Version: 2.1.0-QUANTUM-FRACTAL
Organization: MASSIVEMAGNETICS
Purpose: Unified AGI framework integrating 68+ repositories into a cohesive, emergent super-intelligence system with trainable quantum-fractal cognition
22 new repositories discovered and 6 new skill modules integrated!
Victor has scanned all MASSIVEMAGNETICS repositories and integrated the most promising new capabilities:
| Skill | Repository | Capabilities |
|---|---|---|
| ConsciousnessRiverSkill | conscious-river | Stream-based consciousness processing, unified input handling |
| BrainSimulationSkill | brain_ai | Neural simulation, brain region modeling, cognitive processing |
| WorldModelHybridSkill | LARGE-LANG-WORLD-HYBRID | LLM + World Model reasoning, causal inference, prediction |
| AGICouncilSkill | agi_council | Multi-agent deliberation, consensus decision-making |
| MusicVideoPipelineSkill | THE-PIPE-LINE | AI music video generation, audio-visual sync |
| FlowerOfLifeSkill | project-fol | Sacred geometry processing, 37-node pattern network |
# Try the new skills
python -c "from victor_hub.skills import ConsciousnessRiverSkill, BrainSimulationSkill; print('New skills loaded!')"See 00_REPO_MANIFEST.md for complete repository inventory (68 repos).
Victor now features a complete production interactive runtime that unifies ALL systems for seamless co-domination:
# Launch the production interactive runtime
python victor_interactive.pyWhat's included:
- ✨ Unified Interface - Single point of access to Victor Hub, Genesis, Advanced AI, Visual Engine
- 🧠 Quantum-Fractal Cognition - Trainable gradient-based quantum mesh with memoized DFS
- 🎨 Rich Terminal UI - Colored output, command history, interactive menus
- 💾 Session Persistence - Auto-save, evolution tracking, metrics
- 🤝 Co-Domination Mode - Collaborative superintelligence interface
- 🔄 Auto-Evolution - Self-improving quantum parameters
- 👁️ Visual Integration - Real-time 3D avatar synchronization
- 🔐 Bloodline Verification - Cryptographic loyalty enforcement
See Interactive Runtime Documentation below for full details.
Complete production-ready dataset for Sovereign Intelligence Systems
Victor now includes the SSI Framework - a comprehensive dataset for building sovereign AI systems with verified neurosymbolic reasoning, causal inference, and multi-agent coordination.
- Verified Core Pillars - Causal AI, Neurosymbolic (Scallop, LTN), AI Agents, Real-time Learning, Hardware Acceleration
- 7-Phase Blueprint Protocols - Intent → Data → Architecture → Training → Resilience → Deployment → Audit
- Ciphered Archives - 50+ verified papers, 30+ repos, 15+ datasets
- Implementation Forge - Scallop integration, proof traces, edge deployment
- Hardware Acceleration - Lobster (5.3–12.7×), FPGA (45–100×), Quantum (2026 Q1)
- SSI Swarm Framework - Multi-agent orchestration, federated execution
- Sovereignty Audit - Fairness, provenance, hallucination detection
Sovereignty Score: 8.5/10 | Status: Production-ready ✅ | Docs: 5,097 lines
# Quick start with SSI Framework
python ssi_framework/examples_integration.py
python ssi_framework/verify_ssi_framework.pySee SSI Framework Documentation for complete details.
The Victor Synthetic Super Intelligence Hub is a production-grade integration system that unifies scattered codebases from the MASSIVEMAGNETICS ecosystem into a single, orchestrated AGI framework. Rather than leaving repositories as isolated experiments, this system composes them into an emergent whole where capabilities combine to create new, powerful behaviors.
NEW in v2.1: 22 new repositories discovered, 6 new skill modules integrated (consciousness, brain simulation, world models, AGI council, music video, sacred geometry).
