Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 16 additions & 17 deletions brainstorm/layers/binomial_cross_entropy_layer.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,12 +39,12 @@ class BinomialCrossEntropyLayerImpl(Layer):
computes_no_input_deltas_for = ['targets']

def setup(self, kwargs, in_shapes):
if in_shapes['default'] != in_shapes['targets']:
if in_shapes['default'].feature_size != in_shapes['targets'].feature_size:
raise LayerValidationError("{}: default and targets must have the "
"same shapes but got {} and {}"
.format(self.name,
in_shapes['default'],
in_shapes['targets']))
in_shapes['default'].feature_shape,
in_shapes['targets'].feature_shape))
outputs = OrderedDict()
outputs['default'] = BufferStructure('T', 'B', 1)

Expand All @@ -59,10 +59,10 @@ def setup(self, kwargs, in_shapes):
def forward_pass(self, buffers, training_pass=True):
# prepare
_h = self.handler
y = buffers.inputs.default
t = buffers.inputs.targets
cee = buffers.internals.cee
cee_sum = buffers.outputs.default
y = flatten_time_and_features(buffers.inputs.default)
t = flatten_time_and_features(buffers.inputs.targets)
cee = flatten_time_and_features(buffers.internals.cee)
cee_sum = flatten_time(buffers.outputs.default)

# the binomial cross entropy error is given by
# - t * ln(y) - (1-t) * ln(1-y)
Expand All @@ -79,9 +79,7 @@ def forward_pass(self, buffers, training_pass=True):

_h.add_tt(tmp, cee, cee) # cee = (1-t) * ln(1-y) + t * ln(y)

# reshape for summation
cee = flatten_time_and_features(cee)
cee_sum = flatten_time(cee_sum)
# summation
_h.sum_t(cee, axis=1, out=cee_sum)
_h.mult_st(-1, cee_sum, cee_sum) # * -1

Expand All @@ -90,12 +88,13 @@ def backward_pass(self, buffers):
_h = self.handler
ceed_sum = buffers.output_deltas.default
ceed = buffers.internals.ceed
tmp2 = _h.allocate(ceed.shape)
ceed = flatten_time_and_features(ceed)
tmp = _h.allocate(ceed.shape)
y = flatten_time_and_features(buffers.inputs.default)
t = flatten_time_and_features(buffers.inputs.targets)

y = buffers.inputs.default
t = buffers.inputs.targets

yd = buffers.input_deltas.default
yd = flatten_time_and_features(buffers.input_deltas.default)

# the derivative of the binomial cross entropy error is given by
# (y - t) / (y - y²)
Expand All @@ -110,7 +109,7 @@ def backward_pass(self, buffers):

# ceed_sum has only one feature dimension due to summation,
# so we broadcast to all feature dimensions
_h.broadcast_t(ceed_sum, 2, tmp)
_h.mult_tt(ceed, tmp, ceed)

_h.add_tt(ceed, yd, yd)
_h.broadcast_t(ceed_sum, 2, tmp2)
tmp2 = flatten_time(tmp2)
_h.mult_add_tt(ceed, tmp2, yd)