Roadmap is a Python package that helps to analyze and visualize team's agile software development process. It provides insights into delivery performance and aims at creating more realistic roadmaps by leveraging the team historical performance.
$ pip install rmpfrom rmp.backend import Backend
from rmp.jira import JiraCloudConnector
import os
# For data storage, configure SQLAlchemy compatible URL
os.environ['SQLALCHEMY_URL'] = 'sqlite:///my_db.sqlite'
# Create instance of backend
backend = Backend()
# Load data
backend.add_connector(
JiraCloudConnector,
name='Jira Loader',
domain='example',
username='john.doe@example.com',
api_token='API_TOKEN',
jql = 'project = SPACE',
board_id = 42
)
backend.load_data()from sqlalchemy import create_engine
from rmp.flow_metrics import FlowMetrics, Workflow, FilterKwArgs
from datetime import datetime, timezone
# Create engine for data access
engine = create_engine(f"sqlite:///my_db.sqlite", echo=False)
# Configure workflow stages
workflow = Workflow(
not_started=['To Do'],
in_progress=['In Progress', 'Code review', 'Testing'],
finished=['Done', 'Cancelled'],
)
# Define filters
filter = FilterKwArgs(
exclude_item_types={"Bug"},
include_hierarchy_levels={0},
exclude_ranges=[
DateTimeRange("2024-12-23", "2025-01-05"), # Christmas period, team offline
DateTimeRange("2025-04-14", "2025-04-21"), # Holy Week, most of the team away
],
as_of=datetime.now(tz=timezone.utc), # Specify to query state at particular time moment
)
# Create instance of FlowMetrics
fm = FlowMetrics(engine, workflow)
# Plot cycle time scatter chart
fm.plot_cycle_time_scatter(**filter)
# Plot cycle time histogram
fm.plot_cycle_time_histogram(**filter)
# Plot aging work in progress chart
fm.plot_aging_wip(**filter)
# Plot throughput run chart
fm.plot_throughput_run_chart(**filter)
# Plot cumulative flow diagram
fm.plot_cfd(**filter)
# Find dates and probabilities to deliver 90 items using Monte Carlo simulation
fm.plot_monte_carlo_when_hist(runs=10000, item_count=90, **filter)
# Find how many items can be delivered by date with their probabilities using Monte Carlo simulation
target_date = datetime.now() + pd.Timedelta(days=30)
fm.plot_monte_carlo_how_many_hist(runs=10000, target_date=target_date, **filter)
# Output finished items and prioritized backlog with 85% confidence forecasted delivery dates
df = fm.df_timeline_items(mc_when=True, mc_when_runs=1000, mc_when_percentile=85, **filter)
fm.styled_timeline_items(df) # Returns Styled represenation of timelineSelect Python version using pyenv
pyenv local 3.11.8Install Poetry dependencies
poetry installActivate virtual environment
eval $(poetry env activate)Run tests
pytestCheck code style and format
ruff check
ruff formatRun static type checker
mypy