A simple, elegant Python framework for building AI agents with decorators, MCP support, and powerful utilities
AXM Agent is designed with simplicity and developer experience in mind. Unlike heavyweight frameworks, AXM Agent lets you build powerful AI agents with just a few lines of code using elegant decorators and intuitive APIs.
from axm import Agent, tool
# Create an agent
agent = Agent("gpt-4")
# Define tools with a simple decorator
@agent.tool
def get_weather(city: str) -> str:
"""Get the weather for a city"""
return f"Sunny in {city}"
# Run the agent
response = agent.run("What's the weather in Paris?")
print(response)- π― Simple Decorator API - Define tools and agents with intuitive decorators
- π MCP Support - Full Model Context Protocol integration
- π Function Calling - Automatic function calling with type validation
- π Planning & Scheduling - Built-in task planning and execution
- β Format-Constrained Output - JSON, Pydantic models, and custom schemas
- β‘ Async & Streaming - Full async support with streaming responses
- π¨ Multi-Agent Systems - Easy collaboration between multiple agents
- π Memory & Context - Conversation memory and context management
- π οΈ Multiple LLM Support - OpenAI, Anthropic, and custom providers
- π Observable - Built-in logging and tracing
pip install axm-agentFor OpenAI support:
pip install axm-agent[openai]For Anthropic (Claude) support:
pip install axm-agent[anthropic]For all providers:
pip install axm-agent[all]AXM Agent uses environment variables for API credentials:
export AXM_OPENAI_API_KEY="sk-..."export AXM_ANTHROPIC_API_KEY="sk-ant-..."export AXM_OPENAI_COMPATIBLE_API_KEY="your-api-key"
export AXM_OPENAI_COMPATIBLE_BASE_URL="https://your-endpoint.com/v1"You can also pass credentials directly when creating agents:
agent = Agent("gpt-4", api_key="sk-...", base_url="https://custom-endpoint.com/v1")from axm import Agent
agent = Agent("gpt-4")
response = agent.run("Tell me a joke")
print(response)from axm import Agent, tool
import datetime
agent = Agent("gpt-4")
@agent.tool
def get_current_time() -> str:
"""Get the current time"""
return datetime.datetime.now().strftime("%H:%M:%S")
@agent.tool
def calculate(expression: str) -> float:
"""Safely evaluate a mathematical expression"""
return eval(expression, {"__builtins__": {}})
response = agent.run("What time is it and what is 25 * 4?")
print(response)from axm import Agent
from pydantic import BaseModel
class WeatherReport(BaseModel):
city: str
temperature: float
conditions: str
humidity: int
agent = Agent("gpt-4")
report = agent.run(
"Generate a weather report for Paris",
response_format=WeatherReport
)
print(f"{report.city}: {report.temperature}Β°C, {report.conditions}")from axm import PlanningAgent
agent = PlanningAgent("gpt-4")
# The agent will break down the task into steps and execute them
result = agent.execute_plan(
"Research the top 3 programming languages in 2025 and create a comparison"
)from axm import Agent, MultiAgent
researcher = Agent("gpt-4", role="researcher")
writer = Agent("gpt-4", role="writer")
critic = Agent("gpt-4", role="critic")
team = MultiAgent([researcher, writer, critic])
result = team.collaborate("Write an article about AI agents")from axm import Agent
import asyncio
async def main():
agent = Agent("gpt-4")
# Async execution
response = await agent.arun("Tell me about async programming")
# Streaming
async for chunk in agent.stream("Write a story"):
print(chunk, end="", flush=True)
asyncio.run(main())from axm import Agent
from axm.mcp import MCPServer
# Create an MCP server
mcp = MCPServer()
@mcp.tool
def search_database(query: str) -> list:
"""Search the database"""
return ["result1", "result2"]
# Connect agent to MCP
agent = Agent("gpt-4", mcp_server=mcp)
response = agent.run("Search for user data")from axm import Agent, LLMProvider
class CustomLLM(LLMProvider):
def generate(self, messages, **kwargs):
# Your custom LLM logic
pass
agent = Agent(CustomLLM())from axm import Agent
from axm.memory import ConversationMemory
agent = Agent("gpt-4", memory=ConversationMemory(max_messages=10))
agent.run("My name is Alice")
agent.run("What's my name?") # Will remember "Alice"from axm import Agent
agent = Agent("gpt-4", max_retries=3, timeout=30)
@agent.tool
def risky_operation() -> str:
"""An operation that might fail"""
# Will automatically retry on failure
passAXM Agent is built on three core principles:
- Simplicity First - Easy things should be easy, complex things should be possible
- Type Safety - Full Pydantic integration for validation
- Composability - Mix and match components to build what you need
Contributions are welcome! Please feel free to submit a Pull Request.
MIT License - see LICENSE file for details
Inspired by the best ideas from LangChain, CrewAI, and AutoGen, but designed for simplicity.
For full documentation, visit our docs
Found a bug? Please open an issue