FireFind is an intelligent content recommendation system that uses AI to analyze your mood, context, and preferences to suggest the perfect entertainment.
- AI Mood Analysis: Automatically detects mood from movie descriptions
- Real-time Context: Weather and time-based recommendations
- Smart Recommendations: ML-powered content matching
- Watch Party: Share viewing experiences with friends
- Beautiful UI: Modern, responsive design
- Frontend: HTML, CSS, JavaScript
- Backend: AWS Lambda, API Gateway
- AI/ML: AWS Bedrock (Claude), Custom Mood Analysis
- Database: DynamoDB
- APIs: OMDb (movies), OpenWeatherMap (weather)
- Node.js (v14 or higher)
- AWS Account
- OMDb API Key (Get one here)
- OpenWeatherMap API Key (Get one here)
- Clone the repository:
git clone https://github.com/yourusername/firefind.git
cd firefind- Copy configuration templates:
cp config.example.js config.js
cp .env.example .env- Edit config.js and add your API keys:
window.APP_CONFIG = {
OMDB_API_KEY: 'your_actual_key_here',
OPENWEATHER_API_KEY: 'your_actual_key_here',
# ... other config
};- Install backend dependencies:
cd backend/lambdas/prompt-processor && npm install
cd ../recommendation-engine && npm install
cd ../context-collector && npm install
cd ../watch-party && npm install-
Update
config.jswith production values
Replace API keys and URLs with production-ready values inconfig.js. -
Deploy to a static hosting service
Options include:
- Set up AWS credentials
aws configure- Deploy Lambda functions
cd backend
./deploy.sh- Create API Gateway and update the URL in config.js
- Open
index.htmlin a web browser - The app will use mock data by default
- To use real APIs, update
USE_MOCK_DATAtofalseinconfig.js
- Never commit API keys to GitHub
- Use environment variables for sensitive data
- In production, implement backend proxy for API calls
- Rishika Agarwal
- Prernendu Bhagat
- Mansa Mahendru
IIIT Allahabad | Amazon HackOn 5.0