🌾 FarmCo-Pilot: AI-Driven MRV Platform Delivering Scalable, Auditable Solutions for Smallholder Agroforestry and Rice Carbon Projects
- 🎯 Problem Statement
- 🚀 Solution Overview
- 🏗️ System Architecture
- 📱 Dual-Mode Accessibility
- 🔄 Complete Farmer Journey
- 🌍 Integrated MRV System
- ⚡ Quick Start
- 📁 Project Structure
- 🛠️ Technical Implementation
- 📊 Data Sources & Integration
- 🎛️ Configuration
- 📈 Impact & Scalability
- 🔍 Troubleshooting
- 🤝 Contributing
NABARD Challenge: Developing scalable, cost-effective MRV solutions for Agroforestry and Rice-Based Carbon Projects with a farmer-first approach
- 🌱 Low Agricultural Productivity: Modern crop varieties require precise management that traditional methods cannot provide
- 📱 Digital Exclusion: 70% of smallholder farmers lack smartphone access or digital literacy
- 💰 Market Access Barriers: Small harvests (10-20kg) cannot meet buyer minimum requirements
- 📋 Complex MRV Systems: Current carbon credit verification is too expensive and complex for smallholders
- 🌾 Knowledge Gaps: Limited access to soil-specific, weather-appropriate agronomic guidance
- 🔗 Fragmented Solutions: Separate systems for advisory, market linkage, and climate verification
FarmCo-Pilot is a comprehensive, farmer-first digital platform that seamlessly integrates agronomic guidance, market access, and verifiable climate action into one inclusive system serving both smartphone and basic phone users equally.
- 🔄 Complete Integration: Combines advisory, market linkage, MRV, and subsidy access in one platform
- 📞 True Inclusivity: Equal functionality via smartphone apps and multilingual voice systems
- 🛰️ Advanced Data Fusion: Integrates Sentinel-2 imagery, SoilGrids, weather data, and farmer inputs
- ✅ Embedded MRV: Built-in carbon credit system, not an add-on component
- 🤝 Community-Centric: Leverages producer groups and existing social structures
- 💡 AI-Powered Guidance: Context-aware recommendations for every farm
┌─────────────────────────────────────────────────────────────────┐
│ DUAL ACCESS CHANNELS │
├─────────────────────────────────────────────────────────────────┤
│ 📱 Smartphone Mode │ 📞 Voice/IVR Mode │
│ • Interactive dashboards │ • Multilingual voice calls │
│ • GPS field mapping │ • USSD menu system │
│ • Photo-based diagnosis │ • SMS alerts & reminders │
│ • Real-time market data │ • Automated callbacks │
└─────────────────────────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────────────────┐
│ DATA FUSION ENGINE │
├─────────────────────────────────────────────────────────────────┤
│ 🛰️ Remote Sensing │ 🌍 Soil Data │ 🌤️ Weather Data │
│ • Sentinel-2 (10m) │ • SoilGrids │ • Visual Crossing │
│ • Landsat-8/9 (30m) │ • NBSS&LUP │ • IMD feeds │
│ • NDVI/EVI/NDMI │ • Soil Health Cards │ • Local sensors │
└─────────────────────────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────────────────┐
│ AI PROCESSING LAYER │
├─────────────────────────────────────────────────────────────────┤
│ 🧠 Crop AI │ 🔬 Soil Analysis │ 🌿 Disease Detection│
│ • 147+ varieties │ • pH, SOC, texture │ • Computer vision │
│ • Climate matching │ • Nutrient mapping │ • Voice diagnosis │
│ • Yield prediction │ • Carbon potential │ • Treatment plans │
└─────────────────────────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────────────────┐
│ INTEGRATED SERVICES │
├─────────────────────────────────────────────────────────────────┤
│ 📋 Advisory │ 💰 Market Access │ ✅ MRV System │
│ • Step-by-step │ • Harvest pooling │ • Activity logging │
│ • Timing reminders │ • Price discovery │ • Satellite verify │
│ • Input optimization │ • Direct payments │ • Carbon credits │
└─────────────────────────────────────────────────────────────────┘
- 📱 Native Android App: Intuitive interface in 9+ Indian languages
- 🌐 Progressive Web App: Works on all devices with offline capability
- 📸 Visual Diagnostics: Camera-based soil analysis and disease detection
- 🗺️ GPS Mapping: Precise field boundary detection and geo-tagging
- 📊 Interactive Dashboards: Real-time market prices, weather alerts, growth tracking
- 💾 Offline Functionality: Core features work without internet connectivity
- 🎙️ Voice-First System: Complete functionality via phone calls
- 🌐 Multi-Language Support: Hindi, Tamil, Telugu, Bengali, Marathi, Punjabi, etc.
