6MaMBAGwh\naAAAzLzwxfDoo5PPe/fW9yLZpPA+EDTUg4qG+lHRAAC20DoBAJh5eUGD1I2qBioa6kfQUD+GQQKA\nLVQ0AABmXvhieNRR/csEDRgFQUP9aJ0AAFuoaAAAzLyiioYuDIQkaKgfQUP9so/x0lLyAQCIExUN\nAICZ1+WKBmY01GtpSfJ+8HsEDdXLO2Dl+QwA8aKiAQAw85jRgElxAtwMHmcAsIWKBgDAzAtPxsOK\nBlonMEzegRQVDdXLe0yZ0wAA8SJoAADMvC63ThA01IugoRlUNACALbROAABmXnoS45x05JH973eh\noiGmGQ0PPST9h/8gXXddu9tRpbwDKYKG6hE0AIAtdVU0LNRzswAAVC99MZyfl444ov99Khqq9R//\no/TBD0pr1khbtgzOw7CKioZm5D3OtE4AQLyoaAAAzLwwaFi3rv99goZq3X138nnvXunee9vdlqoQ\nNDSDigYAsIUZDQCAmVcUNHShdSKmoCHclp//vL3tqBJBQzMIGgDAFoIGAMDM63LrREwzGsIT8Pvv\nb287qpQXKrT9OHcRjzMA2ELrBABg5tE60QwqGjApZjQAqNP+/dKHPiR9/vNtb0l3hIO2q8QwSACA\nGemJYbaigdaJahE0YFK0TgCo0xe+IL373cnl006TnvGMdrenC6hoAADMvLCiYfVqaa73KkZFQ7UI\nGjCpGIOGhx+WvG93GwBU4yc/yb+MydVV0UDQAAAwI30xXFhIXhDT9okuVDTEOqOhK0FDXqhA0FC9\n2FonvvY1af166Vd/lbAB6IJwv80+vBoMgwQAzLywokHqt09Q0VCtLgYNVDQ0I7ZhkF/6UhJ0fPvb\n0j33tLcdAKpB0FA9WicAADMvGzSkFQ0EDdUiaMCkYmudCKsp9u9vbzsAVCOm6r+uoHUCADDziioa\ndu+Wlpba2aaqEDTUK7YT4K6K7XEOn8usfgHYR0VD9ahoAADMvKKKBikJG6zyfjAoafsEuItBAzMa\nmhHbjAaCBqBbCBqqx4wGAMDMKwsaLA+EzL7IxxQ0PPxwN07QaJ1oRswVDY880t52AKgGrRPVo3UC\nADDzilonJNtzGrInvG0fPGW354EH2tmOKhE0NCO2YZBUNADdQkVD9WidAADMvPTFMK+igaChOtnt\n6UL7RF7QsLjIkodVo3UCQJ3CfQxBQzWoaAAAzLyyigZaJ6ozK0FD2fcxmZhbJwgaAPuoaKgeFQ0A\ngJmXnsQsLCSfqWioRxeDhqIDKQ5UqxVz0MCMBsC+mFZo6gqGQQIAZlq4KgOtE/XqYtBQdCDV9mPd\nNTEHDVQ0APbROlGtpaV+CyGtEwCAmRQeXHStdYKgoX5FQQMHqtViRgOAOtE6Ua062wcJGgAAJuQF\nDV2paGBGQ/0IGpoR86oTtE4A9lHRUC2CBgDAzBsWNFDRUJ3s9tx/fzvbUSVmNDSD1gkAdWJGQ7XC\nx5PWCQDATMoLGlat6n/P8klE7EEDFQ0YFa0TAOpE60S1qGgAAMy8vKBh5cr+9yyfRBA01I+goRlU\nNACoE60T1SJoAADMvPCAIg0aVqzof6/tk/NpZF/o2z4hImjApGIOGpjRANhH60S1aJ0AAMw8Khqa\nES51lepC0FAUKHCgWq2Yh0Fa3kcASNA6US0qGgAAMy98MVxYSD4TNFQv78DtgQeWhw/WhM+f8F0b\nDlSrxYwGAHWidaJaVDQAAFq1c6f0ve+1uw1UNDQj78BtcTF5DlgWPn8OO6x/mQPVasXcOmF5HwEg\nQUVDtahoAAC05sAB6RnPkP7Fv5Auv7y97cgLGro6oyGWE7OQ9fYJgoZmxBw0MKMBsC/cx1h+3Y8F\nQQMAoDU/+pG0dWty+RvfaG87qGhoRleDhvB+hcuiEjRUK+agwfI+AkCCioZq0ToBAGhNeJLQ5gkD\nQUMzig7c7r+/2e2oGhUNzch7PJnRAKAqMQUNDzwg/at/Jf3hHyaDlC2qs6Jhob6bBgB0QSxLSRE0\nNKOrFQ0EDc2IuaKB1gnAvpiGQX7xi9Jf/3Vy+VWvks48s93tmQQVDQCA1sRc0cCMhurNWtBg+XkT\no5iChuyW5gG5AAAgAElEQVRSrZbDSACJWN78kJKKhtTmze1txzSY0QAAaE34Qh5LCXQaNDjXX+rS\n8klErBUNj31s/7L1oIEZDc2IaXnL7P+t5X0EgERMrRPh73/wwfa2YxoEDQCA1sRc0SD12ycsn0Rk\nD5YWFwffiW1rWx7/+P5l60FD+PwhaKhPTBUNBA1A98TUOhH+/rC6wRJaJwAArYmlTDE8uFgIJgx1\nMWiQ4jg562rQwIyG+sQcNDCjAbAvlmMSiYqGYQgaAAClYq9oSOc0tH3AMY1YT84IGjCu8PGc6x1l\nxvBclmyHkQASVDRUq87HkKABAFAq9qCBioZqhdty9NH96hHrQQMzGpqR16LCjAYAVWFGQ7XCfTat\nEwCARsVSpkjQ0IxwW1as6A+EvP/+dranKlQ0NCN8nFevTj7H8FyWbO8jACRiChrC/Z3VigZaJwAA\nrbFS0WC5dSLWoGFhQTrmmOSy9YoGlrdsRsxBAzMaAPvCfUzb++8uVDTQOgEAaE3sQUM6o8Hyu5Ux\nBw1pRcO+fcmHVaw60QxaJwDUKaaKhi4EDbROAABaE0vQEL6gd611IqZhkNnVPdKgQbJd1UDQ0Iy8\nWRgxhGaS7X0EgETMwyDbWpZ6GlQ0AABaY2VGw8GDNl/kJRsVDZLtoCG8X8xoqE/6d+pc+21NtE4A\n3bK0lHyk2t5/h79/cVHavbu9bZkUFQ0AgNbEUtGQfac9lZ7MSO0fdEyKoKF+DINsRvo4LywMLj3b\nRghIRQPQLdnqv5hmNEg2B0JS0QAAaE2MQUPejAbJ7okEQUP9CBqakT7O8/ODf5ttPM7Z32m56gnA\n8qCh7f139vdbnNPAqhMAgNaEJ7xtnsgPa52Q7AYNMc1oIGhozh/8gfSMZ0i33dbeNlQtDBrCv802\nns8xBXgAppf9m44taLBY0UDrBACgNVZmNEh2g4aYToi6GjTkDSmU2nucN2+WPvEJ6Y47pD/7s3a2\noQ7p45ytaIglaGBOA2BXXpVSm7JvElisaKB1AgDQGkutE20fdEwq5qDhmGP6X99/f/PbU5XYVp3Y\ntat/+bvfbWcb6lDUOtFGCJj3f2s1jAQQf+uE9YqGqhE0AABKhSe82YnPTaKioRldrWiIrXUi/P/9\n0Y+k/fvb2Y6qhcMgY2ydsLqPABB/64T1igZaJwAAjYqlVLHLQQMzGuoXW9AQ/t6lJenOO9vZjqoV\nVTTEEjTQOgHYRUVD9ahoAAC0JnuCEMMJcNeChpgrGo4+uv+15aChaEZDDBUNkvT977ezHVWLPWiw\nuo8AsPxv2vt6T5SH6UJFA0EDAKA1sQQNzGhoRjbQWViQjjoq+dpy0BBbRUP2//cf/7Gd7agaMxoA\n1CXvb7rNqoYuBA20TgAAWhNj0LCw0L9MRUO1shUNUr99gqChOtnf25WKhnDVCWY0AKhS3rvvMQUN\ntE4MImgAAJRiRkP9Yp7RIPWDhoceardMdRqxBQ2zVtEQS9DAjAbArtgqGrq2vCUVDQCARsVY0dC1\noCH2ioYjj0w+ey/t3t38NlWhaEZDW49z9vdu2WLzIDUrXHWC1gkAVYoplJeoaBiGoAEAUCr2oKHt\nd02rEHvQcPjh/e/t3dvs9lQlfP7EMAwy7/d2oaohrGigdQJAlWKraOjCjAaCBgBAa7InCG0dqFPR\n0IxhQcOePc1uT1Vib52Quhc0tB0CEjQA3RJ70LBzp732QlonAACtYUZD/WIqB80LGtas6X+PoKEa\nef+/XRgIGQ6DjDFoYEYDYFdMr5VS/j7moYea345pUNEAAGhN7K0TXQgaqGioX3q/5uYGT4Bjap3o\nQtDA8pYA6hJ7RYNkb04DFQ0AgNbEEjSEL4bMaKhPV4OG8AQ4XB41poqGf/zHZOCmVd73t39hgRkN\nAKplIWiwNqeBigYAQGtonagfQUP9LAQNDz0kbd3a/LZUJfs32nYImPc7aZ0A7Mo7KY4taLBW0UDQ\nAABoTSwVDeGLYXii2IWgIaa+01kLGmJ4nDds6F+23D5RFjTQOgFgWjGF8lL+a7e1igZaJwAArYkx\naKCioT5dX95yYSGOGQ3h/+8pp/QvW155ItveROsEgCpZqGiwFjRQ0QAAaE3sQUPb5dlViOmEqKsV\nDeFqCOHzJ4ag4dRT+5e7WtFA0ABgWhZmNFhrnajz8SNoAACUYkZD/WKvaOjS8pbz80l5aPocimHV\niV/8xWQ1DMl2RUO2vSnGoIEZDYBdFoIGyxUNtE4AABoVe0VDF4IGZjTULwwapP59i6GiYe1aadOm\n5PIdd7R74DwNZjQAqFNMr5VSfx8TvkZaq2igdQIA0JrYg4a2T2aqEHtFQ5eChvQ+xRQ0rFiRVDVI\nyTvuP/5xO9s0rezfKDMaAFQppoqGpaXkQ5LWr+9/31pFA60TAIDWxB40tH0yUwWChvqFMxqk9oOG\n8PeGQYNkt32CGQ0A6hRT0BDu7445pn/ZckUDrRMAgEZlX8RjGFLYtdYJgob6FbVOtPU4h793YUF6\n5jP7X99xR/PbU4Xs32jb1UbMaAC6JabWiXBb1q6VVq9OLlPR0EfQAAAoZamiwWrQENPBU9eXt4yl\noiHbOvH4x/e/3rmz+e2pQnYYZNvVRlQ0AN0SU0VD9rXyMY9JLlPR0EfQAAAoFWPQkJ4kSu2XZ1eB\niob6ZYOG9HkTw0HqihXSqlX9r/fvb357qkDrBIA65YXyMezDFxako49OLluraGAYJACgNSxvWb/0\nMQ5PNmMKGrqwvGV6v2IcBrmwMPh/b7W830LQYPWxBWCjomHfPlthMa0TAIDWxFjRQNBQ/7ZI/ZPx\nubn+tlkNGmJvneh6RUMsMxqs7iMAxF39l1Y0SLaqGmidAAC0hqChful9S4dJSfEcPKXS9gmChmp0\nsXUiOwySGQ0AqhRr68T8fL+iQbIVNFDRAABohffxt060XZ5dhfQxPuyw/vcIGqoVW9BQ1jphNWiw\n0DpB0ADYFXPrRFjRYGkgJDMaAACtiGk1hC5XNITzA9KTs7aDBueSlomU5aBhaSkJzaTlMxpiWN5y\nxYrBkKkLQUP4XJbiaZ1gRgNgV6wVDbRO5CNoAAAUyjsJI2ioXoxBQ1jNIA0GDelJuxV5z522Kxq6\n2DqRfZxpnQBQpZhmNGSD1bB1wlJFA60TAIBWxBQ0ZPshw8tpCm/1JCI9YLEQNHhv713hvKAhfZyX\nlpKPpmVbJxYW+tvWlaCB1gkAVbLSOmGxoqHqagaJoAEAUCLWdw/CoMG59k/Op2WpokGy1z5RVtGQ\n/XlTsq0TUr+qwWrQkA0DYwoa0oNoayEZgL6YWyesVzRkX/OrQNAAACgUU0VDtkwxlJZoW323Mn2h\nD0/OYgsa1qzpX7YWNOQNuAzvXxsHqtnWCakfNFg9GY55ecv0+Wt1HwEgrjc/ulbREL6BUxWCBgBA\nobwX8LYO1IsqGiTbQYP3g60T6X1p++Bplioa2ggasq0Tkv2KhmwYGNOMBoIGwL6YWyesVjSExx9V\nI2gAABSKtaKhS0FDOB+A1ol6xB40pNvUpaBhfn7w77TtoGH16uSzxX0EgESsrRPz83YrGsKKyqrV\nkF0AwGy67z7pfe+TNm/uf2/lSunNb5Ze/er2tmsaMZUphgcYc5mYvO2T82lk3xVp+77MYtDQ5knw\nihX9+QFdCxrS+SkHD7bbOjE/318+1GpbCoC4KxqOOqr/taWgoc7WCYIGAKjIRz8q/Zf/svz7N90k\n/cZvDPYrWxFjRUPei6HlioaiAXoEDdWJcUZD+v8bbkd6MtyVoEFK/jYPHmw3zFlY6D+2FvcRABJ5\nFQ1tH5NI/VWDjjxS2rnTVusEwyABwIBt2/K///DD0u7dzW5LVQga6hdbRUNRv2YYNOzd29z2VKFs\neUup3aAh3I60ouHRR9t7l24aeUvQtvl8Dg+gLe8jACRirmiQ+nMaqGhIEDQAQEXCA+m775bOPrv/\ntdV3KGMKGsr6CNOTGYsnEdl3RdL7sriYDIpsWhcrGmKc0RC2TqTSoEGyWeKftzJMbEHDo48OzkUB\nYEfsQUM6p+GBB9p5/Z4EFQ0AYEB4IH344YMnZvv2Nb89VYhxRkNZRUOXZjRI7Z+chSwvbxlj0JDX\nOhEGDRbDybLKkTZnNIStE21tC4DpxToMMhs0LC7aqWSlogEADAhPClessH/SIMVV0TBK0LC4mH8g\nErOiGQ1SXEFDVyoaYpvR0NWKhnBGg9T+czlcapOgAbAppjc/ylonJDtzGmY6aHDOrXfOvcI5d5Fz\n7mrn3A7n3FLv47Mj3sbrg38z7ON3R7i91c65dzrnbnbO/dw5t9s5d6dz7hLn3JOmv9cALMoGDely\napLdioYYg4a88r7wJMJaVYOVigbLQUPe7IC2g4ZhrRMWw8myioa2n8sEDYB9sbZOpPs7i0tc1tk6\nYWHViX/OfO17H5OYulvGOXeSpKslnZS5vadIeqqkNzrnftt7f9W0vwvAcN5L3/2udOKJ0rp17W5L\nFysaYnr3oCx1D0/WDhwYfOxjVzSjQWr+sfa++HG2HDTEuLxlF1snyoZBtt06EQYNFqtFAMTfOhG+\nwWRlP8Pylv0T+vsk3SXp/9bkocFLJRXMhpckbSn6gXNuraSr1A8ZPiXpryTtk/QiSe+RdISkK51z\nz/fef2/CbQQwoksvlf7gD6QTTpD+z/+pZ0c5Kioa6jVK64RERcM08loMUl0OGmJsnbAYNMTcOsGM\nBsC+mN78yAsaLAaas17RcJGkWyTd4r3f4Zx7sqR7p7i9H3nv75vw375T0iYlIcM7vPd/HvzsJufc\n9ZKul7RG0kclnTnFdgIYwXXXJZ/vuUf66U+TwKEt6Yudc8lBdhg0WDxpkGwGDdZOImKa0ZB34JRi\nectqdb11ItZVJyR7+wgAiZgqGvL2d2GgaSVomOkZDd77i7z3V3vvd7S5Hc65BUlvVRIy3JkJGSRJ\n3vsbJX1GkpN0hnPutGa3Epg94QtM2+9kZ9+hDE8aulTR0NZB+iwEDW1XNIwaNFiraMi7X7FUNITb\nER6kWg8asoHO0lLzg1oJGoBuiXVGQ17QYGU/M9NBQ0ReJOnI3uUrSq53eXD5lbVtDQBJgydibe/U\ns0FDFyoaYipTHGdGgyUxzWgoCxpY3rI64SyMrlY05FWOtPV8zrZOWHmnEcAgS0GDhf2M90kILNXT\nOkHQMLoXBJevL7nerZLSotLn17c5AKTBHX3bO/VZqWhoux+SGQ3NbUvIckVDbEFD+Pu6FDTkDYNs\n82+TigagW/Kqoto+JpHszmjIe22s0iwGDZc757Y65x7pLZV5o3PuA865Jwz5dycHl+8qupL3flHS\nj5W0Tzy9gu0FUMJKRQNBw/RmoXUi5hkNhx0mzfWOGggaphP+vxatOmHhIDUrpooG7wkagK6hoqFa\nZa/5VZjFoOEMSccqGYT5GEm/LOl9kn7snHtzyb/b2Pu8x3v/8JDfsbn3eb1zbkXpNQFMJdxJtn3w\nWFbRYPHdSSnOoCHvxdDySYSVigbn+lUN1oKGYTMamn6csyvUpKzvM8qGQUrN/m2m5cDptlh7pxHA\ncjENg8yr4LI2o6HuigYLq05U5W5JX5b0HfWDgBMkvUrSqyWtkvQJ59yS9/7TOf9+Xe/z7hF+V3gI\ntlbSgxNtMYChYg4aulDRwIyG+mVPzpzrfx1T0CAlQcOuXfaChtgqGrraOlG2vKXU7PM5+1y2dgIA\nYLnw73puLgkUYwgaaJ3INytBw1e893kDHG+T9NfOuX8p6atKHo+POOe+5r3/Wea66cv/KC9P4VNr\ntQgagNrE3Dph/aRByj8xePTRpCw5PCFuwqitE9ZnNMwFtYYxBg0Sy1tOa5TWCYv7jJhaJ7LPZctV\nTwAS4aymhYXkZL7tNz8kWieKzETrhPd+15CfXy3pYiVzFdZI+jc5V0tf8lfm/CwreJrJ6PuYgA1U\nNNSr6AW8jXcQmNHQ7LaUBQ1UNExnFlonCBoAVC1soUz3LTFVNFirnKKioTmfUhI2SMkchz/N/DwN\nK9aOcFvBbO6RWi2WOXDggG6//fah19uwYYM2bNgwya8AOoGKhnoVvYAfPDh4AlE375MPqdtBQ+yt\nE+kSl/v3JwcodRyY1GHYjIZYWifCg1SL+4xhq040+bdZFjRYeKcRwHLZiobwe21tixR/68S2bdu0\nbdu2Zd/fsaN/effu5PyzSgQNPd77Hc65n0t6rKTjcq6yRdJzJB3unDtiyEDIJ/Y+7/DeT3SYuGPH\nDp122mlDr3fhhRfq/e9//yS/AugEKhrqVXSi2/QJ8LDUvUszGiy0TkhJ+8S6dcuvE6OYKxq62jqR\nNwySGQ0AphGuJJPuY2Ja3jLW1olPfvKTuuiii0qv881vVv97CRoG+ZKf3aFkcKQkPU3SzXlXcs7N\nSzqxd1t3Troh69ev1zXXXDP0elQzYNbFUtHgff8gu0sVDeHju2pV/37EFjR0aUZDeP9iDhr27CFo\nmBStE/WjdQLonrB1IsaKhlgDzfPOO09nn332su9v2yb92q8ll1/yEukf/uFl2hGWOUyJoKHHOXeM\npGN6X/5TzlW+FVw+QwVBg6TTlbROeEnfnnR7Vq5cqVNPPXXSfw7MjFgqGvJOHLpW0bBmTXtBQ15J\ndsjySUTZjIam78u4QYMVw4KGNp/PRUFDTO+GjWpY0BBL64S1fQSARNg6EdOMhrxWsZj24UWt9nff\n3b+8fn1y/lmlmRgGOaLzlAyDlKTrc37+TUk7e5dfX3I7bwguf3X6zQJQJpaKhmFBg8V3J6XBF9K0\nP19q/rEep6LB2klE9oTIwjBIyVbQENuMhllonYh5ecuYTgAAjM5SRYOF/UzdwyA7HzQ4557snPul\nIdf5NUkX9L7cJ+lz2ev0Zi18TEkY8XTn3Ntzbue5ks5VUs3wTe/9bVNuPoAhwh19mzv1vKAhPGno\nQkVDGJy02TqRdwLc5sn5tLL3jaChejEvb9ml1om8d/honQBQlbxhkCxvObm6l7eMvnXCOfd8SScF\n3zomuHySc26gusB7f0XmJn5B0jecczdK+htJ35X0s97PTpD0GiWzF5ySgODt3vvlYzkTH5b0WklP\nkfRh59wmSVcqCSfOlPQeJY/pXknnj34vAUwqloqGondMFxaSn3UhaAgrGmKe0WDtJMJqRcPevfVv\nT1Vim9EwSuuExaAh5mGQlvcRABJ5wyBjrWiwsJ9heUvpjcpvVXCSXtD7SHlJ2aAh/f6vSHpuwe/w\nkvZIOt97/5miDfHe73bOvULSVZI2SXpz7yO8nZ2SzvHef7/odgBUJ+YZDVJy4rB7t82TBomgoQll\nMxpiCxrC54D1igZaJ6o3rHUilhkNFt5pBLBc2DoR04yG2Je3LDKsWnRaFoIGqXw1iGHXu03S7ygJ\nGU6XtEFJVcSCpAcl/UDS/5L0ae/9/UN/gfd3O+dOkfSHSqohTpK0UtJmJQHEx7z3m0fcXgBTiqWi\noShoWL06CRqsVjQUzWiILWiwvLyl1YoGq0FDbDMaulrREFPrxIoV9t5pBLBcXutETEGD5daJmaxo\n8N6/QYMDFsf997slfbH3UdU27ZN0Se8DQIssVDRINk8apDhnNHRteUtmNNQv72AqxtaJ8HlscZ8R\na9BA6wTQDXmtEwcPJkuMO1f87+rclnR7JHuBJsMgAaCA9/EHDenJudWKBlon6kdFQ/1iW96yqHXC\nuf6BqsWgYdgwyFhaJ6ztIwAk8lonJGlpqfltsbS8ZZG6h0ESNAAwKzx5kOIMGqxXNFhpnbB8EmFp\nRkNXg4ZYWiek/j7DwkFqFstbAqhTXutE+P02tkUabMmb651dW9jPUNEAAAWyLywxBg1pRcP+/UkF\nhjWxVDQM6yNkRkM925JF0FCNUYIGi+Ekq04AqFNY0dBmVZpU/HqZhpoW9jN1D4MkaABgVvaFJcag\nIRzuZiHdzoolaOjyjAarQYOl5S3z7lf4OLc5oyH7OHclaGBGA4AqLS3137CJoaKh6CQ93ddYOOar\nexgkQQMAsyxVNEg25zTEGDTknQBbPomwNAyS5S2rMQsVDTEvb2ltHwGgPJSPpXVC6lc0WAgaaJ0A\ngALZk7A2d+pdXa6OGQ31Y0ZD/QgamhFzRQMzGgDbsqF82xUNXQgaGAYJAAWoaKhf0fKWTT/Ww4IG\nZjTUsy1ZBA3VGLV1wtpcl2GrTtA6AWBS2f1LrDMa0n2Nhf0MFQ0AUMDCjIbw5NziO5Tp/Zqba3cO\nAjMa2tmWLKtBQ9F08LyfN6GsosHaOuyhYcMg22ydmJ9Plg9tejsAVCPmiobwuMRSRQPDIAGggIWK\nhrB1wmJFQ/oYr1jR7glwl1snsi/0bYYmXQ0ahlU0NP04j9I6IdkLJ2Na3jL8XQsLSchgaUgbgEGx\nzmhwrr+kpWQraGAYJAAUsFbRYDFoSO8XQUN9LM1omJ/vH0R1KWiIsXVCsnGgGop5RoNka9k5AIPK\nWifaDBqy+/B0P3PwYPztb7ROAEABaxUN1t6dlPr3q+2SfmY0tLMtedKqBkvLWw47AY6pdcLyPiP2\noMFS7zSAQWWtE220TKbbk32ttPTGB8MgAaAAFQ31i6WiYVh5X5vbNi1rQUO6+oiligZLMxosBw15\nf6exLG8ZbkvsB/8Aliur/ouxokGKvyqNigYAKEBFQ/2szGiYn+9/39pJRPZdmtiDhrSiwVLQYLV1\nwto+I32cw57lmCoaLPVOAxiU/ZuOvXVCiv94hGGQAFCAiob6hRUNsaw6UfRiaPXdSmsVDWHQEHv/\naSq2oKGrFQ3p4xyGgTEFDVb3EQDia50oChrCY6XYQ02GQQJAASoa6mdlRoPU3z5rJxGWhkFK/aBh\ncdHOY03Q0IxhQQOtEwAmZW0YpBR/0EDrBAAUsBA0dKmiIfagIT2JsD6jYX4+KT2X4g4aJDvtE3n3\nK3wexfQ4hwepXQga2qqEKgsaYj/4B7BcWZthm0FD9pjEUtDAMEgAKJA9aG1zh97VigYrMxoku+9W\n5rWFpI91bEM3JZtBQ97zx7n+ZSoaqpF34B1T60R6ArC0NPicABA/KxUNlladoKIBAApQ0VA/Wifq\nl3dC1FbQMMosjDBosLLEZdHzJ32cYw0aYn83LMvKjAbJ3n4CmHVlwyBjmtFgqaKBYZAAUCD7wtLm\nu1SjBA3W3p30vrh1oumD9C5XNORVEcRQ0TBseUvJdkWD1L+PrDpRjbx15WNc3rLpbQEwvbJhkG1U\nNOTt7yRbQQPDIAGgQN4LS1sHj+EJYfiiE540WKtoWFrqX267dWKUF8OuzGiQ4g4arLdOhPerraCh\nq60TsVc0WDoBADCobHAyrROToXUCAArkHbTGEDR0pXUie59ib52wWtEQ64yGLgUNRUEVQUO18oKG\ncBZG20GDpRMAAINiq2joQusEwyABoEBMFQ3htnRlGGS2SiP2oCGc0eB9/dtUFSoa6kfrRDPyggap\nnfkpBA1AtzCjoXpUNABAASoa6hVrRUPRCXB4EtHGuxuTsjajoYtBQ9OPc1crGoqWe2ujrYmgAeiW\nmFonvB9tRkPs+xkqGgCgQEwVDV1c3jJbpRFL0DCsdUKyNaeBoKF+zGhoRtGBdxvPZ2Y0AN0SU+tE\n2TFJeCwS+36GigYAKEBFQ72y96nNE/lxg4bY30UIpfdtbi75kAgaqlY0o6Gt5S3LHufwZNhq0FDU\nOtF20GB1HwFg+X68zdaJUffhBA0AYBQVDfWyOqNBsnUSkdfnGXPQEC5vuXdvvdtTldhmNIxa0RD7\nQWpWUdDQxqBWggagW8pmNLRZ0WA5aKB1AgAKWKhoCF8MrVc0xB40WD2JyOtrTx/rxcVmB1t2taIh\n1qAhXJEhZTmctFTREPsJAIBB2ZP7Nmc0lL1WWjoWoaIBAArkvbC0dfA4yjuU1k4amNHQjLKKBqn9\nk7Msy0GDc8lHqu1VJ/IeY8tBQ9EwyFiCBktD2gAMKmudiClooKKhj6ABgFkWWiek/pwGyxUNCwuD\nMwTaLOnvWkVD3gA9goZqFZ3Yt13RkN1XSLaDhmHDIGmdADCpsmGQMbUZWgoaqGgAgAIWWickuxUN\nefeprdkBszqjQWovaCh6nC0GDUUl/eljvrSUfDSli0GD9/3HkOUtAVQtphkNtE6MhqABgFlUNNQr\n2zoRfm76cZ6F1om8GQ1SOydn8/ODLQahLgYNUrMHql1snQiDmqLWiUcfbW7mCMtbAt2SDcJjmdGQ\n3d9Z2s/QOgEABaxUNFgNGmKtaCh6MbT0LkIoxoqGsgOOLgUNbR2ollU0WF3ectR15Zt6nKloALql\nrHUipooGS0EDFQ0AUMBKRUP6DuUjjzS7gsC0sjMapDiCBmY01GeUoGHVqn61g5XlLYfNaAiv04Sy\noGFhof8ctxQ0lL3D10ZbE0ED0C1lwyBjmtFgaT9DRQMAFIixoiGv5DytaJBsnTjEWtEwazMa2hig\nV3bA4Zy0Zk1y2XpFQ4ytE9JgOGlFWdVRGwfeBA1At2T/pttsnSjb31HR0EfQAMCsGCsaujTcrWxG\nQ4xBAzMaqtuWYe9spO0TBA2TKdtfSDYHyI7aOtHU85kZDUC30DpRvVHaUqdB0ADArBgrGvJOHMKK\nBktzGmidaIa1GQ0SQcO0Zi1oaLt1Il2W1+o+AoCd1glLQcMoK01Ng6ABgFlUNNQrr3WijWXqpG4H\nDdZmNEj91gkrwdkoMxpiepy7FjS02TqxsNBvZ7O6jwBgp6LB0n6G1gkAKEBFQ71imtEwSure1RkN\nMZ0Ap9Ln9N69NgacUtFQv1hbJ8L/Y0vvNAIYFOvyll2paKB1AgACeS8sbe3Uu1jRwIyG+nlvc0ZD\nGjR4byPUiWl5y6Wl5CP7+0MWg4ZYV50In8uW3mkEMCh7UhxLRUN2f2cpaKCiAQAKUNFQr7IZDd4P\nvkDVbZSBRRZPItITTslWRUPaOiHZeE7HVNEwyjtIadDw6KPNH0BPKtZVJwgagG4oa52IaUZD+HXs\n+yJKv2UAACAASURBVBmGQQJAAWY01KusdSL787p1dXnLohf52IOGMDzbu7e+7anKKDMamjqhz/u7\nyrL0jljKQusEQQNgV9kwyJiWt3Suvw+Pff/NMEgAKGAlaLBa0VDWOiHFFzRYPIkoelfEUtBg4Tkd\nU0XDKEFDGE7GfqCainXVCWY0AN2QPbmPdUaDZCdooHUCAArE2DqR94ITnjRYOClLDatoaPKx7uqM\nhqJ3E2IPGmidmNw4rROSnSqomFedaHM7AFQj1hkNefvxdF8T+34mvR/O9ZcBrhJBAwCzLFY0WDlp\nkMpnNGR/XjcqGuoXDqbsWuvEKEFDU4/zuBUNVvYZZSW4tE4AmFZZ60RMMxokexUNdVQzSAQNAAyL\npaJhcbG/xF+XWieY0VC/mGY0FA2mzGPpOb201P/7tDKjwWLQUNazTOsEgGnROlG99DGtYxCkRNAA\nwLBYKhryZhmELJ40SMxoaEJMFQ3jrKdtqXWi7LlD60R1aJ0AUKeYhkEOG6JoJWjIW167SgQNAMyK\npaJh2DuUlt79DcXUOjHKZOQuzWhos9Rc6lbrxKhDCqlomA6rTgCoU/Y1KtzPxNY6YWVGA60TAFAg\nloqGYScOFk8apPz71dbJPBUN7W1LHkvhWWwVDbMYNMTSOmFxHwEgkW2dcK6/r4m5dSJt3YvRqHOZ\nJkXQAMAsKhrqFWvrRNELIjMapkPrRDPb09XWiVGHQbYZNMzP97ct9pJmAIPy9jHpa2XTQcOwY5Jw\nHkzMFZZUNABAgfSFJTzpaePgcZYqGmIIGqhoaHZb8lhqnSi7X7FWNFgcWlh24N10JZT3xUPOrJQ0\nAxiUt49JP8dW0WDleIRhkABQID1gDYMGKhqqE9OMhnGDhpjfQQgVvQtsKWiI/Tk9akUDy1tOJ6bW\niVFCj5gP/gEsl/d6mf59xzajwUpYzDBIACiQ7iBXruzv6GMMGiyeNEhUNDTBakUDrROT62rrREyr\nTpQ9xgQNgE15f9exVjRYCRponQCAAukJ2MJCuwePXa1oiHVGQ9ELIjMaptPV1onYgoZZrGhoutqo\n7LlsZdk5AIPyXi/bmtEwbCUsK298MAwSAAqkO8gVK+IOGsKTBktBg+XWiZhf2ENWKxoshWdl94vl\nLasTU+sEFQ1A95S1TlDRMBkqGgCggMWKBisnDdLw1okmH+vwJGau4JWLGQ31bEseWicm19XWiZhW\nnSBoALqnrHWCGQ2TYRgkABSgoqFeMc1oSP+v5+aStbPzUNFQz7bkoXVicrNQ0dD2qhO0TgDdE9Oq\nE8OWtwz3eTHvaxgGCQAFwt6ymIOGhYX+C5GVkwYpzhkNZS+G4Yu9laChCzMaYg/PCBqaYbF1wvv6\ntwVANfKqpmKY0TCsoiHm4xFaJwCggJXWCal/Yhb7SVkoxhkNZSfAzvW3L+YX9pDVigZLrRNl96uN\n5S1HeZytlN2GrK064X3zJycAJldW0UDrxGQYBgkAOZaW+u9Gxd46IfXfobTy7qQUV+vEqKl7+jxg\nRsN020LrRH1msaIhptaJMCSL/bkLoC/8u05nNTEMcnLeJ8fSEhUNADAg+2577EGDxYqGvNaJtgYu\njho0UNFQ/bbkWbmyf6AX+3OaoKEZZcMgY2qdOPLI/uWdO+vfFgDVyHv3PWydaLIVatjrpYWZUWnI\nIFHRAAADsifB6U59cXHwxKIJs1DREEvrxKgVDbG+sGfFNKNh2HCrkHP98Cz2d4VHnR0QU6BjMWgY\ndRhk20HDEUf0Lz/8cP3bAqAaeS2U4eXwxLluw1ZpslDRMM5KU5MiaABgUvYkuM3BO12taEjvl3PL\nBy+FP2/CLLROtB00jFPRINl5TpfdrzYe565WNMQU6BA0AN2Tt0JCG3N2wm3JbkPKQtBQts+uCkED\nAJOKKhqkOIOG9MThkUfsTDpP71d4n6wEDVYqGqzOaJD6ve6xBw0xnQBnf8+sBA0xVTTQOgHYNKyi\nock5DV1onRj3NX8SBA0ATCqa0SDFGTSEw/OsnDikL0IxBA2jrvXMjIbqt6UIrROTmYXWiZiDBioa\nAJvKZjSEP2/CsFZDKhoSBA0ATLJa0SDF/w5wKlw+NEVFQ7VimtHQ1daJ2IKGUfYX4f7MStAw6jBI\nWicATGJY60RMFQ0WggYqGgCgQKwVDUU7a4sVDZZbJ5jRUN22FElbJw4ebH5psXGUvfMUa9Dg3GC7\nlQWjPs5tVzTQOgHYNKx1IqYZDeExaaz7cCoaAKAAFQ31GxY0NPk45x1g5EmfB48+2uwE6kkVvQs8\nP5+cbErxBg1heBbzc7rsnfY29hujPs7pO2JWgsmyg9a5uf59beL5XBb+UtEA2GS1oiHWCstxVpqa\nFEEDAJNirWhgRkM9Rq1oaGv7JjXKiggEDdOx2Doh2VsSd9i7Y03OT6F1AuiemGY0sLzlaAgaAJhk\nraLByklZyPKMBinedxFCo5Sbxxo0pK0TUtzPaYKGZgwLGpqcn0LrBNA9tE5Ui9YJACiQ3cnHHjRY\nnCJveUaDREVDlduSJwzPYl55IrYZDaM+zl0NGhgGCWAStE5Ui2GQAFAge3LfZtCQra7IY7GiIa91\noq0T+a5WNIwyqT+2E+CUlef0qKshNPV86WpFw7DnD60TAKaRV9HA8paTo6IBAAqUVTQ0vVPvekWD\npdaJtoZVTspyRUMXWifaCM4mCRq8r3ebqmCldWLt2v6gVVonADusVjRYCBqoaACAgOVhkDGflIVi\naZ3wvr+CRJcrGoqChthWQ0hZbJ2IYUbDuK0Tko3nspXWibk5ad265DIVDYAdecMgLcxoiHX/zTBI\nACiQbVdosx+uixUNi4v9d1HbDhrGKe+zNqPB8jBIK+FZbEHDuBUNUrzviIWsrDoh9dsnCBoAG7wf\nPgySiobx0DoBAAWoaKhX0dwJS0FDrO8ihGidqN+wd7fnekdCsQUN4YGqlXAyFXPrhNRfeYLWCcCG\ntKpRGty/tL28pXP915CQhaCBYZAAUMDa8pbhu5Mxn5SlskFOqu2gYdiLoeUZDZaHQVptnZCaPQGW\nJmudsBA0DCvDDVsn6p45MWxAb1rRsHdvsycnACZTdBzQdkVD0ZsfLG+ZIGgAYJLligYLJw1F96nt\noIGKhna2JY+VKp1RS/pjq2iwFjQMCwTT+xqWQNdl1NYJSdq1q95tATC9or/ptmc0FL1WWljekmGQ\nAFCAioZ6dSFosD6jIb0vS0uDZaN16WrrBEFDM0atHJHq30eP2joh0T4BWFBUMdVWRUPevIiQhYoG\nhkECQAEqGupVdKAevhg19TjPakVD0/elq60Tw+5XrJUjXQ4a6n6sx6loYCAkEL+iUL7tGQ1F+3Dn\n+tsWa9BA6wQAFKCioV5F9yl88YyxoqFLMxqaHiY1660TTT1fZrWiocm/TYIGoFtGqWiIqXVC6r+G\nx3oswjBIAChARUO9yu5TzEFDlyoaYg8autI6EQ4pbEJXg4ZRh0FK7QcNtE4AtowyoyGmigap/xpO\nRQMAGGOtosHKu7+psqntbZaaz+KMBinOoMFK60RsMxqGLYuWCoOGWA9UQ8MGi9E6AWBS1lonpP4+\nL9b9N8MgAaBA9kCyzcE747ZOWHh3smh5S6n5d4BnpXXCWkWDlfAsthkN6e8pq2aQBv//LewzrLZO\nUNEAxC+2YZDDlreUbLVOUNEAAIHsyT0VDdWKtXVi2Amw5dYJazMautI6EWvQYC2ctLrqBBUNQPyK\njgMszGiwUNFA0AAAgeyBZJtrFocvbkU7a2snDbEGDcxoaGdb8nSxdcL7+rdnlANUyd4+g1UnANQl\n1ooGy0EDwyABoECMFQ0rViR913msrTpR9gJE0FCdsmqNpsOzrrZOjHMC3MSB6iQVDTE/vilaJwDU\npehvuq0ZDen+btQZDU2E2OOiogEACpTNaGgzaCiysNB/QbJw0mC1oqHpKoBpdaWiIebn9KgzGqRm\nntOjBg1WWlNSwx5nWicATGqU1olYKxq8H9z+WDAMEgAKxLi85bATh/TEzEIZtNWgoc2hoJOwPKNh\nbq6/jV1onZCaDRqGPcZWgpwUrRMA6jJK60SsMxqkOI9HGAaJznrgAWnPnra3ApbFuLzlqD3XFk4a\nYlrekoqGOIMGqX8yHPNzOragIX2cRw0mpbiDnJSl1omwooHWCSB+RX/TbVQ0eD/e8pZSnMcjtE6g\nk667Tnrc46RNm3gnAZOjoqFeZctbpvdzcVFaWqp/W7ocNIw6oyHWoCEt77ccNDS97+hq60RMj/Ow\n5/KaNUlFjsRxCGBB0WtlGzMawuOeUZa3lOKcGcUwSHTSBz6Q7DC2bZO+9a22twZWxVjRMOpwN2tB\nQ1FFQ/Z6dRmnvM9a0NCVioaY33Ef1odK60Q1LLVOONdvnyBoAOIXU+vEqK+VsR+PUNGAzvnRj6Rv\nfrP/9T//c2ubAuMsVjTEvtRRKKagocsVDZZnNEg2WieGBVW0TlRjnMe57YoGqd8+QesEEL+YhkGO\n+lppqXWCigZ0wmc+M/j19u3tbAfsy1Y0NHkQm9XFoGGUGQ1S80HDsBfD2EsVs9LH2bl+KXeqzaBh\n1Hc3wtaJGJfvkuKb0TALrRPZ57IUV+uEREUDYEnR61MbrROjHpPEfjzCMEh0ysGD0uWXD36PoAGT\nylY0zM/3d5RNn8iPGzQsLTW7DNMkymY0NFkCLXW7oqFsLW5LFQ1SvC1BMQ0pXFzsBzJdbZ2Yn0+C\ns6wmA51xgob9++M8CQDQF9MwSFonRkfQgMZcddXyVglaJzCpvHfc0xPgpg8aRy2Fjv1FJ0TrRDPK\nJlc3XXZZVl1RxMLJcKyzA7rWOhEGDXliq2gIV56gqgGI2yitE7HNaIi9dYJhkOiUyy5b/j0qGjCp\nvB1kG0GD96NXNMT+ohMiaGhG+jzOu19tVTSMc8Bhobx/2MFUk8/nsr+rrBUr+s+LWB/bkLWgIa1o\nkAgagNiNMgySiobxUNGAzti8WbrmmuTyk54kHX54cpmgAZPKO2BPd+pNBg3hjrpLFQ1lL6QEDdUp\nO7m3EDRYeNc9phkNZS1JWc7ZGLaZKgvNpHhbJySCBiB2MS1vOUnQEGN7FsMg0Rmf+1x/3dlzz5U2\nbEgu0zqBScVS0TDOO5SWToKpaGhGjDMaJg0aYj0ZjiloGKd1QrKxfGiq7LksxVfRELZOsPIEELdY\nZzSUHZPEfjzCMEh0wuJif7UJ55Kg4dhjk68feijeAWKIW96JMEFDdWIKGsZ5MQy3LfbHWBq9oqGJ\n53RXWydiGgY5zv5CGlzVI3a0TgCoyyitE8xoGA+tE+iEb3xDuu++5PLLXiY98YnS4x/f//nPftbO\ndsE2KhrqFevylsNeDJ2zuYyo1RkNFlonhh0UNjkMcpzWCclmRUNMrRNlg00JGgA7RhkGSevEeBgG\niU645Zb+5XPOST6nFQ0ScxowGSoa6lV2QhRz0CD1nwexP8ZSt2Y0xPquexdaJ2J9bEMxVjSUPZdp\nnQDsKKpoaGNGw6izDWI/5qOiAZ1wzz39yyefnHwmaMC0qGioV0ytE+MOLLJU0WB9RkPXWidiWnVC\n6j++Bw82dxA9KWtBAxUNgB2jzGigdWI8DIOU5Jxb75x7hXPuIufc1c65Hc65pd7HZye4vZc7577i\nnNvsnNvf+/wV59zLxriN1c65dzrnbnbO/dw5t9s5d6dz7hLn3JPG3aauu/fe/uXjj08+h60TDITE\nJPLecU936ouLgzvQprZjnKAhxjK60KhBQxP3Y9zU3VLQ0KWKhljL+2Od0TBO64QUb5CTGvb8aaNy\nhKAB6AZaJ6rXxDDImvKLSmVPQ33vYyzOOSfpMknnBrcjSU+Q9JuSftM5d5n3/rwht3OSpKslnZTZ\njqdIeqqkNzrnftt7f9W429hVaUXDUUdJRx+dXKaiAdNKd5Bzc/0e3GyvdV07zlBXKxqsLm8p2Qwa\nYpjRMGzVgDwWToRjmtEwaeuElDy+69ZVv01VsVbRQOsEYEdMrROTBA0xHo9Q0dCXhgs/lfR3ktwE\nt/HvlYQMXtJtkn5L0i/3Pt/e+/4bnXMfLLoB59xaSVepHzJ8StKLJT1P0vsk7ZJ0hKQrnXPPmmAb\nO+fRR/uDINNqBmmwooGgAZNITwjCnWMbZWpdDRpibZ3oatBgtaKB1onxTNo6IcX7+KbGCRqoaAAw\njlgrGsqOSWJvnaCiIXGRpFsk3eK93+Gce7Kke4f8mwHOuU2S3q4kHLhF0hne+/S//Dbn3N9Iul7S\n6ZLe4Zz7rPf+npybeqekTb3beYf3/s+Dn93knLu+dztrJH1U0pnjbGcXbd7c3zmccEL/+2FFA60T\nmES6gwwP1pt8xyw1i0FDkycM0uRBQ4ylilnWZzR0rXUi1lUnpHgf39Q4q07EUNFA0ADYYXF5y9iP\n+RgGKcl7f5H3/mrv/Y4pbubfqR+qvDUIGdLfsU/SW3tfLvSuP8A5t9C7jpd0ZyZkSG/nRkmfUVJx\ncYZz7rQptrkT8uYzSFQ0YHrDKhoIGqbThYqGAwckP3ajXbPKTogWFpLl+aR4gwYL77inzx/n+o9n\nyMKqE1K8j2+K1gkAdSk6uQ/3NzG3TsT4xgetE9U5W0lAcJf3/pa8K3jvb5L0QyUhwW/kXOVFktKX\npStKftflweVXjr2lHROuOBFWNBx2WDKzQSJowGSoaKhXTDMaxi3vi/3FPbW01A9C8u6Xc80u1dnV\n5S3HGVLY5DDIrrVODHucY2udWLWq/3MqGoC4FZ0UO9f/OrblLWmdmIGgwTl3vJKBj1LS1lAm/flx\nvRaN0AtyrpfnVklpgePzR9rIDiuqaJD67RO0TmASeQeSbZxgjnPiEPuLTqgLFQ1S3I/zKO+KNDVv\nYmkp+SjbljwWSvtjmh1A60QihooG5/rtEwQNy+3bJ3396zw2iEPZSXHTQUMXWyeoaJjcycHlu4Zc\nN/z50ye5He/9oqQfK6mMyN7GzCmqaJD6QcPu3dKePc1tE7ohPWCnoqEeBA31G+VFvqmgYdIDDgvv\nuI9zAkzrxOSstU5I/fYJWieWO/dc6aUvlV428uLvQH3KTu7Tr2Oe0RBjdSUVDdXYGFzeMuS6m4PL\nTyy4nT3e+2H5bno7651zIxxKdFda0eCc9ORMjUg4p4GqBowr70CSoKE6ZSdEbQYNo5wEW3mcY6po\nGPXAKcvCiXBMQUNXWyfSahgpjsd51KCBioZ8990n/dVfJZdvvFHatq3d7QHKjgOoaJgMwyCrEa46\nvXvIdcP31dcW3M6w2xh2OzMlrWh4whMG/+CkwZUnmNOAcVHRUK+yEm8qGqoxyrsJTa2gUUXQEGtp\nf9nKHlJ7Mxq61Doxyt/o/Lw01zvqjKWiIQ0aDhyQ9u+vd5ss+dznBgfp3nhje9sCSOWvl+k+PLag\nIfZ22Ulf98cxC0HDquDysJe28GmwOvOz9HZGeXksu52ZsXu3tKO3Vki2bUIiaMB0YqxoGLajtnIC\nLNE60YQuVDRYeMc9vW8xzGjoauvEuOvKxxI0hCtPUNWQWFyUPvOZwe8RNKBto1Q0tNE6Uba/i711\ngoqGaoQZ9crCayXC99yzL+np7Qy7jWG3MzPKBkFKtE5gOlQ01Mty0BD7uwipmGY0zEJFQwwl/V1t\nnRh3Cnudj/M4g03TigaJoCH19a9LmzcPfu+GG9rZFiDFMMjqNTEMsqabjcqu4PKwNobDg8vZFon0\ndkZphSi7nZEcOHBAt99++9DrbdiwQRs2bJjkV9QuDBqoaEDVYqxo6FLQMOrylk08zlQ0JM+zpaV+\n6Xkb25JnxYrk/2RxMd4T4ViDhllrnZD6j3Wd+41xDp7DoIGBkIlPf7p/Of3bvu22ZF+abYEFmjLK\nMUlsQUNMb3ps27ZN2zLDVh58sH/5/2fvzMM0qcqzf1dvs/TsMMMMOzjAgKCyyOa+JJ/GfYtL4gqK\nJm5JrlyaqEE+jIpK1Gg0KC7RGMyncTcSDbgCKgwIyD5sAzMDszALzHT39FLfH2eO56nqet/azvJU\n1fO7rrm6ptfq6npPnXOf+7mfG25QLX/3Wh6cuyA00ADIg3t+loIGQKb0XNwP4DQAo1EULcoJhNTf\nZ0scx5WmLVu2bMHJJ5+c+3nnnnsu3v/+91f5Ec6hHSfyHA0iNAhliGMzmezlaPA1qLdVaKC/V3rh\n4FvQ6YLQkJfRAKhrPXdu9ufZPJeyOxvz5wMPPyxCQxHaWjpR9DXqo3SizL0spRNJHnwQ+O531fHK\nlcDTngZccokaR6+7Djj99LDnJ3QXTmGQRcVMTnORiy66COedd17Pjz/hCW5+bheEhpvJ8Zqcz6Uf\nvyXj+7yEfN5vs75BFEWDAB4FIM74HoVZvnw5Lr300tzP4+pmAMo5GqR0QihDr4lkkxwNHOv1KLQ0\nJYqSH/P98CzbgonTw70fZRwNgPpdOAoN8+YpoYHrjntevX6oMMi2lk4UERpcCjpl7mUpnUjyla+Y\n6/e616luYZdcov5/1VUiNAjhKFI6wa295cCA+vjUVPg53znnnIPnP//5ife97nXAjTeq46uvVuf7\nrGc9C1t0wJ4FWi80xHF8dxRFGwGsAvCUnE9/8r63G+I4vjf1sV+R46egh9AA4BSo0okYwBUlT/cP\njIyM4KSTTqr65SzIczQsX64WMHEsjgahHL3sx00SGjgvgIHsDAyNb8GkrY6GMhkNgNvfpa7QAPBd\nCOc5GnyGQUrphHrLxdEgpROGOE6WTZx1FrCb9FC76irgr/7K/3kJAsDL0VBmjBkZUZ8fei6SVWpP\nny+nnKLejowUiSIsThfCIAHguwAiAGuiKDo16xOiKDodyqkQA/hOxqf8DIB+DL22z896PTn+dukz\nbRHa0TBnDpBlvBgeBvbbTx2L0CCUoZf9WIQGe/TbBfb9e7RVaKjiaAh5Lr3Qu+5NFRqkdKI+ZWuW\nuQgNUjph+OUvgdtvV8dPexqwejVw/PHAgn3JZBIIKYSkie0tAX+BzlXQ47BlbSFBV4SGTwDQU9VP\nRVGUMJ/u+/8/7/vvFIBPpr/BvqyFf4YSLI6Nouhv0p8TRdEZAN4AJVb8LI7jtdZ+g4YRx0ZoOPzw\n3gFmunziwQeTPZsFoR+cHA1lFg5NWQADxR0NvoWGIovgppSolM1o4Co06MUw1x13TkKDlE6ot1I6\nwY+vftUcn322ejs4CJx2mjresGF2NwpB8EW/1zV1NPhYS5Qp59TPcI5zkX7zPFuwL52IougJAFaT\nd+1PjldHUZRwF8Rx/G/p7xHH8R1RFH0UwLsBPB7AFVEUXQDgTqg8hXcBOBFKIPhIHMd39jidjwJ4\nOYCjAXw0iqKjAHwdqoXl0wH8HdQ13QPgnSV/1VaxebOZdGblM2hWrgR+/3tgfFw95OnugiD0otfi\nPsQCs62OBq5CQ9ccDb4CTm0IDdPT6r5xOWmpQpmMBm5Cg5ROlEdKJ6pBy12f8xxzfMYZwGWXqeOr\nrgIOOQSC4J0ipRP681y1atSIo6E47IUGAGcju1QhAvDEff80MYBZQsM+3gNgOZTj4HFQAgH9uhjA\nxXEcv6/XicRx/EgURc8B8EMARwF4075/9PvsBPCqOI5v7PM7tZ68fAYN7Tzx4IMiNAjF4ORoKLNw\n4NTqKA+XpRO/+AVwzjnAi14EfPCD+Z/fVqGhLRkN6V13bkJDGUeD63Gj7HVuSulEWUfDzIz6miKv\n57JI6UQ1aB7DwoXm+MwzzfGVVwJ/+qf+zkkQNEXCIPXncRIa9JjHcS6i569SOmGEgCL/sr+B4o0A\nngOV2bABwMS+t98F8Ow4js/JPRHldjgRygVxNYDtAHYDuBXAPwF4TBzHP6r0W7aIvI4TGtp5QnIa\nhKI0NaNhcNA8IDk+dCguHQ0XXgjceivw4Q8DO3bkf35bhYa2ZDRw33VvcukE7TLSJqEBcHetpXSi\nGlpomDcvWe5KO01cdZXfcxIETb/XNR1LfeQ0lCnn5Fw6oc+p06UTcRy/HsmAxbrf71IA+X0j+3+P\nMQAf2/dPyKCKo0GEBqEoTW1vCaiHzp49vBfAgFuhYcMG9TaOldCwZEn/z++C0FAko4GL3TwN5133\nmRlTs9vrGg8OqoXVzAw/oWFgQIkN4+M8RRxN0fsn7R5x0a5VSieqoYWG0dHk+5cuBdasUeLwddep\n1zh9zQuCD4qWTvgQGtpSOiGOBqGxVHE0PPigu/MR2kWvyXpThAaA50OH4lJooC2aH3kk//O7IDQ0\n2dHAObCw6M6Tvs99dp0oep25tw8FqjkaXI3RUjpRDS006C4TFF0+MTkJrO1szLkQkqKlE67H8PS5\nFC2dmJ5OjpMc8OFoEKFBcEJRR4OUTghVaLqjAeC9AAb6ZzTULQEpKzSUSXgGmiM0tCWjgXPpBKeQ\nQqD8eAHwbx8K8Cqd6JXhk8WcOeacRGhQb9OOBkAFQmqkfEIIQb/npe/SiSqOBoDffETaWwqNRTsa\nli7tH/AopRNCFYo4GnwN6G0VGvLaHlUNONq9O7lgogFkvSjraGhK6GZbHA2cSyc4tV1Mf/+iQgP3\n9qFAeUEH4OFoAEz5RJdLJ2Zm+gsN6UBIQfBNmTDIkOeShnO7bR/tLUVoEKwzOWl6LfcrmwCkdEKo\nhjga3DIzo/4BvX+nqr8HdTMAUjqhKZLRwFVo4Fw6UXRCKKUT9Whq6QRghIYuOxrovZUlNKxZYzpR\n3NjpnmpCKPq9rjmXTtAcGk5icRyb30McDUKjWL/eLFL6lU0AwH77mUmJOBqEokhGg1vK7LT7FhqK\nLByaKDS0xdHAaSIFJK8ZvZZpfAkNdUsn4p69tcJSVtABeHSdAJpRmuIa6izLEhoGBszG0Natfs5J\nECj9xEzOYZDLlpnjhx5ycz5VoOOvCA1Co6D5DHmOhsFBYPlydSxCg1CUNjgauFnoKEV+p6pCw+bN\nyf932dHANaOhyDWmcC6doK+zpgoN9PqOj9s9H1sUFQM5OhqoY4SrkOOaPKEBUBtDgCox8bGYOWif\nQwAAIABJREFUEwSKvueiKNl+FfDbopieC5A/xujXDQBs2+bmfKpAx18pnRAaxe23m+PVq/M/X6vk\nmzcbJ4SQTVcnQWna4GiYmeE7WaPXrpfSLaUT9WmLo4Fz6URZR4PrcaNO6QTA7/pqmlw6Qa8v5/HC\nJWWEBoDXzqzQDfoFVPsWGsq4LOnrhpMbSBwNQmO55RZzfOyx+Z+vhYbJSWD7djfn1Ab++7+BFSuA\nN70p9JmEp9dEMkToTlWhAeA7qS2yOKvqzEgLDS7CIJtwjYH2ZDS0oXSCcxgkZyFHUyUMkkvpRBOE\nHNfQcTirvSUA7L+/Oea0Myt0Az3GZL2mfW8yiaOhOCI0CNa59VZzvGZN/uevWGGO07ZqwfCv/6rU\n0M9/Xq5Tr/ZlTXI0AHwXwWWEBu6OBs4lKm1xNHBeqLUho4GzkKNpi6OB2/3rCzoOF3E0cFowCd1A\nv66zxhff86q2CQ3iaBAahRYa9tsvqYD3YskSc9zl9lJ50AXapk3hzoMDdJBvaukE0A6hYXo6ucjI\nQ0onDEXsl75adXahdKLfZIoKDS5L1KR0whyL0MCHsqUTnCzgXWbzZuDCC4Ebbgh9Ju4RR4Ndqoje\nVSg5nRCE/jz8MLBhgzou4mYARGgoCq2JFEeDOaaDvI8e7f3OpYtCg/58utjsRxWhoWxQYROuMdBO\nRwO3HfeyYZCAuhauJl5tLZ0oev9I6QRPygoNnBZMXeav/xr42teAgw8G7r13dkhimyjqaPAtNOTN\nSbiWHImjQWgkt91mjosKDYsXm+MdO+yeT5ug+RVdFxp6ORoGB82gH0JoKDKp9bVDXYcqQkNRfDga\n6D3B9RoD7RQauC3UypZOAG7LJ8qOFwBvIUcjjoZmI0JDM/nlL9Xb++9XG31tpl8YpO95VdscDSI0\nCI2hbD4DII6GIsRx0tHw4IPhzoUD/QZ5PWD6FhqiqD277S6FhrRI5iIMMoqqZ0j4pGwYpMt7ugul\nE0XCIAG3QoO+zgMDxXcfm7AQbrLQQO9frkKOa0RoaB67dwPr15v/t11oaGrpxLJl5pjT60bCIIVG\nUkVoEEdDPo88kpzIdd3R0M9+rB84vhaY+lyKDtRdFxrqOBoGBpSIUIQmCA1FMhqa5mjgtlDj6mgo\nM7FrwkJYuk40myJdJ0Ro4AVtJQ+0X2jgVDpRpr3lyAiwcKE65vS6kdIJoZGUbW0JJIUGcTRkk+5Z\n3XWhgaOjQYSGfMbGZjsYyggNRdwMmiYIDVI64Z42CA2cr6+myY6GJlxf14ijoXnQjT0A2LUrzHn4\noqijgVvpBGBeO5xeN77CIEVoEKyiB76REeDww4t9DS2dEEdDNjSfAZDSiSKOBhEaqlMkqb/Kgz3t\nZgBEaNA0WWjgXDpRdNfGV5BsvzrjXjRhIVz0/vFRoiJCQ3mkvWXzSAsN4mhQcCudAMxr56GHgJkZ\nN+dUFnE0CI1jagq44w51fPTRxRcF4mjIRxwNScTR4BZXjgafQoPvEpoqlM1o4Co0tKF0wldGg5RO\nmGNxNPChiKNh7lzzMWlvGR7qIAba72jgGgZZJGtHCw0zM3w2VCUMUmgcd99tbtyi+QyAOBqKkHY0\ndF1oEEeDW9ogNDTB0dCWjIa5c80xt4WalE74QUonmk0RoQHgaQHvKl1zNHAMgxwcLJYbxbHFpYRB\nCo2jShAkII6GIqQdDQ8+qDpRdBVxNLjFp9CwZ0++lbCfZbIXTRAaOJVOFCmX6UUUmcUat4UaN6Gh\nraUTVYQGKZ3gQ1mh4aGHuj0HCc30tIRBUkKVThQdxzmWHYmjQWgcVYWGkRHzoBdHQzZpR8PERPsf\nKv3o52jQD5wmCA2+zrEsPoUGIN8OXsfRMDnJpyYyTZEF0dCQ2TFxKTRQkXfRovJfr10N3BZqVYQG\nl69LKZ0wx+Jo4EORrhOAWTBNTbXfqs+Ze++d/Txo+9+DY+lEk4UGcTQIjYMKDUU7Tmi0q0EcDdmk\nhQag2+UTRRwN09PJya/rc2mTo4E+gGwKDfSe1e2egPzyiTpCA8BX0CmS0RBFftwZdOylLrOiNMHR\nUDQMUkonylMlDJKL0NAEIcc1VGig91sajgumLpIumwDavfkUx2bDgFPpRFuEBnE0CI2ABtMcfXS5\nr9U5DSI0ZJMunQC63XmiiKMBAMbH/Z1Lm4SGso6Gog926mg44ghzXFRoKGM3b8J1Lvqgb5LQ4OM1\nV4YiohngLwxSSifMsZRO8EGPwfPn9w+347hg6iJZQkObHQ1544vv533ZOQnH1420txQaRRybge+Q\nQ/pb77LQE9tdu/zsQjcNcTQk6TeR9N1qT4SGaqUTtP1tVx0NdFFOAxXT+BYaqpRONMHRwCGjQUon\nzDEXR4MIDcbR0C+fAeC5YOoiXXM05AUni6OhPOJoEBrFli1mMVwmn0FDO0+0ebCsSpajoctCA10I\npAd6n5PGODYPQBEa8uklNFDbbhZ1hYYmX2fAT6tOvRu2YEG566yhGQ2cQuI4CQ1x3N7SCU5dJ6hw\n2a8MIOtzuF5f1xQVGjim53eRdGtLoN1z57wyQwmDLI+EQQqNomoQpIZadSUQcjZZjoYul07Qh056\nwu5z0ljFeuY7tKgKroWGpUvVP41rR0OTrzP9mA9HQ5WyCcC87uKYl4OEUxgkDSWV0gl3gs6GDeb4\nwAPzP78J19c1VRwNW7e6Ox+hP3rOTcfrNpdO5LmUuIdBUoGOy+tGwiCFRmFTaJCchtmIoyFJv4cO\nnTS6thlXERrasgCuIzQsX54sr+qq0FC2dMLlAt6W0ADwymngFAZZdWLnc0yrCqfSCSo0rFqV//ld\nFxpmZsx9lVf2ynFntmts3WoWqyedZLoStdnRwLV0ouichOPrRhwNQqOo03ECSJZOiKNhNtrRQBcj\nXRYa+i3wuTsamrAAdiE0TEyYHZfly5M7Z10VGrg4GqamzI6mDaGB02KNUxgk3XGkXVfyGB42k2tO\n15bCqevExo3q7YoVxSbQXO9dX9DfWTIa+HPbbeb4uOPMWNIVR0MTSydGR81YxOV1I44GoVHQejFx\nNNhletpcE9rNo8tCQ1FHgwgN1XAhNNB8hrKOhrK7B1XOLwRlhYbJyaT93hZ0glpVaKAiKKfFGqeM\nBloCR0uHisA1bFPDpXRiZgbYtEkdFymbAERooBk5IjTwJ+0g1kKDOBoUHEsnosi8dri8biQMUmgU\neuBbtAhYubL814ujoTf0ehx0kHmodDmjQRwNbimyOCv7YO8nNHQ1DJKWGBQRGgA3uzV1O04AfBdr\nnDIa6FheVmjQnSekdKI/mzebRcBBBxX7moEBc29wund9QYVeERr4kxYa9JjdZqEhz9Hgu3SiSstt\nbkKDtLcUGsOePcC996rjNWtMvVgZxNHQG5rPsHSpsoMC4mjQiKPBPtwcDVWEhiaFbg4P9+9d7/qe\noWNumzMabDgaNm8G3vpW4AtfKH8u1NFAxfUitNHR4GJBQPMZigoNgLm+XIUcl5RxNCxaZJ65XBZM\nXSPtIKaOBheONw7klWb5nleVdTQARmgYH+cxzoijQWgMd91l2pkdc0y17yGOht7QyemyZUZoeOgh\nt/3eOdNvgU97zovQUI0iAXp1hIYVK4oLDXFsJk9lHupNus79FsDpjzdBaOC0GC4aBlnU0v/JTwL/\n8i/AG99oBPaiSOmE+9KJukID1+vrkjJCQxSpeQggQkMotKNhdDTpcgXy3YFNJa90gr6PY0YDwM8N\nJGGQQmOgL5gqZROAOBr60cvRACQXb11CHA1u8eFoKBoGSXdo2lo60QahgWtGg550Dg31d40UdTTc\ndZd6G8fAunXlzqWO0MC9dILel/06qLgundBBkIAIDUWhi9O8rhOAadXHYbHUBrZvLz6XGx8H7r5b\nHWsHMS13a2sgZF7pRBT56c4EqDmJ3lwtIzTQFpccXjsSBik0BjqwVa3vpY4GERqSpB0NBxxg/t/V\n8om2ZDT4UN6rwKl0ouhOad3zC4E+r34LM8D972IjDJJ76USemFNUaKCOuwceKHcudTIa9PWdnubp\nZCvaqnVw0JRXui6dKBoGCYjQoMlzNABmZ3b3bl6v9SbywAPA4YerNqxr1+Z//rp1RnzXHd6oo6Gt\nOQ1FutroXXnXz/s80aMX3BwNUjohNAYbk1T6dVI6kaSfo6GrQkNRR4Pr3b+2Ohr0A2hwsPeD1JfQ\nQCfBeQvyOucXAimdcE8VoaHfApg+n8oG8trIaAB4XV9NUaEhisyklmvphN6t7ApVhQaAx4Kpyfz8\n52oOPT0N/Md/5H9+OggSSG7wtVVoyCudAMy44noDp2gr3zTcXjcSBik0BhuJ5eJo6E2vjAagu50n\nODoaij5w2rIALuvMoKJYma4T9OuomyePtlzn9Me5Cg1cSyc4ORpslE4APMsnigoNgLnWHMMg45iv\n08wVZbpOAPwWTE2GXvtrr83//CyhgToaulo6AfgrnbAhNGzdau98quLL0VDiEglCNjZKJxYsUDsd\ncSyOhjTpySmdxIujoXkZDQMD6pynppq9AK7jaNh/f/Vg06/5fo4Geo9TkS2PJpSo6MVZ6NIJcTQU\nDykMXToB8Lq+mjJCg8udR53RMGeOCS0sQjpEOO9+aRPiaAhHWmiYmemfJZPuOAF0o3SijKPBZ+mE\nOBryEUeDUBsbpRMDA0akEEdDElo6kXY0dFVo0ANkFM1Wt7kLDYCZxHZRaFi0SH1tFJlJbT+hgbp2\nqgoNHK/zzIy5f8osgl0LDVXFYq4ZDXoxm7djU8XRUKd0om1CAz2noo4Gl6UTBx5YrtU29+vrEhEa\nwkGffbt2mbDZXmhHw8AAsHq1Ou5C6QQnR0MR0SMLbq8byWgQGoONSSpgyifE0ZAkPTmV0on+rYWa\nIDT4Ut6r4lJoWL7cvE+XTxR1NLSpdII+5NtQOsF1oWazdGJ8PCmiVC2dGBpK7qAXoUmlE0WFM9sL\ngrExc43LlE0AfrN9uFG26wS3BVOTST/7+pVPzMwYoeHII83rrGulE+JosIO0txQag43SCcBMcMXR\nkETCIGfTT2hIW2Bd0mVHAw2KzPs9JieNgEjv37JCQ5scDWUWZq7LQCSjoVgYZPrZVNXRsHRpud12\ngK+Qo9H38/BwfhK7K6Ghaj4DwP/6ukQcDeFI5xP1Exo2bDAimO44AXTD0dCGMEhpbykIFbFROgEY\nR8PEBC/rbWj05HTePDWZX7bMTOS6KjToBX7W4NgER0MbhAb68bzfgwYfZTka+oVBtrV0gp6TZDS4\nYWrKtIKzkdFA3WWAcunQCXAeWmwrWzYB8Ly+lKJ5I4C70gkRGqpRVmigCyYOoXZNpoyjISsIEuie\noyGvdGJ6uty47OJcsliyxAjMnISGrBJkm4jQINTGVukEneCKq8GgHQ16cjowYBZrUjox+2MiNNTH\nttCQbm2p0ULDxETvRUdbSyfoOXEpnZg3r/rOBseMhjLXuEjpRLqsb2YmeW/3Y3raXOcqQkNTSieK\nCA2udh51ECQgQkMZpOtEOLKEhl7tVYsIDW11NJQpnQDcuhqqOhoGB83Yz+F1QzfsyjrsyiBCg1Ab\nraAOD5frc5+GtriUnAaD3kWjCdp6Z3fz5u71/AaKOxpcT8jbKDRU2QWuKjTQSW0vV0O6LWZRuAsN\nVUsn+v0uDz8MXHON+fsVRY/hdRxpHBdqZcKuqggNQHGxl4rn9FlXFI7Xl8JBaKCOhgMPLPe13K+v\nS6R0IhxpoWHbNmD9+uzPzeo4AUjphIa70ACY1w6H103RoOS6iNAg1EZPUhctqqeKiaNhNuPjZtJD\nd8H0zu7eve21yvWjn6NBt00EmuFo4CYUVdlpz1vI9xILaPBYr5wGvZBbtKickOm6U0NdbJdOTE8D\nJ58MPP7xwIUXljsXPd7WERo4ZjRUdTT0mqRmCQ1FAyHrdJwA+C+Eq5ROTE+XF8X6IaUT1SgrNNBN\nDw4LpiaT9dzrVT5BHQ3HHGOOpXRC4aultQ2hYceO5PcJgZ6/itAgsEdPUuuUTQDJXR4RGhR0cprl\naAC6WT7Rz9EQRWbSyF1oiOPwD5s0LoSGvNIJoLfQoEWKMvkM9NyKnF8IbJdObNgA3HGHOv7GN4qf\nx8yM2QVrm6PBdekEUHz8pV8rpRPm2GZOQx2hwWeIMDeo0EBfx70YGjJjhQgN9chy8uUJDcuXJ10l\n4mhQ+NpcqNreEkj+3WjQewi0GOMyCBIQoUGwgA3bbfrrpXRCke44oel654l+jgbAn9BARYIqQgPA\nbxFMzydP6bYpNGRNuCYmjOhYJp+BnluR8wuBbaGBTjBvuKH4Au7hh42rxpbQ0MSMhiKLX3E0ZBPH\n1YUGmzuPNKNBSieKo8fe0VGVAVUEThbwJqMFduoGzhIadu4ENm1Sx7RsAki6UMTRoODuaADCv3bE\n0SA0gokJ84IWR4N9ijgauig09HM0AM1xNAD8FsGcHA1VW1vScytyfiGgi3EbpRP0+k1MADffXOw8\nbIX5clyo+XA0VBEa2pbRMDlpxKoypRP6a22hHQ377Vc+L8pntg83qNBQFL1g2r7dbcJ/29Hj9oEH\nGgEyS2i47TZzTFtbAkoc0s/StjoayoZBunzmt0VoEEeD0AhsTVIBcTRk0cvRQHd3uyg05DkatA3W\nxoT8jjt6WxltCA2uez6XhZ5PUaFhZqZ/CQh9oNLWaF0WGmw7Gsq0SaPYaG0JtCujQUonylFGNAPc\nOBri2DgayroZAN5CjmvqCA1xLPO1Ouhxe8EClbEDKPGSunOA3h0nNHr+3VahoS1hkHT+w0VoEEeD\nwBpq07JZOiGOBoVkNGTjy9Fw993AccepCcCPftT7PPqdSxacF8Eu2i7SBypV9OnENk9okNKJ2V9H\nCS00DAyYCQuXhVrVrhMSBlkODkLD1q3me5XNZwB4X1/X6LGjjNBAF0xbt9o9n64Qx0mh4aSTzMfS\n43evjhMaHQgppRMKX0JDr3PpBSdHQ9482hYiNAi1oIOazdIJUcgVktEwGxqgmJfRMDFRL9X8V78y\nP+vzn5/9cREazHG/B7t+oI6MJCezeY4GKqKVdTQUWTiGxHZ7y9BCA2Bed03MaBgcNHXSRRwN+nNF\naCgvNLgonaA7wCI0FGdmxvy+VRwNQPgFU1Oh85M8oaGMo4FbJysbFBGNpXSiHOJoEBqBq9IJcTQo\nbGU0zMwAf//3wNOellTGmwi10OU5GoB6ix4dvgQAl14627IsQkP216XRD9T99kuGXrksnYii4hkS\nISjT3rLIBCp9/X73u2K10y6EBi4LtTL3MmCucxGh4ZBD1NuijrK6GQ1SOtGfOh0ngO4KDfReqiM0\nTE8D73oX8NSnJvMEhN7QMbuo0DB3LnDoobO/l3Y0xHF2sHLToa/JXp1RmlA6wUVomJkx8wMRGgTW\n2CydEEfDbHrtgpUtnTj/fOBDHwJ+9jPggx+0dnpBKDLI2wr2okLD2Bjwk58kP37PPdk/Mw9fynsV\nbAsNcWystdRuC+R3nahTOkHPj9s1Buw7R9K1uXv2FJvw2xzD9SKTy0KtrNCgxcI8oWHRIrOY3bat\n2K583YwGzgvhOkKDLUeDCA3VoOMuHY/zSC+YzjsP+MhHgJ//HDj3XHvn12ao0DA6CjzqUWbDjgoN\nk5PAunXq+Oijs+36WmgA2pnTQF+TvcYYXxs4ttpbhhQaqm6SVUGEBqEWNksnxNEwG1o6QR0N8+aZ\nB0ueo+G//1tNAjRF0+i5UqSlpK1JIxUaAOA73zHHO3cC3/ymOl68GDjllOLft0uOhj17zMfoQxZw\nWzpBz4/bNQbcl04AxconpHTCoMeTvIyGJUuAlSvN+4u4yuqWTrTJ0eCirIkKDVXCIOn17arQUNXR\n8LWvqc0Mza9+Vf+8ukDa0TAwAJx4ovr/ffeZbk133WXmPemOExo6/26j0EDHGHE01KdMflFdRGgQ\namGzdGLuXDMZFEeDot/kVC+8+jka7rwT+LM/S9bsrVvX7Bo+qsQWcTTYFBq+/33zkLnkEvO9//zP\nyzkauiQ09AqCBMqFQbZNaChTOtE0oYHLQq3sZKqoo2HJkqTDpkhOgx7Lo6jas5LzjruUTjQXG0LD\n//5v8mMbNqiFstCftNAAJMsntGCTl88AJB0NbQyELFI6ESIMso7QEDJEVRwNQmOwabul30McDQrq\naEjX9eqJ7o4d2TuIe/YAL3nJbNFm1y6jlDeRIoO8rd2ptNCwbZt5+NNwyDe+sdz3FaFBUTSjYWio\n2i5wU4QGLo6GumKxngBOTfVvd+oLmxkN4+Pm+6UdDWWEhsWL1c5lWebMMfkm3BbCHEonbIZBcnOM\nuCRt3y9KeiwHkuP5VVdVP6eukCU0PPWp5n0f+pDaFMrrOAG039FQpHSiCWGQc+ea15k4GgShADYn\nqYBZTIvQoKCT03RdHrWHZk103/524Prr1fHRR6tdd42u92siRZRYW7tT6V7WgCqfuPZas4g75RTg\nsY8t933bIjQUebDbEBpWrEiGSBalq0KDnvxcd11+1xWbjgY6AeSwGLaZ0ZDOWKCOhiI5Ofrrqwhm\ngLr/9bjGbSFcxNZMcVk6MTw8OwumCOJoqCc0HHss8IUvmP9feWW98+oCWfkYz30ucMIJ6vjqq4Hv\nflccDQDfMMiy7S0B89qRjAZBKIDNjAYg6Wio05awLWhHQ9bkdNUqc5zeeR8bA778ZXU8Ogp8+9tJ\nS94dd1g9Ta+UDYOsOml8+GEzETjpJDMYf+c7wMUXm887++zy37stQoNNR0M6DHJmJik0VEFPPLhd\nY6DcLnCR60x3sU4+Wb3dtUuVT/XDRekEwCOnwZXQUNbREMdGNK4qNAD8SlM0nEonVq2q5hgRoaGc\n0LB8uXlNLVwIfOtbwDOfaT4ujoZ8stwkAwPAP/6jef973wvcdJP5/9FHZ3+vtodBFhEzfZVO0O9d\nZZGu89aoY9k34mgQGoPt0gntaIjj7B3OLkEnpzQIUtNPaNiwwSTjPve5wHHHAUcdZT4ujoZ86DVd\ns0a1BgWAe+81QsP8+cArX1n+e4vQoOjnaNixw4hKVYUGfX6Tk/yEyzLXeWjIODqKOBqe8hRznFc+\n4Upo4LBYsxkGmW5PSYWGPEfDI4+Y8bhKa0tNG4WGoqUTN90E/PCH2S1bJyZMvXOVsglALfD0eXG7\nvi6p2nVi3jzgn/4JePKTge99Tz0jly0zO+7XXdet61iFrNIJQM3ZTj9dHd90E3DNNer4sMOSZaGU\nLpVOFHE0uJxX0b8bFXiKor9mctJe6VhZ6M8VoUFgje3SCTrR7Xog5MMPm0lVWUdDVjDW6tXmfeJo\nyIde01WrgBe+0PxfD9Ivf3m1+16EBsXIiPkbpoWGuq0t0+fncoejCmWucxTll4Ho6xdFwBOfaN5f\nVGgYGSm2SOwHt9IJm2GQaUdDmTDIuq0tNXqRwbl0wkXXiS1bgFNPVQuwL35x9sfpWF1VaAD4Cjku\nqepoAIC/+AvVzpLmCpxxhno7OQmsXVv79FpNL6EhirLbkPfqOAF0q3SiSHtLl8/7uk5u+jrLauvt\ng7qujDKI0CDUwlXpBCA5DXQHrYqjQaOzHI480lhKu+RoqDopTwsNL3jB7M8pGwKpaYrQkLc4K/J7\n0GTlrNppPcFKCw11W1sWPb9QlGlvST8nT2gYHU22Ws0TGvQYbsOR1nRHAw2DTHfmqSM01G1tqeG6\nEHZdOrF2rRnHf/Ob2R+v23FCw/X6uqSO0JDFmWeaYymf6E8voQFQDkpaigL0zmcA2u9oKNve0uXz\n3qbQEMq5LaUTQmPQL7g5c4pN5PKgttKuOxpo/VZZR0NWAvfIiLLeAcrR0NQWl6EcDQceCJx2mnnf\ncccZe2NZOC+AfToagN5CQ93WlkXPLxRl2lsCxYWGBQvU/aqt/WvX9n+ta0HXttDQ5IwGYLZFPy00\nzJ9vdhHzSidsCw0TE7xKgVyXTtx/vzmm11JjS2jQjhERGqqjHQ2ACA155JWt0KwGoL/QII4Gf2GQ\n9PpWKZ3g4GiQMEihMehJqg03AyCOBkoZR0O6O0KviZcun9i1K2wP3zqEyGjQ1/rFLzbvO/vsap0Q\nAN6Wfno+XIQGG6UTnIUGm46GdD/27dtVrkgWcSyOBko/S39aaACMmFPG0VAno8FW217buC6duO8+\nc5wVoJY1Vlehi46Gqu0te3HssWYsufLK5m5o+KCfowFQ5UK0ZFN3o8ii7WGQ+jU5d27veZeUThRH\nHA1CY7A5SQXE0UDJczTst5/Z0S+S0QAkAyGbmtNQxNFgY0KeNXn9i78AXvpS4NWvBt7ylmrfF2jP\nAriM0BBF2YssPcHavTs5KZXSiSR5QoOeXKaFBqB3+cTu3Wbn3sYYzi2joY7QkN5p7yc07NzZ38Fh\nK6OBm5CjcV06QYWGLEcDfVZWaW2poe1Du7JAtu1oGBgwTr8HHwTuuaf+92wrRUSeT38aeM5zgLe9\nLekWSdP20gkqNPSiiaUT4mgQhD7Q3TBxNNgnz9EwMGAmukUyGoBkIGRTcxpCOhoWLAC+8Q3gK1+p\nF5zHeQFcVWjotWDQQsPSpdk9p/VDd3o6+bNtl05wc46ULZ3o16pz717zutA7W7rFJdBbaLAd5stt\nIVzGnQOUFxqo06Zf+YTt0gmAx/XV+CydyHI00PdluaaKoq9vHPMbL1xRtetEP+iC+Mor7XzPNpLn\naADURtEPfgD88z/3d1C2vXRCjzG98hkAf6UTVMhpqtAgjgahEYyNmd1lW0KDOBoMeY4GwIgIW7Yk\nd/p1KcWyZcmJX1ccDTYm5Poazptn7/7WtFFoyHM09FoA9GpxKaUTSfTnZE2gsiasj3uced8NN2R/\nT5utLQHeGQ1FJlP9FsD9HA1A//IJW0IDdWpx6jzhs3Qiy9FAy7OyRPmicBVyXGLb0QBIIGRRiggN\nRaFf32ZHQz+hwXfpxPBwtWw6+rcSoUEQ+kBVU1ulE+JoMOQ5GgCz0x7HZkctjs0iOR0HeOcYAAAg\nAElEQVSMJY6G4mhHw6pV1bMYeuHL4lcFm0LD1JR5HZcVGugO8fLl/c+j6vmFRC/OhoZMN5h+6N9l\ncnJ2EGDWhPXQQ83xjTdmf0+XQgOHhZrr0oksR8PFFysHzv/9v+ZjtjIauF1fjcvSiThOCg2PPDL7\nb0NFeREayuFCaDjtNPPMFKGhNzav/eCg+R5tdDQUERp8l04sWlRtbsjB0SClE0IjsN3aEkhOwrou\nNNBdml67YFmdJ7ZuNZO3tNBwxBFmUSOOht6MjZmFRZ1wsV5wXgDbFBqK1E7nORoWL67e0aYJ17lo\nCU6/3ZosoWFgADj+eHV8zz3Zu1y2hYY2ZTT0CoOMIvO8SzsaHngAeMc7lMPs/PPNArztGQ1FEuEp\nZUondu6cPRlPuxr0ODMwUO8+5np9XeJCaFi0CHj0o9Xx9deHW0xxR4/bc+f2nsuUQZdPtM3REMfF\nMhp8OxqqdJwApL2lIBTGdn0vkJwkdL10gu7o0gktJUto6Nfqa84ctdMJKEdDEwOvqNBQxNFQxWJM\nbdAiNPQm7/egnU2KOBrohFQLDVXLJoqcX0j0+RQVUfr9Lr0suDSl/KabZn/PLpVO2HI0LF5sxNq0\n0PDBD5rxZmoK+P3v1bGUTiQpUzpB3QyadE4DzYEp4g7qRReFBj12RFH/3eKy6PKJ6Wng6qvtfd82\noa+9TYEHaJ/QMDVlXHzcHA1VEEeDIBTERemEOBoMerEbRb13g8sKDYDJadi5s5ktLukA6crRQIMg\naZimLZqwAAbqCw15rS2BbHV/fNyML1WDIIucX0hsCg10YkmFBu1oALLLJ2yP4dwWamXDIItkNNBn\nFBXBfvtb4F//Nfk1a9eqty5KJ5osNJQpncgSGno5GuqUTQB824e6RC905s+3WyJIAyF//Wt737dN\npFsS10XvsO/a1cxNpF7Q12LoMMi9e83zt8lCgzgahEbgonSCWpG67mjQQsPy5b0X1FRo0LkM+i2Q\nvUhuek6Dj9IJW33Ze9GEBTCQvzjL20EoIjRklU7Y6DhR5PxCohdnth0NdAyljga9u07pUkZDEWty\nL0dDHGcLDdTR8MMfzhYndLcP/bWjo/V2j+hzlpMQ77LrBO04oaGOhulpc33rCg3c7l8f6IWOrcWu\n5jGPMcd33WX3e7cFV0LDzEy77t+ipVk+SifqdpwAeAgNdNwVoUFgi4vSicFBM1hymkj5hoY79iqb\nAOo5GoBm5jQUsXzV3ZkSoUHhw9HgUmhownWuktFQtHQiz9HQlYyGOXOK7db2svSPj5v/U6Eh695c\nvNj8LC006B34OmUTQNLZRl9boaFCQ90sjDR5jga6IVGntSXA1zHiEr3QsWXf1xxyiDnO+ht2nZkZ\nc4/ZEhroPLxNgZBVHA2unvc2Nli5dZ2Q0gmBLS5KJwAzkeuyo2HHDjMQ9KtRrys0tNXRMDJiJvsi\nNJRDn0+RbgiuhAaaTyIZDbM/r6jQsHy5uX433jjbTmtbLOaa0VD0GvdyNGR1nNDfNy0evOtdwNFH\nq+MbblDfx5bQQF9DnMre9N96ZKRYRkLd0gnqaLDV2hLotqPBttCw//7mdZflSuk6VMiy7WgA2pXT\nQJ8l/YSGsm1zq2BDaODgaJDSCaERuCidAIxo0WVHAw0j7OdoWLHCTOyKCg20dKKtjgYabCVCQznK\nLM5sCw36odt2R8PMjHnQuxQaAFM+sXVr8roC3SmdcCU0AMnxecUK4O1vB04+Wf1/716V06AnyjaF\nBo6OhqLunKzrfOONwAUXJMdeIHuRSh0NtlpbAvzuX9dMT5vf07bQEEXAwQerY3E0zIaO2bbDIIF2\nCQ1FHQ1RZBbNTREaQnWdkDBIoRG4KJ0AzERubMxtixrOFN3RHRoyCzE9QdMZDcPD2SGStMVlWx0N\nQD2hgeZcuBAaBgbMuXNaAAPuhIYy7S3bLjTQcc1l6QSQzGlIl0+I0JCkV3ZAP6GBjs/vfa+aRJ50\nknnf5Zf3/tqytEVoSDsaxsaAP/oj4N3vBt7yluTn5jkaRGioDt1Vty00AKZ8YufOdi18bdBvzK4K\ndTS0tXQib4zRY4uP0gkb7S3F0SAIfXBVOtFWVbYMRR0NgFkIP/ig2inVjoZVq7JtrLTF5R13NC+d\nuKgSa8PRMDxcv+63F3rxw01M0+dT5OFjo71llrrf9tKJsm0X059XtOsE0D+noe0ZDWXuZaCao+GF\nL1RvH/tY4E1vUsdUaLjsMnMsjgZFWmj41rfMa/6nPzWt7OLYCA30a3o5GmxmNHC4f11DFzkuhQZA\nyifSuBYa2jR3Llo6AbifV7WldEIcDUIjcFU6QQfdNg2WZaALraJCw9SUEhn04i6rbEJDW1xymrAW\noayjoUqolxYaVq602/KLoh+InBbAQNjSia44GsqG56U/r6qjId15QgsNg4PJANWqtCmjgU5U+7Wn\nfMc7lDPsyivNzznxRPPxK64wx3WFhoULzZjHadyuWzpx8cXm/7t2AXffrY63bzcL/uOOM5/jKqOh\na+0t6SLHdtcJwJROAFI+kcbFtW/rJl3R0gnAvaPBRteJ4WEzBoqjQRD6YHs3TENV2VD1S6Ghjoa8\nHV1q7dd924H+QkOTcxpcOxomJ4EtW9Sxi7IJTRuEhsFB9Q/I3kHQi4DR0d7fz5fQwMk5Qv/mVXaB\ni7a3BNQCTYtlvRwNtFNCHbjtCPvIaACARz0quUhdskS9j54DUF9oiCIj2DVZaKD38i23AD/7WfLj\n+jlGF6dUMJOMBjv4dDSI0JBESieKU0Vo4OxoAMzrjYOjQYQGgS02apWyEEdDtdIJALjmGnNcxNEA\nNC+noayjYWLCWHGLQN0kIjTk0+/30IuhfpbmfkLD8HC9unaujoa6pRPpSVS/SevoKHDkker4ppuS\nrwU9htsSioeGzGsy9EItjssHblYVGrKg5RNlv7YfOuuEi9AQx/WEhnvumf1x3RaULk6PPNLc25LR\nYAcRGsLhQmjogqMhb4xpQukEYP7mHBwNUjohsEW/4ObNs3ujiqOhWukEUFxo6IKjge4wlrFxu+44\noXFt8auKLaEhjs0ioKjQsHs3cNdd5p5csaLeTntbhYYypROA2Q3es8fY0uM46WiwhZ4Ihl6o0YmU\nyzDIXmQJDXUdDYB5Le3ZE/4aA9WCTbMEYponpIUGWtd/yCHm+vnIaKhSctc0JKMhHC66TrTV0VAm\no8FnGKQNR0OoNY6UTgiNwMUkFRBHA2AcDYOD+bs0vUonDjyw99doWy9gFh5NoayjASg3IfclNHB0\nNExNmR3vukLDrl3mb9VvAUAnWZs3Ay9+sZnk/8mfFDuHvHPLOr+QuMxoyMpayOo8MT5uFtM2x3D9\nugud0VBFaHDtaLApNAA8XA3071xUaIii2SLxi15kyqTWrk0GQQKq3l8/Cx96yIQY28xoEEeDXSSj\noTcSBlmcMqUTPh0NdZzcnEonxNEgsEW/4GwGQQLiaACM0HDAAdmdIyhUUKAp//0cDYcfbo7vuqv0\n6QWFCg1FMhoA/kIDl84fdXba04vfIq0tASWm6QXK734HXH+9Oj76aOBjHyt2DnnnlnV+IamS0VCk\n68ToaPZ4kdV5wlV74jrdXmxCr1GVrhN0okqFhqJigavSiTYIDcDsv8kb3wicfLI6fughYP365OKU\nOhomJ40YqR0NUVRfMOua0OBiV52ybJm5piI0JJHSieJUaW9JN01sYtvRMDUVJj9KHA0Ce+LYndDQ\ndUfDzIypUc8rmwB6L4b7CQ3z55vv3TRHA11AuBYa+rlC6qIXjnGcFE9C4kpoyLM0Z+UKfPvb9ceW\nJggNNh0NvSasWZ0nXIX5cimdqHKNbToa9t/ftBHWiKPBQK/1oYcCz3xmUpy59trZpRPUsaDLJ7TQ\nsHRpviifR9eEBteOhigy5RNSOpHERdeJtpZOVAmDBNws4G0LDUAYV4M4GgT27N5t1ELbpRNddzRs\n2wZMT6vjvI4TQG8xIm+RrAPiNm1q1qSq6E5A1Unjxo3m2IejAeCzCK6yOOtVE0ndNWWFhi99KdnO\nriocrzHgrnSil5Vz9Wrzd8pyNLSxdKLOvQxkCw0DA+UWBWlXgwgNBnqtzzpLOZvSQoPeBV+0SN3b\n9PppgaFIDkxRuiw0uGhvCZjyiYcfTo45XUccDcUpk9HgutMUva51/m6hhQZxNAjssaXqZdHWOrOi\nlOk4AahBIj3JWrw4f4fiiCPMcVbyN1eKTo6qBnv5Lp0A+CyCQzka6Gv+b/4GeNnLiv3sPPq1hAyJ\n7dKJPEfD8DBw7LHq+Pbb1de7FhrKdnuxjQtHw+LF5XbNRWjojf7cgQHg9a9Xx/R6XXON2QXXu+Jp\nR8P0tPnb1M1nAJL5Jl0TGlw4GgDpPNELF2UrdPwXR4ObZ76+rgsWmNbeVUiHYPtGhAaBPa7qe4Hs\ndnddgnacKOJoAGYviPuVTWi0owFoVk6Da0eDFhoGBkw4mQvaJjTMzCRLQMoIDa99rbreL3kJ8OEP\nF/u5Zc4N4HONAbulE3v3mklDv9eDLp+YngZ+8hPgttvMx1wIDUBYV0PdMMisjIayGQt04TwyUm4h\n3ou2CA2veIV6++Y3m8XoYYcZweAXvzDfW3887WjYscPk29gQGrrsaPAhNEj5hMGFo2FoyNzDbdqk\nq5LRALgtnai77qGvtxDrHCmdENhD1VKXpRNtGiyLUtbRAFQTGqijoUk5Db6EhhUr6inWeXBcBNtc\nAJcRGv7mb9Si4Zvf7N9JpCwcrzFgt3SiqMOHBkI+73nA295m/u8iowEIu1irGwapJ2JxXF1o0OGG\ngFok12nVqqHBqk0WGi64QIkFn/60eV8UGXGGutC0/T7taLDZ2hJQYqe+V9ouNOzcCfz2t+b/roQG\n6TyRjQuhATAL4DbNnat0nQDcCg11Ok4AUjohCLm4LJ3oehgkdTS4FBqa7mgYGOg/sa1ig52eNtff\nZdkEwHMRHEpoAOo/uLOgC0cu1xiwWzpRtGb0CU/o/bFjjil2DkXg4miwVToxNmaOywoNK1eq7imA\nvWtMX0s0ByUUVYUGIFt8yerW0cvRQIUGG44GgE/XFJd8+9sqA+fyy837XAUfS+lENq7yMfQYtXUr\nn25WdSmT0eCydGJmxjxvbToaQoZBRpHbDTUAsLh3JHQJl6UTXQ+DpI4Gl6UTTXc0jI723yEs6mj4\n3veASy5Rtv/JSRPEKUJDsa+xJTS4IIrU+U1M8LnGgN3rXHRn7IlPBC66CLjiiuT7TzsNeMpTip1D\nEbjYz22FQVbpOEH5+tfVP51DUJe2lE70op/QkHY00N/fptCwc2e5XJ+msHu3KlP7r/8y7xsdBT7x\niaTzwCZSOpGNHrejKH/xXIaDD1Zlcbt3q/vYRkvd0HBxNOzebcSbpgsN+tq4djMAIjQIFXFZOtF1\nR0OV0on0bkSR3YmDDlI7eJOTzXI06EE5bxegyIJnxw7g5S/P3nl12doScG/xq0IVO10RoYHavX3T\nJaEhzxXypjepfy5pstCQ5WioKzSceKL6Zwu6q89NaLCxYKLlJhq9CBZHQz0uvjgpMvzJnwCf+YzK\nxnCFlE5kQzdM6rZlpaQdJG0TGspkNNh+5tP1SNOFBv18c53PAEjphFARl6UTIyNmsOiio8FX6cTg\noJlg3H13c2x2eQn7miILnt//PltkWLAAeM1rqp1fUbriaBgaclMWUZReXTFCYjOjwVWtb1W4ZDTY\nCoOsKzTYZmjInAc3ocGGo+HII2fPKXo5GmxnNADtFhroJsbHPgb84AduRQZA3at6USVCg4EKDTZp\no7BTtXTC9gaOzXVPaKHBp6NBhAahEq5ao2n0hLnLjoaRkeLXtorQAJjyiYcf5jFpLYJNoeHWW83x\n+eerB/N99ymx50lPqneeebRRaKAPdl0/vt9+dkLwqqLPj4trBKiW0dBrAsVNaOCY0VAnDJKb0ACY\nRTWHMdu20DAwMNsBEsrR0BTxvSi0HOQJT/AzLkeREYruv79917QqRecxZWljqYqevw0P5+cJuHSK\n2hQauLS3FKFBYItLRwNgdkC76GjQQsPKlcUnAlWFBhoI2YSchr17zQLAttBw2mlqQnvwwckgSVe4\n7vdcBReOhlD5DBqOjoYQGQ2+kNIJ9+jX1I4dJlMmFLaFBiCZ07BkibmvFy0yz0RXGQ167J+ZSbaA\nawP09ejjGafRi9/du5Ovpy5TtAS0LG0M39T3bZHxxeW8ypWjIWR7SymdENjiWmjoqqNhasrsBBcN\nggSSQsPgoGrNWAQaCNmEnAY6IOdZDumCp1ewFxUa1qypfl5VaKOjQX/9+Li55iI0zMZm6UTRrhO+\naLLQkBUGuX27eR/dUQ+JzjyJ4+T5hcCF0EBzGujCaWDA/A1cOxqA9pVP0OegT6GhjXb+OkxOmvHJ\n9pjdxmutX4dFMmB8lU60pb2lOBoEtrgundAv4j17wu/Y+GTLFmMtLJrPAKhJg95tW7WqeLuapjka\nyrSEKuNoGB11l7rdizYLDRw6Tmg4Cg0221tyczRwyWio62jQEzG6kHfxrKsCpxaXrh0Nhx6a/JgW\nGlxnNAAiNNiijbvsdXDV2hJoZ+mEHmOKCA1NKZ0ILTSIo0Fgj6/SCSDMizAUVTpOaN75TjUQv/Od\nxb+myY6GvAc0nUhlTRjHx424smaN/xwBERr8oM9vclLZoTlQ5ToPDZl7tGrXCR9wzGioUzqxYYN5\nn+uWt0Xh1OLShdCwZg3wkpeoMf6cc5If086FHTuMyBJF9kSgrggNNlsq5tHGxW8dyjgzy7J4sZkb\ntUXUqepokK4TvZH2lgJ7bFqIsqCLyEcecSNmcIR2nChTOgEA554LvOc9akFSlKY5GsoIDXkTxnXr\nzMLTd9kE0B6hIevBzqW1JTB7h8PWYqgOVUonokh97vg4b0cDl4Va3a4TWmigk3W6YAoJJ6GhTOu5\nokQR8M1vqlLC9PNMOxri2IjjS5faaxFYpOSuqUjpBA9cjtlRpK73rbeqax3HYcOYbVAmo0EcDcXQ\nzzcpnRDYoksnFiwobtMvAxUvupTTUMfRAJQTGQA1QdMDZtscDXkLnltuMcciNCja6GjgHrpZZnGW\nVQYiQkM2VbpOZGU06B3Y4eHi2Teu4SQ0uHA0aLKeZzSLQZdO2MpnAPjcvy7Qv8/AgJ8FhkZKJ5K4\nLJ0AzPUeG0uWFzWR6WkzFod2NLRFaJieNiXpUjohsEW/4Fw5Dejg2yWhgToaqggNZYki42pYv17t\nIHGmahhk1oQxZBAk0G6hgdaNhxYa2nKd6edyFhroYrMNpRN6YXTQQfZ2zevSFaEhi6xATptjTJuF\nBu1omD/f7y63lE4kcT1mt+l60/GFUxhkk7tO0G464mgQ2OJaaKCOhi61uKSOhrKlE1XROQ1TU/wf\nSjbDIEVomE0bHQ0cr3OV0gnALOTo60C6TmRT5V4eHDQLsL171cJM7whyKZsAui00ZLkXxNFQDCo0\n+GTRIjOnE0eDX6Gh6debvgY5hUHWLRkfHjaLfN+OBio0iKNBYMnMjJncukrh7qqjoW7pRBVoICT3\nnIYyD+g5c8yioZ/QMDAAHHWUnfMrA8cFsC2hYeNG877QAXptuc6A2lUHVHcaPTnh5mjgslCreo31\nxGtyMim8itCQDQdHg02hIS9EuMloocFnEKRGv350bkCXcRkGCbQrE6NsBkxTSicA87f3LTRQAUYc\nDQJLHnnEPCjE0WAX36UTQDIQkntOQ5lFVRSZB1M61GtmxggNRx5ZbiFii7YsgLN+D5rUrxfHoeB8\nnYeGymXcUEHszjvVW9eT1rJwERqqhEECSaGBTtJ9t7/tBw1YbWN7y35kiQpSOlEM/fv4djQARmgY\nH29+bkBdpHSiOFwdDU0WGsTRILDHR1/xrjsa5s/3tzvZVkcDYB5M6Qnjhg1GfAhRNgG4fSBWpcri\nrJ/QMDDgrwSoF5yFhrICFxUa1q1Tb/VrYnSUR4YAx4yGMrs2+nPTQoM4GrJpm6OhrUJDHIcrnQDa\ntcteFymdKE6djAZX7S2Hh+1sTomjQRB6QHdQli938zO66mjQQoMvNwPQrBaXZXdv9YQqPWEM3XEC\n4L0ABoo/gPoJDQccUL4Tim04Xmc9eSo7WVm92hzfcYd6q18THMomAD4LtbqlE3v38i2dmDfPXGdO\nQoMPZ5hkNFRjctIkzYd0NADNX/zWxXXXiTaJOnVKJ1w5GhYtshOmSoUGn+VEIjQ4IIqimYL/Li/w\nvZ4dRdG3oii6L4qi8X1vvxVF0bN8/C4coEIDtXDapIvtLScmjFvE5y7w4YebY+6lE2Uf0L0cDaGD\nIAGeC2AbpRNTU6YEKHTZBMDTOaKvc9kd4CxHgx4fRWhIYiOjgWvpBGBcDVyEBpqJ4xKfjoZ0yV2T\nob9LaEcDLa3rIq4dDYsWGWu/lE7Yw3YIvv7bT035nZtI6YQ74oL/MokUFwP4IYAXAjgQwPC+ty8E\n8N9RFF3k8hfggg+hgQ6+XXE0bN5sjn06GubOBQ48UB03ydFgS2g49tj651UFlxa/qtQVGvbuVSLD\nzIz6Pzehgdt1FkeDO2wLDZwcDUBSaAgZrqeFBh9lE4BkNFSFCg0hwiDpXJGW33YRHwG+ery6//5m\nh2/6Kp3Yswe4+ur+Ld5tCw3UleuzfEIcDW75LIAT+vx7Q5+v/eC+j8cA1gJ4JYBT9729dt/7z46i\n6AOuTp4L4mhwQ4iOExqd0/Dgg/7rxcpQVWgYH08+bKnQcMwxds6tLJwXwEB1RwOnIEggeX4hMwMo\nVUsnFi825Wp33KEmDHrSwEVo4JLRUDUMkmY06N3AkRF3ZYJV0YvrycmwYrxvoUEyGqpBf5cQjoYl\nS8zxjh3+fz4nfAT4agfJ+Hj4wNg6lHU0VCmd2LIFeMxjgFNPBc4/P/tzJibM/Khua0tNKKFBHA1u\n2RzH8c19/t2b9UVRFB0F4G+gxISrATwxjuP/F8fx2jiO/x+AJ0GJDxGAv42i6Mis79MWfGQ0dNHR\nQDtO+A7QozkN99zj92eXoarQACQXPVpoWL7c7m5YGbogNGinTEjoa+mmm8KdB6Vq6QRgXA0bNyZd\nUFyEhpGR/m1lfVE1DDLL0XDwwX7KAsrAJRDSt9Awb97ssUnaW+YTunRChAaDT0cD0OychrIZDWVL\nJ6amgFe8wnRx+vd/z/48uuEpjoZydE1oqMpfAdCRZm+L4zixLIjjeAzA2/b9d2jf57eWLVvMsTga\n7MHB0QDwzmkouxOQtTu1cyewaZM6DpXPAHRDaODgaHjqU83xZZcFO40/EMfmQV8lPI/mNFx/vTm2\ntctSlyjqXbLkE30vDw6WayGqhYbdu82CiFvZBMCnxaVvoSGKZrsaxNGQjwgNfHAdBgm0p8VlHUdD\nkXnVe98LXE7S+e66K7npp2mT0CCOBp48H8rNcGscx1dnfUIcx78BcBuUq+EFHs/NO74zGroiNNDd\nyRUr/P5sKjTcm+nr4YEejIeHiymxWcFet91m3idCQxJ9HkNDxVslph/sGzea/3MQGh71KODQQ9Xx\nFVeEL5+omh2goTkNv/udOebiaADMopOD0FD2GmdNvDgKDV11NABJYSGKkovYuojQ4AYRGgw+HA1t\n6TxRNqOhjKPhW98CLrhg9vuvumr2+3Q+A9B8oUEcDcyIougIqMBHAPh5zqfrjx8URdFh7s4qLFRo\ncGU7nz/fWFW7UjpBBRWbE6ci0BKY0Cnm/SgbfJc1aeTQ2hJIPhA3bgQuuUT9u/xyE6bomyqLM+6O\nhigCnvEMdTw+Dlx5ZdjzqSs0UEfDddeZY05CA81GCUUXhYbpaeCnP026Dl0Sx/XKgKpCHQ1LlxYX\nRYvQBaEhRBjkwoVmTidCg3o7NORuodfG0gmbjoZbbwVe+1rz/2c/2xxnzRFEaKhO14SGP42i6KYo\ninZHUbQriqLboyj6chRFT+3zNceR41t7ftbsjwfKsnePFhrmz3enjEeRmTh3xdHgQ+XuBd0h4pwI\nXVZoyKq35dBxAlCT46F9BVl33AG86lXq3zOeAXwgUKSsbaGBQ0YDYIQGIHz5BJ381MloAPgLDSEX\nalXLU7ImXtxaWwLZQsP73w88/enAKaf0T0+3Rd17uSpUaLBZNgG0V2gIHQY5MKDCbAERGvQ8ZnTU\nXfZLG0sniowxRcMg3/xm83d41auAL37RfMyXoyFUFp2UTrjlWABrAMwFMArgUQBeA+DyKIq+FUVR\n1u1Dpxh5L1eqGzLcA7GDFhpclU1odM1xFx0NvhcNdOL20EN+f3YZbDgaqNAQ0tEAqAVBFr/8pd/z\n0NgUGubPNxPL0DztaeaYk9BQt3SC5qmI0JCka46GPXuAT31K/X/9+qTg5wrqWAlVOuFSaKAugKYT\nunQCME5NERrUW5djdltKJ1x0nYhj4Ne/VscHHQR87nMqF02Hol9zzeyvpUJD07tOiKPBDbsBXALg\njVAdIk4E8McA/hHAVqj8hRcC+E4URenYKHpL5S156a3CaNpnjzj2LzSIo8E9TXA0xLFdoWHuXFO7\nH4rvfU895D75SeATnzDvD3XP2xQaDjqIT1L/gQca98rVV6tA0FDQxVkVoWHJkuyxl5PQoBed6bay\nPtH3ctmJVFOFhv/6r+R9TSfGrgglNFBh3Hb5ZlsdDdyEhlDjAgf0otLlmL1ggbneTRYaymY0RJEZ\nw3uVToyNmY8ddZRZ8J9xhvmZNP8IaFfphDga3HBQHMd/HsfxF+M4vjKO4xviOL4sjuN/APBoAPqW\negqAt6S+lj4+85ql0Ns6QBWce3buVHWggHuhQQ/CjzzSjYdSSKGhCY4Gumgp2ns6PWkcGwPWrVP/\nP/rocmn0Lli+HHjjG4G3vx14xzvM79UkoYGm+m/bZs6dQz4DRZdPzMwAv/hFuPOwYTenOQ0aLl0n\nAPO6ox02fGPT0dCE0omLL05+vM1Cg0tHw+CguWfatMnBSWjYu7ddIk4ZqmyYVG7QyHoAACAASURB\nVEULpBs2hMt9qkvZ0gnAiMu9nj10jkvH0TPPNMfp8ok2dZ0QR4MD4jju+ciN43gLgJcC0BrP21Kf\nQuOs8v4kdErTymHUR8cJjZ44T0+HT4r3QUihYXjY/EyujoYq1yctNFxzjald7lW2EBIqroWgal27\n/vx77jHv4yo0AGHLJ+qWTgDJ8gkNJ0cDh11hW0LD3LnuQo/rQM/pN7+ZLZ61WWhwmdEAmAXavfe2\nZ5MjdBgkkPy7dbV8YmLCbNa5HrO1QLp3r7+AWNuULZ0AzJjfS2igged0/NCOBmB2IKQ4Gqoz5P5H\n8CeO47ujKPoJgD8BsDqKopVxHD+w78NU084bFug+a62lwt69e3Httdfmft6qVauwatWqOj+qFD6F\nhnRQSqiHoy/04nLOHD8v/jRLl6pzaLPQQFVqql5zYeFC1cO5SY4G/fl79iQf7FyCIDVPfaoKJJuZ\nCSs01C2dALIdDZyFBt9ddKanzWS+bhjkIYfwKQGiLF6sdt+np5NZHRofY0gbHQ2Aave8bp26htu2\nuZ/r+CB0GCQwu8Ult2eED+g8pqgzsyrpzhMHHOD257mgitCgx/BepRPU0UDHjxNOUH+T3btnOxra\nIDRs2rQJmzZtwp13mvdt3Aikl5p7LdsQRWgw3AwlNADAQQC00EADIPMMlLSSs1ZV1JYtW3DyySfn\nft65556L97///XV+VClCOBoA9cCnLRjbiC87XS+WLVMPo4ceUrs43CbXdYWGPXuSKjVVr7kQ0tEw\nNWXslVUdDRRujoYlS4CTT1YZDb//vRJ0Qky8bJROcHc00N8rhBuNzpPqOho4lk0ASjRbtqz3TmWb\nHQ1nnGFEwyc9yf7316FwAHD33e0QGjiVTgDddTT4dK6mO09wdHHmUTajAch3NPQSGoaGgFNPVS2C\n77tPXTM9/reh68RFF12E8847L/G+971P/XOJCA2GXga5m8lxXkY9/fgtdU5m+fLluPTSS3M/z6eb\nAQjraGg7egcq1IJB2xp1/WSoyUgvbDoaliwJ33EiCy2uTU6qBWnVHe8q0AVw2bq9JggNgCqfuPpq\ndXz55cArX+n/HGyUTjTN0eCbOvdyWmjgGASp2W+/pNCwcKF5jrRZaDjySOCGG9Tvetpp9r//EUeY\n47vuAh7/ePs/wzciNITjH/4B+MIXlJhP2876FBqaGghZJ6OhiKMhXRZ35plKaADUfPFlL1PHbeg6\ncc455+D5z38+vvxl06Hoox9VLZEpz3rWs7DFYq2NCA2G48jxRn2wr6xiI4BVUGGR/Xjyvrcb4ji+\nt87JjIyM4KSTTqrzLZwQ0tHQdjg4GjQPPcRPaKADcVHLIf0dbroJ2LxZHZ9+utoR40ZaXAslNLTR\n0QAooeHDH1bHl10WRmiwUTrB3dHASWio62jgLjRQzj4b+PjH1XGbhQYAePSj3X3vtKOhDYjQEIYt\nW4APfCA762PFCrc/uw0tLuuUTpTNaACSTtdeQkNTSyd0qf0Pf2jed+yxQHqpOWI5IZLhVNs/URQd\nAeCPoFwNd8ZxvCn1Kd8FEAFYE0XRqT2+x+lQjoYYwHccnm5QqMjlupSBTpzbLjRMT5uJQGhHA8Az\np6Guo4HW5XMsmwDCimtdEBqe8ARzrqFyGmyUTmS1uOTYdQJontCQnmNxLZ0AkkLD4YcDL3qR+X/b\nhQaXpB0NbYBDGGQXhYatW43IsGCBureOOEKJ3uec4/Znt8HRoMeYgYHi2WVVSycAtQmloaW2dD5m\na47elTDI1gsNURQ9N4qink3soig6AMB/wXSU+JeMT/sEgH3RUvhUFEWJR+q+///zvv9OAfhkrZNm\nTChHQ9tLJ+gkINSCgXuLy7pCAw3A4RgECYS9520LDStX1jsfF8ybZ/7299yT7JLhCxulE8BsVwMn\nR0PojIYuOhrOOiu5kPMtNLQprLmNjgaOYZBdgL4OX/96JVzddRfwv/+rxEGXUJF0/Xq3P8sV+r6d\nN694bpgWiycns9t69hMa9tsPOOYYdXzttWaM03/HBQvstUWX9pbt4dMA7o2i6JNRFL0iiqLToyh6\nbBRFz4ii6AMAbgTwOCgnwi8BfCb9DeI4vgPAR6FcDY8HcEUURX8aRdHJURT9KYArAJyy73t8JI7j\nO9Pfoy2Eymhou6MhZGtLDR1w2+ho0ESRCvzhSMh73uYu8IoVfh5gVaA7Frfe6v/n2yidAGbnNHAq\ndQrtaLAZBslZaHjyvmLNpUuBN7whaeltc9cJ1yxdaq5lGx0NIjT4g74OfW8izZ9vxIYbbjCdeJqE\nfn6UGV/omE937zX9MhoA43idnATWrlXHWmiwVTYBqPBJPU8SoaHZxFD5Cm8D8B8ArgRwHYCfAPh7\nAPvt+5xvAnh+HMcZtyUA4D0AvrDvcx8H4OsArt73VgsVF8dx7Di/MyxUaHDdW7xLjgYOQkPbHQ2a\nE06w+7CwSVscDRzLJjR0F+neWkk61XDhaJg/394uiw1CCw02wyA5l0689rXK3nvddapVIB3XpHSi\nOlFkXA3r1ycD/JqKFhqiyG/2D6WLQoOLEMEy6EXzI4+obktNgzoaikLH/KzyCZrRQOe9Gup4/dWv\n1FsXQgNgXA0+53tSOmGf1wA4F8CPANwGYBuASQDbAdwA4CIAZ8Zx/PI4jns+mmPFGwE8ByqzYQOA\niX1vvwvg2XEcO664Co8WGhYvdn+DdikM0kX9V1ma5GgoGgaZ9XDims8ANNfR0CSh4bDDzHFooaHO\n4ow6GjiVTQC8hIY6job587MnolyIIjWe6XuaPjNFaKiHzmmYmlJt7pqOFhrKWNBt00WhgT7HQ2xw\n0PkOzRxoCnqMqSo0ZHWe0Btp8+Zlf98nPtEcX3CBcjXpv6Ptv6F+drfZ0dD6rhNxHP8SqiTC1ve7\nFEB+38mWooUGH32lu9TeUhwN+dCBuI6jgWs+A9CeMMgDD6x/Pq449FBzHFposOVo4CY0NDmjgU68\nDjkk3KKsCkNDaswbGxOhoS7pnAbX9fSu0UJDyBKrrgsNIRwNdL5z1VXAW97i/xzqULd0IsvRoOe3\n6XwGzbHHqmDdb39bbbo973km0NP231BvmkkYpCBAKft6p9uH0NAlRwMVGkKFQTbJ0VB0YZU1qWqK\no0FKJ9xAhYYQAVm2Mho4Cw1tcTRwzmfohd5x8yE0VOlx3xTa1nlC/61CCg0LFpi20l0RGly0RSzD\niSeaMfCqq/z//DrEsX1HQxyb0ol+5d9f+pJ5xt58s3m/q9KJ3buzW6C6QDIaBLZs325eCOJosIs4\nGvKxkdGw//6z0/o50RZHA2ehYXTUjF+hHQ11FmdLlwJPepI6fvrT652TbUILDbbCIDnnM/TCp9DQ\nJUdD0+HgaBgYUGW3QHeEhtCOhpER4JRT1PG6dcDmzf7PoSpVu9r0y2gYGzPP4F6OBkDdp9/+9uzX\niyuhYXq6dztO24ijQWCLz44TQHcdDZLRkE2VazRnTtL6fMYZvK3Q4mjwg65p37AhO5XaJbZKJwDg\nf/4H+M1vgAsvrPd9bEMnhU0rnWiTo8H1DlmbhYa2ORo4CA2AKZ/gOMdwQegwSCDp4vz1r8OcQxWq\nCg39Sif6tbZMc/zxwBe+kHyfK6EB8Fc+IY4GgS2+hQZxNPhl0SKzCOfuaCgaBhlFyQkw57IJIKy4\nVmcXuKlCw8yMEht8Yqt0AlCTr1NPNXZkLtDXXOjSibITqRUrzLHup94k9ER4Zsb9tW+z0EAzGZru\naJicNJ0zyizYXKCFhh07/FnFQxI6DBJIznuaVD5RtTSrX+lEGaEBAF7xCuCd7zT/ty0+07msr3WO\nhEEKbAkpNLTd0cCh68TAgLJjP/QQz90GqvYWFRoAE44G8A6CBNrT3pJzGCQwu/OEz6A3W6UTnAld\nOlHnXn7Oc4A3v1ktgl72Mrvn5YN0i0uXO9htFhrmzlXj2MaNzXc0aDcDwMfRMDWlzqvMs7yJhC6d\nAJrbeYI+O2w5Gmhry34ZDZSPfETNy++/HzjrrOLnUQQ63/flaPBdOiFCg1AY30LD0JB62I+Pi6PB\nF1po4OxomDcPGBws/nXz56vfZ3DQ1CpypQ3tLefMKbZTEJKQLS5tlk5wpclCw8gI8NnP2j0fn6SF\nhpUr3f2sNgsNgCqf2LhR1bXv3t3cRTF9DXIRGgDlamjqNS1K6DBIAFi1Sonp99wDXH21Wmj6WGDW\nparQYNPRAKhrdf75xX9+GaR0QhAIW7aYYx9CA2AU4LY7Gjh0nQDMwLtjh7LeckJfo7JCzB//sXr7\n0pfyn9RwcTSUffjQxdxBB/HOwQDCCg02Sye4Erq9ZZ0yoKZDxxDXgZBtFxraEgjJydFAQ6e7EAip\n565RFHb+oV0NY2PADTeEO48yuAiDrCI0uCSE0CBhkAJbqKNh+XI/P7OLQkNoRwOgbMM7d4Y7jyyq\nCg2f/7x6sH71q/bPyTZtcDRwz2cAxNHgGjopvPPO5ELHB124xr1IOxpc0nahgQZCitBgh7Sjoe3o\n1+CCBWEFeFo22pTyiaoZDbbCIH0Q0tEwMFDOHVwVERqEwvgunQDMwktKJ/zAufNEVaFhYAA44YRm\nWAVHRowaL0KDOw491ByHFBrauDgD1GJCT2B+/WvgMY8BLrvM38+v485pOiI02IM6Gpqc00CFBi5h\nkEA3hAb9HA9VNqFpYiCki9KJKhkNLgnpaPA1JxahQShMCKFBOxrGx01qchvhEAYJJG2NnISG6Wnz\n0OFe/lCXUOJa3bp2DfcgSEAJavo+EkeDfUZHgU98wtwXd94JPPOZwOte58fd0IVr3Au6oHEtVlKh\noY2CTlscDZwzGtqOfg2GLIkFlNir//ZNERqkdMIN+pr4GrNFaBAKo4WGgYHkw8IlXWlxWaV1owvo\nwMspEJIuTkIKMT4IVS5UZ3FGdzOb4GiIIlM+sX693zwSPXkaHPRjWwzFW98KXH898KQnmff9278B\nF1zg/meL0KDw5WiYO5d/LksVJKPBPl0SGmZm+DgahoeBxz9eHd9zD7BpU9DTKYSLrhOchQbf7S1F\naBDYoYWGZcv8TZCpCtzmnAY9wFDrfAi4Ohq4lJb4oImOhmc8Q01gR0aA5z3P7nm5QgsNExMqVd4X\n+jq30WqeZs0a4Gc/Az7+cfO+devc/9wuh0GGEhrayIEHmudxW0onRGjwB92hDu1oAJpXPlE1o8F2\n1wmXhGxvKaUTAju00OCrbALonqMh9MOIq6OhS0KDvgf27FElI76oIzQcfjhw333AAw8ARx1l9bSc\nESoQUl/nriyABwaAV7/a/N+HgCmOBoUIDfUYGFBjG6AcDXEc9HQqI0JDGOjmWOi5HZAMhLziinDn\nURQXjgad0TBvXvi8EkBKJwThD0xMmEHTp9DQNUdD6EW0OBrCQ+95Xw8eoP7ibNmy5P3DHSo0rF/v\n7+fqxVmXFsB0ceFDwOxyGGSI9pZtFRoAk9Owe3eyxXeTkDDIMNDXX+jSCUA5GnSJ01e+wn9ObSOj\noZejgYObAZAwSCEwa9cC550H3H9/6DNJJrWKo8E+HIUGTo4GOgB3JQwS8DsR6NoucGhHQ5sXZ2kG\nB4HFi9WxOBrcIo4Gu7Qhp0HCIMPAzdGw//7AK1+pjrduVYG9nLFROtEro6HLQoM4GoQ/8MIXAu9/\nvwrVCk2IjhNANxwNMzNmgAktNHBtb9lVR4NPca1ri7PQQkMXrjFFjy2+HQ1du84iNNiFdp5oak6D\nlE6EgZujAVCblzpj7WMfS24icsN26cTYmBmzRGgQR0PniWPjZPjpT/2momfBQWiwteiamjLWIQ7Q\nwSX0Ipqro6FLQkMoR0PXAvRCCQ1dLJ0AzNiyfbv7Wveu3csUX+0tZ2bMdW6z0NAGRwMnoWHBApV9\nAfDazHABN0cDAKxeDZx1ljretQv4yEfCnk8/qgoNvUonqKiy337Vz8smIbpO6PWPOBo6DhUWdu0K\n/4CjtYmhSidsTJo2bgQOOUQtMri096GDS+iHkTgawhPKxdO1XeBVq4yi70toiGOzOOvCNabosWV6\n2v193bV7mTJvntmxdOlooNe4zUIDdTTceWe486gDJ6Ehioyroe2OBo5CAwC8731mXPzUp9S8mCNV\nMxp6ORq4dZwA/HedmJ4260sRGjpO2sGwdm2Y89BwcDTYmJz+53+qZPxNm4Dvf7/+97MBp0X0vHlm\n8BFHQxhC5ZJ0bXE2MAAcfLA69iU00ElPmxdnWfgMmu3avUyJIuNqcCk00EVAm+/l1auNcPOtbzVz\nccwpDBLojtDAsXQCUM+9v/xLdTw2BvzjP4Y9n17YzmjgKDT4Lp2gbm4pneg4aaHh2mvDnIcmlNBg\ne9FFe7jT3ykknBbRUWQGYE6Ohi6FQXJwNHQlqV+XT+zcqf65pssLYJ9lWfQ6+5pMcUKEBnssWgS8\n5jXqeMcOVdfeNDiFQQJJoaGpLUOLwNXRAADvfreZb37uczzzR1yWTnARGgYHzVzAh9BAhRdxNHSc\n9ODLSWhYvtzfz7W96LrjDnPMZceek9AAmAUBl+sD8LtGLgkdBjk0ZGpo247vnAa6OOua0OCzLEvf\nyyMjpp1bl9BjiAgNdjj3XCNYfeITwIMPhj2fsnAqnQCM0DA97beFs2+4OhoANY//679Wx1NTwOc/\nH/Z8srAdBknntFwyGgCzeeZjvieOBuEPZDkaQiq/nBwNcVx995E6GrgspKmAwmERrRcEu3fPbg0U\nii4JDaHbW3ZpAexbaOhKXXsWIUonunQvU/SiZmzMXfBxl4SGww4DzjlHHe/eDXzoQ2HPpyxchQag\nf/nE9u1KjGgqnB0NAPDqV5vj0DlwWVTNaOjlaOBYOgEAK1aot5s2+Q1KFkdDx0kLDdu2AffdF+Zc\nAD4ZDVNTwEtfqh5U/+f/lLN77d2bXExwaevDbRHtc0FQFG7XyCWhHQ1dWpyFFBq6dJ2B5MTOtcjb\n1cBNjY/OE10SGgDgPe8xi53PfhZYvz7s+ZShiULDl7+s5ppPfCKvLmFl4C40rFxpjjdvDncevehC\nRgOgAuoB9Tp1Peem10McDR0nq51lyEBILTQMD/sdMNOOhr//exXIBAA//jFw/PGqZnJqKv973X13\n8rpycTRw6joB8Ow80SWhQRwN/pDSCX+Io8EfIjTYZ+VK4B3vUMd79wLnnx/2fMpAhQYOf6siQsMX\nv6jma7/+NfClL/k5L9twLp0A1FxDC09tEhp6lU5wzGgAjNAAuN9QpqKdOBo6TpbQEDKnQQsN++/v\nt+aVLrx/9Svgox9NfnxsDPjbvwVOPTWZv5BF+uMchQYOi2ifoW1F6WoYpDga3CKlE/7w6WigGQ1d\nhC5qXOU0dE1oANRcY/FidfylLwG33x72fIqiF2zz5vHILKFzjCyhIY6BG280/z/vvOSisylwdzQA\nxrbPMXdEjzFz55a7b4uUTnDKaNDdrwDg/vvd/iwpnRD+AFehwfeLc84c01qKPpA+9CHg7W83g891\n1wHPfnb/ej+azwDwWURzExrE0RAWcTT4g+4k+LBCd7l0QhwN/hChwQ3LlimxAVDZARwD9LLQjgYO\nZRNAvqNh48bk+zduBD7zGffnZRtu+VtZaKFh27ZizmCfaHGp7PhSJAxSHA1SOtF5aCCIVp1CCQ17\n9phJhc98BkAJCWkl+M/+DHjXu4BPfhK48krg6KPV+++8U7WhyhJpgNmOhm3beLRW4vYw4uho0EJD\nFPHoA+6SEO0t49i4RtruGKHMmQOsWqWOpXTCLb4cDV29lykiNLjjFa8wxyFzs8rQNKGBuhk0H/qQ\n2y4qLtDnu2AB305OBxyg3sYxn9wyDXXilIEuoLOEhrlzec0jfQoN4mgQ/gBdLJ9xhnr7wAMqldQ3\noVVAuvB6zGNUz1/tZDj9dOB//sec1/e/D3zwg9nfJ+1omJzk0VqJ2249Z0fDggU8rJ8uyeq04pqJ\nCbObwdXi6YpDD1VvH3gguXhygTgaFC7HlfFxk1TftXtZQ39vERrsQjdbuC3MetFkoUFf723bgI9/\n3O152UZvFHAeh7SjAeBXPlFVaBgYUG26geQzV79eObkZAL+lE+JoEP6AFhpGR4HTTjPvDxEIGVpo\nOO449XbJEhUEmX5YHn44cMklZgH6D/8AXHrp7O+TleHAYceeWxgk564THIQY18yfb3Y/fDkauIld\nPqEPedcTrS5nNCxYYCZ/LsfdLt/LGt+OBk67g65ZtMjcx00TGrj8nfKEht//3hx/5jPmel94YbID\nGnf0a49jEKSGCg3cAiH1GFPlvtVCfpajgVM+AyCOBiEQWmhYuhQ46STz/hDlE6GTWj/7WeADHwB+\n8xvgUY/K/pw//mP1OYCygL3qVcA995iPp1tbargJDRwmxj5D24rSJSt0FJn7wJejoQmhVa7w6eDp\nculEFBkR0+V17vK9rPHRdaJqInzTiSIzZjRBaJiaMruYTXM0DAwAz30ucNZZ6v8PPwxccIH787NB\nHJvnN+dxSJdOALyEhjiuntEAmEW0FvfHxszzl5ujYdEiM2aL0CB4QwsNS5YAJ59s3h9CaAid1HrE\nEaqHtc5i6MW73w284AXqePt24MMfNh9Lt7bUcJgocBMaxNEQHv17hnA0cJ4UuYBOen2FFALdExoA\nM7b4cjR07V7W+HY0dO1e1vMgDvOHPKggxFFoSI+509PAzTer46OOUrvZ732vuccuuohHtlYee/aY\nOWdTHA2cSicmJ831q+Jo0ItovbAO7czOQzsr77/f7f0tpRPCLJYuBY480gxUoYUGji9QzcAA8OUv\nmwHmxz82H6P5DPRhy2HHnk6MOezYc3M07N1rHhZdERr0AimEo6Er11iT12rNJl0unQDM2LJrl8lR\nsE2X72WND6Ghy84RLTTs3u0+16UuumwC4Ck0pMfcdevMOHn88ertwQcDz3iGOn74YZWnwx36uuP8\n+uBaOkEFMhulE6Gd2Xno8onxcbcCpjgahFksXaoW0CeeqP5/333Ali1+z6EpQgOgHmBnnqmO775b\n/QOS+QynnGKOOSyk9YRtZIRH33efO7xFoIGdXVk4UEeDj92bLi8aQrRdBLq3Cwz4EXW6fC9rfAgN\n9Pty3rF1AXV2cnc1cBQaRkez25YDySDIE04wx0ceaY7vusvdudmiKeMQV6GhbgZMunQitDM7D185\nDeJoEGahJ2Yhcxrog5TjCzSNVr4B4LLL1FvqaKDhmhyEBm5lAcPD5sHI6foAfK6Ra/T1n5nxs2PW\nxWus8Sk00Ek/l2A2n/hwS3X5Xtb46DpBF1IiNPCF45gTRWZDIy000CBIKjQccYQ51htInGmKEEcz\nGjiVTtTNgEk7GrhvmPrqPCGOBmEWejAOKTRwf4GmyRIaqKOBCg0cJgkcA4N8hLYVpcuOBsBPTkNT\ndl9ckBdMZpMuX2fAj6jT9WsMiKPBNU1qcckxowHoLTRQR4MunQDE0eCK/fYzHds4ORrqlk70czRw\nXMf4cjRQoUEcDQKAbEfDDTf4PQfuL9A0p5xiFmqXX66s59rRsHAhcMwx5nM57dhzWkTT0LbQwUvc\nMix8QCcmPoSGLu8C+3Q0dHlxBoijwRc+HA1NqUF3QVMdDVyFBjrH0ELD3LnJLmNNczQ0RWgYHDTC\nWRuFhslJdX81JaMB8Fc6IY4GAYCZBB92mHmf7yCcpgkNw8PAU56ijjdvBq67zrS6POqo5CQhtNAw\nM2N27DlNivXfeXIyOVHRxDFwyy3Jh4ErurhwoL+nj0DIpkyKXOBTaOjydQbE0eCLoSGzqHQlVIrQ\noBChoRpaaJiZMc+4sTGzKXTccSbHAUgKDU1wNDRJVNblEw8+GH5jSUNLRuuUTgBqHss9o4GWTvhy\nNIjQIAAwE7PRUaPq+VYd9YN03jw+NX550PKJiy82bXJWr06KJaEnCXQSwGkRTRcEWWLMpz+tJgKn\nnOIuPV7TRaFBHA3+EEeDP8TR4A99f7l2NMydyyPE2CciNNQnq2Tt5pvNQpfmMwDqftbXXRwNdtGB\nkOPj/jpd5WHL0QAAX/tasxwNLjMaJAxSmAUdjJcvV29DdZ3g+OLsBRUa/v3fzfFRRymlU1vwQzsa\nuLZio3/rrMXXf/6nenvzzcC997o9ly4uHOjERBwNblm82BxLRoNbxNHgD19CQxcFsyYJDXUXbK7I\nEhp6BUFqdE7D/fcnd2Y50iRRmWPnCZrNVUUgO/xwc/yGNwBf+Yr5P8e1zIIF5jUhjgbBK3RipgeD\nbdvMDr0Pmig0HH+8EWboxHP1avVW/y6hhQaui+h+joY4Tk4IXF9DCYN0//O4Cl4+GB42v7PP0omu\nXWcg3yllA65jqm+o0ODCDi1Cg4K70NAkR0OvIEiNLp+IY/cbHHVpkuDJsfMEFWroZkBRPvIR4OUv\nN/+nO/lc1zLa1XD//e7WeOJoEGZBJ2Z64Twz42+BPDZmaqW4vjizGBgAnv702e8/6ij1lgoNIWvS\n6KSY08OI/q3TD5777gN27jT/d30v0gd2F8MgfTgauN6HvvDVZUVPnmgf+S6R55SyQZMm+C6hLXKz\ncnbqEMfmOnddaNi6Ndx5FIGr0EA7d/zbv6m3VGjo52gA+JdPNGkc4uhooHPMKkLD0qXA178O/OAH\nybKE0VFerwOKzmnYu9fduCKOBmEWWUID4K98gqr1HANU+kHLJzRaaNC/y969yR1z33DdfVuzxhxf\nf33yY9TNALgXGppkQbSFtLf0CxUaXAqP+jp38RoD/h0NXb3OgNsWl+PjwNTU7J/TFTjlPOXBVWh4\n6UtNKccXvqCytPTcYulSYNWq2V/TpEDIJs1bOAoNtq7fc54D3HQT8M53AitXAu95T/1zc4WPzhPS\n3lKYRVZGA+BPaGhaxwlKWmhYuNBcQx+hZEXgKjTQdqrXXpv8GN11ANxfv7rKdhMJ6WjgdB/6Qo+z\ne/cm065toydPXV0A+85o6IoDKgs6ObctVna54wSgJuj6WSRCQzVWrwY+f5nnKwAAIABJREFU9znz\n/7/8S2DjRnV8wglAFM3+GnE0uIF76URdoWbhQuDjHwc2bQL+7u/qfS+X+BAapL2lkGBkJBneI0JD\nOY48MhkIc9RR5uElQkN/DjnEWBuvvTa5y5t2NLieaHVRaAjlaJg7V7XG6xo+FsBdt5sD6v7SzzTX\nQsO8ed28lzUuHQ1N2q11hXZFchcauIZBAsCf/znw1reqY7rTmlU2ATTL0UCf29xfIxwdDV2c99EW\nl646T0jphJBg6dKkqkuFBl+DQZOFBiDpatBBkAAfoYFrOFwUGVfDli3Ahg3mY+JocE+o9pac7kGf\n+BAaxsZMwBP3HS6XuA7i7fq9rBGhwS1aaNi+3X2L5zpwdTRoLrwQOPPM5PuygiAB4NBDVf4WwN/R\nQF8j3McijkJDF8cY344GKZ0QEmUTgGQ0VIEKDcccY465pEZzriem5RNr16q3k5PALbckP0+EBvvQ\niYnP9pbc7kFf+BAaujhxysJ18GbX72WNCA1u0XOIOHbfFrcO3IWGkRHgG99Q9fOaxz42+3OHh81i\nrCmOhvnz+Qf/UqGhjaUTTcF3RoM4GoTE5BdIDgZSOlGMF78YeO5z1aL57LPN+7k4GriWTgDZOQ3r\n1s3uX+2rdCKKurN4EEeDX7JardmmSTW7LtFjL+1oZJOu38saERrcwmWzIg/uQgMAHHgg8N3vAo97\nHPDa1wKnn977c3VOw/btvAWeJrV/HR01eTZcHA1d3GDyUTohjgYhQVpokIyG8syZA3z/+2pH/tBD\nzftFaMjn5JPNsRYa0mUTgD9Hw8KFxjbZdnyGQU5NmTreri6AfYcUdvU6A26v9dSUES+6fI2B5O9v\nW2hoUv25K0RosMuppwLXXQd8+cvZQZAamtPAuXyiac4qvZHJRWjQY9bwsJrHd4H5883aRBwNghdE\naHCHCA35HHGEUZK10JAOggT8CQ1dUbWBZFq+a0cD53vQF1I64Q+XLS7lXjaIo8EtVGhw1fPeBpzD\nIKvQBKGhicG/uvPEtm2mdW1IqCOkn/DUNnT5xIYNJtPJJiG6MonQwJh0RsOCBUbZk4yGenDZjeAa\nBgkkAyE3bgQeeCDpaNBqqGuhoUkWRFsMDZlJoWtHA+ecEF+Io8EfVOS1fa3lGhukvaVbdFcmoDmO\nhjYIDbTFJdechrExExDalNdHiNLsfnRxgwkw5ROTk27yMvRYFUWz15iuEKGBMWlHQxQZV4M4Guoh\njoZipHMatNAwfz5w3HHq+KGHku0vbTI5aSZKXXvg6PvBtaOBs9jlCx8ZDbILrBBHgx/E0eAWLpsV\neejn59y57Sg9bIKjoYmCJ6fOE3HczQ0mIBkI6SKnQY9VS5f6CyltwbDTXtJCA2CEhq1b3dhq0uiJ\nIO1/3gZcTnbLwH03meY0/PKXZgfh0Y82OzrT0/Ynshr6fbsmNOj7QRwN7hFHgz/E0eAHERrc0k9o\n+O1vTaem0GihgXM+Qxl6ORo2bQK+9z1gYsL/OaVp4uuDk9AwMWFCC5ty/WzhuvOEHqt8OtRFaGBM\nP6FhaspP4q5ehLfJzQAo4UQ/eLm0t/RVL1UG6mj4j/8wzoUTTkgOVK7Emi4mD2tCOBq6ujgTocEf\nLkVeucYGERrc0ktouPJK4LTTgFNO4SE2tE1oWLHC/C7a0bBnD/CEJwAveAHwjneEOzdNE8chndEA\nhG9x2eV5H+08YVtomJw011aEBgFAdv2M7zqqEOqXL/TvxMHRMDLiLwG2DEcdZRa869eb9x9/vJ/y\nky4/cPQEhar7LhC7eXLxK6UTbnHpaJB72SBCg1t6CQ0//rE5/tGP/J1PL3QYZFscqVFkyifuuUc5\ne//lX4zo8ItfBDu1P9DEriycHA1dHl9clk7QeboIDQKA/o4GwL3QQPuct83RAJjfyWXGQB7ce74P\nDKje1mlOOCF5T7hyhXRZaKD3hMvyiSbuvthm7lwTtCuOBre4dI/INTbMnWtqcKW9pX16CQ233mqO\ns7o0+aZtjgbACA0TE8BttwEf/rD52Pr14eZzmiaGpXISGro873NZOhEq3F+EBsaEFhraGgSp0b/T\n3r3JZGaf6AkbV6EBSOY0aMTR4B46QXFZPiG7wAo93vpob9mUyacLXI4bci8bosiIAK66TgwMtGsB\nW4b58404SSfwt9xijmmXphBMT5vMgjb9nWhOw1vfmhxHdu8O61IFmil4ciqd6LKj4eCDTTtPKlra\ngI5TtGuOa0RoYExooYHelG0WGoBwOQ16Ysz5YURzGgA1QB1wgGQ0uIbeE+JocI9roUF2gRXiaPCH\nvs9clU4sXNitHveUKDKT9a1b1dvpaeD2283n3HZb2HBCXTYBtEtooJ0nLr989sfvvdffuWTRxIUy\nJ0dDE6+fLebOBU48UR1ff70ZW2wgjgZhFlkZDaEcDW3OaADCKOAzM0p9B3jvvqWFhhNOUJMsKZ1w\nC70nXDoapL2lQi+Ad+92k4khi2AFfa6Jo8EtepK+Y4ddO3lXW8+l0XOIbdvU9V2/3pSbAkp4uO22\nMOcGJJ2abcloAJKOBg0N0w4tNDRxrF+2zLQ/DS00dHneBwDPeIY5/ulP7X1fERqEWWQNUFI6YQ8f\n1v9+0EkA50nxmjXJScrxx6u3Pq5fl5VtX44GaW+poAtgF4GQUjqhGBw0k0dxNLjl8MPV24kJ4Kab\n7H1fERoUerK+d68SKLOsziHLJ7rgaADULvD73mf+z0loaMprZHDQrC+kdCIsVGi47DJ731eEBiFB\nFBl1kUKFBteqowgNbmnK7tvQEPDYx5r/n3CCeiulE24RR4NfXLe41Nd53jz1muoy+lqLo8EtT3ua\nObY1YZ2aMiJ5FxcBlHQgZJbQEDIQkm5mtFloeNvbgNNPN/8PLTQ0VVTW5RObN4cN1Oy60PDEJwLD\nw+pYhAbBGVkiAyAZDTYJndHQpEnxqaeaY10/JmGQbhFHg198CQ1dvsYaPXZs3253QiuOhiQudsbo\neNHFRQCliNAQ0tHQVqFhwQIVmgeo1/m73gUcdpj5eGihoanjkBYaJibcbm7k0eV5H6DKgLRwtm5d\nsrV8HWjegwgNQk+hYfFio3RJRkM9Qmc0NGkn+W//Fnjuc9UDXXehoAszyWiwTwhHQ5MmRbah97PL\n0omuL84Ac62np+3e2yKaJTn+eLM58fOfKzdCXbq+20jpJzTockNxNLjhk58Envxk4KtfVX+Hgw4y\n82ZOQkOTXiNcOk/IGONGJBZHg5Cgl9AQRWbiIBkN9eBUOsF9UnzwwcD3v6/6VeuU8eFhc97iaLBP\nCEcDd8HLJTSjwbajIY7F0UChY6/Na90k8dYHAwPA05+ujnftAq65pv73lEWAoZfQsGqVcf7de6/9\nrh9FaWsYJAC8+MVKPHvBC9T/h4eV2ACEFxqaXjoBhA2ElDFGhAbBA72EBiApNLisoxKhwS1tWODp\nwcqH0NC1B45vR8PgoArV6iouSyfGx81uctfu4yxcXWt9Lw8NAXPm2Pu+Tcb2hLWpiygX0Mn67f+/\nvfsOc6O6+gf+PWuvu8EGDO7YVJtijOnF2JTQIfQSQgmBNwkQfrwhgYQaIIHQISR5eAOBUEIghE6o\nBtPBEFMMGBuCMQYMuGJcd+3d8/vjzOReaVVG0ozq9/M8enZ2NRpdaedKM2fOPfdDd3I2YoQrmgxU\nLquhXotBZhMOn5g/383oVQm1miVYLYGGRr7AFNp2WzeTyjPPxHOuFwYaevYs77EeAw1VKkqgYeXK\nZCPlrNGQrHoINITv4YIFyQS9wi+cnj0br4Cef4BSjkBDr14uW6URJRloqNUDz6QkFeQNP1MbfV/2\nJRloaPSg2VprueWXX3bLI0a4oslA5QIN9Tx0IhO/TkNc49qLEfaRWiv8W41DJxr1+7JLFxsaBABf\nfQV88EHp2wzPc8o9FJ6BhiqV6yCpXAUhwwPAbt3q80uq0hkN/nPW6gFb+B62tSUT9AoDDY0Y1fZT\n+b/6KrnnCU/OGvULPZRkjQYGGlIlndHA99hZbz03zeUrr6Re5S4GAw2Of8D+2mtuOT3QUKmCkB9/\n7JYb4Tu0WgpC1urn0MCBbrmStUXCz5iuXRs7My3OILGqO+dgoIEARMtoAMoTaKjHbAYgNYBSiUDD\nJ5+4Zf8LspYkHawJv3Aa4SAp3QYbWFQbAN5+O7nn8TMaGlmSNRp4cpaqHBkN5IQHrC0tqVfei8F9\n2fEP2P33pVqGTjz0kFseP74ybSinags01Fr/2HFHd8zx0EOVm+KykS8w+eIMNHz7rRu+yUADAYge\naEhyHFW9BxqA1NT/cvMDDenzQteKJGfu8CvS19oXdhy6dHFXxaZPT2b4hCozGkIcOlE+ScxYw305\nuzgPWGu1on4Ssh2wjxxp9w0YYL+/+275T9o++wyYPNmWx4yp3YsZhaiGQEN7uws61drn0GqrAXvs\nYcuff+72n3LjDE1m1Cg3POu550qbNahShSABBhqqVq5Ag1+wJamMhuXLXYplIwQa5s8v/4HAjBn2\nU6R2DwKSzGjwD2gbNbIdTiWqCrzzTvzbX7bM7feNfhU4yaETHHOaKkzlB4CpU+PZJvfl7MKZJ4B4\nroyFGv1EoE+fjsdqPXu62Q/CrIb585Md/pbJgw+65YMOKu9zV0o1BBpmzXInhIMHV6YNpfD3FX8f\nKhfVxs5k9TU1AbvuasuLFgFvvln8tubNc8sMNBCAyg+d8E8ay71TllP42lpbUwsnlUOY0TB4sEtX\nqzVJFtRk5WG7EhUq5Usmm1qaYjVpvXrZzBtAshkNjX5yBtgJWFgkLa79mlkj2a2zjjvpnTy5tEAa\nAw1OU1NqgBIANt7YHb9VsiBkIwYahg51y5UKNPj1OPz/f6048EBXI+6BB8r//MuWWTYrwM8XIL5s\nNGY0UAfVFGhohIwGoLzDJ7791nX89dYr3/PGLcn3j4GG5AMN/slZo18FFnF1Gjh0Illdu7oT3w8+\niCfIWw+z+CQpzGpob7c03GIxOydV+kH7iBFuuVIFIRcsAJ5/3pbXXz+1XkQ969HDpZoz0FCcddax\nWg2AZZt9+GF5n5+BzFQMNFBiKj3rRCMGGs47DzjzTOAXvwAmTkz2eeuhPgOQbI0GBhrsQCW8ys6M\nhuSFVydZDDJ54bCg9nZgypTSt8dgTm5xHbByX07lT3EJpAYaKlUQ8tFH3VXhgw5qrKlew+ETs2fb\nFPDl5v+fazXA42fA+AVFy8H/fGnU4z7f+uu7TJ2XXwZWrChuO36gIf0zK2kMNFSpSmc0VDL6VU5+\noOH224FrrgGuugrYZx/gyy+Te14/0FAvGQ0cOhG/bt2ATTe15alTS5+aLh1PzlKFgYZFi+wEOC58\nnzvys3XiKDrG9zi3cePccUVcGQ0MNHQ8Pho50i1vsok7yS9nRkMjDpsIhYGG9nYraFhu4f+5uRnY\naKPyP38c/H2m3MMn/OM+fr7Y50cYJF6xwqYoLgYzGqiDXIGGPn3cVU5mNJTmwAPde+lraSm+Q0cR\nFoIEajujgUMnkhde+W1ri+fKr49DJ1KFQyf8glRx4ElwR3EPC+LQidxWX90FLadNK/5qL4dOpMo1\ndKJHD7siCQDvv28F2RYsiL/YrG/ZMuCJJ2x57bWBHXZI7rmqUSULQra2Wt8CrFZHrdbe2mADl43x\n2mvJXnRLx0BmR3FkozHQQAVpanKpLww0lGbHHS3q/dJLdrvySndfEqnqoXrJaODQieQlWaeBQydS\nJTXFJQ+eOho1ygXU49ivGczJL7zavmpVarC7EOH73L27XbVtdP53YFOTnaT5wnH6y5dbNuqaa9rn\nzF57xZs1FZowwWW+ZbuQUs/8QMOsWeV97g8/dDNO1GJ9Bl+Y1aAKPPJI+Z6XQyc6CmeeABhooDIK\np7icMyeZaRkbJdAAAP37AzvtZLcjjnB/TzLQUC8ZDf6JWdyBBn7hmCQDDcxoSJVUoIEnwR316GGp\n5YCNa25pKW17zGjIz7/aHl55LRTnuE/lH7QPH27D3XzbbZf5cU89Fc+QoXR+qvvBB8e//WpXyYyG\nWi8E6avUNJccOtHRwIEuSPzGG6nvUVQMNFDBwjoNLS2pB1hxaZQaDemGDHGvd/LkZII4gMto6NbN\nAh21qrnZnTglWaOhkb9wttjCjfNlRkOy/EBDnOnNzGjILAyirVpV+hh2BnPyY6Ahfv7xkf/+hk45\nBfjpT4F997XbqFHuvrjrNqxa5a4+9+rlZhppJJUMNNRDIcjQmDF2PAzYVfQ4hxLmwu/KzMLhE+3t\nwAsvFP74efPsZ+fO5X9fGWioUUkXhGykjAafiBsTP3cu8MUX8T+Hqgs0DB9e+xWhw/2DQyeS0bOn\nO4B9910bBxoXZjSkCms0AMxoKIc4s3WY0ZBfqYEGv3YJTwKMX8HdLwQZ6t0b+P3vgX/9y27XXOPu\nizvQ8OqrLuC/zz4dsysaATMa4iHishpaW4Gnny7P8zKTNbNS6zSEnwtrrFH+cw4GGmoUAw3JSTJV\nHQC++spNUVPL9RlC4RWdBQvizQBhoMEJg18rV8Y7TRozGlIlPXSia1eOa/fF+VnLYE5+fhX8YgIN\ny5e7aRP5Hptdd7WhrM3NwFFH5V8/ySkvJ0xwy/vvH++2a0Xfvi7QWKlAQ69eqQGPWuVnxLz9dnme\nk5msmY0f72oalRJoKPfUlgADDTUr6UBDuFN27WpFnxpJ0oGGeqnPEAoDUW1tqQf7pWKgwUlqn2RG\nQ6qki0HywCnV6NHxDQtiRkN+PXu6E6APPig8MMy05o769gVmzrR6WWFAOJd11nHHb3FnNPgnIP4V\n0EYi4vbxWbOSKbiZyeLFth8AFkyq9UxVIDUrI+6gWDb8jMmsTx/3+fLee8DXX0d/7IoVNhsNUJmh\n8Aw01KgkAw2tre5kuH//+vjALETSgYZ6mXEi5Ge8xFmngYEGJ6l9khkNqZKq0RAGdPgep+rd211l\nnzKl+CkXAWY0RBUOn1i0qLCDVYAnAdl075467CqfMKvh66/jO35bsgSYNMmWN94YGDQonu3WoqFD\n7WdLiwWAyuH9991yrQ+bCA0fbsFJIP6gWDYcOpGdHzx89tnoj6t0zT0GGmpUkoGGSZOApUtteezY\neLddC9Zbz33AJVEVul4zGoB46zSEgYZu3Wp3Puq4jB7tlpnRkJykajSEB088Ae4oDKK1tABTpxa/\nHe7L0ZRSp8F/jxloKF4SV4pfeMFNrdio2QyhStRpqKdCkKGmJmDTTW15xgx3XpAkDp3Irtg6DQw0\nUFHC6S2Bwq9K5NPo6Xci7uB39myrqRAnP6OhHgIN/gdXEoEGRrXtPQjnZ3/nHXdAWSpeBU6VxNCJ\nlhZ3pZ4HTh3Fla3D7JxoSgk0MKMhHn6gIa4rxY1+3OarRKChngpB+sKgiWppgeCo/M8Yfo6n2mkn\nG84OMNBAZTB4sFueNSvebfMLK/Xg96234t02MxqiCb9wGGgw4fi8FStsfHUc/JOzMEWykSURaGAw\nJ7e4Ag3++8x9OTsGGioviYKQ4XGbiBWOa2R+oCHu4+Ns/EBDvWQ0AMkExXIJP2N69GDh5HTduwM7\n7mjLM2emnkvkwkADFWXIEKBTJ1uOurNFsWQJ8Nprtrzhhm4e3UaTZJ2GMKNhzTXr42AtiRoN/jRq\nDDQYf5+Ma0hPeHLWo4f7PGlk/r4WV40GnpzltuWWbjmOjIaePV11burIn4KRgYbKCNPRgXhO3ubO\ntUw3wL4nGm2msHR+oOHRR+OtHZVNGDDyi33WAz9oUo5AQ5jJys+XzIoZPjFvnltmoIEia252QQA/\nFb9UL77IcX5AMid1gKVRf/65LddDIUggmYyGJUtctWh+4Ri/ovkbb8SzzfDkjFfaTadObn9jRkN5\n9O3rPgvffttNn1goFtyMZu21XS2SQjOjmNYcj969gWHDbPm990qfGWHiRLfcyMdtoY02csHG55+3\n4Npdd8U7/bbPL+pZT8MmgPLPPMELTLntuqtbDou/5sOMBipamHa/cGF8V984bMJstJErKBZnRsOs\nWe7Lrh6GTQDJ1GjgjBMdbbONmwHmlVfi2WZ4csbieU44fIKBhvIJA7vLlgHTpxe3jTBoxn05NxE3\nfGLWrMIKvDGjIT7hCdySJaWn9/O4LdVaawG33+6OHebOBY45Bth/f2D58vifr16HTQDJTsearr2d\nU0HnU0zgxw80rLVWvO2JgoGGGuZfEY8rq8Ef5+dHzhpNU5Or9P/pp/Gl3vnDXOoxoyGu94mBho5W\nW80dxEyZklpfoVjMaOgo3J8XLIjnoJQnZ/n5GWT//ndx22BGQ3R+nYYPP4z+OO7L8Ylz7Ht43Nbc\nbAXjyAILU6cChxzi/vbYY8BVV8X/XP4JX71lNADJTMeaydKl7kIcP18y693bXaSMmg3FjAYqmn9F\nPI46DfPmWeoqYCfZldghq0kSBSHrbcYJIJmhEww0ZBYWAmpvL334RGur3QBeBfaFNQPa2oAJE0rf\nHjMa8tt2W7cc1ggqRGurm9mD+3J+xRaE5PSW8YmrIOSnnwIff2zLO+zAQqi+gQOB++4D/vlP97c4\nPtPT1euME6FyDZ/wA5k87ssu/H8sXRptVhUGGqhocWc0cJxfqiQKQvr/p3rMaGCgIVk77OCWSx0+\nwekAMzvoILf84IOlb49XgfPbdls3pvrVVwt/PIM5hSm2ICT35fjEldHAYRP5HXqoq4nxxhsuKBmX\n8P8nAmyySbzbrgblmnnCP+7j50t2hRbo9AMNlSgUy0BDDYs7o8H/wtptt9K3V+uSKAhZb1NbApau\nGR7cM9CQrDCjASjuhMznn5zxKrCzxx7uquDDDxdfnDDEk+D8evd2B7NTpqS+Z1H4QTPuy/kVm9HA\nQEN8NtrITd/HQEPywiD98uVuho44fPqpG+618cb1mVFSrpkn+PkSTaGBnzDQsPrqQOfOybQpFwYa\naljcGQ3PPms/O3cGxo4tfXu1buRIoFs3W447o6GpCRg6NJ5tVoMwSjpvXukVtAEGGrLZYANXzOfV\nV0uros0T4My6dwf23tuW580DXn65tO3xfY4mPBEoZlgQ3+PCDB/uTnIZaKiMLl3sxBSw/0E4jK0Q\nqu64rVev1CFIlCrOIL3v1lvd9/Axx8S33WriT8fKoROVV+hQlnB6y0oNh2egoYb16wf06GHLpWY0\nfPYZ8NFHtrz99rwqBFjAZYstbPk//yl8KrBMwv/TkCHuQK8ehCe/8+YB48cXPj97On7hZCZi/ROw\n7JFCCrml49CJ7OIcPsGTs2hKGRbEQENhmpstaAnYLB9Rs3bCfbmpyQJyVJrwhGHVquI+y6dNA776\nypZ32aW+jini5n++xBVoaGsDbrnFlpuagBNOiGe71Sbu6Viz4dCJaArJhmprc7MSMtBABRNxWQ0z\nZ5bW+Zl+l5lfsfiCC0rb1jffuCnz6qU+Q+i449zyiy9agOaSS4q7SgMwoyGXuK7McOhEdvvt51IM\nH3yQmSPlUMp+zaEThQuHT7S0RCsoBqROPRdOtUvFK7UgpB+Q22WX0ttTz0aNcsGxuKaHfuopu0gH\nAPvuCwweHM92q5E/HWvUz4tCMSgfTXOz+/yePj33cfbChe74hYEGKko4zr+1FZg9u/jtMNCQ2amn\n2jzCgFUuLmUIRT3OOBE6/XTg6addAKW11QIzxaYSMrKdXVwFIZnRkF3fvpaZA1i/nTKl+G35B098\nn7Nbf32XGfXaa4UFzhnMKVwxBSE5x328Si2y5wfk/EAdddTc7IaWfPppacfLoZtucssnnVT69qpZ\nOWaeYCZrdGGQctUqCzZk4xeCDL9fy42BhhoXR52GVauAxx+35V69gO22K71d9aJnT+C889zv/nKh\n/AJEG25Y/Haq1R572MHSWWcBnTrZ3/75T+CFFwrfFjMasttmG/f+MqMhOXENn+CUgNGIuJOlQocF\nMaOhcMUUhAz3Ze7H8Sg10BAGmjt3BrbeOp421bM4h0989RXwyCO2PGCAZcHVs3IUhOQFpuiifnZU\nempLgIGGmhfHzBMvveR2xn32sSJF5Jx8MrDuurb8+OM2NKAY/tXncJx9venRA7j8cuDPf3Z/O/fc\nwlPPGWjIrmdPVzvk/fdT36tCMKMht+9+1y3HFWjg+5xbsScCfI8LV2igYdUqYNkyW+ZJQDyGDnWB\nsUKvEi9c6OpGbbkla2ZEEWdByNtusz4BWG2GSlTzL6dyTHHJoRPRRc0wYaCBShZHRoN/EH3wwaW1\npx517QpceKH7/ZxzihuzHX6xdepkV6Xr2fHHuwPZl14CnniisMcz0JBbeEKmCkyaVNw2mNGQ2+DB\nrp++/Xbxn6/hwVOXLvZZQtn5JwKFDAtiRkPhwhkPgGjT/TEzJ35NTe5K8SefuBpOUfif+36AjrLz\nL/CUEmhQBW6+2f3+wx8Wv61a4Rcg5NCJyouaYcJAA5Ws1IwGVeCBB2y5udkK2lBHxx7rDsxeegl4\n8snCHr9okV19BuxqdD3Otezr1MmKQYbOPbewMddhoKG52U0xSk4cV2Z4FTg/P/B6/fVWh+Tpp+0g\nP2ql/vB95nuc39ZbuyuDzGhI1mqruToNkyenHuRnwquNyfCDBM89F/1xfiCOgYZo+vVzs638+99W\nCLUYzz9vM5EBwG67WX2ZehfHdKz5cOhEdOuu677rGGigRPmBhmKuuL39NjBrli3vuiujiNl07tzx\nxLmQrIZJk9z6jXJQcMghwJgxtvzWW8B990V/bPiFs/rqrG6eSRwFIXkVOD+/TsP11wN77mm37bcH\nfvGLaNtgoCG6Hj1ShwWF03Llw325OGHh57Y2O3nKhUVNk+EX3/aLcufDQpDFCd+r1lY7LinGX/7i\nlk8+ufQ21Qp/OtaLLio+UJMNMxqiE3FZDZ9+mj1QHE5/CzDQQEXq2RNYe21bLiajgcMmojv0UBsL\nCdjsE/ffH/2x/kFBowQampqA3/7W/X7++W5MYz5+oIE6GjbMzYaqSjt1AAAgAElEQVQyaVJxU9vy\nKnB+I0a4Pp/uxhujnQizUn9h/JOmqMOCuC8Xp5CTXGY0JGOXXVwWz4QJ0R7T1mYzswDAwIHAkCHJ\ntK0elRqkb2kBHnrIlvv0SQ1G1zv/vbv0UruQFNdUoUDqZwwDxvn5wyfCjGnf0qXAHXe43yuVecNA\nQx0IsxpmzwZWrCjssX6g4cAD42tTPUo/cT7vvOjp0/6HcSNdfdhrL2DsWFuePj31Qy8bVfeFw0BD\nZn6F/kWLXFGwQvAqcH4i9hl52WUWKDv/fEuVBYDly4G77sr9+NZWd9WHJ8DRFFMQkvVGijN+vH2v\nAfkDDazRkIzevd20i9OnA198kXr/ww9bYVr/GOL9993n9447MuuvEKXOPDFxousLBxzQWEM7f/IT\n4Oyz3axXU6cCO+9s34txCC8w9erlnoOyy1cQ8g9/AL7+2pYPPTQ1A76cGGgokogMFZGrReQDEVki\nIvNF5HUR+bmIlLX+r18QcubM6I+bMcPND7/ddhYZp9z23ts+WAEbp3bnnfkf097ursyts45djW4U\nIqnBmSjpdsuXu8wHBhqy8w+Y7r678MfzKnA0Q4cCv/wlcPHFdrv2WnffTTflHkLF97hwxRSE5Awq\nxenTB9hqK1t+7z13UJpJOCY9fBzFJ1tmyaJFwNFHW7Dh4IPdfs76DMXbbDMXjHzllcILe/sX5xop\nmwGwzJvf/c7qW4TTqaoCv/lN8UWpfbzAVJhcM4F8843NAAdYMPnii8vXrnQMNBRBRA4AMAXA/wLY\nCEB3AH0AbAXgCgBviUjZklSKrdPAYROFE7GUsdCFF+Y/cf7gAxepbcSrD2PH2rSpgI0lu+mm3Ouz\nIFA0hx/uqkBfey0wZ05hj+fJWXFGjXJXIN9+24ZRZcOrwIUbOtTmpQeiF91kRkPx/JPcZ5/Nvt5f\n/+qWx49PqjWNKVug4e9/d1OKzpkD/P73ttyIQzHj0qmTXVgDLAv4s8+iP7a93Q2b6NbNMjYb0ejR\ntg/+8pfub/4sHMXiMMPC5Jp54uqr3Sw2xx4LbLJJ+dqVjoGGAonIlgDuBtAbwGIA5wDYEcDuAG4C\noAA2BPCoiBQzt0ATALRFzclHakZDIXUaGjkyW4qxYy2zAbAT53wfsLz6YBFvf3np0uzrWqDhSwC/\nRnPzlwm3rHYNG+YKUS1dalcaolq1yqXoNjdbRWmKzi8AlitwFkdGw5dffolf//rX+PLLxugL/rCg\nb78FXngh/2MWLLCfXbpwXy5UlDoNb71lM1MAlgExenTy7UpXz/1g++2B7kEe7DPPuKvs6ccWV1xh\nJw9hoKFLF1dwmaLzs6YKmenj9dddcb0996zc7GHV0Bc6d7bhw+H32t//nvp9V6i2Nvd4BhqiWWst\noH9/W373Xfe5MWeOy7xsbrYLopXEQEPhrodlMKwC8B1VvVxVJ6nqc6r6YwBnARBYpsOZRWy/E1BY\noKGYjIY5c4CXX7blESNS59Sm/PwT50suyX3izOrQdjB02GG2/PXXwA03ZF/XBRouQqdO9XdQGafz\nznMHqH/6U/SrM+ec44KSlYx016ojj3QHmXfdlb3/x1FA78svv8RFF11UlydY2XznO2752GNzp/S/\n+KKNFQYaY5q5uO20E9C1qy1nCzT4J7yVqrJfz/2ga1dXy+iLL4APP0wN7oQWLbIx8h99ZL9vtZX7\n31F0YZ0dALjyyui1tsKp4IHKXpyrlr7Qsyfwve/Z8tKlwD33FL8tP8OSQyeiC4dPzJ/vvicvu8wd\nk/zP/1SuNkOIgYYCiMg2AHaGZS3crKqvZ1jtGgAfwIIN/09EEi9pUkxGw223uUr1HDZRuK22suIq\ngHXuCy/MXvk/zGhobnbjYRvRxRe7wmOXX569Yr8/dIJp0LkNGACcdpott7SkTsGazT//aQdXgF2V\n+OMfk2tfverdGzjqKFtevBj4xz8yr+efIHN4SnQnnmjV+AE78TrqqMwz1qha0CwUdcpRcrp3dwHw\nmTM7HkMsWwb87W+23KOH1Qyg+KVnlvjBnXPOcZk6fgZVo164KNW4cW74xHvvRatxpOoCDU1NwP77\nJ9e+WpIru++RRyyAdvvtmR976aU2nfFmm7n/B8CMhkL4wyd22sl+D4/puncHzj23Mu3yMdBQGD+G\n+ddMK6iqAgi7VR8AuybcJgwe7Cq05sto+Oor4IgjgLPOcn/77neTa1s980+cr77aikSmTzGzYIFV\nkgZsmrxGqlCcbuRI4LjjbPmbb4Crruq4jmrqHNUsOpbf2We7k9hbbnFXuzL54APgBz9wv19zjX05\nUeH8A6z0FOdVqyzN+fvfd3/r27c87aoHzc12dSwsUPzcc6njgUNPPgm89JItb7yxZT9Q4fwrvOlZ\nDffd54K/RxzBk4Ck+P+DRx9NDe6cfTbw4x93fEyjDsUsVXqtrQsuAFauzP2YadPcd+vYsUC/fsm1\nr5aMGeOGUr3+uisw/8YblsX60kvACSfYZ7XvppvsJHjKFDtuDo+TARsSQNFssYVbnjHD3stwXz79\ndFfvqJIYaChMMN8AlgKYnGO9573lxA/jO3cG1l3XlmfMyFxFV9UOhkeOBO691/392GNdYTMqzCab\npFZyffVVCyZccIGbZjSc6xrg1QfAMj/CAobXXdcxJfraa1OvDvsHX5TZmmsCP/+5Lbe1ZR+Pt3gx\ncMghLkXxmGNcNgQVbttt3dWEV16xoSt//7tdvdlmGzs5WL7c7h82zGVAUTT9+9t3VefO9vvVV6d+\nNrS3p2YzXHKJW5cKk6tOg3+VslLDJhrBllu6wPrjj7vgzpFHWnDnnHMs6OBjoKF4u+3m9vsZMyxI\nnwtrmmUm0jHoPm+efd+1ttrfVG2IRTgr3uuvpx579Oxp2au9egGbbpo5qEaZHX647cvh+xfexo8H\nfvWrSrcuoKq8RbwBmAOgDcCbedbrA6A9WPfuAp/jawDar18/LcTuu6tad1adPz/1vunTVceNc/cD\nqmutpXrnnart7QU9DWXw/POqG22U+v5uvLHqCy+onnuu+9s991S6pdXhtNPcezJqlOrrr9vfJ05U\n7dQpvG+yAtDJkydXtK214ttvrU+H7+spp6guWuTuf/FF1REj3P2bb666ZEnl2lsvrrsutd+n35qa\nVM84Q3Xx4uKfY/Lkxu4LN9zg3s/mZtXzz1ddvlz13nvd37fcUrWtrdItrV0rV6r27m3vZb9+7r2c\nNs29xyNHVvZ4oRH6wcEHd/wMeflld/8557i/r7tuxZpZN157zb2fAweqLluWfd1ttnHrfvJJ2ZqY\nUbX1hYULVbt1s/emTx/V3XZz71WXLm55zBjVWbNUhwxxf/vpTyvdeko3aNAghZUI+FxjOHdmRkNE\nItIVQJjQ83mudVX1G1jWAwAMSbJdoUx1GlautPSwUaOA570ci2OPtRTqY45pvKkWk7DLLsA771hh\nvvCK2vTp9nd//DszGsy557piP1OmWMXt006zKzdhUaYTT6xc+2pR796WSRP6058s4+aee+zqwNix\nlvoJ2Ht///2Vq5hdT449NvuQiFGjLKPp2mtZa6QUp57qhkSsXGmZC6NHW8ZI6Le/dcPYqHCdO9u4\ndQCYO9fGrQOpw9hOPpnHC0nzM0sA+wz3sxZ+/nOXCh0WV6bibbedGzo8e7Z9b2by+ec2FACwz55h\nw8rSvJrRp49dWQdsWGw4TW7//jYF9AYb2O9vvmkZC2HR6h13zDyEluoLEw2j80t5Lcm6lrMUQA8A\nZTnE9KuK7r+/pdgtWWIHDf46N95o0/JQvLp1swPgI46wA7JJk+zvYcHDwYPtRvblM3Gi1Qp45x1L\ngfYDMnvuaSfH+VIZKdVpp1mg5txzrYBbWETPt+229r6GX/xUmjXWsCFTEyakVi4fONAOYMNhQlQ8\nETvhHTrUisiuWpU6nnfnnd10w1S83Xe32gAAsMceFhybPdt+b25m/YtySA80nHRSanCnb1874Z08\nmcdxcbnkEuDhh+36+rnnZi6OvGyZW+awicxOPhm44w73e+fONtRt5Ei7sLH99vY+hlNYhkPjOB1x\n/eM1gOj8Mn6tEdZvgc080T2Z5qTaaCO3/PXXVhQyDDI0NVkk/N13+eWUtM03t2lDf//71KuYLLiX\nasst7YDpsstSC2Suu65NF9gp8bla6o8IcMYZVgwo/cSrZ0/g+uutlsCmm1amffVq443tqvvpp7vb\nYYcxyBCn5mabUvjNN1OrkwOWtccr7aXbYw+3PHeuHUO0tNjvBx/MAm3lsPHGwKBBttylS+bgzqBB\nwIEHNnZh6ThtvrmborGlxfb79JtfS4qBhsx23tn239BVV7kpWzffPLVgcqdOFoQIi/1SfWOgIboV\n3nKUGFxX2BiX5ck0J9UBB9jBwNprp952280Kr1x5JVOly6VTJ+CnP7W53Y8+2k6qM1VMb3TNzfa+\nvPuuFQ7acUebDmnNNSvdsto2bBjw2GNWtXzUKMuymTrVToAZwKFa5gdyN9nEil2FB7NUms02A848\n01Lz/WOIMWMsyEPJE7GhVptuaj8Z3CmPK66w44/042f/NmCAXbDzq/yTI2IZ06NG2TDi009Pvf/o\no+08ZMQI4Lbb+LndSEQ1wxQF1EFQo2E5LHjwL1U9MM/6i2FDJ15T1cjXs0VkJYIhLf0izJ/TqVMn\ndOLZA9WZ1tZWzJ07F/369UMX5tZRA2NfIGI/IAqxL1Ax2tra0OaP8cxi3rx54eQEK1W15B2MgYYC\niMhcAGsAeEdVx+RYrw+ABbCgxL2qelS2dTM8dhUARg6IiIiIiIio3NpUteRajiwGWZipAMYC2EBE\nmlS1Pct6I7zlDwp8jha4YRcLIqzfBptKk4iIiIiIiMjXhGgXsteA1RhsieNJGWgozEuwQENPAFsB\neCPLeuO85ZcLeQJVZSUFIiIiIiIiqlksBlmYB73lH2RaQUQEwHHBr98AmJh0o4iIiIiIiIiqBQMN\nBVDVNwC8CEsp+aGIbJdhtZ8DGAkb+nCdquavvEFERERERERUJ1gMskAiMho2HKI7gCUALoVlLXQH\ncDSAk4NVpwHYRlWXVqKdRERERERERJXAQEMRRGQ/AHcCWA2W3eBTANMB7Keqn5S7bURERERERESV\nxEBDkURkCID/B2A/AIMBtAL4D4B/APijqq6oYPOIiIiIiIiIKoKBBiIiIiIiIiKKDYtBEhERERER\nEVFsGGggIiIiIiIiotgw0EBEREREREREsUk00CAiW4nI+SLypIh8JiIrRGSxiEwXkVtEZKcCt7eP\niNzvbeuz4Pe9Izy2p4iMFZEzReQeEZkhIu3BbUYBbRgsIoeIyGUi8oyIfONt54JCXk8hROTo4H38\nUkSWi8hMEblDRLaP8NjVRWQPETlHRB4UkS+8Nj+bYJt3CNo4M2jzlyLyhIgcFeGxXURkOxE5TURu\nF5FpItIWtLktqTYnhX0hPg3YF3YRkV8G/9/3ROQrEWkJ3u8pIvInERmTVNvjxH4QnwbsB7d6bcx3\nG5rUa4gL+0J8GqkviMjxBfSD8HZLUq+jVOwH8WmkfpC2jZ2CbcwQkWUislBE3hSRC0VkzaTaThGp\naiI3AC8AaA9ubRlu4X1/BdCcZ1sC4OYs2wv/9n95tjHRWzd9GzMivqahadtI384FCbyP3QD8K8v7\n2A5gVb7nBfBJjjY/m9D//9dB27L9vx4B0CXH42/N0uZ2AG1J7bfsC+wLVdgXPs+x77R5911f6X2d\n/YD9IMF+cGuW15x+WwVgaKX3d/YF9oUk+gKA4yP0gfTbWZXe59kP2A/i7AfB4zsDuCnHPtQO4EsA\nO1d6X2/kW5IZDQMAKIAvAFwP4DAA2wLYAcDPYAfPCuA42AFELpcCODFYfzKAo4NtHQ3gzeDvJ4nI\nb/JsR4PbfABPAVgK+3CKKlxXYTvwR7APykK2UahbAewTPOezAA6CvfYfwqbTbAJwoYiclGc74Wv/\nCsCjSLDNIvIjABcEz/Ef2P9uW1jbnw3asS+AW/JsKmzztwCeh7W9FrEvxKNR+8JiAI/DvpSPAbAb\ngK0B7A/gYrh+cZqIXBr7i4gP+0E8GrUfhGYD2AzA5lluo2D7WDVjX4hHI/aFB5B93/dv/wmeox3A\nncm8mpKxH8SjEfsBAPwB9hoVwIcATgawDYCdg21/A2AdAA+JyAaJvBDKL6kIBoCHARyKYArNDPev\nAWAaXBQqY8QJwIYAWoN1XgPQNe3+7gBeD7bTAmC9LNs5CcCR/v1wEbyokco1APwKwO4AVg/+Ns57\nDbFGKmEnFOG2H0h/LwGsCWBmsM78sE0ZtvMzAAcDGOT9LdxurJFKAH0BLAy2/QmAvmn3C4CHvOff\nJct2Dod9uYz0/hZGm2sto4F9ofT3sJH7QlOE5/mP93/vG0f7476xH7AflNgPbi3kf1PNN/YF9oVS\n+kKE5xnhbeOpSu/vOdrJflD6e9iQ/QB2sSW8/00AvTKssynsQk0bgIcrvb836q2yTw7s5+0o12VZ\n50/eOttkWWc7b50bCnj+gj5AsmwjyQ+QMBWqBcDALOsc6T3/mQVsO6kPkF942z48yzqDAKwM1nmk\ngG3XZKAh4mtjX8i9bfaF3M91tvdc+yS1nyZ9Yz/Iu+2G7Qeoo0BDxPeNfSH3thu2L0R4nsu85zkm\nyf006Rv7Qd5tN2Q/AHCDt41dczzXJd56m5Zrv+XN3So968REb3n9LOscCEuLmaaqb2RaQVUnAZgO\ni4J9N9YWVoiI9IJFRBXABFWdnWXV+2FDCwCLRlbaQcHPb2HR1Q5U9QsAE2D/r91FpGeZ2lbN2Bey\nYF+IZLG33K3IbVQD9oMs2A8aDvtCFuwL2YmIAPhe8OsS2HtQy9gPsmjwfrB18HMFbGh1Nk94y4cW\n3lQqVaUDDV295bb0O0VkOICBwa+5diT//kEism4Mbau0bQB0CZazvnZVXQlLFRMA24hIpzK0LSMR\naYaNsVIAr6rqqhyrh6+pK9wHRiNjX8iOfSH3cwmAI7w/TSt0G1WE/SA79oPGwr6QHftCdrsCGBI8\nz32qurzQtlYZ9oPsGrkfhLNJzFfV9hzb+Npb3qWQtlI8Kh1oGO8tf5Dh/k285XwHz/79I4ttUBUp\n5rV3ho1Vq5SNAIQfYI32/yrVeG+ZfSEV+0IaEWkSkYEish/sis8usC/up1U10/5TK8Z7y+wHqdgP\nzJoi8pyIzAumr5sdTId2qoh0L6m11WW8t8y+kIp9IbvjvOXbC3xsNRrvLbMfpGrkfrAk+Llanm2s\n7i1vknUtSkzFAg3BVbizvT/9I8Nqg73lz/Ns8jNveUix7aoitfjaa7HNFce+kFctvvZE2hzOaw2b\nEupz2PRPYZBhMoATCm5plWA/yKsWX3sSbe4FYCysoFgzrKr4nrAxux+KyA5FtLOqsC/kVYuvPfE2\ni0gPAIfAvg8+U9XnIreuCrEf5FWLrz2uNodBp94iMjrHNsYFPwXAOiLSOX8TKU6VzGj4GVz6zH2q\n+laGdXp7y0sy3O9b6i33KrFt1aAWX3sttrkasC/kVouvPak2a4bbUgA/AbCTqtbqFLAA+0E+tfja\n42yzAngVwLmwqdzGANgRwI8ATAruHwTgSRHZotgGVwn2hdxq8bWXo82HeOvXQzYD+0Futfja42rz\nw97yb4KgVAoRWQu2D2mW56cyqEigQUTGwariAjZ+5pQsq/pFzVrzbLbFW66H9MlafO212OaKYl+I\npBZfe1JtDudIHw1gLwC/C7Z/NYDLazVaz34QSS2+9jjbfIaq7qSqv1PVp1T1HVWdpKo3q+oOAC4N\n1usJ4OYS2lxR7AuR1OJrL0ebj/WW7yjgcVWH/SCSWnztcbX5XgDvwDIV9gXwLxHZTkS6ikhvEfku\ngJcBDEh7nnr4v9eUsh+UisimsAqonQEsh01tMi/L6iu85S5Z1gn5BWOqsvhNcBKwcY5VpqlqWOym\nal67iGyYow2fq+qiYLlq2lwL2BfYFwKR26yqU71f3wUwQUT+BOAFAGcA2ERE9lFVzbiBKsR+wH4Q\nyNlmVf02/W9p958vItvDqrCPEZEdVPXVPM9ZVdgX2BcCBbdZRAbAzUAwSVU/ivK4asR+wH4QyNpm\nVW0XkYMBPAlgAwB7B7eU1QDcCCskuU3wt8WgsiproCGoDvskbGzlKgBHqurLOR7i7xD5Un38qU/y\npeNUyiDYyUE2wwDMCpar6bU/DWBolvtOgEvRq6Y2VzX2BfYFT0ltVtUvRORUAI8B+A6AH6JGruiy\nH7AfeOJo8//BTrYAG5tbM4EG9gX2BU8xbT4WlqWsAG6L+Jiqw37AfuDJ2WZVnSkiWwP4BWz/95//\nfQBXqOqdIhJeoGlTVQYayqxsQydEZCBsTtSBANoB/EBVH83zML9QyOCsaxm/UMhnWdeqvExjrBX2\nnviq6bW3o/baXLXYF/6LfcHE0ean4CL+hxW5jbJiP/gv9gMTR5v9jJ9BRW6j7NgX/ot9wRTT5u8H\nP1sB3BPxMVWF/eC/2A9M3jar6mJVvUBVhwPoB8sGWUtVRwVBhiYAw4O21PKMXDWrLBkNIrImLNoV\n/rNPU9W/RXiof9AwIs+6/v1VuTOp6qdw07rkk/7aH862ItxrXwUg9nQ5VV0v4qofwuY5bkId/L+S\nwL5g2BdSlPz/CtIIF8IO0Kp+fnD2A8N+kCKO/1fNDBkKsS8Y9oUUBf2/RGRLAJvB9p9HVfWbiG2q\nGuwHhv0gRUH/L1VdAGBB2p83gw3BUACvR2wjxSjxjAYRWQ12tW0k7B99tqreGOWxqvoJgNnBr+Ny\nrQub4g0Avgg6aq17A66ASdbXLiLNALaHvbdveGO3yk5VV8I6sgDYIU9huvA1tQD4d9JtqwbsC0Vj\nX8gjeO1rwV57taaEAmA/KAH7QX7+POmzs65VJdgXisa+kOp4b7nmZptgPyga+0F+R3jLNZnpU+sS\nDTSISHfYuOEtYTv4b1T1qgI38xBshxwhIttmeZ7tYZEvBfBg8S2uHqq6BMAzsNe+R5BSlsmhAFYL\nlu8vR9vyCN//1WBTLXUgIoMB7AH7f01Q1aWZ1qsn7AvFY1+I5CC4wkq5xndWFPtB8dgPIvmRt/x8\nkdsoC/aF4rEvpKzfCcBRwa/zYPtUzWA/KB77QW4i0g/AqcGv01V1QhFtpVKpaiI3AM2wgi7tsDSZ\nq4vczoYAVgbbmASgW9r93WDRsXZY1Gv9Arb9SfC4GSW8znHea7wg5vdwV2/bDwBoSrt/LQAzg3Xm\nA1i9gG2H23025jb3BbAwfF8B9E27vwmW3hU+/9gCtj0xfFxS+20SN/aFWN7DhuwLsMJ2Of+PsKu4\ns73tjE9yfy7h/WA/KP09bNR+sB2A/nme5zfBNtoBTE5yX47hPWFfKP09bMi+kGGb+3nrX1uufTim\n94P9oPT3sGH7AYABeZ7jVW8b45Laj3nLfUuyRsPdsAroCuBZALcEU9Zk06oZpuNR1Y9E5EoAv4RN\nT/KyiFwO4GMA6wM4Gy4SeoWqfpxp4yKyPoCd0/7cK3hcLxE5Pu2+x1V1Tobt7AWgv/cnfwzR6LTt\nLFHV+zK1JwpVnSgid8Oi1d8F8LSIXAc7qRgF4BxYlVUFcJa66WPS27wFgNFZnqZ/htd+r6ouK7LN\nC0XkbNiUMsMAvC4iv4VdZR0I4H8BjA/afJeqvpilzeug41Q1/b3709v8oqrOKKbNZcC+wL4wDMX1\nhZ0BPCEiz8AOyKbADhY6w2ox7AUrAtYt2M5fVPW5YtpbBuwH7AfDUFw/2BvAL0XkCdg47qkAvoGN\nvR0F4ERYMAIAlgI4uZi2lhH7AvvCMBR5fJTmOG+51oZNsB+wHwxD8f3gHBEZD+AfAF4DMBdAH9gQ\nmR/D/gcK4DxVreoMt7qWVAQD7spC1FvWaCEsLegmWFSqLe1x4d/+L097ji+wPbtk2c7EArZRdATU\ne75uAB7J8dpXAjg/zzYuLKDNbQCGxtDuC2FFZ9LbHD7HwwC65Hj8uALa3A7guKT2ZfYF9oVK9YXg\nsZleb/o2WgFcBkAqvb+zH7AfVKAfhPfNALB9pfd19gX2haT6Qtp2VgewLHjclErv1+wH7Afl7AcA\nbsjy2PDxiwGcWun9vNFvSWY0aFzrq+1RJ4vIfQD+BxaxXAs2Hu0NADeq6lMxtinfenFtJ/8GVFcA\nOEBEjoLNRbsFLGL3NYAXAPxRVSfF2JaS2wwAqnqRiDwJGx81FsA6sCtQ7wC4RVX/EWNbYmlzgtgX\n2BeK7QtXA5gMYDfYFdsBANaGpRYuBDAN9tpvVyuKVc3YD9gPiu0HtwD4CsAOsKt0awNYE3aQOg/A\nm7AD7btUtTXbRqoI+wL7QqnHRwBwOFxF/VrLZgDYDwpZL/sGGrcf3BisPw6WGdEPVgz7UwCPwjI8\nq3ka04Yg1jeJiIiIiIiIiEqX+PSWRERERERERNQ4GGggIiIiIiIiotgw0EBEREREREREsWGggYiI\niIiIiIhiw0ADEREREREREcWGgQYiIiIiIiIiig0DDUREREREREQUGwYaiIiIiIiIiCg2DDQQERER\nERERUWwYaCAiIiIiIiKi2DDQQERERERERESxYaCBiIiIiIiIiGLDQAMRERERERERxYaBBiIiIiIi\nIiKKDQMNRERERERERBQbBhqIiIiIiIiIKDYMNBARERERERFRbBhoICIiIiIiIqLYMNBARERERERE\nRLFhoIGIiIiKJiLHi0i7iLSJyNBKtycKEZkZtPmWSreFiIioHjHQQERERI1GgxsRERElgIEGIiIi\nSoSIPBdkDjxb6bYQERFR+TDQQERERElh5gAREVEDYqCBiIiIkiSVbgARERGVFwMNRERERERERBQb\nBhqIiIgoKxHpIyK/E5EPRGSZiHwtIk+LyGE5HvNXEWkHMC740/igVoN/+yTLY1cTkV+JyEsiMkdE\nWkRktog8LCKHRmzzPiLyr+DxS0VkuohcLSIDIz5+uIj8LJ3yuyIAAAhFSURBVHjOT4LXvSyYreJu\nEdkrx2MnB6/v/QjPs0bw+tpF5A9R2kZERFQLOle6AURERFSdRGQkgAkABsDVWugKYDcAu4vIrQBe\nyPBQvzaDIHOdhvYMz7c7gHsArJH2mHUA7A9gfxF5DMARqrosS5uvAXCG1w4A2ADA/wL4vojsm+lx\n3uOHAfg47fGhIQCGAjhCRO4EcIKqpr+OmwH8EcAIEdlWVV/P8XTfB9AcPM9fcrWLiIioljCjgYiI\niDoQkd4AngTQH3YifDeAfQFsDeB7AN4AcAKAUzI8/BwAmwOYHPz+7+B3/5aSFSAiOwF4DEBfAF8B\nOA/AAQC2Cn7eEbRjHwC3ZWnzGbAggwL4AsBpALaDZVZcDmA1APcC6JHjpXcC0ALgIQCnA9gDwJjg\n5ykA3gu2fwyA8zM8/m8AlgfLP8jxPIC9fwAwRVXfyrMuERFRzRBVFoMmIiKiVCJyJYAzYSfVv1LV\nK9Lu7wTgXwD2DP6kAIar6ixvnYmwk/znVHW3HM/VGcBHsGyBxwEcpqorMqx3EoA/B8+1p6o+493X\nD8AnALoD+BTAdqo6N+3xu8KCJ52DbdymqiemrdMdwGqq+nWO9t4CCxIsATBIVRen3X8bgGMBfANg\ngKq2ZNjGaABvBu04Q1VvyPZ8REREtYYZDURERJRCRJoBnAg7CZ6SHmQAAFVtA/BDACtjeMqjAKwL\nYAWA4zIFGYLnvBlAOBThhLS7j4fLVPhZepAhePxEADflaoiqLs8VZAicCaANQE9YpkO6m4OfqwM4\nJMs2wgBHKywLgoiIqG4w0EBERETptoINYQCyDFMAAFX9AsBTMTzfgcHP51V1QZ51X4DVfdgh7e/h\nCf9CAA/nePwthTRMRDqLyCARGSEim4rIpgAGAZgfrLJF+mNU9UUAHwa/dhg+EQRyjoYFch6O8JqJ\niIhqCotBEhERUbrNveU38qz7OoD9Sny+rWEn3XsHs1VE0T/t982DbbyVoUCj721YFkFzthWCoRw/\nghVr3BJAlyyrKoC1stz3F1hdiN1EZIiqfubddyCANYPH35qjrURERDWJGQ1ERESUbg1veU6edfMN\nM4hi7eCnFnDrlraNsM052xsM+ciaQSAifQG8BuAGANvCzQqR6QZYTYhMboMNKxHYsA5fOGziC1jN\nCCIiorrCjAYiIiLKpRxVozsFPx8HcFaJ2yq1vb+HzTKhAB6AZRxMATDHL+ooIp8CGAwLJHRshOoc\nEXkUwMGwehK/CR43AFZAMyxGyarcRERUdxhoICIionQLveV1APwnx7rrxPB88wEMANBFVacWuY2F\nQVtytieYLWONLPf1BnAELAhwp6qmZyL4+ua4L3QzLNAwXER2UdUXYNkNnYLn+GuEbRAREdUcDp0g\nIiKidO96y9vkWTfX/VGv1r8FywzYOqiPUIx3g22MFpFcxzdbIHvNhQ3hajf8I9sGRGRjAL0itOkJ\nAJ8Hy2FRyBNg78uLqvpxhG0QERHVHAYaiIiIKN1kuKyGY7OtJCKDYMMAsgmnqeya5/nCWSJWR4ZZ\nGiKaEPxcA8ABOdb7YY77/CBHzxzr/SRKg4JhEbfCAiCHicheADYK7v5LlG0QERHVIgYaiIiIKIWq\ntsKdII8WkZ+nrxMMQbgJOWZvAPBl8HO9PE95G4DPgue7SkTG5lpZRHYSkV0ybGN5sI1rRGTtDI8b\nB+BkZM+0+I93X8ZhEyJyAIBTc2wj3S3Buj3gZphYDOCfER9PRERUcxhoICIiokwuhqX9C4ArRORv\nIrKXiGwpIkcCeBXAXgD+nWMbrwQ/1xaRa0RkjIisH9yGhisFgY0jYBkQvQA8KyJ3iMihwWO2FpED\nROTXIjIFwIsANvOfSFXnADg/+HU4gMkickrw2J1F5DK4oQzzMjVWVRcAeCx4zfuIyFMicnDQhr1F\n5GYA9wP4ONs2MmzzU1i2hcDqRyiAe1R1eZTHExER1SJhsWMiIiLKREQ2AfA0gP7oOLtCOCzgxeCn\nAhiuqrO8x/cE8A7sxD/98TNVNSXTQUS2hdVGGJJhff95AeB4Vb0zQ5uvBXB6+Gva3XMA7AfLJlgX\nwF9V9UR/BREZHLymoRkerwA+BbAvbIaMjNvI0KbDAdzjbWMnVX0t12OIiIhqGTMaiIiIKKNgBohN\nAVwB4ENYxsFcAM8COFpVTwpXRYahBKq6FMAOAK4HMBXAUm/dTOu/DivI+GMAjwL4AkALbEjELABP\nAjgXwIhMQYZgG/8LCyY8CZvNYjmAjwBcB2BLVZ2cp82fw6a3vBLA9OA1fwPgbQC/DrYxLdc2MngQ\nwJJg3WkMMhARUb1jRgMRERFRgkRkA1igRgGcpapXV7hJREREiWJGAxEREVGywpkuVgG4o5INISIi\nKgcGGoiIiIgSIiKrw8108UBQtJKIiKiudc6/ChERERFFJSL9AKwGYCCAiwCsAaAdwO8q2S4iIqJy\nYaCBiIiIKF5XAjjO+10B/FFV365Qe4iIiMqKgQYiIiKieIWzUbQC+BjAnwH8oaItIiIiKiPOOkFE\nREREREREsWExSCIiIiIiIiKKDQMNRERERERERBQbBhqIiIiIiIiIKDYMNBARERERERFRbBhoICIi\nIiIiIqLYMNBARERERERERLFhoIGIiIiIiIiIYsNAAxERERERERHFhoEGIiIiIiIiIooNAw1ERERE\nREREFBsGGoiIiIiIiIgoNgw0EBEREREREVFsGGggIiIiIiIiotgw0EBEREREREREsWGggYiIiIiI\niIhiw0ADEREREREREcWGgQYiIiIiIiIiig0DDUREREREREQUGwYaiIiIiIiIiCg2/x+/PjMt5Ybk\n/wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "image/png": { + "height": 377, + "width": 525 + } + }, + "output_type": "display_data" + } + ], "source": [ "rides[:24*10].plot(x='dteday', y='cnt')" ] @@ -91,11 +380,198 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yrholidaytemphumwindspeedcasualregisteredcntseason_1season_2...hr_21hr_22hr_23weekday_0weekday_1weekday_2weekday_3weekday_4weekday_5weekday_6
0000.240.810.0313161.00.0...0.00.00.00.00.00.00.00.00.01.0
1000.220.800.0832401.00.0...0.00.00.00.00.00.00.00.00.01.0
2000.220.800.0527321.00.0...0.00.00.00.00.00.00.00.00.01.0
3000.240.750.0310131.00.0...0.00.00.00.00.00.00.00.00.01.0
4000.240.750.00111.00.0...0.00.00.00.00.00.00.00.00.01.0
\n", + "

