Official minimal implementation of HLCL (UAI 2024). HLCL introduces a homophily–heterophily separation and applies low-pass and high-pass graph filters to augmented views, enabling state-of-the-art graph contrastive learning on heterophilic graphs.
pip install -r requirements.txtpython HLCL.py \
--device 2 \
--dataset pubmed \
--low_k 0.8 \
--high_k 0.2 \
--augmentation PPRDiffusion \
--haug1 0.4 \
--runs 3 \
--num_parts 3Results and checkpoints are saved in:
./result/./model/
@inproceedings{yang2024hlcl,
title={Graph Contrastive Learning under Heterophily via Graph Filters},
author={Yang, Wenhan and Mirzasoleiman, Baharan},
booktitle={Uncertainty in Artificial Intelligence (UAI)},
year={2024}
}