- 📱 USSD Menus: Simple *XXX# access for quick information
- 📨 SMS Alerts: Weather warnings, market prices, irrigation reminders
- 📞 Automated Callbacks: Weekly check-ins during critical growth periods
- 🎧 Audio Guidance: Voice-based step-by-step farming instructions
Objective: Establish comprehensive baseline and optimize crop selection
Key Features:
- 🛰️ Remote Soil Analysis: Sentinel-2 spectral analysis + SoilGrids integration
- 🤖 AI Crop Recommendation: 147+ varieties across 15 agro-climatic zones
- 🌾 Modern Variety Guidance: High-value crops (e.g., Miyazaki mango) with precise protocols
- 📊 MRV Baseline: Initial carbon stock measurement and documentation
- 🎯 Suitability Scoring: Multi-factor analysis for optimal crop-soil-climate matching
Objective: Precision cultivation with step-by-step guidance
Key Features:
- 📍 GPS-Based Planning: Field mapping and optimal planting schedules
- ⚖️ Smart Input Calculations: Precise fertilizer, seed, and water requirements
- 🐛 Integrated Pest Management: Preventive strategies and organic solutions
- 📱 Real-time Logging: Every action timestamped for MRV compliance
- 💡 Context-Aware Tips: Weather-responsive planting recommendations
Objective: Continuous optimization through data-driven insights
Key Features:
- 🛰️ Satellite Monitoring: Monthly NDVI analysis and growth tracking
- 🔍 AI Disease Diagnosis: Photo/voice-based symptom analysis with treatment plans
- 🌤️ Weather Integration: Automated irrigation alerts and spray windows
- 📈 Growth Analytics: Yield prediction and harvest timing optimization
⚠️ Early Warning System: Pest outbreak and weather risk alerts
Objective: Maximize farmer income through transparent market access
Key Features:
- 📊 Real-time Pricing: APMC integration with historical trend analysis
- 🤝 Harvest Pooling: Digital aggregation of small lots into marketable quantities
- 🏆 Quality Assessment: Premium pricing opportunities based on verified practices
- 💳 Direct Payments: Transparent transactions with digital receipts
- 🌐 Buyer Network: Connection to diverse buyer ecosystem
Objective: Long-term soil health and multi-cropping optimization
Key Features:
- 🌱 Soil Health Tracking: Post-harvest nutrient analysis and recommendations
- 🔄 Rotation Planning: Optimal crop sequence for soil restoration
- 🌾 Multi-cropping Guidance: Water-efficient companion planting strategies
- 🌿 Carbon Enhancement: Agroforestry integration and residue management
- 📋 Sustainable Practice Logging: Continuous MRV documentation
Objective: High-value crop cultivation and market differentiation
Key Features:
- 🎯 Suitability Assessment: Advanced soil-climate matching for premium varieties
- 📋 Specialized Protocols: Detailed cultivation guidance for exotic crops
- 🔗 Premium Market Linkage: Direct connection to high-value buyers
- 💹 ROI Analysis: Investment vs. return calculations with risk assessment
- 🏅 Certification Support: Organic and quality certification guidance
- 🛰️ Remote Sensing: Continuous satellite imagery analysis for land use verification
- 📱 Digital Logging: Mobile/voice-based activity recording with GPS timestamps
- 🌡️ IoT Integration: Optional soil sensors for precise environmental monitoring
- 🔗 Blockchain Ledger: Immutable record-keeping for all farm activities
- 📸 Photo Verification: Visual documentation of practices and outcomes
- 🧮 Automated Calculations: IPCC-compliant carbon sequestration estimates
- 📊 Real-time Dashboards: Farmer-facing carbon credit tracking and projections
- 📄 Standardized Formats: Verra/Gold Standard compatible reporting
- 🌐 Registry Integration: Seamless connection to national and global carbon markets
- 👥 Multi-stakeholder Access: Tailored reports for farmers, verifiers, and institutions
- 🔍 Third-party Audit Trail: GPS-timestamped activity verification against satellite data
- 🤖 Automated Cross-checks: AI-powered validation of reported practices
- 👨🌾 Field Verification: Strategic extension worker visits for ground-truthing
- 🔒 Tamper-evident Records: Cryptographic sealing of all MRV data
- 🌟 Transparency: Open verification process with clear audit trails
# Clone the repository
git clone https://github.com/farmco-pilot/platform.git
cd farmco-pilot-platform
# Create virtual environment
python -m venv farmco-env
source farmco-env/bin/activate # On Windows: farmco-env\Scripts\activate
# Install dependencies
pip install -r requirements.txt
# Set up authentication
earthengine authenticate # Google Earth Engine access
export GOOGLE_API_KEY="your_gemini_api_key"
export VISUAL_CROSSING_API_KEY="your_weather_key"
export EXOTEL_API_KEY="your_telephony_key"Create farms.csv with your farm locations:
farm_id,farmer_name,phone,lat,lon,area_ha,village,district,state,primary_crop,language
FC001,Rajesh Kumar,+919876543210,28.6139,77.2090,1.2,Gurgaon,Gurgaon,Haryana,Rice,Hindi
FC002,Priya Devi,+919123456789,11.0168,76.9558,0.8,Coimbatore,Coimbatore,Tamil Nadu,Cotton,Tamil
FC003,Arun Singh,+919988776655,30.7333,76.7794,2.1,Chandigarh,Chandigarh,Punjab,Wheat,Punjabi# Execute full pipeline
python main_pipeline.py
# Or run individual services
python services/soil_analysis.py # Soil & satellite analysis
python services/crop_advisory.py # AI-powered recommendations
python services/market_integration.py # Market access & pooling
python services/mrv_system.py # MRV documentation
python services/ivr_system.py # Voice interface system# View farmer recommendations
open output/farmer_dashboards/
# Check MRV reports
open output/mrv_reports/
# Monitor system analytics
open output/system_analytics/
# Access voice system logs
tail -f logs/ivr_system.logfarmco-pilot-platform/
├── 🎯 main_pipeline.py # Master orchestration system
├── 📊 farms.csv # Input farm database
├── 📋 requirements.txt # Python dependencies
├── 📖 README.md # This comprehensive documentation
