best kl = -0.83 [ 0.00287604 0.05722181 0.13267801 0.01365238 -0.12319135 0.11372262 -0.04297739 0.01262963 0.07352702] average: -1.8290530378267873, [ 0.04924645 0.04736446 0.09046513 -0.03631592 -0.05455689 0.08911783, -0.02385015 0.02479539 0.12097145]
best kl -0.3074323277065894 [ 0.0279608 0.04278932 0.13399421 0.02289095 -0.04434892 0.13288633 -0.01862492 0.00964001 0.05832452] average: -1.012017127608849 [ 0.022194 0.05027753 0.10043376 -0.01963008 -0.04812001 0.09452236 -0.03093935 0.01319206 0.09157777]
scores [np.float64(0.8815281749273863), np.float64(0.889955072936398), np.float64(0.9146410798856522), np.float64(0.9153232484390901), np.float64(0.9166270316713886), np.float64(0.9181182841606098), np.float64(0.9185416337450246), np.float64(0.9303997201800137), np.float64(0.93880064346262), np.float64(0.9515211107895102), np.float64(0.9698067773191009), np.float64(0.9718758469370651), np.float64(0.9832462354761783), np.float64(0.9840943306836354), np.float64(0.9858267160398193), np.float64(1.0189825567741226)] average of best k 0.9930374597434389 best mu [ 0.02423896 0.05111898 0.12557382 -0.00520431 0.00344668 0.15214003 -0.00435389 0.00562681 0.14773177] next mu:
Reverse program
def reverse(n0):
t = tbl
while exists(x.):
put(x, t) # put x on t
t = x
put(n0, t)For this program, we need to systematically analyze if t is null for each of its appearence.
reverse: test_reverse_include_tbl.py unstack: test_unstack_single_tower_b0_bottom_exists_top.py stack: test_stack_37.py (consistent with the stack function in the highlevel verification doc)