Production-ready Python SDK for FAIM (Foundation AI Models) - a unified platform for time-series forecasting and tabular inference powered by foundation models.
- 🚀 Multiple Foundation Models:
- Time-Series: FlowState, Amazon Chronos 2.0, TiRex
- Tabular: LimiX (classification & regression)
- 🔒 Type-Safe API: Full type hints with Pydantic validation
- ⚡ High Performance: Optimized Apache Arrow serialization with zero-copy operations
- 🎯 Probabilistic & Deterministic: Point forecasts, quantiles, samples, and probabilistic predictions
- 🔄 Async Support: Built-in async/await support for concurrent requests
- 📊 Rich Error Handling: Machine-readable error codes with detailed diagnostics
- 🧪 Battle-Tested: Production-ready with comprehensive error handling
pip install faim-sdkGet your API key at https://faim.it.com/
from faim_sdk import ForecastClient
# Initialize client with your API key
client = ForecastClient(api_key="your-api-key")import numpy as np
from faim_sdk import ForecastClient, Chronos2ForecastRequest
# Initialize client
client = ForecastClient(api_key="your-api-key")
# Prepare your time-series data
# Shape: (batch_size, sequence_length, features)
data = np.random.randn(32, 100, 1).astype(np.float32)
# Create probabilistic forecast request
request = Chronos2ForecastRequest(
x=data,
horizon=24, # Forecast 24 steps ahead
output_type="quantiles",
quantiles=[0.1, 0.5, 0.9] # 10th, 50th (median), 90th percentiles
)
# Generate forecast - model inferred automatically from request type
response = client.forecast(request)
# Access predictions
print(response.quantiles.shape) # (32, 24, 3, 1)
print(response.metadata) # Model version, inference time, etc.All time-series models require 3D input arrays:
# Shape: (batch_size, sequence_length, features)
x = np.array([
[[1.0], [2.0], [3.0]], # Series 1
[[4.0], [5.0], [6.0]] # Series 2
]) # Shape: (2, 3, 1)- batch_size: Number of independent time series
- sequence_length: Historical data points (context window)
- features: Number of variables per time step (use 1 for univariate)
Important: 2D input will raise a validation error. Always provide 3D arrays.
Tabular models require 2D input arrays:
# Shape: (n_samples, n_features)
X_train = np.array([
[1.0, 2.0, 3.0], # Sample 1
[4.0, 5.0, 6.0], # Sample 2
]) # Shape: (2, 3)- n_samples: Number of training/test samples
- n_features: Number of input features per sample
Point Forecasts (3D):
response.point # Shape: (batch_size, horizon, features)Quantile Forecasts (4D):
response.quantiles # Shape: (batch_size, horizon, num_quantiles, features)
# Example: (32, 24, 5, 1) = 32 series, 24 steps ahead, 5 quantiles, 1 featurePredictions (1D):
response.predictions # Shape: (n_samples,)
# Classification: class labels or indices
# Regression: continuous valuesClassification Probabilities (2D):
response.probabilities # Shape: (n_samples, n_classes) - classification only
# Probability for each class- Chronos2: ✅ Supports multivariate forecasting (multiple features)
- FlowState:
⚠️ Univariate only - automatically transforms multivariate input - TiRex:
⚠️ Univariate only - automatically transforms multivariate input
Choose your client and model based on your task:
| Task | Client | Models | Input | Output |
|---|---|---|---|---|
| Time-Series Forecasting | ForecastClient |
FlowState, Chronos2, TiRex | 3D: (batch, seq_len, features) |
3D/4D point/quantiles |
| Tabular Classification | TabularClient |
LimiX | 2D: (n_samples, n_features) |
1D predictions + 2D probabilities |
| Tabular Regression | TabularClient |
LimiX | 2D: (n_samples, n_features) |
1D continuous predictions |
from faim_sdk import FlowStateForecastRequest
request = FlowStateForecastRequest(
x=data,
horizon=24,
model_version="latest",
output_type="point",
scale_factor=1.0, # Optional: normalization factor, for details check: https://huggingface.co/ibm-granite/granite-timeseries-flowstate-r1
prediction_type="mean" # Options: "mean", "median"
)
response = client.forecast(request)
print(response.point.shape) # (batch_size, 24, features)from faim_sdk import Chronos2ForecastRequest
# Quantile-based probabilistic forecast
request = Chronos2ForecastRequest(
x=data,
horizon=24,
output_type="quantiles",
quantiles=[0.05, 0.25, 0.5, 0.75, 0.95] # Full distribution
)
response = client.forecast(request)
print(response.quantiles.shape) # (batch_size, 24, 5)from faim_sdk import TiRexForecastRequest
request = TiRexForecastRequest(
x=data,
horizon=24,
output_type="point"
)
response = client.forecast(request)
print(response.point.shape) # (batch_size, 24, features)The SDK also supports LimiX, a foundation model for tabular classification and regression:
from faim_sdk import TabularClient, LimiXPredictRequest
import numpy as np
# Initialize tabular client
client = TabularClient(api_key="your-api-key")
# Prepare tabular data (2D arrays)
X_train = np.random.randn(100, 10).astype(np.float32)
y_train = np.random.randint(0, 2, 100).astype(np.float32)
X_test = np.random.randn(20, 10).astype(np.float32)
# Create classification request
request = LimiXPredictRequest(
X_train=X_train,
y_train=y_train,
X_test=X_test,
task_type="Classification", # or "Regression"
use_retrieval=False # Set to True for retrieval-augmented inference
)
# Generate predictions
response = client.predict(request)
print(response.predictions.shape) # (20,)
print(response.probabilities.shape) # (20, n_classes) - classification onlyfrom sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
# Load dataset
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42)
# Convert to float32
X_train = X_train.astype(np.float32)
X_test = X_test.astype(np.float32)
y_train = y_train.astype(np.float32)
# Create and send request
request = LimiXPredictRequest(
X_train=X_train,
y_train=y_train,
X_test=X_test,
task_type="Classification"
)
response = client.predict(request)
# Evaluate
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(y_test, response.predictions.astype(int))
print(f"Accuracy: {accuracy:.4f}")from sklearn.datasets import fetch_california_housing
# Load dataset
house_data = fetch_california_housing()
X, y = house_data.data, house_data.target
# Split data (50/50 for demo)
split_idx = len(X) // 2
X_train, X_test = X[:split_idx].astype(np.float32), X[split_idx:].astype(np.float32)
y_train, y_test = y[:split_idx].astype(np.float32), y[split_idx:].astype(np.float32)
# Create and send request
request = LimiXPredictRequest(
X_train=X_train,
y_train=y_train,
X_test=X_test,
task_type="Regression"
)
response = client.predict(request)
# Evaluate
from sklearn.metrics import mean_squared_error
rmse = np.sqrt(mean_squared_error(y_test, response.predictions))
print(f"RMSE: {rmse:.4f}")For better accuracy on small datasets, enable retrieval-augmented inference:
request = LimiXPredictRequest(
X_train=X_train,
y_train=y_train,
X_test=X_test,
task_type="Classification",
use_retrieval=True # Enable RAI (slower but more accurate)
)
response = client.predict(request)Time-series forecasts return a ForecastResponse object with predictions and metadata:
response = client.forecast(request)
# Access predictions based on output_type
if response.point is not None:
predictions = response.point # Shape: (batch_size, horizon, features)
if response.quantiles is not None:
quantiles = response.quantiles # Shape: (batch_size, horizon, num_quantiles)
# Lower quantiles for uncertainty bounds
lower_bound = quantiles[:, :, 0] # 10th percentile
median = quantiles[:, :, 1] # 50th percentile (median)
