Skip to content

Collaborative Data Science Project analyzing gold assay data to identify pathfinder geochemical elements using Python visualization and ML models

License

Notifications You must be signed in to change notification settings

ObayCipher/Gold-Exploration-Data-Science

Repository files navigation

πŸͺ™ Gold Pathfinder ML Project

Data-Driven Gold Exploration Using Geochemical Assay Analysis


🎯 Objective

Apply Python-based data science and visualization techniques to analyze geochemical assay data from a gold exploration program.
The project aims to identify pathfinder elements β€” geochemical indicators that can signal potential gold mineralization zones β€” and demonstrate how open-source tools can support data-driven mineral exploration.


🌍 Program Context

This project fulfills the requirements of the
MIT Emerging Talent – Experiential Learning Opportunity (ELO2),
integrating domain expertise (Geoscience) and computational methods (Data Science) to solve real-world challenges.

The project follows the Collaborative Data Science Project (CDSP) milestone framework, emphasizing structured process, documentation, and reflection.


🧠 Motivation

Traditional gold exploration relies heavily on proprietary mining software and costly fieldwork.
By leveraging Python and open-source data analytics, this project explores how machine learning and geochemical visualization can:

  • Identify multi-element geochemical associations.
  • Detect anomalies and possible gold pathfinders.
  • Reduce exploration cost and time through reproducible analysis.

🧩 Milestone 0 – Cross-Cultural Collaboration

This milestone establishes the foundation of the project:

  • GitHub repository setup and documentation structure.
  • Communication and learning frameworks.
  • Project constraints and planning for future collaboration.

Although the project is currently conducted individually, it is designed to be collaboration-ready, allowing new team members to join at any stage.


πŸ‘€ Current Team

Role Name Background
Team Lead Obay Salih Geoscientist & Data Science Trainee (MIT Emerging Talent, 2025)
Team Member Salih Adam Chemical Engineer & Data Science Trainee (MIT Emerging Talent, 2025)

Potential collaborators welcome for:

  • Data visualization and automation.
  • Machine learning feature analysis.
  • Geospatial data integration.

βš™οΈ Tools & Technologies

Category Tools / Libraries
Programming Python 3.x
Data Handling pandas, numpy
Visualization matplotlib, seaborn, plotly
Geospatial geopandas, folium
Machine Learning scikit-learn
Documentation Markdown, Jupyter Notebooks
Version Control GitHub

🧭 Repository Structure

ELO2_Gold_Pathfinder_Project/
β”‚
β”œβ”€β”€ data/
β”‚ β”œβ”€β”€ raw/ # Original ALS assay data
β”‚ └── processed/ # Cleaned and structured CSV files
β”‚
β”œβ”€β”€ notebooks/
β”‚ β”œβ”€β”€ 01_data_cleaning.ipynb
β”‚ β”œβ”€β”€ 02_exploration.ipynb
β”‚ β”œβ”€β”€ 03_visualization.ipynb
β”‚
β”œβ”€β”€ src/
β”‚ β”œβ”€β”€ data_preparation.py
β”‚ β”œβ”€β”€ visualization.py
β”‚
β”œβ”€β”€ docs/
β”‚ β”œβ”€β”€ group_norms.md
β”‚ β”œβ”€β”€ communication_plan.md
β”‚ β”œβ”€β”€ constraints.md
β”‚ β”œβ”€β”€ learning_goals.md
β”‚ └── meetings/
β”‚ └── meeting_01.md
β”‚
β”œβ”€β”€ reports/
β”‚ β”œβ”€β”€ milestone_0_reflection.md
β”‚ β”œβ”€β”€ milestone_1_problem_identification.md
β”‚ β”œβ”€β”€ milestone_2_data_collection.md β”‚ β”œβ”€β”€ milestone_3_analysis.md
β”‚ β”œβ”€β”€ milestone_4_communication.md
β”‚ └── milestone_5_final_presentation.md
β”‚
β”œβ”€β”€ CONTRIBUTING.md
β”œβ”€β”€ .gitignore
└── README.md


⏱️ Project Timeline (ELO2 Schedule)

Milestone Period (2025) Focus
0️⃣ Cross-Cultural Collaboration Sept 22 – Sept 30 Setup, documentation, collaboration framework
1️⃣ Problem Identification Oct 1 – Oct 12 Define research question & stakeholders
2️⃣ Data Collection Oct 13 – Oct 24 Clean, structure, and document ALS data
3️⃣ Data Analysis Oct 26 – Nov 7 Visualize and analyze geochemical trends
4️⃣ Communicating Results Nov 9 – Nov 22 Create visual story & interpretation summary
5️⃣ Final Presentation Nov 23 – Dec 4 Present findings and reflections

πŸ“š Learning Outcomes

  • Integrate geoscience knowledge with data-driven modeling.
  • Build a reproducible workflow for mining data analysis.
  • Practice open-source collaboration and technical documentation.
  • Develop visualization and storytelling skills for scientific communication.

⚑ Quick Start Guide

1. Clone the Repository

git clone https://github.com/<your-username>/ELO2_Gold_Pathfinder_Project.git
cd ELO2_Gold_Pathfinder_Project

2. Install Dependencies

Create a virtual environment and install required libraries:

python -m venv venv
source venv/bin/activate   # For Linux/Mac
venv\Scripts\activate      # For Windows
pip install -r requirements.txt

3. Launch Jupyter Notebook

jupyter notebook

Open the notebook:

notebook/01_data_cleaning.ipynb

4. Explore the Data

  • Load the ALS assay CSV files from the /data/raw/ directory.
  • Run the data cleaning and visualization notebooks.
  • Save outputs to /data/processed/ and /reports/.

🧩 Future Work

  • Integrate geospatial mapping using GeoPandas and Folium.
  • Train a machine learning model to predict elemental correlations.
  • Develop a dashboard-style visualization for non-technical stakeholders.

πŸ’¬ Acknowledgements

Thanks to the MIT Emerging Talent Program (ELO2, 2025) for providing mentorship, structure, and support in applying data science to real-world domains.


πŸ“« Contact

Obay Salih

  • 🌍 Sudan, China
  • Geoscientist | MIT Emerging Talent (Data Science, 2025)

Obay Salih GitHub Avatar LinkedIn Gmail


Salih Adam

  • 🌍 Sudan, Egypt
  • Chemical Engineer | MIT Emerging Talent (Data Science, 2025)

Salih Adam GitHub Avatar LinkedIn Gmail Small update

About

Collaborative Data Science Project analyzing gold assay data to identify pathfinder geochemical elements using Python visualization and ML models

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •