XGBoost tutorial and examples for beginners
- Regression Hello World (Use XGBoost to fit xx curve)
- Classification Hello World (Use XGBoost to classify Breast Cancer Dataset)
- Fill Missing Values (Use
Imputerto fill missing data) - K-fold Cross Validation (Use K-fold to validate your model)
- Stratified K-fold CV (Use Stratified K-fold to make your split balanced)
- Visualize Single Tree (Plot single decision tree)
- Save And Reload Model - Approach 1 (Use
pickleto save and reload your model) - Save And Reload Model - Approach 2 (Use
joblibto save and reload your model) - Feature Importances (Two methods to visualize feature importances)
- Feature Selection (Use feature importances to select features)
- Early Stopping (Use Early Stopping to avoid overfitting)
- Plot Learning Curve (Use Learning Curve to judge your model)
- Tune Number of Trees (Tune
n_estimatorsparameter) - Tune Size of Tree (Tune
max_depthparameter) - Tune Shrinkage (Tune
learning_rateparameter) - Tune Row Subsampling (Tune
subsampleparameter) - Tune Column Subsampling by Tree (Tune
colsample_bytreeparameter) - Tune Column Subsampling by Level (Tune
colsample_bylevelparameter)