Skip to content

Musketeer-H2020/MMLL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MMLL: Musketeer Machine Learning Library

Installing

pip install git+https://github.com/Musketeer-H2020/MMLL.git

Dependencies

  • six==1.15.0
  • transitions==0.6.9
  • pyparsing==2.3
  • pygraphviz==1.5
  • numpy==1.19.2
  • sklearn==0.0
  • scikit-learn
  • matplotlib
  • tensorflow==2.4.1
  • phe==1.4.0
  • dill==0.3.2
  • tqdm==4.61.0
  • pympler==0.8
  • torchvision==0.8.1
  • pillow==7.2.0
  • skl2onnx==1.8.0
  • sklearn2pmml==0.71.1
  • tf2onnx==1.8.5

Content

The library supports the following Privacy Operation Modes (POMs) and models:

POM1:

  • Kmeans
  • Neural networks
  • Support Vector Machine
  • Federated Budget Support Vector Machine
  • Distributed Support Vector Machine

POM2:

  • Kmeans
  • Neural networks
  • Support Vector Machine
  • Federated Budget Support Vector Machine

POM3:

  • Kmeans
  • Neural networks
  • Support Vector Machine
  • Federated Budget Support Vector Machine

POM4:

  • Linear Regression
  • Logistic Classifier
  • Multiclass Logistic Classifier
  • Clustering Kmeans
  • Kernel Regression
  • Budget Distributed Support Vector Machine

POM5:

  • Linear Regression
  • Logistic Classifier
  • Multiclass Logistic Classifier
  • Clustering Kmeans
  • Kernel Regression
  • Budget Distributed Support Vector Machine
  • Multiclass Budget Distributed Support Vector Machine

POM6:

  • Ridge Regression
  • Logistic Classifier
  • Multiclass Logistic Classifier
  • Clustering Kmeans
  • Kernel Regression
  • Budget Distributed Support Vector Machine
  • Multiclass Budget Distributed Support Vector Machine

Usage

Please, visit the following git repository that contains a collection of demos that illustrate the usage of this library:

MMLL-demo

Installation using Anaconda (Windows and Linux)

  1. Requisites:
  1. Create conda environment:
conda create -n mmll python=3.7 pip
  1. Activate environment:
conda activate mmll
  1. Install dependencies:
pip install git+https://github.com/Musketeer-H2020/MMLL.git

Installation using venv in Linux

Alternatively, you can use Python venv built-in module to create a working environment.

  1. Install Python 3.7:
sudo apt update
sudo apt install software-properties-common
sudo add-apt-repository ppa:deadsnakes/ppa
sudo apt install python3.7
sudo apt-get install python3.7-venv -y
  1. Update pip:
python3.7 -m pip install --upgrade pip
  1. Create virtual environment in your home folder:
cd ~
python3.7 -m venv mmll

Please note: "mmll" is the environment name. You can use whatever name you prefer.

  1. Activate environment and install auxiliary libraries:
source ~/mmll/bin/activate
sudo apt-get install python3.7-dev -y
  1. Install project library:
pip install git+https://github.com/Musketeer-H2020/MMLL.git

Acknowledgement

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 824988. https://musketeer.eu/

About

Musketeer Machine Learning Library

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages