Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
21 commits
Select commit Hold shift + click to select a range
5394658
Final commit: add clinical DICOM preprocessing files, workflow PDF, a…
Hitendrasinhdata7 Dec 14, 2025
aeabbbd
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 14, 2025
24665aa
Add clinical DICOM preprocessing Python module, test module, PDF; rem…
Hitendrasinhdata7 Dec 14, 2025
798f8af
Remove old notebook files after converting to .py modules
Hitendrasinhdata7 Dec 14, 2025
b3a6ac2
Add clinical DICOM preprocessing utilities for CT/MRI with unit tests
Hitendrasinhdata7 Dec 14, 2025
a446448
Update clinical preprocessing utilities and tests per CodeRabbit revi…
Hitendrasinhdata7 Dec 14, 2025
d7f134c
Refactor clinical preprocessing: add custom exceptions, use isinstanc…
Hitendrasinhdata7 Dec 14, 2025
ce7850f
Update clinical preprocessing: add Google-style Returns, parameter ch…
Hitendrasinhdata7 Dec 14, 2025
01b88fa
Fix clinical preprocessing module based on code review feedback
Hitendrasinhdata7 Dec 17, 2025
81b7f5b
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 17, 2025
821fc9a
Complete fix for all critical code review issues
Hitendrasinhdata7 Dec 17, 2025
1a15437
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 17, 2025
d12bd51
Hitendrasinh Rathod <Hitendrasinh.data7@gmail.com>
Hitendrasinhdata7 Dec 17, 2025
634136a
Merge branch 'clinical-dicom-preprocessing' of https://github.com/Hit…
Hitendrasinhdata7 Dec 17, 2025
34a7aa2
Complete fix for all CI and code review issues
Hitendrasinhdata7 Dec 17, 2025
3a493d4
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 17, 2025
2b0f6a7
Add MetaTensor import and return type hint
Hitendrasinhdata7 Dec 17, 2025
f0261b8
Hitendrasinh Rathod <Hitendrasinh.data7@gmail.com>
Hitendrasinhdata7 Dec 17, 2025
1418dcc
Merge branch 'clinical-dicom-preprocessing' of https://github.com/Hit…
Hitendrasinhdata7 Dec 17, 2025
1e68a5a
Fix docstring: add Returns section and correct Raises section formatting
Hitendrasinhdata7 Dec 17, 2025
7030e7d
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 17, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added docs/clinical_dicom_workflow.pdf
Binary file not shown.
Binary file added monai/docs/clinical_dicom_workflow.pdf
Binary file not shown.
96 changes: 96 additions & 0 deletions monai/tests/test_clinical_preprocessing.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
import pytest
from unittest.mock import patch, Mock
from monai.transforms import LoadImage, EnsureChannelFirst, ScaleIntensityRange, NormalizeIntensity
from monai.transforms.clinical_preprocessing import (
get_ct_preprocessing_pipeline,
get_mri_preprocessing_pipeline,
preprocess_dicom_series,
UnsupportedModalityError,
ModalityTypeError,
)


def test_ct_preprocessing_pipeline():
"""Test CT preprocessing pipeline returns expected transform composition and parameters."""
pipeline = get_ct_preprocessing_pipeline()
assert hasattr(pipeline, 'transforms')
assert len(pipeline.transforms) == 3
assert isinstance(pipeline.transforms[0], LoadImage)
assert isinstance(pipeline.transforms[1], EnsureChannelFirst)
assert isinstance(pipeline.transforms[2], ScaleIntensityRange)

# Verify CT-specific HU window parameters
scale_transform = pipeline.transforms[2]
assert scale_transform.a_min == -1000
assert scale_transform.a_max == 400
assert scale_transform.b_min == 0.0
assert scale_transform.b_max == 1.0
assert scale_transform.clip is True

# Verify LoadImage configuration
load_transform = pipeline.transforms[0]
assert load_transform.image_only is True


def test_mri_preprocessing_pipeline():
"""Test MRI preprocessing pipeline returns expected transform composition and parameters."""
pipeline = get_mri_preprocessing_pipeline()
assert hasattr(pipeline, 'transforms')
assert len(pipeline.transforms) == 3
assert isinstance(pipeline.transforms[0], LoadImage)
assert isinstance(pipeline.transforms[1], EnsureChannelFirst)
assert isinstance(pipeline.transforms[2], NormalizeIntensity)

# Verify MRI-specific normalization parameter
normalize_transform = pipeline.transforms[2]
assert normalize_transform.nonzero is True

# Verify LoadImage configuration
load_transform = pipeline.transforms[0]
assert load_transform.image_only is True


def test_preprocess_dicom_series_invalid_modality():
"""Test preprocess_dicom_series raises UnsupportedModalityError for unsupported modality."""
with pytest.raises(UnsupportedModalityError) as exc_info:
preprocess_dicom_series("dummy_path.dcm", "PET")

error_message = str(exc_info.value)
# Check that all required strings are present (separate assertions, no OR operator)
assert "CT" in error_message
assert "MR" in error_message
assert "MRI" in error_message
assert "Unsupported modality" in error_message
assert "PET" in error_message


def test_preprocess_dicom_series_invalid_type():
"""Test preprocess_dicom_series raises ModalityTypeError for non-string modality."""
with pytest.raises(ModalityTypeError, match=r"modality must be a string, got int"):
preprocess_dicom_series("dummy_path.dcm", 123)


