\\n\""
+ ]
+ },
+ "execution_count": 34,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "dataset[100][\"text\"]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "idAEIeSQ3xdS"
+ },
+ "source": [
+ "\n",
+ "### Train the model\n",
+ "Fine-tuning requires careful experimentation. To avoid wasting hours on a broken pipeline, we start with a 5-step sanity check. This ensures the training stabilizes and the model exports correctly to your phone.\n",
+ "\n",
+ "Run this short test first. If the export succeeds, come back and set max_steps = -1 (or num_train_epochs = 1) for the full training run."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 66,
+ "referenced_widgets": [
+ "2bd80080d2d14b2e85fbd7061f527296",
+ "37c84f5d49b64573a03e4afdeefafabe",
+ "41606b74264d40e2b44faf90644ac09d",
+ "96d072aa159a476e8e13cf891c9c672e",
+ "e81ef6bf94f74bbf890e81081b31987d",
+ "b047bbb7800c47209e1432ea8542dff9",
+ "eb1b8444e56545e5a2cf415d02188423",
+ "c873ef710be84522b5beebfdcaa7b724",
+ "d666967f8e244644b9d07332a529be1d",
+ "16113e3635db4c3ab60614dd6e868575",
+ "31888169db114b6aa966060ab6bc0eba"
+ ]
+ },
+ "id": "95_Nn-89DhsL",
+ "outputId": "f62d1c08-ded7-4b3e-d4d3-ae08cc17b337"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "2bd80080d2d14b2e85fbd7061f527296",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Unsloth: Tokenizing [\"text\"] (num_proc=6): 0%| | 0/10000 [00:00, ? examples/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "🦥 Unsloth: Padding-free auto-enabled, enabling faster training.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from trl import SFTTrainer, SFTConfig\n",
+ "\n",
+ "trainer = SFTTrainer(\n",
+ " model = model,\n",
+ " tokenizer = tokenizer,\n",
+ " train_dataset = dataset,\n",
+ " eval_dataset = None,\n",
+ " args = SFTConfig(\n",
+ " dataset_text_field = \"text\",\n",
+ "\n",
+ " # --- FASTEST SETTINGS ---\n",
+ " per_device_train_batch_size = 16,\n",
+ " gradient_accumulation_steps = 2,\n",
+ "\n",
+ " # --- THE SPEED RUN ---\n",
+ " max_steps = 5, # Finish in seconds!\n",
+ " warmup_steps = 1,\n",
+ "\n",
+ " # Stability settings (kept just in case)\n",
+ " learning_rate = 5e-6,\n",
+ " optim = \"adamw_torch\",\n",
+ " max_grad_norm = 1.0,\n",
+ "\n",
+ " logging_steps = 1,\n",
+ " weight_decay = 0.01,\n",
+ " lr_scheduler_type = \"linear\",\n",
+ " seed = 3407,\n",
+ " report_to = \"none\",\n",
+ " ),\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "2ejIt2xSNKKp",
+ "outputId": "e1fae0ad-0158-44b7-f5db-fa8aeeafc8ee"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "GPU = Tesla T4. Max memory = 14.741 GB.\n",
+ "14.111 GB of memory reserved.\n"
+ ]
+ }
+ ],
+ "source": [
+ "# @title Show current memory stats\n",
+ "gpu_stats = torch.cuda.get_device_properties(0)\n",
+ "start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n",
+ "max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)\n",
+ "print(f\"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.\")\n",
+ "print(f\"{start_gpu_memory} GB of memory reserved.\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "CNP1Uidk9mrz"
+ },
+ "source": [
+ "Let's train the model! To resume a training run, set `trainer.train(resume_from_checkpoint = True)`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 319
+ },
+ "id": "yqxqAZ7KJ4oL",
+ "outputId": "248e78ed-7d63-481f-d6f0-2462e65fb414"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "==((====))== Unsloth - 2x faster free finetuning | Num GPUs used = 1\n",
+ " \\\\ /| Num examples = 10,000 | Num Epochs = 1 | Total steps = 5\n",
+ "O^O/ \\_/ \\ Batch size per device = 16 | Gradient accumulation steps = 2\n",
+ "\\ / Data Parallel GPUs = 1 | Total batch size (16 x 2 x 1) = 32\n",
+ " \"-____-\" Trainable parameters = 435,870,336 of 435,870,336 (100.00% trained)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " \n",
+ "
\n",
+ " [5/5 01:28, Epoch 0/1]\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | Step | \n",
+ " Training Loss | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 1 | \n",
+ " 18.145700 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 17.306400 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 18.096000 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 17.530900 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 17.311900 | \n",
+ "
\n",
+ " \n",
+ "
"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "trainer_stats = trainer.train()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "pCqnaKmlO1U9",