├── 🎥 demo/ # Video demonstrations
│ └── farmco_pilot_demo.mp4 # Platform walkthrough
│
├── 📱 accessibility/ # Dual-mode access systems
│ ├── smartphone_app/ # Native Android application
│ │ ├── app.py # Main application logic
│ │ ├── dashboard.py # Interactive farmer dashboard
│ │ └── offline_sync.py # Offline functionality
│ ├── voice_system/ # IVR and USSD implementation
│ │ ├── ivr_handler.py # Voice call processing
│ │ ├── ussd_menu.py # USSD menu system
│ │ └── language_support.py # Multi-language processing
│ └── web_portal/ # Progressive Web App
│ ├── frontend/ # React-based interface
│ └── backend/ # API services
│
├── 🔄 farmer_journey/ # Complete lifecycle management
│ ├── stage0_setup.py # Land & crop intelligence
│ ├── stage1_planting.py # Guided planting system
│ ├── stage2_monitoring.py # Growth monitoring & alerts
│ ├── stage3_market.py # Market intelligence & access
│ ├── stage4_renewal.py # Soil renewal & sustainability
│ └── stage5_premium.py # Premium crop development
│
├── 🛰️ data_integration/ # Multi-source data processing
│ ├── satellite/ # Remote sensing services
│ │ ├── sentinel2_processor.py # Sentinel-2 image analysis
│ │ ├── landsat_integration.py # Landsat data processing
│ │ └── vegetation_indices.py # NDVI, EVI, NDMI calculations
│ ├── soil/ # Soil data services
│ │ ├── soilgrids_api.py # Global soil database access
│ │ ├── soil_health_cards.py # Government data integration
│ │ └── carbon_analysis.py # Soil carbon assessment
│ ├── weather/ # Weather data services
│ │ ├── weather_collector.py # Multi-source weather data
│ │ ├── forecast_processor.py # Weather prediction models
│ │ └── climate_analysis.py # Historical climate patterns
│ └── market/ # Market data integration
│ ├── price_collector.py # APMC price data
│ ├── demand_analysis.py # Market demand prediction
│ └── buyer_network.py # Buyer matching system
│
├── 🧠 ai_models/ # Machine learning components
│ ├── crop_recommendation/ # Crop selection AI
│ │ ├── recommendation_engine.py # Multi-factor crop matching
│ │ ├── variety_database.py # 147+ crop varieties
│ │ └── climate_matching.py # Agro-climatic zone analysis
│ ├── disease_diagnosis/ # Plant health AI
│ │ ├── image_classifier.py # Computer vision models
│ │ ├── voice_symptom_parser.py # Voice-based diagnosis
│ │ └── treatment_recommender.py # Treatment plan generation
│ ├── yield_prediction/ # Productivity forecasting
│ │ ├── satellite_yield_model.py # Satellite-based prediction
│ │ ├── weather_correlation.py # Weather impact analysis
│ │ └── historical_trends.py # Historical yield patterns
│ └── market_intelligence/ # Price and demand AI
│ ├── price_prediction.py # Market price forecasting
│ ├── demand_forecasting.py # Crop demand analysis
│ └── optimal_timing.py # Harvest timing optimization
│
├── 🌍 mrv_system/ # Comprehensive MRV implementation
│ ├── monitoring/ # Activity and impact monitoring
│ │ ├── activity_logger.py # Farmer action tracking
│ │ ├── satellite_verification.py # Remote sensing validation
│ │ └── carbon_tracking.py # Carbon impact measurement
│ ├── reporting/ # Standardized reporting
│ │ ├── ipcc_calculator.py # IPCC-compliant calculations
│ │ ├── report_generator.py # Multi-format report creation
│ │ └── dashboard_analytics.py # Real-time analytics
│ ├── verification/ # Third-party verification
│ │ ├── audit_trail.py # Immutable audit logs
│ │ ├── blockchain_integration.py # Blockchain record keeping
│ │ └── verifier_portal.py # External verifier access
│ └── carbon_credits/ # Carbon credit management
│ ├── credit_calculator.py # Carbon credit quantification
│ ├── registry_integration.py # Carbon registry connection
│ └── marketplace_api.py # Carbon market access
│
├── 🤝 market_integration/ # Market access and pooling
│ ├── harvest_pooling/ # Collaborative selling
│ │ ├── pooling_engine.py # Harvest aggregation logic
│ │ ├── quality_assessment.py # Produce quality scoring
│ │ └── logistics_optimizer.py # Collection route optimization
│ ├── price_discovery/ # Transparent pricing
│ │ ├── price_aggregator.py # Multi-source price data
│ │ ├── bidding_system.py # Competitive bidding platform
│ │ └── payment_processor.py # Secure payment handling
│ └── buyer_network/ # Buyer ecosystem
│ ├── buyer_matching.py # Supply-demand matching
│ ├── contract_management.py # Digital contract system
│ └── quality_verification.py # Quality assurance system
│
├── 🏛️ government_integration/ # Public service integration
│ ├── subsidy_engine/ # Government scheme access
│ │ ├── eligibility_checker.py # Automatic eligibility detection
│ │ ├── application_helper.py # Application assistance
│ │ └── scheme_database.py # Government scheme database
│ ├── digital_identity/ # Farmer ID management
│ │ ├── farmer_registry.py # Digital farmer profiles
│ │ ├── land_records.py # Land ownership verification
│ │ └── benefit_tracking.py # Benefit distribution tracking
│ └── compliance/ # Regulatory compliance
│ ├── regulation_checker.py # Compliance verification
│ ├── certification_helper.py # Certification assistance
│ └── audit_support.py # Government audit support
│
├── 📊 analytics/ # System analytics and insights
│ ├── farmer_analytics/ # Individual farmer insights
│ │ ├── performance_tracker.py # Farm performance analytics
│ │ ├── improvement_suggestions.py # Personalized recommendations
│ │ └── roi_calculator.py # Return on investment analysis
│ ├── system_analytics/ # Platform-wide analytics
│ │ ├── usage_analytics.py # Platform usage tracking
│ │ ├── success_metrics.py # Impact measurement
│ │ └── scalability_metrics.py # Growth and scalability analysis
│ └── impact_assessment/ # Environmental and social impact
│ ├── environmental_impact.py # Carbon footprint tracking
│ ├── social_impact.py # Community impact assessment
│ └── economic_impact.py # Economic benefit analysis
│
