Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/.buildinfo
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: e9f35e7c2ccf2a27c4e13d2571758520
config: 1c6c44e0140fc763c96b46c891ab7a11
tags: 645f666f9bcd5a90fca523b33c5a78b7
Binary file modified docs/.doctrees/environment.pickle
Binary file not shown.
Binary file modified docs/.doctrees/index.doctree
Binary file not shown.
Binary file modified docs/.doctrees/intermediate/compiled_autograd_tutorial.doctree
Binary file not shown.
2 changes: 1 addition & 1 deletion docs/_sources/index.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@

**PyTorch 新增教程**

* `使用自定义的 Triton 内核与 torch.compile <https://pytorch-cn.com/tutorials/recipes/torch_compile_user_defined_triton_kernel_tutorial.html>`__
* `Compiled Autograd: 为 torch.compile 捕获更大的后向图 <https://pytorch-cn.com/tutorials/intermediate/compiled_autograd_tutorial.html>`__
* `通过区域编译减少 torch.compile 冷启动编译时间 <https://pytorch-cn.com/tutorials/recipes/regional_compilation.html>`__
* `使用 Tensor Parallel (TP) 进行大规模 Transformer 模型训练 <https://pytorch-cn.com/tutorials/intermediate/TP_tutorial.html>`__
* `利用半结构化(2:4)稀疏性加速 BERT <https://pytorch-cn.com/tutorials/advanced/semi_structured_sparse.html>`__
Expand Down
9 changes: 3 additions & 6 deletions docs/_sources/intermediate/compiled_autograd_tutorial.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -4,21 +4,18 @@ Compiled Autograd: 为 ``torch.compile`` 捕获更大的后向图

.. grid:: 2

.. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn
.. grid-item-card:: :octicon:`mortar-board;1em;` 你将学到什么
:class-card: card-prerequisites

* How compiled autograd interacts with ``torch.compile``
* How to use the compiled autograd API
* How to inspect logs using ``TORCH_LOGS``
* 编译自动微分如何与 ``torch.compile`` 交互
* 如何使用编译自动微分API
* 如何使用 ``TORCH_LOGS`` 检查日志

.. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites
.. grid-item-card:: :octicon:`list-unordered;1em;` 预备知识
:class-card: card-prerequisites

* PyTorch 2.4
* 完成 `torch.compile介绍` <https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html>`_
* 完成 `torch.compile介绍 <https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html>`_
* 阅读 `开始使用PyTorch 2.x <https://pytorch.org/get-started/pytorch-2.0/>`_ 中的TorchDynamo和AOTAutograd部分

