-
Notifications
You must be signed in to change notification settings - Fork 4
Open
Description
Environment
- OS: Linux (EL8, 4.18)
- Python: 3.11 (conda)
- PyTorch: 2.1.2+cu121
- PyG: 2.6.1
- Lightning: 2.4.0
- torchmetrics: 1.8.1
- RDKit: 2024.3.6
- fair-esm: 2.0.0
Command
python -m scripts.preprocess.preprocess_data \
--dataset pdbbind \
--data_dir /path/to/PDBBIND_atomCorrected \
--cache_path /path/to/processed/cache_xxx \
--split_path /path/to/timesplit_xxx \
--esm_embeddings_path /path/to/esm/esm_embeddings \
--num_workers 20Observed errors (from running the command)
- Missing CLI arg in preprocess script
- AttributeError: 'Namespace' object has no attribute 'bb_random_prior' (referenced in parse_args but arg not defined)
- Incorrect logging usage in training pipeline
- TypeError: 'module' object is not callable (uses
logging(...)instead oflogging.info(...))
- TypeError: 'module' object is not callable (uses
- Wrong output path variable in training pipeline
- Uses
self.full_cache_path(undefined) when writingcomplex_names.pkl; should useself.config.cache_path
- Uses
- Missing attribute in training pipeline
- AttributeError: 'TrainingDataPipeline' object has no attribute 'dataset'
- Parser/pipeline dict key mismatch
ComplexParser.parse_protein()expectsapo_rec_path/holo_rec_path, butTrainingDataPipeline.prepare_input_files()producesapo_protein_file/holo_protein_file, causing:- ValueError: Apo Path=None and Holo Path=None not found
Suggested fixes
- Add missing arg in
scripts/preprocess/preprocess_data.py:parser.add_argument('--bb_random_prior', action='store_true', default=False, ...)
- Replace
logging(...)withlogging.info(...)inflexdock/data/modules/training/pipeline.py - Replace
self.full_cache_pathwithself.config.cache_pathwhen writingcomplex_names.pkl - Set
self.dataset = config.datasetinTrainingDataPipeline.__init__ - Unify keys between pipeline and parser:
- Use
apo_rec_path/holo_rec_pathinprepare_input_files()(or make parser accept both)
- Use
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
No labels