5 rows × 59 columns

\n", + "
" + ], + "text/plain": [ + " yr holiday temp hum windspeed casual registered cnt season_1 \\\n", + "0 0 0 0.24 0.81 0.0 3 13 16 1.0 \n", + "1 0 0 0.22 0.80 0.0 8 32 40 1.0 \n", + "2 0 0 0.22 0.80 0.0 5 27 32 1.0 \n", + "3 0 0 0.24 0.75 0.0 3 10 13 1.0 \n", + "4 0 0 0.24 0.75 0.0 0 1 1 1.0 \n", + "\n", + " season_2 ... hr_21 hr_22 hr_23 weekday_0 weekday_1 weekday_2 \\\n", + "0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "1 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "2 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "3 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "4 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " weekday_3 weekday_4 weekday_5 weekday_6 \n", + "0 0.0 0.0 0.0 1.0 \n", + "1 0.0 0.0 0.0 1.0 \n", + "2 0.0 0.0 0.0 1.0 \n", + "3 0.0 0.0 0.0 1.0 \n", + "4 0.0 0.0 0.0 1.0 \n", + "\n", + "[5 rows x 59 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday']\n", "for each in dummy_fields:\n", @@ -121,7 +597,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "collapsed": false }, @@ -147,7 +623,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { "collapsed": false }, @@ -174,7 +650,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { "collapsed": false }, @@ -214,7 +690,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": { "collapsed": true }, @@ -239,7 +715,7 @@ " #\n", " # Note: in Python, you can define a function with a lambda expression,\n", " # as shown below.\n", - " self.activation_function = lambda x : 0 # Replace 0 with your sigmoid calculation.\n", + " self.activation_function = lambda x : 1/(1 + np.exp(-x)) # Replace 0 with your sigmoid calculation.\n", " \n", " ### If the lambda code above is not something you're familiar with,\n", " # You can uncomment out the following three lines and put your \n", @@ -267,34 +743,34 @@ " #### Implement the forward pass here ####\n", " ### Forward pass ###\n", " # TODO: Hidden layer - Replace these values with your calculations.\n", - " hidden_inputs = None # signals into hidden layer\n", - " hidden_outputs = None # signals from hidden layer\n", + " hidden_inputs = np.dot(X, self.weights_input_to_hidden) # signals into hidden layer\n", + " hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer\n", "\n", " # TODO: Output layer - Replace these values with your calculations.\n", - " final_inputs = None # signals into final output layer\n", - " final_outputs = None # signals from final output layer\n", + " final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) # signals into final output layer\n", + " final_outputs = final_inputs # signals from final output layer\n", " \n", " #### Implement the backward pass here ####\n", " ### Backward pass ###\n", "\n", " # TODO: Output error - Replace this value with your calculations.\n", - " error = None # Output layer error is the difference between desired target and actual output.\n", - " \n", - " # TODO: Calculate the hidden layer's contribution to the error\n", - " hidden_error = None\n", + " error = y - final_outputs # Output layer error is the difference between desired target and actual output.\n", " \n", " # TODO: Backpropagated error terms - Replace these values with your calculations.\n", - " output_error_term = None\n", - " hidden_error_term = None\n", + " output_error_term = error\n", + " \n", + " # TODO: Calculate the hidden layer's contribution to the error\n", + " hidden_error = np.dot(output_error_term, self.weights_hidden_to_output.T)\n", + " hidden_error_term = hidden_error * hidden_outputs * (1 - hidden_outputs)\n", "\n", " # Weight step (input to hidden)\n", - " delta_weights_i_h += None\n", + " delta_weights_i_h += hidden_error_term * X[:, None]\n", " # Weight step (hidden to output)\n", - " delta_weights_h_o += None\n", + " delta_weights_h_o += output_error_term * hidden_outputs[:, None]\n", "\n", " # TODO: Update the weights - Replace these values with your calculations.\n", - " self.weights_hidden_to_output += None # update hidden-to-output weights with gradient descent step\n", - " self.weights_input_to_hidden += None # update input-to-hidden weights with gradient descent step\n", + " self.weights_hidden_to_output += self.lr * delta_weights_h_o / n_records # update hidden-to-output weights with gradient descent step\n", + " self.weights_input_to_hidden += self.lr * delta_weights_i_h / n_records # update input-to-hidden weights with gradient descent step\n", " \n", " def run(self, features):\n", " ''' Run a forward pass through the network with input features \n", @@ -306,19 +782,19 @@ " \n", " #### Implement the forward pass here ####\n", " # TODO: Hidden layer - replace these values with the appropriate calculations.\n", - " hidden_inputs = None # signals into hidden layer\n", - " hidden_outputs = None # signals from hidden layer\n", + " hidden_inputs = np.dot(features, self.weights_input_to_hidden) # signals into hidden layer\n", + " hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer\n", " \n", " # TODO: Output layer - Replace these values with the appropriate calculations.\n", - " final_inputs = None # signals into final output layer\n", - " final_outputs = None # signals from final output layer \n", + " final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) # signals into final output layer\n", + " final_outputs = final_inputs # signals from final output layer \n", " \n", " return final_outputs" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": { "collapsed": true }, @@ -339,11 +815,33 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ".....\n", + "----------------------------------------------------------------------\n", + "Ran 5 tests in 0.016s\n", + "\n", + "OK\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import unittest\n", "\n", @@ -376,7 +874,7 @@ " def test_activation(self):\n", " network = NeuralNetwork(3, 2, 1, 0.5)\n", " # Test that the activation function is a sigmoid\n", - " self.assertTrue(np.all(network.activation_function(0.5) == 1/(1+np.exp(-0.5))))\n", + " self.assertTrue(np.all(network.activation_function(0.5) == 1/(1 + np.exp(-0.5))))\n", "\n", " def test_train(self):\n", " # Test that weights are updated correctly on training\n", @@ -432,18 +930,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 39, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Progress: 100.0% ... Training loss: 0.051 ... Validation loss: 0.130" + ] + } + ], "source": [ "import sys\n", "\n", "### Set the hyperparameters here ###\n", - "iterations = 100\n", - "learning_rate = 0.1\n", - "hidden_nodes = 2\n", + "iterations = 8000\n", + "learning_rate = 0.5\n", + "hidden_nodes = 20\n", "output_nodes = 1\n", "\n", "N_i = train_features.shape[1]\n", @@ -460,7 +966,7 @@ " # Printing out the training progress\n", " train_loss = MSE(network.run(train_features).T, train_targets['cnt'].values)\n", " val_loss = MSE(network.run(val_features).T, val_targets['cnt'].values)\n", - " sys.stdout.write(\"\\rProgress: {:2.1f}\".format(100 * ii/float(iterations)) \\\n", + " sys.stdout.write(\"\\rProgress: {:2.1f}\".format(100 * (ii + 1)/float(iterations)) \\\n", " + \"% ... Training loss: \" + str(train_loss)[:5] \\\n", " + \" ... Validation loss: \" + str(val_loss)[:5])\n", " sys.stdout.flush()\n", @@ -471,14 +977,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 76, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCQAAALJCAYAAABsnPJvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAewgAAHsIBbtB1PgAAIABJREFUeJzs3Xd4VFX+x/HPSQ8lJISSEIog6iJFCEiRJmBBpYnoShEE\nVBALCzYURVAssLqKiIqKCyhrF0RFpKP8YKlSFFEUiCS00EEgIcn5/THJ3YS0STKZIeH9ep775M6d\n7z3ne2ZCHuY7555rrLUCAAAAAADwJj9fJwAAAAAAAC48FCQAAAAAAIDXUZAAAAAAAABeR0ECAAAA\nAAB4HQUJAAAAAADgdRQkAAAAAACA11GQAAAAAAAAXkdBAgAAAAAAeB0FCQAAAAAA4HUUJAAAAAAA\ngNdRkAAAAAAAAF5HQQIAAAAAAHgdBQkAAAAAAOB1FCQAAAAAAIDXUZAAAAAAAABeR0ECAAAAAAB4\nHQUJAAAAAADgdRQkAAAAAACA11GQAAAAAAAAXkdBAgAAAAAAeF2xFiSMMZWNMTcZY8YZY+YZYxKN\nMWnp23vF2G9PY8wnxpgdxphTxphDxpitxpj3jTF3GmNMcfUNAAAAAADyZ6y1xde4MWnnHMrc2Qxr\n7SAP91dD0n8ktT6nLyck/XiEtfa4J/sGAAAAAADuC/BCHxmFgT8lbZN0vXIuFhSJMaa6pOWSLpKU\nIul9SV9LipNrJkhtSddI6uHpvgEAAAAAQMEU9wyJpyWtlbTWWptojKklaadcBQmPzpAwxiyX1FbS\nYUk3WGvX5hLnZ609d+YGAAAAAADwomKdIWGtHVec7WcwxvSTqxhhJd2dWzEiPSeKEQAAAAAA+Fhp\nucvGfek/f7XWzvZpJgAAAAAAIF/eWEOiWKUvZNlCrtkRX2U6HiApRlKqpH3W2hTfZAgAAAAAAM5V\nGmZItMi0v8UYU9UY829JR+Var+JPSUeNMV8YY67wSYYAAAAAACCL0lCQuDzTfqSkLZIGSAqVa9aE\nTd/vIWmNMaav1zMEAAAAAABZlIaCRMVM+y/IVZSYKamhpGBJ1SU9LilJUqCkacaYJt5OEgAAAAAA\n/E9pKEiUzbQfLGmatfZOa+1Wa22KtXavtXaipIHpMYGSxns9SwAAAAAA4CgNBYkz6T+NpBRJo3MK\nstZ+JGldetx1xpgw76QHAAAAAADOVeLvsiHpRPpPK2mjtTYxj9jvJDWTqxDTVNJSdzsxxvwl1wwM\nK+mwG6ekSkpzt30AAAAAwAXDT5K/G3EV5fpSPclaWza/4JKmNBQkdueyn19s5QL2E6z//cJUKeC5\nAAAAAAAUVrCvEygOpaEg8XOm/fwqTJmfTylgPzZjJ7hcOYWFhubdkb+//P3dKXjBF5KTk5WYmKjK\nlSsrKCjI1+nAA3hPSxfez9KF97N04f0sfXhPSxfez5IhNTVVqamp+cYlJjoXANi84kqq0lCQWCfp\ntKQQSXXyib04035CAfs5LKmKykhdxjynzx55sICn43yyYcMGNW3aVPPnz1dsbKyv04EH8J6WLryf\npQvvZ+nC+1n68J6WLryfpUuVKlUyihLuLBtQ4pT4RS2ttackzZfrupr6xpiLc4ozxhhJ3dMfnpK0\nwTsZAgAAAACAc533BQljzABjTFr6NiaXsBczwiVNMcbkNPNjtFwzJKyk96y1Z4shXQAAAAAA4IZi\nvWTDGNNaUt1Mhypl2q9rjBmQOd5aOyOP5nK9ZsZau9YYM0XSfZKuk7TCGPOKpN/kWrzyDkl908P/\nlDTO7UEAAAAAAACPK+41JO6SNCCH40ZSm/Qtg5WUV0EiP8MllZPUX9KVkj4853krabukLtbaUnn9\nDQAAAAAAJYU3LtmwBdjyaiPvTqxNs9YOlHSDpM8lxUtKknRI0vdyFSwaWWt/L/RIAAAAAACARxTr\nDIn0AsHAIrYxQwWYOWGtXSBpQVH6BAAAAAAAxeu8X9QSAAAAAACUPhQkAAAAAACA11GQcF+qJNdy\nnCjxoqOj9fTTTys6OtrXqcBDeE9LF97P0oX3s3Th/Sx9eE9LF97P0sXf3z9jN9WXeRQXY22+60VC\nkjEmXlKMyku3PDVJnz3yoK9TAgAAAACUYtWrV1dCQoIkJVhrq/s6H09jhgQAAAAAAPA6ChIAAAAA\nAMDrKEgAAAAAAACvC/B1AgAAACi4Zs2aad++fb5OAwDghqioKK1bt87XaZx3KEgAAACUQPv27ctY\n6AwAgBKJggQAAEAJ5ufnx+39AOA8tXfvXqWlpfk6jfMWBQkAAIASLDo6WvHx8b5OAwCQg0y37UQO\nWNQSAAAAAAB4HQUJAAAAAADgdRQkAAAAAACA11GQAAAAAAAAXkdBAgAAAAAAeB0FCQAAAAAA4HUU\nJAAAAAAAgNdRkAAAAAAAAF5HQQIAAAAAAHgdBQkAAAAAAOB1FCQAAAAAFNmkSZPk5+cnPz8/jRw5\n0mv9Hjt2zOm3YsWKXuv3fNC4cWNn7Js3b/Z1OkCBUZAAAAAAillcXJzzwdFT2zPPPOPrYeXIGHNB\n9etLGWO+EMeO0iHA1wkAAAAAFwo+OBYfa62vUwBQQBQkAAAAgGIWFham+++/P8+YNWvWaM2aNTLG\nqFq1arr55pvzjG/evLknU/QIX8+OoOADlCwUJAAAAIBiFhERoddeey3PmHHjxmnNmjWSpEsuuSTf\n+PPN8OHDNXz4cK/3W6FCBaWmpnq9XwBFxxoSAAAAAADA6yhIAAAAAAAAr6MgAQAAAJRgPXr0cO68\nMXfuXEnSoUOH9NJLL6l169aKiYlRYGCg/P39s527Z88evfvuu7rjjjvUuHFjRUREKCgoSBUrVlSD\nBg10zz33aPny5W7l4c5tP7/88ksnpmfPns7x+fPnq1evXqpdu7ZCQ0NVpUoVderUSdOmTVNaWlqe\n/bp728/w8HAn7vjx45KkXbt26dFHH1XDhg1VoUIFhYWFqUGDBnr44Ye1b98+t8ad4auvvtItt9yi\nGjVqKDQ0VNWrV1fHjh317rvvKikpSZI0YsQIJwdfXJKzb98+jR8/Xm3atFF0dLSCg4NVpUoVNW/e\nXKNHj9aOHTvcbmvLli0aOXKkmjdvrkqVKikoKEihoaGKiopS8+bNdc899+g///mPTpw4kWsbx48f\n1+TJk9W5c2fVqFFDZcqUUVBQkMLDw1W/fn317NlT//znP7V9+3ZPDB/nI2stmxubpHhJVuVlb5k4\nyQIAAPhSTEyMlWRjYmJ8nQo8ZOzYsdYYY/38/GyHDh3cPq9Hjx7OeV9++aVdsGCBrVKlinMs85bZ\n+PHjrb+/vzXG5BibcdwYY7t27WqPHz+eZx6vvvqq086IESNyjJkzZ44Tc/PNN9tTp07ZPn365JhD\nxrF27drZEydO5Nrv0aNHnXMjIiJyjQsPD3faPnbsmH3//fdtuXLlcu23QoUKdvny5XmO2VprT506\nZbt3757l9Tq3rWbNmtm4uDj7j3/8w3l+0qSif6Zo3Lix096mTZvyjJ00aZIz3tzGHBQUZJ966ql8\n+x05cqTbvzsPPPBAjm0sWrTIVq1aNdc2MrdTvnz5Qr0+54Oi/q3OOF9SvD0PPhd7emNRSwAAAKCU\n2LRpk1588UWdOXNGERERateunapWrapDhw5lm+kQHx8va62MMbrkkkv0t7/9zfmm++jRo9q4caN+\n/fVXSdLXX3+tLl26aNmyZR67k4W1Vv369dPs2bMVGBioVq1a6ZJLLtHZs2f1f//3f8639StWrNCQ\nIUM0a9asfNtzp09jjL744gsNHjxYklS3bl01b95cZcuW1e+//67vv/9eaWlpOn78uG6++WZt27ZN\nlStXzrG9tLQ0devWTYsXL3ZelypVqqh9+/aqUKGCdu3apeXLl2vDhg3q2rWrrrrqqoK8RB7z5JNP\n6vnnn5cxRsYYhYaGqkOHDqpWrZoOHjyopUuX6tixY0pJSdH48eOVkJCgadOm5djWuHHj9Morrzht\nVa1aVS1atFDVqlUlSYcPH9bWrVu1bdu2XN+TX3/9VV27dlVSUpKMMQoODlaLFi1Up04dhYSE6MSJ\nE9q5c6c2b96skydPFtvrgvOArysiJWUTMyQAAMB5hBkSpY8nZkgEBgZaPz8/+8QTT9ikpKQsccnJ\nyVkeT5kyxb7zzjt2//79uba9bt0626hRI6f9KVOm5Bpb0BkSISEh1hhjO3bsaOPi4rLFjh8/Psu3\n51u2bMmxzYwZEsYYt2dIhISE2IiICDtnzpxscevXr7eVK1d2+n3ooYdybfOll17K8u3+s88+a1NT\nU7PEJCQk2A4dOlhjjDNmb86QmD9/fpZZB3//+9/tkSNHssScPn3aDhs2LMtY/v3vf2dr69SpU7Zs\n2bLWz8/P+vv72zfffNOmpaXl2G9iYqJ9++23c/ydufPOO52+brrpJnvw4MEc20hJSbGLFy+2AwcO\nzOeVOH8xQyLvjTUkAAAAgFLAWqvU1FQ98sgjeu655xQUFJTl+cDAwCyPhw0bprvuuktVqlTJtc2m\nTZtq0aJFqlChgiRp8uTJHss3KSlJsbGxmj9/vmrWrJnt+dGjR+uaa65xHn/44Yce6Tfjdfr222/V\nvXv3bM/Hxsbq1VdfdWJz6/fMmTN67rnnnJkRo0aN0pNPPik/v6wfsapVq6avv/5a9erVU3JyskfG\nUBCPPvqos9+5c2d9+OGHCg8PzxITEhKiKVOmqH///hlfxmr06NFKSUnJErdhwwadOnVKknTjjTdq\n6NChuc6YqVSpku6++24NGzYs23MrVqyQJBljNGPGDEVGRubYhr+/vzp27Kj33nvPzdGipKEgAQAA\nAJQS4eHhGjdunEfbrFy5sm688UZZa/Xbb78pISGhyG1a67p04uWXX85WKMls0KBBzv6aNWuK3K/k\n+hDct29ftWjRIteYW2+9VeXKlZPkWggypzF/8cUXOnr0qKy1qlSpksaMGZNre2XKlNGLL77ojNtb\nVq9erS1btri+ifbz05QpU/Ls/5VXXlHZsmVlrdW+ffs0e/bsLM9nLAYqKdfLWNyR0U5AQIAiIiIK\n3Q5KPtaQAAAAQDbNmkkFvMnAeSUqSlq3ztdZeJcxRt26dVNwcHCBz927d69Wr16tbdu26ejRozp1\n6pTzTbkk/fzzz87+xo0bFRMTU+R8IyMj1b59+zxjmjRp4uzv2rWryH1mFAR69eqVZ1xgYKDq16+v\n1atXO32fO+Zly5ZJcr3uPXv2zPd1v/HGG1WxYkUdPnzYa0WJJUuWSHLl2K5dO1100UV5xkdERKhn\nz556//33JUlLly7Vrbfe6jxfo0YNZ3/evHnavXt3lmPuqlGjhhITE3X27Fm9++67uueeewrcBkoH\nChKFYPNfLwcAAKBE27dP8sAX4fCypk2bFij+xx9/1GOPPaYlS5bke3vNDAcPHixMalkYY9SgQYN8\n4zJP5c/87XxRNWzYsMh9b9y40dnPa7ZFBn9/f8XGxmrRokVuZll0P/74o7Pv7oKarVu3dgoSGzZs\nyPJcgwYNVK9ePf3yyy/av3+/rrjiCg0YMEDdu3dXq1at3C6G3XbbbdqwYYOstRo6dKjmzp2r3r17\nq1OnToqKinJzdCgNKEgAAAAgm5L+maCk519YBZlG/9lnn6lPnz5KSUlx7piQl4wZEydOnChSjhky\n1qXIS8blHNZanT171iP9FrRvSTn2nZiY6Oy7O0ugevXqbsV5SuYca9Wq5dY5mWdR5FR8mjlzpq6/\n/nodOXJER48e1aRJkzRp0iQFBQUpNjZW7dq1U+fOndW+fftcf6dGjBihxYsXO8WZefPmad68eZKk\nOnXqqG3bturQoYO6d+/u1nuFkouCBAAAALK50C53KC1CQ0Pditu9e7f69++v1NRU57afQ4YMUevW\nrVW7dm1VqFAhy6KYI0aM0KRJkyTJ7ZkU+fHmWgrF0Xfm21GWKVPGrXMy1qXwlsw5li1b1q1zMuKs\ntTkWn5o2barNmzfrmWee0Ycffuj0cfbsWf33v//Vf//7X02cOFEXXXSRnnvuOfXu3TtbG4GBgfr2\n2281depUTZo0Sdu3b3ee27Fjh3bs2KEZM2YoODhYd999t55//nmvv3bwDha1BAAAAC4wkydP1pkz\nZyRJbdq00aZNmzRixAg1b95clStXznaHDk/NiihNMn9AzrjzRH7++uuv4konR5lzdLfvjDhjjMqX\nL59jTLVq1fTWW2/pwIEDWrRokcaOHatrr71W5cqVc2bb7Nq1S3379tXYsWNzbMPPz0/33nuvtm3b\npp9++klvvPGG+vXrp1q1ajltJCcn6/XXX1fr1q2zFFdQelCQKITDabt8nQIAAABQaBmLHUrS2LFj\n8732Py4urrhTKnEqVark7MfHx7t1jrtxnpL5Ep4///zTrXMyLx6aeYw5CQ4OVocOHfTUU09p/vz5\nOnTokL788ks1a9bMmYXy3HPPZZkBkZN69eppyJAhmjFjhnbu3KktW7Zo2LBhTmHip59+0sSJE93K\nHyULBYlCWJb0ij7f+rmv0wAAAAAKZc+ePc5+fotLJiUlac2aNT69xOJ81LhxY2c/424ceUlLS8u2\nSGRxy3yXkpUrV7p1Tua42NjYAvUXGBioLl26aMmSJc5aFGlpafrmm28K1M7ll1+uyZMna+TIkc7a\nJXPnzi1QGygZKEgUUq9P875VEAAAAHC+8vP738eA/C43+OCDD3TixIkstwGFdPXVV0tyrbXwxRdf\nKDk5Oc/4efPm6dChQ14t7HTs2FGSK8fly5fnO9Pl6NGj+uKLL7KdX1Bly5ZVhw4dnMf79+8vVDvd\nunWT5Mq/sG3g/EZBAgAAALjA1KlTx9nP65vn+Ph4Pf7448yOyMEtt9zi3AEiMTFRzz77bK6xp0+f\n1uOPPy5JXi3stGjRQo0aNZLkmqlw//335xk/cuRIZ62GqKgo9ejRI8vzR44ccbvv3bt3O/tVqlRx\n9lNTU92+hWvGZSbGmCxtoPSgIAEAAABcYLp27ersP/nkk5ozZ062mJUrV6pdu3Y6dOiQ23douJCE\nhIRo9OjRklxFhueff17PPfecUlNTs8Tt2bNHN910k37++WeFhIR4Pc+JEyfKGCNrrebNm6c+ffro\n6NGjWWJOnz6t+++/X9OnT5fkKgA8//zzCgjIelPGmTNnqn79+po8ebISEhJy7O/MmTN68cUXtXDh\nQudY586dnf2TJ0+qevXqGj58uFatWpVr3itWrNBjjz3mPL7xxhvdHjNKDm77CQAAAFxghg4dqsmT\nJys+Pl4nTpxQz5491bBhQzVs2FABAQHavHmzNm7cKGOMrrrqKjVp0kSvv/66z/J1Z4aGL2ZxjBw5\nUt9++62WLVsma62eeuopvf7662rfvr3CwsIUFxen5cuX6+zZs2rUqJGuuuoqvfXWW5KyXjZTnK67\n7jo98cQTev7552Wt1UcffaS5c+eqQ4cOqlatmg4dOqQlS5Y4RQpjjAYOHKgBAwbk2N4vv/yi4cOH\na/jw4apdu7YaNmyoypUrKzU1Vfv27dOqVat07Ngxp637779f9erVy9LGyZMnNXnyZE2ePFnh4eFq\n0qSJqlevrtDQUCUmJmrr1q369ddfnfiaNWtmKU6g9KAgAQAAAJxHvDGlv3z58vr666/VpUsX55vu\nLVu2aMuWLZLk3N3guuuu0wcffKDx48d7tP+CjtGdeF+sceHn56evv/5avXv31ldffSXJtV7CJ598\n4sQYYxQbG6svvvhCEyZMcI6HhYV5Lc9nn31WlStX1ujRo3Xq1CmdPn06y0KTGe93YGCgHn30UT3z\nzDM5tpNxW88Mu3bt0s6dO7PEZLQVEBCgkSNH6oUXXsjyvL+/v8qWLeusXXLs2DEtXbo0W18Z/bRs\n2VIfffSRwsPDCzd4nNcoSAAAAADniYwPYQX9tj/jQ2BBNGrUSJs3b9Zrr72mL7/8Ur///rtSU1MV\nFRWlxo0bq2/fvrr55puz5eZO/u7EuJuvO/HuxhT0dXInPjQ0VHPmzNFXX32l6dOna82aNTp48KAi\nIyN16aWXqm/fvrrjjjsUFBSkw4cPO+d56gO2u2N68MEHddttt+ndd9/V/Pnz9ccff+jIkSMKCwtT\nrVq1dN1112nw4MFZ1hc51+DBg3XjjTfqu+++08qVK7Vlyxbt3LlTR48elTFG4eHhuuyyy9S+fXv1\n799fF198cbY2ypUrp0OHDmnp0qX64YcftG7dOm3fvl0HDhxQUlKSypYtq5o1a6pZs2a69dZbs1zu\ngdLHsFque4wx8ZJiVF7SQ65j9mleOwAA4BvVq1dXQkKCYmJiFB8f7+t0ALihQYMG2rp1q4wx2rZt\nmy655BJfp4RiVtS/1RnnS0qw1lb3eII+xqKWAAAAAFDMfvrpJ23dulWSVKFCBYoRgChIAAAAAECx\nSktL04MPPijJdYlF7969fZwRcH6gIAEAAAAAhfTwww9r6tSpzp0lzvXbb7+pc+fOWrZsmSQpODhY\nw4cP92KGwPmLRS0BAAAAoJD++OMP/etf/9KDDz6oK664QpdddpnKly+vEydO6Oeff9bmzZuVlpYm\nyTU7YsKECbr00kt9nDVwfqAgAQAAAABFYIxRSkqK1q1bp3Xr1mV7zhijcuXK6eWXX9Zdd93loyyB\n8w8FCQAAAAAopGnTpmnOnDlaunSptm3bpsTERB08eFDWWlWsWFGXX365rrnmGg0ePFgVK1b0dbrA\neYWCBAAAAAAUUsWKFTVo0CANGjTI16kAJQ6LWgIAAAAAAK8r1oKEMaayMeYmY8w4Y8w8Y0yiMSYt\nfXuvOPtO7z/KGHMkU59LirtPAAAAAACQv+K+ZGP/OY9t+uYtr0uq4OU+AQAAAABAPrxxyUZGESJO\n0gJJxgt9yhjTVVJPuYoiXukTAAAAAAC4p7gLEuMkdZUUZa2tLWloMfcnSTLGlJU0Ra5CyMPe6BMA\nAAAAALivWC/ZsNaOK8728/CCpOqSFltrZxlj3vdRHgAAAAAAIAel7i4bxpjmkoZJSpJ0r4/TAQAA\nAAAAOShVBQljjL+kd+RaM+JFa+3vxdnfmZQzxdk8AAAAAAClVqkqSEh6RFJDSdvlumyjWE1YMaG4\nuwAAAAAAoFQqNQUJY8zFkp6SayHL+6y1ycXd52e/fFbcXQAAAAAAUCqVmoKEpLckhUj6yFq72NfJ\nAAAAAACA3JWKgoQxpr+kTpKOSxrptX5lvNUVAAAAAAClSrHe9tMbjDGRkl6S61KNJ6y1+4u1w1RJ\ne1y7p8+c1oYNG3IMi46OVnR0dLGmAgAAAAAoefbu3au9e/fmG5ecXOwrEfhUiS9ISHpFUiVJa6y1\nbxZ7b6ckve3a/V2/q+mLTXMMe/rppzV27NhiTwcAAAAAULJMnTpV48aN83UaPleiCxLGmGhJ/eSa\nHbHUGPP3nMIy7VfJFLPTWrumwJ2WSe9RUt2KdfXxrR/nGMbsCAAAAABAToYMGaJu3brlG9e5c2cl\nJiZ6ISPfKNEFCUlB6T+NpMfyiTWSLpf0Yfrj6ZIKXpDwl1TNtRtaJVSxsbEFbgIAAAAAcOFy9xL/\noKCgfGNKstKwqKV1Y8stFgAAAEAuevfuLT8/P/n5+emTTz7JMWbq1KlOzLBhwzzSb1JSktNmmTJl\nPNJmcXn88cedXCdOnOjrdLyiJL0/OL+V6IKEtTbOWuuf35YRLml5puODfZk7AAAALhyPPPKI8wGu\nTp06hW7nyJEjCg4OdtqaOXOmB7PMnTH5313OnZji6Pd8UZJy9ZQLcczwrPO+IGGMGWCMSUvfxvg6\nn8z4BwgAAAB3DBgwQJLr/49xcXH6/vvvC9XOhx9+qLNnz8oYo3LlyqlXr16eTPO8Y613JzVfiLMd\nisLb7w9Kn2JdQ8IY01pS3UyHKmXar2uMGZA53lo7I4/m+G0HAABAidSgQQM1adJEP/74o4wxmjlz\nptq1a1fgdt5//31nv1evXufNdPmML+pKyxd2BR1HaRk34G3FvajlXZIG5HDcSGqTvmWwkvIqSBQV\nfyUAAADgMwMGDNCPP/4oa60+//xzTZkyRcHBwW6fv337dq1evdp53L9//+JIs8CGDBmiIUOG+DoN\nn3nhhRf0wgsv+DoNoETyxiUb7iw6md8ik0WdHcFClgAAAPCpPn36KDAwUMYYHT9+XHPmzCnQ+TNm\n/O+7u5o1a+rqq6/2cIYA4F3FWpCw1g50Z9HJ9C3H2RrW2hmZYp4pZB4Z53cq2ogAAACAwqlUqZJu\nuOEG57r7gi5IOWvWLEmuywPOl9kRAFAU5/2iluczFnEBAABAQWQsbmmt1cKFC3XgwAG3zlu+fLni\n4uKcx3fccUeusVu3btW//vUv3XzzzbrssssUFhamoKAgValSRc2bN9cjjzyi3377rWgDyaSgt/08\nevSonn32WTVr1kwREREqX7686tWrp3vvvVebNm0qcP+7du3SG2+8odtvv10NGjRQeHi4goKCVKlS\nJTVu3Fj333+/1q1bl2cbLVu2lJ+fnyZMmCDJ9f6MGjXKGVfm7dwxFnQhzOTkZL3zzjvq3r27atWq\npTJlyig8PFz16tXTPffco6VLl7o17qioKKffjN+j3bt364knnlCjRo0UHh6u8uXLq379+hoxYoQS\nEhLcare4bNmyRQ899JAaN26sSpUqKSQkRDExMerYsaNeeuklHT161O22Fi5cqIEDBzrvd2BgoMqW\nLauaNWuqffv2GjlypObPn6+UlJRc24iLi9PTTz+tdu3aqWrVqgoODlZISIgqV66sJk2a6I477tDb\nb7/t9r9RFJK1ls2NTVK8JKvyshrr2sJeCLMAAAC+EBMTYyXZmJgYX6eCAkhOTraRkZHWGGP9/Pzs\nK6+84tZ5AwcOdM5p3bp1rnFdu3a1xhhn8/Pzy7JlHPf397ePPfaYTUtLy7Pf22+/3Wnn448/zjHm\nrbfecmLuvffePNtbsmSJjYqKyjE/Y4wNCAiwEydOtGfOnHFiQkNDc23v/vvvd2u8xhg7YMAAe+bM\nmRzbadmyZbZzzm0rYzt3jKNGjXLiJ0yYkOf4f/jhB3vRRRflOv6M7aabbrJHjhzJs62oqCjn3P37\n99uPP/5JOiTUAAAgAElEQVTYhoWF5dpuuXLl7MKFC/Ns013uvj/WWnv27Fk7dOhQ6+/vn+e4IyMj\n7YcffphnW8ePH7edO3d2+z2fNWtWju289tprNjQ01K02rr322kK/TtYW/W91xvmS4u158LnY01tx\nL2pZqlnLDAkAAAC4LzAwUL1799aUKVMkuS7b+Mc//pHnOWfOnNHnn3/uPL7zzjtzjd29e7eMMQoM\nDNTll1+uunXrKiIiQsYYHThwQGvXrtWePXuUlpamiRMnKiUlRS+99JJHxpafVatWqWvXrjp9+rQk\n16UnLVq00OWXX66kpCStXLlSu3bt0qhRoxQaGupWm/Hx8TLGyM/PT5dddpkuu+wyVaxYUYGBgTp0\n6JDWr1+vnTt3SnK91idPntRnn32WrZ3bbrtNV155pVatWqX169fLGKNWrVopNjY2W2zbtm0LNf5F\nixapW7duSkpKkjHGGX+9evWUlJSkVatWObnOmzdPbdu21YoVK1ShQoVc27TWyhijb775Rnfffbes\ntapdu7Zatmyp8uXL6/fff9f333+v1NRU/fXXX+rVq5e2bt2qatWqFWoMBZWWlqYuXbpowYIFzpgr\nVaqk9u3bKyIiQnFxcVq2bJnOnj2rw4cPq2/fvjp+/LjuueeeHNu77bbb9N133zl3Nbn00kvVuHFj\nRUREKDk5WQcOHNCWLVv0559/5prTRx99pOHDhzv5VKhQQa1atVJMTIz8/f117Ngx/frrr/r55591\n9uzZYnldkImvKyIlZVMOMyTKP1/eAgAA+AIzJEqutWvXZvlm9qeffsozftasWVm+jT527FiusY89\n9pidPXu2PXnyZK4xs2fPtpUqVXJmSqxbty7XWE/NkDh9+rStW7eu8+3zxRdfbNevX58tbtq0aTY4\nONgGBwc7sXl9A//CCy/YDz74wB4+fDjXmGXLltk6deo4OX7++ee5xhZktkNBzklMTMwyo6FBgwZ2\ny5Yt2eJmzJhhQ0NDnbi///3vufabub2QkBBboUIF++mnn2aL27Rpk42OjnZyvO+++9waV17cnSEx\nbty4LDMQxo0bZ1NSUrLE7Nmzx3bq1MmJCwkJsRs3bszW1urVq52YiIgIu3jx4lz7/eOPP+yzzz5r\nv/vuu2zP1atXz8nn0UcftUlJSTm2ceLECfvxxx/bp556Ktd+3MEMibw31pAAAAAAvKhZs2aqV6+e\n8zi/xS3ff/99Sa4ZBT169FBYWFiusS+++KJ69OihsmXL5hrTo0cPffHFF5JcX06+/vrrBUm/UN55\n5x398ccfstaqXLlyWrRoUY6zDwYNGqQ33nhDycnJbrU7atQo9e3bVxEREbnGtG/fXgsWLFBgYKAk\nafLkyYUbRBH885//1P79+2WtVeXKlbV48WI1aNAgW1z//v313nvvOR/WPv3003zXv7DWKiUlRXPn\nzlWvXr2yPd+oUSPnPbbW6qOPPvLMoPJx5MgRTZgwwZnN8NRTT2nMmDHy9/fPEhcdHa2vv/5ajRs3\nlrVWycnJGj16dLb2fvjhB2f/kUceUceOHXPtu06dOnryySd13XXXZTl+6NAhbdu2TZJUt25dTZgw\nQUFBQTm2Ua5cOd1222165plC3VcBbqIgUQQZ/7gAAACAgsi8uOV//vOfjBm52ezbt0+LFi1yHnvq\n7hpt27ZV7dq1Za3N0n5xmTZtmiTX/58feughXXTRRbnGDho0SE2bNvVo/xdffLHatGkja61Wrlyp\npKQkj7afl7S0tCzjf+aZZ1SlSpVc42+//XZ16NDBefzmm2/m2b4xRr169VK7du1yjenRo4cqVqwo\nyVUo+OOPPwoyhEKZOXOmTp8+LWutatSooSeffDLX2JCQEE2aNEmS69/E/Pnzs112cfz4cWe/UqVK\nhcrJE23As1hDAgAAANk0e7uZ9p3c5+s0Ci2qXJTW3ZP3N8u+1K9fPz3xxBNKS0vTnj17tGjRIl17\n7bXZ4j744AOlpqZKct1V4frrr3e7j99++03r1q3Tjh07dOzYMSUlJWUpfJw6dUqStGfPHh06dEiR\nkZFFHFXODh8+rM2bNzuP87pDSIb+/ftr/fr1Bernzz//1Jo1a/Tbb7/p2LFjzofhDLt375YkpaSk\n6KeffvJ40SM3mzZt0uHDhyVJQUFB6tOnT77n3HXXXc7dNvK664a11ilI5MXPz08NGzbU8uXLJbnu\nTHLxxRe7O4RCWbJkiSRXwaRv374KCMj7o2fbtm11ySWXaPv27bLWatmyZVkKcDVq1HD2p0+frv79\n+ys4OLhAOUVFRSkgIECpqanasGGD1q5dqyuvvLJAbcCzKEgAAAAgm30n9ynhhG9vE1iaVatWTddc\nc40WLFggyXVZRk4FicyXa/Tr18+tGbpz5szR2LFjsxQB8nPw4MFiK0hs3LjR2a9UqZLq1KmT7zmt\nWrVyu/0ffvhBjz/+uFauXOn2OQcPHnQ7tqh+/PFHSa73sEGDBipXrly+57Ru3VqSq+AQFxeno0eP\nKjw8PNf4hg0b5ttm5vc380yB4pIxbkm66qqr3DqndevW2r59uyRpw4YNWQoSXbt2VUhIiM6cOaNV\nq1apXr16GjRokG666SZdccUV8vPLf/J/aGiounTpojlz5igpKUnt2rVT7969dcstt6hdu3YqX758\nAUeJoqIgAQAAgGyiykX5OoUiKQn5DxgwQAsWLJC1VrNnz9apU6dUpkwZ5/mNGzdqy5YtzmN3LtcY\nNWqUJk6cKMm9y4szZhCcOHGioOm7LTEx0cmnZs2abp3jbtybb76p+++/35kpkB9vjPdcGeOXpFq1\narl1Ts2aNeXn56e0tDRJrgJKXgWJvO7EkSFjDQ1JXrl7RGHGnflSnnOLRlWrVtXUqVN11113KSUl\nRbt27dKYMWM0ZswYlS9fXi1btlT79u3VtWvXPAs0kydP1ubNm7Vz504lJSVp+vTpmj59uvz8/NSg\nQQO1a9dO1157rTp37pzlNUPxoCABAACAbM7nyx1Ki5tvvllhYWE6fvy4Tp06pc8++yxL0WHGjBmS\nXB/kmzRpovr16+fZ3ty5czVx4kTng3nbtm01YMAANWvWTDVq1FDZsmWzfMBq1aqVVq9eLUnOB9/i\ncPLkSWc/c8ElL3ktyplh06ZNeuCBByS5XqNGjRrp7rvvVsuWLVWrVi2VL18+y4KFvXv31scffyyp\neMd7rszjd2dcGUJDQ/XXX39Jyr+Acr6tbZeampplnQ53x505Lqcx33HHHapfv76eeeYZffvtt0pJ\nSZHkeo0XLlyohQsX6sknn1SLFi30yiuvqGXLltnaiImJ0YYNGzRhwgRNmzbNKZxYa7V582Zt3rxZ\nr7/+uiIjI/X4449rxIgR593rW5qwqCUAAADgAyEhIbr11ludxxmXZ0iuD3SZ74Zw55135tveyy+/\n7Ozfd999WrZsmQYOHKiGDRsqPDw827e93polkPkShYx1K/KT8UE8Ly+//LJTWOjevbvWr1+vYcOG\nKTY2VpGRkdnunuDNWRGZZR6/O+PKcPr0aWe/pF1K4O/vn2V9B3fHnTkutzHHxsZqzpw52r9/v2bP\nnq2HHnpILVq0UGBgoIwxMsZo9erVateunb7++usc2wgLC9Nzzz2nPXv2aOXKlZowYYK6deumyMhI\np41Dhw7p4YcfdmvNDxQeBQkAAADARzLfbWPZsmVKSHCt2/Hdd99p//79klxT7Xv37p1nO0lJSc4a\nCgEBARo/fnye8dZaxcfHFzV9t1SuXNnpM2Nhyfy4E5exaKIkjR8/Pt81BOLi4tzq29Myxi8p250j\ncvPnn39mmcVREu8IUZhx79q1y9nPb8zh4eHq1q2bJk6cqJUrVyoxMVHvvPOOYmJiZIxRamqqhgwZ\n4iwKmxM/Pz+1aNFCDz/8sGbPnq3ExEQtW7ZMN9xwgzMr4pNPPtG8efPcyh8FR0ECAAAA8JE2bdo4\nizympaXpgw8+kJT1co0bbrgh3wUn9+/fr9TUVBljVL16dYWFheUZv3HjRq8sbChJjRs3dvYTExO1\nc+fOfM9ZtWpVns9ba7Vvn+suMH5+frr88svzjD906JB++eWXfKfeF8fU/CZNmkhy5bxlyxa3Zgtk\nFJeMMapVq1ae60ecrzLGLcntBUczx8XGxhaov7CwMA0aNEgLFy6Uv7+/8zuydu3aArXTtm1bffXV\nV1luozp37twCtQH3UZAAAAAAfCjzuhHvv/++jh8/rq+++so5ljGLIi+ZZwe4c1nEG2+8UcAsC69i\nxYpq1KiR8zjzpSm5yS/GGOOMOS0tTWfOnMkz/q233lJaWlqW24DmJCQkxNn31MKPV1xxhVNQSk5O\n1ocffpjvOdOmTXP2O3bs6JE8vC1z3rNmzcpzpoIkrVixQr/99psk1/t79dVXF6rfyy67TJdeeqnz\nOGOmUUEYY3TTTTcVqQ24h4IEAAAA4EP9+/d3vpn/5Zdf9OijjzofsCtWrKguXbrk20ZUVJTKlCkj\na60OHDiQ57fCS5Ys0b///W+vLtR31113SXLNEvjXv/6V5+UT06dP19q1a/PNL/MdGTIXcM61detW\nvfDCC26NN/NMlIzLZ4rKz89PgwcPluQa/5gxY7LcgeJcn3zyiRYvXuw8Hjp0qEfy8Lb+/fsrNDRU\n1lr9+eefev7553ONTUpK0vDhwyX9b1bQuXdaOXTokFv9nj17NksBoUqVKs7+iRMnnIUw85P5sqHM\nbcCzKEgAAAAAPnTRRRepbdu2zrf3b7/9tiTXB7M+ffooICD/G+MFBATo+uuvdx7369dPP/74Y7a4\nWbNmqXv37rLWFuiOD0U1ePBg59KUEydOqFOnTtqwYUO2uH//+98aOnRolgURc9O1a1dn/4EHHsiy\npkSG+fPnq1OnTjp9+rRb423QoIGz/+233xZoEcq8PPzww86H2v3796tjx4766aefssXNnDlTd955\np7Ow4m233aZmzZp5JAdvi4iI0KhRoyS5CjHjxo3T+PHjs82U2LNnj2666Sbn9zUoKCjHNVAeeOAB\nderUSbNmzcr1cqODBw9q4MCBTvEiMjJSV155pfP8ypUrVbt2bY0fP96ZjXGu1NRUffDBB5o6dapz\n7IYbbijAyFEQ3PYTAAAA8LEBAwbo+++/l+QqRGQUJzJfzpGfMWPG6JtvvlFycrK2b9+uK6+8Uq1a\ntdIll1ziLHoZFxcnY4weeOABrV692rntZ3ELDQ3VzJkzde211+r06dPasWOHrrzySrVo0UKXX365\nkpKStGrVKu3YsUPGGL322mvOLT1z89BDD2n69Ok6cuSIDhw4oGuuuUbNmjVTvXr1ZK3VunXrtG3b\nNhlj1K1bNwUHB+uTTz7Js802bdqoatWq2r9/v+Li4vS3v/1N11xzjXP3Bcl1u9SePXsWaPyVKlXS\nrFmz1K1bN505c0Y///yzrrjiCrVq1Up/+9vfsoxfcv0O1K9fX2+99VaB+vG2/GadjB49WqtWrdJ3\n332ntLQ0jRkzRpMnT9bVV1+t8PBwxcXFadmyZUpOTpbkmk0yadIkXXHFFdnastZq6dKlWrp0qfz9\n/VWvXj3Vq1dPERER+uuvv5SQkKD/+7//cy61Mcbo1VdfzVbQS0hI0JgxYzRmzBhFR0ercePGqlq1\nqvz9/bV//36tW7fOWZ/EGKNrr71WPXr08MTLhZxYa9nc2CTFS7IqL6uxri3shTALAADgCzExMVaS\njYmJ8XUq8IATJ07YsmXLWmOMs9WvX7/A7Xz66ae2TJky1s/Pz/r5+WVpL+PY8OHDbUpKim3ZsqVz\nfPXq1Tm2d/vttzsxH3/8cY4xb731lhNz77335pnf4sWLbVRUVK75BQQE2BdffNGeOXPGOR4aGppr\ne99//72NjIzMc7y33367PXnypFtjsdbazz//3AYFBeXYpjEm2xhHjRrltDthwoQ8x79ixQpbp06d\nXNvOON6lSxd75MiRPNuKiopyztm/f3+esda69166y933x1prz549a4cOHWoDAgLyfJ8iIyPtRx99\nlGs7d999txOb02uXua2IiAg7c+bMbG18//33NjAwMM92Mj/Xr18/e/r06SK9VkX9W51xvqR4ex58\nLvb0xgwJAAAAwMfKlSunm2++Wf/5z3+cY3feeWeB2+nVq5diY2P1yiuvaMGCBYqPj1dgYKCqVaum\nNm3aaODAgWrVqpUTn3FpQF7cjcn8MzcdO3bUL7/8otdff12zZ8/Wjh07lJKSopiYGF199dUaMmSI\nmjRpoqSkJLfabNu2rX7++We9+uqr+uabb5w7eERHR+vKK69U//79s1zK4s5YevbsqbVr12rKlCla\nuXKldu/erZMnT2Z8SZnj+e6ux9G6dWtt27ZNM2fO1Ny5c7Vx40YlJiYqKChI0dHRatu2rfr06eP2\ngo7ujKco8fm1lflnbgICAvTmm29q2LBhmj59uhYvXqz4+HidPHlSkZGRuuyyy9SlSxcNHjxYFSpU\nyLWdt99+WyNGjNCiRYv03//+V1u3btWff/6pEydOKCgoSJGRkWrQoIGuv/569evXTxUrVszWRtu2\nbXXgwAEtXLhQK1as0MaNG/XHH3/o8OHDSk1NVVhYmOrWraurrrpK/fr1y3KnEBQPk/EPC3kzxsRL\nilF5SQ+5jlUIrqCjo476Mi0AAHCBql69uhISEhQTE6P4+HhfpwMAyEFR/1ZnnC8pwVpb3eMJ+hiL\nWgIAAAAAAK+jIAEAAAAAALyOggQAAAAAAPA6ChIAAAAAAMDrKEgAAAAAAACvoyABAAAAAAC8joIE\nAAAAAADwOgoSAAAAAADA6yhIAAAAAAAAr6MgAQAAAAAAvI6CBAAAAAAA8DoKEgAAAAAAwOsoSAAA\nAAAAAK+jIAEAAAAAALyOggQAAAAAAPA6ChIAAAAAAMDrKEgUgTHG1ykAAAAAAFAiUZAAAAAAAABe\nF+DrBAAAAFB4e/fuVfXq1X2dBgAgB3v37vV1Cuc1ChJFkGbTfJ0CAAC4wKWlpSkhIcHXaQAAUGAU\nJIrgeNJxX6cAAAAuUFFRUb5OAQDgJv5m54yCBAAAQAm0bt06X6cAAECRsKglAAAAAADwOgoSAAAA\nAADA6yhIAAAAAAAAr6MgAQAAAAAAvI6CBAAAAAAA8DoKEgAAAAAAwOsoSBSRtdbXKQAAAAAAUOJQ\nkCiimZtm+joFAAAAAABKHAoSRXTnl3f6OgUAAAAAAEocChIAAAAAAMDrKEgAAAAAAACvoyABAAAA\nAAC8joIEAAAAAADwuoDibNwYU1lS8/TtyvQtMv3p6dbaQR7qJ0xSF0nXSIqVdJGkMpKOSvpJ0teS\npllrj3miPwAAAAAAUDTFWpCQtP+cxzZ98xhjTGdJcyQFZeojQ6Sk9pKulvSwMaaPtXaZJ/sHAAAA\nAAAF541LNjKKEHGSFkgyHm4/Uq5iRKqk+ZJGSOoo10yJbpI+Tu8/StJXxphGHu4fAAAAAAAUUHEX\nJMZJ6iopylpbW9LQYujjrKS3JF1krb3RWvuatXa5tXaTtfYba20fSQ+mx5aR9C9PJzBj4wxPNwkA\nAAAAQKlmrPXoFRR5d2ZMLUk75ZqxMMNTa0i42fcaSc3kmklR1Vp7uIDnx0uKUXlJD2V/3j7tvdcR\nAAAAAFD6Va9eXQkJCZKUYK2t7ut8PO1CusvGsvSffpJq+zAPAAAAAAAueBdSQSI4036qz7IAAAAA\nAAAXVEGiffrPs5J+92UiAAAAAABc6C6IgoQx5iZJjeRau2K+tfakj1MCAAAAAOCCVuoLEsaYCEmv\npz9MlTTGh+kAAAAAAACV8oKEMcZP0n8k1ZJrdsSz1trNvs0KAAAAAACU6oKEpDclXS9XMeIrSeN9\nmw4AAAAAAJCkAF8nUFyMMS9IuluuYsT3kv5urbVFbjhV0p7shzds2JDlcXR0tKKjo4vcHQAAAACg\ndNm7d6/27t2bb1xycrIXsvGdUlmQMMY8JukxuYoR6yV1tdYmeaTxU5Lezn646dtNszx++umnNXbs\nWI90CQAAAAAoPaZOnapx48b5Og2fK3UFCWPMMEkvyFWM2Cqps0fvqhFQThqUvbn1Q9ZneczsCAAA\nAABAToYMGaJu3brlG9e5c2clJiZ6ISPfKFUFCWPMHZImy1WM+EPStdbaw57tJECqlv1wbGysR7sB\nAAAAAJRO7l7iHxQU5IVsfKfULGppjOkp6b30h7sldbLW7vN8T0VfhgIAAAAAgAvdeV+QMMYMMMak\npW9jcom5Tq7be/pJ2i/pGmvtbm/mCQAAAAAA3Fesl2wYY1pLqpvpUKVM+3WNMQMyx1trZ+TRXI5T\nE4wxLSR9ISlQ0llJIyUFG2Pq59FWvLX2WF65AwAAAACA4lPca0jcJWlADseNpDbpWwYrKa+CRG46\nSyqTvh8k10yJ/NwpaWYh+nJlDgAAAAAAisQbi1q6u+hCXnH5tVGQhR1YBAIAAAAAAB8z1vL53B3G\nmHhJMQqqID2R/WoP+zSvIwAAAADAc6pXr66EhARJSrDWVvd1Pp523i9qCQAAAAAASh8KEgAAAAAA\nwOsoSAAAAAAAAK+jIAEAAAAAALyOgkSBsXglAAAAAABFRUECAAAAAAB4HQUJAAAAAADgdRQkAAAA\nAACA11GQAAAAAAAAXkdBAgAAAAAAeB0FCQ/5K/kvX6cAAAAAAECJQUHCQyavmezrFAAAAAAAKDEo\nSHjI44sf93UKAAAAAACUGBQkCszm+syeE3u8mAcAAAAAACUXBYmCSg3O9akhXw/xYiIAAAAAAJRc\nFCQKKjVYAcq5KLF4x2IvJwMAAAAAQMlEQaIQ/hHwa47HjTFezgQAAAAAgJKJgkQh+Mk/x+NGFCQA\nAAAAAHAHBQkPYoYEAAAAAADuoSBRKDkXHpghAQAAAACAeyhIFEYud/5khgQAAAAAAO6hIFEINpeK\nBDMkAAAAAABwDwWJQkhTao7HmSEBAAAAAIB7KEgUglVajseZIQEAAAAAgHsoSBSCZYYEAAAAAABF\nQkGiEFJtLgUJZkgAAAAAAOAWChKFwAwJAAAAAACKhoJEIYQqIsfjzJAAAAAAAMA9FCQKobyJzvF4\n4qlEL2cCAAAAAEDJREECAAAAAAB4HQWJQrDW1xkAAAAAAFCyUZAAAAAAAABeR0ECAAAAAAB4HQUJ\nD2pTs42vUwAAAAAAoESgIFEIua0hUblMZe8mAgAAAABACUVBwoP8/fx9nQIAAAAAACUCBQkPMjK+\nTgEAAAAAgBKBgoQHfbr1U1+nAAAAAABAiUBBAgAAAAAAeB0FiULIbVFLAAAAAADgHgoShfT6Da/7\nOgUAAAAAAEosChKFdF/z+3ydAgAAAAAAJRYFCQAAAAAA4HUUJAAAAAAAgNdRkCgEFrUEAAAAAKBo\nKEgAAAAAAACvoyABAAAAAAC8joIEAAAAAADwOgoSAAAAAADA6yhIFAKLWgIAAAAAUDQUJAAAAAAA\ngNdRkPAwy/QJAAAAAADyRUHCw6woSAAAAAAAkB8KEoWQ1yQIZkgAAAAAAJA/ChIeNvTroVqyc4mv\n0wAAAAAA4LxWrAUJY0xlY8xNxphxxph5xphEY0xa+vZeMfXZ2xjznTFmrzHmtDFmlzHmfWNMy+Lo\n71zv/viuOs3spKSUJG90BwAAAABAiRRQzO3vP+exTd88zhgTIulzSTec00cNSX0l9TbGPGOtfaY4\n+j/X8aTjqhxQ2RtdAQAAAABQ4njjko2MIkScpAWSTDH182/9rxixRFIPSc0lDZb0u1xjfdoYc5en\nOqxStoqnmgIAAAAA4IJS3DMkxklaK2mttTbRGFNL0k5Pd2KM6Sjp73IVI+ZK6mn/t7rkemPMV5LW\nS6opaYIx5lNr7bHC9pfRcoBfcb98AAAAAACUTsU6Q8JaO85aO89am1ic/Uh6KP1niqT77Dm3urDW\nHpL0WPrDcEkemSWR1x01jCmuiSAAAAAAAJR8Jf4uG8aYcpI6yTU7YpG1dk8uoV9IOp6+f7Mn+rbF\nsxwGAAAAAAClXokvSEi6UlJQ+v7y3IKstWcl/VeuNSyuNMb4F7XjvGZIAAAAAACA3JWGgsTlmfa3\n5ROb8XyApEuK2jEzJAAAAAAAKJzSUJConmk/Pp/Y3Zn2axS2QyZGAAAAAABQNKWhIFE+0/7JfGL/\nyrRfrqgdc8kGAAAAAACFUxoKEiGZ9pPziU3KtB9a1I471u6Y63NG3GUDAAAAAIDclIaCxJlM+0G5\nRrkEZ9o/XdSOX7vhtaI2AQAAAADABSnA1wl4wIlM+/ldhlE2035+l3fkIll7927Qhg3pD3O5yei+\nvfsUeXFk4boAAAAAAJRae/fu1d69e/ONS07O7yKAkq00FCQyL2RZXdKG3AKVdSHL3blG5SlR773X\nVO+9l3fUjEozNPG5iYXrAgAAAABQak2dOlXjxo3zdRo+VxoKElsz7f9N0tw8Yv+W/jNF0vbCdVdZ\ngwbN1333uR41ndo0x6gBgwYUrnkAAAAAQKk2ZMgQdevWLd+4zp07KzEx0QsZ+UZpKEislWsxy0BJ\n7SXlOC3BGBMoqaUkK2mttTa1cN0FKSoqVrGx6Q+r5RwVFR1VuOYBAAAAAKVadHS0oqOj840LCspv\nmcSSrcQvammtPSlpsSQj6RpjTC4lAt0iKSx9/wtv5AYAAAAAAHJ23hckjDEDjDFp6duYXMJeSv8Z\nIGmKMSbLuIwxlSS9mP7wqKRpRcnJWjdi5EYQAAAAAAAXqGK9ZMMY01pS3UyHKmXar2uMybLQgrV2\nRh7N5foJ31q71BjzkaTbJXWXtNAY86pc98BoJOkJSTXT23jUWnusQAMBAAAAAAAe9f/s3Xd0VVXi\n9vFnJyQE6QIq0lQURcAC2AbQsTPYu1hAVAZ9dcQC6oAj4m907FhHYVTsYh0LjKCogChKGwUVkCJS\nJiAKBAjp2e8fJ+Xe3H7uOfcm4ftZKyvn7LvP3juAs+Y82cXvPSSulhRud0cjqW/FVyUrKVogEcuV\nkvgLo9EAACAASURBVJpKGiDpj5KOr9F2maS7rbVJzY6oqW2TtsrdEXpci41nGgUAAAAAALuoVCzZ\nsAl8RWsjeifWFlprz5B0qaRPJG2UVCRpjaRXJfW11v6f+x8jvNlXzva6SQAAAAAA6j1fZ0hYa4dI\nGpJkGy8qgZkT1tpJkiYl02ci9mu5n5pkN9GO4h3B42APCQAAAAAAIqr1m1rWRjVXY5Tb8vQMBAAA\nAACAOopAwgPhAomffv8pDSMBAAAAAKBuIJDwQLhAYvyC8WkYCQAAAAAAdQOBhAfGnToupIxlHAAA\nAAAAREYg4YGurbuGlBFIAAAAAAAQGYGEC/FsakkgAQAAAABAZAQSHgh3xCeBBAAAAAAAkRFIeKBD\nsw4hZbbmNAoAAAAAAFCFQMIDB7Y+MKSszJalYSQAAAAAANQNBBI+WbRxUbqHAAAAAABArUUg4UI8\nqzFWbVnl/0AAAAAAAKijCCQAAAAAAEDKEUgAAAAAAICUI5AAAAAAAAApRyABAAAAAABSjkDChXg2\ntQQAAAAAAJERSAAAAAAAgJQjkPDIPi32SfcQAAAAAACoMwgkAAAAAABAyhFIuMAeEgAAAAAAJIdA\nAgAAAAAApByBBAAAAAAASDkCCQAAAAAAkHIEEh45uM3BIWVbCrakYSQAAAAAANR+BBIuhNvUcvzp\n40PK9n1sX20r2paCEQEAAAAAULcQSHikfbP2IWV5RXl6au5TaRgNAAAAAAC1G4GEz4rKitI9BAAA\nAAAAah0CCQAAAAAAkHIEEgAAAAAAIOUIJFwIt6ll5LoJVAYAAAAAYBdBIAEAAAAAAFKOQMJn5bY8\n3UMAAAAAAKDWIZDwGadsAAAAAAAQikDCZ+whAQAAAABAKAIJF0pKwpe/dPZLIWUs2QAAAAAAIBSB\nhAtFEVZhdN69c0hZmS3zeTQAAAAAANQ9BBIuRAokdhTvCCkrKyeQAAAAAACgJgIJFwoLw5fvv/v+\nIWXMkAAAAAAAIBSBhAuRAon9Wu4XUsYMCQAAAAAAQhFIuBApkAiHGRIAAAAAAIQikHAh0h4S4XDK\nBgAAAAAAoQgkXGCGBAAAAAAAySGQcCGhQII9JAAAAAAACEEg4UIiSzaYIQEAAAAAQCgCCRcSmSFx\nVLuj/BsIAAAAAAB1FIGEC4kEEjkNcvwbCAAAAAAAdRSBhAucsgEAAAAAQHIIJFxIZIYEgQQAAAAA\nAKEIJFwoLJSsDf9ZowaNgu4JJAAAAAAACEUg4UJ5uVRaGv6zFjktgusSSAAAAAAAEIJAwqVI+0i8\ncf4bQfcEEgAAAAAAhCKQcCnSPhL9OvULuieQAAAAAAAgFIGES9E2tmy9W+uqawIJAAAAAABCEUi4\nFO3ozwmnT6i6Xr9tfQpGAwAAAABA3UIg4dIXX0T+7IdNP1RdPz738RSMBgAAAACAuoVAwqUhQyJ/\n1q1Nt9QNBAAAAACAOihlgYQxpqMx5mFjzBJjzA5jzO/GmLnGmBHGmEYe9dHNGPOEMWaRMSbPGFNk\njPnVGPO5MeYmY0wTL/qJJXBjy1M7n5qKLgEAAAAAqFMapKITY8wZkl6W1EySrShuJKmXpN6SrjbG\nnGatXZlEH7dJ+rukzIA+JKmVpOMqvm40xpxprf3ObT/xaNawWdV1fkm+n10BAAAAAFAn+T5Dwhhz\nuKRJkppK2i5plKQ/SDpR0r/khAcHSJpsjGnsso+Bkv4h5+cpkvSIpNMkHSXpEklfVPTTQdJHxphm\nEZryRHZmtnIa5EiS8grz/OwKAAAAAIA6KRUzJB6TMxuiRNLJ1tq5AZ/NMMYsl/SgpC6SbpF0t4s+\nRgVcn2OtnRpwP1/SG8aYtyWdK2lPSVfLCS180yS7iQpLC7WjeIef3QAAAAAAUCf5OkPCGHOEpL5y\nZic8WyOMqPSIpCWSjKThxpjMBPtoKqlbRR8La4QRgcYGXB+TSB9uNM5yJnuwZAMAAAAAgFB+L9k4\nO+D6hXAVrLVW0ksVty0kHZ9gH9kB16ui1AvcnyI7Yi2PNM6uCCSKCSQAAAAAAKjJ70Cib8X3fEkL\notSbGXDdJ5EOrLW/S9pccbtflKqdA66XJdKHG40aOAeH5Jfky8lcAAAAAABAJb8Dia5yllKssNaW\nR6m3tMYziXpGzpKPnsaYSOds3lnxvVTSsy76SMiC3Or85b8b/ut3dwAAAAAA1Cm+BRLGmIaSWlfc\nrotW11q7Vc4sCsk5CSNR90qq3DviPWPMg8aY/saY3saYC40xn0s6T04YcZ219icXfbg26tNRsSsB\nAAAAALAL8XOGRNOA63iOmqgMJJok2pG1dqek0+WcnrFOzmkd/5E0V86Ro8dJekfSMdZa32dH1DRt\n5TQN/2i4Fm9cnOquAQAAAAColfwMJHICrovjqF8kZ9lFI5f9HS3pMjn7SNgwX6dIutoY08xl+0G6\nd0+s/uNzH9dh4w/zomsAAAAAAOo8PwOJwoDreE61aCgnOChItCNjzPmSPpX0R0nfyTndo1VFv50l\njZKUKWmYpDnGmL0S7aO6L+d7SUn0erf+4daQsvKo22gAAAAAALDraOBj29sDruNZhtG44ns8yzuq\nGGP2kDRRTvjwvaQ+1trAUGO1pPuNMfMkfSLpIElPSLogkX6qFUtaqB07pIULI9fq3ay3u+YBAAAA\nAPVabm6ucnNzY9YrLo5nsUHd5VsgYa0tMsb8Lml3Se2j1TXGtJATSFhJaxPs6uKAZ++tEUYEjucz\nY8ynkk6SdLYxprm1Ni/BvmTtJkm9tH691KtX5HqDbhjk/OQAAAAAAAQYP368xo4dm+5hpJ2fMyQk\n6UdJ/STtb4zJiHL050EB10sS7CPwmNBY52sukBNIZEjqImlegn0pI6ONysunavfdpU8+iVxvZclK\nvTT1pUSbBwAAAADUc8OGDdOZZ54Zs17//v21adOmFIwoPfwOJGbLCSQaS+qlyAHAcQHXXybYR2nA\ndayfJyvCc3EzJltST0lSz56R621ZtcVN8wAAAACAeq5t27Zq27ZtzHrZ2fFsx1h3+bmppSS9F3A9\nJFwFY4yRNKjidqukzxPs4+eA674x6h5b8d3K2VsiYfFuamll3TQPAAAAAMAuwddAwlo7T9IXco7z\nvMoYc1SYaiPkLLuwkh611pYFfmiMGWyMKa/4ujPM81MqnpWkO4wxe4cbizHmz5Iqd5qcY611NYUh\n7kDCEkgAAAAAABCJ30s2JGm4nGUYjSR9Yoy5V84siEaSBkoaWlFvmaRHorQT9g3fWrvMGDNR0pVy\nNs/8rzHmUTlByHZJHSr6GVjxSKmcY0CTEiuQ6Nqma/QKAAAAAADswnwPJKy13xpjLpT0iqRmku6t\nWUVOGHGatTbfZTf/T9Juki6S1FrSPeGGIilf0lBr7Rcu+6maIVFWJllbfV9T+2ZRDxYBAAAAAGCX\n5vceEpIka+0USYdIGicnfMiXtEXOJpe3Supprf05cgvRN2Sw1hZbay+RdIKklyr62CGpRNLvkr6S\ndLekg6y1byT301SLNUuiV9so54ICAAAAALALS8WSDUmStXatnP0iRiT43IuSXoyz7kxJMxMfXfwC\nZ0T89JPUvXvkutmZ9XtHVAAAAAAA3ErJDIn6pKio+vqii6LXbdigob+DAQAAAACgjiKQSMKPP0b/\nnBkSAAAAAACERyDhIwIJAAAAAADCI5DwEYEEAAAAAADhEUj4qFGDRukeAgAAAAAAtRKBhI8yTOgf\nr7VRTzAFAAAAAGCXQCDho3Xb1oWUldvyNIwEAAAAAIDahUDCR8aYkLKthVvTMBIAAAAAAGoXAgkf\nDew+MKRs7MyxaRgJAAAAAAC1C4GEjzJNZkjZ2m1r0zASAAAAAABqFwIJHy3IXRBSVlpemoaRAAAA\nAABQuxBIJKhFi+rrPn2i172o20UhZQQSAAAAAAAQSCQsJ6f6um3b6HUP3evQkDICCQAAAAAACCSS\nUlYW/fOm2U1DyggkAAAAAAAgkEhY4EmesQKJcMd+EkgAAAAAAEAgkZRYgYQknX/w+cHPlMfxEAAA\nAAAA9RyBRBLKy2PXWZi7MOieGRIAAAAAABBIJCyRJRuSlGkyg+4JJAAAAAAAIJBISjyBxG5ZuwXd\nE0gAAAAAAEAgkZR4AolmDZsF3RNIAAAAAABAIJGwRJdsNM9pHnRPIAEAAAAAAIGEK5kV20IUFMSu\ne9iehwXdE0gAAAAAAEAg4UqTJs737dtj1x3Vb1TQfZnl2E8AAAAAAAgkXGja1PkeTyDRKKtR0D0z\nJAAAAAAAIJBwpXKGxI4diT9LIAEAAAAAAIGEK5UzJHbskKxN7NmycpZsAAAAAABAIOFCZSBRXi7t\n3JnYs8yQAAAAAACAQMKVyiUbUuLLNvbffX9vBwMAAAAAQB1EIOFCRsCf2ubNseu/eu6rVdd9OvTx\nYUQAAAAAANQtBBIuvPde9fX48bHrd2nVpeqaYz8BAAAAACCQcKVdu+rreI7+zDSZVddsagkAAAAA\nAIGEK3fdVX39/POx62dmBAQSzJAAAAAAAIBAwo3ATS3jwQwJAAAAAACCEUi4kOhRn8yQAAAAAAAg\nGIGEC+ecE3y/fHn0+kEzJAgkAAAAAAAgkHCj5pKNfv2i1w+cITFj9QzvBwQAAAAAQB1DIOFCgwbB\n9xs3Rq8fOENi3bZ1stb6MCoAAAAAAOoOAgkXjEms/p5N9gy6X5C7wMPRAAAAAABQ9xBIeGT9+sif\n5TTICbp/9OtHfR4NAAAAAAC1G4GESzU3trzzzuj1j2x3ZNV1jz16+DAiAAAAAADqDgIJl2ruI1Fc\nHL3+Hf3uqLq+/dPbfRgRAAAAAAB1B4GES5MnB9/H2lei5nGfs9fM9nhEAAAAAADUHQQSLhUUBN/H\nCiT2a7lf0P3S35Z6PCIAAAAAAOoOAgmXTj89+D5WIHHInocE3ReUFESoCQAAAABA/Ucg4dLQocH3\nU6Yk9ny5LfduMAAAAAAA1DEEEi717x98/9tviT1vZb0bDAAAAAAAdQyBhEvZ2ck9by2BBAAAAABg\n10UgkSbMkAAAAAAA7MoIJFKoXdN2VdeNsxqncSQAAAAAAKQXgUQK3XfSfVXXJeUlaRwJAAAAAADp\nRSCRhBtuSKx+dmb1xhPFZcUejwYAAAAAgLqDQCIJXbsmVj8rI6vqevJPkz0eDQAAAAAAdQeBRBIW\nLQq+X7cuev2FuQurrj9f/bkPIwIAAAAAoG4gkEjCNdcE3//5z9Hr5xXl+TcYAAAAAADqEAKJJHTr\nFnw/c2b0+oMPHRx0/+OmHz0eEQAAAAAAdUPKAgljTEdjzMPGmCXGmB3GmN+NMXONMSOMMY087utc\nY8ybxphVxpidFX39aIx52RhzhTHGeNFPZmb0+5oO2+uwoPvz3jzPi2EAAAAAAFDnNEhFJ8aYMyS9\nLKmZJFtR3EhSL0m9JV1tjDnNWrsyyX46SHpNUp+AfiSpoaQWkg6SdImkdyVtS6avcLZvj/55ZkZw\nYrH0t6VeDwEAAAAAgDrB90DCGHO4pEmSciRtl3SvpBlyAomLJQ2VdICkycaY3tbafJf9tJc0U9I+\nkkrlBCCTJf0iZybIvpJOknS2+58GAAAAAAB4IRUzJB6TEz6USDrZWjs34LMZxpjlkh6U1EXSLZLu\ndtnPq3LCiM2S/mStnVfj8/mS3jLGXGutLXfZR1TZ2YnVb7NbGz+GAQAAAABArefrHhLGmCMk9ZWz\nfOLZGmFEpUckLZFkJA03xsTYiSFsP5dJ6lfRz9AwYUQVr8OIWbOqr485JrFn+3bs6+VQAAAAAACo\nM/ze1DJwecQL4SpYa62klypuW0g63kU/11V8X2at/beL510rLq6+jnXKBgAAAAAAcPgdSFROAciX\ntCBKvcBX+T6JdFCxkeVRcmZHfBhQ3sAY08kY094Y49vSlMaN3T9bWl7q3UAAAAAAAKhD/A4kusoJ\nClbEWCoReNxE1wT7OCrgerExZk9jzERJWyX9LGmNpK3GmHeNMYcm2HZMRx8dfF+ewIKQnSU7vR0M\nAAAAAAB1hG+BhDGmoaTWFbfrotW11m6VM4tCkjok2NXBAdetJC2WNFjORpq24quRnOUjc40xlybY\nfkLOPFN6/PH46uaXuDpQJK2W/bZM24o8PzEVAAAAALCL8XOGRNOA6x1x1K98O2+SYD+7B1z/Q04o\n8ZKkHpIaSmov6a+SiiRlSXqu4ihSz/QN2JtyyhRp+HBp2bLwdW8++uaq64aZDZPu21qrGz66Qce/\neLxWbVmVdHvRvPXDWzroqYPU5YkuKiwt9LUvAAAAAED95mcgkRNwXRyxVrUiOSdtNEqwn8BdHBpK\nes5ae4W19kdrbam1Ntda+4CkIRV1siT9PcE+opo9O7Rs6dLQMkn6a7+/Vl0bY5Lu+9OfP9UTc5/Q\njNUzdOFbFybdXjQXvu20vzF/o9764S1f+wIAAAAA1G9+BhKBv0LPjqN+QznLKwpc9mMklUoaHa6S\ntXaSpPkV9U4xxjRLsJ+ImoSZ05ER4U+29W6tq65nrJ6RdN8/bvqx6npBbrR9Q71VUl6Ssr4AAAAA\nAPWPb6dPSNoecB3PMozKmQ7xLO8I14+V9K21dlOUutMk9ZYTxPSS9HmCfam4uFgLFy4MKjvpJOm9\n94LrbdnSVlLbmO2VlpeqQYb7vwbn1NTUS1e/AAAAAFDX5ebmKjc3N2a94uJ4FhvUXb4FEtbaImPM\n73L2eGgfra4xpoWcQMJKWptgV2sjXMeq2ybBfiRJmzZtUq9evWLWmzp1jAYNuitmvc0Fm7VH4z3c\nDEWSZOUuGFiYu1Dv/PiOrjz8SnXevbPr/gEAAAAAiRk/frzGjh2b7mGknZ8zJCTpR0n9JO1vjMmI\ncvTnQQHXSxLs44eA68wYdQM/L02wH0lSmzZtNHXq1KCyrVulE08MrjdgQOzZEZL0xS9f6LyDz3Mz\nFEnuZyr0muCEKi8teklrb0o0A3IfhAAAAADArm7YsGE688wzY9br37+/Nm2KtgigbvM7kJgtJ5Bo\nLGeJxLwI9Y4LuP4ywT7my9l3IkfSfjHqBk4FWJ9gP5Kk7Oxs9ezZM6isJMx2CrvvHloWzvlvna8V\nf1nhepZCssHAum1RT2SN3C9LNgAAAADAlbZt26pt29i/xM7Ojmc7xrrLz00tJSlwZ4Uh4SoY56iJ\nQRW3W5Xgvg7W2p2SpsrZrLKbMSbsm31FP2dV3O6UtDBcPTeyskLLIm1qKUnXHXFd0P3ds+523Xfa\n9pBghgQAAAAAIAm+BhLW2nmSvpATFlxljDkqTLURkrrK2T/iUWttWeCHxpjBxpjyiq87I3R1X2V1\nSU8ZY8LN/BgtZ4aElfS8tdbXYyKinejZvlnULTUSUh5xFYy/mCEBAAAAAEiG3zMkJGm4nCUVWZI+\nMcbcbow5yhjzR2PMeEn3V9RbJumRKO1EfAOuCD6eUsWRnpJmG2MuMsYcbow5xRjzsqTKaQhrJPm+\ne0i0QKJ5w+bBdRVcOZGXfWYqAAAAAADqIt8DCWvtt5IulJQnZy+JeyXNkfSZpKFygoalkk6z1uYn\n0dVwSS9WtHeEpNclLZCznOPSivKfJJ1srd2cRD9xiZYptMhpEXS/tXBr1fWoT0epzYNtNOn7SXH2\nw5INAAAAAEDdk4oZErLWTpF0iKRxcmZC5EvaImeTy1sl9bTW/hytiTj6KLfWDpH0J0nvSFonqUjS\n75JmyQksDrHWrkjiR4nossuC78vKwteTpOY5wTMk3l/2viQnXPjH7H/o94LfNfCdgXH1m65ggCUb\nAAAAAIBk+H3KRhVr7Vo5+0WMSPC5F+XMfIi3/seSPk5sdMm77DLplVeq70ujHCqalRFmF0y5CxfS\ntocEMyQAAAAAAElIyQyJXUGXLsH30WZIlNnwH9acdfDR8o9i9stMBQAAAABAXUQg4ZE99gi+jxZI\nZGeGP0u25myHAa8N0Nq8tVH7ZckGAAAAAKAuIpDwSOPGwffRAonjOh0Xtjzc8osv1nwRtV83wYAX\nYQJLNgAAAAAAySCQ8NAVV1RfRwskMjMy9Vj/x4LKSstLwwYSscKDdO07wQwJAAAAAEAyCCQ81Lt3\n9fXvv0eve3Cbg4PuOz/eWduKtiXcp6sZEsxuAAAAAACkGYGEhzIzq69vuCF63YNaHxR0vyZvjfpO\n7BtSL1Z44CZcYMkGAAAAACDdCCQ89OWX8ddt36x9SNmKzStCymKFB26WX3gRJrBkAwAAAACQDAIJ\nD7Vs6X2bMWdIsKklAAAAAKAOIpDw0I03et9mbd3UEgAAAACAZBBIeKhJk+D7H35Ivs3AwMFaq5mr\nZ+ql715SXmFeVVkybboeF0s2AAAAAABJIJDwUJs2wffdu0s7d0au/8b5byTU/qTvJ+mPL/5Rg98b\nrMPGHyZrrUrKSxIeJ2ECAAAAACDdCCQ8ZExo2TPPRK5/dPujY7ZprZW1VlN+mqJL3r2kqnz11tXa\nUrhFBSUFCY/TkxkS7CEBAAAAAEgCgYTP8vIifxbPTIVFGxfpmfnP6PTXTw/5zMho35b7JjwmTza1\nZJYFAAAAACAJDdI9gPquPMn9Ix/95tHo7bvYoNKLTS2ZIQEAAAAASAYzJDx26aXB99EmEnRs3jHp\n/hINFwpKCggTAAAAAABpRyDhsZqBREmUPSdNuE0nElRWXhZ33Re+fUHN72uuQf8elHS/LNkAAAAA\nACSDQMJjjRoF3xcWRq/fvGHzpPpLZIbEkPeHqKS8RB/+9GFSfUos2QAAAAAAJIdAwmPNmgXfFxVF\nr//J5Z8k1V+ZjX+GhJeYIQEAAAAASAaBhMcOOCD4PtYMiSPaHaHfRv7mur9IMyRGfzpaZ086W2vz\n1rpuOxpmSAAAAAAAksEpGx5r2jT4PtYMCUlqkdPCVV/LNy8P2UPi01Wf6qSXT6q631K4RTOvmOmq\nfQAAAAAA/MIMCZ81aSIVF0tffy2Vloavk5mR6arto549SoWlwVMwAsMISZr1yyxXbcfixdGhAAAA\nAIBdF4GED667rvq6WzfpwgulY46R/vxn7/v6afNP3jcah0RO9wAAAAAAoCYCCR8cf3z1dUmJ9P77\nzvXEid73la6ZCqXlEaZ7AAAAAAAQBwIJH2RlVV8XF8f3zEn7nRS7UhjxBhJen4pBIAEAAAAASAaB\nhA9atqy+3rw5vmdeOecVV33Fu3Ri6oqprtqPhEACAAAAAJAMAgkf7LVX9XVubnzP7NlkT1d9xTtD\nYsXmFa7aj4RAAgAAAACQDAIJH7RtW329YYO/fZXZ9Gwu+eXaL7Umb01a+gYAAAAA1H0EEj5o0qT6\n+vPP438uKyMrdqUavDjt4tf8XxN+5pv136j3hN6ctgEAAAAAcIVAohY5sPWBCT9TUl6SdL/FZXHu\nvFnDpp2btDF/Y9L9AwAAAAB2PQQStcgb57+R8DNfrf0qrnpWkU/Z8OIEjvXb1uu4F47TwHcGMmsC\nAAAAABATgYRPcnLCl0d79z+4zcHKzsz2Z0BRfLDsg6jLNn7N/zViaFFZPvTDoZr1yyxN+n6SHv/m\ncS3euNiXsW7K36STXz5Z5795vkrKIs8OWbl5pcxYIzPW6LJ3L9O4OeM8P/oUAAAAAOAegYRPHnoo\nfPlbb0V/bshhQ7wfTAzXf3S9jp14bNgX9gkLJmivh/bSgNcGhH22cubFRys+qiq7+eObdcgzh+iV\nRe6OMpWkvMI8TVgwQUt/WxpUfuO0GzV91XS9s+QdPTn3yYjP7//E/lXXry5+VTd/fLPnR58CAAAA\nANwjkPDJnhFO8fzgg+jPpeu3+Mt+X6ZtRdtCyodNHiYrG/FlPtp4L//35a7Hc/RzR2vY5GHq+lTX\noJkQn6z8pOp6fu78hNr8YFmMP3wAAAAAQMoQSPikU6fw5bHyhmh7PfjNGONr+88tfE6jPh0VNvio\nKXBmxIYd1WenBo4xUhhSWFoYttzvnw8AAAAAED8CCZ907x6+PB0TIHK352r41OEx6xn598I+b/08\nXf3h1frH7H9o1KejEnp2R/GOquvAMYYLb5ZsWqJG9zQK2048P983677R5f++XDNWz0hojAAAAACA\nxBBI+KRR+HfimIFEr7a9PB/L6a+f7nmbleKd0TFt5bSq66fmPaXtRdu1tXBrXEeOBs54yDDV/2TD\nzZDoO7FvxHbimSFx9HNH65VFr+j4F4/Xum3rYtYHAAAAALhDIJFisQKJq3pepUt7XOppnwtzF8ZV\nz81ykXJbHle9wCBBko569ii1fbitDnjiAO0s2Rl3H4GhQri+NxdsjthOojNA+r/SP6H6AAAAAID4\nEUikWHmM9/cGGQ30yrmv6Kajb0rNgALEGy64eaZmGLDktyUqLC3Umrw1emb+M3H3ETRDIsEAJdE9\nJH7Y9ENC9QEAAAAA8WuQ7gHsakpL46u3tXCrvwMJw80JH4s2Loq5SeVXa7/SqM8i7xuRV5gX9fmg\nGRKKvallJH7ukQEAAAAASAwzJFKsrCy+eumYITHyk5Exw4GaznnjHA1+b3DUOn2e7xP188D9JcKJ\nNAvD7xkSySotL03bMa4AAAAAUNsRSPioR4/QsnhnSPTYs4fuOeEebwcUw3P/fU63fnJrws/lF+cn\n1e83678Juq/5Eh9xyUYtniGx9Lel6jCugw595lAVlBSkrF8AAAAAqCsIJHx0332hZfHOkJCkUf1G\n6ZZjbvFuQHGYsHBCwqdLxNqUMlE1Z0T0ndhXX639StuLtuuXvF8i1qtNLnnnEm3YsUGLf12sR79+\nNN3DAQAAAIBahz0kfNS6dWhZIoGEJD10ykN66JSHZMam7rf7HcZ10PH7HK8DWx0YV/3cHbkRP7vg\nrQviamPJpiV6ev7TurDbhbrz8ztDPg+37CMwnNhetF3LNy+P2seWwi1RP/cy4Pj+1++rrjk+FAAA\nAABCEUj4qF270LJEA4l0+Xz15/p89edJt/P2j2/HVe/gfx4sSXpi7hNxt72lwAkYysrLdPj446wh\nPAAAIABJREFUw7Vyy8qo9WNtFFpSVhJ337EELi2pzTM5AAAAACBdWLLho913Dy2Ldw+JmrbetlV/\n7vlnfTjwQ13Y7cLkBlZPVG5quSB3QcwwQnI2mdxSsEXXTblOj8x5JOTzknLvAonADTQT3XwTAAAA\nAHYFzJDwUU5OaJnbQKJ5TnONP2O8JGnfFvvqzR/eTGJk9UPlppZl5fFNO7GyuuXjWzTx24mSpOKy\nYn274VsN7TlUJ+53YtgZEh8t/0indD5FmRmZVX2O+HiEVuet1lMDntJeTfYK2xczJAAAAAAgOgIJ\nH4U7ZdJtIBGo2x7dkm+kHkj0Rf+MLmfo2inXVt3/9dO/SpLe+OEN2TFWxWXFIc8MeG2Aeu/dW19e\n+aUaZDRQh3Ed9L/t/5PkzLh4/+L3q+pOXzVdN069UZf2uDToRA8CCQAAAAAIRSDhswMPlJYtq773\nag+JDJOxy7/ort++Xl+t/Sru4zwbNWgU9fNISzbm/2++npz7pFo1alUVRkjSB8s+CKp38ssnS5JG\nfTZKDTKq/9OqnMlRWFqox75+THs12UuDDxsc15gBAAAAoL5iDwmfBYYRkneBxKi+o7xpqI7r83wf\nXf3h1XHVjbWXQ7RNLW/5+BbNXjM77nGVlldPhSmXExw98OUDuv3T23XF+1foi1++iLstAAAAAKiP\nCCRSzKtAYnvxdtfP9mrby5tB1BI/bvoxrnpTlk+J+nm4JRtuZZrMquvKmSx3z7y7quytH9/yrC8A\nAAAAqIsIJHz2t78F33uxh4Qk9dijR/VNURPpLitNflqStF/L/VTytxLZMeFnBMz/83xvBlHHRDuC\n1Fob85SNnaU74+4r8JSNykCCjS4BAAAAoBqBhM8GDQq+92qGxKBDB+ncrueqfXk/6fEVTuH8YVp0\nzSJ9d813VXsYtNmtTdBzf+3rbOR4R787IrZ9audTvRlkHfLxyo/V4+keUeu8tvi1uNsLt6ll0FGg\ntjosKiot0n+W/0dbC7fG3T4AAAAA1HUEEj5r2DD43qsZElmZWXrnwnc0qHSWlL9nRalRjz17qEl2\nk6p6o/oF7zVx6J6HSpLWvFJj6kaFW465RVMuib60oT7q/2p/39quDB8izZAYPnW4TnvtNP3p1T/5\nNgYAAAAAqG0IJHy2227B917NkKgU7mjRQJ2adwq6P7r90ZKklyZmS7/0Dak/tOdQZWZkavXw1Wqa\n3TR8o/9+UU+236q9muwVsd+B3QdGH9guJK8oT+u3rY94FOj4BeMlSV+v+zrlYwMAAACAdCGQ8Fmr\nVsH3qQ4kzjzwTHVu2VmSNPyo4erUopOKiio+fGm6NPu2qrqtd2utfVrsI0nq1KKTtv11m5Zdv0z5\no/J157F3OpU2dpe+G6TdMpor95bciP1ef+T1bn+kOuWuGXfFrPOf5f9Rx0c7qqC0oKos1okfAAAA\nAFDfEUikmFdLNirFCiQyMzK1/C/LlT8qX4/2f1SStGNHxYdlDaXp92nzrZv1WP/HNO2yaWrYIHiN\nSZdWXbRb1m4ae/xYZ+PMpxfHHNOVh12pP3T4g0b+YWTIZ52ad9IvN/4SVDb10ql1dkbF2JljlV+c\nH1Jec4PMmptYBu4hEU85AAAAANQ3DVLVkTGmo6ThkgZI6iCpSNJKSW9KespaWxDlcbd97iVpiaTm\nFUUzrLUneN1PIkqiH+SQsIw4IiVjjHbLql47UvOdt2WjlrrhqBtc9T/tsmk64/UzdGCrA7Vw2ELl\nF+ereY7zx/3AyQ/ogZMfUElZicpsmQpKCtS0YVNtK9oW1Map+5+qYzsdq9e/fz2ovGvrrlry2xJX\n40qlGatn6KDWByX0TKRTNqxs0NIOAAAAAKivUhJIGGPOkPSypGZS1Vz1RpJ6Seot6WpjzGnW2pUe\nd/2knDCi1vzaefNm6YwzpA8+iD27IR5u2vDyl/CndD5Fm0ZuUuOsxsrMyKwKIwJlZWYpS1nKaZAj\nSVXfA2VnZgfdT7lkigYcMEBTfpqi018/3bsB+8DN+NZtXxe23For8ggAAAAAuwLfl2wYYw6XNElS\nU0nbJY2S9AdJJ0r6l5yw4ABJk40xjT3s9wxJ50raqDS/4j3/fPD95MnSJ59407YXoUaymjVspsyM\nzLjrhwskMjMy1TjL+es/Yd8TNOCAAZKk07qcpuuOuM6bgdYiH6/8OGx54D4TicjdnqvSco/XAwEA\nAACAj1Kxh8RjcmZDlEo62Vp7v7X2G2vtDGvtNZJulRMYdJF0ixcdVgQbT8kJO0Z40WYyunQJLduw\nwZu241myUVO6tynIMBm67JDLZGT0yCmPVJXP//N8jTt1nF4797Wg+veeeK+G9hxadZ+VkaUJp08I\nabd5w+aadN4kLfzzQg0/arhG9xutTBN/UFIbvPTdS1XXzy58Vue/eb42F2yO+sybP7ypdo+0U8/x\nPSMuBQEAAACA2sbXJRvGmCMk9ZUTDDxrrZ0bptojkq6U1FXScGPMPdbaZM+i+Iek9pI+tda+aox5\nOcn2klLzpA1JKvfovbEuBhKS9PI5L+vx/o+rZaOWVWUHtT4o7F4MzRo204QzJmj86eO1IHeBurXp\npkZZjdRqt1Y6783zJEnX9r5WD5z8gJpkN5EkHd72cEnS30/4u8zYWjCNJIwdxTtCZovkFeapoKRA\nS39bqqEfOiHMO0vekR0T+S/torcvkiQt/nWxZv0yS3/c54++jRkAAAAAvOL3HhJnB1y/EK6CtdYa\nY16SEyK0kHS8pOluOzTGHCnp/8nZNPNat+14ac89Q8u8CiRqw5INtwLDiHgYY9R7795V9+ccdI7u\nOeEebSnYorHHjw3auLMuuOOzO3T4XocHlY36bJRGfTZKLXMS+7OpVFRaFLsSAAAAANQCfi/Z6Fvx\nPV/Sgij1ZgZc93HbmTEmU86+FEbSfdbaFW7b8lKzZqFl6QwkasMMCS8YYzSq3yg9eMqDUcOIKw67\nIu429999f71w1gvJDy4Oj33zmK54/4qwn20p3OKqTVPxD6KotEgL/rcgaAnHzpKdISecAAAAAEC6\n+B1IdJWzXGOFtVEXty+t8YxbIyX1kLRczoyLWiEzzDYG6Vyysat57szndO8J9+qFs15Qv479qsov\n7n6xpl02LajuZ4M+03kHn5fqIXrq0ncvVc49Oer9r966ffrtkqRN+ZvUYVwH7f3w3lr629IYLQAA\nAACA/3xbsmGMaSiptZxAIvwZhxWstVuNMfmSdpPUwWV/nSX9raK/66y1xW7a8cvFF0uTJlXfezVL\nIV0zJOrSUpEMk6G/9vurJGnwYYOVV5inxtmN1SCjgay1mj1ktqatnKZTOp+iDs2df37zh87XrF9m\nqf/+/fXk3Cf1z/n/TOePoJWbV6rz7p1j1pu3fp5eW1y9KeiDXz2oB05+QKM/G121Oebg9wbrm6u/\n8W2sAAAAABAPP/eQaBpwvSOO+pWBRBOX/T0jKUfSJGvtpy7b8E2TGj/V9u3etJuuYKAuL/tontO8\n6toYoz4d+6hPx+CVQr327qVee/eSJD112lMa8YcR2u/x/ULaate0ndZvX+/vgCVtLdwaV71IJ3L8\ntvO3qusNOzw64gUAAAAAkuDnhP/A4wPima1QJGfvh0aJdmSMGSTpREnbJN2c6POpsMcewfejRnnT\n7q68h0Qq7dtyX5X+rVTld5arTwcnvLjlmFu09qa1Kr+zXDtH7dS22/3bn6G4LL4JP9mZ2THrGNWh\n6S0AAAAA6i0/A4nCgOvYb0lSQznLLQoS6cQY00rSQxXPjrLWbkzk+VQ5+ujg+5ISaVuY99dXXpFO\nPVX66qv42k3XsZ91acmGVzIzMmWM0RdDvtD2v27XQ6c8JGOMjDFqlNVITRs2jd2IS394/g9Vx3tG\nEymQsCKFAgAAAFC7+LlkI3BRQjzLMBpXfI9neUegcXL2qphrrX06wWcTVlxcrIULF8as17ZtW7Vt\n27bq/k9/Cq3zf/8nPfhgcNnllzvfP/44vuCAJRupZ4xRk+zw/6QvP+RyvbzoZV/6ffOHN3VRt4s0\n8pORuvyQy9WxeceQJRp3z7o7ZjtmV0yTAAAAgFokNzdXubm5MesVF9eqrRE951sgYa0tMsb8Lml3\nSe2j1TXGtJATSFhJa+PtwxjTVtJlFc99bowJ9yvkwLevPQLq/GytnRtvX5U2bdqkXr16xaw3ZswY\n3XXXXVX3DcL8Sb/9dnAg4eYlnyUbtctL57ykiWdN1PvL3td5b3p/Wkdlm2Nnjo37mRWbV8gG/KWv\n3rpaIz4eoXtOuEfZmdmas26OurTqota7tfZ8vAAAAABCjR8/XmPHxv//6esrP2dISNKPkvpJ2t8Y\nkxHl6M+DAq6XJNB+5fx0I+m2GHWNpIMlvV5x/4KkhAOJNm3aaOrUqTHrBc6OiKRx4+B7N0eBpuvY\nT37JHllmRqbO7Xquyu4sU4bJ0HEvHKdZv8ySJK28YaU6Px77tAwvHT7+cB3b6digsofnPKw9G++p\nRlmN9JeP/iJJ2nb7tpBlJ6XlpZq2YpoOan1QXKd8AAAAAIht2LBhOvPMM2PW69+/vzZt2pSCEaWH\n34HEbDmBRGNJvSTNi1DvuIDrLxPsI57f91e+PgfWdTVPIDs7Wz179nTzqAYOlF5/vfq+YcPgz93M\nXEjXHhLMsogtwzh/OTMGz9DWwq1qnN1Y2ZnZOv/g8/X2j2+nbBw7infoP8v/E1L+6uJX9d3G76ru\nm93XTOV3OqnYyE9G6tf8X9W5ZWfdNfMuNcluotxbciMuVQEAAAAQv5pL/CPJzo5nO8a6y+/fr78X\ncD0kXAXjLGgfVHG7VdLn8TZurf3FWpsZ66uyuqSZAeVXufmBkrHbbsH3WVnB97zk10/GGLVs1LJq\nw8l/DvinHjr5oZB6Nx51Y0rHlZmRGVK2Jm+N3vrxLT0852G9vOhl3TXzLklOqDFtxbSUjg8AAABA\n/eZrIGGtnSfpCzkzFK4yxhwVptoISV3lBAaPWmvLAj80xgw2xpRXfN3p53j9VjOQ+Oab4Hs3Szbc\nhBgEH+nVpnEb3fKHW7RxRPWBMPOHzte4/uNkx1iV/K1EX1/1tWYPme3rOBbmhm7O+tnPn2nm6plh\n65eWl/o6HgAAAAC7Fr+XbEjScDnLMBpJ+sQYc6+cWRCNJA2UNLSi3jJJj0Rpp86/RvfvLz3xRHBZ\nYaGUk+Nc1wwKSkpCZ1HUFm7CEwTbo/EesmNC/1k3yGigo9o72d2iaxbpkGcOSdmYrvzgSrXMaRn2\ns7LgrBAAAAAAkuL7lojW2m8lXSgpT85eEvdKmiPpMzlhhJW0VNJp1tp8H4eS9m0YTz01tCw/4Ceu\n+ZJf895aadYs6eefg8sS5cUMCQKJ1OixZw/16dAnpX1uKdwStvzyf1+uu2fGPlYUAAAAAOKRkjMa\nrLVTJB0iaZycmRD5krbI2eTyVkk9rbU/R24h6dkRNuArbTJDl+wHnVZRMyioeZLF669Lxx0nde8u\nbd0a/pl4sKll3TL7ytk6ZM/UzZKIpNyWa8yMMfpk5SfpHgoAAACAeiBlh0Zaa9daa0dYa7taa5ta\na1tZa4+y1j5srS2M8tyLARtRuvr1bMDzJ7r/CfwRONOg5kt+cXHw/aWXOt937pSefz78M/H4PO5t\nQyMrY/Z+Sv132H/1xZAv0j0MSdKcdXPSPQQAAAAA9UDKAgk47rsv+L40YJ/AmssgunUL/jyckpLE\nx/Daa4k/UxNLNlIrw2Sob8e+evHsF9M9FN3/5f3qN7Ff0KaYa/LWaOOOjVGeAgAAAIBgBBIpdttt\nwfeBMw1qznZYs0aaPDl8O5V1//WvxMcwfXriz0TqH6k16NBBsmOs7Bir8jvLNX/o/LD1/n7836uu\nx58+3tMx7CzZqdlrZqvXhF66ZvI1uuSdS7TvY/uq46Md9fW6r/Xqole1rWibp30CAAAAqH9SccoG\novjvf6V27ZzrcLMOpk6Vzj47tLwyEPjpJ//GFg1LNtLPGKNee/eSHWOVV5injo921Laibfr78X/X\n6GNH66yDztI+LfZRk+wmmrpiqv699N+ej2H8guqwo7isWMc8d0zV/YhjRuiOY+9Q85zmVWVr89aq\nbdO2apDB//QAAAAAuzpmSKTZGWdIq1Y51+FmHYxP8Jfbr70m7buv9PjjyY8tGpZs1C7Nc5pr7tVz\n9eb5b2pkn5GSpO57dFeT7CaSpHcverdqZsXW27amZEwPzXlIoz4dVXX/wrcvqOOjHXXkv46UZYoN\nAAAAsMsjkKgF7rrL+Z7IS37l+1z79sHll14qrV4tDR/uxcgia9zY3/aRuANbH6gLul2g7MzsqPWa\n5zRXyd9KNPOKmb6P6Z/z/1l1PeT9IZKk/274r77d8K3vfQMAAACo3QgkaoGXX3a+R/ul8d01zhep\nrHvGGf6MqTb4+WepMOL5K7Xf779LBQXpHkV4DTIa6NhOx6pgdHoGWFoeY7dWAAAAAPUegUQtYW3k\nQOLrr6UxYyI/lw5FRf62/8Yb0n77xXfSSG00b56zN0inTlJeXrpHE1lOg5y0HCdqjEl5nwAAAABq\nFwKJNHjyydCyjAxng8tw+vULLXvoIed7ugIJvze1vPhi5/uqVdK0ae7bmTJFOu886auvvBlXvM45\nxwltNm2SHnggtX0nqm/HvrJjrNbetDbdQwEAAACwCyGQSIPBg8OX9+8fvjzcDIFNm6SPP46+6aWf\nsxhSuallcbH7Z08/XXr3XalPH+/GE48NG6qva/MMiUDtm7VXjz16pKQvI2ZIAAAAALs6Aok0aNLE\nm3ZOPTX65zk50nffedNXTfX5lI0ZM6QrrnCWXbgVuCKhLh0osejaRRrdb7SuOvwq/TriVy2+dnHS\nba7YvELFZcGpEks2AAAAADRI9wB2Va1aOZse+u2006Q5c5xlD+ec4/TrhWiBRGmptGWL1KaNN325\n5TY0Of545/uLL7oPE+pqICFJfz/h71XXbRq30erhq7XPY/u4bu+AJw5Qu6btgsoKS+vwbqUAAAAA\nPMEMiTS5777U9LN+vbNcYehQ6aKLvGs30h4SZWXSIYdIbdtKkyd705ebX6Zv3SodcIA3/e/qOrXo\npHcufKfqflivYdqnxT4JtbF++/qg+z7PB6+heeKbJ3Tpu5dqTd4a1+MEAAAAULcwQyJNmjdPXV9r\nK/Yq/PRT6eijvWkz0uyDKVOkJUuc6zPOSN/sgL/9zdkQM13q8gyJcM7teq7sGKuSshJlZWapsLRQ\nez+8t7YUbnHd5gfLPlDu9ly9uvhVfbHGOenj5y0/619n/Ev/2/4/nbjficowZKYAAABAfUUgkSY9\ne6an32++8aadSIFEfr437SfLbRjhVXhQ3wKJSlmZWZKc40LnDZ2nWb/M0uTlk/XukncTbuusSWeF\nlM1ZN0c9nu4hK6vXz3tdF3e/OOkxAwAAAKid+PVjmnTunO4RJCeVm1oGvtyXl0tvvy1Nnx65fnm5\n9NNP7vq64gp3z9VUXwOJQJ1376whhw/RC2e9oBP3PdGzdq2cP7CB7wz0rM1f83/VBW9doBEfj5Ct\nr38hAAAAQB1DIJFGTz+d7hG4F2kPCb+9+aZ0wQXSySdLCxeGr3PBBdKKFe7af+kl92MLtCsEEpWa\nNmyq6YOmy46xmnD6BE/b3la0TfPWz9O6beuSaufaKdfq7R/f1sNzHtYHyz7waHQAAAAAkkEgkUZe\nbjKZauk69vMvf6m+HjcufJ13E189AI8MPmywp+01v6+5jnz2SHUY10GbCza7bidwScnc9XO9GBoA\nAACAJBFIpFHLlukegXvpCiQCeT3zwMv2dqUZEoGyM7N1/0n3q1Ujj86XDdDqAe/bBAAAAJA+BBJp\nNnJkukfgTm0IJMJJ5uXfy2Uou2ogIUm39rlVv936m+wYq+I7irX1tq2+9VVYWuhb2wAAAAD8RSCR\nZv/4R7pHIG3alPgz998vPftsYs/k50vr1yfeV6DAF/1wkglKvAxZduVAIlBWZpaa5zTXnKvmeN72\n+0vf1+73764zXz/T87YBAAAA+I9AIs0yM6V7703vGEpKwpfv2CGtXRv5uaFDpe3bg8siBQb5+dK+\n+0odO0qffeZunDWFe9FPZpaDXxt17sqBRKWj2x8tO8bqg4u921Dy7DfOVkFpgT786UMt2bTEs3YB\nAAAApAaBRC0QuFFjOmSE+VeQny/tt5/UqVP0Izbz8uLr45lnnJkY5eXOCRmJCAw5Ys2QqC2BBDMk\nwhtwwICknj/ttdN08ssn67mFzwWVX/ef65JqFwAAAEDqEUjUAk2aSM89F7ueX8K95E+Y4AQI1kYP\nEEpLg+8jvXzv3Fl9XV4urVwpHX64dM453i6VqI2BBKplZmTqtXNfc/38f5b/R9NXTdfVH14dVP75\n6s+VX5yf7PAkSRt2bNCv+b960hYAAACAyAgkaokrr0xf3+FenvNrvNutWhX+2cCX+NGjpUsuia/P\niy+Wvv1Weu896bUY76eRXu7dLNkoLpYmTgy/bIQZEqkxsMdAPfGnJ3Rbn9v03JneJXFFZUVJt7Hs\nt2XqOK6jOozroJ+3/OzBqAAAAABEQiBRi3z1VXr6jeeFuXPn8OWVL/HPP5/YXhjz51dfr1gR/3PJ\nLtl4/HEn/DnxRGn58sSeTQSBRHTXH3m97jvpPl15+JWyY6xePPvFpNssLiuOq56J8o9o2ORhKikv\nUXFZsW6YekPSYwIAAAAQGYFELXLMMc4pFOH2dPBT797SuHHuni0pcQKFq65y3388P29urvTAA9LG\njdHrxQoVAo9Zff31xJ5NBEs2EjPo0EGyY5JLbvKL8zVuzjjdPv12jfh4hJb/vlzltlwzV8+Mu428\noupNUbYXbY9SEwAAAECyGqR7AAi2997O8oh99kldn+vWSTffLF17rZST45TF+0JdVCRdl+R+grH6\nslY67zxpThwnRyYSKtScucAMifT7/trv1f3p7q6e3f+J/YPu/73037qtz20aNnlY3G0YVf/FWfEX\nBwAAAPiJGRK1UKdOUq9eqe/3+++rr+N9id66VZoZ/y+gw6o5Q6Jm32edFV8YIUmjRkX+7OcaWwL4\nGUhE6weRddujm1YPX60hhw1Juq1VW1ZFDSPKbbkGvjNQZqzR7dNvT7o/AAAAAIkhkKilvv5aatYs\ntX0ecYQ0eXJiz5x4YvL91pwhkcypGxMnRv6sZqiRjhkSBQX+BR/1RacWnfT8Wc9ry21btPamtSq/\ns1zXH3G95/28tvg1Tfp+kiTp/i/v14YdG6LuLwEAAADAWwQStVSDBlJennTPPant94wz/Gk32nve\n6NHB9/HOKMjNTW4MbgOJZ5+V7rhD2h5li4FwgcTixc6SnC5dgo9BRXgtclqofbP2MsboiQFPaMbg\nGZ60a63VrF9maeQnI4PKtxZuDakHAAAAwD8EErXcyJHShAmp7XP6dOn9971p66abpLVro89cqCne\nGRKtWiU2lszM0H5++KG6v3gCiTlzpKFDnaDozjsj1wsXwFxwgbPEZdUq6eGH4x83HMftc5wmD0xw\nCk8Y/1r4Lx33wnHasGNDUHlZefA/APaQAAAAAPxFIFHLZWU5L8B5ebHreuXkk4OP5UzGo49KHTs6\nL+HxijeQ6NKl+tra2LMOKjfsrHTPPVL37tJll8Xf75Qp1dePPhq5XrgZEoHHm/76a+y+EOq0Lqdp\n2+3bNHngZB2/z/E6Yu8jEm5j085NYcvLbXnQppYAAAAA/EUgUUc0a+a82ForXX11ukfjr3gDicqX\nfmulAQNiz5iItMSi8vjPcDMkCgriG0s0r78uHXpocPusBnCvacOmOq3Lafps8GeaO3Su7Birh09x\nppzs02If1+1O+n6SFuQuqLrfWcK6GgAAAMBPBBJ10IQJ0kcfpXsU3rJWWr5cKiyU+vdP7NkffpCm\nTnWejeauu6J/Hi6QaNMm+BSReIOEmjMgFi0Kvk9m406EuvmYm2XHWP08/OfYlSO4d/a9QfcLcxdq\n5ur4jpB5Zv4zGv3paO0o3uG6fwAAAGBXQyBRBxnjvLRXLlMYMSLdI0re4MHOEoxGjaQvvojvmUce\ncb7Hu0Fk4JKJcMIFEvn50h//WH1fWhpfX7EQSPjnxH09OPqlwh9f/GPMOrN+maVrp1yre2ffqzGf\nj/GsbwAAAKC+I5Co4xo1ksaOTfcokvfyy4k/U1goDRkivfaaN2OItanl9u3SAw940xdLNvzzzoXv\n+Nr+is0rdOsnt+rrdV9Lkib/VL3R5iNfP+Jr3wAAAEB9QiBRD+y2m/OCu3mzc0LG6aene0Sp88IL\n0mOPJd+OtdEDid9+8y6MqOwP/mie01x2jNX2v27XgAMGeN7+n179kx786kEd89wxnrcNAAAA7EoI\nJOqRli2lE0+UPvxQ2rJF6t073SOqOwoKogcSN9wgbdwYWh64N8S8ec5Smuefj91f4JKNzz6Tbr5Z\n+tn99gcIo0l2E025ZIqK7yhWjz16uG7nwrcu1JXvX6mVm1dKcmZIVKp5VCgAAACA+BFI1FMtWjgv\nyJW/+S8tlXJz0z2q2uvJJ6MHEpUncdR06KHV10ceKU2bJl11Vez+KmdIlJQ4IdK4cdKBB8Y/XsQv\nKzNLi65dpHtOuMfV82/9+JYmfjtR+z+xvxZtDN6dtKC0QLbGdJfpq6Zryk9TQsoBAAAABCOQ2AVk\nZEiZmdJee0nffpvu0dROv/wSew8JL23b5oQSq1ZVl5WUBNeZPVuaOFEqKkrduOqzUf1G6crDrkyq\njUOfOTTofmfJTk1ePjmo7OSXT9bpr5+uj1d+nFRfAAAAQH3XIN0DQGodeqiz9ODVV6W5c6UNG6Ql\nS8IvR9iVlJa6DyTKypzAJxFvv+0ERTVZ65yismaN1K+fU/a//0mjR7sbG4I9d9Zzatesnf5v1v95\n0t7Okp1a+tvSsJ/d/PHN+mH/HzzpBwAAAKiPDNOK42OMWSepXbt27bRu3bp0D8dzS5bODaMFAAAg\nAElEQVQ4swQ+/FD65z/TPZq65emnpWuucYKEZBUWSg0bOht13nhjdTn/mXrr/2b+n+6ccWfS7fzw\n/35Qt392i/i5HcNfHAAAANxr37691q9fL0nrrbXt0z0er7FkA5Kkrl2dDRmfesp5+a1cTrD77uke\nWe137bXSiBHetFW5PIMAwl9/O+5vsmNs0oFBfnG+RyMCAAAAdj0EEoho332l33+vDigWLpQmT5ZG\njnROnUC1hx/2pp2iImnTJn/2jSgvd5amINgb579Rdd2rba+Ejgp9+8e3o35+9QdXa/229a7HBgAA\nANRnLNmIU31fsuFGWZmzxOP776Xrr5cWLJBOOindo6rbXnlFGjIkdIPLcP+ZrlvnzGjp31867rjq\n8uefl+bMke66S2rXzinLy5N69ZJ27pS++kraZx+/foK6q6y8TJkZmbLWKuNu77LaE/Y9QZ8O+tSz\n9gAAALDrqO9LNggk4kQgEb+tW53vzZtLU6Y492eeKd19t/Tee9KwYVK3btJpp6V3nHVJuP9Mjz5a\n+uYb53rVKql9e2n9emdmi+SEFDNmONc33SQ9+qhzfeqp0tSpvg+5Tpu3fp7OmnSWWu3WSiP/MFK3\nTb9NG3ZscN1e0+ym+mDgBzp0z0PVslFLD0cKAACA+oxAApIIJPywdq3zW/5ff3VOnDjzzHSPqPYK\n959pzU00u3eX7r8/OOipfO6ss6QPPnCu99tPWrkyen8ffugsHbn8cikry/2465OVm1dq/yf2T6qN\nljktteamNWqS3STks62FW7V+23od3OZgGS92SAUAAECdV98DCY79RNp06OB8Varcp2LmTKljR+e4\ny2bNpDvucGZbDBzoXCO87793lmoEWrxY6tEjeO+IwCNKV62SbrvNOWK0cl+QhQurw6GCAum66/wd\nd13ReffOSbexpXCLXvj2BV1/5PVB5UWlRer6VFdt2LFB404dpxuPvjFCCwAAAED9waaWqFV69nSW\nF5x3nvSXv0iDBzszKb7/Xho92tlbIfCl+5pr0jfWVMrLi69eeXnw/QknON/LyqrLAgOJc8+V3n5b\nGj68etbEc89Vf37zzYmPtT777prv1LF5x6TaeH/Z+yFlX6z5ompJyE3TbkqqfQAAAKCuIJBAndKg\ngbN3QuXJH08/7XwvKpKKi53r8nJn74rXX5eOPz7dI/7/7J13eBRV24fvSUjovUmRJtJBKYIoiggI\niCAdFcSCSFUBX0GxIKAifkhRelOa9A6igDRBeidAaIEUAimk92TP98chW7I92U2Bc1/XXNmZOeWZ\nyWaz5zdPcQ0lSsj8EPHx0muhUyfL7by9TffDwuRPYw+JfEZ+UefOGV5fuyZ/GgsWqanyvjoqiDzs\nNCrfiNsjb3N75O1Mj7Hn5h7O3j1L+anl0SZobLq8ieL5i7vQSoVCoVAoFAqFIm+gBAnFQ4G3tyHX\ngabBq6/CG2/A3r0GkWLWLHl+4UKZT2HmzJyzNzNUrgyFC0OhQtaTUuazEoRlzUPCUhvj8zodPPEE\nVKgAJ086b/PDSpXiVRDjBXsH7M1U/8bzGxMSFwJAj7U9OHlH3VyFQqFQKBQKxaOHyiGheCTQNJkL\nIWM+hI8/hlu3ZC6FkBDpfXH8OBw9CtOn54ipbsFYkDh3TobANGhguU1GwSI9h+vrr0svDYWBNtXb\nsL73eu4n3Kd8kfIU9S7Ky8tednqcYX8OM9m/E3OHikUruspMt+IX4cfEgxNpV70d/Rr1y2lzFAqF\nQqFQKBR5CCVIKB55qlWTm/F+nz4wbZoMBfnhB1i+HPz8cshAJ8iYQyId45ANgKefhuvXTY+Fhcnw\nDGseFHfuwOXLULeuvC/582fd3oeBnvV6muzf+989yk8tn6Uxk1KTbJ6/FXmLSQcm0aZ6G/o36u/w\nuBEJERQvUBwPzXXOcV1Xd+ViyEV+P/s77Z9oT7nC5Vw2tkKhUCgUCoXi4UaFbCgUNsifHyZMkB4U\nQkgvAiFkToV79+DKlZy20BRrgoSxh0T6fuvWpscGDpTXe/y49fEbNpQVOUqWhI0bs2brw0q5wuW4\nP+Z+lsZI0aWYHUtOS+Zy6GWEEPRa24slZ5fw9qa3aTy/Mb8e+9XumBsvb6Tc1HK0WtIKV5Z7vhhy\nUf86ICrAZeMqFAqFQqFQKB5+lCChUDiBx4O/mGLFoFw5qF3bkGAzKUkKAlFROZdv4dtvLR/PKEgA\n+Ptbbrt/v/Xx09Lg0CGZWLNnT/Pzy5dD+/Zw+LA9Sx9uShYsya7+uzLdf9LBSTw29TG0CRrDdgwj\nICqANkvbUG9OPaYcnsKp4FP6tmfvnuXjvz4mNC7U5pg91/YkVZfKkcAjHAs6lmnbFAqFQqFQKBQK\nV5FtgoSmaVU0TftZ07TLmqbFapoWrmnacU3T/qdpWsEsjl1M07S3NE1bomnaWU3TIjVNS9Y0LUTT\ntL2apo3WNE2lsVe4FW9vmauiWDFo2lSKFJs2ySSUGXNXZDcZQzbcxYABsGcPtGqVPfPlZto/0Z4j\nA4/Yb2iBFedXcC/uHgBzT86lyowq/BfwHwBf/POFxT7hCeEOj5+QkpApuxQKhUKhUCgUCleSLYKE\npmldgPPAKKAWUBAoATQFfgLOaJr2RCbH7giEACuAd4GGQFHAEygNtAamApc1TXspK9ehUDhLt24Q\nFycrfKR7UggBq1dnrx3G5T3dhQujAB4anq38LBv6bNDvVyhSwW1zeXl4WT0XlxzntnkVCoVCoVAo\nFIrM4nZBQtO0xsBqpEgQA4wDngPaAgsBATwJbNc0rXAmpigNeANpwF9I0eNloAnQFVjzYI7HgG2a\npjXKyvUoFK6gb1+DOHHjhkwm+cYb7plr7Fj3jAuyEsmmTfK1PUHC1xc++sh2SMjDSPc63Zn2yjQm\nt53M7ZG32TtgLzc/vknYZ2EuncfTw5CNVCdMk4mcuXvGZF/TNJfOrVAoFAqFQqFQZIbs8JCYifSI\nSAXaCyGmCCGOCSH2CyGGAGMADek58Wkmxk8B5gHVhBCvCiF+EUIcEEKcE0LsEEK8BXz8oG0hYFqW\nr0ihcCE1aoCXF6xaJRf1Fy7IkA9X8dNPrhsrI6NHQ48ecP689YSa6bzxhvQUadPGdtsDB2QuihTz\nvI55Ek3TGNVyFJ+3+hwvTy/aVG9D9ZLVKV2oNAlfJvDve//SpVYX3nv6vSzNky5CTP53MqWmlKL3\nut78e/tfAKISo7J8HQqFQqFQKBQKhatxqyChadozQCukh8IiIYSl/P3TgMtIUeITTdOsFB20jBBi\nrRBimBAiyEab2cDJB3O01jStlDNzKBTZSYMGMimmELIU548/wqRJMllkbmXDBnORoVs36RER/iC1\nwdmzhnPhVtIdXLsGL70kc1HMnesWU3MVBfIVoFWVVmx9cyuLui7K0lhpujT239rPuL3jiEqKYv2l\n9bz4+4ucunOKiQcnmrS1VGXDL8KPXmt7Mf3I9CzZoVAoFAqFQqFQOIq7PSS6Gb3+3VIDIb8ZL3uw\nWwJo4yZb9j/46QFUd9McCoVLKV1ahlx89RXs2iVFil2ZL97gNnQ6c0FiyxbpETFihHn7xETL4yxf\nbnj9ySeusy8v4KF5sLFP5mup9tvYjzZLzT8+x+0dx9Xwq1b7xSbHsunyJjqt7MSGyxsYvWs0V8Iy\nV8/WkVAQIYRLy47mJEmpSey8tpOIhIicNkWhUCgUCoUiT+JuQSI9134ccMpGuwNGr593ky35jV5b\nKIKoUOQN2reXwkRqKly6BM2a5bRFEBtrXWSwlMAzYxlSIWSIxqOe2qBbnW4s6bqEUc+O4u6nd1nb\nay0Xhl5wqO+JOycsHt91YxfJackmx6YcnsKLv73I6eDTDN4+mB5re+Ab7qs/7xPik/mLsEFoXCh1\nZteh3px63E+475Y5spPRf4/m1T9epcOKDjltikKhUCgUCkWeJJ+bx6+LDNe4LoSwFWFu/Diurpts\naf3gZwpw3U1zKBTZhqcn1K0LJx6sQ0NDoVy5nLFlxgxY5ETEgbE3hRDwyivyOho3dr1tIENEPvsM\nqlaFb77JvcKHpmm819iQS6J3/d4A6L7Rsej0Irw9vWldrTV3Y+/ScnFLh8eNT4k32f/7xt8ANF1g\nOVlJUloSyWnJ/H39b5567CmqFK9icv5OzB3KFiqLl6d5ZY/bkbf5+8bf9KjbgzKFypicG/X3KL23\nxud7PmdBlwUOX0NOcS38GmP2jKF11daMfHakybk5J+cA1sUghUKhUCgUCoVt3CZIaJqWHyiDFCQC\nbbUVQkRqmhaHTDr5uBts6Qw0emDLX0KIWFfPoVDkNGXLmla6OHBA5mPILmKd+KsyFiSOHIE9e+Tr\njBU40tKk8JJVRo6EFSvk6+bNoVOnrI+ZnWiaxqCmg/T71UpUo0C+AiSmWnFLcQFTDk3hm/3f8FiR\nx/Af6a8XH9b5rKPv+r7UK1uPc0PM68k+v+R5gmKCWH1xNXvf2Wty7lLoJf1rY4+M3EyHFR3wi/Rj\n85XNvFbrNWqWqmmxnRBCVS9RKBQKhUKhcBJ3hmwUNXrtyFIl7sHPIq40QtO0ksCsB7tpwDeuHF+h\nyK20bi0FipgYmcehatWctsjAVaOUBsnJ1tsZ55TICuliBMChQ64ZM6e5OPSi28b20Dz4Zr/8qLwb\ne5dz9wzCQ5/1fRAIfEJ92Hdrn0k/ndARFCPzC2c8ByAwKGYaeWPx7hfpp3/9zT7r/z7C4l1bxlWh\nUCgUCoXiUcCdgkQBo9c2lhx6kpBVMAq6ygBN0zyAP4CqSO+ISUKI864aX6HICxQpAr/+CrduSYFi\n7167XVxOcLDpfufO8md8PPzvf9b7jR3rPpvyOk+UeoLoz6PdMvZan7Um++mJKHUZIu/W+awz2X9m\n4TM2xzVOZpkXvQlWXVxFqi7V4rklZ5ZkszUKhUKhUCgUeR93ChLGvsTeDrTPjxQNElxow1ygw4Nx\ntwHfuXBshSJP0qaNTIjp4wPPuyuFbAbeeMPy8e+/h1M20t2GhLjHnoeFovmL0rpqa/sNnWTTlU0m\n+xMOTKDKjCp4TjSNn1lwOvM5INzhIREeH+52T4V5J+dZPJ5RrMlN3Iu9h29Y3giRUSgUCoVC8Wjh\nzqSWMUavHQnDKPzgp0vyO2iaNhkYhBQjDgJ9hQtqzSUnJ3P69Gm77SpUqECFChWyOp1C4RY8PaFe\nPRm+oNPBsmXw44/g66Y1y8GDlo8bh1JYY/9+qFQJnnzS9LgQcP481KwJhQtb7PpI8Hf/v/EJ9aFy\nscr8eOhHph+d7vI5dlzb4ZJxjEM2XM3NiJvUn1MfIQQ+w3x4otQTbpln/qn5jGhuXsvWndeWFULj\nQqk+szoJqQnsHbCXNtXdVVlboVAoFAqFMwQHBxOc0Y3YAsm24psfAtwmSAghkjRNCwdKAZVttdU0\nrQRSkBBAQFbn1jRtLDD2wXingC5CiKSsjgsQGhpK06aWM9MbM378eL799ltXTKlQuBUPD3j3XblF\nRsKECbBggQyncDeOSIRt2kCBAhAQAGWMijbMmgUffwy1a8vypx7uLmKcS8mfLz9NKjQBYFqHafzU\n/idaLGrB6WD7wml242jIxrJzy5h4YCJjnx9rkswz41iH/A9RtURVqhSvwsi/RuqTfA7ZMYTdb+92\nrfF2yK0eElMOTyEhVToedlvTjajPo3LYIoVCoVAoFADz589nwoQJOW1GjuPusp+XgBeAmpqmedgo\n/VnH6PXlrEyoadowYDJSjLgEdHRlVY2yZcvy119/2W2nvCMUeZESJWD6dLklJUGzZnDRTbkTnfFX\nSkyE99+XP/v0gQ8+kGIESK+Os2ehSRP32JnXyOeRj1MfyjiYMbvH8H///V+O2ZKQkkBBL0NaIGMv\ngr1+e1l0ehE/HvqRwU0H07FmRwKjA+lYsyPvbH4HgA+3f2hVkFh5YSVvb3obgKYVmhIYbSjmdD/h\nvjsuxybJabnz6UVSqkGLz1j+VaFQKBQKRc4xePBgunbtarddx44dCQ0NzQaLcgZ3CxKHkIJEYaAp\nYK1Yu3EQ9OHMTqZp2tvAr0gx4gbQXgjh0m+m3t7eNFErH8UjQP78cOGCYX/NGuu5IDJDsWLOlQrd\ntk3+3L0b+vc3PZdqOc+gRfJgLsVM81P7n3jnqXe4HHaZdze/S4F8BQhPCM+2+WccncEXL3yBEILE\n1EQuhpiqW4O2SbFhzJ4xjNkzBoBfO/1qd1zfMF+9GAFwKtg0EUmaLi2rpjvNrOOzmNhmYrbPa4/c\nGkqiUCgUCsWjjqMh/t7ejqRjzLu4W5DYDHzx4PV7WBAkNOm3O+DBbiRgXivOATRN6wGkpzkPANoK\nIe5mZiyFQmFO377QsyccPSpDKJ6xXVDBLs6IERmJizPdz3p2mIeX+uXqU79cfXrV66U/JoRg3619\nlC9cnvrl6nM86DgtFrVw+dzj9o7DJ9SH3Td3U6dMHfsdgI92fmSyrxM6PDTTeJw6s22PlRMeEhGJ\nEdk+p7PklVKrCoVCoVAoHh3cGnUthDgB/Iss5zlQ0zRL33j/B9RFejXMEEKYPNrSNO0dTdN0DzaL\nReA1TXsFWd7TA7gHtBNCZDkXhUKhMCVfPmjVSoZy3L8Pv/+eM3YY55IA2GEj52KYhaILQUEQlclQ\n+rt3Ydw4+PvvzPXPDWiaxsvVX6Z+ufoANK/UHDFeMO2VaS6fa+WFlYTEhXDwtpXMpnaITZbKlU+I\nDwM2DWDzlc12+wREW/74v3H/Bh/9+RG/n/09U7bY43jQcWzlTk5JS2HW8VmsPL+S2ORYFp9ezIV7\nF6y2dwUuyOWsUCgUCoVC4TY0d39Z0TTtaWQYRkFkBY0fkF4QBYE3kZUwAK4Azwgh4jL0fwf4DSlY\nTBBCTMxwvgXwz4PxUoB3AXvf8AKFEE4tRzRNCwQqVapUicDAQLvtFYpHBSFkJYzISOjRI+fsSEqC\njB5tx4/DCy+AcXLiNm3gwAEoWhT8/KBkSefmadcO/vlHvo6MhOLFs2Z3bkYIQcvFLTkWdCzHbBjU\nZBC3o26z68Yup/olf5WMl6eXybHqM6tzK/IWALM6zWJ48+Em529G3KTPuj5UL1mdNb3W4KF5oE0w\n9SpoUK4BF4bKfzEZzwGs7bWW3vV7W7Tp12O/8vFfMvlJ+cLluRd3D4C4cXEU8irk8LWl6dIY/fdo\nopOj+aXjLxTNX9Rq2+E7hjPn5BwAvDy8SP46d+a6UCgUCoVCYZnKlSsTFBQEECSEsFksIi/i9rz0\nQoizQB8gCplL4gfgCLAXQ1nOK0DnjGKEg3QECiG9MLyRnhIX7GyvZ/6KFAqFMZomF/ndu0txIjBQ\nehBkN5aqgvToYSpGAOzbJ0udRkXB/2XI9xgXJ0NT3npLChyWSBcjQAoaDzOapnH0g6OI8YLkr5Jp\nWbllttuw8PRCp8UIgMVnFutf/3HhDwp9X0gvRgCM2Gko3ZkuzL/424ucCj7F+kvrWXNxTabs7bO+\nj9Vz3+w3OPmlixEA5++dd2qOJWeW8MvxX/j97O+M3z/eeSMVCoVCocijbLmyhaHbh+IX8ZB/CXuE\nyJZCeUKIHUAjYDrgC8QBEcicEmOAJkIIW+8qe24cwoktd9ZmUygeEipVgu+/h5QU+Oyz7Js3zUIe\nQykmWydjLoqffoK1a2HVKpg82XW2PQx4eXrx38D/uPnxTQJHBZL8VTJhn4VxYegFNve1H0aR3Qzd\nIb+sxKfE029jP33pS2MiEyNZdWEVHhM9qPVrLYJiDG+Y8/fOExIXYtZHQ+NK2JVMhX1Y80h0Ngnn\nrpsGgWatz1qH+9kqtapQKBQKRW4nJimGbmu6Me/UPF5b9VpOm6NwEdkiSAAIIQKEEP8TQtQVQhQV\nQpQWQrQQQvwshEi00W+pEMLzwWaWwlwIMcHovCNbPiHEMvderUKhyJdPLvB1OggPlzknmjZ133zG\nnhBCwAlrNX2MyOgFsXu34bWtvBSPMtVLVqdSsUp4eXpRulBpGpRrwOt1XmfvgL05bZoZNX6pQeEf\nCls9v//Wft7a+BYA1+5fMzn34+EfKT+1vFmf+JR4mi5oyntb3nPIBp3QsfvGbk4HnyZNWBYeUnVO\nlInBVNjImPAT4EzwGRacWqDPv6FQABy8fZCtvlvRWa3ArlAoFLkbY+/CS6GXctAShStxd5UNhULx\niKNpUKqUfH3yJMTEQNmy1kMiMovxeCtXwttvW2+bzvz5MHeuoRRoIaMw/gTzB+pmOPPA+eZNmYyz\nWDHH++Ql2lRvgxgviEyMZPbx2Wiaxung05wKPkVgdKDTi+7sIJ+H8/8Cb0TccKhdbHIs+T3zs/nK\nZpthHIBVocIaxgvKjF4PscmxNFkgS1Ofv3fe6bKfJ4JOMGjbIF554hV+av+TU30VuZfz987T+ndZ\nYX1d73UmVXcUCoVCITl4+yDLzi1j2DPDaFKhSU6b88igBAmFQpGtFC0KiQ98olJSpNfEBRcUGkj3\nkEhLc0yMSOfCBWjUSL42FiF0LnyIuHMnvPqqFCRu3YLC1h/a53lKFCjBly9+afFclelVrFbAyAm6\nrOrilnH/uv4XnVZ2crj9p7s+pUrxKsztPJeKRSvabW8sMhh7SEQkRFBtZjX9/uwTsxnabKjDdgC0\n+q0VyWnJnLt3jl03dtG0QlPmd5mPp+bJ6eDT1C1b124Czn1++1h8ZjEjmo/g2crPOjW/wj38dNgg\nLg3dMVQJEopHBp3QIYTA08Mzp01R5AHShdvFZxYjxqsqVdlFtoVsKBQKRUa8vOD8eQgIgNeyGAqY\nnCwTTuZzUmZ95hmIjoYxY+C//7JmgzVefVX+DAuDxYttt32YOTvkLD+2/ZFRz44CoH+j/qR+ncqu\n/rvwHeGbw9a5DmfECICzd8+y1XerQ2Eg/lH+/HPTkFnVWJBYcX4F0UnRTs2dkeQ0Q+zTuXvnWHJ2\nCX3W9WHCgQk0W9iMF357wSwXhhBC3+9W5C1eXvYyKy+spOXilly/fz1L9ihcj4bKJaJ4NLifcJ8n\nf32S6jOrcyfmTk6bo8jlZAxnU2GP2YcSJBQKRY5TuTJs2wZ37kiBIDN06iRLcjpLcjJ8/bV5xQ13\n4epQlbxEqYKlGNtqLNM6TEOMFyzvvhxPD0/aP9GeWqVrcWX4lZw2MUfZdWOXzQSXscmxNJrbiJjk\nGP2xyMRIAELjQvUlRa2RnJbMhP0T2Oq71eS4Tuj4bNdnDNk+xGK/TVc2MeHABABOB58mND5Ufy5V\nl8qzi5+lws8V6La6G9VnVjfp+9ofKumYs+zz28f/dv3PpQsoY68aldxU8ajwxZ4vuBlxk4DoAEb8\nOcJ+B8Ujze4bu032pxyakkOWPHqokA2FQpFrqFABjh+Xr4WAmTNh1CjH+gYGZn7ec+csH/fzg+++\nk0LHm2+an9fpZIjIW2+Bv7/0fpg7V+bI+Ppr53JMKKB2mdr4j/Snyowq5PfMz8H3DtK8UnOS05Lx\n1DxJE2mExYdxN/YujR9rjKZpnL93noO3D9KvYT/+vPYn/Tf1z+nLyBLtlrfjs+c+o0G5BkzYPwEv\nTy+mvjKVIt5F2HBpA1FJUSbt7yfcZ8qhKSw/v9zieAtOLTDZ//bAtwD4j/Tn8eKPA/D72d+ZemRq\npuxdc3ENx4PkH+0W3y1m533DnfN8EULw85GfiUuO44sXvsDb09uhfrHJsRTxLuLwPJGJkRT1Lsrt\nqNvcjb1Ly8otc8VCPTw+nJeXvQzAb2d/I3xMuEvGNfZqUR4SzpGmSyNVl0r+fPlz2hSFk9yMvKl/\nfTX8ag5aosgLpAv86RhX3lK4FyVIKBSKXImmwciRcgNZpaN0affMdeCA+bHLl6FGDfl6yRJo317m\ngDAmLU0m0Fz7oPJi/fqGc/XrQ8+e7rH3Yebx4o8jxgtSdan6pJPpi1JPPKlYtKJJnoVG5RvRqLxM\nAtKvUT/O3D3Dz0d+pmPNjvx1/a/sv4Assv/Wfvbf2m9ybP6p+bSv0Z5Xn3zVYp/P//nc6njWEmYe\nDTyqFyR2Xt+ZOWPB5SEZ6y+t57Pdsl5wIa9CfPa8/drBb296m1UXVjG381wGNR1kt/2em3vo/Edn\niucvzv2E+6SJNDb22Uj3ut2zbH9WGffPOP3r+wn3EUKYCSVXwq5wL/YeL1Z9MVeIKA8LRwOP4h/l\nT/c63fHy9AIgOimap+c9TXRSNP8N/I9apWvlsJUKZ1Di28NHxpDBLVe28Hqd13PIGoWrUCEbCoUi\nT1CqlPSaCMohwTrAQi7GtDTw8bHc3lrZUGvrh7S0rHl5PGxkpgIGwNRXpqL7RsfOfjsJ/SyUL1p9\nwZxX5/BR8494stSTDGlqOSwht7P75m5G/e2gu5ADGFc9yWzZ0YkHJuo9LlzFqour9K9nnZhlt31i\naiIrzq8gTaTx4fYPuR15226f9svbk5yWTGh8qF6w6bG2R+aNNiIpNQn/KH/9fnRSNPEp8Q73Nw6H\nAZh7cq7J/t3YuzSa24iXlr5k0SPFGu4M2dh1Yxff7PuG0LhQq23iU+L55+Y/JKXmzpi125G3abm4\nJX3X9zXxKpr872T8Iv0ITwjn7U1OZEt+SNl9Yzff7v+WsPiwnDbFIZytMqTIORJTEzPVr9uabi62\nxLUIIVh4aiE91/bk12O/OvX/4FFCeUgoFIo8RcWKUpgAOHECmjfPnnnjLfwPSUuzLjCkpDg3/ssv\nw8GDMGcODHWuMIIiA+kLrjKFyvBD2x/Mzs/uPJuUtBS9C3ZUYhRTDk/BL9KP1RdXZ6utOcXck3N5\ns6GMQzoTfMapvkcCjxCdFM34/eNdZs+WK1sYvWs0NyMMLtYZE4xlJCElwcyl9uVlL3Pj4xv4hvlS\nsWhFiuYv6rANlrwR0klJS2Hzlc3UKFmDphWbmvQ5HXyaMoXKULlYZZ6a9xS+4b50qtkJgeCv639R\nskBJLg2/xGNFHrNrg3GSUoDhfw5n2DPDAHk/ph+ZTopOfrh0X9PdLAv8meAz9FVN8zcAACAASURB\nVF7Xm6YVm7K652r99WQM2Vh8ejFbr25lUptJeg+jzHA/4T4dVnQAHiRnfXOrxXY91/bkr+t/8Xaj\nt1nWfVmm53MXy84ZbBqxcwTDmw8H4E6sIY/HtfBr2W5XdhKfEk/BfAUt/g3svLYTv0g/hv8p78v5\ne+fZ2HdjdpuoeEjZcGkD/Tf1p1PNTm59X8Ulx5GqS6V4geImx/f67WXPzT2ULVTW5XNu8d3Ch9s/\nBGDj5Y0ExQTxY7sfXT5PXkd5SCgUijzLM89IcSIpCY4ede9crVrBnj2mx9Ks5x/k7FnHxw4KkmIE\nwLBhztvmCoSAY8cg3DUh67kaD83DJB68eIHi/ND2B1b1XGXWtkfdHsx+dTbhY8LpWbcnHpoH41qN\n4/2n36dBuQY8Xuzx7DTdZfzr/y8tFrUgICqA21H2vQqM6b6mO+9sfsfh9of8D5m52Wak25puJmIE\n2BYkElISKPN/ZXjy1ydNjt+MuMnqi6upM7sOdWbXceqJ/J/X/gTAL8KPVkta8erKV/V2j/57NH3W\n96HZwmZoEzQ2XpZfmhecWkCzhc2oO7su6y6t0+fM2Hl9pz5kKCIxgrF7xtqdXwhh9ZqPBR6jws8V\n+Om/nyyeT+eVFa9wI+IGa33W0m55O/31G/+Oo5Ki+GDbB2z13aovcZdZLode1r/ednWbPinr+kvr\n6bm2J6funALQ3wtruU5yK4+Ky//2q9sp81MZOqzoYPa3eizwGK/+8apejACZ6DYvYM1j6nLoZQZv\nG8yem3ssnncld2PvOu2F9rAjhMA/yl//Xuu1rheJqYlsurKJ1r+3Zp/fvkyPnZCSwMbLG/VJgdPv\n/d3Yu1SeXpmK0ypyNfyq/nhscixtl7Vl8qHJjN412mQsV3gzZPRym3JYJcq0hPKQUCgUeR5vb2jR\nQiaZDA6W3ga+bqgi2b696b4tQeLiRejSBbZafmBoQnKy/TbuZuFCGDxYJha9dUve00eRxC8TGbZj\nGM9XeZ73G79vcm59n/UkpyWbJFoMig6i8vTK2W2mSzgedJwqM6q4fZ4XfnuB12u/zuY3NuuPpepS\nmbB/AocCDvFJi08s9rMlSLRf3t7ql8U3N0jPjzsxd9jiu4U+9fs4ZGf/Tf0JGBVAu+Xt9OJI9zXd\nWdljpVn4SM+1pgliElIT9PNaYtm5ZQxrNoyOKzvSpEITdr+928QbIiIhgjZL23DunnmG3SthV3h2\n8bMOXYOxK/1ev710/qMz37/8PUcDDYqt8X3LmMQtq0w6OInCXoUZs2cMIJ8I/tLxF5fO4Q6+2f+N\nxeO53eU/IiGCiMQIapSskan+qy+uJjopmsHbBwMyNOxU8CmaVWymb/PzkZ9dYmtOcO2+wavFJ9QQ\nX/n8kueJSIxgwekFZl5GrmTDpQ30Wd+HemXrcW7IOTMPqNyATuhcZteuG7tY57OOkc+OpH65+lbb\nvbP5Hb04mfH+H7x9kJeXvWzx95KqS+XMXdsefWP3jOXX479So2QNCnsV5kLIBQAGPDVA/3lXe1Zt\nAF6r9Rr/1956ibU1PmuY0XEGRb2Lcv3+dUoWLEmV4o7/z4xOirYY3vTu5nf5vdvvJsd0QkeqLtXh\nRM4PG0qQUCgUDw2aJkM6rlyBiAgoVw5S3fhgwlbIBsD27TLpZUYbM2Ln4XG2MFh+HyU4GHbtgtce\n0WqN+fPlZ/Hri62ez/hloVKxSvgM8+FW5C2qlahGIa9CPF7scY4HHSc4Npg21dpQsmBJ9tzcQ/vl\nporWx80/ZmanmVwKvcSCUwuYeWymW64pN7DFdwsrz6+kb4O+VJ9ZncBoQ8KUjEk807ElSBwOOOzQ\nvH3X96V0wdK0rdHWbtvIxEiKTjYN8djiu4WDtw86NJc90kWFvX57+fXYr3zyrEGI+Xrf1xbFCIC6\ns+tmes5//P7hn8X/ZLq/NT7c9iELTy+kQL4CJsfTy8MaY6sc7Z/X/uSQ/yFGPjuScoXL6Y8npCSw\n49oOnq38LJWLWRb8klKTyOeRD08PT7v26oSO8PhwyhZ2vUt2ZvAJ8aFK8SpOhRRlJCoxiorTKupj\n74M/DXYoLCidfX77LIpoh/0PmwgSGcsEu5Ok1CROBZ+ieaXmmc4j5AgRiRH617ZCtUAKeO9veR9N\n01jSdQkFvQo6PE+vdb0AuBhykX1++xz6HDImKjGKovmLZlowSE5L5krYFRqWa6i/xpS0FH3S1plH\nZ/L1vq/58oUvGdvKvheXPdLDtzZc3sD9sffNzqfqUvEN8zXxlHLm8/WN9W+w4fIGm21+Pf4rgJnH\n3ZGAI2Ztt1/dTplCZcyOG1Ph5wom++eGnLMa5pamS9N/Ht2JuUOdWXVMynSns/TcUhNBIi45jiYL\nmnA/4T4H3z1I3bKZ/8zPq+Q+qU6hUChcQMmSMo+DEDIM4dtvXT9HWBiEhNhu87YDedBseVpY484d\n94ktmbHnUaZe2Xq8+uSr1Ctbj2olquHp4UnLx1vSo24PShYsCUC7Gu0Q44V+S/oqiZmdZur7z+g4\nAzFesO+dzLuq5nb6b+rPN/u+MREjbBEaF8q0I9OoOqMqjeY2IiUthdPBp/l2/7dOzdtueTuGbh/K\ngE0DTBJOOsqrf1iubpIVRv490sQ13vjprTPsvrE7y7ZsueJ4ckyQi5yFpxcCmUtEF5EgF4Nh8WF0\n/qMzkw9NZuDWgdyLvacPMRn3zzh6r+tNqyWt9GEgxviG+VJ5emVqz6pNbHIsY3ePpfMfnS3+foUQ\ntFvWjsd+fozfz/7usJ1CCO4nmC+qssrSs0tpMLcB9efUJyXNuWRDQgjO3j1LYmois47PMrn/GRdO\nAVEBRCdFWx3LmlfIyL9HmuwnpVkOexqy3TRBcEJKAp/+/SkT9k+wGaKVlJrEpsubLIZT9Fjbg+eX\nPM+wHe6JXQyOCTY7ZssLRgjB9we/Z43PGlZfXM2PhyzH/u+5uYdea3tx4JaFkl0PcPZvZZvvNsr+\nX1meW/yc3ZA3a7yy/BWemveUPt/P7OOzKfZjMcbuluLDyL9HEpMcY7NSkzXikuNM9o3/To0FH2Oa\nLWhGg7kNTI45EzZjT4ywhbG3jDHOfCYAvL/lfbNjQgi6rOpCvkn5mPzvZNZfWk+laZUsihGWmH50\nOlfDrxIWH0a9OfVMctqAFMtd7c2W21CChEKheOgpVQrGj5chHbdvw1tvuWbc4cNh//7M909f+Dub\nAHP5cqhcGVq2dI93hc52LkGFC7Dmltm6amueqfiMfr9gvoJcHXGV+HHxrOxh6m7TrGIzniz1ZMYh\nAPSlUdvXaE/cuDiLbXKCyYcmO9xWIPh016f4R/lzIeQC3t9503RBU4tP4e0x79Q8lp9fTtUZVZ3u\n6y46rewEyKeg1rxE7PHKilf49/a/HLx9kE2XMxfX321NN5adW4ZfhJ/JcZ3QcTTwqD7E4+u9X/Px\nzo8dFpSs8f2/35OqS+XXY7/qj22/up1K0ypRa1YtElMTmXFsBiBzX9yLuwfIJ44hcVIBHrB5AGHx\nYdyIuEHRyUX56b+f+PPanxYrYdyMuMm+W/vQCR3vbXnP7PyVsCtmx0LiQqgzuw7br27XH3NF+IYQ\ngne3vAtAQHQAu27scqr/dwe/o/H8xrT+vTVxKeZ/1z4hPvRZ14cuq7pQZUYVSk0pxeqLq/nnprmX\njK2qKIO2DuK3M7/xx4U/rLaZf2o+Uw5NITktmYiECAr9UIhpR6fx7YFv+ePCH3y7/1teX/26mfDw\n3cHv6LG2B88sfEYvyKS/x9LzuCw8vZAaM2tkKZeAJSpOq2gmSlgSvEAKZw3mNuCHQ4bEyHv8LC+e\n2y9vz4bLG3hp6UtW5zZ+/0QmRhIQFcCi04sYvmO4/n1tTNfVXUnRpXAs6BgtFrXgq71fWbV1m+82\nFp1eREpaCkIIhu8YzjMLn+HAbSmQTDo4CZAJWxNTEy3movnyny+JSXJsAT3z6EyK/1jcRDhyJE+G\nJS8wW599qbpUpv43lV+O/ZJpUcbVnAo+ZbIvhMBjoof+s2LcXimm2sNYjAyKNk3O/M7mdzjkf4iY\npBgWnFpAySklzQSghw0tt/yCczuapgUClSpVqkSgqs2nUDwUhIVBv34yRCE7ee01KF8eVq+GDz+E\nAQOgcWPDeXsfy8bepSdPQtOm1ts6ivGYGzZADyeqIAphO3RF4TwhcSEIIShfpLzJcSEEe/32UqZQ\nGZ567Cn9sVPBpyiWvxi7buyiS60uVC1huvDutbZXlp4uKdzD6GdHs8dvD+fvnc9pUwAY12ocnh6e\n+EX6seL8CgDqlqlLUlqSmQu0u1jYZSGDtg3S7x8deJTC3oV5et7TeHp4sv+d/Ty35Dmr/TPGnl8K\nvUT9OfUtng+PD6fy9MpmT6/faviW2WK8WP5iRH0eBcCFexfY4ruFAU8NsBtTfjvyNpWLVcbTw5Pe\n63qz/tJ6/bnNfTfzep3XbfYH6REyaNsg/vX/V3+sT/0+rPVZa7dvOkcHHqVF5Rb6/fpz6nMp9JLD\n/TPLc48/x+H3DSFW2gTDP4szg89w/t55Ptj6Aa/Xed3k3qTTsWZHNvfdbJKI+Is9X/Dj4R/5qPlH\n/NLJeo4S47nSaVCuARdDLur3E75MMAk9+vKfLzkccBjfcF/uxt4169+uRjsGNx1Mr3q9OH/vPE/N\ne8rkvPH7y3j+qsWrsqHPBqqXrE7pn0qb9OlWpxub+poKipZsX9RlEQObDOTPa3/iF+HHwCYDuRx6\nmSYLmujbWHtfRH0eRfEfDdUlxHhhNsfIFiOZ3nG6ybFl55Yx/9R81vVepxe6jfut6rmKvvX7EpcS\nZxLy9kHjDzhw+wD73tlHiQIleG7Jc059zonxgvkn5zNkh/TEWdNrDX3X97XY9sSgEzSr2Iwea3pk\nS8LVJV2X0LxSc+qXq8/B2wczlRx4abeldK3dldPBp2m7zIFQnp8BqRcFCSHyZuIqGyhBwkGUIKFQ\nPNwEBkJAAHzyiSwnmp0cPQrPGuWs0+lsL/CNz/37r6wAklWMx1y3Dnr1cqzfnj3Qvz907gyLrade\nAKRw8fff4OEBr7ySeVsVzpMe7tCkQhPuxNyh2sxqFts1qdCEmR1nss5nHRPbTCQuJY5i+YtRxLsI\nKWkpHA86TkGvgny19yt61evFotOLOBIoY3N71etlcUGhUDjDpDaT+Hrf15nuf+PjG9QoWYNUXSp9\n1vUxW6CkLxiDooMYvWu0U4v61K9TORp4lFa/yQ/dhuUacn6oYZGV/vS9QlEZPjHj6AxG/T2KVlVa\nMa7VOLPwn3we+fAZ5kOt0rVszlt7Vm2uhl912E5LPFbkMRqWa8jum7t5+rGnuRt71+KC2x1YW6Sf\nGXyGxvMbW+piwpR2UxjzvEyUmqZLI98k0/wS54ecp2H5hvz8388cuH2Aqa9MpVbpWhYX9RmJGxdH\nIa9CgCxd64g96ddkaXxr12qP4E+D6bW2F6ULlWZ97/V4f2fuRdepZiemd5hOndl1APm3ci/2nlnS\nXUv4j/Q3SWI86tlRTD863aydGC/4eu/XrL+8nrHPjzXxKur8ZGeaVGii97hIZ2e/nQghXBreNr3D\ndH4+8rPDHlltqrVh363sC3n00DyI/SKW5eeX65PCOkO5wuUsesZYRQkSClCChELxKHH2rKnHgruZ\nNw+GGIXjJieDl5f19sbiwf790NoBcT4hQfYrUMDyeeMx166F3vY9Ds36Xb0KT1qOIACkeJFeqeTA\nAXjxRcfmyK1ER8OKFbLCiyu8VLITndCx+uJqCnsVpmvtrmiaRqouFU/N02aCN0sYJ4X748If9NvY\nz+R8leJVKFuorJmrq0LhDgrkK4DfJ35mORXSEeOFS6vjiPGyXGuLRS04eeckAL4jfHmi5BNmC2dL\n1CpdC98RtstCObOwzY3s7LeTjjU7AqbX8kmLTxxK5vtWw7f4rs13rLq4ijkn5hAUE2TWxu8TP6rP\nrK7fjx8XT6EfCtkdO/rzaAp6FaTDig7s9dvryOUAUKpgKYs5RsR4QVJqEpGJkTz2s+NJRnvU7aEv\nJ9yofCOL3gQdnuhAqyqtTAQ7D83DZgLgdE4OOkmzhc3stgv7LIwy/2c70WNGMnqdPCps6ruJ7mu6\nZ89kSpBQgBIkFIpHESFkCdGs5InIDNHRULQo3L8P/v6QP7+0pV49ed54vfjPP9JGW4SEyBARgJEj\nYbr5QxGTMVevhr6WPSNt9jtxAprZ+L7TpAmceVCxq3Xr7L+vrmbgQFiyRL6OiYEiRXLWntyETui4\nHXmb6iXlAiE+JZ5Rf41i8ZnFTG47mavhV1l0ZpFL5ipbqCwDGw/kX/9/Ha6+oXh0GdpsKHNPznXZ\neNNemcbeW3tN8k0ATG47mS/++cKhMcR4wed7PmfK4SmUK1yOQl6FuBV5iw5PdGBDnw0UmZz3P1yW\nd1/Oa7Veo+SUkm4Zf13vdSax+5+2/NShkqUb+2wkLD6MD7d/6BI7vmvzHRMPTiQ5LRfU8zaiTKEy\nFktQZuTC0As0nNswGyxSOIUSJBSgBAmFQiFLePbv7/55QkLk4rZaNfMqHkeOyGSW6ezaZfA6sMaE\nCaZVRvz85NjGGAsLq1bBG284ZqszgsTTT8O5BzmtXnoJ9uXxghLG137sGDRvnnO25FWEEGz13Up4\nQjhda3elVMFSnLxzkhaLWtjtW79sfQ6/f5jiBQxx0VMOTTHJGP9py0/pWLOjWclVe5wZfIZCXoW4\nFn6NpeeWMrDxQDrU7IAQgjN3z5DPI59Z7LgxP7z8A39elyUtFQp7THhpgr4SQka8PLxI0TmZ+Vih\nUDxcKEFCAUqQUCgUBuLjoXBh943v7w///eeYKLBzJ3TsaLvN6NGmXhF79kDbDDmUjBfXf/wBb5qX\np7eIM4LEU0/BeSMv1O7dYcwY0/wZeQlnrl3hHBEJEfx29jdaVGrB81We1x9PTE3EU/PEy9NGTJMF\nDvsf1teHj0uO4/2t7+tLRC7puoT+jfrjF+nHnpt76FO/j93a9AB+EX7U+KUG5QuX5/bI23Rf053d\nN3fz2+u/0b9Rf4QQ/BfwH33X97XoYm6LkgVK4uXpRUhcCOULl+fw+4dJE2l0X9Od2qVrZ0viNoVC\noVDkEh5yQcJ+cJtCoVAoTChUyFAJw9dXVuo45cLw+JgYSLJc+t2Muw7kJCtWzHTfXlnPzJb9vHDB\n9qI847ibNsktoy5+7pwMhRgwIO/kZvBQRbRdSsmCJRndcrTZceNs+M5gLGoA3B55m8TURHRCp09o\nV6t0LbvJBY2pXrK6SQK7HW/tIDopWu+xoWkaz1d5nsDR8iFGVGIUx4KOUaFIBWqXqc1vZ37DJ9SH\nX4/L8pdRn0cRHh9O2cJlKeJt2UXfZ5gPIEtVBscEM3THUHzDZf6BxV0X837j94lNjiVNl0aJKSUc\nvhZ3EfxpMFfCrhAUHcTQHUOJSXasrKBCoVAoHh2Uh4SDKA8JhULhCDduQM2aWR+ncGGIc6DsdIkS\nEBFheiw2Ft5/X1a0+PBDSE2FGTMM54cMgeeek0/4+/WTP42f9i9f7nhoSsb8h7b+pTRoAD4+5scz\n9vHykjbbGy+nMb72s2elB4hC4SxJqUl4e3o7nUwUZK4ODdkvY/+YpBgCowOpW7YuQggK/1CYhNQE\n/fl5nefpS+oB/NTuJzw0Dzw0D0bvMheDkr9KJjA6kGolqqFpGm2WtmH/rf368wMbD2TxmcUUy1+M\niLEReGimKp0QAo+JpseGNRvGyeCTHA867vS1A8zsOJM21drQaF6jTPVXKBQK3xG+1J9Tn1Rdqsnx\numXqcjnscg5ZlYGH3ENCCRIOogQJhULhDGlp8MMPMnHjXscTd2eKv/6CWrWgYEEYNAi2b7ffJ51J\nkyA4GObMMRxbulR6JzhCxjXUypWwaBF8+aVpWEhyskzOaYmM/4aMx8zpf1HR0dCnD+TLJ6uPFDJK\n2m5s5/nz0FDlAVPkctJ0afrQFYCh24cy79Q8ZnacycctPjZrfzzoONOOTGNKuylULVHV5JxO6Ph4\n58cERAewuOtih8JcQuJC2H9rPx1rdqRYfoPrVpoujWNBx/h639dEJkay/539JKclM//UfO7G3tV7\nkaQz5rkxTGk/xeSYEILjQcd5drFpDNiApwbwXZvvGLNnDKsvrtYfX9J1Cf0a9WPR6UUM/3O4Xdu3\nvbmNLqu62G2nUCjyDumfJemfhemkl4M9EXSC5osMCaL6NezHygsrHR7fWjUWY5pVbEbNUjX1n08T\nX5pI+SLlTcuJKkFCAUqQUCgUmSf9Y/bmTdd4T1ijaFEZ7pFVliyBbt2gpAPJ0G091DX+9/J//yfz\nRdhrl3FMV/+LSkmBgACoUcOx9oMHw4IF8vXkyfC5IV+iiZ2bNsl7Zo+dO2VOj3fflaJPuXLg6Wm3\nm0LxSJOSloKXpxepulTyediPNhZC6Ntm9ByJToo2EUNAiivxKfFcCr1Es4rN+C/gP67fv06/hv3w\n0DxMRBwhBHv99jL8z+H6cBmAc0POUdS7KM0WNrO7ALky/AqxybEWyzA6WsYRZMWQJWeWkJSWRL+G\n/Xjv6fdot7wdXWp1YcnrSyjiXYSDtw/SYUUHk35fvfAVQTFBHLx9kIJeBWlYriGrLq6yOk/yV8ns\nubmHZhWb4enhyYFbB+hQswMF8xWkxaIWnLhzwiF7jalQpAIfNv2Qq+FXzeauXqI6EYkRRCZGOj2u\nK6hRsgZHBh5hr99e3tzwJrVK12Jki5EADPtzmL7dkq5LeK/xe3y7/1smHJhgcSxnFrBzO89l6I6h\ndts9VuQx/Ef64/2dt/7Y9je389qq1xyax9Us776c/o36k6pLJSUthev3r9OgXAP6beyn/92+9/R7\nNK3QlDpl6tC2Rlt0QkdoXCjli8gSYGm6NGKSY+iyqos+GXCHJzpQNH9R1l9aD8DqnqvpWa8nYfFh\nhMSF0GttL67dvwbAjA4zGPn3SL1Nq3uu5k7MHRadWcSl0EtmNh989yAvVH1Bvx8WH0adWXVITE3k\n+KDj1CtbT3/uWvg1PDQPnij1BClpKZScUpK4FFMX1kltJhEaF8rduLvMeXUOpQuV1nuwvbflPa7f\nv86KHiuoVqIaANfvX2ev31561etFqYKl9DYYC7tbrmyh2xr5xaLALwVIvJ8ISpB4tFGChEKhcBVC\nyCSI+/fD2LE5bY1lvLxg2zbo0MF2O1uCRHAwPPagDHvv3rB+veV2jggSqalw4IDMUVG8OJlCCFkJ\n4+RJmDtXhq7Yo0gRQ+hM797SS8KSnTVrwrVr9sfLeL+aN4ejR23fx4wIAYsXS++Njz6SvyuFQpEz\npIslGRFCkJyWTP58+bkTc4eyhcqSmJpIEe8iepHkkP8hXvhNLooWvLaAQU0HmfS/n3Cfgl4FKeRV\niKVnl/Lulnd5/vHn2f32bkLiQvReKzqhMwuRyWiLf5Q/VYpXsRkalKpL5eOdHxOdFE3Puj05HnSc\nwc0G6xdRlohJiuHM3TPUK1uPHVd38HL1l3m8+OOEx4dz7t45CuQrQERCBDqho0SBEjz92NMU9i5s\nYu/rq19nq+9WhjYbyqxXZ+GheZCSlsJnuz/javhVdl7fqW+roeGheVChaAVW9lhJi0otOOR/iKYV\nm1KiQAl6ru3JxssbAZjeYTqftPgETdO4GHKRtT5r6Vq7K80qNuOZhc9w8s5J1vRaw4tVX2Tqf1Pp\nUbcHzz3+nMn1RSREUKJACZP7FhQdREJqAjVLmT9h2HF1ByUKlKCgV0GqFq9K8QLFqTGzBgHRAQDk\n88hHo/KN+KXjL2a5bTKSnJbM3BNzKV6gOG2qtWHTlU20r9Ge+uXqA5CQkkBgdCBPln7S5PdR7Ecp\nuLWr0Y6Pmn/E66tf15+/9797nL93nrbV25KiS+HLf75k6pGpNu2wxEfNP2Jw08HUK1vP6nsqKjGK\nzVc282TpJ2lZuaVTYWnG7+mElAQKehW02O5e7D3C4sOoX64+PiE+/HLsF/rU70PbGm0ttrdFYmoi\nyWnJZoJlRtIFT2eTK2cGndARmRhJoycbERQUBEqQeLRRgoRCoXAnERFysevIIjk7SUiAAkZ5BJOT\nYcsWmQ+ibl3bC+lXX4UdO+TrXr1gwwbL7d56S+aWKFFCljE1Du3Q6eQcn30GU6fK0qGnTzu3gE/H\n1xfq1DHsO/Lvz3ie8eNNy6dmtGHLFujc2bbHgyW7z5yR1+UoO3fKewvwyy9SlDBGCIiMdMzDRaFQ\n5DyOen48rOiEjqvhV6ldurbFRWuqLpXpR6ZTxLsIQ5oNyVS+lZxGJ3QIIUy8bdyFEAKd0OnnCosP\n4+Sdk7xc/WW8Pb3t9JZ5bVr/3ppjQcc49N4hroZfZeiOobzV8C1mdpyJt6c3+fNZicFUuIXKlSsr\nQUKhBAmFQpF9/POPLM158qT8mZN4ecmSoQULQliYFCi+/Ra8vSEkRIoItkj/F9OzJ2zcaH++fv1k\nHop0UlJk/gbj758REbKixzPPmIol9vDxkUJKRttsYTzvvHkyhMPSuXQWL5YJRS1x7ZrM9ZGR//6D\nli3t25JOnz6wbp18XbEiBD2oKJmSAt9/DxMeeA5bEisUCoVCoXCWpNQkJULkIA+7IKEKlSkUCkUu\no21bma9g9265aE5NlTkYcoKUFBgxAgYOlOEl6R4CycnOJc90VPtemSHUNjnZvM2HH8KLL0qR5LXX\npBdFaipMnCgX46mp5n1cgSPlUAcOtH6uV6/Mj2uMtXu5Zo1BjAD42DxHodMsXgxdushSrM6QmJj1\nud2FTie9bFJSXDeeQqFQPMwoMULhTpQgoVAoFLkcT0/43//kQlSnk5uvr/1+7saSWGCNzDrjhYeb\nH0v3DgAZElKoEHzxhSGk4oMPLI+VVS/fmTNl9ZTMcv685eNZWdAaX9PSpZkfxxIxMfJebt8Oz9sO\ndTZh3DiZYHXKFPttc4JPP4WmTR1LQmqPgwehQgUpNrnK4TQwELZudZ1gUUoMlQAAIABJREFUkk5U\nlMzrolAoFApFbkIJEgqFQpGH0DS51aolF0DpW1wcDB8OpUplny2OPgXfvh02b87cHN9/b79NUpLM\nL5HO0qWZe0Kfnmw0IsLyeV9fWL7c8fGiohyzw1mRw9rCt6CFnF86nQzb6NVLhtw4Q1SU4XVcnPV2\nGZk8WXqpGFckyU3MmCF//vln1kWE1q1l6NKGDXD8eNZtS0yEFi3g9delyOYq7t6FypWhShUZCqZQ\nPArEx0OnTtLrMDJnCnYoFAoHUIKEQqFQPAQUKgSzZkmPgtRUuHFDVoVwJ+kLO1t8+aV0+c8sR4/K\np9DOct9C1T17T5znzpVVLxo1kiLH1avmbRwNnblwQeZ3ePxxy7YYk5WQDWMPCQ8L/9HXrJHviw0b\nYORI8/O2sDTew8a+fa4by5I3j7OcOQN37sjXP/+c9fHSGTcOYmPlZ8OIEa4bV6HIzUyeDH/9BXv3\n5l6BVKFQKEFCoVAoHjo8PaFGDVm1I92DwtdXLkwLF3bdPJYW7Bn54YeszXHunHwK7SyW8kh8+qnt\nPsOHy5+BgbJCRe3a5m3seTOkV9h45x35dC4sTFYjsZWcNCthIPYEif/+M7xes8b+eFevygSks2c/\nGoLE9es5bYEp7sozHhBgeB0d7Z45FIrchrHX0r//5pwdCoXCNo/A1w2FQqFQ1KolF9yxsXLRk5YG\n332X01a5D0uL/H/+cbx/QoLl4zqdvH+hoZbPez+oqJZe+QKkS3/79tbnclVSRFcsZjt3ltVQRoyQ\nwowt/voLqlVzbWhBdmPp3h87BkOHysSXzuCKSoTuEiSMrzPfo1tdUvGIYSyqquSzCkXuRQkSCoVC\n8Qji4SHDKYzzUKSlyRCJiROhXLmctjBr7Nhhv01SkvRgmDXL8SShiYnQpIn1+5MuSHg6UWreGQ+J\ny5dNy6emL4Jv3bKcp8P4ybgji11jjwF/f9ttO3WC27fhxx9lfLYQrslP4O8vS6RmB5bu/bPPyhKv\nTZtmjw3GZEcldlcIJwpFXsBYkMiKJ5pCoXAvSpBQKBQKBSC/vLVoAV9/DffuycVRSopctJ8/L6tY\nWApjyI189JEM93j6aVka1FKiys6dpbDw0UfQrJlj4wYEwNmz1s/nf1AZzZmn0M5UU6hXz3Q/fXE5\naJDl9lu2OD52RpxZuA4fLj1unnnG9LizC+xbt2S4Ua1aMsGou3FXidjM4og9W7fCnDlSUHOU7BA6\nFIrchvKQUCjyBspxT6FQKBRWyZcPSpeWW8OGsqwmyAXOtWtw6ZJ8kvz443DqlOML++zg6aflz3Pn\nLFcfMQ7hiI11zZzpgoQzHhIDB8Lo0bBsmbR5xQr5s0UL03a2FqC2RJKMbNokPUJGjIAiReTvcvdu\nWYnBGGcEiT/+sHw8JgaKFXN8nHHjDE8y33lHvr/cSW5bpNgTJM6dkxU4QL5nx4xxbFxriVBdxbVr\nMl9Jz57yPaVQ5AaUIPHwkpRk+H+ryPsoDwmFQqFQOE166dFu3aQYAVKYEEJ+8Uvfdu603D87y5Nm\nJ97e0qPEGYEjPBxu3oRWreRibsgQGTYQEmLa7tYt877pi0tHSnqmpcFbb0GPHjLvw3ffyd9XjRrQ\noYMUAIyZNct0v2tX+O03hy8LkGFBjhATIxfbxrk74uNt90lMzPqT/4xu3BkFEGeSXrpiwWNPkFi5\n0vB67NjMzxMRAfv3u8aNPSVF/u2/+679xLEKRXZiLEgoL6GHh759oUQJmbhb8XCgBAmFQqFQuBRN\nM2wdO5rmqUjfwsPl4m/NGvmkQwjHn/bmZm7cgLJlHRMI7FG+vLyHBQrIhXpmqo1kZNUqw+spU6Tr\nvyWhA8yTgG7bBu+/75zYklHUALnoTk423W/QQHqFGOfBsLWAOHRIhtu0aCHFnGXLbFeP8POD1avN\nRY7gYFi3TtqQlmZeGrV1a1kO9s8/5cI7JQXWr5chTBlZsMDw+vp16e1x6pR1myzhTPiOM2NkvJct\nW0KbNjBpUtbnCwqSghKY3oOHmdu35bW64u88Jzl5UpbEfFgX68aeahnFN+UxkTcJDJRCRGKiFCYU\nDwdKkFAoFApFjlC3LvTpY0gEOWWK/GKcnCy/LPr5yQWkry/075+ztuYkSUlQqJDM65ERT0/p9ZBZ\nRoxwvk+HDpmfLywMqleHqlXl3F26wNKl1hNo3r0rK178+qvp8Xbt5CL4xAl44gnp3fHxx4bzoaEG\nb4PUVCksvPmmeTLSadPke9DLS5Z63b3b9PydOzBsmMw3MmkSzJ8PvXvDU0+Ze7Bs3Wp4/corMHmy\n4yFMOp0Ub6ZNMz1+7pxj/dM5fFgKWS+/bLrgMl5wBgQYkrhOmABxcVJ0mTLFPGzHEby8nGt/927m\n5rFHYKBpdRtjQkJk6V1rHig6HfTqBY0bS1ExHSHk72TGDFMR7YUXYPBg6NfPdfaDfL/Nnm2ajNZd\nXLkic760bSvvTXpiWmsIIQW83bvzToJISyEbQsjQorJlYd8+631TUuTf+6ZN7rVR4Rz2POcUeRQh\nhNoc2IBAQFSqVEkoFAqFImfR6YSIihLizh0hDh8WIjFRiL/+EqJJE0v+GGpz9fbnn463NWbgQMf7\nPf64EKNGGfZ/+EGImzeFePFF23Nt3SqEp6cQdeoIkZIixI0b2Xdf9u0TYtkyy9efmChEly5C9Ogh\nhI+PEOHhhnOrV1ser3x50/v3v/9Zv7dCCFGwoOHctm2G48b3rHRp0zHeecfwumVLx/7+Vq8W4rHH\nhPjqKyECA63bNG+eENWrC/Hbb0LExQlx/boQ3t7y9+Pj49hcjuDjI4SHhxz36lXTcykpQtSoIW37\n9lvL/detM9jfpInhuPG9+uUXw3FL15uaKsSqVUKMHSuEv7/5HHfuyN9JUpL162jcWI5Zt679a84q\nvXqZXke+fEI895z8bE3n5EkhFiwQomlTIWrVMrT96SfTsdLShNi5U7ZPJzVViMhI91+HLfr0Mdhc\noYI8duKE7b+hdGbNMrQ5fjx77FXY5/Jlx35/DxuVKlUSgAAChcj5dbGrtxw3IK9sSpBQKBSKvEda\nmhDnzwvxxRdyMbJ4sRABAUKULSuybZGqNrkdOiTECy9kbQx7/fftM93fskWIAwdy9rpv3ZLvReOF\nPwhRpIhBlLAnsty9K9+/zZqZnps50/T9bnxu0SIhzp6VC0pjoa5cOdv22iM83LT9uXPm/e/dE2LJ\nEtPjnp7Oz2VMZKQUFzKSnGw6ZvfupucvXbI/55Qp5m0yjpt+XKezPN7SpabHk5OlaPrTT0Ls2mUQ\nRcaNM4wTHW1qR2buTXy8EOvXS2HIGbp1s/z7X7lSiIkThTh40PH3yYYNhuM3b8rfU4MGQuTPL8Se\nPbbt0OmECAtzznZHeeMNg13p4t7ffzt2n43bDBniHvvyKjqdEEFBOTO3j0/mP0McYelSIT76SH7m\nphMXJ79D/PyzqWCXnShBQm3yRilBQqFQKB5qdDq5eElOFuLUKbmYnTZNLoSMv3Abb/PnWz6uttyx\ntW6d8zaA6ZNa423YMPnea9vWel9r3hPp28CB8mm0EKbHp07NnK326N/ffv82bRybq18/uWi8ccP2\nnIcPC1GggFzUJyTILSRELnznzTMds317Q7+kJCnK2Lu+mTPN28THm9v7779yTEfanjsnf7+WrnvB\nAsPrihUNdjjzexBCegOlt69VS35WLVggP8eEkJ9hb70l70FGunTJ2nvaGGOx6aOPTD1OQIqRmzYZ\n3qfGtG0rvVuWLnXsmp2hXz+DDWXLymOZEST69XO9be7gxg0hZs+WgqCrmDpVenXdvGk4NmiQvC+f\nfea6eRzlzBnn/04c5do1w7jPPWc4PmmS4fjWra6d01GUIKE2eaOUIKFQKBQKC6SkCHH7thAxMfKL\n95gxQrRqJRdQvXoJ8fbbQv9l5t13DU/Df/9dtsnKokBteX8bNUqIjh2zNsbnn8v3oivsefNNIQYM\nkE/yQYjChYXw85PjHz1qv/+YMc7P2bCh4e8pMVGI7dtlCMCkSTLUoUwZQ9t0u9K3p582Hy8wUC6M\n8+cXonNn03OWyChq3LsnRKdO5uM2aSL/zjOOl9EmkJ5Zjl5/ehiHNTt9fYV46SUhGjUS4oknhOjZ\nU4gLF8zH6dFD/syf31Q4KVzY/Jpffjlr7xNj8uc3HB8yRIjp0y33WblSvoc8PKQQdf26/d+NLRYv\nFqJFCxmuZ4n69Q1jlyolj2VGkGjXTh47dkwKPLt2OW+rEPL/w7hxlkN6XEHlytLel16yfD4yUv5N\nbdni2HjG4RHGoUxZ+Z1llX//NZ3fld41q1ZZvjbjz5+33nJ+3IAAw2doZlGChNrkjVKChEKhUCjc\nQEKCDC25dUt6Z8TESHfpu3eF2L9fiN69hcmXpOrVs76AVVvu2owXTpndrC0CXbHVqycXM+68B+3b\nCzFypBAjRpgfd+U8aWnmbteWwkksbQ0bSoHE+Jixt4PxljGUxdZWp465sGIcnpKeW8KZLaNgERcn\n85v4+wsRHJz1+zh/vsHzonBhw3HjXBP2ttmzTffTcTT/hKW+Z87IcS29X4Uw/31Zy+lh3Oall2zn\nSgkMlJ/fe/fK98etW/J9ZkxKimn/sDDZxlIYUmYxHn/4cCGefdY0V4vxeVteSatXS0+oDz+0fM3W\n7oOzWPodh4Zab//ll+a/0z59rLcPDRXi00+F+OMPuW/JQ8eYjN5oQsjf0eOPZ/6ab9yQny+aZtlT\nyRFGjhTC01MJEmoTQgkSCoVCocgzpKQIEREhv2yfOiWfJF67Jt1ut2+XwsfJk0L/Bat+fSHee0+Y\nfOkyTpCoNrU9LNuZM0JUqyZzaYSEmHtHuGrLaoLdu3flYiuroRWWtg8+cN1YGZ9YZ2VLSxPi/fcN\n+7byT/j7m/aNjJTiroeH3LeUQFcImYzV+JhxclkhZLjL+vXmfTPmb0lnzhzL19Kpk6FNaqr1nBzl\ny5snYhVCCtOzZsn3qxDSW2HVKulBdPy4FCAHDJBhQX37ClGzpvX7mphoHlY0apRMsvriizIkMZ2o\nKOvjCGE9h0o6EREyX85nn1nPt6DTSWEdhPj+e8Px/2/v3uPlqsr7j3+enJOchCQQESIkgXD9AeEi\nF0OCBAigFERUREGkQCnlJbZSlHstglRqiwJVKwg/WsAqP/mJUEEQFUO4tQIpck8whFtuBwgJgSTk\nOufpH88eZ2eyZ87MyZk5e8bv+/Var9kze+21L8+cOTPPrFnr0ktLz88s1Y4rS/p/2tVXu2+6afRY\nrKQ8ITF7tvv48Rvur55xJNKDxxYTRPUkoebNK27f3gkJc/dmTObR8sxsPjB27NixzJ8/f6APR0RE\npKkKhZg+cenSmJZw++3huuvg2GNhyhS49164807o7Iwp9R5+GKZNG+ijFpFWVvyYMmECzJpVud6Z\nZ8bUvxMmlB478MCYCrfoyCPhV79af7u5c2PK3/PPh6FD4YYbYirc3qxaFa91nZ2V66xeHfW+9CX4\n0Y8q1zvgALjlFthiC+jqiulft9++tH706NI0w8OGwcqVvR9f2sUXw557wgknVK7zyiuw3XYxJfCu\nu2bXWbIkpmC+9NLSY/vuG6/748bF/bPPhu99L5ZvvTX2uW5dHMNtt0V87r57/XZPPTWmf05Lfzx1\nB7MoWRYsgDFjYnntWvjNb2I/O+yQXf+RR2DxYpg0KaZJBnjsMfjc5+DVV7O3SVuxIqbihvi/+IlP\nwFNPxZTYJ54Yz4mFC+N4b7opptVNO+oo+OUv13/stdfif+uOO8KIEaXHn38e9tgDYBywAGCBu4/r\n/ShbixISNVJCQkREpLEKhXjz2dERb+a7uuCll+JN+JZbxpvF55+HSy6JN+U/+AFcdVW8GV2yJN4Y\nA+y0E8yZU2q3owP23x9+97vej2HkSPjiF+Fb32rIKYpIHa69FubPh29+s/e648fHB7t6nHtuvIb0\nxdZbQ3d35fXHHQe3315fm2PGxIfZgfLpT8Mdd2Sv22abSEaXO+ywSPTcf38kfYpOOik+8F99dd+O\n5ctfho9/PI5p+PDq13rGDJg4sf59nHVWJKO23bb2bRYujNj/7Gdw2mmwfHn9+121KhI0gwdHsmj3\n3UvrRo+GmTPjenZ0xPNICQkBlJAQERH5U7N2bSRIhgyJ5c7O0rd0s2fDoEHx5nSPPeL+L34BY8fC\nBz8I99wTSZOtt4YLL8xuf8KEeOOZVp5MERGRfDFbvxdH4ykhISghISIiIs2zZk18e7ZuXdxmcYe3\n345kSVdXdPkdPBi22ip6kmy1VXwTN2JEdEufPRtefDF6nOy7b3R1Xr48vn0cPx6efDJ6mXzve9Fb\npZrf/ha++lV4/PHSY5Mnw6OP9n5u6S7oIiLSGyUkBCUkRERERBqh+Fa0UIhvHleujOWuLnjvvUim\nmMHTT0fdXXeNde++C5tuGsmX7baLxEuhAA89FL8fd4fLL4czzogEyHHHRfLmwx+OhIw7XHNNdIse\nMwbuuiu6pG+ySSRannsuer988pPw+c/H/r/whegePmlS/GSo3IgRG3bhPvHE6PnyjW80/FKKSFtS\nQkJQQkJERERE8mvdukiyFAdafOON0qB9CxbEOCydnZGAAejpgXfeicdGjozH1q6N5M/y5TBq1Prt\nu8eYLkuWREKopyfGbBgxIpI8m2wSjz39NOy8c/TWmT07kj3d3dHr5623YuC+RYuifnd3rF++PAbB\nNYtBHi+/HKZPh/e/PwYg3GefSEQtXAgPPhjH09EBhxwSv7VvhOnT4fTT4eWXG9O+SO2UkBCUkBAR\nERERkdZTKEQCZ82aGBMn/XhPT4yH8/rrpdkqzCLBNWhQrIfYtph06ukpJb56eiKRNWRIqW5HRyTB\n3nwz1u28c/R0gujRtNlm0btp1apIOG29dbRXKMQMFAceGAm0FSti9pFlyyLRte22cWyjRsW2a9bE\nT9PWrYMXXoBddonE2dy5kczaYouo19UVj7/+OvzkJ7Hu3Xdjdqi99oqBOZ99NpY32SRu58+PmV2G\nDIHDD49ju/feSMgtXhwJv7FjY78QxzRxImy+eSTK5s2LXldTp8a5PPdcJO9mzoyBQ4uzb/zZn0Wv\nsIcegiuuiBlXnnkmBrscOzau14IF4+jpUULiT54SEiIiIiIiItJM48aNY8GC9k1IDBroAxARERER\nERGRPz1KSIiIiIiIiIhI0ykhISIiIiIiIiJNp4SEiIiIiIiIiDRd0xISZratmV1lZrPMbLmZLTaz\nx83sPDMb1o/7OdHMfm1m3Wa20sxeNbMfmdnk/tqHiIiIiIiIiGycpiQkzOwY4BngK8D/AYYBo4D9\ngG8BT5rZjhu5j6Fmdg9wC/ARYDQwBNgGOAl4xMwu2Zh9iIiIiIiIiEj/aHhCwsz2AW4FRgLLgK8C\nHwYOB24AHNgZuNvMhm/Erm4Cjkraux/4FLA/cDowhzjXS83sr/rY/iCAQqGwEYcoedHd3c3Xv/51\nuru7B/pQpJ8opu1F8Wwvimd7UTzbj2LaXhTP9pL6/NmWwy0046S+S/SIWAd81N2vcPfH3P0Bdz8T\nuAAwoufEuX3ZgZkdBpxAJCPuAo5w91+4+xPufjNwADA32c8VZrZZH3bTAUpItIvu7m4uu+wyvVC3\nEcW0vSie7UXxbC+KZ/tRTNuL4tleUp8/OwbyOBqloQkJM5sITCESBf/m7o9nVLsamEUkC842s75c\n6GIiYx3wN+7u6ZXuvhi4MLk7CuhrLwkRERERERER6QeN7iHxqdTyzVkVkuTBfyR3RwGH1rMDMxtB\n/PzDgd+6+8IKVe8A3k2Wj61nHyIiIiIiIiLSvxqdkJiS3K4AnqhS78HU8oF17mMiMXhleTvrcfe1\nwKNET4yJfeyJISIiIiIiIiL9oNEJid2Ingtz3L2nSr0Xyrapx4QK7VTbTycxkKaIiIiIiIiIDICG\nJSTMrAvYIrk7v1pdd19K9KKAmKazHuNSy1X3A8xLLde7HxERERERERHpJ43sITEytby8hvrFhMSI\nBu5nRWq53v2IiIiIiIiISD9pZEJiaGp5TQ31VxPjOwxr4H5Wp5br3Y+IiIiIiIiI9JNGJiRWpZaH\nVKxV0kWMN7GygfvpSi3Xux8RERERERER6SedDWx7WWq5lp9HDE9ua/l5R1/3Mzy1XO9+NgdYtGgR\no0eP7rVyR0cHHR2ayCOv1qyJzjRHHnkkQ4bUki+TvFNM24vi2V4Uz/aieLYfxbS9KJ6toVAoUCgU\neq23aNGi4uLmDT2gAdKwhIS7rzazxcSFG1etrpmNIpIFzvoDT9YiPZDlOOD3VeqmB7Ksdz9WXEg9\nKaTFKZbtRzFtL4pne1E824vi2X4U0/aieLYd671K62lkDwmAmcBBwE5mNqjK1J+7ppZn9WEf6Xbu\nqlK3uJ91wIt17mc1pZ+VLKmhfgGoNtWpiIiIiIiI/GkaBNTSpX5zIhmxureKrajRCYlHiITEcGA/\nYEaFeoeklv+rzn3MIAazHJy0862sSmY2GJhMJBRmuHvv/WNS3H1477VEREREREREpBaNHNQS4Oep\n5dOyKpiZAackd5cC0+vZgbsvB6YRWaOPmNmYClWPAzZNlu+oZx8iIiIiIiIi0r8ampBw9xnAw0Sy\n4HQzm5RR7TxgN6LnwnfKey6Y2alm1pOUSyrs6srkthO4xszWOy8z2wL45+TuUuDf+3RCIiIiIiIi\nItIvGt1DAuBsYorNwcB9ZnaRmU0ys6lmdj1wRVLvD8DVVdrxiivcpwO3EomPTyb7OcbM9jOz04Df\nAdsmbVzg7u9s9FmJiIiIiIiISJ81egwJ3P0pMzse+DHxk4lvllchkhFHu/uKjdjVXwIjgY8BU4FD\ny/ZRAP7B3dU7QkRERERERGSANaOHBO5+D7AX8C9E8mEF8DYxIOUFwL7u/kq1JmrYxyp3PwY4CbgP\neIMYiXQucAswxd2/sTHnISIiIiIiIiL9w9x7/awvIiIiIiIiItKvmtJDQkREREREREQkTQkJERER\nEREREWk6JSREREREREREpOmUkOiFmW1rZleZ2SwzW25mi83scTM7z8yGDfTxtTIz29LMjjazy8zs\nl2a2yMx6knJjH9o7yszuMLN5ZrYqub3DzI6so41hZnZBEuPFScxnmdmVZrZtHe3sbmbXm9kcM3vP\nzN40s4fM7Atm1lHvubWCZJrdr5nZr1MxWGZmfzCzG83swDrbUzwHkJmNNLMTkmv1gJm9aGZLzWy1\nmb1hZtPN7Hwz27zG9hTPnDKzK1KvvT1mdnAN2yieA6wsZtXK/TW0pXjmjJltY/H+aEZyDVaa2dzk\nWlxmZrv3sr1iOoCS/5u1/o32+tqreOaHmQ02s78ys1+Z2UIrvd99weL97gE1tqOYFrm7SoUCHAMs\nBXqIaUPTpQd4AdhxoI+zVUtyDdMlfX1vrKMdA/6tQjvFx66voZ2dgNlV4r2UmJ62t3bOAFZVaedR\nYPOBvv79HMuHKlz/8jjcDAxWPPNfgMOrxDN9/m8CRyierVmAvYE1ZdfhYMUz/6WGv89imaZ4tlYB\nzgKWVYlxD3C1YprfAkyv8e+zeB3WAlsrnvkuwLbAcxXikY7Jd6q0oZiWH8NABzavBdiHmJ60ALwD\nXAhMAqYC16UCNQsYPtDH24ql7In/CnBv6rF6EhL/lNpuBnA8sF9y+z+pfVxepY0RxJS0xXZ+kMR6\nEnBR8hzoId4g7FWlnY8B65I2FgJ/DXwIOAK4LXUsD5LMctMOBXgxOa95wNXAsUkM9gfOJqbfLb6w\n/VjxzH8hEhKvAjcCXwI+mcRzMvAZ4Fbig2wPsBLYU/FsrUK8KXo8Oefu1PWtlpBQPHNSUtfv+8CE\nKmW84tk6Bbg4dS1nAecABwF7AYcm9x8GrlRM81uA8b38XU4APpu6xr9SPPNdgE5KyYgC8HvgZOK9\n0eHApcC7qetwgWJa47Ud6ODmtVD6xnc1sH/G+nNTT4JLBvp4W7Ekf7gfA7ZM7o9PXdOaEhLAzpS+\n3XsU6CpbP4x4w12M5Q4V2vmH1L7PyVh/QGo/91dooxOYk7TzNrBdRp3vp/ZzykDHoB9jeRdwXKUX\nK2BzokdR8dynKJ75LrX84yGSFMXz/5ni2VoF+HJyvs8Dl6fOPTMhoXjmq7CR70EUz/wV1u+ZdiPQ\nUaVup2La2gW4InX+Jyqe+S7E+9zi+T1MxvskYN8kFgVgMTBIMa3h2g50cPNYgImpi39NhTpGvInr\nSZ5wFf9pqNR83fuSkLg2tc3ECnUmper8a8b6zuQPsQA8V2VfP0i1s1/G+nSm+/wKbQxLni8F4NmB\nvuZNju/RqeuT2ZVN8Wy9QnyD1wO8oXi2TgG2ofRNzkFEgri3hITimaOSOv++JiQUzxwV4n3lbErf\nvA7qQxuKaYuUJN7zkmv0DjBU8cx3Aa5KXYOKP4UAbk/V210x7b1oUMtsn0ot35xVwSNK/5HcHUV0\no5Pm+wTgwAvuPiOrgrs/RnRrMuIb3XKHApslyz+ssq+bU8vHZqxPP28y23H3lcBPk2OZYGY7Vdlf\nu5meWt6xQh3Fs/UsS26HZqxTPPPrWmA4cLO7P1zjNopne1E88+UI4jfhAP/s7j19aEMxbR2HA2OJ\neN3m7qsy6iie+TIktfxylXovVdgGFNNMSkhkm5LcrgCeqFLvwdRyXTMIyMYzs+2BMcndB6vVTa0f\na2bjy9ZNyaiX5X+A95LlrHgX2/mDu79Zw7FUaqdddaWWC+UrFc/WY2a7EIMiOvGTnPQ6xTOnzOx4\nosfSEuD8GrdRPNuI4plLn01uHbin+KCZvc/MdjKz91XbWDFtOaekln9UvlLxzKU/pJZ3qFKv+KWb\nE2OsAYppNUpIZNuNeBLN6SVDnX4DvltjD0kyTEgtv1Cx1obry2NVUzvuXiB+a2XlbZjZcKIL9AYf\nzOo8lnY2NbU8K2O94tkCkimmdjKzc4AHiK6DAP9SVlXxzCEz2ww9IBOUAAALVElEQVT4LnEtLnD3\nJTVuqnjm1/Fm9ryZrTCzd81stpndbGZTq2yjeObP5OT2VXdfYWafN7Nnie7Ss4HFybSC55pZ+beu\noJi2jOT6HEtcn9fcPetDpeKZPz8hfupowIVmtsHnaDPbh0j4O3CLuy9PrVZMK1BCooyZdQFbJHfn\nV6vr7kuJXhQQQZXmGpdarhor4nd6ReWxKrazwt3frbGdLc1scAOOpS2ZmREz1RT9NKOa4plTZnZq\ncZ504jVvNnAlMJr4Z/ZP7n5r2WaKZz59G/gA8Ii731THdopnfu0G7Er8bGo48e3cKcD9yZz2m2Zs\no3jmSPI/clfi9fQtM/sO8GPig4enys7E3/D9GXFVTFvHccTfKmT0jkgonjnj7ouJWTVWED0FZpjZ\nyWY2ycwON7NLiS9qBhM97M8ra0IxrUAJiQ2NTC0vr1irpJiQGNGAY5Hq6onVitRyeayK7dQT7/J2\n+utY2tU5xLRIDtzu7k9m1FE8880zylPELEQXZ9RXPHPGzA4CTifmuz+zzs0Vz/xZQXxjdwYxMOk+\nxDgE/wi8RfyNfgr4uZl1lG2reObLZpTek+8F/C0xBd9JxCxVmwCHEKPyOzGC/o1lbSimraPqzzUS\nimcOufsviCk6/534yeoPgd8B9xGDQ68gZrA62N0XlW2umFaghMSG0gOzramh/mqiK8ywxhyOVFFP\nrFanlstjVWyn1nhntdNfx9J2zOwQYs5lgDeIOY6zKJ759Z/AnknZHzgxeWxv4FYzOzpjG8UzR5Jv\nRv5vcvdqd8/62VQ1imf+jHX3P3f3G939v939GXef5u6XALsTCUOID7JfLNtW8cyX4anlocQHgKnu\nfqu7v+Puq939EWIgxGeI953HmtnEsu2KFNOcMrOxxE9YHXjU3edUqKp45lDyv/QvKA02Wf5FzQeI\nXhQfzdhcMa1ACYkNpUe5zfqNXrku4gm4sjGHI1XUE6v0gIrlsSq2U2u8s9rpr2NpK2a2O3AHMc7A\nSuCz7v5WheqKZ065+7vuPjMpT7j7T939M8S3PDsQ38CeUraZ4pkvfw/sArxGzF9eL8UzZ6p11U2+\nmfsM0RsG4KyyKopnvqSvgQM3ZH1QTWZi+PvUQydUaEMxza+TKX3+urlKPcUzZ8xsE2AacBHwPuAK\n4idzXUQvpyOAR4APEe+LvlzWhGJagRISG1qWWq6lW0oxq11LtxnpX/XEKv3tQ3msiu3UE+/ydvrr\nWNpGMprwr4kX7XXACe7+X1U2UTxbjLvfAtwGdADfN7NRqdWKZ04ks6FcRHzQOSuZxqteimeLcfdX\niG7EBuxkZlulViue+bKs7P59VepOI/6nAqR7SCimreHPk9vVZI+nVaR45s9lxMwUDvylu3/V3We7\n+zp3X+7u04gpOacTr7vfNrM9U9srphUoIVHG3VcTIxrD+gN+bCB5810M0rxqdaUh0oOwVI0V6w/C\nUh6rYjvDKwz+ldXOIndfm3p8QT8dS1swszHAb4npjXqA09z97l42Uzxb053J7XDgyNTjimd+fIX4\nBuRlYISZnVBegD1S9Q9PrSt2z1Q8W9PM1PLY1LLimSPuvgZYRHyIgSrnlrxPLfY03DK1SjHNOTPb\nj9JApXe7+ztVqiue+XMayVSe7v7jrArJ7IxfS+4OIn7eUaSYVqCERLaZlL5RqHaNdk0t1/t7XNl4\n6Tdau1asteH68ljV1E4yKNiOxIvRem0k0/rMI543G3MsLc/M3k98u7M9ca2+lHyT3hvFszWlB21K\nz5WteOZHsbvljsQgiFnluKSOEW+mfgL8P0ofeBTP1uQVHlc88+f51HL5IKTliuvXpR5TTPPv1NTy\nD3upq3jmiJl9gBhgFuD3vVR/IrWcvh6KaQVKSGR7JLkdToykWskhqeVqXdGlAZLuqAuTu4dUqwsc\nnNwucPfXytY9klqu1s6HKPWIyYp3sZ1dzGx0lXba9nmTZGp/Q/ymzoEL3f26WrZVPFtW+lvXP3bl\nUzxzJ2uWlPKSVTceUDxbVXq++mL8FM98eii1vEOlSmY2ktL09H/8llMxzTcz66Q05sci4N5q9RXP\n3Ekn/zp7qZueXvOP2ymmlSkhke3nqeXTsiokc0YXB3FbSvxeSJrvTpLsnpntn1XBzCZTmt/75xlV\nHgCK3eZOzVhflH4u/GfG+nTbf1HhWIYBxyfHMrPK6MotJzm3XxJTzzlwubtfWWczimfr+Wxq+dmy\ndYpnDrj7ae7eUa1QGujSidH9O9y9093npppSPFtIMo7PR4nzf8ndu8uqKJ75cntq+dgq9T5N6acd\nD5etU0zz6yiix5kDtyRd+3ujeObHEqA4kPDkXnrQT00tv1K2TjHN4u4qGQV4kPjt+2pgUsb685P1\nBeBrA3287VCI7t7Fa3pjjdvsTIwiXgAeA4aWrR8KPJ6K5Y4V2rkste9zM9YfQEyLUwCmVWijE5iT\ntPM2sH1GnWtS+zl5oK95P8ZuMDGAZfHcrupjO4pnTgrxT66rlzpfSc6/B3gRMMWzNQsxf3rx3A+u\nUEfxzEkBPg50VFn/AaJbcfH8z1Y881+Ae5JzXAscmrF+K2BuUmclsLVi2hqFGAC6eK5717iN4pmj\nAtySOr/Mz37EQO7Ppep9RDGt4doOdHDzWoC9iXmge4iM2EXAJCLrdT2lN+EzgeEDfbytWIADiQ89\nxXJu6kn/UNm6U6u0881UPJ4gMnn7JbdPpNr8RpU2RgAvpNq5Lon1JODvkudAD9Elfc8q7RxFdM/q\nAbqBvyFGwT4C+FnqWB6g7MNbKxfim53iud0H7N5L2VnxzHchsvpvJa93JwMfBvZK/m7PJL6ZK17f\nlWS8eVY8W6dQQ0JC8cxPAV4lBjb7LvA5YDLwQeBw4HLgzbLzH6x45r8QH1aWJOf6XhKfKUlM/ppS\nMiLzQ4hims8CjCL+TxaAp+vcVvHMSSGmzl6euo53Ej2W9iZeg79CvDYXr8OvFdMar+1ABzfPBTia\nyBgVUgHvSQVnJhnZJJWar+9NGde1UilUaceAG5KYlMeq+Nj1NRzPjskfd6V4vw0cVUM7p1P6x5PV\nzn8Dmw/09e/nWNYax2J5WfHMdyESElnnXB6LV4HDFM/WLtSekFA8c1Dq+Pv8/8CmimfrFCL5u7DK\nNVgHfF0xbZ1CJPGL53tOndsqnjkqwGHAGxXOPx2T3wCbKaY1XteBDmzeCzHVyZXEqKLLiClBHyO+\nzR860MfXyoVISBRqLOtqaO9I4A5i1NiVye0dwBF1HNMw4LwkxouTmM8Evg1sU0c7E4hs5YtET5s3\niZ8BnQEMGuhr34BY1hrHYnlJ8cx3IWZJOYOYaeFJ4g3yamLMnNnE/Omn1Po6qHjmuxAJieKHnYoJ\nCcUzHwU4CLiY6OI/ixgkrzht+VPAtWT83FTxbI1CdPu+hPjZzdvJdZhDfIj5oGLaWoUYPLCQ/I1u\n1cc2FM+clOTv8zxgGvA6sIroiTCHmKHqGMW0vmLJQYiIiIiIiIiINI1m2RARERERERGRplNCQkRE\nRERERESaTgkJEREREREREWk6JSREREREREREpOmUkBARERERERGRplNCQkRERERERESaTgkJERER\nEREREWk6JSREREREREREpOmUkBARERERERGRplNCQkRERERERESaTgkJEREREREREWk6JSRERERE\nREREpOmUkBARERERERGRplNCQkRERERERESaTgkJEREREREREWk6JSREREREREREpOmUkBARERER\nERGRplNCQkRERERERESaTgkJEREREREREWk6JSREREREREREpOmUkBARERERERGRplNCQkRERERE\nRESaTgkJEREREREREWk6JSREREREREREpOmUkBARERERERGRpvtfm26QBCO34nUAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "image/png": { + "height": 356, + "width": 530 + } + }, + "output_type": "display_data" + } + ], "source": [ "plt.plot(losses['train'], label='Training loss')\n", "plt.plot(losses['validation'], label='Validation loss')\n", + "plt.axis([0, 8000, 0, 1.6])\n", "plt.legend()\n", "_ = plt.ylim()" ] @@ -494,12 +1017,38 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 102, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test loss: 0.209" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABYMAAAMGCAYAAACgX5vSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAewgAAHsIBbtB1PgAAIABJREFUeJzs3Xl4VOXd//HPnYSwyKIiCIIbSBXXCogiWpC6Umu1Vlut\nIlKXPq0LSlFrqYBWq6JWQXwU2rq1T12ex6WKxbogKqKC6E9QECqCBAKEJYSwZJm5f3/MZHJmciYz\nSc7MnMl5v64rV05yztznPsM4cT7zne9trLUCAAAAAAAAALRuBbmeAAAAAAAAAAAg8wiDAQAAAAAA\nACAACIMBAAAAAAAAIAAIgwEAAAAAAAAgAAiDAQAAAAAAACAACIMBAAAAAAAAIAAIgwEAAAAAAAAg\nAAiDAQAAAAAAACAACIMBAAAAAAAAIAAIgwEAAAAAAAAgAAiDAQAAAAAAACAACIMBAAAAAAAAIAAI\ngwEAAAAAAAAgAAiDAQAAAAAAACAACIMBAAAAAAAAIAAIgwEAAAAAAAAgAAiDAQAAAAAAACAACIMB\nAAAAAAAAIAAIgwEAAAAAAAAgAAiDAQAAAAAAACAA8j4MNsa0McZcYYyZbYxZZ4zZbYzZboxZZoz5\nqzFmSJrjnGWMecEYsyY6xproz2c2YS7tjTE3GWM+NsZsNsZUGmOWGmPuM8Yc0PyrBAAAAAAAAICW\nMdbaXM+h2aIB62uSDo/+KvFiTPT7VGvt2CRjGEkzJY1xGaPu9jOttVenmMsh0bkckmQeFZJ+bq2d\n1dg4AAAAAAAAAJAJeVsZbIwpUn0QbCV9Jmm0pCGSTpd0u6TK6L5rjTE3JRnqLkWCYCvpE0kXSRoc\n/b4o+vsrjDF/aGQuHSXNUn0QPEPS9yWdKOl3krZL6izpGWPM0c29ZgAAAAAAAABorrytDDbGnC/p\neUXC1w8kfc8mXIwxZoCk+ZKKJJVL6matDTv295P0haRCSQskDbPWVjn2t5c0V9IgSTWS+ltrV7rM\n5XZJE6JzGW+tfSBh/5DoOIWS5lprR7Ts6gEAAAAAAACgafK2MliRqts6dycGwZJkrV0k6VVF2jTs\nKal/wiE3KBIUS9K1ziA4evtdkq6N/lgUPT5OtEL5WkWC4KWJQXB0nPmS/hKdxzBjzMCUVwcAAAAA\nAAAAHsrnMLjYsd2gWtfh6yS3kaRzFAlxl1lrF7jd2Fr7kaSvFAlyf+RyyCmSukS3n2xkHk84ts9r\n5DgAAAAAAAAA8Fw+h8FfObb7NHJc3+h3K2lF3S+NMQdL2i/649wU56rb38sYc2DCvpNcjnOzUNLO\n6PbQFOcDAAAAAAAAAE/lcxj8D0kVilTs3myMaXAtxphjJf1AkSD479baSsfuwx3by1Kcy7k/sdVE\nWuNYa0OS/hOdb+IYAAAAAAAAAJBReRsGW2s3S7pU0g5FKm0XGGMuNcYcb4z5vjFmoqR3JLWR9Imk\n3yQM0duxXZLidGsc2/snGWeHtbYizXG6GWPapDgWAAAAAAAAADxTlPoQ/7LWvhJdjO03kn6hhj17\n10uaIGmmtXZ3wr5Oju1KNW6HY7tjknFSjeE2ztY0bgMAAAAAAAAALZa3lcGSFK2uHa36hd1swte+\nilQPn+Zy83aO7eoUp6pybLdPMk6qMVKNAwAAAAAAAAAZk7dhsDGmg6S3JN0iaS9J9yjSi7etpC6S\nTpf0vqRBkl4yxoxNGMJZKVyc4nRtHdu7koyTaoxU4wAAAAAAAABAxuRzm4jJkk5SpAJ4jLX2b459\nlZLeMsbMkfSGpFMkTTHGvGWtXRw9Zrvj+MTWD4n2SBjbqW6cVGOkGqdRxpgdioTJVtKWNG4SkhRu\nyjkAAAAAAACAPFQgqTCN4/aWZCRVWWv3SHVwa5TPYfDligSjKxKC4BhrbdgY83tFKoQLFGkpMS66\n27loXG81zrlo3JqEfSWSjpe0hzGmc4pF5OrGKbPW1qQ4Z6K2qn9Qd2/ibQEAAAAAAABEtE19SOuU\nl2GwMWZfRZJ8K2lRisM/cWwf5tj+Msnv3Tj3L03Y96Wk8x3Hfew2gDGmUFJfReacOEY6wpIKjTHa\nZ599Uh5cWFiowsJ03hBJrbq6WmVlZerWrZuKi9PphoGW4j7PPu7z7OM+zz7u8+zjPs8+7vPs4z7P\nPu7z7OM+zz7u8+zjPs8+7nPvhEIhhUKhlMeVlZXVbdqMTsjH8jIMllTr2E51DW3cbmet/cYYs05S\nT0nDUozxvej3tdba1Qn73ndsD1OSMFiR3sV7KPJgm5fifG42Suq13377qaSkJOXBXlq0aJEGDhyo\n2bNna8CAAVk9d1Bxn2cf93n2cZ9nH/d59nGfZx/3efZxn2cf93n2cZ9nH/d59nGfZx/3efZ17969\nLhBOpwVrq5SvC8htkVTXjuEEY0xj1zHcsf1Nwr6XFekTcpgxZrDbjY0xJyhS8WslveRyyDuStkW3\nL2tkHpc7tl9s5DgAAAAAAAAA8FxehsHWWitpliJBbi9Jv3M7zhizl6S7Hb96NeGQBxVZaE2Sphlj\n2iXcvp2kqdEfayU95DKXmugxRlJ/Y8y4xGOMMUMkjVEkUH7HWvtJ4jEAAAAAAAAAkEl5GQZH3S5p\npyIh7GRjzMvGmB8bY75rjDnBGHODpE8lHa5ICPumtfZN5wDW2hWSpkTHOE7SPGPMhcaYgcaYCxVp\n5zAoevt7rbVfJ5nLFEnLo+NMMcY8aowZbow53hjzW0mvK9LOYpeksZ7eCwAAAAAAAACQhnztGSxr\n7VfGmHMk/UPSPpJ+GP2KOyz69ZakC5MM9TtJ3RSp3P2upGdcbv9na+3vG5lLpTHmB4pUK/eTdFX0\nyznONkkXW2sXp3WBAAAAAAAAAOChfK4MlrX2bUX6+d4saY4ii6xVK1IxvFLSc5LOtdaebq3dlmQM\na629UtIPFOkhvFZSVfT7y5LOstZencZcvpZ0bHQuCyRtlbRD0jJJD0g62lr7r+ZfLQAAAAAAAAA0\nX95WBtex1m6VdF/0qyXjzJY0u4Vj7PJiLgAAAAAAAADgtbyuDAYAAAAAAAAApIcwGAAAAAAAAAAC\noHDSpEm5ngPSMHny5Bslde7cubNuvPHGrJ+/Y8eOGj58uDp16pT1cwcV93n2cZ9nH/d59nGfZx/3\nefZxn2cf93n2cZ9nH/d59nGfZx/3efZxn2fXAw88oMrKSkmqmDRp0v25nk8uGGttrueANBhjSiT1\n6tWrl0pKSnI9HQAAAAAAACCv9O7dW2vXrpWktdba3rmeTy7QJgIAAAAAAAAAAoAwGAAAAAAAAAAC\ngDAYAAAAAAAAAAKgKNcTAAAAAAAA+WPQoEFav359rqcBIMB69OihhQsX5noaeYkwGAAAAAAApG39\n+vV1CzABAPIMYTAAAAAAAGiygoIC9ezZM9fTABAgpaWlCofDuZ5GXiMMBgAAAAAATdazZ0+VlJTk\nehoAAqR37958MqGFWEAOAAAAAAAAAAKAMBgAAAAAAAAAAoAwGAAAAAAAAAACgDAYAAAAAAAAAAKA\nMBgAAAAAAAAAAoAwGAAAAAAAAAACgDAYAAAAAAAAAAKAMBgAAAAAAAAAAoAwGAAAAAAAAAACgDAY\nAAAAAAAAAAKAMBgAAAAAAACB8OSTT6qgoEAFBQUaM2aM6zFz586NHTNixIgszzA9l19+eWyOTz31\nVK6ngzxCGAwAAAAAABAAw4cPjwWIbl+dO3fWwQcfrHPPPVcPP/ywKioqcj3ljDHGeHJMruXDHOEv\nhMEAAAAAAAABYIxp9GvHjh1avXq1/vnPf+q6667TAQccoKeffjrX084Za21WzkOVL7KpKNcTAAAA\nAAAAQHZYa2WM0XHHHafBgwfH/b68vFwLFizQihUrJEkVFRW67LLLVFVVpSuuuCJXU86JuorbbFbe\nNvVcdSE+0BSEwQAAAAAAAAEzcuRI3Xbbba77Xn75ZV1++eXatm2brLW67rrrNHLkSO23335ZnmVu\nDBs2TKFQKNfTaNTjjz+uxx9/PNfTQB6iTQQAAAAAAABifvSjH+lvf/tbrIq4qqpKjzzySK6nBcAD\nhMEAAAAAAACIM3LkSB1zzDGxvrlvvvlmjmcEwAuEwQAAAAAAAGjgxBNPlBTpJ7xy5cq4fQcddFBs\n0bNvv/1WkrRy5UpNmDBBAwYMUPfu3VVYWKgBAwYkHb+kpER/+MMf9L3vfU+9evVSu3bt1LVrVw0Y\nMEDjx4+P9S5O16effqqrrrpKffv2VYcOHdS9e3cdf/zxmjJlirZu3Zr2OHPnzo1d24gRI9K6zcaN\nGzVlyhSdfvrpOvDAA9WhQwd16NBBBx54oEaOHKkpU6Zo9erVcbepuw+ffPJJSZH7efTo0bFzO79u\nv/32uNs2ddG5HTt2aOrUqTrzzDO1//77q3379tp777111FFH6dprr9XHH3+c1nXWnbOwsDD2u+XL\nl2vs2LE6/PDD1alTJ3Xp0kXf/e53deutt2rz5s1pjYvsoWcwAAAAAAAAGthrr71i2xUVFXH7Ehcv\nmzFjhsaOHavdu3enXNTMWquJEyfqvvvu0+7du2PjSVJ5ebm2bt2qzz77TA899JBuuukm/eEPf0g5\n1wkTJuiee+6J9fqta2+xefNmLViwQNOmTdPzzz+f3oU7rjEVa63uuOMO3Xvvvdq5c2eD25WUlGjN\nmjWaPXu2fvvb32rJkiU67LDDYsfVHVtXgd2cReRSefXVV3XVVVdp/fr1cbeprq5WeXm5vvjiC02f\nPl0XX3yxZs6cqfbt26d9zkcffVQ33HCDqqqq4n7/+eef6/PPP9fMmTP1+uuvN/qmALKLMBgAAAAA\nAAANOKtpu3Tp0mB/XU/h5557TjfddJOMMerVq5eGDh2qLl26aN26ddqyZUvcbcLhsC688EK98MIL\nsTC0V69eGjx4sLp166bKykp99NFH+vrrr1VbW6u77rpLmzZt0qOPPpp0nrfeeqvuvvvu2HgdOnTQ\niBEj1LNnT61fv15vv/221q5dq5EjR2rs2LGe3T/hcFg/+clP9NJLL8XOXVxcrCFDhuiggw5SmzZt\ntH79en3yyScqLS2VtVbV1dWx248ePVqbN2/Wm2++qWXLlskYo+9///uxsNhp8ODBzZrjs88+q0su\nuUThcFjGGBUWFuqkk07SIYccosrKSr333ntat26dJOl//ud/tGrVKr399tsqLi5OOmbdv/uTTz6p\nX/3qVzLG6LDDDtOgQYPUvn17LVu2TPPmzZO1Vps3b9Y555yjpUuXqlOnTs26BniLMBgAAAAAAAAN\nzJs3T1KkEvTggw9usL+uEvTWW29V27ZtNX36dI0ZMybumJqamrifJ02aFAuCe/TooUceeUQ/+tGP\nGoz9f//3f7ryyitVXl6umTNn6tRTT9VPfvKTBse9++67uueee2JzueCCC/TYY4/Fhdfbt2/XL3/5\nSz3zzDO68847m3gvJHfrrbfGgmBJuvbaazVx4sS4iuo6Cxcu1PTp09WmTZvY7yZOnCgp0vJh2bJl\nkqRLLrlEo0aN8mR+K1eu1JVXXqlwOCxJOv744/X3v/+9wb/lgw8+qPHjxyscDmv+/Pm66aab9OCD\nDyYdt+56f/nLX6p79+56+umnddppp8Ud8/777+vss89WRUWFSktL9dBDD2nChAmeXBdahp7BAAAA\nAAAAiDNr1ix9/vnnseDv1FNPdT3OWqtQKKTHH3+8QRAsKS78XL16tf74xz/KGKO9995b8+bNcw2C\nJen888/XCy+8EPt50qRJrsf99re/jbVYOPXUU/WPf/yjQRVzp06d9Le//U2nnXZaXGVuS6xYsUL3\n3Xdf7P65++679eCDD7oGwZI0aNAgPf744+rfv78n50/H5MmTVVlZKWutDjnkEL3++uuuof7YsWM1\nZcoUWWtlrdX06dMb9DdOVFcd/NZbbzUIgiXppJNO0l133RX7+R//+EfLLwieIAwGAAAAAABAzEsv\nvaRLL71UxhhZa9W2bVv913/9l+uxxhgNHjxYP/vZz1KO++CDD8Z6+k6cOFEHHXRQo8cPHz5cZ5xx\nhqy1Wrp0qT777LO4/cuWLdP8+fNjP0+dOjVpD11jjKZNm9ag13FzPfDAA7GK2xNOOEHjx49v8Zhe\n2rZtm5577jlJkWufMmVKo20arr/+eh1xxBGSIu0vZsyY0ej4xhhdffXVsdu4GTVqlIqKimSt1Vdf\nfaXKyspmXAm8RpsIAAAAAADgG4MGSdF1rvJSjx7SwoW5nkVqs2bNUllZWdzvysvL9fHHH2vFihWx\n3xlj9Kc//Um9evVqMEZddWg6QbAk/etf/4ptX3TRRWndZsSIEXr99dclRVoPfPe7343tmzNnTmyO\nAwcO1KGHHtroWP369dMJJ5yg+fPntzgQrpuTJF1zzTUtGisTPvjgA1VVVUmS9tlnH5199tmNHm+M\n0ZgxYzRu3DhJ9fdtY9zadjh17NhRffv21VdffSVrrVavXt1oeIzsIAwGAAAAAAC+sX69tHZtrmfR\n+i1YsEALFixw3VcXlHbq1ElTp05N2cN24MCBKc+3ZcsWLV++PLbIWrK2D4m+/PLL2PaaNWvi9n36\n6aex7SFDhqQ13pAhQ+KqiZtj48aNWrVqVeznU045pUXjZULdfVNXuV1QkLo5wNChQyVFQn7nfZuo\n7k2Ao446KuWYXbt2jW1XVFSkPB6ZRxgMAAAAAAB8o0ePXM+gZfJl/m6VsR07dlTXrl119NFH69RT\nT9WoUaPUuXPnlGN169Yt5TGlpaWx7aqqKk2fPr1J87XWauvWrXG/c1Y2H3DAAWmNk+5xjdmwYUNs\nu23bturhw390531z4IEHpnUbZ9uO6upqVVZWqmPHjkmPT+ex4ewZnbiYIHKDMBgAAAAAAPhGPrRY\naA0mTpyo2267zZOx2rdvn/KYbdu2xbab26Khrt9wHWcP2g4dOqQ1xh577NGscztt3749tt1YWJpL\nzvsm3WtOPG779u2+vT40H2EwAAAAAAAAMqouaLTWqkuXLg2qfJvDGVTu3Lkzrdvs2LGjxed1LsTm\n10XRnPdNuteceFxjC84hf6VuGAIAAAAAAAC0wL777hvbrqio0O7du1s8prM9xbfffpvWbRL7DjeH\n81qqqqri2kb4RXPuG2cf5OLiYqqCWynCYAAAAAAAAGRUjx49tP/++8d+/uCDD1o85rHHHhvb/vDD\nD9O6TUsXj5Ok7t27x/XXffvtt1s0XnPbZjSm7r6x1urjjz+WtTblber+TYwxcfctWhfCYMSx1ioU\nDqU+EAAAAAAAoAnOPvvs2PYjjzzS4vFOOeUUSZEsY+HChVq+fHmjx//nP//R/PnzPQlfzzrrrNh2\nUxfDS9SuXbvYtleLrJ144olq27atpMhicrNmzWr0eGutHn/88djPI0aM8GQe8B/CYMTsqN6hYx49\nRn2n9tWq8lW5ng4AAAAAAGhFxo0bp8LCQllr9eKLL+rJJ59M+7ZurRgOO+wwnXjiibGfr7/++qS3\nt9bquuuuk7U2rSrZVMaOHauCggJZazV//nzde++9zR6ra9euse21a9e2eG6S1KVLF/30pz+N/Tx+\n/PhGewdPmzZNixcvliQVFBToqquu8mQe8B/CYMS89c1bWrxxsVZvW60Xl76Y6+kAAAAAAIBWpE+f\nPpowYYKkSDg7ZswYjR8/Xps3b3Y9PhQK6Y033tCll16atG3BnXfeKWOMrLX697//rYsuukjbtm2L\nO2b79u265JJLNHv27Fi1bEv169dP48aNi13LLbfcouuuuy7pwngff/yxLr/8ci1durTBviOPPDK2\n/fLLL3tWHXzbbbepY8eOstZq+fLlOv300/XNN9/EHWOt1UMPPRS7FmOMrrnmGh1wwAGezAH+U5Tr\nCcA/dtfWN2+vClXlcCYAAAAAAKA1mjhxolavXh2rCr7//vs1bdo0DRo0SH379lWHDh1UUVGhVatW\n6fPPP49Vs+6zzz6u4w0bNky/+c1vNGXKFFlr9eyzz+rVV1/ViBEj1KNHD23YsEFvv/22Kisrtffe\ne+v666/XxIkTPbmWu+66S1999ZVeeeUVWWv18MMPa8aMGRoyZIgOPvhgFRUVaf369frkk09UWloq\nY4xuuOGGBuOcddZZat++vXbt2qVPP/1U/fv31/Dhw7XnnnvGWlqcccYZOvXUU5s0vz59+ujPf/6z\nLrnkEoVCIc2fP1+HHnqoTj75ZPXt21eVlZV67733YtXIxhgNGTJE99xzT8vvHPgWYTBinL2Cwzac\nw5kAAAAAAIDW6q9//asGDhyoiRMnauvWraqpqdEHH3zQYFE5Y0zs66STTko63j333KOioiLde++9\nCofD2rlzp1555ZW4cXr37q3nn39ey5YtS3ueqdpJFBYW6qWXXtLvf/973X///aqqqlJNTY3mzp2r\nuXPnNriOoqKiuP7AdTp37qwHHnhAv/71r2Wt1cqVK7Vy5cq4Yzp16tTkMFiSLrzwQnXs2FFXXHGF\nNmzYoFAopDlz5mjOnDlxc5Okiy++WDNnzlRxcXGTz4P8QZsIxIRsfRjMInIAAAAAALQ+Xiye5hyr\nueP9+te/1urVqzV9+nSde+656tOnjzp16qQ2bdpo77331tFHH62f/exnevTRR7V69Wq98MILjY53\n55136uOPP9aYMWN00EEHqV27dtpnn300aNAg3XXXXfrss890/PHHx+bt/N7YtaVzfXfccYdWrFih\n22+/XSeffLL2228/FRcXq0OHDjrooIM0cuRI3X///Vq1apW+853vuI5x9dVX67333tOll16qQw89\nVB07dlRBQUGjc0h3fiNHjtR//vMfPfTQQzrttNPUq1cvtW3bVnvuuaf69++vX/3qV/rwww/19NNP\nu4bVzb1fmjpPZIfxoml2Lhhj3pH0vSbebLi19t0k450l6UpJx0nqJqlM0gJJM6y1s9OcU3tJ10r6\niaS+ktpKWiNplqSp1tpvmzhf59glknr16tVLJSUlzR2mUU9+9qRGvzxakjRp2CRNHO7NxyYAAAAA\nAK1H7969tXbtWmXy9SkAuGnp80/d7SWttdb29nyCeSCf20TY6Fc6jKSQpBUNdkTempgpaYxjXEna\nT9K5ks41xsy01l7d6AmMOUTSa5IOSZjXdyQdKukKY8zPrbWz0pxz1jlbQzirhAEAAAAAAADkv3wO\ng0dL2iPFMUdIelaRcPYta22pyzF3KRIEW0mLJE2R9LUilb03STpWkSC3zFo7we0kxpiOilT/1gXB\nM6Ln3SXpFEm/ldRZ0jPGmKHW2s/Tv8zscQbA9AwGAAAAAAAAWpe8DYOttatTHWOMuczx45Mu+/tJ\nGqdIgLtA0jBrbVV09yfGmFckzZU0SNJ4Y8xfrbUrE8dRJDTuFx1nvLX2Ace+j4wxc6PjdJD0oKQR\nqeaeCywgBwAAAAAAALRerXYBuWj7h4ujP1ZKetHlsBtUH4hf6wiCJUnW2l2K9ABW9LgbXM5TFD3G\nSlqaEATXjTNf0l8UaVcxzBgzsMkXlAUsIAcAAAAAAAC0Xq02DJb0fUm9FAlpn7fW7nY55pzo/mXW\n2gVug1hrP5L0lSJB7o9cDjlFUpfodoPqY4cnHNvnNTrzHKEyGAAAAAAAAGi9WnMYPMqx/XTiTmPM\nwYosEidFWjg0pm5/L2PMgQn7TnI5zs1CSTuj20NTnC8nWEAOAAAAAAAAaL1aZRhsjNlDkepbK2m1\ntdYtpD3csb0sxZDO/f2bM461NiTpP4pUGCeO4QssIAcAAAAAAAC0Xq0yDJZ0vqQ9otsNqoKjeju2\nS1KMt8axvX+ScXZYayvSHKebMaZNimOzztkmgp7BAAAAAAAAQOvSWsPgRltERHVybFemGG+HY7tj\nknFSjZFqnJyjMhgAAAAAAABovVpdGGyM6SVpuCItIj601v4nyaHtHNvVKYatcmy3TzJOqjFSjZNz\n9AwGAAAAAAAAWq9WFwZLulT11/VEI8ftdmwXpxizrWN7V5JxUo2Rapycc7aGoDIYAAAAAAAAaF2K\ncj2BDLgk+r1K0nONHLfdsZ2qZcMeju3EdhB146TT9qGxcdJSXV2tRYsWpTyuZ8+e6tmzZ5PGdlYD\n0zMYAAAAAAAA+aC0tFSlpaUpj6uuTueD/a1bqwqDjTEDJR2uSIuIV6212xo53LloXO+kR0U4F41b\nk7CvRNLxkvYwxnROsYhc3Thl1tqaFOd0VVZWpoEDB6Y8buLEiZo0aVKTxo6rDBaVwQAAQJoxQ3rl\nFemuu6Sjjsr1bAAAAICGHnvsMU2ePDnX08gLrSoMlnSZY/vJFMd+6dg+LMWxzv1LXcY533Hcx24D\nGGMKJfVVJKhOHCNt3bp10+zZs1Me19SqYInKYAAAEG/nTum666SqKqlDB+nZZ3M9IwAAAKChq6++\nWuecc07K484880yVlZVlYUb+1WrCYGNMkaSfRn8sk/Svxo631n5jjFknqaekYSmG/170+1pr7eqE\nfe87tocpSRgsaZAibSKspHkpzpdUcXGxBgwY0NybN8rZJ5iewQAAoLIyEgRL0qpVOZ0KAAAAkFS6\n7VKLi9NZ8qt1a00LyJ0lqZsiYevfrU0rzXxZkpF0mDFmsNsBxpgTFKn4tZJecjnkHUl17Sguc9lf\n53LH9otpzC3rWEAOAAA4hRwfFAp4AQUAAADQKrSmMHiUY/vpNG/zoKS6lznTjDHtnDujP0+N/lgr\n6aHEAaK9f6cqEir3N8aMSzzGGDNE0hhFAuV3rLWfpDm/rIprE2FpEwEAQNARBgMAAACtS6sIg40x\ne0o6W5GwdYm19rN0bmetXSFpiiJB7nGS5hljLjTGDDTGXKhIO4dB0XHvtdZ+nWSoKZKWR8eZYox5\n1Bgz3BhzvDHmt5JeV6Qlxy5JY5t9oRlGZTAAAHCqra3frqyUdu/O3VwAAAAAtFxr6Rn8M0ltFQlt\nUy0cl+h3irSXGCPpu5Keceyz0a8/W2t/n2wAa22lMeYHkmZJ6ifpquiXc5xtki621i5u4vyyJsgL\nyG3ZtUW7a3drv0775XoqAAD4RijhfwfKyqT998/NXAAAAAC0XKuoDJZ0iSKBa62k/2nKDW3ElZJ+\noEgP4bVuAyr+AAAgAElEQVSSqqLfX5Z0lrX26jTG+VrSsZJulrRA0lZJOyQtk/SApKOttY0uapdr\nQV1Abn3leu3/p/11wJ8O0KLSRbmeDgDAp0pLpX/+M1jVsW5hMAAAAID81Soqg621J3kwxmxJs1s4\nxi5J90W/8o6zGjhIPYPnfTtPO2t2SpLeXPmmBvQckOMZAQD8JhSShgyRVq+Wbr1VuvPOXM8oOwiD\nAQAAgNaltVQGwwPOADhIlcG14fqGiEG6bgBA+rZsiQTBkvTOOzmdSlYlhsGbNuVmHgAAAAC8QRiM\nmKD2DA5qCA4ASJ8zFF27NnfzyDbnAnISlcEAAABAviMMRowzAA5SKBrXHiNAITgAIH3OMHjdOikc\nkD+TtIkAAAAAWpdW0TMY3nAGwEHqGRzkymBrrcI2rMKCwlxPBQB8zVkhW1MTaZfQvXvu5pMthMEA\nALQuw4cP17vvvuu6r23bturSpYs6d+6sfffdV8cee6wGDhyoESNGaP/998/yTAFkCpXBiAlqKBrU\nhfMqqyt19KNHq+/UvlpVvirX0wEAX0sMRf3WKmL55uX6ZN0nno9LGAwAQOtijEn6VV1drbKyMn39\n9deaN2+eHn74YV1++eU6+OCDdfbZZ+vf//53TuY8fPhwFRQUqKCgIGmQDSB9VAYjJqjtEoIagr/9\nzdtasnGJJOnFpS/qhiE35HhGANByu3ZJ1dVSly7ejpsYipaUSMce6+05mmt1+Wr1n95fYRvWO5e9\no2EHDfNsbHoGAwDQ+lhrZYzRcccdp8GDB8d+Hw6HtW3bNpWXl+uLL77Q6ujqudZavfbaa3rttdc0\nevRoTZ06VR07dszafI0xcd8BtAxhMGKCGooGtVfyrppdse2qUFUOZwIA3ti8WTr00Egg/NFH0pFH\nejd2Yijqp8rgBesWxP5+fbT2I0/DYCqDAQBovUaOHKnbbrst6f6NGzfq6aef1tSpU1VSUiJJeuKJ\nJ/Tll19q7ty5atu2bbamCsBDtIlADD2Dg1sRHaTrBtB6zZ0bCYR37pRmz/Z2bD+3iagN1yfVXj+f\nJ173pk2eDg8AAHyse/fuGjdunJYuXaoLLrggVlG8YMECjR49OtfTA9BMhMGICWqFbFCve/PW+ute\ns5YwGED+q66u366p8XZsP1cGZ/LvWGIYvGVLw/sCAAC0bh06dNAzzzyjH/zgB7LWylqr5557Tu+/\n/36upwagGQiDEbNzd/0rvsrK4ISiQW2Pseyr+lfzX68MznUDaL2cwWViiOnl2JLPwmCbuYVQ3e7H\nzZs9PQUAAMgTTz31lDp16hTr3XvnnXcmPXbRokW6++679cMf/lB9+/ZVp06d1LZtW/Xo0UNDhw7V\nhAkTtGbNmkbPV7do3Ny5cyVFehc7F5Nzfj311FMNbl9WVqYnnnhCo0eP1oABA9S1a1cVFxdrr732\nUv/+/TVmzJicLYoH5BI9gxGzaUv9K77yiuBUisYtnBeg9hg1IdpEAGhdnBWrYY/f4/J1GJzBBWDd\nqoDLyqR99/X0NAAAIA/stddeGj16tKZNmyZJeuONN1ReXq4999wz7rjBgwdr4cKFsZ+dC7+VlZVp\n48aNmj9/vqZMmaI//OEPGj9+fNJz1t3WWttgrMZMmzZNN954o0LR/4lz3q6iokLbtm3TV199pSee\neEIjRozQc889p7333jutsYF8RxiMGOcLSKvgVIoGtTK4NpTZEHzaNOmf/5TuvVc69ljPhweABpzB\npdeVwb5uE5HBv2Nu9yOLyAEAEFwXXHBBLAy21ur999/X2WefHXfMmjVrZIxR27ZtdcQRR+iQQw5R\nly5dZK1VaWmpPvroI23atEk1NTW6+eabZYzRb37zmwbnuuaaayRJL7zwgtatWydjjM4991z16tWr\nwbH9+/eP+3ndunUKh8MyxqhPnz7q37+/unXrpnbt2qm8vFyLFy/WF198IUl6++23ddppp+nDDz9U\nmzZtPLmfAD8jDEZMYBeQy2BFlZ/Vxl23t+HBjh3SuHGRnp133CG98IKnwwOAq0yGwYnjlZdHFqrr\n0MHb8zRHJj/hQhgMAACcBg4cqMLCQoWjryE//PDDBmHw+eefrx/+8IcaPny42rZt22AMa62efvpp\nXXPNNaqsrNSECRN0wQUX6MADD4w7burUqZKkxYsXa926dZKk66+/Xt/73vdSzvPQQw/VtGnTdN55\n56lnz56uxyxZskS/+MUvtGDBAn322WeaMmWKbr311tR3ApDn6BmMGCqDg1UZXBNyrD7vcXiwY0f9\n4k0rVng6NAAklc0wWPJPdXBcz2CP39QkDAYAAE7t27fX/vvvH2vbsGHDhgbHPPzwwzrjjDNcg2Ap\n0rJh1KhR+stf/iJJqqmp0aOPPurpPEePHq1f/epXSYNgSTryyCP1xhtvqEePHrLW6pFHHoldF9Ca\nEQYjJj4UDU6FbCZXYfez2iz1mEyxJgAAeCabbSIkqaTE23M0Vyb/jrld96ZNnp4CAADkmS5dusS2\nt27d2uxxzj//fHXs2FGS9Oabb7Z4Xs3RuXNnnXfeeZKk0tJSffnllzmZB5BNtIlAjDMADmplcJDa\nYzh7Bnsd/jtDmG3bpO3bpU6dPD0FADQQCkna8xupuFKh0FHej53Al5XBtIkAALQCg2YM0vrK9bme\nRrP16NhDC69amPrAPFUX4ErS9u3bGz128eLF+vTTT7Vq1SpVVFSoqqoqbr8xRtZaLV68OCNzlSKL\n1n344YdaunSptm7dqh07dsRVADsXu/vss890xBFHZGwugB8QBiMmvrIoOKFoUCuD48ODzFaSrVkj\nHX64p6cAgAbKqr+VrusnFYS0Zvt7kk7ybGxfh8GOv2O1AWsTEQ5Hvor4P1oAaFXWV67X2u0++UOL\nBpwBcOfOnV2PefLJJ/XHP/5Ry5cvT2vMmpoabdu2La7quKW+/PJL3XzzzZo9e7ZCaX5sbBMfgUIA\n8L/OiHEGoWEqg1u9WkfP4ExWBkuEwQCyY3Xtx1JB5AlobcEH8jIMdmuX4JcweENZ/ZPut2u8/fvt\n5zC4slI67jipokJ67z2pT59czwgA4JUeHXvkegotku/zT2Xbtm2x7b333rvB/jFjxuiJJ56QFKn8\nTaWuSnf79u2ehcGvv/66zj33XFVVVckYk3IezjkArR1hMGJCcW0ighOKxlUGh4MTgtdmcfV5+gYD\nyIZMLozp58rgknX1k9uwMTiVwW+9JS1bFtl+6SXpxhtzOx8AgHdac4uFfLdz506VlJTEwtUePeKD\n7xkzZuiJJ56I7T/zzDN10UUXacCAAerdu7c6dOigIsdHeg4++GCtXr1aknevxzdt2qSf/exnqq6u\nljFGBx54oH75y1/q5JNPVp8+fbTnnnvGLW43efJkTZ482dM5AH5GGIyYsCMADlJl8KYt9de9dl1w\nrrs2iwsOEQYDyIbacCi2NK7Xn3jwc2Wwswe81yG423X7JQzevbt+O6H9IAAAyJCFCxfGWi4YY3TC\nCSfE7b///vtj27fffrt+97vfNTpeJipxZ86cqW3btskYo2OOOUbvvvtuXJ/jbMwB8LOCXE8A/hG3\ngFyA2iVsdHy8dvPW4Fx3KIuVwSUlng4PAK7iQtEs9M71TRicwU+4uF33pk2RPr255gyq02wDCAAA\nWui5556LbRcUFOikk+rbcpWUlGjFihWSpD333FO33HJLo2Nt375dW7du9XyOb731Vmx7woQJjQbB\nkmKVyUBQEAYjJi4MDlBlcCYrZP2s1mauZzCVwQByIZtvcklSaak/QshMVga7XV8oJDlaBeYMYTAA\nANm1ZcsWPfXUU7EevGeddZY6deoU279u3TpJkYrhww47TIWFhY2O9/7778d69TYmnb7DTnXzkKSj\njjqq0WPD4bDmzZvXpPGBfEcYjBhna4gghcGhgIbB8ddNz2AA+a82g89rbu0SQiFp40ZPT9Ms2eoB\n72it54tWEYTBAABk16hRo1RZWRkLcCdMmBC3v6CgPmLauXNnyvEeeeSRtM7brl272HZNTU3K45sy\njxdffFHr169vcuAM5DPCYMQ4XziHA7SAXCbDAz/LZAjuVhmcxhu+ANAicc/nHr+p6QwbHWue+KIN\nTraez53rwxAGAwAQHDt27NBPf/pTvfbaa5IilbqjRo3S4MGD4447+OCDZYyRtVZLlizRqlWrko75\n7LPPatasWWmFsF27do1tr02jT1efPn1i2//85z+THldWVqYbb7wxNmcgKAiDEeMMgANVGWwDWhns\nbBPhcfif+KJ8xw6pvNzTUwBAA9lqE7HffvXbvghFs/RJj27d6rcz0N6vyQiDAQDIrA0bNui+++7T\n4Ycfrueff15SJAgeOnSoZsyY0eD4rl27xhaUC4fD+slPfqLly5fHHWOt1fTp0zVq1CgVFRXFVf0m\nc+SRR8a2//d//zfl8T/84Q9j23/84x/197//vcExixYt0rBhw1RSUqI99tgj5ZhAa1KU+hAERVzP\nYBOcV1WZDA/8LJNtItw+Tr1mjbTXXp6eBgDiZKtNRIcO9dvV1Z6eplmyFYI7rzuNT2hmnPPfxO3v\nDgAAaNysWbNU5nhnOxwOq6KiQuXl5fryyy/1zTffxPbVVfBeddVVeuCBB9SmTRvXMe+44w6dfvrp\nCofDWrRokY466igNHTpUffr0UWVlpd577z2VlpbKGKM777xTjz32WMoF3H784x/r1ltvlbVWr776\nqo4++mideOKJcf2KL7roIg0YMECSdNlll+n+++/X8uXLtXv3bl166aW66667dMwxx6hdu3ZasmSJ\nFi5cKGOMjjnmGJ1xxhm65557mn0/AvmGMBgxlp7BwbruDFZEu1VorVkjHX20p6cBgDi14cwtjOl8\nXmvfvn7bD2GwcwE5m8Hnc2fhjt/CYCqDAQBoGmutFixYoAULFrjur1skTpIKCws1cuRIjR07VsOH\nD2903BEjRuiRRx7Rtddeq9raWtXW1uqdd97RO++8Exu3sLBQv//973XLLbfoscceSznXfv366ZZb\nbtHdd98tSVqyZImWLFkSd8xRRx0VC4OLi4v1yiuvaOTIkVq5cqUkaenSpVq6dGnctZ100kl65pln\nXKucgdaMMBgx8W0igvOqyhmKhgLVJiJzPaKTVQYDQCZlq0LWGQb7IhS1Ab1uwmAAAJolWZ/e4uJi\nde7cWV26dFGPHj107LHHauDAgTr11FO1n7NPVgpXXXWVhg4dqj/96U+aM2eO1q1bp/bt26tXr14a\nMWKExowZo2OOOSZuPql6B9955506+eST9fjjj+uTTz7Rhg0bYovDud22X79++vTTTzV9+nS98MIL\n+uqrr1RdXa0ePXroqKOO0s9//nNdcMEFsduygByChDAYMTaoPYODuoCczU4FXR3CYACZFv+Jh8y9\nyeW3CtlQOHM94JNdty8qogmDAQBosjlz5mTlPEcccYT+/Oc/pzzO2YoilTPPPFNnnnlm2sd37NhR\nN998s26++eZGj5s4caImTpyY9rhAvmMBOcTEVQYHqWewzdzHa/0srkc0lcEAWoG4N/cyuDCm3ypk\n49/UzFybCL9dN2EwAAAA0HSEwYiJCwRNcELRTIYHfhbfJiI7PYMBIJMy+eaen3sGZ7Ii2s/XTRgM\nAAAANB1hMGISW0N4XV3kV5lcSM3PqAwG0Npk8s09f7eJyE5FtN+umzAYAAAAaDrCYMQkBoJBCUbj\nKsmC1CvZZq7HpNuL8pISyVpPTwMAcTK5MKafQ9FMVkT7OQQnDAYAAACajjAYMYl9gp2VRq1ZOIMf\nr/WzuB7RGQwP6lRVSZs2eXqaZluwdoHeXPmmLOk00Kpk8vnc+bzmt9652QrB/dwmwu3vDgAAAICG\nCIMRk+nK4NJS6ZVXIqGgn4Qz2DvXz8JZCg8KHM8yfmgVsWLzCg3+82Cd9vRpemPlG7meDgAPZesT\nD34LRbP1fO63EJzKYAAAAKDpCIMR06Ay2MOqqlBIGjJEOuccafJkz4b1REjBbBMR1zPYZC486NGj\nfru01NPTNMtn6z+LbX9a+mkOZwLAa6EM9kL3cyiai4Xz/HDdhMEAAABA0xEGQ5IiH5c38R+Z97Iy\neMsWafXqyPZbb3k2rCeC2yYicxV0zhfoHTvWb/uhgs4Zmnj5hgeA3Mtkhayfe+fmoleyH57PCYMB\nAACApiMMhiT34NfLMNj5Iu2bbzwb1hPhgC4gF85gRbSfF1pyPq6D0hcbCIqgVgZnKwT323UTBgMA\nAABNRxgMSe4Vkl4GZc4XbGVlUmWlZ0O3WHwoGpxXk5m8bl9X0Dke17VhVhxC6xQOS+PGSb/4hbR9\ne65nkz3O5zWv+97nS8/gTL65RxgMAAAA5D/CYEhyD34zVRksSatWeTZ0iwV1ATmbwTDYz+EBbSIQ\nBHPnSg88IP31r9Jzz+V6NtmTyV7ofn6TK5ylimjaRAAAAAD5jzAYkpJUBnsYlNUmFGD6qVVEJtsl\n+JmzZ7DX1+3njxU73/igTQRaq7Iy9+3WLhehqB+e1+IqogN03YTBAAAAQNMRBkNS5nsGJ4bB/qoM\ndoaiwXk1GReCe1xBR2UwkFtBDcmyFYr67Xktk20ikr2554fKYOe/SeL/ZwAAAABwRxgMSe4Vkl5W\nTSaGEVQG515c8B2gj1PTMxhBENwwOHNv7vk5FM1kD3gqgwEAAIDWhTAYktwrJDNZGeynMDiTvXP9\nzJrMhSZ+rqCLqwzOQJuIvyz6i8579jwt2bjE87GBdAU1JMtkz2A/h6LZCoP99nwe1Mc5AAAA0BJF\nuZ4A/MG1MtjDj9DnTWWwCU5lcCavO1llsB8q6OJ6BnvcJmJnzU79+rVfqypUpT3a7KG//fhvno4P\npCuoIVkm39zzcy/0TH7CJVkY7Ifn86A+zgEAAICWoDIYkrLfM/ibbyRrPRu+RSxtIgJVSeYMgL1u\nE7G9aruqQlWSpI07Nno6NtAUQQ3JchGK+uF5zQa0Ijqoj3MAAACgJQiDIcm9QtLLj9AnhsEVFdLW\nrZ4N3yLOF87BahNBz2Cv20TUhOsvsDrkg7I5BJYzGAtSSJaLhTH9UCGbyTYRfq6IJgwGAAAAmq7V\ntIkwxuwv6QpJIyUdKKmTpDJJqyTNkfSctfaLRm5/lqQrJR0nqVv0tgskzbDWzk5zDu0lXSvpJ5L6\nSmoraY2kWZKmWmu/bc61ZYNbKOZlZbDbi7RvvpH23tuzUzRbYBeQc/YM9rhNhJ8r6OJ6BnvcJqIm\nRBgMfwhqSJatNhF+e5PLZrDtT7LKYD+E4EF9nAOAn5SWlqp37965ngaAACktLc31FPJeqwiDjTHX\nSrpL0h6SnM0HekW/TlIkHL7R5bZG0kxJY6K/qrv9fpLOlXSuMWamtfbqFHM4RNJrkg5JmMN3JB0q\n6QpjzM+ttbOadnXZ4VoZ7GFQllgZLEXC4IEDPTtFs8UFBgHqGZytymDfhcEZ7BnsbDvhrBIGsi2o\nIZnNUmVwcbFkTKTdkR+e1zL5CRfndRcVRb5qa/1x3c7Hudv/ZwAAMi8cDmvt2rW5ngYAoAnyPgw2\nxkyQdLsiAexXigS7CyRtk9RV0rGSzpOSlnzepUgQbCUtkjRF0teKVPbeFL39FcaYMmvthCRz6KhI\n9W9dEDxD0rOSdkk6RdJvJXWW9IwxZqi19vOWXbX3clUZ7AeZbhOxeLH07rvSJZdIXbp4PnwLZP/j\n1H4IDzLZM5g2EfCLoIbBYWXuTa7EULRNm0h1rB8qZLPRHsOYyFebNv4Mg4P0OAcAP+jRo0eupwAg\n4Hgear68DoONMd9XfRD8pKQrrW1Q6jdH0gPGmAbXaozpJ2lc9PYLJA2z1lZFd39ijHlF0lxJgySN\nN8b81Vq70mUqN0nqFx1nvLX2Ace+j4wxc6PjdJD0oKQRzbrgDMr2AnKSj8LgDH68tqZG+v73pbIy\nackS6b//29PhW4SewRnoGUybCPhEUEOy+PY3mXteKyysD4P98LzmvO7k7303T911FxZGvrdpI+3a\n5Y8QPKiPcwDwg4ULF+Z6CgCAZsrbBeSi7R3+W5EA9v9JusIlCI6x1rqVAN6g+kD8WkcQXHebXYr0\nAFb0uBtc5lEUPcZKWpoQBNeNM1/SXyQZScOMMT5ojhAv2wvIST4KgzMYipaXR4JgSfrXvzwduuUK\nHP8oAeoZ7HyTI5NtIrZWVOuII6QRI6SqqkZuBGRAUEOybLZLaNMmsu2H57VstMcoiv7fUnFx5Lsf\nrjuoj3MAAACgJfI2DJZ0uiJtGSTpbmubVcZ6jiIh7jJr7QK3A6y1HynSfsJI+pHLIadIqvvw/5ON\nnOsJx/Z5TZ5phtW6vIoKSpsIxYUHmamokqTVq6UNGzwdvkUyGYInW3DID+FB3AJyXlcGO9pEbCir\n0ZdfSnPmRNqEANkUxJDMWsU/l2XwTa7CQn+FonEheIaez52VwRKVwQAAAEC+yucw+ILod6tIv15J\nkjFmL2PMIcaYvRq7sTHmYEUWiZMiLRwaU7e/lzHmwIR9J7kc52ahpJ3R7aEpzpd1NS6vojK9gNyq\nVVLYB+u1ZXIBucTr/ugjT4dvGWdgUBCKBCkeSbaAnB/CA2cA7HXP4OpaRypUWH+xlZWengZIKYgh\nWSik+Df3stAmQvLH81om/44lC4P9EIIH8XEOAAAAtFQ+h8EnRL+vstbuMMZcbIxZLGmzpOWSNhtj\nlhljxhljil1uf7hje1mKczn392/OONEWFv9RpMI4cYycq67NfmVwVZW0fr1np2i2TFZU5U0YbMKe\nBvN5UxnscZuILeXOtKg+IfLDdSNYghiS1dZKKsj8Jx6MkQoK/BWKKguf9KgLg/1UEZ3px/mkSdIx\nx0jvv+/92AAAAECu5GUYHO0XfJgiVcGbjDEPSvqbIsGsdXz1kzRF0tvGmM4Jw/R2bJekOOUax/b+\nScbZYa2tSHOcbsaYNimOzarqmoZJYKZ6Bhc4HnW+aBWRpY8VS/4Jg8NhJfQMDnn6QjqoC8jtqnav\nDPZD5SCCxfnfoNsnM1qj2lplNRT1UxicjTc163oG+6kiOpNh8Pbt0h13SJ9/Lt1zj7djAwAAALmU\nl2GwIj166+Z+tKTrJK2T9HNJe0vqIGmYpA8VCYWHSPprwhidHNupPsS9w7HdMck46XwQvLFxcqq6\nxm0BOe+CUecLtu7d67c3b/bsFM1irZUKHNeZ4crgBQv80RojFFJ8BV1BWLW13vWJ8PMCcs5q4JqQ\ntynZbmcYXFC/7YfQBMHi/G8wKJXBDZ/XQp4+3yaGon6qkI3/2xXMNhFev+mxc2f93+tVq7wdGwAA\nAMilfA2D93Bst1MkZB1urX3GWrvNWltlrX1f0vclfa5Ia4bzjDHHJdyuTqqopsqx3T5hX9046cQ9\njY2TU25tItz6CDdXKCSpeLvU+0O171D/QjXXLyYbtMIwNhIQeyTxxWlFhbQsVVOSLEjsrSlJNbWZ\nCf/9FgZvLAu5bnthd43jwouqFXkvyh/XjWAJbJuIhMrgTLS/8eNCajahB7yXgtomwjne2rXejg0A\nAADkUr6Gwbsd21bSTGvtfxIPstbulvQ7x69+mmQMt57CTm0d27uSzCXVGKnGySm3yuDakHevomtq\nrHTl8dIVQ7RjwB/rz5vjF9FuPWOtMhcGS/5oFVFTk1ARLW/DYD9XBm8ur59c5U6vw+CEC4y24sj1\n4xzBE9gw2Nn+piAz7W/8WCEbH4J7+6ZmshA8FMr9J10y+Th3jr11q7TLV//XBgAAADRfUa4n0Ezb\nE35+o5Fj35JUK6lQkrMy2DlGqpYNzkrkxHYQdeOk0/ahsXHSUl1drUWLFqU8rmfPnurZs2fa49Zk\nuDK4onaz1G2pJGlXj7dUl9Hn+kW0W8/YUDikgkJv3idJFgZffrknwzdblUv4H6kO96aVta97Bjse\n12GPF5CrSrzAwmop3MYX141gCW4YHN8D3strrxsrsXeutZF9dWFpTiRUA4dtWIXGmwklhuDFjre+\na2qktm0b3iZbamyV9PNzpXblqn3pJUn7ejZ24t/vdeukvn09Gx4AAAAeKy0tVWlpacrjqqnWys8w\n2FpbbYwpk9RNkcrgNY0cW2WM2aTIK4Rujl3OReN6q3HOReMSz1Ui6XhJexhjOqdYRK5unDJrbbPi\nobKyMg0cODDlcRMnTtSkSZPSHrfGpQrYy8rgaserqnDbLfW/92FlcIPWES3g18pgtzDY7XfN5Qxg\n2rSJLBoYDvsjDK51LiAnb5tMVtckjFdYI9Xk/nGO4AlsGJzQJiITYXCyUDRXYXA4rAZtf0I2pEJ5\nM6FkIbgUeW7LaRjc+y2p3+zI9neel3SNZ2Mn/v1eu5YwGAAAwM8ee+wxTZ48OdfTyAt5GQZHfSFp\neHQ71Sueuv3O/7X/0rF9WIrbO/cvTdj3paTzHcd97DaAMaZQUl9FwuvEMdLWrVs3zZ49O+VxTakK\nlpL0DHb5XXM5w+BQ8db63+c6DHapDPYyDHYLIhYvjixM06GDZ6dpMte2IBnqGVxUFAkPqqr8EQY7\n3wDwujK4QZuIwsgD3A/XjWAJbBicsIBcNtpESJG/Zc5PQWRTg4XzFP3b5lE4naxNhJT757ZQUf2H\nvMJFzfrAVfKxEx479A0GAADwt6uvvlrnnHNOyuPOPPNMlZWVZWFG/pXPYfC7qg+D+0j6f24HGWM6\nSdon+mPsf+Wttd8YY9ZJ6ilpWIpzfa/u9tba1Qn73ndsD1OSMFjSIEXaRFhJ81KcL6ni4mINGDCg\nuTdPyi349bRncKg+magt8lEY7BIGuv2uudwqg0Mh6dNPpaFDPTtNk1UlVrDK/Q2B5nK+iC4srA+D\nc/3vLcW/AeB5m4ha9zDYD9eNYAliGNxgYcwMVQa7VcjmMhRtEIIrM29qJquIzpVIRXT9A92aWlkr\nGePN+G6VwQAAAPCvdNulFhens+RX65avC8hJ0v85ts9r5LgfS6p7afBewr6Xo/sOM8YMdruxMeYE\nRTEHEbEAACAASURBVCp+raSXXA55R9K26PZljczD2SX2xUaOy4lMh8HOyuDawu1SQeQVZM6rijJc\nGewWBkvS5s2enaJZ3CqDvawEd6sMlnL/7y3F/5t73iYi8R+cymDkSGwxtaLdgQmD3SqDvVzgzK8V\nstU1DS/Syzc1G7vuXL7R1bBHtLf/3oTBAAAAaK3yNgy21i6W9C9FwtyLjDGnJB5jjOkh6Y7oj9WS\nHk845EFJda8kphlj4j7kGf15avTHWkkPucyjJnqMkdTfGDPOZR5DJI1RJFB+x1r7STrXmE01Li0C\nvFxAriac8KqqXbmk3FdMul1jrYfX7Xwx6WwLketwMPkCct5wqwyWcn/dkhRyhP1eVwZXJ1YGR9/0\nyPXjHMGzy26Trusr3dhb24uX53o6WZHpnsGpFlLLlarq7Pwd82dFtOOPbEFtRv696xAGAwAAoLXI\n2zA4aqykckU6480yxtxljDnJGDPQGPMrRVo29FYkhJ1grY1bVtBau0LSFEWC3OMkzTPGXBi9/YWK\ntHMYFL39vdbar5PMY4qk5dFxphhjHjXGDDfGHG+M+a2k1xVpybErOmffcQtFQ162iUh8VdU+sohc\nrkMytwDUy4po52W3b+84b65D8Cxdd0FB5CO7vgqDnW0i5G0YnKxNhB+uG8FStsfb0p7fSh02a1PX\nV3I9naxoWBkcVm2t9Wz8VAup5Yrbm3tub/A2l1/bRDQMgzPTFqQOYTAAAABai3zuGSxr7QpjzNmS\n/lfSvpJuiX7FDpEUlvQHa+39SYb5naRuilTuflfSMwm3t5L+bK39fSPzqDTG/EDSLEn9JF0V/XKO\ns03SxdGKZt9xCwc9rQwO1ca/9dA+0jc41yGZa7uELITBub7uKpf+FV62iUj2seJcX7cU//Fp63EY\n3KAymJ7ByJEaW/+gCykYD8AG4aCk2pBVfaeolvFvm4jMfdLD2siX5L82EZGF86gMBgAAAJoq3yuD\nZa39QNIRkiZL+kyR0HWXpJWS/ippoLV2UiO3t9baKyX9QJEewmslVUW/vyzpLGvt1WnM42tJx0q6\nWdICSVsl7ZC0TNIDko621v6reVeZee7tEjysDE5sE+GTymDXdgkuv2su593qpzDYPQTP3MeK6yrJ\ncn3dUnxrCK97BjsXSpREZTByJuR4zvW6HYpfNVhATt62v/Fru4RMtv1JbPkj+ee6G4T/GWoLUmfd\nOnnakxgAAADIlbyuDK5jrd0q6fboV3PHmC1pdgvnsUvSfdGvvOLeNsDDyuDa2vhHW7tIZXCuw+Bs\ntUuQfBYGu1y32yJEzZU3lcFe9wwOJVYG0zMYuVHreGwHJQxu0CZCdc/xbVyPb6rG2iXktE2EW89g\nj9pEOP+GBa1NRGIYXFMjbdokde/u3TkAAACAXMj7ymB4w601Qq2HJTC1DSqD/REGZ/LjtVJ+9Qz2\nsjI4WW9Nv4XBXvcMTtYmwg/XjWCJqwz2+HHuVw0WkFNmns/9ViFb5fbmXgYqg/3WKznTC8i5jbVu\nnXfjAwAAALlCGAxJUm2mK4OTtInIdUjm9iLaq4qqyFj1236qDM50z+BkoUmur1uSwo4F5KzJTpuI\nXIf/CJ4QlcGR33n0d8za+hYBfmsTkcm2P25tInxVGewM/zPcJkKibzAAAABaB8JgSMp8z+DaxJDM\nJ20isrmAXIcOjnPkOBStcbluL8P/ZG0irHWvtsomZ5Wk1xWTNWEWkIM/UBkc4VWFrPODMn4LRd3+\njnn1pmaqnsF+qwx2C3BbNH4CwmAAAAC0BoTBkOQeBNaGPawU9ekCcm7VsF4uIOfXNhFuAUkmQnC/\nfaxYSugZ7HUYnNgzuCDyc67DfwRPECuDa2qsVBD/PObVJx7ceuf65XmtqqZhahnIBeQy3DNYIgwG\nAABA60AYDEnulcEhD8PBhm0i/FsZ7GVFtPNubdeufjvX4WCmFwxMVhks5f7awxkMgxu86UFlMHIk\nZB2VwR63Q/Er1973Hj2fp+qdm8vntUz2gHcGonXX7ZeK6AZhsMdtItzGIgwGAABAa0AYDElSyGWx\nOC8rg0M+7RnsWiEbgJ7B1YltO+TtAnKNVQbn+tqdYbDXIVmyNhG5vmYETziAlcHVLhWyXlUG+7lC\n1u3vWFDbRFAZDAAAAKRGGAxJWegZnBgG+6VncAYrqiQf9wx2rQz2viLab6GJFN8/1fvK4PiLM0VU\nBiM3Qgpez+BMPp+7tYnwS4VsJq/bzyE4bSIAAACA5iEMhqQs9AxOHN8nbSIyHYr6tWewW1DgVQWd\n1LAy2C+hiZTQJsJ4HQbHpweFxfQMRm5ksh2KX7l/0sP7UNRvvdBdF0LNYEW0X57PM10ZTJsIAAAA\ntFaEwZDkHvy6tY5o9vg2n9pEZH4BuVxfdyZ7TEp+rwx2PK5NWNZaz8autfEXV1hMZTByI65ncEDC\nYNc39zx6UzP29NiuXOVd3lUoHPLN81om39T088J5kTDYce0e9wx2qwzeskXatcu7cwAAAAC5QBgM\nSe6VwV6GwQ16BhdVSUW7ch6S5aoyONeBaI1Lz2AvF5DLl57BkhTysJ9qYpuIgjb0DEZuZLIdil9l\nskK2tlaSCUtXHK953xmmO9+70zfPa9Vun/TIQJsIvz2f56JNhCStW+fdOQAAAIBcIAyGpCQLyHkZ\nDiZWBktS+y05D4Nd22NkoHeu5LcwOLg9gxODsZCXCyXaxDYRVAYjN8JBrAzOdCjafrO0z3JJ0pxV\nc3zTLsEtBPfq+dytTcRmu0LqFOmX4K8wuDZpgNvs8aO6davfplUEAAAA8h1hMCRlvk1Eg8pgSWq/\nNechWTYXkPNVz+AMfpxa8nllcGIY7GFlcCihTURBET2DkRtBrAzO5JtctbWSCuv/Qy7bUeabdgmu\nbX8y1DP45WUv64avD5Ou/f/svXm0LNdd3/vdNfSZrgbrWZMHZGNLWDwgtuWYGBOEw4Ilgpdxlhke\nvCAHJ8bwhxdT7DCY2CY2JDHPMWOeHQiwWAnYi0nkGZT1wEt+siOMhwRJnrBkhDXrSlf36p5zz+mu\nYb8/qqrrt3ft6j6na1ft3dW/z1p33b6n+9Tpuj2d/a1vfX7XAace9kATQT5kLWsi6LauvLK+fO6c\nvZ/BMAzDMAzDMC7gMJgBYA4CrYaDLc1g1yGZeZAaayK6QI8h+OaYBJphsD70rQspzJoI1/vMbB45\n6ue17UGJvtKnCz3LoASPj1943JuDXL03oivCGV79/lcX3vXJBeBZf+ldM7gvTcT2dn3Z5s9gGIZh\nGIZhGBdwGMwAMAeBucVmcG4Kg7fdN4PNzuB+msG7u+TnOg6DjeF/DwOHfGwG96mJ0J/ngp3BjCOo\nG3tTmsEzgyPA1vt5EQbXL+THLzyOMKrfMzdhgNznT71Pu1b41Qzu0Rm8tVVf5jCYYRiGYRiGWXc4\nDGYAtDiDB2gGOw+De3bn+qqJMLqSLT3eJsek12GwTU2E3gyOuBnMuCEXtBlsUaTqMX3qb/TgMZMZ\nkrD2BYy+GTw5j4/v/qx6ZZD41Qy2rIloC4NteokZhmEYhmEYxgUcBjMAzO1Im85gYzPYA2dw3wPk\n/NVE9Bce+N4MbjiDbQ6Q08JgUTqDXT/Pmc0izwGIzWsGmw/uWQxFQ/X1fSBPzy/75gy2ut8A8LJ3\n4zA4rV4ZpO7DYKpAsayJoNviZjDDMAzDMAwzJjgMZgC0hcE2B2uZNRGug8E+wwOgXDS+8LeA7/xO\nPJJ9tv65zve7+XhkPTgmq2bwZEJ+tutmsOZPtekMbmgiymZwnnOAwAyH7rdFkEFKZ3dnMEzv3Xad\nwXoY/Hj9czxrBts6qDnf75e9u3llkG6MJoI6g7kZzDAMwzAMw6w7kes7wPhBajhVPpP2GrLGMNgH\nTYTxtGJ7+32UXQBe+YNANMX77kkB/FHxcx0Hoqag39Z+08W4j83gPjURudCbwfUTPEnqcJxh+qTR\nmCxPn49G/omfZBmgvcZsHdxrBI8A9j0Jg81nuFjc7+2zwPZTzSt9aAZrA+RsBrXsDGYYhmEYhmHG\nCjeDGQADNIPRrolw2VjrWxNxmO0D0RQA8Jmzn5iHga5D8D6dwXQBvRbOYJsD5DRNBEI1DGaYIei7\nMekrQ2si9jNPNBG9N6JbElbfwmB2BjMMwzAMwzDMseAwmAEA5IZWaP/O4DPFz3EYUvStiaA6hkcO\nH0B0UbHProNBU/DbpybCqzC4T02EPqiLhEeuDwAwm0PfIZmvmA9y2dQlqK/vpzJ/m8G2Pr9NIfic\nkWsi2BnMMAzDMAzDjBUOgxkA5lPlrZ4+b2oGbz8JwG1IZgxFLYbgSaYuosNn3FV83UdnsKX99n2A\nnB4G23yeS24GMx5QhGR0sNZmhMF9Htwr/k/VF/G5pG4GO3UG9z1Abl2awZYHyLEzmGEYhmEYhhkr\nHAYzANo0ERadwUZNRNGS9S0MNi2sVyXRW6dXFmGw65aoKQC1pYlY1gx2ve+9aiI0ZzCCemdd7zez\nOWxqM9h8kKs/TcS5xI9mcGJ0wPcTBm+FpCLrWxg8kCZiE15LDMMwDMMwzLjhMJgBYA4Hc4sD5Mya\nCA+awT2eVlxsS91vefmdANy3RM2nFdt3BvvYDIZQH1+rzWCtOSgDbgYzw9MYILchzWDzYMz+GrI0\nDPbuc8yS+14PXLcjUpH1QhNBn+f9NYPZGcwwDMMwDMOMCQ6DGQAtmgirjcl69RSKsi66/SQgcv9c\nixYHyKVaUy17uh9hsOmxNbXLVtp2tRmRYxY/CsCvMLhPZ7DUnMGSncGMAza3GdzzYEztYM+ZqR+a\niD4Hguoh+E68U18ZJk73uxHQszOYYRiGYRiGYY4Fh8EMAHML2GozmGgiLt+7vLgQ5MDkvHeaCFuL\naKCpiUiedrfzABwwB6CmIYIrbTsFAAnc/E34wDVX4dc/9etehcHQncEWH2+paSKk4GYwMzxFSNZf\nY9JXzA3Z/prBTx75oYkwvZ/bDYPrnfOvGczOYIZhGIZhGIY5KRwGMwCAfMABcpfvXl5fsfOkd6fX\n2nQl681gGR8Al/6t85Zo787g3SeA594GAPj9z/w+JpP6epehiZQSEFL5ms3nud4clOwMZhzQDMk2\noxnc58G9NEXDGfzEkb/NYFtnuDSawRFpBnvoDLYZ1LIzmGEYhmEYhhkrHAYzAMztSFtNUUANg6/Y\nu6K+YueM05DM6Ji0uNJrDJADgCvvdN4SNQUkVp3B0dH83/uzfW+aweYQ3E56kMu8aLvTr3EzmHFA\nwxlsOSTzlT4P7pmawedn54FwCsC/Qah29RjtzmCvwmDLBz3YGcwwDMMwDMOMFQ6DGQBAjn6bwZJs\nf66JAICdM45Pr+25GZwbds6DMNgU/FoNTcI6GfEqDO4zBDepNwQ3g5nh2dRmcJ/ue12XMGe3UEX4\n9znWjx5jkzQR7AxmGIZhGIZhxgqHwQwA8yLapjOYDtZ62vbT6iviA+8aVTbD4EyamsF3IcsAiz/m\nxKSG+2Ur/C9Op57O/32QHPgTBveox0iy5o5Rh7DrAwDM5lCEZGozeBMCLHMzuD9NBACIU+7D4N4P\n7rUNkPOhGSz6e56zM5hhGIZhGIYZKxwGMwDMwW9fzuCLJhfVV8SH/mkiLA4UMyoIrrwTgNvwIO+7\nSRbVYbDvzeDEUnpgeqyzkTaD3/9+4J3vBA4OXN8TxsSmNoP7H6TW3H50sfswuE9NRHGmR/sAOedh\n8EAD5LgZzDAMwzAMw4yJyPUdYPzApInoqxl8anKqviI68m8RbWnwTrF9Qxh82T1AfIAk2VMWmENi\nPJ3aajO4Tj4PZn43g2eJnZrXzNAMzjC+MPhznwO+53sAKYGdHeDHfsz1PWJ0+m5M+kqfGpg2TUR4\n0WkkcPv67n+/PdZExMM7gzfhtcQwDMMwDMOMG24GMwCA3KiJsOgMJmHwRVukGRz51wzOLIbgRk2E\nkMAVn3YcihparFadwWozOIrk/N++Pd62msEXpovD4LFoIj75ySIIBoC77nJ7Xxgzm9sMNhzcs3mQ\ny9AMDjzQRPSpO1o8QC7xqxls+aBHmzOYNREMwzDMqnzxi8Dp067vBcMwDIfBTIl02Ax2Gg72OHAI\nUJvByn6fesS7UNSqW5NoIiQk8vBo/m/vmsGpnf0+PDIMkEO9s2NpBn/hC/Xlhx5ydz+YdjbVGdx7\nQ9boDC5WdL7pb3prBoc+ayJyJIlsvf1K2y+hzuBNeC0xDMMw9rn9duB5zwOe8xwOhBmGcQ+HwQwA\nc/Brqxmc51AWbL47g/saIKeEweHUrTPYGP7bDE3UBzUVtVzWt9BkllgKg2fNHcuRzU/XH0sz+J57\n6sscBvtJw2+7Ic1g88E9m4PUDGHwrvtmcJ/u+2UD5JxrIrS2tq0zPebbL+FmMMMwDNOVD32o+PvC\nBeAv/9LtfWEYhuEwmAHQrzNYX7D55AzuuxmckcF5e/FefUXkNgw2O4P70UQAQCL268uenU6dZHZW\n9ocGTQSAeZuQm8HMUDScwZYHawHA4WFxqqNPmN67bR3katNEyN2i2uPbGS62Pr/1EHwnUsNgr5rB\naPH0d9l+yWRSX96EAysMwzCMfejnCn+WMAzjGg6DGQBmTURm+Noq6M0iNQweezO4XinvTUgY7LgZ\nbHIGWw1NIjUMnsGPZnCSNh9bW5qIo7ZBdGVLeozN4DNngKOj9tsybujbpSolcOONxamOP/VT9rbb\nlT4P7rVpIuTOZjWDvRsgF6j7abMZXG0qCKAMQeVmMMMwDLMK9PODP0sYhnENh8EMAHMzWPbRDJYB\nduPd+kofncE9DZDTm8Eu99sU/Jr+L1bBpImYST+awabgN7UUHrQ2g4PxNIPPnCn+UB55xM19Ydpp\nhGSWNRFnzgAf/3hx+ed/HrjlFnvb7oJ5IGi/zeBsy4MwuMf388UD5Nw2g5NUNsJgW+/nQL1QjyIg\nDOuvc5uLYRiGWQX6mcmfJQzDuIbDYAZAvwPk6GJSyFB1Djp2BhtDUZuaCBoGe9QMNu231WawpomY\nSj+awSY/8MzSoXmTMxjAqJrBtBVcwaoI/+i7Gaxv65/9M+Dv/s7e9lclNZzxYHeQWvNFnG17qomw\n6kpudwZL6W5BmxgO7tnS/gB1GByGRSCsf51hGIZhTgI3gxmG8QkOgxkAgIRhgFwPmgghI7VZ5KEz\n2NYiGgDy1maw2/3u0xGdZWhqIjwOg22dVjxdookYQzOYw+D1oOkM7jcMPnsW+O7vdt9y6f+Mh/rN\nKxDFr0/Z5HEAEmla6DNcMOR+681gwN17myn4taXHALgZzDAMw9iFroE4DGYYxjUcBjMAhtNEBIjU\nATSuncGGBbPNxSQdIKe6kv1zBttq0BXNYPVBPcz91USY2mWrcDSiZvAnPwm89a3Al76kfp3D4PVg\n6GYwAHzsY8D/+B/2fsYqDKlLuGLvCgCADFJg+1x9Gwf07kpeoIkA3L23GcNgi83g6nkeRdwMZhiG\nYbrDA+QYhvGJaPlNmE3AqIkYqBnsmybCVkMWAPK2MDh07Azue2CgronI62awy/02NYNthf/tYfD6\nOYNf85ritP//+T+BP/mT+utf+ELzthwG+0ffzuC2kydOn7b3M1bB+H5uVZdQv8avOnUVHtkvhdm7\njwNHlyJJ1EFjQ2E8w6UP5z+0MLh8b/MpDLY5QI6bwQzDMIxNWBPBMIxPcDOYAQDI6pTivF7x9LGY\nDBA1nMG+uXOzQTQR/jmDrTbBNU3EhXQfQhSXnTaDDat4W87gadt21qwZnCS1//X229VT37kZvB40\nm8ESaWrPYdAWhk2n5q8PhbEh28NBTQB4xkXPqK/cLYbIuTrgk/c4OK/hDI5UZzDgbr/T3NQMth8G\nszOYYRiGsQFrIhiG8QkOgxkApBmc1bUmW81gPQz2qRnc52nFAJCL+lPfpwFypia4Xcek+qAezA7m\njTmn0+dNzWBrzuDFmoh1aQYfHtaXz55Vw96qGXzxxfXXOAz2jyyD6gyG3cZk2/Ey12GwuRlsU39T\nv8av3LuyvnLnDAB3722mwLsvTcRWtFVf6VwTYTrTw/4AOW4GMwzDMDZgTQTDMD7BYTADgAyQk1Hz\nax3RNRGBCBCLSXGlY2dwn4PUpFQ1EXoz2O1+NxfMpiBlFYrQRE2F9mf7mJQPuW/OYFth8FicwRcu\nqP++++7i7yefBJ54orj84hcDO2VB8OGHh7tvzPFoNINhz40NtC9gjo6s/YiV6PPgnq6JUN7PHb/G\n+9Qd6fsdBzGioPw9wXEYbPIDW3X+szOYYRiGsQhrIhiG8QkOg5mCskUmZDhXRZjao6ugN4MBYBKW\n7eARO4PzHEog41Mz2BiC2zydWtNEHCR+NIONA+QsDRyapvWORaDtufVyButh8F13FX/fe2/9tWuv\nBZ5RniXPzWD/aDiDAcx6GKwFAFvkqe5lM7gnXYL6fu5jGNzPfkdB1AiDXb23JSZNBDeDGYZhGE9h\nTQTDMD7BYTADgDiDZVD8ge1mURkGi2IRuR2WtUIvncH9TJ/3yRlsCvqtOoM91UQYw2BLjzd1D8fY\nra9YM03EwYH676oZTIfHPf/5dRh89mwzQGbckiSyGQYbFCmrQjURu+Sp7jwMNpzxYKsZrGsidmOy\n444P+BgHgtrc7yVhsLNmsDEMZmcwwzAM4yesiWAYxic4DGaKAVFVMxg9NYPL7YdlM3jLl2Zwj5oI\nfRF9anKqvtJ1M1j03AzWNRHJvhdhcGoIgzNbzmDSDJ6IZhi87poIOjyOhsEAqyJ8I0mb72E2B2vR\nTdEw2LUmovczHsj7uRIGu24GG7U/9g/mAn41g82aCG4GMwzDMH7CzWCGYXxibcNgIUR+zD8fOsa2\nvlUI8YdCiPuFEEfl338ohLjpBPdnRwjxZiHEXwkhnhBC7AshPiuE+AUhxJd129t+KRZ7RBNRNoNt\nOYNNmoj5RHLHzmBT4D3IacWOncGyb2ewronwuRncwwC5LdE8hXxdmsF6GPzpTxfPZdoMvvZa4Oqr\n63+zKsIvZoYVRl8D5LxqBveo/Sk+x1qawc7D4OE+x+LQI2ewIfi1dWYPoDqDgwAQovy5vIBnGIZh\nVoCdwQzD+ES0/CZeI7vcRgghAPwnAK/TbvsMAK8G8GohxH+SUr5h0Q8QQjwfwJ8CeL72864D8BUA\n/oUQ4v+UUn7wGPd3cIrmbrFgFqjD4D4aVVUYvB150gw2DhzqpxmsDhzyTxOR2xwYqGki9md+NINN\nQ7RsNcmoe3gS7GL+31meWr6uzeCjI+CLXwQ++9n6a1/+5WozmMNgv0iyDAgNX7PEWjWDbYaibZoI\nx69xafocs3qmB/GhK81gt/udSUMz2OLznDaDgaIdnKbcDGYYhmFWg8NghmF8Yt3DYAD4jwB+bcH1\nBwuu+zkUQbAE8CkA7wJwL4DnAXgzgBehCHJPSynfYtqAEOIUgA+iDoLfB+D9AA4BvALATwK4GMDv\nCSFeLqW88/i7NgxU4xAgBGSlibAfioalM3gnrprBs9JlGZq/uWf610SQ6fMTf5zBRk2E1dCkfYCc\ny/A/yfo7fX5GNBHbwXiawQBwyy3AJz5RXL7+emBvj8Ngn5mlaeMttS9NxM5OfdnLZrDNUHSyWBPh\nkzPYqgPeV02EoQWcGgLiVZBSdQYDRSicpryAZxiGYVaDrv34wCLDMK4ZQxj8mJTyMyf9JiHEtQB+\nHEWA+3EAN0opq6XsJ4UQ/w3AhwG8BMCbhBD/WUr5RcOm3gzg2nI7b5JSvptc9zEhxIfL7ewCeA+A\nf3TS+9o3dPK8QGBdE5GkORAU25o3g+Pt+fVH6RSgA7cGpE9NhL6I3gq3ECAsFu6Om8EQzdWsVUe0\nponYn+1jy9tmsKUwOCOaiMCfU8hPiikMfuc768uvfW3xNzuD/SVJM2BL+9rINRHUfU+x+n6+XbyI\nQxFiEk7qKx03ZE3v3bYGyB3HGexTM9iWJoI+x2kzGOAFPMMwDLMa3AxmGMYn1tYZbIEfRR2Gv5EE\nwQAAKeUhgDeW/4zK2ysIIaLyNhLAZ7UguNrOHQB+A4AAcKMQ4gZre2CJRjO4GiBnWFivAp1iXzWD\nd+O6TnaUHlr5Oasw5AC5KIgQB2VC49wZ3PcAOXXnfHEGm9qRtjQRM6KJ2A79aQ2eFFMYfPZs8XcY\nAjffXFzmZrC/JIbndF/N4D1SgnepiaDue0ofuqMoiNUweIOcwcXnWPlm7qEz2Nb7OX2OV2Fw9Tcv\n4BmGYZhV4AFyDMP4xCaHwa9CEeJ+Tkr5cdMNpJQfA/B5FEHutxtu8goAl5SXf3vBz/otcvmfnPie\n9kySYO4MDoT9AXJT8mk3D4MndTN4mrlLEIZsBkdBhFiUYbBrZ7Ah6LeqBTFoIiZldiKlu2aVqR1p\nqxmckGbwTkQSMsetwZNiCoMrbrqpHhzHYbC/GBvwI28G04OalD6cwXEQ14Eo4N4ZbNJE2HTA0wFy\nQXOAnKsDXcZmsM3P7xJuBjPMsEynwO23r89BdIY5LvSzhT9LGIZxzUaGwUKI56IYEgcUCodFVNc/\nUwhxjXbd1xtuZ+ITAKqI5eXHupMDQjURqjPYlku1GQbvTepm8DR31ww2haJWB6lpYfCENIP9GyBn\nMTQxaCJikp242ndTGGzrtGIlDCbN4HCy/s3gite9rr580UXAqVPFZQ6D/YIOM6ywddADUBcw27sZ\n8NJfAf7397sPg4Pmftt6X6Pbj4LI2Ax28RqXsuVzzGozuG2AnH/NYFvv53TBTp3B+nUMw9jne78X\n+IZvAL7/+13fE4axC2siGIbxiTGEwd8lhPi0EOJACPGUEOJvhBC/JYT4xgXf85Xk8ueWbJ9ef/0q\n25HFqO97UDSM9W04hzaqhLDvDJ4lzTB4O/K5GdyPJiIOY0zCuhnsKhyUEsbQxKozWNNEzLIZwkmd\nGDgLgw2NSWthMAkmdshwqWCyvs7gZz2rvvz0pwOvfKV626odzGGwX5jCYNPXVoWGwV+87D8Ce93j\nHAAAIABJREFU//iNwHf+Hzgd3GXtZ5wUelCTYmuQGg1FoyBGHNJmsLvXeJ7D3IjuIQQH/BogZ24G\n23meczOYYdxx++3q3wwzFlgTwTCMT4whDL4ewAsAbAPYA/A8ADcD+JAQ4g+FEBcbvodEHHhgyfbv\nJ5ef3bKdAynlU8fczuVCiHjhLQem0Qy27QzOmmHwTuRxM7hHTYQPzeA2t6bV04rDZkUw2DqYX3bW\nJDOs4k1+1VWgzeDduNZErHMz+KUvrS9/3/dhrvqoqJQR588Xfxg/MOpQetJE3Lv7u/PLT4WmGavD\n0KqJsOpCr8LgyJsBcm0huK2Dmps6QG6RM5jDYIbplyok49caMzZYE8EwjE+scxh8AOB3AbwewD8E\n8CIA3wLgnQAeR+EDfjWAPxZChNr3XkQu7x/j51ScatnOsm0s245TlAFyIkT9tBimGZxIv5rBVt25\n2iJ6Kyz3OzpyF4jSJnheBxpWm8FRMwwWPoTBhqDAlmMyyeud2iNhcBCvrzP4da8DLr8cuOoq4Id/\nuHnbKgwGgEcf7f++McdjME3EqUfwUHDH/Ouz1N2TvO8BcvT9vOkMdnfAZ5AQXDvDpQ6Dc0DkDsNg\n0/u5/WZw1Qiu/uY2F8P0S/Ua49caMza4GcwwjE9Eru9AB57Z0sb9CyHELwO4FUVAfCOAHwLwK+Q2\n2+TysuUbTbV2tOuq7RxnCahv58ljfM8gFIvJcoAcQggZQsJiM5g6g4NiNbUT1/+VM+lbM9jmIDXV\ntTiJ6mbwLJEozCHDojTB8wmyoHj65pYe76JB13xJiIn7MLhPZ3BGGsZ7E6KJiNa3GXz99cD99xeN\nuFA/pAbgssvqy096847GmFrAvTSDr/tvgJDzr88yd0/ytlDU1kEuqomIQ90Z7F8z2O5+tzSDUVw3\nm02a39gzUgL5wAPkuBnMMMNQvZdyWMaMDXYGMwzjE2vbDF6kZZBSngbwHQCqpdkbtZvQKuqyVcwW\nuaynltV2jrMSWrQdpyjhoAjtO4MNmgilGZz71Qzu07W4FdZPg6OZm0SULu4D2VMz2KCJwKQu0Puk\nibDnDKbNYBIGx+sbBu/uAltb5iAYAJ72tPoyh8H+MFgz+AV/rHzdeRjcYzOYvm/GQWwcIOcsDO5x\nEKrpoKYeBjtzJRvc932GwdwMZphh4GYwM1ZYE8EwjE+sczN4IVLKvxVC/L8A/jGA5wshrpJSPlJe\nTe2Wy5QNe+SyroOotnMc7cOi7Ryb2WyGT33qU0tvd/XVV+Nqeg73ApJEzttdAYJ5M9i0wFwF2gyu\nFpHUGZw4zMb7bAabGlXbUR0GT9MpjnccwS6KFkQJgy3ut0ETAdIMdhWMGpvBtk4rJmHwqa365S6i\n9R0gt7vbfjuAm8G+YmwG2w6DJ+eBL/9z5evOw+Aem8E0FI1DfwbItQ/O668ZrOy7ozBYP9haYWoL\nrwI7gxnGDVJyGMyMF9ZEMEz/PPzww3j44YeX3m62Lk2tHhltGFzyGRRhMAA8E0AVBtOhcc/CYujQ\nuPu16x4A8LUA9oQQFy8ZIldt57SUcuWl0+nTp3HDDTcsvd1b3/pWvO1tbzvWNqdJvbIJRAhRFsal\nsBMO0pZaFQbTZnAGN81gKdF/eKA3g2kYnE2h6quHQWmCkzDYVvifpNKoiZDxuJvBKQkhVE1EsbPr\n8nlzQOzmO7oYR4M2g8+c6ef+MCcnNQRi1jURz78ViNQnNT0gMjTDNINbNBGBu9d4azPYpvan/BwT\nEAhEYNBEWPlRJ6ItDO6jGczOYIYZDvpRxa81ZmywJoJh+ue9730v3v72t7u+G2vB2MNg2fL1z5DL\nL1iyDXr9Zw3beQ253V+ZNlAOsHteeX/0bZyIyy+/HLfeeuvS2x23FQwAs1QNgyHLFY+1cJAEoqUm\ngjqDE+GmGVycZtrz6bVksRqKUG0GZ4b27AAozWDyFmAtBM9SxSM6J3bvDO5zgFxGgrCLt9e/GRzH\nxZ9FsCbCT/o86AGUi3VNEQEAiXStiWiurGy9rxUHuUpNRGgeIOdXM9j+GS5VI9gHTURrMxj2B8hx\nM5hhhoPDMmbMcDOYYfrnDW94A171qlctvd1NN92E06dPD3CP/GXsYfBXkssPVRdKhcRDAK5GMWBu\nEd9Q/v2glPLvtOs+Qi7fiJYwGMBLUGgiJICPLrvTi5hMJnjxi1/cZRMNkqReNIa0GdyDM9inZrDS\nqJJiHmDaWkTTxWqACEIIbMe6JmJ4FGcwIiAPgSCz1gSf5eb98qEZnOXNfbSmiSCF/1PbxK9QhsFp\nWrTRxfAzA09EFQYvU0QArInwlTRvPqdtaiKSLAWu+2Dz67m7MDjL0HKmh6VQlPz/RYE/A+SSBPP9\nFjKCFMVj38fgvOrz258wuL+De+wMZhg30PeTPC/+BGs74YZhVNgZzDD9c1xd6mQyvK7TN0b78SqE\neC6Ab0YRwN4rpdTFIbcAEABeIIR4acs2/gGKxq8E0KxBAbcBOFdefu2Cu/P95PIfLb3zA6M3g6sw\n2LTQWgWTJoI6g/PgsFA2DAxdTApZt7z60ERUDdyd2JNmcLXfoOG/rUFq5kAoDz1oBhudwZZCExIq\nX7RVJ6mCKDPWoR18kjCYNRF+Ygp+bYbBT82eBLaLjz6B+uhG5rwZ3KP2hwTs3g2QK/c7pA54S2f2\n0M+xtjDYJ01EbtOVXKKHwVKWZxYxDGMd/WALB2bMWMhzKOtdPrDIMIxr1jIMFkK8slQvtF1/JYA/\nQD2d61cNN3sPMF8l/rIQYpteWf77l8p/pgB+Ud9A6f79JRSh8vVCiB833JeXAXgdikD5NinlJxfs\nmhNmijO4GCBX0IMzOGw2gxEdOZ/CTt25djURxY5VYTBtBrc1aPtG1UTUWhBb4QHdLxoU5ZEHYbAh\nELMWHoBoInbIvMiw/vo6eINXDYO5GewPpmZwZvjaqsyy+jkdo36i5CJxtnBvHSBnS3dENDCNAXKe\nOIOFov2xr4nwrxlscgbb10RUIXBEdpsDKobpBz0g48CMGQv6ZyU/txmGcc26aiJ+BUAkhPgDAHcA\nuA/AIYCnA3gFgB8oL0sAtwP4NX0DUsovCCHeBeAnAPx9AB8VQvw7APei8Pv+KwAvKrfx76WU97bc\nl3cB+G4A1wF4lxDiWgC/V96ffwTgJ1H8P18A8CNdd7wPaDM4VJrBlkJRUzOYOIMRH2I2A4Zu6heL\n3CoMjudHBuyeXlvse2hoBs+cNoPLxrIIIWRYyLVtNclkvV+XbF2Ks9MiJUxDHzQRfTaD6526ZJeG\nwevZDN7bW3w7gDURvmJqwFvVRJBgdCvYwywvD/SEM0ynxzuQYJu+m8H09R0FEQIRIBRh8f7hSTM4\nQAjkARDklgfnLQqDE7+awTbP7CnRm8FA8f+yzKnOMMzJ4cCMGSvcemcYxjfWNQyWKHy/byz/mK6X\nAH4fwOvLBq+JnwZwOYrm7gtRhLj6Nn5dSvkzrXdEyn0hxLcB+CCAa1EE0T+gbeccgO+VUt61fNeG\nZ5roYXC94slljkB0K5An5NMuNjiDER25b1QpmogenMGi2QxOHDWDlRAcUd0EF7kVp21KThW/bOey\neRicBX42g201yejgoot3SBpGwmDfm8F5DhyW8xyPE+jt7BQHcWYz1kT4hOk5bTMMnqUkDBZ7OF/9\nw3UY3GMzWNdEAEVDOEs9CIPnzeDqTI+8l4Oa1X5Xg2ABeNcMtjVAzqSJoM1gDqgYph84MGPGCrfe\nGYbxjbXURAC4GcBbAfwZgM8DeAJAAuBJAHcCeC+Ar5NSfreU8qm2jciC1wP4NhQO4QcBTMu/bwHw\nrVLKNyy7M2Vr+EUo2sQfL+/HAYDPAXg3gK+RUv7ZarvaP0lKBsgFpBmMIgzuvH2DJoI6gxEdOm9U\nKa7FHsLgqhm8HbkPg5UmmQgxfxsQmRUPIt2vy3bq6mgauG8GD6WJuISEwTJYn2bwEZnleJxAT4ha\nFcHNYH8wHvSwOkBODYPnhDPlOTQkjWZwbteFnmrNYAC1N9jhALlGM7jS/tj8HAt9HSDXnzP4OM1g\nhmHsw4EZM1a49c4wjG+sZTNYSnk7Cv2Dre3dCuDWjts4BPAL5Z+1IlEGyFFncBEgKAu/FUjzFJU6\n1tdmcIB+B8iFotj+VkjCYOkmDJ4ldUgQIKwf7yBDlqkL3lVI0BIGi7oZ7Kohm2VZ4xCYrdOKcxIG\n721v1aeQB+vjDK4UEcDx252XXQY8+iiHwT5h8gNbDYM1TcScIMHUzdtaEc7Nz/QIIKuGrKVmMP0/\nrXzBVVO2aga71iUUYXAZgtvab4MmQvUlezZArgdNhMkZzIt4hukHDsyYscKtd4ZhfGNdm8GMRRRn\n8FDNYIMzeGiUZjB6bgaXp9VuRe4HyE2T+vEIRVRrQURu5ReTNK8fzP9ttw6DE+FBM9jQGrOniSh3\nKg8QBsE8MFmnZvAqYXDVDN7f93//NgWzDqWnZnCgKlFchcEmFzpgcZAaOdhThcDzZnDguBks6jM9\nau3PUM5gh81gkxbEkiaCm8EM4wZuBjNjhQ90MAzjGxwGM0ozWHcG2wgQqGtxEq5DM7jHMJg0g1NH\nzWClCQ4S/ovMThh8jGawq9Aw71ETMXdV5uop5HmwPs7gLmEwwO1gXzB5U/tqBm8H/mkiis8wuw3Z\nNF+kifBjgJzoQRPhdRhsaAZnNl3JJewMZpjh4MCMGSt8oINhGN/gMJhRnMFREEKIDXQG0zDYZqOq\ndC2amsE0NB2SmaIFUTURNn4xoSH307brpDDxIAw2OoNtaSJE1QxWW4NjbwZfVuf9HAZ7gin4tdoM\nppqIUA2DnTaD5wf3IvsNWRKw0wFyANyHwUozuD9NRLW/ehjskyaCm8EMs95wYMaMFdZEMAzjGxwG\nM2ozOAgRaM7grihT2H1rBgfDNoPpfmeuwuCkpQluqRmcoX4wd+KdefA/le41EaZAzJYjWpZhsNDC\n4HlIDG4GM8NgUp/0pYnYUZrB7pzBrYPUBmkGF9e5/hwLlWawTff9Gg2QY2cww6w1HAYzY4Vb7wzD\n+AaHwQySjIbBgdIMTrPuwagpDC5C5zKAdeQM1gepzafP2woPyGK1Wjz7oInQncGBbWcw2a+tcAt7\nkyIsmsF9M9jcmLTkDBbFdoTUNBHYHE3EmTN27w+zGqbg16YmIlWawaoz2Kkmokd3LlVvtA2Qc/G+\nliRo2W9LBzWzHAiKbRnD4DBxst+0sUzhZjDDrDccmDFjhQ90MAzjGxwGM81mMHEGU6XAqpicwQAQ\noWzJRkdOFpO0IRsI4pgcaIBcKtykJjT8DwRxBgeWmsGChMHRFk5NTgEApvmGNIOlGhTlgjURzLCY\nm8H2Vh1UE7HjiSaiCAfrZrCw3Az2eoBcUIfBtl3J9D2zrRnskybCVjN4HZzBjz8O3H+/63vBMHbh\nwIwZK3ygg2EY3+AwmFHCwSgg4SBUn/Cq0BAiJqupGKU3OHLUDNYH58lqv+2EwbMkB4Qstm9oBufC\nvTM4DOxrIlLShJ2EE+zFRVg0le6bwSYHtq3wQAZmTUQmNqcZzGGwHxibwRY1EakkYXDkRxjcaAbD\nsjOYfI41NBFBDojM+SDUsIdGtPL5HZidwT5pIiAySGlp+wBw5Z24fforOHt01qtm8COPAF/2ZcBz\nngN84hNu7wvD2ITDYGassDOYYRjfiJbfhBk7CVFB6M3gpM9msKibwa7D4KJRZbdJNkubi2jaDM4w\nhZSAEFZ+3LFJtBDctiYih1kTMc0vFKcuy8ArTURu6bRiWWkioGsi6p31vRl8UOf1rIlYY3JDCzjv\nyRm8TTURQeJWExHQULR8Y7WkS6Cv47kmIqxd84UuIdS/rXf0ZnAVgts4w0VK9blUhcBzPQbguBls\neE4HKfJcVTqsvv0E+L5vwfvPP4qrbrsHUfQe9XqHfOQjwOFhcfkv/gJ4yUvc3h+GsQW3J5mxwgc6\nGIbxDW4GM0hTrRlMnMGJbWdwVK/QJqJsBjtzBmu6hKoZbMu1SPY7Es1mMKKpk6PCujN4KE2EhASi\nYvXqqiHbpyaiOlW8cmHPm8GYASiqatwMZoZgyGbwJJggqI4ru24Gl03R4gBX9X6eIe/4li6lGgY3\nmsEAEM6cayKUM1xMQekJyXPMh+MB6zFAztbnWJoC2HkSOPUoAODux+72qhmcJACe/VHg2j/FdGbn\ndxaG8QEOzJixwgc6GIbxDW4GM4UmolzkhEGgNINT25oI0gyOxXaRkblyBjc0EfXptXkOBB0PlczS\nFCizgvkAOdIMRjhFkqgewiFQBwba10RQLQLVRBRfOACSPYeaCEMYbKkJrofBSmswSIE89r4ZzM7g\ncWBqu9tsBqd5Ms9a4zBGJCaYydSzAXLlFWU42OX9PM+hBI9VM1ZpyDoKg+kg1OLgnj1NhD6kbR2c\nwQhSpCkwmTSvOglZhvlgQAC4kFzwyhn8pYPPA//86wEAn8/+FMC3ur1DDGMJPpWeGSv83GYYxje4\nGcwo2oAoDBGQZrD1AXJkNTUJKmfwFEfT4ZsttBkcCtoks6NLmKXNRpXeDHbSqNLC4Hn4H2RWFri6\nJqJqBgMAJsUQOZ8GyNlwBtPQRNdEAJiHCmNvBrMmwg9Mz2nrYXBJHMaIRflc92SAnB6Kdn0/L4LB\npiZCeY0HiZPXt679EUT705W1DINtue9TNMJgn5rB9x3dOb/8UPbXDu8Jw9iF25PMWOHnNsMwvsFh\nMKM0ReNQ1USkFjQRtBmshsHb88sXHCQIajOY6BJshcEZWUSH5mawa1dyKMLSlwx7zuBA1UQozeC4\nkNJ61Qy24AxOEszDohCGoKi8bp2awXt77bejsCbCP0zN4L40EXEQIawasmHixQA5xYVuQRvQFoqq\nzmBHzWB9IKis9RhdB6np+13trx4Gu3jMB9FEBPUD6lszmB4EoAfcGWbdYU0EM1b4uc0wjG9wGMwo\ngW+kDZCz0QxuC4O3qmYwgIPZYeefc1IajSppLzwott8MD3xoBuv3y74zWNVE+NQMVsLgrAg2bGgi\njqYZqvPSA2MYPN5m8NZWfVsOg92T5zAqAmw04CuUMFhrBvswQC4Imtqf7tumAbj5gI8PB/eExYGg\neuDa1gz2KwxOe2kGHyQHXjWDE3KwOck9P8rIMCeA25PMWGFNBMMwvsFhMIM0J4vJMFA0ETaawSkJ\ng7diEgaHdTP4MBk+QWg0qiw3g+liLV7gDB6aGdk5PfxPLDiipVA1EXsTzRkMh2EwDcSyIsixMUDu\ncFY/1tUwLd0nCqxXM/i4YTBQt4NZE+GetpCsL03EJIzrUNT1ADnSDBa2m8GGQWqTQD3g42Lfk8bn\nmO1G9LIBcm7a4H1rIvTHXG8Gu17E098vUg6DmRHB7UlmrOhrgDxH54PVDMMwXeAwmFEcsnFItAFQ\nF5qrkrc0g7dDz5rBpFFl45fPhJy6WZ1e60MzuOEMFnbDYF0TsRuTVDEu0kYvnMFVGGyhGXzhqN4h\nsyZivM1goA6DuRnsHhqKUmyGwRm0ZnDgSRgc1GFwYLEh26ZL0DURLvZdd9/XBzV70GMIczM4TYdf\n0LY9z/tqBuvOYNcBFdV7sSaCGRMcBjNjxfRcdn1gkWGYzYbDYEYJB6MwRIBhnMFbEWkGz3xqBlvS\nRNBmsEfOYF0TQR/vxMKOy0DVROxEdeiPqHic/dBEVGFw95XGhSkJg0V7GDzWZvBllxV/Hx0Bh8Mf\n12EIrc1gC27s+c/QmsHzUDRIHGsiin20HYoeSxPhqCGrf471GYK3aSIADL7vQzuDZ9kMIqx/nusF\nPDeDmbHCmghmrJjWAK4/SxiG2Ww4DGYUTUQUhggtN4OzFk0EDQkPUx+awT1qIkKPnMG6JsLi4y0l\nIANVE7FNQn/XYbA0aSJsOIOJJiIs23N6UASMvxkMcDvYNbQhS7E5QI42gydRjC0fNBGZnHu7+9El\nGAbIBc1mcNehbSdFfz+v9ztHmna7M3rgamxE+xYGWzqYqzeDAUCGh+r1DlHCYMlhMDMeuBnMjBXT\nc5mf3wzDuITDYEZp/xaaCLvNYNrGVDQRJCQ8Soevk+m6BOsD5DJ6KjVpVElR/tDxhcF5DiBSNRE+\nhcEmZzBEDtkxwTmcEa9m2QxeZ2ewEMVguOPCYbA/tDeDLYbB2gC5SVSFwSkOj9wI8HR3bt2QlXZC\n0VDdZ6A5QA4Y/jXe3G9ypkdH7U+bK9nvZnBqZXGt7zsA5NGBer1DMnIQnx5wZ5h1h8NgZqxwGMww\njG9wGMxozeBADQctrHgymJvBuzFpBifDN4NnehhsuRlMPX7V4lkIgRBlyha50URkWhOcPt4zK+GB\nqokwhcGuGrL0wITI6rSza2vy8JiaiHVpBu/uFoHwcak0EQCHwa5pC8lsDEqc/wwSBm9FMbai+rlO\nD4wMCdUlREFUN2S161ahbZCa7gwGhn+NtzaDAcwSC+/nm6yJ0JrBWXBBvd4h3AxmxgprIpixwpoI\nhmF8g8NgRgkHe2kGkzCYNoN3YtIMzoZvBiep1pC16FoE1MUa3e8I5X47awYvcAZ3DE2KBbS/mgil\nHZnXARZ9DawC1UREJk3EGobBACClxJ9/8c9x2323Lfw+bgb7Q5bBPECu12ZwHYoeOQqDGw1Ziwc1\nGwPkTM7g8jU+dCiq7HdIPsdgKwRftzDY4gC5QGsGh3UY7HoBTw82ZxwGMyOCm8HMWOFmMMMwvsFh\nMKPoEmLdGWxhxZOTUxgrXQIA7E7qZvA0c+AM1htVwu4AuaxlvyPSDHauibD8eGcZvNZESNQHNwQN\ngzs2g2kAFhmDIjenkJ8UGgZfSC7gn/7RP8U3/8434xW//Qp87IGPtX4fDYPPnOn5TjILadVEWHQG\n0wN8W1GMbaUZ7OaIh/K+JtRQ1M5BriWaiDI4HDwMVg7ukc8xdN/vtQyDe3QGp8KfZnCqaCI8/2Bh\nmBPAYTAzVjgMZhjGNzgMZpDldUAWRf02g+kikjaDpw6awanWJLM+QI40d2hzbh4GO2oGpwucwV0f\nb30BPQkn2CE6EERF6O9DMziw2QxODM5g5RTyIilZl2Zw9PT78PL//HL817v+6/y62790e+v3sSbC\nH9oGyPWliZhEMbbj+rV0lDgKg9ucwbDkzj3GADnARRjccoYLgMTG+7mhEa2EwaGbEJw+z2NBBOeW\nNBG68ggA0sAfZ3Ca0WYwpwnMeGBNBDNWTGsffn4zDOOSaPlNmLFDGyaTMEQQ0HDQrjOYLiL3tjxq\nBtPTa205B9s0EcIfZ/BcC1LOV7LSDC6DT5FHCESgNoNj181g4gzO6wCBnnK7CoeGZvBWSAKKNRgg\nJyVwUGYdD974Shw98mnl+vvO3tf6vayJ8IchBsjlIGFw6EcYrLjvgxBC1EPj7GgiSDN4Qft/8FB0\nURjckyvZt2ZwFMRI0hkgpF1NhDZAzidncEqa/hk8/mBhmBOiv7ZcH3hhGFuYPjc26fkt5cnmkTAM\n0z/cDGYaA+TCgZrBe1ukGZw7cAY3Bu/UzWAbCz0aME6IJmLeYoqO3GgiyP2Kw0jRRKQ2TqcuNRGB\nLPaThsHBxKMwWNrTRMySphJkKyJhcOR/MzhJ6jD/6OIiCH7adp3yHjcMZk2EW9IURmewzWYwDZ+2\n4lhpwR85enFTXYLuzrWtiVg0QM5pMzhUNRGb4gwORYig6jYMpIlwvYBXnMEcBjMjgpvBzFjZ5Gbw\nF78IPP/5wNd93fC/LzAM0w6HwYzaFI1Uh6yNMFgeIwxO5PDN4KYuwa4mgp5KHdNmcOCRJiLsYdBS\nuYAOyrBVCYMdN4MVTYSsgxyrmghjM7j4zcfnZnCliMD2ufnXXvbsl833Y1EYzJoIf2htBhsC4lWh\nzeCtKFYastPUvSZC19/YDkV9cgY33s9BD+4NoMfwIgyOIOZn9qR2DuYaBshlHjmDMxIG0wPuDLPu\nsDOYGSub7Az+wAeKQPiOO4APf9j1vWEYpoLDYKYRBgcBbQZbGCAnzGHwKaKJmLluBtNFtK1mkeIM\nrvd7UjWDgxxHs+F/C1Cb4HbD/6JNVaQCoaEZLFw3g6tALA8QyPox6aqJmCbNU8jXrRlch8Fn51+7\nbOcyXHPpNQCKMFjK4tT7/dk+7j93//x2rInwh3ZnsL33GtpEnEQxJgEJg11pIpRBqFGvugSzJsJR\nM3hBCN714F7DGRwanMGehMHzZnCPzuDEo2Yw/b0t52YwMyI4DGbGyiZrIg4OzJcZhnELh8GMMkBu\n7pAtSfP+NBGntuuQcOZBM3h+em1gpxmck6EuiiYiqEPCCw7OlWk4gwPL0+fL4DOEIQwum8GuQtH5\nqfIyrJtk6K6JmJo0EbQZHLkNwY+DKQy+dOtSPOfS5wAADpIDPHH4BM4encXzful5uOY91+DWe24F\nAFx0Ub2d/f2B7jBjpK0ZLC02g2kYvB2rzeBZ5qgZvGgwZsfmv/5/6tMAudTkgC/ZFE1EFET2D+Ya\nnMEJDtTrHZKS3y9YE8GMCdZEMGNlkzURdD99XgsxzKbBYTCjBGFhEGhN0e6rqjZNxEXbdTM4xfDN\n4MWn10rTt5xs+7IZEALAhITBh8nwYbDeWA5tN8kWaCKch8FlICak+nh31UQozeDQ0AwO17MZfOn2\npXjOJc+Z//u+s/fhL774F3js4DFISNzyuVsAAJMJEJb/nXzE3y1DOIP1AXLUnTvL3PyWrx/cU97X\nbISiYfM17t0AOf1zrOOZHvp++xwGU01EX87gBB41g8nvFzZb/wzjGm4GM2NlkzURNADmMJhh/CFa\nfhNm7NAgLBQhwsDyADmiiaAL9FM7jp3Bmi6h2ajq9vLIlEFtdVgyCV2HwZomIqANOhvhwaJmcPE4\nuxoeQJvBAXl8OzeDUzUcA/Rm8Do5g9UweDfenf/7vrP34a5H75r/+4HzDwAopgOfOgWcO8fNYNfo\nbc6KvsLgrdgPZ3Dz/bx+L7OivzE1gz0YIKc3g62H4D43g8uDHqGIEFrWRJicwTQMdr0VXDbDAAAg\nAElEQVSAVzQRwuMPFoY5IRwGM2PFtAZwfWBxKDgMZhg/4TCY0ZrBZThYrp27nl4LAPIYzmAnzWBt\nES1gNwSnzWC630ozeOZeExEKe47oNAXRRBQBEQ1Fq2bw0fAPNwDSDEagaCK6OoNnabMFPpZmcCMM\nfoyEwU89ML/MYbAftDqDbQ6QE+2aiCT3JQyu/21lMOYyZ7AHA+TiKFIOatrZ7+OFwUO/t9H71kcz\n2OgM9rQZzGEwMyZYE8GMFW4GNy8zDOMW1kQwahgs1HAwsxCKtoXBO3HdGE2FC2cwuV+hNninY6MK\nUBdrdL9pSHjkoBmsDwxUmsEdV7izNJsHUVHZDBZC1O3g0p3rqhkMqokQFjURS5rBwWR9m8GVMxgo\nwuA7H71z/m8aBu/tFX9zGOyWVmdwX5qIKFJCURnMnCxu1AFyof0BcgZNhJ/OYMsDQekAucA0QM5R\nCK5oIkKEorxPVp3Bahg8k/44gxVNhNiQNIHZCLgZzIwVDoOblxmGcQuHwQxyogaYN4NLbDeD6bZ3\noroZnAn3zWBlcJ6FELwtDKaaiKPUgSaCDrbTnMFdw+CjpF48V2EwgEYYnKZumlXzdqTuDO6oiZjR\nMDhuOoODeH2bwTQMvvuxu3Hvk/fO//34hcdxmBQHck6dKr52cADI7sptZkXanMEIMmuPy7yJmEWI\nIqGGokHipPlP2/2RrkuwccaDoSGrOoP9C4NHr4kwDZCz6gxWV6wz6U8zOCcHdyQ3g5kRwWEwM1ZY\nE9G8zDCMWzgMZpQgLBCBdWfwPAyWgRK4Upds5qQZrJ9WXC+iZ6kFVzKag3cAtTE6dRAGNzQRFp3B\nVHsRijooqR5rGdYpkZN28FwTQZpkAJKs22qDfv+k0kQYmsFrEQZvnZt/7dLtS3HlqSvn+/KRL32k\n8X0Pnn8QQB0Gp6nf+zl22prBthqTAHlvy2MEQTMUdfHa1gfI2Wz+H0sTUQaHg+sStDM97Gsi1mCA\nXBjVj3eQWQmPzM1gj5zBSjOYV9bMeGBNBDNWNrkZTPeTw2CG8QcOgxnkuiaip2awyFVF9U5cN4Pz\nwINmMHk59KmJ2I7cNoMb4UFgzxlMh0eZmsH0cR66PZjnAMqhUkJrBs86Pt5KMzhqNoPFGjeDAxHg\nmkuvAWBuUFeqiCoMBlgV4ZI2Z7CtwVoACZ+yGGHoSRisvK9FyudYX+5c3wbI6Y3orpqnY+23yzA4\npM1gu5oIPQgHgKlPzWDyXixNB38YZk3hZjAzVkwh6KY8v7kZzDB+wmEwYxggR5zBHZuiAIAqDJZq\nGBwFEZAXC9cscNAMXhiKWtBEoCUMJq5kJ81gcr8mUYTIYmhCm8GRMITBDpvB9PR5AbunU8+y+jeb\nrTIMps33ddZEAFBUETpVGFw5g4FCFcG4YZBmsKibwaYw2IUmgh7kikQPmgiDM9iHAXLKfgfD6DF8\naAYn5OydWGkG29REaM3g3J9mcA5uBjPjhMNgZqxscjOYBsA+r4UYZtPgMJhBLokzWG8Gd1xV5Tnm\ni0U9DAYAkRXtYBfN4IYuAfYW0QCQH6MZPM3cNoMnUaiEwV3Df9p0jgyaiJzoQIYOjIqmV7HvAcK6\nSYbuzeCE+Eq3YoMmogyDnQ3OOwamMPiS7UsAAM+55Dmt38fNYL+gBz1o+91WSAZQZ3ChiVAbsonz\nZnCoayKsNGSbugTfBsiFQj2oabsRXT3ONHB2FgYTNU8cRLX2x1ID3uQMPsrro1zOm8EkDNYbzAyz\nzuitQdevNYaxhSn43ZTnNzeDGcZPOAxmlEEktpvBNIATaIbBQV65ZMfXDKaLNRoa7MR1SDhzEQZL\nbb+FPU0EHSAXm5rBwWyuanDaDJbqQY9Zx0PzCW0GGwbIVZoIF43J46KHwacmp+ah16Jm8P3n7i9u\nz2GwF9A2ZwjaXLXjUgVIE7HFGey6GRyKEKF1dy4ZhFqGoSZn8ODva5n2+T2AJkIIUf8cD8LgKIyU\n+9NXM3jqVTOY7GSY8NBOZjRwM5gZK6yJaF5mGMYtHAYzinsuEIHVpigNJkzN4CAvAjMZzAZfzOjN\nYDUU7U8TsTNx3AyW7c3gro5otRlc7+dOVPuhEbppyVKXqoDmDE46NoMNmgjaDBZr0Ayeqx3KMLhS\nRADNMPirr/jq+eUHzrMmwifo8zwSMSBFcYVFTQR1BgvhnzNYbwZ3PchFW6IhYghR/J/64AzONOe/\n9QFyYbMRrVz2IQwOyPt5j87go8wnZzBtBttr/TOMa3iAHDNWWBPRvMwwjFs4DGbUZrDQm8H2nIOB\nKQxGuZgOksE/HPSGbGgxPAAA2eoMJs3gfPjUhC4iJ1GEMKThf9dmcL0/cdDURAAAoqI2OHR7UD99\n3uaAqdSkiaDN4Gg6vw++Ltrnbd5jhMHf8rxvmb9eWBPhF7TNGYiwPghnc4BcUDeDAT/C4EYz2KLu\niP6fznUEaO434NYZXJzZ089+Ay1hsKNGtKKJiKgmIkeadj+ybGoG0zDY9QI+F6omghfXzFjgZjAz\nVkzv076uCWxDX8f8ecUw/sBhMAOpaSJsNoPpYtKkiZifxuzg1OK+m8E5zI0qnzQRkeXHe5Yt1kQU\nP7R4oF03g0PyfOw6QC7J68d6e1IEZFQNIsN6Z31tB58/jyL8mBSBx6Iw+EVXvQjPuOgZADgM9g31\noEcEYbkxCdTNYJE3n+sIEjeaCHLwTdcldD3joXjvqJvBFV4MkNOawep+2zuzB/CrGUwPwMVBhEDR\n/nR/opucwYeZP85gqWgiUsxm7IlgxgGHwcxY4WZw8zLDMG7hMJgxDJAjoWjPzeD5wjocPkDQdQlq\nM9iuM5guoncntBk8fGpCtSC6I9qmJmISLA6DnQyQa2kGd3UGpzQMLp3BQohaFUHCYF+9wfv7ALbO\nzf9Nw+ArT12paC+++sqvxrMufhYA4LGDxzBNpxwGe4LiDBYhhKxcqhvcDO74vkZ1CQFpBvswQE5v\nBqvue8sD5Mj+ug6DVU1EhIg8LjYGwJqawUk+m++v6zBYGSAH4Gi2IfUyZvSwJoIZKxwGNy8zDOMW\nDoM3nDzHPCADCmew/QFya9AM1gapdW2KSglI0RIGb9WhWiJdaCLU0MSmM3iaHl8T4bIZHAjVKdq1\nSZYYNBFArYpYm2ZwqYgA1DA4EAGe+7TnAigCoRc8/QXzMBgAHjz/IDuDPYE+z0MRWXepSinnYbCQ\nfobBURCp72sWQ9FI1IGo6gx20wxuvJ9b1B3p3lz6OTbfd2fNYPXxpgdzaVC8KsUBgFnziqgYdut6\nAU9/vwCAwxmvrplxwM1gZqxssiaCw2CG8RMOgzecYrGnaSKoQ1Z2+5RSmsGmMFjQZvCwpznqzmC1\nUdXPFHZAbQanLsJgrbGsPN4d95tqIiZhSzM4LhbTLp3BAnbdmrO0/s3m1G4dEFVtWhmsSTOYhsFb\nlyrX/8TLfwJX7F2Bf33jv8YknChh8ANPPcDNYE9Q3nNFWGsiLDWD6fumaGkGO9FENM54sDxArgxF\naRgciKAOIZ0NkNP0GIE9TcSxnMEeaCKiILI6MBBQH3OFuNDouF7AK5oIAIdTXl0z44DDYGascDO4\neZlhGLc00zlmo6CnzgNVU9ReM3hZGByJOkTYP0wB4mPsG9qoikNtoJhFPUax/Xq/XDeDm6GJPU3E\nNKPNYL+cwUkigaB4PgcIlNOKu2oijkgr62kXkzC4bAbngf/N4EYYvK2Gwa994Wtx89+7GUIIAMCz\nL372/LoHnnoAz+Aw2AvoQY8osO8MTrL6uT53BmsNWRfPcb0hG4p+znChA+SAIgg/TA+dhcH6AFjV\nfW/3c8znMJjet740EQDmYbDrBbzeDD6abUiiwIwe1kQwY2WTw2AeIMcwfsLN4A2HnlIMGJrBNlyL\nC8PgOkQ4OBz206E5eIeEB302g7dcN4PbNRFdH+9ZSpvBddC/E+3UN3LkDJ6l9WMaaE7RruHBNKkf\n670dookIqzC43llfm8GLNBEVVRAMoNEMZk2EH/TdDKbDEts0Ed41gy06g0OhHrCc77sPA+S0z28r\n+91yUNOnMFgfGGhDE2EaIAcAmBRvbs6bwUK9A0esiWBGAjeDmbHCmojmZYZh3MJh8IZTtMjaB8hl\nst9mMPXKHhwNHAbnC8KDjmHwokbVnusweEF40FULMsuPP0Bu8GYw8QIHQgsPOjqDp0QTMQkNzWCx\n/s1gHdZE+Ak9wBeJCMF8gFxqvxlcDgX1wRncaAb3pYkI1M+xeUDqqBksFx7cG0ATEboPgyMRIST3\nzYYmotUZ7EEzOM+hPC4AO4OZ8cBhMDNWhmgG/+ZvAm95S1nw8AgOgxnGT1gTseHomohABFabwUma\nA6JwAYemZjCZTr5/aFh49cii04q7Nqr0VhFdRO/EJAyGe2dwHNoLD6gmYqvNGewoDJ4m5HmOUHlM\nbDqDaXuu+j/I4LczOE2Bw0OsHAbf/9T9owiD73z0Tnzwbz6Im//ezXjmxc90fXdWonjvKZUGQWhf\nE7GsGRy40UQ0GrKBvYNcbQPkALLv5fv9bNiPscZ+q+57e41owBwGiyCFhINGtKaJUM/0sNQM9tQZ\nnCRohMGsiWDGAmsimLFiCkFtPr/vuQd43euKy5dcArzpTfa23RUOgxnGT0bZDBZC/DshRE7+fMMx\nvudbhRB/KIS4XwhxVP79h0KIm07wc3eEEG8WQvyVEOIJIcS+EOKzQohfEEJ8Wbe96gejJoIsJvOu\n4SA5fT4QpmawQ00E2hfRXTURi5rBVVsUADIxfGqiN8mUJnjX8D8zayJMYfDQoWiSaJoI0gyedQgP\npFTbkqbHOhfpvIHvYzN4rnU4QRh89UVXz/2kY2kGv+YDr8FPfein8CP//Udc35WVoQf4QkEGa9nS\nRJicwQF1BrvRRNCDXI1msEVNBD2ACdT7LiL/msG2NRGmMFg60mOkUr1fkbCn/QH8dgZTL3jFEa+u\nmZGgv7Y25TR6ZvyYPjdsPr/vv7++fPfd9rZrAw6DGcZPRhcGCyFeCOBHAUjyZ9HthRDi1wF8EMCr\nATwDxRSzZ5T//lMhxHuP8XOfD+CvAfxbADcAuBTADoDrAPwYgDuFEN+24m71hnGAnEVtAG2rBAgb\n19PA8ODIcTPY4iJ6YRhMGrOZk2bwMJoIGnr70Ayepe3P8y4NuoMDQIb1ztB9pY81ytv42Ayeh7cn\nCIOjIMLVp64GMA5ncJZnuOfMPQCATz/2acf3ZnXoe08YhLWep4dmcACzM9i5JkJvBnc+w0XW6o2g\nOUCu+KHDh8FSqmFwMUjN3pkexxogJ9xoIuhjqg+Qs6GJaHUGx+6dwaZm8JRX18xI4GYwM1b61kTQ\nM5MefNDedm1AX9dDn0HFMEw7owqDRTHd6H0AQgCPARCLvwMA8HMAXociNP4kgO8B8NLy70+VX/8X\nQoh3LPi5p1CEyc8vb/8+AN8E4OsA/DSA8wAuBvB7QoivWWXf+sI8QM6eM3iW0raWoRlMTqk/nA67\nmNHDA0UTMVQz2HEYbFsToTiDWzURhwAcDJCjmgjdGdxhZX/uHOb7BKjD8uhjjaj4v/GxGTx3i50g\nDAZqVcSj+48C4Qxx+XJex2YwVZycm55zeE+6UQSXxes4CqL6IFwPzeCgZYDc0M/xwqHaHop2PbhH\ntQONZnD1GeagIVs0d3X3vb0zPRoD5ALTALkcELmDwXntmgjqE16FPC+Cdq+bwY0wmBMzZv3J8/L9\nnMBhMDMW+tZE0O0/9JC97dqA7icfu2QYfxhVGAzghwG8BMDnAPzGshsLIa4F8OMoAtyPA/h6KeUH\npJSflFJ+AMA/RBEQCwBvEkJ8ecum3gzg2nI7b5JS/pCU8jYp5ceklP8WwE0AUgC7AN7TaQ8tUzSD\n1QFytDGZd1xMLtNEbEWkGTwduBm86PTajmHwokU0DUadaCKEejq1Ev53bUTn9WNIH1sfmsE08C32\nmzbJVv9t7Nw5ADEJg2MSBo+4GQzUYbCExKP7j85VEesYBh+l9QNz9ujsglv6DR2GGAVhHQYP5QwO\nk8Gf4/pp8039Tbf3czUMNjeDpYNmsHm/h9FEKGoQkTkPg202g4tvly3NYF+cwZomggfIMSPA9Lri\nMJgZC9wMbl5mGMYtowmDhRDPBvCzKALZHwRwnLeaH0U9RO+NUkplOSOlPATwxvKfUXl7/edG5W0k\ngM9KKd+t30ZKeQeKcFoAuFEIccNx9mkI9MVkMUDOXjOYLqJNzeCJT83gwPIAOU81EXIgTcT2Ek2E\n82Zw0E8zmD6+69wMvmT7kqXfd9HWRfPLB8nBXBWxjpoIGgZfSC5glq3neWxqGBxB9OgMrprB9AwP\nF81g0xkuoUVNhDIgMmgZIBckAOTwYXDD+W/vTI8iDK73nf6fKqF4kCLPhw1taBis73fSsRlsat7O\n8aAZbBwgx6trZgT03ZxkGJeYnt82DyzS7T/1lD/FDCm5GcwwvjKaMBjArwHYA/BbUsrbj/k9r0IR\n4n5OSvlx0w2klB8D8HkUQe63G27yCgBVavLbC37Wb5HL/+SY9693TKeZUm1A3jEMps3gEIZmcFw3\nyg4HlgjpzWCbTTKfB8jp+x1bDIMTaQ6DaVvWF2dwbKlBR5vBkdxGYaspUELwNWoGn5qcajQgTVAl\nxoXkwmiawQBw7mg9VRF0GGI4UDM4FCFEZWVyEAb37b6n+6yHwfN/i8IrPLgmYmEj2t5BzQDBfGAk\n0AyDgYEVGXozmJzpYWW/TYoIAGLivhls1ESkvLpm1p++m5MM4wqqQCEf0701gwF/VBH6PnIYzDD+\nMIowWAjxXQC+DcAZAG865vc8F8WQOAD48JKbV9c/UwhxjXbd1xtuZ+ITAC6Ul19+nPs4BKbTTNVm\nsD1NhKkZvOVVM5iEBz06g2mYkItp4SYcCCkxH/hT3S9VC9KxCU40EZMlmojBm8H6ADlLpxXTZnAs\ndpTrFE3EGjWDj6OIANQw+DA5VMLgIZ/XNmiEwWvqDaZnY8Q9O4PDcoCcEEIZpOZEE7GwIWvRGRy2\nDJADgCDBdDrcc9/s/O9HExFqB4dchsFSAjl0TYS9ZnCWQVFE0PdxsVWc9uC8GSzUx3bGiRkzAjgM\nZsYK/f1rmyyJ+gyDfVFF6OEvh8EM4w9rHwYLIS4B8IsoGr5vllKeOea3fiW5/Lklt6XXX7/KdqSU\nGYB7UDSM9W04owiDiTM40J3B/bkWAWDbYTNYLmgG29FEkNOpSaNKCAGRl4vLaDpocGJqgtsM/9OW\nZrAXzmASBgfa87xLeHD2LObN4K1gQRi8Rs3gY4fBpPF9mNZhcJ77uZ+LmKbqE3JdvcH0eR6GIQKi\niUjT7iklbclWmggAiINal+BbM7j7ALkFzWBNkQEMt9Ax7rd1TUTx3hgJdb9dhsHFwMD2AXJZx6Me\nejOYvh962wzm1TUzAlgTwYwV+tymYXBfmgjAn2Ywh8EM4y9rHwYDeBeAKwF8REr5myf4vmeRyw8s\nue395PKzW7ZzIKV86pjbuVwIbWXlCD0c1J3BeVeHbLqkGRyTZvDAnw655s7tSxMRyEhRBwBAWIXB\n4RSHhxgMU3igakEsaiJizwfIKQMD7TSDtyItDF4TZ/D+Porwoww6jhsG78a788uHyeHcGQysnzdY\nbwavbRisNYNDQd3Y3d7XACAlB04CkDC4CkWdNYPbHbLdB2MuHyBX/OBhh8gZXckWB4IqYfCiZnDZ\noh3qeK5+RlMURIjpQFDLB3OpPz3Y8sUZrDeDeXXNrD/cDGbGCn0eb1ozmDURDOMvax0GCyH+IYB/\njmJY3A+e8NsvIpeXGS5prHGqZTvHsWQu2o4TTJoIm85gpaVmCIO3J/VCeuhmi+7OVRyTFhfRwuBK\nDlE3gy9caFzdG6bwwObjrTaDt42Xqxbt0IGROljL3uNdhMHFzuzoYfCaNIPPnwewVWsRVtFEUGcw\nsH7e4LGEwTQIi0OiiYA6RHFVlAFyJAzeIpoIJ83gQA0HrTqDyT7ToaeA1hQuQ9Gh9t94cC+wt99U\nl6B/frtsBps0TMrBPSuaCHMzuBog51szmDURzBjgMJgZK23NYJvPb24GMwxzUtY2DC6bte8r//lu\nKeVnT7gJ8laMZX0WusTZ0a6rtnOcTsyi7Tihb20AXaCYNBE7pBl8lAynichzqIvoHpvBIZol8FC6\naQYbF9EWH+9E1oHa7qQlDPZggFzRgK+fj7RNeVLOnpPzgHs3XuNm8HYdfnbVRMy3uUaMZYBcqqh5\niCYCajt+Vdo0EXNHuIMweJn7vqvuKJVEE6GFwb41g9WDXPY+xxY2gwcOg+nB1uq+WG8GE2ewqolw\n7wyezWSjGcwD5JgxwJoIZqy0NYNtHlj0tRnMYTDD+MvahsEAfhrAVwD4OwA/u8L305X/pPVWBSTR\ngR7dVdtZto1l23HC0kU0ui0ml2kidrbcNIP7di2qU9ib+x2Jqhl8NHwzWG+SRfaaZCl5We3Ei8Ng\nl81gvRHdpRn85LkZIAoX695kjZvBNAzeWm2A3KZoIu5+7G684rdfgXf8f+/o+26dGBr4xmGkvO/S\n18CqzAwD5AASiobJ4M9x40FNiw1Z2jSNlwyQA9w2g5WDmjaawdVBTe3zWwnFHTeDm5/f3dKjRc5g\nH5rB06T5+wlrIpgxYAp+s2z9BtIyjM4Qmgh9Gc1hMMMwy2imVGuAEOIrAPwEiqFxb5RSrhKsnieX\nlykbSMTR0EFU2zmO9mHRdo7FbDbDpz71qaW3u/rqq3H11VcvvV2xmFQHyNFwsLNDdukAuXpBOU2H\nawYbXYvWB8gdJwweVhNhCk1sPt4pKb/vEAUIDQ2DyRFyuHUGR1pY1OXxPnO+fvs5tb1ZzWDFGTyy\nZvAd/+ssbjkNfPu3N2/7H+74D7jtvtvw4fs+jB+44Qdwxd4VA93L5Sh+21BtBndxY1fQg3ahoAPk\namewH81ge2HwEdln6rkHdE2E+2awrYNcgBoG643oSHimibA4MLDhDN6qncFVGOyyrThNmj+8yxBU\nhvGFtpAoy4BoLVesDFNAn9s7ZKnQpzOYNRHMpvLwww/j4YcfXnq72VDDLjxmXT9afxRFE/deAKeE\nEN9tuM1XkcvfJISoktE/KcNjOjSODpMzQYfG3a9d9wCArwWwJ4S4eMkQuWo7p6WUK70Vnj59Gjfc\ncMPS2731rW/F2972tqW30xeTgQgQKwPkOjaDl4TBO1s0DB7u02FZI9pqM9jQiI6FQ02E0B9vi87g\nqhmcThBH9f8nDUXFxE0zOMvUgx4TsrLoEpqc3V8QBq9JM9iGJmJszuA/+H/O4g/+DPgv/wX43u9V\nb/vQfvEbtoTE2aOzXoXBzWawXU0EbSAGxmawe2ewrkvoepBrOqs/x7bi5QPkhvrd0niGi8X38+kU\n81DUJ02EKQymjW07ruT6QdyJdjAJJ5hlM0gfmsGzZnrAzWBmDLQFYxwGM+uOC03EQw8VWsTA8Xng\nevib58V+k19XGMYq733ve/H2t7/d9d1YC9b1o7VKWJ4H4HeX3FYA+JnysgTwXABfAvAZcpsXLNkG\nvV53E38GwGvI7f7KeCeECMv7Kw3bODaXX345br311qW3O04rGGgZQDNgM3iPaCJmAzaDl4UHnU8r\nJs7B0PAymwRVGJxi/yDHUMYWuogWsrhfihbEliYi3VZ+cS8G/ERI8xRBfIQMvjWDOziDD+oweG9r\nW7luXZrBDU3ECgPkDpNDXDWiMBjbhTP4LW8BvuM7AFJ0VxQSs8yvo8qq0iC0HgbTg3ZmTcRs8AMe\nywahdm3I0mbwzkRrBofuBsiZncH0oGa3/T48BGkG+x0Gq65kG5oI1RO9G+8Wr/XIfTN4ZtC9UH0L\nw6wrba+rNAW2tszXMcw64GKAXJIATzwBXH65vZ+xCqZ9TBIOg5n+eMMb3oBXvepVS29300034fTp\n0wPcI39Z1zAYKELVZQjttvPvkVL+rRDiIQBXA7hxyXa+ofz7QSnl32nXfYRcvhEtYTCAl6DQREgA\nH13y81qZTCZ48YtfvOq3N6CLSQEBIYRVZ3CyZIDc7na9kB5yMWNsBlscILfItQgAcbCF6r/2/IUp\nhponqDzesvgUpqFojo6NqkoTkW01PuS3o23sz/adDZBTnMEWXclPkWo3DUcBrRnsyJV8HGwNkFtn\nZ/A0056Q5f/H3/4t8Bu/AfzQD9VX0eFy3oXBtBkcRQgDu5oIxRksDGGwkDiaZQCG+y3fqL+xeHCP\nBuDbsT8D5JY1gzvrMY4w/xybeBQG6493FETK/bMzQK5+XU/CCfbiPZw9OgsZH9T3wRFHhmZw2mEI\nKsP4Qtvp4zxEjll3hnAGm85KevBB92Gw6XWdJOr/A8PY5Li61MnkOCO/xs1aDpCTUn6/lDJc9Af1\nUDkJ4BvLr0dSyi+RTd2CIjB+gRDipaafJYT4BygavxLAHxtuchuAKhl47YK7/f3k8h8t3cmBoKGo\nKBfvNpvBSzUR5EWY5G6dwcrptT0PkKON0XMHw6WiNDyoHm8aFnU9rTgT5mYwQIbIxUV4OvgAObJ6\nD8PQmmPy/KIwOGpqIsbcDB6TJoL+f/ybfwPF7b0uzeAoUJ3BtjURtBlMG7JHybD/J8aBYjY1EcTR\n6tMAuWXO4K7v57QZPIk0Z7ASBrvY7wXNYGl3gNwknMz96HnoaTM452Yws/4sagYzzDrjYoAc4Ic3\nuC0MZhjGPWsZBq+AaPn6e4B5FfKXhRDKMary379U/jMF8Iv6Bkr37y+VP+N6IcSPN364EC8D8DoU\ngfJtUspPrrITfUAHyAVVGEyawbKrQzZrX0QDwFbkTzPY5hR2ulg1NYNpY/T84XDpIA0PqpA6EPY0\nEZko9yU1N4MBQIZumsE08I2CUGmSrXo6dZ4D+1MSBseLmsGeO4O3at35xVsXH+v76AC5C+m4nMHY\nPjs/oPHww8Cv/mp91bmpx83gXG1MhrYHyKVLmsEolD9DTn/XG7KFQ5aGgx3d9+0kU04AACAASURB\nVKmqDKC4HCBHz0ABDO57i81g/53B9hrRxf8recyDeP5eJyMPnMGmAXKsiWBGAIfBzFhp00T06QwG\nimawazgMZhh/2ZQw2IiU8gsA3oUiyP37AD4qhPguIcQNQojvQqFzeAmKEPffSynvbdnUuwD8Tbmd\ndwkh/m8hxDcKIb5WCPGTAP47CiXHIYAf6XevToaqiSieDkozuKsmYkkzmAYI7pvB/QyQi0TcuJ42\nRvcHD4OrxnLZDBYWNRGkGayfeTFvBpMweMjAiGoiooYjerWVxv4+5vsDLG4Gi9jfZvD+PuYaC6AZ\narehaCKS9dZENMLgrXP4uZ8DRHko8ed/HjhzpghdLiR1Tdi3MJg+l4uDXLQZ3H1FrWgiTM5gAAhn\ng/6ib3o/pwf3OjeDF+iO1P120JAV+ucYPcOlozP4KAeC4rPQ5zA4DELElgaCzrff0gyW4RQQmXdh\nMGsimDHAmghmrLhqBnMYzDDMIjY6DC75aQC/gSLwfSGA3wPw8fLvF5Zf/3Up5c+0bUBKuQ/g21AE\nwhLADwD4EIA7ALwThSv4HIDvlFLe1duerABtVM2bwRF1BnccIEdPWTY0g2nLKh3wNEejM9ji6bVK\n6GpoBu/E9W8Cg4fBCzUR9sLgHS1PrMLgnISnpqPYfaE0JsMQk6i7JuLcOcy1F8DiZnC05WcYLGWp\niSBh8Dy4X4KiiUjHp4l4/euBm28u/vnkk4UugraCAf/C4DRrbwZb10S0NIMRJoM24JcOQu34OaY0\ng4NFA+SGbQY3QnBhWRMxbQ/B3TuDFzWD+xkgV3/h0Gk4lRg0EQlrIpgRwM1gZqy4cgazJoJhmEWM\nPQyWWDJoTha8HkWYewuABwFMy79vAfCtUso3LP1BRWv4RQD+FYow+UkABwA+B+DdAL5GSvlnq+9K\nPyjaANF0BlvVRCxtBg8cBvc4hV1tBpvCYNIMHjAdpIN3TM1g2aEJnubpXDmCbAu7u+r1VXCYB0eo\nXpZDBkZJ1t4MXjUEP3cOQHQ8Z3A48VMTMZuVz9dVwuB4zM7gp3DRxRne8Q7MD2z86q8C/+tzZ5Wb\n+RYGK83gIFRCOxuaCHo6Oj3rQdclDHnQY7k7t+NBzaxdE+HTALnCnWtREzFrD4OV/wcvNBH1/ev6\neBsHyE3IaQ/xAbJs2DNbKMZmMIfBzAjgMJgZKzT8pGdOboImwvT65TCYYfygmVKNBCnl2wG8/QS3\nvxXArR1/5iGAXyj/rAW9N4OpJkKXyEINEFI5sCZCb5LRZlFHTUSSZoAoVoqhcXBeHRIeHLlpBhud\nwR0ebyVMS7cbU2LnAaPIi4V8Hg8bGGUZyqc4ojDEVkxCshWbZCdpBgcTP5vB58+XF7gZ3Pja+dl5\nPOtZl+Jf/suiFZwkwDv/r3PAdfVtpqlfD2jfzuDjNYOHDYOXNYO7hqKzBZoIJQT3YYCcxUY0bQbr\nIbhPmogoiNTHG92So0XO4OILhSYmz9Fw4w/BzLCy5mYwMwZYE8GMFfocjmMgioqv8QA5hmFcMvZm\nMLOEIhwsgk9RhoL09PkuTVFAnWxvGiBHA4TBNRGLmsEWHZOmAXK7LsPgchFt1ER0CA9oKBbk23PX\naoUSMJbB46CnkufcDDYxD21XCIPDIJy/hi8kF8blDAZw9qhoAb/5zcBVVxVfu+0Oz5vBOX3vUZ3B\nq+pQKLOWZrAeBg/5PO+zGSylGrTpmgifmsG2NRGLmsHOw+CFAwN7cAZHzTDYlTd4ZtBE0N+1GGZd\n4WYwM1Zo+BnH9YHEvjQRl11W/O1DM3iIMDhJSLmFYZhjw2HwhmPSBtBQtPPptTQMNjRkadsow3AT\n6PXFZCACbb+7Tp9fPDiPhsGHs6HD4AWaiA77TcO0EFuN65WAsWzTDt4Mrn685gxeVQty9iyO3Qz2\ndYBclzAYqANwfYDcujWDp1nzganC4FOngHe8o/zitt/OYBqERUGkhsGWNRGtzeAg8aoZ3OUgV5IA\nEB4PkFtwULPL53eWqQdofQqDzc5g2wPkFjmDL9S3c0Bi+MGZ5JoVs/5wM5gZK/Q5HEXFH8DuQUX6\n+nnuc4u/T592v+7oOww+OgKuvx64/HLgox+1t12G2QQ4DN5waChahYJR0FMzODKEwdoptkP9wkcX\n0UJWIbi9RpUSBhuawXvbdUh4YcAwmC6iq8Yy1URIS5qICM0w0dQMHvIXlIQEBGEYYBJ1d0zqzWA9\nRKX/DmI/m8G6JiIUofEARhtVAH6YHiKOga3yqb1uYfBR0t4MBoBXvrK8sO13MzjVnMFDNYPdO4PV\n/aYHe7q8nx8doREMUlwOkFsagncIg4+O0AhcKc6bwdp9i5QzXGwMkFvgDJ4Upz24awYbnMEcBjMj\nQA/MTF9nmHWkLQzuqxl8zTX15cces/czVqHvMPiOO4B77y1+B/md37G3XYbZBDgM3nBMA+RshYOA\nFgYvGSA35KnFJleyTU2E2gyOG9fvbdVh8FHi1hlsTRNBmpXRsmawC00EHSCnN4NtOYMXaCKqZnCS\nFK5JX9CbwSdpBQOYN+YOk+L/oWoHr5sm4mDafDKeO6pbwFdcAVx8MYAtz5vBmjM4suwMTpS2qB+a\nCHqGS3G/IoSBnYasHor6pIlY6gzuEIIfHuL4YbCTRrSqQ6H3p+sZTVkGJQyOg1h9b3fdDDa8jlkT\nwYwB+pqicyc4DGbWnSE0EdXPiKLy99US17+P9x0GnyO/ln/hC/a2yzCbAIfBG44SihrD4J6bwUqr\narhTi5VmcBUGB/Y0EckSTcSpHaKJGDoMLhfR1eOtaCIsNYNj4V8zOCUJbBzaOY284QxeoIlAVO+s\n61O2KHoz+KRhcBWSXEiKgKQaIrduzeB9QxhMm8FCANdeC++bwblUQzLbzeDkmM7gwZvBWkNWdd93\nDYPbdQkuB8iZncGWBoIuCcF9awbT5/mqB/fU7deP+SScqL+rlD/bp2ZwBm4GM+sPDYh2yK9Trl5r\nDGOLITQRVTN4MlFfPxcu2PsZq2AKvDkMZhg/4DB4w6GhaKUzsNUUBdRhRhNDGOyqTaY2ZA2D1Lq6\nkrPFYTDVRBylbpzBofHx7tAkI6fZT4JmoKg0qxwPkIvDEJO4+8ChIgyud2JRMxihn2Fw12Yw1URI\nKdc2DL4wWxwGA8B112HtnMFRn5qI1mZw4rQZ3GjIdg1FF2giTM3g2UBPCb0ZHIjAmibiRM1gD5zB\n9KBm199bTJoI0/66cwY394+dwcwY4GYwM1b0ZnCfmog4BnaJ5v7w0Hz7oei7GfzUU/Xl++93v78M\ns05wGLzh0EVV783gcLkzeNAwWGsG0/3u7AxeEgZvk5BwOmAYvPzxXn0Rff5CvR+T4HiaiGGbwWoY\nvBXT04pX+21s2QA5JSgizWCfvMG2msG5zJHkiaKJGGogpA0OlziDgSoM9rwZTHypYRAiDGkY3H3V\noQwVo87g0LEzuKcBcsvcuS4HyNFmsEAAIYTqSu7w+a2H4Isb0S6awfpBD3uaCNMAOWX/y/9zV23F\nxPA67tqGZhgf4DCYGStDOIOrgFVvBrsOR03Br82D5ufUjgbuvdfethlm7HAYvOHQRXS12FG0AaJj\nM5gsyo7TDB50ManpMZRmUecBcnQh2dxvqg+YZsMlg0kim81gS4/3uQukGRweTxPhrBkcaQOmbGki\ntGZwIIJ5aCKDcTeDgcIbXDWDpXT/C+hJoJqTinNT9TfM665DwxlMXdk+sLAZbCG9os3geIEzeMjn\nuKkZPLE6SM28z4DbAXKK89/gvh9rM3iZJqLrADndGTwJJ8rnpOtmsFETwc3gVpIEeMtbgLe/3S9f\nP9OkTRPBYTCz7uhhcB/OYF81EUM2gwFWRTDMSTj+yHhmlNCmaBUODtoM1pzBLprBgaEZ3HWA3DJN\nBNUHzAYMk5K0fjxDgx6jy+NNm8HbS8PgIiV01QzWB8itGpqcOwfg4vZmMFA81sksgQz9bAbbGiAH\nFN7gU6cuUbZNT1XzGdPrUG8G++4MlrLpDKaDO604gz0cINe/M5h+ji3QRDh0BlcHNeNwmEa0b2Gw\n0gy2oYnQDgCY9tdVM9h0UIedwe3ccgvwzncWl7/qq4DXvMbt/WHa4WYwM1baNBE2P0eqn7Fpmgi9\nGXzPPfa2zTBjh5vBGw5dVFXNFyEEIAWAbotoAEhJMLG1rBk8tCZiweC8zgPkloXBpBk8y4dLRGcp\nbc+Zwv8OmojD+sFTXLklXjWDwxBx1H3Q0rJmMFA/1r42g8+fR/EeEBbP2VU1EUDhDa6awcB6eYNn\neflknNY7YA6D/XUG5zkap88rg7UshMHpccLgYLhhoIC5GRyFDnQJXjSD7Rzc05vBPg2QW+4MtjBA\nbqEzOKtv5wD6+0VF130eM/SU4TvucHc/mOVwGMyMlSE0EW3N4LGHwdwMZpjV4TB4w6GLaGWxI4un\nRtdmMPXYmTQRyqmXQw+Q0xbR6gA5e2HwRGuSAWpYmsghw2C1NUj/BgCIbGXP6z558EyBomtnMG17\nx1GIOBZAXuz7qgvpc+ew0BkM1I91Jur/H++awaS13CkMTg7nzmCg8AavC4ksH5SDK+df08PgSy8F\ngl1/m8F6Y1IPRa00g1s0EXooOrgzOFDf22wd5FqmiTANkHPZDFYPam5OM9jmAFiTM5hu33kz2OQM\n5mZwK2fO1JfvvNPd/WCWQwMiDoOZMaE3g/vQRNBmsE+aCNM+9tkM5jCYYY4Ph8EbTpLmgCjSv1AJ\ng4tPqc5hMNVEGMJgIQRClIvpcLg22dJmcNdG9BI9Bm0GZ5gOtqikU8jnzmBlkZut7NTbP6ofvJ3Y\nvwFyujM4DFGHwSuGB2fPYt4Mpn5gSvVY5z43g6PFQf4iFGfwmjaDpZR1GHz4tPlrQ3cGA0Cw428z\nWNcl6M5g+83g+r3NpSaChqJA8VpUXOg96hJ01RHgthlsd7/bG9H03yJysd/aQQ9yf6Sw7ww2hd/u\nmsHNxzUXHAa38cQT9eW//mt394NZDjeDmbHS1gy2uf6jzeBN0kRwM5hhVofD4A2HNkVpaCDKZjA6\nD5AjmojYrKgOUS6mHTWDQxgGqVlsBpvCYCVwC6eDfVArzeCgGYJD5Cv/YnIwrR+83YnfA+QmYVj8\nIiarZvDJdzrLyiC1bAZvR9uFYkVj3gyGx87gDmFw0xmsbXsNSPJkflAM6Q4uji8F0GwGSymRxZ6H\nwVpDljpkbYTB1BlMg1CXA+T0UFQIoQ0U6xiKhuZ9Btw2g2n4HxoPatrTRCwKg6P4/2fvzYNlueo7\nz+/JrO3WXd59q/RAElpBCJDAWswu0TZLmwabwWuH3YA9RriDjrG7wz09eIHu8NIee9oepu0ebMwS\nbtvYDMYIG+QAgwBjgUBCSCAJ7et7enr7XWrLyjzzx8nM8ztZue9Vld+IFzfvrXp1M29mnpPnc77n\n+xPvy7M6eJh8ncEsn/MtPz8kM9j+m1eXGewXE9HA4CBRZ/AzzwBPP13dvjQKV1NArtGiquiYCM5l\nH1w3Z3DZmcFPPVX9MTdqNC9qYPCSixYiaRXgDKZQtN/1h8EtZg+my84MDimcl3UwaUQ5g2mmbqs8\nGDym8J/NQnAwM/WDSRQMViIUahATIZzB4m+QJiZie9vesI/FLy8YkM5gk9XTGZwVBntjItbX5Wve\n2fq6ajQlDc+0hz09UQTPC4N3jV1wzwRZ/WCwxxlMYyIyLp8Xn2E/wXOmgGYVipbXlgP+cQllOYMr\nLyCneY5bK+a4vRCc/h30dgUxETMOeOIMzgMGe5zBSj9ZsTPYLyaCN5nBgaIwGGjcwXVW4wxutKgK\niokwTaSO56Oik5PLnhkMNEXkGjWKqwYGL7kmAYXOmH1peMFHUlEYvLoS4Axm0hlcRQEav0JqWTOD\npzRXMyImAvq4tBlMJSZCm4UH0NLD4AE5eSvdmheQa9nOYDsmIs117s5E2zERfnnBAHUGTwCIJ746\nOYPzjonYs0e+5p2tr6u8MHjvinAGnx2dBSdP6V44DNQRBgdnBucaE2G2oZEnCDUuoVpnMOCBohn6\nsajMYPo9a1fnDM4bgidxBpcNg30LyClO8HwLyLX1tm9MRFXOYMPnPs47JmIwEPm6eUCKqtXA4PlR\nA4MbLaqCnMEAUsfzUdGVOe32csVE+I01mqiIRo3iqYHBSy663FCBgrYzGCxHZ3AvyBnswOBqncEK\nPMgaE1FTZ7DhA/9VZ7CVeqnv0JAnb60bERNhRytU5QzuOM5g1wGfAQbbxxLlDAZQ+jLyOMrbGTzv\nMJiZPezrCxhschO7hqyCd3Y0e0B1gsHe7NxCM4OtNghnrjQmgh63X2HMsmIitJJhMHUG5x0T4T3u\nsKxkrQpncEhMRFZnsMgMlsc+mxlsyv2oQKafMzhHGMw58NKXAlddBfzO7+T2sZWpgcHzoyYmotGi\nyusMpjA4j+ubfr7XGVx1ZEKRBeQ493cGNzC4UaN4amDwkssIiIlwMoOzOoPpcsaVgJiItuYUkCs7\nM7i4mAiazdvxKZxXmTPY53yrmcFm6g56aEgSsNarX2YwLRLX0jXFGZzmfJ844XxYPGeweK/4Gy2q\nM3hgDOYSBo+n8trtaD1s9jbd76kb2M8ZPDbrQ/YjM4N59hGHGxPhcQZXWUBOcQb7xiVkhaLEJep1\nBlMoWmEhNT3nmIhEzuBWtTBYZ2oBOStjATnfmAhtNiaiusxgP2dwfrTs2DHg7rvF9l//dW4fW5lo\nATlAOJ4b1VNBzuCq7rVGjfKS1xlMJ9PzgMHUyLNMMRE7O3IFy9698udNTESjRvHUwOAl1zTAwcqQ\nT2Zw0OdTtZzBdUWZwS0/GJzRGTyeUAjennndCwjLi4mIKCCnmbk4g1d78WIiqnIGtzQ1MzhN3uI9\n94j/iXa8zGAAgC4OeJGcwbSA3CLERHT1HvZ05UFQAHx2XG9nsJ9jUomJyCMzOI4zWDMqcwZrPg7Z\nLIVQRyMo94d30oceN2tV4Ay2j83pR1WHbEYIHhMGV+kM9isYmEtmcIwCcpVlBvtM6uTpDKYuq+9+\nd75dmcPh7OTrfffVqw9uJNXERDRaVIXFROQx2eF1Hi9LTATtr66+Wm43zuBGjeKpgcFLLiMwJsK+\nNHJ0BnsHk446rjO4PIAwMSyAialE3ScuIetgcmzI4+51op3B5cVEzDqDGWOuExwsPQymQG1jpX7O\nYJMAfl2zM4OdmIgU1/l3voNQSOSozs5gywJ2d7H0MREDMpHRa3cVZzCNhvBzBg/GdYPBai54m4w4\ncomJIM5gCoMVx2wlmcEhk3tZYyLofe6Z9FEyg/UqncGzx51lZY/XGex1RCswmDiDy8iYpZnBDvwv\nqoCczloCNvsUkKvMGewXE6EVA4MnE+B738vto0uXNyICEOdXTOY2qpuamIhGi6qiYyLCnMFVx0QU\nCYPpOOO884BDh8R2A4MbNYqnBgYvuehyw7Y26wzOmhnsggMEw2B3mW2JS4tpjINfXEKWrEVAhcF+\n8RiVOYOVzGAyuHWaggyZwXSp/dpK/ZzBNCZCZ44zOH1m8He+AzcvGJhPZ/BgYMObJS8gd2qLQv3g\nmAi/zOD6wWC1baMxEVYezmAuncF1iYmg2bkahXaW04/lB4OVthtiMs3t22xncNo2NKkoFHUz4HNy\nyCZyBuvifZyXA2384L8X1maB0jQz2Klp4FdArrrMYJ/zmmNMxPa2+v08xypQGMyY3G5yg+upxhnc\naFFVZkxEu708MRF08nLPHuCyy8T20aP2ysdGjRqFqoHBS66gQmfUKZppUKXJ4kt0OTmVCxF0A8NR\nOaWr/WBwXhmTgAqD/TKDVXBSrTMYEEttxUZ6Z/DYIs7gfjxncGUwWNMFyHJiIhLCIs4dZzCBwQHO\nYPW46+UMdh+UCnIGn5k10tZSJ8/K4+93VBh8enTa3faLiRhPawaDmTrp0c45JsIMcAZXWUCOHrcC\nBTMUiHQkYLC4z1us5Tup6Rw7K7lApG9mcE4xEcIZHDyZq9QYaMn3lXHs1AHvVwAWmpnJtUudwU5N\nA78CclU5g/2yv4tyBgPzDU4pDH7xi+X2PB9TVu3sAEeOVL0X/mpgcKNFFb2Gvc7gvGMiOh31/qkj\nDM5r0pyaTjY2gAsukN8fO5bP72jUaJHVwOAll+IUJSN7RpyiWTopCoNXO6u+76EFeIbjcp74VIes\nz/LarDER03BHtMY06LCPuypnsHK+pYMu7WzthBTS2rM6CxQV52zFBeR0pguXkBsTkey6e+op+wGE\nOIODIGqdncGuAyynzOCBMcDaGlzH6Nw4gwkMXu30sG9ln/v9yYGsPuRbQK5uMLjozOBYzuAKMoMd\nOEigIMsQA+OIOoO7uv+94UYokJiIsuMSfPuxrMcd0xnMdPm+8mCwGo/hde5mhsE2XHXOrV8BuTpl\nBkMzcrvmvDB4np3BtHjca14jt5cFBt9/v1pI6fhx4LnPBc4/H/iHf6huv4LUxEQ0WlTRa9ubGVyE\nM1jTJBCuOibC7/iKcgbTdqMuxptGjeqsBgYvuehyQ78CclkcNpwDVsuGwZwFL6NvSYgwHOfnbgmT\n4gz2yVoEszINrPycx161mQ0JS3QGB8WCaCQWJO1srUGcwXtWo2IixAGXCoygOoMBAosSwv/vfMfe\nCMkSdVTnzGD3ATHHmAjG4LqD5wYGb8vjX1vp4eDqQff744Pj7rZfTET9Csh5MoNzjolwXYnezGBd\nzQwu8xr3g4MAMmWCO1JgcMC9IVe3yGshr4FOmIwpBzTh/s17UtObGVwnGEwhuF/mP5iZaXCtOIN1\nP2dwtZnBll9MhDaFlW1Bk6tFdQZffjlw7rli+9vfLmfCpkp94xvimK+4ArjtNvGzD31ILJ+2LOBT\nn6p2//xE79tu1//njRrNo4qOifA6gwFZRK6OzuAiMoM3NlRHdF2MN40a1VkNDF5yTYNiInJwBo9G\nANqCNmlmH4wGthF1WxIilJW/qcBa3W8wmc0RHQsGa/aTbonOYKWgn58TPENMxIQTGLw2C00U52AN\nnMEAUsMiCYPnOzPYfUDMKyZiKj5w3mDwGQKD11d6ONgnMHhXwuAzY+IM5qI9M2oHg4Mzg3ONibDq\nExPh55AF5GRPXpnBQfe4c89YumwPSnHIBhQElQVg09NBrzNYgf3wFs6rzhnc8nUGZ4PBNDPYOU7l\n81n9YiKgG7kNrr2ZwUeOACdO5PPZZYvC4H37gKuukj+va1RCXvrLvxTA2zCA3/otsf2hD8nXn3yy\nun0LEr2Gm5iIRouksgvIAdIlu8gw2OsMpu1GXYw3jRrVWQ0MXnIFw0HpFE3bYA+HANrCGdyy/CMi\ngGqcwVExEWDZMgf9Pt+rjiadwdUUkPNzBqeHwVNuUwDOsN6fPWbGmAtNWLv6zGAAYNzJDE72JPbd\n79ob7ejM4KVyBhvzCYPP7soLcaPfw4H+Aff7QGfwQLzH4PWBwaaJ2czgVn7OYM45LMdtatangJwC\nB7XZSc0s2bnjMdz7fKXtf2+sddYAAJYuY5HKaNvU2B/qiHaOezGdwfR8OwUDvTEOWfII/TKDvQXq\n3PdVIBP+MRFFDK4dzWtUhBcGX3ml/H6eHc9xdMstcvumm4CPflTERjh64onSdylS9J5qYiIaLZK8\nzuAiM4Pb9lytcw9VHRNRlTO4LmOtRo3qrAYGL7mmZLlhR6dwUBaQSzuoGo0AdGwYzENgcFs6jEZG\nOWBFcUT7FJADszI9fFJnMHVQUXUcx2hrVElMBIX/zoA6izN4CrvXnfawuurvAvfC4FKdwZh1BtOs\nZD/9wz8AP/uzwD33qD93ncHtBXEGx8g+DpI3MxiQMHgymY+Hsa0BjThRYyJODKQlTskMtmGwOwlS\nA0U5g7PCYMMiT+9hzmCtiszgWRiMvJ3BATDYycOfajsAxNrz0mGwjyM6czyGHq+AHL3myobBjmPZ\n69zNAoPHY7gwuOP3+RXHRJi+MREWxpN8ciIWGQY7zmBgsWHwqVPAnXfK7zkHbrxRfU/dYXDjDG60\nSAorIFeUM3gZYiIaZ3CjRtnUwOAllxkQE+HCwZycwW30A9/XIzB4OKkgM1j3cQZnWGZqGKrTNMgZ\n7ELCMgvIkfNN4T9jcllx2vNNYfCKPxeVoLFdfmawFZIZDM0C9wQIcg78zM8AH/4w8EM/BOzapj/L\nks7gw+c3zuCwmAhgPtzB20N5/JtrXfRaPdftqTiDx+Jg+q01wBBtmon6OIO9mcEtraU4g30dhQlk\nmKRx8DiDlUmvkmMiFDhI4wtygKLDEXfvj6B7Y7W96vxC973lw+DZwnl5xkTUCQYr8J/5xDxldAYP\nBnALyHXbfpnB4nqqClBZAffxaJLPDvnB4HkFp7SA3P79ywODv/zl2Uxk7z1x8mT1kMgr5/mTMQm0\ngAYGN5p/eQvI5Z0Z7C0gB6gxEVVmpDfO4EaN6qsGBi+5isyQ3R1YQEfQpg6CncG9tnziK8sZTAfR\nbd+YiPSF1KKW1zpyIWGJBeSUgoFkWlrPISbCYjYFmHbR9jdDS3BoZ+2W2VFzn8xgJyYCACyugpPJ\nRFTeBoDHHgPe+16x/cgjcgD17AsXxBmcAQbT93tjIoD5gME75ELcuy6Ox8kNVjKDbWfwRmcPYIp2\nizPT36lXgbzO4LwLyIU5gystIGdyF9C1/AqhZnHITgwBeRF8bzgTBwDc1TCVxkSQlT1pi4oliYmo\n0hnc8lvZk+G5BQB2BxxoiQ/o2TFW3hgKoMrMYPmLNYu0vznFbHkzg4HFcQY/73kSMi4yDKYREc97\nXvD76pYb7ECxIpyTjRpVqTJjIryZwUC1YNQ5dmogaJzBjRrVQw0MXnLRQUWQMzjtoOrMjgRlHRYM\ngzsEIoyn5WcGtwMKyBUNg3vOkuPWRAw+S5ChOMHzjYkwNdHrMisYJjruWd6qiTMY8m9AJ0YA6QR2\n9Ad/AHzrWyQiAmmcweXHY4QpD2cwzYL2cwafOeP3v+qlnTGBwRs2DLaj36fRiAAAIABJREFUIk4N\nT7mw18kM3ruy6cJgwANJK9R0CgV8ipgI2f5kLSDndQZTGKwxTbZ1JTuDjelsITWAOv/N1K6YoSGv\njaB73ImJAAB0dgCUBEXp5F7AcWcqAEsLyHnijlQ4Kq+L0mEwXdljF3UEMzMNNAdDEp/VCo6JqIMz\nWOcEBue0sooOrs87T3z97nfnE8g5MLjbFWCk3QZe8ALxs/vvr58zNi998YviK2PA//yf4qujG26Q\n23WLinCuMS8sm8drr1EjKq8zuMiYCMeQ0yeLcqts65xjp/vTOIMbNaqHGhi85PLLzgWISzaDU/Q0\noWldLQwGS6gyzqt3iNDUJx7DW0AuGwwOzlp0tNKWkHBnWI4j2jT94b+eA/y3NEEBtDAY3KIwmFcH\ng72ZwZgFZTs76v83TeDnfg74u7+TPzt4OKEzuLV4zmBAHrs3MxiYD2fwgMDg/XtUZzAHx8nhSRim\ngV1DtGl7V/aAWbLdmpj1iIqYcQYzXYF2VoaCYsCsM1jzPEG4bblebmZwUD9GncGpHbLT6DxtNyYC\ncKORynYGt30d0VZqGBw1qakxze0zeQ2cwQAphJoxJmJ3JP+zc017M4mB6pzBFAa3uOx38o6J0DTg\nZS8T2+OxWnxsXuTA4H37JBB1oiIsS53cXRSdOCGd3C95CXDNNcDP/7z4/rWvBd7yFvneujmDnSGA\n1xlc1b3WqFFeou5YTcs/JiLKGVxlEbkiYbDTXzEGrK01MLhRo6RqYPCSiw6iKTTQc8gMPkNgcC8E\nBtPlxZXEROg+y0yzZiXHcAZTGDwoiZwYAbEgFP6nPW5uO4M1qxv4HtdZxyxAN0rrqDkHOAFhzvFq\nBOgprkfMwmBAOIM/+EH5/b5zkjmDWc1gcB7OYEAWkZvXmAjq/jxgw+AD/QPuz47vHsfWWNrlNlc2\n0dbqCoNVlyxd8ZA5JiLEGQwQ96g+wWSC1AA2+X75xyVQh2zafRlNo++NqmIiTCvouGV7ns0ZHD6p\n6fyMZuSXAsGn3C1upzjBYW9njIkYjORxO88n3kxioEJnMI08Is7gUc7O4I0N6aIFgAcfzOXjSxWF\nwY6uvFJuz2v8RZi+/GW5/ZrXiK9/9EeioNzf/i1w/vny9cYZ3KhROaIRKED+kx1hmcFAPZzBdH/y\ndgavrwvI3sDgRo2SqYHBSy46qGj5OYM1C+NxuvW1Z4cSBq+0YjqDK4yJ8BaQKzomYqVDnMGjcugg\nPd+dFj3f2WIiOOeu65UOTr1S3LOtISyrnId804RSTMkB/xon156pngMKg1/+chVwAmLmfW0zGhRR\nZ3CrV68Ccrk5g20Q7rgoNzfla/MAg0dTee4311RnMCCKyDl5wQCwp7unxjBYneCjk1w8Z2ewFwZL\nZ7D4e2YBckkU7AyWhTHTDrbGZvS9UQdncMfPGaylm9yzLHv/I/ox92clw2DTlG15uwBn8GAc4Qyu\nODNYcQYj/5gIJzN4fV2FqPPQllONRnLCkx7HoheRcyIiABkJoeviuPv9BgY3qocsS6y0u/XWqvek\nHDl9sXNd5319+zmD6xYTQR3/eTuDnTFaA4MbNUqmBgYvuabcf7CnERfMeJIOBm8RGNwPgcE0i9Ao\nCaoo8KBVbAE5pbASEXUGDyflwOBpQGawC4xSxmNQGNZCDGcwALTLKyLnzVJ1XF4UBnuBHs0Mvv56\n4L77hLvm9a8XVcl/5VeAiRUjJoI4g/VuvZzBecdEzKsz2M/96WQGA8IZfHYsD2Szt6lA/rJWNETJ\nLzO4SGdwcEyE+HuU9SAe6AwmMRFpBluce2CwHgCDq8oMVvpvstKDxESkac/dfY/ox5y+2yoZBk8C\nzreWQyFUABiQQmzOMaowWNxHVQAqy4IK6UGdwfnGRGxszF9bTkWLx+3fL7cXHQY7xeM0DXjVq2Zf\npzB4XmIiGhi8eLrpJuBNbwJe8Qrg4Yer3pviRSc6gPxjImifV9eYiHZbupbzdgZvbIivXTIEbWBw\no0bRamDwksskg0kKDSgYHY3TAYStEYHB7ZjOYLMcZzCFos4g2ltAruiYCAoJy4qJUAoOtXyc4Cnh\nwfZQ9rh0cOqV1xkMlJkxOVtALgwGU2fw6ipw7rnAL/wCcPPNIpPv139dzRMNjInQZ2FwXR5Q8oqJ\noM5gzvncAYSJ5QODiTP4xOAEju0cc7/ft7IP3ba8dk5v1QMGmyZKzQz2OoPdNs2GwWVNevhlwAPU\nKZoODk6nMv4GCCkgR/s3OyaiDFf0NCgzOGPmvztJFNMZXHpMhOKIlpBaY9ljIjgHhpNZZ7BaMK86\nZ/DMhA/pb/OouWCaciJ0kWAwdQbv3w88+9li+9vfRuriknWUZYlifwDwwhfOrmgCgIMHJZBpnMGN\nqtKdd4qvnC9mdrdXFIgCyxUTQe9rZ9/yeEaaTuU4pnEGN2qUTg0MXnKZln9MBB34jI10YYvbIzkN\nuRoCg6njqCxnsDKY9HUGFx8TQSHhoCRnMM2Y7BCS47rKUg6iz+wQGMxCYHBFzmDDgK8zWCcu5jAY\nvLYGXzlOWCCmM7hdb2ewzvTA6zVMTmYwIFy28wQQTBOYcnkROvel4gweHMdDpx9yv79478XoERh8\n4kw9TmhkZnBWGBzhDHbbtJKzsQNhMJNO0TT7MhrBbaeAmJnBJcZE0KKXyuReRgjutskxYbAFeV2U\nMrkXAMFpTERaLjqZAFyTfzTn+cSvgFwVgMowoJyXDiMF5HKAwU5EBLC4MBiQ7uCzZ4HHHy9vn4rW\nYCDh9oED/u/RNOC888R2A4MbVSXaV5QVKVWlvM7gZY2JyNMZvCVLebjO4AYGN2qUTA0MXnIp2XMU\nBhMwOp6kAwg7Y+kMXuvEcwZbMEp56CszJiIODKaZpUXKDMgMpjERaTros7ty/ztaSExEjZ3BY885\noDERgTA4oTNY69TbGZzGFQyo53U4Hc4VQNjagq8zWskM3j2Oh0/LdYwX770YKx157Zw8U4+RTNWZ\nwdIZXO51PlUmufyz0FPD4Biu+cpiIqIc0Sn7MXfQqIcXkHPaPIPLdrDK49YdZ3CGydzBAErhvI5W\nr8xgLwymk69jI/vDE4XB6+uLD4OBxYqKiDOJDcioiNOn1WedqkWhUd7L6BvVS7SNzisyoM7yFpAr\nMibCzxlcVUwE5+qxFwWDG2dwo0bp1MDgJZcSE6FRp6gc+AzH6XqpnQmBwb14mcHQJyU5qmbhgbIM\nNGtMRMQgGlAdoyOjLBhMITjJDGbZ4MHZXdnjtsOcwa1ZZ3BpMNjXGUxhcHhMhJ8UGBzDGezA4Lo6\ng1PDYALCh4YKg8+c8fkPNdKZM/CHwR5nMIXBl+y9BP0uiYk4WyMYHJYZjGwjDq8zeAYGu87gCQBe\nuTNYRw7O4Dgw2CcmonQoSgvnZYyJcAdQOpnkI5O2jpwVARMuR5llDDiNKCd4hgJygwHcmBPx+eL5\nRImRsmFsFYDKO7HZYfnGRHidVrQtp6/Ng06elNteGHzllXJ7UWHw+nrw+xxnMFCv3ODGGbw8om30\nMjiDqyggV4eYCHpsecNgOkHZOIMbNUqnBgYvuWhBIQotW0wC2rQVqncNCYM3uvGcwdCNcgqKUSeZ\nnzM4Q+ZgGmew15ValPyOGwB0Z713yuPeHsj97wYUWQI87tlWyTERPs5gnZMifkbGmIg4zmASE1GH\nnMIinMEDYzBXbjIKgxnX3Pv1QF+usaUwuKN38Kz1Z6kweLseIxmvM1hjmtL+5O0MDiwgB5Q2sQd4\nMuB94aCF8Tj5DeeFwUETPlXFRNDj1v0KyKVsz91BYzs86smBwWNrAED8fctwGQbFROgs23EDDgwm\nzmDfzGBxH9XBGdzR8o2JCIPBdW/LvQoqIAeozuC77y5nf8pQUmcwUK+oCArMGhi82FpWZ7AfDC4q\nM7gOMRH03JYdE1EX402jRnVWA4OXXCZxilHnC83xHaWEwcOpHBWur/QD36dUKdcnpcBBxRls98je\nAnKFw2DiGDXZuJSHIVOB/z6ZwYxjPEkOTc4O5Enr6HFjIsT/qdQZzCS8GqWBwTGcwRSwspY82Do4\nIXJzBntiIlZX5RK4ugMECoNb6IExBgBY76y7IOiZ3WdcGHzh5oXQNR1rPXntnKlJATnqGtQxu+LB\nYvlmBgfGRABAa1xJTESL+UxyARjlAIPjxUTsyv9bsGg/psY8ZVvp4e47gcE0F9z7MwuW66YtAwbT\nSQn1uJ0Ccvk5g502QGMaGJj7+UCFzmByH3c0eU1Octgh7+DaGWAD9W/LvQqLibjsMll1/q67ytun\nojXvMJguJ29g8GJr2TKDvQXk8o6JiHIGVxUTUSQMpn1SExPRqFE6NTB4yRU0mGxrEnQMU/bSFAbv\nWYkZE6EZlWUOegvIZYqJIJmDyvERUcco9HEpHbUVcL5b5KkkTUb09iAamADVFZALygxukZiIwThF\nZnAcZ7AHkDmqw0NKXs5gCoqGxhCMSYhQd4AgYLA4LzR/kzHm5gY/cPIBd6XDxXsvBgCsrshr5+xO\nPUYy1BmsuRMexWUGBxaQAwB9XJorIxKKAhiOkh+7gMHRBeTUmAhBY8qAokEFYLW8YiJsGKwxLTQm\ngr63lOMOON+0YGBemcG0/3Z/V40ygykMziMmwpsZ3G5Ld1nd23KvwmBwqwW84AVi+4EHqgMleSsu\nDK5jTIRlyRVTjTM4XJYFfP7zwP33V70n6dU4g2dfyyL696xrTESr1RSQa9Sobmpg8JKLVpdXYDB1\nBqdssYemHBVuBoWuopqYCCU71xcGZ3QGt5NDwjI6ajMgFoQ66CaGlfhzd0YkJqJVvwJyhgFfZzCd\n9NgdJ88MHk1tR6nWihUHQmFwHZYvFZIZbLulnVn6ugME6gymYAWQucFjU56sS/ZeAgBYrysMtq9z\nxyWZawG5JM7gklZ5AB5nsNKuERg8TguDoye6/GIiaPtRlMyAArBaxrgEb0xEv913HfNUCgQvEQar\nmcF+sDb9ZG6QM1j5fPseqy4zWP7iLomJGJv5x0QA89OWexUGgwGZG2xZwD33lLNPRYvC/HlzBtN7\nttVqCsiF6cMfBl77WuCaa4Bjx6rem3RaVhjswNCyYyLq4gx2QHXjDG7UqB5qYPCSywooIEfdMGlj\nIkaWHBXuDYHBVcRE+MGDfGFw+PJaoBpncFDBQLo9MVI4g4c0VzMYKCowpQbOYBppMRilj4kIg6gq\nIKuXM9iNNLH/NnllBgPA5qb4/uzZeuQjB+n0abjAz5t37TiDqRxn8MaqPK9bgxrB4BKdwYEF5ACg\nVQdncLZCqFliIsqAwYEQPLeYCNG+BfVhys/t4y6jHwuMBcmtgBxxBpPnE7efrNwZLH8xbbMmRv4x\nEcD8wuCwAnKAWkRuUaIi5jkmwltoijEJhKu41+qsr35VfN3eBr7whWr3Ja2WqYAc58U7g+taQC4o\nJmI6zT428OuvnLYDqMc4q1GjuquBwUsuK8BZ1G0FZ6nG1ZincAaXFBPhBw8YYyQTMGNMRCs6S7YK\nZ3BQwcAOKcIzSjGg3B3LHrffSVZArsrM4C659nZH6WMigs6x+B3+MLgOzuDBALFgV5QUZ7ChOoMN\no94PZNQZ3PO42h1nMJULg9fktbNTExhsmpCZwX7O4Jwzg2diIlrVxERMuX+GrOL8HyU/RzMF5AJW\nefjFRJTiDA6KS9CyxUT4OYP9VFlMRJQTPGtMRJQzuMLM4JmYCAqDp8U6g7e35wvKOc7gTsd/dc+i\nw+D19eD3HTggM5PrEhPhXU5OvzbOYFXPPCO3b7utuv3IIvp8sOjOYNpuOtd03s73eSsgB2Q/bj9n\nMGPSHVznsUejRnVRA4OXXEExER3ihhmnHGBMCAzetxYzM7i0AnIBWYvI5qgCVGdwW+uoVciJVBfd\nqJzM4ICCgRT+j6fJD3yXPNWttGPGRJToDFbcVJy5S5475LgHk+QxEY4zOAgSAQJQOH9rXkdncA4w\nWMkM9sREAPV2lKkwONoZ7MRE7FmV1872sAZkH6ozWK+BM7isazww+z5ksieO4jqD1Sz08pzBysoe\ncp6lQ9bCOG3hPMDtx4Imu+qWGUxhbbGZweI+qgKMemMieuTcpH1Wo3JjBjYfxTeHH8fQGCpF5GgM\nQd3lwOB9+6RTjGrRYXCYM5gxmRtcF2ewNyaCfm1gsCoKg7/+9er2I4uWyRnsdb0D+cdEzFsBOe9r\naeQ3eQk0MLhRoyRqYPASy7IAMP/BZKdFYHDK1tqAHBXuX69vZjAdTLKMhXcANTO4pwdDQgUs6NVm\nBnfb8hxMUsHg+XEGM9LsUQg+CMgMphlXXsVxBovfIyCZpdXHGcx5js7gVrAzGLCBa0118rTpLgv3\nXrsH+gdm3n/R3osAAJvr2VynRSgyM7hgZ7DallcfE9HVSAzMOKUzmOS/B90fGtOkO7jEmIjAeAxy\nzseT5DBY9EU8kTO4t14eDA6Kx2hpBIKnOG4g3BlMYyiACp3BTl/GNWXi3sgrM1gzgHe8Gu/9zo/j\nfbe8b24m9qg4lzERfhERAHDwIHDuuWL7rrvqHWcUV3FhMCCjIs6erQfkDwNmDQxWRWHwHXfMp7N2\nmTKDwyY6gOKcwXWOifC+lkZ+zmCggcGNGiVRA4OXWGJJcXRMRBqnKABMmZyGDIuJ8GYGVxUTAQCa\nc0swK1tMRMQgGpiNiSjdGUyAQY/A4LGZ/HwPJ/KkrfZCYLCPM7g8GCwK47nub6ixAMMAZ3DYgCqO\nMxiQjkmu1ccZ7P7d846JmDNn8Kmz8pys9cKdwYdWD7nFwvrdmsJgxxmsFe0MbtU+M1jJBJ8E74xh\nAO95D/Brv6Y6dOI6gwGSG1xmAbmggqAk/340SVk4TzdcB2wcGNwtEwYHxILQ7fEkeSFUYBYG+xeo\nqy4zWMkFR0uJeJqYOWUGbzwJ7BF20duP3j43bTnVkSPSCec4YP3kuINPngSOHi1+v4pWEhh8+LDc\nrkMRsiYmIp44V2HweAzcfXd1+5NWy+oMLiomws8ZXIeYCO+xN87gRo3qpbmEwYyxdcbYTzDGfo8x\ndgtj7AHG2BnG2Jgxdowx9kXG2C8zxgL8ADOf9y8ZY3/DGHuCMTayv/4NY+wNCfZphTH2HxljtzHG\nTjLGdhhj99r7eEH6oy1ONF8S8Ayic3AGT5k9Kpx20CYDFq+8mcFlNN5WEAzOWHgHUDODwyBhFQXk\ngjKDexnh/8CQJ221GxIT4eMMLuMBhcZEMPjHYwwn/pnBQQMq0zIxscF5lDPYgUhTJg+2amewe73l\n7Ax2CsjNC0A4cVYe/wwM9mQGO3nBgNpupXGdFiHfmAgaU6NNxYqQlFKch34xEZ7M4KpjIroxYfCn\nPgX89m8Dv/EbwM03y58ngsGOM7hbfWYwPeejcXJiGbcIqgKDV6vPDG4phVDTja69BeR8M4NtZ251\nmcGyL6PPapO8nMFrT7vfb0+256Ytp7rjDrn9kpcEv2/RoiKowzcKBtNM4TLu2yg1MRHxtLs7+9w8\nj1ERy5QZ7HXHAvnHREQ5gxcxJqJxBjdqlF1zCYMBXAfgLwH8EoBXAbgYwDqAFoADAF4N4HcA3McY\ne13QhzChDwL4ewA/AuBZANr21x8B8BnG2AeidoYxdimAbwP4rwCuBrAJYAXAcwH8ewB3McbemOpI\nC5Q3e44OILs5DDBMXTxdsmmwKxioJjM4qHCe5jiqtKwxEaLXXe3EdwaXUkAuIBaE7sskhTN4ZAQD\nNSo/Z3Ap1efJ8nmNHPdKh8Jgf2dwkKl9NI0uLOV93SQwuOqHFPd6yzsz2Ccmos4A4cwWzbsOdwY7\necGACom8105Vom16y25XafsGzcw06FCcwX4F5JQJrnJWeQDq5B51coZN9lA98oj/9kwBuZBJH8cx\n7jiDy1h2HdSPKTA4rTM4IQxu90uEwfA/3+2MhVABH2cweT5x/651cga38o2J2N6GAoN3Jjtz05ZT\nfetbcvv7vi/4fYsGg5M4g+mzTR1gcBMTEU/UFexoHovILZMzOAoG5x0T4ZcZXMeYiKzn3emPWi0J\ngAFZHLPqcVajRvOgeYXBAPA4gI8C+N8A/C8AXgbgFQB+AsDHAUwhwPCnGGMvCviM3wLwswA4gNsB\n/BQEaP4pAHfYP/9fGWO/EbQTjLE1CJh8qf3+PwbwAwBeDuBXAGwD2ADwMcbYlUGfU4W8MFhxiraz\nx0Q4MFiLgMGVZAYHwmDpDE47YzkYchd09ufEGUzPQRoYPDRoTEQyZ3AZDjpxrdswmMZEkGJ3I0Me\nN+fRMREKDI5wBjvQxMCCOoPnOCbizE7w8cd1BhvWpBbOlukUrqvRgVh00gcsIwxO4gyuQUxENyQG\nhoouNaTb6WIihgAzyykgF9CPUYA5miS/MNM4gx0YPBohk/s8joILBmZf0eQtIOfrDK46M9h1/7eU\niXsjr5iIBYDB1Bm8rDCYOn/9RJ9tymivouTnDHb6mAYGS/nB4Hl0Bi9rZrADQ4uMiaDA2dmuIwzO\net6DioQ6YHgyKf55pFGjede8wuAvcM4v5Jz/LOf8v3POP8U5v41z/jXO+f/HOf9JAD9mv7cD4L3e\nD2CMXQbgP0AA3G8AeCXn/K8557dzzv8awnF8OwAG4JcZYxd7P8PWfwRwmf05v8w5/wXO+S2c869z\nzv8rgDdAgOk+gD/I7S+Qg0wTrlsS8BYUy+4Mtlo2DDYjnMEVZAYHx0TIzODU1cjHY4CJSiRJMoNL\ncQYHZAZ7wVZSjQkY3egncwaXMQihRXcoDKbO4BGZ9BiP5QPE2hpwengaN3zkBrz2z16LnYnYYQd6\nAtHOYAmDBxBNRfUz1nk6g6MKyNUVIHAOnN0NgcH9YBjsdcHWoUgeneBzYbASE1GmM7i8mIggKEon\ne+iElaPfv/X3ccUfXoE7B3/n/mwWBkcXkANITAQAtAelw+Cg9jyNaz2uM5gec2tFvr/oic1g+E/a\ncyNdBx5WQE7CYHETVeEM9vZlHWIvy62A3ALB4PV14OKgp3cAl18uweOiweDGGbyYOn589mf33Tc/\n96ajxhksf5ZnTESrpYJRxx28iDERTpHQA55az9QlXLXxpgj94z8Cr3kN8Bd/UfWeNFoEzSUM5jy6\n5i/n/FMAvgcBc1/l85ZfgoiVAIB/xzlXmgvO+RDAv7O/bdnvV8QYa9nv4QDu5Zz/N5/9uBXAn9r7\ncT1j7OqofS9LMzERLN+YCNgwWOfBQBTwxERoRikdVrAz2IHB6WMiBkY8SOgFJ1U6yRQYnMIZPDbl\n7bOxEgKD6+AMJtd5n8DgMYFFdJ9WV4GP3/NxfOmxL+HzD38ef3rHnwKQ0BOIhqgKTLHha9UPKEU5\ng+cpM3g4BAwuj1+5JwHsXdkr2wQEx0TUCwaL9tq5v+n+g5mZHr5r6wwOgsEt6vxXd8a0TLznC+/B\nvSfuxa3d97k/T+sMdmMiAKCzC8MofoAbxxGdBorS3HsgnjNY68qOu2iwFAsGp1zR5M0MppPV7jNS\nXWIimCcmwsofBm+P1cxgen/UVSdOAE+I+nd4yUswM2lF1e0KIAwA9947/1DKeXZpt+VS8SDVzRnc\nFJCLJ+oMdoA+58Dtt1ezP2nVZAbLn+XpDPbe9w4MXjRn8HAonzX271dfozC4auNNEfpP/wm45Rbg\nF3+x6j1ptAiaSxicQE5qn98I7s0QEPc+zvk3/P4z5/zrkED5h33e8hoAzmPyR0P24yNk+y0h7ytV\nooCc/6CKOiZTwcHpBNBth5qVLCaiSiiq51FAzoh2VAGz4KSM4+bECU7hvxITkcYZbMredr0fEhNR\nkTNYyQyO4Qz2umueOPuE+/3nHv4cAI8zOGZMBADXcVf1A0phzmD777K5KV+vKww+fRqhx68xDftX\n5FNmUEwE9In4rIplTLlsdwnEYtyBWOknuYBZZ7AXBqt/kxo4g5X7W4XBp4an3KiXs6374Tj26bVK\nYbDOdHUVi0duTATg5gYX2bZxDnAErOyhzmAfR3SU0mQGa11JgIuGwUEre6gTfFyoM7gmMRFoKau4\nplb2HfJmBhuWgf66/HvUtS2nipsX7OiKK8TX6RR4/PFi9qksRcVbUdUNBjcF5OKJwuDXvlZuz1tU\nxLI7g/OOiXD+hm3PY0rf7qargsHeSZ68YLDjCgaWzxn8wAPi6/HjTQxGo+xaWBjMGHsegBfDBr6e\n1y6CKBIHAF+K+Cjn9Wczxp7jee2VPu/z0zcBOCOrV0T8vtJE3ZKAd1CVrSjJyW05GmwhWUxEpTBY\nkwXk0nZScSGh1xlcdMEhAQ9iOINTwOCJJanP5lowUOzoHTDY65dKdAbTCuzUGUzzjSchMPjpHTk4\nvuXRW2CYhuIMjoLBKgQXTUHVDyiFFZDzyQyug2vWT6dOIfL4z9s4D4BYEn94/bD7cy/4rMMxTk3/\n9tyFwRlWPACzzuDQmIgSncFBcLAfAgef2ZUj6qm+DayKtbdBzuCOFn5vKDERHdGAFNm2WRYCJ3M7\nLbriIaUzOCEMZp1ynMGcAxaT12FQrYM02ffAbGYwXbnk/i5WXUyEd5VLl8ZEZHQGj8c2UCAwGADa\nq/JCngcYHDcv2NFBkgZUh0m9LHKeI+PA4CYmYj5FYfC/+ldy+ytfKX9fsmjZM4PLdgYvWkwEhcHL\n5Aze2lL74arOa6PF0ULBYMbYCmPsUsbYvwdwC2QMxO973noF2b4P4aKvPz/N53DOTQAPQjiMvZ9R\nmbzOYJo52OtkW3pIYXAnAgYrUEUzKoWieWQGj8x6OoMFPIguIGfy5AdukJSVPavB0IQxJiMFbGdw\nGYMQxRlMYyK6BJqQqAu6T6urwNO7cnC8a+zia09+Dbc+eav7s0Orh0J/v+oMFsdd1Sy9ozxjIta7\nslLNmZGgovMQExHlDAaA917/Xlx5zpX4vdf9nhK5UMeYCFpAqkOdwSjHGay0aXo5MDgMiq50SFyC\nxxlMYTAAYN+DAHxgsH2/Rt0bKgwu3hkctrJHicdIEZfgdQYHTXbyzXo6AAAgAElEQVQp7VpJMDjs\nfOcGgwOcwe4zkmYB4NU7g5nHGZwxM9i99j0wWF+RD2V1bcupKAx+yUui3793r9x2ChLNq+bZGdzE\nRMQThcGvfCVwyH78/OxngX/+52r2KY2W3RlcVGaw1xlMYyKiQzbzl/fYKazOAoNPnJDbYc7gRYPB\nTzyhfl+Hibyi1RQCLFZzD4MZY29jjFmMMQvALoD7AfwegEMQruDf5px/zPPfziPbT0b8CnrbnR/w\nObuc86gkNedzDjLGgtealihvZnBgTEQKp+hpAoO7LMIZrJXrDA4bTLqDvZQw2LIAg9fTGTyTER1U\nQC4NDCbO4I2QmAhA/k1Y2TERZADtaLXnDw/CnMGAiIr48J0fdr9/6xVvDf39fjERVXfgeTqD1zpr\nbmbq0e2jAOYJBktI6Hf8P3z5D+Pb7/o23nXNu5Sf1zImgsCglk6cwajAGaxPSnkID+/HiPPfVGHw\n8YGnCs/ehwAEx0R09fB7Q8kMLiEmIizzn0LRNM7gNDERaJUDg0PPd9t/ci+JwjKD6e/KWowxrbx9\nGV3FNeXZiJmAwXwGBmsr8+UMdmIiej2ZBxymffvkdh3a8bSyLHnvra+HvxeoHwwOi4mo4l6rqygM\nPvdc4Nd/XX7/7nfPx99qOlXhzjI6g4uKifA6g52YCNOs5u9clDO4gcFCVY8li9Y3vwlceinwnOeo\n57xRfpp7GGyL+/y7E8B1nPNf9Xk/fUyKegSit5l3rt35nDiPUWGfU4lME65bEvAOorM5g0+T1qkT\nAYO9mcFlQ1E1M1gWkEvTScUdRAOzzuBSjjvgfNNzMOXJB9FTyN623wmHJo4zmHVKjomwB/gtMhdD\nYTCd9PDC4GM7x5TP+5M7/gR3HROlx1963ktx+YHwEWcdYXCezmAAeNa6SN45sn0EgHgAdR526woQ\n4jiDg1RHZzAt9kmdwVoVzuCSYiLC2vPVLomJMFM6g+3rY6Ud4Qzu1MgZ3A7OSo6jNDERFoHBRS5b\n9J5vOplMC8gV4gwmwB3atDpnsN2P60xHty3P+zRjTMT2NoDeGaCl/u1YZ35g8NaWzFO86irVfRck\n6gyeZxhMnX+LFhPBeeMMc+TA4E4H2NgAbrwRuPJK8bNvfQv44Aer27e48j6HLLszOM+YiCBnMFDN\nisQmJiJfLRMMPnIE+OEfFsf85JPAJz9Z9R4tphYBBn8SwIvsf9cB+Cn7Zy8G8DHG2Bt9/g8d1UV1\nQXQk5bV5Op8TpxsL+5xKFOosIjA4zQDjzK4cDfa0emUGh8LgjM5gMYgmzuB2fGdw0cc9EwsSUEDO\nYpPED91TcnkrQMhHrlu6xMxgcc79YDBxDhIYrMZE8BlnMP3+7Ve9PfL31xEG5+kMBiQM3p5sY3u8\nDcakO7iuACFPGFwHiEALSLX9nMHaND8YbPnAYL38mIgwKEpjYLxwcBYGC2dwMAwO77bLzgwOz/zP\nBkXTOIMtrRxncNj5Vla45ASDfTODIfahcmew1lKf1XgOMREeVzAAjPi2O7iua1vu6M475XaciAhg\ncWIivJPYUaqbMzgsJsL7+jLLgcGHDgGMib/R+98vX3/Pe+o/qeF9DllGZ3BRMRFBmcFA9TA4zwJy\njTNYqA5tdxEaDoG3vEUAYUdHj1a3P4usuYfBnPMtzvk99r/bOed/zTn/UQD/BsDFAP6WMfZvPP+N\nNg2eZnNGlGx5m1Hnc6I+I+pzKlEYFKUOm2mK2ICzAzkaXGmFw2Cd6bKoWAmZweEwWBaQSw+D4zmD\ndU2XQLYsZ3CMzGDok8QdtMnkLaUAIR85UIWXDYMdZzAZ3K+vUGewJFfKPq2cDnTHd/UufuKFPxH5\n+/0KyFUNg4tyBgPA0R3RYztLVev6sLJozmAa49Bpyetcd+Lz84yJMH1iIjzO4KpjIqgzeGLFdwY7\n7rokzuCqYyLUuATiiE6RGRy3H6OAfFoSDA5/bvGf3EsibwE5ep8rMJiZFWYGS2cwjYkwrWw7FASD\ndyY7tZ/Yc+RERADxiscBixMTkRQG180ZHBYTATQwGBDu6ON2wtEhUqri+uuBn/xJsX3qFPDpT5e/\nb0nUOIPLKyDXJ913FcXGvI7/BgZn0+OPq9/Xoe0uQu9+N3DbberPnp59PGmUg2IsoJpPcc7/nDH2\nJgA/DuC/M8Zu4pw7w3WK3aIemSjJ9A7tnM+JE/sQ9jmxNZlMcAetjhGgw4cP4/Dhw6HvEQ4bfzhI\n3TBp3CZbo/gwmDGGtt4WDqYSnMFhziIXBjMrVSc1HMJ1vALhmcGAGLwOjEGtMoMdGNwNZ7qKTGaD\nFrOtfK6fnL8J18cAszAcajBNzLgM89Rkwn1h8CqBwdOAmIhpT/Y+B/sHlazRtzz/LdjsbUb+fjVb\ns7zCeWHK3Rm8JmHwke0jeO7+57qDzaqPNUheGBzlaqdSi6XVBAYHOIPdookZYyKUqAWzO3PPqu1I\n9c5g6vw3YsJgwxCDh5UVYDg23D5yrmIiOuU4gzWmYaW1guF0CJNVD4OVuKMsMJjEItBjV/q2ipzB\ntIBcS2upMREoxhm8M9nBxgZw7Fj9YfD998vtF70o3v9ZlJiIRXIGFwXM5l2nT0sXKYXBAPCv/zXw\nMbtCzsMPl7tfSeV9NlhGZ3CemcGcRxeQA6p3BjcxEdm1DDERDz0EfOhDYrvdltdJEhh89OhRHI1h\nJZ4s+kxUDC0sDLb1KQgYvArgDQCcQnK0aNx53v/kES0a57kF8SSA7wewyhjbiCgi53zOcc7Tr+U7\nfvw4rr766sj3vfe978X73ve+0PeEwUEa3ZAmJuLsULZOqxEwGBCDOAGDjQWIiYjnDAaEs3RgDIBW\n8TERcTODoU8SH7ulid5Ws6JhmrLcujUCjD52d0X2WVGaTMlxkwJy1BlMHfD0XIzbsvf50St+FH98\n+x/D5OLz4kREAPWMiSjSGezkBlMYbFmYcZJWrVOnkPr4vYUvt6JKiJYg6mD3zQzO6AzenZCLdrIa\nXkCuDs7gEBg8U0Cuf1LkpY42sbUlBlADI/614RcTUeQEX9wCsF5HdBwl6cf67T6G0yEM1AsGpyl8\na1n2wHFFZgXsW5G2UW9MRBVwamJYABPWdZ21lPoOZsaYiO1tRDqDt7bq2ZY7opNyXrdYkBYlJoK2\nN0mdwXWAwY0zOFq0eJwXBj/nOXL70UdL2Z3UapzB+cZE0P8f5gxeJBi8rM7gZYDBf/IncvtXfxV4\n73vFdhIY/IEPfAD/+T//53x3bEG16DCYjvZIN4l7yHZUrWH6+r2e1+4B8FbyPo+hXYgxpgO4BKKw\nnfczEungwYO4+eabI98X5QoG4mfvmbEikVVtE2ew4pgKkAtW9EmlMREaKSBXdGYwQABDCc7guJnB\nSWEw5wB3YXA0TFPc0q0hYPSxs1MwDDYNNxSHTnT0V3TA0gHNxJRc57RzHWiy97ls32V43SWvw2cf\n/Cwu2XsJfvDiH4z1++sIg4vKDAYkDKYD0uFQHXzWQVliIpyYF5ObgD4pxQUbpakp728aE5GXM3hg\nkDWGxmp4AbmS/iahmcFkVGR44o5mnMEAsPch4OjV2NoCzjkHGE/jXxtlx0TMtOdkMpfC4DTZucIZ\nLPuxKBh8cngSk5JgsDhuOYIMhMEp4q3cNtGGwavtVeWaVmGwWYkzeDI14czt6JqOlW5+MDjIGbw9\n3nZhMOcovL/OIupcdvY5SssaE6HrApqMRtU/jwBNZnAcHSej2oMH1dcoDH7ssXL2J62azOB8r236\n9wxzBlcRE1G0M1jXZ9v6RYXBnC9+ZvBkorqC3/UukYl+8mQyGHzjjTfizW9+c+T73vCGN+D48eOR\n71tkLToMfjbZdm8XzvkjjLEjAA4DuD7iM15tf32Kc+7tXv+JbF+PABgM4BoIdzIH8NWonQ5Tp9PB\n98UNQotQmFOUut7MFEsPd8YUBoe7YwEyiNMMDAYoNDYg1BnMpDM4dUxEEmewM9BsjTAei47R25Hn\npdCsRV2FOEmAkcjVFNRH5zFgMAXk7SEwLL4zGxtTN7WbxkT0egDMDqANMeX+mcE7TPY+566di4/8\nyEfwiXs+gddf+vrISAxHylLjlQFMVD/4KgMGezMJawmD19Iff0fvYDgdAq1yIhGiRGEQdcBrTBe9\nT1ZnsGFftJYuImFqUEAurF3rkexcen8DATB4n4DBDlAaEhgcFflTdkxE2HH3O+mzczlP7gwGgLEl\nG7Q6OIO95zuO3IGyDYOpKxhQJ1ArcwZPpy4MbntiIkxefGYwIIDrIsHglRURizUeLw4MdvL6o7S2\nJp7h6gAU/GIi8lxKvwgKcwbv2QNsbgp3/LzB4GV0Bud5bdO/X50LyHlhcJbz7jiD9+2bXamyqDD4\n5MnZ46l6LJm3PvlJOen1lreIdu7ccyUM5lwUzoxSnLhUQHC1ZVdNF3rlph8j23d7XvsUAAbgcsbY\ndX7/mTH2UgjHLwfwtz5vuQWA8+j5tpD9eAfZ/mTI+0pVmFOUuifTuE12yHLitTjOYOf32bmuVQ0m\npTM4Q0xEksxgB57YMLXM6vNhmcFJjl0cs+iddMSIifA6g1H8QGQyldcwvbZdGAzVAU/3Z9tSYfCh\n1UP4hWt/ARfvvTj276cAvNOvR2ZwmTERQPXH66eZzOCI4odeufdNimiVIjRVMoNJAbm8ncGTVQCs\nFgXkTBNuvwEET3JRODgxJzgz8gl5JkXkgGTOYCUmoixncMBkbq/tXxgzjtzrIyEMHpny/UW6j7z9\nN73OVRic/EIX+81FZAhmYXA9YiLUZxfFGVxgZrAXBtdVzr71erNQJEyOO3ieYyKSOoPp++oAg5uY\niGiFwWBAuoOfeCJ79ECRajKD842J8Pt8R1XHRHgd/3nHRPjFAdGaN4sEg72uYKCeY6ss+sAH5PaN\nN4qv554rvg6HxcavLavmEgYzxt7GGAsdtTPGfgnAD9nfPgzgK563/AEAp/n9fxhjykjP/v799rdT\nAP+393fY2b/vh4DKz2eM/Qef/XgZgJ+FAMq3cM5vD9vvMhXXYZMmJsJ1kAFY7yWLiQCqc1S5MDgl\nNEntDNbFk1FVGZN+BeTiisLgFhLGRLRLgsEmgcHEGdztApiKc2Ax/5iIM1MVBqcRvQ5aK+L6qGK5\nFlXezuDD63IG1g8G12Gw6dXp0wD6MnjMC3+iRGFwHZzBtNin2q7lnBlsiOu57s5gCqenkDtzfFcu\nCTvQImtrvTDYkiOnRDERdmZwVf1YFijqtgsJYfCUG258Qz2cwSlhcGfXnVwIhcHMrGSQOTHVCd0+\ngcFWRhgclBm8PdmeOxgc1xXsyMkNXhRncFwYXKcir01MRLTiwuDpFDhypJx9SqPGGVxcTESYM3hR\nYiJotI23eBywuM7gxx+f/Vkd2u68dP/9wBe/KLYvuwx4zWvE9rlk6J0kKqJRPM0lDAbwPgBPMcY+\nwBj7GcbYyxljVzLGXsEYexdj7CsA/i/7vWMA7+Scc/oBnPMHAPwuBMi9FsBXGWM/zhi7mjH24xBx\nDtdAQNz/k3P+UMC+/C6A++3P+V3G2P/LGLuBMfb9jLH/A8A/QMRxDAH8Yo5/g8zyOkWDYiIslry1\nHhAYvLESr4AcAHcwWRUUpQXk0sdExM8MVp3BvNDjVpxknEnwjRycwTbMbsVxBrdnncFFd2bUGUwL\na3U6kM5g5h8TcWoiex4KPJNIiYno1SMzOG9ncL/dx2ZvE4B/ZnDVx+sV5/bAf12OmJKe39rBYMt/\n0iN3Z7Ah2vQoZ3DVmcHqpKbcGRoR8Rz9ZfLD9opu3gFKYzOBM7jkmIiw46ZQPmkhNXfgRGBwWD+m\n5qEX357HPW4TE6hPfdEaDBBYPA5QV9NAm1YywUWdwW29hU4rv5iIU6fgwmD6fOB1BtehWGaQssLg\n3d35BVNZnMFOkdcq5RcT0cBgVVEw+MIL5XadoyKazOB8YyLo589TTETa8+7kBQP+zuBFhcF+zuA6\nGm3SihaOe+c7ZRxEA4OL1bzCYADYC+DnAXwUIrv3Tgj37x8BeDkExH0cwBs5518M+IxfAfCn9ntf\nDOBjAL5hf32x/fMPcs5/LWgnOOc7AN4IAYQ5gHcC+AKAWwH8JkRW8FkAP8Y590ZVVCrvoIo+/NOl\nl2ncJkNTjgb3xIDBMiaiJs5gxjGeJBxJIoMzmPHCB5f0uDWolr64MPiee4BrrgFe+lI5INzeNQFd\nfG6LzYEzmFzbjAGwxLFTZzDdn+ND0fN09S72dBOOMG0FweCksCJP5e0MBmRUxNGdo+Cc1zomYjCw\nH0TXjgIQy/zXOzGDFm3VLiaCR01ymZkArbviYyJOrNcZrLYjY0ynxS9VjZuFbpL7+/hAOoM3ppcA\nu3YlHuIMnk4BS6tvTIT3uIMKgmZ1ButMVyYWvCq7OGaSFS5Jrz0vDN6/olqOaA43tGklAG0yVY+d\nTm6mmbinevqZKbAq7o0LNi5wfz4vMRGWJZ9LNjeT/d9FKCJHzQRJncFA9auVmpiIaMV1BgPzBYPr\n8PxUpKosIFd1TEQRMPiEXNC39DC4bmOrtJpOgT/7M7HdbgNvI+GrDQwuVvMKg/8FgHdBQNtvA3ga\ngAFgC8CDAD4BkdN7Oef8C0EfwoV+HgLmfgrAUxBO4qfs7/8l5/zGqJ2xXcMvAfC/Q8Dk0wB2AdwH\n4L8BuJJz/tlUR1qgvHCQkURuOqji2iTxgGc4la3TZj+BM9henlk5DAYwMZKP8lJnBgNAa1yCI1qM\njpmndmQcGPzAA8AP/ABw++3A178O/NVfiZ9v7Uq61NESFpArKTPYMP2dwQCg2TCY+8Dgbhc4tit6\nnnPXzlXukSSiwETrihGXaVb7AOwM/FjbzntmuroMOoUOrwln7cAYYGu8VWsY7GZDrgsYfHj9cOLz\nWzdnMM13988Mnqa+5kzLxMjJ0DX6YGy2iIPGNHkN2TnoRf9dQp2iLeoU9XcG6+NDwKlLxTcbR4D2\nAFtbTmHM+AXkOnpH/p1LiImI64hOWkjN6wzut/uh90WdYXDSaz3KGaxmBpvgvHyAZhDC3dL1zBP3\nVEfOHhcT0wAu23+Z+/N5iYnY3pYTrGmdwcD8wuAszmCg+j66iYmIFoXBBw/Ovj4vMNj7XMB5vTOO\ns6rMzOC6x0TQ/cvDGRwVE1GHZ/O8tMgw+OabgWPHxPab3qS2bw0MLlbZRv4ViXP+CIA/sf/l8Xk3\nA7g542cMAfye/W8uRGMDNM+loDiBNAOGoQayR2lsDdyK15urSTKDDYi4hHTQLY5CYyKIu8qYWoDH\nQRul1M5gANDH2N6O+QSfQkmcwd4O+rHHBAimjfADD4ivR48nK8BVhTN4HFBADgA03oUFMenhyOlc\n++sGTgzEFHTavGBAPWbWkZMFu7vJ7qs85TgEWHsEjuyuYGC2iNzamhyR120p0+nTEPdqT5ANB2Qn\nkcz8rokz2PJv19ztDDERwymxlBirMxERjrp6V+yHvcpjPFadKXkrrjPY0vxhMNs9BJy6BDj/VvGD\nvQ9ja+uFMzA46v5gjGGts4az47Ng3V1w1CQzOCLz/2tfE3Ef19lldL3O4Kg+jDqiW/0BpqdLgMEB\nBQP9YHCSay9pTAQgznFc8JaHqDO4rbeU47eQjZYdH8gO/sLNC6ExDRa3hDOY/CnqCoPpfmWBwfNa\nRI62N+sxF7nQa3dnBzjnnHz3KYminMGLDAvjyoHB6+sq5HNEYfCjj5ayS6nk9xwymfgf0yKo6JiI\nMGfwIsZENM5gqbqNrdLqIx+R2+94h/paA4OL1bw6gxvloDA4qAAz3UgMEMYWcQbHgMHKIK7EuARv\ndq7qDDYTL+NPnRkMAK1xadXnvfDfu7zbe75/+qdnO6GH7BTt7z0ke9o9q/V3BndbXhhsO4P1MZxo\ncWd/VvYfB4f4WRYY7OeeA6qd0fU6g4uAwXV2Bp8+DTciAlD3Pa5q7QymmcFuTATHeJwum8QtHgcA\nRn8mIsKRtyhm0Q/iXocsPW51hcvYbc8pDOY7xBkMAPsexNmzjjM4fgE5QOYGs25ZmcH+mf+qIzq4\n8/7854GXvQz4/u8HvvlN8bOkMJi+vrJevDM4riParx+LUjJnsITBZWpKiFhbb4lnFks8t/AMMRG7\nu8CoRfLx1w67RRHnJSYiCwxehJiILAXkgOr7aD93Y+MMVuXAYD9XMDA/zmC/tnmRc4P9YDBjsu5C\nkQXk6IRoFc5gr+O/yQxOL6eAXJ1WdOShkyeBm24S2+ecA7zhDerrDQwuVg0MXmLRQZXGwmMDkjbY\nY9itE2fYjAEIVfg8Kb6QmgvB1eNWnD/MTOxE8DqDI2MiZpzByX5fElEIzhJkBhsG8E//JLaf/Wz5\ncP6giNfEQ49KCrZ3o57OYMMKiYmwYTAYh8lNZX+6+2WvkxsMbtUDBnszg5cSBq9LGJzGGSwLX5oY\nTaq3LZkBmcEt0q6NjXT76RaPA4DJajAMVopiFr9EL0lsgNOPURhsnDkEnLlQvm/jCd+YiFgw2HHJ\nVpAZHFw4L5iIvv/9ctup4OxWoE8Bg7s2DC5ywFmbmAh7YrXIPttPamawfRNaok/Lkhl87Bjc4nGA\n6O+cDPVlgMFNTET1DrOic1XnXZOJvDb98oIBAcYc+DdvMLgOq6uKkt+1DcjrO8+YiGVzBkfFRCwK\nDDZN4KmnxPall8qJhLqNrdLoL/5CXgs/8zNquw80MLhoNTB4iUUzZPWImIiknbTBZaGhfj868kEd\nxBklFlILOe4UjmiaGdxmHRUu+6iqzOBwZ7A6iD5zBsA53wZe/Ru4/Nqn3GrFDz0kcr4eelz2tAc3\n6+8M7nicwTrksU9MUYHe6Vxbm/nA4LbedkGCVRMY7AKbkmBw1QNNr7zO4MPrGWAwAMO+dqqUyfzj\nUCgMTgut3eJxAGD0g2MiKnYGU2DHGAOzHPf22AXTtIDc5PRBYIec+7Wn/TODI1Z5AHCdlLxdn8xg\ni/nT+KNHgc98Rn7vxP6Ir9xtmxPB4DVxjZSZGRzkBE8ziR0ZE8H8YyLKlGHKY+/YIybGxVfO0tMy\nPxjsXM/b4/nIDG5iIuR2A4MXTxSABcFgxqQ7+LHHqi1SHCa/SeJlcwYDMiqiSGfwosPgZXEGP/20\nnDQ4/3y5qmMRYDCNiHj722df37dP9gUNDM5fDQxeYqnOYBVaKg6YFFDUYHbrZKzGyoBSIWyxzuAw\nGJx1MEmdwb1WdFihAoNLdAZHZQbPwOCf/BHgX/wavvvct+GSS8TPd3fFkrVHn5BPdXvWooGiAh0r\ncAZ7YyJakOdgZIwxHMoHaH1PPjAYkNDE0quHwZzLh0KuFweD67yUSTiDj7jfZ3IGA6nai7xlcX9I\nRielxilhsOIMNoKdwe7fpAbOYADQuXQqO+2a4wxmYBie2g/skHt7/SiJiUjoDLZjIrhmAJqB0ag4\ngOE9bnqOvQVg/VxHf/ZnqhvJWenx4IMQec+aKKCaBAZ3+tUWkFNX2hRfQA4o3xnsLSAHAMx2BmeJ\niQiDwTuTHWxsSKq0iDB4kWIiWq1ZIBSkOq3e8cs9bWCwFC0eFwSDAQmDRyP1/9RJjTNYyLm+s17b\nYc7gqmMiioDByxgTQaMaKQyuehIvqx57DLjjDrF97bXAC14w+x5Nk3n2DQzOXw0MXmKFQVHGGDTu\npNwnH1RNNekMjgOD1czg8pzBuicewxvbkMoZbAPOqIiImd9XYmaw97jDoNaJUwaw91EAwNP9f8Sh\ny2SPdO+9agG5XithTERJzuApgcFtz/oTncljH4wn6r6s5QeDneM2mVpArgpNJhJ4W1pBMHin3jER\np05BiYnIlBkM1CI32IR/Ya1uS+7nKOXTtzczOKyAHADXGVz03yTMIQuQGBjiDHZg8P7+fmydaQHb\ns87g3V2kj4kAgE6xURFxC+f5TVJwDnzoQ+rPFGdwgiKo9PWWDYOn0+IG9sXHRMhRZtwCcmVKcQbr\njjPYhsFaRhi8+aj7/blr52K9K2IiTG6ityZv5EWEwYvgDHYmJtbWhEM0jurqDG4yg2d17JjcDiv0\nNw+5wU1msFBeMRHL7AxelpgICoMvuGBxnMGPPCK3X/3q4Pc5URHPPNMUE81bDQxeYk2nCISDACQM\n1ozEDbbpwGCjH88Z7ClYVxdncDoYLAbEK3PkDFad4OpxHzulTiWfffbH3e3Pfx7gHTkCc5xEYVKW\nW5flDA4pINciMHh7qMJgq5+/M3jKqncGu+4Abeo63PKAwdRdOxeZwTnGRKRpL/IWzQymbSrdz5GR\njs7Gzgxu0cxgXviDeGxnMIH1Dgw+tHoIW1sAhvsBy/5/a0extWU/eLeTFZBT2r9OsVERdHIPSAZF\nb70V+N731J89+aRoFx58EOlh8ErxbVv8AnJFO4OrKiBH7vGWBwZnjYl4lqgi2Nc28JzN5yjXs8G2\nXciwiDB4kZzB6+vx/0+dopyamIhwxYXBTpQbMF8wuOrnpyJVpjPYC4Orfg4vEgZrGrC5Oft6lwyt\nFwUG33qr3L7kEjmRV7exVVI9+aTcPu+84Pc5MNg0VWd4o+xqYPASKywmAgA0OM7gZDERFrdg6fYg\n2lidWbLiJ+8grqrM4ChHVZRoZnA/Rsak1xlcGgxms05wNy7BM4h+5rQKg+/V/8rdvvlmJC7CVYkz\nmECyrueCbDN5DnaGE6VjNbr5w2AD1cNgb/E4IB8Y3G11sX9FTNN7YyKqHmh6lWsBOaByZzDn6jJx\nCq56bRqFkm7E5c0MjiwgxzigmZU7g3VIOD0eC4ezA7YP9Q8JgMQ1tMf26HpdwOBHH0XqmAgAhReR\nm4mJYP4xEX4rXD78YblNodldd9lL8GgR1Ih+TIHBveLbNnHc/td5njC4p6/MHHsdCsjRmIi2ExPh\nZAZncAY/fOIpYEPE5lyx9xpoTFNgsIiKENvzAIP9AEGYFqmAXNy8YO97q4YKDQwO1yI5g5vMYCHn\n+s567H4RK47oPb61le33pBG9b1stdf/STgA4MHDfPviuUvs3ppEAACAASURBVGNMAuFFgMGcAzfd\nJLZ1HfiBH5CQfzye77bRKYoHiCL1QWqKyBWnBgYvsehgsuXjDHYLayUcVFEHmWauhrxTyluwrqqY\nCGUw2UoeEzEYcqAjjn+1G+0MVgCDXmxMhFJAzgf+tzX/8338rAqDHxjcBmyKdR23347E7ko6wGYd\nQSWLHoRMwzKDqTN4oJ6DSUf2OOeshjx9x5AKg0VGQ+XO4JxhMCDjFo5sH0G/L3Mmqx5oekUzg3t6\nD5u9hPQA9XIGCyhK4lBIm9qjMRHTdHRWjYlYjS4gByjRDEUpyhksJ7nEvjiuYADYv3LIHYR1Dbvt\n6h/HmS1TLF2jBeRixP6UGROhTOZCByPrwsOyczkHPm4v7lhfB268Ub528832BnUGR6xwoTBYKw0G\nx3AGp+m/CQze09k383odCshNrdkCcnQVV1rdv/MNd/uaw9cCANY70mK6M9lxJw7KBuBxtcwxEZxn\nh8FVT9j6ATM66TjPwCMPpYHBjz5a2O5kUuMMFnJcvFmPPcwZrOvyPq9iIq9IZ7BfXrAjJypiEWDw\nffeJou0A8KpXif6qasd3XqIwOI4zGGhgcN5qYPASSwwmQ2IiIAcYSToqCg1aVgoYXGIBuZnMYD1j\nARpCPlY7MZzBennOYAoPdMyebxeKeo775JZPL/NC6Q5OWoSLQpXWSgUF5LzOYAIQdjwxEUNd9Dh7\nunsiHXJRcqAJB3eLay2aMxiQMHhiTjDW5ai6bg8rNCbi8PphBabFlbe9qNIZHAbJqDN4nBIGx46J\n8LRpRT+Ie53BSq4rSCa4DQePD467r+1pHXS3Vy37SVOzYPWewT33IGNmcLExEWnjjra35YDwuuuA\nq66Sr332s/ZGgpgI6obWOvL/FVWoJklmsHegeeQI8Od/HjwgpjB4b28WBtchJsIgMLitz8Jgy0r3\nuU9aEga/+hIBg6kzeHuy7TqDt7Zk5nyddOaM3E4Kg9ttCUzm0RlMC98mgcF1Agp+uaeNM1hqkZzB\nTWawkONezQqDw5zBgGwPq3AG5w2Dx2PZ7y4LDP70p+X2m98svtap7c4iGhPROIOrUQODl1hqbMDs\nyF5nMiYiSYNNlxPHhcHqIK48Z3D4IHqcuKPancQfRAOzLrrCIXhIRjR1BtPjPrU9O6pvvZjC4GRF\nuChU1bvlwGCTywPq6OqTUkeT53wwVmMidpnocbJGRACe5datchzRQSrDGQwAp40jbiGbuj2snDw7\nBvoC/KTJCwbqFRMxnQLQiTOYXOe9ttzP8TSfmIg6OoMZNGhM3TE3BkafYDTiijN4jcmS7OtMLSJ3\n991IfH8omcEFx0R4ncFUyuSqxyFLq8ufcw5w2WXy+284PDBlZjA65WcG0+s8ajL3da8DfvqngXe9\ny/+zt4dDoC3O+f5+FAyuJibCJDERjlOZOc8x2jR9dfaehMGvvOg6AAiMiTCM4gtDplEWZzAg3cHz\nCINpO7NIzuAGBktRGHzoUPD7Dh+Wf795gsHL7AzO2p6GFZADoEzklS3n2DVN/MsKg2lerF/xOEeL\nCoPf9CbxtU4RP1nkOIMZE21XkBoYXJwaGLzEooMq79JaAGjlEBPR4jGdwXo9nMGZMwcNWXAojpPU\n66IrLx5jFv4HOYNP78zC4OmBO4H9dgUiEhMRB5pSZ3BZMHjK/ZfPA0BHk+dgd0ScwZqBMcSFeKAf\nMv0cUwo0sWFL5c7grnwyVFyNGURh8GNnH3Vnr6seaHp1apItLxioV0xEmGNyhTqDzRycwUawM9i7\nVL9MZ7B3cg8AWkxmGA9GUwUG9yFH1Jstcg2sHxX3ZitZATklM7jgmIiwDHhd08G4fYK8GfAEBh88\nCFx6qfzedXumhcHtamMiwgqhjsfAd78rtv/mb/zPy5YhVzLsX/WJidDqFRPhHK9O6jukgQqccwz2\nChisD8/BeRtirWYQDAaqgQpRygsGnzpVT+dzmOgzcwODF1MODG631VgTrzQNuOACsf3YY/W8lhtn\nsFBezuCgz3fktN3b2/YzU4ly9s3Zrzgw2LKCVxc5ERGAdAZPrSne+BdvxKXvvxT3HL8HwOJkBp84\nAfzzP4vt5z9fPrMtmjP4nHP8r11HDQwuTg0MXmJFOUVbLHtMRAcpnMFlZgZ7ILi3oFvSDno4zeAM\nbo1KgOAhzmDdHwafGcjzubdLpmEv/JL4asdE7FvZpx5PgCgk1wgMLvKBlWYGt73OYJKnujsiQL4n\nR5Zp8mS98oMmRS2ljpL7e1cI/OiHTLEn0FXnyHXnX33iq+4DS50eVjgHzkyTOdr95AWfVbrlQjOD\niVVkYqZ0Bk9UZ3CsmIiSncF+8Td0smdnNFZgcG8qYfC+DnnSdCa4ssRElOIMtttzn+PWgwqCEhh8\n6JCACjPumraE4ElgMG+VC4MZmOIEZ4wF1jqgoHAyAT73udnP3jZle3jABwbXIyZCjuRdGExWce3s\nzHak/+W/AOefD7z73cDRozMv456nHwR6ImNhY+daNzLHmxk8LzB4ZSV8UBmkffYpn0zIhOmciF6H\n6+vB7/OqTkAhCgaXDbHqJgcGHzoERKVaOVERW1tqfEpd5PdcsMzO4OkUqSN+gGhnMJ0cK73PSgiD\nLQt4xSsEwP63/3Y21ok6gx0Y/IVHvoDPPPAZPHT6IXz0zo8CWBxn8Gc+I68NxxUMqG131RN5aTWd\nSrAblhcMNDC4SDUweIllmgB0B4qGx0Qk6aTPjiTR7LB4FoUyM4MVR3SEM9jbUX3608BP/RRw553+\nnz2akkF0ROEdYBacFHncxtQCmBgo+p3vTkABua2hHOC/+Jxr5AubjwDgbkxEXHcldQYze0muaRa7\n7NREiDOYnPNdGhPRk0/Qe3opbEYeKddDXZzBBAbvW5mFH2l0/YXXu9u3PHpLLWHwzg5grebvDK48\nJiJg+Tx1Bk/ycAZPQgrIVZgZ7HXIAiT+BsDueIzjuzIzuD2RmcGHVtSYCABqAbkYKz2UmIgSM4P9\nJvd07t+ee2EwoEZFAMD6vnTOYFOTN3kZMNjXCR4Ag71A5O/+bvazdykMXpmdHFNgMKsoJoI4g51+\nnO7X9o5KFEwT+M3fFO6bP/xD4JJLgF/9VdVl+YXvyYiIc83r3G0lM3i8PTcwOI0rGFDdlvMWFbEI\nMRFNZnCwTBM4bnddYXnBjuqeG9w4g4UouM0Cw8MKyAFQ2u6yi8g5961zL0fB4HvvBb72NXHN/4//\nIdywn/mMfJ06g52J7G8//W33Z05dCAqD6+iOj6ubbpLbTl4wUK+JvLR6+mkJusPygoEGBhepBgYv\nsYypHDR4oSgQnCEbpZM7cpTQY/GeyqvKDE5SQI5z4B3vAD72MeBtb/P/7JEpB9Fx4IHiNmuNMBwW\n534wpjRr0MdB55yDlpqVvD2Sx3TVuS+QL+x9WABTuxhaXHelrukSyJJl2EWec5oZ7HUGd4kzeDgh\nMRFd4gzuFuMMXkQYfGj1EK44eAUA4JtHvomVTUFLqh5oUtHicUB+mcGVx0SQzGC1gBxxBlv5ZAYH\nOoNbahtatPs9Coq2iTN4MJ5gayz7J2sk+6dz19SYCADJncElxkREQXC3cJ4enBnswGAaFQEAB56V\nDgZbermZwf4rmvyP2zsA/vu/n3ViDSAtR37toRKvVKOYCDrBeWZbfVg7e1aFDMOhgMM0g/DWxyUM\nvrh7rbs9rzERecDgU6eC31dHpYXBdXKXNTERwTp5UrZXcWDwhRfK7XmBwcvoDO6Sx6UsZoK4BeSA\n8tturzNY1+GaCfzYgrftPXoUeOtb5XX8+OPytYP2fP5dz9zl/uzMSMz89sgj2zxPNHz+8+Lr/v3A\nS18qf74ImcFOXjAQ7QxeW5P9VQOD81UDg5dYk+nsoILKjYlgHKNxfEJ5YluOulbYRsg7pRRAp4mC\ndUU9GEwMC9DEU5U3JsJbQI7uw2Agl6fcdRfwne+on8s5MLbiL68FgPUuWc9n57cW9UA+JufbLzNY\nxkQYGE/kNCpdHv7Cc64Ag70+be8jSvG4JEDNAeW8ChjscQb3WhQW0ZiIfJ3ByuRAuyYF5AqAwQBw\nw3NuAACY3IT57K8CEA+6dVnmefYs3HgTIKeYiLo5g8l1Tie5DCufzOBYzuCCVzsAHjjo4xSl+7M7\nGitQ29iRT9PP3qAxEaozmIHNtBt+Utr8VrF56FEZ8EFxCcelMTrQGbzvUHwYTFd6TFlJMRH2pIcv\nDA6YxPbC4GPHgNtvV382RHh7qOQTd6uBwSafjYmg7dCZHfX+pgPrPjmV3/qW3L7zmdvc7Sv2ytU/\n9Pmk7jDYsqRLOy0M3kdO+bI4g3VdQpOqgYK30BTQwGBH3sKfUWqcwfWSc2yMQZlIXwZnsBcG022/\nc07bXgf+jUbAzTeL7X/6J/n61VeLr3cdkzD49Eh8AIXB8xoVYZryfD3veeq1swjOYCcvGIh2BgPS\nHdzA4HzVwOAllmHOLjekapHB73ASv5c+tStHCX09jTNY9IhFQQTqkPU6or2utrDB5F/+pedzDYAT\nZxQdJAdpT5f8fWwYXMZxeyE4AHTJORiR871LINDelb149obdYm8+ogC1JEvtnb+NpZcEgxHsDKau\nyeGERJSUkBlcJ2fwfp9l0Wl1w4U3yN916BZ3uy4PLNvbUCcyFqaAnL8zmO6nkTYzOI0zuFU8DKbH\n7b/igUz2TMbYmciGZrIjn6Yv2OeTGWxP2vRaPTdHNUxKm2/f40Udf5RDts3iZQYDs87gPQfiw+C2\n3nZBOYXBRTnCwwrnAcGFUP1yM6k7FgDGWnwY3O1VExMxNWcndTu6HPWe3lJHvRQGv+IVcvt7dv3X\nqTXFQwObDJ+6GBcdksVSlZiISb1jIra35VLgxhmc7P8676+LM5hCowYGCzl5wUByGPzoo7nvTmYt\na2aw17W7jM5guh0Fg9/6Vrl9yy2ijf/KV8T3e/cCL3gBYJgG7j1+r/s+P2fwvMJgek3QawWo16qO\ntEriDAZkLMiZM9kythupamDwEkuBoj5wkGYtDsbxe+lTQwnRVvWYzmAlM1j0DkU1bmGOaG9BqLBl\nph/7mJpDNBwiUeEdwOM4teFjUcdN4X/LLzOYwmBDHri3KN5FmxeJb1ZPAPsecF9LBINtl6yllQOD\nLfhDMsADg42JhAbUGdzNITOYXA+sUy0MLtoZTHODt/bd4m7XCgbnEBPhjZWplTOYTHpQQGvwdDup\nFJCbrMYuIFeqM9gHDtJJrsFYdQYPt+TT9P7NLtZ0mwZ5YiLiRP4A3gmfMp3B8aEohcHOEkuvM3ht\nb7JCqM57JrzcAnLu6iUit2BgSAE5R97c4Ike3h7SSfPuSn1iIugkxJldddRLi+1ce62Ea/fdJ77e\nc/weTLjdDx+5VgFN8xQTQc/vZsq523l2BtN2NikMrkuuv3O/BsHgRXaORikLDG6cwdUrCAbn5QyO\nKiA3r87gH/xB2Z596UvAnd8ZuX3aK18pVhB87+T3YJAi4aeHi+MMjguDq2670yqpM9jp2zmv3zPI\nPKuBwUssw2dQQUVhwijAGcw58KEPAR/9qASjZwayp1lr188ZPAmJSwjLDPZ2oA8/DNwmV1faMDhZ\nZvBGl/TQBTuDleP2cwa3ZmHwZAJMIXuZfruPi/ZeJP/T+f/sbiZZau8MXk1WgTPYGxNBimuNJhN5\nnrvFOYO7a/VzBucJg2lu8Jn+N4FOvXKDhTNYuNp1tFO7omsXExGQGUz3c8rTjTjcmAjOgGkvMCbC\nO6FWjjM4BAYTED4yJgrUHm7Je3LPHuBA154UWHsaAIfWESOIOHnBgL/7v9DMYLuIWSgMbo2V69KB\nwb2eHGR5ncErG8n6MScruQwYHOmIDiiE6ucM/ta3pDPFMADei+8M7vTEPpTtDDZMusJHPL/Q6/PM\nzlB5P3W4nnOOPNf33y/+lk+cfUK+4cTlCmha78xPTAQ9v8teQG59Pfh9fqqbM5jCLApAFtk5GqWk\nMPi882TURgODq1ccZ3BeMRF1dQbTiR1nH/2Omba9Bw8K6AsAR69+F675xDpw7R8CAF71KvFzGhEB\nLI8zeNkygwF1orfsSY1FVgODl1jGNDwmgkKzUUAv/fd/D/zczwFvfzvwj/8ofnZ2JHua9U68p3Jv\nZjBQoDPYjOkM1sehMRGAGhUxHEIpiBbLGazERIhfUFhMhEnjMWbPN4XBE3sp+ZkzUAD3antVOoMB\n7L1KwuA0mcFTAoOL7Mws+DsmAWCFjDxG07E8zzlnBtProbNaP2fw3pW9/m9OKSc3mDMTuEDkBtfl\ngYXGROzRDseKAPBTnWMiAjOD0zqDHUet0QfAYhaQq4EzmOzPkMRE9Nt9bG/JR6CNDeBQ327D2kOg\nu5UYBqu54MXC4NiF8/QJxmO5hMWBwYcOifxCQECw/WQ+xGmfgGTO4LFVtjM4Pgym/TctwvK5z4mv\ngwEiJ8cUGNwV/eloVN7ydc4Bk88+v/TJdbc1CI6J2LcPuPxysT0aiUI8z+wSq/jOOYHO4LrHRNDz\n28REJPu/zvt3d6tdeusHzCgAmVegk4eSwuB2Wzrt5gUGLzLsj+MMzismom7OYKd/pMfu5Nf7xUnR\nib3NTeCGGyBMYlf/MSw2Ba75AADg1a8W7/HC4LPjszAtc+Fh8DI7gwH/Cf5G6dTA4CXW1JJwsO3j\nFA2KDaCiQe633iq+nhpQR2WamIjynMHhMDh6melf/ZUsijXjDI6RGdxr9eQ+FFxALqpgIIXB46k/\nDFZiIgCcxsPudqrMYJiFw38g3BmswGBDOoNba/KE5xETQa+H9kq1BeSkM1ist+q3+7GBV1zR3GBc\neAuA+jywnNkygFVRSWtvO11EBFBDZ7Dmf4/n6gyeiCfQWAXkynYG+7RrK8T5PzRkTMRqe3UGIB1e\n9xSRa8nM4DiqqoBcaMwT4xhNRCdlWcCJE+LHTl6wI2dg9aIXqdm/SWDwyCwXBvudb7cQamuiFEKl\nA4c3vUlu33GH+BoHBtOVRO2evNfKatcMA773eL8jr8+4MBgQucEKDN49tBAxEctYQI62sxQSxBF9\n/3AY/L6i5QfMFgHo5KGkMBiQUREnTtTn2cuR37PSMjqDiyggd9J4Et946hvgJMewDs5geuxh0TS0\n7d27F7j+egCrxwBmH8/6U+j3ge/7PvHt3c/cPfMZW+OthWg7liUzeHMzXr9Fr+MGBuenBgYvsZQM\nWd0PBkc7g++Vme24/37x9fi27Gkuvyh9TERh2bkhUNRb/CgIBjvLXZ5+Gvjyl8V2msxgxpgEjb1i\nncFTn+WlVBSaKDC4ExITQZTGGQyg8GxNQM0M9jqD+x0VgjsdTGdD9jR5x0S0+vVyBucZEeGI5gbX\nDQYf3ZYjqwO9vGDwuFIYbJpQYiKCMoNNZMwMNsR1HM8ZPCl84EGdwX4ZsnSSa2iM3eNY7awq+7a+\nDpy3Sa6F9aOwtITOYDLho3VLiIlwncF+K3vUwpiAAIOO888Lgz/wAfHvppsI+EdSGDwEmPgFpcBg\nv4KB5LjH5LmF9t833CC377xTfKUwWLO6vsdNnxfaXfkcUVZUxGQCNxoEkOd9rSuvu+1RcEzEvn2i\nIrmj++5TYXDHOKS4Sjt6xz3mZYDB8xwTkSUzmZ7zKqFCFAyusn+tWllgMFA/d3DjDBbKvYDcyim8\n8bOX47oPXodP3PsJ9/WqnMGc+zuDnTZnMJhdjeCFwVdfDfQOyhof6J/Cda8Yup/ndQYDwOnR6aWC\nwXUZWyUR59IZHMcVDDTO4KLUwOAlllqIxGcwSWDCOAAG33cfgI0ngfWn8IBdS+w0cQZfeXm88DIn\ncxAA0BFPo6XEROjhzuCgmIjXv15uf/Ob4uv2NhJnBgMkN7jwmAgalTA7iKaF1IKcwasdNSbC0Z7u\nnljQwJHimi7YQcc5wFmwM7jfVSG4c571PnEG5xwToffE33Q8ls7yMiXcP7xQGHxo9RDO3zhffLP5\nKID6zF6f3JVPEft66Y+9fjER0c5gExmdwYZoq+tSQC7KIbvSUe9vxxm81llz7/VeTzh0LthHYPDG\nk2JJIuKt8gDUe1zrFtuuGVMOaGIU5eeQ7SgFYMWIwq94HP3+ne8ELrwQGE6TTWr6OaKLhcGiPfc7\n353WLAQH1IHDRRcBF1wgtu+8UwxGKQzu8X2+0TEKDO7Ihrusdm08hu89vkpGvTvD4AJyXmfwffcB\nxwfH3e8P9A+CHjZjzM0NbmBwveVdWp1EdYHBzu0alBk8r0AnDzkwWNfVSJ8wzRsMbpzB2T8f534L\ng6nofL/82Jfd16tqu2mEkp8zGJhdjeCFwe028Pxrn1bec9UrBBw+PTyNJ7eehFdnRmcWHgbPe2bw\nqVPy+OLkBQMNDC5KDQxeYikZsjFjA6gmE+DB7buBX3wO8IsX4p5j94NzYGdi9zTjNVxxeQAx8Egp\n4NQXo5dSoKjXGRyzgNzLXy63narcDzyAxJnBAAGNBcdERJ1vCoODMoP77T6etf6sGaD6/7P35tGy\nZHWd73dHzplnPvfceb41D1hQRZVAMRbwqCWCIlLSrqeIII3r9UKxkUe3vbS71UZFLXHZDSiC7y0f\noG0LWDLK8HwMBUUNUEXdKmq6VXXne+49Q548mRk57PfHzoj925ERGRGZsSMiz8nvWnfdPOdkRkZk\nRuzY+7O/+/sL4woG4nUGD3JMAkC5QGMimvZNlZX1OYMtGAwkcxPf3IT4XrPie9YBg5Xtli4B4Knp\nsNCl1FPFYKDPTemLifDPDO6yZuhcSM45gcHiPPaMicjGHBPR4UAmWExEo123j6OSk85gCx7tnyUx\nEb0JDCC4MziXydluTd3O4LZPe57P0HgMcZ1TGOx0BlNRZ3AQEK7c6/J6Vz2oTnCXfotHvJXTOXnD\nDeJxtSqKwdZqsGFwCe7tIV1RQ53BcQE00wRg9H/v06QN22h6O4MXF/udwec25Emxe7r/pLCiIqrN\nrZ8ZPM6DaydACaO0OMwmMRHesmDw0pL3vdepw4fl43GAwRNn8PDbtz87spLTKqQGqG1inM5gr8J2\ngyIOrLasUpGvOXTdGeU5R35M5Au4RUQAAhJvhbZjKzuDw+YFA5MCcro0gcHbWH5O0Xx2sDP48ceB\n7rG7hDsp00Z1x1dw8SLQgLhCWWumz33kpcUygcG9HFN9g+igzmDvmIibb5aPH31U/H/8OEJnBgPE\nGZw1gWwjFgjuFhOhFJDrUhgs7zLFbBEZI4PDc4eV14bJCwbidQYPgmQAUCnK496oky+859TOGtnA\n3+UgKa7BfLIwuF6Hko+pTMZEKBsGZ1pAbjM1HZZqXfawporDZyWn2RnsFRMxzH422g1w9PLazHDO\n4I0N4c7XpVZbkm03OFgmzuBaRw6OaEyEBbmUdmzuKfthmDxt6zpneb0w2C8Dnp6blkM2LAzOGbm+\nyTM30batNCNe61YYJgr5OcHpue4Gg3M5AZie+1z5mvvvB773QNMeSE9n3WEwfb9sTkLZWGMijP77\n+HRJnp+1pndm8NycAIXWMvNHHwVOr/dOik4Wexf6Jz0tGLxhbqBUktf9VoTB+byED2lZxRJUlkuq\nUFABahClxRnsV0Buu8ZEcC7b7qAREYDqDD5xItJdGlmTzGChqJzBEgbLC5jC4KQm8uh3miW360Eg\n04LBdFJrxyHVGTx3QMBgGhFxbP6Y/Xg7OIPHPTPYygsGJs7gpDWBwdtYHRoT4TKyL1AY3O6/Sx8/\nDmBeFhBD+SIeeADoZMWdpoBZuKy0dJXqDBYVbhJxBg+AJnSwsX8/sHeveGw5gwUMHsIZTIuTFdb1\nHXebFAx0zYiWvZKWizO4wMowmGgynLnBoZ3B2ficwe02AjuDKQzu5MSdZq4457pkOKyoG5rl5XmS\nBCBdXYVvsaQoNF8ivbnSSmpgMF1KPVUqDHjmYKXOGUzOc6+YCGcWehBZ0QoAfJ3BzvfiXO85rmTf\nu8ZEyP2pdeU5n+lM2Z1Jq3CU0o7NjwaDrUmuzU09UTB+x03jEhqt/piIIDA46D3MDQbr+s5bbekE\nzxqDM6Lpiibru56bAxhTYfADDwB3/Ys8Nw7u9HAGk2zmbD5+Z7BXTMRsRd5bNlvuzuC5OQlyLXfw\n2bPAWQsGby5h967+i3q6IGMiAG5Dha0IgwEJRsdtcE3P77BKA1TgfOIM9tLKivxshoXBE2dwsgri\nDI4kJsIDBlcqss+WhpiIQasw3NoyNqM6gy+apwGoMPglh15iP94OmcH5vATsaRlbhdGozuAJDI5O\nExi8jUVjA9zgYMElQ5bqkUegwuDSRdz1uQ5QEDRzKjvT9xovzRZnbdBoxUToi0vwdkQ7QYZXZvDs\nrMzeu3hR/OtzBofNDAaAwpo+KOqTEU2P3S0mopiRA35nbnBoZ3AuPmewqMDu7QyeJjCwRu687az4\nwhVYP4IUsJJL1hkcGwwuEhhcXEnNAHuD9AxnysM7g52TR4nDYOoM9oiJGMYZbBePA/wzg7OqMxjQ\n65wcVBAUUDPBNyEDVE+fqNiO5Ve/Wvy/e0rGRBR2DQeDrbaNZ/Ve434w2C0u4YKMh40WBmfl84pT\numEwcYL7xFu5OYMtUGjFRADAd74D/Ov3ZHt4dLe/MziTSygmgvXHRNA2rG66O4MXyCHJ3GCOi40e\nDK7txLFj6JPlDOYQUTETGJxOubnpgioN8RgUGlG35FYAOqNqmOJxgMxFB8YDBm9VZzDnckJ4kDM4\nkpiInHtMBGPSHRzn8novmOk1AdVsygxh2pad21Rh8Kn1/piIFx98sf14pb6yJfLGB8FgQLbd4wiD\nh3EG03v7BAZHpwkM3sbq8MExEdQZbHaCOYM/+wXZqs+VgvfIDWZId3BJc2ZwN2hMhLczeHZWzd67\n//5eZ2uYzOCYnMFtH/ivOIO74g60ugp76Wwp5w2D907vDbUvaXIG05iIetP6wjlMJr7wKPKCAfV8\noKBI13LqQVpZQfwwOEXOYAr9Z0pbKSYigDM4E94ZpI3ePwAAIABJREFUTDNkLWdwoJiIbAwwuDsY\nilZID7oBec4/+aiE2u94h/jdbGHWBr9mWY6ew8TEWNd5N6PX/a/C4P4vo+gSlzCogBxVWBhMC8AW\npvXC4LZfIdRs/6Qm5/0w+OBBOdj8yleAOpbt1y2Wg8Dg+GMinM5gy6k8R5zBtPhftyshoSsMLq6B\n99oMo74Tv/RL/e9pwWBALSKXZhg8jDvW0jjC4HZbnoPDHHsaYiK8skUnMRHDw+BSST4/rTC4VOr/\n3VaT17kNaCgg5+EMBuS9L862mx4TPVavmAiv7POzG2pMxKnqKXDO8ciyWJp7cPYgDswesP++HWIi\nAPk5jtP9ytLEGZweTWDwNpbqkB0cE2G6xEQ8/KgJzD4jf1G6iKdOyx75jungzmCA5AbH6AzOOwaT\nzrxLNxiczYoODIXBn/1s78EomcEAUFyLCYIPdga3eb8zmA74+2IiUuwM9ssMniq7OODzNfCeA8su\n8DeiKFjpZpJzBnOeUExEMT0weJO454q5rR8T4SzqNlJMRC8zOFABuYx4o7Q4gxtMjjTqa+I4fuqn\nZEeUMWa7g+2MZIR0Bvfa/Y6xCfS2kYgz2GVlT9iYiKCrW2jblivLzOCwhQqDyPQ57qJy3OKC3NiQ\n+2INJhhT3cGYPm0/9JrcpFn7iTmDXWIiKgV5fjbasm1bW5PH7QqDy9IqfsX+JVfQ5AWD6/V0Ofno\nwHAmXNdTEYXBOrPOoxSFO6PGRCR1jw4Cg8cV6Iwq2m6HgcGAjIo4fTo9ML3dlu0SnYhIU3sSpQbB\n4KgLyLGCuzMYSMYZTPuaXs7gIDD4TFV1Bp+unsby5rJ9jFcuXqmYT7ZDTAQgP8e0jK3C6LTsck1g\ncMKawOBtrA4f7BSlWYuWw8ZStws8cuYZUTzOUnkZKMhe6d6FcBDNdgYXqkDGjKWA3MCYiIzpGhMx\nOysGknKpJfDpT1sblK6coANpBTamxhksvu+VVW7D4Kn8gJiICDKDtS0rbsETkgHATLkfXqEo7zJR\nOYNzRs52ciUJg6vV3pK1slwyH48z+FJqZq/rLQKDQ4A+p1IHg3ugyEBGybke1cE8tDM4jpiI7mCn\n6FRR7k8zI895mGIU+qu/qj7/tiO39W+DADE/WWCUs47d7ui4xttdn5gnGpfQ7s8M9nIGc85Hygwu\nVPSuemh1vNtywAGDadxRT3SZIc0Nxoy0qeybdh+Z0PczskllBsvv3YLT9H7a7Mo+CC0et0jKMtgT\n2RV5Qrzkee6zA9P5aftx1awqoDUuR3QQWf2zcrkfuISRBac4l8uV0y4vgBJUaXYGMyYhyLgCnVFF\nncGDJvHcRHODn302mv0ZVbT/Qc+9iTN4+PewXmsU5QVcNatKPKB172s04vusaZ+YHqtXNI1bW8Y5\nd3UGP3rxUfvnKxavUMwnTmdwWiZCwmorw2DaLwt63yqXZU5ynJMaW10TGLyN1fYZRBdy3jERp04B\n9eKT6gvKF4GCvDr37RjSGQwApYuxOGRzWYczOEABOeuGSp3BdifLKraWKcgMZB+pMRHxZAa7OcEV\nGNxzBq+smfbgc7pIYHCEzuB8OWZnsCMmYqqk5kQDUM7jqDKDGWP2cXdYcgXk7BvwNi4gV2/JHlZk\nMHgIx22Uoud5Buo5PmjFQxC5ZQYHcgb3riedyxL9HLI0BsbMEDpmVnDllcDLX64+/0Ov/RA++TOf\nxC8/95dxeO4wDs4exJuvf3Pg/VEAalbfRJdv4bwBzuCZGTWLk4o6S4eBwfkpSYB1fO+DMv8BoJSX\n5581ie0VIaDCYBlgt3/GPcBOhcHxx0R4OYNpG2Z25PdHYTB1Bh861BtYEhh8eMmdMnk5g4F0Dcac\n/bNhlYZiamFFB9XjGhNB70le7slxBTqjatiYCCCdReS8YPDEGTz8e1jXbbasdjbWm/ImTNvuuKIi\ngsRE0DbHDQZfql9Cq+tgEOun8OiyCoOpcWe7OIOt66fdHr/JFKvfVC57m0ucYkze4ybO4OjU35Oe\naNuoo0BRl8xBctdqOWCwyAt+Qn1B6SJQlKODxcqQzmAAKF/ExkY4wBhUgxxVfXCnd5PyyhwsFh03\nmd7gP+ggGnAWkFtHdcX7uaPID/67xUSsbMiB/VRB3r0XS4uYyk/1KoyPlhmcr9RhIsbMYEdMRLmg\nuiYBaHEGA+K82DA30GLJOYPtzhaBwcq1F6EUyJySmAjOgSYBXgooDSlnFm+Sg9VOB9IZzIJnoQeR\n4gw2BxeQc34mgF5Y5teu0ZiIdpbQsVYFv/qronNJlTWyuOO6O3DHdXcMtT/KipDcJtCc1eQMDgFF\nHTB4kLuMZs4OBYMrKgzeG+7W4Cu/46bOYDcYTGGhEhNBncEz7s5ga2UHABiZhJzBLgXk6Dlnwt0Z\nTGFwJgNcfz3wPS5h8M6KPwyuNquJAIUgigoGp6GYWliNCoPTFhNBoREg+tnr6+MLdEbVKDD48GH5\nOI0wmJ574wazgioOZ7DVFmdLG6Dd0NXGqt0Pd7bdO3YM/35BFTYmws0temZDjYgAgGanibtP3m3/\nfOXilYpxZ7tlBgOiH7Kgx9ejRda4YHp68POcmp0FlpcnMDhKTZzB21h+y0xpTIQVG2DpkUegFo8D\ngNKqApjCZq3uKJM7k0ZncHtAZnDWyEpHL4mJqNdltWNrsGEYwBVXODaeD5e1CDg+J42ZwfT7DpwZ\nXJMDezrgZ4zhup3XAQB2VXZhuhCuNVecwRW9zuBWC65uKkt0ObWEwdE7gwH5GbaQLhi8nQrI1esA\nz0QTE6E6blMQE5HxcAZHmRmctgJyftm5ZH/aOeoMnsKrXx39/igAVWNxTHrcGbcCcg4oapqy8xyk\neBwwHAzOluS5osM5qjqD+/MA6HG3XGIiKCy76irikJ6WzmCvyU3l/EoABjudwRacpm1YmzfsrFsn\nDO7yLv7wm3+IP/7WH+POOzmuvskfBldycrS52dpMJQzudGQbEyUMHhdn8FaOiQDkNTpxBo/mDD5x\nIpLdGVn0e5w4g+XjUc5vq/0zimonm+YG07YxrlUdXjERQTKDrXu1MyLC0tdOfM1+fMXiFcgYGdtc\ntVLfHs7gNEzkDathYTB1Bo9Lrn/aNYHB21j+DhviDO66OYMdMBgA5k7YDxXHawD1O4NDvTyw2gNi\nIgAgb/TuWGQ5tVvm4Kn1Uzh0zTnltZnC6M7gOI7bCcHF7+SdugtTuKHr8u7iPKY7/7c78bPX/Cw+\n+rqPht4XCgkzM+IzjCMmgvGskqUK9LsmAWh1BgOAybcJDHYUkEvD4LpahYwDwYgweETIGqVoZnBG\npzM4TExECpzBdH94hhy4WQmdvxhEah66+Nx0XOMdX2cwzc5tYnlZ/i1I8Tgg+H2MAkOaWagfBvtk\n3/PBzuBsFrj1VvE4My+cwTsrO9XrhUiJicikJyZCOeeydTvr9iKJyF5YAD710Kfw3n95L/79l/89\nLu24C7e9LgAMJoVja61aKmEw/fy3IwyO0hmcRhi83TODz/ZYGGODJ/LcRAsznXVnarFrkhksFYUz\nuNmU78EK6gVMYXDSMRGN/Ek8/y+fj9d94nUoluWH4pcZTIvH0fHyEytidXIhU8DB2YPiNb2x5XZ0\nBo8TDOZ8dBjc7Y7PPTrtmsDgbawOp4OKfmdRYUBMxCOPAFhwxEQACiAO66iMKzNYgaIuMNiGBwSa\nOAeTXz/xdVz+55fjC1ceBXYcl3/sDf6VwZmP3DKDdVRh71AnuEssiBMY1WpAsyvBAB3wA8At+2/B\n3/3s3+EnrviJ0PtydP6o/bg7K86Zer231D1iDXJMAhBO8E7vPMi4ZAaHdLgPkg2Du5sAxJRm0pnB\nxWwxlJM9jNLoDBYwmMREZIePiVAiRxKOiVAyg5l6nhvMgMHlOT5aZnB6ncF+cJDK6FSGAid+Up3B\n+mBwy6cgKI2JaHVNpXhcYBicDQaD6coQVpRfthYYHCLuyM8ZDAB/9VfAb/9OB5gWA06v4nGAw4Ft\nJBQTYfTHRCgTWtmGvT/OAnJfevJL9s/fevZbuLB5wf55qeJOmeh9v2amEwZ7wf5htB1hcBqiMYI4\ng8cV6IwqC+IuLcniSUFFncTnznk/L05NMoOlooDBSv8q7w2Dk3AG02N6JPf/4Hunv4d/+tE/4eHG\nV+zf+2UGU2fw8/Y8r+89Llu4zL43W+adlcYKCgVpGx3XtiNoZjAwXjC42ZSrrYeFwcAkKiIqTWDw\nNlaH9w8qqNxiAyw9fJx7OIOfsh+O5gxeRq2mCYrywTDYPu5s076J0xtnZbaOt//T21Fv10X263M/\n1vsLR8cY0RnciyfQMQgJ46BDpgcPcuFdYkF0aO6QHcfRmpLnkQ5oJGIixBdpuMBgAGBdyw2u1xls\nTRJ00bUBddLOYF2uYMDx2aUkM9gJg0dxBjPGJPxMkTM4y/rP8wyT5/hIMRFmGGeweCOdMNjPIeuV\nCT1bmvI8hlEUVwE536zkvBoTQWHws7v/B27+y5vx5Se+3Pe6alN+WUEniabzsjfPc/L1OmCh3/et\nOoPFSGoQLDx0CHjHu8/b/SGv4nGA2k/iBAYn5Qy2BsBqTnXdPt+cMRHfeOYb9s8/OP8DnK/5O4Pp\n+ZzWmIjtDoNHjYmgg/GkigJ6FZoC1JiI7bYsmHMJg/cMUUaFOonpPSBJ0e+6XHb//VaS7pgIev/h\nWe+YiCTabnpMLUM2LlVIt6+vM5hkBt+056a+97hyh6zmbq1GNDsmkJP9/K0Ag92K/qZhVccwoufs\nKDA4TUVsx1kTGLyNpTqD+wdV1PXW5vJuVq8D56sXgYLLCIg6g0M6KhVncPkiOAc2N72fP6zaQWGw\nhzP4wfnfx+OXHpe/uOzz4n8CmIbODC6s971fVKLO4IHHDRAY7B0TMYrymTwOzBwAANSLemEwdQYb\n3AMGcycM1psZDECra3CQ4oTBNMMLpUvpgcGZaGIiALqSIAXOYMsBz/qv7yyGh9ZqTMRgZ7Caux6D\nM5hEGPlOchEtTFdcfz+q4oqJ8C0gV1Az/20QYLTxlcxv4J7T9+A/fPU/9L3u4QsP248PzR7q+7ub\nqDO4k43PGewXd2TVOnCLeaI6uU6Kxw1wBtN+Upd37IFYvM7g/n5bEGdwp3RW6bf84JyEwaVsqW/l\nj6VxiInY7jA4Cmew1Z5TGBOnggCzble6ybaLLl2Sn83u3eFfn8vJolJpcQY73Y7W9z1xBg+3fdq/\n6mTT6wzuklodm5C5VWFg8I17b+x7jysWZPEeakBpQG5MB0uIQxRib6WYiKhg8MQZHI0mMHgbizps\naJVsS7Q4S5sMuM+ehQJ9FYhIKnKP5AwuibA7HRCh4zOYHBgTsfQwvm38gfqCXQ8Bs8/YxYKAcOCU\nuqqseAIdDRyF4EFiIi5cgOIM9hosDisrKqKVXQGK4qatDQZ7LJ+3ZHQlKAOA3LTezGDxJgnC4Gzd\nPl91wmCAREWU0pQZTGIiPJyjQUWdwYnDYMsZbPSf51kfZ/CG6f3lqDERoh3wgsGA+pkACWcGe3y/\nO2b0wOC4Csj5xR0pBeS6TdGeA0DlPFoQ+/XQ+YeUSUIAuO/MffZjt4GXm+i9vpPRC4PbfvCfFgx0\nyQx2g2WnqrJ43CBnMO0ntbttexATawE51r+iS41mcXcG/6jxTWVbJ9dP4skV0Y/bWdnZl6VvaRxi\nIkaFoVTbEQYzJsFLGmHwVsj+HFZnJAcbyhkMyFigNDqD83n5fW8HZ7DzVh21M7hjpNcZzA35w0ZH\nwmDaztK2zC0m4sY9LjB4UcJgGk3XzcuNjSs03KqZwaPAYDqpMa7fa9o0gcHbWB0MFxMhYLDMC75h\n9w3yRYbMdQjrqNxR3iF/KOuDwQoUHeQsyrjERLzm19CB+KUyaLzs8wo4DZMZnMvkJEDoOYN1NHA0\nFsTPUaU7JgIAjs0fkz/0Jhd0dFBaLQzMDAYAw+EMzk3pzQwWb5IMDF5dRSzF4yzZReSKK2i3eeId\n/ihjIgDVGZx8TMQAZzDz3s+3fuatmH3/LO68+07Xbbs5gwdFLNA2FEgWBntlBi/NanIG52IqIOeT\n+V/MqlDUBgHTEnw22g08vfa08rp7z9wLAGBg6r19gOiEpsk0w2CaEe2zwsXqt4RyBs8Ecwa3u20b\nHMYVE+F0BltwmjGGLO+1Yx7O4O+vyIgIS/W2mBTwiogAtl9MxDguux01JgKQ7tG0w+AkJ1yTEC36\nNowzGJC5wbVaOoAR7X8UCtIdO3EGD7d9ef/hMJFiZ7Ah+91r7cHO4EJBXvdWAbmp/BSOzh/tM6/R\nmAhq3lk3V+xjpvfCcdJWzQyeOIPTpQkM3sZSnMEug0kaE9EhMRFnzkBxBj9/7/Ndtx/WGaxAqZic\nwW4Q3HbZOJ3BrAMc/RcAwIGZA/jEz3xCvujyz+FlrxrOGQyQz6oXT6CjQ64ct4utzxUG5/XERABq\nETmdMDiQM9gBg43KFncGExisOPI1yL6uM20gX0u8wyJgcIQxEWlyBvcmPXIuzuCchzO40+3g4w98\nHF3exV/c8xeu23bLDB7oDM6qzmCd0MgvA94rJmLXwpTr70dVXNe4nzNYgaJdUzqDZ04pz6OxEGbH\nxIPnHwQgBlhT+WCfUTlXtqNBmlxzZjCdzPWZxO4goDN4PZgzmPYXOt1OMs5gl5gIAMix3iQEyQy+\nKLpRmJkBvnWyHwZbGgSDt3NMRNL3qqDym+wIIgsir63pKeTrp0GZwRSCTJzB4UULhqYhKmI7O4O1\nZgZnTHCmXrxJO4MVGMzkAa42l2EtRnGDwXRSy3IG75nag4yRwe4pdVbEyxm80lixJ7m2Kgwex8lL\nYAKD06YJDN7G6sInM5jERFhuWCAYDM6wTGh4mMvkJBQti1lDLTDYJyuZFpBrmqJaxdoaBKhl4udr\nd16LFx54IXZVxJR76dp/we//iSS4YZzBAHFRx+QM9nOCI9vscwbTQWEUihUG+ziDM1BhMCOZwWEn\nNQYpruJSg+SEwbHFRABAMfmoiL6YCA9YGFQSfDYShcGdDmxQ5OYMzhnumcHrzXVwiHbtiUtPoN6q\n971WdQaPV0yEGxgHgD2LMWQGa7zGw2TAt9G0wSCmTyvPozD4h+d/KAqvwL1qt5cYYzY4rndlI64n\nJoJ+3/3frR8MnnFpzk9Wg2UG00lz6gxuteIBGcIZ7H4fzzFvZ/D8rhruP3M/AHen/FJlqe93lpSY\niG0Gg5O+VwWV1V+cmupfhh5UFL4kMcCexES4K0pnMJCOqAjaT8rnJ85gSyM7g/P9DVbSMJh+1x0m\nL97l+rLd1g6CwfVWHWtN0cBbEJiu3lkoLSiriql5Z7WxqsTfjGPxyUlMRL8mBeSi1wQGb2OFgYPW\noArodU4WZEzE8/f1w+CZwoxnBt0g2S5FjTERfjDYhjuMo9UWn5GAwapb1GAGbr/8dgBAvbOJ//bN\n37X/PrQzuLAOsK4eGOyTER17TMQCiYnonU/aYiJ6zuCshzM4A7mEHgB4QXwBU/kp13NkWFFQlJ9K\nhzM4VhhcWkm8wxJ5TEQmHTERZrtjT1a5OoON/hUPgDpY4OA4vny877WKMzhATITVhrIYYLCfM5gx\nJjPBLXUN7N052iSAl2JzBgeNO4KIS1i2VmVOq85g+n0recEu2XyDZEVFbLY1x0QEncwF0EETnPvD\nMuoMHhQTYTADDKJf0+EdBRzGERXhdAZTOF0weveWbB0bG6LYlgWD80e+Y/f33njNG/u2u7M8iYmw\nNM4weNiICOdrk4iK0O2eHFdF4QymMHjiDI5faYHBScdEdIgzeHlzua8Aa6slH7sVj9szLS6AvdN7\n7d9RVzBAYukArNSlM7jTiS/OKUpNYHC/Js7g6DWBwdtYdBDtWkDO8HcGz+UXVYdnT8PmrC6WezC4\nuAKwbrLOYADNjmiJ+2BwQbRGt192u/27f/rRP9mPr1m6JtQ+2Z8X40CupgcG+zjB3QvIbZGYiJ4z\n2HBxTAJA1nIGZ00AHJ2c6CmFzb32E/0Miz0YHHeV28QygyHeN+kOS7UKG/oDERSQszOD22h3uuh2\nBz9fl8y2z/VtWO73FhpNuZOW68LSD8//sO+1bpnBgZzBPad9XM7gfNYnBsaSOYWdO8NPVgZRXAXk\nfCc1yXndgWk7g7ML3jERVl4wEM4ZDADTBdGj32hV7YkC3c7gIPexdlvuhxcotDKDp/PTvitBLABL\nC8gB8YBDrwJyAFDISGdwrSauOast6uyXERG3X3Z7X58tcEyEWVNg6QQGp0MWvB2leN4C6QakDQbH\n5QzmPH3uwSicwTQmIg3O4ElmsFSkMRH5/s510s5g+l23QZzBBAZbYwK/4nG7Kz1nMFm9c+WizAsG\n+p3BtF0bx6gIPxhM23w7CmwMRO+tExicvCYweBsrTExEFy27k3T6TAeYEYOng7OHUcwWlaWEwPBL\n6+3lHkYXKK4m4wwmg2hryaybMxgAXnX0VX0g/bde/Fv45ef9cqh9Uj6v4pr2mAi3jGjnIPrpp6HG\nROSiXVY9X5yXsFVrATluw2AvZ3CWkWM32mhlxBcQZV4woIKibekMLqbLGZxlWddrIYwUmJygO9hs\nyxFH1nX5vNzPhimfSwcLAPDQ+Yf6XlszxZeWN4oAF92GIM5gHkMBOb8MWQAwuKMX3apgyXtl/EhS\nCsjlNRaQC7HSowPpDM7O98dE8N7NnTqDn7v7uaH2x3IGb5gbmJ4h8UoRK8xkruWCt+6nbrCMc45T\nVQHIB7mCne9JYyKAeMChVwE5AChmZWbwxoY68K0tSBh868Fbcf3O65XtDoLBdDVLrVWDYcjB2wQG\nJ69GQwLSUWBw0s5get9MAgY/8QRw8CDw/OcD9f6kpMQ0cQaPvwbBYLpSRbczuFiU4D0uZzCFmRQG\nr9RXUJ4S9zKrf+RWCNMqHgdIZzCFwX3OYEdmcNLt2qhyRqo4dYwssH3sMf37E5VGcQbTe/wEBkej\nCQzexuqGyZDNmHZRiVMXZXbunhkxorYdvT0N66hUilmVLibuDG51PZzBPUg4X5q3oyKm8lP4hzf9\nA/7rK/6rXUwnqJTPq7CupYHrhhxEP/44tMZEMMZkVMTsM4DR0vJ9N1v0PPeCwQQW5WtoM3Hcwzrc\nvaTA4HL8mcH1eq9zkZgzOF2ZwbabbgQpmcMJFpFrdYIX1qq35E6uNRzO4Av9zmArJqJoyAmhQM5g\now2wLppNfa4fP6coAGScMNjUB4PpNZ4raYTBIdrzNpoSDjoKyG2YGzi5fhLtbhvfP/d9AMBlC5eF\nbvusCU0OjukFccB6CsiRSY9BMU8AkDGxuSlXX7iBwrXmmu18H1Q8zvmenW7yMRH0+O24G6ODaq0t\nM6LBcal8NwCxvPbQ7CE8Z9dzlO0OgsGMMfuctj4ny2E2gcHJix57VDERSTjo6P1hUAE5XffXj3wE\nOHkSuPde4F//Vc97DCPLGVypqOdmGKWtgNwkM1iKMXl+j+wMzg12BgPxt92qM1geIAdHcU7Q2WZT\nrOCk497p+Qa+8cw38K1nv2X/zsoMfsGBF9i/e9nhlynvt1Wdwfk84Ja8ubgo2+4f/Si+/RpVtL8U\ntl2bOIOjV3RhmBONnagz2M0dp+ROGi2YppjFPLMqW9TFsmhpF0uLeGbtGfv3wzqDFRhcXka1evlQ\n2xkkP0e0CoMHO4MB4GOv/xg+++hn8Yojr8DhucND7ZMKg2NwBgfIDO52oSw7ihoGAyIq4r4z94mi\nOLPPYH39mP+LQkpZPu/hDM4Z5Ngrch2dTmdwrixBEefuN/qoZc+Mb3dn8JLoYY2aFwz0O4OTgsHU\nGeyWGUydwXXSQw/iDLYgUDFThjWGGASD1bakCbRLqFbVpchRya89B4AsYnQGEydltlhHC8nAYApF\nO9wEes1/u3Sq77nHl49jtbGKRltMkoTNCwZkTAQATC1WgSenUuEMpksn3UChFREBDC4eZ2+SJRcT\nISby3Cfxy3l53q3W6rh0qbdz2QZahhh5Xb5wORhjoWAwIFYFbbY27RUCMzPAqVPphMFuBQLDqEy6\nOeMAg6nbbZydwUnHRPzgB/Jxmr53yxk8rCsYSF8BOS9ncKsVX184Tg06twHxGTSbwzuD7XbYxRlc\nNatod9v2vWJ2FlheTiYzuMXVizc7uwxAdMRqNdLuGC18auF6/I+PPa48f8+UuAheeuil+Ny/+Ryy\nRhYvPPBC5TlKZnBjBdckHH8zqqzxhFtEBCCulSuuAL7zHeDZZ8XEdzn6oXrkGsUZPDUlViZ2uxMY\nHJUmzuBtrDAxEcgIGNzpAMs1ApKKPRjsdAaPmhkMAOWLWgYbfsdNB9FmxwTng2HwjvIOvPW5bx0a\nBAPxxESEgeBW1qcSE5GPNiYCAI7OqbnBOr7vZos6yQLA4LKkB1FnBtMl5NmSGFhzHt+yxCRgsLL9\nlBWQU1yEQ8rpDE4sJoI6g11iIgpezmBHZvDTa0+j2lRtjhYEKhBncJCYCACA5iJygZzBzGE1M6e0\ngGlAnfDJFHU6g8Ot7AEA5GpoZ/tHgQ9feHikvGBAxkQAQHleNOSNRvRLf0eBwW6wjBaPC+MMTiIm\nYlABuXJOErPqZkO6oFz6LU4YvFQZPDNi3futFQIWcN3YgL1iLElZ/aVKxR22hJFhyMF00veqIKJ9\nxe0Ag3VNtj74oHysM5c4jOp1Ce2GzQsG0ucM9soMBno1PraY/GBwZM5gl8xgAFhvyoEVdQbHkY+t\nxERw9QAz08v2YwUG73wIl5gKgnNGDtfvEvFGjDHcfvnteNWxV/W9n9MZnPSKh1HlB4MBAYMtPf64\n9/PSpFFgsGHIif24JjW2uiYweBuri3CDSdMUM4q82A+SFEcvUh4T4QdFDdXV1ukMhsFRSIHn2mIi\nhoEH+mIigP4icjpgcCMsDNboDKbby07LLzmuwZd9XpXkGyrOXQ1SYiLS4gzuweBSbnRnsOIuTtAZ\n3OoEXz7fIDDY6QwG1KJinHPbGVwwCOgMEhNk30t3AAAgAElEQVQB2MX6dMHgYZzBeVQGwuxRRNtJ\no6AvCiYsFAUATMu84CNzR+zHD194WMkLHsoZTGBwaVZ+2VF31tWMaDcHvHrc1AkXhTPYjong8cdE\n0MxgBqbEUVUKcqJxvV4nMFh+AVY/49j8McXBvlQeDIO9YiKAdLgo/QoEhpX1vabh2PzkVnRpGKW5\ngBwFITpA7cqKcLrrfI9hRIvHjeIMnpqSExxpdgY7/7ZVFMQZDOjJDAbUPp7VRrbb8ZhQ6DGZXfXC\nMqY8YDAZg73owIvw3he9F1/637+EvdN7fd+vlC3ZfYCV+sqWiYkICoPHJSpiFBgMyInPiTM4Go0t\nDGaM3cgY+0+MsS8yxp5ljDUYY1XG2KOMsb9mjL0o5PZuZ4z9L7KtZ3s/vybENkqMsd9kjH2XMXaR\nMbbBGDvOGPsAY+xg+KPUKyUmwiU2wC0m4swZACU7jM4TBg8dE+FwBusYYPll5zozB01TPwxWPq/C\nmpbOOB1E+8aCECeZJR0w2M4MBrTBYL/l84C6hJ52RKJ2BtPrhFVkR0jmO+qVfV6R71WH45tKgc2l\nlcQHI9UqbEAZeUxESjKD827O4KyEZI2W7KEvV/tpHY2KqDVM24Xa3hzeGaxrSbkfFAWAHFN70tTh\nHLWo+5/1CshZmXhRKtRKj953QPOCbztym/343jP34vOPf97++bl7whWPA9SYiMK0vHFH/b2HPW43\nZ/BaYw3/9q5/i3fe9U4FggcpIGfdO5OIiTBNAExci85jrxRkW7bR8HAGF8QHkDEyeNFB0UW+fOFy\n3xUSVvHYmlkD5zyRqvSDtJ1h8FaJiXACQirdMRHUFazrPYYRhcGjOIMBGRWRBmewV2YwsDVzg4PC\n4CidwbTfTWFw3G23GhPhOMCSFwyWN+03XfsmvP+V7+/LBvYSY8wenzszg7diTASwPWGwda9fXY3H\n4b7VNZaZwYyxfwVwa+9HehrkAFwG4HIAb2GM/V8A3s4597y9MMYYgL8E8FbH9vYC+CkAP8UY+0vO\n+Tt89ukyAJ/rvT/dpysAXAngbYyxn+ec/3OAQ9SubhcACxcT0WpZMJhmBgu4taO8Q3ntsBBN2Y4m\nZ3DYweTaWm8gr9MZHEcBOR8nOGMMWeTRhtnnDDaYoUKviKQ4gxeewPojkb8FmkFgsJG3MzV1OoPp\n+c2LkgDHD4OFJaCQKYQudhhWagG5S0o2XxKKPCbC4YJNytnS6pLzPNN/fRdz7s7gc2v9jQ0tIveV\nf5WrA86fHsYZLD4QXc5Jv5Ue4vfq91zODlmJJ4Co45KurKjVooNVgP/kntt3QJ3BVy9djf0z+3Fy\n/aQCRF+w/wVDRcdQZ3B+Oh5n8DCZwZxzvOUzb8GnH/l032tHiYmIY2BNncHO73y6JM+7aqOOZWuc\nXeh3BgPAh1/7YXz8gY/jDVe/wfd9rQlDDo5Gu4GZGeJCThgGdzoS2m5HGKwjJiLpAnJxx0Q4YXBS\nE7pOWXnBwGjOYEBERTz1lPhuW63R41RG0cQZrMoCfaM6g/NTG7A2sW9mH1YaosPv5gwGxL151EkG\nP9FryeyosyzdooTBGxvuzmC/PHs3zRfncb52HiuNlcTbtVG11WEwYyLeKayse12rJRzu45CTnGaN\nqzN4DwRwPQXgzwC8EcDNAF4A4N0ATvb+/gsAPuazrd+HAMEcwL0A3tzb1psB3Nf7/dsYY7/rtQHG\n2BSAf4YEwR8BcBuAFwL4jwCqAGYAfJIx9hyv7cSpTgeiaFdPQWMizp6Fa96oMzM4ugJyQ21moHwz\ngx2DaHtQFZczuLiGtbUesI9Qfk5w8fved+6AweVcGUxDVYcDMwfkvujKDA4Cg7M0JoJkBg+Zfe0l\nep2087IjFFcnRcJg+b3qljLRUVzBAw9of8uBWt/oABlxLUTiDM6mxRlMzvNs/3lezMlzvNkmzuCN\nwc7gJ09Kt4m5IXttqYmJCOQMVq1mOt3wGSMj751ZuQ4z6qiI4WIipDN43/Q+XLN0jfKaSq6Cv379\nXw+1P9QZnK0kB4Od92+nM/iD3/mgKwgGQsZEdDtYJN2VOCb0aGZwnzM4L9uyTbOBEyd6P3j0W47O\nH8V/efl/wQ27b/B9X3qf2GxtpsoZTN8/ahjcaKQ/wzSqmIikncFJxkRsJ2cwAKVNTEJOGDxxBov/\nR4bBFTl7RSc20+IMNrtq55iOgWo10paNCIOt+9x6cx2zc5JzbFUYfNll8vG4weCpqeEKRtKJz0lU\nxOgaVxh8HMCbABzknL+bc/6PnPN7Oeff5Zz/GYAbADzWe+6bGWO3um2EMXY5gN+AALj3ALiVc/53\nvW39HYAXQwBiBuA9jLGjbtsB8JsQbmQO4D2c83dyzr/OOf8O5/z9AF4DoA2gDODOCI5/ZLXb8CxE\nYsk7JiJAZnBEBeQSdwZnyDJTMqiKGhI6M4M5jx6e+GUGA0DWCYN7y450QcNcJodDc4fED/NPYG09\n+vUeNCYi67J8HlCLa+mMiajkKjasaBjxx0TYN80epKJL2nUpY2Tk51hawYkTyd28u11gk9DayGMi\nEnQG00JqeRdncIk4g5sd+Rlc3CRfhimucwqDnz4jKeYoMRFJZgbnHc7gmaLeaBSrvexmVWdwlPJb\n6aGu7Ol3Bu+d3otrdqgw+MOv/TCu2nHVUPtDncGZkj4Y3MXgbOxBzuAL+e/iPV9+j/3z9Tuvtx8X\nMgXfQmqAnEhtd9vYQRYyLS97vCBCCRjsHhNB2/Jas44nnxSPMxXiDB7yfmbFRACiiFyaYDA9v6KG\nwUD6i8hFFRNRLktQlTYYvF1jIqJ2BltKOirCWUBu4gwW/48aE5Ety8aKTmx6weA4im/JYxKrSqjM\nnH9m8FDOYLIakd7/xi0mgnN5PQyCwVNTwL7e1z1uMHiYiAhgAoOj1ljCYM756zjn/8C5e1II5/wS\nBOS19EaPTf06ZFTGv+NcDbThnNcB/Lvej9ne8xUxxrK953AAxznnf+KyP98G8FEIqPxSxlj46iwR\nSziDBw+ild9lfGCwDmewhpiIbhe+x+05mOzB4GK2GAlEonJmBgPRN3CKM9gF/gP9MNgoCJhBB4NR\n69BsDwYX11FtbkSe/2MSx2TewxlMl9DrjIlgjNlREXUkGRMRnzMYIJ2zotiBpKIiNjZgR0QA+pzB\n9Trw1a/GO6ikzmC3zGAvZ/Bao9dZ7hrAGXFrOrNxBpfqop0/dU4CTbSCxUQ4J9QAjTERAZzBeUfE\nzWxZX0wEIK8rntHnDPZzRBvMAOO932f6M4P3zezDTXtvsn9+23Pfhp9/zs8PvT/0HsYKKckMdhSQ\n++jyL9txKu954XvwvV/5Ht51y7swlZ/Cb7zgNwJF5tCYiLhhsBIT4VjdQ9uyzVbDhsHze0Zf0USd\n9DVz68Ngumw17VERUcVEMCaLyKU5MzjqlTecAw89pP4uLTBYlzM46boNcWcGf/GLwM03A+97X/Tb\nDqKgzuButzc2DyHOZRuVLfs7g+OOTbCv60wLHOrgrmmoMRH2OCgiZzAANNmq/fmOmzPYOWkySFZU\nxMWL8Y0nR1GUMDiOSY2trrGEwQH1NfL4mMdzXgcBcR/hnN/j9gTO+XcAPAoBcl/v8pSXA7C6oH8z\nYH8+Th7/9IDnxaJ2G3YhEsA7Q9bgvTtXxkSrNSAmwukMHtKBUs6VpdNOgzM4CAR3FpBzxkREDQiB\n/sxgIHoYzH2cZACQMywY3OutxQAN6SxuO7MWeWdfKSDn5QymMRHT0o4RtQMckBMn1c4yrHjxpDKD\nlXxTjbIzSEsrAHhiURE0LxhAJDnYTmdwswn83M8Bt90G/MIvjLz5wKLO4FzWxRmcl/tJl+tVW72G\npjkDnJNOyR+eF7nBp5YJDTEDOoMz6XYGzw8TUhZC1nXVZhKkRw2Vuj6Z/wCQ4b3jdomJ2Du9F3dc\ndwfe+6L34n23vg8fvP2DI+0PjYngBUkIo+yoc+7/fWeMDBjvnZwZU7rgKufxdF1Qn+t3Xo/fe8Xv\nIZ/J487X3Im1/3MNv3fb7wXaBzsmgqsxEbE5gz0KyNG2fKVatycfZna6ZwaHUTmb3pgI3c7gcYLB\no8RE0NenLTNYZ0zEM8/0n8NpgcFROoMpDE6TM1h3ZvD//J/AT/4kcM89wPvfD5w8Ge32gyioMxgI\nP9lRq8kCWkbB3xm8RBa/xBEXImFw/4HVmeoMts53Y1rAYAbWxxaCiJqXNls1e5Jr3GAwPReCwmAA\neOwx7+elQXQCY+IMToe2Mgyml07fXBtj7AhEkTgA+H99tmX9fR9j7JDjb7e6PM9N3wNgjQxf5PN+\n2uWEop4ZsujduTxiIiwwGpUzmDondTiDnfEYoaqRa4TBzsxgINoGzumI9vq+c4ozmKOb0Q+DVRC+\nFvngkjqD3QprAaprEgvyTnps3mseaXhZ53eLm3YMR7yZwdyGwbE5g63KxkYHyG+kBgbrcAabJvD1\nr4sfv/rVkTcfWLSAXN4lM7hE7DdmR464Njs9mtKYAy5ca//++PJxAMDpDTJ62pAj0oGZwVkVkAMJ\nw+CsajVbnI4nJoLC4LidwQCQgSP2pxcTsVBaQDFbRNbI4v2vfD9+/7bfHzkyhsZEdLN6YiKc9zGv\nyT2afW8vm9wp7X+3HblNeW2YIprWqpp2t41cTgLI2J3BhrczGBnZxpUXInYGO2IiknblTGIi5ONR\nnMGAhMEbG/Fnt8YZE7GxAXzkI8ADD7ivUkoLDLacwYYBZRXCMKIxEUk7g+PKDP6bvwHuuEPd5unT\n3s/XJee5bXZM/Nndf4ZPPvRJAOrxh4XhtF/FCnLmat9MOmCwBTSNQv9FVeMqDD7Vm6vOTIsdWywv\neq5iHaSpvGzAawQGj1tMxLAwOO1REZubsibSsDCY3usnMHh0bWUY/DLy+LjL32lY3iM+26J/v3qY\n7XDOOwAeh3AYO7cRu4JAUQAwLBjsEhMxW5i1X2cD3J5GcVTaYLm8jEaDR1rAI8hxuxagMdpAb+mr\nDhg8lZ8CQy9FXYMzOOj3ncsQeJBtAExMOessuOR0RUcNg/2WzwNqnqqVybhUXsKuqV2uzx9FziKJ\nQMyZwQSGxpEZDKjub5Qu4fvfj+Vt+1StQnEo6MgM3tyUTqOLF+MbVPtlBpepM7iXGcw5R5NZzuBZ\n4JKc/Hhq5SkAwHLrhNzI6mH7YfACcmJ0kyQMdjrAd8xqdgbnLGdwHZb7P3IYzIJM5lqF7JpiP3ow\nOEihtLCizuCOJhgc9D4mIXjTXnZbOvRD++/X7rzW5VXBRGMiAAlp4ssMdo+JUNrynIwnyc9EnBls\n1hIvNkY1cQaL/w1D3e9hRL/XuAfYQWFwFCvHPvAB4B3vAG66CfjQh/r/nhYYbDkld+0afL8NorQ6\ng3VlBp87B/zKr/QX4o6jnXbKeW5/6qFP4de++Gt48z+8GQ+ee1CBwWHPb9qv4vlwzuDY7lkA8qX+\nA6t25Q6cPSvb2k5JzFYMExEBeN+vNjbGK5M6DAy+8kr5OO0wmJ6zE2dwOrQlYTBjjAF4L/nV37k8\nbT957Ldw5Fny+IDHdmqccz+MZW1niTHmTqViknAGhysoZppqTIS99BvCFUS3MawzWNlu1gRy9Ugh\nQmhncKYpbphk2asOGMwYk59ZLzM4ykGWOG75fXvNtsqYCNOOiAD0OkidrujIncE0JsLFMQkARWdI\nHYDn7HpOtDvSkzJxUhIUONaYiJi+VyrbGQwApRU89FAyVaO1xEQozuBG30ArLhdO28cZTN3vra7o\nETfaDXRZ73WNOeQ2j9jPeXLlKTQaQC13Qm6EwOD0FJAbXFCsb38A7F6IJzMYgH2+RV9ALggUJTER\n5WVxT4XqGopK1BncYnoyg4PEPAEuhVABzF4mncHX7bxu6H2w3rPLu+Cc2zB4ZQWRTly7qdmEfUzO\nc1qZ2CJtnFEa3RlMz+fN1mbsWcmDFFVmLtU4wuC5ucFtchAtyC597JCfQhrdMRGWG7jTAT73uf6/\npwEGd7sS2o6aFwykyxkcR2bwQw/Jc6pMbsdxuGGdcsLgH12UtO7Ri48q5/cozmCeFY1VhmUUIwuF\nwbTtjjMmIlvsv6g2O+v2/cwGmLmavSJ1aBhMzEsb5kai7dooou3QVnIGT2Bw+rQlYTCAdwO4GcKS\n8w+c8/tdnkNPQb/uHh3GOUeR1naCdBkHbSdWOaGoFxykMREXLwKb9a4Ng2k0BGNqts8oMFgpVpbb\njBQiDJMZfOEC7IgIQA8MBoibWkNMRFBHVd6CwVkZYQBojoko6o2JUJbPezmDE4LBxUUxko41JoK4\nxuLKDFZgcHEFpgk84rceQ4O0xEQ48nFp0RcAfT/rEnUGF9xgMGnXWr1aqXSQgOYsXnnTIYCLFQrH\nzzwlllTOnZDPGcoZLN5LV7ZokOzcogOc7VmMJzMYgH29RQmDu134Zv4DDig6LdfH7p3a6/r8UUSd\nwSaSdQbnmCMrGQAnMRHXLF3jfElgUUduh3eUwbXudtw0YbdfzrZLOeeyso3v5kbPDHbGRNBjTrpY\nzXZ3BltwIwoQHndxKSoKzAYVkIsC1G5uDv571HUrhtHysiwmNmpeMJBeZ7CuzOC6bAJxjKS9pcEZ\n3GjLk7jarAaOiXAD5XR83MmIxmoqP6WMU9MQE+HmDAZgG2JsgDli8TjAOyYCGC8YHMYZfPgwYJUK\n2W4wOOmoqq2gLQeDGWMvBfDfej+eA/CrHk+lPWm/2w9txZz0xNpOkFvYoO3EqqAOmwyTMRFPPw3h\nkDXEuhvqDAZEQRpALEVU3LUhpYDHiGHwMJnBZ89ChcEFPTBYOoOjj4nodKDAA69lxcqxF2QLqwD6\niKUsXdXgDG51BkMyACjHCIPppEllKd6YiMScwSXVGQwgkagIAYMjjolw5OM64W9cA68OqDN4cLtm\nOYPXmvIaL/A53PbSAlAV7fiJtadEsRULBpsVYFOeu2lxBvMgMRE59fretRBPZjAA+3qLEioN5ZCd\nkcXjdDuDGzxZGNzvDOZYL4iYiIOzB0earKbv2e62YwWjzSbs68m5qsHLGdzoxcCUsqWh+2XOZbdx\nF84bpO0MgzmX/cRRi8c5txE3NAlaQC4KUOsGgw+RajBpcAbTfkQUzuD5eTmBmzYYrMMZTGHwwYPy\ncRqcwRQGb5gbgc7vf/xHcR686EVykgBQ+1VtQ8w4V/IVFLNF+55AYfDUlLyeknYGAwDK4qb5xBO9\nnykMLkcbEwGMVxE5ei4UfYYquRxw9Kh4/Nhj/fEoadLEGZw+bSkYzBi7FsD/ApAFUAfws5xzr64q\nbZn8esi01113/M3aTpBe9qDtxKp2GwGdRRYMNvHMM1CKxzlh8G+95Ldw9Y6r8buv+N2R9k3JvsvG\nHxPhzLt87DHE4wy2oGiuDhitZJzBpNDS4n65A3E6g6OGRkpmsAcMnqn0T7tev/P6aHekJ8UZvCA6\nQpcuyYrAutRq9dyJ2eSdwQASKSLXFxORjSAmIjXO4MEOeHqsbRdncCUzixtvBLAioiKq3Qt4/Nkq\nMPe0eMLqYcDKNcdgZ7BzQg3QA4OdBcW82rWS43ueLcYYE9GDwVE6g8PD4CYwTWCwhszgXCZnDz5r\nHTmjFzkMzvjHgvTB4JlTqHOxI6NERADqKqpOtxNbZEK323P/9+Ke+pzBLpnBe/YAVVMc9yh1HJwx\nEZWKBApbEQZXyFxRmmFwrSbBUNTO4DTBYF3OYMbk5/YzPxPte4wqKy8YiMYZbBgyKiLpmIi4ncEH\nSLhj6pzBpr8z+JvfBN78ZjFO+Na3gHvukX+j5pkWk85gQI5VaT+PMekOjhcGe1DuXt0UO2KpIncq\nipgIpzN4XGGwnzMYkFERm5tq+5E2RQGDJwXkopV7T3oMxRg7AuCLAOYBtAHcwTn/5oCX0KGp38iQ\n2oicXUNrO0FGl4O2E0imaeK+++7zfd6ePXuwZ0APoi8mwsMpmjXyQBeA0eqHwUUVBr/h6jfgDVe/\nwXff/FTOpsgZnDHFa2KAwYpbKb+B1dUIrB49OTODPWEwOfbdh1dgGZ20wmDdBeQCxETs263O5RjM\nGGkp8SDReJX8rOwIra9HN5h1k33DTMAZTI8ZU4KOJucMjjgmIiXO4DYPPsnV5qKHfm5VkpTp3Byu\nvx7AylHg0DcAAN9+9m7ppCYREUDwmIhCuYkm9MDgoJNcxbzak9ZZEBNwX7IfJQwOGvOUYwURlpVV\nncHWKp6oNZ2fRqPdwIZZRbkMpZhiFAocE2E4YDCJiLh2afjicc73dDqDdYKGVgtK8csgmcHHjgHf\n74GAYYvHAf2Da8ZE9uSpU5OYiCRFge24w+BBmcGDCsg1m8Df/q0AIbfeGuy9LFBYqQDHjwPf/S7w\n6lcDf/qnYlI+CRj86KPAzIwEv6dlqk8kMBgQURFnzggY3O2OnjE9rKzvMJMR/7adM7ijxkQMcgY/\n/jjw+terv6dtLu1XmbznDO45Y+eKczi7cVaNA4OAwSdPivuV7vPA2m/qDM5n8jA7VqCz46ZJnMFL\nlSUMI+oMHufM4LAweB+Z4z97Vv05TaL3VJ3O4DNnzuBMACpujlNVQU3aEjCYMbYXwL8A2AuBLn+J\nc36Xz8to0bj9ns8SokXjnnX87SSAWwBUGGMzPkXkrO1c4JwPdcu7cOECbrzxRt/n/fZv/zZ+53d+\nx/PvwZ1FjpiIAc7gqOR0uCRdQA5ALDCY5hzpgcH+8GC6JI9937FVWPXXdcZE6C4gRx2TBecow/p9\nVoXBVyxeoZ6HEYo6gzNTsld36ZJeGGx3gmhmsKZjdIoCmMLRe9D8/4QzmHPhVIhL1SoUoLKVMoM7\n5JaSc5n0oO2a5Qx+9oJs12aLs1hcBKbaR+yZyvtXvgZY8wUOGDxoAEE/13y5kTgMLuccMFhjeybe\nLx3O4Jw1mQsAs0/bv9cREwGI3OALmxdQbVYxOytgcJTO4FDHDdgwuHLkh3bBhlGdwfQ9nZnBOmGw\niIjwnshSYbBo448c6+AbprjwRum3OJfdAsDiooDBy8vxt+NUumFw1IUfoxQFG1HERCQJTQZlBg8q\nIPfhDwPvepd4zTPPqNm4XrKcweWyWHr/uteJn4tFARHjhsFf/zrw8pcDpZJYLr9nj7i2LEUFdSxn\ncLstAMqCniGcryz2Yn3Pup3B+8kIP43O4JKHM7jbFSDYOeFG3a12vypj2lFhTmdw1ayi3W3b9y7L\nGdzpiPYzirbDS9bxZArymPdO78WJ1RPihwEwOJLMYLOGo1sgJiIIDKZFIpOY9AiqKJzBMwQbeMHg\nD3/4w/jP//k/D/cG20xjD4MZY4sAvgzgCIQH5v/gnP9tgJc+TB5f5fNc+vfjLtv5GfK873rsZwbA\nsd4+OrcRWEtLS/jCF77g+7xBrmAguFM0a8iYiKefBnBMPwx2DqTjdhY5C8gBSAgGR7ftoLEgU2XZ\nK3nJq1fxpZ63fqsUkPPKDHZmKerKCwbUzGBOOkIXLwJHjmh7WwKD43cGX7njSswV57DaWAXfdzcA\njuVlhuVltaCFbvXFRGRGj4lQIEym2TfYiA8GB2/X2r2I+1MXJUlZKIt27dDsEXsS6NGmNwwe5Aym\nbVm+ImiKDhgcFA46C0Rqdwa7LNnX6Qz2haIAMP+U/VBHTAQgc4OrZhVHZ4ULTWdmcM5wb89zVnue\naQOsi+mjD0UGg+kqqjidwaJ4HHEGO9ou1Y0u2rj9R6uix4loYyIAWZXeNIXTZ9hB3aii59fM8FHQ\nisbFGUwH/PQ8rJk13HvmXtyy75ZQUUhpKSDnnLPPZsX9ptPpB7XWQknTFC7KsDCYKkkYDIj3/vrX\nRSQAdQbvjWghB/1szp5NDwzW4QymudAzM2KiaG0tJc5gBwyeJcdPAeDx48DDPVKRzcooBVcYnJMd\nDKt/Q8eq6811e8xO24oLF/TBYM4pDJYHtn9mvw2DjallKPG2EcDg7RoTQWFw0lEwg0THAlNDJrZl\nMuK6Xl/3hsHveMc78Dprpm+AXvOa1+BCmul5DBprGMwYmwHwJQBXQ3R538s5/1CQ13LOn2KMnQaw\nB8BLfZ7+kt7/pzjnTzv+9g3y+KXwgMEAboKIieAABsVXDFQ+n8fznve8YV9uyzmI9nKK5q3BJOOo\nNzrxOIOzyWYGu+VdjjsM7vu+PWJBlKXkWWkNiS0mIilnsGNgrSsvGFCdwZ28CoN1yj6fEsgMNpiB\nW/bdgi8+8UWY+XOiKNnqEZw4kSwMjjwmItvsy36OrYAcdQa7QDLarnV6tUzPEZKyNCOuw+v2SRi8\nMUvC6UI4g2lblikLmrKxEb2DsA8OesXA7CkAJKN6SziDA0zuKTB47in7ucMuv/TTdEEQQbNjYnrO\nBJBHtSr2d9DkQVAFzr6nx50x0d0hYiIYGK7a4Tf3P1hJxUSEcgb3JiB2HVoFTohfjeQMdgyuAfQV\nzksaBlcqspr6qBoXGEzPN3offeX//UrcffJuvP15b8dHfvIjgbeX1sxgQIDaWq1/GT39DOoBK7FY\noLDk6P5YcRRxw2B6TM/21p7qcAbTQnTnzgHX6ElC89UgZ7COmIhyWVwfaYHB9ZbcOWcBOeoMpvt6\nzTXAD34gHrvGRORlQ2X1v+jYarWxao/ZaVtx4YLMmo1a7bashZLJy4tq/4y0amdnl0HN4MXF83Yh\npqFhsDMmgnjjtnJMxDjC4FH6DXNzAgZ7GQ784lIt5V0KyG83jW0BOcZYCcDnADwXArD+Luf8AyE3\n8xmIijhXMcZu9nifH4dw/HIAn3Z5ytcBWKfiLw54r18ij/8x5H5GrsBVuSlUyLRigcHOgXTSBeQA\njD0MHiYzmOZMjbMzuE0gWdEDBsfpDJ7KT9nvZ2Zlr043DJYOgvidwQDwgv0vkD/svxsA8NRTHk/W\nJAGDNcZEZJp9f0+NM5jsZ6fX/b6wLq/x3bOiXbvlSmJPJ20GVkm5dQR3BmdKYpDS7Ua/5DqoM3iK\n9KTzmbwnNI5KbjA4SqgUGIrSc3NGJDEQDEAAACAASURBVGPtmdoDg+np+lnOYACoLMgbd1THHvS4\n1eiWBlZzwl51bOHYyG2eEhPR7WCRxKFrdwYPyAxWC++K4fTCHjlKGikzONcPg+M6bj9ZA8EoI5bG\nEQZbcL7equPuk+L++vEHPo7lzeBfThpgsGG4TzRaTbgT1NJ+UxAYzLl8ntMZ7PUeukXfzwmDDSOY\n2zmIKAyOq1/iJgtyWZ+3XwG1YUTPhVJJXh+rq9EB56Aa6AxueheQoy7Wyy93/72EwcQZ3Guv6f3Y\nivcB+mGwLtFjMfLy3kVXJmWm1PYpNzd6ATklJqJVS3TFwyiawODBsnKDJwXkRtdYwmDGWA4CzL4Q\nAtLeyTn/7SE2dScAa7T754wxhQz0fv5g78c2gD9zbqCX/ftBCKh8NWPsN1z29wUA3trb169zzu8d\nYl8jVWBnER00Z0wFBitFoSJUnJnBboPitGQGR9kZD5oZrMDgpjxmncuqS9mSdCprKCDXTllMBGPM\njoqoM9kR0t1JsQccCWQGA8CP7/9x+cOBbwNICgaTmIgQS2i95HQGOxUbDEbwzOAuEw7mizUJi/Yu\nCpry4hv2Ah2X62TImAgLBgPRA4bAcJB8R7pdwUD8BeSCTO7BEIsxdeUFA9IZDAClWXnjjioqIij8\nz9MM+MUfwYQA8qNGRADqvTNRZ3DGPzN4Zmc0/ZZBMRFAsjDYGghOYLD4/8KmhCmtbgufePATgbeX\nhgJyXiYtL9duWGdwq9VrR+AeEwH0u491y80ZbMVE7NoVneM9LTA4bmdwqaQC0LiLXvrFRHgVkKP7\n6Q+D+53BtB+2Ycq/JwOD3Z3BrKLePNiUoJg5Izf0BKayksWsbZsCctsNBlv3/EYjmaKfW0ljCYMB\nfBLAqyDg6lcB/DVj7NoB/y532wjn/DEAfwQBcp8P4JuMsTcxxm5kjL0JIs7hpt77/CHn/AmP/fkj\nAD/qbeePGGMfYoy9jDF2C2PsfQC+CBHJUQfwa1F9CKOoDw56xAaog8mt5Qw2eBbMZc2yW2YwK8UP\ng9fXZad1VAXNDKbf90o9npgIxhhmrJu+jpgIHiAmgnzn0/lpHJo95Pq8qGRFRdS6F2GFOuruoEoY\nnIwz+Jb9t8gfEnIGr60h+pgIH2fw2lo8HZUwmcHINkURGeL+P7BDtGvXXZPpdwF3ymCNHcrvgsZE\nsII+GBwUDtLvSGlnNYleV6ygv4BcoPt3T3unIwqgdBF1IhVnZUMeFQwW92/ZngeC4Hvusx/SQpbD\nyhkTMT8vo09izQx2OoMdmcHT0wCKETmD8/0F5JwxEUmo3ZbX1VyE3bKxhsE1le58/PsfH7iNcxvn\n0OmKvmGpJIFoUpnBHl00T1AbFgbTLFkvGJx0TES7LeOlooqIANILg+N0BgPxT15RGJzNBncGDwuD\nrQnvpGEwPa9ZTv6wq7JL9lkcBeTaBUExlypLruPzIHLGRNB7w8QZnLyidgYD0dam2I4aVxj8073/\nGYDbADzo8++LA7b1HwF8FILI3AABmu/p/X9D7/d/xTn/T14b4JxvAPgJCCDMAfwKBKT+NoDfg8gK\nXgPws5zzB0MfrQYFdthk1JiI0sLWyQw2PCKz3TKDS/MSmoxSiGWQnDAYQGRgdBh4sNKIBwYDwJz1\nmRbWIi801VFgsP93fv2u64fuhASV5ao3ecOGs7HB4AQygwExiXL1jqvFD7vvB7L12GHwpUtQgK2O\nzGA3xZEb3EXwzGBkTJgmUG3JHtTBXeIaLBaBSkutZDjLD2NhXr0mgjqDkUveGUyPXXfxOEB13OfL\nyTmDCy4wWFfxOACYKcgKXvnp6J3BwZ3g8rjLR++3H0fhDFZiIngH2ax0VCaZGay0Q7k6jh0D1prR\nTGLT+0SaYiJo/yhKZ3A+L9u3cYPB52sqBbjvzH34wbkfuL7+Ew9+Anv+eA9u/qub0eVi5YB1LicV\nE+EFg90iHNptdYlwEBjshIRUFDg7s/91ygmDz54VsUrA9oDBcTuD484Nto4pmxUTh8M4g48ckRPw\nfgXk/JzBsRY97Ynl5DGXciXbENMu0hORo5ER7dewERGAuDcyiP5qrVVDJiPvD1sZBi8syHNku8Hg\nSVTEaBpXGMyH+Oe+IaG3Q8DczwA4BaDZ+/8zAG7nnL/Dd4eEa/i5AN4LAZNXANQAPALgTwA8h3P+\n+SGOVYucGbJeGYLOmIi5vfLuNF/UU4JUpzOYQlEvGOyWGZydEi1NMVuMBCC5yQ0GR9XADQNNLtXl\nXVM3DLYBe3ENa+vR9sKDOIP3Te+zv/eXHvKrJzm6aBE5lMU1FV9MRDLOYIDkBmfawJ77cOJErG8v\nPmMaE5GJICbCxxkMxAWDBxdSc+6naQK1tmxgju6TNGVXQYXBS/nDfZXHBzmDi9mifU/paoTBgZ3B\nMcdE0OsqV9blDPZf6eEWg6ITBlNncK6SDhic2y/n3+3JqBFEJ1LbXbEv1uA61sxgR9tlMAN5o/e7\nbEPA4AZxBo8wic0Ys8/pNMVE0PMqShjMmHQHjzsMBoC/eeBvXF//9w//PTg47jtzH55ceRJAemGw\nm2vX2WeKyhkMxBsVQY/pwgXgySflz3sjXMiRNhisMzOYfs9pcQZb5zaFwRvmRqDM4KUleW26wWAa\nx5WWmAjFGZxV710HZw8CAMzCaSWO0erHjgKDGWP2sVsrWaz+61aOiTAM+d1OYPBEYTSWMJhzngn5\n71iAbX6Bc/4GzvkBznmp9/8bOOdfCrFfdc75Bzjnt3DOFznn05zzazjn7+GcPzvaUUcrOqhiyHg6\nIemgCkYLuWlxF5rOT2srwhNXZnAgZ7CjgJyuiAggDhjsD//psT9+6XH7sU6AABBHWaaF9Vq0vXDF\nGeyRGTxfmsc//5t/xh+88g/wvlvfF+n7u2lHicJg0TONLyYimcxgoD83+MQJ6YDRLc77YXBczuA4\nBl4dNnj5vJszuGHVPm0VsWdJHsexBRUG7586rDgBgcHOYNoZbxvJO4OTjImwYHASBeSU+3dPWmMi\nSGZwpixv3LpWuHj1QRZm5XG3Zh+1Hx+dPzryPjhjIgAJGtbXo4MZTomYiMFtVynX+12ujre8RY2B\nGbXvYk2iuMVEbDUYDEgYHHXRyyhlfe65nBxUu8Hgv33wb9Hq9Fsu6YR/tSmuVws4bW7GC0St68YP\nBrdass/g7DNRAOiloDA4zqgI5+f83e/Kx1E6g+fn5eebFAxut+X3F5czuFxOhzPYDQY7YyK8nMGL\nixJousHg4gwpIJdPR0yEci903LuOzPf6mIwDs8+IxxXZdo0CgwH5GVgrWehnF6frfxSFhcGAjIo4\nfz69x2lPYGTUNjesJjER0WksYfBEo4sOqjIeUBRQYyJm5ltoGOIupCsiAogvM5ghQM5ib8bSNLYC\nDO4dN/eG//TYrQ7LVH7KnsXVJZpnuN6MtlXvUMeky/J5S7cdvQ2/+aLfVICGLinFF2OHwQk6gw+8\nQP6w/26YJnDmTDzvXa322r1stDERrgUnHYpj4OUXE+GE1qYp2zXDnFOcvj92UIXBl+0IB4MB2Z61\nWMqcwXHERJBl9dli9DERgY875xITobOAHHEGG8XknMEVMnLa5KLPsqO8I5K2XYmJ6GWtxpGfK2Ii\nvDODATm5d+BwA699LbDWjCYzGOgfXKchMzgOGDwOzuAdO2RuNYXB1iT+udo5fPGJ/rQ8BQab4npN\nqtiSBcy8Csi5LaV3TkJE6QxOEgbffbd8HKUzmDHpDk4KBlNAuN0ygy0YXG/LnWt1WzBInq5XZvDC\ngrw2V1dlPRlrfFyYDu4Mnp+X/bckYHAhW8CROdLHnO/lxVXkzuwsjwiDe5OX1nFbk1ydDiKPItSl\nUWBws5ne47T2a3pa3reG0cQZHJ0mMHibihYU83LIAsB0WUKFl91m2p1HnTA4rszgDAvoDDbaaHCx\nE+MKgzsdkO/bm+K4FRy6dula7Rm6dAnrZnctssJ5gOoM1uVmDysaE1FZEj2+rZ4ZDIhl2jYw2v9t\nADy23GB7YOvolI4qgxkSvpJtU7dL3DERQZ3BnZygKdmOSlJeeI0Kg6/dGy4mApDtmcmTdwYrmcEx\nx0QYRUEfWq3oXE9Bj7uUizkmgsLWQnIw2O0+pgw+R9CgmAhAH2gI4gy2ftfoiDY+SmewMyYiDZnB\nccHgNDqsOJcgh55/5zclDH7XLe+yH3/yoU/2bYPCYCc0AZKBwX7OYED2ZYaBwYMygylwSQsMjtIZ\nDEgYfOFCrz2NWW4wWKczOJMR20+LM5hzrjiDAaCdkfdKN2dwpSLOTasPxrkcG1rj41yFOIN9CsgZ\nhmy/44qJcNbqUO7HcxYMjs4Z7BUTAYxPVMQoMBiI/zwPKgqDRxG9509g8GiawOBtKjU71xsOzk7J\nQdVb3nnJHvxsBWewFwTPGBk54Ms2gYJc4zquMDjIcQPug+goiu74SXEtRVxEruPjmExCiyU5ki4v\nihHNdsgMzhgZ3LT3JvHDzGmgvBwbDLY/34hjIgAClYlzj1Z/jt0ZHCAzePlSx27bClDbtRddoy6n\nv+HI8M7gencDVmx/Us7g3VO77Tb90OyhaHfCRTR+xchL+hCVO7ivIKjh/mUUXZzBWmMiiDOY5+R9\nMxUweD4aGDwoJgLQB0abTQzMDAbk5J4FGxRn8IiFb2lMBOfcBhTA1obBnU68cQlBVavJ/aLn34Wa\nJAA//5yft2t7fObRz6DeUmnpoJgIIF0w2M0Z7JxAH1dnsPO9Tp2Sj3XBYDqZEKdo377Sm5fV6Qy2\ngH9anMHtbtsu1mipk5UfiltmsNX3okDz0iVxP7TOnWw5uDMYkHA8rgJyPKP2u5XIpp4zODsrYfBS\nhdD7IWStZGl2mmh3232f3ThoVBic1tzgqGDwxBkcnSYweJtKgYMeDllAhQpmTtrblGXuESuuzGAv\nZzAA5KxCLBkTuw9H564ZJDcYHFVnnGYGD/q+k4LBtAo9imuRZUwC/pAsCVFncH5OjGhWV/U6NdKQ\nGQwAVyxeIX+Yfyp+GJyJNiYCIGCGbPtqUqtKNwzuduELyTJGBoz3bvkZE48/IxvWsqGSlKXKIjId\n2R5dtWt4Z3CHt+3sda3OYM48s9B3Vnbio6/7KN550zvx7he8O9qdcBGdZGF5SR+igsFBoejuJbU9\nn85Pa43BodtukwFupJnBmcHZ2IBeZ7ASE8H7YyLS4Ay2liFHmhncG1xzCGcbY/K4t3JMBJDOqAi3\n4nGAjIkwmIHdU7vx01f9NAABgz7/uKxhXW/VleXqVkwEnfSLEyYEzQwGRnMGp7GA3KD3ijImAki+\niByFNtbEg05nsAWD0+IMdrqCAbWugnUdcC7bVS8YTMfGtICcX2YwINuMel1fLroKg9WJTGVytucM\nntoVYWYwWQFWM2vKJFdS96uwGgYG0/M8jTC425Xn2wQGp0cTGLxNRauRD8oMpk7Ksxuy57BQjNcZ\nHNUyvaAwOG/0BpOZJg5eQQZUha3gDA4fE6FbqjN4PVIYrMREpMUZTCZTsjNyRKPTiZMGZzAAHJsn\n9Tznn0jUGezmrhtGbs7gq66Sf9cdEyHac//zPAO5n0+cko3LdFZt1xhj+LE94rqfL+zAjvKOoZ3B\nACKf3LKkrnDxbs8B4Bdv+EX895/479gzvSfanXCR8x5mKSqoRGN/ADW6QNkPRwCnzrxgQJ3Uaxt6\nYyIYvOG/1pgII5mYiDCZwe1uG+1uG2sN8cEzsJELJ9Jz2hkVsbycTJQC7R9FDYMrJE1mHGHwUnkJ\nBjNwx3V32H+jURHUFQxIWHSUGPYeeyzCHR4gzuVEuFdmsBsMHtUZ7IyJSEtmsKVSSQUeUShpGEz7\nANax6XAGW9+z9R1PT8v3SdIZ7A6D+2MiqlV5TXjBYDpOMgqS6Lo6g1vuzmBAHxyn53XXUCcyD84e\nBEMvfrDnDC4uRh8TAYic+7RDUjdtRWcwvZdOYHB6NIHB21SqMzgYHDxXk0QjzszgTie6jlnQuIRi\nTjqDn3NzPM5gJctSa2Zw+pzByhLWiGMiuizdzmBWliMancuX3DKDo3LGhpG6POxJnDgRz/tqjYlw\ncQbv2SM7K7oHXUGdohlYk1wmTpyVhG7GZQn5n7/2T/D6K1+Pj/3UX4ExlkoYHLQ9j1vOe5glHc7g\nQQVBncBQZ14woMZEtJheGBz2PjbuMRFhnMGAgA6WM3i2OOsJzoNKcVo5isiZZjLAdOIMFrK+B865\nDYMtmPKKI6+w+xt3/eguG/o6YbAVE3HllfJ3jzyiY8/7RVdEhYmJGDUzOC0xEV4weN++0QosuYnC\n4DhqGTiVlDOYrmSI2xlsnd9eMNhk/TERzuJx9H+g3xnMCsQZ7JMZDMQDgynY7xrqRGY+k8f+mf3i\nF/NPAgBys6SA3KjO4LzqDKYO+7iKVo+qrQiD6TkbJQyOqo+5XTWBwdtUQR1VFJ6d24gHBiuDnJ6r\nKio4GNQZXMiKweT8kolXvjYeGJwxMhIi6HQGB4T/ADBfnMfuqd0ez45OijNYZ0xESpzBFAZ3i3JE\no3P5ktMZXMwWRwYEw8gJg+N3BoselsEMT2gaVm7O4Pl5OfDSPehqt6Esn/ea9LCdwZkmTl6QjctC\nub9de+GBF+LTP/dpvP6q14vnhI2JyMmBSHk+eWdwnKL3sG42+piIoMftbM915gUDakxEk6cMBuuI\niejGFxMRJjMYENDBygxW7q9Dyjm4BtTjTmLpLT2vonZQjiMMrppVNDviHLFgStbI4o1XvxGAiA+5\n60d3AXCBwb2YiCtIitOjj+rY835RAJiWmIgkM4MtRR0RASTvDKZjGp3OYOtcoN8xzcmNcyWDnzPY\nRL8zmLanQWIieM7HGZw0DGb9E5n2BG35IpCvwqzIwUCUMREb5oZyLZ0+PdKmY9MEBg/WpIBcdJrA\n4G2qdhu2U3Rwdi6JiaiRmAiNMJgxJgc1vXzTqOBg4JiI3mDSyDVR68QDgwFy89YCg/1jQZwDzOt2\nXufpOotSSmZwIVoY3EmhM3g6P21DBTMXNwwW15TiXoxRThj87LPRuUEGyekMLmQKkZ3bNvzLqDB4\n1y7xeGNDL1AIWkgtS5zBZ1clSdkx5Q+LRnEGzyz23GgRO98pBE8TDKb3sK6h1xkcJvYnTmdwrV21\nwU6kmcHW/RvebbnzPsbAcHD2YCT7QCM53JzButrwsM7gequuOINHVTnrHRMBJFNELi5nsK5MzVFE\nP28L7FiuYECFKTQq4lM//BQA75iImRmxqgVILwzeagXkBjmDo1bSMNgtJiJqZ3CnI7dDo0DoSoYo\nVx8OEucqDKY53Zaa6HcG076SGwy+eNEBg7P9BeRKuZIdxZAEDKbndcfon8hUJmh3/hAXsvcDAK5Z\numbkCDvnSpZxhMG0DZrA4H5NYHB0msDgbSoVigaMiYjJGQyQfDqdzuABrkDL6Wd2zEiLsPhJLwwO\n7wyOIyICcMZERJsZzFPoDGaM2e7gpiFHNHE6g5PICwbEd71Ysnq3T6DbBZ59Vv/72oOQHlCJMiLD\nhk9ZE4CwnCwsxLckU1zf/ud5lkkH8/l12bjsmvVv15zO4DAwuEKcwVE6ctLqDAbk9dUxNDuDQxQE\n1Z0ZXM6V7dUGVbNqd9Z1OIODTOZa2jezzzVjdxglW0AuWGYwIIrHmR1BFqLotyjO4Fa/M3irwWDa\n3iUBzfzk5gy+UJNUZ6ksac+LD77YXuH15Se+DM65pzMYkHn3y8t6o6ssUQehV2YwhSFROYPTnhm8\nFWGwW0xE1M5geh7Q75gC0Ljaq46M9vd0Bje5BLVuEx1BYiI6GdEmMzC7b2sww263vQrIAZrvWdb+\noWHvk3UPpTD4mjd9El2Ie/utB24d+b2VzGCzZk9wAeMDgyfO4MHK5WS2/wQGj6YJDN6mUhw2g5zB\nxEl5ZkMG7eiGwfagppe3GB0M5rZDNhtgMNnsNLcEDA76fTsH0XEUjwM0x0Qw/+rzScgCojUue2Jx\nZgZTcBC3bHfwzEkg04wlKsL+bHvu3UhhMAUzGdEDpjERQBwwWDqDvRzwOSaz0M8RknJ4T3hnsG9M\nBOmMl+Y27P2M0mWnTnKl59oG5PXVYtEXkAsal+B0yOqOiWBMFipbb65rhcFhIHhUERGAewG52Vl5\nPegtIOfjDM7I39GCv5HEROTSFxMR5cDSKVpI7Yknot12FHKDwV7O4IyRsftytVYNa801T2cwoOYG\nx+EOHjYmYhhn8KDMYDfgHIfijImwVisBW9cZ7AWDaXsVV26w89x2h8GDM4OtvhftgzlhcMsQg6bp\nwrSy4s26HycdE9FG/4o8muO/vOcT9uNbD44Og52Tl+WyPN+ShMGXLgF///fBxvbDwOCpKdlWph0G\n09U3w8r6Tq3P8wMfAF78YuCee0bf9nbSBAaPmaKNSwgXE3G6KlvQqJZcekmXM9hs0wrs/oNos2Mq\nneb4YPAmwDrROoOtAnKpdwZHC4N5CmMiAJkbbPI60Mv70jmgtjsWCTuDAQKDGQfmno4XBlsxERE5\nBQEHdOu59xYW4ht4OTODPWMiDCsmogkUZONybK9/uzY1pQ7awjiDizNyIBJlbrAaG5AuGGxdX23o\nionwj/2JOyYCkFER1abqDI7CEa44g0Mcd1TF4wD3AnKGIQfqWl1WfpnBZIKPwuConcFpiYmw+oWl\nEpCN+PK/7DL5+PHHo912FAoDgwF1IuhM9YxnATkg/iJyw8REtNv995IoYyK83LpRq9NR3aNUOpzB\nlYqcOJk4g/UrCAyud4LBYKczmELNOsT17DRqJQmDlZgI1m/CoJO0tO2KBAY7MoMBObly+nS8mdFU\nb34z8KY3Ab/wC/7PtT6/TMa/v22JMekOTiMMpufsztFioQFIGLy2Jq6Z974X+MY3gD/8w9G3vZ00\ngcFjJq9Ow1DbsRw2RnA4CAhHo24Y7MwMjg4G++dqAupxP7P2jP1YdzE1ClCQ29QSExHKGbxzvJ3B\nnAM8wPL5JKS49GZOAYghJoJ1gZzojCaVGQz05wafOKH/PZ0wWJ8zWPTg5ubiW5IZNCYiZ5A4iyJd\n8eDvHGRMHYyEcQYXpvTA4KAO2SRkwWCTb5+YCEAWkauaVcz0ouA7nWCgxk/0PA9zH4vSGexWQA6Q\nQC5RZ3BWnzOYTh6mJSbC6hdG4TByKu3OYApwLFg0CAbvmZLrpM9suMBg0x0Gp8UZ7HTtukUOjWNm\n8CDorAMGA7JfkjQM1uUM9ooCSaszuN7tLyDnlhlMi2ReugQ8/LD1E0etmz4YTMF+i/ebMNwmafdO\n78XhucMjv7czJgKQWeibm9EZ68LqW98S/3/zm/7Ptc6FoK5gSxZkXV4Gut1wr9UtOtY74tItO187\nj7d99m248+47A23PuiZqNXE9WMebRH9knDWBwWOmqC5sOogeFJfg5qS8ce+N2ouK2QOPbBNgndhh\nML1hPbnypP14z/Qet6dHJgUG5zdQrfa+qxGlOsGDwf9dlV22e1W3lOOO0Bnc7UKFZClyBh+YOSB/\nmDkJIAYYTGBCks7gY/PH5A/zT+CZZ7yfG5UkDNYQE+FwBk9PC6canfnW2TlxxkR4tW05g0Cy3jkH\nIPB1Tp2AYZzB2UoMzuC0xUT0Jlva3LRXZegoIDdwhQu5jzEw7Krs8nxuVLKKgW6YG5iZlR2WKKIi\nho07UiafRpRbATlAgoZaTQ9ICpQZnNXoDE5xTETUERGAcFBa0CyNMNi6n5TLEmoOhMGk73q6ehqX\nGt4xEVZmMBAPDKbQKGhMhNv5FjYmIg2ZwRQGO2MhdMREAPK8XluLZpIujNxiIjIZObkctTOYAv+0\nOoNr7cHOYGsSPpORnxmFwUZpw86vny/OK9u2+mFmx7Qz5IF4wDg9t9u8v9+9d3pv37361oO3RsIX\n3DLu6fV05ozzFfplmjIq7NIl/9UH1t+LIYcq1rij240n8z2Mnn5aPj50qP/vf/rtP8VH7/8ofv2L\nv46vPfU13+3RWgH33Scf0wmhifw1gcFjpqiWNtDs3KAxEZZu3HNjNDsxQEqeabahBQYPKiBHb1BP\nrYo17DsrO12d0lHKCYOB5AbRcUVEACLTbirXG9EV1iPLmGy1oGappsgZvH9mv/yhB+Z0dlAFDJa9\n5FRkBgPA/JOxdMxFp4jrgcEOZ7BXwQ9dcsZEeE16FAyyn/Nykks5FwdoWBicKel3BqcNBitteVE0\naFqcwQg4uTe1K5bJMOpCLc3LhjyKNj1oAdi4nMEUBs+TMbiOYiahncE14gwO4Pz3k1tMRFqcwTpg\nMCCjIs6di251WlSyPm/6HZzfDOgMrp7BxU2VptKYiIMHpRstbmewVwE5Z4SD2/k2js5g+j6XX67+\nTTcMBvTWMnCT1TYWCiqMtyYBtmNm8GZrAxb/dCsgR/tdVp/ywgXg+HHx+PBVsnPp5QwG5CSetS8W\nWI7TGUzvUQYzcGhWJYJRFI8DBsdEAMnkBjvHAH4xDqM6g4O8R9yizuCDLgvMHzj3gP34L+75C9/t\nUbf8vffKxxMYHE4TGDxmisoZ3GzJDWVCxkQ8b8/zotmJAVJci7nNyDrizRZxzwXIDAbkwEd38R3A\nHQZHMbCkmcGDBtFH5o/Yg/nXXPaa0d84hGyIUFyLNh4jQJZqEqIALrvwLIAYnME5eYdMRWYwAMw/\nqd1V1mj0BgjUWeeSuTmsnM5gCwzFCoODOINpez4vJrmmctP20n4/DRsTYRTjcAanZ6IHcKwimRI2\nlLidwfT+HUdeMCCgs6XsnASSUcPg7IDv2+ma1ZUZbLmxAHVQEuU5binpzGC3mIgkM4NNU8IGXTD4\nGFnA8uST3s+LW92u7CsogKsmqc5SZUl5jZIZ7BMTkclIMPn449GsThukYWIi3PoMpukfpZc2GEzd\ngbt3y33asSM8BAqquOKr3GT17eccTZI1CbAdM4OrZtX+rp3OYMbUz8rqg62uynP00NXBYLAzKsKq\naXH2rJ4MXRUGixPded9yrtqJqfYVywAAIABJREFUIi8YcIfgaYPBftfeVobBe/e6H9ePLv7/7J15\nlBxXfe+/t/dlejZpJGuzdsu2bGMsywtgDDGOMQZjE9ZA2BLiEHjEvBhIDhASII+8kANxFhwgkBBO\ngJCwJc8CYzuYsBgv8m5ZtnZrHY00+0zvXe+P6lv3V9VV3bXc6rqtme85OuqZ7q7qmq66de/nfu/3\n95zx+Pu7v48j00daX0REr41FZ7B/LcLgHpOsBnuuSCvPe4yJ6IYzmOaZJovSYPB8SRx3qk3FETsI\n3o3BdFgwuFrVgJg+AdAuJiKXzGHn7+7ED978A/zB5X8QfMceNJhtwuC0ZBjcjIlgjUTo8SZeRGFw\neqRLzuAkcQZHmBm8un+1cGkP7wu9Y27AGQJTQouJiEcFg5vnuRZDjNnf2k2fM6ePNtYMuHMFA8AN\nN+j/b95sP6tPZc4/X3jOYNP9opkJLus+Vq9DTO65hMHdmMwEzA5E9InRjozoHz8QPBVPST12OnlO\nncF0UNINZ7BdTESYmcF2MRH5vBjQdTsmYpZwjbCdwYBaURFTUwJ6mpzBzZiIdDxtFHLkopNTdjB4\ntjILjQwweG5wtYrQC7x6LSBXKjn3lTpBXAoJrMuvo4bB6TTwutfpj1/72vD2GSUM5vf/IXOawYJx\nBherrfb1mcqMAcOtmcFDQ+ZVWMNm1gsAWLHBHwzmcHRuLpyVD+Lc1lBp2NfqoKt2CqkCLlx+oZR9\nd4qJiAIGW++RYcFgOumhEgwuFsVKBLuIiHKtjIOTB42f61odX9r5pbbbpP0u7pQHFmGwVy3C4B6T\nLGfwfFFMn6fawWDLsvqhzJCUcPdOCssZXCqT415AMLhSE8fdzhENABuHN+LGLTd2PV+XZ00iNY+J\nKQk9QjQ7YnEOydRyDq4ZEJnB8SGRGRzGDH2t1gQpijiD47G4aEeG9uPU6XBL+1qLxwEhxkQkREwE\nHfCECUuoQ5a1KaRm2655KCr2nvfoHa7HHvMWE9EICQarnBlsul8UdBgsK/7GLRRdO7DW+B6uXH2l\nnJ13EC2y2siJYD7ZcUduC8CuHVjrODniR1HFRNDM4GQsaXtMoWYG28REMBZ+4Twn0T6hlwJymqZh\n7/heVOud+xjUGbx3r4cPF7Lo39oOBi/LL2uZ+KaTNMdmjrXA4FqjhnJdkMlu5gZ7zQx2iokAOkMA\nDgqzWcDqDbC6j7shCoMzGeBrX9OzYL/UnoEEUlQwuFYT162TM7hTjqobOcHgKFYyuHIGl52dwVb4\naweDl65pA4OTzjB4BZm3DSND17iuyerMdqt2rlxzpbTVm6bJywUGg1V1BtPaMOvWtT6/b2IfGpoZ\ncn35kS+bsq6tou0I5WOyVuEtFC3C4B6TLFBULJMlxQn3MRGXrLikK+5Kk2sxUZQ2iC5W3DmD7ZZg\n9nJMRIkcd7tYkChFcw0n5uVUkKOOyRjUgsHL8suMjk+joMNgWmBApowOdkINZzBAloel5jBdG5Pi\nCHGSHQy2c9b5lTkmomSAoUQC6O+3fIYQRONQ4m3Oc7tjdpsXzHXuua3La+1E27J6PBwYXKk2AKbf\nFFWDwab7RUEfeciChG4heCFdwM/e9TN87aav4dYrbpWz8w6i0KmalhsTMV/UgLg3GCwzIsK633rD\nPiYiPBjcrMget5/IohNcFPbJKARrFxMBCMBy6lQ4E5lOojDYrTN4bG4M1379Wmz+28248Vs3mpyw\ndqIwWCVnsB0MbmgNjM3rdkdrXjCgw3zuFj40ecj0HXJRWMSdwUD4MNhNZnC7mAjqhOuUG8xhsd09\nLOrM4HRaj18677zOMUxBFBUMpvcAKwzm0FZGQTs6IWDNJQ47J9cqtzERFIbXauIeQgE2YA+D+5eL\nTpVTATkgQhjcxoSxZYloaK46+ypp+6aTl/y46fGqHhOhaWceDKZ5wXYwmEZE8MnuE7Mn8L1nvue4\nzQGHRU/z893tj/S6FmFwj0nTOmdiuZEpLsFDTEQ38oKBVmewLJBCIbhnZ7AHB51fhQWD5+bdOaKj\nFF3KOlWaltKQU0gWU8wZHGMxwz1YyRw2fh+GY8EYcCjiDAa6mxssYHBIMREOBeQA0ZnvVmZwu0mP\ndBdXPNC2rMrCgcHVursM+ChE7xfxId0ZLDf+hsPg9pN7F591Md7+grd3rWAkXY5eSsp1Bru9j63u\nX21Mdl2x6orgOyaif++ux0Q0Y26cJrLsvuMNQxukLL21c1oBAsRVKnKiQNzKCQYfnDyI6//1enz4\n7g+bYO8jxx/BpV++FPceuBcA8KO9P8JPDravVq5qTIQdDB4vjhuuKjsYDIgJqkNTh2yfp0XkooLB\nfmIi1ohFVtJgsAyHqhtZYyK6oahgMG0XrTERMmGwkzMYEO2VSs7g2cqsyRlM+0idYHAsBqQGnJ3B\ntB6EU0wEEA4cFSYUYsKwGK1etflVeMsFb8H1m67H+7a/T9q+7TKDo4bBXpzBtZqAmQsFBj97Stxo\nfvuFv208/upjX3XcpnVSiatelxM5s1C0CIN7UDIiE4olMqhKuo+J6EZeMGAZ1CSL0gCCWxhsN9jq\n5ZiIWZoR3cYJHqUoDK4lpqR0CqtVKOsMBoQrs5I4bbh2w4CiAgYTZ3CX4JCTzDB4X5dgMHEoOLjr\n/MipgBwgOu/j4/JifqwyO+Cd27VMsnvtGp1sqGghOYNrdMWDYjCY/F0TTRgs69irtYbIgFfsuGlM\nxByTC4Nn593VOhjMDOKut92Fz1/3edz2otuC75jIKSaim87grMNElt0E14de9CEpS2/tYiIAYBVp\nPo60r/UiVU6ZwV946Av40d4f4bO//Cx+9vzPAOiDzJd89SV4fup50zb+4ud/0XYfw8Pie1U9JoJH\nRADOMNhU1NJGtIicajCYAhFrTMRqsrjFLQy2QkJAjczgbmi5qPEZGQxu5wwOagSh54AV+vPrZXKy\nO7DIbUwELaBHjQOdYiI2bgRmqv4yg7sXE+FswkjGk/jGb3wDO966A0NZywxBANlNXmYy4u8XxvF2\nkhdncJB2QVUYfIjMQdplBlNn8C3bbsHyvN5Q7Ty203EVjxMMBhZzg71oEQb3oGS4L+ZNUNR9TMS2\nld2BwVZnsKxBNI1LSLeB4HbO4KhiImQcuykjWlFnsJEZDEgrIqeyMxiwLNFvFplaKM7gjUNkDe7Q\n/lCdGqHHRFicwXYwuNEIp0gH4CUmorVd8xoT4VbxWNw4x4qN8J3BqsVELO9bbix1Y/1yYyKqHjLg\nuy0aEzGjyS0gRwvfdrqPXbX2Ktx6xa0mZ5QMmWIitO7FROgF5Do4gy3RP8vzy/HOi98pZf+mmIiK\ncAZTENdNGNzOGcx153N3AgC+uPOLKNZ0QnTF6iuMokV3778bO4/tbLsfHhVx+LA52zZK0XsldzqO\nzYl1744wuK89DKawaGBAbHv/fn+f0638OIPp5LEXGMyfVyUmwpoZ3A1FBYvovd/JGdxoBIe0bpzB\nQHeKXraDwTy2pdqoIpHRT4Ry2fy5rM5g68/nn2+OBPJTQA7oXkyEzH53OyXjScPMRo+bH/OxY92P\nEfDiDA4Cg+mEgcz+dlB1jIkYFzD4nCXnGCuaThdPmyY7qRZhsBwtwuAelIxBlVuHLI2J6E/3m918\nIcqaGSyrQSu7hMF2mcE9HRNRdAf/oxTNDEZGIgyOdYZkUWlNP1nf2K+PpEOFwSpmBgNdjIkIqYCc\nxRlMO2P0cVhREeaYCI/O4BDbNd6ezVVnDWATljNYVuERWUrEEoazoZ7XJ3pmZ5vfVUBVSVaUas7g\n/nS/cW1N1MJzBqedqFHIopn7UTmDndou6+9vveJWae1cNpEFg14vgsZE0CX6UcFgWkBudG7UeLxj\n7w5omobv7/4+AP2a3PGbO/DhF3/YeM3//cX/bbsfHhXRaJgHs1GK5p3aOYNHciOwkx0Mpqv/aEwE\nIKBh2NAsSAG5/n6Ryw+0h8G1mtiXKjDYmhncDSWTol/STRjsxhkMBI+KaAeDacFFfh1Vq8DDD8uJ\nYLSqBQbXxRc+khfXaSKnX3uVSnsYbHUGB4HBYccmiJgI4gyWuCKvk4z+J5m85DC4VArnPt1O3XIG\nZ7N6vRJAXtFiGaL3z7PPbn2ex0SsLKxEIV3ABSMXGM89dfIp220uwmA5WoTBPSgZF3exLO567aAo\n7ShesuISqVW528nqDJ6clLPEulT15wxOxVNYkl3i8Gp56gYMbnfcUYrGRCA9LeW4q1UIZ7BiDjrA\n6gzWc4PDjYlQxxlsOvbCsVCdwQaAbLNcLYio24ElyriERKvTzntYg2rTpAdzhmQjQ91zBgOiPZut\nzBpOoNAygxWDooAA7dX0qAHrZdy/y+Q+ppozmDFmQKfTZckF5Eitg3REK1yiiomgmcFObReN/ulP\n9+O9l75X2v4ZY8Y9g8ZEUFfm4cPWd4UnJ2fwiVlxzj118ins2LMDByYPAABetu5lGMoO4Z0Xv9OY\nqPmPXf+BPaf3OO6HFpFTJSrCb0yE3eq2NQOC5tOYCECAqGJRTpark4IUkFu61Ax2233OdvEBdvvo\nhqKIiQAE6I/KGRwVDKbOYH4dve1twPbtwG//NqTLCoOLVfHh6HUaz+rXnqYBo2I+qyMM3roVmCiR\nAnLZ3iogF6Z4tBGdvAw7J7mdrP1/+j1bFaRdYEwUVlMRBi9f3npdThQnjAKo5yw5BwCwddlW4/lF\nGByuFmFwD0qGM7hUpoNoZ6fohqENxkzjTVtuCr5jl7JmBstaYk2dwe2ykq0weGVhJRhjwT9AB4UF\ng+dNGdE94AyWGROhsDPYDIO74AxWKDN4ODuMBGteZyHDYNuYCBv3v1/RDu4ffqRsAgjddgbH2ziD\nCznzMSdjSSzNLXV4dXA5wWBZy/NMzmDFoChA4AtrAHm95y+jXaMre5IKxv7wbNLJ8rgBMKXD4Igm\nNU0xEY0uxkRU60BcP36npbYbhjYY1eRvu/I28z1VgvjgmkIFFZzBFAaPzppH2B/40QeMx7wPm0lk\ncOsVtwIANGj4yD0fcdwPbctVKSInMzP47AFh0bLCIgqiwnQHe42JmJ8X99IlS9yDRAoH7DKD43Hh\nqFsoMHhmJlzQT+WmgBwQ/PO0+56tzmBNA+7U02Rw993B9mundjER1MEfz4prj4LZTpnB1Bmcjqdb\nVvy1g8GFglhVEQYYtcsM7lZMBCByg+lxR1lEztqGzs2Zs++pgrYLqsHgclmc13YREXvGxYTsOcM6\nDL5gmXAGPz32tO12B9p0cRZhsHstwuAelBQYXHHnqMoms3ji957APb91D95/2fuD79ilrM5gQI6j\njDqDk22O23rD6kbxOCA8GFxUwFHVSabMYJkxES6yVKNSt2Cw0bFQyBnMGMNIugnLCsfOmJiIlWvM\nZci7BoPjnZ3B1kmuVf2rQl3twduzUq2EgWG9DapW5XXSVI6JACz3jWYmuJzJPVpITb3JPVpEDgXd\nqdntzOCwFGf2MRH9/bojBwgHBpeqnVc15JI5PHrLo7jrbXfhYy/9mPTPwFdH0XzaqJzBdgXkSrUS\npsrm0e/+CRF4e+OWG43H7730vQY0/d7u7+E/n/1P2/3wmAhAHRhsV2Dq1LzoONDl51R2MRFrB0Ql\nH2tMhKow+PhxMaG4dKl7kNjJGUz3cyZnBgPR5AarEBNhdQZPT+tQTsZ+7dQOBtOJeJYR1x6Fwe2c\nwYzphR45DB7ODreYltrBYEDA0TCcwWLcEY0zmMZE8AJkUTqD7fr/TlERMmFwt7OR7fQ8qd1qB4N5\nRAQAbFmqVy89f+R843dOzuB02rndnJuz//2iWrUIg3tQcmAwKUDTYRC9qn8VrtlwjSkrL2xZM4MB\nOSDFtLy2zXHbQZNuiN64Y9lwnMHd/B69yBwTIQcGVyqaK0gWlegSTQ6DQ42JUCgzGADOyjd7Zrlx\njJ4qt39xAPG2g6XCj4ko183HQTvzYcHgeh3CGdzGIWt1Q4c9yUXbs/5h0TOTFRXhNvs+Kpn+voVw\nYLCKx02hU365PtqR4gwui5F1Ih69M5jC4FhMZJeGkhnccLeqYe3gWvz6xl8PZSXT8j49WmGuOmfk\nMA4Pi8FY1M5gqyuY6tKVl5rutwOZAXz+us8bP79/x/ttYYmKMRG8/czlRKyCaal4ZsjmXZ2dwU4x\nEUC4MNhNZjCNjzhwQDz2AoPpJKQqMDiKzGAgGhjspoAcIBcGW79nqzP46FHxcxhOQrfO4BiBwRRS\nWmEw/butX68fH4XBVplgcLW1feNwdGbG2aXqV/y65sXxALkr8jqJr2Spa3VU6vqHUSkmAggfBtdq\n3XP+t1PH4nGnzcXjAN0gxu9PT489bQB9q5yiIhadwe61CIN7UDJgMI1LoE4XVRSWM7jiEgZbb1gr\n+1qz1sIQvXEnJMLgYlltBx0QTgG5Sk0ETavoDF6eXy6uvwHdVhVuTIQ6zmAAWD0orqtjMyFYE5ri\nEDbfH05VY9pelGsROYObcSgJj87gMEXbs/ywGGnI+juoDkVNGZ0FfeSxEGAwdQZnR/TrWk6tg+jv\nY3Qyta6ZKw7xQUkoMLgezkSWF/GcXUAUamNMREVElRnMlzrTvGCr7GLO3nLBW3DthmsBAIenD+MT\nP/lEy2tWrBCgShVnMD+/TNEkJXHSDWbsR8d2mcHUGaxCTIRTZjBjAorQQf6VV8qLiQAEDC6HNzdt\nUtQxEcDCdgZTIFguy6lNQ9UOBi/JkQss7c4ZnEwCN9+sP3772/X+Js9wt+YFA+6dwdb9yhA/txPp\niDKDmzERgMgNpjA4DDe0k4pF+wkmvzD40OQhfPp/Pu3omKXxCSpERRw6JB6vXdv6/LOniTN4yRbj\nMY+KmC5P48i0/WwzbUvo32oRBrvXIgzuQXXbGRyFrJnBgCQY7HJZcVTO4FQ8ZRTti2VkwmC1v2/A\nvGQKfSekHHeZ9MTiMfVgcDwWFwO0bjiDFcoMBoC1w6JnNjof3jQ9h4/Z/pBiIto4g7sBgyvVBhDT\nRzFtncEWAL66EF7xOMA8EMkNiIGILGcwdYq2y4CPSqb7RjMmQsaxuy0AG5WoMzg1LNEZXIoeBjs5\ngwEzDJa9NLPcCGciy4tMMJi4cHlUxMyMnP6pG9k6g+fEZ6J5gwBw07mtMJgxhjtuuMO4F9z+wO2G\ny44rFtMdeIDuSJUNi/yI942oS5DCYKes6EKq0DIJvHawN2IiAPvlwK9+dW87gxcSDFahgFw7Z7CM\nfVvlBIMziYwpGk9Liv4RdVFaYTAAfOc7+sTbJz5hXhHQ0RlsA4PDhKOGMzgbzb2LO4MBcexROYOd\n2k8nGNxpxcB7/us9+PhPPo7X/dvrbN+vGgx26wxOxBJYNyhecMFI59xg2pacd554vAiD3WsRBveg\npDiDXTpko1JozmCXMDiqzGCA3LzT+s1rbs7cofAj6qhS0QkO6H9jw9U4tF8OBK+QZcUKxkQAJDc4\nPwYkSgvLGdwvemanK+H0zGo10RnK9oUUExGxM9jcrjmf5y0xESFPchVSorJTJgQYTLPvVYSiYcVE\nqB6PQZejxwf0EWapZF4O7kemwrcRFQx0KiAHiEFJpSIfJlUbCjiD+wQMpi5cWkSuW+5gu8xgCqh/\n66LfMvo6m4Y3mfIHqTYOb8RbL3wrAN3pvef0npbXcBhcLjsP3rulSkUMcukgmEOhQqrg2LdljJkm\nahKxhMktbF1GrhoMtkKRF7xAP/cWM4O9K2pnsLXwkwrOYEA+QGoHg2n/CCkxEcO/j7VrxaoHKsbE\nBBydvLKDwdQd28kZLBuOGjA4pHi2TqIgnMcanUXKGUQFg88WyTy+nMGVegU/PfRTAHrhtalSK+3t\nJRjc0BpGAbkNQxuQjIubwNZlW43HTi5oeh+88ELxeBEGu9ciDO5BBYXB1SrQAIGDCmbI2mUGS4HB\ndX/OYLvldWGJ38DoTHEQgKBpQKkHnMHxWBxrCuv0H4b2Y2IyuLWKOoNVhcGm3ODCMZw6Jd9Vpmpm\nML2uprVwemb02snk3eVuepVbZ3BYA2oTDPYQE2EqYBiCaGc83RcCDC6rDYPDiomgMDidUu+47QrI\nAcH6Lppmhv90wNBNORWQAyzL9iVGRdTrQCMWTtvlRXYxEYC5iFy3coM7xUScu/RcfO66z+Hisy7G\n7a+8vW2G8sYhEQx8eLqVZnMYDJjzaqOQ01J77gx2iojgohM1w9lhE5Bq5wwOayITcJcZDLTC0te8\nRv+/l53BUWUGLxeXctdhcKEAWOcwZcJg/j3H463nU1+fiCKJ2hlM+0eN5Iz1rdi+vfP2TTA40wqD\n47G40dePKiYinonm3mUXE5FKiQkBWtQsbNH283wyL+kHBj8x+oSRgQwAByZbb0oqw2AKwwHdFcyj\nTmhEBGBe4eMEg+k5fMkl4vEiDHavRRjcgwoKg4tFAExtOBiGM7heB+oNf5nB3YqJAARAacTlwOBe\ngP9cG4Y26A9Sczg5F7yH2gsw2LRUv/8wKhX5VVBVdQZTWFZMHEOt1ubFPkXbjVQ+pJiINs5gupQ3\nrAG1OQ5FnRUPdLCTzMuHwUUCBzMKwuDBzKCYdOmX5ww2QfCEeu05dR82cmKEGWRQUizCKJIIKBIT\noXUHBlcqAOLRO4Mp5KcuXOoM7jYMzmYFWKKA+qy+s/CByz+AR295FK/a/Kq226JF1J6faiUEqsJg\nu5iITjCY3nOHs8MopAkMthSQ68ZEJuAuMxhohcGvfrX+fxiZwfU6QumPWKVCTMSoc91FqeL3fWvx\nOCAcZ7Ddd8yYgIFROIOLNf3DZRIZ07XXSEiAwTbOYED0w6KKiYhF5Ax2ckVv3qz/f/So/KJ5TqLt\n51ZhdvUFgx86+pDp5wMT6sNgDt6XLgXyefNzf/PA3xiPX3L2S0zPnbf0PDDoE7lOMREf/CBw9dXA\nn/0ZcO654veLMNi9FmFwDyrohV0qQYlBVTvZZQYHBSlejlsFZ3AtNgtAt4gGGVjOz0N5+M91zohw\n6IxV9wfeXonCYAUzgwGLO7OZGyw7KkLVzGCrczIMWEq3mcqGFBPRxhmcSgnnWmgwuOZu0iNKZ3A8\nF3JMhIIOWcaYmEiUGRNhcsiqd9zL8ssQY3r3spKWA4Pn56FEv8VNTAQgFwaXywASCjiD+zo7g7sV\nE8FhMF1GTZ3B1MXcSXR1zuEptZ3BdrmrpVrJcBzaFZGiohM1w9nhtpmiKsdELFsmYJnMmAi6j264\ng1WAwd12BlvzgoHuwWBA5AbbOYO7FRORTWRNrvy6BBjsdO23g8HdiImIJaMpIGcXEwGYgeGzz6Ir\non3/c87RXeuAPxj84LEHTT/3gjOY3z9ouwPo9+yvPvpVAHrE0e9u+13T89lkFhuHdS6wa2wXGlpr\naP+FFwL33Qf8yZ+Y2/VFGOxeizC4ByXFGUwGVSpmyIbhDPYLgwczg111URoxEaxhDAADw2DFv2+u\njdwZDGAcwWGwW0gWpboLg8XdMSp3GZUVBoeRl0w7YYlMOIUsKJyh1aK5+KC6O5nB7lc80CXDYYh2\nxnlBTEAeDKbZ9xkFYTBAzvHMNJCalVMYU/ECsPFYHCM53X5VisuJiVAFBtOVNd2KiahUACSidwY7\nxURE6QwukNhN+pkouO4kkzN4unecwUbBQlI8rmNMhAUGJ2IJ43yyxkRE4Qx2GxNxww16cT8gnJgI\noPswuJuZwQMD4m/dDRhcLIpj7RYMdvqOuTO4WgV277Z/ryy1zQwmzuB63AxqGQO2beu8/Yli+wJy\nQHTOYCMmgjiDoyogx2MiADMMfuaZ7nwW2n6OjAgouhCcwdWqfc49ANz+q9sNA83vXfp7tvcvHhUx\nX53HwcmDbfe1CIP9aREG96DkwGC1B5PpeNpYGiArM9gLDKY3rG4WjwPMAAUp/eYdZGA5NwclBtFu\ntIHA4JnEvsDbq1AYHFHGZCeZMoPX/wRgdekDL2tmcCaRMZx7Uao/3Y+E1rx7hwSDaXsZS4UUE9HG\nGQyIQfX4uPw8aMB8nifbOODpJNey/LIWp7BsmdoykoEuq3NKncEpBR2ygLWI3DE5MREV9dtzPtEw\nFzsBMN3NEeR7n5sDEKcrPaJ3BlthsGnZfpjO4C4OqKmW5YWth8ZEROEM5st7KQzmzuCB9ICn9n1V\nYZXR3+zkDN4ffI46kOxiIjzBYEtmMCAKfVpjIpJJoL9ff6wCDKZQhOcFA+HB4HLrrVy6osoMZkwA\nqW7AYKd4E64onMFA63g6TGdwPNEwsl6tmcG1mPna27JFXHvt5CUmYr4637KapVAQ14JMZ3C9DjSa\nJk4WkTPYKSbivPPEa6yTAWGJtp9LlojM7pMnxd+JygkGz5RnsGtsl+m1qjuD6f5Nn6s0hS88/AUA\n+tjk1itutX3/BSMiN/je/fe23Rdt12XHLZ7Jip4GLMqzpDuDFcyQZYyJZewRO4O7mRcMyIfBuqNK\ndABU/L65+HIQAChm9gcGZ6aYiIiqz3fS1pGt6E83e32b7gJueB/GxuQSQ6szWIW8YEC/zgdiTWtC\n4VgoA05T5z6k3M12mcGAgMG1WjgZZVW3WegEIoUdEQGY27JqTBy4LPcNdQarCkXNMPioHGdwDxw3\nz5dtoAZk9QHrGRcToXUnJkKVzOB0Im3ARurCHR4WEK0bzuBqVQyWTc7gJqD24goG9GKEHJLaZQYP\nDIg2PGpnsF1MhAkGp9vDYNoeLcnqS1baOQf5qpYwYbDbAnIbml6B/n7gFa8Qv987+xiQ14lmO5jn\nJTMYOLNjIgABg8fG7IGUTDkVPuSiECdsGMydwXYKEwZb23AaE1G1wGA3ERGANxgMwCjUxcWYcAfL\ndAbTa5rC4K4WkKPOYIeYiG45g+mqwOFh4Kxm/H61as82nNqFR44/Ag3m8WEvwWB67f/Dw/+A6bIO\ntN7xgnc4xnFeve5q4/Ef/vgPsXd8r+O+Fp3B/rQIg3tQsmGwqoNJXngnlpbjDPZy3CO5EcMpsnl4\nc7Ade1Q4MFj97xsA1g8CaVKeAAAgAElEQVQKC442uD9wp9DkmFTUGVxIF/Cvr/tXxNH8Xi79Ir52\n5KNS92HNDDaKWimg4SRfRj+FoyflT+XSc6gRD6dT6tYZDIQzqKaTHu3Oc9MkVxdWPNC2rAIBGmR1\n0igUVfX6NnVw++XAYOoMVnVyjy5HR58+yjwTYDCNWepuTET0mcGAiIqg+byMiaiIbjiDZwg34ZnB\n89V5w9lKC9251Zp+/QBG50ZtJ/S4O/jIEQvg6bI6OYM7ZQZftfYqXLLiEgxlhvDWC98KAMZydWtM\nBCBg8MREeMDQbQG5z3wG+PjHgTvvFJMAX3/867j6my8E3r8FSM0EzgxeiDC4VpPbXtmJjt/CdAbX\nauJ8cuMMtirMmAgtbnbImvpHzCcMLnmDwe1yg6emJPbNyHnNktFMZJoyg0lMxPr1op2Jyhl8FrlF\n2UVFOMXHPHTsoZbXHpg4AM3inFIVBtPP9Y2nvgEAYGD40Is+5Pj+a9Zfg7dd9DYA+uqVN/77G23j\n+IBFGOxXizC4BzUzE6xTViyiJwqKcfciS3XfGbyisAKfv+7zeNPWN7VtpMJQKDCYfN8qZwYX0gWk\nqs1p+6H9gTuobpfPR61Xn/Nq3LbpXwBNn4C4p/QXHbORvEhVZzAALM8KWHZwXHJoGcwdgkYspJgI\nl85gIJzc4GKJxCUknNu1dYPrDBf6i9e8WP4HsYi2ZWUtXBis6n3MtLKkcExKXnLZZUZ0lDLB4IJ+\nXQeZyLbGHUXVnreLiQi3gFz0zmBAuG5nK7MmlxmPipiZCW5Y6CQKgzkUpLEVXorHcdHc4CPTrfZm\nDoMbDVEZPQrZOSxpbminmIhUPIWH3/MwTtx2AttW6qGk3KFYrpdRrZtJN4fBjUZ4wNBtTMTKlcAn\nPwm8hBScv/2B2/UH2UngrMcXM4M9aDm5TMKOiujkDJYFg+l7VXMGNywwOB6LG33xCoI7g4cy7QvI\nAZ2LyMlyB1NncFQRRzQmgjqD43G9iBsA7NmjTyCELSdnMNAZBtNJogePiuJxfAKzWCuaVuoAasFg\neu3zzzU6O4onRp8AAGxbuQ2blzib7hhjuOOGO7BlyRYAwKMnHsWHfmzPZfLiK1+EwR60CIN7VEGW\nGvdCATkAJCZCv7tPTgaD4F5gMAD8wRV/gG+9/ltYO7jW/059yA4GBwEIqjiq3GqgwdcCHsWJ08Gm\n6cs94Azmev2WtwAPvl//gWnYfUrelLU1M9i4thTQyn4Bg49MSi5nDAsMZuEAlXgsbrSjnZzBYcDg\n+bI4z9NtRtN9qT788t2/xDd/45uO+VwyRduyUn0WrBkDL6uTVu0BKGqNiZiftwyUPKpWAxqa+sdt\ncmf26aOdM8EZbIqJaHQxJkKBzGDAUkRu1r6IXNjuYFsYTAbDfpzBFAYfnm6fGxxlVETHmIgOMBjQ\nB9d0lUg7WMRhMBBeVIRbGGzV3vG92Hl8p/hFeso1DFYlJoLuo50rOgxxZzAAjI46v06GVILB7ZzB\nYcLgOhMfjvc/jYkYiBm0RAK4+GJ32+cTQQwMA5kB29d0gsFhFJEzw+BoJjJpTIT1uHlucLXanRx4\n3nbm8zrcdYLBd98N/P7vA9/7nvgdhcHcGZxNZPGqza8yfm8tIqcSDLaLibj3gMj+vXbDtR230Zfq\nw7+/4d+N8+eOh+8w9T+46DW/CIPdaxEG96iCOC96JSaCz5g24voVrWnBGjWvMDgqhVNArjcygwFg\nCRO5wbuPHwy0rWo9eieZWy1dCuCUCLOiy3CDqlSCXsSpmd2lkjN47ZDoiR6fDdcZTDvcsv8GvJMS\niTO4LM7zdLJ9u7Z12Va8+YI3dwUomQYh1VnDjSXNGdwDMNgMRfXOa5D7WK+s7KGFqs6omIhY92Mi\nymUokRkMmM9nCmBpEbmwc4OpGYLDYHq/9OMM5i4rwD43WBUYHLSAnJ14TATQWkSuGzDYbWawVd9+\n+tvmX2Tcw2AnZzAFL910BieTQKzLI3IKg8N2BncrJkJpZzBZmcaj2vj1WmyIm+OFF7p3iXNn8FB2\nyLEodBTOYFPxxZDi2TrJKSYC6H5uMO/38/aUwmB+Pzl8GLjhBuCOO4BdpEYcd7uOzY0ZK0a3rdyG\nTcObxDYsucG5nO6ABqKHwXbO4Lv332387hUbXgE3unD5hbj1ct3EUtfq+MaT32h5TSwmrp1FGOxe\nizC4RxUEButQVP3BJL9ZarGKMfgN4pBdqDBYlUG0Wy1LbTAeP3cq2JRthSx5TCV6AAbPih6CTBhs\nrUavUmbwhmUCBp8qh+sMnqrpI56hzJB0pziHq3bOYDqgDgcGi/M842U0HbKsgxCZMLheB+ouC+dF\nqSU58uVndZoSpD3vlclc2c5ga0yECs7ghZwZDDg7g8OGwR1jIjwWkAMszuCpVmfwBtEtUQYG2zmD\nnZaKtxMtZBW1M9iLO/bfnv438y86OINVzgzudl4w0F0YHIUz2Ok7jioz2C6mjGd8F7VpY5zrNiIC\nEDDYKS8Y8OYMPnrU/b7biU7waBFNZJpiIiwwmDuDgfBzgzVNtJ28Pd22TTx/b9Mku2NHax79r/2a\ncInTvODtK7ebauxYncGMCfAaNQy2OoM1TcPd+3QYnE1k8aI1L3K9rXde/E7j8T899k8tWckApJtO\nFoIWYXCvqXmzCOwsojERijpFTc69ZPAicr0SjxF2ZrCq8IBrVU6Mug5MBoPB5WpvZAYD+uxvohQO\nDC6VYOQFA2o5gzefJWwJE7VwYfBERR/xLMsvc3i1f3FAE4UzmBYUy6bUOc9pZ1w2DO6Vyb2B9IC4\n12T1L38hwGDZmcH6pKZoz1WAwXXNHBNRKMCIQjnTM4MBZ2dwN2MieAE5er/0VUBuoDecwbwPzBjQ\n39/8Xcl9ZrCdaJ/TWkRO1ZiIZ8aeMTInDaWnezYzOGhesF2/o5NUdQYH6R+o7Ayus1YYbLpeM/rA\n/sYb3W27oTWMiaB2k0CdYHAYqzrMMDicWh2dRGMirO1aN53BMzMil5iPBTZtEhOMv/iFvtrlhz8U\n77nzTn2scO+9YsXArjFhF37hWS/E+iECgydbb0qqwGCrM/jZ08/i6Iw+63DV2qs8nRNblm7Blauv\nBAA8efJJPHbisZbXLMJg71qEwb2mJhxcCDERplzTRHAYXCrB5K6JckDVTvTGnSrIdwarCsG51vWL\nmIjDs/sCbWuuJHpiuYw6kMxOjAHDqRBhcEL0klXKDF4zKGwJs5APg43BQaKEuZreIQwFBrdxBocP\ng0lmcEqd9jwZTxqQnMLgubk2b3KpXrmPMcaEaycn3xmsantucmfmg8djqLLChS7FtTqDYzExAFvM\nDA5PnTKDgxaQe366FQavXStAfzcyJp3Ez6uBAQEJAsdEpKKNifADg1tcwYCnmAg3mcFl73zVszhw\n9usMrjfq+M3v/Cb6PtOHv3/w7z2990x0Brv5joedTbTSARI9h+xgMIW4390xgXvu0aMC3GiqNAUN\nujMyiDP4bNH04dAhd/vuJHrcjZj4oZv3ruHsMBj0Rts6ntqyRTwO2xlM+/y0Pb3uOv3/ahX48Y+F\nQ3hkBHjlK1snTQ5Nii9nw9AGszO4Awy2MdB2TVZnMHcFA+7ygq16xwveYTz+58f+GXOVOfzHrv/A\n3vG9ABZhsB8twuBeUzPeITAM7gGnqNkZrF/VgWFwSlAIOmuokuiNOy0NBqv/fXNtWiKcwcdLwUZd\n8xQGp9WGwQAwkhWD2IXiDKYOwmIiRGdwbsz4XZTO4DAG1CUymlbJGQyI9szqDA7aOe0VZzBAoiIW\nUExEX6rPcIazQnAYrEpMBN23FQYDZOm+bBisSGYwhfz0HrWK1Ek8Jr8ZNymMAnIjuRGjDbeLiUin\nxXJqFWIiTJEkEjODo4iJ8JoZrGmaPQxOT6FUcr638L5AKiXyNK3qtZiIT/3Pp/DNp76JWqOGz/3q\nc57eGxUMHrCpc5ZMiu8k7MzgZNLenRx033aibVU83d4ZvOacCVxzjftt84gIIBgMXr1aTHQ93zoP\n5kv0mubxGHEW7+p9OxVPYWVBb7QPTZkpdy6nT/ABujM4TFhK2006FnjlK8XjP/1TkYV/3XX2+eH0\nGNYOrsVQdggDaf1i2j/ROlbm11m12p22zEm03zcwANxz4B7jZ7d5wVRvuuBNxr36a49/DZv+dhPe\n8O9vwOX/eDnmKnNSTScLRYswuNfEGgDkOoNVdRaZck0lxEToQEy0DioBMSqTM7hPVgE59WNBuDaM\nrARqenDcqbo8GNyXVQuS2WnZUB4o6wOzY9OyYTBxBiuUGVxIFxCr6cdcyx5DrZWvBJIBg/NitDOS\na7NO0KecnMG7T+3G4frDxs+hx0Sk1YKDdjC40bBUm/ahXoGiALAk2yQq6VkgXlkQMBgg4FBCZrDV\nGSw789uLeJ+p3qi3PEdhsKwBpjXzXZnMYAJglywRea+ycied1KmAnJ/JPsaYERVhFxMBiKiIsTHz\nZ+iWNE30gSkM5jERMRYzgV23ahcTEfaqFkA4g+Nxd0XU9k3sw+5Tup1vVYHMQjSX2TuBDw76nCIi\ngN6Cwffuvxef/OknjZ/3T+w3TQx0UjdhMIWidjAYEPA2bBgMmHODaWaubDchHauzZHtnsJfvDpAH\ng1MpUUROFgw2OYObjugoVrSsHdSJ78m5kyhWzScWj4qYngZOyBtutcjJGfzylwOJZvftySfF7ykk\npuIwOBFLGCYaHhVxeOpwy+Q0vc6ijIqg/d18fxU/OfATAPo47KLlF3ne3mBmEDefdzMAYKo8Zdz7\nx4vjeHz0caN9r1QgfTx5pmoRBveamCRncA8MJu2cwUE6o1Z3JM2zVEn0xp3I6T2oYtH/krVeywwe\nHooBk/oNbgL7bQPi3WqeFNbK9wAMpkXkFoozGACy1WZvvHAs0ISPnexgcNjOYH7O7hrbhYvuuAjX\nf287sEFfGhXGgLpcI4USI4RkdrKDwUDwQVev3McAy0Ate1pC9n1vtOfcoallJoB4+YyIiaD7bucM\nrlTkwSQ9JkI9ZzCFwYwJqBI2DG5XQG4wM+gbOqzp12HwTGUGU6XWk5XmBh886GsXgTQ/Lwa31NnI\nIdJAesAUY+JWqhSQcxsRQXMib9xCAlbT+sDICSbye86ZAINPzJ7AW7/7ViMmgOvR44+63kY6LYDR\n6Gj71wYVHbP29dm/ppswmOYGb9okHsuGwbytymaBSkN8OGsBOQCYKHrrGMiCwYCIijhxQs55Tyf7\n682YiCjuW2sH1hqPrZN8tIhcmLnBtN2k7WmhALz4xebXMgb8+q/bb4fHRKzpX2OYunhURF2rt6xo\n4ZnyQLQwmO57X/FhI4romg3X+LpfAcC7Ln6X7e93je1CnqAd2U7/M1WLMLjXJM0ZrP5g0uRelJUZ\nnFLfGUyXDcVy4oD9Nua9lhk8OAhgXM8NrseKgaBokcDgvpxakMxOy5fDgMEz1SmMjsu5k7VkBivk\nDAaAApoUIT2LQ8dn2r/Yo3jnPtYfMgxuAggNmgGJvvnkN1Ft6Odg/AX/DiAkGFxVA5LZiQ9E5ipz\nyOYaxu8XEgw2YiIAIHd64TiDaXZr/iRmZnRXuB+pGBNhLSAHWJbvS4qKaHEGR5gZnElk0J/WR5k0\nMxgQURHj4+GCtHYF5PxERHCZcoMVLCLnlLvKYbCfiAjA4gyOMDPYLQymheOuOvsq8URa7yR3gsHt\nIGE3YTBdIeO1gNxtP77NmIyh7tKdx3d62g53B3fLGZzPO0d0yIbB7aA/dQZTGCwbHvGxen8/UKq1\nj4lw6ww+NnMMX3/866ZYkCAF5AARmQDIKSJngsFoOoMjWNFCYbA1KqJbReScYiIAkRvMdeml9gUO\np0pTmCrr7Rt3OwNomxusmjM4HgeOFvcav7981eW+t3nthmvx6Zd/Gr910W/hL1/xl8bvd43tkmo6\nWShahMG9JtYAYrVAMNiatahqbIDszOBiEWZnsKKZwXQJez0remh+j10lR5UbDQ4CmFxn/Hx42n81\nmiIprJVXvIAcALz73UBsXgxmX3bDqJT8RdWdwUMJsU7viUNyqw/xzn1ysDvOYEBERezYu8P4HTv7\n5wDCgcEV4gyOcvm8nfhARIOGVF5Mxi0oGJwlRCU7vmBgsAnM9engYsbnXI9K9zHeZ2rnDAbkwWCV\nMoMB8b1SZzDQvdxgqzN4tjKLuaretvgpHsfFncGAfb9jgyhnEAkMpn1Afp5pmhYYBtNoCWtMRKEg\nljKrCIO3r9qOVLyZT5JpD4PdxERQh27YMJgCMy/O4MdPPI5vPPkNALoj9Ntv+LbxnF8YPDUVbsE8\nPmYttEkxOZOdwYWCGQbzIs4U4vK4F9vtlGfwkbs/gq1f2IpVn1uFt3//7fjxvh8bz6/qX+X4Xi/O\nYEBOVIS5cF6EzmACTmkBNgA45xzxeO9ehCbabneCwddfb78NU14wAdw8JgIADkyoCYP5vgcGgNPz\np4zfB7lXM8bw0Zd+FP9y87/gbRe9zfj9M6eeWYTBPtSzMJgxNsIYu4Ex9meMsR2MsTHGWKP576s+\ntnc9Y+y7jLHDjLFS8//vMsYc0ltst5FljH2YMfYgY+w0Y2yWMfYMY+yvGGNnd96CS+XGFkZmcHJh\nZgZnk1lj2V4lJQZbwWCwcDCpCv+5+voAlMWgZrrs/2SnMDiVUBeacL3whcBNrxAAZfeRE7jttuDb\nVd0Vv3FATNH/197vSN027wzECyEXkCNuvXKtjOMzx/HI8UeM39WGngFypzA+Lr9YhcrOYO4iBIBE\nXlzLQTtppRKAuLi+Vb2PAVYYLNcZrHJ7bnYGBysiNz8PZb5vfo1V69WW57riDI4wMxgQ3+t0edoE\nOGj2ZphREVYYTB3KNMbCqzo5gykwOSx3ztKV6PnEYyLmqnPGpARdcu5F7WIiGBPu4LALyLmFwU+e\n1AM2c8kcNgxtMIootXMGNxrqZQZTYOYFBv/xvX9sxEN87KqP4eq1VxttAu1zuBHNDR4bc35dUFGH\nrJNkwGDar3CbGbxunXAry4RHmibaqqDO4E/c9wn85S//ErvGdpl+n0vm8LaL3oZXn/Nqx/eaYHC1\nMww+dMj2JZ5EJzpqiDAzuI0zeONG8XjfvvA+Ay1kZo1Iufhi88SEY17wpD0M3jAkZigfPWGOiFEF\nBvP71sAAcIrA4KW5pQ7v8Kaz+s4y7gGLzmB/6lkYDGAUwH8B+DiAVwIYBqA1/7kW0/WPAO4EcBOA\nlQCSzf9vArCDMfZFF9vZBOBxAH8BYBuAQQBZAOcA+N8AnmCM3eDlszkqfzI4DO4Bh6xsZzB1R8ZZ\nQrgJFBQf0JRiws3od2Cp0vJaN4rFgGzM2aniRSUCg5MxtRyTTtq2hbrpTuD++4Ntz1iKmBJ/Rwro\nVNDrNr4daOi3o3unvmjruPMrIyai0D1ncKlWwo/2/qj1RWt+iUoFePBBufuu1NU9z+m5Fs/Jg8HF\nIkzRJ6pNcFAt2JgICuYCFpGbm4My3zevNzBfbT2Jw4DBesyPOs5gU24wAbHdcgZbC8gdnDxo/Hx2\nv3/fBYXB1vxFAFgjjMNSllJ7lV1MBAVIYcREAOHDYO4MTrnoks+UZ7B/Qi8sfOGyCxFjMQxkOAx2\nzgymYLeXYfBPD/4UP9z7QwD6+fre7e9FMp40CjE9d/o5TwaKbhSRs0JRJ3F4W60C9dYEHldy6wx+\n2cv0/1MpPbeVnxMy4VGpJDK+rc5gL5nBs5VZfOXRrwAAGBguX3U5PnbVx3DfO+7D+IfH8fWbv972\nfkj7YDRnmIrGRMhwBptgsKaIM9gCg1etEm1OmDCYnlPWticWA97+dv3xuecC27fbb8PkDCbHdPmq\ny42/6z8/9s+m71cFGKxpYt+Dg+HAYMYYzh85H4A+ictrLQGLMNitehkGAwL+HgLwYwDMxzb+D4B3\nN7ezE8BbAFzW/P+R5u9/hzH2aacNMMb6oMPkTc3XfwnANQBeBOCjAGYA9AP4FmPMe+lEq/pGA13Y\nxSJMYIh2BFUSzTVlKbmZwbmEmgCci8OqEpsA4vpdNZAzmBSQU9lBx5WLExhsMzhxq7LCy+edZF5a\nfQJHj/rvGANkwJEWAwTVYPBlW84GnnsNAGCGHcV/Pvuf0rZtV0BuJG8TyhVQJmdwvWyKiDDUjIr4\n5Cdbn/IrTQOqNXXhoOHaAsCy4sYlBQanBBVS9T4GtBaQCwyDe6QgqF1MRCBnsCLfN28/7aBLGDB4\nchLKZAYDZsc3zfSnMLhbzuC+PmDfhBjJbxzeaPMOd1ozIGjv89OtRIQeXxQw2C4mwgSD0xJiItrA\n4Pn5cACpl5iIp04+ZTzmANToz2SmAGi2MNitY5TC4DBjEwDz39JNZrCmafije//I+PmTL/ukAYK2\nrdhm/J4W2OskCoPDmsCZnxdZ8W5iIgD/7mC3MPi664AHHgCeflp3xXJIJzMzmLZTrpzBZfsbxjee\n/IZxr3nXxe/Cr37nV/jUr30KV6+72tW9YCA9YFwj+8btqWd4MREaatB/iDwz2BITEY+LHPj9+/3X\nM+ikdjAYAD7zGeC//xv4+c9FJI9VdKUKPaYluSV498XvBqCvEvnCQ18wnlMBBheLYkJkYAA4VZQP\ngwEYMBgAivndxuNFGOxOvQyD/wzAawCcpWnaegC/53UDjLHNAP4QOsB9CMBLNE37tqZpOzVN+zaA\nq6ADYgbgQ4yxDQ6b+jCAzc3tfEjTtPdqmnafpmkPaJr2F9CdyzUAOQB/7fVztig/GtwZTAZVdImY\nSqIznbkB/YoOkrdJncHZhLouMsDiXMzpa7cCwWCyvFZleMCVJ+fkdABnsClLVTHHpJOsMLhaDVbp\n2RhwEBhMB38qaO1aAA/9vvHz3z/091K2q2miM9Bo5m/HWKxt5WW/oh3d2cqskedGoVVqkw6Dd+wA\nHnpIzn6rVUCLqTvpYbi2ALCMZGewInCwk0wxEQvJGZyX5wy2wuAoVzTxgXW5Xka5ZiZGQ2SlviwY\nPD4OIzM4GUv6rsAtS/R7pbnB3Y6JyGT0wTN3igLmZbNeZcoMtnEGZ7MCjEbtDObnGYXBfmMi6OTw\n6flW+2/YReS8wGAeEQHozmCATDjG6kBy3hbouS0sprIzeM/4HvzqyK8AAFtHtpqyMi9ZcYnxeOcx\n97nBmzeLx2EV0bJCUSd1EwYzBlx2mcgLDsMZTMfpjs7gTHtnsKZppv7w+y57n+fPwRjD5mH9iz40\ndQiVeqXlNdQZLDUmIi72FYUzOJ/KG/0vqzMYEFERpRJwwn+t8rbqBIOTSeDlLze3s1Y5OYMB4LYX\n3WaYvG5/4HZjxZIKMNi6moU6g00r5gKKwuCZjIhSoREdi3JWz8JgTdP+TNO0HZqmBUk5+iAAPpL6\nX5qmmXr1mqYVAfyv5o+J5utNYowlmq/RADyjadrnrK/RNO1+AF+BDpWvZoxts77Gk/okwOB0DziD\nSWZwthDcGazHY+gtA1/mqaqW5QgMbjoaA8HgHogFoeonMPj0rL+TvVIB6hCXdNRuKreywmAgWD6h\ngMHqxkT09QHDk68ATusd1v8+8N94Ziz4yKRcFvm89Yx+HY3kRkKBKRQG33fwPsPJ8ZpzXoMtS7bo\nn2H5w8ZS9099Ss5+dTio7qQHPde0VHjOYJXbNVOnV3IBOZVXepjasmZmsN9j12Gw6Nmr4AwGWt3B\nYTiDJyZgOINTEecFA+5iIroBg7nLUBYMLqQLhlPPLjMYAFav1v8/ejQ8J5mT7GIiKEDyGxMxlBky\ngIk1kxQIHwZ7yQymxeO4M5hOOCIzZXtv6QRkjLcrDIOfO/2c8fh1573OlBe/baUYVj5ywn1u8IUX\nisdPPun8uiCi41VVYLDTvmXCYGu2uR0MpvcSuwJyvzj8C+Ocv3zV5Sbo70Wbl+h964bWMLWXXAMD\noj2VGhOhwIoWDk+PTh9tiaDrRm4wPafyPrup1NVMJy0BvYjcmy54EwAdtn71Ub1slgowmO6XZgbn\nkjmpUV/nLT3PeDyZFGPHRWewO/UsDJakG6FD3N2aptn6tDRNewDAs9BB7mttXvJyAPyS+1qbff0z\neXyz509KJdkZrCoMpg1Fuk+/oqem/C+ZN8VEpNR2BpuyFmXA4B74vqkGsgIGn5r25wyenYUy8MCL\n7GBwkM6ZrTNYwdUA69fFTO7gOx6+I/A2xcBAQzWlX0dh5AUD5o7u93Z/z3j8qs2vwkvOfgkAoI4q\nRi7WbzX/9V/AI95qvdhKdacojYlopCQXkOuR69taQC74pKYY8ZoKrSom6ZnBFP5HOKEbDQzWyVE2\n4rxgwJ0zOMzMYCcYHGMxU+6vH/H3H5k+gobWSns5DK5Ww8tYdVLHmAifMJgxhguX61Tw+OxxjM2Z\nPTbdcga7yQymMJh/ZnqPQXpaWkyEajC43aTH1pGtxkSwF2fwuefquaUA8NRT7V/rV1aHrJNkw+B2\n0N8qGhMhq8CvFYIXa+LDcRgcj8WN89eugJzJFbzduyuYizuDAWDP6T0tzzMmoiKefz7430DE00Vv\nPOOxCnWtjqPT5lnKbsNgL+ckFXcGr+hbYQvVP/LijxiP/+qXf4Vao6YEDHZyBsuMiADMzuBTTExo\nLsJgd1qwMJgxth56kTgA+GmHl/PnVzHG1lqee4nN6+z0MAB+Wr7Y1Yd0UkBnsD6IVh8O0szgVF7c\nRP02asVS3RhQ9SnsIgMswKqZteg3IsM6iFb1+6YaypGCB7P+YPDMDHoiG9uqkdwIGI8/l+kMVriA\nHKBXdMZj7wCqeif5O898B1rAHqnREUjNohHTr/2wYDBdAnffwfsA6MU+rtt4nQGDAeCKN/7cePyV\nrwTfb7EIUwyMajER9FyrJxYzg5E7jVLJP2jopePOJXNi4qlPgjM4qQb8dwuDg8RaUY2Pw3BYqbDC\nxckZnMuJ4w/TGcwLyHGwxDODzx44O3BhYO66qjaqpmMzno+wiFynmAi/MBgALlomypnQKAYgXBis\naSJTspMzWNM04+olHSQAACAASURBVLOt7l9ttKum/kx6yhYk0uXC7WAwhbJhw2CvmcEUBm8cMmdj\npxNpA47vPrUbcxV366MzGREVsWtXsPoUTupmTIRb6G8Vh3RGwWUJcuMMBkS8izUmYt/4Pnxn13cA\n6PDsDVvf4PuzmGDweCsMBkRURLkcfKLL+BumRZ/Pb6Z5UJlygy1RETwmBOgODPZyTnKVaiUjm98a\nEcF10fKLcP2m6wHox3j/4fuVgMF0v/0DDSOGSDYMXjOwxjAIjDYWYbBXLVgYDOB88ni346tanz/P\n8pyr7WiaVgewF7rD2LoNb2o6g/1yElpALh1PKwcPuKgzOJkVV7Rvhyyp/N2XVtsZbAJWC9AZvLRf\n2AfG54I4g9XPxrYqGU+KG6UEZ7BdATnVMoOBJgwuDQGHrgYAHJs5ht2nOjXN7WVXPC40Z7DN8u0b\nt9yIkfyICQbPLREwWMZyPGtMhHLOYLKEtxYPJzM4hlgkxUncKpvMisnNrN4Z9j2paY3HUDzyyACH\nAZzBjYZ5EpuBRZI/yNUOBlN37MGDcvY3MQEjMzjK4+aiq1eoMxgQURFHj8pz2FFVq+KeVijoAIUD\n0SAREVzUWXx4unUWljuDgWhhsJ0zmOaPehWPXACAJ0e7B4NJ7dOOMPjI9BHjeHleMGBxBmfsYTB1\nqp91VuvzxtsVdgbTQol25/olZ+kRAho0T0XkLrhAfJ69e12/zbWicgb7iYkA5AGkdgXkqNmJT+JM\nliYNA4Smafj9Hb+PakPv292y7ZZAbT+PiQDsncGA3CJyBgzOyJmsCiIKUK1F5LrpDE4m3UXhWEXz\n6ynYtuotF7zFePzDvT9UAgbTe1aqfwp1TZ9tkg2DYyyG80Z0tDZW22/E8S3CYHdayDCYdOnQqUtH\ne4RrLM/x7cxpmtbJr8u3M8IY809g8yehaf6DselgUkUoxEWXv8YzEmBwrXdyc02FdwLA4Gq12dnu\nMRi8YliclxPzQZzBvXXcXMZgu+8EAE16ZrCKYHzduuaDfdcav7t7/92BtmkHg0dyI4G26STqlkvF\nU7j18lvxtZv05KCNQxsNCP3wyV8ATO8QjQVJvG9Kjw0QbZvMHC4ZouCsEpPsDG46RbOJPjDGgm0w\nZBm5wTmdpvh1yNLjBtRv14y2LDMFJEq+jls4/PXj7ktF+31T+GSFwUuXAsNNI/izz8rZH80MVsIZ\n7BATAQgYXC4Hq/HgJApY+vosS+cHg8NgmsdolxusCgzmzmCaMxoEtnBXKWCOYgCAZWT+VPYxUxdm\nJ1BilxcMWDKDHZzBdGLG6GvYiEZVqAaD+bmejqexorCi5XmaG/zoiUddfw6aGxxGVISKBeSsosv3\n/e7bKjcF5AAxiVNtVA3T0ree+pZRhHhN/xr80Uv+KNBnceMMlgmDjXNbBRjcxhm8fr0ekQGEB4M5\nqwkaEQG0h8HXbbrOeLxjzw709YkIGBWcwfE+UTxONgwGRFSEBg1YouerL8Jgd1rIMJjSkFnHV+mi\n2NU68uLb6bSNTttxr+ZyS79REbSAnMoDSVPhobS4ofheZloVf37VgIlV1L0YK+jft5+BFV0mz6W6\nkwwAVo2Iy3OqKMcZrPK5bpUBUBJlIDMlNTM4m8gquRrAGKDtf4Xxu3v23xNom910Br/1wrfid174\nO/jAZR/Ac+9/Dp9/5eeNQSpjDC9eo6cDTZenMbBJL3AgI3NSn9xTFw5ScFZm8mAwdYrmEmods52M\n3ODsOAAtGAzuoXbNOrEZDAbrxx31MbdzBgPAFr1eJA4fDl7NulhsnusJdZzB2WTWmFDky1e5wi4i\nZ116Td2SG4c32rzDm0zO4Kn2zuAgk7R+xPuAyaQAXbJiIraObDXiqZ44aYbBW7eKx7KLjFXFopaO\nmcE0vsIEg11kBh84IB63g8GMCXewSjBY0zQDBm8Y2mBbBLedu7uduDMYCAcG90IBOQrquuEMpu04\nvW4nS5OYKE7gg3eJevV/96q/C3zPW5JbYkDnTjERAHDokO1LXMvOGWyatOmiaJtudQan06JND9sZ\n7BsGk8/sFBMB6GOb7Su3AwAeH30cx2aOGtebCjBYyxEYnJUPg2kROYzoURGLMNidFjIMpj3qTglB\n5JYN6+2Fb8dNylC77bhX/iTAGr5gsKZZnMEKOgS56CCylBDuE7+NWqlOnMGKA1EKrBKD/p3B1kF0\nKp5SEgRatWa56PjMVoPDYAamdKElq6xF5GRmBqu6GsAYoJ28EJmafv7fd/A+VOtVx/d0kjEw6AIM\nHsoO4cs3fhm3X3+7bYftytVXGo+z59wPQCYMVneyh4KzshZOTEQ+qTYQBYgzOF4FUrOmgaIX9TQM\n7jvh6/5tvY9FvbLHLQwGgOeeC7aviQkArGHkgqsSh8JXQlhzdWlMRhgweJbYLgqF9kW1/IiCAztn\nsAqZwYODws0mCwbnU3lsGtYDNJ8++TTqDREeu24dkG9ecrJhMAWunYCokzPYlBnsEBPh1hkMCBhM\nYW0Y8pIZfGL2hAETnc7zC5YJqmsF+u3UTRjcrZiIeNzbkvwwYiLaOYPpCg8a7zJRmsCf/+zPjRUX\nN597M27ccqOUz8OjIg5PHTZ9Fq5wnMEkM1iFmIipVsrNoyJOnw4HmgaGwS6dwYBesJqLRkWoEBPR\nSHfHGQxgEQZ71EKGwbQl7FRxgnZRrLcoA7W42Ge77bhXrA5kx31d3NUq0EDNqEau8kCSuk+KseAw\nuNzoHWfwUHYIcRYHALA+/zDYcCUlxfLaXtCK5XGgon9HczV/FngaE5FC3tZJoaqsMHh01P/AxOoM\nVrF4HEBcCVoMhVO6O3imMoMHjj7ge5vCGSzyGMKCwZ105RoBg7VVvwKgX58y4xKA6EGZVdQNUtTC\nKSCnGgC3k+EMBoDc6WAre3hWMosp4RRtJ1Nblh/15QxW7T7mBQYHjYqgecGAGs5gQED+qfKUCSxQ\nZzDNaZUlqzNYNgxeMyBor11mMD2+qGDwEIkGNmUGZ/1nBgMCsBZrRZPjOhYTwHD/fvieyLKTFe63\n087jOwHopoZzlpxj/N5LTEQ2a469sBMH39Y+9+nTcnOwvTiDO+UFA3q7tH5wPQDgqZNPoaE1XH2O\njRvF/mXDfqC7MRGnmrxp0CN3DCMmwqmAXCKWMNV2sDqDf3LwJwD0+/vfXP83cj4MRFSEBg37xltt\nsNQZfCZlBi/JLjHG/O1gMBCOO1gqDG7jDAbMMHjHnh2Rw2C630pyEQarqt6hI/JFuzOdRhZ0pGmN\ng+DbcTM6abcdd6oDOAYg9RM8+ugjeOQR+3/Hjx+3fbsVHKjqEuTi7pMZTQYM7h1ncIzFDGil5fRj\nn501L6lzI9WW17rVyAiAst5rLDUCOIObcSiZeG8cN5cVBgP+B546DNaMv4WqqwEKBVGopr5HTlRE\nN2MiOmnbim3GAGB++H7j90Fzg1WPiehL9RnLj4t1ec7guVIFiOvVhwpptY7ZTiYYnD0txRkcdXau\nG9Es7UDO4FgVSOgjzKjv3xQGT5VbD0gmDB4fh5EXDKiRGQyYv9eTc6J97XZMBIXBG4eCx0SsKqwy\n2is7Z3A+L2BsN2FwoyH6vhR08czgZCxpKkrlR7QomzU3+CJhxMXTTwfajUnWDGgnTZYm8dxp3WZ/\n8VkXIxUX/ptOBeQ0TcDgdeuEq9pJHA6dPCkA/B136Hngr3lN+/d6kRcY7HbSg2c/z1ZmcXDyoKvP\nkUgA5zc5yp498uMxuuUMrtVEm7O2PTNrURgxEdZ4jGJNPyjrhB6dxJkoThjf9dqBtVjdvxqy1Ck3\neMUK3VENBI+JML4/BWAwY8xw1D4/9bxRpI8rTBjcaIi/hZSYiA7O4EtXXmqA1nv234PCoN5nqlTC\nj72xE538L8fDhcHrBtcZJjoMHQBwHIcPO3My/q9ScbOw/8zWQobBtBvXqbWlReOsVgG+nTxjrJPl\njm9nTNM0f2uf5wF8CcDkG/He927Dtm32/774xS/avr1UgqmQlGrgwCruPplvTBnuGL9Zi2Wo656z\nE4dW1dRJAPrNy+ux9zQMrui9xioLXkAuF1cTgDrJDgb7nak38iaby4xVdQYDYvnmxE4Bg4MUkbMt\nIJcPp4BcJ2WTWVx81sUAgJnMM0YnOWhUhOoxETEWMyYdZ+vynMGzFXHMvQCDh7PD4oecPBisusxt\nmT9n8Pw8lJrw6LozOKGuMxgwR0V0Myair084Jgczg4GdsQCQjCeN4lx2MBgQGZNHjuiD/W5oelq4\nUikM5s7gwcxg4ImhdpmztMiYTPeoW2fww8ceNh5ftvIy03OdnMGjowKEdIqIAIBzzxWP+fX7pS/p\n/995p7zCiH5hcLtJj4uWie/QCvTbiTu/Gw1g927Xb3OlbjmDjxwB6s10ExVgsJMzuAUGk5iI/RP7\njWtaxkoHKh4DAwB7TrfC4ERCTOYFdQaPjzcf0MzgdDSZwYBw1JZqJdPkJRAuDKYANqgzeCgz1NHA\nF2MxvHLTKwHoKyvrq35hPBeFO5jucx7hwuBELCFW9gweBPBF/OhHzpyM/xuTUcm7x7WQYfAu8vhc\nx1e1Pv+Mn+0wxuIANkKnetZtuFcOwO8C2Ph/8OlP78TOnfb/brnlFtu3W8GBqi5BLpOLrwl0/DRo\njQZQQ+/ERADi2LVY1chd8toJnZ+HnjeYUmN5rVvl80Csqp+btfhMy0yuG9HM4F4oMEVlB4P95gbr\nhbZEr1Tl1QB8oKZNrsGGfp2oPHDkAVvg4kYqOYMB4IpVV4gfVj0IQBIMbq72YFAzNoDDs7mqRGdw\nVdzH+jPqX99GZjAAZOXERKgG/u1kzQz2HROhUE5yJxi8caOo4h0UrOgwmDiDVckMpjB4TsDgsGMi\naEG+TK5qAFuZ4ITnBo/OjaJca81n4jC4UhHL0sMWvW7sYiJkuO4oDLZmzlIY/IR7xthRbp3BDx19\nyHi8fdV203OmCW6bAnI0L3j9+s6fyTqZU6sBz5BR2+nTnbfhRl4yg93ERABqFpHrVgE56mb1CoPD\nyAx2KiBn7aPRa5dHoQDyYTDPDAaAveN7bV/D/26nTgX7O/BrhGWjzwwGzI5avsKAK0wYTP+GfmDw\nbGXWKGTaKSKC61WbRFTE1LId4nEEMJjet2br4cJgQHcHAwCyE0DqLbjiCmdOxv+NjERjEFJJic4v\nOTOladoBxtgxACsAXN3h5S9t/n9U0zTr4omfk8dXA3jQYRuXQo+J0AD8wuE1nRUHsBLA0hxGRi7B\nJZd4e7s+kOw9ZzAAoG8UmF7jq0ErlwEkeycmArAsr82PAqVBfzA4UQSYDlNV/76pUijogdyxOkq1\nkucCcJMzFWBQd8P20nEDFhi84W7g9QfxhYMjeGPts55hn74aQPTGe8EZDAAv6LsW+6efRV2r4+59\nd+M3zv8Nz9uzwuB0PB3pBNiVa67E3z30d/oPq+8H9v26pJgIHZRlYnklYwMG0gM4giOYrshzBs/X\nSNxRRv323BwTMb4wncH5UZRK+v24kxOOan4eSuVid4LB6TSwYQOwd69eQE7TOi9Nd5KqmcH0e6XO\n4GXL9KXG9Xo4zmDabpTSzxu5qDIiIrjW9K/Br6Dnuh+ZPoKNw+ZtW4vIdcqglSHa9+PO4IbWwFRJ\nb1NluKLXD61HPpnHXHWuxVUatTP4oWMEBq80w+CWmAgLoPdSPA4wO4N379avY+riNVyPAeXXGbx+\nyJlo85gIwFsRubC+X8B9TETQ3N4gMDiMzGCnAnLWOBd67VIYLLNNAzrHRACtMT+bN9u+rKP4JFmy\nMAm+CD9KGLx1ZKvx+IN3fRC/ePcvjMilbsHgvI9uy/8c+h/UNd3ufvmqy12959qN1xqPp/Ki3YzS\nGZzNAuPlLsJgABgqI5HozMlSKTclv85sLWRnMAD8AAADcC5j7DK7FzDGroDu+NUAfN/mJfcB4JfY\nO9rs613k8fc8f1Kr+kZNDgm36jVncAsQhb8GTXdH9pgzONfqivYKg1VzVHlRholzc2LeOzmZmOut\nZeRUJoCy8hHggn/DA9rf4Qe7f+B5W9ZoGJWvedqBX1+7wXj85Ue+7Gt7Rqe+ef0syy+LFJZesZo4\ng1frsEFOTITetmViap7nfBnvfHUeiZSe8xu4gFyNtGtJNY+byuQMDlBAbr4sspJ7oT03Zwb7u4fr\nMRHqfN90WbrTqgXuLpybCwZFWzKDVXEGk+/1xOwJ43E8rmdPAuHAYNrvnUq4c0t6FXcGA/ZF5FaT\nYLlu5QZThxWHwdPlaWjNCDEZoCXGYrhgmW4R3T+xHzNl0W9YskREgDzxhLxCam6dwQ8e1X02hVQB\nW5ZuMT3Xl+oTBYJtYiIOHBCP3cBg6gzevbvVKSvLGewHBp/Vd1bb8cum4U3GhJGfmAhAvjOYf8eM\ntQdiMp3Bbr5nqjBjIrJZPYLBjTN49ymxlES2M3goO2RMSruFwX7Fr5F4Xm+4GFikqxLfefE7jZiM\nncd34kN3f8h4bnAQGG6meKnmDKY1U67dcG2bVwotzS01zqm5pLgo/EZsBhHv6w0MAKfmBQw29Ycl\nat3AOvHD4MHFAnIutdBh8F9DL8kGAH/LGDO10M2feSnPGoDbrRtoZv/+DXSofB5j7A+tr2GMXQng\n3dCB8n2apu20vsaz8qOmGXW3KhbRk5nBAIyBpJ8GrVSC2RncQ5nBAHzDYOsguhcc0Vy5hOg4HB71\nDoOnir21jJxqKDNkyhHjeuqk9156rzqD86PXGpWx79p3l23GWScZMSk5vRMSZUQEAKwfXI+RXHNJ\n0upfAawhNTM4m1Dz+qbnXHZQPxcDw+BGb01ySSsgV++t484kMsK514y88QqDrZOaUd+/s4msUaik\nEwwGguUG90RmMImJAAQ0PHnSe9HbTqLtxiTcFdXyqjX9wvprlxusCgzmERGAPNcdjRl4esxcKY4X\nkZuYkBcB4sYZfHzmOI7O6GTq0pWXCvDbFGNM3GMyUy1GGa/O4HXrAG4We/bZVqdst2HwfHXemHDp\n5BZNxBKGC3LP6T2Yr7q70a5erQMbAHjoIblZ2Hzis69PxOfY6UyLieDHXSgAmqa5ygzmKx0A+TAY\nEFERR6aP2J4bMmDw/DyJQGlmBven+1uu226qkC7g26//tjGZ+rcP/i2++8x3jee5O/jwYfN1GVRB\nYTCvmcLA8PL1L3f9Ph6LMcOOAEzHXHu8D6ECi9+3BgcFDO5P95sKgMqUyRm8CINdq2dhMGPsxYyx\nd/B/AF5Pnt5En2s+3yJN0/YA+Cx0kLsdwC8YY29kjG1jjL0RepzDpdAh7l9qmuY0Z/RZAM81t/NZ\nxtg/MMZexhi7nDH2xwDugh7JUQRwa/CjB9AXAAZTZ7DC+aGA2X3CCgGdwcnecgbbOar8wWB1Cu94\nUSElANKhUe82OgqDB7K9c9yAPrj52k1fw5u3vhnxB/638Xun2fx2askMVtgZTAdqzx+M472Xvtf4\n+Y6H7/C8vfl5AJkJIKZ3hqKGwYwxXLnmSv2H7CSw5DmpmcE5RWEwXcabGdQb8KCdtFJDHTjoRtYC\ncn6cwZoGlLXegsEAuZfl/U3oqnYfo/CpOzCYOIMT6jmDrTCYAwVNA06cgFTRduO05q6olleZnMFT\n7Z3BfrP8vcpaOA+AqRCSabIpgM5dKjISaDQBEE6UgBtncLuICC4DBqensXu3GWZ6zQyOx4FzztEf\n79kDPPaY+XlZMRFuM4Pp9+AGEPKoCA0ado3t6vBqXYwBL3uZ/nhsDHjgAVdvcyX+HbfLCwaCA1n6\nPasQE8GPu1AAao2aAXrbOYOprPE0MkSjIvaNtyINGTCY5qg3knp/L8qICK4Xrngh/vqVf238/Kf3\n/anxeEPzstK04MXzqILA4OMzxw0D0KUrLzX3ITuI5ws3UAMK+szdzuA2RE+q18U1QJ3BYUVEAIsw\n2K96FgYD+B0A/0T+fbb5ewbgJZbnvtpmOx8F8BXowPdiAN8C8FDz/4ubv/9HTdM+7rQBTdNmAdwA\nHQhr0Eu8/TeA+wH8OfSs4CkAb9A0TU4XKogzuEczg1NDQWFwb2UGh+EMVv37phrICmh57JR3G91M\nRbxnMNc7x831mi2vwTdf/02s2/cZoKE31b5hcI84g2kH/uBB4F0vfJcxk/9Pj/2Ta5cL1/w8TMXj\nRvLRFwowFZFbfX/gzODZYhVI6KlseUXjEug5l+mX4wyuaOrAQTeyFpDz4wzWJ3Z6rz037uOZaSBR\n9AmD1Vrh4gUGBykiNz4OJTODTc7gWXtnMCC/iBx1fY5VQ3IGD6jnDKbHzaHpsRnxx11VWAUZWt0v\nDu7otJkGhVFEzo0zmEdEAMBlq2wT/cSEY3oK09PAfsKxOSTM5/W4Czfi12+1Ctxzj/m5bjuDvcLg\ni5aRQoAeoiJe+1rx+AfeE8kcxSc+vcDgIM7gvj5zkUU3kh0ToWlmCM5dwYCNM9gm73soMxQKQO2U\nGywDBtPro5aQV+BShm7ZdgvOW3oeAD2So97QjSLUiEInFYKKttteYfC9B+41HruNiOCiBfPYkH4P\ne+QRb/sPKlPhyMEaJoo6wFiEweqpl2EwoINXt//sN6DrPdBh7g8AHAVQbv7/AwDXa5p2S8cPoruG\nXwjgI9Bh8gSAOQC7AXwOwEWapv3Q11ESGcssZDmDFXYJAmb3SWJAhzp+YDDN1QR6wxm80GHwUI7A\n4NM+YHBZHPdgTu3zvJ3Wrk4Bk+sA6Mv+NI9hfS2ZwQqvBujvF9ldBw/qnYY3X/BmAPqS2G8++U1P\n27PCYFMOd0QynMEAsOqhwM7gmbI6hbWcRJ3ByYIcZ3AFvdWuDWWGwNDMq/ZZQK5XYbApA71v1F9M\nRFIt+B+ZM1iRzOB8Km9AeaszeCkZ68kCZ1y03ZioCtvxqn45MBRQMzOYQgWeu0ph8MrCSsgQhco8\nmoHrIsEYo3MGr7J3Bhs53skSEK8Y4KPREHBn3Tr3hRxpETnrvUp5GLzcHwx+9atFjIMsGNxomB2y\n7RQEBjcawtHp5Xu227cMgFQui4icQgGYKoubnvX+lUlkWgBxGBERgNltfGDiQMvzUmFwooQ6009y\nmrMfpRhjRlRGtVHF8dnjAMKDwUGcwTwiAgBeseEVnt5LYfDK8/RZkqeeMq9GCFu0n5cdnjDy7cOE\nwav6VxkRXhg4tAiDXapnYbCmae/SNC3u8l/CxfZ+pGna6zRNW6NpWrb5/+s0Tfuxh89U1DTtrzRN\nu1zTtCWaphU0TTtf07QPaZomZTGZAYPzJzEz672CgxUMqTCoaifqPuExEZOT3otX9H5msL+YiF4u\nILeE9BxPTnonJ/NVOunRO8dt1Zo1AMb1zstMZca0NNSNymX0jDMYEJ2yI0eAWg143/b3Gc/9w85/\n8LQtHQYL660KzmDTcub8aGAYPEtgsKqFEuk5l+zTz8VSyX8uYaMB1GK91a7FY3HhjvEZE2GdzFXB\nIetGpuz//GhgZ7AK3zc/p4u1Iqr11mDc5cuFE+5MzAwGxGS91RncLRg8V9dPpHwyLzWDcCQ3YkB3\nO2dwoSDyVc84GEyg+pFp88Gde64eoQDIg8GdnMGapuGhozoMXpZfZspzpqITjkhPGTD4xAmgoi+c\n8VRUbMsW5+dkxUS4hcF0Ob+bOBQeEwEAT550/0WNjAAvfrH+ePfuYO0WFz1vw3QGj46K79lrRAQg\nPyaCTnL095sjXeziyqzO2bBgMN3uvonWmAgZqzqMmIiM/ExzGaJFxg5OHgRgjo850MrIfcsvDNY0\nzSgel01k8aI1L/K0Xx4TAQAjm3UYXKvJLw7ZTrSflx4S2SFhwuBELCFW9jSdwTLzz89U9SwMXqiK\nxZo9sUQZk0Xvo8leywzuS/UZg59GTh9w1Greb9a9mBm80J3BywbEuTk25QMG13rzuK06+2wAp9sv\n7Wona0yE6qsB+ICtXtcH2ttXbTeWdT16/FFPzuhiEaYOqV1Rvm7LtCQwO4GxsWCV2ecqtD1XEw5S\nV0g8L+wCfgddVodsr0BRIyrCZ0yE9f7dK+2aaRImP+bZGdwSE6HAZC6d4LBzBzMm3IXPP+//XB8f\nh5KZwYCA/BOlCZRrgmzRpfiyYTCFS7M1vW2X7TpjjBkDSjtnMCDcwUeOBGu/3YpC0zBhMN2O1Rmc\nTgtIumuXnOKAnZzB+yb2YaKkd3wvW3UZmIPl0zTJnZ428jG95gVzUWewVbLOabeZwQcmBZ1aP9T5\nIJbllxnX5pOj3qi97KgI01LxEGFwkOJxgPyYCHrchQIwNkdMCblWU4K1byozA52KwmBrJjigF04c\naX68wM7gtLjRKwWDSZQAh8GqOYOfOfWM0b6/dO1LPd/3qTM4t0JcHN2MiqD9vESBwOBseDAYIN9v\nbhxIT3fVDd2rWoTBPaY4qcY5VRtt80p79VpmMGPM6NTUUuJ4vQ4mdXhAllP3ADzIJDKig7sAYfBZ\nwwJajs95JyfFRm8et1VbtsBwBgPA7jEfMJhc873iDAZEp4wPzOta3bTcrpPm56FchzSfzCMZS+o/\nZCZQLsMXGOSaq4p2TdVCifSci2XFKMnvoIsWzQN65/o2ijxlJzE1U/P8/l49btPgNzfm2Rmsr3BR\n67g7wWBAgDNNA/bu9b4PTWve8xXMDAbM8R+mYmYhwmDaZkxXwsuj5FER0+VpTJVa7zm84FCp1B23\nVbecwal4yjAiWJ3BgIiKqFaB554Lvj9677NzBj987GHjsVPxOMDiDM7ozmBNM7v8ZDmDux0Twa8t\nBmaO3GkjvhR+bH4Mxap7siobBnf6fqnSaRHv4BUGBykeB8iHwVZn8Nh8+xVq3XIGj+RGjPunHQwG\nRFTEsWP+XJXG9UGdweno+95cdjDYWq9ElvzCYO4KBrznBQNmZ3C9T8DgbhaRo5yG9XXHGQxYcoMX\noyJcaREG95iMLBQA0zXvlYd6LTMYEEsRK4nTQEwfQPuCwT0WEwEQd3Cfv5gIFQvvuNWKJeLcnPDo\ngtc0oKydn4zJQwAAIABJREFUGTD45puBVRkBg79+Z0BnsOKrAexgMO088Iq0bjQ/D+WWqjHGhDs4\nq1/QQaIiinVxnvdn1by+6UCdZUTj7beT1qvZubQa9Fx9wvNA60xxBp8JBeToOe0Eg2n+op9rfG5O\nXwmlYmYwYCkiR3KDKQw+5b65diWjzYjVjImwMNp1Gkdg5w5+BYlwvPNO6btvUTsYnIqnPFWa7yRe\nRO74zHGjwBKX7CJydo5nqp3HBL24dOWljtsxucPTUxgf1x35FOx4gcH9/cCKFebfJZqBg92OiRgv\n6jsczAyKqMAOopMDdNKgkzZtAs4/X398//16/EIQeXEGMyYc0t12BsvODLY6gzvFRFiLyIUFgxlj\nxrYPTh5sub4Bcd+q1eCrwLFdTIQqmcGAPQzOZMT1rkJMBM36funal3re70huBNmEflJP4pAxydJN\nZzDt52nZLsJgEgOyWETOnRZhcI8pFhNf2WzDe4+kWERPZQYDZMDBNCCn35m8Diapo4qBKTWgaidR\nhX0KiJcXlDN4zQhxXpW8WSfn5wEke/O4rcrlgL/+EwGDf/b0Hk83dGtOeC85g3kH33BUAjg9796W\nY4XBqnRIjSWBWb0NDwSDazQzOHpIZifrEl6uQM5gxWID3MiIiQCA7LgJ8LhRz8JgizPYV0yEYo5o\nN85gWtHe670bINBJ8cxgwJwb3A1ncKJPnEQmV6gk0SJydoWWbrhBPP5//0/67lvUDgavLKx0jE/w\nI15Erq7VW4oDyi4ixx2UuZzII6Z65ITo7Fyy4hLH7VidwYAOPvzGRADmqIihIeEG77YzmMdkeAH+\n7QoBdtJNN+n/axqwY4ent7bICkU7iUPZIDDYC/TnCjszuFNMhHVCixZ6ky0Og6uNqq37P2gROVtn\nsAJGDC47GAyI8+bECTnnAOAfBtNr1uR0dSnGmHEPOzxzCJvP0bOMnnhCZGuHLdrPq6UicgYvwmBX\nWoTBPSY6Kzyv+YTBPZQZDFiKzzQdskGcwSmWl9pxDlPm3OAxfwXkFBtEu9VwXpybc1VvMHh2FiYA\n2gvneTu99uq1YJo+UtKG9+B97+vwBqJezQwGZDmD1YqJAIgLJD0DxGq+3Bdcxbr6BeQohNdSwZ3B\n+n2s99o1U1Za/qTnInI9C4MDOoOthVBVgP/dgMHGexTPDAacncFhZQZnBsMFDVuWiJyAXWO7Wp7f\nuFHAwvvvl3+cVlEY3NcHlGtlnC7qO5UVEcHFncEAcHTaTIOoM1gGDObOYLu8YE3T8MhxHQavLKxs\nG5FgN+G4c6c5nsUrJKQw+IILxHk9PS0nL5lnWcbjwnVsVUNrYKIYEAZPeyN61PX++OOe3toiKxTt\nJBkw2I8zmGY2y46JKBTMMRG2zmCSGZyIJUzXoGxtGGyfGywPBqvX9wb0z8LbCzsYDOirCmSInkt2\nKx+cxK/ZZCxpNhF4EI+KmK/O44Lt+pdSqeh5790Q5TSVxCIMVlmLMLjHFCNfWQl+YfCMsS2+jEBl\nUfcJz84NkhmcjqlfPI7LDINHMTPjrRPay85gCnCLdW8weGYGPXvcdkrGk9gw3LS1DO/Frx7QXJ8H\n1sxg1cG4XXaXXxhsLSCnSofUVCwkMxnIGUzjUFRYPm8nOlBvJOU7g3vl+jbBjL5Rz1nRvXrcZmfw\nKZ8F5NSC/12FwYoWv3VyBvf1AclmLHpYzuDMQLig4YJlFxiPnxqzDwXm7uBGA7jrLukfwSSrM/j4\n7HHjZ9kwuJ2r9OyzBdSTERPB20A71+iByQOYLOn373auYKA1JgIA/uVfgPvu03+1bJn5enQjmht8\n4YXmSQ4/17NV3BnczhU8VZqCBt3V5wUG+42JAIDzzhOPd+/29NYWeYmJAILD4HRa/669ijGx77Bj\nIjplBq8dWItEzGF2QIKo6zhMGMyy6vW9Ad01y4Hh81PPG1EZdOWArKgIv85guurDbTSMVbSI3NkX\ndr+IHI0AKrJFGKyyFmFwj4k2CpX4uOfMQZq1mEv09YRD1uQMzgd3BmdiagITO1kH0YC3iIyehsHE\nwVqNzZiW1HXS7Cx69riddE6zIAhSc0D+hOssN+oMziayoXYyZai/XwzaOAw2xUQUA8REhLCc2I9M\n+XCZiYAwWC1IZif6d68lZDmDe+/6NsPgE4GdwSo4ZN1oODsMhmZfw0cBORXvY12NiSArO1RpwwBn\nZzBjwNLmeC8sGJzqD9kZvHSLUaPj6ZNP276mm1ERHAbH40AqZSke1ycZBvcLGmRdRs6YcAc//7z3\nvrhV7ZzBNC9424ptbbdDr4vskP6hDpOo549+VBQnc6urrxaPr7kGGCYsVsZ57QYG87xgwKMzuN9/\nTMTy5cBA888ZFAb/f/bOOz6KMv/jn9mSbUk2jRBCCSV0aSJFBUUUQbHg2ct5p+eJ7X7eKWc9r4h6\nqFc87zzPU0/v7L2CooAiqCCgdAgQSAiQhDTSk23z++PZeZ5ndmd3Z7YkMyEfX76Y3Z3d7CQzzzzP\n+/k8n6+WAnJAfDBYFFlfcdAgwBQn2ZBgXUpiIjhnMN+flcQbBFKVF6z0+amAwVJmML96Q0/3LYAB\nQ2/ASyfWlFYlJqp4YHCHr4OOc/jrWKt4GJw9pOuLyPEwuDXQdTC4f2Z/upIWWWVJmbjr6eqFwQaT\nbIbIUa/5psUPJl3W7h9QqZHMHRuMidA6mCQwmPSm7Wb9OGtiKXR5LaBtUKnHQbRayRysac2altL3\nRBg8PIflBiN3L46oNHvwmcF6zwuWJHXKKipIEYt4nMGiKIfBdotdN0usZc5gR0NCMREe6B8O8ued\n15TcAnIm0YI0c1oiX6/LFAqDjxdnsNlkZiDDpT0zmI+JECDoYkUTf043diofEA+D4yk6Re/13HJb\nveSeAyHO4JBsWclFmaqYCGtGakGD3WJHcU4xAGBX7S7FQkszZjC346efBov9pUjSwNrlIlCTh8H9\nMvpFeFd8ihYTAcijIrYrm6ZVyeNh+ZVKoFCKiAC0OYPzB8qvx7POAm67Tfv3mzgR+Pxz4M03SSHf\nZMefaIXBsn5DDCWSGSwILCKjvDwxp2y8zuCODtKHU6P6etYuxJMXLEmCdalwBkuZwTmOHFjN1rD9\neYPAsOzU5QUDchhc2lAa9nqynME2tz6dwYC8yJgUFcGfO8lyBvMrOtTCYNlEXwKrPqSYCACw5HU9\nDOaPvclPxm0ChLBiicmWxWRBXlqwAGxWGT75JKU/rkeoFwYbTKEwmJ95USO+gFy6zrNDJcljIuJz\nBre1i0AaucM7LfoEJkqSzaAFncHHCwy2mW0wiUEXq61Zk3uyp8VEAMDwXA4G56iHwSQ/mfRM9R4R\nIUnqlPn9pDPKZ2aphcEeD1m+Ky0Z1VNnVObwSdAZ7IX+ncF2ix1WExkAeUxJiokITu6lCfo8ZiUl\n2xms17+3kujEZrzO4ODf25Wmj8x/Nc5g3kmYUEwE5wzW04Qe7wyuaqmSvSaBs/b25MAVgLTnNGfV\nlXrQIEVFdPg6FB10Viswdy7ZbmgA1q1LydcAwAbWocXjgNTGRBxqDi8wxcPgRKIi+PGLojO4Ur0z\nmL8usgrY9ZKVBbzwQvxu0bPOAi69lADSZMNg6Vy2R6kJKRWPA+KPidCaGQzI85L37NH8dqp4C8gB\n7PcTS4nmBUtKJgwOdQZLMRFKxeMAYGDmQLo9ps+YxL9AFBW5i+hKnWQ7gz0edux8kU899b8B5SJy\nfExEdzqD+badb4u1ii+CerSznMbebNyo3VAXj/j2vdFLxm3ZjuwuWZ06qmAw2XDW4433m5KS8d6T\n1QuDDSYZDHbWaYbBBIqSN+m12FCoklFArqWDWagdFuM4g+UwWLszOLTwjsPa/Y4qtRIEATYEO/i2\npoScwXrKWYxX8TiDm5qA2lqRZgbrCSREU+hyLf46UBsTQTthQWewnjqjoc7geGFwIAD4zfrPDBYE\ngTq3OpHcmAi7gWFwfM5g/cN/JdFBsK0Fja0dmiKu+ElNvZzj3RUToac2PD0tnd5b+cxgIDVF5PiV\ncGZn6kGDLDf4aPTcYABYujQlXwNA18LgWM7g8ePZdiJF5KJFCPDF4/Jd+TGPkXeH5/Un54YgAE8/\nDQxIUi0ufnInHqd/qFIZE+GwOmg/Q2tmMCCHwYlERcRbQA5QH9eQLBgcb16xkngIbnN2otlDfhFK\necEAMHvIbPxi6i9wzfhrcN2k6xL/AlFks9gw0E3gsxIMzs5mExRaYTDf1pucOnYGK8DggQNZlEx3\nwmC+zU0EBvMxEeWN5Zg3j2z7/WTFQ6rFO4PrOsggJ9UREZKG5Q6m2/X+cqxa1SU/1rDqhcEGkyAI\nLAslDmdwa2cHYCLL3TLtxnAJJsMZ3NLJWiW9LqVWklJmcLzOYJfVFXcQfXfJYQ6eo2nxO4NtQrrh\njltJ8TiD9+0DqURvJutX9QQSoikUBvMZa2qdwW1tAAQ/YCe9cj1llsmWSTnq44bBfPwNoG84KJ17\nHWJyC8jZDJQBn+fMgyB1u5IQE6EXMKpGskGws0b1sft8waXkQQiul3OcX5YeCQZnZDBHYmLOYNLh\nsZgsuojIkCQIAp2sjxQTASQPBvODy64oTjS2z1i6HQkGz5nDtjdsSMnXANC1MDjDlkFrNoRmBgPA\nCYyRp8wZfLDxIJ34ndxvcszVAPz1aM1oxLp1wPr1wBVXxP/9QtXdMRFaYDDA8kaPNB+BqDZzIahk\nFZGLNyYCUA9l+SX9yYiJ8HgSj3zh72/eNOZkkcUecjKbzHjynCfx0kUvdck9ToqKqGuvQ2OHfEAt\nCMwdnAgMho210XobeyjBYJuNHXeyC8gJQvTrnBcf65JIZnD/zP409778WHmXTVxKou27tRWtXvJA\nZohIofgYEOSU4rXXuuTHGlbGJyTHoexiECTEA4O97A2ZBnEGZ9uz6RLjeDODWzyMOhgJBicSE+H1\nkv/1NojWIpc1CIM1xkQQZzDpjdlNxjtuJQ1yD4JFCF4HKp3B+/aBxsIA8qJ8elYoDHZYHdSBVtem\nbhRGInG45aI6cibInMH2+DODQ52iem7bJBjfHmgEgtXR44fBIj1uh9k417fZZEaWJTgYTDAmwirY\nFLMH9SrZxKZLfVQEPUeCx62X+5gaZ7DJRJapA8mJici0ZeoiIoOXNFlf314vcwenAgbz7YXIFwZN\nUY4y7wzeUaNcRK6wkBTcAoDNm9XnnGoRnRABg6aphMEAcwcfbj4cBhKzskihLoBkBsd7zNGcwVry\nggH59Xis4ximTQOmTInve0VSMs9pUUw9DJbOi05/p6bCu0BqnMFaYyLUwuB9+9h2cbG69yiJd24m\n6g7mj7vdxAYvkWIiulpDs9QVkTt2TFs/jb8u/FbSRrusLt31VZRgMMDGHjU18snHeCX97pxO9QUs\nk9W2W0wWCpPLG8tx2mlsMvGTT6BpdVY8okVP3axf0FUwONQ89d576mNnjkf1wmADyikEOwRxwOA2\nH7tDpRsEBguCwGZTXeSmqjkz2Mu754wTGSCDwRoLyOl1EK1FNOPW2o6qo+qn6nlnsNNivONWksVk\nQZE7GGqVvV8VDN67F7pdYhxNSlV9pWtBkzPYrs/MMrkzmMDgeDpmRnKKSueeHz7iVkf8MLi5vZOu\ncDHa9Z1rC3aGXdVoatb2R+f/3kY7bvkqF/VF5CorAZh8gIWQE71MeKiBwQCLikhGTIQe2+9TBpxC\ntx9e8zDdTjkMTku9M7g4p5gaESI5gwFgwgTyb10dVGf5axEPJaTBfGVLJQDAYXGkZNWLBBHavG2K\nBRKl3ODGRlLoNR5FcwbzMDhWXjBA+kcSaDjQkCRbX4iSGRPh9TKIHjUzuJ01HFoLL/FLzLVGRQwd\nCliC0Z56dwYnCwbH87MjiT/uNoHN9usGBmerg8GANndwLdc995r1V69DUpY9i95PlWAwII8fiVc8\nDFYrmTM4gZgIgEVF1LfXwyu04KyzyPNHj6a+kJzUvjv6MBgsi/1MoUbmjmQPcvegqQm9heSiqBcG\nG1AuU7BHYm9EU4u2tSztftb7MopLEOCiIlxHASEQBwxmo4h0uz4Gk2rksDoY4NHoDD4kre4zMAzO\ncrBz9Eit+pkPPjPYZTBoEk0D3MGq4WmtOFQdm6Tt3QvqkAaMc83zuW8SDJaiIura61QteSQwWJ+Z\nZaHOYL8/PljEF1ID9H2Ny9x7QUgfLwxubOfzwPV7zErq4wzCYLMPR5u1EQUjw+DQVS5qncGlpdDl\nOe6yumgRHjUw+Ngx7RM+tE0IXi96irqR9OtTf01Xbfxr478oWEh1TITfmvqJPqvZilF5xCJZUlcC\nj9+juJ8EgwFgy5bkfw8lGCzBvcKMwpS4xWVF5BSiIpJRRC6aa1RWPK4wNgwGQP9W1a3VMoiaLCXz\nnJZcwUAMZ3BHAjER3N9QaxE5q5WB1ZKS+F2EEhQ1meSwNZIiAdkdO4C331b+HhIMdrvlfyOt4oFd\nokXkpHPbbgcaOmPHRHS1huUMo9vJhMH8ddEpkJt8qlZuJCJBEKg7+GDjQfgDxFzAF5FLRlREXDCY\nu1YTXfVRlMXlBh8rx7nnstdSHRUh3bfSsrseBsucwXklANAbFRFFvTDYgMqwsg7B0SZteQntAc4Z\nrJNBlRrRBsTkBxz1mmFwK+cMzrAZxxkMyKuwA+qhUUkJAJOXOqqM9PeWlONiI4SqBvUBm40tHsBC\nBm4uAx53JPG5m4ePxc4WIDERxnMGu90MooQ6g30BX1T4IikUBusJpMgGdQ5yQceTGxzqDNZzoUTZ\nuRc8J+MdcDV1cG5oi3Em9wCgwMWWydW2V0fZM1wyGKxjF7iSZJnBGmIi9u+HLt3vgiDQczpaeyS5\nCUVR+4qmhgYA5k56D9dj+12QXoA7pt8BAPAGvHjgiwcAAHkc+0+FM9hn6Zq2XYqK8AV82Fu3V3Gf\niRPZ9ubNyf8OvIPW5SLmhmMd5PhTEREBdE0RuWjO4K3VhDDnOHIwMHOgqs/j3WAldSXxfakoSiYM\n5kG4K0qTloyYCEDuNlQrKSqioyN+l6R0nJmZ6pbJK8Hg+npg5kzg0kuBhQvl+3s87LsVF6tfiq+k\nZMJgCYJnZABHW7mYiAgF5LpavDO4tKE07PWEYbDJi06RjLv1ZMTgJcFgb8BLV1oorUpMRPHAYGmi\nz21zJ7wSakgWo9sflHzQpTBYat+t2VX0ua6Kici0ZdKfJeTtAQAsW9YbFRFJvTDYgHLzMFijs6gj\nYExnsGw21VWtOTO4w8fu7JkOfQwm1Yo6qhz1gOBXDYP37IFhK89Lystgg9+DVephcEMrD/+Nd9yR\nlOdgI+xjnhqZu0RJJCaCcwbbjHPNS52yQ4dIZmKuU1sROV07gx1yZzCAuHKD+cxgi+iA2WROwrdL\njWTAxpaYM7iZKwhqlLgjSf3drDNc56mKsme42toDhs2AjzcmorQUur2PqYHB2dylrtX939AAWfut\nRxgMEHewtHLj1W2vYnPV5pTHRHjMpG1PM6fBbomyzj5BqSki19XO4MrmSvo4VTBYizM4XhgcyRns\nC/goEBmWPUy181lyBgPA7toEsg0iyOkE0tLIdqIxEZXsT4iCKHyEh8GyFUUqxBef0hoTASQnN1iC\nomoiIgBlGLxmDWs7n3sO+Owztk9ZGXMLJxIREfqzk+UMzswEalqPw5gInUa08eKLjElRETwMTtQZ\nLIrsPIo24SN/j0gnbhIpHifpkjGX0ALqi79aDI9rP53I27gRqNbmR1AtUWT3LVMG5wxO7xpnMMAm\nB0VXNWBrRGsrsHp1l/14Q6kXBhtQWXYGg2tbtfWyO0VjOoNluTmZh9DUpK1oRXuA9aYzHfp1zymJ\ndh5MAcDRoBEGc44qnWQtalEmBy/3VTSpHlTyy8gz7cY5z2NJ5ipw1sgGFKFqagq6TQ3oDAZYp8zn\nIzmMPAhXUwyFFJDTZ4fUYXEgzRwcVSbJGWyFvq9v2bmXYExEq4eb1DQYDB6QzUb+x7zaYHBLJ1s3\na7Tj7mnOYICd00qZqpLihcGBgASD2WfrcbktQH4P98+8nz7+18Z/yWBwrbqY95jioahHYHmUqSyq\nxxeR21y1GesPrQ+DwiNHsqX+qXAGh8LgVBePA0KcwQqu0pEjSZQAEH9MRCRncFVLFcRgkVEtQCTV\nMFgQmDs40QkOvu/Wr1/k/aS4C5fVBZslSp6EghKJiQCSA4MlKKqmeBygDIPXr5fv8/Ofs89NVl4w\nkNwCcrwzuKZNfzERuY5cagjbWx++4oGHwYfC54Iiil4XOu178+KLyG08shEAadckLVuWWEFQrxfw\nk/QJ1c7gho4GdPiIfTXRvGAAGN93PP5v6v8BADp8Hbhl6S04dz47qMsuC5qGkiyPh4zdAADpXe8M\nBoARuSPYg1ziDv7ooy778YZSLww2oHK5pUL8rHEsiSLgAT+INpBLkGu0kVWGQACaiud1+hl1yLDp\nZzCpRqFZi9u2sRtMNIXCYCPBf0myczStGV99pe59je1s0iPbaZzzPJZkrgJXTdRiNbSTbMDMYCB8\nuVZPcgYLgsBcPvYEYXAwT9Um6Pv6ljuDE4uJaPHy9zFjteeDclhnuEnUCIM9xp3kitcZvH8/dJkZ\nDDAY3OZtgy+gXL8hXhhcXR0ciPKTeWn6ncy74cQb6PbW6q0pdwZ3gLTtqW7XeRi85OslmP78dIx/\nejw+3vMxfd5iAU4I7rZ3b3Kq0PPqDhjMQ1glZ7DVCoweTbZLShBzlZKSIjmDeXCpBYikGgYDyYPB\nfN+tMMqfUBrjaS0eByQvJgKIDwb7/ezcTcQZHAqDDx4E7rmHbKcKBifiDO7sJCAQIMetx5gIQRBo\n21Z2rCwsY3sYixTGxo3qP5deFzqNaOM1Np+t+rhj+R1YsnYJCgtFnHYaeW7XLuCbb+L/fP4cUguD\nU9G2P3jGg3Ryb3npcuSc9gZd4fDVV2SVx/PPJ+VHUfH3rICz6zODAXlskDmfwOCPP04M8PdU9cJg\nAyrXxWBwQ6d6GOzxQAaG9DSoiqVQGAxoy9+TsosAfedqKkk+iK5FXR3w/feR95dUUgI5DDZYoSUg\nBF7amvHll+re19zJjjvLabzjjqRQZ3A0GExnew3uDAaI84ifFIkHBuvNVUcHdw7ShicaE2ET9A1F\n5ZnBiTmD27gMeLfDWNd3YQaDwa3QGBPhNS4Mlk1qqnQGi2K4M1hP/Ra+TWnuVI4xihcGr1gR3DBI\n+51hy8Ag9yAAwM6ancjKEml+Z9JhsBBAh9g1RfWGZA+BwyKvfCVCxANfPCArZCrlBosisF05TSJu\n8QPr9HR9OIMBYNT4ZiB3D3y++GBhJGdwvMc3yD2IRoakGgZ3dCTmHlXjDBZFkcJgrXnBAHGhmgUS\nHRVPTATvkozn78vD/nhhsN8PbNhAHufkMKj2z3+SPi4Pg4dzNaPiUbJgcOgkB+8MluJ09KDJ/Vhh\nxh+qfpC91rcvm+z57jv1420WE6FPIwavOUPn4JIxlwAgbfq9K+/FHcvvwA1sXhPPPRf/5/PttloY\nHO9EWDRl2DLwj3P+QR//efsv8foHDXSM1dlJsri1xIHEEt+2++wMBnelM553Bg+aTDLky8uTf3/u\nCeqFwQZUn3TWKWjyqofBocWGDOUSVIDBWnKDPRwM1tMyUzWSO4NJp2L58ujvqa8P3pR16qhSq1Bn\n8BdfqHufkR100RQ6MaAVBhtpNYA0Ow8Ab74pvw7q2mLTBQKD9btUjTqDbS2AyRuXM7i1jWXI2k36\nbtdkMD5BZ3Cbj13fRoPB/DK5dos2GNzKHXemwWIibBYb0i1BIuBUB4Orq4PnCJcZrKe4Ix7ORsoN\n5mGwlpzRTz4JbnBtmJ5hMACM6TMGAInNONpeiaxgk5ssGEwH12nNNEYg1e26STDh+knXAyADWen6\n3Vy1GZ+VsvBSPjc42VER3eEMznPmwWoiORCl9aUy8A0QN/znw8cDvxgJTHwxrtzgiM7g5viAiEkw\nUTdYaUMpvH6v9i8VQzkck03kvFYDg9t97ej0E8t1PDDYbDKjXwb58HicwVlZLM941y7Nb4/4942m\nUBi8ezf7nNNPB+6+m73+6afyJe7JzAxubycAVMoj1qIm7lbAZwbnOHJgNVsT+5JJ1In9TqTbm45s\nCnv9rLPIv36/+qxV6Zpw5ugfBguCgDcueQO/P/339Lknv3sSZ5/fBHewu/rGG9oLv0qKxxksa/uS\nkBks6cJRF2LBqAUAgOrWaiz33Yvt24GrriKv+/3ACy8k7cfJI52spJ+bbc/WHHWTiHgYnDV0D93+\n+GOlvY9v9cJgA6rAzWYWm33qRxeHDkFWjMRIcFBynACIyxnsEVmrbDRncGhMBEA6QdFEO0g6dVSp\nVagzeNs2dfmDPDQx4nFHUmjupjoYrP8CREqaMIEtU1yzBvC39JyYCCC0iNyxuGBwUxuzJjks+j7P\n+XPPmpGYM7jdzzn/Xfo+7lDxMNiTpg0G88dtxHYtR8r9dtaqun+XSkXOdXof42MbIsFgHh6pdQb7\n/WzC157FPldvqxtCNSZvDN3eVbMraUvqJdH2oosn+f5+zt9xdNFRVN5ZiafOfYo+v+TrJXQ7lUXk\nwmBwS+phsEkw0WXUJXUleHXbq7LXvyr/Cg1iGXkw4qO4YHAkZzDvjtN6fFJUhC/gQ2lDaYy9tStZ\n8Sd83y0SDOaX7scDgwH2+zvaehQev0fz+8cGV9LX1HATVCoVCkXViN9v7155RMS0acAFF7DHK1cy\nZ3B6OpCfoOmQB3a3305g+IIF2j8nFIJLMRF6KR4naXIhcwZ/XxW+3FSCwQC3UiWGpGvClatfIwYv\nk2DC72b9DleNI1Q0IAZQ66nANdeQ19vbgddei++z9RITIenJeU/S/tMzm57Blvpv8MgjoCt4nn8+\nvskPJfFte4eFOIO7sngcQIokSisjOtNL6PO9MDhcvTDYgOrnZp2CVr96GEyqchszM9hmsbGGMQ4Y\n7BWWYlAVAAAgAElEQVT06SxSIx4A5g0mM8zr1kV3Ru+RJsF0OohWKxm8DEacqMkNbu+pMNipPiaC\nLp/jncEGWg0gCGzWGgA2rNZWQE7vMFg2uHM0xAWDj3GFEh1mfbdr/HJuiysxZ3BHgB13tlPfxx2q\nTFsmBD9Zyuy3V2nKL+vgYLDR7mMAkC/dy5z1qD+mnLHLa79U5FznBeQAdc5gtTD4u++Yi3jUeGPE\nRADMGQyQqIi8YJN97BhXTCYBMRjcte26IAjo4+oDk2DCglELqPv0y7Ivse7QOgCphcH8wNru9OGb\nChZkmSoYDACLz1hMt3+1/FeyGiVrD65lO7oPxlVELpJzlIfdWt1xqc4N5mGwFqd/qCRnsMkUGWLy\nv+8ce3wwmHdWV7Vom3wESLE2SXfeybJw1YiHwWqdwTNnsmKML78s7+9PmwaMHw/arnzxBaknARBX\ncKJ1JHlgJ5lOPvpIewHMKu7X7MzsRLOHnOh6yQuWNDpvNGxm8stWcgaffjpgJixNFQz2+9k9zp6t\n/8xgXkOyhtDtg40HkxIVEZczOAUxEZIGugfioTMeoo8XfrwQhQO8OPts8risDFi1Kjk/i63iaaH8\npSuLxwGA1WzF0OyhAICylj0YPYZ0tr/9Nr5Yvp6sXhhsQPXnrCZt0AqDjekMBrioiIwqwNKuCQb7\nBNYq62kwqUa8M3jgCNIr8fvJrHgklUiTYAaHwbIJiyDUVBMVYXQHXSSF5m6qcQbb3cZ0BgPAlVey\n7RUfanMGt7dD10UsaEwEANgb4uqcNLXz8Tf6Ps9lrsascgDxw2A+A95oMRGCIMDmDXaK06s0FZvq\nEI3drvXNYIPh6ubYEzrUGazTuKNUwWDegTd0tHFiIkb3GU23d9bslIEzLXnJkUSvlW5s102CCXed\nehd9vGQtcQe73SznfsuW5DmsALkz+PvON1F2rAwAMHfY3JReD+eNOA8Xj74YAMk9vftztkZfDoMr\nUuYM1gpEUg2Dkx0TkZ9PChAqiYfB8RSQA+S/P/73qlaXXQacfDLZ3rULeOYZ9e89eJBtF6jkQDk5\nwCUkxhX19QQIAwSan3QS+Xf2bPJcUxObZAqNiBBFEXcuvxMXvn4hqluqoUZFRbGPQ434omNDTmAd\nu67MS1Ujq9mKCQVkFmtv/d6we5jbDUydSrZ37YqdKdvQwIpzpWXo14ihpIGZA+l2RVMFJk4k5xsA\nbNoUX/SPnmIiJN029TaaFb396Ha8tv01Gfh+9tnk/Bzatru6p3icpJF5ZOK2zduGWeeTAbMoxl5d\nfbypFwYbUIXZrDfSoRkGGzMzGAjJDXYfVJ0ZLIqA39QzCshlD2Adi2iNmZIz2IhOstCYCAAxi8j5\nfIDPZNzzPJqsZivrWEVxBjc2splPR5YxM4MB0sGfMoVs79gQRwG5YKEyi2DR3XUvg8FxOoObOo1z\nfRfnFFOY1V70LpC3KwEYzK9w0Q8cVCuHPzgydtWi7ph6q5XH4DA4n3NG7a+uiemKVnQG6+g87woY\n3G8IFxOhswmtUI3O42BwrRwGa3XXKam7nMGhunrc1RSyfVjyIc0ElYrItbZyExlJEIPBIt6pZtEU\n98y4J3k/JIL+Nu9vtA/13A/P4duKb+Hxe7D+MLd+P70ah6s6NTtlJWewxcLcoAADIk6rU/MESFc6\ng+OFwYEAc49GiogAQpzBCcZEAPHlBgsC8Ne/sse/+536dize4m4LF7Jtv5/8O3YsmzDg4wskhcLg\nTZWb8Jd1f8GHJR/i/lX3q/q5J58MPPUU8JvfANddx57XCoPXrOG+13jWsdNbTAQAnFjAcoN/qPwh\n7HX+dx3NgATIrwdLusFgsJuDwY0VAIDrr2evS5MSWpRITIRJMKVk8sBsMuORMx+hj9cfWo8LLgD6\nBE/N995Lzr2a3rPSGQzuamcwAIzIYbnBg09iURHxrGTpyeqFwQZUtsMNiGQ9TKdZfW+ktBSGzQwG\ngMHuwexBVplqZ7DHA8DKOYN1NJhUI94Nas6ohZ2sMMannyLiYFqCwSa7seEBDy9zC8m5u3179CUe\nzc0wtAM+luj54KqRFSHhxXfCrS72uzAiGKdREV4nLCI5+bXGRGSkZUFIdA1hkiXPDG5AXZ32pdQt\nnWySK0Pn57nT6sTdpwadZaYAcOb9ccNgL4zdrqWDdYrLa9TPAnigT4esWvGD4XZEbr8kMRisz+Pm\nQVVjp3KHRGsBuaNHgY0byfb48YBoNU5MRLYjG/3SCd0KdQYnIzeYthe27s2jtFlsNGNShIhVB8ja\n2kmT2D4bNiTv59GB9fBPsL+VWHCn9Z+G04tOT94PiaD+mf3x8OyH6eN/bPgHvq/8Hh2+DvmOmYc1\nu4Ml91h6unyJvwRE+mf013zf5osG6TUmoqaGQc7CKCkfyYDBvLswHmcwQOIZrr46+J3qgcceU/e+\neIu7zZjB6kVIkhyqgDoYfKDhAN1+c8ebaPXEXoJjMgG33AIsXgzMmsWe1wKDPR6yDB0gTmNzhn6d\nwUBIbnBlYrnBvDnF5DQYDA5xBgPEFW8N1vt79VV2zapVJBgcWoyTlzRhU5BeAIspwpKBBHVS4Ul0\ne0fNDqSlAT/5CXns9QIvvZT4z6DO4HSWmdIdzmD+fuBzsyJye/YA/oDGP2gPVi8MNqDMJjOETtK4\n+qzxO4P1NKhSI5kzWAMM7uiAbJmp3hyCsZTtyIZJIJdqQ2ctTg/2/w8dAnbsCN8/EGCdMHe+cf/e\ngBxe5hQwqBkt16isDIY+z2OJAhV7I441exSBGt8JF+wEJjitTphN5i74hsnVZZdxA8U2AsK1FpBz\n2/TXGZU7g0k7rhWY8DA43ab/Sa7bp91OYRFGvwdfwTpNGYSSjJwBDwCZJgaDy+rU5Tj6fEDAYux2\nLbQA5p49kfcFmLvS4dbncfPRJzy44ZWRwXIX1TjqpMJxAHDOOXLIrHcYDLDc4Nq2WthzGAhJBgxW\njInopqJ6c4bOoduf7/8cADB9Ont93brk/Sx63DOYK/jeGfd22QTnjZNvpPer93a9h6V7lobvlKk9\nKkJyBvN5si2eFuqyj2eZtNPqRJGbrPffXbs7KniJR8mIieAnwaI5gxs6Ei8gNyBzAN1eW7E2yp7R\n9cc/AmlpZPuZZ9RFPPGmBC0wWBCAG2+UPzdtGtseMoT8zyv08/l85GZPM97b/Z76LwBgEFezvLxc\n/fs2bgyOOQGcdhqJV5GkS2dwP+YM3lQZnhs8fToDmStWRDYgAfI2z5TJHKG5zlyFvfUlmTM4CINz\nc4H588lzlZXa83RDYbAoilj02SLYHrJh8erFYft7/V4aaZLsvGBeOY4cumJg+9HtEEURP/0pe331\n6sR/hlJMRHc4g6WYCAA46i+Bw0G2N3heQsYfM/CT93/S5d9Jj+qFwQaV2UM6Bv40dTDY55MgGel9\n2cw2WM3WFH271CheGFxfD7kz2GCZwSbBhFwHuZnWtNZg3jz22t//Hr7/kSPsJuTO06ejSq14Z3BG\nLoPB774b+T179qBnw2AeqDhrFd11/BIYv4X83owAEpRUWAicGOyv+poIDK5rq4s5yGttE2nV+axu\nAgbRJHMGO8igT2tURKuXneeZdv2f5640F353+u/YE2fdg9ZW7YN1PgbGiNd3toV1ig8dUweD29th\n+HYttABmSUnkfdva2FJqVzafja2f+7cEnQBgX/0+xX0EgbmD1cBgPgbpnHPk8RPdBT61iI+K6Mzc\nRbeT6gzWQWHQGYNm0OJLn+//HKIoytyL69dHeGMcam0F0O97oIisPx+dNxrnjzw/eT8ghngndLuv\nHX/+9s/hO7krNC+95Z3Bknj3arzF8aSoiMbORlS3qsuLVas8tlAP1XF+tFoYLMsMtseXGTx9wHTa\n7r69823FQmFqNHAgcPnlZLuhgTglY0mCwf36AS6Nzfa11zL4DMhhMBDuDo4GgwHgxc0vavr5PAzW\n4gzmIyJOOw042srFROisgBwAnJB/AtLM5BetBIPT0shxAOS8jVYccy031+C1EZuwzWyj41c9y21z\n0z6VFBMBAD/+MdtHq2OWh8EuF/DC5hfw52//DG/Aiwe/ehDlx+SzDC9sfgEiSH84FXnBvMb2GQuA\nrLKsbq3G6NGgoHTXrihvVCkWE8E5g9O71xm8t34PjaupHP4Q2n3t+N+W/8Ev9jqEe2GwQWX1ERgs\n2o6psrpXVASXIAcHk0bLDgXCYbDazOCqKsiWmTqsjqR+r66Q1ImobavFj38MZAa53vPPA7tDVsLx\nA2xXtrHhQXpaOgQE3S+OBrpE7+OPIzsTejwMDgEqSrnBLE9aRItInAnxOkv0oIHSpH07OQG8AS+t\n0BxJrZ5WwETaxmyH/pzBsr+HPT4Y3OZl7VqmQz+QLJqun3Q9XB3BHtng1dh8eKfmz/CbjX1959oZ\nDD7SpA4G19fD8O2arACmszaqM5hGRACwZ+jzuHnXSbQl6VpgMA+YxoyRw2AjTOhJzmAAaLKxazu5\nMLh7YyIA0o+cMWgGAFJ9fl/9PmRlseXtP/zAHIKJqrUVQOFG+njh5IV0tVhX6acTf0q3233t4Tto\ndAYHAgwG885gKSICiN8dl8rc4MGD2UqlWCsbIomHwamOiXBanfjNab+hj+9deW9cnwMAv/gF237y\nyegu0eZm1pZpcQVLys1lub3DhpG2kBcPgx2O8N9jKAxedWAVDjaqp7oDBrC/sxYY/NVXbHvmTNA8\ncUCfMRFp5jSMyx8HACipLUGLpyVsn/POY9v//a/y5wQCwNdfk+38fKCmk0zqFGYU6i6iTUmCIGCQ\nm8wAVDRVULPJ/PlAVvAW8+670FTwlx+j1pi24dZlt9LHvoCPTqp5/B7cuvRWLPyYhWXPHjw7ziNR\npxPyT6DbO47ugMnE7l2lpUBnZ2Kfz2IiutcZ3C+9H+0zbq7ajOEjRCC7FMhljXenL8GD7QHqhcEG\nlS0Q7BgIImpbYltkaTGLYGawngZUaiU11AA0OYOrqkBjIqxwdHknOhmSBtGt3lY4M9txdzB60+8H\n7g+pjcB3UG2Z+hxEq5VJMNFJgD31JVhwESnR3dYmL7LD6/iCwbVhMPjIETIQBYAJ0xrRERy4xeuy\n0YNoR79NfRG5Zi+bLcpx6g8GhxaQA+KAwX52nrudxoDBVrMVw1qupY93Ho1iD1WQKMrjEvTkFFWr\nfCfrFFe3qIPBofE3Rjzu0JiIaM5gHgZbXfotICcBKzUwuLExdu5gE1eHLjOTxURYTVbqRNWzeBhc\nZ0ouDJYG4nrJozxrKCNSK/aTQE0pKsLrja8CvZJaWgBksQxUHnZ2lSb3m0zdZJJkg3t3BbZvJ1BI\njXhQInMGc0XO4oXB/Dm4/lASLdogy72LggsCdu1iQPSll4A5c+TuyEji+2ypLiAHkMmDIVkkV+Hz\n/Z9j5f4YlcAiaMoUdn5v2xZ9OXm8ERG8nngC+PBD8ju1hMSnzuZY2fDh8sxpAKhqld9XRYh4aYt6\na2daGvvbqIXBfr8ciI4Yof+YCIBFRYgQsbkqvNG68kpW4PGll4J1eEK0YwfomPzkme004iTVDtdk\nSsoN7vB10LokNhuJqgPI/ef999V/Hm3jrK34a8VlYTnrz33/HCqbK3HpW5finxv/SZ+/5aRbcNNJ\nN8V9HGrEw+DtR7cDYBMufr88ajAeUWjOxUR0R2awIAiYOWgmADLR6Bq5Dhguhwed/l4YbDwq1isA\ngENkyy4Oq6hiQGGw5Aw2YCEpm8WGwvQgFcoqU13RlsBg0irbTMbKC5bEO6pq22px++2so/Luu/Ks\nJn6AbXUaH4qO60tmrVs8LZh5fhl9/u23lfcPhcFGdMFHUyhQCYXBy5ax7VPmsheNDIPpgKmNtXt1\nbdHpQouPy5W06W95dWgBOSB6YUQltfuZTSHbaZzrO0cYSrf3c4Ve1IjPgBcCaYaLOwKAfhxEqWlX\nB4PLy2H4Sa7QVQ1qncEmu34z/yUwV9deF3GCii8iF2sSW4LBNhv5X3IGu+1uQziseBBX6U1NTITZ\npY+2XSk3mF/Onqzc4NZWANmsnRySPSTyzimSIAgydzAAXD72cvYgswItLcABlc15M7ewh3cGJyMm\nYvYQRgo/2RfBNZCAJGjS3AwcPkxcdAsXkkzVn/0sumMW6NrMYICMnRafwTJK71l5T9xZyv/3f2xb\nKaZOEg+DpaXZWmW3A+efDxQoGArz8oC77iIZzosWhb8uOYOF4H8A8OKWFzUdtxQVUVWlzim5bRtr\n32fOJIC6soX9sbtjmbwaTe7HisgpxYjk5AAXXUS26+qAjz4K/ww+HmPsycYcd/BF5HgXOR8V8dpr\n6j+PAtFJL6Cig0wWT+g7ATdNJqC33deOk549CR+WfAiAuLSfv+B5PDX/qZT3a/mJPQkGj2YJTwlH\nRSgVkOsuZzx/n6rMfR0Yvkz2eq8zuBcGG1ZOgXUMDjeohMGCH7ASl6ARB5IAMDh7MNnIqML2knZV\n1T2rq0FjIhwW/biKtIgfRNe21cLlAn7/e/b63XeTDqjfT2bSJQk2YzvJAGB8/ni67Rq6lRbw+Oij\nYI4mJ1EMh8F6gweJKhSolJXJX+dh8OipXKcs3TidslDF4wxuC3T/UuJoSoYzuCPAzvNsraF83ahC\nB4MZe45qg8EtLaDXt8VvzPtYoZuNbus88TmDjXgPD53I2r9f2WUEcBPYYE5wl9Wlu5U9apak8zA4\n1ty9BBOkKCgJBhshIgIgf2MpI/JAK3MG18au+RlTEgzWizN4Ur9JFNKtOrAK/oA/JUXkWltBncEC\nBFlWdVfq6nFXwyywIrQXj74YVlMQWrhJzqbaY27hVqPzzmBZTEScrsLinGIMzyEE8uuKr9HYoXIZ\noUqFQpPt21lfdM8e4Lvvor9fa2awxWRJuL2/ctyVmNB3AgBg45GNeHtnBDdFDF18MfvO778PfP+9\n8n7JcAbH0qOPknaFh3WSJBhckF5AJwf21e/TNDnA5wZXVETeTxIfESHl7B5qOgSAgD69OoMnFzIY\nvOHIBsV9rr+ebf/nP+Gv8474QSck7u7vDsmKyHG5waecAvQJ/unWr4892SOJOoMLmNv6qXOfwn0z\n74PFRKzuUntnM9uw7KpluH7S9aEfkxLxk7Y7akglev+gL4CT/wykNWOn9vQ2mVhmMHEG5zpyu824\nsWDUApaL3fEGMPgL2etqolZ7uvTVq+6VarnMDAZXN6qEwQYfSALy3OBm4SB27Ij9Ht4Z7EozJhjk\nncHSsqPrryfLkADSCfniCxKdIDkz5s4FOsUgNDFZaGNoNI3vy2DwrrptWLCAbLe28tm4RLW1IFnS\nwTgUPcKDRBUKVPiiLZ2dwOefB/frA2QUGnOGPlR0wNTOnMHRYLAoAo0d+gAGkeSwOtiy7zgzgzsD\nnDM43Tht+tQRDAbvrdUGg/ftA72X2QTjHDOvQTnMIXTMpxD6raCyMlBHNGDMe7jL6mKrkrIOwO+P\n7CTkC6n5TeS49RQRIUkNDM7hTH2xVjRJzuDMTFJ9XAJZRoHBABtoVrcdocXetLZtSgrNDDYJpm69\nDkyCCWcOORMAifO49v1rcfPGU2A5dxEAMWlF5HhncGFGIWyW7okL6ZfRDxeOuhAAmZSe2n8qA7aZ\nBJ7wDsFo4p3ByY6JAIBzis8BQLI5pQiPZCkUBm8KMVPGKjTFr+ZScr1KkmBwtj074VUBJsGEP575\nR/r4vlX3wev3orS+FHNfnotr37sW7V6FLOgQpaUBt91GtgMBsoReabVDV8BgIDweAgACYgDVLQRC\nFaQX4Lapt9HXlqxdovqztRaRU4LBElQckDlAtys7xvcdT8eHkWDwmWey38ennxJHPC8JBjudgLOv\nQWEw5wyuaGIw2GQCJk4k27W1UCzarSR6v8phmQsn5J+Age6BuHrc1fQ5s2DGG5e8gTOHnhn3d9eq\nDFsG5Snbj27Hvvp9eKhsLjB3ETDrD0lyBos0JqI7XfFuuxvziucBAOo91YCVxHUIAWMykVSoZ1GS\n40gZFja6qGqMvf6utBRABuuB6DHIXo0GuwezB1llNJ8pmiqrRDqIzrTrbzCpRqHOYIBkaPHu4N//\nHnjqKfb41ltBiwGkp6XrtiMSSzwM3np0Ky69lL321lvyfemy4zR23D1Noc7gzZvZTPWaNcxxc845\nQFVrz4DBSs5gKdNLSYcOAe2ivmEwwEVFOMigT2tMhEdkcDDDZpy2beakvoCXFPI80r4/xt5y7d4N\nen3rEQ6qUa7bDrSQznE91B0/7wwWIBiyEKogCBibH1yemF0GpLUo5gbv2UPcdgDJqJSysfXYnmt1\nBkeDwaIoh8Gd/k54A14A+oy6iSR+CWruScSFs359cGI+AUluI9FG2na3rfujM/ioiFe3vYp1h7+F\nb+qfgcFfoqxMXhAwXrV4WgAXuTkMzR4aY+/U6t/n/Rt/mvMnLL9mOWwWGwMoznrA2qoaBvPOYFlM\nBAeD+2VEsc3G0LnDz6Xby/Yui7KndvHFzJRg8OuvR17xADCY1KcPYI1ilpNgcLKK/84rnofTi04H\nQFyyi79ajDP/dyY+K/0ML219CYu/WhzjE4gWLSL5wQAZW95wQ7hbkofBw4Yl49urV11bHfwicfsV\npBfggpEX0HZ6zcE1+PqgioEjWDY0EBsGHz7M4hOysoBx40gRYynqY0DmAG0H0YVKM6dhYgGhnXvq\n9uAYZ6SQZDKxgn6BAHHLjhtHXNnr1zPn9PTpwNE2Y447IjmDAWDCBLa9ZYu6z6MwOJfA4D7OPnDb\nyX38/pn3I8ueBavJiv8u+C+dZOtKSffpZk8z7lt5H+1rYPQ72LEzvhgZSa2tIP3VNPJL6I7icbxk\nkUZBuXbcprDn8aleGGxQZaWxzkFNS3RnsCgGYbCbNW78DJiRxDuDkVWGb76J/Z7Kox7ARKpauB3G\nhAcyZzBXnfayy1gF0DVrmFN28GDg3HPlMNioKs4pht1iBwBsrd6K2bNZddePP5Z3uo8HGMyfC3DV\n4Ngx1lHlIyLOPVe+5NJInbJQscxg5esgVNu3gzrSANAOmN5EoyLijInwCsZc7TFmjAAcGwwAaDaX\nacrx27lLpLE/bodxjplXRgaAemKXajNVKVbwDhWfGexKM+6KB1kRqj47FXOD33mHbV98MbuP6THq\nKJkwuKMD8PnIttsN2fJ2IzmD+YFt5mxSGMfvj1yJXo18PnavD6SRtl0Pk3zziucpF/YL5hImwx3c\nYu3evGBeuc5c3HnKnZjUbxIAOUCBuwI7d6qLBInkDJb6LH2cfRJazXb64NPhsJAJs2X7lsWdkask\n3hm8c2c4DK6rC1+1JkkU2aRItIgIX8BHI2KSBYMFQcCSs5gzdvFXi1HeWE4fP/7N4zQ/NJrS0oA3\n32T98LffBv76V/k+UgGq/HwWedPubU/q3yGSqriirAXpBTAJJtx96t30uUe/flTV52hxBj/+OGuf\nFi4EzGb5xIaeYTAATCmcQrc3HtmouM9Pf8q2Dx4k/eyXXyb5yJJmzgxx9xuwgBxAnMGVzZW46I2L\n8Lsvfhc/DE5rATLI7M/wXBaePTx3OPb/336U/7IcV4+/OsInpFZ8Ebm3dnLOquwylNTupn2ReNTS\nAhoRAXRP8TheF4y8gN4PAAB+K1o+uVf+3HEsY44meoUsO+sc1LZFh8E1NcELM5ODwe6eAYNVOYPr\nWK/TZTNmTAQfDcAvjzebgQceCN//5pvJa61eAk2MBIpCZTaZKUDYV78PPqEN8+eT15qbgW+/Zfse\nDzBYFhPhJEBUqlq+dCn512wmMSE9BQbn5QWrSTezYzjYFLl3vm0b6FJiQB/QQEl0kJfWCpi8ccBg\n5gzWIyiLJLsdSPcSqCGaO3CwQb1lcEdJOyCQAWVuhjGv78xMAHVsYLCvfl/knUFA2sGD6BHtGj8A\nQf52RWcwD4MXXOSnVbj1eNz9M/rTay9RGMwvt87MZHnBgLFg8NnDzsawbGIHPGBaAeSSP/I/PlyD\nrw+qmMFXEKsPIMJv0Q8MHugeiA+v/BD3z7wfr/zoFTZJE4TBieYGe72AL52DwVndC4NDJTOWBMcY\nfH5oJCk5gwNigPZZEu2v2C12uuy6qqUKm6s2x3iHemVlsXiH7duD/Q0E+yhBRYqKqK9n0LAwyiHy\n7sxkwWAAmD5gOi4adZHsOWkywxfwYeHHCxEQAzE/Z/Bg4MUX2eM77wSeeYZst7Yy97NUPO793e8j\n+9FsnPHfM+D1exM8iugKhcEAcNW4qyiQ/WjPR6qgNw+Dy8sj71ddDfz732Tb4QDuuINs8+7SARn6\nhsFT+0+l2xsOK0dFDB4M/Pa3ZKLS4WDnu5f7c86YEZL7baSYCLccBt+/6n68v/t9PPjVg7AMYoBc\nEwzOYX07KcdcUrYjO6HVD4lK1hcLkXfwMtXFQJXU2gpZ8bjudganp6Vj/oj57InymUBbHsZnn9J9\nX0pH6oXBBlUu1zmQlhIBZIb6yivls9K0EEsPdAYfOBA9v0cUger2Q/Rxv/Tua3gTkVJmsKTLLwdG\njmSP7XaporHYI5zBAIuKCIgB7KzZiXnz2Gv8ub5nDwCTF7CQ6qAZNm79YQ+R0+pkRfFcDAbv28dg\n+KmnkgEL3ynr7ptxIjKZgoOvBrZENhpAC3UG6wEaKInGRACAo0EzDPaZuAKRBotM6Odgf8uvtqrv\nde44wCbD+rr16fiOJeIMZgODvXV7I+8MkjHp84E5gw0E/kMlG4D02RHmDC4rY067SZOA/AHchIcO\nz3FBEKg7+MCxAxRc81ILg5sY+w2DwUaKiTAJJtx80s308YCLngZmPoxDZ5+GmS/MwNqDKmhhiGhB\nGms7RBOxLOmlXT972Nl4aPZDuGrcVZg+IFhBLn8n4C6XTVbHI754HKBzGOxWnxus5Ayuaa2BL0D+\ntslwFJ5bzKIiPiz5EG3etqQVC5KiIni4+6MfsUJTH30UrF8RIj4vWE3xOCC5MBgAHjnzEVoIsBSg\nFk8AACAASURBVH9Gf2y+aTMFVd9UfINnNz2r6nMuvFBuRrnpJuC55+TFP6W84Oe+fw6d/k6sLl+N\nT/dFsE0nSUowOM2chjtPvpM+f8XbV6C0vjTsvbzUOoP/8hc2WbVwIXFDA6x4HKB/AxbvDI6UGwwA\nf/gDOa/b2kg0hpSNDJB++rRpcmewkUwoTquTXmul9aV4d9e79LUqy7dICy5U0AaDWd8uFAZ3t2Sr\ntEI1fFlCReRaWkDzgoHudwYDkOU0o4SsXirCrO75MjpTLww2qPLSWefgWCfpNNTWAvPmkbyqH/+Y\n5PoA3I25BziDB7kHQUAwI64PSTiPFhXR2Ah4HcaH4EqZwZJC3cFXXAHk5gIdvg46w99TYDBAoiLm\nzmWFIz7higPv2QOZI9Toxx1J9HzgnMGSKxggEREAg8F5zrxuKzqTLBUWAvA6gSbSuYzWkSfOYAPA\nYDtHiZy1aGoiRQDVSiqsBRjvXB+ex6DGt7vVweCODqCihWXsdveS6XiVng4IHAzeEwMGU1dSD3AG\nywYgCs7gd9n4CxdfLJ/Q0ms1dgkGB8SA4iQVD4Proyzk4mGw202KkkkykjMYAK6bdB2Nd6oa+DRw\n5m8AACJE/Hez9rwIVjxO3/E/PIDE8E+wbp22Nj1UfPE4QH9tnmwsoaGInJIzONmOwnOGn0O3f7/6\n93A94kL+n/Kx7lCCdm3IoyIkTZtGzDgA+ZvzfVNJvHlFLQyW9ROSoFF5o/DOZe/gtim34avrvsKo\nvFH413n/oq8v+Vp9kbU//AG46y72+MYbgcceY48lGLynjs36vbjlxXi/uiopwWAAuOHEGyic3FGz\nA1OenYLl+5ZH/JzsbDZREQkG19UB/yRJOLDZgF//mr3Gw2C9x0SMzBtJi7tGg8G88vOBFSuA228H\nXC6SJZ2RARxuIjA4255tuNoGEiOobKmU3X83VX9HJ4BKSviVKpHV1gaaFwzIYyL0oFF5o2RxY5P7\nTUa+NXh/KVqDzTubI7wztogzmIPB3VhATtKFIy/E43Mex0V59wIbbwIAZNSd3s3fSh/qhcEGVR8X\ng8FNHtJpuOMOltVVWwvsD46Ze5Iz2Gax0aB7FGwB0quiwuDqasiOe5B7UOSddaxcZy7drmwJt0Jf\neSUBwldeCfzpT+Q53kFsJFeRksblj6PbW6u3ok8fYPJk8njLFuK2CASCOWXcspwidxF6omhUhLMO\nEPzYvFmeFzx/PnGGJ2vJpR5EB07BrNWathpZpqYkn48UdZFBA52e/7J2eNbvAIiqi8iJIhCwBAuK\nBSwJ5St2h04cwqDGtgp1MHjvXkDMYjC4u4spxSuTCRg/gA0M1u2NDoPLygCYPYCFWNCMDIML0guY\n0y1/O6qr5fEIfETEJZcABxr064qUFCs3OIcz9h0PMREAcTNeeQIhYz5RXk3rg90fanZoKsFgPU7y\n8QASw5ehoyOxqAgjOYOzikhf+/vv5bBXSUrO4GQ7CgdnDZb1HQECWW9eerOqKIRoUoLBJ54InH02\ne7xdIYlALQzmc1uT7QwGSK7338/9O72Hzh4yG7MGzwIAlB0rQ9mxMlWfIwjAkiUkJgIg/ZJXXmGv\nFxcDHr8H+xvYffujko9Q21aLVk8rHlj1AJ767qmkZglHgsHpaelYde0q2l43dDTggtcvkIHq0GOT\n3MEHD4YXyQOABx9k5/rPfiaP/jASDDYJJpxUeBIA8r0rm6MsueVktQJPPEEmMh99VD7uMFJesKRI\njGDD4Q00NzgQUL62QxUrJqK75bA6UJxTTB/fOuVWnDEgOJlp9uKL8pVxf3ZLC2T3LT2syhYEAYtO\nWYQ/nPYI4Cfjpfa9U4HurUGrC/XCYIOqr5vNFDf6a7B8eXhGlZQjSseZwVl7h8WRks5FV4mvEozi\nT6PmBldVoUc4op1WJ71JrTu0Dgcb5dPUJhPplLz6KnEFA/Klx3yDb0TxzuBtR0lAGx8V8dlnpJpt\nZyeAPDYY5wfpPUnUISeIgKMBZWXAF6RoOwYOBMaOBera62h12J4Ag2knu4GVpi5tCHcHl5YGzwOb\n/jODF560kH23sW8DU/6pOirC6wVgJc5gs994cHDmOAY1DhxTB4N37QKQbXwYDAA/v5i1yRv3q4DB\naYyeGBkGC4LAoiIyjwD2BhoVUVrKVvqMHUvij/hzQ2+uSEmxYHAyYiKMBoMBMriUqZ38Imraj2p2\nZ9KYCL5dt+mvXZ9YMJEBqCErAUsHvvwy/s/jncEm0aq7eznfp07vT/rafn9sAK7kDJYchUDyskaf\nv+B5LBi1ALOHzKZAYnPVZryx/Y2EPldyCfKaNCm8uFyo+JiISJnBS/csxa+W/4o+liBdqjV78Gy6\n/WXZlwAIuB3414G46/O7IryLQNPHHweuvTb8teJiMqHnF9nkjzfgxavbXsV1H1yHh9Y8hNs+uQ3v\n7Hon/M1xqqo1clbpyLyRWH/Depw34jwABFS/uu3ViJ8lweCOjvDCiNu2AU89RbadTuCee+SvVzRx\nmcE6h8GA+qgIJZmCNKm+vR6dfrIUQm9tlRpFMsqV1JVgxHh271ETFREaE6HHcfhZQ84CQM7PK064\nApefyPjKDs+ySG+LKq83GJ1TwH5J4/qOi/yGLlYx92co3WNTLgB7nKkXBhtU7gwL0EgarRr/Hiy8\nKXzKUmqsvvsOAETqkB3oHghBMO5UiAwGD1+G77+PvGSjqgo9whENANdPvB4AWYr6703/jrk/P9s9\nIndEyr5XV6iPqw/t1G2p2gJRFMNyg2n25PEAgxWKyElFHObPJ51zWfG4dON1ykJFB0717E6uFBUh\nFXORHGQCBN1mRw9yD8KLF77Inph7B745sCni/rza20EKzwEwB/SXpRpLU4czsFfjVQeDd++GDAZL\nRaqMqGuvSIfQQuBEtXcvg10KKi8HkMPOdaOucJEkj4rYgeefJ26bG25gT192Gfm3JziD44mJyMyE\nbOWDHiMRYmly4WRcNe4qCBBwWf9fA5/+lb72/u73NX0WdQY72C9Qj5N8JsGEc4qD7uC0NqDoKzpR\nG49aWkTqsMoUi2A2mZPwLZOnXEcujQMJpLO+dqyoCCVn8I6aHfS5ZBk3pvSfgvcufw8rr12JFxe8\nSJ//zRe/gcfvifzGGAp1BhcXk2iXoiJSXAsITl6GKJYz+Kvyr3DJW5fQ7OSfn/hz+ZgnhZKcwQCB\nwaIoYtHni3Co6RAe/+bxsIg6XoJAiqjNmCF/vriYgLRQ3b/qfry18y36eMnaJUlzB0dyBkvKtGXi\nX/NZLEa0tihSETlRBH7xCzLxAQD33UeMGLwkZ7DVZEW+K1/DEXSP1BSRiyXe3W+k4nGSorU7tsHa\nisjxMREF6QW6HIc8fvbjeOOSN7D2urVwWB2YO3IWBB9pz+tylsHv135Nkr6sCBQQR2K+K18XzmBJ\nDge7rktK0AuD0QuDDav0dAA1ZGraY2pEeS25+Z3A1WbZvJnkGe3dCwJGguDA6APJaf2nMWfzsM/g\n9XuDwDtcPcUZDAA3Tr4RFhMp3/rs98+i0xc9iI7vgBkdBgPMHVzXXoeqlipMm0aKpAHEGUxdGMcD\nDOazM13yXIH5wYKpPAzuzoq1yVJoTASgXESOLt8KwmC33S3LxdKbLhx1Ic6wB11AFg+e2ndn9DcE\n1dAAmiGbBuM5RbMcbli8hJJ5XPtVOaKJM5hAUQECirKMGwOTkQH0tZBlg6LrKF56synivmVl6FHt\nmqyIXP52PPMMcP75oA7KQYOAX/6SbBvBGVycU0zbGCUY7HIRuAsAGzZEdgeHZgYb3RkMAK/86BW0\n3NeCZy55DNhzHhAgMPO93e9pgj8UBo/6gD4nKyisI8kNC0vx7bfqMiaVVNlYB9hIO58j6O/8FwSB\nmiwaxQoA5G+6alX09/EwWHIGf7KPhOxaTBacPODkZH9VzBk6B7OHEPfr/ob9eGTNI1h3aB1Kaks0\ng8i+fVn/E2CxZWYzK+i8bx8rLieJL67WX4GVLfx4IS1CefnYy/H0/Ke7zLwztf9UCva/LPsSW6q3\nyEwl26q3RXorAJKZ+957wNDggp1x48jviP8MqZ2UiltL2lS5CSsPxL8snZcEgx0WB83BDVX/zP4U\nfm6p3iKbdOQVqYjcm28Cq1eT7aFDWUwGLwkG98/sr+s+qKQp/Zkz+LsjEQbVMZTs3O+uVqhhjC86\n1pjOALkaGNzibaK5uXqLiJDktDpx2djLaF/aaXWiT+sZAAAx4zDe36B9UqC1FUBGJR2bTiyYqDsD\nosTKjh0DAt5eGKz/1qlXiuJhMACgz05YLMBbb5FBBEAaq/Xrg6/3EHcsAJhNZswdNpc8sDcCA7+l\nAf6h4p3B6eYsQy+v7ZfRDz8a/SMAwNHWozGXVfEdsJG5I1P63bpCobnBFgswZw553NBAZuYBUGhi\nt9gNP/ERSTIY7GQw2GYDziD3cVnmlxGXa4WKOYOjx0QQGCzSTliyi6+kQj8rWkKPq6RjDRrao6wl\nD6q6WqQxEXaT8ZzBAAc3MivwwxZvzP35mIj+Gf3pwNWomjKMDRCeeTtyVESPhsF9iBuQzzx/4QUG\nTyUYbBJMuu272C126lreXbs7DHQIAnDNNWS7tRV49lnlz+lJmcG8nFYnsrKAEQNzgXJSfr60oRQ7\na9SXK29tBZngG0cCSTPSMmh/SG+aM3QOnbjH+JfhMR2LOzeYh1R5Fv3BYICZLFp9LSg+gZzEX38t\nj0QI1QGOvfXtS2LNpMndGYNmpMQJLwgClpzJiqP9YfUfcPLzJ2PUU6OwZK36omnks+RRERIMBtjz\nfj8X0wfiJpXGZLm54U7SyuZKOpk0oe8E/O+i/3WpE9xmseGUgacAAMoby8N+J1urt8b8jLw8coz/\n+AcBw4B8LHLtBHmWBB9NoPVvEEkSDC5IL4gKoRaMXEC3Pyj5QHGfIm6+WYLBgQBw993s+SeeAOwh\nXZF2bzvq2usAGCMiAiBsQHIwf176OU5+/mQ89NVDYfezaOKjXow47uANY3nOPNx1KotH2XFsAwYE\n/5RbtypnSEvy+QBvhn7zgqNpuvtiun33W/+KsqeyWlpAXcEAMLHvxGR8raSKL3rZ2mSseiupUC8M\nNqiUYPCttwKjRoGGnFdUAEuXBl/P7DkwGAiPinjrrQjFGqoCQCaZne3nMv5x33LSLXT7nxsiEPCg\nJGdwelq64lIpo4kWDgQrrsFHRbS1ATB5qXNwZO5IQ8zGx6M8Zx7dFtIZDD7jDOJCA0JiIgzYKQsV\ndQZzmcFKzuBt2wBkHiYTRTAGOCvsmwbsvhAAICKAz0o/i/meyqMewEyWkjqtxpzkGpgRhBumAL7a\nUhF130AA2H2gCXCRpapDc4ybFyzplFFsgLD54F7FZcWBQHAQ2oNgMB8TUThJfuO+7TZgNouupDBs\nYOZAWM3WLvl+8UhyVbV6W3Hz0pvDnIa3304AEgA8+SSL9eEVFhPBVTPXaxFMLZo6FcBuBmC0REW0\ntQGY+CKJXgDwkwk/0eWyW4CsRrlq3FXkgbMeOPWxuKMiDjYzalpg0ykM5sYUZ/yIfF9RJO5JJYki\n668PHEjco8v2stmgc4tTF4swpf8UXDb2srDnH1n7CJ2EFUUR1S3VMYsc8jD4xBPZdqTc4L17yWpN\nAJg+nbUHkvgc7XnF87qlKOysoll0+40d8lxlNTAYIED41luBYcGuGr9K8ben/Za6daf2n4rVP11N\ns1RXHlgZdzyBpE5fJ+rbSZRMrHHPglGx2yLeGVxWRv5du5ZFRpx5JnDeeeHvM1LxOEmCIFDnvAgR\n6w6twwNfPIDFqxer/gxZTIQBC8iN6TOGxgZcM+4ajO0zlp6vfBG5xkZ5bEioQvOCh+caBwb/feEV\nEDpJf6PU8Ro++bJO0/tbWyGHwQX6g8Gnnw7cdBPZTmLtSsOqZ5KS40AuF2QwOG3ATvz2t2RbaqwA\n4OWXgxvunhGVIGnusLkQpBKQw5dBFIHFCverg3VHATMZdRVlG/+4Tys6jQ6kv674GluqlNeqdPo6\naTXgEbkjdLdEIx5N6z+Nbq87TDrNF13EOmt5ecCcK0opIDM6MIkmPjM4r4jBYCkiAuh5MJg6gzuy\nYPWSKomhzuD2drI0E33ZoCW0mrgelZ8PYC8bAC/bF7tww/4q1kEz6oqHMf0Y3Ni4L3pucHk50Ons\nGXnBkkbwA4ScvVi0KLxjWlUVXGochME2sw1FbuPGYwBArjOXDtQ97u049VTy/KhRpDK9pMaORjR0\nEECj14gISQ/OepAOGl/e+jL+88N/ZK+PGEGiMADg8GHg7bfDP6MnxkTwmjIFdNILAN4vUQ+DW1oD\nwBQ2AX7zlJuT+dWSrgdnPYg0UxDmTX8Cn34dxSYbRUfaWLvY36nPCbAJfdmgI2sSy4d4/XXl/Ssq\nmAt+XPD2zN/zUp2R++z5z2LxGYvxy2m/xKkDSePT4mnB0xufhiiKuPrdq1Hw5wLk/ykfl751KV7Z\n+opijMQttxCYfe65wKxZ7HkeEvMTfLw7/GSFFIxvD31Lt6cPmB7v4SUkPjc4VFuPqoPBoZKcwX1d\nfTEkewhWXLsCj895HMuvWQ6H1YG7TmE2vce+eSyunyHpaCvLm4oFg0fljaIRemsOrlHMRB7BJex9\n9BGZnH2DY+TXXx8O9YEQGJxhDBgMAE/MfQK/mv4rjOnDTuLlpctVv9/oMRF5zjx8cvUneHzO43j4\nzIdhNpkxuZDY/iuaKjBsAsuj3rw50qcETSm5+i4eF0mDClw4I+s68sDagRueeoFmY6tRmDNYhzAY\nAB59NHx1xvGqXhhsUBFnMJt+HjhpF3KCMboTuetOGly4+rOwo57gDO7j6sPyjfpuAzIrFN3Bh1sY\nBB+aa/zjFgQBN510E3388Z6PFffb37AfATEAoGdERADkZprrIBBw3aF1EEUR2dmkqNSBA8DRo8At\nD/Qc91w08Z2szCGko20yhcDglp4Fg/PyAEtw5a21mXSsDjUdQruXhTHu2kU668hn2XZS1rSelZ8P\n4OAMoJNA3U/2fkKv30jaXssmgoZmjI6yp3514jAG+L4/cCDqDD0fEQEAQ7P1CUa0SLZ0MHcvli0D\n3g/hY2VlICsecogLfkTuCN0VkYpHUlREbXstXv3gKD76iCwtd3GJJ7K8YJ0Wj5M0PHc4nj2f5T/c\n9slt2H5U3iG54w62/Ze/hIP/nhoTIWnqVACNRUAVgYebjmxSFYkDAFuaV9LB9VjXGTJYoUcVZRXh\nlinBlVzWdmxKf5DlHmtQZSdr8+hKCp3pnOHn0O1NTcuoIWX9enkchKStHFMcPx5o9bTiy7IvAZCa\nJqn+22baMvGb036Dv877K15c8CJdQfbEuifw8JqH8dr21wAA9e31eHvn27jmvWvw0taXwj5n0iQy\nSbl0KckKlhTJGfwtY72KMJh3BncXDOZzg0O14+iOmG7pUDV1NtHYBgm8Tu0/FYtOWUQLQF474Voa\nT7B0z1LVhf1EUQz7PrGKx/ESBIFGRQTEgOJ4qqAAOPtssr1/P7B8OYljBEg0hDTBFyojOoMBoG96\nX/xl7l+w45YdFOJtrd4qK2YaTbwz2KjjjjOGnIFFpyyC0+oEII8ycRYz53qkWkUAsGIF5M5gA8VE\nAMA/fsomW48UPo1/Pxt9PMKLdwZb4NBtzaLMTOCZZ7r7W+hDvTDYoEpLA/Izs4FmcrNrsrEex0SF\nSZicwT3LGQyELCUbsVTRHXy0kx33oJ5y3Jxr4svyLxX36WnF4wDScZM6yLVttdQV6nAAgweT2Xm+\neE9PhsHj+o6jS5n8/dbhZz8jOZtDuLGiNEMvQEBfV9/u+JpJlclEOuYAEKhlrlAeGNHJIM4ZbAQY\nnJMDWE02YP9ZAICathp8X/l91Pfsad5EtyfknxhlT/1qZB92wtb6DkTN1dy9Gz0OBg/L4dzNQdh7\n++1BZ0VQ5eUAsg/QFS49pV3joyL2Nm7DeeeBTmhL4vNS9Q6DAeDyEy7HzSeRQVSHrwOLPlske/20\n09hy8o0bEXa+R4uJ6AkweOLE4IRe2SwAZCky74aMpjWd/6DbF/a7NQXfLvm6/7T7YQ0Qt3hg4nO4\n7fVH0ebVRoRrfOwaGOzW5zUwMnckvT7XlK/BRZez6nBvvBG+/zauDtm4ccCqA6soADy3+NwuXclW\nnFOMS8dcCoDcdx/44gH6Gh/N8swmZWqg9FWLi9nENe8MlmCwyRScGOHk9Xtp/NngrMHdFu3G5wYD\ngNVkpW7hdl+7Yp2GaOLzgiONRWwWG+YVz6M/Q01UREAM4Jr3roF1sRVPrHuCPq8FBgPyqIj3dr+n\nuM/ChWz75puBmuBivPnzWfHDUPEw2Khj7hkDZwDQ1k5LmcFmwUwBv9ElFRoEgI5cdm5+803k96xY\nAcM6gwFgdP4ITMkJFuXJ2Y8nPlbvDq9pbKb92X6mcbo2L8ybJ5/IO17VC4MNKkEgERD9rGQGvaat\nhi5xGTMm/OS25vaszGAAOH8km5JNG0fC/995h92o/X6gUeQc0Qa9IYdqSNYQ+jf8+uDXirPoPa14\nnCTeLfFtRXjn5HiBwWnmNJzYj1CFsqZ9WPJkLa6V1+WgMDjfla/rrE0tknKDOypZx4rPDf7yy+BG\nEAZbTBaMzNP/+W82A5dcAmAfc1jxGYpKqvAxWHxy0eQoe+pXsqX/2fvxyiuR9w11BveEmAin1Uld\nQ9YCMnCoqAAefJDt09OKx0niJ2nWHFyjuM/+BuPB/7/M/QsGZw0GQJbXbq5iyyUFgeXUAeGDyVAY\nLDmDbWYbbBbjV7y224kTFAdn0OfWHlwb830bj2xECT4kD5oKMbvwghR9w+Qqz5mHH/X9NXlg8uOF\ninsw/O/D8Xnp56o/oy4QvL91pqMwKzcF3zJxCYJATQregBcFp6ykr732Wvj+oc5gWV5wiiMilHT3\nqXeHPXfvjHtRd1cdXcHwTcU3sn51NFmtwPCgEbCkhIxFmpsZBB83Lri6k9PW6q1o95FVTicPULAN\nd6H43OCzh50te6w2N1hSSS0zpkQbi/A/Q3KJR9Mf1/wRr257FSJE3L3ibhxsJGM9rTB42oBpdL9l\ne5fJCi9LOv98ZkTgc2Ivvzzy51Y0sTG3kZzBvGYM0tZOA2zc0S+jn64hoBbxzuCdTetpUcENG5Sz\n/5ubgxO9QSBamFEIV5rxijzfP4dNupYW3SdbqRRNJce2AQJZ9lRk02dEhCRBCC/+eDyqFwYnWYIg\nDBIE4c+CIOwSBKFFEIQ6QRC+EwRhkSAIjmT+rDlzgItnsuVUu2rIFLTdLl+mBAAdaeTG5La5dVt0\nQ6smFUyiUNQ3aCVga4Lfz5bw1NUBYgbvDB6k9DGGkyAIspl6pVl0NbPxRhTfSeaX1EniYXBPOm4l\nRftdBMQA7dQadamWkmhucF04DPZ6g0vszR4Kz0bnje6WIizx6E9/AlyVDAa/+UN0GHzUEnQGd6bj\npKHGWoImaXDWYJb9PuZtvLjzH/B4lLMiNm0CLQ4JGAcOxpK0fNBrrUVa5jEAwN/+RnJlAQITeiIM\nnjtsLt2OVLxHFhOh88xgSXaLHb8+5df08aNfPwpfwIcbP7oRWUuyUJ7DsoT3hLAlCQbb7WT1lzT4\n6gmuYElTpgA4eCp9rAYy3LPiHvZg7b3ITDfO5Obz190D586FQIAMt440H8Elb12C5s7mGO8ENldt\nRqMpeA1UTUR6un5rP/AQd1PTMkwLlnjYupVAE14SFLVagREjRJoXnGZOowWsulKT+k2StUczBs3A\ng2c8CLPJjJ9O+Cl9/r+b/6v6M6Xc4M5OEpWxYUMwwgqkeFyo9JAXLOlHo38Es0BA3sLJC2UTd9uq\nt0V6m6LUjkX4rOJIKx4lrS5bjd9++Vv62OP34Pdf/h6AdhhsEky4biLJR/UFfHju++fC9rFagZ/9\nTP6cyyWPZQuVUWMieJ06SFs77fV7aWZzTxp3DHIPosezpnwNppxCJm3a2uQTW5JWrwZ8jiOAizjT\njBYRIWn+iPlwtJOxlj9/M8596QJZLF8k7W1hE+DDXPqGwUAvDAZ6YXBSJQjC+QC2AvgVgBEAHACy\nAEwG8BiAHwRBSKqdaXQfRn131rCoCL6InMkcQK2X3Jh6ijsWCOY9BZf4BAQvUPwJAOZEqKqCvHBe\nD3FEAyEdJ4VZdD4mwkhVTGNpSv8pFB6FLlsSRZHC4CJ3Ec176qniBwyhMLimtQZ+kWSp9aROmeQM\nRgNrRkvrCSD84gugoQEEnAWLCBohIkJSYSHw8F0DgWpSUWfHse9Q2VijuG9tWy06bMFVD1WTkJdr\nzFu53WLHz0/8OXlg9qH19F9g/r9/FpYD2NERBAhBZ3B6WjrynHld/G1TI36gcPktxB3s8QCPP05c\nwq+/jh4Jg/tn9qfLL7dUb5FFQkgyUmYwr+smXoc+TlLk880db+LiNy/Gs98/i8bORjy551eAjcQ/\nlJTI3ydlBmcG2a+U0+i2u9FTNHUqgJZ+QD1pw787/B06fZ0R9/+89HOsPBB0mtYPBTbdKMuV1rtc\nDisemPQv4OmtQDlx2jV1Nilm0Ibqxc0vsgdbr9H1cc8aPItGVy3buwxXXskm9RYsCK5wAIGj0nk/\nejTwxcHPqKtz1uBZ3eage2zOY+jj7IMxfcbgtYtfg8VEch6uHn81BaP/2/o/1Zm5obnBsYrH8X24\n7nYGj80fi003bsLa69bi/JHnY1xfVoRXaxG5PfXcKsUoq7QGZw2mhp1IKx4BUiDuyneupDUVpPHA\nf7f8FztrdmqGwQAB3lJu9DObnoEv4Avb5+c/l0eCXHAB4IwyxJBgsFkwGzambUDmALrKZf3h9TGz\nnCtbKiGCXPdGLB4XSYIg4JxiYtRo97Ujb/Jq+tq3CukZK1YAGMMqxJ5WdFqqv2JKZDFZML/5faCN\n5Hd9fXg1Ln3rUsXrg1d5B4PBo9z6h8E24y+6SljGHEHqUIIgTALwOoAMAM0A7gNwCoAzhnmgogAA\nIABJREFUATwLQAQwHMDHgiAkrbfDF1rgYTCfGzx2ag1txHsSEAXkeU8ZU4m7aO1aMoiuqgKQafyl\nOkqKNYsuzcb3S+/Xo1xFmbZMumxva/VWtHpa6WtVLVU0Y7GnAJNoOnkgGzCEgnG+om9PgsHUGVzP\nOYMbiDP4nXeCTxgsL5jXrbcC+Y1Bh5Ug4qE3lQtE8nnCjmOTYTLwnfyp+U/honzmpFxR9wJ+8+7z\nePZZtiRz82bA5/cDWWUAiCu4K3MlUyl+sm7yOdvhCK4feuYZ4Be/IPAEuT0vAx4ALd4DAB+UfBD2\nugSI7RZ7t2VoxiOH1YFfTv8lALJK48OSD+lrzZ4muGb9C0BkZ3BmJpnc7LHOYIBGRXT6O2lWaqgC\nYgD3rORcwV8sBvxpUSGMHnXjjYCzdSywjOUeP7XhKYhRKmZ6/B68si2Ym+OzATsu1zUMdlqdOGPI\nGQBIEanpF27DSSeR144cISsZq6pI9rsvyBLGjQOWfL2EfsaNJ97Y1V+banzf8aheVI1tN2+TjRUK\n0gtogbxDTYew6sAq+pooithavRUr96/Eyv0rse7QOgqLx3A18Hbtil08TurD2S12TCiYEL5DF2tC\nwQTqDB2aPZSaK+KNiTAJpqiredSseAyIAVzz7jWobCGr3s4aehYenv0wfe2O5Xdgew0r2qn2nlGU\nVYTzRpwHgJy7H+wOvxcVFZF8UUnRIiIAFhNRmFFo6LgEKSqiw9cRs44FH9nWk2AwIF/50JDHVu0p\n5QavWAFgLAtLv+KEK1L51VKqKUVjgZc/pcWtl+5div/88J+o7znkC8JgUcCYvHFR99WDeshQIiEZ\neAipO/0NxAnsAzBHFMVHRVFcL4ril6Io3gTgLgACiGP4zmT9UBkMrmUw+ESuntCoaT3THQsAMwfN\nRLY9GwDgKVoKmInD5I035M7gDCG/R2TuSYqWG3ys4xhdqtOTwIEkyRHrF/3YeGQjXt/+/+zdd5gU\nVdbH8e+ZGXIQkSAioIAKIqIgKEpQxICorFkxR8SwrK6usr4qJky76OqaUFdXV13zimFxVYyYMCAq\noCQlKxKUHGbu+8et7q5pZpgZ6K6e7v59nqefqe6q7rl9pqf61qlb5/6bWz+4lXd/TJytzYdk8PYN\nt493uD6d92mpESu5mgyOjwxe2ZRa5jsnM5bMYMMGeDGY+6OoZeJgpXOz6t8RCSsqgisGHRW//+Ks\nsi9L/Wx+YvK4xmuzc/K4mKKCIv599m3UG5soGHzL+7dx3pBiBgzwl9ZOmAA0nBsf8Z0L9YJj9m65\nd3z5/YWvxierWbMGXnoJwGHNfAmoVg1bUb9m/Y1fJEuFT+Yml4pwzvHDsh+AoJxIlvXYL+h+AQ1q\nJkpyFVhBfBTbuq53QNEaFixIJICdSyxvtRUsX7c8fnVHLiWDd93VX2JdmbrBz09+Pp6AaLhqD/jG\nH1RnWzK4cWM480zgpy7xEhmTF03mvR/fK/c5r017LT4PCFOOgjWNqnUyGEpP6vzYtw/wxIuL6RB0\nxaZP9yOEv/oqsf1Wu30cv7Jt5212LrU/yAQzi48QDQuXihj18ShmLp3Jx3M/5oB/HkCX+7vQ//H+\n9H+8Pz0f7sm5L/srXcIjgydNSowM3mabRD3hmJ9X/hyvj96tRbdqV9qqwArifamZS2dWqsQJ+H14\nbGDKjo12rPB9VVQ3+Ob3b+aNmb7e9rb1t+VfR/2LYfsMi/dxX5/xeqn/qaqMyL2we6I+6j0T7ilz\nm1Gj/FW3J5+86RIRazasif/vZvvVuLFJ5MAfa27Ki1MSE/CFJ13LBf3b9o9fLTBh2avUruNP5CUn\ngxcsgG/nzobWfsVuzXYrlafJNu3aAfO7w9MvxB+7bfxt5V4hsWT1En4iKCWzeCeaNMyd/mouUzI4\nBcysO9ALP/r3Iefcp2VsNgqYgk8IDzOzlJwqbFq3KdvU8ZNKxGoGA+y/PwweDN26wQGDQsngLP9i\nSlajsEb8jO5alsMO70CdxTz2/M/MX7gB6vszyE1r5db73tRZ9FydPC4mfAndqS+eyknPn8SVb13J\nSc+fFH88H5LBkEiMr1i3gm8XfRt/PFeTwfGRwRhrg0nkZi39gSde/y4+ceQ2u2bvyGCA8w7rAb/4\nz++CWu+WmkQrZsLcxAiNlpadk8eF1awJp+05GGbEZi+eAbs+z5Qp8MUXQTK4ce7VCwbYt9W+8ZIX\nY6eP5cI/rKZm+Ji57i+42kuB3NuvdWjSIX7C8v3Z7yeSX8BPK3+KT6iUTSUiYhrVbsTFPS6O33/4\nyIc5dtdjAVhf6yfo4k/0TAsmHF+1yk80BX5k8P2f3R9/bttGufN5LywMBiuEk8FzNk4GO+cY+cHI\n+P0dZ9wMzh+yVPekaFn+8IdgBNKnFSedIKlExMQzgOr/vmMjaAHu/exeOjzclJaXH8H27f3+65NP\nYMSIxPZf1r01vvynff9UbUdQHr7z4TSu4y+VHjt9LO3uakfPh3uWGoAQ88jER3h9+uvssktixNmT\nT8Ivwa5tn302HolWnUpElCd8Yj3c19yU+cvns3K9v3qvMhP5Jl/x6Jxj2uJpfLHgC5759pl4neAC\nK+DJo5+kef3m1K1RlxsOuGGj19q9+e5VGgDUv23/eMmmt394m2H/HcZr015jfXFihrAOHfxVSv/6\nlz9xX555v82LL2f7FamlJpErYz8dU1xSzHNTfGmEWoW1GNRhUNrbFqWGtRrSu3VvAGYum0nnvv6L\n+8cf/ZUPMW+8AXR6Jn7/hE4VDCGv5trFxl3MPIjtVvcHYMbSGTw3+bmNtnXOcfp/TqfY1vgHZvfa\naKJMqZ6UDE6N8OnsR8vawPnrwR4L7jYCDkjFLzaz+FmnecvnxWvMFRTAE0/AZ5/B+jq5OzIYSo8u\nKjzhRLiiCV8f1JK/fXgPFPi6Ui3r5977Lq9ucK5OHhcTrpUbnrE3LNeSJuUpbxK592YnRkdke2c0\nrHv30AHxL/6zXUIxZ3zaCQ4fAnV/Yd3W/qx04zqNszIRXr++0XrJGfH7945/bKNtPo+NDF5Xlzb1\nc+OEzyWXQP2JoUvCe90COMaMgU8/JV4vGHIrGVxYUMiROx8JwMr1K5m69i3OOiuxfptdcq9ecIyZ\nxUtFlLgSXvk+URYlXEM4G5PBANcdcB2jDx/NuNPGccYeZ3DFflckVu53GxRsiJeK+C00UXftrZdy\n8wc3A74m5iU9L4mw1enXvTvwyy6wyg9kGD97fLwGaMz/ZvyPiQv95aZ7bbcXteclJviqk9KpmKPR\nvj307g1MOQZW+BGLL059sdSJ25ifV/7Mq9NeBaDG6u1gZn8KCyl9kqgaat+4PQe1PSh+3+F4a84r\n7HbZpfHHZsX+rZtM4aOl/mqAlg1acsrup0TZ1CqpVVSLP+z9hzLXtW/cnuG9hnPGHmfEHxv66lBc\n0SralvE1dcghpe+v2bCGa9+5Nn4/XP6rOgmfWP9q4Veb2DIhfFxSmYEpyXWDez3Si53/vjPdRnfj\nhOdOiO8jru17bbwkCfga7U8c/QRX9b6Kq3pfxY0H3MiLJ7xY5u8oT4EVcEH3C+L37/r0LgY+OZBD\n/nVIhTVSk4Xfd+uG2T1xecemHeNX334w+4NyS9u89+N78XrNh+10WE5dzRITqxsMsNVe/40vf/SR\nv4Lt/vt9qbdwiYicSQYD20xN9M9vGX/LRp+FUR+NSvThVjaBd66r9icwxVMyODVip85WAp9vYrvw\naeT9yt2qijo2SVyPNOWXKRutn/Nr7o4MBj8ree0iPx1kcU0/GzuFG1jYJVGNY4dtcu99l1c3OFaj\nC3IzGbxLk11oVLtR/H79mvU5ZfdTqFHgZxivXVQ7K0eEbo5wYjxWc+7HZT/y1Nd+FsXGdRpn7eQF\nZWna1F9yecUV0GzGH2FFM7+ioBj2Gg3n78nSDf7gunOzzll3aXnMEa1Pic8+/9ikf5ZKlCxdvZQ5\nKxIzzDdvWj1HU1XVTjvBok8PoNu2QVHRFl9Cuzd48slgwqFtEie5cikZDBuXSxg+3H/WzeB35+Zu\nMhhKv/fnpzwfXy41edzW2ZkMLioo4txu58YTF92265ZIljWeCXs8Gp9MK5wMnt3qVpat8X2Z0/c4\nPV4nP1f06AFg8dHBS9csLXVlG5SuJXvlfleyaqXfl9euTdbWSO/cGSiuCZ/7UgIbSjZwzdvXlNrm\npxU/cewzx8YTUA1mnQaukPr1s6O24Wsnv8bYk8dyWc/L4mVSxi58lL6nv1NquxqHJN73pT0vrfZl\n3K7uezUTzp3ATf1u4oAdDqDn9j25b+B9TL5gMiMPHMk/jvxHvK81a9ksbnzvRv7v/2DrrWHHHeHE\nE+Ghh+D88/3EkLHSbpe+fmn8pMfO2+xcqjZpdRLuU1/+xuXc8O4NrFi3YpPPufeze+PLlSkBknzF\n44dzNi7IeuCOB3JV76s2et7gzoO5sd+N3NjvRq7qc9Vm9RHO7XouA9oPKFUq5O0f3uaRLx+p9GsU\nlxRz+4e3x+8fs+sxVW5HdVJgBfHRwb+s+qX0FQshT3+bOwnQ8oT/NxdvnagbfO+9sN9+MHQorKgx\nA1r6Gvh7bts16ydwb9DA90UBFn/Wj+7b+f75xIUT+d+M/8W3+3jux6Xr+7/4OPy2vUYGZ4ks7VJV\nOx3xJSKmO5c0vKG0qaHljuVuVUWdmnWKLyfX3VuyekmpnXRsZtBcUq9mvcSM9ICt9qNNKEjUtNmt\nVe4lg8N1g9+e9TZfLfyKtRvWxi/VgdxMHhRYAYN3GwzATo134pNzPuHxox5n6kVTuX7/63n5pJfj\nl/Tluq4tusaT4LGRwX/96K/xWpMX97g4p2qMArRtC7fcAvMn9OCJvWfQ9JvrYW1Qm7Ph3Ph22XxC\n4Ij9W8KMgwFYtP6HUnXwSk3isaAbzZpF3br0qV3b+HOfUIdy4AXMKHgNevwd9rkj/nDscs5c0b9t\n//gEPWO+G0PL7Yv5+msYO2Ea39VOjAzPxf353tvvHa/t+Mr3r3DfhPuA3BgZXJZSiYyD/sSkGb6+\nfzwZ3GAeUxv9DfCX2163/3URtzD9kieRA7j2nWvjl1d/PHfjWrKrVvntsnmkUXxSsc/Opyb+//3h\nLx/miUm+XvqHcz6k2+huvD/7fcBPylb0lZ9ULVved1FBEYe0P4TbD76d2w66Lf74nC5DqFXPz+nB\nTq+yfiffT21at2mp/nt1ttd2e/Hn3n9m3Onj+PDsDzl/r/OpUej7X2bGA4c/EO+P3f7h7ex12Dcs\nXgwzZ8JTT8HZZ8PfP7uDxrc1Zutbt6bvo3257zO/v6tdVJtnj3s2PrCluunesnt8Qrbl65ZzzTvX\n0PWBrixZvaTM7ScunBhP5u7WbLf4JfYVCdcNBj/Y6YK9LuCCvS7g6j5X89zxz6WtnEi9mvV47eTX\n+OXyX3joiIfij494dwSr1q+q1Gu89N1LfLfYn+Hr26ZvqQEb2eq4XY+LL5/z8jm8MOWFUuvXF6+P\nlw2oW6NuvHRjrtm16a7xkevfrnwHavgSKOPGJWqCs9cD8e1P3C03kuKx0cHz5xmX9Ej0z69/73qK\nS4pZu2EtZ750ZvwEZpvZw2G6n20xW7638p2SwVvIzGoBTYK7cze1rXNuGX70MEDKspO/6/C7eGH+\nuz65K37ZWax+S+xS+v132D+nDqrCRh0yiq+Hfs2iyxcx6YKvqFvYoNT61jk4ItrMGNLNzzZU7IoZ\n8soQbh1/K1N/8ecc9m65N+0bt89kE9Pm7sPuZuKQiXxzwTfxMiltt27L1X2vpn/b/hluXXTq1KjD\nHtvuAcDUX6Yy8v2RPPSF78TWrVGXi3pclMnmpVVhIQw+tj4L/n01d3eYQouSvUutz+Zk8L77gk06\nI37/zo/vZM2GNTjneGvWW4kNF3SNn7XPFb/r8LtE0rPxDDh5IBx2cXzyuBN3O5F2jXNnAjnw/8eH\ntved50WrFvH8lOe5dsL5HPZqx/jkWgVWkHMjRMG/r6v7XB2/f+FrFzL0laHc8XEi+Z+tI4PL0neH\nvpzY6WR/p85S3q11GQC//go0+gEGHx6vuXdh9wvjB5+5ZMcd/URazEpc6v38lOdpf3d7+jzShxOe\nSxxEx2rJLg/mrMq2yePC4sng5S3psyIxanLIK0M45plj2O8f+zFvuU+It2zQkhcHvc3P3/nPfuss\n/Bic1+28eDJs5m/fs/tlf4Q6S2Bgom7yqENG0aBWg/JeIqt0aNKB4b2GA37U9/mvnI8jMT5o9Oej\nufR/l1LiSli1flWpk7x3D7i7WvdZ6taoyxfnfcGQbkMoDKa8mbZkGle8cUWZ2987IfH5vrD7hZW+\nSuv4TsfTp00fOjXtxMNHPsykoZO4Z+A93DPwHq4/4PpSVwWmy9Z1tubsrmczaBdf93b+8vnc/cnd\nvP/j+5z0/Elc8/Y1rN2wdqPnOee45YPQFQ29rtxom2x0yu6nxOvfl7gSTnr+JF79/tX4+nGzxrF4\n9WIAjtj5COrVzM0MoJnFJ8lcV7KOhoMvgKI18fXbDhwN+/lR4QVWwPGdjs9IO1MtXCqic9Hv4iVf\nPpzzITd/cDO3f3h7PO/Qo2UPmk++Pr59Nn9f5xMrr/6LVI6ZNQF+xo8Mfto5N7iC7RcCTYFvnHNd\nqvB75gItW7Zsydy5G+ecLxl7CXd+cicA53U9jweOeIC/fPgXLn/jcgCa1G3Cl0O+zKn6oZvy90//\nzsX/TUze8sGZH7Bf65RV5qg21m5Yyx4P7BHfEccUWiGfn/c5Xbat9EdMslT4/zxs2N7DuPPQOzPQ\nosxYu2EtF712EQ99+RC1Cmvx3UXf0aZRm0w3a7P12HcNE/puC7V9HfhWDVuxQ6Md4qPGALh3Es/d\n25ljsvtKxI1M/WUqxz5xKt8u+6zU42fufDmjTxgZn9U5lzz+1eOc9p/TylzXtG5T/nrwXzm1y6kR\ntyo6w98cXqo0QEyzes34YdgP1KmRhYViy/Hzyp9pcVMHSmr5ibVG9ruZGVPq8/CMEVDXH1Q3qduE\nKRdOiU8umGsGDICxY4Geo6h/+AhWrF++0TbbNdiOmb+fyZqVtWgU5ID22w8+KH8eo2pt0SLiV3Ic\neCC0uvjMMi+77t26N88e9yyfjGvOoGAepj/+Ef7yl+jamipf//Q1XUd3jY8aKyypQ3GBnxjywB0P\n5I1T38jack5lWbNhDbvftzvTlvgJpkYfPppzu53LU18/xckvnIzDH3NvU2ebeALttC6n8eigR7Mm\nDlMWTWGfh/fht7X+cob3zniP3m0SI3+XrVlGy1EtWbV+FQ1qNmDepfOyMuE/edFkOt/XmRJXQlFB\nUanawT2378lzxz9Xal6KcbPGceBjBwLQpXkXvhzyZdb8TStS4ko466Wz+OdXfuLTAitgZL+RHLHL\nEZwz5px4mboXjn+BozoelcmmptVHcz5i33/sG79fd9le7OUuYJfu83ho+jXx/++R/UYyvPfwTDUz\npa69Fq4P8rtjxkCDzu9w4GMHUuJKKLACigqKWFe8Lp53OOWgLnzzjU8Er1y56deuDrbffnvmzZsH\nMM85lx9JsiQaGbzlwtf0rKvE9msBA1J6ZHNVn6vi9bke/vJhDn/y8FIJosePejxvEsEAQ/caGq9t\nU2AFWV+3pzy1imrxwOEPbPT4JftcokRwnrhkn0u4fN/SyeCigiIu7XlpOc/ITbWKajH6iNF8cd4X\nTLlwSlYnggEO6F0b3rgNnD+YmPPbnNKJ4BkHwc+75VSZiJgOTTow6eJPafr2s/BTZ1jRnFovP8WD\nx9+Wk4lggIE7D4yPuIppULMB1+9/PTN+PyOnE8EAIw8cyfndzi/12ODOg/nknE9yKhEMPsG967zE\nJfR/HjechxdcHE8ENyvciXdOfydnE8EQqxsMfHQpd+wwk0v3uZR6NRIjyurXrM+dh9xJraJaTA2d\n6+6YsgJr0WvaFJoEf9LJk+HvA/4ev7IJ/OfirkPv4q3T3qJ5/eaMH5947n5ZOpahc/PO3Nr/Vgz/\nPRZLBNcqrMV9A+/LmWRZTO2i2tx/+P3x+396808c9fRRDH5hcDxRdPm+l7Po8kV8M/Qbxp02jkcG\nPZJVcejYtCMj+42M3x/yyhD+/c2/GfLyEI56+igGPDEgXlbh9C6nZ2UiGHxZgNO7nA6w0SRyH839\niG6juzHqo1F8ueBLbh9/O8c+c2x8/ZW9rsyqv2lFCqyAh458KD7atcSVcOVbV9Lp3k7xRHCj2o0Y\nsNOATb1M1uvZqif/Pubf8bJeqxp9xntbn8WD068u9f+dK6PCofTI4Bkz/FXmI/qOAPznIFb/PJZ3\nWBGUEle94OyhkcFbqLqMDAa44d0buOadazZ6fHiv4Yw8cGQZz8htc36dwzXvXEPv1r05a8+zKn5C\nFjv7pbP5x8R/ANB6q9ZMvmByzl6qI2V7+punOWvMWaxav4oh3YaUOiCR7PPaazBwILDtRNqceRU/\n1vITVuzUeCe2nXwj7z9wLLgCpkyBDrlXShaAYcPgrrsAHH36GO++W9EzstvRTx/Ni1NfpGZhTS7s\nfiHDew2nab0cqwOyCSWuhNvH386sZbM4f6/z4yVwctGwP5Rw16/9YIekD/X3hzH60Cc499T0Xw6d\nSa+8Akcc4Zcvuwxuv91PvhRLuhQVFMVrgz76KJx5pt/2r3+FS7P4PGffvvBeUB1gyRJYXjCbm967\niXaN2zF0r6GlEme9ehFPCC9cCM2bZ6DBKTJx4USuGncVr03z32O3HHgLV/Qqu8RALjj9P6fz2FeP\nbfT4uV3P5YHDH8j6RGFxSTH7/mNfPp336Sa3+/aCb0ud8Mg2s3+dTZf7u7BszTJaNWzFxT0u5u5P\n746XXyxLp6admHj+xJw8cV3iSrjh3RsY8e6IUo+3qN+Cx456LG/K9H218CuOevqoUhPdQu78f4eN\nH++/iwAuugjuvtv//x/6xKG8OfNNoHTeoWlT+OUXXw5q5swMNrySNDJYyeAtFtQMXo1PBr/qnDuy\ngu2XA3WBj51zlT7XH0sGN23alLFjx5a5zar1qxj01CBf0L8BtGjRguv2v45zup6TUzsm2djiVYs5\n4J8HMGvZLMacOCY+e7nklx+X/cjnCz5n4E4Dq/3s3LJpv/3mZyIvKYFOneCR1yewYMUCBrQfwBED\na/D66367xYuhcY7Ol/j229Cvn18ePhxG5vg5zeVrl/P6jNfZu+XetMrBOveScN99cMElv8EuL3Hy\nGav4bTm8/NgOMLM/L48p5PDcnIMn7qefYFs/HxV9+8I775S/7ZVXwq23+uXXXvMlJrLV0KFwf3Ce\ndvx4Xx++LGvXwlZb+Z/t28O0adG1MZ0mLpzI0tVLc76PumjlIjrc0yE+wVqL+i0Ysf8Izul6DgWW\nGxflTlw4kb1G7xWfsDjZOXuew4NHPhhxq1Jv1tJZTFsyjT5t+lC7qDaLVi5i8AuD44mwmAIr4LQu\np3HzgTfHJ9vLVWO+G8PZY86muKSYP+33J36/9+/jo2XzxfK1y3nl+1fi5VJ2abILfdv0zbl8y8KF\n0KKFXx4wwH8Hgy93deBjB/LDsh9K5R3q1oXVq6FzZ5g0KUONBhYsWMCCBQsq3O7QQw9l0aJFoGSw\nbAkzWwQ0Br5yznXdxHaNgCX4xPGzzrkTq/A75gItK7t9/zP789IDL+XdzjmflbgSnHNpm2lXRKLV\nowdMmOCX582D7YLydF27wpdf+kn01q2Dgtw4ttyIc3DjjfD99zBqFDk3WZ7kr7fegv7BIKo//hHM\nEjVh330X+vTJXNui0qYNzJ7tZxz/9Ve/PyvLoEG+ViHArFmwww6RNTHl7r4bfv97v/zgg3DOOWVv\n9+GHidIQp5/uR0dLdvlozkfc9uFt9Ny+Jxf1uCgnj8ee/PpJ/jXpX3Ru1pn+bfuzW7PdMDNqFtak\ncZ0cPUuNnyxu8qLJvDnzTd6b/R6NazfmD/v8gU7NOmW6aZFZX7yeAivQMWeOcw4aNPD1f3feGb77\nLrGuuMSfCIp9BoqLoSgYEL/PPvDRR1G3NmHEiBFcd911VXlK3iaDc+8ahsyYDPQG2ptZgXOupJzt\nwhfzTtmcX7SpkcFhLVq0yMmOh5SvwAogt05IiuS1Qw9NJIPHjoWzgmo3/iS2T47maiIYfILs6qsz\n3QqR1Ntll8Tyd98lRt6AHxGaD3r08MnglSth6lR/BURZpgS95bp1oXXr6NqXDruGrpifPLn87XKh\nXnC+69mqJy+e8GKmm5FWgzsPZnDnTVZHzElmRqdmnejUrBPD9hmW6eZkRI3CGplugkTADNq2ha+/\n9idji4sTJ26TTwSEJ4zLdM3gIUOGcOSRm7xYHyg1MjhvKRmcGh/gk8H1gG7AhHK26xtaHl/ONptU\ns2ZNunYtd/CxiIjkiAED4IYb/PJrr/lksHPw88/+MY2UFclO223nk5urVvmR7/VCJf4bNsxcu6LU\nvTs895xf/uSTspPBa9f6SWvAJ9Cz/eRXZZPBH36YWC6vlISIiEi6tWvnk8Hr18Pcuf6qnrJMn55Y\nDp/gzoQWLVrQohKNqFmzZgStqd6yvFtVbfwntHxmWRuYLyJzWnB3GfB2uhslIiLZq0ePRD3gN97w\nHbHly31pCIBmzTLXNhHZfAUFiYkfp0+HH39MrMuXZPDeeyeWH3zQn+hKNm2ar5sO0LFjNO1Kp223\nhUbB3IDlJYOdS4wMbtQoN963iIhkp7ZtE8uxk7Nl+eKLxLLGLWYPJYNTwDk3AXgff5H+2Wa2dxmb\nXQZ0xNcLvtO5cirui4iI4C/FOuQQv/zbb360WGxUMGhksEg26xtcK1ZS4kfGxuRLMrhXr8Ro4I8/\nhhde2HibKaGCah06bLw+25gl3vOcOX6/nmz69EQpoH33zf7R0CIikr123jmx/Oab5W+nZHB2Uhcj\ndYYBq4EawBtmdqWZ7W1m+5vZA0AwFzLfAaMy1UgREckeAwYklv/730SSADQyWCT5SXfiAAAgAElE\nQVSbxSaQg8So2Dp1oEaelGIsLIRbbkncv/JKf/VD2NSpieVcGSEbLhURfn8xqhcsIiLVxZFHJvol\no0fD6tVlbxdOBu+xR/rbJamhZHCKOOcmAscDv+JrB48EPgLGAefiRwRPBQY651aW9zoiIiIxhxzi\nR5OBrxuskcEiuaFPn8TM2zH5Mio4ZuDAxAjp6dP9gWZYeGRwLiaDyyoV8dlnieWePdPfHhERkfK0\naAHHH++XFy+Gp57aeJsNG+Crr/zyTjvlX18mmykZnELOuVeB3YE78COAVwJL8RPK/Qno6pyblbkW\niohINmnWDPbayy9//TV8+WVinZLBItmrfv2Nk335dgBlBrfdlrg/YkTpqx9iyeDCQn+AmQvCyeBv\nvtl4feyAGjS6SkREMu/3v08s/+1vG9f4nzoV1qzxyyoRkV2UDE4x59wc59xlzrmOzrkGzrltnHN7\nO+f+6pxbk+n2iYhIdgmXirjvvsSyykSIZLeDDip9f6utMtOOTOrRA044wS//8gucd54/0Cwpge++\n84+3awe5Mun37rsnlidOLL2upCSRDG7TBrbeOrp2iYiIlKVHj8Skr5MmwXvvlV6vesHZS8lgERGR\nauyooxKlIlQmQiR3hOsGQ/6NDI654w5o0sQv/+c/8PDD8OOPidqEuVIiAmDbbaF5c788cWLpEVY/\n/ADLl/vlLl0ib5qIiEiZhg1LLP/tb6XXKRmcvZQMFhERqcb22AMefHDjRJFGBotkt+7doUGDxP18\nTQa3aAEPPZS4P2wYXHFF4n4uJYMhUf5h8WKYNy/xeHiksEpEiIhIdXHMMf67GvxJ20mTEuvCyeA9\n94y2XbJllAwWERGp5s4+G77/Hs46y9fP7Ns3d2poiuSroiI44IDE/XwsExEzaJAvEQGwahU8+2xi\nXYcOmWlTuoQPlsMJYCWDRUSkOqpZEy6/3C87B1df7ZdLShLzmbRuDdtsk5n2yeZRMlhERCQLNG/u\nL59evhzGjUuUjhCR7BUuFZGvI4NjRo0qXVMX/ER7Bx+cmfakSzjRG54UNDx5nMpEiIhIdTJ0KLRs\n6ZfHjIGPP4bp02HFCv+YSkRkHyWDRUREskidOlCgb2+RnDBoENSt65e7d89sWzKtXj349FN/yen4\n8fDWW76ObuzS1FwRTgaXNTK4YUPYYYdImyQiIrJJtWvDNdck7l91Fbz/fuK+ksHZx1x45gKptsxs\nLtCyZcuWzJ07N9PNEREREZEU+PZbmD/fjxLWiP/cV1zsE76rVkHbtjBjBixZkri8tlev0gfYIiIi\n1cH69b6O/4wZG6975RUYODD6Nm2u7bffnnm+cP8859z2mW5PJmhskYiIiIhIhnTqBAcdpERwvigs\nTJTDmDkTfv219GQ8qhcsIiLVUY0acN11Gz9eqxb06BF9e2TLFGW6ASIiIiIiIvlizz19vUXwiWBN\nHiciItngpJPgu+/8FSwNGvjJb088EZo2zXTLpKqUDBYREREREYlI8iRymjxORESyQUEBXH99plsh\nqaAyESIiIiIiIhFJnkQuNjK4sNCXDRERERFJJ40MFhERERERichuu/nRVSUl8OyzsHKlf7xDB6hT\nJ7NtExERkdynkcEiIiIiIiIRqVsXdtnFL69YAc755f33z1iTREREJI8oGSwiIiIiIhKhnj0Ty40a\nwYgR8Je/ZKw5IiIikkdUJkJERERERCRCI0b4UhHt2sHQoX5GdhEREZEoKBksIiIiIiISoVat4MEH\nM90KERERyUcqEyEiIiIiIiIiIiKSB5QMFhEREREREREREckDSgaLiIiIiIiIiIiI5AElg0VERERE\nRERERETygJLBIiIiIiIiIiIiInlAyWARERERERERERGRPKBksIiIiIiIiIiIiEgeUDJYRERERERE\nREREJA8oGSwiIiIiIiIiIiKSB5QMFhEREREREREREckDSgaLiIiIiIiIiIiI5AElg0VERERERERE\nRETygJLBIiIiIiIiIiIiInlAyWARERERERERERGRPKBksIiIiIiIiIiIiEgeUDJYRERERERERERE\nJA8oGSwiIiIiIiIiIiKSB5QMFhEREREREREREckDSgaLiIiIiIiIiIiI5AElg0VERERERERERETy\ngJLBIiIiIiIiIiIiInlAyWARERERERERERGRPKBksIiIiIiIiIiIiEgeUDJYREREREREREREJA8o\nGSwiIiIiIiIiIiKSB5QMFhEREREREREREckDSgaLiIiIiIiIiIiI5AElg0VERERERERERETygJLB\nIiIiIiIiIiIiInlAyWARERERERERERGRPKBksIiIiIiIiIiIiEgeUDJYREREREREREREJA9kbTLY\nzOqZWW8z+6OZPW1mM82sJLjN3IzX62RmD5jZdDNbZWY/m9l7ZjbEzAqr8DonmdnrZrbAzFab2Q9m\n9riZ7VPVNomIiIiIiIiIiIikSlGmG7AFXgH6hu674FZlZnYucDdQM/QatYD9gF7AmWZ2mHNuySZe\nozbwPDAgqR2tgJOBk8zseufc9ZvTRhEREREREREREZEtkbUjgwOxBPBi4H/ASsCq8gJmdhhwH1AD\nWAhcDOyNT+q+ELx+d+BFM9vUaz9CIhE8Dvgd0AM4G5iOj/W1ZnZOVdpXHSxYsIARI0awYMGCTDcl\nbyjm0VPMo6eYR08xj55iHj3FPHqKefQU8+gp5tFTzKOnmEdPMY9ecXFxbDHbc6KbLZvf+BPAYGAn\n51xT59wAfFK40sysCLgLH4ffgH2dc/c65z5zzv3POXccPlFs+BHCp5bzOv2AE/CJ4DHAwc65l51z\nnzvnHgV6ArOD17nVzLaq+tvNnAULFnDddddp5xQhxTx6inn0FPPoKebRU8yjp5hHTzGPnmIePcU8\neop59BTz6Cnm0QslgytdEjbXZG0y2Dn3kHPuaedclesDhxwFtMUncUc6534oY5vLgaWh5bL8Mfi5\nAbjQOVeqXIVzbjFwRXC3EZB1o4NFREREREREREQku2VtMjhFfhda/mdZGzjnVgPP4Ef17mpm7cPr\nzaw+cCA+ofymc25+Ob/rBfzoY/BJaBEREREREREREZHI5HsyuFfw8zvn3M+b2O7d0PJ+Seu64yee\nS96uFOfceuBjfFK5u5nl7XB0ERERERERERERiV7eJoPNrB7QCj+id2oFm4fXd0xat2s5223qdYqA\nnSpqo4iIiIiIiIiIiEiq5G0yGNg+tDy3gm3nhJZbpel1RERERERERERERNImn5PBDULLKyrYdmVo\nuX6aXkdEREREREREREQkbfI5GVw7tLyugm3XhpbrpOl1RERERERERERERNImrclgMytJwe20NDVv\nTWi5ZrlbebVCy6vT9DoiIiIiIiIiIiIiaVOU5td3aX79LbE8tFxRyYZ6oeXkUhCpep2KNAOYP38+\nzZo1q3DjwsJCCgsLq/gryrZunR/wfOihh1KzZkX5bkkFxTx6inn0FPPoKebRU8yjp5hHTzGPnmIe\nPcU8eop59BTz6CnmqVNcXExxcXGF2y1atCi22DitDarG0p0M7piC11iQgtcoy7zQ8vblbuWFJ3ub\nk7QuPGnc9sAXm/k6FSkAcM6FP7iRytTvzWeKefQU8+gp5tFTzKOnmEdPMY+eYh49xTx6inn0FPPo\nKebRU8wzwjLdgExJazLYOfd9Ol9/SzjnVpjZHHyCtkMFm4fXT0laNzlpuzGVeJ0NwLTKtDNkLb7M\nhAOWVGL7YqCkir9DREREREREREQk2xQAlblEvjE+Eby2og1zVbpHBld3HwAnAbuYWTPn3M/lbNc3\ntDw+ad0E/MRxNYLtbivrBcysBrAPPpk7wTlX8dj1EOdcvYq3EhERERERERERESlbWieQywL/CS2f\nUdYGZlYHOB6fxJ3snJseXu+cWwG8hT+r0N/Mtivndx0DNAyWX9iCNouIiIiIiIiIiIhUWb4ng18E\nZuITucPNbMcytvkLsHWwXOao32Ab8COt7zGzUnE1sybALcHdZcDDW9JoERERERERERERkaoy51ym\n27BZzKwd0Cvp4b/ga38sBi5PWvffsspAmNkA4GV8Yvwn4EbgU3wC+DzgaPyo4PeBA1w5ATOzJ4ET\ng7tvA3cC84HdgT8D7YLXOc85p2SwiIiIiIiIiIiIRCqbk8GnA49U4Sn7O+feK+e1zgb+DtRk49kE\nHfAJcLhzrtyJ28ysNvAscFjsoaTXKAGud87dUIU2i4iIiIiIiIiIiKREtpeJcJW8lWzyRfxI3W7A\ng8AMYDXwC3408PlAr00lgoPXWOOcOwI4GXgDP8p4LTAbeCJ4DSWCRUREREREREREJCOydmSwiIiI\niIiIiIiIiFReto8MFhEREREREREREZFKUDJYREREREREREREJA8oGSwiIiIiIiIiIiKSB5QMFhER\nEREREREREckDSgaLiIhISphZ3Uy3QURERERERMqnZLCIiOQsM9P3XETM7CbgNDMrMDPLdHvygZkV\nhpYVcxFJCe1PJB+YWb3QcuGmtpXUUL9FpPrQQbJInijvC1dfxOllZoeaWatMtyOfmNlfzOxiAOdc\nSabbkw/M7B5gOHAR0MA557RviUS8H+ecc5lsSL7SCSfJRcn7E33O00t9xeiZ2eHA1WZ2rZkVOueK\nM92mPKF+S0R07C8VMf0PSqaYmelLIFpmtgP+S7gh8I1zbkPweIGSZqlnZg8BZwFXAf90zs3PcJNy\nnpn9DbgYWAns6ZybnuEm5Twz+ztwAVAMFAI3A/+n/Xv6mFlfoCswCFgMLAFuAuY759Zlsm25ysy2\nA3YEGuM/51OA6UogpJf6itEys9bArsDuwUOzgBedcxv0t0gP9RWjZ2Z/Bi7F788XA2c758ZktlW5\nTf2W6AWl21oDNYB6+GP/FZltVe7Lpu/Kokw3QPKPmf0BeNs591U2/bNkMzM7EegDnBg8tBUw1sze\nB253zhUrIZxaZnYfvnMPcFnw2GPOuXmZa1VuM7O78CNTHb6TPzOzLcp9QcwvCO7GLv3riu90rtA+\nPvXM7GrgbHwHP6w3cJOZPeecWx19y3KXmV0GHAX0DD08G5gVlEf51jm3ICONy1HqK0bPzC4CjsPv\nS2KKgU/M7Fjn3EL1FVNLfcXomdko4A/4vuLTwFglgtNL/Zbomdn5wKHAIcAGfL/8IzObBYwAFjjn\nVmauhbknG/stGhkskTKzB4BzgbeBi51zk7PlnyVbBQeqlwI1geTLQpYDLwFnadRH6phZY+BVoAew\nGqgLLANuR6M+0iKUCAY4D3hEI/bSKynmp+BHkv0puH++c250RhqWw0IHsQC/AVOB3fAHtfWAacDJ\nzrnPtD9PDTO7HfhjcNcBc4FW+IOrImAO8B5wp3Puc8V9y6mvGD0z+wu+rxjzNdAZWIfvP34K9HbO\nrc9A83KS+orRM7OrgBuCu5cAz8RO5OlER3qo3xI9M7uN4ORSYCGwbej+NOAp4Cnn3HdRti1XZWu/\nRfWfJDJmdgv+nwRgH+BuM+uk2pLpE3wBDwdqAWPxHaBrgfuCTRoAxwM3Z8MOK1s455YAk/HJ9w+A\nr4BGwOXA6cHlxpIiSgRHLynmQ/Cja94BYgevJwWXG0uKmNkNJA6orgUOds7tA/QD/oa/7HIn4BpQ\nLb5UCBIHsUTw9fhRNr2BY4CH8AdYrYCjgafM7ED1abaM+orRM7NbSSSC7wWOBboBRwBvAWvwCcvL\nM9LAHKW+YrTMrB+JfsulwH2hRHBhLBEcro+tWtlbRv2W6JnZzSQSwaPw/ZMD8FcHvwAsxcf8YuAu\nM9s7E+3MJVndb3HO6aZb2m/ACfgdfjGwCijBj0p9C+gUbGOZbmcu3YArgziXABcC2yatPzm0fgLQ\nUX+HlMS9IPh5URDb54DTgO+C+0vwCfrtMt3WXLgBd4U+x+cAhcl/i008V5/11MS8KLRuTPD4UmB/\nxTllMT8aP2KsBJ+cbJC0vg0+ObkBP4KvZqbbnO03oBPwbdBvuQKok7S+Pr4kypTQ/8NKYECwXp/7\nqsdcfcXoY3556PN7EdA4aX0/YG2w/u+Zbm+u3NRXzEjMLwu+I18D2oQeL0rablugXqbbm+039Vsy\nEvPj8FcZlOBLuNVLWt822K/8EmyzPujn9Ml027P1lu39Fp3tkrQzs7b4WnuN8J2b64Cf8JeG9MCf\nlcqOsydZwswOAc4P7l6NHym5MFhXBOCce4LEJd3d8GcNccFeSzaPS1xi9j7+AKo28DJwC/6yHI36\nSBEzu4fEKI/T8JdVFgfrilxilEeRme1pZj3N7BAza6uR8JsnmKAveRT2htDomZH4y+i3wteB20px\n3nyh78Te+Ik/JwEvOeeWh9c7537EJ+ILgOb4y41ly7QHOuL7LW+5oJ5h7LPunFvhnPsC/7d5FX8A\nVgd41cwOUZ+matRXjJ6ZHUli5Pu1+P35kmBdrK84Dvgi2KaZmRUmvYb+FptBfcVomVkD/CCYAuDd\n4DsTAJeYTPsqM3sOn5CfZGbjzez3ZtYpWK/PeiWo3xK9UMx74a8Gfg143gU1gWP7befcTOAJ/Mmn\n9firEjoC/zSz/aJud7bLhX6LksEShUPwl5wZvjbNrfgh9D+TRf8s2SAUu/5AS3wdw/8451bFtklK\n3LyBnwSnBF8bTp2dFAji+wuwAjgIaIr/4r0Z+J7SnfyWoefVMrOa0bc4+5jZNcBQ/Gd3HL5zv968\nGqHO/RDgMfyog3HAf/Gf+9fMrKOZ1crMO8g+QSL4YnzMS5XjCB3Y/oivoQqwHdA9eG4hslnMrCl+\n5AHA18656bF1Sd+Zy/E1+B4CmphZLzM7zsx2DV5DqqZ98HMBvsZhbIboeE3J4NLiX4DT8fX3fwtW\nPWNm++tESJWorxihIMF4MrA18C/gSReaTCj0HboXsAN+3/Io0MLM9glOrDYhMXGoVJH6ipEqwF/N\nAf5qDmIxNLPtzOxFfCm9o/El9NrgJwy9DnjOzA7Sfqfy1G+Jnpk1JzFR/ETn3E+xdS5UOs85Nxu/\nnykkkQtsBdxpZntE1NxckfX9FiWDJa3MrC7+MoUC/MiZKyB+NrAXWfTPkg2C2HXD12cqBF51zn1b\nxnaxg9mvgXn4v09XM6ulg9ct55wrcX4m6Nfxf4eWwRnx/+BHfYQ7+aeZWdMgKXkMcG7whS6b9h98\nrb0C/ImMK8yshfPWA5jZ/cDf8Z2jQhIHrTviv8CfA44JRozIJpjZrsDhJC49e8SVUZfZ+fp7twR3\n2wCDg8dVw3kzBPvjFfhLzwDaxT6vodE1zszq4L9THXAS/oTHu/hazuOARzTqo8piyZY2+AOlja6c\ncc4VBwnhJfhyTK/jJ9xqAIwys90jbG/WUl8xI+oCA/GTID7hnJsRW5EU1374UXurgZvw37sf4k+s\nfgL8n5ntFFWjc4n6ipEqxJcjWIf/nsQ5ty5IyI8GBuHL/IwB7seP0l6Iv8ppF2CsmR2qY6SKqd8S\nvSDm6/CjfTcEt/gJj5hQ/N/El4eYg/+cF+A/50PMrFl0Lc9eudJvUTJY0ioYkXoy8ArwL+fc6mDk\nXmFwljBr/lmySHP8JE4T8B2cMkf7WmLW3NilUoX4M1uyhUIjr+fi97NHBSPKluGL94cvA7wMn0Q4\nGz9B0d3AYH3+yxd8difha2NNxo+mOQ642swaBdv8Ez96dT3wJnAVflTrFcBnwK/4S6NGAAcHz1HM\ny+Gcm4yP3yDg4QqSux/j9/kOOM7MBkTQxFxWi+DgFdgG2MfMasYOSs2sBrAvcAp+f9MKqIE/0bcE\naIY/+fGYme0bcduz2Sf42tc1gCPNl5vZaB8RJIQLnHNL8QcGHwSr2gFnmdlWkbU4S6mvGL0grucD\nI51zr4P/Dgz6KrF9y3EkTu79hP8+fRFfNuIn/InVocCVZrZDpG8gB6ivGJ3ghN1P+JN8x5tZvWDV\nLcBh+Ks6DgKOc85dgB8h3AOfoFyBPz76t5n1irrtWUr9lujVxMe9CNgTSp3wILgfi387/BUfs/D9\n+tn4kfMD8MdGOiaqQM70W1w1KFysW+7eSEyQ0ISNi5gXBj/b489KZVXB7ep8A87EdxTrVGLba4PY\nfwVslem258It9rnFd3TW4+s2hddvFfyNpoY+97H/gYVAq0y/h+p+C+1bOgLfhGJ3F3BrKK7nAK2T\nnrsrfubiRcF2XxNMmqN9TvmxruJzYpMSbQCuVmw3O/axfckQEpM4fQCcij/Aah/sSyYH66YAR+CT\nNM3xE5x9RmKikHFA20y/r2y44UcE/xTE7j2gUfB4YTnbx/o0zYEZwfNmALuE/5a6lRk79RWryd8g\ndP8EEhPLPY5PlNUJ1rUkkUAowZdSGaa/RZVjrr5iNHGO7V/uD2L3WbA/KcCfvF4BHBxsUxT8rBH8\n3Bp4Ej851AZ8kn7rTL+n6nxTvyUzMQ8+z/8KPqurgYtD62Of59j36WH4kdvPBfePxicuS4D/JX8f\n6FZmzHOi35LxBuiWX7fkD342/bNkwy28847tmCqKH35kZAn+7GCTyr6+bpX6e+wcfCGvCHU8Y52k\nOvgRNfNJHHAtAboH68tMOOhWKr5lJYR/CWK+Cj+pXGFo+6LQ8vb4ESHLg+fdq31NSv4msc93QdCB\nj+3Td89027L5BuwEPAisCe0rluNn6o499i3QvIy/RRP8SL6SoLM/KLxetzLjHYvdBSRmh/5XaH1F\nCeGDQgdWj2X6/WTbTX3FjMe/OX6EXuy7cdvwvj203f74RHAsoVMvE+3N9pv6ipHFuSeJ5ORT+NGn\n8/Gjr7ctY/tYH7MR8GXwvHlA+0y/l2y4qd+SkZifFdpPfAGcV8Y2HUPfo7HBGi3wieT1wA/Azpl+\nL9l2y9Z+i8pESKRc8MkP3S+u5HD6AgAzq29mh5pZ68gbnwWccyWhekArg59l1rcKXaKwuqLXNbNW\nwd+pxDQRVKUE8Z2Gnym6DtDChSYewp+5XYf/cogpAPY2szZONVYrFHweC5xzU0iUjGiMj+N9wBhX\netKEDaHlufgRHrH1O5b3vyKVF+yvYyMU3sF3LGsAJwaX2avfsRmcc9OAO/En75bhLwOsga8tuRY/\nyv0M59xPlpg12lligrPz8JfBNsHX5pNNCO0LPgQ+wu+nB5vZyGB9cVmf5dD+5htgYrDcRt+bVaO+\nYsYtxZcFugm4xjm3MPY3SerHTCCxD2oPdIu6odlOfcVoBHGeiJ9QeD1+5Ps/8bGc7ZxbmPyc2DGP\n82U7LscnclrgR1XqMvoKqN8SndCx/z/wMQfYA7jRzB4xs4HmJ+a7DF+XuRl+wMZNwfMW4I+JCoHW\nQJeI30K1Ff4/39T/fLb2W3RQJhlXiX+W3YIv5Ib4y0geAD4P6t1IksomtELbxUYvFQJ1knd05icG\nGQPMMbMa6nhWjgvgLxM2grq0wY6/AX720UuA7fBny2cBDfG14Aabn+lbKlBGQngqfiTfy0EHflPP\n/RR4O7i7t5k1U7JyywUf/Q3AI/ikQk3gUKBm+ISVVE6ok/+tc+4WoBPQHV/uJDYj9HRgWlBvMnwC\nJJa0XIgfdQb+IKzS3xW5rozvvPh959xEfMJgZfDQeWZ2VbCu3JOjwYHV2OBuL/zlrxLYVMzLo77i\nlqlKzJ1z64CXgOuCpEx5263En/iohd8PFaWmtbmhMjFXXzG1yot5EObV+OOZWOJ3f3xSbFczK3Mf\nHfo+nUuiBm5snb5DKTvm6rekV1n7klB/5HJ8qUjwifTT8SdBngZuDB4bhx81XGK+fjPBY1ODZc11\nEAj2xduZWRN8neW4ivou2dBv0Ze2bDEza+ic+21LXiP8z2K+OP8H+C/oHsAdZvZn/GVqfyKY1ZvS\nZ8nzSipiHlIQ3GrhL6OPf9EGieB7SZwh3I7EhHN5paoxDzo3Dl+PbAjQOXi8LnA4fkKzjviaewPx\ns7jejL+s6g9AXTO7N0gq5KXKxjycEDazk/C1396p4LULg85nrAO6AD/qI687mqnatwR/jzlmdjtw\nA36EwpX4UWZ5HeNkFcU8aZ9swT5hQXB/f6AusMQ5tyw4GChOen6JmZXgk/LgJ0/Ma2a2J/7gtB/Q\n0My+Ar5yzo2JxTv4DJc45x4zsxb4/XNj4MJg/3F9qO9SHHrt2OSssX33aoKZvfNZZWJeEfUVq2ZL\nYl7Rif/Q53x57Cn4E7F5raoxV19xy1Vxf/6yme0M3I4/7lkLNMBPKne385NClWU5fkQx5PE+JaaS\nMbcgkaZ+SwpUIubFocT6MDObgx9RvSe+9jX4k0kfARcGJ0dwzsU+1ytIHAPFEsR5zcyOAvYDBuM/\no7XM7DF8reWPK9N3qfb9FlcNamzolr03fH2ZLyij1tJmvl5Z9VVW4EcexArNLwI6ZPq9Z3vMSdRl\nOjeI60+EJqPAdzTfJFGvSTHfjJgDuwef4clAB/wXyrdBXH8gmNwMP6nCmSRq31ZYwzmXb5sTczae\nAKeietlNgO+DeP870+8507dU78+D1+yLH81UAvw39pmu6G+TL7fNjTmJWoajgtiOT14Xul8Y7FvW\n4E/m7Z/PfwP8qJmJJOrqlZC4DPs6oGlZscSPxIttvxT4a9LrWvh5oe3Hp/P9ZMOtKjGv5Ouprxhx\nzMv5HQ3xlxaXAG9n+j1n+rYlMUd9xbTHfBP781h91QNJTLRlUGoOhJPwJ/amE0wKmq+3zf2co35L\nJDFP+py3wtfKHoQ/mdS2rO2C++3wZTlKgJMz/Z4zfQviujQp5rHbq0C/Kr5etey3ZDzQumXvDbgn\n9E8xltQlhGMzubYmMZP3ahKTQ3XM9HvPpZjjL0ErxidsYrOehxPBivlmxjzoTG4LzAyefwuJSSh+\nIEi+k+h8NgTOx9fh65Lp956NMa/i3+aY4It3PnB07PFMv/9cizlwa+i1T8v0e60ut1TEHH/5X+w1\nbgw9XiO03BE/EqEEf4nsNpl+7xmM+R1BHIqD77Yv8Af3a0JxvCW0vVF6Eq0KBsoAABoxSURBVMpr\nKX1A8Cz+AKpO0nM6AZ8G29yJvxIvX/ctVY55JV9XfcWIY17G7zkIX95gBXAZoQRavt22JOaorxhZ\nzJP25yOS9ucf4ZNmW4W2KcSXNng32OZ5oGGm33s2xbyM11C/Jc0xp4IJ35PX4/soQ/Ej5b/I53gn\nxbwEX8/9FuC24LMYe/yhzXjdatdvyXiwdcvOGzAs+OBuCH2IXyfFSRt8nayVwesvAXbN9HvPtZjj\na9QU4zvzu+NnNVYiOIUxx9dOLSExK/0PJDr3hUnbNiTUEc23W4T7ll2DL/jY6zfL9HvPtZiTGAWy\nX9BxLQk699tn+j1n+pbCfUsfEnXf5wE3hdbVBw7BT+RXgh9d0y7T7z2DMR8Z6sRfDewL1MbXxruc\nxIFnCX5Sm/BzwwmEPwaxXk9iRNnD+Fqf/fATb40P1n0P7JDp956NMa/i71FfMfqYdyCRIHsfP/FZ\nxt9/Nscc9RUjiXnS/vxSfD3g2P58Kv4k35H4ieKuAj4J1s3Rd2hKPufqt0Qc80r8nt3wpWpKgNFA\nvUy/9wzGPHzSfzihKwHwNYOfDq3vugW/p1r0WzIecN2y74Y/sP8w+PDOxl+2sJYUJm2CL4NT8Ge9\nS4DFQKdMv/dcijmJy5+ODl5nET4x/DJKBKck5qEYnwJ8FupMltm5z/dbOvctob9F3eD3xDqaP+R5\nRzOK/XlhaL+yHjgg0+87l2KOP0AIj276HHgteN0FJA648vmS+TNIHOxfBNROWl+EL5k0P9jmzaAf\nEh69F04gHIufBCc8MmcDidE7JfhRfnl7OXEqYl6J36G+YkQxJ3Fyrx4+mRNLBM8G2mf6vWdzzFFf\nMRMxD+/Pj8YneMran8duU7U/T92+BfVbIo950nNj+5wGQG8Sx0RTyO8T2OeQ6MMNC8c89B04DH/C\nbh1BMji0rjKxr1b9lowHXbfsuuELit9Cok7NMPxsrG+QuqRNXeBU/GgbJSXTHHP8aKa1wW2eYp76\nmOMnqRiKvxS8TfCYOvdpjHk5v2NH/FneSSRGHORzRzOKmMc6SF1IHGjtlOn3ngsxp3RduKvxE9zE\nXjfWmV2MT9rkc8zb4g8yi4EHgeZJ68MJgldJjNJoU0HMW+MvKf4Mf6l87KD2S+BRQrX58u2Wyphv\n4neorxh9zNvjL62P1TecmeffoSmNOeorRhrzpP15S/xI4PfxCbHY/vwj4G7yO0GWrpir3xJBzDfx\nO7oD9+FPdMSOifL5hEdX/FVdG/B1rcuMOf5qgpLgs7t98NhGNa/L+R3Vrt+S8cDrll03oBuJs1SP\nhx4fgD8jlYrkZIfQjm1Rpv9JMn1Ld8zxo9TWhL6MFyvmqYt56MujJsFlNwQ1g3RLT8zLeO3G+AOs\nWMH+EvzIzLwdzZTumJfxu1oBT2jfktqYU3p003FBB3YO/oTHi/gJWFJeczubbsDJQUxXAoM2FUf8\npE2rg9uA4DFL2jb5fiOgOdAr+D6tD9TN9PvOpZiX83z1FSOKOdACuILEZKBrgXHk8QmPVMcc9RUj\nj3k59xviL8HfE38SuxColen3nWMxV78l4piX8dyGJEpMrMSPDM7nqySL8EneYvwJoL2S1of3z48E\ncXsyeM6T+BHto4FLw69Zxu+pdv2WIkSqpia+A1gf+FvsQefcf82sJLjbGz+pxD/N7HTn3MIq/o75\n+H+qFsCpzrkpW97srBZFzJcBzfCzZvZWzFMXc+ecMzNzzq3DJ9xxzm1Ia+uzU9o+5865JWa2An85\n1Nf4pNsdzrm5qXwDWSiKfUvsNeeY2dnOuTVb2ugsl9KYO+eKzazAOVfinHsWeNbMrgHWBfucvGZm\n9fAHmwD/cc69VNZ2zrniYHEG/m9k+NpwuKAHH9o2fj/Yty8L7v6UupZnr3TEvBzqKwbSHXPn3AIz\nm48f1fQx/mD2H865BSl5A1ko1TFXX7Fi6d6fB/d/Cxa/DP3eEvJUmmKufssmRPEd6pz7zcyG4uc4\nmAQ8t7n9+1zgnNtgZqvwCfXHnXOfxdYF++VYPE/GT4AIcCJwAj6xW4ifdwkz6+ecOzx4zcLQ3wmq\nYb9FyWCpEufcR2b2Z/womG8AQjv0180stulmJxCCHdTtwF+dc0tS/BayTrpj7pwbb2b340dO9nPO\nTU79u8guqY55JQ9s81oEn/PHzWwh8BvwrXNuRerfRXaJYn+e9PvyPRGclpg750qS7sc/20md2Hy0\nGp90r4FPYsXjnbyhmRXir4z5FT/at8I+cp7HtjxpjXmM+oqlpD3mwXfobHziYZFzbm2K2p6tUh5z\n7U8qFMm+JVme/13SEnP1WzYp7Z/z4PW+NrPfAxt04gmcc/eb2WTn3HuQ+BzGPotm9jv8ZMHgS3h8\nDDwDNAX2Af6MH3R0mJk945w7PikRXC37LUoGS6WF/ik+D5/pcM6VhNa9bmaxHXiVEgjhnb9LjLTJ\naxHEvMg5t8E5N8LM7qouO6ZMivJzLl6En/M30vxWsoY+59HLRMzz/W8QxHY8fuTGpNhj5WxbHJww\nWow/qGoK5R+ESdmijLn6il66Yx76Dn03LW8gC2nfEj3FPHqZiLn6LemPeWyd0yANoNSgjPfC90Pr\nBwIvBHcfAm4DfnTOrQe+B8ab2Szgr0Ab4GAzO8M592hy37y69VsKMt0AyR5JH+TkMx3OgiFNzrn/\nAbfji/CvJ3Ewu23ya5pZbTPbPvk1xIsg5hvMrEawnPeJYNDnPBMi+pzr+y5En/PoKeaZ4Zxb55x7\n1zm3tJLxiR0A1I69RPIGZlYzZQ3MQYp59NIZ8+A7VPuWJPqcR08xj55iHj3FPFrJifMyEum1gp8P\nAcOdc9Odc+vNKwie8wJwU7BdQ/wcIdX+5IYOjiVlkg5mX8efNUk+mG0R297M6gPHANeZ2amx14i8\n4VksRTFfH3nDs5g+59FLUcw1EqQK9DmPnmKefpuKj/nLLQvwl2iCn1h1o+eY2c7AFWbWN13tzCWK\nefTSEXPtWzZNn/PoKebRU8yjp5hnXpDo3QO4wjm3OPS4c34kdyyn+hiJeuN9ggEbhRE3t0pUJkJS\nKnYwG/xz/C90Nit2ueujZnYSfubKI/CzE+8GNDOzF53qeFaZYh49xTx6inn0FPPoKeaZ4/zllmtI\nHFQ1hNLlN8xsJ+ABoC/wiJl94nSZ5WZTzKOnmEdPMY+eYh49xTx6inn6hfrkk8rbxiXKva0zs9gg\nu7nZEGclgyXlkg5my5oQ5xngeeBc/EHsr/gzLTqI3UyKefQU8+gp5tFTzKOnmGeUw8/IDb7+Xlxw\nQHUf/oDqN/wEINW+o58FFPPoKebRU8yjp5hHTzGPnmKeRrGkemW2M7PWQLvgoZnpa1XqKBksaVHO\nwWwJfmfUD9gT2BpYAvR2zk3JXGtzg2IePcU8eop59BTz6Cnm0QuNwl4Z/Ixfbhk6oOqHj3kv59zU\n6FuZWxTz6Cnm0VPMo6eYR08xj55iXn2Yn4NpIFAPmIEvGVHtJ9RWMljSJtgRxWZnfN3MagMtgPb4\ng9il6CA2pRTz6Cnm0VPMo6eYR08xj57zE4KsCu4WQLzW3r0kDqh664AqdRTz6Cnm0VPMo6eYR08x\nj55iXm3sCpyBn8RvAjAdqn+9fSWDJa1cMGmTmdXB76Bq42dkXAb00UFs6inm0VPMo6eYR08xj55i\nHp3YaGwSfeMmZrYL/oDqADQKO+UU8+gp5tFTzKOnmEdPMY+eYp45sRG/ZlYEdALuALoD04A/O+eW\nZrSBlaRksKSd+RnPjwD+hK+jEhvNNDmjDcthinn0FPPoKebRU8yjp5hHJ+jYrw3ubgPcjQ6o0kox\nj55iHj3FPHqKefQU8+gp5pkRxL0JcDAwDJ8IXggc6Zz7IZNtqwolgyWtzKwQXz/levxBrHZMaaaY\nR08xj55iHj3FPHqKeUYsCX7uA9RAMY+CYh49xTx6inn0FPPoKebRU8wjZGbbAAcCFwAdgGbAl8CJ\nzrlpmWxbVRVkugFSPZhZQXjZzGoFy4Vb8rrOuWL8DqkdsAFfvFw7JhTzTFDMo6eYR08xj55iHr10\nxDy43DL2/NgBlcpxBBTz6Cnm0VPMo6eYR08xj55iHr1Uxzx4vfbARUAfYDXwOHB0tiWCQclgwf8z\nhOoSDgBuA/5nZm2DA9Et4px7AzgK2F3Fyz3FPHqKefQU8+gp5tFTzKOXrpgHE328BMwH1uIPqFSO\nA8U8ExTz6Cnm0VPMo6eYR08xj146Yh683ufAKOB2/OjgYc65H1PU7EiZq94T3EmaBf8kxcHyZcCV\nQCP8iYI7gMtj/0SSGop59BTz6Cnm0VPMo6eYRy/dMTezesCxwPvOuZkpaHLWU8yjp5hHTzGPnmIe\nPcU8eop59CKIeUEu9O+VDM5j4Q+xmY0ArglW/Rt4FXjaObchQ83LSYp59BTz6Cnm0VPMo6eYRy/d\nMTfzs0NvcUNziGIePcU8eop59BTz6Cnm0VPMo6f+eeUpGSyY2UXAXcHd4cBjzrkFwTrtYNJAMY+e\nYh49xTx6inn0FPP/b+/OQm0t6ziOf5+9j51jzhN6SKMcTmpkA2miOVDehEHSjQVZEIiikdFIUTZ5\n4ZWEhoEUFURCUJLRBJlzFEcTs0QpBzKPdBzJNKezny7Ws3W1PMM+uffvXWs/3w/82eusyXd913pu\nnrV4zbN5ns3zbJ5n8zyb59k8z+Z5Nt+xNUMfgIZVSjme0QmwAS4CLqu1Pt1uc5GsAJvn2TzP5nk2\nz7N5ns3zbJ5n8zyb59k8z+Z5Ns+z+dL4P5DT0cDrgb8BP11cJPDiCcm1/GyeZ/M8m+fZPM/meTbP\ns3mezfNsnmfzPJvn2TzP5kvgZnDHSilrgQ8CuwB/qrXeOvAhrXo2z7N5ns3zbJ5n8zyb59k8z+Z5\nNs+zeZ7N82yeZ/OlczO4bwvAbu3yf2B0wu2deYJSyvxyH9QqZ/M8m+fZPM/meTbPs3mezfNsnmfz\nPJvn2TzP5nk2XyI3g/s2DzzVLq9tf7f7s/lSSml/31VKOaTWumXxOi2JzfNsnmfzPJvn2TzP5nk2\nz7N5ns3zbJ5n8zyb59l8idwM7lit9RngzvbP95dSTt3ROVRqrbWUchBwOfD7Usq+nndl6WyeZ/M8\nm+fZPM/meTbPs3mezfNsnmfzPJvn2TzP5kvnZnAnJn8aP/ZNx2+ATYw+CxeUUt6wg+dZA7wHWA9s\nxs/QNtk8z+Z5Ns+zeZ7N82yeZ/M8m+fZPM/meTbPs3mezV+ZLl5kjyZ/1l5rXZj49+I3HdcAt7fL\nJwLnllIOH3+eiUV2JHAOsEd77JPLfOgzy+Z5Ns+zeZ7N82yeZ/M8m+fZPM/meTbPs3mezfNsvrxK\nB79+7k4pZb7WuqVdfh1wGHAc8ATwIHBNrfWpsfsfANwEHAE8DPwCuLzWunHsPrsDxwAXAacCfwZO\nr7U+sPKvaPrZPM/meTbPs3mezfNsnmfzPJvn2TzP5nk2z7N5ns2Xn5vBq8zEIjkP+Ahw7MTdfsXo\nG49LFr89KaUcDfwE2AA80+ZS4FHgIeAM4G2MvjXZDJxSa717xV/QDLB5ns3zbJ5n8zyb59k8z+Z5\nNs+zeZ7N82yeZ/M8m6+QWquzSgaYG7v8ZWChzYPAdYzOnbJ43ZPAFROPeQ3wO0b/98WFsXm+/X0O\n+COwYejXOi1jc5v3MDa3eQ9jc5v3MDa3eQ9jc5v3MDa3eQ9j8xVsO/QBOCvwpsInxj7kXwLePnbb\ncYx+Lr/44f9qu36+/d0d+CTwY+DxtjgeA64FvgAcPPTrm8axuc17GJvbvIexuc17GJvbvIexuc17\nGJvbvIex+Qo0HfoAnGV+Q+Fk4IHFRQC8mnY6kHb7ekbnTFkAbgaOGrttfuK5Xs/oJ/WHD/26pnls\nbvMexuY272FsbvMexuY272FsbvMexuY272FsvjKzBq02RwMHAr8FflBrfbqUMg9sKaVsAK4H9gNu\nBM6ptd61+MD60nlY5mqtC7XW+8afuJRSaltB+h82z7N5ns3zbJ5n8zyb59k8z+Z5Ns+zeZ7N82ye\nZ/MVMDf0AWj5lFLWAWcCa4A/1Fr/2j70W0ophzNaJAcCNzCxSNrj9wKotS5s7fl7XSTbY/M8m+fZ\nPM/meTbPs3mezfNsnmfzPJvn2TzP5nk2XzluBq8uFdi1Xb4FRh/6tkhu5KVFcu74IikjewPva9+s\naOlsnmfzPJvn2TzP5nk2z7N5ns3zbJ5n8zyb59k8z+YrxM3gGVBKmSullMnLW1GBf7XL+7b7H8F2\nFgm8+G3IkcD3gItLKfss+4uYMTbPs3mezfNsnmfzPJvn2TzP5nk2z7N5ns3zbJ5n8+G5GTzFFhdE\nHZ3bpE5enlRrfQ64s/3zzFLKaYwWx4GMFsvLFkn77+wLfKz9c12t9fHlfSWzw+Z5Ns+zeZ7N82ye\nZ/M8m+fZPM/meTbPs3mezfNsPj38H8hNsVprLaUcA5wGHA/sAswDvwbuqLXesHjfUsqaWusL7bYP\nAMcCVwG7AdcB529jkcwBJ7bZDHy3Xd/libRtnmfzPJvn2TzP5nk2z7N5ns3zbJ5n8zyb59k8z+ZT\npNbqTOEAJwMXA88ALwALY/Ns+3sx8I6Jx+0B/Lzd/gLwd+C0dlth9GvwubH7vxG4qd3/KmD/oV+7\nzfsZm9u8h7G5zXsYm9u8h7G5zXsYm9u8h7G5zXufwQ/A2cqbAh8H7gC2tA/w/cA9wCbg4YlFcx2j\nn8aPP/6g9pgF4J/A5cCbJu6zZ1uM17b73QMcOvRrt3k/Y3Ob9zA2t3kPY3Ob9zA2t3kPY3Ob9zA2\nt7njZvDUDfD1sUVwE/ApRifKngf2Bg4GvgFsHLvfXcAXJ57nzcB97fYngX8AnwY+CpwB/BC4u92+\nCThy6Ndu837G5jbvYWxu8x7G5jbvYWxu8x7G5jbvYWxuc6f1HPoAnLE3Y7QAFj/8XwPeMnH7mvZ3\nDjgJ+M7Y/R8APjtx/0OB2xj9DH/8m5bn299/t8V4xNCv3eb9jM1t3sPY3OY9jM1t3sPY3OY9jM1t\n3sPY3ObOWMuhD8BpbwRcOvZBPh/Ya+y2uW1cPgC4ZOxxdwAfnnjefYDPAz8DHmN0jpWHgF+2/876\noV+7zfsZm9u8h7G5zXsYm9u8h7G5zXsYm9u8h7G5zZ2J92foA3AqwDfHPuxnA/M78dh1E4vsatp5\nUYBdJu57CKNvUrpfHDa3eQ9jc5v3MDa3eQ9jc5v3MDa3eQ9jc5v3MDaf/hn8AHof4NtjH/Lz2nVl\nJ5/jYODKsef5zMTtW32+nf3vrJaxuc17GJvbvIexuc17GJvbvIexuc17GJvbvIex+WzMHBpMKeV0\nRie7BrgXWCilrKu11lLKzrw3DwI/as8BcEEpZcPijbWtiknbun41s3mezfNsnmfzPJvn2TzP5nk2\nz7N5ns3zbJ5n8zybzw43g4e1kdFJtGH00/azgbNKKbvWWhdKKWUpT9I+8FcDt7er9mB0rhW9nM3z\nbJ5n8zyb59k8z+Z5Ns+zeZ7N82yeZ/M8m+fZfEa4GTygWutm4DLgK+2qtwLnAh8a+/Zkh4ullDJX\na90CXAE8y2ihnNBuW9Ji64XN82yeZ/M8m+fZPM/meTbPs3mezfNsnmfzPJvn2Xx2uBk8sFrro8Dl\nvHyxnLXUxVJrXWgXN49dvdBu82fyE2yeZ/M8m+fZPM/meTbPs3mezfNsnmfzPJvn2TzP5rPBzeAp\nUGt9hFe4WJo9gbXt8n3LfqCriM3zbJ5n8zyb59k8z+Z5Ns+zeZ7N82yeZ/M8m+fZfPq5GTwlXsli\nGbt+8RwqTwCbVvBwVwWb59k8z+Z5Ns+zeZ7N82yeZ/M8m+fZPM/meTbPs/mUq7U6UzTA/sCFjH4C\nvwDcyuik2+va7WUbj1sP3Nwec+XQr2OWxuY272FsbvMexuY272FsbvMexuY272FsbvMexubTOf4y\neMrU/+Pbk1LKq4D3AkcB9wLfb9f7/i6BzfNsnmfzPJvn2TzP5nk2z7N5ns3zbJ5n8zyb59l8Sg29\nG+1sfdjxtydzY/c9Dril3e9bwF5DH/8sjs1t3sPY3OY9jM1t3sPY3OY9jM1t3sPY3OY9jM2nawY/\nAGc7b862F8uuY/fZAFzfbt8IHDL0cc/y2NzmPYzNbd7D2NzmPYzNbd7D2NzmPYzNbd7D2Hx6ZvAD\ncHbwBm17sawFXgtc066/Hzhs6ONdDWNzm/cwNrd5D2Nzm/cwNrd5D2Nzm/cwNrd5D2Pz6ZjS3gxN\nsVLK/sB5vHSOlduAq4B3A6cAjwLvrLXePcgBrkI2z7N5ns3zbJ5n8zyb59k8z+Z5Ns+zeZ7N82ye\nZ/PhuRk8I7ayWB5h9I3Ko8BJtda7Bjq0VcvmeTbPs3mezfNsnmfzPJvn2TzP5nk2z7N5ns3zbD4s\nN4NnyNhiuRCYAx4GTnGRrByb59k8z+Z5Ns+zeZ7N82yeZ/M8m+fZPM/meTbPs/lw3AyeMaWU/YDP\nAecAJ9Ra/zLwIa16Ns+zeZ7N82yeZ/M8m+fZPM/meTbPs3mezfNsnmfzYbgZPINKKfsCc7XWR4Y+\nll7YPM/meTbPs3mezfNsnmfzPJvn2TzP5nk2z7N5ns3z3AyWJEmSJEmSpA7MDX0AkiRJkiRJkqSV\n52awJEmSJEmSJHXAzWBJkiRJkiRJ6oCbwZIkSZIkSZLUATeDJUmSJEmSJKkDbgZLkiRJkiRJUgfc\nDJYkSZIkSZKkDrgZLEmSJEmSJEkdcDNYkiRJkiRJkjrgZrAkSZIkSZIkdcDNYEmSJEmSJEnqgJvB\nkiRJkiRJktQBN4MlSZIkSZIkqQNuBkuSJEmSJElSB9wMliRJkiRJkqQOuBksSZIkSZIkSR1wM1iS\nJEmSJEmSOuBmsCRJkiRJkiR1wM1gSZIkSZIkSeqAm8GSJEmSJEmS1AE3gyVJkiRJkiSpA24GS5Ik\nSZIkSVIH3AyWJEmSJEmSpA64GSxJkiRJkiRJHfgvEh1SRSKMeQgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "image/png": { + "height": 387, + "width": 705 + } + }, + "output_type": "display_data" + } + ], "source": [ + "test_loss = MSE(network.run(test_features).T, test_targets['cnt'].values)\n", + "sys.stdout.write(\"Test loss: \" + str(test_loss)[:5])\n", + "\n", "fig, ax = plt.subplots(figsize=(8,4))\n", "\n", "mean, std = scaled_features['cnt']\n", @@ -511,8 +1060,8 @@ "\n", "dates = pd.to_datetime(rides.ix[test_data.index]['dteday'])\n", "dates = dates.apply(lambda d: d.strftime('%b %d'))\n", - "ax.set_xticks(np.arange(len(dates))[12::24])\n", - "_ = ax.set_xticklabels(dates[12::24], rotation=45)" + "ax.set_xticks(np.arange(len(dates))[12::36])\n", + "_ = ax.set_xticklabels(dates[12::36], rotation=45)" ] }, { @@ -526,14 +1075,21 @@ "\n", "> **注意**:你可以通过双击该单元编辑文本。如果想要预览文本,请按 Control + Enter\n", "\n", - "#### 请将你的答案填写在下方\n" + "#### 请将你的答案填写在下方\n", + "\n", + "验证集损失最终降低到0.13左右,测试集损失接近0.2。\n", + "\n", + "问题:\n", + "1、矩阵相乘时维度总是出错,有时需要调整顺序,有时需要转置,甚至有时dot报错,使用*反而可以,不知有何技巧?\n", + "2、数据预处理时删除了几个特征不知是何用意?\n", + "3、不太理解为何输出层激活函数要使用f(x) = x?" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, @@ -547,7 +1103,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.0" + "version": "3.5.2" } }, "nbformat": 4, diff --git a/image-classification/dlnd_image_classification.html b/image-classification/dlnd_image_classification.html new file mode 100644 index 0000000..87fc309 --- /dev/null +++ b/image-classification/dlnd_image_classification.html @@ -0,0 +1,19527 @@ + + + +dlnd_image_classification + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+
+
+
+