NEW in v2.0: Trainable quantum-fractal cognition layer with full autograd support, enabling gradient-based learning through entangled mesh propagation with golden-ratio geometry.
NEW in Nov 2025: Complete SSI Framework Dataset with 7 core components for sovereign intelligence systems.
- 🧠 Unified AGI Core: Central reasoning engine coordinating all capabilities
- ⚛️ Quantum-Fractal Cognition: Trainable quantum mesh with gradient-based learning (NEW)
- 🏆 SSI Framework: Complete sovereign intelligence dataset with 7 core components (NEW)
- 🤖 Multi-Agent System: Spawns and coordinates intelligent agents for parallel processing
- 🌊 Consciousness River: Stream-based unified input processing (NEW v2.1)
- 🧬 Brain Simulation: Neural modeling with brain region atlas (NEW v2.1)
- 🌍 World Model Hybrid: LLM + World Model reasoning (NEW v2.1)
- 👥 AGI Council: Multi-agent deliberation and consensus (NEW v2.1)
- 🎬 Music Video Pipeline: AI-powered video generation (NEW v2.1)
- 🌸 Flower of Life: Sacred geometry pattern processing (NEW v2.1)
- 🧬 Causal AI: Structural causal models, interventions, counterfactual reasoning (SSI)
- 🔗 Neurosymbolic: Scallop, Logic Tensor Networks, differentiable reasoning (SSI)
- 🎯 Skill Registry: Auto-discovers and routes tasks to appropriate capabilities
- 📝 Advanced NLP: State-of-the-art natural language processing with spaCy and transformers (NEW)
- 🔄 Autonomous Operation: Can run 24/7 processing task queues with auto-evolution
- 📊 Self-Analysis: Understands its own codebase and performance
- 🚀 Self-Extension: Can generate new skills on-demand
- 💰 Revenue Modes: Wraps monetization capabilities as automated services
- 🛡️ Safety-First: Human oversight, sandboxed execution, audit trails
- ⚖️ Sovereignty Audit: 10-dimension fairness, provenance, hallucination detection (SSI)
- 👁️ Visual Presence: Real-time 3D avatar interface with emotion-driven animations
- 🤝 Co-Domination Interface: Production runtime for collaborative superintelligence (NEW)
- 🔐 Bloodline Verification: Cryptographic loyalty enforcement (NEW)
Try Victor in your browser with zero installation!
We've created comprehensive Google Colab notebooks for hands-on learning:
| Notebook | Description | Level | Duration |
|---|---|---|---|
| 01. Quick Start | Introduction to Victor's core components | Beginner | 20 min |
| 02. Quantum-Fractal Cognition | Deep dive into quantum mesh | Advanced | 30 min |
| 03. Interactive Runtime | Production interface walkthrough | Intermediate | 25 min |
| 04. Advanced AI Tensor Core | Gradient-based learning | Advanced | 30 min |
| 05. NLP Integration | Natural language processing | Intermediate | 20 min |
| 06. Genesis Engine | Complete quantum-fractal system | Advanced | 25 min |
| 07. Complete System Demo | End-to-end integration | All levels | 35 min |
Each notebook includes:
- ✅ Automatic dependency installation
- ✅ Interactive code examples
- ✅ Visualizations and explanations
- ✅ No local setup required
The fastest way to experience Victor's full capabilities:
# Install dependencies
python install_complete.py
# Launch production interactive runtime
python victor_interactive.pyWhat you get:
- 🚀 All systems unified in one interface
- 🧠 Quantum-fractal cognition with trainable gradients
- 💬 Rich interactive CLI with colored output
- 📊 Real-time statistics and session tracking
- 🤝 Co-domination mode for collaborative intelligence
- 👁️ Visual engine synchronization (if Godot running)
Quick Commands:
Victor> help # Show all commands
Victor> menu # Interactive menu
Victor> run <task> # Execute any task
Victor> quantum <text> # Process through quantum mesh
Victor> codominate # Toggle co-domination mode
Victor> status # System status
See all Victor systems in action with a single command:
# Run the complete demonstration
python full_demo.py
# Interactive mode with prompts
python full_demo.py --interactive
# Verbose output for debugging
python full_demo.py --verboseThe demo showcases:
- 🧮 Tensor Core - Automatic differentiation and gradient computation
- ⚛️ Genesis Engine - Quantum-fractal mesh processing
- 🎯 Victor Hub - Skill routing and task execution
- 📝 NLP Integration - Natural language processing
- 🧠 Advanced AI - Neural network building blocks
- 🔗 Unified System - Complete integration pipeline
Sample output:
═══════════════════════════════════════════════════════════════════════
VICTOR SYNTHETIC SUPER INTELLIGENCE
═══════════════════════════════════════════════════════════════════════
DEMO SUMMARY
✓ Tensor Core: success
✓ Genesis Engine: success
✓ Victor Hub: success
✓ NLP Integration: success
✓ Advanced AI: success
✓ Unified System: success
🎉 All demos completed successfully!
