This is an agent integration between bonfires.ai and ASI:One uAgent framework.
Bonfires provides a contextual framework to process unstructured data while the uAgents bring infrastructure for distribution of knowledge and agentic frameworks.
Bonfires is a semantic back end that creates taxonomies for documents and stores them in vector storage. The service can ingest documents and use chunk search to find contextual data for the agent.
pip install -r requirements.txtpython agent.pyThe agent will start and display its address. Note this address for the client configuration.
Edit client.py and update the BONFIRE_AGENT_ADDRESS variable with the address from step 2.
In a new terminal:
python client.pygraph TB
subgraph "uAgent Framework"
UA[User Agent] --> |Chat Messages| BA[Bonfire Agent]
BA --> |Responses| UA
BA --> |Search Queries| UA
end
subgraph "Bonfires.ai Backend"
BA --> |Ingest Content| IC[Ingest Content API]
BA --> |Search| VS[Vector Store Search]
BA --> |Taxonomy| TG[Taxonomy Generation]
IC --> |Store| VDB[(Vector Database<br/>Weaviate)]
VS --> |Query| VDB
TG --> |Labels| VDB
VDB --> |Chunks| CH[Content Chunks]
VDB --> |Embeddings| EM[Vector Embeddings]
VDB --> |Taxonomy| TX[Taxonomy Labels]
end
subgraph "Memory Flow"
UA --> |Chat Output| BA
BA --> |Store in Bonfire| IC
IC --> |Persistent Memory| VDB
VDB --> |Context Retrieval| VS
VS --> |Relevant Context| BA
BA --> |Enhanced Response| UA
end
subgraph "Query Flow"
UA --> |Question| BA
BA --> |Search Request| VS
VS --> |Semantic Search| VDB
VDB --> |Relevant Chunks| VS
VS --> |Search Results| BA
BA --> |Answer| UA
end
style BA fill:#e1f5fe
style VDB fill:#f3e5f5
style UA fill:#e8f5e8
style IC fill:#fff3e0
style VS fill:#fff3e0
style TG fill:#fff3e0
- Ingest: Content is ingested into a bonfire via
/ingest_content - Process: Taxonomy is generated and chunks are labeled
- Store: Content is stored in vector database (Weaviate)
- Query: Semantic search can be performed on stored content
- Retrieve: Relevant chunks can be retrieved for agent responses
- Memory Storage: Use bonfire as persistent memory store for agent conversations
- Context Retrieval: Use vector search to find relevant context for agent responses
- Taxonomy Learning: Leverage taxonomy generation for better content organization
- Job Monitoring: Track long-running operations through job system
See bonfires_api_notes.md for detailed API documentation and investigation notes.
- ✅ Map bonfires API calls and data structure
- ✅ Create an architecture diagram for the integration:
- ✅ Create data store on bonfires
- ✅ Create query flow: infer, search, reply
- ✅ Create memory flow: chat outputs into bonfire, (mailbox processing)
- Deploy uAgent
agent.py- Main uAgent that integrates with bonfires.aiclient.py- Test client for the uAgentrequirements.txt- Python dependenciesbonfires_api_notes.md- API investigation notesarchitecture.md- Detailed architecture documentationREADME.md- This file