图像分类

在此项目中,你将对 CIFAR-10 数据集 中的图片进行分类。该数据集包含飞机、猫狗和其他物体。你需要预处理这些图片,然后用所有样本训练一个卷积神经网络。图片需要标准化(normalized),标签需要采用 one-hot 编码。你需要应用所学的知识构建卷积的、最大池化(max pooling)、丢弃(dropout)和完全连接(fully connected)的层。最后,你需要在样本图片上看到神经网络的预测结果。

+

获取数据

请运行以下单元,以下载 CIFAR-10 数据集(Python版)

+ +
+
+
+
+
+
In [1]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+from urllib.request import urlretrieve
+from os.path import isfile, isdir
+from tqdm import tqdm
+import problem_unittests as tests
+import tarfile
+
+cifar10_dataset_folder_path = 'cifar-10-batches-py'
+
+# Use Floyd's cifar-10 dataset if present
+floyd_cifar10_location = '/input/cifar-10/python.tar.gz'
+if isfile(floyd_cifar10_location):
+    tar_gz_path = floyd_cifar10_location
+else:
+    tar_gz_path = 'cifar-10-python.tar.gz'
+
+class DLProgress(tqdm):
+    last_block = 0
+
+    def hook(self, block_num=1, block_size=1, total_size=None):
+        self.total = total_size
+        self.update((block_num - self.last_block) * block_size)
+        self.last_block = block_num
+
+if not isfile(tar_gz_path):
+    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar:
+        urlretrieve(
+            'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
+            tar_gz_path,
+            pbar.hook)
+
+if not isdir(cifar10_dataset_folder_path):
+    with tarfile.open(tar_gz_path) as tar:
+        tar.extractall()
+        tar.close()
+
+
+tests.test_folder_path(cifar10_dataset_folder_path)
+
+ +
+
+
+ +
+
+ + +
+
+
All files found!
+
+
+
+ +
+
+ +
+
+
+
+
+
+

探索数据

该数据集分成了几部分/批次(batches),以免你的机器在计算时内存不足。CIFAR-10 数据集包含 5 个部分,名称分别为 data_batch_1data_batch_2,以此类推。每个部分都包含以下某个类别的标签和图片:

+
    +
  • 飞机
  • +
  • 汽车
  • +
  • 鸟类
  • +
  • +
  • 鹿
  • +
  • +
  • 青蛙
  • +
  • +
  • 船只
  • +
  • 卡车
  • +
+

了解数据集也是对数据进行预测的必经步骤。你可以通过更改 batch_idsample_id 探索下面的代码单元。batch_id 是数据集一个部分的 ID(1 到 5)。sample_id 是该部分中图片和标签对(label pair)的 ID。

+

问问你自己:“可能的标签有哪些?”、“图片数据的值范围是多少?”、“标签是按顺序排列,还是随机排列的?”。思考类似的问题,有助于你预处理数据,并使预测结果更准确。

+ +
+
+
+
+
+
In [2]:
+
+
+
%matplotlib inline
+%config InlineBackend.figure_format = 'retina'
+
+import helper
+import numpy as np
+
+# Explore the dataset
+batch_id = 1
+sample_id = 5
+helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id)
+
+ +
+
+
+ +
+
+ + +
+
+
+Stats of batch 1:
+Samples: 10000
+Label Counts: {0: 1005, 1: 974, 2: 1032, 3: 1016, 4: 999, 5: 937, 6: 1030, 7: 1001, 8: 1025, 9: 981}
+First 20 Labels: [6, 9, 9, 4, 1, 1, 2, 7, 8, 3, 4, 7, 7, 2, 9, 9, 9, 3, 2, 6]
+
+Example of Image 5:
+Image - Min Value: 0 Max Value: 252
+Image - Shape: (32, 32, 3)
+Label - Label Id: 1 Name: automobile
+
+
+
+ +
+ + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

实现预处理函数

标准化

在下面的单元中,实现 normalize 函数,传入图片数据 x,并返回标准化 Numpy 数组。值应该在 0 到 1 的范围内(含 0 和 1)。返回对象应该和 x 的形状一样。

+ +
+
+
+
+
+
In [3]:
+
+
+
def normalize(x):
+    """
+    Normalize a list of sample image data in the range of 0 to 1
+    : x: List of image data.  The image shape is (32, 32, 3)
+    : return: Numpy array of normalize data
+    """
+    # TODO: Implement Function
+    return np.array(x/255)
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_normalize(normalize)
+
+ +
+
+
+ +
+
+ + +
+
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+
+

One-hot 编码

和之前的代码单元一样,你将为预处理实现一个函数。这次,你将实现 one_hot_encode 函数。输入,也就是 x,是一个标签列表。实现该函数,以返回为 one_hot 编码的 Numpy 数组的标签列表。标签的可能值为 0 到 9。每次调用 one_hot_encode 时,对于每个值,one_hot 编码函数应该返回相同的编码。确保将编码映射保存到该函数外面。

+

提示:不要重复发明轮子。

+ +
+
+
+
+
+
In [4]:
+
+
+
def one_hot_encode(x):
+    """
+    One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
+    : x: List of sample Labels
+    : return: Numpy array of one-hot encoded labels
+    """
+    # TODO: Implement Function
+    from tflearn.data_utils import to_categorical
+    return np.array(to_categorical(x, 10))
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_one_hot_encode(one_hot_encode)
+
+ +
+
+
+ +
+
+ + +
+
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+
+

随机化数据

之前探索数据时,你已经了解到,样本的顺序是随机的。再随机化一次也不会有什么关系,但是对于这个数据集没有必要。

+ +
+
+
+
+
+
+
+
+

预处理所有数据并保存

运行下方的代码单元,将预处理所有 CIFAR-10 数据,并保存到文件中。下面的代码还使用了 10% 的训练数据,用来验证。

+ +
+
+
+
+
+
In [5]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+# Preprocess Training, Validation, and Testing Data
+helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode)
+
+ +
+
+
+ +
+
+
+
+
+
+

检查点

这是你的第一个检查点。如果你什么时候决定再回到该记事本,或需要重新启动该记事本,你可以从这里开始。预处理的数据已保存到本地。

+ +
+
+
+
+
+
In [6]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+import pickle
+import problem_unittests as tests
+import helper
+
+# Load the Preprocessed Validation data
+valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb'))
+
+ +
+
+
+ +
+
+
+
+
+
+

构建网络

对于该神经网络,你需要将每层都构建为一个函数。你看到的大部分代码都位于函数外面。要更全面地测试你的代码,我们需要你将每层放入一个函数中。这样使我们能够提供更好的反馈,并使用我们的统一测试检测简单的错误,然后再提交项目。

+

注意:如果你觉得每周很难抽出足够的时间学习这门课程,我们为此项目提供了一个小捷径。对于接下来的几个问题,你可以使用 TensorFlow LayersTensorFlow Layers (contrib) 程序包中的类来构建每个层级,但是“卷积和最大池化层级”部分的层级除外。TF Layers 和 Keras 及 TFLearn 层级类似,因此很容易学会。

+

但是,如果你想充分利用这门课程,请尝试自己解决所有问题,不使用 TF Layers 程序包中的任何类。你依然可以使用其他程序包中的类,这些类和你在 TF Layers 中的类名称是一样的!例如,你可以使用 TF Neural Network 版本的 conv2dtf.nn.conv2d,而不是 TF Layers 版本的 conv2dtf.layers.conv2d

+
+

我们开始吧!

+

输入

神经网络需要读取图片数据、one-hot 编码标签和丢弃保留概率(dropout keep probability)。请实现以下函数:

+
    +
  • 实现 neural_net_image_input
      +
    • 返回 TF Placeholder
    • +
    • 使用 image_shape 设置形状,部分大小设为 None
    • +
    • 使用 TF Placeholder 中的 TensorFlow name 参数对 TensorFlow 占位符 "x" 命名
    • +
    +
  • +
  • 实现 neural_net_label_input
      +
    • 返回 TF Placeholder
    • +
    • 使用 n_classes 设置形状,部分大小设为 None
    • +
    • 使用 TF Placeholder 中的 TensorFlow name 参数对 TensorFlow 占位符 "y" 命名
    • +
    +
  • +
  • 实现 neural_net_keep_prob_input
      +
    • 返回 TF Placeholder,用于丢弃保留概率
    • +
    • 使用 TF Placeholder 中的 TensorFlow name 参数对 TensorFlow 占位符 "keep_prob" 命名
    • +
    +
  • +
+

这些名称将在项目结束时,用于加载保存的模型。

+

注意:TensorFlow 中的 None 表示形状可以是动态大小。

+ +
+
+
+
+
+
In [7]:
+
+
+
import tensorflow as tf
+
+def neural_net_image_input(image_shape):
+    """
+    Return a Tensor for a batch of image input
+    : image_shape: Shape of the images
+    : return: Tensor for image input.
+    """
+    # TODO: Implement Function
+    return tf.placeholder(tf.float32, [None, image_shape[0], image_shape[1], image_shape[2]], name='x')
+
+
+def neural_net_label_input(n_classes):
+    """
+    Return a Tensor for a batch of label input
+    : n_classes: Number of classes
+    : return: Tensor for label input.
+    """
+    # TODO: Implement Function
+    return tf.placeholder(tf.int32, [None, n_classes], name='y')
+
+
+def neural_net_keep_prob_input():
+    """
+    Return a Tensor for keep probability
+    : return: Tensor for keep probability.
+    """
+    # TODO: Implement Function
+    return tf.placeholder(tf.float32, name='keep_prob')
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tf.reset_default_graph()
+tests.test_nn_image_inputs(neural_net_image_input)
+tests.test_nn_label_inputs(neural_net_label_input)
+tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input)
+
+ +
+
+
+ +
+
+ + +
+
+
Image Input Tests Passed.
+Label Input Tests Passed.
+Keep Prob Tests Passed.
+
+
+
+ +
+
+ +
+
+
+
+
+
+

卷积和最大池化层

卷积层级适合处理图片。对于此代码单元,你应该实现函数 conv2d_maxpool 以便应用卷积然后进行最大池化:

+
    +
  • 使用 conv_ksizeconv_num_outputsx_tensor 的形状创建权重(weight)和偏置(bias)。
  • +
  • 使用权重和 conv_stridesx_tensor 应用卷积。
      +
    • 建议使用我们建议的间距(padding),当然也可以使用任何其他间距。
    • +
    +
  • +
  • 添加偏置
  • +
  • 向卷积中添加非线性激活(nonlinear activation)
  • +
  • 使用 pool_ksizepool_strides 应用最大池化
      +
    • 建议使用我们建议的间距(padding),当然也可以使用任何其他间距。
    • +
    +
  • +
+

注意:对于此层请勿使用 TensorFlow LayersTensorFlow Layers (contrib),但是仍然可以使用 TensorFlow 的 Neural Network 包。对于所有其他层,你依然可以使用快捷方法。

+ +
+
+
+
+
+
In [8]:
+
+
+
def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides):
+    """
+    Apply convolution then max pooling to x_tensor
+    :param x_tensor: TensorFlow Tensor
+    :param conv_num_outputs: Number of outputs for the convolutional layer
+    :param conv_ksize: kernal size 2-D Tuple for the convolutional layer
+    :param conv_strides: Stride 2-D Tuple for convolution
+    :param pool_ksize: kernal size 2-D Tuple for pool
+    :param pool_strides: Stride 2-D Tuple for pool
+    : return: A tensor that represents convolution and max pooling of x_tensor
+    """
+    # TODO: Implement Function
+    weights = tf.Variable(tf.truncated_normal(shape=[conv_ksize[0], conv_ksize[1], x_tensor.get_shape().as_list()[3], conv_num_outputs], stddev=0.1))
+    bias = tf.Variable(tf.constant(0.1, shape=[conv_num_outputs]))
+    conv = tf.nn.conv2d(input=x_tensor, filter=weights, strides=[1, conv_strides[0], conv_strides[1], 1], padding='SAME') + bias
+    activate = tf.nn.relu(conv)
+    pool = tf.nn.max_pool(value=activate, ksize=[1, pool_ksize[0], pool_ksize[1], 1], strides=[1, pool_strides[0], pool_strides[1], 1], padding='SAME')
+    
+    return pool
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_con_pool(conv2d_maxpool)
+
+ +
+
+
+ +
+
+ + +
+
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+
+

扁平化层

实现 flatten 函数,将 x_tensor 的维度从四维张量(4-D tensor)变成二维张量。输出应该是形状(部分大小(Batch Size)扁平化图片大小(Flattened Image Size))。快捷方法:对于此层,你可以使用 TensorFlow LayersTensorFlow Layers (contrib) 包中的类。如果你想要更大挑战,可以仅使用其他 TensorFlow 程序包。

+ +
+
+
+
+
+
In [9]:
+
+
+
def flatten(x_tensor):
+    """
+    Flatten x_tensor to (Batch Size, Flattened Image Size)
+    : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions.
+    : return: A tensor of size (Batch Size, Flattened Image Size).
+    """
+    # TODO: Implement Function
+    layer_shape = x_tensor.get_shape()
+    num_features = layer_shape[1:4].num_elements()
+    layer_flat = tf.reshape(x_tensor, [-1, num_features])
+    
+    return layer_flat
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_flatten(flatten)
+
+ +
+
+
+ +
+
+ + +
+
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+
+

完全连接的层

实现 fully_conn 函数,以向 x_tensor 应用完全连接的层级,形状为(部分大小(Batch Size)num_outputs)。快捷方法:对于此层,你可以使用 TensorFlow LayersTensorFlow Layers (contrib) 包中的类。如果你想要更大挑战,可以仅使用其他 TensorFlow 程序包。

+ +
+
+
+
+
+
In [10]:
+
+
+
def fully_conn(x_tensor, num_outputs):
+    """
+    Apply a fully connected layer to x_tensor using weight and bias
+    : x_tensor: A 2-D tensor where the first dimension is batch size.
+    : num_outputs: The number of output that the new tensor should be.
+    : return: A 2-D tensor where the second dimension is num_outputs.
+    """
+    # TODO: Implement Function
+    weights = tf.Variable(tf.truncated_normal(shape=[x_tensor.get_shape().as_list()[1], num_outputs], stddev=0.1))
+    bias = tf.Variable(tf.constant(0.1, shape=[num_outputs]))
+    fc = tf.nn.relu(tf.matmul(x_tensor, weights) + bias)
+    
+    return fc
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_fully_conn(fully_conn)
+
+ +
+
+
+ +
+
+ + +
+
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+
+

输出层

实现 output 函数,向 x_tensor 应用完全连接的层级,形状为(部分大小(Batch Size)num_outputs)。快捷方法:对于此层,你可以使用 TensorFlow LayersTensorFlow Layers (contrib) 包中的类。如果你想要更大挑战,可以仅使用其他 TensorFlow 程序包。

+

注意:该层级不应应用 Activation、softmax 或交叉熵(cross entropy)。

+ +
+
+
+
+
+
In [11]:
+
+
+
def output(x_tensor, num_outputs):
+    """
+    Apply a output layer to x_tensor using weight and bias
+    : x_tensor: A 2-D tensor where the first dimension is batch size.
+    : num_outputs: The number of output that the new tensor should be.
+    : return: A 2-D tensor where the second dimension is num_outputs.
+    """
+    # TODO: Implement Function
+    weights = tf.Variable(tf.truncated_normal(shape=[x_tensor.get_shape().as_list()[1], num_outputs], stddev=0.1))
+    bias = tf.Variable(tf.constant(0.1, shape=[num_outputs]))
+    output = tf.matmul(x_tensor, weights) + bias
+    
+    return output
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_output(output)
+
+ +
+
+
+ +
+
+ + +
+
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+
+

创建卷积模型

实现函数 conv_net, 创建卷积神经网络模型。该函数传入一批图片 x,并输出对数(logits)。使用你在上方创建的层创建此模型:

+
    +
  • 应用 1、2 或 3 个卷积和最大池化层(Convolution and Max Pool layers)
  • +
  • 应用一个扁平层(Flatten Layer)
  • +
  • 应用 1、2 或 3 个完全连接层(Fully Connected Layers)
  • +
  • 应用一个输出层(Output Layer)
  • +
  • 返回输出
  • +
  • 使用 keep_prob 向模型中的一个或多个层应用 TensorFlow 的 Dropout
  • +
+ +
+
+
+
+
+
In [12]:
+
+
+
def conv_net(x, keep_prob):
+    """
+    Create a convolutional neural network model
+    : x: Placeholder tensor that holds image data.
+    : keep_prob: Placeholder tensor that hold dropout keep probability.
+    : return: Tensor that represents logits
+    """
+    # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers
+    #    Play around with different number of outputs, kernel size and stride
+    # Function Definition from Above:
+    #    conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides)
+    conv_pool_1 = conv2d_maxpool(x, 64, [5, 5], [1, 1], [3, 3], [2, 2])
+    norm_layer = tf.nn.lrn(conv_pool_1, 4 , bias=1.0, alpha=0.001 / 9.0, beta=0.75)
+    conv_pool_2 = conv2d_maxpool(norm_layer, 128, [5, 5], [1, 1], [3, 3], [2, 2])
+
+    # TODO: Apply a Flatten Layer
+    # Function Definition from Above:
+    #   flatten(x_tensor)
+    flat_layer = flatten(conv_pool_2)
+
+    # TODO: Apply 1, 2, or 3 Fully Connected Layers
+    #    Play around with different number of outputs
+    # Function Definition from Above:
+    #   fully_conn(x_tensor, num_outputs)
+    fc_layer1 = fully_conn(flat_layer, 384)
+    dropout_layer_1 = tf.nn.dropout(fc_layer1, keep_prob)
+    fc_layer2 = fully_conn(dropout_layer_1, 192)
+    dropout_layer_2 = tf.nn.dropout(fc_layer2, keep_prob)
+    
+    # TODO: Apply an Output Layer
+    #    Set this to the number of classes
+    # Function Definition from Above:
+    #   output(x_tensor, num_outputs)
+    logits = output(dropout_layer_2, 10)
+    
+    # TODO: return output
+    return logits
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+
+##############################
+## Build the Neural Network ##
+##############################
+
+# Remove previous weights, bias, inputs, etc..
+tf.reset_default_graph()
+
+# Inputs
+x = neural_net_image_input((32, 32, 3))
+y = neural_net_label_input(10)
+keep_prob = neural_net_keep_prob_input()
+
+# Model
+logits = conv_net(x, keep_prob)
+
+# Name logits Tensor, so that is can be loaded from disk after training
+logits = tf.identity(logits, name='logits')
+
+# Loss and Optimizer
+cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
+optimizer = tf.train.AdamOptimizer().minimize(cost)
+
+# Accuracy
+correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
+accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')
+
+tests.test_conv_net(conv_net)
+
+ +
+
+
+ +
+
+ + +
+
+
Neural Network Built!
+
+
+
+ +
+
+ +
+
+
+
+
+
+

训练神经网络

单次优化

实现函数 train_neural_network 以进行单次优化(single optimization)。该优化应该使用 optimizer 优化 session,其中 feed_dict 具有以下参数:

+
    +
  • x 表示图片输入
  • +
  • y 表示标签
  • +
  • keep_prob 表示丢弃的保留率
  • +
+

每个部分都会调用该函数,所以 tf.global_variables_initializer() 已经被调用。

+

注意:不需要返回任何内容。该函数只是用来优化神经网络。

+ +
+
+
+
+
+
In [13]:
+
+
+
def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch):
+    """
+    Optimize the session on a batch of images and labels
+    : session: Current TensorFlow session
+    : optimizer: TensorFlow optimizer function
+    : keep_probability: keep probability
+    : feature_batch: Batch of Numpy image data
+    : label_batch: Batch of Numpy label data
+    """
+    # TODO: Implement Function
+    session.run(optimizer, feed_dict = {keep_prob: keep_probability, x: feature_batch, y: label_batch})
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_train_nn(train_neural_network)
+
+ +
+
+
+ +
+
+ + +
+
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+
+

显示数据

实现函数 print_stats 以输出损失和验证准确率。使用全局变量 valid_featuresvalid_labels 计算验证准确率。使用保留率 1.0 计算损失和验证准确率(loss and validation accuracy)。

+ +
+
+
+
+
+
In [14]:
+
+
+
def print_stats(session, feature_batch, label_batch, cost, accuracy):
+    """
+    Print information about loss and validation accuracy
+    : session: Current TensorFlow session
+    : feature_batch: Batch of Numpy image data
+    : label_batch: Batch of Numpy label data
+    : cost: TensorFlow cost function
+    : accuracy: TensorFlow accuracy function
+    """
+    # TODO: Implement Function
+    print('Training Loss: ', end='')
+    print(session.run(cost, feed_dict = {x: feature_batch, y: label_batch, keep_prob: 1.0}), end='')
+    print(', Valid Accuracy: ', end='')
+    print(session.run(accuracy, feed_dict = {x: valid_features, y: valid_labels, keep_prob: 1.0}))
+
+ +
+
+
+ +
+
+
+
+
+
+

超参数

调试以下超参数:

+
    +
  • 设置 epochs 表示神经网络停止学习或开始过拟合的迭代次数
  • +
  • 设置 batch_size,表示机器内存允许的部分最大体积。大部分人设为以下常见内存大小:

    +
      +
    • 64
    • +
    • 128
    • +
    • 256
    • +
    • ...
    • +
    +
  • +
  • 设置 keep_probability 表示使用丢弃时保留节点的概率
  • +
+ +
+
+
+
+
+
In [15]:
+
+
+
# TODO: Tune Parameters
+epochs = 10
+batch_size = 128
+keep_probability = 0.75
+
+ +
+
+
+ +
+
+
+
+
+
+

在单个 CIFAR-10 部分上训练

我们先用单个部分,而不是用所有的 CIFAR-10 批次训练神经网络。这样可以节省时间,并对模型进行迭代,以提高准确率。最终验证准确率达到 50% 或以上之后,在下一部分对所有数据运行模型。

+ +
+
+
+
+
+
In [16]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+print('Checking the Training on a Single Batch...')
+with tf.Session() as sess:
+    # Initializing the variables
+    sess.run(tf.global_variables_initializer())
+    
+    # Training cycle
+    for epoch in range(epochs):
+        batch_i = 1
+        for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
+            train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
+        print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
+        print_stats(sess, batch_features, batch_labels, cost, accuracy)
+
+ +
+
+
+ +
+
+ + +
+
+
Checking the Training on a Single Batch...
+Epoch  1, CIFAR-10 Batch 1:  Training Loss: 2.02859, Valid Accuracy: 0.3288
+Epoch  2, CIFAR-10 Batch 1:  Training Loss: 1.73148, Valid Accuracy: 0.3978
+Epoch  3, CIFAR-10 Batch 1:  Training Loss: 1.43727, Valid Accuracy: 0.4584
+Epoch  4, CIFAR-10 Batch 1:  Training Loss: 1.20958, Valid Accuracy: 0.488
+Epoch  5, CIFAR-10 Batch 1:  Training Loss: 1.13607, Valid Accuracy: 0.4956
+Epoch  6, CIFAR-10 Batch 1:  Training Loss: 0.906183, Valid Accuracy: 0.5094
+Epoch  7, CIFAR-10 Batch 1:  Training Loss: 0.814033, Valid Accuracy: 0.5296
+Epoch  8, CIFAR-10 Batch 1:  Training Loss: 0.686904, Valid Accuracy: 0.5408
+Epoch  9, CIFAR-10 Batch 1:  Training Loss: 0.580816, Valid Accuracy: 0.5502
+Epoch 10, CIFAR-10 Batch 1:  Training Loss: 0.497506, Valid Accuracy: 0.5612
+
+
+
+ +
+
+ +
+
+
+
+
+
+

完全训练模型

现在,单个 CIFAR-10 部分的准确率已经不错了,试试所有五个部分吧。

+ +
+
+
+
+
+
In [17]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+epochs = 8
+save_model_path = './model/image_classification'
+
+print('Training...')
+with tf.Session() as sess:
+    # Initializing the variables
+    sess.run(tf.global_variables_initializer())
+    
+    # Training cycle
+    for epoch in range(epochs):
+        # Loop over all batches
+        n_batches = 5
+        for batch_i in range(1, n_batches + 1):
+            for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
+                train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
+            print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
+            print_stats(sess, batch_features, batch_labels, cost, accuracy)
+            
+    # Save Model
+    saver = tf.train.Saver()
+    save_path = saver.save(sess, save_model_path)
+
+ +
+
+
+ +
+
+ + +
+
+
Training...
+Epoch  1, CIFAR-10 Batch 1:  Training Loss: 2.06226, Valid Accuracy: 0.3212
+Epoch  1, CIFAR-10 Batch 2:  Training Loss: 1.57472, Valid Accuracy: 0.4404
+Epoch  1, CIFAR-10 Batch 3:  Training Loss: 1.28891, Valid Accuracy: 0.4616
+Epoch  1, CIFAR-10 Batch 4:  Training Loss: 1.4297, Valid Accuracy: 0.4844
+Epoch  1, CIFAR-10 Batch 5:  Training Loss: 1.43679, Valid Accuracy: 0.518
+Epoch  2, CIFAR-10 Batch 1:  Training Loss: 1.38818, Valid Accuracy: 0.5218
+Epoch  2, CIFAR-10 Batch 2:  Training Loss: 1.09959, Valid Accuracy: 0.5522
+Epoch  2, CIFAR-10 Batch 3:  Training Loss: 0.961711, Valid Accuracy: 0.551
+Epoch  2, CIFAR-10 Batch 4:  Training Loss: 1.12144, Valid Accuracy: 0.5856
+Epoch  2, CIFAR-10 Batch 5:  Training Loss: 1.02137, Valid Accuracy: 0.586
+Epoch  3, CIFAR-10 Batch 1:  Training Loss: 1.05762, Valid Accuracy: 0.5896
+Epoch  3, CIFAR-10 Batch 2:  Training Loss: 0.814285, Valid Accuracy: 0.6132
+Epoch  3, CIFAR-10 Batch 3:  Training Loss: 0.825072, Valid Accuracy: 0.605
+Epoch  3, CIFAR-10 Batch 4:  Training Loss: 0.865807, Valid Accuracy: 0.616
+Epoch  3, CIFAR-10 Batch 5:  Training Loss: 0.840993, Valid Accuracy: 0.636
+Epoch  4, CIFAR-10 Batch 1:  Training Loss: 0.74788, Valid Accuracy: 0.6272
+Epoch  4, CIFAR-10 Batch 2:  Training Loss: 0.652433, Valid Accuracy: 0.6234
+Epoch  4, CIFAR-10 Batch 3:  Training Loss: 0.572802, Valid Accuracy: 0.6414
+Epoch  4, CIFAR-10 Batch 4:  Training Loss: 0.697387, Valid Accuracy: 0.657
+Epoch  4, CIFAR-10 Batch 5:  Training Loss: 0.599844, Valid Accuracy: 0.6582
+Epoch  5, CIFAR-10 Batch 1:  Training Loss: 0.706912, Valid Accuracy: 0.6546
+Epoch  5, CIFAR-10 Batch 2:  Training Loss: 0.458327, Valid Accuracy: 0.6452
+Epoch  5, CIFAR-10 Batch 3:  Training Loss: 0.491401, Valid Accuracy: 0.6734
+Epoch  5, CIFAR-10 Batch 4:  Training Loss: 0.484113, Valid Accuracy: 0.6714
+Epoch  5, CIFAR-10 Batch 5:  Training Loss: 0.494395, Valid Accuracy: 0.6666
+Epoch  6, CIFAR-10 Batch 1:  Training Loss: 0.506375, Valid Accuracy: 0.6906
+Epoch  6, CIFAR-10 Batch 2:  Training Loss: 0.337756, Valid Accuracy: 0.6578
+Epoch  6, CIFAR-10 Batch 3:  Training Loss: 0.353094, Valid Accuracy: 0.687
+Epoch  6, CIFAR-10 Batch 4:  Training Loss: 0.373179, Valid Accuracy: 0.677
+Epoch  6, CIFAR-10 Batch 5:  Training Loss: 0.38469, Valid Accuracy: 0.694
+Epoch  7, CIFAR-10 Batch 1:  Training Loss: 0.428482, Valid Accuracy: 0.6932
+Epoch  7, CIFAR-10 Batch 2:  Training Loss: 0.269606, Valid Accuracy: 0.677
+Epoch  7, CIFAR-10 Batch 3:  Training Loss: 0.308877, Valid Accuracy: 0.7042
+Epoch  7, CIFAR-10 Batch 4:  Training Loss: 0.290038, Valid Accuracy: 0.688
+Epoch  7, CIFAR-10 Batch 5:  Training Loss: 0.30759, Valid Accuracy: 0.6892
+Epoch  8, CIFAR-10 Batch 1:  Training Loss: 0.376015, Valid Accuracy: 0.6916
+Epoch  8, CIFAR-10 Batch 2:  Training Loss: 0.207914, Valid Accuracy: 0.6826
+Epoch  8, CIFAR-10 Batch 3:  Training Loss: 0.22358, Valid Accuracy: 0.7052
+Epoch  8, CIFAR-10 Batch 4:  Training Loss: 0.205842, Valid Accuracy: 0.7022
+Epoch  8, CIFAR-10 Batch 5:  Training Loss: 0.201466, Valid Accuracy: 0.6862
+
+
+
+ +
+
+ +
+
+
+
+
+
+

检查点

模型已保存到本地。

+

测试模型

利用测试数据集测试你的模型。这将是最终的准确率。你的准确率应该高于 50%。如果没达到,请继续调整模型结构和参数。

+ +
+
+
+
+
+
In [18]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+%matplotlib inline
+%config InlineBackend.figure_format = 'retina'
+
+import tensorflow as tf
+import pickle
+import helper
+import random
+
+# Set batch size if not already set
+try:
+    if batch_size:
+        pass
+except NameError:
+    batch_size = 64
+
+save_model_path = './model/image_classification'
+n_samples = 4
+top_n_predictions = 3
+
+def test_model():
+    """
+    Test the saved model against the test dataset
+    """
+
+    test_features, test_labels = pickle.load(open('preprocess_test.p', mode='rb'))
+    loaded_graph = tf.Graph()
+
+    with tf.Session(graph=loaded_graph) as sess:
+        # Load model
+        loader = tf.train.import_meta_graph(save_model_path + '.meta')
+        loader.restore(sess, save_model_path)
+
+        # Get Tensors from loaded model
+        loaded_x = loaded_graph.get_tensor_by_name('x:0')
+        loaded_y = loaded_graph.get_tensor_by_name('y:0')
+        loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')
+        loaded_logits = loaded_graph.get_tensor_by_name('logits:0')
+        loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0')
+        
+        # Get accuracy in batches for memory limitations
+        test_batch_acc_total = 0
+        test_batch_count = 0
+        
+        for test_feature_batch, test_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size):
+            test_batch_acc_total += sess.run(
+                loaded_acc,
+                feed_dict={loaded_x: test_feature_batch, loaded_y: test_label_batch, loaded_keep_prob: 1.0})
+            test_batch_count += 1
+
+        print('Testing Accuracy: {}\n'.format(test_batch_acc_total/test_batch_count))
+
+        # Print Random Samples
+        random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples)))
+        random_test_predictions = sess.run(
+            tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions),
+            feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0})
+        helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions)
+
+
+test_model()
+
+ +
+
+
+ +
+
+ + +
+
+
Testing Accuracy: 0.6764240506329114
+
+
+
+
+ +
+ + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

为何准确率只有50-80%?

你可能想问,为何准确率不能更高了?首先,对于简单的 CNN 网络来说,50% 已经不低了。纯粹猜测的准确率为10%。但是,你可能注意到有人的准确率远远超过 80%。这是因为我们还没有介绍所有的神经网络知识。我们还需要掌握一些其他技巧。

+

提交项目

提交项目时,确保先运行所有单元,然后再保存记事本。将 notebook 文件另存为“dlnd_image_classification.ipynb”,再在目录 "File" -> "Download as" 另存为 HTML 格式。请在提交的项目中包含 “helper.py” 和 “problem_unittests.py” 文件。