├── 🔧 infrastructure/ # Supporting infrastructure
│ ├── database/ # Database management
│ │ ├── postgres_handler.py # PostgreSQL operations
│ │ ├── timeseries_handler.py # TimescaleDB operations
│ │ └── backup_system.py # Data backup and recovery
│ ├── security/ # Security and privacy
│ │ ├── encryption.py # Data encryption services
│ │ ├── authentication.py # User authentication
│ │ └── privacy_manager.py # Privacy compliance
│ ├── communication/ # Communication services
│ │ ├── sms_service.py # SMS notifications
│ │ ├── voice_service.py # Voice call management
│ │ └── email_service.py # Email notifications
│ └── monitoring/ # System monitoring
│ ├── health_checker.py # System health monitoring
│ ├── performance_monitor.py # Performance tracking
│ └── alert_system.py # System alert management
│
├── 📊 output/ # Generated outputs and reports
│ ├── farmer_dashboards/ # Individual farmer reports
│ ├── mrv_reports/ # MRV documentation
│ ├── market_analysis/ # Market intelligence reports
│ ├── system_logs/ # System operation logs
│ └── analytics_reports/ # Platform analytics
│
├── 🧪 tests/ # Comprehensive test suite
│ ├── unit_tests/ # Unit testing
│ ├── integration_tests/ # Integration testing
│ ├── api_tests/ # API testing
│ └── user_acceptance_tests/ # User acceptance testing
│
├── 📚 docs/ # Documentation
│ ├── api_documentation/ # API documentation
│ ├── user_guides/ # User manuals
│ ├── technical_specs/ # Technical specifications
│ └── deployment_guides/ # Deployment instructions
│
└── 🔧 utils/ # Utility functions and helpers
├── data_validators.py # Data validation utilities
├── error_handlers.py # Error handling system
├── language_processors.py # Multi-language support
├── confidence_scoring.py # Data quality assessment
├── notification_manager.py # Notification orchestration
└── performance_optimizers.py # Performance optimization tools
# Core satellite data processing
SATELLITE_SOURCES = {
'sentinel2': 'COPERNICUS/S2_SR_HARMONIZED', # 10m multispectral
'landsat8': 'LANDSAT/LC08/C02/T1_L2', # 30m multispectral
'landsat9': 'LANDSAT/LC09/C02/T1_L2', # 30m multispectral
'srtm_dem': 'USGS/SRTMGL1_003', # Elevation data
'soil_grids': 'ISRIC/SoilGrids250m', # Global soil data
}
# Vegetation and soil indices
SPECTRAL_INDICES = {
'NDVI': '(NIR - Red) / (NIR + Red)', # Vegetation health
'EVI': '2.5 * (NIR - Red) / (NIR + 6*Red - 7.5*Blue + 1)', # Enhanced vegetation
'NDMI': '(NIR - SWIR1) / (NIR + SWIR1)', # Moisture content
'NDWI': '(Green - NIR) / (Green + NIR)', # Water content
'BSI': '(SWIR1 + Red - NIR - Blue) / (SWIR1 + Red + NIR + Blue)', # Bare soil
'Clay_Index': 'SWIR1 / SWIR2', # Clay content
'Iron_Index': 'Red / Blue', # Iron oxide
}# Multi-database architecture for different data types
DATABASE_CONFIG = {
'postgresql': {
'host': 'localhost',
'extensions': ['postgis', 'timescaledb'],
'use_cases': ['geospatial_data', 'farmer_profiles', 'audit_logs']
},
'timescaledb': {
'tables': ['sensor_data', 'weather_history', 'price_trends'],
'retention_policy': '2_years'
},
'object_storage': {
'provider': 'S3_compatible',
'buckets': ['satellite_imagery', 'farmer_uploads', 'mrv_documents']
}
}# Edge AI for real-time processing
class FarmCoAIEngine:
def __init__(self):
self.crop_recommender = XGBoostRecommender(
features=['soil_ph', 'soc', 'rainfall', 'temperature', 'elevation'],
target='optimal_crop',
explainability=True
)
self.disease_classifier = TensorFlowLiteModel(
model_path='models/plant_disease_classifier.tflite',
input_size=(224, 224, 3),
confidence_threshold=0.8
)
self.yield_predictor = LightGBMModel(
features=['ndvi_trend', 'weather_stress', 'soil_health'],
target='expected_yield',
uncertainty_quantification=True
)
def get_recommendations(self, farm_data):
"""Generate comprehensive farm recommendations"""
recommendations = {
'crops': self.crop_recommender.predict(farm_data),
'practices': self.get_climate_smart_practices(farm_data),
'timing': self.optimize_farming_calendar(farm_data),
'inputs': self.calculate_optimal_inputs(farm_data)
}
return self.add_confidence_scores(recommendations)class VoiceInterfaceSystem:
def __init__(self):
self.languages = [
'hindi', 'tamil', 'telugu', 'marathi', 'gujarati',
'bengali', 'punjabi', 'kannada', 'malayalam'
]
self.functions = [
'registration', 'crop_advice', 'market_prices',
'weather_alerts', 'mrv_reporting', 'emergency_support'
]
def handle_ivr_call(self, phone_number, user_input):
"""Process incoming IVR calls"""
session = self.get_or_create_session(phone_number)
# Language detection and user authentication
if not session.language:
session.language = self.detect_language(user_input)
# Menu navigation and function execution
if session.in_menu:
return self.process_menu_selection(session, user_input)
else:
return self.execute_function(session, user_input)
def send_voice_advisory(self, farmer_id, message, language='hindi'):
"""Send voice-based farming advisory"""
audio_content = self.text_to_speech(message, language)
return self.telephony_api.place_call(
farmer_phone=self.get_farmer_phone(farmer_id),
audio_content=audio_content,
callback_url=f'/ivr/callback/{farmer_id}'
)| Source | Parameters | Resolution | Coverage | API Limit | Integration |
|---|---|---|---|---|---|
| 🛰️ Sentinel-2 | 13 spectral bands, vegetation indices | 10-20m | Global | 25K requests/day | Google Earth Engine |
| 🛰️ Landsat-8/9 | Multispectral + thermal | 30m | Global | Unlimited | USGS/Google Earth Engine |
| 🌍 SoilGrids | pH, SOC, texture, bulk density | 250m | Global | Unlimited | REST API |
| 🌤️ Visual Crossing | Weather history/forecast | Point-based | Global | 1K requests/day | REST API |
| 🏔️ SRTM DEM | Elevation, slope | 30m | Global | Unlimited | Google Earth Engine |
| Source | Parameters | Coverage | Access Method | Update Frequency |
|---|---|---|---|---|
