A Modular, Scalable, Production-Ready Virtual Try-On System powered by Deep Learning, designed to enable users to try clothes virtually using just an image. Powered by DL & vision.
+----------------+ +------------------+ +-----------------+
| User Upload | ---> | Pose Estimation | ---> | Human Parsing |
+----------------+ +------------------+ +-----------------+
| | |
| v v
| +-----------------------+ +------------------+
| | Cloth Warping (TPS) | <-- | Clothing Upload |
| +-----------------------+ +------------------+
| |
v v
+------------------------------------------+
| Fusion & Rendering Module |
+------------------------------------------+
|
v
+-------------------------------+
| Output Final Try-On Result |
+-------------------------------+
Component Technology Used Framework FastAPI (Python) Pose Estimation MediaPipe Pose / HRNet / OpenPose Cloth Segmentation OpenCV (baseline), CIHP Parsing, DeepLabV3+ Warping Engine Thin Plate Spline (TPS), CP-VTON, VITON-HD Fusion Generator TryOnGAN, SPADE, Diffusers (Stable Diffusion) Image I/O OpenCV, NumPy Real-time Support ONNX, TensorFlow Lite, MediaPipe
✅ Upload body and cloth images ✅ Estimate body landmarks ✅ Segment and isolate clothing regions ✅ Wrap clothes using keypoints (TPS) ✅ Fuse cloth realistically using GAN or Diffusion ✅ Save and serve final rendered try-on result ✅ Easily extendable and modular
virtual try on/ ├── app/ │ ├── main.py │ ├── routes/ │ │ ├── upload.py │ │ └── tryon.py │ ├── ml/ │ │ ├── pose_estimator.py │ │ ├── cloth_segmentation.py │ │ ├── cloth_warping.py │ │ ├── fusion.py │ │ └── tryon_pipeline.py │ └── utils/ │ └── image_io.py ├── static/ │ ├── uploads/ │ │ ├── users/ │ │ └── cloths/ │ └── outputs/ ├── models/ │ ├── cihp/ │ ├── viton/ │ └── tryongan/ ├── requirements.txt └── README.md
1️⃣ Clone the Repository
git clone https://github.com/your-username/google-tryon.git cd "your file name"
2️⃣ Create Environment
python -m venv venv venv\Scripts\activate # Windows #source venv/bin/activate # Linux/Mac
3️⃣ Install Dependencies
pip install -r requirements.txt
4️⃣ Start the FastAPI Server
uvicorn app.main:app --reload
Access Swagger UI at: http://localhost:8000/docs
CPU: Intel i7/i9 (8+ cores)
GPU: NVIDIA RTX 3060/4060 or higher
RAM: 16GB+
Disk: 10GB+ free (for model weights)
Python: 3.10.x
~ Satyabrat Sahu