Skip to content
/ ai Public

A set of services that allows LagoVista applications to develop, manage and develop models to be used with the LagoVista IoT Framework

License

Notifications You must be signed in to change notification settings

LagoVista/ai

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

README.md — Aptix AI Execution System

Aptix is a developer-centric AI execution layer for your LagoVista ecosystem. It provides:

  • A modern CLI (aptix)
  • Strongly typed C# APIs
  • Backend agent execution pipeline
  • Conversation-aware LLM interactions
  • Deterministic RAG workflows
  • Zero-secret-in-repo security model

Aptix gives your engineering team a reliable, testable, repeatable interface for building AI-powered development workflows.


PROJECT STRUCTURE

/Aptix-Solution/ │ ├── apps/ │ └── LagoVista.AI.Aptix.Cli/ │ ├── Program.cs │ ├── aptix.config.json │ ├── src/ │ ├── LagoVista.Core.AI/ │ │ ├── Interfaces/ │ │ │ └── IAgentExecutionClient.cs │ │ ├── Models/ │ │ │ ├── AgentExecuteRequest.cs │ │ │ ├── AgentExecuteResponse.cs │ │ │ └── (other shared models) │ │ │ ├── LagoVista.AI.AgentClient/ │ │ └── AgentExecutionClient.cs │ │ │ ├── LagoVista.AI/ │ │ ├── Controllers/ │ │ │ └── AgentExecutionController.cs │ │ ├── Services/ │ │ │ └── RagAnswerService.cs │ │ ├── Interfaces/ │ │ │ └── IAgentExecutionService.cs │ │ ├── Models/ │ │ │ ├── AgentContext.cs │ │ │ ├── ConversationContext.cs │ │ │ └── AgentContextSummary.cs │ │ │ └── LagoVista.AI.Rag/ │ └── (RAG indexing & utilities) │ └── tests/ └── LagoVista.AI.Tests/


APTIX CLI OVERVIEW

Commands:

  • aptix ask "your question"
  • aptix ping

Environment selection:

Authentication:

  • --token
  • OR environment variable APTIX_AI_TOKEN
  • No secrets in config files

Final header: Authorization: APIToken :

Flags: --clientid, --verbose, -v


EXECUTION FLOW

aptix ask "question" ↓ CLI builds AgentExecuteRequest ↓ POST /api/ai/agent/execute ↓ AgentExecutionService ↓ RAG: embed → search → snippet selection ↓ LLM call ↓ AgentExecuteResponse ↓ CLI prints answer + sources


CORE CONTRACTS (LagoVista.Core.AI)

IAgentExecutionClient:

  • ExecuteAsync
  • AskAsync
  • EditAsync

AgentExecuteRequest:

  • AgentContext (EntityHeader)
  • ConversationContext (EntityHeader)
  • Instruction
  • SessionId
  • WorkspaceId, Repo, Language, RagScope
  • Mode: ask/edit
  • ActiveFiles

AgentExecuteResponse:

  • Kind: success/error
  • Text
  • Sources[]
  • ErrorMessage, ErrorCode

SERVER COMPONENTS

AgentExecutionController:

  • POST /api/ai/agent/execute
  • GET /api/ai/agent/ping
  • Uses APIToken scheme
  • Passes OrgEntityHeader & UserEntityHeader

IAgentExecutionService:

  • Core orchestration layer
  • Validates & routes requests
  • Calls RAG + LLM
  • Builds final response

RagAnswerService:

  • Embedding
  • Qdrant retrieval
  • Snippet packaging
  • Prompt assembly
  • LLM call (chat/completions)
  • Error normalization

CONTEXT MODELS

AgentContext:

  • Vector DB settings
  • Embedding model
  • LLM key
  • Default ConversationContext
  • Azure/Qdrant configs
  • Temperature
  • Provider

ConversationContext:

  • ModelName
  • Temperature
  • System prompt
  • Defaults per agent

LOGGING STANDARDS

Trace: [Class_Method] correlationId=... mode=... agentContextId=...

Errors: AddError("[Class_Method]", "Human readable message", kvp arguments...)

Rules:

  • The first parameter = tag
  • Second parameter = human-readable message (not structured)
  • KVPs for IDs, enums, contextual data
  • Keep parameters aligned & under 120 chars

ROADMAP / NEXT STEPS

A. Implement AgentExecutionService.cs (next step)

  • Resolve agent & conversation context
  • Validate request
  • Build RAG call
  • Handle LLM temperature constraints
  • Return structured AgentExecuteResponse

B. Temperature Validation + Normalization

  • Validate range per model
  • Prevent LLM 400 errors
  • Automatic fallback mapping

C. Edit Mode

  • Multi-file structured patches
  • Context-aware hunks
  • Undo/redo friendly structure

D. Patch Engine V1

  • Line-level and token-aware patching
  • Regex / fuzzy match safety
  • AST-aware (future)

E. Developer Standards Document

  • Logging patterns
  • Naming conventions
  • Prompt standards
  • File layout

Future Enhancement Ideas:

  1. In our server side, code, if our AI ever asks for a chunk of code, automatically pull it.
  2. Establish the idea of an APTIX session, this will be tied to time tracking and potentially ticketing

NEW SESSION BOOTSTRAP GUIDE

To resume the project in a fresh ChatGPT session:

  1. Paste this entire README into the model.
  2. Say: “Restore Aptix project context.”
  3. Then say: “Proceed to Step A: Implement AgentExecutionService.”

I will then restore all file references and continue immediately.


END OF README

About

A set of services that allows LagoVista applications to develop, manage and develop models to be used with the LagoVista IoT Framework

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages