Skip to content

CMPG/sfspool

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

65 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Files for the article "Demogenomic inference from spatially and temporally heterogeneous samples", Marchi, Kapopoulou, and Excoffier


##CODES##
The zipped directories linux.zip and win.zip contain the fastsimcoal2 linux and windows versions used for the analyses



##SIMULATION##
Simulated data for models with spatial or temporal heterogeneities and attempts to recover the parameters of these true scenarios with fastsimcoal2
3 type of heterogeneity have been tested:
	1) "Spatial2pop" = Spatial heterogeneity with 2 populations per continent (Fig 1A)
	2) "10PopDivPool" = Spatial heterogeneity with 5 populations per continent (Fig 1B)
	3) "Temporal" = Temporal Heterogeneity (Fig 1C-D)


	###SIMULATED DATA###
	Genetic data have been simulation for the different conditions (named def by fastsimcoal2) described in Table 1:

	1) "Spatial2pop" = Spatial heterogeneity with 2 populations per continent (Fig 1A) 
		- Def 1: Strong heterogeneity; No admixture
		- Def 2: Weak heterogeneity; No admixture
		- Def 3: No heterogeneity; No admixture
		- Def 4: Medium heterogeneity; Large admixture
		- Def 5: Medium heterogeneity; Small admixture
		- Def 6: Medium heterogeneity; No admixture

	2) "10PopDivPool" = Spatial heterogeneity with 5 populations per continent (Fig 1B)
		- Def 3: no admixture for n=2 
		- Def 6: no admixture for n=10 

	3) "Temporal" = Temporal Heterogeneity
		- Def 1: 2 populations per continent (Fig 1C)
		- Def 5: 1 population per continent (Fig 1D)

	10 replicated sfs have been simulated for each condition using the following command line: 
	./fsc -t xxx.tpl -f xxx.def -n10 -I -s0 -d -q -x -j -k1000000
		where xxx is an arbitrary generic name for the model; the conditions are given with the -f parameter; 
		the other parameters are described in fastsimcoal2 manual (http://cmpg.unibe.ch/software/fastsimcoal2/man/fastsimcoal27.pdf)


	###ESTIMATES###
	Attempt to recover true (=simulated) parameters with different strategies described in Fig 2:
		- "noStruct" = No Structure
		- "fis" = Implicit Structure
		- "pool" = Explicit Structure
		- "onepop" = Temporal Structure

	Parameter estimation was done with the following command line:
	./fsc -t xxx_i.tpl -e xxx_i.est -n500000 -M -c1 -B1 -d -L40 -q --logprecision 18 
		where xxx is a different generic name for each combination of simulation model and estimation strategy; i iterates 	over the 10 data sets.

	Likelihoods of the different tested strategies are shown in Lhood_xxx.txt in each model folder
	Parameters estimated for the different tested strategies are shown in Param_xxx.txt in each model folder


###############################

##SGDP##
Fastsimcoal input files for the 4 models tested on the SGDP data.

	###ESTIMATES###
	For each model, we estimated parameters with the following command line:
		./fsc -t xxx.tpl -e xxx.est -n200000 -L30 -q  -C1 -M -d --multiSFS --logprecision 18 -c1 -B1
			where xxx stands for the specific model to be studied.
	
	###CONFIDENCE INTERVALS###
	Confidence intervals for the parameters estimated under the best models were obtained using a parametric bootstrap approach.
	We first generated 100 SFS using the maximum-likelihood estimated parameter values:
		./fsc -i xxx_boot.par -n100 -j -d -s0 -x –I -q -u
		

	We then re-estimated the parameters of the model using 20 independent runs and starting around the estimated ML parameter values:
		./fsc -t xxx_boot.tpl -e xxx_boot.est –initvalues xxx_boot.pv -M -L30  -n500000 -d --multiSFS -C5 --logprecision 18 -q

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages