Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion build.sbt
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,8 @@ lazy val commonSettings = Seq(
"com.gurobi" % "gurobi" % "6.0",
"org.apache.commons" % "commons-math3" % "3.0",
"org.scalatest" % "scalatest_2.11" % "2.2.4",
"ch.qos.logback" % "logback-classic" % "1.1.7"
"ch.qos.logback" % "logback-classic" % "1.1.7",
"me.tongfei" % "progressbar" % "0.5.5"
),
fork := true,
connectInput in run := true,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ import edu.illinois.cs.cogcomp.saul.lbjrelated.LBJLearnerEquivalent
import edu.illinois.cs.cogcomp.saul.parser.{ IterableToLBJavaParser, LBJavaParserToIterable }
import edu.illinois.cs.cogcomp.saul.test.TestReal
import edu.illinois.cs.cogcomp.saul.util.Logging
import me.tongfei.progressbar.ProgressBar

import scala.reflect.ClassTag

Expand Down Expand Up @@ -226,24 +227,28 @@ abstract class Learnable[T <: AnyRef](val node: Node[T], val parameters: Paramet
logger.debug(classifier.getExtractor.getCompositeChildren.toString)
logger.debug(classifier.getLabeler.toString)
logger.info(s"Learnable: Learn with data of size ${data.size}")
logger.info(s"Training: $iteration iterations remain.")

isTraining = true
val pb = new ProgressBar("Training", iteration)
pb.start()

(iteration to 1 by -1).foreach(remainingIteration => {
if (remainingIteration % 10 == 0)
logger.info(s"Training: $remainingIteration iterations remain.")

node.clearPropertyCache()
data.foreach(classifier.learn)
pb.step()
})

pb.stop()
classifier.doneLearning()
isTraining = false
}

def learnWithDerivedInstances(numIterations: Int, featureVectors: Iterable[FeatureVector]): Unit = {
isTraining = true
val pb = new ProgressBar("Training", numIterations)
pb.start()

val propertyNameSet = feature.map(_.name).toSet
(0 until numIterations).foreach { _ =>
featureVectors.foreach {
Expand All @@ -262,7 +267,9 @@ abstract class Learnable[T <: AnyRef](val node: Node[T], val parameters: Paramet
}
classifier.learn(featureVector)
}
pb.step()
}
pb.stop()
classifier.doneLearning()
isTraining = false
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,9 +12,10 @@ import edu.illinois.cs.cogcomp.saul.datamodel.edge.Edge
import edu.illinois.cs.cogcomp.saul.datamodel.property.Property
import edu.illinois.cs.cogcomp.saul.datamodel.property.features.discrete.DiscreteProperty
import edu.illinois.cs.cogcomp.saul.util.Logging

import java.util.concurrent.atomic.AtomicInteger

import me.tongfei.progressbar.ProgressBar

import scala.collection.mutable
import scala.collection.mutable.{ ArrayBuffer, ListBuffer, HashMap => MutableHashMap, LinkedHashSet => MutableSet, Map => MutableMap }
import scala.reflect.ClassTag
Expand Down Expand Up @@ -156,7 +157,13 @@ class Node[T <: AnyRef](val keyFunc: T => Any = (x: T) => x, val tag: ClassTag[T
populateEdge: Boolean = true,
populateJoinNodes: Boolean = true
): Unit = {
ts.foreach(addInstance(_, train, populateEdge, populateJoinNodes))
val pb = new ProgressBar("Population", ts.size)
pb.start()
ts.foreach(i => {
addInstance(i, train, populateEdge, populateJoinNodes)
pb.step()
})
pb.stop()
}

/** Relational operators */
Expand Down