Notebooks for Python-GIS Lessons use in Automating GIS Processes: https://automating-gis-processes.github.io/site/index.html
-
Open https://mybinder.org/v2/gh/DataDevils/PythonGIS/master; this should open a new Jupyter environment.
-
Extract data
- L1/geometric-objects.ipynb: Introduction to geometric objects and the Shapely package
- L1/Exercise-1.ipynb: Durham, Raleigh, and Chapel Hill as geometric objects
- L2/0-data_io.ipynb: Reading and writing geospatial data [Optional]
- L2/1-Geopandas-basics.ipynb: Introduction to GeoPandas
- L2/2_projections.ipynb: Coordinate reference systems and transforming spatial data projections
- L2/3_calculating-distances.ipynb: Methods of geospatial objects
- L2/4_geopandas-geometries.ipynb: Creating new spatial data layers from raw data
- L2/Exercise-2.ipynb:
- L3/1-geocoding_in_geopandas.ipynb: Geocoding - transforming addresses into coordinates
- L3/2-point-in-polygon.ipynb: Spatial queries
- L3/3-spatial_index.ipynb: Improving performance
- L3/4-spatial_join.ipynb: Combining spatial data layers
- L3/5-nearest-neighbour.ipynb: Finding nearby features
- L3/Exercise-3.ipynb
- L4/1-geometric-operations.ipynb: Create new geometries based on overlay analysis; aggregating data
- L4/2-reclassify.ipynb: Data reclassification
- L4/Exercise-4.ipynb
- L5/1-static_maps.ipynb: Static maps
- L5/2-interactive-map-folium.ipynb: Interactive Leaflet maps (
Foliumandmplleaflet) - L5/3-Employment_in_Finland.ipynb: Sharing interactive maps on GitHub
-
L6/1-retrieve_osm_data.ipynb: Retrieving OpenStreetMap data
-
L6/2-network-analysis.ipynb: Network analysis in Python