Skip to content

Sentiment Analysis using BERT embeddings + MLP (Multi Layer Perceptron). Served as A REST API in FastAPI and running in Docker.

Notifications You must be signed in to change notification settings

Jason-Oleana/bert-embeddings-sentiment-analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bert embeddings sentiment analysis

Part I. Install requirements & train model

1. Go to project dir

git clone https://github.com/Jason-Oleana/bert-embeddings-sentiment-analysis.git
cd bert-embeddings-sentiment-analysis

2. Docker build image

docker build -t notebook .

wait...

3. Docker run container

For Windows Users

docker run -p 8888:8888 -v %cd%/models:/work/models notebook

For MacOS & Linux Users

step 1
sudo chown -R 1000 models/
step 2
docker run -p 8888:8888 -v "$(pwd)"/models:/work/models notebook

6. Run machine learning notebook

Part 2. Serve model with FastAPI

1. Docker build image

docker build -t mlapp ./fastapi

wait...

2. Docker run container

For Windows Users

docker run -p 8000:8000 -v %cd%/models:/app/models -v %cd%/fastapi:/app mlapp

For MacOS Users

docker run -p 8000:8000 -v "$(pwd)"/models:/app/models -v "$(pwd)"/fastapi:/app mlapp

3. Test the model

  • Open a browser
  • Go to localhost:8000/docs

Handy Docker commands

1. Show running containers
docker ps
2. Show Docker images
docker images
3. stop container
docker stop [container-id]
4. Remove image
docker rmi [image-id]

or

docker rmi -f [image-id]

About

Sentiment Analysis using BERT embeddings + MLP (Multi Layer Perceptron). Served as A REST API in FastAPI and running in Docker.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published