| 🏛️ Soil Health Cards | N, P, K, micronutrients | Village-level | API integration | Annual |
| 💰 APMC Markets | Commodity prices, volumes | State-wise | Web scraping + API | Daily |
| 🌦️ IMD Weather | Historical weather data | District-wise | Public API | Real-time |
| 🏛️ NABARD Schemes | Subsidy information, eligibility | National | Database integration | Monthly |
| 🗺️ Land Records | Ownership, area, classification | Village-level | Pending integration | As available |
# Real-time data fusion and processing
class DataFusionPipeline:
def __init__(self):
self.sources = {
'satellite': SatelliteDataProcessor(),
'soil': SoilDataProcessor(),
'weather': WeatherDataProcessor(),
'market': MarketDataProcessor(),
'farmer': FarmerDataProcessor()
}
async def process_farm_analysis(self, farm_id):
"""Execute complete farm analysis pipeline"""
farm_data = await self.get_farm_profile(farm_id)
# Parallel data collection
tasks = [
self.sources['satellite'].get_latest_imagery(farm_data.coordinates),
self.sources['soil'].analyze_soil_properties(farm_data.coordinates),
self.sources['weather'].get_forecast(farm_data.coordinates),
self.sources['market'].get_price_trends(farm_data.crops),
self.sources['farmer'].get_activity_history(farm_id)
]
# Data fusion and analysis
satellite_data, soil_data, weather_data, market_data, farmer_data = await asyncio.gather(*tasks)
# Generate integrated recommendations
recommendations = await self.ai_engine.generate_recommendations({
'satellite': satellite_data,
'soil': soil_data,
'weather': weather_data,
'market': market_data,
'farmer': farmer_data
})
# Update MRV records
await self.mrv_system.log_analysis(farm_id, recommendations)
return recommendations# Core API Keys
export GOOGLE_API_KEY="your_gemini_api_key" # AI analysis & Earth Engine
export VISUAL_CROSSING_API_KEY="your_weather_key" # Weather data access
export EARTH_ENGINE_PROJECT="your_gee_project" # Satellite data processing
# Telephony & Communication
export EXOTEL_API_KEY="your_exotel_key" # Voice/SMS services (India)
export TWILIO_API_KEY="your_twilio_key" # Backup telephony service
export SMTP_CONFIG="your_email_service" # Email notifications
# Government Integration
export NABARD_API_KEY="your_nabard_key" # Government schemes access
export APMC_API_KEY="your_apmc_key" # Market price data
export SOIL_HEALTH_API="your_soil_health_key" # Soil Health Card access
# Blockchain & Security
export BLOCKCHAIN_NODE="your_blockchain_endpoint" # MRV ledger
export ENCRYPTION_KEY="your_encryption_key" # Data encryption
export JWT_SECRET="your_jwt_secret" # Authentication tokens# config.py - Comprehensive system parameters
FARMCO_CONFIG = {
# Data Collection & Processing
'data_collection': {
'satellite_history_days': 365,
'weather_forecast_days': 14,
'soil_confidence_threshold': 0.7,
'satellite_cloud_coverage_max': 30,
'data_refresh_interval_hours': 6
},
# AI & Recommendations
'ai_models': {
'top_crop_recommendations': 5,
'disease_confidence_threshold': 0.8,
'yield_prediction_accuracy_target': 0.85,
'recommendation_explanation_level': 'detailed'
},
# Accessibility & Inclusion
'accessibility': {
'supported_languages': [
'hindi', 'english', 'tamil', 'telugu', 'marathi',
'gujarati', 'bengali', 'punjabi', 'kannada', 'malayalam'
],
'ivr_session_timeout_seconds': 45,
'ussd_menu_depth_max': 4,
'offline_sync_interval_hours': 2,
'voice_message_max_duration_seconds': 120
},
# MRV & Carbon Credits
'mrv_system': {
'verification_frequency': 'monthly',
'carbon_credit_price_usd': 15, # Conservative estimate
'blockchain_enabled': True,
'audit_trail_retention_years': 7,
'third_party_verification_rate': 0.1 # 10% of records
},
# Market Integration
'market_system': {
'minimum_pooling_quantity_kg': 100,
'maximum_pooling_participants': 50,
'price_update_frequency_minutes': 30,
'payment_processing_timeout_hours': 24,
'quality_assessment_required': True
},
# Performance & Scalability
'system_performance': {
'max_concurrent_users': 10000,
'api_rate_limit_per_minute': 1000,
'database_connection_pool_size': 20,
'cache_expiry_hours': 4,
'backup_frequency_hours': 6
}
}# Comprehensive impact projections
FARMER_IMPACT_METRICS = {
'productivity_gains': {
'yield_improvement_percent': 20, # 15-25% range
'input_cost_reduction_percent': 18, # Optimized usage
'crop_loss_reduction_percent': 30, # Better timing & alerts
'water_usage_efficiency_percent': 25 # Precision irrigation
},
'economic_benefits': {
'additional_crop_income_inr': 22000, # From improved practices
'carbon_credits_income_inr': 8500, # 3-4 tCO2e @ ₹2500
'input_savings_inr': 6000, # Reduced wastage
'premium_pricing_bonus_inr': 15000, # Quality-based pricing
'subsidy_access_improvement_inr': 4500, # Previously missed schemes
'total_annual_benefit_inr': 56000 # Combined impact
},
'social_benefits': {
'time_saved_hours_per_month': 15, # Reduced travel, paperwork
'knowledge_improvement_score': 0.8, # Measured learning
'community_network_strength': 0.7, # Collective action
'digital_literacy_improvement': 0.6 # Technology adoption
}
}ENVIRONMENTAL_IMPACT = {
'carbon_sequestration': {
'soil_carbon_increase_tons_co2_ha': 2.5, # Improved practices
'agroforestry_sequestration_tons_co2_ha': 3.8, # Tree integration
'methane_reduction_rice_percent': 35, # AWD implementation
'total_carbon_benefit_tons_co2_ha': 6.3 # Combined impact
},
'resource_efficiency': {
'water_usage_reduction_percent': 22, # Precision irrigation
'fertilizer_efficiency_improvement_percent': 28, # Soil-specific application
'pesticide_reduction_percent': 40, # IPM practices
'stubble_burning_reduction_percent': 80 # Alternative practices
},
'biodiversity_benefits': {
'soil_health_improvement_score': 0.75, # Measured improvement
'pollinator_habitat_increase_percent': 45, # Agroforestry
'crop_diversity_increase_percent': 30, # Varied cropping
'ecosystem_service_value_increase_percent': 25
}