+ +
+
+
+
+
+ + diff --git a/image-classification/dlnd_image_classification.ipynb b/image-classification/dlnd_image_classification.ipynb index dceff26..8338fe9 100644 --- a/image-classification/dlnd_image_classification.ipynb +++ b/image-classification/dlnd_image_classification.ipynb @@ -18,11 +18,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All files found!\n" + ] + } + ], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", @@ -92,11 +100,43 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Stats of batch 1:\n", + "Samples: 10000\n", + "Label Counts: {0: 1005, 1: 974, 2: 1032, 3: 1016, 4: 999, 5: 937, 6: 1030, 7: 1001, 8: 1025, 9: 981}\n", + "First 20 Labels: [6, 9, 9, 4, 1, 1, 2, 7, 8, 3, 4, 7, 7, 2, 9, 9, 9, 3, 2, 6]\n", + "\n", + "Example of Image 5:\n", + "Image - Min Value: 0 Max Value: 252\n", + "Image - Shape: (32, 32, 3)\n", + "Label - Label Id: 1 Name: automobile\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAK/CAYAAABjrqvGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAewgAAHsIBbtB1PgAAIABJREFUeJzsvWu23LjOJbhBf2PtnlbPocdQa9Wg7iHqB/HYAKmIOE6n\nM2+ZsOOIL1F8gMAWBFGiqrh06dKlS5cuXbp06U+j8U834NKlS5cuXbp06dKlf4IuEL506dKlS5cu\nXbr0R9IFwpcuXbp06dKlS5f+SLpA+NKlS5cuXbp06dIfSRcIX7p06dKlS5cuXfoj6QLhS5cuXbp0\n6dKlS38kXSB86dKlS5cuXbp06Y+kC4QvXbp06dKlS5cu/ZF0gfClS5cuXbp06dKlP5IuEL506dKl\nS5cuXbr0R9IFwpcuXbp06dKlS5f+SLpA+NKlS5cuXbp06dIfSRcIX7p06dKlS5cuXfoj6QLhS5cu\nXbp06dKlS38kXSB86dKlS5cuXbp06Y+kC4QvXbp06dKlS5cu/ZF0gfClS5cuXbp06dKlP5IuEL50\n6dKlS5cuXbr0R9IFwpcuXbp06dKlS5f+SLpA+NKlS5cuXbp06dIfSRcIX7p06dKlS5cuXfoj6QLh\nS5cuXbp06dKlS38kXSB86dKlS5cuXbp06Y+k//mnG/Bvof/v//1/9JNyqgqs/4CqHQG1RLUE9do4\nz895dSUpB4tIz24FABFZ5YYfB8UHpff4qOdRngJQu7ZSvKbveTjEf2BVO0Twwy43APwQsXTgB1b4\nh5VbaRS2c1Qn9Gtizq84zjmhX+04vzC/7EhldU5MP+/rC//5mvb7st/Ef+bM8IfHrzmhxhNq8578\nYfEIJ/9oy4fnP7GIbCkv8og/fhEJX8iOAiHe9bBQkSyfUc+X7QcPjz3v1S/Oa03c4ytRKP9Udohg\nWBvGEIwxIu3pmGU9Lc/5nx8/8OPHD/z4MfDjxw+K/8D/WNqPHz/wP/+TZWq5EeGNXB5ZGMAWj7Qm\nhFQ1edbDwZ89jcIP5+TE57xkPPN8vjy8+IMnYcmQOaf9tBy/5sRUbXkW1nX8aud+fX3hP//5Wsev\nL4pP/OfrP/j6z4z0rex/6jlH6kvttPZOy7HL+aYLMluO+bQErbytA+T6fxWXrOYQPzRdfHbOXRXo\nWZ9h572Sc+BdrSeU+KZPtV2BZaq25MO5n9HHBQHEjGVYntO3tOOVcwwUdbxqXFPf8Dk0xqF/SDeF\nHmppfATlvR1HJR54U/ZTTfX//6///cuU2rUIX/rj6Hsi7FKnO37PdMfmQ7oDdenSTv9F6+K/qKlv\n6QLhS38c/Trb6J9Jd/ye6Y7Nh3QH6tKlnf6L1sV/UVPf0gXC/0L6exnsH2Lff82q6Q/zLn2Xfsf4\n/WvY5Zv0r+EtevT9r6R/zUBduvQvor9pXexy4K9Lhv+blvAFwv9C+nsZ7B9i33/NqvnXNOTSC7qz\n9Bep+1leunTpj6VdDlzJwHSB8KU/jv61VrL/Errj90x3bD6kO1CXLu30X7Qu/oua+pYuEP4X0nWN\n+Dvpukb8VbquEc/0r+Gt6xpx6dJ/H13XiH+ELhD+F9J1jfg7Sf+94OC/hH7H+P1r2OWb9K/hrX+7\na8S/ZqAuXfoX0d+0Lv4O14j/m5bwBcKX/jj614KD/xK64/dMd2w+pDtQly7t9F+0Lv6LmvqW7gc1\njHTOz8rRn9x02qwvuVt1buJd8vYPbZQNswWVuzwrTqId03s5VQCDdtXmXcQnoKN2IMrNdd7007Ps\n2ix7tXJtxS0ZV10f01CBiuWJ5ZUjbNN8ACoQUUxZG7ar+Gb8FvbzuJnbbac87OpNO4CD0mk39dyg\nvQ9giz/c6tpW//bxhn6U+uEIqlZ943mVOqdlo/1Dflz4xYMtqann9IdzOeWbt/dS2iVUhQf2D2fU\ny7x+dP+4+TplPmYZb8KGuAxluMbottxqglgpxVT/kAvaB1PyOO28wem2lOacwBCIDkxViP2GKqYd\nVe06EdZVl9J146MVyT4sj2LIDqx94v0iy+Br0fvEH9PoaZSO8wc4Yn5dBmiygirxi7VNhGSmf1TA\nq9GtA3Xm9JDGcuGYX4vWgVK8cqAKrm+8dWRm7+RHC2yVa0smruUp0vJ47fVz+aMa/rEGsfo8jFau\nfEyDz6f+7OtYSxebWKJ4HQtVpY/9BDN4Zu2861KxVdyKF/5h9nBZYG3p/FjWx2manlnhI+Iqt7kD\ntSMOxAcmxLiLsh03SdZq1/i7jmvMGVawrFTAdDu1SzNNmwr2vGig1Zlz8GIA+9L4i2P9s3SBsJFu\n2uOx5AaAEbKWgW79qlgFpvwFMS0LMunzFZnLZAIqUIylhSHGoQMwZYw5gDGBKSWu8DBWWQeqauBX\nTD3wUWtaYFT/spzlAbCvS9WjCDBNqMUX6kTXV+v8yL0uinH9lJFB+dHg98/kgOIP4yrl51/DQggl\n8X/9y2bH+dmvEGlNEJxFWmqS4xVKnhzzHs99KvzmhLjWQUFX4MuN4/SfIVOErh+Puee2agttJ7J2\nQa7LCUlwOwHFxBwCu5tbJ4wRS6o0zNbDiIbOwitTdN0YDgbGS4EMRQPGBsbpF2x8GIAqzvhrliSz\nKJCY8QB2t6/JPYBgBsIx1ActZ0rSs9eSlsIXC+hrPbd1nL+ZVe5MCCxnt7OcRhlt5Ttp+QULSy/z\nwNCflqOynYUABk91jDKcALjm0Y271dPTPi7H7erzki0Aj6VUNFT65TpRhG45WBYWQ4EjLsm86Kzm\nJW29SamHLsxNoXgHzhttc6bH4KvztzH040GuP6WX+EsB6lzh5iuxo68b09W87mlog+NpaBcOaOq0\nlaHCRT7FxMQ84jAvJoceRPTfTRcIG6l+ZhGGKYCKpVKZdCYoYLmU8z8SvFEv8+TLekpNrlIdcECc\nlt5Z8+ZS3p6nHqe8sNQ6SD0CYg6vdp3ySbpuQHgBAlusqmcwLEsoxl3n5BXcjj4pYQlqeS1+ugES\nDokf2LKyQFAojBdA+LSuX6WdZUBTgKcSJbOVfHPuQ40fXKdXfrACR5GTKshzntuXI6LqAr7naqQ/\n6b1TCuvaWINKitHz5rpH9ILDlte0JQOsG0dxgExH4ThGgF8ZGtbhOWvcwW9aiStLB2s3nMAd2wBg\nDZ7L0Zr4KRBM6Z1E6vzFww9rQ7fqBQ/VjuWhXIPWNgnYBMosrPPH7aRb9yhfAIvVz2mdzamyMxWE\nVstnTlpIKyCqMsCfPnmZTK/nDuSTqpRX7QgQCH440hhkozTb8GLlHYeEq4HJYbtWCduCXE8/1twu\n8GxzpKQXDuCqgFwfZ44rjXNfR5/QG8Eq21/U+eKyVWRSeuWbjYu4Ay3k4+YtKGJDqvoEhddT37ze\nuZw01apRccE4flF/ehzxKJQ3wmWCfh9dIGz0qWvEKpyLEvD517qQCiCuLhGtYPyta+pphb1iErYE\nu5YWU0BpFS4W4zmsqFmMrZzKAwhugHhGGA8A2foiKC4Ec1S3Age/7IoR4Lr3+pUVuFt/1RUipRXF\n+XpIt8eH4pZg7o9giGDKPoPaYic1saUp4rF3EaEPLCFboCY8JH+DDl+83yVxCOTannZm383gQfjn\nGjkVSAAnyvDkPL5PyrlfrgKSxS78EEVt2TgoHpPAMD1o4bZKiU98yYAMhUwtFuFh8WGAOF0mKmuz\nxSbajcbWPHylzF5YOQwQuMUzCI70szXYAeY26gJsejDATwPInibRMuqMy1ZlLVw6r2Wt918fwBNv\nZB8YuAS3OTqMa7xeo8y7J55OGUPxuK4c0qWWbwB4NS/l7REAy7nM6Hle8YHJUkIzGuWZ5zBLNDL1\nlDtSCkOJIQ5hIEHTqQllQesR9AqFA4g90s8BNBaDLEl33mp8JrKnx3rYT9rcvto1o78gS7ENZcyQ\nydNYFSRv/EY246v2LJeFlQfV5ASPb0ocBufc+t9LFwgbfcc1gnGVxzUTyh1SlR0dEL++ThOZB5JY\nyIvYEjyhAWyR7g8GkLsVWF3jyzov/HYLCKZFInXBTHnOC+spAWHRdU0HwJPyAxQL1h3kks40NNp+\nhzQfwbpqc7AO+s91W8RJ+qTCQSgJbMDYH16fodeT3nwqdxCDL4Ajtgx5XeptRXvyoaAc8kzCl9JH\nt5GHC4fUpCQXj8aDLjiLbvSRi0Mqhlo/XZr1K/Y0f6Cidh9ZAO9oYFgAIWCsExjhP79OEJmY010j\nBGMMzGlgmAGw1TtUMUGgGMnKJ5bmrvLNepFTLd3lWD5EYWCLFxbiloe0ZMf0auVnH9dWpNz4FcDi\nfaKOb3PaQG/mnNa/h7sAyDTZ0lZbTha7E/vz2Y/L792yJJ48gmAheUXuCy+tvyIJclluwW/mT8A4\n3SUqg8VsoUyUZpqW8eVByf7xUj9ZgnNx97AzvQ+Olrr3cGW8XgVbiffGfkin4kUWU7ilBxA8uaIA\ngKjJMy3n7wUtIjwr2uJmKVaEa0pClnfxXCFa4mteQn5AYl2qCMTD3tYyVjkRKvpPGIQvEA760DVi\nB7/xZ3tEsMXpDyuCqBs7f28A48RAQf6yXLUKL6ZciljJ8qtsIWawPMcCow0ET7ilFq+B8CFfBglY\nB5AqkMEAGA340ohYl+itpfyB46hhb0GuWouelWAf9VACcNcHcoUIpYJQJN7MPjN7mos1aoKcz+1c\ncRSEpzO2Mu+07+f1bwWeTnqsLG8uXtS6SJMP8sVDE+ggQa8+jA8A+A11YxSzHiaWtXahUwwIprk9\njGlPA9wVgvjEmWLVOyEGfN0SPOesYNgA8GYRNp4tYNi1GQ8TqP2gJRBlOiB00IFi2fX89xbiHQSX\ndpwZuvC645tyTp0ZbyXSvzfTIxzXPpXR6M85ny9bbVL84txa61k+X+Zt0lteLKEXLhJ+qMC2guCa\nRkAV1VXiFfgdh6db4wCCHRwniuJxs2OMeb44DX2261UTz2ks1Bf6kpFb2K/hYwmUu1m7k4psiaQt\nHN2Qdd5fwmDHKc3ExxspqWmZ7tLMSavMPISjj5QulFlG3grHClDQ+z2WpzzTbP3t5VKGZHwdy/sA\nmuPfx1qh5uryl2bhp+gCYaOf2TUCxCRppvHsrqCyMNfRWf3hihl8B1B0iVEtVmExFwhzlWgvyKn4\ni3QCFctTcnsI/CiY1gx2gYi0SK9pEMGXC7NBQFLsRaQhZgG231Do9DhiwwsAC5V00Ft8hjXuSitq\nIKXflGcf5qOQYuXiR1cuZOketapY8G/TRCoIqTDhY0z7vtx+4juWOhd4cdbR+tvOk2PqzuOq9pa4\nC8pVWkVdd6VQDWTyIEif9G8Ls9VSRDGGLJ6egjGWRXfxMjZLsBl+Cfyu9g/LmHOuF0QJ/IaP8Ew3\nCR2LrR9dJLzdfIQrIupLCagPaZ7kPFcszgcA/AoER94BCPPkauXqrpS3vCb6igCNm+BIoE5zf1te\n4Y1T3qb2rQu1UyIaip3r01e8X7L0lHgARgx065HdI9hKnOB48V0Jn8BwB8ElLvSyJ2LMi7uZ5Kzp\ntkWD2uhlmVihingSAKUX5yKdFmOETWMqAnSLajUMZ6UHRkOmgaqkFv4a+kkAfCjb008AuKdl/Ssj\nX1rPYjunM/B9AsTpTQ/4UvO5R8qR0MVSjz74vA0FTZKD4d9NFwgbfe9luTjpgzRljtvTPE6hRzYI\nRf9E5BpRrMKAhgtEukYE6IUc8tIRXrFbgwN7diCMtRNEVysOgKdKhN2vVqAYAYLFro8EwBPQQSNz\nsgizYD5ZhkuYOvZqrLEUjP+D1GPfMaLrwBMke0yj7tUyb4TCGVe+LJvRvyBwZAt8dmE5DXvRtCjz\nLBQ2CR+WAyxAotqs6zgDrg6Bnsq4jA7dye+XHjZfwQBkrrb6UwMOexIwMefAlyhkTszmFrHu6c4+\nwivNdpGgoelWYNf/uR5YNvmh8r5SegfAcJCLTNtAcAHCqGCc54P5u7XfIZK0k0Jelplrjed+FWFL\n6z16wXkkGwqdV5+gW4qt5AN4eZW4SXzit2AXS0vwyxbfFj6UGV4Xg+AAx2bt5bQNFHv6uob6uFm7\n3ZXBx3M9clcalBxxxqEAGpAltVbq9HHplmCtQJtlRAG+UtOAZLpSjZbL/rxYfD5R/G+b58iPSF0F\n0q3C/eQ4HpiQjrKlC60GvwGp7/XwUW0xRpjPg+QNcMgGKWGJfIRVOMl457DafxddIGyk89Pht8kq\nsvmkdJSLb8onldV51whfvHveK4hUXSO6VVi7O4SD3mFg2bdNGyOskwvkLiE4gWIhzjwUMJzhBZIh\nMDcIA74UHmLWNgMaalh+eXWYhSXewqchWOggw48Wohj9La8DhD78MQkMNkPxpHUlAP0HmLVfqqd9\nCwRziW8I7/2cvwCITzVTdadV9XS1ks6MT8pO1USm0CO3OPvpZbkHKtdoDaC4ufwuEEwbsUyzFs9p\nPEC7D0JAVmK3FA58zXSPCIuw7tZgVywBgNFY3doYYoTaXfma3QV6vsaxLiMCuzik9XINBNfdGAiD\ncFikYhik6t2mghtXJqiBskiqeTXf6+H8p/p7XdmPCEvPpda/WFZ16eU5QvEOuhPHvAbB8eLcCeSe\njtjTwy1ChlmEGfBaez1sIDV0nD3d8jY4f0HbdmnbmDEcorxiCSarewHNfl2A96Rm4EvF+JJVDPxi\nEMzz3OfTm/e+rNbEDeAmv8mhzNO5rrvdqAAh0NuOSi1ZY9bTHAxLygBFxmeu/6qLcy6T6z+W4L+M\nLhA2+tgiDBTt8wSIs5i28yzA4Tb3XRF8RoLy4psDXSxUuRgwXSPCTcLBsVtjadeIBLQa4bQEvwfC\nfgRk7RKhdjSrg8qKj7BAp1U4+4H45ocGIlFrCKEC/TTe56EuTboXh9jj96Vc1h+x9A0QNyD8GuC+\nKPPB5L/Mfsj8mJ/eofkPqPfpVX4pV+S9K1s6mOKrYNiU8L6Mfq7hecnQs2EBhluEdfExpLhDiANg\n0fAXVkmrGjAh09wjhh3nqIA4fu4W4eByZ2VW5DywJzynXEgBbRkbyIVfy8DPCQA/gODzi8cSf+2K\nG0j2VNfdx6Wg3OHVj2LpBXUgpFfL74NT1n9ruxAIFSxAZoCDMVY9p7b8yJN7x8BjFFi6gZ2MJwj2\nfAfBkS8o8onB7hEQPx6HzVXKS7cGr6PzkAFWNVcFzec0ZW2uxbzWMK35lH2KtWXayRJ8AsFUgV2X\ntyeIl7WoEXEpAsXHufyIXpwV8uwwt/3sE1iOsloLCOUd0hgcP4HiuOmQCmpPQDhXxkMZBXSyLFgD\nqtNupkemoUAtmj8sHvtLTyp/ki4QNvqOa0QNuxAolR3Ka1mEHhYq9lemP98nbS/M9RfkAISbhCxA\nrFEOUN41Aq8Bbmyfdsjr7hKiY1mB3RpsoHigWoZVRi4c+iBe1WUNEVTNXeOb8rO0plDrWNaIizCB\npnJxoHwAwh+DYJr0d6D427whx+DPVXJow8PQuY47pp/ac6ynLIamBDsYtnxWmvI8tftCo3i0XWpr\nNwswBOFWHwDZtjsSsf2EEyxB1NIO4NeVx7RfWINNoaAD0Mba6LLnnKYlkazEmnGDOARutS4xBsAB\ngs95TN1xha2orvQyzkISyJXRO0RW3jhhL7PLgexlvVCeHy4Qzgc+hx5Eo+MCS8bq8uRUsmeVa5kM\ncheFtAB7uoNkKWXSqotwg3gCwWOMF2A5hXC8bEjWYAfIvkfsWoapkbh/SscyTgRs84WpPOPkPlFc\nJhQkH4B4V6AD3dYIbqOE0H2YqL+goB8B8EG2CryhLd3HpAHeHQhnGbEyFUBnrSeQ6yvglJbn1HNV\nsV6wn1V2WEG4P6WAdLtl9ZcB/gEX4QuEnb7rGlFlrm7Znq5b+ist/VepbYdGvsLpd+vMO6DkK+wv\nzCnMYgx9BLcdHFcrsWxlAZjFSzDHgBj4nViAeIzVhglg2Ac+FAKYANZiDQaKdi6W4fZzha/1nCqE\nF20vw4DUmBDoDUDs4FdDceQLhFlLgwARXwJgSecn4MyC8jv0maL+tB45JSZQL6SlDKcyru19PVRf\nTyzWJymWYZAePLVftVbaoitNXclYPulVKGwHQt8pIoHFHBq7RMSNkPkLKwEJFVlePUIg2AHx0AeL\ncFqGdzcF6heLI80OqXfMcotS2sqDwG9fRnr+4Tl/qjbe0epCoAyAtZRM6xSixA5my+yh3tRqKRer\n7QUorvXmkSFCp8h7sbbCheDN+su+a4JYykgQTGmbBbiBYP93ALfDbtaGjEP62EDw8IvTDRD4GE9l\nNI/QwKJxJIalZV3mu6zXkm8Z6u4VVrHwEZnnNTIwLkDdL0hHb3Ncr8zOu9k759KkvQXAFGGHyZJe\nQDBcPVGcgXHynkiNe6EdCH8jXShdsUCwgeFZbpbpJt8BQXyMKPujFpZdsfztdIGw0c+6RhQ52SeQ\nhbOe09u6/1nMYme6FViw3CHS2rtotwQHIIZknkzbDi1B7iMopvxjGUMUbgGeUIgOTH8TXwQTA3PM\n5SIB81GeWG1USbMbKfrTb/MTLPk8/o4kymQcx17iZ9LSrX7FGoxiEeZz9UW8CvpWpjPDp8r0E/rp\nunoHK7/HQ622NArkcVncpuR83aVkw1JjNw7xqNPOylX0oY+w61Rq22nx+SWHvQg3BZBBTkdTwn1d\nhqmHSaBYnF0cELlFmAExgV6PT2ZdzbVF7M0iKMcyB/XA3kcrcJxJ13v+0fVflivoIoI5Q3ndXDPu\na0gvpAmXrWubbidpEOpa1zpaVI/XdRgkjxMjMwyI/vjvxGwF5OyM9ama79ilp/ERHQQLyr7AI6zD\nDoIJ7I4EvGLW4cz3dNDcuqw14GPjmYAXKIba6LM2HrA+2Zrm0sUqTGu/ukPQkSfjdPHDsVfrmLnS\nQTC8mrBD4gnsPgPgDBQw7H/sZol5kIFvAGW3KBdGQT03OLsD3gMAFinxXnaxgEJ1pvqljxCVjxF1\nAOzbEZJc/t10gbDRt74sB5aTrGm4wjadSoEPZvoby68JXAO9/uU4ArpKrhFsCXbf4MjDco3ogJbj\n4RKhnLaXjxvAMcgCvIThxBLAcU2hNjgYBuwbs1bZkKrwYhXSryjNHFGNfBrkXMX7nOXgRjBAL8gi\n8wCE39EOlKv9+NWJ37zUL67T1RnZy0pH9jXBnl9qQOP0UahIOW2mz2AYiLAIX4dbuIdLuyQjiiqI\nhQpOa/sA7F7SngIMuvWcai9NOo+sCsV8if3GbuhoFt9ZXpxjq+rZQosNeMSQ9TFXznArMZenvKdr\ngX+vwS/XEReKNrpCz3R/E90bxNYz6kCbNH7KAw6UcttaLz3ZBumQv1NiinSTOC2avYbKUdspxHPH\nepv1twPezG8yisHvZhUeGwh2ANzB8BiuU6qVL+KiJU+EwvBni7mEHcCKuGNCDlM3DDD4Dfl4Mula\nOTV5kKcdQPGRXsldmr9vCd48R/bUFwCY0zXmlwsn4HV+EUqnMDxMYDjurt4D4bT6nsoQKFZgyoyn\nySA+Ucz6MaJ4UG010t3B+Wbk76cLhJ0COPYVc0o7yeiW0EBYiZOOWNF+j/whbQubtk1zK2r5EgW9\nIAckALW9hHMvX/+gRgO/muF11B0I6w6KAeALyxK8fCyXC8WE0Ic4zEo9qa0LMdtNiluF32hrX4QB\niKlMG/+T8Av54gpE3fJrRzUR4GnKrhLPU/Oz8bd8QWDuM9prPF7j0wvzMglwQbYMMf7WLO7W9bLl\nqBN3WvN8sGXYpb+tubADu+IrDfuEdAsyDvd7y1w96xrTdoTIrQCdb8wnGMuX2MusXSPsc8pmGdY5\nDPQiALDHi1tEWGTJFtoxXUvb4y2R0gxi7v98LX0AfpXauw9tF3p0G5WMgsoQ+1xq/PX1zTnZizyB\nGtcHbDsyHcp8KKRPxeqzv71Q73IBthyWGvbVVFwlGiAeQHGJCFDsIPgAhoubxLCX5ZgXHOyatUKB\n3BaWRbIAosNmhQAxD7Ov5aO1d605PVmAC+h1EJwuVH7D3DV4ls3L8vHlRH5M3vZWHc1vucTLsqtR\nFcxSWU5rgLim5UXEAK5v8ahxJSlHCPY0L88gWXW9CAy7MZrLMrzwwMDoYNheKI6XjXXpg+1G6DfR\nBcJGehSU2NNOIKrN3Objoi1SQMFe9JP1dy5TQW9+lKJaftmFQh8sxtNedlA0H2B9AYQ5HPEF84eu\n7aUWAHZfYnPDQL6JurZum1BdL/mpAeBt+6PTjyWwD6ZSgExJqawPy66jUkpMa0uC3wDIcj79bdzk\ne89/zwcvpPabk+WTQueT6qUbAPaDEMDyx3EOiF3ovrZ/u7LLa2ixEtvFCRDHHEWL3ohUqrtE6RIi\nMDBrn0vugLdYhs3H0wAwmvsMMHfXCCWXCCWX9+mWYWJxVNBZFDeLJ80OKOXVOOdb/18srde/k2sE\niNEtcIpvAJg0Id896ckdwvsRA0RARtvPi/Z6clCE02I+vS15EAocHn5UKsCnLJqtfKm7nZ/hQDJx\n2EGw5FMrqb+08p6ODQzTcTWY53ga8B01HTPWEW+16R2I5Uogz58WBW/G3rlmIvK00w4SkVeTy1Af\nfIlZyLoVcq33J8n7QiJvybLHTgBY9tJHKzGlO+ewi4Mcj2cQzMcAseIz08CuHNKiMRU087pSe6FH\n4V/ObGBYYNtOenvXpK0x0YeF9PfSBcJG33WNWCetP9LS9BDpZVrg7WWOS3DLEJRt0ygOPFl+5xae\ntkjCBUI7uPVw3VZtUrpSechaCBOKLx0Yqpg61jkGzqe9jqR09I2FQ9hOH9Nv/HwOWMd1HbjNRQKq\nfDnOhEgobQfBpoDsTrer6m5lkOOVavhzOdBre13yzEQPwv2jCrGuz19KiEGVIyDmb8kvi4S2eQDx\ntWuqve4aRxmK85yeae0+kXVUqFIb5S4SKf6l7BiRN0ZmmRL31UyL8JyaVmH1XSNmhtlnuFiG24+7\nv2M66l8dpwCplp5A+hO3h/c/d+nIa9haOoJiBsQgoMPx0twW6KvF1zut/Z4X8qAKggQo+0tyxRXC\n2utp/Qa205kDfTWcKXmsuTxsYalhAzQsl4aA3CHkEegWyzCl/7AwgDbXawzZMryGfeTNkM4i0/hW\nI6283G9FfiL+AAAgAElEQVQCxb7mA9nm2FTLL8BA97zlWgx5iKuCq4MfWUk8zM53xWUDu3JIAx4A\nsPTzqt45gd5yHA/pJquULlLB7qr4lPYIllXNZWzd5AP+BMC3Z4V9E8CeEk9vi8tKLF9x7vRvpAuE\njb7/shzJ76wkikgrq/S3WxF4nT5SKJKKqur7SgyC8wU5t/Y+ukaQVTgstfBHsS9A7xEIa1qNlVwj\nFMUq7PU64D6DYaVx0xeuEe2HF2ldifYxpeGOgAFgBsRuAS4uEyHlQsSUml/Fi/A/lN2pQraflh3y\nGHlZVDngWNU7UEAqCzlX//zI0v9KrTvGwhcQaw/lpUYtO82jlnHdSbdLRX9MWbvi8a+V5+Snv3CC\nD44zIF7XGW4RVn45LgHk7hvsljYtT2YSKDQWtnGOP5GvyIPmsIIrfbWsvgeIfc5c3ar6PBF4oXAo\nei8XPFShVEwzRYF05Sg84ANlP93qWWEplaLW4c32dKnpbLQ+0YntlP42JFjrBv2OoLeFAwSvbSmr\nf3CGz6A4QfAPBsTuNwzmgVkAb5XXk0bZDBovRwP5slxZpxyhl+cUCOuCZP6j1ZeqilOK8KI8zuIK\nviNcpRaWQ9YpraQ3LCgtjUHw0Ro8ki86+IVguW2Jy2KTvl6BY4UOejswLuXNNSJmW+H77AAzrcEY\nkDntBePavrAKn/be/A10gbDR59unAam+IwqgAwU9pgO56MrJx6t8F+Cc/IEzzoBYKW895nKrMMxd\noVqAl07RSDsDYaU8B7rmGgE1q3C6RygSFLPgVPHHbf66qSszvAgffjaIDBS0p9M8ORWBpK5w1h8G\nwFBSRPI0Vwz3euoe5vjz3H+fMz4m2QIvMCQpIwsrEHf2S1+55UzCZcjD3ou+b2SMR8EKDKioVZan\nbQ5LPY9r7Kj24uKucz23uj+0sJ5BMIcB2iXCwbD/GAwXYLz6vH1EkZpfLbCVx2ucx1Db+br/2yyA\nBVe+BsILOa1LHIFvhiEO3iXHm9xg6uy1RU5teyoTIDnKNQFRZIDWekgxF2ssmL9eAd6dpJVSS+11\nb5WW658A8AoPb6sI5dWdInjnCLYIdxDscQCFF86gmMLuI1rkO4VNdOxjRHOvbvkF6kdKQnIgF6mf\nR2l2txhPoWjCdqtwDafMqVp9m5QPxPAJ7H4HAHOY9cwZCMshLAl+KW0HuyPjByBc80bJ0+m3QADc\nEozc83Ri6c58l0IK+F0GA5cJ78f0V9MFwkblBY/3pV9Gc7W9vOA6niaedQb24+nCK29YykRafQEt\ncRNWshb+lBm7Ncx+nsmUbuVla7Fqy4cJychb7UyLr7dTlysGWxbCN5htwRplYWWhCB9KkFAGK+KP\nw9nmUJxkVSu68wVJmSR/ROdzw96wCRAX0BbDCBR/KwleSd9v8LF4675PDG6X3nGrADajzJl3W5NJ\nA52WU6QRWj3NS1GXRYc53Dgr3+f29dYftGkglzNFm9gSrJpuEBMNAHvcjs6zJZ8gIjGrRl89TkDv\ncA6DaO0/xIp4+IftF/31+gkEh2sRAV/YC6d5Q2MKG45SkA16OcL6WE56OYp3UNrDCTwpj+b7DOb6\ndV+vSokSFQktvFIBb4AhcQBcgS4D3wS/o7woF7tGlJ0hGBD7L0ExkHI2gXAHvv40D9AxMN2QEW6H\nuXdWGHWz5w/yglY0o2dp/BFgmCvf0zz4nPZiojpSPd2pxEH2Uu+A7osyDITDimoJPt+P4QFKR9wI\nhfNfgFyrmwEurQBIBb8MjFd6NcRNFXuKZuXtaXC+gG43KWLuh/bvpxTSX6QLhI2+4yEskLSqlHRP\nqmpVStE9vTC+cJrmAlA65yHNldOEtPDKc1eEc96hnKayC/1JIDcEFWlAzwti7Ui/JUglTljAVEKZ\nFT80VdtKzS07cwnhubaf0rnik+JnwHGKT3xZ/GsqvjTzvuicL/Pj5DT++XlqYwQeIxozHsMso23s\nzhbOZ/pW4UUEULQlvzzHA6UPqbLO6QTSqG/1vL0vpy8MaawvPJbjqjqsLh4WVNpLfSKD9dPCfX06\ne1sd6QaxW4OdN9l94mtOjDi6xzKBWQeD1Mi8wfM0nwuNU3xOEuDs1uDAmGUNn3+OYb3T8dDAhy2Q\nR6Y/vqP0AQUu9cADGD79SgEKO6A85h/qBl6vwn76U1nGDY4JEvAetkM7gWEGweMVyJUFhsMFwsDx\nSFcJzweA4gc8mzsEA19dMnrYVlrb1xIt7P68vt3awqVpRMjdHVociVlfSr4Aw+ew14VWb5mxDdQe\nkOvbc1qWp1NE/O8BawuXL2A3eSHD1koGxN5uLh/tYqC79y1BcmubXSeAcD4qzcUskq5jILDrVuBI\nVTrvn6ELhI0+ngLti6UkJKOcKtRugeBz8oUS4fQtTR+B8VKycgS9HSA/lWNAzEo7zgtwB4DStj5z\n2tZpSwygKwR4JV/AIPCrArMUm8MFfZqWXzrK+DQgMQkczy19dhA8Z4LhBnwDMHN+B9kOBH3sGARq\njitoXDOMAJKvgfDPCwzmqdPkbBivMFgt9R4A1/QM0xj44HD1flE99FTirK3RSmVO4ERKWd2VDvb+\nb9cnfXrIquMqFAbMSr6Dy3Jz1sDw15wYOjcQ/PU1zcJ6AMExvgyAvYynl4V8BL3xw/n3RB3YRpDm\n+ZN7COFxfAC4QSYTX9bb0a/sWXLgiVKF1LLcJD7v3Qo98V2FW27dZf/zBDIMeE8AOIFwBbrs9+th\n4ZflhlB8xKeX3UXBZfDa3WfJ3GngdyhCJisAHcxTezj4VDX3Iu7gOMYm9pBIt3HSjVpGkLjHQW+E\nl747h3G4ITuBWwle6GkdBDso3eb9wGdbuagy695B8DpxSyfg68xK8BduTfak6HbcgdXGZPkdNCvs\nqSb7ETZgrNFe2lnnBJJxeCL4G+gCYaP5rQ9cs+aVEj9ivhqIYLy3Seu3g2Deii3TKI4E12p3tjsI\n9pfTNMIfAWKlcq4QCUiwEkhdyyCI+ku/tCwxCBZg6hKe00TbkBSg0wUrCdVJgLgBiKfjyeqWIHg/\nduDbQfHU6uvJNwrF0mtjk3kEGA9jmmP7a8VCB3pHYsH4Yl9en+lsc5b5PkjmeveFVMtl5nHZautn\nADIFRbPcAyA+rmUCdzWPtjQ6thn8wAP5AlxahIM/2RKsucvE15wYXxNfY0LmAQhbO7hN57xD3NuF\nw0/f/Fp57rsD4LZBgEmiZLTjeP8kSftF4mEpud7Oxp7DHUO/a+yJnz4pH9ch3PEEfl8BYDmCYN4u\nrYNishrLWG4UVHaRb42TVl/YLkDFQjwe/IY1P7hQgS/iZTjhNCDdr9q2Wg/TmYNd7sQ0B9Xy1sH0\nTABqs2wWsNhmszGLdOZp4Hg7fYsTyG3d6Dfc3f83AG6AzxPwBSTaUQFzXsSBM/ch80rjiDn5nLVR\nhMc1XhAWA9GDLMVK6fECus8o4ZvfSRcIG31r87TySaeMl9Q+mbvmXPOe8x/pZ8DraVWZx8Jy0CqA\n6m759fAs6XbOAzguSi4AnkZaBXkJNEpfWTNu2rWD4EQKYSmgY1gaGiitYHc+gOBmCY5fAt1nMDyP\n1uDTr48THsdNKS/Hvpf/VeAgKHhlRbb7b2Ji7fkdnHqDI9z6hYPl91Tm1Miq98r1yxmnIMltbyKv\noQLSLH93mWjgjMr0cwEcAbm0PAaOk+K8PdqcOHx2mS3CCvmaGMNdI7jnPGgNkiraXBPzWTyt1f0H\nsJvUcSlr8kC5RJ8LHzuVAzj+SX5/hYpMN7MrN+GGl1XWch0MWFAOlz605RNgzMa4bCtbhp8B70sg\nHCB4FHcHBsXVCiwEiLtrRPcJ3i3EGwi2dz4USCux8VoCX6WX10z/ODCmMcxxazpXgf0xBJ2pWPUB\nsSAzvsqo+6vHZOS8M6zcwC7HN6Dc+aAy3g6M+RpN91uF5QaJ2lCtwxyWOJ/O2IFvNDjdJzZQXNLT\ndWKlKSBrRwnfcz2B78EKLL5b0Fqg1yL8L6DvbBoRzNok/0kRtEBTPigKqqwn9WtFYAPG+eZ1Cond\nEvzdsCk9fxRmjeygeO8Kg5vaxW2QzDdYS4UJit1fmN0jAFSLcLhCmL9whPXBDeIMnL8srwPdfjz+\nOtgOIExj0eMxftX6u5fxkf91dFL8oSo6WmG185DH8/8xAAYe8lqrpMQoULXGcXw0i24grOnKqNFZ\nEPs4lXKcToULYEY9QUBrCgge7j7CG2/1j29Q/Otr+U5yK7MN5/R6y6Gb5YUBbVnvLh+ovU+MGYC4\njf0T6Fx5XOJVac//kJ4AsuzhAj5Pl9/Swoa188U7NK/vecyBSjxdBjZrsBjAfQLFK1xBcLpD9C3S\n2ApMgNi/RAfgY+DrfOKubSPzpipE55LzbhUuYNi4zfRdrONT+GlwaYHHXuYOhgEDXZYfQFejfJnu\nBnIrUOX0HQhLraRmE0lL3MtkXY9gN0tWHuJrOObk9PibIDcszJEm1OUdEOeYrDkdkmHnRUVzgwiL\ncryyh3/EFGx0gbDR2Xv3XDL1jIlCpTAoKU+pEdLs5YYLzgsatUeetvL2h8sHqBUrGVacBnbFAdsL\nQNwtQA38BmBrAK7p2hp2GeXK0oAvDAhqPDtGCFLEixYgi3C+LFf8hAmUxpe5DmB1c3342WMHy275\noH4/AmMeU23xjYF+DfXvFwTZsFfxqAkMN2SXnan8wH3X5/5S/7o9ODi/918O5TuQI/SVig47INZc\nP572BIaj/zRoUcch7XQtYJWNm7iwstYX5vg3zfcyX5ZbVmHhX1faTW48xnkto1rVCgjW9itjTf1A\n/lDKHOBtgJNfRK/A7gdryMHvY2YvS4D56RpPIPexACoGKBY8cUAsBQz3XSB4B4iwBsvpRbn6Ipwc\nyokBZZE8b3VE4e4QW9i/nxuc4B9EquWG8Yw47ziwdT6K+NqVdq0bf6GKgDLzLQ90LGQb6OC3Kjd8\ne0cXEnQGGOimnDiBYQa9JyC8M1ACz54Wk99LkEyTuOwOiBvY7fl2fuAGArTRPe9zEyxctnbRz3d9\nYfsLm0/wMICiYDCMDHubDOBIpPx+ukDY6GPXCHaLOEl+Tn4ChQAIMQTQ5cUaDGurlJlj5VWLzqri\nDGqxpVe3CFB4CScuQ0ox6kERHvqq32181JFF2THCEYkDhLUv4ZKdQi9f8KO5CnTzk7RPPsLTXByq\ntfgd2N39gHH0Dfa8R8uutniMIZUn0Mh1dPqrgqLgusbO7KtVGyAdQZX2Kv3pfXkFjo/9FKqTGx0N\nxhErc2UFbFlyBa7y7Re6QllSGTyl2XpWqRco68n4PXlKCfjab7hrzlhfo2NALPVBYpURz+na0n20\n4wUmJFBnoItDWtzUEGt4WQf/zjrdTeIEkoPvXjA5g1f5zs9BBMUPAxTHct6pER/SEx/1QtymFRZq\nw9k/uIPgsAjTC3H1Zbj9pTkhqzAD5UFAGTaX4eNbPqKhbWeIvi3mnheW4LAAG8i1+HpZbgRP+pg8\nycQyuLzwARz9npA37UJ/fPcKQoFAgGYHhAlKPa0D4eJ6EHPcQB4JYdnSQNfNvHCHkGhapHsaA+Nu\nwOVrMaCV0jfudzJ/Bc+5QNIarvbSHAPi5SahMAAsaRFGyC+yFAPvn6j8DXSBsNHnL8u5RiN1QqA2\nAYEnlMim+MXKbLL4AHQd1jJWiTS4ElqZHnbwChAIVmNY7BZhUDj2BUYqP1C8dJXauo2Bx12S6epf\n2T7N6yQQDAUBYtijtplWs8POEeH7e9gd4rQ12lfbOWKz+L4Dyn3XiBibOteepjSI7yzDT/RWGRxL\nVyHcwRCn5xMIT1v+XKcLr25p4YPvAeBuE8YuCQvo7IxHUdIa5VGql3HFJ7VNrsROAPEpXMpRpryI\nhxXMxoEtwlNBwJf4dE7IHBCZGbZdI0beQRdgiBZmcJUrnPpkkVjnsSYrKI4yXM5GssuIPmantHf5\ndbS5Dxr9Oq6VE2LqaTuLVeB5KncYZL7P+XRhvtY0bvnNC1TwiwCvvh9s+TBGWHLTR/hH9/097Bxx\nBsoJtH3c2c3hM+Db4u7qJtrK9LQZY8Uvmfa0Pq7nKVBXOfvEgedOadwZ4Nm8ENitrhAdCDtYLZU1\njLtzwcmC7Gd18Ltbh/dwORfn/NhKTfIi/EQir3VOKy8LGtBVUQyYrzDUXpxLn+DcNxgZpg7el+X+\nQfp47EPYH1YifwyhawROauC4yldTbLHos2zwirY0Us0F+BrYTMCRrhPe1gKSFWbBerIIE7CjbkT6\naRADAGsAHKUTHPx6WZ0aT9hip4hp1xiWpu5fmdui5fHsw5sgeBr4nRUE6+H40kq8+xB/qYPfBvaO\naQfwqH0cf6VEWHNahfGai55WAQOhJC8QZbIPSg0vYaD2n/JPPKNySqwNdIC7d5Gu4UJbs3wHrhmv\nViBV0lPqde15apkRD2UqpW/Sn7BoguDhR9sxpViFxwK+c05MGQmMvwQiM6zNqZyQcRAAJgDB08fH\ntRa1AI4A7bZgOwCOMqApUq7Tt61CtQZrslWA8A4UStuy/W9XBPHmqyJ+fG3tlZbWgAVdRVrxaME3\nlnC0JQCJt7G6RbA1eIgD4hHgeNseTU4+wdKswg6uz6B5dSiEclpvN7/gZil+YTleT0y4Hh7XEXlg\nULwNaRFWj0lb8oO1ocvItILu8bT6HoBwA8HZlBLZ4tLO4Y506+4jCAbnS+a3Icl6DIASuM4+0HUD\nJEucly/LLUWiqNbgsAhbnggBYLYOgyzCx5n5e+kCYaPPX5YzoFiwbE5fw7gUbCinScnYH5jyOuPu\nVmLNfHGFZcxoamS3CD+FQx2CLckMcjOeq3S7F2j9tmZv2ldLmC2pLm8lhGamIQWpvRjnbhHl2EBw\ncYVgYOwW4S1NN4DM7g+bNZh+BSAS6K1jo6WvPnIRbsDxUzphw05FcVPa4iGBA3SO5wV8wuhcBp8N\nHH8CgLd+EsqNHNkKtLXlbaOmGrgKblXYYzlqG4MznMeE0ysIRnWHsLwY37g+NVkIOAbPJyieqhC2\nCk+FDONJ3zJtCr5kkGuEXa8rOrH2IYG6ULuibzzFsRY11mhZ/3Tz1vP8EGWljo+08evj/G06acyW\nJkiAwLtGPOCM4zV4TL2+KP5okuYyLVH3Zp/OEwIeDmjybftmJW6uEU+W3gDEDHIPZd0/WMgqbE0H\nvzC3yP2CDayOV5biHl9CXbxeqek+UNKvWeZZKOkwsqfBluc5EFsUQpNfrJXdKvwSCHeQW+M9vzCL\nUPnIqmA4MEMwJ/F34tVSfU1znqr9lAZ+IVTOeNHbwgYEmDXYAbDYi3OxHwRZih30ooV/Uhr8ZbpA\n2Gh+PAGu4Qw8FvMILbACFnAoo6E8PeXZCsz53Y2iLul0jfAXDAAtXxDbgW+m1fwEvqTg7JxIA+BW\nt024KLG1IwdGGGQJ5rFRB1AmX8MSHBbhGWB3B8O0NVr7aMbRLUKrm8MGgj+xBkdeTvZbgKs5phs4\nfKFcX9HLswTlJkpbfAMWW/ys9Fe7NcMW15K//vDa2MbBr3nqSRTtkp3LVAQUPsAAWYc1XIJ82dHX\nfW07paycQdoW7iCPusAW5x5mq2u4ROh6iWgq1tEtwqIQswbLVExZvsLLTSIBygJOGfa5dtkhunrl\nffX20hllLtT++FOiXPfJm8TqJcxjdQK5r/J+FXEf3xbsURqjChBen/udxj2xOTciwPATIJaTW8Ru\n6a3uDs314QEwc74D4sW/nwHcs+VYif/38/ycUA38ueYYG1cAPFwPuucVvSgcW6oRCASBQCCB4A6G\nsaXxiQlIO+NVjV55K+M7yO3A2MPp4rHlozYtwGizCLuTUL1WdZvIFzlhX1dO1wi3AMeewXETl9uk\n5TsOPpaabfrNdIGw0afYowNdLYlPoPe5PLTYV5NZgQaAa36Ei5IXAiEV2OYZSkfOP7hQwIVSbvvU\nx8KB8Tr5BQuztCLAl8A3wS58t4gTCA6LsJZjguAKjBkE84tyCYLZIowKcg9W4SdrsJfJvmVHtfT7\nGfTGOcwrr0f1W/QKfGiolFVItcZrYyTaWVmZ+rISMmzxCoZLLvEXtbI0uA1MBJvyUONqVwa2Z+0K\nrz8MeWNcGjD2AidA3IFvWIot7FPJ4ahPl20rvsTlINiswUI8JVPxJdUS/CUC+XKry2qFsALXBFKr\nDa58ECDe3TfCGoNcx8HGSsBXCfhqfaIR7N3Cfu8kAtRbjDM9geRPgC1bfQsbaS3DrBKAl0EEn8vH\nhzTJwePDZ7TxbLbHY26dYxBc3CKG1PTtQxnnfYTZ6isnwNwANSFUvHSNeADGou1FZ3kG09UXjuMA\niI9dN31G31DwR344WIA/AsKN7x9Bb5d5JyYjECymsRnkUl6cVgDvkgVee/aB+E4qzz3Hqb/eAFFM\n49PhgBg7OOYPbTA4ppb+drpA2OjzD2rYPrcOJt0t4gB0tSUoaQ+Gpuhh2udQsqY9bBZWrmMHt6my\nexq/MrNeVsi0ahFmwPrqDtyQxHnYdhTRjwSuOjjmY2w5RW4PSi4O1UeYP6LRrb+zAN6jdZjDMy14\nuzV4haM7ZC7TGijW4kgufLKN6k/RPhM7AAQSMCmFSyWaW9/Uj8l0N4fWp4hmheUGoXdO6KRTfkj4\nvV+1nvRNXTy9rKIQULqNRZRBGZcM79bjV8A3mug3ppzuINMA5mYJNuArsnzZRWRZg4d9SEMmvr4k\nlA9bWeCKxRSkz1UARMnxWGe5vGHpsToULhDKaahpwDEt+Ajt6OPXj2289xl4opRCnWU5kdUr13q0\n8n5AXJ8D/cjgVr9YtMeshoMS/KLNdf3VvYH3D2VUcPvKRzhdJzKc5Va7+Z/77Y4tXQ9pKH7Czk+n\nc3oYqNbhEdfeBu40yprl9nHfU07W3nQFaED4lLadR+3soLcDXqAxZjsnAG++0yAMbgP4skxAMGzs\n0LDxGlmEOe4g2XjQrb/lnBiulR8AOPLpBTmOuww6yaN/4G25C4SNPnaNUAKOnBTA2BN35VDCdD5b\n3oQKVxeJFPou4buleDWjAfU4S7kU9EUa0HeTSLUTVtyeTrWUxc3aEHSMcPbXt28DkLtFABUMtzeL\nT9umVfeI7tqw3r5PEOxfl6Mvep1AsGoD2OQzTHnOENr6WEAdg0NCFfWcv069mgB3b2UNoQjefFhr\ndl6H59ATtU71Zi2OMw8NfgF4ge1GYUM1qmmFDKCr4f/nwOwMhvlvvXIHUwyCC7ALwLn6LSKRluto\n/QoItp+7R4i4b/BSIl+uTL4oHMqwKRYfQgdTmkfvgD8FYKDIVt8Yawctyd45dyTPUgacx+uXEfHf\nEQTvxXb+RQsT5khlX0GveOanbXTS56yeLls4YYNb2tgCvG2l1sDx0TLcQPCrcvESHkCWWxxdIaSl\nd0vv2U0iP7Sx7VE8/fEgsHyRJ43Oi9F0Hd2ydygs7RzEOQ4geR09p78Dwg/A9wH06kP5vKaDYiUr\nbQLfU1tXvkNdTbmAg0W48H0C3npDlnEE+PU9gquvsMq6dUlArHkuSwnP+wf2T7tA2Ojzl+VA2E1S\n4TMQUBzTgAoIUiMb02oDuz0sFNZTmbT6PoFbxBna8vY61Eol0CVR0k0h1KVtKAt6sINZsx38Rtvc\nPQJin11mMGyWatUCcsNNIkBwBaxfZhnmXSJOPsGbL/DE0fL7ZA2eNPnbOJ3SOLilvVLvPwcu+jS4\noFR9H04NobVpEd1BqrYE7n+pYkNL2k5wknPHOzI24Cnia1MCsMKBKXLdFCu5psLpYO40ftvRztet\n0BLwCQDyN6diDIoTKF6uEWrKY4UhCnwphoCUivXC05SsL8qgzsCv5fu4qtC8KIHdDn5LvAJfzpOY\nA6tPXo/XX6KCeLGzqeWHcn/4gY5b/Z+kvWofWhufygkCXCQA4R+BYH/xzb8IN8b+6+D25CMsJxBc\n64gmygnoJgCWLa+/HLfcJGYAXgCqGLHbBFl+Y994u8aUsEMfJ8IZUPqNbNNVTb6qnQPky+gBOj2y\nAVwCviYkz0D4GQRnC6TkxzW3/MQADmLj6XHIgFrdBoLLexAJaKPdWB/C6BbfwQB5403BFGCK7xCx\nwPAk/+AhFkfKIHiY274t5t9DFwgbfTr0So+Gu1LY0xgUsbWYnBMSHZSFewTADkwOILn0gkAm4Jq5\nWof9qIXxahqDX42Ubgm2utoAlqjUfDXzWQWGBLxdPhIYBgwMC+Avy6V7BLtAdICabhEOfL9Uwyrc\nrb9nQOwAGHjyDa4WYQKHjBR8vFpa5RMfjydi2OlztpP0CAGXtzr8CHxbuLeF+sJx7lPv1XZT2Fsv\nPUuxVXJCUWoW4djaTCnsHE5ADWeQeyQHdQzucokFq59dATT5u/3cAnz+Lb/gjopUUpGFdacoLPpZ\n28bWMWqkOn+ytZd4czs2qzDqsY9nP7Yp+zYgPqlM6ekuAg9lj+i3p3GjDuWFO/lBg3nJn4sQGEIH\nxWJzKMU3OL4AJ6+svQ3gnsq1MsJWYSDBLBT+DHV3g7A8wcE6nNbgYUaLAL/DAe86znkY8DEMMItd\nhfIaA1XdWAfeX5j1uBCzKAEy9qFdc4Ed6L6LVwRL18m5rvks+w754WpgbXcA7/X1F+WsGqFzEYAU\n9S/Lkgi7FbjJF0mAy2A5LMCC2CHCAfACw9UiXAGwA+RvCoJfQBcIG33ngxpL+AuBmnSVUMiuIBgU\ntDTkWZHoTBth9TDDn3N4B7isArrF+DkvW8QAOuMVtmuJb6pub17N4P2XCfy6yIUDYE/T3QrM1rUN\nGHP6Bozna7B7BMo4u0wUINxAW2MEPaRl2QSY77myD+6euufGsNedFQLkHs6O5CW8atMroCV4vGH6\noxvFRqcCch6M002DkEX4BIY3ELsStr1suRwejgx+vcmPhUE3eWss2E84rMDl564RCYpdibgf3nDF\ngq5gZAPAE6jWYuRxjZEPK8/f4Sb+ERzTFLZxkTYeR0B8SDvREwjWlnEExk91tjyCMREuPyH26+Lv\nRdmtFWEAACAASURBVLtLQPe8AkriWrL9fFeH8oU5fvlNHkBwA8T+5bnqH5yfYXaXi7T+JshFsQJX\n6zAMstZ/5AMcewpjGTQA+JvSw63Bc2KyW8SQcJlYf09A03UiAWBJ/czuhzBgWIo5uIu5qKA4ALEh\nQL5ZcSC8wuPQNskJjqQOglmO1/Jp9WVQm093OgiWVi6PT6DX+Y54Dwl4e9kR/UbsFzwlfYUnBAMG\ngLG2T5shdxBXYR/hkzf3300XCBt9/rIcwiqsDQTz+urW4q5QHBDkpCvxf897Clc4+qyyEeEjQOZN\nP+GgQONKLkL0Ic4teKQQ/FXVObB1IO7iE3MtqgKAwyLsoLeC2unC+ASACRh/mcX3iz6xvFt/093h\n1S4R7kIRQNjnmQfkA8Bb0cSHY7oN7wka1Lp49tHCfooqyV5TDPnY8YA9tYLhmt/GIoJ66i614wCR\nToVPZkRNv1wHw0v2kxuEauwrvI2HooDio8UXfKQTelk6x+tS4ykx8OuuEJE+G+iFAjKRmsg87sxi\nt6aIlZOSUstHoeEiYU1darquRQa6PHeFhduRsuxI49rHslzxOe1joheGN+5vvCom5hzMlKOXobTA\nJWgF3rbJjp8s3mi4Ax0YrzroSotc+AS7pVbcAiy55+8Y+LF9RpnB7w6I64c4zmUWjQS25V0NrbtC\n0A8Ha/AWnsAcE0NHTcNcVmCd9mnnuYDvADAlWjRj4JyM550BbaBXVH2Akfyd4Ks4DgTAjdmpaU9A\nWASCkYuNJ7szk1Ae9SNgYQf4difPx3R90HKJ4Gs5HXOlJuhdoDXWgDAAloe486yD33SPcFeJKd0a\nzPIq49GHn5cGP00XCBt9CjgqCH4CvHS0P3kk60oHtErhYFQOV9gZebGuSUULNeIDgLyr9lDxdCVt\nrUuwXMNETSkQXMprhkWYr5ml4iU5EXuCSxZhsgzP0/ZpBwDsL9Jl2C2/OADoZi1+yHNLcYDbA+Ct\nA9CA3QMQ/pTOp/FjJy7ZxI0hhk/TTqCjgl0t3czDG/BbKmylToD3RTl+Sa1YfAkAO58zaOOhegRt\nDu7ouG4Q3P847E71RDtUQMDAWG2/4GoJhkxgSgDj1aqJoWwVNtAbyijjQ2DbGlUAvGxzpXkxdp6Y\n87i7S8R5D8CYJUofz9N4Pw56oxP/9YxepoDiU/2vrrnldQDTZSldNMbqsdVRLm5YPCmw0W4Nzpfi\n2CpMFt4nEMwfzmg7Q7yyHAMJYOHA13q0fsNuOvefuIFCQWCZLL5jrK0EzVViAWDBOIDfHfgmEFy0\nGEgag6mmL23q7wSPgNj6tekNGbFKFfArBB0bAF7HEedwO3OuT3Frg8QVD2WRfPJkCY48TmOgbNbX\naG+CXinhBLl7WFp4XTOB8HKHWHLH4mD/4G4BJv73NfOb6QJho/po/3VJhq8ei7TEdqk0OB+vpnnP\nYacDWta1vF+H76heKpSW+YQxtsxDWEKcWDRBVoj2ECB5LCaZV42oPcUSYhrKOIFFAtDMr2Vg6RpZ\nHKa6Telznmbl23lK162NPQGGXgY7mNsKOH3Ko1k62g1syqKaLfFx2uYGo3trlfuK2vUVPIyDbIFe\nYevgc7kFgq0PhlYXcOX+AA5bgVp2DVHvu+S2aC09rdAMAbkdqZCV+GwaqBCV2DJtfUTDgO+UWGNu\nefEhShBsIJ8Uk0ZYSzkR2NvdDprNbULq+CXYVUquc1BjPm40lgYUvPIIRx88T/L6BQH2+fbxTOAh\nmuMiDEzG2nN5yOrgnAYY/R0tUfNLRW5U4I/qQWub5QT4x+4ifTyY0alv3KGNnRvQLXHEmAn2YWEq\n653AYJFTQrKZ2xXCugw4hYlNzDpsW0WEewQsjV+aWzJTioV4+ktwtqbmNP9SXTd9qrL2Gp5rDNWA\n91RZFmIA03aZGPYi9YydJhRj2At5UwFMjGE7U8zleiFj2mPg5WCxlrvrLiHwS3oLUsYl54V1mK3z\nAMuI8a/lHtJdRq1KLFl4KuvcblvVNNkFynf5RfziejrD7RIWSn7pJVDj20I5KAdkcf45+3xXz/0K\nukD4m8Syz+fM+a3jIG3hPOojb9TST1fOkLS8tEUxW/fjokd2OwKSFITa0+0YOAIpUJTKycvQfs3o\nFYELNWEBdWVN4+HKmtej/cmwp2vUEaBWs54ALMi8mE8/j8+lvGg9T+MBSABPnPBKcjyTtBk9Xc2F\n7dlhk8cZtvduMveKelpeoHDklsZZNXXDttoCpTsHbj3eQDD4XO3VphwE5JMeIBYGsLwPCWbz+poK\n5sWxgOXW+v3xsD/NWO4QDobhR8wGUGh9mDWPQXAFxx62R6mjPwil2vrYx0RqzS6RHJNYo4GpHESl\npcznJtKiW9YSEeqi1BYa6FVoAODYq9TzkZbSiUmA2MD+mJhz7cssul4AE7WPBJNc0BJv+rwMD7nF\n8ZDtkb0MD3ywogPfESAsxsv62IFpETF0SVXNDxoYez6gnKyPwyVqc6cIkBay3tcKA2KTix528Atv\nl7orxXpc7k9SpgrUnnx4eIqsF+R0+QMvN4mFd5cVWQ37KsYE5koEpgH1kduwCfcFw/KANNgsEF1B\nsFSepTjzJutBfsqUN0KmqU9xatfiqZqmzmsknnw+VdTWBSBxI7omWGEW402eZXhPCenfEAOHtIyl\nK1wpi4WU4iHM+Hjj4ddq7m+hC4SNPh5702/tOxrl+DZNQAL0/Kh5ryFD8pD3YfO32hPk7rC0K18P\niy9MpCApR8dWXl6AvIt2hXhq1aGBwtE1mkoryYEFHJj66R3MWhoD47D4+LllVVIdqmV956Tadb08\nSuDQGQ6e5u75JulhlD44k2to2rBsKiyUdshnf4DGk/3Sp3HQvUBrdevh+YTPALJI7NQA/8Sw9939\nSgkw1z6tMtWCvDchLckS1+RjsQYToHSe8hfk3C0ijv4xjblAsEyBv4nPIGWoQscJ+LJF2MK2D7e7\nTHB+AqzG/CX4iiu1KUUGtR4mEOdAN4RBSpUsW6fX5yJcT6xc+HkHEB6ArNdxxhiYZhX2x++APZJn\nKzAMVMXcsLzg7q/2hk6HT2sdq2RtLewZ9/MOJKxOpSEUGcUqXABZGfMadu6Km33+mb5RsyxGGvWj\n16vI15kir091JJCcUFsVJI9DXtsgLFm6gK/IwHTL8HRgLMCcJFP9KYCBYJ8vXX7EQ9c8uz/xNJQ8\n/EW7YZ97tjKY/oqd84q9jEf92kBvrBEGqckPiy9pjpT4HWz5FeODlmcAVind+x46OMTTGu8UzS5j\nDuGYOy3R0J0NTaSGaG5jQNlRw+cyaFeMdMx8N0yVBRTp21m/jS4Q/iadVEWdet3TjAk19eFWj7Qa\nzm9OdgbrZU3dxx6hFSQUVSflUGoNJS+dKWlRlkqknBdHyXiAX9ZxIq2JrDXQrm+LHzSGWgUuC93q\nKoEUwH6+rtErCoPO5XWd67bmFWWoNPN9jg9Wo/Oqfy0C/rKAYNNQCGOz3jCIe8qPcK3y1DI9NlYf\n0jP/mRpvvDingldX1iu8/Bi9vib+uTyn9yPVz/ql1pXjyV+Z63uwTrVHw6bhxUH4nNTtXKzOYwvE\nLctoAcEjQXABxugAeXV1GBAUmpic331sZUupYxkgNoCE5ROgSKDbgEZpAJWFyxFz8wgQYOcHfw6I\npH/p9EfisI+WGA7qIDfWeaTxS8FJZc0HqEk5w2u6r/01xhFKUKwmv208+CMZ4SIBtuL7+O6zEbzh\nWoiFm49vqAUSsFL7pVx9zJ/Pbmoc8blSRexGYHJU7PrRDm+bjcGcE6ITU8wtyHgTYRVeaZjsImF9\nFCxAHLhW13EhY4yhOzB2XrD0WF9D1runEOjwOUqLfPBhswoXPiV9aJ67xDu20MR5Bjn/4HSXD1m3\nxvnO/yCrMDkriK9fobDPDc1HmT3mmaOUQwHDJOt2bOIMxMoyj2mc4r82n7SolOO/mS4QNvrO2PNc\nlbBjCJMNEBQmOJ0DNIC6xTvYDbtWaY+0UM9NX8i8hudGnGRlFuVFzxkV6DpwTlHpd8pZNq8jpZnC\nFz+0PQUgjUqiWZKzCbQYGKdA9vlgQLtbe9Xqd+AcTYn8h3OKBgQ1jHv0xGmn9F8pEXjGn8Pxwogz\n71P4qXU+/j1Xj0FLIEX9SK/Gop2r5OqAB7eHzZfO67F+VslPx6YumvW3VifZtwBM/QmDrhc+7UWj\nBMR2vvk49m4uHl3bXBXAqxUMh0vErAB5mJsEzHeW16cSW+yzog957NZgMbL4BohwYBHpiHLFn7jM\nrWYZhYFhpB+mxNUDEGNMiAMgIVA8ATHA4zcB66aiuUjA51pqWh8NWuMpb1jZu5tR/KH7TY2Xo5yl\nGATzE7QcThsHGqEOJgKAuAXY+2W66SXFJFrfaf54YoQZvdw8N6BVZKCPTbpCrCcfCXzDKjyz0+ki\nIWENXp6+9mVGLH/gYS/eYbpPsLlIsHuE2NHKxc2TvYbnumt/kkHHCOd8uOFn9TJvXGI0GhgO8Kso\nY6w+yJphtesQC+XEh/UX5iZh5wgIECPllosvapsnhRoVFnnEv8QA3AxSrMRsp2NLy7NL6LWx5O+h\nC4S/ScFDiqITA4CBGOptmFP4+HFL2vEEcIj3WwnWRXFGASS82F/HDXJYtINhAa31PPMgYE/ddOGd\nIDcXjFqgv+Dmi7OuxT2tIN03gNirReRXl4oq8w9z2dOiwtPM/2ppENIypdqb8BKA5/C75uoxonuZ\nYN9X/X2nveu5TyBYQulUt4elJywsvSm0yFmRlEUlpJTW0V9KSYB8ACXq4FcN8CrY1xJutWo9TYWl\na+eI8BU+W389vtwGFhDEJP0+Zrx0dpITvkyjy97VKCv7FBGI4PwdDDcA3UGHZa7x9LkTe0xrylwA\nf7ztoNf3ol2PyfPx+Rij6GMGv6BwiJAY8woOw3Ugbr7paUe5gc6bcC+z2MT5xOSSsVH9UEb9+SCV\noXb903mEZdJavNGTJbMkgPG28rblJiTTqbxb4z1na1gDS3yQCdEveyl0gWG4VXiK34OYD2/OBeDg\n18Cw+wubr7Afl/sD3RCNCooF645IzZfc9ZXPcedDvgmpR0pHzlGTSNaHBLWRxkC5gV4Gq/niHJpN\nwn2a6aLFL7iNfyOe/5hfrSKuyoIHOV2YDsfjo/W3hf8JukDY6O2dchRsyuhb4QRUr+db3x4rU5KV\nuFjXmI0rRYkjGD4URGYG6JUEuxUMV2uxbMquhV+MAEnOFPi+cCygpajGoitlT2norhGe9gEg9uul\nlltJLV7a9S7tufc/R3yyUOLmA/ydMHLSjo1Lhfey7d/q2KeFTQn52DpaO1mCWXNs6JfKeVCAcucb\n9Wuew2ndYqb0uPjxtx4BK97sa25859bg5StMYBjN+oux3CBkQseyrK385Ss7fIti7y/1siJgiqqD\n1ihI+QYSDqC3lH+TLyE0FH5zgQC+zoNCMiRl0iICw7RzwFCEbzA4jLrmWdZ3WZ7ld6CbR59vAOIu\na4gbI7cIM7AvPsI8hjw+D1TklLiDRAO+3njZzy0Ul01h7X93W4n06jbqAGqK2NwtMAyyBkOwXCEc\nCAqAmVZgOPiFfSDGzMTrPt5uesDuMHlDJHEUcxEWcpUIxox+7zdmNB8EfHMMqzU4e07H4g9sYT52\nazDcF954yJqYgFgz3MFvW7sJqN2Xu0i0whqfhPNSrDDVdGyNP4NjL0/8+ZvpAuFvkrZwF5ArrHue\ncZq6j2LXvb+sdZVFxdqTAPawNiKXw5KP7YAqhNkibIpHLb0D4yxjuvFUZden3Egat8RYJuA9SV0h\nndMYLG+PpkHnKc9JLuwCiMu59CPL0DYlOFlRD5P/kwyRTX5xvgEXjTNIrClQH2+ew7H/7pvrHIKU\n+J0+Es99dBoVcqusCf91UNMNgr6ThJ+DMoeVCSvGNcVE1+FdDXIf42pxLjtFBNMZ+o03uOhnVmHd\nfro+QOCuEQyGwRbhZfXybcRkjtTnAQgGJMAZAhSH8oWD2xyOdIFCzYfn2xw4mNssxBJDngHKJ5AR\nrfBz7K/a/CWXVJcIT/OvlM25dqnVMda3zeyluUHjGi/NEUd1mZ885oq7A+C0fmk8ieCjt92fTKy0\nNQwNDMNBsctQBmONgjmz4cFKbSnteIOs3G38fVeSUlryvPjb5XiPBw/psnxP/8jCF9IneBWZ0WEQ\nKCYwrOtLdAJ3kZjLL9ytwe4CsRgd4f7gH6OJ/FouGZzGIHgTkfYMkE+iioGtlxGc3R8on8/TlSa2\nDhIEtwsyKDbZV0lLyE/v4aoh6j5RZ3LlTAr4MBonMd7Tfk4L/jW6QNjoO4NfhIiQoLGjaird/oKc\nK7G8ZmeY3drrqfKmHH9OtrIy6XhKDyUmvXSLNOC7QgSU2RpsShKUz0KSQfFG0fY6Ihwvj1BMyrtv\nbiiflraKVksvIs3L7IA45qrdsXr6bjnW2tgTV7miPGe8oBf5/bKP5UhCFmnpZxqHafoJbz7DfMqb\ni+qb/NcnffdEKr6BYI31uRhQI+xAryiUUCB6iNuxKKBD2oNl2HnRP60cHxbQtYVatwW7n+fIFOO9\nAR0JhoeBbh3D3CVyf2G3ECvGsgqL+RHPYZ9epi/YxerNcYst8/jxEQ1ZgmDKD+suAd+jBViibJU/\nDDj4RSzkVQVIu2C2ar0Qx2O6zhnDb2DXmI9BN8g+dVq5rrzgRMCIX5Zb51UQzNuFQV2OWFw83W/I\nnH8M9PrHLtgy3MBWzoC1s+geknelLw8y9SXMYUDIIFfalNd8Bs4uP1jcrJ1RCADLl/Uf8ZJcjnvt\n7pT1FMMpXSQ0XSXMb1hscBabT4h9olmKq0S6fsSFnP/KuJcBqOkPv0dge0pXvxk5lcn++821K+6Q\n3F2sK+GGIq+sHkrqiCF0XM5cpNcYn0C1WTz19Sktf8UQ9U2x/yvoAuFv0ulFuM5Mn8VdyXxn3nU7\nrqZ0cSeP8arOyUosRc1naelhVlzm0wWkYKS04tcmKR5MOpVq9xZa60lPrOxUMLH2fAwdAPt5dplS\n1vMorYLfF4A4FnhN57Vex72RPqRzfx/SH+mhyLkeFnM+4T4okuEXeQrhdxY/atte/CCRC71SzMcK\n69kEghfA8DBQdo0oVmEgAXM/jy5Y8knz9DSA8jPNt7FK6zDCR7h/BAAAvdTj/Cb0aN8eqTMYBsg9\nwoAv/DO5DoKH+Qj7a/eJU305uywoz5F4Z4BY9glY1v/0p6x7BXOaYLMQb2nMBlxPl29ocbfqrTFj\nULx26RgxfqBv64VcJnm8QMm0tERewQ2uA+JG2SRChGuev8DETwvyRi1l5g5+LT26WvufOkDimn4D\nlXy2y6597Lh/BPxYcNtReE7L0Xim5Uv0A9EfBsCrq7Lwr9Trrk/0+pRquEk4VAx/YV3bpZnx1z6o\nYi9KytpCT8yXIttoT1QkvllHfZdzuOhFbOEYv+YC4enPYNffI9jL+8S4uILPbYlTe1hGHuP5zoJn\n86/w05Z+6DgB3Xq0dra0YpSKxed5+O10gbDRd8d+MXMFMFryEyRxfo8vLuTU5+NJBcTiAFBfKd2p\ng93tKO5/V86iA2emsGMwbKowyufnbL2OXK0hTB10PJHCfN5ACierKu4PsZDcIkKPKYGS5uU88wiI\ncUqvbStmZpqrUuaRw07p+rbEp3VtNanPm4+X5LyEVPWBFRPs+TbySxT8nUX0sqy+jL47TePxR909\nwhUAAJSX5/zEyNca9n4/5fU0t0gDAXjiZTkHJQKzDK8XfNaXsfxln7Xvaex3OmTtAbw6Z4/z3Sq8\nPn+qcH9gGAiydAPFsDI7IHZXAVLz6so1+xO8Y8lHGRHAKcHDtj0aBfm0DDfAERlK+U/XZ2KHB3KT\ngAIjc4atA39pzvPWCiHwm1iktM3dW1w2pJI3OWB58aU1543gz/Ukz62W3RLcQXFIU0mQwt/GYdec\nbJe3nWRXAxwZJBAmNS1feqabHYBArgTfrJsqaWE+fkV5P87CEJXcJUKx3FeSUbE+Se43dGNiIHcH\nAdwvGBD/SE0DxLz3NPeXLf/JuO0XIPfEsyZfXPccAC6HvfwzKG7i+U08unKUnxrXZ9SgcD7peam3\n88AMFAqSjggerFZDblDlyX+KLhD+JsVctrge4u/SggkembVfuR2JqRbrdgGy2FiolDNyU+N0Jmm5\nopw83sJkEQAkFAZYCCKcJcKyUe4s365ejUZG763v+ejRi6UCyHJIxVCGrrpGkMQi8EsWX1AaKZn8\nkUQqpIdQi31DGsRcflNwlPPYjMBxt3CmZt3iZcsnYOO6Nw34NWVf5dukL0BghQXhw5vsJaiPZJLv\n0i+VriXABobjgx3pRrDOk2Q+SaCjAVKcV9cxfRxn7IGbL/G4byMS7KrYo/7qIqEKjPUZNajMFZ4W\nNh9anetTw+A9VQN0GTCBW9tIQmwTTVbKNBEiQJMDBWlp2NOK3zDoclKuFHPBUyabe0Rp4rKYk2VU\nkaAKOqG2m4YOrvvgNhH9mckSBQRrkQ8AhVXy+gSGY3cTl8sj/arrRzVyMGLp5mgV0KKFbbXIM+4X\nkCwKa0VUKSUQ85tuLkigDlCbbTYdwAc/VUCc1uDWoR1LBuWWaQkP7ZYvtk5bng7LBWLMgSkg94dh\nO6bYThHmMy/2EqnMBKMbH+MZFOshLdMBLeGsv4e5R/t5jf99fdB6EJ98UJkuJ6Wew4C34gAmbUzn\nMtPXqytCfvKgnbmqims/NjZ9V6/9CrpAmIlkflV+e5o6IKA8PaT7IzFOZ7/h7dpB2o4ZkzdlksUZ\nbq4zw1gWl0z4nHVLY3ygLJFQcnu8+v5xXdxyVqx9oI8dpW66kmlgly29aILfwWwsNk7rbhDN5ksL\n/AR8y7nbAn5a0Q8C4q0E2HnhO+UXSctzAas5XzYO8iJ+avVRiH5XqL0q/2me8aFGn9BAsN0csq+w\nrdVVmBeoaZMGgPklMn2yFjcAvNqZlvgJtT1R/chvtedLPAqE28M6KkSGgeHVRvcFXtPzBIgBfmEo\nPik7oqdYZyTZq0XmS+wDzTJDKO4gqYIIlgkBmDpw4LRiReYbeZ/bOu+5fRqtTtG0wpZVux6Xr100\nENZ1UIkF/hPsaozOrHFJcNtBcMgkqfECnA2GxM0RCFwykOQxzj+VXBYKgjfrTb7layn+Iix5YBN+\nad/e3nThOKR7eYhZhD3+dbiWtabwnR2VZ2aFl5/wAsMCmHuEWXz9BVF/OVTEXtYzSzDxXnL3+jHI\nFTQwzD9qdh1PL+Oz7fXiISw2ZxSn+XAAnABXGyimeet44qBi91+61UQ82sRcyz1dN3aN6ewiNF+x\nPjJMU3gcv99FFwgbpSWzHVsazzGwM9I5/dlFopwhOKGpVquBkmMxZ9tdUPIa6GDYa97D0sbDlVOL\nR1pVYF4mrcC+7PuVuDVtpfrYCY0jry0GxbzAUMErXCForYPnp4LaCnyjQduE14nQQwi9xMPcnVMe\n6unD9EnZkJZCk+xXEdr0H1SGLyR4dI3QykN0wc/oxXB995zYm9VA6To4w6T1NhirfH5Ukrk2ZcLn\n8nkeXiesKrws1efNpnW+9kTVeJQ7sLZ6KlYsd2UA4F9WG0Ohsh7s54tfYwfEWODZPyerQFiJMRQ6\nzVIs6/pCPR0+Br6+IicVMo8NA6UiC0paFu8ipdTGYobL85B7hu7t6VPn06C6ADPLY48PioPOX6Bk\nUn0rDqC6RrDV2QSKgtPSZWFtF51xJ9/veQPDfANR2sFS1Hak8Owi66jPvhTqiNNBKJ9ke/s97Xcc\nP9oTmb+YF9UKykS7NZkvu9MaS4aJ/nGU5e2wPpbhDzxEbPs0LIvvGkcDy0JPQsBufFk7PcsEwGC4\nt7GWA5VbquIQdx/i7EmJu7bkPAbAgMuDNkRlOzVPI6VP/K3S1Bl64AkheJ9DEaPqtqJgSbFSMdav\nmqe8lPl/E10g/FMkCZ5Q563jpMzXQxrwNOsKXwa9jNp/F1NazjjTyiuQU2rNR2jaNFUaBljJHdJc\nS3XLsF2giplyxWPLAaS1znvulhiQYPdx0Zq2WXTjyBbdtAXnulU8WYzLXLLya/14N8+fpL+WC/pc\npku2x+dp5zIKF7wOrPgG7MxrlQtft/zlS3c/P1zGu2K81kCvM2D0SwnPEmh1tOc9Ou0/vIFoOqeE\nXQmtdFWqYwJzrM3//Y13wbQvwa2tv1yBq+p65GvWYAnXiKUs10tgDRArlssEsHyBzdVCAxQPcpEw\ndqA9Wof1mdgg+KKAT17qYGsmGsaix83NIvxkKQZQ7zlsKHcwbteJaRRIWGQ1w9CwerNszlaS5VcE\na2AQbeR4WJ1PIPiQHmH/gMpqZciUvocwg0cGac/rT+t4acoqEKsWMEzprFE2Awe6tVq2HS7GBoDH\n+SMhXx7+KjziE7z3TuHSd7BcUwXs/VJjXWDOtS3bkPQXXvjX6s01BfvC4nKR8OukZXgHwK5Hn4Bv\ngl1YOaXeqJ5Bb/cXznKgummW3bjE8pA+fFRBsMYcMyednkzr4Veleuprb1tUHsykrRLtFVYGJP3q\n4d9NFwgbfTr2vGsE8cSRgbjOXMYJpJ5bcco9p+Wy7SBkpdiD1EgpsCd0jgOdJ/EKArWk1aRUUuUz\nlS+iQtrABRjeu3gcI1cyFnbwWbZMizwb9ZLG5YEN6CrlxY/AbynX1/gTF+3p+pD+oueU+sytqSMe\neGhpW0qycgyI/dSeJoujqqj/gNpeloUHj+X/SpoGEkos6jxraRTPhYA2ZgxovYwew/7CU7EW27kC\nA7A+dnrgEwXMMSIU8lLcEzqrNU1UoGO5RoyFduFW4fWYP9enwl6s4311fV/hQbtTGBgOS5o1Lz9h\nK8Wty5vs4GC5bxCIDfzUwG2zEoPOCSkRoKuKGrWEAsA5XMigSuwQgriRANbuHO4Q4XtGpORNkAwR\n2rEjAXIKuon5AHQLEJ4s9w30jgqSobCXFBtg9H/Sxrb1mO/fANdTKbPgfEfL++lYBz8vKCTv5YkD\ncQAAIABJREFUl8V3lHDwqd2s9fAogBjAFzW4HF06Vi0a8+UyHMvVRADIXK4u5gURaeH6MNgibOB9\nABo7pvhewi7jHsCwr//tR3NRgHGmVXDr2jnTllxqaXR977VANgAMO5+vGOPZd76x9MSi1U+4o4k9\njZECpR0twF23b0ozlfM/SBcIf5vybqj8ngCype9HrcxRq6c0ZpCjyDqwrJbUp17UWqUYYo4St4Pc\nlI4WNYHRlF4VFQalGlCTAi4aueWXIUQI9gZ0PQ0VqGaabmuUl3pdyMh160qOi8S/UsM2smd6Kv3+\nnOcSLhBfVOEFeI5LGqWrEtCQVEAERJKeeY0LHkRyTe2ZR354kxYgONuc7FUB7nokynwnDRRX0Ps6\nnHU7AF5VSLbp0Gz/iMNaJzPBj1uCOzhSA9/2ueAExKbUFAaK/VvKgC4HjAqMB1bBqZa+QPHyV17t\nHiarlmyTvM/AQcI8rH8Gw5vf8EG+CNXFiWtbPNmt0b0NPHdIS3CA4YnlN718UVAtxJqnTr5lYX4g\ni/DcLb8OjqFqdxJFiOTgzWzj4hsDOQSC864ox0KOHadWkpqIG3+P4xRvE3A80lyaeTVdIEY5ju24\ngOcwUFym9WVfflB4cbDfYAjWPtzLPLw4sd9IhrsEEE87hiBeoDutr1WT39jBwCX7CtN4+C/kSnVp\nWO2uANh1bYBd3QEvA+PuNlFsvS6ElR0OSeYAbS1YvmMTnABwlCJt45ingRs+h/h78/1VFN1b9KpH\nKe2lCvyb6AJho0/H/hn07Pnvfj+l5bUHUrS1ByJBO+h9ymeAS3Hpi4+KAkXB7ZYfL+wAeLUiXqoo\ndw9ZtneTF5zGqiHB3yzCcSMai5PT7KSTNdirs1ZoH/vT3Wxb+Nvclml5xWl73jOffJJ3ypdMrmaF\nlHGlz66x6jjs3PZuBUmZ5ZqzaeRzlY9l2hyZQmMzWfhOFl9hHEDwyVXCrL1UZukTBtESQCb4yxBj\n+Ap7AzWHWpC+jJt+FUBEdythKG1TLoOsmwaKfSgUQknmBes+GM60I7eYggHFMSTWwzTUOQyIOhjm\nGawWRLK8FRlCSDeA7JuyPH9vwTBxmN98CBaYYTCMtARjAprP2nO9qyD9gj1sIHhSmrtbECAWAsMJ\nAA4W4uHAGVHnAsJIa3BYhV2cHmRyrFsPk2yEBj9uqoPGTbcskt0xHWxRrSB4jJFWYTty2gqTpVgO\n/WjqK9dwynxVA8BIQCyqSHw97amIYM62ZtZ+gsU6HGspbj68Ic7n3YnPfXu53bRgYwyr9RdcLxgA\n2xqldPS0SG8Lz2RT/kXmnwCw54dhqeORGt7jBzAsgaqLPswntP7L/FIn6c8Chn8zXSD8F2jDQ9/4\ngY6n2EqpnkFP5d6DkKQTVD6Dk1Z4swJXhVeBLxdJQQ511wgEt0ux4JwbxqAmxk4RC82tv7zuUnjm\nOlz5ZC0GNgvx0S9Yta3l3RKckPnQl+iHnifg5fzpnqvx53t5lhpwoSAJDR1KKOV9+lb/sYMEJDmN\nFUdvZkvthV7FGQAbwI+xV7+yNt9hoDyR6HzZLY0bAAb6fsWbq0Q2CqERWhdS7ZrSFilguICQYgk2\nHpQR8QC/Y+ZT/UhTaDz2Xy/bQeG+ELRoxL6AJ/WpFtiSZePcwHC1ZnpyA7xFrlAVdkK+XKUJhkG3\n/YojIOaxD9cVA61jVPuvW8IzBSRvFuCNNhAIhgjmnEs+SAXDcMDLLhAGgKdbiM1PeEChYwbwWsOU\nQLiOae2n800yUA5IvrcAOuY6rMcKfLc0mq/kRbIEjxH+wGOM9dviaSV+EBO1XaoAfhAvI8cW+WVG\nMf/2Yc2czHpkgA4f/PIBmVxb7ne7XJh8HMgiHOvd0kJ2VABMsBRoVl0FSJd0y3CzDh8swqxL8gaJ\nJHEBwKkHYsh1z2M+qGGNsnF9KbUiDFn9iYcVCX18ulAvjxL8rXSBsNOLhVlI1YTNqyNAPBR6k+Nh\nCAVi9qMJYbUqF66FCPB4kjz83pHpp/ormRmWfjGPRrwqv3Idwgm0FiMsW7iDhU+Wia2ybQjJuts1\nwcf1fp8+O4sGow2bBrPU4sf0yHt94ciSgDAtT0N6yikdmceXcXVQ05qyBqjOE59/L/6Ov5nFnqrk\nB4uRp5WFa4nzdXaMkspD2noQBxn26+e78nrqB1s3l4IjsArXMw7CMn2Swhoi9uSebv4MNOZ5hzjM\nxaAjUGr0Ph5NKrnl2IEFyY7uWyzW81THXcC2NHZTaWligHWBJHeJEED9IbqhpDnjvAWUBkTnOo6J\nr7n2Xx5jQKdZgO3mwq3Cbi2eDpBlrpfkmrV4mhU+bwJoPCycK7EBL+PTfJnYgQviRb45l3vIVA0V\nVd9x6MaBnM7wpy+U87Q+RmG/kaB4jdNIEDzMNcKAcK1WofhRwa6lOeAF3No+IGo3D2r7Z5fZ91sk\nu5Egy68edFLXlmzOUBpnB72B5xQtTFZ1bedGmpfrFmEu8wSanTOsj9EX53XvDvfRtmCMsII/LpP9\nRwuf0ixM47DnE32k+A4Y4ZPT/ga6QDjoU6CTrPs8aRuLtx9CNifqOzSl6JkGfAg1Bvt2MJv65jGP\ngW/8SAkVE80uiylcx0+8QQCqpW1J32y+LXnxoeDwKp9fulrCfVWtcXMR+RSP9N4mYBvuz4iV7qs4\nCSi+lpQYCmA85NUstjDoOZ1A6npkv6cfGnQmas8TkATIKtda/TNp2/XfDTVelGnjKX18CXBsDZHa\np7CCcViA8HV1EOfAABS2hRWPuD0eZRlQYLf4otXNIFFgFre0yjnI6GWLcqSww42idB0Mw10vZI+b\n7o29FdxU7ItQ7at2pKMJkiZ+dtkE2fqYL1pJyglhv2vNa2qp/cAMDto1TvFt6dYLgr5GLHM6+LXH\n7iKQocv/dKht0eUAd2JOs07aVwHV4lPMYhnuE7K+gjbXB1QcCLuPtttQ1jRJ5VGaO+U/0f/VT79B\nWnJ19QEyl1/5XG0SA+pQD8MM1AbgYbswOFin+StgDnkjFjcLkiD4+ecfhbHr40cAW3GwixUe9jGU\nNQ9+I6KA2sttMtCtus5YBVCWttf+TKybhBlP/siSjnR1Cq3vZVxGkojVF/EKenVvi9I5vi4LECY+\nCD0gYBbJ/V58bdlYio+GLL6PMUPKGGQYUsMEDrbwWv4SI7QUL424ZFrMivh84vD7OQ39V+gC4SB9\nXwRAhR6HJfbCKpxHZ5h+aQKIh6Yd+UNdWOrOr6wHxZXKQeH0n50fYKoD4hwMasQhvyujEB3eVwZ8\nOWYnMOxhEQQYPjVHvpHOeb/qxzVrjA12KoCLeOrEAEruDIUJlO4xXCBabEs/k2yBw/VLC1HazTa6\nXvbztA8E37ZWDmmnyS1AIuPS+9vZV1o5AqwJjh+AKtDAKAjY+hrsZd4D4P3cfAEptqgiMAxqDyRt\nZc6buSpNMYtUBewYF2jxD6zG5Erh+HhhiHiga+O+yyQYCBbvF5C+2HEjTYo3hIU1EP5Ql8OVDSRe\nGlyuCjLF3EPmqmcyEDYrpIHfORaQdUtvAcRzYpplWIZC/ctlqmtLLwejBoqXe0paZztrP62OVCV+\nQ5o31mLAWAwAR1987HSBcQfoDoALIGbtFmCMHtE/KRr6CVuI3X3ixwLKy5rrbg8K1R8B0MXDouu8\nAO3D8hMQi1ofQ0cNhGWkCDeJceN+TaX+BRj2sjamWrWVjznA47PG/DMQTPnHcjsI7jwMkxFnubzG\nIPBIAcILAA9oAZ5+/7CmNOM+xyJo48nXlow9KF5nlaqMfa40+DP49DfTBcJG3a39idjDqgJfLXf0\naHkbGLYi6+LNutx5quhy0y4h/P8Pe+e6JSmuc9slR7//C58K6/zQbUk2kVm9d1fvb4wkB4kxhjC+\nSBMhm1TtA2b7H1A+VB9kVwPngoDYegdojZluSLyEjoxHV+ZyiUtSeMCw1C2WMvXLshVYJLKhxeRa\n6UDpOP67dX4unJnbPt39AFcAON82Si/CQmiPlHasFKZDVqTXSnXGz4zdlscDbenc6QrgcoW4i4n8\n81euwvxepPf4oz9JPySUiPXjUe7toF+mAy24fzHk3kAVl7gb+H4Bv2f6uFYNTgoL6gHB1aHz3sIi\nWzB1A95ygZguEY/7BwwD/StVLFNmviqvOS9tzlGLlKPi127W4JsrRCKFy0wKp51wudXRZ3ZIdw9l\nVwILrwDGhQwbBO8GwntvLLcMyzZ3CBFx94SwCNtUeVDb2kdUesPOZjjaevYf5UMd9sOCGVZtBNBv\ns8Kp+KeHEzzLVaO7TzgsUolG+0mzS6tHqr9l7hJsHbYBcy8DMXW3B4LgpS/EYDhN6HWL79oOwhvQ\ngGMD4gApzPYeeaL2l1utFhLwvzVchyp9lGdzmdAJxVZjHXI7zFYeCqS1xXUIrjz0tab2Kwwof2bq\nSqgdYRgOII6iwiw2kpMcz4JS6tqctybYWa4KHeOmAr4+/9739NB/c/kB4Vy+D0UBwOHLVMo7Xk3p\nSR/DUiwwZTMFHre5+r2evd5OJDHkS8Cl61UjfFK8npKUJ6jBatwTpyG1k/vcKbm8qIwmDBf0nmGh\nn+1wq80Vove9/qAhHPii2oUSsgyoVfL6s/sewNuAFoiG0LJADaCVI8GvSMY2CWT1kpKY4rX9hlxC\nf2d5ht8z7qs08xhAdTuXdjG5x8f56MezdbZo6ecKoXs2OuorJMk/W2zZSvwQ/9D/no/zNc65Wtkq\nDDq/+rNUOWsVXypoYReIh3192D9guJR8F1rUS497XGgfaYgPHoS8zcFgIT+ikXCrmmGXTJ7H6qtm\nGdsr4MsyG7M+hJuArHptb+PcGIQNfnVvbDEA3ttm4VjiH3YQswpvt8xuEdjsE4KamcJgmtu7csch\nfdJUy2M8AAlQ3FW+KgS/aNbgkJ9RmjluEgxqBIgDgAOCsTy83G84YfiVQGwQ/KJyDRcIAuC5FbfO\n52t1vzf/VnaH4Wpzym2e7mV7OF0icguqkwh3n91oU2U9pj5FEMzHznLkcz6ni2ULfeQmuoF0Y4Nl\n13WWl0kwi5Vd6dkqKjmLrivROgiKo99LRxpyi5hhyTxxfn4swv9DSzT3u0iNfUsZ4sC7hD9xVxeJ\ndqgJaMklqgmSXN/zIUgqS8fxlvQCfycEPyhZyKOVOH9QpO4HpTgLhiNeEygKgOMFW8B6iqIOg0CD\n4ScATlh2ARBpuL/Cjx2gfCs7LrOHVUf4bBV8LbIxTyu/jLMk/3GwWlA1NipXKoSc/ovjkAJRuXHp\nISb/s2VcLF7O9jhO9n0XinmNZNQq2Oe85AVvnUVaOceFex3N+nDlMFvFE+w+Auv3wfc5DRDW0QOE\nAxhnnMQ9l4aremE4OMH16hLB4YTjOPYAw/6DDaKEy1ogWJ6/Vffgr9XDnassv0FrpGgbGFPnp37R\nBYHErMqASEJwzTJToKgIC6nDsh/fGltzb9h7Y799Kw7Fsh3Ydt7XjkF4EJSXtYV3M71y/7V86ohX\nJi3Qm6IIbMF7bev/YRFeZQVmdwieAzmPgSzE0RbiJ6LnNBiOD2ywr3DA7wvysu1aK38vrMDTKpzu\nEVcwDquwWYnDgh/9JvODMoE0V4ZYtUA3LcJbqeWwRVezDOJ6B+hGPYQe0Pl73m9IT3Tg/WxFhgh9\nBtzjCfJLX5Hya+Br4ZVxTTR0/Q+UcGwKlsMkM1I5X0R1VAnF8e+cvII/vvyAsC9P4yCPOhEk9Gqe\nly80ukDOllktW4QEmGv4/A0dv33T+XyqU180/Nao44+f9GZj47SHMq5SiVcV6lBQvsPntjzW4t5K\nKeXDQRzLcnGxc4Hhds+8H309yzz7fT9GBdYePCjb4HRfLB2JJEVtQH9cs2HwrGcZv8hJSVpoBr18\nlBWQ1qnxqo5uUEhQtxv/Yvl+yl5+820AX+vvxPU8Se8L10wKjiKnk0TOdHLbZ2mdx2/9qKA11ju8\nXuLX96H4a1D+MEDu0CrWUvVS0vZaXBwqygq8vUPF/L0bScIQiVfJXoYZ7jKgFP8QGJfyazBMvs88\nE4NZas26mnOKZztx6y0KCiIHIYqjjle6b5QlUBwot1PMThB2Ke/bnG3OIVjeDrybV6FPCQvaNHgk\nRdxRImetgz9M0CgD+ud3EhDmhKW+U/sOhjssqL66e0T43p4rsiwK0uqNkkb7Eas/xVl/EGkD45qf\nsPsIi75ythJJCL5ZhTsA2/2YhR2+rTZP/sEzj7hAqZZVOCzDW7Wn/RJ8CQQ1ymceu6WfEFz1qQ/n\n5bn+UKfZtuv+JBVd6KZQhiGPdGyzmKprUlwTh6Q0A4DzuFK6eQ6fmyJJqO7KSvxjEf4/ssQLAAAk\ndI26ehgZLgms1GB0gK82nSUV3dtUNCKigVDopxJu7e+qxGNU9kwTF1baCkjntTSh+Hzr1tDosLVE\neVDeLzAsUVyZBs2nt/YtIVuHozzaMSrPhOXLcumzx/qpi+ZxqWvVnUslorzU8XnT3EziXALtrADN\ntJoV5r+Yuz3+afld8fNdqP1P4mKvydkz0DIvR0c6O5aMSmrnoIT1QwfK9RPofgbiE2Bv5z/+xidA\nxhl/CgMvNlLO0UwMCgCIYrl1d4sJtUVW3602BVtzhSBLMK9VRQzFvRzrXv0jDQFUXCnNEhx1pBXf\nKnrGISVVpgl5JHXJtAIj4jTLquDELYR74x1WYLIMv9ka7JAMeeNxUZ/jVkFwL2U0cZgBgRo0yjvy\nZ+UQFt5yIZAGvjHDhYrSPMfI8+qv12GX5B2IbzB8+gi/yiIMc46oGSMWlKzA4SesCfIxRdsmQDbL\nMMjSzXnp7x2l8oxejzVjhI46RksLbwt9P8LDX5av086Vdv2q3W4NplpHDYjkYzKup2ADVipFQUHv\nqvDiqgPp3aH/gXM/FVPIkJYf75tjK3Mriprx4xStf3r5AWFffm+wXFgcyNKQzRFZ2dkD2NIZ1kv7\nUfp9T0r5YF0cMe24Ujp81NelIFGQjKc09EQdHc2sRGg/WKBVcTUQ56aUomxwwLBEWSELAvEdee50\nHZD1sABPIOaf5/4V5zIX0KWueY+weJitwdUO8g56WXEZtcyB6pis7e1YWHyoJUg+jtH9ah+oqHRu\nKwxavNy/1/rrFBn78ftxhEvsTPd8rR73JBEv8TfpKXQVuv+WVLoVu+0LMKHy43oA8N9MEzD4zbTg\nfhvgfYFMLrfeos0yZkBiVuAVSllIaYsr7DlY7gbD+TedoqJgS85IlDvfD89H67LAgM+V/AHEfDf1\ni9mnfQ7hkNpNTsQ9gtwAIr86885xPkfv3tjyxt4b73fB71veKVOrLZLE4c7ulVA9sUsi9R/mGL7T\nNj9xWFoZgLfPtCA+S8awApc7BMJ9s1xBLmstQ5EsISuwYM4akStZhFXdhWJagXekJfjd4fNcluH4\nYlwnKdsqPwR6QR4Wbw/HYLm8x2tbON0euE3MY7f9p7i7FbneM3K55/zXQ4+0naxMaUVja3ePAKKY\ntE6la1oaTXUThgMN/ST1s19t5bKdHPKnlx8QzuW7KDAgOIQ05qt/YAJwWhkCYjTVgm2p/o/2M+Eu\n0xccc58/Ffg8DpcVlzR+LBRGdl4h8ZwZsY7Gz6xhKShngakGNbRTu+Hst6MQmlWXOy/pxey0kZbd\nUWa54bJzqX55WJW2PX1i5xUAMx3rv5ExucWnP7CecegFxhasKBQr6of2zdJO89+xzFhW11/FyWPo\n03kDUB/icInhAha+v6Y3pO8f0FznVKBrk28D7kegtSnQns/9YDkmCI6+DES813yDTfvH1qVWvooP\ngEuWXgl4oDQHDHeIBP/e7IwE8mlBZGtinB1uETFDRLMEx379Vt2lrWEw5MZx9OeHPJPkavHb3SC2\nLLzfb4hs3wrwFohsAO+qA5ZGSr/pX0CLr81RLz4qqiy4+nGVrTlNmuSAwOEHzFZi8DX94egGbKMf\nFHiutt7mFO4+wivdIsyiu9w9wv2E13oA4wUMNwk58lIS+8x/h097uCPLcNQ1tYXDUvuNY32/Hgpn\nmjSfjbKesCzeTkL/Zv4lqISWFF/CRVFVFl/cC0swqm+wa0L2l/Ip8s1U1L2RMiPI2Jrs9P58cYv4\ncY34V5fvFf4Bv+1cBryAEeoxUcGk+eN8qajWxrit9TgCYG+I8TSVUItq4P2Yr+iADEpjcIvyC/Zs\nK/WFCXH9BU7cVZRJL6fMF7/6ozI6rcEVH79v51P5RFKyurPlB5m+13VeC3ENRtrnJRBD6k5T3TVB\nQGEdF4ginE/UGc9l4tLviAMKdKm+utWd3yXoLIKR0Q4U51JCkYr2chQf07SfbOfJ2J9n3/Ytrsnm\nWZhjX7gCEIK60ohHHg+S2V8scAXdEbda3AVu13P8enCjiLxZNiUz3SyQTQsJvbGhnhqv1oVcGoSV\n7IRhpbQFzuE+YYOzShRq/oT0NSGeAep278jX/kggrmuaTKbjHSce2xGXQ7XBOj7dmfoxK1PzD377\nwDjfH1BseXx7Hdh+5J2Bx4A4vjS364fi/innVidoLg02cC9A1l0itllMZS/L41pt0Nza8ZtAzYqB\nvP4Gx3kZCIWjrc26Oz6q8coBc7JeEGizCOtrHe4RDYQ3gbEDMHwgYPiUiGzEA1UK9KzAcI2g1qE0\nSC73vdjZMkztmMO1T289jmOzNV7Ov17T6wBdbudvRXqSX6kZe5evKsqqMnm2GgQPvZr6mBqh0C9J\nvP9TkhWC+kRi9dXcDtCdzy3MKX96+QFhX37HNUJoiwsY63zVfwXg6lmDgeoJKuNDZFO8zvNOsGV5\n8HysK1VunCHs5rzA4sqxehyDkdYNNBWk962XncxjdOmmPiV+jsov4lDxqdzG+XwnUkkeFy7jWu+g\nbHXfzwPFRV4jQZ4vlV+Oq1uIA5ppWxxAoFv3r1wPyvcaP6gPN28FejcisytQBwOhEDX1luarOL0c\nl+N3pqAc+wGB/V+VfRPqdmA0caSVdUppsLKPKO4/51oQfJ/lYX0FxCMurhcaRNo9BdjJuLc6zvMI\n81KK94MV+ALDWyzBYstwgBpCaQ8IEc7/LDOyCq+A5bAGO5Xx1ehmZvupe/M+q/7mLtsEta1LWY2G\ngwCASBPgu90N4v02C7CF336Nd123bQtklyp0Adhq8wqLfSHMjN/m5qAatYQCrrTyMgz7Z57dEhxW\n4R3hZXMnB3SnRVjrYxorQKyBXPRwyftv9VikZe0z3VteA4hXwq/whzTSZWM166+F3T1ie38gIDb/\na/tdCH2r2vPVLLGoNrk5rOQnnG222o5S+zqhWGn/AxTTuRVXcDvz1/a91Ujri3aPSo0+HfeyCIax\nyyE4LcKkU9KDWvhKQLfQdv1ufSYyoPCZobvCvSjehHRIwrHgxyL8P7B8r/DTF9SB6xP8Gq91uIu5\nKf1iILGC1vjqlNpHQVgq6dZgq/2dCjniY+3xXd+7kDuUV+/EXeP0DpIJohzihriMqFyA02dXuADa\nZSktKcEA4tnvMqDe2W8UQOny97UEUHfx6Nd3PMq2MO8w46THRLkrJYoi7Odr1ocdjDZHJ0ZcKnGl\nZwWKQwlZjr+Wx7jlUWvt3v4bcXIJn1jToeT5GO0LlbjwYelnHQBNl6C+FJ3lyULL1uD1AMDriOv7\n5/HLdQ5Qazd33Bff/2yfqaRlbqerhMXFDBMQMWhiQIYcgHCvF9KKWX48hdrK/RN+tSjyagkO6KX9\nUe/1+15eIVNllOtIxwLTQPiNd+Z/HxA8bt66m7JFVx2Ggb024F+jA2yrEkKCgQMFWgHD8WEPh2GI\npG/wWhvbPxGdHwdJCA7Lb0Egu0XkfMINDqksmLQCgh8+prHWgrwIfl/kF8wW4AbBEQ6LdvkGyxYD\n7j3cI3wt2VoPMAWjBf/Nqu5CuaBU855tX2p/lEmlZdeKsux2wFXMeYirXk9XCkh8+hrt7U09nFEb\n87oR4TBBsAOstfnBIMKl5RkKPUHtTyTCgua7yWKZulCkj/5b4Durbcr1f375AeFcnsjoXMoaOKzD\nbkVrz3cNNLhB0S56+8mtfDiWYalGSw3pkE8Z361Z+aSY8ZL7DL67KdlzqflsGUa4M4XMpLKos+na\nUTZ1bnbUkLuKKgAtWcyXDCjOi7R6oXSXlTlxZq+v3S7M53IZzssh9NrQt+we0X9aMv9KJwjIanvE\nufAjpZktRnRUARVWbqhwFZeSs1RpgRixYBDjchlx574cxw6AOa408iCz0HvbFS7gkV4ovXjDEuqI\nV/DleHaJmB+GELfmHgPhlsPvmb6+HneCcO9rT2UTGcf9uHq704BfsupKKO8etxU+9dgJyDWQrvg0\nFXz7bdaQVX5o9+kQFb/tmr8Gzm18tcw2RhXr9ZcVO+ra9/OYpUvY8jR71xzBAsEbPE/wnCWCXms3\nCC4QWxvuZrGgatcSWJkiyiHvLUCuw3CsEB/Mt2orykBc8LcUZB32eKAswxiwJoRPWSZRPjFQLsLT\nRYJdIRZ0LewbCB9W4bGVlRDclRltU4NQ+ccadQD+spyXLLdbnhEijud+yasTiil82/cd7h/X63hc\nPozEKg7cKTNDQYY8DDnGMsq2iyzCcxt6uEtidyKi0eklr708DpnquY/Rl7hBL692/R+L8L+4fN81\nwv6bXOzgq0BVIluC7QdyN4FJ+EkMI6xnXLRRyP04BuTG8dYJbvEBTdQgPY/bwzGRd1M93im6svGy\nYADhcvAykryf/jSaZ8k4j8gtIFc4rfb7ymKntPn7rdzu9S6XtXKnI13Zg6ma6148QCwKaftV/oev\nsCuiVMRAWh1M8fjvjbhUl3OgXf4oFcqI01Eks4SOe/sQx/sYZXQ7r58jtJk1SGE54w+gPdLagX5I\nRjKPaVDkxw8YvlmFLxDcBr/xQLkOx2uka6Ac8xAfpTvL5gaglxavcFnWH37LRaJguKZMw6MVeIeb\nBOpa9jPU+EvYEFyuA4bDMn6H3gW0X8lcI9FFFRqP8eLqXADI6nU7t5Avj4kI3jkbw9tMipLPAAAg\nAElEQVTl75vuh1YVQN+WxVeA6wAbh09j3voanFmESe6Mc3igl60b22da2Ko2mC9nj6gv6bFbRMCw\nWYOnXzBDHLkaeB0qCoCrP8yBcgbAK3yElVwhXoqlGxouE3tZfi8QjLX882oCbK6b+oJelL0i8lfN\nnO+n2jjIMhwQzNbYast3KL5Yey8wy9A79/t5pVc5XbSN/FCNCqVjeRBtF1UeXlcNikHwG7UrZ9zz\n9mYGonWKqKZ4QzH7Gr8d1feHlx8QzuUORHMJeEoFPlwk8lri2wCyOGdYSau9dLeIa1ge4lEW4ExH\nylowLcDP8QVXQ4BITLFUnTKOMkAw2JwvRrWHuRBavyEn/liFjtOPNNDNETpnH0xMIH3Cy/w9nQfj\nmD6n4/347XmcyzUhluWXbxUcF4Nq4h66P/AtLs/JwYd9v35UKeNy7Gvb11mDaPXvcXKk+V7clH8K\ntLYofJZgnEFhuaTJjVwuISMpdzT/1QG9wBP83iy5w0WCXR8Y+hh+F/sOLzSXigHCvc9VBJdpU2PK\ncdUeroPhwg1CACjNGzxhWNTnHuYvtRHw5e9PCSYAFuohnnyD08dUkhKan/Bt3XdgVti5ZnEadRmw\nfXugIbgD1WfA1/IZIkKeMgC39jwg6fVSKh+FbsUOEFgwQBSu5y7RGMbyOrtbhMXnNpa1cpq3tVYC\ns2w1rgwYRvkK27W11V8Xm5QnKps28HFOmfZ6GRC//GtyL3PlUF3Y61VgHKAefsEBxCt8hG+WYfuA\nSfMTlmpr+XZjlF1MmRbuEbald76KBN3Q8wmeWS4XFwe13vfkA4x4eOT4lLE3P2Oa0jDzRECss41U\n3TT4zentIgVbhJuUQP0KKEcytn6frpu0N1PPSijpeox6cokQUax1UdD/8PIDwrn8TuF36A09waY0\ndpeoyBMjnuF27ifakJgdwBhtH6DGX78hrVNw46t4eBxwgu9CATA/tTWLOKokJyjyfR/7cjl2Ka8s\nM+lFO+cFjms2cKUMTfVyq/0o85YmySLKv9Ic4BF1G5AaoCX9jhy1jjSZJw2f4Lq6BKhSuYkLSH7Y\nqqmm+n5en463QrgUylMPucPvCci4putlVuVoGe7X5ji+UhZ0XU84jDojyjfPiaR5oF8zISj6F/cV\nGX1qAHHbDph12D0hmQA4jlOYrcjRZqxeuTPA31RxG8JxHDgfbNKemhZgcoMQEASfsLziODp0nFno\nSjpBqq2LVsBg+faSfoDvsk/u6lbIOKZweUDwy+UccMtuKQy/wsDs5+y18losmetHbS9g8qVwAHxh\npWW4rLTwcq37DnCvsuM6NdDSBDpzj9g1iG+HFdgtxNtgM10m1GTJVqR7RFqIR0nX6mDpa4P/ReuH\n6dP2K+A2rMPbZpQ4wHdsjzgpX+E2WM7yZXkktPObmNbugOBwM0Hcp1YvaQPhCHAn2B7WYOX+Vfk4\n4fhzmrAINxeJQsusgxRWXg6nno8Htw7Bt3AWVkqTZy3PeWX4bca/I5uej5xVAv/K8gPCvnzXNSKW\n/lKgw1wooakGCm6GStC7neTr/Q5q0eAhMuKiwT3EkSyLuGiR1gE1IXhu87bH9tsAfNnPDin9fvO+\nGwAD/dPMcR9ooNyv/XmJNHc47ivnuqz+VT8H7FEhCaTvR/uQeY5fjQR0FETCryVwKMoz/Zpx4WiY\nSUKHTEtwxmy9Z1go5u4rPNM9x82zVc64BqkZHK1PPoU9wD/en+gKY6jtWX+Svh0wfIJcrTzwrSy6\nA4JXB+TpF7wIhMNNAgiLk/XbqOKo54ThIEA/FG0sFa3SftsqQLDbP5gh/irf2lZ8jEMRabW9Uj7a\nD2lFhmEQAK+Ap/jNIhaU9Jm4trP+3IaG/v4KwHgQEa6T8VByT0cgvMuPt7bVJ1WBl9cRHIJf+oLG\nvL7rhb3NClZ+vIDYCMQE7JLeyOvWa31yj9i1FQkXCfcLDreI4R7B8wunfI+ipnDWYxOgXHdWf7G2\nj6Ksqk9Z/jGNtROI13pBdXeXiBkOa7CHzT2Cp967+ArTOm2f2ZygCcF7EwRHvWX60PoFyNZ/Ahk1\nZW22yN+CYK3for4a8XFuPLRYH+z3p6B7F2o/rR27bIFb4A8I1sooCmS5n2nqENIjIi0NtRCqDrP6\nxiwRoaNatX2pof/7yw8I5/J7IBzijs9PJT8JTLlRUDo/bwIf0Pc/xzEMl9UrG1Z0goyTM46UUZMh\nCOgVgt8O7crb7OB6HONy4jI8n2Vv9XB2qswnl23Ej0vka5gPVcx50CM+yphqj/gqPTKSsZ4BuBSl\nHYz6CgEbXNYG2YUAlrq60gUyV37S/OqcQMtnOwH4KUwF4GGd4bincY+/G3fb17rNvkhYP6nguRdM\nAXoD3HaqUBh1Za6nENzjGh/B97AGD3eI1a26FZ7HBgBfQDnbTAKtehVLtsDqj1JArNXeUm4NC699\nYQ40JRrBMGjKtMNaDOzhR2nbm6Km8k4A7uUX1vEGugvIT+vCfIBrcTCWTffPQEzlzsCbdbDIAl8u\nGu0BhtJ3EEbvIww8Dl0vVejLynUpDIiXuQos/9zxEoXKMj0SyoHkRr9mWTEtvN01gl0iOvg2q++I\nqwcYLV9h8Dp8UpvCIR9hfoigWSPkZX7CWwcQx9fmMjwtwOID49z6TmFe0fJVi17X4frBYZKx+R4i\n3R+GuwOVUbMMQwmSKR96B95Wv3xN35YlmNwiuC549cGbCcNSMiVlE8gnWHvJSMsh5cTdRgTalFs+\n8vrPN08N6r+s35k1wi2iZnn5s8sPCPtyVb6X5fxCV4e0sxL16JQywqQPbk2a4oUaKKfpll0LR+MH\nHZORhuKiDFKgnHcY46EXhTl/SoP/GgTrratOWq1fmulmWVSRarvv2yUPa3E7BnYrPo9f4u3YAGP/\ncSHhmOcOsCJ+tTsIIAsBksc9vVvlMr0L1wTmwEOHHK1fc7ip/fjsatYJhQOGJfJ0g+SHZULtd+Nu\ngNxjvJZZr82A9LTcdhsc83kcxeXvsYcsSGVS1+f+1ZXNd+D4AgtyA2WyFF8gOdVL/Iu6qk2VdUKw\n3//FWjvVXiQ/fIK9obZZItR6o021pWS1+tR8UgtWhbV1ZdmU7y9ZgNeGbotrll8FIPzOKuRQyDqu\nm1VQ3KA3AI7SkM9yhPe7/0YDmVgXsJbitRT6Mvhbaxn4+nbHlGAOwAYpbrToDdbAowFqHyyXX4/b\nOwfEpV/wAwyHpbFcJC4zRjTwCtnVlAnC7QQBq+2hwiy/NnBOsV/hA/wy14jp/sAPHTlnsF83Bsqt\n1dpMvl3wdmW+wXLWkdfN5nCUnxd2WX39fhlyGWaV04w+9QFy/05c9j1XFGWBZi1JEIzV6iXfTLkL\nEfvs8n4IgO4eoehjTLz10cN1pyHqEb1aPD/hK1w+w0tohqo/uPyA8G8uZZ3IGN/e1Hqp/qeqLbgt\n6DvjOxDieiwU5GoNvvyBbnH0JC3SfjMmlxdXaqDfY5cI26/ySLBC9zG+eDH1ONfj0sqyl3LzXQp/\nolkdoA77AMEQrde3KGHPYkfzf4/HQ/rcplInKMub5H0pJqN9wBXM0WD8F4/7ISedEejFQnej+nnL\n6WnLac5FjrI+2/yIUebTUPeSgMo9JwE00kjb87L8DLUnJF/CI7e3B2SuxtxKqEW5xgmdK54XAdLi\nGa4QtT2tkUsIzmRZEYay5u2Iw4yLdk9x4Lw8fewjOxwvZUXb8Om/FuyjDkugW2x6rL2xt2CLYO+F\nLe7Lunx/2b5ugcqyL6SJnSPiPsk+Ty67ScRX1OqLahQXadoxYJmvhUGgE1/MmgCtQWNQxd4G9pXG\nZRtbU3d3Uejh4SaiVEfa6yPLE1w/E976cVzWagOVRi9rwq4Ch4tE3hvK3WKAdm0/tbnLfaBAjzYN\npFiUsR2RQWte4xN09nvX3lcIgLPM4NA7r3ndZwguM1VYbg/tF8LBzaYCcX1baVIHa2p3kg/1Rill\nAz8oHzPWnK49IV9LWk3PfhLm9sWwbJuiesxCpOwPnANz3NUHp/vFch1cyl8LjJ9UzD+4/IBwLL/1\nEBKKTVvcdy4l7eiEw2f4ZSy4QjAwLFDje+8DfAuGWaFXvCm2iLN83IGYRJPqtMGQFdn8z+6rHTvv\nrcpgFOKkPFt5ZJxyd3bBF52PhSf5P1VXR4EfxfN99dDYP2Re0g/CgnghowOIMR+67sHHmBZLIBv3\n92n7CZa5fBr4PQmwbwm2gtu6fW6ZuMAxpx9w3OC2ypSSjL44j3FYL6m1ElDo1vfnsQbDgrSQpJIL\nGI1Xyq7gymfWtkDVxyfQLSgpaK3XwAXC7IpgYeATBDMU2DiCjQ2BJPAKtrsPPO77p38Dkt9hGXUA\nlm15mqALAuK27g3c4hOcga0by10reJDaAb3+JYkE4O2Q7O+oN107Zmpgf90GxFzmDMyYxyasUZ1R\ny+P/fT1xpgCP89IhsID4HDRXsM8wjITHHufXyd8cUMqyFyfgXmdYmGG9xCvfJ63cR8B9hKzBozzO\nPCjatGkA7Qv9PkGwHzsg2I/f4HeuM008pK58K1Hygt2ojmkaVwFwHwxqN10P8J9akcUGBIu3zQRk\n7TBsz+nRoAiAoSiYKEtwQvNGPmz+yeUHhH9zaapApnKM4wUJHxWjCKJd3C2mT91E72lWB1+QEmtW\n4Phja3AoZUSXEAi0W3/F2vmEXQt2q0ZuXdCsOP96n0/3RivlLadLg3c6qbxRhvK41k35kcLb2u/5\nbpODn3ebEv0GyAxrafnNTKJtC4wvcb+56Ie9yrZeofYpLsMz7vgJPX8youSW/lymZbfglnD3gON7\ner4eZwHynWOPGcSEYrnF+c1WTCka4XwzAJNlOIE31rQC1VogzJAzFP8lDsrHCwyibBugQ0aY2nHe\nWVVy+JRCFNv9UxNyY3/FvkPwJ0j2WQ8gQFqCnbTukLsvcdosyZZpA+ugv0foXWQlVlfiWvMk47BC\nM+iOcj6OeelxHEmlqh8q4zhvgh6tbcm0BMDZFuyvimG6SwQUszW4W4cThlt+uO2RdCTxwPmc94CR\nJsrhiOfrEbhC7+eecBxpOf/8cChe8nJcr+3nbzL8jjxx3vOB0kH3C03PadaqgbITettMMzllI78F\nHjAsAoZdGnFAd2Z1aGNOwhLskiysxF6QzU0qZokguC3LcICuFhAHCKvp8ue3jv/c8gPCvvwud8gM\nNyUq9zQeYIVZgPcd6P0ibXONGINPLmtc6fYX7TxS7aNb06JuMeY0WuIiMGCpW4AfgPjRKpywEQWn\nBcA36T8swxkP6oCCGhlP+ew4fwHkzMNDWYyMM+i28GLwvYerrXyjcX6n/WpXUvhG+OlYFEuWDzvy\nFm94/fRKempJca/NsouzHMpNojpdg2EqjysAPxwPgAX9Zl1VMWuD49rdCefGt9JTzt63JhAvXhmA\nXxkGWHkTiOgIH+kGoHGeEoarrLI+uGDpdvMti9ogOlEpoH0EXoJk2g/XCD4OkRNuVc39YsZ9sR/k\nspekJRhboeTQrESbAYOn9VjMz7UB7rASJwzegLfHAf06JJZyc1tnxA2O81IEg82HG/EVue5HnNsG\nvwrdoPur+2llwb+vl7xkuAOjpY+eWG1NpwX2dm5VL22rLBsURz+YfUUH/OqZ5/PYEwSTliMA7pp8\ntWP0fjfjY99kxIDh1S3Ax5crecaTpv8Xlab2cIo1yWNQPSzBMYYAkIyzfHsJ+dOUTehh2yX+5iXm\n7BMkAIuq+Qj/gPC/uXyHJEAK89wCoTS+c0yo6T8AILgb9LVDY/gIB3D1Bn8D4jMd2qpwpahP+esv\nfjaLiwY/JmCS+2D9ZMkNfC+/RQWYClpnbXknPEa+ddEV846HcrLzQpBX3kM5ZP7bfj/GdzqXAN8q\nb/hXs6THr54u4+gu+4PaaKtyxNwPMCAAHRL+xn7dPCnuGScIaZnAJJ6mzYFMPaZ4K1GMbiWOM5QG\nsFF5tWISDp4lOMtv7M8+fbuO+a1LP2/GZfVe+pz79iX8utJbwpbgV4PiKL0TgAlGjmN3OPas9nsa\nZd7L1NuDiLvie19QQEQfgHe4QqzTNSL2F7lXPIHw9wGY3SVQMKu4+wj7dGZWOGID8g7rcc3W0L5I\ndt0GGI+6YGBMuZOlS/XU64r7mt7W5Bmh8880nK+V27qntassVGNqtj7fbpy/SW4ycE+QtDYiLf/G\nWd9wiaC+xeVwS9/K7rqt/nFataM9S7923ssA3whTmX+p2ScYD+g1udE1ZMqHOSf5YQEevv0Uj1Xx\nnk0gZ5kZq6rrx5IDBcHq8tzTiliZKcDTrdmYVYfgaGPwrcO0TfUHu+b6cY34d5c7STwmC6Uw1Pcl\n3rek2PnY90H33qUWX6NZg29AHB2M/zgfknnUIEp7V9ELYEokFkMu7AWg+ZH1hF+/9LNvcFfMvB+R\n8hX80sVap20pK+8KNDjLY23D/1shZF4TelGgA4edfAChcFiIz3C76gF3cf2+yCWOcjlg4WYBrtfo\nZ1qO9yCq3lGC0KfUSmGq1bKitMy6wPfB2OVlxj2M7l0qQT9rwvDYmXGzqEq1xV6pgbp8d3voA/lC\nTd7jZvvuUFyW4bXWYQ1+LZt6KqA4cvpo7f10TAla8pZ15PkoPgi1f/FrxlJxZhk+3CAWD5AT+5Su\nPLtGrOYaoa09fg96L+eA3R9wWnmhfWDccJHolmGk7/JnSzDGPj9cIvMVFutb/WSphyzK63QI5LqI\na1U76ddm8I38xQc2pnV4j/tMV4lDRnB+O1pBz3hc0uat6ojPvPd7svKQ9hv92Gz/sx/0MoFrsNIC\nJRWOvLbp0aZvcC2t5ycEu04e8dNKHGH2DV45MI7GFIyBc3e/4BpEV/qwy7sDih16xWU5FDWzUINi\n9xNO2ecl6HNjQ93lRuwBNNqwCLLdRdyfXn5A2JcneLimzS0BD6r6jzhS6D1uAu19XXqH5eO8dI14\nsATztCqkfJsy9lxquy4g/tRY9wl00Ru7BUsgUbJgQjfgdwGfYXiUYdtPqJ1gQzNJBMN08Wr5yRGr\nrngIzjL//J+ecPlmub9maiLgJ+s7hqBi+M245Q8med+d5PjY3H8CwlQCD2uDi6/SAp4+gkpbcflp\n5WEbL2vJYm8L57n9b/dxKQ/qbxzby2b81qWvyyVhvGmpQzp++fyN3F5+n/MmUvIj4Tfqv0GwGAAT\nBL9eL7cIS4ctDCUf+0PZt31Kn6o7+41vtd8/93O2BgPVDgpuY7vH/sJ7b4hcLMXSB82FRfgj4DrI\n3eJbHGCuENCcmHVaeQuMzccxLFlCluLyox0AnH7DGIDM/Wn0xSg3kkWzvhgC55rQeDmOdq0zD+wP\nHABs1l/Qvd9njIjrxAC5WMtaTG1MZ55PgMw3RyAca9ZjP96sx6cbQysLjkPPZ+sPWhZ75G9Td7iV\n6czXJRz6NiVHWkWk7VvYzVo3UBaCXyEAZotvm2ucwHjAcE45d4PeXGTEt5ZZaRXZP9mIZJdw2dEq\nIuYm721DqL38G8sPCP/mEgqbgVAe9iP9tAbP/RsIdsB9TtfjA6yGk3xYgS9QVgPoPE8OxKbkCn4f\ny+IiGlS5o1gHCtcIg2H5eD9z7YAHUsxATLnS6ap3VhssZ2n6rBG8r3wGq/YmHpT+Y3b8yNIgn1bW\nE4Ln0zsJOsgF/nL3d8OsBP+DFbCR+VHPWXz1AGQsrKbEQkB6uhCvfUsWVuo7CZ0XQM6yiXQ3GK4o\n3rQ6uwPw3E81RsvXcfIQlzJEcPTFsO6E0lsEwWYRfiUMA13Rf4LchKA8dqZHEhXaln2AW/kFOIxz\nVTWtvuEeoevuD7yFLMUJxGpz4Ep3jeiQW3LmI/hqB2QoDleIbuWVBsZ53ka3FKtZkAsMCaZucQRc\nmnmmepn11oqc4fgEhoYneZK0uFb/o330qdMMSmKdPsK3VdVm04iVkanlHcD1AxMP4Xl/t3juA8B5\nrWyarfxH+x/9os7XLMczHzLiJpwLpTMNmzNAXLYMvTKB2D+O0eRCwDD5C8+vUXbXiYuPcHtLelt9\nQ9bfYxttWSTLy4sD0OblbbcSsif1RW/zUZ9/evkB4VieaO+SsCkzMKyWqm5w/CkdTiD8e/vRcdg5\nPiD4MosE/0nkMfLpqp/h0huxLdVSQ9ixkkx0DEUFpGuEwbAm3H+5ZrqCunpIrt+9QQ4E9Xq+H6k8\nAv6RgPMIv6LR454fYovnuqV9CY4HEHqSv4YlAK/D7ae4gnCCL4/8BLh7P0xHdVsTTAqEEjzymFsr\nRfzLeAIJOE5BWzh84K9QOAqWAR+ocric14/0ZaYrVfZhGTAtLS7u4au4vI0uI7yt5FygAcPhDhFW\nYYLh12uZwmWFjq5kWlwq/QFF0YVCERFclkaKevJ0uRvKS8EQCsDnASb3iL1s7tDV/YFXAnHEmevE\nojQQnKBLeawt8tgBw3ne3UcYyu4Qw2VC7WPN0JEuIOCYPeLW13qZh8h8AuJKUIDGQAbc4gnO+NzZ\nFlp7sG0A8Bp5nh/hOPxpP61NPva8W/5PqX31FVYK8/3NsuBttFWc8Ud/yLWXP5dny09uJ9Rbz47b\nivOHmQyuvHLbPnoxgTiNWOt8SB6WXv7YS3OXmEax/C1knvrjiheI1H7UQ4lsqUYmJPsvV3Xjs53q\nBZxq2esiEYLFzh9cfkDYl4sd6SlhOyPANgHtGs8gzBDc3eF/B4Cvx7LjTJeICwQTqEVOMw4YDbrH\n3EuqpLvSfjTy5SCdMBz5tv4zfJ3771ixakGFhgji6gjLMBVK9DSMPHk6/qgGkN29wtLEQArXut7D\n0mVMwTBZhRdbgGP0b/ssKdVNg9yC3WxL39ya0t4Xvz770pUOGD7SHbDsJaUh4DwsEXYohuTXxxiD\nqeoaWeb/A4brXlpakRnji/JlPlTVbPHxW2dbBNgnODNObfUbcRLyodoEf8yi5gvus0YkDL8WXutF\nrxcvCh4c/xAHPj/q7L4Fl1DbvwNnzBixchaI7vuroqc/cFiG3VIsnqYervz6IOiN+JZ/XOPjwTYt\nvujA++gygYufMNRnjcC9r1Af+QTI4LIHQUHUJXDEN8DziiiouKyz7rONnPkLX820CruLhG5t/tBt\nvUElcI/jfF/CGGE7LhlR8XLCMDXPIw8U7mmiH/DDimavBZCv/OdUapEPjHjViCvgZDeJ1P5S+/km\nF2SxRcErwMYScoUgF4nFg+TYsHKdRUJAd88SFr11BeTe4uqmzWcYQ9jGdGgFwymPs93TNWYj+IPL\nDwjH8hscnNAIhlyKy3BYhDoI8/YJbnlQGbs+fEqPeOqjDlTW4L6fgBx5ofyK+HRp8Slflx69iKoR\n64gvwe4WBs6vMhRTuSBEB+1HnqLzJNQoJfJOqvX7XbxyOtBr+i529QjNNB4jFa5i0IwpMC/4bQ8h\n0p/k87OtA4TXWnUNv/HcEuBW+zrTcNsDXMivRdMgFdhu1bT0JhzrsBT78b133ncpdD63hGycc7xd\n9ypp8zUH6HNE1vkNhim9tLOOEP/yRzB+PKgzZ/1a8nUcz9VZCq+3C/7SHA+UYxgOII4r/h4AX9JG\n3I66pDl7/YOnpqQ07yD6f4GO93mfs7d9QW6NuYSlBsxx3BquE0vKNQLKD17+Wwm7GPuRN0oX5wHH\ndGlPX5g7pkxTmgP1Ar/TLaIGzRVgdfg66wLzeN53l2yR9hqPiq+dCXx1/ZoUo2AwLMH8tTmbRxjt\nnhtM81/83jVv3T+Y88rpuoTmttpuq9J+49i1X8x96b8/yz+PCe+fQMzx5fcbT8Fh+hmD2EM3XGA4\nB9BKAXCmv4DuszXY0qs62odF95DQVV9xjKG4AbL28rDTLD5lqpJs5HY6K/pfWH5A+HeXpu06kJxQ\nfAJmbDvECoUH6EqPv53HoDyfKiPcO5qc8TOvEPCLjjsflFLgbbPaWOhu+XUx8VQWHR4KkeLp8rAK\ncy9qkKyZj1IzHiK3iFSgdK12bPyOCcPRc30EoDjJx0M/P8GnRTjnhq0w71ddgervFr7HVf16rhl6\n94aulUC8HZIDdBOGRQ5wlgSTsiR1K5fBcCnLUnrT3mACVKsWpeo5IgpOpf/PUyg9Sd3eZkkaj+UT\nGNt1JgBTfkecPMZ5uLUJn0klALhNoTbg92V+wbGu1wsADZYDLtvfBGExiI15YhUbqv6mgMu2QQ61\ng/hwhQPk48cyHuLeW7B8wNw72n76CKPLF29ztV+g/AmSAXTgbRZfS3MfGKfmMoEaQBfg3wfJPfWL\nD+Goq+gbcZxa6zUOZ5ylpRkU4vrUBrbLzpx0h8C3VmQ9PvsI18C4/Eob/+b4/cxzy2vEDR9bBa4D\n6uK+RtlUedD9znLLssexv1u6uh4Qst9cHvg+SldguEOUSac9xMtlnuA0lAwD1txioc8m08NXGP5g\nFTa9kD04JEnWhEY/ItDNewxrEgP0RYgSIrUCPZJSg/gsi/+55QeEfXm2BI10F8gN5V2wW8fWRxDu\nIHtae+8W4Gcojk5VT5oJxwzCmHDc8x3AksAZD4SXRce2x7mSURssFwPlltbguVo7HIcAiQcBK2PK\n0+w9zS2ClCBKYWfeBOUeoaCjoNdgdTddMOpTUXiKCUj08HGxANaT/iIwXmUd9roB1ROD7nGM61Pi\nwcFRbEIvhVeE9y743bt8fD2sagOZnhT+CcjoULxneVVJNdAVLkehw9+A4XZNHTFPjfmMr3YYP63t\nl25xeIhLnUfXrXpCTZIf6wWI28C5F0+fNrdfwHHsN2CJAWymCrd9bxg+fQBEzUWh+pWXF9V9wPBW\n8gO+zRUst7hlwOVxS+aX5TQJZVp+K6x3YE4itLzPj2LEsQJeuQyMU6yYcorSTuvvnuXR9gnMWl1F\nvql+snKf4tDj6lCDNK5rzPbAbQF1H3JZ44tydY+V9z6bxGhvoN+m/jBne8A1Tb+P47xxjRbWfu61\nP7S4un8QFGoqwHEfT1A846eW845/6IMPELx8vM+cQ7ilYVeqKxTzdUs3hKSaML0JsKAAACAASURB\nVDzXCcZ5z0PsTu3XQiWu29EmJ/HvLD8gzEvoQtaJM66orAHv4fLwCMTiltGCvAJbaa4Q9+0dntNH\nuMEuTZfGHS3jCIAR/V1c312A4RKlc8+Vkqp9kjS24QphQ3w8z8ruEewWEWXDooSgh6C3vpdeeZCZ\npwHJ8Yq0hB1oH8d+XZDuVsc+FxPJvgavCcAdeI99h50b6Fb90T4B72FFZqHHILw3tgOwQZA9oGyH\n3RZ2q12cK3GtQ9GTZfD4c5G6jK2ORkTSsoIP4jLulyvnAGLuwLPu7tB7Lp4xOdOcAj3aq2RT47jj\nx1h+SK/fUmqu/HLatPIPfoVrBAMVHhR+bqdFDGTJU8gWbAjUP6Ku25gQYtOc2WdVxcOjftUAWHWT\nlffiCiFzPmF3n2gf0fCZI+jLcgm5qP4bD11BIffweZ66FXhOl8a+v1FAe+uYWzgLLOfWvQFvWRjH\nsdhH7GeWqQ79HrjfTLBDf0Dnes04rv9xfW430y9YN6CrW4mnL/STb/DGKI/IjwL8gQ/OY/SSORND\nHa/0fL8cb+V4+SzELCP0vB0PhpQ+oTbjrC2az7L0fVC8dI1Wciq1W9uvAe5dRxToUrjNKPMMvc1f\nmAGY3jQqbFyNhkwH2tfiov+kK0T0J9ep0YarFv0aq981330eEY470//p5QeEYwmle9dwtY0KZPgI\nMEmAK2BZFL8yvkD5ANoGx3Rc71DM+wW8dqQgSlqeejzdA3XRLUB9WBxIaUAhzf/RQWzPPt5YnSZe\nsefruCgLXAC4xXGn0SxHKDJdr0OletIC4FCE7R48vxJ7Hq9jn9K3fRn7Sr8NKueEHNSTeX4J6LT8\nCc0XawJsAC7V2WFZQKXFiEeAbMDvstfSsV2xFemW4bAKj62ShcjWsCYCupIrgAm9sDbeFZZGJSNK\njyqVDkmL7ilH/82vJfHxXkdNzY6mxMttABy7c1TcRWxc4rKnkaxgS3C9JYiZI2ou4XSTWC9T1MVs\nD1vtwDu2Evv+4AOpotgItxCxqRSlA0joSQRYBBxu7b7B0oH3+MqcyJhuzeJE2Ee4ZMpj2O/3Mewk\n2QbIKQ2eG3MEo/kNxzGY2wTs2GkRfYDjLGfQMYazSgOuJwZ5vkZUAYWzTkZzPmCYfjPmD+5uAqd7\nRHxUY84e0e49IBMkX0d+5j4uxyyulG7Fy8N9EUCT4FaKS16j8jvrgx4upK7hP51qUD/tR1xaQxCa\nCwUQtZ7yeo3PIgfQrmb15Q9jtPmFb9A7rMHxhhgJwe2Ri9Yq51YGqAfhAGIqJv5ncSHn6FDq9wbE\ntf+nlx8QjuWbpd8qMmGY4Rf1yhsFmYuPoQD5E9h2a+8FmhGALBcQnsA7rcHS8ox2Dw6tl/uPTp9S\nANVl0vbHUOyWg8jrCghWnkKNAJg7jdAztdQvSYKu55sHzIVm5/wOAAaUrqct/yzQJhSPUuj7N9rJ\nvIaQIqhNAbaGBbC+HHZMuYZxjasgvacDcMKvQ2/bSrcMiwM0bw2OzXewXo+SQvc1BiWFJVrhXHzt\nawWyB/QmNI60XsD9ckL1kVRcxxrJTTjm5L2OGYBl5pDiMr65R5QqLNkBahNVV80ton1euU+d9nqZ\nn993wVfG/tyGpV8AvDXkiyXY/qGaaFtH6w+QyFkFNpbSBzUW+QKzFbj5DK8DnvnLciFTmBSbBZgJ\nB9Nq7PVJcez3C+iA4++7TcyPS0wgPl0lNMsMqPPi1gogS4bWMZJGBHoN+oBxPQo/QmBBLVuAI4zL\nV+UaBB/X49/S9pvVaKxXlOzl+Iqb9x+9qclonWkvDxUN9fSS1yp3CNUJkGIiwlnmJDPibckcNBfa\nTF0mIwGZdLEDbDdsPEFwuEKccwe3eYTjgfrBGmxvj6tk2F8YXgboJZYF2sbVUL2EnilRTqAr9CgQ\nYRlpKPynlx8Q9uXbhZ8wSZV6VOwNfAmARdI1YkGu1t45EK7AeMCyRPgJcs840LFmDWYlrYI2T69M\niAiBHmGlw2HhKPHUwbffZ/gMn1biyJNS2K4f9XVRyz1MU6XxzBGqmtNPkXo5oLhdOZRYL4GeqDJ2\nAusi0KGJzvmrYbY12EmBFvX0AMHfWoFyiXDLcISVQGVahkWk/IRFINtnEVAXiLterSoIAmySVrIS\nL3/NvO/uEV5o0spRzmM9QR2VnjZriDWZJazwbDp8ulYwEh+wy4BLce0+jruAt42SHzx1mpCrTFiD\nwy0ipk6z9vEaINwthgv+ej7ivtiKKhnv7ea32sAwUQFCcbLyj98lQNp7k0X3CXh5EN0YNPeuuDd9\nWa6DsG0ZdjMu61xxA+RMr+H3S/sJu5puEzFzQqQXmkaN23oNmOtl0lwlvLzaXLz585X3Bo63fdA+\n0Oo960Z7fMOarC8TiRtA+4CGwvy11+kjfLpIVN7jHjf93gm2X31Qo3rRPA4d9+w96iiLdv4Ac165\n7ICsl/b7LC4mEEciocGJUifGBzRCctwGyk0YNqBdJRdCHqTV95xDOAGZwxN+hxVZ4rVclmFrIbhZ\nidnQlfsSIB3l4sAfgAR64A/+iTiE0RDESi6i//DyA8KxfLPwS5FNeBQC3AijxS0G4AgjrKQDcrX7\nDj8BcXONYMC9QS/HHRDc4ySdhUq6NqGE6h4cNp/gCitAoNvBt8TELTwBmMIadZEB9HmENaE3lWHm\nfYjeeLrVOj7vMeNkHuDr9kaS0Jadu4Mpj/qVw+pHM0h8AbiL9z+lBzr03sBXumVYwhLsYaX7SF9j\nkA+hC0mbkQLAXmYR3tumaFqwDyRgY0kY47RJPqH/Jww7YkqPaUcFqaHMh08rnVIY2nj5WK4w/Cms\nkbsjLtIWMPPDTa/H7h5xmT2CfIUZArpCt62M+K9AuIqjYM/eCpi/bsgOIEb1T4hwOHLXiEW+wTq/\nICdkBWZ3CZpOTaS7RgBs3UVmwIJBK173TI3jvBUy4KOPcBVOvN0o1wmpWSMYiBlyox4mFGc2OK7L\nIKX89v3I0t0i1/cLKLOu+bbiupmP+sxyWIax40GIwHdrTqF2fEoZ2rc6fh+Vt4jjfILScpVm+nGc\nz8t7p4Sch1YW4Dzqmd+ojLAMC+WnmqKHLaKsw/UuVUkC5FflAoLhD5c8jqetiyBYas5gMqJMH+Gn\ncHOLWDVdG5fGxB++774EIlPbIUFp+qLktDgglQ4sIF5j3/I9peifWX5A+HeXaEOIh7qh1DI+Klhy\nWyAc4WfQTYsyCHb1MxDfoRfP0NvSRJ7zNjPEnyW2pcNixJSg6jC8vaPlJ5u/guD4eEajkQhHr9Ki\nC+WO3EQj7Yf48xhhe7Uec0eGsrpdEUD6CLcDjd8ky3NahTsQl3Br0PN65fHfAeB1SStrJQgn9BIQ\nJ/hKuUXk9RxiheEYyLB9GEEh/jUuSWuzpkU4/JI34ABsBbPgfqla9TqRmAqUdmUkGYIz23Roq9mG\nuFIJlqeClapYadnh/FbFRzbLBsRZL4WT8iHXs+6OD2nkIMqaQm2C8G8B8DzH6MbB5uVhgezKE+tw\nuyPvUw2CabAcf1Bj0WA4ublLnNOpidSX5ZiOFLQf9Ii7hdg2fZ99fqFi7Rd9ujSzBCPhWKbrhArW\n7gPm7h/VKDl4xuMAtsNVgkFOSWYxWFK47Ue5UJtu9a8Fv3wPPJ1aWMGPTyrTfbQvzjEMRwsZ6uMm\nodndIR+0xrntvMsX6Kakb+VB99geCtqxKuNQPe03Oc7o9rAAFxQzDJ8QnA+VYkD8lXznmSPaYLiA\nYQ7nOJSnGSNi/FCVnLZS1Co0Op5/cqS0WiuFZ/rPIlPGMewm/wQL/YDw/8ry3cK/jgMfarr+buDZ\nAEmL56i7tDWahkjnP1D6yEMMRosem6+MvbXKAbVPS0gIG0ceEqPNPxmKXWOAHAsJV/sOtQvRAbzB\ngyzE9OCQ952dguLlLBu+f1zC19XzZ/va6rPYitwvqLxCvJldk+ICyP1e8iEl9qPz51bw8v2Xg89r\ncTz5gE0heZkKZ35n/nbe9jwrUO4RHpfHPD7TxeoKotIp9oqteYFnGlUoNrYuE5wEx3tt6F60JYDJ\n8v0CdCNO5hHe81pVzQo3pRiVf4HiS1z015jTu7sj1XY5ALNLU9hslw80e8HgfzmIvTKd5vrytjXj\nF/x8P3chII+hp+9/2kbb5X7Lai+7PJVmrK2vz7BUmupzPBVXyKmKSxpbNk2FikOFCLDfUFn9Bv1X\n03J32Sb+HecBiHmRY/HXEy1OFVuXj4BH+gNzvlUMovd727rf2G9b3++37e+3H3tYdZe7Un71cdNc\n3vsyMHVAHSqu6oMglM5Fu06HeHmIC9jPbaQ58sUPBudvT8u4znqhJayWh6EppwsTkx/S35hsH1+x\n1sZruc/5S/Ha263ZNaAz8s95FpHsbdETVVaFYVZczd4tvk/mHJGsh6a3hpLp800MmTfPQZFHXF3z\nhJAF4nVc4QP0t/v8e9zzFxHvbeTpmOlAk6tLYC4TKXfLoi+cZ+kGsIUaVP+nlx8Q9uW7Ra+A+8y5\nmCcn+Qd1PQKMygXDkeS4hn56PgrhL7mfej4Qz3V+4l48wvpgHlXPiWiGBTHYxkWquuqMJ0QGYph4\nSAUp9i9/xv/S/SNAkMMBFnwMBJK071nt0HwJryOeVq1ZOCJtwAEDboTDnWpzWoJ/r4ksg7q3vhr4\nCF4c5/f78pUBuSD6Zi0AbsAbDxo3y0JY2lTKIqdSFroE3YhnID7iCnRzoFwD3hsk2wcadm5d0bc2\nPBd52H3qF6EYCoL7o472NLdjBM+hxMrnH/ct5rYeAEO1Lij+cth9AXipHutSxUt3hmvdEN25LzmI\nrBohzfrVoTdh8Dnt3jZNnm4DrwCm0KTR9aEGsXEh1u3vqJdlbfgvSLbrgP4X6p4CKDMccxaLz1ks\nAn0LJDLLkBv7AMGu/WuAdQPh9MuJajfhpKD7XXJAb+RRVozstz70dvDldb8HFPP+3gXIA5KVAJnB\nWONrf7l/gm3dpmbR5C36/3IF+AzGBwQxmDc4n3OKa0/31bUjzykDCiTbW7RtsKtrQdfLzl2K18vl\nzsvBlvy0QQ8H2fZT1xJgI97cLrzXG/XouRzi5iMpx3WcnT7QBcEWa287PVVaZAIPdWTU26OYZFYs\n2FcfV6nivW0OboWXt6T7mUD8u5AhK0PjKfqXQL8PvPd09lsaio/If7m+0QUqK84LiqW8L6bx7g8u\nPyD8u0voSvRVgITiiV7XP3uEujWL2t7o/BIXT2SKeppiNV8wHNc36M1UeTA6dNxXCFgtJRGdmMIJ\nk2IKNts3AEMBJXAoC1uCnpcHO9I3AJYOtHXtJxi+rXWcoSXgDyDwpfgzrM9wjAG/GGseM1B4eZq0\nAHvcS+KBgOGWwLfFE/SCwgOGQyhtkTY4LuBWx35ahyN93KMLXhvwplC27OJiDVYk8G74l+tgkKxr\nY+91upk8QjGn+JRGvKYeQJe3KtTR6ljAcz2IoLdhINtxbjEBOFQmIEoPPDog2OF4EQy38PaVgXgb\nLJ7QS7f6JSAjAXG5Qostg3DZ71jFe4klu1gbiweuaMfZzgVXC7g9UG8zLqjYhzvUygvpH5ySrIPN\nAcJauVMqCO1xZtXbddwHAmpYgFUhuoD4KqX71icEx1YW3logvH8F+O4rFL/9mO3vtBi/93tYih3u\nwlqsZb3kz6IX1AIBufkg4PeWMtwfZpiTGYgPS/BWqDhkSXxym6yqBME5ZR7l7Tal3ASsG7CDdMB0\nIdMdILyguoDXAnRBXy/Lg8NwWKsPEK6fuILwkoVfbwdhlWqhWsBrD/V07EibGtIkSIxdcVmSOkwm\nNnuaAcDq/QP+VkQdeA1kDYhtRh672ibNuPPXpPhEzfilH0CYH2C+hmL+2igKhEuZu5U93vIAuurh\nAZGvrA8fnPuHlx8Q9kVnh3xKF/UNdB372wtZhekyE4Ifofi27wPcJgJoKHxPqN7g2tMhqhtWd6y/\nUjwdgHldIcUuWcvp4hJ+ub/INa5Z21KIRKl9D3onAK9L+mkFfobgT2F+pc3g2y28rwYEDL4MDkKu\nJNPaS0CcgBbK4ozLeHwDgp8AeLhRfAt0BxDX9GqeTnzQDX3g5LFtH8tXnW4Cb+CBXI61R8Yzjh/K\nolxBch4Bv9SGOQ4RV3BbVmFfA3wpzcth97U31tpYvp/rMmW4ubz0GXpVByQj0nodOnAjLcJm0Uul\n7GuTU9Qn3942t9jnkV8i+EvCIiwDgtGs3WV53e6T7IXtv6ER/gC3FqSGc0sbgV3X13h6Z/AVSeUu\newMEv9jbXs8vexDZWw1w9wTd2u9AvOlYWIcLim/W4QOKJ6AgILc/vES1Rfs/IQZ3uIlZP1Ssv6qU\ndXq6bGzv0w2eyGK8P4FV9MuqN2tXBagxi4LKbjAM92PHi8G3rst8eZqhanaGmqHBwq+3W1UhbauQ\nAmCNsDykrYfMdIVMGaKI6RbvQIzKuKo/sJlcTYNBdsedULvzQXJZfeyp5UKmrehUVVdfwPAdiPtx\niX4q4jNSmDDMsSUIy7BAdwFx5EXg5zbDxJ9bfkA4l+8RbeLftP7+jjW44RzqDUnsP0LveILWHpQr\nBPPWIRjqHZYtyX2rKaLCwtA7qvj1GCa5LEOXxW+n9RLoYJHpuhWY07SyaiVLv0VxN9CdABxxNwDG\nh2Nh+WYIZvE13SECiF+QBsjN8psWNLYSD+h6gt8b+PLW/Y4BA+K90SzDDXrJ/UGBfO1m1t/tg568\nLMIaHC4OPlhOc2YKtddhzS9Y66tVlG6S77cNAo9Pr9zikeGAnI8wrAFe8UjID2dnuNqwuoodgKzV\nD5prhD6smC4RekBjuUZoB1+G3rhthmT0NBHOmRO2wS8PCjsg2Mu8+mNZugyCra2+AoIFzT0i/Jwl\ntgOCbdSlbwE0IRI3cglrBT6mS0G7BLoVIqtgOKxu7hah3o8CaBoEb4O0994OwcNFYu8GvtMKnND7\nntbg+DpfWF43AeWHNdouFwFJcKX7T4tsAjNDsObD6d5mzVTZ7lM7LMNXYNrNKptW44d8tyrLFuXb\nJtMIhuOLPQ7Dr6VmDb5AcFuU2yzDdg1WfgcIKwx2HXCNsw04t7/diePi6UVj5h1J/ZE6RzRlRLlG\nlMblDDcrsSl2Dzv4Clt1V3XRDez41SXAAcNhBXYgPdrV/hJ4qy5PEA4IFrXfF7WBsGkRXjAIDouw\nEjshIJi1/Z9bfkDYl+8+g+SIbLn3tUyHC1pLP1ZVPiwtHE5AJmHOAEwA3cG228Duyt9vJC8o7Wjc\nY6kZ76hS145Xv+EWAP/tTVCqIgS8BAZj36BCxn4/3svvEwDfoTggmMPfAWCA3CEUDYIZig+XCIZh\nsgyfFuIAZSmrcAAwLvCLCwyTgF9jG+J3C/LJ3CyyZRW+huHuCwstnJ9XJT/gb1uDdfoN43nR1tz7\ngbQUXo9S6Al6BekrP/uFL9mWojxRAJxtKdonlNpXtb+l1ZanO8T0D2aXCNvuvg6LcIJvygYLjBnA\nLulquzSmzNpmFdYdc3/VSic1T7/sm2H5sjYW7T3bPIAlfdBfWMkLiDfMPVguI1Ep0w3q8HgMT8fE\nv5knPpZBpNrCEkDtjYUddwBey5R0grqB8NYC3gDgtATvYRWmYwXFTzBMUBk+w+l3uxvAgmE44Jeh\nWKOsyAr7CNUOW+EaoWwZ7jNHdKuwP9xegL2lz3wi7yHyV3akLsd0LfePD/cAtwZDAZi/8CvuLRv8\nidf5JzSLE1uDZeG9dkJw355xVi72zBYwHE/xqf+kHpJT13unCeBl81PJpKIL1QBnb9aezG4z6ivg\n1sMwCG0w7IBa7hF30G0PL1sf0vUHnCVoEJwPMigrsFI48pH58j4oWiX1J5cfEPblozLmdLOOiiHP\nhGQh7nZgyRPiaF5ClcLjNyicD4qDFK4QrBQ+Ms2Y7F3VT86J0T0zSqcI1OcLtCXGn5jFlGDY4fEG\nwhOCr/Db1mkFvlmKn6F3Wuwky/DZ9SHuLQB4poWYpS/E1tNAuRowJ7muWAXkU9mtxQnA4ClmQpjP\n/edjBwjDPmxgggnDQuzgmy4RYdEFhbe/prwMllMrj2419kEeFzCGKriJk/Zu/Yqj2zL4tbf+z9v2\n/kQDrmu/z/LS2+VzOw3XiN7OYqaIF4C/CIjXBGKwS8TqfsIrgNEHlHnDu1l7c55mhl46nnAMuFsE\nQ/AmoAhQLQhu/S7LpQAmZ0TxcqoBczTsKOBX4av4LBKbq53qBCTuLuD7nf3I9Q6fxQBeA11V8dfX\ncdzWLG8R1CdqDU4DetP6y9bgWzwPltu0Tz7C7BIxX1+nRS7+EoaZAauCwyLM4FkgjXbdOXNEfi47\nZ1rYbXvOcsGg9AxZBcB9aXqB5Jo7b+cTnugr+5UuBZiNs9mK66rxJ4IFdon4ZdZgtwhvBd4bBcAe\nfqtkmOMhqOl4FNa28j5ChmiGE3pdKndF/xR2+SnFyVaHy8dbGGBuSFqDF8xCfUDwEix/uLk+qFzA\nN9vgExgL6jfgQLuqzM2thWDYXTkyb2QN/gHh/yOLq4asvNNbtlck73XFGVinlMY7x8kB5TIxAFj5\nGGMAXaMpj7hqo/9ylYhDKUsU5wNAdEjy4wi3ATvPn3MFJBQ+gPB3jnPcES9jezvWIWYCb9xDswgL\nwQIB75YBH6ixPYevMK8yrMFSljNew7f4hFoM4D2312N4gF/YK0f+/LLBLlmHD8twh9kE47AK8zkp\nqPvgOnOPQH6COVtyMGgj4Gpj7QXGsQRQR6Ln7bdhWXp7axbhW9scbbY/eJEVGGgW4ZpWbeMV8Bvr\n1vIT1o21V855e4Jvlc9hFY4HlKFrrR2TZmcIJosdF7x4v7f+4q+PTf/655FP3/jWD5QeGNRcPdzj\nmWrerYdybwt5D7NBzLi53yqwgDgqW8dxOeIKim3WiF3W3rYltwmeRm1C8p6zR9R8zB08J4yUJbjk\nO/WViA9C9HKYADyhNwbK6RZ3k+AZI6Y18A67py/zJV3kpSom6wD0UJXTpvnHPdYi4oXipS8LvrQV\nQcp9AqyyCJsV+Jf8cmvwG78ChDfw3tqA+L0VawPvRWDs05Bhe5v1TqgLWJv0HrVp0/UmX/j9a8S1\nekop6NLKfdjDNULgMAtpD7RKALzE4dj3VRyC3W3tBsDPdTbqnc5f4vDr61quW/yONxQrrMB7ZUno\n6ufZ1BOPAv4fW35A2JemeL9K51T45MuY49ByM1AtOmbIX4S9rtInHDf4RXaSua/aoTmSNW44AwOi\npXSGFAQ2PvB8g+4RqO4c8BzlE2Gh8pige433grzBRZapPENuL/Eef/gLM8yC3B7ktAKnfzCdw3ET\ndh8twwEHl7g8hgLgGkBIMIwBxgsfgdj8c8VnathpAW4Q7L7ABa5IkC0Avll3w10i4OzuJhGWqa0F\nzpqKWqhPURsXB9fcP5PEQNE48MlTnreZjtwk2n4q4i/gN9vp/bHY2p2UW4Te1gsEp1tEWIbdUuwW\nyj7zwwTfCm+SGze/4u2/dUIw+/HWGiW1qVzy64QBwCiXnxwsF/clYRE2qcPW4aL1VfV91Y16j5+w\njDjfcZErE7Nie1ymBQ6ABoQswgTAHi7AddeJPYF5WoIHDKc7ArklHJbXuQZCdYjq4Dm2DXTsnsoC\nYq4gBegKtljHfLxsOcxZJEbebgP9QHmMug5Y1QBgCfhdNq+xp47pO/Gi9kGv1gt8FxZsTvZf4Qss\nb7zXG69fC7+Wh98vrxsD3/dWvDy8GIb9mIiFMzPbZcpWn0GJrcHnFmklrrYpdSMobeRbh950zwyZ\nCfsgjX0oyZSWUDsOdwVVuKuJwfAeMPsZhsfxeZ4A0JVlvpNhTE8ZDC8LL4UG9AYk+L5ofMHyzy4/\nIPy7C+tbTE71Co0n2o5tfdsgjqmSkDwvzlBcwl85fuiEGmCagfx90gl1SLkT0n1KAW5bghscxtTv\nqSBY8vy4oYKFvo+ECx37QmXVy5CvVdOr9e30BX4CFF7SSuwF1XyBZ5yUzg7r8W2wXANc1HzBS6S7\nSgi5SyAswmwB/iKMOwQnCHtdbkFahefWXCTgVtvdtuUOEXAcVmI9BsGV9ZEV8QMQeztqsJJ+N9Gw\nzTrVG3kwT38qsyhFe2Ib+zqPP22F2tgE4slR5AvYV4djpfmDcfEVPgB547UXXkvTN9im71IbsKVy\ngVpFG3+o1GYpTcGxH3fIWnubyYsgOOYh5nuKiRdqLvGA4u6ec/jM5xqgH1ZhM6XJ9vcx4Ws16pZq\n+AGOuc1cj1RbSCsZWmVqCiHfB0aFO0xPEGYAzn23Ck+rL/sFZ/y7IFP1tAQ/WuoCfgOO4l7HMe6L\nX61sFQbDUHd5CFDP6dOug/ru1mB4XriuxOsj+hskpn1cWKL2wQzvTzn5h8KE6ljYAsyW5bAGr/iE\nsYPw+5dvHXRtRbklvdWswL6+y6enINibl31QAh1+Xa7E+7myAltHktaoz21KJnUZ5jJT87jYQ4sI\n1lLs9GU3xSwLZREWUB1S/R5g/GQhDteYAuF0h1TBVntoWQTAlsdVoJBKtLT9j2vEv7zcjAjXdAF6\nGUPq4SazM+r28h50hCzCAQaF1/f+QaA8MkX3ow65lITvtZ0zKMMVhNbn6vo9EUgwQqQyaVaWE3Tj\nOjEQoJ7kGZD1iLOn/lGSUmnmegPieD0bxag4XSRavFyswF6Y7EJxdYUguK1PbdfxBskyrMXo06jZ\nOc+uEJ/2zXIt7vMcYOzWYUwrccHwblBc0Ntgdg6CIwsz+w2bpTgsyr51ZahhkVUAPiCzLLXwNKPN\ntlap1Fp6PMOtjv3btoadzrZ6gi4QbXse89x4ew0raHOPIPA9LcGrhUXZIly/MMGXp0ULzpjgG/Bb\nx0zZ1+eHzToc1vr87C6VSZRWfqJbxWAl263k8YBfsxCpDyAMi/CGBATHVGUpJD4oxavMfmwcfQlr\nb4T992zrSCIPcZR26ybrLgHwAbg9TaZ9zynTHE6mVXhPEBlQGZWNqvs2dZo9cAAAIABJREFUhiR1\nhPe1bB83AL6F+8C46RpxTsN1c6O4zSV8qRruaSKAw6/6G4Jo7ikKXnXe8cdyEB2CX+EX/Mu3KyzC\nivdb8WvvBOC1HYD3thlb3gTB2FWeghw3kQ/IIRvIEhy5j15cmq/dmUkiUtohu0JKwQfJWS9SB06z\nEIeve8h++8JlWNpxracE332rw5sPsbUL+ADqt1oPj7xsibozP3xrS66FzcHb9LkpHLu3p1ft/+Dy\nA8K+fNc1opptPZG19puputrsypSPaB3RaOT0evUGrSTYVLULvJkWWofa8ZvCGNeIef4o5+lJLNGR\n66azMycEU5ivJOj7vM1jgTR0bnvtfCvTv7fm7SKErHYoFgIKDMuwVHVcLcIP6wG8cvoK908yg4T6\nLe60FK9Fg+VCGIIAeG2H2tXAVddKi29ahNOSS9A7fX0TkGtO4YBf/uqcDf4m14lU4jKAWDv4Slhy\nK06bS0Spi1unvB9Tgu1wwaj9aJNXK3C2oUrLfVog7l0R7VZ8ejQ0K3B8MrmA+ITg5iKxfRopWMNr\n1l5vpwXH1XCfXCLymG6fQs2oOeE3IdiuG/JJrUoMurzd2YNWtEPkw5tIPIQq4pPTS+M7XbBXoggY\nFjcvR13IvVb1VtPnY44XU7WEbEdVU2EFPraRHkhwDhiO8nsnAL/TOsxA/N4dkk+f4A7C4QKRQOJ1\ncoVhh+B4KO3uBhRPfc3gKs77YA1WsX4Lodki+mC+6RpxwFTA85GGZSopHRLMEo1oC+Jb1z6ph59H\nDzPVW0s/uBx8S8wb/DaZSBD8Wi9zk3jVzB+/3opf7n70623++fJWiGzIXpC3jYwTsa0q8PLZb8ww\nUA+EpQq7JVhkwi/Orfdfa4s0D5NyK4eBqAun7bC9XEDtlP/WbvmrpDUv9ZMPOPukzzcB8xyY2xQM\nyG3cgFnxE4K3PczYw5VPW6jIexIH4mFz+yPLDwj/5qLcRgHi1ye8KkAssz8rzQG++UP8oxQgCOan\n++pDI4MH8F7S3o4JhgNgRachOKA38i0U8PNiqphIVdbf+uEO00pp/fg4X3KvgNiEy9hv2+kjLNfB\ncrEcFuHKQgGFEFB4mUyLcJs/OOPQ4LVNMyXnHMNhBW6Qm8dC4J/H7q4RBMBeEQqQiwRZhNlqOwa6\nMfSaFZh8fg83CRpIl9cjFwr3dw2wA8h1QdWUHbXVaHrcXK0XDMClLSuOJDdKc55LVe5lH+02FS51\nj2qPBMUabdfbbYDvgOA2aE4vQOzgG4PmwnrqvcmhQttguY8uE6Rvl5+rgLlGOISttNjZVmAWn7Nk\n7Y3RUlPCC2FxKmmX0ySiYFiU3tQ484rPgSosd6TDTkDT7Tn+JjLvYpSBNvpyShvSzQOEub/A37A4\nFE7ofQ/A7TCszQ3iCsLpbtAHnHWL6i6YdSCL+uKHgGgIHYjhRpQ4ly194gPnwv0moHdDLzDevx7H\nA+VGfi+D/FpFVs+hjhWyaxUAK9+W0Dib9/HfZi7aCcRmEbaZcV7rZb7Bbgnea+O93vbGZW388v72\n670NgmXb6DkIIBt4u9uI5+XlZZcQHA/A4ncVbhKhw0qRUo96aLUs6/jN2SG7TFZuAl6e2lAjP4Kq\n781t6wGK90N8vDUSEADPrcMvFnGF90OlbcrnP0/CPyDsy+iPz4vMZnqCbyTsuDuPUOfQUGlDzbA5\njBVY259wXHEFFiMt9yoXmke8d5ywCks4/IoVQIJvbuh+pV5rNRCWKIm6kV5yOkqqoIIz1kv2u6sr\n5dhqV87MCDxTBB7A95pGpuVXcLMCx7RSNaVUuEVMi/AFfL0M+/VnmvFKUOwpW33cRXOLiI9geBhs\nEcawDvuI3uYC4ZDFFqkaJEdKFzr8hUkQo6ybbK1rEOyb7BqjlfTwHYZLaTynyd/m9ifVCkk/c7P2\nU6r9yiVs1lAcU6YZ/Br0vlDW4BOGzSViybYR2BCy/LqrQ4Kvt0+SEzmY7jhuF1hhDSZFF9Np5dRa\nUMdVq8MYypNvG6AFwsEzR1/U7HcC0CQM8eq4VqWy/+8sXf5oQm7UFOlnjGMZX8fCejsh+O1uDXc4\n1tNK3AaZlQU4oTIgMuMIRsEPLXWnHoMAYFGggWg87Iz97XErZID3i7QK04C5mNu4uXZcLcAnRHXd\ng+zzEOTHFRDw5A+ApaYkZUPI9w3BG2/YXNYLIm/zKX4H+G63Am/s18u+8Lde2Gtjv2p+59f7jfXe\nWO+NX2tD1huyCoZF3h2Cs1zN/3apWJtGtH/N/sDK0+JDN/E7aS2xFNNQpEiasky8hsQfvL3fKYEw\nAIZh8bKe7g0dhm8g/AzDpvPNGzgBOK3BalNyircLd5HAXg2IReMN2n+zv39v+QFhX77LwSUwe9Ot\nJcR97UWIAbgfDeALnzlaPwFw7hfgpiBMAHY0oDTPsEzH+Il8rT6dAuANn5NeQMF3ZHXlk3f+WOhR\nynzeDaCfrb8MuU3peplyGvrJtjRAFs3i2ZSVdJvw7dOUaeUCIQ2QY/o0GzjHYBw+xeRjeQHemz/w\nPY1nOQE4rMKwT5buneGwCEM7BJsvGFl8yT3iOxbiT8es7QblhotC7iLcFUIPNChO94gH0FUpd4vZ\nnuK6BxTHbxYX10T4sR/oFMoljvHAGD+qpvTqy3HIadNuH9SwTyzbNGkFw5r7sq11HpZfNctMlN15\n/MlyzGB0vn4XB2C7W23AGABsD0CSejutUa2v1YN/xqcxIOL9wTtIIpe/qyD5PCWYjXuQHoeKA2qK\nWOBM+2YQ1g65AcO7wfCMI6twA92AzttUZBeYZRjOjkN9yNNJ6AP6myCMsArn7/JUbgW/aeW9Qu8T\nBFebsoxkiHpgPQBZ17f3dwr/sIl6a1QBdJfsdwPMll1A/N7YbgHee2OJDfrd7429Xg7Fb+z3C/tl\nftzr/Yb8MsuwyBviUG3zpL29DbytJyigL8XOWV3izZ3bkDDkhFCbb3eNlB/V8qJADIb1SK6VOvqL\nb1UKKqMvIsrUt/3T2FGf+xmI8yHtBGKI+MA4ezzY4rMKYfnc9Q7AAnflWHUvGixhV0ijW8pjUHjK\n8f/O8gPCuXxPyF5nUMjmO69ReCYjPhukzifC0PLjKp8AWEHgQAJmgO+E4es5vk1rsPrEiUvcod07\nl19rKjoWShDYpNq3JzyNm5oN/UhE993hgkH2+P2RhiGY4fhUgLUy8HJllIVYGwSHEeM2c8QxlRQB\ncIFytwaXe8R/ui0QblbhGJ8AFAADQLMIA9juH+wwC4LYTYDLfsMNlh+OsctEKWTvFIq0+HTo7V2A\ntxY+25RS27kJ1rtbhIedcJsVeMAwwEBMYBy/pgq4Ykr4Rc0d3OK0+wXXdGrbAdgs/Gu5XVbLzzdu\nq6ZRUz9OjRqn5Titwr4ur48CFyRElYX/BEf2mY+yYZYtK3lZsKKMEgDIPztOvkkGKt0vlrjeWB6i\n7lDcv5eQqxIIExB3v2F1QO5W4jYYrllXvV8N+N032ATXT6viaHII2M2HFwDTCszhGDRpTkxWfgvj\nd78BvreBVfvym2d1hRakWl8mqERXNeZlIId8gCoQjgew/d5Q8bKO7VoOwQ73r50QvN8b79fG+vU2\nAF5vICBYAn5DA1kZb/+0817uG7xgMLykfSXctkr9IcCUXf88fjZOBVQKEA8ZlzLTHvjNGuypGIRp\nHw6kDLsJuU/xCcRnPMScUezrkZpWYQNggmBRQFa2WQusErXpI3yX7mfcf2f5AWFfbn3yW+ddzfiM\naBXHFuF6JQKw8k1LSdDVuGpKYJLGyZQeH1Axw3DF6P9aGK7sojDUhcoCaISC1u9n/jXdDfLVS25r\nbR08gOZaoBcwyZ4bkMGA+wF6EcBrx6Y7xK2WeGnTpE3lT/DL2wa9ggNoyzXCobhB8PmBja8svd9a\nlzTohwAhruAwrEADYISP8DYANisRbMTvgNjbYLkDfjXmGaZjNAAvrbYNhjWtweGHllZjifYaD6bR\nbqKTSMY2CNZqT985Fk0v34CQIsmN9HYUv8xvNKrdkTVYyVVCu0W4PqaxHXwrzj6FXIN1bbBcAVGf\nHeK0GrM7RIHzBX5pH7P9z1X6fki2ggDfutKUkCEaZWadSGKKvHyFEe21Srj32UsPFg5oXWcsd6D3\nMhpxO9NqO7a33iE4Ybgsqg18H+Ki7Pnztpvq5LAKeyXWg2QBJktS9bJny3Cr2wjveOCN61m/b/MH\ne95qVotyiTi/hFdzIE+3iNQ9VEGtlrmPhQRbdJ4L3XLFcf/ftAK7BXtve2CPAYqL4rfWfliE1y8D\n4LXcGuxTfuXj2jvrZTsEr6V47Y29AoYNfDP/oS/znvQiM1DtlcUSHVc1I1XIvjzHZZbxsORbTx1y\ni8OboPYrID4sxGk59vpcMGv72yA43CHSGryi/lev9vDx9lVGafyp5QeEf3OpOitFVFaQQqtbKPek\nYM7iopF2iV3giykv+k4KloCDEGKWLi3BWgITruiezgt4Ne4wCI65Pi0sOUq0Q2d0+D5jwSXXtO+F\niADwApMGNy4ASphQmY71ad7gGT+nULutOViOhNPT9tESLNM9Ij6aEfMIk4uEECCDrLsJ1zKu8w0Y\n5iaU8Os+v2u7lRjNJSKOqaJZhaEn9N5dIQKmOhBbHExxLn/tF1Cr1QYZfJslmPnG+dVbeiWQ0XZa\nZUXbDxKjiwcE07Rt2XxDNw+4A10V3H7BPu/lF9sswrjA77EfbhLhIyympKMc9YMvsJc3W4W7O0SB\nc8IRahtyosXNPhL1RDBMxVQPD7l4zahUOOKz6OicdnKXkofi5Kq8KlRvT6h0eR8OlubiQTCsBb8B\nxD5fQAfhsT2g+LLdtC3oxQHAXx1r7gaeN/H+lPUqYRlmAAYSoMP1ya8fAyb3tjbIoNRgaQJxnJcA\nxXEF2Vz4VwCu7gogHpIy03ZegnAMgrM3Jvxlvu0zbxjw6hn/qvj93li/FiC/IP+vm0vMVxpU5qj7\n3PYxC+ufyLchAD8MEiWkDutscGhIEk/q56nr3arvEoLqD5mW1uIrH9xbwkeY623jAOIDlAmKyW9Y\nFOQWYWtYg7csuK0ji1Pj1Wz6B1ed/0yf9i8uE9A+L6OiciDZTDMtl9K15wWAp5V4Ngl+egoBFnEJ\nEdFrQuighE8Ivq/irCevfHUuDMSegbAYM2CGEKiZDsT9ukqBMrwgfloIUwhyBH5fYIzpDxO/byGu\n7XfqvfsKuyB82ObcwQ18OxTHfMEBvekrjCeLcIffO/iOY+ucXcK9Qwt4wxIcA+XUFAPiuALNNzjb\nyxfQG8cyjo7ponmEq+3ltR2Cap8UdlhCqH00q3C0K/IZrt5FGoVheMTVOdQnx5OXwXDtMBxXMBq1\nP7hpvJWY8wUz/M5p06Tvh1uEmqUYkHSL6FbfDrh2vKA50s1zQ3ZEfYHDrlytK8ZRVH3FvM+Yj/N9\nif5dZX0JXy/Q6yB2tB29yWDeDaLwFpFlUfcTAzoTeJUhuI7FgNCtA4T1BsPuEqEdfPncCE+43RSu\nfqStnlmOt4cVF+PZyuPWs3twn9aqZ2885h4hWEv7ILiv/IL32I41puIrXRJ5FEDiYUiqTqEOwQXD\ncT4AwOfM1YBgsbcoNge60jRvu6agSyDW8sPeZhGWtWAuEb9SD1pbk2ozCIvwwmsvsyb7w2rM4nO8\nDcFlX3S2UlCBgMWZPfjGeyZu+SXJzH+angfHQyjv3aG3u0Gcg+Tu4Aw1F5qXaFqFGxDvAmPTNWEZ\nXtnfg2P8PfQfXX5AOJfvPoUcaJr/yzl9Nr0JZWfchOKK7+GZA4bmXBguEm5DCN7gmLYwYbpQadsr\ntbhQStQOxgaY5a8Vk+qnr58LEol5W9Vf9cCszApFWNXqNbiEprZjWq4Y6ZaB+D2kewb75dbHLApG\nbbS7JMgGiKn6CPHcp3S4xJGv8Iuun6tcVszVrbsj/jr4DoqXSgG2FmzXp2wJwFXNu4Wax+PW76ni\nNd1YKp7Lx21MUWZxLOOU4mJUPo/Ol+/ly9sl/JzMj5RSUKX801zEQaoaZBAkneFodzjOycX3W/RQ\ndLw0GM5Sc9cIUF0eQMwwTEC8xV/T7uZulIAL9gW2iKvltwpzzCKhftuJwF5MJROyPdCxiov2U+2k\nliOix8dGL8daocpw9z3rJ5UqH88qoHYDf40cbYEz4MeV4qtYq7y7ZVbLejanGNuXMMf5fly4rPL5\no5Q3jtfMq92m8q4HSk6TxaT2tVbzL3U57zJNlO9lj/tSiv8CiscKoCyX6PdRrjP1diXkfcKwn29R\nAtkbippH12Sy+ayq1FcxV4Cxw/3m+vDp0sDAm33L3tL8teth5/Va2LvmJF5rpxFCBDlYjp/PssVK\n1/XzGe721vOAXmoWCb7taLXdMq8pHRqA+xGEKW5Yg1VtKsctNpxoCzKsghxmlN6VHgbFdQFym9D0\nn11+QNiX38HgCbM1H+Z0EyiLaT+vFCEyTtv1QWktrA/xpXTb039kOF8zaO468/V0uaQarDkmC2FS\nSOcrtnGtOJvnp2z9kjti3EBECZCvfNLhn18128KzJYh/N33Oy2ufeF7kqO8QJMufWCxu8X3UXeY+\nl0imUYyBcgK4RewlC39JfTb5LwheCvylgpcK/lL4fn1VLMJ/bXuifsk2izB8qizYaz+zBvqcsrIN\ndpcDsQ/UsCl0lg3MUN/KytdkJYk8vLsy5DWUYqRJJflJwYdgZQV4KMNS9qX4vU14g0q00oNPUpHm\nPvpxbmDVq2ZLJ6tvHmZ1UuH2YEsk3GDrSNklSkiGfDBTh2Bo7kvEhSuEqK/bH+R2tfv4DSq4ANsd\nBdkUzN0qXJZGLlcCXI0YVH3VUf/pEaNV1nf5clv0G0m0lX8/p2QogHrIyWS9DYjW7BkCJfeQmnVD\n4FZzTpfhsKjf+5FewkoF39oy/UaVaZVrydnzwWOuXhRZVMcbu7HtcSYBYxt6qbZxjuYajUe4LEAy\nJsNhOfQwlamCewt16Oh/VHWSD6TldiRxYMEGqIUVZLuzLoAVX8m0PQRsrRivgJjrFvnRDV5fa+G1\nBO+X4LXFp2ELABa8fN0ZXvYBIVTfRxrJKOcUV5qd41H3SIEnXjkfwKMkeZYKLt7S8TN9GMyOOCJX\nlulQ2of2/f/P3rUtSo6jSFDN//9xm30QAQFCzqye7pp9OKrKY92tC4IwRjLkwGp+vz6Pa4+f/Rbi\nT7sfIOzueyB80fAOILjm2UAZAJjLQuyeQNfI1kgpj7XyCW7PThFoEAmN7G0QjNKxnEJoctjr4oWk\nkouAwXKUIgZn7b5sBApZN4Fg8XFUfw221DazMpNfuuTRDSb3AewmZhUMwy/QFOCcTGpZ3Tlu0aoi\nlKJMBcj/EQfBDsgjLHuxQdP7H9mAeP9M/mN5jNYvB8RLGPySiYQ1AExj0MdkPxxsLUkHssf1qeED\nEPefa7HyjUEDwC18MMagFYk6GQgkMLBCPsjP8rKkXRyD20Z8UoGxL4QmdT4C4i6tJAU3/qo4CBZr\n4Bcb4fau/aVkD+yaMdVHlOqJDhcURJpeEXrwoHVM4Bcb55J/EOiVPtY9jeelw+Mo3Kchk95m62Bm\nPoLJeCIuhT/nG5lh+B5v2wa+Hm8D0I20DpA9Y1sTloRLcekPWmaQQWkBKKRUUcLo7fRTSdvmK/BV\nilMGv12GNfnlXE8JCAUgZq4ZIDg/093X/151OZ5CbZ7oQgkNq0gcrxec2z8IpOggjvskMCxuurDH\n0VUgujXFj7d7mcr6tfaD6AMgrCM4XgGCl/yl/LU6B82kEj4QQ/CF4d1wYTN3ZHIDvTmaMqRZ8dsQ\nro9ZHtsBsCS/OPIJ5vqp4gKksVJ8PCu1yKZ+QNVLn/8t9wOE3b0RXM1Xf8uJ+hMIvmuHWdObCz6W\nBcwASr58RZvx+HsCBO4ZL48URhY79ptUFYaFAXAJ7HYArJzi9eEV2MngSNBoCUVfpkU+aYHXUjGD\nNniDwV+HRti1wa45FTX5S1YR4CPAPcI5xj0c9r2StsAMgAF+oRlm8PsfhUZ4h5dYaAFTK+yv3WAa\nAVtgg022a4DNYid1fKhgArPtpy64P4JmCDX6CEMBxGYBgoXj4idFMAbYCiDgo07EzBgDiZ3WiUoa\nk69pcdwQ8sSCcE+AYS6T/vZoVvw6xleAEQDFJAGwg2BVgGETfTD/+bC9hB5/J3TkYzOGI98OLxQn\n8MUj1+FthOxM72WKi8m9uVZqzJr9zFHuGeeHHbZFrTRjXG38Qf826GogONrgoDC0wTKvK8m0NEvL\nvJXuvS0xHwAd9BBiFD9cUR0Uo9r9ktpfbXIp/Tb8aESdR3ziJ/kAjc11rhmWUy51Tn+GSesPmata\n97Es2ajKX72XsIjk5oenhJfvWxATUQK565cSIE6Am9fVwip/uZLm13J0N4LeHke9Vpbo00i8uGPd\nGPn0msIUBHpNesp0Y9qVys+txPk+EMgB2oQZJ3WYbnrQPQ2POSj+AcL/O/ft0Cfp6gCC9QDBsE/l\nfGy7WupUEWhnsBSCASkvGc9juWBwbuBpel8FTBUfxtkKyaMkA1sVIX8uikPWsgw22SD0cGcctONH\naxX995KPyrM22FsMepftr3Ox1hcb9cgkQhwsSjGNyOdrE8ABHgsNgQQ71NjIRXapAYLJPCJ+VsHw\n/rTuCYh/qe0vjAnMQLZWOD6csRL0Lluh9V0OfJfa/rpRAGPNsW2gtQPfM42vThPO3Kr9YAPIUd/T\nwh0MS4Iqy0BltklMTF/ywZ/EY1KOnTioD2n9ChLsgoootiw3LWVOQaYFAO9nMgutMMCwOghez+M8\nBVeJY5Gi7mPxCQEy7wmmHes1cBmtX6sgivnGN/E1xznCiLqmcaZPWUawm/HDo3OpPjXA+dloaIYx\nvttvJW/Gb+7Qz1+O3wCMrYWTSSY4FpFYZ/F1Rsyb5BUmGjb9NPtynJAjCXAnOaWX9EhzGp21wPg9\nw5i0I9MepxyaFj08HDwfQgHuVaSA3v3tCfpMPMIGedU0wmZi8mxlidvHbOCrxSzir5VxrPmdrzCT\nwEawE/xu72zkOIWZm5w8zrLMBGRu686VX/wQi1wVFBNIDj7MdEvxHQSXH2mIn72p8VnLT90g2+Kx\nE/+u+wHC7r7XCJNdcIDbtP2rzOU0o1hUB/9Ek9nmYrcEwE5ouN/+T+FC4xy4Qd9JkNiRwyBMZZM/\nnskzvgPjSUN8G8vuOQLRkvKKmTTB1q6/VDdQdXvgfUyLH8/l2lG+PvHBWBbspAX2TWBi5ubWrAE+\nyyUIzq/D/UdyI1uCYUsA7MAnQPDzeFlzc4gEwQpTiQjvh4GwlwYgJoAcQJjmhoVyB7y7M3Pa5p2c\nF8A4hV0ImKeGAwSTWA8/AbkKDEQygWBYZhfKMQR68B30Gmeu7ygbj5jBsU5p5MMaD1BiAMES2uBt\nHsEgWMj0SqOeaDsv23hgwRTmeEFYxR4pYbCFljLQpbC2cE8fwuls9N5y17wk5G+VEH883QCaLUEt\n01EHvu9+871n9uFH9MzhWAeSD32W8CP9BIZ5qhEnMv46WDwB7wmOCwA2CbOJBMCZF7JIIg1x2Vd+\nEJYAQvt3PCSymGq7T3c79OyP0oosGmCRY3dwMZUw0QDEInHKjStswuzhF5lH/FL59Sw/GaJrhmv4\n8fCjGjJjBMLBUW7pgyv8qaf11TSM7bW65MmpeQC/zizW8gSvV/CSCQQDAK8z7hF/Y+ua4R8g/L91\n3w59LEYAVJlMHpp5hPLr0ATSoRHGLtlIt5CtSmdt5sK3ODkBgLgy/Mb8rVwGR8BDUjhVbXAHt2f8\nBG42E8wFeYgzPcdej8momrewEV66v+bjgJdNIX755jgjTTDAr6jFkW6Pz0LqWjxkssF0GQ3krOYS\nOD5KTPYrMQLEGwBDG+xhswDD+LhCAcWyN8ytB5pfdbBbQXGmmQPkHqc5VqJXkCsU3zXFInftsdIc\nc12T9reA4CEe0r0CN4xvUm8BxpiBj/Q9u1No2HBFWs8LOp3TDj/vIbDUCKvBVtgBxcOblR7iJfA3\nUVmRUe4BoHGEJp+w2Z5rASlUMBuAWGmcLFdC5NUMcfkuXqt7n6wiyq2mdJfnjd4qG0CwNGArecwc\nk5ZNec1NJDieQC/ouNK1BdBNvig1H48XzwWDYcGSqHNlJR/9GgDe8uM0hZjMIxIYT/FJt6Ah70wd\nC8HGOIzBszXBRmscZd0ubi8nfxpN4ZYTFRPIAO8Ghj3A2mILtiKW50MK8zgxSXOIZ7IP1kEz7GBY\nlzzFZIKPAcNi6qAX0h3h3mEC9H0cMPSUFiui8ckoy+yVKMYKHdIDGcJEv6DZYjcc9CwDCF50fNoG\nvI/L6v3hE/GPb2y/6s/xaf8zN34G+JJv0vTm76YFriCY82MphF+TySvCosF4tka4mUf4CQsWzDqF\nBJ5KlVZBF1XGPhOccx1rZ/Q3ps3mEgyWY6mbECaeEDBHtdfOlLZ0P20DDG+t7f6lXRY2xKWfzSL2\nw4x/Bcd7BICArwUe4Bgz4oyaT4tAj/dJD2kagaPUFsCwuXYYfgfB69kfWfilfqYsbETVN7fQiQGL\nwG2G7Ux3TXEcYefMsW5+63GYqBoH0FvAsMwAOGzCJ8ArPX+2qwB1oisi0wJWOmjpgSYG5A526aog\nUlpDSuW11zf5O30rxU48gLRutk+NiA/WmIk+BIKNgIjzBHQ2x93v5uObcac2OMCwV8JCtQ59AmOq\nLsBwgzbfhSZh3XIzZioa+VtZ88bz3azGWE3addsJjlU+aYUlgF791fgDIANMBK6gvJIgBnMU1RWA\nMoDf9pvlE0Ax7IS7HLOBRvPRn7XB4ScweQBiMwEgxqkRqRGuawaKh0yzI098uRR+8c5gQhgMu+Gp\n0kkFsvbh6crHefn4bqC8QbCuyTxCyUwiT4sAGH4WnybhskhcTqBPAPgIW/Z4AsF2DoEPFsaMkmMd\nS+656UtEz7i+QkFfINARMFMaNMKlrBAIbqAYH+TYLwzxlVGRx7aBrmQ9AAAgAElEQVSZxHrkj7sf\nIOzuOxh8Yyz8b9qhexOA+Yu6VQRHAWGxA4gUkwjaNVtMI/ypP9glHSvEQg4CMF1lsQkFLUBP9wP8\nxV/DOrNY/PXOKcoM7T4mQKN9gv5TmxG3XNtrDnbLUWnLHBwv+U9oRvkoMQk/m0b0nksZOQLA0UuJ\nMdhZHARLmsqkiUSaR2wtMF/zS2K/nsfBs4X2dwK/FfBqmD/UuDSL0CCJKqzZVKKC2503/JQ3zCMi\nbASqWABajM0EAlBvATwEhqe4g6ZKUufyHr5oBiN5jJ/qSn/Fwzr7j3K05i1/C+ubwDDAL3iCDmWz\n/9SJmDcShAXwNtMJzoviMS4+0oQikR4jY5kecPgmhOWMPHnQW3a7Ziso3Rt68HQvl4BWw0/ss8bZ\nCyD28AH8JNdMsY0NPFEBBnfHbJtnLDsgCBUHb3/JI9LoZwK9/ddth62VOwFwAcG4c+lzntMrAKPP\nE8oGjKMwjSlkVuX9SsIy33b5bQGApfoV59SGVjjthQW8Sy029i4R0vyyiYQeG+aqltjTFEeobe2w\nGRouMXKFVrXHhboqx6bF8dDEmNE4YU0FGxOKRJwTd6eeMRw0fU8Dj7e40oMcmUY8YRKR5hDQBm/T\nCMjkP+t+gLC7b5XxVbv7ov1Vf61N6X137hLdwNUgWq3UJW4yEX4XWunHE/FmVtAELzF5YFIRQiqF\nJwusDgTqMx1gXjOHMIqzlk5MvtiVeptNKhxmhFs+ARlP+y0ssj8va5aA2LXCVfPr40J+xCcgTtMI\nhwQ0BgR2Yfowpft8YNwqENY0h8CcW4Lf/indX+anBcgjv0R845sEcJ9AMIPfDEvNh3IhqOXiT4Sk\nJMwnP4NmAWgKwd/CIiMQriAYTFUCNMQDBkjF04zDzRkT9qtDnsuVgySQq794mv9Mi3VtBE4AfEVD\n06uuxVL/AkY5Ns1kpzGCRHNjPnPsDgBs4AUQVLuCMsxaux63YoCr59SISHt+CIZzmQ2bLtf0Gq0t\nLd86TVVMZeNR1nwTnHTAq0Nc8uewMW4PfxX41rTUDs/lYin4uggwgaraXL39RO6KlxPgfhMWwUNV\n0l/vs+2ROcZiA6KwGfZ6RVOBsiPLwvN51Wj4lq1gipAZnr+DYQwEm0Z43F4Xmg/ykrxqOiJtMotg\nM4iHNMJLAYhXsjQRiQ+6sFAWTZI0hv8VRBN2TdK3KBa0jyKFd5YK0tnxF3WQEiKGMSNy6okuiblY\nzDV9YTQA8TaTePQJDbCZyPOQacTBR/999wOE3X07+B38nkfPOBhpedbhZwCdoDVsgh24iEj4QyMc\n/mRWIhso7bMvtzZQBHU4CD0WA0lKSWIHJLTw0aJDFUb5AHBQAowl4jQqUAeV8cwf6NYvLn1DEUyv\nv4IJPk8Bv6biKhSyCV4qYrAL1gKen7C3NX94yH5y74NJhT8RwdYO54CiDL5g90sTDAco9maFdthw\nfJY4ADb5tSz8rBFWn9NVwtASS8sHcCyZD30qYDP9DHDF51QlGdvoFwg4HykAXBIqExgOPxgug3C6\nWgsXBEBX6/Hsjrg3kNzB8Duw/f00AsOSD7Kx2chM9JEEwevZYdC+iW/0WdS0Oi7x0CIJdnOZN82w\n8NBbgtuQ05p+Gja2HGHhfJ0GG2OL8L3NCQvkCnSboL/5hzTwXAa/qelN8KtCH9po+bMeybU0flSD\n6H4AxPnLNYV5iZMjIjn1deDP4+kRYLeJH/OnCYJFOiD+EiCbHf7gLQ34JgCqH9xxVc5ug5v1JUmD\n+de3hlvmAQAnz8tJ1gKAFZ+QXy53AHqNFTUYq9xDsX6prL9IE/wsqadHrLAjTkCc2mKAYmyWM/SJ\n/dTNMJ3Q9FtQYlsnevHHLcCPZZD3EjKs/k3q6Y9ZrCCxEgZvST4e9DmBX9vA154NdvfRabI1wLql\n8KP6A4T/1+7boWemwtrhsBvOtdryZF4wltXqBGDFma8AfupcbdIIb43yvu/jQA9CVsTCVghaZ1MS\ngMXxooDQbNpe6XGp402gnAukgGMR+ptg+JwBgGAGcugzAT4/JgynRYhrhqVohjVMIf4is4htkG/7\nlUwwAfR+BsGZJpQOBGDBxAoA1jSJwDm/4bdto4ezY38tDf9aOE9WyqkPcRxa+J2OGjAu40TjKILX\n4Bb0xXbBbNubaeQXiYccIdDFILiDZImyBAqYPgCC2nUGwcyk7y5mrGSbAPBeP1ViNDAc+biYXvzx\np/pbKwDo9jzt+wNUiIhrhPdp8/uTylvVFQ/Ky8vxUFTVUzF3wLxi7nlDHUAWmmvU7AJ4kQC/p1nr\n4jQzdiScuewt3Qb/FPelH59uD1AbIQa/WijiEbx1k5i71Ah7BxjoBl9p2nbiifUqcQWoANmXnFbD\nZ435Y3ALDvBuIlFBr5R8AL00mPwASwBp+x2il+PU8HW57K/GXbPNKQpSkCpdeRNwAGPckp2D4gTB\n2TRdDRh7uohvkmvmEF0T/PiX4/6KeKX4BMablzEIltyDUpZwaoNz5JmXadX0BogWkvGW69dyCIPn\nDmzuBMHpP9IC9GY4wbEEAIYsSEAMTbAfU2dPmEbsj2xsAGwPHhx+gPD/zP2+Rjj/5evrCn77pjho\niZdUEI2pTygIIQlAHPpTF4ZWwHAIU02zCJwrrFa1wbEWgAE8MoCHuLA8FiazbHqilmYWYQ0c+4JA\ne3nBi9+NzSACR4DheaADPJhELMPAu2aYAPDWBPjDAW+Q8/RHRSxOEu29leQyPAImGVdMJvbY7XON\n00Y4NcJOE0bAWDoglgDBa/mGqdDsMiBmv9PkoRkWYQAdY23eE59vBsYiMoNhjxc5wa56PRwvVH8F\nw1KE4Jl3ujbH0p/z9LwRvgBgjlOROxjOywls38IXgEycJgGxr+3HZG+YNv9UrINgfQgAO0+IndU8\nBixZMW9VSHYwzBrkENbeXt7jw/FZuzT/mVZyXKaUE8b0aY57n1s+HeJw4bdcmA9wgdzGZa4BTvAL\nvgYQrFGhrwfWiAIoFA0p8iELAecA0Fnlrh7aNskrxWWfJDTBCBeZkpiSfvSWUbrmlwGxtTKSWmFD\neu13/T3Ux/1RDVks1aihcgSqO0Ax5WdtsN8aIDgG5dHYPLfzaJqGOUo+bIQH0wj4z010FRifIFgk\ntL4pRpy+lGTxua4iUie/xRnSWbdl8bJMrFzrvRAPekwtcAHHBIajJtC3pBZ4X0WKlviRbQYBMKzQ\nFC95Hhgk/Vn3A4TdHW9Bb/n818FvxIe/geUjvf4E5g/QAAs9KysDXok8+RW6ZCkAwZtZpQYY5avm\nBc6Gv6f2dwvTfHpPrUUulEmLnLdJpnswO2WmrTkh8fSfgI8/sQzge/tpA8CPLvnLkx81seCeWvqf\nXMavZrGrOSkh8+AEiaoNzrlPrTAAsX/+2LzMY/scYHxeV1Y89BQALHUsMF4V+NJYYTxjDuy4MjAW\nuYPhCPu8F+Bb6sw8iUBaHiFapLiUGLc0moLs1Og9Xc6f9jgI1HmBZAmAxFLJl4DYJWLiy6Ql+AGA\n8eAmbh6z+YMQXQOW5XxB9pXXo2InGJY9pwByIRj5gVRcmIa6yYeG4uopErQ2QrAPjsb3Po02Bcf5\n11talezl+kT9Qc3eNI3YtA8GL652xLhu1pcgN/wAEAR0++kqgSNaE832fZcEtiAOK+WHNvb4sBtt\n8inkjbDsSuAr5D9NKOqPH57BRyYwnDaj+cn1fBCToC2A8jp5SZMafUptsPJ5wYdcqevdBCBYmqlE\nhnOz3LkRrsQpnRzhx6b9Io0wrvHA4uvFfA33BxmMgbVWx5rW2hPuKjZx15db/ja4LDIrxSeqSr7d\nlhA/3EW+phEWi2mXAL5VG/z4RsnQCOMq6seoqejT+em/736AsLtvh34Cv6OWmNLnc4Yn0wjKA/ns\nBA5CL6YShnwJoAMEARBbLjSuT0WqEqwtDRENcHTXAru22QCOaYEYLzIIU9wMzK0xLge8wbwZBJN2\nc8UkqEh8OQ5xfCoEA+flFhM7HqA4mQB6r+O1aI2BMqJIpvHpDvkGgPzm9KASIFhd6C3XCG7/UwAw\nxqyDXsF8tzQ58krM5x76qpk9wbAEU4xHBBZ8XjaVDlZoiesS8htz5tHPEuItLqtXikpXiPtDOoM4\nSArNJC5ycAq9pk2v+ObSGGd2gGIqeNuTD30rH27sHGP2TxpgFoSFlAsT0jvwbVqupH8W1rUdXR5z\nwMZ4ztIk83979RbyZrit+Y0RklzzO4aBcWiJvc4KeDk+0w/NcAEep0YYcxS5OFz8zLfr75ApHhtv\nmMCHKb0CXwbEnsdy/e8w3dH67zn6nfbCkJJgp5u+wcpDRsiOiLVBD2vVRlhyGbdf1fxKMZWQ0Bhv\nOfaIjCD4V5g7nCYSfzkwZvOIv3RriUMTGiB4t4W1wR0Ad384SuANchy3h4vWOBj/IOurDyuR6BK0\nSXylaoHZ73Qu6I81+hepGmKyHX50m0wAJH+rlfwH3Q8QdvetOl4lNX3pT3A7Ad7ur1rj1LGGZrdr\nhwvoJTAbJhGI91YBECOOjmMri+NwSeAB/2gna5C85UKJq6/2zFsZfHmFFUsrgS+P8I4HAE6Gl4wP\nQN9BMT5l6ZvkdtoCZpBlW/sL8PtsbCHPkv2aLnr3d6/ebrNCH10jXGjAEDaK3+YRqvTGIYQX04fT\njibdBugVvaQnKNpTQPQQgg0M1MNGc2VpH5ikYwRCrVyyXIk86e43gLHe8l6cFp/9nv9A140/NGZd\nQO8Bii+8xSTGtMeLz39IO80IDWYgx5gFZRJACjDsEd3PtxUAX1TPT/0AwOgfBPvR1wnc1j7O7MeG\nnBRRrlaRwm9cVaSYPSQIPuMybHKcIiGYnsrrgj8yOAYooD6l9izHI0HRHsOHummUzno8zHnfOIdZ\nYXl0ht8AsYU/P/IC3gC/2w478FXumMeFbfDzZNyzxNbWEu7n/A2MNOiMe+BtozXBChISTpxb0iQQ\nIBjXLdcwT+H3W64nN8v9etY+0eBZ8usv1/T+WvLEJjo/NeKXykNfnfu1lph/8ClIFUPi7d23tQaS\na1fGrhENnSIp+9F5b6xKl/8mJrAhsSNfpbJUcqEvWS6VG3sONwlU0Ls3yolrgVUe8VMiRENTvLXC\n7eHmD7kfIOzu26HXy+8d8N7juM4tf2/gWFIhhE1ySIur+AJLoMiguMh6ZPYIfjJFSjdzSC2w+JP1\nkB6LKrXEYOo5hlpaELghmBz8FQAD+D667bPE3B+vi7EZrmqDjdKWSgJhtX3KxMxRRC/xwcUwqKRW\ny6PMEszGhxCEAK+cD1ALcxVlsx2sJYH2JP3S/KQ1KaNNMMWZJOaSZz43WlkAh2CjxrDHymWKqzMf\nN7vGXcEu35erIN4+S4t3ByrNWi5+GsRD06t9hKlplzQILc+UkSz/Qz2WbwXKK5Nyoxz3WG/kV6/v\n5hf1ftHaA2nnKzCl26ENOU7FPIKbN83LJ9ArRDvMlEzOONQHWpjyWM9GexkUMQx+8yrJXQt1xEa7\npgktr5EJIAdooPjy5gwaNfyo+wgzAO4/aWGQiNJUafQm+Q9G45A5AgWMBf/KvOZrMvu6r48k+KXx\niP766RHyiNra+WRtkFqEVLYlBpzfdKkECGZOHcXj5xHOrrfcUm+PRj8AkkX8Yxr4utzLmcLFFELX\nVrSUTywvARgPuoNfoeXXY87qvBIRDCIoZM+QXuxPsMaJhuBO4MvrhOiZ6DTKWbbS/E/Q6qEB1hp+\nKgg2wYlOE8P4d90PEHb3Oxrht39dG9j9NY5ADRalkByylhaaYX+Kla41drDoT5kJnCUYgQ6Lhgkd\nxM5saK+hCnolctGCQTxrRaooLmt1Ht86zq9g2FGjOXI03zina+0vQ2kCXxw9hqd0c+3wFoK1J4Ut\nYWzBeQZmzaw4TnLg2TY6z9eFCzTBKgJFdgisJRZzmW3TYBAd6Ma40SvETUOUFm31/gWvmbWD/RW6\nCABGh7ZWLnm/CzOzSxqD4RaGP8FuvecnEHz2vwO2M41HrrWMiLeBXmkAtaR3EMzXYUSh1ikAGH6u\nO+emzEx7uMje5byWh2fnJcl8xNcW3csyLV9f8hXU0le39SkbAzfSSLIlujWp/hJnr+mPxkjsqyFs\n43WfN77XeL3y/SroBR+8haEwMCrLXWSwYiWefi1OROqrdsaQkv6MS95V+Egpk8A4fgaeaUA8MQZz\nGKdF5Mc1bOVmKlXkl+C3TOvcvvJQtpLfwnynL+s4KYJkKd5eYi9OmkmY5Ga5YaPcAIKPUyUKINYc\nApXT3+YL815dXefhHcGvjSC4mKO1xVA0wU7LAYyJb6Q8T1pGXphEgI9UEkgwvE+I2I+YpltGPxHe\ncvnxEz3+tPsBwu6+HXql36cNcD3tLf+uWxvIlQMM49URXpWLWTADA9giUwoGwVgkwWcGl8ukgV7s\ndPW/AYydiScUrNphPG2jP9mM9ugBWY9XIwQMOxgW/9DEs0yWg1oAYtj/QhNsqnsTmi3XAvsRw+73\n3UlSWsbbb8WotY3z+NjvFe/zJNAG82MPzbXlhrmtZbGWbvlJZGUB5WJbQSlJjx0Ax98QhA00SWeO\nmNNkhjktKaA53+lqfUeeg974HhydbZTeFg5bCur7fV8IPSh2ytvKMRj0CLumTSOUiCTSIPAtHztx\nX2MQ7Gun2s1p2SFehSSNnwul0mLD2s78uHMADLpaC3dIZS3MY1dGvgXsiMt8xgHOZ91vl3iqqKf5\ndWt7B3B7gN76uWUVf7AW2iwHMMBaYXkLU/MtmxratJduvP2khc+Z6nyiXuvbxXo9+JV3ILXDUuyF\n44QI+rgG4iSuK9ICxB2tj8bF27JuNhfyDdmVxraEU5YWuRRodN/zvlHuBMH4yhx/VKN8dtmB9xUM\nY35ZQ6wS4DLyyq7n2EdGIin2/OQrPcEKLadIYH1GHCu3cg6qplhiDhMTZPkoZRZR+Rzktr/m4Bdx\nwgB4uWnPQye3ZDc6J59l0N93P0DY3bcDqy+/bwDxbBqRzCbv4YtUJTa+iaRGePsTBIvZBnhGzAIa\nUrcjrq+35KAukLNJAtudrWqDO+hNxvcCmEUkz0JMplsHP8OxK9j7lx+JSMG8/Mg07+a2+fUxyc8u\nQytsceYwAPLjoBot6qYQ3ToaDx54ktA2gGGTLantL1fMjaXgyTxW071qBmtgD/zqSMl3zG2JrbMM\nmdNfkmnJlQw1gBXlflszX6VxJuumD6cpBIO5UryEO8t8SzvDTPW9jSYi1dQhM0wzIlp6ceY1GufW\nkgRBmC9oZ9s9yhylwMqcXjcq5FZ4/Vltri2+4kHzSFuoze/MmjzuJPWnO2v52HskseoM8TlQ36fF\nSGnMKbgavsiJ1f2oHfnVHATjQaZJfj5nNW5viRlCi9a0ar2LvSvxsyGO84JNeUzV9lYTiNt1BsMW\nD6Mhr7xBxUSiaYXzIQGnRkBLaOWXdN17VtdcgmE9tYcFPflA0IlLcRvSCLPcWko2wpdNc0/zAwTz\nBjqkwTY5wLC4aR7PoXoep4YnOiLUGe9StD+zmBMlW+pF5shvJS5BLtNOj/P5i5bNcQzag+bHH8wj\n8IDgdsMigmNMn5CIteeddQys5L9yP0DY3ToE3D0ffpAFE8DtcQF0KE6KfxMQ8ha/J3c/l8t4obJc\nP2uL+eoaUnFTA3FzAepj+TjDUWftS10Fe5HksU17kwSeAEIIB1UbXRqps3BnDQPdL+xLS307jb+4\nabJ3jMdntZ1hBrB1MBqdMilpMc7BdF1gBGg/x5/nWYUeYswK+GWQfIDb3Xl/Y9Digx4U2YIYOmUb\njSeX5xHvoDMB2d2NafqSbi2tADgpdMCgt7BJo/xdaLy09XfyTHk7I57HWCpudu0v4hJuubxywRx/\ng8g8h9OaHXOac1dsrEmoVe23xzOdU85eQoe03R6ARlofBYlks7VHUO5JqsXxbtw0o7xm5G91mJ3l\nKCJ5l7fcJwufgec3KNusyYJf5HFqFvwDtwDP59N46svnc3h4JYc9KdW5rIbN6z/irG2WU5+TUB78\n/lUANHV/KGj/ZH80SPPko/0zOiZyn4uu5fdAFbg3zbXx0M2U3TVurV4O7PypfWfeYEIDRrQm0FRy\nXPe3K5ZffQ5UV8qQ34GyNg3yr7XkAQAmIJzg2I++MzKhEAtzDnN+8UR5X2Vm+dVBw1uLBKXY4B73\ndjrOMnt1P0+OH8wH7fE3H4q9NCrqH7xQFX+TurGDOT6AsulXOWv580/H35I4Iv0Puh8g7O5bs5TK\nABJIAuhUEMzgFwKQ4kgQ5dO259mX9ItI1ZoxQMgn9Z3fyE8Ai6+SABgfY5ClYm4DJbHQV9kA1gEx\n2pAgWAOolvc/0TPb1ghLJD4CP4Yjcrvn2adDoO8AvtOPJW0Xsh7mg9P61OvF3wFyARE0tjEmtKFx\nugrCBRR7ephatLbgdd7URm1tHwBG5k+QdNBZTS1lbKjz9Rky6Pt3nJ3zJhJ0NM3ZVOAE7ycxHCDt\nqPNDy3uWD+EtyNyveUfGR+F3PmHK8dWoqPaR11m9J4rw/JV4NEjzqrzIh3pLPdHRve7r/XM+S3yr\njM11Krjhgo02it/m+BbZITs/xHJ/eKSDzwaMzr4BFIOfLL7Ge/m8YY67pumabG00AzwTGUHvQ2PJ\n+Y5TIwBmpV0Z6N6usWlhBdgLMCwivwSgeP9wTjq+PqciFQg/7ergWJ+XFYYJekQOcEyfkStjDGIx\nXIheOE1ExNhEZ8eHVjPmKGmm8vYBEOv50Q3YJG8t6G5PAF8BKJYBFPs7WEvg3MEvA2L1vAUQtzjs\nIwCwTmArYYUVZoWuLDNVsaX7c9UeXkv9yDP4n00HS+U/bhryC/SyPv9WB9C/Jyz+EfcDhN2tL0X1\n/lgCA2I/HktZAwyw6+DRFxkAcbHhAWPEgiOuv9dhE+ZFU8JCAcBQIj/aUsIq2642APBmeOZtW5B+\nzgzLJjXR7JNmndEu3vnLWuH4Ylb2LcGvL1IKR7oS+BXZEmCJ1M92guNZuSfi85Wd0Filq4ASyMPD\nN3+vo6X1X4lnsMtgWMgOD4B2uB+DlyP+1r4WNvp7QiopNFmH7NQuU1Wf3csSA6MuYUJPAC5nfqP8\nc6POtOHe3yYGcLl1GyuJWlHqoIDtPsL+F0BXgjJ2JrwBiIMaJHXCvWlw2vof8VSgzPcb6KW0eZzS\n3lKcvx1AFlXZUfKk27FMW8PdT7QyOyvJHQzvuAH86gyIl+JkCVco4K2TUvtr5eTXaDN4x+arbJVJ\nrCx+e1bxDYn+A/uMoXFmcWh6h7hIW35GNc6qdk1PaoRTM1y/ntm0w2YJjO2hK2uEh0/Bsbq3fzIZ\nTkUkvlwmsacmSIDpJSbdMqqnZyGphdhsSGKc6DmiaYWhOFryS7dpBGuDVUhLa5v2GfgmcJVibgC/\nuv+RLN/jVIxANfgk4nAfL/NImBXur71JgmNLv4V/g2J7HCRDceYPBP9x85Ar4NVZM/yrx/0A4f+d\nW4XiJ+61w1v7O4HfBJ55IgQDYguAUX4hBFILDGaLFnTt73seZ5fUbF/DpS0LuXHSBHLuXWhbnhEI\n3nUA2Hs95eoOqxdP6WA6TeuLhU0JnzXBMK0IhmnxK6/yKd6MAdNVSp6g8prmA4k5CEEmAZCKmQTG\nngBOaIYN+WAfnH6RClpKG2yOF8n79PIlT9HQp09vcQVj3MdwbJA02nhx2XIPWwuLyCdwLJynpPEa\nOhvT63ppVbuDCSHUo8hkyHBwFSwTRVrSinAYXdejBRJzRZUzF+s9ynh1sEeRmm2pDUff0UG/WqO1\n6f6WiUbhj+AXf3n5TgBmoi07PDQ8sAoWGufkqxP4FZSgBxf8lpcKcwmehwMEZ+fVtXt/4UQD7uYF\n8AaL815wvCgPFUDu9k+a4PCvNcSlf6lr+xwIL3GNsAzmEZZyiE0kYqcUgLBSww+zCNL44geR8uRs\nYCa3h4iA6e2gGyK28JKsasR0yGyFQijHJj6kVDTCsINWAq5pBhFg1dPgxxdcWTP8kD81u1yvj1qA\nZvNw1l00wmIEgDWOXLXuH4Cv6ZK1nn3iw9qfzN6mEbMmOACvnnEJfn+A8P8L96tw8jssgkY4AKCe\nT8R8xBlAEH/pjTWAEsKeBHUwErQgFy7nLRKlxYeGUfoCRvwGYqEBjtqXg1ER1RWMMEEwA2OvF7IB\nyAUcq7XRWl+laYFNxDXD7ZU1NMEoVLS/boNM2uFuD1nqonEGy1Ma3NH04Us/5rJqy6HxTZB6guGc\njy2zKiAW4faf4Q54GVxMPIX1vKC3I67lyy5OiKNUTvlvSPxTWStRn8HxWY0eMff8SLmnfbzBa54Y\nY5oYgLASBhkq2pOAq4QZYMk5HsjANM+zxsCvxA1ERivzKF+TSCtMQJHNWeDp85n1Jp878ncwwwWl\np/UZP7oVsWmR3ey1RQTAvzxcUr3LGQBocmnee9GdogUOgmONg087IH6KRjhfnzM0i/AIkrXkCVAr\nALgSfnyYaAbF3b/N46qdsINgbR8MMgBgaWYRrBVeDoxvKl/ZNaqJ2bOnwWTQEC8x8U+QE8EU0ih+\nm7xVjlpuBGtCd9QEY8NegGDljXVr0AALgdcEuw/me8gXIHbSBstpDlHAr1zKmREAfvIhQ2Eq4UA4\nbIHh9w+hPLvfBhMJBsIEeteatcK/biB44a30n3U/QNjd16YRmmAYAPgAnOXHINiREzP/WGsMfCVW\naoIpoXVZ04pwsAEAHz/S8FJ4cQvAGJt5hOhZn2SpeAiINrGWF+cPraYFPkwgHolvDSMTbbJjzUKC\nYAmbYSO/c4j0C8Se+wnAcj8++kmadj/PI2gAsDAALj2U5HF4KfTDTzcdcMp21tPPF+fZxMkWOGlK\nJIXE9HpdS6i71sKbkfKtuFwwpk15rIXnIt9ph6f7vzRSKpg6G+GBiPP5Bwlq1pF3IiAWtFR7qq3n\nvKdgAsXcizrnKpUONJrbF/VNJm2TBudnXjjy9jcObX0ly2VZnv8AACAASURBVJreOLzk79rffiV3\nzHsrWseew9UGm9NE0iQCsZtv1tssJg7wF80HXSVAnEddpkYY9VSwm1RZflaHAXn3XHaQu8ivH/1h\nHrFwRm41j1gKe+E9BqEdNpFDG+wgWJ40jdh6ZZMD4WL8wjb4BMzoq4q6jXDPYG/BMf+u01qa84oi\nGrdSKABcXLFR7skNdADCwpvXJMwlKjgFgNWS7yG/crz3C+YQuAfAL+jjkVpu55MDAAfoXepnPTvQ\nXSrr2UecAQTvuDVqhP+jJyAuoFhV1pIEw1qBsWpdf3/C/QBhd9+q49kkIu2E+dWQuo1Ugl/+Mk/8\nIEME1yqcu3lDEVyXVQ2glTCP4gN4JSBbwXF2zY8uWX6+o6EMMUel0ng9FPWz0B8EGXfGHhFdZCIh\n0kwgRA7wi7BKAFs1E3vI3zTEJ6DpY4qxfvEzUH4BzUjvIDj9YNsJtDRiiD60gpSOJa9geAy7UAdI\n6to5akuP6znr81uDDx2RX4LdAXj14kmRc/jbPOhXH5OzjB05DvptEWa94XprRHEgX0aOdbzJJMLz\nQTAU8NhmjtffOb/ZyjLeUnt+vBxCnqFPdTjQly1RI39bK9HvbGppQ7cRZz4XaS/XUqanl3bfbay1\nhT4BY6xt8PPFN2RAHHEabaynxuzTKYqpA3WFf8J5tHY1f2S0FvxbCOR+AMCrpilrg6UC4PM3nBrh\nyovtr6dGhIYYNg9Pn48EwyZ1nkwacGrT3+OP6CZj8Vax8D5cNVdn2TxOmuF69rAl4BXSAAubNQjl\nmfyawJY3zEkzkfB4vFk6bIRFTk2x2wiHeYSf96sPtMFP0QqvZXuT3FKxAor3uf4JgKWaR7AWuGl/\nAYrrA8UPEP6fua+PT8OPXgktbSBXHGh2cwgCxHAQCHosvNl0IvNUwLmfChOtsGkEFDfcvq3ZkGCX\naYW7ROWJRc6MUHzxC/W3tNdEau+83Y+IrWYp6SYQxRUTCM/UwbAsOeyDAXy9/xBz8cWgC0C7gkhN\nwXvMVUsPvwu9CnQ1NAmgie1XsgPmNwFbSPLYxn3jT7c4/dAXBye7pJW0FAKnfXCGT4FQoaQcwzu6\nU1Zl84726xE3YcwpT97qaOU4bjfsOoGiv+UIoKKOHH+P0z7ec74q7+tc4g63uHqPdKVObRm1XHqH\nZrBRjvf7wh648UOcHMF543IFwV7mhQ4PPEp9scEEIlN7CMAYZRrLGsGvhPkYP/B2EPwcGuFmM0w/\n8ZaUsNU8BdxKB7tDeE3hrUU+TSOgFd7y75ckj1OjfhZA/ITCI4BvUfae9sGcZi6XgFf3m78VNDM6\nG73nBHWmhBHencicLhcLCA7w+2xlkj4RZvvgTxrgcmqEDKDYm5J2vgC/8j345bLqbVCYRwD8iuC8\n3zjjWFXMLE+MWBYguGiED22wVPvgGyhW+TGN+P/gvj267jCJcLmR9sFGJgfdTliCiR5A0hIoRRwB\nFAC6Uyixd7PA+klVvo+/0vHFoJrmEI8SLvUjHtQ7mBrhqGVop5Zwb55Y2wQn8gXwneKeA/zm1cdw\nc4gcGArnVp9ZczYCX4xFEdpaTEB6ecy50GjlXPC8QlOT89+B8M4nh7uD3x5XwUUHTLPNMMJWyvT7\nHM268bAPGU/QMQPdUsoZeWi9PYPJ/LAwx79rjV/dWXAEvmM+IcxEE4L5aoYLOxOAks5zMJqy6JBv\niIs6D0KWuGeJN3H6x9g7Q3FpjX5VkEt9D/9vgGUbEm2YrQ9rpSefU2gC06WS6l5+Wb/hmfN3ITYF\nfuFAN80p7AqCMS8Bbguw1ZJG3c80rWkMgifg280lRoC80jzuAMAiTTO8bYP3m1E/OUKaZtismEYw\n8M2R9hHGArEEvfI8ZVZMkjfzRH25gsPlePYR5qFUGia3C1ZXKmkCOwvziDWYO9zBLptRxCY78hdt\nsPxN8EvAeWuDVUwdsOsTwDg+foG0pf4xlG0CYvYECLZFD0qkDT4BsBQzCIDiBMQSGw//tPsBwu5+\nXyMMf7UT7mB4MwKkqwhsQScAZS9AVwgolbJsMlHwwAzOnHOobOD7KGuDu30bNMD1tZqSxKztR3sq\nZzKReRMcgdyMfwHDGGA3h+g/aMU3Q2jg2Md3cgFE7bs4FvCY0/h6URsT1gKfaRivXme95p3O9k9U\ne4uzlv4N2EVKhFumA2BcJVAK63r3Wn5ehTrnwbSKHQ8KN3B7v8fpeLzi7f+1DoqdMnjcCcIs/vIN\nGYTxSlKqpNoF1znMJdrs4ammDcoobia8177WFZ2dLHQR/MpozrIIz2chLxqUQndWrzrEHWVe+zPT\nfk3VcmUep5pKhP64n6BUQisMJQTM5vbr73oWsYiOZg+gjB4/pUVPJoArE/BdsVHuMJ1YWu2DpR+h\nJg6CSQY2bbA+G8jqwls9n+P41DJ9NMPWNqeQDnz3G8syK9r6OzKhykOuLuxRcmTrssAbUgwNADG+\nOGdiDoJ/LSugdNIMHwBZOggG+JWLNtitrB0gB/htoDjAL5d/JD/t/BjZCW+bCTMLTXDRDkMbbBZm\nEtAIh3lEB8UdEDdTiLx+j8X+SfcDhN39lo2wAJMp+RPcBCMQIe2wiBAoFpmu1gBRBVbidRyOtZ0B\nCBvrJkYslqYR0G6sXnsgQYA9CUla7E65WQpB7XdtGwO3BMibBQQ4lMUWG+tsNTgQ21/zh12woSkO\nYASuWscttcJCcaef+ethKoE4SpvKHoD3kud+rcz9RqZTfI8rNRmH7UynMl1jzCDmWv/BzDoCurhE\ncJG9PwDsuHNVaPEwKJzK18Z0ehhaXkEmgb4rsjqGIAVXTat2qAHg9Owpv+tRSMejbUN7tc2rRxoR\nAq/rXtlt2hQNJm1wjDibObTpL/bAZf1Yzcvrjhsx5BnbRjc4qTivpzEO30iPpCUS561CK7yc38Xb\ntcYKsRs/LY/xdytOAL1oCCQ2vgkD3u/iu6Z3KzQqCB41wWQSAYAMTd0GwRIgOD6mET9zW2mXgSYB\nhsVPjJAnv9NX5mncGFftg8ETy+wFz6iMuKqVhhVShVf4D/Mc3APDISJsG7xB8N5Qto8cAyCGPFIC\ntF+aQbC/lVeRUxtM/gMUy4tGOEAuzDgeAr9b2yvPBIBdK+y2wgtvDCYzCI8PGvK4slFOsVHuBwj/\nT933H9SoP32JU5EExPST63XSDtqYr7qUCsnaHRBqrW/J/lyimO0jg4klLd1PhDPqI4bD8ZxNRAoC\nP1z/khzitGh8zb84HnlVZJ80gQzWTowAo/UHgOL3gQlJ4eNJUQfDs3N+Shr1Tz+Um3DF6zXqOJkx\nu9+JTxbfwzand9AiM9gqU0w0scnrBp1uDfVeW94PDrarVaxx2+uqqFVPpg8ik5kEQbjBueQA3jsL\nDkVALDXzpNWtYp6ixOKDGyXtMicRp9QXbrP2PJVwrVdW6up3odYwGOaxfQXANIctH68lXr4dDB/z\nAMoYpvE7Dl8B8j1+X1mR0BUKKsm+Nkez+HztHi6VZfsYq/0pZadK7eB2t77HsbnEGKd+sw8A+GYS\nwT9sllt0ZfOIqhXe/LhsmHtMdDnfDoXKBHzfOBj6qXUmDrmESGbSjWs5rZ6SFKNsR1EazgKAFSB4\n+c8SCJcPYwCsOo9LsCs136UM/PiCIEwhAHDzFAkqJ3SSBNX52B6jbQJh1Rxi2TZ5cCPiEQCbiT1L\nZD27v3KC4NAIt7g4Qk21mEyEVvi7hfqPuh8g7O53NcLl58R3/7F5RP1Jub6A3rJiT+0is0OAvAOE\nOVqDeYSIJCP2Wh/JQ+EPLlBuSIxnr0qW6tEebsf2+2kRfkJaz3+C5NW8D63otBHeXM31IZaM4pCc\nZUx6uHb7o8aX8ojJO4j2+5c0q/mmcgVUDK4DjiN+iPsW4JIoiXbwbUp+66U/NMZ6hgG0FXQ2CTXk\ntSGu3uTMca6RW9xXDmugl/5QIW+6nCE76Fg/Vt3nUUSq+YRSHiK2Yo/cb0/hY2apAZuerVRQNL0D\nSOU1YCXfVL7dvYOY414v7f7kzqGmmtpiFwfBuuVAfORMvf2uXVNNkwjzM4M3ywQY3vG4CyQBg1yE\np7i53JYy5Y3eb/3yIxt5Tq7EsWmnmSDkoYNgkWoeATBsvnHORAQa4kBqaTaRvw2+dAiHsiMewjCB\nWONgKNNqabJNpBKdNyDktfpoappGwD5Yl4o+S3TtfsJWeDSLEBk0wGQWIacGOdMkTCRMNDW9JPfD\nHMO7gzegp1Y4zSIEZg/QBDvdisvXtBE2MR9/We5/tlJtBr9SP88NDTEDX7INhlb4T7sfIOzut2yE\nzarmV9M+aselHXAsIknGP5k8jEAp/DV/F/KISy0c2XR6otITcj8Lk7csrCYYmbccN2QXzCYLGad1\nm1/SDO+W9LOFJYFvjw/OAqYaKzxAcRGcAZTl6m5gVClDB8bjXIG3smCe5psGZ6xnaOtXgPiWRt0H\n/XDYWv4OqjJsJbxFA9VGsqXM/6W15o3TktehrdZWAUSpWCI7YTCcd+5i78w3uS8gU6m43WW6KVCR\ntrgB1e4unWkx4rGYd3zMa5fnauf8TYAYcRPYHfjhGVX7tueHKSMrzLmj0rxGynKl9TLxkqF+vkdv\nYoc/UbbEarmGDTUv/Ml5MZhHiGy/0b3ghxlEfrDAgYj6UVhsVhLlezhXyxQucZOm9wvwO2qL6dU2\nwHD8hMwiGDgSCMZZXYrv+Lo2WEVE1tooDeGLOUQPx2xBxS4igaiN/DxRWD8T84vFwiPZ0hRVVNMI\n/gqb4Yty6wZqb7bBu4dPiKsKluOYNEF9KQ4f6cAXJhhnXgOtwuRBLbS8YhyHN66kKTbzI0tJM7ys\naoQHQBw0Q1rfxTTFYPhNmP1L7gcIu1ufs0Q+fJIYT73VPjhBcMZbMOTNvL8DvOmftYKzRhNCsLHR\nIhH3lgOTrcngvrmF8SwwSMB2V4QQgcFoDWmAC7tvoBenG0daB8MiBxCOn0iYRWxOkvFnw0lgOzPs\nc3LOA11Rpl0jT9RpRx3X+e8g4uLejol6KxskQHR2yIB2j0leACAYZYz0t7Zpv0t6t9yq6ZupA2hl\nSwy3JYBSU6nO0oATIJ81jDD1e9e0olxpAaG3u2AQqY4DtBGqrbW0davD/HbwS3kIY1/cxaBkE8Jo\nFt7pSYQwCwWYdrSV5bU51R3NtyPL4ZJHMvC997tRndTFXumVN7uZSOzLeBynYTMSNHQmGnaaMEuz\nqLFSJcxjbulM+Tmf34Lft98Gxura4QS/DIBzs1+YR7hWeLn2V02DN2s5NYJNIzh8ppkD5T3yBIxD\n+6BgGntuaC0az18IqDLBITJ4lDlr/boqhdcG+EsJBNsSbA4/Nr/Juz1waHybDXEFspQmJvx57vjS\nnKQMzi/LIb8E2A3wy8C3AOFMMzPXBEMzbHeNsDZwrNVWuIPfH9OI/wfue42w5e5Y1QTDmsAYuK6a\nRFTzCAZDgjiZ4qqgvgJibeGbC5S26wQgnn4SufB3Og+ii4RTQoX4vGl6S3CIVxH+Gl1+NW763Tpg\n2dPj9VcOS9H6BpilofvimvXlWNzmkDcHFdE2Cf/mxvRh6n8LAA/hOS0Zswx5AaoKRVttHOcV0WD2\nO44gi1GFdHfeLMajx+Ni0sb1Nc8n5zk/FWjpxXSD5PRbRfF2Z+RLDH9qzBj2JscQoimEH+baz+a9\nbiqzzBH5LdMrAKZ7Ma0T+yjg+WjYXKak9/I9Xeb0Sklvk022lyLtK10Zr8LaXyGNG8pppHFbzjdz\nn7TFndI1f661/C0Q3GyEFzSgIn64BINhZ9NmqQwSMotwABymFmQaocUUYsXxaqLbTMIe9IzHg06P\nUDAbvrb5K9PY0to0G/0Vkf1mCmtFhEAwaYQdAC/TMBeQtT+vctr/ztrg0TZYehlJUCynGYT5uGda\n8tAYYnONMINb8mOf0Jw2hF0jnCYQUuyCyxuEASifbxrkj7sfIOzuaxthwyYBB8R62gjjE5NariJC\nfmj/DlAU/nrd6/VMD9dARgi9HilygIdg5orFQi/ASchkKQg1vIRBE7BAuS3wz+D20AB7/KGjj08x\no5E2H6OG5U5xRTQPEjHmplxpDnyAWBHUAfNkT8x1hKgiYJCAgGihzWOZw0maD/0oznp6lQk2pCH8\nW2na0qznPBpKbcx8W5ZpjoMmLbJtuxDlVeByQpdJj9kaMJS5w5+a4ZLTZMawXF6EBHZ1KbNJWF/a\n8KntZdg0p0ZbOO/9iRm+jSjTdSHviKclQLyD7n/TEvNdjnVGOfgekT61VGhocwHbdQQqgFKqgzsV\n/FSEQHFyxgTDCXok/NnaXXd9sPisCa5l40eAGL8ExmQOsVVzQLqRrh0Mq29n9vGrm8RZG+zXxzag\nfExUc3vhbm3T/oLHP96fULVvMAhbYfPXmQogjMlULAqVERTzeHI0E2YbXVSbABjDtcdxX9c29TMT\nfCX1I8DFnA9gdy6zw7eNcSapEQ46JA0xwPGW4Vs+oo0FGK8Z+N7y75NEcjMcA2I+KaJstNQ8VaKD\n4T/tfoCwu69PjVBrwFc3KBZ+MqYnYuSDtgsAeNQIE1trsm+yKeVytcym9tN2sHrAL2Kpa2XiQkA3\nFlYI5iptGASzSYS0a2FFj3wGvVOayAiCi6aYeiGSzLM7/aeujaEWk5Qy19ymJuKYER+C/uIG5n0r\nYxRvLc+RZjXfUU7bHUuAar0ikEs+15Yp0sHtBSYRJgyG8Unfqa9vZhIZHojiW3fK1UjgkyE+Aebs\n/22WzbPUjkb1XnW5HcJahnanK4WHseO6b047BbUCpW2IoyWBfv+uljjv3+9VMyn5bn3B/NcHqqxz\nv2lrACou9WGA+aaJxFt6kwRbsQHJ40ILDK1gGcpOnTr6z7xKc+9oTckvL5rhVcOcL7Sf4mBQAILp\nHH1z+Wcu3+Lqm+Me3SAYCt9mCqGjWcT2G+UP2nLAnBvinKDBI4JXNOYMoh+IaosOB30tA9ZV1wjH\n1+X8a2wLgFgkNKzhF7QZYdCJpSiTs0wC3Z0W9GZuJhFh0Ob2PygTadwuy/5KBb1imacCYRnBMX9w\nZRU/m0dUkHwzi/gBwv9D9/2pEQ58/YtA1xMjEA+GIPUagJjq3gvN40em3thja3M/uIFBjrZKgg84\nU9vaYI28YWBPWCSPSGKm0liML+SQZrj2zynDERg+wMojm3GuBobL43EDwJ6WO4w9T7CKc3zYr80P\nzP/xKg5UGoKsU3QXZRgnBgmXokO9vZ7ZFXpo1Wrzf8xnZxlzwgIjFpH+vJS5GfnEzYAYdl2xWY6O\n9NsmERBw2UpKjfiDno6wfUi/jbO+ZjrKfJtHuF+Tw2BqDqHM81bCSmEtVZR0blWfnmuLysMclbcz\nD9fJNFS6NsXJOV5Fg8zxZwtpXJTynwDYKO1cuaCtM02ptjgtovvRNlVKt2ClyS6zbuTPfn3j3+GI\nb2DXAAwPILwynbXEMI9gTbCKg2EAY/BN1wALyz6rYNgHJcwhnptmeJZ6DJ5j/tBm8IUCgoX8jaOF\n5hhRzNHq3WPY0N8GgPcD+dZw7pMvIH6s+EMkyQvYpXwiVYMcoBdxoDsP8+Y4dA1hHLuG+4tJBbs+\nVl37OwJhqUAapqL1lAhpoLgC4EkT/AOE/8fu26HPc4EJ2EoDu8gD6tzUw9yucnJuxBDf12qAqI6V\nDmSiY8cimw4ACLwhAO/QBmnlaBFlu6i/nDa5RySeHKZdi88TTFrV35MR6D01w9LCNS9bRasgTjIs\nJEqsXYvoaVdHff1lJl91iIMfbSlpFzIp7jq09kWeWu8X2TzztGKsVVDpj6mJycH8YSxQgSIPbcAi\nAjT/qwdFumBo3S5AqS2Jnj70aIA9bc18LHNGXssXkP/Sqr1Io47oMq9pzXuUs4iV0pXCpXED75ho\n8YVoso86xFHYhri2zmqIME5vz9jcYZzQKm2UBFoUpSGmVa5Z/nZnhlzW/LtdScFCeVCa57IC4woO\nB+5R/ZrtToCLpmrW0eLQptSmbsebwkPuSQW72wziScAIBMbOTAAWt4Ikz9nAQZ5iK2WKreDh2LzF\n8dG3ilSzT4ef8vUyJmL2iNiz5c6hZKlyJDdn17HhGWHzi7TS0JAXCcg5bH7Bgt58IU94opUUvMWK\nwQmoAXNYy2ajOr1K+HNj5yYH38dhIrnpEwozTbtxv6YJCV9vfskHmk/s719wP0DYnVlfrbd84k9Y\nRv52NYn0eP3NV3D/Ks+ENwuNAkMlQafMwMUkF96skfAmYNHjJAjjBUuv8LwvgXFKfwj4GJ5MnSl4\nOZwfCjeBitJj2Am3nwWv84NiCPDG6xmEr+neD287f4K5XrPteZ3ysS0WmKGlcCFQm/OYcTkKlmlt\nUiegYS+hcZytXK4l7SXtqD356+FKPS/5dl7Q4ZytrwNOCE1nu0e/5T2cM3dbdzXubCEAZk/hMXjj\n6+/jfLqpXbXvdSBh/pACP8cNQsfeGsg36wD9fbAgm+u3DcCbkMcHP94iRTm9vN2aOUgZx+kBgfIn\nUNx/Ip8yKNh5wmY9hkBbbUMDylPelH6W62/zUH8FJ/ddIpwWfSSAl/UMk201EA8GAfyU/CZxvhf9\nNigeZOiZNXny42/7lm0zB/888Y57ZH9WdPsNcfv7vNuva3/Qomi2s88iQxzmj8KKdIzh84j89exz\nc/969scl/npE/rLw76uH40dh87AYi4EI01AcebBApjwhxzE/wnUjjeQy5Y10vhfmQiTkZNcE48aQ\nq91EAu2o0q5KujmOfkrlf5cp/gPuBwi7s+dLICxygN0RFF/SdyUVmfAr2i5bIqy5OJDehS0vkuIH\nIC4g2IY8Lhh5YcRNLcrkVaQ0irSnJgmGxSr7TX8Xa95IZ6vq6Nc0md3W2NSFqLRQWftrSEObKW+E\npbYV+DUAbWE21trKVyrT0lO5/lam1l3mf7YvGMbzbF31aI06WvNdOOrKKt+alyTyIW+n/byVz4yd\nWOxWzr4OY0zezSTycYXupVryc+qBDb8Am73OyU1jZ0O52EkflWuC4gAD4nHtnhOCFK5O5wHlTDTn\n/KACPlRAsqRO9hjjEqdnnNaU7+L7l8kqcN6nPCR9WBaLik1aa8ryHQBySbcznfwV8FJnoo3U3t7h\nCHUt8Oah43zj3gforX59SAssG/gq3zl3W9MPoNf8XLUGfh87ga4SGPaNe4+ubXaAjXyxoW/tzwAL\nZIRU0DsBZMVHRlzeUbyJONA1kb+2VphB7wGQGfxOYZqjGOLABSlCM91KmUojnc68rlbPTquSyPqN\nJOVnke9NPjIoFjlBcME61ITpevxYHphGHf8Dy4gfIAz3WxphYYJNQkiCkkr9lMaAeQt2K/Q9Mfo8\npSHzFIGhdMsAuxKCpixEejKrmzhkAw7U4SXiGhRt7cr9m9PRJ+X4cXBFgrNqtgM2oQDEAKr89Iow\nFm3sPGewXMLo1wl+FfnIn0KyaY05PgfEy9ZR3JGWY4LxFqNJBXC+j1PnEzb4pnytJR7TANS17jNc\nmO8LQC0RBSPomObTPTrMkPZCMRvnGnoLM8TIMM/koAfW2vYOQfheiPp8EsMwXl87BrZa4xnsHiAY\ncVTHVHubtzbscZ/SCQK7wU/A7yR51c6jtRrwL5QRCmOOWYjS/WMZNQJSmrMpT67jBMEHpXkd50hp\nnTzmhQdDp86UcQymcNR9PgdTuzXHoOYD8NV5MZHZBDsXAylQ/AzZ/VU4xJkfcUafYjLxvRxPVLR5\n7ZI45tDD4sDYlm6w+zDo9evTwvrIs5asApYdELOS5AJ8U/ubea/aYtb0/mV3MAxNcdEON60wicMy\nrDTgASIbDXF+TphAdJHB5T4sp8/KIX+K5jf8FhWxUqxuqrN+6yR/p68uGffbilqOr3+fD/599wOE\n3b0Bj56vP9WBUk9w3OKQl4gXt534pTpCuwl05AliJqZ9EBjyHUDZzSBKOuk2Lcn41Gjn4sA1QaUE\ngNzxviyccx97uVkoRNiSybnX1KqmOZ5U942PMPoAAEzh8MsMeNG1CpBnwMyjjVmoy3/7GbZJSx+B\ncyaG7euY3obPu3Z1NvreQfGrA+0MrSkj0Im5uLPMkY3vYyTPiX5GUrqE57U1aHSRbwArfZx0CPzO\nWH6GzLd7Aw0CAE9At6fpcEMdfHTDNuZa0rjDFnwGTWDNvrU6jjDdq5Tnrko1oYAZgIjzOMq/76Gl\nzljHkpuGp/hzMNrIEA8MbfKkGZ6kf8+Lex/H/njQDu4ZHSxg2F/77z57+sl5qV0uBCBUzHki83do\nhdf2x7nvCgC8J9aWiQL0Up37fF3d2uFH02/q2mENswcZQO82hfDj3Mg/g+H6Kw8GBIRLedEEt6T5\nlaYFlmYaIQUAW4Ln4Nn+o8EvgJZII+KueU0q7aSng+w6v60M5gZ0S3GT+UMo+0ieGmhENp2doLdd\nwR6iP6kJnpbFn3I/QNjd75pG7IDF5QS8/qdcOV8Fg4fg17xPF9oiJG94xYB/OSfv4Be2v3cQ7DtX\nNftncT3jslG9n840S/sYvYiIEUsmgRd+NcFmKVNzAK3RBzaP0JyEXTwW+Hs6+pGCj7W9uzGRxoAZ\nDc1hl2reci7pBLkcz/P7DpxFcl7Z3QAb3/NT7ESFU8kbgyqM90sUxyAnvAMdBMlc6j3WzaUp/204\n2/oCEmMma4ZvtME7Yyv/Ww5ltYQZHKdmWCsIxvV64z5RUrXEPAm5vH2Ny7T0Sx2cNs05jyeOkMu4\nuumNh1qVNoN5AgA4g9wI0zDklU7SkSkd/MHrozEsPD6WvLZx4zdS2XfpfQl2o5HEShR+QIi8qlRP\n90upv649C1mgJFCwIXxvJNtAVR8/9izeNGDS1BXGW7iYblCsMIaGxvfRwSRCxfQRXWvbDKueJhOI\ng5/NGw67Yfq1I+JUVeyhEzJE0jTiqdpeIS1wgOFiCjFohWlIjckAJ0Zc0jmuzBEnSpapANguZbaU\nQX6A4BMAp2xF3JsdMSvr8pYDwMXDUGsaX+mAoD/qKszfOwAAIABJREFUfoAw3G+YRuxrBb7mRCZH\nuhMfOBxR/iTEjZhRlzORV5nWKwm+aoVRv8lnkEwdDuZ8gOBk8smYm8aWKgMTHLZ1ZAPVe9F2y0Y8\nLabD3KG0t5lDIH8DwEUjLAx8MZ4s9GjOrObnOeBBiXoOyWU0l8aVhv9mGtzlF+c607qr1DTlyV5/\nqutSvc75a5wmnVF+7YVa2U/pnKf34m+FI+K8c++P1uAl3z/jku60xqoksA0tWfqn9PAP9zhJofXT\n8rac9w3k8ql4R14Pp4IUe9clKwFrIDMPEWg/qS+6W5ubA/t4ZdvrOsc1zWVumzl5DLbfanx0OtOZ\nx9iRTmPI1Wm251gMRmmtb6kJlTJ+U/uD73I/yLZOH922vTjWMjTBfpqP0QePoFXW5QoNc9Br+0MY\nYR+sEb/9G+yqqth6RJduEF0AsRaziBH4kslEjAHuhbgFDfGWMfr4OJVNcFa0w/IMaR0oPyZ7s9wT\nw2s0dztMgLDweQLIKV7LXCHdbpmsZS7586ZFrhcAjEalZlgMMh3AWMifNN1/cQvCFT2N8+znrutK\n+9fcDxB2961GOCb8SwDM1D7Gyx2ajMI9JOAJfgqBgfDAx5KfxcKEjWo8qUWZ7ang/QTBPcyN1tZP\ntUO0ZP5JEqEStFPx6lIvADfvF/bC3i5t7T20yd673gyRLrRa3JCPpZfmqJX5KvmH9NAeaysmvPEu\nnbbhzHqyHMecFNbjEZriz/sccVTtV2VpzkGr8UGKBhCM/AdQgyarFZOzmunWNYz2NNRwgYu1X3qm\n/9OsvdwrTCH4Tko/5FEpwLeB5G/amGO+J6ObpvwOyEVdHM75xxqntin4FvJojRMRbJgy9Nnj+KSM\nc/3OLGgCv51eMqF1HJlF6tukkn4u2v7wW8wgGjEXza9Rf1QSZGPgoB0uroWxuFQkji402+e5LxER\n1wCrOAZ2cGoEVKHSWyv9DnxN1b8sp66Z9U1yqq4VVpECem9hPcJhErFA16uES36AYAfFqpbtExm0\nvZamDr6J7tT+Dlc/Kxnyljl9itYen5McvI7KcFylHat5jcpMGmKv6B0Ap5xM7fEQX7S8k9TTxEWU\nLzTGxNc5z590P0DY3dc2wpJ2OGwGweEdB0beiDEIcAeDFWmNL2lC/JUyFGEPgKR5z5qm2+TBpJ4a\nMYDgHAtr7UUf5ms/TzhecThAiQ8h2PFSsoxwMFBvs3oYuiEfWdrwJgFusVi1zME9nIKtmz5ILOlZ\nYNoRJyKFrWWveM7sSGXpp8o0cJnra5xlvJ1553cQ9/js/d1Nq+Zovn7I95L2dveggyFXzusZ7nXX\nsI4AaG6znr5LwY/c5b/Wgmj1H9re/btuEkKW21lqvnR5ICNngCbUQWNLoA3hQp9K68tyGA5bYm9j\ngF/W+oYJRE5cgl/NPEPXjrWtFQyLnLRU47wj2fDMEeyRKJTlQCmT8UXz2xqhVMUBeK31RzHfNLWR\ntfXoWCCNgTzqYNh5jB9zuUkLWmGiJzyUOiDdwNr5uGqAY3UNcGiJ9WmA9w6KTVV0JeCNc+ancgS+\nFfcLrTBkjg/AkxreBMRdE/wFEGaNsGn6ffK2P7kYy2xII+P57vNF04R8RnR05JVWGYHaEwAPJhOS\n8d1sgunuuAJbTOnKS6JKqT/pfoCwu987NcIKgR5HngyAOAi2aQFADKG55HvBQ5KiC/eajrb5oiMC\nPIiSCTDiYDPsBFkYIl1LP+r1/LgG4rPV11MtiRnvZuyGhklEsAfkIe0u6qYHkB2WKDdrh6lsbQIJ\nxWxrX6Rz+smF1AchxpSlf9zzBM/amMic9wR9tzgOzRSnLT+PyLeu1cHzerTs3U19ueURkXpUl5xj\ncA+nLejn+56xM37Ulzr+eZebopTuSnGIP14j53zVturg8zAyJ7twYKZ1DXvNDIjB8wKQIZ/SuFuO\n6U4j7bUQsI2w5AbAA/xSGPXzvWgtHTzg8PeVpIW3FUabjIoKMIGlEFDRUGT0G8dYGLWdGtw3z0XW\nPs/Cv8F1orfKESr4df4MTazpeT8yO4BJgjn4FFUykdjgVB4H7gUQqxRQvHo9g4b40B6zPbL6B5pW\naoWXudmHb5ZrZg7STSSsgd0hbwXCfRNZakNBUTdAnFOjJMtJGXdmrJN3SY9yJgX8il92WgPGgjQb\n0lgS1n7WplA+xS2rPfGf4pfsfoCwu9/aLCcSQLAS5B0QM6isACEjKovdLoTMALF2BooEg9RsV48T\nETKXSO0vg+BJI4zru2bYm9GKx65jCEpIPkbqLAAgXcmfZgwOjGl8Rap2GLn2/6YNprx5a4xBG86j\naWRK0fOGv7Ev5XbW9GoGQ+XoiLVejocN4X7XAB8cF1PEbGZiO7+hBdYh7pafB0r6KEkBsAc9VFLY\nnr7pKOqtGuLewzNcTwWY8qdT+lv7c7rahlf3X2uDh7YAJE7gdwLDH8VPpt9BcMZztxgsdnyoXnVf\ncwmUJSoLsNvD3lf1eD4urmuLd5jWEvUueAnaR71OPqEHjeSbJeoIv7kDUE1mGJ3cILcJgMb+MLbW\nG9YXYmUY5xhy9ut0W87L4MBbFJWgLep9G8DwFjVpvsDa2AS/jwBUG9sBq0oFxdoA8lNAsa3HNcR0\n2kRoklfaBdOpFfF1OqjMGeBa1QAfoNfsVSuM0cK0VcC4tdGcnrMgc1yJsJZ4qURE7MAi7inaX6Fw\nTUv80tPyjWw2gfqoKFvBbtgD9+Zr7dafcj9A2N3XGmHJidr+Zh5BcTzRQvnykoBndEoEOKSJCGkj\n8v4iUjBmpDmKMr9pAuQhLm5r87WB31tebl/9ylzb3tGliz9lAkh6beX5mesrAFckFuf2B9uhMSHw\nDOFsg/BjIc2tJwF2CpvpBAkpubSkGFUylFWRLivP+56bK2dAdwy0fAK+XMbm6OE+L1VR4yb+/daa\nb/LhgW4CNDWsH9Lnu9ysB3r+T6P65iaau9/KAYTQhwKATkbwWzcSfQTCGBBLcCvlcUPYnD/nNsn3\ntAOWtrawLht4CwBIQHbzpxZmQDyBYc3KS/20Dvu6q/TDf3lgqHPJlAqR8DGSx+Bc46SMeyeEGFNn\nUodtsfC4aR2X0VltS+k3Z7MY8z22e4LSLAKE4CZGhfYkwTBpidleF+YSqRmm32H/e5pJCEBwHMGm\nUk6beJbfw/bmOdPYtKfP2kCMgWzR/joYvsY1IExyK68Ag+63jBMFWKy89lj/k0iJe0kq53A9yqSM\njAwN4GY4ah0AcN6ot5WbxbcREcIm1HeO/28Y5990P0DY3W+dIyyV0Dg+eCP9QV4pZSo0ORxLDIrK\nNC5LC04rPwVvY20wiDBthtG2zcisVxJMklbYLe3Iu5kpA4/tG3rdoxRPm1VEgU3gISFSGfBGM63l\nr+lps4u0HLMitEWqMPdCLMyjbs17985FW6KimidYwysCOk+r6OAh78gPI+XuIjSub1Cw96TE9ao+\n5ceIH+U0bhvpPgelOeSvK6hbClfd8NnjSpHdLviwPP7InM8MX3GUD9rgz3U0oQnAx4A4wO4JgBWg\n+NKHW+zGO1qAr1KaUdciy1u8DlOMeAd0J7gFIBu0w2/5ZQLAyb/nVVLNsmZCZGaaCUUjfMTlDNd8\nOY6vYSx8pXTcg7WwRXhcFmtZABlZ+AjGz+KPhCZYcvy9AeGPr/dRm2DiIKud8buobAPE56a4DoBV\nAgCXcDub2EGxLt1nHj/7KirVBtisaYgJ7JpVUwhr9sQjEIacZnOCnPdCPu0aP7v7U/4OFRxxM/gt\nJ0VwHrmnq4l/4a+C4ld9GfdJsy//C/cDhN39HdOIToxS/FYntvg7U23uAEh57xMg2eErQtGynDX/\nzqMC7av42b1BykTFvBktb2KXqxD4qisw2HDpwwX1xa1m2+iwBwbj9zafLDzzFoFmXdhJCmqaL35N\nqSIVELNwKL04+y0i8fAxpqscD2RstpFC+pRd3Odbmgg19gifaZ81xVT/haDfGNtbuan8ka01v59G\nQNh6LDJU4eUhvF8af2/VV6P2jzJ8AjnKxDiB4QaKAT7woZscj3PwMK7KAwa69PJxW0n2EetCyW+X\neJFTOxzgVj6D3XVLZ9MKo3blTBwPxbQW62qwyA0+sqOx0ZIZLQ1cicsyUadJGdMAtz2cU3LwnM3O\nQQMaY5M0wCUl2hIPfkVdT3fC/amMuOIEm5kzQ173eJxhzFMxlcD80RFnExgu2mU/Xm0DWhy7tjY4\nXjiK7fG4R8xWaoP9Qx4Ih4nEpA0+AHCCXXvx+6z4VGuG4y0sODbsaV1BJRyP8aXJruLjQ9ylbNH8\nEv2ZzABZMl8ByO2tuGQ12U+E9bhVxGFsRiXZv+x+gLC73zGNYJ61y25GacITOvkn84jmWIKMaaUl\nR1onNgnGaAR6pRKfUr86KuDXKH4DLR2wcq2CIVeGi+OLuw2IDT4GLlYAtwnfA9rkTNtlaVEaAVSU\npXEJzZWR3wUZa4LrkGVLlTo/fYFu38OIgbQ8VcodjwssyPu0qZztaz2N8GwV+fvO5huWds0FRb5p\nwkQDn6qbw1Xbm9pIHfOf7j31azb+QRv8RQXVD5pk7ZxofT0tKsU0YiUgvrdGxznSTI01IaKfNcJR\nZTuRhXhWpV8lMNzA7ZLUJAJY3cDwahVL6uiY03QesttQ16ZxXL5Sq+M1xlEnPX2zfG+/y5IDUVC7\nA6N63MwXJMakTFbxN+f8P85I17o3Q7hd6v3X2jDFfeN2sBHOPpuq6JPzFtpgAsH50NN+rAmOeWXN\nbwJggN+qCbbtPwDxCkZvXRtMmt8AxwF6SRMM8Mt2xd5fwRz7JAfl+SuPRlH1quTpDyd8fYkzSXEM\nvBK0ZR530w5HpjNfOTWCxHgq1lqzDCus4hC6y/f88x90P0DY3e/aCFvzi3RCEKedjDx4Y3f6ktgY\n+JTGRDRpgxFfgLGYnEC5MnbeXAbhEJCB0rQPgrS4mytru+khh6IVutG9EZZsH/HtGgbAV6nKGdQV\nY6ZVOaJNeA9NnIRr6ZDmmB55nAa0lSTWcQL2lq+Mg/HdG5Ip957Sbv539w0gnnj3UeSlKdCaIH6y\n3uS4tx6P4cAL3/X5W/fvMPlso/JraYGQdZDA2l/lODaPeL+DtlHB2gEeKrjLclyN4o3qAi+Z0yUo\nXkUIOO0b2iLQFBpDITDsFRII5tNnRCR5XFmJSaXoB1oCwBK0ZaAV9yBrZypBYMyMaeB4YZQz3Py1\nMw9kGVQfN6ucU6MabdcLDaLNgYSjAVki+kB91dIIqjAW0B5d5RQVW1LNIVT3EW0qMwDGPI5a4QqA\nD782EEx+teWv9iEHfX54oxxA7wF4m/a3g+TQlKZWN7TBofUVCQAeFJY8q8t28+zlKnbGWc2fFaa/\nA9+qHc4Koo4JJB8aYdIAW70tH82KviV+on1KE33+y+4HCLvDa4yP+ei3Jz4nlonv4G2dKCz5xCYK\nu1NA4V5W4ykK5yHG0yUvIua32tqoUsBwAZdE5Eqdgl1Q7Sh30tN7n3o/bEg8ypwDc2pCu/lEC9s9\nnVj5DrsU2XLLQggVGbB51yF8om0xZ0bp6WcIXM4RJnpCWtGU2dBe/9tBBNIqPERqTfldd18tdLfe\nmOF+hRwaE/yd1sVQk/y1Hm511jDB5sAzf398Prrf1Aa/sYb0OPV43XWjEvzLgYZvOGLtcK3xDPGA\nBUHmuggMbiW5FuOlIVhD5xyVhzwHQcXOl+1KGVTxK3cA5aI13ncH1Cir7QDFtF5vaV9ofEuaoEP3\nssV6yjCXVrLzGAfv0MuaY6Jmf6fvGHwRBsOFs0T9O/NoAlfuIS1+jz40wmkzLAMAlg9h0AK0v0pA\nuIFh1+rKL//UM2mD9dcGrrp8sxwDWwK3wmYR1swk7ATKAYTFaZPMISoYPqUYr/eUdNYjz+uYdil3\nA77+E6sRHfzeNMJxm6xSjNI5XDYQavKHP+1+gLC7bzXCIjyJ8yTLEC54sYW/BcEVPMlRBoyx3JvD\nhf/SQjQ70kRI84unOKtgmDuh5abVZEG9Hiz5Eg4/3SeKDitLeKFUcwiUfg+fYBN8O4ATj5eF7CQb\nVGZWFnnqdGSobqCrabVP+boohXJtJ/ehy7w+FlXYc04eh/fSn9yNbEueRo9fVcrYwZHW52+fQbDU\n25w00sPTprp/hx3vMfjn6uZNUPn6eYMEbJ7dr6wZCMIcooHhw+lJCpZZFR3CK3HwC800FI9x1SFO\ncq41q6xlymt0ib7kcVjSNMEEgAGaYRohQuurcGWJB/+KGPLYR2nXbuPbAXHR+Pbj0pLpbhCrsfaL\nUhYoAXICPLfwlDaWxU/9dk/hV2WBJDOzWHPDKid+/NtOYS5RQfAtDBo+0kDzBH73Z5nXBryHFnht\nze+yDYBNA9jpcpAHrSXA7wUUB9BlbTHHMxBWFZhAQN5mHIY9F9YpHSqZjde/k+a/AnyLlvcEvgx+\n2bZ4k4MxeVZtL5kAxjIhuVCUdnfK+dfcDxB297ePT2thmcIUlxUBZWXGgwBYQgzxE8FMRIbwRJTc\nlHx9Q7eBwPB2FHA8dphAsFV/NnLwcz9ZkEjzE2jvQC95hbdZozR63sI9ncIAxASQxWAmkfMG8FHn\nwqi+i4kEnRUsIrSJruWbypI7BZ+N8VlHCnIrcTeX6Z9y3VtZMwZNll58dsZNdf+tZO9V70WEVYbw\nCaZv9/ht9wUI/r16GcTngFTgC0AB4Jvgd4NhAsIH7tHTZzV7gDzEYRmrELVl3xzrnXGtCdEUFeHX\n6OqANjW+2gCvSJpD+HWdm+WS3xROnfyN8wRqqHGhHBCtvDERjhRip7T8+FBj6L5pQ8Hr/NbqA2QE\niJWKo3yfQs1eZUSnbgZidrELbiNyjbFbCvM/lSQY0OTgl0s8/EKb435pguJnVe3wL3NA/KuZUNhO\nM6PzhAnwNtBbgTGdJHEDx6EJbmuxgGGPLyPl88FkISl2i//legz9UVn+Jo3vpvEpTbxM0ou1tuYb\nBYl+5DLINE4fqOmPuB8g7O73To3QYwLLb4g7CCGY8OVGwYNsjK9tskhkXtp56xEWLBZoh5NA0TQw\ndpMEw9z0qybYkvWq8WkRTfiUOvu15jeqL4qiXhHhc31RNNi9Vu1x6R+FRbbQDcDtmfIzz3zPCq07\nxKlzl/6riQTnUxKU8gIo6N49bwhK8nPJqbYr/FM5WvrmTqZ2A4BT/LdxZ5s+ze8Z1tfwP6q9/cdq\nEuGeGLURADiOq2JAHFo0hJfAVCI0bBMJlDjNOA8q5dvYRAvtTbRZNL5DPmlp1TSCANEEhpdrjVkT\nTPbEtQMQ+Ihr/CniAF6opXxaQjJIwStwHDFX+ST18s1ezTy9L2SjcrjYlkmVd9zG8mUdHgXAMxMg\nox4eo1KM0JcNcSXrof1F4+UAuxUEC4FKCRthe5boL3MtsKU2+NcSsQS+upYYgV8xizA0wqwFBjDu\n2tA7QCbtcYB5Ar0GMNyHfUeQtAzSGEXJp6sPvV2uHQhfNb4i+6xlrsNBcJShabZ278PP7fD+RXhi\nAn/A/QBhd9+O/Z7EfJKJn30f9i9VvrTh3ppUKJx5wJZwsoGRVJvXCh9t4rAqJY8kkwZjTXvVqLVJ\nsZQNLBySkQJkxns9zT51GdPxWeyoJpfrZj77AF2Z0o5J0AqEMprivOms7tJS4SmBtIVHpoY+GCVg\n7I8yjeOM/jPPm83r55R+Heo7QCM2OdW6Egw1TbpmnlI1lx9veStztsdaFdCiFnoRPbvypft3ePhL\nY8BUtIVDqDv9hVDTEGDKcZJgLcuQZtwQn6st4mUAu3XJHP5PcTWNgRB+GmBoIM2kRa1tq4HLbPV0\na3nHdK86/Nij4Zy1PKwQXzIAQIsxD54Y460x/mC5EChxP5p3NLfyvE9vOeYU7lNZFODhwhkk+frF\nBZgmkBu1Mi+NMa/IKESHOgUSkIyiPlBbuq2d5uPD4xrgF7+FNbPD5foQMJx+T/qV1ha/VcTLiJSR\nbnwSwJiIdbrGuPz+9QaE7YvfN/kWwKw/kD44m1lFnqXut50utr8o6H7DGc5Cb1X+sPsBwu74abcw\ndMqDMMuah+Mp/Mgm9tdwbYH0oB0UURlvfZrcCTMITmHX79Y1xTtuRwb4lWFt2hQPZMgJWNzgYPVa\nwHEA8zxL8M5SeX7uJzkcIJWDxX8TBNrCNW8ycQdU0yB3fwufZezI8x4vFchQnZWxXDjsQUcdWRxn\nBRCwYLpilMngNEunpnLPWgGcHX0ec9TvMeU7V5W2tBMQYJPZKW/+N2z5S9cFpEkCfcv0LcxI2+vh\nAMRERKEVxtoP8EDWooaVynOZc8rNe/PzGL8tFYBffr1cSVSFgW8t+MFZ8xzrjFpj1PIiL2Yu1emd\n+XKMZcxXbm4W8bXs84G55Hk1bxtvSE6Ql81nkNm73bnYsS6sJAff3wHN8RjAb9RFgDl4fVRb13K0\nwlTwxbo6/iKJLH0sTUXlac3VmLqk3+3RAHdrp8FeeJl/UMNntGmE8yctzKC35tFQ9OAouk2nAXwF\nNuNSbMJJHGY8j0FfQNys8Wpj3m+B8GdQ/Mjj2v1H8HZp0775ujU3WbIGgAV+f+jeSkYmODn9SSz/\nmPsBwuGM/srhRziIq4UDEA/pAX5tAsE2+M52jenJbTxIDIKYW2T3Bh7CqvGxFGpSNMB7XVtN5/YA\n+EoriESgMqtBbkfnf1XQTCNk9batXbWtPibadZnTqjp1w6zpVr6R2w5HJ8BtsonFn8KJB93G/GGO\nMtSz52cul2NrVDVOwmgdo/QbgyFDl5KXmVbaqNJxV9IBgdJc0evQqV1v4TfQfLizX8xfOd+/yGv/\nPdcJPh42qx/HRMXiAyCWrV3D+gbQ4uPNxIVVkHnwAg2a5rXGTTv9WoT7PT/RVjGJEKk2pqg2w8wT\nIvzNOIb/tjYv/rzVQUN1eelBe8H7PLDHN8c1lj+BoATAFvGRd+ADM8/W90EZ2S01hjXCBIZNtfKl\n477V6ZHRhcBlE7k5Dat3uDyQmQge+vLBwMRsxdgkGPb7MEiGaUTJIwkCJeMS+Na4vQk8j2RTvJmB\naFBqq8oJhj/NBYnDwLgRl2M2AuNI8/78V7/cUCiq+whogF6RDY6XbhMS/4y2LatgGPbT9Mlr4ye5\nqf9T+L90P0DY3WOnhlNkZiIMbguhtTRogU3sAxjuzipxHxlJB9EaeoLgHbb0zmsqJMep30Cfbwy1\nxDEgLBlA3HvFG576BVphtJ+zzozwtgqO9mnmrm2eR167jwryK/iCx4bXWQl0iZJui9p6nF38vZwd\n8QxaUFRbOStPGgMABXM+gC/79QC+CUw5Lq8MehVlRVJDNE1Jl9M9jzbPZUG9CWGuv+ZpZhu/yXjv\na/sb9+FmE3OS9Mdyw1yT39yvAACPhVYmj+1ywGuIAyhLMCxSeUI054Jf2DTgIGmni6vc63bBeAuh\nLQ15o87iKXbJx52s+1tDXgAwj8EOV6B/pNObCW5hhI0Clk1TqxkPANzz9z6wG+JGdtt4Dj6yMYLg\ni1lEX3/B7/ddaxuiQG3MycuMdC57Ys1ka3ZhDiGs/R3A72PxiWXYFCMJqNG8vQ1FSkGgeMBEOYGm\nPpU0Xb6FuXATTm9pZT6oOdmubBY/NIUpZ0sHmP17gPgp4SXi4FY3ABZxQNy0wtLAMECybN5kj6XZ\nzMDbyvUfdD9AGM5mvWOPM/5Z9Z9aYQvga3KaR5TbH3euifGUdG0+mFPdivUmYE5hJeiBxME5nqnQ\noDX6PCVBJGaVmpyMpGWWz5etIeRw78JfZyH0dj0KvDo9srFumO2Y62s+uQ/uR8KyErfrsqPMm3YY\nHp6bGF/k6SqHzmS4XBmnOhoJNvJaQTHlozhoC3YRLivzvOgQDfl7a97FjbRgr8F622+QrY3e33Zd\na5hrsD6klo1tvDjpNbtSXEmnSU7bYA3a2+TCtsOpMcYnfCe51FnBDQCLC8eSFnNbB5uP0Aqi6CYS\n7C9vIkpVAgjKS6nezE4/854OPmrF4SnjoHqES57DfIIyW8aX27b4aBrFx5Kne30T5p6Uhx1rjRjA\n78BKkp+xKVwfuqkgO9AkNxDN0CX7pfymnbQH9iP0AgyT/3FTCIDkx/bGOrzWD+Ccgwnb4xD4xS+h\nBUZ/oWFWUcEGOe1XXXUYb8CP+0zNkli7lTYY/HIzKyieTB4qwP0WCG9Mo2Ea8YgINuBa1wo7GIad\n8G4f+JJWBdgk5/4b5npxP0DY3bdje2yUs9nPGmYGw8iTYHi+s3UfSZoj7Vqug+C6qgwVui/z6pAK\npqnHWhWRapuI2MLvwHHrjupgMnoy3ipUa1+7wJ3SjquefOUlcMQd4NgrO3baj4bXXq4I2nYtgraX\nte/ijfoIJlnaJdlgI4AXk0xIsxrwSh8B5A/bTQbAqKv5Nzip8RqD2LpGtymuAWQb87XxlxbE3A3V\nT4T1iT9o/PmuvrcMEzns4AgxZmLHFGOOQypqu5KWtwHivQ/AuZRV8wkjEH09bbZpPndc7UffSFnn\nctb8xkNX0Fvzf+Fqts5leB32dTekqR7PmPsepBlW4pvFhMP7jfZbA7h0myMNTQnecnTnv/OXe1mi\ntUkD/JZGVXXpc+Vno7Nepd/6CZpS27aoIibx1bi1nNQ97rE8U9jfiOzPLGsKiQCMpBXGOJCf102J\n93US69BZXLmKiNkT9sN5css69831ccJYoTlxayv0AsDLTY9+fQlyx9/TNMLq9sGSphG2VJ7H4xgM\nG8wkvB3QDrdh/JPuBwi7sy9H30VHA71JrKkVtqIhZtMIkQ5Rp+V/F47JEW85VbpWRcQkjmy53jPj\nGAoXMByiYjpfQRp44iZBaKPtrh0QCZsyEwgPOp1Cs0jRGLdbMgaY4t7lo15CdUdzYD86eoDTlZn/\nm1D6mEbC1v3a84EJog2lLpvjd+NTYivo/g1AbJShLZyb5ABQOvilc1tVKZ+PE4XtuD9RL2G9sWkX\nmih9ehGwNnm0x7VbvtUz5dOXjLdaP/IjGhj/Ydx5AAAgAElEQVSdrphngNYdVsn4vEIDjHWNNwvq\naRUY88Oq0O36Wis9wDyXMPXjGhaiH9CTZ2B/H0bQGtpxDPHACDH1DCREzjVd1ic6T2A42ifB37If\noH/uS8bVpe/5G59gcs40PdOE5qXwkLnvUVNjP6UM0NQbCKaiTAs6qD5He9Cjs70xtQ+pdRWxBftg\n3R9ZMdjnmmw7YXMtrIk8GgA4vjSn/oq+D2bhy/UKaQvwy8eMlqFRaSBY5kWjjhZsjelBk0bDYM7L\nyzSljABYBrBH5Dvonc9SHjXC6rJbYBrhNsDQCjMYhp8A8W4LHgTepfW/4X6AsLvTMvaSD4QlBIYj\nThz02gCMZ5A8tST/nvHh4wyKMsGFz745Y2AJllVUKAHBAWJGDpGE70qr0yh9CldOrNkBF44BghUM\n88IXSws7QB/4CcfpkM6g/Rg2vYSazysNDTHipmuJs3a95ynC+RDCaMIcH1qL3v7XAZtoKMFIVqUJ\nUpAWmrsd178OVUHx/vXbHStAazMb8VfAM43RRiOZg/sdYaIkJqraqIMubyx7qiLbMuWcMt7TX8/7\nPa4pkY2BiANb0JkZVryGMM/1maZSihTrj/MMPJMXFLAqcmyQDCqn/lhZmxq8IumopiUR6TEuxzF9\no+s5mO/9H3vftmW5iisbIv//i0+XtR9QSCGBZ2X16VXrJZ1jpjFgDEKXsCxjJJIo4EGN3693TG8+\n8UAHxNQZM9/1mtxZa7R7fq26wyNl86GDUg37qHjbaz0Gz5J/Il0vYH5zIw+GjHYtXv1x7bB2xs96\n9KSmzeLeXb4mxzjhBcbIu9ErHB/WeLY+ciABI9Pa/zOt+obj2jr56ukNckLSTUw5RHuAiHdu8+Fy\n7TieIHgDS5k+HgfNPPNevMDPS/5LfcpniwUGejgEyvNLQAwCYrfs73edkv/L7QcIx/ZHHuGYsPfw\nB+/1QHC3AXBTdtHq/eqf4LmUqdWN3xY0F8CBQuKqV18sOb1I9X+3p77BbuxND1rDWU6pNCppmtTS\nr6oWd97dQHVtPS3fifOOuucp95SLjfUCbQpEeAdr2vlv7l3/XfbdKA7DBaRCbEZP8lvyAEnUyL2s\nVscwHChVmSwB8O0H7A82YHiA7z/ldOUw7xk0+xe5kNVDWjz67Hs/05NwIhS0SvPU3pWj+RsP+S2n\ndUNbvMzvLJcq1uZSmrjNb/KdTPIlVjib8k3RAsY+jselZrfbNuPATchtbYgaNqBE7zdTslcy2Thv\nzMhHDd9kT497Hm84C6wMGQJQMd6Snzd8we85Bq7kErIwWdZROtc129rx9Azr+bubnbc6IEbx+1VP\nucTXygtztH+8yeJNNwGyNHGkk3bnePN62lkhug89mTG3C6GjN+CtF/sWiDLT80tv8GM7NvhZddPe\nCMVd2fSDk4auaB+Qsrw03B70pdMCjLMJ1cHGvCcOVr+eC1lk7ryVCQ6JMgWbz7dA75n3XPKWAY/v\nMRlfmkPIwrJddgPE7NcTFAtg/Le3HyAc25+FRpAX30IkAvAiZR2PePfciUnv13T5/538XjaBytiG\nnuwG+Wb85dUdGk4+4lMVJ7q6rTiQXVAtLsqG5zmvFHSiIrj3rHXRx1VdyvRyL8Ecc8Cv+aXApfs2\nyiAdvxqVvrfv1JvWQpWxkpVGZOR3LTvGdRnySevBU9bTNkDtf/MzuXJd3485Jfqr/D7b2zB7zQXP\nzuHPV87kAlm9hxHZqKZkaWXeio7mWZJY7TCqr1eKrMscajBhtkvL+5bn0tbkV0rUBfwiPFx5DMUz\nqSnaqgiiCpjQuNkauoJl1SkKGoVOmmfHRa4q8KSuX8gseTf5o4wRcGTDykAlIq58zoKUmVEeBG16\nKnm2d/FWR7pX4/U63jr2Mj4atJnHk9qLli6K2fqx5rX+es6vVUfE2VJavA3CpeORN19Y2/zm4d19\n6rPbjgiTYKjdClpzPCtBMT/2gBEaIaRrxD/ENvLJbjUOroAgL8QZ6r7bsPtMhwHFku0L2fNOZ86V\nAJAGguENKDfQCUk/E9TewfDzqc4ToRGrgG7GC8MrTZCbHuA4znjhYI1vYrH/5fYDhGP749CI2D+o\neNYNcCsswkFw7FKOfreb1z9Tf57/BuSajfuwqSL3VFRq8UuRnRaGxrAZs9mv1M5lRFmg6/t2ENwO\nrr0WX9Zh8GauhPhysEdPzxypniQxEGPlsFN3R2dvRud172OPblRuhlnPnUVybsaGypRmxZn3zka1\nJcjICLmY+/lb/Tg/ddvrKT+XLfB2OQQAQ6urAGrXp/GrMdVgG/uQAYMu6e0hYLx4rCZpioSdqTpv\nz3Nc2lLLp9vId80f4S4+qre5FevqUlFvjmgwJ+glRPE7i1R4RM1DE1HRAzniFLDIH2BYz2uA2XSv\n9JllU7jv29QRR2LKZyGMpBdk/G1seQVrgNWvcgA0+XChlVy638SXwp11txjINd2LD3OeK28DD9TB\nGLf5CAeZvzZkO/KS48RmpJiF8kxdn3Zx9yOP86ajrqsvr+U7bukZtjh56x5b4aE2hkOEfjALj/AO\nl2ihEUKEFzHuQ0eXa/72sLkaxeoPEDJNT/Ea+ZOSsbuCX88pwgS+sy6YT2/wOxh+PoBjepIff7Ds\nBoIlROLTb3kDxj8e4X9x++5NSPMCh3A23gxvsBWvljfYx/Fo+Uz9N/kfO/8HW5g2Pu/XW9mXppp9\numaUUWWF8taWkOrpfZTvA7gatsy3VvYJ5F7PLB2euQWGI18b9jqvaXoxMi7pq+Gd+UBnUpdEqyOF\nt+ocxOjva56qdaNh1x/SiOdLKxMAp9Ff7bjq9BliXwmPlQeKJ2ZnUcdtreQXGlzzygJNcHN7p+fG\ncy1vnDvPJFhvPHooohNcAPXoeXqQqjOewOpIZ+c0jTsIxgUeewe9J6X7OJOPOET1jh7lF4/xDehq\n+irH3zWm51ocmTqAL4guKl/CxfQ+o3eF/F/y0D3BIRNR966fTNhg1pB6CoIRvBcgKHWS6hbVNxeg\nv2ODd9nmNysavADjGxl2X4RLePPr5LvITnWWHUc3uOoVdgG4T4Y21NJkEQbhS+ZgP4a3xTqWa9dy\nTpIkNsiD+3Y8fNG5MZkHe4J+K73DOWYDNiBePVotifmUzJLUAogJfhUEVx4SEKtHGAJmb2D41Qv8\nzPI9LgLgBoKtA9y3X43jou7+wvYDhGP7r1eNEMZqx5lXddM7nMLOFm9C9pLvH+ovBSjrqPEqybpd\nwREF0BLxXc2MSWIYt9kNwo2J2a5GSRXGKxSJM2z0zfqwTft4a+ItMzstRijy0m67qHTVoHPvcY4Y\nHpcyaFmeO9q91tHGLnUUOU2N3ayX8lHfqjUx7kAHww0Er6q3rMDvGvXUGGbapXvVQcIy9qiCd0ij\nGBCNtgH+BoyTz70Amsu5kCbZvzYVduXZlkce8Xut33uIR9+dVECfN1rN2US3qHIcB6lTfgeClVWm\nd/7CRtrrFBIb+xhL0xejXrKjjf2H9J9sMs/HDQ+RBDNVPgdNj5ljn0JW9Keg+HwyYtJANSaap+VX\n90b9YBD3GFfYpldwfAXCUnbxAs/5/l1ZidsZQ5wc6UJ26eu+/pP9YJ4jAO2ql3M7KO5Ad3uCVUd5\nnx/pC9BlX8neRmed/6lqLcIw2k1xLPdmsSpEB8Txgpw2xDJwHnROSBuM9DswTkxyeIM/eIIjhOK5\n1M1PLF8AcC6fNn6UiQ6II4TkX0DCP0A4tj8LjRAgDG/Lp7HsYWUUE2fscCiZm3z5BDIfezfy+TLc\n0gPx4j3rio93J7PJwkv5iiu28lbVRrBwa6QZtbuaTEw9qlzHyT5J9cPAftjOKvZScBr22p9eYO1w\nxgo3Y1n7BC2XMo5PjU/TBf+foLjRVOJnTea8BmUv1s36jwAGBMM0JDcQvMrgrxWgeIRMRGu7O2d4\nhLWj4Rl2dGBGF8sEtMI4B+myzPvKCoMCANq9RJ4/as+zQ4SS9r0XNboOdnTy+rElFY5m+vynMEvB\n6IO7HlWkfoJgo+R/Br+NjE14uiQdL8QZiXPbR9pGug0Y0dsaw1H/t3pChNPRATFBh9JP5XcMPuVB\n9IxzTNMLrLKRN/F9XHOsfsmr8feBKgiuPg8wpWPSMspWAqzz177Y9jy4bVd1Ev248g5u14ovoD37\nOEGwbz9k9wR/Z1/geMcIM5/Dr3SR1TpvAyIb6JFnZhV15U/qxnaPLqBXPcTwB2areE/5V4Cu7r2l\nJwh2uX+ovHvYw/D0SvjDHTDv9P4uxkKGR9jFOwz1EK/dJ5Sq3u3+hEb8q9ufrRpxD4dIg+y93qNK\nJc/z1ubNQvvMyPxbnsjnWHUl7eTbumQUzqzPsAiIdBMgABoHkGAq99PIvTC1A29rSN7OmN22zP2d\n0NhI3urfAc8t5/AC87+P+t7HNgGyS3rvu6Ey5kHqHgfjOC855nmCOs4ndK6AA+Exz04a5s2VCRhu\nvwmCV3mB49jSQyz9Zvcyrd5ha08FEpi15RM4DlqX09Q65yenLS1WlaHijEsuSALrx+y/D9JNUrKu\nV0uzZc//l/K3WGf0asdFkwkt+9kqPxTzUY+awIvWvWQY/9avyTOjX6kf6noFci3mRsoVDDSgi+Cz\navNVI3wK7XJNlOxeATFBMSf8eOlAx2woD3AdNxDMl7Rs9QaavhIddOQdhEXy0vAWph5qALjqML3Z\ndObH7wXwYq2P5ckjXmEW7RjSl0zrdXsfyiMsoFY9v0L/1x/0GEivvCnolXCdS1mfBsoFV9BYA+Du\neSc/7fjhDnq3mfW7eXs854OA9tvHBxgmoL14gj94i5l+vDzFvgg76utyJwBW8LtBL/iyHMvVNv7F\n7QcIx/ZnHmEMMKzhD2GkR/4bKObVtf2ZV0ef8+q91XV9UWffPQ+XMDFDthTAwkeB0SPapdNHUzth\nlfFqlYCuXfyS+s520xazQ5cadpacrbyUES+EEmx60Hu9MqBybgLdyDrK53UGeFEekeu1m7mjDjNk\nbki7UVTbzboXSLE0BDQq9PJe9gmCT0BMV+n+Ty4c3l+O7VgzTPbtGeOFXDPtnrzayGtS2arMRhuj\n2mvd9sJUy7m1BOSNaHbWRt0+7wdzXjwqXkw0Tuj6o7zBux5vlzjf2v+tDiSk5Nad5DcFJjGrdubj\nLb+VoepYjcK0/NKT1qsLbzTZGwyU4QS3uk0nqtKRvNuN4urp8iSPc4+xVB2/1rH6L6DoEyj2HKMM\nsnkdDQlyCXgDGNnzdGlc6x0sh8wl78h51ItaVsA35DUAmoJhAwT87v32sBYgK6CMfJfhHTgXf9Iz\n3HhW50ds3b7WFv7tnQYs7zKX6Ift8dXjXGoSI4/0uc5JzR1ppADYfR4TDGveCYZ1JYnnCpYjLWCZ\nYZ8PVtK2geBnwfGUR/jZN34JfB8AFrT68Qj/e9u3PcLJf3cgPAHvGyDuXhk1xCNvHF3zmJnOtScW\nCb/YSAww3Bq0AhFbu+xcvj1PY4TRLpsSPdHvuPU6csHWCGMeP81Dsz7XGi18Y/StQ5L3NjT/Yn4a\nBWhQJ50TxKo91e5n2sXIestXmplPEgqdeG7LrhO6sb/Q520ys8wwKVHgyHD3CjMWeAEm4RACiG0A\n4d0z8jn91WGkbYZFBARwyWcdR4d0AxhfyZSAajP6MNHgwxC2zTZM2jvwl1/KoGOlbHgr4yjt2mHO\nzUvZ6MNN7O5ahCJvwmvRi+xm9NrQqeM485QOeazAUCp8BMEKPqTuEMz2cZysO4lyjt1uuY1XvP2O\n+FUb1SYTqCf4BogXvcLrnT645VMLDUCmdcPoNBCMDYYYPyxG7EPa91JjQHyu2DvQvQBfX+sEyHHT\nZNht1hdFqU3YRVGY2Q/+ngLDzz72GH+B29JNBYbx7i3OugBBuvOYgPjDDVuaSo7NIvTCC0TzRThO\nneMB5NjCn5rqeROp1EPymdDkzTt8yVfwmzcVL57e7g0escDMGyETK2iUtHteQHDmrw24CYwlRvjH\nI/wvbt8l/h3UXkDxxQPcLkSv4OjE2Y0PeVN7+xKj9oRBr7vKMsyestys1gidoOx7WMLsr+PESdLM\nB/TYC2/jDVB0grhZs7RDgl/rtW52kKDn/gDVLqnZjr2WbxoX0GmAxQf9vNKsoi+0HPySeZMw3nnX\nB8V8UOQKDnCS9zZfMrnN2zINfB7LKhEDENtS77A+fve4UnmE6IksysqyVVavcxXfOBr49dbifdhp\nkHkNyoNlPfJ6pv3EQpUeMdh6xUCNdUUVxO+kf7d5Uzm1mdZ4PbdJlqE8d/SeBy+7rpjw1sMg2slO\nBSSO48MbLMpG9cv0CDfdY203xzgJ9DZVx2+b8eTDsPz4+BKxgtUEwPoT73AhIx3o5XgqVq1T8wT3\n5unlTaUYrJHWvSFj/lacHCD4AMQ3L7DenLjnMVd6SF2npoe8dQPBAb4UDPvzIF/tvIDezaeqk/Ys\nKWCePDdBb/+sd+W3NgP8cjDbKbBtMqdkxgTrl+M22C0vMBBy13gaGSN9zFV6gwV/HN7f4IHHg5wd\n7M6wiPli3DNCJjTG+AkarKB3eYMHCKYXmCD4WSNGOPjqL28/QDi274dGvIPe7h0egPmSd1x9aOGb\n2Z71Wq1QUKyy5SzuNAEJl/C224rB5bgVp/wzfrLpNwVCvK4ol8NTE+PeClBMZ9+1Tnyam5vxVcAy\nm7sdvVjLax07ci4tuNDac8hiTAVIcUK1bObzGnrjcDIClIjeE1LJZP82gBs91PAOg33zBHPubcVj\nwPAANxAc6TSECkXD+zYWQS0ADAEkRktSFjVvQm5SdG6kVwPDciOjqUxTLmROlbKZDl40niSlr2CY\n4DPHVvmVvgzkwxh/p+Xm+PJJEAI0cJwWlKLHK8Z2PnWx3FX4BHkGDXzcQLC1OlIvj6XJvKjUGd24\njngY3Zs+madQvnlDcG46rikjml49vayfewxOyy7pAYYrFCLmcYBifZQ+6+aeciAguMUCz7SA4QSi\nQAHUAMS1asSuUVwdN/bsA+dIwXB4gvHEMTmXN+ZGni2vbstTuhkOYExvcHqFpW4C5cucmsx5rlNs\nAdQTEEtMMFBMlIwUY3EUcNaipEXM3TPyxBvc84oH/OoRpjdYQK8A4RYPPEDy4+URfmIeFkHw8whN\npxd4oV6QC2+4c5m4v7v9AOHY/uuX5TJ98Q7f8iCPKKBK9wJieokWHnWyxgTDwyuZqr5Z82o3FUVs\np1HnHTNfmOpl7dGlIR6rCmMvKyWsV1iQfK2PrURuMWcNZKsB7GkbdSc4v5ju76WbIUy/RFVUgKSY\nrBkaOW5l2o7Mdv07jm8AuGoeM/lyrNsEL3OPNBL9ZZX4XOmyvl5ngGIXcJzeMR0H0YZXOkMdJC+Z\neDN61UsjIAacdH3o0bOzHTlOkG1W3ZpbWe+e7XeK7pb1pMoxAo5Rzt7onEpjr136b/Ibh1jtAcqx\nVqTHzVBAYe7ReQbzeNQZx+Wtq1MbEJZ9qjbcnrRByY0+1x04vK2OMH8JJCjcrtowLpRy/SZfn8r+\npNqtgl+OlAieNO/yMHShsL8B8XniyNDwh7VBjWEF4Kb3U3RZgGA8j+gPF1vAHtSKR3ioN7jywv7x\nJdn0pQR/9XsGL8bNYVOmfVzT4eLZ3wN34deiTQ+/8xvHDQ1r+6YSOGVcl05y5FwUFqxrET7nV2mz\nPquK/lSdN3icda+8Ps+dZeCNypAXHZvvMZcDkOPTeuyb6P4S4r++/QDh2N4MxVFvgtqW916mL9E9\nyRrDuDWmHsdaZ5zD/ymmvNtubhwUozJtqgCoJ7yUitBFIxZTQabNK7Az07kqgCMU3gLw5Off89uK\nT1RYkhc/8wc+lSowAK01e9uPrdfqFn2kxFbe8n+X7l1Mu7hJ4Hmcha0ulYscH0k/j1sz4zhBtCjv\nHOAHpWPjdxRXWITeGKVHxgQcrwLFOH70ipWBzjV/9cU4KstjhQgvPtY89/3uBQh8o84KAxJKnF/O\nqmOkck8v2SQb0zSsSqISn4tS6QZUx1ExwcNQunrLKu/W8m275b+dnfGbCSYG2D2A7up5R10UkGhp\ngotZ5y0fZS+lKLcGGrp4HaybRrd+JyDAYfxFo18outv04+ZLVn+53JClfuaP+I/91HHpnUjKgqGx\nCutpWV4T7di1rFMNze4k0uT/ESO+rLzjz4IvlRu/jPXZ4VAPPasKioEWx0uesqdCBPh7uqSkdJim\nh32wWa+dqsMvGh6TIekAcoYP9Z30pGzd2zKg3hNrere86ntJsngl3g1L3vh0lBqlCBk8j8+XTDwt\nenrUmTLkWr5VJqyWT4pO0s3u7368EFtuXnbdi6H5S9sPEI7tzzzCoRa5j/OPMueyajtSl8fL9XrB\ncBeF5L0g8pShm8qqs7JpsdqiIPORM6UH4zGnXP9Ih7D2F6MgXC+/jHuLjV5fl8dprWyFEqVRebK+\nqfGSfilo196fADgEsk48MJ5xoOjd1gW+vyOqhmPaTvuZNnUYKhbm3XM3Q/P424A4zxEr9tb5Rrva\ne5vjsG2yVz7onuDzJukAyukpMXQAfMnTgY/QiQ1+QioXkmcIcPOTsQJMbqAYWg/CG9b5oal59xfb\nmSZkFHrJJYBaLaKb+F2oYRTVzNtTxJs2O3mB/ylDLnGVyJvcCXZ3HOOQ9VteNp2W7r/PY29Nem+k\nGtAI41IvSS0GnQB3gl4Fq8FPPvOlrGQ3JiKBs8n5Nq5hxZNtAfqS79Z3HVvKgk6hoxweQre85uzy\noRSq3o1pgK4MAdHjwH5a5zA8++l/krZ0eQLiGH+uNHIAXtvhAKJLDt0iJDm7q7pfjscYmsW4CdQL\nWG36k3RPCaI8j96ZHt/avI9l55mAY3nF3eNlPOyumm1MsYsK/O5f8X1F7uo152o9kKOzHntPPZj1\nbJDytpHkpv0bhf/S9gOEY3vTAUc9BxoI5h5AeX83023Q++I1fgE2FDKfF9U+tmNpZwXjk1NTuQY7\nU2GGpctD4xWtCWUT8xDIMplsRkEOUF8Q0180NN+l4AsX+SPwpe5c4Sn29rKGiszWEV2c5isrHQDv\n49kGaXgFwPSUDSah0si097K0i9L+YW1cK3o/RxRNTfM731TL/alB8wZn5YvmOhAFCphomeHiteng\ntuftMIgMjRhxwk5XBsp3u8fOfCWuxg73Bb/y5ZILyFUwoqAYku4gWOIpeflQ/uqJM2i5GMMUnk77\n8g1ppZJVWawMguLqfF7XYw4GEk47PPPG0e1xbsk0AYjI/bx5gcaAc77lK4IhSPrm/e74ACBvoHfW\ny7wpULyG9+oChlUYWnjNAXKpmTu/DKHs5+S1ZR4H4D0BN5LH6gtLHuGgF9k8xDeZcc+jKmyer3yp\nIhRjF5UztqHE2GQeT90K+MWJQceFylH7+MZFdzSd0mxRh00HOD70clP293xcq6ATW+QvCcCbXZVd\n0bFW59loU/zCnX7o5zhqfJRDvrdovsMsCvgiwbCBafUEb51V1OO16kmZaoMExIZ01ik1SkOx7ZOW\n5eEd+4PWehaT77X+ye0HCMd26IPXehcQzD2oc/e6eivzLnuv9iba2U0M89WQzR0ol4IH+CiES9Qk\nMktL52MPWd6GglvCVCrBkle798ga5/fwCEOFPXz6SfhDxHISABdgrueHU6V0PX3z+E4AXCKuTgDR\nZTotScNrGzoHojQ1L3Oa5wnjvEgcnhuv4joqHc3ceY7yVgKJeij2UenMImo1zboCXxMeWFXOEAkt\nb2/LixGXvgI0+AUAugUUngfE6Pa0guJbuoVFRFhFznl2x3MuJ5NsvrGscxrpaRC1Uq/cZsYHbcSE\nzdY10THyNHnjHPYgp0Ot2OWnS98dezai7CJxj2mhx8UbEJa+2q3n91EUXThPU8iARIHBHz3OUWRP\n0aJLmVAzUYsAYJP0HRhfrnPoA/K6HCYtxrApD3LjlB8/Yj0f5yiznKxUzeU1aQRGRyiODniM8QDB\nqc9kvCHyHz2+yX/lJaYNapUv/f8tlLrI5VkocmdlEWvuSQOVZ3Zc3Q93nabhhkCnBWt2alvSn/dK\ni97hIOmKeVMwvP0MvvspoJhhY8jejpV5OPyoY0d/hAT4Bs1PgW/yTmtqv2/of779AGFufpGmWzVs\nxriCYZfQB8nbst9B8AOXuymXLrhkqUdQlP0LSOYb9enx0vOu4JchESNCUXSwqoh6sxaYX0pKr5EA\nneYZHnG//PVQiPg93pfr8Xj5wgH41wXgqsKZQqkllWeXUvXuUQnQBpRR1TOaGhN4EgZh2hjHmSEG\n0LWOKKBuqyYgrgqf64AaEr/bPAeoWk6tlHh+QQVulb+YXgV2JVQCS7zCfFue4zXtMQcQ+4t3eGd7\negU3/25i/BbsXtLpJYbXEwHOEQ0K+5Iv4kxDyLqkF8fQDeF177Uv7/BtgvTQ7sV5/SOo4sQOVsMB\nIF7gkPUFJNidIDiPZb1oaTeTJob/sInFa9c6KV0FEZp+mzyTOvWSnzIn6QGOJzAu3TzqH3NY8/YG\neu2SF0YhaZ/bvPmbYBfBh9oHs6ZXWqMy9EaWt00V4OTEzKa+E95V+yO0zKX4fhncft2fLP3SlRli\n+Cbq0/Rn0r527pZXRaXOOkG8Bo2krZH7SMM9ThMBzzW2gZqr1hcreyC2FfCUs8ZF+TRGQtLYmscC\nI2G7F7vpnTRQz7Dmi/xkH7KnMwSicMpRNkZ5R8JlI+y2J/jtQ/zr2w8Qju13+qAqVmjDAYa1POtJ\nOvYP+GijhFVBTynxb9SpiqJ8ukEtxRhgLR6vtLdkEySVUc8Xn2Lopfes9hbif/UYye83m8CIF8/x\nfFnO5L+2Y+O41zQIQGktRTq1EelWSoXhJL0PckPjRbncUnvjzHPJ0BsBNbhZzTWrrjLq3PLqv2hb\nUfLH1ggiCljnMoFSqDMDpmeY6faEIEIhGELji4BZzQBXiBDD3gxxGdbdl27Vb95gTR8A+SF15FHh\nkvNySba4Rq0VBoF2ZY0SsMiQdHP6hDK3YYIAACAASURBVPuYr3snLWraqp0yrJLVL/Xb47KUDCFq\nL80FCG7ee/UI83PZ7dPZsjzU4C/VJ5mh/TkFOgpGz9vYPecmDX0DwFWe6QF0Kw1UDDHr9fLWTluT\n16o9lglAZj2f9Zpeq8tNLHXQVPUHrGQowbLWYxlGPs78zFbl32XQ9DK5L56tEL1znzeuv9BsxHGj\nFPzXPKel0PPQdf5ybNQdGGP2QT+rOWwb9aPejoYcWtnHfYnSUXva66L1khwvOHXZGEvIoHabnmK+\n8rDMwjx5ixFuYRJOUnn7lYywd+wnIKPsZWHzWp/aeW26rvtzpGi2pGqNCf5L2w8Qju1PFnHWON8J\nhlv5qJcvzrFuKIbUU6lwq60EuZJm/nleXb8eSTE/NJd6EUJxDueWGEYR2eTTycQvnD8BMe3J608f\nKTroVcDtB4pLF5g8ch6/lMeA6m6ZysEkjQaKNYyi1xua1vthlo58zPxhoPIm6KagMVjhm3lTv7im\nGiCxUV+0Wcxtjt4goDfKFACnd9hOEJwxw6H8pmVN4zH2DSDvvDJDMWjy/UjrShKkk4WF0XjGY83V\nfOHH5GU57W/JbpLOpK+HAQxAlKZy1pkT3z2igsXr0tf5LeHuLKYmrJ9T81jplONjv/JjKQWO14E1\nju2Sd9adgjTpIvKRb7JTeIoXCABS4ATQ8man60q0Oi2/hLPKTHnAkk+K/4S3D56M/Y6lOwjSaSJt\nkB9Ubg/5fyOyElXHVnI/IyD6OIMHidDUgCidczfzvOzDL944C//KDXfOOPlQupVeVA83lMt4aLQi\nXU6lUafRbNKuyysdIS7zsI8pk2FNGCpBvdFsrzZ7hkcoCC5P8b7uA4uHZ54rTi5p2l728BpF2bvU\nDsfxCXKntujHr7zWNpud6GWX5N/cfoBwbNPsvG18tPMGhskWt1CIDJmI/Lx2Kt86H5J39xaf5/RH\nuaKgthsMTUkzLEKFVQTzNM1WYDn35QmsfYVH+KoXaQYVBVjoD+1nxwsn+3e2Zs3Le9yFpiLoinSm\n1YGTOL/lhTIUwWd6riyhtrhtbXyjygXwC5egTTnzIuNTXu8GO3DXOIdHjgOCzKPxt/PSGAThrx7h\nAxCvWk7N4hGAelqyr0F8RX3WlTNHmHkBYj1etCxl7fuz4/7ZY8zzD0DcKKrSgZZuuKX18WJcsR+r\n1stxehmOfbTnwJSCVA12sp2WIWlRc5n1RW407l9vXhIE8+MoclyhLvJ1LF5fiDLwx9nbrCsgIfSU\nTdI3IRoKRBwDdUw9o7oSlf+b8qv3kfxJuRVnQ93cS18bELYKBXvGfOSEetFiyqeC4kSwU35uBJ+8\n2+vPm6xil9GBNAhS0dvMJe1an6kfeC3qGO7E1kxlfvCP0jh1hbfLqlVLKRUwnC/ZtjIhggJ96nuT\nqOEMMdyddjDG9sOcjCE3+xp8wHsNnRd6f2MlyHcwXKRsrKEhmTdA3Kfcsx+b1KXjtJ6FTm6hDnrt\nPB7lpvufGOF/fXtXzGe9Q59hgN0BlhsIlnK4GPOmtNmh4fX1EuN7ngDiMOoU0puSLkBhBd6smDz3\nFEpUKER6ixIA2eBqMZrNI8y+DMKa9PEAx6OMp6DppsxTa9IES5RDFrL90A7He1jGO30pMAG+v2Mc\nl9/ISO9VU+RatZvE1qiQkErMpWKVSRuc/6GLr5sNg2iab8kDnH8FTQV49XjHlCYglrjS+qLWGYeX\nY5gT3Uav51TZDm/YhJrLpt1jhbvsEBxDzju9fZsGdSN0mGnZDubKPDU/9lrv3lyZpka2RqWZvh0D\nSOAR07xXolGrlZ8EXiPNrwd2IFy917GcPbj25Tv1tsIL+stPwW8DwpB5G/upe1ue8FYmWSYoYwDf\n4rnRFnnokScSc4Bk6zbe4o3+MiH7rLoKI60Ne+nvTwpBQFi21h5HIGzGnFdLfds30kbC7tRzYQBD\nJHxeX2xTv9xT9Iw5SFvmdcnsrvsJ9FsXvRuNGSIh5dsxxvIKWQDiBle85fu4BR6WpDe7y9DDfb10\nvGOAYJrZ6M4RKxzOpnt4BK0G8rhLqGeOaT3hyYodHtuwGXYtm4bl391+gHBsf7SOcAIRF70nedGe\nY39Io4FgVP627X5e/w0Uq6aUayabilJNZSuPdAsEMJ5MLGkIaQnG8AwLfkpvkQDiY83YI0aYIJJG\nATgArl3ydCxp2Ib4UPCFPKlbQ2vSjqvU5jllUnY+lSjPF53I+he1JWCrhomsSdoj62hfXBMD8O98\nb/VqT77TtqSuJwmOrWq9GUFFReigOOcbRWzhgfIWWwHiiAemF9jzk8tW/Mw+qSE6wO9ON4AVmtmA\nBLU3wLuNZPBQ7OdSalVW7eQyfm0G4kfevQJWkbHrePQcBTg0QuT7KFedILa/UYfiIteqXqnH/eSB\nHIbItH4A5fwwSl8KTz+b7dKh/gh4xF32zox+ScYkrY43yTfmJYBAv5EugWk6doLeJkCit6bAkeB5\no6nH6McTLFOv80tsMh8+r0Ea2sg7bsLKQ3z1rpFfbi/ZpU4TYT/a6Hmz+DUkTdL7hTiA4RGpP5gP\niBKnjbnoMsP+uAb1x7xR5YhiHjKkizce2SGV65LPspVJtLCTDE9iPDRpGNyevIDtKR729U3nNk9w\n7jmPVuZaXpI7Y4M3AO+rRhS56jbjuwA4Oa9rKiON+nRcR/aBDyFj+9DCP7r9AOHY3nTsUc8LZiiw\nJUh1rzr1GeUePvG4x5KRnm1CjhMUUOm2OnWdQ0mnZKjipxR0YU6t4oDJW+XysEfUqigTK0bVx6ev\n3mB6/hJUBCHTYICSXUbK6rjFDYN5NR8ZB0XaUJ5EYo9jvynnEa3V2pI4znRjSJ7ELjbTnmP7wF1a\nZwDg+RnuavetvbewiPAU6YTqIHnUFNNICyj2JEzMPzDALzK989fgk5UvyZXXmBfrhug1PV06Msnd\n+8tjTzorOK5ylu28rH9ZxxqP0l/la/CPHpTl+Ma4OIE3kLPTLTREycFaFBftBiYIvghFnmMl6inP\n6F8F/FpoYRH8fX2BBrJz8BjjHNek2Q3hH0nqDJUdb7/6OI/UOQTlQ/6nOsmyXnVMzmvOCDnPHbLE\nUKUnGUQfV9YtfChZBtqxlPtjC30n4PcgufXat3Y0/6Y2YPaSj3pZDlSrCvR7u6fGG/o2aavhTDEd\nTAMD+Kl8VZsnb/KJqYJgPh3dNKYNzXdzaN/mChIEyMcVSoYPT3Da3WKnZRGKEeyW4RFRdYJg9Qbr\nPLjkvwNgPyhSZUhvdQ2rrwSRaebbOO6Mdr95+4e3HyAc2599WY5KvoNhSLqFP0jd+FgwGLdWursU\nqV+P8wJoIDmTChrZRx5bGYEQRKueIgVdNaGUaK4DzQMM09jhyyoBJpxNKUrQG5liKDIuOD3H0nca\nUa/mVHc1LzAvOSR4mJQ+saLrLeegRm6h3KwNRq8z8vTIbz89qGpVNhvoKZpNYYVR7q2ecGcN+GVr\nscJ27ismeP/yoyY3j3B6hekN1qcGDI1gHyXtNw9Kn6hbrHAHuzwuudh85imbeXPF48eLTwYAdnjE\ncwodlVY3i/GxMNIH/1wakAn2mR1kOfL/IM3NmvWytLTdQzxCI74EDH+t0cmdyMfI2dn7+PQ0bz2c\nNBFYX4ITxzJvCoJTj6Dq6UXH8XRAdIK5KMTQTTb2EwBD+C/7Gcl2gzVoAQDisCANu3xcZMbiGgOQ\nAthy6lWvafom/1KiKMWqIssECyXAMfln81yxHcd1yS1dKfcy5ueNq55N++V5ukv1G/dn+BiQdGvz\nTBuUT586CM6lSJ32ghcdOldVGl9alx4lGI6OO2LVCCu2MuxrtxjhqyfYs02CYnZsapxdW8FxlZ31\n+nE7sONAKk4eopo5efRvbT9A+A+39mW4UNROAwsBvSjPbwPBAowhe+QxmvJ0KXs/5jn75271gk8D\nw2jH/TF9xMKWjKQAWs9qMpwibG+/Wic2tdYBcpEg8+5Jseoo+4rekQS8ov/bi25Z1UZeqUvRqrvm\nlF8BxjQ3TX35+H3cbud4p4E0osPLm6OZj1JdjS10WDJx7y/GXXqqOk28vrusz7neAPm65Ms6tLnu\ndLv47uh8vN9HWmWW4xYD5jjigo+8p4wCqWZAeulua1ubeoiZtqemqw/hhQ9mRYzKYnwBdA9qP615\ngpUEcpniiB6ekOBDN9NfzIHGdY+wiPIMbwBsa8G+Vuo1voNQnXMZz8zvdWo5MOR8HZTMgYoktBvM\nB3Uj9PAEdN0rBJvsdasju+zEAEl7eKLLdNzkLZ6bURGnvM+u9PKa8OJ/4WTDeESPqkOQJI/T9GnB\ngVmaMoy2qQsjr6pIufEUq7JswsIsmVynLpekaxTxrJbkeFByyvlXuVWdqCI2m25Zg1+piwT4wiEg\n2GPqSd/N2xsYRxsin6WzhuRbjZkOJ9L2ieusqKP3Wc0L3I5dbF/RonMKdaCDOnCSqWuse73bD6Od\n960ZmN/W/l9vP0A4tv9m+TTgxSMsiq4D50rzM8yqbGeIRDs+FLd4jrMNPhaiIqCkMBZI2XmfU0Jw\nMh8FjKtCTE/vqwd4xhSKt7Ahs3wLPPINrc9pKAnSaVzFmBnQAa/oLM2r9qeoVUjE0MWiOTVi7qYi\neDyUjNdv3nSIThrt8Ihzfi/XnORGn/laZvikX67cT40aFHMTyuUjTUuCzsXxOyjuH17I+GAzeblK\njHgeT4t1t2AN4iV9g78evT1g6x6fhhWeasC58giCPd/uf4o+AGBrX98cjqfxXrfY3Zzs3YWPmi4q\nvq/6QieKiVziCJM40rcQibCceVmdX6sPakww/CVgWAEx54EGM0GKEObCsI1UgNDCgvZCUEf1WUEQ\nJJ0OCnqFnztRlOYqQBh91PzsGvWUzpWOj7qndFArG9eq/8mp1/TsVp/X3Z95s2PUsdkWYuq7fvCo\nbFGuAPi2p30wvO9TVwCwX9GNX9H2L3awzMBtS/IBY84op3t+PT5G5wuwx/pUYesLZa3im6JdD2tg\nnPvOo/cXCYLD+STAuDzL0kxmdCXBfrE7W59Wmm25hbcZQ9UGay0rEVEQ3DzFqQeV37qqOrVSB8rH\nsG7zZa3r1Wcpk8RH+/RPbz9AOLYrEHipuPUYmUg8vJKmoLJueoe9Pr9M5ZfGV87pADfal3p+KbcG\ngmkELOsfZaJtirlLSPQmlmKT9axhpPpx8X2V0ryFpSGwGt9hRDzLLenQx0oaNC/wPKbgp66xccz6\nOvMvoFhdbcIIJmfxeL4A1I8uW9y8pG6c421XLBL0/3NfARC9ZvHoR1DcJrYnqaB3WjRdznkd8wap\nvTjJmFJ+mSy+Mndaiz89rpGm15ePmtcIfcibq5mHDKFo84In3u73XO/VH0c+7rQCxrYtb3NuftfU\n9GMSux+3m2GeIaSoovJaJVDuIi98IZlNljlvaHNXnmDrIFjBMHvbAJ9XeETmU+6lU44NMvJte0S4\nipLJL/R1aUD2DQQP2VJaTmGatJZ0m5boS33KPpRL02+jPTbA9YMfbL75Jsjt6UaYKiMgEvlVXkkH\nxeALxc656gv4YrRVJTpI0NPUA/aaDj3ZEFFo0XzKJEO3IutN65lRHh/gWWSYXfxgO2Pyq30V0kAb\ncWpZMRIO8QBHjDDtS+RtEOxRvUBw2tz2DkHx9bQNipuTBDF3bhoasZ+WbLaKdNQhC8YzmZgmHWSB\nY8/jsAsj3cvuGkvT+bM+fTWYSujTAtNc6/z3t7YfIByb/75K1iy9JsCXPB7pBnxRaZc2qKgrHW1G\n25BrsPzdS0ylL7+Wl1rkHLhXgr7PzfjDVIpQknHvnmF0w0nJcCANn0Higa36yCVfjrIao3n0MsaT\nL78luEZ5OFhnzLK1PQFwN45ZJy7Ga16i7Zqeg+cwjvzso6bZSreuozunup59UPNw2F3VYjZabMMp\nI3pcYwJczjMZw3qd5hFun+W1AlTM+y9B771OGDu+iCTg9hMgTvnSuvmhA3qEt7E122l/sMdAF9S+\nMOLLHUW3g5jN3IkcK/H1JCudcJ6OBmY0zbaHNN/T1V297LsneB0g2OKn+i3RV9NJNaY2VNd0lEXo\ngD+WvNsEmDydQxhCl8BIgfCg4zXtZ/7tGECGcigIfgX81vjq1t45P/PS+1p6PMGxxZOYwUVHWzXf\novunuCnCobwqGBbAvIssfwVwxtPBX8iynHZV7HLp1G5NBkLOHyAQ7z73efYN9vPsVZSeCrPiy26J\nrIVvGm0b7BNbRN0iefQIA5BQFO9E9EvT4yrMIHld1KIhQiPMhZbevME9DIKE85q+5BCPEXTJt5H+\nTtlkE90ay6jV1ITV3uqsD63+M9sPEI7tu6ERFEo+nnjzCLPNfMQdSn0vpyYe4zQYEKNA4VRv8cVz\nrOeq0TlAcNyZgl4uqZPGohtrk1Jl/FKwlnehVIRHeETzCM+GqYREaQQY5vqHGlun37FXpcLHUdTe\nlnlFK/UKUwdqh5oXeOivw0hFu2qHq00Ozy4nftjavCLBmEsbUiynlSJTPXsrh9OTcR/YtbepkE/l\nlMYvATBqvgcPuB7nmrOVZyM04jTXUzG+5THpwRve6HkDxLPcRl2H5xv9Fmk3x3YxBSC2Bz7AsBGk\nkMfn+JKNlfKHWYxD4Sfvdd9Cmmb6d3k1h5Hf5sfucys/Yz0C4qAdV+zIR9HtyU+XZXraxqOo8JiG\nvkjvKUqHJXmmThsvyblXWMuNWG+E+lhGC+6YwKr0Evuq/ZS0rpymTfu8ZPF98c4LGCbb2bP1YshY\n8/wemnCkBihrgFd5ATH/NxAs6Q6Ea3d9MRc1rX4lPMP9tGiHJhlWgGGLG1UTQFzzRJNTPES+kTlN\njc6nMTHGsFl8uS7DHDVP+U554bKdkk/oqHQG3Ptr7k9NifwmQIaA5Nq3p78v/cj5ibZSP6CrtmSN\nyzzqINWS2Cz8F7cfIBzbFQjc6nmpoBke0dMMi9C0t3S2FBV/G/7QAHIv68aF7cgvqmgYYCsbhFCZ\npf3Kl+JYTslQT4HVsRuN6MIEvdY8wDs/X5hrgFdAC9CMZ+Vbjc2qjhlfGoz6DTZMMxD0MWkbl+NJ\nqD/a9Fo6RzLvmn4592YWKn2GRfhIoeXJZrdRlaZLD4UC42PeBSiFR8qu5auDYr0WIIw6FeSbNbnR\nNvhAjv2g94dyhkMAFQphgK2NXPJxrC3YAYZtWPnd75PuSnTvRQeAvoy42B8Jfkb6xi8NVEks5BZp\nsVgJguz0CnPd4Bka8fWF2814HePQS3qcN4IEJPuFim5B9Xfc1Mv18KC8wfKy3CTIx2P7UEfmrIFg\nq2u1G5m3dG+qLqN8s48Z8uKtlkl577OB/Atg1Uz3mtZAjfbh7WXom1wn4F0fgLDZjhHmNX9Noqor\nYVAkPZwSdpPFIZfbdxo3T3sunMo9EKK5eIatXyavq/aJ51hRZffTsq4HL6Ydax4Vntf18Nym/JXO\nlfvBoWZVPGKK416xg98ucH3Y9Y6DxxgEKDvL9gl5nqHjCeZJX95GWfdDlf7NSf/o9gOE/3BTM3yk\nRcfTI5IGCrikO2M2uX7zFosxmcC5Gxc1Bpe0S+WLXN7GyIQjDCO5HhoSgYvS1BbHRfySlvK5/Bkz\nK99wGDchQXYRDn1hrC91Q8zi1/4w2fehAr2UdoVDSKjM8DpmedLXx16OpF6VodW75890PbqbRE4e\n0kEctTDOQc3z77bJD0DegmR7Vxe8yX8tswsr+ah5zpiP42/tm5XxHRYBA54Ftw54W6iI05TXCLJ8\n8le+7IWiJ9mweRStn8e5F9kiHV3mppfv9Fs5vffp+RNPcL70qmuD58c1JEyC8cOw0jPuyJfU2H/9\nYeS3eUUDAx8ZM88Zem724yOw1bwhM6/X5ry5zCGVx9BPb+nsloY4cKrJw5Xrcl11toi2Q4ZGrH2B\n7SlFHCt0Vp1aANG0rYv+TpadMj5WijGTT3FbxBvnsoRr32x6HW9dHWWpSFfVgcNbmQExNsqoD0ho\nAoo3n6fSRxqa4K8Q4Zp+yshQPae5mnroVueSMX+zfuQ/MCzbuvwxB8MjuKbwYxUuwZfmbj4IUcV9\nPF7Xy7SM4wiVlPGd3IHkoYIBSsCeZnnGkv/l7QcIx/Zd4q/wZlqck2mgPY4A0Pk7H6EgFVvTkQnK\nytgbwVtIZ63DGfWjzLUhZbRzlJdfbBcENYXhkxGyl5Rlys8a45pCiiOvQCljsEPdedA8wKehjjkX\nj2u9Om/5HqRFg/qyoT3+UvZUnVDEJultNm5p/CYNqT9rzBK0dOX5tTxzm8dTfnL3P8ucAIbe/Gc/\nfmwalfXTQ3rTusUNj/2K7FB8PplB2MLeyzoFNMtl4JU+QiRaXTlHb0KL8SKPvKxeppBBvo25FGYQ\nrBAgzYkp+rU4YdJc52R0qUJOAILYtrqD9eXP9lrAcixpWwb7+oJ9fQHrS0Dt+Olnsc22Fxw1x3yc\n22/sih7HjaJMA4e6y132wOTL9x9+/3uDJwcreZV/YkGFBk0Pq4KPvAZ+Q1YYtpBF4wY4+Q6/zW84\n2xb4kSWzFeDP4oVO8iyBaMyl0aMp9W0h19dV7+9a4VwQ3jdDxlHYihsr3/zlda7/+gV/Hviz93ge\n+LP1zd6XTOxpVZrEmG0D3uR7EP2F23uFZxgRJx1Pb6iKNjh/4qEBZSRumRMpihxb8HGCSKYZSpIF\n2cd2o9CepiBkFRd9iSqXOhb9uoLfZfGCXNAEwFd4xz32X7wxsP0OAx9yPU+aATwpg6XSEWqdvGmZ\nEssuXc8b6UYLQwFjK/qrfZgo/S9uP0A4tpVxip83cw9bY1gJgg1tqRL+glMa8NMDAblU0AaJY4rq\nfOSCuA7MBEAj42f5V5I6ezS2D8o9u+q/q2uSsmv+e877tRN/iOGncG6qdeDCwwTAAn6BDpiZ/sV8\nAb3mTwLfyqs0PFSNlqOXtzjseZyQtVlmjqgR+zOw/V55GUiTCY0+XECGW+979f/ZxmJJ3g34MpZT\n88vyqKbMX43iI0d8r4ya+Qp2o75OxeSj0fS8ch7HOAogeBnkJ2TUgPxYyGP5Ls9uyKoTXt1MqzLB\nL/uj4JjtD0CcIHXZpU7PMwHJ7ctw87PJpiBY0mOOnfOcw+o3cHtvlT8MbwPJ3D+eEQ6cq/kiftcF\nH37XydT8m578TXkbJedP2lXkMAOCgQLEZu00l5M1DKDXscycdN7Okliv2xxcrnDz7Ir5395V8rCt\nVY4V258/9wwLWI2/4PHyWYDeyre8ZobGKQg22+D3V4DeAMHwBx66pW6EQo9xvEHa9gTGRuhDgGJ7\nyhsed6epbWDIJ4AbkD3gajBtXXPr82BWaX2aYlFYsyRyRuCbYjJA31CRd4B8yVLw+2yaeNyEUxwW\n08Z3evZLhI7tUX98h0E8T6xs5Q9Xi9xh1qRehF07kLe5LezZZMzZV0tS9M4jcYoFwD+dJn93+wHC\nsf2xR3iCYNr/UPIiSnUNOOACFy9eYEDjlyyPAVQsn8ejKqOCyIvnNefvW1saYtnf6nwoL5pUzh5G\nGPBEKpd2DtRxxlEzX8GOh4LbGE4AsHvbGyQd506g20HxPX0tv1vlk7DiuUqA/ApjJ8k/eYXP2GCM\nckBBOZLfJnAHng24FAzLGp1wg4Xxdjeka4HgN5/JRV6CYJUKUXoToHQmqFPeyuYRkcJBkEueFyDT\nvE9XKqAAdDAMMciolQ4WACxs73rwfwPqsbuAY+Thpax5kAgCzr3dymfdZRsAJwj+kp+EPNxenJtG\nvZEzdBdKVu/74LPjePDms39HvvD1K0jGnNsbU3Ey+moNvfx3GtVfD3fyAoazb3JdFy3gvVUdRj5t\nYPvCH7wZY9yqCwCG0aO7AXDxMkMZFCRvz6NzKUy9CYq6hyc46zoIgPlS3Qa/4gl+tgOivMGh71xA\nMIeWPDbAE/n8Qd2AMmzCng2M6RF9ADPPl1/TRq3OH22FJKWxlY1zKU+fVhrjU0YO/1R0MT9h/lLP\n2NzamGM92B7htblmBSB+lmWTXwTzDyEtwHd2Hn/4vZnd+IM93/5w4Y30dQBORzIS5ZjGcnPIAkIA\ntPhwrdNuArTOT2jEv7r9iUeYTLYnTT2PFwAaXFY3R6JIqbWMxrGYyIACyFGH3k3GdBWo9vPKTYo0\n9QfbDVWBYvC5zu+vKSLUNPz78R6+gBnnyCMsQsCt7icgBgZADgP7Cfy+Ad8bSO6g8rTGNgfZvFXN\nal/BrWfJzOt0ankW12EMsPbR/Dje3hkr8LGkDj1Yj2O/JBYG7zGcYDg0bDNY+xz9m1sf3dv2Xu6U\nrRvxjn2v18DEvFqKatDGUDHOcaNK24uHwIENrPLsnZPzWuaJGLVMLOPNu5sg2Orrfq0eer21YOsr\nfuv45Seypyd46BlNcw63GNzCJYKWPvd7Ejy+GKZilCB3eIjr1+vzSnxq00EpD25a6rtlfuT+lm0B\nVFDwlp0Mc3GhUdN7v0vbmR8A1XxJGI3DBACn1zcAcAe8XBXF9lrfVuENDJvIeHH1+C6GV+wyriZE\nYOxmAYAFDMuNT0untht0LtIlD/rCXkc4ljjcN+4bAJrHyroW+t42n+1+PrHWsKJClKVOc122tHNB\nv2naIDFSao6Pl00pexMYop/HdOCNBaSHdy1v3uANkOkZBlbcgH8BAHa4iz/PnppYBvKhqxcx/Lh5\nJwhey/E8DM0IG+ZALkXnDdOivT+k4iOAN8d23MxkwV/dfoBwbN+9C0n74fQMK99WiITWNwAhg7E5\nL7p3qZ9dlCHvoAL4ioBagGCnqFq1P3mv9+ICO24G329t3Ov2a8w6ahybBXrdkg6zjhixZk7T8BGI\nMi3njONez3N/B7/AjgvGvTwUdUVm9d/5gZPykQ3Eg/xi3kEP1rwACS3zmce0g64NJy0DUSS4tTI+\nhUgCDKP6376uFsbOQmN6AmBHB78oY4V6MYI8qR6tc+Qvucfryi+nqoL/UH7Nm71Ij9kuUADsUQ4g\nPMEAlw10OgBJVlQaKdvSR6F5ce/zNwAAIABJREFUCwGSsjTiAm758RLNn6AYqzxzPT9CIrjqg3qC\n7QsZEpFL3wUgnoYsNSDHFP3dhCo+jZsscvRnECz8N+XpmTLW6zOvwLFfDK3O8lvZob0jZZ+qghN7\n5VaebqOe6rlbWvlT+DezI20BUHdYhPXjAMD7JrgAcN7weABivhTpXmB6hEFYhgVFmYBiRJus67Z2\nkh5gfz6AYpTqiYEVH9U12gufCwnk4Pt5/o5l3jrKnhWyE/S2sg375rxkUaexZtraNM8pP8ryhdIO\ncm9e4aunWDEi9hNph5cIPtsjvIDtTV9WIhAd8fCEu6HWPX8cj0V8dCosvntj2zEey0Y+D3V2hMIA\nqX8t5j8HLeq+ADF/RZxaX9ou9a7o4x/dfoBwbGt9j/gJgKGe4a7PTkDqE34GOKZ4VVzS9AJvgLvz\nKjRC2pygOBjq7mdrV69NDG0K/A0gSP0pr2fbduSMBylSKl6cS7/8yKNx2/vb53HVCNolD+PcKxB+\n8RJXHq7n8Trq+c10ltUA+9u4XgNHqf45HT3+90OZ5PH6LQ5YvcEsbxboKSPMUDsNm3jUAxyVxPOb\nANj2iyst/i454/Y05gU8NEa4s+eocjnusZjv9e3kP1aLrm9xjdmUp4+enwNG0Axdzi4hEp6Wqya0\n+mnZSIIfK3Bb+9VXeBieYT4Cn15k4zJoLRRixAqbgmBr6QQmqXeKq70BYKGjsBnlWQEr5dkfbMB7\n9QAP2jrKa4xL/SI0iXjOrgAr1/wPGnUXC8+2S9i4JvlGKhM8tjm/0CsSv6+DjAumJ5cAePPDW2xw\nABt+Bt3Ko1xPFxgzLLwwwiAQN1fevMgRk7zRWcUFTwAcnlldblTlkAs9pOzZmJsVwM6BFD4Pr7Bt\nHb1xMfXftukZ+qWT533mj/TQDw0cZ//qN5ece1uCrh/vhg3o4PfZesbD8b1gzbxp/3dssG+dzAgt\nhktoOnTN8wC2PK9liHSEQ3ChgBbxqERogJhZCnTPMR9rTf/F7QcIx2b2zdAI+AC/9AIXOEYrP9Vn\nOrO0IDTj1oXBWdSWgUxzlQjJIycWE/XevkHi6+Nol74dhbe8Gu0cr9Kn6tQdvWrv1jSNm2aIoaw6\nJfHnS18Qz5HkP71OgtIDzOICek8g3PMRHt0nwewNFLcyUHFWfvdEuJIEaRR47D2/lTGXdSxoQhB8\nA8ACkPNxPMMi0hO8x+gEum0v2i95NLzAOdriB+aT5z5B3xduecm5bUSuesYlDrR5py9XtQ6itbrD\n6+0SyMtxQuZrGATQgTG4sz4/WT/yG5ClV3jhDJFYWSe9wQMQ15rAOzTi9sJcgmF6/gLcIG9w9py3\nuOAEwXWzXjGgbcg11EdkOGWWxyJTKdeVV/pg1FG57xMufKqT7SgenlxgufNbviOZ2rXodm3EExGr\nygpi5rE+IfDXOmw6AJ7Vi277aSJDJcIBI6tCmFUZxmoTBaj1RsgFBPNX8cb9i6MG9xVDdcDVKxx7\nmb+2bn4OT20gvZOGQTLwEYytJ9RdeIKjXd4YWPvoCmWzpr2mslxNpLVdysfUQleIsIwDRj5MIZiY\n3mBr6Z1BdWJWDm97rHD/ilBt6WMOi5E4z44P3mFt4VnmR2bMUnftk2P/hLc8Xn60x7uTl0BX89hM\nqnsBvNAQiRMU/3iE/8Xtjz3C/D1+BYD9HJr9YpzSoqpwQ/lgp7ewezFk1LWR1z2tBL69F7e8e2+l\nqRvC+Ig6bOzvNbrBebmE168rmCNaLD1HJwg+DeisewfCPTTitRz9B6DXiwFYDGKGUiDbSJPYBx5j\nnNPhgw632gNnlQeq9D0OcKwAOMHayzFXkbCnvMHpHS5g7HjqDn+AJdO+XZjhyCG4OGpqfQ40T5LS\nTzJ+1pvX0eMOgKsNBzIMosAv0LzoUOBC49snrICxZLeQCdTN76qXk/iWvl+8xPl4vAHlFecJ2CUY\nTuAr3mBJu34sBQKKcxiXuGAx0ArszvW2T9mdwLcD3qJ10x2xt9kBkzlW/mtGOOhvkx9c6nW+ytCZ\nvFnhiQRw6OelXEZ4QeikJhIuXRSa6XByrKjzCTxPr68jQa94ffec+iWMwqAeY3p900MsL9TR64us\nW7zpCszdmxe4eYhTTgoM32KEU3MyDl9+lk3I4xjR3wWKw7MJguJBw6S/JwhO++w5dTm/YJ5WHl5e\n/fpqrc09we8lHbsNfE3SsfeeTv7QtKHra6Jxe8orzBEyJOIAwXxqsHmpMA2ywwS8BXKlTo7tBRRH\nxY5quv79pMn/m+0HCMf2Jx5hnS6+Sdny9Pdmf5tCdjSwa2QE5t+9wMkw+eJcXahM0jmC32/enSf+\nqe6njeMogziPGoprSa2jj0zLSGZaFaYYR3e0N8zVczwN7J6rz97fuqERIHsDzdG5bC/PQSpKtsHP\nz2pwS1Fugl1vNKq95Oe8XQC0gN70/oYyewPAmo/nycf/28gOMIxIb21bYCEVHBe7V9406Jvab6x2\n8xbf6jYqUrZ4nQFamvK+1bPzOi0tFuC1jrTpcpk0nhMYQ+ejLlTzUOdu59u6gGH9gMGSF3IKBPta\nPS9fiqufXcMjCG4KBDN21ISzdz/Z3xi/eNxyHH7bhyw/Jef5djuBzgiT8OkpFuCjfJzRZUlwayyR\nMqHzN/KqROd+8I+jAJ+ynld6A5PQ55TDIbTlFZXxC22FLUQfRtoIsEz6Urzh4R02AcCwJWEUwRfi\n3fUGoA0tHEJihOkBPj3GK0Fi19UODI8wAeikMIY9OV4xUDqT/I49LvIIda+AbkS55cVK3gwKfEOD\nRf+yfc6Rsse6gWAkPqy9HfHEBxjeVw3c4RnJsSJcLd8NFJ7YQ4v5pIwwniPXVN76m7qKTgouvWaw\nWJGig2DTF6QQY2jHOWzkk+kGeDm+0h/8AItO5S39v95+gHBs3/cIIxeXTj59A8Nv+jNOVqHaEkvL\nqwY7mC4EtRphzDCgFnZ6fvU4c3Mxxt+P9wTEEx3YtR2lA4/PaooMuqFzqezH/0239rW2lueoeMOZ\n5wGOObju7V0Ero47GH4rwwUgM0/BcR4LfcJQ3zzCV/Drb/k377GXUYy+FQj24j+mCZRlQnLpNHDV\nAxevL0GwS3p6hsXLkBDYYhzxuPXgjckv0xhG7iG2NE1xDYs9apyNh9v5Wk55G9dNdreahyYC1utO\nnk4RrrhZgDxcIKrs8Es9Dw+NWQPDGIAXR14HxukNJuh5jQ3Wn/VfA8AMFnPJE770D/uUWVxvbE3A\n7hn+MOgcrDxFimEanJ8ituXcJJic3uE6SbhCeCvyckWGwazeUtbzxQ50wKtEEr04QLOXYpAhMY7T\nct5subwMF3LfVoTwCqNYFvpC5nxxbJz/78UIV4yxF38cQHjoHtXvQv6Uv0ZTmZ6sKwKYABjg0xnq\napd00hZAxhIHT9Tekt5c6tRSl8U5Rj6wIzTiBowP0LuqrICwpUTt0Ij9Ups/2OsJL2D57tvKoVjx\nCsnxZKIuGh/dACpUx62+ZFehlw4FwdTlXB4tuToPOIAah3qBc4wKkg/Q9M9vP0A4tj/yCK8Ki9js\n/xxgWHWdIfQDZI69ynBZGWJr8tTM6MZ8l5uPuulJxoWhXoy/Aw0Yq9LRaleNcx5bS80azReclz+u\nJQnVY81QsqsKciFgN4yo/ugd1mMqRwXC6cX1AXozr3t/e/4JgFv5rWxSSwjgLUu8aRh1xO5ePcQ0\niJku4tanpcUb3NIPnK6Gx/PzqObPXic3gK89QIJQE89vKLq3Yx83oZMnfsczfqTI+157gtwGgqrI\nW7njpowrWiHqJo1NDPQ+t4EZdiHnyNLYZp2Uf+4IinTCu2cYZlgCgrlfw9OLK0heEivcwyOOsIjx\nc35gAwuOndZPrO/xaliE9WP1DKuMx+Bpo0tGe34C3EfPF+/eAFcJcjwvEuQtXsibjQP8TsA1FahM\njwu/0QvHeRWA1toieNQbHsdIo/o+jt+AMceS3vq5bnA8FSBY3N5egto41rAK23LaXpxLYB2Tfvng\nhoIbX/Q2W80Hap6S+ScYRpeVpF5DXSJnDQDvcpM26VTqx/sqpjwSfFX9Asi320MsNpvlIusFcLtX\nOIFxgsOYI9NzIKC52NLyx49pbCdegl9nv6rbaD+GVgad+NU9vvcRQNhBj3Bcx9HA8MSv2rnuAWa+\nDGzkERjDBBz/5e0HCMf2Jx5hvmhZC0wHy9iTKlKfEpBhqg2XY0u9XBcowELAUMbZRQN0pbx5i8xV\nHcm0m+j5HjihLWW6KR7rlSddssakI2MGxRJkvUtDrU85ctm72DpNz5/n4uxHWo5pQDvQxRX4rnZ8\n8Q7jHQCvtzJJr66xBhXOHLGBZ71rnjfjvL2ZNDxRi/nwCoXAqpfl8HClnd2OxSvIzwiJ0GMAnrHv\nVsfZudXGM8d9ln2u2xTuAYqB8miNRiH1fNc7+7CBgach4dW7MfZsTgGOFW1d2ksjvY8V7Dq0DeYJ\neFkBhgMIr7XwLMPK2N4Im0jwOwCxvgAn4Jf1bIJhATsNENk3PMJe83YFvxxigtg4zhUjXMpKdis/\npm+Ikbe8rukI2mv6hU8caCv1pHIXvaxPEDiXpkygvKObJ23akwcR2BYCBu9jkmMNn2jHMU993WAJ\nbXA5JuCNmN/jZbpFz64LoNt1C+xSdvYxw2fq4xrlXZw6ZzJFu+ErhVZ0HDcsegPOG4/sb9CYT9yo\nLwmAWx+YDjpulnDxDpPXCK7FC0yyCx/Pzyo3YJyhECNfQfFCO17UI74dYSv6ucSZleCXbBXnlHE0\n0SWysk+g7z38DYyX1/yZe8OzBeL9BDtZTo3Q8UkHxtbG/uMR/he3P/MIPw0MZ9oWLAx/3jEBaVtT\nOdLQsjCMayrcpnW97pBcuVuMOkzKqqd5pGD4tP73zV/Sl3pni4Q8Jilvsvl2uaaXRKmroXT++b6P\nnZ5f/p52XJ/vfAiKh0f4BoYV/D5abwLhqLcGgCYA5uO3BMTgcW1cbnZSpWjjoyToM+v4oGeCklDi\nyZDq9bXuJU7DXNbX+bkhnucSCpEgGLVsGHTPdcXEM8wrqziMcerY4vQX6mhKFSrHWsq5idfkSAHB\nlEeXaup1YvynS6PZJ7MmruPdt0hXprMvXqPXlSTqvPKsZjhEeHTXWnhse4SftQIM0/MXH06gN/fm\nDR5e4lpZQsIicsUIAUBi9er5hnqEZX4Yp5nHBRo6GEaL++0hEiijH2kj8Ii6PfaTIIbTFF4zk07k\nvAfPCxiuOzYN4ek6WnkgQYYJb/VdVZ1tic7LNKsIjZInctxFR8SOH7XIdYPzBsbB2OANWF1igQvQ\n6st0GgpRL8lV3eKT3UaLD848vpCndOmaqgAahcKrjHs9/QaaZCp2sguhzXmiPFH3OYR/SHcPgFu8\n1UGw9RuSNOnq6bUW8qD5uiR3AczLcdjSFfJl2G441T+LhxoW4ZVnBMNJU4JfwPFsgI3wDK/w2DrB\nMMMg6LlNzRV70bOpF1A8kmOwAYxJNJPW/t72A4Rj+65HeNv6tR81PU/OMYAAxRsMq/OJGthE+Xb5\nbRZ2nojpxSgpQztv1+ig9/OoLqX+B8c+WnD2oOcPqBH9mgJav6H2DlVIHZV2Eh30Hunnkp4eYXRQ\nyxCJBn6lTvMOS50HBYb3IyUBwDG2FXRbwP7WO8ob7I0YRWjahK66tdbF6xYHaWxNPZJlvMszjCz3\nWjQ48iJGOL+5SaPCL8vRM7zrOgy8KXThw0xHLJsV27Rx9bF9SvuZf3gbMIy5ghygLKYY2kIpr/1K\nb6IVLQEr0KvYqBneGH9a8zLWXoMoEAQkKFbPscYFL1sb/ArwdfkinGlIQwPBGiohYRQKgGW5NAiY\nqZAICwf7pnnjTWce90GDYsPiUQG8uVegm6EQJbcd/KJ0iMt5Xm3nNFvRkZk1n1EpjbnIkGo2ZZEs\nS1gl860a0ItGoteVF3KMkHQqPo5N0iTgqKuxvRXCEHMcsZ8EwLt+8EEDzAPAjhUhunfYBfDstgsU\n7/ZyaT+Rrb7v1G4KTQk/30KfRiZBGj3BdATMuVCOJV0F+EKArzvaC3cXEGw5B9G38OiW1xMRL1zH\n6Q2Wl+TKQ4yGD2lbdzOWbGbxW+R3DtOB8gaLYnLSJD62AXHPeNy4LMt7Gf1Q6O139rH6XjpYKyhN\nClgXwP672w8Qju27xFcPMNbay4mIh5h3PJzvvS8QXE/SKHy8rjfhTVRzlEc6QWfUMQo9Ys+6tT9T\nYyNWUOU6yl+o8lZw1DpDJO7Np6pKpS8eI2xls73CnoD4CSVEIFz75wqCn1i/0oDDG5xAFxeAjACw\nUq6eYNc9PNd2pDcYVK4sRwFo9QoLVJqmIWjTj+FlUH0cV30Bw1a1C3SJNzgt7YP4sCcKID+lUEcY\nRM02XvMVHPOm7jr/l7w3emT6VWOjRIo/7dl0TdtsO4AO5VTjQKE3FnWt5sF2aecFFPM4Z85FZlIk\nt+FdbTWI8ARnegkAVk/wBRDzWLx66R0e+T7zCYYJdg2VTvABAXBCh6THpTz33lZ+qSXUql4+/b4C\n5GSvqtMAFOeRvNHLHaM+KEOV7nUh/MDByTgxj6sNJ1HaeNB0XwHge72i7x54glgn6PB8iQ0WHk25\nwTkBMz3GAYgZ40swncB2vlBHhFY3TVjiLb5ShKS42YeZZ1LX5NzZWJWPW7SRViYhLYOH5OuFdcPF\n8ARHB8EkvaNelrN8UY40BUkugHjndfDbPcOUrE37bZd2DG/SW9/34fDZJ+z6FoB+j3b3MwFwAmGS\nYR+vmLv6uqDO14XsOQbeHoe+1/OnJ7gh67+7/QDh2Nb6XmgEHm/e4Dvw7cd5kMzpMtkiyF7cS9H9\nrWdY0hbXKh612ldn7tuMmbxr7Xb8JgOZst6b1tBN1+m11GBm9fL0po3ENgQPNvDN4wGIe/pJQEzD\nmYAXBUh7yMMue6TuLWxCvcDuBR9XAONclSJGFfdVuVh6qCaFq+O/GtwPef7mNaYhJ4HrSnUVgcKP\nb9wLz54m0OdC7A3sktFPcKxeYu3rji+dff1srvqIR/nwNpQnE59FAFpuPT+yGngLmSqaalsl48Ql\nrvWznQBNeuw6thlKIKDZNuDVFSJWAF0Pj7B6h31xfeEe95vHSS9pc3iC58c00gvMc5MOv4EdLnu/\n7Qt4wD1WjIB4iAWoJPitNg5PcNYHKpiT4Sve9R/B4UVfn2pLPMCc51are/7rjAuAzvHrWBKRHMfv\n4FjGl6ELERoTgKl5eQMA18t0AZiNTxfO+OC+rvAExYa2xnR4l/ULc4ccKq4Vch7p45h2b1aggaI+\n0hM9kzZm9PAA59fnev7myeLXBoJzOWJPL2/KVnp9CxCq93dPVeWbob9Yh8j3+MBG0HURG5BfeQee\nRsSKL1LHGL5cnkV6hUM8LmEQ4RmeAH3i2AL0w+YL8M1z5e/qtPjL2w8Qju2PPcJrbU/YAuzZb80V\n1lywkIbtPBKGdz89TxD/WPNIkKFHXtMaAXZVED5Z+wOYWm9erlJ9+F1belT/6wph7Hk8mnRJ+KVM\njWTq+VD89AgT7OZPvL9P2z91HJ/yNHSPbj9GguPPYBkJgund9QA4GzoWCEacQ4S04hzA801ggT4F\npHRWIrPRjvUls87lrAwwXGfJGeoTjoXW7YlHrQ7n+oF8HMqF6DNeuDiisdYAKnxhjnF+N57oef6h\nTPYCgLchB/JzzxMUt/tf6y1ajSFzreoWjUp2mXY5KW1PkwMaI86Zzs3vjxGPLiEeYQ13cPldX3hb\n5zn9BqIfX5dNk9CITY+9t3ZzoGXFy+SDvheg8SA+rSx16Jmjh/jxDJlo5R/BcenJjAV2IJ9KtNCI\n4ocOXjk23bzNOWDlmc3/ldB5bGUJcP1bx6TVFQyb3Nwseihl3WAFtS022CqsIuyVy5zbsqId5cwM\nNl6cq5fkWEdvtpJMsQ9dMU2X3pDMcuoNlml7F3ta5zpwXMcry33bdve93Nv4gEseWx176kCUV4Os\ntopOG9gWHthzU+kEm80zLGlYqCzHY9gvycHxWIQxCI/tPgR+CCVUTzcpj44vGDy+vLeD3eIlufg9\nBMQHKLaCHOj7xLMCgtsENV1z/v729gOEY/sTjzDWE2GSGxXvCZc00IQ9ga9pmuawK9eyFCM/hJeg\nMq1rcr1Ve7yOtH8NhxBhPfL0+DjvbMsk7/QCf2MTo9EOvY7TjgEBOBUAv6UVHAsI9ge/qNhwhkPQ\nA7y9vDg8wRXbizznibICwfRc9xUhHMAXkOAX8KY7XQFPniF0mYDQP5S7GnECNQFYY7/BWXl+zzqy\nnnB4hHeLhlzhPT/TKd5gD4MwPMK0fjeWq/0c3/seQK5oUHetBHIISyEBKA/i7RJphUIsslHtjzAG\n0tNYFiUypg6ApT2vNugl/ngMNEC8BNCaeIEf8fT6AMWwc43gXC4NZZimoUogDPH+CgjKeg38jrHG\nY9uZDwFwHvxDsFeAl2AkyCvnqbfXtQzIECSELDLsq8JXPMHWVqmO8g4TPLLDMq8CsIbqimO/lx3p\nUnBFD09g/+bt/QiAeRyhEYfn1qxig61AbXqJ4wW5bauWgOAInZAX52CWL4BNcDxjhBlwWp/lJgmj\nzCC0j3x4FFuZx7Rxld4yaP1UIGXZTGjd8np9Pslj3DT8Ca+r1xcNbes+5TP4Cl57kofzIjZDIyDg\nGODLcgSORcIaJ2m1bHfDLEIcjGB49+UJ1lyiuxjCZsFSJORebWLr8i8PMAzHevYcPfFy3HKEhzim\n6dLH+lnbt6Kccxv1ZICZ/rvbDxCO7c88wttDpt7gjZbkMQ0ZIZWDpreyLTWqhljSCWYj3z/UNxyg\n91Oc8HWTy+SjnlsdafF3bc6y6Q1mmy2PyhzyYwJoALP0/wmAfw0gXMcPnsfxK75k1L2+yBCHlmYd\n7OtMrzDra+yyH8flIa4wCo5R/zjUoooe583ArVxp6VWjA13NGXujZ6sAccUI1x4PjaLnC3I546bH\nzDYQ+if+cOSngKufc+/X/HtdJixA3tPT2x2zOyBfs6ORyH5STjvlam+GPiM2XvgTgGTjXNbPubK6\nxjwGwyLIE1HGxgKE1DJM7wDYAwD7AYK/Gii6GqXLsWMAZgLfsG81TinLMZzyDK+88gwjFcAMiVCP\nb4HfT2W8KJK/2Vmu/qHKrziidOypDuvGspWXqFVNYQCt53qijJ399Tew2z4KNOtGnpXnN2N0Cczc\ne2yw2V4fPMBveYHj/HjyUCA4ytLj+ylGeCVYrhdWgVx7OhFThFCoTQumcrnxqPtUS7bMuWS5mD4W\n86COIedL3vOIJ9gAe+rGwp9Amys/CQ2ELuNNdahNe4I+EhvM5dBAki0BhzfPsFWekGWrsMjYnmGI\nYrXGe9t2WYBg2jLAsfAFB59D0gu8IjRiucVLchLSYNLfQbZzq3lV4Hu01yZifWzxn9p+gHBsf7Jq\nxOZCS2dTMsUF/G6lg1Qom0ODmVQjiuFNReAl/Kq4+wPnSPMuNsGzXJ85qSAiT5nw2I2yI33POWun\nDxttyOz6MBYJIAkexw9+9/T+CoD765Hjh4A38sIjnHU0NAId7M70eznKi4wdUrG9wgglU6BY0E4O\nfxyAXyoKLhEYVkCoqhvQatyB4iT565YAiwfRfnohbeRHrDDqpRGLtYcz9OGJ8rXXH84WTPpiK9Pf\n21/Aqe4zbIle30v6ecIT/FKX5Xx0bUJnTqHJbBx5nG4feZJyHU2H/Dz3Or6QYRop5y/KefwQ4BAk\naN3Lb4Le5uFVdDHVD/tEVuZdtMhsATzPZdF4E9XLnl7/eeD+FAC+hj9EGp6Ic+MWTzpnd+dNzpvH\nl7rXZr0ARzkPJc9Tl9XBWV7yrtney13zoiLHO/IK3AtAbtPkZa+WTts2aI4l9uzpXv+1NsiT8CIb\nvOIKePQlMXH8JPCmrRUbWSAJya9s10Y9h4AxXi7PyWnMOcoXwD+a+EapIu0xbSZKLLQ05TucZHx5\n3uMGc4YZNdoFHQ5b22TMk4aNFyKZoudJgjw9w+FrlrfecLo4uLdYHcLi3nrP16f9F1+g81rD/CuW\ncVzx8m7tK02amPWPAGm9v739AOHYvruOsHp/yz6cgt3AbzKxi2KA8L2F0gaSja3SLXwilXAIIfMJ\nkqfARb9415wKQ8Awr1TtiWe75edltPOSb+cZsvsWCAMK+OIOhnPlh0c8vc8GuL+cYLe8vgV8I1/y\naCTTG4wBfoEMj+jAVz27CRfwFUD4y7dKXUCm99giTUMoYzev+yyygyeK8jpuYMlGmRJzUt3GftDf\nWkKaYV4YNDhMwA5Q6QTFz442czpm52WFjfmi8wEi3/Yv9XKkHur9eeKrdTfgaxX7TC9OGO9Mo0Ak\ndA6FtHX9mtAD9wiIPlP+zXydSQveKvDLLnuAhzLiCnZJ6wK3BDAJhFOp3baOJjbgaEgOqaMOMHtL\nO9wF+A6AnHXpeZN1hfnFuQ6GycICYVKOXHTsHocLmOnAAyULPhhV0nPYmlYZnuWTZFU3bn1bw0al\ncU6Fc2TsK9s5eUaCdsq86FATEGsUapz7aHy9XfmlgKn83OoFuvxt2hHcutioCYppp8ijHfx225YY\nMWygS7Mpk+xW2sqgQfBB0kRurvRF1amD+g1RXc+5vKo4p2w8dckwgasudqTTLC62l61spkA6H9d2\nnW+kPJCVaQ1M8uevwPC+0W4AeDF2eOHLPfZxnWUJgr8OELzyZ7bu4DjCu4xPt/7y9gOEY/t2gDa9\nRRYvxFE44SXosTe/5NPTECxrki43sWUs25bYYu8WJqGPi/J81B00bKRZU4Exz7t7gE1ytFavaeOs\n32+U8R42UIqnsNVZ3laAoJc3Yn4n6CUQTmAcnmCCZn8qrCH3TpOgeeMYwysMxmB5xv9+eXmFCYa/\nOK1loZNmT8zv0yhaj8kLHKkZQ1y9m1ZPzVc8pZNzGPHpMpl5rrwYfMy3qfWtapR3jm9d+w4yg9kj\n4DCuse8sxMiUEWuGh3s64zsBAAAgAElEQVSK0JEvj98f7Hjl8HL5ituLZ0W+wTOkaed7pi0tgnPx\nTC/Ka/97/7z1rfXPfOTVmWlUjytITRv1s93qLsEtDfYb+CV9uzcYBVQ4PNJzCnOqL46Xum7WI6B9\nXtIOuABdHj+XsvQE1/ntc8qlLMQzzC6yfHbPOxKKdM8HMkyC8nADxn1yr+mUXpF35RUt1ydBb6Fk\njT9CmbqMlXr01BQytKQFChgatiyI57LFCF/ALkzCKtpvoUBv/xXPyR7jeOT7yKfN9pZXeuIExLyu\n1/QRYOt05k1cZy+lY94gy2ZAPA2z1H1IDyjpJ4A47XCc3dQt45T3vLZLvfFZHKvGdz12seVeTzEZ\n0eEWL8oFTQmCNwCOWOI4dl+5LOgXdiz6+qrfVwLi1TzEX18THNMjvLBsr4e+vuuU/B9uP0A4tm/f\nhYTrRe9O68545HGfFiW8uwmKgQZyFSSbnDO8wNlOas7IS0UD9NCIUigqeHpHmv+t0lrSpd7mWWcV\nzUotv7cGC7wnZxjEzFMwrCtEcBWIR0CuguD/KDiWNF9kM6C8vmFAmxf4WoYDRDMM4gue3t8Nfges\na0qJ7ZMGAmwzLCEI2dxFCoCLyD6OrxPztjWeYr/JFI4GrJuVCLASoNfjhVKX99V8rQ2I4WFs2b0e\nQ0pxaRQTdr/WITADcAPAbtggWNMExFmP8YxPpC3pQMqKKA/ICnRALyS1ytG6VcFbjHFucZ6/TKPz\nFwaeoPixur3u4DdorQDZ+jgh53bPcINOyPm3PUCF6JQDBHDdQLbS6gkuL7B6fBUQa516aekMi0Bd\nK2SUtKsX5CgxMo58CavSmn+IV/MgS/pl+hrYFZ5RwMJMC94+0Y2cNK+V6sTzuD1dYNt95qqrKurQ\nuptOXPLs8ASPn+GW7x/PmeDXgh9nfttLfgPTQAHfaJ5tbRbd/Smwb8kzFatMwlSoye2JjE/GkHN5\nE2OArA4RNNIPnAgYbg20CfLrfDXuGKxCnhMt3W2N7PkjGDaUR9hQYRAVErHgazuFfNl+wQ4VGvGl\n3uAL4F2rQig6CN7trx+P8L+/Lfsm8adw8vbJ7SzT0AhVDukp5k7YliEPTUt9yAOa8DCuL4UNSIFL\n4GsCZFO/ZE61K2LTSofg43Kmnn3fSqIJGKm1eawvzVy9wfkLb3D+TuB7A8L/uQFhfwe5Exjf8rPv\n2GC4WbqLYSIb5M9VlU4rTCWMD2WqGefxZVb8zKr5IXNwHOTPMJME6fTCZToAZ3qCNzBOQAyU4XOU\nUQOB275UUs3YBZZ5NwoBpNNrowA4VonwOMZi+gZ6V/Rzy4ivlcYI2Se/4hFkH73yeI6ClTkt5tXI\nZIqGTHzUsXxykOE0sIoVfgG8TCtAaS8tRTvvwqv6SwbXaABoKIPGABPo0subx1dA7OFFHnkKgC+e\n4KpTVOfIdpagP8qacy4k7eRLkQVOV6Zl/iaguaQJVOrYpMqIwp9t6KWaXkEb6x5i2Aer45vm6Nfe\nWqhWesB4+h90WKGtBCT7AMwNJH8CwmIzNTYY5FNA6spe8ltfE1DTFkpa800BsOfoQbrnTT5pSVqR\n93M2sb3eVWbRt/TqCg3SPl82Ff8xsV3fze2iLjYYLt5i21Q3eyWkmgLCmPIOl95gqIRHTPDXWilm\nfMKpAFc9wT1MYh3AeIPgAsAs/9vbDxCO7duhEQZZbsm4lokYhRCyZDHHhU2lOTEqAi5S0Fy8yASb\nXvV3C7xuVwwxsJJZUYwFfEsw9b8mlTIT+E7SMDHPaQ91m2IpDb+Fi4Bql+lqCx0M11Jov5o3mIC3\ne4L/c4DiB//5tdspYAu8Ad3PIFg8wjEml/EMaARzxy+hmWEvgdPOA9TaYvINj/0oG/UmWPm0KUA4\ngEFkKuoTMLQ5foMaLgZn8Tlm50sk9kgsXzeEbPYOhCvCsYFidlW8wRvkogDws1eJqGMDrAAyQbCv\n1Y53aASvX+Rphkn72YzUu+fYLBvq6kG3nEL/WKcvuWcf0vb79GGgP+lD8oXotsmeA7CqN7iX3WJ/\no+wpr3GFRdSLcw3wTk8wmI758AIBOQYFupBJjrs1T6cFkA6MnL+b/uONbpXdQqgFLmVh5bnkDwZS\n8ueubq4dpAMz5CYggJn2rsQ9qMVjCwpKWEP7ohjvvIIW70B3nqu/6EnIf9sDRxjEe11rABiGBLjp\nETbbc9nShlxKztDSTaCpvw8VyvCzmkfTvqfdrqfHBMEm/WoOqzHJBLNeV7uxgfCK9k6sg/CHOqrU\nE5x2yLZe4Iu2Zt5AsK9d/pXptfu5rIHer3WLEZ4xwQWCK/+NHv/s9gOEY7Nv34XQY4Qm1E1R+Gag\n5gW+pRvYUMAbbaR0ebUpClSVGIC62zSkEEYBNDyiwDHLKSDRzpHuqTqnHY62Rj67OuFC6mxPpXMD\nv+oNnvHBujwaPcIdBAv4fR78+vVknjcP8FY4suTjBQCPOiOvAMh4qNa1VikfH4+mQJDCE9Q4Wmuj\nlb2mdSY+KJhkIzH4e2KKb7ROGmkBG/C9vvYiBXac7n7ZBtsDGx/j2OubVoy95yUGEA4DnnkegIHL\nvPGcTDv4Bnz3Bm+wu3v7ZPwvlTmepzykyzKGWO9FBucWCTDLCaJGHkrkcopkSo7ZGXVmeY/3xTfT\n9poW1DQ6cduEB/aA0SjRXnzTMIiRHt5ffVHuBpyvnuCjDEhgLJ5h7bfrGKiHBej6oZ+rjkedmkxp\nngcSP8zqStMUtUHpvMz1vJFBZcOE8iIBqgBlro2rbMejGiaPLY9neMQBdEmL3/x0VaPfAd3yBkud\n1BN25J/A9yV/0fdLL3DxQ84YaerncV5fbpj6+xVit53Dsuwr7fDpGa60Jxao+X4PmbHki5t14H/X\nlFd5I2P03QwtLMLjJoEg2H07Er4AcN0JM8P6sh4X/PXiAX7ZW8QHf3sFr//h9gOEY/u+R9gAGnQK\nNp8rNAHdxrruii8gxfZ5HfBSWKiQtEzBMI/ZMe/KJhWBVb+hj0BVTErpaBDECWj5v4PiK/C1M3/a\nikymsCMNGI3aBMMFgmVNYO9xv/+JJdMUBP/nefCfXwWGEwg/LoB3e3Yzbcy7eIdfzvH8nXfwpxKK\nF+yyHYuv0gH1qK6brZOa301ftm6v6xJyM1aX9jGJp9eNeQhPsBnBJOVlE26zvSM/cgHx7loofWOL\nks66BMGWXlo3wNN4b/Cr3t/dryeVO6jUE/CqJ7gM6Xxxr0aO7NdZHv9v5VbinGKndEaSpBvSMVeh\nOtqHrI8widxPwHwBw+h9kJ70kTWGEbmdm4DbOwiWvT9S78ENLOvLmL8Dw/3mrHg0b7ynd1cAzfFl\nOYIg4xyMc5VGN0Koqr/UU/ECuzbOyJQ24JmS80MGqU+jfzZuym6aIeEWZcgKAKfn8wZugdcy2hzK\nfV+ij3k8H1n3nlft9HMhdg8Fgrk+eZbvNrbcRN8zPGKPj8s+9rm7cndRbopI9Llj4+54MhmXzQbE\nvEPB+pXVZCYbT5nUq5qzs815k4CXOiOe8R26YoeP8VU7an3GCO8X5bpXuC+p1r3E1vaW3uK/vf0A\n4dj+DAhzb5fjUhq68H7dFXoa9DDzyc8lLAP0yt39VsJ1V4sUlOrH9AZ3QZzCWONOAVJSDGGdoqRk\n+358MEDNnIEDBL/YeQmA0b3Bj+/YQqa5dFrGCktIxH+8g97j90uWTwvyTSCsXt8GjF3rFEiOkfVx\nCk1+gcDFK+3MQyyJpQEjnHdJM98lnRb3kv86GR9mqQFitquXIsRQXuR190j0gxwmq1b6kyvOp7zQ\nA3QA4QQgAFcocGd+Ke7dI4/Hd9Vtv3h/HYh1UQGP5dMYyuSPKP5lJ+BIspWnTcu1To8tLJJn6JJT\nJCnHOjNSp5TDAC4p/QJ8MQwXxLhhgOIT8CdPvII678XHUwp2IkBsgtPp4e0vz2GC2eYxvoRFQOqq\n9xdhmOkJZtkxIEUW5OV7/k6+5E+Eks2f+RaMcZDWOY91ToVZnOStefDc5SUz7eJbCZsRclzxwhHC\n5wiwbGFGmKYdCp1yAbps+w6AL7ay5Ud/gFa3H0O8w1bHIQ+M+XXD/vQzAXE8urfk7wC+BKAEwas0\nGB7Pa7WZayBzJoDukOrl3aaOMEVJn1vZevVBHHbhdtFmc1pHWz27/BYMD8Mhmie465BjFWKTmOCv\n24oRlzAJs5Y2AcR/e/sBwrF9l/iOtRWzKgObcVL5gGnkWeSG8vDa1+MUb+WavwEtz0t7XOmhYMob\nHGXc6Z269jM3NtIFaaqIDoIvabn8zQwxUeYrwIMjH4d3rzDKI0xg/EhIRHqCn+M3QfD/i/CIx89Q\niAS9rh7g7amd9cw7YFY4OKlpeVwR5A9KnZSio8JRxdXT9pL/Of2yBUtdbTrzVBtTebvOHFBQXurb\nXmrQ8wkKinEOg1qgDUbQxjCEuEFIA8h4YXqIeY5vMKugl0N50IAvfxknTI+HYXs9HksSkJSCBWXc\ncg2xRVqas5E3y0j5LL6oCxEucRkzy3Y6GPa4ZguBAJfiw8WjU/y16SieOh3IaVP7WB29wgRqDfT2\nn2lIhKwm4dN7TID8EPTJDz0MIh/5i/7QpxVkx2MgZGPl7Ze941LGhvyUyE6w2hppvXL4MZ0rPW/k\njn8OoUmma1xcjYgWSJvU4+QxOlsSiFnZpivgxTfzej7lmnLP8ybQ5Tm9ftkvrlVMbzYBsfGm2Mo7\nTFuXIDi+BusLNZ3/x94bblmO4kqjIff7v/Cd09b9gUIKCdiZ2Wem5jtrJVU7DQJjECCFZRk3fvQ1\nynXT5tJQeHOenYxsk2bj4g6g9uiOeaHzYKtS9cLe4r13XS+VZRgJgs3WxzXmEyXE+xT8Ip0D7UW3\nBnr/urhCyH7CbW9hW+k/HX6BcIRvf2LZYuFtflOoBU4QGgovAXCmWRmwgeC8jVeLMPLuPvGrAuNc\nBCp4qj11V8ppzyKVribZMX4vtz3cGeVOYQAoAbmkU6BfP6jRLMH8mtybX5XjC3P/4+tFuQTACoZj\nb+Fm+bWD9deGBTjGI0EzquyNB3qP8n7jR1/hQlQFjlIwZu0qnm9gOFuC07i3kRFg3ACyHiHIYpiu\nlt5lL7B6tEw2qE8dkylUipZrg0ouBXCUpVXYxXpV8bAGs/wF9NJlYge+cW1xq6h2FHN2TCJw2Dor\nBlfW2qWyDvlgMZHoAqWsyTF3KvAUGeAX45Z7BEfekn8Kip15Jn0a4NjMxIg5OnqYHx2RbZ1Ft/j2\nl97q5bmDVXj6DqdbxBtzSyzHmlagzJFpYFjSctNUaIoyGDi5TnjO+VGmddp68lPI5WNb8dsqnudr\nfJ+jNT60t+j8VJi0W4AjDdFHXKfTMjxB7wS8qpMaDVBw+xHwAvnkIvWpyXlhtfaH89jKOoygWdBe\nrP6FC1SC4NeXBbmNQnEoVahSc43WOalWD3rxqiftnFs3b3MGmGZCdUNBXA40Z9kOiBccKfcIM1tb\no6HkAg14S1ZwVx3E+xaxL3xsC8eX5e67RtQWaXrkS3L14tyVU/+x8AuEI/zky3Jr0Rk1EmjxTRAc\ni59vYtsGiGkTjAmqIDi0kaVQAijNzEqqNdeIFE7I+ru51mRBoIRR5nPZ7mKA56vQ1jzrfy55DLuC\nLRhRyutkBXZfy27fQq3A76sWYe8vyJ2swf/6+++yCJt1a6+J9deXnTOtxKQFyys+eSo/72k+WNLf\nEkADW7gKua4iu3CTpxBfq9ERDmWo11WByrGhPz2/CWgFwEA9SZHNhRPQUclhB8KxLtKPjZYqoIAx\nwmJMMMhfNCF/D3o+XryY4HiAxgOXWlxcSK5lglW8uV29XrwzfqUStWy5e4zBGvZKloNzpfor3/8Q\nUFxKLenaP2jcc84VCBzD2xM15tr/NTCH3R3iN3yEbfgCg59RVlBMoHsAvwVw1Srs2bQs2/5atT1l\nJSd5MNsJtAQMKWBWYCzn2+k65GsLXd7m0vo4ieroI98lv/sH88a5AyZRLdKatb44Twl8S8dY8eAr\nIJzxPc31oL6/jYYPeTHv67pYIDbcIdL4Y8tX15/SudTdRteoZ60/0qjSa2DCacW5Dru/LyReN6uR\nZpk2P3qYM2IO6pTk5xqGYICXoSuNS2x3zUnqIUfpOe648SDczh7DQxkau//geZdcfeLswC71stz5\nq3J8Ee62r3AB5F+L8H8tfHsT580SrL8SEDdAnFO2ST4kCG5uEfn6cFl+y6JRLzYAqMVpcgET9wih\nZTIbomX4pxZ3kwvyd+Nh+7uXySUbipIrOwGvSnjemeq/Iwgu63CB4L592v/EC3TTGvwvdY24AmGL\ntBfgdWtguO8esf4Q+Co3ycsHwN/WwbDz6NYEXj3QdOGrx/8VL767lNpF5jmo8q/kqUgBBAwwkE1C\n2rN5jgEJgE9KEsNKCZQ1AuORnEs62lCWYBcwt76QtFmCsQDvewC8/L2hKLP8AfcBHdOktXCWmXGL\ndR6WYMs32GXFOUFyjGLc9HIeJEvjmC/HkXdQANxdJGhBm486024aY8odL7qSXb1QsJWDzrWbeS6/\nw8tyQa+PY6gbhO4xTJ9g+vLHuZhpuSbEDYJp7FO6AeBpDYbygfNV4hMYn2TdZd7cQ3kJF+UjhgoZ\nmUI0+u5SS9w0EhjJ0tXhMilLw0udZymLO9h1ic+8qPUCghF1cQ3p+l9pzbeR3stDQTCtwWIVNnjq\n43ZcX4+oz8A/xfPUje1GaYpI7VuMIUFx6lWv7Hy8pmP6xUSJMje5Um3Sa9UTDKuLr5Rc85G1QUDM\n9/7d6RaxCnh4hOIB3AsA59HqZTnuGHHeTu1Jf2C1EBMQW7hH/OnwC4QjfJf5udhstwpz0SkCSjma\nd6SctCFMxOK3g+AQTOOuXFtaABkieErY6C/Pm+Xy6qmOqz2a4qIHFbeNvOx2C6q8Bzd73JGCnMB3\ntxDvbhH5Jbl3viznR2vwv8Ia/K+/AwjHGK1PPCoQXuOQabNwiyAotg0Mz6BcfaxeM3jc8DcEDMe8\nSMtw8qxE74r1HIj6TJDcmH3mfBuC2fAJfBtNAIAVDulBdqf0ALq0DDuQ5hgBwlS0+ki/pS36SfBr\ny1rlASw9+JDuERY8Hb/3AcpyvAPmzTosLEn2CEuLfldWOhT5dvtjsHg0a0+Nb3tyEPy2ACQm9Rm5\nHPzhrhHdJULTFhbjExjmzXr0I5+l985qX/NAkMQbW8YD4Np8OW7bNm3RG+DVMrqvMIYlWNJrOnZA\naNnUbjXeALBw1QcYbi4QLa4M0UW0L6izZmEbKu5xzbTaHicfsv9JOpRLizC4Tufj87rqDoAxzsMA\nhSYT9BDn2p56SOIOFMANek9zbkZrrGgAxDKM1McbCOYRahGOLRS5k6OCYBeRV8oymu3gjfj2oQ6I\nwclMaOxIcJ3yE+NCAk67YJE1Bbqc1RhD16m0tsY3bqTJ0PFIKfVSnPME7x+Z5jkWWDxCLM0FiKOC\n19KaW24Rh/2D6S/819lqXO4Rvxbh/1r40a4RRx/h+tFHuFmF4QmCyzJMQUWQC3wJgmMB8UUGiBCj\nQNpcI9juAz1hGleFUFsp0xS08EXQS96lQKisBH4d9M70wU/43S3D+lll/YLc/xyswWoRXsNqHfQi\nQHICXh/gd91xT1/h+pV1L0G0lH1MrMFuAYb5U/uQWousvfxSo9UtX8659eUIjQHJCkRwNx1fwtlv\n51OQSno1I/b0NeFSKChVfHl0rieHWi8hFuAEtbE+VhlPgLsBXdkVgkB5HXmNYTEO9jU15b3LneQX\nOrtLSxQSBNtr6T2ygHAA5BgDg9XDJtTq3NxAgj8LIKu1twOK6pt161oCnbIIst1DJxfAZEYCYS93\nBO8+vTZcH/hynIlV2AaA9vcd4FfSA+Amttjy+vTsMQEjEwBnfAwm5XICvznQ/yzo2j3eYZ4mFfvm\nHA2Xc8vVZUqTLi9484OUGWo9XGuggF5Zz1V3SDyBsMTRy0wXB29xS9Yf4wJE66W4OG7g9wn3iBi2\n512uSLAQwHH0Zz24evpIVNSqe9GW0p1Wejf6aUynzKz11NbRNqBMyroCUDvQ1NhVWDQLmUlMsW4U\nYyznTRy6ruJuRbQIl4V4WcyfV1r5xPzkzxyw204RB9cI664Qa/eIXx/h/yfCd10jjBau7/xE0dcd\nqcgQRuTRXIFgj3QWFPVncgzhlcAcJZjkV72z/mO05aEd9dwNXyvIatdBtq6HgzDIx5oknS3Bx08s\nJwD2ZhH+2/VDGt7dI/4WIPwS7B6AsC3L7QLACJcIr3IJiOsFuuLsEkjpduHcnWIB3he+wC9QAJiy\njxaTHOf5V3nvMjv4+FxArIrM797sNXCAGpusE1BAvI8u2rkJfmnWIfjN+GpbB8JqARZaukCURbhA\n8brwG+q8uZwEdyZAVqD8OuDmCYRfKt4D8P067ht9dXfNDAJi82EJ1mPe+J7GqIBuAl/2U+ZPWsOl\nfH9hTuQZONYCm2QK9R4FqG0TV4Hx4WU5tQwPcJzAN9wh8gU5jXMUCXAT9FWcyj/HQrBMWa+DwTnH\nL/Hsv4JeylqJJ1/+iQK/nROML3bPiOR5JXIoPGoRGSFDbKMK6pDqhcs9sOooF92mfBH9A5lPG0BG\ns+r2GzSkPOhxyyGZblQwxJPZJ3T4WlO0DlucQ5NEuUcsy7BxEyi8azcEPsxq3NuHid2Zurat73U3\n228qQbbFOlODwxhv/UJgAWK9+BTAQYtxUreIsh7XGBrKFSLjICjmq84hv2kBXhaKFofTRziA7l/d\nErx/Zrl2jlifVn66q8S39dS/L/wC4QjfZv4TM+JiFS4fpNL97YgCxVCw6/TjGhZhqPVXy1JEFQxS\nGNaT2sZZLITHUSCfgG3FZl7Jj3NtDKlkh0wnAKbCokBvIPitTyy7WoP5wpwXCE4A7H3HiATDf6+P\ncawtW+qFuAWCvVmFk4YAtXnO/lNLMN/EzbrhC1wD+MvCLcIR4DiAihO8kLOl1PSRZ418twaj0U4C\nE11vtzgV3SEtGpSPUDkv5xU8QYKJTqfiXPQCw0CBshHfrMI9TkGd8wcFgl/OHzMBt2oJnnkEx54g\neYEDl37hh3EFlFYbZ8Sj2BaH3FA5ygrMI8rNxoqtOVfS/QEFMgh8+w2G5gdQiLLag26Z3LlQf71K\nBChWcNtAsFiDFfB2S3E/4n1rZBX4KviVvGNa+rFNfAEmDQDfQG/bMaKvvI12FIQ7sdY2IIzeA9ea\nC6FFCzStlIyqTsXRkoBlEbfqclJQ6/YEgAnAshxK50waau7pjS6AmqdRtc7XWI5oT5DipNwP2J/Y\n/cGqHwSnCAvxgzX/NO1Y8zC2f8yH80ddtinRDQdwJ4WlqynQOR9rrGg1bjZeAk0OmujEPVjWwy/S\n0RyyQHjMLX2KDIu1t5L5why6ZZjjdHRU4E0R+2UH0PvXBQBf9hQ2eXnuT4dfIBzh+eauEd40lyUg\npjuE3hVvDvopPBjq8fURDAM5eXPbJRGy011i3pkOeJrX3BbxFig2OqXOx8gTyuzi7SqipFIwhOD1\n+HP6oEbzE3b5qIYHGH7vluEJhv/1xq4RvDs269ZgHlHgtwFkWAFbE4DijK/z/gdxnpfF+S8Af7vj\nL7MEw25qveRIU8CrI0RZfjvYJTBECsJdel7GfIIBS+IBKLhoUFWrMYZixvQc61KAZXUsJXIFwrxp\njN6WmwNdIgIY5zosgFvglnxdFuFmDfZVXsHwa1KPQIUb2G1pw7kcFR+s/IMRX1LyJwGxO8GwdTAM\n0IbV6l7At6xoCXzBOBJIlIWYskj5HrNJOjJVb1unDeCOdAPA80Mas5y8KHfaX5hpyJGjP9MCAhun\nHDvnFOC2OX/IVwDc1sBNfp4mQIU8a5y/3bT6HJOSldlrkZk9PW9rrM1kzevlYuS9tzVdZ1LA61HA\n4HZUfTjP0zm7yuc8Nku2N7eocc5Sjw/c6SLhIZVD5zrKVQL8ducCXQl+Y/05EP768cpv9rm3u41f\ngv2yAps98cTnqbkuq6mNsh8mCEejra8aodsZ2UxOWZ8gGM2uIaaI3K7TjLcC6zrPqNwV1AsYpkvD\nt0BvukfoRzX6y3N/OvwC4Qg/2TViOeILGJbFUGhI6UiLMKcfb6ITyKLuDnOLpQAgDQSrpTghqAio\n/Nnlh4GF7PAbvElaXM/2HLQSFfnE1VKsBMRecQW+I617B6s1eLpHtC/L/V0/ukX8f/my3AUAm+3g\nV90jDPVDvQRn8qY/wfL/gNZlw18egMyAv32B4teWn/ACw2UVLqBpMeYc+R0MpyVARW6zXv0gNKXX\nJCtSouo4ZryuV3bqaiWVXdFXfAfBtt5UHiC5gze6RFhsk1ZAubalC+uud4DbgC/sUs6S40dwe+q/\nXehxfGJm2POk353hXWmP4fJ1A5XL1Zd/+RviRnZnztHOF+as0hsw1nTwulnk2lTxpqM954Qo48Sn\nHdzSL3h7WW77iMYrrhG1vzDj9nrzEVbbPzBcJKCgruRIKy8AMDurS+M45yNOxqqsFYBaBKnwHN0n\nBbQdreK9ea39muHVPrkZANB8faVHFZ+gF7UynecruPVVege2oie2PLlCm5s1LyHxnT5AcsT5tAi+\nbijX0QscP5SX1JJ0ixCLMF74s3yJixm00NfYKH/SUqyGJzPAnrWLRYBhmMWXNPvI5hTLtMgY7z9d\nX00dZOhaAdJbBcENvJqJJTg4IXXzdqJ13uXa6coROKVZgYc1eLMM64c2uI/ws3j2/FqE/08EkQOg\nX17SFS/qRB1yM+vIfO8rZGpaozBDPYUKIoWUUVhvF791BEdgrLJ5RL4VTiDBZr73o8pvyiKV8U3P\nAqDvMIHOsqj6/nvrl0BZwDKtybvKDGEMH3ETsKWquWh/w/GXG/42Htdnlf/C7gZRvqzz2nXNJnQ2\nUdppRSEojrT1sSEcqPQ8dlVYYJBgaVOVIsa7JVHng3NAt7qVlwJbYmsjR2/j/beu/Q76Gyxcc4ZW\nYeZFWqzJZTVmuzyemMYAACAASURBVHrY+iSxDTyO8Oaj1xdvKN8nJv17jK91Xt/sY57JWllz2Zxr\ng+n10zgtr+a2QKq9YVYmEI1K+WLbALjtUW2Lo+/wQADrBYxrkRMoo2hAukpkvM08jkaBCB6mfFHM\nVQPRYIyAts/jtVeshbnaQLQoBb2t23b6rSx5L/WrhbddVwXkiS55em0FvSpJ1o3DxqVSTQNEZZtt\nHIEAkRjKUo7en1QwT8Ev42d6B8Kl99gbjfPI/XlMRo20ymP7AcAt3hJ7lz+Tc4uJ54kPcGC588RO\nNEtcLz44yl2BgqitF10r8tSkr6m6eWz+wqyX/M0dLS5jIiDY3MW6D3knoazDkPj2s3VT3l5eCCxk\naTiycAWsJ6orn8MVxgBLVjc73X8j/ALhCLu6+1QyJmeexYlKZahq2OP/oMV5DGony7QA4P6Ye7ZV\n6qsZ+62+6GTeDIfG/vbraLp61KkFZj3z07LbIAZppQe2uNBEl3Z2Fqvlp/aicWfS+rHn7fFP+Yvp\neU0R2szf8rSNQktwbAS0gFlZf0txzjZNCzFHt1Regs4NGP/k2B+sDhtbXrXpY5lnfZacQXDOS6uy\nbH+fOTPNPvZ0zi8qX4x5Fnmv93bQSqxhyomT1LitzrXICFjxdfwF0CHwij+A+xvbvL14X4PFh0HM\nEpr1lhMURf3+11p3f/lf8L/Wkwq82MBuMUuVNDZXB5dyBXQJwOWlNxkxlXnk68ROruugjYA+6t+g\nZg8B3Cr3vK4VHH5WyS5loj3bk5teWxZpZfXqZJ23Xwk7lNBTQbi1CVK2J3UFOkq3tN5454BrgSFZ\n2lH8T5NO0KX5cXRHArIEt5HtCfDC8MCy1IFETKSHq1HJu4rXUV0mYja4Y91p8xi02ObRc7uJRfPM\nc7zmeF4DHsf7Gp7HgdfwPuuJxmMP3qdeDKUP/LyBrLx3y8s4z2ty0dpNRNFu6UKczqOL7BR5CBcY\noaC40UvrWfB4PRXlMznPMkDdiJ8+ssP3AHLBL8H3R8MvEM5wUmmnUiXIN0AnqpxCq9EYF9Bs23W/\nkbY6pFX41J9v3WINBWI4nnNq1U5zkdvsP1J2Ny4ILUtysVMRsD6W387Zf7cOn9rbwxko18++jFsI\noAJ445F0o4W4UBBsPe/Nmkq5JNw1dZCIMn5SVCNlxYecgTdg3Cy/83zNq7YVH8ue96ncyQ71NeCd\n1lodu24/pBKtuRRxC/0yxrk+cOKor9Z1vqBd7Ryucy3mMR/DUhSkhTTeYHc8+RaLtXLLpzE/If0a\n1tfx1vzjsTXEkQBnKde/1vp6FiB+/Al/SIyF9jnewC96mWV1jmc2TsXINU4Q1lcum21cQ2FFqvkr\nAD8NA33svxZ49/x503MocCB0OI5cMyzcgWG/Ql+jnc9exMH7JSO1GZ4HXRc280njcHH1ZJrX05bJ\nicdJfZA5CooTgXcrcQPBiJtVgjbSw3KMDTBHnWnZtNqLEuLuIKA3/YXd4gaNL9V5lPe1rtxiI10v\ny6kRvEe/CIDN8LwOPIb39fVY/13O/u/zwl7xEZ7glunthtKhO6tsvvhqQsXXaQW+laaeqqV7HNYR\nNjCMcNMiiyK/thEVAEyp7PVEavIG+YTq1zXivxauiutYTgCbUEoEFXUT9lfavTUFq3r6u609+wbP\ncpdMkZz6t8700ZvZ8+rjEciqDj3mDQ53nfAtcNytlmcr8ek8G2VmXOvf4gS1JQLkkZ4+mh8gGPpR\nDct+7z7A/Ugd00MHxx3wUkDus5D0E22fsXer8HfL1coZrhFtrOYc1WsMC3DOlQKy+VIdZM4EGG6f\nt/ZVH90neh/28NUqnPkWDfW4WKbfGJXcpmg1clmJl3IoLLIez/q7WlrzpnwRhXEtQUvjXwTD7rmV\n0Q5qIW1UuizArWzR0iIM1huj6q1xg0FxCHnlpjOeMyFoFjTvFuN9zX4JcXNs7uPZ6/UtZtkWpc0a\nP84Xr/FZN2I0LHTDAGKOFp1DkZnV4oF0als1NqYkNFxWVDuN/VI+KD92edQE0gDGfPehvEFCP3GN\nGmm6dlF1JkiOBr8Bfp91Y9jAL0fm4C8sPhcoAGygFdhzO4mVfn29HwILwfEYXnvxvOVC8ZrBnrAW\nxxt4+1OWHRB/i0Zu/xAMX8Hxl0iC9vU+uoblmgXop5O8rMG67pMW8yv78wEMP78W4f9a8A/ToRe8\nW4LpErFbiPWHQxotXoB3tMlQCyJmJm+i+ZGFXtOs+ytA/HWoninHSgDPfDaLACMFuB4hHPFxBETY\n+16O12ATvKfvoXhVnNtBryzlLa67hLQPMGjZlLMT6Bo6WI48Y5lhDfMCwWoLbu4Sjeo5NyBt0ll1\ntARbZ1uoonzE6TjPMbVBeaN2penSXnWxaErVIKieLfhkFT7kHaxNCoBnnL7CfbWGFahYuIVvSo3q\nc1MIyKeA9qzPW9XcXRalrP8JSzDz3wWA31b/jNWi8Nfhf2Edn/Xrm93rXQ6fMsliRLX5cxnmvZtL\nRD4aHVzeHmmJ9p0W4Ql21zrU+fP1GBwHbVbhM5Nz91RG57M32i1+au3RJWLegKSQaydW/Yd2Z9z1\nlEooWC5AzYM3nrvEs87p/sB+ukseck17xN2RLg+MpxoTVwnqrd0ajLQY5/yw6QYRlt58E6xcINZu\nEk88cVkv29EKbPYsoB3W3wV+bblEPAFy37VF2suP4thyicDzLkBs3SLsbfxk3VxA8BkIf3J/OKcR\ncnCmKf90lCv0OasPl8W5JLdZS4CsR0e+AFxuESgZ4O8mClwb9QfDLxCO8G0gnCW76lVajaqeoT/0\neBw+35+5lJnKLgjccu0jIDYpf8n7cP1J6z2bwJYpARhDXi+aWDsgMkLj4zhHTDm70nY+/9i3OwC2\nQ7n2woaUY7y97TxBtAqhoBH8Mu+N+NjbPfuVUNYBBb9NQTVBNnmDBnjzaN8tewK4esZ0f7jnsa7F\nUxe+ngDvLX0Dx1SwqCOQ1qQTMK6X6daxcYPMEF59Lwj4SYHv+Z6O+gbDl44FAA9wDGcZeWz4oIBT\nswwHOBb9mW4Qvup0f9rvfZ/6xLzHaqVYkUWrwHf1RfoElxerSvEpIFZJMVeihSXQbPLWmo/8mjk6\n5/fwSZIZsLvo+uqct7TE88rjnO2KJEr8Is6P5AGA+s45wsKaRDk2xzaJrDTv9LxeVqn1ePYCPg0e\nXNOTSQdgnGAYFQfAl73K8osGcnN9xmBxrZY1GN3K+WD5mMKWu8Mru0L4yk+rsPvaIYJ57vFtAMYN\n8ADBZqhNhiNuyyd4fQ446OEOQQuxvbF9Wi5kv/xwAMc9H6EbM/1N8HtOc2ywGWHKSszz1MwSNwpR\nV5pUoi46MvQvq3bTEY8JoqOPJ59h/HmD8C8QrnCRWFspF+HgNVGLEqWGwN8UQZW+i/OSKXsZT9kz\n9EbcgvWXSXq9Nspf8ki1T9w55UwloDcMJdT3o3fuXMpQLjT5gf23NdEpxE83CjuwJZ1lCYDt0zkN\n6NZd904rwEvaK+Vf6PgNKy+vZwd1NIajAeds32DLoB9Ytp3T4ykuofPHJQ+t9dWvJaQ/WXkrjYwD\n3nvdWzRfzEmwPKzDAoC3H/Mxg1wjwuf3UgsUOf84ygonc9lCCfgzyrXPm76Al7J3rPJvKo+QSc96\nVBnoN/rjAX7XTirPw9+LN3cSRckUR82dAy13somO9XP7F+Raus2m4nCbQRaMtT77aybNZyKfoHEf\nhx0MrxoM0bzhI7HNAcqhzLyA4C0tYHC0BwA2izC88xBlMHAf7dLJNVdplvUqx3EatO0cb1dJXmnc\nJ53Aca5H4YG6P6z1dgC5dH9wNPCsPsNBAPfqJ+gzwi4CP9Ba3K3E6TP81F7E6RaRL+hZxfkU8H3w\n2rIqL9BLdwhDbgrePkVMXqqVF31NTNqg5+r4R2BY+Cp6J8sCJcjybtRzZyxdVwTEjy8/acBhbmn5\nfbyn+441dJOYIPgVy89HgfofCb9AOIJvC/5SrqnnRWlgWEGyqG20v+s3IYOGI/CNDHMpM+Wulg+h\nsReZUxsDEKOsZ0Ke8F450dwWEEKdZ/i0zpZA2NQizxMryPE4f74arXpWuawyvqWvHBEgZiVQEXUW\nb0zK1n0wbKe1r3pJ+xzlI/xqebnGCQbU4Mvx0w4TohSUB9+3BK9YvgneIXaV87r2DfzW+ZPzfcZF\nw8e5lbq7SHwBfj+C4X7+OdToe2+mhL7yCBQRypfVND/hBoKx9iANK1VMkFUrXSne9arcE2P1pgUs\n6nzWWnrc0+q29s5+8fqD533is6ZviIzqscqZBnJHesW95ZU1uFZA/rwUZh9nraB+3CJynxuTdgg2\n2hxoq0amzs/H7umzSrDVq+wgWCNjvbXxHxWdogIMpq/wBo44U7ebi73+JHg/ut/z8piHE+9Z1nJC\nOPtKXjaelPLaQbAXCOZ6FfeH6Ufc4mGhXf7B3OosfIETqMkX58IfmLRsb34tdn4wS0BxusNFXMDv\nyw9pmMGeF/ZSiXrxoAHcPuZzDpzSZQlffzbwC5Sc/6qshfxsPsS54MAbjq77UuoBZulWzas/ohGt\nRqGBYcT67yD4WX4Ub3zq+g+HXyAcYXv09bFkFz4dHHdBdfvdXhgZsO2QN2kueTsw4YRVF8Ckn2rk\nAr+Gc7tXjh850HMOeV+AXp5zkh3aGj3qfU2jK0G4bZIuWk8TaBWvBRAbBQv6Y6cTLfNONO57a+Ia\nQWlzs4HtcLIFsc7oyOVnTQefVh5prDlA4ZhHE9jquVsZlzItX1fODdh+J0/iG/jlI9Z61Mqxe8EP\nmtRLcrp7xJwbveV2Tc4zPJhDKy9Br7MRAW4LGFcZvO9S8vky3aKtvUwfuMXOETGm5i7Kfq2x/Azr\nGx8QeB3vs172MXnSsYCsxKUvExR3usn5b4DdYRmW1d9npNeFfdViIYtYrvw/99vAFr7yGT6AW7Be\nrzZ8DYIJJhUgjnTmbxXtIQEwppCs5CWv1euS8C+OYKWQm7PLsXVFebz3m3O9WYLzuiJ7lvDcQXBa\nZiUeZcGyOWfK+ktZTPmccYOA4LAEB4pLQDwtv3SZaAB4lGm/F+lCQYA8Aa3GcywOeady5K4C0wZi\nT+ng/QUMl/OvCRCO/pEfOcYm96M6p9P+LiC4LMJw+hh3i/AEwe7vGov3z/tG/ALhCD8Bwqp+u2Dv\nEqoDZpVQM/1RbMucK+3UHoHnybR0nFSwHfzvPimMOz+qt73H1QwtUSet+U8rRwn2oneBn/U79vJS\nDpMmzdg53G8dgjPSt/JkAgBuZWYtv/pbX/AqcZDlrJdvtDjn3WirDv1qmKH7STYQ7C59OJXp/U/e\nDPyWRzvQxjkTdveZUte+A2Qp472MCte62hegN/OoUEe5uIw7Aa+CXzk3x2mn1arq62UDyrVEtxuC\nBSDFEheVW0u/cPEDjkkSAHi5ReA10OxLa/AbQDa/TvkE6LX1NUS3BSRfjz1O3xf5JSd7QlEJkM3f\niXYvy9F8Qsm9KMtwumoEk2KTOGFYRKNCzkdeqW8ZqPMmKBsA7mXaS11Qq7AUY75VOS3CpFPooBF7\nR0b21q5ZTATd/cW5g+7RstvF+kr2kd6sk6jjBowPazPTZI71/MLQ1ofGTay+tLxbrlOCY9ZHlwi1\n2ufwrAWA3GEkJtACu0vp2eMBgp9BjzoTBPP31Kccx289IXzRPqfcfm/Gky8N+HaabfmXshBeCD83\n8KvxD8A4jTH6w+qjJUAW3uhQOs/vs2KB3XWzv76wSjAcfeGNLkEw/cCcLwurU+CfC79AOMK3gfBm\n1fCNXoIKB5pe53JNyu1LlpbZaEaoN63Di5YK+jtzTdG26PkJBYBNNJf6CcG1i+8dSFNwNu5NgAzs\nZTCGRfLgGNdgvXLOsW/W0ps12GhlYFk+lqqyCYpDwOy+wrQAL1p+8SzKqUX4CnBT8UTr1HoDzUO2\npfGntVNpYw7ZgVajDNc2SC5G2Q0gpw8v58QOevu1DnFHPvanTm5WYY1zPlzjS2Hyq4WzPzZoE/Yc\nIELj87QGI3RAB71iGVbLMQ0lfDnosfBVXIr3AQBbb7abh4IOAGABhI2b/pvhsfX4Nh/pRnsJitn2\ntPQIvX7nPP2a3RML7fU1uk8uPJUcca0EQmtgeAMIdIswJLYxepK6Dm9zGgQa4PwhSO0Ctj1hUmDY\nKus0P9BamDSxCM8PK+wfYRD5daxYrsnoydLrLnlZUI5eLGr120gHDxw4WWl88oovJx7Br6xl8RN2\nBXNqGX4dZvG05H3FChwzUgGeu4DgJy3Ea64FQKZFFCcATJDIX/gDYy9jOZcg7wTsfM4t7U5jMMcs\n5P0GhjNuJcc3MDzL1a+BfSx+FO2wvMbiCo6DrhAAXSJC9qBcohZ7K50vRtA6TCFyEvl6/DeGXyCc\n4fucTeE90NeNnvUfrMMH+X2mHQb/VC4z5K3Pa+CE+xgIS87ij2s14QstvknXcp4Ckflfpw/HuLje\naM72rLSlsC3ldOultTW35HG3/lYvdwBscj0Hyu1B6sj8A63vI6yWSLZtSgAFA44EyBRyKMAw9dTk\ng4+8lv/pnI2HGiuptVuHu62a5/zI9YF5aRly1GN0OY+uEIzjDojLJaJblzHmxgTDt5BGRSk9rcEK\ndK0B5LUn6no828v1r8LW49gXryjhAL7h85hpM1iAhbXn6fIPXk8dBNw2YNvznlOej/P8Datw+CSL\nktdb2zaPGggm1pH5bScQ7GkJ3AfgFL1r0TWNKMvrpALB+oRLrZ3IvrWrzZvSrNQHjTIt6jwBYOFa\nnTGNLrd1qULS87gZcVL+Cj35EQMjvGh93TpD9KQtElCMtR7V5UHBL48NBDfLcdSbIDUsiQR2oKsE\nAfACvC3PfQfBCQDpaN8BbgOLeu0GfrUceV2876C4jmubwZ0OH08vUsZLfAJjsQTXefOcaONjqJcD\nte3PhkPbmFtJd8rI9BgJK7uZWohRwpZzMvtMF4kw/3xSOufl+78Kv0A4wvd5u6la+UmZFF6HvOM5\nPwDFElFfvg1cbGC4lHqj2bxKn/ap/K3SEwpMmss/S+XXxTfAdSGW4O+kVa6j0sVR6xYc0qei2nrL\ne9rJrZ5WIJsAOORff1wk1l9Dxb9B46Pu5H2gBB1BHV3twzab5S6q+FbC7CprcryrFVWuen8GvXvY\n11id85Xl9wiOFeRmPSjFyrKhSDXfA1jRQFsfManfm01QvmNrW3G0eKSjoFzqE7fHXekJfN/Yy9SA\n+KJcAuIWXvjfwxo1QDHskP+KEscAuuP4RNxH3uO0ClsownijnBZhdDD8Yr0XM2WogUCHILgHWtgU\nBJfsaivlMAVLWOp2dbqCuGazvlwE55mbdJUrXdCIHPoEjqWwowwGOYMZXQ3vuw70vN5UBes14WrL\nLiAB8c1K3MzO5xvYCmN9tLZwYIUNwwLcQG6s2XUk/ZTvBebemNfiKpGg1wLk0j+Y5Y4g2ArRKahV\ncDstxAMwr/VUc0m3HuSNibVFDxkD5V+AYIJl1dUbsI2E6J+MH6zCBL9545HWcFpl46kT6mM+pqDD\nS+MgAC8xB9dnWoR9lbfBi3wc5gAtw/tq+8+HXyAc4bu7RkCFxlSdIjR2kDzLqIDZg0yxoolMVjBc\ntFIGdZIqC7b5AFTO2EUe/7NXHY6wF2zGKQ1QRiug7ee3+FZ2pEnzXv/US1MvpAuAdFq5UfFJL4B8\ncocoy1UBWgqmtEqzfNBy7+AbDbqPMK29YgXj1VISVq9SYOVc7P3iuGr5Gb/n13zymTnLHYAy2z7T\nNQfO8W2UHLi7VQDlFhE8dZlfpOt8goMb+i/eF8Cu931qfV2WyyombMl3TmIMi8E4W3lv8fj0MpX8\nml9D+UIVMRL4EgwoGEYC2aIZgIeW4ogrEHYTUEzgHFa3xxBKb33K4H19gV1ahLE2e3sSaC1GvKhv\nHSTPrGZHLjDUeNfss+DtmB/zxt7a4XNoemBfV9uEp8yZiyGjOzhuckrXb1qZGS8LcXeP0LYMqzoz\nXdMuWZ5lKh61KfB1CGA+SYiSp6e87Pux0zhYeHmMa2/5Skc7z2D5cpqCXwT4JcBTlwnmTRDMl55P\nll9Nr+KaFvBrUia7vdq/5rQnrYFCHb8gpBEpF0fw3YSPSk+2ExhDALPI7QD7/siOGGAc64YBD/zF\n+tgPvfmNhq0FcHUOGKp/FuOTINggVmFg7VIjAPh96sb/eyv13xp+gXCEKU4+lWySxidNpZAKkiad\nJJ+g5Xat27SQCdgK7C4RBHB1ylTlnKlCPlz0AEcgMCJ9nBZoVRud9v5sDV7prmoaF0U+NG6OtN5U\nbzLmUDc7u/VNhEbSCTaEri/TTWGzuUKY0ND9gYumgJjtaVfoI2wBkqMfoiWyb2xt6lyceYJozyde\neaEThERDA71uLX+C3jmxvMX67JKZlTNpxpUn/cZqNXbxfdyWepXtn1euXSOqvHDf97WGzvkWjj0/\nTm6J3wBxXH+zCDvAm10qyAS3mk5w0BW4hdJcPsOWO08QENMK/HCem4UhjXlRr8d5sPUpWrUIC6Bb\nL8jVMVlh0qVcw9HelBlsr8x4eUFurdvDIGwjgjZz1sEO5b1jwGzfkum6BZ6cUpU423oqs6ddAKmL\nFaAAqrQ5eSrXqFYfLqOW5UhdrL8uwlavfeCExE5a6nbeujGFAfkpZcfXFmAIskxEhQS2CX4V7Ao4\nTauwGWw99thoKeOzLnS3CNQNYQPBCYCR64Sudfn4HzXGBIwucXKsfRb7xPsbGNb4LHMq/6wtaBIM\nk6+xEw2eN8EwHnFt4DgE0FW5TSyzRJJTRYDW4BiyOHKeAcsabPD3kTp3ndCP/77wC4QzfJexlCR+\njndVfKFL/pCSJhHzRllkq3NGjt6SjfMEOom8v/ZY5Pichqe4Ts0ZVwTQrcHKoUOeD3rSkCxXOk7l\nsB/lNlloaAC2L+sCsbUMy5JbfbWs00NYrvOEhp2W23UNsMz3ogLCZA/mA/gJgqUrI7/Psq4462Ib\nv+TKaVk4BK1jJ8651oXaDexWhV9bjbXO3YXivPpym0/UThKsU90l2m1SKoIzF0xK5zGEvxvOQPYr\nmvoE8wggLaRU6IynLCgwXCCyFHbPK5C7ALGAYTnmRwkCACxjWwAJsarBlyWIgBjOHSJqlL2lhV/G\nNcZbnVCvfMFK0t8GwSr3yNMatgJYTOt5Kk98FBkLxrXQrEvJ7bzoh3vKvQK6EYfE5xNJFYJ6se16\nsioUWKuVflxj36f4OPFR4zmasYVYo7lALJdUfs6cN9cylz3ocGxAOW8EBayqP2/uQZwAmDT5pVU4\n2tgswEVLf3QBwLzBTABM3WAFClN65zzxVNUlY3JA2jC2dLTFNZ4qTeSzaRmcwbJ7guF8F+GRhYIC\nw0350io8dmmxqDMxNRelR4sT0/C4vsKXW8fwReGGTk4L6OME+0fhFwhH+GcWYRUQlU6b4fZIyQ/l\nTmFHEzrdTOaJwjp9NDIfW5SaicO21dBMn4OWUoVfcd7lKrxREew97gfONDBccrjRGJd045gL55wc\nUo7ufereTR34Khyq9S3WYBNaAizLNnz0Ef4AltlCXseoNZIK4XwHzaex2+MiSLcycS27nbtzqlmH\nreip7W7lxO3gBHb1Wh5C+Gwp3i3D+8r8AiC385XXnAOO+uTofd1I73upKTbi6BPwusRfL7cIKu18\n2agsM/2lGVVqCoT3I90dCHg1TouYS/ohyJB4Wp5jwjwe/sDB8dcLGD8omaszIpZqW5Ml7HR1Au3m\ndY5FHkT76qjY20kyNvnU4yaes2C0/yRYJP5VPuIJhTwaS6tsSkwHmvve5iJBOTku0gw2PTst25lP\nADxBsTb4A1OGnP1QKPi85IICWic/lJYCt8rmF+cStMb6gJV/cM5LZDwB8DPyXc7JOqV+VB197YRM\naDeJQLoSBTfhUw543iBvfPWdNtxyB9C9gF4r+ZVxLUMFyg9YGJACKF/gjQ9dTCsU16KzcaWJ2MkV\n92RdW7bZtdgSMnQs4suXfzr8AuEI3wbCw/pbD8pXLU2wbPlo57aJLkuiHnvjYBWuvIZgQGUi9Wxg\neATOvy9C9xNmKzr0QMYtgKyloKafE+V0B8B+oNW6a76dAyAnN1zO8QMdO/1jf1GWYMq7FRfgixJs\ntMY1kBt86zQrmgkt8l/ji1u6dRrbU1KEo5pzJh+xqYQ5W4tLDNcFrvp5K+Oo2VnC78zDEQ5TuOo7\nWXaB0+yaluIdPCstrqJzLejq/vApzpkukKv3Q5JzXhTNWu+y8gF6U4lIGX9cwG/P071uEwDn4UM8\n22w1tw8A+LEHznQ8Nnahb4A4Xqx5sNbq+lDeOsKXz3CCX89YjRXbwvHKpqoW7f2pNero/WxdbPTl\nnmhoj11Wo+RS1tpXQyPAdI5XHNv01qPmN5rnkXIODpSPbpUptwyp7AuhVrKP9e2At+1O4Z3mrVO3\ni2yRQ0oIBmxfiyPfGZ/WYpbNxWJilbTYRq0AboJfw0YzsRJv24cJkF1tvYNfAl+AN4yx3q3rCUg8\nd4cYbLHB55r1ykW1AK9rAWg3wJ5tVhmuBo+IP09vRz5tekqCPg5w/3JHuDvIj7vqdFQfZUe6d6qK\na/fed5z4Z8IvEI7wE4uwWnxVuJiUUdVrkp75fZlo2JFDB8sgSl6LOukD/LboxUp8m3eNPi293UKq\nPTsBAgpul9qmRQ6NJnEtJ4qkWYNHmVJkvbfFiTo20DsY4KOfSxYTKO+guATQbt3dgfGJViCZYLh6\nsoNbZHukhwcfYc84SlhufJH4tczp5uo06vuxLMzUbr2GsvLWbNP6PwHjaRFu8+H2G2VugNja39Hn\n88SBSdtqNMpPrjE1dE0HxlQwVmW5/3xzpfAOEHjBrHoHhycaBAg/D4HuC4+PbrgTCK8v1S0AHL6F\n8enatQfom6A9LcJyM6vWYAVoa8p6rhda3d1qvvvWZpmJqjwHEAbipZ2NFsNnMd+S4HdBpkHurjkU\nwCj7ozxao+qSywAAIABJREFURAvo0sqbYFRvIFSmakUni5rv0e7rfADFrrRD/w91Hxnlp2JLDpS1\nFwXmHGWxJAiOeZ5WzSyDBmB3UBvA9hvgOJHaBQDni3kzHyWDy194tVWnEFDSc06vzq/Owzb9lAek\nU+fIBD9ZjlMa5TTn/IrqHEuuqFJ3wLjHr/8FLhNtW7W7CFlfFqxJsPdXT78I1P9w+AXCDJx8O4ao\nkJOvZomCXE8agEGvTypPReij+ib2AzfUMjIpXfP+k+eoh3DIjrYr6QK7anVM6CslRfYu5VV8EFsP\nGtWFKgI/OTTirP9kJYaU7S2uSHHNzmUyr+7wOycIevVxV8hvAcUUOiqokmYnYFy06SPMOKWYSyu0\n9X3koyy/6LNN5tlv62nrPPH8O24qWM47lz6HKfopUYdqiEl1cnuo9mr+sCTrE4T58wt95M2t1LT1\npzVyExk6Um0utccT6IoIa34vKzA2y7G9HtZMUYZy47OPX8Rtp/cxLRD8vG/F7cXjZQH2+ECHP8+6\ncTGD4wlgDNnVYl0gLcKSJq/5ZTnKBbaTO36IBCt+KutPGrnlf4qbACpH+Zqi4s7CAlCjH82H9sBU\nn0ye9JbnLU/dIs7XYtvkmActO2SxWnlZJ/SawwqMvfwWLuRbXplCLHi/1iz5ntbedI9YZW+uEqsq\nk5/v4NZKPivtlM4X3FIWyTFBpFh+gQ0Er+apNu/HKQk/B2FitCOnZVwzSyZAR+uDJ01khlwhJa1s\nnVx5lNUOC8twfSmuu3eWDJttBrpxZgR+we+JcfJa7ye5Opr4bwm/QHiGmybJtCf9NBgDWhzLKXgu\nr1TNq0WkC2jGt7yvZscP8k3ayTber19206S5HBURMHLgs+sikvx6jKrKYhbrIif/0loaR91H9aGw\neupFoOepPDP09K3cUy8N6X6sZtImEar1OKs4pyB6uUiI7zF2AFwzZYpTX/tkjrINTtjOtwmK9uFR\ngZsNG9c+if17GVruUxFl/aqc0IIqAaWenJC2oPPbR+t4SZSxlXPIPsZlzqdl/lIudamdulatz8fA\nBAVdv9hYA4B/8POuSKdbK2O6zSKtvViPKd2Rm+47XuQ2c6T5G/FVL2/0CIBpES5A7NKPIU+bldWT\nBTkl/BZfPdJ3fRKbSxwA8L5xs8Gjw993Ab489vh2Dssqk9s4eaMr+X4OcLUK86j5X5bzDm4/gdzZ\n3MA6VxCcffIj/RiUD2Ih1I1m1rUNDfCqNGO5XKAHiOQjDS8RjM/nsFq9F8rm0R8fF7uuyxo6+RN+\nYMuhtu1IBpBfC9gKb4IfTRZ8sBZv9VdNKnpgOnCO7H075eHew9Z/GGnZ0zx9ulnb25NHOXZJ/2/D\nLxD+B+E0v9tEaoJ9ljsN6QTDEzoUEBpTZ0ufF59M9QOI2BECHyVaq79fd62KCdz3SyxJZxkfl05R\nqlKSWSJmd71yWAyiyAVsJDgdIFj3Tj3mEewm6EXSTmCYbwyb1YgqMK62UYgJJ61z1M3w4gMA9nPe\nOowxlTHyVk55qPlobVP+zvx23W0W78dUdEApDeYZH1miBwNd1Pbqtc1bP8+t0qaf1tU+378Gw1UH\nx32vO+O63ExbfBhPKp5Ufr1zp/Ux+z/Tvv0N/h5B7fryXPpCulW+29oKlDd0SbPwD14Klb7WD+PR\nCZWP7p4vj7PPT/TpAQT0et7EpAFQ+OqHPIKYrP91uL9x9A5y3wCHCoy3cpU/rbkn4dTzuiDzcY5L\n/mYZHsdmoZ5laBE+geDNMnygg3Q2rcvnLbRsP+a1pMcgYVh4h0zyRGRrQEt+8bxIC/jNTxtLPdqX\nFRlP0hrgXlbP0azeDXfwk9+JTMVK7WZXD5tPx6+CszsoHZI0HzSy5iDv25NN731s7fDqeMsTOvmR\n4FaBry9a28XjiQpeoTdQ/B1O/HvDLxD+YTgNUSkyv5Y72atqyNcUu6VtlL/Rvtv+ue3JPv3PIJj9\n2Ky/oz1Zh7NcCfeKD8E6F5U0zVvcxzm959luAhF55FVAVdPYgC1B8ATIdgK+Axg/hzYkHDJtLwWW\nzJ4DGC5esFwA4EQR53FU95gZ5ixVa0ErYwfaKLePfM9LxaVjNfkACCLc01nHkND8WlxpASrLvd/7\nejzf5NXPenPafL/HIedv8XjKkPSmVazHnX2soRbs0JfL6Jta6T4sqxZfCokvqjzLP1iBrj/w5405\nWfGct1H2DeWXm144PTtWo7kBBtDdJnI6R+sVBHNECWxjC9gOiDPtR4DcNo44WITXJ63l2MDyAQwz\nrsxkwnsSl6OfzpG0B2EeP+bxcAK9M30CyxjlMq3z5TKRJOjTimNezOOSgWSAyctyowYXmUjZwKcL\n03Lc6lRt5VKvtdLt8b3UL9QuV9MCzI4QPKvc/lkYrGlH7dYSp1aXsSrT3CUyz/Zy7RrRdld6t3sj\n5tXWYvewCK+133fkWKtQP+dsL/MRoBj1efn/UvgFwhHOkOEb56i0c6lHVm97tMBzNQ6qe2vprmT7\n70ZrGV82/nO2KusJgI+wJwQnmrWSYWhv0oBaXBcL8KpSrR+zKhvRaKFpPxQEIwEtUPGPLhAnF4l5\nVHCtHOB1WjvLHtFdJQJAJHg6zQfREiKii5e8HhWDCnhrZwnSE3rn50ZraRW6x1kRzR20cdQ3ofX0\nzUIsL9TNUPNi8CSiponRGh0zg27rW4D4O6C3r4/DzWLogJoT0qKmWIPqpaa6fu0c8JHwWx7T3jkF\ns/IDRihzdYUIZapvxk8Xidff2F1ibZhWIBhlDeYsUbzhNXPci/f0J+b7O1wLZfUNdwgv/m4gOM8T\nLgi4LQA8XCEuILiVE4uwoottiEaZz9Zjjzpcyg/5eMmvD2GQ9g3Qq9dj23w0XfKroXrwjT6igzEi\nk0JcidjaLcT0U2A1BkBpeS1r10mbp+mlLa+eKBHRP6tz3LU0W2x7nA1v+1B3Kf3T4zX07nUdojIz\nhN2e1/2Lz0EGNgXqLm23nS8OYDg/bR1Cb4Jik+0gHQGQn+P34//j4RcI/8NwmkuddlbXtUT4U/W8\n+wzznK+A8XFufzXh0+rGNnWoUNe9+wlDypT6lya0aru2OFqokt4FtJw2Tpgt1sPJEowt3UCwPf8M\nBPPI64Ls7cComlszgQLKgQaGu/BmadUWhzwb5ZAwqvPK6qxJq7PGJWD7ObNfSssmflEuD9aOfih+\nFuSb7QJVuvfraAm2SVvp8hWu0dtfgvkOONb0vkZaW0WxborSd4U514O3Gv1DXic4PD420N0jbHOF\nWNZiSNzd1oeo1DLsYfGFbIMM3Ra5oAtQOCLt/7HW1V97AV4fFuDKN5MyQlN/8NXZt/sFn0DuN8Ew\nF2oCQhFx89h4fhB+LnkuhJOVWONVr++y8wqC0UGu47NFWNuDPVxv0LbCcm2udfcN3FZ1sRYc6O4L\n8UdvHD3WV6tj5VurNOyfTTRY8m+TIEPkRkl2YNXmvZ4WPurhPWzrnlV46wJcAPeU5970C5o4JlDO\nuj367fdrn2QPSHfETjEe1uAHBrECh67lS75mBjz8fDPSN9gfwH63T/u/EU4K7DRsV5pIhjVFTtbT\noajld8471VCFD0vz0lhd3NU2xSjVDgJkT8RC5cSqEtI5dBX2INYOLaBJPT1k9IduFMjNRQgCYHQ3\nCK/PxG6g93Yk6H2eMzgGunuEMth6S6tL3RJcn16G/FHoY8cxu8cv3BrZfqDNchug/hj/Hi0Vlkw0\n3Rczr33ozuY7PPu9uQGNbBmnGyBmud6LkWcf8vQ8uYCFdtvBMddUqaOTgsrSA4TM9dGAUi+a6aXs\nFoi1sOrQLcKaiwSWQpP4a7ZcGaz7B3NXiNeVN3F09h0FeH0AXyAtT9xGmTKG+RMY67k1ruM26eQK\n4Z12Bb4Exknr/GwMdwjvb0c/lBFg5T1fd6k4W42VfnGLYPmNfvARTjpamO4SkwV6gh8KfXJ/WHPL\ndUFUlQY0f2Gp3FIW1ArhPvwEvszNdeWD1r5eONcT55HKWA21VrUV/8RX+NN6B0oW1tNEyRtlANto\nq13zlb/Yi8ejze7hKy1Sn09B5CZwTbqnPvTzhPwKC3GCYhAQP8D7rm0ZExhbfNYZ/5XwC4QjfIIM\n9zDvNLtqT9rUPtv11OK6x2c7b79ZzjVxBEZCG8BqKZiD9Uzb5afrC0Bu1xNv2CnBWGIKVi2q6w49\nvvO/4gU8xDoci3N9ShadPt0kbH1A4NtuExcwVTyaIw8oEGY6HyPbeV48rS7vcVc6oEJdH6cx3YO1\nJvqtzFfxj7tKRNzH9WjF2FDTYbYYVU7ngUv8FMrVJLgiysIyf7+JMS3Tzvheeq9LujzWXu+P61Ph\nVFgdQVwA7gQjUmguwYU/Ar5avCR3jGNZop5D3AyvG56nW34NZQ1uQ+sY/Fwt48txDtnWNMquHSC6\nAjcfwDf6l7tFeM/DcIVoYDh9gE9gOOjTIqygcIq3PPpIH8alWYBn2qVuGddbnsco39wgPoLg0SVp\n5Gne9M7MtbrPtaxTBnG6PzTampzRRj2Pz7pqVfD8pKV6q3VV4LeumSuKMknrA+RsZc5Jn/aUfeP4\n01C7RlQbFOC2lpjShnxlG2Lqj3uTrWs3qzCAAL8KhldJs2ddNwHxkiVr7Az2PNkG4IU7P+bxZ8Mv\nEP6HwQ5myQR6R5oP2g+u9c3fl5V8VcS4SE4vy7EPu5vECuVCIaTW/saaS3zJ4q5V8uHcydR1XDPV\nwtM/WoHnrhFztwgLq+/RDYIW4QGGTa5+btep6VXa22+KnYovK5vjOeR9+fnsCWwnOL6UmX25xvNy\ndi+bym3Ub3u6WaqHwOfFQpVnfGnD3uayGCEEM2q8or0W5dY8Ye13gPvjtNW1K1x2ACEQivYkSMm6\nh6UulWOhGO9/tvLFNVtuDrClvMLlwS6AVy3GjOcnmeMa+v7LiwsgFuWqe/lr3FDWXyrNDnxXLzZf\nYhxcJYCyCAvIVUvvfInuZhGGbJ/WwN4F9CpS81ueT+A4y35IQ2RnyE0kuPVGa+CXx+zHyT1itAkS\ndN7tXd3LZ74gOk53dXWA0NJCbFUbz2NdcdOltGnV3cGv9TZanHNQNafO2TXv+4Fz/KujNFUuVX6/\n2zQDPgBkG/XL7bWT3d3UkDW4liEtPsWMpRcdBMSrcYsmO9DQAoz1AR5/n3CTeGsPxD8YfoHwPwgT\nNnQYIzQ/0LLc9L39EDfbXwA5/E4t2shb1j7ViTvqdwO/kn96bg0fn14cGmP6P0wBqE2MA5/KdGHA\nRq+fBbNobZsW32b9BQ4vve1+wgscP+ft0wQwH8fmyJvevd0qrCzRMaJEX2lusfbgUu46F/Yxb2W/\nSm91i8S1A/2rMiqwGwiWKkz4IsG31A7sFQQrUGrb2+W8L2Csf6UZjXJPn8+biVQmjQmybuRDA2U0\n874GhoYkoEmuKDKZyw9hV7Py8eWLLr6+4hEuErJzhLxIR79ixGeY+S0QoEDvTCtP9vQOeMkd7hjB\nUVZA7JCt1uDHa5RFeLfyzpfo7lZg77tHCOv34xiTrYxv56gF9uNYzroPluIJdBlPkAxPebpZiqMN\nrHtbd8MwUf3zns64zL0N4Xke1mDWZG98i/NcAXOKxALJCejiBIoU5pq20bhKvY/T7ESE9l7cLSIH\n+3DsFe/XamGfKsgX4w5tyqOd6blF3LhIoznW2PterkUD8MI9Xngj+F28ze3aYtcIxwN73gWAAeB5\nyzXixR8Pv0A4wvfN8b2cTbofaLPcFIRfrQBiPJy3NTvi2y/q62FvQz1Cvl1Tods41+u8rP60Ugd5\nDoErqxzb2tMOmXkjNouwefMPVheIF8Mi/DwHF4iD9VfBr5R/DrwSnLf3UY6LTYur6hrxtJIKdCve\n/NYa8BbR+1Owe0wP2k/ipXUOZajcKmsVP8xsIZU6k2uY9HmonQTECqgYN84YxNw4gdjvAOJV2c6B\nXFQba7U31Y0oIHP7qKRVqfOPt6wDrddp8NgRotwjLACuBcDlC03+UPmGfzCtwW547cHzvB8BMOmT\nRn06aSZ09/US3vkc3+pY6WkRLkCr7hHpMiHx5jcsVuK0Jrdx6HxtoOqQdzrXT7RNRn6PtgNbYLcG\nY7MOd/cISWO/jsy83t/qzZi7TNjmJ5wj2JbtAlf5zgAzEziH7M+aLZaLi6ix7HtKyXwqQx7EOrbe\n5i1+5P0pLcz4oJxbV2fXx3G/ZN0gf5xWPNpeD9eUxU8B7y49y384FRZ40+pI1whofF3Y4sbZsHyE\n7V1vENgTT57edZNt/mws/RPhFwj/wzBU+Nc0v5Wb4HIAKevld0Day342PorUkYPPvGxLtMfmtS7g\n2AUcH99sKh5crcE+030x70aYLiaqVQV+FyghIO5uEMuP8GAJVlCcIPg57CDxhKuEukaI0hXB0sDP\n7Bf7ZvVImdaMV3r16Dh5xUOsxIX2sdR9JBtEm4hM09aIY+LuMO+fxU/XZ7xf1zO++tenGF/vMaFU\nNS5HuiZ4zG0elyIM7qSi1L96VP7GUV4a7SyzjZXXINrHx82dhsrqE6m9xHSzGOZSk3QIkOkGgbAS\ng7tFZBr5VjgfXy+A7HBuDooAu5v8WJecoLeUrjXZp3sJ86U6y/PLgtVdKwr8Qq9BATKtwOomcQDD\nvZycn2BSxu/A609509Whlz2McxvT/RylfwV6d8sxWrkGoNvlK9WfLMw2uiZbbHN7iIFsDgdtPUi6\nXYYFomgswLQPUwZbk4TR7nCFoIzYeDg6uY3nnfdg03v3/vFx8rEd7UL/cOz3Ib7xRj+ljA9l14Kr\nTQ+bSwQoT8gNtQyvsTM8yyLsz1pXXwrJf3/4BcI/DX4eJpuFvkErQb2v7gSb3hXJPNew533VgVj6\nhxNziRzrvVmA69xNQkmdM17JWaynYwVOTTOqYgspFgmAgQK/cGuW4fayHC28Cnqnu8SwCB/9haGP\nZ2XspoaQmI84f9x/VcdliYkAvQIKV0zHYMWPglSRWkY76ATPbhNgjvuYkXmhQ7ljXsUbe0yez5jk\ny6lz+JWj563U+lWpg4Fwg0gAXP3maxsmDVFgxVhu/TVZipNVeCTYv6ZVDp0bmtHZ15w8QyG3tJ/p\nkueGZQ1ON4juImGO2i0i7igqvTq/XpR78Nq7yabd7c+6Rdi0vOeaYbd3n+GD9dfLVQJCT5kQdRaI\nHVbgAYbnjhITAPdPLBePj2Bpiq/LuPV4AZBb/tE6GSd41L9ZhDWNr0FxK9ua1uXYqU2uf7WtNkGz\nJTIrwGuomm21owHnOmetY9fSC4DBu1sULNdAuUuERnTk3N70jFjJhQGN30rSMfgsjb4TVE4KR601\nrzf3iyPjVCFq6R3PF3eI0H4ux2cdn0c0MZqLBDdVnOB3uUiECei/sHPELxCO8E8naapsWQF7XWea\nTrOuBC6gGCrcPwDhnyHjQ9m5Z3HtAnG2Dkv7vNMJPlu3dVmKwJjW3lxjl3SXpAnvQStDukG4L6AT\n8b57xOFlOfEF3i3DT6dPcOzR9wmAVaZDBXj0NxQA+5b7sAYgK67cQW+KSNk1wvXiO1JDgjVJd/Ap\nkO8Gco9xSadSO9DHNU9V+TFdjG3ToC54qM9SKXI/4AUAS2AD61PaL6zAcWuS/HU03m35Uo7x097I\n2ouc1yYJmTsb9JhKePMnioOU2/Pi1iG2WVjgt3aKSLCbL88FYHYD7MH7vOvjNLQOH152eTfZwRvW\nWieL3q3BwNxSzbc9hjfrbyjz08t3J4tw+gAfLb7DTeJiEd5A0aC55h3RyTbA2xCf6tWypYJklkyL\ncKAezpXvguLe/DkLvV8fVUbb3tapo4PaDAS8kHVgGJYE9B0lOM7xl+RYnI6x8wrXvtCrEhZ0PbRx\n/vjU5ZTXu92AcT9a73LSpzU+Wn+ZDt89av2bhvE1dwocq+Y54RmiV62Jn40LuftSNlLaKfglKPZf\nH+H/a+G+c8SnMgSIVZ4TTJXoCeCe6Kdy18ZIG45A4YCT1lZFBzeI6Mf+IhgFZwcMzaK7s6RHpklh\nSgEVXrMygt1YbsslYgBgIAHvAx/W3w50P4JefVkuLcehzEO+myH3a+yAxsDXUbZfKAKKm9MLccta\nrOOo7g8l6lzOqQHp4LftykAeKos5Q7OKA2r1XrbGa9RdF0UHxz1r0rK6QZtK2edJRhUjCsCqnrQK\niUV49d+2/mzg1jovGgtlju73H54sO/QYQ/OUFTc70S1zWX6A22JKj/vhvDXDwvXB4u3u/ELU7haR\nluHQ2rQOvwY8NVFSwbebw2IzzEu2AJQ3iPVTNy4PwTogVt8Oii04k/lcgzIrNovwCfi6d7/gm0uE\nvzLpBiA6ACV8ord4l5FHq+83zvU4OUHpd0AxJgiGnNvnrE6hRpNrH8/RpirQbWrJqi2J2AwTONOa\ny7YYlu+xLJWgDWkYAkDL6qsF2v51k5SMEDZL5734VmqsP5tq3WO3O+UYnUFGrxX9aoq1mxN0Vq62\nOQ4aozSL7z+1JMddcJwlMndZFtZNtAPwB5ZrJ95DIAj+dY34vxNOw1Rgtg6braqvYTmnA+DK//xy\n3PwdWzcr1cZ8KJ+K5nj9vqSVbl3DZ/9KuVFJDY0xF34urEh6nTIXvIqZbJu5CFiCYaRf8AK36+zr\n55UjbVZuEw0c011CfIWzn2rxpYVam3rqLhAgmC/MeYEK5AOl7Cu3uqvR6mPaPeIkx1B0BbeqYGgl\n7X8EwJme3mJfpgc43thxyxtV3jBBp0oLrQ9J8s0kHWjNqlBcWuJS7bae6Sdsg35tWQcHzfpDkMJx\nzik1AIoq4BHXz/M2DSjllkJ0Ab5ISzB3ikBahsOPTyzD6RZhy7LzmsgMebzNYbfgpxllBpLnCYwJ\nXPz8kQ3xSIwl5fmpZVxptHCFwlVAewS5vrlKpGU4rcQTvCifv6BzLLaymi+k44Q/yE9tEsFvXOsG\nds+W4aJXtd1FYAdXMjdbCfaFyvELoJsLRFZElqVcX+npApEWR1faknm5W0SKIAoFj2rlhT25Scj2\nb+C4BqjvzCHnbXLLClhid5+4HRufB2+3o39dzqSsvgC3A+RqeU+jTsrVGBX6AzhiZwqCY1qAV3zV\nRq224utJ1J8Pv0D4h0EnRafd0zea5lV+WTL3/AlI++9juw2XF+n2qb2u44DtILjaKPR8fFbgiF+O\n6sivBEW7vOZ5X1quwrMJnX4cjQfibWLjEev4YH35ioCY20a1l+WaZVhfhnvKUvycfYUfh1xXlG9I\n5HZzZOwffwu4OuSTtNb3ClYwvAHjMawueYjxbDziLKMuOIBfj3jmtKkyb/X6PLKbNfiaPuhzeSS6\n5TF+AMhNZGu3ZbHQt5UuETXJYz9cm7d8GreRxhUgazc8chXwFkCf6iribQ0c1oN7jbcLLZlxUOyq\nMSOpX5QrF4lglNEtgg2Ot/7j61HLGux4nGlevrtE1M4crsXqSc1aJJtF2LCswlS3jtjDH+IC4bvv\nsK65lFUHYNtejPsmGJ43FH0IfaQvdAB+oG2q4rt5x7q9xTkHNkvxpAcqyrkpMqV3a/oFy2y+zd0Y\n1POLcR3oxuRs9ZBG1MYVxXkArDmltFU1IbHSKAn7+jgC4kmX8T+BZMehK+1oF/pZp8tofjG1zuCX\nzYWsK777Q14VQHZZLxDA7NnHvoMEK1cn30IytQpRsbixTksxFd8fDr9AOMLP7kLmkNYCtZ3UQTAX\nacweXQY3wItj/OQ3PIBIbwYORQ7tt5QxvR3V3g6K97aTbnR6nQyZtNbIEjKN5LLetk5FS2n9BcIi\nKyDYRdmmMo4zZW/gDn5P1t91nC4UuWuEQcA3waAXSNKXQgY72D++EKeuEUcw7GrxpeAj6EXLS1FP\nlGsyPwYAdslnhG1US2qNjw1Sm/GQmkqBfTuwLlWmt+DbNfdkTeytyQmI+VMxHsW8VaGXHt1Sq49e\nr0CCtewOOBROeDtPQUYp3lwzUzHrovFRVs8Fck9gkz2ByZe1x3D48iXwffB4pJ917mvLX3gNc8AT\nVgMC2wDBHlwyhOtS8M3Jfq7hAYK9A16myW/yuadDZiYPJqB1Abwd+FoDxeNcHeMD+O2Pz3W+7GUr\nDz2kzvh+2RX1agMpVwswqUHZwHFVXt09zUyMc9ByU6w3iy5AC3EPkdkQYtyA9VJxzZJ9eUpYePWG\nCs75OYEqz5J+b+vpRBMeuriUHK00x5Zfg/oKoy5bbcwW6yUvlmKZC6vf7ANy+7SUBZD59jHdW7Fv\nfzblrWwUbFxC8VqyhbvE++eR8C8Q/odhqvKm9CJSgst7uZn/RfwEjvffD8BFR60jsG0mRUtMKAhu\noNhJ263ZUm3V74PmdRhN6af6rKrDCdP4AMYFiMvnNvcRDstuA7g2/YHrpTl7+HvQPrYBlI9y8sTi\nOIPCHw8hv4SrmxUA9h0ME6wqXURcXLHiykcCDnHlBGy3/ma+gN/2SHH0pYVUbkJyk/rjHO+nXBWD\n4Zh7UtCb1N6aaAnAxqQetL5Qrj2O623A+HDSzTq0zjmqr+qfghNRvHmuH44jz1te0Vdba9cIxJZp\nsBfcOYJApIAv0oUiJ8Zj6RrBOVXxsgLTJ5suRAmIo0zu8ILxcpz70SK8wDB5PC3HJW9PFmH7wk3C\nT1bir16WuyGR75TFnjb0KpL64ZycIwp/vEkc7BZg5uwgWOdpNbmvwKtVsoHm0d4Ew8Anf+G+cOIk\nK74ssBs3Xy7VUYNFu1MsCXBuTcq1Umur0cijtp6E11J2rnNqAsrnRrdZbmdFTZnOT+Xzeerd3SP0\nuV7Sjpbg6isyzQoLvJZM86I3UMOX4hzrvYQo+j5xoT//ttwvEP5h0BfdiqbBB81HuV1ymSyPAp07\nvecXIEmd/fPOXAFx4YICticQDCkHsQBXX6W/7Q7ZN5o+csqzW/4uYPc2K+i04IuC4MWxBMFA9wdO\ny+6Tx5NFuO0koRZkj5fynEp9CWweT8GFdXxA9Xq4ccDjJXwboJd1KZi2rLBbiinwFfkWfzxoHNEC\nwDXB1+8tAAAgAElEQVSKCYbbfPmINq9l9JZgz6WK0PJFx0a/KNhby2IS5yP+ICwgdvjpuU0577QJ\njDcaEABwWqJO8zn6tYHfYTlWkIue/nhs5/PGqqy91nyBLUFy8iWsw974BSRQtmGJs3oisXjNXSNi\npRIQ04Uo3Is45c6gt976NxQPuH1hzjSnSu4WYVp68wtxJ5CrYHlzn/jaIlwD/0WZXS2wV4tvpwne\niFFWxW3Uuz1b8CFJs8zJQizHGwDeQNYNACuYBjYrcMjBzJvW4IMMqC0yIWtKnjxAquHac7S5uM7r\nT9SSH1xbCQpjvXAe4Z7Htdq6kLIYe/iGENNpdATDYyzO46Pt0bQfaB0on849td/kb4saCucalhx5\nPQbOyyfwD4dfIBzBvjEJoyR0gLtlc+SLMMskLK/lIfjXxFKIG4uZ9aXQ6PWtVEzLWN0Ff9qya2dS\nYGRcqqxJ3q27+Uaph/9rLPp609RaGZajsM7dM9od5YGmwrrdkUu+12GTHpawJhd2puOG8/EH7/uG\nDy6Wb6+C3ucAek9uEY8A4PQR9u4n3ECwIV/iO0g9skRBcYkhxqm4alw8RyzGwar2LoSBtNLlFLWK\nCxguwTWFmZVV2A9lvkmzjab8sDYX/jdhCvZJU2B8FO5ZrC0u4ecHGrSfTAsYiMHR8VHlzTXoyQud\n+MO6ewS4XxxR6VornAMiICLd1hLdfSaHczK5gFpUJyl8guEe5dyJfSpda0WUvvR93ch6+dP7SMMD\nQKPAgAPbdmkNGHujlbXPYYNWPBe+J8+Ux0q/0HSqS535jOu0FGQiWeOPFvHqO+ToI63zSstu5x7G\nYtKzSyqhHa2riVCp37RTlnltHsi8yXOzPFkhDMg7+jGX9e4oWahImmsLOfaLjX7kWQHfnQ9z6m/j\nfw07iNz5zW5UzX3Mepk5PfH62jXDffnmwtEd81xqfaMfJvQ3+2bBwrxXdsDeB48CXPMd9J7iX/Lm\n3x9+gfBPQ84mQ20dFppUFmR3O698G3kei5O+mx7ltwUkAoR1bCCnNbFmUylWSQ+8wzMS4PhS2gl4\nY7HX1+NCeWZ+L1PK5cnFaceXTuSH76V5t26jj+0ngFitv1zqz/OE0kX3B/7r2f2BD4C3f0hjAGEg\nAHEHw8Y0vN+hjBHInSNS8HXQW9aO/jJXF7yqIOq8VdEuZE+At02OzZostKlQLjQ7lcuy6s5BvVSr\nxbOM2sKVK/2yt/SN9ils5Wz0Rbvj45xTQ7xFMjuLOud3KT9zUWXMj/VGhZ15k96O0hjJ6yBX1pHn\nbmmVn2Xjy4zgUxRLuj5BqGjNqfQHFhHZ5txIuyyZdnQ9ejuSl/wwDYHxJnd+9Jvnoxqog5lHH+kL\nTc63pkcO9WpJ30qhn+LJh15SgW7Pu1mSWY/O2ntXveiH/K07c2AveT4nAaMJblWO8YIiu5LPa27l\nfAEKV3vwawJKXiLHpkkswBzebtxs69Zo+pdCqJWPjm7AF5020xuN7accE56z1fkCneh2ypuihVyK\n43MAu+/rcdMcZW7rCnr8zJP/RPgFwhH2/XCvJftiIwAGara6lMl8i0lsrY6cpDk5Bz2OuYhinuiN\n9El2SCWrBtPkeAQiAkUj9YJc2RzLKowBgteG2EWrvQGXjHqz7CmOrOOzIqrHmKPNkVAFrp88fmIo\nXo/HrI7s3WbVTRB8t/xW2QGKQ9nWwo89UBsY5rzQEanfkteefpQKepdwmjdKnnOkzwbvgFMZ9kMw\nnIqCNBVWP7b+9vO7BdtSaQsM7hbsVOqQcr0rp/R3V3i263KeaebMFyzX8kPLpp+0T/Di27USELNs\noglRGFcg3PNqF5c9D851I3MUFm7ACn65lkgr0PtkCuLuUAxJnh3SCoaLVxhWetkBgOx3xTbySFr4\nUKBu0V6RW1MR+wcZRIV/BMZtbHQAB63leadF2XardwIEoWMUbp3LKUjzKk2eSB5509IJmk5USTsu\n+V+woIRXyZhJc5Ffk8Z+2Dg512VP19zp/rkrdCnaQDDnkdyo7MMZL/C51Gx6zV1k4kL7KnAXlxyV\n7F/1gdJzH5NOa7IGaC/MuVOHIvt/Ar/2Fmh+LdJynMD3jXPSUnxaZz+W1P/78AuEfxpyVinARca9\nAeMOevt5rM760WMx5hpW0CN3mK7KpDctI9aoBQoG6LdRju1UoAsvcJeKVdLML0D7yMTuyucWP94h\nelmAm+JBlbPoQ+5TnABYLF2R/9jqv0e9DhTo3YCw9Ty7gGUFx8GbsgiLVdjLtjv9rkr3idVXhIKC\nXbcSsZwfnCH8++mJQRI2H2DktWMKZHvrnH6utr3RXYp/5ToBxA1eiHArQU+fvxLvAL9IpdTpZ3sC\nwP4h75SedW1pssVPZa2xLWXE57flwBdsVNuWQo75zjXhpMeR58n6LM3oI0/yY7YYSvk9El/0HRhv\nlmILX/sxX2YaKLCs82nKM87nle3ZheZbzfaHsl6sKnlE3rnwoG8LNX+40He5VDcYg8dtzMfY4HP5\nuwU4VmKc17K8l6nKuIoOx3atr0Fx76ZXvJU6d+12bO2fi8zRrb8kTKHGfpiVDOFEYkMCPC4WsWGy\nc4RTspI3coOhQ3eLt36tNe5i6NIlflr2PwHEJ8tv8dWkRKRdwTHg3sssWswrEd3N+mtlAFNA7K/D\nng6Qp9W3AV+1FPvZOszr/enwC4QjfNci7AlsTWbvovXhK8C7Fo41WstTgEvh76GerC+cTQ7oOs+V\npS3ZQchxorX+rwmbjhy+hNAdGIv1d1iG4e+qR8rO+EnBdDpykZSAP2kcQF+yeLgLQwgmJwgO4Ude\nn10gPgPi7wDhLiBijoVg0JHZxzcUt+VDu/y7LKJgDAmcoTQddamVYAPo1rZPbg9K35FKLzumXV7N\nD2VR09Sl/GYNNgLDgro6378Dan+Sdwp2iWc62Wd9Kh4qoeHIlScjtBs/WReqjHRdiJY7AuAE1kKv\nL17GWo65s6w4JgBYgHH8ChDTPaK7RTwbyI0/AwxD5uPG1VG2wEpZzlXcsTtG0NvAb9HIk89g2IVX\nd2uw3rzpGMhAynGWk0IbTYLrjW6vqvFLx7pd9mLp5fEClk9dmiW2tPRpdunYRW9NP4Jc0rzRhHCL\nH/MAIIxM2e/dQqw3TcojdDIv0mYkLbaKLC9dAserzWN8DpSJtezPbhGu5T+Nh4tIdtS6CJ3ZLMQQ\na3CA4LW23qXzXgBm6Q7xfAF8fay1XMefhON/KPwC4R+GvlgCFKd8taSVnikAnEtNgLQD6Q+pkzRd\n0rkY8zH5SYnHgjeMElJQUUMDKN5ITDTLr1Xr6oU4XKzDSg/LMBl2fCHloJCwl9no1YFU0GkVTkUt\nli4p8/jip2OBw3pB7uQCoSD5Ao5tAuFlBc54PD7KGfBhl5gmKF3hrj4Om3NBLcNV004Lbk1AAnwN\nfDc0eAa/CX8PdJbfAHj0dZEE8LqoCgOsgeFSCKx9XtIvcTbvu2D4BoRtxG7sKjATS/8rQe/SYIn7\ntg5QRyDXH+llrSxFo9fW8tv6yXWkIFh8goFhIbbcgeVkAd7AsIYrUN7ZQk679C9BhSrSUOoUss2l\n6gZ8b3LnIrPaDYk2Eq1hku8HWh+ToouN8jRdhuGCa25rSqvjZukVKJV13K3C1c0TwPKWbnnKFo75\nWHzJvjNyHFbiPV+EJwC7/AXSYJLndEDb1lxrWO9b72M1SmD1VRZtE3xbG3E97909Wn7xyS0idJ1r\neWx8dBq/YppbyKoEx7nuwvxC+hsvqVq3CL++pxUMc/lwTU63xz8ZfoFwhG9bhPOlNwG7CrXcZFEE\n9GnAV2FZyWXKBC5VXd+8lgPN+HYExCepIhp6CUwRAG0lCD9Csl5BLvMx6Ify7kD63r1iDW6KJ/KV\nJnGfdLZTFTsEBLuDG/qXH2NUEb68DovtUucLcl/4At9cI8yGJRjrLdoAvivNW5w3vsG++pMjp8Ng\nK6cecZX1YgLk3SlCQ9T+LeCLQ9kLXefQFF4XsGwH+tJDpYDS0SEAWRaNtF7qBHKlxx/jp3DK/wyE\n7UOZyJsNY4nZmZbUuS4KwjHS5Bkyba0cmpX4Vq6tGQe468kjoLiBYJRPMN0hlo+81RjLvNJu30Dv\nViY5oTO/clfTq4+qSMuKi66E85xvWIVxpjcL8ZCbyvdOQ117o1XExPTZlpQKBRK8pSQy6xhOEH7K\n2x0lMvYB8Hba4ejnsjOehJigroadQ9ypNGMiGN3FRvxmMVY52W6u2Sr2+dBgJ49Tj4Zu317gWW2c\n8qePG6994EfKCV6XIwVMsPtzcNzYvbOY6yPeGVguW2t+ulqD3xf2PAV63/jEurhDvHYGw7Umo65c\nb9/DYv/O8AuEfxjiJqlSww+4pnX5C7ucnTQflj6vibmMzNNCHHEPtWXISb6B4Lba5NFaapEuPo0L\nW1wmUnla9OACchMU+3SLCHeJd23IXwB45cHDRUBB8OHX3CFysVTbdVyK82ggmLtFOAyPlejx4PVH\ny68Z7K+n7xUcAPhoHX4XH8onmHfN0Q/u5/RGq+RDO+4iIXPIYpbQgt3EdzlC9LkAoQ5BrFj2BIZb\n/ABYMj7Ab8rsHfz2eSh5AorzJQnjnCwwjABpHm3Wx5owz/mrCpeK5RMAPtFmaKzwA/0Y38FxU3U6\nGEM52bjRW1Nf1oSshRx0AVfTyqtAEZFWH2EqP74ot7b+W+Xjmxm5hopGMMy4+A8HGAb9vDkvdFo0\n8FtzrEklnXfedwZRfq0iMvLRLwXB/FFZ25AvJnz9CI5xox0a5ZJodA6qzI9W1Hv5VqbmS4KWVigR\nU69PjqfYvqPEft5+9ui2+97Nw7HKow2405Vgo48KFKvmIpeCfKSfJxEshyw8yIt5k7V1YozxaXiy\ncXEtukjM5gM+Xlw/yEt4Y0NmhxXbs+8lI136VE2d4LiO7n1NLn/7cInyeOoYsmfdJK+aKHv5pBMP\n2gtyMIe9b9h4LC3Cr7wgtwAwZJ26xNHXzh8Kv0A4Ajdvzxk4F14c1yKzOiogOLhG5ARNUNwBs5/i\nnA/WZEI0w7JewRGiSPNPdU7vnqO0ZXtLIlutKAHAlj5DbHkHwgF+0Wm6Y8Rq0prspj7CB8WSSuiq\ndDYRgrTBi0KlAjdJ88MU7U7aPr38dvMP/lDGHHhLUNhDgREAOT6kYzociUZqbNmf2kqtbMBlBdZ5\nsepI4HyCeAPUuvCszw8c4nahR2TKrjE57ZJXrnuWwpgnqCsEAbAqhJOOhNAmGJ553wpScL9v2AGv\n8t026urPe5DzrT053X30k2sBckQ9FeFkEICr+TbLKy3iGwj2Ar/NTxgKgCPfykeYN+sAuoGngWBc\nAfI61gtNE4AoiFRepfpXmv54Q3oDuzfZk3z1vW5pSwe3Mi6NHqN5pM90l+MbsJrvdpyuM2Id3J5p\nPs5VoDuP/Rp7E655uhAjrmxTPVyA2GXSCGATsJvwT4Cj7uWefzV/kxafxo5RGwXYbuv9kdL7u0Qh\nFdow2qhZYxPcVppXOVl+FSjrWkp2psAUnoJPKGgRxjh6lQugSyvv6+Uj3GixlurjI7WOnIN/YOl/\nOvwCYQ3fWc0N+CrNMq8mpG3HNdYdELcJC1mKlL/6ktMow+vVZG65AWLr7AmAy4IXrc5H1AMA+6BR\nMfBoulNE0N4XeB45f7f8NmD8USlBaK2L0e4iF9C03DaNH6txIF/m8TjxS5eHzQI88tTHOEHHavuy\nCq9vqNv7rEdKr683C/QLO7AyatgSLrxD9+iDOkR0wNvBMXs6y3wCu8cdIiafdzTbknn+EGQNbAfj\nbZxHQW18nBh3eimIWXbTT5Zvfs/W+eWo4VPeDCfA+xkE72WA5Zaj7uF1bZe0KDO5SZwvmIiWE6C7\nzizXB/T12spSWoVLhId1J9IEus36i05L1wioZTj6Rn/2CxjO/nLafByEkmPUmY2J0ffjNmdvxZvV\nF4eyCqo3nvdz9Kai6XA/EQ9tPgGuTK+Z2TBSlhONcJj7DRC5zKX8e0p9ju3d+KEVGIdu6sKTuLe0\np4Bq407gxpNUB/qg6Uo3gE9kSUsL7umNtZlutHkdkn0r0+e3iyxrI5z9tHmN5PdXbhFx9FOepMX4\nx/f7kn3wvHlw0Aghx9fhj8Nik24Fv3SFSOAbH+6AOzzA8Q6EUety7Cj0J8IvEM7wPebXhFD/3xU4\nSRP8ZhnVV/LaFOmy+PXHteVSbiyZJityAWUBnVS8u0OA2wsARoCPWBVp/TUqBtYreWwghntE8gvQ\nF+Wmi0Qqli+UEu8YdRFP/Zp7mIJgOLZMQ/kJ8/RndfwKfLt/8GeQTGtxWm3ijnntmrE+I2kBfo2f\ntBNAkKBXBHm5QhTQrfF1UCCqi0TRuzxp8+JLl4hWeF8aG5rcQXFFvweMJ8I1KzCMPMgcpQC/NQmf\nwbAfzvkqDPw24gWD1Q96QmNeefq293YXzDBREiUMSnkMrSdp1NrEHSRTdizXiALA+rKcphP8Jiju\nlmHuIAGInj0wrD2As3HUc2JtEPRkNTqnJO4HHigIPv081+pZ7tzOS+swL3hpU7tLO5bxTudcagBW\nGOg7NceyzZ5+1L/Fontslt3zetNPXbu6UoxJf3SBAOVhz2tuFCzLggTBg+YJchVUKk36lU3uEkIw\n7Dk0MHyQm9QNke9a4bimZT97nfRDppGjsjX9Ka+PQ+tT8jUWuxeP0pXTq7bcGvV9lzp7F6/LFeLF\nGy+Nl1UYlUa5Q/CGs31R9g+GXyAcwb7JewcfG0Bm1AK/Z39hTswAyAGOdT+/1PdWE5W/tpa8l9kV\nuQoIbyC4tnQhOIl4A8DBC0EKdHlIACsAeLMMoyZ1AkBfn2z81m4RU/kcjzJgvhobXC+rMBU48wxt\nSyeHpB87vCjX059A8kzjFQs6Xtj7LL9gxu2NNq54YqZs37AEo4AuBdwOivsM2OlC2UDJTu9+xLP8\nIXEBxqc6TsB4zbMQvPI2d4FhKyWS2QWN2UPVRP9uEKzd2Fli497CWp6eQ0vwY7Y+UJqWKfELdIC7\nIvCh59Lr00Ipa7atQyTQ/ZRnmofwD/ZhBZ7p6zEsw+EjPEHwBLfRzQ0Et/wPyCMpX91A6w3CtArf\nzjvR0XnPN+ePiHA2+Ysyeze9ndJL+VZ/AmAfGVKTt1S7wrWM5py68zXNr+WoklqGzgGue6D6JX40\nKQLk3NINcr5XZpl/Ko8317trhF4IUvEXQZ7eboNIv/kkSYOzL3rB0gnVFAG14tqB6IWC4T7edUk1\nKHAckmVAvSyXIFjBb/nrr5fmgmsBfN0t/YGnhXhagRfwRfSBtMmDPxN+gXCG76nGfKnnBn45YeWl\nuAK+5R5Rk3pOUgxA7K1MA+yiUHIJZyFmrjgfOSdIMypgBcCWjbBYESYCpVt+Vz18UQ4+QXN1KK+Z\ndfRt1HZA/MXLcymzduHVQHAALDNNBwgm+EyL8DeArj1fgmMgeJKOoL5eGHzkQ8+vL0D8rJcJ2RaP\nPtE3ODiNafUlZOKHNU6uEp8g32egewG4t3hopBtGVu12A8ZrqsSc3MAwQliXUkubl8jzk078akV/\nXbZyeveFJkBvz9vPfTwAcDtHjrSyIFS3A7s7hMalqVx7kbZcex0wq5U4QTGXBH88fwPB5Qecu0Rg\nHTWPcoxsSLE15pFnvu9l9RwlphgqZd6PB9nxyhGH/En7ThlV2C0+2t/aLlbB0fy946RNBqgeaE40\nWx3Mc6H4iB3L2Cy9s/lO+945nOgznWWYYXsacOSHodIK7CIUxpGgkXptlPGWPq16iHydoZeuoZE2\ntHHhwpwdQy6AfushSBVLJ7DEJ9eHnrdbiRkv0EuZI5rGKXEpM/rZFiotXwg3Dyv7DoLf4UfsLy4g\n+cDi/3D4BcIR/tEHNdDmp9AL/NISTIG1dNXuI6zLMeW7reut/A6IWY6KZK0eK+WCKNAWY1RMEEyB\nkOlan/XSHdISDHjRHah9guPlOKNbBF+gW0fe5dn79SeUT8pn+5BGdnr1Kx/pktNW4PfJDin41eNn\na/DZP/jkJ1xAuAu34OHLfdRe+mQsXNzas8bEKbhz3HewexfKH8IBzOZc+Q7ozbTd80NxfwTGUU4B\nYOmvuvnKLZK4WgoLx/kJF5F81j5JfB5PofKaxm0xEwIlgJbK6daUo/Irxs2rTwlSsw2hgJyKCX0N\nNEBcjbct7o3egC9m3Av8+m4FLjeIYQm2dWM5gXH3be888zH4HLmzVdhrctQwF0elzw7lTfBH3SLe\nsART6WLchDf+XmhbWtvhrU1bG2tItrJbvDHBNRVFDyAqM2v2u5wRS3MAol4u86TuLslONR/yDR/z\nMy0LsnVH5wJZNV0iwJtmlEwYMkLnTG895cqpoLxQx8Zgj5Kgsqat+BRsJGRH6owUbNonpWnjqRuA\n/oW4u+sDUNO0WYw9VUxxhUvMxOziehXrVmDmyD7CcAG+Xr7CSifgLStwAeB1/KFe+zeEXyD806BC\nbgDd/I2BLL1V/sEdCNcdnIqwVGwNfJwEn+e6yTtd97TwWktHGfpMccp7AcpVVhouLhAAChg7ytfR\nD+4RpA+F8zFORTMUTrOKCRrJBzUGAcAVRyjoAsYsABb8whJ8shZ/sAibx/PvuFXOI+BpEX5xAuau\nNK/RvP6Mc8e+PDYQqNPzFv8q71bwVM53yD6FsHn5v+1KrfjRreL9klNtTX3YmnTt0jmnAWE70KRP\njW3DKhw7DuE9AWCxFtajSKTC0LgC4tSxh/gEvuoj3AAyDLXlX5doz0gvmlqChWZlEe6MUMF5YpSA\nq43ZO6JpUlD6VMo0hW6CYadcutxsX1+gQ68vfYNTHqKHoCdZ8y9le37NYBO6o+ft9dksDNgAuY7G\nRd9izP9sFdb4sXt+77bLHHDN3MBvAN1Zp84b99jlYAkMdaX6+phiRaaYPHECXZ5EJvAEmcIqicp7\nY8xxlzpY5wTE2TmXqFzBcATAGq9rn8qMMfPieXvVOuRMsYVjRZcIBBiuGZlWXl9+wZjW31h/Pc11\n6XnjlfLtD4dfIBzhuxZhqgK6OrQ33eSoLhEKfjW9rBJY22OB+qtAcaYpgw1S7qAMJgI45HUQXEpw\nWapW2XSLIDBRYBzHsj7d3CMW6DN/s68T+J6VzcFqjHk01HK3lEsiT1Mxv7RUBcB8FQw/61ig9ruW\n4M+uEcV2TgYC37AIm8ElvqZRtMm84uhgVqT15fgp+AY8WrjklTL4/9l7ty3LdRRYNHCu///inWY/\niIAAyc5ZvbtrnTNGqmqmdb8iCGMsP5QbTawsPdMGeoXhVuR6JEcbaWrH8+isMdwymaj4+W7JnJnT\nbJ1m7hRnx2tpgHXUljRpLe+ai7UXbNSlfsoBtUNd8bWHtq8wCUNQkMuy02Z4mk00E4iIo82w+X5S\nBP39pTmkiUTyKkPSr2qHm/1v+k38J2Goj2grC+coeZXMFePUNOJoH/wYZp3jZhy8cT/IbR/9P6af\n8+v7G1tWBUVb/Mo92T5BTa9vAGA7p2lZbTX9up4Pwzv6SbY20mTj+Sik9OIqq8kHoO4nPnniEHVV\nAOx6Ez8m19TmF3yiIbs9H3GQYQGU+SW0ZNBWE5Ozbhy8rsMBABsaSD6aRXjEE3cA4yauP2fUGdlm\n616FzVb31rGhi2FcNrTDcWqEmkGsbbTy0J8f3/r0ha3/ovsFwv+Jm7v/AHoxf2kjXLw5w8FwzqYQ\nov0i9xBCqXysbWzuABUm4QLBHRCvzVx5l8LYUiAkMKZpBDeyR9sOIMwheKxKzdGu/f3RNngIp/ZJ\nU0FXOmKj3W9MO/HubRZ2vlZA8zKcTSPetMNPL9N1ILym6V6ANx8l3bFKcYMQ/VikQfooZlyLXnFN\n09tuoHreHfLJZGmKCiMbuZ/Q4BZtr+kq9Wb9OWMb+O12e2UG8dwlH3F+8J/ipv88xrjaD2EBc5Wn\nar68tMG5z1rf6glKylAMEJZMo/aXAkONm+YSBMUNBIPaYIYPHMz1xIjDV+biBnPdW+oExMw2OhPA\npndJor3s8cinBbVexRON7CLj5hwF+D2dHoEH/0/h9GN3PgIzD9fnkL/zepmAp7pQZm29WH9qQv7A\nrdjSvLVcOX8Cuv4Qbw/xc1hrm/c0nQulH23LhD/mJgk5NUwlNvth00af+CU5j1XdKUtxcLWTs2ar\nm+RmxiKAmPlqcGSIE3qW/7DN2/VP0tQV/3Px1xTO2Vo9KprhF+W4PxLw3rvJBH9TO1xg+I0T/2/c\nLxAO97FGmOYQx5fl1D/4MfhTDXG0jQA3vsiQgHiSXNahe2N2L/eabHwsAqXmN8dL0wgXMwoRNiu7\nF/U7tcYihHIT0y5Y03lSApp98EkgnTTFu21wxB0wnqGYjwMCiNf1Cu2vX1dqhe2ydWrEhxrfNzBM\nO2GeEMt1Wq9GLfjgXBK74ZeFOUAwPwHobpZH55zNHdqKc/SZtjM6YcA6YU/hnwDwaascBHT+fdha\nqTF1bGYRQJc/TDMJ+CigzBu9qleQ2wdxztmAbgtLrI18tue/YwzrpbJ1nJACTtfw1ERiaoMFHTgE\n6ApIyDi5cn5d2jEDAfAldTWziNQMUwscn1e20gRTQ5yaYLM6Mzn4kt4sAEhaB9RO2LMM50RiJcy1\nj8erG9PVq5dmGHfyk+3jPk/+w3psdH8MV6RJ0Fuep3psz+BFVzUD5zJNoxtr0tv3Vqzl95aadcwR\nae90uL3ew9CyjVO9L2nOflsfbm6gIJo2Ry0TBUaPY3cjzbH2RclUyS5+VhUSNPd9U+ATvHOCRFvs\nWUkxPr4sDcpsR47BJY9LX4Ge56gVlvg2HCHlyTd3E33WcCO5g18Cass8AnbjctsAMG7HdZU2eGqJ\n/7b7BcL/gcsnGCKE0pEJzBfnUOYU/WU5BTAExEFupgC4b1by9tUhidQXCjKeOzmEUOSjJij5iSMF\notbHKimRGjhWTY0CYKpBuVleAO+rluYUn2O2bdPCkNpgBOC9xRb4DlDsAYqfgfCu8f0RCF9XrIGj\nFWIAACAASURBVFVNVzHvOz5tt9bfVDMtHV9rzgFM+hDhlbRxBsZMm+5V66tSeqadwppgP2Rpwnvv\nA58+5AtyosFpH9VgYe917BZtu8zCCD/2dR/dutpL2KrlAsGaL9LCBtFkDPPX5IBLvtwGui+YT9BC\n3LBO8KvLW5rgc74ykTAxgai0BMFA2glPG+E7unSlP9YnJ96DHk2GoABAV53qAqEF1zlBPlpdfEaE\nKgGwvCz3RwD44C+N/RDac/tsyb7FzXJZWoTM3Dk+2z2USZ95i04eIhXXo3PpUt6MS5wEMtW4//ah\njO4cX6Krern3Z1rtVu0zyONSDimgLB7iGjfhXoLmiltUxrRRt3Szysg16DnpmjScL82JxlO0067t\nBX9v/bKgbQLgiP8ZAKNd1d80vboujpQq2QPpjkm7HMZtvt59Wd9WxmUOt10DDN+1wPP3C4T/Tffp\n3B80wAlcTnbBI+4OZnPDwGNLbit7VwKYG8HMsbSDJGJv+VLu9ZdTczgHi58EvvSHgBOwnCBDXipo\nNsPCMa12RwrgLU/kewLBx5dU8ByftUr/i6EjtcCr4QV8Cwwb/Fo2un7Z+vJd0wDb4UMan5tHEJs0\nAeBYaIAM1ELINLtglA2lCAK9GVJGXUC3VrprSIXBEkQM5FdajIOgbXHs04TWo8JHZ3vWk+DniOyQ\nbngExLMnKtYYtlOao80szPZxp2z22gOyq07X8tvWN5OftpVglD/vz46aFhLcN8zL/skAJyFFnGlb\n7tLexs22n5pDNLMIrD1HzTD347LR57jJX4T9bH5vT3VINuknf2KPcg8ptysB3kAygn4dqDOaURp2\nFhI/bbQbqG75utAu3idLMOL2xKc4oUuYNDMKtieZmiZ7xTXVOxiNDJ1cXNJq/k/dbvXbiH8YjW/x\nI821L4cyuYn3MiEAqnKKtBP/CZmV9dA72ehkCrboP/knadYMCoJ99CMBcRCKi39hB4BaJ9c2XbZz\ndNKDwF2A9FkDXEo2+lOGGHex8MU292hgmUqxRpkeN7NhH0w74ZOcV3MJN7nGDezdsMDfdb9A+A+d\nh1Di9Za7Hce4ajrzA7XoKJ7qAL6CXDtD8VL8GISoNc9yKoQH7tp+vXSy29yotW0YoOQgZ6FXd0pK\nnMqTQdkUKBthg7c0hlNbowOE8qXJtdblCpvbpfGlmYEB1wK+Pq4giKWt8NdX/2Tyq1Z4tyFOIOy+\n2nHpgwD0eiFuXxUZudz9k9n19ff8+cgTcUa2N/iLyZICZZrAZEPdA21zXwLzlA70269zvgJFa86E\nzsuzX1H9PkrUIIsx1BT42o81B1P3IVU60l65DejBP280qnFplQBXtIqqXylq6P/yBU8XOkLHgnnv\nJ1vjKW29H1CCruyYaxBJntkxgfZW11Y2wnljPq5aNA5YDH/xPdoQ3yb0YHeZO32vl0xXu3f2yfix\nmliQajKeUIV/fQr+jrHHh204D8rvwp+aaNlEmaXt2/+FAD8RlcQ3gp75FfgwSrWImk/jrJU6bbPK\n05vU8gAGAJ1Pr1DEsLUj49sLHMsrTWZ7SQRSTh7lVDuW/SWIXVtXwG08rbModw73fIg6iGybdtpQ\n2m5bo1ZtcdMcQ8Evsh6XvBmXV0u+d9IYAyWX+NQqTfVQ455zn1FyE3FlnhSAqw+O0vYS+JrDfX18\nw/2G3wa3O19oF2Oqv+Z+gXC4T29CXNc5rgVuxQ+U9tfPcfAd/LJORJyCoiZ4NV74wPqtjLYVevCr\nZrXFoyRle+yELuDzomAqzhZuE1cA4AkYJxiWDZWaMaZP5rf9rK7rGW5pggP8EgzjQ4Dbrnbh+ro2\nwFxA2OFxfvJ9ceyW/co7cYZlODlV6E5BMGliAuMNBAMJpAtoeb0zcl7GHQSLJoD5lYoAg+LoCexW\nvndwHIinE/zTFUWWJ+zRqJzkKjZ6JRKgg6zKWIF59ftpG/2h0y20xkENrAsYQwFY8GmjhdbVcJGW\nmDfrEtJnvPe6No0XULggC6kwlAxMsvJndOtIVVOAuBrR8lfQf5pRWPG9LO8OfIc2PvfOXc3ZCmuX\nCLkqHADYwm8ChnkWupZQbR0ny0nHASIm8Z20sye58mncI5HZHnx4x4WzwJviFUdO75XH2q7o5Vp9\ne9szrurb+7HLL5My5/Gd6mv5ihAkyfZyRwA8+/UB6D1oftcS7GCYI8jzjmNDllZbtfZe8sCHHxhA\nN/i9xKm2uMmEYOjTHBPg3tG5kn2aE7TPfZlLxggJdlP+rd9FYES7qxMotnu9Jy9z+7fdLxAOd+RD\np3zEbyhQqyBXP2CUYYywyweOAHxZCUcHyjaL4GLw1xQUw6kQZDH9XacyUrFu3JKXspmdvEQ3NaqT\ngoaWDIlzcxMEywTCJZ7op+JW1QqKJU82qvCqIwDa4KZmWIBvaoS/rtIIX/woxk9Hph1MI+SLc+sJ\nwAW/eGZimWUgNMSmAPgoHFAMA2RcNXq0uBJm9fORp1bX+zLlVOaDNEsevC3rqbyK1KIUJOUUmTyD\n40UW3q6QK07Xlx1rkm3JHy+gkJ3vvU0XA/EWDkAsGpCZ/9mtERII8gVQAmDdRrXn+Asb9zDJMEfa\nvKu4UADMFi1vGEc6/ToUGYNhDNEkrmEKAcnBE0wLR3wDzRGXNsOSPwFwCMOkxRDwBL8FhGOGmlaY\nTa04Nps8KfmR+DOfdjTCQifFaXY6zjlsbhJR+D4VNLp/tM5Dvrz4jPccwgS/y28tpgG3kaenswmV\nHtFQ42XSN/EU7xnhyHPSQp7q2fphleb0a5kTz9U+8ObSHkAuwzGfDfQKOCbhpyI4+6R8qPOl+bEQ\nfUKXL5M6Qpu6AqnxpZZY+b6A33zuZOQ/Pa7mI/as0HzjKrkpK7rtDpXvKcpdfkv7eyUovtc7q9zz\n9wLFv0D4X3Tnlw8O+dDWOrXAet3iD78U9sFneHf3BZH53Bdem4HtT1px9De8IX5DsXyD40qiVvC7\n0mbFHgI7/6jkZsMsO6fQgbCGHlpglHZ3aIdL+4sWD1SaTgD3ZgljNYcA7CowDALirytBMb5oFvHz\ni3A/5rML5h43O75AtzvgV7woQBBMhioMFyqsitcctbwZJzSBAzPM5SmBmOsX89ZA7+b0hqhfcfRb\n+idgKH89Hs0XjjiKlL4dDDcbzu3qLWxA3rCxjtTeUCtis+3T0L1Anm6L2DdNLX50OiO9Xn3p7bRf\nl19OlRAt8O3xiXCZ6yrjAnCtgd3d7zlfBaJrTLx3y0Yongbi7uW0cEQLUC6GZAJ8aco0/Ch/rsU3\nzR/YOQLhAB7ZQNcOJ48KfrRMI4D8MuatoLgNOteR4KHMIepx889uUoHL31MVdojWvfVQb+PRSFr/\nEfwa9rjWx2nSoLQvfVUaAISAZlvP5bKdDSRbu/R2Dn06+F37Z4f+ZL4H0EtenTTHfiqNF0BuT/wI\nQJOP7OGaCxQ2yODarE4sEDJGTSQSJCswNjSFCul4moToEY9p29xuMA5OeCFt7UtkhzZYgXAAXXeE\nBjj2FLXCQM7x33a/QDjcJ+xsZXSo6r/5I3y749vX9YZeUeEQ7l8hx0srXBvAXf1QHvc4BoJhlTvr\nUC9LjbC3MqviYvcvlZv3MKQhASQqgJKlKtgdYJhxFWYD/YWhbMMYlsas/+yiYLUFhlMbXCB40wg3\nzfCLeYQ9mFEYAW99Qee2C2Zemjwroe19tmRa+yNK955SAJezpJB45hH29478NmB8Dlev6VOxqdCA\nolvDjlk+Ws9l94qoIdUc6MBbOxWd/XV0wWMmANhGbgm2aQkQJvtPREYv8LqBRp2cK+83G7l3k7wt\nPl9KMBxCLIB4kr+X1pnKJUu/5xYtzbBlW1xkxay5eioMM10Fv4zZRHYSBCQotkofcZVmAxDbslpw\nB75XQ9QAbzhoOI4Xci1zmjtU0gF+xT6ja4ZJQELhpeZTzLK71zirCJ9ZH0fTqtjBwj4hNXzdeStD\n8gbreapcN4vQsuc2tY9CmAm49vyzTj+W6eV81tPakno1n3F8FdW+WDfKdPA7zR64705A+ZC30Q0O\n4VgZAn/maWGAJhS8gXbaBQd/WvjDUutMsDvBr4Z17p5uCh7Xe7DO2lsDD8UJEpTz/WW5G27AxYOl\nYn2v47Pr/637BcJ0ryChZ2vaYH/Q/s6wLxD8LeHcCLzDAxZBiNBtwvUHQWuHq37kt66hFc4q+eh3\n9UUFcx/8iKG0eZg7xc0dBLvscAG5/DnOtsROFq5/vfgd8YFqXKkJNkuNMEGwXxfs6wRuBeQe48cL\ndhJXfb0SDOO2BMRdW2DZ5ynskuFFzJihipO7/ZlHNcclQGNtQ2tQYRzCwsqV6TX6OGl+d3CMVubw\n7MFLCHcNsNBX0pOIUK9suwttcIDE/vlVLaMj8s7k8+pILfAxvdfVd4rMTNwsUzYQoqh9cIjZdQ1U\nu26q1jm9qRVOWeY556yjA+Cyy+UpL6odngDlhEfYr11G7iYRJeMlTUHvVXGL/hfg1ack+RTHSA/d\nJKIeA1nr504r5TcSyn3F23kDEIumfTVsxcQGIE4wcaK7U/SRPnXPPzH3GVd8+6c8WjOpRPcrrMBu\n5XEpaT1/m2iZpw1AdXpq/TLtCw7hzgcPBPcQPqSF/wh6te1RpmmAbbcNZh3TJKLy6pM+GU+7M6d3\nxWmflK4qOxUZHiYRpQVe2T1NH3KdM7z4nscTsQLL+5y/zmf2pPrNTUc+68CSeVgMbr4od4W9cD85\nYtkIXzn+v+9+gXC4d21Zz+d4sA9+uH6jwO+3xJOWvpTouVcO2uAIaW9a33hSBO+nTOIJfktO1Gsf\nq3rGSNU2vWOSDnPWthSRd2zsI7AdceulHvZq/UrkaZz3p9Mpw0JYhyBdTOnKj2csLXBoiF81wrvZ\ng74UV3m7CcX6ml78GgBeYKx+CpmsTxwZngQXrU1grI+8UHGelUieEnOi1Kq50wiV95xSL1GteHAl\nW8OP2vfK96w5liFXDvpzEnxkRrd1Ztvkz7mPpBM5zpnw5EJgjOX52G2g25LGuR4cB4cl8AIAT1ZY\ngsyiP5fJq11RiGO3FEzAGQAXU5HtEgK+GreWaDmcGppolHkZgILggY+LFQDjKiCBSwBw+kMbnMQa\n5b5NGyrnI75tniCGywC/lgqKAPhCmEYYP0GJIqKosxnGW4KKvlLe29Wu7VGHhGl+0Cb0IfxJngPY\ntR7uvKaHhWsc2iDNfJDW/D3/J5rgM6Dey/wJ6G16HdEKl7b3DHjL/KED5JOGGMmPR5t5419jKb6t\n+YpnLvZRZg9l8wvkMWRcLwW++Y9rqzc8NX8b/Y21le6hRwZ/WR0KTTWaeUQHxXFCxM01u2I8Cxj/\nnhrxLzrfyeAhX2K47Urwq1pfguATGIZLuyRq4fsFgL21D2had8UHvI4nQoHkW/wTaBEMd8VZn5dT\ns6/sORQt1iZLTSF6nIaXsJ697A94lpyq++4SvigwHCCYL8rhKjD8qhEeIPdoJ2zWAHIC4dvje7q+\n+nArCA4BSzS8jTDmmQwPdYWGfZY951GNsGK/vJnwWtcK7y/XsahlahejUjXqhQukT1lvsyd26XN2\nVMbXBqr0WOCjty3zZw6LR4Y8Ks3isWLd/Mn8RJkOgIPJW7RvtUc+cTlSTmTQOrX+1vKFX+5WCIav\nEJB3xK0yri1EfUVXdc63STqi86WJTsyrPW54g3ESKVpgAghWok9lEGAXBA2Xxlna8a8r+hOcCYQP\nM9uc+04i5CsZpj8A8WXwOztek7E6TKbSzCJ2p5xy5PFj7N7117H9EdcddcYuJeBqu7bCmn+C572N\nw1WAk9qc1rr1PAt8nfJFfBHfihtl8VCWabumt/K6FJ9ttaeKGg762F6mG4C57Qupuyko8oZU+1V8\nNeMz6IkXUtNL/EAzCfLQAMVcx9IgKwg+3Xihz9NwyiPJuEkfKasa+LVmJnHFl+bcr3aG8HWXffCq\n+kPG+l90v0A43OcaYbmzQdn71k/NILyAb1wTGMem+Aqicve0E/4KvqQarU2RNV0Q0bSuqfeiV3vU\nChMoWQurYFVYcZyJj6ITNKnG96AVbucGQ1+Mg5R10UxuDUEft0IFsYDftA2On8XLcj/aANsLGBYT\nigTCcfUrNrqAYTLTZn95nMYJgkum10wRQJ61xeSoyVSpGcQEuQdQnFcxl4mlrAetNYQ/Acdd/Or+\nGwD/BIJd6j35Hfl4vmmGM4ONgqj9xg7mHlwAmiS8YbGn/XhwHX6c55BunaxQHeK+XSBYBGaMseGD\n7Jc843EvLS/kpS+TF/YGBmSFimOAku/plwE2EG4QHLmAbntSc3UQvJkw0c+J/9aODNCk8yFgAh40\npISm4De0wLw59ex0bYSTbPD8MyPR1mYW9s1zSPtjEPwc1k+1r2tRm7eYTo17fq13Lr7V2ke8H9JX\nDhOwZdLVaE+J7yMt8JO/l9d6j1phE/6VsmPFKcBd7OOgEU6gLOWblPLqQ7ExAbpIWtniw8OX4da7\nQ+WHKwCmLKg4qGbYKl2qbu4k2WfuTtbBW6gJhoBfR/9wxp3wHPmCHG/1k2d/yFD/i+4XCP+hU6Ul\nj0Jz6GkRXrbAwALDWKD4G/US3bcwZ8cEv97BL87ECQhveHF8F6QAkoDfJiBzlFs4Y7IjihokpkVT\nkqwxtZfhVAvMAiegDBQoHiy79dT0Z/HpZKTWqYPhMo2wV23v/jLcCTBvQDg+NbmOillC/boLmNM0\nAkBphwUkcupqjWoVuIYAGVrFM0XBMn8GJ1kVo328+/NaUCljwUStcjRw+yfguMqIQNbuTHV3kx7l\n6X0petC9Qy2part3+t01w71CFOKc20Pzi9ORG+dSaJv3fs2WfivffRdCwzMzO2DWx0UAnzPtMlNi\nP8xFLiCjgJbgIBOqDYIbywwdhJjhrBnm/oynMhFXT2+uBMSLeXXgr3slex1zmffTbRMIz7mWqsDj\nKOH8AnyaCTvqVABDInn6gxvVnvVGnmNJ2tqdQYSkPm3HVs0kvOew7pDisj1MWKL5d22w7Jh5V8T1\nRwFBpZNWhmCx1VP+bE/HmnXjsVwvw3YqSV+U89me1h/ZOtB9MYc45YGA6Kb1lXWp6Pyz9SvLyThc\ntcEiCzYATNCrmmLVBgP1rLXL0vT7U1rjkplm0f4FR5lIrPZ5lrCHNnhpjG/4vV7jdwCXXevlOVAm\nnnm7TMd/1f0C4XAfa4TR+eonR6Z9y49mEt9k3AZ8sXETAZ6cx9Pf5BzdK0XsBVj1/nPZHFV+Ebky\nnwlQJomWmKJgNfg67/5JCxyTmaYR0SOD92PUoi4vabeEv/Jm+Z2EL+TYNF6fAe5uA9zTOlA2W/aH\nHsemXZfDrxt2XzB+GQsCCjb1Yk0rH4Wl8ETX/CooFkVpS8PIy1yl1RWcZ961wUFvWXJf5g3cFtNS\nhr4DZz+UT0HtPaxzMNvXcLNhZrtpCqHzSWDn257f2Pt8OQ7ql/TNHSaL8V5JDbK0JyLLpQlTFLu1\nDt2SOoDom2qClXnk7Lv08SdsMbFL7C2baRRgtgo3++D4lfb3SjBMkyWNX8D4SiBcYGgCve6fes5F\nB3WMIeJicOBWTZ+1/voGgPdp89H4tuJbvPb9THzzNcuB8F7S9rwKempXzLQe1vzewqd2BuMVgrCI\nSy2oRdyBwN7AcdWhZSyD6vcWP+vp+d+0wifTB9JzM4eQPDjE1YvRMU4hmJxb7dNJtNLvKI0vmYit\nQo8AeMYPf44/eaNQic6nd3pNeqpidRPuaAC4jlRzXDdl0TL0umgm4XxZTvjHX3a/QDjcxpie8hVu\na9f9hIgyhdAX5BQUN9mc8knQCEqOsZfTTZLxQyKrpzCluYJL/GpTBU4I04yXSllAGdRPdxI5WQPw\nqhY4J6HnSR1M5HnCHounWAFf8audsIJgu76a+YOC2mkasacVUCYwXkLd823Yy651J2wFhpeIqNsE\nWIEd/lFxTrA7BX974pt5pna46jB0QZ41GQYIHqA4r33ui5UitR8qQi3zmfhd8sniuQpeNOY7SWuC\n3lNf2ZbBsjzH1jovuduAMi7WB6phHQ1p3/aoMVpu/PjpXKn0OxRtT3a29imIZLZNZkXtrNKmvtJK\nHlvHKgJkgCGkRNMnxbNw24/td21Xe4j3q6+qy7UtRU7rWke1wUZ+3TGutwF2raW9gqrv/ghcNcAc\nY5pN6Goe2J5rBo1rnmeb4rYvHt1Ms83fAe3J9OFPNMV9zmvNRctLrkYQZUIDQAJJlk/KVzmiRNQ0\nuzbynPLrFLBNGY9xHJIu5ajR3l5+GzdLUyOMGZd5pb1ox8XT+F1Lj3gJ1AkTK6G0wgJyDRJ/AMD5\nQh0yjZW7yHhVrFA+uA/6GLLH2gty7EecIHEML43wFaDY5foLhP9F96lGGBBCcw+Ay7OCH06PcAHA\nqKuja4OTuJLD+1nwHoTwzgbp9/bxUIeCYRUsZOBezCUlDHe09DWEbmtU5zDCGS0Cqnbaz6B4sx32\n0oXOp3T5Ik/8bGiCTUwjECdC4CtOhzgBXTkerdkJN3vhnu4EwtQMX7eYQ6h2DHWVFaOsTo2ty9qg\ng90Cij28aYIJMg2p5U14kctYa9uB5a5B5o1RM4sYmtyu+VX9A2P6qDt4aJy4u3c1bjs7uMOAoHUd\nx1MjwuQTob4dHXHYj9liTRq4kqZjGENt1WhHTfpOgXkspIPgJlQwKfGtrRMYtmy62f5Km7UHhZZz\nD0qm1Jpdh/14LdswPq2ZcfMmidcQruYAviiQUQCY1wTCDver6BoGv9epLg0Atx/nXqlVQNQGINHp\nR6OfSHfYRFa96p44/HMa63nW/p7shHvebWyzLVn/An8EjkgzE9JTmp1kVRshlbjZ4t7KzfjeRz/k\nedIKs59qKwxTM4gnc4iKg44TnR7IDlrczhIOeZSvU/OLAr8TGKMA8E3NrKRThk9TjTqtSqXAyAPN\nQzbpIcbDHCJflkNohyEAuORTB8O01/+77hcIh/sUCLt3gMuFTkCMenHu29U2eIHf/+MuGuGSyg7A\nzfEFbAJu1/5U8iY40SPJsg2W301y+VEkTEGzNgR1AERG4odUtnVht09soFcBb4uTXjhf6JF0YdfM\n15RS8dNHsdaArwjg8bLc/Fxy1/oujdUOgodWuAHhBYLdLtzXBbvufFmoH6H2vOmbhneA2zIheA6r\nkDPJ0xbLX0CxxJnWg84eiwzeNb9qD3wgHa78AUg8IYvRH9/jex/2Sp76UW14CUN2JY7Cyyo/5Ntt\n+wTt5xZ57Fhom6Ifx6332Ifae22mbIRZ0xFvmKQVMKx8qkEuwJM3pfPpzEUwrIC3wiZPazLdeev2\n3TmAk5JiJA74V9CqI+0Wl4qKZ3wz9zKXyOMVzQf4WaCGwO3AebJdqF/2WFvWAwn7lumJFu3Bv6d5\ni/fRv777+lh+SpN5bpJHGK+EFRTPD1HsoLcRXDMXOObNIZ/KI9vqUxT9V9A3tMIVJ2YO8pTgdDrE\nfLHuGAdpc9BB+u0c37XCJ+BLnr+wR4ZN8vgBHKekKM7eTq1C3Bzm3tNr71vWElrhAr1ep4neXqZe\n1zKJsPjkcr4sh7rZ+NvuFwj/oQtM1p+0Sdw8Nq1MIuQUCdTLcrkJp3ZVd0yEU2gepOeJPRrqo6Fx\nr3UEw51B6kiD8J0CziHGo0ih6mRwZ8Bi6KB3e2mO6ai4smXkqyneuEKzGDSk4FUBbHEOKU+OoAbK\nQvNk+rP9pbiuJX43n6Df7wLACwTf64U5qy/LtRfkkmcvJtrXZIJgkeUjPNOV6eoac87U/CEWINZR\nVn6s56mcCd3sml/g3SyiP95G88v+mHlc6wi/9z3Q+ydjcKn/B1fiXyO22Be3tR40zJu8CVVmmwYe\n9cZBLvtV7Apqr9I+Xpobqwr4/sLLEZsMnNGxDjVl7KeUt8qj+w8mdsFmYp4kpkpfHSDbdQl/6sIX\nspbuWCA4hL99BU9NIIxk0u4L+OLi+RuWcU0zrJMgGm/df3rlBFR4zvJOdScq7Hz4jdZ6vtrLJnFK\n7QpknjXFJ5viU186wIVof/nEh5y7a4Tr6QIBLG1pT0Qo8U37+xIXRXNc23TayMO+Vz1HjbBofylr\nNJ9qwesc4cHDopkWR1mKA01pH48aYQJQBb44gN+1rgWaY264zsEe6kt12hevvIx3SNhT/nObXaoN\nvrGUQ9yKN+C4ceGK+9N7vUyOAMVPbw//D90vEA63acse83UMRxD8k0lE2gzLzx1LA4w4NSIbievg\ngd9BrMKi84dRxA7+uhtEA8TVZP0tTTCZEv16xTMANgS4ZT1rotrLb7GjNC4/qMH8uvNAdq/s2ftY\nU0grAFaBfMG+QvP0iUZYP66xxcnJEhJHbfB9rVMj7qYJZv+ys52Bcz1qmDnipuV1rmdnSMwHrrfE\npxiUhTd4v7c5xCW7bHGdbpSWmlmETXCsZhEDKBzISNMenff26QI7ZgUtT5uGUVIyuVlh3wmCRzDr\nbXELzGqd+hJi8vxtfAJe8yzkEjpNkI6O8EmK6ypRuxNqaZM2aq0KIJQtJ/f4yJPlpWnLAiAgYrie\n0lztRpTmEKkJVj+BMYW7gIU1xBK8BL7+JbzlK0ypeJShX7A439txLf5k17q5uwztBbk12AacXMbm\n2Ciqa+9kYuZTFqXBE1k/k/qJ01d/GsjLuvoaf6L9LU6r8kDa3fhVSSIL4NbsZ7nnqV3fQKzMcwOq\nf5ivDd+26Ur6MY53lc3xixA5gtyog7TcXprTOFQZur5fR5zNOOvpFIeGAXjPWt5T3J0+tHgAAoKR\nVlM8vWq1udNF62/I7GUSwbpEGwzREt/5kGd9WAMBgM0WMMZSHP1t9wuEw73J2ZaPxOdBXL5MIhyH\nUyMk7slGWP6Um3dEHUk8ugYI5Xe3sG4GESoHf9vGYVBvBzB86sfmmuq8ru2luFT31JbTNMs0PkTx\n5MuFKW34TbS/BnxZ1wQfNMIb4B1gdwfMlnm/LmqCV56bdsR2AMM6WRszpL+DWczwAfSu3JALjAAA\nIABJREFU6B0kA4mHGrjNOab3EGfB3FqydN/Nyi/snNqOXfxW/BwzI973pG/kl33dyvsGivdGH+K0\nQgp0xjVCt1m4pVneONaa5ENJ36Ds6rPF48oAw4DV1sNhDfKvxlDqE9RXKddVsF4XMPGH5BHmUuD5\nYC6heazMlNoNqgBfvTnF9ZVhfSISQ0kWsswhFj9O4PtFNuFLBdU+cmMAos5rPaxdNxnFSDqQ6aCr\naWuVZA7k0+OVm/oxf61L+fGBP/fslkfBC0Z4341PaZz7ztdrgWkGYVkmFz7nsoFIMm3gHeTqmGb+\nrdz04xjPuWqmLcJ7SQPzpbiPNcJRJhUvqLoXPRzihr+45+hf8v393wK6JzAcYndLU3kv4NYBnjqB\nzOPirz7yBo+0USYRZZZfD2NC63tdoiVGflp5+QMY/wLhf899qBBOAuCVdjm0D3Z31FnC/qgV/j/J\nXXxvYLqXRwWBqTa5bOPn2083Q9cwZb/ewK+ijtNV+rH2i2h+gTg+rYcJPDIt2Wptv8QkUXmOMf5Y\nMCgbgpc2vs0sghphtQM+guBuB3wCyWkaEdrjKz4KcJmdAXEKg77pleHFtNV0uqyfMKET6GU8c9WH\nJUTM2srTQFXYob3HeYKjzJPaao7orPktYakit7tHaj8kDHLDGCIs5yQqcC3nvXBjAkLn9DD8H/Hp\n3tMCwSeQocXWLOeX8AJwxhNM9jRbAMcFqzFKirausYUZDoA2wi2+d7F7ZFPqC6IdEMvNaQPBX2nD\nv+K+chR1n+yp/fXgFQS//hUDukQbLB+5Wfm91FJmcLsA2n3bBMH1+F/BSeOZk4x+im/8dt8DO5kf\n0V3VY+c8n4LcHs/yM+2B8BvYXHnyfF0IeAQqft5gbMD3JU3HuoHiSuKaleQY8yRFaJPMPCeNL3Q8\nB7CsWuTmx6CBtmd/AsXjyU9sgk0r3H5lJnHfOyh2CDCOO0kqUThfKVuM8meA4imHPJ5S2dpqTL/c\nUwNccWEXzLP1ed5+zO2vjfD/T1xTaMbvdHRa2QqPF+bcUytcj7rF/QR6x+9bE1/ynX5JzCJo2osK\nyQC9eUutaB1Yjb5ywgw2XpSjhFjX+RJdi+ekQ8KgRjjlbV3JjxsAPvy+BAg/gNoJhjc74Ydyl2qD\n04Y4tMYhGLTPGBs/GZOXeFItcALcyZDEX/GiTWsa3U5nNIeAV7oBElficJ4xrBCvwPFuLlEUFTls\nlHkm/Vens9dAne4vpdOH+KOfdG7Y7XKb85bhmC/2S26jMeDW98jFv8vE5KBBT7Cl0HbWVqvQc1rr\nhwLaYgN2js8nGxGRmCQzr2zyouoEwNNWH9cCwfbPV4FiNY1Q3ovOhwFP+2C/vGmJS03lCSRW2GDO\nr0EubVWqmQdTcZjwxprnRjI6+36I29as1gBbvncw4I3Qjpx3gKkd9Kr/JzOJ3haZ7P7rH5noYHjV\nEd8+/QkM57Xo6TFN5mAcwHFM84jqc8j8sc4PwLbOBn4AvkOT3NdA16Wvs29pcx2RphFwX8dzPv4D\nbljY5ZZybi9T+wiQfWUj3OhC5I3sQ4NzG5XSxG19AMiRH7BJ04jQCNuNpYEetPO33S8QDud+/5xp\nZUxmugBL999CePQXMd4Rf2eaQT+BnI0cWIwX6JV8myspG1fLcPL3p2uwq2ZKkfJdhHDkb2opNu+e\nb5vWo6Gub9h2vXS9/J0lNJZi0j8bV1DjShkmWikxYWBcgVjr5g9p8sB4AtnQDmd5a21MrW/2ieNj\nRwU87KNX10EwJazaCxNFEvhC4j29ns0myHV2pbSTrCnJRuquONU5TsjlOU6FXx00l0Tq4ldH/TIn\nB7LfBM0RgWAgF28FLKO80oW+batYXa1nO1JIulC7QZo4DmiE2w3M7GvrQdv6P9arYevxrb8p2Egn\npUXiQ9WKU/HqyS/rd5e0fEq779gnNxnNowZM13C0vDvBVARieRTdplW0YxyBwmrDYj9Vgwpa2ixr\nuvX+NbLKNO2s9AmSnm3seTdtsEvfxo58AsOA0FjUqQC3tA7lnx+daGlSftUp/baHq+bbyqHxmVxL\nAE3L+1Ma+nqwXdtiDs1vefR2lfXr/FabPa33SW/iWz+JJcjvx+9+imv7Q+h4tDP3z1tY6Yo44YqA\nMbNZmpJdvp6gw5c5xB1XNwu/bzztb7lfIEz34Qo4brjfcT0D4nv4z787gTABLgGfxs3WtbvreB+s\nO6rwP7xOHvXvwCIBY5wMYR7nzTsKUKKI3aR6bvki+qrT2UlyDdVutn49XKOSEzOy+TNebQO/PSzm\nCWkqoRpgBb2V/xX4Yl4FjJvMoU7cZPQybr1T35wwM0YQJHOO16WDZNUVqimEWdXB7jyC5OxiLcqu\nWZSReE+TJc2/K7zT5JyTHvOWv4rVjYPUs6GPU3rP28CvjT3UEIy4pPn1Z5sb/St58JRndto13Kjh\n0J9nvnbKOXVXjCu6qBuyBL7hb9rWVBjcsNuA64Z7PBm67wWUrnvN7231wtG1vjLF/ZLaqfvG+ixr\n8NZb2nbhxQLE215qWFHBJRJMJT8VgMwXeQo8CJc2IG0pdcl1fr23/0iCdAliJWLwijLVGAMzSY+4\n5CqilFjLp7vRJOUBGAftK8DdPyBxAL9PaTHvep0mKG+guJ/yIHMpc+AzTcJ7/opTbrbLnyV4dzDM\n2bMW39e4gN4u9WSu/ZTOLUU6R+6/flqEHutacbUrCizrPJX06fl1brTvXrnBYwgt75gNl4WCz335\nY0ovWPhLg3wCxH/b/QJhuk9vRaYGg8A4fwfNxSBYgmG4jxfZCgg/ivsgtu0RUGUQMuqb8lvetCGo\n/QaOcRdMNMYmsj2AXaQ1KV9daIziT8na5jX6BvPUWnKSjiCYZU5a2qbdpYZYtMM2AbFqjzsAfgTF\nCoiF8TfN8MHtoGcA3QRCuw7VR5ZTHDW9msGh9yoiggP5nkByawMqbkV4pABSW9QuXE5Q74XyDwP8\nIb/OneefgVCiVQ269nZoeDSTSWqUaduB6T5HegC+3nMcGtx9KqFU0h3qOdWifbGR13LtuxbYKPiG\nVlZB6UKR1O46YHfcXd/BuwzmN3CH3+4489dSCew393P06b7Xz+8FpIPXYvBYCmbXdWqjJsNgcICu\nCTIbEiIIA6jh1C8VHrbgUfs4V6KtiOmO2QHvEQQnkJxxnIcDuGW/fMRj5temPgC4h7R83N3S9v73\nsQgAHuvhh3IONBCMFi5W4cf8eq3d0JY+99wEwSWQtDeNxx1ow6OuCkfrj3m51RXgKraYaQGIMTXH\n1uIw0jDy93T2w7c6aBVeU0BZsyZ9fSl94Z3lNwHBng+JwOtfdr9AOJwfDBTOGXdgm9oPUDtBjXEB\nY9UGd+3FDoTVJWl5ZXJ4HrumyVqKwDHDktNg+A4Qm6DRgW/KCALjrW/IxxynGSxttGby9teboN6v\ni39LWNJLfvWbhQTBzLMB1hGX2l85DYJaYpOwncPTPIIA+Jpg2HQeRbg9TeE+o/VXNHFMTZDsIyz5\n9EU6Lk0CHVkuBckFfM4geT50UGaYq+OTAmrdFJTs83DigvaSww95vGfaEIe/+rPfJGOtS+/ElJZt\nj1OR6tvYB9DIWMnhPWVzqf1kuot3jOvNHYgxacQHGCatRfu1rxcPvN3jq1IOv+NzqdQMx4s8CYIv\ng90CjhMor/2KwNIAlkb49tAMUyssfgXBMpNtDynTAA4gGA1M7VphDO3w+uNR/I3kioMd0oS3dwlg\nrW9IAClxEwTrWLAYO9OOoPcRMKPlJfBXW9kCv3gFv4i883zdHdjqWLHlqzHJRNvsK7oZRNY14kZY\n40b1K9Wtda8/5+ora9XZMZe1p7s8lD74S37y8gl8If7g5QlUvVjB0w8tXPRwTl8JM70UY57rePm6\n/81BmcVpEr7ivTTBCZJd1/3vuV8gTPfhbYhjPaJb2uCD9nfT/N5hBnEfATHwMwBWBu6os4f1rmx9\nkY7MWxkeSxWzUVne/AC+5Y53AV9LoKymEgTFl/XqDxN28m6ieRafzEjkhGiBB0hPAIoApmj2v02r\nqy+wXbs2eAO7m2b4aqA3QgWMk0EKII6+UTDYNtJiO5Mpag7vWXeBP0Gz0DYB7wI2EWd/CpKFAR56\nP1+GU8Cr49HXdvba5qg/z1P3CjIrfkiPxIQFLpEqAUz2JwViFqyRBa9f+xACfK3PWfXWR/hpzC9p\nKe1O5ZQ4GoVUlo7Oc/3Vr2AYKG0w+Z9qhAl60wzC71XebYHheATmJiA4TCH0GN/UL3F6QyPcrqmB\nlivFtczLNpOGArnRFv0xwp3ZAAWcI77ZCI/Zn9es95SnkXS9DfEzMGR9Cg7JvGPFvFYzzSM8V1bK\nTzAcVwP4QZemAT4A401L3PKgAeRTn/1xvOiAOcZXc2iydmN+XwDvMb+4aqHfsHdDsA6K6113bzJ7\nbkVlUa0vfvaTD5cmGBsQ7nmq7oxrY7VKG3Mx+1bpvqdTPiA+q2wyuWH+cHOtOSCzOFatNME3DJd5\nm4+/6X6BMN2n+vgkPjLf0gBr2v6iXNgF424vywFrIwmLk7ZmxAPTdaStMGspFllEmNArTCQMqgVe\nJhGhiIE7QsPZweY1+nUzbvTZuCky2ofvSWTIVpXNU+ewMlxgWEFmA8FNq2tlF0ytrtgIZ752zNk1\nAPThTGCcXphbHeONg67IZKonV/MTvpM2eM4ZGUiPagST4Iw82iKODLcBPsYNkGy90mnuoKkqFJRu\nBUoeR64595Af07aa/CHw6K9ak18noTtS0uZkMCyTFxWtUzU6wtSt3Ec5bwY+z7MB4CAZ74N/rFVB\n8OqfP/oJLI+AWIFw8D6LF95oRoHQAmfc3bW/S3uMikMBYwBlI5zgWq/Vv7wOfpKhlNPWSShBmIJg\nTqlohFGaYo6l6p8W1vN6BsLpf9PuPoLgKld9rjBlQvsoQgPJuZoChnU8sjGQDHbT/D6aQRzzaJ/Z\ndm+XFw3vQLnPg7f4ESdpJ4mjZXrPJg+qHAqUkTyVPZb1ya1ZfHoC3uyLv5ehHFhh0QD7OV7YwouW\n9xyHVsYP6Z5t2/Y1S3Aj18kR3EOh/S3Q7GUugY+fzf9X3S8QDvfp9HfNh4JiakKGnTD2l+fc62U5\noECmOtLVadPy+sU8rfBieKVvjEyLzy3wi0WD31gCm2GD5VnHVxCpaoP5qKOBYiAfaQj/amI0uzfk\n8JOb8skO/gorWCdoFRCMw8tuPM6paYgHAI58m1kEOujdzCHyX4zchnZ4DPII54LTzOlKBhR/lNmx\nQDLFEVYNJcFsB8QoW1bjGk6QjGS2Kizqb4f5/jDOsx74NBPecvhL2p7kMldofsQ4WNof/dKCxV7y\nDKwK82UpzlXMcjD21K8JaDqN4ux7ct79nTDa+J4qfYDWmXGtsbcYBcQKOgt4zhMh7lX4XoBsnUct\nWmE32O1wWyDYeViEITTGwttctcFeV2mrXtx7GKNuvpM/eGkDu4e8CowV/G42qmPqi7Ie0hIId7AL\naasuE1AOEGwWc1H0CQzziPxwgstYXK6sz7PunzTAvJvpnyg+mUoMKm7AWMdTc6/8ZJtLk20wrpre\n4h7KSjOZqRQAk8OZmAse0rk9hZ/vgHZPIw/f0rz4mvL2aucUN8fe1/dVK5ztzjp6mZLxLjQZhfJu\nlgxVjlXjfuJcWKGHv+l+gTDdxxphviAnAmADxfXy3DxO7ck0Qt0EwY/djTw8Qz5BsBsw7tAMhm9+\nHENSqFn9jnYXKK4eEdBdqGPVllbYcFsB4F18snwXTF20ThFRYWM4EIlxYrwAsfLV/IGAkyAYO+hN\ns4c6Km2z/T0B4zctMP+1OILhmFNZaOPkz3VtM4QCT3L1lkEZZ8WrZqGvTtWh/Ilz7TnNnPOKA1xA\n8hjL6H/Gsz+DynsZHdBMrbQzYGa5KUjRxr77Z2Z0HtAm1EYznFxLmqR/zWWYRhjntguLp33tM2Sn\n+NHfpzE272HcLaX27WldToC4dnP4RUGgigILBYExK7XCt8PsXvQUgNcMiaWpOcybtjCH4Ity2kYH\n4xKv49CBDT8FsG/pBcYKHHdgzDNQdXqVWvcXsp6AsMl6vwBhiX+2tdV03hjT1GFosQ1DW4yeP/Od\nQC/bXr8/Asg6fmN75djmeauqrTTXZ8znG/DVONvTKnQAvTNczFFSI+yW7eRcDn5dpg21fSvsI4zk\n3RtQbvVoud5uxre5mGD4ARzX9hrlB+ZgQyJgDNxj7HPsJ/abe+mR2f1v3S8Qpvt4Bch8hzlE0wwX\n+J1geF6D9wPYRXy1OK5ejJsg+Is5hCAp2ggcgR343vTDwkzCsj8O4KLNcNA1tcKX5MlrMIW0KWN3\nTtP7MN3bTYH2nf232mMN+IYApXmCaob3I9DknOCmBT4D4Hmk2uNP+oPoR2mEkQKlhNxpXvqKzxsI\nstV5I5HhA2j2bKrALIJpdkCMZOwzzntS77Ks0Sm+wwM0QTZLzhdReg2+xdsW79l4m06NcGx5GTTJ\nlgqKZPJxTaLewXAfeN02HEneHuIPXRuD6JlcBpxA51TBy8YzzmKXdqr5LXOIiuuANLTATTMcee7Q\nCocZhLuA4LQdljiQTryD4Lve0/D0h/CntJbdUWFrpJPgtwHKaQIRE0OwFnGpFVY6mwAPO+B7As1M\nL/+fgeACh1Iu6HMzj2ja4sUPykxiB0Gt7R9Ab77oaJb5T9ph5NqyndO8cM4Oc7nN6172Ne6lzC6H\np4lEhIUvNICcL9YpaOU2OMRBAa1svS1v5+ceFVTcSJ8guI3zA03wY9hlW8vqzJflPajJLI9SK1ry\nSOfN5KJP0uDfdr9AONynH9TYNcEvR6eB/jtNIaZW+G3Ju8iyInIroncEGHYEk+LG5Ob1gGWhFc6w\n2AeDYDi+igeszTywGrXCeXWkVpjgOHHDuJ5ZzsN1IucY1isoDsBZcRP49hflCIK7TfAb2D2YSBTk\nLRAcdxp7HkJk/LjPk9nMeGGWzKiMsjFDZqL2V2IfX5KLQGoxEzdUXIGlt76XO+L8Q0YFv77nxiZs\npPZTfgqJilD/3qF87M9IjjcmbAk+Rz4tcUeiORJoSFh+lnxqhWUo0kc8upekkUmk6lZ47q+fW9BZ\nLJ3WnlZSe9cIUwtMcwfNvs4ORm1ogmC+NIcAygCMxBovx8UhqXlV2+S8Acghq+iGgDkUCNOFEdA1\n8xIYV1wB1g4WOsjbAJ6NcLSn/WO9aPWPPqHSq95RxoYtsOEZDG/9cbki29xMI+xg9tDS8FBG25N5\n3+J0Lp+ue7nNbzOuxjfHTA5XtdroXYHgkxZ4niyzeLQ8Pwk+ndtH05OMBWzOMmyR+aL5HKtn7Lg/\nHmvt3VTmGRi3Zz9tDtle3pcFP7TAKDeUAVryWWqAE2uwjeSpf9f9AuF0H06+16O5fgyaguKpFaa/\nTpDIs4QP3dDHOisqbGiCKV8oTTA3ybUhE93QtZmZMrXFlEfUDlO26zUJ3uvA7Etmbm4cgyVe0HRl\nVCdn7bezOTvku4IHT9DbrgmA+2eT25nCdop70QAzDyZILoAOyofDOJ+cMjQyPKaIaBfhLxwPylAl\njm3OL8mxbwTNxeezva413kH6p8D4XGaAX7lbUPC7m1eIwHlr2GXGfgDHZNQlMoR4DbUwiXALDJed\ncOVtxTADZ3dMPk2wSsBBD1rLII29hQEG57DT54ffOgC4HZt2+lEbvE7T9zVXd1zhy04YpMUrwU92\nLWyCqRnmxzWO7UVfn+bR6RE6U5tfgr6pEe5xALWur+D3BJQbKNOyCmp7X/4TEJxAV22Bn8DwyJNk\nxd1uwc8noLUCwY9AeQDm/wTY1nye45/87+kuceU/bbUJilcvFQSbmEl0cNzAbvqBpuF9SCsw7LIm\nc0/7CO97fgvrfDi2+fkpPNOuNj/yvoSYS8QtbgoeKgscoXyzMX1/0f0CYboP70Im6EXT/AbgjX/t\nyDTJU8eqFQB9bE/u1ObvcuArwLEPwEsNsLBIXOb4PoBfBcDan0uud9RK4KsgODfzwAbUONZG4258\nYoHPjsruBMcqG8JfWln+OmBNkwiCYrMOhmFbmZ8AMMx6WxsgllWwHlOD+2kWuP6ek53MUUoeT5eQ\n/FPjS6EyX5LLBWU61xdlRrH38GXtHkc1fUG7XnEKfifw1fJq137SlGyd/AEQp5929WnnE1cIoW+a\n4dAGJ5yOvck7jNe5EGc/ZZD409hO+8yfq9orjJ+C3hkX8Y54wiW/tBG++8tw7mgmEet6LTEZGmFi\nv6S/m8A3zCDUPwDw6WZgm0bZc6UdFpAqWLTbBoeO3Oq66hHAO7W+LWytzVcgLHV30Is9DILRkfYT\n0DUxoUBdp6a4gC4Au8hw8/d4QoQA5fxlWzv5+kPcn6b95+ldhnZQG3xbtTvc58ErWtm0EVbt7tT0\nupCvgl/f87DFA7vaeB2e8pOmir+WsqVjDZ2XPewSrvLdVKR4pVkco4Z6WrZeFyh6S/n1L7hfIEz3\noWkEIFpgj+V8+KIcbYQ7AO4vy90DJhyJzsmMZ9zaaBf4WcIgNBDUit/WaRCGMoOYvzuItWaikFAe\nji3hPAPQOiiunihb+Wxu80oEDQFA1LhZB8NktAWGCXxRWmI9G1hAsB6LhqkFxpN2eNcSQ9ol8K2+\n1ByrgH2bASRL6glKH2R87R5OmGfW42TMsR4UwoxXPg40kwn2NfVese5b91842CfMTaGC2nI+mUyM\nW4kU5i3W88/Bv3cuPyIS9eUcJO7l4MtUgkDCBHSkGUrJhbz5+HEuPgG/gIBv7NdtDs51aVLBngY/\n9w1MgiMofgKiaSsMwK+Mz5fkfIBhAGbXAs0oQJpz1jTCrF+v0oc5ukmsQ+MKoTeX9AK37E83h1DN\npcazLMfQtcBlBtHBM3KiU8NruhckLHE+0zIcAFeBrtykFUjWcQspZV8dmPVuGl/s4Bcd/J60w9zt\n2uaUfdji/BD3Q5k/qP/Jndh1AuVkngMAGkqzG31PkAuU3/EezznyR9a1yYQebw9xNZc5T29bOtB4\nAXQkDfH2hnd4dZza4ohL6bf4472YKQyeykDuk/YU7i+6XyAc7uN7EX1jGQp8eZ7wDoZv7KdH0E92\nT5+eyXuJ6PTtt2uKCwAHUKTflpBXDfENAt8Cv7fH55WpuRr0qGD3foif/am+v+kAyilOtEOYPDl/\nNvz5O2mDrX06OTXCeAG5EKB7+sm/BoZTc8NOy2Qaxuh0FkhXEfLDvLmEI6MC35ak0ZRnwVw7IEYB\nXpbP/J79Js8/75bP9tCJzXlLqUdrOi/W5qs63WMPAn6TAt78C/i+DIMaoOLtaIFUc2o0oaUA49Nk\n0OlmaRGHPOzTJ9cPxb1jv7mo/LF7EwBbSUfz4ScAvtbxZkat8ALAi3ksjrHMI+41ZbaKrqlbjKlB\n8gTAbEOv62cqoVNSy9z1LdfshBXkrlF3sFma21IvEGQ2ja8VLy+gGvWzvmxfgLSA8x3ckpccNL6j\nn9kv5n8BwwmGOA4UzapE9OzOu2mEaCYK/D6UKcri/Avp5vyp3Ci5l35nDow80u9Y52O6H/LmKkjE\n1PR2ykTnTWS0nrkIatsnjycA5hWHOO991X72sD2k+TFNgeeTJlj9bU28KITsUSgYNzXBWMC3aYRR\n9LZUiQaz3v7fdr9AmO6kTTlmC9CLp5fjztphPT1iaYLVRvgshHJTWD+lYX2nuwhnvbhmcZbZcgWC\nPUwKCgRbaLT0BTQFlLfucTZq/XpZ9e2n60l+H2Y2t2pu2YZQvPoa/SVzbuAXPNsXHQCHX0+MuKaN\nMBT0nk0mGiCW+JaWfUyIvIVjkT52U64rI1Iw7MwtQiLv2pn9h5fkKJi2I9My/WERP+Riz9m49hTk\nZO+kiBJT7D8Ft4Lh8j74peyTv5GeoT4Q00BxEHgTnx38YqQeXVYxN905akPNGwie+U/u50wEUQCx\nwOI4rnMwwXD0g2YRqhn2+0KeJRyMy+2C+V0gGFj7CJ3t4C6TCGua4fXTr92p2D5CA0Mzh9BpXSUP\n4BLomloCXgHOzdzBCDSQ/lWH+n8Cwh34giDcMNI6eEaATxCk61XBzwkU8zrAMfu7mTko6D1ecdQW\nH0EXZUbEci1aPvK6NpcDxPmo98l/AODlSgg23iICzdhYrt1K149LFMDsIPeO6+dAmMqRorNy+622\nmpQxZsb1nXL2fxb2/NYAkhuvOeCNA83vEhjDcBs5pYMnRii9/U33C4TpPjWNILNNJn86MaKfJFHm\nEPVVufsuIOwI0wan9oFxneAIePm25YWFfS8LoroDFF5C8rJrChgrOAsbYLfUEn9nWTxKb5LrT79G\n1DnejyT1aseQgH216+IXAJ/g9wSA1TxivTCXoDg0wlBNsJhEYIsrELxpifmvAWUUapfZK1Av8QOs\npTZEbgY6AJa5lilNYeKVh0Am/RCeTqBMQe7BWhsg5hD8uGyfsa63XMU+k4nmMKdQKi1ciZsKc+zZ\nmnvzZ4tzKF5wgH72LctaMHUDymYYS8BnfGw7CkUKsNP4Wc9pfo4AGbKAUqZtqbG/3m7yFXG2UnV7\n4Ql2F1JZYNZrApMnBldKFdYN3FdqhZGAl/bAWGBYRadhfYAjuxa0IEC4QLbyYeXLcquQApjjFe5h\nHGsBV27MqcElCN60w45WT0+f5bXeU9zoBwFt9Nuz/w9a41HmEQw/gmLS7UZBxcMML6D3k6uM2yF9\nCFIyrlmBZdU81hf+pIx30JkAV8bwBI65TskzZB9Y5ur770krPEEwvPj16sMLAJbrG0iendw/QFH9\naZ+oHq7NTQuXdrjPlx/y1u+K8TbwC8dtcWU4engDeXxrhnH4Uu1fcr9AOFw9Wv7J7V+OW0xlPy2C\nZhF7/N00wh0iRX+w6OpSYCyaYMNiAG7ADc+jy1ZhAVpO3r4+Y5ggOPjm5WhflrNosz3qiYtJX6g1\nPgFi3Zi5aVxju//AmrLPnBQFwyKv2lgKlBIMaxzBr5wXfHxRLuyFFdAawfKD9hjqhRq6AAAgAElE\nQVQm5QEFwakRpv/Am7aoYJ7kzmSiklisaoBkSLxLfqZTfjpwfElugZESPDM/Bc3R+eZ5dDNHiUPr\nYSt9sIogMt0SOxToyPFuDTW/N7+KkxNAFmRVG2E7KHvsGa1zyisO1Q8JOulaS1ZP4Og9z1j/zX3A\n4/ZZFUDM+AaGo16T9gl6/Vo0dseHM/yK+OVf9sAACIw5HdCbotAg+tIA2wTDh5MjDKUd1hXhGhQN\nE2T2uOaPzevSt+XXsgU8XeJIv5r/bDv8bA7RgXAyOnSwzLLDH7Sq1wS68wqOrbRy7Rr86wRq38Dv\nSXuc45e261cUyLBHAX0KqiZQZfpgjVeWPJI8PuKHX6gF6o7g17lkMy0Z6eq/o7S9WGBw1xSfQDKB\nsed9XmMLm4u2VaMxaTzz6VzrWs858WMY2v/eTM4c+TSfAdwP10X/dWP2MRT7L7pfIJzus9n31EAE\nOSsYPnxeWc0iup3wOjUC6OLzGlfdYn270b6Gpzoo+C1gXEB4fSKZoOzyOC3CqBGWl+VC0KZkCp57\n5wavftzEBcFUyWwZrmmd7Kbrx56w1ep7CdwcY/FUJOjMOAXDQ2sr2mB9UW6B3/ExjRAoR+CbZaYG\nuINgpit7sNcR18xMivQRSAYlc0wNxAp2ZlX80XN9HfjBZAJNQ3zs2Ij8cCe1jKXhLUEIIMD3SEum\nO/Jm4y7z0v1bB5t/JFQn2j7YwXD0JvzGffM2J0aNt2/xmPG6WJAxbX09je+0Gm9rVVLNsZ4eeZg+\nmICq0sBS8JOZLX5n8YJc+m8P0be41aKvC/XVuaVdtThHqXoRfl8M6xEARx8KBG+wpfwJSiWxxRGE\nVvupiQ3/avEZIJ+0vQnGpPxa1h+AcKtz5LFeT4+bYBios2QfTCLy2gER2zcz+FVPxPJ3cXP0uM1O\n+CIsEhDrvS3PX/Qz9lnOdwLg6Oss/xSfa1VttnFyS9eIW4jOWlpchcGWUnj18+ZYBeTe4l+k/QyA\n3T0tjLYuFVEjmQ+RqUmGw1BOc17+Mx045662nHCjtbK8jaUS6MYzGHaEqYQrTTzLxv+V+wXCdH9i\nGpEgdz9POO2H0bXAaiahGuMCRmhXxwDFIZBy63md1nDDcLnXqTYHjfBldWqEaoEvrw9r8GSI00xQ\nKHF78FFG95/uKM9XmdDtau1a7ZcSpgNiEPyig2BqaBX4XtZtg/lhjQTBWPF48Bf4rfwNHMsVMOkz\nUC/QWV/sw2wwdNLyTm3wdhctTL4vRoi6BnARfNIPJhMRf8if/Xvu/HATvM1ktawV6GsMS1o+Cq20\nHAMF59YvzzHUfHa/SVSDsQ6oicNKZCauaaW7VJjnab5QPp2lEGuRvZ+MYw1toeeYas7nzVVrxSou\naybwFcG24lBAc2qFMa5+A65gl/7QDIuZxHo1+I5+TY1wTPcEwDfKnz8OKfoLoXmv5cplSRoLAaz+\nzFcaSvoR4K4BBIJlG+UeQfEZyLJs9m34N9MJ9bPdoKWudY11zLTKk8uW4yFHF9odmt0/sgse1wZE\njUsnYHf4CdCXgkVA01jTGkfcwDGPrlOs/TH+4PK2LMGuC5NkHjruot7nm5ghxlPa3wPodUmPm79b\nO5cb1Xp7DQTXxCi70D6fwO5pPnKeI7LyCk9x1mg5XwWKkf4jCI7id5Z6Won/nfsFwuE+vQcxrMeC\nCcSCnBKcWY8nSxFWCL5RakQb2QNPElp7TQS7UbNlcf6e46I/6rjd1qkPLtpe+j1As+2AWPObv9no\nCDilkI/rHS/lqTaY2mKO66TpVGb4RP+KGdf+F0DJeCP4FRAMBcRdc1saYYNBbYGnphflZz9Yd7RO\n8K19re4RFO9j2Wf32b/jnQE8cADNLnMegEUxS66N15QGqQmwxMb3WzsPbl/p53zFp5P6a1fIeHkj\nUeBs9BklFLPU26Qeeqz+RpLZUZmM2XCmszBBjUhcvatA0RAEYKYTYGyHuBhhNpmrLesuUgqSseIy\nvYQn59p5c5I37J5PBzzHsOyAccWzqfsGrgC89/wWpY6k7ZToiohND+DrcTBk0HM/n5h5KJ2X3+6Z\nF6VJdofunTZ/IuR1qrgCDeCa0t8zwN3CLA807bGGG9gVf0qSVickDklf2U4Mxm1qh/X6cx72K3nj\nw2oqT1TeN/Pp8W1r7EC+MCUgVXlf5etpM530P2XLlEGtHOlBAWbY/NIMo4Ng3T8oeSjFV5WhOBKg\ne3PcDQRr+kMaym384ACCG6uxraSM/Q8AcfhmPlWM9V81vtfVOvavul8gHO6fDy2012cJDfdFwl2m\nBOsacVfF8TOGa5NbXuGOb7HXvSAAq3iggLwet0wf4i4rBa+De3Z1VgjS46i0kFs3gO8ls/B9Y2mT\n48B7u1aZr9jzvEaV8kln3ZriEiQg3iZdQX68w+XaNgeFSW6QWT/vMnWuBPTOnykjFuhEZmfB0q3K\n9L9oDCXjtXsJHqTHJWcXcxUtWTLcsUbl/PHqLbzPH9t0zRvhjuG8+kdMp/4odwbHVf7kesppDfeY\nyQ41nH6zc/xDeMX19lu7HU9C4B1kFh77vDccC7lNmhQ+aHz5ssu+lR76PtYlaQpoQLoAnqw1XvLC\n10ct7IZdYb9rF/y6M341vBiFGV94izK+8nKzmxv84jji6kAhGZpOOIzfab/61W+DXfz+spO43/0v\nINgdCyTfN/y+cYvf7/hA0k3gIeBDrroWqhFWENxMJcYvp0HjUN0vcFsAjC9e5gttSR4jDvPqxYPw\nH14HvdZqBt1KvG35eGszgXO/Ycu5UFpG3cjnPPmetwG4uT6tPsbp/I71ZR1yXrh7aDhPT2vURZGs\nhEA/6G8DufcI61glf46NHt37o33ybwWeFcxE4ac+5q1rYz1ze40t8ulcJNuTHzGLApeprLoynz65\njeNb/7L7BcLhvj6c/PtaxPuPL63AfTn+cfLgAr63kdcTFMcd3hUE5wa7PejEdvCrAE3ilN6a4yYh\nUVN2hP8OP88Lzi/KeQBqAcG2VM4Bgtcm+Io2/DBNbcNFwAJd2eIn+UTz9t6XEggn8JFos4Ov0yTk\n3QJ3YOU1TmDMYM23SXWdYTP+OL8Ev0aA6D1dBfM+Sy28s+pdqM1SW05XcdAvKlBQXa/xkeeznuKX\nDRzrFJz69JP7KQ9XuYfDv/XBzmVGvl6/QTWz59X4tL99JprGJW5Gs0MYaXQUTt5WrijyeFhz7JG2\n10/g1kW46ZhduqFa3UiP02Y8+JKC4AWKsc79TSahd8/sdzKQnIMFRi2Od7yQqlUyKeNJE7YD42UP\n0MGsXPMOfwPH57gFQm74NwFwgN7by08ASD/CjzLK6s/50EBwGncxDno9/AI4rZYCQJlegTzqLMDZ\nzjm6Vk/X/ngj/nBVOmpXKx5MvqGPvTNeZuWsDS4zpwKzRbPkWTmvH+XBPvbGA2WMI8+RC5Oxxz5j\nXTUaqXwKifa0iCSo2l0EnVV8XXW8BYr7Gvb64V3cPfEt7eb80mE+beYQZIxaX/PbQ0JrrT8X2K6m\nL7T36992v0A43B9phC/Lu7kExGb45wrNr2iJXeIaKL7WayMJdtOvj+Bx9kP8Xo+MIXtFGcbt9XAy\nX4xDaYi/L3nUnycgOb4i0ln3yS99Cu7YHhGxXtUGbzJKfizoc3dZ2Ry1DcXNg/EzO+TVPLopTwxb\nZ7mY/2RC23UIEWWaKmw06SVixA+B1rKcGahWoeasun7mfkybvK7Okn3vbe+5CI4f8/YZdxST17Qn\nf4nkvd7nPp1o7bnLJTC8Nq10xDXT4fFpy39oRAH7qzjIqpW+dvpomt+mxUmCrO7dcSN0rXNo1pff\nJigGzG74dSUoNsMCyyBoNjiWHTAu2VUEwNSu+SWgw8CPcOQh5bfVi1kPQLeAsWp/57XGCgJe1QTH\nXXoDwNEMpNk29Y09mFx2EHyb8rgXQNyXtvpA8BtXBcVNKyygzbnKHDfpQ66VLrTxAIp595VgVofM\nq48wOg2X7SgS8OU4SYcufsa7jEfnx0dY+59hbO3MuC2cINhqn5N/HvhCnTGOomWujc/TIMp/H+I2\ngDzH1+bzHN/TB+gdOWqugw+SPSWRu5SdiqrRkVn/JpSRQKae4i4cpNrg3+PT/kX3dU0iObtF2AS+\nAxAn8KUGtOJaOGyh0mrOOhBLfwO/9hAPQMGw7GoH2osJBKN2L812fmr5DvtgQyp5dEMQELNOdcn7\nvcLJJL3CCbwxQbE8opHfVrlsTFaaj2NgKJQrnd02qPV0WJ/HjLFi7Ap01SWDtCbLV1ItgIc068KF\nySpksojMQGeEs30VIK7FRGxQW0IevcCa19gOw3NJowCwrPFn95/kOQLbBOS2pW3+tj7CtMcjzdlu\no7WhaXvrb8V7zxT02NajSawXsUWik/2r3Xts36ffpamTX6hM5yY1wli2kQ30ojTDBqxPvw17KtDP\n/bdA7NoDVgD3olaYxBXhBMECiG/u1xjbAyDeruhhAmb4BMLT7wWMD4K/wvoWCMrON4a6XgRSHoft\nN83DVlfX5lun7wQ9biAYG+gtjkEyHuvOgA+amQA482odHiPmyC1GBYnxRsI7X5WdfADB6RfaLC5W\nW2cDydXVLIdRD1r5GT7na0Kt+ffgvqNJ189A936Ib36ZH5I1n7TSVAydY3Y+vvWr59xAMEirnrw3\n63od72hAxTGsXwmC5zXTf4Hwv+r++VAd75fhnyRYE3vg97j76mHA6sMV2AVdwt6J6R7yl3AL0CBA\ndjFd71rh22C0FdaSNMmL31eCUWnmMFWn2Ut75tzcJ8avTE+ALhTABNJEYV1ltNumM/rV5ETMSqzy\nUlhLTL0EqGPjuHX8HpklrYFgZbKNe3jnLDP54JQpnlODYbb5zI5USTJT1Fom/hq0VrN/YrlPvTi5\nkhxPefT1N0cHtn3Kbffb3rfzLHUJdtLwVHD02Q55pNEWh9Kwa2LOpyJ9zfRCBLPvGTqCWgEzw690\n2fxA1/BeoeEF1mOjPJJmaXnLZMKizA13g10rnNpgmkSE9rcfwSYa4dsSBPvtMILgK54DCZhd96Ak\n9IfrS7q741YQ7KIJFm1c5Z9LQ7BQhJf70wbolfA90voTMm950eLW5vQAVgmU0W2Ea/U7PZ40wAp8\nf0rTvZXPXGg729Liqmw86ulmFCb97Hyha4aROTQ9yypfA0Y5nYOf80wgvWmFf3RCCMJQkyf7/FAG\nks66XOzj0/ytf9IkSbGn99uULKKq/FGn1t3jAtRrQV/+nFkK17xIoAFekdUJhsVuGP2dnL/lfoFw\nuD83jRC7XxtxOLwsF+iywp1A6TLmk7331Mf40zWtPGEC+IanTPvu6HAxVtpsrL28GHADxodek+4d\nQuyxbawYP80yfPzY73xzOeuN7ReMt87StNpEualksyk4NoW6w1yiWmrXNpkytoZHBBg7GX8OqARp\nhoFNU7Ex6ceF9+aj8Dzm86qXzDW1CdGlIwB25HxrfuZpNwTHnr31/IA6D/l4czKb0fDZL2YRo6nz\nLO39aSHl9w95XCNsF1Lan1bOJRMONPeBU/pZYZXu/p6ODnoy1pAa4Hx0pKYPBL3o4dIKB7glWA5e\n2cAwwwQYNH8wAt9FeBnHJ3VtL8UYvQPjHl77o5lJIK7NNjiA8ADF+sIcF7PxK3ls3m2Cyeus8b00\nk4DmOfuhoDi1fwGIhD/O90CK5+sTidrPSpQKjita0hN59R3QwG4U2Xno2pWEu+3WVRhJ4/uD++U8\naPgpn9BzLz/idOxbXLksqyD4yL6EEzmW7BxguIHeGc5faXwT9PqB5kaTEK//lNaYTIHUfDcnMp21\nxLt7shE2ChYC4GztAHxR/jre9PdluX/VffqyHE0f1otyC/CmhljAsL4s5+3OkOGlbxkysbyHjXfC\nPeebVYKg+Uiu4r8lb3e2Dq4P8Pu11W2HkB6rpnd968fj2Trj3zfdxoxiDgimAQubaAIm7URtuTR/\naGtqveu0VZKe9m17Gi06s6GfHU/7WRGgNZofFAs+QlMEnPNuL1eIX1UNKfgeATDrwzZVg79uw/5s\nRNhK+UgB8Phi3OxH+m3vn7a19cFO6yD2caImntk2+lR//FEBoXv7ba4OO/AQOm3+aBPog/KXOI13\n39bAAdi95iKBsdk6SQKA4YbfBtUQ1xmxdbqEweJFLxPw60gQTHMIM4kjuLQCyLcAYUUG6ZfJVe0v\nyxw0xDeBb7suEEwksoGX7IMRZafZWd3oBL9V7I7gwzZPzOnAeL3vdwLA3OMBrLlmqRVmXVNzyiF7\nj8jpUaJ8uDFSMGyhARZN8AI3Hjza0OQAJg+dz3w6J5jczj+JH/sq03zEnfL5aL+VqTXOAXjzVN6m\nYUDJALeM2jS/Pn6QdI3LCjhmznExvd6bLrve0nKcEHpqtHLIs9XZqha/tEU5S/nNqFRiIbTAHSj/\nbfcLhMP9iUZ4AeA4LSLBL1+Cizynl+XEPAJu+L6E2C3I7bi5Sz7QL8VaPnLmYsKrXh5WbZna4V82\nPFFsUi74QfFWloCaVwNtjwVW2jgpwjH6V3yGd6b6gQJ9ecibxle0vXbucrM/yvzNEvjAvJdwVq3H\nEzJ09wJkoaJpgqYNUARLXF3rnEwW050o41B/RHLtG51I4EcArHHCeN9A8FN8pZ9LO4Y8we4n5XKN\ndtD80BfR7GwtH4GxUnkvdxK8Ld5H3pi847ycOrNFu6Ts5ZtmLy/jRkz8HQR1wZe49OIHLmS9m3mE\nAOTUCgPUDK+X5RTcBhhW0Ht5+W9JH37ud2IM7rfS8qJpgY/AWPaiw/vpEOOkCIYbIsGJX3ET7eud\nfA5hJ7yB4Odr+ykAhgCpoOfMZ2eeOtf4BIo7vSht1BxyjsmLLTYNaZKmEDF8iVPwi3ziVFD6oPzI\n63vaHnfs+p53sM2xBTIl8+XYOt965HO5l3S/CTlxnZ7CkLVv4eqP8nBu0CmeqvM7/yyw+nCjoaBY\nKu2geGiMU9hHSxLen9iWzK6z/LtW+G+7XyAc7k9eljtpf28FxPpyHMQ2GB00x5dLk7jzERvbAlLQ\n1aMv7Uxd8nOtZlJ+tcvPLysgBpDa1UKORdiN2bPGOFbNrrIrXm7XAn+bJ8HDOwA+M//5KGZo6dJE\ngn2V3Z8aYPErd5Ds9VMwPBnGgYV4SyjOpOiNlyZAha3HYJnnyFZVYOXc7Nre/isNSUd1QgnKMElz\n4n8EwKMmLY9D+pPr6bNmE5BtGrv5M2ya1suc+tKFQ43mBFF9ZHXbsuiqbuVa2lHQPnXwOddp32fA\n9RptH+JmPm/pMjO3At14OW4Dv4aTVriBX5o2RDjzqHlE/NaNvoBhk/Jtcr37mcYbHQ9gDHRzCA8Y\n4OThXnx5gmH+uNcc2JbGpAtG/lV7MrtlFVd8zxoPfNQKo3j4qms1estNHU0ldp7A/jXG1OfykRY6\nXeRdhivLJRiuBPLInY9WvpJEUv3R/0Oe7civke7ncJU51K9lbPPkgLYb57wLs9YnXo5g16vf74BY\n15McrhpR3jcd8W7jZ1JD0ekLwOX1jLRbT7aGmzck7gTEYhpBbfAvEP4X3T8fTn57ES7A7y2mD7cb\nblicIuHYbIrFXIIM2oNru6Pd3QOR18ggsXiObMa1gZnbJH5tGn2cRkB8xw7UL3VVWzw2LTibYRyM\n73mEaMFID2BsBTgdeSoFN2PTButmz5pl03m/WswD4B3Uml4P9sECeXeTCdFXyC1sxvmKb6RBjilI\nLGY6+iusPAa5CZnmHJrsM+3VdVZezFMfs1FbFu0IF9QnUF5IdBuvzzg2bX/Ww2Oa9Tn35rdjvHT1\nWObTWezxIQxmcdvzU0zMNZsC5JT3/2nCTukuvfAe12zIVTV1jLPEphCcmqYOdkkcGjAuQHu1dDWF\nWC/RSQW5UQf4vUbaLU8BXPs8xzDn4DmtgeCjf+wf3VsAGuAZeyDzHQAwNcQT/G6KAQJb6+BaAW++\nePcAgpMSW+d07WUSVWa85Dd+sYyZJvidYHlcp//ACfvfw97buz72+sMQ93K9wsdtpSknEKz5t6/i\n2C7vHFsctjg752N3rPZDw+l2mt+KIafVue1nUj8oo2QWWLbPXwfBue6xh7mdkTJaNMSRjy/K8Vzh\nv+1+gXC4f/5EI5wA2HFfiA9qdNMHNwkjCK6ZSyCOJOLmMAHBg7mxPmF60qPoVwQD+JLgHUvDEGZ/\nCwRv94Sr4cW8d3td3GELdjG3xfET/dB0M/laXoTvSFfg+3R0WoIRDRNckumetL/cOLGJcqNBQfH8\ndcOIyS4y5FtUCWUJrDfbc2ADhJQnGd+WdohooGwTBX/kTy3vGA/7Y4OJu6Bf08w2uvSwbR7kRU8b\n/TgD287AzargUxnW7Q3Vln8Du1ufJa/QZObxEZYcPX7mG40+TdJHkxeBbEAlvG9xBXJGPok7zxbx\nbNf6qklEgV95aS5/62hHbxpgjDwr7BY2wTOPDHGxA5pHFMcoM4k5L3u4NL5AB8EyT1M1l07AgdVm\nUOB7+u3HRsaLw3Y4Yx2iHWZc8maWfQDApt1entq/Z560hRvr0EDIgZAXFgxFWUcDvw0Yi/Z4MI0N\nzA7xdNoO8ynNBKiutE7fHP5P4RxIRR77snnCK8enrT7x5gXtuupV0OwtD5muo7YD+fns5uzfDow1\ndq3fy1aR6wMvbdXtHUqgC7UPDvkrAHieHPG33S8QDvf5y3K7ZrcAsOVb0vlSA9Uj1A5meJ2XR4aY\nJ1BAGZ6LliDyDiHORywrEH+atqDXlX2x8i+Mbql1dtUGm8UXoaLxKyFJMLkllL6twt+8C4zxsGtT\nC3xm5NK/3Hc97qj9tYK2OTYFyuIvoBwlRBu8Sk4uK/5JJsKRTmYQqnWrtXIpCy11cL75NT/X9id/\nWeVZySIX3uUogGiVf6VZA8BtCgZDPo/hkHbYbk8a4PTb1tyxzM99GLlsF6RvFeyCYge8Gq4nLk8d\nOiS8SlyGXW7KOk11qaadlp61OE+zB4j2N1hVAs8JfHdwrPsNR8B7DiPBcD6F0bTZ/7YtehyfgDjQ\nALIC5g42Ogieccq70gW/czsD0qPNr6Tlz5/BcKtH+vJU920934leelgnTYamtDHKN6D74i89fr3c\npSD6jcU+xiufedoyL0N8LMu1P7Xrh7gPw3B0mRfyuGiM1zVPJ60wshzQuXJxQj3DXpNq23SAalmX\nZ3bmrhc9DdnRvN18GGdrQvcvlCCGOYSCX8jHNOxXI/xvuo9flgOgtsAbGAaANJcIoDnNI6IOw7qz\nX+f7Lo3w5XXY9jJlcHl0Zitd+pMggNw+EUsHwXwsVxtINNfiv+H5Hssy1qEphCWDTHsvB74JREJD\n8I0CwGYChIUhQPypFW5ghCgNtesItPVZnGiCmeVnTbC0EZtzn80Xf7sVH/64mVAu6lGmMzDkYP0Q\nJyVzDlTgEZRY4+iN4yYThmi/2vzlcKzmD8Mlg12tPrKnyYj35O4OwHmfUeuza+dZP5U5weEnLbAK\nhNY/WcaTAKg4b36gaJ0x3lIf+jETX/MwrICHe1M7Lj2fcQcNck6RPwNcQ2l3N+A7bzjjhtp1Y0L8\nc8Oi4px7M+KP2t85J0eQLB5vUyW8mPE97G1+pRz3ueFI+FzzO3j3jz+vvI6DdthGeKbT7z2s80Ae\nvXVUPNuTfaUbxFLQNCKUE3nDkn4cNMQ/8A91Y+9JJT3S9igNzPEfhvOaf3CPU1UPYa+/2d7Q9qJo\nmu8QtXDkW3H1FKA1YedpWa3t8foujJKs7vwi82KW/jLPD+w0rmKYOLZ7JOMCChALQP49Pu1fdJ+/\nLMeX4bqZgzsK7F6e5hIY5hH6At0CwmuT3ATAAn4NC/wqkMoPYiCEAnahwO/RL/5EEFyAuxiTbLZ4\njLOEW9TIbzOHfx1yD9gV5UPwfoc/wa+HVtjLFENkSdvYx7DF3AGo0yPIb2XjoN9lHmGvESKNclDW\n/ASAu3tOifnSwYgGeGOST9z4UOv6ieZvqqYE9E5t8KQN1fgWM1XuvziWYv0as4zxAGSf+r+5E2M9\nlGugl2AItWajG1u44h8QMMe5dU4E2bG+HfhmvAgI1baopvFF2u7rujc+/N79XfpWHQ9aYhv5mhY4\nklLbFGnpl/iWhrjZSpAMpNTeNMUvcYh3AmwAqDHuJGcXsvZB/5JPp2xqT73Fo7WxmYsRsLRtP58E\n2JbGp3791wEzyyjAfTpz2KP8KW0n4jWYfT4B7pQeFyNdgmGVlc+Gm2yt5ke/dj95WSE510yzzzPu\nCf31oWwJryx3ph/qetQY09+UGD2tmSqO7elSNF+sDz+SPq31kZr1XOPGq22fLtM+Wf5VWq3+Th7Y\nFQXOzS/1NaWNXrUD4waZ8njZBVu+LPd7asS/7D59WQ7XBMBWJ0Zg1xCvu8FRBktqLCAcWuHbkiEa\nwXBSft+YBMlJstxNVhnJfItQLcx6HTfv4G2B8Es+38mPPC2NMJbNXtgCUwPJj1ukPTBtg20dmH7H\nXuEjP+l6BwvCANjbnSmuylLYTayLIVOP17G4VjD4DIZxjtu46SyjYk/ihAMqvjnw8oh/4/IV0Nbs\nkNHz38iTz7rRwXF4jlvBgWVP9rBRZDqexvWWxnobAI4IP8VHmScwfG7nBeiKZPAZwT10WLtNuMnq\ndZv+0+PqIYGP0tjf01SqRpu2pddVwe8U4NxjKrfaC7oGpM0vM500xqEJ3gCuAuKMP4HgUWa6iVIe\n5+cc1ilRnrOvpaR7jyte20GC7kktv06K8NTu8sNC/H3jDHZvqasdQYnp3zXK7FrjDVvcit74h888\nLmBXX5iz9mSqYyDlJ5O3nHbo5NOSbW7sE22MKk/3kie6OLBWTC7sMqHblj2C4Ho6nPTgNRP9phnQ\nl9bKbxs9GoQHc69ubdshjinrr8f86XsU832I41gf6j25V7l8+F2Z9veR8C8QDvcnL8vdtA8OsNvO\nExaAvOyFveyJSXgLfQJYYPe+Dfe1QKTdi9jXHZMnWPsOAZcyBvFzuSdzBOZ6IrEAACAASURBVJhd\nmfiN+tv5/W5PcwvH+qCH4qDbDRfLX54gGDxClCYSoR02X/V9O8vHV+ucQH6BYrBv5T1cQxOt+Wx4\nQsLXphJNcOLZmDFTzS9EG6wPiSYIHtcPdrvn7MXVkZpgeeZ6LHVgmy9NVjoZqz2mV6/Yj+xGoSQ0\nwZTDiMWMlzerDEuMiK0HL73/YIuluHwFwCd/CRnp7C4c3xI1JpIn89/CQ0BqnK7V+u+9cPqf4sXj\nPbi6KPSVm8bHdf2xSQdRRk0pUiPM4obS7gYqNrPSBDsBshdy3swg5PoEjI9xVWYjTfTrkfDmZIlX\nj6msNe2PoF3yYeTLqqyXSxOzKMu4fmrEbi7xja4NJvidwLeuXbvcymhfx7xkz33finMeNS+ANIuA\nITTEK6z6RxPP6QW6RYe2N575ii9tINhbRtQdWlbd3R+EH1h026+6b/rWHXlWpNDRotLtBisIiBrf\n+uIob7orDdsVufe2rnNPjkne89b8bSyn7RMf5R78Ijp1qzO+mT88Xa20w3/b/QLhcOdPB+/Or7Pt\nL5J4yxZ4Faj8CGFCIjRYgsfbDfft+A4tbNphkRkJMwh820ndAT6v9M16fjFPapp5ddHiGjzMGmIj\nUe0MhEmEx/mfpR2222AB4BMAm7wA4sD3EEinTaSb0ynxxFH5YpQ+CXZr09Wmkk2oefGQV3ewXI/a\nhDHfnQUGo0pOIuONoHvFi8SERj+znMYGW7oK4gZ+RSOpjzcLRXiQ7Yn4p771dSr6NDyO4Dlei3V7\nYHvwn4Fxr3EIqaNAXZ4SXWeAPPuuGmKd/w6CFRhJ5uaH0JL3pnViD/HkMTZAb78CDRyHl2WyDhbJ\njeJxZCE3GfGHJ9gt7e9iSC0MHK6oilD1boD4VGabkx7VALKfAbNeCwwH/IqnHbUkBB66Pzrs022b\ngMc6LRDYFNC1BLJPNsPuXbub+b3imgY4413Sq3MKRGOoMorh38pofOc/JpM6Pz/fwK+EpinWGfPU\njlaTi9rwpDdJ60N8DbeoaeMt+3eFfwC+CWCf8h4AbbH+LOvRlyP4ddJoFZKHv+mUHzKmxdlTvqJ3\nZjiDYNvHPzpg7ByKR1DDe3pSOwHw75fl/mX3qUY4CfNk+0ttcIJj5rEicl/5aQhzh3b1O21wfbub\nir0TOLQ+zSwyi10bgJmSLYRX9MXCLMJA8LoKZnyAJuNbcwGCJ/jN8lFu2TlbguBbZZ3O4IMwS2di\n/6QpspGbiYSmpea3bzwFxVUdGUW3q4IrC+l4ZJ9o29OCsy2AS2YiYEVlQft7mBgUmDLJW1UN2z4F\nvy0XBCFY635qeHQsiSgGCHnHJP9hWmj9Hpo6++0xz97OlKYPzNzOET6jpWzZfpZOX8OVLq1RGB81\nwSKpT3Eaf9L+HuIMcoOm4fBn9YEsLFTDyjrypTeCF4uRNlC88pUglDnfgG7+eU7LBX17DnFwJwk9\nkgluPdqhaRt5j7Ndy2nrb9RL/7vWj+u+FBJ87yPNG7ZfgeRv4AyCvYPfI/D1/YU7eB+55ahqInr6\n8M/05BlWx9Q9lW1+tmvHeK51+2iR14rnVJNIrV6YPKI6YCQ+pYtnS+8mThh+3b/+UiZpo7Js25v0\nktzc501Z1CQ3DtrdnALZJDUtJSg5j/tUFON7nCbsU3pgmG0Pty0ege3ECPDo8F+N8P8n3OemEQV4\np73wYobCOVuY0qMQiCFeNAsQfN8LUH5fjjy7lxyCdkNrn+TRawMH5m6giYQ+uueLeCEKY2t4N+cj\nX+AbeUCaQTQQnJph1A/0F6AmYH6d06cE2UmN3/EOk//E7KHKKgMYZhItr/W/fuhPY5rBwre4Ahdw\nMsJgLgP5D8j0NPpTB7JcAwaumkey3QJgiXO3+qzFmPtBOxy0p9ETID/29MO0hr9Hnz7yd7H6iStI\n8FzKR7Lrz3u45ck0rssZDK/raOCHOE1Sre588e0JHBuKHs3RaDMPnZkAmDYTcXGuf6ilTEBy2m41\niTykMwY92Tk9qVRo7V3baw/xcm0AOAAq45JVF6/lEzYfNNbDseP4ElPeBHUwXEB1N5H4RrwwHXXe\n6KYRCohVQ9y0y96BsVK5zGy/eqV0oGx7/hRHtQhNY4vO6/d2PXOhpTVu1shga0PFIQC+a9OcD8/c\n4nPDau8/Ab0EvKoBfgTOKQWEZpRL924UPXnz9xnUPrNPmeXI1ULSY9t7kltXritl4qn2iBuTh20N\no6l2tn/GrfkuLXAB4g8P8Pqvul8gHO7Tm5DrAi43XNc6yuy6DF98YQ6ex6atL8yhNMOrlcUceX6D\nXTDzdRd0x0kL5rjuBXS/DWEzXCcy2B0mFRCtLCw+u9nvuRMuKj5sV29CpjM9ATs0A+FLdQyTOfMH\n0Qrfju8A0BOG/YnbSpoyiyfgwUhHmgiMH+470u8l/NrGVoYYQhFoyMh1trzi3O/4eXy69d76gLyy\nugmnUOEZfUifbJU+c84KwQsTjBlyDAUWTuv1adxP0PKU+7GqV6dF6qbuKe+D5BsppzZ43X6mdNdX\nsNIKRPn/Ze9rtyTXUWUD1/u/8Wlzf4iAAMmZWT1716y5q9SdZQnJ+kQQxtj2Ako597oWKJofaM2t\nBVqOD6+h4ryjE2vOu0CIPIu6PNwZEihTQxEkhmJKDcagt2PGOYhz+DAO5LAp4aPQnTSBVm8Zayrq\nU5EAJPGWHOR8haw25Px5rNNGH63VLlPg0+VRWYrR7hbceU4HwTzvbnU81Dn50M+cvV0YSF+7yeS7\n29Fqabnkpln2TN/OsVFupFWfDUDXLMqADu45PfLyDTWylyw6kB9yidM89phzPN7nF+A+fGZdlbs+\nOkbNU5cXvp07x7Gtm6tMr5+FHHFXD/biXIXiPW+fOgDr7Q9A//maz3WMh+EYj2Ma0YzT9RfK4B8I\nv0A4wqeeEZctMPzlwH0ZvrCu3L8IcqkA6ddDpRLxAsG8CjL8MV/13qv+CYgXDQmKJ0g2LPAJtjf+\nrtgZtOy0wYhpJXRAwPDt6+0Td1h973s9RPjHo19hUVbhqNXaIZbTJcmu2iw29gGYuN7+pQuKCyD1\nQOs3cBOo3qXE84pexViBhAaU09Je/XfSbwLh+LHtBMB3pdl71WANUmkoUUgstPrcxafDl3CWauf1\nvQra0ojWNeQLYTT1yt+FUX9N7WPLvVczNcEw+aFX4CPNcystKketPNG3HfyWVbE+YFNp7ijum2Jg\ngiugbsPMNeg032hU1qs8LVoFdLmUMTsC8Pi53ATDQOzzcn0Als+vgpL86AaiTILgOocnlPvl1NJj\nkZuQ6OVe8QPDBHDuxfM28usc7tvQwpxfR16IeM4Rcj6R9dTt6+QRR8IHz/SkebPqLiuvAOM4J98W\n4XgGyKc2pA+cyjYPvs/Xy7l8UbZa6NFyRetLW7fHR3nhh+3cIjY+nKylHbSRnvlddNvI82qTxqCQ\nA0USUGx4CXRXXYt51jxOYNtn9QSI97honTluHR9o6GqMK+cGB/v5xwdsDwzdgmOB3S8bQBgLHBte\ngGAeNf5qLv+l8AuEI1wf2uO/sMDfFSC4QK8owdAKZRUpC3BZgtdry/7YsgQvMOzL2hzA+LaI3/zy\nSoHiBZI9me2PMqezXYaH+IYKxqYjCJ4WYQXDoWDX2yOW+8Sf9saJ5ToCULcPoZbbvhR+6+3BarTm\nOeZd9m7f0x0Mb5bh++5AOIatj4P4A53ghvPsQr/9xh11d0B8p3V464uqrm0d5xqV1C0lFVzHsQPJ\niVSmJTRNwFGtB8+qZXFdJGmtz4IP2guN2c58DN6L9OpmqoPfUjJ9Er2d3//22J72h9/a38Nax1vt\nlAdxAZwAuVmEOZxOS8t9K9dpfKC0gWCv+qnokha+hTW1tHKyTMeoHrcyaeF1BPjNNCpNsDqswskX\nbaltpDF4DK0jp3V5BGfbnuhTp2xVgBf8I2ta65KW4KjZc/CHPOUDcM0rvQBuAd4CuB75Vb77BVf5\nlSf1uORnuurRefkkfAxAyItW6QnRtBhQ4HcDs8kmVYleaJmcdKpvZ4SVzvwhT1rZY56VLKXFNy2/\nJV0SFGeVJQ0VHCfvTVGKEyCuzpXzoshp6xK7Nq7zIOPh3R5p1yB3aA1wvSu6DCilQLVC1XBCEkb7\nwkI5X76+0rtwzIIA80jAyzdUNTCM/074BcIRPrUIu62Pb6TCMw/LMK0DYhUGkLtZdq6F4qBFmMCX\nLhK8ovpDvWIL+BrqausPkp3TZSI7KCBiPhXb+Fv3SWZY+0sFoO4QNx/YC2FtcvwDwG7gD32M1deY\nlmVQ/4unrjh+lZy1hsfKq/kETKiA0EAwiX4T/IYlOD/fR1XClgkc7YGOnJ2MK53WZrFEbz/2OtG7\nDAIjPkOs05T98FypLEYg4NEW5z/HFErdRKAqsD27SbwPCjwaPZTLR2EqKSFPndLTXhmVglp3G/3Q\n15n38mfIfYEDbaVLXuSYQosWuCJNNq/cvldaKexFJODlOuZtXaw9ZULjxa1FHttdVYawSXAbnU1L\ncKUL2SDPIQhOi7CuzFz2Ex9YL+iHIjN0MCJEoXHaSIPuklgrFvRJg6xBiagHHim+ajSvvJRRkbf5\n9mZ5BO0ZFBeI7mm28RR0vnTeJm3b/dbL9UpND20tCwTPMgMMC088guFDvY8CQeJHtwmNM8919ChQ\nO48CfSc4PoXSpDb4Wu7kfASMtcP78JPWxlTttEG7w8Q4kxZi/qZlOPvbW+d97mWUO7hIQLBK9K0s\nwnxGiQaarl1/KvwC4QifPqnoCVrDXxhlGe67ax4vWFqDyz/4Nj8A4gMojpoSAKc+WtbXC7WHF9/H\nlqHw8tWXKcB5pauKwHiiPKRHHyne8l3AN3yUPV6fFg/T/YHV69ZuT4tRfpAjr/BXh3WmbDRd+EAU\nJCyVAQei1l9PbbOD0KKHRVhaLzCTk5GKk/MVWlIUas1oXjCINTjbalfbXoLF+Ye0uUJjvVrKOzZS\naoy33yKuSc3XqVUtaSnW8U4viQ3PbL18Fd7tsUO+z+yphqddeD/1OKO5tvHXJZ71VguiHvafKcAR\nVwjut7QIR22pNTkuLqDcadANwDpycxSNgJeW3bIUl/+/T1rbW1JOgYmtuy6W4DYyGgie6aCFPDmq\n66PWPhC383tI3hTKBorHvkDmMxLzbTK/qPlhRIGL7qFcf93KgFiDJ6g95REEd8B79A2Ottrr03zP\nF8kwp7RYTubpRNvmuuVNgTDOED5i+W4R7u42WsUzGLaqb9YxO/ouDmC5Eu150wocwhLpRpRHbCpS\np6TJ3MOMCnyWeex5ExjbtlKyHmR+iMzWsc6LcFizACcAVstw1s+5Upp025cVmFZh9RE+WoVxco/w\nOL562uPfC79AOMKnrhEOS5eEL1AAqQ8wBREViIn+iK9SJBguf+A/AYgJim2kr5ZeX6Ir/5sFPlUg\nZ9zR+kY5rrqWGyP3j2TWwz4FgpeiL5/IO65m/8DLCgxkvPwT13ZWABzqNntIRc0rxHxgJ0NZ3uEY\nyqJW6eQaAYLUe1lrEa4R+lUfFV/IdrzikpeKFDLHt7pCOFxuPx2twwqKsyLV8DIyOaSw9eLAvBwT\nQMCelwIfAtblwYmc6U80Cl7Q/tmQLYzxZ5ho3WuV1nRKXNevqtyOk5Y/3QM56xE3BSMnizCQ2px7\nDGgWycX8QAGwYHACZ65V7JF8MC7GqYCX+7gpVgemfzCBNKKv+pGa2n9qFZZyExR3tPJs1X1leLCu\n5veV6cnV/yLrhWFau1mWa4DBCVbyMy3xheRKJgocOXVnyiMHig/cC8S60OO8CXDPaSQv7fVPWchZ\nPEGoCW7f7/Q6SzMVuLI1Tp3pFA6LsALbMxjerb/P57wfiA+6AsMaSr1vvcBwSUxxf9hPHbTiEmoN\nXYdzno+aVj0tT0y9J060cxVdvjChINjvBMDcHVs6TmcXZOXPABhlDd6ALyQeR4hs+unwC4QjfMc1\n4jLDl3l3kwBQQnIx26oyLMErGwa6RPCNEcMKbL6sqzi7QVR6bRCTdArC4HU+sNeFY5Vpz+5kz2si\nFDwlGMZSggS/hmUJvi+PPlpZg+HwOz5WYgDfWazHNSee88JN4blJCBJUKfULjhzP9iug2R6a83hg\n7uaujtGPW9x9ZgKwvMwrSzPbme4RKYDkuNpmWhapMd5B/Y7iFmMuUByAiVUT+MhFCcUwhZDGyc9/\nI5ZUSRTls/C+zWEFds6iofMyoGuUNN/z+jk13XP/LP6vOjYwDAggJp+qRTgqN+Rcr04faLn/av3W\n+UqL9T0AXvUdLl9gBz+kg5kXYNbBB+a4cam5IOmGcKQsz5P5ToTzclGrflkHxnVlu373XIuGd7zW\nlsCY0q0Ar2VDZSVefXBtBN1ajDpN1v5wTB5BtwxHnO8Erteq7Q/L3VoH6560li5an8Hov8kwscdr\nXvf4HiynUevf4nIBxTsMNvrTge0on0Ufzn3Z+b5nXpdZ/VA3ogLFKHf+2D/lZ4/tobld/iEbPINe\n5fIqeypDPk5a9Ftfa1cViaSUu0x0d1AQzLcMWTDU2tFLeSj4zWWV4xd2AMwH5K6YeuafwDDbA9M/\nHH6BcISPgfCFsAQvi/C69W9lBQWS8UqPhAX4Bi5cMCcAXpbg/7NKJxNZB8f6sFwxWoFhCvgUlMHz\nWxwH4dx2nwKHUD5iMVUQfOeGRFh/qxzuVe+XhbK1AYJDHGj/20/kkG4c4AEEr67vllYCYHlzRIHT\nG/wGNBV2x6JdKWfaqx96LoD+kNx9AMbZP3Y4Kxy1+STpymG+ygcSzyOVeM5WtyBW3LPFM/QtAXoK\nz0L/EB416+sNuJ82wHDSqjxQU+tbvhddFNhe7uFnuocUDAtfWs08a/VQWqUxhZYDPVuPO0hehSfQ\nLUVyAMG0cuncydImzdAemEuQDFqFE73g6Bphfd88hgeN93yeKP5ZmHggIjFl4Fp2H+Gi1+apMXgW\n9BonkBceVYWu+ZCvGSdQLavwE/3s8tBp8zPLG1CW9D5znLsOuJT12pSM4bZMjOWznkFZ3clJLRA7\nrL/JVoJyp4V4sw4zbMIwCCchWQzTywj4LVAM1EXjQ1PIqe0ehTN/TOWe5zEPaifuJcfqoSSM1KGA\nN5VB2+UN+M64AmDqZDzEDXQRrd90g2CcwPji+dTvEv+GNvnHwi8QjvCxawQBXpRPQKwLSEVxS1Lc\nIZIZ4kccXSDYBBh7Y7j8GeOejLie//IEvV1Iyq21oN+6k9E3bykCilAqgxUnCL51c91xsgJi1BYu\nQGtoX7cLN4gLc2Owg3q0nBEdC3SsHA/ng6BYgSkfmBM4P63B7YXq2K3F2i7Tt9cDed6Ab8URQmbG\nc8ZeyAFV6qL+UpCpJZgzVuvQhWyOihZCWOkBoPkR//dCqZxdMZ/AsOS29fOxXn1edlrP6z91exg0\nn+W0DhPtF736wA94t0Z6bM3gSbq3+HCNSFWK5vfo6XYUsyfMoq4R+cDcg2W4v0rN6se0zON3wrtz\njlgmcmgUW3leYMS5S1FzrCHmzzXNmlU+7r1olP4bVuIXILjTKa9PYHcv90SboWQB5UD0m8svw5mj\n62fI3FiPl/VxtwJr/CUY1rKoso02yrYO5/6yBzogV39RMZnJYs+VhbXuoHAP+wC7pRu0yn0231mD\nd9DbzuN+bfmirzULIr9FqHcWXhLqBII3cAyhs90YuwG7fzDkzRHA+V3CEm/44G+Exn8YfoFwhM8f\nlgP8wgLEly8QDARPxiaVhTRDve+X7hB3WYCXdXQB3gS/NsCvyRXVw+8P4jaaWwpOyvuFAQlcKWTj\n7WbS/ZIXAj48odUGAm7Zec0LLR6Q87AGF+AP4BtKvFu0VzsJhmMer5xWCsXq7waCBfTWmxsg6XCH\nSMswH5ZTIFTuLUpTJenbOYgRYADgiuPQtwLDOqiqESM6wwQEnB9agnOlnOB4SRmOhx9iqFV8ldpa\nbT1pHmtbkXd7a88/tXIOOxj27W8/+iGv4p7zOfP7b1qBg2YCTFpZLm0oV1XS5C0rWlrvCCipxCln\nDN26zzWYYNgBurxsILj5CRNkWDVLAAwBxZQ4Am6eQLDO8XdCqvfc7E+1eGbTEnxOu+yTIA7EkvN/\n6rjtRH19GmURa2+vThNeUlp+Wc7lvcL+yi/49AaJknsnWpvDMRSV8To8dZ19DIe9nX9tFJhg1io+\nwXCdWlbfDRSfgHBXXjiDYC+FyHaybNApPBMMI3znC+Y2QMy/UddgqS09Z63nlbSd9mAO8giCt7FH\nX0401Niq2dIPNo9Rfzu2eEn9C0/uEfIsUzR/BMDwXMvTK1P/7fALhCN8xzXC87Vgtj0YtgqtQ4Jg\n2+PpL0OmMbEQIxjHzgC4vZJEGLQw3gLFl9MHbTHtHZ3z0eWVXwCgBtF3Uwn54fsIxx9McNDjNzy/\nNLPGXABGLcGQMcIW2E5jvVs8eGQPIDjSzvRKuKN92CK/+HbfyM+rBsDYQdKB1nyFR5n5MQ1aoQcY\nznVwr1+rtUJjTd/lOx7SnB/Kd/UR7m8bIB2KxUY4U1+FR0XQqvpenU99W3RR8z5zCUpqLTn/GR/H\nszVYfzsY5rnxVMBeDycYwMktYn40I3kkNG73M34AtRME06cRh/LpOxxzayghhbNVuIFiExr03D6f\n3wnnHXCGDSSrJbjW3/kIAJp1WKt9avRoltK1q9N0fbW6R6tv5ndLsH4uuQPok7tEnbfxpXM/OPwB\n2apkP9E17HvOOiH5YyXy+il2pPoF7yC48goM7y4S78EzOxq9nUJyCrZkGKEPSzCfGbGIq8tSAmKC\nN1ScXVKplE2MWVU3Jc+xaOlpKdZpP9QcQ2186tTeWn4VNifgVRAcuOJAezLG5XuEsb85wmDNTzhF\nTMZ5Z+q72uCfC79AOMJ3XCOIHhsoFiHZrqIMyzfY+itE/jjfBHE3IEzG0ngyzimOxeQGSwBsHgrv\nLsvyLWOgNZhxk23GflMwAEPh2wK1tWtXmc3NP4QEf2ZU1DyLV4qr3osCNOuqjbPAsOUUE4Rweyco\nzjhBcbe+QnyDCYztvnMEHGMODx0Ev6RRDhH8bq9QO1uEgTZreBlcIzy/1KuNdFqCc8ZegOAmjq2U\nx0ENcm3e9PYY+nmvxV613Ptw7hFyXfoh/iqP4Cm+g+L3P5P4AM62l0Eqa0DdIvgAI5Guy/5DgFoq\nSYLnl6DW0UFwuE+0ddbCbCfcHaIJvAPFuaEzbdvi5Lg/DKeitebs++QPDsPLz9B32qNxeWMoO3fk\ngWVzzb2kQ9GKP/hwnNLcT9ZesfK61N/OGXTv/Le6u2bJi9B6vTkWcfvPIVvLHpXFypieY+3Esgh/\nF+R+Ao5Hx1rct/2TzJ1zUjS9a9L3qde1kcmWCX6c87WzjmdO3oEBt/spT8HvkMPNRUKz4uw5/pwk\nnuJS1mtOsAPjBK5vwHB7h7DvD82l4Y/lnaJiya2sywB73KT/XvgFwhE+tQg3SzA3gwheM8MfWn4d\nCYL/3OH368v14ct9fSHOLvwf1CWCvsHLprS9hgSa9mRCw/rQxe1hEb7XJ6BXH9TVYm32P8KUalVu\nYMJkUzoVeggHW8B7Fa0PbNAlwuJBodvnl/JCQV+1HXkNYuO4T3V6Ku2AxKkwFASHchCrbPoG0084\n6y1hRvBCayGkHUjbOND8vpefsADeBYY7MOavv19YKs7Kt5GurBTEVbaJDxeBzCWlUkAHvynz7Sh2\np/Z7wgIPCuDTjfUu9E4c9XpkuCT6lA6gewAOcxlOs7/9rHjmXVnYsNIFz1Ixp2J05N0KLtBaS5N1\nUoVmqUTmA3FpEEtLsYebktCAfkuSoDj22wTFBLz9K3QFdlSMnBdqX7cJKE5FZjXJu0yVTh+AeHbo\nA878gHUpezIutLowoiws+USgq8C4PrXc3yyx1zFAsLSl4Fk3MGHW88b59tAPhWT9Ebom+SbSwBnc\nPgLfD4FzDTX3hwozy31lIuC4cKTlRkk/8tU2+SraE+GrFxhaHapIk6nZSTEylN6dklfcI6SGbnRK\nIdIuRMgA1f9+TkoqLxxRFuBFuzLPB94ozECL7xdoDQ5A7BO7WILoBMQuoJrrOMfxQ+EXCEf4GAjD\n1ieDHWENLuFijvWZYYLhWNT7XsDwdiQwLoC4HAd2a/BV1mKIjsmf+teybYJgw58LBYDjwxYAUhZc\nEQc8X/3CTVChBACtSVTid2yOOzcVty+tjUgLEo3mBLQXLHysuzcJ4wsAr5HxnFvObwogfgQUGwgm\n4FTXCLoq3Hf216UfVBtsp9F90oeFWB7GKwB8tgbnw3KzFdfaJesQXPJKuInq9KIpQEqZjwJPCYyD\nh5GUczgD3w/Di7dQzPHZTPlTvtIFVDVQEqQNBA9r7sYTh58956nvfSt3sgKDFqvSpOoCoQ/LTaBc\nwBcFcMWqtVn8ZeH7e4RjLsUqXMAGAwRzbzM9yg100gDAE8PoPIyVRICS7XyXgwsgdsotT0FhQt/7\nFV145Ed7TDV+cYn3rmz81j6uIfx5fF1alHmyAO/0LhfY4RNgfN5B7+YipL2NdDZmuabMIX/QrUaP\nn1iFdz9h6fcYS1p0c79JPPeaVdzRwCknMF+bBkMBYiRPWk7yE2v3+VVD9MzfrcCVn3C4+T0cho86\nteuO3g4nghbkhSE889UyTBBMYEwrsVqG55fk0l8YuzEvQbQJhmEfvs2P/0z4BcIRro+dhEMiYa2u\nRdpoffUFSA3xEgUPq6Yv3EUQfLunj7DhaoC4rL/1DuLGQCgGKiZefVkg2OMzx1afXuYGqj0uAHiy\nXilkNuKx+z0f2Flg1VLJQG65c8NHfihOWoEdAXpvS1rzTIn5WkJ+TdIFtQbXliFUpAKAY4Bgiafb\ngtd7hEHXiBQLqcbYVzzS6xzS7+kj7P3XQGoq6qq78dlT8JmQ3vm5nGWrBZAOduEXDU4B/Vk4i+3v\nhcSL2ZfewpD/rYyCjMrdQS9a+oOfvcq3x/y2n0KRFwg+u0D0MigwEI/dRAAAIABJREFUncAXG+A9\nuU00vX/Ia2A3+lquEpZ4VD/FXMIpIxuLFCvveZPP6wJAztH1xKjCK+JRX0oECgXuL9kgp8u7zmd7\nI9m1bnob8iCbTN5qcdfjkk3rYTmxGIOyr+pqD8355N9zu9lj4ak2wqft7DhcFIgf+J7VlEjqpuSP\nArukvwbBdWyg+QEQb+OR/fQyrzZDzU97dRKw/IRZLsbHjUCeUxadp2u29Kk7o2lfd6nMBSlNh1bP\nFl7wcbms1H7gnZPCGAF+EwSjgV+9O73u6Hq+IaJbhgubvALEJUJKdv10+AXCET63CEdhDwaKe/fr\ndSOWgPSP0S0hbn95uAa443bffIQXM1zpEmEvadb9kIOZzeO1Zl5feUtrcD0Vl5vXKQM8mFA2RBOm\ncbAQ2lS+3DBAPYhnTos2LYurX/mmDYMAYk9f5VWNCO7o44Xq5xFwMO78EXSujG6BFZ9dPjAXk6GK\nCtIGRdam7J7y0hrswzp8AMSp+LwGUEOvcBQMHOBTuT5THkLegQaa2qvTgI+twU8hhf6TktXRvSrj\ne/IVSNGYv8jfAYPkeZut51/jRXugn89ZS2Y5UU6tlQp3dYRlnCcZoC4V84G404czTu8R3vzDm6tF\n+QY3qzD7dQDKJ3eJuY8T3CZBlqeVlQsWG+V0RZuil8WU/FxQBGdLWluaPJWfmR6hdSes6koreSk8\nlM3qw25e+ah3BzercJZFpNVyfPg98G3bNRnlSgOzSJuHw9jtNGFQIte/qLblvQfBlW9yWgC/4DU9\nt41Dx5M0h9z+QjH8kolZBmHoUTCWd2lqGHyvfpucMTWbDEp+OXWQmmTQjTxadx313L4U1ZG2NyRl\npIWgSSMWUBbgGYenZbfHIfFwjXDb3CGegO+8y736RcZ52Pj/YvgFwhG+BYQzGHB1AFzxAr98iK1+\nAYgNWEBX3SPifcMQhoE1xqwra4DfQ08ADgtTtMEuxx++ISy667GR10cukFdrDmXKkhepdRzyxHsx\n6nSNSGUa59E6/MWHC4Fwi7BZVQojyH7o/peW219v/+kdz9R3A3TSV5ivTfPr3lwjulKjqJnKRfrj\n3sqvfpUvsr4tAvQNhvRndj7n4DmUO8WYu9HzXidCFnv1HR0EhRqAiKXQm15g5RBe4JW/Cy8qm6rg\nXTXzdrSCBS15BBdvf8Mf2A5l7OAznHrM0+Xh2QrsiT5YJi2bpv77JmCYe08Br9ASDItKDcXXrL1c\ncwLblzTRaKTpmHLx5PyYgwzRgaKU3DlxmaaSHwp5SkFPecCOKDSQ6a7yWqeCLW1z8Bak6TO/iKU3\nzlWf4fn6tCw76py+wbN8G+rqaI1GtvI+m88XvX0+UAgmQZyebVJmlaP/r4nmevIJ1vcMv3ShUGC8\nddCx+f3qSBzYQDDvmD5Yeg3cR1Bim0gf6ZqvPenYTsfizbqQ3YBxxmeV7PuJVZ/W1mUYclcXhTOu\nQ/rpeaX5urSnX8Mx+pDc+P10+AXCET59a0QgScBNgG8HwPnaMvl5WGvvO45uuMMdIt0j+IBcuEQU\n4yjDqDVYmCnjBMqOP3fs3MuWBdQWAJYhxM/7BlezaPoTBp0ak9nQq8rVHsHvErzhs3gBX+IKUQ+v\nqCWM9YTQj7Zo+ZqgOJVPdE2Nqpt/cLxPrgPipVpUGFX9KzUVGjLfJS2/fDDv7g/peY93jSUd3/it\nIioat0Jq7fJJpyqu22vuvH1fN+iw0Z7Cpnn+mfAwBU/FXvbgOJ8l/Cc4+Z41uAPc27SMSbn9PPaL\nF5WL9z3iBbrqwUak4l7x7j/Md3PzrRD64YwCvPF3WJHBC+IBXlJJ0y3CbCvzEVhmhPJjrEGhsgIW\ntWwnVCE0mdwj9miIVPeZNu/ZfEE6DMaKi4mR3WWG8kzV2a3CPZ3uDX5+WG6V6TxUD8I98Ogon/NU\nbBUXVLV/TcromD7a3Vx3TW5nK9+ggdgGghXkwqBAV8tsgDgHF0w2UaYOXK3CNAIMEGzjwoFDWBeV\nMkdPoHdOEZts0rt1DGlKsue83SYsc5x3Ph6Cv1hZyUuM4QJ+gQaApzW4fILljREnMGwdPHfgK77C\nsd9+OvwC4QjfsQivjbrArILhyy3f26tg2DVuy4p60yJsF64/N/4PAYDTVUKAsYmvcLuKss5IdzGW\nSgK/HV9xkusvbtlNpmyBlivVBPDWAgRgscSSJ0uzGdZG8cvLMhwuJfnid9nlZY1eQq8+e0Gr8K4A\nVlfV/SAUw8kqfMnX5XJECnAeQG7S7ECL33SNGAA4+wIv624NoB9b76SxjEdvG11GMZcyFTGVSolY\nAuNmKxRryitw/KwTTuWnIH5ZwcvwKN6HpT7X1CftUAYDdLz72eAd0/zdV1jBrb4z2HPKo+9iuuPt\n2rIcY4BaTiF97AiGF9hLizEOILi5RsSR4He4QXRgzIm3AwhWJa3jjIoSuEgdHlKl8QIH9oY5DqA3\nrcC6Q8VUGqJJJFcBY6gizn2ClEciqtr+53ECY13/e+Q9fzL5wIuOnSb0ybM6Pz7W5GQZ1j3kI/0y\npPIIcBpg1zTeCk6Ae7AKs8wJEI8yzx0OYmNu8v6al3z4TEF0MolUMydpsmToK8044TnRymjA2DBA\n72xoSt+uE+yQdaZ70jvoHb9Bb69Bw/lX/sG7hZh3nrW+U7t7p38m/ALhb4YlCD0ZhTRxwV0g2PSN\nCAHjwk0CFMAX8OVLwXwFKPzyAojuiw735UoQZtHFz7F5LyB9B0UapNK0EIK2FNKXWoVt+Sm7Lev0\npTSODT1yZNYAy1S0AOp2bEzQ7WvO7hBMdSGB9Gu+oy7e7uKbNhDgn3n5EGIc3T2/nJfgFwqIBwiV\nOIZ1RcOJPq3Bs1y1G5QD2M31AxL4vAu7nK9bzkl36VfSV1/Wrdyy+DrH4uMBCgHB+bGRAFjVoBWD\nmTQo6i7HaN2XEtCHQOTU/zBQx7Ey33JPZ0RMAEZb73do4HFzROKQLqDLP2tfIvpQQFlvz9Ji5LK/\nLPZD7P+0cmmndT2xr3GbC/bXEpx4A7lAPjRHy7ECYwIhIqGc29EHba9toqdyMU+5X5E/15ejY44b\nde5h/ctAKPdJnF0X6SfVLsv7iikg9uC7XJutNQ3aH3Uro45gndbOyKFEA3XPSvp3aH8tS1/v7SEz\nGyCrXehoD7TUJ3HpixV7aN6QMIOOvOCjPDqV6Q1+tAg1rFFO+9sncvLm6MAmjGs9XivPQ5ogHxzn\nZp6qpg4sb4dxnVqy8btwtgBvb3uYP+8PwvXfWtlTfScwTNpPh18g/N3QzW8bjbcwioljm4csT1lg\nxVi06FwBSM1W/GqAFQvEBnjGtUDnlwPOV7hZCEvDesVbbKCvEDRf0ZevFD9oNAK5y+tGTN0SPU9H\nl6miQCRFDZNAEQD9lBeeD6Acc5Sfg6bSCcs13NZbMC6PW588YpUJa6gC5HYbMQFy7632vwEhGXTR\nfdBOoKKGrccn6eR6PBQpkFeEqQhqvaoOj4LKix2EpOZPrl3TWUpnXfSpph3S35U/DuppA8xV/I2u\neht21usr51v+IbzsxEndvksHrWkcATW04mLcaTF02ZIXG5DBhNDwKuNeYLgsvRCfYEAfhmzXMFy+\nuNBMK7DZ7i/89BNgXMJMxqu8r/gUY7wNQ4yyBMG8vUZAbJMWe3sA5G1fRRennN5B2hluqSuKnxhI\nl5EAl6mwwlusUfnPSksBLOZQ8k06sg/5MDFfZETadqdvtLO1u6WrQpZvyorxbeh9zlLmCIp345yE\nngne9bkgyrCyH7SFjDdeUgE/4g/82EYiwiONBH4o3NRdzFUMNXVO1JFD0XRWUUB3bfORnkDYx9TX\nJJzFsEsXpaILwJcdgO+Jhg5ijWkvwHsFtyv4tXFefk334cj4T4dfIJzhM7Vc+6mzqsbXnvV9L0ua\nzJnW5GSCBRBvA64Au/e1HNX9sgC+ZS12X24H3Ndf0pN36a+w5NJK/GUI67Q3i8S3XXbGU59pRXWU\nb2QIPr6CzbEeIlynC/CFJyCGc6N7uKQE+HWC30rXOzrVQkt5FnCcytNKVelKdiWXIn0ELTWlEzqX\nvGCxo2H4gSZyL4ulNUgEfWKmzAurMGL+GXfxRWs+chGf0rVMZ0VPpfAAHlQXkvYwxFN4ZEHfInv9\nbxpZ5UYhXbhP+N8kcogTUtRFMcFnrVN+7CKbFc/AxAHWLMhpb1+Vlb+/jdusAbzEIxwNDLP90EbT\n6jvjTz+9nc0LsT6nVO0YeX4qBvIxbo9xO+B3+RBEWd544Rc/iSCzLrIudH7laD3dOi0uEVXGj9ir\nVnvwU8g5utUlGEa/g+gY4Jdp2fTLUU4my6Rc0BKwmOBWWG5bTTOf/ax8JoN/oC4OQCt4nLuiawle\nSLS7GI9HJO8/bcMl/x4WQ3muCUMp4L3v1U7tNR2vtYv/7MB2NlO552ykR3526w0QFs3cOp537Vpl\nIdNH9+iq8AnwfQTE7s0FIn2KYQ0c8yNalxEoYz9a9MOKR38y/ALhCB/eoUbfSJuU3+JqIUYoQZ6r\nOiQtALYUUlmDAxzTXeJCuU9ggVkCEd08X5hpCh+Ui8S1W4RZjn5974Xbe5plnTGGAALNTzlAgFtY\ngk0twfGHwvAGbFiFCwyv8SQgBsRgJBZhlSFRP3VpEzWJ8bo4fwLOtKjuszKtzefgW6THOZ+63lQC\npSxKSednlx/B61/ST/VlX+tBLc3/BAx/LAM/3K/tFvI8+aM6nnYANnq/wTz5g1owRryhUZ5mJYyi\n/D4CmbXYS7Qwl89rOmS1OU6F7IfmzdbrFo+A+DqD4KuXU4twswaPISw2mQT2cYAP9wD4vnz8CTxi\nw3tYhf2+ExESDHvMtYpr5zSzqy+YzmIua7L2VZhGEQVSIOiNPdHAMOjHXSAYvluDr9g30zp898YG\nFpMHkEyA7QaGcbAW6wiljShwAio+6HpflA9Rny5BXoPi0cg4XfUqWaI6MNbCz25jYxT7wNi0RW2O\n1I35HAzrNB337Pa8mBrgF2U1Bkq/uNSi462adYyoSWjimXzrNXYb4PddOn/ewXD8EvRK2giCcQC/\nXXy0Cze6lP5k+AXCGT7UrLk/d6SSQjPjSEUD1P7WeBNUwRh0h3BDAN8Q5kJzlItE79fD0eW86OcX\nwr3CIP7DwNflaZ3d69sFVFOySpexJgC1uP1OtwhYgF/ZwLAEyFkBXD4vR/Cr8bIE0zpcvsMTAJeX\nrKMsozWeLjQphLieVWpXfZ07zjxFa/Uzy/W5TycFr5wUit7nv5fbIfkrq/Ck51lPrhFPFmPmHTSm\npSJpcOF7YZu3F3vXqw0/0LUP/pD3FDpeoB+v5Ix46tLNGhyZCYCtNu0UJLmn6k7KKm5p8VJ//VK+\ntaarbakugc6VQkitwAl0r8h/AMTLGnypBn7AGnIL95DX0wj3D4f7DT78t159yDs9d0zdlWDYbyT4\ncqt50emde2mHMDO4LMnrkpY/AXeCTgxIEJxgwuNNOREu0ChQaRdasyC7AuiSGu/AcPbXpOxTeeHn\ndJU4zMOcx00/OB/05Hx4Z8gHnj/VrZnTasz9keksLnD1UQ6stgtXxqono1Dv+j4PIhZz7GaD56Z+\nVflxzp+hUaQfpoNjX3I+kXLmc/C7A+Berj6oUeX0ncIFkpfVd6ajrJV1+KfDLxCOMIXh3Lw8+tyV\nA2r0c2WTyqYiY6YeQVgIqFOgrhJIAPxVT9+V5Kydk60RoNG6+2UI628pQ4LRr2v1usAxoC8M3+ZF\nry5JP+q7nk/uLoswQkkREMc4PQR5VmgFEKJCgmAeaf1tgJhjFNeIBMDOPCR4WGu0C6AaRdDcWtd0\nrH0C1E50yD/RvR0eQxeoLjJPFbXEY4Id9M+TWjj+A50XCQ3onso/AOVuAa483SPfDtuJL2p6VHKf\n1P+6ZGLVxwLrj0mcvJQGddStVwPyAbjqLMETu9Nv1fKT2Sqs0gLs7ONnluFp0fXLALUCqxOfAOYT\nrT3JrxO7Cwm0XXBa29jn9WGQmw8PrM7fcXV833Ghb8sSbMB6bSRCxqzBEi+oTONFwjv9O2U75YPK\n3fN5wwIMWoUrvkDt+kqX4wRuq5HLDtZh2We8dW94B3CR1uA2SI2YZllV8kH5PleWfeMbG2Qj1Aly\ngfcWEI/TW6ONNvVykje4qaGaN/C9+PQNX3cpTERjCLsgbH7ANvef1Tg4S23uZs+6fG7tSr4pLfrD\nvlfjVm4NVqDWsI5fEj+C4ElzLNcHX/zUrb/iO2xCt4e0LWD80+EXCDM04CLkAy3BgNIFrCUQEeZT\neUEZoBbhi9ZeINwhxDUiLLkee62+zGZJo6sE+5QeE/LQnIN+weFfPGnZXggsoHxrocpVBoLa/7Xf\nulBhPQSaOQ50q3C5SdSDcpsCvS3dIuqHDnjFEpxuhfoTFaaKTBVzNi9zp5zgOnDJH1xR9Gdt/6xB\nJa8EptAoyL3np1yOQlPkrnnfrcKrIiq0vXyjn6zB3s9rim+M6S2QfDEXp6BNvK13K1Cq5nhum3yW\n0xYLBEw45ZYZqwgvpJpvApJB0lKWDUWvpibPjpr4Hqq/calMl6o6nrCuSFMbBQBuT7AMa/A1QfIA\nx6d5nntgykbUPLRz3AHjJ9FRgjNAsONeavm+Abvgdq/nKOI96vn+dLKpDINNzBvPT6r4BKgQc9/H\n27nJQPcIxgMkeMkXBbjTX3hZhz07PX2HV3rtX9Zj/BnjJ+swRp8O+SiLsOox5fuahxq5RX8Wf07X\nCKRCoTtb5/3SL8+8/xBebBfVU5T1T2utQ82HSnkx1VC47eVHGg8WYU1bm8chR6Q2a1RLedr6E7I4\njVCiFNif6wCGGzA2VJn2O9H2MgYcQLB3sEwREuNX8fGT4RcIfzs8SvdGa2vJh1tSp1Hp1RU/N8m0\nAnsIoA6ApWlxqKFf8LLqSlxpaRlGukYo7QoLcr3vskTG1nbt4gKOosi0PPXZAl7sX7hFiBJZAp8W\nkrCOiNJf4Or0w/ZTK3D+c2+gOK/0s68iZhxcsFxVXe10t4jF9KRqIW/lZ3gEXuiCU7FDF4SldFJv\n8JY5p5XnOueUGq0EaaiivI3clFWU39VGMPWsa3OhGKdFEPY50vc5+YgobHjIn0DrfXV73Y95wz3C\nSK0SZQF+ZQ2eICDsj1t8Ag8FxQ9Hq/mJ3VSKnpbd1E4Ffm0Du1dzh7CMG4xfJ5prcBSdfqBpmgDW\nkC9Kv7UQ/aXu3J8Og9+WY9LXRfJhxKyeirfxfe9Ermv0hxCmS7pTCPDb0gSXahWu3xngrnSzBHvd\nOSTBci+WWsi6WzuvAHH1tU0U4wdrsA9y3/piHU0rqhe/NvA24mzvFMfO26eg3hafnqNN2eCZNdag\nGd2PKAd7rclJQw54S0l6iMxd0k+KCa3LbMvNXhNg40r4HZith9+mG4S6SJQrBMtbpJvLBes0sT6b\nHK2D4Z8Ov0A4wtPt662cE9Sd/DxPdRTNNOJDABkBcAlnpiGg2PMkNBDcWnMkaObY3A3XJcDYFyhd\ntLWhL1v+wauOenjNczcXGkuLXtMd8zZnn4+0BgNpEb69rB+bv3CE9dogy2/AbSAY63gNq/BmCXb2\nsH5rLaWPppxgPT8fIOw7dQ3VD4LsBMR4fM1vJQjPQCGBzDjyzoaBSihGGetdYrNbhVVVlPuHi4Zb\nZeriQOiigKVoJvg0c2tHom/l3mdbs5U/zFy2dazugzYaIEpiuT/MnZ4zxAKijLin8rVRUdcrMKzq\ncFnQzv2cyj5Bh6btAAoIfA+g1wX8gmB3Wou1zKMo9JF+UwZYr0xsiG3uYoLgC+53GBEGACb8Sssc\n/2lD3DNzYj33mPI9585byVZd/TVKEw6jP6B25bnLUqcPx6nrw8lv+I6L1QmUq92ha1p6jHXm55Dl\nITuma3jZZMkd2/grZcpwrysQieLz3FS1B+riLfrwds/uG6Tx+6ch9l8C3lSAKgcjZOXksui7tKh8\n0fpik/a+l+kKIVe49dnpojf3iJhue7IKy89a2o9xy7Rt59XRAxAPC7EeDb9vjfjfCY/SG8Bk3c58\nxZwogZMMgAGAVwGn4L+eW9l6QrAZv3zlWpxbVmCklZa+wgTEBsdtluBx1WUSB9ZtLx/jk06g5NjS\n+6LAfH1cI0GwlWV43hbEbfDLy8px+/oFEL5uh1/qDnECxQ6i8GYRFsjqgmbKMsr+mwAWtY6X8Mri\nvnL1bFED24K9k+dnYDMVzyjr3o7MebIKlwW16FkrrcIx9lJQUse0iByUxEe66zT472W8rWvrx19U\nxVB1WRKa8hsgQm+xrrUXBQa8tAy7LvwD0Eg+sHPe9BVuA6HwodvDCeA+HrX82qn1FL+09ig+n8v4\n5cAfK2FJyTDFoN/AFaDXrQAxys0sb2sb1+gE+s593Dw+PkFUVkWO4NdK3h3dId7Etzzn2yQ824Pt\nY2QcG20HuIDMi1Y4M4XW+a6s+imvlPdTCFKGoLODkGcL5yWw+OsH/pc9InvhtIyVtzrAd3U76DMc\nJUT2qb85hwTW0XpvkOyaVxndM3Op9b96n7ORoLfkTA0m+o7uCkF+PIHilXcAwaE/aRFuwNmqnAHt\n1WlpIZaj6fFh1P9m+AXCDG8sdL3sFmlAZEnNlt3KMK8JJyCviGBIa8YVHOLN6csf7x8QZF4ooEv/\n4SPoFUB8ZR5w32tT30DeUry18xP7NECnQLFANPdk5gmgVMsw2ykB7yXgY/gL7K5+8y0RSQPCa1Cd\nItBSSWGnrfq6mqS1VGc2BJjiPVQF1ca+HtsaHVdvBP/escAvtuNaHy/rJPsqFpjmKxzjpBUNStcO\n0uLAdo5W36rP2ry9QRHf2JKn8m0LPtb1iMxeAJ1SYvPsshpbpqvGdcbCtzppeOEfKXEVHNqwsGQq\nbsa3PFHCmpcuEAvMuoBaewWAFfzG+fbSItwixySADqJj/JuvOTh/An6X8IwvcRIML4sq9/OUuW/D\n4INyqy7f+dk3bjPTNNY6b3I/+sGtclnd/XqyBmc8NpXmmXBBtbso2iZezMXWL9Q+3wZ1nKoBCLH6\ntVnVPfiRg891p3JhBVKTlWzbg+yRjTrdE5rwnzWAoDFLabtxgWXTADDqKVG4t9GZqtJ+yt/OnSV3\nhbymNGgKimNupwXYTAGwWnz9mQ4BxDatybbTbD/mtXYeP9mU/2z4BcIRPte5fow+1aJLqj6BzCMj\nLCZcFtZmFQ4Jlz58vFy64xbINdpwlPVY4uo37AAuL9C7ALEJIAZwFUhawHI90ayWiGYcTAXf58Ml\nprgt+wd6+ZnEUW4QMrU5b+7xwHhYhsNa7Fi3Ca9wi4iP0AUQ7K4SbJtWg3oYjP2jEN4BsQdd8d6R\ng/xlbi/qrfhzOZS7AwX2fvRqNSstC+8aL7Vm+AZLR7LmEM5Vl6iRzTWCzIC+aNNtIgL1Hk85DPTl\nLHxa3lqW73R/Vf6ZLqoGBB287U5yug8FCAnEGbSQBbFpPE9wOdlba2uvdUU/VGEDt4g+TjC8qp+u\nEkvo+AH8ulqIk94BsU0r8pixXO9T8C3SounzvlWxBFyuY8isco0gCJb0CUF9rHe9T67uxDMWQvIG\nClTmT0DxFdX1h+MWLQ0CIZuPluHckvHBDRf9Ir09p+2xTBJ5EN4GRmXVlQaGa6ZYtO5O8oxyXWWd\nLotdZ5d1eN/ZtNwaZBs1uBt76AiIH5jAUGAdniCtPk0v54aVuPUs5+5Uv43oqScjdejqyTpt7SHb\n6daBcI1AvPasgC558ewecQDBSQ+LL+sd5xrKAtzA8APtp8MvEM7wDqpEqa3Y+TzdaPn0ZmSQb21l\ndbcIlrHFoOscWy+Ih8d71SCAeOkitvXlBTTdyyeY1t+LZa7UHfGFurBAX4uW4kosVTdooSgYIHdh\nNmTBGMebyowyzuoUhwsI3o+4S7/yrRF8bdoFiQd9c42Qf+DRIXf91V/Yqm8cha81qbG5nLv7jqpN\nPGlD4X/GcXWGTUJU6kAqEn1ALkGO1zkJ8HnLWBYhwZgosOq44cjE0p8EfiffOa3r4DKxDfYb4Xwz\nR0CYf7vK750wFVPCAMt0+Ql7rA3nGfjMAlxxd2srlK9xQoFa5Re3AQis+tZRGkFtWYQtAK/blfEF\ndiU+wLFRIB3n9DCxB2zaMLHfxcuapVePbnC/6gLeLT5CZOlv6yKDNlCKh1uyuoHk7gfztodLJTSA\nme1VHQsc1FoRLBzdIfxkGS7QewLMkLECfazaB5zS0mdIHW0C+vbPevuMiKxzG94+XtfWysGNRWQP\nVHWjjV60EUzdxiyqin3U4GmvraqSOsQwZASeqsTU0s39tnXwIZ1r9Fym5jPaJsBt8nhYqZ0PzvWB\nkd953EFvgdxG80nzcTx8WtkewDB5btIeVMe/GX6BMMPHis+T7xmmoi2+U2V1wBEIYeMhEAMw88ty\nS7KtAnn7iO8Ojq+r1UYsELJuE/q6PYgOfGkx1rdITBcJTyv06iitwcC6ZSf4vIGtAftytgpgIoVD\n6i/kcDbwSx0z5e7+eWX1C0b73bFxmyWYR4TXs6Pmlyu8pF2Hs95dC8BxyUN07nXGzlLeqa94TubL\ntKwXrYEd0KrC9fH0gS6ssM7wHGOI1vEQHRdoguYskzK3hG8JXav9ocrr4fbh94NvyVmrPyZ6eATI\nPuKjgdzfNtItb2XWF/ao4mI/B3+d/YHjluyxYu2a+B6DyjlZN6VPXqDAjnEDFpgOYOt8FzDj1wK5\nbhVXQKwA2QiQD2H385Q57pFMEoBsp4agWnx5rX3n3R3CzcQaXGBYDQ7VuZI9DemiCMnOSY49FBu0\n3rGOps1pdWUl820R+t5U+WZQfna5gd7oVgLmFqeVsg2rdUll6XcAMmZ6zN0pTJ0oEkUK2V5aG2/K\n7bmdBvaw5rjeuc19UOtJ2fgKdWlOVRMQV+p1Oz1geZinJ5D7QZlTLzea02JNvuSDyrHLm6U4HpRL\n/BEg9ykNtQYXIC4/YQLg+RBdgGM7gGGNG0Gw/VqE/5vhsEXcxFR/AAAgAElEQVRfFX4oXbergdJt\nudUNDQwDBL7FfLmjUypR0vl6RRE/LwwrQOrcngvl0fdTQWgDvqRdOy0twpfl08jAAsNkciCAqpfQ\n7NiBwqsmykc5+gSn8sEOghsglvMVCF/uuO+yBCfNxUfYcbYMt3Xs/mtrPjwbrgfHIG+WqLKQ2MRR\nah32UWDy0a4oelTVhlqBNZ9tGKi0PXPXkkTcJA4Wllv32lpzi6ix70CxP4LykS/wywn4ftnJj0fa\nXIi/6kCqRRDq8K5BWyfyVHbCZPGoqFY8P5edDfT8dgvGZPppWYy1afHUtxI3623Y8qulm4PHK9EW\nGD5Zg9UivH7lTnE9r7j3iG30Q7j9IGc8j05Q7A7PI0Fx+AcTHLNKAj7rluCSR51v886y9IDvyHbd\nHsdAIKavLRMwPFwk6hkJvUu2Rt8swxJn82oVRrbFMr6B370MHsuM4Wxx175omSE+CKbJ6fvepFzd\nHwKuuP49BNG11TY7KMC13aF6qm2+L4YT1pT5XsdW1YTLdizTY1KXz1LeAa80nz7DAXoLvCPnhvy2\nW4KHFbjlM89bevkR7z7BVeYAhm3ELcD0f8Ek/AuEM3ymALfbsA8aN6GA6C5ggOHITzCMEsxuYYUl\nMA4wnJf/giIt3CMI+vh1OIJbdYNorhGOdJcoFwmkRfgEKQiIKST7j7eQCnoVEOxzV5apcrlgXBVC\nE8bxK0sw0heu/IH5ev3pGoGcDzgSEJqLtR3IspTmiZcU/DoPJWmnIpxuEC+Dj2ML+xock756S+C7\nzooec8xAswpTkDKuX53jbcQEsiZxDnBYHzoyA2VwdfJF/BGXPoWXZbuf4AcnfLsYlVrqFuHnui3a\nnx5Pn8Ik+AaG860Rn7hLsMt0jZhgmDo0gbi4UKTFes2WheU0j/QNTsBrDfSmBZhpdY3ge4S3GXsz\nv31YcmK91byEGn9LaCUIjjtZahV2W5bUtAjjAfzaSPcZB3ld2X7z+xrnFfg9geB+TJHuO9hdoHgR\nV7nVIJu83MNljVtRPNgTS+2uGjls6p9Bk4NEfKR7/LzE/qKAtdi3jFKncLy4nDLqsGDZlYPMbQKr\n06qWvc63qQ302TlmWqK3Y208cUdQ7tSZypHYQ4bd+st9UcDXj+DXJt0dV+CVlV+fT646o6ztb5fg\nHlA3ip8Ov0CY4T/ce0Btn1fHWTCd1oEEFDeWa8SN5QN0pfKL42XxkNhiclqHnX5xCGALAr6mMxCu\ndPi6FoDkJ5jLIrzcKtb9ueowx7B+ssFeTqhnVMEiLcIsc3NTMl/amqD4vssirBZgTadbRI7fS2Gq\nUo32y6oToCGFCxIUTvCbAE7+CuSWOeigrOe8D8k7LnHW4RSMqAsulouFr5VYZxMs69Pa9SBdTkQK\n1xqdSaMC2BIMzw6P+Ivwqsg2V59M3qFMqjc/0N7Vy/36shitwlJ3WojLcgwCKK2tgV0caLEHrfb0\nKhLrlmAYua68TT5Bb8tjRrg9EPx6+gpP+rAOpzW4H9njbQ5l9s75c0az40tWfi2O5N2v3Lj3VVrd\nLT6oUVbgdJVA2RLURaKD3+4jr/yv6z8eN4Tug84nZIgJii3BgfahPRuhNBcLcDSpNgvu/dQdY56f\nwC/TFhXvtLkoSni3Gc/5g6vf1LGfWJJpTHaLn2SUyDHjmu5C6lkezRxvefZUbOYn6WAlPsVs0pju\n42mWbtCHOM50eXTRwoKLsv6albFsWomP8dA9GbdpNT74C7MdK35UQPzrI/xfDt/ZjAkstlP2FaRi\npO5LsRmR9B9zb4yhoNfzaYglCQ1L7sORD8slEEYHvdfVLcDNVxieD9ddUvam9RlIS7QDCcg5jrRi\nz3lIYVSPpm2TZ1mk5s3KwptuGI22frcDduMAfssVJGnoVmGuG8e/HhK07JsPPzJql9XXAg8uA8lx\njOWfoMu3zAP9RPA9aVJ5u+NAuCXjtRh/9tU68PW2GLQkjhuTAxxvGCA7MoCBHg9z9DwJFRokEUX4\nLnQw8r6db9XT8vcHY9T1IOPNUoUSBJvrw05zITULMkpx8ELOYnOyTYuj5ifP02pt9gh+sf0shMUp\n73q2CL+Z+8d8u4Of187jBvZL9jbfGEEAfFX85i/miGAYWA/+TtcsziuDx5rUg/f1Crxcl8bXDW42\nf2BesKyv8IXsF2txiPy3wLf7CIfxZJSP5e7ANkWtVw9bmerzHE0ZBnSoh92R4nQIOdvO7uENf7Rp\n9gGGZxj7q+7GWE0mq/KH8R6CbQXsENsrsaeyNnNOpYF0bziBXl6kUYZzn6e8XJNBOcDJSwDKeJSc\nFuJ1fLAG529Yg1nWrEBulrMBgE3cI2pv/mT4BcLfDL5Feu5U/5B4lxlL+rRn4rDA5h2CNoFnAlOD\nXQvkwa1cIhw7EB5HXrXRwX25QRjuA1D+CslAsecXcN31pHqzLHgOZUN+eb4SFFvlpj1MFiyswMMN\nw4E73hpBJViAGB0YDxCcH9agQs1+eVmDU3YQZNYtZs+xGE8T5dDg2jF+JpwCR9tPUz0iTbdq1V+Y\nFoDOjwKCVYPbAL4DHFfjowxB8rzVeNRPD0rr0yDjnbX4Y6IHnYe9gk8Wx3I6Use0utUdQrylBXiq\nNdgbTZspmh9omWabgmjKAhxp9nkhZPBVjFSMHnl0IygwvLSSxvFlZ+D7NUCzzMlpusfUbWUmCGg+\nTV/jGB/SWG+KUGswH5ZD/tbdtt0Fi8q3+cwnhfOcsy3XfCorq+8lzvSCpOac8Sv6SACyWYHHEQLa\nTkCZvqEKJszYb5lbsURaK5fS7RH0GTxl4ikc9xdC3mi/HI/z9lBFz/CSKOnaQlmUrwyLopJnUkbv\nenWpO2JjvIdp2fnZJq1bf7kODy32sjZrAlSeymV3YGHniai1L/kRIiAwQdx5FvC7A2Ch+Q6K66ty\n4Q+c5SsdN5420Jtvj+A5/4GK+NvwC4S/Gz7UlRPjZdyEiUWoLQajUBYliXjgKKQkBbWBgDBen3MD\nX5cA4QFu19HLfcK7tfhybxZhPkymktZzDCv/8hqPPvRnMfizhUdVjA0A7BJHjpSbhKC4u0Mg3xW8\n+QSTDqAelJu0wkBuU+nN1Tus8yn+VOZVucycldYE9Ru2feoaaHKBtK4jWevPeLvY4bhfWI6nP/H+\n/koAG03y2MFpmflkT+23X1oowNXv7ehOemrnrUKedGEJk+Q851XeKnB4OO5Vu0+ZbEc1NgEutbFZ\nB8RWADldI+Lop3i+T/gCjA/TCfAN+qNrxBPI3YdyGOy93lPsstmvO5xnDbgvuK1PK7PPBL4wyisF\nwwWcfDTZjl5vQSEf8QG5xerdr77xOfr6c2nU4soLE0MAYqil14sWgLf5C0dbjK/z1u3uWybSsi/W\ngFkWsQJNmWd5hqR1X5WjT575xty/3XF13UZ9Dxwv8OUcKA2IPV+7hNZfnw+Std1orZ4TT9qINMls\nh7Jt7ftJtucIva/NYzm521ZzpGMeaaAB39lfw3Rl+A6NLhH1sFwB4O4a8fT55Uv7YWodfpIQ/174\nBcLfDS+10sdFHjVtYgns27YEVGd28/UaFFoWlpANq/JVbg+XW6a/GjhGfIkJYREGcAHWpDDSXOFC\n8zRThNgNmisN5fahtwFFB9fEvZqodE1QT1zvIFfpkp41btOvkqxrgDWCtLIBKVpHOQDxZg+ro4CM\nVHwCNJg+ayntnD/GecHwEr7LKd3q9QIce9UPWHMb6conFCHR2OlWZOuy5MFr/t6A3WPwLbKFE9DN\nM7zTSDKJuAKiAfTXkNdc8QKQ8QmCs12OUzpgg0YgRlpaeA7nVu1D6SkTyDTPPIv9nleOd+2gNSaH\n3w7L7zzWdtG9lHHH4MYx/o1mjb6xP10htH/ef7levvps0ql8iBeleOtXQImQd25Diz6Y8qnI4pUk\nQI51d02bbI9qY4nRei1a8wWOtlfcjxZi32hsXTnBz+OB8kPJM67ELg4t8/RZipIcIgOF2dgbhXUO\n77wYjCTdqZyNWXzD3AbLO6ipV0D/1LK+n2hX5kHK9TZttmYtu0Wez939g5WiovXsNdzXcs93VX5L\nnvgDTWQO5U4e4S1e+0doKPCb58ReyHk0BAax1PFqEc74ZfKsraXn1U+HXyD8N+Ek5b8T5FxCjaYw\nbYJgggue0zcFP8mptxrom3M3mufdTbcOjue7hk+S2du9O5cyJm+aQDygshTBxc1CQSEbXUGwzXcx\nKhLJuYm/HlBhWwMfUW9nei9RaZPZ7BpBOqjKTqxCKhjN1kOMdifYVdDbALD18adiTVAs6vr0poHB\nhIp5iqsepkWmp8a/avAEYtEWax2381MXTlDL+g1Ci5niLe6N2T/YTKfBPISsXsAi5ya5QRXvqPXR\nuBUWQAParfHFA3XhkHwhO7vhfram1voBcE3zZRxq4Vc+eKU7tjxZ1lzifOdWak3Q7cDvPn8mJe1A\ne+qDS2pbD8w1klJ3gOAGgIEdDHurIEGNpJ+ONsonYPU1SUsG93heAJnIcFdQqXVUuua9ZN5nQPd1\n3qQRQFk2uIu1pDWRZ1veYVVQrm0FktdfOV9kSOVKflW702STFs02mkUPeExwKy4nCc5Cxl6Sv9KV\nX31HCzUX+546p+0hb8yv5vmL9lWJyTatjac7jKFrvlzKEwiWPWTN0tvzi77Wt8oKAM71QJUzGyAY\nglmsQPL5EYN/NfwC4b8NXbLP5H9cpSoYAO2uG7eXfvLYUMB3MZQnAHbr4DjfGhHxtATDMw5gPZjX\npLAn8AVQ1l9KpAvhn7eEpKcVObYJhYgcN6WUOzhG78RaC3kQqK3/ww0CaO4O55+4Q1i1VJ2wdjQg\nbg9DQK+NsiiLodm6jRuffk5gHIvTwDHWYm20jSkoZgZ3JMMYGkBtgypCuT8EJf3jiNKAQkbhRkP1\nZUUD4pawgFrj4hEhDjeXtXYdOqkP3z8aXGekh9Nt19XNDqJcy8uwAJSF2Avce67PspxvRvDWKBup\nxnr7le+Dpg9JPoWpXLsgQbGt0I39Wbdz6oI3IVZZiPkiL9W/NDQ5N+MAU6qii6t6f+edluTYJysw\nNz3H4qqs1bJVv+C8RgMgYHXKJPqUapz9smQoy7sDxXdFYz8s+0uAWPYD8hJKrnv1Re0O7rtI9hGf\nc7sDPIGrKoeFecQGULNhfSU5+S4ncN5GKxuw2/mvD1pBofJv9Xutv759QwHvs0W4eOAa+cd5GN3e\ngOxD2Vfn7WUPeX7Oe6q/FCH3B3Jf7Hnk0QCxBMEhi5oF+EDLvUGaoQNgK1oDufHTh+QSDIdV+Pc9\nwv9j4VNjVgsHgKKKYsZ5Cq3AFLYsQYZMK0Aw1W31JOYtjPYVmOcKl4jLxE3CLOPLiY6KpgQ4LcTU\nl77uSYX/8hKUnu4RNna0CpqSgFP49CeBazYWjiKQHe4RTbmOSZ6LZFXKheaZR43IDln2uT15H0ct\nZ9cNi6uRaRVWy3DmIySBaoSgL7ApHGHAtLxOmHFSgkr3AVIKFCd3FWA1TXM9eauXa1Tgr5DAZ64R\nXibS7O1RBH53j43xd+zoW762c957Eg+CgmHYmg/PsR+xZ++DdMq1gy0ut/xP+a+CdoBjOnZK42pb\nrJ1l+dZaFr1wAsV1LFXJu1vRAygI5oqXTCvgrzZGT4Dum1WYt3eXwpY5yi1DaxXqTQrox52mgJfC\ngq4RwdMxoQS7S2SUWwSEliMVRqh6azuK95lYeledtTL7p+j9Ia5j2uO1Pknb4t1FQs/zHJBSk6NL\nZuaZ5WK1tVeLvuo6bELTiAhtGlMU8Ja7wzOtQDJFbtH6eB/mBz1s82yVel3WHvO2/KVg0R7NfCkK\nCFTnL+oe4JfHDSTjGQQzn301hDtE8LjcAB0gWI8WX2y3tBT/dPgFwhmOKvgh/KVmhu5jf6APBd72\npSXD6nkF1Ah8fQPABL1lDbb0B3YLMByNukpZBb6Gco/Y3CZCV11WZUNwTUvPLlzxdvqblSUtZQoO\nVrqpcN9FwCYOonGXecxdGzSCXsYByyftc+JzDa51ZRyAeAHgC+ouoWCYIJiAOkX3JhHtLQhOhmkA\nS0oK+EkrsFiAQQuwlZW4p2WqQYtu1HF0jWDVwbfDilwde9oVn+zKpxLFG7PEtnvnfprZjhyr51Pn\neLAII+NtiId+Md6svO/iDvg+guf++4GotBlvVtc7kJmC4wmKSy1z9PWcuXbsNCfx18ir3caY++sm\nCL5H//rPoMo7fmOqbPyKtta3gZ2cG7pDOOpiPkCwqSHD5PnPAgfcNzaBY5TlZUV+Dh5y8y3KnUEy\nV0TjlnXI1P9VfLPMZac5dzETWcwbvfLIKTN4zoFeGKSeIM8nU5SeqwEW4JruDgbb3CKulg+kWwSq\nXB/BSV+JRp56bJ53TM9ZOpW1kebfodSAnn7xKwtx7Jmo6xUI5ppyj0zazOc+t9APPHLedxAM8Kvs\nCwT/Piz3PxFKgAO5SZ/1kpzDMIFLL5dkYqFRvAsn77fKAiutV/J0twgCYAW99Av+QqVxSZPT9ACk\nhG6gN10kVp882qOjWorBKVEkKaJTpItYH82SsvayWoaHO8SQFU/Lk9e5TSINjRB95pP2CxT2NMsa\nLcKX4bov3AGI1wdQBAzzX1qKo402GVa07dbDicZzBk2Fpeia0PsrTayV6VXYm0WYVt9o49B8+QAz\ns/ozDdtrDI4d3PfxKHDahtoGKBmPt2lUieupbzbwqGIDwzGWhfHXeAoGeU6FZQVVmWsfPozbU39l\njc95Md/T3yP3l7pBLEi1LoLV6rs2dq1urGbqVqsxyV7KsqbnxV/r85YfCUmLuB9dI7q/MISRhQ7u\npJqaTIuo6Yqd8H7JHvaH5wBiHQ4Bl9Ip67NaNxsA0elh1rlbXd0ewa4/A99pz9ewga4parCLvlN8\nyQFNN+cH6LCFO1oHQppw4ZPY1IMXoU2TV2EL4V2Sclp/8UjbLMJC66Mdc/WGfizXZ+ixLPyh/Zdh\narpX+6T/Fj9TUj2AYNmDxnJ5FD9hoCzBxgsQ5PEJ/C7gG26bSXs76H88/AJhhvcct0KTMK+U+OHE\nD4varNZExzXZWZ2+4OIfXCDYbQDi+NE/OC3C1IOAuEbYAxgmzasLPP8OP2T2+0J8EASHOT5MepJK\n1XpKVwVZKyf1IK3EbeK8xeavt1t94WuYco7H/Z0Ep9zhYdVd5AV4YRZvjqj09sOkoegazc7ynBMv\nveBFKc5pzIsWuilwrvPNHDjMueUr5tpnS9PV4TClhzdE5PtEp/Lb+MG3WLMcPQ32Ff3T7Yrs7oo6\nYGXuKzAMpFuIwSQ++y2PxHo10B4M+iSeh9of29H7ujxOh57GQfJdjArBeEvpvqMH6z0HGfe7niuA\ntbWiHGBjeXdFQbD4oqfvNesyDBA8rcLY0tw2u1tEhyUmP0i5DeDo2if49RxhAUOx9AI59+II0QT5\nFfNzC12eOV4yPeO5Gm/jWaeOAU3E1UxYL9PKaV47V/blwXpnY2NPlakgOOdLeRAA/aWz7eD5lClC\nL2vvOloeXz8U92QlbsMd82ODuOft58xymRa5vs/i4Zxg8aMye1Rsz8GiMss4ziBYwG+Pjz0Gr7nO\nuKexR98isfkLXwWG+bCcarSp3U7z9Z+EXyD83bDhjTMw6cW+w53YV9z7JmtVSkZ/WG7Ji2YZlrdC\nNDAs3aTFON0egJSyy+pr4gYR9TWrsC9QjZR1cquD0uPRppVhzy8FtLYjQbC3MpkHtPhTG30puTtr\nTmnpDUmJHcDqebQIX8sS/MJXOH8IoTzVsmmavwKQNUeS9yKILhFLb0wpAN7eV99dvv0D9H8lg3BO\nQynZALq0MNK3uKaz8hRYg0/aH8cwtff3xGGW+MYW1LJyMyJ91Ot2t8f2j95bAVsFe63KdrWgcuMc\nt0nPwysHicN47IMjHLi4mWkJLgswjC/6qpGZY7lLkeqXuOAkbKi3bQBrT7BZ4yWCxfYOxxIrwOTu\n62L6ybrVAG+8YWJMs+4S2WXZP5VQZSkusEv+pnLX2jpbdmCcf1Neb4I779SpG8QJ6ALDRcKfylm+\nrWf0Qpel98JG3hCD/QTDlpWgf2+gUr4ThfeWWLIHOrABYO4/qBxdx2vQTg/FnWh5X06aepyrp+k5\nxEmZ8ugkwSbtuU6d80Fuvxf7hvMIPIPgLDPKQ8pYja+D37NVWA12RqvwBcz3CL+ez38u/ALhfySU\n0vuOvn27sFrh1KibICnmIgDWtJvla9MSwCLcIYSeoBgoAAzA7wDI8GYlpoXZIfEAxcsybENI7kNj\n8BbrmtolTRCcpQmOucePdQ/3iZeTvyavADBq9w6L7gTJV/oDd7/g00Nz0xpcwkNV82nS9Dr8E44r\nn2pacAoEB9ho/JSZ69wArgWUo49h2dVb4enGIhZjWp0JSPp4uL4QBaOldKH7Y5RHxar5iYdezZGo\n7odiCoYJgOudskxre2u87fqYdXTG7f3wPe4VAVq8FNK78KlkMt53J6S6LgHDDlw3/F4b3+LK2Hnn\nCFiWXb2t2RCFJdGMj2XSx9ZqDikv5C0M9A329elIsRDH6BzIdwxL0+al3Mk3ahXWXdZ33LL2W2er\n4JHia0Nd7ClKmmCnM77U2GT5sBDD+/uEo+mT5ffJKqxtTWnysDSSrsFr2dWzuZGrwG4glovmeVLu\nq7Xeyqb1RhmhG9JyWbKD4ndaf9dKdCvxuVyzEvehb3NX49slVZvTh/Nz3JN2KPdKJqmi2yzFGxKu\nU1RRLp6nXJYH4j61BIc868D4ZBUWAKzxCwKIw1J8/bpG/JfDiTVPwfuGxTOvZvlP6QJ04h5iba4m\nNFGSXeKKq9QNYv28XCDip6D4awpoukkkAEb5/IpPMF0q6mG6ii8gHGBJVNBpRjw2o3rTsVyCGd5C\nJUCDPhA3LGQ+gO9hxjk3J+Nr0frEnkCstbiC4PmQ3AXQbUJAb31cA9mBNX7RTBadhc2RjkGdk41P\nHWhgV3xGCygvLeWc6wTDAK29YtcDUV/zBaayEotxvlkhwTKEj/VxMwbVLHMTyIBEKfrMG8EO2f6U\nz2IuSwR0a3fOE891+SvDm74jB1Cc57fFQk8flv+VDMqpk+Xykc4HkxRxRbo+phH8S29Wm6DYciz6\nOsHVBK28cgTL8YG5AMnz4cqjS0Qo57QAh0J3XoDUfFof6vHHWUwwlJM6rcBB0zsgGDzDuUzi4KiN\njWUvYn8wziHguKVfuUbst9ttJHq6W0JV9MwKtpq57Do4GftsN4vl7RPLC8lkVgHGq1/B92Zt/sxr\nzV5ZhD+mWe9vi9sDXSJP52baD7RZzvcS61wvMHuou/Qktp8nYK2Tm2tEnLc9EDfLoMo0P2GISoQj\n3SCSXq9RW/ik3mpF1Vi006z8u+EXCH87yO7cGPYzgJIP0Aw6axGJgCFvNau16sAAvvG7iv3pEqF+\nwsXFXnHxCXag3s5O0DzSfh8AscVDefEUH8er+ld1POVbWdGkJG89o17aVLrPpa7Dg3MopQhJizjI\nrdzdE+S3gd2Kb3mXrXch6i8A8P6+4FLDBq0T/TgB1JtwKq5uEH6gJQgeYBeG5irBi5GICpBSTeZ1\nfo6wspBDoluFZkbfUiGVspTRRH2dtqt+XeXT/PiW1886n2eSwbnT7TnPnctBpdYbVRjhchIVVE/P\nvm6qQ+e5vTcNJU+4tXLZbiAsvu0F4najXZQh1juswe4eflfBTBf3Dc7HqGfxkB69H8mTzQocvxtB\nAxIE576OW7je58cknmvhstWUDgHFctVgjS/pNnFQBZMbG2P0tSfMdnRrcKXLDYK0t2nWPQdtOk4b\n6TE/1st4o++Ky/rZOCW9lUVXCFGvCQheR8+TrNGQfNStvwVqy/pbVt/HcrJmnReKoHO3lXkTf0UD\nNrY4lt1kiig6cx9iJbRdXBw+uhSlnH7tH0y3CKZbXh7VIkyV1n2Dyz3C6qE5Q75H+Nci/D8SaM0Y\nxF3jfZ7dyxSW6GBRCzXhEeW52eN3hTWnuSwAycIKik6hWYOZNmwAWC3BM32FcGObOaSwAjgHxzas\nKzAOrm7AqG8wJ2e+NSKhXps/R8dTpKlwOVqHM1KgtwPjev/Lbg3eQfCTm8Quhk9icKrsom8yUAeZ\n9MVYBEh8ENFDuRwtwvkgXD0MVgDdwNXoiqoIdI3YwTI6INYxe90+z4GoRuJYNL29KLdOm3yuM+gH\nWuX5RifPHuuQ5hv20bIb01faqkA7wbWwjMnG6LYpAXJT+Zwe7jWtIr/coKA4Nr0A5HxIig8fZDm2\nR+RQRwMa8OW6+zwGCKaAePq0sqGswWlcSIvwVNp9V7Vd5ON27pikRi8/IJlEtPrbWrDtlmmtBq3y\ninFMi6/jyUoM8NPKpDF/b7FSbSuNpdLOKpCedbSteG5oo2U0H+bktuV+NZla8Rt2PW/R8g0euUaW\n8ffvEsZOs8pr/T2s76nMU/7TtDS6H2iDnmlHuUPMgmSouDj0lFOhPSW/7w1P2bNZheEy1zwn4uLy\n1n4GXBaW4ZzbVHX9C7ilPn8twv/18Onctx3/AkZSyTxXsDVf8rBY1yRT33y0gLI15XaFslO/Xb7K\nZFqKmwXYjHfdy5TA/og7BF+zloDYAL980cUSfG3uEWtMickOCrnABS2Ti9BsbQ4BxNzz/QE57bv+\ndO47bcyzbucEqpC4HtcOnhZhu579hI9WZFqZDKjX453U9oRWRfeNthajqW2d61yLmu/+Jgmg3u5g\nUsGaC75Sbb5L2HM2y282+TfOPfsRk++lx4aeFmDRECfnSvN13CONMWNIWi+juuUkm7fyMkUsYaOs\n9tNGuqJVOiXBqCBdNbKP1uucbaKm08fUtYuXO94SoWD4Cnq6RhjcDuCXm10twq+Ary0erU8V13G1\nEYpWAHC5QdSvfCTFH5gXUl5D6zuq3//RAmMXjRm1KCO+zfsyDnnyEE4MF7QGdqPipI0yLmWfXp8G\nlF6ZXVrd7Hmmg1fmPw2HW/URzR1obn3csb9LZjgmKOkZUS0AACAASURBVIbLGIi+vKy63doLSQNn\n669Yk5Mm3T0Mu+VLwRN9m4J5h0yH/wl9iIEUyQF6j4veQLFqz6qw+QdjB8Elrw4AGQiLb6QT/MoF\niiEs808/G3dSD+P4l8MvEP5PwtSyW5iZfiQ39Z8AxPobkFIgWJfqWgeZyksneWiCAsGUDEgLcZPI\ndHuIfOZ+3d3HmOde8UlltQRfAYL5YY+2/Xz1kft3Yp/ttn4CXQLp+Bsbu/VfaAWM66/+lBb6uCsK\nKrEEqyvdwPDVAe4CwAF+JY8f1YC8R7gBYLZDsRxrZHqB8qydz/LvIU2g1cBvswQDZT1kmRCkTFMg\ncr1SITkZGA0sK+LKNgUn+Iq0B6ZCAKd9Tqy9BDqltXe3CFGXjaY8MbdvvfGh15HzcqCTI895M7fa\naDmCoGyk869r3aURj33Vtkyqq+kSMEz0gdr7afkF3AiASTcA8UrA5FvEelvco7+Kf2FbnOcRFCP2\nnltdWC25V/y03hpxb1+W4y3eBMHuBYJlKre1Pv1yjlXAegKdUv6VZ96hRV4XHNak1rbktfaHQ7rl\nvOnyAJytxE/0asJahzI60F5uP5WFvaJzetb1VG7qLbH85yRwcow87NhBsdw/C/4J6YngUEkfaBMY\nW+XpVGl3T/Gna4TzsPf5UXkAiW4llW+YPvC1guJ6DSH3Bc/zBMXkaQBoQNfR8p9AcKW5DhK37gpx\nfeP30+EXCGf4cPabmXdjwwPlVVDtVFXbyC0wbE1vFb6g9SSswrbOubDASxprLEBN+v4q5wL5urSo\nmr7Ablh+viOvALAvAAzU2yJs3eJYlml1XbCumKms+27Gth4s4CauEVV60lrew8zvK4cCxNzVOFmC\nCWxJuwr4XpVv1z1ooy70uIlUJXx8UNmHEfWxzbSCH8fpSObrSin9glsa4/a159wRCxPcvnKNqE8S\nk8GBfFAKdX6rHNg3QKKd53mps3kL8AVYeUgrnX+7X9/5McYcj4qO7Xyp1aWfmT0At4dlda8xaTKL\nLc12p2W4vyd8vSHCaA0OALwqo2vE4n1uevJxXryNfcQ49xf9gWEd+LZ4jP35t/L50JzKUBdlrvPw\navfUDhOLlj/NZPHnnEp2e2vLZqSs2KTtgNYf6EpbF5JK10bP/VjUtm2mZXiUfUB4r2lPZQ4g2Ea6\nFCDze5r8ZMAOaqeVGHVUC7ACZVh110Z3G81e5evfXSKc+S/OKQFQwWu4cIw7zV5M0ZRo7Y2ir4Lu\nSB/gV5bgl1bil2n52Td+V/kJ/3T4BcLfDqKQN8qeV2GeQ6sFFZrsf8pXrW5agglaJDQAmvopwEvQ\nAMjDb+MGsRp/Zs/1IbgAvvlFOljzDyY45nuK/UZuq3tWbCUPOyjuykfBbgfWLnShZflqav6AAgNN\n4KdUs9zNHQRbWYOvAsRpEb7KJQJB2x6W0zjQwXCuqz1zVJSbeU/pPD4oGbrU7OAXYhFm2hKIcdH0\nXcJ5m74xtbDs4O3k9yCWdX7VyX1S5jbZCMqsXqQG+jLtLW/GWcWs0jQxZrjB0wQ+hzJC2oGx7EJv\nZy36Q7tPFuz0OGEbnCqZb6ZdB3fH5udzcmr1Nb4pYm1yC2HjvOepV9v5BNqCGJQ/vBME4X+my2Ls\nuQeWXIhJusUafCvwnQ8eSx6VPvo6bsoaVPYnyXdgsMEt86G8PMv2GmZd47Kvy0hHfjWOv6NbhNd5\nu2tEyTPrf3rHKIeUbtYnDYf4kWZ7GXuZxATFZ0uxtf0h99OaRXexcHd9MGB8OMPSkjzdKdoUHPr8\nzgrcaafJqo1rBzKpc99vssurDpkWUXwhXTzm0zHcI8iDO+h9DZDnUd0gvP+YH2KkWX6v8TNLn+Gf\nDr9A+G9CyPoU6uk7iQfUMsNHhQqnKIjg6VabxUN6kdHcwp8sFNCy6Pp6g4MtIFPKLpTNFVu2dF19\nihk8lptCtwgHOLYdjNNNoglqX8ZoAA0EnwAKoE/CijU5lN3ROjzmudOQ0qdAgJXSEmlnEIKt+VUl\nvrtFCF3dJE4AmAADpFe/Cnywsy2zB6u8yVWPafKMA/3ht52e6dbG4HcDtlde2dk1YrMOR/m0bpLp\n5ZxsbCI8VFs1wj5PqyaX+Nb17cwj/BHFknnTAtNIkjd8A5NfHfus5tQOLpbbnBjnWBtlHweAAXiZ\nFhCXkxG3c+5ryR2REX7dML6cPEHr+qocLkt/3/bGfOXjBoy9pREyy1jHSK8Life/fGAOgp1yjmT8\n3/rpw1hCc5l3ioji9BcAWPjQBy1OoIxUCy8X9OQXzKAPzT1rGOsxE9qQh5mynTaq+iA92pjAF6hJ\nO4FgEFKKjIg8Bbzv3ghBePxoEZYuTp6ZU/BY7jAVPX+TLtv5HRSXcix/+MFHA/x2v2HKJrpHvHaN\nyLS9c4cYAFrujsiWB+GGioYOjC1fncbXqP10+AXCfxVUpX7zrONpqs5q05XRzkpQAKX4pXC6UQVj\nOfjMCgW13LLkk+EJklGfS77EChlfikPop/ZRDpvgd13JLdDsm5uEfINjDWEIwASh/jyztKz1B+MK\nEKgKKF/hoqsCaRCGMlpAbx37zt3BroXVN9IHALyAcp1PcNBew0ZxzLUGZIIqPeGQ5vW5qkjeoiV2\n1DIJhLrbQwfBQHvrQJbRexlV3kw6QD5uWybAjVn5+g4XiLxt3syZ2XgbctWxz8g7EHyiYcQnQ/Y7\nFkkoRf2QrzzbrblyftK1zlWH9pVlTv1l82pAm2BYTzA9mQ/JwfKrPG5XySRuCQCwOwGwCRhevu26\nZ4ACz9wD9EtXGgSgW7UXQNfDGtwAMMQqPMABh9RkJxQAnXbNYX9trhF7efJa4y3pz8ky2LDerDYo\nE/g6nv2CYzZQAHq22vdNJjTN9WI5O5wzhzKBy5Y/oslMkImKQk65IHnsYwPI3ENlyRUpugPdKDM/\np3wCyq3LMj3z+B1aDG6L5gr5npd1lGBuPLYpMqEVZ0ZCbpuoa0S59nRTBy/2AHkgDr1sB8GWtHp4\nrliIoHqCYL5WLd0iIv7T4RcIj3BSjqe8v6lvhdNmINhAv81mAmKAumWsBeR8+jjRIrzicashHnZb\nFp84KXyC7bZ0KrPbl1KLDpL9840RcIkvIZLgN98UYWWZpjJbXcjmFXunsDmMPbevAAf2o7lDpHW4\nztN532SGFa3rBasjN+kAwB3QdlDcfIK3B+Z4S84SdO8uEXKMjuZDc9p5HY/tY53xNo8mR80nWBJQ\nnM05FwXlw4mw7rnh7BpBBhbrcHPirGpXPPK1g3yDgIfgTURddbfBkpHGbG1D0eIPtD6Z3uM5mTWx\n3vIeysHbHl998lZMVzf77Z2mfTyNAyilmXQuEcd6mhSxAiP2Lj8X7sL3CmpP1uAGhoGdlgA55q7t\nKyRvpn/u6V3CIiD0wxr8CECfu2fZbe1HJW/9xTrHGhYPBrfv/DMYqa9by8x+qkzb3MginNwievn+\nieVTc2aDuIFZzWPRQcPTWG0f3lPa1S9YhBIZlHKyuUbITJrelj+/N3ixtV78TNoA03NsEv8bWuXN\nXavR2rUtqJBX2eKjEJlhpCk3CX4zHeX0obgls5n27I+B89/LtnyICwTTCohr28sDdPVp5XygLj63\n/NPhFwhn2EXdFHt+pL4Oa99+co6qsF1xVzwARZzjck4yZ+AHG/GLgINM51Ug92IAjWX5XUyplt+v\nAGVKJ/j9yng/vyyu5eOmM6IAOXWxKCHKVRfaFD7ccBj0uV7pr/lySR4UhILXCXDf/AAF0RBQjcyv\nJuq86madSwv/rpjsyL8