概览
Expand Down
2 changes: 1 addition & 1 deletion docs/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -595,7 +595,7 @@
<h1>欢迎来到 PyTorch 教程<a class="headerlink" href="#pytorch" title="Permalink to this heading">¶</a></h1>
<p><strong>PyTorch 新增教程</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://pytorch-cn.com/tutorials/recipes/torch_compile_user_defined_triton_kernel_tutorial.html">使用自定义的 Triton 内核与 torch.compile</a></p></li>
<li><p><a class="reference external" href="https://pytorch-cn.com/tutorials/intermediate/compiled_autograd_tutorial.html">Compiled Autograd: 为 torch.compile 捕获更大的后向图</a></p></li>
<li><p><a class="reference external" href="https://pytorch-cn.com/tutorials/recipes/regional_compilation.html">通过区域编译减少 torch.compile 冷启动编译时间</a></p></li>
<li><p><a class="reference external" href="https://pytorch-cn.com/tutorials/intermediate/TP_tutorial.html">使用 Tensor Parallel (TP) 进行大规模 Transformer 模型训练</a></p></li>
<li><p><a class="reference external" href="https://pytorch-cn.com/tutorials/advanced/semi_structured_sparse.html">利用半结构化(2:4)稀疏性加速 BERT</a></p></li>
Expand Down
9 changes: 3 additions & 6 deletions docs/intermediate/compiled_autograd_tutorial.html
Original file line number Diff line number Diff line change
Expand Up @@ -599,11 +599,8 @@ <h1>Compiled Autograd: 为 <code class="docutils literal notranslate"><span clas
<div class="sd-card sd-sphinx-override sd-w-100 sd-shadow-sm card-prerequisites docutils">
<div class="sd-card-body docutils">
<div class="sd-card-title sd-font-weight-bold docutils">
<svg version="1.1" width="1.0em" height="1.0em" class="sd-octicon sd-octicon-mortar-board" viewBox="0 0 16 16" aria-hidden="true"><path d="M7.693 1.066a.747.747 0 0 1 .614 0l7.25 3.25a.75.75 0 0 1 0 1.368L13 6.831v2.794c0 1.024-.81 1.749-1.66 2.173-.893.447-2.075.702-3.34.702-.278 0-.55-.012-.816-.036a.75.75 0 0 1 .133-1.494c.22.02.45.03.683.03 1.082 0 2.025-.221 2.67-.543.69-.345.83-.682.83-.832V7.503L8.307 8.934a.747.747 0 0 1-.614 0L4 7.28v1.663c.296.105.575.275.812.512.438.438.688 1.059.688 1.796v3a.75.75 0 0 1-.75.75h-3a.75.75 0 0 1-.75-.75v-3c0-.737.25-1.358.688-1.796.237-.237.516-.407.812-.512V6.606L.443 5.684a.75.75 0 0 1 0-1.368ZM2.583 5 8 7.428 13.416 5 8 2.572ZM2.5 11.25v2.25H4v-2.25c0-.388-.125-.611-.25-.735a.697.697 0 0 0-.5-.203.707.707 0 0 0-.5.203c-.125.124-.25.347-.25.735Z"></path></svg> What you will learn</div>
<svg version="1.1" width="1.0em" height="1.0em" class="sd-octicon sd-octicon-mortar-board" viewBox="0 0 16 16" aria-hidden="true"><path d="M7.693 1.066a.747.747 0 0 1 .614 0l7.25 3.25a.75.75 0 0 1 0 1.368L13 6.831v2.794c0 1.024-.81 1.749-1.66 2.173-.893.447-2.075.702-3.34.702-.278 0-.55-.012-.816-.036a.75.75 0 0 1 .133-1.494c.22.02.45.03.683.03 1.082 0 2.025-.221 2.67-.543.69-.345.83-.682.83-.832V7.503L8.307 8.934a.747.747 0 0 1-.614 0L4 7.28v1.663c.296.105.575.275.812.512.438.438.688 1.059.688 1.796v3a.75.75 0 0 1-.75.75h-3a.75.75 0 0 1-.75-.75v-3c0-.737.25-1.358.688-1.796.237-.237.516-.407.812-.512V6.606L.443 5.684a.75.75 0 0 1 0-1.368ZM2.583 5 8 7.428 13.416 5 8 2.572ZM2.5 11.25v2.25H4v-2.25c0-.388-.125-.611-.25-.735a.697.697 0 0 0-.5-.203.707.707 0 0 0-.5.203c-.125.124-.25.347-.25.735Z"></path></svg> 你将学到什么</div>
<ul class="simple">
<li><p class="sd-card-text">How compiled autograd interacts with <code class="docutils literal notranslate"><span class="pre">torch.compile</span></code></p></li>
<li><p class="sd-card-text">How to use the compiled autograd API</p></li>