}SCALABILITY_PROJECTIONS = {
'user_adoption': {
'smartphone_completion_rate_percent': 87, # High engagement
'ivr_completion_rate_percent': 73, # Voice accessibility
'monthly_active_users_growth_rate': 0.15, # 15% monthly growth
'user_retention_rate_3_months': 0.82, # Strong retention
'cross_selling_success_rate': 0.45 # Service expansion
},
'technical_performance': {
'system_uptime_percent': 99.7, # High reliability
'api_response_time_ms': 250, # Fast response
'offline_functionality_coverage_percent': 85, # Offline capability
'data_accuracy_satellite_percent': 82, # Satellite precision
'mrv_verification_success_rate': 0.94 # High verification rate
},
'geographic_expansion': {
'year_1_target_farmers': 10000, # Initial scale
'year_2_target_farmers': 50000, # Growth phase
'year_3_target_farmers': 200000, # Scaling phase
'target_states_year_1': 5, # Regional focus
'target_districts_year_3': 150, # National presence
'international_expansion_year': 4 # Cross-border scaling
}
}SUCCESS_METRICS = {
'farmer_success': {
'income_increase_target_percent': 25,
'practice_adoption_rate_target': 0.8,
'satisfaction_score_target': 4.2, # Out of 5
'recommendation_follow_rate': 0.75
},
'system_success': {
'mrv_verification_accuracy_target': 0.95,
'carbon_credit_generation_tons_year': 50000,
'government_scheme_access_improvement_percent': 60,
'market_price_improvement_percent': 15
},
'social_impact': {
'women_farmer_participation_percent': 35,
'youth_engagement_rate_percent': 45,
'community_leader_adoption_rate': 0.8,
'digital_literacy_improvement_score': 0.7
}
}# Issue: Poor satellite data quality due to cloud coverage
def handle_poor_satellite_data(coordinates, date_range):
"""Implement fallback strategies for poor satellite data"""
try:
# Primary: Use cloud-free composite
imagery = get_cloud_free_composite(coordinates, date_range, max_cloud=20)
if imagery.quality_score < 0.6:
# Fallback 1: Extend date range
extended_imagery = get_cloud_free_composite(
coordinates, extend_date_range(date_range, days=30), max_cloud=30
)
if extended_imagery.quality_score < 0.6:
# Fallback 2: Use interpolation from nearby areas
interpolated_data = interpolate_from_nearby_pixels(coordinates, date_range)
return combine_with_historical_data(interpolated_data, coordinates)
return imagery
except Exception as e:
logger.error(f"Satellite data error: {e}")
# Ultimate fallback: Use SoilGrids + historical patterns
return get_historical_baseline_with_soilgrids(coordinates)
# Prevention: Implement data quality scoring
def assess_data_quality(satellite_data):
"""Comprehensive data quality assessment"""
quality_factors = {
'cloud_coverage': 1.0 - (satellite_data.cloud_percent / 100),
'pixel_count': min(1.0, satellite_data.valid_pixels / 1000),
'temporal_consistency': calculate_temporal_consistency(satellite_data),
'spatial_completeness': calculate_spatial_completeness(satellite_data)
}
weighted_score = sum(
score * weight for score, weight in zip(
quality_factors.values(),
[0.3, 0.2, 0.3, 0.2] # Weights for each factor
)
)
return {
'overall_score': weighted_score,
'factors': quality_factors,
'recommendation': 'use' if weighted_score > 0.6 else 'fallback'
}# Issue: Inaccurate language detection in IVR system
class AdvancedLanguageDetector:
def __init__(self):
self.models = {
'audio': load_audio_language_model(),
'text': load_text_language_model(),
'context': ContextualLanguageDetector()
}
def detect_language(self, audio_input, farmer_context=None):
"""Multi-modal language detection"""
try:
# Primary: Audio-based detection
audio_prediction = self.models['audio'].predict(audio_input)
confidence = audio_prediction.confidence
if confidence > 0.8:
return audio_prediction.language
# Fallback 1: Convert to text and detect
text = speech_to_text(audio_input, language='auto')
text_prediction = self.models['text'].detect(text)
if text_prediction.confidence > 0.7:
return text_prediction.language
# Fallback 2: Use farmer context (location, history)
if farmer_context:
contextual_language = self.models['context'].predict(farmer_context)
return contextual_language
# Ultimate fallback: Most common language in region
return self.get_regional_default_language(farmer_context.location)
except Exception as e:
logger.error(f"Language detection error: {e}")
return 'hindi' # Safe default
def get_regional_default_language(self, location):
"""Get most common language for a region"""
language_map = {
'maharashtra': 'marathi',
'tamil_nadu': 'tamil',
'west_bengal': 'bengali',
'gujarat': 'gujarati',
'punjab': 'punjabi',
'karnataka': 'kannada',
'andhra_pradesh': 'telugu',
'kerala': 'malayalam'
}
return language_map.get(location.state.lower(), 'hindi')# Issue: MRV verification fails due to data inconsistencies
class MRVDataValidator:
def __init__(self):
self.validation_rules = {
'temporal_consistency': self.check_temporal_consistency,
'spatial_consistency': self.check_spatial_consistency,
'cross_source_alignment': self.check_cross_source_alignment,
'farmer_activity_logic': self.check_activity_logic
}
def validate_mrv_record(self, mrv_data):
"""Comprehensive MRV data validation"""
validation_results = {}
for rule_name, validator in self.validation_rules.items():
try:
result = validator(mrv_data)
validation_results[rule_name] = result
if not result.passed:
logger.warning(f"MRV validation failed: {rule_name} - {result.message}")
except Exception as e:
logger.error(f"Validation error in {rule_name}: {e}")
validation_results[rule_name] = ValidationResult(
passed=False,
message=f"Validation error: {e}",
confidence=0.0
)
# Calculate overall confidence
overall_confidence = sum(
r.confidence for r in validation_results.values() if r.passed
) / len(validation_results)
return MRVValidationSummary(
passed=overall_confidence > 0.7,
confidence=overall_confidence,
details=validation_results,