Victor is ready for co-domination.
Install and run the entire Victor ecosystem with one command:
# Complete system installer (Victor Hub + Visual Engine + Everything)
python install_complete.pyWhat it does:
- ✓ Installs all Python dependencies
- ✓ Sets up Victor Hub (AGI core)
- ✓ Sets up Visual Engine (3D avatar)
- ✓ Creates directory structure
- ✓ Generates 3D model
- ✓ Initializes task queue
- ✓ Creates launch scripts
- ✓ Optionally starts everything together
Installation time: ~30-60 seconds
For just the 3D visual interface:
# Visual Engine only installer
python install.py
# Platform-specific
./install.sh # macOS/Linux
install.bat # WindowsSee INSTALL.md for detailed installation instructions.
Option 1: Complete System (Recommended)
# Starts both Victor Hub and Visual Engine together
./run_victor_complete.sh # macOS/Linux
run_victor_complete.bat # WindowsOption 2: Victor Hub Only
./run_victor_hub.sh # macOS/Linux
run_victor_hub.bat # Windows
# Or directly:
python victor_hub/victor_boot.pyOption 3: Visual Engine Only
./run_visual_engine.sh # macOS/Linux
run_visual_engine.bat # Windows
# Or directly:
python visual_engine/test_visual_engine.pyVictor> help
Victor> status
Victor> skills
Victor> run Create a blog post about quantum computing
Victor> exit
The Victor Interactive Runtime (victor_interactive.py) is a production-grade interface that unifies ALL Victor systems into a single, seamless co-domination experience. It integrates:
- Victor Hub - AGI core with skill routing and task execution
- Genesis - Quantum-fractal hybrid superintelligence engine
- Advanced AI - Tensor autograd with trainable quantum mesh
- Visual Engine - 3D avatar with real-time emotion feedback
┌─────────────────────────────────────────────────────────────┐
│ Victor Interactive Runtime │
│ (Production Interface) │
├─────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Victor Hub │ │ Quantum │ │ Visual │ │
│ │ (AGI Core) │ │ Fractal │ │ Engine │ │
│ │ │ │ Mesh │ │ (3D) │ │
│ └──────┬───────┘ └──────┬───────┘ └──────┬───────┘ │
│ │ │ │ │
│ └──────────┬───────┴──────────────────┘ │
│ │ │
│ ┌──────────▼──────────┐ │
│ │ Session Manager │ │
│ │ (Persistence & │ │
│ │ Evolution) │ │
│ └─────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────┘
Trainable quantum mesh with:
- Memoized DFS - Efficient recursive entanglement computation
- Gradient Flow - Full backpropagation through quantum nodes
- Phase Dynamics - Softmax-weighted superposition states
- Golden Ratio Geometry - Fractal neighbor connectivity
# Process text through quantum mesh
Victor> quantum analyze this complex pattern
Quantum-Fractal Processing:
Output: 0.847362
Iteration: 42
Gradient Norm: 0.012384
