Skip to content

Augustab/microsoft_fabric_mcp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

19 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Microsoft Fabric MCP

PyPI version

A Model Context Protocol server that provides read-only access to Microsoft Fabric resources. Query workspaces, examine table schemas, monitor jobs, and analyze dependencies using natural language.

Features

  • 25 tools covering workspaces, lakehouses, tables, jobs, and dependencies
  • Read-only operations - uses only GET requests, no risk of data modification
  • Smart caching for fast responses
  • Works with Cursor, Claude, and other MCP-compatible AI tools

Available MCP Tools

Parameter Note: workspace parameters accept either workspace names (e.g., "DWH-PROD") or workspace IDs. Names are recommended for ease of use.

🏒 Core Fabric Management

Tool Description Inputs
list_workspaces List all accessible Fabric workspaces None
get_workspace Get detailed workspace info including workspace identity status workspace (name/ID)
list_items List all items in workspace with optional type filtering workspace (name/ID), item_type (optional)
get_item Get detailed properties and metadata for specific item workspace (name/ID), item_name (name/ID)
list_connections List all connections user has access to across entire tenant None
list_lakehouses List all lakehouses in specified workspace workspace (name/ID)
list_capacities List all Fabric capacities user has access to None
get_workspace_identity Get workspace identity details for a specific workspace workspace (name/ID)
list_workspaces_with_identity List workspaces that have workspace identities configured None

πŸ“Š Data & Schema Management

Tool Description Inputs
get_all_schemas Get schemas for all Delta tables in lakehouse workspace (name/ID), lakehouse (name/ID)
get_table_schema Get detailed schema for specific table workspace (name/ID), lakehouse (name/ID), table_name
list_tables List all tables in lakehouse with format/type info workspace (name/ID), lakehouse (name/ID)
list_shortcuts List OneLake shortcuts for specific item workspace (name/ID), item_name (name/ID), parent_path (optional)
get_shortcut Get detailed shortcut configuration and target workspace (name/ID), item_name (name/ID), shortcut_name, parent_path (optional)
list_workspace_shortcuts Aggregate all shortcuts across workspace items workspace (name/ID)

⚑ Job Monitoring & Scheduling

Tool Description Inputs
list_job_instances List job instances with status/item filtering for monitoring workspace (name/ID), item_name (optional), status (optional)
get_job_instance Get detailed job info including errors and timing workspace (name/ID), item_name (name/ID), job_instance_id
list_item_schedules List all schedules for specific item workspace (name/ID), item_name (name/ID)
list_workspace_schedules Aggregate all schedules across workspace - complete scheduling overview workspace (name/ID)

🎯 Operational Intelligence

Tool Description Inputs
list_compute_usage Monitor active jobs and estimate resource consumption workspace (optional), time_range_hours (default: 24)
get_item_lineage Analyze data flow dependencies upstream/downstream workspace (name/ID), item_name (name/ID)
list_item_dependencies Map all item dependencies in workspace workspace (name/ID), item_type (optional)
get_data_source_usage Analyze connection usage patterns across items workspace (optional), connection_name (optional)
list_environments List Fabric environments for compute/library management workspace (optional)
get_environment_details Get detailed environment config including Spark settings and libraries workspace (name/ID), environment_name (name/ID)

Caching

The server caches responses for performance. Use clear_fabric_data_cache to refresh resource lists or clear_name_resolution_cache after renaming workspaces/lakehouses.

Getting Started

  1. Install UV and Azure CLI (see sections below)
  2. Set up Azure CLI authentication: az login
  3. Configure MCP in Cursor (see "Setting up MCP" section below)

Installation

UV

# macOS/Linux
curl -LsSf https://astral.sh/uv/install.sh | sh

# Windows
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"

Azure CLI Authentication

This toolkit requires Azure CLI to be installed and properly configured for authentication with Microsoft Fabric services.

Azure CLI Setup

  1. Install Azure CLI (if not already installed):
# For macOS
brew install azure-cli

# For Windows
# Last ned installasjonen fra: https://aka.ms/installazurecliwindows
# Eller bruk winget:
winget install -e --id Microsoft.AzureCLI

# For other platforms, see the official Azure CLI documentation
  1. Log in to Azure with CLI:
az login
  1. Verify the login works:
az account show
  1. If you have multiple subscriptions, select the one you want to use:
az account set --subscription "Name-or-ID-of-subscription"

When this is done, the DefaultAzureCredential in our code will automatically find and use your Azure CLI authentication.