BJYcIk+OG/vKkAZTHw3KFisvlIcBBgl/rVt+Ta0R+pc7KpxNAWZgzXXWp\nRTn3B/t2GP8+K98I0wWigdzeUnv47aFcTbdnsZp+AUxa19anOLKgPvnWJkIkCC9MIHQVMED2X7lL\nXxzRaEEwuYhWjdfveLBrvUz+/IHOPL8xvy5nQXdahsE8iF9kbXYCyDaOx18BYjyW9fG3L49K5j30\n8rZR1EXi4efALWdNgLzhLjX9b2lutHM6L8Ta5pQ2Tvyo4unUnzlyufq2V+UkzjsHF+LCxXhEHSG/\n4EFLn0PLNPXIXIinFXwfBk+0febHYj4Lyn7khR5dhTIda+Ox8JnGTHuU82qDDylv2oHLzwkxlOWX\nFx9xDDemBWy7EWgB3YiH2wPzl/WXbhEWINh+H5b7/yq8Bb9NcnRSJihKO+D1F3nz5nkKdBEMl2qD\nkFkKigEI2MUDIN7pLnR9aA7XEk63V5+atWMMXQExIF4baMaqDRATMD87EEygQi1D8HAOddsHBW5h\nPf0dUKxAGgTGaECZA6IVrUAx0YcMeqy4zmceQ/EJZGv4KeGC0oJPmvWYvOO+geG8dafAxoM/Tee+\nMNp8KYQNkDvL5q4h7+Y8+Ul/fHh8t1c5GVK7C/jJiZmKrPI3oORPPPqmOz5kAKc5slNhwqqc1YIu\n2v6X58qb0xpY5LMDFhuR8M9gwD0u8gRxUkkWqLUzGOYCb7ToxH3Dboffdz04Fz/TdADf9WjfWLMc\nj1h9xzjbz1C3kEf5TfbUkA/U96TswKdqI4J+PIPvHOZeLl90mccEQLanhY9XX04dyopaf9OtLBmR\nm9PaKYyblj0t06DZUzlgAN4AZ2Fp5ieYiyGXnFIw927idV173NuZj7UMvd7uCLUxjbNVnsmdkQLA\nHxyhwLnaaHdTqS+bGinpUHNbd+w2+viaKgEt75QWGFbAey1gnOdcee5Ph18g/JfBT2z/Roh542yN\nnLYZCoFo3lSEQLOKae/aVfHT0ZBuFJCjPgj3OSBm+XpjxHqjRClaA3Cf1IX39oFl7Qi9G2lRUAkk\nnxWTzrUBDQS7xOzhzFan9VZaHxLQnq3ApwfllgW0yiU4lvgmnRIgBL3pHnWfOI+ns9yBd42cc2Bl\nYcWM8pY2xMKCaQlGaoitrJ9B7wnkZtmqro00y7a1/d7xHJo2kjYVeHse2hPZk98cT7MbS3LqSUia\nQ1bOQ/4R0NEWTEHv6mM+YOsucxftybIdj3eA2+uhzA3wi1IEYYt1Q+i49XTjexFMpMET/CboPViI\nax1Wmg8GzTnjcT4IV3T5ka2zfCn/RXxxQZOr0DZq39JQNtn7yiHwZvWrH99+6a1OhN818AiIlTm9\n+GTjU17ggsvCORj1yanlMjUHO5oYPJf9/UDHUrYn+2CwUubT8usyFmnj1D9ptmbl2Td/zpy6NI3D\nWKRDgxkvvtYPymzAl7C20eO87Lmmo+7JwHNTp1wJWY3a3zm/A+zaAL7rgxl8lkZpCpoLPP90+AXC\n/0B4rUjPBY9AIyMme1LTtdVO6S6oH+LmZRF+cVxWXR8A9wR8pUw+LBd+xfJmCcPweRszQL/hTrbM\nO49LBN2RVmVVyaTOVPClGkXxhPYmFXoo7xcg+PjDfh5GGWh9sHBjocqO7plYhw9Xz/5wZLzRRU/l\nbHQMBdh+TlN4FspBwHCBZIh/38rjGykshlBNrvM9FCDzFU/X+QJ6ow7VY++OLdiLPFFkFoRXAJiK\npqpW7df9RJPvXkmQiUUa6SAPvMsOmUmYyaXEoV3WpA/JFL3GT2DXvqlhSGDb3X4UEIs1mP5ZgmIs\naa6Vrn7eLq9QGxbg409ePeYJEXLGrI2HaZWlUoZdOpxHYfEEiBahMXAPugRW7RPDzIJcWxVhc087\ne7ftY/KiCDj3uoDmRYvKAPZju7Cdmy7OPQHiMTE2xz3nYgosOda5IhjQ2EjiBXzTZQJdFjXL9WHG\nT0tGGaDDOtWgF+XbeHX/HfMO+Qlu7xeAGNXqo5UYue7KS60jyvjgvBL40hWi3gbRQLCCXcaFdilN\n4vr76fALhP/T8EKHrfxXO77K8CZN5p8e8XaJgwJzbtcSmIauV2gxuJO2hNs1mB4Wr+Gx8vG95MG3\nDo6tXrN2V1l9p/BZmuzE+Hjrpoj672AJfrtvZL7ltnWCFncUEtbZzRZhD+kOgscr1Ao5v6SlRQyS\njyrj1B4mk6mDVivxGHHTKaoYT+UGm/mc16ZYwyrIgqZATJUNsH04IxSPAtpVDqlb+3nSR2HTqaBT\nnz3MwUm/7onDlj5ps2kdzmxvq3DCQIpJHgWIv8gT+mfqWwAQqo8cgUkZBSmTq14fXeoKOi+ADGUZ\nDAVa/pncDwQmg9cnEHZPMGwutPlLBNfBhPbZtvTZDQLoAAvj3JfhZHGT/kzG2NezaOtnrVwHMpru\nDTR2kw3kZsWL5jVt2biNizXZjQbwwuv8JGasNfmgdWR0WrrwXO4wO951wAaGR3+W/FC3iCxwiI+m\ncu1F3vQZge7/xy2umGDLG8QhwCewfeUasbiAvaqJTVqKirP8XNMl+xVUXWvN89lY4Ogasd6i9Ax8\nN2AsVuGfDr9A+G/Ck35qCvF753dbEQv1tB22oEGYnEIhz+6gkiCCTMwmbojfsCCNejVafxguj/FB\njv1jGtbKeTiy2T0V0GmidiVO2a3npv6M8nb47U2IlPWZdzyhBKlVmz1+tvx2X2KrcpKn1t8ECKj6\naz0Qa2/SIYhlWHqfA695fJK10xdY40P+Fq2V9RiDKsG4cege47GsoCzBhgLEFMAEtHSXUH29mJW+\nx9m3Vs1KNP87VN5Jr2r8ectm7aG/qiSfxtZ0lnAFxIuLpzfK3PWKUV4KkY2naw+oMmbPX9NTu69D\n7Iu07g+eb7yZcfoBz7SlZS75mzxD8JtgGFXhBMZwsQATADtcXCNMgAFi/juq03Wrox3SK+6HvNqj\nCbK4htwTco7nLI8wRTv7OYqu6ZpwrXw7uZb1jH+JtRqt114XS3AZRD0rIhDKV9dtyqw2nOkoTYQD\ngXOfhKzGlH46VsPnLTDK5/o4ZG1c1kofhONDuuxrjHXMsDbQ9+SizKWqs72lt316FMSa9pf5r8Dv\nOa7nYKfZrgbJA03VGBL85haFbNXIv9QfOB+Ws+b/uwHjBMNXA8s/HX6B8L8Y/EVqBt2CtcnFGykE\nTbMc86oblDeeRxrkyLCXO18dXG9lsHJHUOsfdY9aftU9Io//j71vXXdjB5WEzrz/I5v5IQFVgLrb\nSXbOnPmWEi9LCN0lKGNaFj3yxK/LXZK/nnFtYfDxIdUNz8LHlY//OMhkLfYDi1ZinNNxCXCiqyQ4\nlHeoEf8C+EoHwocXgWFh62/N97ZM832N1X2BlXt5tArzLLQpGPKQgHojPiCZpLCy7WVNX7vuXeh7\nNizHqz/xIx6+mzHbh1J8glE/irfXyuSeYuFOsOA83tsA3FafEGA/3vZxFSzWBJ6OHTn0DIAJq+/6\nMO2pLoVkbUNjHP5gHObkuPSB5q4QIuwTbLG/CQw7kNrxtBDvGhEIm60H5vbXw/4Lc/4AUQfD+w+s\nl/cWT0uNn/Ny7r2L5ycMvLGy9iOK2mfbcsfnOk7rrTSWtPGt/sSwoR3akZ5nayDoJSAi+YFVK6/z\n7MguHx/6YG1DX3k8XKbK+KFbLgpOeS2UWybisxOmZe1D35O+x1U5HX2vjVvtMp9tiTxrxek73qHq\n2s4531n2vh+BsMxAOSoz6rmVJtq3fz4wP4KSxzT1Xp6D5hoBgBiBb9IY+KKv8I9F+H9zeNKqowIq\n0mqQEgSGN4/G0cu/LhxTZiUkCJ1iefOC77V6t6/awq2m299XJ4C7f3WuWYLzXa7d8kdCIjnEi0ed\nP3XSdo8HBbIAu4bsTbjICkta/CRhXPhYtNktdhLg0/+mYKiA2F9XebElOK1hxTrsI2o8Er62IeXb\ne9tVFCddglsO4t0qDN9u6FTWNeXKsLA2WVpZdh/DLw0AbKjwNcBcJ9BHuv8mcM5hG9SBIAHDaU6e\n8s6hgJLitsEWYU6HspTDPjv1BEjkc4j9cMaYk57vgIn733mkxO/P1Trs1Qq8trGJA2CtYNiFUZiY\n/cOSpHbFeHV7+CTotY+JAjhgMGzjGPUQf8q/Kyd7frsKV2TgxUdx74ItEll6jUQhDnveEhR7H7B0\nnGs/u75sQbdGr73Q+LuZyCrsNAmZQD9wA8BYsRoeZqdFHhSYyklZl5ATuafQ5x0/wM8nBftEpyvq\nZR4RK7QqB3qVZQ+U+pi/8iL4nX2FN9fu3PzwHHDkrp2Uqa++H1V4Dz9hle4aUazDCIpr/BpulvjX\n4QcIfx2qOppCObgyHTM81SgsS1pkWwpY5LogwqPqyi7EE+IRT3vtlrdFRElT+aj/PPOqe/ILvgXB\n/sDcp7hGfLKfObAypj18tzar7Ade9hj802fE3QpczvGKszKJhzhcEHnSOm+8a5k7tNYSmHWhUCy7\nD5bhBA04ngTEYQkWb3uvVZMTXS3Tfjvsw65XwLIE23ByjbCdodEf17QST6nT147qe0z2/PkC+K4V\nVqJiBNgVaaHsvArX7LNKm8bszDNv35fThGZb7JKxZ4FxjnWQBBiFFeyDeKExWqXxBwPHIsmjrY70\nAUUOHAvEHeOA0mxW4bD47j2hQsB4rbNKAOAQVot2AsL+oxnx4xkfpiX4hReqe+OH5aS8n+J3+Sd5\nljNihaC8OC6Lyr6uq5Hf9iXN4UwWZRcJPM++LKKxPHFkdc9/YFZfYz/SljXmnABD+PrDQGO9aTJo\n2HX62pSOPN5xzAMjBbWRt4KkmKoAWMRdqno/Jq3N8mAytJTpyo7WI34nqEJWlv7Y/qjTLML+INxE\n98qt9d9gMawukiqf82oJvpB2JZB1C3CxEhMALvTK+6/DDxD+w3Cvs4ZcPA/HwkVyiAvCrkpD/Jin\nBThNwFAXpclbQbZVWEJnyUeWFc4kgTC5RsgNCP50uojmzzrTYfMDuEdoXr+ly4Zo0MJdQpUFnr/r\nQMvJyQkHwcDpKXhbaBHW7IdbcyvgfaRtYZJShl8huVdaRdgyTPl7/iIbFWUG3HdsCfan64X0dC0D\nqA7aACVI4HbnhVUGtL8W39oACNX/N1W83dByb/OH1Pp1X9crJ4HLnH6mfIhW+ADDZA8MAU32t+MC\n6x170acT6Zl+yISJR6/UCtBRR2mlq0iC2/Qbjv2CwCn2PAAn38tHi7BAvAPjeJ/GVoCLd1cO729p\neNZoTfssybyGug2mNS8OG+wZjf2E6awZJb/kOS/nGvPCY8HYnQ7HlOcMP9xk5WEZjg81We+YrtNR\n3+UbHs2/0Pc0juS5TVkuMUta+9TablKDSFYHZIV37POJFSTLWIYfhGuAVyAeAt3pEufHbcGrSW0y\nX2TPFKmmBMXL/1e2NXjHCezy/cAEhlXjIToCyw6IN6D+1+EHCP9JeKXA3jAOCCQOUW4Kxc1b+Mrn\ncSizqSr7kvmVDO8ESXAb6d2EGVh1FazCO3/9ypzJpTqD4H2bxLpHWKFjW2yDEhFJC6A/Ge0/FW2y\nAJDuMbiupHd4yfCOU+px+ppqELRR1oG3rnlWoD36AwO4JReJCpQl8xILa4BEtAxn57rAOOoS2GI5\n1AO48nXAeIF/cSMA5lZAvMHtzpJQ3aFZFy+BYteapChcATMNLTkG5DoZVIayePzvjnMCqTUPWRfo\n/U3ptKzivjUuYzJFsR9CfQG6eRz6bb1srbPF6QivhPoE+IcdQFdu6U0/4fQV9wfl/KGsVLoqDJQB\nPW0lnmB3f1PUXCIkwEDw13m6eb/LO/GYjz3Sml33fvp59TmDOY3zoPFYqFQLsK8hpnFV65luvvJ7\naeJdZIGofUQRBIdnE9JivJmi22FwjZ/S2LGn9ykAD54T2rc20Hy2UIQ+Co7SEUKo9VwOeVZqqNU1\nhqEM1E83QpRvPgL8BtiVOA/pCCFhOd6nSKzs5ADA3jYo22UFltRTGxTjA3INAFc3iQC93VL884Ma\n/x+Eo36zGjnt9GkDMD0FoDJLEYlV6HtAa7CnDV4qun6Raeskk/WpDx+Uc99hB8G/4JaJyX0iPnZv\nF4kQ0mARNkvL77WF9SUaFp4rhLKmIIszq3lw4QCfv+6q68DSF2ebBSmA4BcvKWAXrb2ez5bgbEk2\nODYaWA48rEF10II+g7z6LKZBccMWa3rI2EWBP4NBQVf6IsEUD8I5AEA4Fu4TXjj3kA+s+w07DMgi\n5Aiwq+VlZwV30q+d3hWjNj4j7gQuFkrWKM9K+vwe9dtUfwF2MObJIt15Up97f2lu6yz0Ze7KMtwh\nsutoPSQrMYBigXcNACz87vWLK/6VVnO3qa38TfoDc7BOuG8qePrd95yzvl+YMzcDAWUywSqVnyzA\nK9flZn7wZOkPXHBm0TXCv/2bQHBziVCR/BEcyeMLIJfuClelzzDJn+kxVOET73HYYU5hTXHblFmf\naLj+Sbf2d1ToExBufE0IQVG7ZzN6KzTc2+wfLHJjLRbhPK9zWpQyMfztZ3nfrhGX+nsBtMXaO4Le\nASTrlSeKZBZ37a+GHyD8bThp0t9jowLlOXmoxBqNL9UpB5jye08usQC502sJVw3rr/+S3C+V9RBc\n8Q9eND2AYNluEbuf7oshAhZhtgaHJdj2AROJr+6iylALSZP2bhRHQZifxNMH+bRoLghkz4sDYgK7\nAvckEvhdPT0C5lPekkLiwNm1uCqMTHHkPeCaMs1CQcYuaQoTdlQo8KzMYDKVCVA2C0WuA58q8HUr\nelA0McbydTf6BB+qjUqf/Pkrf74dNdkBlNpIn1p57kyv602Z1lTVppB2EBRxXCMEGjGQFaGrsfYm\nCquviAQQQp9gB8MiyedW5PqpVvJbEEKuvvlM0kdYZAPf3X+0CHtfLN3FcHTRBSu0L985MGDN+cAS\nxkDTreRw/jYF/nqdMyD2B+ac03YleLbx/Pq3feJy16cXjhXqAqxbC1WhhyLllojqI2w85/k+wZyy\nn2FJK70eV16bw4e7kTfLtHNFjZ957MhzqPKRVuSwmMRDcmKxxxMkS9CZx7N2WtYzQab+nmsuIrzR\n0SKsDILDTQIfkhvuBk5gfA0Py7HfMFqEn9fq74QfIPw3wqSpXuk+VpciQuJurrDQQznrwDtUc+if\nfxkXB0JlW2WFLL0maSF2v+AFem20BHs+OuWLamBkPAAAIABJREFUbqslACbPX4DMH9RL39UFiB20\nauhJjjMoXuNCgTpIm0kSYR0ANhO4IgiWB8vwU36CYUHwq27tgT6EctMEFNHZ5DmFZvlFBRmzkPOF\n2DbL4nxin8AyhnMa7QFQyhnd/QdBven5MB2WN8E3HL+RMk3QMc6DINtwbl6f3QqG6/sAjm069a1n\nNzwZyC3DePQOdDIuFK9jzfXAVRi6h1dR4WEzEXSDWPs3kY/6Pq5WYbIo7lbru8h2cchBxq0RsgYV\nWzOUPwwlPkhtyerbDpuR/s40O/B4BWu1k1724gCIk1WFFjCk8Y6rYCrHAaNSqDc+gGqZBi8HZ7tb\nh8s3CtC16P6Wx2hGpp9S9v7sShMce1nJ817lcJPLHJ7OxOLphadvB332xjACWjyfuF6Tjqkybai2\n0Sz/DqpqReD6NDFpQPhEk/zwSGPgA7yisckznT7CWzepgCsEu0aQdXcD39lKfLElGV7/OvwA4S/D\nKx15KmMTtSAOcfkxqEI6IXWzsARZQms4rJICLo8IyClbYswc2DqvavgS/9pPraFfsKk2S7BdJr/i\n8mIT+TAA9oOWADzdIxwQ+y/ffUw2YATLsB/Iw4w0hdYkjIuCQWJJ6vnVBggJtAS/BLls+ZUQKGn1\nleQTtyYD0oi4loEhGumjR0UoMduYwumwqCqmSoHTct8o0CKVk7x7oKfNv78NSAWSliXZwNbrTRpW\nH7u8+EJgPYArSqiDPIUOWrx2lV7yzvVhCsXB6XVoD+y1BT0B4Il+Hj9Zf5vOhBHyU1cDwFUuQ+8C\nCteR0u4dAke08uI4fQ1D/E18+V5lRZMRwkDqmd/3mlI6c8s9HTFtBWHiHMbu1gBcbAV2q3lIL8EF\nil1oEg8949n16THN/WAi8RkmegsbLY8rjtPllu8BofUWYRBcH5gLcPrwPlmBQUhkMF6fKdzfzsK6\ngehWJGftFOYXudLUDgsx7ob1bhn+mUCvVLcI7OKmI5/T3CA1Sak4khoqJvTXJetsO4DdefGAHILh\nC/k4r7tEJDDOTtgQhw7+pfADhP8g3KnQzuTiatjpw0achWopY5m3YnD4QM9QvYoHK2WwQS88zhZg\nowflFkgGy/AWuPlwnZIvsVt9TSwUn5fJr2Zs93sB3rzGzQKEx68EDS8Z0oMUSoEhklrgKagkSJXE\nr7fuDeWVQLYDY/IhjsEALQY3jRqGVl6cbzdWYRDoWK1ZSbdmYS6FMqPO6D4UbNYJ59tgCjO3hnZ4\ngJu3+RhzF6h72Zm7Ba+DPQWLszSJa3yXiJ+/6zlN6VOgtpsy3pEKJIBGZUq9j217x3GwO66OsML6\nKymUzK3FqyV9AsS7zwmcGJDwEbcsWsHMMLaUGz1/4pvyc/14xVdq4GrzIbGXoxduSY/e+e5XyfXb\ndwnp1JM8DzhttifHIp06wZ/HcBnv/Wk+5ND3OH8q84eeuhe8hyB+BdLTvs9SPdPXXpnSGcZQz0ql\nZafM5rxmGabzZMcmxp058ForeAOEPQ3xMoyoUwX7Cbt/VKZb66HOgx/O0EvY/YHyEAxfj37D/nBd\nhtMp/LvhBwj/bpjO1nSgnjRaPQUupSqTFSAxNIrKGMWXSwqXRyIg/CR0k6A33RKG64C420NaiBO4\nxgN0+ym89Bu2tA67Sdef1LtE7GNRPwPitA6HX/AGxv7NK+JFeh3OyfzQ3AwAoNRMckFQrLe3AHi/\n0oKNwFi80gDZwb8bNJdA2KeStEiXjBzuMX2yBPtXqZmOAqGWo/vHlrLgGXBVFLD3YrsSArGRQj+o\nssORu81s+a7rMddq3O7y27PYFCbaU+hQAOZsd4jOOMxPAF5Xgk2xZ6+qHyh1FrN8+QHw7gMrZCGM\nDYIPyYlUQNz8iClufenQzaaAEZq3g9U7ZCMM76R2OW6Uynqyr2QhNoH58drKbto8+LAj5iuVSyuw\n7nOAc4wji8/5CnI9p1/8w7HX7N/qFE8NIUt/tJBKJdbNRNBNQrPLdJnMNK8UALRhmt91XttRD3v0\nqAyA24jXaidQd5iXsFZ/c0WoXRnolNe2cgG88H6iH4GzbN9g2LZVloYlONKoxxzkCvkEs6tD/qBU\nc484XJ/GFuF/F36A8F8KJ/X6ezWdNgKepJlnCThj8FfkrivCxbutCiG7wG7lwlPd0pvAOB+a08A6\nbjWWSwEEy/oJ1Ap6VcU2WPY+BABW8BXeFskPguEAoMIvmV85dyY8hzi1LiSSrod/XnMHvddLWhEo\n8Ik7AXEOyOVCAOJiFTbto62jpvReXheJMXwojuBYokxDIvHGcEIgNZwMrbmhrYOiOhXlX5mbKp78\nAycIWXspUsYrUs7YGUzF0QKFMoHgu5P9bSDAK6iYvbE9j660DfgMy9vxg2LrrNPCurc3DdKsgF0H\nuJZx73R8sA8+GF0g07oJ+zycgM84rhjWtGPfgV8qQ+iuxE3KRvb5ETGyBgO/SM4f1Jk+8Hs+266C\nA7ytsdP5bjRJ2a1Ey3PI0+4f1nMfBQCOjaU0bHKdkKTXd8abe64O/OPSNqIVXjwjhXlwhYhZgI7x\nB0j4IH4AxMReu0p06OWNilp9i1WL+BEI3+W5vm0tXVI/reQ3l/jKbzPxZ5Prw3JxhVpxj6CH5eD2\niB8f4f8vgk3yehbWRz4UqAe+yiMEYfM9wOOWRZYPjJhIe3DCAZJsfrQA/wJgbKLpErF9hUX94Tij\n2yTSYuwKVNhdorhOfHSDXtmHzNxPeAGdwILfBMOXC4MS33wNUgIgRSHAlt7TSxpNSl6tBy3CCH5V\nh61wmAcfaqaLb7AvvvQ6CVRFm6lUHPvMrZ5SsE8nRUSsCtYU1KgcjRhYjnutDIK5XOmHVa4+gugV\nrEVw924GxjPhWp/ib0K04+fb26evRGFS6IMeWP0OFtPHTqEAIaFjCY6ikQR+inPvgkmK1dNlkg7f\ng1nv0tTFM83G/J6e9s2pboMSA1AFa3B8WzCBYeelhoqV3kGxljbwwCqf+SX28Nu+1BchEqPvkqC5\n7I0EuAh2wdWjDMXvlsauEriG9wn0nk5g8q7K2g5mEVb2OOpoPhORwPQJ5IIOsVLOqFzpVhkbdqXx\nNrpJBcI20JhvmO/M2X8Z+G7lC/oo09Ul4qo/kDH8qAb9tDKCZi2gecf/dfgBwju8f2zlRmmISFW8\nd9zPiq+q2qlSPlWkj2BUo8wtBVKHLeHyURE1Xbc36KoD/XZN8+eQHdCy64RbjzVdIQIog4UYLcLR\nnm4rxop/zN0w1nVq+FJ6Gb1COIzTa03Qp/qAcoPi9anrCjIcHIDSObAGt25HesseFzwGo1PZFuCp\n8RgB51XhOgrbnTDlvTsCZhDM70XW3ZnQVJoEBADkFnr6mhsM2KDG3bNiFiSHhbauMwCO5ufhNL7W\nG+vg+BT3qt/ERaRZfF0p+4eNhb8spgl/aty/CYr6vGAVFndAucx7mYYm5LQSo7MKcaihtd2B8ddp\nvct/e93WIEAlgV+cmekhOHyAo2756F8BvVNnDIlwHnaFnqq++iLo+jDIPzx2d2sLo67zphDLNU/+\n+pCj4R8AbRXEMqBLXv+BldbnwdJL4/ZzAvlBwbyDVfgRDFObRfZiNwd6k9Pxx2QEw1ioVZgvxwVI\nJSXqYaerMUeqH7Dubz4R2KqSBbjxXyJ43egFbfy4RvyvCc/3k04B1TQ+zJDU20JvKoY0/dQACAwQ\n4VsAk6JFYLxla/rm6v6xi3RdiFseAuTytWpIE7hKbVmRV8VGdJNrW5GX68S+VxiA87UBuFtVL50A\ncY5XbQEAumzfPhG3z2eBy+tKGvJKSZswD0mfansdwiBsHAxG3NO+Tk1Q1dGCuhlBcN+zuENyFCrS\nOM/7vcOU3wlL4eetE0r0NSWFjuihfbKDEewJ6QDGU4wsWAbDnB6U1gSQx+M4rsm7+D3flOp/a8la\nboVvofiX8H7LjAA3yvmrRgDAOx9bTT7ufVnF+3yQee7+dV8f+3tjr9lNRCRuQxnAblpyc+u2Dxol\nCWSe1jHkmqSTUN24OPjDLos9zP2KvMD2S+4vYK9kqLb4QKUpwFwYx1eQ0A6KUOyrwHygMrMaxXHi\n7jYYFvNAC9SmlUbPZwrytuwiFzLvh85dD3qRGaYDr9OnI4Zj3a8jb2zVvVeqTtlGlvUG6+d8DdBe\n/EAcWIGnbz/pwfFN21af1cTvKZA/Dj9A+I9CBw2h9NCn6156ZdnCxso7hQcX4nhXfr2nBzXV4u6W\nsMAwuCXI3tjCADUsw5fJr/1QnP9ms4kUv2HpgHgLhl9bYOY1bv7jHrbBd36KvOAAjdbh8mlYANBa\nIPVTmgHwSvtCWc6o04yymGdYj4oaOwbTR2QZ+023ElbeNaf4Ke9t+tStyvterrnirC1sGBJKfNix\n26dnTVnd2V4H92qeJVkWvONoYL6D/8xdq3o4uo9xSiNgcqUOWpWV+SilhpxJCnwZdyCAa2lS1k24\nHOYHsJSsK8IoEYf0G3ALW43yjdM6lcc5U+iz8fAIGSYoOoKZI7hRxNBD6Cdy1gM52MlKPPJ6yoeo\nK7E+0GgcW2dS1W0F30Bn8zoYXuXQt7Y2iXu55vNhs4kue2ylgXoeaA1vzgnPYz0rsvRUWUP8QguG\nRLLDbmhIZxopF2qz7ymTfrn4rkeF7QoiCXadFwHx0ao7uAJONN8rgXmB5s0J/fnn4QcI/5Uwg10+\nUsnTOefA59vWJ+/nUsfkCQCLHwxJkVpfl/qFD/kAWwBVB8Dibg6SPmbFIiwiYf39VS3EYvvmCRO7\nlAGyg2tdYPzXrs6twftqw2Uplu0asRUHWoN1W4NtA16y9H5M7IJ0e0kpk2kCzS6sJmF+ClsI0I0U\ne47DRUIxDoszVObuFCg2Te6twtnVRWORm7RvQuV/3MGxQVFSQ9wgXniW/K+AyznugXH+HUaohWo+\nb73bCJywUNP3Na33fAe8IAGwEESUEkZad1DmrTcnoCupRU0C4AXogw8haUXt5d0/NerY45C939M3\ntwLf+923eN6C5V7nlO8uBjCCvvJh1U2EQQ+bDmAELcFW8nIfaivnJTSI9UQZF6AODOm6UWt+fRjQ\nQe6OxnV4WzaFRZSswZsGYLgjxKErhVC9HCJixAUxK0OD+T6BYsizoWPmc4I0zX5kWnoamp2svp1m\nndaALmyacZ/NPK6fSYeETlF453gA4wvcIfClm34Aw/jQnUCeEDD+92D4Bwj/RsAN2RXqvbB+x3Nq\nF8spG0tqfmvCxtZJ8KccTxCpIpf5Xb5+pZkmwNT9i28OgMElQj67YrAIm5r8ujao+uj+cQ4Azyr9\nvuJiHQ5rsCZIR1yYLxNByOIgFYCvXAmKR7eIwTIsApZhco0Y5n5UNHuOff5RENHCaOiRsYKDwJj4\nk7bnXns371Rnpc2g4Dmc9l7mFiQ5WYBJw0BPFPKgBROmT8C4lqT88VihEoT8m61QATXFn7bQUH4C\nAGgVXrFB4VfF3lYT18EA6Ja8p7hJAqliIc6H4HrbFg9XGVRbXSSkpXEeTjzP6ZSTM4+1Hq/xlOYr\nMJEEy+3mkyKUa7HMy570sRvMca3y7mQ/pNFFYIOYXFeNNgMAgxtEtQZvpZGTZaXFwyEYRSi5NvTI\ndKLbzx/XElDHae7yLA5n7ASIs7sjsMUzGbS6HxQqaaB3S+8jGF48BnTcria5b0LeAgCOB+N8La8N\nXOF+4Le3JC2Y6+9d9f17CLzCDxD+OpyBLKra81F6rueh8p2un2Jnvg17Gi2LVYCw4wUMuwxzFwTb\nysxd7y8Hq1tgith6SM6k/NqchBX48rSge0Rag00T/AbYVr81gsHw6pc/JLc6uPq8hYTth+dGS+8C\nw90NIsuuN0yDL7AJ1yfwHjwlXdYjPgUjOo7Jd0EiaQkupaeHPV2l1/3XVd+kNoEWuqvv2VrXe0F2\n2pVFxR8twJUXNEvUOPduUpIncNxSWtKkzJX5cRilyhM0acAa42N5y6E/fEX8JJHafIrIvC6HeLEO\nm8j2H53ra/kQ9/nMorlqWua1rnjdg3e7Budl5uHd0mWnZt9lC8iSJgBWj9CkBnCPWR8P93Eecbdj\ny5C+y+snVGTLQAK2Iu43oQXshuWXAPIgaw7dqGeM1qJ3bfXYOM2sd+ej8vd5avUAOLVKd04fyxEA\nG+VPbhVdEo2Df8gbRgDoc6UZBLvBSwDIHt0jriv8hf1hugC/B1BMAJneb4bwH4UfIPzb4Q2QdZ4v\nQa98yX7LW2EOh2nPrR6r6L6vUs0i7a4RYQmWvJQ7jqH7AHuFV+ata9Zku0JI+gqrhLXYb5j45bdH\nbLeIsAiLhH+wg2H2D3Y1kGB4AsFmH5HPtX7+GZ/ss/uH5tDqloA55w68Jg7zjooRkK3mCNZ/LbuH\n89sLauZ3JRr19dyzkeZl7pRzDO029y4coAtpwDPAylIdIDClANfSP/ySPvgKgZLD7Rq9VlZCTd0O\nZUhpUZ9A8eMerJ0kgEClpQeYa4W0TPHdsXADmEB00ezFQrwkyFSnJJiu6zisgcJemPYn19N9iJMH\n5zFHgeUqDcykCRTrQk5TI8L7aY+husDNs5C91UJjnlqmDO6BN/6GG0zZG+QqAWkAyM0a7C4Utb3D\neRnp4zm0QqsCuHIN/Ic+HfMH0Et1V0CrkvpDJD4vRVHNeqz+peNkvEHpyFn2rR3FfCCY5MpeplQv\nvmYJij3dAPHJL/hKNwhXbS0N3cP3fx1+gPCXoSmovcPeqXiGpKiWZ6jyohMvGSehP3ZNJV0Ahc5C\nuEggCF7XqXk8LRF27fo2IA6LsIPg7SbBgFfEPttSjHmyQPCvsAgXa3DpZ4BhQhZ7UNWqW8Bu8/Ud\nLMPNoiwylPtyrbSPIxKnAo2kdRIicDdmX+EnGu73N2He6WOHJAEFMjykSZIXK+LYSAW2OSLkydyT\nypRUcFibMUNJsuwYFfmOT+sWW2ro0wkE16+PKWZcuXfymIa4CQAim8vtPBONGwaObSCQRl4CyzAs\n6WsWVQgVpTDVE3uTwMcT+MW1cOSi0O/sV7oQeOsFoADruQ9Jn6UB5ES09qVrrndpkJ8Igj2t0q3E\nkQfrGTdLGG/wqatP9E2cznLGeqkRyDbOed5ObVF6kAlVTLkLidU8VBnodkF5Ze8U0FvduWd+mId9\nPklXkP5AEDxYcQ83RTzeob8bUIG6QG7/+Aj/bwhHHKBx4N+4RTTQUZQ61Ty2d9NA/7g99TYjAzsB\nTAe5mnFX9Ca2fgnmg6VBMG9AvI8rWYHRXSLplr9WF6A53SJ+IdbbYBitws0ybBIPy8WjY+6v4cj7\nc+2H5NIaPPkJs2UY5rmA4pyDO0kOq6CVpAEKVST97FBI0SpxM2kPr3TqVe3lI21KP4usLcKhgmMZ\ndIPwsprjmVuttC8fhBOo35KnnUSYc6OM09yYDNU2fjr2hZf4tK8zas9m/TKYh+JTUf2GOX6CnH2e\n78GxCLlIIBIooNdvBdE7sFwC99Q6zSCdf0ByCc3zVFdtufkP41ijkOaY6ppM4n0W+dFetwP3H+to\n/W8PVc/rbTd5KwkcrieObg8rHjdGhGU8hbUNrhGt1ZtzVboldfJOtU6xU6k39U28x/IIgEUC5OKc\netzP8JhnWHe2ies+X5lmDQzT5zXUJaGOUteQu0K4QUhxiTgB4ivKVPeIAMreunrL/x4Ei/wA4f8w\nHBHz1+EkKEDXTpz3zZfuacljIOxb1Dauhfg+fabLVQGbxXeyCLsLhOeRdRjjbg2W/JGNfTiXVXoG\nv5cYpVPj2eG1ALAN6WYtFkgLWoGF24gJwPaHNWhpnPyMhx6S7fhBi6OnytpaYH63kLynTcpiFGGj\ngu9lurKqKPIAfvVQjsrWbmiJ9U42G7b1mqiUDrVYr8cm/oKXWEH5MErrhLOsVTb3stv8WxjdHGAt\nqgXYxLUY1DekT1Zf2kvuE9x56w7InvX5bTvFAPwCqCAQIZVW6HjEo7c+BQrzUhZzcpPwM3VQEbX/\neozJyNnjMsRL+slVwtehWn1tW3mLRZiAMt4RDpbik3p6pENk5rX5PI6y4HCej72AvBcCz/cf3ixB\n/sDeTz/fDQAzXcS3VKe3Pgfo5b3WDPKhPlivEAiu1mBlwDu7R0iniQNsb88twtnu/0T4AcI7fPfL\ncm+svh53oJgS+O6ILYb3IBoV4dsRoAJoGXDGHfxOYNhVy+XXBUX5LSxN6OXRX07yH94YAHC4RsRD\ncxJuEXgrD/6wxukX5kRsuD7Ndj/hxoiPiVwmtt+blRfcItJVYqcj/wvFUtekOE35Z+OY/ebyUFax\n47aoj/ahyPHGiKnHJGNhWae9RvrfKmUOJwjSW5n43Pd14nPu+55mN8/guM0LVdktxFPp2s1ipGXc\nvyO5btIUO/oZnoGBcZ6VPIhjWw1ujeD4Jn2w+uqRN+P+rVOAKBj4G3eH0vNoK2hlrqb6pPHWGeJR\nS6AbQiqZFSXtVMFt/3s/TydwqumUtpJ90mKQLiDYyhqRj3CAYZXJUnySDPX0Nlrd8sxK+rDXPRD1\nmDP26DztNzW4Xtzl4xwOQNcKHfnhe4ZcB99TsfVYD+W2tL4FK/DcgJdNtRJg9fiwXL1KrfAxiE5d\n52B59RtcJvQ4yf9Z+AHCfxTeA9Ze5mXZk3waFGHIpZuWp8pO2y7Ar64DmNZgGQCxiH/EnbqAFuEa\nDzB8rcP+yyHsh4Hxr7AIOxBehyfuEJY827rnIudjC43BGny8MaKmo7xkeZEQcovM4ONxiV3x45yj\n74fiTgHJVcDwovUbIpzXZOrK2QLcFdJMG0MZ9ry/JmU7QZqswQZar6vu8nkNOkC2HjNJkFbpWP9U\nCynmTBC3nrdKgu30J+x5Xo46lMygQFsPoWEeOd7iO0Ey6Hh1ZbgFzLYx0AyAsVz/+h/HCnAd5vge\nDNstn0gB03agV/4YnnKO8bjP4Dfzp5luaZvyc814vabz5dGbvGF/RGwCwW7txXjw7DV2q3E8KDfJ\nnB7mb6L6GeMh9ZoseIc8LPcV/jrIvqEO9PgKK/A+px0AZ93eQqQCIFu2tfm11INrTF1SP27721Zn\nKC/y3wVwzC4SZ4A8ukKILLq4ldnxhc59/YfhBwj/jRDW3gS5byzGfxbmmiZh3884qWeW14BvAo9Z\nWoYvKrRYrwGcRK5/Dbbl4K+4QWLfQCGzldhBb43HTysDANbdBwfsZA2W2RocVmC1uDXizX3C/inc\nHIAQQHaRheAFFcu98PSvoIK4BYWhNZgKRCGoa1ppLJdCdlY+c5hVp7IKs85RydoZS5kBeMYc3oNf\nVB88C128Gq0LchZe6+q4FdMOmSbrqxG/SOsCgmeDMWnhs2luevoIkIF4gA2S4CRXOpL1GrsJAJsU\noLvHY/7UOgiaoZx/gJmsQy5hsfgk97qHbR8d0e1AR/5p2yDwHVw+qvNmPqzEjQyzcQbHXymS8z7g\nPTKf8tqBBoLd+kv+w0aA2azkU7XTLrw5syKpVw79xXMzjntCXN1nhsMXdFpazW9jAvg24Fp4VaAM\n73UcS7ZjTXd39wmLvFHm1AE4WI0XAFwEw/U+4dEqLBR3QJyqDKzDh2n+L8MPEP6NYC/iKyQwnnIr\n5fUGaN+r3scrtKjtTOm4BlN8325L8FYWCUAPPffyux8BgAPs5nv8aIa6P7CMANhdKPxw4h3C3s9L\n0ZVDQgDE9Wn73TYwvn0obkwL1COhsCcXinG9TnOPQCIswQoCW3NdCHT0NCuaVO0GL863Ql+Lx/wP\ne9jGXTDwlz3YdG2FA1NrFU5jJRPUTkXyCiAfl0ubAjX+M7TtCg7Wpx5f7fR4spy7nyB67sTYn6lX\nHXzcwi5aF57hUsakAGDnSX7zv+VHNnKOsu3J9SHr4KFRFdDr007K8n3taIx2oJc+VWRD5+ZuO9/0\nrVrH0cXEDNeizx01YiXd8g77xfPC5IiAViRdICzlTtxG4O/uE53vvTeJgqzk3INigpx0npps6Y7e\nVAXJsrfKuIrhHUGZ60vCYLhagwEsY3+JBkLMtuQmsTxZhncRiPsOCV9lsvrmSw+081Vps0sEg2jH\nEjsuCIjdOvx28v9e+AHCXwfcXdIO27uybhXgCmYFd8o8b5dZefQyFC+HBn9M4/L260m/a8Q/1vrB\ntNklAm+IcDCcANl2HH2IJYDwCQyrSNwSEXcK2+4TgdqPqF1idHfwwTLsg5ADWBYfszeWwvq0RZRW\nQSO6xpDCwcdrKCQUy0oHaCfLMH2N67G+D8c+bz3Ylr4I8DdiDEHffIx6bfNJqa3ZofMDhCkfUCbA\n1dqtuKL1qCp0bouONCjsXB9XntA2dKx+694A7WTVI/1f56cKmdJY2WfeIvvxetGKQHCAvp9tJ/e3\nCa1crVcH32BD7jb81eW+b2odDlJOdWfesPM2EPG/yXxQChWZ1PpyVsUleJmVoU7MmeJ1s5a1Hule\nL+fZbsvuQHC8Ix/yp7WYzov6mLEr+KETZ6mfd+p9mWI6P1XoeP6wQXBqj/JMOVplbpxRfJc9l5pt\nND/h0J9IM+gs/jaAATDu8kDbLRX8uwL9wWt+BXA9gd/rkosswcUqXF4OduNbIUVA/D8XfoDwbwff\nTn37vYn3eirTQaCiUEBBhgK9n/c5DgdoyndALBBH0HmN48kasIxd2bVf9L4sG2klxofjZlocJuH+\n5ItvjehXp5nEz9vB9Wn2+Yhcp+vTBNIuvFI4+Y0S4SPcLMPz6rdZw8EgGJ4AsA/eW6jgN8AYgwJ/\nTYEUVFHT40+zDA92YqqBjNZwUYpDj8Z8m/JPdcj+hcFT2PBj6NuZkmtQR88K3am4TlwZKms80w0o\nV0VNDUzgK1Rl6/2cRpoyzaSAS99ZhU9EZktvrWN4gM6tjUMdWbTtqOmj0FpvHejDUKcH4aYPLgr0\nzEPZXc9CP0Mt1D5Ct7G/GYd5sxMPDW5onc8huwkNGmtqxN1dDmDYXSHoXXaeCO2D7I7mOcBNr9k0\nz0QJMN10XmJLD7qzbt9BfCQZMks0boXbEBmZAAAgAElEQVSIPJcP1dXBCgjGPJH8gCEwL5bjMW8P\n19DSO3O3yVekWZRzeRXeTZO4bJbgTbv4RT+njD+zXKzCzTK82wi/Yck2ikr7Z+EHCH8ZBjGxg5/C\nASw8hi/K3Omul/xa3iMOeshpi65xXaRKAuD9q8gMiP2w6sr3UN0dyD3iWsLdf4PjMueV5i5x7U7l\nJ1UeD70cjIqJWN4pfOf6UPPqQ3PkFkFgGOf6TvmBBIbO8uFXeNNtDa50ZG/qj+oxeCWd+zj/oMZp\nDDmtTzKLYEGrqBJybmxkq/M6tW430QEZ9daG8pNLRAUadX6HHitjjaqsM803UZwsx4s2rZnJYQLH\nuZzDCSnsDjk42chNib7br5beVod/aHAL0cCHc2l7ZoZlTBKAJFD+bVTDBwfzRqQ2YW1KtaScz0qa\neYb0sAwBVJjSGaO/0zxjF4rWGvaGPfFFp/IhODuCYM9nl4jKG1VXUKy854z2ks9yGSdXOU433sTA\n4+Kp4m2rwFYXa5DHLLo74PVh+vK7xTa2Q5zgHGuMrZgiCPDaEShTX/Y46OYgUppKtNur0C6V9kMa\np1+Zqy8EvyqSFuFAHf80/ADh3wmvcCv4Q5lJ+TLjuzAprwM4ON0aUcHvcHb5XWU9JAfAVm0B0gqA\nPxvEYn3++xpeziRfv/bBvxAMI0h2zwT1+4Ol+Ahr1g1A0pXpIrlK2sICQaxYpgPgzncHE69I5rvQ\nngB0rIZLKV6Uqpw9gdZg9KMKayIJqqoIkg4tFx5OHvmCPtwqgVY7KP8ouuDr0DteBCMTt51Sln2e\nS9Z6a5vHUlj5MF8DjNY2a7t5UOYjAPZ0ajDsG4LxeSgzyOFkLXhQ7i1/AMRAZ6Awg96MZwnn87VL\nS64WgQbtDF0y4ij0ATf1WrkofQ8xydrjPE/KYVYY0xJWSHuyEJ8rKVx1owxuD21fTO41IrCOeCPE\nCQQvnXfKW4P1D3wPaRjXmB5AbzszseBwRhwA1ykTCVg2rqUmZ5PPsqfF16GCYe+TSQfBlD5ZhVMX\n1fH4h0SYPipPX8z4CKoecv0j/GCbXB0MixYAfAOC0zLsdVTwm33+9zD4Bwj/lTCIlpvgp/Tm9L5p\nyAnfNT72xt8TAK+Ig1inOQi+Nuj6SIJhBCHxoJ2mVfgCwGuXLreIfegZDO/0tZ44/lXy42Ex5b6v\nd4t3V3D1vVl+PyZy3d8YYVM5BMMiLJzMIjvWpKyNtniOIoQwLQ4KiwMYToZosnYhX7zfKs8UsHz9\nwFV38jEzkoO339iwwV+o3SpHT1X9Xns3f2g0emMq9Fh7z7hNZZrHKrh1VjzKAQhKW1W5Y72TbKDk\nNNg72gMgDm3qmlUBdEJHB9Ab9Qygl39lDvvA66qlqpWc/Qx97rR2QQyjHUhb44J269zNwOmtOxE2\nqTVmdTXYPYLnt1RG4xmUReM5l4luVwDpcnynEwS7a4Qs6/B+F5ECiNcfw/0gOO+62+BxPlqGcZpx\neRyo1m0J6NAU5dO0DxGxZb9VYfZgbqL/cFT5Pd0fRh9ilBEqIoZ3ChvgYQt9bRCPdiIvh4U6VUQS\nAK/EKhNgVtjyW35JroNgofdAui0P9Nr/QPgBwh7eLgKe/iOovSn+tj+vGZ/r6IAx38Pii3n7NKsg\n+BX52LrT9yPLfQE/sechU/lIgmC0CC++dcLD8gvl3VIcoHjnL9CcfsR4kER56XIcfvqn69M+Ih8V\nk886fHaJfGz/zPLOLw/N1buEm9uECNBwAUI8FUV0CDA+ESmDG/boy307XhdEPTwobRnuFX70hVzx\nyZKG6WP2iQxK+jSTJmsPnitkQHVbmYhMSnDEDgNUac2DlkRFRApOhAACtjX6FvdWSnLimkvWEcSb\n77E1uYcSZW5UhSzEo6VXuU6wHONPFCuAozoCpcT9tw7TN+OYYYU28THPMSG0uA8Buh9pwpwb1PiM\nJkzUkK3tDuF25JBQZVS2weS+l8KyuxGVmQPeNeb1lXuC4OoagS4SPk0WlhMRiTIi/kHKytj4vM3f\nvlQQfATHZdpCIUbWlBauJJSOcRoU69IP0BfyHTboY47HW2WJtUfv5XwY6AcsaU2OmyVEwh3IP5+S\nDELrb7wPLhHhH8wA+LpULnSVmNwm9vxNluCOTv5t+AHC3wY/xPCu8fVQYMjFKrn54z5xkP8RmuQD\nokFFVSHFji4SvmqDaEwbDfXcjG209223m91iMeybHNP+qe9Sk8+1gPRHN8DWZWX+XMvC7MAb3SfQ\nRSI/mULnI419AMHhcTOwWlWA++kAl0DvR8wfrKP8jxj8MEemsXxNwwv+kTVaYG0hjoLSHITTq9Nk\nb5dGH8JbHg9ddKlUBXUUb6FwZ6BTCXewIsY5tPzb4hW6NrXd8MaXPL8fV7mfjTu+uSyBIEXeQwCR\n1JZw77cOOlCuFRnnhbZgcT9CBwjjyBT6eJoO5WhWVwr8Nm2aoyKEaf9WAe15/PigmrvU5YmKjxcO\ncgpUqx8CTRbgItlgEN91kcxo6d2PDb4C0Hqv3NoLI8v684YkTuf4O9DlTVXnzCAPcx4POeSPn5V9\nDxLc3WktaeptVma+BthW2y+nE50zYS3tegy6G2B357gV2/Yu2WcDryrU6L/Jpbqfe/OH1DR/qVXz\nV1sZIyvEk34Mfs6P3w75xPqmtIcK/5vwA4QjvJv89QlrSWf1T8fb+uGCQeO6mAEYexx0QAt8Gnhz\n1I1lpREBbFjl7SS7QUB7Ne4awftVh64w2EWALCJyybYOSwJe3QesguG8KzgubiDf4Autw/sE0g0L\nsXxGfcjDZ3vNJOLp3uBA9ZLqK2zbOiwEdPfr8xHbbhX2sR3fgPdj8qkgWDowFqBFt+ifZLkpHqOr\n1hwOIYuVae1VAc2Bt2AeCnewgPKtc4wX/9nhnNRqjofJlRHX/XjiAyUc7g/+Kl0Byp/E/52iaC3R\n4i8Q1ORL03Mor4AnEF3KL3XZJiIG8WOnGsgY+NA3WxJK9WLTRjvQqHwdOPN2CHMuZ7u9tP7muYiv\nuyXzYzeYwyHItyIfHGtArzro5bQYlBd+/sBl9AR0wyWC2uM8kTvQiyAZ56iUURz1EL4Ax0g7bmUt\naRhb6vR6H8r9qUagm11gEKzEDztKU8+HLgbl5yBYNffF3k0BgvFdVfKHqrbOxx+ucv0dYLio4HxZ\ngObscwW9mnGVtS/M4ssjnuMCieTvhh8g7OG1bkELsIU1NOT5XqngkfyEWBdWJAExAdoDEFl5qFSw\nzD58E+KY5PR00sdyrOhivNF3LV1mPz0/cGjlDUvw5TdEICDe7xv4XiJiliB5veAEYhf9FIqJW3zz\nBQO3nY+uEpbXpqEFWALkIoAtFmAHxJ+V/jS+G0swWKQD+rqcCB7IDR2MCjrjTfmVWWDlNYdWZhA9\nYJsay4eOOuVLz+9KQ4WGeajnfeCWDUmHPk3t3KV/l/d9HGd9Ugn3NL3l6yHlTiE+pgMVnIGxbKUd\nQlPSehbguGh5kaXYT71XGBmej9tBDvlmbVjjhpHGIDMwK7ue9nXmMdzr1l+voQLmPKUK/CAHXKZA\nWZIRkPYeTSB5rZGFVdjHGlIW5EtYjCsPlKsbhIGxSAXKIiJ2a+ERArLBw0qph7LQ8W1E9BQdfWo6\n+44jwTPWZdscx7VdWRaq3vNB7a13GiKA3xiHcd7uZwXBEzBGq/ClGxRLU787zeDXEW06Quxx4ddI\nJusbhS0zQjXfzNL3cv85/ADhHebHLHqwLaTDWLGFjjv/u8N3l/lgKZbcRPOi7kIAduPrfKAbgODb\nit/QGk/u9LUxIS0i0saC486My7ZPsRaLMABef+jOv2JD0Os87j/s1mCLE1lefSZ3xE/Y8F6sww6O\nrViGGfyiBdgB8GeBYrAKH0HwARBTWiRAcg4GwTIC5aK0JJVbm49QVvOLdFMpa5DN22kCy5jfK+vK\nobA0gAIA9ljfVGJgvsmZK//OKvw270nQc1xHeg16w/SdEoEB1yl7mdaIb0LImw0muqBMuQcyhzve\ngQ9nHWQ51XWanLKHbdh1N5PIe7r3o1s4ay6A3b3/EeyKCLk/oBlCof/+HeXZCgzyAs6iTfnQOxOF\ntMQHa9dHBmPgduG6NaBlTd0FYubDcwB5R3Bb94qW/KkMb+fQ36TjkgNjhmuBD8dZzr0TaY23PA96\nmRF8ENzfGyDGeAGqviMQlF6XFuCbrhGhUh0E7xrSBpUuEn5M69SytFKYKN9ggHFgo02fS//r8AOE\nPbzDwQvMrsi29O7NbwJGDGPLqZTjXWT+KYSSOLxrpYsLQ6h4QiN3tAMgjjFAx/uHh3WN2gcr2v3U\n7f9rwtZhAr7XEnuXpICNX5m7llvE6sLqED3t6nNPJ9DaawmbnXaAK9W3d7D2ovvDpn32Q3ZyfUQ+\nH7kuXdZgcouo9e6XzKBYJN8F0ulL7HKjxg0ECKovISuxCCrjDKTcxlcHulN5EdiDQ/6km+7qYvqc\n06kFMFZd2Hv0WGnUoz37FM90B/BTvNFAf3jEhvbrCN7rkZs1fcAYyTNMSsiQLRtTeKS2xDTuWxWQ\nMQZ5Qy9GkIxwZOaLbrfB9Lpi11ntgRFvc1eBjT67shzy3AKIgBgWPtI7VcEv1uM5KCukpFEyCtFA\nZjhNpVmFfbarfCFrsEnc+IBAOTa08piylq6cclRKcxxhfKCYJhhoZYNjUrN97hGe5eTIU2CUNuCW\nL+KMGdD2TioveNEqnMNB8IvWWgM/YD1YhHdcBl9hf2ntCwJ0nruwDvtG0kVDjLP2iY53fP/X4QcI\nR7iDpMzmXz344VY46GSc3dZc1Bd83PcWx1MD79ij+GTslZ18hN0XaNLzXdbw8FEXoKAQEf86stH9\naFnmacm7JK3BqhL+vnEf8Qa11QrswrVetWb7FKKLhClOwxblWr6qsu3BFg/KfdaHGbQK0wt/enml\nyUqMLhGXW4AZ8H4m1wjhuATIrRbhau1lQByAvuwTVnLFSuwvn0+o4Y34YV5U2Z2H94Ed8uaytTOn\nvtmYed8Kt3G6dGtuuzb1vYrrcewPWp2TV2/XqNN0oCbtnaRLLpqvabGfaJhull4HJgqNFZmGvVAY\nCeWX3TbJvalLJ6U70P3Mzfu97DnDZjmvnlgqB/XpBpESaThtlgAJtQkI783GVmHXJCgfvM0qM6Sm\nAcjifkyYlkahuDUiADDud9oQZVda6EyaG3XeqrxO0kcO+cyrTZ/1mkG1ZZ5iXv4ViPUrKu8lgRae\n/lihg06L/hAwDZ4NgNW1cYJg72t3g9i3OWA61Wv4D9NLhpdjH0lArPs4w6HLuHnSlVH7GPtPwg8Q\n3uHtg4rmgkZBUA1xVGpa4nGgrLfLSmcXVAHDyxIwDQTXywGxvRik8PkrMoUe7KxMg8BAycB3AGr8\nNdFwjXAQGy4SFwhlyKvAOB6gE39pgF/vQpwzoPvg/JN8QEJyN9hpB72CVtzqGnHtK9jqw3MOfDXd\nIer7ZP09uEmIwbz4P9Qku985H8ibCg3XFgpWAlGpPhVuA0T1hDNOKkkH4qRspu4dYMor/urFdwp1\nRLcYCs/vwPNVHOTCmbeDJ+5TPdSd6R4qHMo741S40TZx3BRlwkIRspyCT9Ip2zxxuyCQccv3UMnj\nhjIi0d2sQwGr/RbfZ7UvWcLzEisYUrbOSBr2KNzXsC7Ds7tbuaVlD4+0vV2W/WDpH6YnkOF2Bmtw\nGcMtOI46B8kR0wnzCvI/5lU7W8w96K8EuezqKNBj9gcGyp4L9QnbDGHwQnpmRjy3Ps5A8qNqm0Bo\n5jMYdmDqPsPL0ovuEO4DnAAYLcMqy6AVLhLensp6EA/dKaiP01nb+ttFwz5QrorvpfV/E36AcIR3\n079wZwpy9UvDd1xGcNwV/ggAVMKKjGQGvHDINNtaT4ZCR0tDaSHuErwB4EmweNxSMMeEVB5hQc2H\nBoGuhttD3C4hKXDx9QvTu90AwvsVa9ME6ASGwzNZqqVX6eG5yVXiSiDr6Xigzq3ANw/JVcuwWAi/\nUECOfG1PiFSrcfJ1P+KM3r58nqUVfQw4y0iTO/od/hg6MPXn1Mcjb/x5Y/fdamdsBBQ8DL6otCE+\nW3OneKfpI98UzsB3Br19XiagNhC0ECd/L59/LRM2XZuD9wkjDXhyBKe2DqFuvtPGOw12LD6dAsiz\n7KCNHNMYqpUXQdQ9LfuK+iM/HDtHt/gCbfM2mrdZAG3G0VLscec/03gCMC/TNGfK6XkDdFArwvOK\n0Zw7jS2pO8P7WzWKj0eBCJTS88PJPwDimB2b6T6uDoIR/NY0WITB5SGvS6suEiL8oxj+SuBcgW+C\nX3j3iaB347Tw+zd66G+FHyDs4QuTcD5RuoR/B8dV/udXRgyWBSy9u3r/o1hetp7ZbQAtgLjigRHe\nZEGUrqxGHhmIAuNOuhYeFxrIc6mM4JbcJTCPrL8pyH8h8BUJIK0OqHd+KArxZ603JawpFg9ABPgV\nE7cMm12rXfuIOiCOh+MSEEuktxvER4sVGN0j7oHx6ssaKF2r5uPfc0BfaYIgjfyYMy47LGyWgxx7\nfOXz67nG4BcGirxaAybVNXXtJAgb/SuhidaoVXaGMLMcqPL6TfzPaPqKD0McX/PUPDt1hLmaw9jP\nUzLkBSJoDdloEXCBpUDbkUQihwFYKTMwTRiJSDZ+ONsdPtBrhAdbS/UbDvp5xJ/e5pqUuqEjP98W\nwbSUCYvKsqTS/DyFfIHyvqXCigfnKeUHguEzjY0VOVaRbLcro+mWCc5PMtqdi76ja8Q2D+XxY7/R\nK9WxR7Mfce1v7eu7+PQxmIFn+gcHrcUHcKzSLMIJfrdVWBQswAisZwDsxzWmEnreaCZSvyaP/TjK\n5f8+/ADhHd5Ofnwi3YB4dHkQf5AODk3kI3AogtNQJ0CFtQ0jxuJ/I/UUzzSXfKWMCQB5qCBhjdJf\nKxRuBMpf/eD41Wn+08nzSwdwrACGhazBK897tZWJ7IbCSg9iuVl/t/sDWH4XIAbQu/OizOeSz/WR\nyy75fMA/uLlHPPgLB/A958UskNJKBYNWHNxcpTQpP9HG/hA6yHrccnbD+4BpJnrHKah2TtbfM2i5\nO//H9su8Ters92h6ziM5s0J80DsNIPjW35nzZgYq9qh5VBwIUx5aK0P2DGAmNid28d1GXaLXXm1o\nbGb+GveQqKzxq3bKLHAYKZ/WkFfTrNL3Ck/0GGbZzXCmThbgyJ94Nz3kBJVLQ84ycKx1pdsjyG3C\n810e78odPUF/TkqMwTOXbfykfrieqKFYoGpN7APsPSh15GiEXCVMRNsnrOnUV7g886RUuwHBijc7\nVICcD7pdkPdLJX4RLkExXJW29Wq9Z7jmd+swjg/ecSm2L41FPM/LsyT7++EHCHt4aRGOa042f0sL\nCIVX6QwkyuIEusU3mVRdIYI02ugV5QM+Udywi+7De5I/yIhxTVAMIy4iAgXMyscfzuiW33yYwgVz\nB8RQTiQBsiQtTiJ1YVe2B2ougOPUrRdZfwEQo1uEFr/gBMsfkc+1LcYIXicrMP+4hltQZ5oLBVBf\nFTBDGQyoxGhO5YvXoQxuk3pqJvqZNy1yk+g7icN+rVrl3UoLtn7n1kbZlQsC6Uk1fUv7jv/eHeKb\necrTd+Z7knpWI0+AOHhgjptg20xDmbRm9/Y0vm0YAgi+4k3R+SizcI4F7yrcHGWiqiWyrkK1AnM+\nS1P8lgXZ6sNyWRHX9gR0BeghFoE/61FatgDFJS5UtrhGoBEH6DyAns5e4HhnaaPxN7PrA23iKfcB\nBn3RbnxC3U36Dnu7xtHoOKEivBhA55sSznEGuPni+33d6msElNe7xg9kLAB8Ar0aLhPkHiGHl+Ls\npuW4TBLPgfLUBJSRfx9+gPC3YW+0tYCWaXEF7WARZBLjWK8m08hjcCiJbuLX1Sx3jPUeINxEGqpw\n5XCSHyJda9AuTIEMz4DGvs6vi2YwnC4iGj+R3H2OhofjLoZ/a/h5Cj9bUC2QloD4g11nURb9YP8k\n20rG9kNwtgGvxws43r8Akr9CZ2Kfj3yuSy7/+eVqDf5df2HL0Vt2leYFWBq9zl8wTVLmRD+EqghE\nevGpyhPt1Eal2JxxqCN7VvOPX4ff1InKvPLU99/P6/7EkwX4tvugY068+OXvi6kY658wbuMBoDHn\nnSoykIEog0qoeOk0GoUI8hV2GtrJNYLKFXBFQ8k22p7RyjWfivahYKMGlLlIp04AOfduDj/lA8uY\niGMZ0Em2O+Z32PvtEO8Asp8fT91qxQSpp3xUmnsv9Z0NNHd9aOukZYucfH0dPIuMoDd6irdH9ZOr\nMtNXFPcmrit/XEBwS7/0Rmm4Axh4AgirHl6pl8ONQqDu+trzQncLYz9xHOOZd8vwNNJ/E36A8A5a\nBfYhmG9QTVDof+gJU/NDUz6FFsWmWK8OPIU+gWTvUxxNkA/ZSN2Mnp9CbLbOYZ0OeGcwzJULnQj8\ndZrJ2lt/OQ7zRUV+XatnCBRsz+1nNxv3FENXQDSt8tFxn1CT/FllcIGQBYLD+mv+gFxahSUA8XqP\nq9LiGrWTJXiwCsN7tfYiLdSUuZrpvKjKpJf86lVD1jpYG41WP7ebDTRMHNpoMTvx3QVUZViuKMCb\nMsd5qACh8N+6OPwR7xQUapl57vK+DiTUzlks2KY6SkWtkwxr+gY7yO1pIz5uONwZpyKVAFZq6x+6\nEAzh1Wc8nmLZ5QncLHU/2mH8RuVJEkDW2TKcvTHMM2HXBskPhdFGAci3vJGqC9XTXR7cAGgHWrHl\n+MMrpTXZjYtJgGHlXmW8W4CF8uT4gXv+OD3HY9aMwW68lN/xQTYEyBQHWrUGo3FKBX9uuQLffFWV\nT3l1TQ1WNMh7z/i8zdP2n4YfIPxlWOdchdYSrozxDYs+SC4LUW4FregIlMn5YJ2JOwIrWYG3Mi/t\nc0egF+OptXqKIa0lQ+JrIwLFSiOFQW74ubuK/rwXujps4NtBsp9+5lNR+ex24e6HDYBZ7KFg856l\nf9tn9REswfiOYNfdJBT8hKW4RayfY/7Aj2l8YQm2VE2ZXxWHzJZh4ZD0tOhQ5heSZmrHq8htk6m6\nlTptABuFTwrfkNnG3Ggka0+DLkryoLhq/af3NzxzGf2NMhzqUcac6bGdCpxP4WFKzkyk+zaDDa0R\nCQegM19ryzpPkL8cnc05obiHcdY9a4AMDBhiBZRnnQ3Pw+kxKaunpVHsdB9vBb9eAuVCnu3Zaoyt\npOzErqxzhPGsrVuDuysEjrlKC1dgz2V4p6fuWfPOUoqupGtp1uFa6RFnC/ARNOOEHk9xxmfnqGxf\nSzxeAEIDyAZ4VbLwukWYb4xAP+HqFqHsfqHcnqd7vxX6Wrys23z4/vj34QcIR3iPDvxc4lc2fPMP\nflZMoYEOBONRNrcqb2ER5UBgOug0kHs2fMq6RdiY1pIW4assFFh8GycgRZ4UG9JA9HpYzgK0+gyp\nCNCWX5MBj0Cez/eHhPB6d0AcP+e8c6IXOF84H/SwnDXA26zCAYAtfITF3SbUQTC6QyAYTkuwFDAs\nwhbdEOjWednGC2zCLxxnzWuvPT9jHQ9hUN+kEEaadaVRa2xy8tAnazEd8xQ3zdArFsmoxAdAcNOP\n795LG8Pebu9lL5N8EKZPfZ2OwbfhsdzYaLF83lV0vO7sAJA3D4sym/nu2o38sZasCs5V1+swzrLl\nLJk6aMYWp/GOwAFJkOcPI0FOxKF6qzw4riiHZ6EA3XjeZQDAJmQQsuB5lhjWeN5ImUxX/+mwBLsu\n835FGmonQOuj2SnlHjGPt1R7XT5w2p4tXJAYnTEjtEEAWOEGBwe94gC3AF/P15rPt0ZUd4iwDov7\nFSsDYmibX+AmgWOir7NxxKzzx4dW/+PwA4Q9vHSNwEX033xHYUgK1LjqQYQBSN6lzSBd8zMtUqzD\n0D2Qr3nIvH8jQLY8/DSYAmbpIQINQa63vJ42udyiq2z9FbAOS3OL4Dw/fSrpE4wgGHth8b57YkjL\n+Ym7g2WBWtk/p6zXzkPAa9cGwAyMP7ZujSDg+3Ff4UXrP7tcrcMClugOfI36vRXawAMs46vpj5tw\nrINWO3lFigXSOs8ZiBXwccJCjVZz5gHWL97upuCtKK4+vN+9PwPtp3cGfpn6hn5ej3fhVRnjBJfR\nvhjHSlme9T1S3F0OfL2dA8NAbnuuuETgg1eJcZT0hMGfpOvQnpGC4e4OJ7GMB8987p034Df7Zlsx\nhC/w/oYyeVJ5jNZgd5kAOrd4ehiu0Lbei7mq6bEOhFYMs/jht/13BLp7lIqlJh4eSf2mrJ92jist\nxOw+cQSbCGBHEFx+OGO/funsKxx8UHcCZGUAPIDh7DrMkPLM+z5cBooi+/9x+AHCO7yFwbidGfz6\n/tXMIrl2shKvgmRJjvRWVVvIOMgwyFz5udk0KtwsFYWX/NZRz0dICYKGwHB1nVAuU32Jq/tDukdo\n0EUlbojwU2Ylz2cKV83BsJgDYvwEffN4ELk/5ENwKuz/K2AtRn/hj11yARi2zwLA9jkB3wd3CVc+\noYQs3CHIOhx8dURGZXq+ULmn130Yn1un3TOmjdO1b22JTnxt5FzJyQO48vtNLk9837w/8+hI/6ad\niAPhhPsmuksqQ3lQwrdKqfE/CNZYx9uGlN7mhiDjd5H9Le9dHx3MsgFk0YhDAjQXzGu0kDAAa5F5\nr9rw4cKy3XFPGtOcc8zfOuhkDb4DvVnvBIazfB/0HW1Ibz213BdN0jXPDvRdg6+F61OoOXWdlNHM\nN0QwkMZ7qs9STKBeirscs6TjEzmqFpbhdFuYfymOrb7508rpGlEejgO3CPoBjRsAjLOhsoB9YgRY\nYxtmOFw9RbC2fxV+gLCH1xZhXyYDoXcCv8mbgoKbi6Uvujh/Mdnvvs0K42ueai4OYU2nMSvE/lK+\n0R4d3RsKGEa6HeghfCwP5hEAX2tGTdbhZQHNM6qGN0TkRH7ED+f+tByC3IIzrOhR/74lQtwybILA\nWMrVaQFGN/hFK7GoDoD3AHxjZD3/N0AAACAASURBVGDLHflwFhj8oo3YJLo2zJmUchKuEI2p0CaX\niYn1d9JCNDxPnY9pnXrmg7MZDWjhy3AL0KHOBiqGus48Mwg+vu8uT21gQqNuI5oU+gksvwnflJnW\n86t6teQe60p5pgL69FTnmz7dVgLdQnmPYBRAcdJy7xrI4dqS1ULYHkdI/3DXjTjj7FqlFT4r/PUd\n5AZ2h2lgPYbzVi3JPL4uEd7RfE+zLVZKHB+Sm+Kp0weAqxnP1q3UfgLDO3fPe1p9J0nR46lRU2oo\n9DEAaXnlncL1F+TgirSLf0b5Uv7FuQDEkvQEwApxiSPYgXHq49hACjMJLjxx//T/QPgBwr8dNDZA\nXTo+oiklAEuOx7n9KIcD4DhYaQ1W5DM4zlChX/VCwjLSu7RKukuIJAJX73O6QNAANN9jdCc+9R/P\nsIUd98FyYXuJiX0kXCfEwXFYhpVoMPg1BssDqYbXuKxP0ypuSYdFAikeYBjcEpTifnXaAsaK4Ncf\nmAM/4/Vrcl9Ygd2CCyonhXoFwDu2EW+4R4CVmEeGcLkHe3idyrBS4CmNtA35NgHksjalPh7RE8/c\nW+TjLzfv+abHyUaAUN7PYPdLEDzWLW3gE757T2PqW1X0n/M9FUSgbPPYFt8EJmWeyFcd47xYG2wm\nNj98aLLKZ0Cr6LI3QHvRCg/RhjZJojC7T8Mxj973OdkKC+8pqdeoZbm/bQ2eaNbiCbGSzq4RIMuK\nesTlOLeQ48O63FLeRzwJOb8VJOtZ/Uhejp9fl+s9GUCvA+RG18Z7+mllBL4zjT9GKM7K3i8xazHh\nHn8rJf6b8AOEd3h9fRr/WWVlXkYHiKeHpfPeYThiBodVC58IoOXi+0Tg0LUCnO5dd6aT3xQPI/b3\nBtxO7wf+IO0+6h4HHrJqLV7pTve2+GG7nGCfqbhwQhMcMweIeIOXqwOgOZQksCz7OWkAzGjR5bQQ\njfkk2q1WYM9CtwjJN6nAV7AcvXabWuhbBqEC7LXNLw8xkyY0w7n6b9L7DNjcj7u+nWjjaXYZXEin\ncAIDd3n3YOIPfIJBd5zGXcfSaYOkMs57q45GvknP/0l9GKaFmoaiA+v4letNi990WnmNvJlK43t4\nJ9qqjJpu/XDgrJVcornJH/el3eR5Obc0wB7EtggMj/H5DHFNz7tXBOU48+FfbF+Bh6mFFsh1j8qm\ns5NRHXJwtOnOIFs25prw0zOgHzcgdK2pWybq/lp1BrIz6D3T9/sl8ktVfl06+AmnNbhbguFdip+y\n+dzsjeLAeE9m+gKnvBeRMMaZ2L5+7+0B/HvhBwj/TihAsoe3C+kbYlssB7C7uDT9nMzVlTYAnTJA\no3rS/Ns6kT7rngfAOyR1BbU4dmFazZtoyi8UFNHMPmVKIFmKFXkJrUvXOC3qWHNzKdIkDMhiDorz\nMDt4C2GJ0/YETWz6ktzEV4dBavKg0uH6kOTaKbk5xuUnlwnL7FR2Wz4Rb6W94ZHvQ0AwF+qtHtgU\nkn2utbxyixhkqWKkAYekV+XXV78od03aCVDc0vyoY95Ac94JDCvx2UDbfMOc8nR0oHi71kPmN3vj\nq30UMuuZL9c0mXuxE5h86FU/fm1N1vr120Byv5S+FlUSIrg2RX3kRqdeP+3BkAtTnmw5Mp0VAV1V\n9mrnPffv90IZu8qSJ+HEuxdEZRkuCl25oIiI1G9EnCLZUkqCoruQ+6QmXQ0HDQBvGocswHDYl3Y3\nnU9lcnMo1tyrA2L2CU7aAsEqv/SK+HqAThk4e7tbB18+H27JBQPbGquDeFC8aITDs/z/gDVY5AcI\n/1lQjqbQeJLWm8ufxPWDSXewwSnATVdoeC0MbrD8BApAdks/i6Ywz7JpPOKIILS8r0H0IVcpUrM2\nElW4J9gBa3zlEnEXGBKfiNco/CEBFm0qUFd7d4G5uOPilpBWCH1iwoa0r5OFtTaWxCqfA4oZGCdX\nVUNTu8lbwW9tQaSC4wRZ0zVpjzyFduhehBT1HfSyCsKxwUaFvcOgNkvfis/SaK2i3xmsqdBL3gQU\nGvi5if8WDeab8k3IKod5CgmiTXyF1sPAdZiXb8I3ZSZeWrcmXw4TI33OtOTfVDp0hgu6u1q1+rqI\npTU05qu0w1QP9Cw08U77qrU55sHZIh6XsIf+vaE/qMWevdv0puv7VIcJgWECyWIBjN3aiiAtAa2n\noV+6863QB36vK40t5eqz4LCSBnVq+SAclmsg99LQi7euEFe3FAcAvtIa/CveAfiq8JVpApZgHJ8D\nfB93jB/nWXN9YFclJvmfCT9A+C+F8aA/Liyc6vKzcWEFRgm5d5bGdT2w2+CrHQK5qNl9x8UbPNVa\nXSsAYDbwC91PciBJfsdp0ByqE9D668Oh16Win3UYRSWvXzOfJclDGe8MihFoRxsG/QmBVFWDx+++\n5NsrQW4VImHV9TzLurxcpk7tyk2aaaG4whVDyG+YfIXxaQ4vrNm76P4N7dyn+xBb0BpWJS4C9biX\n4qD1ko2iwv7vWH+pQjm7VRYrVIGN1FX9Lj/WTQ/03R8qBwCFlzE7DVLjFW0M0c7Xgu03ON/xU74l\nUHgCWaf1vC167AyXwHWZ1uoEhhttav7U753Z1qfUM+5HqzT+GF77E/3ADaS9v0+h8p92lSJhXBzI\nCLnuEaeZIBiWAKYueBx+7lbHr+RTTvo3pVW9VWuwineD3SPA5kNlnd+1bX5jqYUX7gm+ujW4WYiv\nk28wuEaERdhfA59mP+mnmiUBcU6hgXDXXJPJGgxTjAtvxzX/b8MPEP5LYVTNinkTMtyrTu4RwuBW\n8hCnr/D6tLjOZoLmEQDrpqGUAWc2K7zrDEPHKwguNBqzDnsYTzL0Qf00ubBSadZf8knyA72fsjPZ\n/sOWQsJnx90k8CumBoL9ELdFqe87itrjjhdUz/pqEXhAy6TluNeRtt3Dg3JQMvJtoN2lQRlHeVXm\nqzylx9jtsrxDHPa3PMtHpNY9hm0/KeO3gLfJZz+CUKiusr+/iSNt5PHjPvHsjX2q02PTbobuP9Ie\nJ7OV5vDew7iW+5M2M6L3rI/t6/vOjOXrWt3RQhxorwMrrt2xwpQnRKVkHffZolnPazyc97fxybQf\no33FERXd6TpMuUdawLCowb35ezJV0/3P9Y9UTeYPwhtZKRXzJMGgiDebVtLMnwDw6aUFaHK5SxIE\nn8DtyWVi5XEZB8BHS7CwVXgEwQJWbXeJEAW3FHgHrENWYV38+dTT395pz+EHCP9x+I1FCy3EG2Ll\n5abRvUlII5P/cB7ycPbHQ04AGKQqCosiEMx5C/BViNOQld8N8nWamjJUcl1Qhfi2AvswVNav030Y\n+F5xdOCrGj+wloJFXEaSdUCyM1LjmSZLMVl3y7tbY6WCAo4HCA5Ng0rJhlIcM+xHaNoaSmlYUju9\n6IE6PfCk8n4CDYhBOb4hsUq7zo57X1BszSs+xbcd2TyVTQ9jwX1cV3IEGH8hXgEv5e9EdU9h15I+\n5EaHryQn3hoelrgwv5OFX9WJ4aF6FHVvy2BnvlLBWK6cKzE5WnxH3r2Xg7/tRYgftzw/SNelk7HI\nKe+17SkPZ+jtPDU+kOl1j1Zeoo2LAxbJOMdwd60J6MvNE5++NRcgxAz4EIN4QYMJukH4LU2ud/ZK\nEmCO1wHg1m8xu9UV6zj4/R78gvUaALGK6AbT/2e7RcQLwbDyD2tQ/+K1cYePXXM6fU6rm4RA3ije\nZ5H/n4cfIBzhtQj8e+0RCFY4qLB7APBWn2L162vwkPsuRK3gAhKEhXdhfrAOaVs0KNdBV7Uh4oVo\n2894AEo8hMUhjqB49Ue3e0SC4QWOla3DBvVY1rcO7J5HEGBxwINW1QbMEzzUxpZfyBd0TSAPPK5L\nRFgD1tnr0qFai7vvsIECXHvn/YNxYGkeLMW/G5o8jD15LnPOUvH5PSI/zBqEbKg1yJuqWmPXRs+8\nN/H+FXRLg94+5hf6NNY39BdTfx9eFPwTndbGMHX+qVxb03s5byeuu/05rZmLAJdXj/Tz0wkGhCOP\nJbXuDWp3yKviZ8rrYbrB4QBmtXNUOSBDutQydSGALtpuJmNHxrO1vidgs2xeBV7veQLTNakKnKhD\nRDZ4FdA94vro9FPFQFesr15xxu4PCXJfWor91gi90jUCwHC2xZbh6I+5brUcf30Gp1p/i9Ev9gZm\n91X+J+EHCP/noR98zMuH3dZuCNW+N1Raz3QfOrQSg9UYn5AVSa2B/qDt03DyhTVBJeoiAEGCiK9Y\nY74SR8AL79UaHHi/5u/uLmvw+orHTAIEn/yCUYi4sPLh+bxymKBFVxuzmpluhwWtMrpVZHyx3LXr\nSfD/bbzYMoBhw3R1idBXD8alpVhhZLPImvb5HS1OB+3Dp9IPArMoPeKNr0YP5YY+1JU5AYVTnn2R\n3np7xfWBj7vd+nqmh5T5LvzHWuqpehrDtKFaSKLdsf1uh5DNDuvlul9K3kCfJIDvhUp/yqf2rPRp\nqsvOeTR3eWhpdvtFZXOYQG9dG6xj8IAIhuzPJhiqqj0g+vZzg1cRQQOQ4oFXgecKDPrlfw2+ZUTd\n47z80Nu1dY0qWFOtpLX64FYwrOkfrOgewQ/NtQflqi9xPFgHt0YQ+C0v0f3LdGeXjVgDARC8XR1o\ngds7Kn3bM4hX2/3b8AOE/3r4StRK3yHCm6S6QpDkKHlBEzroEwC2Jz5vBqSQEprM7luQm4Qch1iB\nbx54iUMnRFtCQtTip5RXce2+wR43rkMk/cUU584/queIhQ/iF7SNUlOxFeCMD9DJ9LCcSEdhlg/A\ntTaxHVaO7KZRXqG03eqrHQyPZZao6mKqU57AL3zE49wBvU2XrZ1aiqNxU2SyQtOWHcpOQMVV3zmP\n57CmT7Sg4/pp58f2pnHc030VbsJ/rI/+pHoem/bKDgOzU/ZXnUk5gudPTM5geBegNbZ5bQXyateI\nZgOt8g31tH1kA+1Qrw5xUkmSZ/wu4BGc4j3syR2Y46YIJxioLYM9DvqPf2xqUbJttgA7v+snrAP1\nzmrCEuyK6y+Ty/L6M6dfUPbaddNPJYvrPig7PCjXbo6gB+XwF+QYEFdL8C+VeHWLsMct+ohz7RZh\nhCxxi0QDAJys7/+x2BnDDxD+K+Hp2N/xWQG+Eo7j7Y5hTIOP03pwzqUigNGDBdge+bIv2XX+kY/g\n55GU/DL0MtRM+7i3IPGu7bqu/AVj8AnmB+SQjsKpfyUV0yDkGoFSPUdTwqBqwESbisWEAW2Jk5/x\nVGfGrebteL0sTYQBsxW++xdaijWVtx54X+/3Dn6neU1qySf01sveCUzfi6m0bjo31aV5NOoKndL2\nRfqJ3vKs5MPxbeOWnjfTi4fxSw30fvV7278fbiFS55gaBRAFsOlY5/TV/8RHP5Ti6+TfcAivYQXD\nftRjTWEZJgmC/Lc83l6hTzyNNvB5SJnZ553OuvI+o3xUR8prYaUeDklteSZp7RXljvtZKZZfunVE\nrAFjH2+0uAVC0zEuvfa3TRrlNkA1112rjAPJy/PjHQFwAcL7vd0ScT0D4qBVn+Fya0SCZZVf3pYk\nGNbjKw+UFleITMPCwgpXK7Dvj38dfoCwh9+afG0pu8lvIaRC7KLcKPUqEuF0gmWJMyziLK79UeJU\nAGxNGlkIg5Ri6vnUbR0AbxKMk32CYFi2nzTFZhkIa8QXIDb6eeZuFT6/3CViXhX/yuukWiBOPsBO\ntS1oobxbiPfcNiswbRZUnMY4mlrBYjbSSMk6DR6EE7lzifDyA0+kvZauKJ8Cb4FqFZ5rDdlJhPsy\nNWvKjb091sftVkt4Weljuu6gN/RXvJa03vOedzd9B2hxDIet+e/Coaun8Y4MkvvwseKhDt9xJjJa\n6237/DZAbFmG6DKvKdaL+/jp3Xmn/IjbQIv38vAeuMqlPGUg2+ezBzypRR1wWSCQewQmkI6dB7+Z\n1U9g0uz7jVQovVwge4Hc7g7hc6PGFmK8bzdArW0gaxpXk+WPVPgNDW4BhndFEDv4/t4C4gKgL781\nIsGw+wzzr8tp9IFcOfxl7nu9dXgDwbi4mmvnzzLt/IQ/v6NR/k74AcK/Fd4c95lK1rQNWlXKncHD\nfXzBI7mhVODhuQ2WV1GQss0FwqWpAkjwjanZL+FiIi50JsCrPGRsXovMoWH5A3/C153tiF4i12e7\nQ6is92sBNHfWv0wyHfWksPIm0wNizWHmd7Vz+9iKVXqxkcZg78pBHoDnBmkLsLbyN5RntUhLsQSD\nlkMge+8Ssd0gogwoclxfOYcKdifFN4u9U45vHqbOHxoG3/Vyq4G1fE46qe6GKV2BxonnxPs7r9p9\nKfRhaK/zToH3+d8J31Y1+njXPXHOopzjHra7/a3IVj5klnWKM1YelPTzqrye7d0O9Bf8E8/MZ40P\n+4mDpW/VpMdtiAcDhJMsmN57gJwdJfXTDkGVz9il/TdES7X4GoijKpe27ywYWNYLrcGWgNbYuhoA\nWBMABzh2IOv5t64QB79gtAjXh+gKGL5UhlsjukX4KmNce2IrBf+woHsNBtCba9NlPBb51+EHCH8d\nnlT/75SBo7+RIz0EJ77J8MG5Rc+bI1IiLKzrGxDAbfMzto23mcf3YX7aXmUsozCshI1ahwrKAff9\nBILTCK3xFZfXp7JO4vUR+QhbhFHwXq50LGllCHGIcV3wl3+Sd1Al5n+S7v13QBtuBhaprKO5S8DN\nDFKDQYwdIUyMCkFNBSRtSzD22gSUtu003AoB+QGGy3w3PSOzEpvDoExG7vlatbH2A6JrpUkQH6qW\nWRDXcU9zUWl3czbN6bev0zj1N/NqfuvwocxT2b+t1/j0PjfSP98DiJI7wFX4D32JD4wiR5cIEwbE\ndB5FGBCDPLh7J9qhDEuq7M9tXbVvm4Jgb80Kf8N2N494ar8DvUPlJnCQUcmgzoL6bKAF4bSxs8ds\n4YX01sm3eVvmXGIJbIVvYiArsPSfN2YgDNemVYALIJiuVCNA3O8XRreIuEeYwHB9mK/o0rAIC4Bf\nBMEV42AyAEtb5n8ZfoBwhD+Z/m8BcFFH6OrQT7yghVhVxazTyfQ6AmBpPBY8loIUvusKUZOSL3qF\nX5UFvYHkw7BhiAmCF8H86xbZNF1C5LPLd19gB8HZ/vgqwtAPcVjPBW9+sOBjVcIXaC15DKrCsDxo\nJpSylmUNiXbgp8DQsFmZgCcVsPOdXR5kW7QC/lO+dcuxb6fWoxKKUjopv9j3N1U9B0C5N/WcrmvT\nmjhUZTe0pOtAw/X4vdcn4jzrWkZAeeUc1r7XY3q3BZ8k5B8t32+EPgcyU8pavpP0Zy4EdW2dTi4R\nAuuvU7k8S/1M39DsBQ/S7Pf4fNz+qumkp9dnnUGct0kOyIE2BvO9XYwYd/t2qtAquQgIMFESIFb3\nBx4AsGBeuXHBAGhKB8MMgtlv9wRw+SE6sBA36zCC5ORn/2AJ8Hv+QQ3/AJTva8H2XA0gOK3ESWur\nhN9W/+PwA4T/ONwhvk5vWwC/C8BNorIswIObxBEcbzCTUiQ3qAMe51nVuIaA69CsSAZF4RUIVXbt\no6INFwqciqKdl1vHHgo2DVJLQUpdovK5RAR8hPEGiSMI3lWgMML+sMC+uSmWEILPW8bDdlr56AG2\ntBiHtqntlDRbgrMvNvC4QsU2sdbsQ7fyek1vwfDbMIm8An+ZTIOdS5/ppZ6m5GoV02r3fTvdlLHm\n4XxjRAUZ374+I33y/4Z9ESOAcZWOH4HvDc/v8P5rZZYy6h3vNA/6ugbeN+MDqfvbuw56Nb+lKXny\nEA+aDbSJr9Ls9/nEpFkDTTjNgHgISsfq+KBchC2DSGZXGQHporZ6sId8YkK3h6K5w13xDI7Rikqv\nCQCLwkvWg2qiHRijNfjJ4ot+wY22y0sBvxUM7zq7FbicAJM9doN32dby9CPm55IGmtf473HwDxD+\ns/ACBOsNHz3FioA40Wccv34OWeFjdftrinyYrtZrBATqA3YGmxVwafSj0miIEw3jZciLtAULViwL\n8H7AYnuJiF0q9rEQMiGM62G1QreSH2fQhHzIpILhQWWYLMt15OSDcgs09tsb+vftVQAU7VZ4fdnE\n+wzKNzjMqE3KNynAVg4uEWtGZxDWgV8N1R+Y86TlacutGeWcvAo6FNXOMezJU1UiQms6rOaY1+fx\n/vUGAONrkixWcip2uBniax6nIlA6883hN1f1lqHvq9+svXVurtEEz1FdJxX+tUagC8uI8dq1HTlI\noSNtjNuc/w2fy85L8mv/23CTj7LA24DrgG/Xj9TKwybqKsge8lesus+tVWOf4BM9gLEkEMSH4ioA\n/iUViNa7fR3w1ruCy00QF4LkAn7Dr7gAYgTBIqX+E3Df4zOJsZP+CmxhA+CFeMhnzp9d5f7b8AOE\nfzvUo7rSgGEHnkVLcMuINvfPpvl1aVoeirPZRWJlOc0bMe5U1CV7I7oGcwBsrPwlq3O6iZAQjOoA\nvPD1Ocbjw2Bs+a0w6bpM7CPyAcHjD8x9PgXYit/hWIBxlawwF+zhVhkm4VlUBPrq0vndeVg20hOt\nAp/y1LYlj1CJTjOKu5/w5OLgSrpagU8Pylko/T5n5zDfDTH5AE/wWQ5IbobaTYgewK7d8NTmYj5L\nhtX8Q7m3rzsQHHnG7dF0UNRk2r0D+2P+4qlC4QTC/7sw7ZYTg93xCc6ODjTkO90yk2XS5WECxGkB\n/ogMoPi8rn8tbhm/5bU534ODO5+n+yu1Vj4HbfvUIO7t3canRSqk867f+ccsy/IA5tZ4FPLdLcCB\nIPsKuzXY3SQug4fNlMFwPJgmSpbg+iMXv5r/bwfBBIxHK/EAlEUIDEcfPU+U8lCnNp275yKAr4ic\nQLB/H9iW8qAC/uvwA4R/K1StMwPe5/Q+1eQbgzR4F0vgHF/NgOtEfMpytGrZN5OyGSWl3gbJ+HAd\nCSevDmWYggAr+vEOMIsMQkhrwnr8Urk+4OO6D9ClCSD8U3cKIAbBeVglHfvLOBFEHb/0Nkz7mMFe\n2sCvMC3e0G/3pg3D3NqnTQM2K5z8IN7JEgzWXpNXYPhNmKEqrnCu5etSDwjuKEN12HuNR3n6S4OG\nL5XywecAcIb+Ta8TCP6IEEhCfuph2XIZ04o/Cs80UoIE4qKhBqzj3Y74u4Hk1Nd8NzdGPNZa94TR\nWVvnCz/A6Aue7OcU/908389IH3ntPn8CulLSFfh+BloAWy3pmi+wr6fNOy4PH4IOjplPB94E0Ql2\nXf6468Na0dQ1bsyZ3CTwF+IuWTKoguHlDuH+umApbtbhyZrL4Lf9gMYBIF9Xgt54R2BcaTKA4bZG\ney5Cv84g+DYut0+d/GfhBwh/HapWeQN4e3ofLcldZHtPFL9gOISGjuh7AxG/yn7oTkKpxynf+Q6c\nmgU43CQSCVRLb+xbGEqcAc0yNT/KTtNB88KCB+nLD2KN/foogF+LrI8IXJ9mHQTv+fFq17QxXBm9\nQY3TAd4GgBtxsP6SApRloWX++vgTV1VhS7hGmHcv28Ey1cJjVEN1f+iuDyd/4qlPE3w95Z/ib4O2\nyLtK+EG5LDwe5zJ3p47w2s78J8By+zIbwXEFTSJz/2hMdQtvhhkc56G9m947YP2vQXHIoNd870Du\nm7y1FsUSbIv2iTu5nQeAL+4ZnfeAfJEe8+zMRzR7yN8hQJ2lTkAQ/IE4zo+Heu5lSDut7t869Xhp\nRMri0+rlRDzlLyZNPeGAuPgFi9QH5pJvzRGCZaEf1chr1MASrGkR9l92q0D41xH8SnebGK5Rq0C5\nAl//FvVyveq6E8Gw+Jq7DnS96ovhc+nWYVjghzh6U/zr8AOEI7yc/r8AgpkEwLaqm8kC7FKB7u6D\nr5knACwi/AlMBJ/qtCkf+hJyCLt/in8VylfZKsJfmficeGoDM3X/YZFmBQ7gu+dGQHDD1Gk2GXXn\nOCaoUdbGwBfWtpozcEMQVES7vJU6K5C2wmvInTXt5oHqpdwFwouz1Tletiblzgr88W0is0uF4yVU\naG0bjMQaJijMNC00m/iiI1OD5evt0mRtnevLN37BBwQ/whA6/xm09PWZfYInYHya3np6p7Xps66V\nBfLm+qf2v3bpfgpKb2Po/TlCnhvQ1a3EKI0yzeV5TyDY7Q/MjR9uzPdRyvGn/fLEI0N8or3Nx/E7\n0P1QfLkESCkzxSdAjGd72mvNvW1qoPTzCI5DztY+eH72bumF1L+LisC4WoGTdoFrhIPhsMDKwWdY\nwRos/pPH04NzDmYL7XTH8PQQXQO6BqA49Wp3gWEQ7IuWxqdNtC1TFOZ0G/R0x8PlDz58/G3x8Sb8\nAOFvg9WEwkmqX/TW4+5iDngC8KQFLyWR0TtZDSvvXw97Mw/C5xW+edGxFIgO7HGm8oQ5WA6QvM0R\nWg7fArxoCWba+uSqWS5QsIsuAZpEu0EKEyysy+PrM9JtfH0aTQ7vCXDBnxi7Jv2dlC/Mv8fxJZTu\nK07W9uC3VlZ8/od6vQzuh7dhhCbjlhtuahlb0iHVr0Gr8/gEUOilcNyP5WYQ3MrsD892Gg6FtycW\n9/sMim8B8X+swd6M4t1IM5AMovQdr6eZUtcKqt30XkNvrXwCe9WPQzrF6rG8iswP9JeeaK0g3lxG\nvwlQ07BQJkKW3sZ2KN6qsq6JqZHT3KK7YCkUVmDQ9z7+0EcjzVIXeTn1OrOWKBdt0t0vOUh4D/AI\nBrN1/agDTPdPB5BpLot061vLafF9AMC17SXYKNmMF3K+Pfs+TrqVSshWN5X55vz+rfADhP9GID08\nieITQJY4tKnprLyXTfO3lU2TijNLCyiUDGSHWbpHNCl23weyeMOM+R23CMjw5x39IDnQDYDWaP4E\nr8BTzztPuTsRPyLLrfIAnOoEbD+F9ln0AMWfrKOnOzD2GylW0xZdcAv1E5gyQWvvBIjR8oFzwfs6\nQe4BAEfcgO/Ecw7aUjbku0SeS/c6Ol8/sck+uT7gdliKJflk4J34busrfSGeaGevSQEPc5jk0h0n\n9uC0C5L4qgt/IbwfxZ+HgjcrNwAAIABJREFUgzikvGm9PLy5bhD3WW+hcd326a6jUznCVY5jDGil\nJ/XcTj1l2ekE3qekHySzaAq8H2VejlgVy5SRUjdOs2c8x3UsNbguYl5wjXCaZl7j197X5AG9o5yf\n82nSQHDIwvXNqQJrWl3TKotX+q6oUf82e7pcei8iz8DFMNcYjL0SIFpE4sH+HTdY/PWt6r863Rx+\ngPBfCoejB3RWLHkmUXsavVvNv2nt+/BGpM4881Y1jmohl2pqzZPgtf0Vi/8GuTuHqMj+1Ctg7dU4\nvHG1C3y9g+A3rMR1XCClOI89ZdEy7AAYLbby+Ygcwe5H5ACOOV2twkJt5BVtDIDrlJ9AlkmC4A+M\nF4U2LqegsAO+yV8w4wCQjRVDgGSpcy1H2pgHSOIE3jI11/q0y9H1Ye+AeW4LyBXpc25jfX39jmu3\nF4PlimZ0Hj7UrCeWgd/5Bnlj84x+K4t+R+1VOTHl/069d/ugyqfz+qY7xFxrwo3Y/TdPcW4JCK3d\n93nsZwM7/T3y9vk0E2q1GQrgzJ/DtBKdFm3pwAWdo5LGfJk3nAwrhWp3qhyighW8sqEgwaySHBQp\noNj5SNbueko57gP0zCfKpBmb0Bhlnm97PwJAjofNLW3BPo4EvTyLdR91EIxAN+cwLb85P4FpwCJt\nwbj08sGW/5+GHyD8F8IoxuITVIVUpUSgjFLOCh/xFBJWV4pkmMX8+3y50TDW804y8KHluAlD4NOr\n+FdNcEjA2ptW3koDQGwJfleepj8TmCurpaGBrlivfC3BsuNHKy7nNXBceStYHsCvCAJkKcDYcJvk\nSzkdYBjeRUC4t9XiXb3mXQoYNogLxdOlgq3I43yPtCVNT5D2VP6uxAQvKvSogKfSIq2+DnO5N69v\n2jsGzGybeBFr+TtgKVLxGkuyt1+On+qewr9Th72lE/DtZUru0OnTGid/1nEvhc+A+K7sBHCntTd8\nDxDTz3DtTU9bNhgkEBKgG0hN7E7VolFcuFztg2uHqPOwX7m9acYK2JUuDxsoVuA7WYURBKu308fR\nRo+DL1bgpQPy2rLQlRv0Bn1fm+rA069NrXshvNQb6E3ZXUGwVwCuwYKWX/PFgLunDRaCXClgTe7O\n4N+WDT9A+I+D74ZGHWJaSRJgRkRGFOsbwwp9lbzp1wtg+6dhHwhO13yP7PfSJVQB65BKCF/bp0/F\nD25ezZLgFuqtgDcswEbgF32GqSeqclbpoMZIo5mkpXb2B04r8Q04/lh3i9g08hGWahVO4CuSW2gE\nVACCq0uEr4VQvC5oV0AEcCXnnvIobcB7UqzGaav52nmGMSTtPQieoIbP3Vr6erOG9LTyOoyvxnPv\nzpJiwKi9rOFGBo2DfF7bWq7lU14y3yr1L8KT4ptHfR/+VCpOyrmerbZuoxr/vhd118Mj0scWWkuw\nwRv4Hco4IEYQWgGxPKXbQtmwmUDilDwqnqK+VF8EHwVrdZyY51P0DIrj5ghFAGwk4zq47m36LLR+\n4CIMYPgWBEv5VhXyDRY81l1zDXh/8Rlv++pg+Y26CDSDG4TuvQxujVLqryv1J2d4Cj9A+E+CzQti\nR54hFhoUd16Jlx2BLH89VEn/R2GeID5EAXmh2S3iVeJGDN2n08C9wU/YHeB1qbnAGuRrCrRRstMY\nVj0aEw+vI/A9WIILOG7AGMrJ8V0CAItIfLoPkGRFEY9Kel1Bh8oN76al8Tv4M2n3fybY9bWQIvxx\neo3TW/jSBxJ7q2RTXM5gunMifQIOtTbkWWDHrxxEkFNBTwIjqesg0zrMdLmhV56k3oDhkRhaifKe\njv/bfExNa/BNmEd3pr8JE6jluD7yVADcOR868G2ZsQJr1FpTA7sOcK3QpY/xeL600qbVKDRIgggX\nMqgAr/f1/7J3rUuO66wW8r3/I084PyRgcZPtdM/sOlVRddoyQuiOlglWSnY77lNBVNNGIgpftIci\nLvoaLNjYvs4CzIkPj1FTeniXAvUjtK2CX466Eeu8G5gt5STkFnXov7UnsAHQ/BC1izP9u/aNve8p\nsNX05l7L1TqEF+K0r5Llt3OLwN8x+JfhC4Q/DcOiMufvjm0TykaBO5zeYNxue2UxF3Yv7RMVbEKz\n7nNNdVk+E4WnRGJ9Wo1xZniqZbLVXy28W/mAdiguEuSA+CVM76BFbrZXdhmGOMU+2bf3ChyjFdjB\n8OBeQRTibiVWutZSrMvtA5tP9+lBcB68CBKzC4Qpd+nA8MBLcQ+cQe2Ull4usTRueJ1fAiXCtQwv\n5MN4BsMhLXya8WrzxO+A6pLKi3HiywyZI/boHcB7tYK6uuZx+c3Q9kRbxL1yI0CcN+tpfZUTIzjP\nQqzLtTbu6yMjz1FQU2QHKrOqZOp7z2cPx4FA94gcdCtpQe++Zyxv7w3HBkq4FHpHboGpA2CnNzR2\nq7DS9peMAfjOfVbLjfVj0hfM1kvITOqvoH7AwmD95Q14RY+B860R13arCxvQG10j+nuxTN4nk+V3\nJS9+0eaO5+T93fAFwp+EaR1JTJQUmdajgppIl5ihS/9ZdT18joSHAhXADrU4Kt34X7++8UVeAS36\nBNNFevcSnWmsrbTc06WDHUIKgKuFt95nn2Hl6azAy7XiDXkXrViDKfkLJ+uwkFUx13y7RERr8OVw\n2kfMKhxBbnO/C52OTss0v0qg3Y/PsCpvYT3A9v95KWiNhCiAW007xjmOBaadTpCQLK/hI6p1jVvc\nvWUdc9Rcfjd7AufN9E7oSulHKPLn1OPW+YM99Uotarq9IHfBb/PnsgTthbPzW5evy9OB2nJluJea\nbsAFPl2tDbgW3R8RbnEhxrw0pMMEQIltmzqjkXF3JN+MGTauoEegcRHYCqFf8MoXX5bz/JDelFH6\nrrvfmVY7AbFqx5LYCREKmtUvWGdINh+k7KFvtY7Wc4kXE/NpESor+xJHni3E+J/N+t8IXyD8NEgT\n7cZNhlvJ94PAsHN2PPfreT+kVUC65C8aGBbrRD/VKZahv6K3Fsz2OSI/jzAc3I0a8gLw9oDYNW7Y\naIPeVvkC5e0PAl+q/r+9tbjxJW5ejssuEfH4tL316lQRss0Y21LBE9tB+Eg/WYSzDBzWCdiGQ9eJ\n7DnjlCeCIRrjPwHJeTav+x4E+z3H/rwAw4Wm80u6vqwAqutv/N/x1+CjdFIFnZwZO0aQ1cOFvrxn\n4BjnwQ+R7AdZ8izEeZHnSB4LpyVIakrlGjCnTKQz9GmeTJW71wEUMwobSh2DkOluQ3FDRlTpGfQS\nkX/hB3WNTfZZdJyZwN/Xf0koeoU17iVY/xSrsIT3sRlzMBXZrQ7DBiMKZWinjhOv1mQQrPfqLS0w\nsPmsaZtrCgcUuAZ44GeY4zHCi3+XYd3je7e2h4MVeEtDnn8cvkBYw+0RmBZTpAVlKTHRJkCRIVVm\n+2Tb8fW1fRruK9wUgvZK9GarKAp4Lza7kj65ujpaa99WDrwYN7wkR8OpEZi+Wy1bWYVqY11NGSma\nkV1RsfgCpvoByy688GbHp3XAtz1WbQLGCqzUIoyuERUw6Utelr43GAXACowREGv+V7rXcarAVtI9\n8NzIg9fforUbGcTPIDgCydx/uM5DWkOjnWcaozpec5rJTGCirj7dKOdt/op+0op5jQQiIoYHMqt8\nHCGnZxmBdnsz7cf+TOvzdGNkdO772mf+lcaNPHjXxln1J1E+/7WTerwGsBZBX1zDgIRsQgoo1U3P\n+4SsPh09JlTtwhwPEiXT+1Vwfpmu5qjfMHkJDnp3XIGcGV6UDrRUQn1ROFYslx77DcAwaR9r/0rK\n5qcv0d5R3U84dkm2CkNJFnFQvJSfzRHhwKfy3PIriUff+xl4/nH4AuHHAUY6rudKziBWmnXYZhyY\ny07403BHCTd1mDaatDEH4mUxXpewuHgrc95rr3vxTagCYtlpPPEu+WgRVs2Wla3XTkwhWRwswURS\nzwQOFuH00lxwk+h9hmkDYrsnB74KiLWe9jGaRLq2abcRLcPzyRGeF63Ifi5wfAEOQWmhiW8ci6e6\nTeSyn6RFnrx953gPkPN2LnBfrluJH3nSFceBSEb3CAp5mnFE9ZD1UFqfnR337qpvl/RULvJqJRt0\nWmtzXYcItg7hjsAHodOQPQh2qhDZjwDF0b4rcaqJSxmTC90RpEOhuQan6+Tfehlg6Pr55JO5A97I\nAs1p6iKlzossxzxTfRlvQt5F69KN1gBg60N4EGCq0scVmhGqRtD6q0DXADDqlP5lOdK9FQQfXSUy\nKFYxmodIN2vby1Uf6Pn/I8/XR/j/U0gzgCjNW1jYkOYblxT2Lq+Vlne8vEaGtfwoPMLEHWOzKzYW\nYltwuIDIVUv+OtHA716U67fcyRbUWlwOcm1x8QZaQtVnOAFiUXlWDwpxtQYv0QLoRyhYgkmoO0JN\nX4Dr3SQ8T/UZHlwjoFyzCCeQnN0kTBkmEJwBMLb9lbbusjFuxvq13wCE9SPx7ekrYNtfz0C2B7+e\nC6d7jisf9t94BVVwhz9/Jjqmq0qY8mLIa6vcwteptzecpJKucgVeW1C9hNzvJ5kIhtvt8sH+eYaj\nVdCJ38aCI480eeb7uwrYVyi8cN/O53ANwIlM094Fxb8S7Cs/F1rk4zYCRzHiNDJ7bZAhgacVWCt0\nUV8q77lw1juqw0AZZt1n4HdnVBmxX/PM45LmdACznPMg0LXvBXzdQxqQvYRtRAol6mk5iMNV7yGA\nhePPzGpMvndbQSce0XX+b8MXCH8YgsLDxQu7Bm5Khd5FuvG3bM4zKaYq9y+FW9pRhnocVD8TWIEX\nr1uCdc3EjYAV2e2O8Z9OlvklOQTExC4TUFTZSHRb0+/qtluEAlCS965G59LwLnR1k5D3O7lOOHCu\nlmVyvI1x7RGMw1WgTTmNCEFxfYFD2/+i2ifGK6DwIX8EwtVybC/UKU/KH6880PtrpfX5M61+EU+7\n9oerbgpAn3jdAlytvP2neaCRvpxb9yGv1PSh/Sf5J37UgT6+eWPvKL2sDA8SvpvTi/C5hR041JSc\nVtZZijtEwzxTCXPJxmHruOe9ksxEZq12DCOhr6ruq+vZvoHjmhbDsFk0A17qoGuKswRfbJ10p8lQ\n+tDHgdlvum8jrP3Ai6DYXpbTOPXg1/sNAHZyb4i9EmpBiEZj/4FlmBY49pmH/1FaWou69+JsDhbd\nxezWY9HJVV6IM3Dd8iwhjHL/cfgC4U/CtAvBBPZo9AkWSLQ5MJYhDS3sK1d6cw6jzvWE43wsSiMn\nNkoqW9GH6piyhq9N7KgWom1RvHZ7UE3K9qTaAGItUGXbhposJkHLCJlvMK14/rGLzvobae9IC77E\nbiH20yOoWoUJAXfdiPPmnEdLf1QDQfCL4o9tvCCu6bgxQvcl14d7LhNIx7UQ0jiCs9MV55vmwnRp\n8vg4c6Fhf536cvIZzvm6D12kZ74s9xS/uq9ypdDP+1LaPE/8vgcCTx6RjpLr9+FO+TBbBoNdmtZI\nNWZ+cKEmXiWc6aYPW17XVac2TLQlW0GxhHR8Ua4stkNYepaD66pfRRWEyz4PeGgAguK8RjPIvBRG\ntkVAvYnc2IJp+qklxYeBnR72Ri4y1hXldCtIUnVThzKWoCPo32WZzcZo/t4NUdR3xER6FCfx3jOJ\nwGWBHBTD3rzyYXqsXgbHSwfsDOL7rc4LnSL/OnyB8C8G6SK4iFugDFsPAIFecCJP/GOYlO+95FoB\nyHfFOMitSplgEXlcF9yK70UoQme3B3eXWPzxJTk89FwrEPW2A871VC37KVvIQDABCFZ6sP6e3R7K\n5x39iKeTJCr4FaitD88EuDAo8O3AqvZHBsRR8Sea6lPOvFV+puerbpQhja/z4TbTXeXA24GfE7gx\nmm4KBz6YKeP40AXfnTGd0k58U+i26JMEp+RXjsg6t6qOOxRfl4F6pX8O6VXlzcyfzg21vZ3Goa+w\nxNumLt1dpnT17tP9PGLVv/2aP4R2aBKxmVFbTa84xx4I8Ts8vqM6/XKvjL1Z673jQadVq3BIZ7AK\nq2JUBVbKTWM+0jxNj0PTuVXBML5wrv+jicetsj7Ya+xxz86+vkT5l+EKXZOEAvAlJgDUnPb6vZdM\nb07+xfAFwk/DuMPkHVD0r6RLjPTirxYuFMcN/d+F3I5Ugexw1JM8zSSkJ06i8JLVWkebMALiCo5V\nMqYR87aKOLSzxRnqlJqHWlahS2v9Tffb+lstxsmFIlmDnZcSbVdr0/TeNmPoQ6IIfF+pUZiGH98M\n71t6nwBiauI2Vjkd1kZ0x+CU9+oKY324ariK635CFPs7giIC94j5QzmPfvLYPqjfKX435DxX4CKs\n5YM8DpT7G+Ezbg01xzTmd/JQuLp9tpMTaQ5i+iLn2nT1u3PuMErs4hE0zf2b127lPNyHQY81FiK3\nRpLrfJS2eAb6sQcE+Co917W2MbUFEoKOA7cJ/wCNNw+T71umV/M9EY4UWnzzqMW+6KzAvI02mEaQ\nI8e2vAR6OzcHHIT40pyOlaRfkdv7197kESv/FybhLxD+YRD7hzSJNHH3CFNV0izIImeFE8/9Sk4h\nKdt9+3xz6Qu+Y7U2Z3y7J8IuBLy7qwhuETu/dygC4s4nOKflyqxPtjh4zD/mH0w6rkIR8Eb3BwS8\n2TpcXCimF+asNLQAi80xSxes8bxFTsC3gtTGx7fwDGmiG8Q5Dz2IG21r2+yffL7yTT4Pj0EmLCsE\nS3esvMiHIfPkch/XcYg/WfvdrOqAg0BK92J41HWRoYdUFYy04UNFFiHGfKXm2tE6v2Dvk9qL0Rd4\nkpBzc+DDtCdxA01BFpsezn3KlRRD7jiN6voowygpyjEfTfGoqUeZt+hR0qj7EPRyBrv9fC73nFtC\n4d61FXSYaXoK6cE1wuaD63/dK4XYNtRFykebrQTbl/dLdER4HjARA4LF/KqTBZq2Tn9iyEs7n9iE\nZ23ePw5fIPxpkHgjSNP5KjlNIE2QlYgGZeJZRmVjc+1qTd8M9ZUQTOvpWRGNQVROVPRZDZjuE+fD\nb0wCmKX4YtxaVw3oJfQR9rhqte7XjPwmqpgKVzYw3e4Q0p4jvH45LoBfS08uFDdcI0goWYBT7YTK\n2bX9uNUPWbwecTbzXqQJbiB9XnoU97mj+jjz+PXsKpHBQ7cCJuA4prEve720nz1GbRrQc8hg64p2\nJ727h+bcCrNOgw1aN8Ihb7R6dcAm5unA0e0KD7W9G3KfZleIiR7LBcU41m3Wr1GfSkP/JF7thnmt\n5jrEkEdNqpJVtiQkjqlEgwV3Jxc7QyxVSi36gi+qjkRODMjHmRf3H9Wn0epbR4DivaTRCfWKFt9l\nEIlWY6X43FtxtvRYXnyJjSgecebt7o5P8+Q11vWluV1bnPJM2zoMg/+PwxcI/zQkbRcBLiIQsNJl\n038CKncU/lSNT0NQn2edezNExXQpL61xW7CoNwX6AKzA/vYyvKRBDeglpvqjGkS4IxedrFZf1qdq\nGIWdhv/x+LQAXt8TmF150F1iAr+rSADB5NDXRCEN2qO1zgAoA4gIDiXdx/gEYG+l77HGAzs63jmN\na9rWpZqC/PmqfYHXLk37BsP5nksf+3QBazDreHWfu1bjWod8fUK7Ch3viNtSHm6o0wkdysEpVtJP\nhY9pVzW+zpPnDh2uvayhJ5vjJrt6XL8cF8vIMOtpvOjhkIbBDjbT2yZfHM+ig9KE6XQUoi9hBH2d\n9Clc9XUtedZvydjCvrfYB1whsvzqa6wdIDbRJ2CrCsbAMFp8Cay4MGO9VC8PjyMVlaP7cXaNIKFs\nQTb+UK3Fx0S9fzF0hYFhwj76d+ELhHf4dbcUQbndFqSJvzPovYfYnn04CYHP536jnIN/2tq1fduq\nnXXck6TLoXU5tacWEo/cWsCWAg2AUgC9ECeC+7kB/pQqNkHM6stvEn6R0JtEXvueNqB90/utR6Pt\nOIBd5emOSJO3ECF/C4wVENMGyatmq8677tgOov2VVNwiPT75F+a3jOumlEHqlIbqOXxsevpGo5tn\nBqURrKIXHKSp8gaFn+VIkkVUy8I0bVMOmSaJKikSQKzcA7rZxeJUjzt1nGifhk7jTHy+UQ9pJoRb\n+i0ZrbXQ/+U5gPCgp9drV3a85pkwp13Ru9Kux28+oC0HcNscdENUkLnnu/GOtN1zYVBAYTcShChZ\ngJt0uzm3st9hYx7ON00mv21n1+3SZbvphd4WJmGFqgFJGl1ovdcSW+B7HBFTNrDxzo9NDpreqrBp\nhliJfA4pAJYNJRQAi/EGf9/2aDSi+BPLZPu2GDPikd/UUPfCFwh/EE5fNQNXm6dmahZLoVwF9ktT\nKZufEigxbS+0rk2++fQN5xBLi/FiTluOqd7n7KkODAsWAM1eiOtpPQIwfPp0xb9X8V7NSxHhVvUm\nodcCq3vjlW0xfv+JILj7vOHsYHkLvREcZ//hAQyrwjD3G4HNFIcpdGD8qjNu7vl9YgLqMEApaN48\nd+/QA+AVTEuAl3Oag5gOyGKbKFx74OP5PgCWcs03fUJIhQeePTVPgOnfbyODvmKPjPqM51QOkYHr\nlLbT5ZQeSyKie2AYh0hC3rha7qTNdLzeAcBV1tOAADhOQ18hGRRySN4AKWBF1akUuxoVVBzsGFQf\nXGyKUfzvrIJOb12XXhuq72kw8Ajxdl8D1wVZPW/AWODsIuwjtZ5St603ho29l60z46OG91mTRrz4\nNRDpy3aLJFtXD+4UDEOMP9QBSpyJAogOWPwfhi8Q/klQwPFgzeGmmZfLZ4HrreCUhskdHu4aDmZf\nFkLEaWF4GRt+SJKfKpJ9y6Zuup2WdWasjoMqa6fXIZwkQRRcJrKOFgTBtjK3MpJtCVYQLMsq/OYF\nyxTo4kfkHejqQyz5PrlQ5J9kRpeIDIK1f6bNNPeqwAy4AsN5JLp5e6LlvY8TXcgBb5blaVvhwtx2\nGfEt7QxYKF11NPs0rptu6sRprt6hS/pM9PDJg9EsmEsV9Jc2l1nskJIAT+HStXuqMN+XfwqTFTjy\n+GrpQDDyZbCagWyl5RxdHSPX+XpvIzpPp37VF50b+PNo3dUQKZmILk3BQJ4lnvrhTpq7OfTg9kkc\nrvaAsOeTAsA9w2R/c7k4eH/zqGAx7tnWB0E5sPWfY5KUR7AHWMGAy7ZLthJvjnQkhOz2WB5rsri4\nA/AlIgfReO7/Pw5fIPyLofj+3s9JP9mpOMQkzH2lhydEnZDEtmLicvIFRXmhGYDwRXSuU6S17F2V\n7+TTugKo0bbqXhnAMEUAjG9CK7+pLcFKpQ1O3kQIgmkdv/YmXsD2T7UAv9EVIoBicJcA94jWCpxd\nI8hBsFuJ97+mw6JqnsGwc98biTvbXgSuPU3hRga6HndAUnn8+CFsxTNwrJufT//T3HPuPnRpQrqp\nRRDTfUI+9nxasefa5vc2mNuSdO9vckQ8+wwYc3szg+MIUSrMbmDLyiqVlkubwKnHJ4Bc4esnwPaT\nmXDK3wHldY2r+jQHOL/8ZICJzxkD2B1AsVRSTXyW9jehV+w1BMH720QS+wEoBcCKExUAM6N+XzVm\nkvjTxdCWaM2FPCyVTKlnGN0sVr2Y9AQJR7T24pvl21bf5G/DwaBUgW94qa6M+78JXyD8MNwZotkN\nAuX8xjZWNwfJSXnhZH5w3o+4FkC1gs0RG2UYfVY4HwHehO0QQBnopQhgFvDdgFctwaQAWAq/wiwH\nw1qab0v2EXIQTOxXBbl/AOwGYAyuEJJ8hTUv+hOjm0QAxKsSCwwLVBPA8W5ZN9ccDDtHBAKz33Du\nkzO4ne8zmNXadi/CRTC8xzDlD0A25UMoNYHknEaQ3gc53HXcbHwnIKybTwbMWpnAl8q9E8fQtu+A\nCp4Bhsauy3hJ+qtHtzSQ59pwnZcTbwTIdT74j0rorAM+W2cS5OEVU+N4XIPgnK+T/VnoV3UHOyuU\n6sDw7pvS6UDIYJgy71BFjgQfhciDa/+zEPXGPf48c6b4bjNnELw1gvkIsx0xpuDYfIStrb4Xh70a\nCFlf4Ogu14hIK8CX4jehpnXTXh+sw2j1VaOM8lv1xIqNP9Usm7b74lb//274AuGnIU+2O9tkjQQe\nTrGfBZ+oNm+t6LrtBW4G2LT5w7RsQC/h5H5Uw6TMurSxZZGGV601SnFAjB+2o9U0h294EFDh2BPw\ndoOgBIKJNuiV1iL8fkvvP4y+wgZ800t0QslHWMEwmaIUmjZPfEmovvyGoDf2sfdjv3VSSMkzONxL\nvNd4v33EN5srGI48KGcGt1LSIk+EZsiL4QlorPniQwqOUbzfcwsqYOmpUqP2uQCzTzebWdxFB5Rk\nAMdXoJYHwHyrCpUYXFdBXw3QxaSgjkYXCVJgp/8l9usMkKWhxTxdWmrNDZ7Ij2HSpRONE62Xn8ZJ\n7F9KwU2Uxylk2UuhiShAG6dj1GpduG7XaY/u+XDGoJnF6ELLR1j1uIFGLnRsYgSqFBKk0GIrG3OY\n7RM+N7UiKT28NLfbyeQLqrP6KpYwmvObpdkm2lPN9DvhC4R3eNb9rvEe5fvVMb63A0elDROvwB2/\nYyLCry3C9tAsQG6kxLzPQsmV1vWUQwGvtsJdIBDogGWYOb2YtT9CSVnQBp+q3Fb6+hoLQDBxALzB\nJSKB43AqRPAbTu4R4Ui1Vbgdu0YS4gSX3G/YVxMY7udEBbwofvIjR52G/Yv3Oa3Go4Wekhy21uh4\nU8sr6UrttbqJXMAvb0CNjgHByylu97p5YP7rqjwIZz0ypt5QP9zFBvDLRWZvTZ7X/8M68gBdpKc7\n9BKIJxCruAz0a0jf/yuNQko3jpJ4uiCHuy48AcN4JQN3Z3qsS+pwTLMOPQwYdrpJFIj3fJF4Jfxp\naBvUprVzCn2AFVpuK7BiRWF9id1PSLLaBtXs+3PrHwzxbltGV4oIcrVM14rLmCsmKPgGA0ao5wqv\nPTcAX5LNx9iEfx6+QPin4RIQN6rrFwFxnjQdqCl5WHm8MtXdN83KtNjaX2R70C5d6Mf0Q1p3xXRL\n40gzgExEr72WQ9tiLT8/AAAgAElEQVRtE2OIx4uowkrx6CMsySIs5v4gIgEsRz9heEHueHya91+I\nQzty/7kyno5Fi64StVfnESnyoD73QO8JDPsWa+mSed1HuAOz5cqR58TrtZ/CfdV9Ar9jvAPDqUbd\nWB/rd1Hl39mMJuTK3SXGGsA81enJsaOX0IUrn/Z9DyuacUj+nAKp05hdu0pMsakln4c7ujfoSOxQ\n9A0GtpEf2bCjp1E6DWDiW+P5SV9czpKbaVm7iL8Qhy/Oifru6sty20+Y/YU50+faN8mHl6Drin9w\nGtDuzRDf3ut3g6xn6DfWYda6qlwTLRv4bpBr8hPw3YUbyP8PzhAm+gLhj0K7tACU/Ezyb00EmMhU\n6xxTifQ8wggIgdt+YlFJ+Lg3S5/rdo/rqj8dtDjAnWgFDG8dYldyKFiRJbn7gR5powBYlkX4LRyA\nrx+lJpFeXCLe9Eaw+85uEQvpuksE3Ks1mGDzTSA4xxEM53EwhdbOnastUi5B8BQvAFgyQK1AdwLO\nBPIzn6gMOYDkqaUjnryGDRoy0D3RMI9iiAqumvIeqpA8/s9y3q2CftPUUpu8kfH5/pi8WTM2S/3o\n8zGbCCI4JqLGaDCA3aBGehAr5X/k6dKntd3JuQrTii59kBMo9jAOT/Yj9lvVrVVWCDrRuZUW8p93\nTLmxpd7prZOQmKbfFHYpUUv5C2gIgvVlOZs7Bhq33O6pjAj8a3P6juz0OBMtt2puyg9xOS2/NLf8\nfrmCWcGixV05lIaWZlDQ0xGufzt8gbCGiARqXO+bLJ2wyzczfzscd+7eRhyVXVJodq6YxAzFWemy\nEn2YRDR1PCnqKe6A2I/CYSLwFV70F5EZMfzFOfXf8t0SX4A0ECzrXMYVX/V8/wFLrwFgdItIcelo\naB2mCoYby3B4ea52c9f1BkI6QKyQs1OamqcCW+8z3ATiFtDEZU6nQosWYkwngjHkXg6Rbq0dveYJ\n6+K0ptt9sl9xGdDg9ZRGROmMzR6Gf6JnfvPXnDjfcdc93IDbG2D5XqEWJgjT/Zy6/wrXomQwqMVI\nzmhRqWTedCnsVg7Sr9Kn8BP4cNLBXd8dQS8RdCaMnLElFDsVYqxyCxAPmUe+fuXcDbkmqpmidrS4\nnanrb2PEU3uAqu4S6iIhFL+1RICLR5SFtHITgr8wF1vgcZWtwBm1r4+HnxrhYJgUzIZ6qrjdCDhV\nwk6xQKD8H4QvEM7hhCKkn1pHVdWSk1Z8PPhlRYd4XQK6meenvYkfqNnyOwLumjbsF1NJNcg5PTfd\nXpKD9RQBMfoM14/JxE7agJcAANMGpwsELyD8lqVgDMz+QeuvuHtEsAYnMCwYR5qWvcEwKWhy6IQg\nqpuRqJhT91q/lQ2/hQKRA4NufR1Ixq3DaILAVvNWQNrRSPDltwqKryy+gRevnHmm1V03/wajUmEi\n79dL0DteXfidrdw2yblivxJi+wcIxQ2vbpaNtCt8/pPWFDgT6oZv0se5izR/Gblbc/l/lnHtKjHn\nvdh3UjiBXU2/ktn7BZMDoEJLPRxue0BcwK6xyjyHwz76Kbi9Cj34vXe/49onBnJ5g1xxX+ACgtf+\nG4GlAxF3PWg2S8yTdXXa1wvY3eWwrQPcI3acPY9bMzhWEcCv29Z0LDlBDNn3f09HTeELhD8JeWf6\nYZ7sVvUbYQK3QXkDR8tfFlTm3ovlRj+4CG774I6iPoJh28R0VXVgd1uHWUoaiYIedn0qRGbq3TQ/\nwYHMEvzetPXryBEAS7q+BV6m68Bw6xdM4Bax6pTTrJ4Sq4xBeyUfUIPKrYe+c+8j6M0sGcgaTWpa\nVMfprGDJfFluPRECt+0pH9bLrlLzhG6A1mXgJjG53bcdaDh/pxqmtCsQbPteX+ln4Zh1AEUd56Tc\nuJPRgeU+f0ttiBVciV064GVqD8cNOjuvEbOSSaQHOMtRRrbgxrGXgZ7jvwH66ko/Se76vLUKq5AO\nDAdBQChpnTzXExUQ+6JraxSI09lELfNl6LlRQ8UzI1B3dpZgEger7lPrij24QgRFlZAw+vHY5r9/\nYQ4G+zjPYD066E76zor1wrpTIsJLdBRpq80UF8o/Cl8g/GEIiqgowMzXxDKzrZkHC/DDPS6A0iIO\nlfdeiLagds4r1Hoo7ZQtQLGGMYMXrKZaehdf8hfmBIgluUuET19DESJZR0MAEHZQ/Nbr+03yx10i\nKjCO7hDvbAUO4LgHwgKgFy1RwS0ibLqx57sTIjQ2b7AnVwmzIexrAshQpQ4E6xVV7NKb3PJR4Q97\noI1jmy+BrCqvnj6BDUBadFM4AGPNx3EUsmUY4z2tAcEFY/xUd9xXKvdwcuLiztGBKxulgXpSdhMi\nxlLZMNulysQxgOPWRwgbj7trNL9u9u2uEOk1bUo58fWUOyHMc7uPqyL215Cmiz7nKAsMFdZh7EGU\nOyAEZXf+hj3U56cha7mqNdBJAgGk/eDIrs+6OAjWF+XQ4qs6pAXA+ILc8GMadd7ofp6tvkETR7q5\nvOi3y25Y6V+Wa45H27qdDCjrpsAOM/5x+ALhHe4vjYNK+q31dSecFruzjFXCpZlTwvY8CskJHWRp\npJeN5H6dcyldBge02kGDOwQ70FKXiRBkKysDnAQgWAwYv422LcN/ZLAI97TJIqxWXzXv6i/HlTOF\nN83qiA049rXPgG4O9DmnWTOPWqMDBzVL5QU53GYKKAbgUkAxxbRwLWXkPL7h4PpSAJW7GOdhXA3N\nXdyvoRe8ghOoOVuCp8c3CrJr+GDHuaF3UDbHfzEv97QWKFvsZ0q2wjXXcwJMnNIFsxhPXTto0WpU\nSpVnaZL4cr6O87TqarjSrVOIa2g4Im0v4GZEodNj7zuIq8KWuMNks7x1P64/7NFlHIo+hk6wpB7p\neTIARv1nVlJC8BhBMKW4tx8BMMU+1cU/WIXDPGKPFPBL7sVcNLO9xEfg78tBUZv1OihabKvzrur+\neyT8BcIfhCtlYg9j8FR2SwHBGprX8u2dSLn7sjlcejCkMzR47OfFmBbaZW2uFfJdcQXcpsQFegDs\nsvO9AJQxrTd2DTALft2PrhAOgO1+g+G3CL3flPyC0TcYrcQSfj3u/U4WYdH0pXLUHcLQlJZNUCeC\newJcvDtyPlLvPuj1OemK9AQqw1UO6RLvcWydR0IakY9tyAd7Ai6VLI+uruL3Li9voo3VdzPHPb7u\n+CcwczethYUNzugSw6jf1CfcxG4wxxuO95xoISXpqNtlh1B7IY5ZM/858rSlw9v1BagmkXKZNu8T\nOeVaL545rnTvveDQL6+ZFKnVmqzDiWQJtseMVenTCl3GtLLOj8Lv0Orqz04RRAvY8u4v2aBw0cW3\n3y0Gt14TXeKXOyvVGYXAVtLcd/CL2h6/G7S4nRzh9cdTItSF0stUcR1Q/vkMfRq+QPhpGMZoVmVz\nnn8V8vE/LQ/EfYPE1QiM99daDHKPDevztOuYKB2HRvAzy0gDt4gAelBhil8lXg0MvyVd088o/8F7\ntAR3wFdSegK8ehWK9cq78dhpT8FwTXsbNefJShZsCA9AcL4qwOx5JADfa/DdbN4JLGdZoWUS8/lm\nsP6HvR7WXJxbnYd2BbTxvktvUWIT+Hh7J0+b5RYWjnXMlkROoBiIVQYRfaZIJ5REsOm7nivcSREV\nOLonRwG0BfDWUR8kNvfdtzb3eLpw6JHLPHkut4IGMGxkotuA2FaHAr0D6C0lhrqcQwbD5+ndtf2C\nBgAvA2D9FkQB5ErawJAkgmAEvfUoiSG9b3H9FiKCYjjcwYFyAMUUXCoU/Lq/L9Zvl7qVfj5Ozd41\nUgvxPw5fIPxpOM0xZ+kJp4yDfnkcGo1+BT6NUxEKCmtWYzm4+1mF+vrIDZ6pBNi0AghGsMQKfnkd\nnUZiCzcowGWGDdZYMQAsIW6WYKF9drC0FuEMhsu9+QTjOcKUgHCKU8NDPizVElx7NEKArrc9zzQW\nBcAe0pbeczVcQKw0/MB7Asd0vHpLZ7CcZHHsHwTFDogXwXuQSzoCiO41nVO/Ftrlm7UAnH8AlD9X\nQxEA97RcUILJFy4SNTzYPbuf1tpKYFRnl8ujWR+mHhPggEl0BYCnIju+n4RbY12Y4sy2NbPJvt4G\nwGzMSXijRBwQ92BYXW5Lrmk/beiZjSfGUcSs/aoOWCXwrry5RQMABmwZ997i6gDXFgD3oFkgHR/q\nJdAUHBPE2TnCW24oFfBGPjZN9+R9fnKr/P9x+ALhh6EHbnniPZJg1M+UUZc+M2HKcbNUkHuwCnMm\nhEWTwtA/cUvq691BOQS5GRShTtCM8F5CBMTE5grhIGvDSUeeBogNAON5v3AfQa8UC/FEz77D9qty\nWgXCOJE40t1XvI+Krm625129H8FubPNLcc6DQFNLmsBmAJ7S802gVUvF+Zjng115yHu6WoMlgGLA\nMgkQOwBYdWZLi1vQfTBs6ce1zcBzFfZGxtMMuJf/lCHMCU735H0W7rVSTX4iqnroqhInpeMotRcz\nFdVY2YQEBzdhkB5czxbiiaPj7WJ/L/Rr5OAzbEyH3U2QB6SnW2f3Y8WK/iiyMsNvhkloR9dVn89V\nBtuq6QmpOqX1DQa6Eo4AOJJXMUz+X6uFWsq1JbZAmnR3n/S2kdBy9xCtqni9tUnNj3D8B54RXyD8\nGwHH7cpA+lfH+MkZbByXa1uvgiKEWmsK8lKACbfai6DixHMlLwAhTqA3rcHuBTqDiIIVElNO5Uct\n3ssa7NZfKaD3nS3Asiy/vfW3+RA5+CVQagCItbroKdH1cO275/Q6qmd41wFetPhSQ+vAaAtsqQfH\nI9CVga5X9rkQgavXkYj2L0Ap3V+Ew83L26zuG3wAqbHnYr+nhVrCSe61nNzGmFKID0IuL8vjlJQK\n6nRZq98OGmH65QuQF9ZUVGKz+JAGKyKpxit3iF78HQB8JeP3w3kaDKgVk3CBHLMnWSPe3P0evjmQ\nmf9H4QnodXpJRcsvKAqbQUGHMHSF+AUAsG7JxBl3DKA4ajPcShItxu2X4Si5Rey4DdvwstyqDns9\nWwtxcpf4x+ELhH87DDjxiiGPfXvfnru57/nG+9SHCcbIsCdweOLDDcImsVBrMQap8fWAc/m3QHNe\n3zuvVYcoPEAzcwDEL1l+rm4R3i/RsXavkB6rRrJBmKHM/uMAmQqwpRzf1l7aABnzU5eHYscg8A0d\noYRCO/dx1+eoDHu+5qs0aeQnGoLJy0qkNJyFHXCOVxnoFyGXxabmI7gVX4rxi0LYmEp5mXJ3x+5d\nKXaR98IJn2Ta3vB+vBd1An5COxbUT6DybW3lSCKa1bHThIb09m5aN4syL4GhHQfK1LS7s+tOwOcP\nvnn91UpBvlKepd3ZPW6G1N6qAZBtapQErkBmgJnG5tJUkTDmIXJXxK2czDVB/IWzo1VYf5wDxTJ+\nA9i8BEe0QXm0H+N/0xvmHyxuL8OvYoWOFmJ3l2i68y+HLxB+HABl7Ukdzv/rJhNMUv1ap3U3OG54\nU1oFx2UetVkbIpL2L93YGYOIMDuAbAsuX72a7V4DBV+6HOc1nmqg9/rRKigIdt+1TUdgTEQvYnox\n0ZuJmAXim5ect/905xJHZWpuF0oTUIbWQUKmZrDTBORBX6BrRxoRq1OnljPEijzS0GpfZ5kx7iXP\nPORKMKUZoZsTlyCnDxNALlfWe0ktqX3s2wW3PF44IOipYvWmZfRpIcB6kI2g74RGNu9hmZb8LQxw\n87n3494x7agoor2h09KfW9qa29LUdRjs2tE9X0jNyiTnuUjvfII7muXu6zTlmFswl9FxHkb6mNgN\ndbfeJyGBl3UFVRn1Wvnms7/Z9Tmdzob/7BPbwwPd9XGeqvjDayHsNE600NeXg7cZguLSfRfnR9qL\ncV8nPckhngXshoSoATOu0ZEyswN8PWdH3wF2QPCrL8YhSNZ3H47N/kvhC4SfhrDDpS0xPXnZjkrw\nBIVgGKZbLmJFLibGlSsEjzeX5MqiYF/b2bS3QApM2wvoQwDT8WewAd1twFerp8AXldCiMViEwTpM\nzYfTB9Ko44fKm5W5ybO0wAa/GwebFVr5dDqR/9M2GFcAyvCcj1iJfFNOeruFHHm4xrn6OF5/4a6T\nezk98ySgB2C3u6a9ZRWBav8EiHH76HmIsLqSqENrTwAaBTJKnmRBhjv6AVOkRPyukcVEZBYo+wpb\nLT7w5jyRAWI7lmzv5qyTupkq9yFh4msArjetAcThtgOtB5Db8vd355Y8A8CX4c52cFx88Zcby5Wd\n48hn/L28HgQzlJE/ERD/JEQdfo/+qcx2/RelLFVBub8EtFg2EM37NcpQxEqW19Yn9RD4BIzBb2yD\nWsQGq54R/K664Iu/djrIExfPXwpfIPwwMFH704f6ZGX/TzyMT2JJvq7wUx0uJsqaaxeTqU1OUCi5\nP/S+v9zy7k6gvJpNwrC5nQJ+hZMqEQBNiEP1zCK871/k6+7F0dqbrcFV4VIFxcC36jQDYAXHZMok\nD0kEwdbrAHZN92weP6A91jPCrZMV2MvhIb2lBaAdAS7ms6ktDf0ULuZKeCa7EHUH/GJxOOMni2+M\n96DZK1BBrbRpqTWntCyIg1Qk9vx6M3TeLUgRsu8ewwd5dbVirY0D4vXngJiI1ks0WjaC9+tqtOBz\n4ITbHgBH7H8AyZJTJSfnSna1aOv5RE3+XRA8zwNd2zriqPPmK6d88VppMJ/4qorKK73+vkFDSVU/\nH2gFwDb17ZawWkvDum/4krYyTKvAuAXBDjJl6xL8BU8EuDV+DYxX1DXeGiMOWKB1h0Dwu9sht9bv\n74YvENZw9ynEBgl29NY6SmUihCNM9AlJRVFaADEJUERT9YYHt8yeeZYXJzW209M4LbSgrkN7dYV6\nZWy5dEgh0IYFIbHjrGra9YMeQFD8kg10BVwemCq43Z9LYKxl0Fa+VL+io5RGKY02MFbloL94Z62F\nYfC+jD5VKk+HSgEyAQ1Li/cVJOd7SrRuI5jjTCOsgmnShm6udAXDVON8TQW3PBTbiX3wxE0i98xc\n/Qx4120rJ9x2o5GSQnJXetMhUx151BYmp2RXQwD0oKkCA8myMaMWoC5BqhSbSl3ph7YFGfhOMjq+\nytNnlyZ2UY+x5OdgoMvR4qgmzNtC3E/K9c5+kiQFGdzL9rSL8i8/1WXibuj4W5rkfmjq1wLfiXZY\n90lZLUx7Ar/rGg93XAKGn8age8A45kN8YydAJHxU3CFI0yi4X/4HBuEvEH4cOof1lUD4E4P+1TS8\ndSnAYzt/XOi5KEqpPYi42qIINtfDLMvIJYP3vAphofkkTy/ZKY+JOCv4CCZ2aLL48qTd3wD+UnNM\nqUq+Mr1YCsAtwJji50WV7nncvYJCPrUAx3wGfkXgxbxNR4Ar3i8OuH0q1nsJFuMTCDa5qbtP9yZL\nYlqOn9OSe8SuaLsWsCFdPZTG836Tr1MaDbRFv3aToL05jZbhIzrpR8rWRGngBcA9JktPbu7SdKSS\nmLJpy9XHXb/p8j6Cb86gAHef2mvlrAbOdRkzFQ3jdwOwnWUP0DaI6xvxU+D7Ua5m3oXd5Zi+79MY\nt/q2XLnSuOflXcgojys/I0NbeV+FWZ9PH8+Z/IMF6xB6LyzfUp0LMGxlIFDURKFUgAPSXrvFfdit\nxaErQIbHMzCOcc2e/hcfZIJ939NkSGMEyN+fWP7/EbqX4CJYJGoBs8YRDNt/jKB6QVom3JgwoCHK\nhlyE5g0YygluD/vaQQFwxlceKbKA2lbqvnrXJa89ZrViQpxuRasS0ydPJgoAOFh+B5rSkaZ1CR/W\nIYrWYW8jgF+gOShVcAC9jICkpMVzPvRTQS+Z/B52dbz1PsfDvQHauAG1vE3aGHJl4PawxxTaCQxn\nWimWzy/G+f2EeE+9Tr7G2gAbxdhp0/rhOZmfAbPxXAkEgAwv1GzQSOx5F2nPDYYZaet18iKPaPJa\nW5w4JItr+Dv0WmXWpDs9+oT6w9AMWdiBxnTa4zYL4vZawSwRJSCNV0/o5VV9m+tw/qxVO32jV+o5\nlBHu01IN6TeUEjcyIh/OPY6K6nDFo9UcYK6GumvEkh/AsH3b24NkogkqUznVIn4DTrS+IWKvT2iT\nYgaCF2f/XfgC4U9C2vmWFUPsyUZAuZcTF3ac28EOamku+6iSer7MLwce47Sns2alhduBVy9M0RCM\n/fEo4KYV+8DfXPWisYk6DKtZi+9Fe+GT9GBXaRQVZlGkLP6hmOagFukZAJP1hSpGxcTYS9VNwoFs\nSCMqlmLtOoQWpmu5B3xhrnRpYQ3EMN9z6JPMy9Dgy3UwTJ+r/ecu8J3ii3/lyNWo98PxZxNGbtMH\n4JwLvgyH9eYK4UKnKPsNoGz7oCSaL1DbjuHri0K7HaSJdSxd6oEmtyQHxpYrrfd/v91j4Pu3XKnc\n8aXUzFMBY2P15SbfmOaW2k739s+Ss+IIejrVNeurk77r0gOvxLYQ0S3QXJPqvuzvIzFlFwn10WX7\n5tY1mL2vxCCDVFPn/5oH8u99dN1qmUSdq6idF6ydkcDwf4CDv0DYwkMf4QhyVQaVwUc+lmRJ7qox\nEEYLzCdt4SotzD1rEyyy8rVKXIDOA7yQtrokIqfYH0NdbWPJDFFLpOXsD6KwBjVBX4xTkP5iBsAr\n9eU5pgb8bl46HdeTLcGKcLEbQIYQ6ekRrnYWLUyzBvRq3PSJ8UsYuq737CEhp/EZEOf4nftKawb/\nNB86QQA+kMQDLafTDd6uWhnk1nQfg7qCfSurJe774AbRjWC+Tb19vm2CwP8uuUqYZObj0DLN1WCc\nVZyAco8ODuECgdbkJsODw679GLg71foPoS/Xm7GLA2vkndfzXetvXC/hyg2tpPXl1NXq1Kq3+ai3\nY14usnKJdp+Uhr03wo38u8A30CKwDUrLSJmQwTEZ4Cxglojw/Z98RBrGiZI9OL3/VCy95HFz07AN\nBnWdYAtGff7bK+kLhJ+GYN7cQ7I0OpFPi3RWsPON4A/3PCRSR6eefgMAj0mQvuZzBr7kN6OrRCor\npa2HAqLS8Mtp3W82IxDZa9Ebhve+CROns4E5Ka3m3gFyf9Qa2X1WtN09NKj0y75PU+Vk+dVzIVFh\nXILgFCe8l4YPdJeHVWLZGH5yf1PbCaVp3eEamtvbKdpc/Ng/kLNZzkfQXCrQEOQSDMdQHAnG21bZ\nDDIPArPMlLDmSzwOjYjIT4QgA9dqTUJezd8VeAvQjqEKmYHqJHeScc13JXkKN4fsx1Js1xlYOfPl\ntJR1euEt0LihWdpwtBrkdb06uz/UVvQjkPm7+ztpFqZl+wQMn4RPR6QRuD2Ul9nigWlEbtE19wia\nPYajbK0fU3xbHWkQt43EsZMAMLZ37SiOUEf7rfAFwjvcVTIAdW0QieIxaZ60J5ymdWA4lN0v1+uK\nX3AdAXJVeK629MijtNi65zLti9ZFAhcDUXloOFa+AYe4qVodd1Gavu9xjaJCMQC8q6cgl0l/VAOA\nK1MFyDTf+1fB2pfxPh8vtnx7Jd6LUNYCMCKu77BZAHpxBDiKsfs7gPgEjiml2X3j9nLOk16a0/Rh\ncpzgIOJG45P77Y5x/4/1yvc+KsADwjxPrnkGum2LDCxaY4YM9zcI11HnAG2/UjEtNIV1CoBWoD3o\ng4gT2fpMUn9dhMJx6V4xA90R2B5FSr27rPbEwEeuu3vWMUfR/WVTsmi3T1lay9/wwTXnZciDaVd5\ns46bFAeXzxk0Z7lTvKTdBbhTuOCNJ0VgFgTDuh07KFb3iPCDGlb7DWwF1iMNbhA7j++9uifnvV5p\nlNJ3jcFfmEv6vw1fIPxJYKL8AhxOnWi2YwfD5BNjgeHz2jAw0KTcWlMPAXAseU1KDi/FadvcJ7o+\nBTZXAMOuorCfYp8N+AeoseewJ0M+bWJGc5v2otWOF7ul1/2CmewEiJ316C5h9/mYnnqvIGTVDUCx\nSNq4o1uDXVM/MVHLl63BP43nMnOYaXFEs/00bn3Jbpor0IQGXsY2cKI3/RJrKSHudY64LLYCt4qJ\nZ6j9pdVXNxpowO1d1evRlHwRJESrDO44IQlOIklg3schLtKJfq7eZQ9fUgpdenoDc58UDEnnvFWb\n1d4/p+ZEviDBnpLmeHfX7U1c/keWQkuW3px+BwTn8v1Tj01rXRSGFaoyujZY+QJ1EGofBkKYlnaX\nYVQDSXNla7BB4nSS0wbDSFM+srYC36YWNwhxo4VXnb0DhneiSjppfOs1SP8PDo34AmELN32E7Vi0\nPcABDCdg57fsIBAmw6nESQHVuyH3yHQzrZu8EjghLS8sZYZFivRrdFADAkRdOI0mPryDmFDMir+I\n6a3KEhUlr48elTYeqZaUa6Rnuegekf2LU8WlguDc/wiMVVakBZX56/HcvcbQ8AQan/jq5GBkfDpv\n6AyMEeDpDMZiPM2ldFVh47raYu+A2AswTDRM9FyfmPse/1y3+4CS9rcCuORkpov3bE+/Ku1mjVuc\ne5J6AzBPlAFI3w05B5cZWfnnkbuab316NydmFwZOnDld42xy+vRzOTnPrHuxRn3/t3kPbWAi39Yu\n2pzlW9o0UIcl3zIfrMGiL8QRGQhmAKB6asQCvOtqcBj2cew/c4NghckpL05PPLJCwXvAEwRxeIL4\nviz3/ygcvuYnqucEH8FwFf6hykr1m3KOmbkKL/qDqbX0Ek5wfyOVYrfAaWvVyT4cCRZCR72AaNrM\nEyAGUUtxbusvUQC6L2J6s5Sj0oq/Lyje+dOAXoGKCPDZ3Ig7d+rx1o27tSBvOlHQn4+Ab9BzTVdO\nXTzRzrzz5hUyJWCTk6b7AClQL5PEtFSLyVUi8i0eJpjzl0HXE/Jf7IypezrOKUz78DEne+ROk/Al\nMgbdE18u4/hQQq4I/Di1W6Ucq97luynxufAbJ13cfyipeU7fI7YpPNMxwoUeb3prZxfr4tHa3PEy\nxrmh5Ty8pJZZkhp6qaPZVutcn2PbUrwoz0YuYL8QpiVvAriXjy+a7WNBFVQuFgeggm4IpIDX2y/c\nH5OmshUGe83wdlwAACAASURBVLoCZJcZgS8lYCzQFgfk2aL9r8MXCH8Q8Ig0oj0VwBocwTCBFZkT\nGAaZd8q9rtics03Kmy/SK8gN9BYUY/acluDUjH6bkBBPWixVd7imCQqqaSYqwxe4QoSj01CJIi3Q\nt4XXaB6PhbtiLC/MIRAAcFyA7UC3EzKgXwIIzvHN9AT4dmpq6mMud7gpcMkw8Y8hVWQ8/eLO/X6p\nC/snF5PdIjKf0+uLcfHuAHJDUgXeyJDbMoVpb73DWzPd+1KfPUp4NjB+Hb42V8zmaXic2q2Kl+o+\nYD7y3vgtuCdFPajNhJXIwEuffpp5dErzxRBT2v2hJtX4/g/bDI+8dODlSOOafj6951qX1LrFNXar\n7g1txHUS9487/MXKSvBo3gDJahkmO1YNtUgAtKJQt7EWNy/QrWPY2BuUX5azOPJ4B3ABz/Q9R/j/\nV9CBpTTgOU424BUMn9VULm26O+ZqWTlcerndBMbJnrIJ0QkwMxzjErqtCDmFmt69jd+CnaTZtTQh\n/NEMphdJ9QXG6614doGAuIK14BusygxqLahynK+AYr2KqbJAL8A3xwE85hN5pnyTrvbevUGH4Z5l\n1ZfoNLR14ETHJQj56r2EPiCJsiMo7sCpy3R6BKz3VPsMhju+CpBjXfqUnmfmPY1OF8T/my4EfoE5\nDQ/uvDOIMe7I2HEXPTokyynxjtw0wp+HPjfCLyl0zD2D4ctQFWJIzOuUG/oc98G+4mfgV/155nW5\nmb7e6SBq+5V3egbLnPKDHshldPUxWrNEsyvvuNigzccl34YIgLM1eLHIXkZ+bNk681fnkJbuL74p\nzQDy4QU6rz+nzYQoWntVtykPE/ouI8/XNeK/DDd9hP0oMEonQZBNJFJQcgTD3XZa6/ChqqOiibK0\ngkpStHuaQ56rEyI6UHy8xuh1MK8lqJbAf+Sc+nEB3+D2gFdVoI3bRFSis4IlpHc0OzdY5eiciUAZ\nAVzovQCOez/hXidzpUvi5Zpv6suqvHww5zk8A13P92hSEFHz8CO13t6fFRq1z3q6r6TcqZhSE9aD\n7Oda9vRQxASGa5jrEtON56JrbXyaqsIMPeffjJJ17DYIeHNDJ1P/o0N36n1/vlwD42fyfgceV5B7\nmgEdffXrpPU43VNaMFkwV1KJu7I48XBLp5K305VaRCcjljFZhyPYbcNQxkTL7cw0u78BhkP+acCD\nVXgT0RqMfsJERMx+ygQRHI22SsvW3UKj/AKd6kal6c6jpK2vR1cJduwzAuXjCP2V8AXCT8PkI6zj\n7ZG17BSR7LzhZbvD7vKjqdBOpEZLtYpP+QB9odxbLhJpMZj/8IyNQ3HaZ7rj5WvY7n1BZrAIujls\nLZZOWzki0MXrXRqmgRImitZgb57Gffs3v+CtJFiI9KxH7CrI1nVjC2h7/YtP/lGG9azEfpx0ebf3\n9/M3KtTYqFP+nnGsT07bkfpte/UJ1rw6JwOt1E83jhq8H3GjutsCoFsFJ9iTy6uiSttSrErkynUB\nPNtaceobMCJoORHUSlyzrihDWX0NjtW75uaYfg1nfwZ4uxDHCcFILDFSHu4U49bAMZlz6Z0IDlsN\ntzxbxzZpqjstfpLDPb3oZCtPsFltG6ZP7ou23L2mQ5ruZVNZvwCGHdQyYEawBpNs+tZQe98lPaVq\nK3V7gW7r1rXU4m6ja9P3Cd+sAw32fS6gFzZ4YsMDoo3RNDuGNrqd/qvwBcKfhOTecAbDBOZ/IvWR\n6wb7tHBDOM2TCQQXcrfy0pK/A3IRIgX+tnJRxuOAABLVMVD4anvg0NGoSNcJEXC2JHtaVbb66UE0\nAbgOgNfAcQTMOws54M9tpgBwM+hfc6paXPrHBqTFL7xaPp+6I6a4M217njoX7shKxY/7S0jbkZP7\naUdTYpvWzMWYXnlqLW/sjgEQD+Ul1NrXJebr0wfdNNxNZXTAF8iEKN03f7YHkYPkQ+G1528JuGLk\nZ17HT+Yw1KLkxRNcke90/7xmPY0nDp5nA85MHtPiXtfxMPBwR4f4yYBY9TXo95ZbShm5jl1dQ5C5\nTh+B4amQPAvCV3j7tAhL0iML/Sxht/RuHazYBWl8ZTWGf+LuFQEMA1jmAI5rU/4jg/AXCOfQgYwu\n7WQZNk2ub4wmcLyyQ/5PKpnDfiKMdXdN43WPrw6sPHFjdRnxKRBB8To2brWhbYqlwXEt6bt6+2GR\ny9BtzM0vdYFiLWCu6TMlvRhcJHbVX+y+w0pb1xvW4/EjseyNXsxv2FokRj8CX6UZn7R8Kjl3Qewj\nCXwtgNZ65oVxCJc6zZfJDUkz42NALAdrMNZtSks1u+KxE1X6RJprzpWUYPhUn7IkD/W8Gqcn8LJ8\nrd8AX+PbafmYtfCA9ctWoo90ztXTxDn3ZejGhoGS1+8VGG5nVDP/2jk50JCaOXAHmdNcT1qcDnG+\nwZPu/QPf9NXGED4s5ny53tOViHwvO6SV0iewd/d52eIJ/FK0Blf/4D2ThHw/hj2+ukwsnuj+sOL5\nJAlsfPGPtrR4dFsAx9aWZ491vxW+QHgHVAinBR8QX3Z1sIFVtrjgMhhuV8NDDcopEhQSZ15I5Y5K\ne1FbA2zOlkIllxWBMsIs/LrDwTXKqoVE8gyC/ACYw5Xn9BXiaREv3mcLM21QzJsu9D9mktfqHnkt\nGQJD+pZ1/wa60pBXhOmdaMb32l97vZLPL5VniZVvd/sbaTv+bsB0vkYawuKoZ0O+tOt+orry3P3N\ncALXCq6W8h3qdJJ9M0e2hN6VeCvkQbmQdCrh6ozaJ9VZYUIAmfe86bH9k6CHfgaJezeOKnPWOT8Z\nrqe8nCh57mW57J2W5HSz9szn0zdad7t4OdkB0xjvD3yhDQ098Ti98Qne+5jO7Uj3tErvePOH6zeA\n1Fyt36a9K7ZpSl9BoPdiOTlPpfk6C/IGzGPrsgXsDpCJuBao2z9RxbTluLS913TuE/84fIHww1B9\nWADaMdksyEeomSvFtIO5uBoeb9bNBC27ULdRcYxnH56ji0QqKqMvlGn95EDPiilCaloWr+Ja+nD1\nbkrKcMtB8Ku/PPe/11IpLyF6vYj+t+zIoflv2TR6Ecl7g9f1cxxCLxKjqXrUNCL99S3Zct9vpjct\ncPqm1XVvjj8PLSoB+sgA8R6eNwzDvWu0tp8A9OrHRJFJ+f8rBbc6gw9F2raATJLTL8rIsWnN3ZRz\nKy2TdBl+UILONg9nYHpH5inDmIePtyWhe8j56cy6bA8w5LIe98WNvHl2VQAEHKi2k0Sc51GGE7Cs\n6vPr/xHoMZTVpan4jq/wEhVAOca5owOo5ViOgeFC32k8geiufhzKP19Lb4e9JoeJ3qVN+TWCde7y\nhPhhXfZvj+QAPOmlN3MJJab8U8/15TjAFv+Bb8QXCH8SJreIyETF+lvy5HAGxyHHpPnLJOoydztP\nU5+hWS3ItfYmhuwSQUT26FD6juEBoi++DWnBh+XLeI9f88zK084QZgTEq6oLEC+ZQkT/kxfJa8FP\nIaa3IOB1oOyWX6U1aRsc6wPUH2yH6g/y7nzxsvjiL+NhV7+xT2Aqnq4eV0jMtU9D5zcjdHrLrIS/\nC45tORyKsU2rO0TYeCB2qae5ic08OdQHjYuShoVyqua59Jr6fGtyOcd9DcxGhe2EDLCYgfXHM6v9\nOuxZXzzttwqfujQuKpvLf+AsW8AAeHkuA8FYPv3B0rjna3mbPIGO/G0dUpxBn6e8qsGmtNYyrGVa\n/TiUO32wb3O7bKE2bUaOSpedVtdmb+2N8jTCifhcPyh4vcjcZDO4o5sZ6WbFzsB7V/5ahP9/BF9W\nroXZXvIQIGc3gOxK0Unuy7tHHJi4oYXoacfZk/bWUWlNVrtF8JtYm+ygM4Znifq8WkVkdwiE3DFO\nTG4R3h8Evxg3QLzdJP5HREQvEhIAs3p9JXBMROAqQQqO5e2WY3EA+iahNzG9BKzAvNu2u17nnvIz\nLYCsSvy989wBwnq1uJ0hqT2KoVNYzTxQ+g399nsqMM6IO4DYtrvWr2JecHyD564sIq3rk50G2A/A\nsNKnzvjBGbW5rBu77ef6LfFNU68J4zQomVpFfZ3tB/w8xNc9t/321PVhynvKx8AT4pzuIX/h3ZGW\nnuNFbrzP5Z/cHQjTOMrr+P3DNV37v1zry8oE99zQc5szfQqnOZLXb8fLwBt30TtzuTGLXADcSMes\nkSf8CMg/DF8grOFu5z+0BBdXCuadLP2MG8jPAzeCuIlyw8KpnY2YlqZtx0WSgfKiLRIK8n4LDxAp\nb3m9juOSDKC4Tdv/99NnqxBpuRsI8XJFeOn9Ar16pdQNC2wOFl+6D46zRfgl7vqwfuzDz6ddL16I\nWYKZeLtGLHcK7X6Nt2C3uVqcMU087RPEqlPtkDdP2Z8B4zpR7wLiri5X/JdcfDo1+bm8vgwa2xal\nyiFN0z+rh6uWg4ygnhLfp83HfBcdzePN74YnoiNgaYAM13nJ5X/KH/q5WnkrDbg55kMQpXkQMIY0\nwrTIq3q8yNtltvQc50gPH640GuiLf7IKcymrKxP7bdpPPMS2x5Q6XzLvVXxOv16LfMVHZPtJpHVE\nugmOoTg9Wu1rEf7/ENZgMine24O7x1YtZ9UtgihYqGh4ReVXHOC4mctpNWcGTrTHPsJKhyiQAj2X\nK33SKZtVseX1J2K5pEUFqhbfNy83jRcRWIIX+Pwf03phjhwQq+Dg4oAuEo2rBBGC4/xC3Up/0bbu\n0gbEGwSvbtf6O/jVtrxB4aIlWdvfgl+5SMexwOkjJZJCfXjxDhuyAOvPwTBVKRyr8ansdsuY1l6X\n1GT+yTNGuJEm7ZSvhHtg+F4fQNK1yCsRRHTrWWZmvlkHZz6PyhNx1+PBka9R5zijKvjZ/1GdH2iY\nb5QFZaquPPoIBz4vr48TgM0BIGuce7rr8MZFwmSfXpBDP97ZQIIfKnmx32LgQF/ziQ+8J9oUv8ub\naf187ExLN2Y5At6OP4Hj+Mtyi+E3vo16Gr5A+GlgomAJtnsiYolgmIgqaCbCM4b7Aq5IEi6BcdqE\n250Sb4dyB+A6pyUGsOhm3+BwGmH49QYJzxFEQUwoOpYmpOrZupoatwjOtH1ChLgyfbGYO4FsP2Fh\nWSc6ENH/3rRQKlbwLW7ptZfoojXYfk+dIuCl9JId0YvUqqtuEW9xEPwSWWBdiNiOsIuK3n4mWpZF\nmegC8HKlncCxtx0oBdvG1VACX+NQX0kPQrc2Jil5iVwW1K2zge924CYWQ/sweCGyb9PFmJRSI+ek\nYq7yT2om8N3t2otix+H/WG5SeDcG6U6RRyDDcVZUUMORX7mKynerb5uPXbrT6tf8yhFdDoa48Zxd\nKiq94U/HoHXxCmqrG4TJ716QM16O+ZorAW/un1Iv7FOQgyHznGi6TmJapeUyc0In/zIIEdu3PA5m\nqYBZTd6mpg4cbxpbPpVHdPM8zV8NXyD8SWBKQA4SEMRtvgiGnY+IHu7uWAG6MZM7Pm6iSRDW0zYo\noRHkFusxylCZygNyE0/NMn9NMluDyZRwBcv1vym53YwS34rzxezm2dfuLwTDOpySXCOKNdivlNwj\n1GfYa6cAGOok0VViHQ7P+/g0bdNW9ML0DmdZPwe8wYrcTtneVWV3BnDl4BQeeWLI86MLpmpHoZy4\nh4KGhHubx/0tpv+S9KdSG17rjyclalYHqZ+Eu/l/0zXwF0WB0HmmTqo08FxMXoRVZ8ttpuqc58RT\nwRrGGf4FWgPwjEcBYUq3OEf+lo8P+S9k6YrJPOWTLMMmW3U6VatxF6dONtaJPU/bv027NHfn9hCn\nT12r3fTqxlZfPIvhc2trrdspwA5rChkAb/lJ6Aiq/wPPiC8Q/jgwORgOO/Qe5OaEiMjLnh5CMal9\nXsFpN+SGZrfKMwBaukPbN83LdPnFOKblrxseEA74pDtsA4v2uL4m53EiMt9gIl+uHK7bDUJouULQ\n+vpGNvrc+NVcI+yIPDucfL2u1p0GoSbmlk5U3CPUR5jFP+ukiG0ZNhDsLhKrBky2Yezuz0eoZeA7\nAd4Mik25kUPgTkEGH3ipPN0Q8yHtTjCdm4QyMrQlnmrV8U3hySbD8P9eLX6jBgFsTuusFdL27v26\nHLKy/Xtexl8PWT3a/+tRmtRvuE1iKqCq86QAY45U7jjZJUValN9ZlLNbRQSEEGdu6XbPTZ7HPOi3\ne7Lsuj7UPop8qj+b/FmO1ok1X20bQZ7Ydw0PxcApMqYf6AyEjr/wHhi6vmhDWa57DwzPvQpykRdp\nyWq8v9381+ELhHe4+6ZitVBupZh0Y3zhS9O0jJMS5X7mHR6TqsI9LKW86sJtXi46o9PTXAtyMz9U\nPYjE/kqdRqUbgW2lYHob59jLucdjHvv9HLe26vpk3udALKCuP4Yi5KBY36BjKGyB2GXlJT1LeLIS\nlxMmOABlJrcIv0XoLbxAMO2v90RBcGPhID8+zdCr3AO+OQ1HF3F/nmUCsZC2+9QZzqdp11nxS2Gu\nsG2yvyN4SubUD/ek3emLq5rf2fyuwz2gWvXRBd9BpKml+fn4V0NRg2fOC8qNtAvwMwEY7LueF2Y0\nN7RAgflf5GW3igyQ+BK8VheI5mW5wtPEWznkuo9j3Xhz6C+mBTrvNMyPMoos6Cto71hn1tpB2Yf1\n9uQ+xC/W8Clf7avpsMzmGn4FTu+JgtNhOO/TaRJo5GcMfy3C/5+CT26NmuUx/eqDHakGQJmJ9k8T\nEz1S7TDjLdaB8mkX4oYWbptlBE29RQtp2mD2I+M2LXtJ8AZ/6DstwJSLxPscp3DvPwzRuUUYCNbP\nHjMmMUD8EjLLML14ue8S+TESb4+zULTq0rpf1thqJbafxjCgHI9V+0MUXCLKhxAEZwux28NpyzGf\n591JJ+BLkFb4KSpg/PIjwuE4ZqooMwD9DTB8D6I1hXSCngi4VWhauynPlSrIRZR+vVVyX8jjPmt6\n+ijDlZXdnFSR8nFO77q66bMnw3eux8P8D9OntAhcan9ZzzB2Td4b4D/7XQRCUXbnftFZgpWuOlPl\nwzB5PKRlazEnYCs1/50yTNbphzH2vlPoF/mxn7o6cJXnfej9G+mRJ+joA2+8745Hi+uylVPWUAa4\nh3CXJfDhzf455uCyEcGyvjj3wVL8cfgC4YdBX0paIQFc8kFdzOQmNCKKQA/oQXs/mAiXVuxu9+Am\nmpiKzy9ccfGM1mCmbBUuPhHeOVPNves61DvxErpE4DKksAjtyXWPFxP5CRGb/0XLFeL1hl9ae2VE\nuZr6R7afrhB1vsEk+ntwaiVO1mBiMr+LzbPfv6O3EP0JIFitwR0tzx91l9j9oICWAfB2oDgBX+JI\nwyC73zUh932hadkS+bLcbrjPs+YXwq3Fd3eF+hZ1yQUinwLjT3g+3Wy6TfduISdV1JI+aIROxVvh\neRM+5p3SOjo3aQqrrlwnAkDiSGNIiGW41bfjRx6kHa24rEBvSst0hrgMPE2cPf98IsSWv08BQhlt\nfq17kdHJ9eByYr/lPb3LR8P9k7SaLjZITv+tUxlg3xc/jtTSCsDd9aG9kagxkBUg73R84e4fhi8Q\n/iA4ptsToezOToj4zyfHrPD3TQLHH9Ry3lW4oRkJtNtUbJfW0nzSxx8Syb7V64ncrcSh01Y6xZey\nYMkRkR/CXQHwtjClbmVMbZSbg+HFIJY79hkr4wakZukNLhGdz7Bag7Vi1ZJMQsRvr5P+uMbyHc4u\nETgArnztJAytJgOYTaA4WIMnGt5baWLp1rctKJZ4z+lZieL9RLsMv4iUo6i7GpoPd5PsxK/T4mFb\n5hrKRfon8oZUnm4hz8iz+X7iKPgPs078Jzl38rTW4NJ1nV8wJdo9S7B3d5LJsS6WxrEclDf6Eo95\nMo8Dp5mnlnG27Cr3lWV4ypva09KaftIeTSdfUBM/pV2FO3lLeXxP9goR+LYZw3nCi9/+JzcJQdcI\nA8hEhDjgH4YvEP402A7tAx9IYDWuuE4RwF2zj+6Ken+aKd0k7TafbifKS2VP0I98hK03kkjNT9hZ\nFGN06z6IDDy+4a7/vYuEptfPUsUv5XrtJiKK3MAX48sIDuBXS5R8njCeHQz+w7IPPNtlsYB7RPr8\nESJ+45mXWtoGx9q38Kq6VVdBKvu9No/wXnkE1GC4j7Jx9qSTAm3kPhnjq1AgWaukw+V2wFl0l/tu\nOaG/Jh7YVy5W/aPyfoPP1/tDOXzBc78CvxIe98upvc0gTfI7egdcFMTFtDozL0HtdM8p/1CuAz4E\nbsnqC9OBxzx0mUclq/5maFcnh03ObBk2mcfj05r4gYb1RBo9iMcxeJ6/xPmCJ028ru4B+J5WyAav\ngUdxrWLdkox+xESKIfRdoO/Lcv9luNv76Leqg6z5JYNhjWhyB+NKAYc6NvnCEQwH1coNbZKJpDsm\nOpzsJY2hz6Jdt/ZV5Cem7Wfd5DlUSVsiQIi06mOlig6PBtZcQpkOhaKLApGD4A7gEu1JAy/LyaqN\nW4rBh3jLDK4Rb687v2i5Qry9rgZOu2EHwJsBcAHIIxj285URXOY+t3sWw+IlLXVl7trp/m4Iebr+\nKIzXOqCvR91Zekk8Alrkb8tgak5cvOdGdcXz0b5jmeIudylrb5ojX5J7kvfJnCjF3OUZMhRynmfS\nJh/lBEDKSOkBjnJHtwlOPBzmZedXnMvoXCRa6zDUtdA58gRrb0qb5eaH/coTQSqbfM78DOltXhoB\nMQUZW07o86Y8SO0t3Eu71XGVlD/Hfd05vfMd9jp39Bw4yehDBMlRA+TdAOJCJMxbBQjZC3b2rfGi\ni1yV//vhC4SfBrDmlg16pxl0Swxsb0TKYefLk+BC3R8BfLcj5xXR5P81H2HogARwtYOyS4S/WNdU\n27KDLTJtPBEk4PLMG6u/wGcKT3rFGPzKlG8/uYajzYgiCKboCpFPinC/YXbECfFsEf7zJgO/9FaF\nTna+MXvTSM/RtHt6CIADrxS3CJ06qtO07+M4wPnZm28CuGUtfRi6B6IYuvk+yziz9iXU/HHN4Tg9\nAsW67A716+XMLXq05YxdJ31ik/fIdXOzfsLzNPB4c11mm5bG+8RbQA83NHItFkBW6N/G8hv6FvIz\nJV6l99bjEbx2dE55Q5kovwGI3JSxF0BXRvg0NCq0HiyPVuFQH/+P6dDBQz/Efv438QvAjJMTGsEp\nad0c1nnj97uswU5fsMDLiXsygurf2AmehS8Q/jjoROp2d9Q6MT2+bEc07mytlerBBCkAudtlOk3P\nfs0WbKb4MNiltfwuq/hXd1WnhKEH0cQDnWr35cWGtLVAIyB+NX0UvwGgCIZptesdrLyNKwR1fsM9\nYNap8UeE+M3EL3WJIKJgDablq7x/Po5NaZGPFwGw5c8AcOcjjOOA5wtz5tn5tWoTAPxtYOzS+nAF\nRCd598BylFTyXPQHSgjz+aJjrut/j6djPPfkkMpdT/SCL/n+QuDxZiRdpre0MpiVFwEKR0oBYUtm\num/kZt/iSr+S6XoFZaCcSGerf6Bzk3fzqy4e/Yuh5as8KXymv0FmZ3l2PuAJead49CGmTi7UmUrc\nF+/M83n8ach1nXjKJhKUe12jCGmVUsxSCSjLlsWKF/5x+ALhTwJsRkxwLh6kO/5l4M9gUIVhkJ5M\nFAE28ubKlbzdLtNtRINKf/SrcgM/YVRlwCUB75XkDKE/myZJ2jRXc7rnS/cWzj2BIPgta0N4Qdpb\n327ddX4reBY1yqrF309+WJz6KxyqTJiiNRh5dzq9iN9vswj/oX0qxJvoz4uChZje3t684WA/ZRA8\nxonW2ckNANY4+ai64uMMiMPoh+E3HUhRVst/iM9hVqZyi6vjr3OmK/cK1OY62JKVJi3lxeUzyT6F\nW3zcRm+EuinOexrwdirrHwQukSbtlO8GvaUNE4FTegd4wpU7nvyy2+wX3PJf3Jc4L45A54afh/yQ\npmWNLhBBru8QDOnhnojyL8y1PsyZJ3x4oMf65RD7Z2h34r+KV+K8hphCktOLQH/PpIbTg2iFu4Uf\nQC7bD3Th/aq0yH5YQVeJfxy+QPjTAJvRGkMOYJeYojFYB5oWT2dwdUYyvjFJCaHMgyrmhmbRYbIX\n14cYDTImWkhTdVd/jS94AltfRaGhC5viNFTgWzPh1zKrCxbQfLHCWAZZbMcFM/EyvG6grMDP3f/B\nqkvRwnu0BlP0D9ZymbYVmLZleFeKN25mWhUL9z7NQv9P1t0YPwNgIf/gWRpYnE5L0319dQ5r4LPg\nZc1qfU6tfBpO2wRy1VgvL/PEeR/7a8onifcU7vAo423eMex1dVPQNd9pM/4sHFXeKc+DtNu0MNg3\nXBxAUOsHjPcHy+6Ynwd5BuicdnaHADp7HPmQp7bz+gU540vyNZ/fVz4qfNmCzFXOgzhBGad4HM+e\n964sItXJVQuWeFOAk+Kai6w7LSh2IXSLwFMlGlsw3MvOuvLKzvsfGIS/QFjD/V+Ws5htXC6EIlLb\npv680dlENVbpd70yWxumUas3qwtvuKEZib2hWmem7dKhAFLAigtMozW4kak32b1kM1h3ToB5CHlY\nWkvVpuNrCqHWu1qqxNePyS3e1+YWctCs5b2Y6cVCrxfT/2SdrygvALwYFybRX+4gJv/9ZlVkr20J\nRsswuVWY3FXC7reVGK8KlCOglQBq/cMeF6E3axzympLzXjSwDT2u+tJGoOEx/dmMVAHO0M91jHva\nk/TIeQ6nrQJ5KPOJp7TAHFg6qSHPcTM7h5/sNWPeURc1+QZ9W9XVb++KV6N2Thv7fVLNF7Sshpmm\nqzNwpNR7PqSf8nPDn+6RVuLc0Lnh5ws5u7T8i3BtHMrkgQaNILrMi8aRlKGpx/GzzJylXbqKvc9c\ns+HsNBrUI1apmcvMtdqp7k13XNL7B9JKcwOJG4kUE/ieimcHr1xC+LLcWIm/Fr5A+GmweQyzK7lF\nRJBHYfOL6YmPKCZ2fHPiIC/no7g6Ap1j/PAinGSLbdcuy8qhj+KSj6AAeavF7QSCve74rHJY2VBy\nZcLmAAM47wAAGqBJREFUMAEwJm+SgZWd/bUfjF+8XSUYgDEzvV6ywTGTvMROiVg4Ek6L2GcMq7J+\nvxfUXj+vLPRmSW4TcCW0IG+F/CZ6vxDQrp9rLq4RGSAzrwcAArrxQT/qV1rWrzB+wOsAmkJ6odE9\nGh9omV9Dn84jzzTf8BWPKaQtD4RzbPw5c6jLYTrnki7DE94p8/Ub5g/5+YHMH4ZTKScA1fKmSTPy\nXdAiYIL7BohRx8tNXr3nhl/v+VS232N9sC5T/Cp9jN8CwfeePs6/OjfQunRo+6k8JI79wZmzGVtu\nADI38U5WVjk5b6KvABrGoj3NHAwNIgicCEHb3QF1pPv/oquEfpPOHF9e/9fhC4Qt3O1+0HKGlBg2\nLambGBNlS/G8Bya+pvha32RbCk0ZVkRgGdpufsDUI4oAco1Ao1WYlAw0zR6E/gIIRsLF0GKp2eoY\nROhXN5CR0zg7AF4gWBQEs9D/9F6txa8NIvdV9KftiIjoRczvBWJpdfOf7Qu8AO6LmIXe7wWY3wp+\ndzUzONZfqJP9EKOGaAXBb9EX47iAYt49IxSBMpEPfQSt7CCY43jeAsdp2AJNahoP/DiGma4pXZ7K\nhelc0u/MyzZJLkq/qtztUj+u5YGp9sM5H1fSE56/EXgu5wm9a0+gycDX0HRWBlA0+flC/g74RBkD\nHfLeyTfFr9If8SYQXPg4W1kPn09A8Cntki+6VLj2xD5taMiX5k/bTzDgvnzuWYPx5s46c90Kyp5j\nav1PGxwTcecqsfcdPUXCzxy+/sb3b4QvENZwV/NOgHbNYwozD60+TLAXcU2/VanB1CB3Z3vKzA3N\n6pbgxJ1j1EIboYzywDDZ6e7SO55DUAQFvC1gDhLFn1aRbXeBBvUpVhnM21WCZYFNBcGv9Ws6/3sp\nSPTrlkTLCgzW4O108d6A+EVEf5jo9Xag+zZALMQUQbFdaYHnlwD43df3/irqtZVRB4pfG9Cun492\n1wl8OMGrg+DVm8Yr3ocBSKf8eUjCleN9niHdc4/WJ9sa7gHmlXqaiXXa8yGtYUvfrpQ8usxOstrS\nz7U85muFXK+1+kxd81S10/Dc1cc/CFMRT+i3aAhsip7J9/CffeY5GEr3kx/wD9NXWqQYEOMEyh7Q\nzj6/ZMB15DmBYM73H4JgvuBv+RoQarxr7U0v+xHI6AEyBet3GDNGXk3HelQGTpF+HnaalCBF8QC5\n9XfvE2b5JaquEGAcsW/VRN+Z4rhW/mH4AuGnYc1Vv7F7QEwBHAMx5KU4ky9BMfCGQhL5NOO7cgOd\nYzyfCqGLA81yeceezhGmxrtXJ396WBC8Ka2FeqRw7D0bo26ZRUswlhTrlLpuE/X8B2K3CKuLhITr\nApb/237D/xMienm5AqCYwTXiz3aN+IMuEUxuLRa1/C7VYgBY/YQ3j8hSSO89pMJCrw123VqspS+Y\nq8BWe8jvV4NbUGwgGEAx7dNVlE/BOPJRHEPk63gy+O2AsalbzvSOd9PF25ZDmfJQyh2Q2gbTE9qT\nzexm8o3lgdjH9WjzHiQNSe0XnEV+p5cuZPximKTP9O4R6V7+ooql8l25OGCPHP2ATcbTdErynTby\nfUhr478Ggm/8ctxE63ggLXRKc4N8sW1du9aar8BVSr68GnyOOGOX3tfyQXA0i4SYvGPu5wvg2Hhk\nA+XIo/Uu7hL/OHyBsIUHna8jF+5xNifkpKasLm8oPtXh6DV+Ud9OHhH1QJAHcbvyrcVXbxJPZDJe\nKectw4+LQAgn0BZRWGYMt/HB9mXqMi/pjfx9okQJQFJrq7pFyHaDCAD4tYGOMP2PdyaC7VWPY1sS\nzTWCt9wFfJcF+M92ibAf3CCiP5ROmaCVh18LFCsAXj/8AX7CQvRSv2FSgLxeDowuEsk9QhUa+bjJ\nnicGkDcoRrAv5DwGiONQ+MziMtPiVSqdKG4bV+DXaRwIHa/Sw4OZdPSJfwi6Xq/eFLklLGWBzfRZ\nZob/hXzMY7FRr1ynXxb1aUjjO5eeaTXFKNLQTvKQCPPHVfGHL8NBOpbdnQAR04FrTKcA6PR6cq24\not2OJ+supjl4PfxaXPe54OkG7qkc77P4qDz1s3ISZ8swyor04CbR1TkKLzJvBQOvZO/HhBMiADDb\nDppcIzA1uELwbrOK+x6f9h+GuzPDdloG5deARLtvAN3oIpDrlCsl1/sYl8ggC+rZChiAaLb4dv7O\nTIGngOAq2PM0DYw/z1DDk2Wzun2CRgcbVKlCAsw7qtbfBf54A+PtamCAuOZnIaKX2ZaJiOjPdo1g\nfi/rLiHwZT2F2F+Koxe96b1dJpBf6A9Rsv5u8C7qHrGdMlhf4ltKawFj3lZmtQgzobVYW7OAsYPl\nCoL1eXHnByBtMoCXkvz2yjEvg0AHxWnoAo0bWgx1VnKk8YkXQjflM489UB7C410Msx1rOBfSqYqJ\nv4+2CVfpTU1+NQxa8TkN29OM8+28p6vxcUqHe75OP8oIdTlYjJtroPEhraGdXo67enHueYfHey8n\npnNKa+MUT9Moy6YZ29g/6YW4MD7ZdYIq3+QmAfMgl4/tq+sQ96VzvP7faQH4Lpr/gAYt9wkiwpMk\n0F3i38PgLxCGcFPdHq29UndbuZFm4QbKDVm6Hb9px+VjIuTDlYKuESeLb+GZWuN9Uff66WC0pjwI\nj0Hwo5DAKlE/TZI1CBWmW4f3cKv5NpsRXpo/ukUsS/A+Ro3ei/ZefH+ULwBfDi/JMRH92b9KJ5vv\npS4SROYecYyT/rTJGqP3rqkCXn2mK5ZfJhvT4C4hWxZ7mnZjB3DDVVzpdlfMyymv3cOazTxKOwLf\nkW8KuUJXQFd3jFvCPwhXZ16U3bFLvcWLpc3yrmXcSP4odDJ/TEuT6qm861MdmmsAVgNfAFknGV0d\ncnq9HusXyp/zXaWVeOcHnD98vsdK3spPkAkGsssX+2HDvNKPkR7HQNqtOo5OLAcn4T1rsFCLEQ4h\nwOLgI0ykbhDU0NQ1Qt3kdgujS8WjmvxO+ALhx2HPQt39g9JLaZt0TMPwCTDu5FjyoG453RcZWtF0\nDbdM1Q/Y80u2HGt7OOMA7ZceBE/vkP4eRohgF2o1llnSoAvNGswKfPfn5cwI+IIM3kqXl/sDv2VZ\neGkB6j+8fm1OQS/zy45SMxq96C37pTmjLYuuiFuD3wKAmFdcXSUsTv4Sw2sDYPSmFlJwvO60Xdll\nIrhLBEC8LcN6D/2s/tKBRqZbY5r4KGa7RRwvNhnU8YRn3Fg+yjmDZqXVTcr4Lqy+qDL+rnkk218u\n9EnOe8nHFyK5qqMh/+1qPQhBXlDJ+THoIu9Ew+rLgS/Q0stpj192y9c8Bh1QruN0+3rId0fGaqO0\neZiITn7B2V2Cd30e3V/xcC7T+2zKR4Evt6ceiXZ2ndBRk8Dr8VyveMWQ6zbxTQFPfAhnA2Mq6H6+\nQ5NNYyLaVuO/qvKG8AXCn4Y9cH4vcVedXpLLaVlmJgSWm1PkqRsENzRib5PVXyNwNR6d1Rv4hEZD\ncwRuoE1l62Gi/qcW7/ykRg13c+CijjSUVPvXeoSJmDm4SLzwdzL084pS3M83KtY3L19hPTrN3B92\nngV2OVqAt6+x09iOT1OQqy/1idJo/6qeqLrzcyFFlde25DOMgYFfagAxKSh2V4hgFWYAyrANCFEF\nx7C8DBRDnxtN6ijhtpNnZbjXFzdgqJtZPMh4sqXsSiPyrgxeAW/EXwjcXQ7s/dy/4quq55B+wzr1\nsLevZYT2X9SdqPVjvAU+5MT305fdrl+Gw/jMMx/PVuitzHt83NyH+MEv+CMQ3H1u5tHCJznYwV2d\nMb9qUKLcrwCGSx/yDHw5lmE5Gv7ARte0oEkDoI1p9rIbuf+v08hcI1oayFvpv7G6n4UvENZwt/PH\nXXLPxvLraTobM1CGtCoc6tXcjOCYm9k80CbZSrO62uzVx7cEjomQWEHqTuMMgr2fioV43PVV/o1+\nu52apeN24PlR0eQaYI15W0/xtAgiAMGvneON97R+Ill/HY62QtZj0ra7hLk/sL9Ih+kGfN9Mb5RF\nTH/e+6g32b+SJ+gGQXaqhILcF/PioXWYG8Dj3V4AwwZqabtETPTVm/EHPFZjFchaPuj7AnbJ50wG\nxdUtgssv2pUpDmo9jCenewzdy5MQTrM4cB3PFH8s8J6cT9i63TSzXPD8NH3M9zjHnPcuQCibdQNw\n+3zO3/EZ+HlsCYZ7bvgDV6xL5GloRV497/by2pS1ZPQWX4xf5cmV5+nDz+97mfXbkE4OUQS8ZSzA\nEm5XsBiHNOw/kBXGgLXM1DmFJwnPDWmhroaEhu2tt5Vk/r+ENFq7hYLchmawiWkwgP3d8AXCT4Mp\nMp2ZaSPDF+HC5pU0YEjLPBR5j2w+4Vr6XVqIMs0/igG0ZDF2di6gGf0yexAMaYHe5CthTr+3pOpy\nDy1mMgDe6Q4MdlTaFmIvhzH5OWssxhAswaIgmPe5wMsveAHgF/3hNwBk9yVWqzDG/QU6sdMk3gI/\n+CHZQqxW4e0WIRX4BjgstHyfSfvGQan9Sh43p0sgCIalEoAwQ5yogF7kUV2cZymq49ZnWHCbasYc\n4jru7TLP/I91+F5HkNdnYyr1ahkksb8RboFT4Gk5T+kcI3P6dfikyfk4uhEbXNCuAG6hRXUX0zvQ\nFMrpLcGet/Zlf2pE5Gtph/J8laWtI9G662V8Asin0yNSPTA8thaDzsj8WMSU5mPCVufQB9avAIZh\nXLR/UWg/N/oG9zx9uORBsKv1InhXY/sI4y5qZwOT+wRrm4SIGNwqlHflu+Ny9fvhC4QtPOl9BLk2\nmlFUB5SR3pkQPgXGhZWb5nDPF2hpmWfXiPaluJUozkRU4AS0GcS3FuLSSk+7ZWEb5dwPodZsnlEh\neHrKJwsM64PBS78CRw2ogPglxPtFNiY9/WFZYs0qzAiAwS2ClqWWKZ4hbPE30Z/XUjj8WsW9FfSq\nKwQJvZkNDPP2Gc72X/XhwpfyJHyi6wOCUdnH4zgIrjRil4Wg2GYTz6DXpiXhs5ePVzf7lky2OGk9\nCGdQA34v7oNADHcnYivwBt/f2DiSTpjUyVQBPqTHdXM/7W54kivWMzm4wJy4kt9VuTvzuetHxrIM\nIEV+BEExjUNan9f1fKE1fNiW3rJM8IDUgLy71+bcYNW5uZ2ZHtI45j9ZdrHNpzw0pFHDi+KZXRf7\nuKR+8uEgoukFOqL8AxthbpnsLYMjnbo8HEnnZRaNQ9E/eKcLVJpckTvAJbN620kSCh9INkDmJK57\nkf7vhy8Q1nBXeyr4JaIIchk2p7RL6azQrCgDBU91CIDxxMAN24Fm0STX6og3gbhvmcoxasaus57q\nxC59AOB1SAsijgtlCbi3lnaFGVuZfGSnIobwAi0jxNv0SvYTdPzyM4ntAImtHPjN9GZZp0KYVfhN\nLzgh4h0swRdx2f7CGxSrFVhfmjM3CXJsbnF2FwoGC7FajmX3cgTDVAAxgmSdC5J8hhXcivUbgGlJ\n95DOkMbEATBrXpxFumm04NiWL5dn18AH8Xzfp3GcL2kx+Fbn+oErWw139dXTMOkJvTukI4m79KB2\nTnk/b9yTnJWXS/MQCugl5+vKDH01AOpAS213NXID6DZ5vSwuAKiTEWh5e8hXzvkk1aOvX07L8Y/S\n7pwakT95WjKm+36QP4uXIw3abPmhsTiORNL3EbhD5P61MU1uFNiIyW2ijjE2OhOkI5YQtniHxwZ6\nl16GSiSAq24Q5hssAjZDjtj6H4YvELZws/uDK0TatXSGZDqRj7xq0iempENSYcia9VPadF6wWYO9\nERIExIblTX4RueT07LCC2tB2HpR3NwhcGa5ziVo9zmkceXgv+BdBn5HA7zGvuP7YBQvFOPM6MYKX\nIqx+wBg/W4X5xeaNUQCwgK/wBrzBOkyq9BsLMW2Qi9ZdpWm6AV12Nwn9KC2A5vUP+dA3GL1t9Jfq\ndJl1YBSfTZm4sfpiHCzAMJ7dhOpnIB/SkI29kSepWJkHs/rjUKZ+Rgs5OqcroVMxP0u7H+5mvXKN\n4BzLG3UDjIsc2+iv6xhA1y6sgCK9h281WvCTHuSVu9KUP9NK64e8a46eeeq1jT+xEv/GqRF5Xl+k\nYx0yL/ZfOyalf13G1lBpvDFffVDBMinH0/34kEKnkPfEfV+sDZzYAfQSxd/dUJcJdIEwsW4l/tfh\nC4QfBxtRIHEPcpG+s46+xVNZJRzAcZdQVstdmjaEoa6bFnyAmSawLMhHZG1v7bXmMF/T7FnY+p1b\nvlr3KUi9TQovPdQWmjF2t6EbvR+ZhFgBMJEDX9lWWACqb/bzgpnf+2ebMb4UCfoKqy9wjLP9why+\nn/cmtfAiXba7hWypYjIUAivtTQn4Guglt/gaTwLNgdeBrE4xBL6EMlCxAh1dI4KOtng8Ng1l6AbT\nAmlypRxmVANonkFVXFNntq68p6HF3MciMzoYuA5pGuXfTnsQ+lyxN7qXnvLzyFEmX+cxWhrPSbYB\nI073kP70ZbnCM5RV65FoEx+f+XPa1Y9kMN6fjlDDwCmdI+/VPTXpnbxcB+xzvK/9cLL8LqZ1f3gZ\nEeV26R3f0E+5z44BQC5ZLVcs+Ah3oJeSnzAoYNn9hlZiVfxMvV6+Vd+H4QuENdzt2acg1+jZHIWa\nA4b4I3CsGbOWSrxPaAVvMtXNO09Pp0mhUUPXZD1Cq020vH0l+9Q5zJzTwtMh5MzcxJci3NZg7bOt\nAN8q9bUsrrwtr6830xtoapVdoHN589qPZ1C0EDOtn0KOaRh3K7G6OiyLr1uFWa3CbyKmaPtdstwS\nzEQGlgPIJYrgN1l89fziApiTRZkQ5KoSpQiWsyW4LEny56/w0lwZT068OPZDvh0Js+9ToFqmdree\nZvIUykp5tGvwIU/WLzna76p8TJt34p+4SNS69RS/iwDF0puHnvYexrKrddEdDZ+DGU4gx3tw1S+7\nNkRr4cn/N9CgsVWdHSzHLQ1XzYkvXkO8sQZP8QykOfFR5n/64Vy3NA4cy8plhzqHKa6uLqmv8niP\nL9h1/Ok+L6luMNqQ3oZRwJoyLctt6gAzeHFjjQCLRgbMsuWxinC5uPSyTvuhbaCELxC2cFPpMrmp\nisnBL+Fuyme+U9kWfQKOOxncJGda02ZbRThTbcZSfmFOtG3A5ydERIRRm7H66QSCz96+n50pPAf8\nuQhYy3nN4z2nYRd4F46I1CKMZy8w4Y9dEAlahsVdF/5s5bv49EW5zi3CeeY0cIl4qz8wWoW3tVoo\nuEcs67WfHsFw11l93wUgC0yXBY5bUAx9aMAanrvCC3cEUzHTQhq8iEE4FaMVWAdzLVnf7MaHohzP\nywrqHehYJt7FhDYEa8rEo5JvqrK+hhTaw4c05OrUi2XgIWlM22PwcTs6aUNamgR5yw91OIBXJHTj\ndIdvAjIc0jil+f30oh3SovwyukVmSOeGluhd+kTL8b69vUtEzjdZe3PBV/xtXfjOPY/p5Wr8g+U3\nyLsx6Y4T/KIut8LSnvHwiKW8s1tg3OkcB1crMaWTI8heovt1lHsjfIHwJ6F1hdAZItd8OvLnQtro\nAVV6mUXMJ7Q4vSMtZ2xoyZ1CSvpqRN8Nqx4nkNsCig+C6H9At3ho2FJJsMwZ7hn6Z/e7ugGra8FL\nJfJ6ilYL7HoBjcx3N4Bg2j67ekzaPjWiAl61Ci+LMe0naqbkGiFE/BJ6v7e/8Estz2Ah3tbgJXHF\nmXi5b7z98DiGnkFL8JtUmUUXiHdxk9hAWvQHPdx/WJWt8bIDXW5oCPyQFkeMfMnRVr5p5vgM4vJF\nz90QZiEu3aNeh1ymPvJp1g1fEoht/FEYBfABlMaCI/iorfg8z8/CJOcMdJNNmjcw2bydXM6RBscc\n+ZK1t7o8xGwKvCjz2jU+pOAYZG2fqX1604YpvRnjtv7N/Zj2AAR393ST/1S33PfdWFgb85iFe6aT\nZdgqC/qgPCSd7ossiiHPiQeLbUPjsG+aMiUiNZJp7SMYJgO9Ts9A+9+GLxDWcHcEOitvOT0iPear\na8S+tHz3KxouiZqIDfUmDTCst2GwCnsNepAcQSvRjA58RfU9w0NqV3YX7vd3Vg4FbKRdQG//r727\nXU4UBsAwSvb+r1n3BwaSANaW1bq+58zsdlCQjh/haQb1UvoZ4bpd/Trh+bZus8JlG8TLpzg0p0aM\nwTsPxkPw3j4mbTw3eKqX149pq9F9qecDzwNanQ2+XvqZ33lwb+P4NmhN7cxumeo7htdzh9fZgPoN\ndt0s8O1OXd5MNzVPrWnaDeKuBYf12sehDefuJTf1MxDLbU075wkv65VmvR9onifzJ2/0rv0qj+1o\neU6WdvGcezcyHtyXheONjr4d6ruXf3Xdd43fCDfe98vyYej24++XH5FWHlhn2HcbSn3g7ETy7nZ1\nm+3zo2z+7y/fXtbuf2c/3d1RX00Ht7HcVh+z88Lxm+HGdcu47bCPu/+2D+ju9Y8u16W9328af46P\nValbrjPD3a+27KsMy+P1w852HG27tRmR1uidys7Vx2+MW9ddR9ZlTF5iuG5zbS7/d6/3R/15+R75\nPO3B/qk7eu6tv71+Mgrg1xiHMrw+S19PCHOeEREAPk7C4V0Ic17Cn4wAECbh8C6EOW84Jfp5El6S\nd4znhAH8EuNQBjPC8E3OEX4i5wgDb8I4xKcQwpxnagAAPk7C4V0Ic55TI17DqRHAmzAOZUiY+RfC\nnOfj017DqRHAmzAOZUj4g0cIc54REQA+TsLhvVx/9O1mAADwfzMjDABAJCEMAEAkIQwAQCQhDABA\nJCEMAEAkIQwAQCQhDABAJCEMAEAkIQwAQCQhDABAJCEMAEAkIQwAQCQhDABAJCEMAEAkIQwAQCQh\nDABAJCEMAEAkIQwAQCQhDABAJCEMAEAkIQwAQCQhDABAJCEMAEAkIQwAQCQhDABAJCEMAEAkIQwA\nQCQhDABAJCEMAEAkIQwAQCQhDABAJCEMAEAkIQwAQCQhDABAJCEMAEAkIQwAQCQhDABAJCEMAEAk\nIQwAQCQhDABAJCEMAEAkIQwAQCQhDABAJCEMAEAkIQwAQCQhDABAJCEMAEAkIQwAQCQhDABAJCEM\nAEAkIQwAQCQhDABAJCEMAEAkIQwAQCQhDABAJCEMAEAkIQwAQCQhDABApL+Uk2g8s+79bwAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "image/png": { + "height": 351, + "width": 353 + } + }, + "output_type": "display_data" + } + ], "source": [ "%matplotlib inline\n", "%config InlineBackend.figure_format = 'retina'\n", @@ -123,11 +163,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def normalize(x):\n", " \"\"\"\n", @@ -136,7 +184,7 @@ " : return: Numpy array of normalize data\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None\n", + " return np.array(x/255)\n", "\n", "\n", "\"\"\"\n", @@ -158,11 +206,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def one_hot_encode(x):\n", " \"\"\"\n", @@ -171,7 +227,8 @@ " : return: Numpy array of one-hot encoded labels\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None\n", + " from tflearn.data_utils import to_categorical\n", + " return np.array(to_categorical(x, 10))\n", "\n", "\n", "\"\"\"\n", @@ -200,7 +257,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "collapsed": false }, @@ -224,7 +281,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "collapsed": true }, @@ -279,11 +336,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Image Input Tests Passed.\n", + "Label Input Tests Passed.\n", + "Keep Prob Tests Passed.\n" + ] + } + ], "source": [ "import tensorflow as tf\n", "\n", @@ -294,7 +361,7 @@ " : return: Tensor for image input.\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None\n", + " return tf.placeholder(tf.float32, [None, image_shape[0], image_shape[1], image_shape[2]], name='x')\n", "\n", "\n", "def neural_net_label_input(n_classes):\n", @@ -304,7 +371,7 @@ " : return: Tensor for label input.\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None\n", + " return tf.placeholder(tf.int32, [None, n_classes], name='y')\n", "\n", "\n", "def neural_net_keep_prob_input():\n", @@ -313,7 +380,7 @@ " : return: Tensor for keep probability.\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None\n", + " return tf.placeholder(tf.float32, name='keep_prob')\n", "\n", "\n", "\"\"\"\n", @@ -346,11 +413,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides):\n", " \"\"\"\n", @@ -364,7 +439,13 @@ " : return: A tensor that represents convolution and max pooling of x_tensor\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None \n", + " weights = tf.Variable(tf.truncated_normal(shape=[conv_ksize[0], conv_ksize[1], x_tensor.get_shape().as_list()[3], conv_num_outputs], stddev=0.1))\n", + " bias = tf.Variable(tf.constant(0.1, shape=[conv_num_outputs]))\n", + " conv = tf.nn.conv2d(input=x_tensor, filter=weights, strides=[1, conv_strides[0], conv_strides[1], 1], padding='SAME') + bias\n", + " activate = tf.nn.relu(conv)\n", + " pool = tf.nn.max_pool(value=activate, ksize=[1, pool_ksize[0], pool_ksize[1], 1], strides=[1, pool_strides[0], pool_strides[1], 1], padding='SAME')\n", + " \n", + " return pool\n", "\n", "\n", "\"\"\"\n", @@ -384,11 +465,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def flatten(x_tensor):\n", " \"\"\"\n", @@ -397,7 +486,11 @@ " : return: A tensor of size (Batch Size, Flattened Image Size).\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None\n", + " layer_shape = x_tensor.get_shape()\n", + " num_features = layer_shape[1:4].num_elements()\n", + " layer_flat = tf.reshape(x_tensor, [-1, num_features])\n", + " \n", + " return layer_flat\n", "\n", "\n", "\"\"\"\n", @@ -417,11 +510,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def fully_conn(x_tensor, num_outputs):\n", " \"\"\"\n", @@ -431,7 +532,11 @@ " : return: A 2-D tensor where the second dimension is num_outputs.\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None\n", + " weights = tf.Variable(tf.truncated_normal(shape=[x_tensor.get_shape().as_list()[1], num_outputs], stddev=0.1))\n", + " bias = tf.Variable(tf.constant(0.1, shape=[num_outputs]))\n", + " fc = tf.nn.relu(tf.matmul(x_tensor, weights) + bias)\n", + " \n", + " return fc\n", "\n", "\n", "\"\"\"\n", @@ -453,11 +558,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def output(x_tensor, num_outputs):\n", " \"\"\"\n", @@ -467,7 +580,11 @@ " : return: A 2-D tensor where the second dimension is num_outputs.\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None\n", + " weights = tf.Variable(tf.truncated_normal(shape=[x_tensor.get_shape().as_list()[1], num_outputs], stddev=0.1))\n", + " bias = tf.Variable(tf.constant(0.1, shape=[num_outputs]))\n", + " output = tf.matmul(x_tensor, weights) + bias\n", + " \n", + " return output\n", "\n", "\n", "\"\"\"\n", @@ -494,11 +611,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Neural Network Built!\n" + ] + } + ], "source": [ "def conv_net(x, keep_prob):\n", " \"\"\"\n", @@ -511,27 +636,32 @@ " # Play around with different number of outputs, kernel size and stride\n", " # Function Definition from Above:\n", " # conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides)\n", - " \n", + " conv_pool_1 = conv2d_maxpool(x, 64, [5, 5], [1, 1], [3, 3], [2, 2])\n", + " norm_layer = tf.nn.lrn(conv_pool_1, 4 , bias=1.0, alpha=0.001 / 9.0, beta=0.75)\n", + " conv_pool_2 = conv2d_maxpool(norm_layer, 128, [5, 5], [1, 1], [3, 3], [2, 2])\n", "\n", " # TODO: Apply a Flatten Layer\n", " # Function Definition from Above:\n", " # flatten(x_tensor)\n", - " \n", + " flat_layer = flatten(conv_pool_2)\n", "\n", " # TODO: Apply 1, 2, or 3 Fully Connected Layers\n", " # Play around with different number of outputs\n", " # Function Definition from Above:\n", " # fully_conn(x_tensor, num_outputs)\n", - " \n", + " fc_layer1 = fully_conn(flat_layer, 384)\n", + " dropout_layer_1 = tf.nn.dropout(fc_layer1, keep_prob)\n", + " fc_layer2 = fully_conn(dropout_layer_1, 192)\n", + " dropout_layer_2 = tf.nn.dropout(fc_layer2, keep_prob)\n", " \n", " # TODO: Apply an Output Layer\n", " # Set this to the number of classes\n", " # Function Definition from Above:\n", " # output(x_tensor, num_outputs)\n", - " \n", + " logits = output(dropout_layer_2, 10)\n", " \n", " # TODO: return output\n", - " return None\n", + " return logits\n", "\n", "\n", "\"\"\"\n", @@ -588,11 +718,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch):\n", " \"\"\"\n", @@ -604,7 +742,7 @@ " : label_batch: Batch of Numpy label data\n", " \"\"\"\n", " # TODO: Implement Function\n", - " pass\n", + " session.run(optimizer, feed_dict = {keep_prob: keep_probability, x: feature_batch, y: label_batch})\n", "\n", "\n", "\"\"\"\n", @@ -624,7 +762,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": { "collapsed": false }, @@ -640,7 +778,10 @@ " : accuracy: TensorFlow accuracy function\n", " \"\"\"\n", " # TODO: Implement Function\n", - " pass" + " print('Training Loss: ', end='')\n", + " print(session.run(cost, feed_dict = {x: feature_batch, y: label_batch, keep_prob: 1.0}), end='')\n", + " print(', Valid Accuracy: ', end='')\n", + " print(session.run(accuracy, feed_dict = {x: valid_features, y: valid_labels, keep_prob: 1.0}))" ] }, { @@ -662,16 +803,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# TODO: Tune Parameters\n", - "epochs = None\n", - "batch_size = None\n", - "keep_probability = None" + "epochs = 10\n", + "batch_size = 128\n", + "keep_probability = 0.75" ] }, { @@ -685,11 +826,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Checking the Training on a Single Batch...\n", + "Epoch 1, CIFAR-10 Batch 1: Training Loss: 2.02859, Valid Accuracy: 0.3288\n", + "Epoch 2, CIFAR-10 Batch 1: Training Loss: 1.73148, Valid Accuracy: 0.3978\n", + "Epoch 3, CIFAR-10 Batch 1: Training Loss: 1.43727, Valid Accuracy: 0.4584\n", + "Epoch 4, CIFAR-10 Batch 1: Training Loss: 1.20958, Valid Accuracy: 0.488\n", + "Epoch 5, CIFAR-10 Batch 1: Training Loss: 1.13607, Valid Accuracy: 0.4956\n", + "Epoch 6, CIFAR-10 Batch 1: Training Loss: 0.906183, Valid Accuracy: 0.5094\n", + "Epoch 7, CIFAR-10 Batch 1: Training Loss: 0.814033, Valid Accuracy: 0.5296\n", + "Epoch 8, CIFAR-10 Batch 1: Training Loss: 0.686904, Valid Accuracy: 0.5408\n", + "Epoch 9, CIFAR-10 Batch 1: Training Loss: 0.580816, Valid Accuracy: 0.5502\n", + "Epoch 10, CIFAR-10 Batch 1: Training Loss: 0.497506, Valid Accuracy: 0.5612\n" + ] + } + ], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", @@ -719,16 +878,65 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training...\n", + "Epoch 1, CIFAR-10 Batch 1: Training Loss: 2.06226, Valid Accuracy: 0.3212\n", + "Epoch 1, CIFAR-10 Batch 2: Training Loss: 1.57472, Valid Accuracy: 0.4404\n", + "Epoch 1, CIFAR-10 Batch 3: Training Loss: 1.28891, Valid Accuracy: 0.4616\n", + "Epoch 1, CIFAR-10 Batch 4: Training Loss: 1.4297, Valid Accuracy: 0.4844\n", + "Epoch 1, CIFAR-10 Batch 5: Training Loss: 1.43679, Valid Accuracy: 0.518\n", + "Epoch 2, CIFAR-10 Batch 1: Training Loss: 1.38818, Valid Accuracy: 0.5218\n", + "Epoch 2, CIFAR-10 Batch 2: Training Loss: 1.09959, Valid Accuracy: 0.5522\n", + "Epoch 2, CIFAR-10 Batch 3: Training Loss: 0.961711, Valid Accuracy: 0.551\n", + "Epoch 2, CIFAR-10 Batch 4: Training Loss: 1.12144, Valid Accuracy: 0.5856\n", + "Epoch 2, CIFAR-10 Batch 5: Training Loss: 1.02137, Valid Accuracy: 0.586\n", + "Epoch 3, CIFAR-10 Batch 1: Training Loss: 1.05762, Valid Accuracy: 0.5896\n", + "Epoch 3, CIFAR-10 Batch 2: Training Loss: 0.814285, Valid Accuracy: 0.6132\n", + "Epoch 3, CIFAR-10 Batch 3: Training Loss: 0.825072, Valid Accuracy: 0.605\n", + "Epoch 3, CIFAR-10 Batch 4: Training Loss: 0.865807, Valid Accuracy: 0.616\n", + "Epoch 3, CIFAR-10 Batch 5: Training Loss: 0.840993, Valid Accuracy: 0.636\n", + "Epoch 4, CIFAR-10 Batch 1: Training Loss: 0.74788, Valid Accuracy: 0.6272\n", + "Epoch 4, CIFAR-10 Batch 2: Training Loss: 0.652433, Valid Accuracy: 0.6234\n", + "Epoch 4, CIFAR-10 Batch 3: Training Loss: 0.572802, Valid Accuracy: 0.6414\n", + "Epoch 4, CIFAR-10 Batch 4: Training Loss: 0.697387, Valid Accuracy: 0.657\n", + "Epoch 4, CIFAR-10 Batch 5: Training Loss: 0.599844, Valid Accuracy: 0.6582\n", + "Epoch 5, CIFAR-10 Batch 1: Training Loss: 0.706912, Valid Accuracy: 0.6546\n", + "Epoch 5, CIFAR-10 Batch 2: Training Loss: 0.458327, Valid Accuracy: 0.6452\n", + "Epoch 5, CIFAR-10 Batch 3: Training Loss: 0.491401, Valid Accuracy: 0.6734\n", + "Epoch 5, CIFAR-10 Batch 4: Training Loss: 0.484113, Valid Accuracy: 0.6714\n", + "Epoch 5, CIFAR-10 Batch 5: Training Loss: 0.494395, Valid Accuracy: 0.6666\n", + "Epoch 6, CIFAR-10 Batch 1: Training Loss: 0.506375, Valid Accuracy: 0.6906\n", + "Epoch 6, CIFAR-10 Batch 2: Training Loss: 0.337756, Valid Accuracy: 0.6578\n", + "Epoch 6, CIFAR-10 Batch 3: Training Loss: 0.353094, Valid Accuracy: 0.687\n", + "Epoch 6, CIFAR-10 Batch 4: Training Loss: 0.373179, Valid Accuracy: 0.677\n", + "Epoch 6, CIFAR-10 Batch 5: Training Loss: 0.38469, Valid Accuracy: 0.694\n", + "Epoch 7, CIFAR-10 Batch 1: Training Loss: 0.428482, Valid Accuracy: 0.6932\n", + "Epoch 7, CIFAR-10 Batch 2: Training Loss: 0.269606, Valid Accuracy: 0.677\n", + "Epoch 7, CIFAR-10 Batch 3: Training Loss: 0.308877, Valid Accuracy: 0.7042\n", + "Epoch 7, CIFAR-10 Batch 4: Training Loss: 0.290038, Valid Accuracy: 0.688\n", + "Epoch 7, CIFAR-10 Batch 5: Training Loss: 0.30759, Valid Accuracy: 0.6892\n", + "Epoch 8, CIFAR-10 Batch 1: Training Loss: 0.376015, Valid Accuracy: 0.6916\n", + "Epoch 8, CIFAR-10 Batch 2: Training Loss: 0.207914, Valid Accuracy: 0.6826\n", + "Epoch 8, CIFAR-10 Batch 3: Training Loss: 0.22358, Valid Accuracy: 0.7052\n", + "Epoch 8, CIFAR-10 Batch 4: Training Loss: 0.205842, Valid Accuracy: 0.7022\n", + "Epoch 8, CIFAR-10 Batch 5: Training Loss: 0.201466, Valid Accuracy: 0.6862\n" + ] + } + ], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", "\"\"\"\n", - "save_model_path = './image_classification'\n", + "epochs = 8\n", + "save_model_path = './model/image_classification'\n", "\n", "print('Training...')\n", "with tf.Session() as sess:\n", @@ -765,11 +973,35 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Testing Accuracy: 0.6764240506329114\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9oAAAN6CAYAAABxCzGpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAewgAAHsIBbtB1PgAAIABJREFUeJzs3XecK1d5//HPc2a0u/faYIq7TcmPZgKYuFFCCSWETigJ\nvYMpIfAj1CQQbCABwg8IEGKKAybESaiBAMH0EqoLEMCY0EJzwdjGGGxf70ozz++P54yk1Uq7Wq22\n3f2+/RrvXu3ozNFoNJpnzjnPMXdHRERERERERKYjbXYFRERERERERPYmCrRFREREREREpkiBtoiI\niIiIiMgUKdAWERERERERmSIF2iIiIiIiIiJTpEBbREREREREZIoUaIuIiIiIiIhMkQJtERERERER\nkSlSoC0iIiIiIiIyRQq0RURERERERKZIgbaIiIiIiIjIFCnQFhEREREREZkiBdoiIiIiIiIiU6RA\nW0RERERERGSKFGiLiIiIiIiITJECbREREREREZEpUqAtIiIiIiIiMkUKtEVERERERESmSIG2iIiI\niIiIyBQp0BYZwszmzOxRZvZWM/uGmV1gZnvMrB5Y/n2z6yoi25+ZPW3I+eX1Yz73ZkOe+831rvNW\nZWb3HrI/PrjZ9RIRkZ2l3OwKyNZiZvsBRwMHA9fISw1cnpfzgB8BP3X39mbVcz2Z2VOBlwDXzg95\n35996TNERKZmLecYnZ8W0/4QEZFNo0BbMLObAccD9wRuCNgYT6vM7BzgLOBM4JPu/oP1q+XGMLOT\ngKcQF2jNRdo4+0NkSzCzlwIvWOXTrgQuA35F3Eg7CziD+FwvTLeGMgZj8iBR56vF1rIvRUREJqZA\newczs5sCJwG/lx/ygZ/LScDNgVsAj8vl/Qh4jbv/w5SruiHM7LH0guzuw6ziIs3MrgUcN/Dwxe7+\n1TVXUGR1VhNc7MrLwcBNgXvlxy8xs7cDr3X386ZbPVknzjYJts1sf+CYgYd/4e5fn+JmFGSLiMim\nUKC9Q5nZc4CXArMsDSz7rdSq2//c6xNB+7YLtM0sASewdF9cBpwCfAH4BTDYuvfLgX8fBZw28Ngn\ngT+YWmVFxjdJwNX/GbgW8GzgiWb2dHc/dTrVknWyLQLsPrcGPjTw2IeB+02p/O22P0REZC+iQHsH\nMrMXA3/F8O7Rzb+vAn5IBJp7gP2Ii+7DiOCcgef1P3c7+gPgeizeH5cCx7n7/05Q3nbeF7L3Wc3x\nOHgucODqwDvM7EbufsJUaybTMvgeb6dz0HrUdTvvDxER2Qso0N5hzOwJ9ILs7sP53z8FTgbeD/yP\nuy+5MDGzgugyfiwxpvseRJfTppzt6g59vzf74x8mDLIHyxHZLE034gq4HaM/o/sC+xOf63sDR9A7\nfvuP4xea2c/c/R/Xs9KyOu7+baDY7Hqs0dTOl+7+n2z//SEiItucAu0dJI8f/luGB9kvB16yUuIj\nd6+Ab+TlrWa2ixjP+VTgzutR7w1y1JDHPrfhtRBZJ+5+5hirvRt4npk9CHgjEXz3t2wb8Goze7+7\nX7I+NRURERHZ/jSP9s7yLKL7d6MJsp/r7i+cJLuwu+9x9/e5++8TidHeP52qbrj9hzx27obXQmQL\ncPf3EeNnfzHkz/uy+qzmIiIiIjuKAu2d5YEsHoPswOnu/pppFO7u57j7v02jrE2wH0u7Le7ZjIqI\nbAXu/iPg0SzNw2DAwzalUiIiIiLbhALtHcLMrkuMuxz01o2uyxY1s9kVENlq3P3jwJdZOrb7QDM7\nchOqJCIiIrItaIz2znHdEY//94bWYhXM7CBi7PT1iRbnErgCOA/4DvDtYQnbNtmmJ4QzsxYxN+1N\ngWsDLSKD+jnAme6+qpb6PLb/GOCGxPuwB/g58A13/58pVr1/mwn4LeLm0CFE1us5Igv+L/P2z3T3\ny9dj+7LIB4DbDnn81sA311q4mRlwJHG8HgzsQ0yjdzHwfnf/1QRlXocYynI94tiB6Ab/C+K88eO1\n1nuF7e8GbgPcBLgGkYzul8B3gbNW+xncCszs+sDNgOsQ+7QFXA78ipih4jsTjNvf9PPlJMzsCOC3\ngcOJoRQ18GvgJ8B/b8ac82Z2OHGevl6u06+Bi4Bz3P1b67TNXcRn90bEd8PViV4vVxLHxs+AHwM/\ncvfOetRBRGRLc3ctO2ABHkRcDFR5aX6/wWbXbaCe1wZeCJyd67jccgnwNuDYVW7jlDHKHmd5dC7v\n3CmVVwOHjqjzS4es+5cD6xyRX9tly5T/a+Ak4MAx9tN9iDnA28uU913gyYBN4b2/FZER/1PEhdpK\n+6oNnAX8BXD1Cbf5shFlP3gNr+P+I8p83QZ9hppjpf+zvrCG8u48pLwKeMEyz3n5kNf/vIF1bkbM\ncnDJiP1VAbdaRT1vBLwa+NEYx863cx0PmPK+PxZ4DzE94qhtX0kknTtu4LlP63vdzc/Xj7ndmw3Z\nzjen8HpuA7wZOH+MfVoTN/NeB9xumTIvHrOscZZrjdjGvYes+8E17otbAG8ibtasVK/vAS8BDlrD\n9lZ8T4nM6o8HvrpCfc4jEqFeYwrHxL7AU4AvAJ0x36crgc/nz9xxa62DFi1atGyXRV3Hd45R7/WB\nG1qLEcwsmdlzibvfLyFat3yF5RrAY4EzzOx9ZnboKjY5rLxx1hm2/lrL6c/qvJp6d5nZiUQm+McQ\nF0KjtrMPcZH0XTO727ANmNlBZvZx4IPAXYhjZ1R5NySyU38xt3yvmpm9yMx+CHwFeDER2M0us81m\nScDRwN8APzWz50+w+RcC/zWk7LeY2Q0meC2/Rdz8GSzvDODZE9RvK7hoxOPDEggOWnK8mllpZn9H\n9KZ5AvE5XukzNJKZHWBm/0T0cvkzovfOSsfOEcDzgR+Y2V/kaQsnZmZzZvZG4HTipmZrmW3PAn8E\nfMXM3pB7oEzLRPtwkJkdZWafA74EHA8cxMr71IkW/KcDnzezs3PL/nJ13JTz5WqY2f5m9i/E8fok\n4mbwSvW7AXFu+VE+v63lPR51zr85EWD/I/A7K9TnYOC5wA/N7J6TVsTMHgz8D3Gz9nfp5XpZaZkl\nphd8PnC6mb1y0jqIiGwnCrR3jotHPL7pU3KZ2X7Ax4g77rvpXVDYwDL4GPS+yB8AfM3MfnfczY4o\nf6V1xll3NeWMes5KdY9fwr8BL6I3FGSwzGH7bD/gw2Z2l0UFm92IaCX+fZa+D6NepxMtX580s6uz\nek8lhgf0X0yO2j+DjzfPuRrw8nzDZdjF/VDuXgMPJz4f/a/xasB7zGzssfv5YvrdxL7tr++viBby\n7dp1cq3de/uP1zng48D/pff9M+w9Hq9gszsB3wIexeJ5mFc6dsjr7kvcqPmP3A121czsGsCniZ4d\nTbkr1aHxJ8BpZjY7ybZHVYk1vGf5hufpwO2Z/DMJcbN0boU6buj5crXM7GgiwG6S/632+JoFTgQ+\nbWbj3JgaWZX+bZnZXYEvEq3sPmTbw/aXA9cEPmBmD1h1BcxeALyTGMrTHBfLvS+jztXO6ONCRGSv\nojHaO8f3Bv7dfEk+3cze5O6/3IQ6NWMZPw4cx+I79v0XbD8numdfCRxKBGUlS4PtA4GPmtnd3f3L\nK2x6WAvH4IXCalpBBus+STmTtLq8FngIvffTifGtPyS6OM4RY52bngv9Fzwt4F1mdoS7X2JmBxIB\nQ3/PACfGlv6EGOd9LeICepbF7xHALYmuu8dP8DoG30uIbok/IQLVy4j3/BpEK/ruEc97ANF9/iHj\nbtjdzzezRwKn0XtNll/P64keAON4DTFGsv9i3IHHuftPx63PFjQqQBh18245/wLcicXHK0RPlguB\neeAwYuzrssGnmf0h8C56rcew9Hj4X6JFfg/xGbghvWO3f717ETeK7uyrmOYw34j5EHGjadT569y8\ndPJruz6LA5M7E70gvjTudteLmb2BCP6Hnc+ax84nzi2/JHrIXJs4xxQD6y9ns86XYzOzo4hhLM24\nY1i8L2riuD2fOAYPJ97fZr3+lvfbAZ8yszu6+2VrrNcxRN6E3Sw+n19EHGeXEgH1jYgbSYOBbgt4\nm5md4WOOJTezhxJDUkYd41cSn7VfEcMm9iX22/WIY2TYc0RE9noKtHcIdz/PzL4L3HjgTwcSF5gP\ndffBYHwjvJ7hQXZFjIf7R3f/Rv8TchflBwMnEPXvv4jYlwgej/TRSZReQnR37vcBontks/0maPv5\nMnX/Yf55H3pBwa3ya+oPJM4EnrFMOf2GzVs8yr2I7nvNvvs20Xpymrtf2b+imd0WeGVev9+1iP3x\nNCJoaS4Ua+BU4A3uftZAWbuIFsSX5ef3t248zsxOdvczVvE6yM+fJwL9DxHdyM9x9/awlc3sFsAj\niFbEq7P4Au6PzOxJ7v6WsTfu/gkzexnR3bP/9RxvZp9193cu93wzexCxDweD7Ne6+wfHrccWddyI\nx0d1KR/lUcS402YfXQD8NZHwbNHnLB9jD2HE58HMbgb8KxE0dB/OZZ9F3PD5hLtfOqTcexCfk5uz\n+Li5DfD/iNb2cZ1ABFGD56828HfAW939+wN1OIzYF39JBCEGPJTeZ29T5OEnw4Ls5obFq4GPDLtp\nlHsq/A4xNvohRNfpUf6A3vt2e+BVLD5ffhF4zpjVXnWivHHkG8DvppdID3r1u5QIOt/p7hcOPO8I\n4IlE9/n+G0AQx9tbWMVNwAGe6/MeesHrPNGN++0+kPDMzErgnsArWDrjyNWJsfR/tNJG82fm71h6\nXFxFjN8/1d2/uszzr098L9431+eaK21TRGSvsdmDxLVs3EKMj+pPatSf3GieCKx+Hyg3qD73H1Kf\nmri4vvUYz78m8NGBMprf37XKuvxoSBnXneA13bXv+c3Pj09hX710oNzBpFGvgeUTkhEtTh8csr8u\nB/68r7xfAr83Rp1uTiSyGtxvp6zytX0ZeCaw7wT75RAiOB98TT8HWqssK40o6zLgRss87wbEBf/g\ncfyljfosLXOsTCMZ2hdHfMZuucxzXs7w47Up4z3A7gnrs4u4qTS4v68EnjhmGUYEjsNe193GLOOW\nRO+RwXqcBxw5xvOvR2RtH9xPa0mG1l/O2MnQiFwMw74XOvncsKrjGLgb8Bngmiusd+8hr3lNScum\nUS4x7nnYsfEZxkskeRS9JJmDZTx6De9p/7//B7jhGOXsJvJQDNalzYjkmwPPH5ZI9TLg6Anelxki\nedufrPU91qJFi5btsGiM9s7yBiIAGdZVryTGqn4cuMTMPmZmLzGz+5rZIdOuSJ7S59UsvUv+G+Du\n7n76SmV4tFY9gAgE+rv0GdGqefupVnpr6e+W+AZ3f5a7L9slz90r4iJnsOviLqJ1GiJwuJu7f27F\nCrifTbTKDdv3Y493dffbuvtrfYKputz9AuKi+kwWH9cHEMfzasqqibGYFw6UtS8xXntJV+bcdfjd\nxJju7sPEzYqH+PYdlw2Amd2dmNpr8Ni62Ad6mqyg//kfIsasXzlq5RW8iBi+0DDiuL23u//jWJUJ\nzwb+nqXnwxePWY9XsbhXmBGfrT9w9xWnPXP3nwB3B37KJnapzYng3jT4MBFkP9zdX7Ha49jdP+Hu\nd/aBHgXbQU4y9niWdhf/KnBfd1+x15G7f514b/tff3N+fOWEydH6e9r8BPhdd//BGHW5kugx8ZuB\nPyXg0WNs9+59vzfH6Yvd/WvjVHqgLgvu/jZ3P2m1zxUR2Y4UaO8g7n4FcXd6nuHJS/q7X9+N6Eb7\nH8B5Znaemf27mT3TzI7OgfJa3JcY19dovsBfmC9SxuIxH+0jiTGYg56+phpuXc3FFkSm5XG7WeLu\nFxM9F4a9fw6c6Mt0AxzibSztvrmbyAa+IfIx8OQhf3rEBGVdmJ9XNw8R++oWxI2qQa8lWq8azXH8\nWHf/2Wq3v5XkDOr/xPCuxP+2iqL6n38pcPxKN4WWqVMztdBgF/3nuvtnJijyOcSUVE09Dbi1mY3q\nLt/U4wZEK/BgPV7g7t8ed+P5RtFTV1vpKXsMMXa90byWl7n7uzenSptq2DCfBeCRq7kZmI+D57D0\nXHsAEfhOonlvHuGryKvi7ucT5+rButxujKdfZ8hj/znutkVEdjIF2juMR5KwexPjK5sLy1FBV/9y\nMNHV+zXEGMifmNnLc5bqSfzJkMe+B/zDagvKLUOvYmnL6v3XozV+C3Hgb33EOOZl9I8Z7g94LiPG\nl49fgdj2R1l6DG1YoJ3r8d9E9un+ZGa3mrCsTxPj1gePp8ebWTd4z1PdDAv6Xu3uH55k21tFHnN+\nBhEUDLqCXg+IsYsk9s0/uPtqx3b3ezK9rO7N+/NdJjhvQPf4/VuWHr+PX+Gpxw95zvdZmvthnDqc\nRvQk2qxW7f5kf/038F66CXXZVHnWhIez9DN9kk+Qw8TdTyFawgePlT9dbVF9dfmEu0+SOK//pklT\n3jFjPG/YTBK/nmD7IiI7jgLtHSgHEkcRya9qFgfcowJvWBx4H0aM+T7HzE5eTUCbu9veiaUXM2/N\n3Xcn8RZ6rZCNkhgzvbfaQ0y3slqD3Vqb/f++CbvzDusmO5h0byOcOfDvq+WkWZN4KZFxeDDYfqOZ\n3STfYDqZpd1Lvwz8xYTbXFdmdutllruY2YPN7JVmdg4xhnpwXvTmOHn+ON1nR3jbWl4DSxNJNcH7\npOcNiACkyTTevM93WOE5/XMRN/vl7ZO21ANvnfB5a2Jm1wOOZXGA78Dr8lCTneYO9GY06HfyGsrs\nT8rYHF/HmtmkScEm/Qx9naXfkQeZ2T7DVu4zLOHcRDcxRUR2GgXaO5S7n+/uDweOJC4ELmFxID1u\n4J2AJwBnm9nvj7n5o4mkKIPeNfYLGKxITFPyXyyt620nLXML62Yzn6A1u+kePWwKoy9MWJ8fD3ls\nvyGPrbdhwd9y2Y9HygHTw4nM2P3H1D7Ae4lj9WoDT7uEGJe9lQKUpu4lcRNg1PJJ4qbNc4CbsLS7\neHPMvdLdV91qm/0k9z6ZSA4IjhqoG8D7Jy0TwN3nWTrG/wgzG3oM53r0Z09vvHcN1fggkcV5o91t\nyGMLxDRsO1H/90VzPJzt7t9ZQ5nvIsa7D7rNhOV9fpInuftVxFRkg1Y6Vw8OhTDgb83soGEri4hI\njwLtHc7dz3H3pxLZm+9FTG9zOnGxNW7g7UQG8NNyd9qVDLvAuHAKY1q/MvBvY+8MtBtrufgbTIyz\nlvKGlTVxoG1mM2Z2HzN7cc4LcLaZ/czMLjOzyszqYQuRHXnQNSatR+7i/HAi0y70AqubEVMZ9bdm\n10Q24bHmpd0Eg0NBllsGP+tOvMfHu/skrfVNGasZ+z/M7ejN1dz4eR5/ulY/Hvh3My5/mGNY+t15\n2TiJqUbJwf7ZjL6puV76uw4379PX15Cobrsb/G5y4vtwYu7+ayJD+DRuAv86j+uf1LAu3yudq/vH\nYzfniBsD3zKzZ5vZtddQHxGRvZrm0RYAclbZj+WFnBX1SKL1+ViiS91N8ur9F+DdIoiL4LeZ2ffy\nmNlRrtf3e/fibgovo7+MJmC47hTK3arGToYzxLDWs0nLG1bW3GoLyd1Y/4pI2Nd/8TfYcrhc99zB\ni9mJA20Ad/+cmZ1AzPfcP06yf3sOvCqPtd2qVhPA9b++XwHvAF4zhRth567x+Tfv+73Z7xea2a3X\nWC7AkozyLO0637j+kHqsmGV8DN8gzrUbaViOjTUFltvc9Vh6fpnWd9PNBx6b5LtpLed8iOFGg+ew\nZc/V+Rz4JeB3+57nwLWJG/OvMLMvAJ8gWtvPzK3nIiI7ngJtGSp3Sf5qXk4GyF3F/hh4EtGq1594\nqvkC3gWcRHwpjzJsbNpa7tI3JukWt51Nu9VpmuWtqmXOzP6CyHK/i16ryURlDVhp/OGK3P1lZnYH\nYpqb/uO9+flFYpqzrWylscN7iGR4lxGtu2cRydA+kVtbp2FwWrnVGmw5M6JnwZfXWO4oowLtYeev\nScesT7uM1TqMpcfGWm+IbGcb+d20mjHazTnwiinUZVTZy3kEcQPmgL71m/N0An4vLwAdM/s68Fng\n08Bn3H3YUCURkb2euo7L2Nz9Qnd/g7sfSUwJcxlLg45mepzlxmsPu8CYRhbTYRfyKWeSlS3KzE4C\n/oZoWenvjj14QTfOsqT4KVXz7cv87fg1JuNaT80+qdy9WGbZ190Pc/ffdvd7ufuL3P3DUwyyYe03\ncoYFvqs5NlZ7/Iy6STesl8R6nb/W275DHhuW/GqnGPaer9d7O2kytA2XcyvcmrjxPniObr77m6UA\njgOeC5wG/NzM3pLnJxcR2VHUoi0TcfdTzey/iQRaV2PpReqDiARLw+wa8tiwebBXa1QZ+6DpSLYk\nM/szFk+RBb0LtzbwNaIl5SdES9tviK7qV7H0mHsK8Nh1qOPhwN/3bW9wuy8AHj3t7coSwwLc9RzT\nPDgevDGsm/k0WuymeVNjXMNe4zTOxdtOng2jYOnnez2+m4wp9LbZSDnYvpWZPRJ4NjG0rDEsb0tj\nP+CJwBPM7J3An7r7petaWRGRLUKBtkzM3c82s+cBb2JxEGLAXZZ56rCgdzCD8yRGlbEZLUWygjwU\n4USWBtlXAC8GTnb3sd87M3vAVCsYZRbAvwH7s7glpz9x2CPM7HPuvilTNO0gwzI3Tzqd1loMOyan\ncf7ajJ43vwIGs0fvyB5A7r5gZgtAa+BP6/Hd5GzT7yV3PxU41cyOBO4D3JlI7NZ/A70/8O7vLfIw\n4PZmdid3/9FG1FdEZDMp0Ja1OgV4FUvvzv/WMs8Zdjd7Ghd3w7r9tXdwBt2t7jEs7g1hwOXA7dz9\nWxOUtx5dMf+GyHY9GGQPBtuvM7OvuPvgVDgyPYM36Bz4tLsPm6JqPQ3rWj2NXBCbkU/ilyxNjrWm\nBILb3KXAgQOPrdd301oTm20qd/8mkQTwZfmG5DFE0tQ7EMF3Myyh//hy4DrAR8zsd6Y8NEVEZMvR\nGG1Zk5w07QyWdh0rzGxU4DMs0P4/U6jOsDmT1UVt67pf3+/NxdgJEwbZEK3OU2Nm9yLGGQ4G2aey\ndH7tXcB7zGz3NOsgiwxmPTeWJkjbCBf3/d7caBmWvXu1bjyFMlbr4iGPTeO1bFf6bpqAu1fufoa7\nv9rd70+ci+8NfICY+nDw+uDGwJ9ucDVFRDacAm2ZhgtHPD5qjOM5fb83F6q3nEI9jur7vQmKzhmx\nrmy+Y1ja9ffUNZR39JDyJpLHZf/TkD99jRhv+AjiAhJ6x/BNiGEUsj4GzxsQrWMb7RtDHruhmQ3L\nPbEa/XOzb5TBaRiNpXNJ7yTnsDQoPGrYiqt0FEvf2732u8nd2+7+UXd/EHAnlvYCMeBRG14xEZEN\npkBbpmFY17rK3Ye1lsDw6Xj2NbOj11iPO7H0Yma9pv4ZZTPGjG47ORP8YFKpS939ognLO4zF8xtP\nLHeDfCeLW0uNGFP54HwR+VliHHl/ZvRmvPYTplEPWeJ0ln6+rpXHim4Yd/8BS7v9JpbPS7EsM7sR\ncPha6jWhz/X93uzbm+QbTRthq50v+78vms/07ddSoJldn5ife7lt7bXc/QvAM1l8rgS4hZlNY/y7\niMiWpUBbpuEmLL1gGhVk4+7fZfj4tEdOWoEcpN9syJ82+mJm2JizweQ6MnzM4uVrKO+Ja3juoJcT\n88APdhl/4kACn78mMusPBtuvM7Nhx6KsgbtfSMzvPdji+MBNqM6Xh9TjEWsob7Oy1n+ZpRnTDXjy\nBm1/q50vvzTksUPNbOKbKEQuikELxFRZO8V76PUA6jeYiE9EZK+iQFvWxMyOAm7Y/xARcAy7YOn3\nPpYGKI8ys0kT8Tx7yGOXAp+asLxJ/Wbg39tuGpcNMizj7gFmtupzkpntSwQGa24dM7N7E8fSYJB9\nkru/r39dd3fi5tDP0XjtjfLPfb83541n5B4Sm12PB5jZDUesP5KZ7Qc8iU1o3XX3q4B3sfRc/GQz\nm2rOgxEGz5ewuefL01maCwDgzyYpzMz2AY5n6fnkgzm/yY7g7nuAYUlJRw0vExHZKyjQ3iHM7Bgz\nO2WSC8FlyjTgdSP+/B8rPP3vhzx2LeBlE9Tj94hpQwYvZk7OF5IbqT/BTVOf629wHbY8d/81Sy+8\n5ohstav1euDg/PvE8yqb2XWAtw/509eAZw17jrv/Ang4w8drv3HSushIbwcuGXhsP+AfN7ge7wcG\nhznMEMfiar0cOCD/vp7zgo/ySpYG+ddmY/bp4PnS2MTzpbvXxOd28MbDvXJyxNU6ETh0yOPDvv/2\nWmZ2IL0s5P3O2+i6iIhsJAXaO0dJdGH7jpm9Y63joc2sBfwLMX5t8CLtElYItN39bKK1eVhLytjd\ngPPYxncOqcMCcNK45UyLu/+Mpa001zazYVlnd7rPszSwePFqWrXzPO6PpXf8TCSPy34XS8dl/5o8\nLnvUc/N47RNZeiw/0sweP2mdZCl3vxx4EUv39YPM7CQzW9OUlWaWzOyBZnbzFerRJoLqwXrc3cxe\ns4rtPQN4Cms8ftciT0n3AZa+lvua2Zsn6WUCYGbXzp+r5fwvMHgz9LANHCM+zMnAFX3/bvbHP5nZ\nTcctxMweQdygG/xu+moet7wtmNnJZvbbayzmmUMe+37+PIuI7LUUaO88iejuepaZnW1mzzOz5ea8\nXiRfiP4hkXn3oSy+iGhakp+fWyxX8lSGX9C8ycxesNJFmpndlQjW++c9berwwhz0boavs/Si+a82\noyJb3Af6fm/e+9sC/7pSt2sz28/M3gi8ou+5nTXU5RVEtuWVxmWP8jfAJ1garLxe47Wny93fyNJ9\nDRGwfsnMVp0128yOMLMXEIHfe4DrjvG0VwLfZul7/kwze9dyXa/NbLeZvR74u77nXTFq/Q3wZOB8\nlu7T44GPreYYNrMb5JsNP2GFucHdvSLmYt4y50t3v4QIkPvr5MRNuE+Z2T2Xe37+jnwOcMrgn4gx\n6dstWeJjgbPN7CNm9tA8VGcsFp4NPI/h0ySKiOzV1nT3X7at5gvvpkSA8Qoz+zkxrvpMYszpJUS3\nvlkiq/gNiCm47k50c3SGB9n/7u6DFxjDK+H+AzN7FvDmvno1F50vBR5uZm8HTgPOBfYQ3fCOJW4W\n3HdEHT5D7akNAAAgAElEQVTj7q8epw7r5L3AHfPvzet5dL5YfTcxrctlwLBW0q+6+1oCxu3kFOAF\nRLbl/uPpwcBtzOwk4GPAD4lWrwOIOX7/kHj/m+PQiGP2P5ggiZOZ3YfFLU/NcfRGd3/vOGW4u5vZ\nI4npkg7pK2sX8G4zOzaPU5TpeCjRI6JpaWuOn2OJYPtM4IPAF4EfENML7QGuRgR/hwFHEue0u7B4\n7uixxkq7eztnmP88kcCr/xj+Y6K78X8QCfPOAyri/HUH4EHEUJnm+L2Y6IHzolXsg6lx94vN7KHA\np4nrguZ1OHBX4Btm9mHgP4nviQuJ74d9iAD05sS+vzcxzR6MuR+J8+Wt+p5jwPFmdkvipsd3iPPl\nsPPimbm791S5+8k5X8P9WLwvDgb+08w+SgSKXwEuIN7/w4G7AY8jjq1h300vdPdvTbu+G8CBe+Tl\nKjP7FHAGMazme8Sx8CtizPU1iM/THYkpvIYlS/0Zo4ediYjsNRRo7zyDd+mbL8CDiOy9K2Xw7X/O\nYFnvZpWZd/MFzREsnf7DgSOAv83LqLo0mguZbwMPWU0d1sGpRFfi5kK6qecxeRnFiXmBz1/Pyq2z\nsRM6ufuCmT0Z+BDR06L/gvY65JtAy2ynuSi/igjO777ayi4zLvvrrDIBkrtfZGYPJwKr5vUYcRy/\nieHZh2UC7n6pmd0Z+AgR2A22xB6Xl7GKY/g5bZx6nJGD7VPoJXZqyttNjN9/+DLbNGKYy4MZPmvC\nJCbqhu7uX8jB9r8Q482bc2pT3v3yMu3tv5244bYfi9+LW9ELwEdt5wCGz2AxuN4kHk30nDiWxfsC\nekHnStvsPy7fuoYbwNMcWjDp/mieN0vcULn3mM8Z3BdXAI9092GJ8ERE9irqOr5zXEhkVK1ZfPHU\nv/gYS//65McuBp7s7g+bpHXB3Z8NPJ9osejfRlP+OHVx4OPAHXPXv03j7r8iWjWq/NA4+3dc0xzH\n2b+fp1ne2GW6+2nAnxL7atixtdJ7fxlwv4Exj2Ntv29c9rUGtv1r4I8nyQrs7p+jN792U49mvPZG\ndxmd9vs7aR3WRZ5z/Q7ETYzmvLaac9mo8wgM720yqh6nEi3sl48ob9hnvfn75cAD8jh/+v7W/3M1\n1vSeu/u/A3ciun2P81pGvbbVbPNioot6890x7fPlRPskD3+6C9FTZrX7on+bFfASd3/Sausw8Bqm\nZdLyVnssDNtnPwfuup3GqIuIrIUC7R3C3X/s7rclukw+hbh4uIjRF4DDFgbWPxv4S+DG7r6mDLXu\n/iqiBeq/GP4lPWxp1jsPeJK73zMHuZvO3T9EZND+PuPt37GKHShrzdWcYpkTXwy7+5uI1qGfMd57\n32zvE8Cx7v7JEfVYySuAWw88p2b8cdmj/A1x02ewLhs5v/ZagpP1qMP6bMD9Knd/GvE+fpRewA0r\nnz8Gz2nnA68BfsfdP7HKeryPaFk/jcWve7ntnZa3dVp/UUy+36bynrv76UTr+l8TXYLHPR/31+Fn\nRK+eYdP4Ddvme4lu1/87UPdpnS8n2h/ufoW7P5Bo3f4x4++LZr0vAbdz9xevdtvTeg1jlLmSZxFD\nChYY770Zth/2AK8FbuLuZ0zhNYiIbAsWU8HKTmVmNyGSQB0B3JgYi30tYizjPkS33N8QrXw/B75F\nJK/5cs5Wux51Oprogn5XYgzmsKRoFwBfIObj/sBa5yQ1s1OI7vMNBx6bW83WxMzuCNyLGA96Y6KL\n5L7EuL5+DlzX3bdz1/GJ5YzRjybGt96OpfPpOjHe9pPAOwYv2MxsWHfhr7j719anxluTmR1KjBft\n5+5+5mbUZyOZ2fWBPyLOHcewOIt8v3niWDqHCIY+Na3zWc5Y/jBijOqNiTGrFRG0fpc4b71nO4zV\nzUkJH0h0Gb8tw6eqgnht3yFulH4M+LxPeHGRhwTckzhf3ojIETLqfHmgu6/UdXwqcvb1+xLH1x2I\n4S2DauI9/jTwb+7+5Y2o20bISdBuRxwHtybGXl+H4Q02TtyY+DoxvOO96iouIjuRAm3Z0nL33usS\nwWki5l4+T1/ae7d8UXsQESiVRBfbn7n7/KZWTLYVM7s6kZxuN3Hx/5u8XDRpILiT5cD7MCLwbfbn\npRsV7G4lZrYPcUNrHyLA/jVxjlrTTd/tJN8cPZi4Mb+buDF/GXCJkj+KiCjQFhEREREREZkqjdEW\nERERERERmSIF2iIiIiIiIiJTpEBbREREREREZIoUaIuIiIiIiIhMkQJtERERERERkSlSoC0iIiIi\nIiIyRQq0RURERERERKZIgbaIiIiIiIjIFCnQFhEREREREZkiBdoiIiIiIiIiU6RAW0RERERERGSK\nFGiLiIiIiIiITJECbREREREREZEpUqAtIiIiIiIiMkUKtEVERERERESmSIG2iIiIiIiIyBQp0BYR\nERERERGZIgXaIiIiIiIiIlOkQFtERERERERkihRoi4iIiIiIiEyRAm0RERERERGRKVKgLSIiIiIi\nIjJFCrRFREREREREpkiBtoiIiIiIiMgUKdAWERERERERmSIF2iIiIiIiIiJTpEBbREREREREZIoU\naIuIiIiIiIhMkQJtERERERERkSlSoC0iIiIiIiIyRQq0RURERERERKZIgbaIiIiIiIjIFCnQFhER\nEREREZkiBdoiIiIiIiIiU6RAW0RERERERGSKFGiLiIiIiIiITJECbREREREREZEpUqAtIiIiIiIi\nMkUKtEVERERERESmSIH2BjKzOi/VFMs8pa/cR0+r3AnrckJfXV60mXURERERERHZLAq0N55vs3In\nsZXqIiIiIiIisqEUaG882+wKiIiIiIiIyPpRoL13cNSKLCIiIiIisiWUm10BWRt3fxzwuM2uh4iI\niIiIiAS1aIuIiIiIiIhMkQJtERERERERkSlSoL3JzOxYMzvZzL5rZpeb2SVmdrqZ/bmZXW2M5684\nvdewabfMbM7MnmBmHzOzn5jZfP77kSPKuLOZ/YuZ/djM9pjZ+Wb2X2b2VDPbtba9ICIiIiIisvfQ\nGO1NZGYnAi8kbng0ycx2Acfl5Wlm9sfu/pUxihsnGZrn7R4BvBf47YHnLinDzArgLSweB+7AQcDB\nwO1zPR84xvZFRERERET2egq0N14T7D4deFH+9/eB04EF4BbAsXndw4DTzOz33P2bU9r+/sBHgesA\ne4AvAD8B9gVuM2T9fwYeSi8I/xXwGeAS4LrAnYCbAh8BPjilOoqIiIiIiGxbCrQ3z/8jAt0nuPs7\n+/9gZrcF3gUcDlwdeIeZHePu1RS2+xSgAN4DPM3dLxnYdtH3+6NYHGT/PfB8d5/vW+cg4FTgrsCf\nTKF+IiIiIiIi25rGaG8OA1rAYwaDbAB3/zJwD2A+r3sL4FFT2nYBfMzdHzoYZOdtVwBmZsBf0wuy\nT3H3Z/YH2Xn9C4H7At/Mr0lERERERGRHU6C9ORz4vLu/d+QK7ucA/9D30PFT2K7ln88cY927E93L\njWh5f+6oFd39KuA5ed1xxoqLiIiIiIjstRRob553jLHOP+WfBhw3hezeDnzT3b83xrp37nvOR9z9\n0mULdv8kcB69YF5ERERERGRHUqC98ZpA9Msrreju3wIuz/8sgKFTb63SV8dc76i+31esa3b6Kusi\nIiIiIiKy11GgvXl+OuZ65/b9fsAUtnvRmOv1b2vcuo67noiIiIiIyF5LgfbmuXLM9a7o+/1qU9ju\nnjHX27fv90nqKiIiIiIisiMp0N48u8dcb5++33+zHhUZ4fK+3yepq4iIiIiIyI6kQHvzXHfM9Q7r\n+/3i9ajICP1dzMet63XWoyIiIiIiIiLbiQLtjddMf3WblVY0s5vT6y5eAd9Yr0oN8fW+31esa3br\n9aiIiIiIiIjIdqJAe/M8cox1HpN/OnCmu487vnoaPpN/GnAvM7vGciub2V2Bw9E82iIiIiIissMp\n0N4cBtzJzB44cgWzmwJPoxe4nrwRFevzceBn+ffdwCtHrWhms8Crm3+uc71ERERERES2NAXam8OB\nBeCfzeyhg380s9sCHwVmicD1bODUDa2gew38VVMl4Alm9nc5qO6v68HAh4k5vuc3so4iIiIiIiJb\nkQLtzfM8YBfwr2b2XTN7h5m91cxOB75IJBYzItP4Y9y9s9EVdPd3AO8mbgwY8H+B883svWb2ZjP7\nCPAj4K7A/wInbXQdRUREREREtppysyuwAxng7v73ZrY/8ALghsCN+tZpuoufBzzY3f97g+vY7xHE\nPNrNePFrAv1d3h04Jz/2sI2tmoiIiIiIyNajFu2N5X0L7n4C8LvAKcD3gSuAXwFfBf4SuJm7f2UV\n5a60zuor7F65++OJVut3EeO254GfA18AngHcyt2/t5btiIiIiIiI7C3MXXGRiIiIiIiIyLSoRVtE\nRERERERkihRoi4iIiIiIiEyRAm0RERERERGRKVKgLSIiIiIiIjJFCrRFREREREREpkiBtoiIiIiI\niMgUKdAWERERERERmSIF2iIiIiIiIiJTpEBbREREREREZIoUaIuIiIiIiIhMkQJtERERERERkSlS\noC0iIiIiIiIyReVmV0BERGS7M7MrgFmgBn6xydURERHZmx1INBjPu/s+m12ZUczdN7sOW8KRjzs8\ndkQNuEENyRJFWVK2WhRliRlY9xk1Xld4XUFdkQzKZBTJsATgOE2R3l2qTsXCQof2Qod2u8LMMLPY\nVkrMlAWtoqQsEp2qpqpqOnVNVTt17VTu4DA7UzLbKpltFZRFgaWCVCTAWOh0mG+3WWi36XQqOp0o\np64dw8AShtFqtZhptZhttZiZmWF2dra7tDtt2gsLLLTnqaoKS6lbV8dxj1fU6XSYv2qe+fl5FuYX\n6CzUVO2aTrsGN1KZKPKy766SfXaX7LOrRZHIrynqNl85852ahcqpHVLK+yUZyYyCRDLDHSp3qrqm\nOXTPfPvPDBGRTWRmHaDY7HqIiIjsIJW7b9mG4y1bsY1WdWoAvAYqoAbzmroFdQVl6ViyCLYNwMEr\n3GvwGjdwN2oHqyFuYHjvP4uAu6prandyvIw5gNG93ZF/MTfMoz7eiZ9182936hSLF06doOg+MeqY\nki1aKs9VBsziFkAT/jf/r3344u6Ye74hEHV1M5wouyhSd/HS8doo6giKLcWLdJyaeA21x+t27/27\n2R/9933ixobl3RJ1ronXH8/VTSIR2TLibG7GoYceutl1EZExLCwscNFFF3HAAQcwMzOz2dURkTGd\nf/75OdZiSwcDCrSzTqcCclDbAe84VhtFyylKpyprUmFYMlKKANK9JkK/OoJbnI7lQLYJtD2CbCyO\nhNqdKrfaRoBtvVbyHAxbnYP5yqCK+tQ1eG7VdicC7SL+ndy7R5kZuY5GURbUTZDcF8XG2tYXaOeg\nmprKKyqvqOvmZ/wtWsKj7LwljEQqorW6rBNep+5rwKGuPTp1GHgOtn0gwK6dRQF43X1H4o6GJcs3\nI5oA26k9B+1b+7MlIjvLL4ED999/f84999zNrouIjOFrX/saxxxzDB/96Ec5+uijN7s6IjKmAw88\nkIsuugjiu3fLUqCdddq5Rbvj1AuOLzheQdGqKcqaolWQCouljGA7R69gHm3Szc8cYJMDwybYxCwC\nxboXaEMT/3ov0M4LNXhlEfhXEWx3A+3CqcumrAi2yQG9mUUAjFPVCfMaqy1a6+lGrbjlIJuKmqLb\ngh3Bdh3duusar2tSirx5llvMnQRWU5Coi0RZFnhddJulvfboGWDRE79p2a+J+pJb//uX2GUe+ym3\nZptZd382rdjdgF2BtoiIiIiIbEEKtLO6yuOpOzX1glPP1xHcVhHQVp2aoowgu6gi4CaBpRzgNh2b\n+1qym5+WrBtoQ3cVmkDbAKutu4oBycE6YG2HDtBxvIoAtu4LtKvKSfkxd88t2rm92fONgTrGjVtB\nLxDuBr85uK4rOnWHVCVSJ1FVHaq6ymOxowXcLJFSQa89udfK3XQhrwsn5SVay0O05sfSdGOvFgXa\n+XXVsUNSE6Dn5u/mZ+0ePftzq7aIiIiIiMhWo0A763aI7rbI1ngnh6LdKNHwvKSC6EpeNN2p60Xj\nsvtC6NxibU2cHX/rBtRGqmO7RU0E8Sm6oRdtp1hwyrZHS3sVC+54iqC2KiElJ6UIvK0bGHsOgom6\nulFEUzQeEWxumXbqqqLTtB67x7js2qmrGvfcRTwVpFRSpBaVd7qt3Z38s+n27bk7fDfi98Wt0VXt\ndGrvdqOPIDtat6sqbhz0t+7H/s7J13LAXedx4rVSoInIFnPxxRdz+OGHb3Y1ZC9w8MEHc9ZZZ212\nNUREZEIKtDPzHLXlAcNeRaDZNMV6nbpBtleGl+Bl6rYa97o35/bf3IU7R7MYvURfloNuA1IdrddF\nBYUbBZG2NjkRaLeduu3UnRyEdnKwWThV4XRauQW5dIraSU3asNz/vAm0C7dIYBbRcATQuRU8Ep51\nIsiuKjpVByPlfRJBtllJspKUWtSV496hqmqqqooAufYImMnbsaYmkR28xqnryBjeqev4e9MN3qGq\no/dA1Wm6tse+r5PFTY+cNb3bFT11s9KJyBZhZicAJwDu7hNl4DazzwJ3BD7r7neZYvWW2+aa691w\nd84777zpVExERES2LQXa2aIW7Rz5eaeOzN61kSrHi9zCWkTAjTtGojsyuz/QTim6VDetyBABt1kz\nlDonUMst2bk1u6gheXQHTx2naOdx452a1K6xTm5tLpyqdNKC0ymhqHKSMO9NKxZdyOMmQipzJvC6\nyVxOzq7uVHWFUVPXVbfreJFbr8tUYFaQrK9Fu65wt2idruqcMK1phI7gPPeHB8/TgdXRVbyqnU4e\nw910oXeiy3hVkwNtxz3hXpOMKL+KseKeE6RRpDyNmojsZfaC5AuHbXYFZFu7ADQ4SkRk21OgnbXK\n2BWpZVgVMWJKVZ7Sy7rjkFNpWGEUhZFaiaI0ijJFkNtkBQeSGZYSKSXcmpZY7wbZiWi9LjFaZrQw\nWpYoU6JVx88iGUWqaCfHLQJUq4hW7fmKujQ6ecqxZE4qAGsm7OpN2dWbK92ajGN4RYz5riLRGh43\nB1IRic9Sq6QoC2ZmZplpzeafM8zMzFJ5B18wOp2adrvpRp4zlOeW9yZJW288evxsWq89R9ies6l3\nOk6n7VTtyCVeeA7SC+t2mfeaPC8YGLX6jovsvfrPHNuMAco6LmtxOKBeESIi250C7axsRW/B5GDu\nJKAurTsvNZYD7SJ1s49HcrQItqP7dI1VEVxaYRGw5kC7aWfO7b0UDgXGDIkZCmYtMWMFpRmlJQo3\nOt6sF13Z29TRst6uqecNUhUJ0Igx2qkELyJZmVtN3cxf3dfKDRHYxhjs6JJed2L8eSrq6CKfHEoo\nU8nszCxzs7tptWa6y0JnATCqqmah3RuvXddVN4GcV81UXrl1nd6Vc+3ea1nP63faTqdd02l7r3sB\n0U28rmP9uvJuQeZ5R4rIXsXd77zZdRARERFZKwXaWasVu6LGSAZVMupObxywGb1AO/WC7ZRbty3V\nWIfoFu3eDbKLIvVmq/aYvTq5dYPtFok5CnZZi5mUKEiUGIUbCx6Bf3KnSjWlEy3aC05tudW6jm7a\nVoK1gDJav+tUR4CfW9PJ02XVHmOd66qmyl3Sq3ZkMkt1ItU1qYj5sIuiZHZmjl27dlOWLVrlDGWr\nxZ75K4EULdoLnRxkR7DdtFJ3+5LTJFiP/dhkHTfPAXknuou3c5Ddadc50E7d8dhN4N4E2taL2Dfs\n+BARERERERmXAu2sKKN5tDAoCsPLhNcl3SRn5EA7B9ARbDdZvQ06OcN4Tv7VXbdIuenWukFiiUWX\ncRKz1mKuaLHbZpihoMgt2gkoUqJMRpGg03FaqaKgE0OfOzlzd11hBVQzRjVrWMvwIprCvWhak63X\nSuwWSc6afGkkihyIFymRioKiTMy0Wrk1e4652bl4PJWklDAiE3jVqWi3q26QHWO9I8ka+WeTFK67\n+Zx9HCe6mXci2VunHVOo1VVMh1a7k/qatpsx7t05x0Et2iKylVSbXQERWZ1DDjmEE044gUMOOWSz\nqyIiq1AU3bylW/q7V4F2llLzM5FaBYlWtLp6k+yrjoDRIsi2lOembvqCp5j82c2iRdtSHqcdga15\npE1LnpjxRMsLZijYlWbYzSy7mWHWSgqzGJttULYLFtqJtJBod6DVqinLilRU0WCcu2fX8041X1PN\n19iMYS16idhSL1jNudFzF3anLFIkbSsThSXKVknRKihbBfvuczX22b2bXbtmmZkpaW4iVFVNp+rQ\n6XTodGo67bx/6oqqrvNuiG1bd6E7zh3rH5ddUy1Ei3rVqfLUZfl9sNxjoEw0EXZuvF/UtVxEti4z\n2w94FvAg4HrAAvAN4C3u/s4Rz/ksI7KOm9n1gB/lfz7W3d9hZg8EngjcEjgQ+PyQ5x0G/CVwD+BQ\n4JfAWcDr3f1TU3ip0M1epROUyHZxyCGHcOKJJ252NURklfoC7S2dOVKBdta8X2UqaJUFrSJalztV\nRVV16NQVMRd2BNDdlOFN1+xOM62VUdeOkYNN8lRaGO7RJbxFyayXzNFil82ym1n2sTlmU0HRJFpL\nRrFQUMxHUL/QcWZmOpRlQZFifuoqj7G2sqZeaALtRGGGlZGMrX8GrCbA7mY7LwrKVFJai1bZojVT\n5qXF7t37sHv3bnbNzdFqtehUFZ0qt153OnQ6FZ12RdXuS4RWV1DkgDr19lWTSK65/qw9xl1XnTwu\ne77K47Bzt3t6zykKwzxBM7UXdLvCi8jWZWbXBz4J/B96ic12A3cC7mRm9wce7u6DX5LjJEKLWRTN\n3gE8crn1zewOwIeAq/etdzBwH+C+ZnbiWC9IREREZBUUaGcxFzaUrcTcTIu5mRnKItHudGh32rQ7\nbSLQ7k1f5eQx0NBrzTbDqsXZxWParxhwXHokP5ujxRwz7Eqz7E672J3mmC1KyibJWkE34CbBfLum\n1WpTFm2KlKg7NVTE/NLzUM3XpPkam62xsohx4BZBenPZ2nSBb5Yilcy2ZrvLzGyLmbkWM7MzzM3t\nYm4uWrRTKvEFp1N1qKp2LJ0OnXZFp9MLsr2uo+W+MLDUC+oTFEWK/UPuPl55tI63K9oLVbd+5O7m\nyeI5RRlBtifDUx6fbdDcNhCRLetdRCv2ScD7gMuAI4HnAzcG/phIrfzsIc8d58P9Z7m8zwFvAr4H\nXAO4frcQs+sQQfbViO5lbx6oy58DJxKt2yIiIiJTo0A7a67qCkvR0luWtMqCbuN1bqmuvZc1m5Rb\nqnPX6KKIVuvUN41XM145nuARaHuLFq34aS2KVOSu5imPZ27GNBd5KYESs5JUFKSiiFmu6praLbKc\nV2AdhwWnmDOMgiK1YsqvJog1SNQUJCqrmS1nmJuZY641x9zsLDOzM7HMzTDTmqFVlpgZdV3Rbi8w\nP7+HK/fs4aqrrqLdbue5rcnTbcUrLlIEx2UZP4uiyJnai0iERp5hDJoB1/kNaMaTdweP00yy3SSi\nIydpo8lRZwq0RbYoA44FHubu7+57/Gtm9h7gC0RX72eY2Vvd/ZwJtnEL4O3u/vhl1nkNvZbsRyxT\nl2Mn2L6IiIjISAq0s5SDtpQSZZFolQUzrRYpB9HJjE5V06nqCDDdI7FYHoecLFpdyzLhdQ603XPA\n7NH9GaflBS1vMeMzzDBDi5LSSgoreoG2xYBxWxRoF1gqSKkklWW08lqiporRCR2HNlgb6ioC7bIo\nSYXlunqeYzvhOGWqmW3NMjc7y66c8Gx2LoLt2bmZ2E4qMKCqK9qdBa6av4orrryCq67aw8LCAlVV\nLx6VmKdAK4tEWRaUZSKVRQTbKdFpphVr5vJe1L4erd9unuPnXhBuuVyKSI/W3PwwBdoiW5UDHxoI\nbOMP7leY2ZOA04lRLE8BnrHK8g24FHj6yBXMDgLuv4q6iIiIiEyNAu2sCbSLZBSpoFWWuUW3F2hD\nh7omgkT3yN4dI4pJKZpazTy6OOM50O7vRk4kQfMZZuoWLW9R0qKgIJFiTHMuL1qIC/ASvMIsWrSt\nadFOFY5RORHsVkDbsbbjVa9Fu0hNoF1DM91XioB3dmaGublZds3tYtfcrl6gPTsL5Bm63HOLdpur\nrtrDlVdezp6r9uQW7ao3T3ZOetZMadYqI6laKiLYTilFN/dOjdWLA+zefF25F0A32IYmACcZRc5D\nbinnnksKtEW2sLeP+oO7n2lm3wZuBvz+BGU3wfMVy6xzZ+JOpa+iLiIiIiJToUA7S91W5DxNV3cq\nqaZFNWcbtzqPM85BnpMD7giyC/Jcz93AMSdGy2UXXlDWJSUlZV1QYBR5vmyrHScCaK+hrvKc1244\nBakoYz7r1gztyinKmtSOebq9jsRoVdupK6CKehmJZHVEp96XY8gi63iRLDKuN2PO802EOgfYVV2z\n0F6g3Z5nYWGe+YV52p02VdXptdxbk4HdKIuCsixotZpAu6AoElYU8dqaRGjdzOSDPcD7u4333oSm\nq3hKOSN5U28R2arOXOHvZxDB7Y3NrHT3zirL/+YKf7/FBHWZgppIfr6SpseSyKALNrsCIiKb4oIL\nLuCCC1Y+By4sLGxAbdZOgXaWmkmZ3airmnY7rvlqr3MSMesumEW3ZzeoY8y2WQ6mLc+XnTuNW/49\nQt4ItBMFyVNfkO2kutOdn7pjNU5k5K6qmqp23IxUlLRmZpibczq10+5UFGUbLPpve+3U7RrP81F7\n1UTw5C7wUSFLUfeE43VFp1rA2oZTUdUdOlWnG2y718wvLDC/MB8BdzfIjhZys0jclpJhRSSTi273\nBWWr7I7PTr00/BE/V44XRl0YVeqbJ5tewF/XNXXV7L9ed/FoNbduLwQR2ZJ+scLfL8w/DbgmcNEq\ny790hb9fa4K6TMlqX4qIiIi8+c1v5sUvfvFmV2NqFGhnTYs2DlVd0+50qJtuy+T5n8mZxZuAu2kg\ntvioyAcAACAASURBVNzdOVl3Hmn6nhetyrl1uU4UXlDUKTqMO6S6JtXNuOWKyisqajodo1NBlVvM\nU1HSas0yO2ssdCoW2m3KhZRboSN4rTs1dcdzsF3n6ba8Wy/L01JbTYwr94pOp43jVF5RVB0W2u3Y\nFXkc9cLCAvPzV9FuL9DptGM6r5wFrUlU1mRKb7UiyG7lZHKpKEhljC9verB7DXVRUxWp2zLtnod7\n54jb3SPZW0137DrNePiUg211HRfZylaaomutqlWsu9516TIz9t9//xXXK4qifx5QkSUOPvjgza6C\niMiGevKTn8z97ne/Fde7xz3uwUUXbf2b2gq0s6YFOqaeqmnToarraJFNiVQkcmjZDbjp6z4eGcih\nyPNn96Urz23ZOdCmINU5y3g33ZmTvMbqmto7uDfBbJNtPMY6t1qJOQpIJZ2qEwnKFgq8qqkgWr77\ngmzvOF7W3db2wpopqHNXbyLQrmqn7lR0qg4pxfZ6U2hBu9PutmZ3qk5M5ZWnvrUUU6MVhVG0Eq2y\n16LdakWWdCsK0kCgXRU1VVHRKWI6sGggz9nc8xsRwbbjuVW+STxnZpEd3tR3XGQLO4iYvmu5v0Oc\naFZqnZ5Ef5nj1mXNDj30UM4999xpFSciIrJjHHLIIRxyyCErrjczM7MBtVk7BdpZVUdXcSfhJGpP\n0b3bo+tzAb3EXymR3BbNQpVSHnOcYvHu9FPWGxrtNV4bVkdLdmmxtAxmUsw3XeJUwAzGXDFDlXZR\npd20PdFu1yx0aq5a6LBrtqTVMpJV7FmYZ6GuWKhqanNSDd6p6Sy0KVJB0Upg0aqeaLKk0+0C715T\n5/pVdRUjypus3mZUdQf3CqfuZfxOvXsJRbIcYCdmyiKWItFKCcsLKVGmRF0k6qKgVdRUeTx3VUaw\nb7V3ewZYaoLq6C0QXQpydvL8TonIlnYcywe3x+Wf359gfPY4vjVBXURERESmQoF21gTaEWAbdZ1I\nVaIuS8o8F3adx2onSzH2uS/QbrpQp9ziiuVW7xwgujtU0T/a6kThUJjRMqeVYNaiZbtOUJtRJ8Nm\nZmB2X5jZj5oW7cppd5z5doeZllGkGuoFWlcae9pt0kKbNhXJHTo1nYUOZQG1ebQ8p4Jksd1kCTeo\nLLqHe93JWcbzTGAWAXJKRlXV1HXde6HdYDuC3rKAsjBmWomZMi9FQVkUUES3cYpEXRXUyamLaNEu\ny4KySHTKAqudqqpzoE23S3m3F36eDKypoDXJykVkq3oM8IFhfzCz44CbE3fMPrlO2/8M0b08jVkX\nERERkalRoJ11qhjuZ1aT6tzqWyRyjA3JcM+ZyVN0Am8CPvBugB0tsXSbeyMU9Zj3uqpjlq3cbl5i\nlAlm3Jlxp7Q8m1dORlvunqHcvS/F7mtCmqVTQ1XBfLtDYRVeL9Bp/3/23jbUtjXL7/qN8TxzzrX3\nOdUNXdVS1bYEfKE/iCaiQdLxLSZCY7AkMbSJKJrE0CRRBBNQMaHTHdEPopFogoUgSaBjIEHpKCqi\naNP4KUXoEMkHg0qwyxvTrVZXnXPWmvN5xhh+GM9ce9/bdW9Vdd2699yu51fMWvtlvcy9zuHc/Z//\nMf7/16g4es0gNfrpaBt2CFYgtEJVNOI+cl1VsZTYOI7HU/CamyOaaeFaykg+zyqve0r4s+n4UuQ9\nbnY62rUooQpFCS3UErgXfIyO3/u2LV873/9U0PrM0X4+xv6ufu1v+9+KyWTyS0SAz4vIb4mIP/eu\nb4i8AP7j8akDX/h2nEBE/HUR+UngN3+dc/kC97SNyWQymUwmkw+HKbQHd/kWgTN+4/J4ChqLp6Zn\nQZ79ShZf41e0MTL+rEX7qe5rPMdwlRWnDNG9qAx7WJBFWB8fWV++ZH353YRe6OZ0c5aj8er1Iy8f\nH3j1cOE4Do5u1L1ldro5fgjt2qkiuCpRI/+05dkPe56zjFx0zfOJSCf7mcp9FkKW+9hRcu5dEZai\nLEVYi7AUoQxH+iwQzwRzz8qwkWSeQWp5MaNWvSeKm2WauRYZzvZ5qs+rwGK889PSnkzeUgL4IvCf\nicg/Avw54CvA3w38a8APjPv8RxHxv7zP4z8Mfh/wjwGf+hrn8iuBfx3428e5zvHxyWQymUwmHxpT\naA/iSXXm/0eGnUWcYvMeI/ZMMj/9LngK8TjXid/3lYZTS85F6xC5KpEO8qJoFXQtbA8v2B4/xfby\nuwldOVqntU4gXLaVbVu5XDbW68KyHxTNvfFogd0MCDqKlUIsQSwQEoTECHbjnuSdAWOR4+UaiIzm\nb1FCfPSIZ3BZcYUaSAQFWKqMnWyhjCoxxki6h+OAe04NnId5VpiJykjeFUbueNaGKUgZu+A8XRM4\nZ8ljyuzJ5G3nh4H/AfjdwO95z/eCFLy/730e+6G4yxHx10Tk88BPkmL797znXAL4sfF6U2hPJpPJ\nZDL50JhCe+Dj9zodKjnuY99DPD+Xe2d/c5wBXePTOPeIz3TyfB65i/Tnqd8pYnO3O0fPSxXqUiir\nUreVy8Mjlxcvubz8LkJWyrGj+45H3EX25ZKCe3mzU0SRAO+B7zkCvohii+Nb7oiHQmjgxD2wTXTU\nm43zLnni42cRXPL7Z3+1uKAhlFCKkCK7CKsqdexWI0FIimwLsAi6G+aWt2Ew9tpr1efXMvIN1CG2\nR+Lc815y5Kwwn1J7MnkLyWuOKXL/XuD3A78J+BVAA/4S8IWI+DNf7zl+Cd/7xXeO+CkR+TuBfwP4\nx4HPkYnkfwH4DyPivxeRH/1mn3cymUwmk8nkg5hC+072mZ5T4PcqqiE4I4aufpe/erqqwZmH/eRo\nx11syxDqMsRqBo0VRCtBxzCa5254RIFQJAqiG3V95PLwktAVNJ1fM2NdV9Z1ZVs3tmVhXbK3uqrS\nI4iWVV++OL47fjje7gXa4E6IEvrUT82ziwLhgA8xG+8eH5eS+97nu7YUebebffZgx6gdi6CH0j0r\nxLplddp5jUKGs5/nwz3dHIl7bRrnu/4ukT1/J55M3iYi4sdIh/j8/BeAPziOb/Q5ft0HfO+vcf5j\n/c2d15eAf+kDvv+u855MJpPJZDL5VplCe1BkvBVjITvcU9BZOsNWjJCA0Kfd61E3dcrtZ8PPKdIZ\nlVgxAshKpcpClQtFL6hs7IfTducr+40SQVkqdVlYNuMztcHL4EEWSlnR2im1U2ql1oVaK7VWlmXl\nsl148dAxg+6d5kaLzuqCtsCvnUNBrVIiMClDuGb1V5yOdl5NwDy7uM0cs04zw93HmLsgpSAoBdLF\nHpMAbo5LRv2GCkZgZPDauWPezbDu907t8Hzc+ZoIRBmp7u9Zgffzj4iYjvZkMplMJpPJZDJ5K5lC\ne3AK7QgnwnAXnFE55QJuz7YGdbix94LspwC18eXnIWqIoJoie9H1XUL7dj3Yr8btKzeid0qpaF1Y\nN4MXBw+fhu+RhaWuqDVKbdRan8R2WViXjcul86KlS3y0RmsHRwN10MOxa+eQoBCYBqVyD2QTJUfF\nnXvFV+9B70bvDTMjouMRI4BdKZp1ZIURfgbggQuEZfBZaL6HLoGj2PMd7ZHAHvYktMMdt8gnG+Fo\nMTz2U2xL5G54fn5e1phMJpPJZDKZTCaTt4cptAen0HYM86zj8ojR7xyZ5nVf0R573MTd1VZ4JvtS\nZLsH4UHUikqh1oWlXKiyUfSCyMbur/jy1fjyl68ctwMtC0Ury+o8fLrxPTuYVOSZ0H4usmtdWJeV\nh82wnmPe++3GEVB6ildaYGJ4OEWgVPBVRsBZ3OvMfPyY7tC7j/C1hllHZHRcjx7uKmNcnCF+x3vh\nnj6+ObhKTgWMce/uPsbHh9C2J6Ed7oTlJAGRCehRniLnzs7ss0t79vBMJpPJZDKZTCaTt5UptE98\nBJ+Z4JZCM3DCcp9ZYki+iOGkylNQ1z0JG3zEj4efMeRQUBatPNSNx3rhQR/GceH1ekHKislKwxEv\naCje4TDoo2IMHBUomp3Vl23lxYtHvuu7vhvVwuVy4fHhgev1xpvXr7m+LlwrNG90yd1oP5w4FN8V\nFs9ReB21X5HVWudYd++N1jq9G+42KrvSzRbJUXEVRca5hUOPwDzoEnTJ0XHGERr3ULnc9dZ7eFy+\nb/n+jusWRIC45HPEeA8iMg0tMq18qu3JZDKZTCaTyWTyNjKF9sB7qjY3MAt6DxzPTuuQDP+KQOLc\nDNYUnqNbOjjrrJ52i8lKaKooW1lSaC8XXpQHHksK7cv6wLI+oMsFafm8HopR8Bij12GAI+IUhaUo\nD5eNly9fYtZZ15Vj39n3G7fbjVdfqXx1FV6V4Lpf2fvBrXVaczic2B1fPOfKC8QioNDcaa3TjhFY\n1jtmHeJpNzvVrfJUap0BcB5GWEYKd4JOjo5LEfTek83o4S4IuQMf9pTU7pKOfIzMNs7087PP3Mcb\nK+P9lam0J5PJZDKZTCaTydvHFNqDsCG0O1jP4C7HEBfElTLGo2MsMYt4WrySYpJwfIyb4zHEudwd\n7VUrD2XjxfLAY73woj5wKQ9s2yPL+kBZLlBjjFELnYIhuescBhjKqLyqysO2YS9fICI8PDzQ204/\ndvb9ypdXYS1BoVFeO/LG6Af0ZrCUFNk3J0oQS4CnWdzM2VtnPw7cDPdOuCHEcKCz/zt7tzUrysaI\nvIdgw9VuEbTIdHNFKRoUBZAhtDVTxi3GaPkYsb+PBYxZ8zF3Hn6OtPuTzs+nm0wmk8lkMplMJpO3\njim0B9Zyw9pGIFe4p0d97ln7034w7lnVNbq8ZAyTRwTuTnhQQggUCaFIYSsLj8uFl+sDj+sjj8sL\nHuoDLx5f8PDwgu3hBYfJSDkHkYKWOurAcjdai5ARZAuXhwuoUpaVdtzox41+XNlvheg71q60faO3\nnWPX7Ma2IFo62qEG1WF16I6L3N3sY2+435enUU2hG3q+W2clmHLmrjuODbFtQe65B1ACHY501nYr\npUDI6PEezysuiKWw9ghACR+TAqeY97NTmymyJ5PJZDKZTCaTyVvLFNqD49iBDEOLsAz9UqHcq6uG\nsnPuI8wpwH10bp9VWDb2iQsZknYK7ZUX6wOfenjBi8tLXmwvedweeX3beX298fq6U8pC7471QER4\nfHxg3RZqVUpVVBekKiwV6kJZO8ulcdzesF+FXTrehVqEqqOze/R23wuoLYjDCTGsdKIUvDS8G31v\ntL3Rjpbj4kK6+MNpjjHWfXaJh+RIeKgTqoSOBWsfu9TvXaOWsxNb0KJIGQ55CF0MU6OXDErrEfRw\nrDsew3LPh957v0WZTCaTyWQymUwmk7eOKbQHrR35geTuskrk/vUQhzIc7aztSis217YVH2nb7tkT\njcc9MCzgLrQf1wdeXl7w8vElL198iheXF7y63nj95sarNzuqld6M3o0I4fHhwjaEdq2KokgsOcq9\nGIs7Fzf2N4UiHbEb/aYsVXM8+37+p6CF6MN/dkA7URSqYqb0veVxtJzQHvvn5GT8CHlLBzpECR3d\n26rpUKvneyMy1qflLrjHZ3cnXEQoUilaUFEWNaxkX/nROrSONce735vKAxlPdwaqTVt7MplMJpPJ\nZDKZvH1MoT04HW0tWX9VFsYuMU+O9pmIPUaY3cdYtDvu6WabGXjkDrIoIVApbPXJ0f7Ui5d86lOf\n4sWLT/H6uvPmuvP6mkK7HZ3WOuHw+PhwF9qlFoooOo5RLgYEtyqI7cTxiqOmo13KWd917lTnzxAd\ncCd6utAUJapiJrQj3ex+NERT3AsKovck8DM5PO4iWkYcuY+Px3v1iwT2s48RihaWWqklD1fHi+HV\n0duBebAfHe8+zPi4P9EpsmUK7clkMplMJpPJZPIWMoX2oCzjtkApT2JVNIWtoPc9bM5aqlE7FQHe\nHWtO2w0s0FIoCqKChlKoLGVhrStLXSilUkph3VYeHh54+fIl4XAcLXekzdm2hWWpKfhL1mmdDnCK\neyPccmccRkBZRaRA6F0YxxDGZ/v0fef8MHzvRBGsCW6dGBcKIgyLIMyhOCoLVdP9Pp/LydFxRwjJ\nKi7VwlqUhZphaEXRWtCiI9ht7GuLPJ2f5/RAWRakACJYZCCduZP/CwwfLnteQChlzo5PJpPJZDKZ\nTCaTt48ptAf1LrTHjnPJdGzuO846+pyf72jLcLXJveLDaLcOHWp1omZCuHqhSmUpK0tdqXWh1oqW\nwrKuXB4uvHzxAgL2285eD3oztm1lHUK76BDZpaBS8N4Qj7vQhsiANi15rggRgg8H+hzjPi8MRATe\nDL9lhVhfBI9OjAjyIHBxHKAWSlG81uHsK4GSpV+kyB7udtGSe+3DcZai9y5tH8LZ3Dm97YhMaq9a\nqKVQtYAq3YLWjW6Wu9phRICO16glxftkMplMJpPJZDKZvG1MoT2oa94WhUWFOmqo4i6ydbjZds/7\nyjRt7o52P5x2NTBYl0wflxDUnxztpSzUUp8c7WXh4XLh5csXeR61UEqhtZaOdh2OtipalFJKimnv\nOTzuBm5ZLy2KSjrawekYj9uzAzsYXVmBN8foKX6r4GqE5o762Qme/dXOUiuxZsr6k0M+UsdF8/lV\nKLWwLpWllqwEkyHEgS4dzMY0wDg3ByfQRVmWylZXVJTWc1e7NUO85/laPHOz832aTCaTyWQymUwm\nk7eNKbQH6yUd1iLKIiVTu6Xg6LM+67jXTDmOuSBdMOHuZh/XjnSwLevCVIXiSpGSjvQIEDMzWmuY\nGxCo5E54LYWlFojc83a33J1eDrymsFcNvHesd7x33EaHt4OHjNCwdLdrLSxLZV0rrS+5/90CC4ee\nYtrM6VXwJZCVTAQ/He0gk8tLPp+WimgKaycrvJy472trKdS6sK0LWgo+dsl9VKFFSJ4nTkRgYbnf\nXirBGLWvhWWtbJcVc0e7ZvVXFyhCKSXH5GfH12QymUwmk8lkMnkLmUJ78PCY7mihUKRQqQiFwwIz\n6OZ0d8wNGx3b9Hysh9D2FNnH65biOxxKUBahhFACioBE0HuDK7TeefPqNW/eXLndbhz7kYnjHgiC\ndWO/7rz66mvcnGVZWJaVWgvRO9EbdMO60ZrRmnP0TP4upbCulcu2YtaJ6BRxrjfhGmA9HfeIwCww\nS0daUJYquJ5d10GpheWyUC8Ly7ZwtoX5SEiLsbPOEPelVGpdKUNo+3DHnRTcFo73wMNxy1H1ojk2\nXrXiBKUUtsuaLvlRkVagHVk2pnkC7h/P35XJZDKZTCaTyWQy+SCm0B48PKTQViqFSmEBV+wwjpEm\n/l6hfY5Aq5Fu9pvG/rqhXTE1WKH4ENqMPm6c3hrdOnG78fr1lesptI+WdVaesWW9GbfrzquvvsJ6\nZ1tX1m1lWRbEHHFD3end6M1pzWktcqxdC+u68HBZIFaUTpF0oHt39v1pHLt70ItQ1koRpSw1a8A1\nCIWyFNbLyrIt1HXJerBwYhz3BHSRIbQXal0zTXwEmXmkO5477Y5IOtrdOt6Nounm1+GYay1sqpRl\nQZcddgHl6b2/J6BPJpPJZDKZTCaTydvFFNqD7SGDtTQKJRY0FsKUvUNgdDfMPN3Y8KdRcgORoO19\niO1ONcW3HM0uLmgISmaCEVkD1oZD/ubNjeubG7frldbsXiMmKNY6+23ntQreO33b6L2zrQsF0iUn\n3enePV3t4WhrUdZ1wW1FcIo6RYLejX3vqIL0ICzSXXYoBopSS4VFoELUFNr1LrQr5p2w/DkiHOIc\n4j5H1iu1pPOejna+Z+ZO94J6gd6zd7x3eu/UXmm902qnSo6d11VZyXHxGA566z3/HEal2mQymUwm\nk8lkMpm8bUyhPehjDFwJIpwSjhspsL3TveNkLVVRpQDhnp3UFuBQVFiWQq1KXbOHWqsgGiCOR8es\n0cxpPce899vO7bZzve70ZoAgZJXXuhR677jZGO/OfWqzM2E896KfdqZzNFtUqLWyrhvhdmaO4xZs\nm7GujWVRlghcIDRo4+dSF+KIsSudu9mlFkRzT7333Cs363ehLeMVhByZ7240y7C2kJFgPoS2j+kA\n93GxAu473GciubrnzwT3DnB51gkeHvSWI/OTyWQymUwmk8lk8rYxhfbALOeQ49lItFuONnczuvWn\nsK9S7snj5kG0QAJUU2AvFOqiuZ9dQTTGuHUK9t6NozlHM/b9SLF9vdGaZWe3CCqFba30vmCWu8xu\njvXACmjJtG/J4u8RKJ6vIyqUWlm3DYYQFrKKbLs11rWyLMpKjobToYhkwrql0NYq6JZ1YqUWRAQP\np/WOe8c8LwCcndhC1qCZO92M1jt3GT3EtpkNkT5uw/H7WY9gNjc0ChKBQraSqabQLgVphjvZWd6m\n0J5MJpPJZDKZTCZvH1NoD3pPoa0RFE6hzdjNTmGppSCandKC0C1wN6IH8szRXrRQ10JZJB3tEoTY\nk6M9wsv23dj3Z452T6GtozP7aAu99yFM/e5mmwVFBdAU2VruKeApfJVaFyQMjUDHfrhbsK17Cu1V\nMLLjWjS/byKYQz+ATe5j5GUpMJz+boa74dbzZ49ApSCannaOhxtt1HiJBCIpuP25yPan8fvcdX9y\nvYuPHXDS0c7d73xfGI62daft/eP66zKZTCaTyWQymUwm78sU2oNjz1slKAQFI0IwTwEuKncBXEtF\nQgnJCizB8nu1ULcYQlvRRZEieb9wunVab3fB7H7Wcp0uerq/IqCawr0UpdZ00Wut1FopNTu4pSii\ncneM3dN5z4AyEC2/6EDk3mudQna81nDosYBwYjfsprCMGi9y/B0JIlJsh48gtDTUUc3RcXs2Oi6S\njdsQ9NaxkZLunmnjokqRUSk2hPQ5At/d0GBMFNh9L/v+nvlMQ5tMJm8X77zzDt///d//cZ/G5BPI\nZz/7Wb74xS9+3KcxmUwmkw+JKbQH+y1vVaCIUyXjvTxIh3hZqFpZykLVBQkh1HENrDhaoQqgQdVC\nWXM/mwIuQY8cp2690y3Tt8+95ruILwxRXbP7ess+6m1buWwr62Vl21bWdaUUoRZBlBxL93TLez8I\nt9wd9zx/D7AY6eIeNHOOnh9nu1ZKYfwpytuu4JIXB2RTqCAFpObrneP1IqAhlJJBaH4ms4eBB3LG\ng0cGmfWerna4IyI5hi95EaGUchfb5o63DhhHOzhao7WWjx9u96zRnkwmbxvuzpe+9KWP+zQmk8lk\nMpl8zEyhPbgNoV00qBq4Wu4lj97mqkLVhVoWliG0XYNSAlWj1AAFCtSilFWRRaGmo21uHL2z9o6Z\nECGZ1i3kuHhJgVnrENlrZdsW1m1l2xa2y8q2bWyXjWXdUPFnbrHjYfQhtImhruPpQ3smtpsFh+Wt\nnyI7MtDtFMWO4yb4IbAKsgq6Sopu/O6iq2Z1GaKI+3C0c3w8ImA41+FxTxj3buOx6fhryRF1LbkT\nDmP3PTrucRfZR+8062MCINKOn0wmk7eOv/njPoHJJ4p3yP8ATyaTyeSXE1NoD87R8aKBF8dKjm6H\nCpRTaFeKFJSCRAaWZfp3IUZHtURQyzk2TorsM4m7N47WCVciCoy0blWhlIJKUJeSe95LZVlTcK/L\nwrqex8q6LYR3PIxww2Mko1ujW0NG3ZZGCnqPwD3e42rnwRlFFhmWFmMk2zzoLeh7EIugD0q5FDQ0\nLyhIIApecvZc3PGQHF/3jnTBRXO8O1PjcvzbDDeHvK5AGWFrRUuOj4tk2Nm4f+/2JLJPR9tOR3sK\n7clk8ktDRH4F8H+MT/+FiPhTH84zK/CzH85TTb5D+H5gTkFMJpPJLzem0B54ZIJ1pAGLebq1WgtK\nRUUJA8OJaBBkAnd4JneHZPJ4CCpCRFZxtdZpR+PYG/t+sHCAVIQgoo4daaEWJUpQiqJFUAW9V1s9\n3er42MJp7aD3nevtxn7sKUTNKKIUyf3tHC1n7Igb3Z1ufq8Yy0AyUiSPfnAfI+U+OrbDZCxhC1RB\nKkjJr4lk//gZaNa7ESMVXETuol+C4UQ/VXapKEWEcj6H5V629aAdfbx3PXfbbYyde6bBx6gxm0wm\nk2+RGfYwmUwmk8nkQ2cK7YF5Cm2RrJrCUgAvCFUCDU0Bbo55ilGPsS889J7c/wd44GY0OkdrHEdj\nvx2scqAa5Cqywjl+XQtBuuHlFNQKomRXtpxfy1t3p/eD237ltl85jj2D1rohhRTsQ5RD3EPKunm6\n2pa72uaMcLFRD5Zz5JluDhhBdEmTpqbQVjTPf6SWI5J1Zw7hRseR6HnOoxM8LxqMYLkhrovq/Xsp\n9vMqRzuM49a43Q6OvY0QtKek8ruTPXX2ZDKZTCaTyWQyeQuZQnvw5GiP1O3TMZWSorIqYVkr5S2T\nr0ODkOyizgYrQUJR0t21bjRvtKOz7ykaD22Umg52qRnXrSrUqgRDIBd9crMl97hPV/sUzx45in4K\n7SdHu2cNFtyDxYKn6qy72Lag9bw9Lx4Ip4aN+063Oym0i0B1WDTrynwI7LwScHe0s/M7CHMgR+LL\nqEQrKhSFMirMUmTnz+qng+5OPzr79eD2Zud2PUYF2BDZKkhRtOp0tCeTybfC/AdkMplMJpPJt40p\ntAc+KrHCsy/a3VFXvGR6N54ObpFAi+LqWBhG4OaoRGahCZTh5J6/xnlkSFhzo3nuVYsa4kaEEeIg\njkqmd9eaO9p1qZT6VMuVB0CGq+1t57pfuR17hoRFDAd7bF6PPmp7tqNtIxgtV6fPMfEYKegpmUXO\n9yF/bgSiOX44cTPOH1Q8EI/RCBaESF6I6Ib1HB2PCizpaodA5Lx5OtgehNlTZZel2G5Hp7dOPzp2\nZKhaiu3IkfUAR5Dykf4VmUwm30ZE5AeB3w78g8DngAvwN4CfAf4b4Cci4hee3f+zwG8C/lHgVwLf\nR/437eeBLwJ/GvizEfGLRsNF5HnylAB/QkT+xHvu9oci4sc/lB9uMplMJpPJdxxTaA/uQjtSOLsP\nF7VGCu1IsShVkSqEB0c/cDvuQlt0jIFrCm0Z4tgFnKCPUDRxQ91QHTveYQSGSEGLsCyFbV1Za2fX\nvAAAIABJREFUlkopFSnKmNXOc8Xp1tj7wZv9yq3tdOu5M13SJfeIdLDN3z3uPgR07m3LfVz8HBk/\na77iLNoOEAvogR92T1aXKsgYKdeU57gE1gxrjjVL952sLRt+OZz3BdwMbIys+xDrTvZtt4Y3I7qN\n8xvn6Rk4pyPAbTKZfLIRkQvwnwK/dXzpuTD+vnH8RuAzwI+PxyiZHiXvuT+kSP/8OH6niPymiHjz\nnvucj5H3fD6ZTCaTyWTyoTCF9uA0PU531boTomOcOQWgVqWUStWSghyn9UZ0J0pOURfNtHI9XW2E\nkNx17mH0MCQMjU5xxcNwnMBB09Felsq2rSzLQqkla7BUQLMqLHCad/a2p9A+9qzTgrwvZxhbpnzb\ncK3N496r7XexfVaAjS+cnWDjJsPUhehB7HkxQirYKogJWL6WkMFnvTl2GL3lCLtqxWu+tzFENmdY\nnPu4qGH318OD3gxrljVgze8XAsIZf2MDF0dCP+q/JpPJ5ENEcgTnzwO/gfwX6K8Cf5x0pN+QovkH\ngR9+70PJeZv/Efhvgb8M/BzwKeBvBX4X8GvG8/4x0il/zt9FCvj/brzuHwB+8j33+Rvf6s83mUwm\nk8nkO5cptAchpxjkPqp8jlaHpcsdClqEUipEoCiMhO0CuTt83z8eDq6cQtvpOC0MDcND8Rw8JzAQ\nR7RQqg6hnXVedVkotSKao9ceTrhnEndvHO2gWyMiE8ul1rEvnj9Djo2f+9nPBfcZ6JZHjDC0u919\nfzMAh+iBj+5sVkGO3FVH5b6fTgh2+BDbucNu1bHFsX4qZc3R9LHPbdYxs7vfDTJcfr+Psd9F+HlO\nHuBC6DShJpNPOP8yTyL7Pwf+mYhoz75/jo3/QRH53PnFiDAR+YGI+N+/xnP+NPAnReRHgR8F/jkR\n+bci4n979vi/IiKvnz3mSxHxVz68H2symUwmk8l3OlNoD0rNhV/BUzg6KeY8x6GbtAw6C0VJZ9ea\nY8c40OyUJse8Q5QQwRV6CZo6hzQOGpqFYelii2catwalQK3Kula2bWPbVrZ1ZV1XSq1A0Lxnmrkd\neKRArarIUhFRoizpYo++aSTHtLNDe1R8mdF6HjbC0OLc0R51XE8J5Oe+N4Tlc0mLDIQ7bAxuDpkc\nghmEjfcOsMNpYoQdlKrUKvSlAIFHx92IcIoqUiRvF+CSKl8KuIFZ7nBn+nmO70uZo+OTySeV4Wb/\nflJk/yzwz79HZL+LiHjnPZ9/LZH9nD8M/F7g0+QY+R/5lk54MplMJpPJ5JtgCu1BKUNop/0M+jTK\nbN04oiFRUApFMiHMWtCPoO9OUUnDFgUtQ2yn0LbidDUOOgedSsGpd6GNRu4dF6jLKbSHyN7yEFUs\nOt0azY4cWXdDCZaiFCmUIkiNrBOTRtBG6jhYPO/PHkLbLEfjLR1tQTiDvHOPOu4Of6aPjzHzu9A+\nw9lkjIVrjpi7EKFg0I8gvNMPoy6FviilOqIx3PxMmpNlJJSXkonr5Ci+LmA9kB5Yz8A1ycS5mTo+\nmXyy+VXA95NC+z/5GnvU3zBDtH+WHB1fzi+TAv7TZFjaZDKZTCaTyUfGFNqDUkclVgAlo7kznCt3\nq6MLSqdIxYbQ7sPN7ruzVE2BiSJSCJV7cJiVoIlxSOeQxioFE4NTaEogMoR2VZZTaD9ztJ2g90az\nzq3tNGu4G0JQVVm1sEpFQ1BVIoJu6Tg7OS7efLjZZhzd6N1wewohU8k6MJXcBfenM8zxbcvp7xTZ\n4C3fsJAhshnT4QZEJoubO9ZyDLyvhbIUyuJoIS8wSIruWkr2a9cCaHaI10AXaN2hObQR1qYyqss+\n6r8lk8nkQ+TvefbxT/9SnkBE/lngdwB/P/DwPncLMkjtI8KBv+kbuF8Zx2Tyzte/y2QymXwH8M47\n7/DOO1//38TjOD6Cs/nWmUJ7UM5cLb2vGxPyFGomw2UlMjCNEMIyzCtGune3FK/SI/eaFehQpFCl\nULWwSOVSNkIFXXMc/PSD67pQt411u7BtF9ZtY1kXlqXmyHgz9nbjenuN9QMh2GpF1KlRKGga5CL3\n3m3R3BkvpVBrZVkXtm3l8eHCoR03xyz30DMLLeuznoWOj93tMSEeQZjk/dvZJS6Ejj33eFZDNtLC\nGZVpkK6/W15UEIl0rQuYBl4Cr6OaOwvGU2zDqD5zguf94lNpTyafYJ6L329KaYjIBvwXwA/x7lSJ\n9+P9RPi3iZ/7aF9uMplMJpNfBnzhC1/gx37sxz7u0/jQmEJ7cB+ZlhTI56GStV5FSo4qj/ovPOup\nwvwelta7cfSGNx2OcBASFDSFtlS2stLDiaLouvBcaJd1ZVlX1m1Lob1urENoW+uYN47jyvX2GnpD\nJdiWilikkz2s5zSmBZFToJZ7N/dliOwXj42lNHp37Dzcn3a2OYPhzmounv06G9CFaKTQLuPe+tQd\nLprVYfThmFtkjZk53hTJ6XpUIYrgGlgBX7I67F4HpoJUpZQMQGMIbRWZjvZk8p3LH+BJZP9PZFL5\nXwT+ekRczzuJyE+Rvdwf2b8WIsJnPvP1DfRzVWYyOfnsZz/7cZ/CZDKZfKz8yI/8CJ///Oe/7v1+\n6Id+iJ/7ubf/ovYU2gO9O9pxd7RdYojB0aEt53i0Zwq3Oe4ZJObmWDdaB1fBcDwcw9PR1krVysOy\n0XNOG10XRpM1EkFdV5bhaK+XS4rsdaGuBXXw6MPRfsWCsAJLrSlWPcfdPfwushnOtqpSamVZ0s1+\nuGy8eOwspdKa0dvY2W6dwLCzs3oY1Fnf9QwfY+Q9ckSe4XYPJ1ruiet59/DICjSToZX96X0tWWlm\nNfAlA89UIFQIERBFywhqIwBBGRcSptKeTD7J/Pyzjz8H/K/fxGN/Jymyfzoifv0H3O97+Ig7sr/v\n+76Pn/3Zn/0oX3IymUwmk18WfO5zn+Nzn/vc173fuq4fwdl860yhfWLjdzFPfahj7Dpdh0rR7M9O\nZ1rxCMo5Vh4pJrsZ0oIO+NmOLU5rnaOOY+xIt8i6LyBfcLweoy87O7NzHDvCcO+YNXrbOdpO1YqW\nwloq6mA9+6idse8tgqpQS2GplXVZuGwbjw9G64GHsO+N1jrt6BxH43o7CGlYOJ4ZbdnNHU+SNvW0\nIA508sLE+XusnGJ4fDp23LOOa4ygy0g0P3fYIwPovMUIl/PsH1dPt1wj7yfcx+EVGYFpU2hPJp9g\n/uKzj/8h4Ke+kQeJyPeQwWcB/NkPuN8L4Ac+4KlmP+BkMplMJpNvG1NoD/otRW844IqgaFFqXal1\nodaFRRfWUll1wbvTW2O/HahK9kL3gN0yUE3TlaXIUx31CCjbe+d67Ly6XSmqlKIUVbp3unWOdrAf\nNyzK/diPK63tmB0QHUEpUlm0DHHr2YedhdgZLKa5l72tG90Cd4EoqC4sy8axHxzHwXE0breduhRQ\nsOiIORaCeoahjaHtexq4AGJAP7/nY9b8lNoyXHZn5L7dHW/ONe5xIOAe9G7o0VGHUL+LbSmZNC4q\nub+t+UARZTKZfGL5S8D/CfwtwL8oIv/eN5g8/vy/Wy8+4H6/a9z3/QT17dnH2zfwupPJZDKZTCbf\nMFNoD9otfxdTGSJbFNVCLQvLksdWV7aat96dfT9Y3hRUNDuhu2PiWdW1KFoVHTt4HpFC2529N97s\nO+vyhrVW1rqw1Iq50Xpj7zu3dqNSsFAslP14Q+s3zLLWS0pQBFZVIhwXkPD8HjnyXouy1gVbwV0Q\nCkUXlrpx2S7sx86xH+zHzptrRYbIPvqOdNIp9xwjP51kOV12hlPdcsZcHMTiKTgNRhcY4JG1aTn5\nnaPlw8VnBJp5BNadtnekky8uASXQqkhVtJLVXgFSdDrak8knmIgIEfl3gT9K1nz9KRH5bV+rS/us\n7xpd2j8HfBn4buC3icgfee9jRORXAz/OB7vW/w9wkHVgf9uH8TNNJpPJZDKZnEyhPTgd7VKUWhUp\nlVJqOtnLwroubOvCZdl4WDa8O9fXV2qtqAoeYGbYKJuuVKrmPjGMqquAbs7RGtdjZ7lVbF0JAlXB\nzGjWOPrBre3UEMwFc33maDciDMEpAkvRzCYD4Ez3ztHxopqOtgsMkV2XjW1rPLbGfuzs+439uLFt\nioWx953Xt7Ss1dO1jjhD4VLa+tg/91GBJhF5X8+LCYwd7/zJz/+Xd//Ke6aGj8Pd6W2klCuIRnaM\nFygLFAeJks9bzkT1KbQnk084fwz4J4DfAPxm4C+LyB8Hvgi8IUfEfw3wW4GfAH58CPSfAH4v2Y/9\nP4vIvw/8VVJ8/0bgdwNfBb7E+4yPR4SJyF8Afi3wO0TkZ4CfAU7R/v9GxP/34f/Ik8lkMplMvhOY\nQnvgniqwVCi1sF1WlmXJTmqc1o8Ur6JUVdwyVVw07+8YIYoPAVlKoZbKUvM5RHK8vJlx3W/gQT8a\nLx4u2OUBzFhU2ZeVY1k4auVojkiAOr0f3I4rEXm/KkoBZIyLC45EuukywtXOdmsVR/Fxa8h5xLOP\n8XFf7vvdEVl7Fv7U2HV+HwohmqFmdYy/V8U9R9jdHfM0vS0Cixyl95HqLirD8Ve0PgnnYXoDT8np\no1UMN0c0E8o9Ine5J5PJJ5Yhmv9J4E8CvwX4O4D/4Gvd9T2f/5vADwK/Cvj7gD/9nu//PPBPAX+Y\nD97T/neAPw98+ms8xx8iXfHJZDKZTCaTb5optAfm6WgvAmUpbJeFdV2xkSzeWkORFLiq4GA4FKEs\nBfdCYCgKEu/qrtYsjSYi6L1z9aAfnf16w/oLxIxCsJXKMYT2vlQsGhadHp3wTrhBOEsp6ZaLpMAe\nwpqIJ8F9fh0fIjpFtmJovEdkn/eXFNpFBJensDI/d7JH6ZZKpoWrCqUKtRZqVZaqoyLM0qG2oHnc\nb13AVDBl7F3rfcT+LplHp5gg5yp2Mh4vNrq7I4/JZPLJJiJuwD8tIv8w8NuBf4B0sgvwf5Mu838J\n/Jlnj/mKiPxa4F8FfpgU6J3c+f6vgD8aEf9XTpzfYzK+1mv/1yLy64F/BfjVwPeSo+STyWQymUwm\n3xJTaA/cRgI4KRy3y8p2WdlvB/ve6e1A4R5eBorjoKRYNEVCcxdZ5F1Cu4x94gjovdO9cYtAPMBT\nZK+qPNSFY13Y14VtL+y2s9uNm+0osGph08JaCkXl7mgTDkMsE0+93BLDpSZQsbuzfXez4xTZ9iTG\nBYoKPhztuLd0jYqvyO/XWliqstTCsihrVdal0M0w0xyD78beg2MEpfVzgnwEmmlVylLQpRAW4J7i\nOc4V7hTb9z5vC0QddyFCn9LOJ5PJJ56I+Cm+weTxcf8b8G+P4/3u8+s+7NedTCaTyWQy+UaYQnug\nS25T17WwXha2h5XtsmFmHDtY73RRejFazcAxj5R6MkatC0pEQSrUUqmlULUgKOFgYZhDmOHWCXPW\nksJ5K4VtWXhYV/p2YFvjaDfetCuv2xuqKiwby7qhLEiMADH3u+uend6W/d5mo9u73Y/e8nj62k5v\nO60dtNbSiTZLt9jj7gOFQ+5/x7iVFPRj3LuojOT0LCAXz1HwUMXVidAMNSvQS6aWh+b9dRz+fK97\nOOa1CmUZo+cEHrnDfR9Ntym0J5PJZDKZTCaTydvHFNqD7XEZtyvb48rlcWPdVo79QCRHy9VS1Jql\nY2wjDCyG6CyiiFa0Ckut1DLcbINwp1sGiLl1zDpuxptlYauVtRQuy8rLywO999zhNuPoGZxWVVml\n4gUoijv0cA7vWDda78NNNsw6vfXRkd042s5+HHm0xn50jta57Tu3/eC671yvO/u+01rHev6M5kG3\nsb8eT0L77LRWd9SF7uPjyPumEM7E8SLKqpHTAAW6Bl0DP/vCh00unLOdGQxXq7JelLoqzQzGxYQY\ngW9m8LTNPZlMJpPJZDKZTCZvD1NoD9aHU2gPN/txY10Xrq9LBnCZYZJCtptn+rZn+jbhGYpWCqUK\nuijLUnN3WQtuWV3lLbuizbIv263zpu6spbCo8rBu3B53zIwYu85HOzKhvBQeyoYvOc/tAR3nIIV7\nO0W2W46nt4N+NNqxcxy3TBg/dvbWOY7O3ox9P7jddq63g+v1YN+PFNrmuOeFBBtCO13uHO2+i2wL\ntARlBJ+Zj/fEgxF+TiEd66pyF9mtBDaC0VyyAez5GqWoUBZl2SrLpUATvHV6yyf1yJS1mEJ7MplM\nJpPJZDKZvIVMoT24vNjy9nHL42Gl1oVSRw/2EL42XG1BhqB8crS1CFI1RWKtGVpWCq0ZMQLQWkuR\n3a3TvbPWnWWMXT9uG7d95zhautSts7fG7TjwUmm107vjNejP+qr9/pw5+m29jzHxg3bcOPYrx3Fl\n33f2Zhytc3Rj39tdZKfQ7nehnSL7SWj7ENnugRRHiqPFUBM0V9ZBg7AgzHOfOnJMvIiOMfNANFAN\nuubOdod0qU/ZLOTY+FJYt8r6UAkNejhq54h5DPH/8fxdmUwmk8lkMplMJpMPYgrtwWc+82kALpeN\ny8MFLZXwuItMN0Ok3HehVSXDuDSQQh4VdEk3tq6aQnGrYIE3yTCw++g1KIKFs/fG65vwlTdv+PKr\nVzxeHqi18qpf2VvL/W6C2974ir8hDmfTwiYZjoYZ3nMsPZ1lH4fRLY/WO6032hDae+vse0tXez+4\n7TlS3lo69maB+wghG7Fj59p2N0ea3T8+mlBLpo7f7+QxasIU1UCL4AQmKdxNIExAAgllEZAqiCjb\nZeHxYeXxxZaTBjIi3CLS7R8J6+8TJDyZTCaTyWQymUwmHytTaA++93tTaKsWSi0ULfRmd2Ftbogb\nHkaEZyCYBGiKbC2gddRdLUJdC8uWNWHenb73vP+ZCD76ts09xXQ4S608bA9s60bRykHjoOGAhXPd\nDziCpgePdeWxrFhdKAGRc9vjwkCMei2ju9Gt03ruZR+tsx+NvXVue8sd7dvB7dbYm3M0p3cb/deC\nk9r5mX4GCwKjuVPaCIIbRyaFC0J+riUodQTFEYSMI4RwQXrep1allkJZlMvDwuPjxuPjA+vjchfZ\nrWehd9yD3/z9/0Ank8lkMplMJpPJ5GNiCu3BZz7zPQBjXPp0dPuTo+05lp172YaEEHg6sppurI6j\nLMoyHO3tUul7Zy+CnMndY7VYVPBw9ua0fqCiXJZXrHVFpeSfTpXxpxTc/KD5wRWlLQ/4YrDCIpI1\nXZEBZOZxd7TNcmf7dLRTbLcU20cK7dvt4LZ39pZitlvgIfeB7pE1niFnMarQHKLHvYZLTnFdFC2S\nNWhVqRFUlCKnkz/6vmMsaAcomuFnVVi3wsPDcLQfL6wvNsyhmbG0ThBYz/TxuaM9mUwmk8lkMplM\n3kam0B5sS4ah7dFou3G7Hrx+/Yb9tmcKOGQHNCMUTIbILoIseh8ZL6tQ1kpZKnUp1KWmu71Wlsvy\nTLA6Fn53Z82do3de7zd+4fUrRIS61nGUdIktu7dLkMvNPaDDWkrqcUkxbxF0H6nh7nQPujmtO62P\nHe2jZ/r4YRzN7wI7U8YzoOwczo54HlWWu9EpdId4BmR0ZEsBFUVqQYoSCsaoCJMAG65+BAyBru54\nOfe7c8c7q8nsPlUAIKrj8HzSOTo+mUwmk8lkMplM3kKm0B7ouI1m7G9uvPrqa776lddc31xTaJ91\nVCmVifAhLAUlR571udBeK7pUtBaWdWG9GNadUuQ+ju6RY9qtdVoPLJzbcfCVN29wC7bLyrZtbNs6\nOqoDCUcBcckR7hZcamWrha1WipDCOsbhQ3Rb0C0d69ac/TBasyeB3WG0aGEhdwkbMuTsu1ainwtc\nSZWtOgLhCnWtrGullNMVzy7s8PNCRY7c69ND0eJocUSdsht6bchy0IkMhzO/v1Qq+7mjPZlMJpPJ\nZDKZTN5OptAelHHrvbNfb7z6hVd85Rdecew7rXdEBVFAYuxo293RVi3oqpQ1Q9DqUinL2PWu6Wpv\nl4XwoBa97xe7O/t+5Di0Oz2C63HgFux740V74LFlyFkpSvrMKbTpQRTH1ejrhq8rgrAWfeZmj8Oe\nblt3jmYcR+doRmtO6+lk97OiazjYT+XWp1x+NzJGt8/RcVWl1HTv10tFi97r0Nxyd9wcfIyRn9cu\nzl1uVUfU0FuHpRFVqeE073ehnT988B7lP5lMJpPJZDKZTCZvDVNoD06hHWa028GbV294/dXXGX5G\nUJZKKQVVQYazKmRKtiJoSZFZFs371orWipZCWSrL5im0VXDLFHO3FNvNHNGOW9C6ET3oh0EIEopG\noVYd4+qOSKadhwYu+TxEpnxHVA4zDsuwsj4E/Nlz/Vxwtx4psofQNpccG3+XYf3skyG8RYazH+d7\nkO+DqKL1FNsLok/haT6mvY3AhkDW4WqHBtoyyR0RKJ2oShSh4hhBF3+X2M8A9ym0J5PJZDKZTCaT\nydvHFNqDKjk8XsgR7XNPuFRFa800ca1UqVRZAKG5ESN0jBAEpUilaqVIpUhBKJTieElnm3O32cEj\nu6mFQFOysmhl1coilYUKXbA9xTfFCQ1EgqKGSHuaeR+743sttHbQ+kFvncMcC3BR0EJQRoq33MfE\nzQXzeEoXj7uV/SxubFxgUDlfjWC42arp+D8T3Iz3Eze8B3Y4Lo7LeKSOkDUFJx13mufXisDSYU+x\nbeKYBC6B2zhJf/c1gMlkMplMJpPJZDJ5W5hCe1D1SWiLx3CcjWVd2baV7WGhUClRKFFy37g3zLPn\nmhBUSgpsXShaUSl5qFNq9nJHZIK59QxEC2JUawsqyqqVraxsZaFIRSyrvVz/f/buPVyyrKzz/Pdd\na+0d52RWFsidspRR8Q44iCgi9oig0PKgrfZMa4+Kgorg9IMXvPXYjYXtZWi8jJceq8dpLuqMj9A2\nMo0iItVi0yj3AcUbogJFAgXFpfJyzt57rXf+WGtHRB7ynDxZeTLPycrfp56oiBOxY+8dpzIq8hfv\nWu8qeASPrct5yHX+tLXmbLnO916kQM5TvZSpVrXdcbMatC1QPLRwbUylDRn3WtFeLlFthvmqhjx3\nFV/OU/c5aFPnZ88XW10AvBg+QRkKJbSlvQLtCwfwUJcQy7nOfS9eKBHYDtBNeLL2PCjBKbnguQVt\ndR0XEREREZEjSEG76VowDK2iXaYaXmMILBY9x49vEomEKWDZyGMdgj14hkwd4k0ghlbRDolgCZuD\ndix4VyglMk2hhmQv4KVNPa5BuwuJRezYSAvIBhmmMdeO54m25BfQ1qQuVpfwym35ru0Qls3a3Etd\nqmxZ0Q41aGMUt7Vqdhs27lC8hddlyG6LaM1LeIXAXM+ugZxlNZu5ut2CtpfaAK1MThlb0A51qDip\nhWyv1fypFMypXc9Dq2gPAU8GoVa+PQJtn+qFJiIiIiIiR5WCdrO9VZfwGofaHXxe7zqEujZ06hLR\nQ13/2Q0PpXXNXgXTWpr1uTyMhxrWPZcWOtslF3xy8uRQjOCBBAQiwQ0rhk817OepUKZa0SWBJ8Mi\nZDMmjNGM0QJDNLoQSK3izLJa3kJ3KUxTXeqruOEWaoQ2w83mgeBzezPmqxqujZgiISZiiq2ZW11f\n3Fcb0tY/a2tvr4J3SJHQRTCnWKmb0oaA5/qFg0XqcHJbdTpfLi3WupUv72gjCGw1bl5EREREROTI\nUNBuzp4ZgRq4p6ngDsGMEIwQrc7VzgFCDZ8FapCkZUynBUfHpxayQ8angE+ZsrwU8lhDdpkcstVm\nZxaIBEIJuDuFtvTW2NaSBkgG0bBo1NnfRsKI9W6iObENJ5+jajAnUF9LKYWpVbhpjdxqc7VQG6xR\n72dZqQYsEJLVdcH7jtSn5RrXecqU4nVO9zzk3Nvw83mB7RSxLhJLB+TaQM3Lcskwn2pjt3lYeojW\nOrzX59fKP/jautnWQvbySw4REREREZEjREG7OXNmApzt7YlprF28Ldiqoh1ruzLPMKfr9ZhnXiu0\ntVqd8WDLS8lrIXsqlFalLmNdDzu4Ea1WtoMblLbc1zAxDCPbw0QBLAZIrUoMRK9hu9aPC0ZmrifP\nY6tTO/cu1eeMU216RhtKTgvbmLW54vMLmpufUV9/H+k3OrqNnmnM2DDVX0QulEJdG7vMRWfDvQXm\nGAh9Iprj2Wp1Otc53q3zGp7B22uqz7FW3a6vzN1bZdtbx/f5Cw4FbREREREROXoUtJs7Tp0B4MyZ\nbba3R6Yp1+HRPjf+8rXmW6ugF4IR5vnL1HxrO6vby3Bd6lzlyfGpVmmtDR0PpQ0Zz97Wns5sDyPD\nMLE91qAdUiR4xCJYcaYClufh4XXhrLpToIXtRddxbKMjhtiq0gEsEmKHh5HCSPERLONtreuSHaJj\n0SFA7AOxT8Q+khapFu9LganOIacdrjZSq7+v4oVAgGgEIjFSt53qlxFM3ka4+9rC3axVs1t387k4\n34aZ10ZwdTm1EBS0RURERETk6FHQbm7/yEcAOH36NKdPn2HrzMAwTQzbE8P2yPYwEj0SSm16NjcH\nCyEQYqyXEAhhHtJsy4BYcptvPWTyWOdnM0HIc8CmLveVC3ms20xjYcyZacqMuUAMdBawVOdL52Fi\nypkyTJScV3OxW1W7csLxiIWOjWPHOX5ss4Xg2lDs9JmBU6e2uePUNmfPDIxjZhwmhjHjoUB0PJZ6\nzD5gneHBcWvdwUttxOZlDtlQSqaUiZxD60YOMRnBEmECy0aYII+BMkzkoYZ7oI0UYPVFwRywW8im\ngIVWoe/q2uIiIiIiIiJHjYJ2c/tHa9A+e3aL06fOcPbsQM6ZYXtie5hYjAOJjlRSbYE9N/oKgRgj\ncQ7c8zJXc2OwUqvaZSx1LemhUAvIRigBy3XkNrl25h6GGuyHYSK7k92Z3EkhEkPCYiB2kWmsQXsY\nRvI0QVl1Gp+X3wJn0S9q0N48zvV3u54wD+eOxulT22x+bIvFxllOn9ri7NbA1tZA3NomW8FjocQC\nEUIXsWSwDNq5djTPZW1+NnjJ5DKRs2EpYamer3WRMFFD9gRTNKbW3f2cgG2rnE37AmK5IR1DAAAg\nAElEQVQO2RQIXtcz77tE1+uPr4iIiIiIHD1KKs3tH/0wAMPWxNaZga2zA+7eQm+taHsIGG0ucVvC\nKoRIjGUVtkMgWKtqzx2z54r2mCljGzY9QWjLd9Uu5VDGzLg1cnZrm7NbQ1s72lrHcaMzlsEVg6lk\ntrYHpnHCSy0r17Ddhrt74fhxJ4SOzc3jXH+3u9P1iW4R6frEqVNbbGyeZtGfYdGf4dTps6R0FjNj\nCpkcMznktna3YYHa5A1fVrRLbmPHW4O1ep+RM4QCKXbERSBupBa0jTDV+d8+V/kt76hmt5veOri3\n+d9W6jJoKUb6rqNfdFf4T4mIHDQzexLwPOr/RT7F3d91yKd0SU6ePMmNN9542KchV8j97nc/3vCG\nNxz2aYiIyBGkoN3kqQB17rH7au1osDYkGnLJDNnIk+PFGEtmKBO5ZKZcq7W1U7dDTLVTeUhYLIRY\nCKlgk9fh1wGyFUpp87bHwjhODGUkhwx9waIRAhCNuIB4zEjHjLQwupLYoIfgjNsjeZyYxomSvX4B\n0JqZbRzv6TYTcRHr0O/kFHMmCpMXpjnLmhG6RHdswWaE0SZymJhCplim5Lo0We043pq5Td6OBzUa\nr4as08J4njIM47zyNrgTYqjzvXNX18QOgdAHQmrnXX85tUmaeW2elh0vhdGMmEYsQqm92EVEjoxS\nCrfeeuthn4aIiIgcMgXtJucWtHOdGzzPs14OAXeYcmEaRmyY8AkmK2QrZGqAtuDLbmjBAm4dIaYW\nsjMhRyxlGAvFnExhLBPTNDFu1aHgmYkSc21ElowQgWTEDSMdg3gM4sJYWMKiEzpj2AqMW4ZtOdNQ\nO43HGEkxsnF8Qb/ZERYB68CD1/MuMJbCVApjcQo1aPcRwkYk2cg0X8rEtD0xbdc1xkteXTx7W/KM\nuib3+j9eKFOdM15KqUt3xdrIjC7hpS7TFVOq+4j1v0XwgJVa7XdquC/tuDgMoQbwXPIu/zVFRA7T\nJx72CchldxL0Za+IiOxBQbuZh0B7aWs8W+0mzrzEVHGmqVC2C+WsU0bHE5QIHuta0IwFp8457lJX\n+5S3oG0pE3LGUoSYKaEF7ZzZHke2t4caHFPBkmOdt2vDOogb6xXtgMVISEZaJNLpwFasa287ma5L\n9F1H16W1inaADkqb/OzFGVvIngpkN6yLdDHSRSeRGC0yErCxvf45aLeLT7XSDLYK20u1Al0mpxTD\npkxcJGJItaId2zD8EIldDeV4PS8rrIK2Oz75cmk0d8dDoVhmKmqGJiJHTQDec9gnIZfdjYBGLoiI\nyO4UtJsQWjk1BaAQLYLVDt9Qh5aX0ZmGXJuaTY55m1QcjJxbBbdkcKcLiRQSXezIU106C28V8nlI\nOjX41oZnde5ziIHQQ+wNkkFHrWx3hqVakSYUQhfoLdJ1RkqBmIyYjGmjhuy+7+j7nmMnNug2I0Rn\n8pGcnZKhFOfMmYGzZ7c5u7XF1jgRQyB1gbgIJKslZiNBLOTtjIW2pnVbjst99fszoy51FowQrQ4D\njzUIu9d56kbt0p5SwkLAg1O6utxXHjN5mihjBvO6XJrVeeGE+jueu6QVd6ac8UnVBBEREREROXoU\ntJu+74H1taCpGboLGM44DOTByVPttO2lDXGmXuZh1GUEnzJxXuN6Kqv1uItDMSg1cJuF2gE81TWu\n3ZxuEUgbgdQHSqzzuUsoGEbJTh4LY8hES6QuEvuOvkts9Injxxb4NJG6jtSlWtHe7EkbkWwTZ8ez\nTNulXTKnTg3c8dFtPnbHNttjpvdEHxO9p1qhjxBDJJGIaawdy1sAnpc3MzOChRaya6O21Cf6RUeI\nYTm/3d1IsaNLPX23wGKArv5OvDjj1sC47Yw5Q2hDzLtASC1kB7BoWHAsWR1mrmW0ReToaENsfO+t\nROTIOHnyJDfffDNPfepTuf/973/YpyMi+5TzcvrokR7eqqDd9IsatNdDJOZkz2TPreFYIU/eGqZB\n8ER0iG71vpLxnCkWatOzsVC2J0KIteGXBSxbrYR7gNa1PKRC7Ls65HwR6ReJbiMwkes/ngHDszON\nGbOJ0Cdil1j0C+ImWF5AzlhxYheJKRJTIkYjBig2sTWMDGcmhtMTw5mJU6cGPnbHNnecGhhyYTP2\n+GKB4cRQw2yIAafuL8SwnItt65fQljqLgZgiXdfRLTpiCuSJWkHPLIN21/fLkQJzadyoTYSmYawV\n7bkq3odl8C65tR6P83z4Q/rDIiL7ZmZ3B34Y+BrgAcAdwFuBm939xfvcxwOA7wG+AvhkIFLH7b4K\n+CV3/7N97OOJwNOBhwHHqeO7fwf4GXd/v5n9fdv38939yRfzGpt44U1E5Cg5efIkN910E1/91V+t\noC1yFVkL2kf6s1dBu+m6GrTnYc8xBRxna3uLvD0xDuOq23Zp5e5Wz4bQuodPlHEkO7WSPWZyN9Gl\njtT1dd72vD50G0Zubf3t2IEFo9/oWGx09BuJsQyMZYTSlpUuc3f0TN9BjJHFRk+fIok60jwFsFgr\n5ZYCJU/kcWQaB6ZhZOvswPapka07Rk6dGjh1ZuDU6YHJHdsoxAyJgFkkhUDsAkYkxrp0mbVu5ucE\n7BayQwyk1CraGx0xRqbg5PoSSKmj62pFO/YRsxaW3clTZhoGhracWUi1oh27WCvZuV7AcCt17TBT\n5UjkKDOzzwZeCdyfVal3AXw58Bgzex7w6gvs41uAm9vz1t/0nwY8EHiKmf0rd//pPfbxy8DT2o/z\nPh4IPBP4JjP7KublEkREREQOgIL2Ui2PulPnMXvGKUxjZprycvmv1EWsq+GyVnkjIUWKweSllm7d\nW1fswpQnSnHGsbBtIzhMU+0wPk0ZHGIKWDBiF9k41rNxvGex0TFMoa453aromNWZ3V6r57lMTNNA\ntK42Fwt1P7l1+85TIU9TvYwjeZiYcqEYhBTpN3uOxYD1HROwcaJnsdnTxZ4Y23xrMzw4MUVSF+kW\nHXl08lAIbT576AKpj8Qu0G92bFy3YPPEBjFF8uhMQx0J0G32dBuphvdQK9i1e/lUf09e1+uugT3R\n9Ym0iHVJsZxrZbyt1+1YbTwnIkeSmZ0Afh+4HzXA/ibwQuADwGcA3wd8K/CgPfbxBOoa21Ar4c8F\n/hCYgEcCPwLcG/gJM/uwu998nn38IDVkO/Bu4KeAN1KD++PaebwYOHYpr1dERERknYJ2496CdnHc\nHUoN2+PUgnbOdcmsrg6NTinVOdatyjvhbYx0m69t1Odn6v15xIu16nQ9huMQavU8xUC3SGxet2Dz\n+IKNYx1xG2wosF2PX8p8frXpWs4jU06kaHisDcYsBso0sj2NDHlkGifylFu1vdS/ngKxi/QhYIuO\ndLyuo50WibSRSCkRY10T3AwseH3tfapBeyjkLjOmCahV79gHuj7Rb9YvCo6d2CB2iWksTENhGgtp\n0ZH6ROrqaIGcC9M0Mo0jeZrq+uXBiDGQulg7p/eRKWdChpyhFMO9zpF3jR0XOcr+NbU1swM/4u7P\nWXvszWb2YuBlwFee78lmlqiVbIBTwKPc/W1rm7zOzH4beC21Yv5cM3uRu9++to/7Aj/WzuEdwCPc\n/cNr+3iNmf0ecAvQo4q2iIiIHBAF7aUa2kpxCnWZrlxyrWiPmTxlUgvaG5sL+r4NA2/PMy94jpQc\nliE6e6kNzIZ6KaPXJmrBahO0YKRF7WyeFh2LYz2b121w7LoFG8d77KzDVsZtYpgbsXlbgqxMdVj4\nNFJSwKlzmUM08lgYpoHT21tMw9SW48r4BKlEokVSivRdqGtth4C3kE4Iq6ZjwTFz3AIhhdpgbSMx\nbWdiPxHnDu2top0WkX6zY3F8weaJTVKfGIfMNGSmsRBSrf7HFJnyhHsN2sMw1C8SKJjVofRzRbtf\nJMJkTNlbZb8NGrC65JiIHD1m1gFPpgbXt+4I2QC4ezazpwDvpK6vsNPXAje0ffz4jpA97+NdZvYD\nwK9TK9LfBvzM2iZPAjbaPp6xI2TP+3htG1r+vRf3KkVERER2d6Q7tV1Jw9ZYL9v1st2up3Ei51Kr\nydS5ySFaW04r1GZjbV3o2pU7LNfeLg7Z2xDykhmmiTFPTJ7rmtetg3ZaRPqNRL+R6hDsNpTcQlsO\nDAO32jes1GHkpRSKFwqZ4plcMjlPjNPEMI5sDQNbW9tsDQPDONbKfMlMXsgUJhyPdbh6v9GzcWyD\nxcaCxWLBot8gpR4LEccpXtcGt9i+FOhbsN6owbvb7Og3O/pjPd2xjn6zp9vsSRsdqY+1c3sCzCkl\nL6vY0zSSl8PG6zBwa93LzULt5+7zb8CWFfa5w/k8L1xEjpyHAZ/Qbr9gt43c/VbgFbs8/Nh5M1bD\nx8/nRcBHdzxn5z4+6O4v32MfL9zjMREREZGLpop2c/bUFgBujluh2KqqXZYLRrd1pL3gXmorNKth\neLIash3D/dzwV8woVveNUbtmJwidE3sjLiLdZkdaJEI0CqXO4x4z09SaiY116HTOXivaXudqG457\nDdnDaEzTxPawzfb2wNb2Nl7qet9GnW+d2/lnzyQinVnrFp5ad/REiLE2YvPCUJyp5Ba2vX7J0EXS\nRqTPCc9Ot9HRbXT0GzVkp0VdXsxiXZar/h5HcGvLpxk5Z8ZxJOeMe6nN4awu5WUWMAfPUKbVEmCl\neB3XaUaI1C8fROQoevDa7ddfYNvXAU84z/3z3O2/c/cP7fZkdx/N7M3Al/Hx870fRA3qb7nAObwN\nGDh/ZV1ERETkoiloN2dP16CN1bWrPRQIbR61tS7jPs+vbkHbanidL3PtdZ47XOO51dBuUEJ7JDok\nxzqIfa1odxuJtKjh1N3JeapDxcdCGSBP1KXFcl2Tu5TSzq1+ITDlqS0CTq1kb9ewjde1sGOoncRL\nG9JOAfdCNLA2VDvGjpg6YuxhgmkaKLkwlakOp5+r2l2dT+5tmbN+o6fb6JdBu1t0xC61+d2GUxu3\nldzOf6pV/lqFb0G7rUc+r9WNG57Bp/Z6vc2dx+tcdNp2InIU3WPt9gcusO3799iH7+P5AO87z3Fh\nVVW/ba8nu3sxs9uB++7jWBfgwH32sV3kiK9KIns6edgnICJyl3Py5ElOnrzw/1/HcbwCZ3PpFLSb\n4ewAgAenLY4NASzShnG34Oy0qnYN4K0IS1iGvrWg3e5y6pJVbrQg3/abIHRG7ENrEhZpUb6G7NyW\nE5uol8wyaC+bqdlcoW6V7kIdKj6MDONYw3+qw63rymL1uaU40b0upRVql+/UQnZKCyYGLBvFS51r\nTq3Gh2CE1M7Z6x+frg177xZ1/ezUJ2KK7fxqJb94HYKfx3bJdS78fD5G/V1aC9z1mwnwaV5zx5f7\nM1bDx0XkyLvUZgpXYTOGPXO9iIiInMfNN9/MTTfddNincWAUtI8qFWtF5Oq13nTsvtSO37vZrYp8\nO/X/hPupMt9v7Tk7z+O+1CXAdmVmgVX1+85aVtP3O9pGo3Kufh/4wAe48cYbD/s05E4ahlpkefzj\nH0/f94d8NiKSc+be997zIxuA225bfqG9cyTbkaKg3bzrTe/T33hERA7GeofwhwOv2WPbh+9y/58B\nXwx8ipndc7d52m0ZsIdSK99/tuPhP6eG8P/+Auf7YOq62pdSPV9+hrjvbzf73U6OrlIKt95662Gf\nhlyitb+0i8jV5UjnNwVtERE5aG+kVpPvDnwz8PPn28jMPpFd1tEGXgl8B/VD9NuA5+6y3f8I3I0a\nkl+547E/BB4D3MvM/rG7/94u+3jSLvdfjG1qWC/sb165iIiI3Dn3oa6etX3YJ7IX0zfqIiJy0Mzs\nucD3UQPwD7n7c3c8HoH/F3gcNUw78Cnu/q72eAf8HXUt7Y8CX+ruf7ZjH58EvLZtcxp4gLvfvvb4\n/anrdPfU4euP3FkZN7MvBm5h1XH8Be7+5Ev+BYiIiMg1Td2kRETkcng28B5qiH6Omf2GmT3OzB5q\nZv+MGpAfB7zhfE929xH4TmoAvxvwGjP7UTP7YjP7QjP7XurSYTe0bb5/PWS3fZwEbmrn8OnAG83s\nu8zsC8zsS8zsx6lV8FuBD85PO8hfgoiIiFybVNEWEZHLwsw+B/gD6jzpnfOoHHge8Mft+pyK9to+\nvhm4mTos+3z7yMCPuvtz9jiPfwc8df5xx8MfAL4K+E/AjcCvuPt37+f1iYiIiOxGFW0REbks3P3t\nwOcCzwH+Gtiirn31KuAb3f3b503ZpZLs7r8GfBbwvwNvB04BZ6hDwf898NC9Qnbbx9OBrwFeAXwI\nOAv8DXXu+EPd/U3A9W3zj96Z1yoiIiKyThVtERG5prWmbO+mhv1vd/fnHfIpiYiIyFVOFW0REbnW\n/fO1239yaGchIiIidxmqaIuIyF2WmR0Drnf39+3y+EOB/wKcAF7v7l90BU9PRERE7qK0jraIiNyV\n3Rv4CzN7CfBy4K+o627eAPxj4MnAJnX96+87rJMUERGRuxZVtEVE5C7LzB5AXY/b+fiO47T7B+rc\n7N+4kucmIiIid10K2iIicpdlZgn4J8DjgYdTK9z3oHYu/3vq8mO/5O7vPqxzFBERkbseBW0RERER\nERGRA6Su4yIics0zs082s58xs78ws1Nm9iEze52ZPdPMNg/wON9oZr9vZifN7KyZ/b2Z/ZqZPeKg\njiFyLbmc710ze5aZlX1e/tFBvSaRuyozu7eZPcHMbjKz3zWz29beQ//hMh3z0D53VdEWEZFrmpk9\nEfg14HrqnO1zHgb+GniCu//tJRxjA/iP1AZs5ztGAZ7t7s++s8cQudZc7veumT0LeNZ59r2TA1/u\n7q++M8cRuVaYWdlx1/p76wXu/uQDPNahf+6qoi0iItestrzXb1KX97oD+JfAI4HHAP8n9cP504H/\nbGbHL+FQz2P1Yf8q6rzxLwSeAryD+nn8LDP79ks4hsg14wq+d2cPAh68y+UhwOsP4Bgi1wJvl38A\nXsH5G5UehEP/3FVFW0RErllm9mrgUcAIfKm7v27H498P/FvqB/VNd+abbzP7cuCVbR8vBb7O1z58\nzeyewBuBTwY+DHyqu3/0zr0ikWvDFXrvLiva7h4v/axFrm3tPfV64PXuftuOlUEOrKJ9VD53VdEW\nEZFrkpk9nPoXdQd+dedf1JufBf6C+o37M8zszvxl+/vb9QR8t+/4htvdPwT8UPvx7oCq2iJ7uILv\nXRE5QO5+k7v/rrvfdpkPdSQ+dxW0RUTkWvVP1m4//3wbtA/nF7Yf7w48+mIOYGbXUYeyOvBKd3/v\nLpv+NvCxdvtrL+YYItegy/7eFZGr01H63FXQFhGRa9Wj2vVp6hCy3fzR2u0vuchjPBzoz7Ofc7j7\nCPwJtfr2cFXfRPZ0Jd67InJ1OjKfuwraIiJyrfps6jfe73D3nZ1Q1/3ljudcjM/ZZT97HSdRmziJ\nyPldiffuOdryQO83s+12fYuZ/ZCZ3f1S9isiB+7IfO4qaIuIyDXHzBbAvdqP79lrW3f/CLVyBvBJ\nF3moG9du73kc4N1rty/2OCLXhCv43t3pse24qV3/I+CngHea2Vdf4r5F5OAcmc/ddNA7FBERuQqc\nWLt9ah/bnwaOAdddxuOcXrt9sccRuVZcqffu7K3AS4DXAe8FOuAzgf8Z+Erq/O8Xm9kT3f337+Qx\nROTgHJnPXQVtERG5Fm2s3R72sf02dR7X5mU8zvba7Ys9jsi14kq9dwF+zt1vOs/9rwd+3cy+E/gV\nIAK/amaf5u77OScRuXyOzOeuho6LiMi1aGvtdr/rVisL6pzQs5fxOIu12xd7HJFrxZV67+LuH7vA\n4/8e+L+oQf4G4Osv9hgicuCOzOeugraIiFyL7li7vZ/hYsfb9X6Gqt7Z4xxfu32xxxG5Vlyp9+5+\n3bx2+3+4TMcQkf07Mp+7CtoiInLNcfdt4EPtxxv32rZ1FZ4/jN+917bnsd6IZc/jcG4jlos9jsg1\n4Qq+d/fr7Wu3P/EyHUNE9u/IfO4qaIuIyLXq7dQhnw80s70+Dz9r7fZf3IljnG8/ex1nAv7mIo8j\nci25Eu/d/fLLtF8RuXOOzOeugraIiFyr/mu7Pg48bI/t1oeDvuYij/F6Vs1Ydh1WamYd8AjqX9pf\n7+75Io8jci25Eu/d/Vpfs/e9l+kYIrJ/R+ZzV0FbRESuVS9Zu/1t59vAzAz4lvbjR4BbLuYA7n4K\n+ENq9e2xZnbDLpt+PXB9u/3bF3MMkWvQZX/vXoTvWrv9R5fpGCKyT0fpc1dBW0RErknu/nrgj6kf\nxk8xsy86z2bPBD6b+o33z+/8xtvMnmRmpV3+9S6Hem67TsAv7xzqamb3An66/fgRahdjEdnFlXjv\nmtmDzOzT9jqPtrzXU9qP7wP+08W/GhG5GFfT567W0RYRkWvZM6hDSjeBPzCzn6RWvjaBbwS+o233\nV8DP7rGfXedpuvstZvabwDcAX9OO8/PUYaYPAf4l8MltHz/o7h+9pFckcm243O/dh1HXxr4F+D3g\nbdQmbIk6r/ObgK9o207Ad7i7luUT2YOZfQnwwLW77rV2+4Fm9qT17d39BXvs7sh/7ipoi4jINcvd\n32Jm/xPw69QhZD+5cxPqX9Sf4O6nL+FQTwZOAF8FfBnw6B3HyMCz3V3VbJF9uELv3QA8BnjsbqdB\nDd9PdvffvZPHELmWfDvwpPPcb8Cj2mXmwF5B+0IO/XNXQVtERK5p7v4yM3sItUL2BOpyIAPwDuC3\ngF929629drGPY2wBTzSzbwC+Ffg84O7A+4FXt2P86aW8DpFrzWV+776MOiz8i4GHAvcF7kkNBLcD\n/x/wcuD5bU6oiOzPfjv177XdVfG5a+5alUBERERERETkoKgZmoiIiIiIiMgBUtAWEREREREROUAK\n2iIiIiIiIiIHSEFbRERERERE5AApaIuIiIiIiIgcIAVtERERERERkQOkoC0iIiIiIiJygBS0RURE\nRERERA5QOuwTuFqZWWk33d3joZ6MiIiIiIiIHBmqaF8aP+wTEBERERERkaNFQfvS2GGfgIiIiIiI\niBwtCtoiIiIiIiIiB0hBW0REREREROQAKWiLiIiIiIiIHCAFbREREREREZEDpKB9gMzsM8zs583s\n7WZ2h5l91MzeYmY/aWb3vMh9fY6ZPcfM3mRmt5nZlpndama3mNkPmtk99rGPJ5lZaZf/0O4LZvbP\nzOwlZva3ZnamPf7VO56bzOybzOw/tu3uMLPRzD5mZn9jZi83s5vM7OH7fD2fZWY/YWZ/ambvM7Nt\nM/uAmf1J28/9L+b3IyIiIiIiclSZu1aoujN2rqNtZt8F/Byw4Nxlv+bO5B8CHufub7rAfmPbz9OA\neX3u8+3vI8D3uPsL99jXk4Dntee/APhfgd8CvuQ8+/1ad39pe95nAC8BPus82+08Dwc+3d3fucs5\n9MAvAE+5wOs5C/ygu//ybq9HRERERETkapAO+wTuClqg/XfUAPmXwBuowfGzqKHWgHsCLzWzz3b3\nO3bZjwG/DTyx7cuB24H/0q4/CXg00AN3B55vZndz91/cx2luAC8FHgaMwH8D/pb6xcDnr53DdcAr\ngU9sxy/Am4G/AE4Bx9pjnwfc6wK/l2PAK4BHrr2evwXeCHwYuEf7/dwAbAK/aGYn3P2n9/F6RERE\nREREjiQF7UszV2Z/BfgA8M3u/gfrG5jZo4D/DFwP3B94BvBvdtnfD7AK2QA/BfyYu09r+7sPtTr9\nuLbdc83sT9z99Rc4139KrSjfAnyru797x3l27eaTgRvbvt9OrXS/43w7NLOHAd8GbO9yzP+DVcj+\nK+Cp7v7HO/ZhwHdSq/gbwLPN7BZ3/9MLvB4REREREZEjSUPH76Q2dNyp1eot4OHu/ue7bPt04Jfa\n9n/p7p97nm1OALcCx9td/9bdf3iX/fXAHwMPb/u8xd0fe57t1oeOA7wVeIS77xaMMbMXAV/fnvNY\nd79lt233YmZfCvwRqyr2I9z99j22Xz/Xl7v7E+7McUVERERERA6bmqFdOgdu3i1kNy8EJmoo/8w2\nPHunfw5c17Z5P/CsXQ/oPgD/S/vRgEeb2afvcfx5HvQP7RWym+vXbn/wAtvu5fvWb+8VsgHc/QXU\nYfcGPM7MPuESji0iIiIiInJoFLQPxov3etDdT1GrulCD5APOs9mXz5sD/8+FAnEbKv62tbsefYFz\n/DDwBxfYBmB9SPl37WP7j9Maus0V9o8BL9vnU+fqubFq2CYiIiIiInJV0RztS2PUYPy2C21I7To+\nu/48jz907fZ/2+fxXwM8uN3+/D22c+Atvr95Ar9FnadtwNPM7Auoc8J/393/ds9nrjyEOgTeqY3X\nfqFOxb6g9aXCPmmfxxIRERERETlSFLQPgLt/bB+bjWu3u/M8fu+12/+wz0P//drtPTuAA7ftZ4fu\n/goz+wXgX7S7Ht4umNn7gf9K7YL+Ene/dZfd3LDjvL57P8feQUPHRURERETkqqSh40fH+rzt0/t8\nzvp2Jy6w7dn9noi7fw/wdcDrWC3L5cB9qI3SfhF4l5m9yMzOV3m+2/ru7sQF9CWQiIiIiIhcpRRm\njo5TrALq8b02XLO+3XnX5r6z3P13gN8xsxuBL6Mu0/WlwOesbfb1wJeZ2RfvWAJs/QuAt7r7+rB4\nERERERGRuzRVtI+O9aHdn7zP5/x3a7cvpUP4rtz9Pe7+6+7+dHd/MPXcngWcoVaf7wH87I6nvb9d\nG3C/y3FeIiIiIiIiR5WC9tHx5rXbj9znc9a3e9MBnsuu3P1Wd/83wFOpQdqArzSz9XnnbwHmrun3\nMbNPvRLnJiIiIiIichQoaB8dr2rXBnyDmfV7bdy6gT9k7a5bdtv2Mnnp2u2OWtkGwN23WL0egKdf\nqZMSERERERE5bAraR8f/TZ2nDXB/6vDs82rV419cu+tV7v43B3ESZnbPfW66Pry9cO7yZQD/27xL\n4F+Y2WMu4hzuu99tRUREREREjhoF7SPC3e8Afrz9aMAPm9mzdwzJnkPoS4EvahAq7lAAACAASURB\nVHeNwI8c4Km81sx+w8wev/PYa+fwGcDz1+56pbtP69u4+6up629DrXi/zMx+2MzO2+jNzBZm9jVm\n9hLgdy75VYiIiIiIiBwSdR0/Wp4LfAnwRGrY/lHgaWZ2C/Bh4JOARwOLtr0Dz3T3NxzgOXTAN7bL\nWTN7K/BO4GPUta0/FfiCte3PAM/cZV9PpTZD+0qgB34S+FEz+1PgXdR53HcHPg14EKvXdZCvR0RE\nRERE5IpS0D5C3N3N7OuAnwOeBkTq3Od/ur5Zu3wUeIa7/9oBn8YdrNay3qBWzr9oxzbz4+8Evsnd\n//x8O3L3wcy+ijoM/vuBY8Am9cuCj9u8XUbgtZfyAkRERERERA6Tgvad5zuu9/ucPbd39wI8w8x+\nBXgy8BhqJfsEcDvw18DLgF919w9fhvP8POAR1DD8hcBnAjdQQ/IZ4H3UruIvBX7L3ccLvB4HfszM\nfhH4FuCx1LW470Wtnn8M+AfgbdSGbr/r7jvne4uIiIiIiFw1rOYgERERERERETkIaoYmIiIiIiIi\ncoAUtEVEREREREQOkIK2iIiIiIiIyAFS0BYRERERERE5QAraIiIiIiIiIgdIQVtERERERETkAClo\ni4iIiIiIiBwgBW0RERERERGRA6SgLSIiIiIiInKAFLRFREREREREDpCCtoiIiIiIiMgBUtAWERER\nEREROUDpsE9ARETkamdmp4EFUIAPHPLpiIiI3JXdh1ow3nb344d9Mrsxdz/sczgSPvfhD3EAy5nQ\nLj3O9X3k+kXk+j6w2UcWfWTRJ0IKbGNsmbENbJdSLzmzXQpjcQZ3RgfHcAIQsBAIIbZLwAF3p3i9\nnv+ZWbsO7XbACBgGmLXrYFgwQgxYMFI0YoAUjWBGNIgGwQIpJmJIxJgobkxu5AIZAwt4CPXaVr+b\nUjLTODANY7semMaRaRgopbSTM8wgpI4YEyElQghYADMw8/Y6C8UL7rSLgUMITgiFEErdHgjtHEp2\nci6U7EDBaNdWf0+v/K03r52tiMiVZ2YTEA/7PERERK4h2d2PbOH4yJ7YlRZjDW1zwAvW8mN03AoF\nmDwQ3YkUghvFAPcaZnG6FpTNIEYjupFw3AJOwC2AxRa2jRACxb0GcXfcDV/7x5iDtrUs267PE7RD\nMCwaIUAMEIMRY30dEZaBO4T54oARvb5gc8ON1aWFfccJ5sRA3ZEbgUi0QgodxQs2J2MzQoyEmOp1\nCC1k13NdhexCcWAZtuegXX8nYX5O3SUlO16c0p5kLWQb+pJIRI6M+mWtGTfccMNhn4uI7MMwDNx2\n223c+973pu/7wz4dEdmn9773vbRi8ZEOAwraTUotaAcnZMeCE92hBe3JqQEbI3ggUiheo3Bw6NwJ\nOBGnN2c0YwrGZIFigWKREmrYNquVbZuD9rKaXYNt/YPjNcAyh85ana5HtOV9NWhTg3aAEFuoboE6\nWquCW62EhwDBang2HPO6D3coNteKfXUe7hQrEJyQIFqghIgnKDmw/PPdknEIEQsRi5FgYRmyMWrA\nLnPYbq+3PT2Eek4h1C8q1sO2u+OlXtfw7e3xI/3eEpFry+3Afe51r3vxnve857DPRUT24U1vehMP\ne9jDePnLX87nf/7nH/bpiMg+3ec+9+G2226D+tl7ZCloN6n9JqzUgGoZIjVwF4OJQiS3odtlOYDZ\nvG4X3EkUenMykKMxxcAUAyUEskVyqKGbEDAz3Gr5eB4+vrqeK+O2DKo1XNtayGZV1TZvYXvtMlev\nWQ03D2vPnyPyPBy9uFGoIXsVbkurrBdCADA8GKQIPpe4G6v/shAwi8svE1ieIy1k+7KqXb+HqmG5\nBu32u18G6dXQeagnbLZ6faYB4yIiIiIicgQpaDeLvlWP3bBiWDaC16Ha7k7GGYtBKXjOJGhzpes/\nkYJ5rRJ7gBIgJyOnQI6RHCJTqFVt5pBtdk5ldzk7ex6CHmq4Dmatum2r8L127nXYdavG7wii8zmG\ntX/T/g20KnobkO21i0+eh3SXdnEgGuYtODMPB187jxa0sRbt2+TsOdhDGzq+VtFeveL6WpdD9m0t\nbM+7XR7X1l6fkraIiIiIiBw9CtrNddfXuTlWCuSMlQy5EEYnTIUyOdPkFJ+YxkIME8kC0YxkAcyJ\n85DsVJufJQOPNWyXFrg91IZj3sL2PLtgjp2sXe8M2rYWuM+JyDaH7XZZhtEWRL3OwWYZtmsYhtap\njLAK2m6tMRu4xzllM7d0Y547fk7QXpstPQdt5pKzLbeZA/Zq6Lgvr8PcTG1tbvYyaDMH7tXQ8fla\nRERERETkqFHQbk5c39UbuUCOeC4wZcrZTPGJMmZKLtgEeCYadCHQt/KqBSPG2jQsWgCvAZhklGSU\nLlC6iMdYA/YctgGWEXae79zutdZNfBmywzJs16HXNRHbWsiOwVvV15ZBu1alDXdWQdtW1e05EK8H\nbXzVim0esr0M2MxP21lRnp8T1m6vHiulBWz3Og/cV0F7NTR+/Thz9X698dmq6/hygreIXLXM7EnA\n86jfHH6Ku7/rkE/pknzwgx/kxhtvPOzTEJF9GIYBgMc//vFqhnYR7ne/+/GGN7zhsE9D5MhT0G6u\nOzEHbcdzwadCGTJDGRnGQvFMmZySa+AODhu1vTcWAykZloyQ6vJagTqcO0TD55DdRzy1qrbVudsw\nt6pdXdOuw/mCdqjDsZ1VB2+zGrCXQbs9J4QarktpFwejzp+uVef1ec5t2zlorw01Xw1XX80ZPzdo\nt0C/fCGtSr4jB5c5WPu8pNla0zWsNWazteHic/CeK+kO5PolwzyuXUTkCHF3br311sM+DRG5CK2p\nkojIgVLQbrrFot7IpQbt5JSQKaNRBsgdQMYsEKwQHRZd5FiKHOsii+gsIiyik/pASDUUB3zZAKyU\nQimBYuBmtcv3cgh5m7Ntq6r2emXawqqaXYN2aMtk1aBdh4yX1kwMVsPMW1dy5hrzWtC2VagF8GKY\nQ3Bbza/G2nzrVdCuO13ddp8Hh8/rYre6tM+Ps3wcm8elg7Wu5vNSZqsh6DvOa9mgrW2zXBpMc7RF\n5Cj6xMM+ARHZlwG4Dbg3oIr2hZ2kdvMRkf1Q0G5i1/4HG70NH3eyZfJglMHIA3gokApMhQ7juj5x\n3SJxoo/0odCHQmeZlMC6utyW4UxeyKUw5UzGKBiFSLGAB1tWt1f51PFW0Q6tSdg8bHyubhev63Ob\nlxbKHayshp+3SjbUBm+roNw6gltkNcO6dVAPqxxcg/aqodk5Xcnas1bzsn0ZppdfGPi529RQ3NYM\nX/5T/3e9vszXcvT82jrixrxBWYb0eQ1uEZGjxQAt7yVydXgT8DDg5YCW97qwGwGN2BHZLwXtJs5z\nc4pj2eu1ZfIC8gBxBGImTI5Fpzc4vtFx/UbH3TY6epvoGElMxFCok7VrYBzdGUthnAqTF4o52aAE\no1DX2DaLeGgZ0hy31tTM2vrYLfiuhpG3YdjWFuqyVWxddfSeg+r60mB1nevQgvZ6Bdnn3bSgvQrb\ncwu0c1eFX972+sXA3NStPjY3elufh74Wtm01P7ssk3M7h9bgzZzVUZdl7DoGfnmeIiIiIiIiR4yC\ndmOx/ipqZbgG7VgCsXNiD6kHC07sjFRgIwSu2+y5frPjbps9HQOpbJF8m+BTW6cKMGMwZ8BJXhi9\nMJVCzpnJQqtu17W3C4a3UFvs3AZhsN5xvJWVzbBz5jmzDNnWQvdyfvVcpV7fx3IY+np38Dndtm2t\nDTpfC9v1OMtbrSlb+4KAVdF5Obva10J6u72sZLdzrkPOV6/DWjM5m8M1pVbv3c+9iIgcDfmwT0BE\nLtb9gWe1axG5WsQY55tH+rNXQbuZh1nP45mttDBoAYuJ0EHXRXrrWISOY6nj+mMdJzZ7Tmx2pHKW\nOJ0hTmcIvr3sjG3mDBgjxoAzkBkdhlwIZSLHxBQ6iBkLkRJrR/LaybzlyTbvuixHcLdgy2qO8xx4\nfR5ivTz+3MXbMCtry4CthqPX+dqs/QIAq8F/VTYObVh4aF3IV4uRrY69/tPata1n4jl8tzN0r7N9\nlo3S6ms6twHa/MWBgrbI1cbM7g78MPA1wAOAO4C3Aje7+4v3uY8HAN8DfAXwydQ1B28FXgX8krv/\n2T728UTg6dRxosep47t/B/gZd3+/mf192/fz3f3JF/Mam3myzp14qogcjvsDP3bYJyEiF2ktaB/p\npgEK2k0uq85dyyZdbeKyxUTsAn1csNkf41i3yXWLDU5sdlx/rAXt6RRh6LEhEHLEPBN8wsgMxWu4\ndmcomS0vhDzVwBp6CBlCBzFBSngCYlwLq3NaXusq1tLqcph4W+7L10L2/GdvWbM2I0YIgXptcdlk\nbWltberlfO9lBXxee3v9NNaGrFOWgXu+ZzUnez4TX+67dh2fM3Nb9quUHUF7rsyvz9FW0Ba5GpjZ\nZwOvpP5tdn7DLoAvBx5jZs8DXn2BfXwLcHN73vqb/tOABwJPMbN/5e4/vcc+fhl4Wvtx3scDgWcC\n32RmX8VqkI2IiIjIJVPQbvL816vCOfN/a0U71Ir24jibmyc4sXk91x87zvWbHSda0I7DAtuK2JZj\noxHKSCgDwUfGXBhyYczOFoUw1YZqZXIsZAiZEhyPXivpbkBsa0232viORmn1PFcV7fU1qaG0wF3W\nAmurinsN2e51GnlwIwRfjhBnGYTXQn5jzE3UZr6Mzk5ZzscuRu2IThtO7utbrg0ZZ5563UJ3qZ3Z\nl3Ox18K22Sp8+zJoH+AfABE5UGZ2Avh94H7Ud+tvAi8EPgB8BvB9wLcCD9pjH0+grrENtRL+XOAP\ngQl4JPAj1HbBP2FmH3b3m8+zjx+khmwH3g38FPBGanB/XDuPFwPHLuX1ioiIiKxT0G7OXRHazi3i\nzrdjIHYdabFBt9ikW/SkRU9adAQfYDoLscdy13qLR8gTwSDVJbNreC0OwQmhMJDZziMhO1OeyD6R\nS71YCliKGLGuiR3WlwJjWdmuFeT1V7BqYnbu8OtVB++6DreBT1AKzrwuGKu53K07uVkkhIRZqtfz\nb2kO1KWtM26ZXAq5ZLKtjQwAmIP48guNHZXp5drYeVmlX7644Mum56u55Gv/0UTkKPrX1Ba1DvyI\nuz9n7bE3m9mLgZcBX3m+J5tZolayAU4Bj3L3t61t8joz+23gtdSK+XPN7EXufvvaPu5LHRfqwDuA\nR7j7h9f28Roz+z3gFuraPvr6TkRERA6EgnYT1sLjzNdaX7t5HWYdE7HriP2C2PfEriemBZa28LiA\n0IN1QMZ9XO4rttBuAAVCgeSwnTOx1KHko0XGMmHTCFOH9YngHW6JYhH3gIe2JNicQ23ttrfGY/M6\nXcC5c53Bgi3X8HIypThupS3hFbBQh4fX7uaBECIhdMTQteu0bNAWMJwWrMtELhmbpvZX1VqRLoB5\naVVoVsuHzXOx5yp8C9m0hmfz/HOYG7nRhrj7somb/koscjSZWQc8mfoufeuOkA2Au2czewrwTqA7\nz26+Frih7ePHd4TseR/vMrMfAH6dWpH+NuBn1jZ5ErDR9vGMHSF73sdr29Dy7724VykiIiKyu3DY\nJ3BUtNnHrdP3ag1rs7l7OBACISVC6kndgthtENMGsdsgpA3CWtB2izihLldldV50itAH2IxwLMJ1\nEY6R2Swjm9MWi+Es/fYZ0vZZ4tYZ0rBFGgdSnuhKpvNCwkkGySAGW621vbwd2sWIMRBiqNftvvmL\nhFrRLhSfyGVcBuVcSmtQNle0EzF0xNjRxZ4+LejTgkXaYNG167Sgjz197OhiIoVAsLDsGm6+HqTX\nLiV/3H3eLpRa4fa503izXEs8GBbrRUSOnIcBn9Buv2C3jdz9VuAVuzz82HkzVsPHz+dFwEd3PGfn\nPj7o7i/fYx8v3OMxERERkYuminYTynnKozYvJz2H7VA7dYdQ16IOkZASMXV4THhMECIeAlbCsjw+\nV4BrVm/rYkdIhVrathpCzQ3LLZCWhEeva2vHNteZuga32zz7ug4lL3NP7rYOdz1YaA3EVuXuWtW2\ntULwapkwJxAsEUJHiIkYN+jSgpQWpLigiz2phe0QjNgCL+5MZSTnOtx9GLcZpoFh3GbMI1OemPJU\nO6znGu7dvbZ5b83PvDil5DoEvf08LxlWz7JW131ejszOGUAuIkfPg9duv/4C274OeMJ57p/nbv+d\nu39otye7+2hmbwa+jI+f7/0g6v9J3nKBc3gbMHD+yrqIiIjIRVPQnpW6DFudBrxcR6suhx2M2KrB\n7oWSMzlPuCcCTgxAhBIdSzUYz826rCxXwW7Ds2tAbf3OSBEWiTac3AlkoheS12ZpORQKE547Stfh\nqaOkhMeIh3axQDGjBKuNyFjvQL72mpYJu4Z0swAW25cGiZg2arBOG3TzpauBu48dXVpVrGMI9XeC\nkz1TykT2zDBusz1utevtej1ssz0ODOPAOI6MeSAXarDOrYo+V9PzXMWGeV65F8NLIJTQliWz5frg\nInIk3WPt9gcusO3799iH7+P5AO87z3FhVVW/ba8nu3sxs9uB++7jWBdQgPvsY7vYLiIiV4uTh30C\nchd38uRJTp688J+zYRiuwNlcOgXtxvLUblitWM+zm62GbQ+hXruTcyZPE3jthp3a35dyBIuOJ181\nzg6t+uqroG3zsHSHroVycydmJ5ZCLEb0WgHOQybnkZI7Su7xlJeBmwSeAiU6JYQWtOcVpwullbfN\nV3Ob55DtbljosJCw0BHjgq47Tt8fo++O03eb9N1GvaQFi9TRp0SfEikGUgx0MbRO5v8/e+8fdFua\n3XV91nr2Pue9d5IJBRMyPSShAMFfpCRKysKgUAZ0UoQpAfmlCEGBUbAUQaWQUDixsCiTKlBTlBOo\nokbU4jcpfiRRCBpCSoyhEE0IFqVYMEnHjEmmu++973vOfp61/GOtZ5/z3u7bd2a6M30zWZ+pZ/Z5\n37PP2T9u95357u9a3zXCqWZwOt9x2u44bSfuzrc8uXvCk7sntLsnCLe4Qd86boMxnDGMPjo2bC9d\ndzck74kA3hR3oXlc4146XkK7KH408FbTFH4UpjG8qa4viqIoiuIN+PCHP8yHPvShd/o03jZKaE+m\noy0So6REEaJcualAuzjaY/RwtG2gYrTm0BxpHqK3ebQkW7ixss/mCrGtKnsC99qiKn0BFnFaN5o7\niznbGHRr9N4YfcX7wA4DN9tnfHuLXvBwtJXRlOEw3BmeLrZcxL6j6RNrCu0j0o4sy0OO62dzPHw2\nN8d3czw84Lg+4Hh4wM165LAsHNfGcV1YW+PQlHUJh3m65y6WQvuW0/mOx3ePOSyv0XQFV2xA3wZw\ninLxYfQ+2Hq/pJWbgV0LbcdNc0UPumsIbdVS2kXxgnIdOvZ5ROL3s3iWi/xDREHOJ+Iyv/fqM0+f\nx+cRI8CeiYgoF/f7LSEivOc973nufq01WitHuyiKH328973vff5ORfEp8MEPfpAPfOADz93v/e9/\nPx/72Iv/ULuEdqIZCyezmXr2N6sj6kgDaaBNkJZ92k2R1tAla8AXjdUEH1HKnZo2XWXdZ2FHQFgD\ndRh2/1xwGr6XUIc8zoRxIllc25IzsFdYb+BwgMMRXxc2G3SPZVnC7rN5O8d1IQ1pR1SPaDvS2g2H\n9eFlLRl81hYOqhwUVoEFY4nhYRHI7uksS3y3txUBmjRUGk0aaztwsz7gwXrDw+XIg7Zyuz7h7nTL\n3emWk8NGZ3Nnw7DZG+9Zcj8Pxgxxk7xtJbSL4gXlOiH8S4Bvf5N9v+QZv/8u4OcAP0VEfsKz+rRz\nDNgXE48Vv+upt7+bEOE/6znn+0XEXO237J6/733v46Mf/ehb/ZqiKIqi+DHHSy+9xEsvvfTc/Q6H\nw6fhbN46JbQTvU6v1hzphYXDraDuKbIFbYosii4hsrXdF9k0xRpIjxCz2R+9l47nYRxg2B5oluZz\nJqA7zWNElrrRyAC0HOG1rjesLqy6ossD9Pgu9MFDON5wtsHmg7OF0DZPhx1B2hqzsNuKtiPaDqge\nae3IogeWdmDRA2sL53ptjaXBqiGym3vcHnfEPCR3lnELAm1FRVnasoen3awP+aybOx6uNzxejrxr\nOfB4eZVH2njs8GQMToC6gcllJng+9NBccy64u2M2fy6K4gXkbxBu8o8D/jXgD7zRTiLyk3jGHG3g\nLwO/kfg3/dcDX/uM/X458DnEX6l/+an3vgX4MuA9IvLl7v5Nz/iOX/eM3xdFURRFUXxKlNBOpqM9\nxzP7nEMt4Wgr09WeY6VauNktBLe0Bu3K0darsWCQfd/gNt3sNGl14KIpoOfM64jIERxNURmCGXw4\nmHBzYxwRjrqyrg9Ybj6b9vBz0Afv4mQhsk8+6OaYOcM9nPCc+63LgZZCu7UDKgdUlPmfJUvmF5G8\nJI9FPnSwxrwIcUW95dztENkAthoP1gf0m87WOw+XI4+XA4+Xlde0cQCW3pHzKUV29GAPI5LQL6Ho\n2Y/t6czfTyUviuLFwt3PIvJHgN8G/CwR+ffd/Z5QFpEG/CGenfT9DcD3EbO0f5eIfLO733OsReQL\ngK/JH5/w+jFgHwF+D3AA/oCIfMfTzriI/BzgN1N/oxRFURRF8TZSQjuR7Pfdx2NNWgo9FXQR2qK0\npdEWRZcsH0/LVTQV4ZXA9vCRw63OEC+/nrolDafHiC6fa47AIoLSLL/SepRVu9L6xtI7a+8chrEY\nrK4oC00XFnVWZq92TtMSRdcjbTnEth1obQ1XW5YsBY9ycN2FdWxVPZzlfBAg6WpjeV1u+xiuOQLN\ngbWtmBnDIkl9xTngLGZo3+B8gvOJJiAY7oOu8aDDssx+//OQqIH3dPbr/xcXxQvNVwO/Avh84D8T\nkS8m5lX/APAzgN9OzNv+Tt6gfDzHdv0m4M8TjvW3i8jXEC71AL4U+B1ExLcDv93df+ip73hZRD4E\n/KfATwf+hoj8vjzmEXg/8TDge4HPAt5D/cVSFEVRFMXbQAntZJYr+yW3jEjsTtHoIbCXtbEcGuth\nCbGd4toB81jDYJjHGo4qaM68BkCiV1s0uq/NG92UbQhjwOgwBvuIsCBKppERwvx8ot8+YWsryIKR\n5zgcWxa05SguWcIxbzG8W9uKLAd0WWltiVngKjE2K6z8S/m6hLM+nx8Ijsp03R2wuFGzB3z2TOd3\nSV6viiIKh2XFDzfo6Eg/4+c7/HyHbGday3MQ52ydIc4Qy0Flcf1k6vv1KorixcTdXxWR9wN/ieiT\n/tW59l0IB/rbeL0TPb/jG0XkK4EPE0L4q3Ndf0cHvsrdv/4Z3/H7ROQLgQ8CXwD8wad2+QGi/PzP\n5s93n+AlFkVRFEVRPJMS2onJfaEdS3P6tSI02qq0tbEeQnC3pkhYsbiQY7X8ykWOsm1moFfY2ul6\nC7ji0hmudJNYu9j2/TSiqj2TvQHxzjif6O0JIg2n7UJ7MdDDA/QoLMcV2oLIArogbUGWXG1FW0M1\nHhbMHmtJS38K7RDXcY9kCmyxODHXuGKDaTvn84kYHxZXnmX5DV9X1I6sGDo2/HwH5ztkO6HR+I3L\nYBnKJkZn0MVnoTgw+81zldAuihcad//bIvKPE87zLwG+EHiNCEv7enf/EyLy69hrfN7wO/6oiHwr\n8FuJfu4vJP5a/D7C3f46d//u55zHbxaRbwR+C/CzgYfAR4G/CHxNOt/vzt1feSvXXBRFURRFASW0\nd0ZuRWQX2lEKHmO+REJkL4fGui6sa7s42lz+X2KM1gqRPV1tUqx6yvY4kIL6LpKvHe2ejvYUuxci\nHM3dw9EWDVPZwVxwi7U+hFVW1uUhTRsiGXy2rDD7yZcQ2XI1l5prF5qr5w33rtDzv0P0X/0azONB\nhWUw2i7ic3b4srL6DaZCGz1E9vkO7SdEHRfD6TQTzgxOKMLYj+rEfXVzbI44K4rihcbdPw78zlxv\n9P5HiF7qN/uOv0+UeL+V8/gLwF94o/cylG0Gqv3dt3KcoiiKoigKKKG90+eILZt92pEW3jRmNzdx\nxjC8DzzVsJ03tkU4K2y3d5xuz5xuN/ptx+4GdhrY3WBdYF2Ug3vO0CbLrYXhwjDJcvN4bS64X8LA\nEN8Ty8k+6Clgo2/ZwDo+Tth2yzi1PXzNljukrTEze1nRdUEOsfV1pS0rLCtCuzj4mYwu056G3eq/\n+NbpfscMrn3/eGe/wBhRNn8rIE1RX2jryno4cDgcuTkeuRsnDn1hbcqG0BHUrx5MILg7IoKLx4OB\n+1PRiqIoPlX+lavXf/0dO4uiKIqiKD5jKKGdbCm0PR3jCOESlqa0prg2bBg2DPrAt441oatzxjjd\n3nF7e+L2buN81/G7ENt+Mo6m3Lgj4izXLmz2dHcjS8e5CkSTORXsEqQmmoFq0Tc+S7vxgduG9XMI\nbU15agPNHm7J0vF2OKLHA+14gOMNeri5uPf3jhOnGEXkMeYMVyTVrfilzF4uzwDyfEL8h+Odxe9T\niWtDFmjrgWU9cDweGecjx37g2BvrWVlcaW7olZ9+7baLZlDcTIoviqJ4BiLyEHi3u3//M97/YuCr\n8sfvdPfv+bSdXFEURVEUn7GU0E56DwFpHgFclk6sLY3VDZozuuM9XG16Z5yhi3Hyzu3ticd3Zx7f\nTqE98FMIbXNDMFQbNN8dY0hHO8X2MMFMcNe9QDt3gyzvFtWn+qqno72Fo90Vwek28LFFf7Yo0BBd\naA9uWPoNPm4Q63Gc1qC1mBN+JbrnsYUU2WJI9l57mum7uJbrsPY9HQ2ffdwekl2yXH062uNwwI5H\njtvK4RyO9mJCc4lWcN9PgumVC4TIrtLxoiiez+cC3yMi3wB8M/B/AidibNiXA/868IB4fPeWytOL\noiiKoigmJbSTXbNNG/mqQ3mO43IzRt8YpxMbjc2UkzWW0Tidbrk7n7ntg9MwfBjeHetzZpYhMrAF\nVLIvWoQ+PMLPLEdw7dp6lol7poKnwG4t1rJerYXWMj0cwuHuZ8wdUDxdtM1SHwAAIABJREFUZZEG\ndgI7g51RjKaCLzkDfApmvVbNOU88x3rtt4nZrR37yNXrS/M28RBA9HKDZ1m6KtqUpbVYqrFEaBJC\nW0XSUZ/TxS+F5LvgLoqieD43wK8EftUbvOeE8P4N7v7tn9azKoqiKIriM5YS2smyxK1wuJSOIzmT\nOkSs26CfT5zsEbd9Q3tDe6P1xt35Mad+ZsM4i2Bc+q8Zjm+Ge+fYjaYaS4TzNujDIuTrSmSLEMK5\nxWpNacuKtoW2LDkP+0hbb9D1iK43yHpEl0OKUsfHxjS8cQdRhnSgwzijOEOE0RQVAT/SyETxK7G9\nh6HFF8V377o6Jbh7lpVnmfgU5nFD9zTy+asL4X6Lg5rTcqkL6joL1/OKSloXRfFJ873EPO/3E/O6\nPxf48cAT4P8hxo99nbv/g3fqBIuiKIqi+MyjhHaytMutyHHSMZpKWi7FbTDsjtNmLHpHS5Gto3HX\nz5zHmTPGWWKwa8+ScO8RCubD6C2d26YsKpy7XQltnxlsORYrVmtCWyJArC0rbT3Q1huW9YZ2uEGX\nI7ockfWItIUxBjYGNjpuaZUPS0HcYWzQz3SB1hRbGtay/zoDy0Iwyx57vgec7WXh5FzvCCzzPSzN\nr/aPBwa70J7k3PH5PeG3O+pzEYs5Wk32kLY55kv82lEviqJ4Y9y9A38qV1EURVEUxaeFEtrJdLQB\nLklggnjbxR4j3OfzOKMoOhpqC2qNkw9OPji7sYlwRthcOFukZbsZJrCJcWjKmmvbBlt3RprFU5Cq\nZNp503C0U2gvhyPLemQ5PEih/SBEdjuEmy0N/ISPHn3bc1bY6BG+ZhuMM97PqMJYGmNZaEuLEWRN\nYYme7ujt1gwhu57jRQaeRSKaZxm8i6ShrZmU7nlNU3RfBoVdf4/giMfaHe04MirhmMtMW8vPesns\noiiKoiiKoiheUEpoJ4f1UjrO/mrGfmeKtsJw4ZxzopUQsGNrbBinXGc3zjhngZMqZsY2nDt3jhgH\ndQ5qrKIxLqwbbr4LSxWlqbMsC+2wsBwW1sOB5XDDcrxhOdzQlsO+RBsu4D7CObcN9w4+gJGvO26O\nDMcYyNiQRoaqOXjH+gm3DXyg6wFZFmRZQRtgIW3dcRuYGWYRGCe6ILLECDFtsTtCpJmxJ5O7X70e\nZ7AtxpJZjwcDc1lnn9ctjqOYSCwn5mh7VAAURVEURVEURVG8aJTQTtZ13oqLgHMct+zZztLuITle\nygFXxhA2UbrAhtMFzgxOOGcRTqr04dwNWLqxmnMU56DCQQZtGM2MZs4K4aI3QRXaurAcDizHA8vx\nhvX4gPX4kPX4ANUIRRNdAMHcMR9Rgm4hrGHktmPewQ0bIwQuimiMHIMe4tw2YpQXNL9BuaFlr7Zj\n+1xsGz3L03ukiesa39VAW9w7JcrOxR2X2XzuIbIFGBs+tjxuimvboqx99L3PGwmxbcyxZ/HnUUK7\nKIqiKIqiKIoXlRLayXS0ccexENdumDhmzsgwMHNnc2MYDIfNhPMmDBVMY7u5cRLnLoW2YOgAOTvL\nMI7AETgIHAmX+ygewd8iiEJbYgRWO6TIvnnI4eZdHG7exXp8EKXUEj3QZo6NgfeBWTjY7uOeo+30\n2JrsVd9TiLudIziNkSFskUAumUguqpFk7pZCe8O2jdE33MGaoQo6s9KIWdwzmxzs4m4T4t7tvIts\n30V2Cu6xzUb1cOrFcNHd0barBx9FURRFURRFURQvGiW0J361uR5PBenEOmhWkQM+w7XFsRSEln3K\npoq1BVbAwIYyegjj7oNhRnfnbIZF6hfRGi24CroobVXa8cj64OFl3bwr1uFBlnGH8KV3sIH5YEyH\n2Ecc/F5vtV/ceXOsnxm9oVv0aY/tyNjuGNsdui7YWGlTuFuIeLPBdjqxne7YTndR8t4ijE3bTfSQ\nH47ghs6ANSxnbXvM4hbHtlOsfs61YWPD+4aPkfeTS8m4REK65Zi1crSLoiiKoiiKonhRKaGd9D7y\nVSaEX42xcnLUlQjSPEuiScdVwnVVjfAwVcShubLQcFkZvmG+MEbH6PSt473TB6gbirOIsCJ4a8iy\n0I4L681D1oefxeFdnxVO9s1DluND2uEGHx2zDR8pgnHMe4hVH+AhaMP4nmFlilwHic0JXkLM+nZL\nMb1hs3faO5hiY2OMzuid0+1jTo8fcffkEaMbS44Za8uRw4OHHB48BH8XbWlZmh5CWySEv4hh59sQ\n9ec7xvnE2M7YtmG9x7onsoUhhqGMWWlQjnZRFEVRFEVRFC8oJbST3i1fRen4xQXO9K4s6SZnOodA\nnf3Lgqviu9AW1BuLONKczRe6LVFybRt9CN1ButGasIhwEKcjuC7IukZf9oMHrA/fxfFd72Z98C7W\n40OW4wPaemRsJ7wLbI6PdHzT0Z6juHLCdQptjZJtsUxV34d2hyCfDxh8MEanjZ5iO8rLx9jo20bv\nZ863j3ny6BWevPoK/dxZD0eW9YZlPWL93RGmJoAfiJ7vmLEd5xNl5ON8m2J7iux0tXehPUU2mGjM\nJRcLob072kZRFEVRFEVRFMWLRgnt5NrR3pc4orrPcJ490dMlhiwVF8LN3oW20vJX2gQfDesNtoZt\nip0dc8OHsuCsIhwEBlF2zrKghwPteBOl4g8/m8ODd9GOD1gOD9B1xZtg53Ch2c7hqmOYD4QYj7XP\nC5NrsT1/L/uDgn2L4z4wi/A0txHuuGkEoPUz/Xzi7u4Jt49e49HHf5jtfOZwuGFdj6yHG/CBiNOa\ngvd01f11Yjvc7FM42tuJ0TfG1rE+YmUZvmfZuIlkIJpH4nm62kVRFEVRFEVRFC8aJbSTi2YTLq8E\ntxDZ4jF6iwwsix1yQvS0uDX2c7i0R0PGbKcwT7k5XBgGXYVusBlsQximmCnmDfeGM9cCLKAN0RVd\nBot7nNNMAk9X2OfoLbMMDYvjuii0mNGNGbqsuZbYrgu6LLRliUTzpunYO8OMbRh32+D2tPHobuPV\n2zPb3R2H8+CwnDmsd3tgmnhn3BxpS6MtSlvaxT0X6L2z9Y3ztnE6nTmfO9s26JszBphKzPQmQ9X8\nMiMsp63hVo52URRFURRFURQvHiW0k12zySwOB/eLk02WMqvL7hLPPmfIXZzQhfv8be5lqrncF9rd\nU2QL9AHdoJswXC8C2xv4AjSQBrIgutCWAyqRCu5ujO3Msh4Y2ylKr58ODJMYt4VHCby6h7BOcT1X\nWxbamkJb4zOOM9w598HdNnhy6jy+O/PakxPb7R2H5cyxNQ5LSwXcETtj2w3r4cB6PMBxjSRyFUSV\nPlJonzdOpy2FttG7Y5aevGTiOVcPKszA4jCls4uiKIqiKIqieBEpoZ1MR1syVTzGUwEe5cuCoJqv\nMwCNq2AxFVAHSSHuEba9i22f4l0iGmwA3YXNJGdwh9geJphrrourTTraIgvogipIa8CK26Cf7miH\nW9p5jaAwBiPTxePBQZSNzz5zFWjr+npXezrai6IanzGgm3Eexmnr3J43Ht2dee32xPnxLccmnBsc\nVZAU2Won6A/wBw/AHyDyIM63NfDGGJ1t6yG0z1eOdneGZXyaaDxYiD+Zy5+Hk/PCf6T/qSiKoiiK\noiiKovjkKaGdOCO3IUvdZSruEM9IlGBLlDVHnNjVyCxVzB11Q9B9VrV59E4jRpi0Ak1ynlfDxRmi\ndDE2h9Mw7rbO7WlD7k7oeoesT3BRDgI0yXZwR8XRdIilNVTD7RYdIA2XFuo/e8zn0uzZbuuBdjjQ\nDiu6rrR1idndy4JowwWGG+cxuDufeHx7yyuPHvPKoye8+viWVx/fcX5yx4Mm9AajEQ8AGIifsR6j\nwmyc8HFClgO6rMi60s8bfTvTR2cMY5hjnl3c+URApKGqaD4YUEDVsOtKg6IoiqIoiqIoiheMEtoT\nyTA0B5siG8ikMyBCz0SjfDzahWN0lbujrogNVDV7iTP72wXDcDGkObKAroIeGtoXpis+cM4Od73z\n+E5o4pi0PQBsZGI5dEQ6rWn0MC96Sd+O9LUQ283Qlud2LbJVwqlWCZG9rhfBvR5SbC940xgZNjqn\nbaTIfo0feuUVfvi1V/n4a4945fEt290dY1FsEViU1u7Crx/nTBS/y+CzB7TDDe1wpB1v6H1g/RyB\na9mC7Sq4trj1rSGLok1REVr+UZiBYmhmqxdFURRFURRFUbxolNCepND2LB2fjvQMMnMycXyGosnc\nwcCjr1hUEZv12VcC3SPBnBTasipyUHQ0xByzDBtz464PlpMhtu0i23O2NXREB60Znu6zyBqOOkTi\neQuRvS+f7dlxfq2F0NamLIcDy+FwJbgva4gwcPoY3G0nHt0+4ZVHr/GDr3ycj7/6Kh9/9IhXHj9h\nnE7YQfG1IaYIAx8n/KyM88o43zDOt4zTTYwou3nIOkZc87ZhYwCeIjsC0BwuIntp4WTjtDlb2+Nh\nh1GOdlEURVEURVEULx4ltHfCFXaJ3t892ZqLOz3He9lespypXPieTD7HaM0ochFNESxoA10EXYU2\nWny0O94HA+XsRtsGMgzfsjDdHWwgDNrirAfoB4AjIoY1YgQX7OXW6IKoIRrnphoPB6bAbkuL7WFF\nDwd0XdH1gCwLsjRoijlsNjhb5/Z0x6O7J7z6+BE//NqrvPLoEa8+ueW1uxN2PiO0yEWXhtCR4cjm\nUUs+Nhhn6CdsDNxCHhvK6Bvu09HOWeStxZ+D5qg0lRhXJrPTPEamqYOW0C6KoiiKoiiK4gWkhPbO\nVeTWxYzOXuyrJHJmyXgULsv1qK+ZNrbPrFZUFJZ0lVWQTFuTaPaOmdKmnLrggxhfZY6bodtg7Ru9\nL4xxxvoJ2+6wbcEjUww3CbEaH45U73kamtc0+7g1HeKlocuCrCuyxtbXxlAiWK2fuO3Gbe882Tqv\nPrnllSev8er5CY/7iZNvbOLYouANbwvWGkMb3kBWaCssa2NZldZAxREfYJ0xNlwa5sZAGbpgalgz\nxuIMcwbC5s42Bh1niGNCjA7DUIWlerSL4lNCRH4P8HsAd/f2Tp/PZxIvv/wyn//5n/9On8aPWt77\n3vfynd/5ne/0aRRFURTFW6aE9tP4U4Kb+yL7KgLt6kMX93qqXNEQ2qJKy/nbboKKZ7Oxgg3MOrY1\nugk2x1ZhmBjrOrjZOr2fGX1l9BPWV7wvWBd8EdxazpM2fNaJz6Vx7qIaLnCWYssc57VGMBmHBRZl\niNO94915fN547XTi0enMK4+f8PHb13jt9IQn/Y4762xi2KKIL9gSIrtrwxdBVmE5SojsRWkqaBTC\n49axvmGa6eIimDasLYzmWHOGGB2jm7PZCJGtjonvd7tpOdpFUbx4mBnf+73f+06fRlEURVEU7zAl\ntHfk3ivfB3LJHm5tzN7tCDATkQwmz1FUzLRsBYnxWKotWrY95LopIbRdwZWtd/ppY3PYBhF85s7A\nOB4GD3und91Ftm0Lvi0hsofio8X4sOloZ3216Cxjj1JraSG2Jd1sXVdkmY72gi8tR44Neh88Pt3y\n6u0trzy55eOPH/PKk0c8Oj3mcb/j7D0c7RaJ4LbolaOtyKq0g7KsQlvI0nUDH9FvPjaGg3nDRDFt\nu8i2BUbfUmQbmw9MHHfD1LNaoFLHi6J4kflJ7/QJ/CjkZWYLV1EURVF8JlBCO+kjHeq9KvzinsZo\nbNmnZs/Z2WFkX+Zs7yPAkL3HW32foB1C22GI4+qwOL6AL4qtC+LGMBges7RdF1zbXvYtkqO9JJPK\n3cA6fcx+6sHZB92MYYPu0Q+tDs0juVvcUDfUDPoWzwbcsdbobnR3Njce3Z147e6OV29veXS647Zv\nbG64xmgyXRfaENQc1ejrniPLyD5vFkEakbauRP94PpywPM7J4c6cu2HcmXOb6zScuxHX5OK4hmMv\nbaam614aXxRF8eKgwEff6ZP4UcjnA1UJUBRFUXzmUEI76SOfpD81M0okJmtLTvwyMriLnLktM5Uc\nyOA0AWyAiF2GUKXgdsuSaZzRCKG9KhyWqPi2howBDGRd031eaEuutqAtBOtwZwxjG85pDO5G5zw6\n3TqbDbr1mJctRPm2CYwRDwXcsTEi+VuVLnJPaN9tG0/OZ27PZ55sZzYbmIC2xrJm6TsNHdA03Pto\nnG54a1hrmEo8UGiONqAtIIpnovlmIa4fd3jcO09653Hv3G0jrqcbZ4sZ5K4OYmgLl7w1odWAr6Io\niqIoiqIoXkBKaCdbn8nd2ZM9W52nV53mqctlBNg+9iu3s78bzx5uhzn+SzJAbU8zz+pxW4CDImOJ\ncu/RkGHhPK8LurYU2SttWbLHWjGVmHNtg9Mw7kbnzkJs99HZRqePEXO/RWgW23DbOwxjY+PssOUM\n7+7hgneMcx9sY8S2D85mmAhtWfaxZiKOGiwZ+iYi+LKkyE6h3Xx3tUmHPh4SwNmN2+E87p4ie/C4\nD+764JRrGwPEwpYXoy3KOu93GdpFURRFURRFUbyAlNBOdkdbMkk8k7sVnbliAFcC76LyQnhfp5Jn\nH7d5JJTv6nrGqF2Syk0dXyQCyaTBsBiPZYasDV0yKbwtSGtoi1Jyc2cbxuaduz647RtPto27PoX2\noNtAXFEZIbQRzBwXxUQ4m3FnxmmEc9x9sKXQNvPoF7f5Oq5NW0t3vkWSuAktfor7tix49msPEUwi\nxMzVQVvGobOXvm95/Lsxonx8GCczTuach7ONnEFusV1wRB1pjpahXRRvCyJyBP4d4FcBPz1//T3A\nfw38V77PEHzDz/5k4LcCvxD4QqARNcB/Bfg6d/+uN/nsbMr9j939q0Xknwf+LeCfBt4LfNTdf+rV\n/i8B/24e66cBD4EfAn4A+C7gvwf+tLs/esbx3g38FuAXAT8D+BzgB4HvBD7i7n/6WedaFEVRFEXx\nyVBCOxmzR1tA1C+jvZQouY4I79zlKpmcS3iaT+HnlxFgu+iOxuTcb+aXX0S6qyKLo9JQdcIAFqRJ\n9CJnufpw6Obc+eDWjScu3PbBk/PG7Xnj9tyjP3sMxrB8WCA0H4h6lL1nkNhmHn3dw0JgZwjbcN8D\n3zw17uxJ38eUtbgP6sKC0lAaAqoMhLMJy4AFp+E0jCZCU6GJosy2boky8CYxY9wEQeMzsmBDgIG7\nRfCc6lXgXFnaRfFWEZGfSAjUf4L7zTNfkusXAv/SMz77a4EPA8enPvvTgH8I+DdE5He7++97k1Pw\n/K7fC/zOp77n+lj/LPDngXc/tc/n5vqZxIOCjwHf+Aaf/zLgjwM//qnPfx7wFcBXiMg3Ar/C3Z+8\nyfkWRVEURVE8lxLaybArR9vZdbUDrgpuiMs9cT3LzO/JPc+gtBTXTrrB5uEm3xOxDtZCNLYZdiao\nkUIbdPEYDZYC2QixfdcHj7rxancebzHv+vE5HO2ZXG7uWXUd3zkfIGRNPN2cbuEqd7MoRc/lcO+6\n9h70DCSbgjtC1qbQboAwUDaDE/EPWMNoGIemiIcrHX3juZrE+DEDWQRF0ewrd42AOfOB+2UmOCJP\nnWFRFJ8ifwb4R4A/APwFwiH+h4HfDfxjwC8Wkd/o7n/o+kMi8ouAP5I/vgZ8LfAtQAf+GUI0fy7w\ne0Xkh939w29yDr8M+CLgbwG/H/hu4AHws/JYB+CPAZ8NvAr8QeB/IpzsA/BT8pi/5I2+XES+lBDf\nC/D9wH+Zx/o+4H3ArwR+DfDlwEeAX/4m51oURVEURfFcSmgnr3O0uS/j5F4J+cwYB8UjKM0zKI3L\nf+1V4+4Mc8xIsW2Yx3aKSm0NVFFXNMuxdTWkGaKWjnYI7e4eQvvU+fip89q583jbeLx17sbAkF2Y\ni9ouskVtH7ENgrkxLFc6xvMaRAS9fpCQyvsypjtGhjUXFtpFaOc88LPJRVTjLBi6GAuKitNEUIXW\noFmKbcuFpshWaI6Z7N8bk9PK0S6KtwkBfjbwC939265+/7+JyP8A/G3gJwK/GdiFtogshJMN8Aj4\nue7+f1x9/jtE5M8A/zPwEvC1IvIn3f2HnnEeXwT8JeAr3H27+v1fy+2X5vc48Kvd/Zue+vx3AH9c\nRP49opz8coFxrv8N8b933wT8y+5+d32twDeKyLcBXw/8UhH5Mnf/lmeca1EURVEUxXPR5+/yY5GQ\n0VNOT6dZrlxUn1Jbrt7XnBnd0u1tEkJyEZZVWVdlXRvL2nK77K/XQ2M9LLE9LqyHlSXTxrU1tGWq\nt2gKbqEjnB3OwBnhjHBCOItwFthkvgdnnLM7mzsbzhBj4PdXOuF9F98hvA2J0d+X8d9puRveHG8x\n43qI0RmcPHqub3Pd9ei/PpsxhmE2EDeaGyvOUWFVZ1VozWmaa75uc2qY0haN0vV9TniJ7aJ4Czjw\nXzwlsuMN9x8mHGsBvkhEPvvq7V9COMEA/8lTInt+/u8D/0H++BD49c84h+gPgd/wlMi+5r1Xr193\nrlfHtDfoz/5VwE8G7oBf+5TIvv7sHyYEO8BXPusYRVEURVEUnwgltHfuC2cVQSTGVqlcloiy3za5\nsng1ypq1kSOohLZeBPbhoByOjeOxcTwuHI8rN8eVm8PC4bjkexqvD0uK7RDibckQtBTbroqpYqKY\nNoZk+Jjqvkw1w8iEIYSQFn+dYI7lkYAujrmF0z3Lz4E0lON9BVOPELdmuA6GxOo6ODM4eefWOre9\nc9sHt2bcDuM8onfcxwAbNIxVnKM4R3VWjZ8XNZoaKoaqpdgWlkVCbDfJZw5Ss7SL4q3z373Je38j\nt0KUZ09+QW6dS/n4G/EngVee+szTOPDt7v4P3uR7Xr56/SzB/iw+kNtvfRNHffJXiWv9OZ/kMYqi\nKIqiKO5RpeNPMWPOBFCRENiqqDb2iV1c5mhPoS0Sws8lInejzTv3ux77dVVO7g7qmdntyuqNgzdW\nb6yuISzXmBsdaePt4mpPka1+tcKFJmd++z6ibD4LuPRoi+Y+2Y/tdunPHuaoOvNqp5YVAdxRQrDP\na5rzzmyGvLnDiBJ3xVGJHu3jELqNKAEXp7lwQOgqHMQ5pNjunoJfZ7+4o3m/VSQc7bznRVG8Zf7O\nm7x3LUyvHe2fmdu/5+4/+KwPu/smIn8T+PlXn3kj/vfnnONfA/5v4KcC/7mI/BrgzxLC+H99Eycc\nojTegfdfpZw/j/c+f5eiKIqiKIpnU0I7Ec3u61n+nfOnw8luqIYyNYtyal4naC+zt6cCFLkKEUuN\nO4U2LhHuhSIeo7cWF5oriyuLtxTY5BxqjXNMRztGdHm42hLu9XSwXVLw7iLb92A3meO+Rbiej+Ue\nvzfP0DaZTxXijac/Px81uEj0m5shhPPtHgFw5s7izmLOIvDAoFvcw6bxQGIVuBG41Xi9CDRxmjh9\nFsnPpwVcysWrZLwo3h6eVUqdXAvTdvV6Jnf/wCdwiO+/+syz+OE3+wJ37yLyFcCfAv5RQjx/Sb59\nKyJ/lRhF9sfd/Wkx/RPn13wC5zq5+ST2fQq7OuSb0bh/S3+s8/LzdymKoig+o3n55Zd5+eXn/+/B\n+Xz+NJzNW6eEdrKsK3AJ+lKdfdaX8nG/UsshSqPc3GdIl3Gxf5kjvmAGo+3bOf7LQbHsu87vJ5xb\nE80S77ltsaTl+7vUxbAYf2XR/xwC+OJoayrkGdoW53Z/TWd6uu2McJPFHVNDrx8izEhyuRp0pnEf\nXMCaYjESnC7OGViBjYVNFrosEWhGCHAH1uEsYiggeW+mYJc8oKjsd2g/56Io3knern8Lnzmnez+Q\n+98RkS8CfnGuf44YIXYD/Iu5fpuIfLm7/39XH51q9puA//BtOt/n8LFPz2GKoiiK4jOID3/4w3zo\nQx96p0/jbaOEdrIscStmSfJ0TSPcLEWepwiUGM1lzN+l7lRQgxnTHcNhr0Z67WLbL4o3csfxKayR\nzOmeM69DZJukyE4HeyaQ2/xuM8wHNkYcc+a2SYwGuxfk5pey8at6eDySz2IrhIR3UFdc857MLbIL\n4DnjG5Xo9VbBFAZCz2C2BeHMysZCl5VFBFVHxFBxDsNYRHJAGLvoN/c41jS1ibne1+ddFMWnnR8i\n/pX8vE9g31mG/bz+6Ofi8fTyz+VCRD4PeD/wW4B/CvgniTT0X3b1sR8kEssP7v633+o5PA8R4T3v\nec9z92ut0Vo52k/z3vdW1X5RFMWPVT74wQ/ygQ984Ln7vf/97+djH3vxH2qX0E6mow1chN0U2ulu\ne6jOUKK+m8DxGYue7Ov527Mp29yu5mfbfRs5A9Y8A9ZcdJ9k7ZLOtgquyz2x7bujTY4LC0fbbaSb\n7amB50MCvRLY8/AX8b9rbvcU2p4l8nG94oo3LvXocaPY1fwU8Tn72lpI8S7KhnBy5SwrXVaGrJgK\nTY2mA2Swaoz0UtKBn462RVs6XHT17roXRfFO8V1EYNhPEZGf8Kw+7Ryt9cXEv77f9XafhLv/v8BH\nROS/Bf46IbS/QkSO7n7K3f4mkZD+s0Vkcff+dp/HNe973/v46Ec/+iN5iKIoiqL4jOSll17ipZde\neu5+h8Ph03A2b51KHU/6sFwx3qoPpw9nG8bWjW0b9J5r3zfGVY3huR30bvQ+GLl6H4xxWTaXPbUd\nnTE6PZO5tzHo5gwE4+JomyhGYzgMM3rvbKPHd9vAPS3pVNVXhewhrC2WmTOGY90ZHcbGZbs5Y3Ns\ni/e9Oz4i4AwDRh5ibvcB4rMKQGmqMRs8z7d7Y7PGyRp3Qzlbo9NwXZHlgLQVbSvSVqQtSGuItL0v\nXeR6Sfz+MhS8KIpPL385t8Kbp4D/cuBznvrM206K52/NHxfgx129/edy+zl88onlRVEURVEUnxLl\naCfnHi2Cch24xSyV9uxvjkRuS9f34uOG3os0bUFk942ZXdRRMm5cWce5zR7tPJ56i0Vja0p3YUgL\ncZ1bQRkmbMM4907fOj3FtttIYZrhbFwdEjJdPH624fmQAHp3+hZrbE5MMRNEHW9ylZQeZeHqEXwm\nOo1tQSWS2hGJ8DZifpiZ0k05m3Iawu0Q2hC8LRGi3oh/EpujzZFQkxupAAAgAElEQVSRo7vaiPT3\nOTd79r/PhwhSrnZRvEN8A/B9hFP8u0Tkm939nmMtIl8AfE3++IQ3HwP2pojIzwVedvf/6xnvr8DP\nyx8fcb9J+iPAVwFfAHytiPydN5obfvVdXwo0d/+rn+r5FkVRFEVRlNBOti2qCe+5piIwPFO7fQ/n\nihLwKbTlUjy9G6zZuL2LbXtqG0Jb8EwJtxgVhiC+EN3Ng80WhguDhsmCsVyEtocLv/XO1sMNn452\nHFrvnduscQ+xTYzxGjC60zv07eJq981pAtIcaaB72fulx9s8Hj6IewhhSGEvNFUif0iREf3kA2Uz\n5TSU2y4sS/Smr9pYFoHmcbzF0QHqgliEsb0uaXwmolf5eFG8I+TYrt8E/HnCKf52Efka4FuI2pcv\nBX4HEb/twG//BGZYvxlfBvxuEfk24C8S48A+BjwAfgbwbxJl4w784evkcXc/i8ivAP5H4LOAvyIi\nf4x4WPD3iMqul4ge719KjCH7t4nRYUVRFEVRFJ8SJbSTbXe0HcR2sU1EnnGdvDXbmpWrOdXzzd1l\ntXtiW6bITtE+Y88kR4iZaMyndsPcGUKKbMUk3WwJwS0Iw4RuvgvtPkvTfSB4hJ8bGagmu9OuIpEm\njoSjfVUu3jdndGNscXHiHs61z0z0mURO9qvPfmrL3nRBXPeHCPPaDcVd6C5sLpxNOXvjMEvim+LN\noBmiA2kWIlvnNkX2HJs2v7vKxoviHcPdv1FEvpIIH/ss4Ktz7bsAHfgqd//6t+GQQiSN/7w3eG/+\nhfMNwH/0Buf6v4jIzwf+BOFs/6u5nvU9r74N51sURVEUxY9hSmgnfZvTZQbX0jnCuv2eYz3D0iyK\no4GrBO/8iRSmqUqZbrZcfZdKlEgzk7xFoy+ZBrJAWzIEbcFkDaHNwpT/w2ZveTjaY2x0G4g21CxG\naGUZuc5QtD3BW0Jk93C1R3dsGKMb1g1pmWqOomLYmK69x6WoI+a4ppjXEPQRnNYQ13DnrUVSOwsu\nl4A304bpgumCixL14i2Sz6Jef38IsafAcy2s5epeF0XxKXD/CeKnsJ+7/1ER+VbgtwL/AvCFxDPI\n7yPc7a9z9+9+G871a4C/BfwCIlztfVyGVX8/8B3AR9z9m595Ee7fISI/HfhKYjzYFwPvIf5G+xjw\nPUSf959297/7NpxzURRFURQ/himhnfQepeNPz5aWmbml0X+sIpGOnW6q79ovx3ZNge1+Jb5n2rjt\nrrKmHS6iwBTCitIQWRBZQKfQXrN0PBxtxBmuDPM9PK2P7NO2DlciW2VuI6TMp+gWwQYXV7v7LrLH\nsHC8iT5sG4rszr4iYXPvYtuyPzvE8EA9ytvFDbEVcdK1j++L2eCaCepLzgjfck54hp/Ncxe7KoHP\ne76PFgMoV7soPlnc/UPAcwdVuvu3cplD/ax9/j7w2z7F8/iEAjnd/QnhVn/Dp3Kcq+/ZgD+UqyiK\noiiK4keMEtrJdLQtE7nnOK4ZwqUaAnvJFGw0xGWGbUOWfF9GeF1cbk9H290QgaYCLZOzzffZ1Dod\nbWmITkd7DedXlnS04//zDhf67mgPep+OdkckAtYk07pVL6tl8JpqCO3RQ2xbCu1IIjfMs9hdYtnu\n8l+LbMsRYhGwFk55PixA0fxUdItfZoObRDm86cWxd1nC0ZZ26ZNXjfvPVX82l/C1GvFVFEVRFEVR\nFMWLSAntxEYIbXcP4WmRpSMektFJWzv7j7OiPErAIb3e3c++V0Qe33sVNM4Ur5FUbgZjkD3bIbzV\no2zbpYGu0FZoLUdfOdoWtDW0NVpTltnvbJEMHq3TIYQjJd3wWUreUgirsCwzwExYprO9CK0JS4tt\na3mdejm/2M6J4XM7HywMZlycygBiVrZoXluTOHeNBwqxWj4YIMU7u0if7PPJp8AuoV0URVEURVEU\nxQtICe3ELUrHzUKg+vAUzzm/aorsXOrRY51DrC4yUwSbaWkAhCXsnnXT4pHanePBbDhDQsAOPMQo\nThOPYm1VaAvM+dJLyzTwFW0LrTWW1iK5XBcYzjAYc162X8aWmQiyLjSd4hp0DUHtBmO0eMgwIkxN\nWwjw+2nq2Vs++8vJhwv7DbiUzpsISk93vaFqqEJrSmu6i+0Q3O0qXfzpFHdSVMue/l5udlEURVEU\nRVEULyoltJPd0c7S8SgfD6HnQsyU9qu0cEL2KY4iUWJNVlWTjrWHB7vrbifdZtlzyEVAUmxDCnni\nZ0PC0W4r0g5Ia9Aamo52S6HdlhbutVmUdPcRM7+znD11b/aXg2t0YGtrKWjjIs2yjNyuw9ryBqWA\ndp895pdQNfMsuZ9Xm+PP1NmDzkQ6ooY2aLujrelkL1dj1S4iW6+qBeYt3Md67SUCRVEURVEURVEU\nLxYltJM9XCsFHimc9UrwSe43953DpmTOdZ6/E8BnYJfs//FZXO7hIDtpcgswnOiENoTBEItRX4Dt\nSd0zRMz3HmxVpWk42syQstyYZTK4h7sd4jVEsmqUhWv2cItonFM+YNgvRlI4O7grbhb95BmwBiDm\nec3poke9+qV/XbKnewaKa5StSzrZ95PGr9Pd/XJv5bo8nadeF0VRFEVRFEVRvDiU0E6WJazb3SyN\nFm20aSzNUutZQj0Rsn87f0yRPbOxo6d7ju6aLqyk+53l5Ewn2BAfSOt0OUeSuA26hTs9LOZni/ge\nvBZmu9BEwVvO7g4R3rSlo53uPMJhXTisC+u60K7C0sK6z2vyvRs6e84v5druFqnlmZTuSAhtzwRy\nc0hXPMruG6SY9itB7ftWLvdvXzkWbY5WS5EtU8zv11RCuyiKoiiKoiiKF48S2skU2vu8LpcM5bqk\njmcFechkn7vKJaXrYmcz+4mZc6s9BPLrwtHI4V9ueDOgg3eELUd2DboZ3Ty3AnoZJTbPKcR1OO+q\nURbeFktRGqckAktbWJfG2mb4mFy281wz0XsX2IC7pdC+3jfE+XAQg2FRBo8aDI9Z2tJApsiWENxp\nbU+R7VNwXwehZZq5pODeb+0sTbdytIuiKIqiKIqieDEpoZ0sLYS2yKX7ek/A5mp7PSsbzVdXjva9\nbw3RrSkixad7PUW2h0PtpNtt4APahojmXOzBcKO7MVwYbuEcu6VLncncKZZVBG1O83S9Z8x5XtWi\nmVKe4WPkgwSZJeW59fy87d+jl5FnU2iTvr3BsIhRF/VU3PNJRIzsuohsuRLZV2J73q658HSz897o\nVSBblqqXoV0URVEURVEUxYtICe2ktSmRZReS0TOc/dgp8q614BypvX80Zba73MvrsgwVM0un2Lkk\nZ88e7dwnR3TTRJgm8AwIC+c71jBnpNN9HsYYhsnAsN2UJ1O8NZfMcm2EMZ1u8RDIu3OvqMl9kb3P\nB58l6L4HobkLltdrJgzLbTagu+S1SpznNoxzH2x90MeIBwkmmBljDMbIeeBjo/cz27blxcw+8Pxz\nKJVdFEVRFEVRFMULSgntRFtsw72+Ko2Ge+XLu98tF1GsGY0trxPaKUA1w8lcMs3cM3RsWs2xnYI4\nwsou3z2FeHx3jO4a7nRzNjPOw+je6T4YPjLNewaezbFZmfINu1u9z/zOeHVRQcVR1YvQtmtn/JLE\nPu+Dp9iOpftccDPJsWY5LxzfRfa5d869cxgLfRiLWQruzrAeJfP9zNbPbNv53sMJ4N7DjqIoiqIo\niqIoiheNEtqJZov2Pst5OtqwlzJrCsw5R1qFDEjLXuyr+mfziwDdRXYmgbs5Jrb3GU8HehfYV2uf\nKy0XR5t0tHuubRjnMTjbRvfB0rI8fGmgEUom2tCmKfAz0dwdN1JIzzTwKP+egv6eo33lIgvT5dcQ\n1MSccXNwy1nimWmGO8rVefbBeQy2dLTNNIX2Gznap33cmplnmb3kn0VJ7aIoiqIoiqIoXjxKaL+O\nWdLt2WY8O4gvJeSS5eLXIvjaCXeXnK0dr/ch2/l5lxDVZvOIM1X7Mnorxoo9Ne4qHwJE+fec1R1r\nTKfbIkBMdG8n3+dou11K1i0F9sWxvopxcw3BnMLZrr/jdSXbBq7TG88Sct/d/Fk7LzinbXBqnVPr\nHLee5ePGsCh9HyPKyfsY9N7Z+sbWtzjHEaPHcHaRXTK7KIqiKIqiKIoXkRLaiU3Vu8u3OZbLL0JX\niVCumUh+9fk5tGsvbr5KIp89zeoxgSuCvGJc2EULR9l4S1d7Du8Wlat1GTWmraGa5eCqqCvqjQY0\nbTTRcLI9BOroA/SSQn5fMMsl0NvYS9khgtaEKP+OXVJMpxt+yVGf9zHXFPZzLrfBKisHXTnoxmFZ\nuemDrRtjeKzu9G70Pujd2Hr0dHvUnsfWr0ahvZU/8KIoiqIoiqIoih8hSmgnY+yDt/ZZ13AJJFMV\nFCI1e9rJT6ltv3oVVeSXN+Oze/x37jbnSKcmn+J4d7Il+7ND5atqCmzPbYpsTZGdw7+bKJpLXPBh\n4TJfl1tfpXbLJZj8klK+J4tLXrOF2HaJ0nebpeXzyg2Ey+8NbPheKu9GCOxcN+t0tJ1hcf/7sIvA\nvhLb4hIPN9LCD5FvFTteFEVRFEVRFMULSQntZIyLo73PniYDxTRUqaExs1quCpenw/qG/up1Yvks\nL78EeoHsVeUZh4bGYDFkD0GTPRF8OtqtgbaGzFnY2lA31FsMHROlidBm37jHOLA4l8s4r9dFis0S\ncTz3ifL1eK4giHuWxmeP+LAU2nHuSDrTWcI+hmPDsBH96Id24NA2jm3j1DvnWTo+PAR3d0aK7T5C\nZPdueVfCXXd3fDhmFmK7KIqiKIqiKIriBaOEdmIjttHDLJfRV9O9dsn0bGFABH2F+ttHf4W565ch\nYP7/s3f3UZZlZZ3nv88+59wbmVkFJRRFAQWKIqMtvmABgq8NqF3KoDI6LJlWS0EbR3otHaG1fRmx\ndI3NUmxZM9JryjdepB2HphFaQRSUFptmpHhRVNSWBkWKkiqoysrMiLj3nLP3M3/sfc49ERURGVkZ\nmRFV8fsUl3sj7ol9zo2qyMjfffZ+9jABPbPSWW2sVuNlzGFqdiKUWwqprF/2sXI8RPQhAOdbDtVe\nurMFjDoYdQjUIYzB2cu+2+Mi8ck6bx+6pY99yMFIuQpfrszw3PTNHEKeCl+F3PTNWLVGjwH6BDFC\nNCeaES2QklNVuQI/7J2d300IpSN6hYWaEBpCaDDryPtt5+OD5UnsFgLJnJACrpwtIiIiIiJHkIJ2\nEft87+MaYIC8TpqK0kHbVtOYhzXUiZKpV/tM+xCyS2A3K2udJw3NhsfJnYiPlWGzVdDuhkrvpGHZ\nUB4f98cuFXf3AAxBO1BboLEKx4meSNg49Rsr24+VsI0N+10PoTx3CR96meVrzRdYhdV68zrY+KbC\nsEd3jNBH6IMTg9EH6APEmK/Thpbtw40ctM1WITuEGgs1WFXeQAjj9mM4hBDw6OU1i4iIiIiIHC0K\n2sUYtBm6a5dwOVS3q1y9TUB0y23Hk5f9vsoqZc/1X/cEaei6XarPrKrQFkJZdm1E9/EGk6BdpVVH\n7mHbrBL+h5AezPIU8VLNNjdSCDTBaEpFO3nunt6X6/LSpM2HtdcGHmzLntpp0vrMVu3dxmxclf2z\nc2gPq/XcFuhDojfozOjHNxZKBbw0cqNUtL2E7FVVu6YKM0JoSsheVbSp8vcNEpYMD0NbdRERERER\nkaNFQbvo2sk85DLFO3cOH3qClzDs4CE3+crp00sWdxJD0PaxP9gYtEsgDhawkPK9Ob3ninNf9tAK\npeLtqRqbgfWlK3cq49mWf4ry7oB5YixPl725UszbZ/WpvAEQVluPeWLyRkEqU8wTwfJUcS9F/TBO\ndyc3Zhu+TyVEg+c3CcwJIVEN24j5ajq+hWELsFTOFUkp5vXW47r4MnDZgzzmHmtEgzxxP78mH16f\niIiIiIjIEaOgXXTLski7VJrHpmHkfaljidLJrexVDSX14jbuIr1qbFZK4+65C3hlIYfWcbswJ1gO\nv73nyvWwxZcFw2Ok6/L2V12XO3Cn0r07T19nVXpPuQt3iomUEiHkYGoBYsphvY2RPqUcsMcbqxuM\nITt5ojKnKvuFVyGvxw4WcuXcUlljnRukJRs2ALPJNPehEj5pCOc97j0pdaTYEWNHH1v6viLGlpR6\nvDQ5S6WZWoy5a3mMZQa5l27jrq7jIiIiIiJyNCloF+0izx23KhAqy/tVQ5n2nMuqHnNNddydC3JF\ne/h47IG2qs66O8mcZOAWVkG7rG6OqYTtFMcO4yEYXpWg3cWyDVbuzj1WfodbIofT0t07xUgMq72/\n+5S3ympjpCtBmyFoMxTdfQzaySPuaQzX9XBfGXXleRV4uU6Gdd6l+gyMFWzK94bypkJ+NuKpJ1mf\ng3bfEvslsQ/E2BFjj3ss24eVRnC9E22Ywp7vrQRtU9AWEREREZEjSEG7aEtFu6qdqh6abAXMUmn0\nVaq4w/RxX1Wx8VXIZtqfq1R2vayDxowwtg/Lkb1PuZrdx1LRDgkLiVRHui7Rd+W+j2WbLFYLyVOp\n7Jbp4amPxBjHgEtwujgJ2jGu1jybjdPch/tpRbsOUFVGqqCuDLzKQ47rril7bOemb2ma/yePx3AM\n+Z0K73PYTqWi3ZeKdt+NFe1UKtqpNILzEqydVLYYy1PkTTlb5EgysxuBV5D/GHi0u3/0kC/psrnt\nttu47rrrDvsyLtq1117Le97znsO+DBERkfssBe3BUB2dpMRgNuxqnadNM0wLd8oC7lXoHr58y5ZT\nOYzHvMU0MeTgnSvleVq6J8qU8LEunoNk8rJHVg99h3ctqQvEzoihInZtuXXErqNve7qup+97QmlK\nFizQJ6eNkWWZOm6WclOxYXNvz9V1dx8rySklYmVYgpSMlFZbkMXVdwFIq8w/fOts9SqS59cWyzh5\nu7Tc0dzcIUVS7On7tlS3W2Ls8NQTSDTBmQUbv7/utpotoJAtIkdQSolbb731sC9DREREDpmCduEp\nJ2QvbbmHRmOhdNM2C6vF18O+2eNy4dVWWOWIbLIddwwlIA7Nut0J2Biyp0GbErQtJugj3nd435H6\nadBeEruW1PXErs9Bu+3p+g6zQAj5mnt3uhjpUqR3p7JACIkQwpaLNXeICY85bFs0Uh2IyQie13wH\nKHtrD43OfKzsj+uyS4D3sq92DtulA3vwsehvJDzFMoXciH033jz1mEdqg1np9u6pfK8owbvci4gc\nPY847Au4CLcB6bxHiYiIyN4UtAdDaEs+zrzOW1bZ2DXctx3K0AE7raraw17a08BpZYstCw7mefo1\njAF1bHK2uphc0U5pW0UbUgd9CMRuSRrCadvRdx1d29N2fd4uK+TGZdGdrqwBTzgeAlUKWPDyVsLw\nusGHoN0nrApEz5XniBEsd1WPlq83eRrv8/TzMsW7NJIb2pK7D5PlA54cC7miHdzBS0W7gz7manaa\nVLTr4DlopzzRPmKk6GN1XTlbRI6eAHzssC/iIlwHqCIvIiJysRS0i6pUeKsQyr7XpaZdKtYplhXH\nZc3w0JTMyr7W+ckcsssM6S3bg3mZZp2GKnf5J8VITLmJWT5rIlgFqVS93alwzCNeQmlnRtct6buW\n2PfEGIl9IvaRvncIed22m5Fwes+dzb0E/jAU58s661Cq7NW4znyyHRmlw/m02Xe55aC9qmYnL28Q\nBMsv1IYp9cObDqls5xWJqafvA11nLC3RdR1939PHmJu7lbXYYfx+lWr6dI346p0JERERERGRI0NB\nu2iaBoBQBaoq5H2u3XLIpuybPbYSH/8PM6gs70edcs+0stHVZAq55+p0/jg3PRsaecXSLTymsgc1\nFW4OVQ65IRh1MKoAeE/sIy2eg3bp1B2HBmLDevFE3nLMjOR5a7I0NG/zoRqdu4lb8HFLsWBGFXID\ntBDK50J+HMoS62Fv8HyzVWIvc+c9v8QyjZzSxCwAiWiRSKSnpwuBZYA6OE7Psmvphtfi0zczhjcq\nVluGYVYq55fivwQRkXtl63ocETnybrvtNm6++Wae//zn87CHPeywL0dE9inGODwMex132I70xV1O\ns6Zm1tQ0dUUVKkIoVdjS0Tv2kdhHUh9JMeJxaOxV9pgOpQJcbkMFNs8Wz8d6zF+b+p4Ye/q+I/a5\ngVnf9ZPO4qXyXKrKdWVU5rj39LGlbTdz0O474jDm0KnbydtiRSeWAJ9KhXhcV51WHcYNJwSnCk5T\nG7MmsDarmDWBWR3GkD9Md98Sshn2M1vdxrXUZRZAviW8H7qi9/QxryVv+5ZFt2SzXbLsO7q+v+c1\nswrceRKBjVPjLVRYqA7nPxiRY8zMrjKzl5jZX5nZhpl9wszeambfcgFjzM3sX5rZ28zsNjNbTsZ5\nrpmd94f7YsYws78zs2Rmv1Y+vt7MXmlmHzazhZld6EJl/WEkch9z2223cdNNN3Hbbbcd9qWIyAWY\nBO0j/btXFe1iVpdvRamWjvkxrdYkW3nayJVg84CVgG0h77a1SqND064ybJkKPVSVh3XdYyCOuWV3\nCqkEYcB93FILEin2dHQ4LW23pOtbYopEz1XgxBBGGR8n8zEbj43Sy5TuYdp7KHtl29hlvXRYn15/\nuV91AKd8g3zLvY/X4ENT9tUy8JSnjsfY0QWo+oRZJHlFF3u61BNTzEHdV9+DlaHZWpnWH/Q+kcjl\nZmafC7wNeBir8u0ceBrwdDN7BfCO84zxhcAbgUdNxgC4ehgHeL6ZPdPdb79EY6z+aDR7PvB/sfUX\ntjqCiYiIyL2moF3MZnnq+DgLmiGw5s7ZcWyQVsL2WL0GC3lZNFUO6GGyLhlYbedV1myntGqC1lvK\nzcNwhl22Y3K6PrLsOhbLBeubG6QUCKGnqnqclo3lgmXf03siWT53SKF09B66g6+Kz8nyNdUhT3Wv\nDKoqUNVGXQWqKm9hNtzytlx5WvtQDfdYOrNTtvAeA/X2QG7jCw9DWzkzQnCwSLKeiNN5haVAiiHv\nJV7eNPCyWXh+kyGM+4J7yFPuywZh5QgRuVzM7Erg94BryX8U/CbwauB24LHADwLfCTxujzEeA/xn\n4AHA3cAvArcA/wA8GPgG4PnAE4E3mNlXuHs86DEmngR8O/D3wEuB95J/N37Ffr4nIiIiIjtR0C7m\n8xy0U6mkpjLN2ig5L5UwbJOwPaxdLsk2jLtbWWkytrofQnleru15endKedswSrgsm1Cn5PR9z7Lt\n2FguWd/YIMZACB2h6nHLn2/7LgfTIYTWYZzyPrxj4GZllne+0FAK9hVGVRl1PQnbFsoU+ECMEeuh\nL1X3cep5abI2fTNiCNvlrOP/5TcXJrcAhIRbRyTSeYAUiISyxnw1eyA3brcxaHswSIlUAnbeU1tB\nW+Qy+wlyW2oHfsTdf3by3PvN7HXAm4Cv3WOMVwEPJAfar3X3u7Y9/zYze1MZ50vIwf1XL8EYg38C\n/BnwVe5+ZvL5d+3xGkRERET2pKBdDBXtlPI+0nG4t9zgrKzYXt3bZJb5MM28rCHOBea8l3WuHodx\nvbW705c11H3KG1W5572iU8p/e42e8BhZdi2biwXn6kAXjRA6rOrBOhZ9xzJ29Kwq2mZGNfQLK6Ed\nCwzzw62sHR/eLKgro6oDdR3y4xCoLd/3fQ7qKSVSJFfiY35zYNgjexxoy6xNG8N2rmKX25aKdiSW\nufkpBSq3oefZuDf50EttrGiXaeNmjCFb23uJXD5m1gDPJf/Af2BbyAbA3aOZPQ/4MNDsMMaXA08p\nY9y4Q0Aexvm9EtqfzbaQfBBjTC+pjPOCbSFbRERE5KIoaBdjIbjs/5yDYsAckhkpDAucwch7eFkA\nq3KWnVZ3jdy9uzKjtlAe53scquTECurkmEWs7Awdo+dmYp4DeRcji65lfRnoEliIhKoH6+k80qZE\nWdpdQi3jlmRDkdls0jysBO3hDQMrFfdh267kTgyAp0lTMi/V/bzuO21ftD1+kMcc8z2rHD4G73Ju\nGLqfW96GLFjuVD6GbBvXmk8zvFl5bcM6bRW0RS6n64FPI/8Uvmq3g9z9VjP7feAZOzz9DeX+b9z9\ng+c53zvIIfmJZhY8ryk5qDGm/sHd/+t5xhERERG5IArao2Hqcw7QwUujMA+kAO6rVc9DezEb2ooH\nSqOzPO18mCZehbxsux626CpTqKuU13xHL2HeElii63Olm1jWb6fIsu8IS1hGCFUihISFSLSybRfk\nSm8Z34cmbENoZZjmPlljPnnNXqZj9ym/xxDL8zEm+hjpY67uj43RpunZhu/Y0AVua2V7+PTq2dVa\n7qEi7QYMe3InVo3gxqtcVa5tOH+Zlq6Ctshl9fmTx7ec59h3s3PQfkK5/5wL6OrdAA8CPnmAYwwc\n+MA+xxARERHZNwXtwocGs5YbeOXKbMCByoeInUrjr2Eqs+OBcWpz/ieN08SrYNQGdchhuwkBs5Cb\nq5Er10YO2ZAwS3QWcU9lHXdk0UO0SB2NUHne97rc573FVlO0rcrTxFPplE4sbx6M09xt7GSOe2ks\n5njMATuWgE7Za3vY03rY13r4/owD2iS2b8vYW7+5vnp+8pxPnhrXrce8Vt22Va3dVwHbMLzci8hl\n86DJ4x07gU98YpfPXwMX/B6ZAycPeIypHaee33tOvsTzqTiau5JomyMRETkct91227622+u67jJc\nzcVT0B6t/t42NO9azU0uk5592LIr5bBtjlteO+ylsGJlc6zcVKw0HqtsrGqHYCQCVQnauYN2Kvta\nR1KCGPIC5d4jHhPRjVAZoco7WoUKqhqqOu9xbWWxeKhyZZuYp3mvwu0QUKevhtKZrexhU9Zgp5S3\nF0vj2wbb/j47djvLt7EFmnl59dv//jvUs3f4cLzEHOZjyuE+zwrIU91XfdS3nn7rvx8Ruczu7YSS\nIVn+GfBtF/B1tx7wGFO7dSO/CHcc/JAiIiL3czfffDM33XTTYV/GgVHQFhGR/ZhWfh8KfGiPYx+6\ny+c/RX6/7Ip9rK/ezUGMcSmMFX/b55uA+z3uMNx+++1cd80mvw4AACAASURBVN11h30ZIpdU27YA\n3HDDDcxms0O+GhGJMfKQhzzkvMfdccf4hvaD9jrusCloF7/9G+84un/jERE5fH8+efxE4J17HPvE\nXT7/fuBLgc80s2vc/XxT0C/VGJfCZLLQ/gr++z3uMKSUuPXW3SYBiNy/TP7SLiL3LUc6vyloi4jI\nfryXXNW+Cvh24GU7HWRmj2D3fbT/E/AC8i/G7wd+7F5cx0GMcSksgTl5Nc5RCf8iIiL3R9eQu1Ut\nD/tC9qKgLSIi5+XurZm9AvhB4IvM7EXu/tLpMWZWAb/MDntolzHeambvBp4E/Csze7+7v263c5rZ\n44DPcPffOcgxLgV3P3UpxxcREZH7FjvKU9dEROToMLMHAH8BDIt3/x/g1eQK7mOBF5L3234Pefq4\nA492949OxvhM4E/I66oM+G3g/wX+ltyY7Brg8eT9sr8EeKm7/9C26ziIMT4CPAp4lbs/9+K+MyIi\nIiJbqaItIiL74u5nzOwG4K3AtcBzym08BHgF8MflfqcxPmxmTwH+I/A44H8EnrnToeV296UYozjS\na7tERETkvktBW0RE9s3dP2hmnwf8MPAsclX4LLlZ2i+5+2vN7EZWIXenMT5kZl8EPBv4ZnL1+yHk\nrbs+BfwN8F+A33L3P71UY+x1jSIiIiIXQ1PHRURERERERA5QOOwLEBEREREREbk/UdAWERERERER\nOUAK2iIiIiIiIiIHSEFbRERERERE5AApaIuIiIiIiIgcIAVtERE59szsUWb282b2V2Z2zsw+ZWbv\nNrMXmdmJAzzPc8zs98zsNjPbNLO/M7NfN7MnH9Q5RI6TS/mza2YvNrO0z9tXHtRrErm/MrOHmNkz\nzOwmM3uzmd0x+Rn6tUt0zkP7vavtvURE5Fgzs2cCvw48gHvuq23AfwOe4e7//SLOsQb8R+DrdjlH\nAn7K3X/q3p5D5Li51D+7ZvZi4MU7jL2dA09z93fcm/OIHBdmlrZ9avqz9Sp3f+4BnuvQf++qoi0i\nIseWmT0e+E3gSuAs8KPAlwJPB36Z/Mv5s4HfMbNTF3GqV7D6Zf+HwDcBTwKeB3yI/Pv4xWb23Rdx\nDpFj4zL+7A4eB3z+LrcvAG45gHOIHAdebn8P/D459F4Kh/57VxVtERE5tszsHcCXAx3wFe7+7m3P\nvxD4OfIv6pvuzTvfZvY04G1ljP8E/E8++eVrZg8G3gs8CrgL+Ex3v/vevSKR4+Ey/eyOFW13ry7+\nqkWOt/IzdQtwi7vfYWafDnyE/HN6YBXto/J7VxVtERE5lszsieS/qDvwK9v/ol78W+CvyO+4f7+Z\n3Zu/bL+w3PfAC3zbO9zu/ingh8uHVwGqaovs4TL+7IrIAXL3m9z9ze5+xyU+1ZH4vaugLSIix9U3\nTR6/cqcDyi/nV5cPrwKeeiEnMLMryFNZHXibu398l0NfD5wpj591IecQOYYu+c+uiNw3HaXfuwra\nIiJyXH15uV8nTyHbzR9NHn/ZBZ7jicBsh3G2cPcO+P/I1bcnqvomsqfL8bMrIvdNR+b3roK2iIgc\nV59Lfsf7Q+6+vRPq1F9v+5oL8U92GWev89TkJk4isrPL8bO7Rdke6BNmtiz3bzezHzazqy5mXBE5\ncEfm966CtoiIHDtmNgeuLh9+bK9j3f00uXIG8MgLPNV1k8d7ngf4h8njCz2PyLFwGX92t/vqct66\n3H8l8G+AD5vZN1zk2CJycI7M7936oAcUERG5D7hy8vjcPo5fB04CV1zC86xPHl/oeUSOi8v1szv4\nAPAG4N3Ax4EG+B+Afw58LXn99+vM7Jnu/nv38hwicnCOzO9dBW0RETmO1iaP230cvySv4zpxCc+z\nnDy+0POIHBeX62cX4Bfc/aYdPn8L8Boz+xfA/w1UwK+Y2We5+36uSUQunSPze1dTx0VE5DhaTB7P\ndj1qZU5eE7p5Cc8znzy+0POIHBeX62cXdz9znud/CfhVcpB/OPDNF3oOETlwR+b3roK2iIgcR2cn\nj/czXexUud/PVNV7e55Tk8cXeh6R4+Jy/ezu182Tx191ic4hIvt3ZH7vKmiLiMix4+5L4FPlw+v2\nOrZ0FR5+Gf/DXsfuYNqIZc/zsLURy4WeR+RYuIw/u/v1wcnjR1yic4jI/h2Z37sK2iIiclx9kDzl\n8zFmttfvw8+ZPP6re3GOncbZ6zw98LcXeB6R4+Ry/Ozul1+icUXk3jkyv3cVtEVE5Lj6L+X+FHD9\nHsdNp4O+8wLPcQurZiy7Tis1swZ4Mvkv7be4e7zA84gcJ5fjZ3e/pnv2fvwSnUNE9u/I/N5V0BYR\nkePqDZPH37XTAWZmwHeUD08Db7+QE7j7OeAPyNW3rzazh+9y6DcDDyiPX38h5xA5hi75z+4F+N7J\n4z+6ROcQkX06Sr93FbRFRORYcvdbgD8m/zJ+npl9yQ6HvQj4XPI73i/b/o63md1oZqncfmKXU720\n3NfAy7dPdTWzq4GXlA9Pk7sYi8guLsfPrpk9zsw+a6/rKNt7Pa98+I/Ab134qxGRC3Ff+r2rfbRF\nROQ4+37ylNITwFvN7GfIla8TwHOA7ynH/Q3wb/cYZ9d1mu7+djP7TeBbgW8s53kZeZrpFwA/Cjyq\njPFD7n73Rb0ikePhUv/sXk/eG/vtwO8Cf05uwlaT13V+G/A15dge+B5317Z8Inswsy8DHjP51NWT\nx48xsxunx7v7q/YY7sj/3lXQFhGRY8vd/9TMng28hjyF7Ge2H0L+i/oz3H39Ik71XOBK4OuBfwo8\ndds5IvBT7q5qtsg+XKaf3QA8Hfjq3S6DHL6f6+5vvpfnEDlOvhu4cYfPG/Dl5TZwYK+gfT6H/ntX\nQVtERI41d3+TmX0BuUL2DPJ2IC3wIeC1wMvdfbHXEPs4xwJ4ppl9K/CdwBcCVwGfAN5RzvEnF/M6\nRI6bS/yz+ybytPCnAI8HHgo8mBwI7gT+DHgL8MqyJlRE9me/nfr3Ou4+8XvX3LUrgYiIiIiIiMhB\nUTM0ERERERERkQOkoC0iIiIiIiJygBS0RURERERERA6QgraIiIiIiIjIAVLQFhERERERETlACtoi\nIiIiIiIiB0hBW0REREREROQAKWiLiIiIiIiIHCAFbREREREREZEDpKB9H2Fm/9nMUrl95WFfj4iI\niIiIiOxMQfu+w7fdi4iIiIiIyBGkoC0iIiIiIiJygBS0RURERERERA6QgraIiIiIiIjIAVLQFhER\nERERETlACtoiIiIiIiIiB0hB+5BZdqOZ/b6Z3WZmm2b2ETN7g5l9470c81FmdpOZvcvM/tHMluX+\nXWb2k2Z23QWOd5WZ/biZ3WJmd5rZWTP7azP7ZTN7wuS4YfuxeG+uW0RERERE5P7A3LVb1GExs4cC\nbwSeNPn08C/Eyv3rge8Efhv4qvL8U939HbuM+WPAjwFr28abjrkAftLdf3Yf1/hU4DeAh+4yXgJu\ncvefNrM0PO/u1fnGFhERERERuT+qD/sCjiszeyDwduBzWIXXjwDvApbA55ED+LPY597ZZvaLwPeV\n4x04V87xj8C1wFOBK4A58BIze6i7v3CP8Z5MDvgnJmPeAvwlMCvX99nAT5rZp4Yv2+/1ioiIiIiI\n3B+pon1IzOxXge8qHy6B73X3V2075gnAa4HPAFpyuN2xom1mzwZ+k1XIfQXwA+5+bnLMFcDLgW+f\nHPfN7v6GHa5vDvw58Fnk8Pxh4Nnu/r5tx31LOVddrs8AV0VbRERERESOKwXtQ2Bmnw389eRTN7r7\na/Y49v3kqvJQLd4StM3MgA+RAznAa939OXuc/7eAbyxj/Xd3f+wOx3wv8O/Kh+vA57v73+0y3jeR\np7g7CtoiIiIiInLMqRna4Xgeq/XS794tZAO4+98CL5scv5OvBR5djmmB7z/P+V8AdOX4zzKzr9nh\nmOcOlwD8wm4hu1zjG8hT1Pe6RhERERERkWNBQftwPHXy+Nf3cfyrzvP808q9A29299v3OtjdPw68\nZZfrGaaYf/HkU/9+H9e465sFIiIiIiIix4mC9uH4wsnjd53v4FLVvnOPQx4/efxf93kN75w8/uJt\nz30Bq/82zrj73+xjvD/Z53lFRERERETu1xS0L7PSbXw2+dRH9/mlex33kMnjv9/neH83eXz1LuM5\n8LF9jrff40RERERERO7XFLQvvyu2fbyxz69b3+eYex2323hX7jHefq/v3PkPERERERERuf9T0L78\ntgfSk/v8ulP7HHOv43Yb7+we4x3E9YmIiIiIiBwbCtqXmbvfTe4MPnjUPr/0kXs8d8e9GO8zJo8/\nue254WMDHrHP8a7b53EiIiIiIiL3awrah+PPJo+ffL6DzewxwIP3OOT9k8dfus9rmB73vm3PfQBI\n5fEDzewe+2zv4En7PK+IiIiIiMj9moL24Xj75PG37eP4G8/z/B+WewO+3sy2NzfbwsweBnzdDl8P\ngLufZWt4/+f7uMb9vA4REREREZH7PQXtw/Grk8dPNrP/ZbcDSzX7B8gdwHfz+8BHyuM58LLznP8X\ngaY8/pC7v22HY35tuATgB8zs0/e4xm8Ann6eaxQRERERETkWFLQPQdkX+5XkEGvAr5jZd2w/zsye\nALyV3JCs3f78ZDwH/vXwZcBzzOyXzGxLgzIzu8LMXgk8a/hS4Id2GfYVwIfK4yuAPzCz7fttY2bf\nAvx7YLHb9YmIiIiIiBwnljOaXG5mdhXwLuCx5HAM8OHyuSXweazWPb+evNf1V5HD8VPd/R07jPl/\nAi+YjHeWPE39E8A15KrzsHWXA7/g7i/a4xq/lBz0T0y+5k+AD5L3An9SuX4H/iXw8nJccvd6H98G\nERERERGR+x0F7UNkZtcCbwSeMHxq8vTwL+aNwLcDv8N5gnYZ80eBHydPId9tzAVwk7v/7D6u8WnA\nbwAP2WW8BNwEvIRV1f20uz/ofGOLiIiIiIjcHyloHzIzM+A7yA3HvgB4ILkC/WfAK939t8pxbwe+\nkhxun7Zb0C7HPhL4buCfAY8GrgJOkyvmbwF+1d0/dgHXeBW5Yv1NwGeS13ffCrwDuNnd32tm1wD/\nWK7v7939M/c7voiIiIiIyP2JgrYcCDP7anJTNgfe4u7POORLEhERERERORRqhiYH5Vsnj285tKsQ\nERERERE5ZKpoy0Uzsy8hTyNvyBXtz3X3/3a4VyUiIiIiInI4VNGWXZnZI83stWb2Zbs8H8zs28jr\nvmtyyH6jQraIiIiIiBxnqmjLrszs04GPlA9vB94L3AZE4KHAU1h1I4fcIO0J7v6Jy3mdIiIiIiIi\nR4mCtuxqErSH/0hs2yHT/3huAb7lQrqZi4iIiIiI3B8paMuezOwJwDOBJwPXAVeTtws7R96G7F3A\n6939TYd2kSIiIiIiIkeIgraIiIiIiIjIAVIzNBEREREREZEDpKAtIiIiIiIicoAUtEVEREREREQO\nkIK2iIiIiIiIyAFS0BYRERERERE5QPVhX4CIiMh9nZmtA3MgAbcf8uWIiIjcn11DLhgv3f3UYV/M\nbrS9V/HqN/+0A2z/fpjZeHN3Ukrjzd3xcj8eC4QQyq0ihADYdEQgjweGe8In44Hnfzzlw3e5nuEc\nVRXyWAZYPk9KiZgiKaVy7Oprpra8Dvd8jIVyjoCVawVIcfW6kyfch3sHX117SpHk+ThwAkYo44Yq\nUIV8jznJI8njeK0xJWJMmAVCVVNVNaGqgeFawur6Qh4T4Mavf7EhInKIzKwHqsO+DhERkWMkuvuR\nLRwf2Qu73KYBe2vYtiG/bmHkDOz3OJ4SXKefd5iEVsrXTsfIg/oYWIfHww0Yw7m5DXEcx1dBmxzT\nU3kDIHkO2qmE3eSpHJdj6xCUcygePksO2Z5WQdsZw3V+AyBfn5VrJpUze8ICBB+CumPkYBwogT/k\na3HL5zMCIXi59uF7VN7YAFJy8gksB3oLeQwPuKXz/WsVEblcHPKf0w9/+MMP+1pEZB/atuWOO+7g\nIQ95CLPZ7LAvR0T26eMf//iQj450xVhBu9gatGH492aWQ7NN0raZ4Wb5GHc8DakZMCMlL1/n5bEN\n+ZZVInYSkzDNJGBTAvBQNU6pDG1jtdmTkXBCCc85sJdxfGsINy9fF0qYLtcznGO4hhACjhM8vzEw\n/JOHTPl6yUHbzMfvjYfyZkByzHL9OZ/DMJ+MFFZhGyCQK9t4qfqb59dWnh0CfnlJOOTqeDI8hC3/\nTkREDtmdwDVXX301H/vYxw77WkRkH973vvdx/fXX85a3vIUv/uIvPuzLEZF9uuaaa7jjjjsg/+49\nshS0txkCt5ewOUyp3lpVXt2PleuhaD0ZZ1qNxmzsPOc++boSXFcxeQjcCSeNU6vzEMO0bieZ5aqz\nBRiq2MP5rAR/W1W7twTuUmEeg3YapqsPFfoSjn1r0M5vCKRc4bccqs0huWPJcXPCMK07DNO9yeN4\nCfrDmwVAMsth2/NrMndCcFKC5OWWfMsU/VSmwFelai4iIiIiInLUKGgXw/RpWE39LjVUwBmWN2+Z\nJr6toLr6GptMH99aiV59UTkOYMuUbh9q6WNYHj7jnvJUbFIJp7aqnPtqvfVwmvF+PH8O66FU5LdW\n00uYtmEK93b5DYA8xnBPngKeWH2+rBsPoSoh3YZCfa5y27CUfIzhBEuTqfR57CFpuw0V+uF7P3xf\nhykEIiIiIiIiR4uCdhFjrhpvDdngHsj9be5ZPbWy7hgPq8hXHqyq1pR1yDV1Veep0ZMQnpuH9cRk\nQCphNId7JgE9lXKzbznHUIneOgV9fDNgDMB5XTQhh9OykLC8iMmU+LCqeBulMRrDNPMyP51Uwjtj\nyJ8G3hCqUnmvGGv4q0Xo9/j+lQS+ZRq4V1ClXClPqXyP0qrBmm0J7CIiR8cnP/lJrrvuusO+DBHZ\nh7ZtAbjhhhu0RlvkiLr22mt5z3vec9iXca8oaBcx9sBqSvcwdbyq7tn1e/VBqRBXOzVAszFMY7nC\nW1UNIVSrNccOfeohGimnXywEzByCY9FIFrBQrTqEp7y2m7ImmzSstZ5Up71UgsvU8RCMRCB4rqG7\n2VBL3/Ka8jru0mxs8s8Yz8v3JP9v1bBt/GZgBKvGmw3fg+k3DEoxv7yRsOUNhVUTtPGNCB+6o8ct\nndlXNxG5LzOzG4FXkH+gH+3uHz3kS7oo7s6tt9562JchIhegrPUUETlQCtrF1or2KmhPd2uZhsHx\n45Cr3kMAdltVq1fHlYp23VBVdakOl9zaB9whJCcRCeZYBRZyYzBLieCJGGO+kSDGSRgdrne1hnqs\nag9rtAmEkPJ1muew7balvmylRDx9jWHYTmvo9Oal+/c4F3zYhmxVuQ5hCNp1njZenlhV4ocO6V5C\ndhoDfhi27LLx2VL1T1uq2r6lA7qIyFHziMO+ABHZlxa4A3gIoIq2yNFyG2Vro/ssBe1i2GN66BQ+\nrZYOW2Bt34d6Opd7rPgOiXIIwKnkUzfcA0beH7oKubrddkuqbklrC6J35P+gIu4R89zBewidaXIO\nK5c3VoDLlHTGVd7T5mSrEGuWa9R5+62JEqy3NEEbOofb9ONVmMcTTsgvsHQOTzHgZsQInpzYJ2Lv\npJjG6d5mECrDKggVhJDvcaCavobh5W6vvg+Lw9UMTUSOGgPUdVzkvuF9wPXAWwB1HRc5Wq4D7tsz\nxBS0i2nQNvOx2/XwuXGv6WlVe5yqPZluPoZd8rTukNc3ewqQctBu6jVmzQma2Zx6uUkVNjFq+rgk\nppbkXd4yzMHGrbbIXcY9jttKh7Fh2ipc52njMMTTLV3Ay1ptG6rUY9IedswO2FCFHkN2GLuE21gN\nL/tqDx3JKevOk5fXmqeMx97p20jXRfquL9PYc9CuaqNuAvUsUDdhS9dzs6H4vZqOP+1BN0xTFxER\nEREROYoUtIuqylPEV6F6uv549fnt08dX1etVc7KhAGswVrQ95bBt1NTVGvP5KU6cOEVlDUYNXrHs\nAtYbfXRS6jFymddKxdw8QMrV3JKvtzQUG8vc45V5mbZuk/t8Zdvvy0eUedtlCfWw7rrU1UsTsuSG\npUkALo3S3CFFI0YjRehap11G2mVHu+zGkB0C1LPAfF7jDA3ichO0odP6OEvAyrr3ezRUU9gWERER\nEZGjSUG7CEPQHrf58rH5lm8tp24L2Tt9PpRKcOm+XW5YjdksB+3mJGvzK0u6rDCqPJW8dBz3NKxB\nzuc391zNHrbLKtXpEFZrnrcG7ck68kkn8fHZUjo2n1S2y6LoVcz1caJ4mO4RnsjdwKORohMjxB5i\nhL5z+t6JHbTLyGKzZbG5ZLFY5iniIc/4ns0r+pPzXJy3QFUbFYGypJxV0N76PV41OQ+l2i8iciTE\nw74AEblQDwNeXO5F5L5iKJByxH/3KmgX49TxUil1IoFA8gRlq6lc/LWxmDqdfm1jgzPLU7CtJliN\nWU0VZuXWUFUzqmpOXa/RVGv4zDAq6tDQ1A2LUOXp3W6k1I/bfyWGPbQD5nk1dTCjCmGsAA/hdFhP\nvWo8NnT7tjG0jttQT7ejnnZOD4aHSFUZniBS9rcmT6vPjcmcGJ2+c7ou5fvW6btczV4uOjbWN9lY\n32RzY5MQvARtZ+1EQ99HnLyOvJ5VNIBZRShd0500ubhJx/LxXmu0RY46M7sK+NfANwKfDpwFPgDc\n7O6v2+cYnw78APA1wKPIXSpvBf4Q+EV3/4t9jPFM4PvICzJPkRdSvxH4eXf/hJn9XRn7le7+3At5\njUV5l1YzbUTuOx4G/ORhX4SIXKBJ0D7S3dIUtIsq5H9hqfz7yjEvYclKKM0JL8fXoUK8YhZKes3B\n2awpQXsI1zOqMKcKM+pqTl2t0dRrmOWQ3TdrNPUs73dNrqz3sSP2HX0a1mdXmOf11cEClQWqsh2Y\ne1qt0y5l4aFR2lB4n+4PPs2vw+tIZZ11SimvLa8MPJLGqdx5EE9O8tzsrO+hXSa6NtG2kXbpdMtE\n2zqbG0vWz22wfnad9fUNQnAsJEJwTp6a4+6EEKjrmjm5+l5V5Q2P8ZyTTudjTX6ozusvtCJHmZl9\nLvA28t9mhz915sDTgKeb2SuAd5xnjO8Abi5fN53G8lnAY4Dnmdn/7u4v2WOMlwP/a/lwGOMxwIuA\nbzOzr2d4t1JERETkAChoF6GqcvArRd8wdr1e/d1r2J1qLBgPwW9oHEZgnAZuNcEags2oq1LRHqrZ\n5dZUa1Rhhte5y/iyakqQTaS+J7CkTUayhBG3VLSNQLBqErSN5GX2RJm2zrD2edIFHWzrVPhJXvXo\nky20DPeIB8r405uNa8/73mmXieUi0i4jy0VkuUi0y8TG+pKzZzY5e2ads2fObgnay+UaIQSaWcN8\nPitrtwNN46vmbpNK/RC2vUwvH97sEJGjycyuBH4PuJb8Q/ybwKuB24HHAj8IfCfwuD3GeAZ5j23I\nlfCXAn8A9MCXAj9C3pfn/zCzu9z95h3G+CFyyHbgH4B/A7yXHNz/WbmO1wEnL+b1ioiIiEwpaBep\n7Mk8NDTbEiwZ9ou23I28BL5ggRACIeQ12KFMFw/WEMKcymZUNmM2O8l8for57CQn1k6xNjvJrJ7n\nbb7GLbIC5mt4PIXh1KGm7Ra03ZKuXbDsFiyXG9TtjK5bEMpe26GsZ8YiwS1XgCd7YlOeJhlhDMy5\nGp2fSmUZdK7gOykH9rTa5iwl6Lqeru3p2lgq9jWBGjyQUo3FhsYCKXSk0JOsJ3iPd0636Fisb4Ll\nrcuwROy7XL13iF3k5Kk1Tl4xZ7lYYzavqBqoG6Oqy9p3Y9L9HBWzRY6+nyDvzeHAj7j7z06ee7+Z\nvQ54E/C1O32xmdXkSjbAOeDL3f3PJ4e828xeD7yLXDF/qZn9B3e/czLGQ8nzQh34EPBkd79rMsY7\nzex3gbeTN9FVRVtEREQOhIJ2MVR50zRcswrZTq7ykgwjARWhyi20Q5XXYYfQ5HAd5lRhTh3m1GGN\n+fwkayVsr81PsjY/wayZU4eKvM64jEfezquqambNfAzZbbdg0W7Q1A1VVbOsKrCEl9DqlCZpRMa5\n4KVJWl5WXUrweV8uLKWyBjpXulNO4nnLLk85cKdhu65E3yU21ls2N5ZsrLdl+vsaTZiXan1DXc2Y\nhYZk7XirWOI9JWgvcO9J3uP09O0yV9n7RN/2LK44wXJxknYZOXFyxvxExdrJOk/pL93Sww7LzkXk\n6DGzBnguObh+YFvIBsDdo5k9D/gw0OwwzLOAh5cxfnpbyB7G+KiZ/SvgNeSK9HcBPz855EZgrYzx\n/dtC9jDGu8rU8v/twl6liIiIyO4UtIvpntn3uOGlGVoiYliZoe1V3poqVPW4Bruu1qhDbnRWVydo\nwhpr81OsrZ3M97M1ZrMZs3pGXdVlx+2yd3cIY8ju5ydpS8huuwXNMlfALQQsBFLqiN6RUkeihOwh\ngZYtsrz0CrOyHZi7Ecua5zw1fPJGwuSWSKQEsU+kaCwXkbNnNzlzeoMzd28yq08yb5xZHVibzzgx\nr6nnazRrJ0lhQQoVKRiV1yVo9yzObRJTN96Wmw2pd2IbaZc9y82Odhnp2kTsIu5z6iowa+r8csJY\nqB92IFPYFjm6rgc+jfyj+qrdDnL3W83s94Fn7PD0Vw+HsZo+vpP/ALwceED5mmnQHsb4pLu/ZY8x\nXo2CtoiIiBwgBe1i3J15rJzmVOehhNKxjDpduz2sFc7Tx+uqoalzR/FZdYKmOkFTnWQ+O8m8Ocm8\nWaOp5zRVrtSGoamaeTlvbnKWQkWdGqpQUdc1TdNQVRUhhPFzfWzp+5YuLompI3lPTKVibKk0EStd\nuyeB1Cyvfbahoj10K/fV+uwUc+Btl07bJjbXO07fuc7dd21w+q51ZnXL2qxn3iROnQSurGnsBGFe\nU9mMpnJooKlnGIHUJ9plS0r9GLRJzkbYxB36PtF1kbbtWS47uvYkMZ7ASFhwmlmgdqOxgJdF9EMd\nXkSOpM+fPL7lPMe+m52D9rB2+yPu/qndvtjdOzN78L8bTgAAIABJREFUP/BPued678eR/5D70/Nc\nw58DLTtX1i9QAq7Zx3FVuYmIiEgWWe3Y9UkA2rblfe9735aj2ra9vJd1LyloF8N65kAoDcDy9llm\njuEYValwJ/BhE7Dp1+dqdF03NPWsBOo1ZvWcpplR1w1VqPN67hyxV1873CzkgnTIjw0nVEZdV1RV\noKoqmqZh3pZp5d2Ctl/Q9Uu6vqXrl/SxJdGTvBsr1viqk3re/svz+u5U4mrpRu7uxD7R95GNjY6N\ncy2b6x3nziw4fdcGd9+1zt13rdPUC+azJfNmk+UVHcEr5vUa6ZQTLNDUDcGMtfkadVXnddj9MDUd\n8Lz/drvscDf6LtK1PYvNJevnNlksNun6U7liT8faiYa1kzUWGqyyPL0fHxrBi8jR86DJ49vPc+wn\n9hjD9/H1AP+4w3khV9UB7tjri909mdmdwEP3ca592PN0IiIisk933HEH119//WFfxr2ioF2ESQdr\nt5DXLhtAhZWicO7Gne/HcMywJDoQqoqqbmiaOU09Z1bPmVVrOWhXJWhbNWlSttqbeyiY5/28A8Gd\nEIzKK5I31HVD3TTMuzltd4JFu8lycgvtJmB52y13zGMpVqcxYI8dvId1zsFzfzLz8vo8V5fbxOZG\ny9kzG5w5vcmZIWSfzlXtpl4wqxfMmg26RWLerHHlySvxlHJVvmlompr5ELQx+j6O5zeGoN3TdYnF\nomWxaJmtbzJba1i0p0iphRCxEIlpDao59SxPg0/uJE8kJW2R+4KL/UG9T/2gmxlXX331eY+rqmq6\nD6iIiMixF2Mkxrjlc1dffTWvec1rtnzuhhtu4I47jv6b2graxRi0J1PEgxuGE8eA6KQ0dMDe2pQr\nV8ArqlDlyvakul1XTelMHjC33Jxs2Nh6WFI9dAmfBn4CTg0kYtPQxIY+rtHHE8wWcxbLHOir0GBW\nkdyIKTc8c4+Qygpwz83OvOwRns8FKeVp8ql0/07R6bvIctnnrblOb3DXJ89x+s5znDm9zt2nNzhz\nep26WjCrN2maNVIPV568gs0HXEXXttR1XW4Vs2aW15VjpJjKFPm8x7d7yj9M3pHcqRZVrtzXga5v\nCVWimkHdgFWJegZrJ/J0+5giMaWxU7yIHDnTpmMPJXf83s1uVeQ7yX887qfKfO3ka7Zfx0PJW4Dt\nyswCq+r3RXn4wx/Oxz72sYMYSkRERHYwm80O+xL2RUG7aEplYdg328n7WbvlieMJxjXVIVTj9lnm\n4CkRY0/XtQRbYt5gqSLQUDHHI0RL9Bapq4q6CjR1INaBuq5o6qpUuofSjU3+P0/2Ng8EKqrS5Kxp\nhj2layxUWKgJoaaqGtpunbbLndBS6nCLOH3ZoozVmwNe3kRwzxXmzcT62Y6zZza4+1Ob3H3XgrOn\nF5y7e8livaNf9HifiKmjjU7f9TRVxZ13nmA2qzFzTp06xamTpzh56hR97HMTOQvU9QxImOW148lD\nrrZ7KJX9snVaTHRdT7vsWC5aFosla4uatm3ouo7gQ9DuFbRFjq5ph/AnAu/c49gn7vL5vwCeAjza\nzB682zrtsg3Y48l/fP7Ftqf/khzCv+g81/v55H2171PVcxERETm6FLSLadD2MjU5F55zVTg448dD\no7SQ987CUyL1PT0t+AJShXlNZXNq60gkeo+Yd9ShomkqUl2Rmgq8IQSoCWUK+diWLYd+HxqwWd6r\nezi2NoLVeXutqqEKw23GZhhCdiISSHSloVuevj1U4mNadVRPfWK5SKyfaTl95yan79zgzJ2bnLlr\nk/W7lywWHd0yknon0dFbX6bNJ2azCrNE3y940Kddzac96MGEqqLvI+7kRnH1DIgl7Me8bryE7KFp\nW/IhaEeWbZenlG8uWS6bErRnVECfemLsib51aomIHBnvJVeTrwK+HXjZTgeZ2SPYZR9t4G3A95Df\nGvwu4KW7HPc/Aw8k/0H5tm3P/QHwdOBqM/s6d//dXca4cZfPi4iIiNwrCtpFXktM3t4qJYJDxEtD\nNErcNkIo1eYSts1zs7EYe/CWlAKkioo5dWhpQg8p4jHvwV1ZRZzVpKbGU02w3OxsWLucTcI2OWwb\noVTUA1Y5FmrqKk+frqs8fTyEHLohh+y+68AhuJHKNtoMr8XALU9ON3c8RtrNxLmzLac/NVS0Nzl7\n14KNs0u6rqPvezwmUorEFEke6fu2hOwlG5vn6PqeUAVOnDhJ1/d5dnwJ2u497hF3w0pTOchV7ZRi\nvnmcVLSXbG42nFw0tO2Mvu9IlKCdOmLqL99/ICKyb+7emtkrgB8EvsjMXuTuW4KymVXAL7N7p+83\nAB8n76X9Y2b2FnffUrE2s0cCP1c+3OCe24C9CngxMANeZmbv3l4ZN7OnAN+HqtkiIiJygBS0izD0\nJysV61R6gwdb3ZyyxngoCbvjJFLsSanNe2ybkyqDWJF6Iy4t7xfdO6lzqqrm5Ik1Tp6Y42mtrFt2\ngjlV3TM0AXcva6lDWbs9VNIxAvm5FALmThWcKkTq4NQhEmyB+QxPDbHr6Hro+0hMHVUVCJVRBaPr\noF06y2Vi41zP+tme9TMd5+7u2DjXs9yIdEsn9kAyzCsqS2BOIuYp56mna5dsbq4TzNh8wANZLhf0\nXTu+hqZuWJvPiTHkgBydmEplvaxXt7K1GdRU1XBrqOuaUFVbmtVNt2ITkSPrp4BnA9cBP2tmjyfv\nV3078FjgheT9tt/DDtPHy7Zd/wL4bXLF+p1m9nPkKnUEvgz4YfJeWg680N3v3DbGbWZ2E/AzwGcD\n7zWzl5RzzoEbyG8G3ApcAVyNAreIiIgcAAXtYrVD9nS7rWFf7VzJ9i3HlinXKZJIY2DME6udfgnL\nKrJRdfRtom8jfZto6oYHXHkF6QFXUiZ4ly3DEqEKZT/r3CN81Vgsh00YQjfj2uZ8Cxh1vnkDqSb1\nNamraRewWEQ2F0u6fsGsaWhmNbOmpm2dxWZksdlz9kzHuTMd62dy4F5sRPoleMzT4AN52zE3w2Ku\niuc3CPIbDqnPgbvvOmLXEWPE3KhCoGka1k6s0bVG2+XvWX7dZYsudywEqhCoDWazOWvzNdbW1lhb\nO8FsNqeuG0IIhJCbxFUWMFfHXpGjyt3PmNkNwFvJ66SfU27jIeQK9B9zz0r0MMabzew7gZvJQfin\nym06Rg/8uLv/0i5jvMTMHgU8H3gk8O+2HXI7efr5b5WPF/t8iSIiIiK7UtCeGJqPYWVNNqwq2sHG\najMMa7kTKUFMeWssT4mUevBISyLQUrGgXfT5tuyZNzNi3xEMZk3uKO4p4SkSQsjrqlMOofP5GvO1\neZ4ubgEL+S2AHLZzyM7ruCvwCqMGGkgNHmtiV9NuGhvnImfPLVm2C06ccNbWjLRW0y6djY3IxnrH\nubtbzt3dsX6mY+Nsz3Ij0bWG94HgdZlqnjuGDyGb0kmcUtXvuiV91+Yp3rEvXdiN2azhxNqJ3LXd\nI33fjd/zYU18PjYQ6sB8Nmc+zyH7xNoJ5rNZfrMhVITgZfu1vO2aiBxd7v5BM/s8cuX5WcCjgLPk\nZmm/5O6vNbMbGfce3HGMXzezPwJ+gLye+1FAIE8r/wPgF939L89zHd9nZm8GXgA8ATgJfAx4E/Bz\npfL9gHL43RfzmkVERERAQXs0TkN2xj2np5XtYIYPs8bLYudcyXY8eZ4O3SdiH0ixx2OHx02IDYuN\njuVmy3KzZd6s4SlRGdRVYLFomM/yzYLRx7J1VUqcOnUFp644RUpeqro1VZ2nVQ97e+dLNTwZKRqp\nN/oWuiW0m87meuTsmZbTpzdZLNZpTzndqZCr3W1kfT2ysd6zfrZj41zHxnrPYqOnWyRi63jK68Ox\navxeQAWUYG+eq8tY3lYsJUgJjxGrK5q65sTaGldccapUoxMxdiSPeR9sz29S5Ip5WG2LNpsxm82Y\nzec0TUNV16WiPVTwg4K2yH2Au58GfqTcdnr+VeS11HuN8VHyFO+LuY7fAX5np+dKU7ahodrfXsx5\nREREREBBe2VYo22lyppXX4+hOzcRs/HeoGz55QQSFh1PkT5GumVHv1zSLY1uaSw2liw2WhYbLU09\no+9b2uUmG+vnqKpAXQfqKk8k71MkxlzRfuBVV3HVVVdx1VWfxhVXXMHJU6c4efIUayeqUslm3Bar\na3sWm0vWz21w9sw5Tt91ljvvvJu77rqb06fv5q7TZ1gs1llcEVluJtor8rrx5aJnuShrsTvPXcVj\nfvNgeO1Onto+TnPHqELugB6qwHwIxbMZJ9dOMGsaKjOaEDh5Yg3SA5nVDWfPzZjNKurKWN8I/P/s\nvWuoZeua3/V7L+MyL2vVWlW1b6dPFBTJJzEhBkniBU0+tARbopIbiuZGkCCC+M1IdzqiH0QjwQSC\nIElIghDxEkWDXzSEgGDTRAIJGrxAuj3Zu2pXrducc1ze93388LxjzFl773P6pPucfeqc8/yKcea6\nzDnXmLNX167/+D/P/38cBlJO5JLx2VGCo4irP0PW0X3ndaLABxXaDhX93lLHDcP43vC7Lz7+X39g\nZ2EYhmEYxo8MJrQXLpe0QaumRFapDWfR55zua4e6k13EgdME8JwK01g4HRKnQ2Y4ZE6HUY/jSPCR\ncVCR/Xh/D07OfdlSyLmQi9ZivfzgAz744AMOHxx5/uIFt7kQQqTr+qWkS0+7FOZ5ZjgNHJ4OPNw/\ncf/2gbef3/N5Fdtv395zOh0YjoVxgGl0II40CykV5lFIUw1tK7K+fqnVWyKlCu6M9+BCxLtA00Td\npa471bt+QxcbAo4meHabDV3TsN9t6TrtEMfp86aSGEZHzgkfHL44SvGr0OZSZHuP954Q9AKHk7Wo\nzDAM49vinNsC1yLyd7/N938t8Ifrpz8nIn/razs5wzAMwzB+ZDGhfUmdFV/9bFFneRF91BTw4P2a\nDF4EgtdBcimFlBLTNHE8jjzejzzeDxwPI6cnvfV4TocDTw8P3O935Jw0UC0nch0bzzkjwCf39xyO\nR6ZpppSaWL7d1nM6n3ApQnrH0T5w//aRN68fePP5PW/e6HEajkwDpMmRp4D3AakhbvNYSHMhJ0EW\nR7tWcC2XG6Soo+29J3gVzV3bsu23bDcbtpst235LGxsdjfeedtPUIDdPCA6ckGVmThOnccA5KDlT\nsqcURxGvP0tkHdl3VWhrYnq9uCCuXgQwDMP4jnwA/C3n3H8D/GXg/wBGtDbsnwV+L7BBr+H9isbT\nDcMwDMMwFkxof4HzwLQepfZq55K0gkq0VkuAlMt6FMmAEKoodHWBWvusJ4Zh4Hg4UrIwTxOn45HH\nhx5Z+qPXQyh1PNv7gBRIcyKljHOOtgaFxdgQY0OIje6IFw0Zm8aJ0/HE0+MT9/d3PNw/8PR04Hgc\nGIeJJowEP+BoiKGp5+pJcyKnpPvlcj4K2m2N5PW9Aa/hZSHStRuu9s+4vXnGzc0N11fXXF1dcb2/\not/oeYZGxba4jLhCoZByZpxGng4HvPe1LU3IOZNSIqWZNM/MaSbNnpQ88+zr0Hjh3VkDwzCM70gP\n/A7gd37F9wQV3r9fRP7a13pWhmEYhmH8yGJCu1KqaFulW+3LLiKkouIPzqPMoEI7p0LOQin6kBAD\nTSPEEOq4s6PU0e7TaWAeZ8bTwCFGmlhTx1fnuNZd1Z/vfCClzGkYyDkTm4bNZstuu6XfbOn7DX0I\nLII+58ycZobhxNPhifu7ex4fHjkejozDxDQmhjgR/Ign0jRJ68NCWAVuKTMiemhgWUbIVdTqu+Sc\nXgQIoaHreq6vn/HBBx/x8Ucfsel7NpsNm76n6zqatiU2LbGJ+nz1z5xmDqcj3cMDIXodx1+Ftgrs\naZ6ZpolpckyTY558HdOX82EYhvGd+UW0z/sn0b7uD4DnwBH4f9H6sf9URP7OD+oEDcMwDMP40cOE\ndkUubsWttdir0J5TQhCcc2tCec6FUhPHS9Fk7hg8MQZCDDrq7NzFDvWJ03E4p5kLWo/lll5qTf9y\nzuFdIKfMcDrx+PhIKYXNZsv19TXPnj3TpG4f6LpOd6lLJqdU3fMTh6cnHu7veXh84HQ8MZ5G5pQJ\nfsYxIMXTtZm21V5tkUJOcxXai6OdKZLqhYCLN8l5nAsEr472s+tbPvzgI37VN/8+mhiJMdDEQNM0\ntH1H23XEptFwOSeIg2EauXu4p+s6Qgi6ty2FkkUd7XlmnicV2rMK7Wn2xCWQzpvQNgzjl0ZEEvBf\n1sMwDMMwDONrwYR2pVQruUgNAiu6f11Ew8GWbmucimOptVSlCCUXkAiE6vbWuiuWcWghp8Q8J6Zx\nomTtzZZSCMFrf3RwhBCqUxyQAOM4ITwyjiNd1/Hi+XNevHjB7e0tIuBjpOv7OmqdqxucmaeZcRw5\nnU4MJx0Zn+ZETpk5JGJIBJ+0ImvpCOd8TlITxqHgkFprtvR3u9pnrUeMDX3fs99fcXN7Swye4J0e\nMdK0LU3XEprIZtywm/dMKbF/umK327PdbdlstqSSyDmRSqqj8GV12XOKGhKXMs57nK8XKvwP5nfF\nMAzDMAzDMAzjO2FCu5JrU9TZoc6kpI61iAMXWMRnERXQi9AW0fYrKRokllMhpUyaM/Nc67pqH7V3\nAeedqkQntG2jrnLX0DbaH900un+di1ZflZIYTkce7u95/foV+/2enAvOB9q2Z5wS45SYU6HUCwQ6\njV6T00upgWM6ou6cU4EffN3Rrh57ddP18DXkzREEnPN49OtN7bRen3tNZxcNi2siTXX18Y4kmTQL\nWXS+PjQNXb9ht99zfX3D7e2JcRoYpoFxGmpndkDwGnpWD72Q4fEOrRYzoW0YhmEYhmEYxnuICe1K\nKepo5yzqntbbUrRGyrklDdudRbbImjy+iOxSw9FyKsxzZp4TORWksAptvMeJgIeuqzvN257Npqfr\n9WjblsPhicPhkcNh4nQ68fBwx+evX7Hpe7wPNG3PZnetlWJTIqVCLug5157td8R2yTXN+1yX5Ze6\nMlnawfV/vfOI1xF2/TzgvMe76sDXQLgiNZ19CSfzTvfUuxYfPFlUYKecSKWA98QqtLe7K66vbzid\nJo6nJ/wpIAghqlsOrk4VOMADOrLuPeqYhx/Ub4thGIZhGIZhGMa3x4R2JZflVkjVlc5Z3Vqqo+vq\nWPkyUi6Xt4u7XS4c7ZSZp7wK9tXR1jVjPNB3G3bbPVdXe3b7nY5S73b0fcfr16+Y54nHx/uzo933\nxBCryL7i+tlzBM84zZp+Xs61YwJQzo52ztpP7Rx1TF0Tx92ydF7Pi3phwS8j4+hYe/CLAIZlaXsR\n2upqF1xw+CbS9C3OOfI8k+bCOE/qaPsLR3u35/rZLdOUCTFQnDDnmRg1CA58fR0OQXfgHQHvqtA2\nR9swDMMwDMMwjPcQE9oLF93U3jnEeyDg8SDqtJaSa9d1ouRCcVCctjk7H3AlUFx9DA2UgBSPk4D3\nkRAaYqzj26LysWl0x3m723J1/YxnN8949uwZu/0e7z2lJMbxBAjznHl4eMT7SL+9ot9csdle433D\n4XTidBrVQc9aDxZ8wIe4CmTvIYRI23R0XUfXtWtwWZFM2/a07UjbjpSclzS45V3REXnRRPUl8G27\n3dZAM3X8cQ4fvI5/h4AEDzHgm0hsEk2baVNCxDFPiTTrSLuP4IIAmdDBfr9ht9+w227U6e86mqah\naTwhQIyYo20YhmEYhmEYxnuJCe0v4OAcaKZry3V3GRXZOZFSILu6D511cztLgKKHut8tIhEpVbC7\nSAwNJYo+SJe6aWJD13dstzuunz3jxYuXvHj5kmc3N5SSmaaBp6cnhuFISonHh0fmKb0jtJu2Y5oT\n06SBa6UIDqciO8Q1uCx4aGJD27b0/YaubQhRRXMpma4dGduOru1rp3ahuDqLvoS7lYJvG9qupe87\ndvsdbdcSYqhj6eCDJ8ZIaCKueHW4SyGl2jueCs4FHXXPBZEqsl2hkAiNcHW1Yb/v2e17NpuWvuto\nm4YYPSEIMYAPljpuGIZhGIZhGMb7hwntL6Di2tegLd1hXnaZNQU74F0guULOmsudQUW2D7CEhtGo\nE148ENXRjg0xC5IdUtQxjo12UW92O66vr3nx4iUff/wJL16+ZBoHDk+PvH37Vjuyp4nj8cTDwxP9\n9opNFdr9ZreOi58dbU/wKrRVbHvEQ1yEdtfTVqEdgqeUdx3t5ALZJRXc4tCFbx0R997Tti3b3Zbt\nbkfXd+pea8k23ntCE2jahiCRiI7b5yL14oTgfdTd9Vx3yV2mkEgy4aOwv+pVaO96NptI10WaJtJE\nFdghCN6b0DYMwzAMwzAM4/3DhHallLqkjah3W13sZTc5hIBzGcQj4msVloZ1UUCypyRPnjxp9uTk\nkRwQCTo6TiT4huyXfG7tjXbe6eG0DqurVVnPbm71eHbLs+sbpnHiIWXGcWacJu7uHthfvWW7e812\nN+BDQwhag5WShp5pVdgithuQfPH5cvj62hxN09L3PTknpnFknmZmHBnt0hZxOCl0XcfV1RW3z295\n+cELnj9/zs3NDVfXV+z2OzbbLV3X07QNS1GYuCWkTYPXQoggQnCBJkZCFdDOF8TPbPctm11D10e6\nNtA0dVy9CmzvytpnbhiGYRiGYRiG8T5hQrtSSgKWzG1qMJiv7rYKVhFH8RAcZOegQEmQRmEaYR4K\n0yAMh8w8Qk4eJw2OhHMzzgWcCwgZcQ4RyEWTycdxZJomck3mVtG7ZX91zc3Nc4ZxZBxnHAfmKXE8\nHLm/e6DfvGY3jLRtT9N2OOeZp4lS1HkOPmp4WmzwTl+HqwXUay2ZE8ARY6TvNzjnGEJk9MPyVlSh\nrQ/Y7XY8f/6cT77xMR999CEffPiSDz/4gA8+fEnXtev+t4++Cm2pq94ecIh4Yt0d79uO3W5D03ti\n5wgtpDIQOyF20EQIcUlHryej2+AXe/WGYRiGYRiGYRjvDya0K6Vokbbj3CONA+9c3W+OSHCU7Cje\naeBZEUoqpEmYB2E4FsZTYTgWpgFKCiANMOOIuNoDrc+tEd+5FKY0M4wDYxXaznli07LZbNnvr7m5\nfc7xeOTx4QDOM42Jw+HE/f09IbYMw8Rms2Oz3RFiZJpmDRhz6laH2BCbFucy3us5LMFmRcCJ7qXH\n2FRnuyF4rfXKOSM1ylzQ291ux/MXz/nkk0/4iW9+g5cvX/DBBy95+cGLdczee71gUfSygv4cp/Vc\n4Om7jr7r2O92PHt2RdM5YguhEYbpieImxE0QZu37Dg7veVdsm9A2DMMwDMMwDOM9xIR2pWR1tL2v\nfc3izsFoi6tdHNmz1l5JKepoT4VpUJF9OmROh8Q8Cjm5KrAjzi2H7nGDhnrnUkhJx8GnedYgM+eJ\nsVZg7fc8e3bDw/0DXfcGh2eeE6fjwMP9I0JgmhL7K6336rqeaZwoVbCH8GVHm5ogXgRcEcQJLqjQ\nbpoG7/UCQymZOenYOCLr7W6/4/b5LR9/8jE/8RPf4MXLF7x8+YIXL56fk9lzokghL5VoSO3AVlcf\ngbIt2js+z/goOjoeCk/HljE9MaYDqRRCYHW0nYlswzAMwzAMwzDec0xoV6Q62kUE50oVlUXHx0XF\nd05CnoWcICeYp8I4ZE7HxPFp5viUOD4lTseJ4TSRU6kd3K6K3oAPQcPFlv1u5/AhEBsVuSFGQtT7\n+eBXB3pNDq+71YioQB8GQgjgHKUIYzcwDgPjOJCqSHb1Z1DdehEhpYRzIMEjBBoXaLqGtm3ouqbu\nQ2t6+DhsWHqzEeHm5obr62v2+x2b7Yaupo47r53bHn1OaoiaE/AIOL+6+oherAje4Z3UBPMN19MV\nhBk3zJRhIM9y4WC7egFhEdyGYRiGYRiGYRjvHya0K+vouNMqK1c84gXEr0fOKrBL1iNNhfGUOB0m\njoeJw9PM4XFiOM6klElzBqni03vtl/ae7LzKVll6pyMxNsSmITYRH6OKch9w/lJkn4W2AGlODMMA\nOIoIOSeasSPNM2lOpJwQndnWLm2nY90iZRXaQQIgxKA72pvNhv1+S9M0xBhpmoZxHHGL0Ea4eX7L\n9bNrdvs9m82GtmuJTUCn7fVPcHUqoIpsfVd1R3s5nBcQHTPfbHp205Yp7xE/UtyJKXtckmVrXhPP\nZTkPvYBhGIZhGIZhGIbxvmFCu7IIbVgEnK+7yVVoF0cpnpx1T/vsaKuDfTyMHB5Hnh5GxiG9k9Pl\nnD8L5hBwWYWmjlPr11Vkt4TYVOfb133ncPF4HQOPIYKgjvUwUEohl0SaZ5q20YAz0dqsIqWmp6vI\nXRztnPM6hg2B0kRiCGw2G66vr+m6lqaJtE3DOI3rfZ1DHe1n1+yv9my2m7VHG38etdeEcsGjqeMe\nQFwNMatj+fhqVhd1tPOWzESWgTE/chgDbgScrDvly/tqGtswDMMwDMMwjPcVE9ortd5LtIIKhOLA\nkykUMkXrvLI7O9pJSHNmGhPTODNNs1ZizUnHxaucFCksItV5rbaKsUHo2Gy3XF1fc/P8OTe3N+z2\nF73UDlLOTPNc+7H1YoDukQsl5yo+CyKZlGbi2Gg1Wf0j4paJ7xqCJirMc67utsc5iCHQ9R37/Y7b\n2xumaWKz6TluN8zzpDnf1U2+ub3h6uqa7XZL1/c68h5CfR/dWQTXD/Rs6zmIFqitvrZzIG4dU2/b\nhqaNNDEQo/aZa/3ZuzvZIh7T2oZhvG9861vf4pvf/OaXvv7xxx/zcz/3cz+AMzIMwzAM4weBCe2V\npUe7yjfRr4kIUgrihJIFyULJXsV2KqQ5k+aZnBIlJ4pkkKx90VV0imQVw4j2ZYdA23U0beD6+hkv\nXr7k448/5sMPP+Lm5obNdqPVWCLM88TxeOR0OjHPc90h13MUKZRSkFQokpnTpI45ft0Ld87ja61Y\n8IFSMkUyIhnQce8QPE0b2W43XF/vub29IeXEMGwZh5F51nA1FfSFm9ubs5vdtsQY173rM471C+7y\nK+7d+1WXuq6r45wGn2nKuK/VXlLH0mV9srNHSB9MAAAgAElEQVRUNwzDeH8opfCLv/iLP+jTMAzD\nMAzjB4wJ7RU530oVceKqYyyUshzokSGnQk5Z96FTUoe5pCpiFzGsY+mLSHUOYoxE53Gu4/rZM168\neMnHn3zChx9/xLPbGzabDSF4RArTPHM8HTlWoS2laCJ4Fe7qTgskV3+kClTt7F5SxxtCaHCxPq6U\nOioveOcI0dM2DZtNz9X1Fc+f31JKYZompmlinmdyyZScySVxc3PL1dUVm02/7mery768g06t61UU\na6CZTgpUo7uKa+pI+IJzrtaDeUJUp9v5snSQ1Xv58/+NDMMw3jt+4uLjb3G+kGsYhmEYxo8LJrQr\njneXf+WsAlnzt8SthxRHKSq205woKat4lcK77riOPfvFqfURHxwhOGITuHl2y/MXL/nwo494+fIl\n+6sr2q4FJ6ScGKeRQ3W0p3kil1ytYVnd6VwKRfRYRsSXGq0mNpSm0LQ6cu6zJ3u/CnnqecUm0G86\n9vstz26uAZjnpI59SuQ8k3Ii5Zlnz67riPsyNq775Mtbdn7tGmQm7isE9vL21qouWd9/qa42BK8X\nAWp0e33yOgpfR84NwzB+OTjn/n7g/6mf/msi8me/N8/sgV+4+PybgDnchmEYhvHjhgntSoh1x1jO\ne80QCC6oOHbah+1dg3eR1CSCj2u4mFBwTnBeCBF87Yz23pNL1G7ponvRTRNp2kjXNrz84ANevHjO\n7e0tu/2eGCMpJw6HA4fDE0+HRw6HJ46nA8NwYp4nck7qMEvS3uoqtPW2Bqw5dbX13LgQwXVX3Dma\nNlJKUwW3qOCOgabR1PO2bauLr2I75ZmUEtvd9lzp5dyFseyWJewz74yNn1nPSkQvEhR1y/Myfu8E\nHzwx+lWIl7roLeh45ruj6oZhGL8s7G8SwzAMwzC+55jQroRQ34olDE0AqbVaLuBdANcgrgHfkqLu\nPDuc7nDXpC+doFYnNoZIjHFNzC4ihBjo+06PTc/LD17y/MULbm5u2e12VdTOjNPE4fC0iu3j8cAw\nDszzRMozRfKFo61iO+esQhtfO6s9pcg5rVtYRbZ3npybdazdwSq021Y7vZc971I7u/VIbLc9XdcR\nQu3OXsV29aW/oKq/SmRrKroGuelrSZSSyGWmSMI5Udc/BkoRcim4WmMmpR72z2PDMAzDMAzDMN5D\nTGhXFkdbBCiuJmQHvItVbEeQiPMtSEcbfRXnrrqrOjLuvBAcNE2gbSNN09XwMhWjTdOy223Zbrfs\n9rvqaL/g9vaWru84HA+Mx7EK7PNxOB0YxhNTGsklrSJbxWkmVce85ALOAx5HqIJU1lF4t1RweU9K\nrQptLhzt4GnbSNd1xBgJUX9FUkrMaSbNM23XaKVXCFWMuy/3bX3bqe7zcvayt15kuWBQHe2yONoq\ntFMuCJ6Scx2ZFw2jK6a0DcP4ZWO7J4ZhGIZhfN8woV2Ri39zLfu/oqp0dYi9i3jX4ukoXWTTb9lu\nd+z3V7TtrMFoKeO9p+t6+n5D3/dViGoSeIwaOtb3Pf1mw7Nn12y2G2ITNfxsGnl6euLu7o6np0eG\n4URKE0US+IILEBoHGU1BX9xhVw9/rs1yONXcCCKJnL263qXuk18IbD1Yx7JdFbpNE7TDu+6Vp+iJ\nMRBjrKFrl+9hvb2wmt8NGBfO4XJFXWzJ5DwzpZFpPjHOR6b5xDyP5DxXpztX5z3Xxwm5aAq8YRg/\nGjjnfiPwe4B/AvgE6IHPgL8O/I/AnxeR+4v7fwz8NuCfAf4R4Bvof9NeAz8H/AXgL4p8efbFOXeZ\nTuaAP+2c+9NfuNvPiMjPfk9enGEYhmEYP3aY0K68I7QvU8fdeQzb+0j0LTH0UITt9oqr64nhlMk5\na5q3CDFEttttPXa1Zktd3xACTdOsx9X1nq5rcQjzPHM8Hnl4uOfNm895fHpgGE9kSeCrw9t6hACp\nUGbISUewHeDrCLevlV4aiObxbqkC01T0UuvG1tRx79cebJGy7oA36Ch8iA7nAt6DL5oErgFo1cm+\nFNv137TLbvjlN6VQd77LOiaey0xKE9N8YpiPDOOBYTwyziemeSSluTrdywWCQs56mNA2jB9+nHM9\n8J8Dv7N+6fL/sb9Rj98KvAR+tj7GowljX9xMARXpP1WP3+ec+20icvzCfZbHuC98bhiGYRiG8T3B\nhHblbG9c1kbpx4KHGooWY0sTezyO7W7iap+YR6mBYtqb3bYt+92e/dWe/X6PX8S6c+oO191n7z37\nKxXaOJjTzOl0qEL7DY+Pjyq0S1aHOULEIy5QXCKLwxXBVaHtnCN43b8O3hN8APG1p/rsIEtZerSX\nXm8VzhrsVki5VpS5gvcQg8d51NUuKrC98zj/1ZOXZ+d6mSh3F1/XcfFcw89SnpjzwJROjNOR03hg\nmA5M08CcRt1Hr452LrkK7kVoW2WOYfww43Sv5i8BvwUVu38b+JOoI31ERfNvBH77Fx+K/rX9PwN/\nGfgbwCvgCvgHgD8A/Ib6vH8Cdcov+YdRAf8/1Z/7h4H/9gv3+exX+voMwzAMw/jxxYR2ZR0uvKin\nOo98+9pJ3RBjQ9d2lBDZ7zN5BkcEByE4fPB0Xct+v+dqf8XV1R63jKDrHPc50Auha9t1bHyeRk6n\nE4enJx4f7hnHE6VkYuNo+4ZYIGdPmwNhdPgRXCjkXNPFi5539M3an10y5FxIqYBUUR0DoaaLd33L\nZrNhu9nQtVrVRe3odoDzDh8cTjzFg4i+BndZ2VXfuCX0reacnSvSlnuUUkWy1oXNaWTOA+N8ZJiO\nDKM62tN0Yk5fHh0veRkdL3VH3Uwow/gh59/gLLL/K+B3i8h88f1lbPzfdc59snxRRLJz7leLyP/9\nFc/5V4E/45z7aeCngX/FOffvicj/dfH4v+mcO1w85hdF5G9+716WYRiGYRg/7pjQrqxrfOLe2XH2\ndaw6hEhsIm3b0nU9jhYngbbp2e2u1OWt49Rt27DZbNhserbbDWq+eMDV/eQ6Pi1ShWphGkeG4cQ0\nDkzzSM4TIcB225LzFdtdi1wEoA3DwDgODMNAznlpysLhaZqWNnY0sWOeM+MwMgwTORW6fkPfbej7\nDc9urnn54jkfffQBH330IbfPb9jttjRtQwwBH97dwV6brJfKrndGxs+3shaP189rAJo62ImUZqZZ\nBfY4qYN9PD7qyPg0MKeJUhKg++NnAV/W43LuwDCMHz6qm/1vo39Z/ALwr35BZL+DiHzrC59/lci+\n5I8Cfwh4gY6R/7Ff0QkbhmEYhmH8PWBCuyI1wdo5QRPFdDza+0AIgRgiTWyq0O6IYbOK7HRb8F7d\n4iUpu231vm3brJVhGjQGJZe1jmueZ+Z5YponhuHEOJ2Y54GUJkJwbLYdIV6Ty1yd5oJIZhgGhmFk\nHBeh7Wp9l6drN3RtT9duGIeJp8cDT08HxnGm7zZVbPfc3Fzz4uVzPvroQz76+ENub2/Y7bfaox1D\nDTu7GKN3yya7+1LIOHyVwD5fwCgipJJIaWJOE+N84jQcOI1PnIZHDqcnTsOBcTqR8oS4tAay6YS4\nXpyQUli6ykxoG8YPNb8G+Cb6V8V/9hV71N81VbR/jI6ON8uXUQH/Ag1LMwzDMAzD+NowoV25nELW\nfK+6Tx08Piyj1meh3bVbvAs4F3CEOpLt677z4oSr+C5FBbYI5CzknOs4d+ZwODDPI9N0drTndxzt\nju22AVdU3DoBShXai6OtHdOI/txNt2PTb+n7LcenE3f9PTFGjseBvu/pqqN9c/OMFy+e8+FHH/LR\nRx+y223Z7ba0i6Pt1dXXNwWWkuxvL7IvHW1qT3ZNGZd6YaGOjE/TwGk8cjg+cjw9cDw9cRqOjNOJ\nIhM+iB51711YpgCKXlD4/v0qGIbx9fBrLz7+q7+cJ3DO/cvA7wX+MWDzbe4maJDa10QBPrz4/DUA\n0zTx8z//8+tXP/nkEz755BMMwzAMw1C+9a1v8a1vfeuXvN80TV/D2fzKMaFdkaLBWhpYpmJb26iX\nSDQVfMv3Q3AErwFpITQaQlZrsLSnetljXhSqVMGtgjOlTErV4Z0n5lmDv6AQArRdQIPYLlK76/OI\naE83riNGDTvzyx65j/TdVsfDuy1d19M0Dd1G3W2tHNPjo48+4sOPPuDFy1ue3VzT9x1939G0zepo\nnzN5z0vsGnJ2mdIu76aNf0Fca4hZ4jRo2NlpOHI8PXI4PnA4PXA8PTBOhzpGfgKX8FEIUXBe1kR3\n5+qovQdXBML37/fBMIzvO5fi95f+r+oFzrkO+K+Bn+SiWfA7POTbifDvE6++/JVXr/h1v+7XrZ//\n9E//ND/zMz/zNZ6TYRiGYbzf/Kk/9af4I3/kj/ygT+N7hgntyjI6jj+PJeuuNmiLlVShLfp5TeGO\nwRPjEpiGVl6tKdtaZ5Vz7X6ubnZKqY6MJ6a5Cu00kYvWeMXG0/dNreFKa3haEQ0CEzIhenxoaNuo\nKeMhEnwghEbHw1s9NtvMpt+wv7ompaxO92bDpt/y4sULPvrwA54/v+X62RVNE7V2rI3rjjbVTV7G\nwEWkppNfhJx9QWQXKYjoa53TUt818XR85HB44OnwyNPxgePxgcPpkePwSMon5jyQ8oDzmZDRI6JJ\n4yKAw7v6cwNWyGMYP778Yc4i+39Bk8p/Hvi7InJa7uSc+ytoL/fXNgTjnOPlyy8b6C9fvuTP/bk/\nt35ubrZhGIZhvMsf/IN/kJ/6qZ/6Je/3kz/5k7x69eWL2u8bJrQXqqON8+tosgainQV3DSFXkV1T\nxmP0xBguUrjdmra9jFEvYlvHxReRPTNNM/M0rWK75BnnhKbxdH1DKXXUvBRyBsk6No6UNaBt2R+P\nURPRm9jStj1t09M1G0qBtFcHXcSx6bdsNnrc3Nzw/PY5z5/fsr/ar4588L7WkPl3Xs95/1ouXutX\niOxydrNTmhinkXEaOBweuX+44/7hjqfDvYrs0wPH4QlhpsiMMOODEBtHLI5Q97ORZXTe4dbR9O//\nr4VhGN83Xl98/Anwf/49PPb3oX8D/FUR+c3f4X7P+Zr/pvjGN77BL/zCL3ydP9IwDMMwfiT4bteq\n2rb9Gs7mV44J7S8iKuqkFCRnistkl3DMpGYmp5mUZnKTCBLBaTL2WZBePM0iPi8qqXQ/exkbn9dj\nTpP2V5NxHmL0pOTUya2PTVmD01JONLEBGhX4Qeq4ul+Tz3WvuRCiinDnPDG07HY7tts9u+2eq6sr\nrq6v2O139H2veWfu3H19Hg+vQWT1ogG8Ozqur7eGnuWy9l1P01THxA8cTwfe3n3O2/s3vL37nKfD\nA6fhidPwxDAdwWecyzhfCA3E5GmyIzYe78B7CM7hqr/uLoS/YRg/lPz8xcf/JPBXvpsHOeeeo8Fn\nAvzF73C/HfCrv8NT2V8ghmEYhmF83zChXfHLZKGoWKQkpEDJgZwcwQuOFu86vO/xvgV0JzpGwX0b\nkf3Vh1ZUnV3fRJqrgM8ZkYKK26xVWNOkVV6jVnrN80SMi4sdaZuOtq1H0xHiQAwtMbSaPt5ppVfT\nRrq+Z7fbcXV1xXa3o+s6fAycrXu+MGQpdQRew9tyzu+491/8OOdcHfqZ4/HIw9M9D4/3PDze8fZO\nRfbbu885HB8Z55qynoZz+Fl1s5vWE7tA03iaqOP5TVTRDQVX3yPDMH5o+d+BvwP8KuD3O+f+o+8y\nefzyv1u773C/P1Dv++3+ohguPu6+i59rGIZhGIbxXWNCu7Kma1chnCk6to1jdoJ3GUdL8H09OryP\nNLGjlIJzvj7Pdye0l6oqdX/nuss8U3LW8Wv0e/OcGKeR03DidDpyPB0Zh0Gd6hBXod11fQ0+6wg+\nakibj+x2V1zj6Lqe2DT0fc92v+P62TVd19O2DSEEHcm+ENrvXjgo7+yWL6J6Obz365FSYhonhnHg\n6emJu7dv+fzt57x5+5o3b1Vkv7n7nNNwIOWJlCdymQjRqZMdHbH1tF2gmQNtF+jaSNdFnIsErxMH\nkHGUr/m3xDCM7xUiIs65/xD442jN1591zv2ur+rSXuq7apf2K+AOeAb8LufcH/viY5xzvx74Wb7z\n1bjPgQmtA/sHvxevyTAMwzAMY8GEdsVXZ7YUdZJFBCkZdXQLkHCuI/gNMWyIsaeJHalNlCJ4r8XR\na/ztV7rYl7d1pPxLjnbSsXV519EehoHD8cDT0xOn07HuZ2sAWtf19N1E1090TV+D2bR6rBTouh4R\noWkiXd+x2225ur6maZpVKNdOs3N1V71isISgqdDW3XLgHYEdQlhHx1NKer4nFdpv397x6tUrPnv1\nKW/uPq9i+zXDeNSwNxJCUQe79epgd4F2jrRdYE5NvZABIfiafp71EBPahvFDzp8A/jngtwD/AvA3\nnHN/Evg54IiOiP8G4HcCfx742SrQ/zzwh9B+7L/mnPuPgb+Niu/fCvzrwCPwi3yb8XERyc65/w34\nTcDvdc79deCvA4tofyMib7/3L9kwDMMwjB8HTGhXFn3pa+BW0ZDrcxCYaAiZoAcI4pZ95V/iuRcx\nC+TsERFSroJ0HDidThwOBw7HA9N0ZJyOjOOR4+nE6XTiNAwMw8g0JtKcyUkFevbgnQalpVkYx0wT\nJ3XXncfhkOIIoSGGjqbp6Psd+/1ISkn7wX1Yz3GtzHZ157o68/OcOJ1OPB0OHJ4OXxLZMda08qbh\n/v6eh4cH7u/v+fzNGz579Xf59NWnfPbqUx4PDzw+PfD4dGSeR8Tl+l4WUvE0xZOyJ5VCyoU5ReYk\n9eIH5AJNdIQAMfj1PTUM44eTKpr/eeDPAP8S8A8B/8lX3fULn/87wG8Efg3wjwJ/4Qvffw38i8Af\n5Tvvaf8HwF8CXnzFc/wM6oobhmEYhmH8PWNCu+IuFpO10ksoVWkL7zrRy5+LePL1sXJpay+p5d6z\nDJZ7n9QhTolpHhmGd4X2OB2ZphPjeOI0nOr3B8Zh0pTyOZOS4FC33eGY58IUCjHMeB8v+rtBxBNj\nS9N0tN2G/dUzxnEi5UxcnPgl+MydX44miAtSCnOaOR5PPNw/cHd3h3OOELRnO8ZI13W0bUvbttzd\n3fHmzRs+//xzXr1+zWevPlWh/fozhvHEaTxyGk7kMoMr9RBiFdlN9lVkF5pUSKnU/nE9ujbSth7a\nQONMaBvGDzsiMgC/wzn3TwG/B/jHUSc7AJ+iLvN/B/wXF495cM79JuDfAn47KtATuvP93wN/XET+\nv5oh8W2TE0Xkf3DO/Wbg3wR+PfABOkpuGIZhGIbxK8KEdmWRbMu/xopzuEUzrwJb3dd3/9120Sd9\nKbIXLsS2dnG7uvOc1pCz4+nI4XDg6fDENJ2YpoFxOjGMJ4YqtsdxZBrn1dHWPfCCFHAu4dyMQ/u8\n11Nw7wrtvt9xc3NgGEdSyjVJPKzq+p1rBtXNzqUwz4nj6cjDwwOff/75KrRDCLRtS9/3dF1H3/fc\n3d3z6tVrPv30Uz579RmfvvqUT199xqvXn5FKIuWZVBIiGecFnGjKevbE7Ek5EFMhpsI865EvhHbJ\nAA0+eEK0X1/D+FFBRP4K32XyeL3/APz79fh29/mnv9c/1zAMwzAM47vBlEpldbSdfuyd1K94FndY\nq6/cV94uz/FVYnvZx5ZSmOeZYRh4Ohx0xPrhgYd7vT0cHlVoz4Me41hF98Q0JeYpk5KGtGlXdV1T\nFvW2kYvZ73o79hPTqJ3diyOec6nj2LLuVq92NudAt1IKOWXmaeZ0PPHw8MCbN2/0XfHasd3UgLWu\n7+i7nk8/+4zPPvuUzz77lFevX/PmzVse7h94OhwRyZT6B6dJ7c4LHu0Lxwnisg7nL93jpV5UKLon\nXrKWezmvO+iGYRiGYRiGYRjvGya0v4RDV3894sA5T3YehyeEenjtql76s2Hpla6L3ch5xxkh50Sa\nEykljkcV2G/fvuHVq9e8ffuGN2/f8PbtWw7HJ+Z5ZJ4H5nnUju2caghZIqV3hba62lTHnfXw3quD\nvkaIO93ZdiqO15Xzi8fAxemjbnnJpYabjRyPRx4fH3n79u3aCy4ieO91dLzT0fHPP/98Pd7e33E4\nPDFOI1IK50KuizF1lgsV2kMuGQpCkkJZLlBIoeTEPAdyLvV8HTn/EsvxhmEYhmEYhmEYPwBMaK9c\n9kHD0nV1GSwWvCd4DQILfhGu9TGAuNXTXmbO6z52Zp4npmnSbunHB96+ecvr1695e/eGu7u33N3d\ncTwdqsCemNOElFr1VUfNU1qC0KrYXIVyTTAvKmNFIh5H8E6FLH4dKwe3JonLFwT6Zaibjo1n3SWf\nJk6nI4+PuqM9TZMmpacEoEForYah3d3fcX9/x93dPU+HJ47DiWmadN972WmvZ7VeAzg3q6nLvnZ3\nQ8lOk9lnRxi9Ot/iwQVKMUfbMAzDMAzDMIz3DxPaK1Voc+6G1m5pv3yVUJOug3d4p8fl6Pg5OG0R\nvjqmPc8j4zi+MzL+9k6F9v3DnR7395yGIylNteZrqdGCpWIsZz1Kviy5rrvaF2Ft3geV1z5on3bt\n2w4h4l1A3ePqipeLCjJWHayvoVaP6QWCE4+PT9zd3a074+M4UqToc0dNH386PPH09MTh8MQwDMwp\nMWcNgMPVEff6k/R6hltfI3VEHIQsOlpeipALuFQT4akp6rHFuS/V7RqGYRiGYRiGYfzAMaFd0X1f\nwVXH2lU3WNxS+SU49LiY2V6zytc+7JSY55l50v7r9Rj19v7+jof7ex4fH3g6PHI6HRmHgWkeSXmu\n3dKL83sxjC6XLnSpY+tL/7evO9oqXNt2Q9v2tO2G57c33N7ecHt7y83NDZvthhhi7cVOdQS++tze\nQ3AE578wOj4xTeeE9OPxyDAMDONAzlkTyIMnRM8wDozDwJwmCgVx9T0NTnewl9fkZHWz9dBQNOeF\nEPSiRoj6uMv79V2kbTwxQHBfGSRsGIZhGIZhGIbxA8WEdmXpZHYXTjUOvFB3tZeh69qnvSw5o0ni\npWSmeVLn+jRwOh05HU+cjkfSnJjTTJoT9w8P3N/f8fjwwNPTE8fjgWEcmOeJlJM6006qul/2vLmo\nGCsUKXh0TzzGKrbr/nXwgb7v6fs9fb/n9vkNz29vef78OTfPbthutoSgu86L0HZVtBM1YMz5Gj5W\n8nrhYHHkT0cV2kvHd0ozLrh1Zz3lTC6JnBNFypoqvoh3QWvDnL8Q2E41vq9CO0ZH0wSaNhBjWO+D\nE7ou0rWeGCF4E9qGYRiGYRiGYbx/mNCuLAnW6qqqaNQvCOLVSXZOcHJOEnMiS9wYpRTmeaqd2E88\nPTzy9PjI4+MjOWVyyZRceHx85OFBHe3D4VG7sscTUxXaWnmFhp1fhJQt3d1LOBhO3d4YL0bag/Za\nb7cbdts92+0zdbOf3/L89pabm2dstxtiCHXvOeHduTfcOQi+OuTL6Hiedb98nBiHgePxyOFw5Hg8\ncDgdmefpnV3r5f3TifvzHnbAUcRRRNDq7ncdbb+I7QAxOtrW0/eRtm1Y+sqdE5pGHe0mmNA2DMMw\nDMMwDOP9xIR2ZU0Ph2ohL8Fil/HcuYpsLXQWyZSixzSNHA8HHh7uebi/5+H+od7e191tfeLj8cQw\nHJjTiEjCubyKSxeqk17dXlnSvcuS1e3wLiACfR/pukjfNcQY1kT0pmnZbq/Y7a7Yba+5udlzdbVh\nu+vo+4YmepwXSkmU4sgFQnaU7JFQLuq+5J097iJlrSgrRS8c5KzOtfZ0AU7w4jV6bUk4d+f31tf3\nUfe1ZXWxvYMQHTF6YuP1dW06NpuWtlOh7dDHxBho2oa2CcTGYxiGYRiGYRiG8b5hQruy7Fq7RWCX\ns9CWskRgF0RyHeHOlJwpOZHTzDCceHp65O7tG968ecPD/T33d3c83N3VsWrdY56mkXk6IczECEU8\nBbVyS6nhZ17d25zQALSkopTo6x52YLft2G5bttuOpomEEKrQbthur/XY7Hn2bMt+39H3gaYBHwqO\nTCkzpTikeEoJZ6dc1ll1Rc7vjzrWTt1nt4x6c746cTEKDmV5VBXJrgrxJX1cqpuuY+QxRtou0HaR\nTd+y2fZsNh193yKU+nyFED1NE4lNIAZLHTcMwzAMwzAM4/3DhHblnUbmRQzWjikpS6J3rkXPekhJ\nKrRzYhwHnp60H/vz16+4v7vj7u1b7u/eEmOkaSNN09Rd7hNIIkatBMN7fIwUcatYBSF5IaVlV1s7\nq73zxOi52vfs91uu9hvatiFETwyB2DRsN9dsNldst1dc7bfs9i19H4hNHbd2GZGZUnx1soO+xtrN\nvb4jXxLbKrKX0fpFbJ/fwEVkLw9aarycjsSj4/a1BhvvdRzfe3W023YR2R27Xc9229NvOkCnB4Si\nQWlR34MQzNE2DMMwDMMwDOP9w4T2glyqymWEWqrLuzi99WMKQnW1SyLnmXE8cTw88fBwx93dG+7v\n7ri/f8vD/R1t29D2LV3XgoNSJnwotF3Al0IsDU126ty685j0NME8CyEUwBODCsy2iVxdbbm62nJ9\ntaPtGt3PDoEYGzb9ln6zYdN3bDeRrvOEUHAurdVjUjLeQQ6OUgJS4oWj/UWRLVpn5l39Ob6OeQcE\nvzrUQtG6rrqfXSvIz6732k9+dsedE0JAx8X7yKa69JutCu6+b4GMkIGiwWpVbK979IZhGIZhGIZh\nGO8RJrQrUop+4Ja56epq824qth4F5zIiiVJmUhpJ88A0nxjHI9M8IDITgtC2nqZ1NBFCEHWCQ6CR\nlr4EsjQUybXWq+jPXhzteda08jTjQPeTo6eJke22W48YQx1P91WECs7NFBlJOTCOAJmURrxv8K7B\n+1Z3xL0QvD7nKrbX/Wzdx9Zubqdj3dseIeF8xoXMPHut8ZJSLxSgrjxooNs6Cn8W3foeLO+lI0TH\nZtPSb3Uvu+8bmsbjvQAZXKlj5q4GptUucxPahmEYhmEYhmG8h5jQrhSpQrumiy+Wrqv/s4htV8ed\nnStAopSJnCfmNDBPJ6bxyDydKGXGe0H7IY8AACAASURBVKHtAk3jiQ3EKJoU7gO4oEKUgrhSRX3h\n3DRdSHUsPaeE844mhiq2A10XaVs9QvA1vVtDyEIsOD8jMjAnARI5T0zxSPAdMXSE0OEoVWQ35NKu\nolpqGNzifiM6st22DdttBy7hQibEwjSH9UJBkaxv4dJvXUPSpN6uTnS9vRwD7/uGrq8ie6n1CoKQ\nz4nky8h6cIRaS2YYhmEYhmEYhvG+YUK7sjranBO03Tt7xzoK7Z3U3eKC1FCxnEfSPDLNA+N0YppP\nFJl1PLz1xKh91yEIMQqhCeuxjFUvO8yr4JZzuncpGV+FdtPEmjLu1mM5z7oWjXc6Jl5ESClR8sTk\nTgTfEsOGGHti6PGuhpDlllI6RNo6Gi/vjJiLFIKvO9QbFdo+FGIUptmTlxH6kmpg+3kaQJwgTkfi\nYxP0iPW28fVjT9s1dG2k6xp80JFyHUdPOOfXsfVFbIclod0wDMMwDMMwDOM9w4R2ZSngWj5bAsgW\nN1vFZyIXda99ahDn1gM30zSw27WkeUvJMzm3lDwTvCdEpyPPweGjX49VyLvzyPiyI14kU0qhSK6i\nOBBiIAa/pnu7y1Ft9GNdkS5rMJmuWRdyWfbOtZrL+0WsShXUWTuvgyfnCSTjPVUIR7ablv2+p2mF\nfvbMc2TOE7nuqb8rtOtlg+rWixMNMIuesArssO56N1VwN03QgLX6XjiP7oTX+jLnHCavDcMwDMMw\nDMN4nzGhXZF3Pro86teckCUx5wmfTjB5vceiZl2i7wPX1xtC0Nqv5TiPPWsAGJ7zceFirz/TqQAX\n8XWc21/sNl+EgImK2GVsXAW3usEOwVHWDLLluUtRp9oxswjslGbSPKlz7RxNjKQ0ISR8gLYJ9H3D\nZtOy3/V0vSOXhlw6cpnriPtMKulCZC+v7Cy0fXDnsfFYxXa91Z1tRwh1l9ud97qjD2vYG0ApsibB\nG4ZhGIZhGIZhvG+Y0K5ctlotbrZcJIA7B0USqUy4+cQiZYWlkivR9YHrZ1u6zlNyWuu/1iCw6lyX\nmlq+hIgVKYh4VGwv9V7USiuvAWX1OXxVzqUIRZaRd1frsnSMXO9StFprvVagoreUjJQZEU/OiTTP\njOPIPE94T93/bslZk76Dh6YJ9F1ku23Z7XtEAuL0+0USKc9VcM/v1HBfyGwKRc+vCukQ/HmMPHgd\nL68XHM778PqaVGhHYghIEVLK5FTIeRn3NwzDMAzDMAzDeH8woV1Zw9DWpPGyBqO5WvVFmZF5IBch\nl0IRIUshSyaXRIiFzSbSNB2SYxXaue4bg6uCM5dMlkwqiVKEXKihY+dxcMfilmtXtNTHq3aW5aT1\n6xdhYc5VcS1aTeYoIGqfizhKcbU/21FcoeS8utl917LZ9IzTBj2DQojQdYF+07Lb9YzjBqEBn8FV\noV1Ftgrts39ehHpRQQU3TsDLelFg6cIOwa+p5cv4+jIBoAnjgegjIQRKEpBUe8zz1/cLYhiGYRiG\nYRiG8V1iQrsy51k/cFzsPwsU7W/GFVIpeDRoLPiZZp5pppEmnlQYi+C8Bp6JFyRXjYurO8d6I0h1\nYwslJx3dTgmRgndL6FrtoXa6pwx1FFsudrmdVnq5euu9x+G0Kkx0LBxRwazu9iLcPc55cCqMcxFS\nCszpyDwfmKYtMTQ1wdxDH9ltO+Z5Qy57TVpnpshEEUgZctFbwZ1dbVkbxymLo15l97u777mGuAGE\nLyeMu6B77s6DF32tNZTOMAzDMAzDMAzjfcOEdmXOCXi379ktIhAdk0ay7jZLwLlInEdiGIihpYmR\nJjY0MRKiQxYjubiLXWKn7rUIrhSoTnhKE9M0IaWc+7CryPTe4Ze0syVYTDRe3DmHc76mcvv6MbhS\ndLQ85zo67lRo11JrR32BqBjWcDRPSkfmWcW2oyc0LU1sCb5hu2vJZQPsmfNAKgMpCymrI59FxbZI\nFdqig/AqsvU2l0wuOgGgbruAKxRZLiy4s8D2bu3K9i6sh16M8Hhf8MV/rb8jhmEYhmEYhmEY3w3/\nP3t3HidJetd3/vN7IiKzqrp7JIOO6UEc5r4kDJJYgTh0gYV1WJwGwyIOg1hYHyDb2Nh4NPhlljWs\nYbHxMrZYkGFZbgQYITAgNOAFHYjTgLmRJbVgkDQzXUdmRjzPb/94noiMyq6zu6q7uuv7FklmVUZF\nPFlSTc43f8/zexS0i3HQDn0sLdtLuXf5PkGKhqccWCubEUKdg+jaOhvr60yadeq6ydO6E+XYHDzB\nIUKXcqMy90iKuRHZYj4jpbyvdVUFUigNw5qAhapUzPv6sJfvGRbGQbsqE75zkE0xV7b7Tt25w3iF\nUeVqfels7l7RRStBe4vFYp26ArOKpjGsqYlpCqwTqo5Fayw6Z95Gui4RPU8T3xW0KVPH80vOW43F\njjZGuggpMdq3O4FVuYJeppIvw3Z5feU/nhiq98FU0RY5S8zsXuBewN29us5z/ALwCcAvuPuzTnB4\nB13zhsctIiIiMqagXSzaPHU8BMNSv97Z8VLN9n4Nt/cxvJ/KnUipo+0WzBe5CVlT11i/HffKdVLp\nFJ6bmxmhqqjqmqZpSDENlV0zI1iuPg/nMcPI3c77SvZQrfZl//IcXvtw37NyLLm5WxlDyLt7UVUO\nFsv2ZdvDa3HvMGA236Jtd4hxTowLYlyQ4oKUWpJ3JTTHErKtXHvUjI0c9KuQw34ySAFSyseGsjC9\n37+7rEjPFWwCyQKBUqlP/X8fCtoid6Db+g97c3PzVg9BREREzgAF7aLtctC2YQpzv4a4TBsn5spq\n2UorR9ay7tih6xbMy5rrOlS5GmshT3MewnPIa5VLaA8WqEKgrmpSnUhhuR1XrkCHEqNtGZOHPbf7\n+e3L5mPmXkJ2SdnLGevLPbfpm6rlsB3KGvKqpjQ3W9B2O/lDBu/o4hzDWCx2WCxmdN0sh+1ukffO\njouy33csHyKUK/ioK3v5XgAIAQt9UzYjWST5qAGc5y3IPM8qJ1n+yVCq2n3QHj6wEJE70Xh/xdvK\n1atXb/UQRERE5AxQ0C4W3WjquPXrnwGLuXO3xbLlVICq7IftZTq3O60nUmxpFzaE57qqqKu6THWu\nCCEsu4aPKtp1ncNxynOvh9uuiD3eKztQthUznNFaaxxP5VZy9u6Kug1hG3LjtlDOV9WG9UE77uBE\nYpzThgbD6LoFXbcgxjldN6frw3Zqc9D2VKa2l48J3IYxDtV0M6pSqfdQ1quXW7/2fPigoG8eB5jl\nqnZfuU/DHtra3kvkTuPuz7zVYxARERG5UQrahS0TaA6IXuZU94GRHBD7jt25Prucqp08b/dl5KCe\n6khKDe5OCBVV5QTy0r80VG1LmAyBqqoJlpbtut3L9lZ98O8bteXHjuFmuPWH+zCOvD1Z6UheHvfT\n0W0cvYcMnKfIR29p4xxbQBcWVFYRrMagVK+7/GFCzKE775/d5WuTyrWXTdfcIZkPlW0L/e8xV6rz\nl/mFJfdh6njumL5s/BbKlPnQb11WPki4TQteIiIiIiJyh1PQLiaTaX7QZ7cS5PI070hukVZh1ARq\nglkJmF6OozQXc9wCFsvPmRFKB+4cs3OoTJ6GKdKQw7aFMPQF75uxDfej/bX7zwF8CKkJT/0WWmXt\nddkWq1xyOe182OfahrFYSnR00C3yZHiPuct3+Q+ep2vH2JFSvsXU5bXZ/RTufk32sD7bhyp7pKwX\nL9PGza38epcLyY3h4bBOO6ZlM7dQgnZf1V75yEBE5FYLwGiXCRE5665cucL999/PS17yEi5fvnyr\nhyMiRxRj7B+e6S2IzvTgbqbJZMJkMqGZTKjrhqpqqEJDFWqCNRhNCdhV6e5dsYzEfVUbUnJiyntu\ntzHSdh1djPlxjHQp0sVIFxMxpVLJLVt6VRV13dA0EyaTKU0zoambPA09VFShGgJwZVWuOPfbegGQ\np29bgKoK1E2db1VNqPL09SHQh9xULZEDbRtb2nbOvJ0xm2+zM9tke3aVrZ1Hhtv27CrbO5vM5tss\n2jld7PI07r4672VbMyd3aE9Oik7qEjFGUuzKLeJ9QzP3XYE5b61dgnb/++s6utjf99PU+484ROSs\nMrNHmdl9ZvbbZnbVzN5hZj9vZp99wM/8gpklM/v5PZ577/JcMrPPL9/7NDN7lZm91czafX7uPczs\n28zsj8xspxz7Y2b27BN8uepWLnKbuXLlCvfddx9Xrly51UMRkWMYBe0z/d6rinbRV7S9D4fJ8ZhI\nHvI0Zo+lA3g1rBe2vmrbT9tOefp0X7Edtrki/68gF33DsK7b+8psCdohBOpQUVcVVcjXzYuYI8tY\nWdYvm+HBIJSqcWKYwt13LK/DcmuxoXpuDOnUyxrzlFJflyd6pIttXiLdv4D+mHJbNoyzMuW+38/b\nhiH2ry9PqS/T6j1Xs4P7ro94+kq9Da8w//5jTHSxKw3l+v2zHawqVX7VtEXOKjN7H+Bngfdl+ZnY\nBvAM4Blm9iLgb/uwpcPgKJ+h5c0XzP4T8HkHHW9mHw/8BHDX6Li7gecDLzCzlx3pBYmIiIgcg4J2\nMZ3moJ1ibkqWopOqZbj0FHNfL3e6LgEpd79OkZgiuZqcn++3pUop0nVGVdfUVaSqc2O0vkXZrnXh\nnsCXTc9CqTjnyeBW1iX7MkwThk7mfehcrsHum7mVRmk4FsiJ373cjSrCNq7KJzyVzuSj9eLgedZ5\nWLYw75ud2agDeh+S3SGWgN2fN3gYtiEzz4u0Q3++ZLka755f2/B6wvBa+rXxtqvJmoicUd8PvDfw\n74EfBh4GngR8NfCBwGcCbwVeusfPHuWP+yvL+V4LfDvw+8CjgfcZTmL2nuSQfYm8Buj+lbH8E+Bl\nwBuP99JEREREDqagXUxLRbuvpKYukWLppF3Cdop5bfIwDdpjWa8cd62fBobp1O5Qp5pUN9SeCFVV\nKrM5OA49vaw8sLyHd1UFEo67kaw0PisVYveUA6qzDKS2DKBDdbkE6OHfWPuO5+7s2hyrH/Ow1jyV\noJ0Ddv+68n0J2aNu4liZjm4BPOEWieRrJJZhu7+ie7+Hd/k99N3Yk+MxgKVRyC4fKvS3PtSjoC1y\nhhnwFOBz3P0HRt9/k5n9IPBLwEcAf8/MvsPdf+c6rvFE4Lvc/YsOOObfsKxkf+4BY3nKdVxfRERE\nZF8K2sWyop2I0YkhEWOuZPdTuFucGCOxi3RdmxuDeSSmjlCqs30AjmWNcYyJFJsyrdypvaaq6hw0\nS+dy6O9K1/KQK9p9czUrMyuH6ekpQZV7mPdTz4eQ3f+nVICXKd5x67uo+1DRHofVvoM6w0zOZdAO\ned+zYao4jCvaxtAi3R1PfcO3cit1+b6qnTxRUS2nzFdVaSbupQHcHpXs8uHB+PUpaIucWQ78xEqw\nzU+4b5nZlwKvIy8i+TLg7x3z/Aa8C/i7+x5g9njgRccYi4iIiMiJUdAu+k6xfZW3D4Gw7O7dxfx1\n36gr9t23U1uamQWcUDpo507heaZ4Dqx5qnleb0zYrw9dXwlPQxV4WLdMDq7RlxtQW1pWjJeZfRTQ\nd2395cQUy4cAJUwPU77zPmF9p3B23fLvIJTV6ePFkONmcJ4S0Z1IKtXsPN08h/NAv4R7+AAhJSzl\n323/oUQX4+gDirxe3szx4Hgoa9+tr4oraIucYd+13xPu/gYz+2/AhwHPuY5z9+F564BjnsmyPcZR\nxyIiIiJyIhS0i8ViUR4Z7v0a6uH/5a2pyvzwvA45kWIkxpYutlSV4VTUVKWxWQ6XdV1j1n9dAvQo\nqg5bSZev3T2f13KgX4btZcjug7bHiIf8MzH1jdmMlMhTuBMM22yV8L4MsnE05bvKYduX/c/61eF5\nYTe4h34U+efK6K1Uqi3mbchiivmDCBI+Wjse+j2yywcJsTRgSzhWmp51XUfb5W3Eui7SdbFU7/tr\nkV9vcnI+X+2hJCJnyBsOef715HD7gWZWu3t3zPP/5iHPP/E6xiIiIiJyIhS0i0XbAmAEwtB4y5Z7\nUDNqXuZ9uI0lIC5wz93GcmOyihBqqqrK08TJAbgPvP3a5/6cy+nfuSlaTBE6H9ZTD9Xscouep7SH\nuKzu5inly7ElfNd/KA3Jun7qe+ywUBG8IlR5qvY4aPdN13IX89H3LU9p78c7NEwjt9nvO6+nUtG3\nYGVrsZA/QEh5/3A8Dk3SwErILlt4dbmiHWMsx+b/DoKFHLKDVmiL3Ab+4pDn/7zcG/BXgAePef53\nHfL8u13HWG6Yu/OmN73p0OMuX76sfXtFRERGrly5cqTt9tqS2846Be2i63IxJViAUFP165H7cD2s\nD1525+6nkHddC1RYgJDAKxv2sm6aujRY66eDLyvaw8znoaLdbxMWWd2tJvXPlVtfsfayjVw/Pbzv\n6p2nwqchMFMqzzFGupT3pQ5lvy+zvN3WOGinlZAe3MC8TIn3skK7b262nHqfhteYcjgOYCEQqjCs\n/x7G5xFSfuVt19G1OWwvp47nUB4s5KnjKU8hJ6Ed4EXOvsO26LpR8fBDBqc9ll2e/OQnH3rMvffe\ny8te9rLTH4yIiMht4v777+e+++671cM4MQra58Bo6+xT/ZkjnfQsnUdETtPjydt3HfQ85H/UHFad\nvh7jcx51LDdiqKA/9rGPPfTg+++/n5e//OUncFkRuV79ssHnPve5TCaTWzwaEYkxHuk99MEHh0lw\n73bQcbeagnbxRZ/69YpvIiIn56kcHG6fWu7/4DrWZx/Fb13HWG7E8B4y+hcAEbkN6G9W5LZ1pvOb\ngraIiJyGFwOv3OsJM3sq8OHkavbPntL1X0OeXh6OOJYbNQem5MUth60JFxERkev3OPL7+/xWD+Qg\nCtoiInLSDHihmX2Gu//QrifMLgDfXr5MwP2nMQB3f7uZ/RjwaYeM5X5y4L+hT8Xd/cKN/LyIiIjc\nWRS0RUTkpDnwRuD/NbNnAD8EPAI8Cfhq4IPKMf/O3X97n58/CS8FPgm4tMdYPgL4J8D7l7GexPRx\nEREREUBBW0RETsdnAT8H/C/Al6885+TA+9J9fvZE1ly5+5+Z2QuBHyOH7S9fGYsD95XrKWiLiIjI\nidEmSSIicpIccHf/M+DJwNcDvwNsAQ8BrwU+193/lrung85xHc9de7D7a4EPA/4v4E/J67neDvwE\n8Nfd/euu57wiIiIiB7F+/2MRERERERERuXGqaIuIiIiIiIicIAVtERERERERkROkoC0iIiIiIiJy\nghS0RURERERERE6QgraIiIiIiIjICVLQFhERERERETlBCtoiInLumdl7mdn/YWa/a2abZvYOM3u9\nmf1DM1s/wet8jpn9tJldMbMdM/tTM/tuM3vaSV1D5Dw5zb9dM7vXzNIRb59wUq9J5E5lZo81s+eZ\n2X1m9ioze3D0N/R/n9I1b9n7rvbRFhGRc83MXgB8N3AXsPqmaMDvA89z9z+6gWusAT8MfMo+10jA\n17n7113vNUTOm9P+2zWze4F79zj3Kgee5e4PXM91RM4LM0sr3xr/bb3C3b/oBK91y993VdEWEZFz\ny8w+Evg+4BJwFfga4GOBZwP/kfzm/AHAfzazCzdwqe9k+Wb/88CLgI8Gvhj4Q/L78b1m9ndu4Boi\n58ZN/NvtfTjwxH1uTwLecALXEDkPvNz+DPgZcug9Dbf8fVcVbRERObfM7AHg44AW+Hh3f/3K8y8F\nvpH8Rn3f9XzybWbPAn62nOPHgU/z0Zuvmb078KvAewHvAt7X3R++vlckcj7cpL/doaLt7tWNj1rk\nfCt/U28A3uDuD5rZewN/Qv47PbGK9ll531VFW0REziUzeyr5X9QdePnqv6gX/wb4XfIn7n/fzK7n\nX7ZfWu474Ct85RNud38H8NXly0cDqmqLHOAm/u2KyAly9/vc/VXu/uApX+pMvO8qaIuIyHn1otHj\n79rrgPLm/J/Kl48GnnmcC5jZRfJUVgd+1t3fts+hPwI8Uh5/6nGuIXIOnfrfrojcns7S+66CtoiI\nnFcfV+63yFPI9vPa0eOnH/MaTwUme5xnF3dvgV8hV9+equqbyIFuxt+uiNyezsz7roK2iIicVx9C\n/sT7D919tRPq2O+t/MxxfOg+5znoOjW5iZOI7O1m/O3uUrYH+nMzm5f715jZV5vZo2/kvCJy4s7M\n+66CtoiInDtmNgUeU758y0HHuvtD5MoZwHse81JPGD0+8DrA/xg9Pu51RM6Fm/i3u+o55bp1uf8E\n4H8D/tjMXniD5xaRk3Nm3nfrkz6hiIjIbeDS6PHmEY7fAjaAi6d4na3R4+NeR+S8uFl/u73fBF4J\nvB54G9AAHwR8LvDJ5PXfP2RmL3D3n77Oa4jIyTkz77sK2iIich6tjR4vjnD8nLyOa/0UrzMfPT7u\ndUTOi5v1twvwze5+3x7ffwPwPWb2pcC3AxXwcjN7P3c/yphE5PScmfddTR0XEZHzaDZ6PNn3qKUp\neU3ozileZzp6fNzriJwXN+tvF3d/5JDn/wPwHeQgfw/w6ce9hoicuDPzvqugLSIi59HV0eOjTBe7\nUO6PMlX1eq9zYfT4uNcROS9u1t/uUd0/evyJp3QNETm6M/O+q6AtIiLnjrvPgXeUL59w0LGlq3D/\nZvw/Djp2D+NGLAdeh92NWI57HZFz4Sb+7R7V74wev8cpXUNEju7MvO8qaIuIyHn1O+Qpn+9vZge9\nH37w6PHvXsc19jrPQdfpgD845nVEzpOb8bd7VH5K5xWR63Nm3ncVtEVE5Lz6pXJ/AXjyAceNp4P+\n12Ne4w0sm7HsO63UzBrgaeR/aX+Du8djXkfkPLkZf7tHNd6z922ndA0ROboz876roC0iIufVK0eP\nv3CvA8zMgM8vXz4EvOY4F3D3TeDnyNW355jZPfsc+unAXeXxjxznGiLn0Kn/7R7Dl40ev/aUriEi\nR3SW3ncVtEVE5Fxy9zcAv0h+M/5iM/uf9jjsHwIfQv7E+1tWP/E2sxebWSq3f7HPpb6p3NfAt61O\ndTWzxwDfUL58iNzFWET2cTP+ds3sw83s/Q4aR9ne64vLl28HfvT4r0ZEjuN2et/VPtoiInKe/X3y\nlNJ14L+Y2deTK1/rwOcAX1KO++/AvzngPPuu03T315jZ9wGfDfzNcp1vIU8zfRLwNcB7lXP8Y3d/\n+IZekcj5cNp/u08m7439GuCngN8iN2Gryes6Pw/4pHJsB3yJu2tbPpEDmNnTgfcffesxo8fvb2Yv\nHh/v7q844HRn/n1XQVtERM4td/91M/ss4HvIU8i+fvUQ8r+oP8/dt27gUl8EXAL+BvAM4Jkr14jA\n17m7qtkiR3CT/nYD8GzgOfsNgxy+v8jdX3Wd1xA5T/4O8OI9vm/Ax5Vbz4GDgvZhbvn7roK2iIic\na+7+k2b2JHKF7Hnk7UAWwB8CPwB8m7vPDjrFEa4xA15gZp8NfAHwEcCjgT8HHijXeN2NvA6R8+aU\n/3Z/kjwt/GOAjwQeD7w7ORC8E/gN4NXAd5U1oSJyNEft1H/QcbfF+665a1cCERERERERkZOiZmgi\nIiIiIiIiJ0hBW0REREREROQEKWiLiIiIiIiInCAFbREREREREZETpKAtIiIiIiIicoIUtEVERERE\nREROkIK2iIiIiIiIyAlS0BYRERERERE5QQraIiIiIiIiIidIQfsMMbNfMLNUbp9wq8cjIiIiIiIi\nx6egfbb4yr2IiIiIiIjcZhS0RURERERERE6QgraIiIiIiIjICVLQFhERERERETlBCtoiIiIiIiIi\nJ0hBW0REREREROQEKWjfBJa92Mx+xsyumNmOmf2Jmb3SzP7mdZ6zNrPPM7PvN7M/MrNHzGzTzP7Y\nzL7XzF50Hef8YDP7V2b2OjN7u5nNzewvzOxXzOw+M7t8hHNcs0WZmd1tZl9TznvFzDoze+f1vG4R\nEREREZGzzty1k9RpMrPHAz8GfPTo2/0v3cr9jwBfAPwE8Inl+We6+wP7nPMZwMuB910533BIuf8V\n4DPc/W2HjHECfCvwxUC1xzn78+0A/9jdv+2Ac71m/BqAvwJ8J/DolXM+7O7vdtC4REREREREbkf1\nrR7AnczMHgW8BvhgliHzT4BfBubAh5ED+KdyxL2zzewzge8h/3fn5PD7K8CfAgn4QOBjyvNPA/4/\nM3uquz+4z/k2gJ8BPracz4E/An4VeBfwbsDTgXuAdeDfmtkld/+GIwz36cDLylj+Enig3D8O+GtH\neb0iIiIiIiK3G1W0T5GZfQfwheXLOfBl7v6KlWOeAvwA8D7AApiwT0XbzD4MeD2wVo75JuDr3f2R\nlePeB3gF8PHluJ9y9+fvM8ZXAP9zOe6/Ay9x919cOcaALwW+uVy7Az7e3V+3x/nGFe1IXp7wtcC/\ndvc4Oq5x93avMYmIiIiIiNzOFLRPiZl9APB7o2+92N2/54Bjf41cMTb2D9o/R56O7cBXuvu3HnD9\nDXIo/9By/NPc/Q0rx3w88FqWVeynufu+a6fN7MXkaeAOvNrdn7fHMX3Qphz3z45Y/RYREREREbkj\nqBna6flilmubX79fyAZw9z8AvmV0/DXM7EksQ/abDgrZ5ZzbwL8cfetz9zjsq8aPDwrZ5ZyvIH94\nYMBfN7O/ctDxwNuAf33IMSIiIiIiIncUBe3T88zR4+8+wvGvOOT5vzF6/H1HHMPPjx5/3PgJM6uA\n55QvHwF+8ojnfE1/CvIa7P048EPuno54XhERERERkTuCmqGdno8YPf7lww529z8oW17t14n7Y0aP\nn1XWYR/GRvfvufLck4AL5EDcAt+al2If6qmjx6vnXPWrRzmhiIiIiIjInURB+xSUbuOT0bfefMQf\nfTP7B+17Ro8/5TqGtTrNe3y+xwBfcQLnXLVnp3MREREREZE7mYL26bi48vX2EX9u64DnHsVyC7Dr\n6WC3ukzgUaPH19sR77D//exc53lFRERERERuWwrap2Nz5esNjhY6Lxzw3BbLjuSf6u4/fp1jG5+v\n95vu/pE3eD4RERERERFBzdBODc0W6gAAIABJREFUhbs/TN4Tu/deR/zRg9Y8//no8eVjD2r/8xlw\n9wmcT0RERERERFDQPk2/MXr8tMMONrP3B979gENeN3p8ULfvo/p1YF4eP87M3vcEzikiIiIiInLu\nKWifnteMHn/eEY5/8SHP/+dyb8Cnmdljr2tUhbvP2L3915ffyPlEREREREQkU9A+Pd8xevw0M/vb\n+x1Yqtn/gAOakrn7G4BfKF+uA99tZs1RBmJmjZk9eo+n/vf+EODvmtmzj3K+cs7HH/VYERERERGR\n80RB+5S4+x8A30UOsQa83Mw+f/U4M3sK8F/IDdMWq8+v+LvkRmsGfDLwgJl99H4Hm9kHmNnXAn8K\nfOweY3wAeEX5sgF+0sz+iZnt2ZTNzKZm9jfN7JXAjx0yVhERERERkXPJ3K93Zyc5TKki/zLwgeRw\nDPDH5Xtz4MOAPij/CHk/608kV7afWYLw6jmfB3wfOZj35/wj4E3AO4E14HHAk4D3KM878AJ3f9Ue\n55uQQ/Mnj863TV4T/uYyzkcD7wd8ODAtx7zR3a8J+Wb2msNeg4iIiIiIyJ1M23udInd/yMyeSQ6y\nTynfft9yg+VU8R8DvoDlOuyDzvmTZvax5KnpTy7ffr9y23Xo6Px/Arxln/MtzOxvAPcCLyUH+HXg\nmXsdXm4t+cMCERERERERWaGgfcrc/e1m9jTg84HPJVeaH0XeXus3gO9y9x8FMDPYHZD3O+dvAR9t\nZs8BXkTuQn4PufI8Bx4E/ju5Kv3T7v4rh5zPgZeZ2b8t43wO8KHkCnsDPAL8GfBb5CZvr3L3dxx0\nysNeg4iIiIiIyJ1KU8dFRERERERETpCaoYmIiIiIiIicIAVtERERERERkROkoC0iIiIiIiJyghS0\nRURERERERE6QgraIiIiIiIjICVLQFhERERERETlBCtoiIiIiIiIiJ0hBW0REREREROQEKWiLiIiI\niIiInCAFbREREREREZETpKAtIiIiIiIicoLqWz0AERGR252ZbQFTIAF/cYuHIyIicid7HLlgPHf3\nC7d6MPsxd7/VYzgTHnjgAQdwd67nd3LUn7n+37dhBhbyPThYApy2XTCb7TCbzei6josX7sq3i5cA\no+siXReJMQL96/PhvEd1lLGbGRaMEAzLAx3G68lJ5dafKt/3YxiPxUe3gz3rWc86+osQETkFZtYB\n1a0eh4iIyDkS3f3MFo7P7MButhDyLPo+TF5v4B7b6+f78Hm8c5eQbTbc3CM4OImUEjEmYsxhOqWU\nx89xYvQ+VzY7dKzjcYUQCMEIVSgBeymlhMUEJFJannP36Q32HLk+EBKRMy1/bGjGPffcc6vHIiJH\nsFgsePDBB3nsYx/LZDK51cMRkSN629ve1ueTMx0QFLSLus6/CndfBtVjhOFxQO/tF6rdfXjuqIYg\naznAJqxUhn0I2F3X0bVdDtue9s6rB5z/oOf6Ma++lj5cV1VV7kMO21UgmOEsS9ddjEQijgH97xiW\nA7XhnNf+3ahoLSJn2juBxz3mMY/hLW95y60ei4gcwZve9Cae/OQn8+pXv5qP+qiPutXDEZEjetzj\nHseDDz4I+b33zFLQLqoqz/jrA2UftntHqeruF0b3c/yqdpmWbYbHCOQqcYqRWEJ223XEOK4YHxRQ\n935uHLqP8rqrqqKqKuq6Lo9z8B6mjJcPLcwCuOHegUNKjlnCnVH1e7/xnukPrERERERERAYK2sXq\n1HHIIbZ3nAA9tlq9Hofxg6rIq5fqp47nirYN44tdlyvZXQ7ZXdeNpo/D/gF1/5A9fq2rHyCsjnlc\n0c5BOwyVbTNK4HcgjaaYB8x8NB1+93j2/rWooi0iIiIiIrcHBe1idW329a7PPqgKvtf08uMYr4VO\nKdG2LfP5nPl8zmKxoGvbYa12SonkiUAYvR6/JsAfdK3jr80OpdlZR9d5mYZfxlJmCKR0479jERER\nERGRs0xBe8U4BF7PGu2jfn18eQ3zMmg7Xdsyn82YzWYsFgvariuN0SIpRTwlPID70dacH7ZufK+q\n9jhs9x8AxNiVWxw1aIuEEDCrhtkD+1MAFzlNZnYvcC/g7q5O2SfoL//yL3nCE55wq4chZ9Tdd9/N\nG9/4xls9DBERuQkUtIsbrTYfdI7jrPU+yLjzeEqJtuuYrVS03SHFSIq5irysTB/tukdt0rbcumt3\nRbvrWrquY7GY07YtMS6nszdNQ103NM1k5Tq7twETEblduTtvfetbb/UwRERE5BZT0C5iaS7WV37H\nzdD2Cp97BebDAvXJTZV2kufKddvmYNtXmoMt969erc73l199OXutId/Pfr+Lfnp423bM5zN2dnZy\n+O86uq4lxsja2hrTqRNCbp7mDu62HM+uX08/2GP+akREbrn3uNUDkDPnCpAOPUpERO4cCtpF3/hs\ndXuv1enSB4XlkwzXZtc2RMvnW443lm7j/XhzVbkqe1jnLbLGAXvv6+ydZI9a4R9/MJEr2Qt2dmZs\nb28zm812Be2+83iuaAf23zNbROR2ZYC295JVTwA000FE5DxR0C5WK9rjoL1XY7DTbuS1/+lzcPYS\ntNsyLbufvl3XVVkLvfparj3Tcffy3k8f+gHadsFsNmNra4vZbIe2XQZts0BdN6ytxbKdWjhkDJpG\nLiIiIiIitx8F7eKwruPXu73X9bo2f/qux2mYrh2HanbeYqspe1j325Ud9XrX7p293+tdXZ/dH5ur\n2rFUtlvm8wVtuximt0+na3RDBR7M+mr26otVwBaR20681QMQkeO5fPky9957L5cvX77VQxGRY8gF\nO+CMv/ce1v753Kiq6rpufROw/rbahfukqsbXNgobbddlefxN0zCZTGhGYXv3WMYBfrnl1/HHYiXU\n7/495Kq6Dfto999bTscf70sOmjIucjaY2dTM/pGZ/aqZPVJurzOzrzCzA7uSm9l7m9k3m9lvl5/b\nMrPfN7NvN7MPP+RnU7n9i/L1s8zsB83szWa2MLM/Xjn+spl9QxnnQ+WYt5vZb5rZ95rZi83s4gHX\nu8vM/qmZ/ZKZ/YWZzc3sbWb242b26cf5ne2h/ANO/1wTuV1cvnyZl73sZQraIreZUdA+080vVNEu\n+i2nVqu5q4F5v8r3auO002uG5sNdPl1pglaFIWjXTbMr/OaGY457vybah4ryrmZkRxjruMt4VYWh\ncr58LgzV9aoaB+04mo4PYLv/dVRFbJFbwsweB/w08BHs/kt8arl9EvCifX7284H7genKz74f8P7A\nF5vZ17r7NxwwBC/n+lfAP2WffxqY2ccDPwHctXLMY8vtw4HPBh4EXrXHzz8b+H7g3VZ+/vHA84Hn\nm9mrgM9y9+0DxisiIiJyKAXtYry38zhkHha0+0Zkq8/3AXO1odqJhm08txIrFeamaZhOJjR1TVXV\no4q2D/fLy+8fsvfTv8a+et+H+X4NeJ7CbqPnKvqGZ31X8r752a6CtkK2yK30I8AHA98C/GfgncAH\nAV8LfCjwAjP7Enf/j+MfMrPnAd9ZvrwKfBPwc0AHfCw5ND8W+Fdm9i53v/+AMXw68ETgN4BvBv4b\nsA78tXKtCfB9wCXgEeDfA78A/AUwAf5quean7nVyM3s6OXzXwNuBf1uu9TbgHuBvAZ8HfArwCuAz\nDxiriIiIyKEUtItxRXs83XuvoN0fk1IaBc29t/a63nB9bfO13YnYLI+5CoEQjLqqqauKuq6p6pqq\nDkNF2QxSsnLLHwykMo3b9rne8sLL6/X3hhOs39fbh++7G1UVmDQ10+mEGLtSyc7LJyaTSfkAoJ/D\n3t9Wr63kLXKTGPAU4JPc/RdH3/91M/sZ4HeAxwFfDgxB28xqciUbYBP4OHf/rdHPv97MfgT4ZeAy\n8E1m9oPu/s59xvFE4L8Az3f3dvT9Xyr3Ty/nceBz3P2nVn7+9cD3m9lXAhu7XmAe6/eQ3+9+CvgM\nd5+NXyvwKjP7ReA/AJ9mZs9295/bZ6wiIiIih9Ia7WI8JXr1ttd67P7YvdZij5uFrX7voOsfLE/5\nNpwAhGBUIeRwXUJ2VUJ2PawhD+WW11P3t1DlcB5yah7OvecllyMcYnHOyF4q5U4Y3dd1RTNpWJtO\nWV9bY319eZtOJ9R1vWv2wF6vcY+Li8jpcOBbV0J2fsL9XeSKtQFPNLNLo6c/lVwJBviXKyG7//k3\nA/+ofLkBfOE+YzByM5O/sxKyx+4ePb5mrKNrJnffXPn2ZwPvDcyAz18J2eOffTk5sAN8wX7XEBER\nETkKBe1itYHZ6vTovW57he3jhuz9fmZpdwg2+lDbB+1lJXsI3FVV7nPQrutQQnZdvpeblpmtrJMe\nX8uv/da4P7iNgrYZucIdoO4r2mtT1oaQvc76xjqT6ZS6qYff2bWv89rXKyKn7nsPeO5Xy72Rp2f3\nnlPuneX08b38IPDwys+scuC/uvv/OOA8V0aP9wvs+3lhuX/tARX13gPk1/oxx7yGiIiIyC6aOl6s\nNjNb/f5+x69OGT/O1liHjWXlu5gvw2gwqIbu3uNwXRFCno7tnnDv14onUvKyqjtXxBMObpB277Pt\nfSvzIWAb/U5cOWznynpu9LecAm5ACFDXFSnV+KQhpWnuNm556nhd19goaLszjAnrz7vrN7bv70lE\nTsTvHfDcOJiOK9p9N/E/cfd37PfD7t6a2a8Bzxj9zF5+85Ax/hLwx8D7Av+nmX0e8KPkYPyGAyrh\nkKfGO/BcMztqd9K7Dz9EREREZH8K2kWMu7dhGwficSgedxvf69Yfs5fV6vVeoX7cYG30DMNa5tHa\n6rw2Ozcdq0O+Dxbw5HRdNzQoizESR/tt57XdOZB7clIA0sq4h0xvQ9Yd/RZyiE+O90Hby8R2T0Ai\nWBlfmUqOOZNJk6vqod/ne7y23Xe9UhG5OfabSl2Mg+l4m6++c/dfHOESbx/9zH7eddAJ3L0zs+cD\nPwR8CDk8P7U8vWNmDwD/Cfh+H+8jmD2uP80RxtpbO8axK9Lokgep2P0rlTvblcMPERE5565cucKV\nK4f/83KxWNyE0dw4Be1iNWj3xsF4teP4Xo/7+9UQvRqw95o+3Xfm7qd0j/+t0IY9r/O+Xnm6tuXA\nPN7X23Jztq5t6bqOGCNd19HFDndnMpkwmUypqwrDSAFCglRK1n0H8VxBL+Mb0q+Xu1wJdwdPfQ3a\ncij33FnczAlVnrLuNIRgTJqGpt49dXy1E/ryVStui9wGTmqdx97/AB5fyP33zOyJwAvK7RPIW4it\nAX+93L7KzD7F3f9y9KN9mv0p4B+f0HgP8eDNuYyIiMgd5P777+e+++671cM4MQraRR+0D5vyvV93\n8Wu7hPs1Veu9Gq6tHj+E9WtGkAO2e6LvYRZsWdGuQlU6kIdSwc6hvW1bFm1L2y1KiL6QN3m3SR5L\nIodtyFPLj9SLrFTwk5OGfbrKpPI+aAeo3PC6yo+riqYuFe0qb/sVYxrOt9c1FLZFzqx3kv9AH3+E\nY/tp2Ietjz6U539A/ni5YWaPB54LfAXwZOCjyN3QP330Y+8gdyyfuPvv3OgYDmNmPOYxjzn0uP7D\nUTlf7r5bqxJERPbzkpe8hBe+8IWHHvfc5z6XBx88+x9qK2jvY78tuo66VddRmqGtnvPaKeOjY1lW\njh0Hs7zWeVQdTinRxY7FYjHcZrMZO7MZO7MdUoxcuusuLl26i8ViwaTJ221V1Won8H7t9ajLeB4E\n2Chklwp0jGm4tW1H23W0bZs/PAh5DXmoAik5aajMj34n5bwictv4bXLDsL9qZu++3zrtsrXWR5L/\nyn/7pAfh7n8OvMLM/h/gV8hB+/lmNnX3eTns18gd0p9iZrW7dyc9jrF77rmHt7zlLad5CRERkTvS\n5cuXuXz58qHHTSaTmzCaG6egvYfVKeB7hd/V7+0Vpg8K2HtNPe+D9kFhPs/qLs3HLOS1zmWMnhKx\n65jPZuzs7LC9vc3m1habm5tc3dykix2P3t5mPp/TdS0bGxdYW1tnfW2DEKphT+w8+F2vhBy+y9hK\nyDaclCLtomWxyJXz2WzOfD5nNp+DGdPplOl0ymS6RgiRqlTNd4X33a9ORM6+nwW+hPwPhy8Evmmf\n4z4TeBT5j/tnT2swZQ33a8lBuwYeDfx5efrHgeeVcXwho/3ARURERE6LgvY+VqvNe00dP8h+a7R7\n/Vrs1cC99/nLtbFlSDVbVrVLg/DkidQl5vMZW1ubXL16lYcffpiHHn6Yhx56iHnbMp/NSqO0XIk2\nApNmStNMyOHdd13VWG4B1q/dhhzqrTRam89L5Xxnxvb2Nts722xtbxNCxcWLF0mXLlHVDSkmvB73\nKVp5rZotLnK7eCXwNnKl+J+Z2avdfVfF2szeE/jG8uU2B28DdiAz+zjgirv/0T7PN8Anli832b1I\n+hXAPwfeE/gmM/u9vfYNH53r6UDl7g9c73hFREREFLSP6KgB+6Cf36s6fm3n8vz9a48ddrBeNh8z\nG3XvTsQu4p5YLBa5qr29zdbmJlcfeYSHH36Y+WLBdDplY2OD2WzG+voGMcZDXpuPwm//QcDy+BgT\n8/mCra1tNjc32dzaYmsr39d1jZnRTKf5teFDJ/QDdjcTkTOubNv1pcBPkCvF/9XMvhH4OXJjs6cD\nX01uv+3AS4+wh/VBng18rZn9IvCT5O3AHgTWgQ8EvoxczXbg5ePO4+6+MLPPAl4DXAR+3sy+j/xh\nwZ+QW1RcJq/x/jTyNmT/K3nrMBEREZHroqB9SsaV8L3C9X7Hw2rYzt/LO2hZP2t8ua2WgadcnU4p\nkWKkXSxoFwu6dkHX9d3HO1KKuWN5CNR1Q1Xt3tM6j2M0JsbV7RyU+27ofZ07JWexyEH74YcfLmF7\nk83NTSbTKWvr61zqYumkvtwqbM9wr/Atcttw91eZ2ReQm49dBL6u3IZDgA745+7+H07gkkbuNP6J\nezzXfwL4SuBr9hjr68zsGcAPkCvbn1tu+53nkRMYr4iIiJxjCtqn7LBK+LUhvH+UI60ZuI8TaL+p\ndaloYyQHL/tkx67NQbttaduWru2IXUfXxaHLdwhh6P7dN0Hbf5xe/s93he3+/8XopaK9xUMPPVxC\n9lU2NzdZ21jnrrseRYxdWU9uu7O0r04eX93UTERO0e7pKddxnLt/d1kb/Q+ATwbei1whfhu5uv3v\n3P2/ncBYvxH4DeA55OZq97DcrPrtwOuBV7j7q/d9Ee6vN7MPAL6AvD3YRwKPITegeBD4XeC1wA+7\n+x+cwJhFRETkHFPQHrmx6eGHLzA+rNHZku26t7LHdVmcvavOjOX4m6vZHd1iQdvmW95LO9/6iraz\nDNp1nffdHtaA++r1x69tWd/Oe2nn6nSuaLdDRfvq5lU2N69ydfMqF7uWnXffoYuREEbj993nWyZ3\nhWyRm8Hd7wMO3ajS3V/Lch/q/Y55M/BV1zmOcPhR4O7b5Gr1K6/nOqPztORmaGqIJiIiIqdKQbu4\n0TXYJ8eG9cv9kIZJ5Q7JvUzbzvtxV1WFp4SnVI7NRwfKPtt1xdraGhdKA7S7Ll3k0sWLXLx4kbW1\ndZpJg4Vl+M17fecz9btjXzOIUp0OZqVbed6/u98jvKpqmqahmUyYTCZMy31d1YRqPFX9rPzORURE\nRERETo6C9hmx51ZgK0Xefv6m+3If7VBVhBQJ0UiQ12CXKefBoKlr1tamOaCHwKVLl7h46dIQtOu6\nIaysI+/HMvQ697Kj2MoxFvLU8z5kmwWqUFHXVQ7aTcOkD9vTCWZ1ad62ey24iIiIiIjInURBe8V+\nTcz220/7uPY6777H0ufs0hTNneT9OucSbKuaFCMWRtuPOaW6bDR1zfp0Sqgqqrrm0qVLQ0W739IL\n+kq4lf/rr+DDjHgbrafuQ3UY3fo12KEKVHVN3dRMJg3NpGEynTCZTMED7ssGbwrbIiIiIiJyJ1LQ\n3sfuENiHw2vXES9zcr+eev/9tle36xpn7CFw++5u36Ub2rC+GcDNoFSzcxhO4BFSwlNHO2loFzVt\nU+PuOWTHSNU0rK+vM51OaZomTzt3J6Xx2CyPpYRhs35Muw1hO1TDVPHJZIKTsGDUdeDixYtsDNer\niXmIeGSYqr5c267ULSIiIiIidwYF7X1dG/xs2W575Xt7fX935frgavjBTdTMQtkz24Zu4yFU+adC\nIJhRBaOpAk0V8BRJsSN1LSFU1DFSxUTVNDR1TQhhuW936ve2HvUkK/dlQ64h+C+r2gaEoaLeTCZ5\nHfiFDaZrDV1cp4stFy9e5OKlS0yn03LN3Dxtdc/w3Q5vKiciIiIiInKWKWjvYWhC5rB7Zndftd59\nfB/AdwdHP+J0c7vmfOXHy/ZdDOE630ozsZC7hxsJqoDXAW8qurrCY0dqW2I7x0LIITslQpXXTS+D\ndspbg5XCspsxNDhnGbyNXFXvd9G2EvpzRbumaSasTdfY2NjASXkTMEtcuHCBS5cuMl3LU9dTSsMW\nYcP+4Lt+tT5+8Yf83kRERERERM4mBe1dlkFvNWz3YbgP1Xv2LtvVLXwZSo+9tnvXDPNSyQ45ZPdh\nOwQj5LyNEbFUYV6TmorUtXTtnG4xz13AY6KKCatq6roexjSuZuNlTfY1L2y0ha5RuqIZ/RrxECqa\numE6nbK+vkFVQ6gCoTbW19e5eOniUNE282GWuHu/R/gelxQREREREbmNKWgPRmESSuW15Fr2Ctt7\nGa3TLuG6D5JDt/Bygj7UmpXtuoYdr3LFl9IlPOdqGzI2IQfvUMaY73MHcvOKRE3T1EyahmZS08aI\nd5G2bfN91xJTyuPpK+bl1aeUcI94Kuu+yTcDqqqiqirqSZWDOom2W7BYzPO+3WWv7qrOVfPp2oS1\n9XWausEwYpfyXt+p30vccV/9RWqttoiIiIiI3P4UtHujoGuWw+44YBslFFup/LJ7a+lllduW51sW\ncHdHyDI/O1d4bVeIH5qhuWPBc+U6OFZZeZxveD6NuRMwzA2jIpkzaXLYrpuGsGhxd9quI7rTtR0p\nxuX8+NGFU0rEriN2XQ7c5VYFYzpdo64DTVOTkpNSJHaRts1BuytB22xCU5qura1v0DQTzAIxRlJM\npYp+2BRxlbhFREREROT2paC9ysZ3/XpkzzO3yxO7QrF7+X6/l/TyuZ674zaagn1NyPbS6IxlRRsn\nBKeqStiuoAoQKqMKAVLKeT15aU0WCEAK5KBdttYKs0DyRNe2tDHtqmgPr9UsNy33SNe1tPMFKbWk\n1OGpo67z3thmU5pJRdtGYox0XTdUtLuuo+s6zKwE7Q3W1tepQqlox1Qq5rt/D9eGbYVsERERERG5\nvSloF26pPHAg4eZYCdohhBK0h12tS0OvvM45uWNWESyAVcP2WDbawsqGAM2w5npXj7MSuJ1+yrZT\nVey6hWA5bJvjw3ZeucGYlW25zBMBpwrkcBwgpchiMWe26NjZ2WF7Z5vtnR0mKVFXDVVd56npkF+7\nRzzF3FQttUSLpNiSPFe6U2xp2wXz+YL5YkZMETNjMpkwaSZMmimTZkpTT+hXkafYTxvf9Vtn/+ni\nCtwiIiIiInJ7UtAucsCFfl0ynsA8b2EVnCpUgOMpP+cp4TGRYqJLiWAVHmpCyM3GjDK1Gy8BfVnJ\nNctbY1lpENZXzUuJGixhJOrGqWqnrqEyJ1gq08Rz9TnFjtTGoWM4FvDkmLcES9RVDvMxdswXc7a3\nZ2xubjLduMpkbZ2NCxdZW1tnvQpUoSrVcqMOEFOeuo6nUmjvSHFB181YtAvm8zk7sxmL+QJITCYN\nZhdYW19nMplSVQ1mFe6Wt/lmdb/u/Shgi4iIiIjI7U1Bu1gG7YgRgQhAsIoQoK5C3g6LiMcIHvHU\n5SnUbSSEmqpqoMqh28oC7WEKel/ZLpXs0Dc5G6aOU4J9AouYJeraaRqoG6jMCO45vEen85aubOPl\nKYd3typH+dQSzKnqHOBj6pjPZ2xvb3N1c5NmbZ1qMiUBFgKTtSl1VQ8Vcw/kQnSZ8m5E3FtiXNB2\nFYvFjNl8h52dGW3bYZbXbk8mE9bXN4agHawmuRPL/tkAh+ZsERERERGR25yC9mBc0c5BO08dh2BG\nCAlPEeiIntcup9gR25Zu0RGqJle5U8rV71LV9hKksbKW2o1AP9XchuZqyzXhEQsJC4mmdiY1NI1T\nWQ7YFhNuCfcFKS6wdoEnyyHbKhIBUkcgV7SDOZ7y2uvZfMb29hbN5hrWNISqoplM2IgbYE1+rcGo\ng+GBPC2+VPdT19K2M2wO8/mM+XyH2XyHlJzJZI3JZMpkssZ0bY2m6SvaoUyxT9cEbNuzdbuq2SIi\nIiIicvtT0C6aqt8EO7cWMy9rnz2SukQX2xysu0jsOtq2ZT5vmS8WzOZtrmiHmlA1VKGiLoG1Dn1Q\nhyoYoQpUdal+15FhSnnfZbxKhOCE2rGqJtSlmo3nKronPHZ4zEE7dYu89pkKLJAImDt1cKYNrE8r\nLqxPuHhhjfligZHY2d7M2365U1XGZNoQAoTYEcxpJjUxLYgxMp/PaWNLmC8I2zWhrvEEKUFdN4RQ\n54BdgnbdNIRQ4QliWcOuHbtEREREROQ8UdAu6ioAfQOzhHluaJabgiXafuurNm9/tVi07MwW7Mzm\nzGYLLFSEUJUp5BVNZTTBaKpAXQXqyqiqQF3XeGygieBNqfbmmwWoK4c6bydGkyvgNYG8c3Weru4x\nr5fOYXtOio4Tyi3vqV2HgFWB9WnNxnrDpQtrzOZz2pjY3t6i3dwCg+m0YX1jjUlTMbW8RrtpahYL\nI6VY1mLvkMxIGG4wmayzNl1jOl1nOl1j0qwNVe1+/Xk/VTz5agM0ERERERGRO5uCdjGuaJsbYJCg\ni5HYtcR2Qdd2dG2kazsW85bZzoztnRnbO/Pc0KyE7ToEJnW5VYGmqWjqfPOmgTTBPGKeSCmSUr4P\nwaExzAOVGRbB3Kiockdyj5A6Uiohu5vjcU7q8q7f7oYTsKahrhrqptpV0d6ezXjo6g4729s8vLmD\nGWxsrHHp0gU21qdUkwmHWeAZAAAgAElEQVTTakIzqQg7EGNkNp+ztbXNIkYWMdJ2iUc96tGER9dc\nuNCwtpbXZOewPS17bDtxtF/2tTlbU8RFREREROTOpaBd1KGskk55TXNKLalb0M3ntPMF7WJOt+iD\ndmQxb9ne3mF7e8bW9g4WQp4WHkqgntTYpKJqaoJVVNQkKhKJ6An67bNiJPZBuwJLFRUVHiqIFZZS\n3rLLHfMEHnNHdBJWupMHSyTvN8UOhL6jeaiY1rA+rbm4MWV7ts6ii8wWC5rawCPtYs7O9hbbm1Pq\njQ2mwWDS5GnjizlbW1s8cvUqbfK8D3d01tYv4m7U9YTJZEpdT6iqGrMKSHkbM0+7O4zvuSZbRERE\nRETkzqOgXfRBOyanix3dYk632GExm9POZyxm8yFkd21iPmvZ2d5ma2uHre0dQhWo64qqhOzaJng1\nwRobdu0iJTx6DtZdRxcWZX/pSEyRug5U3lCHJk8fjynfUtlqrF83jmPmBMv7axtGyMu8cTw3U7OE\nEZlUsD4NXNiYcFe7TvSUo7AZ6+sTjMRstsXm1ZrGnPWmIqUpi3bB9s4Oj1zd5OFHrpIIeFkDnhKY\nVdTNhLqZ5jXZBGJy0jAO2H+PbBERERERkTuXgnZRl6nj3iVSbOkWM+Y7Oyx2dljM8uMcsj0H7XnH\n9tY221tbbG7tUNd5i6tmUmE+YVolfAJWmpOZJ0gV7in3M/cAGHEI2onUVNSWSDXQVBAjpBK2A1jy\nYQ15MHIDs8owyjpodxyGruVmkaZ21iYVFzYmLGIiet7IzC0QqhojMtvZZtOMtaZisTYleceizRX7\nPmhb1RDqhlBNctAOFVU9oWmm5dpGisugvQzZCtsiIiIiInK+KGgXoYRBT5HUtrSzGYud7SFot7MZ\n7SKVoO254/jOjPn2jNn2Dk1TgdeY1aTa8VRhRKrgBCvBGMPcSdGJefY4KaUcsmPEUk1qAt7VWIow\nVLTz9l99NTsYJPPSybxUkMeztCtyRdtSqWjXLOKUzo0y6Ry3ii7m6d2L2Q5bnriwNmG2vs5iscj7\nbu9ss7m5xdXNbZrJGs3UaKZNbrhmNXXdUNVNDtjRSWUbryFoGyhki4iIiIjIeaOgXcxnMwBmOzts\nb2+xvbXJbHsT73JVuakqrA5lrbSTIkybhsV0wnrsaCY1a+s107WGjY0pFy5M2djItzoEagtUIYBD\n7JzYOZ05KRkhGSkEmrqiqiqC5Wr3rv8YhHIOLzf6x2XKOF6ODYFQV4S6ZuKBaTTWU6D1QNs5i85p\nozNfdLRtR2oj7XzB9tYWD9c1wZ13PfQwW9s7LLoOxwhVnio+na7RNBOqqgLC8PvzPILMQK3GReQo\nzOzFwHeSP5X7q+7+5ls8pBty5coVnvCEJ9zqYcgJuPvuu3njG994q4chIiK3KQXtYjbbyfc7O+xs\nbbG1ucliZ4vajNoCTVURnCFoe4TJpGEtTogpMlmrWVtvWFtvuLAx5cKFNS5srLGxMaGyQGU5bHuC\nNiQ6S2AJT6F0Hfe8xjtUBNsdsvMEdHAzsAChKiHbCMFIfcB2Byt7dVcVoa6YEJimQEuio8pBOzpd\n5+DzsnVZS9dFtre2MXe6xSIH7a1t2rbDgRBqmnrCdLpegnaNmY3WY2eukC0i51hKibe+9a23ehgi\nIiJyiyloF8uK9jY723nt9WJni/XJhHoyoaknw9Rv3EkJprHJ2395ZLrWsL7esH5hwoWNKRsX1ti4\nMGV9fZqDNoGKvI45WMSIeTuu4Dlsewnao4p2f8sVbaPqu4mTK9kpBFIox3neCgwz6qoiVP9/e/ce\nZOl21vf9+6y13tve3T1zztHlSAg5gEyMLTAqLO74AoQIK1JMcAgkYGEJW4lJFQlgKGwMHFzBKpBt\nqgIpC2yEgKoQLAOxETeJEIQVbF2Kq1EwCmAkMUiydM5Md+/Le1krf6z33b2nT3fPzJmey5n+fU69\nZ+/e++33fXdX7d7z62etZ+VjFWZUJAaXGAi0U0W7T/R9pFt3pBjp2o7FGLKXhwv2Dw45XCxyRTvl\npcuKoqSuasqi2gTtLG2t2DWGbAVuEbmwPupeX4DclivkDqYiIiJPnYL2qO8HAIYh5gZlQyTFhCVw\n5GW7LEF0iegSwXvKMjBYCQGaWcFsXjHfGYeM1yVNU1LXZR7ynQyHIw6JZAORvKVx3WkXE8473FSt\nnmZkJ4gJ3Lhfmh6Y2Bi07ajTd9x0OQeS4Z2jLBw1kbZLtN0YtLuYlypr+zzHOiZWqzWr1Zrlck3f\nD5g5yjLQNDPmO7tcunSZ2XxOUZZgRkyRmBIxJdL4D5Ojq1PQFpGLxgHvu9cXIbfleYBGJYiIyO1R\n0B7FsfoaU67OmjOcy8F3uiWBcxHnIj44CitIwfCVZzav2Nmt2dltmM1KqjJQFzmMuzFkOxxDn8aQ\n3ROTI8aETWHbGTifl9FKxpDI25CboaUYIeXGaSmmoyW0zG2akCXyMts2JCwNueJtgRACtRltNQVt\nNh3UuzYSB+jalrZraduWth+ICUIoCGXFfGeHS5cv8fAzHmFnZ4eqrjBnedh7yn8ASArWIiIiIiIi\nCtqTmMZq7Ngx29n1IduZAzctqQUeKH3Am6ekYGevYfdSw97ejGZWUjgjeKNwhiU3LvNlOA+RniE5\nYsrLetmQcofxcWHsvF51nns9xLy2t5EgxrwW97jlXOtIRDZF7HG3nLYNC0DhCL7AgqeeQvZgOWR3\nkb6NDH2k73q6buBwscyB3Tw+FNR1w87ODpcuX+bhRx6mqirKssTGinZK+QoSeQTAEdu6Z4iIiIiI\niFwE7sa7XAxxe2g2wDgvOv+IxqZkmxCZq96+8JRVoJ7nOdk7OzN29+bs7s6ZzRvquqIoC0IZCEXA\nh4DzHvMB8x68zxXsqXu45eW3hgR9gj6mvA2JfhzSPgwDcRg2Q73z8tk5kPcRugHaLrJuI6u2p+0j\nKRrOeYpQUJYlVVlRVxVN1dBUNXXVUBYVzjwxJtq2YxgSzhxlWdHMZsx35uzu7nLp0iVmsxlFWeSK\ndoo5bI9j1dPWf2w2EbmozOyymb3GzN5tZgsz+4CZvdnM/uotHONPmNk/NrPfMrNrZnZoZv/ezP6J\nmb3wJo/xMjP7GTP74Pj9v2Nm32lmzx6f/wMzi2b2A0/1tYqIiIhMVNEeDeO85ynU9kNk6Ad6l7fO\nBvoh0vYDbTcwkPDO4wtPCI5Q+hyox81ixFLCUiTlJbFJMdH1A+uuZ9l2rFYdQ0ybOeGYEULuGB5i\nxAWHbx0+OKJLWBw2Ww7eOYR3Q6TrY553PUTSWA1PyShqR20ldZHwzjDzeB8oQ6IseopQUoSOIpSU\nxbiVFb4oqOqGqm7Y2d2jmc0oyxLvHWb57zNpK0gbY8dxEpsJ45amB0XkAjKzTwDeAjyHo7+6VcDn\nAp9nZq8H3nqDY/w14HXj923/5e7jgBcArzKzv5dSes0Zx/he4H8Yv5yO8QLg64EvN7O/jP4yKCIi\nIudIQXvUD3no+BAjfR/p+yF35XYDnetpnafvI23Xs+57IomyKI/CduEJpacYq9fEmNN1PJrH3A+J\nth9Ydx2rtmWx7hhiJA4pDw83IwwOHyIh+hy0gyN0nuQTLg64oc9BO6YctGNubLZuI+uup+0iwzTK\nPBl18lD0hCrigmE4gg+UhVGEnjJ0lEVBWRQURUlR5q2sambzOc1sh53dXWazGWVV5oo8HM3JTkcd\nx48aj6ft5C0iF5CZ7QI/BzxKDrA/CvwQ8EHg44GvBb4SOLUibWYvJa+xDbAPvBb4BaAHPhP4JuCZ\nwP9iZo+nlF53wjG+gRyyE/Be4B8A7yIH9/98vI43ArPbeb0iIiIi2xS0R1NFe+o63g9j2HY9nXmC\n9Ztq9LrrSA588uMQcocvc9guykBRBlI/EM1Ifa78DiltKuKrsaK9WK8ZYtoMAzczfPCEIRJibrgW\nCk/RB1JMuNjjhwEXe/o4DjGPRtdF1u3AYt2zaodcJR/ndg8W8NVANUuEBGYO7wJF8JRFT1l0Y0W7\noCiKTUW7bhpm8x3mu7vs7u3RNLNc6fY+h+w4wFYDNIOxA/oojf+z6b5Ct8gF8y3k9s0J+KaU0ndu\nPferZvZG4E3AF5z0zWYWyJVsgAPgs1NKv7m1y9vN7MeBXyFXzF9rZv88pfSRrWM8G/i28RreA3x6\nSunxrWO8zcx+BvhFoEQVbRERETknCtobUxB0YHl4tNm0zFZuMtYNA8u25XC1YiAxBIPC4+pA1/UM\nfZ4/nYZcpY593rousVoPrNc9h4uW/YMV+4dL9g+W4xD1HO6nNbBDcIQisG4buqFnSJGmcJQWKS1R\n4HLIHvKc7FULh8ue/UXLYtVuhr53Q2I9GBQ1oW5wocpF9pS7qpvZOMc7NzTzzlGWBU1T0zQNs6Zh\n1sxo6mYcNu63lsnOQ9MhjxAfVxg79q9U29pE5KIwswJ4JflXwm8cC9kApJQGM3sV8HtAccJhvgh4\n7niMv38sZE/H+EMz+9vAj5Ar0n8d+Idbu7wCqMdjfM2xkD0d41fGoeX/8629ShEREZHTKWiPHB7I\nFd/ccTxv5tymC3jbRxbrlquHS/oUicGgcLjKM1tXdG1H3/YMzufh4H0k9on1emC56lksW/YP11zd\nX/LEtUOu7h/mTt/9QN/ldby9d4SQq+Or9Q7d0BGJDHXBrHC4wvDeM5CbpeWgnThYDlzdb7l2uKQb\n8jG7YaBNhqtqimaOL1sMD0x/RICUBoahJ8Ye54yyLJjTUM9mNLOGpmmoq4oiFDhzuVlcmrqzg6Wc\nsG2c3ZiHlXNd4j4pZps9+dGjRnQi8jT3KcBD5N8Ebzhtp5TS+83s54GXnvD050+7cTR8/CT/HPhe\nYG/8nu2gPR3jP6aUfvaMY/wQCtoiIiJyjhS0RzY2YHfmcc7jnSd6nxt/jd3A2yGyWHdcWyxphz6H\n7DIQqoKdVUu77hm6nugDQ5/GjU3QPlh0XDtY88T+ko9cPeDxq/t0bU/bdrRtT0ppbIbmKIpAN/RE\nxmW/UoOlgsIXlIUnpkQXE20PyxYOFgNXD9Y8cW3Juu9ox603R9HMqHdWlM2M4BPBFQQ/VupjGoP2\ngHNQlgUuOOpZrmg3TUNV15ugTRyboKUcsnPPs2N17PHx/HM9qmifFK6nxxSyRR4on7h1/x032Pft\nnBy0p7nbv59S+vBp35xS6szsV4G/yJPne7+QHNR/7QbX8JtAy8mVdREREZFbpqA9mjppO+cJPhBC\ngcWe4APeFzgfSGabsL3qWoqmolq31OuWddvTdz1DNzCEgb5L9F0eNr5cdhwcrrl2sOKJ/SWPXz3k\nI1cP+MgT+7TrjvW6o123efj2GLRD4UkWMQfOG2aRQENdeOrC6CJ5aHiXWK4jh8sc4h+/tmTdrVl1\na9ZdS3KeemeHncWSZr6mKhKpMMy5cWmugZgGUoq5GVvwODxVWY5LgZWURYEPeU1x4ISQfUKAhuua\noR0P2ad9rcAt8kB4eOv+B2+w7wfOOEa6ie8H+OMTzgu5qg7wobO+OaUUzewjwLNv4lw3EIFn3cR+\nftzk/nPlXl+AiMiFdOXKFa5cufHv4LZt78LV3D4F7ZH3OUQWRYC6wqWGWHqKMXQXPnDYdoSDQ8x7\nYmcM4xrXXZ87lQ9DIkUjDtB1A6tVz3rVs3+w4Oq1JY9fW+RK9hPXeOKJfZ64uk/Xdrmive6IKeG9\n4bzL87QDOJcwG7DUE4hUwVEGx2odWa4Si1VksVxzuFhzsFhzcLhk2S5Zrlcs2yW+COzs73KwOGS+\nnBHjQEwRSPR9xxCHMdzmgJviuBr2OER8amRmuHE18VyhTrm0nRuMH8/Z13UbP72KvX1fAVvkgXW7\nb+6n4S+HM3O9iIiInOB1r3sdjz322L2+jHOjoD2agraFgK9KCjeDoSCEguALilBQL9cUZQUuMCRj\niOQlwLppXetxWa0IXTuwWrUsDlv29xc8cfWAjzxxyEeu7vP41X0ev3qNq1f3abs+h+2uJ8WIc4Z5\nCN7hfMIsgg04i1TBmFcFTVWwbCPLdWS5iiyWLYfLNYeLFQeLFYerRd6Wh/iyYO9gj/3DQ3ZW802A\ndlie/x0HIOWwnBIxJWLKQ8rTJmTnxmnT/PUcxG2cjG3bK3zdkpOGkovIA2G76dizyR2/T3NaFfkj\n5F8tN1NlfnTre45fx7PJS4CdyvKQpofO2udmmRnPeMYzbrif9z43mJT71qOPPnrjnURE5Ny8+tWv\n5uUvf/kN93vJS17Chz50//9RW0F75Mdh0b4I4CoowFJJCCVFyIG7PjgklBXmPBFjSHn4dq5op7Gi\nDXFItF0O2oeLJdf2F1y9esDjT+zzkSeu8cS1A564us8T1/bp+p6uy1uMEZenhOO9w1wEBmLqCC4x\nrwouzRt2Zg2r9ZCr2ashV7SXaw4WKw4Ol+wvFhws99lfHFDUBQ8d7HOwOGSxXGJjBdo5O6poj13M\nUsyV5Ryyt5bushy23Ri2LcXcdZwpbOeS05Nz8+nVbIVskQfadofwFwNvO2PfF5/y+G8BnwF8jJk9\ncto87XEZsBeRfw391rGn/x05hH/yDa73E8nrat929fy5z30u73vf+273MCIiIhfOc57zHJ7znOfc\ncL+yLO/C1dw+d68v4H7hvOF8nqNclAVVVVHXNWVVEIqA8w7nPc57fBiHkxclVVVT1zPKqqYoK3wo\ncaHEhxIfKnxR4UPAnB9HYo8B0/I8aXMuN1/znlAUFGVFVdc0s4a6OdrKuqYoSpwPefkx53Eh4EOB\nC+GoQzoQU14DvOs61us1q9WSxfKQw8N99g+vsX9wjf39qxwuDmjbdR5KbtMyZolhiMSUMBzOB7wP\n+LExXK5snxaS7dg2vdTT52dPx1PwFnmgvIujqvZXnLaTmX0Up6yjDbxl2o28bNdp/mvg0rHvmfzC\nePsMM/vCM47xijOeExEREbllCtoj7yxvwVGUgaouqeqKYuzCjTPMGd47fPAURUFV1TTNjNl8TtPM\nKasGX9b4UBHKmrKuqeqGoqwJRYH3ORDnsO4JIVAUBUVZUJYldVUxmzXs7Oywu7fH3t4ee3u77O3t\nsTPfoWoafFliPuCKglAUlFVJUZb4oshheKzMx5Tohxy2V6sVi8UhB4f77B9c49q1J7h67XEOFwes\n2zUxxs2a2jEm+iGSs7fDj3PU3Xjtkxstz3VSgN7+WuFa5MGVUmrJS3IZ8Mlm9vXH9zEzD3w/p3f6\n/kngj8Zj/F0zO95RHDP7aOC7xi8XPHkZsDcA6/H+d5vZIycc4zOAv8XTci64iIiI3K80dHzkfA59\nwTkKbwTn8TYufxXzcGqcy43KfBiDdkXdNMxmO9TNjLJqCEWFLwJFmSh6qAZHUS0JRZkrz96P4TUQ\nijDOe/YMbsB7T1WVVHVJXZfs7u6wuztnd3eH+c4OVd0Qihy0fYBQ5EBdlGWuugeP845kuao99ANt\n17Jar1gsDzk4LOnaiq4saVclzgUcBc7CUUU7jut/J2AK2kWBc7nr+PGwfDxcT7fHQ/Rp+20/f/x4\nIvK09u3AlwDPA77TzF5EXq/6g8DHA19HXm/7nZwwfHxctutvAv+KXLF+m5l9F7lKPQCfBXwjucV3\nAr4upfSRY8e4YmaPAd8B/EngXWb2mvGcFfAS4GuB9wM7wDNQ4BYREZFzoKC9Mc5HdtMQcsNZInUD\nKUb6YWAYhhy6pzBoDuem5b/yZi5gvsCFRCgglFCUFaEsc/W6KCmrjrKrqLqeWCTikIgxEkKgbmqa\npqKZ1Vy6NGN3b87OzoxmNqducnXcFyU+QZFyg++iLPAhD2/f7uIdUyQOkX7o6buOtmtxBs4SjkTw\neW66jcPCnXN5WHy0PIx93IIvrgvPJ4Xm7a+PB+0pRB8P6ce/TyFb5MGRUrpmZi8B3kyeJ/1l47bZ\nhVyB/mWeXImejvHTZvaVwOvIQfjbx237GD3wzSml7zvlGK8xs+cDrwY+Gvjfju3yQfLw858Yv17d\n5EsUEREROZWC9miIAwBuMKIzYnKQEm3fs1q3Y2OzBYvlkuVqxXK5HrcVi+Wa1bpj3Q10A4RkRBzJ\neZwvCEVJWdXUzYzZvGMABoxkjjQukZVSXlqsaWpmszxHe2enYmdeUc/yEPSybja3uatZIlrCl3md\na3MG7vqwm4e7e0IR8rrYVU1dVTRlhbMCSx6SA3NUVUFZeeY4di9dZjbfoazyHPOUcoO0OAyb+6cx\ns+uGmR/fV8t7iVwMKaXfNrM/Q648fxHwfGCf3Czt+1JKP2Zmr2BrMcETjvHDZvZLwP9Ens/9fPK0\npz8iV7e/J6X0725wHX/LzH4a+GrgzwEz4H3Am4DvGivfe+PuV2/nNYuIiIiAgvbGMPQAOHMM0RGT\nAZGu71mt89JZh4sli8WS5XLFarVmucohezYG7bYb6GNiSDlEYx7z4MegXTUNTdszYERz4DxT4zDD\nKMqC2axhNm9y2K4DTVNQ14GqOQrbZT0DG0gWiRY3w8bNuWP9yHLg9d7n5m1lSVlV1HVDU9cQHbE3\nhgFIjqKsx/nkNfOdXebzOVVVEYJn6CNDHIgxnhm0rwv5Y5X6tGq15miLPPhSSk8A3zRuJz3/BvJc\n6rOO8YfkId63cx0/BfzUSc+NTdkukcP+797OeURERERAQXtjGHJF27tEjJCSMZBou57Vas3hYsHh\ncsFiuWK5XLFctUdV7dVqE7S7IQftiAeX536HoqSoauqmoekHohnJeXA+z302h5mjqkrm8xmznYbZ\nrKEsjLJ0lIVRjY3VqiZXtRMDkZ6BAV8UOWh7uy5kG7mzeZ5nHSjKctNNvZnNiX2iW8e8lrY5qqpi\nNt9lNt+jambUdUNV1jjvibGDAWKMZ/4cp2r2NJ/7RtVvEZH7wH+7df/f3LOrEBERkQeGgvbGNIQ5\nrw8dU14juh8i625gte5YLlsWy9Wmuh18wDCGYcAAb4bzjsVyzTBEhiEx9IlrB3kN63Xb0fV5nndK\naVzeyzbzo83lRmZ5LeuBIRp9nzuCd/1AN0S6Po5hHpIZ5t1mc1Oztq1GbU0zp5nNmc12mc12c3iu\nG8qyIbqEEXEWAZ+DfN1Q1TUhFGCOIebGaHGIm2r2dT+1k7qPn/TT3apqK3iLyN1iZjNgL6X0x6c8\n/yLgm8cv35lSevdduzgRERF5YClob9jmNqVpg35ItN3Aqu03VezFYsn+/mF+vu9ZrVYwNfxycLhY\nkiLEce71/uGSg8WC5XpN23X0Q8+Q0lEgHSvQjN3C+2Gg63sS+RpiMsoi0HY9bT/ksJ4SEQN3FLJt\nXOs7rwNe08w6ZvM58/kus/ku8/kedVlRlxVlWRM9OIsEF4FAXc+oqjx83HkPTJX+yDAMN6xmb5xR\nxT6twq3Kt4jcIc8E3m1mPwn8LPA75CW/ngt8IfBKoAEitzk8XURERGSioL1hW7c54A4R+iHmoL3u\nWK47FmPQPjhY0PcDq9V6DN0pV6edcbhcA7lSDcZytWYxzuluu45uK7Qmsxyy3bi81tb611PYj8lY\nd0dBux2X38pBOw8PzyHb5XXAi4KqrpgNA/PZDrP5DvP5HrP5LlUoqYqSoihJwzhU3ifMPFWVlygr\nqyqfNyaGIRJTJMVE2qpo3+786uOhWiFbRO6gGvhvgC894blEDt5flVJ62129KhEREXlgKWhPxpwX\nIwxDonc58K7X/dhxfM1q1dJ1w2YOd4ww9IneR9brjsPFiv2DBckchsF4u25b1m3Hqm3p+j4vFRYH\nYooQbXN6M7AezBIQ89DxCGEwgncsihVlUeDNYy7gfMCcz2tzj+tyl2XJEFNeAzsU7O5dYndnj/nO\nHrNmj8KHzYaD6CB6MDxlWRFCXjM7xkRiyEPH8wvO2038GBMnB+epan1S9VpBW0TukPeT1/N+CXm9\n7mcCDwML4A/Iy499T0rpvffqAkVEROTBo6A9OhoVHSFFYjTarh3D85Kr1w5YrTvMPE0zBytompqm\nrqmbmr1Lu9TNDFzYzMFOaSAlNkG7nYJ2jAxDpI8RswEbm6GFwTHEwDAE+iHkda5DXtObFLFkDP3A\netVRNw11M6OpZ7iQh4vXdc1sNqMoS5pmRtf3PPzww1y69DA7O5doZrsEc/hxIxnJQfK5+u5DgZkj\nxnTifGzMzg7b22t4A3ZCmN4O2QrbInKnpZR64I3jJiIiInJXKGiPpqAdY2KwiPWJ9XrN4eGS/f0F\n164dslp1YJ5mNqeq58xms7wc12xGM6uo6gpzgX5IuRI8NhBr245119K24/zsGMdtCpY5oPa9px96\n+iHQ954QLAdtb8ShJ/aRdt2yWq65dPky5vK8ah/GjuJj0I7paH74Qw8/xKXLD7O7c4lZs5uX38Zw\nCUiWO5UnAIc5D2ZjFTvlqvY4l3x7oPipw8anAD3eT8f2VTVbREREREQuAgXt0RS0U4q5Eh0HlquW\nw8M8HPzqtQPaLm4q2iEU7OzssLMzZ2dnBx8czoM5o4+Jvo8MfU/f97TdWM3uujxsPEViSnnbVL/B\nOUcx+FzRDmPQ9ob30HWedt2xWCxZVCvMB6p6RjLbBO26rpnNZ3lYufM4F7j00GUuXXqInfllmmYX\nhjzfmpjG0D0Oc8eIkJusjRXtOIXi7bB9xtzsTajeavS2Paf7rGq2iIiIiIjIg0JBe7RcrAAYhp5h\naOn7juVqyeHhkvW6YxgSZVmNnblnNM0sV7TnDU0zw3nAAZZIKTIMPX0/0Pc9XddttqOgHcd50GPo\nHIN2KDxFCPjgGIZus61XHathTRoi3nlScnhfUtWzfOy2I8aYjxECoSgJoaCuasqixHuPkZcPMxKJ\nSCJXs6cKdOToeqaAfSNp7LY+3d92uw3TREREREREno4UtEeLMWj3fUvbrmnbNcvlkoODHLRjhFlZ\nc2nvMpcfeoTdvT3quqauK+q6zgF7jKoxDjlQ930eCt51dF1P1+egnavFU8X46BpySPaE4PHesVgc\nslwesOh61quO9YR94/QAABl4SURBVGLFarkkDpEQSqq6YWdnl5SgbTtSSpugXZYFZVlTVSVFKPDO\nj5Vrx1RvPgr5+TryKyC/imNB+6zIvB22T7L93PZ62iIiIiIiIg8iBe3RVNFu2xXL1ZLVasliO2gP\nUJY1ly5d5jmPPoeHH3mEoizGQFuOFeqBIQ0Mw7T1DONSXX2fA3c/DGPIzhXtI4bzY9D2HueMx51n\n6HsWcUG76rh27YCrT1xlvVpT1Q3z2Q6XLz2E95627YhxO2iXNE1NXVUURe4knpcbSySLgNusdz1t\ncQzbUwyfbm+mLn2jsC0iIiIiInJRKGiPhmEAoG171quWxWLNcrUmxkQIJfO5Z3d3j0uXLnP5octc\nvnw5V55DIARPTDEv2RXH23EJr2HIc7WnoeRxXNYrxpSX9zIbg6xtKtree8wZXduxWiwJvoTkGfp8\nfavlmtWyZb3uWK87go90bUfb5iHkRdGTUhxnXtvRbcqDxklH86Uj203KeFLIvhUK2yIiIiIiIgra\nG855gLy8VbLczGysYjezEhcKHnnkES7t7dHUDaEIuDFUbpbCmjp6m8N8vvUuEb0nxiJ3IU/x+u7b\nZmN/sRy0vc/Dxs2MZbNgUS+oq0OaaklTr5jVK4hGVdYEX+Asr3ndth3LRa7EM15DcJ6qrBj6nhQj\neUJ2guka2Bo2nidqb/1E7szw7pO6jouIiIiIiDxIFLRHm6CNI0UYhkSM0FR5HvR8d49Lly6xd+kS\ndVNThLAJq7mp2aYcjDOXJzWPxzyaB52uW/oqkXKl2Qwsz9H2zuF8/r7D5pCmntFUM+oxaK/qNSnl\nPwCEUGLmGPp+E7QPF4c54PvcVK2rW4a+I8UBtq9jK/CzuRq43YB9UlVblW4REREREblIFLRHzly+\nY0ZM0A+RGKEa52U/45nPYr4zp5nNaOoaHzxxOBounr/VNsH5pO0k28875zZbSolZM88hu2zyVs1o\nmhy0tyvaXezp2o7lcsnhwQHBe4oiUJUFXbveVLSNKWtvzc3e+u+66zrnn6+q2CIiIiIiclEoaI+m\nOdoAIQTquqGsErP5nNlsTjNrKMsK70Ou/45V7O1gDVx3u/348aC5/fW037Q8l3O5UdkwDAwxEmPE\nnFGWJfP5nKIo2NndZTabUVc1MQ6YGcMwsF63LFcriqLA+0Bdz9hZr+n7fhzifv3Q9TsRgKcK9vYa\n2tPjCtwiIiIiIvKgU9Ae9UO/uR+KQNPUYI75fMZsPmPWzCjKvB41jPOy86TsTTX8eMjefmw7ZB4P\nudM+zrlN2IYc/uMYts1y0IY5dV2zu7PDbJ7vt10LZvTDQNu2rFYrQsidy2fzOeu23QTtaT758es5\nb2etry0iIiIiIvIgU9AePami3RjeF2NFe8ZsNsN5vxlkHcfwa2aYu36d6OO320FzCrqbBmpb3zeF\n7CkE931/VNE2R1mWFEXAzDYV7aquKVbLo4p2u8av/Cas7yyWrK+raF9/7jsZgo+/PgVuERERERG5\nCBS0R9M8a8woioJQlhRFRV3XlGWJDwFzdl1FGIPN4lzH5mM7564bEj5t2+farmhP97efizFu1uRO\nKRFCwDlHUQSapqGuKsqyJISAd35TWY/DQNe1rFbGar2ibVu6Pq/pHSNbIfvu/GxFREREREQuEgXt\nURxTp/M+B9eioKxqqqrChbGSnab+3EemdamdO2pm5r2/7nYKy/0YdoETh45vjjmtcR0jfd/TdR3D\nMBCCpygK6rqiKsv8BwGf190OIVAUBUUosHEIetfldbW7rqPvOvq+h3FVbcjLit2tsK1qtoiIiIiI\nXBQK2qMpaAdnFGVJVddUdUNZVfhxyDgcLYLFdeF4DOnOEULIQX0MvyGEHHT7/knN0abh5ydJUzO0\nYaDruk3Dsxy08x8ApoZn03mKIodtjE3Qbts2B+6uH6/Bj9V2N163wW0u6SUiIiIiIiJHFLRHm+qy\nc4SioK4b6tmMsiw3c7NJT64AT+tiby/P5X2uPE/bFLC3K9Wb7uKnXMt2Rbvv+01zsSlol1NFO/i8\nnFcIFEV+bIi5iVofe9quG4N2Dvu5l5ttbs3SZsmvbWete32za2Krii1yMZnZK4DXk39FfkxK6Q/v\n8SXdNVeuXOF5z3vevb4MeQoeffRR3vnOd97ryxARkQeEgvYoFAUAPgR88Dg/BmFnYJCOrSydxv/Z\nuMjXNJ/6pKr1NPx7Gjp+M8tcbXcGP1qn222Gj09V86mKXtUVs9mM+c6c9XpNu17TDx3D0G+Cdtt1\nFMkoCr8pyN9KFlZDMxGRs8UYef/733+vL0NERETuMQXtUSjyjyIH2IDzHhsbmnFSyJ7uJzA7alyW\nH0vXNUCbqtLTUPCTOo4fHS9dd/+oAp7ngXsfjgXtPES9qnLQ3pnPAej7jhjTZm54O87XdpaD+dEf\nA46/ousdr17fbDVbROTi+qh7fQFyS64A8V5fhIiIPGAUtEebinYRcMFj3mFuXLrL7IQomo4eS0/u\nFj5t2+F6uj0etOHJ1eLtkJ3ncnvM7FhFO+C92wraDfOdHbq+Z7VaklLcBO1c0W7xIVBsNWGbho6f\n5Hh1XkREbsQB77vXFyG35HmARiGIiMj5UtAeTfOlj6rYT+4wnncYq8DpqM69aZR2whrV22tXnxSy\nj8Js7gL+5IA+bCraeR6436pm5ytw3lOWFbPZnJ2dJev1isWi2Cwt1g89bbtmvV5TFCVpaw3wyTQH\n/DTbc8yfSlX7rKB+1vEU8EVERERE5Onm5G5cF9HWCPFEIqa8pZTy0l5Mz23/fyuKn1LJPm24+JNO\nPwb4qdt4Hmre0/cDw9BvKuZ5+Ljf/GEgxoQzoywLZvMZu7u7zMYmbj53PKPve9brNavViq5trwvu\npw1bP+6kavvNhmCFZRG5AMbPU/2+E3m6uHLlCt/2bd/GlStX7vWliMgtmKbrcp9n2fv64u4qZ0eN\nz8aQHWPMYXvcJZ1Q6c7V7TFyH2tgtr129nY1+/rgOVWz87G3vy+H7GHTQA2mJcT81pDuXJ0uy5L5\nLAftphm7pTufg3vf067XrJarcamwiJm7blj4dhX+VtxK4BaRB4OZXTaz15jZu81sYWYfMLM3m9lf\nvYVjVGb2P5rZW8zsipmtt47zSjPzd/IYZvYHZhbN7AfGrz/FzH7QzH7PzFZmdquTdm94vSJyf7ly\n5QqPPfaYgrbI08xW0L6vP3s1dPyYKURPYXsTqp80vDmNq1AfVbQZvy/Z9dXi04ZG532mQ09B+/qK\ndoxTyE6barb3YVwLOw/nNucoipJmlmvvs1lDXVcURcCNw8fbtmO9XtF1R9XxWx0+fubP7Ta+V0Se\nPszsE4C3AM/h6G+OFfC5wOeZ2euBt97gGH8W+D+B53N9CfgZ03GAV5vZy1JKH7xDx9j69W6vBv5X\nrv/AVncsERERecoUtEcxbgXlTbOw/JxxFIbT+HUC7AbhcgqfJ4fQ6d+FUxifHtvuYJ67jJdlSVlW\nW2tn5znaZo6pGu59oCQRq4HZbIednT0uXXoIM0dZVpjZVoU8btbynq7teOg+7vTXcWMnLQumUC7y\n9GNmu8DPAY+Sf2H9KPBDwAeBjwe+FvhK4IVnHOMFwP8N7AFXge8B3gG8F3gEeDnwauDFwE+a2eek\nlIbzPsaWTwW+AvgPwGuBd5E/Gz/nZn4mIiIiIidR0B5NVd4Yt7qJcxRAbWuJryls58fPdhROp++a\njnBkqmrnedqRlCIxDphBCJ6qqqiqirKsKIoctqdqeBqvIwSP9/n489mcvd09FpcWDEMkhBKwreZq\nw+b1Mn7/NOf7LMfD8dEfJG48z/upBmuFdJH7yreQWzQn4JtSSt+59dyvmtkbgTcBX3DGMd4AXCIH\n2i9IKT1+7Pm3mNmbxuN8Gjm4/7M7cIzJnwZ+HfgLKaVrW4//yhmvQURERORMmqM9ijHlkJ3ycldj\nhMz/2bGNo6DNsedOMh3z5D7m163KfWxJrzxUvCzLMWiXlGVBCEWuaE+d0s2N62tX1HXNfD5nd3eP\ny5cvs7OzSzVWtI+as13f/fz465sem6598qSfwwmv+UZV8Rt9/41sX99T+X4ReWrMrABeSf6l9RvH\nQjYAY9X4VUB3yjE+G/iM8RivOCEgT8f5OeCN5F+1X3nex9g+3Hicrz4WskVERERuiyrao36cVO/6\nAd/1eN/jXJfnQjs3DrOGFOM4bxqcWd62lgTbbmq2HZhzJt8Orzl8e5+P7b3fzMue5mbDVNEuc3Mz\nn68hN0eLm47oZrlJmnNGikbwBXU9Y3f3MmW5pu8Gum7AuTzcPKVE3/dPamR2UlO07SZs26/ztM7j\nN7OM1/GwfLPH2x66roAtctd9CvAQOZi+4bSdUkrvN7OfB156wtMvH29/J6X02zc431uBLwFebGYu\npTQNwzmPY2x7b0rp/7nBcURERERuiYL2qO+m6XvdZu7zpqP4WIielt4ahh4SY2Myh3d+s+TWNAR7\namjWdd0JQfuo+7gPnuDz9w/DQNe1m6BtLgftsiopirCpSq/X66NgOgZtvzl3wsxTVQ27u5GybOna\njrbNBaYQAiml8Ty57880PPt41/TpFvJrneaGb1fdTwrn2yH4pPtTwJ5+ZjY2bJu27WNN96+fO6+w\nLXIPfOLW/XfcYN+3c3LQ/nPj7Z+6ha7eBfAw8B/P8RiTBPzGTR5DRERE5KYpaI+6vgcgYWPVl03A\nZpyhPcTI0Pf0fUdKUBSBIhSb8BpC2IS/vu9p25a2bcGOOozDWBVPuZt48IEQcoiNMdH3Hf0UtA18\nyEPHi7LADIYhHzduhc+pqu69y+cwR1XVeBeoynZcQ3tNjJEQApBo2w7v45PmV0/heRpm3o8/l7Is\niTFSFMWmWdt22J5uzxqGvv341IjteHifljLbDtrb55lMx9HSYiJ3zcNb90/sBL7lA6c8/ixufaHp\nBMzO+RjbThx6/tQl8iXeiOc+X5XkAtHSTiIi94MrV67c1HJ7XXfiDLX7joL2aBimwkg/BjjYNEPb\nVF0Huq6j63pyd/DiuirrNAR8Co1T2L4+aE/V4Dz8ewhhc5yY4tGyXumoklyWOYwbxjBE2rY9mks+\nhlvvHcOQK+yGoywqyqIihGIzZLzruvH68h8Cps7jx4e7T0PLu67bBO3t1zm9tpPWB98O0icNEd+u\nZm9X0qfjTMecbD93vIGbKtoi98xT/QvXlCx/HfjyW/i+95/zMbad1o38Nnzo/A8pIiLygHvd617H\nY489dq8v49woaN/HbjVHXpTcqYAtck9sV36fDbznjH2ffcrjHyY3INu5ifnVpzmPY9wJm4r/zf6O\n0u+y+8sHP/hBnve8593ry5C7qG1bAF7ykpdQluU9vhoRGYaBZz7zmTfc70Mf2vxB++Gz9rvXFLRH\n3/zNf0//4hEROd1vbt1/MfC2M/Z98SmP/yrwmcDHmtmzUko3GoJ+p45xJ2w+Q252SoumvtxfYoy8\n//2nDXyQB9nWP9pF5Onlvs5vCtoiInIz3kWual8GvgL47pN2MrOP4vR1tP8l8NXkD8avAf7uU7iO\n8zjGnbAGKiBy4znsIiIi8tQ9i7xM9fpeX8hZFLRFROSGUkqtmb0e+Frgk83s61NKr93ex8w88P3k\nLt8nHePNZvZ24FOBv21mv5pSeuNp5zSzFwL/SUrpp87zGHdCSml+J48vIiIiTy+moWsiInIzzGwP\n+C1gmsj6vwM/RK7gfjzwdeT1tt9JHj6egI9JKf3h1jE+Fvi35HlVBvwr4P8AfpfcmOxZwIvI62V/\nGvDalNI3HLuO8zjG7wPPB96QUnrl7f1kRERERK6niraIiNyUlNI1M3sJ8GbgUeDLxm2zC/B64JfH\n25OO8Xtm9hnAvwBeCPwXwMtO2nXcrt6JY4zu67ldIiIi8vSloC0iIjctpfTbZvZngG8EvohcFd4n\nN0v7vpTSj5nZKzgKuScd4z1m9snAlwBfTK5+P5O8dNeHgd8B/jXwEymlX7tTxzjrGkVERERuh4aO\ni4iIiIiIiJwjd68vQERERERERORBoqAtIiIiIiIico4UtEVERERERETOkYK2iIiIiIiIyDlS0BYR\nERERERE5RwraIiJy4ZnZ883sH5rZu83swMw+bGZvN7OvN7PmHM/zZWb2c2Z2xcyWZvYHZvbDZvbp\n53UOkYvkTr53zexbzSze5Pbnz+s1iTyozOyZZvZSM3vMzH7azD609R76gTt0znv2uavlvURE5EIz\ns5cBPwzs8eR1tQ3498BLU0r/322cowb+BfCFp5wjAt+eUvr2p3oOkYvmTr93zexbgW894djHJeBz\nU0pvfSrnEbkozCwee2j7vfWGlNIrz/Fc9/xzVxVtERG5sMzsRcCPArvAPvB3gM8EPg/4fvKH858E\nfsrM5rdxqtdz9GH/fwF/BfhU4FXAe8ifx99qZl91G+cQuTDu4nt38kLgE0/ZPgl4xzmcQ+QiSOP2\nH4CfJ4feO+Gef+6qoi0iIheWmb0V+GygAz4npfT2Y89/HfBd5A/qx57KX77N7HOBt4zH+JfAf5W2\nPnzN7BHgXcDzgceBj00pXX1qr0jkYrhL791NRTul5G//qkUutvE99Q7gHSmlD5nZnwB+n/w+PbeK\n9v3yuauKtoiIXEhm9mLyP9QT8E+P/0N99I+Ad5P/4v41ZvZU/rH9deNtD3x1OvYX7pTSh4FvHL+8\nDKiqLXKGu/jeFZFzlFJ6LKX00ymlD93hU90Xn7sK2iIiclH9la37P3jSDuOH8w+NX14G/tKtnMDM\ndshDWRPwlpTSH52y648D18b7X3Qr5xC5gO74e1dEnp7up89dBW0REbmoPnu8PSQPITvNL23d/6xb\nPMeLgfKE41wnpdQB/4ZcfXuxqm8iZ7ob710ReXq6bz53FbRFROSi+gTyX7zfk1I63gl12/977Htu\nxZ8+5ThnnSeQmziJyMnuxnv3OuPyQB8ws/V4+4tm9o1mdvl2jisi5+6++dxV0BYRkQvHzCrgGeOX\n7ztr35TSE+TKGcBH3+Kpnrd1/8zzAO/dun+r5xG5EO7ie/e4zx/PG8bbPw/8A+D3zOzlt3lsETk/\n983nbjjvA4qIiDwN7G7dP7iJ/Q+BGbBzB89zuHX/Vs8jclHcrffu5DeAnwTeDvwRUAD/KfDfAV9A\nnv/9RjN7WUrp557iOUTk/Nw3n7sK2iIichHVW/fbm9h/TZ7H1dzB86y37t/qeUQuirv13gX4xyml\nx054/B3Aj5jZ3wT+CeCBf2pmH5dSuplrEpE757753NXQcRERuYhWW/fLU/c6UpHnhC7v4Hmqrfu3\neh6Ri+JuvXdJKV27wfPfB/wzcpB/LvDFt3oOETl3983nroK2iIhcRPtb929muNh8vL2ZoapP9Tzz\nrfu3eh6Ri+JuvXdv1uu27v+FO3QOEbl5983nroK2iIhcOCmlNfDh8cvnnbXv2FV4+jB+71n7nmC7\nEcuZ5+H6Riy3eh6RC+Euvndv1m9v3f+oO3QOEbl5983nroK2iIhcVL9NHvL5AjM76/PwT23df/dT\nOMdJxznrPD3wu7d4HpGL5G68d29WukPHFZGn5r753FXQFhGRi+pfj7dz4FPO2G97OOjbbvEc7+Co\nGcupw0rNrAA+nfyP9neklIZbPI/IRXI33rs3a3vN3j+6Q+cQkZt333zuKmiLiMhF9ZNb9//6STuY\nmQF/bfzyCeAXb+UEKaUD4BfI1bfPN7PnnrLrFwN74/0fv5VziFxAd/y9ewv++637v3SHziEiN+l+\n+txV0BYRkQsppfQO4JfJH8avMrNPO2G3rwc+gfwX7+8+/hdvM3uFmcVx+5ZTTvXa8TYA33t8qKuZ\nPQN4zfjlE+QuxiJyirvx3jWzF5rZx511HePyXq8av/xj4Cdu/dWIyK14On3uah1tERG5yL6GPKS0\nAd5sZt9Brnw1wJcBf2Pc73eAf3TGcU6dp5lS+kUz+1HgS4H/cjzPd5OHmX4S8HeA54/H+IaU0tXb\nekUiF8Odfu9+Cnlt7F8Efgb4TXITtkCe1/nlwH827tsDfyOlpGX5RM5gZp8FvGDroWds3X+Bmb1i\ne/+U0hvOONx9/7mroC0iIhdWSunXzOxLgB8hDyH7juO7kP+h/tKU0uFtnOqVwC7wl4G/CPylY+cY\ngG9PKamaLXIT7tJ71wGfB3z+aZdBDt+vTCn99FM8h8hF8lXAK0543IDPHrdJAs4K2jdyzz93FbRF\nRORCSym9ycw+iVwheyl5OZAWeA/wY8D3ppRWZx3iJs6xAl5mZl8KfCXwZ4HLwAeAt47n+Le38zpE\nLpo7/N59E3lY+GcALwKeDTxCDgQfAX4d+FngB8c5oSJyc262U/9Z+z0tPnctJa1KICIiIiIiInJe\n1AxNRERERERE5BwpaIuIiIiIiIicIwVtERERERERkXOkoC0iIiIiIiJyjhS0RURERERERM6RgraI\niIiIiIjIOVLQFhERERERETlHCtoiIiIiIiIi50hBW0REREREROQcKWiLiIiIiIiInCMFbRERERER\nEZFzpKAtIiIiIiIico4UtEVERERERETOkYK2iIiIiIiIyDlS0BYRERERERE5RwraIiIiIiIiIudI\nQVtERERERETkHCloi4iIiIiIiJwjBW0RERERERGRc6SgLSIiIiIiInKOFLRFREREREREzpGCtoiI\niIiIiMg5UtAWEREREREROUcK2iIiIiIiIiLnSEFbRERERERE5Bz9/xxVPCjMDi4EAAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "image/png": { + "height": 445, + "width": 493 + } + }, + "output_type": "display_data" + } + ], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", @@ -789,7 +1021,7 @@ "except NameError:\n", " batch_size = 64\n", "\n", - "save_model_path = './image_classification'\n", + "save_model_path = './model/image_classification'\n", "n_samples = 4\n", "top_n_predictions = 3\n", "\n", @@ -851,8 +1083,9 @@ } ], "metadata": { + "anaconda-cloud": {}, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [default]", "language": "python", "name": "python3" }, diff --git a/language-translation/dlnd_language_translation.html b/language-translation/dlnd_language_translation.html new file mode 100644 index 0000000..261ae70 --- /dev/null +++ b/language-translation/dlnd_language_translation.html @@ -0,0 +1,18349 @@ + + + +dlnd_language_translation + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+
+
+