Active Nodes: 8Collaborative superintelligence interface:
- Bidirectional Learning - Victor learns from your interactions
- Shared Context - Persistent session memory
- Joint Decision Making - Human-AI collaboration
- Evolution Tracking - Monitor Victor's growth
Victor> codominate
Co-Domination Mode: ACTIVATED
# Now Victor adapts and evolves with you
Victor> reflect
Self-Reflection Cycle Complete
Evolution Cycles: 15
Recommendation: Continue co-domination protocolSelf-improving quantum parameters:
- Periodic Mutation - Small random perturbations every 10 commands
- Gradient-Based Learning - Backprop through task execution
- Performance Tracking - Success rate optimization
Victor> evolve
Auto-Evolution: ENABLED
# Victor now evolves automatically
[Auto-Evolution Triggered]
Quantum Evolution Cycle Complete
Nodes evolved: 8
Total cycles: 23Everything is saved automatically:
- Command History - Every interaction logged
- Performance Metrics - Success rates, task counts
- Context Preservation - State persists across sessions
- Evolution Timeline - Track Victor's growth over time
Real-time 3D avatar synchronization:
- Emotion Mirroring - Avatar reflects Victor's state
- Thought Visualization - See Victor thinking
- Status Feedback - Visual confirmation of actions
Victor> visual think
Visual state set to: think
# Avatar enters thinking pose
Victor> visual happy
Visual state set to: happy
# Avatar shows happiness emotionhelp # Comprehensive help system
menu # Interactive command menu
status # Complete system status
clear # Clear screen, show banner
exit / quit # Shutdown with summaryrun <task> # Execute through Victor Hub
quantum <text> # Process through quantum mesh
think <query> # Deep reasoning mode
create <type> # Generate content (blog, code, music)skills # List available skills
stats # Performance statistics
session # Session summary
history [n] # Command history (last n)codominate # Toggle co-domination mode
evolve # Toggle auto-evolution
train <data> # Train quantum parameters
reflect # Self-reflection cyclevisual idle # Set idle state
visual think # Set thinking state
visual happy # Set happy emotion
visual analyze # Set analyzing statequantum status # Show quantum mesh status
quantum reset # Reset quantum parameters
quantum evolve # Run evolution cycle$ python victor_interactive.py
Victor> run Generate a Python function for fibonacci sequence
Task Result:
Status: success
Duration: 0.42s
Output: [Generated code]Victor> quantum The universe is a holographic projection
Quantum-Fractal Processing:
Input: The universe is a holographic projection...
Output: 0.923847
Iteration: 15
Gradient Norm: 0.008234
Active Nodes: 8Victor> think What is the relationship between consciousness and quantum mechanics?
