A curated collection of machine learning algorithms and implementations covering fundamental concepts to advanced techniques.
My-ML-Algorithms/
├── GridSearchCV+RandomizeCV/ # Hyperparameter tuning implementations
│ └── Create HyperTuning on Wine Dataset.py
├── Linear Regression/ # Linear regression models
├── Logistic Regression/ # Classification models
│ └── Create Predict Target Value.py
├── Scaling+Baging/ # Feature scaling and ensemble methods
├── Spam Detection Using Naive Bayes/ # NLP application
├── Hidden_layer_and_parameter.ipynb # Neural network experiments (Colab)
├── KNN Algorithms using iris dataset.py # K-Nearest Neighbors implementation
├── Naive bayes Wine_Dataset.py # Naive Bayes classifier
└── test.ipynb # Experimental notebook