๐ Stock Prediction
๐ฎ Predicting Stock Prices Using Machine Learning & Deep Learning Techniques
โจ Overview
This project is designed to analyze historical stock market data and predict future stock prices. By leveraging Python, ML/DL models, and visualization tools, we aim to uncover trends and insights for better financial decision-making.
๐ Project Structure
๐ฆ Stock-Prediction
โฃ ๐ README.md # Project documentation
โฃ ๐ requirements.txt # Dependencies
โฃ ๐ app.py # Streamlit demo app
โฃ ๐ stock_prediction.ipynb # Jupyter Notebook for analysis
โฃ ๐ data/ # Dataset folder
โฃ ๐ models/ # Saved trained models
โฃ ๐ results/ # Graphs & predictions
โฃ ๐ src/ # Source code (utils, preprocessing, models)
โ๏ธ Installation
1๏ธโฃ Clone This Repository
git clone https://github.com/your-username/Stock-Prediction.git
cd Stock-Prediction
2๏ธโฃ Create and Activate a Virtual Environment (optional but recommended)
python -m venv venv
source venv/bin/activate # On Linux/Mac
venv\Scripts\activate # On Windows
3๏ธโฃ Install Dependencies pip install -r requirements.txt
4๏ธโฃ Run Jupyter Notebook jupyter notebook
5๏ธโฃ Launch the Demo App ๐ streamlit run app.py
๐ Dataset
๐ Source: Yahoo Finance / Kaggle Stock Dataset ๐ Features Used:
๐ข Open
๐ด High
๐ต Low
โซ Close
๐ Volume
๐ง Models Implemented ๐ค Machine Learning
Linear Regression
Random Forest
XGBoost
๐งฎ Deep Learning
LSTM (Long Short-Term Memory)
GRU (Gated Recurrent Units)
๐ Evaluation Metrics
RMSE (Root Mean Squared Error)
MAE (Mean Absolute Error)
Rยฒ Score
๐ Results & Visualizations
โ Actual vs. Predicted Stock Prices Plotted โ Model Performance Comparison Charts โ Insights on the Most Accurate Algorithms
๐ฏ Future Enhancements
โจ Add Real-Time Stock Prediction Using APIs โจ Integrate Sentiment Analysis from Financial News โจ Explore Transformer-Based Deep Learning Models
๐ค Contributing
๐ก Pull Requests Are Welcome! ๐ข For major changes, please open an issue first to discuss what you would like to change.
๐ Relevant Tags
stock-market-forecasting
financial-time-series
predictive-modeling
supervised-learning
regression-analysis
neural-networks (if DL is used)
quantitative-finance
algorithmic-trading
feature-engineering