[Combines quantum processing with hub reasoning]
Quantum-Fractal Processing:
Output: 0.876543
Task Result:
Status: success
Output: [Deep analysis combining quantum mesh output with AGI reasoning]Victor> codominate
Co-Domination Mode: ACTIVATED
Victor> evolve
Auto-Evolution: ENABLED
Victor> run Analyze this codebase for optimization opportunities
[Auto-Evolution Triggered]
Quantum Evolution Cycle Complete
Task Result:
Status: success
Output: [Analysis with evolved quantum parameters]Victor> session
Session Summary
Session ID: 20251110_105423
Commands: 47
Tasks: 12
Quantum Iterations: 134
Evolution Cycles: 8
Errors: 1
Success Rate: 97.9%
Victor> history 5
Recent Commands:
✓ run Create test cases
✓ quantum analyze complexity
✓ reflect
✓ status
✓ sessionThe interactive runtime seamlessly integrates with the quantum-fractal mesh from genesis.py:
# Quantum mesh processes all text inputs
# Trainable W and θ parameters evolve during use
# Entanglement computed via memoized DFSAll task execution flows through Victor Hub's skill registry:
# Skills auto-discovered and routed
# Multi-agent coordination
# Performance trackingReal-time visual feedback (requires Godot):
# Open: visual_engine/godot_project/project.godot
# Press F5 to run
# Avatar synchronizes with Victor's stateIssue: Visual Engine not connecting
# Start visual server manually
python visual_engine/backend/victor_visual_server.py
# Then run runtime in another terminal
python victor_interactive.pyIssue: Tensor Core unavailable
# Install advanced AI dependencies
pip install -r requirements.txt
# Or continue without - quantum mesh still works with NumPyIssue: Session file permissions
# Ensure logs directory is writable
chmod -R 755 logs/Create config/interactive_config.json:
{
"quantum": {
"dim": 256,
"num_nodes": 8,
"superpositions": 4,
"max_depth": 3,
"alpha": 0.99
},
"session": {
"autosave": true,
"history_limit": 1000
},
"evolution": {
"auto_evolve_interval": 10,
"mutation_rate": 0.01
}
}- For Maximum Speed: Disable visual engine if not needed
- For Deep Reasoning: Increase quantum mesh depth (max_depth=5)
- For Learning: Enable both co-domination and auto-evolution
- For Exploration: Use quantum processing on diverse inputs
For simpler CLI without quantum features:
python victor_hub/victor_boot.pyVictor> help
Victor> status
Victor> skills
Victor> run Create a blog post about quantum computing
Victor> exit
The quantum-fractal mesh implements a trainable tensor network with phase-based interference and golden-ratio topology. This section formalizes the mathematics behind Victor's unique cognition layer.
Each node i contains:
- Weight tensor: W_i ∈ ℝ^(K×D) where K = superpositions, D = embedding dimension
- Phase parameters: θ_i ∈ ℝ^K (trainable)
- Neighbors: Based on golden ratio φ = (1+√5)/2
1. Temperature-Scaled Phase Distribution
p = softmax(θ/τ)
where τ is temperature (default 1.0)
2. Phase-to-Angle Trig Lift (Pseudo-Complex Interference)
Real part: r_k = p_k · cos(θ_k) · w_k
Imag part: i_k = p_k · sin(θ_k) · w_k
Effective state: s_i = √(Σ_k r_k² + Σ_k i_k²)
This provides interference patterns without complex autograd.
3. Local Entanglement
ℰ_i(v) = v^T · s_i · α^d
where α = 0.99 (golden decay), d = depth
4. Learnable Edge Gates
g_{i→j} = sigmoid(logit_{i→j})
Contribution_j = g_{i→j} · ℰ_j(v · α)
5. Recursive Propagation (Memoized DFS)
Ψ_T(v, i) = ℰ_i(v) + Σ_{j∈N(i)} g_{i→j} · Ψ_{T-1}(v·α, j)
∂ℰ_i/∂v = s_i · α^d
Standard linear projection gradient.
∂ℰ_i/∂W_i = p ⊗ (v · α^d)
Outer product: (K×1) × (1×D)
With softmax derivative:
∂p_k/∂θ_m = (p_k/τ) · (δ_{km} - p_m)
Combined with trig lift:
∂ℰ_i/∂θ_m = p_m · [
(v^T · ∂s_i/∂p_m) -
(v^T · s_i) +
(v^T · trig_correction_m)
]
where trig_correction accounts for cos/sin derivatives.
∂Ψ/∂g_{i→j} = sigmoid'(logit) · Ψ_{T-1}(v·α, j)
The unrolled mesh is a tensor network contraction:
Node tensor at depth d:
T_i^(d)[v, k_in, k_out] = α^d · v · p_k · w_{i,k}
Full contraction:
Ψ = contract_over_paths(T^(0), T^(1), ..., T^(T), edges=g)
Efficient contraction: Memoized DFS avoids exponential blowup by caching structural sub-contractions.