语言翻译

在此项目中,你将了解神经网络机器翻译这一领域。你将用由英语和法语语句组成的数据集,训练一个序列到序列模型(sequence to sequence model),该模型能够将新的英语句子翻译成法语。

+

获取数据

因为将整个英语语言内容翻译成法语需要大量训练时间,所以我们提供了一小部分的英语语料库。

+ +
+
+
+
+
+
In [1]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+import helper
+import problem_unittests as tests
+
+source_path = 'data/small_vocab_en'
+target_path = 'data/small_vocab_fr'
+source_text = helper.load_data(source_path)
+target_text = helper.load_data(target_path)
+
+ +
+
+
+ +
+
+
+
+
+

探索数据

研究 view_sentence_range,查看并熟悉该数据的不同部分。

+ +
+
+
+
+
+
In [2]:
+
+
+
view_sentence_range = (0, 10)
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+import numpy as np
+
+print('Dataset Stats')
+print('Roughly the number of unique words: {}'.format(len({word: None for word in source_text.split()})))
+
+sentences = source_text.split('\n')
+word_counts = [len(sentence.split()) for sentence in sentences]
+print('Number of sentences: {}'.format(len(sentences)))
+print('Average number of words in a sentence: {}'.format(np.average(word_counts)))
+
+print()
+print('English sentences {} to {}:'.format(*view_sentence_range))
+print('\n'.join(source_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]]))
+print()
+print('French sentences {} to {}:'.format(*view_sentence_range))
+print('\n'.join(target_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]]))
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Dataset Stats
+Roughly the number of unique words: 227
+Number of sentences: 137861
+Average number of words in a sentence: 13.225277634719028
+
+English sentences 0 to 10:
+new jersey is sometimes quiet during autumn , and it is snowy in april .
+the united states is usually chilly during july , and it is usually freezing in november .
+california is usually quiet during march , and it is usually hot in june .
+the united states is sometimes mild during june , and it is cold in september .
+your least liked fruit is the grape , but my least liked is the apple .
+his favorite fruit is the orange , but my favorite is the grape .
+paris is relaxing during december , but it is usually chilly in july .
+new jersey is busy during spring , and it is never hot in march .
+our least liked fruit is the lemon , but my least liked is the grape .
+the united states is sometimes busy during january , and it is sometimes warm in november .
+
+French sentences 0 to 10:
+new jersey est parfois calme pendant l' automne , et il est neigeux en avril .
+les états-unis est généralement froid en juillet , et il gèle habituellement en novembre .
+california est généralement calme en mars , et il est généralement chaud en juin .
+les états-unis est parfois légère en juin , et il fait froid en septembre .
+votre moins aimé fruit est le raisin , mais mon moins aimé est la pomme .
+son fruit préféré est l'orange , mais mon préféré est le raisin .
+paris est relaxant en décembre , mais il est généralement froid en juillet .
+new jersey est occupé au printemps , et il est jamais chaude en mars .
+notre fruit est moins aimé le citron , mais mon moins aimé est le raisin .
+les états-unis est parfois occupé en janvier , et il est parfois chaud en novembre .
+
+
+
+ +
+
+ +
+
+
+
+
+

实现预处理函数

文本到单词 id

和之前的 RNN 一样,你必须首先将文本转换为数字,这样计算机才能读懂。在函数 text_to_ids() 中,你需要将单词中的 source_texttarget_text 转为 id。但是,你需要在 target_text 中每个句子的末尾,添加 <EOS> 单词 id。这样可以帮助神经网络预测句子应该在什么地方结束。

+

你可以通过以下代码获取 <EOS> 单词ID:

+
target_vocab_to_int['<EOS>']
+
+

你可以使用 source_vocab_to_inttarget_vocab_to_int 获得其他单词 id。

+ +
+
+
+
+
+
In [3]:
+
+
+
def text_to_ids(source_text, target_text, source_vocab_to_int, target_vocab_to_int):
+    """
+    Convert source and target text to proper word ids
+    :param source_text: String that contains all the source text.
+    :param target_text: String that contains all the target text.
+    :param source_vocab_to_int: Dictionary to go from the source words to an id
+    :param target_vocab_to_int: Dictionary to go from the target words to an id
+    :return: A tuple of lists (source_id_text, target_id_text)
+    """
+    # TODO: Implement Function
+    source_letter_ids = [[source_vocab_to_int.get(letter, source_vocab_to_int['<UNK>']) for letter in line.split()] for line in source_text.split('\n')]
+    target_letter_ids = [[target_vocab_to_int.get(letter, target_vocab_to_int['<UNK>']) for letter in line.split()] + [target_vocab_to_int['<EOS>']] for line in target_text.split('\n')] 
+    
+    return source_letter_ids, target_letter_ids
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_text_to_ids(text_to_ids)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

预处理所有数据并保存

运行以下代码单元,预处理所有数据,并保存到文件中。

+ +
+
+
+
+
+
In [4]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+helper.preprocess_and_save_data(source_path, target_path, text_to_ids)
+
+ +
+
+
+ +
+
+
+
+
+

检查点

这是你的第一个检查点。如果你什么时候决定再回到该记事本,或需要重新启动该记事本,可以从这里继续。预处理的数据已保存到磁盘上。

+ +
+
+
+
+
+
In [5]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+import numpy as np
+import helper
+
+(source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess()
+
+ +
+
+
+ +
+
+
+
+
+

检查 TensorFlow 版本,确认可访问 GPU

这一检查步骤,可以确保你使用的是正确版本的 TensorFlow,并且能够访问 GPU。

+ +
+
+
+
+
+
In [6]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+from distutils.version import LooseVersion
+import warnings
+import tensorflow as tf
+
+# Check TensorFlow Version
+assert LooseVersion(tf.__version__) in [LooseVersion('1.0.0'), LooseVersion('1.0.1')], 'This project requires TensorFlow version 1.0  You are using {}'.format(tf.__version__)
+print('TensorFlow Version: {}'.format(tf.__version__))
+
+# Check for a GPU
+if not tf.test.gpu_device_name():
+    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
+else:
+    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
TensorFlow Version: 1.0.1
+Default GPU Device: /gpu:0
+
+
+
+ +
+
+ +
+
+
+
+
+

构建神经网络

你将通过实现以下函数,构建出要构建一个序列到序列模型所需的组件:

+
    +
  • model_inputs
  • +
  • process_decoding_input
  • +
  • encoding_layer
  • +
  • decoding_layer_train
  • +
  • decoding_layer_infer
  • +
  • decoding_layer
  • +
  • seq2seq_model
  • +
+

输入

实现 model_inputs() 函数,为神经网络创建 TF 占位符。该函数应该创建以下占位符:

+
    +
  • 名为 “input” 的输入文本占位符,并使用 TF Placeholder 名称参数(等级(Rank)为 2)。
  • +
  • 目标占位符(等级为 2)。
  • +
  • 学习速率占位符(等级为 0)。
  • +
  • 名为 “keep_prob” 的保留率占位符,并使用 TF Placeholder 名称参数(等级为 0)。
  • +
+

在以下元祖(tuple)中返回占位符:(输入、目标、学习速率、保留率)

+ +
+
+
+
+
+
In [7]:
+
+
+
import tensorflow as tf
+def model_inputs():
+    """
+    Create TF Placeholders for input, targets, and learning rate.
+    :return: Tuple (input, targets, learning rate, keep probability)
+    """
+    # TODO: Implement Function
+    inputs = tf.placeholder(tf.int32, [None, None], name='input')
+    targets = tf.placeholder(tf.int32, [None, None], name='targets')
+    learning_rate = tf.placeholder(tf.float32, name='learning_rate')
+    keep_prob = tf.placeholder(tf.float32, name='keep_prob')
+    
+    return inputs, targets, learning_rate, keep_prob
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_model_inputs(model_inputs)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

处理解码输入

使用 TensorFlow 实现 process_decoding_input,以便删掉 target_data 中每个批次的最后一个单词 ID,并将 GO ID 放到每个批次的开头。

+ +
+
+
+
+
+
In [8]:
+
+
+
def process_decoding_input(target_data, target_vocab_to_int, batch_size):
+    """
+    Preprocess target data for dencoding
+    :param target_data: Target Placehoder
+    :param target_vocab_to_int: Dictionary to go from the target words to an id
+    :param batch_size: Batch Size
+    :return: Preprocessed target data
+    """
+    # TODO: Implement Function
+    ending = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1])
+    dec_input = tf.concat([tf.fill([batch_size, 1], target_vocab_to_int['<GO>']), ending], 1)
+    
+    return dec_input
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_process_decoding_input(process_decoding_input)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

编码

实现 encoding_layer(),以使用 tf.nn.dynamic_rnn() 创建编码器 RNN 层级。

+ +
+
+
+
+
+
In [9]:
+
+
+
def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob):
+    """
+    Create encoding layer
+    :param rnn_inputs: Inputs for the RNN
+    :param rnn_size: RNN Size
+    :param num_layers: Number of layers
+    :param keep_prob: Dropout keep probability
+    :return: RNN state
+    """
+    # TODO: Implement Function
+    lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size)
+    drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob)
+    enc_cell = tf.contrib.rnn.MultiRNNCell([drop] * num_layers)
+    _, enc_state = tf.nn.dynamic_rnn(enc_cell, rnn_inputs, dtype=tf.float32)
+    
+    return enc_state
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_encoding_layer(encoding_layer)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

解码 - 训练

使用 tf.contrib.seq2seq.simple_decoder_fn_train()tf.contrib.seq2seq.dynamic_rnn_decoder() 创建训练分对数(training logits)。将 output_fn 应用到 tf.contrib.seq2seq.dynamic_rnn_decoder() 输出上。

+ +
+
+
+
+
+
In [10]:
+
+
+
def decoding_layer_train(encoder_state, dec_cell, dec_embed_input, sequence_length, decoding_scope,
+                         output_fn, keep_prob):
+    """
+    Create a decoding layer for training
+    :param encoder_state: Encoder State
+    :param dec_cell: Decoder RNN Cell
+    :param dec_embed_input: Decoder embedded input
+    :param sequence_length: Sequence Length
+    :param decoding_scope: TenorFlow Variable Scope for decoding
+    :param output_fn: Function to apply the output layer
+    :param keep_prob: Dropout keep probability
+    :return: Train Logits
+    """
+    # TODO: Implement Function
+    # Training Decoder
+    train_decoder_fn = tf.contrib.seq2seq.simple_decoder_fn_train(encoder_state)
+    train_pred, _, _ = tf.contrib.seq2seq.dynamic_rnn_decoder(
+    dec_cell, train_decoder_fn, dec_embed_input, sequence_length, scope=decoding_scope)
+    
+    # Apply output function
+    train_logits =  output_fn(train_pred)
+
+    return train_logits
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_decoding_layer_train(decoding_layer_train)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

解码 - 推论

使用 tf.contrib.seq2seq.simple_decoder_fn_inference()tf.contrib.seq2seq.dynamic_rnn_decoder() 创建推论分对数(inference logits)。

+ +
+
+
+
+
+
In [11]:
+
+
+
def decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id,
+                         maximum_length, vocab_size, decoding_scope, output_fn, keep_prob):
+    """
+    Create a decoding layer for inference
+    :param encoder_state: Encoder state
+    :param dec_cell: Decoder RNN Cell
+    :param dec_embeddings: Decoder embeddings
+    :param start_of_sequence_id: GO ID
+    :param end_of_sequence_id: EOS Id
+    :param maximum_length: The maximum allowed time steps to decode
+    :param vocab_size: Size of vocabulary
+    :param decoding_scope: TensorFlow Variable Scope for decoding
+    :param output_fn: Function to apply the output layer
+    :param keep_prob: Dropout keep probability
+    :return: Inference Logits
+    """
+    # TODO: Implement Function
+    # Inference Decoder
+    infer_decoder_fn = tf.contrib.seq2seq.simple_decoder_fn_inference(
+        output_fn, encoder_state, dec_embeddings, start_of_sequence_id, end_of_sequence_id, 
+        maximum_length - 1, vocab_size)
+    inference_logits, _, _ = tf.contrib.seq2seq.dynamic_rnn_decoder(dec_cell, infer_decoder_fn, scope=decoding_scope)
+
+    return inference_logits
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_decoding_layer_infer(decoding_layer_infer)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

构建解码层级

实现 decoding_layer() 以创建解码器 RNN 层级。

+
    +
  • 使用 rnn_sizenum_layers 创建解码 RNN 单元。
  • +
  • 使用 lambda 创建输出函数,将输入,也就是分对数转换为类分对数(class logits)。
  • +
  • 使用 decoding_layer_train(encoder_state, dec_cell, dec_embed_input, sequence_length, decoding_scope, output_fn, keep_prob) 函数获取训练分对数。
  • +
  • 使用 decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, maximum_length, vocab_size, decoding_scope, output_fn, keep_prob) 函数获取推论分对数。
  • +
+

注意:你将需要使用 tf.variable_scope 在训练和推论分对数间分享变量。

+ +
+
+
+
+
+
In [12]:
+
+
+
def decoding_layer(dec_embed_input, dec_embeddings, encoder_state, vocab_size, sequence_length, rnn_size,
+                   num_layers, target_vocab_to_int, keep_prob):
+    """
+    Create decoding layer
+    :param dec_embed_input: Decoder embedded input
+    :param dec_embeddings: Decoder embeddings
+    :param encoder_state: The encoded state
+    :param vocab_size: Size of vocabulary
+    :param sequence_length: Sequence Length
+    :param rnn_size: RNN Size
+    :param num_layers: Number of layers
+    :param target_vocab_to_int: Dictionary to go from the target words to an id
+    :param keep_prob: Dropout keep probability
+    :return: Tuple of (Training Logits, Inference Logits)
+    """
+    # TODO: Implement Function
+    lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size)
+    dropout = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob)
+    dec_cell = tf.contrib.rnn.MultiRNNCell([dropout] * num_layers)
+    
+    output_fn = lambda x: tf.contrib.layers.fully_connected(x, vocab_size, activation_fn=None, scope=decoding_scope)           
+
+    with tf.variable_scope("decoding") as decoding_scope:
+        training_decoder_output = decoding_layer_train(encoder_state, dec_cell, dec_embed_input, sequence_length, decoding_scope,
+                         output_fn, keep_prob)
+
+    with tf.variable_scope("decoding", reuse=True) as decoding_scope:
+        start_of_sequence_id = target_vocab_to_int["<GO>"]
+        end_of_sequence_id = target_vocab_to_int["<EOS>"]
+        inference_decoder_output = decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, 
+                         sequence_length, vocab_size, decoding_scope, output_fn, keep_prob)
+    
+    return training_decoder_output, inference_decoder_output
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_decoding_layer(decoding_layer)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

构建神经网络

应用你在上方实现的函数,以:

+
    +
  • 向编码器的输入数据应用嵌入。
  • +
  • 使用 encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob) 编码输入。
  • +
  • 使用 process_decoding_input(target_data, target_vocab_to_int, batch_size) 函数处理目标数据。
  • +
  • 向解码器的目标数据应用嵌入。
  • +
  • 使用 decoding_layer(dec_embed_input, dec_embeddings, encoder_state, vocab_size, sequence_length, rnn_size, num_layers, target_vocab_to_int, keep_prob) 解码编码的输入数据。
  • +
+ +
+
+
+
+
+
In [13]:
+
+
+
def seq2seq_model(input_data, target_data, keep_prob, batch_size, sequence_length, source_vocab_size, target_vocab_size,
+                  enc_embedding_size, dec_embedding_size, rnn_size, num_layers, target_vocab_to_int):
+    """
+    Build the Sequence-to-Sequence part of the neural network
+    :param input_data: Input placeholder
+    :param target_data: Target placeholder
+    :param keep_prob: Dropout keep probability placeholder
+    :param batch_size: Batch Size
+    :param sequence_length: Sequence Length
+    :param source_vocab_size: Source vocabulary size
+    :param target_vocab_size: Target vocabulary size
+    :param enc_embedding_size: Decoder embedding size
+    :param dec_embedding_size: Encoder embedding size
+    :param rnn_size: RNN Size
+    :param num_layers: Number of layers
+    :param target_vocab_to_int: Dictionary to go from the target words to an id
+    :return: Tuple of (Training Logits, Inference Logits)
+    """
+    # TODO: Implement Function
+    rnn_inputs = tf.contrib.layers.embed_sequence(input_data, source_vocab_size, enc_embedding_size)
+    
+    encoder_state = encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob)
+    
+    dec_input = process_decoding_input(target_data, target_vocab_to_int, batch_size)
+    dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, dec_embedding_size]))
+    dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input)
+    
+    train_logits, inference_logits = decoding_layer(dec_embed_input, dec_embeddings, encoder_state, target_vocab_size, sequence_length,
+                       rnn_size, num_layers, target_vocab_to_int, keep_prob)
+    
+    return train_logits, inference_logits
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_seq2seq_model(seq2seq_model)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

训练神经网络

超参数

调试以下参数:

+
    +
  • epochs 设为 epoch 次数。
  • +
  • batch_size 设为批次大小。
  • +
  • rnn_size 设为 RNN 的大小。
  • +
  • num_layers 设为层级数量。
  • +
  • encoding_embedding_size 设为编码器嵌入大小。
  • +
  • decoding_embedding_size 设为解码器嵌入大小
  • +
  • learning_rate 设为训练速率。
  • +
  • keep_probability 设为丢弃保留率(Dropout keep probability)。
  • +
+ +
+
+
+
+
+
In [14]:
+
+
+
# Number of Epochs
+epochs = 5
+# Batch Size
+batch_size = 128
+# RNN Size
+rnn_size = 128
+# Number of Layers
+num_layers = 2
+# Embedding Size
+encoding_embedding_size = 100
+decoding_embedding_size = 100
+# Learning Rate
+learning_rate = 0.01
+# Dropout Keep Probability
+keep_probability = 0.8
+
+ +
+
+
+ +
+
+
+
+
+

构建图表

使用你实现的神经网络构建图表。

+ +
+
+
+
+
+
In [15]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+save_path = 'checkpoints/dev'
+(source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess()
+max_source_sentence_length = max([len(sentence) for sentence in source_int_text])
+
+train_graph = tf.Graph()
+with train_graph.as_default():
+    input_data, targets, lr, keep_prob = model_inputs()
+    sequence_length = tf.placeholder_with_default(max_source_sentence_length, None, name='sequence_length')
+    input_shape = tf.shape(input_data)
+    
+    train_logits, inference_logits = seq2seq_model(
+        tf.reverse(input_data, [-1]), targets, keep_prob, batch_size, sequence_length, len(source_vocab_to_int), len(target_vocab_to_int),
+        encoding_embedding_size, decoding_embedding_size, rnn_size, num_layers, target_vocab_to_int)
+
+    tf.identity(inference_logits, 'logits')
+    with tf.name_scope("optimization"):
+        # Loss function
+        cost = tf.contrib.seq2seq.sequence_loss(
+            train_logits,
+            targets,
+            tf.ones([input_shape[0], sequence_length]))
+
+        # Optimizer
+        optimizer = tf.train.AdamOptimizer(lr)
+
+        # Gradient Clipping
+        gradients = optimizer.compute_gradients(cost)
+        capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None]
+        train_op = optimizer.apply_gradients(capped_gradients)
+
+ +
+
+
+ +
+
+
+
+
+

