Want to figure out what a good prompt might be to describe your training dataset as a whole or perhaps the opposite? The CLIP Interrogator is here to get you answers!
Run Version 2 on Colab!
https://colab.research.google.com/drive/1BhPkF6P-nSU02pJSNbiUhkE3Ch8zMekA
The CLIP Interrogator average is a prompt engineering tool that combines OpenAI's CLIP and Salesforce's BLIP to optimize text prompts to match a given set of images or to provide a negative prompt to help nudge the generation in the right direction. Use the resulting prompts with text-to-image models like Stable Diffusion on DreamStudio to create cool art!
Create and activate a Python virtual environment
python3 -m venv ci_env
(for linux ) source ci_env/bin/activate
(for windows) .\ci_env\Scripts\activateInstall with PIP
# install torch with GPU support for example:
pip3 install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu117
# install clip-interrogator
pip install clip-interrogator==0.5.4
# or for very latest WIP with BLIP2 support
#pip install clip-interrogator==0.6.0
You can then use it in your script
from PIL import Image
from clip_interrogator import Config, Interrogator
image = Image.open(image_path).convert('RGB')
ci = Interrogator(Config(clip_model_name="ViT-L-14/openai"))
print(ci.interrogate(image))CLIP Interrogator uses OpenCLIP which supports many different pretrained CLIP models. For the best prompts for
Stable Diffusion 1.X use ViT-L-14/openai for clip_model_name. For Stable Diffusion 2.0 use ViT-H-14/laion2b_s32b_b79k, for SDXL - ViT-g-14/laion2B-s34B-b88K.
The Config object lets you configure CLIP Interrogator's processing.
clip_model_name: which of the OpenCLIP pretrained CLIP models to usecache_path: path where to save precomputed text embeddingsdownload_cache: when True will download the precomputed embeddings from huggingfacechunk_size: batch size for CLIP, use smaller for lower VRAMquiet: when True no progress bars or text output will be displayed
On systems with low VRAM you can call config.apply_low_vram_defaults() to reduce the amount of VRAM needed (at the cost of some speed and quality). The default settings use about 6.3GB of VRAM and the low VRAM settings use about 2.7GB.
See the run_cli.py and run_gradio.py for more examples on using Config and Interrogator classes.
from clip_interrogator import Config, Interrogator, LabelTable, load_list
from PIL import Image
ci = Interrogator(Config(blip_model_type=None))
image = Image.open(image_path).convert('RGB')
table = LabelTable(load_list('terms.txt'), 'terms', ci)
best_match = table.rank(ci.image_to_features(image), top_count=1)[0]
print(best_match)