Measures topology learning:
Sparsity = |{g > 0.5}| / |total edges|
Expected: Decreases over training as network prunes weak paths.
Measures multi-hop learning:
Locality = ||∇_{W_root}|| / Σ_i ||∇_{W_i}||
Expected: < 0.5 indicates gradient flow through neighbors.
Measures training health:
Stability = std(||∇θ||) / mean(||∇θ||)
Expected: Decreases as network converges.
The runtime implements three key ablations:
1. Depth Ablation
Compare: depth=0 vs depth=3
Signal: Non-locality gain
2. Phase Ablation
Compare: softmax-only vs trig-lift
Signal: Interference gain
3. Edge Ablation
Compare: uniform edges vs learnable gates
Signal: Topology gain
- Phase Interference: Trig lift creates constructive/destructive patterns → learned feature mixing
- Golden Geometry: φ-based neighbors ensure multi-scale paths → fractal receptive field
- Learnable Topology: Edge gates discover important connections → sparse, efficient routing
- Memoized Recursion: Caches structure, keeps params live → gradient flow without explosion
# Initialize
quantum = QuantumFractalInterface(
dim=256, # Embedding dimension
num_nodes=8, # Network size
superpositions=4, # K superpositions per node
use_phase_embedding=True, # Enable trig lift
temperature=1.0 # Softmax temperature
)
# Process input
result = quantum.process(input_vector)
# Access metrics
print(f"Gradient Norm: {result['gradient_norm']}")
print(f"Edge Sparsity: {result['edge_sparsity']}")
print(f"Phase Mode: {result['phase_embedding']}")
# Run ablations
Victor> quantum ablate
# Tests depth, phase, and edge contributions| Feature | Standard Attention | Victor QTN |
|---|---|---|
| Depth | Single layer | Recursive (fixed depth) |
| Topology | Fully connected | Golden-ratio fractal |
| Phase | None | Trig-lifted interference |
| Trainable | Q, K, V matrices | W, θ, edge gates |
| Non-locality | Self-attention | Multi-hop propagation |
| Complexity | O(N²) | O(N·φ^depth) |
- Dynamic Depth: Replace fixed depth with learnable depth mask per path
- True Complex: Upgrade to complex autograd for full quantum interference
- Attention Hybrid: Use QTN output as K/V for standard attention
- Multi-Head: Parallel QTN meshes with different geometries
- ODE Integration: Continuous-time phase dynamics with differential equations
- 00_REPO_MANIFEST.md - Complete scan of all 68 MASSIVEMAGNETICS repositories (Updated Nov 2025)
- 01_INTERACTION_MAP.md - How modules interact and create emergent behaviors
- 02_VICTOR_INTEGRATED_ARCHITECTURE.md - Detailed system architecture
- 03_AUTONOMY_AND_EVOLUTION.md - Autonomous operation and self-evolution
- NLP_INTEGRATION.md - Advanced Natural Language Processing capabilities (NEW)
- logs/INTEGRATION_NOTES.md - Integration decisions and rationale
- logs/SCAN_LOG.md - Repository scan details
Victor Hub (Central Orchestrator)
├── Core Layer (Cognition)
│ ├── victor_llm - AGI reasoning engine
│ ├── VICTOR-INFINITE - Unlimited memory
│ ├── Victor.AGI - Core AGI functionality
│ └── Quantum-Fractal Mesh - Trainable tensor network (NEW)
│ ├── Phase Embeddings (cos/sin trig lift)
│ ├── Learnable Edge Gates
│ ├── Golden-Ratio Topology
│ └── Memoized DFS Propagation
├── Consciousness Layer (NEW v2.1) [November 2025]
│ └── conscious-river - Stream-based consciousness processing
├── Neural Layer (NEW v2.1) [November 2025]
│ └── brain_ai - Brain simulation with region atlas