+ "outputId": "d62320ca-9ef0-4dac-9291-2fe7689f6aa3"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "115.0737 seconds used for training.\n",
+ "1.92 minutes used for training.\n",
+ "Peak reserved memory = 14.111 GB.\n",
+ "Peak reserved memory for training = 0.0 GB.\n",
+ "Peak reserved memory % of max memory = 95.726 %.\n",
+ "Peak reserved memory for training % of max memory = 0.0 %.\n"
+ ]
+ }
+ ],
+ "source": [
+ "# @title Show final memory and time stats\n",
+ "used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n",
+ "used_memory_for_training = round(used_memory - start_gpu_memory, 3)\n",
+ "used_percentage = round(used_memory / max_memory * 100, 3)\n",
+ "training_percentage = round(used_memory_for_training / max_memory * 100, 3)\n",
+ "print(f\"{trainer_stats.metrics['train_runtime']} seconds used for training.\")\n",
+ "print(\n",
+ " f\"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.\"\n",
+ ")\n",
+ "print(f\"Peak reserved memory = {used_memory} GB.\")\n",
+ "print(f\"Peak reserved memory for training = {used_memory_for_training} GB.\")\n",
+ "print(f\"Peak reserved memory % of max memory = {used_percentage} %.\")\n",
+ "print(f\"Peak reserved memory for training % of max memory = {training_percentage} %.\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ekOmTR1hSNcr"
+ },
+ "source": [
+ "\n",
+ "### Saving, loading finetuned models\n",
+ "\n",
+ "To save the model for phone deployment, we first save the model and tokenizer via `save_pretrained`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "kR3gIAX-SM2q",
+ "outputId": "bbaf300c-0ef1-402b-a0d2-2f286f7cab09"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "('gemma_phone_model/tokenizer_config.json',\n",
+ " 'gemma_phone_model/special_tokens_map.json',\n",
+ " 'gemma_phone_model/chat_template.jinja',\n",
+ " 'gemma_phone_model/tokenizer.model',\n",
+ " 'gemma_phone_model/added_tokens.json',\n",
+ " 'gemma_phone_model/tokenizer.json')"
+ ]
+ },
+ "execution_count": 39,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Save the model and tokenizer directly\n",
+ "model.save_pretrained(\"gemma_phone_model\")\n",
+ "tokenizer.save_pretrained(\"gemma_phone_model\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "CrSvZObor0lY"
+ },
+ "source": [
+ "We then export directly from the local folder using Optimum Executorch as per [the documentation.](https://github.com/huggingface/optimum-executorch/blob/main/optimum/exporters/executorch/README.md)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "V--DeL4DMD5O",
+ "outputId": "f5f03485-5c91-45aa-f961-12251a27587d"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "2025-12-18 07:11:27.948447: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
+ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
+ "E0000 00:00:1766041888.463719 8746 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
+ "E0000 00:00:1766041888.594349 8746 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
+ "W0000 00:00:1766041889.547001 8746 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
+ "W0000 00:00:1766041889.547052 8746 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
+ "W0000 00:00:1766041889.547060 8746 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
+ "W0000 00:00:1766041889.547067 8746 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
+ "Skipping import of cpp extensions due to incompatible torch version 2.9.0+cu126 for torchao version 0.14.0 Please see GitHub issue #2919 for more info\n",
+ "`torch_dtype` is deprecated! Use `dtype` instead!\n",
+ "WARNING:coremltools:scikit-learn version 1.7.1 is not supported. Minimum required version: 0.17. Maximum required version: 1.5.1. Disabling scikit-learn conversion API.\n",
+ "WARNING:coremltools:XGBoost version 3.1.2 has not been tested with coremltools. You may run into unexpected errors. XGBoost 1.4.2 is the most recent version that has been tested.\n",
+ "WARNING:coremltools:TensorFlow version 2.19.0 has not been tested with coremltools. You may run into unexpected errors. TensorFlow 2.12.0 is the most recent version that has been tested.\n",
+ "WARNING:coremltools:Torch version 2.9.0+cu126 has not been tested with coremltools. You may run into unexpected errors. Torch 2.7.0 is the most recent version that has been tested.\n",
+ "WARNING:coremltools:Failed to load _MLModelProxy: No module named 'coremltools.libcoremlpython'\n",
+ "WARNING:coremltools:Failed to load _MLCPUComputeDeviceProxy: No module named 'coremltools.libcoremlpython'\n",