@patch("monai.transforms.clinical_preprocessing.get_ct_preprocessing_pipeline")
def test_preprocess_dicom_series_ct(mock_pipeline):
"""Test preprocess_dicom_series successfully runs for CT modality."""
dummy_output = "ct_processed"
mock_pipeline.return_value = Mock(return_value=dummy_output)
result = preprocess_dicom_series("dummy_path.dcm", "CT")
assert result == dummy_output

# Test lowercase and whitespace variants
result2 = preprocess_dicom_series("dummy_path.dcm", " ct ")
assert result2 == dummy_output


@patch("monai.transforms.clinical_preprocessing.get_mri_preprocessing_pipeline")
def test_preprocess_dicom_series_mr(mock_pipeline):
"""Test preprocess_dicom_series successfully runs for MR modality."""
dummy_output = "mr_processed"
mock_pipeline.return_value = Mock(return_value=dummy_output)
result = preprocess_dicom_series("dummy_path.dcm", "MR")
assert result == dummy_output

# Test lowercase and "MRI" variant
result2 = preprocess_dicom_series("dummy_path.dcm", "mri")
assert result2 == dummy_output
114 changes: 114 additions & 0 deletions monai/transforms/clinical_preprocessing.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
"""
Clinical preprocessing transforms for medical imaging data.

This module provides preprocessing pipelines for different medical imaging modalities.
"""

from monai.data import MetaTensor
from monai.transforms import Compose, LoadImage, EnsureChannelFirst, ScaleIntensityRange, NormalizeIntensity
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🟡 Minor

Add return type hint and missing import.

Line 64 lacks a return type annotation. Per past review feedback and coding guidelines, preprocess_dicom_series should return MetaTensor, but the import is missing.

Apply this diff:

+from monai.data import MetaTensor
 from monai.transforms import Compose, LoadImage, EnsureChannelFirst, ScaleIntensityRange, NormalizeIntensity

Then update line 64:

-def preprocess_dicom_series(path: str, modality: str):
+def preprocess_dicom_series(path: str, modality: str) -> MetaTensor:

And update the docstring Returns section (lines 73-74):

     Returns:
-        The preprocessed image data.
+        MetaTensor: The preprocessed image data with metadata.

Also applies to: 64-64

🤖 Prompt for AI Agents
In monai/transforms/clinical_preprocessing.py around line 7 and line 64, add the
missing import for MetaTensor (from monai.data import MetaTensor) and update the
function signature for preprocess_dicom_series to include the return type hint
-> MetaTensor; also update the docstring Returns section (lines ~73-74) to state
that the function returns a MetaTensor instance instead of leaving it
unspecified. Ensure imports are sorted with existing imports and the docstring
phrasing matches the project's style.



class ModalityTypeError(TypeError):
"""Exception raised when modality parameter is not a string."""
pass


class UnsupportedModalityError(ValueError):
"""Exception raised when an unsupported modality is requested."""
pass


def get_ct_preprocessing_pipeline() -> Compose:
"""
Create a preprocessing pipeline for CT (Computed Tomography) images.

Returns:
Compose: A transform composition for CT preprocessing.

The pipeline consists of:
1. LoadImage - Load DICOM series
2. EnsureChannelFirst - Add channel dimension
3. ScaleIntensityRange - Scale Hounsfield Units (HU) from [-1000, 400] to [0, 1]

Note:
The HU window [-1000, 400] is a common soft tissue window.
"""
return Compose([
LoadImage(image_only=True),
EnsureChannelFirst(),
ScaleIntensityRange(a_min=-1000, a_max=400, b_min=0.0, b_max=1.0, clip=True)
])


def get_mri_preprocessing_pipeline() -> Compose:
"""
Create a preprocessing pipeline for MRI (Magnetic Resonance Imaging) images.

Returns:
Compose: A transform composition for MRI preprocessing.

The pipeline consists of:
1. LoadImage - Load DICOM series
2. EnsureChannelFirst - Add channel dimension
3. NormalizeIntensity - Normalize non-zero voxels

Note:
Normalization is applied only to non-zero voxels to avoid bias from background.
"""
return Compose([
LoadImage(image_only=True),
EnsureChannelFirst(),
NormalizeIntensity(nonzero=True)
])


def preprocess_dicom_series(path: str, modality: str) -> MetaTensor:
"""
Preprocess a DICOM series based on the imaging modality.

Args:
path: Path to the DICOM series directory or file.
modality: Imaging modality (case-insensitive). Supported values:
"CT", "MR", "MRI" (MRI is treated as synonym for MR).

Returns:
MetaTensor: The preprocessed image data with metadata.

Raises:
ModalityTypeError: If modality is not a string.
UnsupportedModalityError: If modality is not supported.
"""
# Validate input type
if not isinstance(modality, str):
raise ModalityTypeError(f"modality must be a string, got {type(modality).__name__}")

# Normalize modality string (strip whitespace, convert to uppercase)
modality_clean = modality.strip().upper()

# Map MRI to MR (treat as synonyms)
if modality_clean == "MRI":
modality_clean = "MR"

# Select appropriate preprocessing pipeline
if modality_clean == "CT":
pipeline = get_ct_preprocessing_pipeline()
elif modality_clean == "MR":
pipeline = get_mri_preprocessing_pipeline()
else:
supported = ["CT", "MR", "MRI"]
raise UnsupportedModalityError(
f"Unsupported modality '{modality}'. Supported modalities: {', '.join(supported)}"
)

# Apply preprocessing pipeline
return pipeline(path)


# Export the public API
__all__ = [
"ModalityTypeError",
"UnsupportedModalityError",
"get_ct_preprocessing_pipeline",
"get_mri_preprocessing_pipeline",
"preprocess_dicom_series",
]
Loading