upper_bound = quantiles[:, :, 2] # 90th percentile
if response.samples is not None:
samples = response.samples # Shape: (batch_size, horizon, num_samples)
# Access metadata
print(response.metadata)
# {'model_name': 'chronos2', 'model_version': '1.0', 'inference_time_ms': 123}The SDK provides error codes for robust error handling:
from faim_sdk import (
ForecastClient,
Chronos2ForecastRequest,
ValidationError,
AuthenticationError,
RateLimitError,
ModelNotFoundError,
ErrorCode
)
try:
request = Chronos2ForecastRequest(x=data, horizon=24, quantiles=[0.1, 0.5, 0.9])
response = client.forecast(request)
except AuthenticationError as e:
# Handle authentication failures (401, 403)
print(f"Authentication failed: {e.message}")
print(f"Request ID: {e.error_response.request_id}")
except ValidationError as e:
# Handle invalid request parameters (422)
if e.error_code == ErrorCode.INVALID_SHAPE:
print(f"Shape error: {e.error_response.detail}")
# Fix shape and retry
elif e.error_code == ErrorCode.MISSING_REQUIRED_FIELD:
print(f"Missing field: {e.error_response.detail}")
except RateLimitError as e:
# Handle rate limiting (429)
print("Rate limit exceeded - implementing exponential backoff")
retry_after = e.error_response.metadata.get('retry_after', 60)
time.sleep(retry_after)
except ModelNotFoundError as e:
# Handle model/version not found (404)
print(f"Model not found: {e.message}")FAIMError (base)
├── APIError
│ ├── AuthenticationError (401, 403)
│ ├── InsufficientFundsError (402)
│ ├── ModelNotFoundError (404)
│ ├── PayloadTooLargeError (413)
│ ├── ValidationError (422)
│ ├── RateLimitError (429)
│ ├── InternalServerError (500)
│ └── ServiceUnavailableError (503, 504)
├── NetworkError
├── SerializationError
├── TimeoutError
└── ConfigurationError
The SDK supports async operations for concurrent requests:
import asyncio
from faim_sdk import ForecastClient, Chronos2ForecastRequest
async def forecast_multiple_series():
client = ForecastClient(
api_key="your-api-key"
)
# Create multiple requests
requests = [
Chronos2ForecastRequest(x=data1, horizon=24),
Chronos2ForecastRequest(x=data2, horizon=24),
Chronos2ForecastRequest(x=data3, horizon=24),
]
# Execute concurrently
async with client:
tasks = [
client.forecast_async(req)
for req in requests
]
responses = await asyncio.gather(*tasks)
return responses
# Run async forecasts
responses = asyncio.run(forecast_multiple_series())See the examples/ directory for complete Jupyter notebook examples:
toy_example.ipynb- Get started with FAIM and generate both point and probabilistic forecastsairpassengers_dataset.ipynb- End-to-end example with AirPassengers dataset
-
limix_classification_example.ipynb- Binary classification on breast cancer dataset -
limix_regression_example.ipynb- Regression on California housing dataset
- Python >= 3.10
- numpy >= 1.26.0
- pyarrow >= 11.0.0
- httpx >= 0.23.0
- pydantic >= 2.0.0
-
Batch Processing: Process multiple time series in a single request for optimal throughput
# Good: Single request with 32 series data = np.random.randn(32, 100, 1) # Less efficient: 32 separate requests # for series in data: client.forecast(...)
-
Compression: Use
compression="zstd"for large payloads (default, recommended) -
Async for Concurrent Requests: Use
forecast_async()withasyncio.gather()for parallel processing
- Connection Pooling: Reuse client instances across requests instead of creating new ones
- Email: support@faim.it.com
Apache License 2.0 - See LICENSE file for details.
If you use FAIM in your research, please cite:
@software{faim_sdk,
title = {FAIM SDK: Foundation AI Models for Time Series Forecasting},
author = {FAIM Team},
year = {2024},
url = {https://github.com/S-FM/faim-python-client}
}