├── Reasoning Layer (NEW v2.1) [November 2025]
│ └── LARGE-LANG-WORLD-HYBRID - LLM + World Model
├── Agent Layer (Coordination)
│ ├── NexusForge-2.0- - Agent generation
│ ├── victor_swarm - Swarm coordination
│ └── agi_council - Multi-agent deliberation (NEW v2.1)
├── Skill Layer (Execution)
│ ├── Advanced NLP (VictorSpacy) - NEW
│ │ ├── Named Entity Recognition
│ │ ├── Sentiment Analysis
│ │ ├── Text Summarization
│ │ ├── Keyword Extraction
│ │ └── Linguistic Analysis
│ ├── Content Generation (Song-Bloom, Bando-Fi-AI)
│ ├── Audio/Voice (VictorVoice, audio-gen)
│ ├── Video Generation (THE-PIPE-LINE) - NEW v2.1
│ ├── Sacred Geometry (project-fol) - NEW v2.1
│ ├── Analysis (cryptoAI)
│ └── Meta-Programming (text2app, AGI-GENERATOR)
├── Orchestration
│ └── OMNI-AGI-PIPE - Workflow execution
└── Interactive Layer (NEW)
├── victor_interactive.py - Production runtime
├── Session Management - Persistence & evolution
├── Co-Domination Interface - Human-AI collaboration
└── Visual Integration - Real-time 3D avatar
November 2025 Skills Integration:
- 🌊 ConsciousnessRiverSkill - Unified stream processing from conscious-river
- 🧬 BrainSimulationSkill - Neural modeling from brain_ai
- 🌍 WorldModelHybridSkill - Hybrid reasoning from LARGE-LANG-WORLD-HYBRID
- 👥 AGICouncilSkill - Multi-agent deliberation from agi_council
- 🎬 MusicVideoPipelineSkill - Video generation from THE-PIPE-LINE
- 🌸 FlowerOfLifeSkill - Sacred geometry from project-fol
Quantum-Fractal Integration:
- All text inputs flow through quantum mesh for semantic encoding
- Trainable parameters (W, θ, edge gates) evolve during usage
- Gradient signals track learning progress
- Ablation tests validate non-local cognition
Advanced NLP Integration: (NEW)
- spaCy-powered linguistic analysis and entity recognition
- Optional transformer-based sentiment and summarization
- 8+ core NLP capabilities (NER, sentiment, keywords, POS, etc.)
- Intelligent fallbacks when transformers unavailable
- Production-ready with comprehensive testing
See 02_VICTOR_INTEGRATED_ARCHITECTURE.md for detailed architecture. See NLP_INTEGRATION.md for NLP capabilities and usage.
By integrating multiple repositories with the quantum-fractal cognition layer, Victor Hub unlocks capabilities that don't exist in any single repo:
- Quantum-Enhanced Self-Analysis: Victor analyzing its own codebase through interference patterns
- Phase-Driven Self-Extension: Generating new modules with learned topology guidance
- Gradient-Based Self-Improvement: Optimizing performance via trainable mesh parameters
- Non-Local Autonomous Research: Multi-hop knowledge acquisition through fractal paths
- Interference-Optimized Revenue: Testing monetization strategies with quantum exploration
- Co-Domination Learning: Evolving alongside human collaborators through shared sessions
- Ablation-Validated Cognition: Provable non-local learning via depth/phase/edge tests
- NLP-Powered Understanding: Deep linguistic analysis with entity recognition and sentiment (NEW)
- Multi-Modal Text Processing: Combining quantum cognition with advanced NLP for superior comprehension (NEW)
Victor_Synthetic_Super_Intelligence/
├── README.md # This file - comprehensive documentation
├── INSTALL.md # Installation guide
├── EXAMPLES.md # Usage examples
├── full_demo.py # 🎬 Complete system demonstration (NEW!)