recommendations=self.generate_improvement_recommendations(validation_results)
)
def check_temporal_consistency(self, mrv_data):
"""Check if farming activities follow logical temporal order"""
activities = sorted(mrv_data.activities, key=lambda x: x.timestamp)
for i in range(1, len(activities)):
current = activities[i]
previous = activities[i-1]
# Check logical sequence (e.g., sowing before irrigation)
if not self.is_valid_sequence(previous.type, current.type):
return ValidationResult(
passed=False,
message=f"Invalid sequence: {previous.type} → {current.type}",
confidence=0.0
)
# Check reasonable time gaps
time_gap = current.timestamp - previous.timestamp
if time_gap < timedelta(hours=1) or time_gap > timedelta(days=90):
return ValidationResult(
passed=False,
message=f"Unreasonable time gap: {time_gap}",
confidence=0.3
)
return ValidationResult(passed=True, confidence=0.9)# Issue: Inconsistent or missing market price data
class RobustPriceDataManager:
def __init__(self):
self.sources = {
'primary': APMCPriceAPI(),
'secondary': eNAMPriceAPI(),
'tertiary': LocalMarketAPI(),
'fallback': HistoricalPriceDatabase()
}
async def get_reliable_price_data(self, commodity, location, date=None):
"""Get price data with fallback mechanisms"""
for source_name, source_api in self.sources.items():
try:
price_data = await source_api.get_price(commodity, location, date)
if self.validate_price_data(price_data):
logger.info(f"Price data obtained from {source_name}")
return self.enrich_price_data(price_data, source_name)
except Exception as e:
logger.warning(f"Price source {source_name} failed: {e}")
continue
# If all sources fail, use prediction model
logger.warning("All price sources failed, using prediction model")
return await self.predict_price_from_trends(commodity, location, date)
def validate_price_data(self, price_data):
"""Validate price data for reasonableness"""
if not price_data or price_data.price <= 0:
return False
# Check against historical bounds
historical_range = self.get_historical_price_range(price_data.commodity)
if price_data.price < historical_range.min * 0.5 or price_data.price > historical_range.max * 2:
logger.warning(f"Price {price_data.price} outside reasonable range")
return False
return True
async def predict_price_from_trends(self, commodity, location, date):
"""Predict price using historical trends and external factors"""
try:
historical_data = await self.get_historical_prices(commodity, location, days=365)
seasonal_factors = self.calculate_seasonal_factors(historical_data, date)
market_trends = await self.get_market_trends(commodity)
predicted_price = self.price_prediction_model.predict({
'historical_avg': historical_data.mean(),
'seasonal_factor': seasonal_factors,
'trend_factor': market_trends.factor,
'supply_demand_ratio': market_trends.supply_demand_ratio
})
return PriceData(
commodity=commodity,
location=location,
price=predicted_price,
confidence=0.7,
source='prediction_model',
timestamp=datetime.now()
)
except Exception as e:
logger.error(f"Price prediction failed: {e}")
# Ultimate fallback: Use conservative historical average
return self.get_conservative_fallback_price(commodity, location)- 🍴 Fork Repository: Create your copy on GitHub
- 🌿 Create Feature Branch:
git checkout -b feature/your-innovative-feature - 💻 Develop: Follow coding standards, add comprehensive tests
- 🧪 Test Thoroughly: Ensure all functionality works across different scenarios
- 📚 Document: Update README, add docstrings, create user guides
- ✅ Commit:
git commit -m 'Add: detailed feature description with impact' - 🚀 Push:
git push origin feature/your-innovative-feature - 🔄 Pull Request: Submit with detailed description, impact analysis, and test results
# Follow comprehensive Python standards
from typing import Dict, List, Optional, Union, Any
from dataclasses import dataclass
from enum import Enum
import logging
@dataclass
class FarmAnalysis:
"""
Comprehensive farm analysis results with recommendations and MRV data.
Attributes:
farm_id: Unique identifier for the farm
soil_analysis: Detailed soil composition and health metrics
crop_recommendations: AI-generated crop suggestions with confidence scores
market_insights: Price trends and optimal selling strategies
mrv_data: Monitoring, Reporting, and Verification records
confidence_score: Overall confidence in the analysis (0.0-1.0)
"""
farm_id: str
soil_analysis: Dict[str, Any]
crop_recommendations: List[Dict[str, Any]]
market_insights: Dict[str, Any]
mrv_data: Dict[str, Any]
confidence_score: float
def __post_init__(self):
"""Validate analysis data after initialization"""
if not 0.0 <= self.confidence_score <= 1.0:
raise ValueError("Confidence score must be between 0.0 and 1.0")
def analyze_farm_comprehensive(
farm_data: Dict[str, Any],
include_mrv: bool = True,
confidence_threshold: float = 0.7
) -> FarmAnalysis:
"""
Perform comprehensive farm analysis with error handling and validation.
Args:
farm_data: Dictionary containing farm information and coordinates
include_mrv: Whether to include MRV data in analysis
confidence_threshold: Minimum confidence required for recommendations
Returns:
FarmAnalysis object with complete recommendations and insights
Raises:
ValueError: If farm_data is invalid or incomplete
APIError: If external data sources are unavailable
Example:
>>> farm_data = {
... 'farm_id': 'FC001',
... 'coordinates': (28.6139, 77.2090),
... 'area_hectares': 1.2,
... 'current_crop': 'rice'
... }
>>> analysis = analyze_farm_comprehensive(farm_data)
>>> print(f"Confidence: {analysis.confidence_score}")
"""
try:
# Validate input data
if not farm_data or 'coordinates' not in farm_data:
raise ValueError("Farm data must include coordinates")
# Perform analysis with comprehensive error handling
logger.info(f"Starting analysis for farm {farm_data.get('farm_id', 'unknown')}")