训练

利用预处理的数据训练神经网络。如果很难获得低损失值,请访问我们的论坛,看看其他人是否遇到了相同的问题。

+ +
+
+
+
+
+
In [16]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+import time
+
+def get_accuracy(target, logits):
+    """
+    Calculate accuracy
+    """
+    max_seq = max(target.shape[1], logits.shape[1])
+    if max_seq - target.shape[1]:
+        target = np.pad(
+            target,
+            [(0,0),(0,max_seq - target.shape[1])],
+            'constant')
+    if max_seq - logits.shape[1]:
+        logits = np.pad(
+            logits,
+            [(0,0),(0,max_seq - logits.shape[1]), (0,0)],
+            'constant')
+
+    return np.mean(np.equal(target, np.argmax(logits, 2)))
+
+train_source = source_int_text[batch_size:]
+train_target = target_int_text[batch_size:]
+
+valid_source = helper.pad_sentence_batch(source_int_text[:batch_size])
+valid_target = helper.pad_sentence_batch(target_int_text[:batch_size])
+
+with tf.Session(graph=train_graph) as sess:
+    sess.run(tf.global_variables_initializer())
+
+    for epoch_i in range(epochs):
+        for batch_i, (source_batch, target_batch) in enumerate(
+                helper.batch_data(train_source, train_target, batch_size)):
+            start_time = time.time()
+            
+            _, loss = sess.run(
+                [train_op, cost],
+                {input_data: source_batch,
+                 targets: target_batch,
+                 lr: learning_rate,
+                 sequence_length: target_batch.shape[1],
+                 keep_prob: keep_probability})
+            
+            batch_train_logits = sess.run(
+                inference_logits,
+                {input_data: source_batch, keep_prob: 1.0})
+            batch_valid_logits = sess.run(
+                inference_logits,
+                {input_data: valid_source, keep_prob: 1.0})
+                
+            train_acc = get_accuracy(target_batch, batch_train_logits)
+            valid_acc = get_accuracy(np.array(valid_target), batch_valid_logits)
+            end_time = time.time()
+            print('Epoch {:>3} Batch {:>4}/{} - Train Accuracy: {:>6.3f}, Validation Accuracy: {:>6.3f}, Loss: {:>6.3f}'
+                  .format(epoch_i, batch_i, len(source_int_text) // batch_size, train_acc, valid_acc, loss))
+
+    # Save Model
+    saver = tf.train.Saver()
+    saver.save(sess, save_path)
+    print('Model Trained and Saved')
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Epoch   0 Batch    0/1077 - Train Accuracy:  0.294, Validation Accuracy:  0.305, Loss:  5.889
+Epoch   0 Batch    1/1077 - Train Accuracy:  0.221, Validation Accuracy:  0.305, Loss:  5.074
+Epoch   0 Batch    2/1077 - Train Accuracy:  0.244, Validation Accuracy:  0.335, Loss:  4.336
+Epoch   0 Batch    3/1077 - Train Accuracy:  0.275, Validation Accuracy:  0.337, Loss:  3.832
+Epoch   0 Batch    4/1077 - Train Accuracy:  0.263, Validation Accuracy:  0.336, Loss:  3.669
+Epoch   0 Batch    5/1077 - Train Accuracy:  0.295, Validation Accuracy:  0.336, Loss:  3.552
+Epoch   0 Batch    6/1077 - Train Accuracy:  0.282, Validation Accuracy:  0.342, Loss:  3.504
+Epoch   0 Batch    7/1077 - Train Accuracy:  0.268, Validation Accuracy:  0.342, Loss:  3.515
+Epoch   0 Batch    8/1077 - Train Accuracy:  0.275, Validation Accuracy:  0.341, Loss:  3.414
+Epoch   0 Batch    9/1077 - Train Accuracy:  0.283, Validation Accuracy:  0.341, Loss:  3.324
+Epoch   0 Batch   10/1077 - Train Accuracy:  0.273, Validation Accuracy:  0.363, Loss:  3.444
+Epoch   0 Batch   11/1077 - Train Accuracy:  0.334, Validation Accuracy:  0.370, Loss:  3.166
+Epoch   0 Batch   12/1077 - Train Accuracy:  0.314, Validation Accuracy:  0.380, Loss:  3.323
+Epoch   0 Batch   13/1077 - Train Accuracy:  0.353, Validation Accuracy:  0.373, Loss:  3.069
+Epoch   0 Batch   14/1077 - Train Accuracy:  0.338, Validation Accuracy:  0.377, Loss:  3.096
+Epoch   0 Batch   15/1077 - Train Accuracy:  0.333, Validation Accuracy:  0.391, Loss:  3.169
+Epoch   0 Batch   16/1077 - Train Accuracy:  0.350, Validation Accuracy:  0.392, Loss:  3.136
+Epoch   0 Batch   17/1077 - Train Accuracy:  0.341, Validation Accuracy:  0.382, Loss:  3.051
+Epoch   0 Batch   18/1077 - Train Accuracy:  0.343, Validation Accuracy:  0.407, Loss:  3.059
+Epoch   0 Batch   19/1077 - Train Accuracy:  0.361, Validation Accuracy:  0.402, Loss:  2.920
+Epoch   0 Batch   20/1077 - Train Accuracy:  0.341, Validation Accuracy:  0.400, Loss:  2.897
+Epoch   0 Batch   21/1077 - Train Accuracy:  0.330, Validation Accuracy:  0.409, Loss:  2.971
+Epoch   0 Batch   22/1077 - Train Accuracy:  0.359, Validation Accuracy:  0.417, Loss:  2.950
+Epoch   0 Batch   23/1077 - Train Accuracy:  0.354, Validation Accuracy:  0.412, Loss:  2.924
+Epoch   0 Batch   24/1077 - Train Accuracy:  0.360, Validation Accuracy:  0.413, Loss:  2.818
+Epoch   0 Batch   25/1077 - Train Accuracy:  0.361, Validation Accuracy:  0.425, Loss:  2.867
+Epoch   0 Batch   26/1077 - Train Accuracy:  0.359, Validation Accuracy:  0.420, Loss:  2.829
+Epoch   0 Batch   27/1077 - Train Accuracy:  0.410, Validation Accuracy:  0.427, Loss:  2.581
+Epoch   0 Batch   28/1077 - Train Accuracy:  0.394, Validation Accuracy:  0.436, Loss:  2.710
+Epoch   0 Batch   29/1077 - Train Accuracy:  0.395, Validation Accuracy:  0.441, Loss:  2.660
+Epoch   0 Batch   30/1077 - Train Accuracy:  0.397, Validation Accuracy:  0.448, Loss:  2.664
+Epoch   0 Batch   31/1077 - Train Accuracy:  0.399, Validation Accuracy:  0.453, Loss:  2.683
+Epoch   0 Batch   32/1077 - Train Accuracy:  0.453, Validation Accuracy:  0.460, Loss:  2.471
+Epoch   0 Batch   33/1077 - Train Accuracy:  0.429, Validation Accuracy:  0.468, Loss:  2.467
+Epoch   0 Batch   34/1077 - Train Accuracy:  0.405, Validation Accuracy:  0.462, Loss:  2.541
+Epoch   0 Batch   35/1077 - Train Accuracy:  0.410, Validation Accuracy:  0.460, Loss:  2.516
+Epoch   0 Batch   36/1077 - Train Accuracy:  0.425, Validation Accuracy:  0.466, Loss:  2.453
+Epoch   0 Batch   37/1077 - Train Accuracy:  0.427, Validation Accuracy:  0.480, Loss:  2.505
+Epoch   0 Batch   38/1077 - Train Accuracy:  0.378, Validation Accuracy:  0.474, Loss:  2.650
+Epoch   0 Batch   39/1077 - Train Accuracy:  0.420, Validation Accuracy:  0.480, Loss:  2.496
+Epoch   0 Batch   40/1077 - Train Accuracy:  0.410, Validation Accuracy:  0.466, Loss:  2.415
+Epoch   0 Batch   41/1077 - Train Accuracy:  0.455, Validation Accuracy:  0.483, Loss:  2.359
+Epoch   0 Batch   42/1077 - Train Accuracy:  0.414, Validation Accuracy:  0.467, Loss:  2.375
+Epoch   0 Batch   43/1077 - Train Accuracy:  0.439, Validation Accuracy:  0.497, Loss:  2.402
+Epoch   0 Batch   44/1077 - Train Accuracy:  0.355, Validation Accuracy:  0.436, Loss:  2.547
+Epoch   0 Batch   45/1077 - Train Accuracy:  0.406, Validation Accuracy:  0.469, Loss:  2.402
+Epoch   0 Batch   46/1077 - Train Accuracy:  0.419, Validation Accuracy:  0.492, Loss:  2.394
+Epoch   0 Batch   47/1077 - Train Accuracy:  0.406, Validation Accuracy:  0.458, Loss:  2.299
+Epoch   0 Batch   48/1077 - Train Accuracy:  0.407, Validation Accuracy:  0.443, Loss:  2.303
+Epoch   0 Batch   49/1077 - Train Accuracy:  0.404, Validation Accuracy:  0.462, Loss:  2.302
+Epoch   0 Batch   50/1077 - Train Accuracy:  0.403, Validation Accuracy:  0.478, Loss:  2.336
+Epoch   0 Batch   51/1077 - Train Accuracy:  0.434, Validation Accuracy:  0.457, Loss:  2.179
+Epoch   0 Batch   52/1077 - Train Accuracy:  0.432, Validation Accuracy:  0.492, Loss:  2.245
+Epoch   0 Batch   53/1077 - Train Accuracy:  0.474, Validation Accuracy:  0.518, Loss:  2.199
+Epoch   0 Batch   54/1077 - Train Accuracy:  0.439, Validation Accuracy:  0.523, Loss:  2.408
+Epoch   0 Batch   55/1077 - Train Accuracy:  0.479, Validation Accuracy:  0.507, Loss:  2.111
+Epoch   0 Batch   56/1077 - Train Accuracy:  0.455, Validation Accuracy:  0.513, Loss:  2.172
+Epoch   0 Batch   57/1077 - Train Accuracy:  0.520, Validation Accuracy:  0.512, Loss:  1.935
+Epoch   0 Batch   58/1077 - Train Accuracy:  0.445, Validation Accuracy:  0.493, Loss:  2.165
+Epoch   0 Batch   59/1077 - Train Accuracy:  0.462, Validation Accuracy:  0.532, Loss:  2.256
+Epoch   0 Batch   60/1077 - Train Accuracy:  0.487, Validation Accuracy:  0.525, Loss:  2.097
+Epoch   0 Batch   61/1077 - Train Accuracy:  0.454, Validation Accuracy:  0.509, Loss:  2.091
+Epoch   0 Batch   62/1077 - Train Accuracy:  0.464, Validation Accuracy:  0.531, Loss:  2.211
+Epoch   0 Batch   63/1077 - Train Accuracy:  0.517, Validation Accuracy:  0.535, Loss:  1.980
+Epoch   0 Batch   64/1077 - Train Accuracy:  0.446, Validation Accuracy:  0.494, Loss:  2.087
+Epoch   0 Batch   65/1077 - Train Accuracy:  0.462, Validation Accuracy:  0.544, Loss:  2.220
+Epoch   0 Batch   66/1077 - Train Accuracy:  0.477, Validation Accuracy:  0.528, Loss:  2.058
+Epoch   0 Batch   67/1077 - Train Accuracy:  0.497, Validation Accuracy:  0.507, Loss:  1.945
+Epoch   0 Batch   68/1077 - Train Accuracy:  0.479, Validation Accuracy:  0.534, Loss:  2.047
+Epoch   0 Batch   69/1077 - Train Accuracy:  0.516, Validation Accuracy:  0.546, Loss:  1.991
+Epoch   0 Batch   70/1077 - Train Accuracy:  0.474, Validation Accuracy:  0.534, Loss:  2.054
+Epoch   0 Batch   71/1077 - Train Accuracy:  0.486, Validation Accuracy:  0.534, Loss:  1.950
+Epoch   0 Batch   72/1077 - Train Accuracy:  0.491, Validation Accuracy:  0.543, Loss:  1.957
+Epoch   0 Batch   73/1077 - Train Accuracy:  0.475, Validation Accuracy:  0.521, Loss:  1.968
+Epoch   0 Batch   74/1077 - Train Accuracy:  0.507, Validation Accuracy:  0.535, Loss:  1.823
+Epoch   0 Batch   75/1077 - Train Accuracy:  0.526, Validation Accuracy:  0.539, Loss:  1.826
+Epoch   0 Batch   76/1077 - Train Accuracy:  0.502, Validation Accuracy:  0.529, Loss:  1.857
+Epoch   0 Batch   77/1077 - Train Accuracy:  0.462, Validation Accuracy:  0.527, Loss:  1.920
+Epoch   0 Batch   78/1077 - Train Accuracy:  0.455, Validation Accuracy:  0.527, Loss:  2.023
+Epoch   0 Batch   79/1077 - Train Accuracy:  0.480, Validation Accuracy:  0.521, Loss:  1.887
+Epoch   0 Batch   80/1077 - Train Accuracy:  0.482, Validation Accuracy:  0.540, Loss:  1.808
+Epoch   0 Batch   81/1077 - Train Accuracy:  0.509, Validation Accuracy:  0.534, Loss:  1.829
+Epoch   0 Batch   82/1077 - Train Accuracy:  0.532, Validation Accuracy:  0.542, Loss:  1.644
+Epoch   0 Batch   83/1077 - Train Accuracy:  0.471, Validation Accuracy:  0.533, Loss:  1.863
+Epoch   0 Batch   84/1077 - Train Accuracy:  0.505, Validation Accuracy:  0.537, Loss:  1.749
+Epoch   0 Batch   85/1077 - Train Accuracy:  0.495, Validation Accuracy:  0.535, Loss:  1.639
+Epoch   0 Batch   86/1077 - Train Accuracy:  0.489, Validation Accuracy:  0.530, Loss:  1.738
+Epoch   0 Batch   87/1077 - Train Accuracy:  0.489, Validation Accuracy:  0.525, Loss:  1.735
+Epoch   0 Batch   88/1077 - Train Accuracy:  0.509, Validation Accuracy:  0.533, Loss:  1.659
+Epoch   0 Batch   89/1077 - Train Accuracy:  0.499, Validation Accuracy:  0.548, Loss:  1.632
+Epoch   0 Batch   90/1077 - Train Accuracy:  0.471, Validation Accuracy:  0.535, Loss:  1.699
+Epoch   0 Batch   91/1077 - Train Accuracy:  0.511, Validation Accuracy:  0.518, Loss:  1.448
+Epoch   0 Batch   92/1077 - Train Accuracy:  0.490, Validation Accuracy:  0.524, Loss:  1.569
+Epoch   0 Batch   93/1077 - Train Accuracy:  0.476, Validation Accuracy:  0.520, Loss:  1.581
+Epoch   0 Batch   94/1077 - Train Accuracy:  0.485, Validation Accuracy:  0.526, Loss:  1.457
+Epoch   0 Batch   95/1077 - Train Accuracy:  0.525, Validation Accuracy:  0.550, Loss:  1.486
+Epoch   0 Batch   96/1077 - Train Accuracy:  0.477, Validation Accuracy:  0.533, Loss:  1.471
+Epoch   0 Batch   97/1077 - Train Accuracy:  0.467, Validation Accuracy:  0.525, Loss:  1.476
+Epoch   0 Batch   98/1077 - Train Accuracy:  0.497, Validation Accuracy:  0.508, Loss:  1.370
+Epoch   0 Batch   99/1077 - Train Accuracy:  0.458, Validation Accuracy:  0.501, Loss:  1.478
+Epoch   0 Batch  100/1077 - Train Accuracy:  0.490, Validation Accuracy:  0.514, Loss:  1.390
+Epoch   0 Batch  101/1077 - Train Accuracy:  0.474, Validation Accuracy:  0.501, Loss:  1.334
+Epoch   0 Batch  102/1077 - Train Accuracy:  0.505, Validation Accuracy:  0.529, Loss:  1.319
+Epoch   0 Batch  103/1077 - Train Accuracy:  0.477, Validation Accuracy:  0.538, Loss:  1.417
+Epoch   0 Batch  104/1077 - Train Accuracy:  0.458, Validation Accuracy:  0.547, Loss:  1.394
+Epoch   0 Batch  105/1077 - Train Accuracy:  0.510, Validation Accuracy:  0.512, Loss:  1.274
+Epoch   0 Batch  106/1077 - Train Accuracy:  0.468, Validation Accuracy:  0.512, Loss:  1.405
+Epoch   0 Batch  107/1077 - Train Accuracy:  0.510, Validation Accuracy:  0.526, Loss:  1.229
+Epoch   0 Batch  108/1077 - Train Accuracy:  0.556, Validation Accuracy:  0.542, Loss:  1.149
+Epoch   0 Batch  109/1077 - Train Accuracy:  0.515, Validation Accuracy:  0.548, Loss:  1.224
+Epoch   0 Batch  110/1077 - Train Accuracy:  0.536, Validation Accuracy:  0.543, Loss:  1.191
+Epoch   0 Batch  111/1077 - Train Accuracy:  0.496, Validation Accuracy:  0.547, Loss:  1.237
+Epoch   0 Batch  112/1077 - Train Accuracy:  0.494, Validation Accuracy:  0.531, Loss:  1.218
+Epoch   0 Batch  113/1077 - Train Accuracy:  0.475, Validation Accuracy:  0.522, Loss:  1.197
+Epoch   0 Batch  114/1077 - Train Accuracy:  0.526, Validation Accuracy:  0.529, Loss:  1.110
+Epoch   0 Batch  115/1077 - Train Accuracy:  0.504, Validation Accuracy:  0.532, Loss:  1.182
+Epoch   0 Batch  116/1077 - Train Accuracy:  0.488, Validation Accuracy:  0.524, Loss:  1.181
+Epoch   0 Batch  117/1077 - Train Accuracy:  0.459, Validation Accuracy:  0.544, Loss:  1.173
+Epoch   0 Batch  118/1077 - Train Accuracy:  0.477, Validation Accuracy:  0.558, Loss:  1.164
+Epoch   0 Batch  119/1077 - Train Accuracy:  0.507, Validation Accuracy:  0.550, Loss:  1.075
+Epoch   0 Batch  120/1077 - Train Accuracy:  0.482, Validation Accuracy:  0.533, Loss:  1.114
+Epoch   0 Batch  121/1077 - Train Accuracy:  0.502, Validation Accuracy:  0.533, Loss:  1.056
+Epoch   0 Batch  122/1077 - Train Accuracy:  0.505, Validation Accuracy:  0.539, Loss:  1.036
+Epoch   0 Batch  123/1077 - Train Accuracy:  0.523, Validation Accuracy:  0.550, Loss:  1.013
+Epoch   0 Batch  124/1077 - Train Accuracy:  0.495, Validation Accuracy:  0.543, Loss:  1.080
+Epoch   0 Batch  125/1077 - Train Accuracy:  0.529, Validation Accuracy:  0.537, Loss:  1.015
+Epoch   0 Batch  126/1077 - Train Accuracy:  0.515, Validation Accuracy:  0.537, Loss:  0.966
+Epoch   0 Batch  127/1077 - Train Accuracy:  0.502, Validation Accuracy:  0.545, Loss:  1.023
+Epoch   0 Batch  128/1077 - Train Accuracy:  0.536, Validation Accuracy:  0.521, Loss:  0.953
+Epoch   0 Batch  129/1077 - Train Accuracy:  0.525, Validation Accuracy:  0.534, Loss:  1.014
+Epoch   0 Batch  130/1077 - Train Accuracy:  0.539, Validation Accuracy:  0.547, Loss:  0.926
+Epoch   0 Batch  131/1077 - Train Accuracy:  0.499, Validation Accuracy:  0.558, Loss:  0.993
+Epoch   0 Batch  132/1077 - Train Accuracy:  0.464, Validation Accuracy:  0.545, Loss:  1.016
+Epoch   0 Batch  133/1077 - Train Accuracy:  0.471, Validation Accuracy:  0.548, Loss:  0.994
+Epoch   0 Batch  134/1077 - Train Accuracy:  0.534, Validation Accuracy:  0.560, Loss:  0.927
+Epoch   0 Batch  135/1077 - Train Accuracy:  0.532, Validation Accuracy:  0.576, Loss:  0.994
+Epoch   0 Batch  136/1077 - Train Accuracy:  0.527, Validation Accuracy:  0.565, Loss:  0.944
+Epoch   0 Batch  137/1077 - Train Accuracy:  0.573, Validation Accuracy:  0.572, Loss:  0.864
+Epoch   0 Batch  138/1077 - Train Accuracy:  0.528, Validation Accuracy:  0.570, Loss:  0.924
+Epoch   0 Batch  139/1077 - Train Accuracy:  0.523, Validation Accuracy:  0.555, Loss:  0.947
+Epoch   0 Batch  140/1077 - Train Accuracy:  0.457, Validation Accuracy:  0.557, Loss:  0.986
+Epoch   0 Batch  141/1077 - Train Accuracy:  0.508, Validation Accuracy:  0.552, Loss:  0.943
+Epoch   0 Batch  142/1077 - Train Accuracy:  0.546, Validation Accuracy:  0.557, Loss:  0.855
+Epoch   0 Batch  143/1077 - Train Accuracy:  0.522, Validation Accuracy:  0.550, Loss:  0.941
+Epoch   0 Batch  144/1077 - Train Accuracy:  0.481, Validation Accuracy:  0.558, Loss:  0.944
+Epoch   0 Batch  145/1077 - Train Accuracy:  0.584, Validation Accuracy:  0.559, Loss:  0.890
+Epoch   0 Batch  146/1077 - Train Accuracy:  0.527, Validation Accuracy:  0.549, Loss:  0.908
+Epoch   0 Batch  147/1077 - Train Accuracy:  0.477, Validation Accuracy:  0.543, Loss:  0.933
+Epoch   0 Batch  148/1077 - Train Accuracy:  0.518, Validation Accuracy:  0.564, Loss:  0.885
+Epoch   0 Batch  149/1077 - Train Accuracy:  0.507, Validation Accuracy:  0.572, Loss:  0.904
+Epoch   0 Batch  150/1077 - Train Accuracy:  0.574, Validation Accuracy:  0.568, Loss:  0.849
+Epoch   0 Batch  151/1077 - Train Accuracy:  0.528, Validation Accuracy:  0.576, Loss:  0.812
+Epoch   0 Batch  152/1077 - Train Accuracy:  0.529, Validation Accuracy:  0.572, Loss:  0.877
+Epoch   0 Batch  153/1077 - Train Accuracy:  0.522, Validation Accuracy:  0.568, Loss:  0.907
+Epoch   0 Batch  154/1077 - Train Accuracy:  0.511, Validation Accuracy:  0.574, Loss:  0.873
+Epoch   0 Batch  155/1077 - Train Accuracy:  0.539, Validation Accuracy:  0.572, Loss:  0.864
+Epoch   0 Batch  156/1077 - Train Accuracy:  0.523, Validation Accuracy:  0.584, Loss:  0.836
+Epoch   0 Batch  157/1077 - Train Accuracy:  0.557, Validation Accuracy:  0.574, Loss:  0.846
+Epoch   0 Batch  158/1077 - Train Accuracy:  0.536, Validation Accuracy:  0.591, Loss:  0.881
+Epoch   0 Batch  159/1077 - Train Accuracy:  0.548, Validation Accuracy:  0.581, Loss:  0.768
+Epoch   0 Batch  160/1077 - Train Accuracy:  0.532, Validation Accuracy:  0.576, Loss:  0.831
+Epoch   0 Batch  161/1077 - Train Accuracy:  0.523, Validation Accuracy:  0.566, Loss:  0.835
+Epoch   0 Batch  162/1077 - Train Accuracy:  0.534, Validation Accuracy:  0.568, Loss:  0.866
+Epoch   0 Batch  163/1077 - Train Accuracy:  0.525, Validation Accuracy:  0.571, Loss:  0.891
+Epoch   0 Batch  164/1077 - Train Accuracy:  0.533, Validation Accuracy:  0.586, Loss:  0.841
+Epoch   0 Batch  165/1077 - Train Accuracy:  0.505, Validation Accuracy:  0.587, Loss:  0.804
+Epoch   0 Batch  166/1077 - Train Accuracy:  0.580, Validation Accuracy:  0.586, Loss:  0.824
+Epoch   0 Batch  167/1077 - Train Accuracy:  0.558, Validation Accuracy:  0.574, Loss:  0.835
+Epoch   0 Batch  168/1077 - Train Accuracy:  0.520, Validation Accuracy:  0.568, Loss:  0.844
+Epoch   0 Batch  169/1077 - Train Accuracy:  0.577, Validation Accuracy:  0.575, Loss:  0.822
+Epoch   0 Batch  170/1077 - Train Accuracy:  0.553, Validation Accuracy:  0.566, Loss:  0.861
+Epoch   0 Batch  171/1077 - Train Accuracy:  0.592, Validation Accuracy:  0.577, Loss:  0.755
+Epoch   0 Batch  172/1077 - Train Accuracy:  0.599, Validation Accuracy:  0.583, Loss:  0.743
+Epoch   0 Batch  173/1077 - Train Accuracy:  0.543, Validation Accuracy:  0.578, Loss:  0.845
+Epoch   0 Batch  174/1077 - Train Accuracy:  0.605, Validation Accuracy:  0.580, Loss:  0.779
+Epoch   0 Batch  175/1077 - Train Accuracy:  0.598, Validation Accuracy:  0.589, Loss:  0.784
+Epoch   0 Batch  176/1077 - Train Accuracy:  0.565, Validation Accuracy:  0.605, Loss:  0.783
+Epoch   0 Batch  177/1077 - Train Accuracy:  0.537, Validation Accuracy:  0.591, Loss:  0.837
+Epoch   0 Batch  178/1077 - Train Accuracy:  0.564, Validation Accuracy:  0.582, Loss:  0.763
+Epoch   0 Batch  179/1077 - Train Accuracy:  0.586, Validation Accuracy:  0.578, Loss:  0.807
+Epoch   0 Batch  180/1077 - Train Accuracy:  0.559, Validation Accuracy:  0.581, Loss:  0.773
+Epoch   0 Batch  181/1077 - Train Accuracy:  0.555, Validation Accuracy:  0.580, Loss:  0.803
+Epoch   0 Batch  182/1077 - Train Accuracy:  0.596, Validation Accuracy:  0.570, Loss:  0.752
+Epoch   0 Batch  183/1077 - Train Accuracy:  0.567, Validation Accuracy:  0.559, Loss:  0.767
+Epoch   0 Batch  184/1077 - Train Accuracy:  0.568, Validation Accuracy:  0.566, Loss:  0.718
+Epoch   0 Batch  185/1077 - Train Accuracy:  0.580, Validation Accuracy:  0.580, Loss:  0.760
+Epoch   0 Batch  186/1077 - Train Accuracy:  0.569, Validation Accuracy:  0.596, Loss:  0.777
+Epoch   0 Batch  187/1077 - Train Accuracy:  0.573, Validation Accuracy:  0.588, Loss:  0.741
+Epoch   0 Batch  188/1077 - Train Accuracy:  0.569, Validation Accuracy:  0.604, Loss:  0.744
+Epoch   0 Batch  189/1077 - Train Accuracy:  0.567, Validation Accuracy:  0.611, Loss:  0.724
+Epoch   0 Batch  190/1077 - Train Accuracy:  0.618, Validation Accuracy:  0.621, Loss:  0.726
+Epoch   0 Batch  191/1077 - Train Accuracy:  0.630, Validation Accuracy:  0.620, Loss:  0.663
+Epoch   0 Batch  192/1077 - Train Accuracy:  0.605, Validation Accuracy:  0.620, Loss:  0.747
+Epoch   0 Batch  193/1077 - Train Accuracy:  0.629, Validation Accuracy:  0.617, Loss:  0.712
+Epoch   0 Batch  194/1077 - Train Accuracy:  0.605, Validation Accuracy:  0.596, Loss:  0.676
+Epoch   0 Batch  195/1077 - Train Accuracy:  0.561, Validation Accuracy:  0.592, Loss:  0.712
+Epoch   0 Batch  196/1077 - Train Accuracy:  0.624, Validation Accuracy:  0.583, Loss:  0.718
+Epoch   0 Batch  197/1077 - Train Accuracy:  0.602, Validation Accuracy:  0.586, Loss:  0.708
+Epoch   0 Batch  198/1077 - Train Accuracy:  0.646, Validation Accuracy:  0.581, Loss:  0.667
+Epoch   0 Batch  199/1077 - Train Accuracy:  0.570, Validation Accuracy:  0.590, Loss:  0.717
+Epoch   0 Batch  200/1077 - Train Accuracy:  0.579, Validation Accuracy:  0.599, Loss:  0.735
+Epoch   0 Batch  201/1077 - Train Accuracy:  0.597, Validation Accuracy:  0.594, Loss:  0.686
+Epoch   0 Batch  202/1077 - Train Accuracy:  0.601, Validation Accuracy:  0.592, Loss:  0.718
+Epoch   0 Batch  203/1077 - Train Accuracy:  0.563, Validation Accuracy:  0.582, Loss:  0.688
+Epoch   0 Batch  204/1077 - Train Accuracy:  0.582, Validation Accuracy:  0.596, Loss:  0.732
+Epoch   0 Batch  205/1077 - Train Accuracy:  0.584, Validation Accuracy:  0.583, Loss:  0.720
+Epoch   0 Batch  206/1077 - Train Accuracy:  0.623, Validation Accuracy:  0.574, Loss:  0.690
+Epoch   0 Batch  207/1077 - Train Accuracy:  0.587, Validation Accuracy:  0.583, Loss:  0.712
+Epoch   0 Batch  208/1077 - Train Accuracy:  0.597, Validation Accuracy:  0.600, Loss:  0.688
+Epoch   0 Batch  209/1077 - Train Accuracy:  0.629, Validation Accuracy:  0.608, Loss:  0.634
+Epoch   0 Batch  210/1077 - Train Accuracy:  0.613, Validation Accuracy:  0.611, Loss:  0.682
+Epoch   0 Batch  211/1077 - Train Accuracy:  0.580, Validation Accuracy:  0.626, Loss:  0.682
+Epoch   0 Batch  212/1077 - Train Accuracy:  0.609, Validation Accuracy:  0.636, Loss:  0.659
+Epoch   0 Batch  213/1077 - Train Accuracy:  0.623, Validation Accuracy:  0.631, Loss:  0.642
+Epoch   0 Batch  214/1077 - Train Accuracy:  0.579, Validation Accuracy:  0.620, Loss:  0.675
+Epoch   0 Batch  215/1077 - Train Accuracy:  0.579, Validation Accuracy:  0.615, Loss:  0.702
+Epoch   0 Batch  216/1077 - Train Accuracy:  0.600, Validation Accuracy:  0.605, Loss:  0.700
+Epoch   0 Batch  217/1077 - Train Accuracy:  0.632, Validation Accuracy:  0.596, Loss:  0.664
+Epoch   0 Batch  218/1077 - Train Accuracy:  0.582, Validation Accuracy:  0.583, Loss:  0.766
+Epoch   0 Batch  219/1077 - Train Accuracy:  0.639, Validation Accuracy:  0.603, Loss:  0.670
+Epoch   0 Batch  220/1077 - Train Accuracy:  0.593, Validation Accuracy:  0.608, Loss:  0.685
+Epoch   0 Batch  221/1077 - Train Accuracy:  0.660, Validation Accuracy:  0.605, Loss:  0.705
+Epoch   0 Batch  222/1077 - Train Accuracy:  0.561, Validation Accuracy:  0.600, Loss:  0.712
+Epoch   0 Batch  223/1077 - Train Accuracy:  0.615, Validation Accuracy:  0.610, Loss:  0.634
+Epoch   0 Batch  224/1077 - Train Accuracy:  0.623, Validation Accuracy:  0.606, Loss:  0.677
+Epoch   0 Batch  225/1077 - Train Accuracy:  0.618, Validation Accuracy:  0.606, Loss:  0.695
+Epoch   0 Batch  226/1077 - Train Accuracy:  0.615, Validation Accuracy:  0.601, Loss:  0.668
+Epoch   0 Batch  227/1077 - Train Accuracy:  0.593, Validation Accuracy:  0.600, Loss:  0.721
+Epoch   0 Batch  228/1077 - Train Accuracy:  0.648, Validation Accuracy:  0.605, Loss:  0.645
+Epoch   0 Batch  229/1077 - Train Accuracy:  0.630, Validation Accuracy:  0.610, Loss:  0.654
+Epoch   0 Batch  230/1077 - Train Accuracy:  0.631, Validation Accuracy:  0.621, Loss:  0.659
+Epoch   0 Batch  231/1077 - Train Accuracy:  0.589, Validation Accuracy:  0.613, Loss:  0.668
+Epoch   0 Batch  232/1077 - Train Accuracy:  0.601, Validation Accuracy:  0.615, Loss:  0.708
+Epoch   0 Batch  233/1077 - Train Accuracy:  0.621, Validation Accuracy:  0.619, Loss:  0.706
+Epoch   0 Batch  234/1077 - Train Accuracy:  0.640, Validation Accuracy:  0.616, Loss:  0.661
+Epoch   0 Batch  235/1077 - Train Accuracy:  0.633, Validation Accuracy:  0.618, Loss:  0.606
+Epoch   0 Batch  236/1077 - Train Accuracy:  0.590, Validation Accuracy:  0.622, Loss:  0.689
+Epoch   0 Batch  237/1077 - Train Accuracy:  0.651, Validation Accuracy:  0.616, Loss:  0.619
+Epoch   0 Batch  238/1077 - Train Accuracy:  0.600, Validation Accuracy:  0.602, Loss:  0.673
+Epoch   0 Batch  239/1077 - Train Accuracy:  0.624, Validation Accuracy:  0.605, Loss:  0.596
+Epoch   0 Batch  240/1077 - Train Accuracy:  0.656, Validation Accuracy:  0.611, Loss:  0.621
+Epoch   0 Batch  241/1077 - Train Accuracy:  0.651, Validation Accuracy:  0.606, Loss:  0.611
+Epoch   0 Batch  242/1077 - Train Accuracy:  0.603, Validation Accuracy:  0.598, Loss:  0.641
+Epoch   0 Batch  243/1077 - Train Accuracy:  0.578, Validation Accuracy:  0.603, Loss:  0.677
+Epoch   0 Batch  244/1077 - Train Accuracy:  0.654, Validation Accuracy:  0.604, Loss:  0.614
+Epoch   0 Batch  245/1077 - Train Accuracy:  0.638, Validation Accuracy:  0.604, Loss:  0.600
+Epoch   0 Batch  246/1077 - Train Accuracy:  0.620, Validation Accuracy:  0.611, Loss:  0.644
+Epoch   0 Batch  247/1077 - Train Accuracy:  0.653, Validation Accuracy:  0.631, Loss:  0.609
+Epoch   0 Batch  248/1077 - Train Accuracy:  0.665, Validation Accuracy:  0.623, Loss:  0.616
+Epoch   0 Batch  249/1077 - Train Accuracy:  0.596, Validation Accuracy:  0.621, Loss:  0.615
+Epoch   0 Batch  250/1077 - Train Accuracy:  0.626, Validation Accuracy:  0.614, Loss:  0.585
+Epoch   0 Batch  251/1077 - Train Accuracy:  0.610, Validation Accuracy:  0.588, Loss:  0.639
+Epoch   0 Batch  252/1077 - Train Accuracy:  0.624, Validation Accuracy:  0.588, Loss:  0.620
+Epoch   0 Batch  253/1077 - Train Accuracy:  0.636, Validation Accuracy:  0.602, Loss:  0.600
+Epoch   0 Batch  254/1077 - Train Accuracy:  0.632, Validation Accuracy:  0.605, Loss:  0.642
+Epoch   0 Batch  255/1077 - Train Accuracy:  0.605, Validation Accuracy:  0.613, Loss:  0.625
+Epoch   0 Batch  256/1077 - Train Accuracy:  0.602, Validation Accuracy:  0.612, Loss:  0.685
+Epoch   0 Batch  257/1077 - Train Accuracy:  0.641, Validation Accuracy:  0.614, Loss:  0.624
+Epoch   0 Batch  258/1077 - Train Accuracy:  0.646, Validation Accuracy:  0.598, Loss:  0.613
+Epoch   0 Batch  259/1077 - Train Accuracy:  0.600, Validation Accuracy:  0.605, Loss:  0.613
+Epoch   0 Batch  260/1077 - Train Accuracy:  0.643, Validation Accuracy:  0.606, Loss:  0.593
+Epoch   0 Batch  261/1077 - Train Accuracy:  0.625, Validation Accuracy:  0.604, Loss:  0.620
+Epoch   0 Batch  262/1077 - Train Accuracy:  0.633, Validation Accuracy:  0.609, Loss:  0.612
+Epoch   0 Batch  263/1077 - Train Accuracy:  0.642, Validation Accuracy:  0.615, Loss:  0.601
+Epoch   0 Batch  264/1077 - Train Accuracy:  0.626, Validation Accuracy:  0.630, Loss:  0.619
+Epoch   0 Batch  265/1077 - Train Accuracy:  0.617, Validation Accuracy:  0.625, Loss:  0.626
+Epoch   0 Batch  266/1077 - Train Accuracy:  0.638, Validation Accuracy:  0.617, Loss:  0.590
+Epoch   0 Batch  267/1077 - Train Accuracy:  0.656, Validation Accuracy:  0.608, Loss:  0.576
+Epoch   0 Batch  268/1077 - Train Accuracy:  0.650, Validation Accuracy:  0.623, Loss:  0.614
+Epoch   0 Batch  269/1077 - Train Accuracy:  0.624, Validation Accuracy:  0.627, Loss:  0.658
+Epoch   0 Batch  270/1077 - Train Accuracy:  0.610, Validation Accuracy:  0.622, Loss:  0.650
+Epoch   0 Batch  271/1077 - Train Accuracy:  0.672, Validation Accuracy:  0.624, Loss:  0.607
+Epoch   0 Batch  272/1077 - Train Accuracy:  0.635, Validation Accuracy:  0.630, Loss:  0.633
+Epoch   0 Batch  273/1077 - Train Accuracy:  0.629, Validation Accuracy:  0.633, Loss:  0.586
+Epoch   0 Batch  274/1077 - Train Accuracy:  0.664, Validation Accuracy:  0.623, Loss:  0.596
+Epoch   0 Batch  275/1077 - Train Accuracy:  0.632, Validation Accuracy:  0.617, Loss:  0.576
+Epoch   0 Batch  276/1077 - Train Accuracy:  0.602, Validation Accuracy:  0.628, Loss:  0.632
+Epoch   0 Batch  277/1077 - Train Accuracy:  0.643, Validation Accuracy:  0.639, Loss:  0.557
+Epoch   0 Batch  278/1077 - Train Accuracy:  0.620, Validation Accuracy:  0.665, Loss:  0.639
+Epoch   0 Batch  279/1077 - Train Accuracy:  0.611, Validation Accuracy:  0.671, Loss:  0.646
+Epoch   0 Batch  280/1077 - Train Accuracy:  0.651, Validation Accuracy:  0.655, Loss:  0.627
+Epoch   0 Batch  281/1077 - Train Accuracy:  0.612, Validation Accuracy:  0.647, Loss:  0.627
+Epoch   0 Batch  282/1077 - Train Accuracy:  0.610, Validation Accuracy:  0.639, Loss:  0.630
+Epoch   0 Batch  283/1077 - Train Accuracy:  0.671, Validation Accuracy:  0.631, Loss:  0.620
+Epoch   0 Batch  284/1077 - Train Accuracy:  0.600, Validation Accuracy:  0.630, Loss:  0.634
+Epoch   0 Batch  285/1077 - Train Accuracy:  0.648, Validation Accuracy:  0.625, Loss:  0.586
+Epoch   0 Batch  286/1077 - Train Accuracy:  0.673, Validation Accuracy:  0.624, Loss:  0.567
+Epoch   0 Batch  287/1077 - Train Accuracy:  0.650, Validation Accuracy:  0.623, Loss:  0.582
+Epoch   0 Batch  288/1077 - Train Accuracy:  0.612, Validation Accuracy:  0.640, Loss:  0.623
+Epoch   0 Batch  289/1077 - Train Accuracy:  0.665, Validation Accuracy:  0.643, Loss:  0.583
+Epoch   0 Batch  290/1077 - Train Accuracy:  0.639, Validation Accuracy:  0.638, Loss:  0.617
+Epoch   0 Batch  291/1077 - Train Accuracy:  0.642, Validation Accuracy:  0.638, Loss:  0.606
+Epoch   0 Batch  292/1077 - Train Accuracy:  0.677, Validation Accuracy:  0.636, Loss:  0.568
+Epoch   0 Batch  293/1077 - Train Accuracy:  0.610, Validation Accuracy:  0.629, Loss:  0.611
+Epoch   0 Batch  294/1077 - Train Accuracy:  0.664, Validation Accuracy:  0.637, Loss:  0.540
+Epoch   0 Batch  295/1077 - Train Accuracy:  0.622, Validation Accuracy:  0.616, Loss:  0.636
+Epoch   0 Batch  296/1077 - Train Accuracy:  0.696, Validation Accuracy:  0.647, Loss:  0.544
+Epoch   0 Batch  297/1077 - Train Accuracy:  0.650, Validation Accuracy:  0.637, Loss:  0.623
+Epoch   0 Batch  298/1077 - Train Accuracy:  0.636, Validation Accuracy:  0.659, Loss:  0.615
+Epoch   0 Batch  299/1077 - Train Accuracy:  0.641, Validation Accuracy:  0.667, Loss:  0.562
+Epoch   0 Batch  300/1077 - Train Accuracy:  0.663, Validation Accuracy:  0.659, Loss:  0.566
+Epoch   0 Batch  301/1077 - Train Accuracy:  0.651, Validation Accuracy:  0.643, Loss:  0.556
+Epoch   0 Batch  302/1077 - Train Accuracy:  0.677, Validation Accuracy:  0.652, Loss:  0.564
+Epoch   0 Batch  303/1077 - Train Accuracy:  0.649, Validation Accuracy:  0.636, Loss:  0.579
+Epoch   0 Batch  304/1077 - Train Accuracy:  0.659, Validation Accuracy:  0.598, Loss:  0.534
+Epoch   0 Batch  305/1077 - Train Accuracy:  0.656, Validation Accuracy:  0.592, Loss:  0.552
+Epoch   0 Batch  306/1077 - Train Accuracy:  0.644, Validation Accuracy:  0.607, Loss:  0.547
+Epoch   0 Batch  307/1077 - Train Accuracy:  0.640, Validation Accuracy:  0.610, Loss:  0.559
+Epoch   0 Batch  308/1077 - Train Accuracy:  0.624, Validation Accuracy:  0.610, Loss:  0.609
+Epoch   0 Batch  309/1077 - Train Accuracy:  0.674, Validation Accuracy:  0.615, Loss:  0.521
+Epoch   0 Batch  310/1077 - Train Accuracy:  0.612, Validation Accuracy:  0.617, Loss:  0.575
+Epoch   0 Batch  311/1077 - Train Accuracy:  0.666, Validation Accuracy:  0.617, Loss:  0.530
+Epoch   0 Batch  312/1077 - Train Accuracy:  0.637, Validation Accuracy:  0.614, Loss:  0.590
+Epoch   0 Batch  313/1077 - Train Accuracy:  0.659, Validation Accuracy:  0.624, Loss:  0.547
+Epoch   0 Batch  314/1077 - Train Accuracy:  0.675, Validation Accuracy:  0.639, Loss:  0.552
+Epoch   0 Batch  315/1077 - Train Accuracy:  0.661, Validation Accuracy:  0.643, Loss:  0.519
+Epoch   0 Batch  316/1077 - Train Accuracy:  0.673, Validation Accuracy:  0.627, Loss:  0.522
+Epoch   0 Batch  317/1077 - Train Accuracy:  0.651, Validation Accuracy:  0.619, Loss:  0.604
+Epoch   0 Batch  318/1077 - Train Accuracy:  0.637, Validation Accuracy:  0.617, Loss:  0.560
+Epoch   0 Batch  319/1077 - Train Accuracy:  0.639, Validation Accuracy:  0.608, Loss:  0.547
+Epoch   0 Batch  320/1077 - Train Accuracy:  0.677, Validation Accuracy:  0.636, Loss:  0.557
+Epoch   0 Batch  321/1077 - Train Accuracy:  0.632, Validation Accuracy:  0.631, Loss:  0.547
+Epoch   0 Batch  322/1077 - Train Accuracy:  0.650, Validation Accuracy:  0.634, Loss:  0.529
+Epoch   0 Batch  323/1077 - Train Accuracy:  0.665, Validation Accuracy:  0.622, Loss:  0.538
+Epoch   0 Batch  324/1077 - Train Accuracy:  0.652, Validation Accuracy:  0.630, Loss:  0.547
+Epoch   0 Batch  325/1077 - Train Accuracy:  0.672, Validation Accuracy:  0.636, Loss:  0.527
+Epoch   0 Batch  326/1077 - Train Accuracy:  0.683, Validation Accuracy:  0.614, Loss:  0.548
+Epoch   0 Batch  327/1077 - Train Accuracy:  0.650, Validation Accuracy:  0.610, Loss:  0.558
+Epoch   0 Batch  328/1077 - Train Accuracy:  0.685, Validation Accuracy:  0.615, Loss:  0.535
+Epoch   0 Batch  329/1077 - Train Accuracy:  0.634, Validation Accuracy:  0.630, Loss:  0.574
+Epoch   0 Batch  330/1077 - Train Accuracy:  0.658, Validation Accuracy:  0.635, Loss:  0.545
+Epoch   0 Batch  331/1077 - Train Accuracy:  0.657, Validation Accuracy:  0.635, Loss:  0.574
+Epoch   0 Batch  332/1077 - Train Accuracy:  0.625, Validation Accuracy:  0.640, Loss:  0.505
+Epoch   0 Batch  333/1077 - Train Accuracy:  0.676, Validation Accuracy:  0.640, Loss:  0.561
+Epoch   0 Batch  334/1077 - Train Accuracy:  0.659, Validation Accuracy:  0.640, Loss:  0.553
+Epoch   0 Batch  335/1077 - Train Accuracy:  0.684, Validation Accuracy:  0.632, Loss:  0.509
+Epoch   0 Batch  336/1077 - Train Accuracy:  0.648, Validation Accuracy:  0.635, Loss:  0.544
+Epoch   0 Batch  337/1077 - Train Accuracy:  0.620, Validation Accuracy:  0.635, Loss:  0.549
+Epoch   0 Batch  338/1077 - Train Accuracy:  0.652, Validation Accuracy:  0.613, Loss:  0.565
+Epoch   0 Batch  339/1077 - Train Accuracy:  0.657, Validation Accuracy:  0.613, Loss:  0.512
+Epoch   0 Batch  340/1077 - Train Accuracy:  0.648, Validation Accuracy:  0.618, Loss:  0.547
+Epoch   0 Batch  341/1077 - Train Accuracy:  0.667, Validation Accuracy:  0.619, Loss:  0.577
+Epoch   0 Batch  342/1077 - Train Accuracy:  0.644, Validation Accuracy:  0.619, Loss:  0.511
+Epoch   0 Batch  343/1077 - Train Accuracy:  0.624, Validation Accuracy:  0.627, Loss:  0.545
+Epoch   0 Batch  344/1077 - Train Accuracy:  0.663, Validation Accuracy:  0.636, Loss:  0.526
+Epoch   0 Batch  345/1077 - Train Accuracy:  0.706, Validation Accuracy:  0.628, Loss:  0.502
+Epoch   0 Batch  346/1077 - Train Accuracy:  0.647, Validation Accuracy:  0.636, Loss:  0.551
+Epoch   0 Batch  347/1077 - Train Accuracy:  0.682, Validation Accuracy:  0.632, Loss:  0.491
+Epoch   0 Batch  348/1077 - Train Accuracy:  0.642, Validation Accuracy:  0.630, Loss:  0.518
+Epoch   0 Batch  349/1077 - Train Accuracy:  0.642, Validation Accuracy:  0.627, Loss:  0.529
+Epoch   0 Batch  350/1077 - Train Accuracy:  0.646, Validation Accuracy:  0.620, Loss:  0.544
+Epoch   0 Batch  351/1077 - Train Accuracy:  0.653, Validation Accuracy:  0.650, Loss:  0.545
+Epoch   0 Batch  352/1077 - Train Accuracy:  0.664, Validation Accuracy:  0.655, Loss:  0.523
+Epoch   0 Batch  353/1077 - Train Accuracy:  0.635, Validation Accuracy:  0.670, Loss:  0.567
+Epoch   0 Batch  354/1077 - Train Accuracy:  0.650, Validation Accuracy:  0.661, Loss:  0.548
+Epoch   0 Batch  355/1077 - Train Accuracy:  0.652, Validation Accuracy:  0.649, Loss:  0.516
+Epoch   0 Batch  356/1077 - Train Accuracy:  0.686, Validation Accuracy:  0.643, Loss:  0.528
+Epoch   0 Batch  357/1077 - Train Accuracy:  0.671, Validation Accuracy:  0.644, Loss:  0.501
+Epoch   0 Batch  358/1077 - Train Accuracy:  0.636, Validation Accuracy:  0.648, Loss:  0.546
+Epoch   0 Batch  359/1077 - Train Accuracy:  0.663, Validation Accuracy:  0.662, Loss:  0.524
+Epoch   0 Batch  360/1077 - Train Accuracy:  0.651, Validation Accuracy:  0.648, Loss:  0.515
+Epoch   0 Batch  361/1077 - Train Accuracy:  0.680, Validation Accuracy:  0.657, Loss:  0.545
+Epoch   0 Batch  362/1077 - Train Accuracy:  0.670, Validation Accuracy:  0.636, Loss:  0.505
+Epoch   0 Batch  363/1077 - Train Accuracy:  0.651, Validation Accuracy:  0.641, Loss:  0.519
+Epoch   0 Batch  364/1077 - Train Accuracy:  0.657, Validation Accuracy:  0.641, Loss:  0.542
+Epoch   0 Batch  365/1077 - Train Accuracy:  0.663, Validation Accuracy:  0.636, Loss:  0.502
+Epoch   0 Batch  366/1077 - Train Accuracy:  0.638, Validation Accuracy:  0.635, Loss:  0.520
+Epoch   0 Batch  367/1077 - Train Accuracy:  0.703, Validation Accuracy:  0.645, Loss:  0.452
+Epoch   0 Batch  368/1077 - Train Accuracy:  0.686, Validation Accuracy:  0.657, Loss:  0.506
+Epoch   0 Batch  369/1077 - Train Accuracy:  0.668, Validation Accuracy:  0.666, Loss:  0.485
+Epoch   0 Batch  370/1077 - Train Accuracy:  0.684, Validation Accuracy:  0.662, Loss:  0.483
+Epoch   0 Batch  371/1077 - Train Accuracy:  0.711, Validation Accuracy:  0.673, Loss:  0.487
+Epoch   0 Batch  372/1077 - Train Accuracy:  0.711, Validation Accuracy:  0.668, Loss:  0.480
+Epoch   0 Batch  373/1077 - Train Accuracy:  0.699, Validation Accuracy:  0.667, Loss:  0.463
+Epoch   0 Batch  374/1077 - Train Accuracy:  0.657, Validation Accuracy:  0.657, Loss:  0.524
+Epoch   0 Batch  375/1077 - Train Accuracy:  0.694, Validation Accuracy:  0.662, Loss:  0.468
+Epoch   0 Batch  376/1077 - Train Accuracy:  0.675, Validation Accuracy:  0.654, Loss:  0.471
+Epoch   0 Batch  377/1077 - Train Accuracy:  0.661, Validation Accuracy:  0.657, Loss:  0.496
+Epoch   0 Batch  378/1077 - Train Accuracy:  0.664, Validation Accuracy:  0.658, Loss:  0.473
+Epoch   0 Batch  379/1077 - Train Accuracy:  0.688, Validation Accuracy:  0.661, Loss:  0.514
+Epoch   0 Batch  380/1077 - Train Accuracy:  0.676, Validation Accuracy:  0.674, Loss:  0.480
+Epoch   0 Batch  381/1077 - Train Accuracy:  0.669, Validation Accuracy:  0.661, Loss:  0.509
+Epoch   0 Batch  382/1077 - Train Accuracy:  0.689, Validation Accuracy:  0.672, Loss:  0.521
+Epoch   0 Batch  383/1077 - Train Accuracy:  0.688, Validation Accuracy:  0.661, Loss:  0.467
+Epoch   0 Batch  384/1077 - Train Accuracy:  0.678, Validation Accuracy:  0.654, Loss:  0.481
+Epoch   0 Batch  385/1077 - Train Accuracy:  0.719, Validation Accuracy:  0.657, Loss:  0.477
+Epoch   0 Batch  386/1077 - Train Accuracy:  0.683, Validation Accuracy:  0.652, Loss:  0.472
+Epoch   0 Batch  387/1077 - Train Accuracy:  0.708, Validation Accuracy:  0.662, Loss:  0.458
+Epoch   0 Batch  388/1077 - Train Accuracy:  0.681, Validation Accuracy:  0.672, Loss:  0.460
+Epoch   0 Batch  389/1077 - Train Accuracy:  0.702, Validation Accuracy:  0.681, Loss:  0.489
+Epoch   0 Batch  390/1077 - Train Accuracy:  0.659, Validation Accuracy:  0.669, Loss:  0.494
+Epoch   0 Batch  391/1077 - Train Accuracy:  0.696, Validation Accuracy:  0.652, Loss:  0.472
+Epoch   0 Batch  392/1077 - Train Accuracy:  0.690, Validation Accuracy:  0.669, Loss:  0.463
+Epoch   0 Batch  393/1077 - Train Accuracy:  0.697, Validation Accuracy:  0.681, Loss:  0.443
+Epoch   0 Batch  394/1077 - Train Accuracy:  0.669, Validation Accuracy:  0.698, Loss:  0.478
+Epoch   0 Batch  395/1077 - Train Accuracy:  0.710, Validation Accuracy:  0.696, Loss:  0.442
+Epoch   0 Batch  396/1077 - Train Accuracy:  0.653, Validation Accuracy:  0.696, Loss:  0.495
+Epoch   0 Batch  397/1077 - Train Accuracy:  0.712, Validation Accuracy:  0.679, Loss:  0.460
+Epoch   0 Batch  398/1077 - Train Accuracy:  0.704, Validation Accuracy:  0.674, Loss:  0.496
+Epoch   0 Batch  399/1077 - Train Accuracy:  0.663, Validation Accuracy:  0.692, Loss:  0.478
+Epoch   0 Batch  400/1077 - Train Accuracy:  0.682, Validation Accuracy:  0.664, Loss:  0.478
+Epoch   0 Batch  401/1077 - Train Accuracy:  0.659, Validation Accuracy:  0.639, Loss:  0.459
+Epoch   0 Batch  402/1077 - Train Accuracy:  0.700, Validation Accuracy:  0.647, Loss:  0.449
+Epoch   0 Batch  403/1077 - Train Accuracy:  0.693, Validation Accuracy:  0.689, Loss:  0.473
+Epoch   0 Batch  404/1077 - Train Accuracy:  0.701, Validation Accuracy:  0.670, Loss:  0.438
+Epoch   0 Batch  405/1077 - Train Accuracy:  0.717, Validation Accuracy:  0.688, Loss:  0.506
+Epoch   0 Batch  406/1077 - Train Accuracy:  0.730, Validation Accuracy:  0.711, Loss:  0.462
+Epoch   0 Batch  407/1077 - Train Accuracy:  0.669, Validation Accuracy:  0.707, Loss:  0.490
+Epoch   0 Batch  408/1077 - Train Accuracy:  0.657, Validation Accuracy:  0.703, Loss:  0.471
+Epoch   0 Batch  409/1077 - Train Accuracy:  0.671, Validation Accuracy:  0.707, Loss:  0.478
+Epoch   0 Batch  410/1077 - Train Accuracy:  0.662, Validation Accuracy:  0.701, Loss:  0.485
+Epoch   0 Batch  411/1077 - Train Accuracy:  0.729, Validation Accuracy:  0.688, Loss:  0.457
+Epoch   0 Batch  412/1077 - Train Accuracy:  0.697, Validation Accuracy:  0.710, Loss:  0.438
+Epoch   0 Batch  413/1077 - Train Accuracy:  0.682, Validation Accuracy:  0.718, Loss:  0.438
+Epoch   0 Batch  414/1077 - Train Accuracy:  0.668, Validation Accuracy:  0.710, Loss:  0.463
+Epoch   0 Batch  415/1077 - Train Accuracy:  0.693, Validation Accuracy:  0.697, Loss:  0.420
+Epoch   0 Batch  416/1077 - Train Accuracy:  0.720, Validation Accuracy:  0.696, Loss:  0.452
+Epoch   0 Batch  417/1077 - Train Accuracy:  0.719, Validation Accuracy:  0.689, Loss:  0.474
+Epoch   0 Batch  418/1077 - Train Accuracy:  0.695, Validation Accuracy:  0.696, Loss:  0.449
+Epoch   0 Batch  419/1077 - Train Accuracy:  0.707, Validation Accuracy:  0.697, Loss:  0.446
+Epoch   0 Batch  420/1077 - Train Accuracy:  0.710, Validation Accuracy:  0.696, Loss:  0.435
+Epoch   0 Batch  421/1077 - Train Accuracy:  0.675, Validation Accuracy:  0.704, Loss:  0.465
+Epoch   0 Batch  422/1077 - Train Accuracy:  0.715, Validation Accuracy:  0.690, Loss:  0.433
+Epoch   0 Batch  423/1077 - Train Accuracy:  0.695, Validation Accuracy:  0.684, Loss:  0.465
+Epoch   0 Batch  424/1077 - Train Accuracy:  0.679, Validation Accuracy:  0.685, Loss:  0.444
+Epoch   0 Batch  425/1077 - Train Accuracy:  0.723, Validation Accuracy:  0.670, Loss:  0.429
+Epoch   0 Batch  426/1077 - Train Accuracy:  0.700, Validation Accuracy:  0.688, Loss:  0.442
+Epoch   0 Batch  427/1077 - Train Accuracy:  0.714, Validation Accuracy:  0.681, Loss:  0.433
+Epoch   0 Batch  428/1077 - Train Accuracy:  0.711, Validation Accuracy:  0.686, Loss:  0.416
+Epoch   0 Batch  429/1077 - Train Accuracy:  0.700, Validation Accuracy:  0.683, Loss:  0.433
+Epoch   0 Batch  430/1077 - Train Accuracy:  0.707, Validation Accuracy:  0.681, Loss:  0.427
+Epoch   0 Batch  431/1077 - Train Accuracy:  0.658, Validation Accuracy:  0.670, Loss:  0.429
+Epoch   0 Batch  432/1077 - Train Accuracy:  0.708, Validation Accuracy:  0.669, Loss:  0.440
+Epoch   0 Batch  433/1077 - Train Accuracy:  0.719, Validation Accuracy:  0.680, Loss:  0.433
+Epoch   0 Batch  434/1077 - Train Accuracy:  0.707, Validation Accuracy:  0.692, Loss:  0.420
+Epoch   0 Batch  435/1077 - Train Accuracy:  0.700, Validation Accuracy:  0.699, Loss:  0.468
+Epoch   0 Batch  436/1077 - Train Accuracy:  0.718, Validation Accuracy:  0.704, Loss:  0.412
+Epoch   0 Batch  437/1077 - Train Accuracy:  0.710, Validation Accuracy:  0.711, Loss:  0.430
+Epoch   0 Batch  438/1077 - Train Accuracy:  0.671, Validation Accuracy:  0.700, Loss:  0.426
+Epoch   0 Batch  439/1077 - Train Accuracy:  0.682, Validation Accuracy:  0.709, Loss:  0.446
+Epoch   0 Batch  440/1077 - Train Accuracy:  0.701, Validation Accuracy:  0.705, Loss:  0.441
+Epoch   0 Batch  441/1077 - Train Accuracy:  0.691, Validation Accuracy:  0.699, Loss:  0.414
+Epoch   0 Batch  442/1077 - Train Accuracy:  0.730, Validation Accuracy:  0.701, Loss:  0.412
+Epoch   0 Batch  443/1077 - Train Accuracy:  0.728, Validation Accuracy:  0.702, Loss:  0.403
+Epoch   0 Batch  444/1077 - Train Accuracy:  0.741, Validation Accuracy:  0.677, Loss:  0.426
+Epoch   0 Batch  445/1077 - Train Accuracy:  0.686, Validation Accuracy:  0.675, Loss:  0.439
+Epoch   0 Batch  446/1077 - Train Accuracy:  0.737, Validation Accuracy:  0.666, Loss:  0.391
+Epoch   0 Batch  447/1077 - Train Accuracy:  0.677, Validation Accuracy:  0.670, Loss:  0.408
+Epoch   0 Batch  448/1077 - Train Accuracy:  0.691, Validation Accuracy:  0.669, Loss:  0.430
+Epoch   0 Batch  449/1077 - Train Accuracy:  0.672, Validation Accuracy:  0.686, Loss:  0.430
+Epoch   0 Batch  450/1077 - Train Accuracy:  0.721, Validation Accuracy:  0.696, Loss:  0.410
+Epoch   0 Batch  451/1077 - Train Accuracy:  0.756, Validation Accuracy:  0.699, Loss:  0.397
+Epoch   0 Batch  452/1077 - Train Accuracy:  0.727, Validation Accuracy:  0.691, Loss:  0.420
+Epoch   0 Batch  453/1077 - Train Accuracy:  0.725, Validation Accuracy:  0.692, Loss:  0.381
+Epoch   0 Batch  454/1077 - Train Accuracy:  0.720, Validation Accuracy:  0.694, Loss:  0.409
+Epoch   0 Batch  455/1077 - Train Accuracy:  0.721, Validation Accuracy:  0.690, Loss:  0.391
+Epoch   0 Batch  456/1077 - Train Accuracy:  0.738, Validation Accuracy:  0.702, Loss:  0.405
+Epoch   0 Batch  457/1077 - Train Accuracy:  0.724, Validation Accuracy:  0.694, Loss:  0.370
+Epoch   0 Batch  458/1077 - Train Accuracy:  0.683, Validation Accuracy:  0.693, Loss:  0.413
+Epoch   0 Batch  459/1077 - Train Accuracy:  0.751, Validation Accuracy:  0.689, Loss:  0.391
+Epoch   0 Batch  460/1077 - Train Accuracy:  0.736, Validation Accuracy:  0.720, Loss:  0.425
+Epoch   0 Batch  461/1077 - Train Accuracy:  0.713, Validation Accuracy:  0.725, Loss:  0.407
+Epoch   0 Batch  462/1077 - Train Accuracy:  0.729, Validation Accuracy:  0.722, Loss:  0.403
+Epoch   0 Batch  463/1077 - Train Accuracy:  0.693, Validation Accuracy:  0.717, Loss:  0.404
+Epoch   0 Batch  464/1077 - Train Accuracy:  0.746, Validation Accuracy:  0.716, Loss:  0.403
+Epoch   0 Batch  465/1077 - Train Accuracy:  0.714, Validation Accuracy:  0.718, Loss:  0.428
+Epoch   0 Batch  466/1077 - Train Accuracy:  0.732, Validation Accuracy:  0.707, Loss:  0.383
+Epoch   0 Batch  467/1077 - Train Accuracy:  0.767, Validation Accuracy:  0.696, Loss:  0.393
+Epoch   0 Batch  468/1077 - Train Accuracy:  0.758, Validation Accuracy:  0.712, Loss:  0.400
+Epoch   0 Batch  469/1077 - Train Accuracy:  0.700, Validation Accuracy:  0.717, Loss:  0.404
+Epoch   0 Batch  470/1077 - Train Accuracy:  0.720, Validation Accuracy:  0.712, Loss:  0.423
+Epoch   0 Batch  471/1077 - Train Accuracy:  0.762, Validation Accuracy:  0.721, Loss:  0.375
+Epoch   0 Batch  472/1077 - Train Accuracy:  0.722, Validation Accuracy:  0.725, Loss:  0.387
+Epoch   0 Batch  473/1077 - Train Accuracy:  0.736, Validation Accuracy:  0.738, Loss:  0.405
+Epoch   0 Batch  474/1077 - Train Accuracy:  0.723, Validation Accuracy:  0.739, Loss:  0.391
+Epoch   0 Batch  475/1077 - Train Accuracy:  0.749, Validation Accuracy:  0.716, Loss:  0.390
+Epoch   0 Batch  476/1077 - Train Accuracy:  0.749, Validation Accuracy:  0.705, Loss:  0.383
+Epoch   0 Batch  477/1077 - Train Accuracy:  0.756, Validation Accuracy:  0.703, Loss:  0.378
+Epoch   0 Batch  478/1077 - Train Accuracy:  0.732, Validation Accuracy:  0.713, Loss:  0.407
+Epoch   0 Batch  479/1077 - Train Accuracy:  0.728, Validation Accuracy:  0.721, Loss:  0.404
+Epoch   0 Batch  480/1077 - Train Accuracy:  0.737, Validation Accuracy:  0.714, Loss:  0.396
+Epoch   0 Batch  481/1077 - Train Accuracy:  0.730, Validation Accuracy:  0.708, Loss:  0.393
+Epoch   0 Batch  482/1077 - Train Accuracy:  0.704, Validation Accuracy:  0.701, Loss:  0.413
+Epoch   0 Batch  483/1077 - Train Accuracy:  0.709, Validation Accuracy:  0.713, Loss:  0.392
+Epoch   0 Batch  484/1077 - Train Accuracy:  0.721, Validation Accuracy:  0.723, Loss:  0.385
+Epoch   0 Batch  485/1077 - Train Accuracy:  0.756, Validation Accuracy:  0.718, Loss:  0.395
+Epoch   0 Batch  486/1077 - Train Accuracy:  0.740, Validation Accuracy:  0.721, Loss:  0.377
+Epoch   0 Batch  487/1077 - Train Accuracy:  0.720, Validation Accuracy:  0.717, Loss:  0.389
+Epoch   0 Batch  488/1077 - Train Accuracy:  0.731, Validation Accuracy:  0.709, Loss:  0.393
+Epoch   0 Batch  489/1077 - Train Accuracy:  0.739, Validation Accuracy:  0.700, Loss:  0.364
+Epoch   0 Batch  490/1077 - Train Accuracy:  0.720, Validation Accuracy:  0.689, Loss:  0.388
+Epoch   0 Batch  491/1077 - Train Accuracy:  0.728, Validation Accuracy:  0.705, Loss:  0.379
+Epoch   0 Batch  492/1077 - Train Accuracy:  0.749, Validation Accuracy:  0.709, Loss:  0.394
+Epoch   0 Batch  493/1077 - Train Accuracy:  0.750, Validation Accuracy:  0.713, Loss:  0.357
+Epoch   0 Batch  494/1077 - Train Accuracy:  0.739, Validation Accuracy:  0.726, Loss:  0.354
+Epoch   0 Batch  495/1077 - Train Accuracy:  0.733, Validation Accuracy:  0.740, Loss:  0.359
+Epoch   0 Batch  496/1077 - Train Accuracy:  0.737, Validation Accuracy:  0.725, Loss:  0.396
+Epoch   0 Batch  497/1077 - Train Accuracy:  0.743, Validation Accuracy:  0.735, Loss:  0.410
+Epoch   0 Batch  498/1077 - Train Accuracy:  0.766, Validation Accuracy:  0.727, Loss:  0.372
+Epoch   0 Batch  499/1077 - Train Accuracy:  0.736, Validation Accuracy:  0.728, Loss:  0.354
+Epoch   0 Batch  500/1077 - Train Accuracy:  0.764, Validation Accuracy:  0.722, Loss:  0.357
+Epoch   0 Batch  501/1077 - Train Accuracy:  0.723, Validation Accuracy:  0.728, Loss:  0.364
+Epoch   0 Batch  502/1077 - Train Accuracy:  0.766, Validation Accuracy:  0.727, Loss:  0.377
+Epoch   0 Batch  503/1077 - Train Accuracy:  0.748, Validation Accuracy:  0.733, Loss:  0.369
+Epoch   0 Batch  504/1077 - Train Accuracy:  0.745, Validation Accuracy:  0.724, Loss:  0.366
+Epoch   0 Batch  505/1077 - Train Accuracy:  0.764, Validation Accuracy:  0.722, Loss:  0.332
+Epoch   0 Batch  506/1077 - Train Accuracy:  0.732, Validation Accuracy:  0.707, Loss:  0.377
+Epoch   0 Batch  507/1077 - Train Accuracy:  0.737, Validation Accuracy:  0.740, Loss:  0.361
+Epoch   0 Batch  508/1077 - Train Accuracy:  0.758, Validation Accuracy:  0.734, Loss:  0.353
+Epoch   0 Batch  509/1077 - Train Accuracy:  0.719, Validation Accuracy:  0.719, Loss:  0.385
+Epoch   0 Batch  510/1077 - Train Accuracy:  0.736, Validation Accuracy:  0.719, Loss:  0.349
+Epoch   0 Batch  511/1077 - Train Accuracy:  0.748, Validation Accuracy:  0.735, Loss:  0.360
+Epoch   0 Batch  512/1077 - Train Accuracy:  0.786, Validation Accuracy:  0.731, Loss:  0.355
+Epoch   0 Batch  513/1077 - Train Accuracy:  0.759, Validation Accuracy:  0.737, Loss:  0.356
+Epoch   0 Batch  514/1077 - Train Accuracy:  0.721, Validation Accuracy:  0.720, Loss:  0.379
+Epoch   0 Batch  515/1077 - Train Accuracy:  0.734, Validation Accuracy:  0.725, Loss:  0.380
+Epoch   0 Batch  516/1077 - Train Accuracy:  0.780, Validation Accuracy:  0.732, Loss:  0.347
+Epoch   0 Batch  517/1077 - Train Accuracy:  0.768, Validation Accuracy:  0.756, Loss:  0.353
+Epoch   0 Batch  518/1077 - Train Accuracy:  0.794, Validation Accuracy:  0.756, Loss:  0.342
+Epoch   0 Batch  519/1077 - Train Accuracy:  0.766, Validation Accuracy:  0.754, Loss:  0.342
+Epoch   0 Batch  520/1077 - Train Accuracy:  0.774, Validation Accuracy:  0.745, Loss:  0.331
+Epoch   0 Batch  521/1077 - Train Accuracy:  0.745, Validation Accuracy:  0.752, Loss:  0.345
+Epoch   0 Batch  522/1077 - Train Accuracy:  0.720, Validation Accuracy:  0.735, Loss:  0.352
+Epoch   0 Batch  523/1077 - Train Accuracy:  0.754, Validation Accuracy:  0.743, Loss:  0.374
+Epoch   0 Batch  524/1077 - Train Accuracy:  0.781, Validation Accuracy:  0.745, Loss:  0.351
+Epoch   0 Batch  525/1077 - Train Accuracy:  0.734, Validation Accuracy:  0.736, Loss:  0.352
+Epoch   0 Batch  526/1077 - Train Accuracy:  0.737, Validation Accuracy:  0.730, Loss:  0.337
+Epoch   0 Batch  527/1077 - Train Accuracy:  0.729, Validation Accuracy:  0.723, Loss:  0.364
+Epoch   0 Batch  528/1077 - Train Accuracy:  0.746, Validation Accuracy:  0.724, Loss:  0.349
+Epoch   0 Batch  529/1077 - Train Accuracy:  0.725, Validation Accuracy:  0.728, Loss:  0.349
+Epoch   0 Batch  530/1077 - Train Accuracy:  0.761, Validation Accuracy:  0.752, Loss:  0.358
+Epoch   0 Batch  531/1077 - Train Accuracy:  0.751, Validation Accuracy:  0.731, Loss:  0.346
+Epoch   0 Batch  532/1077 - Train Accuracy:  0.717, Validation Accuracy:  0.741, Loss:  0.376
+Epoch   0 Batch  533/1077 - Train Accuracy:  0.760, Validation Accuracy:  0.744, Loss:  0.347
+Epoch   0 Batch  534/1077 - Train Accuracy:  0.766, Validation Accuracy:  0.729, Loss:  0.345
+Epoch   0 Batch  535/1077 - Train Accuracy:  0.786, Validation Accuracy:  0.743, Loss:  0.329
+Epoch   0 Batch  536/1077 - Train Accuracy:  0.740, Validation Accuracy:  0.745, Loss:  0.348
+Epoch   0 Batch  537/1077 - Train Accuracy:  0.760, Validation Accuracy:  0.762, Loss:  0.339
+Epoch   0 Batch  538/1077 - Train Accuracy:  0.788, Validation Accuracy:  0.749, Loss:  0.299
+Epoch   0 Batch  539/1077 - Train Accuracy:  0.732, Validation Accuracy:  0.742, Loss:  0.347
+Epoch   0 Batch  540/1077 - Train Accuracy:  0.773, Validation Accuracy:  0.734, Loss:  0.317
+Epoch   0 Batch  541/1077 - Train Accuracy:  0.762, Validation Accuracy:  0.739, Loss:  0.337
+Epoch   0 Batch  542/1077 - Train Accuracy:  0.807, Validation Accuracy:  0.767, Loss:  0.325
+Epoch   0 Batch  543/1077 - Train Accuracy:  0.782, Validation Accuracy:  0.761, Loss:  0.332
+Epoch   0 Batch  544/1077 - Train Accuracy:  0.786, Validation Accuracy:  0.773, Loss:  0.302
+Epoch   0 Batch  545/1077 - Train Accuracy:  0.766, Validation Accuracy:  0.770, Loss:  0.349
+Epoch   0 Batch  546/1077 - Train Accuracy:  0.719, Validation Accuracy:  0.763, Loss:  0.362
+Epoch   0 Batch  547/1077 - Train Accuracy:  0.792, Validation Accuracy:  0.777, Loss:  0.326
+Epoch   0 Batch  548/1077 - Train Accuracy:  0.776, Validation Accuracy:  0.771, Loss:  0.341
+Epoch   0 Batch  549/1077 - Train Accuracy:  0.727, Validation Accuracy:  0.761, Loss:  0.362
+Epoch   0 Batch  550/1077 - Train Accuracy:  0.731, Validation Accuracy:  0.750, Loss:  0.340
+Epoch   0 Batch  551/1077 - Train Accuracy:  0.747, Validation Accuracy:  0.743, Loss:  0.339
+Epoch   0 Batch  552/1077 - Train Accuracy:  0.771, Validation Accuracy:  0.747, Loss:  0.334
+Epoch   0 Batch  553/1077 - Train Accuracy:  0.786, Validation Accuracy:  0.752, Loss:  0.340
+Epoch   0 Batch  554/1077 - Train Accuracy:  0.768, Validation Accuracy:  0.753, Loss:  0.322
+Epoch   0 Batch  555/1077 - Train Accuracy:  0.774, Validation Accuracy:  0.759, Loss:  0.310
+Epoch   0 Batch  556/1077 - Train Accuracy:  0.763, Validation Accuracy:  0.762, Loss:  0.293
+Epoch   0 Batch  557/1077 - Train Accuracy:  0.798, Validation Accuracy:  0.767, Loss:  0.314
+Epoch   0 Batch  558/1077 - Train Accuracy:  0.797, Validation Accuracy:  0.775, Loss:  0.297
+Epoch   0 Batch  559/1077 - Train Accuracy:  0.793, Validation Accuracy:  0.766, Loss:  0.316
+Epoch   0 Batch  560/1077 - Train Accuracy:  0.775, Validation Accuracy:  0.756, Loss:  0.305
+Epoch   0 Batch  561/1077 - Train Accuracy:  0.798, Validation Accuracy:  0.763, Loss:  0.309
+Epoch   0 Batch  562/1077 - Train Accuracy:  0.814, Validation Accuracy:  0.776, Loss:  0.276
+Epoch   0 Batch  563/1077 - Train Accuracy:  0.771, Validation Accuracy:  0.766, Loss:  0.319
+Epoch   0 Batch  564/1077 - Train Accuracy:  0.776, Validation Accuracy:  0.767, Loss:  0.320
+Epoch   0 Batch  565/1077 - Train Accuracy:  0.779, Validation Accuracy:  0.760, Loss:  0.319
+Epoch   0 Batch  566/1077 - Train Accuracy:  0.774, Validation Accuracy:  0.752, Loss:  0.325
+Epoch   0 Batch  567/1077 - Train Accuracy:  0.765, Validation Accuracy:  0.755, Loss:  0.310
+Epoch   0 Batch  568/1077 - Train Accuracy:  0.808, Validation Accuracy:  0.756, Loss:  0.295
+Epoch   0 Batch  569/1077 - Train Accuracy:  0.792, Validation Accuracy:  0.762, Loss:  0.307
+Epoch   0 Batch  570/1077 - Train Accuracy:  0.799, Validation Accuracy:  0.762, Loss:  0.317
+Epoch   0 Batch  571/1077 - Train Accuracy:  0.790, Validation Accuracy:  0.777, Loss:  0.278
+Epoch   0 Batch  572/1077 - Train Accuracy:  0.788, Validation Accuracy:  0.779, Loss:  0.285
+Epoch   0 Batch  573/1077 - Train Accuracy:  0.765, Validation Accuracy:  0.769, Loss:  0.328
+Epoch   0 Batch  574/1077 - Train Accuracy:  0.764, Validation Accuracy:  0.779, Loss:  0.315
+Epoch   0 Batch  575/1077 - Train Accuracy:  0.795, Validation Accuracy:  0.785, Loss:  0.292
+Epoch   0 Batch  576/1077 - Train Accuracy:  0.794, Validation Accuracy:  0.794, Loss:  0.302
+Epoch   0 Batch  577/1077 - Train Accuracy:  0.764, Validation Accuracy:  0.795, Loss:  0.330
+Epoch   0 Batch  578/1077 - Train Accuracy:  0.774, Validation Accuracy:  0.791, Loss:  0.304
+Epoch   0 Batch  579/1077 - Train Accuracy:  0.779, Validation Accuracy:  0.783, Loss:  0.302
+Epoch   0 Batch  580/1077 - Train Accuracy:  0.792, Validation Accuracy:  0.786, Loss:  0.281
+Epoch   0 Batch  581/1077 - Train Accuracy:  0.775, Validation Accuracy:  0.792, Loss:  0.282
+Epoch   0 Batch  582/1077 - Train Accuracy:  0.793, Validation Accuracy:  0.784, Loss:  0.287
+Epoch   0 Batch  583/1077 - Train Accuracy:  0.799, Validation Accuracy:  0.787, Loss:  0.317
+Epoch   0 Batch  584/1077 - Train Accuracy:  0.794, Validation Accuracy:  0.797, Loss:  0.289
+Epoch   0 Batch  585/1077 - Train Accuracy:  0.815, Validation Accuracy:  0.786, Loss:  0.250
+Epoch   0 Batch  586/1077 - Train Accuracy:  0.795, Validation Accuracy:  0.782, Loss:  0.297
+Epoch   0 Batch  587/1077 - Train Accuracy:  0.825, Validation Accuracy:  0.786, Loss:  0.274
+Epoch   0 Batch  588/1077 - Train Accuracy:  0.798, Validation Accuracy:  0.780, Loss:  0.273
+Epoch   0 Batch  589/1077 - Train Accuracy:  0.814, Validation Accuracy:  0.780, Loss:  0.289
+Epoch   0 Batch  590/1077 - Train Accuracy:  0.750, Validation Accuracy:  0.781, Loss:  0.304
+Epoch   0 Batch  591/1077 - Train Accuracy:  0.805, Validation Accuracy:  0.778, Loss:  0.275
+Epoch   0 Batch  592/1077 - Train Accuracy:  0.828, Validation Accuracy:  0.781, Loss:  0.292
+Epoch   0 Batch  593/1077 - Train Accuracy:  0.811, Validation Accuracy:  0.781, Loss:  0.293
+Epoch   0 Batch  594/1077 - Train Accuracy:  0.799, Validation Accuracy:  0.784, Loss:  0.302
+Epoch   0 Batch  595/1077 - Train Accuracy:  0.796, Validation Accuracy:  0.779, Loss:  0.301
+Epoch   0 Batch  596/1077 - Train Accuracy:  0.824, Validation Accuracy:  0.786, Loss:  0.284
+Epoch   0 Batch  597/1077 - Train Accuracy:  0.775, Validation Accuracy:  0.789, Loss:  0.275
+Epoch   0 Batch  598/1077 - Train Accuracy:  0.815, Validation Accuracy:  0.782, Loss:  0.271
+Epoch   0 Batch  599/1077 - Train Accuracy:  0.798, Validation Accuracy:  0.767, Loss:  0.311
+Epoch   0 Batch  600/1077 - Train Accuracy:  0.795, Validation Accuracy:  0.777, Loss:  0.284
+Epoch   0 Batch  601/1077 - Train Accuracy:  0.815, Validation Accuracy:  0.798, Loss:  0.268
+Epoch   0 Batch  602/1077 - Train Accuracy:  0.815, Validation Accuracy:  0.784, Loss:  0.282
+Epoch   0 Batch  603/1077 - Train Accuracy:  0.798, Validation Accuracy:  0.781, Loss:  0.255
+Epoch   0 Batch  604/1077 - Train Accuracy:  0.796, Validation Accuracy:  0.792, Loss:  0.299
+Epoch   0 Batch  605/1077 - Train Accuracy:  0.799, Validation Accuracy:  0.782, Loss:  0.318
+Epoch   0 Batch  606/1077 - Train Accuracy:  0.817, Validation Accuracy:  0.787, Loss:  0.262
+Epoch   0 Batch  607/1077 - Train Accuracy:  0.822, Validation Accuracy:  0.785, Loss:  0.247
+Epoch   0 Batch  608/1077 - Train Accuracy:  0.795, Validation Accuracy:  0.785, Loss:  0.306
+Epoch   0 Batch  609/1077 - Train Accuracy:  0.783, Validation Accuracy:  0.795, Loss:  0.267
+Epoch   0 Batch  610/1077 - Train Accuracy:  0.800, Validation Accuracy:  0.786, Loss:  0.287
+Epoch   0 Batch  611/1077 - Train Accuracy:  0.801, Validation Accuracy:  0.775, Loss:  0.265
+Epoch   0 Batch  612/1077 - Train Accuracy:  0.827, Validation Accuracy:  0.772, Loss:  0.246
+Epoch   0 Batch  613/1077 - Train Accuracy:  0.784, Validation Accuracy:  0.779, Loss:  0.280
+Epoch   0 Batch  614/1077 - Train Accuracy:  0.818, Validation Accuracy:  0.766, Loss:  0.257
+Epoch   0 Batch  615/1077 - Train Accuracy:  0.804, Validation Accuracy:  0.771, Loss:  0.273
+Epoch   0 Batch  616/1077 - Train Accuracy:  0.792, Validation Accuracy:  0.767, Loss:  0.284
+Epoch   0 Batch  617/1077 - Train Accuracy:  0.806, Validation Accuracy:  0.771, Loss:  0.262
+Epoch   0 Batch  618/1077 - Train Accuracy:  0.802, Validation Accuracy:  0.778, Loss:  0.270
+Epoch   0 Batch  619/1077 - Train Accuracy:  0.789, Validation Accuracy:  0.779, Loss:  0.266
+Epoch   0 Batch  620/1077 - Train Accuracy:  0.828, Validation Accuracy:  0.777, Loss:  0.254
+Epoch   0 Batch  621/1077 - Train Accuracy:  0.854, Validation Accuracy:  0.780, Loss:  0.259
+Epoch   0 Batch  622/1077 - Train Accuracy:  0.834, Validation Accuracy:  0.774, Loss:  0.280
+Epoch   0 Batch  623/1077 - Train Accuracy:  0.787, Validation Accuracy:  0.766, Loss:  0.270
+Epoch   0 Batch  624/1077 - Train Accuracy:  0.828, Validation Accuracy:  0.771, Loss:  0.253
+Epoch   0 Batch  625/1077 - Train Accuracy:  0.818, Validation Accuracy:  0.782, Loss:  0.259
+Epoch   0 Batch  626/1077 - Train Accuracy:  0.804, Validation Accuracy:  0.790, Loss:  0.231
+Epoch   0 Batch  627/1077 - Train Accuracy:  0.799, Validation Accuracy:  0.787, Loss:  0.250
+Epoch   0 Batch  628/1077 - Train Accuracy:  0.808, Validation Accuracy:  0.783, Loss:  0.253
+Epoch   0 Batch  629/1077 - Train Accuracy:  0.789, Validation Accuracy:  0.788, Loss:  0.273
+Epoch   0 Batch  630/1077 - Train Accuracy:  0.820, Validation Accuracy:  0.779, Loss:  0.245
+Epoch   0 Batch  631/1077 - Train Accuracy:  0.798, Validation Accuracy:  0.784, Loss:  0.248
+Epoch   0 Batch  632/1077 - Train Accuracy:  0.807, Validation Accuracy:  0.792, Loss:  0.251
+Epoch   0 Batch  633/1077 - Train Accuracy:  0.826, Validation Accuracy:  0.783, Loss:  0.269
+Epoch   0 Batch  634/1077 - Train Accuracy:  0.792, Validation Accuracy:  0.793, Loss:  0.236
+Epoch   0 Batch  635/1077 - Train Accuracy:  0.822, Validation Accuracy:  0.782, Loss:  0.271
+Epoch   0 Batch  636/1077 - Train Accuracy:  0.857, Validation Accuracy:  0.792, Loss:  0.234
+Epoch   0 Batch  637/1077 - Train Accuracy:  0.786, Validation Accuracy:  0.800, Loss:  0.248
+Epoch   0 Batch  638/1077 - Train Accuracy:  0.817, Validation Accuracy:  0.800, Loss:  0.237
+Epoch   0 Batch  639/1077 - Train Accuracy:  0.825, Validation Accuracy:  0.795, Loss:  0.266
+Epoch   0 Batch  640/1077 - Train Accuracy:  0.792, Validation Accuracy:  0.790, Loss:  0.251
+Epoch   0 Batch  641/1077 - Train Accuracy:  0.804, Validation Accuracy:  0.792, Loss:  0.248
+Epoch   0 Batch  642/1077 - Train Accuracy:  0.785, Validation Accuracy:  0.795, Loss:  0.246
+Epoch   0 Batch  643/1077 - Train Accuracy:  0.800, Validation Accuracy:  0.788, Loss:  0.226
+Epoch   0 Batch  644/1077 - Train Accuracy:  0.828, Validation Accuracy:  0.790, Loss:  0.249
+Epoch   0 Batch  645/1077 - Train Accuracy:  0.833, Validation Accuracy:  0.795, Loss:  0.247
+Epoch   0 Batch  646/1077 - Train Accuracy:  0.803, Validation Accuracy:  0.789, Loss:  0.248
+Epoch   0 Batch  647/1077 - Train Accuracy:  0.804, Validation Accuracy:  0.788, Loss:  0.246
+Epoch   0 Batch  648/1077 - Train Accuracy:  0.842, Validation Accuracy:  0.794, Loss:  0.217
+Epoch   0 Batch  649/1077 - Train Accuracy:  0.806, Validation Accuracy:  0.798, Loss:  0.256
+Epoch   0 Batch  650/1077 - Train Accuracy:  0.815, Validation Accuracy:  0.790, Loss:  0.249
+Epoch   0 Batch  651/1077 - Train Accuracy:  0.853, Validation Accuracy:  0.794, Loss:  0.215
+Epoch   0 Batch  652/1077 - Train Accuracy:  0.832, Validation Accuracy:  0.799, Loss:  0.257
+Epoch   0 Batch  653/1077 - Train Accuracy:  0.837, Validation Accuracy:  0.795, Loss:  0.227
+Epoch   0 Batch  654/1077 - Train Accuracy:  0.830, Validation Accuracy:  0.802, Loss:  0.241
+Epoch   0 Batch  655/1077 - Train Accuracy:  0.824, Validation Accuracy:  0.803, Loss:  0.260
+Epoch   0 Batch  656/1077 - Train Accuracy:  0.821, Validation Accuracy:  0.797, Loss:  0.245
+Epoch   0 Batch  657/1077 - Train Accuracy:  0.840, Validation Accuracy:  0.792, Loss:  0.247
+Epoch   0 Batch  658/1077 - Train Accuracy:  0.829, Validation Accuracy:  0.786, Loss:  0.215
+Epoch   0 Batch  659/1077 - Train Accuracy:  0.822, Validation Accuracy:  0.784, Loss:  0.234
+Epoch   0 Batch  660/1077 - Train Accuracy:  0.812, Validation Accuracy:  0.781, Loss:  0.238
+Epoch   0 Batch  661/1077 - Train Accuracy:  0.827, Validation Accuracy:  0.779, Loss:  0.215
+Epoch   0 Batch  662/1077 - Train Accuracy:  0.807, Validation Accuracy:  0.781, Loss:  0.235
+Epoch   0 Batch  663/1077 - Train Accuracy:  0.815, Validation Accuracy:  0.802, Loss:  0.221
+Epoch   0 Batch  664/1077 - Train Accuracy:  0.833, Validation Accuracy:  0.806, Loss:  0.233
+Epoch   0 Batch  665/1077 - Train Accuracy:  0.883, Validation Accuracy:  0.803, Loss:  0.202
+Epoch   0 Batch  666/1077 - Train Accuracy:  0.836, Validation Accuracy:  0.798, Loss:  0.254
+Epoch   0 Batch  667/1077 - Train Accuracy:  0.796, Validation Accuracy:  0.814, Loss:  0.258
+Epoch   0 Batch  668/1077 - Train Accuracy:  0.831, Validation Accuracy:  0.816, Loss:  0.230
+Epoch   0 Batch  669/1077 - Train Accuracy:  0.836, Validation Accuracy:  0.819, Loss:  0.220
+Epoch   0 Batch  670/1077 - Train Accuracy:  0.828, Validation Accuracy:  0.822, Loss:  0.223
+Epoch   0 Batch  671/1077 - Train Accuracy:  0.824, Validation Accuracy:  0.832, Loss:  0.251
+Epoch   0 Batch  672/1077 - Train Accuracy:  0.833, Validation Accuracy:  0.836, Loss:  0.216
+Epoch   0 Batch  673/1077 - Train Accuracy:  0.851, Validation Accuracy:  0.838, Loss:  0.212
+Epoch   0 Batch  674/1077 - Train Accuracy:  0.852, Validation Accuracy:  0.836, Loss:  0.217
+Epoch   0 Batch  675/1077 - Train Accuracy:  0.842, Validation Accuracy:  0.828, Loss:  0.240
+Epoch   0 Batch  676/1077 - Train Accuracy:  0.825, Validation Accuracy:  0.819, Loss:  0.225
+Epoch   0 Batch  677/1077 - Train Accuracy:  0.766, Validation Accuracy:  0.813, Loss:  0.256
+Epoch   0 Batch  678/1077 - Train Accuracy:  0.804, Validation Accuracy:  0.821, Loss:  0.198
+Epoch   0 Batch  679/1077 - Train Accuracy:  0.822, Validation Accuracy:  0.823, Loss:  0.236
+Epoch   0 Batch  680/1077 - Train Accuracy:  0.821, Validation Accuracy:  0.824, Loss:  0.210
+Epoch   0 Batch  681/1077 - Train Accuracy:  0.852, Validation Accuracy:  0.820, Loss:  0.239
+Epoch   0 Batch  682/1077 - Train Accuracy:  0.800, Validation Accuracy:  0.823, Loss:  0.212
+Epoch   0 Batch  683/1077 - Train Accuracy:  0.822, Validation Accuracy:  0.827, Loss:  0.212
+Epoch   0 Batch  684/1077 - Train Accuracy:  0.837, Validation Accuracy:  0.818, Loss:  0.217
+Epoch   0 Batch  685/1077 - Train Accuracy:  0.793, Validation Accuracy:  0.821, Loss:  0.234
+Epoch   0 Batch  686/1077 - Train Accuracy:  0.833, Validation Accuracy:  0.810, Loss:  0.202
+Epoch   0 Batch  687/1077 - Train Accuracy:  0.834, Validation Accuracy:  0.814, Loss:  0.237
+Epoch   0 Batch  688/1077 - Train Accuracy:  0.846, Validation Accuracy:  0.814, Loss:  0.207
+Epoch   0 Batch  689/1077 - Train Accuracy:  0.874, Validation Accuracy:  0.815, Loss:  0.200
+Epoch   0 Batch  690/1077 - Train Accuracy:  0.848, Validation Accuracy:  0.820, Loss:  0.209
+Epoch   0 Batch  691/1077 - Train Accuracy:  0.839, Validation Accuracy:  0.824, Loss:  0.245
+Epoch   0 Batch  692/1077 - Train Accuracy:  0.828, Validation Accuracy:  0.819, Loss:  0.204
+Epoch   0 Batch  693/1077 - Train Accuracy:  0.760, Validation Accuracy:  0.818, Loss:  0.267
+Epoch   0 Batch  694/1077 - Train Accuracy:  0.838, Validation Accuracy:  0.822, Loss:  0.240
+Epoch   0 Batch  695/1077 - Train Accuracy:  0.841, Validation Accuracy:  0.828, Loss:  0.195
+Epoch   0 Batch  696/1077 - Train Accuracy:  0.817, Validation Accuracy:  0.816, Loss:  0.233
+Epoch   0 Batch  697/1077 - Train Accuracy:  0.847, Validation Accuracy:  0.811, Loss:  0.214
+Epoch   0 Batch  698/1077 - Train Accuracy:  0.827, Validation Accuracy:  0.815, Loss:  0.208
+Epoch   0 Batch  699/1077 - Train Accuracy:  0.839, Validation Accuracy:  0.821, Loss:  0.212
+Epoch   0 Batch  700/1077 - Train Accuracy:  0.845, Validation Accuracy:  0.817, Loss:  0.208
+Epoch   0 Batch  701/1077 - Train Accuracy:  0.852, Validation Accuracy:  0.808, Loss:  0.239
+Epoch   0 Batch  702/1077 - Train Accuracy:  0.837, Validation Accuracy:  0.812, Loss:  0.227
+Epoch   0 Batch  703/1077 - Train Accuracy:  0.842, Validation Accuracy:  0.811, Loss:  0.219
+Epoch   0 Batch  704/1077 - Train Accuracy:  0.845, Validation Accuracy:  0.820, Loss:  0.235
+Epoch   0 Batch  705/1077 - Train Accuracy:  0.846, Validation Accuracy:  0.819, Loss:  0.250
+Epoch   0 Batch  706/1077 - Train Accuracy:  0.806, Validation Accuracy:  0.828, Loss:  0.244
+Epoch   0 Batch  707/1077 - Train Accuracy:  0.854, Validation Accuracy:  0.832, Loss:  0.211
+Epoch   0 Batch  708/1077 - Train Accuracy:  0.821, Validation Accuracy:  0.837, Loss:  0.216
+Epoch   0 Batch  709/1077 - Train Accuracy:  0.834, Validation Accuracy:  0.838, Loss:  0.238
+Epoch   0 Batch  710/1077 - Train Accuracy:  0.851, Validation Accuracy:  0.836, Loss:  0.197
+Epoch   0 Batch  711/1077 - Train Accuracy:  0.820, Validation Accuracy:  0.838, Loss:  0.229
+Epoch   0 Batch  712/1077 - Train Accuracy:  0.854, Validation Accuracy:  0.845, Loss:  0.196
+Epoch   0 Batch  713/1077 - Train Accuracy:  0.839, Validation Accuracy:  0.825, Loss:  0.172
+Epoch   0 Batch  714/1077 - Train Accuracy:  0.829, Validation Accuracy:  0.815, Loss:  0.209
+Epoch   0 Batch  715/1077 - Train Accuracy:  0.830, Validation Accuracy:  0.813, Loss:  0.225
+Epoch   0 Batch  716/1077 - Train Accuracy:  0.849, Validation Accuracy:  0.831, Loss:  0.198
+Epoch   0 Batch  717/1077 - Train Accuracy:  0.875, Validation Accuracy:  0.831, Loss:  0.206
+Epoch   0 Batch  718/1077 - Train Accuracy:  0.841, Validation Accuracy:  0.831, Loss:  0.203
+Epoch   0 Batch  719/1077 - Train Accuracy:  0.818, Validation Accuracy:  0.837, Loss:  0.220
+Epoch   0 Batch  720/1077 - Train Accuracy:  0.847, Validation Accuracy:  0.834, Loss:  0.215
+Epoch   0 Batch  721/1077 - Train Accuracy:  0.842, Validation Accuracy:  0.849, Loss:  0.221
+Epoch   0 Batch  722/1077 - Train Accuracy:  0.827, Validation Accuracy:  0.843, Loss:  0.193
+Epoch   0 Batch  723/1077 - Train Accuracy:  0.845, Validation Accuracy:  0.842, Loss:  0.207
+Epoch   0 Batch  724/1077 - Train Accuracy:  0.838, Validation Accuracy:  0.829, Loss:  0.226
+Epoch   0 Batch  725/1077 - Train Accuracy:  0.850, Validation Accuracy:  0.822, Loss:  0.172
+Epoch   0 Batch  726/1077 - Train Accuracy:  0.867, Validation Accuracy:  0.822, Loss:  0.201
+Epoch   0 Batch  727/1077 - Train Accuracy:  0.832, Validation Accuracy:  0.827, Loss:  0.190
+Epoch   0 Batch  728/1077 - Train Accuracy:  0.828, Validation Accuracy:  0.841, Loss:  0.210
+Epoch   0 Batch  729/1077 - Train Accuracy:  0.814, Validation Accuracy:  0.835, Loss:  0.225
+Epoch   0 Batch  730/1077 - Train Accuracy:  0.865, Validation Accuracy:  0.837, Loss:  0.221
+Epoch   0 Batch  731/1077 - Train Accuracy:  0.826, Validation Accuracy:  0.841, Loss:  0.190
+Epoch   0 Batch  732/1077 - Train Accuracy:  0.843, Validation Accuracy:  0.833, Loss:  0.216
+Epoch   0 Batch  733/1077 - Train Accuracy:  0.846, Validation Accuracy:  0.826, Loss:  0.208
+Epoch   0 Batch  734/1077 - Train Accuracy:  0.862, Validation Accuracy:  0.844, Loss:  0.210
+Epoch   0 Batch  735/1077 - Train Accuracy:  0.858, Validation Accuracy:  0.849, Loss:  0.202
+Epoch   0 Batch  736/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.848, Loss:  0.178
+Epoch   0 Batch  737/1077 - Train Accuracy:  0.855, Validation Accuracy:  0.833, Loss:  0.219
+Epoch   0 Batch  738/1077 - Train Accuracy:  0.860, Validation Accuracy:  0.838, Loss:  0.165
+Epoch   0 Batch  739/1077 - Train Accuracy:  0.878, Validation Accuracy:  0.841, Loss:  0.183
+Epoch   0 Batch  740/1077 - Train Accuracy:  0.837, Validation Accuracy:  0.852, Loss:  0.185
+Epoch   0 Batch  741/1077 - Train Accuracy:  0.861, Validation Accuracy:  0.850, Loss:  0.202
+Epoch   0 Batch  742/1077 - Train Accuracy:  0.857, Validation Accuracy:  0.839, Loss:  0.186
+Epoch   0 Batch  743/1077 - Train Accuracy:  0.846, Validation Accuracy:  0.834, Loss:  0.201
+Epoch   0 Batch  744/1077 - Train Accuracy:  0.836, Validation Accuracy:  0.840, Loss:  0.179
+Epoch   0 Batch  745/1077 - Train Accuracy:  0.851, Validation Accuracy:  0.843, Loss:  0.188
+Epoch   0 Batch  746/1077 - Train Accuracy:  0.863, Validation Accuracy:  0.839, Loss:  0.174
+Epoch   0 Batch  747/1077 - Train Accuracy:  0.856, Validation Accuracy:  0.837, Loss:  0.165
+Epoch   0 Batch  748/1077 - Train Accuracy:  0.868, Validation Accuracy:  0.842, Loss:  0.174
+Epoch   0 Batch  749/1077 - Train Accuracy:  0.843, Validation Accuracy:  0.837, Loss:  0.191
+Epoch   0 Batch  750/1077 - Train Accuracy:  0.839, Validation Accuracy:  0.837, Loss:  0.170
+Epoch   0 Batch  751/1077 - Train Accuracy:  0.882, Validation Accuracy:  0.835, Loss:  0.177
+Epoch   0 Batch  752/1077 - Train Accuracy:  0.853, Validation Accuracy:  0.828, Loss:  0.164
+Epoch   0 Batch  753/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.829, Loss:  0.170
+Epoch   0 Batch  754/1077 - Train Accuracy:  0.862, Validation Accuracy:  0.836, Loss:  0.201
+Epoch   0 Batch  755/1077 - Train Accuracy:  0.875, Validation Accuracy:  0.850, Loss:  0.174
+Epoch   0 Batch  756/1077 - Train Accuracy:  0.839, Validation Accuracy:  0.834, Loss:  0.179
+Epoch   0 Batch  757/1077 - Train Accuracy:  0.866, Validation Accuracy:  0.846, Loss:  0.181
+Epoch   0 Batch  758/1077 - Train Accuracy:  0.850, Validation Accuracy:  0.846, Loss:  0.174
+Epoch   0 Batch  759/1077 - Train Accuracy:  0.842, Validation Accuracy:  0.851, Loss:  0.170
+Epoch   0 Batch  760/1077 - Train Accuracy:  0.870, Validation Accuracy:  0.858, Loss:  0.191
+Epoch   0 Batch  761/1077 - Train Accuracy:  0.841, Validation Accuracy:  0.863, Loss:  0.172
+Epoch   0 Batch  762/1077 - Train Accuracy:  0.879, Validation Accuracy:  0.856, Loss:  0.167
+Epoch   0 Batch  763/1077 - Train Accuracy:  0.851, Validation Accuracy:  0.855, Loss:  0.159
+Epoch   0 Batch  764/1077 - Train Accuracy:  0.861, Validation Accuracy:  0.850, Loss:  0.185
+Epoch   0 Batch  765/1077 - Train Accuracy:  0.873, Validation Accuracy:  0.840, Loss:  0.171
+Epoch   0 Batch  766/1077 - Train Accuracy:  0.816, Validation Accuracy:  0.838, Loss:  0.191
+Epoch   0 Batch  767/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.846, Loss:  0.171
+Epoch   0 Batch  768/1077 - Train Accuracy:  0.834, Validation Accuracy:  0.867, Loss:  0.175
+Epoch   0 Batch  769/1077 - Train Accuracy:  0.875, Validation Accuracy:  0.876, Loss:  0.186
+Epoch   0 Batch  770/1077 - Train Accuracy:  0.823, Validation Accuracy:  0.877, Loss:  0.168
+Epoch   0 Batch  771/1077 - Train Accuracy:  0.882, Validation Accuracy:  0.871, Loss:  0.194
+Epoch   0 Batch  772/1077 - Train Accuracy:  0.873, Validation Accuracy:  0.868, Loss:  0.153
+Epoch   0 Batch  773/1077 - Train Accuracy:  0.850, Validation Accuracy:  0.866, Loss:  0.179
+Epoch   0 Batch  774/1077 - Train Accuracy:  0.870, Validation Accuracy:  0.862, Loss:  0.186
+Epoch   0 Batch  775/1077 - Train Accuracy:  0.865, Validation Accuracy:  0.865, Loss:  0.190
+Epoch   0 Batch  776/1077 - Train Accuracy:  0.878, Validation Accuracy:  0.858, Loss:  0.160
+Epoch   0 Batch  777/1077 - Train Accuracy:  0.866, Validation Accuracy:  0.859, Loss:  0.174
+Epoch   0 Batch  778/1077 - Train Accuracy:  0.865, Validation Accuracy:  0.862, Loss:  0.163
+Epoch   0 Batch  779/1077 - Train Accuracy:  0.859, Validation Accuracy:  0.856, Loss:  0.186
+Epoch   0 Batch  780/1077 - Train Accuracy:  0.809, Validation Accuracy:  0.853, Loss:  0.219
+Epoch   0 Batch  781/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.852, Loss:  0.153
+Epoch   0 Batch  782/1077 - Train Accuracy:  0.857, Validation Accuracy:  0.854, Loss:  0.173
+Epoch   0 Batch  783/1077 - Train Accuracy:  0.863, Validation Accuracy:  0.858, Loss:  0.182
+Epoch   0 Batch  784/1077 - Train Accuracy:  0.884, Validation Accuracy:  0.849, Loss:  0.157
+Epoch   0 Batch  785/1077 - Train Accuracy:  0.874, Validation Accuracy:  0.855, Loss:  0.166
+Epoch   0 Batch  786/1077 - Train Accuracy:  0.813, Validation Accuracy:  0.854, Loss:  0.180
+Epoch   0 Batch  787/1077 - Train Accuracy:  0.876, Validation Accuracy:  0.858, Loss:  0.165
+Epoch   0 Batch  788/1077 - Train Accuracy:  0.881, Validation Accuracy:  0.854, Loss:  0.148
+Epoch   0 Batch  789/1077 - Train Accuracy:  0.833, Validation Accuracy:  0.836, Loss:  0.183
+Epoch   0 Batch  790/1077 - Train Accuracy:  0.832, Validation Accuracy:  0.847, Loss:  0.175
+Epoch   0 Batch  791/1077 - Train Accuracy:  0.845, Validation Accuracy:  0.849, Loss:  0.182
+Epoch   0 Batch  792/1077 - Train Accuracy:  0.855, Validation Accuracy:  0.869, Loss:  0.185
+Epoch   0 Batch  793/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.871, Loss:  0.172
+Epoch   0 Batch  794/1077 - Train Accuracy:  0.866, Validation Accuracy:  0.881, Loss:  0.152
+Epoch   0 Batch  795/1077 - Train Accuracy:  0.843, Validation Accuracy:  0.876, Loss:  0.178
+Epoch   0 Batch  796/1077 - Train Accuracy:  0.880, Validation Accuracy:  0.874, Loss:  0.168
+Epoch   0 Batch  797/1077 - Train Accuracy:  0.879, Validation Accuracy:  0.864, Loss:  0.159
+Epoch   0 Batch  798/1077 - Train Accuracy:  0.863, Validation Accuracy:  0.857, Loss:  0.175
+Epoch   0 Batch  799/1077 - Train Accuracy:  0.821, Validation Accuracy:  0.853, Loss:  0.194
+Epoch   0 Batch  800/1077 - Train Accuracy:  0.859, Validation Accuracy:  0.863, Loss:  0.172
+Epoch   0 Batch  801/1077 - Train Accuracy:  0.871, Validation Accuracy:  0.851, Loss:  0.168
+Epoch   0 Batch  802/1077 - Train Accuracy:  0.834, Validation Accuracy:  0.855, Loss:  0.177
+Epoch   0 Batch  803/1077 - Train Accuracy:  0.888, Validation Accuracy:  0.861, Loss:  0.174
+Epoch   0 Batch  804/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.857, Loss:  0.144
+Epoch   0 Batch  805/1077 - Train Accuracy:  0.854, Validation Accuracy:  0.852, Loss:  0.166
+Epoch   0 Batch  806/1077 - Train Accuracy:  0.889, Validation Accuracy:  0.851, Loss:  0.150
+Epoch   0 Batch  807/1077 - Train Accuracy:  0.890, Validation Accuracy:  0.850, Loss:  0.154
+Epoch   0 Batch  808/1077 - Train Accuracy:  0.851, Validation Accuracy:  0.848, Loss:  0.184
+Epoch   0 Batch  809/1077 - Train Accuracy:  0.831, Validation Accuracy:  0.839, Loss:  0.191
+Epoch   0 Batch  810/1077 - Train Accuracy:  0.875, Validation Accuracy:  0.847, Loss:  0.146
+Epoch   0 Batch  811/1077 - Train Accuracy:  0.871, Validation Accuracy:  0.845, Loss:  0.152
+Epoch   0 Batch  812/1077 - Train Accuracy:  0.843, Validation Accuracy:  0.846, Loss:  0.155
+Epoch   0 Batch  813/1077 - Train Accuracy:  0.873, Validation Accuracy:  0.863, Loss:  0.159
+Epoch   0 Batch  814/1077 - Train Accuracy:  0.868, Validation Accuracy:  0.868, Loss:  0.175
+Epoch   0 Batch  815/1077 - Train Accuracy:  0.879, Validation Accuracy:  0.859, Loss:  0.151
+Epoch   0 Batch  816/1077 - Train Accuracy:  0.884, Validation Accuracy:  0.863, Loss:  0.192
+Epoch   0 Batch  817/1077 - Train Accuracy:  0.876, Validation Accuracy:  0.867, Loss:  0.173
+Epoch   0 Batch  818/1077 - Train Accuracy:  0.881, Validation Accuracy:  0.866, Loss:  0.161
+Epoch   0 Batch  819/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.867, Loss:  0.143
+Epoch   0 Batch  820/1077 - Train Accuracy:  0.841, Validation Accuracy:  0.860, Loss:  0.144
+Epoch   0 Batch  821/1077 - Train Accuracy:  0.884, Validation Accuracy:  0.850, Loss:  0.140
+Epoch   0 Batch  822/1077 - Train Accuracy:  0.877, Validation Accuracy:  0.843, Loss:  0.165
+Epoch   0 Batch  823/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.847, Loss:  0.166
+Epoch   0 Batch  824/1077 - Train Accuracy:  0.878, Validation Accuracy:  0.858, Loss:  0.167
+Epoch   0 Batch  825/1077 - Train Accuracy:  0.872, Validation Accuracy:  0.856, Loss:  0.150
+Epoch   0 Batch  826/1077 - Train Accuracy:  0.821, Validation Accuracy:  0.858, Loss:  0.149
+Epoch   0 Batch  827/1077 - Train Accuracy:  0.882, Validation Accuracy:  0.862, Loss:  0.154
+Epoch   0 Batch  828/1077 - Train Accuracy:  0.854, Validation Accuracy:  0.871, Loss:  0.164
+Epoch   0 Batch  829/1077 - Train Accuracy:  0.829, Validation Accuracy:  0.865, Loss:  0.182
+Epoch   0 Batch  830/1077 - Train Accuracy:  0.864, Validation Accuracy:  0.870, Loss:  0.157
+Epoch   0 Batch  831/1077 - Train Accuracy:  0.833, Validation Accuracy:  0.875, Loss:  0.159
+Epoch   0 Batch  832/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.884, Loss:  0.152
+Epoch   0 Batch  833/1077 - Train Accuracy:  0.875, Validation Accuracy:  0.884, Loss:  0.163
+Epoch   0 Batch  834/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.871, Loss:  0.160
+Epoch   0 Batch  835/1077 - Train Accuracy:  0.871, Validation Accuracy:  0.876, Loss:  0.160
+Epoch   0 Batch  836/1077 - Train Accuracy:  0.874, Validation Accuracy:  0.874, Loss:  0.172
+Epoch   0 Batch  837/1077 - Train Accuracy:  0.874, Validation Accuracy:  0.876, Loss:  0.165
+Epoch   0 Batch  838/1077 - Train Accuracy:  0.884, Validation Accuracy:  0.878, Loss:  0.140
+Epoch   0 Batch  839/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.880, Loss:  0.126
+Epoch   0 Batch  840/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.882, Loss:  0.132
+Epoch   0 Batch  841/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.880, Loss:  0.157
+Epoch   0 Batch  842/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.873, Loss:  0.139
+Epoch   0 Batch  843/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.873, Loss:  0.128
+Epoch   0 Batch  844/1077 - Train Accuracy:  0.883, Validation Accuracy:  0.882, Loss:  0.132
+Epoch   0 Batch  845/1077 - Train Accuracy:  0.892, Validation Accuracy:  0.886, Loss:  0.141
+Epoch   0 Batch  846/1077 - Train Accuracy:  0.872, Validation Accuracy:  0.874, Loss:  0.162
+Epoch   0 Batch  847/1077 - Train Accuracy:  0.880, Validation Accuracy:  0.869, Loss:  0.166
+Epoch   0 Batch  848/1077 - Train Accuracy:  0.885, Validation Accuracy:  0.868, Loss:  0.138
+Epoch   0 Batch  849/1077 - Train Accuracy:  0.860, Validation Accuracy:  0.862, Loss:  0.141
+Epoch   0 Batch  850/1077 - Train Accuracy:  0.870, Validation Accuracy:  0.866, Loss:  0.169
+Epoch   0 Batch  851/1077 - Train Accuracy:  0.894, Validation Accuracy:  0.849, Loss:  0.154
+Epoch   0 Batch  852/1077 - Train Accuracy:  0.863, Validation Accuracy:  0.851, Loss:  0.171
+Epoch   0 Batch  853/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.852, Loss:  0.139
+Epoch   0 Batch  854/1077 - Train Accuracy:  0.877, Validation Accuracy:  0.861, Loss:  0.158
+Epoch   0 Batch  855/1077 - Train Accuracy:  0.878, Validation Accuracy:  0.862, Loss:  0.139
+Epoch   0 Batch  856/1077 - Train Accuracy:  0.869, Validation Accuracy:  0.856, Loss:  0.145
+Epoch   0 Batch  857/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.858, Loss:  0.139
+Epoch   0 Batch  858/1077 - Train Accuracy:  0.874, Validation Accuracy:  0.861, Loss:  0.130
+Epoch   0 Batch  859/1077 - Train Accuracy:  0.878, Validation Accuracy:  0.866, Loss:  0.166
+Epoch   0 Batch  860/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.861, Loss:  0.156
+Epoch   0 Batch  861/1077 - Train Accuracy:  0.849, Validation Accuracy:  0.856, Loss:  0.137
+Epoch   0 Batch  862/1077 - Train Accuracy:  0.890, Validation Accuracy:  0.864, Loss:  0.139
+Epoch   0 Batch  863/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.864, Loss:  0.136
+Epoch   0 Batch  864/1077 - Train Accuracy:  0.862, Validation Accuracy:  0.863, Loss:  0.136
+Epoch   0 Batch  865/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.870, Loss:  0.134
+Epoch   0 Batch  866/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.864, Loss:  0.148
+Epoch   0 Batch  867/1077 - Train Accuracy:  0.846, Validation Accuracy:  0.863, Loss:  0.192
+Epoch   0 Batch  868/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.858, Loss:  0.144
+Epoch   0 Batch  869/1077 - Train Accuracy:  0.864, Validation Accuracy:  0.868, Loss:  0.145
+Epoch   0 Batch  870/1077 - Train Accuracy:  0.831, Validation Accuracy:  0.857, Loss:  0.148
+Epoch   0 Batch  871/1077 - Train Accuracy:  0.875, Validation Accuracy:  0.856, Loss:  0.124
+Epoch   0 Batch  872/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.859, Loss:  0.150
+Epoch   0 Batch  873/1077 - Train Accuracy:  0.866, Validation Accuracy:  0.864, Loss:  0.141
+Epoch   0 Batch  874/1077 - Train Accuracy:  0.850, Validation Accuracy:  0.867, Loss:  0.169
+Epoch   0 Batch  875/1077 - Train Accuracy:  0.879, Validation Accuracy:  0.862, Loss:  0.155
+Epoch   0 Batch  876/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.864, Loss:  0.144
+Epoch   0 Batch  877/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.864, Loss:  0.133
+Epoch   0 Batch  878/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.861, Loss:  0.143
+Epoch   0 Batch  879/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.865, Loss:  0.127
+Epoch   0 Batch  880/1077 - Train Accuracy:  0.877, Validation Accuracy:  0.868, Loss:  0.152
+Epoch   0 Batch  881/1077 - Train Accuracy:  0.867, Validation Accuracy:  0.864, Loss:  0.146
+Epoch   0 Batch  882/1077 - Train Accuracy:  0.874, Validation Accuracy:  0.868, Loss:  0.163
+Epoch   0 Batch  883/1077 - Train Accuracy:  0.873, Validation Accuracy:  0.859, Loss:  0.183
+Epoch   0 Batch  884/1077 - Train Accuracy:  0.867, Validation Accuracy:  0.865, Loss:  0.131
+Epoch   0 Batch  885/1077 - Train Accuracy:  0.873, Validation Accuracy:  0.869, Loss:  0.118
+Epoch   0 Batch  886/1077 - Train Accuracy:  0.877, Validation Accuracy:  0.861, Loss:  0.139
+Epoch   0 Batch  887/1077 - Train Accuracy:  0.857, Validation Accuracy:  0.861, Loss:  0.168
+Epoch   0 Batch  888/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.865, Loss:  0.134
+Epoch   0 Batch  889/1077 - Train Accuracy:  0.880, Validation Accuracy:  0.858, Loss:  0.139
+Epoch   0 Batch  890/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.854, Loss:  0.137
+Epoch   0 Batch  891/1077 - Train Accuracy:  0.878, Validation Accuracy:  0.854, Loss:  0.139
+Epoch   0 Batch  892/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.871, Loss:  0.128
+Epoch   0 Batch  893/1077 - Train Accuracy:  0.879, Validation Accuracy:  0.869, Loss:  0.146
+Epoch   0 Batch  894/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.876, Loss:  0.131
+Epoch   0 Batch  895/1077 - Train Accuracy:  0.860, Validation Accuracy:  0.876, Loss:  0.128
+Epoch   0 Batch  896/1077 - Train Accuracy:  0.858, Validation Accuracy:  0.863, Loss:  0.143
+Epoch   0 Batch  897/1077 - Train Accuracy:  0.868, Validation Accuracy:  0.860, Loss:  0.115
+Epoch   0 Batch  898/1077 - Train Accuracy:  0.876, Validation Accuracy:  0.862, Loss:  0.113
+Epoch   0 Batch  899/1077 - Train Accuracy:  0.877, Validation Accuracy:  0.863, Loss:  0.147
+Epoch   0 Batch  900/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.864, Loss:  0.156
+Epoch   0 Batch  901/1077 - Train Accuracy:  0.863, Validation Accuracy:  0.888, Loss:  0.166
+Epoch   0 Batch  902/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.885, Loss:  0.145
+Epoch   0 Batch  903/1077 - Train Accuracy:  0.869, Validation Accuracy:  0.882, Loss:  0.130
+Epoch   0 Batch  904/1077 - Train Accuracy:  0.857, Validation Accuracy:  0.887, Loss:  0.134
+Epoch   0 Batch  905/1077 - Train Accuracy:  0.889, Validation Accuracy:  0.880, Loss:  0.113
+Epoch   0 Batch  906/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.881, Loss:  0.130
+Epoch   0 Batch  907/1077 - Train Accuracy:  0.894, Validation Accuracy:  0.859, Loss:  0.132
+Epoch   0 Batch  908/1077 - Train Accuracy:  0.873, Validation Accuracy:  0.857, Loss:  0.144
+Epoch   0 Batch  909/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.855, Loss:  0.142
+Epoch   0 Batch  910/1077 - Train Accuracy:  0.868, Validation Accuracy:  0.851, Loss:  0.132
+Epoch   0 Batch  911/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.850, Loss:  0.129
+Epoch   0 Batch  912/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.853, Loss:  0.133
+Epoch   0 Batch  913/1077 - Train Accuracy:  0.882, Validation Accuracy:  0.863, Loss:  0.162
+Epoch   0 Batch  914/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.862, Loss:  0.144
+Epoch   0 Batch  915/1077 - Train Accuracy:  0.854, Validation Accuracy:  0.858, Loss:  0.131
+Epoch   0 Batch  916/1077 - Train Accuracy:  0.882, Validation Accuracy:  0.867, Loss:  0.150
+Epoch   0 Batch  917/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.867, Loss:  0.127
+Epoch   0 Batch  918/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.866, Loss:  0.119
+Epoch   0 Batch  919/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.865, Loss:  0.119
+Epoch   0 Batch  920/1077 - Train Accuracy:  0.888, Validation Accuracy:  0.869, Loss:  0.133
+Epoch   0 Batch  921/1077 - Train Accuracy:  0.858, Validation Accuracy:  0.870, Loss:  0.139
+Epoch   0 Batch  922/1077 - Train Accuracy:  0.859, Validation Accuracy:  0.871, Loss:  0.145
+Epoch   0 Batch  923/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.873, Loss:  0.117
+Epoch   0 Batch  924/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.865, Loss:  0.148
+Epoch   0 Batch  925/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.863, Loss:  0.123
+Epoch   0 Batch  926/1077 - Train Accuracy:  0.859, Validation Accuracy:  0.865, Loss:  0.125
+Epoch   0 Batch  927/1077 - Train Accuracy:  0.859, Validation Accuracy:  0.860, Loss:  0.142
+Epoch   0 Batch  928/1077 - Train Accuracy:  0.876, Validation Accuracy:  0.851, Loss:  0.130
+Epoch   0 Batch  929/1077 - Train Accuracy:  0.890, Validation Accuracy:  0.849, Loss:  0.129
+Epoch   0 Batch  930/1077 - Train Accuracy:  0.880, Validation Accuracy:  0.855, Loss:  0.120
+Epoch   0 Batch  931/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.862, Loss:  0.108
+Epoch   0 Batch  932/1077 - Train Accuracy:  0.884, Validation Accuracy:  0.861, Loss:  0.143
+Epoch   0 Batch  933/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.862, Loss:  0.124
+Epoch   0 Batch  934/1077 - Train Accuracy:  0.877, Validation Accuracy:  0.859, Loss:  0.109
+Epoch   0 Batch  935/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.873, Loss:  0.118
+Epoch   0 Batch  936/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.866, Loss:  0.135
+Epoch   0 Batch  937/1077 - Train Accuracy:  0.882, Validation Accuracy:  0.862, Loss:  0.147
+Epoch   0 Batch  938/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.861, Loss:  0.137
+Epoch   0 Batch  939/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.865, Loss:  0.133
+Epoch   0 Batch  940/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.866, Loss:  0.116
+Epoch   0 Batch  941/1077 - Train Accuracy:  0.872, Validation Accuracy:  0.866, Loss:  0.124
+Epoch   0 Batch  942/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.860, Loss:  0.125
+Epoch   0 Batch  943/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.862, Loss:  0.135
+Epoch   0 Batch  944/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.857, Loss:  0.116
+Epoch   0 Batch  945/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.862, Loss:  0.114
+Epoch   0 Batch  946/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.881, Loss:  0.121
+Epoch   0 Batch  947/1077 - Train Accuracy:  0.855, Validation Accuracy:  0.874, Loss:  0.131
+Epoch   0 Batch  948/1077 - Train Accuracy:  0.865, Validation Accuracy:  0.868, Loss:  0.118
+Epoch   0 Batch  949/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.864, Loss:  0.100
+Epoch   0 Batch  950/1077 - Train Accuracy:  0.878, Validation Accuracy:  0.873, Loss:  0.114
+Epoch   0 Batch  951/1077 - Train Accuracy:  0.855, Validation Accuracy:  0.876, Loss:  0.132
+Epoch   0 Batch  952/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.891, Loss:  0.107
+Epoch   0 Batch  953/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.891, Loss:  0.111
+Epoch   0 Batch  954/1077 - Train Accuracy:  0.873, Validation Accuracy:  0.894, Loss:  0.127
+Epoch   0 Batch  955/1077 - Train Accuracy:  0.883, Validation Accuracy:  0.886, Loss:  0.133
+Epoch   0 Batch  956/1077 - Train Accuracy:  0.894, Validation Accuracy:  0.882, Loss:  0.134
+Epoch   0 Batch  957/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.870, Loss:  0.102
+Epoch   0 Batch  958/1077 - Train Accuracy:  0.876, Validation Accuracy:  0.870, Loss:  0.123
+Epoch   0 Batch  959/1077 - Train Accuracy:  0.879, Validation Accuracy:  0.868, Loss:  0.125
+Epoch   0 Batch  960/1077 - Train Accuracy:  0.882, Validation Accuracy:  0.871, Loss:  0.111
+Epoch   0 Batch  961/1077 - Train Accuracy:  0.894, Validation Accuracy:  0.876, Loss:  0.117
+Epoch   0 Batch  962/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.880, Loss:  0.123
+Epoch   0 Batch  963/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.872, Loss:  0.144
+Epoch   0 Batch  964/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.872, Loss:  0.101
+Epoch   0 Batch  965/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.878, Loss:  0.124
+Epoch   0 Batch  966/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.880, Loss:  0.109
+Epoch   0 Batch  967/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.881, Loss:  0.125
+Epoch   0 Batch  968/1077 - Train Accuracy:  0.846, Validation Accuracy:  0.881, Loss:  0.140
+Epoch   0 Batch  969/1077 - Train Accuracy:  0.861, Validation Accuracy:  0.885, Loss:  0.133
+Epoch   0 Batch  970/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.886, Loss:  0.128
+Epoch   0 Batch  971/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.886, Loss:  0.122
+Epoch   0 Batch  972/1077 - Train Accuracy:  0.883, Validation Accuracy:  0.883, Loss:  0.114
+Epoch   0 Batch  973/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.877, Loss:  0.098
+Epoch   0 Batch  974/1077 - Train Accuracy:  0.889, Validation Accuracy:  0.873, Loss:  0.105
+Epoch   0 Batch  975/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.876, Loss:  0.112
+Epoch   0 Batch  976/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.877, Loss:  0.105
+Epoch   0 Batch  977/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.884, Loss:  0.105
+Epoch   0 Batch  978/1077 - Train Accuracy:  0.894, Validation Accuracy:  0.886, Loss:  0.122
+Epoch   0 Batch  979/1077 - Train Accuracy:  0.885, Validation Accuracy:  0.883, Loss:  0.127
+Epoch   0 Batch  980/1077 - Train Accuracy:  0.884, Validation Accuracy:  0.882, Loss:  0.126
+Epoch   0 Batch  981/1077 - Train Accuracy:  0.879, Validation Accuracy:  0.888, Loss:  0.112
+Epoch   0 Batch  982/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.888, Loss:  0.122
+Epoch   0 Batch  983/1077 - Train Accuracy:  0.875, Validation Accuracy:  0.887, Loss:  0.121
+Epoch   0 Batch  984/1077 - Train Accuracy:  0.859, Validation Accuracy:  0.887, Loss:  0.122
+Epoch   0 Batch  985/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.887, Loss:  0.106
+Epoch   0 Batch  986/1077 - Train Accuracy:  0.875, Validation Accuracy:  0.886, Loss:  0.116
+Epoch   0 Batch  987/1077 - Train Accuracy:  0.859, Validation Accuracy:  0.890, Loss:  0.101
+Epoch   0 Batch  988/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.885, Loss:  0.126
+Epoch   0 Batch  989/1077 - Train Accuracy:  0.885, Validation Accuracy:  0.879, Loss:  0.121
+Epoch   0 Batch  990/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.878, Loss:  0.121
+Epoch   0 Batch  991/1077 - Train Accuracy:  0.889, Validation Accuracy:  0.877, Loss:  0.119
+Epoch   0 Batch  992/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.882, Loss:  0.118
+Epoch   0 Batch  993/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.882, Loss:  0.087
+Epoch   0 Batch  994/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.892, Loss:  0.114
+Epoch   0 Batch  995/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.892, Loss:  0.114
+Epoch   0 Batch  996/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.890, Loss:  0.108
+Epoch   0 Batch  997/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.894, Loss:  0.111
+Epoch   0 Batch  998/1077 - Train Accuracy:  0.856, Validation Accuracy:  0.889, Loss:  0.107
+Epoch   0 Batch  999/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.903, Loss:  0.115
+Epoch   0 Batch 1000/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.897, Loss:  0.107
+Epoch   0 Batch 1001/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.900, Loss:  0.092
+Epoch   0 Batch 1002/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.898, Loss:  0.096
+Epoch   0 Batch 1003/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.895, Loss:  0.116
+Epoch   0 Batch 1004/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.898, Loss:  0.130
+Epoch   0 Batch 1005/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.895, Loss:  0.095
+Epoch   0 Batch 1006/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.896, Loss:  0.091
+Epoch   0 Batch 1007/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.876, Loss:  0.089
+Epoch   0 Batch 1008/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.875, Loss:  0.132
+Epoch   0 Batch 1009/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.888, Loss:  0.089
+Epoch   0 Batch 1010/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.888, Loss:  0.105
+Epoch   0 Batch 1011/1077 - Train Accuracy:  0.875, Validation Accuracy:  0.882, Loss:  0.104
+Epoch   0 Batch 1012/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.887, Loss:  0.085
+Epoch   0 Batch 1013/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.890, Loss:  0.094
+Epoch   0 Batch 1014/1077 - Train Accuracy:  0.890, Validation Accuracy:  0.898, Loss:  0.114
+Epoch   0 Batch 1015/1077 - Train Accuracy:  0.867, Validation Accuracy:  0.895, Loss:  0.127
+Epoch   0 Batch 1016/1077 - Train Accuracy:  0.866, Validation Accuracy:  0.904, Loss:  0.128
+Epoch   0 Batch 1017/1077 - Train Accuracy:  0.889, Validation Accuracy:  0.906, Loss:  0.112
+Epoch   0 Batch 1018/1077 - Train Accuracy:  0.863, Validation Accuracy:  0.895, Loss:  0.101
+Epoch   0 Batch 1019/1077 - Train Accuracy:  0.882, Validation Accuracy:  0.907, Loss:  0.119
+Epoch   0 Batch 1020/1077 - Train Accuracy:  0.889, Validation Accuracy:  0.901, Loss:  0.102
+Epoch   0 Batch 1021/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.898, Loss:  0.099
+Epoch   0 Batch 1022/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.898, Loss:  0.092
+Epoch   0 Batch 1023/1077 - Train Accuracy:  0.885, Validation Accuracy:  0.894, Loss:  0.111
+Epoch   0 Batch 1024/1077 - Train Accuracy:  0.852, Validation Accuracy:  0.899, Loss:  0.130
+Epoch   0 Batch 1025/1077 - Train Accuracy:  0.879, Validation Accuracy:  0.901, Loss:  0.113
+Epoch   0 Batch 1026/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.892, Loss:  0.113
+Epoch   0 Batch 1027/1077 - Train Accuracy:  0.880, Validation Accuracy:  0.888, Loss:  0.101
+Epoch   0 Batch 1028/1077 - Train Accuracy:  0.858, Validation Accuracy:  0.888, Loss:  0.102
+Epoch   0 Batch 1029/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.890, Loss:  0.089
+Epoch   0 Batch 1030/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.887, Loss:  0.121
+Epoch   0 Batch 1031/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.883, Loss:  0.122
+Epoch   0 Batch 1032/1077 - Train Accuracy:  0.888, Validation Accuracy:  0.882, Loss:  0.129
+Epoch   0 Batch 1033/1077 - Train Accuracy:  0.881, Validation Accuracy:  0.885, Loss:  0.108
+Epoch   0 Batch 1034/1077 - Train Accuracy:  0.867, Validation Accuracy:  0.886, Loss:  0.111
+Epoch   0 Batch 1035/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.881, Loss:  0.081
+Epoch   0 Batch 1036/1077 - Train Accuracy:  0.874, Validation Accuracy:  0.874, Loss:  0.117
+Epoch   0 Batch 1037/1077 - Train Accuracy:  0.868, Validation Accuracy:  0.877, Loss:  0.121
+Epoch   0 Batch 1038/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.878, Loss:  0.126
+Epoch   0 Batch 1039/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.883, Loss:  0.112
+Epoch   0 Batch 1040/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.886, Loss:  0.121
+Epoch   0 Batch 1041/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.888, Loss:  0.120
+Epoch   0 Batch 1042/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.888, Loss:  0.102
+Epoch   0 Batch 1043/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.892, Loss:  0.122
+Epoch   0 Batch 1044/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.888, Loss:  0.119
+Epoch   0 Batch 1045/1077 - Train Accuracy:  0.878, Validation Accuracy:  0.874, Loss:  0.095
+Epoch   0 Batch 1046/1077 - Train Accuracy:  0.869, Validation Accuracy:  0.881, Loss:  0.085
+Epoch   0 Batch 1047/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.891, Loss:  0.100
+Epoch   0 Batch 1048/1077 - Train Accuracy:  0.878, Validation Accuracy:  0.891, Loss:  0.110
+Epoch   0 Batch 1049/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.895, Loss:  0.097
+Epoch   0 Batch 1050/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.898, Loss:  0.101
+Epoch   0 Batch 1051/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.883, Loss:  0.108
+Epoch   0 Batch 1052/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.894, Loss:  0.103
+Epoch   0 Batch 1053/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.901, Loss:  0.114
+Epoch   0 Batch 1054/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.891, Loss:  0.100
+Epoch   0 Batch 1055/1077 - Train Accuracy:  0.884, Validation Accuracy:  0.890, Loss:  0.111
+Epoch   0 Batch 1056/1077 - Train Accuracy:  0.894, Validation Accuracy:  0.892, Loss:  0.099
+Epoch   0 Batch 1057/1077 - Train Accuracy:  0.873, Validation Accuracy:  0.886, Loss:  0.119
+Epoch   0 Batch 1058/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.883, Loss:  0.116
+Epoch   0 Batch 1059/1077 - Train Accuracy:  0.847, Validation Accuracy:  0.876, Loss:  0.138
+Epoch   0 Batch 1060/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.876, Loss:  0.100
+Epoch   0 Batch 1061/1077 - Train Accuracy:  0.875, Validation Accuracy:  0.880, Loss:  0.123
+Epoch   0 Batch 1062/1077 - Train Accuracy:  0.872, Validation Accuracy:  0.879, Loss:  0.107
+Epoch   0 Batch 1063/1077 - Train Accuracy:  0.879, Validation Accuracy:  0.885, Loss:  0.107
+Epoch   0 Batch 1064/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.888, Loss:  0.107
+Epoch   0 Batch 1065/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.889, Loss:  0.096
+Epoch   0 Batch 1066/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.887, Loss:  0.089
+Epoch   0 Batch 1067/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.886, Loss:  0.116
+Epoch   0 Batch 1068/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.876, Loss:  0.091
+Epoch   0 Batch 1069/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.883, Loss:  0.079
+Epoch   0 Batch 1070/1077 - Train Accuracy:  0.872, Validation Accuracy:  0.871, Loss:  0.100
+Epoch   0 Batch 1071/1077 - Train Accuracy:  0.884, Validation Accuracy:  0.875, Loss:  0.105
+Epoch   0 Batch 1072/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.880, Loss:  0.106
+Epoch   0 Batch 1073/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.876, Loss:  0.123
+Epoch   0 Batch 1074/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.875, Loss:  0.117
+Epoch   0 Batch 1075/1077 - Train Accuracy:  0.885, Validation Accuracy:  0.876, Loss:  0.108
+Epoch   1 Batch    0/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.878, Loss:  0.086
+Epoch   1 Batch    1/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.875, Loss:  0.094
+Epoch   1 Batch    2/1077 - Train Accuracy:  0.885, Validation Accuracy:  0.875, Loss:  0.111
+Epoch   1 Batch    3/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.883, Loss:  0.106
+Epoch   1 Batch    4/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.880, Loss:  0.093
+Epoch   1 Batch    5/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.889, Loss:  0.136
+Epoch   1 Batch    6/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.886, Loss:  0.103
+Epoch   1 Batch    7/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.883, Loss:  0.088
+Epoch   1 Batch    8/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.881, Loss:  0.104
+Epoch   1 Batch    9/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.885, Loss:  0.093
+Epoch   1 Batch   10/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.892, Loss:  0.098
+Epoch   1 Batch   11/1077 - Train Accuracy:  0.873, Validation Accuracy:  0.893, Loss:  0.106
+Epoch   1 Batch   12/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.902, Loss:  0.103
+Epoch   1 Batch   13/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.898, Loss:  0.121
+Epoch   1 Batch   14/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.892, Loss:  0.080
+Epoch   1 Batch   15/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.896, Loss:  0.093
+Epoch   1 Batch   16/1077 - Train Accuracy:  0.885, Validation Accuracy:  0.899, Loss:  0.116
+Epoch   1 Batch   17/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.894, Loss:  0.091
+Epoch   1 Batch   18/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.897, Loss:  0.098
+Epoch   1 Batch   19/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.889, Loss:  0.097
+Epoch   1 Batch   20/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.892, Loss:  0.086
+Epoch   1 Batch   21/1077 - Train Accuracy:  0.884, Validation Accuracy:  0.888, Loss:  0.110
+Epoch   1 Batch   22/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.892, Loss:  0.101
+Epoch   1 Batch   23/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.896, Loss:  0.104
+Epoch   1 Batch   24/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.904, Loss:  0.096
+Epoch   1 Batch   25/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.897, Loss:  0.078
+Epoch   1 Batch   26/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.902, Loss:  0.102
+Epoch   1 Batch   27/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.897, Loss:  0.088
+Epoch   1 Batch   28/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.887, Loss:  0.095
+Epoch   1 Batch   29/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.883, Loss:  0.099
+Epoch   1 Batch   30/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.892, Loss:  0.088
+Epoch   1 Batch   31/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.890, Loss:  0.088
+Epoch   1 Batch   32/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.892, Loss:  0.093
+Epoch   1 Batch   33/1077 - Train Accuracy:  0.877, Validation Accuracy:  0.894, Loss:  0.092
+Epoch   1 Batch   34/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.892, Loss:  0.084
+Epoch   1 Batch   35/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.891, Loss:  0.090
+Epoch   1 Batch   36/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.892, Loss:  0.091
+Epoch   1 Batch   37/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.896, Loss:  0.102
+Epoch   1 Batch   38/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.898, Loss:  0.127
+Epoch   1 Batch   39/1077 - Train Accuracy:  0.863, Validation Accuracy:  0.885, Loss:  0.123
+Epoch   1 Batch   40/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.892, Loss:  0.082
+Epoch   1 Batch   41/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.892, Loss:  0.092
+Epoch   1 Batch   42/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.890, Loss:  0.106
+Epoch   1 Batch   43/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.889, Loss:  0.070
+Epoch   1 Batch   44/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.888, Loss:  0.093
+Epoch   1 Batch   45/1077 - Train Accuracy:  0.877, Validation Accuracy:  0.891, Loss:  0.099
+Epoch   1 Batch   46/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.887, Loss:  0.107
+Epoch   1 Batch   47/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.888, Loss:  0.096
+Epoch   1 Batch   48/1077 - Train Accuracy:  0.877, Validation Accuracy:  0.899, Loss:  0.125
+Epoch   1 Batch   49/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.908, Loss:  0.103
+Epoch   1 Batch   50/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.906, Loss:  0.090
+Epoch   1 Batch   51/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.903, Loss:  0.096
+Epoch   1 Batch   52/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.907, Loss:  0.111
+Epoch   1 Batch   53/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.897, Loss:  0.091
+Epoch   1 Batch   54/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.894, Loss:  0.130
+Epoch   1 Batch   55/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.895, Loss:  0.093
+Epoch   1 Batch   56/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.889, Loss:  0.080
+Epoch   1 Batch   57/1077 - Train Accuracy:  0.850, Validation Accuracy:  0.894, Loss:  0.102
+Epoch   1 Batch   58/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.891, Loss:  0.087
+Epoch   1 Batch   59/1077 - Train Accuracy:  0.881, Validation Accuracy:  0.889, Loss:  0.091
+Epoch   1 Batch   60/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.895, Loss:  0.079
+Epoch   1 Batch   61/1077 - Train Accuracy:  0.881, Validation Accuracy:  0.899, Loss:  0.100
+Epoch   1 Batch   62/1077 - Train Accuracy:  0.877, Validation Accuracy:  0.904, Loss:  0.104
+Epoch   1 Batch   63/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.903, Loss:  0.076
+Epoch   1 Batch   64/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.903, Loss:  0.089
+Epoch   1 Batch   65/1077 - Train Accuracy:  0.892, Validation Accuracy:  0.907, Loss:  0.088
+Epoch   1 Batch   66/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.912, Loss:  0.067
+Epoch   1 Batch   67/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.905, Loss:  0.086
+Epoch   1 Batch   68/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.906, Loss:  0.092
+Epoch   1 Batch   69/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.912, Loss:  0.109
+Epoch   1 Batch   70/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.906, Loss:  0.094
+Epoch   1 Batch   71/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.901, Loss:  0.064
+Epoch   1 Batch   72/1077 - Train Accuracy:  0.875, Validation Accuracy:  0.901, Loss:  0.097
+Epoch   1 Batch   73/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.901, Loss:  0.093
+Epoch   1 Batch   74/1077 - Train Accuracy:  0.892, Validation Accuracy:  0.898, Loss:  0.082
+Epoch   1 Batch   75/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.902, Loss:  0.122
+Epoch   1 Batch   76/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.892, Loss:  0.076
+Epoch   1 Batch   77/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.892, Loss:  0.085
+Epoch   1 Batch   78/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.891, Loss:  0.090
+Epoch   1 Batch   79/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.890, Loss:  0.080
+Epoch   1 Batch   80/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.880, Loss:  0.089
+Epoch   1 Batch   81/1077 - Train Accuracy:  0.890, Validation Accuracy:  0.876, Loss:  0.070
+Epoch   1 Batch   82/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.881, Loss:  0.089
+Epoch   1 Batch   83/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.878, Loss:  0.097
+Epoch   1 Batch   84/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.877, Loss:  0.095
+Epoch   1 Batch   85/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.884, Loss:  0.092
+Epoch   1 Batch   86/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.892, Loss:  0.093
+Epoch   1 Batch   87/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.893, Loss:  0.118
+Epoch   1 Batch   88/1077 - Train Accuracy:  0.883, Validation Accuracy:  0.892, Loss:  0.098
+Epoch   1 Batch   89/1077 - Train Accuracy:  0.888, Validation Accuracy:  0.891, Loss:  0.098
+Epoch   1 Batch   90/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.902, Loss:  0.101
+Epoch   1 Batch   91/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.907, Loss:  0.077
+Epoch   1 Batch   92/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.904, Loss:  0.105
+Epoch   1 Batch   93/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.891, Loss:  0.084
+Epoch   1 Batch   94/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.890, Loss:  0.075
+Epoch   1 Batch   95/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.898, Loss:  0.103
+Epoch   1 Batch   96/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.892, Loss:  0.105
+Epoch   1 Batch   97/1077 - Train Accuracy:  0.889, Validation Accuracy:  0.893, Loss:  0.099
+Epoch   1 Batch   98/1077 - Train Accuracy:  0.890, Validation Accuracy:  0.890, Loss:  0.100
+Epoch   1 Batch   99/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.896, Loss:  0.098
+Epoch   1 Batch  100/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.899, Loss:  0.093
+Epoch   1 Batch  101/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.885, Loss:  0.077
+Epoch   1 Batch  102/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.883, Loss:  0.102
+Epoch   1 Batch  103/1077 - Train Accuracy:  0.856, Validation Accuracy:  0.874, Loss:  0.112
+Epoch   1 Batch  104/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.873, Loss:  0.102
+Epoch   1 Batch  105/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.887, Loss:  0.087
+Epoch   1 Batch  106/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.896, Loss:  0.114
+Epoch   1 Batch  107/1077 - Train Accuracy:  0.872, Validation Accuracy:  0.896, Loss:  0.103
+Epoch   1 Batch  108/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.895, Loss:  0.099
+Epoch   1 Batch  109/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.892, Loss:  0.087
+Epoch   1 Batch  110/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.899, Loss:  0.082
+Epoch   1 Batch  111/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.896, Loss:  0.082
+Epoch   1 Batch  112/1077 - Train Accuracy:  0.894, Validation Accuracy:  0.900, Loss:  0.098
+Epoch   1 Batch  113/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.895, Loss:  0.087
+Epoch   1 Batch  114/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.898, Loss:  0.075
+Epoch   1 Batch  115/1077 - Train Accuracy:  0.880, Validation Accuracy:  0.896, Loss:  0.110
+Epoch   1 Batch  116/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.896, Loss:  0.096
+Epoch   1 Batch  117/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.903, Loss:  0.090
+Epoch   1 Batch  118/1077 - Train Accuracy:  0.892, Validation Accuracy:  0.905, Loss:  0.087
+Epoch   1 Batch  119/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.911, Loss:  0.094
+Epoch   1 Batch  120/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.915, Loss:  0.097
+Epoch   1 Batch  121/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.914, Loss:  0.092
+Epoch   1 Batch  122/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.914, Loss:  0.081
+Epoch   1 Batch  123/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.903, Loss:  0.074
+Epoch   1 Batch  124/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.892, Loss:  0.104
+Epoch   1 Batch  125/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.897, Loss:  0.091
+Epoch   1 Batch  126/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.898, Loss:  0.073
+Epoch   1 Batch  127/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.897, Loss:  0.091
+Epoch   1 Batch  128/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.892, Loss:  0.090
+Epoch   1 Batch  129/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.902, Loss:  0.111
+Epoch   1 Batch  130/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.895, Loss:  0.081
+Epoch   1 Batch  131/1077 - Train Accuracy:  0.877, Validation Accuracy:  0.889, Loss:  0.088
+Epoch   1 Batch  132/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.902, Loss:  0.093
+Epoch   1 Batch  133/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.898, Loss:  0.078
+Epoch   1 Batch  134/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.890, Loss:  0.087
+Epoch   1 Batch  135/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.896, Loss:  0.094
+Epoch   1 Batch  136/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.898, Loss:  0.086
+Epoch   1 Batch  137/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.898, Loss:  0.067
+Epoch   1 Batch  138/1077 - Train Accuracy:  0.869, Validation Accuracy:  0.900, Loss:  0.086
+Epoch   1 Batch  139/1077 - Train Accuracy:  0.876, Validation Accuracy:  0.896, Loss:  0.110
+Epoch   1 Batch  140/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.901, Loss:  0.096
+Epoch   1 Batch  141/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.896, Loss:  0.094
+Epoch   1 Batch  142/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.891, Loss:  0.080
+Epoch   1 Batch  143/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.888, Loss:  0.101
+Epoch   1 Batch  144/1077 - Train Accuracy:  0.883, Validation Accuracy:  0.888, Loss:  0.113
+Epoch   1 Batch  145/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.897, Loss:  0.088
+Epoch   1 Batch  146/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.891, Loss:  0.104
+Epoch   1 Batch  147/1077 - Train Accuracy:  0.884, Validation Accuracy:  0.902, Loss:  0.088
+Epoch   1 Batch  148/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.894, Loss:  0.098
+Epoch   1 Batch  149/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.892, Loss:  0.096
+Epoch   1 Batch  150/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.898, Loss:  0.095
+Epoch   1 Batch  151/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.898, Loss:  0.077
+Epoch   1 Batch  152/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.897, Loss:  0.118
+Epoch   1 Batch  153/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.891, Loss:  0.110
+Epoch   1 Batch  154/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.881, Loss:  0.079
+Epoch   1 Batch  155/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.887, Loss:  0.093
+Epoch   1 Batch  156/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.887, Loss:  0.079
+Epoch   1 Batch  157/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.894, Loss:  0.086
+Epoch   1 Batch  158/1077 - Train Accuracy:  0.882, Validation Accuracy:  0.888, Loss:  0.111
+Epoch   1 Batch  159/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.892, Loss:  0.071
+Epoch   1 Batch  160/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.892, Loss:  0.076
+Epoch   1 Batch  161/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.893, Loss:  0.081
+Epoch   1 Batch  162/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.896, Loss:  0.103
+Epoch   1 Batch  163/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.893, Loss:  0.106
+Epoch   1 Batch  164/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.893, Loss:  0.087
+Epoch   1 Batch  165/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.903, Loss:  0.065
+Epoch   1 Batch  166/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.901, Loss:  0.102
+Epoch   1 Batch  167/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.902, Loss:  0.083
+Epoch   1 Batch  168/1077 - Train Accuracy:  0.894, Validation Accuracy:  0.906, Loss:  0.094
+Epoch   1 Batch  169/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.901, Loss:  0.108
+Epoch   1 Batch  170/1077 - Train Accuracy:  0.870, Validation Accuracy:  0.900, Loss:  0.088
+Epoch   1 Batch  171/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.896, Loss:  0.083
+Epoch   1 Batch  172/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.901, Loss:  0.066
+Epoch   1 Batch  173/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.911, Loss:  0.095
+Epoch   1 Batch  174/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.897, Loss:  0.077
+Epoch   1 Batch  175/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.896, Loss:  0.094
+Epoch   1 Batch  176/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.900, Loss:  0.085
+Epoch   1 Batch  177/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.910, Loss:  0.107
+Epoch   1 Batch  178/1077 - Train Accuracy:  0.889, Validation Accuracy:  0.903, Loss:  0.089
+Epoch   1 Batch  179/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.896, Loss:  0.095
+Epoch   1 Batch  180/1077 - Train Accuracy:  0.883, Validation Accuracy:  0.895, Loss:  0.079
+Epoch   1 Batch  181/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.899, Loss:  0.102
+Epoch   1 Batch  182/1077 - Train Accuracy:  0.894, Validation Accuracy:  0.899, Loss:  0.104
+Epoch   1 Batch  183/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.894, Loss:  0.088
+Epoch   1 Batch  184/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.896, Loss:  0.090
+Epoch   1 Batch  185/1077 - Train Accuracy:  0.883, Validation Accuracy:  0.892, Loss:  0.096
+Epoch   1 Batch  186/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.888, Loss:  0.099
+Epoch   1 Batch  187/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.889, Loss:  0.071
+Epoch   1 Batch  188/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.885, Loss:  0.081
+Epoch   1 Batch  189/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.895, Loss:  0.077
+Epoch   1 Batch  190/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.892, Loss:  0.075
+Epoch   1 Batch  191/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.888, Loss:  0.072
+Epoch   1 Batch  192/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.895, Loss:  0.090
+Epoch   1 Batch  193/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.897, Loss:  0.080
+Epoch   1 Batch  194/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.897, Loss:  0.072
+Epoch   1 Batch  195/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.900, Loss:  0.074
+Epoch   1 Batch  196/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.903, Loss:  0.077
+Epoch   1 Batch  197/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.898, Loss:  0.095
+Epoch   1 Batch  198/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.898, Loss:  0.087
+Epoch   1 Batch  199/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.900, Loss:  0.070
+Epoch   1 Batch  200/1077 - Train Accuracy:  0.877, Validation Accuracy:  0.897, Loss:  0.102
+Epoch   1 Batch  201/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.893, Loss:  0.072
+Epoch   1 Batch  202/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.897, Loss:  0.082
+Epoch   1 Batch  203/1077 - Train Accuracy:  0.890, Validation Accuracy:  0.894, Loss:  0.081
+Epoch   1 Batch  204/1077 - Train Accuracy:  0.894, Validation Accuracy:  0.889, Loss:  0.108
+Epoch   1 Batch  205/1077 - Train Accuracy:  0.883, Validation Accuracy:  0.880, Loss:  0.102
+Epoch   1 Batch  206/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.886, Loss:  0.079
+Epoch   1 Batch  207/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.877, Loss:  0.077
+Epoch   1 Batch  208/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.879, Loss:  0.090
+Epoch   1 Batch  209/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.880, Loss:  0.075
+Epoch   1 Batch  210/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.880, Loss:  0.094
+Epoch   1 Batch  211/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.890, Loss:  0.082
+Epoch   1 Batch  212/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.897, Loss:  0.073
+Epoch   1 Batch  213/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.866, Loss:  0.074
+Epoch   1 Batch  214/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.873, Loss:  0.074
+Epoch   1 Batch  215/1077 - Train Accuracy:  0.874, Validation Accuracy:  0.870, Loss:  0.090
+Epoch   1 Batch  216/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.873, Loss:  0.092
+Epoch   1 Batch  217/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.877, Loss:  0.072
+Epoch   1 Batch  218/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.877, Loss:  0.102
+Epoch   1 Batch  219/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.877, Loss:  0.086
+Epoch   1 Batch  220/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.874, Loss:  0.081
+Epoch   1 Batch  221/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.896, Loss:  0.085
+Epoch   1 Batch  222/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.900, Loss:  0.078
+Epoch   1 Batch  223/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.900, Loss:  0.070
+Epoch   1 Batch  224/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.898, Loss:  0.097
+Epoch   1 Batch  225/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.905, Loss:  0.095
+Epoch   1 Batch  226/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.905, Loss:  0.084
+Epoch   1 Batch  227/1077 - Train Accuracy:  0.888, Validation Accuracy:  0.910, Loss:  0.104
+Epoch   1 Batch  228/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.913, Loss:  0.071
+Epoch   1 Batch  229/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.891, Loss:  0.098
+Epoch   1 Batch  230/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.883, Loss:  0.092
+Epoch   1 Batch  231/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.893, Loss:  0.085
+Epoch   1 Batch  232/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.890, Loss:  0.075
+Epoch   1 Batch  233/1077 - Train Accuracy:  0.883, Validation Accuracy:  0.892, Loss:  0.108
+Epoch   1 Batch  234/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.891, Loss:  0.093
+Epoch   1 Batch  235/1077 - Train Accuracy:  0.883, Validation Accuracy:  0.888, Loss:  0.088
+Epoch   1 Batch  236/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.892, Loss:  0.095
+Epoch   1 Batch  237/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.905, Loss:  0.075
+Epoch   1 Batch  238/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.902, Loss:  0.080
+Epoch   1 Batch  239/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.884, Loss:  0.061
+Epoch   1 Batch  240/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.887, Loss:  0.071
+Epoch   1 Batch  241/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.886, Loss:  0.063
+Epoch   1 Batch  242/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.886, Loss:  0.065
+Epoch   1 Batch  243/1077 - Train Accuracy:  0.880, Validation Accuracy:  0.891, Loss:  0.085
+Epoch   1 Batch  244/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.889, Loss:  0.076
+Epoch   1 Batch  245/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.907, Loss:  0.077
+Epoch   1 Batch  246/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.903, Loss:  0.072
+Epoch   1 Batch  247/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.905, Loss:  0.076
+Epoch   1 Batch  248/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.905, Loss:  0.090
+Epoch   1 Batch  249/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.909, Loss:  0.080
+Epoch   1 Batch  250/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.903, Loss:  0.073
+Epoch   1 Batch  251/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.902, Loss:  0.090
+Epoch   1 Batch  252/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.909, Loss:  0.081
+Epoch   1 Batch  253/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.908, Loss:  0.080
+Epoch   1 Batch  254/1077 - Train Accuracy:  0.894, Validation Accuracy:  0.906, Loss:  0.089
+Epoch   1 Batch  255/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.897, Loss:  0.079
+Epoch   1 Batch  256/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.894, Loss:  0.103
+Epoch   1 Batch  257/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.898, Loss:  0.087
+Epoch   1 Batch  258/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.903, Loss:  0.083
+Epoch   1 Batch  259/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.911, Loss:  0.072
+Epoch   1 Batch  260/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.912, Loss:  0.067
+Epoch   1 Batch  261/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.907, Loss:  0.086
+Epoch   1 Batch  262/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.907, Loss:  0.070
+Epoch   1 Batch  263/1077 - Train Accuracy:  0.960, Validation Accuracy:  0.904, Loss:  0.071
+Epoch   1 Batch  264/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.900, Loss:  0.077
+Epoch   1 Batch  265/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.900, Loss:  0.075
+Epoch   1 Batch  266/1077 - Train Accuracy:  0.885, Validation Accuracy:  0.899, Loss:  0.088
+Epoch   1 Batch  267/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.899, Loss:  0.076
+Epoch   1 Batch  268/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.900, Loss:  0.088
+Epoch   1 Batch  269/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.901, Loss:  0.099
+Epoch   1 Batch  270/1077 - Train Accuracy:  0.883, Validation Accuracy:  0.897, Loss:  0.082
+Epoch   1 Batch  271/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.897, Loss:  0.072
+Epoch   1 Batch  272/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.893, Loss:  0.111
+Epoch   1 Batch  273/1077 - Train Accuracy:  0.877, Validation Accuracy:  0.887, Loss:  0.072
+Epoch   1 Batch  274/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.898, Loss:  0.082
+Epoch   1 Batch  275/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.898, Loss:  0.082
+Epoch   1 Batch  276/1077 - Train Accuracy:  0.857, Validation Accuracy:  0.896, Loss:  0.122
+Epoch   1 Batch  277/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.897, Loss:  0.072
+Epoch   1 Batch  278/1077 - Train Accuracy:  0.861, Validation Accuracy:  0.895, Loss:  0.089
+Epoch   1 Batch  279/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.890, Loss:  0.090
+Epoch   1 Batch  280/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.892, Loss:  0.090
+Epoch   1 Batch  281/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.889, Loss:  0.100
+Epoch   1 Batch  282/1077 - Train Accuracy:  0.885, Validation Accuracy:  0.896, Loss:  0.106
+Epoch   1 Batch  283/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.900, Loss:  0.087
+Epoch   1 Batch  284/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.899, Loss:  0.089
+Epoch   1 Batch  285/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.898, Loss:  0.084
+Epoch   1 Batch  286/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.898, Loss:  0.081
+Epoch   1 Batch  287/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.891, Loss:  0.076
+Epoch   1 Batch  288/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.889, Loss:  0.089
+Epoch   1 Batch  289/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.892, Loss:  0.078
+Epoch   1 Batch  290/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.902, Loss:  0.109
+Epoch   1 Batch  291/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.902, Loss:  0.103
+Epoch   1 Batch  292/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.902, Loss:  0.085
+Epoch   1 Batch  293/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.908, Loss:  0.089
+Epoch   1 Batch  294/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.906, Loss:  0.078
+Epoch   1 Batch  295/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.907, Loss:  0.091
+Epoch   1 Batch  296/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.907, Loss:  0.085
+Epoch   1 Batch  297/1077 - Train Accuracy:  0.879, Validation Accuracy:  0.896, Loss:  0.094
+Epoch   1 Batch  298/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.898, Loss:  0.092
+Epoch   1 Batch  299/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.911, Loss:  0.085
+Epoch   1 Batch  300/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.911, Loss:  0.080
+Epoch   1 Batch  301/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.906, Loss:  0.070
+Epoch   1 Batch  302/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.898, Loss:  0.084
+Epoch   1 Batch  303/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.898, Loss:  0.094
+Epoch   1 Batch  304/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.900, Loss:  0.079
+Epoch   1 Batch  305/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.892, Loss:  0.074
+Epoch   1 Batch  306/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.901, Loss:  0.089
+Epoch   1 Batch  307/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.881, Loss:  0.072
+Epoch   1 Batch  308/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.885, Loss:  0.097
+Epoch   1 Batch  309/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.882, Loss:  0.073
+Epoch   1 Batch  310/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.884, Loss:  0.080
+Epoch   1 Batch  311/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.885, Loss:  0.074
+Epoch   1 Batch  312/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.895, Loss:  0.095
+Epoch   1 Batch  313/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.894, Loss:  0.064
+Epoch   1 Batch  314/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.895, Loss:  0.076
+Epoch   1 Batch  315/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.901, Loss:  0.070
+Epoch   1 Batch  316/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.884, Loss:  0.075
+Epoch   1 Batch  317/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.890, Loss:  0.104
+Epoch   1 Batch  318/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.891, Loss:  0.068
+Epoch   1 Batch  319/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.881, Loss:  0.094
+Epoch   1 Batch  320/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.877, Loss:  0.088
+Epoch   1 Batch  321/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.879, Loss:  0.070
+Epoch   1 Batch  322/1077 - Train Accuracy:  0.877, Validation Accuracy:  0.880, Loss:  0.073
+Epoch   1 Batch  323/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.877, Loss:  0.086
+Epoch   1 Batch  324/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.891, Loss:  0.065
+Epoch   1 Batch  325/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.883, Loss:  0.091
+Epoch   1 Batch  326/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.888, Loss:  0.073
+Epoch   1 Batch  327/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.889, Loss:  0.093
+Epoch   1 Batch  328/1077 - Train Accuracy:  0.884, Validation Accuracy:  0.892, Loss:  0.087
+Epoch   1 Batch  329/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.889, Loss:  0.087
+Epoch   1 Batch  330/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.890, Loss:  0.086
+Epoch   1 Batch  331/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.891, Loss:  0.091
+Epoch   1 Batch  332/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.878, Loss:  0.066
+Epoch   1 Batch  333/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.882, Loss:  0.063
+Epoch   1 Batch  334/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.885, Loss:  0.074
+Epoch   1 Batch  335/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.888, Loss:  0.077
+Epoch   1 Batch  336/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.884, Loss:  0.108
+Epoch   1 Batch  337/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.880, Loss:  0.081
+Epoch   1 Batch  338/1077 - Train Accuracy:  0.869, Validation Accuracy:  0.881, Loss:  0.106
+Epoch   1 Batch  339/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.881, Loss:  0.070
+Epoch   1 Batch  340/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.896, Loss:  0.070
+Epoch   1 Batch  341/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.901, Loss:  0.093
+Epoch   1 Batch  342/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.905, Loss:  0.069
+Epoch   1 Batch  343/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.897, Loss:  0.073
+Epoch   1 Batch  344/1077 - Train Accuracy:  0.894, Validation Accuracy:  0.901, Loss:  0.073
+Epoch   1 Batch  345/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.903, Loss:  0.062
+Epoch   1 Batch  346/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.902, Loss:  0.082
+Epoch   1 Batch  347/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.909, Loss:  0.065
+Epoch   1 Batch  348/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.912, Loss:  0.077
+Epoch   1 Batch  349/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.907, Loss:  0.073
+Epoch   1 Batch  350/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.914, Loss:  0.088
+Epoch   1 Batch  351/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.912, Loss:  0.073
+Epoch   1 Batch  352/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.912, Loss:  0.069
+Epoch   1 Batch  353/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.901, Loss:  0.082
+Epoch   1 Batch  354/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.903, Loss:  0.081
+Epoch   1 Batch  355/1077 - Train Accuracy:  0.881, Validation Accuracy:  0.898, Loss:  0.072
+Epoch   1 Batch  356/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.901, Loss:  0.083
+Epoch   1 Batch  357/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.890, Loss:  0.074
+Epoch   1 Batch  358/1077 - Train Accuracy:  0.882, Validation Accuracy:  0.894, Loss:  0.089
+Epoch   1 Batch  359/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.898, Loss:  0.076
+Epoch   1 Batch  360/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.893, Loss:  0.066
+Epoch   1 Batch  361/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.892, Loss:  0.074
+Epoch   1 Batch  362/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.887, Loss:  0.085
+Epoch   1 Batch  363/1077 - Train Accuracy:  0.876, Validation Accuracy:  0.890, Loss:  0.079
+Epoch   1 Batch  364/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.888, Loss:  0.083
+Epoch   1 Batch  365/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.885, Loss:  0.064
+Epoch   1 Batch  366/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.885, Loss:  0.069
+Epoch   1 Batch  367/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.878, Loss:  0.055
+Epoch   1 Batch  368/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.877, Loss:  0.083
+Epoch   1 Batch  369/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.880, Loss:  0.081
+Epoch   1 Batch  370/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.876, Loss:  0.074
+Epoch   1 Batch  371/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.887, Loss:  0.062
+Epoch   1 Batch  372/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.885, Loss:  0.060
+Epoch   1 Batch  373/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.887, Loss:  0.056
+Epoch   1 Batch  374/1077 - Train Accuracy:  0.878, Validation Accuracy:  0.903, Loss:  0.085
+Epoch   1 Batch  375/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.907, Loss:  0.081
+Epoch   1 Batch  376/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.906, Loss:  0.076
+Epoch   1 Batch  377/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.902, Loss:  0.069
+Epoch   1 Batch  378/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.911, Loss:  0.058
+Epoch   1 Batch  379/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.909, Loss:  0.083
+Epoch   1 Batch  380/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.914, Loss:  0.061
+Epoch   1 Batch  381/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.918, Loss:  0.098
+Epoch   1 Batch  382/1077 - Train Accuracy:  0.885, Validation Accuracy:  0.925, Loss:  0.117
+Epoch   1 Batch  383/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.918, Loss:  0.073
+Epoch   1 Batch  384/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.910, Loss:  0.074
+Epoch   1 Batch  385/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.917, Loss:  0.067
+Epoch   1 Batch  386/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.917, Loss:  0.066
+Epoch   1 Batch  387/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.918, Loss:  0.073
+Epoch   1 Batch  388/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.907, Loss:  0.065
+Epoch   1 Batch  389/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.905, Loss:  0.073
+Epoch   1 Batch  390/1077 - Train Accuracy:  0.869, Validation Accuracy:  0.907, Loss:  0.081
+Epoch   1 Batch  391/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.908, Loss:  0.082
+Epoch   1 Batch  392/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.892, Loss:  0.084
+Epoch   1 Batch  393/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.898, Loss:  0.069
+Epoch   1 Batch  394/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.899, Loss:  0.069
+Epoch   1 Batch  395/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.900, Loss:  0.082
+Epoch   1 Batch  396/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.899, Loss:  0.078
+Epoch   1 Batch  397/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.899, Loss:  0.061
+Epoch   1 Batch  398/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.902, Loss:  0.077
+Epoch   1 Batch  399/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.898, Loss:  0.067
+Epoch   1 Batch  400/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.904, Loss:  0.094
+Epoch   1 Batch  401/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.892, Loss:  0.068
+Epoch   1 Batch  402/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.896, Loss:  0.069
+Epoch   1 Batch  403/1077 - Train Accuracy:  0.882, Validation Accuracy:  0.896, Loss:  0.091
+Epoch   1 Batch  404/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.891, Loss:  0.078
+Epoch   1 Batch  405/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.897, Loss:  0.068
+Epoch   1 Batch  406/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.896, Loss:  0.074
+Epoch   1 Batch  407/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.895, Loss:  0.083
+Epoch   1 Batch  408/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.899, Loss:  0.084
+Epoch   1 Batch  409/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.902, Loss:  0.079
+Epoch   1 Batch  410/1077 - Train Accuracy:  0.892, Validation Accuracy:  0.904, Loss:  0.085
+Epoch   1 Batch  411/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.909, Loss:  0.085
+Epoch   1 Batch  412/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.903, Loss:  0.056
+Epoch   1 Batch  413/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.902, Loss:  0.066
+Epoch   1 Batch  414/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.902, Loss:  0.080
+Epoch   1 Batch  415/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.899, Loss:  0.074
+Epoch   1 Batch  416/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.902, Loss:  0.076
+Epoch   1 Batch  417/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.909, Loss:  0.113
+Epoch   1 Batch  418/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.913, Loss:  0.069
+Epoch   1 Batch  419/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.913, Loss:  0.061
+Epoch   1 Batch  420/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.916, Loss:  0.059
+Epoch   1 Batch  421/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.915, Loss:  0.083
+Epoch   1 Batch  422/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.912, Loss:  0.069
+Epoch   1 Batch  423/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.910, Loss:  0.086
+Epoch   1 Batch  424/1077 - Train Accuracy:  0.892, Validation Accuracy:  0.902, Loss:  0.073
+Epoch   1 Batch  425/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.900, Loss:  0.064
+Epoch   1 Batch  426/1077 - Train Accuracy:  0.892, Validation Accuracy:  0.901, Loss:  0.089
+Epoch   1 Batch  427/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.905, Loss:  0.070
+Epoch   1 Batch  428/1077 - Train Accuracy:  0.956, Validation Accuracy:  0.906, Loss:  0.059
+Epoch   1 Batch  429/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.902, Loss:  0.067
+Epoch   1 Batch  430/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.905, Loss:  0.067
+Epoch   1 Batch  431/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.907, Loss:  0.060
+Epoch   1 Batch  432/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.900, Loss:  0.071
+Epoch   1 Batch  433/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.902, Loss:  0.079
+Epoch   1 Batch  434/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.898, Loss:  0.064
+Epoch   1 Batch  435/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.899, Loss:  0.092
+Epoch   1 Batch  436/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.900, Loss:  0.074
+Epoch   1 Batch  437/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.900, Loss:  0.062
+Epoch   1 Batch  438/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.899, Loss:  0.071
+Epoch   1 Batch  439/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.901, Loss:  0.090
+Epoch   1 Batch  440/1077 - Train Accuracy:  0.884, Validation Accuracy:  0.901, Loss:  0.091
+Epoch   1 Batch  441/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.909, Loss:  0.072
+Epoch   1 Batch  442/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.901, Loss:  0.081
+Epoch   1 Batch  443/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.901, Loss:  0.066
+Epoch   1 Batch  444/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.906, Loss:  0.085
+Epoch   1 Batch  445/1077 - Train Accuracy:  0.859, Validation Accuracy:  0.897, Loss:  0.082
+Epoch   1 Batch  446/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.902, Loss:  0.056
+Epoch   1 Batch  447/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.901, Loss:  0.074
+Epoch   1 Batch  448/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.908, Loss:  0.093
+Epoch   1 Batch  449/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.909, Loss:  0.075
+Epoch   1 Batch  450/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.908, Loss:  0.072
+Epoch   1 Batch  451/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.914, Loss:  0.076
+Epoch   1 Batch  452/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.913, Loss:  0.078
+Epoch   1 Batch  453/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.911, Loss:  0.067
+Epoch   1 Batch  454/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.907, Loss:  0.076
+Epoch   1 Batch  455/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.897, Loss:  0.072
+Epoch   1 Batch  456/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.896, Loss:  0.086
+Epoch   1 Batch  457/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.895, Loss:  0.056
+Epoch   1 Batch  458/1077 - Train Accuracy:  0.870, Validation Accuracy:  0.897, Loss:  0.080
+Epoch   1 Batch  459/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.895, Loss:  0.069
+Epoch   1 Batch  460/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.901, Loss:  0.076
+Epoch   1 Batch  461/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.896, Loss:  0.073
+Epoch   1 Batch  462/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.895, Loss:  0.072
+Epoch   1 Batch  463/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.898, Loss:  0.080
+Epoch   1 Batch  464/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.889, Loss:  0.070
+Epoch   1 Batch  465/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.874, Loss:  0.074
+Epoch   1 Batch  466/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.879, Loss:  0.065
+Epoch   1 Batch  467/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.887, Loss:  0.080
+Epoch   1 Batch  468/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.886, Loss:  0.071
+Epoch   1 Batch  469/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.890, Loss:  0.074
+Epoch   1 Batch  470/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.893, Loss:  0.075
+Epoch   1 Batch  471/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.904, Loss:  0.055
+Epoch   1 Batch  472/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.908, Loss:  0.070
+Epoch   1 Batch  473/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.907, Loss:  0.072
+Epoch   1 Batch  474/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.911, Loss:  0.065
+Epoch   1 Batch  475/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.922, Loss:  0.073
+Epoch   1 Batch  476/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.917, Loss:  0.057
+Epoch   1 Batch  477/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.917, Loss:  0.075
+Epoch   1 Batch  478/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.912, Loss:  0.068
+Epoch   1 Batch  479/1077 - Train Accuracy:  0.879, Validation Accuracy:  0.911, Loss:  0.087
+Epoch   1 Batch  480/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.903, Loss:  0.058
+Epoch   1 Batch  481/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.907, Loss:  0.085
+Epoch   1 Batch  482/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.903, Loss:  0.092
+Epoch   1 Batch  483/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.898, Loss:  0.071
+Epoch   1 Batch  484/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.893, Loss:  0.090
+Epoch   1 Batch  485/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.888, Loss:  0.087
+Epoch   1 Batch  486/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.889, Loss:  0.066
+Epoch   1 Batch  487/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.887, Loss:  0.062
+Epoch   1 Batch  488/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.886, Loss:  0.069
+Epoch   1 Batch  489/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.887, Loss:  0.065
+Epoch   1 Batch  490/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.897, Loss:  0.073
+Epoch   1 Batch  491/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.901, Loss:  0.076
+Epoch   1 Batch  492/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.900, Loss:  0.084
+Epoch   1 Batch  493/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.901, Loss:  0.058
+Epoch   1 Batch  494/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.902, Loss:  0.064
+Epoch   1 Batch  495/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.902, Loss:  0.072
+Epoch   1 Batch  496/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.907, Loss:  0.069
+Epoch   1 Batch  497/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.891, Loss:  0.072
+Epoch   1 Batch  498/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.891, Loss:  0.074
+Epoch   1 Batch  499/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.896, Loss:  0.057
+Epoch   1 Batch  500/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.900, Loss:  0.057
+Epoch   1 Batch  501/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.906, Loss:  0.063
+Epoch   1 Batch  502/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.909, Loss:  0.079
+Epoch   1 Batch  503/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.905, Loss:  0.064
+Epoch   1 Batch  504/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.919, Loss:  0.072
+Epoch   1 Batch  505/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.917, Loss:  0.059
+Epoch   1 Batch  506/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.913, Loss:  0.079
+Epoch   1 Batch  507/1077 - Train Accuracy:  0.871, Validation Accuracy:  0.913, Loss:  0.072
+Epoch   1 Batch  508/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.916, Loss:  0.059
+Epoch   1 Batch  509/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.914, Loss:  0.079
+Epoch   1 Batch  510/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.901, Loss:  0.072
+Epoch   1 Batch  511/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.906, Loss:  0.071
+Epoch   1 Batch  512/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.909, Loss:  0.055
+Epoch   1 Batch  513/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.900, Loss:  0.068
+Epoch   1 Batch  514/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.904, Loss:  0.080
+Epoch   1 Batch  515/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.910, Loss:  0.079
+Epoch   1 Batch  516/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.911, Loss:  0.072
+Epoch   1 Batch  517/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.911, Loss:  0.068
+Epoch   1 Batch  518/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.906, Loss:  0.056
+Epoch   1 Batch  519/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.901, Loss:  0.072
+Epoch   1 Batch  520/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.894, Loss:  0.068
+Epoch   1 Batch  521/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.889, Loss:  0.081
+Epoch   1 Batch  522/1077 - Train Accuracy:  0.869, Validation Accuracy:  0.897, Loss:  0.081
+Epoch   1 Batch  523/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.902, Loss:  0.079
+Epoch   1 Batch  524/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.899, Loss:  0.079
+Epoch   1 Batch  525/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.895, Loss:  0.075
+Epoch   1 Batch  526/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.891, Loss:  0.065
+Epoch   1 Batch  527/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.884, Loss:  0.072
+Epoch   1 Batch  528/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.888, Loss:  0.074
+Epoch   1 Batch  529/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.885, Loss:  0.075
+Epoch   1 Batch  530/1077 - Train Accuracy:  0.888, Validation Accuracy:  0.893, Loss:  0.073
+Epoch   1 Batch  531/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.888, Loss:  0.067
+Epoch   1 Batch  532/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.897, Loss:  0.085
+Epoch   1 Batch  533/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.906, Loss:  0.069
+Epoch   1 Batch  534/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.910, Loss:  0.081
+Epoch   1 Batch  535/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.906, Loss:  0.069
+Epoch   1 Batch  536/1077 - Train Accuracy:  0.879, Validation Accuracy:  0.897, Loss:  0.071
+Epoch   1 Batch  537/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.894, Loss:  0.067
+Epoch   1 Batch  538/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.891, Loss:  0.054
+Epoch   1 Batch  539/1077 - Train Accuracy:  0.894, Validation Accuracy:  0.877, Loss:  0.105
+Epoch   1 Batch  540/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.879, Loss:  0.063
+Epoch   1 Batch  541/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.885, Loss:  0.056
+Epoch   1 Batch  542/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.885, Loss:  0.071
+Epoch   1 Batch  543/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.891, Loss:  0.071
+Epoch   1 Batch  544/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.884, Loss:  0.052
+Epoch   1 Batch  545/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.888, Loss:  0.075
+Epoch   1 Batch  546/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.898, Loss:  0.078
+Epoch   1 Batch  547/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.902, Loss:  0.066
+Epoch   1 Batch  548/1077 - Train Accuracy:  0.882, Validation Accuracy:  0.907, Loss:  0.077
+Epoch   1 Batch  549/1077 - Train Accuracy:  0.868, Validation Accuracy:  0.911, Loss:  0.084
+Epoch   1 Batch  550/1077 - Train Accuracy:  0.880, Validation Accuracy:  0.898, Loss:  0.078
+Epoch   1 Batch  551/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.912, Loss:  0.080
+Epoch   1 Batch  552/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.915, Loss:  0.081
+Epoch   1 Batch  553/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.913, Loss:  0.087
+Epoch   1 Batch  554/1077 - Train Accuracy:  0.885, Validation Accuracy:  0.908, Loss:  0.068
+Epoch   1 Batch  555/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.907, Loss:  0.066
+Epoch   1 Batch  556/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.902, Loss:  0.068
+Epoch   1 Batch  557/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.898, Loss:  0.073
+Epoch   1 Batch  558/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.900, Loss:  0.061
+Epoch   1 Batch  559/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.906, Loss:  0.056
+Epoch   1 Batch  560/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.898, Loss:  0.065
+Epoch   1 Batch  561/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.900, Loss:  0.066
+Epoch   1 Batch  562/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.890, Loss:  0.059
+Epoch   1 Batch  563/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.891, Loss:  0.066
+Epoch   1 Batch  564/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.891, Loss:  0.082
+Epoch   1 Batch  565/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.886, Loss:  0.075
+Epoch   1 Batch  566/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.883, Loss:  0.083
+Epoch   1 Batch  567/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.892, Loss:  0.075
+Epoch   1 Batch  568/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.894, Loss:  0.068
+Epoch   1 Batch  569/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.891, Loss:  0.073
+Epoch   1 Batch  570/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.884, Loss:  0.085
+Epoch   1 Batch  571/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.885, Loss:  0.052
+Epoch   1 Batch  572/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.885, Loss:  0.065
+Epoch   1 Batch  573/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.884, Loss:  0.079
+Epoch   1 Batch  574/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.882, Loss:  0.081
+Epoch   1 Batch  575/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.889, Loss:  0.054
+Epoch   1 Batch  576/1077 - Train Accuracy:  0.958, Validation Accuracy:  0.896, Loss:  0.063
+Epoch   1 Batch  577/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.898, Loss:  0.078
+Epoch   1 Batch  578/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.901, Loss:  0.071
+Epoch   1 Batch  579/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.903, Loss:  0.062
+Epoch   1 Batch  580/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.906, Loss:  0.056
+Epoch   1 Batch  581/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.896, Loss:  0.052
+Epoch   1 Batch  582/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.898, Loss:  0.073
+Epoch   1 Batch  583/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.898, Loss:  0.068
+Epoch   1 Batch  584/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.902, Loss:  0.068
+Epoch   1 Batch  585/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.898, Loss:  0.048
+Epoch   1 Batch  586/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.903, Loss:  0.078
+Epoch   1 Batch  587/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.900, Loss:  0.068
+Epoch   1 Batch  588/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.896, Loss:  0.055
+Epoch   1 Batch  589/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.889, Loss:  0.066
+Epoch   1 Batch  590/1077 - Train Accuracy:  0.894, Validation Accuracy:  0.894, Loss:  0.083
+Epoch   1 Batch  591/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.898, Loss:  0.069
+Epoch   1 Batch  592/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.888, Loss:  0.069
+Epoch   1 Batch  593/1077 - Train Accuracy:  0.890, Validation Accuracy:  0.880, Loss:  0.094
+Epoch   1 Batch  594/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.875, Loss:  0.077
+Epoch   1 Batch  595/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.880, Loss:  0.071
+Epoch   1 Batch  596/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.875, Loss:  0.070
+Epoch   1 Batch  597/1077 - Train Accuracy:  0.894, Validation Accuracy:  0.893, Loss:  0.059
+Epoch   1 Batch  598/1077 - Train Accuracy:  0.892, Validation Accuracy:  0.907, Loss:  0.080
+Epoch   1 Batch  599/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.907, Loss:  0.089
+Epoch   1 Batch  600/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.900, Loss:  0.078
+Epoch   1 Batch  601/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.902, Loss:  0.074
+Epoch   1 Batch  602/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.905, Loss:  0.070
+Epoch   1 Batch  603/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.910, Loss:  0.067
+Epoch   1 Batch  604/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.912, Loss:  0.079
+Epoch   1 Batch  605/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.905, Loss:  0.089
+Epoch   1 Batch  606/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.907, Loss:  0.064
+Epoch   1 Batch  607/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.907, Loss:  0.069
+Epoch   1 Batch  608/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.909, Loss:  0.075
+Epoch   1 Batch  609/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.911, Loss:  0.067
+Epoch   1 Batch  610/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.909, Loss:  0.084
+Epoch   1 Batch  611/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.914, Loss:  0.057
+Epoch   1 Batch  612/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.916, Loss:  0.062
+Epoch   1 Batch  613/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.911, Loss:  0.084
+Epoch   1 Batch  614/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.896, Loss:  0.058
+Epoch   1 Batch  615/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.903, Loss:  0.069
+Epoch   1 Batch  616/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.917, Loss:  0.076
+Epoch   1 Batch  617/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.922, Loss:  0.069
+Epoch   1 Batch  618/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.911, Loss:  0.067
+Epoch   1 Batch  619/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.915, Loss:  0.055
+Epoch   1 Batch  620/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.920, Loss:  0.067
+Epoch   1 Batch  621/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.916, Loss:  0.065
+Epoch   1 Batch  622/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.912, Loss:  0.083
+Epoch   1 Batch  623/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.911, Loss:  0.074
+Epoch   1 Batch  624/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.906, Loss:  0.080
+Epoch   1 Batch  625/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.911, Loss:  0.063
+Epoch   1 Batch  626/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.904, Loss:  0.068
+Epoch   1 Batch  627/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.908, Loss:  0.069
+Epoch   1 Batch  628/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.909, Loss:  0.071
+Epoch   1 Batch  629/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.908, Loss:  0.074
+Epoch   1 Batch  630/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.912, Loss:  0.063
+Epoch   1 Batch  631/1077 - Train Accuracy:  0.890, Validation Accuracy:  0.911, Loss:  0.071
+Epoch   1 Batch  632/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.912, Loss:  0.063
+Epoch   1 Batch  633/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.913, Loss:  0.074
+Epoch   1 Batch  634/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.915, Loss:  0.056
+Epoch   1 Batch  635/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.913, Loss:  0.078
+Epoch   1 Batch  636/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.915, Loss:  0.063
+Epoch   1 Batch  637/1077 - Train Accuracy:  0.880, Validation Accuracy:  0.911, Loss:  0.066
+Epoch   1 Batch  638/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.911, Loss:  0.061
+Epoch   1 Batch  639/1077 - Train Accuracy:  0.894, Validation Accuracy:  0.911, Loss:  0.091
+Epoch   1 Batch  640/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.923, Loss:  0.065
+Epoch   1 Batch  641/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.916, Loss:  0.069
+Epoch   1 Batch  642/1077 - Train Accuracy:  0.888, Validation Accuracy:  0.922, Loss:  0.083
+Epoch   1 Batch  643/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.924, Loss:  0.053
+Epoch   1 Batch  644/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.920, Loss:  0.073
+Epoch   1 Batch  645/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.915, Loss:  0.080
+Epoch   1 Batch  646/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.911, Loss:  0.071
+Epoch   1 Batch  647/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.915, Loss:  0.063
+Epoch   1 Batch  648/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.927, Loss:  0.046
+Epoch   1 Batch  649/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.927, Loss:  0.063
+Epoch   1 Batch  650/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.920, Loss:  0.071
+Epoch   1 Batch  651/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.915, Loss:  0.062
+Epoch   1 Batch  652/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.908, Loss:  0.065
+Epoch   1 Batch  653/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.911, Loss:  0.067
+Epoch   1 Batch  654/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.910, Loss:  0.058
+Epoch   1 Batch  655/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.906, Loss:  0.076
+Epoch   1 Batch  656/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.898, Loss:  0.067
+Epoch   1 Batch  657/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.909, Loss:  0.058
+Epoch   1 Batch  658/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.906, Loss:  0.055
+Epoch   1 Batch  659/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.902, Loss:  0.073
+Epoch   1 Batch  660/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.908, Loss:  0.069
+Epoch   1 Batch  661/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.909, Loss:  0.053
+Epoch   1 Batch  662/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.904, Loss:  0.075
+Epoch   1 Batch  663/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.906, Loss:  0.057
+Epoch   1 Batch  664/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.901, Loss:  0.061
+Epoch   1 Batch  665/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.903, Loss:  0.058
+Epoch   1 Batch  666/1077 - Train Accuracy:  0.888, Validation Accuracy:  0.903, Loss:  0.073
+Epoch   1 Batch  667/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.911, Loss:  0.082
+Epoch   1 Batch  668/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.909, Loss:  0.071
+Epoch   1 Batch  669/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.906, Loss:  0.071
+Epoch   1 Batch  670/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.908, Loss:  0.078
+Epoch   1 Batch  671/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.913, Loss:  0.069
+Epoch   1 Batch  672/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.911, Loss:  0.065
+Epoch   1 Batch  673/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.904, Loss:  0.062
+Epoch   1 Batch  674/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.901, Loss:  0.072
+Epoch   1 Batch  675/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.906, Loss:  0.082
+Epoch   1 Batch  676/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.907, Loss:  0.063
+Epoch   1 Batch  677/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.918, Loss:  0.091
+Epoch   1 Batch  678/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.911, Loss:  0.057
+Epoch   1 Batch  679/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.907, Loss:  0.062
+Epoch   1 Batch  680/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.904, Loss:  0.061
+Epoch   1 Batch  681/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.894, Loss:  0.066
+Epoch   1 Batch  682/1077 - Train Accuracy:  0.882, Validation Accuracy:  0.903, Loss:  0.062
+Epoch   1 Batch  683/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.903, Loss:  0.057
+Epoch   1 Batch  684/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.909, Loss:  0.067
+Epoch   1 Batch  685/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.914, Loss:  0.075
+Epoch   1 Batch  686/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.917, Loss:  0.060
+Epoch   1 Batch  687/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.913, Loss:  0.091
+Epoch   1 Batch  688/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.914, Loss:  0.066
+Epoch   1 Batch  689/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.904, Loss:  0.047
+Epoch   1 Batch  690/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.909, Loss:  0.068
+Epoch   1 Batch  691/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.906, Loss:  0.085
+Epoch   1 Batch  692/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.906, Loss:  0.061
+Epoch   1 Batch  693/1077 - Train Accuracy:  0.879, Validation Accuracy:  0.901, Loss:  0.084
+Epoch   1 Batch  694/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.885, Loss:  0.072
+Epoch   1 Batch  695/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.884, Loss:  0.049
+Epoch   1 Batch  696/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.886, Loss:  0.085
+Epoch   1 Batch  697/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.890, Loss:  0.069
+Epoch   1 Batch  698/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.900, Loss:  0.059
+Epoch   1 Batch  699/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.908, Loss:  0.056
+Epoch   1 Batch  700/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.906, Loss:  0.067
+Epoch   1 Batch  701/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.900, Loss:  0.074
+Epoch   1 Batch  702/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.904, Loss:  0.087
+Epoch   1 Batch  703/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.915, Loss:  0.070
+Epoch   1 Batch  704/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.910, Loss:  0.083
+Epoch   1 Batch  705/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.911, Loss:  0.074
+Epoch   1 Batch  706/1077 - Train Accuracy:  0.890, Validation Accuracy:  0.914, Loss:  0.114
+Epoch   1 Batch  707/1077 - Train Accuracy:  0.888, Validation Accuracy:  0.913, Loss:  0.067
+Epoch   1 Batch  708/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.909, Loss:  0.081
+Epoch   1 Batch  709/1077 - Train Accuracy:  0.880, Validation Accuracy:  0.907, Loss:  0.089
+Epoch   1 Batch  710/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.905, Loss:  0.059
+Epoch   1 Batch  711/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.893, Loss:  0.083
+Epoch   1 Batch  712/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.896, Loss:  0.058
+Epoch   1 Batch  713/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.899, Loss:  0.056
+Epoch   1 Batch  714/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.902, Loss:  0.068
+Epoch   1 Batch  715/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.895, Loss:  0.074
+Epoch   1 Batch  716/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.891, Loss:  0.056
+Epoch   1 Batch  717/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.887, Loss:  0.047
+Epoch   1 Batch  718/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.887, Loss:  0.056
+Epoch   1 Batch  719/1077 - Train Accuracy:  0.892, Validation Accuracy:  0.896, Loss:  0.084
+Epoch   1 Batch  720/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.901, Loss:  0.081
+Epoch   1 Batch  721/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.902, Loss:  0.074
+Epoch   1 Batch  722/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.904, Loss:  0.065
+Epoch   1 Batch  723/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.899, Loss:  0.075
+Epoch   1 Batch  724/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.907, Loss:  0.073
+Epoch   1 Batch  725/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.914, Loss:  0.059
+Epoch   1 Batch  726/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.914, Loss:  0.073
+Epoch   1 Batch  727/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.909, Loss:  0.064
+Epoch   1 Batch  728/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.909, Loss:  0.078
+Epoch   1 Batch  729/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.909, Loss:  0.082
+Epoch   1 Batch  730/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.893, Loss:  0.081
+Epoch   1 Batch  731/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.899, Loss:  0.063
+Epoch   1 Batch  732/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.899, Loss:  0.072
+Epoch   1 Batch  733/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.902, Loss:  0.082
+Epoch   1 Batch  734/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.896, Loss:  0.064
+Epoch   1 Batch  735/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.901, Loss:  0.061
+Epoch   1 Batch  736/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.914, Loss:  0.053
+Epoch   1 Batch  737/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.914, Loss:  0.082
+Epoch   1 Batch  738/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.913, Loss:  0.047
+Epoch   1 Batch  739/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.909, Loss:  0.061
+Epoch   1 Batch  740/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.914, Loss:  0.054
+Epoch   1 Batch  741/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.915, Loss:  0.073
+Epoch   1 Batch  742/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.918, Loss:  0.051
+Epoch   1 Batch  743/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.913, Loss:  0.066
+Epoch   1 Batch  744/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.918, Loss:  0.077
+Epoch   1 Batch  745/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.918, Loss:  0.075
+Epoch   1 Batch  746/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.917, Loss:  0.054
+Epoch   1 Batch  747/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.914, Loss:  0.040
+Epoch   1 Batch  748/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.914, Loss:  0.059
+Epoch   1 Batch  749/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.917, Loss:  0.069
+Epoch   1 Batch  750/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.916, Loss:  0.063
+Epoch   1 Batch  751/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.920, Loss:  0.058
+Epoch   1 Batch  752/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.916, Loss:  0.064
+Epoch   1 Batch  753/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.914, Loss:  0.060
+Epoch   1 Batch  754/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.910, Loss:  0.070
+Epoch   1 Batch  755/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.908, Loss:  0.067
+Epoch   1 Batch  756/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.924, Loss:  0.056
+Epoch   1 Batch  757/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.923, Loss:  0.050
+Epoch   1 Batch  758/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.919, Loss:  0.056
+Epoch   1 Batch  759/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.919, Loss:  0.054
+Epoch   1 Batch  760/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.915, Loss:  0.069
+Epoch   1 Batch  761/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.915, Loss:  0.059
+Epoch   1 Batch  762/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.912, Loss:  0.063
+Epoch   1 Batch  763/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.903, Loss:  0.063
+Epoch   1 Batch  764/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.907, Loss:  0.067
+Epoch   1 Batch  765/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.918, Loss:  0.083
+Epoch   1 Batch  766/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.914, Loss:  0.063
+Epoch   1 Batch  767/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.922, Loss:  0.061
+Epoch   1 Batch  768/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.924, Loss:  0.062
+Epoch   1 Batch  769/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.918, Loss:  0.065
+Epoch   1 Batch  770/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.908, Loss:  0.064
+Epoch   1 Batch  771/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.906, Loss:  0.078
+Epoch   1 Batch  772/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.909, Loss:  0.060
+Epoch   1 Batch  773/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.909, Loss:  0.068
+Epoch   1 Batch  774/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.909, Loss:  0.067
+Epoch   1 Batch  775/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.907, Loss:  0.072
+Epoch   1 Batch  776/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.924, Loss:  0.058
+Epoch   1 Batch  777/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.926, Loss:  0.070
+Epoch   1 Batch  778/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.924, Loss:  0.064
+Epoch   1 Batch  779/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.920, Loss:  0.069
+Epoch   1 Batch  780/1077 - Train Accuracy:  0.889, Validation Accuracy:  0.916, Loss:  0.091
+Epoch   1 Batch  781/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.923, Loss:  0.054
+Epoch   1 Batch  782/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.917, Loss:  0.053
+Epoch   1 Batch  783/1077 - Train Accuracy:  0.890, Validation Accuracy:  0.918, Loss:  0.076
+Epoch   1 Batch  784/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.920, Loss:  0.053
+Epoch   1 Batch  785/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.917, Loss:  0.051
+Epoch   1 Batch  786/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.922, Loss:  0.063
+Epoch   1 Batch  787/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.913, Loss:  0.065
+Epoch   1 Batch  788/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.905, Loss:  0.060
+Epoch   1 Batch  789/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.901, Loss:  0.078
+Epoch   1 Batch  790/1077 - Train Accuracy:  0.884, Validation Accuracy:  0.907, Loss:  0.065
+Epoch   1 Batch  791/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.911, Loss:  0.066
+Epoch   1 Batch  792/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.913, Loss:  0.072
+Epoch   1 Batch  793/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.917, Loss:  0.061
+Epoch   1 Batch  794/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.920, Loss:  0.055
+Epoch   1 Batch  795/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.923, Loss:  0.068
+Epoch   1 Batch  796/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.924, Loss:  0.055
+Epoch   1 Batch  797/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.928, Loss:  0.065
+Epoch   1 Batch  798/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.935, Loss:  0.069
+Epoch   1 Batch  799/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.935, Loss:  0.079
+Epoch   1 Batch  800/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.929, Loss:  0.064
+Epoch   1 Batch  801/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.925, Loss:  0.072
+Epoch   1 Batch  802/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.926, Loss:  0.068
+Epoch   1 Batch  803/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.929, Loss:  0.073
+Epoch   1 Batch  804/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.929, Loss:  0.047
+Epoch   1 Batch  805/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.928, Loss:  0.067
+Epoch   1 Batch  806/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.931, Loss:  0.059
+Epoch   1 Batch  807/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.931, Loss:  0.056
+Epoch   1 Batch  808/1077 - Train Accuracy:  0.889, Validation Accuracy:  0.937, Loss:  0.090
+Epoch   1 Batch  809/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.930, Loss:  0.089
+Epoch   1 Batch  810/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.925, Loss:  0.058
+Epoch   1 Batch  811/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.933, Loss:  0.059
+Epoch   1 Batch  812/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.933, Loss:  0.060
+Epoch   1 Batch  813/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.929, Loss:  0.061
+Epoch   1 Batch  814/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.934, Loss:  0.084
+Epoch   1 Batch  815/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.934, Loss:  0.075
+Epoch   1 Batch  816/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.934, Loss:  0.076
+Epoch   1 Batch  817/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.921, Loss:  0.072
+Epoch   1 Batch  818/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.925, Loss:  0.067
+Epoch   1 Batch  819/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.925, Loss:  0.069
+Epoch   1 Batch  820/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.923, Loss:  0.054
+Epoch   1 Batch  821/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.912, Loss:  0.069
+Epoch   1 Batch  822/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.918, Loss:  0.060
+Epoch   1 Batch  823/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.926, Loss:  0.070
+Epoch   1 Batch  824/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.930, Loss:  0.063
+Epoch   1 Batch  825/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.914, Loss:  0.056
+Epoch   1 Batch  826/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.920, Loss:  0.059
+Epoch   1 Batch  827/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.917, Loss:  0.066
+Epoch   1 Batch  828/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.917, Loss:  0.056
+Epoch   1 Batch  829/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.920, Loss:  0.077
+Epoch   1 Batch  830/1077 - Train Accuracy:  0.874, Validation Accuracy:  0.924, Loss:  0.076
+Epoch   1 Batch  831/1077 - Train Accuracy:  0.852, Validation Accuracy:  0.919, Loss:  0.069
+Epoch   1 Batch  832/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.916, Loss:  0.062
+Epoch   1 Batch  833/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.918, Loss:  0.071
+Epoch   1 Batch  834/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.927, Loss:  0.068
+Epoch   1 Batch  835/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.931, Loss:  0.071
+Epoch   1 Batch  836/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.928, Loss:  0.063
+Epoch   1 Batch  837/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.930, Loss:  0.086
+Epoch   1 Batch  838/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.937, Loss:  0.058
+Epoch   1 Batch  839/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.938, Loss:  0.057
+Epoch   1 Batch  840/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.937, Loss:  0.055
+Epoch   1 Batch  841/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.941, Loss:  0.070
+Epoch   1 Batch  842/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.934, Loss:  0.053
+Epoch   1 Batch  843/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.932, Loss:  0.045
+Epoch   1 Batch  844/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.932, Loss:  0.053
+Epoch   1 Batch  845/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.928, Loss:  0.053
+Epoch   1 Batch  846/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.922, Loss:  0.071
+Epoch   1 Batch  847/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.919, Loss:  0.078
+Epoch   1 Batch  848/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.911, Loss:  0.053
+Epoch   1 Batch  849/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.920, Loss:  0.052
+Epoch   1 Batch  850/1077 - Train Accuracy:  0.884, Validation Accuracy:  0.924, Loss:  0.098
+Epoch   1 Batch  851/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.920, Loss:  0.076
+Epoch   1 Batch  852/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.920, Loss:  0.091
+Epoch   1 Batch  853/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.918, Loss:  0.076
+Epoch   1 Batch  854/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.912, Loss:  0.086
+Epoch   1 Batch  855/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.906, Loss:  0.064
+Epoch   1 Batch  856/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.903, Loss:  0.070
+Epoch   1 Batch  857/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.912, Loss:  0.070
+Epoch   1 Batch  858/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.907, Loss:  0.059
+Epoch   1 Batch  859/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.903, Loss:  0.079
+Epoch   1 Batch  860/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.900, Loss:  0.081
+Epoch   1 Batch  861/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.900, Loss:  0.067
+Epoch   1 Batch  862/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.901, Loss:  0.067
+Epoch   1 Batch  863/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.909, Loss:  0.054
+Epoch   1 Batch  864/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.898, Loss:  0.073
+Epoch   1 Batch  865/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.896, Loss:  0.069
+Epoch   1 Batch  866/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.913, Loss:  0.078
+Epoch   1 Batch  867/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.911, Loss:  0.115
+Epoch   1 Batch  868/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.909, Loss:  0.069
+Epoch   1 Batch  869/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.910, Loss:  0.067
+Epoch   1 Batch  870/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.911, Loss:  0.069
+Epoch   1 Batch  871/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.911, Loss:  0.066
+Epoch   1 Batch  872/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.918, Loss:  0.067
+Epoch   1 Batch  873/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.918, Loss:  0.069
+Epoch   1 Batch  874/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.922, Loss:  0.078
+Epoch   1 Batch  875/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.919, Loss:  0.082
+Epoch   1 Batch  876/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.929, Loss:  0.064
+Epoch   1 Batch  877/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.936, Loss:  0.057
+Epoch   1 Batch  878/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.930, Loss:  0.054
+Epoch   1 Batch  879/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.921, Loss:  0.055
+Epoch   1 Batch  880/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.923, Loss:  0.071
+Epoch   1 Batch  881/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.912, Loss:  0.073
+Epoch   1 Batch  882/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.915, Loss:  0.075
+Epoch   1 Batch  883/1077 - Train Accuracy:  0.888, Validation Accuracy:  0.921, Loss:  0.092
+Epoch   1 Batch  884/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.913, Loss:  0.067
+Epoch   1 Batch  885/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.908, Loss:  0.042
+Epoch   1 Batch  886/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.910, Loss:  0.064
+Epoch   1 Batch  887/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.906, Loss:  0.083
+Epoch   1 Batch  888/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.911, Loss:  0.049
+Epoch   1 Batch  889/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.900, Loss:  0.057
+Epoch   1 Batch  890/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.901, Loss:  0.069
+Epoch   1 Batch  891/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.905, Loss:  0.057
+Epoch   1 Batch  892/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.908, Loss:  0.054
+Epoch   1 Batch  893/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.903, Loss:  0.073
+Epoch   1 Batch  894/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.911, Loss:  0.069
+Epoch   1 Batch  895/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.909, Loss:  0.064
+Epoch   1 Batch  896/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.923, Loss:  0.064
+Epoch   1 Batch  897/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.919, Loss:  0.053
+Epoch   1 Batch  898/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.919, Loss:  0.057
+Epoch   1 Batch  899/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.909, Loss:  0.076
+Epoch   1 Batch  900/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.917, Loss:  0.076
+Epoch   1 Batch  901/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.917, Loss:  0.075
+Epoch   1 Batch  902/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.929, Loss:  0.081
+Epoch   1 Batch  903/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.925, Loss:  0.062
+Epoch   1 Batch  904/1077 - Train Accuracy:  0.879, Validation Accuracy:  0.918, Loss:  0.060
+Epoch   1 Batch  905/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.912, Loss:  0.054
+Epoch   1 Batch  906/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.904, Loss:  0.069
+Epoch   1 Batch  907/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.900, Loss:  0.078
+Epoch   1 Batch  908/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.909, Loss:  0.074
+Epoch   1 Batch  909/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.901, Loss:  0.071
+Epoch   1 Batch  910/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.903, Loss:  0.065
+Epoch   1 Batch  911/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.907, Loss:  0.074
+Epoch   1 Batch  912/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.912, Loss:  0.061
+Epoch   1 Batch  913/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.900, Loss:  0.092
+Epoch   1 Batch  914/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.902, Loss:  0.091
+Epoch   1 Batch  915/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.898, Loss:  0.057
+Epoch   1 Batch  916/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.903, Loss:  0.086
+Epoch   1 Batch  917/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.903, Loss:  0.065
+Epoch   1 Batch  918/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.909, Loss:  0.058
+Epoch   1 Batch  919/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.904, Loss:  0.051
+Epoch   1 Batch  920/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.912, Loss:  0.069
+Epoch   1 Batch  921/1077 - Train Accuracy:  0.883, Validation Accuracy:  0.906, Loss:  0.066
+Epoch   1 Batch  922/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.897, Loss:  0.073
+Epoch   1 Batch  923/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.911, Loss:  0.044
+Epoch   1 Batch  924/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.905, Loss:  0.086
+Epoch   1 Batch  925/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.908, Loss:  0.066
+Epoch   1 Batch  926/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.908, Loss:  0.055
+Epoch   1 Batch  927/1077 - Train Accuracy:  0.892, Validation Accuracy:  0.908, Loss:  0.077
+Epoch   1 Batch  928/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.902, Loss:  0.068
+Epoch   1 Batch  929/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.901, Loss:  0.062
+Epoch   1 Batch  930/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.901, Loss:  0.060
+Epoch   1 Batch  931/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.905, Loss:  0.053
+Epoch   1 Batch  932/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.898, Loss:  0.067
+Epoch   1 Batch  933/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.896, Loss:  0.062
+Epoch   1 Batch  934/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.906, Loss:  0.051
+Epoch   1 Batch  935/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.898, Loss:  0.055
+Epoch   1 Batch  936/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.912, Loss:  0.069
+Epoch   1 Batch  937/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.917, Loss:  0.075
+Epoch   1 Batch  938/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.912, Loss:  0.082
+Epoch   1 Batch  939/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.910, Loss:  0.072
+Epoch   1 Batch  940/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.910, Loss:  0.044
+Epoch   1 Batch  941/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.910, Loss:  0.059
+Epoch   1 Batch  942/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.908, Loss:  0.065
+Epoch   1 Batch  943/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.912, Loss:  0.063
+Epoch   1 Batch  944/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.910, Loss:  0.056
+Epoch   1 Batch  945/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.909, Loss:  0.057
+Epoch   1 Batch  946/1077 - Train Accuracy:  0.968, Validation Accuracy:  0.916, Loss:  0.044
+Epoch   1 Batch  947/1077 - Train Accuracy:  0.889, Validation Accuracy:  0.910, Loss:  0.059
+Epoch   1 Batch  948/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.909, Loss:  0.059
+Epoch   1 Batch  949/1077 - Train Accuracy:  0.965, Validation Accuracy:  0.915, Loss:  0.052
+Epoch   1 Batch  950/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.917, Loss:  0.058
+Epoch   1 Batch  951/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.923, Loss:  0.068
+Epoch   1 Batch  952/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.928, Loss:  0.055
+Epoch   1 Batch  953/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.930, Loss:  0.049
+Epoch   1 Batch  954/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.925, Loss:  0.067
+Epoch   1 Batch  955/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.928, Loss:  0.074
+Epoch   1 Batch  956/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.933, Loss:  0.066
+Epoch   1 Batch  957/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.922, Loss:  0.050
+Epoch   1 Batch  958/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.914, Loss:  0.067
+Epoch   1 Batch  959/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.918, Loss:  0.068
+Epoch   1 Batch  960/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.916, Loss:  0.060
+Epoch   1 Batch  961/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.918, Loss:  0.068
+Epoch   1 Batch  962/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.916, Loss:  0.054
+Epoch   1 Batch  963/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.912, Loss:  0.094
+Epoch   1 Batch  964/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.915, Loss:  0.054
+Epoch   1 Batch  965/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.922, Loss:  0.074
+Epoch   1 Batch  966/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.919, Loss:  0.052
+Epoch   1 Batch  967/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.919, Loss:  0.064
+Epoch   1 Batch  968/1077 - Train Accuracy:  0.883, Validation Accuracy:  0.917, Loss:  0.076
+Epoch   1 Batch  969/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.916, Loss:  0.085
+Epoch   1 Batch  970/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.913, Loss:  0.066
+Epoch   1 Batch  971/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.908, Loss:  0.057
+Epoch   1 Batch  972/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.908, Loss:  0.059
+Epoch   1 Batch  973/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.908, Loss:  0.057
+Epoch   1 Batch  974/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.913, Loss:  0.046
+Epoch   1 Batch  975/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.911, Loss:  0.065
+Epoch   1 Batch  976/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.912, Loss:  0.050
+Epoch   1 Batch  977/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.913, Loss:  0.048
+Epoch   1 Batch  978/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.912, Loss:  0.064
+Epoch   1 Batch  979/1077 - Train Accuracy:  0.880, Validation Accuracy:  0.913, Loss:  0.068
+Epoch   1 Batch  980/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.920, Loss:  0.056
+Epoch   1 Batch  981/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.917, Loss:  0.065
+Epoch   1 Batch  982/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.909, Loss:  0.065
+Epoch   1 Batch  983/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.907, Loss:  0.063
+Epoch   1 Batch  984/1077 - Train Accuracy:  0.878, Validation Accuracy:  0.915, Loss:  0.076
+Epoch   1 Batch  985/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.911, Loss:  0.059
+Epoch   1 Batch  986/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.918, Loss:  0.056
+Epoch   1 Batch  987/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.918, Loss:  0.048
+Epoch   1 Batch  988/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.913, Loss:  0.072
+Epoch   1 Batch  989/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.915, Loss:  0.073
+Epoch   1 Batch  990/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.918, Loss:  0.066
+Epoch   1 Batch  991/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.918, Loss:  0.065
+Epoch   1 Batch  992/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.919, Loss:  0.067
+Epoch   1 Batch  993/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.915, Loss:  0.044
+Epoch   1 Batch  994/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.911, Loss:  0.061
+Epoch   1 Batch  995/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.912, Loss:  0.066
+Epoch   1 Batch  996/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.917, Loss:  0.060
+Epoch   1 Batch  997/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.912, Loss:  0.054
+Epoch   1 Batch  998/1077 - Train Accuracy:  0.890, Validation Accuracy:  0.918, Loss:  0.063
+Epoch   1 Batch  999/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.918, Loss:  0.065
+Epoch   1 Batch 1000/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.920, Loss:  0.056
+Epoch   1 Batch 1001/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.915, Loss:  0.053
+Epoch   1 Batch 1002/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.915, Loss:  0.047
+Epoch   1 Batch 1003/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.915, Loss:  0.059
+Epoch   1 Batch 1004/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.917, Loss:  0.070
+Epoch   1 Batch 1005/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.915, Loss:  0.050
+Epoch   1 Batch 1006/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.914, Loss:  0.055
+Epoch   1 Batch 1007/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.911, Loss:  0.057
+Epoch   1 Batch 1008/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.921, Loss:  0.085
+Epoch   1 Batch 1009/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.925, Loss:  0.059
+Epoch   1 Batch 1010/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.925, Loss:  0.058
+Epoch   1 Batch 1011/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.924, Loss:  0.055
+Epoch   1 Batch 1012/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.929, Loss:  0.051
+Epoch   1 Batch 1013/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.928, Loss:  0.052
+Epoch   1 Batch 1014/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.934, Loss:  0.064
+Epoch   1 Batch 1015/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.929, Loss:  0.075
+Epoch   1 Batch 1016/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.922, Loss:  0.066
+Epoch   1 Batch 1017/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.921, Loss:  0.059
+Epoch   1 Batch 1018/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.921, Loss:  0.048
+Epoch   1 Batch 1019/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.917, Loss:  0.075
+Epoch   1 Batch 1020/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.917, Loss:  0.058
+Epoch   1 Batch 1021/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.915, Loss:  0.060
+Epoch   1 Batch 1022/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.914, Loss:  0.053
+Epoch   1 Batch 1023/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.910, Loss:  0.062
+Epoch   1 Batch 1024/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.906, Loss:  0.071
+Epoch   1 Batch 1025/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.912, Loss:  0.059
+Epoch   1 Batch 1026/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.919, Loss:  0.080
+Epoch   1 Batch 1027/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.919, Loss:  0.067
+Epoch   1 Batch 1028/1077 - Train Accuracy:  0.875, Validation Accuracy:  0.922, Loss:  0.061
+Epoch   1 Batch 1029/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.920, Loss:  0.051
+Epoch   1 Batch 1030/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.919, Loss:  0.060
+Epoch   1 Batch 1031/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.921, Loss:  0.063
+Epoch   1 Batch 1032/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.915, Loss:  0.064
+Epoch   1 Batch 1033/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.913, Loss:  0.057
+Epoch   1 Batch 1034/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.913, Loss:  0.055
+Epoch   1 Batch 1035/1077 - Train Accuracy:  0.958, Validation Accuracy:  0.918, Loss:  0.036
+Epoch   1 Batch 1036/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.919, Loss:  0.076
+Epoch   1 Batch 1037/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.924, Loss:  0.061
+Epoch   1 Batch 1038/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.923, Loss:  0.076
+Epoch   1 Batch 1039/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.929, Loss:  0.066
+Epoch   1 Batch 1040/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.928, Loss:  0.061
+Epoch   1 Batch 1041/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.928, Loss:  0.067
+Epoch   1 Batch 1042/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.920, Loss:  0.052
+Epoch   1 Batch 1043/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.929, Loss:  0.076
+Epoch   1 Batch 1044/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.924, Loss:  0.081
+Epoch   1 Batch 1045/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.913, Loss:  0.058
+Epoch   1 Batch 1046/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.911, Loss:  0.046
+Epoch   1 Batch 1047/1077 - Train Accuracy:  0.963, Validation Accuracy:  0.909, Loss:  0.055
+Epoch   1 Batch 1048/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.908, Loss:  0.050
+Epoch   1 Batch 1049/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.903, Loss:  0.046
+Epoch   1 Batch 1050/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.903, Loss:  0.059
+Epoch   1 Batch 1051/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.900, Loss:  0.066
+Epoch   1 Batch 1052/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.900, Loss:  0.060
+Epoch   1 Batch 1053/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.907, Loss:  0.068
+Epoch   1 Batch 1054/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.912, Loss:  0.062
+Epoch   1 Batch 1055/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.909, Loss:  0.065
+Epoch   1 Batch 1056/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.909, Loss:  0.054
+Epoch   1 Batch 1057/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.902, Loss:  0.068
+Epoch   1 Batch 1058/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.906, Loss:  0.071
+Epoch   1 Batch 1059/1077 - Train Accuracy:  0.872, Validation Accuracy:  0.901, Loss:  0.074
+Epoch   1 Batch 1060/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.907, Loss:  0.051
+Epoch   1 Batch 1061/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.914, Loss:  0.076
+Epoch   1 Batch 1062/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.907, Loss:  0.062
+Epoch   1 Batch 1063/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.909, Loss:  0.066
+Epoch   1 Batch 1064/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.909, Loss:  0.063
+Epoch   1 Batch 1065/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.909, Loss:  0.071
+Epoch   1 Batch 1066/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.909, Loss:  0.055
+Epoch   1 Batch 1067/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.919, Loss:  0.074
+Epoch   1 Batch 1068/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.910, Loss:  0.060
+Epoch   1 Batch 1069/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.913, Loss:  0.045
+Epoch   1 Batch 1070/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.913, Loss:  0.070
+Epoch   1 Batch 1071/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.913, Loss:  0.058
+Epoch   1 Batch 1072/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.919, Loss:  0.055
+Epoch   1 Batch 1073/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.909, Loss:  0.068
+Epoch   1 Batch 1074/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.903, Loss:  0.070
+Epoch   1 Batch 1075/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.900, Loss:  0.070
+Epoch   2 Batch    0/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.907, Loss:  0.046
+Epoch   2 Batch    1/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.910, Loss:  0.060
+Epoch   2 Batch    2/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.906, Loss:  0.068
+Epoch   2 Batch    3/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.907, Loss:  0.061
+Epoch   2 Batch    4/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.910, Loss:  0.056
+Epoch   2 Batch    5/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.918, Loss:  0.072
+Epoch   2 Batch    6/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.917, Loss:  0.065
+Epoch   2 Batch    7/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.905, Loss:  0.052
+Epoch   2 Batch    8/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.924, Loss:  0.060
+Epoch   2 Batch    9/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.930, Loss:  0.065
+Epoch   2 Batch   10/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.921, Loss:  0.062
+Epoch   2 Batch   11/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.916, Loss:  0.072
+Epoch   2 Batch   12/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.922, Loss:  0.058
+Epoch   2 Batch   13/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.922, Loss:  0.063
+Epoch   2 Batch   14/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.925, Loss:  0.054
+Epoch   2 Batch   15/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.930, Loss:  0.060
+Epoch   2 Batch   16/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.923, Loss:  0.064
+Epoch   2 Batch   17/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.929, Loss:  0.055
+Epoch   2 Batch   18/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.929, Loss:  0.065
+Epoch   2 Batch   19/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.924, Loss:  0.065
+Epoch   2 Batch   20/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.918, Loss:  0.060
+Epoch   2 Batch   21/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.924, Loss:  0.066
+Epoch   2 Batch   22/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.930, Loss:  0.067
+Epoch   2 Batch   23/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.926, Loss:  0.066
+Epoch   2 Batch   24/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.924, Loss:  0.069
+Epoch   2 Batch   25/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.915, Loss:  0.047
+Epoch   2 Batch   26/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.916, Loss:  0.066
+Epoch   2 Batch   27/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.912, Loss:  0.052
+Epoch   2 Batch   28/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.915, Loss:  0.056
+Epoch   2 Batch   29/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.913, Loss:  0.063
+Epoch   2 Batch   30/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.918, Loss:  0.051
+Epoch   2 Batch   31/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.913, Loss:  0.052
+Epoch   2 Batch   32/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.918, Loss:  0.054
+Epoch   2 Batch   33/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.907, Loss:  0.055
+Epoch   2 Batch   34/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.900, Loss:  0.063
+Epoch   2 Batch   35/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.900, Loss:  0.066
+Epoch   2 Batch   36/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.898, Loss:  0.056
+Epoch   2 Batch   37/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.903, Loss:  0.063
+Epoch   2 Batch   38/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.907, Loss:  0.081
+Epoch   2 Batch   39/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.902, Loss:  0.068
+Epoch   2 Batch   40/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.906, Loss:  0.049
+Epoch   2 Batch   41/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.908, Loss:  0.058
+Epoch   2 Batch   42/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.908, Loss:  0.075
+Epoch   2 Batch   43/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.904, Loss:  0.044
+Epoch   2 Batch   44/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.905, Loss:  0.049
+Epoch   2 Batch   45/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.908, Loss:  0.052
+Epoch   2 Batch   46/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.904, Loss:  0.063
+Epoch   2 Batch   47/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.906, Loss:  0.068
+Epoch   2 Batch   48/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.912, Loss:  0.084
+Epoch   2 Batch   49/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.904, Loss:  0.078
+Epoch   2 Batch   50/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.902, Loss:  0.058
+Epoch   2 Batch   51/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.906, Loss:  0.073
+Epoch   2 Batch   52/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.907, Loss:  0.065
+Epoch   2 Batch   53/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.915, Loss:  0.058
+Epoch   2 Batch   54/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.910, Loss:  0.083
+Epoch   2 Batch   55/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.911, Loss:  0.056
+Epoch   2 Batch   56/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.907, Loss:  0.044
+Epoch   2 Batch   57/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.909, Loss:  0.054
+Epoch   2 Batch   58/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.901, Loss:  0.062
+Epoch   2 Batch   59/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.907, Loss:  0.050
+Epoch   2 Batch   60/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.901, Loss:  0.041
+Epoch   2 Batch   61/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.901, Loss:  0.076
+Epoch   2 Batch   62/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.910, Loss:  0.067
+Epoch   2 Batch   63/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.911, Loss:  0.043
+Epoch   2 Batch   64/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.901, Loss:  0.056
+Epoch   2 Batch   65/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.902, Loss:  0.054
+Epoch   2 Batch   66/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.904, Loss:  0.046
+Epoch   2 Batch   67/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.905, Loss:  0.060
+Epoch   2 Batch   68/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.906, Loss:  0.073
+Epoch   2 Batch   69/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.911, Loss:  0.070
+Epoch   2 Batch   70/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.914, Loss:  0.059
+Epoch   2 Batch   71/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.914, Loss:  0.043
+Epoch   2 Batch   72/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.918, Loss:  0.056
+Epoch   2 Batch   73/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.921, Loss:  0.052
+Epoch   2 Batch   74/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.916, Loss:  0.050
+Epoch   2 Batch   75/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.917, Loss:  0.074
+Epoch   2 Batch   76/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.914, Loss:  0.043
+Epoch   2 Batch   77/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.918, Loss:  0.061
+Epoch   2 Batch   78/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.915, Loss:  0.064
+Epoch   2 Batch   79/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.924, Loss:  0.059
+Epoch   2 Batch   80/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.925, Loss:  0.057
+Epoch   2 Batch   81/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.925, Loss:  0.046
+Epoch   2 Batch   82/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.932, Loss:  0.044
+Epoch   2 Batch   83/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.928, Loss:  0.071
+Epoch   2 Batch   84/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.929, Loss:  0.057
+Epoch   2 Batch   85/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.937, Loss:  0.054
+Epoch   2 Batch   86/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.932, Loss:  0.057
+Epoch   2 Batch   87/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.932, Loss:  0.062
+Epoch   2 Batch   88/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.930, Loss:  0.068
+Epoch   2 Batch   89/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.925, Loss:  0.075
+Epoch   2 Batch   90/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.931, Loss:  0.057
+Epoch   2 Batch   91/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.929, Loss:  0.055
+Epoch   2 Batch   92/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.919, Loss:  0.067
+Epoch   2 Batch   93/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.920, Loss:  0.051
+Epoch   2 Batch   94/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.932, Loss:  0.050
+Epoch   2 Batch   95/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.936, Loss:  0.067
+Epoch   2 Batch   96/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.940, Loss:  0.064
+Epoch   2 Batch   97/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.936, Loss:  0.057
+Epoch   2 Batch   98/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.936, Loss:  0.065
+Epoch   2 Batch   99/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.938, Loss:  0.068
+Epoch   2 Batch  100/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.929, Loss:  0.051
+Epoch   2 Batch  101/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.932, Loss:  0.056
+Epoch   2 Batch  102/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.928, Loss:  0.058
+Epoch   2 Batch  103/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.923, Loss:  0.071
+Epoch   2 Batch  104/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.919, Loss:  0.064
+Epoch   2 Batch  105/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.919, Loss:  0.055
+Epoch   2 Batch  106/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.919, Loss:  0.078
+Epoch   2 Batch  107/1077 - Train Accuracy:  0.883, Validation Accuracy:  0.915, Loss:  0.062
+Epoch   2 Batch  108/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.919, Loss:  0.061
+Epoch   2 Batch  109/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.913, Loss:  0.050
+Epoch   2 Batch  110/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.926, Loss:  0.042
+Epoch   2 Batch  111/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.919, Loss:  0.066
+Epoch   2 Batch  112/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.915, Loss:  0.057
+Epoch   2 Batch  113/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.911, Loss:  0.065
+Epoch   2 Batch  114/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.911, Loss:  0.044
+Epoch   2 Batch  115/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.912, Loss:  0.065
+Epoch   2 Batch  116/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.916, Loss:  0.061
+Epoch   2 Batch  117/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.916, Loss:  0.059
+Epoch   2 Batch  118/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.917, Loss:  0.049
+Epoch   2 Batch  119/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.911, Loss:  0.055
+Epoch   2 Batch  120/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.916, Loss:  0.067
+Epoch   2 Batch  121/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.909, Loss:  0.052
+Epoch   2 Batch  122/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.916, Loss:  0.053
+Epoch   2 Batch  123/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.917, Loss:  0.047
+Epoch   2 Batch  124/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.926, Loss:  0.077
+Epoch   2 Batch  125/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.920, Loss:  0.067
+Epoch   2 Batch  126/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.924, Loss:  0.051
+Epoch   2 Batch  127/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.912, Loss:  0.057
+Epoch   2 Batch  128/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.909, Loss:  0.061
+Epoch   2 Batch  129/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.894, Loss:  0.059
+Epoch   2 Batch  130/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.897, Loss:  0.057
+Epoch   2 Batch  131/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.901, Loss:  0.063
+Epoch   2 Batch  132/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.894, Loss:  0.051
+Epoch   2 Batch  133/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.899, Loss:  0.048
+Epoch   2 Batch  134/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.903, Loss:  0.046
+Epoch   2 Batch  135/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.908, Loss:  0.065
+Epoch   2 Batch  136/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.904, Loss:  0.050
+Epoch   2 Batch  137/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.904, Loss:  0.041
+Epoch   2 Batch  138/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.907, Loss:  0.054
+Epoch   2 Batch  139/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.903, Loss:  0.059
+Epoch   2 Batch  140/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.924, Loss:  0.053
+Epoch   2 Batch  141/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.926, Loss:  0.052
+Epoch   2 Batch  142/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.917, Loss:  0.052
+Epoch   2 Batch  143/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.925, Loss:  0.062
+Epoch   2 Batch  144/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.927, Loss:  0.087
+Epoch   2 Batch  145/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.923, Loss:  0.070
+Epoch   2 Batch  146/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.926, Loss:  0.091
+Epoch   2 Batch  147/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.935, Loss:  0.064
+Epoch   2 Batch  148/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.935, Loss:  0.066
+Epoch   2 Batch  149/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.914, Loss:  0.049
+Epoch   2 Batch  150/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.914, Loss:  0.056
+Epoch   2 Batch  151/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.909, Loss:  0.049
+Epoch   2 Batch  152/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.911, Loss:  0.074
+Epoch   2 Batch  153/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.907, Loss:  0.075
+Epoch   2 Batch  154/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.911, Loss:  0.047
+Epoch   2 Batch  155/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.920, Loss:  0.056
+Epoch   2 Batch  156/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.920, Loss:  0.049
+Epoch   2 Batch  157/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.920, Loss:  0.042
+Epoch   2 Batch  158/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.932, Loss:  0.073
+Epoch   2 Batch  159/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.920, Loss:  0.048
+Epoch   2 Batch  160/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.916, Loss:  0.045
+Epoch   2 Batch  161/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.916, Loss:  0.054
+Epoch   2 Batch  162/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.915, Loss:  0.076
+Epoch   2 Batch  163/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.925, Loss:  0.072
+Epoch   2 Batch  164/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.919, Loss:  0.056
+Epoch   2 Batch  165/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.914, Loss:  0.047
+Epoch   2 Batch  166/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.909, Loss:  0.063
+Epoch   2 Batch  167/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.908, Loss:  0.055
+Epoch   2 Batch  168/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.908, Loss:  0.070
+Epoch   2 Batch  169/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.913, Loss:  0.078
+Epoch   2 Batch  170/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.915, Loss:  0.070
+Epoch   2 Batch  171/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.920, Loss:  0.051
+Epoch   2 Batch  172/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.924, Loss:  0.046
+Epoch   2 Batch  173/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.921, Loss:  0.066
+Epoch   2 Batch  174/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.916, Loss:  0.051
+Epoch   2 Batch  175/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.916, Loss:  0.055
+Epoch   2 Batch  176/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.912, Loss:  0.066
+Epoch   2 Batch  177/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.911, Loss:  0.062
+Epoch   2 Batch  178/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.911, Loss:  0.064
+Epoch   2 Batch  179/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.915, Loss:  0.057
+Epoch   2 Batch  180/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.911, Loss:  0.048
+Epoch   2 Batch  181/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.909, Loss:  0.063
+Epoch   2 Batch  182/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.914, Loss:  0.057
+Epoch   2 Batch  183/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.914, Loss:  0.059
+Epoch   2 Batch  184/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.912, Loss:  0.055
+Epoch   2 Batch  185/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.912, Loss:  0.058
+Epoch   2 Batch  186/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.909, Loss:  0.056
+Epoch   2 Batch  187/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.914, Loss:  0.043
+Epoch   2 Batch  188/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.914, Loss:  0.056
+Epoch   2 Batch  189/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.919, Loss:  0.056
+Epoch   2 Batch  190/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.919, Loss:  0.051
+Epoch   2 Batch  191/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.918, Loss:  0.050
+Epoch   2 Batch  192/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.912, Loss:  0.067
+Epoch   2 Batch  193/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.903, Loss:  0.047
+Epoch   2 Batch  194/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.908, Loss:  0.045
+Epoch   2 Batch  195/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.913, Loss:  0.051
+Epoch   2 Batch  196/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.920, Loss:  0.045
+Epoch   2 Batch  197/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.920, Loss:  0.060
+Epoch   2 Batch  198/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.925, Loss:  0.059
+Epoch   2 Batch  199/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.925, Loss:  0.048
+Epoch   2 Batch  200/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.919, Loss:  0.065
+Epoch   2 Batch  201/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.929, Loss:  0.041
+Epoch   2 Batch  202/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.928, Loss:  0.044
+Epoch   2 Batch  203/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.926, Loss:  0.048
+Epoch   2 Batch  204/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.923, Loss:  0.073
+Epoch   2 Batch  205/1077 - Train Accuracy:  0.891, Validation Accuracy:  0.926, Loss:  0.060
+Epoch   2 Batch  206/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.918, Loss:  0.049
+Epoch   2 Batch  207/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.914, Loss:  0.048
+Epoch   2 Batch  208/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.918, Loss:  0.056
+Epoch   2 Batch  209/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.919, Loss:  0.045
+Epoch   2 Batch  210/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.911, Loss:  0.065
+Epoch   2 Batch  211/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.905, Loss:  0.045
+Epoch   2 Batch  212/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.911, Loss:  0.046
+Epoch   2 Batch  213/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.913, Loss:  0.052
+Epoch   2 Batch  214/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.913, Loss:  0.051
+Epoch   2 Batch  215/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.917, Loss:  0.060
+Epoch   2 Batch  216/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.911, Loss:  0.056
+Epoch   2 Batch  217/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.906, Loss:  0.044
+Epoch   2 Batch  218/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.905, Loss:  0.069
+Epoch   2 Batch  219/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.901, Loss:  0.042
+Epoch   2 Batch  220/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.900, Loss:  0.051
+Epoch   2 Batch  221/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.897, Loss:  0.056
+Epoch   2 Batch  222/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.904, Loss:  0.045
+Epoch   2 Batch  223/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.903, Loss:  0.043
+Epoch   2 Batch  224/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.912, Loss:  0.064
+Epoch   2 Batch  225/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.917, Loss:  0.058
+Epoch   2 Batch  226/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.921, Loss:  0.050
+Epoch   2 Batch  227/1077 - Train Accuracy:  0.892, Validation Accuracy:  0.911, Loss:  0.073
+Epoch   2 Batch  228/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.915, Loss:  0.053
+Epoch   2 Batch  229/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.930, Loss:  0.058
+Epoch   2 Batch  230/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.914, Loss:  0.056
+Epoch   2 Batch  231/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.914, Loss:  0.050
+Epoch   2 Batch  232/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.921, Loss:  0.041
+Epoch   2 Batch  233/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.911, Loss:  0.075
+Epoch   2 Batch  234/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.915, Loss:  0.062
+Epoch   2 Batch  235/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.922, Loss:  0.056
+Epoch   2 Batch  236/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.923, Loss:  0.064
+Epoch   2 Batch  237/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.919, Loss:  0.048
+Epoch   2 Batch  238/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.913, Loss:  0.048
+Epoch   2 Batch  239/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.918, Loss:  0.041
+Epoch   2 Batch  240/1077 - Train Accuracy:  0.960, Validation Accuracy:  0.916, Loss:  0.050
+Epoch   2 Batch  241/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.915, Loss:  0.045
+Epoch   2 Batch  242/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.909, Loss:  0.044
+Epoch   2 Batch  243/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.904, Loss:  0.055
+Epoch   2 Batch  244/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.904, Loss:  0.051
+Epoch   2 Batch  245/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.917, Loss:  0.043
+Epoch   2 Batch  246/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.917, Loss:  0.044
+Epoch   2 Batch  247/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.923, Loss:  0.056
+Epoch   2 Batch  248/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.927, Loss:  0.045
+Epoch   2 Batch  249/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.924, Loss:  0.052
+Epoch   2 Batch  250/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.921, Loss:  0.056
+Epoch   2 Batch  251/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.916, Loss:  0.057
+Epoch   2 Batch  252/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.917, Loss:  0.061
+Epoch   2 Batch  253/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.917, Loss:  0.056
+Epoch   2 Batch  254/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.910, Loss:  0.057
+Epoch   2 Batch  255/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.910, Loss:  0.054
+Epoch   2 Batch  256/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.906, Loss:  0.073
+Epoch   2 Batch  257/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.905, Loss:  0.055
+Epoch   2 Batch  258/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.907, Loss:  0.054
+Epoch   2 Batch  259/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.906, Loss:  0.045
+Epoch   2 Batch  260/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.901, Loss:  0.048
+Epoch   2 Batch  261/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.901, Loss:  0.057
+Epoch   2 Batch  262/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.911, Loss:  0.048
+Epoch   2 Batch  263/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.912, Loss:  0.051
+Epoch   2 Batch  264/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.913, Loss:  0.053
+Epoch   2 Batch  265/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.918, Loss:  0.051
+Epoch   2 Batch  266/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.919, Loss:  0.057
+Epoch   2 Batch  267/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.925, Loss:  0.050
+Epoch   2 Batch  268/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.927, Loss:  0.062
+Epoch   2 Batch  269/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.926, Loss:  0.082
+Epoch   2 Batch  270/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.925, Loss:  0.065
+Epoch   2 Batch  271/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.924, Loss:  0.048
+Epoch   2 Batch  272/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.915, Loss:  0.093
+Epoch   2 Batch  273/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.922, Loss:  0.049
+Epoch   2 Batch  274/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.917, Loss:  0.066
+Epoch   2 Batch  275/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.917, Loss:  0.055
+Epoch   2 Batch  276/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.910, Loss:  0.088
+Epoch   2 Batch  277/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.915, Loss:  0.049
+Epoch   2 Batch  278/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.917, Loss:  0.067
+Epoch   2 Batch  279/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.914, Loss:  0.068
+Epoch   2 Batch  280/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.915, Loss:  0.072
+Epoch   2 Batch  281/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.920, Loss:  0.072
+Epoch   2 Batch  282/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.912, Loss:  0.082
+Epoch   2 Batch  283/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.919, Loss:  0.080
+Epoch   2 Batch  284/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.928, Loss:  0.062
+Epoch   2 Batch  285/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.917, Loss:  0.061
+Epoch   2 Batch  286/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.918, Loss:  0.053
+Epoch   2 Batch  287/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.909, Loss:  0.060
+Epoch   2 Batch  288/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.904, Loss:  0.067
+Epoch   2 Batch  289/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.901, Loss:  0.056
+Epoch   2 Batch  290/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.915, Loss:  0.088
+Epoch   2 Batch  291/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.922, Loss:  0.076
+Epoch   2 Batch  292/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.918, Loss:  0.067
+Epoch   2 Batch  293/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.917, Loss:  0.067
+Epoch   2 Batch  294/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.917, Loss:  0.052
+Epoch   2 Batch  295/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.913, Loss:  0.067
+Epoch   2 Batch  296/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.913, Loss:  0.060
+Epoch   2 Batch  297/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.917, Loss:  0.065
+Epoch   2 Batch  298/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.918, Loss:  0.079
+Epoch   2 Batch  299/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.921, Loss:  0.067
+Epoch   2 Batch  300/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.917, Loss:  0.056
+Epoch   2 Batch  301/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.908, Loss:  0.045
+Epoch   2 Batch  302/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.901, Loss:  0.053
+Epoch   2 Batch  303/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.906, Loss:  0.067
+Epoch   2 Batch  304/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.906, Loss:  0.059
+Epoch   2 Batch  305/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.904, Loss:  0.046
+Epoch   2 Batch  306/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.905, Loss:  0.075
+Epoch   2 Batch  307/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.910, Loss:  0.049
+Epoch   2 Batch  308/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.908, Loss:  0.075
+Epoch   2 Batch  309/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.912, Loss:  0.053
+Epoch   2 Batch  310/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.912, Loss:  0.058
+Epoch   2 Batch  311/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.903, Loss:  0.058
+Epoch   2 Batch  312/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.904, Loss:  0.077
+Epoch   2 Batch  313/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.899, Loss:  0.049
+Epoch   2 Batch  314/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.903, Loss:  0.049
+Epoch   2 Batch  315/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.899, Loss:  0.049
+Epoch   2 Batch  316/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.893, Loss:  0.068
+Epoch   2 Batch  317/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.895, Loss:  0.082
+Epoch   2 Batch  318/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.898, Loss:  0.066
+Epoch   2 Batch  319/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.900, Loss:  0.071
+Epoch   2 Batch  320/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.893, Loss:  0.067
+Epoch   2 Batch  321/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.898, Loss:  0.054
+Epoch   2 Batch  322/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.903, Loss:  0.057
+Epoch   2 Batch  323/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.908, Loss:  0.066
+Epoch   2 Batch  324/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.903, Loss:  0.055
+Epoch   2 Batch  325/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.912, Loss:  0.069
+Epoch   2 Batch  326/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.913, Loss:  0.059
+Epoch   2 Batch  327/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.911, Loss:  0.066
+Epoch   2 Batch  328/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.904, Loss:  0.070
+Epoch   2 Batch  329/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.902, Loss:  0.071
+Epoch   2 Batch  330/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.894, Loss:  0.059
+Epoch   2 Batch  331/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.886, Loss:  0.061
+Epoch   2 Batch  332/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.888, Loss:  0.049
+Epoch   2 Batch  333/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.879, Loss:  0.054
+Epoch   2 Batch  334/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.878, Loss:  0.058
+Epoch   2 Batch  335/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.878, Loss:  0.058
+Epoch   2 Batch  336/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.893, Loss:  0.096
+Epoch   2 Batch  337/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.897, Loss:  0.065
+Epoch   2 Batch  338/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.895, Loss:  0.073
+Epoch   2 Batch  339/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.909, Loss:  0.049
+Epoch   2 Batch  340/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.908, Loss:  0.061
+Epoch   2 Batch  341/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.918, Loss:  0.072
+Epoch   2 Batch  342/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.922, Loss:  0.053
+Epoch   2 Batch  343/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.911, Loss:  0.055
+Epoch   2 Batch  344/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.912, Loss:  0.068
+Epoch   2 Batch  345/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.907, Loss:  0.052
+Epoch   2 Batch  346/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.916, Loss:  0.056
+Epoch   2 Batch  347/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.906, Loss:  0.050
+Epoch   2 Batch  348/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.897, Loss:  0.052
+Epoch   2 Batch  349/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.897, Loss:  0.056
+Epoch   2 Batch  350/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.904, Loss:  0.065
+Epoch   2 Batch  351/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.903, Loss:  0.060
+Epoch   2 Batch  352/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.906, Loss:  0.058
+Epoch   2 Batch  353/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.902, Loss:  0.067
+Epoch   2 Batch  354/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.903, Loss:  0.074
+Epoch   2 Batch  355/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.898, Loss:  0.057
+Epoch   2 Batch  356/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.896, Loss:  0.063
+Epoch   2 Batch  357/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.896, Loss:  0.057
+Epoch   2 Batch  358/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.904, Loss:  0.076
+Epoch   2 Batch  359/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.912, Loss:  0.059
+Epoch   2 Batch  360/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.912, Loss:  0.048
+Epoch   2 Batch  361/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.908, Loss:  0.055
+Epoch   2 Batch  362/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.914, Loss:  0.066
+Epoch   2 Batch  363/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.913, Loss:  0.068
+Epoch   2 Batch  364/1077 - Train Accuracy:  0.894, Validation Accuracy:  0.915, Loss:  0.077
+Epoch   2 Batch  365/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.916, Loss:  0.048
+Epoch   2 Batch  366/1077 - Train Accuracy:  0.960, Validation Accuracy:  0.914, Loss:  0.056
+Epoch   2 Batch  367/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.908, Loss:  0.047
+Epoch   2 Batch  368/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.911, Loss:  0.068
+Epoch   2 Batch  369/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.913, Loss:  0.059
+Epoch   2 Batch  370/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.913, Loss:  0.061
+Epoch   2 Batch  371/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.917, Loss:  0.055
+Epoch   2 Batch  372/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.931, Loss:  0.053
+Epoch   2 Batch  373/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.915, Loss:  0.043
+Epoch   2 Batch  374/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.921, Loss:  0.071
+Epoch   2 Batch  375/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.928, Loss:  0.057
+Epoch   2 Batch  376/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.933, Loss:  0.054
+Epoch   2 Batch  377/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.929, Loss:  0.053
+Epoch   2 Batch  378/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.930, Loss:  0.044
+Epoch   2 Batch  379/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.929, Loss:  0.068
+Epoch   2 Batch  380/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.930, Loss:  0.054
+Epoch   2 Batch  381/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.929, Loss:  0.066
+Epoch   2 Batch  382/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.932, Loss:  0.078
+Epoch   2 Batch  383/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.930, Loss:  0.049
+Epoch   2 Batch  384/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.922, Loss:  0.058
+Epoch   2 Batch  385/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.923, Loss:  0.052
+Epoch   2 Batch  386/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.924, Loss:  0.049
+Epoch   2 Batch  387/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.918, Loss:  0.057
+Epoch   2 Batch  388/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.913, Loss:  0.061
+Epoch   2 Batch  389/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.907, Loss:  0.058
+Epoch   2 Batch  390/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.904, Loss:  0.070
+Epoch   2 Batch  391/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.912, Loss:  0.057
+Epoch   2 Batch  392/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.911, Loss:  0.061
+Epoch   2 Batch  393/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.916, Loss:  0.053
+Epoch   2 Batch  394/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.914, Loss:  0.053
+Epoch   2 Batch  395/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.915, Loss:  0.054
+Epoch   2 Batch  396/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.932, Loss:  0.054
+Epoch   2 Batch  397/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.937, Loss:  0.049
+Epoch   2 Batch  398/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.938, Loss:  0.059
+Epoch   2 Batch  399/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.938, Loss:  0.052
+Epoch   2 Batch  400/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.943, Loss:  0.071
+Epoch   2 Batch  401/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.935, Loss:  0.049
+Epoch   2 Batch  402/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.931, Loss:  0.050
+Epoch   2 Batch  403/1077 - Train Accuracy:  0.884, Validation Accuracy:  0.927, Loss:  0.077
+Epoch   2 Batch  404/1077 - Train Accuracy:  0.959, Validation Accuracy:  0.929, Loss:  0.050
+Epoch   2 Batch  405/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.930, Loss:  0.065
+Epoch   2 Batch  406/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.930, Loss:  0.051
+Epoch   2 Batch  407/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.922, Loss:  0.062
+Epoch   2 Batch  408/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.917, Loss:  0.052
+Epoch   2 Batch  409/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.917, Loss:  0.066
+Epoch   2 Batch  410/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.915, Loss:  0.077
+Epoch   2 Batch  411/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.915, Loss:  0.067
+Epoch   2 Batch  412/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.915, Loss:  0.048
+Epoch   2 Batch  413/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.915, Loss:  0.049
+Epoch   2 Batch  414/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.910, Loss:  0.071
+Epoch   2 Batch  415/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.919, Loss:  0.059
+Epoch   2 Batch  416/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.916, Loss:  0.052
+Epoch   2 Batch  417/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.924, Loss:  0.092
+Epoch   2 Batch  418/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.928, Loss:  0.050
+Epoch   2 Batch  419/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.925, Loss:  0.059
+Epoch   2 Batch  420/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.927, Loss:  0.050
+Epoch   2 Batch  421/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.918, Loss:  0.070
+Epoch   2 Batch  422/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.918, Loss:  0.051
+Epoch   2 Batch  423/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.923, Loss:  0.068
+Epoch   2 Batch  424/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.928, Loss:  0.062
+Epoch   2 Batch  425/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.932, Loss:  0.045
+Epoch   2 Batch  426/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.931, Loss:  0.057
+Epoch   2 Batch  427/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.931, Loss:  0.060
+Epoch   2 Batch  428/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.931, Loss:  0.045
+Epoch   2 Batch  429/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.926, Loss:  0.048
+Epoch   2 Batch  430/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.928, Loss:  0.057
+Epoch   2 Batch  431/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.924, Loss:  0.050
+Epoch   2 Batch  432/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.924, Loss:  0.065
+Epoch   2 Batch  433/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.926, Loss:  0.065
+Epoch   2 Batch  434/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.920, Loss:  0.050
+Epoch   2 Batch  435/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.907, Loss:  0.075
+Epoch   2 Batch  436/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.912, Loss:  0.056
+Epoch   2 Batch  437/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.911, Loss:  0.046
+Epoch   2 Batch  438/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.906, Loss:  0.054
+Epoch   2 Batch  439/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.897, Loss:  0.081
+Epoch   2 Batch  440/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.898, Loss:  0.064
+Epoch   2 Batch  441/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.892, Loss:  0.058
+Epoch   2 Batch  442/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.895, Loss:  0.064
+Epoch   2 Batch  443/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.899, Loss:  0.046
+Epoch   2 Batch  444/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.904, Loss:  0.052
+Epoch   2 Batch  445/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.895, Loss:  0.061
+Epoch   2 Batch  446/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.893, Loss:  0.051
+Epoch   2 Batch  447/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.890, Loss:  0.056
+Epoch   2 Batch  448/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.894, Loss:  0.067
+Epoch   2 Batch  449/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.901, Loss:  0.060
+Epoch   2 Batch  450/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.906, Loss:  0.063
+Epoch   2 Batch  451/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.915, Loss:  0.063
+Epoch   2 Batch  452/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.928, Loss:  0.055
+Epoch   2 Batch  453/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.928, Loss:  0.048
+Epoch   2 Batch  454/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.928, Loss:  0.058
+Epoch   2 Batch  455/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.929, Loss:  0.052
+Epoch   2 Batch  456/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.935, Loss:  0.059
+Epoch   2 Batch  457/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.934, Loss:  0.050
+Epoch   2 Batch  458/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.939, Loss:  0.062
+Epoch   2 Batch  459/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.934, Loss:  0.048
+Epoch   2 Batch  460/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.930, Loss:  0.061
+Epoch   2 Batch  461/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.935, Loss:  0.052
+Epoch   2 Batch  462/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.934, Loss:  0.056
+Epoch   2 Batch  463/1077 - Train Accuracy:  0.892, Validation Accuracy:  0.932, Loss:  0.064
+Epoch   2 Batch  464/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.921, Loss:  0.050
+Epoch   2 Batch  465/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.915, Loss:  0.062
+Epoch   2 Batch  466/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.913, Loss:  0.048
+Epoch   2 Batch  467/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.908, Loss:  0.063
+Epoch   2 Batch  468/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.917, Loss:  0.060
+Epoch   2 Batch  469/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.913, Loss:  0.046
+Epoch   2 Batch  470/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.902, Loss:  0.052
+Epoch   2 Batch  471/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.903, Loss:  0.046
+Epoch   2 Batch  472/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.907, Loss:  0.051
+Epoch   2 Batch  473/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.906, Loss:  0.054
+Epoch   2 Batch  474/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.906, Loss:  0.053
+Epoch   2 Batch  475/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.907, Loss:  0.052
+Epoch   2 Batch  476/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.913, Loss:  0.041
+Epoch   2 Batch  477/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.912, Loss:  0.054
+Epoch   2 Batch  478/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.912, Loss:  0.047
+Epoch   2 Batch  479/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.914, Loss:  0.054
+Epoch   2 Batch  480/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.919, Loss:  0.050
+Epoch   2 Batch  481/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.913, Loss:  0.060
+Epoch   2 Batch  482/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.923, Loss:  0.064
+Epoch   2 Batch  483/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.918, Loss:  0.055
+Epoch   2 Batch  484/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.923, Loss:  0.060
+Epoch   2 Batch  485/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.918, Loss:  0.065
+Epoch   2 Batch  486/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.914, Loss:  0.049
+Epoch   2 Batch  487/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.919, Loss:  0.052
+Epoch   2 Batch  488/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.914, Loss:  0.050
+Epoch   2 Batch  489/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.909, Loss:  0.048
+Epoch   2 Batch  490/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.903, Loss:  0.058
+Epoch   2 Batch  491/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.905, Loss:  0.060
+Epoch   2 Batch  492/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.909, Loss:  0.062
+Epoch   2 Batch  493/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.910, Loss:  0.033
+Epoch   2 Batch  494/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.910, Loss:  0.038
+Epoch   2 Batch  495/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.913, Loss:  0.051
+Epoch   2 Batch  496/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.920, Loss:  0.061
+Epoch   2 Batch  497/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.920, Loss:  0.058
+Epoch   2 Batch  498/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.932, Loss:  0.053
+Epoch   2 Batch  499/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.932, Loss:  0.044
+Epoch   2 Batch  500/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.934, Loss:  0.041
+Epoch   2 Batch  501/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.925, Loss:  0.044
+Epoch   2 Batch  502/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.923, Loss:  0.054
+Epoch   2 Batch  503/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.923, Loss:  0.045
+Epoch   2 Batch  504/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.922, Loss:  0.045
+Epoch   2 Batch  505/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.931, Loss:  0.044
+Epoch   2 Batch  506/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.932, Loss:  0.058
+Epoch   2 Batch  507/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.925, Loss:  0.054
+Epoch   2 Batch  508/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.921, Loss:  0.046
+Epoch   2 Batch  509/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.925, Loss:  0.073
+Epoch   2 Batch  510/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.930, Loss:  0.051
+Epoch   2 Batch  511/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.935, Loss:  0.042
+Epoch   2 Batch  512/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.930, Loss:  0.044
+Epoch   2 Batch  513/1077 - Train Accuracy:  0.892, Validation Accuracy:  0.928, Loss:  0.060
+Epoch   2 Batch  514/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.922, Loss:  0.052
+Epoch   2 Batch  515/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.930, Loss:  0.050
+Epoch   2 Batch  516/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.925, Loss:  0.054
+Epoch   2 Batch  517/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.919, Loss:  0.062
+Epoch   2 Batch  518/1077 - Train Accuracy:  0.964, Validation Accuracy:  0.914, Loss:  0.043
+Epoch   2 Batch  519/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.909, Loss:  0.047
+Epoch   2 Batch  520/1077 - Train Accuracy:  0.956, Validation Accuracy:  0.909, Loss:  0.051
+Epoch   2 Batch  521/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.911, Loss:  0.047
+Epoch   2 Batch  522/1077 - Train Accuracy:  0.890, Validation Accuracy:  0.905, Loss:  0.057
+Epoch   2 Batch  523/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.911, Loss:  0.054
+Epoch   2 Batch  524/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.910, Loss:  0.054
+Epoch   2 Batch  525/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.912, Loss:  0.056
+Epoch   2 Batch  526/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.914, Loss:  0.039
+Epoch   2 Batch  527/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.915, Loss:  0.065
+Epoch   2 Batch  528/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.908, Loss:  0.051
+Epoch   2 Batch  529/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.908, Loss:  0.058
+Epoch   2 Batch  530/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.907, Loss:  0.066
+Epoch   2 Batch  531/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.904, Loss:  0.060
+Epoch   2 Batch  532/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.912, Loss:  0.067
+Epoch   2 Batch  533/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.914, Loss:  0.058
+Epoch   2 Batch  534/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.919, Loss:  0.061
+Epoch   2 Batch  535/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.913, Loss:  0.047
+Epoch   2 Batch  536/1077 - Train Accuracy:  0.889, Validation Accuracy:  0.909, Loss:  0.060
+Epoch   2 Batch  537/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.914, Loss:  0.038
+Epoch   2 Batch  538/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.910, Loss:  0.034
+Epoch   2 Batch  539/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.905, Loss:  0.071
+Epoch   2 Batch  540/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.900, Loss:  0.045
+Epoch   2 Batch  541/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.905, Loss:  0.046
+Epoch   2 Batch  542/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.898, Loss:  0.047
+Epoch   2 Batch  543/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.896, Loss:  0.044
+Epoch   2 Batch  544/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.896, Loss:  0.038
+Epoch   2 Batch  545/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.898, Loss:  0.055
+Epoch   2 Batch  546/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.894, Loss:  0.060
+Epoch   2 Batch  547/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.894, Loss:  0.042
+Epoch   2 Batch  548/1077 - Train Accuracy:  0.889, Validation Accuracy:  0.898, Loss:  0.060
+Epoch   2 Batch  549/1077 - Train Accuracy:  0.868, Validation Accuracy:  0.903, Loss:  0.074
+Epoch   2 Batch  550/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.906, Loss:  0.049
+Epoch   2 Batch  551/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.906, Loss:  0.060
+Epoch   2 Batch  552/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.908, Loss:  0.058
+Epoch   2 Batch  553/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.906, Loss:  0.072
+Epoch   2 Batch  554/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.901, Loss:  0.049
+Epoch   2 Batch  555/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.901, Loss:  0.041
+Epoch   2 Batch  556/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.902, Loss:  0.048
+Epoch   2 Batch  557/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.903, Loss:  0.050
+Epoch   2 Batch  558/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.914, Loss:  0.043
+Epoch   2 Batch  559/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.910, Loss:  0.049
+Epoch   2 Batch  560/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.900, Loss:  0.053
+Epoch   2 Batch  561/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.904, Loss:  0.046
+Epoch   2 Batch  562/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.908, Loss:  0.046
+Epoch   2 Batch  563/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.907, Loss:  0.053
+Epoch   2 Batch  564/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.907, Loss:  0.058
+Epoch   2 Batch  565/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.907, Loss:  0.056
+Epoch   2 Batch  566/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.903, Loss:  0.049
+Epoch   2 Batch  567/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.904, Loss:  0.054
+Epoch   2 Batch  568/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.904, Loss:  0.047
+Epoch   2 Batch  569/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.903, Loss:  0.060
+Epoch   2 Batch  570/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.908, Loss:  0.066
+Epoch   2 Batch  571/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.917, Loss:  0.037
+Epoch   2 Batch  572/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.912, Loss:  0.046
+Epoch   2 Batch  573/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.919, Loss:  0.060
+Epoch   2 Batch  574/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.919, Loss:  0.059
+Epoch   2 Batch  575/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.924, Loss:  0.039
+Epoch   2 Batch  576/1077 - Train Accuracy:  0.960, Validation Accuracy:  0.915, Loss:  0.048
+Epoch   2 Batch  577/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.922, Loss:  0.056
+Epoch   2 Batch  578/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.922, Loss:  0.045
+Epoch   2 Batch  579/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.922, Loss:  0.045
+Epoch   2 Batch  580/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.922, Loss:  0.042
+Epoch   2 Batch  581/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.922, Loss:  0.037
+Epoch   2 Batch  582/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.915, Loss:  0.045
+Epoch   2 Batch  583/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.913, Loss:  0.057
+Epoch   2 Batch  584/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.913, Loss:  0.050
+Epoch   2 Batch  585/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.912, Loss:  0.044
+Epoch   2 Batch  586/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.914, Loss:  0.044
+Epoch   2 Batch  587/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.910, Loss:  0.052
+Epoch   2 Batch  588/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.909, Loss:  0.041
+Epoch   2 Batch  589/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.901, Loss:  0.045
+Epoch   2 Batch  590/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.902, Loss:  0.058
+Epoch   2 Batch  591/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.897, Loss:  0.055
+Epoch   2 Batch  592/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.902, Loss:  0.051
+Epoch   2 Batch  593/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.897, Loss:  0.078
+Epoch   2 Batch  594/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.894, Loss:  0.064
+Epoch   2 Batch  595/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.895, Loss:  0.048
+Epoch   2 Batch  596/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.895, Loss:  0.050
+Epoch   2 Batch  597/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.896, Loss:  0.045
+Epoch   2 Batch  598/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.897, Loss:  0.056
+Epoch   2 Batch  599/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.912, Loss:  0.061
+Epoch   2 Batch  600/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.921, Loss:  0.057
+Epoch   2 Batch  601/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.922, Loss:  0.056
+Epoch   2 Batch  602/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.923, Loss:  0.050
+Epoch   2 Batch  603/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.928, Loss:  0.048
+Epoch   2 Batch  604/1077 - Train Accuracy:  0.889, Validation Accuracy:  0.941, Loss:  0.065
+Epoch   2 Batch  605/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.936, Loss:  0.062
+Epoch   2 Batch  606/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.935, Loss:  0.046
+Epoch   2 Batch  607/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.930, Loss:  0.055
+Epoch   2 Batch  608/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.924, Loss:  0.062
+Epoch   2 Batch  609/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.924, Loss:  0.047
+Epoch   2 Batch  610/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.895, Loss:  0.067
+Epoch   2 Batch  611/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.893, Loss:  0.045
+Epoch   2 Batch  612/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.889, Loss:  0.046
+Epoch   2 Batch  613/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.892, Loss:  0.061
+Epoch   2 Batch  614/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.892, Loss:  0.040
+Epoch   2 Batch  615/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.900, Loss:  0.047
+Epoch   2 Batch  616/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.907, Loss:  0.059
+Epoch   2 Batch  617/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.928, Loss:  0.050
+Epoch   2 Batch  618/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.926, Loss:  0.056
+Epoch   2 Batch  619/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.917, Loss:  0.035
+Epoch   2 Batch  620/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.918, Loss:  0.040
+Epoch   2 Batch  621/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.918, Loss:  0.052
+Epoch   2 Batch  622/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.923, Loss:  0.058
+Epoch   2 Batch  623/1077 - Train Accuracy:  0.885, Validation Accuracy:  0.918, Loss:  0.064
+Epoch   2 Batch  624/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.914, Loss:  0.053
+Epoch   2 Batch  625/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.914, Loss:  0.042
+Epoch   2 Batch  626/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.916, Loss:  0.048
+Epoch   2 Batch  627/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.918, Loss:  0.047
+Epoch   2 Batch  628/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.925, Loss:  0.053
+Epoch   2 Batch  629/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.920, Loss:  0.055
+Epoch   2 Batch  630/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.921, Loss:  0.045
+Epoch   2 Batch  631/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.925, Loss:  0.049
+Epoch   2 Batch  632/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.929, Loss:  0.038
+Epoch   2 Batch  633/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.927, Loss:  0.056
+Epoch   2 Batch  634/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.926, Loss:  0.045
+Epoch   2 Batch  635/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.936, Loss:  0.054
+Epoch   2 Batch  636/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.936, Loss:  0.055
+Epoch   2 Batch  637/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.932, Loss:  0.050
+Epoch   2 Batch  638/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.931, Loss:  0.041
+Epoch   2 Batch  639/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.930, Loss:  0.073
+Epoch   2 Batch  640/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.931, Loss:  0.046
+Epoch   2 Batch  641/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.931, Loss:  0.044
+Epoch   2 Batch  642/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.927, Loss:  0.050
+Epoch   2 Batch  643/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.926, Loss:  0.044
+Epoch   2 Batch  644/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.922, Loss:  0.047
+Epoch   2 Batch  645/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.924, Loss:  0.066
+Epoch   2 Batch  646/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.922, Loss:  0.050
+Epoch   2 Batch  647/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.916, Loss:  0.048
+Epoch   2 Batch  648/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.924, Loss:  0.033
+Epoch   2 Batch  649/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.923, Loss:  0.051
+Epoch   2 Batch  650/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.919, Loss:  0.054
+Epoch   2 Batch  651/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.920, Loss:  0.053
+Epoch   2 Batch  652/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.919, Loss:  0.054
+Epoch   2 Batch  653/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.912, Loss:  0.053
+Epoch   2 Batch  654/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.927, Loss:  0.049
+Epoch   2 Batch  655/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.918, Loss:  0.063
+Epoch   2 Batch  656/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.923, Loss:  0.057
+Epoch   2 Batch  657/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.932, Loss:  0.051
+Epoch   2 Batch  658/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.934, Loss:  0.040
+Epoch   2 Batch  659/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.929, Loss:  0.053
+Epoch   2 Batch  660/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.924, Loss:  0.047
+Epoch   2 Batch  661/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.924, Loss:  0.046
+Epoch   2 Batch  662/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.919, Loss:  0.053
+Epoch   2 Batch  663/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.904, Loss:  0.042
+Epoch   2 Batch  664/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.900, Loss:  0.052
+Epoch   2 Batch  665/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.899, Loss:  0.048
+Epoch   2 Batch  666/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.899, Loss:  0.063
+Epoch   2 Batch  667/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.897, Loss:  0.060
+Epoch   2 Batch  668/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.905, Loss:  0.042
+Epoch   2 Batch  669/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.915, Loss:  0.049
+Epoch   2 Batch  670/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.912, Loss:  0.058
+Epoch   2 Batch  671/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.908, Loss:  0.059
+Epoch   2 Batch  672/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.909, Loss:  0.045
+Epoch   2 Batch  673/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.914, Loss:  0.048
+Epoch   2 Batch  674/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.916, Loss:  0.051
+Epoch   2 Batch  675/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.921, Loss:  0.060
+Epoch   2 Batch  676/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.921, Loss:  0.046
+Epoch   2 Batch  677/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.919, Loss:  0.068
+Epoch   2 Batch  678/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.924, Loss:  0.042
+Epoch   2 Batch  679/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.925, Loss:  0.042
+Epoch   2 Batch  680/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.918, Loss:  0.052
+Epoch   2 Batch  681/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.919, Loss:  0.052
+Epoch   2 Batch  682/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.923, Loss:  0.055
+Epoch   2 Batch  683/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.919, Loss:  0.037
+Epoch   2 Batch  684/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.919, Loss:  0.046
+Epoch   2 Batch  685/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.919, Loss:  0.059
+Epoch   2 Batch  686/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.923, Loss:  0.044
+Epoch   2 Batch  687/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.913, Loss:  0.056
+Epoch   2 Batch  688/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.913, Loss:  0.046
+Epoch   2 Batch  689/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.909, Loss:  0.046
+Epoch   2 Batch  690/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.925, Loss:  0.053
+Epoch   2 Batch  691/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.919, Loss:  0.059
+Epoch   2 Batch  692/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.919, Loss:  0.043
+Epoch   2 Batch  693/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.909, Loss:  0.070
+Epoch   2 Batch  694/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.918, Loss:  0.053
+Epoch   2 Batch  695/1077 - Train Accuracy:  0.958, Validation Accuracy:  0.919, Loss:  0.042
+Epoch   2 Batch  696/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.914, Loss:  0.053
+Epoch   2 Batch  697/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.919, Loss:  0.048
+Epoch   2 Batch  698/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.912, Loss:  0.046
+Epoch   2 Batch  699/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.910, Loss:  0.044
+Epoch   2 Batch  700/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.915, Loss:  0.048
+Epoch   2 Batch  701/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.915, Loss:  0.052
+Epoch   2 Batch  702/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.911, Loss:  0.066
+Epoch   2 Batch  703/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.913, Loss:  0.055
+Epoch   2 Batch  704/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.919, Loss:  0.063
+Epoch   2 Batch  705/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.923, Loss:  0.061
+Epoch   2 Batch  706/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.926, Loss:  0.073
+Epoch   2 Batch  707/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.928, Loss:  0.056
+Epoch   2 Batch  708/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.929, Loss:  0.057
+Epoch   2 Batch  709/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.924, Loss:  0.053
+Epoch   2 Batch  710/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.921, Loss:  0.040
+Epoch   2 Batch  711/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.919, Loss:  0.068
+Epoch   2 Batch  712/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.922, Loss:  0.037
+Epoch   2 Batch  713/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.922, Loss:  0.036
+Epoch   2 Batch  714/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.919, Loss:  0.052
+Epoch   2 Batch  715/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.932, Loss:  0.059
+Epoch   2 Batch  716/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.938, Loss:  0.047
+Epoch   2 Batch  717/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.939, Loss:  0.035
+Epoch   2 Batch  718/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.939, Loss:  0.053
+Epoch   2 Batch  719/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.938, Loss:  0.057
+Epoch   2 Batch  720/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.938, Loss:  0.053
+Epoch   2 Batch  721/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.934, Loss:  0.060
+Epoch   2 Batch  722/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.935, Loss:  0.042
+Epoch   2 Batch  723/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.936, Loss:  0.058
+Epoch   2 Batch  724/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.939, Loss:  0.056
+Epoch   2 Batch  725/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.934, Loss:  0.039
+Epoch   2 Batch  726/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.934, Loss:  0.052
+Epoch   2 Batch  727/1077 - Train Accuracy:  0.969, Validation Accuracy:  0.934, Loss:  0.041
+Epoch   2 Batch  728/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.934, Loss:  0.058
+Epoch   2 Batch  729/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.931, Loss:  0.063
+Epoch   2 Batch  730/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.932, Loss:  0.058
+Epoch   2 Batch  731/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.931, Loss:  0.045
+Epoch   2 Batch  732/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.935, Loss:  0.054
+Epoch   2 Batch  733/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.933, Loss:  0.053
+Epoch   2 Batch  734/1077 - Train Accuracy:  0.958, Validation Accuracy:  0.924, Loss:  0.044
+Epoch   2 Batch  735/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.923, Loss:  0.044
+Epoch   2 Batch  736/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.923, Loss:  0.046
+Epoch   2 Batch  737/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.921, Loss:  0.051
+Epoch   2 Batch  738/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.924, Loss:  0.038
+Epoch   2 Batch  739/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.930, Loss:  0.041
+Epoch   2 Batch  740/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.929, Loss:  0.038
+Epoch   2 Batch  741/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.930, Loss:  0.057
+Epoch   2 Batch  742/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.929, Loss:  0.036
+Epoch   2 Batch  743/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.933, Loss:  0.056
+Epoch   2 Batch  744/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.931, Loss:  0.050
+Epoch   2 Batch  745/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.932, Loss:  0.053
+Epoch   2 Batch  746/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.932, Loss:  0.052
+Epoch   2 Batch  747/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.927, Loss:  0.041
+Epoch   2 Batch  748/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.931, Loss:  0.043
+Epoch   2 Batch  749/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.924, Loss:  0.053
+Epoch   2 Batch  750/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.934, Loss:  0.049
+Epoch   2 Batch  751/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.938, Loss:  0.050
+Epoch   2 Batch  752/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.942, Loss:  0.047
+Epoch   2 Batch  753/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.938, Loss:  0.055
+Epoch   2 Batch  754/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.933, Loss:  0.061
+Epoch   2 Batch  755/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.942, Loss:  0.062
+Epoch   2 Batch  756/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.942, Loss:  0.049
+Epoch   2 Batch  757/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.939, Loss:  0.045
+Epoch   2 Batch  758/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.934, Loss:  0.047
+Epoch   2 Batch  759/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.929, Loss:  0.045
+Epoch   2 Batch  760/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.929, Loss:  0.055
+Epoch   2 Batch  761/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.929, Loss:  0.049
+Epoch   2 Batch  762/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.929, Loss:  0.051
+Epoch   2 Batch  763/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.934, Loss:  0.043
+Epoch   2 Batch  764/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.936, Loss:  0.046
+Epoch   2 Batch  765/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.933, Loss:  0.060
+Epoch   2 Batch  766/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.935, Loss:  0.050
+Epoch   2 Batch  767/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.938, Loss:  0.044
+Epoch   2 Batch  768/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.931, Loss:  0.053
+Epoch   2 Batch  769/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.932, Loss:  0.045
+Epoch   2 Batch  770/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.933, Loss:  0.040
+Epoch   2 Batch  771/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.931, Loss:  0.057
+Epoch   2 Batch  772/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.929, Loss:  0.053
+Epoch   2 Batch  773/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.924, Loss:  0.047
+Epoch   2 Batch  774/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.928, Loss:  0.057
+Epoch   2 Batch  775/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.937, Loss:  0.056
+Epoch   2 Batch  776/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.947, Loss:  0.043
+Epoch   2 Batch  777/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.936, Loss:  0.056
+Epoch   2 Batch  778/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.936, Loss:  0.047
+Epoch   2 Batch  779/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.935, Loss:  0.057
+Epoch   2 Batch  780/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.947, Loss:  0.062
+Epoch   2 Batch  781/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.945, Loss:  0.044
+Epoch   2 Batch  782/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.940, Loss:  0.047
+Epoch   2 Batch  783/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.942, Loss:  0.053
+Epoch   2 Batch  784/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.938, Loss:  0.045
+Epoch   2 Batch  785/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.935, Loss:  0.050
+Epoch   2 Batch  786/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.931, Loss:  0.041
+Epoch   2 Batch  787/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.939, Loss:  0.053
+Epoch   2 Batch  788/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.930, Loss:  0.049
+Epoch   2 Batch  789/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.931, Loss:  0.051
+Epoch   2 Batch  790/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.933, Loss:  0.052
+Epoch   2 Batch  791/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.918, Loss:  0.057
+Epoch   2 Batch  792/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.918, Loss:  0.056
+Epoch   2 Batch  793/1077 - Train Accuracy:  0.961, Validation Accuracy:  0.918, Loss:  0.050
+Epoch   2 Batch  794/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.916, Loss:  0.047
+Epoch   2 Batch  795/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.911, Loss:  0.066
+Epoch   2 Batch  796/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.922, Loss:  0.045
+Epoch   2 Batch  797/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.920, Loss:  0.044
+Epoch   2 Batch  798/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.930, Loss:  0.051
+Epoch   2 Batch  799/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.933, Loss:  0.078
+Epoch   2 Batch  800/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.940, Loss:  0.050
+Epoch   2 Batch  801/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.940, Loss:  0.068
+Epoch   2 Batch  802/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.940, Loss:  0.058
+Epoch   2 Batch  803/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.944, Loss:  0.051
+Epoch   2 Batch  804/1077 - Train Accuracy:  0.975, Validation Accuracy:  0.944, Loss:  0.037
+Epoch   2 Batch  805/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.939, Loss:  0.048
+Epoch   2 Batch  806/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.940, Loss:  0.043
+Epoch   2 Batch  807/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.934, Loss:  0.041
+Epoch   2 Batch  808/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.928, Loss:  0.069
+Epoch   2 Batch  809/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.936, Loss:  0.069
+Epoch   2 Batch  810/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.944, Loss:  0.046
+Epoch   2 Batch  811/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.929, Loss:  0.055
+Epoch   2 Batch  812/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.930, Loss:  0.057
+Epoch   2 Batch  813/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.936, Loss:  0.045
+Epoch   2 Batch  814/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.936, Loss:  0.063
+Epoch   2 Batch  815/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.926, Loss:  0.049
+Epoch   2 Batch  816/1077 - Train Accuracy:  0.956, Validation Accuracy:  0.935, Loss:  0.062
+Epoch   2 Batch  817/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.930, Loss:  0.054
+Epoch   2 Batch  818/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.933, Loss:  0.059
+Epoch   2 Batch  819/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.933, Loss:  0.050
+Epoch   2 Batch  820/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.935, Loss:  0.049
+Epoch   2 Batch  821/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.931, Loss:  0.049
+Epoch   2 Batch  822/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.925, Loss:  0.052
+Epoch   2 Batch  823/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.923, Loss:  0.056
+Epoch   2 Batch  824/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.919, Loss:  0.055
+Epoch   2 Batch  825/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.917, Loss:  0.040
+Epoch   2 Batch  826/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.917, Loss:  0.046
+Epoch   2 Batch  827/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.912, Loss:  0.056
+Epoch   2 Batch  828/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.911, Loss:  0.048
+Epoch   2 Batch  829/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.904, Loss:  0.064
+Epoch   2 Batch  830/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.904, Loss:  0.061
+Epoch   2 Batch  831/1077 - Train Accuracy:  0.872, Validation Accuracy:  0.909, Loss:  0.060
+Epoch   2 Batch  832/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.913, Loss:  0.049
+Epoch   2 Batch  833/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.913, Loss:  0.054
+Epoch   2 Batch  834/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.918, Loss:  0.059
+Epoch   2 Batch  835/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.914, Loss:  0.051
+Epoch   2 Batch  836/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.918, Loss:  0.050
+Epoch   2 Batch  837/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.923, Loss:  0.062
+Epoch   2 Batch  838/1077 - Train Accuracy:  0.959, Validation Accuracy:  0.924, Loss:  0.044
+Epoch   2 Batch  839/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.924, Loss:  0.036
+Epoch   2 Batch  840/1077 - Train Accuracy:  0.959, Validation Accuracy:  0.924, Loss:  0.039
+Epoch   2 Batch  841/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.924, Loss:  0.050
+Epoch   2 Batch  842/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.926, Loss:  0.044
+Epoch   2 Batch  843/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.926, Loss:  0.044
+Epoch   2 Batch  844/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.918, Loss:  0.039
+Epoch   2 Batch  845/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.926, Loss:  0.039
+Epoch   2 Batch  846/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.930, Loss:  0.063
+Epoch   2 Batch  847/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.930, Loss:  0.057
+Epoch   2 Batch  848/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.925, Loss:  0.045
+Epoch   2 Batch  849/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.922, Loss:  0.042
+Epoch   2 Batch  850/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.913, Loss:  0.085
+Epoch   2 Batch  851/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.913, Loss:  0.062
+Epoch   2 Batch  852/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.913, Loss:  0.061
+Epoch   2 Batch  853/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.922, Loss:  0.055
+Epoch   2 Batch  854/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.921, Loss:  0.062
+Epoch   2 Batch  855/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.920, Loss:  0.058
+Epoch   2 Batch  856/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.923, Loss:  0.068
+Epoch   2 Batch  857/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.923, Loss:  0.048
+Epoch   2 Batch  858/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.926, Loss:  0.047
+Epoch   2 Batch  859/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.917, Loss:  0.067
+Epoch   2 Batch  860/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.922, Loss:  0.057
+Epoch   2 Batch  861/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.926, Loss:  0.051
+Epoch   2 Batch  862/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.922, Loss:  0.049
+Epoch   2 Batch  863/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.914, Loss:  0.040
+Epoch   2 Batch  864/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.913, Loss:  0.051
+Epoch   2 Batch  865/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.917, Loss:  0.053
+Epoch   2 Batch  866/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.913, Loss:  0.056
+Epoch   2 Batch  867/1077 - Train Accuracy:  0.892, Validation Accuracy:  0.908, Loss:  0.085
+Epoch   2 Batch  868/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.920, Loss:  0.056
+Epoch   2 Batch  869/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.918, Loss:  0.056
+Epoch   2 Batch  870/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.933, Loss:  0.058
+Epoch   2 Batch  871/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.929, Loss:  0.048
+Epoch   2 Batch  872/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.939, Loss:  0.056
+Epoch   2 Batch  873/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.935, Loss:  0.056
+Epoch   2 Batch  874/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.931, Loss:  0.061
+Epoch   2 Batch  875/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.932, Loss:  0.058
+Epoch   2 Batch  876/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.935, Loss:  0.049
+Epoch   2 Batch  877/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.939, Loss:  0.046
+Epoch   2 Batch  878/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.939, Loss:  0.039
+Epoch   2 Batch  879/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.935, Loss:  0.047
+Epoch   2 Batch  880/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.931, Loss:  0.053
+Epoch   2 Batch  881/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.941, Loss:  0.063
+Epoch   2 Batch  882/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.941, Loss:  0.058
+Epoch   2 Batch  883/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.936, Loss:  0.079
+Epoch   2 Batch  884/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.927, Loss:  0.052
+Epoch   2 Batch  885/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.920, Loss:  0.031
+Epoch   2 Batch  886/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.923, Loss:  0.050
+Epoch   2 Batch  887/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.922, Loss:  0.063
+Epoch   2 Batch  888/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.926, Loss:  0.045
+Epoch   2 Batch  889/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.923, Loss:  0.045
+Epoch   2 Batch  890/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.911, Loss:  0.049
+Epoch   2 Batch  891/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.914, Loss:  0.046
+Epoch   2 Batch  892/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.911, Loss:  0.045
+Epoch   2 Batch  893/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.912, Loss:  0.043
+Epoch   2 Batch  894/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.917, Loss:  0.053
+Epoch   2 Batch  895/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.915, Loss:  0.048
+Epoch   2 Batch  896/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.914, Loss:  0.052
+Epoch   2 Batch  897/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.907, Loss:  0.037
+Epoch   2 Batch  898/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.904, Loss:  0.044
+Epoch   2 Batch  899/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.907, Loss:  0.057
+Epoch   2 Batch  900/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.917, Loss:  0.065
+Epoch   2 Batch  901/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.916, Loss:  0.068
+Epoch   2 Batch  902/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.916, Loss:  0.057
+Epoch   2 Batch  903/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.920, Loss:  0.049
+Epoch   2 Batch  904/1077 - Train Accuracy:  0.892, Validation Accuracy:  0.928, Loss:  0.049
+Epoch   2 Batch  905/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.912, Loss:  0.046
+Epoch   2 Batch  906/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.902, Loss:  0.056
+Epoch   2 Batch  907/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.908, Loss:  0.052
+Epoch   2 Batch  908/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.926, Loss:  0.061
+Epoch   2 Batch  909/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.931, Loss:  0.061
+Epoch   2 Batch  910/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.920, Loss:  0.057
+Epoch   2 Batch  911/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.929, Loss:  0.057
+Epoch   2 Batch  912/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.933, Loss:  0.043
+Epoch   2 Batch  913/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.924, Loss:  0.067
+Epoch   2 Batch  914/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.919, Loss:  0.079
+Epoch   2 Batch  915/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.914, Loss:  0.040
+Epoch   2 Batch  916/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.909, Loss:  0.053
+Epoch   2 Batch  917/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.901, Loss:  0.051
+Epoch   2 Batch  918/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.911, Loss:  0.048
+Epoch   2 Batch  919/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.907, Loss:  0.047
+Epoch   2 Batch  920/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.908, Loss:  0.052
+Epoch   2 Batch  921/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.912, Loss:  0.056
+Epoch   2 Batch  922/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.919, Loss:  0.056
+Epoch   2 Batch  923/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.923, Loss:  0.033
+Epoch   2 Batch  924/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.914, Loss:  0.071
+Epoch   2 Batch  925/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.917, Loss:  0.042
+Epoch   2 Batch  926/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.917, Loss:  0.042
+Epoch   2 Batch  927/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.909, Loss:  0.064
+Epoch   2 Batch  928/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.909, Loss:  0.046
+Epoch   2 Batch  929/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.906, Loss:  0.060
+Epoch   2 Batch  930/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.909, Loss:  0.047
+Epoch   2 Batch  931/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.908, Loss:  0.038
+Epoch   2 Batch  932/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.916, Loss:  0.050
+Epoch   2 Batch  933/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.917, Loss:  0.056
+Epoch   2 Batch  934/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.928, Loss:  0.047
+Epoch   2 Batch  935/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.928, Loss:  0.044
+Epoch   2 Batch  936/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.928, Loss:  0.051
+Epoch   2 Batch  937/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.918, Loss:  0.074
+Epoch   2 Batch  938/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.918, Loss:  0.058
+Epoch   2 Batch  939/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.917, Loss:  0.058
+Epoch   2 Batch  940/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.925, Loss:  0.048
+Epoch   2 Batch  941/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.928, Loss:  0.043
+Epoch   2 Batch  942/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.931, Loss:  0.059
+Epoch   2 Batch  943/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.931, Loss:  0.050
+Epoch   2 Batch  944/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.927, Loss:  0.052
+Epoch   2 Batch  945/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.924, Loss:  0.046
+Epoch   2 Batch  946/1077 - Train Accuracy:  0.965, Validation Accuracy:  0.920, Loss:  0.037
+Epoch   2 Batch  947/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.916, Loss:  0.057
+Epoch   2 Batch  948/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.925, Loss:  0.042
+Epoch   2 Batch  949/1077 - Train Accuracy:  0.960, Validation Accuracy:  0.919, Loss:  0.043
+Epoch   2 Batch  950/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.918, Loss:  0.039
+Epoch   2 Batch  951/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.913, Loss:  0.063
+Epoch   2 Batch  952/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.917, Loss:  0.045
+Epoch   2 Batch  953/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.916, Loss:  0.046
+Epoch   2 Batch  954/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.913, Loss:  0.054
+Epoch   2 Batch  955/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.920, Loss:  0.060
+Epoch   2 Batch  956/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.918, Loss:  0.057
+Epoch   2 Batch  957/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.914, Loss:  0.042
+Epoch   2 Batch  958/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.903, Loss:  0.048
+Epoch   2 Batch  959/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.901, Loss:  0.041
+Epoch   2 Batch  960/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.915, Loss:  0.043
+Epoch   2 Batch  961/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.912, Loss:  0.044
+Epoch   2 Batch  962/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.917, Loss:  0.053
+Epoch   2 Batch  963/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.912, Loss:  0.064
+Epoch   2 Batch  964/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.916, Loss:  0.048
+Epoch   2 Batch  965/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.912, Loss:  0.051
+Epoch   2 Batch  966/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.922, Loss:  0.050
+Epoch   2 Batch  967/1077 - Train Accuracy:  0.896, Validation Accuracy:  0.923, Loss:  0.059
+Epoch   2 Batch  968/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.922, Loss:  0.064
+Epoch   2 Batch  969/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.926, Loss:  0.062
+Epoch   2 Batch  970/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.924, Loss:  0.046
+Epoch   2 Batch  971/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.920, Loss:  0.055
+Epoch   2 Batch  972/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.916, Loss:  0.052
+Epoch   2 Batch  973/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.916, Loss:  0.033
+Epoch   2 Batch  974/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.915, Loss:  0.037
+Epoch   2 Batch  975/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.914, Loss:  0.045
+Epoch   2 Batch  976/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.918, Loss:  0.037
+Epoch   2 Batch  977/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.925, Loss:  0.037
+Epoch   2 Batch  978/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.928, Loss:  0.054
+Epoch   2 Batch  979/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.932, Loss:  0.056
+Epoch   2 Batch  980/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.938, Loss:  0.057
+Epoch   2 Batch  981/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.933, Loss:  0.042
+Epoch   2 Batch  982/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.931, Loss:  0.056
+Epoch   2 Batch  983/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.931, Loss:  0.048
+Epoch   2 Batch  984/1077 - Train Accuracy:  0.875, Validation Accuracy:  0.936, Loss:  0.067
+Epoch   2 Batch  985/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.938, Loss:  0.049
+Epoch   2 Batch  986/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.938, Loss:  0.055
+Epoch   2 Batch  987/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.954, Loss:  0.046
+Epoch   2 Batch  988/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.952, Loss:  0.062
+Epoch   2 Batch  989/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.938, Loss:  0.048
+Epoch   2 Batch  990/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.910, Loss:  0.061
+Epoch   2 Batch  991/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.910, Loss:  0.049
+Epoch   2 Batch  992/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.912, Loss:  0.073
+Epoch   2 Batch  993/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.908, Loss:  0.040
+Epoch   2 Batch  994/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.917, Loss:  0.050
+Epoch   2 Batch  995/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.919, Loss:  0.057
+Epoch   2 Batch  996/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.922, Loss:  0.048
+Epoch   2 Batch  997/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.920, Loss:  0.052
+Epoch   2 Batch  998/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.926, Loss:  0.042
+Epoch   2 Batch  999/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.942, Loss:  0.057
+Epoch   2 Batch 1000/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.946, Loss:  0.054
+Epoch   2 Batch 1001/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.940, Loss:  0.046
+Epoch   2 Batch 1002/1077 - Train Accuracy:  0.968, Validation Accuracy:  0.930, Loss:  0.035
+Epoch   2 Batch 1003/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.933, Loss:  0.052
+Epoch   2 Batch 1004/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.934, Loss:  0.069
+Epoch   2 Batch 1005/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.934, Loss:  0.041
+Epoch   2 Batch 1006/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.934, Loss:  0.041
+Epoch   2 Batch 1007/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.934, Loss:  0.051
+Epoch   2 Batch 1008/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.932, Loss:  0.074
+Epoch   2 Batch 1009/1077 - Train Accuracy:  0.956, Validation Accuracy:  0.928, Loss:  0.038
+Epoch   2 Batch 1010/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.925, Loss:  0.050
+Epoch   2 Batch 1011/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.926, Loss:  0.043
+Epoch   2 Batch 1012/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.926, Loss:  0.032
+Epoch   2 Batch 1013/1077 - Train Accuracy:  0.974, Validation Accuracy:  0.917, Loss:  0.037
+Epoch   2 Batch 1014/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.923, Loss:  0.049
+Epoch   2 Batch 1015/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.933, Loss:  0.058
+Epoch   2 Batch 1016/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.933, Loss:  0.054
+Epoch   2 Batch 1017/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.931, Loss:  0.055
+Epoch   2 Batch 1018/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.941, Loss:  0.041
+Epoch   2 Batch 1019/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.948, Loss:  0.074
+Epoch   2 Batch 1020/1077 - Train Accuracy:  0.956, Validation Accuracy:  0.941, Loss:  0.042
+Epoch   2 Batch 1021/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.936, Loss:  0.057
+Epoch   2 Batch 1022/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.930, Loss:  0.050
+Epoch   2 Batch 1023/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.932, Loss:  0.052
+Epoch   2 Batch 1024/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.936, Loss:  0.066
+Epoch   2 Batch 1025/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.940, Loss:  0.055
+Epoch   2 Batch 1026/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.944, Loss:  0.052
+Epoch   2 Batch 1027/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.943, Loss:  0.049
+Epoch   2 Batch 1028/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.943, Loss:  0.048
+Epoch   2 Batch 1029/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.942, Loss:  0.045
+Epoch   2 Batch 1030/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.941, Loss:  0.042
+Epoch   2 Batch 1031/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.936, Loss:  0.059
+Epoch   2 Batch 1032/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.921, Loss:  0.070
+Epoch   2 Batch 1033/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.926, Loss:  0.062
+Epoch   2 Batch 1034/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.920, Loss:  0.048
+Epoch   2 Batch 1035/1077 - Train Accuracy:  0.961, Validation Accuracy:  0.911, Loss:  0.030
+Epoch   2 Batch 1036/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.907, Loss:  0.061
+Epoch   2 Batch 1037/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.907, Loss:  0.047
+Epoch   2 Batch 1038/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.903, Loss:  0.051
+Epoch   2 Batch 1039/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.907, Loss:  0.049
+Epoch   2 Batch 1040/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.913, Loss:  0.058
+Epoch   2 Batch 1041/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.913, Loss:  0.050
+Epoch   2 Batch 1042/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.911, Loss:  0.047
+Epoch   2 Batch 1043/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.910, Loss:  0.061
+Epoch   2 Batch 1044/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.910, Loss:  0.070
+Epoch   2 Batch 1045/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.910, Loss:  0.056
+Epoch   2 Batch 1046/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.914, Loss:  0.042
+Epoch   2 Batch 1047/1077 - Train Accuracy:  0.959, Validation Accuracy:  0.918, Loss:  0.047
+Epoch   2 Batch 1048/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.923, Loss:  0.049
+Epoch   2 Batch 1049/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.918, Loss:  0.041
+Epoch   2 Batch 1050/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.913, Loss:  0.042
+Epoch   2 Batch 1051/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.909, Loss:  0.064
+Epoch   2 Batch 1052/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.913, Loss:  0.049
+Epoch   2 Batch 1053/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.926, Loss:  0.069
+Epoch   2 Batch 1054/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.923, Loss:  0.047
+Epoch   2 Batch 1055/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.923, Loss:  0.051
+Epoch   2 Batch 1056/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.924, Loss:  0.042
+Epoch   2 Batch 1057/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.917, Loss:  0.059
+Epoch   2 Batch 1058/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.921, Loss:  0.056
+Epoch   2 Batch 1059/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.929, Loss:  0.070
+Epoch   2 Batch 1060/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.928, Loss:  0.051
+Epoch   2 Batch 1061/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.935, Loss:  0.070
+Epoch   2 Batch 1062/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.936, Loss:  0.056
+Epoch   2 Batch 1063/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.925, Loss:  0.058
+Epoch   2 Batch 1064/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.920, Loss:  0.050
+Epoch   2 Batch 1065/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.923, Loss:  0.043
+Epoch   2 Batch 1066/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.921, Loss:  0.036
+Epoch   2 Batch 1067/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.926, Loss:  0.053
+Epoch   2 Batch 1068/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.926, Loss:  0.043
+Epoch   2 Batch 1069/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.919, Loss:  0.037
+Epoch   2 Batch 1070/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.920, Loss:  0.043
+Epoch   2 Batch 1071/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.920, Loss:  0.046
+Epoch   2 Batch 1072/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.922, Loss:  0.052
+Epoch   2 Batch 1073/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.913, Loss:  0.053
+Epoch   2 Batch 1074/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.915, Loss:  0.063
+Epoch   2 Batch 1075/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.919, Loss:  0.053
+Epoch   3 Batch    0/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.913, Loss:  0.045
+Epoch   3 Batch    1/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.911, Loss:  0.032
+Epoch   3 Batch    2/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.911, Loss:  0.053
+Epoch   3 Batch    3/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.911, Loss:  0.047
+Epoch   3 Batch    4/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.911, Loss:  0.043
+Epoch   3 Batch    5/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.904, Loss:  0.072
+Epoch   3 Batch    6/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.904, Loss:  0.054
+Epoch   3 Batch    7/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.906, Loss:  0.040
+Epoch   3 Batch    8/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.896, Loss:  0.051
+Epoch   3 Batch    9/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.892, Loss:  0.041
+Epoch   3 Batch   10/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.898, Loss:  0.053
+Epoch   3 Batch   11/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.905, Loss:  0.068
+Epoch   3 Batch   12/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.907, Loss:  0.053
+Epoch   3 Batch   13/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.916, Loss:  0.054
+Epoch   3 Batch   14/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.912, Loss:  0.036
+Epoch   3 Batch   15/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.912, Loss:  0.044
+Epoch   3 Batch   16/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.919, Loss:  0.060
+Epoch   3 Batch   17/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.919, Loss:  0.046
+Epoch   3 Batch   18/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.922, Loss:  0.067
+Epoch   3 Batch   19/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.931, Loss:  0.050
+Epoch   3 Batch   20/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.936, Loss:  0.040
+Epoch   3 Batch   21/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.934, Loss:  0.056
+Epoch   3 Batch   22/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.933, Loss:  0.062
+Epoch   3 Batch   23/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.933, Loss:  0.051
+Epoch   3 Batch   24/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.926, Loss:  0.052
+Epoch   3 Batch   25/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.922, Loss:  0.038
+Epoch   3 Batch   26/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.922, Loss:  0.055
+Epoch   3 Batch   27/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.923, Loss:  0.042
+Epoch   3 Batch   28/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.926, Loss:  0.053
+Epoch   3 Batch   29/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.925, Loss:  0.056
+Epoch   3 Batch   30/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.920, Loss:  0.036
+Epoch   3 Batch   31/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.925, Loss:  0.041
+Epoch   3 Batch   32/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.924, Loss:  0.045
+Epoch   3 Batch   33/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.918, Loss:  0.055
+Epoch   3 Batch   34/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.929, Loss:  0.050
+Epoch   3 Batch   35/1077 - Train Accuracy:  0.966, Validation Accuracy:  0.929, Loss:  0.051
+Epoch   3 Batch   36/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.934, Loss:  0.043
+Epoch   3 Batch   37/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.934, Loss:  0.043
+Epoch   3 Batch   38/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.930, Loss:  0.078
+Epoch   3 Batch   39/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.930, Loss:  0.062
+Epoch   3 Batch   40/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.918, Loss:  0.040
+Epoch   3 Batch   41/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.906, Loss:  0.044
+Epoch   3 Batch   42/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.908, Loss:  0.064
+Epoch   3 Batch   43/1077 - Train Accuracy:  0.958, Validation Accuracy:  0.913, Loss:  0.028
+Epoch   3 Batch   44/1077 - Train Accuracy:  0.956, Validation Accuracy:  0.916, Loss:  0.040
+Epoch   3 Batch   45/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.916, Loss:  0.053
+Epoch   3 Batch   46/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.923, Loss:  0.046
+Epoch   3 Batch   47/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.924, Loss:  0.053
+Epoch   3 Batch   48/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.922, Loss:  0.087
+Epoch   3 Batch   49/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.922, Loss:  0.060
+Epoch   3 Batch   50/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.919, Loss:  0.046
+Epoch   3 Batch   51/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.918, Loss:  0.058
+Epoch   3 Batch   52/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.915, Loss:  0.065
+Epoch   3 Batch   53/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.922, Loss:  0.039
+Epoch   3 Batch   54/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.925, Loss:  0.078
+Epoch   3 Batch   55/1077 - Train Accuracy:  0.956, Validation Accuracy:  0.925, Loss:  0.042
+Epoch   3 Batch   56/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.919, Loss:  0.051
+Epoch   3 Batch   57/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.916, Loss:  0.059
+Epoch   3 Batch   58/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.912, Loss:  0.046
+Epoch   3 Batch   59/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.912, Loss:  0.043
+Epoch   3 Batch   60/1077 - Train Accuracy:  0.970, Validation Accuracy:  0.910, Loss:  0.035
+Epoch   3 Batch   61/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.912, Loss:  0.060
+Epoch   3 Batch   62/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.910, Loss:  0.061
+Epoch   3 Batch   63/1077 - Train Accuracy:  0.958, Validation Accuracy:  0.913, Loss:  0.042
+Epoch   3 Batch   64/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.913, Loss:  0.045
+Epoch   3 Batch   65/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.917, Loss:  0.053
+Epoch   3 Batch   66/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.914, Loss:  0.031
+Epoch   3 Batch   67/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.915, Loss:  0.047
+Epoch   3 Batch   68/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.911, Loss:  0.053
+Epoch   3 Batch   69/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.915, Loss:  0.061
+Epoch   3 Batch   70/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.915, Loss:  0.050
+Epoch   3 Batch   71/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.919, Loss:  0.035
+Epoch   3 Batch   72/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.918, Loss:  0.052
+Epoch   3 Batch   73/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.918, Loss:  0.055
+Epoch   3 Batch   74/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.914, Loss:  0.045
+Epoch   3 Batch   75/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.915, Loss:  0.065
+Epoch   3 Batch   76/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.926, Loss:  0.038
+Epoch   3 Batch   77/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.928, Loss:  0.045
+Epoch   3 Batch   78/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.928, Loss:  0.042
+Epoch   3 Batch   79/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.922, Loss:  0.042
+Epoch   3 Batch   80/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.922, Loss:  0.050
+Epoch   3 Batch   81/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.922, Loss:  0.041
+Epoch   3 Batch   82/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.922, Loss:  0.038
+Epoch   3 Batch   83/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.922, Loss:  0.044
+Epoch   3 Batch   84/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.925, Loss:  0.043
+Epoch   3 Batch   85/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.925, Loss:  0.047
+Epoch   3 Batch   86/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.923, Loss:  0.051
+Epoch   3 Batch   87/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.917, Loss:  0.065
+Epoch   3 Batch   88/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.909, Loss:  0.054
+Epoch   3 Batch   89/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.909, Loss:  0.050
+Epoch   3 Batch   90/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.911, Loss:  0.055
+Epoch   3 Batch   91/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.915, Loss:  0.043
+Epoch   3 Batch   92/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.910, Loss:  0.060
+Epoch   3 Batch   93/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.910, Loss:  0.038
+Epoch   3 Batch   94/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.914, Loss:  0.040
+Epoch   3 Batch   95/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.909, Loss:  0.054
+Epoch   3 Batch   96/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.909, Loss:  0.053
+Epoch   3 Batch   97/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.908, Loss:  0.050
+Epoch   3 Batch   98/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.907, Loss:  0.058
+Epoch   3 Batch   99/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.914, Loss:  0.052
+Epoch   3 Batch  100/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.919, Loss:  0.047
+Epoch   3 Batch  101/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.933, Loss:  0.048
+Epoch   3 Batch  102/1077 - Train Accuracy:  0.968, Validation Accuracy:  0.932, Loss:  0.042
+Epoch   3 Batch  103/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.929, Loss:  0.061
+Epoch   3 Batch  104/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.920, Loss:  0.049
+Epoch   3 Batch  105/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.919, Loss:  0.045
+Epoch   3 Batch  106/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.918, Loss:  0.056
+Epoch   3 Batch  107/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.925, Loss:  0.048
+Epoch   3 Batch  108/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.915, Loss:  0.056
+Epoch   3 Batch  109/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.929, Loss:  0.059
+Epoch   3 Batch  110/1077 - Train Accuracy:  0.960, Validation Accuracy:  0.929, Loss:  0.035
+Epoch   3 Batch  111/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.922, Loss:  0.055
+Epoch   3 Batch  112/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.921, Loss:  0.047
+Epoch   3 Batch  113/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.914, Loss:  0.055
+Epoch   3 Batch  114/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.911, Loss:  0.035
+Epoch   3 Batch  115/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.915, Loss:  0.056
+Epoch   3 Batch  116/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.920, Loss:  0.066
+Epoch   3 Batch  117/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.923, Loss:  0.049
+Epoch   3 Batch  118/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.925, Loss:  0.044
+Epoch   3 Batch  119/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.936, Loss:  0.046
+Epoch   3 Batch  120/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.940, Loss:  0.058
+Epoch   3 Batch  121/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.936, Loss:  0.057
+Epoch   3 Batch  122/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.936, Loss:  0.043
+Epoch   3 Batch  123/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.941, Loss:  0.045
+Epoch   3 Batch  124/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.936, Loss:  0.073
+Epoch   3 Batch  125/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.934, Loss:  0.056
+Epoch   3 Batch  126/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.934, Loss:  0.045
+Epoch   3 Batch  127/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.923, Loss:  0.053
+Epoch   3 Batch  128/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.909, Loss:  0.047
+Epoch   3 Batch  129/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.909, Loss:  0.066
+Epoch   3 Batch  130/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.909, Loss:  0.048
+Epoch   3 Batch  131/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.901, Loss:  0.055
+Epoch   3 Batch  132/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.903, Loss:  0.040
+Epoch   3 Batch  133/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.909, Loss:  0.039
+Epoch   3 Batch  134/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.917, Loss:  0.051
+Epoch   3 Batch  135/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.928, Loss:  0.046
+Epoch   3 Batch  136/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.924, Loss:  0.055
+Epoch   3 Batch  137/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.920, Loss:  0.030
+Epoch   3 Batch  138/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.923, Loss:  0.054
+Epoch   3 Batch  139/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.919, Loss:  0.062
+Epoch   3 Batch  140/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.915, Loss:  0.049
+Epoch   3 Batch  141/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.913, Loss:  0.047
+Epoch   3 Batch  142/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.917, Loss:  0.043
+Epoch   3 Batch  143/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.912, Loss:  0.049
+Epoch   3 Batch  144/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.917, Loss:  0.068
+Epoch   3 Batch  145/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.915, Loss:  0.048
+Epoch   3 Batch  146/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.923, Loss:  0.083
+Epoch   3 Batch  147/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.929, Loss:  0.052
+Epoch   3 Batch  148/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.918, Loss:  0.051
+Epoch   3 Batch  149/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.918, Loss:  0.045
+Epoch   3 Batch  150/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.923, Loss:  0.057
+Epoch   3 Batch  151/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.910, Loss:  0.046
+Epoch   3 Batch  152/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.910, Loss:  0.073
+Epoch   3 Batch  153/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.908, Loss:  0.064
+Epoch   3 Batch  154/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.905, Loss:  0.045
+Epoch   3 Batch  155/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.911, Loss:  0.056
+Epoch   3 Batch  156/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.913, Loss:  0.042
+Epoch   3 Batch  157/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.909, Loss:  0.041
+Epoch   3 Batch  158/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.903, Loss:  0.065
+Epoch   3 Batch  159/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.908, Loss:  0.040
+Epoch   3 Batch  160/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.913, Loss:  0.047
+Epoch   3 Batch  161/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.913, Loss:  0.041
+Epoch   3 Batch  162/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.913, Loss:  0.063
+Epoch   3 Batch  163/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.917, Loss:  0.064
+Epoch   3 Batch  164/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.922, Loss:  0.052
+Epoch   3 Batch  165/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.922, Loss:  0.042
+Epoch   3 Batch  166/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.917, Loss:  0.056
+Epoch   3 Batch  167/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.920, Loss:  0.048
+Epoch   3 Batch  168/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.919, Loss:  0.071
+Epoch   3 Batch  169/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.918, Loss:  0.064
+Epoch   3 Batch  170/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.913, Loss:  0.065
+Epoch   3 Batch  171/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.914, Loss:  0.055
+Epoch   3 Batch  172/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.914, Loss:  0.038
+Epoch   3 Batch  173/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.908, Loss:  0.052
+Epoch   3 Batch  174/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.909, Loss:  0.040
+Epoch   3 Batch  175/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.911, Loss:  0.059
+Epoch   3 Batch  176/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.911, Loss:  0.054
+Epoch   3 Batch  177/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.915, Loss:  0.057
+Epoch   3 Batch  178/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.923, Loss:  0.053
+Epoch   3 Batch  179/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.932, Loss:  0.047
+Epoch   3 Batch  180/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.935, Loss:  0.044
+Epoch   3 Batch  181/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.935, Loss:  0.058
+Epoch   3 Batch  182/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.935, Loss:  0.051
+Epoch   3 Batch  183/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.935, Loss:  0.049
+Epoch   3 Batch  184/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.939, Loss:  0.046
+Epoch   3 Batch  185/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.935, Loss:  0.054
+Epoch   3 Batch  186/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.933, Loss:  0.064
+Epoch   3 Batch  187/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.932, Loss:  0.039
+Epoch   3 Batch  188/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.932, Loss:  0.052
+Epoch   3 Batch  189/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.932, Loss:  0.044
+Epoch   3 Batch  190/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.928, Loss:  0.051
+Epoch   3 Batch  191/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.932, Loss:  0.043
+Epoch   3 Batch  192/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.927, Loss:  0.069
+Epoch   3 Batch  193/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.925, Loss:  0.046
+Epoch   3 Batch  194/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.922, Loss:  0.042
+Epoch   3 Batch  195/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.927, Loss:  0.034
+Epoch   3 Batch  196/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.927, Loss:  0.041
+Epoch   3 Batch  197/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.923, Loss:  0.053
+Epoch   3 Batch  198/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.923, Loss:  0.062
+Epoch   3 Batch  199/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.931, Loss:  0.045
+Epoch   3 Batch  200/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.932, Loss:  0.059
+Epoch   3 Batch  201/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.927, Loss:  0.040
+Epoch   3 Batch  202/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.927, Loss:  0.049
+Epoch   3 Batch  203/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.935, Loss:  0.046
+Epoch   3 Batch  204/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.932, Loss:  0.074
+Epoch   3 Batch  205/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.932, Loss:  0.077
+Epoch   3 Batch  206/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.933, Loss:  0.040
+Epoch   3 Batch  207/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.928, Loss:  0.045
+Epoch   3 Batch  208/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.928, Loss:  0.049
+Epoch   3 Batch  209/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.927, Loss:  0.030
+Epoch   3 Batch  210/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.923, Loss:  0.060
+Epoch   3 Batch  211/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.922, Loss:  0.046
+Epoch   3 Batch  212/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.926, Loss:  0.043
+Epoch   3 Batch  213/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.922, Loss:  0.043
+Epoch   3 Batch  214/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.922, Loss:  0.049
+Epoch   3 Batch  215/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.927, Loss:  0.051
+Epoch   3 Batch  216/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.927, Loss:  0.052
+Epoch   3 Batch  217/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.931, Loss:  0.045
+Epoch   3 Batch  218/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.933, Loss:  0.069
+Epoch   3 Batch  219/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.928, Loss:  0.041
+Epoch   3 Batch  220/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.928, Loss:  0.042
+Epoch   3 Batch  221/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.924, Loss:  0.065
+Epoch   3 Batch  222/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.924, Loss:  0.045
+Epoch   3 Batch  223/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.927, Loss:  0.039
+Epoch   3 Batch  224/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.918, Loss:  0.057
+Epoch   3 Batch  225/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.911, Loss:  0.061
+Epoch   3 Batch  226/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.912, Loss:  0.052
+Epoch   3 Batch  227/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.908, Loss:  0.056
+Epoch   3 Batch  228/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.921, Loss:  0.050
+Epoch   3 Batch  229/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.921, Loss:  0.048
+Epoch   3 Batch  230/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.917, Loss:  0.047
+Epoch   3 Batch  231/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.921, Loss:  0.065
+Epoch   3 Batch  232/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.909, Loss:  0.040
+Epoch   3 Batch  233/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.908, Loss:  0.065
+Epoch   3 Batch  234/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.927, Loss:  0.067
+Epoch   3 Batch  235/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.936, Loss:  0.051
+Epoch   3 Batch  236/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.933, Loss:  0.061
+Epoch   3 Batch  237/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.917, Loss:  0.045
+Epoch   3 Batch  238/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.913, Loss:  0.048
+Epoch   3 Batch  239/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.922, Loss:  0.038
+Epoch   3 Batch  240/1077 - Train Accuracy:  0.959, Validation Accuracy:  0.911, Loss:  0.044
+Epoch   3 Batch  241/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.911, Loss:  0.032
+Epoch   3 Batch  242/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.924, Loss:  0.040
+Epoch   3 Batch  243/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.924, Loss:  0.060
+Epoch   3 Batch  244/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.925, Loss:  0.046
+Epoch   3 Batch  245/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.934, Loss:  0.039
+Epoch   3 Batch  246/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.929, Loss:  0.043
+Epoch   3 Batch  247/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.933, Loss:  0.054
+Epoch   3 Batch  248/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.915, Loss:  0.056
+Epoch   3 Batch  249/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.920, Loss:  0.048
+Epoch   3 Batch  250/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.915, Loss:  0.053
+Epoch   3 Batch  251/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.920, Loss:  0.061
+Epoch   3 Batch  252/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.919, Loss:  0.053
+Epoch   3 Batch  253/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.919, Loss:  0.045
+Epoch   3 Batch  254/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.928, Loss:  0.057
+Epoch   3 Batch  255/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.928, Loss:  0.047
+Epoch   3 Batch  256/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.920, Loss:  0.076
+Epoch   3 Batch  257/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.925, Loss:  0.043
+Epoch   3 Batch  258/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.925, Loss:  0.053
+Epoch   3 Batch  259/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.922, Loss:  0.040
+Epoch   3 Batch  260/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.912, Loss:  0.048
+Epoch   3 Batch  261/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.904, Loss:  0.059
+Epoch   3 Batch  262/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.899, Loss:  0.048
+Epoch   3 Batch  263/1077 - Train Accuracy:  0.973, Validation Accuracy:  0.898, Loss:  0.033
+Epoch   3 Batch  264/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.895, Loss:  0.044
+Epoch   3 Batch  265/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.896, Loss:  0.048
+Epoch   3 Batch  266/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.901, Loss:  0.054
+Epoch   3 Batch  267/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.903, Loss:  0.039
+Epoch   3 Batch  268/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.909, Loss:  0.058
+Epoch   3 Batch  269/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.915, Loss:  0.063
+Epoch   3 Batch  270/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.915, Loss:  0.060
+Epoch   3 Batch  271/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.915, Loss:  0.040
+Epoch   3 Batch  272/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.923, Loss:  0.073
+Epoch   3 Batch  273/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.921, Loss:  0.043
+Epoch   3 Batch  274/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.924, Loss:  0.051
+Epoch   3 Batch  275/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.922, Loss:  0.045
+Epoch   3 Batch  276/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.923, Loss:  0.073
+Epoch   3 Batch  277/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.928, Loss:  0.043
+Epoch   3 Batch  278/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.929, Loss:  0.062
+Epoch   3 Batch  279/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.932, Loss:  0.074
+Epoch   3 Batch  280/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.926, Loss:  0.061
+Epoch   3 Batch  281/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.928, Loss:  0.065
+Epoch   3 Batch  282/1077 - Train Accuracy:  0.885, Validation Accuracy:  0.929, Loss:  0.080
+Epoch   3 Batch  283/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.924, Loss:  0.068
+Epoch   3 Batch  284/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.928, Loss:  0.061
+Epoch   3 Batch  285/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.928, Loss:  0.050
+Epoch   3 Batch  286/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.931, Loss:  0.051
+Epoch   3 Batch  287/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.931, Loss:  0.045
+Epoch   3 Batch  288/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.933, Loss:  0.059
+Epoch   3 Batch  289/1077 - Train Accuracy:  0.968, Validation Accuracy:  0.928, Loss:  0.053
+Epoch   3 Batch  290/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.935, Loss:  0.074
+Epoch   3 Batch  291/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.934, Loss:  0.076
+Epoch   3 Batch  292/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.929, Loss:  0.052
+Epoch   3 Batch  293/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.932, Loss:  0.072
+Epoch   3 Batch  294/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.933, Loss:  0.042
+Epoch   3 Batch  295/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.931, Loss:  0.055
+Epoch   3 Batch  296/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.930, Loss:  0.057
+Epoch   3 Batch  297/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.928, Loss:  0.068
+Epoch   3 Batch  298/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.928, Loss:  0.065
+Epoch   3 Batch  299/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.924, Loss:  0.052
+Epoch   3 Batch  300/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.914, Loss:  0.042
+Epoch   3 Batch  301/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.914, Loss:  0.043
+Epoch   3 Batch  302/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.906, Loss:  0.046
+Epoch   3 Batch  303/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.915, Loss:  0.055
+Epoch   3 Batch  304/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.914, Loss:  0.055
+Epoch   3 Batch  305/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.918, Loss:  0.046
+Epoch   3 Batch  306/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.916, Loss:  0.058
+Epoch   3 Batch  307/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.912, Loss:  0.048
+Epoch   3 Batch  308/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.912, Loss:  0.059
+Epoch   3 Batch  309/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.918, Loss:  0.044
+Epoch   3 Batch  310/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.916, Loss:  0.055
+Epoch   3 Batch  311/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.914, Loss:  0.050
+Epoch   3 Batch  312/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.923, Loss:  0.062
+Epoch   3 Batch  313/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.924, Loss:  0.040
+Epoch   3 Batch  314/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.920, Loss:  0.047
+Epoch   3 Batch  315/1077 - Train Accuracy:  0.958, Validation Accuracy:  0.922, Loss:  0.039
+Epoch   3 Batch  316/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.925, Loss:  0.051
+Epoch   3 Batch  317/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.920, Loss:  0.059
+Epoch   3 Batch  318/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.915, Loss:  0.042
+Epoch   3 Batch  319/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.920, Loss:  0.068
+Epoch   3 Batch  320/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.917, Loss:  0.066
+Epoch   3 Batch  321/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.914, Loss:  0.049
+Epoch   3 Batch  322/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.931, Loss:  0.054
+Epoch   3 Batch  323/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.923, Loss:  0.050
+Epoch   3 Batch  324/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.934, Loss:  0.037
+Epoch   3 Batch  325/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.930, Loss:  0.054
+Epoch   3 Batch  326/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.925, Loss:  0.049
+Epoch   3 Batch  327/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.925, Loss:  0.055
+Epoch   3 Batch  328/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.920, Loss:  0.064
+Epoch   3 Batch  329/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.919, Loss:  0.068
+Epoch   3 Batch  330/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.910, Loss:  0.058
+Epoch   3 Batch  331/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.911, Loss:  0.058
+Epoch   3 Batch  332/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.903, Loss:  0.040
+Epoch   3 Batch  333/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.903, Loss:  0.053
+Epoch   3 Batch  334/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.907, Loss:  0.052
+Epoch   3 Batch  335/1077 - Train Accuracy:  0.958, Validation Accuracy:  0.905, Loss:  0.052
+Epoch   3 Batch  336/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.900, Loss:  0.067
+Epoch   3 Batch  337/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.907, Loss:  0.065
+Epoch   3 Batch  338/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.909, Loss:  0.064
+Epoch   3 Batch  339/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.909, Loss:  0.039
+Epoch   3 Batch  340/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.909, Loss:  0.046
+Epoch   3 Batch  341/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.909, Loss:  0.068
+Epoch   3 Batch  342/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.909, Loss:  0.046
+Epoch   3 Batch  343/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.907, Loss:  0.055
+Epoch   3 Batch  344/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.912, Loss:  0.048
+Epoch   3 Batch  345/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.920, Loss:  0.047
+Epoch   3 Batch  346/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.916, Loss:  0.052
+Epoch   3 Batch  347/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.907, Loss:  0.033
+Epoch   3 Batch  348/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.900, Loss:  0.039
+Epoch   3 Batch  349/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.906, Loss:  0.053
+Epoch   3 Batch  350/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.911, Loss:  0.047
+Epoch   3 Batch  351/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.915, Loss:  0.054
+Epoch   3 Batch  352/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.917, Loss:  0.046
+Epoch   3 Batch  353/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.915, Loss:  0.067
+Epoch   3 Batch  354/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.920, Loss:  0.062
+Epoch   3 Batch  355/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.920, Loss:  0.041
+Epoch   3 Batch  356/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.924, Loss:  0.057
+Epoch   3 Batch  357/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.924, Loss:  0.053
+Epoch   3 Batch  358/1077 - Train Accuracy:  0.889, Validation Accuracy:  0.919, Loss:  0.066
+Epoch   3 Batch  359/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.914, Loss:  0.051
+Epoch   3 Batch  360/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.913, Loss:  0.046
+Epoch   3 Batch  361/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.911, Loss:  0.050
+Epoch   3 Batch  362/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.915, Loss:  0.050
+Epoch   3 Batch  363/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.922, Loss:  0.064
+Epoch   3 Batch  364/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.925, Loss:  0.060
+Epoch   3 Batch  365/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.919, Loss:  0.047
+Epoch   3 Batch  366/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.913, Loss:  0.052
+Epoch   3 Batch  367/1077 - Train Accuracy:  0.965, Validation Accuracy:  0.912, Loss:  0.038
+Epoch   3 Batch  368/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.916, Loss:  0.055
+Epoch   3 Batch  369/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.915, Loss:  0.060
+Epoch   3 Batch  370/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.919, Loss:  0.055
+Epoch   3 Batch  371/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.919, Loss:  0.045
+Epoch   3 Batch  372/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.925, Loss:  0.044
+Epoch   3 Batch  373/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.923, Loss:  0.037
+Epoch   3 Batch  374/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.923, Loss:  0.050
+Epoch   3 Batch  375/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.929, Loss:  0.046
+Epoch   3 Batch  376/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.928, Loss:  0.049
+Epoch   3 Batch  377/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.935, Loss:  0.044
+Epoch   3 Batch  378/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.924, Loss:  0.045
+Epoch   3 Batch  379/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.933, Loss:  0.057
+Epoch   3 Batch  380/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.933, Loss:  0.045
+Epoch   3 Batch  381/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.947, Loss:  0.055
+Epoch   3 Batch  382/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.947, Loss:  0.073
+Epoch   3 Batch  383/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.947, Loss:  0.046
+Epoch   3 Batch  384/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.947, Loss:  0.031
+Epoch   3 Batch  385/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.956, Loss:  0.046
+Epoch   3 Batch  386/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.954, Loss:  0.042
+Epoch   3 Batch  387/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.953, Loss:  0.038
+Epoch   3 Batch  388/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.955, Loss:  0.050
+Epoch   3 Batch  389/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.945, Loss:  0.047
+Epoch   3 Batch  390/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.945, Loss:  0.056
+Epoch   3 Batch  391/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.941, Loss:  0.054
+Epoch   3 Batch  392/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.941, Loss:  0.052
+Epoch   3 Batch  393/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.936, Loss:  0.044
+Epoch   3 Batch  394/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.936, Loss:  0.045
+Epoch   3 Batch  395/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.930, Loss:  0.045
+Epoch   3 Batch  396/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.930, Loss:  0.049
+Epoch   3 Batch  397/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.927, Loss:  0.048
+Epoch   3 Batch  398/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.929, Loss:  0.054
+Epoch   3 Batch  399/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.946, Loss:  0.057
+Epoch   3 Batch  400/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.943, Loss:  0.055
+Epoch   3 Batch  401/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.943, Loss:  0.048
+Epoch   3 Batch  402/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.939, Loss:  0.044
+Epoch   3 Batch  403/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.938, Loss:  0.077
+Epoch   3 Batch  404/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.938, Loss:  0.052
+Epoch   3 Batch  405/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.928, Loss:  0.050
+Epoch   3 Batch  406/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.928, Loss:  0.039
+Epoch   3 Batch  407/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.935, Loss:  0.074
+Epoch   3 Batch  408/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.936, Loss:  0.052
+Epoch   3 Batch  409/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.941, Loss:  0.062
+Epoch   3 Batch  410/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.936, Loss:  0.062
+Epoch   3 Batch  411/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.934, Loss:  0.058
+Epoch   3 Batch  412/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.934, Loss:  0.042
+Epoch   3 Batch  413/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.934, Loss:  0.039
+Epoch   3 Batch  414/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.940, Loss:  0.044
+Epoch   3 Batch  415/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.940, Loss:  0.052
+Epoch   3 Batch  416/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.943, Loss:  0.046
+Epoch   3 Batch  417/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.943, Loss:  0.078
+Epoch   3 Batch  418/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.945, Loss:  0.046
+Epoch   3 Batch  419/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.948, Loss:  0.045
+Epoch   3 Batch  420/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.946, Loss:  0.042
+Epoch   3 Batch  421/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.940, Loss:  0.061
+Epoch   3 Batch  422/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.940, Loss:  0.042
+Epoch   3 Batch  423/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.936, Loss:  0.068
+Epoch   3 Batch  424/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.935, Loss:  0.047
+Epoch   3 Batch  425/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.922, Loss:  0.037
+Epoch   3 Batch  426/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.928, Loss:  0.057
+Epoch   3 Batch  427/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.933, Loss:  0.047
+Epoch   3 Batch  428/1077 - Train Accuracy:  0.961, Validation Accuracy:  0.932, Loss:  0.036
+Epoch   3 Batch  429/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.936, Loss:  0.043
+Epoch   3 Batch  430/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.941, Loss:  0.047
+Epoch   3 Batch  431/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.942, Loss:  0.041
+Epoch   3 Batch  432/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.951, Loss:  0.048
+Epoch   3 Batch  433/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.943, Loss:  0.057
+Epoch   3 Batch  434/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.938, Loss:  0.044
+Epoch   3 Batch  435/1077 - Train Accuracy:  0.958, Validation Accuracy:  0.924, Loss:  0.056
+Epoch   3 Batch  436/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.918, Loss:  0.054
+Epoch   3 Batch  437/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.918, Loss:  0.034
+Epoch   3 Batch  438/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.916, Loss:  0.049
+Epoch   3 Batch  439/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.916, Loss:  0.057
+Epoch   3 Batch  440/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.920, Loss:  0.057
+Epoch   3 Batch  441/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.926, Loss:  0.046
+Epoch   3 Batch  442/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.925, Loss:  0.060
+Epoch   3 Batch  443/1077 - Train Accuracy:  0.959, Validation Accuracy:  0.925, Loss:  0.041
+Epoch   3 Batch  444/1077 - Train Accuracy:  0.956, Validation Accuracy:  0.925, Loss:  0.037
+Epoch   3 Batch  445/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.925, Loss:  0.057
+Epoch   3 Batch  446/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.924, Loss:  0.046
+Epoch   3 Batch  447/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.926, Loss:  0.044
+Epoch   3 Batch  448/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.922, Loss:  0.069
+Epoch   3 Batch  449/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.920, Loss:  0.047
+Epoch   3 Batch  450/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.920, Loss:  0.054
+Epoch   3 Batch  451/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.920, Loss:  0.049
+Epoch   3 Batch  452/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.920, Loss:  0.048
+Epoch   3 Batch  453/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.920, Loss:  0.053
+Epoch   3 Batch  454/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.930, Loss:  0.057
+Epoch   3 Batch  455/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.926, Loss:  0.057
+Epoch   3 Batch  456/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.923, Loss:  0.060
+Epoch   3 Batch  457/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.923, Loss:  0.042
+Epoch   3 Batch  458/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.923, Loss:  0.055
+Epoch   3 Batch  459/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.923, Loss:  0.045
+Epoch   3 Batch  460/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.923, Loss:  0.061
+Epoch   3 Batch  461/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.928, Loss:  0.049
+Epoch   3 Batch  462/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.928, Loss:  0.057
+Epoch   3 Batch  463/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.928, Loss:  0.057
+Epoch   3 Batch  464/1077 - Train Accuracy:  0.963, Validation Accuracy:  0.922, Loss:  0.047
+Epoch   3 Batch  465/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.916, Loss:  0.056
+Epoch   3 Batch  466/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.912, Loss:  0.048
+Epoch   3 Batch  467/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.917, Loss:  0.058
+Epoch   3 Batch  468/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.923, Loss:  0.057
+Epoch   3 Batch  469/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.920, Loss:  0.061
+Epoch   3 Batch  470/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.917, Loss:  0.053
+Epoch   3 Batch  471/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.913, Loss:  0.046
+Epoch   3 Batch  472/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.909, Loss:  0.049
+Epoch   3 Batch  473/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.909, Loss:  0.046
+Epoch   3 Batch  474/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.916, Loss:  0.047
+Epoch   3 Batch  475/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.912, Loss:  0.051
+Epoch   3 Batch  476/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.917, Loss:  0.039
+Epoch   3 Batch  477/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.925, Loss:  0.052
+Epoch   3 Batch  478/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.934, Loss:  0.052
+Epoch   3 Batch  479/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.934, Loss:  0.056
+Epoch   3 Batch  480/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.934, Loss:  0.054
+Epoch   3 Batch  481/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.935, Loss:  0.064
+Epoch   3 Batch  482/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.935, Loss:  0.065
+Epoch   3 Batch  483/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.934, Loss:  0.051
+Epoch   3 Batch  484/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.925, Loss:  0.048
+Epoch   3 Batch  485/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.932, Loss:  0.049
+Epoch   3 Batch  486/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.930, Loss:  0.046
+Epoch   3 Batch  487/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.928, Loss:  0.046
+Epoch   3 Batch  488/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.927, Loss:  0.053
+Epoch   3 Batch  489/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.926, Loss:  0.047
+Epoch   3 Batch  490/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.931, Loss:  0.051
+Epoch   3 Batch  491/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.929, Loss:  0.056
+Epoch   3 Batch  492/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.921, Loss:  0.059
+Epoch   3 Batch  493/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.921, Loss:  0.042
+Epoch   3 Batch  494/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.922, Loss:  0.049
+Epoch   3 Batch  495/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.924, Loss:  0.051
+Epoch   3 Batch  496/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.920, Loss:  0.050
+Epoch   3 Batch  497/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.924, Loss:  0.055
+Epoch   3 Batch  498/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.924, Loss:  0.052
+Epoch   3 Batch  499/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.930, Loss:  0.039
+Epoch   3 Batch  500/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.933, Loss:  0.040
+Epoch   3 Batch  501/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.933, Loss:  0.040
+Epoch   3 Batch  502/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.935, Loss:  0.053
+Epoch   3 Batch  503/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.935, Loss:  0.044
+Epoch   3 Batch  504/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.939, Loss:  0.042
+Epoch   3 Batch  505/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.935, Loss:  0.036
+Epoch   3 Batch  506/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.939, Loss:  0.059
+Epoch   3 Batch  507/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.937, Loss:  0.055
+Epoch   3 Batch  508/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.941, Loss:  0.046
+Epoch   3 Batch  509/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.941, Loss:  0.069
+Epoch   3 Batch  510/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.938, Loss:  0.057
+Epoch   3 Batch  511/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.936, Loss:  0.048
+Epoch   3 Batch  512/1077 - Train Accuracy:  0.961, Validation Accuracy:  0.930, Loss:  0.056
+Epoch   3 Batch  513/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.930, Loss:  0.050
+Epoch   3 Batch  514/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.934, Loss:  0.055
+Epoch   3 Batch  515/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.933, Loss:  0.052
+Epoch   3 Batch  516/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.929, Loss:  0.055
+Epoch   3 Batch  517/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.925, Loss:  0.063
+Epoch   3 Batch  518/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.928, Loss:  0.047
+Epoch   3 Batch  519/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.918, Loss:  0.046
+Epoch   3 Batch  520/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.916, Loss:  0.050
+Epoch   3 Batch  521/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.913, Loss:  0.058
+Epoch   3 Batch  522/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.921, Loss:  0.063
+Epoch   3 Batch  523/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.920, Loss:  0.054
+Epoch   3 Batch  524/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.920, Loss:  0.060
+Epoch   3 Batch  525/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.922, Loss:  0.061
+Epoch   3 Batch  526/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.922, Loss:  0.049
+Epoch   3 Batch  527/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.915, Loss:  0.056
+Epoch   3 Batch  528/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.923, Loss:  0.056
+Epoch   3 Batch  529/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.934, Loss:  0.049
+Epoch   3 Batch  530/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.937, Loss:  0.063
+Epoch   3 Batch  531/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.935, Loss:  0.057
+Epoch   3 Batch  532/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.931, Loss:  0.066
+Epoch   3 Batch  533/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.928, Loss:  0.058
+Epoch   3 Batch  534/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.926, Loss:  0.059
+Epoch   3 Batch  535/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.931, Loss:  0.050
+Epoch   3 Batch  536/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.929, Loss:  0.048
+Epoch   3 Batch  537/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.923, Loss:  0.039
+Epoch   3 Batch  538/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.928, Loss:  0.037
+Epoch   3 Batch  539/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.923, Loss:  0.061
+Epoch   3 Batch  540/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.914, Loss:  0.050
+Epoch   3 Batch  541/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.918, Loss:  0.047
+Epoch   3 Batch  542/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.923, Loss:  0.052
+Epoch   3 Batch  543/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.919, Loss:  0.048
+Epoch   3 Batch  544/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.918, Loss:  0.035
+Epoch   3 Batch  545/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.919, Loss:  0.057
+Epoch   3 Batch  546/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.924, Loss:  0.056
+Epoch   3 Batch  547/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.925, Loss:  0.045
+Epoch   3 Batch  548/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.930, Loss:  0.067
+Epoch   3 Batch  549/1077 - Train Accuracy:  0.879, Validation Accuracy:  0.926, Loss:  0.069
+Epoch   3 Batch  550/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.926, Loss:  0.049
+Epoch   3 Batch  551/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.918, Loss:  0.047
+Epoch   3 Batch  552/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.915, Loss:  0.054
+Epoch   3 Batch  553/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.915, Loss:  0.070
+Epoch   3 Batch  554/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.914, Loss:  0.043
+Epoch   3 Batch  555/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.914, Loss:  0.049
+Epoch   3 Batch  556/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.907, Loss:  0.052
+Epoch   3 Batch  557/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.906, Loss:  0.056
+Epoch   3 Batch  558/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.901, Loss:  0.038
+Epoch   3 Batch  559/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.908, Loss:  0.046
+Epoch   3 Batch  560/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.904, Loss:  0.049
+Epoch   3 Batch  561/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.912, Loss:  0.042
+Epoch   3 Batch  562/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.916, Loss:  0.046
+Epoch   3 Batch  563/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.904, Loss:  0.057
+Epoch   3 Batch  564/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.901, Loss:  0.057
+Epoch   3 Batch  565/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.907, Loss:  0.068
+Epoch   3 Batch  566/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.902, Loss:  0.057
+Epoch   3 Batch  567/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.911, Loss:  0.060
+Epoch   3 Batch  568/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.907, Loss:  0.041
+Epoch   3 Batch  569/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.908, Loss:  0.049
+Epoch   3 Batch  570/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.913, Loss:  0.071
+Epoch   3 Batch  571/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.913, Loss:  0.041
+Epoch   3 Batch  572/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.915, Loss:  0.048
+Epoch   3 Batch  573/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.918, Loss:  0.070
+Epoch   3 Batch  574/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.920, Loss:  0.054
+Epoch   3 Batch  575/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.929, Loss:  0.036
+Epoch   3 Batch  576/1077 - Train Accuracy:  0.965, Validation Accuracy:  0.926, Loss:  0.045
+Epoch   3 Batch  577/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.925, Loss:  0.060
+Epoch   3 Batch  578/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.918, Loss:  0.051
+Epoch   3 Batch  579/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.921, Loss:  0.052
+Epoch   3 Batch  580/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.920, Loss:  0.046
+Epoch   3 Batch  581/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.920, Loss:  0.041
+Epoch   3 Batch  582/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.918, Loss:  0.047
+Epoch   3 Batch  583/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.914, Loss:  0.054
+Epoch   3 Batch  584/1077 - Train Accuracy:  0.956, Validation Accuracy:  0.919, Loss:  0.046
+Epoch   3 Batch  585/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.921, Loss:  0.032
+Epoch   3 Batch  586/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.925, Loss:  0.052
+Epoch   3 Batch  587/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.921, Loss:  0.063
+Epoch   3 Batch  588/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.921, Loss:  0.043
+Epoch   3 Batch  589/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.914, Loss:  0.055
+Epoch   3 Batch  590/1077 - Train Accuracy:  0.892, Validation Accuracy:  0.921, Loss:  0.069
+Epoch   3 Batch  591/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.934, Loss:  0.055
+Epoch   3 Batch  592/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.935, Loss:  0.055
+Epoch   3 Batch  593/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.932, Loss:  0.073
+Epoch   3 Batch  594/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.920, Loss:  0.060
+Epoch   3 Batch  595/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.923, Loss:  0.045
+Epoch   3 Batch  596/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.922, Loss:  0.053
+Epoch   3 Batch  597/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.922, Loss:  0.046
+Epoch   3 Batch  598/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.920, Loss:  0.051
+Epoch   3 Batch  599/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.912, Loss:  0.067
+Epoch   3 Batch  600/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.916, Loss:  0.055
+Epoch   3 Batch  601/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.912, Loss:  0.057
+Epoch   3 Batch  602/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.911, Loss:  0.055
+Epoch   3 Batch  603/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.917, Loss:  0.054
+Epoch   3 Batch  604/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.919, Loss:  0.058
+Epoch   3 Batch  605/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.935, Loss:  0.078
+Epoch   3 Batch  606/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.933, Loss:  0.041
+Epoch   3 Batch  607/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.923, Loss:  0.042
+Epoch   3 Batch  608/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.925, Loss:  0.065
+Epoch   3 Batch  609/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.924, Loss:  0.050
+Epoch   3 Batch  610/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.928, Loss:  0.057
+Epoch   3 Batch  611/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.920, Loss:  0.044
+Epoch   3 Batch  612/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.905, Loss:  0.042
+Epoch   3 Batch  613/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.905, Loss:  0.067
+Epoch   3 Batch  614/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.906, Loss:  0.041
+Epoch   3 Batch  615/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.912, Loss:  0.047
+Epoch   3 Batch  616/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.917, Loss:  0.046
+Epoch   3 Batch  617/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.922, Loss:  0.050
+Epoch   3 Batch  618/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.931, Loss:  0.054
+Epoch   3 Batch  619/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.926, Loss:  0.042
+Epoch   3 Batch  620/1077 - Train Accuracy:  0.962, Validation Accuracy:  0.931, Loss:  0.046
+Epoch   3 Batch  621/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.930, Loss:  0.059
+Epoch   3 Batch  622/1077 - Train Accuracy:  0.959, Validation Accuracy:  0.916, Loss:  0.054
+Epoch   3 Batch  623/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.907, Loss:  0.061
+Epoch   3 Batch  624/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.912, Loss:  0.051
+Epoch   3 Batch  625/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.912, Loss:  0.052
+Epoch   3 Batch  626/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.915, Loss:  0.051
+Epoch   3 Batch  627/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.915, Loss:  0.054
+Epoch   3 Batch  628/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.924, Loss:  0.061
+Epoch   3 Batch  629/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.919, Loss:  0.066
+Epoch   3 Batch  630/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.926, Loss:  0.040
+Epoch   3 Batch  631/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.931, Loss:  0.054
+Epoch   3 Batch  632/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.935, Loss:  0.045
+Epoch   3 Batch  633/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.928, Loss:  0.055
+Epoch   3 Batch  634/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.933, Loss:  0.041
+Epoch   3 Batch  635/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.928, Loss:  0.059
+Epoch   3 Batch  636/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.931, Loss:  0.043
+Epoch   3 Batch  637/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.932, Loss:  0.048
+Epoch   3 Batch  638/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.937, Loss:  0.051
+Epoch   3 Batch  639/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.938, Loss:  0.068
+Epoch   3 Batch  640/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.933, Loss:  0.046
+Epoch   3 Batch  641/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.928, Loss:  0.050
+Epoch   3 Batch  642/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.929, Loss:  0.048
+Epoch   3 Batch  643/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.924, Loss:  0.053
+Epoch   3 Batch  644/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.925, Loss:  0.052
+Epoch   3 Batch  645/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.930, Loss:  0.061
+Epoch   3 Batch  646/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.931, Loss:  0.048
+Epoch   3 Batch  647/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.931, Loss:  0.057
+Epoch   3 Batch  648/1077 - Train Accuracy:  0.962, Validation Accuracy:  0.931, Loss:  0.031
+Epoch   3 Batch  649/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.931, Loss:  0.048
+Epoch   3 Batch  650/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.926, Loss:  0.040
+Epoch   3 Batch  651/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.931, Loss:  0.044
+Epoch   3 Batch  652/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.936, Loss:  0.065
+Epoch   3 Batch  653/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.934, Loss:  0.054
+Epoch   3 Batch  654/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.925, Loss:  0.044
+Epoch   3 Batch  655/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.924, Loss:  0.058
+Epoch   3 Batch  656/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.928, Loss:  0.053
+Epoch   3 Batch  657/1077 - Train Accuracy:  0.956, Validation Accuracy:  0.929, Loss:  0.045
+Epoch   3 Batch  658/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.934, Loss:  0.033
+Epoch   3 Batch  659/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.929, Loss:  0.053
+Epoch   3 Batch  660/1077 - Train Accuracy:  0.960, Validation Accuracy:  0.938, Loss:  0.034
+Epoch   3 Batch  661/1077 - Train Accuracy:  0.960, Validation Accuracy:  0.936, Loss:  0.046
+Epoch   3 Batch  662/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.928, Loss:  0.046
+Epoch   3 Batch  663/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.927, Loss:  0.045
+Epoch   3 Batch  664/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.924, Loss:  0.047
+Epoch   3 Batch  665/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.920, Loss:  0.038
+Epoch   3 Batch  666/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.915, Loss:  0.052
+Epoch   3 Batch  667/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.911, Loss:  0.054
+Epoch   3 Batch  668/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.911, Loss:  0.060
+Epoch   3 Batch  669/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.911, Loss:  0.054
+Epoch   3 Batch  670/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.924, Loss:  0.057
+Epoch   3 Batch  671/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.933, Loss:  0.061
+Epoch   3 Batch  672/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.937, Loss:  0.046
+Epoch   3 Batch  673/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.941, Loss:  0.046
+Epoch   3 Batch  674/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.933, Loss:  0.054
+Epoch   3 Batch  675/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.932, Loss:  0.059
+Epoch   3 Batch  676/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.929, Loss:  0.048
+Epoch   3 Batch  677/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.927, Loss:  0.067
+Epoch   3 Batch  678/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.933, Loss:  0.046
+Epoch   3 Batch  679/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.930, Loss:  0.045
+Epoch   3 Batch  680/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.922, Loss:  0.058
+Epoch   3 Batch  681/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.926, Loss:  0.052
+Epoch   3 Batch  682/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.917, Loss:  0.047
+Epoch   3 Batch  683/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.918, Loss:  0.049
+Epoch   3 Batch  684/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.918, Loss:  0.041
+Epoch   3 Batch  685/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.918, Loss:  0.051
+Epoch   3 Batch  686/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.914, Loss:  0.047
+Epoch   3 Batch  687/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.909, Loss:  0.075
+Epoch   3 Batch  688/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.907, Loss:  0.050
+Epoch   3 Batch  689/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.913, Loss:  0.035
+Epoch   3 Batch  690/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.910, Loss:  0.056
+Epoch   3 Batch  691/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.912, Loss:  0.067
+Epoch   3 Batch  692/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.918, Loss:  0.050
+Epoch   3 Batch  693/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.918, Loss:  0.063
+Epoch   3 Batch  694/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.917, Loss:  0.062
+Epoch   3 Batch  695/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.917, Loss:  0.042
+Epoch   3 Batch  696/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.917, Loss:  0.060
+Epoch   3 Batch  697/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.915, Loss:  0.054
+Epoch   3 Batch  698/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.901, Loss:  0.051
+Epoch   3 Batch  699/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.908, Loss:  0.063
+Epoch   3 Batch  700/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.917, Loss:  0.047
+Epoch   3 Batch  701/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.916, Loss:  0.051
+Epoch   3 Batch  702/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.924, Loss:  0.073
+Epoch   3 Batch  703/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.933, Loss:  0.054
+Epoch   3 Batch  704/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.929, Loss:  0.075
+Epoch   3 Batch  705/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.934, Loss:  0.066
+Epoch   3 Batch  706/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.931, Loss:  0.081
+Epoch   3 Batch  707/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.933, Loss:  0.058
+Epoch   3 Batch  708/1077 - Train Accuracy:  0.883, Validation Accuracy:  0.932, Loss:  0.065
+Epoch   3 Batch  709/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.933, Loss:  0.067
+Epoch   3 Batch  710/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.935, Loss:  0.048
+Epoch   3 Batch  711/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.929, Loss:  0.064
+Epoch   3 Batch  712/1077 - Train Accuracy:  0.962, Validation Accuracy:  0.925, Loss:  0.044
+Epoch   3 Batch  713/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.922, Loss:  0.048
+Epoch   3 Batch  714/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.923, Loss:  0.060
+Epoch   3 Batch  715/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.925, Loss:  0.059
+Epoch   3 Batch  716/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.926, Loss:  0.048
+Epoch   3 Batch  717/1077 - Train Accuracy:  0.958, Validation Accuracy:  0.923, Loss:  0.044
+Epoch   3 Batch  718/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.926, Loss:  0.039
+Epoch   3 Batch  719/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.923, Loss:  0.053
+Epoch   3 Batch  720/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.927, Loss:  0.058
+Epoch   3 Batch  721/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.931, Loss:  0.052
+Epoch   3 Batch  722/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.934, Loss:  0.048
+Epoch   3 Batch  723/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.938, Loss:  0.049
+Epoch   3 Batch  724/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.932, Loss:  0.049
+Epoch   3 Batch  725/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.933, Loss:  0.039
+Epoch   3 Batch  726/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.928, Loss:  0.057
+Epoch   3 Batch  727/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.928, Loss:  0.044
+Epoch   3 Batch  728/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.926, Loss:  0.071
+Epoch   3 Batch  729/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.922, Loss:  0.065
+Epoch   3 Batch  730/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.922, Loss:  0.066
+Epoch   3 Batch  731/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.918, Loss:  0.053
+Epoch   3 Batch  732/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.918, Loss:  0.059
+Epoch   3 Batch  733/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.904, Loss:  0.046
+Epoch   3 Batch  734/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.907, Loss:  0.054
+Epoch   3 Batch  735/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.911, Loss:  0.047
+Epoch   3 Batch  736/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.916, Loss:  0.041
+Epoch   3 Batch  737/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.922, Loss:  0.063
+Epoch   3 Batch  738/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.926, Loss:  0.039
+Epoch   3 Batch  739/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.928, Loss:  0.053
+Epoch   3 Batch  740/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.929, Loss:  0.043
+Epoch   3 Batch  741/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.931, Loss:  0.058
+Epoch   3 Batch  742/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.933, Loss:  0.054
+Epoch   3 Batch  743/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.932, Loss:  0.053
+Epoch   3 Batch  744/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.941, Loss:  0.053
+Epoch   3 Batch  745/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.936, Loss:  0.058
+Epoch   3 Batch  746/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.936, Loss:  0.043
+Epoch   3 Batch  747/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.933, Loss:  0.039
+Epoch   3 Batch  748/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.934, Loss:  0.043
+Epoch   3 Batch  749/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.935, Loss:  0.045
+Epoch   3 Batch  750/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.937, Loss:  0.048
+Epoch   3 Batch  751/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.937, Loss:  0.053
+Epoch   3 Batch  752/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.936, Loss:  0.048
+Epoch   3 Batch  753/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.932, Loss:  0.048
+Epoch   3 Batch  754/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.936, Loss:  0.060
+Epoch   3 Batch  755/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.927, Loss:  0.058
+Epoch   3 Batch  756/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.928, Loss:  0.049
+Epoch   3 Batch  757/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.924, Loss:  0.044
+Epoch   3 Batch  758/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.917, Loss:  0.046
+Epoch   3 Batch  759/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.927, Loss:  0.042
+Epoch   3 Batch  760/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.938, Loss:  0.059
+Epoch   3 Batch  761/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.942, Loss:  0.048
+Epoch   3 Batch  762/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.939, Loss:  0.043
+Epoch   3 Batch  763/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.936, Loss:  0.049
+Epoch   3 Batch  764/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.941, Loss:  0.053
+Epoch   3 Batch  765/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.938, Loss:  0.058
+Epoch   3 Batch  766/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.942, Loss:  0.043
+Epoch   3 Batch  767/1077 - Train Accuracy:  0.971, Validation Accuracy:  0.939, Loss:  0.046
+Epoch   3 Batch  768/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.939, Loss:  0.051
+Epoch   3 Batch  769/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.928, Loss:  0.045
+Epoch   3 Batch  770/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.919, Loss:  0.049
+Epoch   3 Batch  771/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.917, Loss:  0.050
+Epoch   3 Batch  772/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.918, Loss:  0.048
+Epoch   3 Batch  773/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.923, Loss:  0.049
+Epoch   3 Batch  774/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.923, Loss:  0.063
+Epoch   3 Batch  775/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.927, Loss:  0.057
+Epoch   3 Batch  776/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.925, Loss:  0.045
+Epoch   3 Batch  777/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.928, Loss:  0.054
+Epoch   3 Batch  778/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.926, Loss:  0.047
+Epoch   3 Batch  779/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.918, Loss:  0.062
+Epoch   3 Batch  780/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.916, Loss:  0.077
+Epoch   3 Batch  781/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.935, Loss:  0.041
+Epoch   3 Batch  782/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.939, Loss:  0.045
+Epoch   3 Batch  783/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.945, Loss:  0.053
+Epoch   3 Batch  784/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.945, Loss:  0.040
+Epoch   3 Batch  785/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.947, Loss:  0.037
+Epoch   3 Batch  786/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.947, Loss:  0.043
+Epoch   3 Batch  787/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.939, Loss:  0.055
+Epoch   3 Batch  788/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.938, Loss:  0.045
+Epoch   3 Batch  789/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.938, Loss:  0.060
+Epoch   3 Batch  790/1077 - Train Accuracy:  0.888, Validation Accuracy:  0.933, Loss:  0.053
+Epoch   3 Batch  791/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.933, Loss:  0.059
+Epoch   3 Batch  792/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.929, Loss:  0.060
+Epoch   3 Batch  793/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.932, Loss:  0.044
+Epoch   3 Batch  794/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.931, Loss:  0.037
+Epoch   3 Batch  795/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.925, Loss:  0.068
+Epoch   3 Batch  796/1077 - Train Accuracy:  0.966, Validation Accuracy:  0.930, Loss:  0.037
+Epoch   3 Batch  797/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.923, Loss:  0.052
+Epoch   3 Batch  798/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.922, Loss:  0.053
+Epoch   3 Batch  799/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.909, Loss:  0.060
+Epoch   3 Batch  800/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.911, Loss:  0.041
+Epoch   3 Batch  801/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.913, Loss:  0.056
+Epoch   3 Batch  802/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.913, Loss:  0.048
+Epoch   3 Batch  803/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.912, Loss:  0.061
+Epoch   3 Batch  804/1077 - Train Accuracy:  0.963, Validation Accuracy:  0.912, Loss:  0.040
+Epoch   3 Batch  805/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.913, Loss:  0.043
+Epoch   3 Batch  806/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.909, Loss:  0.059
+Epoch   3 Batch  807/1077 - Train Accuracy:  0.969, Validation Accuracy:  0.905, Loss:  0.044
+Epoch   3 Batch  808/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.905, Loss:  0.068
+Epoch   3 Batch  809/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.901, Loss:  0.056
+Epoch   3 Batch  810/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.900, Loss:  0.043
+Epoch   3 Batch  811/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.906, Loss:  0.051
+Epoch   3 Batch  812/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.910, Loss:  0.050
+Epoch   3 Batch  813/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.920, Loss:  0.054
+Epoch   3 Batch  814/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.920, Loss:  0.061
+Epoch   3 Batch  815/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.914, Loss:  0.053
+Epoch   3 Batch  816/1077 - Train Accuracy:  0.961, Validation Accuracy:  0.910, Loss:  0.056
+Epoch   3 Batch  817/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.920, Loss:  0.061
+Epoch   3 Batch  818/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.925, Loss:  0.056
+Epoch   3 Batch  819/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.932, Loss:  0.048
+Epoch   3 Batch  820/1077 - Train Accuracy:  0.958, Validation Accuracy:  0.927, Loss:  0.048
+Epoch   3 Batch  821/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.923, Loss:  0.054
+Epoch   3 Batch  822/1077 - Train Accuracy:  0.961, Validation Accuracy:  0.918, Loss:  0.040
+Epoch   3 Batch  823/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.922, Loss:  0.058
+Epoch   3 Batch  824/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.922, Loss:  0.064
+Epoch   3 Batch  825/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.919, Loss:  0.043
+Epoch   3 Batch  826/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.923, Loss:  0.048
+Epoch   3 Batch  827/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.926, Loss:  0.047
+Epoch   3 Batch  828/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.922, Loss:  0.051
+Epoch   3 Batch  829/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.918, Loss:  0.069
+Epoch   3 Batch  830/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.920, Loss:  0.059
+Epoch   3 Batch  831/1077 - Train Accuracy:  0.881, Validation Accuracy:  0.915, Loss:  0.052
+Epoch   3 Batch  832/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.915, Loss:  0.044
+Epoch   3 Batch  833/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.920, Loss:  0.057
+Epoch   3 Batch  834/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.927, Loss:  0.045
+Epoch   3 Batch  835/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.922, Loss:  0.052
+Epoch   3 Batch  836/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.923, Loss:  0.047
+Epoch   3 Batch  837/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.928, Loss:  0.059
+Epoch   3 Batch  838/1077 - Train Accuracy:  0.959, Validation Accuracy:  0.923, Loss:  0.046
+Epoch   3 Batch  839/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.918, Loss:  0.037
+Epoch   3 Batch  840/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.928, Loss:  0.043
+Epoch   3 Batch  841/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.936, Loss:  0.057
+Epoch   3 Batch  842/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.935, Loss:  0.037
+Epoch   3 Batch  843/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.934, Loss:  0.050
+Epoch   3 Batch  844/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.945, Loss:  0.044
+Epoch   3 Batch  845/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.950, Loss:  0.048
+Epoch   3 Batch  846/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.940, Loss:  0.059
+Epoch   3 Batch  847/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.944, Loss:  0.057
+Epoch   3 Batch  848/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.944, Loss:  0.039
+Epoch   3 Batch  849/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.940, Loss:  0.051
+Epoch   3 Batch  850/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.940, Loss:  0.078
+Epoch   3 Batch  851/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.935, Loss:  0.063
+Epoch   3 Batch  852/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.933, Loss:  0.053
+Epoch   3 Batch  853/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.934, Loss:  0.059
+Epoch   3 Batch  854/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.935, Loss:  0.052
+Epoch   3 Batch  855/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.933, Loss:  0.052
+Epoch   3 Batch  856/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.931, Loss:  0.050
+Epoch   3 Batch  857/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.925, Loss:  0.055
+Epoch   3 Batch  858/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.924, Loss:  0.049
+Epoch   3 Batch  859/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.926, Loss:  0.054
+Epoch   3 Batch  860/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.930, Loss:  0.044
+Epoch   3 Batch  861/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.936, Loss:  0.061
+Epoch   3 Batch  862/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.936, Loss:  0.049
+Epoch   3 Batch  863/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.931, Loss:  0.037
+Epoch   3 Batch  864/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.928, Loss:  0.052
+Epoch   3 Batch  865/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.922, Loss:  0.048
+Epoch   3 Batch  866/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.918, Loss:  0.065
+Epoch   3 Batch  867/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.926, Loss:  0.095
+Epoch   3 Batch  868/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.923, Loss:  0.063
+Epoch   3 Batch  869/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.925, Loss:  0.049
+Epoch   3 Batch  870/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.923, Loss:  0.051
+Epoch   3 Batch  871/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.918, Loss:  0.036
+Epoch   3 Batch  872/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.926, Loss:  0.052
+Epoch   3 Batch  873/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.926, Loss:  0.051
+Epoch   3 Batch  874/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.919, Loss:  0.066
+Epoch   3 Batch  875/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.913, Loss:  0.067
+Epoch   3 Batch  876/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.921, Loss:  0.043
+Epoch   3 Batch  877/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.933, Loss:  0.043
+Epoch   3 Batch  878/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.942, Loss:  0.043
+Epoch   3 Batch  879/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.933, Loss:  0.042
+Epoch   3 Batch  880/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.933, Loss:  0.049
+Epoch   3 Batch  881/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.933, Loss:  0.050
+Epoch   3 Batch  882/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.923, Loss:  0.050
+Epoch   3 Batch  883/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.923, Loss:  0.063
+Epoch   3 Batch  884/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.923, Loss:  0.053
+Epoch   3 Batch  885/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.923, Loss:  0.036
+Epoch   3 Batch  886/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.914, Loss:  0.041
+Epoch   3 Batch  887/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.908, Loss:  0.061
+Epoch   3 Batch  888/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.908, Loss:  0.048
+Epoch   3 Batch  889/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.919, Loss:  0.048
+Epoch   3 Batch  890/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.914, Loss:  0.053
+Epoch   3 Batch  891/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.909, Loss:  0.045
+Epoch   3 Batch  892/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.912, Loss:  0.042
+Epoch   3 Batch  893/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.912, Loss:  0.043
+Epoch   3 Batch  894/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.918, Loss:  0.041
+Epoch   3 Batch  895/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.920, Loss:  0.044
+Epoch   3 Batch  896/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.916, Loss:  0.053
+Epoch   3 Batch  897/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.922, Loss:  0.037
+Epoch   3 Batch  898/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.925, Loss:  0.040
+Epoch   3 Batch  899/1077 - Train Accuracy:  0.962, Validation Accuracy:  0.930, Loss:  0.044
+Epoch   3 Batch  900/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.934, Loss:  0.066
+Epoch   3 Batch  901/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.935, Loss:  0.067
+Epoch   3 Batch  902/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.933, Loss:  0.055
+Epoch   3 Batch  903/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.933, Loss:  0.054
+Epoch   3 Batch  904/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.939, Loss:  0.043
+Epoch   3 Batch  905/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.933, Loss:  0.038
+Epoch   3 Batch  906/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.931, Loss:  0.053
+Epoch   3 Batch  907/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.931, Loss:  0.046
+Epoch   3 Batch  908/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.936, Loss:  0.052
+Epoch   3 Batch  909/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.936, Loss:  0.052
+Epoch   3 Batch  910/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.935, Loss:  0.049
+Epoch   3 Batch  911/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.928, Loss:  0.045
+Epoch   3 Batch  912/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.930, Loss:  0.047
+Epoch   3 Batch  913/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.926, Loss:  0.078
+Epoch   3 Batch  914/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.927, Loss:  0.067
+Epoch   3 Batch  915/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.916, Loss:  0.045
+Epoch   3 Batch  916/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.912, Loss:  0.050
+Epoch   3 Batch  917/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.915, Loss:  0.047
+Epoch   3 Batch  918/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.913, Loss:  0.045
+Epoch   3 Batch  919/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.908, Loss:  0.038
+Epoch   3 Batch  920/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.917, Loss:  0.043
+Epoch   3 Batch  921/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.918, Loss:  0.058
+Epoch   3 Batch  922/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.923, Loss:  0.049
+Epoch   3 Batch  923/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.920, Loss:  0.037
+Epoch   3 Batch  924/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.924, Loss:  0.055
+Epoch   3 Batch  925/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.919, Loss:  0.050
+Epoch   3 Batch  926/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.916, Loss:  0.032
+Epoch   3 Batch  927/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.919, Loss:  0.064
+Epoch   3 Batch  928/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.925, Loss:  0.052
+Epoch   3 Batch  929/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.924, Loss:  0.053
+Epoch   3 Batch  930/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.923, Loss:  0.050
+Epoch   3 Batch  931/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.914, Loss:  0.046
+Epoch   3 Batch  932/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.905, Loss:  0.055
+Epoch   3 Batch  933/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.911, Loss:  0.049
+Epoch   3 Batch  934/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.917, Loss:  0.042
+Epoch   3 Batch  935/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.922, Loss:  0.049
+Epoch   3 Batch  936/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.927, Loss:  0.050
+Epoch   3 Batch  937/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.924, Loss:  0.058
+Epoch   3 Batch  938/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.920, Loss:  0.056
+Epoch   3 Batch  939/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.919, Loss:  0.052
+Epoch   3 Batch  940/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.926, Loss:  0.041
+Epoch   3 Batch  941/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.929, Loss:  0.042
+Epoch   3 Batch  942/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.927, Loss:  0.053
+Epoch   3 Batch  943/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.930, Loss:  0.049
+Epoch   3 Batch  944/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.925, Loss:  0.044
+Epoch   3 Batch  945/1077 - Train Accuracy:  0.969, Validation Accuracy:  0.930, Loss:  0.041
+Epoch   3 Batch  946/1077 - Train Accuracy:  0.973, Validation Accuracy:  0.927, Loss:  0.029
+Epoch   3 Batch  947/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.924, Loss:  0.047
+Epoch   3 Batch  948/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.922, Loss:  0.047
+Epoch   3 Batch  949/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.922, Loss:  0.041
+Epoch   3 Batch  950/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.920, Loss:  0.044
+Epoch   3 Batch  951/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.926, Loss:  0.055
+Epoch   3 Batch  952/1077 - Train Accuracy:  0.956, Validation Accuracy:  0.929, Loss:  0.037
+Epoch   3 Batch  953/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.928, Loss:  0.037
+Epoch   3 Batch  954/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.926, Loss:  0.045
+Epoch   3 Batch  955/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.926, Loss:  0.073
+Epoch   3 Batch  956/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.926, Loss:  0.052
+Epoch   3 Batch  957/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.919, Loss:  0.034
+Epoch   3 Batch  958/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.919, Loss:  0.042
+Epoch   3 Batch  959/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.919, Loss:  0.045
+Epoch   3 Batch  960/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.919, Loss:  0.044
+Epoch   3 Batch  961/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.920, Loss:  0.041
+Epoch   3 Batch  962/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.920, Loss:  0.048
+Epoch   3 Batch  963/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.919, Loss:  0.066
+Epoch   3 Batch  964/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.920, Loss:  0.044
+Epoch   3 Batch  965/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.920, Loss:  0.064
+Epoch   3 Batch  966/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.924, Loss:  0.043
+Epoch   3 Batch  967/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.914, Loss:  0.067
+Epoch   3 Batch  968/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.914, Loss:  0.057
+Epoch   3 Batch  969/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.916, Loss:  0.074
+Epoch   3 Batch  970/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.922, Loss:  0.042
+Epoch   3 Batch  971/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.916, Loss:  0.060
+Epoch   3 Batch  972/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.925, Loss:  0.052
+Epoch   3 Batch  973/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.926, Loss:  0.042
+Epoch   3 Batch  974/1077 - Train Accuracy:  0.962, Validation Accuracy:  0.929, Loss:  0.035
+Epoch   3 Batch  975/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.931, Loss:  0.045
+Epoch   3 Batch  976/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.931, Loss:  0.039
+Epoch   3 Batch  977/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.932, Loss:  0.038
+Epoch   3 Batch  978/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.928, Loss:  0.047
+Epoch   3 Batch  979/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.928, Loss:  0.046
+Epoch   3 Batch  980/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.935, Loss:  0.049
+Epoch   3 Batch  981/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.936, Loss:  0.043
+Epoch   3 Batch  982/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.936, Loss:  0.048
+Epoch   3 Batch  983/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.936, Loss:  0.049
+Epoch   3 Batch  984/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.933, Loss:  0.066
+Epoch   3 Batch  985/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.933, Loss:  0.046
+Epoch   3 Batch  986/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.936, Loss:  0.049
+Epoch   3 Batch  987/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.931, Loss:  0.045
+Epoch   3 Batch  988/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.932, Loss:  0.066
+Epoch   3 Batch  989/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.933, Loss:  0.055
+Epoch   3 Batch  990/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.930, Loss:  0.059
+Epoch   3 Batch  991/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.925, Loss:  0.041
+Epoch   3 Batch  992/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.926, Loss:  0.049
+Epoch   3 Batch  993/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.919, Loss:  0.040
+Epoch   3 Batch  994/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.917, Loss:  0.046
+Epoch   3 Batch  995/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.917, Loss:  0.048
+Epoch   3 Batch  996/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.923, Loss:  0.052
+Epoch   3 Batch  997/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.922, Loss:  0.045
+Epoch   3 Batch  998/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.926, Loss:  0.050
+Epoch   3 Batch  999/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.929, Loss:  0.054
+Epoch   3 Batch 1000/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.929, Loss:  0.041
+Epoch   3 Batch 1001/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.925, Loss:  0.035
+Epoch   3 Batch 1002/1077 - Train Accuracy:  0.959, Validation Accuracy:  0.928, Loss:  0.036
+Epoch   3 Batch 1003/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.933, Loss:  0.050
+Epoch   3 Batch 1004/1077 - Train Accuracy:  0.964, Validation Accuracy:  0.933, Loss:  0.052
+Epoch   3 Batch 1005/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.931, Loss:  0.043
+Epoch   3 Batch 1006/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.929, Loss:  0.047
+Epoch   3 Batch 1007/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.930, Loss:  0.047
+Epoch   3 Batch 1008/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.925, Loss:  0.063
+Epoch   3 Batch 1009/1077 - Train Accuracy:  0.959, Validation Accuracy:  0.927, Loss:  0.038
+Epoch   3 Batch 1010/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.934, Loss:  0.043
+Epoch   3 Batch 1011/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.927, Loss:  0.037
+Epoch   3 Batch 1012/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.924, Loss:  0.037
+Epoch   3 Batch 1013/1077 - Train Accuracy:  0.971, Validation Accuracy:  0.923, Loss:  0.034
+Epoch   3 Batch 1014/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.928, Loss:  0.055
+Epoch   3 Batch 1015/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.928, Loss:  0.059
+Epoch   3 Batch 1016/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.925, Loss:  0.046
+Epoch   3 Batch 1017/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.925, Loss:  0.042
+Epoch   3 Batch 1018/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.921, Loss:  0.042
+Epoch   3 Batch 1019/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.923, Loss:  0.060
+Epoch   3 Batch 1020/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.923, Loss:  0.040
+Epoch   3 Batch 1021/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.922, Loss:  0.046
+Epoch   3 Batch 1022/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.924, Loss:  0.044
+Epoch   3 Batch 1023/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.920, Loss:  0.047
+Epoch   3 Batch 1024/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.931, Loss:  0.068
+Epoch   3 Batch 1025/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.934, Loss:  0.050
+Epoch   3 Batch 1026/1077 - Train Accuracy:  0.966, Validation Accuracy:  0.938, Loss:  0.053
+Epoch   3 Batch 1027/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.934, Loss:  0.048
+Epoch   3 Batch 1028/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.929, Loss:  0.048
+Epoch   3 Batch 1029/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.931, Loss:  0.038
+Epoch   3 Batch 1030/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.935, Loss:  0.043
+Epoch   3 Batch 1031/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.926, Loss:  0.050
+Epoch   3 Batch 1032/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.930, Loss:  0.050
+Epoch   3 Batch 1033/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.930, Loss:  0.051
+Epoch   3 Batch 1034/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.934, Loss:  0.049
+Epoch   3 Batch 1035/1077 - Train Accuracy:  0.975, Validation Accuracy:  0.929, Loss:  0.029
+Epoch   3 Batch 1036/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.929, Loss:  0.046
+Epoch   3 Batch 1037/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.930, Loss:  0.038
+Epoch   3 Batch 1038/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.935, Loss:  0.067
+Epoch   3 Batch 1039/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.938, Loss:  0.050
+Epoch   3 Batch 1040/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.938, Loss:  0.053
+Epoch   3 Batch 1041/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.931, Loss:  0.058
+Epoch   3 Batch 1042/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.935, Loss:  0.041
+Epoch   3 Batch 1043/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.935, Loss:  0.054
+Epoch   3 Batch 1044/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.937, Loss:  0.053
+Epoch   3 Batch 1045/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.924, Loss:  0.044
+Epoch   3 Batch 1046/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.929, Loss:  0.035
+Epoch   3 Batch 1047/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.933, Loss:  0.048
+Epoch   3 Batch 1048/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.942, Loss:  0.051
+Epoch   3 Batch 1049/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.938, Loss:  0.045
+Epoch   3 Batch 1050/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.935, Loss:  0.037
+Epoch   3 Batch 1051/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.934, Loss:  0.053
+Epoch   3 Batch 1052/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.939, Loss:  0.046
+Epoch   3 Batch 1053/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.941, Loss:  0.045
+Epoch   3 Batch 1054/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.941, Loss:  0.053
+Epoch   3 Batch 1055/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.940, Loss:  0.045
+Epoch   3 Batch 1056/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.943, Loss:  0.046
+Epoch   3 Batch 1057/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.936, Loss:  0.055
+Epoch   3 Batch 1058/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.936, Loss:  0.052
+Epoch   3 Batch 1059/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.920, Loss:  0.058
+Epoch   3 Batch 1060/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.918, Loss:  0.044
+Epoch   3 Batch 1061/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.918, Loss:  0.049
+Epoch   3 Batch 1062/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.920, Loss:  0.047
+Epoch   3 Batch 1063/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.929, Loss:  0.061
+Epoch   3 Batch 1064/1077 - Train Accuracy:  0.960, Validation Accuracy:  0.930, Loss:  0.046
+Epoch   3 Batch 1065/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.933, Loss:  0.042
+Epoch   3 Batch 1066/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.933, Loss:  0.039
+Epoch   3 Batch 1067/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.938, Loss:  0.057
+Epoch   3 Batch 1068/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.940, Loss:  0.043
+Epoch   3 Batch 1069/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.937, Loss:  0.035
+Epoch   3 Batch 1070/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.937, Loss:  0.041
+Epoch   3 Batch 1071/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.940, Loss:  0.048
+Epoch   3 Batch 1072/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.934, Loss:  0.040
+Epoch   3 Batch 1073/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.929, Loss:  0.047
+Epoch   3 Batch 1074/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.929, Loss:  0.055
+Epoch   3 Batch 1075/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.925, Loss:  0.051
+Epoch   4 Batch    0/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.926, Loss:  0.050
+Epoch   4 Batch    1/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.922, Loss:  0.036
+Epoch   4 Batch    2/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.926, Loss:  0.050
+Epoch   4 Batch    3/1077 - Train Accuracy:  0.965, Validation Accuracy:  0.918, Loss:  0.044
+Epoch   4 Batch    4/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.922, Loss:  0.034
+Epoch   4 Batch    5/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.918, Loss:  0.069
+Epoch   4 Batch    6/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.918, Loss:  0.051
+Epoch   4 Batch    7/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.915, Loss:  0.047
+Epoch   4 Batch    8/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.914, Loss:  0.041
+Epoch   4 Batch    9/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.912, Loss:  0.045
+Epoch   4 Batch   10/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.912, Loss:  0.048
+Epoch   4 Batch   11/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.919, Loss:  0.058
+Epoch   4 Batch   12/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.922, Loss:  0.046
+Epoch   4 Batch   13/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.931, Loss:  0.058
+Epoch   4 Batch   14/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.920, Loss:  0.039
+Epoch   4 Batch   15/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.917, Loss:  0.038
+Epoch   4 Batch   16/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.924, Loss:  0.060
+Epoch   4 Batch   17/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.924, Loss:  0.044
+Epoch   4 Batch   18/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.922, Loss:  0.046
+Epoch   4 Batch   19/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.925, Loss:  0.052
+Epoch   4 Batch   20/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.930, Loss:  0.037
+Epoch   4 Batch   21/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.926, Loss:  0.054
+Epoch   4 Batch   22/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.933, Loss:  0.061
+Epoch   4 Batch   23/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.925, Loss:  0.048
+Epoch   4 Batch   24/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.930, Loss:  0.042
+Epoch   4 Batch   25/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.925, Loss:  0.042
+Epoch   4 Batch   26/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.916, Loss:  0.056
+Epoch   4 Batch   27/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.916, Loss:  0.037
+Epoch   4 Batch   28/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.915, Loss:  0.053
+Epoch   4 Batch   29/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.926, Loss:  0.052
+Epoch   4 Batch   30/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.926, Loss:  0.038
+Epoch   4 Batch   31/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.931, Loss:  0.044
+Epoch   4 Batch   32/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.934, Loss:  0.048
+Epoch   4 Batch   33/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.926, Loss:  0.045
+Epoch   4 Batch   34/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.930, Loss:  0.049
+Epoch   4 Batch   35/1077 - Train Accuracy:  0.963, Validation Accuracy:  0.926, Loss:  0.042
+Epoch   4 Batch   36/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.930, Loss:  0.050
+Epoch   4 Batch   37/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.932, Loss:  0.048
+Epoch   4 Batch   38/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.936, Loss:  0.060
+Epoch   4 Batch   39/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.926, Loss:  0.061
+Epoch   4 Batch   40/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.928, Loss:  0.040
+Epoch   4 Batch   41/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.931, Loss:  0.038
+Epoch   4 Batch   42/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.928, Loss:  0.050
+Epoch   4 Batch   43/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.925, Loss:  0.029
+Epoch   4 Batch   44/1077 - Train Accuracy:  0.968, Validation Accuracy:  0.926, Loss:  0.030
+Epoch   4 Batch   45/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.925, Loss:  0.043
+Epoch   4 Batch   46/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.923, Loss:  0.045
+Epoch   4 Batch   47/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.924, Loss:  0.048
+Epoch   4 Batch   48/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.924, Loss:  0.063
+Epoch   4 Batch   49/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.915, Loss:  0.060
+Epoch   4 Batch   50/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.920, Loss:  0.047
+Epoch   4 Batch   51/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.931, Loss:  0.046
+Epoch   4 Batch   52/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.933, Loss:  0.051
+Epoch   4 Batch   53/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.935, Loss:  0.042
+Epoch   4 Batch   54/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.931, Loss:  0.085
+Epoch   4 Batch   55/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.932, Loss:  0.049
+Epoch   4 Batch   56/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.921, Loss:  0.042
+Epoch   4 Batch   57/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.918, Loss:  0.047
+Epoch   4 Batch   58/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.911, Loss:  0.037
+Epoch   4 Batch   59/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.908, Loss:  0.038
+Epoch   4 Batch   60/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.909, Loss:  0.035
+Epoch   4 Batch   61/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.917, Loss:  0.051
+Epoch   4 Batch   62/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.913, Loss:  0.045
+Epoch   4 Batch   63/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.917, Loss:  0.035
+Epoch   4 Batch   64/1077 - Train Accuracy:  0.961, Validation Accuracy:  0.913, Loss:  0.040
+Epoch   4 Batch   65/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.913, Loss:  0.051
+Epoch   4 Batch   66/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.909, Loss:  0.026
+Epoch   4 Batch   67/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.909, Loss:  0.039
+Epoch   4 Batch   68/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.909, Loss:  0.056
+Epoch   4 Batch   69/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.906, Loss:  0.060
+Epoch   4 Batch   70/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.915, Loss:  0.051
+Epoch   4 Batch   71/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.914, Loss:  0.028
+Epoch   4 Batch   72/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.913, Loss:  0.042
+Epoch   4 Batch   73/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.909, Loss:  0.043
+Epoch   4 Batch   74/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.915, Loss:  0.049
+Epoch   4 Batch   75/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.919, Loss:  0.062
+Epoch   4 Batch   76/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.914, Loss:  0.032
+Epoch   4 Batch   77/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.912, Loss:  0.043
+Epoch   4 Batch   78/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.921, Loss:  0.038
+Epoch   4 Batch   79/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.929, Loss:  0.035
+Epoch   4 Batch   80/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.924, Loss:  0.045
+Epoch   4 Batch   81/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.922, Loss:  0.043
+Epoch   4 Batch   82/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.923, Loss:  0.045
+Epoch   4 Batch   83/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.926, Loss:  0.047
+Epoch   4 Batch   84/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.920, Loss:  0.048
+Epoch   4 Batch   85/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.918, Loss:  0.044
+Epoch   4 Batch   86/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.917, Loss:  0.046
+Epoch   4 Batch   87/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.908, Loss:  0.054
+Epoch   4 Batch   88/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.908, Loss:  0.047
+Epoch   4 Batch   89/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.913, Loss:  0.046
+Epoch   4 Batch   90/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.911, Loss:  0.044
+Epoch   4 Batch   91/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.908, Loss:  0.035
+Epoch   4 Batch   92/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.914, Loss:  0.055
+Epoch   4 Batch   93/1077 - Train Accuracy:  0.960, Validation Accuracy:  0.918, Loss:  0.043
+Epoch   4 Batch   94/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.918, Loss:  0.034
+Epoch   4 Batch   95/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.918, Loss:  0.043
+Epoch   4 Batch   96/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.918, Loss:  0.045
+Epoch   4 Batch   97/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.918, Loss:  0.050
+Epoch   4 Batch   98/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.928, Loss:  0.052
+Epoch   4 Batch   99/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.928, Loss:  0.043
+Epoch   4 Batch  100/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.929, Loss:  0.048
+Epoch   4 Batch  101/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.929, Loss:  0.048
+Epoch   4 Batch  102/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.931, Loss:  0.042
+Epoch   4 Batch  103/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.940, Loss:  0.049
+Epoch   4 Batch  104/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.925, Loss:  0.054
+Epoch   4 Batch  105/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.929, Loss:  0.047
+Epoch   4 Batch  106/1077 - Train Accuracy:  0.958, Validation Accuracy:  0.924, Loss:  0.053
+Epoch   4 Batch  107/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.928, Loss:  0.041
+Epoch   4 Batch  108/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.928, Loss:  0.050
+Epoch   4 Batch  109/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.931, Loss:  0.048
+Epoch   4 Batch  110/1077 - Train Accuracy:  0.976, Validation Accuracy:  0.931, Loss:  0.028
+Epoch   4 Batch  111/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.928, Loss:  0.045
+Epoch   4 Batch  112/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.929, Loss:  0.041
+Epoch   4 Batch  113/1077 - Train Accuracy:  0.892, Validation Accuracy:  0.921, Loss:  0.050
+Epoch   4 Batch  114/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.925, Loss:  0.037
+Epoch   4 Batch  115/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.918, Loss:  0.043
+Epoch   4 Batch  116/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.914, Loss:  0.054
+Epoch   4 Batch  117/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.914, Loss:  0.034
+Epoch   4 Batch  118/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.916, Loss:  0.041
+Epoch   4 Batch  119/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.914, Loss:  0.037
+Epoch   4 Batch  120/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.919, Loss:  0.053
+Epoch   4 Batch  121/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.919, Loss:  0.045
+Epoch   4 Batch  122/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.917, Loss:  0.036
+Epoch   4 Batch  123/1077 - Train Accuracy:  0.964, Validation Accuracy:  0.910, Loss:  0.036
+Epoch   4 Batch  124/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.910, Loss:  0.052
+Epoch   4 Batch  125/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.914, Loss:  0.058
+Epoch   4 Batch  126/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.916, Loss:  0.035
+Epoch   4 Batch  127/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.916, Loss:  0.048
+Epoch   4 Batch  128/1077 - Train Accuracy:  0.966, Validation Accuracy:  0.916, Loss:  0.043
+Epoch   4 Batch  129/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.914, Loss:  0.048
+Epoch   4 Batch  130/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.914, Loss:  0.040
+Epoch   4 Batch  131/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.915, Loss:  0.048
+Epoch   4 Batch  132/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.913, Loss:  0.038
+Epoch   4 Batch  133/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.918, Loss:  0.037
+Epoch   4 Batch  134/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.918, Loss:  0.039
+Epoch   4 Batch  135/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.918, Loss:  0.046
+Epoch   4 Batch  136/1077 - Train Accuracy:  0.960, Validation Accuracy:  0.914, Loss:  0.041
+Epoch   4 Batch  137/1077 - Train Accuracy:  0.962, Validation Accuracy:  0.913, Loss:  0.036
+Epoch   4 Batch  138/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.906, Loss:  0.043
+Epoch   4 Batch  139/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.906, Loss:  0.052
+Epoch   4 Batch  140/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.906, Loss:  0.047
+Epoch   4 Batch  141/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.908, Loss:  0.038
+Epoch   4 Batch  142/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.913, Loss:  0.037
+Epoch   4 Batch  143/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.907, Loss:  0.041
+Epoch   4 Batch  144/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.906, Loss:  0.059
+Epoch   4 Batch  145/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.907, Loss:  0.052
+Epoch   4 Batch  146/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.906, Loss:  0.078
+Epoch   4 Batch  147/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.906, Loss:  0.046
+Epoch   4 Batch  148/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.906, Loss:  0.050
+Epoch   4 Batch  149/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.903, Loss:  0.043
+Epoch   4 Batch  150/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.909, Loss:  0.049
+Epoch   4 Batch  151/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.909, Loss:  0.041
+Epoch   4 Batch  152/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.909, Loss:  0.070
+Epoch   4 Batch  153/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.907, Loss:  0.067
+Epoch   4 Batch  154/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.911, Loss:  0.044
+Epoch   4 Batch  155/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.915, Loss:  0.042
+Epoch   4 Batch  156/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.915, Loss:  0.039
+Epoch   4 Batch  157/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.915, Loss:  0.043
+Epoch   4 Batch  158/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.912, Loss:  0.066
+Epoch   4 Batch  159/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.917, Loss:  0.039
+Epoch   4 Batch  160/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.926, Loss:  0.046
+Epoch   4 Batch  161/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.926, Loss:  0.042
+Epoch   4 Batch  162/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.928, Loss:  0.054
+Epoch   4 Batch  163/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.928, Loss:  0.060
+Epoch   4 Batch  164/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.927, Loss:  0.045
+Epoch   4 Batch  165/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.919, Loss:  0.044
+Epoch   4 Batch  166/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.914, Loss:  0.060
+Epoch   4 Batch  167/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.931, Loss:  0.047
+Epoch   4 Batch  168/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.929, Loss:  0.062
+Epoch   4 Batch  169/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.929, Loss:  0.059
+Epoch   4 Batch  170/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.923, Loss:  0.054
+Epoch   4 Batch  171/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.917, Loss:  0.055
+Epoch   4 Batch  172/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.917, Loss:  0.044
+Epoch   4 Batch  173/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.920, Loss:  0.048
+Epoch   4 Batch  174/1077 - Train Accuracy:  0.964, Validation Accuracy:  0.922, Loss:  0.042
+Epoch   4 Batch  175/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.921, Loss:  0.049
+Epoch   4 Batch  176/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.922, Loss:  0.057
+Epoch   4 Batch  177/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.920, Loss:  0.060
+Epoch   4 Batch  178/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.919, Loss:  0.048
+Epoch   4 Batch  179/1077 - Train Accuracy:  0.959, Validation Accuracy:  0.924, Loss:  0.058
+Epoch   4 Batch  180/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.920, Loss:  0.043
+Epoch   4 Batch  181/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.920, Loss:  0.058
+Epoch   4 Batch  182/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.918, Loss:  0.057
+Epoch   4 Batch  183/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.915, Loss:  0.055
+Epoch   4 Batch  184/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.904, Loss:  0.050
+Epoch   4 Batch  185/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.911, Loss:  0.060
+Epoch   4 Batch  186/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.909, Loss:  0.053
+Epoch   4 Batch  187/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.908, Loss:  0.038
+Epoch   4 Batch  188/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.908, Loss:  0.049
+Epoch   4 Batch  189/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.909, Loss:  0.040
+Epoch   4 Batch  190/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.916, Loss:  0.048
+Epoch   4 Batch  191/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.924, Loss:  0.039
+Epoch   4 Batch  192/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.925, Loss:  0.049
+Epoch   4 Batch  193/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.931, Loss:  0.043
+Epoch   4 Batch  194/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.931, Loss:  0.036
+Epoch   4 Batch  195/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.930, Loss:  0.039
+Epoch   4 Batch  196/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.935, Loss:  0.039
+Epoch   4 Batch  197/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.933, Loss:  0.059
+Epoch   4 Batch  198/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.932, Loss:  0.048
+Epoch   4 Batch  199/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.933, Loss:  0.051
+Epoch   4 Batch  200/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.933, Loss:  0.057
+Epoch   4 Batch  201/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.938, Loss:  0.040
+Epoch   4 Batch  202/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.934, Loss:  0.045
+Epoch   4 Batch  203/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.933, Loss:  0.046
+Epoch   4 Batch  204/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.934, Loss:  0.069
+Epoch   4 Batch  205/1077 - Train Accuracy:  0.888, Validation Accuracy:  0.930, Loss:  0.069
+Epoch   4 Batch  206/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.928, Loss:  0.045
+Epoch   4 Batch  207/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.918, Loss:  0.047
+Epoch   4 Batch  208/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.915, Loss:  0.053
+Epoch   4 Batch  209/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.916, Loss:  0.042
+Epoch   4 Batch  210/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.918, Loss:  0.047
+Epoch   4 Batch  211/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.915, Loss:  0.049
+Epoch   4 Batch  212/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.917, Loss:  0.036
+Epoch   4 Batch  213/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.911, Loss:  0.040
+Epoch   4 Batch  214/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.915, Loss:  0.044
+Epoch   4 Batch  215/1077 - Train Accuracy:  0.890, Validation Accuracy:  0.918, Loss:  0.060
+Epoch   4 Batch  216/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.912, Loss:  0.058
+Epoch   4 Batch  217/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.912, Loss:  0.042
+Epoch   4 Batch  218/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.924, Loss:  0.061
+Epoch   4 Batch  219/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.930, Loss:  0.042
+Epoch   4 Batch  220/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.925, Loss:  0.043
+Epoch   4 Batch  221/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.925, Loss:  0.056
+Epoch   4 Batch  222/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.925, Loss:  0.052
+Epoch   4 Batch  223/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.931, Loss:  0.049
+Epoch   4 Batch  224/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.930, Loss:  0.046
+Epoch   4 Batch  225/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.922, Loss:  0.062
+Epoch   4 Batch  226/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.922, Loss:  0.041
+Epoch   4 Batch  227/1077 - Train Accuracy:  0.871, Validation Accuracy:  0.922, Loss:  0.056
+Epoch   4 Batch  228/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.917, Loss:  0.047
+Epoch   4 Batch  229/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.917, Loss:  0.053
+Epoch   4 Batch  230/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.917, Loss:  0.053
+Epoch   4 Batch  231/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.920, Loss:  0.050
+Epoch   4 Batch  232/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.919, Loss:  0.041
+Epoch   4 Batch  233/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.915, Loss:  0.063
+Epoch   4 Batch  234/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.919, Loss:  0.052
+Epoch   4 Batch  235/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.919, Loss:  0.047
+Epoch   4 Batch  236/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.912, Loss:  0.064
+Epoch   4 Batch  237/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.912, Loss:  0.055
+Epoch   4 Batch  238/1077 - Train Accuracy:  0.962, Validation Accuracy:  0.903, Loss:  0.047
+Epoch   4 Batch  239/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.923, Loss:  0.036
+Epoch   4 Batch  240/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.920, Loss:  0.043
+Epoch   4 Batch  241/1077 - Train Accuracy:  0.961, Validation Accuracy:  0.922, Loss:  0.036
+Epoch   4 Batch  242/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.922, Loss:  0.049
+Epoch   4 Batch  243/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.922, Loss:  0.052
+Epoch   4 Batch  244/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.922, Loss:  0.047
+Epoch   4 Batch  245/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.920, Loss:  0.037
+Epoch   4 Batch  246/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.925, Loss:  0.046
+Epoch   4 Batch  247/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.925, Loss:  0.053
+Epoch   4 Batch  248/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.930, Loss:  0.052
+Epoch   4 Batch  249/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.922, Loss:  0.046
+Epoch   4 Batch  250/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.916, Loss:  0.038
+Epoch   4 Batch  251/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.911, Loss:  0.055
+Epoch   4 Batch  252/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.907, Loss:  0.061
+Epoch   4 Batch  253/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.903, Loss:  0.048
+Epoch   4 Batch  254/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.900, Loss:  0.062
+Epoch   4 Batch  255/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.905, Loss:  0.045
+Epoch   4 Batch  256/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.902, Loss:  0.058
+Epoch   4 Batch  257/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.898, Loss:  0.050
+Epoch   4 Batch  258/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.898, Loss:  0.057
+Epoch   4 Batch  259/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.896, Loss:  0.041
+Epoch   4 Batch  260/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.906, Loss:  0.036
+Epoch   4 Batch  261/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.905, Loss:  0.066
+Epoch   4 Batch  262/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.896, Loss:  0.040
+Epoch   4 Batch  263/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.911, Loss:  0.042
+Epoch   4 Batch  264/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.910, Loss:  0.052
+Epoch   4 Batch  265/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.920, Loss:  0.043
+Epoch   4 Batch  266/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.924, Loss:  0.048
+Epoch   4 Batch  267/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.928, Loss:  0.036
+Epoch   4 Batch  268/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.931, Loss:  0.058
+Epoch   4 Batch  269/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.932, Loss:  0.062
+Epoch   4 Batch  270/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.936, Loss:  0.050
+Epoch   4 Batch  271/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.932, Loss:  0.049
+Epoch   4 Batch  272/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.932, Loss:  0.080
+Epoch   4 Batch  273/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.941, Loss:  0.046
+Epoch   4 Batch  274/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.936, Loss:  0.057
+Epoch   4 Batch  275/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.936, Loss:  0.050
+Epoch   4 Batch  276/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.924, Loss:  0.080
+Epoch   4 Batch  277/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.926, Loss:  0.038
+Epoch   4 Batch  278/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.926, Loss:  0.067
+Epoch   4 Batch  279/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.924, Loss:  0.063
+Epoch   4 Batch  280/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.925, Loss:  0.058
+Epoch   4 Batch  281/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.926, Loss:  0.059
+Epoch   4 Batch  282/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.935, Loss:  0.074
+Epoch   4 Batch  283/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.935, Loss:  0.063
+Epoch   4 Batch  284/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.940, Loss:  0.053
+Epoch   4 Batch  285/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.936, Loss:  0.056
+Epoch   4 Batch  286/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.936, Loss:  0.043
+Epoch   4 Batch  287/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.925, Loss:  0.045
+Epoch   4 Batch  288/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.925, Loss:  0.061
+Epoch   4 Batch  289/1077 - Train Accuracy:  0.964, Validation Accuracy:  0.920, Loss:  0.048
+Epoch   4 Batch  290/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.922, Loss:  0.071
+Epoch   4 Batch  291/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.925, Loss:  0.070
+Epoch   4 Batch  292/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.931, Loss:  0.052
+Epoch   4 Batch  293/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.931, Loss:  0.052
+Epoch   4 Batch  294/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.926, Loss:  0.049
+Epoch   4 Batch  295/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.921, Loss:  0.069
+Epoch   4 Batch  296/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.915, Loss:  0.048
+Epoch   4 Batch  297/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.912, Loss:  0.058
+Epoch   4 Batch  298/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.912, Loss:  0.072
+Epoch   4 Batch  299/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.922, Loss:  0.062
+Epoch   4 Batch  300/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.928, Loss:  0.044
+Epoch   4 Batch  301/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.922, Loss:  0.044
+Epoch   4 Batch  302/1077 - Train Accuracy:  0.959, Validation Accuracy:  0.918, Loss:  0.045
+Epoch   4 Batch  303/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.913, Loss:  0.054
+Epoch   4 Batch  304/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.922, Loss:  0.052
+Epoch   4 Batch  305/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.923, Loss:  0.046
+Epoch   4 Batch  306/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.912, Loss:  0.059
+Epoch   4 Batch  307/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.918, Loss:  0.043
+Epoch   4 Batch  308/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.918, Loss:  0.052
+Epoch   4 Batch  309/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.923, Loss:  0.041
+Epoch   4 Batch  310/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.926, Loss:  0.050
+Epoch   4 Batch  311/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.930, Loss:  0.047
+Epoch   4 Batch  312/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.931, Loss:  0.062
+Epoch   4 Batch  313/1077 - Train Accuracy:  0.961, Validation Accuracy:  0.930, Loss:  0.035
+Epoch   4 Batch  314/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.930, Loss:  0.045
+Epoch   4 Batch  315/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.934, Loss:  0.039
+Epoch   4 Batch  316/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.934, Loss:  0.051
+Epoch   4 Batch  317/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.930, Loss:  0.056
+Epoch   4 Batch  318/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.931, Loss:  0.036
+Epoch   4 Batch  319/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.929, Loss:  0.071
+Epoch   4 Batch  320/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.929, Loss:  0.058
+Epoch   4 Batch  321/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.933, Loss:  0.043
+Epoch   4 Batch  322/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.933, Loss:  0.040
+Epoch   4 Batch  323/1077 - Train Accuracy:  0.959, Validation Accuracy:  0.929, Loss:  0.044
+Epoch   4 Batch  324/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.929, Loss:  0.046
+Epoch   4 Batch  325/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.935, Loss:  0.044
+Epoch   4 Batch  326/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.933, Loss:  0.042
+Epoch   4 Batch  327/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.933, Loss:  0.056
+Epoch   4 Batch  328/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.931, Loss:  0.062
+Epoch   4 Batch  329/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.929, Loss:  0.060
+Epoch   4 Batch  330/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.921, Loss:  0.048
+Epoch   4 Batch  331/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.920, Loss:  0.052
+Epoch   4 Batch  332/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.918, Loss:  0.038
+Epoch   4 Batch  333/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.913, Loss:  0.042
+Epoch   4 Batch  334/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.907, Loss:  0.049
+Epoch   4 Batch  335/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.900, Loss:  0.050
+Epoch   4 Batch  336/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.909, Loss:  0.080
+Epoch   4 Batch  337/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.914, Loss:  0.050
+Epoch   4 Batch  338/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.918, Loss:  0.070
+Epoch   4 Batch  339/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.928, Loss:  0.041
+Epoch   4 Batch  340/1077 - Train Accuracy:  0.961, Validation Accuracy:  0.925, Loss:  0.041
+Epoch   4 Batch  341/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.933, Loss:  0.064
+Epoch   4 Batch  342/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.933, Loss:  0.051
+Epoch   4 Batch  343/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.930, Loss:  0.050
+Epoch   4 Batch  344/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.929, Loss:  0.051
+Epoch   4 Batch  345/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.930, Loss:  0.034
+Epoch   4 Batch  346/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.929, Loss:  0.052
+Epoch   4 Batch  347/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.924, Loss:  0.033
+Epoch   4 Batch  348/1077 - Train Accuracy:  0.956, Validation Accuracy:  0.918, Loss:  0.049
+Epoch   4 Batch  349/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.916, Loss:  0.048
+Epoch   4 Batch  350/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.911, Loss:  0.050
+Epoch   4 Batch  351/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.905, Loss:  0.046
+Epoch   4 Batch  352/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.903, Loss:  0.043
+Epoch   4 Batch  353/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.903, Loss:  0.056
+Epoch   4 Batch  354/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.919, Loss:  0.067
+Epoch   4 Batch  355/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.920, Loss:  0.048
+Epoch   4 Batch  356/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.922, Loss:  0.056
+Epoch   4 Batch  357/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.918, Loss:  0.042
+Epoch   4 Batch  358/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.918, Loss:  0.054
+Epoch   4 Batch  359/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.916, Loss:  0.043
+Epoch   4 Batch  360/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.916, Loss:  0.039
+Epoch   4 Batch  361/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.919, Loss:  0.055
+Epoch   4 Batch  362/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.924, Loss:  0.051
+Epoch   4 Batch  363/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.928, Loss:  0.059
+Epoch   4 Batch  364/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.923, Loss:  0.057
+Epoch   4 Batch  365/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.929, Loss:  0.044
+Epoch   4 Batch  366/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.925, Loss:  0.044
+Epoch   4 Batch  367/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.915, Loss:  0.040
+Epoch   4 Batch  368/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.913, Loss:  0.051
+Epoch   4 Batch  369/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.909, Loss:  0.048
+Epoch   4 Batch  370/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.918, Loss:  0.054
+Epoch   4 Batch  371/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.914, Loss:  0.040
+Epoch   4 Batch  372/1077 - Train Accuracy:  0.959, Validation Accuracy:  0.919, Loss:  0.041
+Epoch   4 Batch  373/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.919, Loss:  0.036
+Epoch   4 Batch  374/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.918, Loss:  0.059
+Epoch   4 Batch  375/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.930, Loss:  0.049
+Epoch   4 Batch  376/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.928, Loss:  0.049
+Epoch   4 Batch  377/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.926, Loss:  0.052
+Epoch   4 Batch  378/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.931, Loss:  0.041
+Epoch   4 Batch  379/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.933, Loss:  0.062
+Epoch   4 Batch  380/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.933, Loss:  0.041
+Epoch   4 Batch  381/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.935, Loss:  0.057
+Epoch   4 Batch  382/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.930, Loss:  0.068
+Epoch   4 Batch  383/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.931, Loss:  0.046
+Epoch   4 Batch  384/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.926, Loss:  0.041
+Epoch   4 Batch  385/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.924, Loss:  0.047
+Epoch   4 Batch  386/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.925, Loss:  0.055
+Epoch   4 Batch  387/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.929, Loss:  0.044
+Epoch   4 Batch  388/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.937, Loss:  0.059
+Epoch   4 Batch  389/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.932, Loss:  0.049
+Epoch   4 Batch  390/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.929, Loss:  0.064
+Epoch   4 Batch  391/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.928, Loss:  0.059
+Epoch   4 Batch  392/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.929, Loss:  0.050
+Epoch   4 Batch  393/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.923, Loss:  0.044
+Epoch   4 Batch  394/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.924, Loss:  0.042
+Epoch   4 Batch  395/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.924, Loss:  0.049
+Epoch   4 Batch  396/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.923, Loss:  0.053
+Epoch   4 Batch  397/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.923, Loss:  0.051
+Epoch   4 Batch  398/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.914, Loss:  0.055
+Epoch   4 Batch  399/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.915, Loss:  0.048
+Epoch   4 Batch  400/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.915, Loss:  0.066
+Epoch   4 Batch  401/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.918, Loss:  0.041
+Epoch   4 Batch  402/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.918, Loss:  0.042
+Epoch   4 Batch  403/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.919, Loss:  0.077
+Epoch   4 Batch  404/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.915, Loss:  0.046
+Epoch   4 Batch  405/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.915, Loss:  0.055
+Epoch   4 Batch  406/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.913, Loss:  0.049
+Epoch   4 Batch  407/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.904, Loss:  0.073
+Epoch   4 Batch  408/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.904, Loss:  0.048
+Epoch   4 Batch  409/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.906, Loss:  0.062
+Epoch   4 Batch  410/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.914, Loss:  0.061
+Epoch   4 Batch  411/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.914, Loss:  0.060
+Epoch   4 Batch  412/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.914, Loss:  0.049
+Epoch   4 Batch  413/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.914, Loss:  0.049
+Epoch   4 Batch  414/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.914, Loss:  0.049
+Epoch   4 Batch  415/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.916, Loss:  0.058
+Epoch   4 Batch  416/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.916, Loss:  0.042
+Epoch   4 Batch  417/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.920, Loss:  0.085
+Epoch   4 Batch  418/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.922, Loss:  0.051
+Epoch   4 Batch  419/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.921, Loss:  0.052
+Epoch   4 Batch  420/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.920, Loss:  0.041
+Epoch   4 Batch  421/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.920, Loss:  0.062
+Epoch   4 Batch  422/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.918, Loss:  0.044
+Epoch   4 Batch  423/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.918, Loss:  0.070
+Epoch   4 Batch  424/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.923, Loss:  0.054
+Epoch   4 Batch  425/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.923, Loss:  0.039
+Epoch   4 Batch  426/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.922, Loss:  0.055
+Epoch   4 Batch  427/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.914, Loss:  0.040
+Epoch   4 Batch  428/1077 - Train Accuracy:  0.961, Validation Accuracy:  0.919, Loss:  0.036
+Epoch   4 Batch  429/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.917, Loss:  0.043
+Epoch   4 Batch  430/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.912, Loss:  0.043
+Epoch   4 Batch  431/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.920, Loss:  0.047
+Epoch   4 Batch  432/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.925, Loss:  0.055
+Epoch   4 Batch  433/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.923, Loss:  0.049
+Epoch   4 Batch  434/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.914, Loss:  0.036
+Epoch   4 Batch  435/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.909, Loss:  0.059
+Epoch   4 Batch  436/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.909, Loss:  0.041
+Epoch   4 Batch  437/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.914, Loss:  0.040
+Epoch   4 Batch  438/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.914, Loss:  0.040
+Epoch   4 Batch  439/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.911, Loss:  0.061
+Epoch   4 Batch  440/1077 - Train Accuracy:  0.886, Validation Accuracy:  0.913, Loss:  0.059
+Epoch   4 Batch  441/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.912, Loss:  0.048
+Epoch   4 Batch  442/1077 - Train Accuracy:  0.901, Validation Accuracy:  0.911, Loss:  0.060
+Epoch   4 Batch  443/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.913, Loss:  0.041
+Epoch   4 Batch  444/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.916, Loss:  0.047
+Epoch   4 Batch  445/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.912, Loss:  0.055
+Epoch   4 Batch  446/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.907, Loss:  0.038
+Epoch   4 Batch  447/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.907, Loss:  0.047
+Epoch   4 Batch  448/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.909, Loss:  0.067
+Epoch   4 Batch  449/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.905, Loss:  0.066
+Epoch   4 Batch  450/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.916, Loss:  0.045
+Epoch   4 Batch  451/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.910, Loss:  0.053
+Epoch   4 Batch  452/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.911, Loss:  0.054
+Epoch   4 Batch  453/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.907, Loss:  0.049
+Epoch   4 Batch  454/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.911, Loss:  0.057
+Epoch   4 Batch  455/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.910, Loss:  0.064
+Epoch   4 Batch  456/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.916, Loss:  0.061
+Epoch   4 Batch  457/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.912, Loss:  0.050
+Epoch   4 Batch  458/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.910, Loss:  0.068
+Epoch   4 Batch  459/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.912, Loss:  0.054
+Epoch   4 Batch  460/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.907, Loss:  0.060
+Epoch   4 Batch  461/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.908, Loss:  0.048
+Epoch   4 Batch  462/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.906, Loss:  0.053
+Epoch   4 Batch  463/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.909, Loss:  0.058
+Epoch   4 Batch  464/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.906, Loss:  0.056
+Epoch   4 Batch  465/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.905, Loss:  0.062
+Epoch   4 Batch  466/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.919, Loss:  0.056
+Epoch   4 Batch  467/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.923, Loss:  0.049
+Epoch   4 Batch  468/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.924, Loss:  0.062
+Epoch   4 Batch  469/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.924, Loss:  0.051
+Epoch   4 Batch  470/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.913, Loss:  0.054
+Epoch   4 Batch  471/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.912, Loss:  0.037
+Epoch   4 Batch  472/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.915, Loss:  0.053
+Epoch   4 Batch  473/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.918, Loss:  0.054
+Epoch   4 Batch  474/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.920, Loss:  0.053
+Epoch   4 Batch  475/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.922, Loss:  0.051
+Epoch   4 Batch  476/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.922, Loss:  0.040
+Epoch   4 Batch  477/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.923, Loss:  0.053
+Epoch   4 Batch  478/1077 - Train Accuracy:  0.956, Validation Accuracy:  0.915, Loss:  0.048
+Epoch   4 Batch  479/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.920, Loss:  0.071
+Epoch   4 Batch  480/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.925, Loss:  0.041
+Epoch   4 Batch  481/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.930, Loss:  0.060
+Epoch   4 Batch  482/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.929, Loss:  0.061
+Epoch   4 Batch  483/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.925, Loss:  0.053
+Epoch   4 Batch  484/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.926, Loss:  0.059
+Epoch   4 Batch  485/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.925, Loss:  0.068
+Epoch   4 Batch  486/1077 - Train Accuracy:  0.959, Validation Accuracy:  0.920, Loss:  0.045
+Epoch   4 Batch  487/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.915, Loss:  0.042
+Epoch   4 Batch  488/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.915, Loss:  0.061
+Epoch   4 Batch  489/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.915, Loss:  0.043
+Epoch   4 Batch  490/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.915, Loss:  0.053
+Epoch   4 Batch  491/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.914, Loss:  0.067
+Epoch   4 Batch  492/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.922, Loss:  0.060
+Epoch   4 Batch  493/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.915, Loss:  0.047
+Epoch   4 Batch  494/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.915, Loss:  0.051
+Epoch   4 Batch  495/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.911, Loss:  0.054
+Epoch   4 Batch  496/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.911, Loss:  0.071
+Epoch   4 Batch  497/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.904, Loss:  0.053
+Epoch   4 Batch  498/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.921, Loss:  0.060
+Epoch   4 Batch  499/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.923, Loss:  0.055
+Epoch   4 Batch  500/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.927, Loss:  0.054
+Epoch   4 Batch  501/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.934, Loss:  0.053
+Epoch   4 Batch  502/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.935, Loss:  0.049
+Epoch   4 Batch  503/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.939, Loss:  0.052
+Epoch   4 Batch  504/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.938, Loss:  0.055
+Epoch   4 Batch  505/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.932, Loss:  0.046
+Epoch   4 Batch  506/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.931, Loss:  0.084
+Epoch   4 Batch  507/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.931, Loss:  0.064
+Epoch   4 Batch  508/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.932, Loss:  0.047
+Epoch   4 Batch  509/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.923, Loss:  0.076
+Epoch   4 Batch  510/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.919, Loss:  0.061
+Epoch   4 Batch  511/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.918, Loss:  0.049
+Epoch   4 Batch  512/1077 - Train Accuracy:  0.959, Validation Accuracy:  0.908, Loss:  0.047
+Epoch   4 Batch  513/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.915, Loss:  0.054
+Epoch   4 Batch  514/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.915, Loss:  0.063
+Epoch   4 Batch  515/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.915, Loss:  0.055
+Epoch   4 Batch  516/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.906, Loss:  0.056
+Epoch   4 Batch  517/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.913, Loss:  0.060
+Epoch   4 Batch  518/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.912, Loss:  0.069
+Epoch   4 Batch  519/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.916, Loss:  0.062
+Epoch   4 Batch  520/1077 - Train Accuracy:  0.965, Validation Accuracy:  0.920, Loss:  0.049
+Epoch   4 Batch  521/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.920, Loss:  0.060
+Epoch   4 Batch  522/1077 - Train Accuracy:  0.870, Validation Accuracy:  0.918, Loss:  0.069
+Epoch   4 Batch  523/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.922, Loss:  0.059
+Epoch   4 Batch  524/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.917, Loss:  0.068
+Epoch   4 Batch  525/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.914, Loss:  0.062
+Epoch   4 Batch  526/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.909, Loss:  0.052
+Epoch   4 Batch  527/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.909, Loss:  0.060
+Epoch   4 Batch  528/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.914, Loss:  0.055
+Epoch   4 Batch  529/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.914, Loss:  0.058
+Epoch   4 Batch  530/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.909, Loss:  0.070
+Epoch   4 Batch  531/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.910, Loss:  0.055
+Epoch   4 Batch  532/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.910, Loss:  0.072
+Epoch   4 Batch  533/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.898, Loss:  0.056
+Epoch   4 Batch  534/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.898, Loss:  0.059
+Epoch   4 Batch  535/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.907, Loss:  0.061
+Epoch   4 Batch  536/1077 - Train Accuracy:  0.887, Validation Accuracy:  0.911, Loss:  0.057
+Epoch   4 Batch  537/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.922, Loss:  0.041
+Epoch   4 Batch  538/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.921, Loss:  0.041
+Epoch   4 Batch  539/1077 - Train Accuracy:  0.893, Validation Accuracy:  0.922, Loss:  0.070
+Epoch   4 Batch  540/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.918, Loss:  0.052
+Epoch   4 Batch  541/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.917, Loss:  0.061
+Epoch   4 Batch  542/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.913, Loss:  0.056
+Epoch   4 Batch  543/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.914, Loss:  0.056
+Epoch   4 Batch  544/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.914, Loss:  0.051
+Epoch   4 Batch  545/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.908, Loss:  0.056
+Epoch   4 Batch  546/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.904, Loss:  0.056
+Epoch   4 Batch  547/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.911, Loss:  0.041
+Epoch   4 Batch  548/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.909, Loss:  0.064
+Epoch   4 Batch  549/1077 - Train Accuracy:  0.888, Validation Accuracy:  0.910, Loss:  0.080
+Epoch   4 Batch  550/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.908, Loss:  0.055
+Epoch   4 Batch  551/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.912, Loss:  0.068
+Epoch   4 Batch  552/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.920, Loss:  0.058
+Epoch   4 Batch  553/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.919, Loss:  0.068
+Epoch   4 Batch  554/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.919, Loss:  0.055
+Epoch   4 Batch  555/1077 - Train Accuracy:  0.959, Validation Accuracy:  0.922, Loss:  0.043
+Epoch   4 Batch  556/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.918, Loss:  0.044
+Epoch   4 Batch  557/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.922, Loss:  0.047
+Epoch   4 Batch  558/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.928, Loss:  0.046
+Epoch   4 Batch  559/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.927, Loss:  0.050
+Epoch   4 Batch  560/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.926, Loss:  0.055
+Epoch   4 Batch  561/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.925, Loss:  0.047
+Epoch   4 Batch  562/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.930, Loss:  0.055
+Epoch   4 Batch  563/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.925, Loss:  0.054
+Epoch   4 Batch  564/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.921, Loss:  0.056
+Epoch   4 Batch  565/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.925, Loss:  0.066
+Epoch   4 Batch  566/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.928, Loss:  0.055
+Epoch   4 Batch  567/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.929, Loss:  0.057
+Epoch   4 Batch  568/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.926, Loss:  0.045
+Epoch   4 Batch  569/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.926, Loss:  0.071
+Epoch   4 Batch  570/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.926, Loss:  0.057
+Epoch   4 Batch  571/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.926, Loss:  0.053
+Epoch   4 Batch  572/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.926, Loss:  0.044
+Epoch   4 Batch  573/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.929, Loss:  0.065
+Epoch   4 Batch  574/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.922, Loss:  0.056
+Epoch   4 Batch  575/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.928, Loss:  0.033
+Epoch   4 Batch  576/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.931, Loss:  0.069
+Epoch   4 Batch  577/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.931, Loss:  0.055
+Epoch   4 Batch  578/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.930, Loss:  0.051
+Epoch   4 Batch  579/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.938, Loss:  0.054
+Epoch   4 Batch  580/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.942, Loss:  0.044
+Epoch   4 Batch  581/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.939, Loss:  0.048
+Epoch   4 Batch  582/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.938, Loss:  0.063
+Epoch   4 Batch  583/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.928, Loss:  0.056
+Epoch   4 Batch  584/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.928, Loss:  0.060
+Epoch   4 Batch  585/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.922, Loss:  0.041
+Epoch   4 Batch  586/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.924, Loss:  0.056
+Epoch   4 Batch  587/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.925, Loss:  0.066
+Epoch   4 Batch  588/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.927, Loss:  0.053
+Epoch   4 Batch  589/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.934, Loss:  0.059
+Epoch   4 Batch  590/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.927, Loss:  0.072
+Epoch   4 Batch  591/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.928, Loss:  0.055
+Epoch   4 Batch  592/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.928, Loss:  0.062
+Epoch   4 Batch  593/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.923, Loss:  0.084
+Epoch   4 Batch  594/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.922, Loss:  0.067
+Epoch   4 Batch  595/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.931, Loss:  0.058
+Epoch   4 Batch  596/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.927, Loss:  0.059
+Epoch   4 Batch  597/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.927, Loss:  0.061
+Epoch   4 Batch  598/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.934, Loss:  0.062
+Epoch   4 Batch  599/1077 - Train Accuracy:  0.889, Validation Accuracy:  0.934, Loss:  0.080
+Epoch   4 Batch  600/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.932, Loss:  0.060
+Epoch   4 Batch  601/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.931, Loss:  0.067
+Epoch   4 Batch  602/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.936, Loss:  0.056
+Epoch   4 Batch  603/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.935, Loss:  0.046
+Epoch   4 Batch  604/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.935, Loss:  0.072
+Epoch   4 Batch  605/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.940, Loss:  0.072
+Epoch   4 Batch  606/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.935, Loss:  0.043
+Epoch   4 Batch  607/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.939, Loss:  0.052
+Epoch   4 Batch  608/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.933, Loss:  0.064
+Epoch   4 Batch  609/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.938, Loss:  0.052
+Epoch   4 Batch  610/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.935, Loss:  0.061
+Epoch   4 Batch  611/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.935, Loss:  0.052
+Epoch   4 Batch  612/1077 - Train Accuracy:  0.956, Validation Accuracy:  0.931, Loss:  0.042
+Epoch   4 Batch  613/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.935, Loss:  0.062
+Epoch   4 Batch  614/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.935, Loss:  0.046
+Epoch   4 Batch  615/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.937, Loss:  0.048
+Epoch   4 Batch  616/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.933, Loss:  0.044
+Epoch   4 Batch  617/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.937, Loss:  0.048
+Epoch   4 Batch  618/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.938, Loss:  0.054
+Epoch   4 Batch  619/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.948, Loss:  0.043
+Epoch   4 Batch  620/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.944, Loss:  0.047
+Epoch   4 Batch  621/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.939, Loss:  0.056
+Epoch   4 Batch  622/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.939, Loss:  0.058
+Epoch   4 Batch  623/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.937, Loss:  0.071
+Epoch   4 Batch  624/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.935, Loss:  0.053
+Epoch   4 Batch  625/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.934, Loss:  0.047
+Epoch   4 Batch  626/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.934, Loss:  0.057
+Epoch   4 Batch  627/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.934, Loss:  0.049
+Epoch   4 Batch  628/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.931, Loss:  0.054
+Epoch   4 Batch  629/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.931, Loss:  0.064
+Epoch   4 Batch  630/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.931, Loss:  0.052
+Epoch   4 Batch  631/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.942, Loss:  0.050
+Epoch   4 Batch  632/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.946, Loss:  0.043
+Epoch   4 Batch  633/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.941, Loss:  0.048
+Epoch   4 Batch  634/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.936, Loss:  0.043
+Epoch   4 Batch  635/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.941, Loss:  0.059
+Epoch   4 Batch  636/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.938, Loss:  0.042
+Epoch   4 Batch  637/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.934, Loss:  0.051
+Epoch   4 Batch  638/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.934, Loss:  0.056
+Epoch   4 Batch  639/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.935, Loss:  0.075
+Epoch   4 Batch  640/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.928, Loss:  0.053
+Epoch   4 Batch  641/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.927, Loss:  0.042
+Epoch   4 Batch  642/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.917, Loss:  0.057
+Epoch   4 Batch  643/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.918, Loss:  0.043
+Epoch   4 Batch  644/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.913, Loss:  0.048
+Epoch   4 Batch  645/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.920, Loss:  0.066
+Epoch   4 Batch  646/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.924, Loss:  0.045
+Epoch   4 Batch  647/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.923, Loss:  0.056
+Epoch   4 Batch  648/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.920, Loss:  0.039
+Epoch   4 Batch  649/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.914, Loss:  0.055
+Epoch   4 Batch  650/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.920, Loss:  0.055
+Epoch   4 Batch  651/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.919, Loss:  0.046
+Epoch   4 Batch  652/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.919, Loss:  0.058
+Epoch   4 Batch  653/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.923, Loss:  0.060
+Epoch   4 Batch  654/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.919, Loss:  0.048
+Epoch   4 Batch  655/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.919, Loss:  0.058
+Epoch   4 Batch  656/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.920, Loss:  0.048
+Epoch   4 Batch  657/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.924, Loss:  0.052
+Epoch   4 Batch  658/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.916, Loss:  0.037
+Epoch   4 Batch  659/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.914, Loss:  0.047
+Epoch   4 Batch  660/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.914, Loss:  0.044
+Epoch   4 Batch  661/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.914, Loss:  0.046
+Epoch   4 Batch  662/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.919, Loss:  0.048
+Epoch   4 Batch  663/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.921, Loss:  0.039
+Epoch   4 Batch  664/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.924, Loss:  0.055
+Epoch   4 Batch  665/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.928, Loss:  0.039
+Epoch   4 Batch  666/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.926, Loss:  0.065
+Epoch   4 Batch  667/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.919, Loss:  0.063
+Epoch   4 Batch  668/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.923, Loss:  0.053
+Epoch   4 Batch  669/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.915, Loss:  0.043
+Epoch   4 Batch  670/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.911, Loss:  0.055
+Epoch   4 Batch  671/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.918, Loss:  0.052
+Epoch   4 Batch  672/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.918, Loss:  0.045
+Epoch   4 Batch  673/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.926, Loss:  0.049
+Epoch   4 Batch  674/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.929, Loss:  0.039
+Epoch   4 Batch  675/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.926, Loss:  0.060
+Epoch   4 Batch  676/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.921, Loss:  0.042
+Epoch   4 Batch  677/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.924, Loss:  0.061
+Epoch   4 Batch  678/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.925, Loss:  0.035
+Epoch   4 Batch  679/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.931, Loss:  0.049
+Epoch   4 Batch  680/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.926, Loss:  0.058
+Epoch   4 Batch  681/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.929, Loss:  0.054
+Epoch   4 Batch  682/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.921, Loss:  0.050
+Epoch   4 Batch  683/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.929, Loss:  0.043
+Epoch   4 Batch  684/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.928, Loss:  0.054
+Epoch   4 Batch  685/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.925, Loss:  0.065
+Epoch   4 Batch  686/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.926, Loss:  0.044
+Epoch   4 Batch  687/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.926, Loss:  0.058
+Epoch   4 Batch  688/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.923, Loss:  0.047
+Epoch   4 Batch  689/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.928, Loss:  0.035
+Epoch   4 Batch  690/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.926, Loss:  0.047
+Epoch   4 Batch  691/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.926, Loss:  0.063
+Epoch   4 Batch  692/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.922, Loss:  0.040
+Epoch   4 Batch  693/1077 - Train Accuracy:  0.894, Validation Accuracy:  0.918, Loss:  0.064
+Epoch   4 Batch  694/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.918, Loss:  0.055
+Epoch   4 Batch  695/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.924, Loss:  0.046
+Epoch   4 Batch  696/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.911, Loss:  0.065
+Epoch   4 Batch  697/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.911, Loss:  0.050
+Epoch   4 Batch  698/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.910, Loss:  0.046
+Epoch   4 Batch  699/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.910, Loss:  0.042
+Epoch   4 Batch  700/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.911, Loss:  0.039
+Epoch   4 Batch  701/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.911, Loss:  0.063
+Epoch   4 Batch  702/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.911, Loss:  0.061
+Epoch   4 Batch  703/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.920, Loss:  0.049
+Epoch   4 Batch  704/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.920, Loss:  0.057
+Epoch   4 Batch  705/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.922, Loss:  0.067
+Epoch   4 Batch  706/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.921, Loss:  0.089
+Epoch   4 Batch  707/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.919, Loss:  0.059
+Epoch   4 Batch  708/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.919, Loss:  0.057
+Epoch   4 Batch  709/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.925, Loss:  0.050
+Epoch   4 Batch  710/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.926, Loss:  0.036
+Epoch   4 Batch  711/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.930, Loss:  0.058
+Epoch   4 Batch  712/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.925, Loss:  0.041
+Epoch   4 Batch  713/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.924, Loss:  0.049
+Epoch   4 Batch  714/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.928, Loss:  0.048
+Epoch   4 Batch  715/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.928, Loss:  0.049
+Epoch   4 Batch  716/1077 - Train Accuracy:  0.960, Validation Accuracy:  0.932, Loss:  0.041
+Epoch   4 Batch  717/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.927, Loss:  0.044
+Epoch   4 Batch  718/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.934, Loss:  0.047
+Epoch   4 Batch  719/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.939, Loss:  0.063
+Epoch   4 Batch  720/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.939, Loss:  0.053
+Epoch   4 Batch  721/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.939, Loss:  0.065
+Epoch   4 Batch  722/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.940, Loss:  0.037
+Epoch   4 Batch  723/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.944, Loss:  0.059
+Epoch   4 Batch  724/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.939, Loss:  0.051
+Epoch   4 Batch  725/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.926, Loss:  0.039
+Epoch   4 Batch  726/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.926, Loss:  0.045
+Epoch   4 Batch  727/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.926, Loss:  0.046
+Epoch   4 Batch  728/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.926, Loss:  0.062
+Epoch   4 Batch  729/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.920, Loss:  0.059
+Epoch   4 Batch  730/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.915, Loss:  0.069
+Epoch   4 Batch  731/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.911, Loss:  0.054
+Epoch   4 Batch  732/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.912, Loss:  0.062
+Epoch   4 Batch  733/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.916, Loss:  0.070
+Epoch   4 Batch  734/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.919, Loss:  0.045
+Epoch   4 Batch  735/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.919, Loss:  0.039
+Epoch   4 Batch  736/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.923, Loss:  0.030
+Epoch   4 Batch  737/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.924, Loss:  0.045
+Epoch   4 Batch  738/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.925, Loss:  0.042
+Epoch   4 Batch  739/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.926, Loss:  0.047
+Epoch   4 Batch  740/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.925, Loss:  0.044
+Epoch   4 Batch  741/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.915, Loss:  0.053
+Epoch   4 Batch  742/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.916, Loss:  0.031
+Epoch   4 Batch  743/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.917, Loss:  0.052
+Epoch   4 Batch  744/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.926, Loss:  0.046
+Epoch   4 Batch  745/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.926, Loss:  0.054
+Epoch   4 Batch  746/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.929, Loss:  0.047
+Epoch   4 Batch  747/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.936, Loss:  0.047
+Epoch   4 Batch  748/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.940, Loss:  0.047
+Epoch   4 Batch  749/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.938, Loss:  0.052
+Epoch   4 Batch  750/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.934, Loss:  0.032
+Epoch   4 Batch  751/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.929, Loss:  0.049
+Epoch   4 Batch  752/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.928, Loss:  0.048
+Epoch   4 Batch  753/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.922, Loss:  0.044
+Epoch   4 Batch  754/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.931, Loss:  0.059
+Epoch   4 Batch  755/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.932, Loss:  0.063
+Epoch   4 Batch  756/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.930, Loss:  0.054
+Epoch   4 Batch  757/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.930, Loss:  0.044
+Epoch   4 Batch  758/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.934, Loss:  0.039
+Epoch   4 Batch  759/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.935, Loss:  0.037
+Epoch   4 Batch  760/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.931, Loss:  0.061
+Epoch   4 Batch  761/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.936, Loss:  0.046
+Epoch   4 Batch  762/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.935, Loss:  0.048
+Epoch   4 Batch  763/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.931, Loss:  0.049
+Epoch   4 Batch  764/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.932, Loss:  0.042
+Epoch   4 Batch  765/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.928, Loss:  0.052
+Epoch   4 Batch  766/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.921, Loss:  0.050
+Epoch   4 Batch  767/1077 - Train Accuracy:  0.962, Validation Accuracy:  0.917, Loss:  0.042
+Epoch   4 Batch  768/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.920, Loss:  0.052
+Epoch   4 Batch  769/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.916, Loss:  0.052
+Epoch   4 Batch  770/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.918, Loss:  0.038
+Epoch   4 Batch  771/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.914, Loss:  0.046
+Epoch   4 Batch  772/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.901, Loss:  0.050
+Epoch   4 Batch  773/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.916, Loss:  0.048
+Epoch   4 Batch  774/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.920, Loss:  0.050
+Epoch   4 Batch  775/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.926, Loss:  0.047
+Epoch   4 Batch  776/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.926, Loss:  0.047
+Epoch   4 Batch  777/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.926, Loss:  0.047
+Epoch   4 Batch  778/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.926, Loss:  0.047
+Epoch   4 Batch  779/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.943, Loss:  0.054
+Epoch   4 Batch  780/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.937, Loss:  0.070
+Epoch   4 Batch  781/1077 - Train Accuracy:  0.958, Validation Accuracy:  0.933, Loss:  0.044
+Epoch   4 Batch  782/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.922, Loss:  0.041
+Epoch   4 Batch  783/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.926, Loss:  0.053
+Epoch   4 Batch  784/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.933, Loss:  0.037
+Epoch   4 Batch  785/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.924, Loss:  0.042
+Epoch   4 Batch  786/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.920, Loss:  0.036
+Epoch   4 Batch  787/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.918, Loss:  0.047
+Epoch   4 Batch  788/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.922, Loss:  0.047
+Epoch   4 Batch  789/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.918, Loss:  0.043
+Epoch   4 Batch  790/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.912, Loss:  0.053
+Epoch   4 Batch  791/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.927, Loss:  0.051
+Epoch   4 Batch  792/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.931, Loss:  0.058
+Epoch   4 Batch  793/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.931, Loss:  0.040
+Epoch   4 Batch  794/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.937, Loss:  0.044
+Epoch   4 Batch  795/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.931, Loss:  0.051
+Epoch   4 Batch  796/1077 - Train Accuracy:  0.959, Validation Accuracy:  0.931, Loss:  0.043
+Epoch   4 Batch  797/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.931, Loss:  0.047
+Epoch   4 Batch  798/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.936, Loss:  0.053
+Epoch   4 Batch  799/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.930, Loss:  0.064
+Epoch   4 Batch  800/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.933, Loss:  0.049
+Epoch   4 Batch  801/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.935, Loss:  0.052
+Epoch   4 Batch  802/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.931, Loss:  0.052
+Epoch   4 Batch  803/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.942, Loss:  0.045
+Epoch   4 Batch  804/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.929, Loss:  0.038
+Epoch   4 Batch  805/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.936, Loss:  0.047
+Epoch   4 Batch  806/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.934, Loss:  0.045
+Epoch   4 Batch  807/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.934, Loss:  0.043
+Epoch   4 Batch  808/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.932, Loss:  0.062
+Epoch   4 Batch  809/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.928, Loss:  0.073
+Epoch   4 Batch  810/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.928, Loss:  0.039
+Epoch   4 Batch  811/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.929, Loss:  0.050
+Epoch   4 Batch  812/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.922, Loss:  0.037
+Epoch   4 Batch  813/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.919, Loss:  0.055
+Epoch   4 Batch  814/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.917, Loss:  0.060
+Epoch   4 Batch  815/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.922, Loss:  0.048
+Epoch   4 Batch  816/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.926, Loss:  0.059
+Epoch   4 Batch  817/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.929, Loss:  0.049
+Epoch   4 Batch  818/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.929, Loss:  0.051
+Epoch   4 Batch  819/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.933, Loss:  0.052
+Epoch   4 Batch  820/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.933, Loss:  0.037
+Epoch   4 Batch  821/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.929, Loss:  0.055
+Epoch   4 Batch  822/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.929, Loss:  0.052
+Epoch   4 Batch  823/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.927, Loss:  0.057
+Epoch   4 Batch  824/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.927, Loss:  0.056
+Epoch   4 Batch  825/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.929, Loss:  0.043
+Epoch   4 Batch  826/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.927, Loss:  0.044
+Epoch   4 Batch  827/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.928, Loss:  0.049
+Epoch   4 Batch  828/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.926, Loss:  0.040
+Epoch   4 Batch  829/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.928, Loss:  0.064
+Epoch   4 Batch  830/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.924, Loss:  0.061
+Epoch   4 Batch  831/1077 - Train Accuracy:  0.877, Validation Accuracy:  0.919, Loss:  0.051
+Epoch   4 Batch  832/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.924, Loss:  0.052
+Epoch   4 Batch  833/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.919, Loss:  0.046
+Epoch   4 Batch  834/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.924, Loss:  0.049
+Epoch   4 Batch  835/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.934, Loss:  0.049
+Epoch   4 Batch  836/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.929, Loss:  0.040
+Epoch   4 Batch  837/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.933, Loss:  0.063
+Epoch   4 Batch  838/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.930, Loss:  0.046
+Epoch   4 Batch  839/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.938, Loss:  0.033
+Epoch   4 Batch  840/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.944, Loss:  0.037
+Epoch   4 Batch  841/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.938, Loss:  0.058
+Epoch   4 Batch  842/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.940, Loss:  0.043
+Epoch   4 Batch  843/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.935, Loss:  0.042
+Epoch   4 Batch  844/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.933, Loss:  0.037
+Epoch   4 Batch  845/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.933, Loss:  0.031
+Epoch   4 Batch  846/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.933, Loss:  0.067
+Epoch   4 Batch  847/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.931, Loss:  0.053
+Epoch   4 Batch  848/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.926, Loss:  0.045
+Epoch   4 Batch  849/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.926, Loss:  0.043
+Epoch   4 Batch  850/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.926, Loss:  0.074
+Epoch   4 Batch  851/1077 - Train Accuracy:  0.959, Validation Accuracy:  0.925, Loss:  0.061
+Epoch   4 Batch  852/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.929, Loss:  0.067
+Epoch   4 Batch  853/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.939, Loss:  0.049
+Epoch   4 Batch  854/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.933, Loss:  0.055
+Epoch   4 Batch  855/1077 - Train Accuracy:  0.908, Validation Accuracy:  0.931, Loss:  0.048
+Epoch   4 Batch  856/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.941, Loss:  0.043
+Epoch   4 Batch  857/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.941, Loss:  0.050
+Epoch   4 Batch  858/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.936, Loss:  0.043
+Epoch   4 Batch  859/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.931, Loss:  0.065
+Epoch   4 Batch  860/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.927, Loss:  0.050
+Epoch   4 Batch  861/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.934, Loss:  0.044
+Epoch   4 Batch  862/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.943, Loss:  0.053
+Epoch   4 Batch  863/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.945, Loss:  0.046
+Epoch   4 Batch  864/1077 - Train Accuracy:  0.913, Validation Accuracy:  0.931, Loss:  0.045
+Epoch   4 Batch  865/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.930, Loss:  0.053
+Epoch   4 Batch  866/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.926, Loss:  0.060
+Epoch   4 Batch  867/1077 - Train Accuracy:  0.900, Validation Accuracy:  0.922, Loss:  0.092
+Epoch   4 Batch  868/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.921, Loss:  0.058
+Epoch   4 Batch  869/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.938, Loss:  0.046
+Epoch   4 Batch  870/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.938, Loss:  0.042
+Epoch   4 Batch  871/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.939, Loss:  0.034
+Epoch   4 Batch  872/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.943, Loss:  0.051
+Epoch   4 Batch  873/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.935, Loss:  0.038
+Epoch   4 Batch  874/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.942, Loss:  0.065
+Epoch   4 Batch  875/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.942, Loss:  0.055
+Epoch   4 Batch  876/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.936, Loss:  0.043
+Epoch   4 Batch  877/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.936, Loss:  0.050
+Epoch   4 Batch  878/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.938, Loss:  0.043
+Epoch   4 Batch  879/1077 - Train Accuracy:  0.958, Validation Accuracy:  0.943, Loss:  0.039
+Epoch   4 Batch  880/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.939, Loss:  0.051
+Epoch   4 Batch  881/1077 - Train Accuracy:  0.918, Validation Accuracy:  0.941, Loss:  0.056
+Epoch   4 Batch  882/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.933, Loss:  0.041
+Epoch   4 Batch  883/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.933, Loss:  0.065
+Epoch   4 Batch  884/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.933, Loss:  0.048
+Epoch   4 Batch  885/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.931, Loss:  0.035
+Epoch   4 Batch  886/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.918, Loss:  0.046
+Epoch   4 Batch  887/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.910, Loss:  0.069
+Epoch   4 Batch  888/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.910, Loss:  0.040
+Epoch   4 Batch  889/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.913, Loss:  0.048
+Epoch   4 Batch  890/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.916, Loss:  0.050
+Epoch   4 Batch  891/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.913, Loss:  0.042
+Epoch   4 Batch  892/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.909, Loss:  0.042
+Epoch   4 Batch  893/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.910, Loss:  0.048
+Epoch   4 Batch  894/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.908, Loss:  0.039
+Epoch   4 Batch  895/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.921, Loss:  0.044
+Epoch   4 Batch  896/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.926, Loss:  0.052
+Epoch   4 Batch  897/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.929, Loss:  0.043
+Epoch   4 Batch  898/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.925, Loss:  0.049
+Epoch   4 Batch  899/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.934, Loss:  0.063
+Epoch   4 Batch  900/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.934, Loss:  0.055
+Epoch   4 Batch  901/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.935, Loss:  0.068
+Epoch   4 Batch  902/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.945, Loss:  0.052
+Epoch   4 Batch  903/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.942, Loss:  0.046
+Epoch   4 Batch  904/1077 - Train Accuracy:  0.897, Validation Accuracy:  0.942, Loss:  0.057
+Epoch   4 Batch  905/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.942, Loss:  0.034
+Epoch   4 Batch  906/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.942, Loss:  0.049
+Epoch   4 Batch  907/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.942, Loss:  0.045
+Epoch   4 Batch  908/1077 - Train Accuracy:  0.925, Validation Accuracy:  0.940, Loss:  0.051
+Epoch   4 Batch  909/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.934, Loss:  0.057
+Epoch   4 Batch  910/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.934, Loss:  0.050
+Epoch   4 Batch  911/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.938, Loss:  0.049
+Epoch   4 Batch  912/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.938, Loss:  0.042
+Epoch   4 Batch  913/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.938, Loss:  0.072
+Epoch   4 Batch  914/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.917, Loss:  0.083
+Epoch   4 Batch  915/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.918, Loss:  0.038
+Epoch   4 Batch  916/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.918, Loss:  0.057
+Epoch   4 Batch  917/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.918, Loss:  0.040
+Epoch   4 Batch  918/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.919, Loss:  0.039
+Epoch   4 Batch  919/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.907, Loss:  0.036
+Epoch   4 Batch  920/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.912, Loss:  0.037
+Epoch   4 Batch  921/1077 - Train Accuracy:  0.899, Validation Accuracy:  0.917, Loss:  0.053
+Epoch   4 Batch  922/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.919, Loss:  0.053
+Epoch   4 Batch  923/1077 - Train Accuracy:  0.954, Validation Accuracy:  0.924, Loss:  0.040
+Epoch   4 Batch  924/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.930, Loss:  0.060
+Epoch   4 Batch  925/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.936, Loss:  0.043
+Epoch   4 Batch  926/1077 - Train Accuracy:  0.907, Validation Accuracy:  0.936, Loss:  0.048
+Epoch   4 Batch  927/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.930, Loss:  0.055
+Epoch   4 Batch  928/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.930, Loss:  0.055
+Epoch   4 Batch  929/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.933, Loss:  0.046
+Epoch   4 Batch  930/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.937, Loss:  0.037
+Epoch   4 Batch  931/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.940, Loss:  0.039
+Epoch   4 Batch  932/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.940, Loss:  0.040
+Epoch   4 Batch  933/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.936, Loss:  0.045
+Epoch   4 Batch  934/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.923, Loss:  0.042
+Epoch   4 Batch  935/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.919, Loss:  0.047
+Epoch   4 Batch  936/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.919, Loss:  0.051
+Epoch   4 Batch  937/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.928, Loss:  0.058
+Epoch   4 Batch  938/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.919, Loss:  0.061
+Epoch   4 Batch  939/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.922, Loss:  0.056
+Epoch   4 Batch  940/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.928, Loss:  0.043
+Epoch   4 Batch  941/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.928, Loss:  0.038
+Epoch   4 Batch  942/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.928, Loss:  0.052
+Epoch   4 Batch  943/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.927, Loss:  0.044
+Epoch   4 Batch  944/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.936, Loss:  0.046
+Epoch   4 Batch  945/1077 - Train Accuracy:  0.959, Validation Accuracy:  0.942, Loss:  0.044
+Epoch   4 Batch  946/1077 - Train Accuracy:  0.956, Validation Accuracy:  0.936, Loss:  0.030
+Epoch   4 Batch  947/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.931, Loss:  0.056
+Epoch   4 Batch  948/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.941, Loss:  0.040
+Epoch   4 Batch  949/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.941, Loss:  0.040
+Epoch   4 Batch  950/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.941, Loss:  0.045
+Epoch   4 Batch  951/1077 - Train Accuracy:  0.905, Validation Accuracy:  0.945, Loss:  0.060
+Epoch   4 Batch  952/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.946, Loss:  0.042
+Epoch   4 Batch  953/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.946, Loss:  0.042
+Epoch   4 Batch  954/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.946, Loss:  0.053
+Epoch   4 Batch  955/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.956, Loss:  0.056
+Epoch   4 Batch  956/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.961, Loss:  0.058
+Epoch   4 Batch  957/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.942, Loss:  0.031
+Epoch   4 Batch  958/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.939, Loss:  0.050
+Epoch   4 Batch  959/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.928, Loss:  0.052
+Epoch   4 Batch  960/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.928, Loss:  0.048
+Epoch   4 Batch  961/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.929, Loss:  0.043
+Epoch   4 Batch  962/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.928, Loss:  0.041
+Epoch   4 Batch  963/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.927, Loss:  0.066
+Epoch   4 Batch  964/1077 - Train Accuracy:  0.960, Validation Accuracy:  0.924, Loss:  0.043
+Epoch   4 Batch  965/1077 - Train Accuracy:  0.924, Validation Accuracy:  0.921, Loss:  0.053
+Epoch   4 Batch  966/1077 - Train Accuracy:  0.920, Validation Accuracy:  0.934, Loss:  0.042
+Epoch   4 Batch  967/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.934, Loss:  0.053
+Epoch   4 Batch  968/1077 - Train Accuracy:  0.895, Validation Accuracy:  0.930, Loss:  0.061
+Epoch   4 Batch  969/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.930, Loss:  0.064
+Epoch   4 Batch  970/1077 - Train Accuracy:  0.950, Validation Accuracy:  0.936, Loss:  0.050
+Epoch   4 Batch  971/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.931, Loss:  0.044
+Epoch   4 Batch  972/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.925, Loss:  0.050
+Epoch   4 Batch  973/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.929, Loss:  0.037
+Epoch   4 Batch  974/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.933, Loss:  0.035
+Epoch   4 Batch  975/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.932, Loss:  0.050
+Epoch   4 Batch  976/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.931, Loss:  0.038
+Epoch   4 Batch  977/1077 - Train Accuracy:  0.957, Validation Accuracy:  0.934, Loss:  0.032
+Epoch   4 Batch  978/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.938, Loss:  0.048
+Epoch   4 Batch  979/1077 - Train Accuracy:  0.919, Validation Accuracy:  0.934, Loss:  0.042
+Epoch   4 Batch  980/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.935, Loss:  0.046
+Epoch   4 Batch  981/1077 - Train Accuracy:  0.912, Validation Accuracy:  0.935, Loss:  0.050
+Epoch   4 Batch  982/1077 - Train Accuracy:  0.958, Validation Accuracy:  0.930, Loss:  0.041
+Epoch   4 Batch  983/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.939, Loss:  0.047
+Epoch   4 Batch  984/1077 - Train Accuracy:  0.903, Validation Accuracy:  0.935, Loss:  0.050
+Epoch   4 Batch  985/1077 - Train Accuracy:  0.944, Validation Accuracy:  0.935, Loss:  0.044
+Epoch   4 Batch  986/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.936, Loss:  0.046
+Epoch   4 Batch  987/1077 - Train Accuracy:  0.910, Validation Accuracy:  0.936, Loss:  0.033
+Epoch   4 Batch  988/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.940, Loss:  0.068
+Epoch   4 Batch  989/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.938, Loss:  0.066
+Epoch   4 Batch  990/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.938, Loss:  0.053
+Epoch   4 Batch  991/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.925, Loss:  0.050
+Epoch   4 Batch  992/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.928, Loss:  0.057
+Epoch   4 Batch  993/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.925, Loss:  0.037
+Epoch   4 Batch  994/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.919, Loss:  0.044
+Epoch   4 Batch  995/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.921, Loss:  0.051
+Epoch   4 Batch  996/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.922, Loss:  0.052
+Epoch   4 Batch  997/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.922, Loss:  0.050
+Epoch   4 Batch  998/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.913, Loss:  0.049
+Epoch   4 Batch  999/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.911, Loss:  0.049
+Epoch   4 Batch 1000/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.908, Loss:  0.041
+Epoch   4 Batch 1001/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.907, Loss:  0.041
+Epoch   4 Batch 1002/1077 - Train Accuracy:  0.968, Validation Accuracy:  0.907, Loss:  0.035
+Epoch   4 Batch 1003/1077 - Train Accuracy:  0.943, Validation Accuracy:  0.911, Loss:  0.050
+Epoch   4 Batch 1004/1077 - Train Accuracy:  0.956, Validation Accuracy:  0.917, Loss:  0.051
+Epoch   4 Batch 1005/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.917, Loss:  0.044
+Epoch   4 Batch 1006/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.916, Loss:  0.056
+Epoch   4 Batch 1007/1077 - Train Accuracy:  0.948, Validation Accuracy:  0.916, Loss:  0.039
+Epoch   4 Batch 1008/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.904, Loss:  0.059
+Epoch   4 Batch 1009/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.911, Loss:  0.040
+Epoch   4 Batch 1010/1077 - Train Accuracy:  0.952, Validation Accuracy:  0.906, Loss:  0.054
+Epoch   4 Batch 1011/1077 - Train Accuracy:  0.923, Validation Accuracy:  0.906, Loss:  0.038
+Epoch   4 Batch 1012/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.912, Loss:  0.048
+Epoch   4 Batch 1013/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.912, Loss:  0.039
+Epoch   4 Batch 1014/1077 - Train Accuracy:  0.915, Validation Accuracy:  0.914, Loss:  0.062
+Epoch   4 Batch 1015/1077 - Train Accuracy:  0.909, Validation Accuracy:  0.918, Loss:  0.053
+Epoch   4 Batch 1016/1077 - Train Accuracy:  0.914, Validation Accuracy:  0.919, Loss:  0.049
+Epoch   4 Batch 1017/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.918, Loss:  0.057
+Epoch   4 Batch 1018/1077 - Train Accuracy:  0.932, Validation Accuracy:  0.912, Loss:  0.049
+Epoch   4 Batch 1019/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.915, Loss:  0.073
+Epoch   4 Batch 1020/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.914, Loss:  0.040
+Epoch   4 Batch 1021/1077 - Train Accuracy:  0.929, Validation Accuracy:  0.918, Loss:  0.044
+Epoch   4 Batch 1022/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.919, Loss:  0.045
+Epoch   4 Batch 1023/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.922, Loss:  0.057
+Epoch   4 Batch 1024/1077 - Train Accuracy:  0.904, Validation Accuracy:  0.921, Loss:  0.059
+Epoch   4 Batch 1025/1077 - Train Accuracy:  0.921, Validation Accuracy:  0.921, Loss:  0.050
+Epoch   4 Batch 1026/1077 - Train Accuracy:  0.963, Validation Accuracy:  0.920, Loss:  0.055
+Epoch   4 Batch 1027/1077 - Train Accuracy:  0.911, Validation Accuracy:  0.920, Loss:  0.046
+Epoch   4 Batch 1028/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.925, Loss:  0.046
+Epoch   4 Batch 1029/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.929, Loss:  0.040
+Epoch   4 Batch 1030/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.924, Loss:  0.046
+Epoch   4 Batch 1031/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.928, Loss:  0.054
+Epoch   4 Batch 1032/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.928, Loss:  0.061
+Epoch   4 Batch 1033/1077 - Train Accuracy:  0.922, Validation Accuracy:  0.934, Loss:  0.060
+Epoch   4 Batch 1034/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.926, Loss:  0.050
+Epoch   4 Batch 1035/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.926, Loss:  0.032
+Epoch   4 Batch 1036/1077 - Train Accuracy:  0.931, Validation Accuracy:  0.927, Loss:  0.060
+Epoch   4 Batch 1037/1077 - Train Accuracy:  0.906, Validation Accuracy:  0.927, Loss:  0.053
+Epoch   4 Batch 1038/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.923, Loss:  0.051
+Epoch   4 Batch 1039/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.927, Loss:  0.050
+Epoch   4 Batch 1040/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.927, Loss:  0.068
+Epoch   4 Batch 1041/1077 - Train Accuracy:  0.902, Validation Accuracy:  0.925, Loss:  0.047
+Epoch   4 Batch 1042/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.926, Loss:  0.041
+Epoch   4 Batch 1043/1077 - Train Accuracy:  0.949, Validation Accuracy:  0.937, Loss:  0.052
+Epoch   4 Batch 1044/1077 - Train Accuracy:  0.933, Validation Accuracy:  0.930, Loss:  0.057
+Epoch   4 Batch 1045/1077 - Train Accuracy:  0.934, Validation Accuracy:  0.925, Loss:  0.047
+Epoch   4 Batch 1046/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.929, Loss:  0.040
+Epoch   4 Batch 1047/1077 - Train Accuracy:  0.974, Validation Accuracy:  0.919, Loss:  0.036
+Epoch   4 Batch 1048/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.915, Loss:  0.040
+Epoch   4 Batch 1049/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.913, Loss:  0.040
+Epoch   4 Batch 1050/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.909, Loss:  0.036
+Epoch   4 Batch 1051/1077 - Train Accuracy:  0.947, Validation Accuracy:  0.919, Loss:  0.056
+Epoch   4 Batch 1052/1077 - Train Accuracy:  0.955, Validation Accuracy:  0.918, Loss:  0.051
+Epoch   4 Batch 1053/1077 - Train Accuracy:  0.946, Validation Accuracy:  0.923, Loss:  0.053
+Epoch   4 Batch 1054/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.918, Loss:  0.045
+Epoch   4 Batch 1055/1077 - Train Accuracy:  0.963, Validation Accuracy:  0.928, Loss:  0.044
+Epoch   4 Batch 1056/1077 - Train Accuracy:  0.942, Validation Accuracy:  0.924, Loss:  0.044
+Epoch   4 Batch 1057/1077 - Train Accuracy:  0.941, Validation Accuracy:  0.922, Loss:  0.058
+Epoch   4 Batch 1058/1077 - Train Accuracy:  0.930, Validation Accuracy:  0.930, Loss:  0.054
+Epoch   4 Batch 1059/1077 - Train Accuracy:  0.898, Validation Accuracy:  0.939, Loss:  0.055
+Epoch   4 Batch 1060/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.935, Loss:  0.040
+Epoch   4 Batch 1061/1077 - Train Accuracy:  0.926, Validation Accuracy:  0.931, Loss:  0.056
+Epoch   4 Batch 1062/1077 - Train Accuracy:  0.916, Validation Accuracy:  0.926, Loss:  0.054
+Epoch   4 Batch 1063/1077 - Train Accuracy:  0.928, Validation Accuracy:  0.931, Loss:  0.068
+Epoch   4 Batch 1064/1077 - Train Accuracy:  0.951, Validation Accuracy:  0.940, Loss:  0.050
+Epoch   4 Batch 1065/1077 - Train Accuracy:  0.938, Validation Accuracy:  0.935, Loss:  0.050
+Epoch   4 Batch 1066/1077 - Train Accuracy:  0.940, Validation Accuracy:  0.929, Loss:  0.032
+Epoch   4 Batch 1067/1077 - Train Accuracy:  0.927, Validation Accuracy:  0.927, Loss:  0.059
+Epoch   4 Batch 1068/1077 - Train Accuracy:  0.937, Validation Accuracy:  0.927, Loss:  0.041
+Epoch   4 Batch 1069/1077 - Train Accuracy:  0.953, Validation Accuracy:  0.923, Loss:  0.038
+Epoch   4 Batch 1070/1077 - Train Accuracy:  0.936, Validation Accuracy:  0.924, Loss:  0.041
+Epoch   4 Batch 1071/1077 - Train Accuracy:  0.917, Validation Accuracy:  0.924, Loss:  0.042
+Epoch   4 Batch 1072/1077 - Train Accuracy:  0.958, Validation Accuracy:  0.924, Loss:  0.045
+Epoch   4 Batch 1073/1077 - Train Accuracy:  0.945, Validation Accuracy:  0.925, Loss:  0.053
+Epoch   4 Batch 1074/1077 - Train Accuracy:  0.935, Validation Accuracy:  0.925, Loss:  0.054
+Epoch   4 Batch 1075/1077 - Train Accuracy:  0.939, Validation Accuracy:  0.923, Loss:  0.062
+Model Trained and Saved
+
+
+
+ +
+
+ +
+
+
+
+
+

保存参数

保存 batch_sizesave_path 参数以进行推论(for inference)。

+ +
+
+
+
+
+
In [17]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+# Save parameters for checkpoint
+helper.save_params(save_path)
+
+ +
+
+
+ +
+
+
+
+
+

检查点

+
+
+
+
+
+
In [18]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+import tensorflow as tf
+import numpy as np
+import helper
+import problem_unittests as tests
+
+_, (source_vocab_to_int, target_vocab_to_int), (source_int_to_vocab, target_int_to_vocab) = helper.load_preprocess()
+load_path = helper.load_params()
+
+ +
+
+
+ +
+
+
+
+
+

句子到序列

要向模型提供要翻译的句子,你首先需要预处理该句子。实现函数 sentence_to_seq() 以预处理新的句子。

+
    +
  • 将句子转换为小写形式
  • +
  • 使用 vocab_to_int 将单词转换为 id
      +
    • 如果单词不在词汇表中,将其转换为<UNK> 单词 id
    • +
    +
  • +
+ +
+
+
+
+
+
In [19]:
+
+
+
def sentence_to_seq(sentence, vocab_to_int):
+    """
+    Convert a sentence to a sequence of ids
+    :param sentence: String
+    :param vocab_to_int: Dictionary to go from the words to an id
+    :return: List of word ids
+    """
+    # TODO: Implement Function
+    word_ids = [vocab_to_int.get(word, vocab_to_int["<UNK>"]) for word in sentence.lower().split()]
+    
+    return word_ids
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_sentence_to_seq(sentence_to_seq)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

翻译

translate_sentence 从英语翻译成法语。

+ +
+
+
+
+
+
In [20]:
+
+
+
translate_sentence = 'he saw a old yellow truck .'
+
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+translate_sentence = sentence_to_seq(translate_sentence, source_vocab_to_int)
+
+loaded_graph = tf.Graph()
+with tf.Session(graph=loaded_graph) as sess:
+    # Load saved model
+    loader = tf.train.import_meta_graph(load_path + '.meta')
+    loader.restore(sess, load_path)
+
+    input_data = loaded_graph.get_tensor_by_name('input:0')
+    logits = loaded_graph.get_tensor_by_name('logits:0')
+    keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')
+
+    translate_logits = sess.run(logits, {input_data: [translate_sentence], keep_prob: 1.0})[0]
+
+print('Input')
+print('  Word Ids:      {}'.format([i for i in translate_sentence]))
+print('  English Words: {}'.format([source_int_to_vocab[i] for i in translate_sentence]))
+
+print('\nPrediction')
+print('  Word Ids:      {}'.format([i for i in np.argmax(translate_logits, 1)]))
+print('  French Words: {}'.format([target_int_to_vocab[i] for i in np.argmax(translate_logits, 1)]))
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Input
+  Word Ids:      [226, 218, 43, 30, 138, 202, 171]
+  English Words: ['he', 'saw', 'a', 'old', 'yellow', 'truck', '.']
+
+Prediction
+  Word Ids:      [286, 17, 192, 281, 138, 94, 89, 60, 1]
+  French Words: ['il', 'a', 'vu', 'un', 'petit', 'camion', 'jaune', '.', '<EOS>']
+
+
+
+ +
+
+ +
+
+
+
+
+

不完美的翻译

你可能注意到了,某些句子的翻译质量比其他的要好。因为你使用的数据集只有 227 个英语单词,但实际生活中有数千个单词,只有使用这些单词的句子结果才会比较理想。对于此项目,不需要达到完美的翻译。但是,如果你想创建更好的翻译模型,则需要更好的数据。

+

你可以使用 WMT10 French-English corpus 语料库训练模型。该数据集拥有更多的词汇,讨论的话题也更丰富。但是,训练时间要好多天的时间,所以确保你有 GPU 并且对于我们提供的数据集,你的神经网络性能很棒。提交此项目后,别忘了研究下 WMT10 语料库。

+

提交项目

提交项目时,确保先运行所有单元,然后再保存记事本。保存记事本文件为 “dlnd_language_translation.ipynb”,再通过菜单中的“文件” ->“下载为”将其另存为 HTML 格式。提交的项目文档中需包含“helper.py”和“problem_unittests.py”文件。

