Apply Python-based data science and visualization techniques to analyze geochemical assay data from a gold exploration program.
The project aims to identify pathfinder elements β geochemical indicators that can signal potential gold mineralization zones β and demonstrate how open-source tools can support data-driven mineral exploration.
This project fulfills the requirements of the
MIT Emerging Talent β Experiential Learning Opportunity (ELO2),
integrating domain expertise (Geoscience) and computational methods (Data Science) to solve real-world challenges.
The project follows the Collaborative Data Science Project (CDSP) milestone framework, emphasizing structured process, documentation, and reflection.
Traditional gold exploration relies heavily on proprietary mining software and costly fieldwork.
By leveraging Python and open-source data analytics, this project explores how machine learning and geochemical visualization can:
- Identify multi-element geochemical associations.
- Detect anomalies and possible gold pathfinders.
- Reduce exploration cost and time through reproducible analysis.
This milestone establishes the foundation of the project:
- GitHub repository setup and documentation structure.
- Communication and learning frameworks.
- Project constraints and planning for future collaboration.
Although the project is currently conducted individually, it is designed to be collaboration-ready, allowing new team members to join at any stage.
| Role | Name | Background |
|---|---|---|
| Team Lead | Obay Salih | Geoscientist & Data Science Trainee (MIT Emerging Talent, 2025) |
| Team Member | Salih Adam | Chemical Engineer & Data Science Trainee (MIT Emerging Talent, 2025) |
Potential collaborators welcome for:
- Data visualization and automation.
- Machine learning feature analysis.
- Geospatial data integration.
| Category | Tools / Libraries |
|---|---|
| Programming | Python 3.x |
| Data Handling | pandas, numpy |
| Visualization | matplotlib, seaborn, plotly |
| Geospatial | geopandas, folium |
| Machine Learning | scikit-learn |
| Documentation | Markdown, Jupyter Notebooks |
| Version Control | GitHub |
ELO2_Gold_Pathfinder_Project/
β
βββ data/
β βββ raw/ # Original ALS assay data
β βββ processed/ # Cleaned and structured CSV files
β
βββ notebooks/
β βββ 01_data_cleaning.ipynb
β βββ 02_exploration.ipynb
β βββ 03_visualization.ipynb
β
βββ src/
β βββ data_preparation.py
β βββ visualization.py
β
βββ docs/
β βββ group_norms.md
β βββ communication_plan.md
β βββ constraints.md
β βββ learning_goals.md
β βββ meetings/
β βββ meeting_01.md
β
βββ reports/
β βββ milestone_0_reflection.md
β βββ milestone_1_problem_identification.md
β βββ milestone_2_data_collection.md
β βββ milestone_3_analysis.md
β βββ milestone_4_communication.md
β βββ milestone_5_final_presentation.md
β
βββ CONTRIBUTING.md
βββ .gitignore
βββ README.md
| Milestone | Period (2025) | Focus |
|---|---|---|
| 0οΈβ£ Cross-Cultural Collaboration | Sept 22 β Sept 30 | Setup, documentation, collaboration framework |
| 1οΈβ£ Problem Identification | Oct 1 β Oct 12 | Define research question & stakeholders |
| 2οΈβ£ Data Collection | Oct 13 β Oct 24 | Clean, structure, and document ALS data |
| 3οΈβ£ Data Analysis | Oct 26 β Nov 7 | Visualize and analyze geochemical trends |
| 4οΈβ£ Communicating Results | Nov 9 β Nov 22 | Create visual story & interpretation summary |
| 5οΈβ£ Final Presentation | Nov 23 β Dec 4 | Present findings and reflections |
- Integrate geoscience knowledge with data-driven modeling.
- Build a reproducible workflow for mining data analysis.
- Practice open-source collaboration and technical documentation.
- Develop visualization and storytelling skills for scientific communication.
git clone https://github.com/<your-username>/ELO2_Gold_Pathfinder_Project.git
cd ELO2_Gold_Pathfinder_ProjectCreate a virtual environment and install required libraries:
python -m venv venv
source venv/bin/activate # For Linux/Mac
venv\Scripts\activate # For Windows
pip install -r requirements.txt
jupyter notebook
Open the notebook:
notebook/01_data_cleaning.ipynb
- Load the ALS assay CSV files from the
/data/raw/directory. - Run the data cleaning and visualization notebooks.
- Save outputs to
/data/processed/and/reports/.
- Integrate geospatial mapping using GeoPandas and Folium.
- Train a machine learning model to predict elemental correlations.
- Develop a dashboard-style visualization for non-technical stakeholders.
Thanks to the MIT Emerging Talent Program (ELO2, 2025) for providing mentorship, structure, and support in applying data science to real-world domains.
- π Sudan, China
- Geoscientist | MIT Emerging Talent (Data Science, 2025)
- π Sudan, Egypt
- Chemical Engineer | MIT Emerging Talent (Data Science, 2025)