+ "WARNING:coremltools:Failed to load _MLGPUComputeDeviceProxy: No module named 'coremltools.libcoremlpython'\n",
+ "WARNING:coremltools:Failed to load _MLNeuralEngineComputeDeviceProxy: No module named 'coremltools.libcoremlpython'\n",
+ "WARNING:coremltools:Failed to load _MLModelProxy: No module named 'coremltools.libcoremlpython'\n",
+ "WARNING:coremltools:Failed to load _MLComputePlanProxy: No module named 'coremltools.libcoremlpython'\n",
+ "WARNING:coremltools:Failed to load _MLModelProxy: No module named 'coremltools.libcoremlpython'\n",
+ "WARNING:coremltools:Failed to load _MLModelAssetProxy: No module named 'coremltools.libcoremlpython'\n",
+ "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/output_graph.py:1711: UserWarning: While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: [\"L['self'].cache.layers[0]\", \"L['self'].cache.layers[1]\", \"L['self'].cache.layers[2]\", \"L['self'].cache.layers[3]\", \"L['self'].cache.layers[4]\", \"L['self'].cache.layers[6]\", \"L['self'].cache.layers[7]\", \"L['self'].cache.layers[8]\", \"L['self'].cache.layers[9]\", \"L['self'].cache.layers[10]\", \"L['self'].cache.layers[12]\", \"L['self'].cache.layers[13]\", \"L['self'].cache.layers[14]\", \"L['self'].cache.layers[15]\", \"L['self'].cache.layers[16]\"]\n",
+ " warnings.warn(\n",
+ "I tokenizers:regex.cpp:27] Registering override fallback regex\n",
+ "/usr/local/lib/python3.12/dist-packages/executorch/exir/emit/_emitter.py:1594: UserWarning: Mutation on a buffer in the model is detected. ExecuTorch assumes buffers that are mutated in the graph have a meaningless initial state, only the shape and dtype will be serialized, unless a pass which sets meta[\"et_init_buffer\"] to True such as InitializedMutableBufferPass is run.\n",
+ " warnings.warn(\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Export directly from your local folder using Optimum\n",
+ "# We use --qlinear 8da4w and --qembedding 8w to reduce size\n",
+ "# 8da4w = Int8 dynamic activations + Int4 weights (Fastest on mobile)\n",
+ "\n",
+ "!optimum-cli export executorch \\\n",
+ " --model \"gemma_phone_model\" \\\n",
+ " --task \"text-generation\" \\\n",
+ " --recipe \"xnnpack\" \\\n",
+ " --output_dir \"gemma_output\" \\\n",
+ " --qlinear 8da4w \\\n",
+ " --qembedding 8w"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Qc-Hd2dXHXq1"
+ },
+ "source": [
+ "And we have the file Gemma3 model.pte of size 306M!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "WqtcKfTnHZdB"
+ },
+ "outputs": [],
+ "source": [
+ "!ls -lh gemma_output/model.pte"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "9guDN83_HaVv"
+ },
+ "source": [
+ "And we're done! If you have any questions on Unsloth, we have a [Discord](https://discord.gg/unsloth) channel! If you find any bugs or want to keep updated with the latest LLM stuff, or need help, join projects etc, feel free to join our Discord!\n",
+ "\n",
+ "Some other links:\n",
+ "1. Train your own reasoning model - Llama GRPO notebook [Free Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-GRPO.ipynb)\n",
+ "2. Saving finetunes to Ollama. [Free notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3_(8B)-Ollama.ipynb)\n",
+ "3. Llama 3.2 Vision finetuning - Radiography use case. [Free Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb)\n",
+ "6. See notebooks for DPO, ORPO, Continued pretraining, conversational finetuning and more on our [documentation](https://docs.unsloth.ai/get-started/unsloth-notebooks)!\n",
+ "\n",
+ "\n",
+ "

\n",
+ "

\n",
+ "

\n",
+ "\n",
+ " Join Discord if you need help + ⭐️
Star us on Github ⭐️\n",
+ "
\n",
+ "\n",
+ " This notebook and all Unsloth notebooks are licensed [LGPL-3.0](https://github.com/unslothai/notebooks?tab=LGPL-3.0-1-ov-file#readme).\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "gpuType": "T4",
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.11"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "16113e3635db4c3ab60614dd6e868575": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2500a437043548328db43aea8a058bdd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_528f7844ee94480a9379cd80859ac0e1",
+ "placeholder": "",
+ "style": "IPY_MODEL_2d2c74ae247f4476b2095363a41ef328",
+ "value": " 10000/10000 [00:02<00:00, 6407.58 examples/s]"
+ }
+ },
+ "2bd80080d2d14b2e85fbd7061f527296": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_37c84f5d49b64573a03e4afdeefafabe",
+ "IPY_MODEL_41606b74264d40e2b44faf90644ac09d",
+ "IPY_MODEL_96d072aa159a476e8e13cf891c9c672e"
+ ],
+ "layout": "IPY_MODEL_e81ef6bf94f74bbf890e81081b31987d"
+ }
+ },
+ "2d2c74ae247f4476b2095363a41ef328": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "31888169db114b6aa966060ab6bc0eba": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "3512d34d5e7b4f15b9fa897593c18584": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "37c84f5d49b64573a03e4afdeefafabe": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b047bbb7800c47209e1432ea8542dff9",
+ "placeholder": "",
+ "style": "IPY_MODEL_eb1b8444e56545e5a2cf415d02188423",
+ "value": "Unsloth: Tokenizing ["text"] (num_proc=6): 100%"
+ }
+ },
+ "3bf750a0c0294b74b08024471048f65d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "41606b74264d40e2b44faf90644ac09d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c873ef710be84522b5beebfdcaa7b724",
+ "max": 10000,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_d666967f8e244644b9d07332a529be1d",
+ "value": 10000
+ }
+ },
+ "4496b181a1a44b5b995ddac456674898": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_99b37c47cf844b12b188cddef262b793",
+ "placeholder": "",
+ "style": "IPY_MODEL_647c24aebf7e4a88a08bb7e4737db2a5",
+ "value": "Map: 100%"
+ }
+ },
+ "4815e00685e84e9daf01e9dcd884bc69": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "4897c13bb26144e0bfed38034c56bc37": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "528f7844ee94480a9379cd80859ac0e1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "566b075df3014851a4abe2f834012339": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_4897c13bb26144e0bfed38034c56bc37",
+ "placeholder": "",
+ "style": "IPY_MODEL_3bf750a0c0294b74b08024471048f65d",
+ "value": "Unsloth: Standardizing formats (num_proc=2): 100%"
+ }
+ },
+ "5a0ba5c0ee0f48a8ae165ed974c66db6": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "647c24aebf7e4a88a08bb7e4737db2a5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "6abbd55419124cfba4bda0b3562ed712": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_4496b181a1a44b5b995ddac456674898",
+ "IPY_MODEL_c8ae73353cbd4b2985765f4b48a5214c",
+ "IPY_MODEL_7826e1eb100d46bc877575a8fc9f7c94"
+ ],
+ "layout": "IPY_MODEL_eecd717a8331423e8ad8f14c1975467b"
+ }
+ },
+ "7826e1eb100d46bc877575a8fc9f7c94": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_4815e00685e84e9daf01e9dcd884bc69",
+ "placeholder": "",
+ "style": "IPY_MODEL_dfc97bfeece147f4b2dadc7ae486a3ee",
+ "value": " 10000/10000 [00:01<00:00, 8606.97 examples/s]"
+ }
+ },
+ "95d97ec274304059b528f8ad73076492": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3512d34d5e7b4f15b9fa897593c18584",
+ "max": 10000,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_b60e8a7be6194386b58c5d6a9e7dee35",
+ "value": 10000
+ }
+ },
+ "96d072aa159a476e8e13cf891c9c672e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_16113e3635db4c3ab60614dd6e868575",
+ "placeholder": "",
+ "style": "IPY_MODEL_31888169db114b6aa966060ab6bc0eba",
+ "value": " 10000/10000 [00:30<00:00, 728.40 examples/s]"
+ }
+ },
+ "99b37c47cf844b12b188cddef262b793": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a4ec32a6e9774744ba393a1af47f6d93": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_566b075df3014851a4abe2f834012339",
+ "IPY_MODEL_95d97ec274304059b528f8ad73076492",
+ "IPY_MODEL_2500a437043548328db43aea8a058bdd"
+ ],
+ "layout": "IPY_MODEL_b4046e3b58844555a7d53cb3450938d6"
+ }
+ },
+ "b047bbb7800c47209e1432ea8542dff9": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b4046e3b58844555a7d53cb3450938d6": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b60e8a7be6194386b58c5d6a9e7dee35": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "bf11957c44e2466c9b11f544252f2fcf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "c873ef710be84522b5beebfdcaa7b724": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c8ae73353cbd4b2985765f4b48a5214c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5a0ba5c0ee0f48a8ae165ed974c66db6",
+ "max": 10000,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_bf11957c44e2466c9b11f544252f2fcf",
+ "value": 10000
+ }
+ },
+ "d666967f8e244644b9d07332a529be1d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "dfc97bfeece147f4b2dadc7ae486a3ee": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "e81ef6bf94f74bbf890e81081b31987d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "eb1b8444e56545e5a2cf415d02188423": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "eecd717a8331423e8ad8f14c1975467b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ }
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}