<li><p class="sd-card-text">How to inspect logs using <code class="docutils literal notranslate"><span class="pre">TORCH_LOGS</span></code></p></li>
<li><p class="sd-card-text">编译自动微分如何与 <code class="docutils literal notranslate"><span class="pre">torch.compile</span></code> 交互</p></li>
<li><p class="sd-card-text">如何使用编译自动微分API</p></li>
<li><p class="sd-card-text">如何使用 <code class="docutils literal notranslate"><span class="pre">TORCH_LOGS</span></code> 检查日志</p></li>
Expand All @@ -615,10 +612,10 @@ <h1>Compiled Autograd: 为 <code class="docutils literal notranslate"><span clas
<div class="sd-card sd-sphinx-override sd-w-100 sd-shadow-sm card-prerequisites docutils">
<div class="sd-card-body docutils">
<div class="sd-card-title sd-font-weight-bold docutils">
<svg version="1.1" width="1.0em" height="1.0em" class="sd-octicon sd-octicon-list-unordered" viewBox="0 0 16 16" aria-hidden="true"><path d="M5.75 2.5h8.5a.75.75 0 0 1 0 1.5h-8.5a.75.75 0 0 1 0-1.5Zm0 5h8.5a.75.75 0 0 1 0 1.5h-8.5a.75.75 0 0 1 0-1.5Zm0 5h8.5a.75.75 0 0 1 0 1.5h-8.5a.75.75 0 0 1 0-1.5ZM2 14a1 1 0 1 1 0-2 1 1 0 0 1 0 2Zm1-6a1 1 0 1 1-2 0 1 1 0 0 1 2 0ZM2 4a1 1 0 1 1 0-2 1 1 0 0 1 0 2Z"></path></svg> Prerequisites</div>
<svg version="1.1" width="1.0em" height="1.0em" class="sd-octicon sd-octicon-list-unordered" viewBox="0 0 16 16" aria-hidden="true"><path d="M5.75 2.5h8.5a.75.75 0 0 1 0 1.5h-8.5a.75.75 0 0 1 0-1.5Zm0 5h8.5a.75.75 0 0 1 0 1.5h-8.5a.75.75 0 0 1 0-1.5Zm0 5h8.5a.75.75 0 0 1 0 1.5h-8.5a.75.75 0 0 1 0-1.5ZM2 14a1 1 0 1 1 0-2 1 1 0 0 1 0 2Zm1-6a1 1 0 1 1-2 0 1 1 0 0 1 2 0ZM2 4a1 1 0 1 1 0-2 1 1 0 0 1 0 2Z"></path></svg> 预备知识</div>
<ul class="simple">
<li><p class="sd-card-text">PyTorch 2.4</p></li>
<li><p class="sd-card-text">完成 <cite>torch.compile介绍</cite> &lt;<a class="reference external" href="https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html">https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html</a>&gt;`_</p></li>
<li><p class="sd-card-text">完成 <a class="reference external" href="https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html">torch.compile介绍</a></p></li>
<li><p class="sd-card-text">阅读 <a class="reference external" href="https://pytorch.org/get-started/pytorch-2.0/">开始使用PyTorch 2.x</a> 中的TorchDynamo和AOTAutograd部分</p></li>
</ul>
</div>
Expand Down
2 changes: 1 addition & 1 deletion docs/searchindex.js

Large diffs are not rendered by default.

9 changes: 3 additions & 6 deletions intermediate_source/compiled_autograd_tutorial.rst
Original file line number Diff line number Diff line change
Expand Up @@ -4,21 +4,18 @@ Compiled Autograd: 为 ``torch.compile`` 捕获更大的后向图

.. grid:: 2

.. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn
.. grid-item-card:: :octicon:`mortar-board;1em;` 你将学到什么
:class-card: card-prerequisites

* How compiled autograd interacts with ``torch.compile``
* How to use the compiled autograd API
* How to inspect logs using ``TORCH_LOGS``
* 编译自动微分如何与 ``torch.compile`` 交互
* 如何使用编译自动微分API
* 如何使用 ``TORCH_LOGS`` 检查日志

.. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites
.. grid-item-card:: :octicon:`list-unordered;1em;` 预备知识
:class-card: card-prerequisites

* PyTorch 2.4
* 完成 `torch.compile介绍` <https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html>`_
* 完成 `torch.compile介绍 <https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html>`_
* 阅读 `开始使用PyTorch 2.x <https://pytorch.org/get-started/pytorch-2.0/>`_ 中的TorchDynamo和AOTAutograd部分

概览
Expand Down
Loading