+ +
+
+
+
+
+ + + + + + diff --git a/language-translation/dlnd_language_translation.ipynb b/language-translation/dlnd_language_translation.ipynb index 4fad7ba..c10e6e3 100644 --- a/language-translation/dlnd_language_translation.ipynb +++ b/language-translation/dlnd_language_translation.ipynb @@ -3,9 +3,7 @@ { "cell_type": "markdown", "metadata": { - "collapsed": true, - "deletable": true, - "editable": true + "collapsed": true }, "source": [ "# 语言翻译\n", @@ -19,11 +17,9 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -41,10 +37,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## 探索数据\n", "\n", @@ -53,13 +46,44 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dataset Stats\n", + "Roughly the number of unique words: 227\n", + "Number of sentences: 137861\n", + "Average number of words in a sentence: 13.225277634719028\n", + "\n", + "English sentences 0 to 10:\n", + "new jersey is sometimes quiet during autumn , and it is snowy in april .\n", + "the united states is usually chilly during july , and it is usually freezing in november .\n", + "california is usually quiet during march , and it is usually hot in june .\n", + "the united states is sometimes mild during june , and it is cold in september .\n", + "your least liked fruit is the grape , but my least liked is the apple .\n", + "his favorite fruit is the orange , but my favorite is the grape .\n", + "paris is relaxing during december , but it is usually chilly in july .\n", + "new jersey is busy during spring , and it is never hot in march .\n", + "our least liked fruit is the lemon , but my least liked is the grape .\n", + "the united states is sometimes busy during january , and it is sometimes warm in november .\n", + "\n", + "French sentences 0 to 10:\n", + "new jersey est parfois calme pendant l' automne , et il est neigeux en avril .\n", + "les états-unis est généralement froid en juillet , et il gèle habituellement en novembre .\n", + "california est généralement calme en mars , et il est généralement chaud en juin .\n", + "les états-unis est parfois légère en juin , et il fait froid en septembre .\n", + "votre moins aimé fruit est le raisin , mais mon moins aimé est la pomme .\n", + "son fruit préféré est l'orange , mais mon préféré est le raisin .\n", + "paris est relaxant en décembre , mais il est généralement froid en juillet .\n", + "new jersey est occupé au printemps , et il est jamais chaude en mars .\n", + "notre fruit est moins aimé le citron , mais mon moins aimé est le raisin .\n", + "les états-unis est parfois occupé en janvier , et il est parfois chaud en novembre .\n" + ] + } + ], "source": [ "view_sentence_range = (0, 10)\n", "\n", @@ -86,10 +110,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## 实现预处理函数\n", "\n", @@ -109,13 +130,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def text_to_ids(source_text, target_text, source_vocab_to_int, target_vocab_to_int):\n", " \"\"\"\n", @@ -127,7 +152,10 @@ " :return: A tuple of lists (source_id_text, target_id_text)\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None, None\n", + " source_letter_ids = [[source_vocab_to_int.get(letter, source_vocab_to_int['']) for letter in line.split()] for line in source_text.split('\\n')]\n", + " target_letter_ids = [[target_vocab_to_int.get(letter, target_vocab_to_int['']) for letter in line.split()] + [target_vocab_to_int['']] for line in target_text.split('\\n')] \n", + " \n", + " return source_letter_ids, target_letter_ids\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", @@ -137,10 +165,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### 预处理所有数据并保存\n", "\n", @@ -149,11 +174,9 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -165,10 +188,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "# 检查点\n", "\n", @@ -177,11 +197,9 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -196,10 +214,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### 检查 TensorFlow 版本,确认可访问 GPU\n", "\n", @@ -208,13 +223,18 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TensorFlow Version: 1.0.1\n", + "Default GPU Device: /gpu:0\n" + ] + } + ], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", @@ -236,10 +256,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## 构建神经网络\n", "\n", @@ -267,21 +284,31 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ + "import tensorflow as tf\n", "def model_inputs():\n", " \"\"\"\n", " Create TF Placeholders for input, targets, and learning rate.\n", " :return: Tuple (input, targets, learning rate, keep probability)\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None, None, None, None\n", + " inputs = tf.placeholder(tf.int32, [None, None], name='input')\n", + " targets = tf.placeholder(tf.int32, [None, None], name='targets')\n", + " learning_rate = tf.placeholder(tf.float32, name='learning_rate')\n", + " keep_prob = tf.placeholder(tf.float32, name='keep_prob')\n", + " \n", + " return inputs, targets, learning_rate, keep_prob\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", @@ -291,10 +318,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### 处理解码输入\n", "\n", @@ -303,13 +327,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def process_decoding_input(target_data, target_vocab_to_int, batch_size):\n", " \"\"\"\n", @@ -320,7 +348,10 @@ " :return: Preprocessed target data\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None\n", + " ending = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1])\n", + " dec_input = tf.concat([tf.fill([batch_size, 1], target_vocab_to_int['']), ending], 1)\n", + " \n", + " return dec_input\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", @@ -330,10 +361,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### 编码\n", "\n", @@ -342,13 +370,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob):\n", " \"\"\"\n", @@ -360,7 +392,12 @@ " :return: RNN state\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None\n", + " lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size)\n", + " drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob)\n", + " enc_cell = tf.contrib.rnn.MultiRNNCell([drop] * num_layers)\n", + " _, enc_state = tf.nn.dynamic_rnn(enc_cell, rnn_inputs, dtype=tf.float32)\n", + " \n", + " return enc_state\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", @@ -370,10 +407,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### 解码 - 训练\n", "\n", @@ -382,13 +416,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def decoding_layer_train(encoder_state, dec_cell, dec_embed_input, sequence_length, decoding_scope,\n", " output_fn, keep_prob):\n", @@ -404,7 +442,15 @@ " :return: Train Logits\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None\n", + " # Training Decoder\n", + " train_decoder_fn = tf.contrib.seq2seq.simple_decoder_fn_train(encoder_state)\n", + " train_pred, _, _ = tf.contrib.seq2seq.dynamic_rnn_decoder(\n", + " dec_cell, train_decoder_fn, dec_embed_input, sequence_length, scope=decoding_scope)\n", + " \n", + " # Apply output function\n", + " train_logits = output_fn(train_pred)\n", + "\n", + " return train_logits\n", "\n", "\n", "\"\"\"\n", @@ -415,10 +461,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### 解码 - 推论\n", "\n", @@ -427,13 +470,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id,\n", " maximum_length, vocab_size, decoding_scope, output_fn, keep_prob):\n", @@ -452,7 +499,13 @@ " :return: Inference Logits\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None\n", + " # Inference Decoder\n", + " infer_decoder_fn = tf.contrib.seq2seq.simple_decoder_fn_inference(\n", + " output_fn, encoder_state, dec_embeddings, start_of_sequence_id, end_of_sequence_id, \n", + " maximum_length - 1, vocab_size)\n", + " inference_logits, _, _ = tf.contrib.seq2seq.dynamic_rnn_decoder(dec_cell, infer_decoder_fn, scope=decoding_scope)\n", + "\n", + " return inference_logits\n", "\n", "\n", "\"\"\"\n", @@ -463,10 +516,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### 构建解码层级\n", "\n", @@ -482,13 +532,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def decoding_layer(dec_embed_input, dec_embeddings, encoder_state, vocab_size, sequence_length, rnn_size,\n", " num_layers, target_vocab_to_int, keep_prob):\n", @@ -506,7 +560,23 @@ " :return: Tuple of (Training Logits, Inference Logits)\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None, None\n", + " lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size)\n", + " dropout = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob)\n", + " dec_cell = tf.contrib.rnn.MultiRNNCell([dropout] * num_layers)\n", + " \n", + " output_fn = lambda x: tf.contrib.layers.fully_connected(x, vocab_size, activation_fn=None, scope=decoding_scope) \n", + "\n", + " with tf.variable_scope(\"decoding\") as decoding_scope:\n", + " training_decoder_output = decoding_layer_train(encoder_state, dec_cell, dec_embed_input, sequence_length, decoding_scope,\n", + " output_fn, keep_prob)\n", + "\n", + " with tf.variable_scope(\"decoding\", reuse=True) as decoding_scope:\n", + " start_of_sequence_id = target_vocab_to_int[\"\"]\n", + " end_of_sequence_id = target_vocab_to_int[\"\"]\n", + " inference_decoder_output = decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, \n", + " sequence_length, vocab_size, decoding_scope, output_fn, keep_prob)\n", + " \n", + " return training_decoder_output, inference_decoder_output\n", "\n", "\n", "\"\"\"\n", @@ -517,10 +587,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### 构建神经网络\n", "\n", @@ -535,13 +602,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def seq2seq_model(input_data, target_data, keep_prob, batch_size, sequence_length, source_vocab_size, target_vocab_size,\n", " enc_embedding_size, dec_embedding_size, rnn_size, num_layers, target_vocab_to_int):\n", @@ -562,7 +633,18 @@ " :return: Tuple of (Training Logits, Inference Logits)\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None\n", + " rnn_inputs = tf.contrib.layers.embed_sequence(input_data, source_vocab_size, enc_embedding_size)\n", + " \n", + " encoder_state = encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob)\n", + " \n", + " dec_input = process_decoding_input(target_data, target_vocab_to_int, batch_size)\n", + " dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, dec_embedding_size]))\n", + " dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input)\n", + " \n", + " train_logits, inference_logits = decoding_layer(dec_embed_input, dec_embeddings, encoder_state, target_vocab_size, sequence_length,\n", + " rnn_size, num_layers, target_vocab_to_int, keep_prob)\n", + " \n", + " return train_logits, inference_logits\n", "\n", "\n", "\"\"\"\n", @@ -573,10 +655,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## 训练神经网络\n", "\n", @@ -596,37 +675,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": { - "collapsed": true, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ "# Number of Epochs\n", - "epochs = None\n", + "epochs = 5\n", "# Batch Size\n", - "batch_size = None\n", + "batch_size = 128\n", "# RNN Size\n", - "rnn_size = None\n", + "rnn_size = 128\n", "# Number of Layers\n", - "num_layers = None\n", + "num_layers = 2\n", "# Embedding Size\n", - "encoding_embedding_size = None\n", - "decoding_embedding_size = None\n", + "encoding_embedding_size = 100\n", + "decoding_embedding_size = 100\n", "# Learning Rate\n", - "learning_rate = None\n", + "learning_rate = 0.01\n", "# Dropout Keep Probability\n", - "keep_probability = None" + "keep_probability = 0.8" ] }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### 构建图表\n", "\n", @@ -635,11 +709,9 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -679,10 +751,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### 训练\n", "\n", @@ -691,14 +760,5765 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true, "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0 Batch 0/1077 - Train Accuracy: 0.294, Validation Accuracy: 0.305, Loss: 5.889\n", + "Epoch 0 Batch 1/1077 - Train Accuracy: 0.221, Validation Accuracy: 0.305, Loss: 5.074\n", + "Epoch 0 Batch 2/1077 - Train Accuracy: 0.244, Validation Accuracy: 0.335, Loss: 4.336\n", + "Epoch 0 Batch 3/1077 - Train Accuracy: 0.275, Validation Accuracy: 0.337, Loss: 3.832\n", + "Epoch 0 Batch 4/1077 - Train Accuracy: 0.263, Validation Accuracy: 0.336, Loss: 3.669\n", + "Epoch 0 Batch 5/1077 - Train Accuracy: 0.295, Validation Accuracy: 0.336, Loss: 3.552\n", + "Epoch 0 Batch 6/1077 - Train Accuracy: 0.282, Validation Accuracy: 0.342, Loss: 3.504\n", + "Epoch 0 Batch 7/1077 - Train Accuracy: 0.268, Validation Accuracy: 0.342, Loss: 3.515\n", + "Epoch 0 Batch 8/1077 - Train Accuracy: 0.275, Validation Accuracy: 0.341, Loss: 3.414\n", + "Epoch 0 Batch 9/1077 - Train Accuracy: 0.283, Validation Accuracy: 0.341, Loss: 3.324\n", + "Epoch 0 Batch 10/1077 - Train Accuracy: 0.273, Validation Accuracy: 0.363, Loss: 3.444\n", + "Epoch 0 Batch 11/1077 - Train Accuracy: 0.334, Validation Accuracy: 0.370, Loss: 3.166\n", + "Epoch 0 Batch 12/1077 - Train Accuracy: 0.314, Validation Accuracy: 0.380, Loss: 3.323\n", + "Epoch 0 Batch 13/1077 - Train Accuracy: 0.353, Validation Accuracy: 0.373, Loss: 3.069\n", + "Epoch 0 Batch 14/1077 - Train Accuracy: 0.338, Validation Accuracy: 0.377, Loss: 3.096\n", + "Epoch 0 Batch 15/1077 - Train Accuracy: 0.333, Validation Accuracy: 0.391, Loss: 3.169\n", + "Epoch 0 Batch 16/1077 - Train Accuracy: 0.350, Validation Accuracy: 0.392, Loss: 3.136\n", + "Epoch 0 Batch 17/1077 - Train Accuracy: 0.341, Validation Accuracy: 0.382, Loss: 3.051\n", + "Epoch 0 Batch 18/1077 - Train Accuracy: 0.343, Validation Accuracy: 0.407, Loss: 3.059\n", + "Epoch 0 Batch 19/1077 - Train Accuracy: 0.361, Validation Accuracy: 0.402, Loss: 2.920\n", + "Epoch 0 Batch 20/1077 - Train Accuracy: 0.341, Validation Accuracy: 0.400, Loss: 2.897\n", + "Epoch 0 Batch 21/1077 - Train Accuracy: 0.330, Validation Accuracy: 0.409, Loss: 2.971\n", + "Epoch 0 Batch 22/1077 - Train Accuracy: 0.359, Validation Accuracy: 0.417, Loss: 2.950\n", + "Epoch 0 Batch 23/1077 - Train Accuracy: 0.354, Validation Accuracy: 0.412, Loss: 2.924\n", + "Epoch 0 Batch 24/1077 - Train Accuracy: 0.360, Validation Accuracy: 0.413, Loss: 2.818\n", + "Epoch 0 Batch 25/1077 - Train Accuracy: 0.361, Validation Accuracy: 0.425, Loss: 2.867\n", + "Epoch 0 Batch 26/1077 - Train Accuracy: 0.359, Validation Accuracy: 0.420, Loss: 2.829\n", + "Epoch 0 Batch 27/1077 - Train Accuracy: 0.410, Validation Accuracy: 0.427, Loss: 2.581\n", + "Epoch 0 Batch 28/1077 - Train Accuracy: 0.394, Validation Accuracy: 0.436, Loss: 2.710\n", + "Epoch 0 Batch 29/1077 - Train Accuracy: 0.395, Validation Accuracy: 0.441, Loss: 2.660\n", + "Epoch 0 Batch 30/1077 - Train Accuracy: 0.397, Validation Accuracy: 0.448, Loss: 2.664\n", + "Epoch 0 Batch 31/1077 - Train Accuracy: 0.399, Validation Accuracy: 0.453, Loss: 2.683\n", + "Epoch 0 Batch 32/1077 - Train Accuracy: 0.453, Validation Accuracy: 0.460, Loss: 2.471\n", + "Epoch 0 Batch 33/1077 - Train Accuracy: 0.429, Validation Accuracy: 0.468, Loss: 2.467\n", + "Epoch 0 Batch 34/1077 - Train Accuracy: 0.405, Validation Accuracy: 0.462, Loss: 2.541\n", + "Epoch 0 Batch 35/1077 - Train Accuracy: 0.410, Validation Accuracy: 0.460, Loss: 2.516\n", + "Epoch 0 Batch 36/1077 - Train Accuracy: 0.425, Validation Accuracy: 0.466, Loss: 2.453\n", + "Epoch 0 Batch 37/1077 - Train Accuracy: 0.427, Validation Accuracy: 0.480, Loss: 2.505\n", + "Epoch 0 Batch 38/1077 - Train Accuracy: 0.378, Validation Accuracy: 0.474, Loss: 2.650\n", + "Epoch 0 Batch 39/1077 - Train Accuracy: 0.420, Validation Accuracy: 0.480, Loss: 2.496\n", + "Epoch 0 Batch 40/1077 - Train Accuracy: 0.410, Validation Accuracy: 0.466, Loss: 2.415\n", + "Epoch 0 Batch 41/1077 - Train Accuracy: 0.455, Validation Accuracy: 0.483, Loss: 2.359\n", + "Epoch 0 Batch 42/1077 - Train Accuracy: 0.414, Validation Accuracy: 0.467, Loss: 2.375\n", + "Epoch 0 Batch 43/1077 - Train Accuracy: 0.439, Validation Accuracy: 0.497, Loss: 2.402\n", + "Epoch 0 Batch 44/1077 - Train Accuracy: 0.355, Validation Accuracy: 0.436, Loss: 2.547\n", + "Epoch 0 Batch 45/1077 - Train Accuracy: 0.406, Validation Accuracy: 0.469, Loss: 2.402\n", + "Epoch 0 Batch 46/1077 - Train Accuracy: 0.419, Validation Accuracy: 0.492, Loss: 2.394\n", + "Epoch 0 Batch 47/1077 - Train Accuracy: 0.406, Validation Accuracy: 0.458, Loss: 2.299\n", + "Epoch 0 Batch 48/1077 - Train Accuracy: 0.407, Validation Accuracy: 0.443, Loss: 2.303\n", + "Epoch 0 Batch 49/1077 - Train Accuracy: 0.404, Validation Accuracy: 0.462, Loss: 2.302\n", + "Epoch 0 Batch 50/1077 - Train Accuracy: 0.403, Validation Accuracy: 0.478, Loss: 2.336\n", + "Epoch 0 Batch 51/1077 - Train Accuracy: 0.434, Validation Accuracy: 0.457, Loss: 2.179\n", + "Epoch 0 Batch 52/1077 - Train Accuracy: 0.432, Validation Accuracy: 0.492, Loss: 2.245\n", + "Epoch 0 Batch 53/1077 - Train Accuracy: 0.474, Validation Accuracy: 0.518, Loss: 2.199\n", + "Epoch 0 Batch 54/1077 - Train Accuracy: 0.439, Validation Accuracy: 0.523, Loss: 2.408\n", + "Epoch 0 Batch 55/1077 - Train Accuracy: 0.479, Validation Accuracy: 0.507, Loss: 2.111\n", + "Epoch 0 Batch 56/1077 - Train Accuracy: 0.455, Validation Accuracy: 0.513, Loss: 2.172\n", + "Epoch 0 Batch 57/1077 - Train Accuracy: 0.520, Validation Accuracy: 0.512, Loss: 1.935\n", + "Epoch 0 Batch 58/1077 - Train Accuracy: 0.445, Validation Accuracy: 0.493, Loss: 2.165\n", + "Epoch 0 Batch 59/1077 - Train Accuracy: 0.462, Validation Accuracy: 0.532, Loss: 2.256\n", + "Epoch 0 Batch 60/1077 - Train Accuracy: 0.487, Validation Accuracy: 0.525, Loss: 2.097\n", + "Epoch 0 Batch 61/1077 - Train Accuracy: 0.454, Validation Accuracy: 0.509, Loss: 2.091\n", + "Epoch 0 Batch 62/1077 - Train Accuracy: 0.464, Validation Accuracy: 0.531, Loss: 2.211\n", + "Epoch 0 Batch 63/1077 - Train Accuracy: 0.517, Validation Accuracy: 0.535, Loss: 1.980\n", + "Epoch 0 Batch 64/1077 - Train Accuracy: 0.446, Validation Accuracy: 0.494, Loss: 2.087\n", + "Epoch 0 Batch 65/1077 - Train Accuracy: 0.462, Validation Accuracy: 0.544, Loss: 2.220\n", + "Epoch 0 Batch 66/1077 - Train Accuracy: 0.477, Validation Accuracy: 0.528, Loss: 2.058\n", + "Epoch 0 Batch 67/1077 - Train Accuracy: 0.497, Validation Accuracy: 0.507, Loss: 1.945\n", + "Epoch 0 Batch 68/1077 - Train Accuracy: 0.479, Validation Accuracy: 0.534, Loss: 2.047\n", + "Epoch 0 Batch 69/1077 - Train Accuracy: 0.516, Validation Accuracy: 0.546, Loss: 1.991\n", + "Epoch 0 Batch 70/1077 - Train Accuracy: 0.474, Validation Accuracy: 0.534, Loss: 2.054\n", + "Epoch 0 Batch 71/1077 - Train Accuracy: 0.486, Validation Accuracy: 0.534, Loss: 1.950\n", + "Epoch 0 Batch 72/1077 - Train Accuracy: 0.491, Validation Accuracy: 0.543, Loss: 1.957\n", + "Epoch 0 Batch 73/1077 - Train Accuracy: 0.475, Validation Accuracy: 0.521, Loss: 1.968\n", + "Epoch 0 Batch 74/1077 - Train Accuracy: 0.507, Validation Accuracy: 0.535, Loss: 1.823\n", + "Epoch 0 Batch 75/1077 - Train Accuracy: 0.526, Validation Accuracy: 0.539, Loss: 1.826\n", + "Epoch 0 Batch 76/1077 - Train Accuracy: 0.502, Validation Accuracy: 0.529, Loss: 1.857\n", + "Epoch 0 Batch 77/1077 - Train Accuracy: 0.462, Validation Accuracy: 0.527, Loss: 1.920\n", + "Epoch 0 Batch 78/1077 - Train Accuracy: 0.455, Validation Accuracy: 0.527, Loss: 2.023\n", + "Epoch 0 Batch 79/1077 - Train Accuracy: 0.480, Validation Accuracy: 0.521, Loss: 1.887\n", + "Epoch 0 Batch 80/1077 - Train Accuracy: 0.482, Validation Accuracy: 0.540, Loss: 1.808\n", + "Epoch 0 Batch 81/1077 - Train Accuracy: 0.509, Validation Accuracy: 0.534, Loss: 1.829\n", + "Epoch 0 Batch 82/1077 - Train Accuracy: 0.532, Validation Accuracy: 0.542, Loss: 1.644\n", + "Epoch 0 Batch 83/1077 - Train Accuracy: 0.471, Validation Accuracy: 0.533, Loss: 1.863\n", + "Epoch 0 Batch 84/1077 - Train Accuracy: 0.505, Validation Accuracy: 0.537, Loss: 1.749\n", + "Epoch 0 Batch 85/1077 - Train Accuracy: 0.495, Validation Accuracy: 0.535, Loss: 1.639\n", + "Epoch 0 Batch 86/1077 - Train Accuracy: 0.489, Validation Accuracy: 0.530, Loss: 1.738\n", + "Epoch 0 Batch 87/1077 - Train Accuracy: 0.489, Validation Accuracy: 0.525, Loss: 1.735\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0 Batch 88/1077 - Train Accuracy: 0.509, Validation Accuracy: 0.533, Loss: 1.659\n", + "Epoch 0 Batch 89/1077 - Train Accuracy: 0.499, Validation Accuracy: 0.548, Loss: 1.632\n", + "Epoch 0 Batch 90/1077 - Train Accuracy: 0.471, Validation Accuracy: 0.535, Loss: 1.699\n", + "Epoch 0 Batch 91/1077 - Train Accuracy: 0.511, Validation Accuracy: 0.518, Loss: 1.448\n", + "Epoch 0 Batch 92/1077 - Train Accuracy: 0.490, Validation Accuracy: 0.524, Loss: 1.569\n", + "Epoch 0 Batch 93/1077 - Train Accuracy: 0.476, Validation Accuracy: 0.520, Loss: 1.581\n", + "Epoch 0 Batch 94/1077 - Train Accuracy: 0.485, Validation Accuracy: 0.526, Loss: 1.457\n", + "Epoch 0 Batch 95/1077 - Train Accuracy: 0.525, Validation Accuracy: 0.550, Loss: 1.486\n", + "Epoch 0 Batch 96/1077 - Train Accuracy: 0.477, Validation Accuracy: 0.533, Loss: 1.471\n", + "Epoch 0 Batch 97/1077 - Train Accuracy: 0.467, Validation Accuracy: 0.525, Loss: 1.476\n", + "Epoch 0 Batch 98/1077 - Train Accuracy: 0.497, Validation Accuracy: 0.508, Loss: 1.370\n", + "Epoch 0 Batch 99/1077 - Train Accuracy: 0.458, Validation Accuracy: 0.501, Loss: 1.478\n", + "Epoch 0 Batch 100/1077 - Train Accuracy: 0.490, Validation Accuracy: 0.514, Loss: 1.390\n", + "Epoch 0 Batch 101/1077 - Train Accuracy: 0.474, Validation Accuracy: 0.501, Loss: 1.334\n", + "Epoch 0 Batch 102/1077 - Train Accuracy: 0.505, Validation Accuracy: 0.529, Loss: 1.319\n", + "Epoch 0 Batch 103/1077 - Train Accuracy: 0.477, Validation Accuracy: 0.538, Loss: 1.417\n", + "Epoch 0 Batch 104/1077 - Train Accuracy: 0.458, Validation Accuracy: 0.547, Loss: 1.394\n", + "Epoch 0 Batch 105/1077 - Train Accuracy: 0.510, Validation Accuracy: 0.512, Loss: 1.274\n", + "Epoch 0 Batch 106/1077 - Train Accuracy: 0.468, Validation Accuracy: 0.512, Loss: 1.405\n", + "Epoch 0 Batch 107/1077 - Train Accuracy: 0.510, Validation Accuracy: 0.526, Loss: 1.229\n", + "Epoch 0 Batch 108/1077 - Train Accuracy: 0.556, Validation Accuracy: 0.542, Loss: 1.149\n", + "Epoch 0 Batch 109/1077 - Train Accuracy: 0.515, Validation Accuracy: 0.548, Loss: 1.224\n", + "Epoch 0 Batch 110/1077 - Train Accuracy: 0.536, Validation Accuracy: 0.543, Loss: 1.191\n", + "Epoch 0 Batch 111/1077 - Train Accuracy: 0.496, Validation Accuracy: 0.547, Loss: 1.237\n", + "Epoch 0 Batch 112/1077 - Train Accuracy: 0.494, Validation Accuracy: 0.531, Loss: 1.218\n", + "Epoch 0 Batch 113/1077 - Train Accuracy: 0.475, Validation Accuracy: 0.522, Loss: 1.197\n", + "Epoch 0 Batch 114/1077 - Train Accuracy: 0.526, Validation Accuracy: 0.529, Loss: 1.110\n", + "Epoch 0 Batch 115/1077 - Train Accuracy: 0.504, Validation Accuracy: 0.532, Loss: 1.182\n", + "Epoch 0 Batch 116/1077 - Train Accuracy: 0.488, Validation Accuracy: 0.524, Loss: 1.181\n", + "Epoch 0 Batch 117/1077 - Train Accuracy: 0.459, Validation Accuracy: 0.544, Loss: 1.173\n", + "Epoch 0 Batch 118/1077 - Train Accuracy: 0.477, Validation Accuracy: 0.558, Loss: 1.164\n", + "Epoch 0 Batch 119/1077 - Train Accuracy: 0.507, Validation Accuracy: 0.550, Loss: 1.075\n", + "Epoch 0 Batch 120/1077 - Train Accuracy: 0.482, Validation Accuracy: 0.533, Loss: 1.114\n", + "Epoch 0 Batch 121/1077 - Train Accuracy: 0.502, Validation Accuracy: 0.533, Loss: 1.056\n", + "Epoch 0 Batch 122/1077 - Train Accuracy: 0.505, Validation Accuracy: 0.539, Loss: 1.036\n", + "Epoch 0 Batch 123/1077 - Train Accuracy: 0.523, Validation Accuracy: 0.550, Loss: 1.013\n", + "Epoch 0 Batch 124/1077 - Train Accuracy: 0.495, Validation Accuracy: 0.543, Loss: 1.080\n", + "Epoch 0 Batch 125/1077 - Train Accuracy: 0.529, Validation Accuracy: 0.537, Loss: 1.015\n", + "Epoch 0 Batch 126/1077 - Train Accuracy: 0.515, Validation Accuracy: 0.537, Loss: 0.966\n", + "Epoch 0 Batch 127/1077 - Train Accuracy: 0.502, Validation Accuracy: 0.545, Loss: 1.023\n", + "Epoch 0 Batch 128/1077 - Train Accuracy: 0.536, Validation Accuracy: 0.521, Loss: 0.953\n", + "Epoch 0 Batch 129/1077 - Train Accuracy: 0.525, Validation Accuracy: 0.534, Loss: 1.014\n", + "Epoch 0 Batch 130/1077 - Train Accuracy: 0.539, Validation Accuracy: 0.547, Loss: 0.926\n", + "Epoch 0 Batch 131/1077 - Train Accuracy: 0.499, Validation Accuracy: 0.558, Loss: 0.993\n", + "Epoch 0 Batch 132/1077 - Train Accuracy: 0.464, Validation Accuracy: 0.545, Loss: 1.016\n", + "Epoch 0 Batch 133/1077 - Train Accuracy: 0.471, Validation Accuracy: 0.548, Loss: 0.994\n", + "Epoch 0 Batch 134/1077 - Train Accuracy: 0.534, Validation Accuracy: 0.560, Loss: 0.927\n", + "Epoch 0 Batch 135/1077 - Train Accuracy: 0.532, Validation Accuracy: 0.576, Loss: 0.994\n", + "Epoch 0 Batch 136/1077 - Train Accuracy: 0.527, Validation Accuracy: 0.565, Loss: 0.944\n", + "Epoch 0 Batch 137/1077 - Train Accuracy: 0.573, Validation Accuracy: 0.572, Loss: 0.864\n", + "Epoch 0 Batch 138/1077 - Train Accuracy: 0.528, Validation Accuracy: 0.570, Loss: 0.924\n", + "Epoch 0 Batch 139/1077 - Train Accuracy: 0.523, Validation Accuracy: 0.555, Loss: 0.947\n", + "Epoch 0 Batch 140/1077 - Train Accuracy: 0.457, Validation Accuracy: 0.557, Loss: 0.986\n", + "Epoch 0 Batch 141/1077 - Train Accuracy: 0.508, Validation Accuracy: 0.552, Loss: 0.943\n", + "Epoch 0 Batch 142/1077 - Train Accuracy: 0.546, Validation Accuracy: 0.557, Loss: 0.855\n", + "Epoch 0 Batch 143/1077 - Train Accuracy: 0.522, Validation Accuracy: 0.550, Loss: 0.941\n", + "Epoch 0 Batch 144/1077 - Train Accuracy: 0.481, Validation Accuracy: 0.558, Loss: 0.944\n", + "Epoch 0 Batch 145/1077 - Train Accuracy: 0.584, Validation Accuracy: 0.559, Loss: 0.890\n", + "Epoch 0 Batch 146/1077 - Train Accuracy: 0.527, Validation Accuracy: 0.549, Loss: 0.908\n", + "Epoch 0 Batch 147/1077 - Train Accuracy: 0.477, Validation Accuracy: 0.543, Loss: 0.933\n", + "Epoch 0 Batch 148/1077 - Train Accuracy: 0.518, Validation Accuracy: 0.564, Loss: 0.885\n", + "Epoch 0 Batch 149/1077 - Train Accuracy: 0.507, Validation Accuracy: 0.572, Loss: 0.904\n", + "Epoch 0 Batch 150/1077 - Train Accuracy: 0.574, Validation Accuracy: 0.568, Loss: 0.849\n", + "Epoch 0 Batch 151/1077 - Train Accuracy: 0.528, Validation Accuracy: 0.576, Loss: 0.812\n", + "Epoch 0 Batch 152/1077 - Train Accuracy: 0.529, Validation Accuracy: 0.572, Loss: 0.877\n", + "Epoch 0 Batch 153/1077 - Train Accuracy: 0.522, Validation Accuracy: 0.568, Loss: 0.907\n", + "Epoch 0 Batch 154/1077 - Train Accuracy: 0.511, Validation Accuracy: 0.574, Loss: 0.873\n", + "Epoch 0 Batch 155/1077 - Train Accuracy: 0.539, Validation Accuracy: 0.572, Loss: 0.864\n", + "Epoch 0 Batch 156/1077 - Train Accuracy: 0.523, Validation Accuracy: 0.584, Loss: 0.836\n", + "Epoch 0 Batch 157/1077 - Train Accuracy: 0.557, Validation Accuracy: 0.574, Loss: 0.846\n", + "Epoch 0 Batch 158/1077 - Train Accuracy: 0.536, Validation Accuracy: 0.591, Loss: 0.881\n", + "Epoch 0 Batch 159/1077 - Train Accuracy: 0.548, Validation Accuracy: 0.581, Loss: 0.768\n", + "Epoch 0 Batch 160/1077 - Train Accuracy: 0.532, Validation Accuracy: 0.576, Loss: 0.831\n", + "Epoch 0 Batch 161/1077 - Train Accuracy: 0.523, Validation Accuracy: 0.566, Loss: 0.835\n", + "Epoch 0 Batch 162/1077 - Train Accuracy: 0.534, Validation Accuracy: 0.568, Loss: 0.866\n", + "Epoch 0 Batch 163/1077 - Train Accuracy: 0.525, Validation Accuracy: 0.571, Loss: 0.891\n", + "Epoch 0 Batch 164/1077 - Train Accuracy: 0.533, Validation Accuracy: 0.586, Loss: 0.841\n", + "Epoch 0 Batch 165/1077 - Train Accuracy: 0.505, Validation Accuracy: 0.587, Loss: 0.804\n", + "Epoch 0 Batch 166/1077 - Train Accuracy: 0.580, Validation Accuracy: 0.586, Loss: 0.824\n", + "Epoch 0 Batch 167/1077 - Train Accuracy: 0.558, Validation Accuracy: 0.574, Loss: 0.835\n", + "Epoch 0 Batch 168/1077 - Train Accuracy: 0.520, Validation Accuracy: 0.568, Loss: 0.844\n", + "Epoch 0 Batch 169/1077 - Train Accuracy: 0.577, Validation Accuracy: 0.575, Loss: 0.822\n", + "Epoch 0 Batch 170/1077 - Train Accuracy: 0.553, Validation Accuracy: 0.566, Loss: 0.861\n", + "Epoch 0 Batch 171/1077 - Train Accuracy: 0.592, Validation Accuracy: 0.577, Loss: 0.755\n", + "Epoch 0 Batch 172/1077 - Train Accuracy: 0.599, Validation Accuracy: 0.583, Loss: 0.743\n", + "Epoch 0 Batch 173/1077 - Train Accuracy: 0.543, Validation Accuracy: 0.578, Loss: 0.845\n", + "Epoch 0 Batch 174/1077 - Train Accuracy: 0.605, Validation Accuracy: 0.580, Loss: 0.779\n", + "Epoch 0 Batch 175/1077 - Train Accuracy: 0.598, Validation Accuracy: 0.589, Loss: 0.784\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0 Batch 176/1077 - Train Accuracy: 0.565, Validation Accuracy: 0.605, Loss: 0.783\n", + "Epoch 0 Batch 177/1077 - Train Accuracy: 0.537, Validation Accuracy: 0.591, Loss: 0.837\n", + "Epoch 0 Batch 178/1077 - Train Accuracy: 0.564, Validation Accuracy: 0.582, Loss: 0.763\n", + "Epoch 0 Batch 179/1077 - Train Accuracy: 0.586, Validation Accuracy: 0.578, Loss: 0.807\n", + "Epoch 0 Batch 180/1077 - Train Accuracy: 0.559, Validation Accuracy: 0.581, Loss: 0.773\n", + "Epoch 0 Batch 181/1077 - Train Accuracy: 0.555, Validation Accuracy: 0.580, Loss: 0.803\n", + "Epoch 0 Batch 182/1077 - Train Accuracy: 0.596, Validation Accuracy: 0.570, Loss: 0.752\n", + "Epoch 0 Batch 183/1077 - Train Accuracy: 0.567, Validation Accuracy: 0.559, Loss: 0.767\n", + "Epoch 0 Batch 184/1077 - Train Accuracy: 0.568, Validation Accuracy: 0.566, Loss: 0.718\n", + "Epoch 0 Batch 185/1077 - Train Accuracy: 0.580, Validation Accuracy: 0.580, Loss: 0.760\n", + "Epoch 0 Batch 186/1077 - Train Accuracy: 0.569, Validation Accuracy: 0.596, Loss: 0.777\n", + "Epoch 0 Batch 187/1077 - Train Accuracy: 0.573, Validation Accuracy: 0.588, Loss: 0.741\n", + "Epoch 0 Batch 188/1077 - Train Accuracy: 0.569, Validation Accuracy: 0.604, Loss: 0.744\n", + "Epoch 0 Batch 189/1077 - Train Accuracy: 0.567, Validation Accuracy: 0.611, Loss: 0.724\n", + "Epoch 0 Batch 190/1077 - Train Accuracy: 0.618, Validation Accuracy: 0.621, Loss: 0.726\n", + "Epoch 0 Batch 191/1077 - Train Accuracy: 0.630, Validation Accuracy: 0.620, Loss: 0.663\n", + "Epoch 0 Batch 192/1077 - Train Accuracy: 0.605, Validation Accuracy: 0.620, Loss: 0.747\n", + "Epoch 0 Batch 193/1077 - Train Accuracy: 0.629, Validation Accuracy: 0.617, Loss: 0.712\n", + "Epoch 0 Batch 194/1077 - Train Accuracy: 0.605, Validation Accuracy: 0.596, Loss: 0.676\n", + "Epoch 0 Batch 195/1077 - Train Accuracy: 0.561, Validation Accuracy: 0.592, Loss: 0.712\n", + "Epoch 0 Batch 196/1077 - Train Accuracy: 0.624, Validation Accuracy: 0.583, Loss: 0.718\n", + "Epoch 0 Batch 197/1077 - Train Accuracy: 0.602, Validation Accuracy: 0.586, Loss: 0.708\n", + "Epoch 0 Batch 198/1077 - Train Accuracy: 0.646, Validation Accuracy: 0.581, Loss: 0.667\n", + "Epoch 0 Batch 199/1077 - Train Accuracy: 0.570, Validation Accuracy: 0.590, Loss: 0.717\n", + "Epoch 0 Batch 200/1077 - Train Accuracy: 0.579, Validation Accuracy: 0.599, Loss: 0.735\n", + "Epoch 0 Batch 201/1077 - Train Accuracy: 0.597, Validation Accuracy: 0.594, Loss: 0.686\n", + "Epoch 0 Batch 202/1077 - Train Accuracy: 0.601, Validation Accuracy: 0.592, Loss: 0.718\n", + "Epoch 0 Batch 203/1077 - Train Accuracy: 0.563, Validation Accuracy: 0.582, Loss: 0.688\n", + "Epoch 0 Batch 204/1077 - Train Accuracy: 0.582, Validation Accuracy: 0.596, Loss: 0.732\n", + "Epoch 0 Batch 205/1077 - Train Accuracy: 0.584, Validation Accuracy: 0.583, Loss: 0.720\n", + "Epoch 0 Batch 206/1077 - Train Accuracy: 0.623, Validation Accuracy: 0.574, Loss: 0.690\n", + "Epoch 0 Batch 207/1077 - Train Accuracy: 0.587, Validation Accuracy: 0.583, Loss: 0.712\n", + "Epoch 0 Batch 208/1077 - Train Accuracy: 0.597, Validation Accuracy: 0.600, Loss: 0.688\n", + "Epoch 0 Batch 209/1077 - Train Accuracy: 0.629, Validation Accuracy: 0.608, Loss: 0.634\n", + "Epoch 0 Batch 210/1077 - Train Accuracy: 0.613, Validation Accuracy: 0.611, Loss: 0.682\n", + "Epoch 0 Batch 211/1077 - Train Accuracy: 0.580, Validation Accuracy: 0.626, Loss: 0.682\n", + "Epoch 0 Batch 212/1077 - Train Accuracy: 0.609, Validation Accuracy: 0.636, Loss: 0.659\n", + "Epoch 0 Batch 213/1077 - Train Accuracy: 0.623, Validation Accuracy: 0.631, Loss: 0.642\n", + "Epoch 0 Batch 214/1077 - Train Accuracy: 0.579, Validation Accuracy: 0.620, Loss: 0.675\n", + "Epoch 0 Batch 215/1077 - Train Accuracy: 0.579, Validation Accuracy: 0.615, Loss: 0.702\n", + "Epoch 0 Batch 216/1077 - Train Accuracy: 0.600, Validation Accuracy: 0.605, Loss: 0.700\n", + "Epoch 0 Batch 217/1077 - Train Accuracy: 0.632, Validation Accuracy: 0.596, Loss: 0.664\n", + "Epoch 0 Batch 218/1077 - Train Accuracy: 0.582, Validation Accuracy: 0.583, Loss: 0.766\n", + "Epoch 0 Batch 219/1077 - Train Accuracy: 0.639, Validation Accuracy: 0.603, Loss: 0.670\n", + "Epoch 0 Batch 220/1077 - Train Accuracy: 0.593, Validation Accuracy: 0.608, Loss: 0.685\n", + "Epoch 0 Batch 221/1077 - Train Accuracy: 0.660, Validation Accuracy: 0.605, Loss: 0.705\n", + "Epoch 0 Batch 222/1077 - Train Accuracy: 0.561, Validation Accuracy: 0.600, Loss: 0.712\n", + "Epoch 0 Batch 223/1077 - Train Accuracy: 0.615, Validation Accuracy: 0.610, Loss: 0.634\n", + "Epoch 0 Batch 224/1077 - Train Accuracy: 0.623, Validation Accuracy: 0.606, Loss: 0.677\n", + "Epoch 0 Batch 225/1077 - Train Accuracy: 0.618, Validation Accuracy: 0.606, Loss: 0.695\n", + "Epoch 0 Batch 226/1077 - Train Accuracy: 0.615, Validation Accuracy: 0.601, Loss: 0.668\n", + "Epoch 0 Batch 227/1077 - Train Accuracy: 0.593, Validation Accuracy: 0.600, Loss: 0.721\n", + "Epoch 0 Batch 228/1077 - Train Accuracy: 0.648, Validation Accuracy: 0.605, Loss: 0.645\n", + "Epoch 0 Batch 229/1077 - Train Accuracy: 0.630, Validation Accuracy: 0.610, Loss: 0.654\n", + "Epoch 0 Batch 230/1077 - Train Accuracy: 0.631, Validation Accuracy: 0.621, Loss: 0.659\n", + "Epoch 0 Batch 231/1077 - Train Accuracy: 0.589, Validation Accuracy: 0.613, Loss: 0.668\n", + "Epoch 0 Batch 232/1077 - Train Accuracy: 0.601, Validation Accuracy: 0.615, Loss: 0.708\n", + "Epoch 0 Batch 233/1077 - Train Accuracy: 0.621, Validation Accuracy: 0.619, Loss: 0.706\n", + "Epoch 0 Batch 234/1077 - Train Accuracy: 0.640, Validation Accuracy: 0.616, Loss: 0.661\n", + "Epoch 0 Batch 235/1077 - Train Accuracy: 0.633, Validation Accuracy: 0.618, Loss: 0.606\n", + "Epoch 0 Batch 236/1077 - Train Accuracy: 0.590, Validation Accuracy: 0.622, Loss: 0.689\n", + "Epoch 0 Batch 237/1077 - Train Accuracy: 0.651, Validation Accuracy: 0.616, Loss: 0.619\n", + "Epoch 0 Batch 238/1077 - Train Accuracy: 0.600, Validation Accuracy: 0.602, Loss: 0.673\n", + "Epoch 0 Batch 239/1077 - Train Accuracy: 0.624, Validation Accuracy: 0.605, Loss: 0.596\n", + "Epoch 0 Batch 240/1077 - Train Accuracy: 0.656, Validation Accuracy: 0.611, Loss: 0.621\n", + "Epoch 0 Batch 241/1077 - Train Accuracy: 0.651, Validation Accuracy: 0.606, Loss: 0.611\n", + "Epoch 0 Batch 242/1077 - Train Accuracy: 0.603, Validation Accuracy: 0.598, Loss: 0.641\n", + "Epoch 0 Batch 243/1077 - Train Accuracy: 0.578, Validation Accuracy: 0.603, Loss: 0.677\n", + "Epoch 0 Batch 244/1077 - Train Accuracy: 0.654, Validation Accuracy: 0.604, Loss: 0.614\n", + "Epoch 0 Batch 245/1077 - Train Accuracy: 0.638, Validation Accuracy: 0.604, Loss: 0.600\n", + "Epoch 0 Batch 246/1077 - Train Accuracy: 0.620, Validation Accuracy: 0.611, Loss: 0.644\n", + "Epoch 0 Batch 247/1077 - Train Accuracy: 0.653, Validation Accuracy: 0.631, Loss: 0.609\n", + "Epoch 0 Batch 248/1077 - Train Accuracy: 0.665, Validation Accuracy: 0.623, Loss: 0.616\n", + "Epoch 0 Batch 249/1077 - Train Accuracy: 0.596, Validation Accuracy: 0.621, Loss: 0.615\n", + "Epoch 0 Batch 250/1077 - Train Accuracy: 0.626, Validation Accuracy: 0.614, Loss: 0.585\n", + "Epoch 0 Batch 251/1077 - Train Accuracy: 0.610, Validation Accuracy: 0.588, Loss: 0.639\n", + "Epoch 0 Batch 252/1077 - Train Accuracy: 0.624, Validation Accuracy: 0.588, Loss: 0.620\n", + "Epoch 0 Batch 253/1077 - Train Accuracy: 0.636, Validation Accuracy: 0.602, Loss: 0.600\n", + "Epoch 0 Batch 254/1077 - Train Accuracy: 0.632, Validation Accuracy: 0.605, Loss: 0.642\n", + "Epoch 0 Batch 255/1077 - Train Accuracy: 0.605, Validation Accuracy: 0.613, Loss: 0.625\n", + "Epoch 0 Batch 256/1077 - Train Accuracy: 0.602, Validation Accuracy: 0.612, Loss: 0.685\n", + "Epoch 0 Batch 257/1077 - Train Accuracy: 0.641, Validation Accuracy: 0.614, Loss: 0.624\n", + "Epoch 0 Batch 258/1077 - Train Accuracy: 0.646, Validation Accuracy: 0.598, Loss: 0.613\n", + "Epoch 0 Batch 259/1077 - Train Accuracy: 0.600, Validation Accuracy: 0.605, Loss: 0.613\n", + "Epoch 0 Batch 260/1077 - Train Accuracy: 0.643, Validation Accuracy: 0.606, Loss: 0.593\n", + "Epoch 0 Batch 261/1077 - Train Accuracy: 0.625, Validation Accuracy: 0.604, Loss: 0.620\n", + "Epoch 0 Batch 262/1077 - Train Accuracy: 0.633, Validation Accuracy: 0.609, Loss: 0.612\n", + "Epoch 0 Batch 263/1077 - Train Accuracy: 0.642, Validation Accuracy: 0.615, Loss: 0.601\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0 Batch 264/1077 - Train Accuracy: 0.626, Validation Accuracy: 0.630, Loss: 0.619\n", + "Epoch 0 Batch 265/1077 - Train Accuracy: 0.617, Validation Accuracy: 0.625, Loss: 0.626\n", + "Epoch 0 Batch 266/1077 - Train Accuracy: 0.638, Validation Accuracy: 0.617, Loss: 0.590\n", + "Epoch 0 Batch 267/1077 - Train Accuracy: 0.656, Validation Accuracy: 0.608, Loss: 0.576\n", + "Epoch 0 Batch 268/1077 - Train Accuracy: 0.650, Validation Accuracy: 0.623, Loss: 0.614\n", + "Epoch 0 Batch 269/1077 - Train Accuracy: 0.624, Validation Accuracy: 0.627, Loss: 0.658\n", + "Epoch 0 Batch 270/1077 - Train Accuracy: 0.610, Validation Accuracy: 0.622, Loss: 0.650\n", + "Epoch 0 Batch 271/1077 - Train Accuracy: 0.672, Validation Accuracy: 0.624, Loss: 0.607\n", + "Epoch 0 Batch 272/1077 - Train Accuracy: 0.635, Validation Accuracy: 0.630, Loss: 0.633\n", + "Epoch 0 Batch 273/1077 - Train Accuracy: 0.629, Validation Accuracy: 0.633, Loss: 0.586\n", + "Epoch 0 Batch 274/1077 - Train Accuracy: 0.664, Validation Accuracy: 0.623, Loss: 0.596\n", + "Epoch 0 Batch 275/1077 - Train Accuracy: 0.632, Validation Accuracy: 0.617, Loss: 0.576\n", + "Epoch 0 Batch 276/1077 - Train Accuracy: 0.602, Validation Accuracy: 0.628, Loss: 0.632\n", + "Epoch 0 Batch 277/1077 - Train Accuracy: 0.643, Validation Accuracy: 0.639, Loss: 0.557\n", + "Epoch 0 Batch 278/1077 - Train Accuracy: 0.620, Validation Accuracy: 0.665, Loss: 0.639\n", + "Epoch 0 Batch 279/1077 - Train Accuracy: 0.611, Validation Accuracy: 0.671, Loss: 0.646\n", + "Epoch 0 Batch 280/1077 - Train Accuracy: 0.651, Validation Accuracy: 0.655, Loss: 0.627\n", + "Epoch 0 Batch 281/1077 - Train Accuracy: 0.612, Validation Accuracy: 0.647, Loss: 0.627\n", + "Epoch 0 Batch 282/1077 - Train Accuracy: 0.610, Validation Accuracy: 0.639, Loss: 0.630\n", + "Epoch 0 Batch 283/1077 - Train Accuracy: 0.671, Validation Accuracy: 0.631, Loss: 0.620\n", + "Epoch 0 Batch 284/1077 - Train Accuracy: 0.600, Validation Accuracy: 0.630, Loss: 0.634\n", + "Epoch 0 Batch 285/1077 - Train Accuracy: 0.648, Validation Accuracy: 0.625, Loss: 0.586\n", + "Epoch 0 Batch 286/1077 - Train Accuracy: 0.673, Validation Accuracy: 0.624, Loss: 0.567\n", + "Epoch 0 Batch 287/1077 - Train Accuracy: 0.650, Validation Accuracy: 0.623, Loss: 0.582\n", + "Epoch 0 Batch 288/1077 - Train Accuracy: 0.612, Validation Accuracy: 0.640, Loss: 0.623\n", + "Epoch 0 Batch 289/1077 - Train Accuracy: 0.665, Validation Accuracy: 0.643, Loss: 0.583\n", + "Epoch 0 Batch 290/1077 - Train Accuracy: 0.639, Validation Accuracy: 0.638, Loss: 0.617\n", + "Epoch 0 Batch 291/1077 - Train Accuracy: 0.642, Validation Accuracy: 0.638, Loss: 0.606\n", + "Epoch 0 Batch 292/1077 - Train Accuracy: 0.677, Validation Accuracy: 0.636, Loss: 0.568\n", + "Epoch 0 Batch 293/1077 - Train Accuracy: 0.610, Validation Accuracy: 0.629, Loss: 0.611\n", + "Epoch 0 Batch 294/1077 - Train Accuracy: 0.664, Validation Accuracy: 0.637, Loss: 0.540\n", + "Epoch 0 Batch 295/1077 - Train Accuracy: 0.622, Validation Accuracy: 0.616, Loss: 0.636\n", + "Epoch 0 Batch 296/1077 - Train Accuracy: 0.696, Validation Accuracy: 0.647, Loss: 0.544\n", + "Epoch 0 Batch 297/1077 - Train Accuracy: 0.650, Validation Accuracy: 0.637, Loss: 0.623\n", + "Epoch 0 Batch 298/1077 - Train Accuracy: 0.636, Validation Accuracy: 0.659, Loss: 0.615\n", + "Epoch 0 Batch 299/1077 - Train Accuracy: 0.641, Validation Accuracy: 0.667, Loss: 0.562\n", + "Epoch 0 Batch 300/1077 - Train Accuracy: 0.663, Validation Accuracy: 0.659, Loss: 0.566\n", + "Epoch 0 Batch 301/1077 - Train Accuracy: 0.651, Validation Accuracy: 0.643, Loss: 0.556\n", + "Epoch 0 Batch 302/1077 - Train Accuracy: 0.677, Validation Accuracy: 0.652, Loss: 0.564\n", + "Epoch 0 Batch 303/1077 - Train Accuracy: 0.649, Validation Accuracy: 0.636, Loss: 0.579\n", + "Epoch 0 Batch 304/1077 - Train Accuracy: 0.659, Validation Accuracy: 0.598, Loss: 0.534\n", + "Epoch 0 Batch 305/1077 - Train Accuracy: 0.656, Validation Accuracy: 0.592, Loss: 0.552\n", + "Epoch 0 Batch 306/1077 - Train Accuracy: 0.644, Validation Accuracy: 0.607, Loss: 0.547\n", + "Epoch 0 Batch 307/1077 - Train Accuracy: 0.640, Validation Accuracy: 0.610, Loss: 0.559\n", + "Epoch 0 Batch 308/1077 - Train Accuracy: 0.624, Validation Accuracy: 0.610, Loss: 0.609\n", + "Epoch 0 Batch 309/1077 - Train Accuracy: 0.674, Validation Accuracy: 0.615, Loss: 0.521\n", + "Epoch 0 Batch 310/1077 - Train Accuracy: 0.612, Validation Accuracy: 0.617, Loss: 0.575\n", + "Epoch 0 Batch 311/1077 - Train Accuracy: 0.666, Validation Accuracy: 0.617, Loss: 0.530\n", + "Epoch 0 Batch 312/1077 - Train Accuracy: 0.637, Validation Accuracy: 0.614, Loss: 0.590\n", + "Epoch 0 Batch 313/1077 - Train Accuracy: 0.659, Validation Accuracy: 0.624, Loss: 0.547\n", + "Epoch 0 Batch 314/1077 - Train Accuracy: 0.675, Validation Accuracy: 0.639, Loss: 0.552\n", + "Epoch 0 Batch 315/1077 - Train Accuracy: 0.661, Validation Accuracy: 0.643, Loss: 0.519\n", + "Epoch 0 Batch 316/1077 - Train Accuracy: 0.673, Validation Accuracy: 0.627, Loss: 0.522\n", + "Epoch 0 Batch 317/1077 - Train Accuracy: 0.651, Validation Accuracy: 0.619, Loss: 0.604\n", + "Epoch 0 Batch 318/1077 - Train Accuracy: 0.637, Validation Accuracy: 0.617, Loss: 0.560\n", + "Epoch 0 Batch 319/1077 - Train Accuracy: 0.639, Validation Accuracy: 0.608, Loss: 0.547\n", + "Epoch 0 Batch 320/1077 - Train Accuracy: 0.677, Validation Accuracy: 0.636, Loss: 0.557\n", + "Epoch 0 Batch 321/1077 - Train Accuracy: 0.632, Validation Accuracy: 0.631, Loss: 0.547\n", + "Epoch 0 Batch 322/1077 - Train Accuracy: 0.650, Validation Accuracy: 0.634, Loss: 0.529\n", + "Epoch 0 Batch 323/1077 - Train Accuracy: 0.665, Validation Accuracy: 0.622, Loss: 0.538\n", + "Epoch 0 Batch 324/1077 - Train Accuracy: 0.652, Validation Accuracy: 0.630, Loss: 0.547\n", + "Epoch 0 Batch 325/1077 - Train Accuracy: 0.672, Validation Accuracy: 0.636, Loss: 0.527\n", + "Epoch 0 Batch 326/1077 - Train Accuracy: 0.683, Validation Accuracy: 0.614, Loss: 0.548\n", + "Epoch 0 Batch 327/1077 - Train Accuracy: 0.650, Validation Accuracy: 0.610, Loss: 0.558\n", + "Epoch 0 Batch 328/1077 - Train Accuracy: 0.685, Validation Accuracy: 0.615, Loss: 0.535\n", + "Epoch 0 Batch 329/1077 - Train Accuracy: 0.634, Validation Accuracy: 0.630, Loss: 0.574\n", + "Epoch 0 Batch 330/1077 - Train Accuracy: 0.658, Validation Accuracy: 0.635, Loss: 0.545\n", + "Epoch 0 Batch 331/1077 - Train Accuracy: 0.657, Validation Accuracy: 0.635, Loss: 0.574\n", + "Epoch 0 Batch 332/1077 - Train Accuracy: 0.625, Validation Accuracy: 0.640, Loss: 0.505\n", + "Epoch 0 Batch 333/1077 - Train Accuracy: 0.676, Validation Accuracy: 0.640, Loss: 0.561\n", + "Epoch 0 Batch 334/1077 - Train Accuracy: 0.659, Validation Accuracy: 0.640, Loss: 0.553\n", + "Epoch 0 Batch 335/1077 - Train Accuracy: 0.684, Validation Accuracy: 0.632, Loss: 0.509\n", + "Epoch 0 Batch 336/1077 - Train Accuracy: 0.648, Validation Accuracy: 0.635, Loss: 0.544\n", + "Epoch 0 Batch 337/1077 - Train Accuracy: 0.620, Validation Accuracy: 0.635, Loss: 0.549\n", + "Epoch 0 Batch 338/1077 - Train Accuracy: 0.652, Validation Accuracy: 0.613, Loss: 0.565\n", + "Epoch 0 Batch 339/1077 - Train Accuracy: 0.657, Validation Accuracy: 0.613, Loss: 0.512\n", + "Epoch 0 Batch 340/1077 - Train Accuracy: 0.648, Validation Accuracy: 0.618, Loss: 0.547\n", + "Epoch 0 Batch 341/1077 - Train Accuracy: 0.667, Validation Accuracy: 0.619, Loss: 0.577\n", + "Epoch 0 Batch 342/1077 - Train Accuracy: 0.644, Validation Accuracy: 0.619, Loss: 0.511\n", + "Epoch 0 Batch 343/1077 - Train Accuracy: 0.624, Validation Accuracy: 0.627, Loss: 0.545\n", + "Epoch 0 Batch 344/1077 - Train Accuracy: 0.663, Validation Accuracy: 0.636, Loss: 0.526\n", + "Epoch 0 Batch 345/1077 - Train Accuracy: 0.706, Validation Accuracy: 0.628, Loss: 0.502\n", + "Epoch 0 Batch 346/1077 - Train Accuracy: 0.647, Validation Accuracy: 0.636, Loss: 0.551\n", + "Epoch 0 Batch 347/1077 - Train Accuracy: 0.682, Validation Accuracy: 0.632, Loss: 0.491\n", + "Epoch 0 Batch 348/1077 - Train Accuracy: 0.642, Validation Accuracy: 0.630, Loss: 0.518\n", + "Epoch 0 Batch 349/1077 - Train Accuracy: 0.642, Validation Accuracy: 0.627, Loss: 0.529\n", + "Epoch 0 Batch 350/1077 - Train Accuracy: 0.646, Validation Accuracy: 0.620, Loss: 0.544\n", + "Epoch 0 Batch 351/1077 - Train Accuracy: 0.653, Validation Accuracy: 0.650, Loss: 0.545\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0 Batch 352/1077 - Train Accuracy: 0.664, Validation Accuracy: 0.655, Loss: 0.523\n", + "Epoch 0 Batch 353/1077 - Train Accuracy: 0.635, Validation Accuracy: 0.670, Loss: 0.567\n", + "Epoch 0 Batch 354/1077 - Train Accuracy: 0.650, Validation Accuracy: 0.661, Loss: 0.548\n", + "Epoch 0 Batch 355/1077 - Train Accuracy: 0.652, Validation Accuracy: 0.649, Loss: 0.516\n", + "Epoch 0 Batch 356/1077 - Train Accuracy: 0.686, Validation Accuracy: 0.643, Loss: 0.528\n", + "Epoch 0 Batch 357/1077 - Train Accuracy: 0.671, Validation Accuracy: 0.644, Loss: 0.501\n", + "Epoch 0 Batch 358/1077 - Train Accuracy: 0.636, Validation Accuracy: 0.648, Loss: 0.546\n", + "Epoch 0 Batch 359/1077 - Train Accuracy: 0.663, Validation Accuracy: 0.662, Loss: 0.524\n", + "Epoch 0 Batch 360/1077 - Train Accuracy: 0.651, Validation Accuracy: 0.648, Loss: 0.515\n", + "Epoch 0 Batch 361/1077 - Train Accuracy: 0.680, Validation Accuracy: 0.657, Loss: 0.545\n", + "Epoch 0 Batch 362/1077 - Train Accuracy: 0.670, Validation Accuracy: 0.636, Loss: 0.505\n", + "Epoch 0 Batch 363/1077 - Train Accuracy: 0.651, Validation Accuracy: 0.641, Loss: 0.519\n", + "Epoch 0 Batch 364/1077 - Train Accuracy: 0.657, Validation Accuracy: 0.641, Loss: 0.542\n", + "Epoch 0 Batch 365/1077 - Train Accuracy: 0.663, Validation Accuracy: 0.636, Loss: 0.502\n", + "Epoch 0 Batch 366/1077 - Train Accuracy: 0.638, Validation Accuracy: 0.635, Loss: 0.520\n", + "Epoch 0 Batch 367/1077 - Train Accuracy: 0.703, Validation Accuracy: 0.645, Loss: 0.452\n", + "Epoch 0 Batch 368/1077 - Train Accuracy: 0.686, Validation Accuracy: 0.657, Loss: 0.506\n", + "Epoch 0 Batch 369/1077 - Train Accuracy: 0.668, Validation Accuracy: 0.666, Loss: 0.485\n", + "Epoch 0 Batch 370/1077 - Train Accuracy: 0.684, Validation Accuracy: 0.662, Loss: 0.483\n", + "Epoch 0 Batch 371/1077 - Train Accuracy: 0.711, Validation Accuracy: 0.673, Loss: 0.487\n", + "Epoch 0 Batch 372/1077 - Train Accuracy: 0.711, Validation Accuracy: 0.668, Loss: 0.480\n", + "Epoch 0 Batch 373/1077 - Train Accuracy: 0.699, Validation Accuracy: 0.667, Loss: 0.463\n", + "Epoch 0 Batch 374/1077 - Train Accuracy: 0.657, Validation Accuracy: 0.657, Loss: 0.524\n", + "Epoch 0 Batch 375/1077 - Train Accuracy: 0.694, Validation Accuracy: 0.662, Loss: 0.468\n", + "Epoch 0 Batch 376/1077 - Train Accuracy: 0.675, Validation Accuracy: 0.654, Loss: 0.471\n", + "Epoch 0 Batch 377/1077 - Train Accuracy: 0.661, Validation Accuracy: 0.657, Loss: 0.496\n", + "Epoch 0 Batch 378/1077 - Train Accuracy: 0.664, Validation Accuracy: 0.658, Loss: 0.473\n", + "Epoch 0 Batch 379/1077 - Train Accuracy: 0.688, Validation Accuracy: 0.661, Loss: 0.514\n", + "Epoch 0 Batch 380/1077 - Train Accuracy: 0.676, Validation Accuracy: 0.674, Loss: 0.480\n", + "Epoch 0 Batch 381/1077 - Train Accuracy: 0.669, Validation Accuracy: 0.661, Loss: 0.509\n", + "Epoch 0 Batch 382/1077 - Train Accuracy: 0.689, Validation Accuracy: 0.672, Loss: 0.521\n", + "Epoch 0 Batch 383/1077 - Train Accuracy: 0.688, Validation Accuracy: 0.661, Loss: 0.467\n", + "Epoch 0 Batch 384/1077 - Train Accuracy: 0.678, Validation Accuracy: 0.654, Loss: 0.481\n", + "Epoch 0 Batch 385/1077 - Train Accuracy: 0.719, Validation Accuracy: 0.657, Loss: 0.477\n", + "Epoch 0 Batch 386/1077 - Train Accuracy: 0.683, Validation Accuracy: 0.652, Loss: 0.472\n", + "Epoch 0 Batch 387/1077 - Train Accuracy: 0.708, Validation Accuracy: 0.662, Loss: 0.458\n", + "Epoch 0 Batch 388/1077 - Train Accuracy: 0.681, Validation Accuracy: 0.672, Loss: 0.460\n", + "Epoch 0 Batch 389/1077 - Train Accuracy: 0.702, Validation Accuracy: 0.681, Loss: 0.489\n", + "Epoch 0 Batch 390/1077 - Train Accuracy: 0.659, Validation Accuracy: 0.669, Loss: 0.494\n", + "Epoch 0 Batch 391/1077 - Train Accuracy: 0.696, Validation Accuracy: 0.652, Loss: 0.472\n", + "Epoch 0 Batch 392/1077 - Train Accuracy: 0.690, Validation Accuracy: 0.669, Loss: 0.463\n", + "Epoch 0 Batch 393/1077 - Train Accuracy: 0.697, Validation Accuracy: 0.681, Loss: 0.443\n", + "Epoch 0 Batch 394/1077 - Train Accuracy: 0.669, Validation Accuracy: 0.698, Loss: 0.478\n", + "Epoch 0 Batch 395/1077 - Train Accuracy: 0.710, Validation Accuracy: 0.696, Loss: 0.442\n", + "Epoch 0 Batch 396/1077 - Train Accuracy: 0.653, Validation Accuracy: 0.696, Loss: 0.495\n", + "Epoch 0 Batch 397/1077 - Train Accuracy: 0.712, Validation Accuracy: 0.679, Loss: 0.460\n", + "Epoch 0 Batch 398/1077 - Train Accuracy: 0.704, Validation Accuracy: 0.674, Loss: 0.496\n", + "Epoch 0 Batch 399/1077 - Train Accuracy: 0.663, Validation Accuracy: 0.692, Loss: 0.478\n", + "Epoch 0 Batch 400/1077 - Train Accuracy: 0.682, Validation Accuracy: 0.664, Loss: 0.478\n", + "Epoch 0 Batch 401/1077 - Train Accuracy: 0.659, Validation Accuracy: 0.639, Loss: 0.459\n", + "Epoch 0 Batch 402/1077 - Train Accuracy: 0.700, Validation Accuracy: 0.647, Loss: 0.449\n", + "Epoch 0 Batch 403/1077 - Train Accuracy: 0.693, Validation Accuracy: 0.689, Loss: 0.473\n", + "Epoch 0 Batch 404/1077 - Train Accuracy: 0.701, Validation Accuracy: 0.670, Loss: 0.438\n", + "Epoch 0 Batch 405/1077 - Train Accuracy: 0.717, Validation Accuracy: 0.688, Loss: 0.506\n", + "Epoch 0 Batch 406/1077 - Train Accuracy: 0.730, Validation Accuracy: 0.711, Loss: 0.462\n", + "Epoch 0 Batch 407/1077 - Train Accuracy: 0.669, Validation Accuracy: 0.707, Loss: 0.490\n", + "Epoch 0 Batch 408/1077 - Train Accuracy: 0.657, Validation Accuracy: 0.703, Loss: 0.471\n", + "Epoch 0 Batch 409/1077 - Train Accuracy: 0.671, Validation Accuracy: 0.707, Loss: 0.478\n", + "Epoch 0 Batch 410/1077 - Train Accuracy: 0.662, Validation Accuracy: 0.701, Loss: 0.485\n", + "Epoch 0 Batch 411/1077 - Train Accuracy: 0.729, Validation Accuracy: 0.688, Loss: 0.457\n", + "Epoch 0 Batch 412/1077 - Train Accuracy: 0.697, Validation Accuracy: 0.710, Loss: 0.438\n", + "Epoch 0 Batch 413/1077 - Train Accuracy: 0.682, Validation Accuracy: 0.718, Loss: 0.438\n", + "Epoch 0 Batch 414/1077 - Train Accuracy: 0.668, Validation Accuracy: 0.710, Loss: 0.463\n", + "Epoch 0 Batch 415/1077 - Train Accuracy: 0.693, Validation Accuracy: 0.697, Loss: 0.420\n", + "Epoch 0 Batch 416/1077 - Train Accuracy: 0.720, Validation Accuracy: 0.696, Loss: 0.452\n", + "Epoch 0 Batch 417/1077 - Train Accuracy: 0.719, Validation Accuracy: 0.689, Loss: 0.474\n", + "Epoch 0 Batch 418/1077 - Train Accuracy: 0.695, Validation Accuracy: 0.696, Loss: 0.449\n", + "Epoch 0 Batch 419/1077 - Train Accuracy: 0.707, Validation Accuracy: 0.697, Loss: 0.446\n", + "Epoch 0 Batch 420/1077 - Train Accuracy: 0.710, Validation Accuracy: 0.696, Loss: 0.435\n", + "Epoch 0 Batch 421/1077 - Train Accuracy: 0.675, Validation Accuracy: 0.704, Loss: 0.465\n", + "Epoch 0 Batch 422/1077 - Train Accuracy: 0.715, Validation Accuracy: 0.690, Loss: 0.433\n", + "Epoch 0 Batch 423/1077 - Train Accuracy: 0.695, Validation Accuracy: 0.684, Loss: 0.465\n", + "Epoch 0 Batch 424/1077 - Train Accuracy: 0.679, Validation Accuracy: 0.685, Loss: 0.444\n", + "Epoch 0 Batch 425/1077 - Train Accuracy: 0.723, Validation Accuracy: 0.670, Loss: 0.429\n", + "Epoch 0 Batch 426/1077 - Train Accuracy: 0.700, Validation Accuracy: 0.688, Loss: 0.442\n", + "Epoch 0 Batch 427/1077 - Train Accuracy: 0.714, Validation Accuracy: 0.681, Loss: 0.433\n", + "Epoch 0 Batch 428/1077 - Train Accuracy: 0.711, Validation Accuracy: 0.686, Loss: 0.416\n", + "Epoch 0 Batch 429/1077 - Train Accuracy: 0.700, Validation Accuracy: 0.683, Loss: 0.433\n", + "Epoch 0 Batch 430/1077 - Train Accuracy: 0.707, Validation Accuracy: 0.681, Loss: 0.427\n", + "Epoch 0 Batch 431/1077 - Train Accuracy: 0.658, Validation Accuracy: 0.670, Loss: 0.429\n", + "Epoch 0 Batch 432/1077 - Train Accuracy: 0.708, Validation Accuracy: 0.669, Loss: 0.440\n", + "Epoch 0 Batch 433/1077 - Train Accuracy: 0.719, Validation Accuracy: 0.680, Loss: 0.433\n", + "Epoch 0 Batch 434/1077 - Train Accuracy: 0.707, Validation Accuracy: 0.692, Loss: 0.420\n", + "Epoch 0 Batch 435/1077 - Train Accuracy: 0.700, Validation Accuracy: 0.699, Loss: 0.468\n", + "Epoch 0 Batch 436/1077 - Train Accuracy: 0.718, Validation Accuracy: 0.704, Loss: 0.412\n", + "Epoch 0 Batch 437/1077 - Train Accuracy: 0.710, Validation Accuracy: 0.711, Loss: 0.430\n", + "Epoch 0 Batch 438/1077 - Train Accuracy: 0.671, Validation Accuracy: 0.700, Loss: 0.426\n", + "Epoch 0 Batch 439/1077 - Train Accuracy: 0.682, Validation Accuracy: 0.709, Loss: 0.446\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0 Batch 440/1077 - Train Accuracy: 0.701, Validation Accuracy: 0.705, Loss: 0.441\n", + "Epoch 0 Batch 441/1077 - Train Accuracy: 0.691, Validation Accuracy: 0.699, Loss: 0.414\n", + "Epoch 0 Batch 442/1077 - Train Accuracy: 0.730, Validation Accuracy: 0.701, Loss: 0.412\n", + "Epoch 0 Batch 443/1077 - Train Accuracy: 0.728, Validation Accuracy: 0.702, Loss: 0.403\n", + "Epoch 0 Batch 444/1077 - Train Accuracy: 0.741, Validation Accuracy: 0.677, Loss: 0.426\n", + "Epoch 0 Batch 445/1077 - Train Accuracy: 0.686, Validation Accuracy: 0.675, Loss: 0.439\n", + "Epoch 0 Batch 446/1077 - Train Accuracy: 0.737, Validation Accuracy: 0.666, Loss: 0.391\n", + "Epoch 0 Batch 447/1077 - Train Accuracy: 0.677, Validation Accuracy: 0.670, Loss: 0.408\n", + "Epoch 0 Batch 448/1077 - Train Accuracy: 0.691, Validation Accuracy: 0.669, Loss: 0.430\n", + "Epoch 0 Batch 449/1077 - Train Accuracy: 0.672, Validation Accuracy: 0.686, Loss: 0.430\n", + "Epoch 0 Batch 450/1077 - Train Accuracy: 0.721, Validation Accuracy: 0.696, Loss: 0.410\n", + "Epoch 0 Batch 451/1077 - Train Accuracy: 0.756, Validation Accuracy: 0.699, Loss: 0.397\n", + "Epoch 0 Batch 452/1077 - Train Accuracy: 0.727, Validation Accuracy: 0.691, Loss: 0.420\n", + "Epoch 0 Batch 453/1077 - Train Accuracy: 0.725, Validation Accuracy: 0.692, Loss: 0.381\n", + "Epoch 0 Batch 454/1077 - Train Accuracy: 0.720, Validation Accuracy: 0.694, Loss: 0.409\n", + "Epoch 0 Batch 455/1077 - Train Accuracy: 0.721, Validation Accuracy: 0.690, Loss: 0.391\n", + "Epoch 0 Batch 456/1077 - Train Accuracy: 0.738, Validation Accuracy: 0.702, Loss: 0.405\n", + "Epoch 0 Batch 457/1077 - Train Accuracy: 0.724, Validation Accuracy: 0.694, Loss: 0.370\n", + "Epoch 0 Batch 458/1077 - Train Accuracy: 0.683, Validation Accuracy: 0.693, Loss: 0.413\n", + "Epoch 0 Batch 459/1077 - Train Accuracy: 0.751, Validation Accuracy: 0.689, Loss: 0.391\n", + "Epoch 0 Batch 460/1077 - Train Accuracy: 0.736, Validation Accuracy: 0.720, Loss: 0.425\n", + "Epoch 0 Batch 461/1077 - Train Accuracy: 0.713, Validation Accuracy: 0.725, Loss: 0.407\n", + "Epoch 0 Batch 462/1077 - Train Accuracy: 0.729, Validation Accuracy: 0.722, Loss: 0.403\n", + "Epoch 0 Batch 463/1077 - Train Accuracy: 0.693, Validation Accuracy: 0.717, Loss: 0.404\n", + "Epoch 0 Batch 464/1077 - Train Accuracy: 0.746, Validation Accuracy: 0.716, Loss: 0.403\n", + "Epoch 0 Batch 465/1077 - Train Accuracy: 0.714, Validation Accuracy: 0.718, Loss: 0.428\n", + "Epoch 0 Batch 466/1077 - Train Accuracy: 0.732, Validation Accuracy: 0.707, Loss: 0.383\n", + "Epoch 0 Batch 467/1077 - Train Accuracy: 0.767, Validation Accuracy: 0.696, Loss: 0.393\n", + "Epoch 0 Batch 468/1077 - Train Accuracy: 0.758, Validation Accuracy: 0.712, Loss: 0.400\n", + "Epoch 0 Batch 469/1077 - Train Accuracy: 0.700, Validation Accuracy: 0.717, Loss: 0.404\n", + "Epoch 0 Batch 470/1077 - Train Accuracy: 0.720, Validation Accuracy: 0.712, Loss: 0.423\n", + "Epoch 0 Batch 471/1077 - Train Accuracy: 0.762, Validation Accuracy: 0.721, Loss: 0.375\n", + "Epoch 0 Batch 472/1077 - Train Accuracy: 0.722, Validation Accuracy: 0.725, Loss: 0.387\n", + "Epoch 0 Batch 473/1077 - Train Accuracy: 0.736, Validation Accuracy: 0.738, Loss: 0.405\n", + "Epoch 0 Batch 474/1077 - Train Accuracy: 0.723, Validation Accuracy: 0.739, Loss: 0.391\n", + "Epoch 0 Batch 475/1077 - Train Accuracy: 0.749, Validation Accuracy: 0.716, Loss: 0.390\n", + "Epoch 0 Batch 476/1077 - Train Accuracy: 0.749, Validation Accuracy: 0.705, Loss: 0.383\n", + "Epoch 0 Batch 477/1077 - Train Accuracy: 0.756, Validation Accuracy: 0.703, Loss: 0.378\n", + "Epoch 0 Batch 478/1077 - Train Accuracy: 0.732, Validation Accuracy: 0.713, Loss: 0.407\n", + "Epoch 0 Batch 479/1077 - Train Accuracy: 0.728, Validation Accuracy: 0.721, Loss: 0.404\n", + "Epoch 0 Batch 480/1077 - Train Accuracy: 0.737, Validation Accuracy: 0.714, Loss: 0.396\n", + "Epoch 0 Batch 481/1077 - Train Accuracy: 0.730, Validation Accuracy: 0.708, Loss: 0.393\n", + "Epoch 0 Batch 482/1077 - Train Accuracy: 0.704, Validation Accuracy: 0.701, Loss: 0.413\n", + "Epoch 0 Batch 483/1077 - Train Accuracy: 0.709, Validation Accuracy: 0.713, Loss: 0.392\n", + "Epoch 0 Batch 484/1077 - Train Accuracy: 0.721, Validation Accuracy: 0.723, Loss: 0.385\n", + "Epoch 0 Batch 485/1077 - Train Accuracy: 0.756, Validation Accuracy: 0.718, Loss: 0.395\n", + "Epoch 0 Batch 486/1077 - Train Accuracy: 0.740, Validation Accuracy: 0.721, Loss: 0.377\n", + "Epoch 0 Batch 487/1077 - Train Accuracy: 0.720, Validation Accuracy: 0.717, Loss: 0.389\n", + "Epoch 0 Batch 488/1077 - Train Accuracy: 0.731, Validation Accuracy: 0.709, Loss: 0.393\n", + "Epoch 0 Batch 489/1077 - Train Accuracy: 0.739, Validation Accuracy: 0.700, Loss: 0.364\n", + "Epoch 0 Batch 490/1077 - Train Accuracy: 0.720, Validation Accuracy: 0.689, Loss: 0.388\n", + "Epoch 0 Batch 491/1077 - Train Accuracy: 0.728, Validation Accuracy: 0.705, Loss: 0.379\n", + "Epoch 0 Batch 492/1077 - Train Accuracy: 0.749, Validation Accuracy: 0.709, Loss: 0.394\n", + "Epoch 0 Batch 493/1077 - Train Accuracy: 0.750, Validation Accuracy: 0.713, Loss: 0.357\n", + "Epoch 0 Batch 494/1077 - Train Accuracy: 0.739, Validation Accuracy: 0.726, Loss: 0.354\n", + "Epoch 0 Batch 495/1077 - Train Accuracy: 0.733, Validation Accuracy: 0.740, Loss: 0.359\n", + "Epoch 0 Batch 496/1077 - Train Accuracy: 0.737, Validation Accuracy: 0.725, Loss: 0.396\n", + "Epoch 0 Batch 497/1077 - Train Accuracy: 0.743, Validation Accuracy: 0.735, Loss: 0.410\n", + "Epoch 0 Batch 498/1077 - Train Accuracy: 0.766, Validation Accuracy: 0.727, Loss: 0.372\n", + "Epoch 0 Batch 499/1077 - Train Accuracy: 0.736, Validation Accuracy: 0.728, Loss: 0.354\n", + "Epoch 0 Batch 500/1077 - Train Accuracy: 0.764, Validation Accuracy: 0.722, Loss: 0.357\n", + "Epoch 0 Batch 501/1077 - Train Accuracy: 0.723, Validation Accuracy: 0.728, Loss: 0.364\n", + "Epoch 0 Batch 502/1077 - Train Accuracy: 0.766, Validation Accuracy: 0.727, Loss: 0.377\n", + "Epoch 0 Batch 503/1077 - Train Accuracy: 0.748, Validation Accuracy: 0.733, Loss: 0.369\n", + "Epoch 0 Batch 504/1077 - Train Accuracy: 0.745, Validation Accuracy: 0.724, Loss: 0.366\n", + "Epoch 0 Batch 505/1077 - Train Accuracy: 0.764, Validation Accuracy: 0.722, Loss: 0.332\n", + "Epoch 0 Batch 506/1077 - Train Accuracy: 0.732, Validation Accuracy: 0.707, Loss: 0.377\n", + "Epoch 0 Batch 507/1077 - Train Accuracy: 0.737, Validation Accuracy: 0.740, Loss: 0.361\n", + "Epoch 0 Batch 508/1077 - Train Accuracy: 0.758, Validation Accuracy: 0.734, Loss: 0.353\n", + "Epoch 0 Batch 509/1077 - Train Accuracy: 0.719, Validation Accuracy: 0.719, Loss: 0.385\n", + "Epoch 0 Batch 510/1077 - Train Accuracy: 0.736, Validation Accuracy: 0.719, Loss: 0.349\n", + "Epoch 0 Batch 511/1077 - Train Accuracy: 0.748, Validation Accuracy: 0.735, Loss: 0.360\n", + "Epoch 0 Batch 512/1077 - Train Accuracy: 0.786, Validation Accuracy: 0.731, Loss: 0.355\n", + "Epoch 0 Batch 513/1077 - Train Accuracy: 0.759, Validation Accuracy: 0.737, Loss: 0.356\n", + "Epoch 0 Batch 514/1077 - Train Accuracy: 0.721, Validation Accuracy: 0.720, Loss: 0.379\n", + "Epoch 0 Batch 515/1077 - Train Accuracy: 0.734, Validation Accuracy: 0.725, Loss: 0.380\n", + "Epoch 0 Batch 516/1077 - Train Accuracy: 0.780, Validation Accuracy: 0.732, Loss: 0.347\n", + "Epoch 0 Batch 517/1077 - Train Accuracy: 0.768, Validation Accuracy: 0.756, Loss: 0.353\n", + "Epoch 0 Batch 518/1077 - Train Accuracy: 0.794, Validation Accuracy: 0.756, Loss: 0.342\n", + "Epoch 0 Batch 519/1077 - Train Accuracy: 0.766, Validation Accuracy: 0.754, Loss: 0.342\n", + "Epoch 0 Batch 520/1077 - Train Accuracy: 0.774, Validation Accuracy: 0.745, Loss: 0.331\n", + "Epoch 0 Batch 521/1077 - Train Accuracy: 0.745, Validation Accuracy: 0.752, Loss: 0.345\n", + "Epoch 0 Batch 522/1077 - Train Accuracy: 0.720, Validation Accuracy: 0.735, Loss: 0.352\n", + "Epoch 0 Batch 523/1077 - Train Accuracy: 0.754, Validation Accuracy: 0.743, Loss: 0.374\n", + "Epoch 0 Batch 524/1077 - Train Accuracy: 0.781, Validation Accuracy: 0.745, Loss: 0.351\n", + "Epoch 0 Batch 525/1077 - Train Accuracy: 0.734, Validation Accuracy: 0.736, Loss: 0.352\n", + "Epoch 0 Batch 526/1077 - Train Accuracy: 0.737, Validation Accuracy: 0.730, Loss: 0.337\n", + "Epoch 0 Batch 527/1077 - Train Accuracy: 0.729, Validation Accuracy: 0.723, Loss: 0.364\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0 Batch 528/1077 - Train Accuracy: 0.746, Validation Accuracy: 0.724, Loss: 0.349\n", + "Epoch 0 Batch 529/1077 - Train Accuracy: 0.725, Validation Accuracy: 0.728, Loss: 0.349\n", + "Epoch 0 Batch 530/1077 - Train Accuracy: 0.761, Validation Accuracy: 0.752, Loss: 0.358\n", + "Epoch 0 Batch 531/1077 - Train Accuracy: 0.751, Validation Accuracy: 0.731, Loss: 0.346\n", + "Epoch 0 Batch 532/1077 - Train Accuracy: 0.717, Validation Accuracy: 0.741, Loss: 0.376\n", + "Epoch 0 Batch 533/1077 - Train Accuracy: 0.760, Validation Accuracy: 0.744, Loss: 0.347\n", + "Epoch 0 Batch 534/1077 - Train Accuracy: 0.766, Validation Accuracy: 0.729, Loss: 0.345\n", + "Epoch 0 Batch 535/1077 - Train Accuracy: 0.786, Validation Accuracy: 0.743, Loss: 0.329\n", + "Epoch 0 Batch 536/1077 - Train Accuracy: 0.740, Validation Accuracy: 0.745, Loss: 0.348\n", + "Epoch 0 Batch 537/1077 - Train Accuracy: 0.760, Validation Accuracy: 0.762, Loss: 0.339\n", + "Epoch 0 Batch 538/1077 - Train Accuracy: 0.788, Validation Accuracy: 0.749, Loss: 0.299\n", + "Epoch 0 Batch 539/1077 - Train Accuracy: 0.732, Validation Accuracy: 0.742, Loss: 0.347\n", + "Epoch 0 Batch 540/1077 - Train Accuracy: 0.773, Validation Accuracy: 0.734, Loss: 0.317\n", + "Epoch 0 Batch 541/1077 - Train Accuracy: 0.762, Validation Accuracy: 0.739, Loss: 0.337\n", + "Epoch 0 Batch 542/1077 - Train Accuracy: 0.807, Validation Accuracy: 0.767, Loss: 0.325\n", + "Epoch 0 Batch 543/1077 - Train Accuracy: 0.782, Validation Accuracy: 0.761, Loss: 0.332\n", + "Epoch 0 Batch 544/1077 - Train Accuracy: 0.786, Validation Accuracy: 0.773, Loss: 0.302\n", + "Epoch 0 Batch 545/1077 - Train Accuracy: 0.766, Validation Accuracy: 0.770, Loss: 0.349\n", + "Epoch 0 Batch 546/1077 - Train Accuracy: 0.719, Validation Accuracy: 0.763, Loss: 0.362\n", + "Epoch 0 Batch 547/1077 - Train Accuracy: 0.792, Validation Accuracy: 0.777, Loss: 0.326\n", + "Epoch 0 Batch 548/1077 - Train Accuracy: 0.776, Validation Accuracy: 0.771, Loss: 0.341\n", + "Epoch 0 Batch 549/1077 - Train Accuracy: 0.727, Validation Accuracy: 0.761, Loss: 0.362\n", + "Epoch 0 Batch 550/1077 - Train Accuracy: 0.731, Validation Accuracy: 0.750, Loss: 0.340\n", + "Epoch 0 Batch 551/1077 - Train Accuracy: 0.747, Validation Accuracy: 0.743, Loss: 0.339\n", + "Epoch 0 Batch 552/1077 - Train Accuracy: 0.771, Validation Accuracy: 0.747, Loss: 0.334\n", + "Epoch 0 Batch 553/1077 - Train Accuracy: 0.786, Validation Accuracy: 0.752, Loss: 0.340\n", + "Epoch 0 Batch 554/1077 - Train Accuracy: 0.768, Validation Accuracy: 0.753, Loss: 0.322\n", + "Epoch 0 Batch 555/1077 - Train Accuracy: 0.774, Validation Accuracy: 0.759, Loss: 0.310\n", + "Epoch 0 Batch 556/1077 - Train Accuracy: 0.763, Validation Accuracy: 0.762, Loss: 0.293\n", + "Epoch 0 Batch 557/1077 - Train Accuracy: 0.798, Validation Accuracy: 0.767, Loss: 0.314\n", + "Epoch 0 Batch 558/1077 - Train Accuracy: 0.797, Validation Accuracy: 0.775, Loss: 0.297\n", + "Epoch 0 Batch 559/1077 - Train Accuracy: 0.793, Validation Accuracy: 0.766, Loss: 0.316\n", + "Epoch 0 Batch 560/1077 - Train Accuracy: 0.775, Validation Accuracy: 0.756, Loss: 0.305\n", + "Epoch 0 Batch 561/1077 - Train Accuracy: 0.798, Validation Accuracy: 0.763, Loss: 0.309\n", + "Epoch 0 Batch 562/1077 - Train Accuracy: 0.814, Validation Accuracy: 0.776, Loss: 0.276\n", + "Epoch 0 Batch 563/1077 - Train Accuracy: 0.771, Validation Accuracy: 0.766, Loss: 0.319\n", + "Epoch 0 Batch 564/1077 - Train Accuracy: 0.776, Validation Accuracy: 0.767, Loss: 0.320\n", + "Epoch 0 Batch 565/1077 - Train Accuracy: 0.779, Validation Accuracy: 0.760, Loss: 0.319\n", + "Epoch 0 Batch 566/1077 - Train Accuracy: 0.774, Validation Accuracy: 0.752, Loss: 0.325\n", + "Epoch 0 Batch 567/1077 - Train Accuracy: 0.765, Validation Accuracy: 0.755, Loss: 0.310\n", + "Epoch 0 Batch 568/1077 - Train Accuracy: 0.808, Validation Accuracy: 0.756, Loss: 0.295\n", + "Epoch 0 Batch 569/1077 - Train Accuracy: 0.792, Validation Accuracy: 0.762, Loss: 0.307\n", + "Epoch 0 Batch 570/1077 - Train Accuracy: 0.799, Validation Accuracy: 0.762, Loss: 0.317\n", + "Epoch 0 Batch 571/1077 - Train Accuracy: 0.790, Validation Accuracy: 0.777, Loss: 0.278\n", + "Epoch 0 Batch 572/1077 - Train Accuracy: 0.788, Validation Accuracy: 0.779, Loss: 0.285\n", + "Epoch 0 Batch 573/1077 - Train Accuracy: 0.765, Validation Accuracy: 0.769, Loss: 0.328\n", + "Epoch 0 Batch 574/1077 - Train Accuracy: 0.764, Validation Accuracy: 0.779, Loss: 0.315\n", + "Epoch 0 Batch 575/1077 - Train Accuracy: 0.795, Validation Accuracy: 0.785, Loss: 0.292\n", + "Epoch 0 Batch 576/1077 - Train Accuracy: 0.794, Validation Accuracy: 0.794, Loss: 0.302\n", + "Epoch 0 Batch 577/1077 - Train Accuracy: 0.764, Validation Accuracy: 0.795, Loss: 0.330\n", + "Epoch 0 Batch 578/1077 - Train Accuracy: 0.774, Validation Accuracy: 0.791, Loss: 0.304\n", + "Epoch 0 Batch 579/1077 - Train Accuracy: 0.779, Validation Accuracy: 0.783, Loss: 0.302\n", + "Epoch 0 Batch 580/1077 - Train Accuracy: 0.792, Validation Accuracy: 0.786, Loss: 0.281\n", + "Epoch 0 Batch 581/1077 - Train Accuracy: 0.775, Validation Accuracy: 0.792, Loss: 0.282\n", + "Epoch 0 Batch 582/1077 - Train Accuracy: 0.793, Validation Accuracy: 0.784, Loss: 0.287\n", + "Epoch 0 Batch 583/1077 - Train Accuracy: 0.799, Validation Accuracy: 0.787, Loss: 0.317\n", + "Epoch 0 Batch 584/1077 - Train Accuracy: 0.794, Validation Accuracy: 0.797, Loss: 0.289\n", + "Epoch 0 Batch 585/1077 - Train Accuracy: 0.815, Validation Accuracy: 0.786, Loss: 0.250\n", + "Epoch 0 Batch 586/1077 - Train Accuracy: 0.795, Validation Accuracy: 0.782, Loss: 0.297\n", + "Epoch 0 Batch 587/1077 - Train Accuracy: 0.825, Validation Accuracy: 0.786, Loss: 0.274\n", + "Epoch 0 Batch 588/1077 - Train Accuracy: 0.798, Validation Accuracy: 0.780, Loss: 0.273\n", + "Epoch 0 Batch 589/1077 - Train Accuracy: 0.814, Validation Accuracy: 0.780, Loss: 0.289\n", + "Epoch 0 Batch 590/1077 - Train Accuracy: 0.750, Validation Accuracy: 0.781, Loss: 0.304\n", + "Epoch 0 Batch 591/1077 - Train Accuracy: 0.805, Validation Accuracy: 0.778, Loss: 0.275\n", + "Epoch 0 Batch 592/1077 - Train Accuracy: 0.828, Validation Accuracy: 0.781, Loss: 0.292\n", + "Epoch 0 Batch 593/1077 - Train Accuracy: 0.811, Validation Accuracy: 0.781, Loss: 0.293\n", + "Epoch 0 Batch 594/1077 - Train Accuracy: 0.799, Validation Accuracy: 0.784, Loss: 0.302\n", + "Epoch 0 Batch 595/1077 - Train Accuracy: 0.796, Validation Accuracy: 0.779, Loss: 0.301\n", + "Epoch 0 Batch 596/1077 - Train Accuracy: 0.824, Validation Accuracy: 0.786, Loss: 0.284\n", + "Epoch 0 Batch 597/1077 - Train Accuracy: 0.775, Validation Accuracy: 0.789, Loss: 0.275\n", + "Epoch 0 Batch 598/1077 - Train Accuracy: 0.815, Validation Accuracy: 0.782, Loss: 0.271\n", + "Epoch 0 Batch 599/1077 - Train Accuracy: 0.798, Validation Accuracy: 0.767, Loss: 0.311\n", + "Epoch 0 Batch 600/1077 - Train Accuracy: 0.795, Validation Accuracy: 0.777, Loss: 0.284\n", + "Epoch 0 Batch 601/1077 - Train Accuracy: 0.815, Validation Accuracy: 0.798, Loss: 0.268\n", + "Epoch 0 Batch 602/1077 - Train Accuracy: 0.815, Validation Accuracy: 0.784, Loss: 0.282\n", + "Epoch 0 Batch 603/1077 - Train Accuracy: 0.798, Validation Accuracy: 0.781, Loss: 0.255\n", + "Epoch 0 Batch 604/1077 - Train Accuracy: 0.796, Validation Accuracy: 0.792, Loss: 0.299\n", + "Epoch 0 Batch 605/1077 - Train Accuracy: 0.799, Validation Accuracy: 0.782, Loss: 0.318\n", + "Epoch 0 Batch 606/1077 - Train Accuracy: 0.817, Validation Accuracy: 0.787, Loss: 0.262\n", + "Epoch 0 Batch 607/1077 - Train Accuracy: 0.822, Validation Accuracy: 0.785, Loss: 0.247\n", + "Epoch 0 Batch 608/1077 - Train Accuracy: 0.795, Validation Accuracy: 0.785, Loss: 0.306\n", + "Epoch 0 Batch 609/1077 - Train Accuracy: 0.783, Validation Accuracy: 0.795, Loss: 0.267\n", + "Epoch 0 Batch 610/1077 - Train Accuracy: 0.800, Validation Accuracy: 0.786, Loss: 0.287\n", + "Epoch 0 Batch 611/1077 - Train Accuracy: 0.801, Validation Accuracy: 0.775, Loss: 0.265\n", + "Epoch 0 Batch 612/1077 - Train Accuracy: 0.827, Validation Accuracy: 0.772, Loss: 0.246\n", + "Epoch 0 Batch 613/1077 - Train Accuracy: 0.784, Validation Accuracy: 0.779, Loss: 0.280\n", + "Epoch 0 Batch 614/1077 - Train Accuracy: 0.818, Validation Accuracy: 0.766, Loss: 0.257\n", + "Epoch 0 Batch 615/1077 - Train Accuracy: 0.804, Validation Accuracy: 0.771, Loss: 0.273\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0 Batch 616/1077 - Train Accuracy: 0.792, Validation Accuracy: 0.767, Loss: 0.284\n", + "Epoch 0 Batch 617/1077 - Train Accuracy: 0.806, Validation Accuracy: 0.771, Loss: 0.262\n", + "Epoch 0 Batch 618/1077 - Train Accuracy: 0.802, Validation Accuracy: 0.778, Loss: 0.270\n", + "Epoch 0 Batch 619/1077 - Train Accuracy: 0.789, Validation Accuracy: 0.779, Loss: 0.266\n", + "Epoch 0 Batch 620/1077 - Train Accuracy: 0.828, Validation Accuracy: 0.777, Loss: 0.254\n", + "Epoch 0 Batch 621/1077 - Train Accuracy: 0.854, Validation Accuracy: 0.780, Loss: 0.259\n", + "Epoch 0 Batch 622/1077 - Train Accuracy: 0.834, Validation Accuracy: 0.774, Loss: 0.280\n", + "Epoch 0 Batch 623/1077 - Train Accuracy: 0.787, Validation Accuracy: 0.766, Loss: 0.270\n", + "Epoch 0 Batch 624/1077 - Train Accuracy: 0.828, Validation Accuracy: 0.771, Loss: 0.253\n", + "Epoch 0 Batch 625/1077 - Train Accuracy: 0.818, Validation Accuracy: 0.782, Loss: 0.259\n", + "Epoch 0 Batch 626/1077 - Train Accuracy: 0.804, Validation Accuracy: 0.790, Loss: 0.231\n", + "Epoch 0 Batch 627/1077 - Train Accuracy: 0.799, Validation Accuracy: 0.787, Loss: 0.250\n", + "Epoch 0 Batch 628/1077 - Train Accuracy: 0.808, Validation Accuracy: 0.783, Loss: 0.253\n", + "Epoch 0 Batch 629/1077 - Train Accuracy: 0.789, Validation Accuracy: 0.788, Loss: 0.273\n", + "Epoch 0 Batch 630/1077 - Train Accuracy: 0.820, Validation Accuracy: 0.779, Loss: 0.245\n", + "Epoch 0 Batch 631/1077 - Train Accuracy: 0.798, Validation Accuracy: 0.784, Loss: 0.248\n", + "Epoch 0 Batch 632/1077 - Train Accuracy: 0.807, Validation Accuracy: 0.792, Loss: 0.251\n", + "Epoch 0 Batch 633/1077 - Train Accuracy: 0.826, Validation Accuracy: 0.783, Loss: 0.269\n", + "Epoch 0 Batch 634/1077 - Train Accuracy: 0.792, Validation Accuracy: 0.793, Loss: 0.236\n", + "Epoch 0 Batch 635/1077 - Train Accuracy: 0.822, Validation Accuracy: 0.782, Loss: 0.271\n", + "Epoch 0 Batch 636/1077 - Train Accuracy: 0.857, Validation Accuracy: 0.792, Loss: 0.234\n", + "Epoch 0 Batch 637/1077 - Train Accuracy: 0.786, Validation Accuracy: 0.800, Loss: 0.248\n", + "Epoch 0 Batch 638/1077 - Train Accuracy: 0.817, Validation Accuracy: 0.800, Loss: 0.237\n", + "Epoch 0 Batch 639/1077 - Train Accuracy: 0.825, Validation Accuracy: 0.795, Loss: 0.266\n", + "Epoch 0 Batch 640/1077 - Train Accuracy: 0.792, Validation Accuracy: 0.790, Loss: 0.251\n", + "Epoch 0 Batch 641/1077 - Train Accuracy: 0.804, Validation Accuracy: 0.792, Loss: 0.248\n", + "Epoch 0 Batch 642/1077 - Train Accuracy: 0.785, Validation Accuracy: 0.795, Loss: 0.246\n", + "Epoch 0 Batch 643/1077 - Train Accuracy: 0.800, Validation Accuracy: 0.788, Loss: 0.226\n", + "Epoch 0 Batch 644/1077 - Train Accuracy: 0.828, Validation Accuracy: 0.790, Loss: 0.249\n", + "Epoch 0 Batch 645/1077 - Train Accuracy: 0.833, Validation Accuracy: 0.795, Loss: 0.247\n", + "Epoch 0 Batch 646/1077 - Train Accuracy: 0.803, Validation Accuracy: 0.789, Loss: 0.248\n", + "Epoch 0 Batch 647/1077 - Train Accuracy: 0.804, Validation Accuracy: 0.788, Loss: 0.246\n", + "Epoch 0 Batch 648/1077 - Train Accuracy: 0.842, Validation Accuracy: 0.794, Loss: 0.217\n", + "Epoch 0 Batch 649/1077 - Train Accuracy: 0.806, Validation Accuracy: 0.798, Loss: 0.256\n", + "Epoch 0 Batch 650/1077 - Train Accuracy: 0.815, Validation Accuracy: 0.790, Loss: 0.249\n", + "Epoch 0 Batch 651/1077 - Train Accuracy: 0.853, Validation Accuracy: 0.794, Loss: 0.215\n", + "Epoch 0 Batch 652/1077 - Train Accuracy: 0.832, Validation Accuracy: 0.799, Loss: 0.257\n", + "Epoch 0 Batch 653/1077 - Train Accuracy: 0.837, Validation Accuracy: 0.795, Loss: 0.227\n", + "Epoch 0 Batch 654/1077 - Train Accuracy: 0.830, Validation Accuracy: 0.802, Loss: 0.241\n", + "Epoch 0 Batch 655/1077 - Train Accuracy: 0.824, Validation Accuracy: 0.803, Loss: 0.260\n", + "Epoch 0 Batch 656/1077 - Train Accuracy: 0.821, Validation Accuracy: 0.797, Loss: 0.245\n", + "Epoch 0 Batch 657/1077 - Train Accuracy: 0.840, Validation Accuracy: 0.792, Loss: 0.247\n", + "Epoch 0 Batch 658/1077 - Train Accuracy: 0.829, Validation Accuracy: 0.786, Loss: 0.215\n", + "Epoch 0 Batch 659/1077 - Train Accuracy: 0.822, Validation Accuracy: 0.784, Loss: 0.234\n", + "Epoch 0 Batch 660/1077 - Train Accuracy: 0.812, Validation Accuracy: 0.781, Loss: 0.238\n", + "Epoch 0 Batch 661/1077 - Train Accuracy: 0.827, Validation Accuracy: 0.779, Loss: 0.215\n", + "Epoch 0 Batch 662/1077 - Train Accuracy: 0.807, Validation Accuracy: 0.781, Loss: 0.235\n", + "Epoch 0 Batch 663/1077 - Train Accuracy: 0.815, Validation Accuracy: 0.802, Loss: 0.221\n", + "Epoch 0 Batch 664/1077 - Train Accuracy: 0.833, Validation Accuracy: 0.806, Loss: 0.233\n", + "Epoch 0 Batch 665/1077 - Train Accuracy: 0.883, Validation Accuracy: 0.803, Loss: 0.202\n", + "Epoch 0 Batch 666/1077 - Train Accuracy: 0.836, Validation Accuracy: 0.798, Loss: 0.254\n", + "Epoch 0 Batch 667/1077 - Train Accuracy: 0.796, Validation Accuracy: 0.814, Loss: 0.258\n", + "Epoch 0 Batch 668/1077 - Train Accuracy: 0.831, Validation Accuracy: 0.816, Loss: 0.230\n", + "Epoch 0 Batch 669/1077 - Train Accuracy: 0.836, Validation Accuracy: 0.819, Loss: 0.220\n", + "Epoch 0 Batch 670/1077 - Train Accuracy: 0.828, Validation Accuracy: 0.822, Loss: 0.223\n", + "Epoch 0 Batch 671/1077 - Train Accuracy: 0.824, Validation Accuracy: 0.832, Loss: 0.251\n", + "Epoch 0 Batch 672/1077 - Train Accuracy: 0.833, Validation Accuracy: 0.836, Loss: 0.216\n", + "Epoch 0 Batch 673/1077 - Train Accuracy: 0.851, Validation Accuracy: 0.838, Loss: 0.212\n", + "Epoch 0 Batch 674/1077 - Train Accuracy: 0.852, Validation Accuracy: 0.836, Loss: 0.217\n", + "Epoch 0 Batch 675/1077 - Train Accuracy: 0.842, Validation Accuracy: 0.828, Loss: 0.240\n", + "Epoch 0 Batch 676/1077 - Train Accuracy: 0.825, Validation Accuracy: 0.819, Loss: 0.225\n", + "Epoch 0 Batch 677/1077 - Train Accuracy: 0.766, Validation Accuracy: 0.813, Loss: 0.256\n", + "Epoch 0 Batch 678/1077 - Train Accuracy: 0.804, Validation Accuracy: 0.821, Loss: 0.198\n", + "Epoch 0 Batch 679/1077 - Train Accuracy: 0.822, Validation Accuracy: 0.823, Loss: 0.236\n", + "Epoch 0 Batch 680/1077 - Train Accuracy: 0.821, Validation Accuracy: 0.824, Loss: 0.210\n", + "Epoch 0 Batch 681/1077 - Train Accuracy: 0.852, Validation Accuracy: 0.820, Loss: 0.239\n", + "Epoch 0 Batch 682/1077 - Train Accuracy: 0.800, Validation Accuracy: 0.823, Loss: 0.212\n", + "Epoch 0 Batch 683/1077 - Train Accuracy: 0.822, Validation Accuracy: 0.827, Loss: 0.212\n", + "Epoch 0 Batch 684/1077 - Train Accuracy: 0.837, Validation Accuracy: 0.818, Loss: 0.217\n", + "Epoch 0 Batch 685/1077 - Train Accuracy: 0.793, Validation Accuracy: 0.821, Loss: 0.234\n", + "Epoch 0 Batch 686/1077 - Train Accuracy: 0.833, Validation Accuracy: 0.810, Loss: 0.202\n", + "Epoch 0 Batch 687/1077 - Train Accuracy: 0.834, Validation Accuracy: 0.814, Loss: 0.237\n", + "Epoch 0 Batch 688/1077 - Train Accuracy: 0.846, Validation Accuracy: 0.814, Loss: 0.207\n", + "Epoch 0 Batch 689/1077 - Train Accuracy: 0.874, Validation Accuracy: 0.815, Loss: 0.200\n", + "Epoch 0 Batch 690/1077 - Train Accuracy: 0.848, Validation Accuracy: 0.820, Loss: 0.209\n", + "Epoch 0 Batch 691/1077 - Train Accuracy: 0.839, Validation Accuracy: 0.824, Loss: 0.245\n", + "Epoch 0 Batch 692/1077 - Train Accuracy: 0.828, Validation Accuracy: 0.819, Loss: 0.204\n", + "Epoch 0 Batch 693/1077 - Train Accuracy: 0.760, Validation Accuracy: 0.818, Loss: 0.267\n", + "Epoch 0 Batch 694/1077 - Train Accuracy: 0.838, Validation Accuracy: 0.822, Loss: 0.240\n", + "Epoch 0 Batch 695/1077 - Train Accuracy: 0.841, Validation Accuracy: 0.828, Loss: 0.195\n", + "Epoch 0 Batch 696/1077 - Train Accuracy: 0.817, Validation Accuracy: 0.816, Loss: 0.233\n", + "Epoch 0 Batch 697/1077 - Train Accuracy: 0.847, Validation Accuracy: 0.811, Loss: 0.214\n", + "Epoch 0 Batch 698/1077 - Train Accuracy: 0.827, Validation Accuracy: 0.815, Loss: 0.208\n", + "Epoch 0 Batch 699/1077 - Train Accuracy: 0.839, Validation Accuracy: 0.821, Loss: 0.212\n", + "Epoch 0 Batch 700/1077 - Train Accuracy: 0.845, Validation Accuracy: 0.817, Loss: 0.208\n", + "Epoch 0 Batch 701/1077 - Train Accuracy: 0.852, Validation Accuracy: 0.808, Loss: 0.239\n", + "Epoch 0 Batch 702/1077 - Train Accuracy: 0.837, Validation Accuracy: 0.812, Loss: 0.227\n", + "Epoch 0 Batch 703/1077 - Train Accuracy: 0.842, Validation Accuracy: 0.811, Loss: 0.219\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0 Batch 704/1077 - Train Accuracy: 0.845, Validation Accuracy: 0.820, Loss: 0.235\n", + "Epoch 0 Batch 705/1077 - Train Accuracy: 0.846, Validation Accuracy: 0.819, Loss: 0.250\n", + "Epoch 0 Batch 706/1077 - Train Accuracy: 0.806, Validation Accuracy: 0.828, Loss: 0.244\n", + "Epoch 0 Batch 707/1077 - Train Accuracy: 0.854, Validation Accuracy: 0.832, Loss: 0.211\n", + "Epoch 0 Batch 708/1077 - Train Accuracy: 0.821, Validation Accuracy: 0.837, Loss: 0.216\n", + "Epoch 0 Batch 709/1077 - Train Accuracy: 0.834, Validation Accuracy: 0.838, Loss: 0.238\n", + "Epoch 0 Batch 710/1077 - Train Accuracy: 0.851, Validation Accuracy: 0.836, Loss: 0.197\n", + "Epoch 0 Batch 711/1077 - Train Accuracy: 0.820, Validation Accuracy: 0.838, Loss: 0.229\n", + "Epoch 0 Batch 712/1077 - Train Accuracy: 0.854, Validation Accuracy: 0.845, Loss: 0.196\n", + "Epoch 0 Batch 713/1077 - Train Accuracy: 0.839, Validation Accuracy: 0.825, Loss: 0.172\n", + "Epoch 0 Batch 714/1077 - Train Accuracy: 0.829, Validation Accuracy: 0.815, Loss: 0.209\n", + "Epoch 0 Batch 715/1077 - Train Accuracy: 0.830, Validation Accuracy: 0.813, Loss: 0.225\n", + "Epoch 0 Batch 716/1077 - Train Accuracy: 0.849, Validation Accuracy: 0.831, Loss: 0.198\n", + "Epoch 0 Batch 717/1077 - Train Accuracy: 0.875, Validation Accuracy: 0.831, Loss: 0.206\n", + "Epoch 0 Batch 718/1077 - Train Accuracy: 0.841, Validation Accuracy: 0.831, Loss: 0.203\n", + "Epoch 0 Batch 719/1077 - Train Accuracy: 0.818, Validation Accuracy: 0.837, Loss: 0.220\n", + "Epoch 0 Batch 720/1077 - Train Accuracy: 0.847, Validation Accuracy: 0.834, Loss: 0.215\n", + "Epoch 0 Batch 721/1077 - Train Accuracy: 0.842, Validation Accuracy: 0.849, Loss: 0.221\n", + "Epoch 0 Batch 722/1077 - Train Accuracy: 0.827, Validation Accuracy: 0.843, Loss: 0.193\n", + "Epoch 0 Batch 723/1077 - Train Accuracy: 0.845, Validation Accuracy: 0.842, Loss: 0.207\n", + "Epoch 0 Batch 724/1077 - Train Accuracy: 0.838, Validation Accuracy: 0.829, Loss: 0.226\n", + "Epoch 0 Batch 725/1077 - Train Accuracy: 0.850, Validation Accuracy: 0.822, Loss: 0.172\n", + "Epoch 0 Batch 726/1077 - Train Accuracy: 0.867, Validation Accuracy: 0.822, Loss: 0.201\n", + "Epoch 0 Batch 727/1077 - Train Accuracy: 0.832, Validation Accuracy: 0.827, Loss: 0.190\n", + "Epoch 0 Batch 728/1077 - Train Accuracy: 0.828, Validation Accuracy: 0.841, Loss: 0.210\n", + "Epoch 0 Batch 729/1077 - Train Accuracy: 0.814, Validation Accuracy: 0.835, Loss: 0.225\n", + "Epoch 0 Batch 730/1077 - Train Accuracy: 0.865, Validation Accuracy: 0.837, Loss: 0.221\n", + "Epoch 0 Batch 731/1077 - Train Accuracy: 0.826, Validation Accuracy: 0.841, Loss: 0.190\n", + "Epoch 0 Batch 732/1077 - Train Accuracy: 0.843, Validation Accuracy: 0.833, Loss: 0.216\n", + "Epoch 0 Batch 733/1077 - Train Accuracy: 0.846, Validation Accuracy: 0.826, Loss: 0.208\n", + "Epoch 0 Batch 734/1077 - Train Accuracy: 0.862, Validation Accuracy: 0.844, Loss: 0.210\n", + "Epoch 0 Batch 735/1077 - Train Accuracy: 0.858, Validation Accuracy: 0.849, Loss: 0.202\n", + "Epoch 0 Batch 736/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.848, Loss: 0.178\n", + "Epoch 0 Batch 737/1077 - Train Accuracy: 0.855, Validation Accuracy: 0.833, Loss: 0.219\n", + "Epoch 0 Batch 738/1077 - Train Accuracy: 0.860, Validation Accuracy: 0.838, Loss: 0.165\n", + "Epoch 0 Batch 739/1077 - Train Accuracy: 0.878, Validation Accuracy: 0.841, Loss: 0.183\n", + "Epoch 0 Batch 740/1077 - Train Accuracy: 0.837, Validation Accuracy: 0.852, Loss: 0.185\n", + "Epoch 0 Batch 741/1077 - Train Accuracy: 0.861, Validation Accuracy: 0.850, Loss: 0.202\n", + "Epoch 0 Batch 742/1077 - Train Accuracy: 0.857, Validation Accuracy: 0.839, Loss: 0.186\n", + "Epoch 0 Batch 743/1077 - Train Accuracy: 0.846, Validation Accuracy: 0.834, Loss: 0.201\n", + "Epoch 0 Batch 744/1077 - Train Accuracy: 0.836, Validation Accuracy: 0.840, Loss: 0.179\n", + "Epoch 0 Batch 745/1077 - Train Accuracy: 0.851, Validation Accuracy: 0.843, Loss: 0.188\n", + "Epoch 0 Batch 746/1077 - Train Accuracy: 0.863, Validation Accuracy: 0.839, Loss: 0.174\n", + "Epoch 0 Batch 747/1077 - Train Accuracy: 0.856, Validation Accuracy: 0.837, Loss: 0.165\n", + "Epoch 0 Batch 748/1077 - Train Accuracy: 0.868, Validation Accuracy: 0.842, Loss: 0.174\n", + "Epoch 0 Batch 749/1077 - Train Accuracy: 0.843, Validation Accuracy: 0.837, Loss: 0.191\n", + "Epoch 0 Batch 750/1077 - Train Accuracy: 0.839, Validation Accuracy: 0.837, Loss: 0.170\n", + "Epoch 0 Batch 751/1077 - Train Accuracy: 0.882, Validation Accuracy: 0.835, Loss: 0.177\n", + "Epoch 0 Batch 752/1077 - Train Accuracy: 0.853, Validation Accuracy: 0.828, Loss: 0.164\n", + "Epoch 0 Batch 753/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.829, Loss: 0.170\n", + "Epoch 0 Batch 754/1077 - Train Accuracy: 0.862, Validation Accuracy: 0.836, Loss: 0.201\n", + "Epoch 0 Batch 755/1077 - Train Accuracy: 0.875, Validation Accuracy: 0.850, Loss: 0.174\n", + "Epoch 0 Batch 756/1077 - Train Accuracy: 0.839, Validation Accuracy: 0.834, Loss: 0.179\n", + "Epoch 0 Batch 757/1077 - Train Accuracy: 0.866, Validation Accuracy: 0.846, Loss: 0.181\n", + "Epoch 0 Batch 758/1077 - Train Accuracy: 0.850, Validation Accuracy: 0.846, Loss: 0.174\n", + "Epoch 0 Batch 759/1077 - Train Accuracy: 0.842, Validation Accuracy: 0.851, Loss: 0.170\n", + "Epoch 0 Batch 760/1077 - Train Accuracy: 0.870, Validation Accuracy: 0.858, Loss: 0.191\n", + "Epoch 0 Batch 761/1077 - Train Accuracy: 0.841, Validation Accuracy: 0.863, Loss: 0.172\n", + "Epoch 0 Batch 762/1077 - Train Accuracy: 0.879, Validation Accuracy: 0.856, Loss: 0.167\n", + "Epoch 0 Batch 763/1077 - Train Accuracy: 0.851, Validation Accuracy: 0.855, Loss: 0.159\n", + "Epoch 0 Batch 764/1077 - Train Accuracy: 0.861, Validation Accuracy: 0.850, Loss: 0.185\n", + "Epoch 0 Batch 765/1077 - Train Accuracy: 0.873, Validation Accuracy: 0.840, Loss: 0.171\n", + "Epoch 0 Batch 766/1077 - Train Accuracy: 0.816, Validation Accuracy: 0.838, Loss: 0.191\n", + "Epoch 0 Batch 767/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.846, Loss: 0.171\n", + "Epoch 0 Batch 768/1077 - Train Accuracy: 0.834, Validation Accuracy: 0.867, Loss: 0.175\n", + "Epoch 0 Batch 769/1077 - Train Accuracy: 0.875, Validation Accuracy: 0.876, Loss: 0.186\n", + "Epoch 0 Batch 770/1077 - Train Accuracy: 0.823, Validation Accuracy: 0.877, Loss: 0.168\n", + "Epoch 0 Batch 771/1077 - Train Accuracy: 0.882, Validation Accuracy: 0.871, Loss: 0.194\n", + "Epoch 0 Batch 772/1077 - Train Accuracy: 0.873, Validation Accuracy: 0.868, Loss: 0.153\n", + "Epoch 0 Batch 773/1077 - Train Accuracy: 0.850, Validation Accuracy: 0.866, Loss: 0.179\n", + "Epoch 0 Batch 774/1077 - Train Accuracy: 0.870, Validation Accuracy: 0.862, Loss: 0.186\n", + "Epoch 0 Batch 775/1077 - Train Accuracy: 0.865, Validation Accuracy: 0.865, Loss: 0.190\n", + "Epoch 0 Batch 776/1077 - Train Accuracy: 0.878, Validation Accuracy: 0.858, Loss: 0.160\n", + "Epoch 0 Batch 777/1077 - Train Accuracy: 0.866, Validation Accuracy: 0.859, Loss: 0.174\n", + "Epoch 0 Batch 778/1077 - Train Accuracy: 0.865, Validation Accuracy: 0.862, Loss: 0.163\n", + "Epoch 0 Batch 779/1077 - Train Accuracy: 0.859, Validation Accuracy: 0.856, Loss: 0.186\n", + "Epoch 0 Batch 780/1077 - Train Accuracy: 0.809, Validation Accuracy: 0.853, Loss: 0.219\n", + "Epoch 0 Batch 781/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.852, Loss: 0.153\n", + "Epoch 0 Batch 782/1077 - Train Accuracy: 0.857, Validation Accuracy: 0.854, Loss: 0.173\n", + "Epoch 0 Batch 783/1077 - Train Accuracy: 0.863, Validation Accuracy: 0.858, Loss: 0.182\n", + "Epoch 0 Batch 784/1077 - Train Accuracy: 0.884, Validation Accuracy: 0.849, Loss: 0.157\n", + "Epoch 0 Batch 785/1077 - Train Accuracy: 0.874, Validation Accuracy: 0.855, Loss: 0.166\n", + "Epoch 0 Batch 786/1077 - Train Accuracy: 0.813, Validation Accuracy: 0.854, Loss: 0.180\n", + "Epoch 0 Batch 787/1077 - Train Accuracy: 0.876, Validation Accuracy: 0.858, Loss: 0.165\n", + "Epoch 0 Batch 788/1077 - Train Accuracy: 0.881, Validation Accuracy: 0.854, Loss: 0.148\n", + "Epoch 0 Batch 789/1077 - Train Accuracy: 0.833, Validation Accuracy: 0.836, Loss: 0.183\n", + "Epoch 0 Batch 790/1077 - Train Accuracy: 0.832, Validation Accuracy: 0.847, Loss: 0.175\n", + "Epoch 0 Batch 791/1077 - Train Accuracy: 0.845, Validation Accuracy: 0.849, Loss: 0.182\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0 Batch 792/1077 - Train Accuracy: 0.855, Validation Accuracy: 0.869, Loss: 0.185\n", + "Epoch 0 Batch 793/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.871, Loss: 0.172\n", + "Epoch 0 Batch 794/1077 - Train Accuracy: 0.866, Validation Accuracy: 0.881, Loss: 0.152\n", + "Epoch 0 Batch 795/1077 - Train Accuracy: 0.843, Validation Accuracy: 0.876, Loss: 0.178\n", + "Epoch 0 Batch 796/1077 - Train Accuracy: 0.880, Validation Accuracy: 0.874, Loss: 0.168\n", + "Epoch 0 Batch 797/1077 - Train Accuracy: 0.879, Validation Accuracy: 0.864, Loss: 0.159\n", + "Epoch 0 Batch 798/1077 - Train Accuracy: 0.863, Validation Accuracy: 0.857, Loss: 0.175\n", + "Epoch 0 Batch 799/1077 - Train Accuracy: 0.821, Validation Accuracy: 0.853, Loss: 0.194\n", + "Epoch 0 Batch 800/1077 - Train Accuracy: 0.859, Validation Accuracy: 0.863, Loss: 0.172\n", + "Epoch 0 Batch 801/1077 - Train Accuracy: 0.871, Validation Accuracy: 0.851, Loss: 0.168\n", + "Epoch 0 Batch 802/1077 - Train Accuracy: 0.834, Validation Accuracy: 0.855, Loss: 0.177\n", + "Epoch 0 Batch 803/1077 - Train Accuracy: 0.888, Validation Accuracy: 0.861, Loss: 0.174\n", + "Epoch 0 Batch 804/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.857, Loss: 0.144\n", + "Epoch 0 Batch 805/1077 - Train Accuracy: 0.854, Validation Accuracy: 0.852, Loss: 0.166\n", + "Epoch 0 Batch 806/1077 - Train Accuracy: 0.889, Validation Accuracy: 0.851, Loss: 0.150\n", + "Epoch 0 Batch 807/1077 - Train Accuracy: 0.890, Validation Accuracy: 0.850, Loss: 0.154\n", + "Epoch 0 Batch 808/1077 - Train Accuracy: 0.851, Validation Accuracy: 0.848, Loss: 0.184\n", + "Epoch 0 Batch 809/1077 - Train Accuracy: 0.831, Validation Accuracy: 0.839, Loss: 0.191\n", + "Epoch 0 Batch 810/1077 - Train Accuracy: 0.875, Validation Accuracy: 0.847, Loss: 0.146\n", + "Epoch 0 Batch 811/1077 - Train Accuracy: 0.871, Validation Accuracy: 0.845, Loss: 0.152\n", + "Epoch 0 Batch 812/1077 - Train Accuracy: 0.843, Validation Accuracy: 0.846, Loss: 0.155\n", + "Epoch 0 Batch 813/1077 - Train Accuracy: 0.873, Validation Accuracy: 0.863, Loss: 0.159\n", + "Epoch 0 Batch 814/1077 - Train Accuracy: 0.868, Validation Accuracy: 0.868, Loss: 0.175\n", + "Epoch 0 Batch 815/1077 - Train Accuracy: 0.879, Validation Accuracy: 0.859, Loss: 0.151\n", + "Epoch 0 Batch 816/1077 - Train Accuracy: 0.884, Validation Accuracy: 0.863, Loss: 0.192\n", + "Epoch 0 Batch 817/1077 - Train Accuracy: 0.876, Validation Accuracy: 0.867, Loss: 0.173\n", + "Epoch 0 Batch 818/1077 - Train Accuracy: 0.881, Validation Accuracy: 0.866, Loss: 0.161\n", + "Epoch 0 Batch 819/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.867, Loss: 0.143\n", + "Epoch 0 Batch 820/1077 - Train Accuracy: 0.841, Validation Accuracy: 0.860, Loss: 0.144\n", + "Epoch 0 Batch 821/1077 - Train Accuracy: 0.884, Validation Accuracy: 0.850, Loss: 0.140\n", + "Epoch 0 Batch 822/1077 - Train Accuracy: 0.877, Validation Accuracy: 0.843, Loss: 0.165\n", + "Epoch 0 Batch 823/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.847, Loss: 0.166\n", + "Epoch 0 Batch 824/1077 - Train Accuracy: 0.878, Validation Accuracy: 0.858, Loss: 0.167\n", + "Epoch 0 Batch 825/1077 - Train Accuracy: 0.872, Validation Accuracy: 0.856, Loss: 0.150\n", + "Epoch 0 Batch 826/1077 - Train Accuracy: 0.821, Validation Accuracy: 0.858, Loss: 0.149\n", + "Epoch 0 Batch 827/1077 - Train Accuracy: 0.882, Validation Accuracy: 0.862, Loss: 0.154\n", + "Epoch 0 Batch 828/1077 - Train Accuracy: 0.854, Validation Accuracy: 0.871, Loss: 0.164\n", + "Epoch 0 Batch 829/1077 - Train Accuracy: 0.829, Validation Accuracy: 0.865, Loss: 0.182\n", + "Epoch 0 Batch 830/1077 - Train Accuracy: 0.864, Validation Accuracy: 0.870, Loss: 0.157\n", + "Epoch 0 Batch 831/1077 - Train Accuracy: 0.833, Validation Accuracy: 0.875, Loss: 0.159\n", + "Epoch 0 Batch 832/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.884, Loss: 0.152\n", + "Epoch 0 Batch 833/1077 - Train Accuracy: 0.875, Validation Accuracy: 0.884, Loss: 0.163\n", + "Epoch 0 Batch 834/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.871, Loss: 0.160\n", + "Epoch 0 Batch 835/1077 - Train Accuracy: 0.871, Validation Accuracy: 0.876, Loss: 0.160\n", + "Epoch 0 Batch 836/1077 - Train Accuracy: 0.874, Validation Accuracy: 0.874, Loss: 0.172\n", + "Epoch 0 Batch 837/1077 - Train Accuracy: 0.874, Validation Accuracy: 0.876, Loss: 0.165\n", + "Epoch 0 Batch 838/1077 - Train Accuracy: 0.884, Validation Accuracy: 0.878, Loss: 0.140\n", + "Epoch 0 Batch 839/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.880, Loss: 0.126\n", + "Epoch 0 Batch 840/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.882, Loss: 0.132\n", + "Epoch 0 Batch 841/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.880, Loss: 0.157\n", + "Epoch 0 Batch 842/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.873, Loss: 0.139\n", + "Epoch 0 Batch 843/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.873, Loss: 0.128\n", + "Epoch 0 Batch 844/1077 - Train Accuracy: 0.883, Validation Accuracy: 0.882, Loss: 0.132\n", + "Epoch 0 Batch 845/1077 - Train Accuracy: 0.892, Validation Accuracy: 0.886, Loss: 0.141\n", + "Epoch 0 Batch 846/1077 - Train Accuracy: 0.872, Validation Accuracy: 0.874, Loss: 0.162\n", + "Epoch 0 Batch 847/1077 - Train Accuracy: 0.880, Validation Accuracy: 0.869, Loss: 0.166\n", + "Epoch 0 Batch 848/1077 - Train Accuracy: 0.885, Validation Accuracy: 0.868, Loss: 0.138\n", + "Epoch 0 Batch 849/1077 - Train Accuracy: 0.860, Validation Accuracy: 0.862, Loss: 0.141\n", + "Epoch 0 Batch 850/1077 - Train Accuracy: 0.870, Validation Accuracy: 0.866, Loss: 0.169\n", + "Epoch 0 Batch 851/1077 - Train Accuracy: 0.894, Validation Accuracy: 0.849, Loss: 0.154\n", + "Epoch 0 Batch 852/1077 - Train Accuracy: 0.863, Validation Accuracy: 0.851, Loss: 0.171\n", + "Epoch 0 Batch 853/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.852, Loss: 0.139\n", + "Epoch 0 Batch 854/1077 - Train Accuracy: 0.877, Validation Accuracy: 0.861, Loss: 0.158\n", + "Epoch 0 Batch 855/1077 - Train Accuracy: 0.878, Validation Accuracy: 0.862, Loss: 0.139\n", + "Epoch 0 Batch 856/1077 - Train Accuracy: 0.869, Validation Accuracy: 0.856, Loss: 0.145\n", + "Epoch 0 Batch 857/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.858, Loss: 0.139\n", + "Epoch 0 Batch 858/1077 - Train Accuracy: 0.874, Validation Accuracy: 0.861, Loss: 0.130\n", + "Epoch 0 Batch 859/1077 - Train Accuracy: 0.878, Validation Accuracy: 0.866, Loss: 0.166\n", + "Epoch 0 Batch 860/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.861, Loss: 0.156\n", + "Epoch 0 Batch 861/1077 - Train Accuracy: 0.849, Validation Accuracy: 0.856, Loss: 0.137\n", + "Epoch 0 Batch 862/1077 - Train Accuracy: 0.890, Validation Accuracy: 0.864, Loss: 0.139\n", + "Epoch 0 Batch 863/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.864, Loss: 0.136\n", + "Epoch 0 Batch 864/1077 - Train Accuracy: 0.862, Validation Accuracy: 0.863, Loss: 0.136\n", + "Epoch 0 Batch 865/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.870, Loss: 0.134\n", + "Epoch 0 Batch 866/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.864, Loss: 0.148\n", + "Epoch 0 Batch 867/1077 - Train Accuracy: 0.846, Validation Accuracy: 0.863, Loss: 0.192\n", + "Epoch 0 Batch 868/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.858, Loss: 0.144\n", + "Epoch 0 Batch 869/1077 - Train Accuracy: 0.864, Validation Accuracy: 0.868, Loss: 0.145\n", + "Epoch 0 Batch 870/1077 - Train Accuracy: 0.831, Validation Accuracy: 0.857, Loss: 0.148\n", + "Epoch 0 Batch 871/1077 - Train Accuracy: 0.875, Validation Accuracy: 0.856, Loss: 0.124\n", + "Epoch 0 Batch 872/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.859, Loss: 0.150\n", + "Epoch 0 Batch 873/1077 - Train Accuracy: 0.866, Validation Accuracy: 0.864, Loss: 0.141\n", + "Epoch 0 Batch 874/1077 - Train Accuracy: 0.850, Validation Accuracy: 0.867, Loss: 0.169\n", + "Epoch 0 Batch 875/1077 - Train Accuracy: 0.879, Validation Accuracy: 0.862, Loss: 0.155\n", + "Epoch 0 Batch 876/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.864, Loss: 0.144\n", + "Epoch 0 Batch 877/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.864, Loss: 0.133\n", + "Epoch 0 Batch 878/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.861, Loss: 0.143\n", + "Epoch 0 Batch 879/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.865, Loss: 0.127\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0 Batch 880/1077 - Train Accuracy: 0.877, Validation Accuracy: 0.868, Loss: 0.152\n", + "Epoch 0 Batch 881/1077 - Train Accuracy: 0.867, Validation Accuracy: 0.864, Loss: 0.146\n", + "Epoch 0 Batch 882/1077 - Train Accuracy: 0.874, Validation Accuracy: 0.868, Loss: 0.163\n", + "Epoch 0 Batch 883/1077 - Train Accuracy: 0.873, Validation Accuracy: 0.859, Loss: 0.183\n", + "Epoch 0 Batch 884/1077 - Train Accuracy: 0.867, Validation Accuracy: 0.865, Loss: 0.131\n", + "Epoch 0 Batch 885/1077 - Train Accuracy: 0.873, Validation Accuracy: 0.869, Loss: 0.118\n", + "Epoch 0 Batch 886/1077 - Train Accuracy: 0.877, Validation Accuracy: 0.861, Loss: 0.139\n", + "Epoch 0 Batch 887/1077 - Train Accuracy: 0.857, Validation Accuracy: 0.861, Loss: 0.168\n", + "Epoch 0 Batch 888/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.865, Loss: 0.134\n", + "Epoch 0 Batch 889/1077 - Train Accuracy: 0.880, Validation Accuracy: 0.858, Loss: 0.139\n", + "Epoch 0 Batch 890/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.854, Loss: 0.137\n", + "Epoch 0 Batch 891/1077 - Train Accuracy: 0.878, Validation Accuracy: 0.854, Loss: 0.139\n", + "Epoch 0 Batch 892/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.871, Loss: 0.128\n", + "Epoch 0 Batch 893/1077 - Train Accuracy: 0.879, Validation Accuracy: 0.869, Loss: 0.146\n", + "Epoch 0 Batch 894/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.876, Loss: 0.131\n", + "Epoch 0 Batch 895/1077 - Train Accuracy: 0.860, Validation Accuracy: 0.876, Loss: 0.128\n", + "Epoch 0 Batch 896/1077 - Train Accuracy: 0.858, Validation Accuracy: 0.863, Loss: 0.143\n", + "Epoch 0 Batch 897/1077 - Train Accuracy: 0.868, Validation Accuracy: 0.860, Loss: 0.115\n", + "Epoch 0 Batch 898/1077 - Train Accuracy: 0.876, Validation Accuracy: 0.862, Loss: 0.113\n", + "Epoch 0 Batch 899/1077 - Train Accuracy: 0.877, Validation Accuracy: 0.863, Loss: 0.147\n", + "Epoch 0 Batch 900/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.864, Loss: 0.156\n", + "Epoch 0 Batch 901/1077 - Train Accuracy: 0.863, Validation Accuracy: 0.888, Loss: 0.166\n", + "Epoch 0 Batch 902/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.885, Loss: 0.145\n", + "Epoch 0 Batch 903/1077 - Train Accuracy: 0.869, Validation Accuracy: 0.882, Loss: 0.130\n", + "Epoch 0 Batch 904/1077 - Train Accuracy: 0.857, Validation Accuracy: 0.887, Loss: 0.134\n", + "Epoch 0 Batch 905/1077 - Train Accuracy: 0.889, Validation Accuracy: 0.880, Loss: 0.113\n", + "Epoch 0 Batch 906/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.881, Loss: 0.130\n", + "Epoch 0 Batch 907/1077 - Train Accuracy: 0.894, Validation Accuracy: 0.859, Loss: 0.132\n", + "Epoch 0 Batch 908/1077 - Train Accuracy: 0.873, Validation Accuracy: 0.857, Loss: 0.144\n", + "Epoch 0 Batch 909/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.855, Loss: 0.142\n", + "Epoch 0 Batch 910/1077 - Train Accuracy: 0.868, Validation Accuracy: 0.851, Loss: 0.132\n", + "Epoch 0 Batch 911/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.850, Loss: 0.129\n", + "Epoch 0 Batch 912/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.853, Loss: 0.133\n", + "Epoch 0 Batch 913/1077 - Train Accuracy: 0.882, Validation Accuracy: 0.863, Loss: 0.162\n", + "Epoch 0 Batch 914/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.862, Loss: 0.144\n", + "Epoch 0 Batch 915/1077 - Train Accuracy: 0.854, Validation Accuracy: 0.858, Loss: 0.131\n", + "Epoch 0 Batch 916/1077 - Train Accuracy: 0.882, Validation Accuracy: 0.867, Loss: 0.150\n", + "Epoch 0 Batch 917/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.867, Loss: 0.127\n", + "Epoch 0 Batch 918/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.866, Loss: 0.119\n", + "Epoch 0 Batch 919/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.865, Loss: 0.119\n", + "Epoch 0 Batch 920/1077 - Train Accuracy: 0.888, Validation Accuracy: 0.869, Loss: 0.133\n", + "Epoch 0 Batch 921/1077 - Train Accuracy: 0.858, Validation Accuracy: 0.870, Loss: 0.139\n", + "Epoch 0 Batch 922/1077 - Train Accuracy: 0.859, Validation Accuracy: 0.871, Loss: 0.145\n", + "Epoch 0 Batch 923/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.873, Loss: 0.117\n", + "Epoch 0 Batch 924/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.865, Loss: 0.148\n", + "Epoch 0 Batch 925/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.863, Loss: 0.123\n", + "Epoch 0 Batch 926/1077 - Train Accuracy: 0.859, Validation Accuracy: 0.865, Loss: 0.125\n", + "Epoch 0 Batch 927/1077 - Train Accuracy: 0.859, Validation Accuracy: 0.860, Loss: 0.142\n", + "Epoch 0 Batch 928/1077 - Train Accuracy: 0.876, Validation Accuracy: 0.851, Loss: 0.130\n", + "Epoch 0 Batch 929/1077 - Train Accuracy: 0.890, Validation Accuracy: 0.849, Loss: 0.129\n", + "Epoch 0 Batch 930/1077 - Train Accuracy: 0.880, Validation Accuracy: 0.855, Loss: 0.120\n", + "Epoch 0 Batch 931/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.862, Loss: 0.108\n", + "Epoch 0 Batch 932/1077 - Train Accuracy: 0.884, Validation Accuracy: 0.861, Loss: 0.143\n", + "Epoch 0 Batch 933/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.862, Loss: 0.124\n", + "Epoch 0 Batch 934/1077 - Train Accuracy: 0.877, Validation Accuracy: 0.859, Loss: 0.109\n", + "Epoch 0 Batch 935/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.873, Loss: 0.118\n", + "Epoch 0 Batch 936/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.866, Loss: 0.135\n", + "Epoch 0 Batch 937/1077 - Train Accuracy: 0.882, Validation Accuracy: 0.862, Loss: 0.147\n", + "Epoch 0 Batch 938/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.861, Loss: 0.137\n", + "Epoch 0 Batch 939/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.865, Loss: 0.133\n", + "Epoch 0 Batch 940/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.866, Loss: 0.116\n", + "Epoch 0 Batch 941/1077 - Train Accuracy: 0.872, Validation Accuracy: 0.866, Loss: 0.124\n", + "Epoch 0 Batch 942/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.860, Loss: 0.125\n", + "Epoch 0 Batch 943/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.862, Loss: 0.135\n", + "Epoch 0 Batch 944/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.857, Loss: 0.116\n", + "Epoch 0 Batch 945/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.862, Loss: 0.114\n", + "Epoch 0 Batch 946/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.881, Loss: 0.121\n", + "Epoch 0 Batch 947/1077 - Train Accuracy: 0.855, Validation Accuracy: 0.874, Loss: 0.131\n", + "Epoch 0 Batch 948/1077 - Train Accuracy: 0.865, Validation Accuracy: 0.868, Loss: 0.118\n", + "Epoch 0 Batch 949/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.864, Loss: 0.100\n", + "Epoch 0 Batch 950/1077 - Train Accuracy: 0.878, Validation Accuracy: 0.873, Loss: 0.114\n", + "Epoch 0 Batch 951/1077 - Train Accuracy: 0.855, Validation Accuracy: 0.876, Loss: 0.132\n", + "Epoch 0 Batch 952/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.891, Loss: 0.107\n", + "Epoch 0 Batch 953/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.891, Loss: 0.111\n", + "Epoch 0 Batch 954/1077 - Train Accuracy: 0.873, Validation Accuracy: 0.894, Loss: 0.127\n", + "Epoch 0 Batch 955/1077 - Train Accuracy: 0.883, Validation Accuracy: 0.886, Loss: 0.133\n", + "Epoch 0 Batch 956/1077 - Train Accuracy: 0.894, Validation Accuracy: 0.882, Loss: 0.134\n", + "Epoch 0 Batch 957/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.870, Loss: 0.102\n", + "Epoch 0 Batch 958/1077 - Train Accuracy: 0.876, Validation Accuracy: 0.870, Loss: 0.123\n", + "Epoch 0 Batch 959/1077 - Train Accuracy: 0.879, Validation Accuracy: 0.868, Loss: 0.125\n", + "Epoch 0 Batch 960/1077 - Train Accuracy: 0.882, Validation Accuracy: 0.871, Loss: 0.111\n", + "Epoch 0 Batch 961/1077 - Train Accuracy: 0.894, Validation Accuracy: 0.876, Loss: 0.117\n", + "Epoch 0 Batch 962/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.880, Loss: 0.123\n", + "Epoch 0 Batch 963/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.872, Loss: 0.144\n", + "Epoch 0 Batch 964/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.872, Loss: 0.101\n", + "Epoch 0 Batch 965/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.878, Loss: 0.124\n", + "Epoch 0 Batch 966/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.880, Loss: 0.109\n", + "Epoch 0 Batch 967/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.881, Loss: 0.125\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0 Batch 968/1077 - Train Accuracy: 0.846, Validation Accuracy: 0.881, Loss: 0.140\n", + "Epoch 0 Batch 969/1077 - Train Accuracy: 0.861, Validation Accuracy: 0.885, Loss: 0.133\n", + "Epoch 0 Batch 970/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.886, Loss: 0.128\n", + "Epoch 0 Batch 971/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.886, Loss: 0.122\n", + "Epoch 0 Batch 972/1077 - Train Accuracy: 0.883, Validation Accuracy: 0.883, Loss: 0.114\n", + "Epoch 0 Batch 973/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.877, Loss: 0.098\n", + "Epoch 0 Batch 974/1077 - Train Accuracy: 0.889, Validation Accuracy: 0.873, Loss: 0.105\n", + "Epoch 0 Batch 975/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.876, Loss: 0.112\n", + "Epoch 0 Batch 976/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.877, Loss: 0.105\n", + "Epoch 0 Batch 977/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.884, Loss: 0.105\n", + "Epoch 0 Batch 978/1077 - Train Accuracy: 0.894, Validation Accuracy: 0.886, Loss: 0.122\n", + "Epoch 0 Batch 979/1077 - Train Accuracy: 0.885, Validation Accuracy: 0.883, Loss: 0.127\n", + "Epoch 0 Batch 980/1077 - Train Accuracy: 0.884, Validation Accuracy: 0.882, Loss: 0.126\n", + "Epoch 0 Batch 981/1077 - Train Accuracy: 0.879, Validation Accuracy: 0.888, Loss: 0.112\n", + "Epoch 0 Batch 982/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.888, Loss: 0.122\n", + "Epoch 0 Batch 983/1077 - Train Accuracy: 0.875, Validation Accuracy: 0.887, Loss: 0.121\n", + "Epoch 0 Batch 984/1077 - Train Accuracy: 0.859, Validation Accuracy: 0.887, Loss: 0.122\n", + "Epoch 0 Batch 985/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.887, Loss: 0.106\n", + "Epoch 0 Batch 986/1077 - Train Accuracy: 0.875, Validation Accuracy: 0.886, Loss: 0.116\n", + "Epoch 0 Batch 987/1077 - Train Accuracy: 0.859, Validation Accuracy: 0.890, Loss: 0.101\n", + "Epoch 0 Batch 988/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.885, Loss: 0.126\n", + "Epoch 0 Batch 989/1077 - Train Accuracy: 0.885, Validation Accuracy: 0.879, Loss: 0.121\n", + "Epoch 0 Batch 990/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.878, Loss: 0.121\n", + "Epoch 0 Batch 991/1077 - Train Accuracy: 0.889, Validation Accuracy: 0.877, Loss: 0.119\n", + "Epoch 0 Batch 992/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.882, Loss: 0.118\n", + "Epoch 0 Batch 993/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.882, Loss: 0.087\n", + "Epoch 0 Batch 994/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.892, Loss: 0.114\n", + "Epoch 0 Batch 995/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.892, Loss: 0.114\n", + "Epoch 0 Batch 996/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.890, Loss: 0.108\n", + "Epoch 0 Batch 997/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.894, Loss: 0.111\n", + "Epoch 0 Batch 998/1077 - Train Accuracy: 0.856, Validation Accuracy: 0.889, Loss: 0.107\n", + "Epoch 0 Batch 999/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.903, Loss: 0.115\n", + "Epoch 0 Batch 1000/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.897, Loss: 0.107\n", + "Epoch 0 Batch 1001/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.900, Loss: 0.092\n", + "Epoch 0 Batch 1002/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.898, Loss: 0.096\n", + "Epoch 0 Batch 1003/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.895, Loss: 0.116\n", + "Epoch 0 Batch 1004/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.898, Loss: 0.130\n", + "Epoch 0 Batch 1005/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.895, Loss: 0.095\n", + "Epoch 0 Batch 1006/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.896, Loss: 0.091\n", + "Epoch 0 Batch 1007/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.876, Loss: 0.089\n", + "Epoch 0 Batch 1008/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.875, Loss: 0.132\n", + "Epoch 0 Batch 1009/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.888, Loss: 0.089\n", + "Epoch 0 Batch 1010/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.888, Loss: 0.105\n", + "Epoch 0 Batch 1011/1077 - Train Accuracy: 0.875, Validation Accuracy: 0.882, Loss: 0.104\n", + "Epoch 0 Batch 1012/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.887, Loss: 0.085\n", + "Epoch 0 Batch 1013/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.890, Loss: 0.094\n", + "Epoch 0 Batch 1014/1077 - Train Accuracy: 0.890, Validation Accuracy: 0.898, Loss: 0.114\n", + "Epoch 0 Batch 1015/1077 - Train Accuracy: 0.867, Validation Accuracy: 0.895, Loss: 0.127\n", + "Epoch 0 Batch 1016/1077 - Train Accuracy: 0.866, Validation Accuracy: 0.904, Loss: 0.128\n", + "Epoch 0 Batch 1017/1077 - Train Accuracy: 0.889, Validation Accuracy: 0.906, Loss: 0.112\n", + "Epoch 0 Batch 1018/1077 - Train Accuracy: 0.863, Validation Accuracy: 0.895, Loss: 0.101\n", + "Epoch 0 Batch 1019/1077 - Train Accuracy: 0.882, Validation Accuracy: 0.907, Loss: 0.119\n", + "Epoch 0 Batch 1020/1077 - Train Accuracy: 0.889, Validation Accuracy: 0.901, Loss: 0.102\n", + "Epoch 0 Batch 1021/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.898, Loss: 0.099\n", + "Epoch 0 Batch 1022/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.898, Loss: 0.092\n", + "Epoch 0 Batch 1023/1077 - Train Accuracy: 0.885, Validation Accuracy: 0.894, Loss: 0.111\n", + "Epoch 0 Batch 1024/1077 - Train Accuracy: 0.852, Validation Accuracy: 0.899, Loss: 0.130\n", + "Epoch 0 Batch 1025/1077 - Train Accuracy: 0.879, Validation Accuracy: 0.901, Loss: 0.113\n", + "Epoch 0 Batch 1026/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.892, Loss: 0.113\n", + "Epoch 0 Batch 1027/1077 - Train Accuracy: 0.880, Validation Accuracy: 0.888, Loss: 0.101\n", + "Epoch 0 Batch 1028/1077 - Train Accuracy: 0.858, Validation Accuracy: 0.888, Loss: 0.102\n", + "Epoch 0 Batch 1029/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.890, Loss: 0.089\n", + "Epoch 0 Batch 1030/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.887, Loss: 0.121\n", + "Epoch 0 Batch 1031/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.883, Loss: 0.122\n", + "Epoch 0 Batch 1032/1077 - Train Accuracy: 0.888, Validation Accuracy: 0.882, Loss: 0.129\n", + "Epoch 0 Batch 1033/1077 - Train Accuracy: 0.881, Validation Accuracy: 0.885, Loss: 0.108\n", + "Epoch 0 Batch 1034/1077 - Train Accuracy: 0.867, Validation Accuracy: 0.886, Loss: 0.111\n", + "Epoch 0 Batch 1035/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.881, Loss: 0.081\n", + "Epoch 0 Batch 1036/1077 - Train Accuracy: 0.874, Validation Accuracy: 0.874, Loss: 0.117\n", + "Epoch 0 Batch 1037/1077 - Train Accuracy: 0.868, Validation Accuracy: 0.877, Loss: 0.121\n", + "Epoch 0 Batch 1038/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.878, Loss: 0.126\n", + "Epoch 0 Batch 1039/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.883, Loss: 0.112\n", + "Epoch 0 Batch 1040/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.886, Loss: 0.121\n", + "Epoch 0 Batch 1041/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.888, Loss: 0.120\n", + "Epoch 0 Batch 1042/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.888, Loss: 0.102\n", + "Epoch 0 Batch 1043/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.892, Loss: 0.122\n", + "Epoch 0 Batch 1044/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.888, Loss: 0.119\n", + "Epoch 0 Batch 1045/1077 - Train Accuracy: 0.878, Validation Accuracy: 0.874, Loss: 0.095\n", + "Epoch 0 Batch 1046/1077 - Train Accuracy: 0.869, Validation Accuracy: 0.881, Loss: 0.085\n", + "Epoch 0 Batch 1047/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.891, Loss: 0.100\n", + "Epoch 0 Batch 1048/1077 - Train Accuracy: 0.878, Validation Accuracy: 0.891, Loss: 0.110\n", + "Epoch 0 Batch 1049/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.895, Loss: 0.097\n", + "Epoch 0 Batch 1050/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.898, Loss: 0.101\n", + "Epoch 0 Batch 1051/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.883, Loss: 0.108\n", + "Epoch 0 Batch 1052/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.894, Loss: 0.103\n", + "Epoch 0 Batch 1053/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.901, Loss: 0.114\n", + "Epoch 0 Batch 1054/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.891, Loss: 0.100\n", + "Epoch 0 Batch 1055/1077 - Train Accuracy: 0.884, Validation Accuracy: 0.890, Loss: 0.111\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0 Batch 1056/1077 - Train Accuracy: 0.894, Validation Accuracy: 0.892, Loss: 0.099\n", + "Epoch 0 Batch 1057/1077 - Train Accuracy: 0.873, Validation Accuracy: 0.886, Loss: 0.119\n", + "Epoch 0 Batch 1058/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.883, Loss: 0.116\n", + "Epoch 0 Batch 1059/1077 - Train Accuracy: 0.847, Validation Accuracy: 0.876, Loss: 0.138\n", + "Epoch 0 Batch 1060/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.876, Loss: 0.100\n", + "Epoch 0 Batch 1061/1077 - Train Accuracy: 0.875, Validation Accuracy: 0.880, Loss: 0.123\n", + "Epoch 0 Batch 1062/1077 - Train Accuracy: 0.872, Validation Accuracy: 0.879, Loss: 0.107\n", + "Epoch 0 Batch 1063/1077 - Train Accuracy: 0.879, Validation Accuracy: 0.885, Loss: 0.107\n", + "Epoch 0 Batch 1064/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.888, Loss: 0.107\n", + "Epoch 0 Batch 1065/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.889, Loss: 0.096\n", + "Epoch 0 Batch 1066/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.887, Loss: 0.089\n", + "Epoch 0 Batch 1067/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.886, Loss: 0.116\n", + "Epoch 0 Batch 1068/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.876, Loss: 0.091\n", + "Epoch 0 Batch 1069/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.883, Loss: 0.079\n", + "Epoch 0 Batch 1070/1077 - Train Accuracy: 0.872, Validation Accuracy: 0.871, Loss: 0.100\n", + "Epoch 0 Batch 1071/1077 - Train Accuracy: 0.884, Validation Accuracy: 0.875, Loss: 0.105\n", + "Epoch 0 Batch 1072/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.880, Loss: 0.106\n", + "Epoch 0 Batch 1073/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.876, Loss: 0.123\n", + "Epoch 0 Batch 1074/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.875, Loss: 0.117\n", + "Epoch 0 Batch 1075/1077 - Train Accuracy: 0.885, Validation Accuracy: 0.876, Loss: 0.108\n", + "Epoch 1 Batch 0/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.878, Loss: 0.086\n", + "Epoch 1 Batch 1/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.875, Loss: 0.094\n", + "Epoch 1 Batch 2/1077 - Train Accuracy: 0.885, Validation Accuracy: 0.875, Loss: 0.111\n", + "Epoch 1 Batch 3/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.883, Loss: 0.106\n", + "Epoch 1 Batch 4/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.880, Loss: 0.093\n", + "Epoch 1 Batch 5/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.889, Loss: 0.136\n", + "Epoch 1 Batch 6/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.886, Loss: 0.103\n", + "Epoch 1 Batch 7/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.883, Loss: 0.088\n", + "Epoch 1 Batch 8/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.881, Loss: 0.104\n", + "Epoch 1 Batch 9/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.885, Loss: 0.093\n", + "Epoch 1 Batch 10/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.892, Loss: 0.098\n", + "Epoch 1 Batch 11/1077 - Train Accuracy: 0.873, Validation Accuracy: 0.893, Loss: 0.106\n", + "Epoch 1 Batch 12/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.902, Loss: 0.103\n", + "Epoch 1 Batch 13/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.898, Loss: 0.121\n", + "Epoch 1 Batch 14/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.892, Loss: 0.080\n", + "Epoch 1 Batch 15/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.896, Loss: 0.093\n", + "Epoch 1 Batch 16/1077 - Train Accuracy: 0.885, Validation Accuracy: 0.899, Loss: 0.116\n", + "Epoch 1 Batch 17/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.894, Loss: 0.091\n", + "Epoch 1 Batch 18/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.897, Loss: 0.098\n", + "Epoch 1 Batch 19/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.889, Loss: 0.097\n", + "Epoch 1 Batch 20/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.892, Loss: 0.086\n", + "Epoch 1 Batch 21/1077 - Train Accuracy: 0.884, Validation Accuracy: 0.888, Loss: 0.110\n", + "Epoch 1 Batch 22/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.892, Loss: 0.101\n", + "Epoch 1 Batch 23/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.896, Loss: 0.104\n", + "Epoch 1 Batch 24/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.904, Loss: 0.096\n", + "Epoch 1 Batch 25/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.897, Loss: 0.078\n", + "Epoch 1 Batch 26/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.902, Loss: 0.102\n", + "Epoch 1 Batch 27/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.897, Loss: 0.088\n", + "Epoch 1 Batch 28/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.887, Loss: 0.095\n", + "Epoch 1 Batch 29/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.883, Loss: 0.099\n", + "Epoch 1 Batch 30/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.892, Loss: 0.088\n", + "Epoch 1 Batch 31/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.890, Loss: 0.088\n", + "Epoch 1 Batch 32/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.892, Loss: 0.093\n", + "Epoch 1 Batch 33/1077 - Train Accuracy: 0.877, Validation Accuracy: 0.894, Loss: 0.092\n", + "Epoch 1 Batch 34/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.892, Loss: 0.084\n", + "Epoch 1 Batch 35/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.891, Loss: 0.090\n", + "Epoch 1 Batch 36/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.892, Loss: 0.091\n", + "Epoch 1 Batch 37/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.896, Loss: 0.102\n", + "Epoch 1 Batch 38/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.898, Loss: 0.127\n", + "Epoch 1 Batch 39/1077 - Train Accuracy: 0.863, Validation Accuracy: 0.885, Loss: 0.123\n", + "Epoch 1 Batch 40/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.892, Loss: 0.082\n", + "Epoch 1 Batch 41/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.892, Loss: 0.092\n", + "Epoch 1 Batch 42/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.890, Loss: 0.106\n", + "Epoch 1 Batch 43/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.889, Loss: 0.070\n", + "Epoch 1 Batch 44/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.888, Loss: 0.093\n", + "Epoch 1 Batch 45/1077 - Train Accuracy: 0.877, Validation Accuracy: 0.891, Loss: 0.099\n", + "Epoch 1 Batch 46/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.887, Loss: 0.107\n", + "Epoch 1 Batch 47/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.888, Loss: 0.096\n", + "Epoch 1 Batch 48/1077 - Train Accuracy: 0.877, Validation Accuracy: 0.899, Loss: 0.125\n", + "Epoch 1 Batch 49/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.908, Loss: 0.103\n", + "Epoch 1 Batch 50/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.906, Loss: 0.090\n", + "Epoch 1 Batch 51/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.903, Loss: 0.096\n", + "Epoch 1 Batch 52/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.907, Loss: 0.111\n", + "Epoch 1 Batch 53/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.897, Loss: 0.091\n", + "Epoch 1 Batch 54/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.894, Loss: 0.130\n", + "Epoch 1 Batch 55/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.895, Loss: 0.093\n", + "Epoch 1 Batch 56/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.889, Loss: 0.080\n", + "Epoch 1 Batch 57/1077 - Train Accuracy: 0.850, Validation Accuracy: 0.894, Loss: 0.102\n", + "Epoch 1 Batch 58/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.891, Loss: 0.087\n", + "Epoch 1 Batch 59/1077 - Train Accuracy: 0.881, Validation Accuracy: 0.889, Loss: 0.091\n", + "Epoch 1 Batch 60/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.895, Loss: 0.079\n", + "Epoch 1 Batch 61/1077 - Train Accuracy: 0.881, Validation Accuracy: 0.899, Loss: 0.100\n", + "Epoch 1 Batch 62/1077 - Train Accuracy: 0.877, Validation Accuracy: 0.904, Loss: 0.104\n", + "Epoch 1 Batch 63/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.903, Loss: 0.076\n", + "Epoch 1 Batch 64/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.903, Loss: 0.089\n", + "Epoch 1 Batch 65/1077 - Train Accuracy: 0.892, Validation Accuracy: 0.907, Loss: 0.088\n", + "Epoch 1 Batch 66/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.912, Loss: 0.067\n", + "Epoch 1 Batch 67/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.905, Loss: 0.086\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1 Batch 68/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.906, Loss: 0.092\n", + "Epoch 1 Batch 69/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.912, Loss: 0.109\n", + "Epoch 1 Batch 70/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.906, Loss: 0.094\n", + "Epoch 1 Batch 71/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.901, Loss: 0.064\n", + "Epoch 1 Batch 72/1077 - Train Accuracy: 0.875, Validation Accuracy: 0.901, Loss: 0.097\n", + "Epoch 1 Batch 73/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.901, Loss: 0.093\n", + "Epoch 1 Batch 74/1077 - Train Accuracy: 0.892, Validation Accuracy: 0.898, Loss: 0.082\n", + "Epoch 1 Batch 75/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.902, Loss: 0.122\n", + "Epoch 1 Batch 76/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.892, Loss: 0.076\n", + "Epoch 1 Batch 77/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.892, Loss: 0.085\n", + "Epoch 1 Batch 78/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.891, Loss: 0.090\n", + "Epoch 1 Batch 79/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.890, Loss: 0.080\n", + "Epoch 1 Batch 80/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.880, Loss: 0.089\n", + "Epoch 1 Batch 81/1077 - Train Accuracy: 0.890, Validation Accuracy: 0.876, Loss: 0.070\n", + "Epoch 1 Batch 82/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.881, Loss: 0.089\n", + "Epoch 1 Batch 83/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.878, Loss: 0.097\n", + "Epoch 1 Batch 84/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.877, Loss: 0.095\n", + "Epoch 1 Batch 85/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.884, Loss: 0.092\n", + "Epoch 1 Batch 86/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.892, Loss: 0.093\n", + "Epoch 1 Batch 87/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.893, Loss: 0.118\n", + "Epoch 1 Batch 88/1077 - Train Accuracy: 0.883, Validation Accuracy: 0.892, Loss: 0.098\n", + "Epoch 1 Batch 89/1077 - Train Accuracy: 0.888, Validation Accuracy: 0.891, Loss: 0.098\n", + "Epoch 1 Batch 90/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.902, Loss: 0.101\n", + "Epoch 1 Batch 91/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.907, Loss: 0.077\n", + "Epoch 1 Batch 92/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.904, Loss: 0.105\n", + "Epoch 1 Batch 93/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.891, Loss: 0.084\n", + "Epoch 1 Batch 94/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.890, Loss: 0.075\n", + "Epoch 1 Batch 95/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.898, Loss: 0.103\n", + "Epoch 1 Batch 96/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.892, Loss: 0.105\n", + "Epoch 1 Batch 97/1077 - Train Accuracy: 0.889, Validation Accuracy: 0.893, Loss: 0.099\n", + "Epoch 1 Batch 98/1077 - Train Accuracy: 0.890, Validation Accuracy: 0.890, Loss: 0.100\n", + "Epoch 1 Batch 99/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.896, Loss: 0.098\n", + "Epoch 1 Batch 100/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.899, Loss: 0.093\n", + "Epoch 1 Batch 101/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.885, Loss: 0.077\n", + "Epoch 1 Batch 102/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.883, Loss: 0.102\n", + "Epoch 1 Batch 103/1077 - Train Accuracy: 0.856, Validation Accuracy: 0.874, Loss: 0.112\n", + "Epoch 1 Batch 104/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.873, Loss: 0.102\n", + "Epoch 1 Batch 105/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.887, Loss: 0.087\n", + "Epoch 1 Batch 106/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.896, Loss: 0.114\n", + "Epoch 1 Batch 107/1077 - Train Accuracy: 0.872, Validation Accuracy: 0.896, Loss: 0.103\n", + "Epoch 1 Batch 108/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.895, Loss: 0.099\n", + "Epoch 1 Batch 109/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.892, Loss: 0.087\n", + "Epoch 1 Batch 110/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.899, Loss: 0.082\n", + "Epoch 1 Batch 111/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.896, Loss: 0.082\n", + "Epoch 1 Batch 112/1077 - Train Accuracy: 0.894, Validation Accuracy: 0.900, Loss: 0.098\n", + "Epoch 1 Batch 113/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.895, Loss: 0.087\n", + "Epoch 1 Batch 114/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.898, Loss: 0.075\n", + "Epoch 1 Batch 115/1077 - Train Accuracy: 0.880, Validation Accuracy: 0.896, Loss: 0.110\n", + "Epoch 1 Batch 116/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.896, Loss: 0.096\n", + "Epoch 1 Batch 117/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.903, Loss: 0.090\n", + "Epoch 1 Batch 118/1077 - Train Accuracy: 0.892, Validation Accuracy: 0.905, Loss: 0.087\n", + "Epoch 1 Batch 119/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.911, Loss: 0.094\n", + "Epoch 1 Batch 120/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.915, Loss: 0.097\n", + "Epoch 1 Batch 121/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.914, Loss: 0.092\n", + "Epoch 1 Batch 122/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.914, Loss: 0.081\n", + "Epoch 1 Batch 123/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.903, Loss: 0.074\n", + "Epoch 1 Batch 124/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.892, Loss: 0.104\n", + "Epoch 1 Batch 125/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.897, Loss: 0.091\n", + "Epoch 1 Batch 126/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.898, Loss: 0.073\n", + "Epoch 1 Batch 127/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.897, Loss: 0.091\n", + "Epoch 1 Batch 128/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.892, Loss: 0.090\n", + "Epoch 1 Batch 129/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.902, Loss: 0.111\n", + "Epoch 1 Batch 130/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.895, Loss: 0.081\n", + "Epoch 1 Batch 131/1077 - Train Accuracy: 0.877, Validation Accuracy: 0.889, Loss: 0.088\n", + "Epoch 1 Batch 132/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.902, Loss: 0.093\n", + "Epoch 1 Batch 133/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.898, Loss: 0.078\n", + "Epoch 1 Batch 134/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.890, Loss: 0.087\n", + "Epoch 1 Batch 135/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.896, Loss: 0.094\n", + "Epoch 1 Batch 136/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.898, Loss: 0.086\n", + "Epoch 1 Batch 137/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.898, Loss: 0.067\n", + "Epoch 1 Batch 138/1077 - Train Accuracy: 0.869, Validation Accuracy: 0.900, Loss: 0.086\n", + "Epoch 1 Batch 139/1077 - Train Accuracy: 0.876, Validation Accuracy: 0.896, Loss: 0.110\n", + "Epoch 1 Batch 140/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.901, Loss: 0.096\n", + "Epoch 1 Batch 141/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.896, Loss: 0.094\n", + "Epoch 1 Batch 142/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.891, Loss: 0.080\n", + "Epoch 1 Batch 143/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.888, Loss: 0.101\n", + "Epoch 1 Batch 144/1077 - Train Accuracy: 0.883, Validation Accuracy: 0.888, Loss: 0.113\n", + "Epoch 1 Batch 145/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.897, Loss: 0.088\n", + "Epoch 1 Batch 146/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.891, Loss: 0.104\n", + "Epoch 1 Batch 147/1077 - Train Accuracy: 0.884, Validation Accuracy: 0.902, Loss: 0.088\n", + "Epoch 1 Batch 148/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.894, Loss: 0.098\n", + "Epoch 1 Batch 149/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.892, Loss: 0.096\n", + "Epoch 1 Batch 150/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.898, Loss: 0.095\n", + "Epoch 1 Batch 151/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.898, Loss: 0.077\n", + "Epoch 1 Batch 152/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.897, Loss: 0.118\n", + "Epoch 1 Batch 153/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.891, Loss: 0.110\n", + "Epoch 1 Batch 154/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.881, Loss: 0.079\n", + "Epoch 1 Batch 155/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.887, Loss: 0.093\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1 Batch 156/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.887, Loss: 0.079\n", + "Epoch 1 Batch 157/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.894, Loss: 0.086\n", + "Epoch 1 Batch 158/1077 - Train Accuracy: 0.882, Validation Accuracy: 0.888, Loss: 0.111\n", + "Epoch 1 Batch 159/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.892, Loss: 0.071\n", + "Epoch 1 Batch 160/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.892, Loss: 0.076\n", + "Epoch 1 Batch 161/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.893, Loss: 0.081\n", + "Epoch 1 Batch 162/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.896, Loss: 0.103\n", + "Epoch 1 Batch 163/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.893, Loss: 0.106\n", + "Epoch 1 Batch 164/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.893, Loss: 0.087\n", + "Epoch 1 Batch 165/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.903, Loss: 0.065\n", + "Epoch 1 Batch 166/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.901, Loss: 0.102\n", + "Epoch 1 Batch 167/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.902, Loss: 0.083\n", + "Epoch 1 Batch 168/1077 - Train Accuracy: 0.894, Validation Accuracy: 0.906, Loss: 0.094\n", + "Epoch 1 Batch 169/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.901, Loss: 0.108\n", + "Epoch 1 Batch 170/1077 - Train Accuracy: 0.870, Validation Accuracy: 0.900, Loss: 0.088\n", + "Epoch 1 Batch 171/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.896, Loss: 0.083\n", + "Epoch 1 Batch 172/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.901, Loss: 0.066\n", + "Epoch 1 Batch 173/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.911, Loss: 0.095\n", + "Epoch 1 Batch 174/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.897, Loss: 0.077\n", + "Epoch 1 Batch 175/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.896, Loss: 0.094\n", + "Epoch 1 Batch 176/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.900, Loss: 0.085\n", + "Epoch 1 Batch 177/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.910, Loss: 0.107\n", + "Epoch 1 Batch 178/1077 - Train Accuracy: 0.889, Validation Accuracy: 0.903, Loss: 0.089\n", + "Epoch 1 Batch 179/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.896, Loss: 0.095\n", + "Epoch 1 Batch 180/1077 - Train Accuracy: 0.883, Validation Accuracy: 0.895, Loss: 0.079\n", + "Epoch 1 Batch 181/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.899, Loss: 0.102\n", + "Epoch 1 Batch 182/1077 - Train Accuracy: 0.894, Validation Accuracy: 0.899, Loss: 0.104\n", + "Epoch 1 Batch 183/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.894, Loss: 0.088\n", + "Epoch 1 Batch 184/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.896, Loss: 0.090\n", + "Epoch 1 Batch 185/1077 - Train Accuracy: 0.883, Validation Accuracy: 0.892, Loss: 0.096\n", + "Epoch 1 Batch 186/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.888, Loss: 0.099\n", + "Epoch 1 Batch 187/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.889, Loss: 0.071\n", + "Epoch 1 Batch 188/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.885, Loss: 0.081\n", + "Epoch 1 Batch 189/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.895, Loss: 0.077\n", + "Epoch 1 Batch 190/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.892, Loss: 0.075\n", + "Epoch 1 Batch 191/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.888, Loss: 0.072\n", + "Epoch 1 Batch 192/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.895, Loss: 0.090\n", + "Epoch 1 Batch 193/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.897, Loss: 0.080\n", + "Epoch 1 Batch 194/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.897, Loss: 0.072\n", + "Epoch 1 Batch 195/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.900, Loss: 0.074\n", + "Epoch 1 Batch 196/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.903, Loss: 0.077\n", + "Epoch 1 Batch 197/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.898, Loss: 0.095\n", + "Epoch 1 Batch 198/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.898, Loss: 0.087\n", + "Epoch 1 Batch 199/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.900, Loss: 0.070\n", + "Epoch 1 Batch 200/1077 - Train Accuracy: 0.877, Validation Accuracy: 0.897, Loss: 0.102\n", + "Epoch 1 Batch 201/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.893, Loss: 0.072\n", + "Epoch 1 Batch 202/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.897, Loss: 0.082\n", + "Epoch 1 Batch 203/1077 - Train Accuracy: 0.890, Validation Accuracy: 0.894, Loss: 0.081\n", + "Epoch 1 Batch 204/1077 - Train Accuracy: 0.894, Validation Accuracy: 0.889, Loss: 0.108\n", + "Epoch 1 Batch 205/1077 - Train Accuracy: 0.883, Validation Accuracy: 0.880, Loss: 0.102\n", + "Epoch 1 Batch 206/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.886, Loss: 0.079\n", + "Epoch 1 Batch 207/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.877, Loss: 0.077\n", + "Epoch 1 Batch 208/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.879, Loss: 0.090\n", + "Epoch 1 Batch 209/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.880, Loss: 0.075\n", + "Epoch 1 Batch 210/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.880, Loss: 0.094\n", + "Epoch 1 Batch 211/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.890, Loss: 0.082\n", + "Epoch 1 Batch 212/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.897, Loss: 0.073\n", + "Epoch 1 Batch 213/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.866, Loss: 0.074\n", + "Epoch 1 Batch 214/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.873, Loss: 0.074\n", + "Epoch 1 Batch 215/1077 - Train Accuracy: 0.874, Validation Accuracy: 0.870, Loss: 0.090\n", + "Epoch 1 Batch 216/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.873, Loss: 0.092\n", + "Epoch 1 Batch 217/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.877, Loss: 0.072\n", + "Epoch 1 Batch 218/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.877, Loss: 0.102\n", + "Epoch 1 Batch 219/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.877, Loss: 0.086\n", + "Epoch 1 Batch 220/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.874, Loss: 0.081\n", + "Epoch 1 Batch 221/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.896, Loss: 0.085\n", + "Epoch 1 Batch 222/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.900, Loss: 0.078\n", + "Epoch 1 Batch 223/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.900, Loss: 0.070\n", + "Epoch 1 Batch 224/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.898, Loss: 0.097\n", + "Epoch 1 Batch 225/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.905, Loss: 0.095\n", + "Epoch 1 Batch 226/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.905, Loss: 0.084\n", + "Epoch 1 Batch 227/1077 - Train Accuracy: 0.888, Validation Accuracy: 0.910, Loss: 0.104\n", + "Epoch 1 Batch 228/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.913, Loss: 0.071\n", + "Epoch 1 Batch 229/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.891, Loss: 0.098\n", + "Epoch 1 Batch 230/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.883, Loss: 0.092\n", + "Epoch 1 Batch 231/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.893, Loss: 0.085\n", + "Epoch 1 Batch 232/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.890, Loss: 0.075\n", + "Epoch 1 Batch 233/1077 - Train Accuracy: 0.883, Validation Accuracy: 0.892, Loss: 0.108\n", + "Epoch 1 Batch 234/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.891, Loss: 0.093\n", + "Epoch 1 Batch 235/1077 - Train Accuracy: 0.883, Validation Accuracy: 0.888, Loss: 0.088\n", + "Epoch 1 Batch 236/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.892, Loss: 0.095\n", + "Epoch 1 Batch 237/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.905, Loss: 0.075\n", + "Epoch 1 Batch 238/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.902, Loss: 0.080\n", + "Epoch 1 Batch 239/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.884, Loss: 0.061\n", + "Epoch 1 Batch 240/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.887, Loss: 0.071\n", + "Epoch 1 Batch 241/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.886, Loss: 0.063\n", + "Epoch 1 Batch 242/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.886, Loss: 0.065\n", + "Epoch 1 Batch 243/1077 - Train Accuracy: 0.880, Validation Accuracy: 0.891, Loss: 0.085\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1 Batch 244/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.889, Loss: 0.076\n", + "Epoch 1 Batch 245/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.907, Loss: 0.077\n", + "Epoch 1 Batch 246/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.903, Loss: 0.072\n", + "Epoch 1 Batch 247/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.905, Loss: 0.076\n", + "Epoch 1 Batch 248/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.905, Loss: 0.090\n", + "Epoch 1 Batch 249/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.909, Loss: 0.080\n", + "Epoch 1 Batch 250/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.903, Loss: 0.073\n", + "Epoch 1 Batch 251/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.902, Loss: 0.090\n", + "Epoch 1 Batch 252/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.909, Loss: 0.081\n", + "Epoch 1 Batch 253/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.908, Loss: 0.080\n", + "Epoch 1 Batch 254/1077 - Train Accuracy: 0.894, Validation Accuracy: 0.906, Loss: 0.089\n", + "Epoch 1 Batch 255/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.897, Loss: 0.079\n", + "Epoch 1 Batch 256/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.894, Loss: 0.103\n", + "Epoch 1 Batch 257/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.898, Loss: 0.087\n", + "Epoch 1 Batch 258/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.903, Loss: 0.083\n", + "Epoch 1 Batch 259/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.911, Loss: 0.072\n", + "Epoch 1 Batch 260/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.912, Loss: 0.067\n", + "Epoch 1 Batch 261/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.907, Loss: 0.086\n", + "Epoch 1 Batch 262/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.907, Loss: 0.070\n", + "Epoch 1 Batch 263/1077 - Train Accuracy: 0.960, Validation Accuracy: 0.904, Loss: 0.071\n", + "Epoch 1 Batch 264/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.900, Loss: 0.077\n", + "Epoch 1 Batch 265/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.900, Loss: 0.075\n", + "Epoch 1 Batch 266/1077 - Train Accuracy: 0.885, Validation Accuracy: 0.899, Loss: 0.088\n", + "Epoch 1 Batch 267/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.899, Loss: 0.076\n", + "Epoch 1 Batch 268/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.900, Loss: 0.088\n", + "Epoch 1 Batch 269/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.901, Loss: 0.099\n", + "Epoch 1 Batch 270/1077 - Train Accuracy: 0.883, Validation Accuracy: 0.897, Loss: 0.082\n", + "Epoch 1 Batch 271/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.897, Loss: 0.072\n", + "Epoch 1 Batch 272/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.893, Loss: 0.111\n", + "Epoch 1 Batch 273/1077 - Train Accuracy: 0.877, Validation Accuracy: 0.887, Loss: 0.072\n", + "Epoch 1 Batch 274/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.898, Loss: 0.082\n", + "Epoch 1 Batch 275/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.898, Loss: 0.082\n", + "Epoch 1 Batch 276/1077 - Train Accuracy: 0.857, Validation Accuracy: 0.896, Loss: 0.122\n", + "Epoch 1 Batch 277/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.897, Loss: 0.072\n", + "Epoch 1 Batch 278/1077 - Train Accuracy: 0.861, Validation Accuracy: 0.895, Loss: 0.089\n", + "Epoch 1 Batch 279/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.890, Loss: 0.090\n", + "Epoch 1 Batch 280/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.892, Loss: 0.090\n", + "Epoch 1 Batch 281/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.889, Loss: 0.100\n", + "Epoch 1 Batch 282/1077 - Train Accuracy: 0.885, Validation Accuracy: 0.896, Loss: 0.106\n", + "Epoch 1 Batch 283/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.900, Loss: 0.087\n", + "Epoch 1 Batch 284/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.899, Loss: 0.089\n", + "Epoch 1 Batch 285/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.898, Loss: 0.084\n", + "Epoch 1 Batch 286/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.898, Loss: 0.081\n", + "Epoch 1 Batch 287/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.891, Loss: 0.076\n", + "Epoch 1 Batch 288/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.889, Loss: 0.089\n", + "Epoch 1 Batch 289/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.892, Loss: 0.078\n", + "Epoch 1 Batch 290/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.902, Loss: 0.109\n", + "Epoch 1 Batch 291/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.902, Loss: 0.103\n", + "Epoch 1 Batch 292/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.902, Loss: 0.085\n", + "Epoch 1 Batch 293/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.908, Loss: 0.089\n", + "Epoch 1 Batch 294/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.906, Loss: 0.078\n", + "Epoch 1 Batch 295/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.907, Loss: 0.091\n", + "Epoch 1 Batch 296/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.907, Loss: 0.085\n", + "Epoch 1 Batch 297/1077 - Train Accuracy: 0.879, Validation Accuracy: 0.896, Loss: 0.094\n", + "Epoch 1 Batch 298/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.898, Loss: 0.092\n", + "Epoch 1 Batch 299/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.911, Loss: 0.085\n", + "Epoch 1 Batch 300/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.911, Loss: 0.080\n", + "Epoch 1 Batch 301/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.906, Loss: 0.070\n", + "Epoch 1 Batch 302/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.898, Loss: 0.084\n", + "Epoch 1 Batch 303/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.898, Loss: 0.094\n", + "Epoch 1 Batch 304/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.900, Loss: 0.079\n", + "Epoch 1 Batch 305/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.892, Loss: 0.074\n", + "Epoch 1 Batch 306/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.901, Loss: 0.089\n", + "Epoch 1 Batch 307/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.881, Loss: 0.072\n", + "Epoch 1 Batch 308/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.885, Loss: 0.097\n", + "Epoch 1 Batch 309/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.882, Loss: 0.073\n", + "Epoch 1 Batch 310/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.884, Loss: 0.080\n", + "Epoch 1 Batch 311/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.885, Loss: 0.074\n", + "Epoch 1 Batch 312/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.895, Loss: 0.095\n", + "Epoch 1 Batch 313/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.894, Loss: 0.064\n", + "Epoch 1 Batch 314/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.895, Loss: 0.076\n", + "Epoch 1 Batch 315/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.901, Loss: 0.070\n", + "Epoch 1 Batch 316/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.884, Loss: 0.075\n", + "Epoch 1 Batch 317/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.890, Loss: 0.104\n", + "Epoch 1 Batch 318/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.891, Loss: 0.068\n", + "Epoch 1 Batch 319/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.881, Loss: 0.094\n", + "Epoch 1 Batch 320/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.877, Loss: 0.088\n", + "Epoch 1 Batch 321/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.879, Loss: 0.070\n", + "Epoch 1 Batch 322/1077 - Train Accuracy: 0.877, Validation Accuracy: 0.880, Loss: 0.073\n", + "Epoch 1 Batch 323/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.877, Loss: 0.086\n", + "Epoch 1 Batch 324/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.891, Loss: 0.065\n", + "Epoch 1 Batch 325/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.883, Loss: 0.091\n", + "Epoch 1 Batch 326/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.888, Loss: 0.073\n", + "Epoch 1 Batch 327/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.889, Loss: 0.093\n", + "Epoch 1 Batch 328/1077 - Train Accuracy: 0.884, Validation Accuracy: 0.892, Loss: 0.087\n", + "Epoch 1 Batch 329/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.889, Loss: 0.087\n", + "Epoch 1 Batch 330/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.890, Loss: 0.086\n", + "Epoch 1 Batch 331/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.891, Loss: 0.091\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1 Batch 332/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.878, Loss: 0.066\n", + "Epoch 1 Batch 333/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.882, Loss: 0.063\n", + "Epoch 1 Batch 334/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.885, Loss: 0.074\n", + "Epoch 1 Batch 335/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.888, Loss: 0.077\n", + "Epoch 1 Batch 336/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.884, Loss: 0.108\n", + "Epoch 1 Batch 337/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.880, Loss: 0.081\n", + "Epoch 1 Batch 338/1077 - Train Accuracy: 0.869, Validation Accuracy: 0.881, Loss: 0.106\n", + "Epoch 1 Batch 339/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.881, Loss: 0.070\n", + "Epoch 1 Batch 340/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.896, Loss: 0.070\n", + "Epoch 1 Batch 341/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.901, Loss: 0.093\n", + "Epoch 1 Batch 342/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.905, Loss: 0.069\n", + "Epoch 1 Batch 343/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.897, Loss: 0.073\n", + "Epoch 1 Batch 344/1077 - Train Accuracy: 0.894, Validation Accuracy: 0.901, Loss: 0.073\n", + "Epoch 1 Batch 345/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.903, Loss: 0.062\n", + "Epoch 1 Batch 346/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.902, Loss: 0.082\n", + "Epoch 1 Batch 347/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.909, Loss: 0.065\n", + "Epoch 1 Batch 348/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.912, Loss: 0.077\n", + "Epoch 1 Batch 349/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.907, Loss: 0.073\n", + "Epoch 1 Batch 350/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.914, Loss: 0.088\n", + "Epoch 1 Batch 351/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.912, Loss: 0.073\n", + "Epoch 1 Batch 352/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.912, Loss: 0.069\n", + "Epoch 1 Batch 353/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.901, Loss: 0.082\n", + "Epoch 1 Batch 354/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.903, Loss: 0.081\n", + "Epoch 1 Batch 355/1077 - Train Accuracy: 0.881, Validation Accuracy: 0.898, Loss: 0.072\n", + "Epoch 1 Batch 356/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.901, Loss: 0.083\n", + "Epoch 1 Batch 357/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.890, Loss: 0.074\n", + "Epoch 1 Batch 358/1077 - Train Accuracy: 0.882, Validation Accuracy: 0.894, Loss: 0.089\n", + "Epoch 1 Batch 359/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.898, Loss: 0.076\n", + "Epoch 1 Batch 360/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.893, Loss: 0.066\n", + "Epoch 1 Batch 361/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.892, Loss: 0.074\n", + "Epoch 1 Batch 362/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.887, Loss: 0.085\n", + "Epoch 1 Batch 363/1077 - Train Accuracy: 0.876, Validation Accuracy: 0.890, Loss: 0.079\n", + "Epoch 1 Batch 364/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.888, Loss: 0.083\n", + "Epoch 1 Batch 365/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.885, Loss: 0.064\n", + "Epoch 1 Batch 366/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.885, Loss: 0.069\n", + "Epoch 1 Batch 367/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.878, Loss: 0.055\n", + "Epoch 1 Batch 368/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.877, Loss: 0.083\n", + "Epoch 1 Batch 369/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.880, Loss: 0.081\n", + "Epoch 1 Batch 370/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.876, Loss: 0.074\n", + "Epoch 1 Batch 371/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.887, Loss: 0.062\n", + "Epoch 1 Batch 372/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.885, Loss: 0.060\n", + "Epoch 1 Batch 373/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.887, Loss: 0.056\n", + "Epoch 1 Batch 374/1077 - Train Accuracy: 0.878, Validation Accuracy: 0.903, Loss: 0.085\n", + "Epoch 1 Batch 375/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.907, Loss: 0.081\n", + "Epoch 1 Batch 376/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.906, Loss: 0.076\n", + "Epoch 1 Batch 377/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.902, Loss: 0.069\n", + "Epoch 1 Batch 378/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.911, Loss: 0.058\n", + "Epoch 1 Batch 379/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.909, Loss: 0.083\n", + "Epoch 1 Batch 380/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.914, Loss: 0.061\n", + "Epoch 1 Batch 381/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.918, Loss: 0.098\n", + "Epoch 1 Batch 382/1077 - Train Accuracy: 0.885, Validation Accuracy: 0.925, Loss: 0.117\n", + "Epoch 1 Batch 383/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.918, Loss: 0.073\n", + "Epoch 1 Batch 384/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.910, Loss: 0.074\n", + "Epoch 1 Batch 385/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.917, Loss: 0.067\n", + "Epoch 1 Batch 386/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.917, Loss: 0.066\n", + "Epoch 1 Batch 387/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.918, Loss: 0.073\n", + "Epoch 1 Batch 388/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.907, Loss: 0.065\n", + "Epoch 1 Batch 389/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.905, Loss: 0.073\n", + "Epoch 1 Batch 390/1077 - Train Accuracy: 0.869, Validation Accuracy: 0.907, Loss: 0.081\n", + "Epoch 1 Batch 391/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.908, Loss: 0.082\n", + "Epoch 1 Batch 392/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.892, Loss: 0.084\n", + "Epoch 1 Batch 393/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.898, Loss: 0.069\n", + "Epoch 1 Batch 394/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.899, Loss: 0.069\n", + "Epoch 1 Batch 395/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.900, Loss: 0.082\n", + "Epoch 1 Batch 396/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.899, Loss: 0.078\n", + "Epoch 1 Batch 397/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.899, Loss: 0.061\n", + "Epoch 1 Batch 398/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.902, Loss: 0.077\n", + "Epoch 1 Batch 399/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.898, Loss: 0.067\n", + "Epoch 1 Batch 400/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.904, Loss: 0.094\n", + "Epoch 1 Batch 401/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.892, Loss: 0.068\n", + "Epoch 1 Batch 402/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.896, Loss: 0.069\n", + "Epoch 1 Batch 403/1077 - Train Accuracy: 0.882, Validation Accuracy: 0.896, Loss: 0.091\n", + "Epoch 1 Batch 404/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.891, Loss: 0.078\n", + "Epoch 1 Batch 405/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.897, Loss: 0.068\n", + "Epoch 1 Batch 406/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.896, Loss: 0.074\n", + "Epoch 1 Batch 407/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.895, Loss: 0.083\n", + "Epoch 1 Batch 408/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.899, Loss: 0.084\n", + "Epoch 1 Batch 409/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.902, Loss: 0.079\n", + "Epoch 1 Batch 410/1077 - Train Accuracy: 0.892, Validation Accuracy: 0.904, Loss: 0.085\n", + "Epoch 1 Batch 411/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.909, Loss: 0.085\n", + "Epoch 1 Batch 412/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.903, Loss: 0.056\n", + "Epoch 1 Batch 413/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.902, Loss: 0.066\n", + "Epoch 1 Batch 414/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.902, Loss: 0.080\n", + "Epoch 1 Batch 415/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.899, Loss: 0.074\n", + "Epoch 1 Batch 416/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.902, Loss: 0.076\n", + "Epoch 1 Batch 417/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.909, Loss: 0.113\n", + "Epoch 1 Batch 418/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.913, Loss: 0.069\n", + "Epoch 1 Batch 419/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.913, Loss: 0.061\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1 Batch 420/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.916, Loss: 0.059\n", + "Epoch 1 Batch 421/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.915, Loss: 0.083\n", + "Epoch 1 Batch 422/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.912, Loss: 0.069\n", + "Epoch 1 Batch 423/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.910, Loss: 0.086\n", + "Epoch 1 Batch 424/1077 - Train Accuracy: 0.892, Validation Accuracy: 0.902, Loss: 0.073\n", + "Epoch 1 Batch 425/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.900, Loss: 0.064\n", + "Epoch 1 Batch 426/1077 - Train Accuracy: 0.892, Validation Accuracy: 0.901, Loss: 0.089\n", + "Epoch 1 Batch 427/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.905, Loss: 0.070\n", + "Epoch 1 Batch 428/1077 - Train Accuracy: 0.956, Validation Accuracy: 0.906, Loss: 0.059\n", + "Epoch 1 Batch 429/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.902, Loss: 0.067\n", + "Epoch 1 Batch 430/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.905, Loss: 0.067\n", + "Epoch 1 Batch 431/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.907, Loss: 0.060\n", + "Epoch 1 Batch 432/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.900, Loss: 0.071\n", + "Epoch 1 Batch 433/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.902, Loss: 0.079\n", + "Epoch 1 Batch 434/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.898, Loss: 0.064\n", + "Epoch 1 Batch 435/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.899, Loss: 0.092\n", + "Epoch 1 Batch 436/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.900, Loss: 0.074\n", + "Epoch 1 Batch 437/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.900, Loss: 0.062\n", + "Epoch 1 Batch 438/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.899, Loss: 0.071\n", + "Epoch 1 Batch 439/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.901, Loss: 0.090\n", + "Epoch 1 Batch 440/1077 - Train Accuracy: 0.884, Validation Accuracy: 0.901, Loss: 0.091\n", + "Epoch 1 Batch 441/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.909, Loss: 0.072\n", + "Epoch 1 Batch 442/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.901, Loss: 0.081\n", + "Epoch 1 Batch 443/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.901, Loss: 0.066\n", + "Epoch 1 Batch 444/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.906, Loss: 0.085\n", + "Epoch 1 Batch 445/1077 - Train Accuracy: 0.859, Validation Accuracy: 0.897, Loss: 0.082\n", + "Epoch 1 Batch 446/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.902, Loss: 0.056\n", + "Epoch 1 Batch 447/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.901, Loss: 0.074\n", + "Epoch 1 Batch 448/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.908, Loss: 0.093\n", + "Epoch 1 Batch 449/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.909, Loss: 0.075\n", + "Epoch 1 Batch 450/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.908, Loss: 0.072\n", + "Epoch 1 Batch 451/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.914, Loss: 0.076\n", + "Epoch 1 Batch 452/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.913, Loss: 0.078\n", + "Epoch 1 Batch 453/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.911, Loss: 0.067\n", + "Epoch 1 Batch 454/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.907, Loss: 0.076\n", + "Epoch 1 Batch 455/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.897, Loss: 0.072\n", + "Epoch 1 Batch 456/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.896, Loss: 0.086\n", + "Epoch 1 Batch 457/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.895, Loss: 0.056\n", + "Epoch 1 Batch 458/1077 - Train Accuracy: 0.870, Validation Accuracy: 0.897, Loss: 0.080\n", + "Epoch 1 Batch 459/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.895, Loss: 0.069\n", + "Epoch 1 Batch 460/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.901, Loss: 0.076\n", + "Epoch 1 Batch 461/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.896, Loss: 0.073\n", + "Epoch 1 Batch 462/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.895, Loss: 0.072\n", + "Epoch 1 Batch 463/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.898, Loss: 0.080\n", + "Epoch 1 Batch 464/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.889, Loss: 0.070\n", + "Epoch 1 Batch 465/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.874, Loss: 0.074\n", + "Epoch 1 Batch 466/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.879, Loss: 0.065\n", + "Epoch 1 Batch 467/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.887, Loss: 0.080\n", + "Epoch 1 Batch 468/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.886, Loss: 0.071\n", + "Epoch 1 Batch 469/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.890, Loss: 0.074\n", + "Epoch 1 Batch 470/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.893, Loss: 0.075\n", + "Epoch 1 Batch 471/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.904, Loss: 0.055\n", + "Epoch 1 Batch 472/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.908, Loss: 0.070\n", + "Epoch 1 Batch 473/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.907, Loss: 0.072\n", + "Epoch 1 Batch 474/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.911, Loss: 0.065\n", + "Epoch 1 Batch 475/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.922, Loss: 0.073\n", + "Epoch 1 Batch 476/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.917, Loss: 0.057\n", + "Epoch 1 Batch 477/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.917, Loss: 0.075\n", + "Epoch 1 Batch 478/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.912, Loss: 0.068\n", + "Epoch 1 Batch 479/1077 - Train Accuracy: 0.879, Validation Accuracy: 0.911, Loss: 0.087\n", + "Epoch 1 Batch 480/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.903, Loss: 0.058\n", + "Epoch 1 Batch 481/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.907, Loss: 0.085\n", + "Epoch 1 Batch 482/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.903, Loss: 0.092\n", + "Epoch 1 Batch 483/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.898, Loss: 0.071\n", + "Epoch 1 Batch 484/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.893, Loss: 0.090\n", + "Epoch 1 Batch 485/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.888, Loss: 0.087\n", + "Epoch 1 Batch 486/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.889, Loss: 0.066\n", + "Epoch 1 Batch 487/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.887, Loss: 0.062\n", + "Epoch 1 Batch 488/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.886, Loss: 0.069\n", + "Epoch 1 Batch 489/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.887, Loss: 0.065\n", + "Epoch 1 Batch 490/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.897, Loss: 0.073\n", + "Epoch 1 Batch 491/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.901, Loss: 0.076\n", + "Epoch 1 Batch 492/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.900, Loss: 0.084\n", + "Epoch 1 Batch 493/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.901, Loss: 0.058\n", + "Epoch 1 Batch 494/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.902, Loss: 0.064\n", + "Epoch 1 Batch 495/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.902, Loss: 0.072\n", + "Epoch 1 Batch 496/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.907, Loss: 0.069\n", + "Epoch 1 Batch 497/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.891, Loss: 0.072\n", + "Epoch 1 Batch 498/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.891, Loss: 0.074\n", + "Epoch 1 Batch 499/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.896, Loss: 0.057\n", + "Epoch 1 Batch 500/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.900, Loss: 0.057\n", + "Epoch 1 Batch 501/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.906, Loss: 0.063\n", + "Epoch 1 Batch 502/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.909, Loss: 0.079\n", + "Epoch 1 Batch 503/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.905, Loss: 0.064\n", + "Epoch 1 Batch 504/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.919, Loss: 0.072\n", + "Epoch 1 Batch 505/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.917, Loss: 0.059\n", + "Epoch 1 Batch 506/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.913, Loss: 0.079\n", + "Epoch 1 Batch 507/1077 - Train Accuracy: 0.871, Validation Accuracy: 0.913, Loss: 0.072\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1 Batch 508/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.916, Loss: 0.059\n", + "Epoch 1 Batch 509/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.914, Loss: 0.079\n", + "Epoch 1 Batch 510/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.901, Loss: 0.072\n", + "Epoch 1 Batch 511/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.906, Loss: 0.071\n", + "Epoch 1 Batch 512/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.909, Loss: 0.055\n", + "Epoch 1 Batch 513/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.900, Loss: 0.068\n", + "Epoch 1 Batch 514/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.904, Loss: 0.080\n", + "Epoch 1 Batch 515/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.910, Loss: 0.079\n", + "Epoch 1 Batch 516/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.911, Loss: 0.072\n", + "Epoch 1 Batch 517/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.911, Loss: 0.068\n", + "Epoch 1 Batch 518/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.906, Loss: 0.056\n", + "Epoch 1 Batch 519/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.901, Loss: 0.072\n", + "Epoch 1 Batch 520/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.894, Loss: 0.068\n", + "Epoch 1 Batch 521/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.889, Loss: 0.081\n", + "Epoch 1 Batch 522/1077 - Train Accuracy: 0.869, Validation Accuracy: 0.897, Loss: 0.081\n", + "Epoch 1 Batch 523/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.902, Loss: 0.079\n", + "Epoch 1 Batch 524/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.899, Loss: 0.079\n", + "Epoch 1 Batch 525/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.895, Loss: 0.075\n", + "Epoch 1 Batch 526/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.891, Loss: 0.065\n", + "Epoch 1 Batch 527/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.884, Loss: 0.072\n", + "Epoch 1 Batch 528/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.888, Loss: 0.074\n", + "Epoch 1 Batch 529/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.885, Loss: 0.075\n", + "Epoch 1 Batch 530/1077 - Train Accuracy: 0.888, Validation Accuracy: 0.893, Loss: 0.073\n", + "Epoch 1 Batch 531/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.888, Loss: 0.067\n", + "Epoch 1 Batch 532/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.897, Loss: 0.085\n", + "Epoch 1 Batch 533/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.906, Loss: 0.069\n", + "Epoch 1 Batch 534/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.910, Loss: 0.081\n", + "Epoch 1 Batch 535/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.906, Loss: 0.069\n", + "Epoch 1 Batch 536/1077 - Train Accuracy: 0.879, Validation Accuracy: 0.897, Loss: 0.071\n", + "Epoch 1 Batch 537/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.894, Loss: 0.067\n", + "Epoch 1 Batch 538/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.891, Loss: 0.054\n", + "Epoch 1 Batch 539/1077 - Train Accuracy: 0.894, Validation Accuracy: 0.877, Loss: 0.105\n", + "Epoch 1 Batch 540/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.879, Loss: 0.063\n", + "Epoch 1 Batch 541/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.885, Loss: 0.056\n", + "Epoch 1 Batch 542/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.885, Loss: 0.071\n", + "Epoch 1 Batch 543/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.891, Loss: 0.071\n", + "Epoch 1 Batch 544/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.884, Loss: 0.052\n", + "Epoch 1 Batch 545/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.888, Loss: 0.075\n", + "Epoch 1 Batch 546/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.898, Loss: 0.078\n", + "Epoch 1 Batch 547/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.902, Loss: 0.066\n", + "Epoch 1 Batch 548/1077 - Train Accuracy: 0.882, Validation Accuracy: 0.907, Loss: 0.077\n", + "Epoch 1 Batch 549/1077 - Train Accuracy: 0.868, Validation Accuracy: 0.911, Loss: 0.084\n", + "Epoch 1 Batch 550/1077 - Train Accuracy: 0.880, Validation Accuracy: 0.898, Loss: 0.078\n", + "Epoch 1 Batch 551/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.912, Loss: 0.080\n", + "Epoch 1 Batch 552/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.915, Loss: 0.081\n", + "Epoch 1 Batch 553/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.913, Loss: 0.087\n", + "Epoch 1 Batch 554/1077 - Train Accuracy: 0.885, Validation Accuracy: 0.908, Loss: 0.068\n", + "Epoch 1 Batch 555/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.907, Loss: 0.066\n", + "Epoch 1 Batch 556/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.902, Loss: 0.068\n", + "Epoch 1 Batch 557/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.898, Loss: 0.073\n", + "Epoch 1 Batch 558/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.900, Loss: 0.061\n", + "Epoch 1 Batch 559/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.906, Loss: 0.056\n", + "Epoch 1 Batch 560/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.898, Loss: 0.065\n", + "Epoch 1 Batch 561/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.900, Loss: 0.066\n", + "Epoch 1 Batch 562/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.890, Loss: 0.059\n", + "Epoch 1 Batch 563/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.891, Loss: 0.066\n", + "Epoch 1 Batch 564/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.891, Loss: 0.082\n", + "Epoch 1 Batch 565/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.886, Loss: 0.075\n", + "Epoch 1 Batch 566/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.883, Loss: 0.083\n", + "Epoch 1 Batch 567/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.892, Loss: 0.075\n", + "Epoch 1 Batch 568/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.894, Loss: 0.068\n", + "Epoch 1 Batch 569/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.891, Loss: 0.073\n", + "Epoch 1 Batch 570/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.884, Loss: 0.085\n", + "Epoch 1 Batch 571/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.885, Loss: 0.052\n", + "Epoch 1 Batch 572/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.885, Loss: 0.065\n", + "Epoch 1 Batch 573/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.884, Loss: 0.079\n", + "Epoch 1 Batch 574/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.882, Loss: 0.081\n", + "Epoch 1 Batch 575/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.889, Loss: 0.054\n", + "Epoch 1 Batch 576/1077 - Train Accuracy: 0.958, Validation Accuracy: 0.896, Loss: 0.063\n", + "Epoch 1 Batch 577/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.898, Loss: 0.078\n", + "Epoch 1 Batch 578/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.901, Loss: 0.071\n", + "Epoch 1 Batch 579/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.903, Loss: 0.062\n", + "Epoch 1 Batch 580/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.906, Loss: 0.056\n", + "Epoch 1 Batch 581/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.896, Loss: 0.052\n", + "Epoch 1 Batch 582/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.898, Loss: 0.073\n", + "Epoch 1 Batch 583/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.898, Loss: 0.068\n", + "Epoch 1 Batch 584/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.902, Loss: 0.068\n", + "Epoch 1 Batch 585/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.898, Loss: 0.048\n", + "Epoch 1 Batch 586/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.903, Loss: 0.078\n", + "Epoch 1 Batch 587/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.900, Loss: 0.068\n", + "Epoch 1 Batch 588/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.896, Loss: 0.055\n", + "Epoch 1 Batch 589/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.889, Loss: 0.066\n", + "Epoch 1 Batch 590/1077 - Train Accuracy: 0.894, Validation Accuracy: 0.894, Loss: 0.083\n", + "Epoch 1 Batch 591/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.898, Loss: 0.069\n", + "Epoch 1 Batch 592/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.888, Loss: 0.069\n", + "Epoch 1 Batch 593/1077 - Train Accuracy: 0.890, Validation Accuracy: 0.880, Loss: 0.094\n", + "Epoch 1 Batch 594/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.875, Loss: 0.077\n", + "Epoch 1 Batch 595/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.880, Loss: 0.071\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1 Batch 596/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.875, Loss: 0.070\n", + "Epoch 1 Batch 597/1077 - Train Accuracy: 0.894, Validation Accuracy: 0.893, Loss: 0.059\n", + "Epoch 1 Batch 598/1077 - Train Accuracy: 0.892, Validation Accuracy: 0.907, Loss: 0.080\n", + "Epoch 1 Batch 599/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.907, Loss: 0.089\n", + "Epoch 1 Batch 600/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.900, Loss: 0.078\n", + "Epoch 1 Batch 601/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.902, Loss: 0.074\n", + "Epoch 1 Batch 602/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.905, Loss: 0.070\n", + "Epoch 1 Batch 603/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.910, Loss: 0.067\n", + "Epoch 1 Batch 604/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.912, Loss: 0.079\n", + "Epoch 1 Batch 605/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.905, Loss: 0.089\n", + "Epoch 1 Batch 606/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.907, Loss: 0.064\n", + "Epoch 1 Batch 607/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.907, Loss: 0.069\n", + "Epoch 1 Batch 608/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.909, Loss: 0.075\n", + "Epoch 1 Batch 609/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.911, Loss: 0.067\n", + "Epoch 1 Batch 610/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.909, Loss: 0.084\n", + "Epoch 1 Batch 611/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.914, Loss: 0.057\n", + "Epoch 1 Batch 612/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.916, Loss: 0.062\n", + "Epoch 1 Batch 613/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.911, Loss: 0.084\n", + "Epoch 1 Batch 614/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.896, Loss: 0.058\n", + "Epoch 1 Batch 615/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.903, Loss: 0.069\n", + "Epoch 1 Batch 616/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.917, Loss: 0.076\n", + "Epoch 1 Batch 617/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.922, Loss: 0.069\n", + "Epoch 1 Batch 618/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.911, Loss: 0.067\n", + "Epoch 1 Batch 619/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.915, Loss: 0.055\n", + "Epoch 1 Batch 620/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.920, Loss: 0.067\n", + "Epoch 1 Batch 621/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.916, Loss: 0.065\n", + "Epoch 1 Batch 622/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.912, Loss: 0.083\n", + "Epoch 1 Batch 623/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.911, Loss: 0.074\n", + "Epoch 1 Batch 624/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.906, Loss: 0.080\n", + "Epoch 1 Batch 625/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.911, Loss: 0.063\n", + "Epoch 1 Batch 626/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.904, Loss: 0.068\n", + "Epoch 1 Batch 627/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.908, Loss: 0.069\n", + "Epoch 1 Batch 628/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.909, Loss: 0.071\n", + "Epoch 1 Batch 629/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.908, Loss: 0.074\n", + "Epoch 1 Batch 630/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.912, Loss: 0.063\n", + "Epoch 1 Batch 631/1077 - Train Accuracy: 0.890, Validation Accuracy: 0.911, Loss: 0.071\n", + "Epoch 1 Batch 632/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.912, Loss: 0.063\n", + "Epoch 1 Batch 633/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.913, Loss: 0.074\n", + "Epoch 1 Batch 634/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.915, Loss: 0.056\n", + "Epoch 1 Batch 635/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.913, Loss: 0.078\n", + "Epoch 1 Batch 636/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.915, Loss: 0.063\n", + "Epoch 1 Batch 637/1077 - Train Accuracy: 0.880, Validation Accuracy: 0.911, Loss: 0.066\n", + "Epoch 1 Batch 638/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.911, Loss: 0.061\n", + "Epoch 1 Batch 639/1077 - Train Accuracy: 0.894, Validation Accuracy: 0.911, Loss: 0.091\n", + "Epoch 1 Batch 640/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.923, Loss: 0.065\n", + "Epoch 1 Batch 641/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.916, Loss: 0.069\n", + "Epoch 1 Batch 642/1077 - Train Accuracy: 0.888, Validation Accuracy: 0.922, Loss: 0.083\n", + "Epoch 1 Batch 643/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.924, Loss: 0.053\n", + "Epoch 1 Batch 644/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.920, Loss: 0.073\n", + "Epoch 1 Batch 645/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.915, Loss: 0.080\n", + "Epoch 1 Batch 646/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.911, Loss: 0.071\n", + "Epoch 1 Batch 647/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.915, Loss: 0.063\n", + "Epoch 1 Batch 648/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.927, Loss: 0.046\n", + "Epoch 1 Batch 649/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.927, Loss: 0.063\n", + "Epoch 1 Batch 650/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.920, Loss: 0.071\n", + "Epoch 1 Batch 651/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.915, Loss: 0.062\n", + "Epoch 1 Batch 652/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.908, Loss: 0.065\n", + "Epoch 1 Batch 653/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.911, Loss: 0.067\n", + "Epoch 1 Batch 654/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.910, Loss: 0.058\n", + "Epoch 1 Batch 655/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.906, Loss: 0.076\n", + "Epoch 1 Batch 656/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.898, Loss: 0.067\n", + "Epoch 1 Batch 657/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.909, Loss: 0.058\n", + "Epoch 1 Batch 658/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.906, Loss: 0.055\n", + "Epoch 1 Batch 659/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.902, Loss: 0.073\n", + "Epoch 1 Batch 660/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.908, Loss: 0.069\n", + "Epoch 1 Batch 661/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.909, Loss: 0.053\n", + "Epoch 1 Batch 662/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.904, Loss: 0.075\n", + "Epoch 1 Batch 663/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.906, Loss: 0.057\n", + "Epoch 1 Batch 664/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.901, Loss: 0.061\n", + "Epoch 1 Batch 665/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.903, Loss: 0.058\n", + "Epoch 1 Batch 666/1077 - Train Accuracy: 0.888, Validation Accuracy: 0.903, Loss: 0.073\n", + "Epoch 1 Batch 667/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.911, Loss: 0.082\n", + "Epoch 1 Batch 668/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.909, Loss: 0.071\n", + "Epoch 1 Batch 669/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.906, Loss: 0.071\n", + "Epoch 1 Batch 670/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.908, Loss: 0.078\n", + "Epoch 1 Batch 671/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.913, Loss: 0.069\n", + "Epoch 1 Batch 672/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.911, Loss: 0.065\n", + "Epoch 1 Batch 673/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.904, Loss: 0.062\n", + "Epoch 1 Batch 674/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.901, Loss: 0.072\n", + "Epoch 1 Batch 675/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.906, Loss: 0.082\n", + "Epoch 1 Batch 676/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.907, Loss: 0.063\n", + "Epoch 1 Batch 677/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.918, Loss: 0.091\n", + "Epoch 1 Batch 678/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.911, Loss: 0.057\n", + "Epoch 1 Batch 679/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.907, Loss: 0.062\n", + "Epoch 1 Batch 680/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.904, Loss: 0.061\n", + "Epoch 1 Batch 681/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.894, Loss: 0.066\n", + "Epoch 1 Batch 682/1077 - Train Accuracy: 0.882, Validation Accuracy: 0.903, Loss: 0.062\n", + "Epoch 1 Batch 683/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.903, Loss: 0.057\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1 Batch 684/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.909, Loss: 0.067\n", + "Epoch 1 Batch 685/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.914, Loss: 0.075\n", + "Epoch 1 Batch 686/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.917, Loss: 0.060\n", + "Epoch 1 Batch 687/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.913, Loss: 0.091\n", + "Epoch 1 Batch 688/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.914, Loss: 0.066\n", + "Epoch 1 Batch 689/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.904, Loss: 0.047\n", + "Epoch 1 Batch 690/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.909, Loss: 0.068\n", + "Epoch 1 Batch 691/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.906, Loss: 0.085\n", + "Epoch 1 Batch 692/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.906, Loss: 0.061\n", + "Epoch 1 Batch 693/1077 - Train Accuracy: 0.879, Validation Accuracy: 0.901, Loss: 0.084\n", + "Epoch 1 Batch 694/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.885, Loss: 0.072\n", + "Epoch 1 Batch 695/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.884, Loss: 0.049\n", + "Epoch 1 Batch 696/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.886, Loss: 0.085\n", + "Epoch 1 Batch 697/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.890, Loss: 0.069\n", + "Epoch 1 Batch 698/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.900, Loss: 0.059\n", + "Epoch 1 Batch 699/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.908, Loss: 0.056\n", + "Epoch 1 Batch 700/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.906, Loss: 0.067\n", + "Epoch 1 Batch 701/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.900, Loss: 0.074\n", + "Epoch 1 Batch 702/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.904, Loss: 0.087\n", + "Epoch 1 Batch 703/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.915, Loss: 0.070\n", + "Epoch 1 Batch 704/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.910, Loss: 0.083\n", + "Epoch 1 Batch 705/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.911, Loss: 0.074\n", + "Epoch 1 Batch 706/1077 - Train Accuracy: 0.890, Validation Accuracy: 0.914, Loss: 0.114\n", + "Epoch 1 Batch 707/1077 - Train Accuracy: 0.888, Validation Accuracy: 0.913, Loss: 0.067\n", + "Epoch 1 Batch 708/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.909, Loss: 0.081\n", + "Epoch 1 Batch 709/1077 - Train Accuracy: 0.880, Validation Accuracy: 0.907, Loss: 0.089\n", + "Epoch 1 Batch 710/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.905, Loss: 0.059\n", + "Epoch 1 Batch 711/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.893, Loss: 0.083\n", + "Epoch 1 Batch 712/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.896, Loss: 0.058\n", + "Epoch 1 Batch 713/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.899, Loss: 0.056\n", + "Epoch 1 Batch 714/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.902, Loss: 0.068\n", + "Epoch 1 Batch 715/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.895, Loss: 0.074\n", + "Epoch 1 Batch 716/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.891, Loss: 0.056\n", + "Epoch 1 Batch 717/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.887, Loss: 0.047\n", + "Epoch 1 Batch 718/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.887, Loss: 0.056\n", + "Epoch 1 Batch 719/1077 - Train Accuracy: 0.892, Validation Accuracy: 0.896, Loss: 0.084\n", + "Epoch 1 Batch 720/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.901, Loss: 0.081\n", + "Epoch 1 Batch 721/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.902, Loss: 0.074\n", + "Epoch 1 Batch 722/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.904, Loss: 0.065\n", + "Epoch 1 Batch 723/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.899, Loss: 0.075\n", + "Epoch 1 Batch 724/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.907, Loss: 0.073\n", + "Epoch 1 Batch 725/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.914, Loss: 0.059\n", + "Epoch 1 Batch 726/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.914, Loss: 0.073\n", + "Epoch 1 Batch 727/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.909, Loss: 0.064\n", + "Epoch 1 Batch 728/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.909, Loss: 0.078\n", + "Epoch 1 Batch 729/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.909, Loss: 0.082\n", + "Epoch 1 Batch 730/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.893, Loss: 0.081\n", + "Epoch 1 Batch 731/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.899, Loss: 0.063\n", + "Epoch 1 Batch 732/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.899, Loss: 0.072\n", + "Epoch 1 Batch 733/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.902, Loss: 0.082\n", + "Epoch 1 Batch 734/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.896, Loss: 0.064\n", + "Epoch 1 Batch 735/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.901, Loss: 0.061\n", + "Epoch 1 Batch 736/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.914, Loss: 0.053\n", + "Epoch 1 Batch 737/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.914, Loss: 0.082\n", + "Epoch 1 Batch 738/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.913, Loss: 0.047\n", + "Epoch 1 Batch 739/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.909, Loss: 0.061\n", + "Epoch 1 Batch 740/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.914, Loss: 0.054\n", + "Epoch 1 Batch 741/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.915, Loss: 0.073\n", + "Epoch 1 Batch 742/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.918, Loss: 0.051\n", + "Epoch 1 Batch 743/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.913, Loss: 0.066\n", + "Epoch 1 Batch 744/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.918, Loss: 0.077\n", + "Epoch 1 Batch 745/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.918, Loss: 0.075\n", + "Epoch 1 Batch 746/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.917, Loss: 0.054\n", + "Epoch 1 Batch 747/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.914, Loss: 0.040\n", + "Epoch 1 Batch 748/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.914, Loss: 0.059\n", + "Epoch 1 Batch 749/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.917, Loss: 0.069\n", + "Epoch 1 Batch 750/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.916, Loss: 0.063\n", + "Epoch 1 Batch 751/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.920, Loss: 0.058\n", + "Epoch 1 Batch 752/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.916, Loss: 0.064\n", + "Epoch 1 Batch 753/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.914, Loss: 0.060\n", + "Epoch 1 Batch 754/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.910, Loss: 0.070\n", + "Epoch 1 Batch 755/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.908, Loss: 0.067\n", + "Epoch 1 Batch 756/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.924, Loss: 0.056\n", + "Epoch 1 Batch 757/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.923, Loss: 0.050\n", + "Epoch 1 Batch 758/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.919, Loss: 0.056\n", + "Epoch 1 Batch 759/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.919, Loss: 0.054\n", + "Epoch 1 Batch 760/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.915, Loss: 0.069\n", + "Epoch 1 Batch 761/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.915, Loss: 0.059\n", + "Epoch 1 Batch 762/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.912, Loss: 0.063\n", + "Epoch 1 Batch 763/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.903, Loss: 0.063\n", + "Epoch 1 Batch 764/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.907, Loss: 0.067\n", + "Epoch 1 Batch 765/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.918, Loss: 0.083\n", + "Epoch 1 Batch 766/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.914, Loss: 0.063\n", + "Epoch 1 Batch 767/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.922, Loss: 0.061\n", + "Epoch 1 Batch 768/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.924, Loss: 0.062\n", + "Epoch 1 Batch 769/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.918, Loss: 0.065\n", + "Epoch 1 Batch 770/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.908, Loss: 0.064\n", + "Epoch 1 Batch 771/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.906, Loss: 0.078\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1 Batch 772/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.909, Loss: 0.060\n", + "Epoch 1 Batch 773/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.909, Loss: 0.068\n", + "Epoch 1 Batch 774/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.909, Loss: 0.067\n", + "Epoch 1 Batch 775/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.907, Loss: 0.072\n", + "Epoch 1 Batch 776/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.924, Loss: 0.058\n", + "Epoch 1 Batch 777/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.926, Loss: 0.070\n", + "Epoch 1 Batch 778/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.924, Loss: 0.064\n", + "Epoch 1 Batch 779/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.920, Loss: 0.069\n", + "Epoch 1 Batch 780/1077 - Train Accuracy: 0.889, Validation Accuracy: 0.916, Loss: 0.091\n", + "Epoch 1 Batch 781/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.923, Loss: 0.054\n", + "Epoch 1 Batch 782/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.917, Loss: 0.053\n", + "Epoch 1 Batch 783/1077 - Train Accuracy: 0.890, Validation Accuracy: 0.918, Loss: 0.076\n", + "Epoch 1 Batch 784/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.920, Loss: 0.053\n", + "Epoch 1 Batch 785/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.917, Loss: 0.051\n", + "Epoch 1 Batch 786/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.922, Loss: 0.063\n", + "Epoch 1 Batch 787/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.913, Loss: 0.065\n", + "Epoch 1 Batch 788/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.905, Loss: 0.060\n", + "Epoch 1 Batch 789/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.901, Loss: 0.078\n", + "Epoch 1 Batch 790/1077 - Train Accuracy: 0.884, Validation Accuracy: 0.907, Loss: 0.065\n", + "Epoch 1 Batch 791/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.911, Loss: 0.066\n", + "Epoch 1 Batch 792/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.913, Loss: 0.072\n", + "Epoch 1 Batch 793/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.917, Loss: 0.061\n", + "Epoch 1 Batch 794/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.920, Loss: 0.055\n", + "Epoch 1 Batch 795/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.923, Loss: 0.068\n", + "Epoch 1 Batch 796/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.924, Loss: 0.055\n", + "Epoch 1 Batch 797/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.928, Loss: 0.065\n", + "Epoch 1 Batch 798/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.935, Loss: 0.069\n", + "Epoch 1 Batch 799/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.935, Loss: 0.079\n", + "Epoch 1 Batch 800/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.929, Loss: 0.064\n", + "Epoch 1 Batch 801/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.925, Loss: 0.072\n", + "Epoch 1 Batch 802/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.926, Loss: 0.068\n", + "Epoch 1 Batch 803/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.929, Loss: 0.073\n", + "Epoch 1 Batch 804/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.929, Loss: 0.047\n", + "Epoch 1 Batch 805/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.928, Loss: 0.067\n", + "Epoch 1 Batch 806/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.931, Loss: 0.059\n", + "Epoch 1 Batch 807/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.931, Loss: 0.056\n", + "Epoch 1 Batch 808/1077 - Train Accuracy: 0.889, Validation Accuracy: 0.937, Loss: 0.090\n", + "Epoch 1 Batch 809/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.930, Loss: 0.089\n", + "Epoch 1 Batch 810/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.925, Loss: 0.058\n", + "Epoch 1 Batch 811/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.933, Loss: 0.059\n", + "Epoch 1 Batch 812/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.933, Loss: 0.060\n", + "Epoch 1 Batch 813/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.929, Loss: 0.061\n", + "Epoch 1 Batch 814/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.934, Loss: 0.084\n", + "Epoch 1 Batch 815/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.934, Loss: 0.075\n", + "Epoch 1 Batch 816/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.934, Loss: 0.076\n", + "Epoch 1 Batch 817/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.921, Loss: 0.072\n", + "Epoch 1 Batch 818/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.925, Loss: 0.067\n", + "Epoch 1 Batch 819/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.925, Loss: 0.069\n", + "Epoch 1 Batch 820/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.923, Loss: 0.054\n", + "Epoch 1 Batch 821/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.912, Loss: 0.069\n", + "Epoch 1 Batch 822/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.918, Loss: 0.060\n", + "Epoch 1 Batch 823/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.926, Loss: 0.070\n", + "Epoch 1 Batch 824/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.930, Loss: 0.063\n", + "Epoch 1 Batch 825/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.914, Loss: 0.056\n", + "Epoch 1 Batch 826/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.920, Loss: 0.059\n", + "Epoch 1 Batch 827/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.917, Loss: 0.066\n", + "Epoch 1 Batch 828/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.917, Loss: 0.056\n", + "Epoch 1 Batch 829/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.920, Loss: 0.077\n", + "Epoch 1 Batch 830/1077 - Train Accuracy: 0.874, Validation Accuracy: 0.924, Loss: 0.076\n", + "Epoch 1 Batch 831/1077 - Train Accuracy: 0.852, Validation Accuracy: 0.919, Loss: 0.069\n", + "Epoch 1 Batch 832/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.916, Loss: 0.062\n", + "Epoch 1 Batch 833/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.918, Loss: 0.071\n", + "Epoch 1 Batch 834/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.927, Loss: 0.068\n", + "Epoch 1 Batch 835/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.931, Loss: 0.071\n", + "Epoch 1 Batch 836/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.928, Loss: 0.063\n", + "Epoch 1 Batch 837/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.930, Loss: 0.086\n", + "Epoch 1 Batch 838/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.937, Loss: 0.058\n", + "Epoch 1 Batch 839/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.938, Loss: 0.057\n", + "Epoch 1 Batch 840/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.937, Loss: 0.055\n", + "Epoch 1 Batch 841/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.941, Loss: 0.070\n", + "Epoch 1 Batch 842/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.934, Loss: 0.053\n", + "Epoch 1 Batch 843/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.932, Loss: 0.045\n", + "Epoch 1 Batch 844/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.932, Loss: 0.053\n", + "Epoch 1 Batch 845/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.928, Loss: 0.053\n", + "Epoch 1 Batch 846/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.922, Loss: 0.071\n", + "Epoch 1 Batch 847/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.919, Loss: 0.078\n", + "Epoch 1 Batch 848/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.911, Loss: 0.053\n", + "Epoch 1 Batch 849/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.920, Loss: 0.052\n", + "Epoch 1 Batch 850/1077 - Train Accuracy: 0.884, Validation Accuracy: 0.924, Loss: 0.098\n", + "Epoch 1 Batch 851/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.920, Loss: 0.076\n", + "Epoch 1 Batch 852/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.920, Loss: 0.091\n", + "Epoch 1 Batch 853/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.918, Loss: 0.076\n", + "Epoch 1 Batch 854/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.912, Loss: 0.086\n", + "Epoch 1 Batch 855/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.906, Loss: 0.064\n", + "Epoch 1 Batch 856/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.903, Loss: 0.070\n", + "Epoch 1 Batch 857/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.912, Loss: 0.070\n", + "Epoch 1 Batch 858/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.907, Loss: 0.059\n", + "Epoch 1 Batch 859/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.903, Loss: 0.079\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1 Batch 860/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.900, Loss: 0.081\n", + "Epoch 1 Batch 861/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.900, Loss: 0.067\n", + "Epoch 1 Batch 862/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.901, Loss: 0.067\n", + "Epoch 1 Batch 863/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.909, Loss: 0.054\n", + "Epoch 1 Batch 864/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.898, Loss: 0.073\n", + "Epoch 1 Batch 865/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.896, Loss: 0.069\n", + "Epoch 1 Batch 866/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.913, Loss: 0.078\n", + "Epoch 1 Batch 867/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.911, Loss: 0.115\n", + "Epoch 1 Batch 868/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.909, Loss: 0.069\n", + "Epoch 1 Batch 869/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.910, Loss: 0.067\n", + "Epoch 1 Batch 870/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.911, Loss: 0.069\n", + "Epoch 1 Batch 871/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.911, Loss: 0.066\n", + "Epoch 1 Batch 872/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.918, Loss: 0.067\n", + "Epoch 1 Batch 873/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.918, Loss: 0.069\n", + "Epoch 1 Batch 874/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.922, Loss: 0.078\n", + "Epoch 1 Batch 875/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.919, Loss: 0.082\n", + "Epoch 1 Batch 876/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.929, Loss: 0.064\n", + "Epoch 1 Batch 877/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.936, Loss: 0.057\n", + "Epoch 1 Batch 878/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.930, Loss: 0.054\n", + "Epoch 1 Batch 879/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.921, Loss: 0.055\n", + "Epoch 1 Batch 880/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.923, Loss: 0.071\n", + "Epoch 1 Batch 881/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.912, Loss: 0.073\n", + "Epoch 1 Batch 882/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.915, Loss: 0.075\n", + "Epoch 1 Batch 883/1077 - Train Accuracy: 0.888, Validation Accuracy: 0.921, Loss: 0.092\n", + "Epoch 1 Batch 884/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.913, Loss: 0.067\n", + "Epoch 1 Batch 885/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.908, Loss: 0.042\n", + "Epoch 1 Batch 886/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.910, Loss: 0.064\n", + "Epoch 1 Batch 887/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.906, Loss: 0.083\n", + "Epoch 1 Batch 888/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.911, Loss: 0.049\n", + "Epoch 1 Batch 889/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.900, Loss: 0.057\n", + "Epoch 1 Batch 890/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.901, Loss: 0.069\n", + "Epoch 1 Batch 891/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.905, Loss: 0.057\n", + "Epoch 1 Batch 892/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.908, Loss: 0.054\n", + "Epoch 1 Batch 893/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.903, Loss: 0.073\n", + "Epoch 1 Batch 894/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.911, Loss: 0.069\n", + "Epoch 1 Batch 895/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.909, Loss: 0.064\n", + "Epoch 1 Batch 896/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.923, Loss: 0.064\n", + "Epoch 1 Batch 897/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.919, Loss: 0.053\n", + "Epoch 1 Batch 898/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.919, Loss: 0.057\n", + "Epoch 1 Batch 899/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.909, Loss: 0.076\n", + "Epoch 1 Batch 900/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.917, Loss: 0.076\n", + "Epoch 1 Batch 901/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.917, Loss: 0.075\n", + "Epoch 1 Batch 902/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.929, Loss: 0.081\n", + "Epoch 1 Batch 903/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.925, Loss: 0.062\n", + "Epoch 1 Batch 904/1077 - Train Accuracy: 0.879, Validation Accuracy: 0.918, Loss: 0.060\n", + "Epoch 1 Batch 905/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.912, Loss: 0.054\n", + "Epoch 1 Batch 906/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.904, Loss: 0.069\n", + "Epoch 1 Batch 907/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.900, Loss: 0.078\n", + "Epoch 1 Batch 908/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.909, Loss: 0.074\n", + "Epoch 1 Batch 909/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.901, Loss: 0.071\n", + "Epoch 1 Batch 910/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.903, Loss: 0.065\n", + "Epoch 1 Batch 911/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.907, Loss: 0.074\n", + "Epoch 1 Batch 912/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.912, Loss: 0.061\n", + "Epoch 1 Batch 913/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.900, Loss: 0.092\n", + "Epoch 1 Batch 914/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.902, Loss: 0.091\n", + "Epoch 1 Batch 915/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.898, Loss: 0.057\n", + "Epoch 1 Batch 916/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.903, Loss: 0.086\n", + "Epoch 1 Batch 917/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.903, Loss: 0.065\n", + "Epoch 1 Batch 918/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.909, Loss: 0.058\n", + "Epoch 1 Batch 919/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.904, Loss: 0.051\n", + "Epoch 1 Batch 920/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.912, Loss: 0.069\n", + "Epoch 1 Batch 921/1077 - Train Accuracy: 0.883, Validation Accuracy: 0.906, Loss: 0.066\n", + "Epoch 1 Batch 922/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.897, Loss: 0.073\n", + "Epoch 1 Batch 923/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.911, Loss: 0.044\n", + "Epoch 1 Batch 924/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.905, Loss: 0.086\n", + "Epoch 1 Batch 925/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.908, Loss: 0.066\n", + "Epoch 1 Batch 926/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.908, Loss: 0.055\n", + "Epoch 1 Batch 927/1077 - Train Accuracy: 0.892, Validation Accuracy: 0.908, Loss: 0.077\n", + "Epoch 1 Batch 928/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.902, Loss: 0.068\n", + "Epoch 1 Batch 929/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.901, Loss: 0.062\n", + "Epoch 1 Batch 930/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.901, Loss: 0.060\n", + "Epoch 1 Batch 931/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.905, Loss: 0.053\n", + "Epoch 1 Batch 932/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.898, Loss: 0.067\n", + "Epoch 1 Batch 933/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.896, Loss: 0.062\n", + "Epoch 1 Batch 934/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.906, Loss: 0.051\n", + "Epoch 1 Batch 935/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.898, Loss: 0.055\n", + "Epoch 1 Batch 936/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.912, Loss: 0.069\n", + "Epoch 1 Batch 937/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.917, Loss: 0.075\n", + "Epoch 1 Batch 938/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.912, Loss: 0.082\n", + "Epoch 1 Batch 939/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.910, Loss: 0.072\n", + "Epoch 1 Batch 940/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.910, Loss: 0.044\n", + "Epoch 1 Batch 941/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.910, Loss: 0.059\n", + "Epoch 1 Batch 942/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.908, Loss: 0.065\n", + "Epoch 1 Batch 943/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.912, Loss: 0.063\n", + "Epoch 1 Batch 944/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.910, Loss: 0.056\n", + "Epoch 1 Batch 945/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.909, Loss: 0.057\n", + "Epoch 1 Batch 946/1077 - Train Accuracy: 0.968, Validation Accuracy: 0.916, Loss: 0.044\n", + "Epoch 1 Batch 947/1077 - Train Accuracy: 0.889, Validation Accuracy: 0.910, Loss: 0.059\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1 Batch 948/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.909, Loss: 0.059\n", + "Epoch 1 Batch 949/1077 - Train Accuracy: 0.965, Validation Accuracy: 0.915, Loss: 0.052\n", + "Epoch 1 Batch 950/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.917, Loss: 0.058\n", + "Epoch 1 Batch 951/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.923, Loss: 0.068\n", + "Epoch 1 Batch 952/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.928, Loss: 0.055\n", + "Epoch 1 Batch 953/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.930, Loss: 0.049\n", + "Epoch 1 Batch 954/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.925, Loss: 0.067\n", + "Epoch 1 Batch 955/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.928, Loss: 0.074\n", + "Epoch 1 Batch 956/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.933, Loss: 0.066\n", + "Epoch 1 Batch 957/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.922, Loss: 0.050\n", + "Epoch 1 Batch 958/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.914, Loss: 0.067\n", + "Epoch 1 Batch 959/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.918, Loss: 0.068\n", + "Epoch 1 Batch 960/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.916, Loss: 0.060\n", + "Epoch 1 Batch 961/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.918, Loss: 0.068\n", + "Epoch 1 Batch 962/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.916, Loss: 0.054\n", + "Epoch 1 Batch 963/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.912, Loss: 0.094\n", + "Epoch 1 Batch 964/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.915, Loss: 0.054\n", + "Epoch 1 Batch 965/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.922, Loss: 0.074\n", + "Epoch 1 Batch 966/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.919, Loss: 0.052\n", + "Epoch 1 Batch 967/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.919, Loss: 0.064\n", + "Epoch 1 Batch 968/1077 - Train Accuracy: 0.883, Validation Accuracy: 0.917, Loss: 0.076\n", + "Epoch 1 Batch 969/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.916, Loss: 0.085\n", + "Epoch 1 Batch 970/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.913, Loss: 0.066\n", + "Epoch 1 Batch 971/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.908, Loss: 0.057\n", + "Epoch 1 Batch 972/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.908, Loss: 0.059\n", + "Epoch 1 Batch 973/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.908, Loss: 0.057\n", + "Epoch 1 Batch 974/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.913, Loss: 0.046\n", + "Epoch 1 Batch 975/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.911, Loss: 0.065\n", + "Epoch 1 Batch 976/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.912, Loss: 0.050\n", + "Epoch 1 Batch 977/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.913, Loss: 0.048\n", + "Epoch 1 Batch 978/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.912, Loss: 0.064\n", + "Epoch 1 Batch 979/1077 - Train Accuracy: 0.880, Validation Accuracy: 0.913, Loss: 0.068\n", + "Epoch 1 Batch 980/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.920, Loss: 0.056\n", + "Epoch 1 Batch 981/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.917, Loss: 0.065\n", + "Epoch 1 Batch 982/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.909, Loss: 0.065\n", + "Epoch 1 Batch 983/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.907, Loss: 0.063\n", + "Epoch 1 Batch 984/1077 - Train Accuracy: 0.878, Validation Accuracy: 0.915, Loss: 0.076\n", + "Epoch 1 Batch 985/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.911, Loss: 0.059\n", + "Epoch 1 Batch 986/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.918, Loss: 0.056\n", + "Epoch 1 Batch 987/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.918, Loss: 0.048\n", + "Epoch 1 Batch 988/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.913, Loss: 0.072\n", + "Epoch 1 Batch 989/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.915, Loss: 0.073\n", + "Epoch 1 Batch 990/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.918, Loss: 0.066\n", + "Epoch 1 Batch 991/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.918, Loss: 0.065\n", + "Epoch 1 Batch 992/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.919, Loss: 0.067\n", + "Epoch 1 Batch 993/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.915, Loss: 0.044\n", + "Epoch 1 Batch 994/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.911, Loss: 0.061\n", + "Epoch 1 Batch 995/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.912, Loss: 0.066\n", + "Epoch 1 Batch 996/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.917, Loss: 0.060\n", + "Epoch 1 Batch 997/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.912, Loss: 0.054\n", + "Epoch 1 Batch 998/1077 - Train Accuracy: 0.890, Validation Accuracy: 0.918, Loss: 0.063\n", + "Epoch 1 Batch 999/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.918, Loss: 0.065\n", + "Epoch 1 Batch 1000/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.920, Loss: 0.056\n", + "Epoch 1 Batch 1001/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.915, Loss: 0.053\n", + "Epoch 1 Batch 1002/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.915, Loss: 0.047\n", + "Epoch 1 Batch 1003/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.915, Loss: 0.059\n", + "Epoch 1 Batch 1004/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.917, Loss: 0.070\n", + "Epoch 1 Batch 1005/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.915, Loss: 0.050\n", + "Epoch 1 Batch 1006/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.914, Loss: 0.055\n", + "Epoch 1 Batch 1007/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.911, Loss: 0.057\n", + "Epoch 1 Batch 1008/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.921, Loss: 0.085\n", + "Epoch 1 Batch 1009/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.925, Loss: 0.059\n", + "Epoch 1 Batch 1010/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.925, Loss: 0.058\n", + "Epoch 1 Batch 1011/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.924, Loss: 0.055\n", + "Epoch 1 Batch 1012/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.929, Loss: 0.051\n", + "Epoch 1 Batch 1013/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.928, Loss: 0.052\n", + "Epoch 1 Batch 1014/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.934, Loss: 0.064\n", + "Epoch 1 Batch 1015/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.929, Loss: 0.075\n", + "Epoch 1 Batch 1016/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.922, Loss: 0.066\n", + "Epoch 1 Batch 1017/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.921, Loss: 0.059\n", + "Epoch 1 Batch 1018/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.921, Loss: 0.048\n", + "Epoch 1 Batch 1019/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.917, Loss: 0.075\n", + "Epoch 1 Batch 1020/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.917, Loss: 0.058\n", + "Epoch 1 Batch 1021/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.915, Loss: 0.060\n", + "Epoch 1 Batch 1022/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.914, Loss: 0.053\n", + "Epoch 1 Batch 1023/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.910, Loss: 0.062\n", + "Epoch 1 Batch 1024/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.906, Loss: 0.071\n", + "Epoch 1 Batch 1025/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.912, Loss: 0.059\n", + "Epoch 1 Batch 1026/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.919, Loss: 0.080\n", + "Epoch 1 Batch 1027/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.919, Loss: 0.067\n", + "Epoch 1 Batch 1028/1077 - Train Accuracy: 0.875, Validation Accuracy: 0.922, Loss: 0.061\n", + "Epoch 1 Batch 1029/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.920, Loss: 0.051\n", + "Epoch 1 Batch 1030/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.919, Loss: 0.060\n", + "Epoch 1 Batch 1031/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.921, Loss: 0.063\n", + "Epoch 1 Batch 1032/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.915, Loss: 0.064\n", + "Epoch 1 Batch 1033/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.913, Loss: 0.057\n", + "Epoch 1 Batch 1034/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.913, Loss: 0.055\n", + "Epoch 1 Batch 1035/1077 - Train Accuracy: 0.958, Validation Accuracy: 0.918, Loss: 0.036\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1 Batch 1036/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.919, Loss: 0.076\n", + "Epoch 1 Batch 1037/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.924, Loss: 0.061\n", + "Epoch 1 Batch 1038/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.923, Loss: 0.076\n", + "Epoch 1 Batch 1039/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.929, Loss: 0.066\n", + "Epoch 1 Batch 1040/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.928, Loss: 0.061\n", + "Epoch 1 Batch 1041/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.928, Loss: 0.067\n", + "Epoch 1 Batch 1042/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.920, Loss: 0.052\n", + "Epoch 1 Batch 1043/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.929, Loss: 0.076\n", + "Epoch 1 Batch 1044/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.924, Loss: 0.081\n", + "Epoch 1 Batch 1045/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.913, Loss: 0.058\n", + "Epoch 1 Batch 1046/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.911, Loss: 0.046\n", + "Epoch 1 Batch 1047/1077 - Train Accuracy: 0.963, Validation Accuracy: 0.909, Loss: 0.055\n", + "Epoch 1 Batch 1048/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.908, Loss: 0.050\n", + "Epoch 1 Batch 1049/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.903, Loss: 0.046\n", + "Epoch 1 Batch 1050/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.903, Loss: 0.059\n", + "Epoch 1 Batch 1051/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.900, Loss: 0.066\n", + "Epoch 1 Batch 1052/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.900, Loss: 0.060\n", + "Epoch 1 Batch 1053/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.907, Loss: 0.068\n", + "Epoch 1 Batch 1054/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.912, Loss: 0.062\n", + "Epoch 1 Batch 1055/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.909, Loss: 0.065\n", + "Epoch 1 Batch 1056/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.909, Loss: 0.054\n", + "Epoch 1 Batch 1057/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.902, Loss: 0.068\n", + "Epoch 1 Batch 1058/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.906, Loss: 0.071\n", + "Epoch 1 Batch 1059/1077 - Train Accuracy: 0.872, Validation Accuracy: 0.901, Loss: 0.074\n", + "Epoch 1 Batch 1060/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.907, Loss: 0.051\n", + "Epoch 1 Batch 1061/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.914, Loss: 0.076\n", + "Epoch 1 Batch 1062/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.907, Loss: 0.062\n", + "Epoch 1 Batch 1063/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.909, Loss: 0.066\n", + "Epoch 1 Batch 1064/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.909, Loss: 0.063\n", + "Epoch 1 Batch 1065/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.909, Loss: 0.071\n", + "Epoch 1 Batch 1066/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.909, Loss: 0.055\n", + "Epoch 1 Batch 1067/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.919, Loss: 0.074\n", + "Epoch 1 Batch 1068/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.910, Loss: 0.060\n", + "Epoch 1 Batch 1069/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.913, Loss: 0.045\n", + "Epoch 1 Batch 1070/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.913, Loss: 0.070\n", + "Epoch 1 Batch 1071/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.913, Loss: 0.058\n", + "Epoch 1 Batch 1072/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.919, Loss: 0.055\n", + "Epoch 1 Batch 1073/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.909, Loss: 0.068\n", + "Epoch 1 Batch 1074/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.903, Loss: 0.070\n", + "Epoch 1 Batch 1075/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.900, Loss: 0.070\n", + "Epoch 2 Batch 0/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.907, Loss: 0.046\n", + "Epoch 2 Batch 1/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.910, Loss: 0.060\n", + "Epoch 2 Batch 2/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.906, Loss: 0.068\n", + "Epoch 2 Batch 3/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.907, Loss: 0.061\n", + "Epoch 2 Batch 4/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.910, Loss: 0.056\n", + "Epoch 2 Batch 5/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.918, Loss: 0.072\n", + "Epoch 2 Batch 6/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.917, Loss: 0.065\n", + "Epoch 2 Batch 7/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.905, Loss: 0.052\n", + "Epoch 2 Batch 8/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.924, Loss: 0.060\n", + "Epoch 2 Batch 9/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.930, Loss: 0.065\n", + "Epoch 2 Batch 10/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.921, Loss: 0.062\n", + "Epoch 2 Batch 11/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.916, Loss: 0.072\n", + "Epoch 2 Batch 12/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.922, Loss: 0.058\n", + "Epoch 2 Batch 13/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.922, Loss: 0.063\n", + "Epoch 2 Batch 14/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.925, Loss: 0.054\n", + "Epoch 2 Batch 15/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.930, Loss: 0.060\n", + "Epoch 2 Batch 16/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.923, Loss: 0.064\n", + "Epoch 2 Batch 17/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.929, Loss: 0.055\n", + "Epoch 2 Batch 18/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.929, Loss: 0.065\n", + "Epoch 2 Batch 19/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.924, Loss: 0.065\n", + "Epoch 2 Batch 20/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.918, Loss: 0.060\n", + "Epoch 2 Batch 21/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.924, Loss: 0.066\n", + "Epoch 2 Batch 22/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.930, Loss: 0.067\n", + "Epoch 2 Batch 23/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.926, Loss: 0.066\n", + "Epoch 2 Batch 24/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.924, Loss: 0.069\n", + "Epoch 2 Batch 25/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.915, Loss: 0.047\n", + "Epoch 2 Batch 26/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.916, Loss: 0.066\n", + "Epoch 2 Batch 27/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.912, Loss: 0.052\n", + "Epoch 2 Batch 28/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.915, Loss: 0.056\n", + "Epoch 2 Batch 29/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.913, Loss: 0.063\n", + "Epoch 2 Batch 30/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.918, Loss: 0.051\n", + "Epoch 2 Batch 31/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.913, Loss: 0.052\n", + "Epoch 2 Batch 32/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.918, Loss: 0.054\n", + "Epoch 2 Batch 33/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.907, Loss: 0.055\n", + "Epoch 2 Batch 34/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.900, Loss: 0.063\n", + "Epoch 2 Batch 35/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.900, Loss: 0.066\n", + "Epoch 2 Batch 36/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.898, Loss: 0.056\n", + "Epoch 2 Batch 37/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.903, Loss: 0.063\n", + "Epoch 2 Batch 38/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.907, Loss: 0.081\n", + "Epoch 2 Batch 39/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.902, Loss: 0.068\n", + "Epoch 2 Batch 40/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.906, Loss: 0.049\n", + "Epoch 2 Batch 41/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.908, Loss: 0.058\n", + "Epoch 2 Batch 42/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.908, Loss: 0.075\n", + "Epoch 2 Batch 43/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.904, Loss: 0.044\n", + "Epoch 2 Batch 44/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.905, Loss: 0.049\n", + "Epoch 2 Batch 45/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.908, Loss: 0.052\n", + "Epoch 2 Batch 46/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.904, Loss: 0.063\n", + "Epoch 2 Batch 47/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.906, Loss: 0.068\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2 Batch 48/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.912, Loss: 0.084\n", + "Epoch 2 Batch 49/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.904, Loss: 0.078\n", + "Epoch 2 Batch 50/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.902, Loss: 0.058\n", + "Epoch 2 Batch 51/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.906, Loss: 0.073\n", + "Epoch 2 Batch 52/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.907, Loss: 0.065\n", + "Epoch 2 Batch 53/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.915, Loss: 0.058\n", + "Epoch 2 Batch 54/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.910, Loss: 0.083\n", + "Epoch 2 Batch 55/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.911, Loss: 0.056\n", + "Epoch 2 Batch 56/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.907, Loss: 0.044\n", + "Epoch 2 Batch 57/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.909, Loss: 0.054\n", + "Epoch 2 Batch 58/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.901, Loss: 0.062\n", + "Epoch 2 Batch 59/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.907, Loss: 0.050\n", + "Epoch 2 Batch 60/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.901, Loss: 0.041\n", + "Epoch 2 Batch 61/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.901, Loss: 0.076\n", + "Epoch 2 Batch 62/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.910, Loss: 0.067\n", + "Epoch 2 Batch 63/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.911, Loss: 0.043\n", + "Epoch 2 Batch 64/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.901, Loss: 0.056\n", + "Epoch 2 Batch 65/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.902, Loss: 0.054\n", + "Epoch 2 Batch 66/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.904, Loss: 0.046\n", + "Epoch 2 Batch 67/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.905, Loss: 0.060\n", + "Epoch 2 Batch 68/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.906, Loss: 0.073\n", + "Epoch 2 Batch 69/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.911, Loss: 0.070\n", + "Epoch 2 Batch 70/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.914, Loss: 0.059\n", + "Epoch 2 Batch 71/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.914, Loss: 0.043\n", + "Epoch 2 Batch 72/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.918, Loss: 0.056\n", + "Epoch 2 Batch 73/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.921, Loss: 0.052\n", + "Epoch 2 Batch 74/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.916, Loss: 0.050\n", + "Epoch 2 Batch 75/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.917, Loss: 0.074\n", + "Epoch 2 Batch 76/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.914, Loss: 0.043\n", + "Epoch 2 Batch 77/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.918, Loss: 0.061\n", + "Epoch 2 Batch 78/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.915, Loss: 0.064\n", + "Epoch 2 Batch 79/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.924, Loss: 0.059\n", + "Epoch 2 Batch 80/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.925, Loss: 0.057\n", + "Epoch 2 Batch 81/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.925, Loss: 0.046\n", + "Epoch 2 Batch 82/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.932, Loss: 0.044\n", + "Epoch 2 Batch 83/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.928, Loss: 0.071\n", + "Epoch 2 Batch 84/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.929, Loss: 0.057\n", + "Epoch 2 Batch 85/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.937, Loss: 0.054\n", + "Epoch 2 Batch 86/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.932, Loss: 0.057\n", + "Epoch 2 Batch 87/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.932, Loss: 0.062\n", + "Epoch 2 Batch 88/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.930, Loss: 0.068\n", + "Epoch 2 Batch 89/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.925, Loss: 0.075\n", + "Epoch 2 Batch 90/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.931, Loss: 0.057\n", + "Epoch 2 Batch 91/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.929, Loss: 0.055\n", + "Epoch 2 Batch 92/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.919, Loss: 0.067\n", + "Epoch 2 Batch 93/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.920, Loss: 0.051\n", + "Epoch 2 Batch 94/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.932, Loss: 0.050\n", + "Epoch 2 Batch 95/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.936, Loss: 0.067\n", + "Epoch 2 Batch 96/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.940, Loss: 0.064\n", + "Epoch 2 Batch 97/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.936, Loss: 0.057\n", + "Epoch 2 Batch 98/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.936, Loss: 0.065\n", + "Epoch 2 Batch 99/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.938, Loss: 0.068\n", + "Epoch 2 Batch 100/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.929, Loss: 0.051\n", + "Epoch 2 Batch 101/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.932, Loss: 0.056\n", + "Epoch 2 Batch 102/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.928, Loss: 0.058\n", + "Epoch 2 Batch 103/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.923, Loss: 0.071\n", + "Epoch 2 Batch 104/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.919, Loss: 0.064\n", + "Epoch 2 Batch 105/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.919, Loss: 0.055\n", + "Epoch 2 Batch 106/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.919, Loss: 0.078\n", + "Epoch 2 Batch 107/1077 - Train Accuracy: 0.883, Validation Accuracy: 0.915, Loss: 0.062\n", + "Epoch 2 Batch 108/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.919, Loss: 0.061\n", + "Epoch 2 Batch 109/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.913, Loss: 0.050\n", + "Epoch 2 Batch 110/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.926, Loss: 0.042\n", + "Epoch 2 Batch 111/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.919, Loss: 0.066\n", + "Epoch 2 Batch 112/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.915, Loss: 0.057\n", + "Epoch 2 Batch 113/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.911, Loss: 0.065\n", + "Epoch 2 Batch 114/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.911, Loss: 0.044\n", + "Epoch 2 Batch 115/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.912, Loss: 0.065\n", + "Epoch 2 Batch 116/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.916, Loss: 0.061\n", + "Epoch 2 Batch 117/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.916, Loss: 0.059\n", + "Epoch 2 Batch 118/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.917, Loss: 0.049\n", + "Epoch 2 Batch 119/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.911, Loss: 0.055\n", + "Epoch 2 Batch 120/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.916, Loss: 0.067\n", + "Epoch 2 Batch 121/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.909, Loss: 0.052\n", + "Epoch 2 Batch 122/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.916, Loss: 0.053\n", + "Epoch 2 Batch 123/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.917, Loss: 0.047\n", + "Epoch 2 Batch 124/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.926, Loss: 0.077\n", + "Epoch 2 Batch 125/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.920, Loss: 0.067\n", + "Epoch 2 Batch 126/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.924, Loss: 0.051\n", + "Epoch 2 Batch 127/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.912, Loss: 0.057\n", + "Epoch 2 Batch 128/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.909, Loss: 0.061\n", + "Epoch 2 Batch 129/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.894, Loss: 0.059\n", + "Epoch 2 Batch 130/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.897, Loss: 0.057\n", + "Epoch 2 Batch 131/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.901, Loss: 0.063\n", + "Epoch 2 Batch 132/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.894, Loss: 0.051\n", + "Epoch 2 Batch 133/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.899, Loss: 0.048\n", + "Epoch 2 Batch 134/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.903, Loss: 0.046\n", + "Epoch 2 Batch 135/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.908, Loss: 0.065\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2 Batch 136/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.904, Loss: 0.050\n", + "Epoch 2 Batch 137/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.904, Loss: 0.041\n", + "Epoch 2 Batch 138/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.907, Loss: 0.054\n", + "Epoch 2 Batch 139/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.903, Loss: 0.059\n", + "Epoch 2 Batch 140/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.924, Loss: 0.053\n", + "Epoch 2 Batch 141/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.926, Loss: 0.052\n", + "Epoch 2 Batch 142/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.917, Loss: 0.052\n", + "Epoch 2 Batch 143/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.925, Loss: 0.062\n", + "Epoch 2 Batch 144/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.927, Loss: 0.087\n", + "Epoch 2 Batch 145/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.923, Loss: 0.070\n", + "Epoch 2 Batch 146/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.926, Loss: 0.091\n", + "Epoch 2 Batch 147/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.935, Loss: 0.064\n", + "Epoch 2 Batch 148/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.935, Loss: 0.066\n", + "Epoch 2 Batch 149/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.914, Loss: 0.049\n", + "Epoch 2 Batch 150/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.914, Loss: 0.056\n", + "Epoch 2 Batch 151/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.909, Loss: 0.049\n", + "Epoch 2 Batch 152/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.911, Loss: 0.074\n", + "Epoch 2 Batch 153/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.907, Loss: 0.075\n", + "Epoch 2 Batch 154/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.911, Loss: 0.047\n", + "Epoch 2 Batch 155/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.920, Loss: 0.056\n", + "Epoch 2 Batch 156/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.920, Loss: 0.049\n", + "Epoch 2 Batch 157/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.920, Loss: 0.042\n", + "Epoch 2 Batch 158/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.932, Loss: 0.073\n", + "Epoch 2 Batch 159/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.920, Loss: 0.048\n", + "Epoch 2 Batch 160/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.916, Loss: 0.045\n", + "Epoch 2 Batch 161/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.916, Loss: 0.054\n", + "Epoch 2 Batch 162/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.915, Loss: 0.076\n", + "Epoch 2 Batch 163/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.925, Loss: 0.072\n", + "Epoch 2 Batch 164/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.919, Loss: 0.056\n", + "Epoch 2 Batch 165/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.914, Loss: 0.047\n", + "Epoch 2 Batch 166/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.909, Loss: 0.063\n", + "Epoch 2 Batch 167/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.908, Loss: 0.055\n", + "Epoch 2 Batch 168/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.908, Loss: 0.070\n", + "Epoch 2 Batch 169/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.913, Loss: 0.078\n", + "Epoch 2 Batch 170/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.915, Loss: 0.070\n", + "Epoch 2 Batch 171/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.920, Loss: 0.051\n", + "Epoch 2 Batch 172/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.924, Loss: 0.046\n", + "Epoch 2 Batch 173/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.921, Loss: 0.066\n", + "Epoch 2 Batch 174/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.916, Loss: 0.051\n", + "Epoch 2 Batch 175/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.916, Loss: 0.055\n", + "Epoch 2 Batch 176/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.912, Loss: 0.066\n", + "Epoch 2 Batch 177/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.911, Loss: 0.062\n", + "Epoch 2 Batch 178/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.911, Loss: 0.064\n", + "Epoch 2 Batch 179/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.915, Loss: 0.057\n", + "Epoch 2 Batch 180/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.911, Loss: 0.048\n", + "Epoch 2 Batch 181/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.909, Loss: 0.063\n", + "Epoch 2 Batch 182/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.914, Loss: 0.057\n", + "Epoch 2 Batch 183/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.914, Loss: 0.059\n", + "Epoch 2 Batch 184/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.912, Loss: 0.055\n", + "Epoch 2 Batch 185/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.912, Loss: 0.058\n", + "Epoch 2 Batch 186/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.909, Loss: 0.056\n", + "Epoch 2 Batch 187/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.914, Loss: 0.043\n", + "Epoch 2 Batch 188/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.914, Loss: 0.056\n", + "Epoch 2 Batch 189/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.919, Loss: 0.056\n", + "Epoch 2 Batch 190/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.919, Loss: 0.051\n", + "Epoch 2 Batch 191/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.918, Loss: 0.050\n", + "Epoch 2 Batch 192/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.912, Loss: 0.067\n", + "Epoch 2 Batch 193/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.903, Loss: 0.047\n", + "Epoch 2 Batch 194/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.908, Loss: 0.045\n", + "Epoch 2 Batch 195/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.913, Loss: 0.051\n", + "Epoch 2 Batch 196/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.920, Loss: 0.045\n", + "Epoch 2 Batch 197/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.920, Loss: 0.060\n", + "Epoch 2 Batch 198/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.925, Loss: 0.059\n", + "Epoch 2 Batch 199/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.925, Loss: 0.048\n", + "Epoch 2 Batch 200/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.919, Loss: 0.065\n", + "Epoch 2 Batch 201/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.929, Loss: 0.041\n", + "Epoch 2 Batch 202/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.928, Loss: 0.044\n", + "Epoch 2 Batch 203/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.926, Loss: 0.048\n", + "Epoch 2 Batch 204/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.923, Loss: 0.073\n", + "Epoch 2 Batch 205/1077 - Train Accuracy: 0.891, Validation Accuracy: 0.926, Loss: 0.060\n", + "Epoch 2 Batch 206/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.918, Loss: 0.049\n", + "Epoch 2 Batch 207/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.914, Loss: 0.048\n", + "Epoch 2 Batch 208/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.918, Loss: 0.056\n", + "Epoch 2 Batch 209/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.919, Loss: 0.045\n", + "Epoch 2 Batch 210/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.911, Loss: 0.065\n", + "Epoch 2 Batch 211/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.905, Loss: 0.045\n", + "Epoch 2 Batch 212/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.911, Loss: 0.046\n", + "Epoch 2 Batch 213/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.913, Loss: 0.052\n", + "Epoch 2 Batch 214/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.913, Loss: 0.051\n", + "Epoch 2 Batch 215/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.917, Loss: 0.060\n", + "Epoch 2 Batch 216/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.911, Loss: 0.056\n", + "Epoch 2 Batch 217/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.906, Loss: 0.044\n", + "Epoch 2 Batch 218/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.905, Loss: 0.069\n", + "Epoch 2 Batch 219/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.901, Loss: 0.042\n", + "Epoch 2 Batch 220/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.900, Loss: 0.051\n", + "Epoch 2 Batch 221/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.897, Loss: 0.056\n", + "Epoch 2 Batch 222/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.904, Loss: 0.045\n", + "Epoch 2 Batch 223/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.903, Loss: 0.043\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2 Batch 224/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.912, Loss: 0.064\n", + "Epoch 2 Batch 225/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.917, Loss: 0.058\n", + "Epoch 2 Batch 226/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.921, Loss: 0.050\n", + "Epoch 2 Batch 227/1077 - Train Accuracy: 0.892, Validation Accuracy: 0.911, Loss: 0.073\n", + "Epoch 2 Batch 228/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.915, Loss: 0.053\n", + "Epoch 2 Batch 229/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.930, Loss: 0.058\n", + "Epoch 2 Batch 230/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.914, Loss: 0.056\n", + "Epoch 2 Batch 231/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.914, Loss: 0.050\n", + "Epoch 2 Batch 232/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.921, Loss: 0.041\n", + "Epoch 2 Batch 233/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.911, Loss: 0.075\n", + "Epoch 2 Batch 234/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.915, Loss: 0.062\n", + "Epoch 2 Batch 235/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.922, Loss: 0.056\n", + "Epoch 2 Batch 236/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.923, Loss: 0.064\n", + "Epoch 2 Batch 237/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.919, Loss: 0.048\n", + "Epoch 2 Batch 238/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.913, Loss: 0.048\n", + "Epoch 2 Batch 239/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.918, Loss: 0.041\n", + "Epoch 2 Batch 240/1077 - Train Accuracy: 0.960, Validation Accuracy: 0.916, Loss: 0.050\n", + "Epoch 2 Batch 241/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.915, Loss: 0.045\n", + "Epoch 2 Batch 242/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.909, Loss: 0.044\n", + "Epoch 2 Batch 243/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.904, Loss: 0.055\n", + "Epoch 2 Batch 244/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.904, Loss: 0.051\n", + "Epoch 2 Batch 245/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.917, Loss: 0.043\n", + "Epoch 2 Batch 246/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.917, Loss: 0.044\n", + "Epoch 2 Batch 247/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.923, Loss: 0.056\n", + "Epoch 2 Batch 248/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.927, Loss: 0.045\n", + "Epoch 2 Batch 249/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.924, Loss: 0.052\n", + "Epoch 2 Batch 250/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.921, Loss: 0.056\n", + "Epoch 2 Batch 251/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.916, Loss: 0.057\n", + "Epoch 2 Batch 252/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.917, Loss: 0.061\n", + "Epoch 2 Batch 253/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.917, Loss: 0.056\n", + "Epoch 2 Batch 254/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.910, Loss: 0.057\n", + "Epoch 2 Batch 255/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.910, Loss: 0.054\n", + "Epoch 2 Batch 256/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.906, Loss: 0.073\n", + "Epoch 2 Batch 257/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.905, Loss: 0.055\n", + "Epoch 2 Batch 258/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.907, Loss: 0.054\n", + "Epoch 2 Batch 259/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.906, Loss: 0.045\n", + "Epoch 2 Batch 260/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.901, Loss: 0.048\n", + "Epoch 2 Batch 261/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.901, Loss: 0.057\n", + "Epoch 2 Batch 262/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.911, Loss: 0.048\n", + "Epoch 2 Batch 263/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.912, Loss: 0.051\n", + "Epoch 2 Batch 264/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.913, Loss: 0.053\n", + "Epoch 2 Batch 265/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.918, Loss: 0.051\n", + "Epoch 2 Batch 266/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.919, Loss: 0.057\n", + "Epoch 2 Batch 267/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.925, Loss: 0.050\n", + "Epoch 2 Batch 268/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.927, Loss: 0.062\n", + "Epoch 2 Batch 269/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.926, Loss: 0.082\n", + "Epoch 2 Batch 270/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.925, Loss: 0.065\n", + "Epoch 2 Batch 271/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.924, Loss: 0.048\n", + "Epoch 2 Batch 272/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.915, Loss: 0.093\n", + "Epoch 2 Batch 273/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.922, Loss: 0.049\n", + "Epoch 2 Batch 274/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.917, Loss: 0.066\n", + "Epoch 2 Batch 275/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.917, Loss: 0.055\n", + "Epoch 2 Batch 276/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.910, Loss: 0.088\n", + "Epoch 2 Batch 277/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.915, Loss: 0.049\n", + "Epoch 2 Batch 278/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.917, Loss: 0.067\n", + "Epoch 2 Batch 279/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.914, Loss: 0.068\n", + "Epoch 2 Batch 280/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.915, Loss: 0.072\n", + "Epoch 2 Batch 281/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.920, Loss: 0.072\n", + "Epoch 2 Batch 282/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.912, Loss: 0.082\n", + "Epoch 2 Batch 283/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.919, Loss: 0.080\n", + "Epoch 2 Batch 284/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.928, Loss: 0.062\n", + "Epoch 2 Batch 285/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.917, Loss: 0.061\n", + "Epoch 2 Batch 286/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.918, Loss: 0.053\n", + "Epoch 2 Batch 287/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.909, Loss: 0.060\n", + "Epoch 2 Batch 288/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.904, Loss: 0.067\n", + "Epoch 2 Batch 289/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.901, Loss: 0.056\n", + "Epoch 2 Batch 290/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.915, Loss: 0.088\n", + "Epoch 2 Batch 291/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.922, Loss: 0.076\n", + "Epoch 2 Batch 292/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.918, Loss: 0.067\n", + "Epoch 2 Batch 293/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.917, Loss: 0.067\n", + "Epoch 2 Batch 294/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.917, Loss: 0.052\n", + "Epoch 2 Batch 295/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.913, Loss: 0.067\n", + "Epoch 2 Batch 296/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.913, Loss: 0.060\n", + "Epoch 2 Batch 297/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.917, Loss: 0.065\n", + "Epoch 2 Batch 298/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.918, Loss: 0.079\n", + "Epoch 2 Batch 299/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.921, Loss: 0.067\n", + "Epoch 2 Batch 300/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.917, Loss: 0.056\n", + "Epoch 2 Batch 301/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.908, Loss: 0.045\n", + "Epoch 2 Batch 302/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.901, Loss: 0.053\n", + "Epoch 2 Batch 303/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.906, Loss: 0.067\n", + "Epoch 2 Batch 304/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.906, Loss: 0.059\n", + "Epoch 2 Batch 305/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.904, Loss: 0.046\n", + "Epoch 2 Batch 306/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.905, Loss: 0.075\n", + "Epoch 2 Batch 307/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.910, Loss: 0.049\n", + "Epoch 2 Batch 308/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.908, Loss: 0.075\n", + "Epoch 2 Batch 309/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.912, Loss: 0.053\n", + "Epoch 2 Batch 310/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.912, Loss: 0.058\n", + "Epoch 2 Batch 311/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.903, Loss: 0.058\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2 Batch 312/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.904, Loss: 0.077\n", + "Epoch 2 Batch 313/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.899, Loss: 0.049\n", + "Epoch 2 Batch 314/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.903, Loss: 0.049\n", + "Epoch 2 Batch 315/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.899, Loss: 0.049\n", + "Epoch 2 Batch 316/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.893, Loss: 0.068\n", + "Epoch 2 Batch 317/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.895, Loss: 0.082\n", + "Epoch 2 Batch 318/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.898, Loss: 0.066\n", + "Epoch 2 Batch 319/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.900, Loss: 0.071\n", + "Epoch 2 Batch 320/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.893, Loss: 0.067\n", + "Epoch 2 Batch 321/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.898, Loss: 0.054\n", + "Epoch 2 Batch 322/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.903, Loss: 0.057\n", + "Epoch 2 Batch 323/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.908, Loss: 0.066\n", + "Epoch 2 Batch 324/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.903, Loss: 0.055\n", + "Epoch 2 Batch 325/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.912, Loss: 0.069\n", + "Epoch 2 Batch 326/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.913, Loss: 0.059\n", + "Epoch 2 Batch 327/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.911, Loss: 0.066\n", + "Epoch 2 Batch 328/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.904, Loss: 0.070\n", + "Epoch 2 Batch 329/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.902, Loss: 0.071\n", + "Epoch 2 Batch 330/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.894, Loss: 0.059\n", + "Epoch 2 Batch 331/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.886, Loss: 0.061\n", + "Epoch 2 Batch 332/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.888, Loss: 0.049\n", + "Epoch 2 Batch 333/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.879, Loss: 0.054\n", + "Epoch 2 Batch 334/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.878, Loss: 0.058\n", + "Epoch 2 Batch 335/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.878, Loss: 0.058\n", + "Epoch 2 Batch 336/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.893, Loss: 0.096\n", + "Epoch 2 Batch 337/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.897, Loss: 0.065\n", + "Epoch 2 Batch 338/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.895, Loss: 0.073\n", + "Epoch 2 Batch 339/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.909, Loss: 0.049\n", + "Epoch 2 Batch 340/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.908, Loss: 0.061\n", + "Epoch 2 Batch 341/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.918, Loss: 0.072\n", + "Epoch 2 Batch 342/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.922, Loss: 0.053\n", + "Epoch 2 Batch 343/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.911, Loss: 0.055\n", + "Epoch 2 Batch 344/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.912, Loss: 0.068\n", + "Epoch 2 Batch 345/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.907, Loss: 0.052\n", + "Epoch 2 Batch 346/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.916, Loss: 0.056\n", + "Epoch 2 Batch 347/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.906, Loss: 0.050\n", + "Epoch 2 Batch 348/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.897, Loss: 0.052\n", + "Epoch 2 Batch 349/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.897, Loss: 0.056\n", + "Epoch 2 Batch 350/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.904, Loss: 0.065\n", + "Epoch 2 Batch 351/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.903, Loss: 0.060\n", + "Epoch 2 Batch 352/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.906, Loss: 0.058\n", + "Epoch 2 Batch 353/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.902, Loss: 0.067\n", + "Epoch 2 Batch 354/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.903, Loss: 0.074\n", + "Epoch 2 Batch 355/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.898, Loss: 0.057\n", + "Epoch 2 Batch 356/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.896, Loss: 0.063\n", + "Epoch 2 Batch 357/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.896, Loss: 0.057\n", + "Epoch 2 Batch 358/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.904, Loss: 0.076\n", + "Epoch 2 Batch 359/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.912, Loss: 0.059\n", + "Epoch 2 Batch 360/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.912, Loss: 0.048\n", + "Epoch 2 Batch 361/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.908, Loss: 0.055\n", + "Epoch 2 Batch 362/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.914, Loss: 0.066\n", + "Epoch 2 Batch 363/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.913, Loss: 0.068\n", + "Epoch 2 Batch 364/1077 - Train Accuracy: 0.894, Validation Accuracy: 0.915, Loss: 0.077\n", + "Epoch 2 Batch 365/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.916, Loss: 0.048\n", + "Epoch 2 Batch 366/1077 - Train Accuracy: 0.960, Validation Accuracy: 0.914, Loss: 0.056\n", + "Epoch 2 Batch 367/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.908, Loss: 0.047\n", + "Epoch 2 Batch 368/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.911, Loss: 0.068\n", + "Epoch 2 Batch 369/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.913, Loss: 0.059\n", + "Epoch 2 Batch 370/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.913, Loss: 0.061\n", + "Epoch 2 Batch 371/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.917, Loss: 0.055\n", + "Epoch 2 Batch 372/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.931, Loss: 0.053\n", + "Epoch 2 Batch 373/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.915, Loss: 0.043\n", + "Epoch 2 Batch 374/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.921, Loss: 0.071\n", + "Epoch 2 Batch 375/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.928, Loss: 0.057\n", + "Epoch 2 Batch 376/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.933, Loss: 0.054\n", + "Epoch 2 Batch 377/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.929, Loss: 0.053\n", + "Epoch 2 Batch 378/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.930, Loss: 0.044\n", + "Epoch 2 Batch 379/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.929, Loss: 0.068\n", + "Epoch 2 Batch 380/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.930, Loss: 0.054\n", + "Epoch 2 Batch 381/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.929, Loss: 0.066\n", + "Epoch 2 Batch 382/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.932, Loss: 0.078\n", + "Epoch 2 Batch 383/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.930, Loss: 0.049\n", + "Epoch 2 Batch 384/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.922, Loss: 0.058\n", + "Epoch 2 Batch 385/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.923, Loss: 0.052\n", + "Epoch 2 Batch 386/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.924, Loss: 0.049\n", + "Epoch 2 Batch 387/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.918, Loss: 0.057\n", + "Epoch 2 Batch 388/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.913, Loss: 0.061\n", + "Epoch 2 Batch 389/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.907, Loss: 0.058\n", + "Epoch 2 Batch 390/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.904, Loss: 0.070\n", + "Epoch 2 Batch 391/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.912, Loss: 0.057\n", + "Epoch 2 Batch 392/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.911, Loss: 0.061\n", + "Epoch 2 Batch 393/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.916, Loss: 0.053\n", + "Epoch 2 Batch 394/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.914, Loss: 0.053\n", + "Epoch 2 Batch 395/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.915, Loss: 0.054\n", + "Epoch 2 Batch 396/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.932, Loss: 0.054\n", + "Epoch 2 Batch 397/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.937, Loss: 0.049\n", + "Epoch 2 Batch 398/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.938, Loss: 0.059\n", + "Epoch 2 Batch 399/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.938, Loss: 0.052\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2 Batch 400/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.943, Loss: 0.071\n", + "Epoch 2 Batch 401/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.935, Loss: 0.049\n", + "Epoch 2 Batch 402/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.931, Loss: 0.050\n", + "Epoch 2 Batch 403/1077 - Train Accuracy: 0.884, Validation Accuracy: 0.927, Loss: 0.077\n", + "Epoch 2 Batch 404/1077 - Train Accuracy: 0.959, Validation Accuracy: 0.929, Loss: 0.050\n", + "Epoch 2 Batch 405/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.930, Loss: 0.065\n", + "Epoch 2 Batch 406/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.930, Loss: 0.051\n", + "Epoch 2 Batch 407/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.922, Loss: 0.062\n", + "Epoch 2 Batch 408/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.917, Loss: 0.052\n", + "Epoch 2 Batch 409/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.917, Loss: 0.066\n", + "Epoch 2 Batch 410/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.915, Loss: 0.077\n", + "Epoch 2 Batch 411/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.915, Loss: 0.067\n", + "Epoch 2 Batch 412/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.915, Loss: 0.048\n", + "Epoch 2 Batch 413/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.915, Loss: 0.049\n", + "Epoch 2 Batch 414/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.910, Loss: 0.071\n", + "Epoch 2 Batch 415/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.919, Loss: 0.059\n", + "Epoch 2 Batch 416/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.916, Loss: 0.052\n", + "Epoch 2 Batch 417/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.924, Loss: 0.092\n", + "Epoch 2 Batch 418/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.928, Loss: 0.050\n", + "Epoch 2 Batch 419/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.925, Loss: 0.059\n", + "Epoch 2 Batch 420/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.927, Loss: 0.050\n", + "Epoch 2 Batch 421/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.918, Loss: 0.070\n", + "Epoch 2 Batch 422/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.918, Loss: 0.051\n", + "Epoch 2 Batch 423/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.923, Loss: 0.068\n", + "Epoch 2 Batch 424/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.928, Loss: 0.062\n", + "Epoch 2 Batch 425/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.932, Loss: 0.045\n", + "Epoch 2 Batch 426/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.931, Loss: 0.057\n", + "Epoch 2 Batch 427/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.931, Loss: 0.060\n", + "Epoch 2 Batch 428/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.931, Loss: 0.045\n", + "Epoch 2 Batch 429/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.926, Loss: 0.048\n", + "Epoch 2 Batch 430/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.928, Loss: 0.057\n", + "Epoch 2 Batch 431/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.924, Loss: 0.050\n", + "Epoch 2 Batch 432/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.924, Loss: 0.065\n", + "Epoch 2 Batch 433/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.926, Loss: 0.065\n", + "Epoch 2 Batch 434/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.920, Loss: 0.050\n", + "Epoch 2 Batch 435/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.907, Loss: 0.075\n", + "Epoch 2 Batch 436/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.912, Loss: 0.056\n", + "Epoch 2 Batch 437/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.911, Loss: 0.046\n", + "Epoch 2 Batch 438/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.906, Loss: 0.054\n", + "Epoch 2 Batch 439/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.897, Loss: 0.081\n", + "Epoch 2 Batch 440/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.898, Loss: 0.064\n", + "Epoch 2 Batch 441/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.892, Loss: 0.058\n", + "Epoch 2 Batch 442/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.895, Loss: 0.064\n", + "Epoch 2 Batch 443/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.899, Loss: 0.046\n", + "Epoch 2 Batch 444/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.904, Loss: 0.052\n", + "Epoch 2 Batch 445/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.895, Loss: 0.061\n", + "Epoch 2 Batch 446/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.893, Loss: 0.051\n", + "Epoch 2 Batch 447/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.890, Loss: 0.056\n", + "Epoch 2 Batch 448/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.894, Loss: 0.067\n", + "Epoch 2 Batch 449/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.901, Loss: 0.060\n", + "Epoch 2 Batch 450/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.906, Loss: 0.063\n", + "Epoch 2 Batch 451/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.915, Loss: 0.063\n", + "Epoch 2 Batch 452/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.928, Loss: 0.055\n", + "Epoch 2 Batch 453/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.928, Loss: 0.048\n", + "Epoch 2 Batch 454/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.928, Loss: 0.058\n", + "Epoch 2 Batch 455/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.929, Loss: 0.052\n", + "Epoch 2 Batch 456/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.935, Loss: 0.059\n", + "Epoch 2 Batch 457/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.934, Loss: 0.050\n", + "Epoch 2 Batch 458/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.939, Loss: 0.062\n", + "Epoch 2 Batch 459/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.934, Loss: 0.048\n", + "Epoch 2 Batch 460/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.930, Loss: 0.061\n", + "Epoch 2 Batch 461/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.935, Loss: 0.052\n", + "Epoch 2 Batch 462/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.934, Loss: 0.056\n", + "Epoch 2 Batch 463/1077 - Train Accuracy: 0.892, Validation Accuracy: 0.932, Loss: 0.064\n", + "Epoch 2 Batch 464/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.921, Loss: 0.050\n", + "Epoch 2 Batch 465/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.915, Loss: 0.062\n", + "Epoch 2 Batch 466/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.913, Loss: 0.048\n", + "Epoch 2 Batch 467/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.908, Loss: 0.063\n", + "Epoch 2 Batch 468/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.917, Loss: 0.060\n", + "Epoch 2 Batch 469/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.913, Loss: 0.046\n", + "Epoch 2 Batch 470/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.902, Loss: 0.052\n", + "Epoch 2 Batch 471/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.903, Loss: 0.046\n", + "Epoch 2 Batch 472/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.907, Loss: 0.051\n", + "Epoch 2 Batch 473/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.906, Loss: 0.054\n", + "Epoch 2 Batch 474/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.906, Loss: 0.053\n", + "Epoch 2 Batch 475/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.907, Loss: 0.052\n", + "Epoch 2 Batch 476/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.913, Loss: 0.041\n", + "Epoch 2 Batch 477/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.912, Loss: 0.054\n", + "Epoch 2 Batch 478/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.912, Loss: 0.047\n", + "Epoch 2 Batch 479/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.914, Loss: 0.054\n", + "Epoch 2 Batch 480/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.919, Loss: 0.050\n", + "Epoch 2 Batch 481/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.913, Loss: 0.060\n", + "Epoch 2 Batch 482/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.923, Loss: 0.064\n", + "Epoch 2 Batch 483/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.918, Loss: 0.055\n", + "Epoch 2 Batch 484/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.923, Loss: 0.060\n", + "Epoch 2 Batch 485/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.918, Loss: 0.065\n", + "Epoch 2 Batch 486/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.914, Loss: 0.049\n", + "Epoch 2 Batch 487/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.919, Loss: 0.052\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2 Batch 488/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.914, Loss: 0.050\n", + "Epoch 2 Batch 489/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.909, Loss: 0.048\n", + "Epoch 2 Batch 490/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.903, Loss: 0.058\n", + "Epoch 2 Batch 491/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.905, Loss: 0.060\n", + "Epoch 2 Batch 492/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.909, Loss: 0.062\n", + "Epoch 2 Batch 493/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.910, Loss: 0.033\n", + "Epoch 2 Batch 494/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.910, Loss: 0.038\n", + "Epoch 2 Batch 495/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.913, Loss: 0.051\n", + "Epoch 2 Batch 496/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.920, Loss: 0.061\n", + "Epoch 2 Batch 497/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.920, Loss: 0.058\n", + "Epoch 2 Batch 498/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.932, Loss: 0.053\n", + "Epoch 2 Batch 499/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.932, Loss: 0.044\n", + "Epoch 2 Batch 500/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.934, Loss: 0.041\n", + "Epoch 2 Batch 501/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.925, Loss: 0.044\n", + "Epoch 2 Batch 502/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.923, Loss: 0.054\n", + "Epoch 2 Batch 503/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.923, Loss: 0.045\n", + "Epoch 2 Batch 504/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.922, Loss: 0.045\n", + "Epoch 2 Batch 505/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.931, Loss: 0.044\n", + "Epoch 2 Batch 506/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.932, Loss: 0.058\n", + "Epoch 2 Batch 507/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.925, Loss: 0.054\n", + "Epoch 2 Batch 508/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.921, Loss: 0.046\n", + "Epoch 2 Batch 509/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.925, Loss: 0.073\n", + "Epoch 2 Batch 510/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.930, Loss: 0.051\n", + "Epoch 2 Batch 511/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.935, Loss: 0.042\n", + "Epoch 2 Batch 512/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.930, Loss: 0.044\n", + "Epoch 2 Batch 513/1077 - Train Accuracy: 0.892, Validation Accuracy: 0.928, Loss: 0.060\n", + "Epoch 2 Batch 514/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.922, Loss: 0.052\n", + "Epoch 2 Batch 515/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.930, Loss: 0.050\n", + "Epoch 2 Batch 516/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.925, Loss: 0.054\n", + "Epoch 2 Batch 517/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.919, Loss: 0.062\n", + "Epoch 2 Batch 518/1077 - Train Accuracy: 0.964, Validation Accuracy: 0.914, Loss: 0.043\n", + "Epoch 2 Batch 519/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.909, Loss: 0.047\n", + "Epoch 2 Batch 520/1077 - Train Accuracy: 0.956, Validation Accuracy: 0.909, Loss: 0.051\n", + "Epoch 2 Batch 521/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.911, Loss: 0.047\n", + "Epoch 2 Batch 522/1077 - Train Accuracy: 0.890, Validation Accuracy: 0.905, Loss: 0.057\n", + "Epoch 2 Batch 523/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.911, Loss: 0.054\n", + "Epoch 2 Batch 524/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.910, Loss: 0.054\n", + "Epoch 2 Batch 525/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.912, Loss: 0.056\n", + "Epoch 2 Batch 526/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.914, Loss: 0.039\n", + "Epoch 2 Batch 527/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.915, Loss: 0.065\n", + "Epoch 2 Batch 528/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.908, Loss: 0.051\n", + "Epoch 2 Batch 529/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.908, Loss: 0.058\n", + "Epoch 2 Batch 530/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.907, Loss: 0.066\n", + "Epoch 2 Batch 531/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.904, Loss: 0.060\n", + "Epoch 2 Batch 532/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.912, Loss: 0.067\n", + "Epoch 2 Batch 533/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.914, Loss: 0.058\n", + "Epoch 2 Batch 534/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.919, Loss: 0.061\n", + "Epoch 2 Batch 535/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.913, Loss: 0.047\n", + "Epoch 2 Batch 536/1077 - Train Accuracy: 0.889, Validation Accuracy: 0.909, Loss: 0.060\n", + "Epoch 2 Batch 537/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.914, Loss: 0.038\n", + "Epoch 2 Batch 538/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.910, Loss: 0.034\n", + "Epoch 2 Batch 539/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.905, Loss: 0.071\n", + "Epoch 2 Batch 540/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.900, Loss: 0.045\n", + "Epoch 2 Batch 541/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.905, Loss: 0.046\n", + "Epoch 2 Batch 542/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.898, Loss: 0.047\n", + "Epoch 2 Batch 543/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.896, Loss: 0.044\n", + "Epoch 2 Batch 544/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.896, Loss: 0.038\n", + "Epoch 2 Batch 545/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.898, Loss: 0.055\n", + "Epoch 2 Batch 546/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.894, Loss: 0.060\n", + "Epoch 2 Batch 547/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.894, Loss: 0.042\n", + "Epoch 2 Batch 548/1077 - Train Accuracy: 0.889, Validation Accuracy: 0.898, Loss: 0.060\n", + "Epoch 2 Batch 549/1077 - Train Accuracy: 0.868, Validation Accuracy: 0.903, Loss: 0.074\n", + "Epoch 2 Batch 550/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.906, Loss: 0.049\n", + "Epoch 2 Batch 551/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.906, Loss: 0.060\n", + "Epoch 2 Batch 552/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.908, Loss: 0.058\n", + "Epoch 2 Batch 553/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.906, Loss: 0.072\n", + "Epoch 2 Batch 554/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.901, Loss: 0.049\n", + "Epoch 2 Batch 555/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.901, Loss: 0.041\n", + "Epoch 2 Batch 556/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.902, Loss: 0.048\n", + "Epoch 2 Batch 557/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.903, Loss: 0.050\n", + "Epoch 2 Batch 558/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.914, Loss: 0.043\n", + "Epoch 2 Batch 559/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.910, Loss: 0.049\n", + "Epoch 2 Batch 560/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.900, Loss: 0.053\n", + "Epoch 2 Batch 561/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.904, Loss: 0.046\n", + "Epoch 2 Batch 562/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.908, Loss: 0.046\n", + "Epoch 2 Batch 563/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.907, Loss: 0.053\n", + "Epoch 2 Batch 564/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.907, Loss: 0.058\n", + "Epoch 2 Batch 565/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.907, Loss: 0.056\n", + "Epoch 2 Batch 566/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.903, Loss: 0.049\n", + "Epoch 2 Batch 567/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.904, Loss: 0.054\n", + "Epoch 2 Batch 568/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.904, Loss: 0.047\n", + "Epoch 2 Batch 569/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.903, Loss: 0.060\n", + "Epoch 2 Batch 570/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.908, Loss: 0.066\n", + "Epoch 2 Batch 571/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.917, Loss: 0.037\n", + "Epoch 2 Batch 572/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.912, Loss: 0.046\n", + "Epoch 2 Batch 573/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.919, Loss: 0.060\n", + "Epoch 2 Batch 574/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.919, Loss: 0.059\n", + "Epoch 2 Batch 575/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.924, Loss: 0.039\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2 Batch 576/1077 - Train Accuracy: 0.960, Validation Accuracy: 0.915, Loss: 0.048\n", + "Epoch 2 Batch 577/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.922, Loss: 0.056\n", + "Epoch 2 Batch 578/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.922, Loss: 0.045\n", + "Epoch 2 Batch 579/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.922, Loss: 0.045\n", + "Epoch 2 Batch 580/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.922, Loss: 0.042\n", + "Epoch 2 Batch 581/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.922, Loss: 0.037\n", + "Epoch 2 Batch 582/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.915, Loss: 0.045\n", + "Epoch 2 Batch 583/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.913, Loss: 0.057\n", + "Epoch 2 Batch 584/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.913, Loss: 0.050\n", + "Epoch 2 Batch 585/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.912, Loss: 0.044\n", + "Epoch 2 Batch 586/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.914, Loss: 0.044\n", + "Epoch 2 Batch 587/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.910, Loss: 0.052\n", + "Epoch 2 Batch 588/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.909, Loss: 0.041\n", + "Epoch 2 Batch 589/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.901, Loss: 0.045\n", + "Epoch 2 Batch 590/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.902, Loss: 0.058\n", + "Epoch 2 Batch 591/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.897, Loss: 0.055\n", + "Epoch 2 Batch 592/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.902, Loss: 0.051\n", + "Epoch 2 Batch 593/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.897, Loss: 0.078\n", + "Epoch 2 Batch 594/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.894, Loss: 0.064\n", + "Epoch 2 Batch 595/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.895, Loss: 0.048\n", + "Epoch 2 Batch 596/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.895, Loss: 0.050\n", + "Epoch 2 Batch 597/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.896, Loss: 0.045\n", + "Epoch 2 Batch 598/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.897, Loss: 0.056\n", + "Epoch 2 Batch 599/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.912, Loss: 0.061\n", + "Epoch 2 Batch 600/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.921, Loss: 0.057\n", + "Epoch 2 Batch 601/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.922, Loss: 0.056\n", + "Epoch 2 Batch 602/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.923, Loss: 0.050\n", + "Epoch 2 Batch 603/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.928, Loss: 0.048\n", + "Epoch 2 Batch 604/1077 - Train Accuracy: 0.889, Validation Accuracy: 0.941, Loss: 0.065\n", + "Epoch 2 Batch 605/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.936, Loss: 0.062\n", + "Epoch 2 Batch 606/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.935, Loss: 0.046\n", + "Epoch 2 Batch 607/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.930, Loss: 0.055\n", + "Epoch 2 Batch 608/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.924, Loss: 0.062\n", + "Epoch 2 Batch 609/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.924, Loss: 0.047\n", + "Epoch 2 Batch 610/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.895, Loss: 0.067\n", + "Epoch 2 Batch 611/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.893, Loss: 0.045\n", + "Epoch 2 Batch 612/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.889, Loss: 0.046\n", + "Epoch 2 Batch 613/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.892, Loss: 0.061\n", + "Epoch 2 Batch 614/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.892, Loss: 0.040\n", + "Epoch 2 Batch 615/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.900, Loss: 0.047\n", + "Epoch 2 Batch 616/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.907, Loss: 0.059\n", + "Epoch 2 Batch 617/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.928, Loss: 0.050\n", + "Epoch 2 Batch 618/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.926, Loss: 0.056\n", + "Epoch 2 Batch 619/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.917, Loss: 0.035\n", + "Epoch 2 Batch 620/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.918, Loss: 0.040\n", + "Epoch 2 Batch 621/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.918, Loss: 0.052\n", + "Epoch 2 Batch 622/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.923, Loss: 0.058\n", + "Epoch 2 Batch 623/1077 - Train Accuracy: 0.885, Validation Accuracy: 0.918, Loss: 0.064\n", + "Epoch 2 Batch 624/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.914, Loss: 0.053\n", + "Epoch 2 Batch 625/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.914, Loss: 0.042\n", + "Epoch 2 Batch 626/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.916, Loss: 0.048\n", + "Epoch 2 Batch 627/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.918, Loss: 0.047\n", + "Epoch 2 Batch 628/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.925, Loss: 0.053\n", + "Epoch 2 Batch 629/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.920, Loss: 0.055\n", + "Epoch 2 Batch 630/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.921, Loss: 0.045\n", + "Epoch 2 Batch 631/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.925, Loss: 0.049\n", + "Epoch 2 Batch 632/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.929, Loss: 0.038\n", + "Epoch 2 Batch 633/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.927, Loss: 0.056\n", + "Epoch 2 Batch 634/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.926, Loss: 0.045\n", + "Epoch 2 Batch 635/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.936, Loss: 0.054\n", + "Epoch 2 Batch 636/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.936, Loss: 0.055\n", + "Epoch 2 Batch 637/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.932, Loss: 0.050\n", + "Epoch 2 Batch 638/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.931, Loss: 0.041\n", + "Epoch 2 Batch 639/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.930, Loss: 0.073\n", + "Epoch 2 Batch 640/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.931, Loss: 0.046\n", + "Epoch 2 Batch 641/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.931, Loss: 0.044\n", + "Epoch 2 Batch 642/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.927, Loss: 0.050\n", + "Epoch 2 Batch 643/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.926, Loss: 0.044\n", + "Epoch 2 Batch 644/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.922, Loss: 0.047\n", + "Epoch 2 Batch 645/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.924, Loss: 0.066\n", + "Epoch 2 Batch 646/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.922, Loss: 0.050\n", + "Epoch 2 Batch 647/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.916, Loss: 0.048\n", + "Epoch 2 Batch 648/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.924, Loss: 0.033\n", + "Epoch 2 Batch 649/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.923, Loss: 0.051\n", + "Epoch 2 Batch 650/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.919, Loss: 0.054\n", + "Epoch 2 Batch 651/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.920, Loss: 0.053\n", + "Epoch 2 Batch 652/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.919, Loss: 0.054\n", + "Epoch 2 Batch 653/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.912, Loss: 0.053\n", + "Epoch 2 Batch 654/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.927, Loss: 0.049\n", + "Epoch 2 Batch 655/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.918, Loss: 0.063\n", + "Epoch 2 Batch 656/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.923, Loss: 0.057\n", + "Epoch 2 Batch 657/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.932, Loss: 0.051\n", + "Epoch 2 Batch 658/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.934, Loss: 0.040\n", + "Epoch 2 Batch 659/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.929, Loss: 0.053\n", + "Epoch 2 Batch 660/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.924, Loss: 0.047\n", + "Epoch 2 Batch 661/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.924, Loss: 0.046\n", + "Epoch 2 Batch 662/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.919, Loss: 0.053\n", + "Epoch 2 Batch 663/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.904, Loss: 0.042\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2 Batch 664/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.900, Loss: 0.052\n", + "Epoch 2 Batch 665/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.899, Loss: 0.048\n", + "Epoch 2 Batch 666/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.899, Loss: 0.063\n", + "Epoch 2 Batch 667/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.897, Loss: 0.060\n", + "Epoch 2 Batch 668/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.905, Loss: 0.042\n", + "Epoch 2 Batch 669/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.915, Loss: 0.049\n", + "Epoch 2 Batch 670/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.912, Loss: 0.058\n", + "Epoch 2 Batch 671/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.908, Loss: 0.059\n", + "Epoch 2 Batch 672/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.909, Loss: 0.045\n", + "Epoch 2 Batch 673/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.914, Loss: 0.048\n", + "Epoch 2 Batch 674/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.916, Loss: 0.051\n", + "Epoch 2 Batch 675/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.921, Loss: 0.060\n", + "Epoch 2 Batch 676/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.921, Loss: 0.046\n", + "Epoch 2 Batch 677/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.919, Loss: 0.068\n", + "Epoch 2 Batch 678/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.924, Loss: 0.042\n", + "Epoch 2 Batch 679/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.925, Loss: 0.042\n", + "Epoch 2 Batch 680/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.918, Loss: 0.052\n", + "Epoch 2 Batch 681/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.919, Loss: 0.052\n", + "Epoch 2 Batch 682/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.923, Loss: 0.055\n", + "Epoch 2 Batch 683/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.919, Loss: 0.037\n", + "Epoch 2 Batch 684/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.919, Loss: 0.046\n", + "Epoch 2 Batch 685/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.919, Loss: 0.059\n", + "Epoch 2 Batch 686/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.923, Loss: 0.044\n", + "Epoch 2 Batch 687/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.913, Loss: 0.056\n", + "Epoch 2 Batch 688/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.913, Loss: 0.046\n", + "Epoch 2 Batch 689/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.909, Loss: 0.046\n", + "Epoch 2 Batch 690/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.925, Loss: 0.053\n", + "Epoch 2 Batch 691/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.919, Loss: 0.059\n", + "Epoch 2 Batch 692/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.919, Loss: 0.043\n", + "Epoch 2 Batch 693/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.909, Loss: 0.070\n", + "Epoch 2 Batch 694/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.918, Loss: 0.053\n", + "Epoch 2 Batch 695/1077 - Train Accuracy: 0.958, Validation Accuracy: 0.919, Loss: 0.042\n", + "Epoch 2 Batch 696/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.914, Loss: 0.053\n", + "Epoch 2 Batch 697/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.919, Loss: 0.048\n", + "Epoch 2 Batch 698/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.912, Loss: 0.046\n", + "Epoch 2 Batch 699/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.910, Loss: 0.044\n", + "Epoch 2 Batch 700/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.915, Loss: 0.048\n", + "Epoch 2 Batch 701/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.915, Loss: 0.052\n", + "Epoch 2 Batch 702/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.911, Loss: 0.066\n", + "Epoch 2 Batch 703/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.913, Loss: 0.055\n", + "Epoch 2 Batch 704/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.919, Loss: 0.063\n", + "Epoch 2 Batch 705/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.923, Loss: 0.061\n", + "Epoch 2 Batch 706/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.926, Loss: 0.073\n", + "Epoch 2 Batch 707/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.928, Loss: 0.056\n", + "Epoch 2 Batch 708/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.929, Loss: 0.057\n", + "Epoch 2 Batch 709/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.924, Loss: 0.053\n", + "Epoch 2 Batch 710/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.921, Loss: 0.040\n", + "Epoch 2 Batch 711/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.919, Loss: 0.068\n", + "Epoch 2 Batch 712/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.922, Loss: 0.037\n", + "Epoch 2 Batch 713/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.922, Loss: 0.036\n", + "Epoch 2 Batch 714/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.919, Loss: 0.052\n", + "Epoch 2 Batch 715/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.932, Loss: 0.059\n", + "Epoch 2 Batch 716/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.938, Loss: 0.047\n", + "Epoch 2 Batch 717/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.939, Loss: 0.035\n", + "Epoch 2 Batch 718/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.939, Loss: 0.053\n", + "Epoch 2 Batch 719/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.938, Loss: 0.057\n", + "Epoch 2 Batch 720/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.938, Loss: 0.053\n", + "Epoch 2 Batch 721/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.934, Loss: 0.060\n", + "Epoch 2 Batch 722/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.935, Loss: 0.042\n", + "Epoch 2 Batch 723/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.936, Loss: 0.058\n", + "Epoch 2 Batch 724/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.939, Loss: 0.056\n", + "Epoch 2 Batch 725/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.934, Loss: 0.039\n", + "Epoch 2 Batch 726/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.934, Loss: 0.052\n", + "Epoch 2 Batch 727/1077 - Train Accuracy: 0.969, Validation Accuracy: 0.934, Loss: 0.041\n", + "Epoch 2 Batch 728/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.934, Loss: 0.058\n", + "Epoch 2 Batch 729/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.931, Loss: 0.063\n", + "Epoch 2 Batch 730/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.932, Loss: 0.058\n", + "Epoch 2 Batch 731/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.931, Loss: 0.045\n", + "Epoch 2 Batch 732/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.935, Loss: 0.054\n", + "Epoch 2 Batch 733/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.933, Loss: 0.053\n", + "Epoch 2 Batch 734/1077 - Train Accuracy: 0.958, Validation Accuracy: 0.924, Loss: 0.044\n", + "Epoch 2 Batch 735/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.923, Loss: 0.044\n", + "Epoch 2 Batch 736/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.923, Loss: 0.046\n", + "Epoch 2 Batch 737/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.921, Loss: 0.051\n", + "Epoch 2 Batch 738/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.924, Loss: 0.038\n", + "Epoch 2 Batch 739/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.930, Loss: 0.041\n", + "Epoch 2 Batch 740/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.929, Loss: 0.038\n", + "Epoch 2 Batch 741/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.930, Loss: 0.057\n", + "Epoch 2 Batch 742/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.929, Loss: 0.036\n", + "Epoch 2 Batch 743/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.933, Loss: 0.056\n", + "Epoch 2 Batch 744/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.931, Loss: 0.050\n", + "Epoch 2 Batch 745/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.932, Loss: 0.053\n", + "Epoch 2 Batch 746/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.932, Loss: 0.052\n", + "Epoch 2 Batch 747/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.927, Loss: 0.041\n", + "Epoch 2 Batch 748/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.931, Loss: 0.043\n", + "Epoch 2 Batch 749/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.924, Loss: 0.053\n", + "Epoch 2 Batch 750/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.934, Loss: 0.049\n", + "Epoch 2 Batch 751/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.938, Loss: 0.050\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2 Batch 752/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.942, Loss: 0.047\n", + "Epoch 2 Batch 753/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.938, Loss: 0.055\n", + "Epoch 2 Batch 754/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.933, Loss: 0.061\n", + "Epoch 2 Batch 755/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.942, Loss: 0.062\n", + "Epoch 2 Batch 756/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.942, Loss: 0.049\n", + "Epoch 2 Batch 757/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.939, Loss: 0.045\n", + "Epoch 2 Batch 758/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.934, Loss: 0.047\n", + "Epoch 2 Batch 759/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.929, Loss: 0.045\n", + "Epoch 2 Batch 760/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.929, Loss: 0.055\n", + "Epoch 2 Batch 761/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.929, Loss: 0.049\n", + "Epoch 2 Batch 762/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.929, Loss: 0.051\n", + "Epoch 2 Batch 763/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.934, Loss: 0.043\n", + "Epoch 2 Batch 764/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.936, Loss: 0.046\n", + "Epoch 2 Batch 765/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.933, Loss: 0.060\n", + "Epoch 2 Batch 766/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.935, Loss: 0.050\n", + "Epoch 2 Batch 767/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.938, Loss: 0.044\n", + "Epoch 2 Batch 768/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.931, Loss: 0.053\n", + "Epoch 2 Batch 769/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.932, Loss: 0.045\n", + "Epoch 2 Batch 770/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.933, Loss: 0.040\n", + "Epoch 2 Batch 771/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.931, Loss: 0.057\n", + "Epoch 2 Batch 772/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.929, Loss: 0.053\n", + "Epoch 2 Batch 773/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.924, Loss: 0.047\n", + "Epoch 2 Batch 774/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.928, Loss: 0.057\n", + "Epoch 2 Batch 775/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.937, Loss: 0.056\n", + "Epoch 2 Batch 776/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.947, Loss: 0.043\n", + "Epoch 2 Batch 777/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.936, Loss: 0.056\n", + "Epoch 2 Batch 778/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.936, Loss: 0.047\n", + "Epoch 2 Batch 779/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.935, Loss: 0.057\n", + "Epoch 2 Batch 780/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.947, Loss: 0.062\n", + "Epoch 2 Batch 781/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.945, Loss: 0.044\n", + "Epoch 2 Batch 782/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.940, Loss: 0.047\n", + "Epoch 2 Batch 783/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.942, Loss: 0.053\n", + "Epoch 2 Batch 784/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.938, Loss: 0.045\n", + "Epoch 2 Batch 785/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.935, Loss: 0.050\n", + "Epoch 2 Batch 786/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.931, Loss: 0.041\n", + "Epoch 2 Batch 787/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.939, Loss: 0.053\n", + "Epoch 2 Batch 788/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.930, Loss: 0.049\n", + "Epoch 2 Batch 789/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.931, Loss: 0.051\n", + "Epoch 2 Batch 790/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.933, Loss: 0.052\n", + "Epoch 2 Batch 791/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.918, Loss: 0.057\n", + "Epoch 2 Batch 792/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.918, Loss: 0.056\n", + "Epoch 2 Batch 793/1077 - Train Accuracy: 0.961, Validation Accuracy: 0.918, Loss: 0.050\n", + "Epoch 2 Batch 794/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.916, Loss: 0.047\n", + "Epoch 2 Batch 795/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.911, Loss: 0.066\n", + "Epoch 2 Batch 796/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.922, Loss: 0.045\n", + "Epoch 2 Batch 797/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.920, Loss: 0.044\n", + "Epoch 2 Batch 798/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.930, Loss: 0.051\n", + "Epoch 2 Batch 799/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.933, Loss: 0.078\n", + "Epoch 2 Batch 800/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.940, Loss: 0.050\n", + "Epoch 2 Batch 801/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.940, Loss: 0.068\n", + "Epoch 2 Batch 802/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.940, Loss: 0.058\n", + "Epoch 2 Batch 803/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.944, Loss: 0.051\n", + "Epoch 2 Batch 804/1077 - Train Accuracy: 0.975, Validation Accuracy: 0.944, Loss: 0.037\n", + "Epoch 2 Batch 805/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.939, Loss: 0.048\n", + "Epoch 2 Batch 806/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.940, Loss: 0.043\n", + "Epoch 2 Batch 807/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.934, Loss: 0.041\n", + "Epoch 2 Batch 808/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.928, Loss: 0.069\n", + "Epoch 2 Batch 809/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.936, Loss: 0.069\n", + "Epoch 2 Batch 810/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.944, Loss: 0.046\n", + "Epoch 2 Batch 811/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.929, Loss: 0.055\n", + "Epoch 2 Batch 812/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.930, Loss: 0.057\n", + "Epoch 2 Batch 813/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.936, Loss: 0.045\n", + "Epoch 2 Batch 814/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.936, Loss: 0.063\n", + "Epoch 2 Batch 815/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.926, Loss: 0.049\n", + "Epoch 2 Batch 816/1077 - Train Accuracy: 0.956, Validation Accuracy: 0.935, Loss: 0.062\n", + "Epoch 2 Batch 817/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.930, Loss: 0.054\n", + "Epoch 2 Batch 818/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.933, Loss: 0.059\n", + "Epoch 2 Batch 819/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.933, Loss: 0.050\n", + "Epoch 2 Batch 820/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.935, Loss: 0.049\n", + "Epoch 2 Batch 821/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.931, Loss: 0.049\n", + "Epoch 2 Batch 822/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.925, Loss: 0.052\n", + "Epoch 2 Batch 823/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.923, Loss: 0.056\n", + "Epoch 2 Batch 824/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.919, Loss: 0.055\n", + "Epoch 2 Batch 825/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.917, Loss: 0.040\n", + "Epoch 2 Batch 826/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.917, Loss: 0.046\n", + "Epoch 2 Batch 827/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.912, Loss: 0.056\n", + "Epoch 2 Batch 828/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.911, Loss: 0.048\n", + "Epoch 2 Batch 829/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.904, Loss: 0.064\n", + "Epoch 2 Batch 830/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.904, Loss: 0.061\n", + "Epoch 2 Batch 831/1077 - Train Accuracy: 0.872, Validation Accuracy: 0.909, Loss: 0.060\n", + "Epoch 2 Batch 832/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.913, Loss: 0.049\n", + "Epoch 2 Batch 833/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.913, Loss: 0.054\n", + "Epoch 2 Batch 834/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.918, Loss: 0.059\n", + "Epoch 2 Batch 835/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.914, Loss: 0.051\n", + "Epoch 2 Batch 836/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.918, Loss: 0.050\n", + "Epoch 2 Batch 837/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.923, Loss: 0.062\n", + "Epoch 2 Batch 838/1077 - Train Accuracy: 0.959, Validation Accuracy: 0.924, Loss: 0.044\n", + "Epoch 2 Batch 839/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.924, Loss: 0.036\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2 Batch 840/1077 - Train Accuracy: 0.959, Validation Accuracy: 0.924, Loss: 0.039\n", + "Epoch 2 Batch 841/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.924, Loss: 0.050\n", + "Epoch 2 Batch 842/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.926, Loss: 0.044\n", + "Epoch 2 Batch 843/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.926, Loss: 0.044\n", + "Epoch 2 Batch 844/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.918, Loss: 0.039\n", + "Epoch 2 Batch 845/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.926, Loss: 0.039\n", + "Epoch 2 Batch 846/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.930, Loss: 0.063\n", + "Epoch 2 Batch 847/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.930, Loss: 0.057\n", + "Epoch 2 Batch 848/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.925, Loss: 0.045\n", + "Epoch 2 Batch 849/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.922, Loss: 0.042\n", + "Epoch 2 Batch 850/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.913, Loss: 0.085\n", + "Epoch 2 Batch 851/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.913, Loss: 0.062\n", + "Epoch 2 Batch 852/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.913, Loss: 0.061\n", + "Epoch 2 Batch 853/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.922, Loss: 0.055\n", + "Epoch 2 Batch 854/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.921, Loss: 0.062\n", + "Epoch 2 Batch 855/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.920, Loss: 0.058\n", + "Epoch 2 Batch 856/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.923, Loss: 0.068\n", + "Epoch 2 Batch 857/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.923, Loss: 0.048\n", + "Epoch 2 Batch 858/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.926, Loss: 0.047\n", + "Epoch 2 Batch 859/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.917, Loss: 0.067\n", + "Epoch 2 Batch 860/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.922, Loss: 0.057\n", + "Epoch 2 Batch 861/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.926, Loss: 0.051\n", + "Epoch 2 Batch 862/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.922, Loss: 0.049\n", + "Epoch 2 Batch 863/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.914, Loss: 0.040\n", + "Epoch 2 Batch 864/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.913, Loss: 0.051\n", + "Epoch 2 Batch 865/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.917, Loss: 0.053\n", + "Epoch 2 Batch 866/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.913, Loss: 0.056\n", + "Epoch 2 Batch 867/1077 - Train Accuracy: 0.892, Validation Accuracy: 0.908, Loss: 0.085\n", + "Epoch 2 Batch 868/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.920, Loss: 0.056\n", + "Epoch 2 Batch 869/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.918, Loss: 0.056\n", + "Epoch 2 Batch 870/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.933, Loss: 0.058\n", + "Epoch 2 Batch 871/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.929, Loss: 0.048\n", + "Epoch 2 Batch 872/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.939, Loss: 0.056\n", + "Epoch 2 Batch 873/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.935, Loss: 0.056\n", + "Epoch 2 Batch 874/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.931, Loss: 0.061\n", + "Epoch 2 Batch 875/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.932, Loss: 0.058\n", + "Epoch 2 Batch 876/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.935, Loss: 0.049\n", + "Epoch 2 Batch 877/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.939, Loss: 0.046\n", + "Epoch 2 Batch 878/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.939, Loss: 0.039\n", + "Epoch 2 Batch 879/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.935, Loss: 0.047\n", + "Epoch 2 Batch 880/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.931, Loss: 0.053\n", + "Epoch 2 Batch 881/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.941, Loss: 0.063\n", + "Epoch 2 Batch 882/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.941, Loss: 0.058\n", + "Epoch 2 Batch 883/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.936, Loss: 0.079\n", + "Epoch 2 Batch 884/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.927, Loss: 0.052\n", + "Epoch 2 Batch 885/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.920, Loss: 0.031\n", + "Epoch 2 Batch 886/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.923, Loss: 0.050\n", + "Epoch 2 Batch 887/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.922, Loss: 0.063\n", + "Epoch 2 Batch 888/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.926, Loss: 0.045\n", + "Epoch 2 Batch 889/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.923, Loss: 0.045\n", + "Epoch 2 Batch 890/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.911, Loss: 0.049\n", + "Epoch 2 Batch 891/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.914, Loss: 0.046\n", + "Epoch 2 Batch 892/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.911, Loss: 0.045\n", + "Epoch 2 Batch 893/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.912, Loss: 0.043\n", + "Epoch 2 Batch 894/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.917, Loss: 0.053\n", + "Epoch 2 Batch 895/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.915, Loss: 0.048\n", + "Epoch 2 Batch 896/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.914, Loss: 0.052\n", + "Epoch 2 Batch 897/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.907, Loss: 0.037\n", + "Epoch 2 Batch 898/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.904, Loss: 0.044\n", + "Epoch 2 Batch 899/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.907, Loss: 0.057\n", + "Epoch 2 Batch 900/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.917, Loss: 0.065\n", + "Epoch 2 Batch 901/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.916, Loss: 0.068\n", + "Epoch 2 Batch 902/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.916, Loss: 0.057\n", + "Epoch 2 Batch 903/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.920, Loss: 0.049\n", + "Epoch 2 Batch 904/1077 - Train Accuracy: 0.892, Validation Accuracy: 0.928, Loss: 0.049\n", + "Epoch 2 Batch 905/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.912, Loss: 0.046\n", + "Epoch 2 Batch 906/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.902, Loss: 0.056\n", + "Epoch 2 Batch 907/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.908, Loss: 0.052\n", + "Epoch 2 Batch 908/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.926, Loss: 0.061\n", + "Epoch 2 Batch 909/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.931, Loss: 0.061\n", + "Epoch 2 Batch 910/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.920, Loss: 0.057\n", + "Epoch 2 Batch 911/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.929, Loss: 0.057\n", + "Epoch 2 Batch 912/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.933, Loss: 0.043\n", + "Epoch 2 Batch 913/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.924, Loss: 0.067\n", + "Epoch 2 Batch 914/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.919, Loss: 0.079\n", + "Epoch 2 Batch 915/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.914, Loss: 0.040\n", + "Epoch 2 Batch 916/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.909, Loss: 0.053\n", + "Epoch 2 Batch 917/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.901, Loss: 0.051\n", + "Epoch 2 Batch 918/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.911, Loss: 0.048\n", + "Epoch 2 Batch 919/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.907, Loss: 0.047\n", + "Epoch 2 Batch 920/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.908, Loss: 0.052\n", + "Epoch 2 Batch 921/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.912, Loss: 0.056\n", + "Epoch 2 Batch 922/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.919, Loss: 0.056\n", + "Epoch 2 Batch 923/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.923, Loss: 0.033\n", + "Epoch 2 Batch 924/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.914, Loss: 0.071\n", + "Epoch 2 Batch 925/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.917, Loss: 0.042\n", + "Epoch 2 Batch 926/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.917, Loss: 0.042\n", + "Epoch 2 Batch 927/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.909, Loss: 0.064\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2 Batch 928/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.909, Loss: 0.046\n", + "Epoch 2 Batch 929/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.906, Loss: 0.060\n", + "Epoch 2 Batch 930/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.909, Loss: 0.047\n", + "Epoch 2 Batch 931/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.908, Loss: 0.038\n", + "Epoch 2 Batch 932/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.916, Loss: 0.050\n", + "Epoch 2 Batch 933/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.917, Loss: 0.056\n", + "Epoch 2 Batch 934/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.928, Loss: 0.047\n", + "Epoch 2 Batch 935/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.928, Loss: 0.044\n", + "Epoch 2 Batch 936/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.928, Loss: 0.051\n", + "Epoch 2 Batch 937/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.918, Loss: 0.074\n", + "Epoch 2 Batch 938/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.918, Loss: 0.058\n", + "Epoch 2 Batch 939/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.917, Loss: 0.058\n", + "Epoch 2 Batch 940/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.925, Loss: 0.048\n", + "Epoch 2 Batch 941/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.928, Loss: 0.043\n", + "Epoch 2 Batch 942/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.931, Loss: 0.059\n", + "Epoch 2 Batch 943/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.931, Loss: 0.050\n", + "Epoch 2 Batch 944/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.927, Loss: 0.052\n", + "Epoch 2 Batch 945/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.924, Loss: 0.046\n", + "Epoch 2 Batch 946/1077 - Train Accuracy: 0.965, Validation Accuracy: 0.920, Loss: 0.037\n", + "Epoch 2 Batch 947/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.916, Loss: 0.057\n", + "Epoch 2 Batch 948/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.925, Loss: 0.042\n", + "Epoch 2 Batch 949/1077 - Train Accuracy: 0.960, Validation Accuracy: 0.919, Loss: 0.043\n", + "Epoch 2 Batch 950/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.918, Loss: 0.039\n", + "Epoch 2 Batch 951/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.913, Loss: 0.063\n", + "Epoch 2 Batch 952/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.917, Loss: 0.045\n", + "Epoch 2 Batch 953/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.916, Loss: 0.046\n", + "Epoch 2 Batch 954/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.913, Loss: 0.054\n", + "Epoch 2 Batch 955/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.920, Loss: 0.060\n", + "Epoch 2 Batch 956/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.918, Loss: 0.057\n", + "Epoch 2 Batch 957/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.914, Loss: 0.042\n", + "Epoch 2 Batch 958/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.903, Loss: 0.048\n", + "Epoch 2 Batch 959/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.901, Loss: 0.041\n", + "Epoch 2 Batch 960/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.915, Loss: 0.043\n", + "Epoch 2 Batch 961/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.912, Loss: 0.044\n", + "Epoch 2 Batch 962/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.917, Loss: 0.053\n", + "Epoch 2 Batch 963/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.912, Loss: 0.064\n", + "Epoch 2 Batch 964/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.916, Loss: 0.048\n", + "Epoch 2 Batch 965/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.912, Loss: 0.051\n", + "Epoch 2 Batch 966/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.922, Loss: 0.050\n", + "Epoch 2 Batch 967/1077 - Train Accuracy: 0.896, Validation Accuracy: 0.923, Loss: 0.059\n", + "Epoch 2 Batch 968/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.922, Loss: 0.064\n", + "Epoch 2 Batch 969/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.926, Loss: 0.062\n", + "Epoch 2 Batch 970/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.924, Loss: 0.046\n", + "Epoch 2 Batch 971/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.920, Loss: 0.055\n", + "Epoch 2 Batch 972/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.916, Loss: 0.052\n", + "Epoch 2 Batch 973/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.916, Loss: 0.033\n", + "Epoch 2 Batch 974/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.915, Loss: 0.037\n", + "Epoch 2 Batch 975/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.914, Loss: 0.045\n", + "Epoch 2 Batch 976/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.918, Loss: 0.037\n", + "Epoch 2 Batch 977/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.925, Loss: 0.037\n", + "Epoch 2 Batch 978/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.928, Loss: 0.054\n", + "Epoch 2 Batch 979/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.932, Loss: 0.056\n", + "Epoch 2 Batch 980/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.938, Loss: 0.057\n", + "Epoch 2 Batch 981/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.933, Loss: 0.042\n", + "Epoch 2 Batch 982/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.931, Loss: 0.056\n", + "Epoch 2 Batch 983/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.931, Loss: 0.048\n", + "Epoch 2 Batch 984/1077 - Train Accuracy: 0.875, Validation Accuracy: 0.936, Loss: 0.067\n", + "Epoch 2 Batch 985/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.938, Loss: 0.049\n", + "Epoch 2 Batch 986/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.938, Loss: 0.055\n", + "Epoch 2 Batch 987/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.954, Loss: 0.046\n", + "Epoch 2 Batch 988/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.952, Loss: 0.062\n", + "Epoch 2 Batch 989/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.938, Loss: 0.048\n", + "Epoch 2 Batch 990/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.910, Loss: 0.061\n", + "Epoch 2 Batch 991/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.910, Loss: 0.049\n", + "Epoch 2 Batch 992/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.912, Loss: 0.073\n", + "Epoch 2 Batch 993/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.908, Loss: 0.040\n", + "Epoch 2 Batch 994/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.917, Loss: 0.050\n", + "Epoch 2 Batch 995/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.919, Loss: 0.057\n", + "Epoch 2 Batch 996/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.922, Loss: 0.048\n", + "Epoch 2 Batch 997/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.920, Loss: 0.052\n", + "Epoch 2 Batch 998/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.926, Loss: 0.042\n", + "Epoch 2 Batch 999/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.942, Loss: 0.057\n", + "Epoch 2 Batch 1000/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.946, Loss: 0.054\n", + "Epoch 2 Batch 1001/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.940, Loss: 0.046\n", + "Epoch 2 Batch 1002/1077 - Train Accuracy: 0.968, Validation Accuracy: 0.930, Loss: 0.035\n", + "Epoch 2 Batch 1003/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.933, Loss: 0.052\n", + "Epoch 2 Batch 1004/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.934, Loss: 0.069\n", + "Epoch 2 Batch 1005/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.934, Loss: 0.041\n", + "Epoch 2 Batch 1006/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.934, Loss: 0.041\n", + "Epoch 2 Batch 1007/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.934, Loss: 0.051\n", + "Epoch 2 Batch 1008/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.932, Loss: 0.074\n", + "Epoch 2 Batch 1009/1077 - Train Accuracy: 0.956, Validation Accuracy: 0.928, Loss: 0.038\n", + "Epoch 2 Batch 1010/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.925, Loss: 0.050\n", + "Epoch 2 Batch 1011/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.926, Loss: 0.043\n", + "Epoch 2 Batch 1012/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.926, Loss: 0.032\n", + "Epoch 2 Batch 1013/1077 - Train Accuracy: 0.974, Validation Accuracy: 0.917, Loss: 0.037\n", + "Epoch 2 Batch 1014/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.923, Loss: 0.049\n", + "Epoch 2 Batch 1015/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.933, Loss: 0.058\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2 Batch 1016/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.933, Loss: 0.054\n", + "Epoch 2 Batch 1017/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.931, Loss: 0.055\n", + "Epoch 2 Batch 1018/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.941, Loss: 0.041\n", + "Epoch 2 Batch 1019/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.948, Loss: 0.074\n", + "Epoch 2 Batch 1020/1077 - Train Accuracy: 0.956, Validation Accuracy: 0.941, Loss: 0.042\n", + "Epoch 2 Batch 1021/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.936, Loss: 0.057\n", + "Epoch 2 Batch 1022/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.930, Loss: 0.050\n", + "Epoch 2 Batch 1023/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.932, Loss: 0.052\n", + "Epoch 2 Batch 1024/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.936, Loss: 0.066\n", + "Epoch 2 Batch 1025/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.940, Loss: 0.055\n", + "Epoch 2 Batch 1026/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.944, Loss: 0.052\n", + "Epoch 2 Batch 1027/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.943, Loss: 0.049\n", + "Epoch 2 Batch 1028/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.943, Loss: 0.048\n", + "Epoch 2 Batch 1029/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.942, Loss: 0.045\n", + "Epoch 2 Batch 1030/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.941, Loss: 0.042\n", + "Epoch 2 Batch 1031/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.936, Loss: 0.059\n", + "Epoch 2 Batch 1032/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.921, Loss: 0.070\n", + "Epoch 2 Batch 1033/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.926, Loss: 0.062\n", + "Epoch 2 Batch 1034/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.920, Loss: 0.048\n", + "Epoch 2 Batch 1035/1077 - Train Accuracy: 0.961, Validation Accuracy: 0.911, Loss: 0.030\n", + "Epoch 2 Batch 1036/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.907, Loss: 0.061\n", + "Epoch 2 Batch 1037/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.907, Loss: 0.047\n", + "Epoch 2 Batch 1038/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.903, Loss: 0.051\n", + "Epoch 2 Batch 1039/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.907, Loss: 0.049\n", + "Epoch 2 Batch 1040/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.913, Loss: 0.058\n", + "Epoch 2 Batch 1041/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.913, Loss: 0.050\n", + "Epoch 2 Batch 1042/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.911, Loss: 0.047\n", + "Epoch 2 Batch 1043/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.910, Loss: 0.061\n", + "Epoch 2 Batch 1044/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.910, Loss: 0.070\n", + "Epoch 2 Batch 1045/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.910, Loss: 0.056\n", + "Epoch 2 Batch 1046/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.914, Loss: 0.042\n", + "Epoch 2 Batch 1047/1077 - Train Accuracy: 0.959, Validation Accuracy: 0.918, Loss: 0.047\n", + "Epoch 2 Batch 1048/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.923, Loss: 0.049\n", + "Epoch 2 Batch 1049/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.918, Loss: 0.041\n", + "Epoch 2 Batch 1050/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.913, Loss: 0.042\n", + "Epoch 2 Batch 1051/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.909, Loss: 0.064\n", + "Epoch 2 Batch 1052/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.913, Loss: 0.049\n", + "Epoch 2 Batch 1053/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.926, Loss: 0.069\n", + "Epoch 2 Batch 1054/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.923, Loss: 0.047\n", + "Epoch 2 Batch 1055/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.923, Loss: 0.051\n", + "Epoch 2 Batch 1056/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.924, Loss: 0.042\n", + "Epoch 2 Batch 1057/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.917, Loss: 0.059\n", + "Epoch 2 Batch 1058/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.921, Loss: 0.056\n", + "Epoch 2 Batch 1059/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.929, Loss: 0.070\n", + "Epoch 2 Batch 1060/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.928, Loss: 0.051\n", + "Epoch 2 Batch 1061/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.935, Loss: 0.070\n", + "Epoch 2 Batch 1062/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.936, Loss: 0.056\n", + "Epoch 2 Batch 1063/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.925, Loss: 0.058\n", + "Epoch 2 Batch 1064/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.920, Loss: 0.050\n", + "Epoch 2 Batch 1065/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.923, Loss: 0.043\n", + "Epoch 2 Batch 1066/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.921, Loss: 0.036\n", + "Epoch 2 Batch 1067/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.926, Loss: 0.053\n", + "Epoch 2 Batch 1068/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.926, Loss: 0.043\n", + "Epoch 2 Batch 1069/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.919, Loss: 0.037\n", + "Epoch 2 Batch 1070/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.920, Loss: 0.043\n", + "Epoch 2 Batch 1071/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.920, Loss: 0.046\n", + "Epoch 2 Batch 1072/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.922, Loss: 0.052\n", + "Epoch 2 Batch 1073/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.913, Loss: 0.053\n", + "Epoch 2 Batch 1074/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.915, Loss: 0.063\n", + "Epoch 2 Batch 1075/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.919, Loss: 0.053\n", + "Epoch 3 Batch 0/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.913, Loss: 0.045\n", + "Epoch 3 Batch 1/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.911, Loss: 0.032\n", + "Epoch 3 Batch 2/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.911, Loss: 0.053\n", + "Epoch 3 Batch 3/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.911, Loss: 0.047\n", + "Epoch 3 Batch 4/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.911, Loss: 0.043\n", + "Epoch 3 Batch 5/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.904, Loss: 0.072\n", + "Epoch 3 Batch 6/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.904, Loss: 0.054\n", + "Epoch 3 Batch 7/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.906, Loss: 0.040\n", + "Epoch 3 Batch 8/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.896, Loss: 0.051\n", + "Epoch 3 Batch 9/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.892, Loss: 0.041\n", + "Epoch 3 Batch 10/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.898, Loss: 0.053\n", + "Epoch 3 Batch 11/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.905, Loss: 0.068\n", + "Epoch 3 Batch 12/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.907, Loss: 0.053\n", + "Epoch 3 Batch 13/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.916, Loss: 0.054\n", + "Epoch 3 Batch 14/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.912, Loss: 0.036\n", + "Epoch 3 Batch 15/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.912, Loss: 0.044\n", + "Epoch 3 Batch 16/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.919, Loss: 0.060\n", + "Epoch 3 Batch 17/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.919, Loss: 0.046\n", + "Epoch 3 Batch 18/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.922, Loss: 0.067\n", + "Epoch 3 Batch 19/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.931, Loss: 0.050\n", + "Epoch 3 Batch 20/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.936, Loss: 0.040\n", + "Epoch 3 Batch 21/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.934, Loss: 0.056\n", + "Epoch 3 Batch 22/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.933, Loss: 0.062\n", + "Epoch 3 Batch 23/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.933, Loss: 0.051\n", + "Epoch 3 Batch 24/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.926, Loss: 0.052\n", + "Epoch 3 Batch 25/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.922, Loss: 0.038\n", + "Epoch 3 Batch 26/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.922, Loss: 0.055\n", + "Epoch 3 Batch 27/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.923, Loss: 0.042\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 3 Batch 28/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.926, Loss: 0.053\n", + "Epoch 3 Batch 29/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.925, Loss: 0.056\n", + "Epoch 3 Batch 30/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.920, Loss: 0.036\n", + "Epoch 3 Batch 31/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.925, Loss: 0.041\n", + "Epoch 3 Batch 32/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.924, Loss: 0.045\n", + "Epoch 3 Batch 33/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.918, Loss: 0.055\n", + "Epoch 3 Batch 34/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.929, Loss: 0.050\n", + "Epoch 3 Batch 35/1077 - Train Accuracy: 0.966, Validation Accuracy: 0.929, Loss: 0.051\n", + "Epoch 3 Batch 36/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.934, Loss: 0.043\n", + "Epoch 3 Batch 37/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.934, Loss: 0.043\n", + "Epoch 3 Batch 38/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.930, Loss: 0.078\n", + "Epoch 3 Batch 39/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.930, Loss: 0.062\n", + "Epoch 3 Batch 40/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.918, Loss: 0.040\n", + "Epoch 3 Batch 41/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.906, Loss: 0.044\n", + "Epoch 3 Batch 42/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.908, Loss: 0.064\n", + "Epoch 3 Batch 43/1077 - Train Accuracy: 0.958, Validation Accuracy: 0.913, Loss: 0.028\n", + "Epoch 3 Batch 44/1077 - Train Accuracy: 0.956, Validation Accuracy: 0.916, Loss: 0.040\n", + "Epoch 3 Batch 45/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.916, Loss: 0.053\n", + "Epoch 3 Batch 46/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.923, Loss: 0.046\n", + "Epoch 3 Batch 47/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.924, Loss: 0.053\n", + "Epoch 3 Batch 48/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.922, Loss: 0.087\n", + "Epoch 3 Batch 49/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.922, Loss: 0.060\n", + "Epoch 3 Batch 50/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.919, Loss: 0.046\n", + "Epoch 3 Batch 51/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.918, Loss: 0.058\n", + "Epoch 3 Batch 52/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.915, Loss: 0.065\n", + "Epoch 3 Batch 53/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.922, Loss: 0.039\n", + "Epoch 3 Batch 54/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.925, Loss: 0.078\n", + "Epoch 3 Batch 55/1077 - Train Accuracy: 0.956, Validation Accuracy: 0.925, Loss: 0.042\n", + "Epoch 3 Batch 56/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.919, Loss: 0.051\n", + "Epoch 3 Batch 57/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.916, Loss: 0.059\n", + "Epoch 3 Batch 58/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.912, Loss: 0.046\n", + "Epoch 3 Batch 59/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.912, Loss: 0.043\n", + "Epoch 3 Batch 60/1077 - Train Accuracy: 0.970, Validation Accuracy: 0.910, Loss: 0.035\n", + "Epoch 3 Batch 61/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.912, Loss: 0.060\n", + "Epoch 3 Batch 62/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.910, Loss: 0.061\n", + "Epoch 3 Batch 63/1077 - Train Accuracy: 0.958, Validation Accuracy: 0.913, Loss: 0.042\n", + "Epoch 3 Batch 64/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.913, Loss: 0.045\n", + "Epoch 3 Batch 65/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.917, Loss: 0.053\n", + "Epoch 3 Batch 66/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.914, Loss: 0.031\n", + "Epoch 3 Batch 67/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.915, Loss: 0.047\n", + "Epoch 3 Batch 68/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.911, Loss: 0.053\n", + "Epoch 3 Batch 69/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.915, Loss: 0.061\n", + "Epoch 3 Batch 70/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.915, Loss: 0.050\n", + "Epoch 3 Batch 71/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.919, Loss: 0.035\n", + "Epoch 3 Batch 72/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.918, Loss: 0.052\n", + "Epoch 3 Batch 73/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.918, Loss: 0.055\n", + "Epoch 3 Batch 74/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.914, Loss: 0.045\n", + "Epoch 3 Batch 75/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.915, Loss: 0.065\n", + "Epoch 3 Batch 76/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.926, Loss: 0.038\n", + "Epoch 3 Batch 77/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.928, Loss: 0.045\n", + "Epoch 3 Batch 78/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.928, Loss: 0.042\n", + "Epoch 3 Batch 79/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.922, Loss: 0.042\n", + "Epoch 3 Batch 80/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.922, Loss: 0.050\n", + "Epoch 3 Batch 81/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.922, Loss: 0.041\n", + "Epoch 3 Batch 82/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.922, Loss: 0.038\n", + "Epoch 3 Batch 83/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.922, Loss: 0.044\n", + "Epoch 3 Batch 84/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.925, Loss: 0.043\n", + "Epoch 3 Batch 85/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.925, Loss: 0.047\n", + "Epoch 3 Batch 86/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.923, Loss: 0.051\n", + "Epoch 3 Batch 87/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.917, Loss: 0.065\n", + "Epoch 3 Batch 88/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.909, Loss: 0.054\n", + "Epoch 3 Batch 89/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.909, Loss: 0.050\n", + "Epoch 3 Batch 90/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.911, Loss: 0.055\n", + "Epoch 3 Batch 91/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.915, Loss: 0.043\n", + "Epoch 3 Batch 92/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.910, Loss: 0.060\n", + "Epoch 3 Batch 93/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.910, Loss: 0.038\n", + "Epoch 3 Batch 94/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.914, Loss: 0.040\n", + "Epoch 3 Batch 95/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.909, Loss: 0.054\n", + "Epoch 3 Batch 96/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.909, Loss: 0.053\n", + "Epoch 3 Batch 97/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.908, Loss: 0.050\n", + "Epoch 3 Batch 98/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.907, Loss: 0.058\n", + "Epoch 3 Batch 99/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.914, Loss: 0.052\n", + "Epoch 3 Batch 100/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.919, Loss: 0.047\n", + "Epoch 3 Batch 101/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.933, Loss: 0.048\n", + "Epoch 3 Batch 102/1077 - Train Accuracy: 0.968, Validation Accuracy: 0.932, Loss: 0.042\n", + "Epoch 3 Batch 103/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.929, Loss: 0.061\n", + "Epoch 3 Batch 104/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.920, Loss: 0.049\n", + "Epoch 3 Batch 105/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.919, Loss: 0.045\n", + "Epoch 3 Batch 106/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.918, Loss: 0.056\n", + "Epoch 3 Batch 107/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.925, Loss: 0.048\n", + "Epoch 3 Batch 108/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.915, Loss: 0.056\n", + "Epoch 3 Batch 109/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.929, Loss: 0.059\n", + "Epoch 3 Batch 110/1077 - Train Accuracy: 0.960, Validation Accuracy: 0.929, Loss: 0.035\n", + "Epoch 3 Batch 111/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.922, Loss: 0.055\n", + "Epoch 3 Batch 112/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.921, Loss: 0.047\n", + "Epoch 3 Batch 113/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.914, Loss: 0.055\n", + "Epoch 3 Batch 114/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.911, Loss: 0.035\n", + "Epoch 3 Batch 115/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.915, Loss: 0.056\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 3 Batch 116/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.920, Loss: 0.066\n", + "Epoch 3 Batch 117/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.923, Loss: 0.049\n", + "Epoch 3 Batch 118/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.925, Loss: 0.044\n", + "Epoch 3 Batch 119/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.936, Loss: 0.046\n", + "Epoch 3 Batch 120/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.940, Loss: 0.058\n", + "Epoch 3 Batch 121/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.936, Loss: 0.057\n", + "Epoch 3 Batch 122/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.936, Loss: 0.043\n", + "Epoch 3 Batch 123/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.941, Loss: 0.045\n", + "Epoch 3 Batch 124/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.936, Loss: 0.073\n", + "Epoch 3 Batch 125/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.934, Loss: 0.056\n", + "Epoch 3 Batch 126/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.934, Loss: 0.045\n", + "Epoch 3 Batch 127/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.923, Loss: 0.053\n", + "Epoch 3 Batch 128/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.909, Loss: 0.047\n", + "Epoch 3 Batch 129/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.909, Loss: 0.066\n", + "Epoch 3 Batch 130/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.909, Loss: 0.048\n", + "Epoch 3 Batch 131/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.901, Loss: 0.055\n", + "Epoch 3 Batch 132/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.903, Loss: 0.040\n", + "Epoch 3 Batch 133/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.909, Loss: 0.039\n", + "Epoch 3 Batch 134/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.917, Loss: 0.051\n", + "Epoch 3 Batch 135/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.928, Loss: 0.046\n", + "Epoch 3 Batch 136/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.924, Loss: 0.055\n", + "Epoch 3 Batch 137/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.920, Loss: 0.030\n", + "Epoch 3 Batch 138/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.923, Loss: 0.054\n", + "Epoch 3 Batch 139/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.919, Loss: 0.062\n", + "Epoch 3 Batch 140/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.915, Loss: 0.049\n", + "Epoch 3 Batch 141/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.913, Loss: 0.047\n", + "Epoch 3 Batch 142/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.917, Loss: 0.043\n", + "Epoch 3 Batch 143/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.912, Loss: 0.049\n", + "Epoch 3 Batch 144/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.917, Loss: 0.068\n", + "Epoch 3 Batch 145/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.915, Loss: 0.048\n", + "Epoch 3 Batch 146/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.923, Loss: 0.083\n", + "Epoch 3 Batch 147/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.929, Loss: 0.052\n", + "Epoch 3 Batch 148/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.918, Loss: 0.051\n", + "Epoch 3 Batch 149/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.918, Loss: 0.045\n", + "Epoch 3 Batch 150/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.923, Loss: 0.057\n", + "Epoch 3 Batch 151/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.910, Loss: 0.046\n", + "Epoch 3 Batch 152/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.910, Loss: 0.073\n", + "Epoch 3 Batch 153/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.908, Loss: 0.064\n", + "Epoch 3 Batch 154/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.905, Loss: 0.045\n", + "Epoch 3 Batch 155/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.911, Loss: 0.056\n", + "Epoch 3 Batch 156/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.913, Loss: 0.042\n", + "Epoch 3 Batch 157/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.909, Loss: 0.041\n", + "Epoch 3 Batch 158/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.903, Loss: 0.065\n", + "Epoch 3 Batch 159/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.908, Loss: 0.040\n", + "Epoch 3 Batch 160/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.913, Loss: 0.047\n", + "Epoch 3 Batch 161/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.913, Loss: 0.041\n", + "Epoch 3 Batch 162/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.913, Loss: 0.063\n", + "Epoch 3 Batch 163/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.917, Loss: 0.064\n", + "Epoch 3 Batch 164/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.922, Loss: 0.052\n", + "Epoch 3 Batch 165/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.922, Loss: 0.042\n", + "Epoch 3 Batch 166/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.917, Loss: 0.056\n", + "Epoch 3 Batch 167/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.920, Loss: 0.048\n", + "Epoch 3 Batch 168/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.919, Loss: 0.071\n", + "Epoch 3 Batch 169/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.918, Loss: 0.064\n", + "Epoch 3 Batch 170/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.913, Loss: 0.065\n", + "Epoch 3 Batch 171/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.914, Loss: 0.055\n", + "Epoch 3 Batch 172/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.914, Loss: 0.038\n", + "Epoch 3 Batch 173/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.908, Loss: 0.052\n", + "Epoch 3 Batch 174/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.909, Loss: 0.040\n", + "Epoch 3 Batch 175/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.911, Loss: 0.059\n", + "Epoch 3 Batch 176/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.911, Loss: 0.054\n", + "Epoch 3 Batch 177/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.915, Loss: 0.057\n", + "Epoch 3 Batch 178/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.923, Loss: 0.053\n", + "Epoch 3 Batch 179/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.932, Loss: 0.047\n", + "Epoch 3 Batch 180/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.935, Loss: 0.044\n", + "Epoch 3 Batch 181/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.935, Loss: 0.058\n", + "Epoch 3 Batch 182/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.935, Loss: 0.051\n", + "Epoch 3 Batch 183/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.935, Loss: 0.049\n", + "Epoch 3 Batch 184/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.939, Loss: 0.046\n", + "Epoch 3 Batch 185/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.935, Loss: 0.054\n", + "Epoch 3 Batch 186/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.933, Loss: 0.064\n", + "Epoch 3 Batch 187/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.932, Loss: 0.039\n", + "Epoch 3 Batch 188/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.932, Loss: 0.052\n", + "Epoch 3 Batch 189/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.932, Loss: 0.044\n", + "Epoch 3 Batch 190/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.928, Loss: 0.051\n", + "Epoch 3 Batch 191/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.932, Loss: 0.043\n", + "Epoch 3 Batch 192/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.927, Loss: 0.069\n", + "Epoch 3 Batch 193/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.925, Loss: 0.046\n", + "Epoch 3 Batch 194/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.922, Loss: 0.042\n", + "Epoch 3 Batch 195/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.927, Loss: 0.034\n", + "Epoch 3 Batch 196/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.927, Loss: 0.041\n", + "Epoch 3 Batch 197/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.923, Loss: 0.053\n", + "Epoch 3 Batch 198/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.923, Loss: 0.062\n", + "Epoch 3 Batch 199/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.931, Loss: 0.045\n", + "Epoch 3 Batch 200/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.932, Loss: 0.059\n", + "Epoch 3 Batch 201/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.927, Loss: 0.040\n", + "Epoch 3 Batch 202/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.927, Loss: 0.049\n", + "Epoch 3 Batch 203/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.935, Loss: 0.046\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 3 Batch 204/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.932, Loss: 0.074\n", + "Epoch 3 Batch 205/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.932, Loss: 0.077\n", + "Epoch 3 Batch 206/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.933, Loss: 0.040\n", + "Epoch 3 Batch 207/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.928, Loss: 0.045\n", + "Epoch 3 Batch 208/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.928, Loss: 0.049\n", + "Epoch 3 Batch 209/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.927, Loss: 0.030\n", + "Epoch 3 Batch 210/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.923, Loss: 0.060\n", + "Epoch 3 Batch 211/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.922, Loss: 0.046\n", + "Epoch 3 Batch 212/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.926, Loss: 0.043\n", + "Epoch 3 Batch 213/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.922, Loss: 0.043\n", + "Epoch 3 Batch 214/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.922, Loss: 0.049\n", + "Epoch 3 Batch 215/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.927, Loss: 0.051\n", + "Epoch 3 Batch 216/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.927, Loss: 0.052\n", + "Epoch 3 Batch 217/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.931, Loss: 0.045\n", + "Epoch 3 Batch 218/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.933, Loss: 0.069\n", + "Epoch 3 Batch 219/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.928, Loss: 0.041\n", + "Epoch 3 Batch 220/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.928, Loss: 0.042\n", + "Epoch 3 Batch 221/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.924, Loss: 0.065\n", + "Epoch 3 Batch 222/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.924, Loss: 0.045\n", + "Epoch 3 Batch 223/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.927, Loss: 0.039\n", + "Epoch 3 Batch 224/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.918, Loss: 0.057\n", + "Epoch 3 Batch 225/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.911, Loss: 0.061\n", + "Epoch 3 Batch 226/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.912, Loss: 0.052\n", + "Epoch 3 Batch 227/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.908, Loss: 0.056\n", + "Epoch 3 Batch 228/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.921, Loss: 0.050\n", + "Epoch 3 Batch 229/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.921, Loss: 0.048\n", + "Epoch 3 Batch 230/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.917, Loss: 0.047\n", + "Epoch 3 Batch 231/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.921, Loss: 0.065\n", + "Epoch 3 Batch 232/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.909, Loss: 0.040\n", + "Epoch 3 Batch 233/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.908, Loss: 0.065\n", + "Epoch 3 Batch 234/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.927, Loss: 0.067\n", + "Epoch 3 Batch 235/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.936, Loss: 0.051\n", + "Epoch 3 Batch 236/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.933, Loss: 0.061\n", + "Epoch 3 Batch 237/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.917, Loss: 0.045\n", + "Epoch 3 Batch 238/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.913, Loss: 0.048\n", + "Epoch 3 Batch 239/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.922, Loss: 0.038\n", + "Epoch 3 Batch 240/1077 - Train Accuracy: 0.959, Validation Accuracy: 0.911, Loss: 0.044\n", + "Epoch 3 Batch 241/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.911, Loss: 0.032\n", + "Epoch 3 Batch 242/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.924, Loss: 0.040\n", + "Epoch 3 Batch 243/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.924, Loss: 0.060\n", + "Epoch 3 Batch 244/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.925, Loss: 0.046\n", + "Epoch 3 Batch 245/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.934, Loss: 0.039\n", + "Epoch 3 Batch 246/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.929, Loss: 0.043\n", + "Epoch 3 Batch 247/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.933, Loss: 0.054\n", + "Epoch 3 Batch 248/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.915, Loss: 0.056\n", + "Epoch 3 Batch 249/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.920, Loss: 0.048\n", + "Epoch 3 Batch 250/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.915, Loss: 0.053\n", + "Epoch 3 Batch 251/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.920, Loss: 0.061\n", + "Epoch 3 Batch 252/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.919, Loss: 0.053\n", + "Epoch 3 Batch 253/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.919, Loss: 0.045\n", + "Epoch 3 Batch 254/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.928, Loss: 0.057\n", + "Epoch 3 Batch 255/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.928, Loss: 0.047\n", + "Epoch 3 Batch 256/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.920, Loss: 0.076\n", + "Epoch 3 Batch 257/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.925, Loss: 0.043\n", + "Epoch 3 Batch 258/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.925, Loss: 0.053\n", + "Epoch 3 Batch 259/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.922, Loss: 0.040\n", + "Epoch 3 Batch 260/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.912, Loss: 0.048\n", + "Epoch 3 Batch 261/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.904, Loss: 0.059\n", + "Epoch 3 Batch 262/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.899, Loss: 0.048\n", + "Epoch 3 Batch 263/1077 - Train Accuracy: 0.973, Validation Accuracy: 0.898, Loss: 0.033\n", + "Epoch 3 Batch 264/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.895, Loss: 0.044\n", + "Epoch 3 Batch 265/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.896, Loss: 0.048\n", + "Epoch 3 Batch 266/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.901, Loss: 0.054\n", + "Epoch 3 Batch 267/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.903, Loss: 0.039\n", + "Epoch 3 Batch 268/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.909, Loss: 0.058\n", + "Epoch 3 Batch 269/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.915, Loss: 0.063\n", + "Epoch 3 Batch 270/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.915, Loss: 0.060\n", + "Epoch 3 Batch 271/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.915, Loss: 0.040\n", + "Epoch 3 Batch 272/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.923, Loss: 0.073\n", + "Epoch 3 Batch 273/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.921, Loss: 0.043\n", + "Epoch 3 Batch 274/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.924, Loss: 0.051\n", + "Epoch 3 Batch 275/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.922, Loss: 0.045\n", + "Epoch 3 Batch 276/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.923, Loss: 0.073\n", + "Epoch 3 Batch 277/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.928, Loss: 0.043\n", + "Epoch 3 Batch 278/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.929, Loss: 0.062\n", + "Epoch 3 Batch 279/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.932, Loss: 0.074\n", + "Epoch 3 Batch 280/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.926, Loss: 0.061\n", + "Epoch 3 Batch 281/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.928, Loss: 0.065\n", + "Epoch 3 Batch 282/1077 - Train Accuracy: 0.885, Validation Accuracy: 0.929, Loss: 0.080\n", + "Epoch 3 Batch 283/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.924, Loss: 0.068\n", + "Epoch 3 Batch 284/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.928, Loss: 0.061\n", + "Epoch 3 Batch 285/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.928, Loss: 0.050\n", + "Epoch 3 Batch 286/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.931, Loss: 0.051\n", + "Epoch 3 Batch 287/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.931, Loss: 0.045\n", + "Epoch 3 Batch 288/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.933, Loss: 0.059\n", + "Epoch 3 Batch 289/1077 - Train Accuracy: 0.968, Validation Accuracy: 0.928, Loss: 0.053\n", + "Epoch 3 Batch 290/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.935, Loss: 0.074\n", + "Epoch 3 Batch 291/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.934, Loss: 0.076\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 3 Batch 292/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.929, Loss: 0.052\n", + "Epoch 3 Batch 293/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.932, Loss: 0.072\n", + "Epoch 3 Batch 294/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.933, Loss: 0.042\n", + "Epoch 3 Batch 295/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.931, Loss: 0.055\n", + "Epoch 3 Batch 296/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.930, Loss: 0.057\n", + "Epoch 3 Batch 297/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.928, Loss: 0.068\n", + "Epoch 3 Batch 298/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.928, Loss: 0.065\n", + "Epoch 3 Batch 299/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.924, Loss: 0.052\n", + "Epoch 3 Batch 300/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.914, Loss: 0.042\n", + "Epoch 3 Batch 301/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.914, Loss: 0.043\n", + "Epoch 3 Batch 302/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.906, Loss: 0.046\n", + "Epoch 3 Batch 303/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.915, Loss: 0.055\n", + "Epoch 3 Batch 304/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.914, Loss: 0.055\n", + "Epoch 3 Batch 305/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.918, Loss: 0.046\n", + "Epoch 3 Batch 306/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.916, Loss: 0.058\n", + "Epoch 3 Batch 307/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.912, Loss: 0.048\n", + "Epoch 3 Batch 308/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.912, Loss: 0.059\n", + "Epoch 3 Batch 309/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.918, Loss: 0.044\n", + "Epoch 3 Batch 310/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.916, Loss: 0.055\n", + "Epoch 3 Batch 311/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.914, Loss: 0.050\n", + "Epoch 3 Batch 312/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.923, Loss: 0.062\n", + "Epoch 3 Batch 313/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.924, Loss: 0.040\n", + "Epoch 3 Batch 314/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.920, Loss: 0.047\n", + "Epoch 3 Batch 315/1077 - Train Accuracy: 0.958, Validation Accuracy: 0.922, Loss: 0.039\n", + "Epoch 3 Batch 316/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.925, Loss: 0.051\n", + "Epoch 3 Batch 317/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.920, Loss: 0.059\n", + "Epoch 3 Batch 318/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.915, Loss: 0.042\n", + "Epoch 3 Batch 319/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.920, Loss: 0.068\n", + "Epoch 3 Batch 320/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.917, Loss: 0.066\n", + "Epoch 3 Batch 321/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.914, Loss: 0.049\n", + "Epoch 3 Batch 322/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.931, Loss: 0.054\n", + "Epoch 3 Batch 323/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.923, Loss: 0.050\n", + "Epoch 3 Batch 324/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.934, Loss: 0.037\n", + "Epoch 3 Batch 325/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.930, Loss: 0.054\n", + "Epoch 3 Batch 326/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.925, Loss: 0.049\n", + "Epoch 3 Batch 327/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.925, Loss: 0.055\n", + "Epoch 3 Batch 328/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.920, Loss: 0.064\n", + "Epoch 3 Batch 329/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.919, Loss: 0.068\n", + "Epoch 3 Batch 330/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.910, Loss: 0.058\n", + "Epoch 3 Batch 331/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.911, Loss: 0.058\n", + "Epoch 3 Batch 332/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.903, Loss: 0.040\n", + "Epoch 3 Batch 333/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.903, Loss: 0.053\n", + "Epoch 3 Batch 334/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.907, Loss: 0.052\n", + "Epoch 3 Batch 335/1077 - Train Accuracy: 0.958, Validation Accuracy: 0.905, Loss: 0.052\n", + "Epoch 3 Batch 336/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.900, Loss: 0.067\n", + "Epoch 3 Batch 337/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.907, Loss: 0.065\n", + "Epoch 3 Batch 338/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.909, Loss: 0.064\n", + "Epoch 3 Batch 339/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.909, Loss: 0.039\n", + "Epoch 3 Batch 340/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.909, Loss: 0.046\n", + "Epoch 3 Batch 341/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.909, Loss: 0.068\n", + "Epoch 3 Batch 342/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.909, Loss: 0.046\n", + "Epoch 3 Batch 343/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.907, Loss: 0.055\n", + "Epoch 3 Batch 344/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.912, Loss: 0.048\n", + "Epoch 3 Batch 345/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.920, Loss: 0.047\n", + "Epoch 3 Batch 346/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.916, Loss: 0.052\n", + "Epoch 3 Batch 347/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.907, Loss: 0.033\n", + "Epoch 3 Batch 348/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.900, Loss: 0.039\n", + "Epoch 3 Batch 349/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.906, Loss: 0.053\n", + "Epoch 3 Batch 350/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.911, Loss: 0.047\n", + "Epoch 3 Batch 351/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.915, Loss: 0.054\n", + "Epoch 3 Batch 352/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.917, Loss: 0.046\n", + "Epoch 3 Batch 353/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.915, Loss: 0.067\n", + "Epoch 3 Batch 354/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.920, Loss: 0.062\n", + "Epoch 3 Batch 355/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.920, Loss: 0.041\n", + "Epoch 3 Batch 356/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.924, Loss: 0.057\n", + "Epoch 3 Batch 357/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.924, Loss: 0.053\n", + "Epoch 3 Batch 358/1077 - Train Accuracy: 0.889, Validation Accuracy: 0.919, Loss: 0.066\n", + "Epoch 3 Batch 359/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.914, Loss: 0.051\n", + "Epoch 3 Batch 360/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.913, Loss: 0.046\n", + "Epoch 3 Batch 361/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.911, Loss: 0.050\n", + "Epoch 3 Batch 362/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.915, Loss: 0.050\n", + "Epoch 3 Batch 363/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.922, Loss: 0.064\n", + "Epoch 3 Batch 364/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.925, Loss: 0.060\n", + "Epoch 3 Batch 365/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.919, Loss: 0.047\n", + "Epoch 3 Batch 366/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.913, Loss: 0.052\n", + "Epoch 3 Batch 367/1077 - Train Accuracy: 0.965, Validation Accuracy: 0.912, Loss: 0.038\n", + "Epoch 3 Batch 368/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.916, Loss: 0.055\n", + "Epoch 3 Batch 369/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.915, Loss: 0.060\n", + "Epoch 3 Batch 370/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.919, Loss: 0.055\n", + "Epoch 3 Batch 371/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.919, Loss: 0.045\n", + "Epoch 3 Batch 372/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.925, Loss: 0.044\n", + "Epoch 3 Batch 373/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.923, Loss: 0.037\n", + "Epoch 3 Batch 374/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.923, Loss: 0.050\n", + "Epoch 3 Batch 375/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.929, Loss: 0.046\n", + "Epoch 3 Batch 376/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.928, Loss: 0.049\n", + "Epoch 3 Batch 377/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.935, Loss: 0.044\n", + "Epoch 3 Batch 378/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.924, Loss: 0.045\n", + "Epoch 3 Batch 379/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.933, Loss: 0.057\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 3 Batch 380/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.933, Loss: 0.045\n", + "Epoch 3 Batch 381/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.947, Loss: 0.055\n", + "Epoch 3 Batch 382/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.947, Loss: 0.073\n", + "Epoch 3 Batch 383/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.947, Loss: 0.046\n", + "Epoch 3 Batch 384/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.947, Loss: 0.031\n", + "Epoch 3 Batch 385/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.956, Loss: 0.046\n", + "Epoch 3 Batch 386/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.954, Loss: 0.042\n", + "Epoch 3 Batch 387/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.953, Loss: 0.038\n", + "Epoch 3 Batch 388/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.955, Loss: 0.050\n", + "Epoch 3 Batch 389/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.945, Loss: 0.047\n", + "Epoch 3 Batch 390/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.945, Loss: 0.056\n", + "Epoch 3 Batch 391/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.941, Loss: 0.054\n", + "Epoch 3 Batch 392/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.941, Loss: 0.052\n", + "Epoch 3 Batch 393/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.936, Loss: 0.044\n", + "Epoch 3 Batch 394/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.936, Loss: 0.045\n", + "Epoch 3 Batch 395/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.930, Loss: 0.045\n", + "Epoch 3 Batch 396/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.930, Loss: 0.049\n", + "Epoch 3 Batch 397/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.927, Loss: 0.048\n", + "Epoch 3 Batch 398/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.929, Loss: 0.054\n", + "Epoch 3 Batch 399/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.946, Loss: 0.057\n", + "Epoch 3 Batch 400/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.943, Loss: 0.055\n", + "Epoch 3 Batch 401/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.943, Loss: 0.048\n", + "Epoch 3 Batch 402/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.939, Loss: 0.044\n", + "Epoch 3 Batch 403/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.938, Loss: 0.077\n", + "Epoch 3 Batch 404/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.938, Loss: 0.052\n", + "Epoch 3 Batch 405/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.928, Loss: 0.050\n", + "Epoch 3 Batch 406/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.928, Loss: 0.039\n", + "Epoch 3 Batch 407/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.935, Loss: 0.074\n", + "Epoch 3 Batch 408/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.936, Loss: 0.052\n", + "Epoch 3 Batch 409/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.941, Loss: 0.062\n", + "Epoch 3 Batch 410/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.936, Loss: 0.062\n", + "Epoch 3 Batch 411/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.934, Loss: 0.058\n", + "Epoch 3 Batch 412/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.934, Loss: 0.042\n", + "Epoch 3 Batch 413/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.934, Loss: 0.039\n", + "Epoch 3 Batch 414/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.940, Loss: 0.044\n", + "Epoch 3 Batch 415/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.940, Loss: 0.052\n", + "Epoch 3 Batch 416/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.943, Loss: 0.046\n", + "Epoch 3 Batch 417/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.943, Loss: 0.078\n", + "Epoch 3 Batch 418/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.945, Loss: 0.046\n", + "Epoch 3 Batch 419/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.948, Loss: 0.045\n", + "Epoch 3 Batch 420/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.946, Loss: 0.042\n", + "Epoch 3 Batch 421/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.940, Loss: 0.061\n", + "Epoch 3 Batch 422/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.940, Loss: 0.042\n", + "Epoch 3 Batch 423/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.936, Loss: 0.068\n", + "Epoch 3 Batch 424/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.935, Loss: 0.047\n", + "Epoch 3 Batch 425/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.922, Loss: 0.037\n", + "Epoch 3 Batch 426/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.928, Loss: 0.057\n", + "Epoch 3 Batch 427/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.933, Loss: 0.047\n", + "Epoch 3 Batch 428/1077 - Train Accuracy: 0.961, Validation Accuracy: 0.932, Loss: 0.036\n", + "Epoch 3 Batch 429/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.936, Loss: 0.043\n", + "Epoch 3 Batch 430/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.941, Loss: 0.047\n", + "Epoch 3 Batch 431/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.942, Loss: 0.041\n", + "Epoch 3 Batch 432/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.951, Loss: 0.048\n", + "Epoch 3 Batch 433/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.943, Loss: 0.057\n", + "Epoch 3 Batch 434/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.938, Loss: 0.044\n", + "Epoch 3 Batch 435/1077 - Train Accuracy: 0.958, Validation Accuracy: 0.924, Loss: 0.056\n", + "Epoch 3 Batch 436/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.918, Loss: 0.054\n", + "Epoch 3 Batch 437/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.918, Loss: 0.034\n", + "Epoch 3 Batch 438/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.916, Loss: 0.049\n", + "Epoch 3 Batch 439/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.916, Loss: 0.057\n", + "Epoch 3 Batch 440/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.920, Loss: 0.057\n", + "Epoch 3 Batch 441/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.926, Loss: 0.046\n", + "Epoch 3 Batch 442/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.925, Loss: 0.060\n", + "Epoch 3 Batch 443/1077 - Train Accuracy: 0.959, Validation Accuracy: 0.925, Loss: 0.041\n", + "Epoch 3 Batch 444/1077 - Train Accuracy: 0.956, Validation Accuracy: 0.925, Loss: 0.037\n", + "Epoch 3 Batch 445/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.925, Loss: 0.057\n", + "Epoch 3 Batch 446/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.924, Loss: 0.046\n", + "Epoch 3 Batch 447/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.926, Loss: 0.044\n", + "Epoch 3 Batch 448/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.922, Loss: 0.069\n", + "Epoch 3 Batch 449/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.920, Loss: 0.047\n", + "Epoch 3 Batch 450/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.920, Loss: 0.054\n", + "Epoch 3 Batch 451/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.920, Loss: 0.049\n", + "Epoch 3 Batch 452/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.920, Loss: 0.048\n", + "Epoch 3 Batch 453/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.920, Loss: 0.053\n", + "Epoch 3 Batch 454/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.930, Loss: 0.057\n", + "Epoch 3 Batch 455/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.926, Loss: 0.057\n", + "Epoch 3 Batch 456/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.923, Loss: 0.060\n", + "Epoch 3 Batch 457/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.923, Loss: 0.042\n", + "Epoch 3 Batch 458/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.923, Loss: 0.055\n", + "Epoch 3 Batch 459/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.923, Loss: 0.045\n", + "Epoch 3 Batch 460/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.923, Loss: 0.061\n", + "Epoch 3 Batch 461/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.928, Loss: 0.049\n", + "Epoch 3 Batch 462/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.928, Loss: 0.057\n", + "Epoch 3 Batch 463/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.928, Loss: 0.057\n", + "Epoch 3 Batch 464/1077 - Train Accuracy: 0.963, Validation Accuracy: 0.922, Loss: 0.047\n", + "Epoch 3 Batch 465/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.916, Loss: 0.056\n", + "Epoch 3 Batch 466/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.912, Loss: 0.048\n", + "Epoch 3 Batch 467/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.917, Loss: 0.058\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 3 Batch 468/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.923, Loss: 0.057\n", + "Epoch 3 Batch 469/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.920, Loss: 0.061\n", + "Epoch 3 Batch 470/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.917, Loss: 0.053\n", + "Epoch 3 Batch 471/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.913, Loss: 0.046\n", + "Epoch 3 Batch 472/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.909, Loss: 0.049\n", + "Epoch 3 Batch 473/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.909, Loss: 0.046\n", + "Epoch 3 Batch 474/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.916, Loss: 0.047\n", + "Epoch 3 Batch 475/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.912, Loss: 0.051\n", + "Epoch 3 Batch 476/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.917, Loss: 0.039\n", + "Epoch 3 Batch 477/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.925, Loss: 0.052\n", + "Epoch 3 Batch 478/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.934, Loss: 0.052\n", + "Epoch 3 Batch 479/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.934, Loss: 0.056\n", + "Epoch 3 Batch 480/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.934, Loss: 0.054\n", + "Epoch 3 Batch 481/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.935, Loss: 0.064\n", + "Epoch 3 Batch 482/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.935, Loss: 0.065\n", + "Epoch 3 Batch 483/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.934, Loss: 0.051\n", + "Epoch 3 Batch 484/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.925, Loss: 0.048\n", + "Epoch 3 Batch 485/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.932, Loss: 0.049\n", + "Epoch 3 Batch 486/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.930, Loss: 0.046\n", + "Epoch 3 Batch 487/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.928, Loss: 0.046\n", + "Epoch 3 Batch 488/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.927, Loss: 0.053\n", + "Epoch 3 Batch 489/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.926, Loss: 0.047\n", + "Epoch 3 Batch 490/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.931, Loss: 0.051\n", + "Epoch 3 Batch 491/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.929, Loss: 0.056\n", + "Epoch 3 Batch 492/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.921, Loss: 0.059\n", + "Epoch 3 Batch 493/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.921, Loss: 0.042\n", + "Epoch 3 Batch 494/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.922, Loss: 0.049\n", + "Epoch 3 Batch 495/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.924, Loss: 0.051\n", + "Epoch 3 Batch 496/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.920, Loss: 0.050\n", + "Epoch 3 Batch 497/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.924, Loss: 0.055\n", + "Epoch 3 Batch 498/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.924, Loss: 0.052\n", + "Epoch 3 Batch 499/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.930, Loss: 0.039\n", + "Epoch 3 Batch 500/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.933, Loss: 0.040\n", + "Epoch 3 Batch 501/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.933, Loss: 0.040\n", + "Epoch 3 Batch 502/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.935, Loss: 0.053\n", + "Epoch 3 Batch 503/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.935, Loss: 0.044\n", + "Epoch 3 Batch 504/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.939, Loss: 0.042\n", + "Epoch 3 Batch 505/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.935, Loss: 0.036\n", + "Epoch 3 Batch 506/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.939, Loss: 0.059\n", + "Epoch 3 Batch 507/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.937, Loss: 0.055\n", + "Epoch 3 Batch 508/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.941, Loss: 0.046\n", + "Epoch 3 Batch 509/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.941, Loss: 0.069\n", + "Epoch 3 Batch 510/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.938, Loss: 0.057\n", + "Epoch 3 Batch 511/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.936, Loss: 0.048\n", + "Epoch 3 Batch 512/1077 - Train Accuracy: 0.961, Validation Accuracy: 0.930, Loss: 0.056\n", + "Epoch 3 Batch 513/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.930, Loss: 0.050\n", + "Epoch 3 Batch 514/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.934, Loss: 0.055\n", + "Epoch 3 Batch 515/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.933, Loss: 0.052\n", + "Epoch 3 Batch 516/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.929, Loss: 0.055\n", + "Epoch 3 Batch 517/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.925, Loss: 0.063\n", + "Epoch 3 Batch 518/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.928, Loss: 0.047\n", + "Epoch 3 Batch 519/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.918, Loss: 0.046\n", + "Epoch 3 Batch 520/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.916, Loss: 0.050\n", + "Epoch 3 Batch 521/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.913, Loss: 0.058\n", + "Epoch 3 Batch 522/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.921, Loss: 0.063\n", + "Epoch 3 Batch 523/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.920, Loss: 0.054\n", + "Epoch 3 Batch 524/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.920, Loss: 0.060\n", + "Epoch 3 Batch 525/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.922, Loss: 0.061\n", + "Epoch 3 Batch 526/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.922, Loss: 0.049\n", + "Epoch 3 Batch 527/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.915, Loss: 0.056\n", + "Epoch 3 Batch 528/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.923, Loss: 0.056\n", + "Epoch 3 Batch 529/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.934, Loss: 0.049\n", + "Epoch 3 Batch 530/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.937, Loss: 0.063\n", + "Epoch 3 Batch 531/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.935, Loss: 0.057\n", + "Epoch 3 Batch 532/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.931, Loss: 0.066\n", + "Epoch 3 Batch 533/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.928, Loss: 0.058\n", + "Epoch 3 Batch 534/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.926, Loss: 0.059\n", + "Epoch 3 Batch 535/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.931, Loss: 0.050\n", + "Epoch 3 Batch 536/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.929, Loss: 0.048\n", + "Epoch 3 Batch 537/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.923, Loss: 0.039\n", + "Epoch 3 Batch 538/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.928, Loss: 0.037\n", + "Epoch 3 Batch 539/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.923, Loss: 0.061\n", + "Epoch 3 Batch 540/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.914, Loss: 0.050\n", + "Epoch 3 Batch 541/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.918, Loss: 0.047\n", + "Epoch 3 Batch 542/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.923, Loss: 0.052\n", + "Epoch 3 Batch 543/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.919, Loss: 0.048\n", + "Epoch 3 Batch 544/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.918, Loss: 0.035\n", + "Epoch 3 Batch 545/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.919, Loss: 0.057\n", + "Epoch 3 Batch 546/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.924, Loss: 0.056\n", + "Epoch 3 Batch 547/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.925, Loss: 0.045\n", + "Epoch 3 Batch 548/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.930, Loss: 0.067\n", + "Epoch 3 Batch 549/1077 - Train Accuracy: 0.879, Validation Accuracy: 0.926, Loss: 0.069\n", + "Epoch 3 Batch 550/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.926, Loss: 0.049\n", + "Epoch 3 Batch 551/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.918, Loss: 0.047\n", + "Epoch 3 Batch 552/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.915, Loss: 0.054\n", + "Epoch 3 Batch 553/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.915, Loss: 0.070\n", + "Epoch 3 Batch 554/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.914, Loss: 0.043\n", + "Epoch 3 Batch 555/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.914, Loss: 0.049\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 3 Batch 556/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.907, Loss: 0.052\n", + "Epoch 3 Batch 557/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.906, Loss: 0.056\n", + "Epoch 3 Batch 558/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.901, Loss: 0.038\n", + "Epoch 3 Batch 559/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.908, Loss: 0.046\n", + "Epoch 3 Batch 560/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.904, Loss: 0.049\n", + "Epoch 3 Batch 561/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.912, Loss: 0.042\n", + "Epoch 3 Batch 562/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.916, Loss: 0.046\n", + "Epoch 3 Batch 563/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.904, Loss: 0.057\n", + "Epoch 3 Batch 564/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.901, Loss: 0.057\n", + "Epoch 3 Batch 565/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.907, Loss: 0.068\n", + "Epoch 3 Batch 566/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.902, Loss: 0.057\n", + "Epoch 3 Batch 567/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.911, Loss: 0.060\n", + "Epoch 3 Batch 568/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.907, Loss: 0.041\n", + "Epoch 3 Batch 569/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.908, Loss: 0.049\n", + "Epoch 3 Batch 570/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.913, Loss: 0.071\n", + "Epoch 3 Batch 571/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.913, Loss: 0.041\n", + "Epoch 3 Batch 572/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.915, Loss: 0.048\n", + "Epoch 3 Batch 573/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.918, Loss: 0.070\n", + "Epoch 3 Batch 574/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.920, Loss: 0.054\n", + "Epoch 3 Batch 575/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.929, Loss: 0.036\n", + "Epoch 3 Batch 576/1077 - Train Accuracy: 0.965, Validation Accuracy: 0.926, Loss: 0.045\n", + "Epoch 3 Batch 577/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.925, Loss: 0.060\n", + "Epoch 3 Batch 578/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.918, Loss: 0.051\n", + "Epoch 3 Batch 579/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.921, Loss: 0.052\n", + "Epoch 3 Batch 580/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.920, Loss: 0.046\n", + "Epoch 3 Batch 581/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.920, Loss: 0.041\n", + "Epoch 3 Batch 582/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.918, Loss: 0.047\n", + "Epoch 3 Batch 583/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.914, Loss: 0.054\n", + "Epoch 3 Batch 584/1077 - Train Accuracy: 0.956, Validation Accuracy: 0.919, Loss: 0.046\n", + "Epoch 3 Batch 585/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.921, Loss: 0.032\n", + "Epoch 3 Batch 586/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.925, Loss: 0.052\n", + "Epoch 3 Batch 587/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.921, Loss: 0.063\n", + "Epoch 3 Batch 588/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.921, Loss: 0.043\n", + "Epoch 3 Batch 589/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.914, Loss: 0.055\n", + "Epoch 3 Batch 590/1077 - Train Accuracy: 0.892, Validation Accuracy: 0.921, Loss: 0.069\n", + "Epoch 3 Batch 591/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.934, Loss: 0.055\n", + "Epoch 3 Batch 592/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.935, Loss: 0.055\n", + "Epoch 3 Batch 593/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.932, Loss: 0.073\n", + "Epoch 3 Batch 594/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.920, Loss: 0.060\n", + "Epoch 3 Batch 595/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.923, Loss: 0.045\n", + "Epoch 3 Batch 596/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.922, Loss: 0.053\n", + "Epoch 3 Batch 597/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.922, Loss: 0.046\n", + "Epoch 3 Batch 598/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.920, Loss: 0.051\n", + "Epoch 3 Batch 599/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.912, Loss: 0.067\n", + "Epoch 3 Batch 600/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.916, Loss: 0.055\n", + "Epoch 3 Batch 601/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.912, Loss: 0.057\n", + "Epoch 3 Batch 602/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.911, Loss: 0.055\n", + "Epoch 3 Batch 603/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.917, Loss: 0.054\n", + "Epoch 3 Batch 604/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.919, Loss: 0.058\n", + "Epoch 3 Batch 605/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.935, Loss: 0.078\n", + "Epoch 3 Batch 606/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.933, Loss: 0.041\n", + "Epoch 3 Batch 607/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.923, Loss: 0.042\n", + "Epoch 3 Batch 608/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.925, Loss: 0.065\n", + "Epoch 3 Batch 609/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.924, Loss: 0.050\n", + "Epoch 3 Batch 610/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.928, Loss: 0.057\n", + "Epoch 3 Batch 611/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.920, Loss: 0.044\n", + "Epoch 3 Batch 612/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.905, Loss: 0.042\n", + "Epoch 3 Batch 613/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.905, Loss: 0.067\n", + "Epoch 3 Batch 614/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.906, Loss: 0.041\n", + "Epoch 3 Batch 615/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.912, Loss: 0.047\n", + "Epoch 3 Batch 616/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.917, Loss: 0.046\n", + "Epoch 3 Batch 617/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.922, Loss: 0.050\n", + "Epoch 3 Batch 618/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.931, Loss: 0.054\n", + "Epoch 3 Batch 619/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.926, Loss: 0.042\n", + "Epoch 3 Batch 620/1077 - Train Accuracy: 0.962, Validation Accuracy: 0.931, Loss: 0.046\n", + "Epoch 3 Batch 621/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.930, Loss: 0.059\n", + "Epoch 3 Batch 622/1077 - Train Accuracy: 0.959, Validation Accuracy: 0.916, Loss: 0.054\n", + "Epoch 3 Batch 623/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.907, Loss: 0.061\n", + "Epoch 3 Batch 624/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.912, Loss: 0.051\n", + "Epoch 3 Batch 625/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.912, Loss: 0.052\n", + "Epoch 3 Batch 626/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.915, Loss: 0.051\n", + "Epoch 3 Batch 627/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.915, Loss: 0.054\n", + "Epoch 3 Batch 628/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.924, Loss: 0.061\n", + "Epoch 3 Batch 629/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.919, Loss: 0.066\n", + "Epoch 3 Batch 630/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.926, Loss: 0.040\n", + "Epoch 3 Batch 631/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.931, Loss: 0.054\n", + "Epoch 3 Batch 632/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.935, Loss: 0.045\n", + "Epoch 3 Batch 633/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.928, Loss: 0.055\n", + "Epoch 3 Batch 634/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.933, Loss: 0.041\n", + "Epoch 3 Batch 635/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.928, Loss: 0.059\n", + "Epoch 3 Batch 636/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.931, Loss: 0.043\n", + "Epoch 3 Batch 637/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.932, Loss: 0.048\n", + "Epoch 3 Batch 638/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.937, Loss: 0.051\n", + "Epoch 3 Batch 639/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.938, Loss: 0.068\n", + "Epoch 3 Batch 640/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.933, Loss: 0.046\n", + "Epoch 3 Batch 641/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.928, Loss: 0.050\n", + "Epoch 3 Batch 642/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.929, Loss: 0.048\n", + "Epoch 3 Batch 643/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.924, Loss: 0.053\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 3 Batch 644/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.925, Loss: 0.052\n", + "Epoch 3 Batch 645/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.930, Loss: 0.061\n", + "Epoch 3 Batch 646/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.931, Loss: 0.048\n", + "Epoch 3 Batch 647/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.931, Loss: 0.057\n", + "Epoch 3 Batch 648/1077 - Train Accuracy: 0.962, Validation Accuracy: 0.931, Loss: 0.031\n", + "Epoch 3 Batch 649/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.931, Loss: 0.048\n", + "Epoch 3 Batch 650/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.926, Loss: 0.040\n", + "Epoch 3 Batch 651/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.931, Loss: 0.044\n", + "Epoch 3 Batch 652/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.936, Loss: 0.065\n", + "Epoch 3 Batch 653/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.934, Loss: 0.054\n", + "Epoch 3 Batch 654/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.925, Loss: 0.044\n", + "Epoch 3 Batch 655/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.924, Loss: 0.058\n", + "Epoch 3 Batch 656/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.928, Loss: 0.053\n", + "Epoch 3 Batch 657/1077 - Train Accuracy: 0.956, Validation Accuracy: 0.929, Loss: 0.045\n", + "Epoch 3 Batch 658/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.934, Loss: 0.033\n", + "Epoch 3 Batch 659/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.929, Loss: 0.053\n", + "Epoch 3 Batch 660/1077 - Train Accuracy: 0.960, Validation Accuracy: 0.938, Loss: 0.034\n", + "Epoch 3 Batch 661/1077 - Train Accuracy: 0.960, Validation Accuracy: 0.936, Loss: 0.046\n", + "Epoch 3 Batch 662/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.928, Loss: 0.046\n", + "Epoch 3 Batch 663/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.927, Loss: 0.045\n", + "Epoch 3 Batch 664/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.924, Loss: 0.047\n", + "Epoch 3 Batch 665/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.920, Loss: 0.038\n", + "Epoch 3 Batch 666/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.915, Loss: 0.052\n", + "Epoch 3 Batch 667/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.911, Loss: 0.054\n", + "Epoch 3 Batch 668/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.911, Loss: 0.060\n", + "Epoch 3 Batch 669/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.911, Loss: 0.054\n", + "Epoch 3 Batch 670/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.924, Loss: 0.057\n", + "Epoch 3 Batch 671/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.933, Loss: 0.061\n", + "Epoch 3 Batch 672/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.937, Loss: 0.046\n", + "Epoch 3 Batch 673/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.941, Loss: 0.046\n", + "Epoch 3 Batch 674/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.933, Loss: 0.054\n", + "Epoch 3 Batch 675/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.932, Loss: 0.059\n", + "Epoch 3 Batch 676/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.929, Loss: 0.048\n", + "Epoch 3 Batch 677/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.927, Loss: 0.067\n", + "Epoch 3 Batch 678/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.933, Loss: 0.046\n", + "Epoch 3 Batch 679/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.930, Loss: 0.045\n", + "Epoch 3 Batch 680/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.922, Loss: 0.058\n", + "Epoch 3 Batch 681/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.926, Loss: 0.052\n", + "Epoch 3 Batch 682/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.917, Loss: 0.047\n", + "Epoch 3 Batch 683/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.918, Loss: 0.049\n", + "Epoch 3 Batch 684/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.918, Loss: 0.041\n", + "Epoch 3 Batch 685/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.918, Loss: 0.051\n", + "Epoch 3 Batch 686/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.914, Loss: 0.047\n", + "Epoch 3 Batch 687/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.909, Loss: 0.075\n", + "Epoch 3 Batch 688/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.907, Loss: 0.050\n", + "Epoch 3 Batch 689/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.913, Loss: 0.035\n", + "Epoch 3 Batch 690/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.910, Loss: 0.056\n", + "Epoch 3 Batch 691/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.912, Loss: 0.067\n", + "Epoch 3 Batch 692/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.918, Loss: 0.050\n", + "Epoch 3 Batch 693/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.918, Loss: 0.063\n", + "Epoch 3 Batch 694/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.917, Loss: 0.062\n", + "Epoch 3 Batch 695/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.917, Loss: 0.042\n", + "Epoch 3 Batch 696/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.917, Loss: 0.060\n", + "Epoch 3 Batch 697/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.915, Loss: 0.054\n", + "Epoch 3 Batch 698/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.901, Loss: 0.051\n", + "Epoch 3 Batch 699/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.908, Loss: 0.063\n", + "Epoch 3 Batch 700/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.917, Loss: 0.047\n", + "Epoch 3 Batch 701/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.916, Loss: 0.051\n", + "Epoch 3 Batch 702/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.924, Loss: 0.073\n", + "Epoch 3 Batch 703/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.933, Loss: 0.054\n", + "Epoch 3 Batch 704/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.929, Loss: 0.075\n", + "Epoch 3 Batch 705/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.934, Loss: 0.066\n", + "Epoch 3 Batch 706/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.931, Loss: 0.081\n", + "Epoch 3 Batch 707/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.933, Loss: 0.058\n", + "Epoch 3 Batch 708/1077 - Train Accuracy: 0.883, Validation Accuracy: 0.932, Loss: 0.065\n", + "Epoch 3 Batch 709/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.933, Loss: 0.067\n", + "Epoch 3 Batch 710/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.935, Loss: 0.048\n", + "Epoch 3 Batch 711/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.929, Loss: 0.064\n", + "Epoch 3 Batch 712/1077 - Train Accuracy: 0.962, Validation Accuracy: 0.925, Loss: 0.044\n", + "Epoch 3 Batch 713/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.922, Loss: 0.048\n", + "Epoch 3 Batch 714/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.923, Loss: 0.060\n", + "Epoch 3 Batch 715/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.925, Loss: 0.059\n", + "Epoch 3 Batch 716/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.926, Loss: 0.048\n", + "Epoch 3 Batch 717/1077 - Train Accuracy: 0.958, Validation Accuracy: 0.923, Loss: 0.044\n", + "Epoch 3 Batch 718/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.926, Loss: 0.039\n", + "Epoch 3 Batch 719/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.923, Loss: 0.053\n", + "Epoch 3 Batch 720/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.927, Loss: 0.058\n", + "Epoch 3 Batch 721/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.931, Loss: 0.052\n", + "Epoch 3 Batch 722/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.934, Loss: 0.048\n", + "Epoch 3 Batch 723/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.938, Loss: 0.049\n", + "Epoch 3 Batch 724/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.932, Loss: 0.049\n", + "Epoch 3 Batch 725/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.933, Loss: 0.039\n", + "Epoch 3 Batch 726/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.928, Loss: 0.057\n", + "Epoch 3 Batch 727/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.928, Loss: 0.044\n", + "Epoch 3 Batch 728/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.926, Loss: 0.071\n", + "Epoch 3 Batch 729/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.922, Loss: 0.065\n", + "Epoch 3 Batch 730/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.922, Loss: 0.066\n", + "Epoch 3 Batch 731/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.918, Loss: 0.053\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 3 Batch 732/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.918, Loss: 0.059\n", + "Epoch 3 Batch 733/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.904, Loss: 0.046\n", + "Epoch 3 Batch 734/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.907, Loss: 0.054\n", + "Epoch 3 Batch 735/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.911, Loss: 0.047\n", + "Epoch 3 Batch 736/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.916, Loss: 0.041\n", + "Epoch 3 Batch 737/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.922, Loss: 0.063\n", + "Epoch 3 Batch 738/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.926, Loss: 0.039\n", + "Epoch 3 Batch 739/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.928, Loss: 0.053\n", + "Epoch 3 Batch 740/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.929, Loss: 0.043\n", + "Epoch 3 Batch 741/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.931, Loss: 0.058\n", + "Epoch 3 Batch 742/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.933, Loss: 0.054\n", + "Epoch 3 Batch 743/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.932, Loss: 0.053\n", + "Epoch 3 Batch 744/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.941, Loss: 0.053\n", + "Epoch 3 Batch 745/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.936, Loss: 0.058\n", + "Epoch 3 Batch 746/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.936, Loss: 0.043\n", + "Epoch 3 Batch 747/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.933, Loss: 0.039\n", + "Epoch 3 Batch 748/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.934, Loss: 0.043\n", + "Epoch 3 Batch 749/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.935, Loss: 0.045\n", + "Epoch 3 Batch 750/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.937, Loss: 0.048\n", + "Epoch 3 Batch 751/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.937, Loss: 0.053\n", + "Epoch 3 Batch 752/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.936, Loss: 0.048\n", + "Epoch 3 Batch 753/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.932, Loss: 0.048\n", + "Epoch 3 Batch 754/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.936, Loss: 0.060\n", + "Epoch 3 Batch 755/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.927, Loss: 0.058\n", + "Epoch 3 Batch 756/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.928, Loss: 0.049\n", + "Epoch 3 Batch 757/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.924, Loss: 0.044\n", + "Epoch 3 Batch 758/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.917, Loss: 0.046\n", + "Epoch 3 Batch 759/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.927, Loss: 0.042\n", + "Epoch 3 Batch 760/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.938, Loss: 0.059\n", + "Epoch 3 Batch 761/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.942, Loss: 0.048\n", + "Epoch 3 Batch 762/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.939, Loss: 0.043\n", + "Epoch 3 Batch 763/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.936, Loss: 0.049\n", + "Epoch 3 Batch 764/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.941, Loss: 0.053\n", + "Epoch 3 Batch 765/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.938, Loss: 0.058\n", + "Epoch 3 Batch 766/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.942, Loss: 0.043\n", + "Epoch 3 Batch 767/1077 - Train Accuracy: 0.971, Validation Accuracy: 0.939, Loss: 0.046\n", + "Epoch 3 Batch 768/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.939, Loss: 0.051\n", + "Epoch 3 Batch 769/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.928, Loss: 0.045\n", + "Epoch 3 Batch 770/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.919, Loss: 0.049\n", + "Epoch 3 Batch 771/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.917, Loss: 0.050\n", + "Epoch 3 Batch 772/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.918, Loss: 0.048\n", + "Epoch 3 Batch 773/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.923, Loss: 0.049\n", + "Epoch 3 Batch 774/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.923, Loss: 0.063\n", + "Epoch 3 Batch 775/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.927, Loss: 0.057\n", + "Epoch 3 Batch 776/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.925, Loss: 0.045\n", + "Epoch 3 Batch 777/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.928, Loss: 0.054\n", + "Epoch 3 Batch 778/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.926, Loss: 0.047\n", + "Epoch 3 Batch 779/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.918, Loss: 0.062\n", + "Epoch 3 Batch 780/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.916, Loss: 0.077\n", + "Epoch 3 Batch 781/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.935, Loss: 0.041\n", + "Epoch 3 Batch 782/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.939, Loss: 0.045\n", + "Epoch 3 Batch 783/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.945, Loss: 0.053\n", + "Epoch 3 Batch 784/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.945, Loss: 0.040\n", + "Epoch 3 Batch 785/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.947, Loss: 0.037\n", + "Epoch 3 Batch 786/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.947, Loss: 0.043\n", + "Epoch 3 Batch 787/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.939, Loss: 0.055\n", + "Epoch 3 Batch 788/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.938, Loss: 0.045\n", + "Epoch 3 Batch 789/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.938, Loss: 0.060\n", + "Epoch 3 Batch 790/1077 - Train Accuracy: 0.888, Validation Accuracy: 0.933, Loss: 0.053\n", + "Epoch 3 Batch 791/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.933, Loss: 0.059\n", + "Epoch 3 Batch 792/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.929, Loss: 0.060\n", + "Epoch 3 Batch 793/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.932, Loss: 0.044\n", + "Epoch 3 Batch 794/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.931, Loss: 0.037\n", + "Epoch 3 Batch 795/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.925, Loss: 0.068\n", + "Epoch 3 Batch 796/1077 - Train Accuracy: 0.966, Validation Accuracy: 0.930, Loss: 0.037\n", + "Epoch 3 Batch 797/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.923, Loss: 0.052\n", + "Epoch 3 Batch 798/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.922, Loss: 0.053\n", + "Epoch 3 Batch 799/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.909, Loss: 0.060\n", + "Epoch 3 Batch 800/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.911, Loss: 0.041\n", + "Epoch 3 Batch 801/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.913, Loss: 0.056\n", + "Epoch 3 Batch 802/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.913, Loss: 0.048\n", + "Epoch 3 Batch 803/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.912, Loss: 0.061\n", + "Epoch 3 Batch 804/1077 - Train Accuracy: 0.963, Validation Accuracy: 0.912, Loss: 0.040\n", + "Epoch 3 Batch 805/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.913, Loss: 0.043\n", + "Epoch 3 Batch 806/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.909, Loss: 0.059\n", + "Epoch 3 Batch 807/1077 - Train Accuracy: 0.969, Validation Accuracy: 0.905, Loss: 0.044\n", + "Epoch 3 Batch 808/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.905, Loss: 0.068\n", + "Epoch 3 Batch 809/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.901, Loss: 0.056\n", + "Epoch 3 Batch 810/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.900, Loss: 0.043\n", + "Epoch 3 Batch 811/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.906, Loss: 0.051\n", + "Epoch 3 Batch 812/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.910, Loss: 0.050\n", + "Epoch 3 Batch 813/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.920, Loss: 0.054\n", + "Epoch 3 Batch 814/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.920, Loss: 0.061\n", + "Epoch 3 Batch 815/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.914, Loss: 0.053\n", + "Epoch 3 Batch 816/1077 - Train Accuracy: 0.961, Validation Accuracy: 0.910, Loss: 0.056\n", + "Epoch 3 Batch 817/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.920, Loss: 0.061\n", + "Epoch 3 Batch 818/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.925, Loss: 0.056\n", + "Epoch 3 Batch 819/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.932, Loss: 0.048\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 3 Batch 820/1077 - Train Accuracy: 0.958, Validation Accuracy: 0.927, Loss: 0.048\n", + "Epoch 3 Batch 821/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.923, Loss: 0.054\n", + "Epoch 3 Batch 822/1077 - Train Accuracy: 0.961, Validation Accuracy: 0.918, Loss: 0.040\n", + "Epoch 3 Batch 823/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.922, Loss: 0.058\n", + "Epoch 3 Batch 824/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.922, Loss: 0.064\n", + "Epoch 3 Batch 825/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.919, Loss: 0.043\n", + "Epoch 3 Batch 826/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.923, Loss: 0.048\n", + "Epoch 3 Batch 827/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.926, Loss: 0.047\n", + "Epoch 3 Batch 828/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.922, Loss: 0.051\n", + "Epoch 3 Batch 829/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.918, Loss: 0.069\n", + "Epoch 3 Batch 830/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.920, Loss: 0.059\n", + "Epoch 3 Batch 831/1077 - Train Accuracy: 0.881, Validation Accuracy: 0.915, Loss: 0.052\n", + "Epoch 3 Batch 832/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.915, Loss: 0.044\n", + "Epoch 3 Batch 833/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.920, Loss: 0.057\n", + "Epoch 3 Batch 834/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.927, Loss: 0.045\n", + "Epoch 3 Batch 835/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.922, Loss: 0.052\n", + "Epoch 3 Batch 836/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.923, Loss: 0.047\n", + "Epoch 3 Batch 837/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.928, Loss: 0.059\n", + "Epoch 3 Batch 838/1077 - Train Accuracy: 0.959, Validation Accuracy: 0.923, Loss: 0.046\n", + "Epoch 3 Batch 839/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.918, Loss: 0.037\n", + "Epoch 3 Batch 840/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.928, Loss: 0.043\n", + "Epoch 3 Batch 841/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.936, Loss: 0.057\n", + "Epoch 3 Batch 842/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.935, Loss: 0.037\n", + "Epoch 3 Batch 843/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.934, Loss: 0.050\n", + "Epoch 3 Batch 844/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.945, Loss: 0.044\n", + "Epoch 3 Batch 845/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.950, Loss: 0.048\n", + "Epoch 3 Batch 846/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.940, Loss: 0.059\n", + "Epoch 3 Batch 847/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.944, Loss: 0.057\n", + "Epoch 3 Batch 848/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.944, Loss: 0.039\n", + "Epoch 3 Batch 849/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.940, Loss: 0.051\n", + "Epoch 3 Batch 850/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.940, Loss: 0.078\n", + "Epoch 3 Batch 851/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.935, Loss: 0.063\n", + "Epoch 3 Batch 852/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.933, Loss: 0.053\n", + "Epoch 3 Batch 853/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.934, Loss: 0.059\n", + "Epoch 3 Batch 854/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.935, Loss: 0.052\n", + "Epoch 3 Batch 855/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.933, Loss: 0.052\n", + "Epoch 3 Batch 856/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.931, Loss: 0.050\n", + "Epoch 3 Batch 857/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.925, Loss: 0.055\n", + "Epoch 3 Batch 858/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.924, Loss: 0.049\n", + "Epoch 3 Batch 859/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.926, Loss: 0.054\n", + "Epoch 3 Batch 860/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.930, Loss: 0.044\n", + "Epoch 3 Batch 861/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.936, Loss: 0.061\n", + "Epoch 3 Batch 862/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.936, Loss: 0.049\n", + "Epoch 3 Batch 863/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.931, Loss: 0.037\n", + "Epoch 3 Batch 864/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.928, Loss: 0.052\n", + "Epoch 3 Batch 865/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.922, Loss: 0.048\n", + "Epoch 3 Batch 866/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.918, Loss: 0.065\n", + "Epoch 3 Batch 867/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.926, Loss: 0.095\n", + "Epoch 3 Batch 868/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.923, Loss: 0.063\n", + "Epoch 3 Batch 869/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.925, Loss: 0.049\n", + "Epoch 3 Batch 870/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.923, Loss: 0.051\n", + "Epoch 3 Batch 871/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.918, Loss: 0.036\n", + "Epoch 3 Batch 872/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.926, Loss: 0.052\n", + "Epoch 3 Batch 873/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.926, Loss: 0.051\n", + "Epoch 3 Batch 874/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.919, Loss: 0.066\n", + "Epoch 3 Batch 875/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.913, Loss: 0.067\n", + "Epoch 3 Batch 876/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.921, Loss: 0.043\n", + "Epoch 3 Batch 877/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.933, Loss: 0.043\n", + "Epoch 3 Batch 878/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.942, Loss: 0.043\n", + "Epoch 3 Batch 879/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.933, Loss: 0.042\n", + "Epoch 3 Batch 880/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.933, Loss: 0.049\n", + "Epoch 3 Batch 881/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.933, Loss: 0.050\n", + "Epoch 3 Batch 882/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.923, Loss: 0.050\n", + "Epoch 3 Batch 883/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.923, Loss: 0.063\n", + "Epoch 3 Batch 884/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.923, Loss: 0.053\n", + "Epoch 3 Batch 885/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.923, Loss: 0.036\n", + "Epoch 3 Batch 886/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.914, Loss: 0.041\n", + "Epoch 3 Batch 887/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.908, Loss: 0.061\n", + "Epoch 3 Batch 888/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.908, Loss: 0.048\n", + "Epoch 3 Batch 889/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.919, Loss: 0.048\n", + "Epoch 3 Batch 890/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.914, Loss: 0.053\n", + "Epoch 3 Batch 891/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.909, Loss: 0.045\n", + "Epoch 3 Batch 892/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.912, Loss: 0.042\n", + "Epoch 3 Batch 893/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.912, Loss: 0.043\n", + "Epoch 3 Batch 894/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.918, Loss: 0.041\n", + "Epoch 3 Batch 895/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.920, Loss: 0.044\n", + "Epoch 3 Batch 896/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.916, Loss: 0.053\n", + "Epoch 3 Batch 897/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.922, Loss: 0.037\n", + "Epoch 3 Batch 898/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.925, Loss: 0.040\n", + "Epoch 3 Batch 899/1077 - Train Accuracy: 0.962, Validation Accuracy: 0.930, Loss: 0.044\n", + "Epoch 3 Batch 900/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.934, Loss: 0.066\n", + "Epoch 3 Batch 901/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.935, Loss: 0.067\n", + "Epoch 3 Batch 902/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.933, Loss: 0.055\n", + "Epoch 3 Batch 903/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.933, Loss: 0.054\n", + "Epoch 3 Batch 904/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.939, Loss: 0.043\n", + "Epoch 3 Batch 905/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.933, Loss: 0.038\n", + "Epoch 3 Batch 906/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.931, Loss: 0.053\n", + "Epoch 3 Batch 907/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.931, Loss: 0.046\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 3 Batch 908/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.936, Loss: 0.052\n", + "Epoch 3 Batch 909/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.936, Loss: 0.052\n", + "Epoch 3 Batch 910/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.935, Loss: 0.049\n", + "Epoch 3 Batch 911/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.928, Loss: 0.045\n", + "Epoch 3 Batch 912/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.930, Loss: 0.047\n", + "Epoch 3 Batch 913/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.926, Loss: 0.078\n", + "Epoch 3 Batch 914/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.927, Loss: 0.067\n", + "Epoch 3 Batch 915/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.916, Loss: 0.045\n", + "Epoch 3 Batch 916/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.912, Loss: 0.050\n", + "Epoch 3 Batch 917/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.915, Loss: 0.047\n", + "Epoch 3 Batch 918/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.913, Loss: 0.045\n", + "Epoch 3 Batch 919/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.908, Loss: 0.038\n", + "Epoch 3 Batch 920/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.917, Loss: 0.043\n", + "Epoch 3 Batch 921/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.918, Loss: 0.058\n", + "Epoch 3 Batch 922/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.923, Loss: 0.049\n", + "Epoch 3 Batch 923/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.920, Loss: 0.037\n", + "Epoch 3 Batch 924/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.924, Loss: 0.055\n", + "Epoch 3 Batch 925/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.919, Loss: 0.050\n", + "Epoch 3 Batch 926/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.916, Loss: 0.032\n", + "Epoch 3 Batch 927/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.919, Loss: 0.064\n", + "Epoch 3 Batch 928/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.925, Loss: 0.052\n", + "Epoch 3 Batch 929/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.924, Loss: 0.053\n", + "Epoch 3 Batch 930/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.923, Loss: 0.050\n", + "Epoch 3 Batch 931/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.914, Loss: 0.046\n", + "Epoch 3 Batch 932/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.905, Loss: 0.055\n", + "Epoch 3 Batch 933/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.911, Loss: 0.049\n", + "Epoch 3 Batch 934/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.917, Loss: 0.042\n", + "Epoch 3 Batch 935/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.922, Loss: 0.049\n", + "Epoch 3 Batch 936/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.927, Loss: 0.050\n", + "Epoch 3 Batch 937/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.924, Loss: 0.058\n", + "Epoch 3 Batch 938/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.920, Loss: 0.056\n", + "Epoch 3 Batch 939/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.919, Loss: 0.052\n", + "Epoch 3 Batch 940/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.926, Loss: 0.041\n", + "Epoch 3 Batch 941/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.929, Loss: 0.042\n", + "Epoch 3 Batch 942/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.927, Loss: 0.053\n", + "Epoch 3 Batch 943/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.930, Loss: 0.049\n", + "Epoch 3 Batch 944/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.925, Loss: 0.044\n", + "Epoch 3 Batch 945/1077 - Train Accuracy: 0.969, Validation Accuracy: 0.930, Loss: 0.041\n", + "Epoch 3 Batch 946/1077 - Train Accuracy: 0.973, Validation Accuracy: 0.927, Loss: 0.029\n", + "Epoch 3 Batch 947/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.924, Loss: 0.047\n", + "Epoch 3 Batch 948/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.922, Loss: 0.047\n", + "Epoch 3 Batch 949/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.922, Loss: 0.041\n", + "Epoch 3 Batch 950/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.920, Loss: 0.044\n", + "Epoch 3 Batch 951/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.926, Loss: 0.055\n", + "Epoch 3 Batch 952/1077 - Train Accuracy: 0.956, Validation Accuracy: 0.929, Loss: 0.037\n", + "Epoch 3 Batch 953/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.928, Loss: 0.037\n", + "Epoch 3 Batch 954/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.926, Loss: 0.045\n", + "Epoch 3 Batch 955/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.926, Loss: 0.073\n", + "Epoch 3 Batch 956/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.926, Loss: 0.052\n", + "Epoch 3 Batch 957/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.919, Loss: 0.034\n", + "Epoch 3 Batch 958/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.919, Loss: 0.042\n", + "Epoch 3 Batch 959/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.919, Loss: 0.045\n", + "Epoch 3 Batch 960/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.919, Loss: 0.044\n", + "Epoch 3 Batch 961/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.920, Loss: 0.041\n", + "Epoch 3 Batch 962/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.920, Loss: 0.048\n", + "Epoch 3 Batch 963/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.919, Loss: 0.066\n", + "Epoch 3 Batch 964/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.920, Loss: 0.044\n", + "Epoch 3 Batch 965/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.920, Loss: 0.064\n", + "Epoch 3 Batch 966/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.924, Loss: 0.043\n", + "Epoch 3 Batch 967/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.914, Loss: 0.067\n", + "Epoch 3 Batch 968/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.914, Loss: 0.057\n", + "Epoch 3 Batch 969/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.916, Loss: 0.074\n", + "Epoch 3 Batch 970/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.922, Loss: 0.042\n", + "Epoch 3 Batch 971/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.916, Loss: 0.060\n", + "Epoch 3 Batch 972/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.925, Loss: 0.052\n", + "Epoch 3 Batch 973/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.926, Loss: 0.042\n", + "Epoch 3 Batch 974/1077 - Train Accuracy: 0.962, Validation Accuracy: 0.929, Loss: 0.035\n", + "Epoch 3 Batch 975/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.931, Loss: 0.045\n", + "Epoch 3 Batch 976/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.931, Loss: 0.039\n", + "Epoch 3 Batch 977/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.932, Loss: 0.038\n", + "Epoch 3 Batch 978/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.928, Loss: 0.047\n", + "Epoch 3 Batch 979/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.928, Loss: 0.046\n", + "Epoch 3 Batch 980/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.935, Loss: 0.049\n", + "Epoch 3 Batch 981/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.936, Loss: 0.043\n", + "Epoch 3 Batch 982/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.936, Loss: 0.048\n", + "Epoch 3 Batch 983/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.936, Loss: 0.049\n", + "Epoch 3 Batch 984/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.933, Loss: 0.066\n", + "Epoch 3 Batch 985/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.933, Loss: 0.046\n", + "Epoch 3 Batch 986/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.936, Loss: 0.049\n", + "Epoch 3 Batch 987/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.931, Loss: 0.045\n", + "Epoch 3 Batch 988/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.932, Loss: 0.066\n", + "Epoch 3 Batch 989/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.933, Loss: 0.055\n", + "Epoch 3 Batch 990/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.930, Loss: 0.059\n", + "Epoch 3 Batch 991/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.925, Loss: 0.041\n", + "Epoch 3 Batch 992/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.926, Loss: 0.049\n", + "Epoch 3 Batch 993/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.919, Loss: 0.040\n", + "Epoch 3 Batch 994/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.917, Loss: 0.046\n", + "Epoch 3 Batch 995/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.917, Loss: 0.048\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 3 Batch 996/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.923, Loss: 0.052\n", + "Epoch 3 Batch 997/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.922, Loss: 0.045\n", + "Epoch 3 Batch 998/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.926, Loss: 0.050\n", + "Epoch 3 Batch 999/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.929, Loss: 0.054\n", + "Epoch 3 Batch 1000/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.929, Loss: 0.041\n", + "Epoch 3 Batch 1001/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.925, Loss: 0.035\n", + "Epoch 3 Batch 1002/1077 - Train Accuracy: 0.959, Validation Accuracy: 0.928, Loss: 0.036\n", + "Epoch 3 Batch 1003/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.933, Loss: 0.050\n", + "Epoch 3 Batch 1004/1077 - Train Accuracy: 0.964, Validation Accuracy: 0.933, Loss: 0.052\n", + "Epoch 3 Batch 1005/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.931, Loss: 0.043\n", + "Epoch 3 Batch 1006/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.929, Loss: 0.047\n", + "Epoch 3 Batch 1007/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.930, Loss: 0.047\n", + "Epoch 3 Batch 1008/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.925, Loss: 0.063\n", + "Epoch 3 Batch 1009/1077 - Train Accuracy: 0.959, Validation Accuracy: 0.927, Loss: 0.038\n", + "Epoch 3 Batch 1010/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.934, Loss: 0.043\n", + "Epoch 3 Batch 1011/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.927, Loss: 0.037\n", + "Epoch 3 Batch 1012/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.924, Loss: 0.037\n", + "Epoch 3 Batch 1013/1077 - Train Accuracy: 0.971, Validation Accuracy: 0.923, Loss: 0.034\n", + "Epoch 3 Batch 1014/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.928, Loss: 0.055\n", + "Epoch 3 Batch 1015/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.928, Loss: 0.059\n", + "Epoch 3 Batch 1016/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.925, Loss: 0.046\n", + "Epoch 3 Batch 1017/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.925, Loss: 0.042\n", + "Epoch 3 Batch 1018/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.921, Loss: 0.042\n", + "Epoch 3 Batch 1019/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.923, Loss: 0.060\n", + "Epoch 3 Batch 1020/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.923, Loss: 0.040\n", + "Epoch 3 Batch 1021/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.922, Loss: 0.046\n", + "Epoch 3 Batch 1022/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.924, Loss: 0.044\n", + "Epoch 3 Batch 1023/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.920, Loss: 0.047\n", + "Epoch 3 Batch 1024/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.931, Loss: 0.068\n", + "Epoch 3 Batch 1025/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.934, Loss: 0.050\n", + "Epoch 3 Batch 1026/1077 - Train Accuracy: 0.966, Validation Accuracy: 0.938, Loss: 0.053\n", + "Epoch 3 Batch 1027/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.934, Loss: 0.048\n", + "Epoch 3 Batch 1028/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.929, Loss: 0.048\n", + "Epoch 3 Batch 1029/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.931, Loss: 0.038\n", + "Epoch 3 Batch 1030/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.935, Loss: 0.043\n", + "Epoch 3 Batch 1031/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.926, Loss: 0.050\n", + "Epoch 3 Batch 1032/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.930, Loss: 0.050\n", + "Epoch 3 Batch 1033/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.930, Loss: 0.051\n", + "Epoch 3 Batch 1034/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.934, Loss: 0.049\n", + "Epoch 3 Batch 1035/1077 - Train Accuracy: 0.975, Validation Accuracy: 0.929, Loss: 0.029\n", + "Epoch 3 Batch 1036/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.929, Loss: 0.046\n", + "Epoch 3 Batch 1037/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.930, Loss: 0.038\n", + "Epoch 3 Batch 1038/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.935, Loss: 0.067\n", + "Epoch 3 Batch 1039/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.938, Loss: 0.050\n", + "Epoch 3 Batch 1040/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.938, Loss: 0.053\n", + "Epoch 3 Batch 1041/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.931, Loss: 0.058\n", + "Epoch 3 Batch 1042/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.935, Loss: 0.041\n", + "Epoch 3 Batch 1043/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.935, Loss: 0.054\n", + "Epoch 3 Batch 1044/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.937, Loss: 0.053\n", + "Epoch 3 Batch 1045/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.924, Loss: 0.044\n", + "Epoch 3 Batch 1046/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.929, Loss: 0.035\n", + "Epoch 3 Batch 1047/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.933, Loss: 0.048\n", + "Epoch 3 Batch 1048/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.942, Loss: 0.051\n", + "Epoch 3 Batch 1049/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.938, Loss: 0.045\n", + "Epoch 3 Batch 1050/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.935, Loss: 0.037\n", + "Epoch 3 Batch 1051/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.934, Loss: 0.053\n", + "Epoch 3 Batch 1052/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.939, Loss: 0.046\n", + "Epoch 3 Batch 1053/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.941, Loss: 0.045\n", + "Epoch 3 Batch 1054/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.941, Loss: 0.053\n", + "Epoch 3 Batch 1055/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.940, Loss: 0.045\n", + "Epoch 3 Batch 1056/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.943, Loss: 0.046\n", + "Epoch 3 Batch 1057/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.936, Loss: 0.055\n", + "Epoch 3 Batch 1058/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.936, Loss: 0.052\n", + "Epoch 3 Batch 1059/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.920, Loss: 0.058\n", + "Epoch 3 Batch 1060/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.918, Loss: 0.044\n", + "Epoch 3 Batch 1061/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.918, Loss: 0.049\n", + "Epoch 3 Batch 1062/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.920, Loss: 0.047\n", + "Epoch 3 Batch 1063/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.929, Loss: 0.061\n", + "Epoch 3 Batch 1064/1077 - Train Accuracy: 0.960, Validation Accuracy: 0.930, Loss: 0.046\n", + "Epoch 3 Batch 1065/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.933, Loss: 0.042\n", + "Epoch 3 Batch 1066/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.933, Loss: 0.039\n", + "Epoch 3 Batch 1067/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.938, Loss: 0.057\n", + "Epoch 3 Batch 1068/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.940, Loss: 0.043\n", + "Epoch 3 Batch 1069/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.937, Loss: 0.035\n", + "Epoch 3 Batch 1070/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.937, Loss: 0.041\n", + "Epoch 3 Batch 1071/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.940, Loss: 0.048\n", + "Epoch 3 Batch 1072/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.934, Loss: 0.040\n", + "Epoch 3 Batch 1073/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.929, Loss: 0.047\n", + "Epoch 3 Batch 1074/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.929, Loss: 0.055\n", + "Epoch 3 Batch 1075/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.925, Loss: 0.051\n", + "Epoch 4 Batch 0/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.926, Loss: 0.050\n", + "Epoch 4 Batch 1/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.922, Loss: 0.036\n", + "Epoch 4 Batch 2/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.926, Loss: 0.050\n", + "Epoch 4 Batch 3/1077 - Train Accuracy: 0.965, Validation Accuracy: 0.918, Loss: 0.044\n", + "Epoch 4 Batch 4/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.922, Loss: 0.034\n", + "Epoch 4 Batch 5/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.918, Loss: 0.069\n", + "Epoch 4 Batch 6/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.918, Loss: 0.051\n", + "Epoch 4 Batch 7/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.915, Loss: 0.047\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 4 Batch 8/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.914, Loss: 0.041\n", + "Epoch 4 Batch 9/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.912, Loss: 0.045\n", + "Epoch 4 Batch 10/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.912, Loss: 0.048\n", + "Epoch 4 Batch 11/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.919, Loss: 0.058\n", + "Epoch 4 Batch 12/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.922, Loss: 0.046\n", + "Epoch 4 Batch 13/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.931, Loss: 0.058\n", + "Epoch 4 Batch 14/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.920, Loss: 0.039\n", + "Epoch 4 Batch 15/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.917, Loss: 0.038\n", + "Epoch 4 Batch 16/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.924, Loss: 0.060\n", + "Epoch 4 Batch 17/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.924, Loss: 0.044\n", + "Epoch 4 Batch 18/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.922, Loss: 0.046\n", + "Epoch 4 Batch 19/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.925, Loss: 0.052\n", + "Epoch 4 Batch 20/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.930, Loss: 0.037\n", + "Epoch 4 Batch 21/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.926, Loss: 0.054\n", + "Epoch 4 Batch 22/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.933, Loss: 0.061\n", + "Epoch 4 Batch 23/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.925, Loss: 0.048\n", + "Epoch 4 Batch 24/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.930, Loss: 0.042\n", + "Epoch 4 Batch 25/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.925, Loss: 0.042\n", + "Epoch 4 Batch 26/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.916, Loss: 0.056\n", + "Epoch 4 Batch 27/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.916, Loss: 0.037\n", + "Epoch 4 Batch 28/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.915, Loss: 0.053\n", + "Epoch 4 Batch 29/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.926, Loss: 0.052\n", + "Epoch 4 Batch 30/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.926, Loss: 0.038\n", + "Epoch 4 Batch 31/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.931, Loss: 0.044\n", + "Epoch 4 Batch 32/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.934, Loss: 0.048\n", + "Epoch 4 Batch 33/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.926, Loss: 0.045\n", + "Epoch 4 Batch 34/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.930, Loss: 0.049\n", + "Epoch 4 Batch 35/1077 - Train Accuracy: 0.963, Validation Accuracy: 0.926, Loss: 0.042\n", + "Epoch 4 Batch 36/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.930, Loss: 0.050\n", + "Epoch 4 Batch 37/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.932, Loss: 0.048\n", + "Epoch 4 Batch 38/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.936, Loss: 0.060\n", + "Epoch 4 Batch 39/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.926, Loss: 0.061\n", + "Epoch 4 Batch 40/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.928, Loss: 0.040\n", + "Epoch 4 Batch 41/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.931, Loss: 0.038\n", + "Epoch 4 Batch 42/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.928, Loss: 0.050\n", + "Epoch 4 Batch 43/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.925, Loss: 0.029\n", + "Epoch 4 Batch 44/1077 - Train Accuracy: 0.968, Validation Accuracy: 0.926, Loss: 0.030\n", + "Epoch 4 Batch 45/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.925, Loss: 0.043\n", + "Epoch 4 Batch 46/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.923, Loss: 0.045\n", + "Epoch 4 Batch 47/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.924, Loss: 0.048\n", + "Epoch 4 Batch 48/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.924, Loss: 0.063\n", + "Epoch 4 Batch 49/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.915, Loss: 0.060\n", + "Epoch 4 Batch 50/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.920, Loss: 0.047\n", + "Epoch 4 Batch 51/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.931, Loss: 0.046\n", + "Epoch 4 Batch 52/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.933, Loss: 0.051\n", + "Epoch 4 Batch 53/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.935, Loss: 0.042\n", + "Epoch 4 Batch 54/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.931, Loss: 0.085\n", + "Epoch 4 Batch 55/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.932, Loss: 0.049\n", + "Epoch 4 Batch 56/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.921, Loss: 0.042\n", + "Epoch 4 Batch 57/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.918, Loss: 0.047\n", + "Epoch 4 Batch 58/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.911, Loss: 0.037\n", + "Epoch 4 Batch 59/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.908, Loss: 0.038\n", + "Epoch 4 Batch 60/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.909, Loss: 0.035\n", + "Epoch 4 Batch 61/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.917, Loss: 0.051\n", + "Epoch 4 Batch 62/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.913, Loss: 0.045\n", + "Epoch 4 Batch 63/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.917, Loss: 0.035\n", + "Epoch 4 Batch 64/1077 - Train Accuracy: 0.961, Validation Accuracy: 0.913, Loss: 0.040\n", + "Epoch 4 Batch 65/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.913, Loss: 0.051\n", + "Epoch 4 Batch 66/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.909, Loss: 0.026\n", + "Epoch 4 Batch 67/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.909, Loss: 0.039\n", + "Epoch 4 Batch 68/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.909, Loss: 0.056\n", + "Epoch 4 Batch 69/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.906, Loss: 0.060\n", + "Epoch 4 Batch 70/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.915, Loss: 0.051\n", + "Epoch 4 Batch 71/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.914, Loss: 0.028\n", + "Epoch 4 Batch 72/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.913, Loss: 0.042\n", + "Epoch 4 Batch 73/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.909, Loss: 0.043\n", + "Epoch 4 Batch 74/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.915, Loss: 0.049\n", + "Epoch 4 Batch 75/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.919, Loss: 0.062\n", + "Epoch 4 Batch 76/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.914, Loss: 0.032\n", + "Epoch 4 Batch 77/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.912, Loss: 0.043\n", + "Epoch 4 Batch 78/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.921, Loss: 0.038\n", + "Epoch 4 Batch 79/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.929, Loss: 0.035\n", + "Epoch 4 Batch 80/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.924, Loss: 0.045\n", + "Epoch 4 Batch 81/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.922, Loss: 0.043\n", + "Epoch 4 Batch 82/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.923, Loss: 0.045\n", + "Epoch 4 Batch 83/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.926, Loss: 0.047\n", + "Epoch 4 Batch 84/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.920, Loss: 0.048\n", + "Epoch 4 Batch 85/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.918, Loss: 0.044\n", + "Epoch 4 Batch 86/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.917, Loss: 0.046\n", + "Epoch 4 Batch 87/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.908, Loss: 0.054\n", + "Epoch 4 Batch 88/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.908, Loss: 0.047\n", + "Epoch 4 Batch 89/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.913, Loss: 0.046\n", + "Epoch 4 Batch 90/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.911, Loss: 0.044\n", + "Epoch 4 Batch 91/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.908, Loss: 0.035\n", + "Epoch 4 Batch 92/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.914, Loss: 0.055\n", + "Epoch 4 Batch 93/1077 - Train Accuracy: 0.960, Validation Accuracy: 0.918, Loss: 0.043\n", + "Epoch 4 Batch 94/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.918, Loss: 0.034\n", + "Epoch 4 Batch 95/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.918, Loss: 0.043\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 4 Batch 96/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.918, Loss: 0.045\n", + "Epoch 4 Batch 97/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.918, Loss: 0.050\n", + "Epoch 4 Batch 98/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.928, Loss: 0.052\n", + "Epoch 4 Batch 99/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.928, Loss: 0.043\n", + "Epoch 4 Batch 100/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.929, Loss: 0.048\n", + "Epoch 4 Batch 101/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.929, Loss: 0.048\n", + "Epoch 4 Batch 102/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.931, Loss: 0.042\n", + "Epoch 4 Batch 103/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.940, Loss: 0.049\n", + "Epoch 4 Batch 104/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.925, Loss: 0.054\n", + "Epoch 4 Batch 105/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.929, Loss: 0.047\n", + "Epoch 4 Batch 106/1077 - Train Accuracy: 0.958, Validation Accuracy: 0.924, Loss: 0.053\n", + "Epoch 4 Batch 107/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.928, Loss: 0.041\n", + "Epoch 4 Batch 108/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.928, Loss: 0.050\n", + "Epoch 4 Batch 109/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.931, Loss: 0.048\n", + "Epoch 4 Batch 110/1077 - Train Accuracy: 0.976, Validation Accuracy: 0.931, Loss: 0.028\n", + "Epoch 4 Batch 111/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.928, Loss: 0.045\n", + "Epoch 4 Batch 112/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.929, Loss: 0.041\n", + "Epoch 4 Batch 113/1077 - Train Accuracy: 0.892, Validation Accuracy: 0.921, Loss: 0.050\n", + "Epoch 4 Batch 114/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.925, Loss: 0.037\n", + "Epoch 4 Batch 115/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.918, Loss: 0.043\n", + "Epoch 4 Batch 116/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.914, Loss: 0.054\n", + "Epoch 4 Batch 117/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.914, Loss: 0.034\n", + "Epoch 4 Batch 118/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.916, Loss: 0.041\n", + "Epoch 4 Batch 119/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.914, Loss: 0.037\n", + "Epoch 4 Batch 120/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.919, Loss: 0.053\n", + "Epoch 4 Batch 121/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.919, Loss: 0.045\n", + "Epoch 4 Batch 122/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.917, Loss: 0.036\n", + "Epoch 4 Batch 123/1077 - Train Accuracy: 0.964, Validation Accuracy: 0.910, Loss: 0.036\n", + "Epoch 4 Batch 124/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.910, Loss: 0.052\n", + "Epoch 4 Batch 125/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.914, Loss: 0.058\n", + "Epoch 4 Batch 126/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.916, Loss: 0.035\n", + "Epoch 4 Batch 127/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.916, Loss: 0.048\n", + "Epoch 4 Batch 128/1077 - Train Accuracy: 0.966, Validation Accuracy: 0.916, Loss: 0.043\n", + "Epoch 4 Batch 129/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.914, Loss: 0.048\n", + "Epoch 4 Batch 130/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.914, Loss: 0.040\n", + "Epoch 4 Batch 131/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.915, Loss: 0.048\n", + "Epoch 4 Batch 132/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.913, Loss: 0.038\n", + "Epoch 4 Batch 133/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.918, Loss: 0.037\n", + "Epoch 4 Batch 134/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.918, Loss: 0.039\n", + "Epoch 4 Batch 135/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.918, Loss: 0.046\n", + "Epoch 4 Batch 136/1077 - Train Accuracy: 0.960, Validation Accuracy: 0.914, Loss: 0.041\n", + "Epoch 4 Batch 137/1077 - Train Accuracy: 0.962, Validation Accuracy: 0.913, Loss: 0.036\n", + "Epoch 4 Batch 138/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.906, Loss: 0.043\n", + "Epoch 4 Batch 139/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.906, Loss: 0.052\n", + "Epoch 4 Batch 140/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.906, Loss: 0.047\n", + "Epoch 4 Batch 141/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.908, Loss: 0.038\n", + "Epoch 4 Batch 142/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.913, Loss: 0.037\n", + "Epoch 4 Batch 143/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.907, Loss: 0.041\n", + "Epoch 4 Batch 144/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.906, Loss: 0.059\n", + "Epoch 4 Batch 145/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.907, Loss: 0.052\n", + "Epoch 4 Batch 146/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.906, Loss: 0.078\n", + "Epoch 4 Batch 147/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.906, Loss: 0.046\n", + "Epoch 4 Batch 148/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.906, Loss: 0.050\n", + "Epoch 4 Batch 149/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.903, Loss: 0.043\n", + "Epoch 4 Batch 150/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.909, Loss: 0.049\n", + "Epoch 4 Batch 151/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.909, Loss: 0.041\n", + "Epoch 4 Batch 152/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.909, Loss: 0.070\n", + "Epoch 4 Batch 153/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.907, Loss: 0.067\n", + "Epoch 4 Batch 154/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.911, Loss: 0.044\n", + "Epoch 4 Batch 155/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.915, Loss: 0.042\n", + "Epoch 4 Batch 156/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.915, Loss: 0.039\n", + "Epoch 4 Batch 157/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.915, Loss: 0.043\n", + "Epoch 4 Batch 158/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.912, Loss: 0.066\n", + "Epoch 4 Batch 159/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.917, Loss: 0.039\n", + "Epoch 4 Batch 160/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.926, Loss: 0.046\n", + "Epoch 4 Batch 161/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.926, Loss: 0.042\n", + "Epoch 4 Batch 162/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.928, Loss: 0.054\n", + "Epoch 4 Batch 163/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.928, Loss: 0.060\n", + "Epoch 4 Batch 164/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.927, Loss: 0.045\n", + "Epoch 4 Batch 165/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.919, Loss: 0.044\n", + "Epoch 4 Batch 166/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.914, Loss: 0.060\n", + "Epoch 4 Batch 167/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.931, Loss: 0.047\n", + "Epoch 4 Batch 168/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.929, Loss: 0.062\n", + "Epoch 4 Batch 169/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.929, Loss: 0.059\n", + "Epoch 4 Batch 170/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.923, Loss: 0.054\n", + "Epoch 4 Batch 171/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.917, Loss: 0.055\n", + "Epoch 4 Batch 172/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.917, Loss: 0.044\n", + "Epoch 4 Batch 173/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.920, Loss: 0.048\n", + "Epoch 4 Batch 174/1077 - Train Accuracy: 0.964, Validation Accuracy: 0.922, Loss: 0.042\n", + "Epoch 4 Batch 175/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.921, Loss: 0.049\n", + "Epoch 4 Batch 176/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.922, Loss: 0.057\n", + "Epoch 4 Batch 177/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.920, Loss: 0.060\n", + "Epoch 4 Batch 178/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.919, Loss: 0.048\n", + "Epoch 4 Batch 179/1077 - Train Accuracy: 0.959, Validation Accuracy: 0.924, Loss: 0.058\n", + "Epoch 4 Batch 180/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.920, Loss: 0.043\n", + "Epoch 4 Batch 181/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.920, Loss: 0.058\n", + "Epoch 4 Batch 182/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.918, Loss: 0.057\n", + "Epoch 4 Batch 183/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.915, Loss: 0.055\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 4 Batch 184/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.904, Loss: 0.050\n", + "Epoch 4 Batch 185/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.911, Loss: 0.060\n", + "Epoch 4 Batch 186/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.909, Loss: 0.053\n", + "Epoch 4 Batch 187/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.908, Loss: 0.038\n", + "Epoch 4 Batch 188/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.908, Loss: 0.049\n", + "Epoch 4 Batch 189/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.909, Loss: 0.040\n", + "Epoch 4 Batch 190/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.916, Loss: 0.048\n", + "Epoch 4 Batch 191/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.924, Loss: 0.039\n", + "Epoch 4 Batch 192/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.925, Loss: 0.049\n", + "Epoch 4 Batch 193/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.931, Loss: 0.043\n", + "Epoch 4 Batch 194/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.931, Loss: 0.036\n", + "Epoch 4 Batch 195/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.930, Loss: 0.039\n", + "Epoch 4 Batch 196/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.935, Loss: 0.039\n", + "Epoch 4 Batch 197/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.933, Loss: 0.059\n", + "Epoch 4 Batch 198/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.932, Loss: 0.048\n", + "Epoch 4 Batch 199/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.933, Loss: 0.051\n", + "Epoch 4 Batch 200/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.933, Loss: 0.057\n", + "Epoch 4 Batch 201/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.938, Loss: 0.040\n", + "Epoch 4 Batch 202/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.934, Loss: 0.045\n", + "Epoch 4 Batch 203/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.933, Loss: 0.046\n", + "Epoch 4 Batch 204/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.934, Loss: 0.069\n", + "Epoch 4 Batch 205/1077 - Train Accuracy: 0.888, Validation Accuracy: 0.930, Loss: 0.069\n", + "Epoch 4 Batch 206/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.928, Loss: 0.045\n", + "Epoch 4 Batch 207/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.918, Loss: 0.047\n", + "Epoch 4 Batch 208/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.915, Loss: 0.053\n", + "Epoch 4 Batch 209/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.916, Loss: 0.042\n", + "Epoch 4 Batch 210/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.918, Loss: 0.047\n", + "Epoch 4 Batch 211/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.915, Loss: 0.049\n", + "Epoch 4 Batch 212/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.917, Loss: 0.036\n", + "Epoch 4 Batch 213/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.911, Loss: 0.040\n", + "Epoch 4 Batch 214/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.915, Loss: 0.044\n", + "Epoch 4 Batch 215/1077 - Train Accuracy: 0.890, Validation Accuracy: 0.918, Loss: 0.060\n", + "Epoch 4 Batch 216/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.912, Loss: 0.058\n", + "Epoch 4 Batch 217/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.912, Loss: 0.042\n", + "Epoch 4 Batch 218/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.924, Loss: 0.061\n", + "Epoch 4 Batch 219/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.930, Loss: 0.042\n", + "Epoch 4 Batch 220/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.925, Loss: 0.043\n", + "Epoch 4 Batch 221/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.925, Loss: 0.056\n", + "Epoch 4 Batch 222/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.925, Loss: 0.052\n", + "Epoch 4 Batch 223/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.931, Loss: 0.049\n", + "Epoch 4 Batch 224/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.930, Loss: 0.046\n", + "Epoch 4 Batch 225/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.922, Loss: 0.062\n", + "Epoch 4 Batch 226/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.922, Loss: 0.041\n", + "Epoch 4 Batch 227/1077 - Train Accuracy: 0.871, Validation Accuracy: 0.922, Loss: 0.056\n", + "Epoch 4 Batch 228/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.917, Loss: 0.047\n", + "Epoch 4 Batch 229/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.917, Loss: 0.053\n", + "Epoch 4 Batch 230/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.917, Loss: 0.053\n", + "Epoch 4 Batch 231/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.920, Loss: 0.050\n", + "Epoch 4 Batch 232/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.919, Loss: 0.041\n", + "Epoch 4 Batch 233/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.915, Loss: 0.063\n", + "Epoch 4 Batch 234/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.919, Loss: 0.052\n", + "Epoch 4 Batch 235/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.919, Loss: 0.047\n", + "Epoch 4 Batch 236/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.912, Loss: 0.064\n", + "Epoch 4 Batch 237/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.912, Loss: 0.055\n", + "Epoch 4 Batch 238/1077 - Train Accuracy: 0.962, Validation Accuracy: 0.903, Loss: 0.047\n", + "Epoch 4 Batch 239/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.923, Loss: 0.036\n", + "Epoch 4 Batch 240/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.920, Loss: 0.043\n", + "Epoch 4 Batch 241/1077 - Train Accuracy: 0.961, Validation Accuracy: 0.922, Loss: 0.036\n", + "Epoch 4 Batch 242/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.922, Loss: 0.049\n", + "Epoch 4 Batch 243/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.922, Loss: 0.052\n", + "Epoch 4 Batch 244/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.922, Loss: 0.047\n", + "Epoch 4 Batch 245/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.920, Loss: 0.037\n", + "Epoch 4 Batch 246/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.925, Loss: 0.046\n", + "Epoch 4 Batch 247/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.925, Loss: 0.053\n", + "Epoch 4 Batch 248/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.930, Loss: 0.052\n", + "Epoch 4 Batch 249/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.922, Loss: 0.046\n", + "Epoch 4 Batch 250/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.916, Loss: 0.038\n", + "Epoch 4 Batch 251/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.911, Loss: 0.055\n", + "Epoch 4 Batch 252/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.907, Loss: 0.061\n", + "Epoch 4 Batch 253/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.903, Loss: 0.048\n", + "Epoch 4 Batch 254/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.900, Loss: 0.062\n", + "Epoch 4 Batch 255/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.905, Loss: 0.045\n", + "Epoch 4 Batch 256/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.902, Loss: 0.058\n", + "Epoch 4 Batch 257/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.898, Loss: 0.050\n", + "Epoch 4 Batch 258/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.898, Loss: 0.057\n", + "Epoch 4 Batch 259/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.896, Loss: 0.041\n", + "Epoch 4 Batch 260/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.906, Loss: 0.036\n", + "Epoch 4 Batch 261/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.905, Loss: 0.066\n", + "Epoch 4 Batch 262/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.896, Loss: 0.040\n", + "Epoch 4 Batch 263/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.911, Loss: 0.042\n", + "Epoch 4 Batch 264/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.910, Loss: 0.052\n", + "Epoch 4 Batch 265/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.920, Loss: 0.043\n", + "Epoch 4 Batch 266/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.924, Loss: 0.048\n", + "Epoch 4 Batch 267/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.928, Loss: 0.036\n", + "Epoch 4 Batch 268/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.931, Loss: 0.058\n", + "Epoch 4 Batch 269/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.932, Loss: 0.062\n", + "Epoch 4 Batch 270/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.936, Loss: 0.050\n", + "Epoch 4 Batch 271/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.932, Loss: 0.049\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 4 Batch 272/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.932, Loss: 0.080\n", + "Epoch 4 Batch 273/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.941, Loss: 0.046\n", + "Epoch 4 Batch 274/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.936, Loss: 0.057\n", + "Epoch 4 Batch 275/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.936, Loss: 0.050\n", + "Epoch 4 Batch 276/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.924, Loss: 0.080\n", + "Epoch 4 Batch 277/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.926, Loss: 0.038\n", + "Epoch 4 Batch 278/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.926, Loss: 0.067\n", + "Epoch 4 Batch 279/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.924, Loss: 0.063\n", + "Epoch 4 Batch 280/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.925, Loss: 0.058\n", + "Epoch 4 Batch 281/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.926, Loss: 0.059\n", + "Epoch 4 Batch 282/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.935, Loss: 0.074\n", + "Epoch 4 Batch 283/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.935, Loss: 0.063\n", + "Epoch 4 Batch 284/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.940, Loss: 0.053\n", + "Epoch 4 Batch 285/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.936, Loss: 0.056\n", + "Epoch 4 Batch 286/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.936, Loss: 0.043\n", + "Epoch 4 Batch 287/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.925, Loss: 0.045\n", + "Epoch 4 Batch 288/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.925, Loss: 0.061\n", + "Epoch 4 Batch 289/1077 - Train Accuracy: 0.964, Validation Accuracy: 0.920, Loss: 0.048\n", + "Epoch 4 Batch 290/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.922, Loss: 0.071\n", + "Epoch 4 Batch 291/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.925, Loss: 0.070\n", + "Epoch 4 Batch 292/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.931, Loss: 0.052\n", + "Epoch 4 Batch 293/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.931, Loss: 0.052\n", + "Epoch 4 Batch 294/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.926, Loss: 0.049\n", + "Epoch 4 Batch 295/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.921, Loss: 0.069\n", + "Epoch 4 Batch 296/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.915, Loss: 0.048\n", + "Epoch 4 Batch 297/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.912, Loss: 0.058\n", + "Epoch 4 Batch 298/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.912, Loss: 0.072\n", + "Epoch 4 Batch 299/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.922, Loss: 0.062\n", + "Epoch 4 Batch 300/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.928, Loss: 0.044\n", + "Epoch 4 Batch 301/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.922, Loss: 0.044\n", + "Epoch 4 Batch 302/1077 - Train Accuracy: 0.959, Validation Accuracy: 0.918, Loss: 0.045\n", + "Epoch 4 Batch 303/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.913, Loss: 0.054\n", + "Epoch 4 Batch 304/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.922, Loss: 0.052\n", + "Epoch 4 Batch 305/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.923, Loss: 0.046\n", + "Epoch 4 Batch 306/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.912, Loss: 0.059\n", + "Epoch 4 Batch 307/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.918, Loss: 0.043\n", + "Epoch 4 Batch 308/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.918, Loss: 0.052\n", + "Epoch 4 Batch 309/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.923, Loss: 0.041\n", + "Epoch 4 Batch 310/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.926, Loss: 0.050\n", + "Epoch 4 Batch 311/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.930, Loss: 0.047\n", + "Epoch 4 Batch 312/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.931, Loss: 0.062\n", + "Epoch 4 Batch 313/1077 - Train Accuracy: 0.961, Validation Accuracy: 0.930, Loss: 0.035\n", + "Epoch 4 Batch 314/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.930, Loss: 0.045\n", + "Epoch 4 Batch 315/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.934, Loss: 0.039\n", + "Epoch 4 Batch 316/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.934, Loss: 0.051\n", + "Epoch 4 Batch 317/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.930, Loss: 0.056\n", + "Epoch 4 Batch 318/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.931, Loss: 0.036\n", + "Epoch 4 Batch 319/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.929, Loss: 0.071\n", + "Epoch 4 Batch 320/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.929, Loss: 0.058\n", + "Epoch 4 Batch 321/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.933, Loss: 0.043\n", + "Epoch 4 Batch 322/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.933, Loss: 0.040\n", + "Epoch 4 Batch 323/1077 - Train Accuracy: 0.959, Validation Accuracy: 0.929, Loss: 0.044\n", + "Epoch 4 Batch 324/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.929, Loss: 0.046\n", + "Epoch 4 Batch 325/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.935, Loss: 0.044\n", + "Epoch 4 Batch 326/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.933, Loss: 0.042\n", + "Epoch 4 Batch 327/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.933, Loss: 0.056\n", + "Epoch 4 Batch 328/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.931, Loss: 0.062\n", + "Epoch 4 Batch 329/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.929, Loss: 0.060\n", + "Epoch 4 Batch 330/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.921, Loss: 0.048\n", + "Epoch 4 Batch 331/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.920, Loss: 0.052\n", + "Epoch 4 Batch 332/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.918, Loss: 0.038\n", + "Epoch 4 Batch 333/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.913, Loss: 0.042\n", + "Epoch 4 Batch 334/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.907, Loss: 0.049\n", + "Epoch 4 Batch 335/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.900, Loss: 0.050\n", + "Epoch 4 Batch 336/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.909, Loss: 0.080\n", + "Epoch 4 Batch 337/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.914, Loss: 0.050\n", + "Epoch 4 Batch 338/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.918, Loss: 0.070\n", + "Epoch 4 Batch 339/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.928, Loss: 0.041\n", + "Epoch 4 Batch 340/1077 - Train Accuracy: 0.961, Validation Accuracy: 0.925, Loss: 0.041\n", + "Epoch 4 Batch 341/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.933, Loss: 0.064\n", + "Epoch 4 Batch 342/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.933, Loss: 0.051\n", + "Epoch 4 Batch 343/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.930, Loss: 0.050\n", + "Epoch 4 Batch 344/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.929, Loss: 0.051\n", + "Epoch 4 Batch 345/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.930, Loss: 0.034\n", + "Epoch 4 Batch 346/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.929, Loss: 0.052\n", + "Epoch 4 Batch 347/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.924, Loss: 0.033\n", + "Epoch 4 Batch 348/1077 - Train Accuracy: 0.956, Validation Accuracy: 0.918, Loss: 0.049\n", + "Epoch 4 Batch 349/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.916, Loss: 0.048\n", + "Epoch 4 Batch 350/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.911, Loss: 0.050\n", + "Epoch 4 Batch 351/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.905, Loss: 0.046\n", + "Epoch 4 Batch 352/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.903, Loss: 0.043\n", + "Epoch 4 Batch 353/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.903, Loss: 0.056\n", + "Epoch 4 Batch 354/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.919, Loss: 0.067\n", + "Epoch 4 Batch 355/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.920, Loss: 0.048\n", + "Epoch 4 Batch 356/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.922, Loss: 0.056\n", + "Epoch 4 Batch 357/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.918, Loss: 0.042\n", + "Epoch 4 Batch 358/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.918, Loss: 0.054\n", + "Epoch 4 Batch 359/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.916, Loss: 0.043\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 4 Batch 360/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.916, Loss: 0.039\n", + "Epoch 4 Batch 361/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.919, Loss: 0.055\n", + "Epoch 4 Batch 362/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.924, Loss: 0.051\n", + "Epoch 4 Batch 363/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.928, Loss: 0.059\n", + "Epoch 4 Batch 364/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.923, Loss: 0.057\n", + "Epoch 4 Batch 365/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.929, Loss: 0.044\n", + "Epoch 4 Batch 366/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.925, Loss: 0.044\n", + "Epoch 4 Batch 367/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.915, Loss: 0.040\n", + "Epoch 4 Batch 368/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.913, Loss: 0.051\n", + "Epoch 4 Batch 369/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.909, Loss: 0.048\n", + "Epoch 4 Batch 370/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.918, Loss: 0.054\n", + "Epoch 4 Batch 371/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.914, Loss: 0.040\n", + "Epoch 4 Batch 372/1077 - Train Accuracy: 0.959, Validation Accuracy: 0.919, Loss: 0.041\n", + "Epoch 4 Batch 373/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.919, Loss: 0.036\n", + "Epoch 4 Batch 374/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.918, Loss: 0.059\n", + "Epoch 4 Batch 375/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.930, Loss: 0.049\n", + "Epoch 4 Batch 376/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.928, Loss: 0.049\n", + "Epoch 4 Batch 377/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.926, Loss: 0.052\n", + "Epoch 4 Batch 378/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.931, Loss: 0.041\n", + "Epoch 4 Batch 379/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.933, Loss: 0.062\n", + "Epoch 4 Batch 380/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.933, Loss: 0.041\n", + "Epoch 4 Batch 381/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.935, Loss: 0.057\n", + "Epoch 4 Batch 382/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.930, Loss: 0.068\n", + "Epoch 4 Batch 383/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.931, Loss: 0.046\n", + "Epoch 4 Batch 384/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.926, Loss: 0.041\n", + "Epoch 4 Batch 385/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.924, Loss: 0.047\n", + "Epoch 4 Batch 386/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.925, Loss: 0.055\n", + "Epoch 4 Batch 387/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.929, Loss: 0.044\n", + "Epoch 4 Batch 388/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.937, Loss: 0.059\n", + "Epoch 4 Batch 389/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.932, Loss: 0.049\n", + "Epoch 4 Batch 390/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.929, Loss: 0.064\n", + "Epoch 4 Batch 391/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.928, Loss: 0.059\n", + "Epoch 4 Batch 392/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.929, Loss: 0.050\n", + "Epoch 4 Batch 393/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.923, Loss: 0.044\n", + "Epoch 4 Batch 394/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.924, Loss: 0.042\n", + "Epoch 4 Batch 395/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.924, Loss: 0.049\n", + "Epoch 4 Batch 396/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.923, Loss: 0.053\n", + "Epoch 4 Batch 397/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.923, Loss: 0.051\n", + "Epoch 4 Batch 398/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.914, Loss: 0.055\n", + "Epoch 4 Batch 399/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.915, Loss: 0.048\n", + "Epoch 4 Batch 400/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.915, Loss: 0.066\n", + "Epoch 4 Batch 401/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.918, Loss: 0.041\n", + "Epoch 4 Batch 402/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.918, Loss: 0.042\n", + "Epoch 4 Batch 403/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.919, Loss: 0.077\n", + "Epoch 4 Batch 404/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.915, Loss: 0.046\n", + "Epoch 4 Batch 405/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.915, Loss: 0.055\n", + "Epoch 4 Batch 406/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.913, Loss: 0.049\n", + "Epoch 4 Batch 407/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.904, Loss: 0.073\n", + "Epoch 4 Batch 408/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.904, Loss: 0.048\n", + "Epoch 4 Batch 409/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.906, Loss: 0.062\n", + "Epoch 4 Batch 410/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.914, Loss: 0.061\n", + "Epoch 4 Batch 411/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.914, Loss: 0.060\n", + "Epoch 4 Batch 412/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.914, Loss: 0.049\n", + "Epoch 4 Batch 413/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.914, Loss: 0.049\n", + "Epoch 4 Batch 414/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.914, Loss: 0.049\n", + "Epoch 4 Batch 415/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.916, Loss: 0.058\n", + "Epoch 4 Batch 416/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.916, Loss: 0.042\n", + "Epoch 4 Batch 417/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.920, Loss: 0.085\n", + "Epoch 4 Batch 418/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.922, Loss: 0.051\n", + "Epoch 4 Batch 419/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.921, Loss: 0.052\n", + "Epoch 4 Batch 420/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.920, Loss: 0.041\n", + "Epoch 4 Batch 421/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.920, Loss: 0.062\n", + "Epoch 4 Batch 422/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.918, Loss: 0.044\n", + "Epoch 4 Batch 423/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.918, Loss: 0.070\n", + "Epoch 4 Batch 424/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.923, Loss: 0.054\n", + "Epoch 4 Batch 425/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.923, Loss: 0.039\n", + "Epoch 4 Batch 426/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.922, Loss: 0.055\n", + "Epoch 4 Batch 427/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.914, Loss: 0.040\n", + "Epoch 4 Batch 428/1077 - Train Accuracy: 0.961, Validation Accuracy: 0.919, Loss: 0.036\n", + "Epoch 4 Batch 429/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.917, Loss: 0.043\n", + "Epoch 4 Batch 430/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.912, Loss: 0.043\n", + "Epoch 4 Batch 431/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.920, Loss: 0.047\n", + "Epoch 4 Batch 432/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.925, Loss: 0.055\n", + "Epoch 4 Batch 433/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.923, Loss: 0.049\n", + "Epoch 4 Batch 434/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.914, Loss: 0.036\n", + "Epoch 4 Batch 435/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.909, Loss: 0.059\n", + "Epoch 4 Batch 436/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.909, Loss: 0.041\n", + "Epoch 4 Batch 437/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.914, Loss: 0.040\n", + "Epoch 4 Batch 438/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.914, Loss: 0.040\n", + "Epoch 4 Batch 439/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.911, Loss: 0.061\n", + "Epoch 4 Batch 440/1077 - Train Accuracy: 0.886, Validation Accuracy: 0.913, Loss: 0.059\n", + "Epoch 4 Batch 441/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.912, Loss: 0.048\n", + "Epoch 4 Batch 442/1077 - Train Accuracy: 0.901, Validation Accuracy: 0.911, Loss: 0.060\n", + "Epoch 4 Batch 443/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.913, Loss: 0.041\n", + "Epoch 4 Batch 444/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.916, Loss: 0.047\n", + "Epoch 4 Batch 445/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.912, Loss: 0.055\n", + "Epoch 4 Batch 446/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.907, Loss: 0.038\n", + "Epoch 4 Batch 447/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.907, Loss: 0.047\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 4 Batch 448/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.909, Loss: 0.067\n", + "Epoch 4 Batch 449/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.905, Loss: 0.066\n", + "Epoch 4 Batch 450/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.916, Loss: 0.045\n", + "Epoch 4 Batch 451/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.910, Loss: 0.053\n", + "Epoch 4 Batch 452/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.911, Loss: 0.054\n", + "Epoch 4 Batch 453/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.907, Loss: 0.049\n", + "Epoch 4 Batch 454/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.911, Loss: 0.057\n", + "Epoch 4 Batch 455/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.910, Loss: 0.064\n", + "Epoch 4 Batch 456/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.916, Loss: 0.061\n", + "Epoch 4 Batch 457/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.912, Loss: 0.050\n", + "Epoch 4 Batch 458/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.910, Loss: 0.068\n", + "Epoch 4 Batch 459/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.912, Loss: 0.054\n", + "Epoch 4 Batch 460/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.907, Loss: 0.060\n", + "Epoch 4 Batch 461/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.908, Loss: 0.048\n", + "Epoch 4 Batch 462/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.906, Loss: 0.053\n", + "Epoch 4 Batch 463/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.909, Loss: 0.058\n", + "Epoch 4 Batch 464/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.906, Loss: 0.056\n", + "Epoch 4 Batch 465/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.905, Loss: 0.062\n", + "Epoch 4 Batch 466/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.919, Loss: 0.056\n", + "Epoch 4 Batch 467/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.923, Loss: 0.049\n", + "Epoch 4 Batch 468/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.924, Loss: 0.062\n", + "Epoch 4 Batch 469/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.924, Loss: 0.051\n", + "Epoch 4 Batch 470/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.913, Loss: 0.054\n", + "Epoch 4 Batch 471/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.912, Loss: 0.037\n", + "Epoch 4 Batch 472/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.915, Loss: 0.053\n", + "Epoch 4 Batch 473/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.918, Loss: 0.054\n", + "Epoch 4 Batch 474/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.920, Loss: 0.053\n", + "Epoch 4 Batch 475/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.922, Loss: 0.051\n", + "Epoch 4 Batch 476/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.922, Loss: 0.040\n", + "Epoch 4 Batch 477/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.923, Loss: 0.053\n", + "Epoch 4 Batch 478/1077 - Train Accuracy: 0.956, Validation Accuracy: 0.915, Loss: 0.048\n", + "Epoch 4 Batch 479/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.920, Loss: 0.071\n", + "Epoch 4 Batch 480/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.925, Loss: 0.041\n", + "Epoch 4 Batch 481/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.930, Loss: 0.060\n", + "Epoch 4 Batch 482/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.929, Loss: 0.061\n", + "Epoch 4 Batch 483/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.925, Loss: 0.053\n", + "Epoch 4 Batch 484/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.926, Loss: 0.059\n", + "Epoch 4 Batch 485/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.925, Loss: 0.068\n", + "Epoch 4 Batch 486/1077 - Train Accuracy: 0.959, Validation Accuracy: 0.920, Loss: 0.045\n", + "Epoch 4 Batch 487/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.915, Loss: 0.042\n", + "Epoch 4 Batch 488/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.915, Loss: 0.061\n", + "Epoch 4 Batch 489/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.915, Loss: 0.043\n", + "Epoch 4 Batch 490/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.915, Loss: 0.053\n", + "Epoch 4 Batch 491/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.914, Loss: 0.067\n", + "Epoch 4 Batch 492/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.922, Loss: 0.060\n", + "Epoch 4 Batch 493/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.915, Loss: 0.047\n", + "Epoch 4 Batch 494/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.915, Loss: 0.051\n", + "Epoch 4 Batch 495/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.911, Loss: 0.054\n", + "Epoch 4 Batch 496/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.911, Loss: 0.071\n", + "Epoch 4 Batch 497/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.904, Loss: 0.053\n", + "Epoch 4 Batch 498/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.921, Loss: 0.060\n", + "Epoch 4 Batch 499/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.923, Loss: 0.055\n", + "Epoch 4 Batch 500/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.927, Loss: 0.054\n", + "Epoch 4 Batch 501/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.934, Loss: 0.053\n", + "Epoch 4 Batch 502/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.935, Loss: 0.049\n", + "Epoch 4 Batch 503/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.939, Loss: 0.052\n", + "Epoch 4 Batch 504/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.938, Loss: 0.055\n", + "Epoch 4 Batch 505/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.932, Loss: 0.046\n", + "Epoch 4 Batch 506/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.931, Loss: 0.084\n", + "Epoch 4 Batch 507/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.931, Loss: 0.064\n", + "Epoch 4 Batch 508/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.932, Loss: 0.047\n", + "Epoch 4 Batch 509/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.923, Loss: 0.076\n", + "Epoch 4 Batch 510/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.919, Loss: 0.061\n", + "Epoch 4 Batch 511/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.918, Loss: 0.049\n", + "Epoch 4 Batch 512/1077 - Train Accuracy: 0.959, Validation Accuracy: 0.908, Loss: 0.047\n", + "Epoch 4 Batch 513/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.915, Loss: 0.054\n", + "Epoch 4 Batch 514/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.915, Loss: 0.063\n", + "Epoch 4 Batch 515/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.915, Loss: 0.055\n", + "Epoch 4 Batch 516/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.906, Loss: 0.056\n", + "Epoch 4 Batch 517/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.913, Loss: 0.060\n", + "Epoch 4 Batch 518/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.912, Loss: 0.069\n", + "Epoch 4 Batch 519/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.916, Loss: 0.062\n", + "Epoch 4 Batch 520/1077 - Train Accuracy: 0.965, Validation Accuracy: 0.920, Loss: 0.049\n", + "Epoch 4 Batch 521/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.920, Loss: 0.060\n", + "Epoch 4 Batch 522/1077 - Train Accuracy: 0.870, Validation Accuracy: 0.918, Loss: 0.069\n", + "Epoch 4 Batch 523/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.922, Loss: 0.059\n", + "Epoch 4 Batch 524/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.917, Loss: 0.068\n", + "Epoch 4 Batch 525/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.914, Loss: 0.062\n", + "Epoch 4 Batch 526/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.909, Loss: 0.052\n", + "Epoch 4 Batch 527/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.909, Loss: 0.060\n", + "Epoch 4 Batch 528/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.914, Loss: 0.055\n", + "Epoch 4 Batch 529/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.914, Loss: 0.058\n", + "Epoch 4 Batch 530/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.909, Loss: 0.070\n", + "Epoch 4 Batch 531/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.910, Loss: 0.055\n", + "Epoch 4 Batch 532/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.910, Loss: 0.072\n", + "Epoch 4 Batch 533/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.898, Loss: 0.056\n", + "Epoch 4 Batch 534/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.898, Loss: 0.059\n", + "Epoch 4 Batch 535/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.907, Loss: 0.061\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 4 Batch 536/1077 - Train Accuracy: 0.887, Validation Accuracy: 0.911, Loss: 0.057\n", + "Epoch 4 Batch 537/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.922, Loss: 0.041\n", + "Epoch 4 Batch 538/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.921, Loss: 0.041\n", + "Epoch 4 Batch 539/1077 - Train Accuracy: 0.893, Validation Accuracy: 0.922, Loss: 0.070\n", + "Epoch 4 Batch 540/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.918, Loss: 0.052\n", + "Epoch 4 Batch 541/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.917, Loss: 0.061\n", + "Epoch 4 Batch 542/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.913, Loss: 0.056\n", + "Epoch 4 Batch 543/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.914, Loss: 0.056\n", + "Epoch 4 Batch 544/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.914, Loss: 0.051\n", + "Epoch 4 Batch 545/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.908, Loss: 0.056\n", + "Epoch 4 Batch 546/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.904, Loss: 0.056\n", + "Epoch 4 Batch 547/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.911, Loss: 0.041\n", + "Epoch 4 Batch 548/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.909, Loss: 0.064\n", + "Epoch 4 Batch 549/1077 - Train Accuracy: 0.888, Validation Accuracy: 0.910, Loss: 0.080\n", + "Epoch 4 Batch 550/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.908, Loss: 0.055\n", + "Epoch 4 Batch 551/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.912, Loss: 0.068\n", + "Epoch 4 Batch 552/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.920, Loss: 0.058\n", + "Epoch 4 Batch 553/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.919, Loss: 0.068\n", + "Epoch 4 Batch 554/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.919, Loss: 0.055\n", + "Epoch 4 Batch 555/1077 - Train Accuracy: 0.959, Validation Accuracy: 0.922, Loss: 0.043\n", + "Epoch 4 Batch 556/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.918, Loss: 0.044\n", + "Epoch 4 Batch 557/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.922, Loss: 0.047\n", + "Epoch 4 Batch 558/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.928, Loss: 0.046\n", + "Epoch 4 Batch 559/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.927, Loss: 0.050\n", + "Epoch 4 Batch 560/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.926, Loss: 0.055\n", + "Epoch 4 Batch 561/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.925, Loss: 0.047\n", + "Epoch 4 Batch 562/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.930, Loss: 0.055\n", + "Epoch 4 Batch 563/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.925, Loss: 0.054\n", + "Epoch 4 Batch 564/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.921, Loss: 0.056\n", + "Epoch 4 Batch 565/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.925, Loss: 0.066\n", + "Epoch 4 Batch 566/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.928, Loss: 0.055\n", + "Epoch 4 Batch 567/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.929, Loss: 0.057\n", + "Epoch 4 Batch 568/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.926, Loss: 0.045\n", + "Epoch 4 Batch 569/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.926, Loss: 0.071\n", + "Epoch 4 Batch 570/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.926, Loss: 0.057\n", + "Epoch 4 Batch 571/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.926, Loss: 0.053\n", + "Epoch 4 Batch 572/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.926, Loss: 0.044\n", + "Epoch 4 Batch 573/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.929, Loss: 0.065\n", + "Epoch 4 Batch 574/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.922, Loss: 0.056\n", + "Epoch 4 Batch 575/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.928, Loss: 0.033\n", + "Epoch 4 Batch 576/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.931, Loss: 0.069\n", + "Epoch 4 Batch 577/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.931, Loss: 0.055\n", + "Epoch 4 Batch 578/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.930, Loss: 0.051\n", + "Epoch 4 Batch 579/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.938, Loss: 0.054\n", + "Epoch 4 Batch 580/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.942, Loss: 0.044\n", + "Epoch 4 Batch 581/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.939, Loss: 0.048\n", + "Epoch 4 Batch 582/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.938, Loss: 0.063\n", + "Epoch 4 Batch 583/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.928, Loss: 0.056\n", + "Epoch 4 Batch 584/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.928, Loss: 0.060\n", + "Epoch 4 Batch 585/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.922, Loss: 0.041\n", + "Epoch 4 Batch 586/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.924, Loss: 0.056\n", + "Epoch 4 Batch 587/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.925, Loss: 0.066\n", + "Epoch 4 Batch 588/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.927, Loss: 0.053\n", + "Epoch 4 Batch 589/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.934, Loss: 0.059\n", + "Epoch 4 Batch 590/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.927, Loss: 0.072\n", + "Epoch 4 Batch 591/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.928, Loss: 0.055\n", + "Epoch 4 Batch 592/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.928, Loss: 0.062\n", + "Epoch 4 Batch 593/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.923, Loss: 0.084\n", + "Epoch 4 Batch 594/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.922, Loss: 0.067\n", + "Epoch 4 Batch 595/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.931, Loss: 0.058\n", + "Epoch 4 Batch 596/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.927, Loss: 0.059\n", + "Epoch 4 Batch 597/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.927, Loss: 0.061\n", + "Epoch 4 Batch 598/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.934, Loss: 0.062\n", + "Epoch 4 Batch 599/1077 - Train Accuracy: 0.889, Validation Accuracy: 0.934, Loss: 0.080\n", + "Epoch 4 Batch 600/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.932, Loss: 0.060\n", + "Epoch 4 Batch 601/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.931, Loss: 0.067\n", + "Epoch 4 Batch 602/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.936, Loss: 0.056\n", + "Epoch 4 Batch 603/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.935, Loss: 0.046\n", + "Epoch 4 Batch 604/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.935, Loss: 0.072\n", + "Epoch 4 Batch 605/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.940, Loss: 0.072\n", + "Epoch 4 Batch 606/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.935, Loss: 0.043\n", + "Epoch 4 Batch 607/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.939, Loss: 0.052\n", + "Epoch 4 Batch 608/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.933, Loss: 0.064\n", + "Epoch 4 Batch 609/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.938, Loss: 0.052\n", + "Epoch 4 Batch 610/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.935, Loss: 0.061\n", + "Epoch 4 Batch 611/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.935, Loss: 0.052\n", + "Epoch 4 Batch 612/1077 - Train Accuracy: 0.956, Validation Accuracy: 0.931, Loss: 0.042\n", + "Epoch 4 Batch 613/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.935, Loss: 0.062\n", + "Epoch 4 Batch 614/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.935, Loss: 0.046\n", + "Epoch 4 Batch 615/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.937, Loss: 0.048\n", + "Epoch 4 Batch 616/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.933, Loss: 0.044\n", + "Epoch 4 Batch 617/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.937, Loss: 0.048\n", + "Epoch 4 Batch 618/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.938, Loss: 0.054\n", + "Epoch 4 Batch 619/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.948, Loss: 0.043\n", + "Epoch 4 Batch 620/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.944, Loss: 0.047\n", + "Epoch 4 Batch 621/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.939, Loss: 0.056\n", + "Epoch 4 Batch 622/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.939, Loss: 0.058\n", + "Epoch 4 Batch 623/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.937, Loss: 0.071\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 4 Batch 624/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.935, Loss: 0.053\n", + "Epoch 4 Batch 625/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.934, Loss: 0.047\n", + "Epoch 4 Batch 626/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.934, Loss: 0.057\n", + "Epoch 4 Batch 627/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.934, Loss: 0.049\n", + "Epoch 4 Batch 628/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.931, Loss: 0.054\n", + "Epoch 4 Batch 629/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.931, Loss: 0.064\n", + "Epoch 4 Batch 630/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.931, Loss: 0.052\n", + "Epoch 4 Batch 631/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.942, Loss: 0.050\n", + "Epoch 4 Batch 632/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.946, Loss: 0.043\n", + "Epoch 4 Batch 633/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.941, Loss: 0.048\n", + "Epoch 4 Batch 634/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.936, Loss: 0.043\n", + "Epoch 4 Batch 635/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.941, Loss: 0.059\n", + "Epoch 4 Batch 636/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.938, Loss: 0.042\n", + "Epoch 4 Batch 637/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.934, Loss: 0.051\n", + "Epoch 4 Batch 638/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.934, Loss: 0.056\n", + "Epoch 4 Batch 639/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.935, Loss: 0.075\n", + "Epoch 4 Batch 640/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.928, Loss: 0.053\n", + "Epoch 4 Batch 641/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.927, Loss: 0.042\n", + "Epoch 4 Batch 642/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.917, Loss: 0.057\n", + "Epoch 4 Batch 643/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.918, Loss: 0.043\n", + "Epoch 4 Batch 644/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.913, Loss: 0.048\n", + "Epoch 4 Batch 645/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.920, Loss: 0.066\n", + "Epoch 4 Batch 646/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.924, Loss: 0.045\n", + "Epoch 4 Batch 647/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.923, Loss: 0.056\n", + "Epoch 4 Batch 648/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.920, Loss: 0.039\n", + "Epoch 4 Batch 649/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.914, Loss: 0.055\n", + "Epoch 4 Batch 650/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.920, Loss: 0.055\n", + "Epoch 4 Batch 651/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.919, Loss: 0.046\n", + "Epoch 4 Batch 652/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.919, Loss: 0.058\n", + "Epoch 4 Batch 653/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.923, Loss: 0.060\n", + "Epoch 4 Batch 654/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.919, Loss: 0.048\n", + "Epoch 4 Batch 655/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.919, Loss: 0.058\n", + "Epoch 4 Batch 656/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.920, Loss: 0.048\n", + "Epoch 4 Batch 657/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.924, Loss: 0.052\n", + "Epoch 4 Batch 658/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.916, Loss: 0.037\n", + "Epoch 4 Batch 659/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.914, Loss: 0.047\n", + "Epoch 4 Batch 660/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.914, Loss: 0.044\n", + "Epoch 4 Batch 661/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.914, Loss: 0.046\n", + "Epoch 4 Batch 662/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.919, Loss: 0.048\n", + "Epoch 4 Batch 663/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.921, Loss: 0.039\n", + "Epoch 4 Batch 664/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.924, Loss: 0.055\n", + "Epoch 4 Batch 665/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.928, Loss: 0.039\n", + "Epoch 4 Batch 666/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.926, Loss: 0.065\n", + "Epoch 4 Batch 667/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.919, Loss: 0.063\n", + "Epoch 4 Batch 668/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.923, Loss: 0.053\n", + "Epoch 4 Batch 669/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.915, Loss: 0.043\n", + "Epoch 4 Batch 670/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.911, Loss: 0.055\n", + "Epoch 4 Batch 671/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.918, Loss: 0.052\n", + "Epoch 4 Batch 672/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.918, Loss: 0.045\n", + "Epoch 4 Batch 673/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.926, Loss: 0.049\n", + "Epoch 4 Batch 674/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.929, Loss: 0.039\n", + "Epoch 4 Batch 675/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.926, Loss: 0.060\n", + "Epoch 4 Batch 676/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.921, Loss: 0.042\n", + "Epoch 4 Batch 677/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.924, Loss: 0.061\n", + "Epoch 4 Batch 678/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.925, Loss: 0.035\n", + "Epoch 4 Batch 679/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.931, Loss: 0.049\n", + "Epoch 4 Batch 680/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.926, Loss: 0.058\n", + "Epoch 4 Batch 681/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.929, Loss: 0.054\n", + "Epoch 4 Batch 682/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.921, Loss: 0.050\n", + "Epoch 4 Batch 683/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.929, Loss: 0.043\n", + "Epoch 4 Batch 684/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.928, Loss: 0.054\n", + "Epoch 4 Batch 685/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.925, Loss: 0.065\n", + "Epoch 4 Batch 686/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.926, Loss: 0.044\n", + "Epoch 4 Batch 687/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.926, Loss: 0.058\n", + "Epoch 4 Batch 688/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.923, Loss: 0.047\n", + "Epoch 4 Batch 689/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.928, Loss: 0.035\n", + "Epoch 4 Batch 690/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.926, Loss: 0.047\n", + "Epoch 4 Batch 691/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.926, Loss: 0.063\n", + "Epoch 4 Batch 692/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.922, Loss: 0.040\n", + "Epoch 4 Batch 693/1077 - Train Accuracy: 0.894, Validation Accuracy: 0.918, Loss: 0.064\n", + "Epoch 4 Batch 694/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.918, Loss: 0.055\n", + "Epoch 4 Batch 695/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.924, Loss: 0.046\n", + "Epoch 4 Batch 696/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.911, Loss: 0.065\n", + "Epoch 4 Batch 697/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.911, Loss: 0.050\n", + "Epoch 4 Batch 698/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.910, Loss: 0.046\n", + "Epoch 4 Batch 699/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.910, Loss: 0.042\n", + "Epoch 4 Batch 700/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.911, Loss: 0.039\n", + "Epoch 4 Batch 701/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.911, Loss: 0.063\n", + "Epoch 4 Batch 702/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.911, Loss: 0.061\n", + "Epoch 4 Batch 703/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.920, Loss: 0.049\n", + "Epoch 4 Batch 704/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.920, Loss: 0.057\n", + "Epoch 4 Batch 705/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.922, Loss: 0.067\n", + "Epoch 4 Batch 706/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.921, Loss: 0.089\n", + "Epoch 4 Batch 707/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.919, Loss: 0.059\n", + "Epoch 4 Batch 708/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.919, Loss: 0.057\n", + "Epoch 4 Batch 709/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.925, Loss: 0.050\n", + "Epoch 4 Batch 710/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.926, Loss: 0.036\n", + "Epoch 4 Batch 711/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.930, Loss: 0.058\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 4 Batch 712/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.925, Loss: 0.041\n", + "Epoch 4 Batch 713/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.924, Loss: 0.049\n", + "Epoch 4 Batch 714/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.928, Loss: 0.048\n", + "Epoch 4 Batch 715/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.928, Loss: 0.049\n", + "Epoch 4 Batch 716/1077 - Train Accuracy: 0.960, Validation Accuracy: 0.932, Loss: 0.041\n", + "Epoch 4 Batch 717/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.927, Loss: 0.044\n", + "Epoch 4 Batch 718/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.934, Loss: 0.047\n", + "Epoch 4 Batch 719/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.939, Loss: 0.063\n", + "Epoch 4 Batch 720/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.939, Loss: 0.053\n", + "Epoch 4 Batch 721/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.939, Loss: 0.065\n", + "Epoch 4 Batch 722/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.940, Loss: 0.037\n", + "Epoch 4 Batch 723/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.944, Loss: 0.059\n", + "Epoch 4 Batch 724/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.939, Loss: 0.051\n", + "Epoch 4 Batch 725/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.926, Loss: 0.039\n", + "Epoch 4 Batch 726/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.926, Loss: 0.045\n", + "Epoch 4 Batch 727/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.926, Loss: 0.046\n", + "Epoch 4 Batch 728/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.926, Loss: 0.062\n", + "Epoch 4 Batch 729/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.920, Loss: 0.059\n", + "Epoch 4 Batch 730/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.915, Loss: 0.069\n", + "Epoch 4 Batch 731/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.911, Loss: 0.054\n", + "Epoch 4 Batch 732/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.912, Loss: 0.062\n", + "Epoch 4 Batch 733/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.916, Loss: 0.070\n", + "Epoch 4 Batch 734/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.919, Loss: 0.045\n", + "Epoch 4 Batch 735/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.919, Loss: 0.039\n", + "Epoch 4 Batch 736/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.923, Loss: 0.030\n", + "Epoch 4 Batch 737/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.924, Loss: 0.045\n", + "Epoch 4 Batch 738/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.925, Loss: 0.042\n", + "Epoch 4 Batch 739/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.926, Loss: 0.047\n", + "Epoch 4 Batch 740/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.925, Loss: 0.044\n", + "Epoch 4 Batch 741/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.915, Loss: 0.053\n", + "Epoch 4 Batch 742/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.916, Loss: 0.031\n", + "Epoch 4 Batch 743/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.917, Loss: 0.052\n", + "Epoch 4 Batch 744/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.926, Loss: 0.046\n", + "Epoch 4 Batch 745/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.926, Loss: 0.054\n", + "Epoch 4 Batch 746/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.929, Loss: 0.047\n", + "Epoch 4 Batch 747/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.936, Loss: 0.047\n", + "Epoch 4 Batch 748/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.940, Loss: 0.047\n", + "Epoch 4 Batch 749/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.938, Loss: 0.052\n", + "Epoch 4 Batch 750/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.934, Loss: 0.032\n", + "Epoch 4 Batch 751/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.929, Loss: 0.049\n", + "Epoch 4 Batch 752/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.928, Loss: 0.048\n", + "Epoch 4 Batch 753/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.922, Loss: 0.044\n", + "Epoch 4 Batch 754/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.931, Loss: 0.059\n", + "Epoch 4 Batch 755/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.932, Loss: 0.063\n", + "Epoch 4 Batch 756/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.930, Loss: 0.054\n", + "Epoch 4 Batch 757/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.930, Loss: 0.044\n", + "Epoch 4 Batch 758/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.934, Loss: 0.039\n", + "Epoch 4 Batch 759/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.935, Loss: 0.037\n", + "Epoch 4 Batch 760/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.931, Loss: 0.061\n", + "Epoch 4 Batch 761/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.936, Loss: 0.046\n", + "Epoch 4 Batch 762/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.935, Loss: 0.048\n", + "Epoch 4 Batch 763/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.931, Loss: 0.049\n", + "Epoch 4 Batch 764/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.932, Loss: 0.042\n", + "Epoch 4 Batch 765/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.928, Loss: 0.052\n", + "Epoch 4 Batch 766/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.921, Loss: 0.050\n", + "Epoch 4 Batch 767/1077 - Train Accuracy: 0.962, Validation Accuracy: 0.917, Loss: 0.042\n", + "Epoch 4 Batch 768/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.920, Loss: 0.052\n", + "Epoch 4 Batch 769/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.916, Loss: 0.052\n", + "Epoch 4 Batch 770/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.918, Loss: 0.038\n", + "Epoch 4 Batch 771/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.914, Loss: 0.046\n", + "Epoch 4 Batch 772/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.901, Loss: 0.050\n", + "Epoch 4 Batch 773/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.916, Loss: 0.048\n", + "Epoch 4 Batch 774/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.920, Loss: 0.050\n", + "Epoch 4 Batch 775/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.926, Loss: 0.047\n", + "Epoch 4 Batch 776/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.926, Loss: 0.047\n", + "Epoch 4 Batch 777/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.926, Loss: 0.047\n", + "Epoch 4 Batch 778/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.926, Loss: 0.047\n", + "Epoch 4 Batch 779/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.943, Loss: 0.054\n", + "Epoch 4 Batch 780/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.937, Loss: 0.070\n", + "Epoch 4 Batch 781/1077 - Train Accuracy: 0.958, Validation Accuracy: 0.933, Loss: 0.044\n", + "Epoch 4 Batch 782/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.922, Loss: 0.041\n", + "Epoch 4 Batch 783/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.926, Loss: 0.053\n", + "Epoch 4 Batch 784/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.933, Loss: 0.037\n", + "Epoch 4 Batch 785/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.924, Loss: 0.042\n", + "Epoch 4 Batch 786/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.920, Loss: 0.036\n", + "Epoch 4 Batch 787/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.918, Loss: 0.047\n", + "Epoch 4 Batch 788/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.922, Loss: 0.047\n", + "Epoch 4 Batch 789/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.918, Loss: 0.043\n", + "Epoch 4 Batch 790/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.912, Loss: 0.053\n", + "Epoch 4 Batch 791/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.927, Loss: 0.051\n", + "Epoch 4 Batch 792/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.931, Loss: 0.058\n", + "Epoch 4 Batch 793/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.931, Loss: 0.040\n", + "Epoch 4 Batch 794/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.937, Loss: 0.044\n", + "Epoch 4 Batch 795/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.931, Loss: 0.051\n", + "Epoch 4 Batch 796/1077 - Train Accuracy: 0.959, Validation Accuracy: 0.931, Loss: 0.043\n", + "Epoch 4 Batch 797/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.931, Loss: 0.047\n", + "Epoch 4 Batch 798/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.936, Loss: 0.053\n", + "Epoch 4 Batch 799/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.930, Loss: 0.064\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 4 Batch 800/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.933, Loss: 0.049\n", + "Epoch 4 Batch 801/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.935, Loss: 0.052\n", + "Epoch 4 Batch 802/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.931, Loss: 0.052\n", + "Epoch 4 Batch 803/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.942, Loss: 0.045\n", + "Epoch 4 Batch 804/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.929, Loss: 0.038\n", + "Epoch 4 Batch 805/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.936, Loss: 0.047\n", + "Epoch 4 Batch 806/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.934, Loss: 0.045\n", + "Epoch 4 Batch 807/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.934, Loss: 0.043\n", + "Epoch 4 Batch 808/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.932, Loss: 0.062\n", + "Epoch 4 Batch 809/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.928, Loss: 0.073\n", + "Epoch 4 Batch 810/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.928, Loss: 0.039\n", + "Epoch 4 Batch 811/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.929, Loss: 0.050\n", + "Epoch 4 Batch 812/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.922, Loss: 0.037\n", + "Epoch 4 Batch 813/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.919, Loss: 0.055\n", + "Epoch 4 Batch 814/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.917, Loss: 0.060\n", + "Epoch 4 Batch 815/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.922, Loss: 0.048\n", + "Epoch 4 Batch 816/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.926, Loss: 0.059\n", + "Epoch 4 Batch 817/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.929, Loss: 0.049\n", + "Epoch 4 Batch 818/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.929, Loss: 0.051\n", + "Epoch 4 Batch 819/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.933, Loss: 0.052\n", + "Epoch 4 Batch 820/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.933, Loss: 0.037\n", + "Epoch 4 Batch 821/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.929, Loss: 0.055\n", + "Epoch 4 Batch 822/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.929, Loss: 0.052\n", + "Epoch 4 Batch 823/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.927, Loss: 0.057\n", + "Epoch 4 Batch 824/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.927, Loss: 0.056\n", + "Epoch 4 Batch 825/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.929, Loss: 0.043\n", + "Epoch 4 Batch 826/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.927, Loss: 0.044\n", + "Epoch 4 Batch 827/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.928, Loss: 0.049\n", + "Epoch 4 Batch 828/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.926, Loss: 0.040\n", + "Epoch 4 Batch 829/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.928, Loss: 0.064\n", + "Epoch 4 Batch 830/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.924, Loss: 0.061\n", + "Epoch 4 Batch 831/1077 - Train Accuracy: 0.877, Validation Accuracy: 0.919, Loss: 0.051\n", + "Epoch 4 Batch 832/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.924, Loss: 0.052\n", + "Epoch 4 Batch 833/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.919, Loss: 0.046\n", + "Epoch 4 Batch 834/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.924, Loss: 0.049\n", + "Epoch 4 Batch 835/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.934, Loss: 0.049\n", + "Epoch 4 Batch 836/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.929, Loss: 0.040\n", + "Epoch 4 Batch 837/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.933, Loss: 0.063\n", + "Epoch 4 Batch 838/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.930, Loss: 0.046\n", + "Epoch 4 Batch 839/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.938, Loss: 0.033\n", + "Epoch 4 Batch 840/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.944, Loss: 0.037\n", + "Epoch 4 Batch 841/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.938, Loss: 0.058\n", + "Epoch 4 Batch 842/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.940, Loss: 0.043\n", + "Epoch 4 Batch 843/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.935, Loss: 0.042\n", + "Epoch 4 Batch 844/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.933, Loss: 0.037\n", + "Epoch 4 Batch 845/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.933, Loss: 0.031\n", + "Epoch 4 Batch 846/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.933, Loss: 0.067\n", + "Epoch 4 Batch 847/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.931, Loss: 0.053\n", + "Epoch 4 Batch 848/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.926, Loss: 0.045\n", + "Epoch 4 Batch 849/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.926, Loss: 0.043\n", + "Epoch 4 Batch 850/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.926, Loss: 0.074\n", + "Epoch 4 Batch 851/1077 - Train Accuracy: 0.959, Validation Accuracy: 0.925, Loss: 0.061\n", + "Epoch 4 Batch 852/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.929, Loss: 0.067\n", + "Epoch 4 Batch 853/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.939, Loss: 0.049\n", + "Epoch 4 Batch 854/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.933, Loss: 0.055\n", + "Epoch 4 Batch 855/1077 - Train Accuracy: 0.908, Validation Accuracy: 0.931, Loss: 0.048\n", + "Epoch 4 Batch 856/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.941, Loss: 0.043\n", + "Epoch 4 Batch 857/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.941, Loss: 0.050\n", + "Epoch 4 Batch 858/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.936, Loss: 0.043\n", + "Epoch 4 Batch 859/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.931, Loss: 0.065\n", + "Epoch 4 Batch 860/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.927, Loss: 0.050\n", + "Epoch 4 Batch 861/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.934, Loss: 0.044\n", + "Epoch 4 Batch 862/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.943, Loss: 0.053\n", + "Epoch 4 Batch 863/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.945, Loss: 0.046\n", + "Epoch 4 Batch 864/1077 - Train Accuracy: 0.913, Validation Accuracy: 0.931, Loss: 0.045\n", + "Epoch 4 Batch 865/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.930, Loss: 0.053\n", + "Epoch 4 Batch 866/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.926, Loss: 0.060\n", + "Epoch 4 Batch 867/1077 - Train Accuracy: 0.900, Validation Accuracy: 0.922, Loss: 0.092\n", + "Epoch 4 Batch 868/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.921, Loss: 0.058\n", + "Epoch 4 Batch 869/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.938, Loss: 0.046\n", + "Epoch 4 Batch 870/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.938, Loss: 0.042\n", + "Epoch 4 Batch 871/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.939, Loss: 0.034\n", + "Epoch 4 Batch 872/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.943, Loss: 0.051\n", + "Epoch 4 Batch 873/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.935, Loss: 0.038\n", + "Epoch 4 Batch 874/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.942, Loss: 0.065\n", + "Epoch 4 Batch 875/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.942, Loss: 0.055\n", + "Epoch 4 Batch 876/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.936, Loss: 0.043\n", + "Epoch 4 Batch 877/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.936, Loss: 0.050\n", + "Epoch 4 Batch 878/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.938, Loss: 0.043\n", + "Epoch 4 Batch 879/1077 - Train Accuracy: 0.958, Validation Accuracy: 0.943, Loss: 0.039\n", + "Epoch 4 Batch 880/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.939, Loss: 0.051\n", + "Epoch 4 Batch 881/1077 - Train Accuracy: 0.918, Validation Accuracy: 0.941, Loss: 0.056\n", + "Epoch 4 Batch 882/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.933, Loss: 0.041\n", + "Epoch 4 Batch 883/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.933, Loss: 0.065\n", + "Epoch 4 Batch 884/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.933, Loss: 0.048\n", + "Epoch 4 Batch 885/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.931, Loss: 0.035\n", + "Epoch 4 Batch 886/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.918, Loss: 0.046\n", + "Epoch 4 Batch 887/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.910, Loss: 0.069\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 4 Batch 888/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.910, Loss: 0.040\n", + "Epoch 4 Batch 889/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.913, Loss: 0.048\n", + "Epoch 4 Batch 890/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.916, Loss: 0.050\n", + "Epoch 4 Batch 891/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.913, Loss: 0.042\n", + "Epoch 4 Batch 892/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.909, Loss: 0.042\n", + "Epoch 4 Batch 893/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.910, Loss: 0.048\n", + "Epoch 4 Batch 894/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.908, Loss: 0.039\n", + "Epoch 4 Batch 895/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.921, Loss: 0.044\n", + "Epoch 4 Batch 896/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.926, Loss: 0.052\n", + "Epoch 4 Batch 897/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.929, Loss: 0.043\n", + "Epoch 4 Batch 898/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.925, Loss: 0.049\n", + "Epoch 4 Batch 899/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.934, Loss: 0.063\n", + "Epoch 4 Batch 900/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.934, Loss: 0.055\n", + "Epoch 4 Batch 901/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.935, Loss: 0.068\n", + "Epoch 4 Batch 902/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.945, Loss: 0.052\n", + "Epoch 4 Batch 903/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.942, Loss: 0.046\n", + "Epoch 4 Batch 904/1077 - Train Accuracy: 0.897, Validation Accuracy: 0.942, Loss: 0.057\n", + "Epoch 4 Batch 905/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.942, Loss: 0.034\n", + "Epoch 4 Batch 906/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.942, Loss: 0.049\n", + "Epoch 4 Batch 907/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.942, Loss: 0.045\n", + "Epoch 4 Batch 908/1077 - Train Accuracy: 0.925, Validation Accuracy: 0.940, Loss: 0.051\n", + "Epoch 4 Batch 909/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.934, Loss: 0.057\n", + "Epoch 4 Batch 910/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.934, Loss: 0.050\n", + "Epoch 4 Batch 911/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.938, Loss: 0.049\n", + "Epoch 4 Batch 912/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.938, Loss: 0.042\n", + "Epoch 4 Batch 913/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.938, Loss: 0.072\n", + "Epoch 4 Batch 914/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.917, Loss: 0.083\n", + "Epoch 4 Batch 915/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.918, Loss: 0.038\n", + "Epoch 4 Batch 916/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.918, Loss: 0.057\n", + "Epoch 4 Batch 917/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.918, Loss: 0.040\n", + "Epoch 4 Batch 918/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.919, Loss: 0.039\n", + "Epoch 4 Batch 919/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.907, Loss: 0.036\n", + "Epoch 4 Batch 920/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.912, Loss: 0.037\n", + "Epoch 4 Batch 921/1077 - Train Accuracy: 0.899, Validation Accuracy: 0.917, Loss: 0.053\n", + "Epoch 4 Batch 922/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.919, Loss: 0.053\n", + "Epoch 4 Batch 923/1077 - Train Accuracy: 0.954, Validation Accuracy: 0.924, Loss: 0.040\n", + "Epoch 4 Batch 924/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.930, Loss: 0.060\n", + "Epoch 4 Batch 925/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.936, Loss: 0.043\n", + "Epoch 4 Batch 926/1077 - Train Accuracy: 0.907, Validation Accuracy: 0.936, Loss: 0.048\n", + "Epoch 4 Batch 927/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.930, Loss: 0.055\n", + "Epoch 4 Batch 928/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.930, Loss: 0.055\n", + "Epoch 4 Batch 929/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.933, Loss: 0.046\n", + "Epoch 4 Batch 930/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.937, Loss: 0.037\n", + "Epoch 4 Batch 931/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.940, Loss: 0.039\n", + "Epoch 4 Batch 932/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.940, Loss: 0.040\n", + "Epoch 4 Batch 933/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.936, Loss: 0.045\n", + "Epoch 4 Batch 934/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.923, Loss: 0.042\n", + "Epoch 4 Batch 935/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.919, Loss: 0.047\n", + "Epoch 4 Batch 936/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.919, Loss: 0.051\n", + "Epoch 4 Batch 937/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.928, Loss: 0.058\n", + "Epoch 4 Batch 938/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.919, Loss: 0.061\n", + "Epoch 4 Batch 939/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.922, Loss: 0.056\n", + "Epoch 4 Batch 940/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.928, Loss: 0.043\n", + "Epoch 4 Batch 941/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.928, Loss: 0.038\n", + "Epoch 4 Batch 942/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.928, Loss: 0.052\n", + "Epoch 4 Batch 943/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.927, Loss: 0.044\n", + "Epoch 4 Batch 944/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.936, Loss: 0.046\n", + "Epoch 4 Batch 945/1077 - Train Accuracy: 0.959, Validation Accuracy: 0.942, Loss: 0.044\n", + "Epoch 4 Batch 946/1077 - Train Accuracy: 0.956, Validation Accuracy: 0.936, Loss: 0.030\n", + "Epoch 4 Batch 947/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.931, Loss: 0.056\n", + "Epoch 4 Batch 948/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.941, Loss: 0.040\n", + "Epoch 4 Batch 949/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.941, Loss: 0.040\n", + "Epoch 4 Batch 950/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.941, Loss: 0.045\n", + "Epoch 4 Batch 951/1077 - Train Accuracy: 0.905, Validation Accuracy: 0.945, Loss: 0.060\n", + "Epoch 4 Batch 952/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.946, Loss: 0.042\n", + "Epoch 4 Batch 953/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.946, Loss: 0.042\n", + "Epoch 4 Batch 954/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.946, Loss: 0.053\n", + "Epoch 4 Batch 955/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.956, Loss: 0.056\n", + "Epoch 4 Batch 956/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.961, Loss: 0.058\n", + "Epoch 4 Batch 957/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.942, Loss: 0.031\n", + "Epoch 4 Batch 958/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.939, Loss: 0.050\n", + "Epoch 4 Batch 959/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.928, Loss: 0.052\n", + "Epoch 4 Batch 960/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.928, Loss: 0.048\n", + "Epoch 4 Batch 961/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.929, Loss: 0.043\n", + "Epoch 4 Batch 962/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.928, Loss: 0.041\n", + "Epoch 4 Batch 963/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.927, Loss: 0.066\n", + "Epoch 4 Batch 964/1077 - Train Accuracy: 0.960, Validation Accuracy: 0.924, Loss: 0.043\n", + "Epoch 4 Batch 965/1077 - Train Accuracy: 0.924, Validation Accuracy: 0.921, Loss: 0.053\n", + "Epoch 4 Batch 966/1077 - Train Accuracy: 0.920, Validation Accuracy: 0.934, Loss: 0.042\n", + "Epoch 4 Batch 967/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.934, Loss: 0.053\n", + "Epoch 4 Batch 968/1077 - Train Accuracy: 0.895, Validation Accuracy: 0.930, Loss: 0.061\n", + "Epoch 4 Batch 969/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.930, Loss: 0.064\n", + "Epoch 4 Batch 970/1077 - Train Accuracy: 0.950, Validation Accuracy: 0.936, Loss: 0.050\n", + "Epoch 4 Batch 971/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.931, Loss: 0.044\n", + "Epoch 4 Batch 972/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.925, Loss: 0.050\n", + "Epoch 4 Batch 973/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.929, Loss: 0.037\n", + "Epoch 4 Batch 974/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.933, Loss: 0.035\n", + "Epoch 4 Batch 975/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.932, Loss: 0.050\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 4 Batch 976/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.931, Loss: 0.038\n", + "Epoch 4 Batch 977/1077 - Train Accuracy: 0.957, Validation Accuracy: 0.934, Loss: 0.032\n", + "Epoch 4 Batch 978/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.938, Loss: 0.048\n", + "Epoch 4 Batch 979/1077 - Train Accuracy: 0.919, Validation Accuracy: 0.934, Loss: 0.042\n", + "Epoch 4 Batch 980/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.935, Loss: 0.046\n", + "Epoch 4 Batch 981/1077 - Train Accuracy: 0.912, Validation Accuracy: 0.935, Loss: 0.050\n", + "Epoch 4 Batch 982/1077 - Train Accuracy: 0.958, Validation Accuracy: 0.930, Loss: 0.041\n", + "Epoch 4 Batch 983/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.939, Loss: 0.047\n", + "Epoch 4 Batch 984/1077 - Train Accuracy: 0.903, Validation Accuracy: 0.935, Loss: 0.050\n", + "Epoch 4 Batch 985/1077 - Train Accuracy: 0.944, Validation Accuracy: 0.935, Loss: 0.044\n", + "Epoch 4 Batch 986/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.936, Loss: 0.046\n", + "Epoch 4 Batch 987/1077 - Train Accuracy: 0.910, Validation Accuracy: 0.936, Loss: 0.033\n", + "Epoch 4 Batch 988/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.940, Loss: 0.068\n", + "Epoch 4 Batch 989/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.938, Loss: 0.066\n", + "Epoch 4 Batch 990/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.938, Loss: 0.053\n", + "Epoch 4 Batch 991/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.925, Loss: 0.050\n", + "Epoch 4 Batch 992/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.928, Loss: 0.057\n", + "Epoch 4 Batch 993/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.925, Loss: 0.037\n", + "Epoch 4 Batch 994/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.919, Loss: 0.044\n", + "Epoch 4 Batch 995/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.921, Loss: 0.051\n", + "Epoch 4 Batch 996/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.922, Loss: 0.052\n", + "Epoch 4 Batch 997/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.922, Loss: 0.050\n", + "Epoch 4 Batch 998/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.913, Loss: 0.049\n", + "Epoch 4 Batch 999/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.911, Loss: 0.049\n", + "Epoch 4 Batch 1000/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.908, Loss: 0.041\n", + "Epoch 4 Batch 1001/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.907, Loss: 0.041\n", + "Epoch 4 Batch 1002/1077 - Train Accuracy: 0.968, Validation Accuracy: 0.907, Loss: 0.035\n", + "Epoch 4 Batch 1003/1077 - Train Accuracy: 0.943, Validation Accuracy: 0.911, Loss: 0.050\n", + "Epoch 4 Batch 1004/1077 - Train Accuracy: 0.956, Validation Accuracy: 0.917, Loss: 0.051\n", + "Epoch 4 Batch 1005/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.917, Loss: 0.044\n", + "Epoch 4 Batch 1006/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.916, Loss: 0.056\n", + "Epoch 4 Batch 1007/1077 - Train Accuracy: 0.948, Validation Accuracy: 0.916, Loss: 0.039\n", + "Epoch 4 Batch 1008/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.904, Loss: 0.059\n", + "Epoch 4 Batch 1009/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.911, Loss: 0.040\n", + "Epoch 4 Batch 1010/1077 - Train Accuracy: 0.952, Validation Accuracy: 0.906, Loss: 0.054\n", + "Epoch 4 Batch 1011/1077 - Train Accuracy: 0.923, Validation Accuracy: 0.906, Loss: 0.038\n", + "Epoch 4 Batch 1012/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.912, Loss: 0.048\n", + "Epoch 4 Batch 1013/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.912, Loss: 0.039\n", + "Epoch 4 Batch 1014/1077 - Train Accuracy: 0.915, Validation Accuracy: 0.914, Loss: 0.062\n", + "Epoch 4 Batch 1015/1077 - Train Accuracy: 0.909, Validation Accuracy: 0.918, Loss: 0.053\n", + "Epoch 4 Batch 1016/1077 - Train Accuracy: 0.914, Validation Accuracy: 0.919, Loss: 0.049\n", + "Epoch 4 Batch 1017/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.918, Loss: 0.057\n", + "Epoch 4 Batch 1018/1077 - Train Accuracy: 0.932, Validation Accuracy: 0.912, Loss: 0.049\n", + "Epoch 4 Batch 1019/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.915, Loss: 0.073\n", + "Epoch 4 Batch 1020/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.914, Loss: 0.040\n", + "Epoch 4 Batch 1021/1077 - Train Accuracy: 0.929, Validation Accuracy: 0.918, Loss: 0.044\n", + "Epoch 4 Batch 1022/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.919, Loss: 0.045\n", + "Epoch 4 Batch 1023/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.922, Loss: 0.057\n", + "Epoch 4 Batch 1024/1077 - Train Accuracy: 0.904, Validation Accuracy: 0.921, Loss: 0.059\n", + "Epoch 4 Batch 1025/1077 - Train Accuracy: 0.921, Validation Accuracy: 0.921, Loss: 0.050\n", + "Epoch 4 Batch 1026/1077 - Train Accuracy: 0.963, Validation Accuracy: 0.920, Loss: 0.055\n", + "Epoch 4 Batch 1027/1077 - Train Accuracy: 0.911, Validation Accuracy: 0.920, Loss: 0.046\n", + "Epoch 4 Batch 1028/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.925, Loss: 0.046\n", + "Epoch 4 Batch 1029/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.929, Loss: 0.040\n", + "Epoch 4 Batch 1030/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.924, Loss: 0.046\n", + "Epoch 4 Batch 1031/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.928, Loss: 0.054\n", + "Epoch 4 Batch 1032/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.928, Loss: 0.061\n", + "Epoch 4 Batch 1033/1077 - Train Accuracy: 0.922, Validation Accuracy: 0.934, Loss: 0.060\n", + "Epoch 4 Batch 1034/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.926, Loss: 0.050\n", + "Epoch 4 Batch 1035/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.926, Loss: 0.032\n", + "Epoch 4 Batch 1036/1077 - Train Accuracy: 0.931, Validation Accuracy: 0.927, Loss: 0.060\n", + "Epoch 4 Batch 1037/1077 - Train Accuracy: 0.906, Validation Accuracy: 0.927, Loss: 0.053\n", + "Epoch 4 Batch 1038/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.923, Loss: 0.051\n", + "Epoch 4 Batch 1039/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.927, Loss: 0.050\n", + "Epoch 4 Batch 1040/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.927, Loss: 0.068\n", + "Epoch 4 Batch 1041/1077 - Train Accuracy: 0.902, Validation Accuracy: 0.925, Loss: 0.047\n", + "Epoch 4 Batch 1042/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.926, Loss: 0.041\n", + "Epoch 4 Batch 1043/1077 - Train Accuracy: 0.949, Validation Accuracy: 0.937, Loss: 0.052\n", + "Epoch 4 Batch 1044/1077 - Train Accuracy: 0.933, Validation Accuracy: 0.930, Loss: 0.057\n", + "Epoch 4 Batch 1045/1077 - Train Accuracy: 0.934, Validation Accuracy: 0.925, Loss: 0.047\n", + "Epoch 4 Batch 1046/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.929, Loss: 0.040\n", + "Epoch 4 Batch 1047/1077 - Train Accuracy: 0.974, Validation Accuracy: 0.919, Loss: 0.036\n", + "Epoch 4 Batch 1048/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.915, Loss: 0.040\n", + "Epoch 4 Batch 1049/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.913, Loss: 0.040\n", + "Epoch 4 Batch 1050/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.909, Loss: 0.036\n", + "Epoch 4 Batch 1051/1077 - Train Accuracy: 0.947, Validation Accuracy: 0.919, Loss: 0.056\n", + "Epoch 4 Batch 1052/1077 - Train Accuracy: 0.955, Validation Accuracy: 0.918, Loss: 0.051\n", + "Epoch 4 Batch 1053/1077 - Train Accuracy: 0.946, Validation Accuracy: 0.923, Loss: 0.053\n", + "Epoch 4 Batch 1054/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.918, Loss: 0.045\n", + "Epoch 4 Batch 1055/1077 - Train Accuracy: 0.963, Validation Accuracy: 0.928, Loss: 0.044\n", + "Epoch 4 Batch 1056/1077 - Train Accuracy: 0.942, Validation Accuracy: 0.924, Loss: 0.044\n", + "Epoch 4 Batch 1057/1077 - Train Accuracy: 0.941, Validation Accuracy: 0.922, Loss: 0.058\n", + "Epoch 4 Batch 1058/1077 - Train Accuracy: 0.930, Validation Accuracy: 0.930, Loss: 0.054\n", + "Epoch 4 Batch 1059/1077 - Train Accuracy: 0.898, Validation Accuracy: 0.939, Loss: 0.055\n", + "Epoch 4 Batch 1060/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.935, Loss: 0.040\n", + "Epoch 4 Batch 1061/1077 - Train Accuracy: 0.926, Validation Accuracy: 0.931, Loss: 0.056\n", + "Epoch 4 Batch 1062/1077 - Train Accuracy: 0.916, Validation Accuracy: 0.926, Loss: 0.054\n", + "Epoch 4 Batch 1063/1077 - Train Accuracy: 0.928, Validation Accuracy: 0.931, Loss: 0.068\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 4 Batch 1064/1077 - Train Accuracy: 0.951, Validation Accuracy: 0.940, Loss: 0.050\n", + "Epoch 4 Batch 1065/1077 - Train Accuracy: 0.938, Validation Accuracy: 0.935, Loss: 0.050\n", + "Epoch 4 Batch 1066/1077 - Train Accuracy: 0.940, Validation Accuracy: 0.929, Loss: 0.032\n", + "Epoch 4 Batch 1067/1077 - Train Accuracy: 0.927, Validation Accuracy: 0.927, Loss: 0.059\n", + "Epoch 4 Batch 1068/1077 - Train Accuracy: 0.937, Validation Accuracy: 0.927, Loss: 0.041\n", + "Epoch 4 Batch 1069/1077 - Train Accuracy: 0.953, Validation Accuracy: 0.923, Loss: 0.038\n", + "Epoch 4 Batch 1070/1077 - Train Accuracy: 0.936, Validation Accuracy: 0.924, Loss: 0.041\n", + "Epoch 4 Batch 1071/1077 - Train Accuracy: 0.917, Validation Accuracy: 0.924, Loss: 0.042\n", + "Epoch 4 Batch 1072/1077 - Train Accuracy: 0.958, Validation Accuracy: 0.924, Loss: 0.045\n", + "Epoch 4 Batch 1073/1077 - Train Accuracy: 0.945, Validation Accuracy: 0.925, Loss: 0.053\n", + "Epoch 4 Batch 1074/1077 - Train Accuracy: 0.935, Validation Accuracy: 0.925, Loss: 0.054\n", + "Epoch 4 Batch 1075/1077 - Train Accuracy: 0.939, Validation Accuracy: 0.923, Loss: 0.062\n", + "Model Trained and Saved\n" + ] + } + ], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", @@ -766,10 +6586,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### 保存参数\n", "\n", @@ -778,11 +6595,9 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -795,21 +6610,16 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "# 检查点" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -827,10 +6637,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## 句子到序列\n", "\n", @@ -843,13 +6650,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def sentence_to_seq(sentence, vocab_to_int):\n", " \"\"\"\n", @@ -859,7 +6670,9 @@ " :return: List of word ids\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None\n", + " word_ids = [vocab_to_int.get(word, vocab_to_int[\"\"]) for word in sentence.lower().split()]\n", + " \n", + " return word_ids\n", "\n", "\n", "\"\"\"\n", @@ -870,10 +6683,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## 翻译\n", "\n", @@ -882,13 +6692,23 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input\n", + " Word Ids: [226, 218, 43, 30, 138, 202, 171]\n", + " English Words: ['he', 'saw', 'a', 'old', 'yellow', 'truck', '.']\n", + "\n", + "Prediction\n", + " Word Ids: [286, 17, 192, 281, 138, 94, 89, 60, 1]\n", + " French Words: ['il', 'a', 'vu', 'un', 'petit', 'camion', 'jaune', '.', '']\n" + ] + } + ], "source": [ "translate_sentence = 'he saw a old yellow truck .'\n", "\n", @@ -921,10 +6741,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## 不完美的翻译\n", "\n", @@ -940,24 +6757,25 @@ } ], "metadata": { + "anaconda-cloud": {}, "kernelspec": { - "display_name": "Python 2", + "display_name": "Python 3", "language": "python", - "name": "python2" + "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", - "version": 2 + "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.11" + "pygments_lexer": "ipython3", + "version": "3.5.3" } }, "nbformat": 4, - "nbformat_minor": 0 + "nbformat_minor": 1 } diff --git a/language-translation/dlnd_language_translation.py b/language-translation/dlnd_language_translation.py new file mode 100644 index 0000000..4eef684 --- /dev/null +++ b/language-translation/dlnd_language_translation.py @@ -0,0 +1,697 @@ + +# coding: utf-8 + +# # 语言翻译 +# +# 在此项目中,你将了解神经网络机器翻译这一领域。你将用由英语和法语语句组成的数据集,训练一个序列到序列模型(sequence to sequence model),该模型能够将新的英语句子翻译成法语。 +# +# ## 获取数据 +# +# 因为将整个英语语言内容翻译成法语需要大量训练时间,所以我们提供了一小部分的英语语料库。 +# + +# In[1]: + + +""" +DON'T MODIFY ANYTHING IN THIS CELL +""" +import helper +import problem_unittests as tests + +source_path = 'data/small_vocab_en' +target_path = 'data/small_vocab_fr' +source_text = helper.load_data(source_path) +target_text = helper.load_data(target_path) + + +# ## 探索数据 +# +# 研究 view_sentence_range,查看并熟悉该数据的不同部分。 +# + +# In[2]: + + +view_sentence_range = (0, 10) + +""" +DON'T MODIFY ANYTHING IN THIS CELL +""" +import numpy as np + +print('Dataset Stats') +print('Roughly the number of unique words: {}'.format(len({word: None for word in source_text.split()}))) + +sentences = source_text.split('\n') +word_counts = [len(sentence.split()) for sentence in sentences] +print('Number of sentences: {}'.format(len(sentences))) +print('Average number of words in a sentence: {}'.format(np.average(word_counts))) + +print() +print('English sentences {} to {}:'.format(*view_sentence_range)) +print('\n'.join(source_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) +print() +print('French sentences {} to {}:'.format(*view_sentence_range)) +print('\n'.join(target_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) + + +# ## 实现预处理函数 +# +# ### 文本到单词 id +# +# 和之前的 RNN 一样,你必须首先将文本转换为数字,这样计算机才能读懂。在函数 `text_to_ids()` 中,你需要将单词中的 `source_text` 和 `target_text` 转为 id。但是,你需要在 `target_text` 中每个句子的末尾,添加 `` 单词 id。这样可以帮助神经网络预测句子应该在什么地方结束。 +# +# +# 你可以通过以下代码获取 ` ` 单词ID: +# +# ```python +# target_vocab_to_int[''] +# ``` +# +# 你可以使用 `source_vocab_to_int` 和 `target_vocab_to_int` 获得其他单词 id。 +# + +# In[3]: + + +def text_to_ids(source_text, target_text, source_vocab_to_int, target_vocab_to_int): + """ + Convert source and target text to proper word ids + :param source_text: String that contains all the source text. + :param target_text: String that contains all the target text. + :param source_vocab_to_int: Dictionary to go from the source words to an id + :param target_vocab_to_int: Dictionary to go from the target words to an id + :return: A tuple of lists (source_id_text, target_id_text) + """ + # TODO: Implement Function + source_letter_ids = [[source_vocab_to_int.get(letter, source_vocab_to_int['']) for letter in line.split()] for line in source_text.split('\n')] + target_letter_ids = [[target_vocab_to_int.get(letter, target_vocab_to_int['']) for letter in line.split()] + [target_vocab_to_int['']] for line in target_text.split('\n')] + + return source_letter_ids, target_letter_ids + +""" +DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE +""" +tests.test_text_to_ids(text_to_ids) + + +# ### 预处理所有数据并保存 +# +# 运行以下代码单元,预处理所有数据,并保存到文件中。 +# + +# In[4]: + + +""" +DON'T MODIFY ANYTHING IN THIS CELL +""" +helper.preprocess_and_save_data(source_path, target_path, text_to_ids) + + +# # 检查点 +# +# 这是你的第一个检查点。如果你什么时候决定再回到该记事本,或需要重新启动该记事本,可以从这里继续。预处理的数据已保存到磁盘上。 + +# In[5]: + + +""" +DON'T MODIFY ANYTHING IN THIS CELL +""" +import numpy as np +import helper + +(source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess() + + +# ### 检查 TensorFlow 版本,确认可访问 GPU +# +# 这一检查步骤,可以确保你使用的是正确版本的 TensorFlow,并且能够访问 GPU。 +# + +# In[6]: + + +""" +DON'T MODIFY ANYTHING IN THIS CELL +""" +from distutils.version import LooseVersion +import warnings +import tensorflow as tf + +# Check TensorFlow Version +assert LooseVersion(tf.__version__) in [LooseVersion('1.0.0'), LooseVersion('1.0.1')], 'This project requires TensorFlow version 1.0 You are using {}'.format(tf.__version__) +print('TensorFlow Version: {}'.format(tf.__version__)) + +# Check for a GPU +if not tf.test.gpu_device_name(): + warnings.warn('No GPU found. Please use a GPU to train your neural network.') +else: + print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) + + +# ## 构建神经网络 +# +# 你将通过实现以下函数,构建出要构建一个序列到序列模型所需的组件: +# +# - `model_inputs` +# - `process_decoding_input` +# - `encoding_layer` +# - `decoding_layer_train` +# - `decoding_layer_infer` +# - `decoding_layer` +# - `seq2seq_model` +# +# ### 输入 +# +# 实现 `model_inputs()` 函数,为神经网络创建 TF 占位符。该函数应该创建以下占位符: +# +# - 名为 “input” 的输入文本占位符,并使用 TF Placeholder 名称参数(等级(Rank)为 2)。 +# - 目标占位符(等级为 2)。 +# - 学习速率占位符(等级为 0)。 +# - 名为 “keep_prob” 的保留率占位符,并使用 TF Placeholder 名称参数(等级为 0)。 +# +# 在以下元祖(tuple)中返回占位符:(输入、目标、学习速率、保留率) +# + +# In[7]: + + +import tensorflow as tf +def model_inputs(): + """ + Create TF Placeholders for input, targets, and learning rate. + :return: Tuple (input, targets, learning rate, keep probability) + """ + # TODO: Implement Function + inputs = tf.placeholder(tf.int32, [None, None], name='input') + targets = tf.placeholder(tf.int32, [None, None], name='targets') + learning_rate = tf.placeholder(tf.float32, name='learning_rate') + keep_prob = tf.placeholder(tf.float32, name='keep_prob') + + return inputs, targets, learning_rate, keep_prob + +""" +DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE +""" +tests.test_model_inputs(model_inputs) + + +# ### 处理解码输入 +# +# 使用 TensorFlow 实现 `process_decoding_input`,以便删掉 `target_data` 中每个批次的最后一个单词 ID,并将 GO ID 放到每个批次的开头。 + +# In[8]: + + +def process_decoding_input(target_data, target_vocab_to_int, batch_size): + """ + Preprocess target data for dencoding + :param target_data: Target Placehoder + :param target_vocab_to_int: Dictionary to go from the target words to an id + :param batch_size: Batch Size + :return: Preprocessed target data + """ + # TODO: Implement Function + ending = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1]) + dec_input = tf.concat([tf.fill([batch_size, 1], target_vocab_to_int['']), ending], 1) + + return dec_input + +""" +DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE +""" +tests.test_process_decoding_input(process_decoding_input) + + +# ### 编码 +# +# 实现 `encoding_layer()`,以使用 [`tf.nn.dynamic_rnn()`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn) 创建编码器 RNN 层级。 + +# In[9]: + + +def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob): + """ + Create encoding layer + :param rnn_inputs: Inputs for the RNN + :param rnn_size: RNN Size + :param num_layers: Number of layers + :param keep_prob: Dropout keep probability + :return: RNN state + """ + # TODO: Implement Function + lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size) + drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob) + enc_cell = tf.contrib.rnn.MultiRNNCell([drop] * num_layers) + _, enc_state = tf.nn.dynamic_rnn(enc_cell, rnn_inputs, dtype=tf.float32) + + return enc_state + +""" +DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE +""" +tests.test_encoding_layer(encoding_layer) + + +# ### 解码 - 训练 +# +# 使用 [`tf.contrib.seq2seq.simple_decoder_fn_train()`](https://www.tensorflow.org/versions/r1.0/api_docs/python/tf/contrib/seq2seq/simple_decoder_fn_train) 和 [`tf.contrib.seq2seq.dynamic_rnn_decoder()`](https://www.tensorflow.org/versions/r1.0/api_docs/python/tf/contrib/seq2seq/dynamic_rnn_decoder) 创建训练分对数(training logits)。将 `output_fn` 应用到 [`tf.contrib.seq2seq.dynamic_rnn_decoder()`](https://www.tensorflow.org/versions/r1.0/api_docs/python/tf/contrib/seq2seq/dynamic_rnn_decoder) 输出上。 + +# In[10]: + + +def decoding_layer_train(encoder_state, dec_cell, dec_embed_input, sequence_length, decoding_scope, + output_fn, keep_prob): + """ + Create a decoding layer for training + :param encoder_state: Encoder State + :param dec_cell: Decoder RNN Cell + :param dec_embed_input: Decoder embedded input + :param sequence_length: Sequence Length + :param decoding_scope: TenorFlow Variable Scope for decoding + :param output_fn: Function to apply the output layer + :param keep_prob: Dropout keep probability + :return: Train Logits + """ + # TODO: Implement Function + # Training Decoder + train_decoder_fn = tf.contrib.seq2seq.simple_decoder_fn_train(encoder_state) + train_pred, _, _ = tf.contrib.seq2seq.dynamic_rnn_decoder( + dec_cell, train_decoder_fn, dec_embed_input, sequence_length, scope=decoding_scope) + + # Apply output function + train_logits = output_fn(train_pred) + + return train_logits + + +""" +DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE +""" +tests.test_decoding_layer_train(decoding_layer_train) + + +# ### 解码 - 推论 +# +# 使用 [`tf.contrib.seq2seq.simple_decoder_fn_inference()`](https://www.tensorflow.org/versions/r1.0/api_docs/python/tf/contrib/seq2seq/simple_decoder_fn_inference) 和 [`tf.contrib.seq2seq.dynamic_rnn_decoder()`](https://www.tensorflow.org/versions/r1.0/api_docs/python/tf/contrib/seq2seq/dynamic_rnn_decoder) 创建推论分对数(inference logits)。 + +# In[11]: + + +def decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, + maximum_length, vocab_size, decoding_scope, output_fn, keep_prob): + """ + Create a decoding layer for inference + :param encoder_state: Encoder state + :param dec_cell: Decoder RNN Cell + :param dec_embeddings: Decoder embeddings + :param start_of_sequence_id: GO ID + :param end_of_sequence_id: EOS Id + :param maximum_length: The maximum allowed time steps to decode + :param vocab_size: Size of vocabulary + :param decoding_scope: TensorFlow Variable Scope for decoding + :param output_fn: Function to apply the output layer + :param keep_prob: Dropout keep probability + :return: Inference Logits + """ + # TODO: Implement Function + # Inference Decoder + infer_decoder_fn = tf.contrib.seq2seq.simple_decoder_fn_inference( + output_fn, encoder_state, dec_embeddings, start_of_sequence_id, end_of_sequence_id, + maximum_length - 1, vocab_size) + inference_logits, _, _ = tf.contrib.seq2seq.dynamic_rnn_decoder(dec_cell, infer_decoder_fn, scope=decoding_scope) + + return inference_logits + + +""" +DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE +""" +tests.test_decoding_layer_infer(decoding_layer_infer) + + +# ### 构建解码层级 +# +# 实现 `decoding_layer()` 以创建解码器 RNN 层级。 +# +# - 使用 `rnn_size` 和 `num_layers` 创建解码 RNN 单元。 +# - 使用 [`lambda`](https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions) 创建输出函数,将输入,也就是分对数转换为类分对数(class logits)。 +# - 使用 `decoding_layer_train(encoder_state, dec_cell, dec_embed_input, sequence_length, decoding_scope, output_fn, keep_prob)` 函数获取训练分对数。 +# - 使用 `decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, maximum_length, vocab_size, decoding_scope, output_fn, keep_prob)` 函数获取推论分对数。 +# +# 注意:你将需要使用 [tf.variable_scope](https://www.tensorflow.org/api_docs/python/tf/variable_scope) 在训练和推论分对数间分享变量。 + +# In[12]: + + +def decoding_layer(dec_embed_input, dec_embeddings, encoder_state, vocab_size, sequence_length, rnn_size, + num_layers, target_vocab_to_int, keep_prob): + """ + Create decoding layer + :param dec_embed_input: Decoder embedded input + :param dec_embeddings: Decoder embeddings + :param encoder_state: The encoded state + :param vocab_size: Size of vocabulary + :param sequence_length: Sequence Length + :param rnn_size: RNN Size + :param num_layers: Number of layers + :param target_vocab_to_int: Dictionary to go from the target words to an id + :param keep_prob: Dropout keep probability + :return: Tuple of (Training Logits, Inference Logits) + """ + # TODO: Implement Function + lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size) + dropout = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob) + dec_cell = tf.contrib.rnn.MultiRNNCell([dropout] * num_layers) + + output_fn = lambda x: tf.contrib.layers.fully_connected(x, vocab_size, activation_fn=None, scope=decoding_scope) + + with tf.variable_scope("decoding") as decoding_scope: + training_decoder_output = decoding_layer_train(encoder_state, dec_cell, dec_embed_input, sequence_length, decoding_scope, + output_fn, keep_prob) + + with tf.variable_scope("decoding", reuse=True) as decoding_scope: + start_of_sequence_id = target_vocab_to_int[""] + end_of_sequence_id = target_vocab_to_int[""] + inference_decoder_output = decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, + sequence_length, vocab_size, decoding_scope, output_fn, keep_prob) + + return training_decoder_output, inference_decoder_output + + +""" +DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE +""" +tests.test_decoding_layer(decoding_layer) + + +# ### 构建神经网络 +# +# 应用你在上方实现的函数,以: +# +# - 向编码器的输入数据应用嵌入。 +# - 使用 `encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob)` 编码输入。 +# - 使用 `process_decoding_input(target_data, target_vocab_to_int, batch_size)` 函数处理目标数据。 +# - 向解码器的目标数据应用嵌入。 +# - 使用 `decoding_layer(dec_embed_input, dec_embeddings, encoder_state, vocab_size, sequence_length, rnn_size, num_layers, target_vocab_to_int, keep_prob)` 解码编码的输入数据。 + +# In[13]: + + +def seq2seq_model(input_data, target_data, keep_prob, batch_size, sequence_length, source_vocab_size, target_vocab_size, + enc_embedding_size, dec_embedding_size, rnn_size, num_layers, target_vocab_to_int): + """ + Build the Sequence-to-Sequence part of the neural network + :param input_data: Input placeholder + :param target_data: Target placeholder + :param keep_prob: Dropout keep probability placeholder + :param batch_size: Batch Size + :param sequence_length: Sequence Length + :param source_vocab_size: Source vocabulary size + :param target_vocab_size: Target vocabulary size + :param enc_embedding_size: Decoder embedding size + :param dec_embedding_size: Encoder embedding size + :param rnn_size: RNN Size + :param num_layers: Number of layers + :param target_vocab_to_int: Dictionary to go from the target words to an id + :return: Tuple of (Training Logits, Inference Logits) + """ + # TODO: Implement Function + rnn_inputs = tf.contrib.layers.embed_sequence(input_data, source_vocab_size, enc_embedding_size) + + encoder_state = encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob) + + dec_input = process_decoding_input(target_data, target_vocab_to_int, batch_size) + dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, dec_embedding_size])) + dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input) + + train_logits, inference_logits = decoding_layer(dec_embed_input, dec_embeddings, encoder_state, target_vocab_size, sequence_length, + rnn_size, num_layers, target_vocab_to_int, keep_prob) + + return train_logits, inference_logits + + +""" +DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE +""" +tests.test_seq2seq_model(seq2seq_model) + + +# ## 训练神经网络 +# +# ### 超参数 +# +# 调试以下参数: +# +# - 将 `epochs` 设为 epoch 次数。 +# - 将 `batch_size` 设为批次大小。 +# - 将 `rnn_size` 设为 RNN 的大小。 +# - 将 `num_layers` 设为层级数量。 +# - 将 `encoding_embedding_size` 设为编码器嵌入大小。 +# - 将 `decoding_embedding_size` 设为解码器嵌入大小 +# - 将 `learning_rate` 设为训练速率。 +# - 将 `keep_probability` 设为丢弃保留率(Dropout keep probability)。 + +# In[14]: + + +# Number of Epochs +epochs = 5 +# Batch Size +batch_size = 128 +# RNN Size +rnn_size = 128 +# Number of Layers +num_layers = 2 +# Embedding Size +encoding_embedding_size = 100 +decoding_embedding_size = 100 +# Learning Rate +learning_rate = 0.01 +# Dropout Keep Probability +keep_probability = 0.8 + + +# ### 构建图表 +# +# 使用你实现的神经网络构建图表。 + +# In[15]: + + +""" +DON'T MODIFY ANYTHING IN THIS CELL +""" +save_path = 'checkpoints/dev' +(source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess() +max_source_sentence_length = max([len(sentence) for sentence in source_int_text]) + +train_graph = tf.Graph() +with train_graph.as_default(): + input_data, targets, lr, keep_prob = model_inputs() + sequence_length = tf.placeholder_with_default(max_source_sentence_length, None, name='sequence_length') + input_shape = tf.shape(input_data) + + train_logits, inference_logits = seq2seq_model( + tf.reverse(input_data, [-1]), targets, keep_prob, batch_size, sequence_length, len(source_vocab_to_int), len(target_vocab_to_int), + encoding_embedding_size, decoding_embedding_size, rnn_size, num_layers, target_vocab_to_int) + + tf.identity(inference_logits, 'logits') + with tf.name_scope("optimization"): + # Loss function + cost = tf.contrib.seq2seq.sequence_loss( + train_logits, + targets, + tf.ones([input_shape[0], sequence_length])) + + # Optimizer + optimizer = tf.train.AdamOptimizer(lr) + + # Gradient Clipping + gradients = optimizer.compute_gradients(cost) + capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] + train_op = optimizer.apply_gradients(capped_gradients) + + +# ### 训练 +# +# 利用预处理的数据训练神经网络。如果很难获得低损失值,请访问我们的论坛,看看其他人是否遇到了相同的问题。 + +# In[16]: + + +""" +DON'T MODIFY ANYTHING IN THIS CELL +""" +import time + +def get_accuracy(target, logits): + """ + Calculate accuracy + """ + max_seq = max(target.shape[1], logits.shape[1]) + if max_seq - target.shape[1]: + target = np.pad( + target, + [(0,0),(0,max_seq - target.shape[1])], + 'constant') + if max_seq - logits.shape[1]: + logits = np.pad( + logits, + [(0,0),(0,max_seq - logits.shape[1]), (0,0)], + 'constant') + + return np.mean(np.equal(target, np.argmax(logits, 2))) + +train_source = source_int_text[batch_size:] +train_target = target_int_text[batch_size:] + +valid_source = helper.pad_sentence_batch(source_int_text[:batch_size]) +valid_target = helper.pad_sentence_batch(target_int_text[:batch_size]) + +with tf.Session(graph=train_graph) as sess: + sess.run(tf.global_variables_initializer()) + + for epoch_i in range(epochs): + for batch_i, (source_batch, target_batch) in enumerate( + helper.batch_data(train_source, train_target, batch_size)): + start_time = time.time() + + _, loss = sess.run( + [train_op, cost], + {input_data: source_batch, + targets: target_batch, + lr: learning_rate, + sequence_length: target_batch.shape[1], + keep_prob: keep_probability}) + + batch_train_logits = sess.run( + inference_logits, + {input_data: source_batch, keep_prob: 1.0}) + batch_valid_logits = sess.run( + inference_logits, + {input_data: valid_source, keep_prob: 1.0}) + + train_acc = get_accuracy(target_batch, batch_train_logits) + valid_acc = get_accuracy(np.array(valid_target), batch_valid_logits) + end_time = time.time() + print('Epoch {:>3} Batch {:>4}/{} - Train Accuracy: {:>6.3f}, Validation Accuracy: {:>6.3f}, Loss: {:>6.3f}' + .format(epoch_i, batch_i, len(source_int_text) // batch_size, train_acc, valid_acc, loss)) + + # Save Model + saver = tf.train.Saver() + saver.save(sess, save_path) + print('Model Trained and Saved') + + +# ### 保存参数 +# +# 保存 `batch_size` 和 `save_path` 参数以进行推论(for inference)。 + +# In[17]: + + +""" +DON'T MODIFY ANYTHING IN THIS CELL +""" +# Save parameters for checkpoint +helper.save_params(save_path) + + +# # 检查点 + +# In[18]: + + +""" +DON'T MODIFY ANYTHING IN THIS CELL +""" +import tensorflow as tf +import numpy as np +import helper +import problem_unittests as tests + +_, (source_vocab_to_int, target_vocab_to_int), (source_int_to_vocab, target_int_to_vocab) = helper.load_preprocess() +load_path = helper.load_params() + + +# ## 句子到序列 +# +# 要向模型提供要翻译的句子,你首先需要预处理该句子。实现函数 `sentence_to_seq()` 以预处理新的句子。 +# +# - 将句子转换为小写形式 +# - 使用 `vocab_to_int` 将单词转换为 id +# - 如果单词不在词汇表中,将其转换为`` 单词 id + +# In[19]: + + +def sentence_to_seq(sentence, vocab_to_int): + """ + Convert a sentence to a sequence of ids + :param sentence: String + :param vocab_to_int: Dictionary to go from the words to an id + :return: List of word ids + """ + # TODO: Implement Function + word_ids = [vocab_to_int.get(word, vocab_to_int[""]) for word in sentence.lower().split()] + + return word_ids + + +""" +DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE +""" +tests.test_sentence_to_seq(sentence_to_seq) + + +# ## 翻译 +# +# 将 `translate_sentence` 从英语翻译成法语。 + +# In[20]: + + +translate_sentence = 'he saw a old yellow truck .' + + +""" +DON'T MODIFY ANYTHING IN THIS CELL +""" +translate_sentence = sentence_to_seq(translate_sentence, source_vocab_to_int) + +loaded_graph = tf.Graph() +with tf.Session(graph=loaded_graph) as sess: + # Load saved model + loader = tf.train.import_meta_graph(load_path + '.meta') + loader.restore(sess, load_path) + + input_data = loaded_graph.get_tensor_by_name('input:0') + logits = loaded_graph.get_tensor_by_name('logits:0') + keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0') + + translate_logits = sess.run(logits, {input_data: [translate_sentence], keep_prob: 1.0})[0] + +print('Input') +print(' Word Ids: {}'.format([i for i in translate_sentence])) +print(' English Words: {}'.format([source_int_to_vocab[i] for i in translate_sentence])) + +print('\nPrediction') +print(' Word Ids: {}'.format([i for i in np.argmax(translate_logits, 1)])) +print(' French Words: {}'.format([target_int_to_vocab[i] for i in np.argmax(translate_logits, 1)])) + + +# ## 不完美的翻译 +# +# 你可能注意到了,某些句子的翻译质量比其他的要好。因为你使用的数据集只有 227 个英语单词,但实际生活中有数千个单词,只有使用这些单词的句子结果才会比较理想。对于此项目,不需要达到完美的翻译。但是,如果你想创建更好的翻译模型,则需要更好的数据。 +# +# 你可以使用 [WMT10 French-English corpus](http://www.statmt.org/wmt10/training-giga-fren.tar) 语料库训练模型。该数据集拥有更多的词汇,讨论的话题也更丰富。但是,训练时间要好多天的时间,所以确保你有 GPU 并且对于我们提供的数据集,你的神经网络性能很棒。提交此项目后,别忘了研究下 WMT10 语料库。 +# +# +# ## 提交项目 +# +# 提交项目时,确保先运行所有单元,然后再保存记事本。保存记事本文件为 “dlnd_language_translation.ipynb”,再通过菜单中的“文件” ->“下载为”将其另存为 HTML 格式。提交的项目文档中需包含“helper.py”和“problem_unittests.py”文件。 +# diff --git a/tv-script-generation/dlnd_tv_script_generation.html b/tv-script-generation/dlnd_tv_script_generation.html new file mode 100644 index 0000000..b6367a1 --- /dev/null +++ b/tv-script-generation/dlnd_tv_script_generation.html @@ -0,0 +1,13077 @@ + + + +dlnd_tv_script_generation + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+
+
+

TV Script Generation

In this project, you'll generate your own Simpsons TV scripts using RNNs. You'll be using part of the Simpsons dataset of scripts from 27 seasons. The Neural Network you'll build will generate a new TV script for a scene at Moe's Tavern.

+

Get the Data

The data is already provided for you. You'll be using a subset of the original dataset. It consists of only the scenes in Moe's Tavern. This doesn't include other versions of the tavern, like "Moe's Cavern", "Flaming Moe's", "Uncle Moe's Family Feed-Bag", etc..

+ +
+
+
+
+
+
In [1]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+import helper
+
+data_dir = './data/simpsons/moes_tavern_lines.txt'
+text = helper.load_data(data_dir)
+# Ignore notice, since we don't use it for analysing the data
+text = text[81:]
+
+ +
+
+
+ +
+
+
+
+
+

Explore the Data

Play around with view_sentence_range to view different parts of the data.

+ +
+
+
+
+
+
In [2]:
+
+
+
view_sentence_range = (0, 10)
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+import numpy as np
+
+print('Dataset Stats')
+print('Roughly the number of unique words: {}'.format(len({word: None for word in text.split()})))
+scenes = text.split('\n\n')
+print('Number of scenes: {}'.format(len(scenes)))
+sentence_count_scene = [scene.count('\n') for scene in scenes]
+print('Average number of sentences in each scene: {}'.format(np.average(sentence_count_scene)))
+
+sentences = [sentence for scene in scenes for sentence in scene.split('\n')]
+print('Number of lines: {}'.format(len(sentences)))
+word_count_sentence = [len(sentence.split()) for sentence in sentences]
+print('Average number of words in each line: {}'.format(np.average(word_count_sentence)))
+
+print()
+print('The sentences {} to {}:'.format(*view_sentence_range))
+print('\n'.join(text.split('\n')[view_sentence_range[0]:view_sentence_range[1]]))
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Dataset Stats
+Roughly the number of unique words: 11492
+Number of scenes: 262
+Average number of sentences in each scene: 15.248091603053435
+Number of lines: 4257
+Average number of words in each line: 11.50434578341555
+
+The sentences 0 to 10:
+Moe_Szyslak: (INTO PHONE) Moe's Tavern. Where the elite meet to drink.
+Bart_Simpson: Eh, yeah, hello, is Mike there? Last name, Rotch.
+Moe_Szyslak: (INTO PHONE) Hold on, I'll check. (TO BARFLIES) Mike Rotch. Mike Rotch. Hey, has anybody seen Mike Rotch, lately?
+Moe_Szyslak: (INTO PHONE) Listen you little puke. One of these days I'm gonna catch you, and I'm gonna carve my name on your back with an ice pick.
+Moe_Szyslak: What's the matter Homer? You're not your normal effervescent self.
+Homer_Simpson: I got my problems, Moe. Give me another one.
+Moe_Szyslak: Homer, hey, you should not drink to forget your problems.
+Barney_Gumble: Yeah, you should only drink to enhance your social skills.
+
+
+
+
+
+ +
+
+ +
+
+
+
+
+

Implement Preprocessing Functions

The first thing to do to any dataset is preprocessing. Implement the following preprocessing functions below:

+
    +
  • Lookup Table
  • +
  • Tokenize Punctuation
  • +
+

Lookup Table

To create a word embedding, you first need to transform the words to ids. In this function, create two dictionaries:

+
    +
  • Dictionary to go from the words to an id, we'll call vocab_to_int
  • +
  • Dictionary to go from the id to word, we'll call int_to_vocab
  • +
+

Return these dictionaries in the following tuple (vocab_to_int, int_to_vocab)

+ +
+
+
+
+
+
In [3]:
+
+
+
import numpy as np
+import problem_unittests as tests
+from collections import Counter
+
+def create_lookup_tables(text):
+    """
+    Create lookup tables for vocabulary
+    :param text: The text of tv scripts split into words
+    :return: A tuple of dicts (vocab_to_int, int_to_vocab)
+    """
+    # TODO: Implement Function
+    word_counts = Counter(text)
+    sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True)
+    int_to_vocab = {i: word for i, word in enumerate(sorted_vocab)}
+    vocab_to_int = {word: i for i, word in int_to_vocab.items()}
+
+    return vocab_to_int, int_to_vocab
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_create_lookup_tables(create_lookup_tables)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

Tokenize Punctuation

We'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks make it hard for the neural network to distinguish between the word "bye" and "bye!".

+

Implement the function token_lookup to return a dict that will be used to tokenize symbols like "!" into "||Exclamation_Mark||". Create a dictionary for the following symbols where the symbol is the key and value is the token:

+
    +
  • Period ( . )
  • +
  • Comma ( , )
  • +
  • Quotation Mark ( " )
  • +
  • Semicolon ( ; )
  • +
  • Exclamation mark ( ! )
  • +
  • Question mark ( ? )
  • +
  • Left Parentheses ( ( )
  • +
  • Right Parentheses ( ) )
  • +
  • Dash ( -- )
  • +
  • Return ( \n )
  • +
+

This dictionary will be used to token the symbols and add the delimiter (space) around it. This separates the symbols as it's own word, making it easier for the neural network to predict on the next word. Make sure you don't use a token that could be confused as a word. Instead of using the token "dash", try using something like "||dash||".

+ +
+
+
+
+
+
In [4]:
+
+
+
def token_lookup():
+    """
+    Generate a dict to turn punctuation into a token.
+    :return: Tokenize dictionary where the key is the punctuation and the value is the token
+    """
+    # TODO: Implement Function
+    dict = {}
+    dict['.'] = '||Period||'
+    dict[','] = '||Comma||'
+    dict['"'] = '||Quotation_Mark||'
+    dict[';'] = '||Semicolon||'
+    dict['!'] = '||Exclamation_Mark||'
+    dict['?'] = '||Question_Mark||'
+    dict['('] = '||Left_Parentheses||'
+    dict[')'] = '||Right_Parentheses||'
+    dict['--'] = '||Dash||'
+    dict['\n'] = '||Return||'
+    
+    return dict
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_tokenize(token_lookup)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

Preprocess all the data and save it

Running the code cell below will preprocess all the data and save it to file.

+ +
+
+
+
+
+
In [5]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+# Preprocess Training, Validation, and Testing Data
+helper.preprocess_and_save_data(data_dir, token_lookup, create_lookup_tables)
+
+ +
+
+
+ +
+
+
+
+
+

Check Point

This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk.

+ +
+
+
+
+
+
In [6]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+import helper
+import numpy as np
+import problem_unittests as tests
+
+int_text, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess()
+
+ +
+
+
+ +
+
+
+
+
+

Build the Neural Network

You'll build the components necessary to build a RNN by implementing the following functions below:

+
    +
  • get_inputs
  • +
  • get_init_cell
  • +
  • get_embed
  • +
  • build_rnn
  • +
  • build_nn
  • +
  • get_batches
  • +
+

Check the Version of TensorFlow and Access to GPU

+
+
+
+
+
+
In [7]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+from distutils.version import LooseVersion
+import warnings
+import tensorflow as tf
+
+# Check TensorFlow Version
+assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer'
+print('TensorFlow Version: {}'.format(tf.__version__))
+
+# Check for a GPU
+if not tf.test.gpu_device_name():
+    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
+else:
+    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
TensorFlow Version: 1.0.1
+Default GPU Device: /gpu:0
+
+
+
+ +
+
+ +
+
+
+
+
+

Input

Implement the get_inputs() function to create TF Placeholders for the Neural Network. It should create the following placeholders:

+
    +
  • Input text placeholder named "input" using the TF Placeholder name parameter.
  • +
  • Targets placeholder
  • +
  • Learning Rate placeholder
  • +
+

Return the placeholders in the following tuple (Input, Targets, LearningRate)

+ +
+
+
+
+
+
In [8]:
+
+
+
def get_inputs():
+    """
+    Create TF Placeholders for input, targets, and learning rate.
+    :return: Tuple (input, targets, learning rate)
+    """
+    # TODO: Implement Function
+    inputs = tf.placeholder(tf.int32, [None, None], name='input')
+    targets = tf.placeholder(tf.int32, [None, None], name='targets')
+    learning_rate = tf.placeholder(tf.float32, name='learning_rate')
+    
+    return inputs, targets, learning_rate
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_get_inputs(get_inputs)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

Build RNN Cell and Initialize

Stack one or more BasicLSTMCells in a MultiRNNCell.

+
    +
  • The Rnn size should be set using rnn_size
  • +
  • Initalize Cell State using the MultiRNNCell's zero_state() function
      +
    • Apply the name "initial_state" to the initial state using tf.identity()
    • +
    +
  • +
+

Return the cell and initial state in the following tuple (Cell, InitialState)

+ +
+
+
+
+
+
In [9]:
+
+
+
def get_init_cell(batch_size, rnn_size):
+    """
+    Create an RNN Cell and initialize it.
+    :param batch_size: Size of batches
+    :param rnn_size: Size of RNNs
+    :return: Tuple (cell, initialize state)
+    """
+    # TODO: Implement Function
+    num_layers = 2
+    # keep_prob = 0.7
+    
+    lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size)
+    # drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob)
+    cell = tf.contrib.rnn.MultiRNNCell([lstm] * num_layers)
+    initial_state = tf.identity(cell.zero_state(batch_size, tf.float32), name='initial_state')
+
+    return cell, initial_state
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_get_init_cell(get_init_cell)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

Word Embedding

Apply embedding to input_data using TensorFlow. Return the embedded sequence.

+ +
+
+
+
+
+
In [10]:
+
+
+
def get_embed(input_data, vocab_size, embed_dim):
+    """
+    Create embedding for <input_data>.
+    :param input_data: TF placeholder for text input.
+    :param vocab_size: Number of words in vocabulary.
+    :param embed_dim: Number of embedding dimensions
+    :return: Embedded input.
+    """
+    # TODO: Implement Function
+    embedding = tf.Variable(tf.random_uniform((vocab_size, embed_dim), -1, 1))
+    embed = tf.nn.embedding_lookup(embedding, input_data)
+    
+    return embed
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_get_embed(get_embed)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

Build RNN

You created a RNN Cell in the get_init_cell() function. Time to use the cell to create a RNN.

+ +

Return the outputs and final_state state in the following tuple (Outputs, FinalState)

+ +
+
+
+
+
+
In [11]:
+
+
+
def build_rnn(cell, inputs):
+    """
+    Create a RNN using a RNN Cell
+    :param cell: RNN Cell
+    :param inputs: Input text data
+    :return: Tuple (Outputs, Final State)
+    """
+    # TODO: Implement Function
+    outputs, final_state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32)
+    final_state = tf.identity(final_state, name='final_state')
+    
+    return outputs, final_state
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_build_rnn(build_rnn)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

Build the Neural Network

Apply the functions you implemented above to:

+
    +
  • Apply embedding to input_data using your get_embed(input_data, vocab_size, embed_dim) function.
  • +
  • Build RNN using cell and your build_rnn(cell, inputs) function.
  • +
  • Apply a fully connected layer with a linear activation and vocab_size as the number of outputs.
  • +
+

Return the logits and final state in the following tuple (Logits, FinalState)

+ +
+
+
+
+
+
In [12]:
+
+
+
def build_nn(cell, rnn_size, input_data, vocab_size, embed_dim):
+    """
+    Build part of the neural network
+    :param cell: RNN cell
+    :param rnn_size: Size of rnns
+    :param input_data: Input data
+    :param vocab_size: Vocabulary size
+    :param embed_dim: Number of embedding dimensions
+    :return: Tuple (Logits, FinalState)
+    """
+    # TODO: Implement Function
+    embed_data = get_embed(input_data, vocab_size, embed_dim)
+    outputs, final_state = build_rnn(cell, embed_data)
+    logits = tf.contrib.layers.fully_connected(outputs, vocab_size, activation_fn=None)
+    
+    return logits, final_state
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_build_nn(build_nn)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

Batches

Implement get_batches to create batches of input and targets using int_text. The batches should be a Numpy array with the shape (number of batches, 2, batch size, sequence length). Each batch contains two elements:

+
    +
  • The first element is a single batch of input with the shape [batch size, sequence length]
  • +
  • The second element is a single batch of targets with the shape [batch size, sequence length]
  • +
+

If you can't fill the last batch with enough data, drop the last batch.

+

For exmple, get_batches([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], 2, 3) would return a Numpy array of the following:

+ +
[
+  # First Batch
+  [
+    # Batch of Input
+    [[ 1  2  3], [ 7  8  9]],
+    # Batch of targets
+    [[ 2  3  4], [ 8  9 10]]
+  ],
+
+  # Second Batch
+  [
+    # Batch of Input
+    [[ 4  5  6], [10 11 12]],
+    # Batch of targets
+    [[ 5  6  7], [11 12 13]]
+  ]
+]
+ +
+
+
+
+
+
In [13]:
+
+
+
def get_batches(int_text, batch_size, seq_length):
+    """
+    Return batches of input and target
+    :param int_text: Text with the words replaced by their ids
+    :param batch_size: The size of batch
+    :param seq_length: The length of sequence
+    :return: Batches as a Numpy array
+    """
+    # TODO: Implement Function
+    n_batches = len(int_text) // (batch_size * seq_length)
+    
+    x = np.array(int_text[:n_batches * batch_size * seq_length])
+    y = np.array(int_text[1:n_batches * batch_size * seq_length + 1])
+    y[-1] = x[0]
+    x_batches = np.split(x.reshape(batch_size, -1), n_batches, 1)
+    y_batches = np.split(y.reshape(batch_size, -1), n_batches, 1)
+    
+    return np.array(list(zip(x_batches, y_batches)))
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_get_batches(get_batches)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

Neural Network Training

Hyperparameters

Tune the following parameters:

+
    +
  • Set num_epochs to the number of epochs.
  • +
  • Set batch_size to the batch size.
  • +
  • Set rnn_size to the size of the RNNs.
  • +
  • Set embed_dim to the size of the embedding.
  • +
  • Set seq_length to the length of sequence.
  • +
  • Set learning_rate to the learning rate.
  • +
  • Set show_every_n_batches to the number of batches the neural network should print progress.
  • +
+ +
+
+
+
+
+
In [14]:
+
+
+
# Number of Epochs
+num_epochs = 100
+# Batch Size
+batch_size = 128
+# RNN Size
+rnn_size = 256
+# Embedding Dimension Size
+embed_dim = 200
+# Sequence Length
+seq_length = 32
+# Learning Rate
+learning_rate = 0.01
+# Show stats for every n number of batches
+show_every_n_batches = 100
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+save_dir = './save'
+
+ +
+
+
+ +
+
+
+
+
+

Build the Graph

Build the graph using the neural network you implemented.

+ +
+
+
+
+
+
In [15]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+from tensorflow.contrib import seq2seq
+
+train_graph = tf.Graph()
+with train_graph.as_default():
+    vocab_size = len(int_to_vocab)
+    input_text, targets, lr = get_inputs()
+    input_data_shape = tf.shape(input_text)
+    cell, initial_state = get_init_cell(input_data_shape[0], rnn_size)
+    logits, final_state = build_nn(cell, rnn_size, input_text, vocab_size, embed_dim)
+
+    # Probabilities for generating words
+    probs = tf.nn.softmax(logits, name='probs')
+
+    # Loss function
+    cost = seq2seq.sequence_loss(
+        logits,
+        targets,
+        tf.ones([input_data_shape[0], input_data_shape[1]]))
+
+    # Optimizer
+    optimizer = tf.train.AdamOptimizer(lr)
+
+    # Gradient Clipping
+    gradients = optimizer.compute_gradients(cost)
+    capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None]
+    train_op = optimizer.apply_gradients(capped_gradients)
+
+ +
+
+
+ +
+
+
+
+
+

Train

Train the neural network on the preprocessed data. If you have a hard time getting a good loss, check the forms to see if anyone is having the same problem.

+ +
+
+
+
+
+
In [16]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+batches = get_batches(int_text, batch_size, seq_length)
+
+with tf.Session(graph=train_graph) as sess:
+    sess.run(tf.global_variables_initializer())
+
+    for epoch_i in range(num_epochs):
+        state = sess.run(initial_state, {input_text: batches[0][0]})
+
+        for batch_i, (x, y) in enumerate(batches):
+            feed = {
+                input_text: x,
+                targets: y,
+                initial_state: state,
+                lr: learning_rate}
+            train_loss, state, _ = sess.run([cost, final_state, train_op], feed)
+
+            # Show every <show_every_n_batches> batches
+            if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0:
+                print('Epoch {:>3} Batch {:>4}/{}   train_loss = {:.3f}'.format(
+                    epoch_i,
+                    batch_i,
+                    len(batches),
+                    train_loss))
+
+    # Save Model
+    saver = tf.train.Saver()
+    saver.save(sess, save_dir)
+    print('Model Trained and Saved')
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Epoch   0 Batch    0/16   train_loss = 8.822
+Epoch   6 Batch    4/16   train_loss = 5.457
+Epoch  12 Batch    8/16   train_loss = 4.972
+Epoch  18 Batch   12/16   train_loss = 4.116
+Epoch  25 Batch    0/16   train_loss = 3.257
+Epoch  31 Batch    4/16   train_loss = 2.535
+Epoch  37 Batch    8/16   train_loss = 2.091
+Epoch  43 Batch   12/16   train_loss = 1.477
+Epoch  50 Batch    0/16   train_loss = 1.024
+Epoch  56 Batch    4/16   train_loss = 0.852
+Epoch  62 Batch    8/16   train_loss = 0.566
+Epoch  68 Batch   12/16   train_loss = 0.429
+Epoch  75 Batch    0/16   train_loss = 0.395
+Epoch  81 Batch    4/16   train_loss = 0.316
+Epoch  87 Batch    8/16   train_loss = 0.201
+Epoch  93 Batch   12/16   train_loss = 0.206
+Model Trained and Saved
+
+
+
+ +
+
+ +
+
+
+
+
+

Save Parameters

Save seq_length and save_dir for generating a new TV script.

+ +
+
+
+
+
+
In [17]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+# Save parameters for checkpoint
+helper.save_params((seq_length, save_dir))
+
+ +
+
+
+ +
+
+
+
+
+

Checkpoint

+
+
+
+
+
+
In [18]:
+
+
+
"""
+DON'T MODIFY ANYTHING IN THIS CELL
+"""
+import tensorflow as tf
+import numpy as np
+import helper
+import problem_unittests as tests
+
+_, vocab_to_int, int_to_vocab, token_dict = helper.load_preprocess()
+seq_length, load_dir = helper.load_params()
+
+ +
+
+
+ +
+
+
+
+
+

Implement Generate Functions

Get Tensors

Get tensors from loaded_graph using the function get_tensor_by_name(). Get the tensors using the following names:

+
    +
  • "input:0"
  • +
  • "initial_state:0"
  • +
  • "final_state:0"
  • +
  • "probs:0"
  • +
+

Return the tensors in the following tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor)

+ +
+
+
+
+
+
In [19]:
+
+
+
def get_tensors(loaded_graph):
+    """
+    Get input, initial state, final state, and probabilities tensor from <loaded_graph>
+    :param loaded_graph: TensorFlow graph loaded from file
+    :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor)
+    """
+    # TODO: Implement Function
+    InputTensor = loaded_graph.get_tensor_by_name('input:0')
+    InitialStateTensor = loaded_graph.get_tensor_by_name('initial_state:0')
+    FinalStateTensor = loaded_graph.get_tensor_by_name('final_state:0')
+    ProbsTensor = loaded_graph.get_tensor_by_name('probs:0')
+    
+    return InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_get_tensors(get_tensors)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

Choose Word

Implement the pick_word() function to select the next word using probabilities.

+ +
+
+
+
+
+
In [20]:
+
+
+
def pick_word(probabilities, int_to_vocab):
+    """
+    Pick the next word in the generated text
+    :param probabilities: Probabilites of the next word
+    :param int_to_vocab: Dictionary of word ids as the keys and words as the values
+    :return: String of the predicted word
+    """
+    # TODO: Implement Function
+    return int_to_vocab[int(np.argmax(probabilities))]
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+tests.test_pick_word(pick_word)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Tests Passed
+
+
+
+ +
+
+ +
+
+
+
+
+

Generate TV Script

This will generate the TV script for you. Set gen_length to the length of TV script you want to generate.

+ +
+
+
+
+
+
In [21]:
+
+
+
gen_length = 800
+# homer_simpson, moe_szyslak, or Barney_Gumble
+prime_word = 'moe_szyslak'
+
+"""
+DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
+"""
+loaded_graph = tf.Graph()
+with tf.Session(graph=loaded_graph) as sess:
+    # Load saved model
+    loader = tf.train.import_meta_graph(load_dir + '.meta')
+    loader.restore(sess, load_dir)
+
+    # Get Tensors from loaded model
+    input_text, initial_state, final_state, probs = get_tensors(loaded_graph)
+
+    # Sentences generation setup
+    gen_sentences = [prime_word + ':']
+    prev_state = sess.run(initial_state, {input_text: np.array([[1]])})
+
+    # Generate sentences
+    for n in range(gen_length):
+        # Dynamic Input
+        dyn_input = [[vocab_to_int[word] for word in gen_sentences[-seq_length:]]]
+        dyn_seq_length = len(dyn_input[0])
+
+        # Get Prediction
+        probabilities, prev_state = sess.run(
+            [probs, final_state],
+            {input_text: dyn_input, initial_state: prev_state})
+        
+        pred_word = pick_word(probabilities[dyn_seq_length-1], int_to_vocab)
+
+        gen_sentences.append(pred_word)
+    
+    # Remove tokens
+    tv_script = ' '.join(gen_sentences)
+    for key, token in token_dict.items():
+        ending = ' ' if key in ['\n', '(', '"'] else ''
+        tv_script = tv_script.replace(' ' + token.lower(), key)
+    tv_script = tv_script.replace('\n ', '\n')
+    tv_script = tv_script.replace('( ', '(')
+        
+    print(tv_script)
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
moe_szyslak:(eyeing homer's ass) oh yeah, that would look so good on me.
+
+
+moe_szyslak:(hostile) hey homer, i told you not to come out.
+
+
+lisa_simpson: your love of you, stupid more funny.
+moe_szyslak: i gotta join a girl for moe's bar it'll let him.
+moe_szyslak: so, uh, you got it, shouldn't it be. i'm talkin' malfeasance here.
+bart_simpson: sir, well, thank you, i've never seen this again.
+homer_simpson:(chuckles) oh yeah.
+bart_simpson:(finishing in) you know about that!
+duffman:(small frustrated noise) that's good...(then) just said that was i could do it?
+homer_simpson: i don't pay you to have. i'm talkin' about you.
+moe_szyslak: okay, well, you're the love of jeff!
+lenny_leonard:(reading)" i don't know.
+moe_szyslak: sorry, it's probably gonna do worse...(sighs)
+moe_szyslak: that's the big day of innocent.(sadly) are you doing?
+moe_szyslak: and now, homer.
+lisa_simpson: my barney is, moe.
+moe_szyslak: yeah. but who was great. now, i can't believe marge comes down.
+moe_szyslak:(tough) homer, i can't talk on the future.
+homer_simpson: all right! the fire twins!
+homer_simpson:(moans) yeah, that. it's my love!
+homer_simpson:(ominous) it's it.
+moe_szyslak: my sweet friend? he makes 'em nice in the world here.
+
+
+moe_szyslak: i got a big shot who again... that's the grammy judges.(laughs) all right. you're a free beer.
+lenny_leonard: are you home? i'm just a guy, that's a yes!
+homer_simpson:(chuckles)
+moe_szyslak: oh my god...
+thanks for that...
+moe_szyslak: oh, no.(as beer) it's all day.
+lenny_leonard: hey, moe! i wrote a little girl!
+duffman:(laughs) we gotta get you a job?
+homer_simpson: wow.(laughs)
+homer_simpson:(grunt) hey!(laughs)
+marge_simpson:(party laugh) oh, no!
+homer_simpson:(chuckles) hey, maggie, i'm not, barney.
+homer_simpson: guys, i love you, barney!
+homer_simpson:(flatly) yeah.
+marge_simpson:(chanting) are you done to the little girl you're disappointing.
+lisa_simpson:(worried) hey, you know what about you, huh?!
+moe_szyslak: you will have to go home from a way to be nine of a jar.
+carl_carlson: and the second way, a lot of people bad-mouth you and me...
+homer_simpson:(to moe) wow, that's a coaster.
+homer_simpson: hey, i've got a lot to mull.
+moe_szyslak: hey, hey, hey, hey! hey ain't work?
+moe_szyslak: that's the beauty part. you need a pal. i gotta go.
+
+
+moe_szyslak:(laughs) the cop,(points off pain) lisa_simpson: moe, moe. but then you can say the most poor bucks-- it's?
+moe_szyslak: it's true, a" forget-me-shot in my old man.
+moe_szyslak: okay, this is like a!
+homer_simpson:(amazed) him...
+moe_szyslak:(to barney) i think when i've gonna get some professional help. no one could you no real good.
+moe_szyslak: ah, this is a pal. gotta be how how much that how you know a" business problems...
+
+
+moe_szyslak: he's the greatest gift of all, so a little bit. it was all the other day / a problem. that's sweet.
+moe_szyslak:(ominous) one, for you...
+homer_simpson:(to homer) come on, sweet...
+moe_szyslak: oh, boy...
+fat_tony:(sings) full-blooded...
+barney_gumble:(realizing) yeah, i was sure the little girl.
+bart_simpson: oh, you know, that was philip glass.
+david_byrne: yeah, have you go, ain't you little worried.
+
+
+
+ +
+
+ +
+
+
+
+
+

The TV Script is Nonsensical

It's ok if the TV script doesn't make any sense. We trained on less than a megabyte of text. In order to get good results, you'll have to use a smaller vocabulary or get more data. Luckly there's more data! As we mentioned in the begging of this project, this is a subset of another dataset. We didn't have you train on all the data, because that would take too long. However, you are free to train your neural network on all the data. After you complete the project, of course.

+

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_tv_script_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.

+ +
+
+
+
+
+ + + + + + diff --git a/tv-script-generation/dlnd_tv_script_generation.ipynb b/tv-script-generation/dlnd_tv_script_generation.ipynb index ecc4005..ce2a97b 100644 --- a/tv-script-generation/dlnd_tv_script_generation.ipynb +++ b/tv-script-generation/dlnd_tv_script_generation.ipynb @@ -2,10 +2,7 @@ "cells": [ { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "# TV Script Generation\n", "In this project, you'll generate your own [Simpsons](https://en.wikipedia.org/wiki/The_Simpsons) TV scripts using RNNs. You'll be using part of the [Simpsons dataset](https://www.kaggle.com/wcukierski/the-simpsons-by-the-data) of scripts from 27 seasons. The Neural Network you'll build will generate a new TV script for a scene at [Moe's Tavern](https://simpsonswiki.com/wiki/Moe's_Tavern).\n", @@ -15,11 +12,9 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -36,10 +31,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Explore the Data\n", "Play around with `view_sentence_range` to view different parts of the data." @@ -47,13 +39,34 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dataset Stats\n", + "Roughly the number of unique words: 11492\n", + "Number of scenes: 262\n", + "Average number of sentences in each scene: 15.248091603053435\n", + "Number of lines: 4257\n", + "Average number of words in each line: 11.50434578341555\n", + "\n", + "The sentences 0 to 10:\n", + "Moe_Szyslak: (INTO PHONE) Moe's Tavern. Where the elite meet to drink.\n", + "Bart_Simpson: Eh, yeah, hello, is Mike there? Last name, Rotch.\n", + "Moe_Szyslak: (INTO PHONE) Hold on, I'll check. (TO BARFLIES) Mike Rotch. Mike Rotch. Hey, has anybody seen Mike Rotch, lately?\n", + "Moe_Szyslak: (INTO PHONE) Listen you little puke. One of these days I'm gonna catch you, and I'm gonna carve my name on your back with an ice pick.\n", + "Moe_Szyslak: What's the matter Homer? You're not your normal effervescent self.\n", + "Homer_Simpson: I got my problems, Moe. Give me another one.\n", + "Moe_Szyslak: Homer, hey, you should not drink to forget your problems.\n", + "Barney_Gumble: Yeah, you should only drink to enhance your social skills.\n", + "\n", + "\n" + ] + } + ], "source": [ "view_sentence_range = (0, 10)\n", "\n", @@ -81,10 +94,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Implement Preprocessing Functions\n", "The first thing to do to any dataset is preprocessing. Implement the following preprocessing functions below:\n", @@ -101,16 +111,21 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "import numpy as np\n", "import problem_unittests as tests\n", + "from collections import Counter\n", "\n", "def create_lookup_tables(text):\n", " \"\"\"\n", @@ -119,8 +134,12 @@ " :return: A tuple of dicts (vocab_to_int, int_to_vocab)\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None, None\n", + " word_counts = Counter(text)\n", + " sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True)\n", + " int_to_vocab = {i: word for i, word in enumerate(sorted_vocab)}\n", + " vocab_to_int = {word: i for i, word in int_to_vocab.items()}\n", "\n", + " return vocab_to_int, int_to_vocab\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", @@ -130,10 +149,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### Tokenize Punctuation\n", "We'll be splitting the script into a word array using spaces as delimiters. However, punctuations like periods and exclamation marks make it hard for the neural network to distinguish between the word \"bye\" and \"bye!\".\n", @@ -155,13 +171,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def token_lookup():\n", " \"\"\"\n", @@ -169,7 +189,19 @@ " :return: Tokenize dictionary where the key is the punctuation and the value is the token\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None\n", + " dict = {}\n", + " dict['.'] = '||Period||'\n", + " dict[','] = '||Comma||'\n", + " dict['\"'] = '||Quotation_Mark||'\n", + " dict[';'] = '||Semicolon||'\n", + " dict['!'] = '||Exclamation_Mark||'\n", + " dict['?'] = '||Question_Mark||'\n", + " dict['('] = '||Left_Parentheses||'\n", + " dict[')'] = '||Right_Parentheses||'\n", + " dict['--'] = '||Dash||'\n", + " dict['\\n'] = '||Return||'\n", + " \n", + " return dict\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", @@ -179,10 +211,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Preprocess all the data and save it\n", "Running the code cell below will preprocess all the data and save it to file." @@ -190,11 +219,9 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -207,10 +234,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "# Check Point\n", "This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk." @@ -218,11 +242,9 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -238,10 +260,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Build the Neural Network\n", "You'll build the components necessary to build a RNN by implementing the following functions below:\n", @@ -257,11 +276,18 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TensorFlow Version: 1.0.1\n", + "Default GPU Device: /gpu:0\n" + ] + } + ], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", @@ -296,13 +322,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def get_inputs():\n", " \"\"\"\n", @@ -310,8 +340,11 @@ " :return: Tuple (input, targets, learning rate)\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None, None, None\n", - "\n", + " inputs = tf.placeholder(tf.int32, [None, None], name='input')\n", + " targets = tf.placeholder(tf.int32, [None, None], name='targets')\n", + " learning_rate = tf.placeholder(tf.float32, name='learning_rate')\n", + " \n", + " return inputs, targets, learning_rate\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", @@ -321,10 +354,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### Build RNN Cell and Initialize\n", "Stack one or more [`BasicLSTMCells`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell) in a [`MultiRNNCell`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell).\n", @@ -337,13 +367,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def get_init_cell(batch_size, rnn_size):\n", " \"\"\"\n", @@ -353,8 +387,15 @@ " :return: Tuple (cell, initialize state)\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None, None\n", + " num_layers = 2\n", + " # keep_prob = 0.7\n", + " \n", + " lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size)\n", + " # drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob)\n", + " cell = tf.contrib.rnn.MultiRNNCell([lstm] * num_layers)\n", + " initial_state = tf.identity(cell.zero_state(batch_size, tf.float32), name='initial_state')\n", "\n", + " return cell, initial_state\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", @@ -364,10 +405,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### Word Embedding\n", "Apply embedding to `input_data` using TensorFlow. Return the embedded sequence." @@ -375,13 +413,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def get_embed(input_data, vocab_size, embed_dim):\n", " \"\"\"\n", @@ -392,8 +434,10 @@ " :return: Embedded input.\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None\n", - "\n", + " embedding = tf.Variable(tf.random_uniform((vocab_size, embed_dim), -1, 1))\n", + " embed = tf.nn.embedding_lookup(embedding, input_data)\n", + " \n", + " return embed\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", @@ -403,10 +447,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### Build RNN\n", "You created a RNN Cell in the `get_init_cell()` function. Time to use the cell to create a RNN.\n", @@ -418,13 +459,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def build_rnn(cell, inputs):\n", " \"\"\"\n", @@ -434,8 +479,10 @@ " :return: Tuple (Outputs, Final State)\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None, None\n", - "\n", + " outputs, final_state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32)\n", + " final_state = tf.identity(final_state, name='final_state')\n", + " \n", + " return outputs, final_state\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", @@ -445,10 +492,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### Build the Neural Network\n", "Apply the functions you implemented above to:\n", @@ -461,13 +505,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def build_nn(cell, rnn_size, input_data, vocab_size, embed_dim):\n", " \"\"\"\n", @@ -480,8 +528,11 @@ " :return: Tuple (Logits, FinalState)\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None, None\n", - "\n", + " embed_data = get_embed(input_data, vocab_size, embed_dim)\n", + " outputs, final_state = build_rnn(cell, embed_data)\n", + " logits = tf.contrib.layers.fully_connected(outputs, vocab_size, activation_fn=None)\n", + " \n", + " return logits, final_state\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", @@ -491,10 +542,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### Batches\n", "Implement `get_batches` to create batches of input and targets using `int_text`. The batches should be a Numpy array with the shape `(number of batches, 2, batch size, sequence length)`. Each batch contains two elements:\n", @@ -527,13 +575,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def get_batches(int_text, batch_size, seq_length):\n", " \"\"\"\n", @@ -544,8 +596,15 @@ " :return: Batches as a Numpy array\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None\n", - "\n", + " n_batches = len(int_text) // (batch_size * seq_length)\n", + " \n", + " x = np.array(int_text[:n_batches * batch_size * seq_length])\n", + " y = np.array(int_text[1:n_batches * batch_size * seq_length + 1])\n", + " y[-1] = x[0]\n", + " x_batches = np.split(x.reshape(batch_size, -1), n_batches, 1)\n", + " y_batches = np.split(y.reshape(batch_size, -1), n_batches, 1)\n", + " \n", + " return np.array(list(zip(x_batches, y_batches)))\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", @@ -555,10 +614,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Neural Network Training\n", "### Hyperparameters\n", @@ -575,28 +631,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": { - "collapsed": true, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ "# Number of Epochs\n", - "num_epochs = None\n", + "num_epochs = 100\n", "# Batch Size\n", - "batch_size = None\n", + "batch_size = 128\n", "# RNN Size\n", - "rnn_size = None\n", + "rnn_size = 256\n", "# Embedding Dimension Size\n", - "embed_dim = None\n", + "embed_dim = 200\n", "# Sequence Length\n", - "seq_length = None\n", + "seq_length = 32\n", "# Learning Rate\n", - "learning_rate = None\n", + "learning_rate = 0.01\n", "# Show stats for every n number of batches\n", - "show_every_n_batches = None\n", + "show_every_n_batches = 100\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", @@ -606,10 +660,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### Build the Graph\n", "Build the graph using the neural network you implemented." @@ -617,11 +668,9 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -658,10 +707,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Train\n", "Train the neural network on the preprocessed data. If you have a hard time getting a good loss, check the [forms](https://discussions.udacity.com/) to see if anyone is having the same problem." @@ -669,13 +715,33 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0 Batch 0/16 train_loss = 8.822\n", + "Epoch 6 Batch 4/16 train_loss = 5.457\n", + "Epoch 12 Batch 8/16 train_loss = 4.972\n", + "Epoch 18 Batch 12/16 train_loss = 4.116\n", + "Epoch 25 Batch 0/16 train_loss = 3.257\n", + "Epoch 31 Batch 4/16 train_loss = 2.535\n", + "Epoch 37 Batch 8/16 train_loss = 2.091\n", + "Epoch 43 Batch 12/16 train_loss = 1.477\n", + "Epoch 50 Batch 0/16 train_loss = 1.024\n", + "Epoch 56 Batch 4/16 train_loss = 0.852\n", + "Epoch 62 Batch 8/16 train_loss = 0.566\n", + "Epoch 68 Batch 12/16 train_loss = 0.429\n", + "Epoch 75 Batch 0/16 train_loss = 0.395\n", + "Epoch 81 Batch 4/16 train_loss = 0.316\n", + "Epoch 87 Batch 8/16 train_loss = 0.201\n", + "Epoch 93 Batch 12/16 train_loss = 0.206\n", + "Model Trained and Saved\n" + ] + } + ], "source": [ "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL\n", @@ -712,10 +778,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Save Parameters\n", "Save `seq_length` and `save_dir` for generating a new TV script." @@ -723,11 +786,9 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -740,21 +801,16 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "# Checkpoint" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": { - "collapsed": false, - "deletable": true, - "editable": true + "collapsed": true }, "outputs": [], "source": [ @@ -772,10 +828,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Implement Generate Functions\n", "### Get Tensors\n", @@ -790,13 +843,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def get_tensors(loaded_graph):\n", " \"\"\"\n", @@ -805,8 +862,12 @@ " :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor)\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None, None, None, None\n", - "\n", + " InputTensor = loaded_graph.get_tensor_by_name('input:0')\n", + " InitialStateTensor = loaded_graph.get_tensor_by_name('initial_state:0')\n", + " FinalStateTensor = loaded_graph.get_tensor_by_name('final_state:0')\n", + " ProbsTensor = loaded_graph.get_tensor_by_name('probs:0')\n", + " \n", + " return InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", @@ -816,10 +877,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "### Choose Word\n", "Implement the `pick_word()` function to select the next word using `probabilities`." @@ -827,13 +885,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tests Passed\n" + ] + } + ], "source": [ "def pick_word(probabilities, int_to_vocab):\n", " \"\"\"\n", @@ -843,8 +905,7 @@ " :return: String of the predicted word\n", " \"\"\"\n", " # TODO: Implement Function\n", - " return None\n", - "\n", + " return int_to_vocab[int(np.argmax(probabilities))]\n", "\n", "\"\"\"\n", "DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE\n", @@ -854,10 +915,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "## Generate TV Script\n", "This will generate the TV script for you. Set `gen_length` to the length of TV script you want to generate." @@ -865,15 +923,86 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [], + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "moe_szyslak:(eyeing homer's ass) oh yeah, that would look so good on me.\n", + "\n", + "\n", + "moe_szyslak:(hostile) hey homer, i told you not to come out.\n", + "\n", + "\n", + "lisa_simpson: your love of you, stupid more funny.\n", + "moe_szyslak: i gotta join a girl for moe's bar it'll let him.\n", + "moe_szyslak: so, uh, you got it, shouldn't it be. i'm talkin' malfeasance here.\n", + "bart_simpson: sir, well, thank you, i've never seen this again.\n", + "homer_simpson:(chuckles) oh yeah.\n", + "bart_simpson:(finishing in) you know about that!\n", + "duffman:(small frustrated noise) that's good...(then) just said that was i could do it?\n", + "homer_simpson: i don't pay you to have. i'm talkin' about you.\n", + "moe_szyslak: okay, well, you're the love of jeff!\n", + "lenny_leonard:(reading)\" i don't know.\n", + "moe_szyslak: sorry, it's probably gonna do worse...(sighs)\n", + "moe_szyslak: that's the big day of innocent.(sadly) are you doing?\n", + "moe_szyslak: and now, homer.\n", + "lisa_simpson: my barney is, moe.\n", + "moe_szyslak: yeah. but who was great. now, i can't believe marge comes down.\n", + "moe_szyslak:(tough) homer, i can't talk on the future.\n", + "homer_simpson: all right! the fire twins!\n", + "homer_simpson:(moans) yeah, that. it's my love!\n", + "homer_simpson:(ominous) it's it.\n", + "moe_szyslak: my sweet friend? he makes 'em nice in the world here.\n", + "\n", + "\n", + "moe_szyslak: i got a big shot who again... that's the grammy judges.(laughs) all right. you're a free beer.\n", + "lenny_leonard: are you home? i'm just a guy, that's a yes!\n", + "homer_simpson:(chuckles)\n", + "moe_szyslak: oh my god...\n", + "thanks for that...\n", + "moe_szyslak: oh, no.(as beer) it's all day.\n", + "lenny_leonard: hey, moe! i wrote a little girl!\n", + "duffman:(laughs) we gotta get you a job?\n", + "homer_simpson: wow.(laughs)\n", + "homer_simpson:(grunt) hey!(laughs)\n", + "marge_simpson:(party laugh) oh, no!\n", + "homer_simpson:(chuckles) hey, maggie, i'm not, barney.\n", + "homer_simpson: guys, i love you, barney!\n", + "homer_simpson:(flatly) yeah.\n", + "marge_simpson:(chanting) are you done to the little girl you're disappointing.\n", + "lisa_simpson:(worried) hey, you know what about you, huh?!\n", + "moe_szyslak: you will have to go home from a way to be nine of a jar.\n", + "carl_carlson: and the second way, a lot of people bad-mouth you and me...\n", + "homer_simpson:(to moe) wow, that's a coaster.\n", + "homer_simpson: hey, i've got a lot to mull.\n", + "moe_szyslak: hey, hey, hey, hey! hey ain't work?\n", + "moe_szyslak: that's the beauty part. you need a pal. i gotta go.\n", + "\n", + "\n", + "moe_szyslak:(laughs) the cop,(points off pain) lisa_simpson: moe, moe. but then you can say the most poor bucks-- it's?\n", + "moe_szyslak: it's true, a\" forget-me-shot in my old man.\n", + "moe_szyslak: okay, this is like a!\n", + "homer_simpson:(amazed) him...\n", + "moe_szyslak:(to barney) i think when i've gonna get some professional help. no one could you no real good.\n", + "moe_szyslak: ah, this is a pal. gotta be how how much that how you know a\" business problems...\n", + "\n", + "\n", + "moe_szyslak: he's the greatest gift of all, so a little bit. it was all the other day / a problem. that's sweet.\n", + "moe_szyslak:(ominous) one, for you...\n", + "homer_simpson:(to homer) come on, sweet...\n", + "moe_szyslak: oh, boy...\n", + "fat_tony:(sings) full-blooded...\n", + "barney_gumble:(realizing) yeah, i was sure the little girl.\n", + "bart_simpson: oh, you know, that was philip glass.\n", + "david_byrne: yeah, have you go, ain't you little worried.\n" + ] + } + ], "source": [ - "gen_length = 200\n", + "gen_length = 800\n", "# homer_simpson, moe_szyslak, or Barney_Gumble\n", "prime_word = 'moe_szyslak'\n", "\n", @@ -921,10 +1050,7 @@ }, { "cell_type": "markdown", - "metadata": { - "deletable": true, - "editable": true - }, + "metadata": {}, "source": [ "# The TV Script is Nonsensical\n", "It's ok if the TV script doesn't make any sense. We trained on less than a megabyte of text. In order to get good results, you'll have to use a smaller vocabulary or get more data. Luckly there's more data! As we mentioned in the begging of this project, this is a subset of [another dataset](https://www.kaggle.com/wcukierski/the-simpsons-by-the-data). We didn't have you train on all the data, because that would take too long. However, you are free to train your neural network on all the data. After you complete the project, of course.\n", @@ -934,6 +1060,7 @@ } ], "metadata": { + "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", @@ -949,13 +1076,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" - }, - "widgets": { - "state": {}, - "version": "1.1.2" + "version": "3.5.3" } }, "nbformat": 4, - "nbformat_minor": 0 + "nbformat_minor": 1 }