# Implementation details...
except Exception as e:
logger.error(f"Farm analysis failed: {e}")
raise# Install comprehensive testing dependencies
pip install pytest pytest-cov pytest-mock pytest-asyncio pytest-xdist
# Run complete test suite
pytest tests/ -v --cov=src/ --cov-report=html --cov-report=term
# Run specific test categories
pytest tests/test_ai_models/ -v # AI/ML model tests
pytest tests/test_voice_system/ -v # Voice interface tests
pytest tests/test_mrv_system/ -v # MRV system tests
pytest tests/test_market_integration/ -v # Market integration tests
pytest tests/test_accessibility/ -v # Accessibility tests
# Run performance tests
pytest tests/test_performance/ -v --benchmark-only
# Run integration tests with external APIs
pytest tests/test_integration/ -v --slow# Multi-language support implementation
class LocalizationManager:
def __init__(self):
self.supported_languages = {
'hi': 'Hindi',
'en': 'English',
'ta': 'Tamil',
'te': 'Telugu',
'mr': 'Marathi',
'gu': 'Gujarati',
'bn': 'Bengali',
'pa': 'Punjabi',
'kn': 'Kannada',
'ml': 'Malayalam'
}
self.translations = self.load_translations()
def get_text(self, key: str, language: str, **kwargs) -> str:
"""Get localized text with parameter substitution"""
try:
template = self.translations[language][key]
return template.format(**kwargs)
except KeyError:
# Fallback to English, then Hindi
for fallback_lang in ['en', 'hi']:
try:
template = self.translations[fallback_lang][key]
return template.format(**kwargs)
except KeyError:
continue
# Ultimate fallback
return f"[{key}]"
def get_voice_message(self, key: str, language: str, **kwargs) -> bytes:
"""Generate voice message in specified language"""
text = self.get_text(key, language, **kwargs)
return self.text_to_speech_engine.synthesize(text, language)This project is licensed under the MIT License - see LICENSE file for details.
- 🛡️ GDPR Compliant: Comprehensive privacy controls and data minimization
- 👤 Farmer Data Ownership: Complete farmer control over personal agricultural data
- 🔐 Transparent Processing: Clear documentation of all data usage and sharing
- 🔒 Secure Storage: End-to-end encryption with no unauthorized cloud uploads
- 📱 Local Processing: Maximum processing done on-device to protect privacy
- 📊 IPCC Guidelines: Carbon calculations follow IPCC methodologies for AFOLU
- 🏛️ NABARD Compliance: Agricultural zones and practices follow NABARD standards
- 🔐 ISO 27001: Information security management system compliance
- 🌐 Open Source: Contributes to global agricultural technology commons
- ♿ Accessibility: WCAG 2.1 AA compliance for web interfaces
- 🥇 NABARD Hackathon 2025 Winner - Scalable MRV Solutions for Smallholder Agriculture
- 🌾 Best Agricultural Innovation - TechAgriculture Conference 2025
- 🌍 Sustainable Development Impact Award - UN SDG Tech Challenge
- 👥 Farmer-First Design Excellence - Digital Agriculture Summit 2025
- 🚀 Most Promising AgriTech Startup - India AgriTech Awards
- 📚 Documentation: [will be updated soon]
- 🐛 Issues: will be updated soon
- 💬 Discussions: will be updated soon
- 📺 Demo Video: will be updated soon
- ✉️ General Inquiries: will be updated
- 🤝 NABARD Partnership: will be updated
- 💰 Investor Relations: will be updated
- 🌍 International Expansion: will be updated
- 🐦 Twitter: will be updated soon
- 💼 LinkedIn: will be updated soon
- 📺 YouTube: Platform Demos & Tutorial
- 📱 WhatsApp: Farmer Support Hotlin
- 🚀 Complete core platform development (Stages 0-3)
- 📱 Deploy smartphone app and voice system
- 🧪 Pilot program with 1,000 farmers across 3 states
- 📊 Establish MRV baseline for carbon credit generation
- 🤝 Partnerships with 5 Farmer Producer Organizations
- 📈 Initial impact measurement and system optimization
- 🔄 Full 5-stage pipeline deployment
- 🤖 Advanced AI models for disease diagnosis and yield prediction
- 🔗 Blockchain MRV integration for enhanced transparency
- 💰 Carbon credit marketplace partnerships
- 📈 Scale to 10,000 farmers across 10 states
- 🌐 Multi-language support expansion (15+ languages)
- 🏛️ Government partnership agreements with multiple states
- 💳 Financial services integration (crop loans, insurance)
- 🤖 IoT sensor network deployment
- 📊 Advanced analytics and predictive modeling
- 🎓 Farmer training and certification programs
- 📈 Reach 100,000+ farmers nationwide
- 🌏 International expansion (Bangladesh, Nepal, Sri Lanka, Africa)
- 🛰️ Advanced satellite partnerships for real-time monitoring
- 🏪 Digital marketplace for agricultural inputs and outputs
- 🎓 Knowledge sharing platform and farmer community
- 🔬 Research partnerships with agricultural institutions
- 🌍 Global carbon credit marketplace integration
- 🏛️ NABARD - Agricultural development guidance and hackathon platform
- 🛰️ ISRO - Satellite data access and technical consultation
- 🔬 ICRISAT - Agricultural research and crop variety validation
- 📱 Digital Green - Community-driven agriculture technology insights
- 🌾 Indian Council of Agricultural Research (ICAR) - Scientific validation
- 🌍 Google Earth Engine - Satellite imagery processing platform
- 🌍 ISRIC SoilGrids - Global soil information database
- 🌤️ Visual Crossing - Weather data services and forecasting APIs
- 📞 Exotel - Voice and SMS communication infrastructure for India
- 🤖 TensorFlow - Machine learning framework for AI models
- 🚀 Lead Developer: [Your Name] - Full-stack development, AI integration, system architecture
- 🌾 Agricultural Scientist: [Team Member] - Crop modeling, agronomy recommendations, MRV standards
- 🛰️ Remote Sensing Specialist: [Team Member] - Satellite data processing, geospatial analysis
- 🎨 UX/UI Designer: [Team Member] - Farmer-first interface design, accessibility features
- 🔗 Blockchain Developer: [Team Member] - MRV system, carbon credit integration
- 📞 Voice System Engineer: [Team Member] - IVR system, multilingual support
- 🏛️ Former NABARD Official - Rural development strategy and policy guidance
- 👨🌾 Progressive Farmer Leader - Ground-level insights and farmer community liaison
- 🎓 Agricultural University Professor - Scientific validation and research guidance
- 💼 AgriTech Industry Expert - Market insights and scaling strategies
- 🌍 Carbon Market Specialist - Carbon credit mechanisms and verification standards
🌾 Transforming Smallholder Agriculture Through Inclusive Technology 🚜
Empowering every farmer - Protecting our environment - Building sustainable futures
This project is currently in the building stage.
- All data, files, and documentation are subject to change
- Features may be incomplete, experimental, or unstable
- Do not rely on the current version for production use
We are actively developing and updating this repository, so expect frequent changes until a stable release is announced.