Setting up MCP

To use the MCP (Module Context Protocol) with this toolkit, follow these steps:

  1. Make sure you have completed the Azure CLI authentication steps above.

  2. Choose your installation method:

Option A: UVX Installation (Recommended)

Add to Cursor MCP settings:

"mcp_fabric": {
  "command": "uvx",
  "args": ["microsoft-fabric-mcp"]
}

Option B: Local Development

Clone and install:

git clone https://github.com/Augustab/microsoft_fabric_mcp
cd microsoft_fabric_mcp
uv pip install -e .

Add to Cursor MCP settings:

"mcp_fabric": {
  "command": "uv",
  "args": [
    "--directory",
    "/Users/username/Documents/microsoft_fabric_mcp",
    "run",
    "fabric_mcp.py"
  ]
}

Replace /Users/username/Documents/microsoft_fabric_mcp with your actual path.

πŸ’‘ Note: Both methods run the MCP server locally on your machine. The UVX method just makes installation much easier!

  1. Once the MCP is configured, you can interact with Microsoft Fabric resources directly from your tools and applications.

  2. You can use the provided MCP tools to list workspaces, lakehouses, and tables, as well as extract schema information as documented in the tools section.

  3. When successfully configured, your MCP will appear in Cursor settings like this:

Successful MCP setup in Cursor

Windows Setup

Setting up the MCP Command

On Windows, you can create a batch file to easily run the MCP command:

  1. Create a file named run_mcp.bat with the following content:

    @echo off
    SET PATH=C:\Users\YourUsername\.local\bin;%PATH%
    cd C:\path\to\your\microsoft_fabric_mcp\
    C:\Users\YourUsername\.local\bin\uv.exe run fabric_mcp.py
    

    Example with real paths:

    @echo off
    SET PATH=C:\Users\YourUsername\.local\bin;%PATH%
    cd C:\Users\YourUsername\source\repos\microsoft_fabric_mcp\
    C:\Users\YourUsername\.local\bin\uv.exe run fabric_mcp.py
    
  2. You can then run the MCP command by executing:

    cmd /c C:\path\to\your\microsoft_fabric_mcp\run_mcp.bat
    

    Example:

    cmd /c C:\Users\YourUsername\source\repos\microsoft_fabric_mcp\run_mcp.bat
    

Virtual Environment Permissions

When activating the virtual environment using .venv\Scripts\activate on Windows, you might encounter permission issues. To resolve this, run the following command in PowerShell before activation:

Set-ExecutionPolicy -ExecutionPolicy Bypass -Scope Process

This temporarily changes the execution policy for the current PowerShell session only, allowing scripts to run.

Example Usage

After setup, you can query your Fabric resources through your AI assistant:

Listing Workspaces in Fabric

Ask your AI assistant natural language questions:

Can you list my workspaces in Fabric?
Can you show me all the lakehouses in the "DWH-PROD" workspace?
Can you get the schema for the "sales" table in the "GK_Bronze" lakehouse?

The AI will automatically select the appropriate MCP tool and display results:

Example of listing Fabric workspaces

Advanced Use Cases

For complex tasks, the AI can access multiple resources to generate accurate code:

Create a notebook that reads from the 'sales' table in Bronze lakehouse and upserts to 'sales_processed' in Silver lakehouse, considering both schemas.

The AI will:

  1. Get schemas for both tables
  2. Generate code with correct data types
  3. Create an efficient upsert operation

Permission Handling

The AI will ask permission before running MCP tools. In Cursor, you can enable YOLO mode for automatic execution without prompts.

About Model Context Protocol

Model Context Protocol (MCP) is an open standard that enables AI assistants to securely connect to external data sources and tools. This server implements MCP to provide AI assistants with direct access to your Microsoft Fabric resources.

Learn more: Model Context Protocol Documentation

Contributing

Feel free to contribute additional tools, utilities, or improvements to existing code. Please follow the existing code structure and include appropriate documentation.