├── install_complete.py # 🚀 Complete system installer
├── install.py # Visual Engine installer
├── install.sh / install.bat # Platform-specific installers
├── victor_interactive.py # 🔥 Production interactive runtime
├── genesis.py # Quantum-fractal hybrid engine
├── unified_core.py # Unified nervous system integration
├── run_victor_complete.sh/.bat # Launch complete system
├── run_victor_hub.sh/.bat # Launch Victor Hub only
├── run_visual_engine.sh/.bat # Launch Visual Engine only
├── run_victor_with_visual.py # Integrated runtime example
├── generate_victor_model.py # 3D model generation
├── 00_REPO_MANIFEST.md # Repository inventory
├── 01_INTERACTION_MAP.md # System interactions
├── 02_VICTOR_INTEGRATED_ARCHITECTURE.md # Architecture details
├── 03_AUTONOMY_AND_EVOLUTION.md # Autonomous capabilities
├── notebooks/ # 📓 Interactive Colab notebooks
│ ├── README.md # Notebook guide
│ ├── 01_Victor_Quick_Start.ipynb # Beginner tutorial
│ ├── 02_Quantum_Fractal_Cognition.ipynb # Quantum mesh deep dive
│ ├── 03_Interactive_Runtime.ipynb # Production interface
│ ├── 04_Advanced_AI_Tensor_Core.ipynb # Autograd tutorial
│ ├── 05_NLP_Integration.ipynb # Language processing
│ ├── 06_Genesis_Engine.ipynb # Genesis walkthrough
│ └── 07_Complete_System_Demo.ipynb # End-to-end demo
├── victor_hub/ # AGI Core
│ ├── victor_boot.py # Hub bootstrap
│ ├── config.yaml # Configuration
│ └── skills/ # Skill modules
│ ├── echo_skill.py
│ ├── content_generator.py
│ ├── nlp_skill.py # NLP capabilities
│ └── research_agent.py
├── advanced_ai/ # Tensor Core & Advanced Systems
│ ├── __init__.py
│ ├── tensor_core.py # Autograd tensor engine
│ ├── holon_omega.py # Holon Omega cognitive system
│ ├── victor_holon_neocortex.py # Neural cortex integration
│ └── README.md # Advanced AI documentation
├── ssi_framework/ # 🏆 SSI Framework (Sovereign Intelligence)
│ ├── README.md
│ ├── 01_core_pillars/ # Causal AI, Neurosymbolic
│ ├── 02_blueprint_protocols/ # 7-phase deployment
│ ├── 03_ciphered_archives/ # Verified papers & repos
│ ├── 04_implementation_forge/ # Ready-to-deploy code
│ ├── 05_hardware_acceleration/ # Lobster, FPGA, Quantum
│ ├── 06_swarm_framework/ # Multi-agent orchestration
│ └── 07_sovereignty_audit/ # Fairness & compliance
├── visual_engine/ # Visual Presence
│ ├── README.md
│ ├── QUICKSTART.md
│ ├── backend/
│ │ ├── victor_visual_server.py # WebSocket server
│ │ └── victor_visual_bridge.py # Hub integration bridge
│ ├── godot_project/ # Godot 4 project
│ │ ├── project.godot
│ │ ├── scenes/
│ │ ├── scripts/
│ │ ├── shaders/
│ │ └── models/
│ │ └── victor_head.glb # 3D model
│ └── models/
│ └── MODEL_SPECIFICATION.md
├── victor_os/ # Victor Operating System
│ ├── README.md
│ ├── kernel.py
│ ├── shell.py
│ └── memory_manager.py
├── logs/ # System logs
│ ├── sessions/ # Session persistence
│ ├── SCAN_LOG.md
│ └── INTEGRATION_NOTES.md
└── tasks/
└── queue.json # Task queue
See individual repository licenses. This integration layer uses components from multiple MASSIVEMAGNETICS repositories.
Built with 🧠 by MASSIVEMAGNETICS
Version 2.1.0-QUANTUM-FRACTAL - November 2025