A Tutorial Repository for Isaac Sim Replicator for Synthetic Data Generation.
The code is distributed under the CC BY-NC-SA 4.0 License. See LICENSE for more information.
# Copyright (C) 2025-present by ShalikAI. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).Isaac Sim Replicator provides extensions and workflows for synthetic data generation (SDG) using the omni.replicator extension. It supports domain randomizations, sensor simulation, and data collection with annotators and writers. In contrast to omni.replicator, where the typical workflow combines randomization and data capture within a generated OmniGraph workflow, the Isaac Sim Replicator workflow focuses on flexibility by independently triggering randomizations and data captures. This makes it better-suited for nondeterministic scenarios such as simulations and robotics tasks.
Isaac Sim 4.5 installation was tested on Ubuntu 22.04, Nvidia RTX 3060, Cuda 12.4, Python 3.10 and ROS2 Humble.
- First, go through the tutorial for Isaac Sim Installation from here.
First, clone this repo:
git clone https://github.com/ShalikAI/Isaac-Sim-Replicator-Tutorial.git
cd Isaac-Sim-Replicator-Tutorial
cd isaacsim
./isaac-sim.sh
On the upper left corner, click on window and click on script editor. Grab the script editor and release it on the down panel where there are other panels like console, content and Isaac Sim Assets.
This guide outlines a series of example scripts designed to facilitate typical Isaac Sim Replicator workflows.
The examples include both:
- “asynchronous” usage through the Script Editor and
- “synchronous” usage through the Standalone Application.
All the standalone scripts are located inside ~/isaacsim/standalone_examples/replicator/. The directory structure looks like this following:
arghya@arghya-Pulse-GL66-12UEK:~/isaacsim/standalone_examples/replicator$ tree -L 2
.
├── amr_navigation.py
├── augmentation
│ ├── annotator_augmentation.py
│ └── writer_augmentation.py
├── infinigen
│ ├── config
│ ├── infinigen_sdg.py
│ └── infinigen_sdg_utils.py
├── object_based_sdg
│ ├── config
│ ├── object_based_sdg.py
│ └── object_based_sdg_utils.py
├── online_generation
│ ├── generate_shapenet.py
│ ├── shapenet_utils.py
│ ├── train_shapenet.py
│ └── usd_convertor.py
├── pose_generation
│ ├── config
│ ├── flying_distractors
│ ├── __init__.py
│ ├── pose_generation.py
│ └── pose_tests
└── scene_based_sdg
├── config
├── scene_based_sdg.py
└── scene_based_sdg_utils.py
This section introduces configurations typically used in such workflows.
In Replicator, the orchestrator.step() function is used to trigger the entire synthetic data generation (SDG) process, including executing randomizations and capturing data. For Isaac Sim workflows, this function is used solely to trigger data capture only, with randomization triggers assigned to custom events and manually activated.
The step() function has the following signature:
rep.orchestrator.step(rt_subframes: int = -1, pause_timeline: bool = True, delta_time: float = None)
Where:
-
rt_subframes: Specifies the number of subframes to render. A value greater than 0 enables subframe generation, reducing rendering artifacts or allowing materials to load fully. -
pause_timeline: Pauses the timeline (if currently playing) after the step if set toTrue. -
delta_time: Specifies the time to advance the timeline during a step. Defaults to the timeline’s rate ifNone.
More details on graph-based replicator randomizers can be found in the Randomizer Details, and for custom Isaac Sim or USD API-based randomizations, refer to the Isaac Sim Randomizers Guide.
By default, Replicator captures data every frame during playback. For Isaac Sim workflows, data capture is configured to occur at user-defined frames using the step() function. To achieve this, the capture-on-play flag is disabled:
import omni.replicator.core as rep
rep.orchestrator.set_capture_on_play(False)
# OR
import carb.settings
carb.settings.get_settings().set("/omni/replicator/captureOnPlay", False)In scenarios where reducing temporal rendering artifacts is needed, such as ghosting caused by quickly moving or teleporting assets, or under weak lighting conditions, RTSubframes can be used to render the same frame multiple times. This pauses the simulation and renders additional subframes, improving rendering quality.
The rt_subframes parameter is typically set during the capture request in the step() function but can also be configured globally:
# Set the rt_subframes parameter for a specific capture step
rep.orchestrator.step(rt_subframes=4)
# Set the rt_subframes parameter globally
import carb.settings
carb.settings.get_settings().set("/omni/replicator/RTSubframes", 4)Refer to the documentation examples for additional details.
To provide flexibility, replicator randomizers can be triggered independently using custom events. This is achieved by registering the randomizer trigger through trigger.on_custom_event and activating it with utils.send_og_event. For instance, the following example creates a randomization graph for a dome light and randomizes its color. The randomization graph is then triggered manually through its custom event name. The step() function does not trigger this randomization graph.
# Create a randomization graph for creating a dome light and randomizing its color
with rep.trigger.on_custom_event(event_name="randomize_dome_light_color"):
rep.create.light(light_type="Dome", color=rep.distribution.uniform((0, 0, 0), (1, 1, 1)))
# Trigger the randomization graph using its custom event name
rep.utils.send_og_event(event_name="randomize_dome_light_color")An example snippet for custom events is also available here.
Ensuring that all data is fully written to disk before closing the application is essential to prevent data loss. High data throughput, such as from multiple cameras or large resolutions, may introduce I/O bottlenecks; refer to the I/O Optimization Guide for strategies to mitigate such issues.
The wait_until_complete function ensures that all writing tasks are finalized by waiting for the writer backend to complete its operations. This process allows the application to continue updating until all writing tasks are complete, safeguarding against potential data loss.
while not BackendDispatch.is_done_writing():
await omni.kit.app.get_app().next_update_async()Here is an example script for script editor based synthetic data generation:
import omni.replicator.core as rep
with rep.new_layer():
# Create camera
camera = rep.create.camera(position=(0, 0, 500))
render_product = rep.create.render_product(camera, (1024, 1024))
# Create objects
torus = rep.create.torus(semantics=[("class", "torus")], position=(0, -20, 10))
sphere = rep.create.sphere(semantics=[("class", "sphere")], position=(0, 10, 10))
cube = rep.create.cube(semantics=[("class", "cube")], position=(10, -20, 10))
# Trigger per frame
with rep.trigger.on_frame(num_frames=10):
for obj in [torus, sphere, cube]:
with obj:
rep.modify.pose(
position=rep.distribution.uniform((-10, -10, -10), (20, 20, 20)),
rotation=rep.distribution.uniform((0, 0, 0), (360, 360, 360))
)
rep.modify.attribute(
"xformOp:scale",
rep.distribution.uniform((0.1, 0.1, 0.1), (8.0, 8.0, 8.0))
)
Execute the script inside script editor with Run button at the left bottom corner of the Script Editor panel or simple press ctrl+Enter. Then on the right bottom, go to the Synthetic Data Recorder panel and set the output directory and no. of frames (this was set to 10 during this experiement). Hit start at the right bottom corner to start the data generation session.
This will generate data like this:
The output directory will contain:
- RGB (
.png) - Bounding Box 2D (
.npy) - Bounding Box 2D Labels (
.json) - Bounding Box 3D (
.npy) - Bounding Box 3D Labels (
.json) - Bounding Box 3D Prim Paths (
.json) - Instance ID Segmentation (
.png) - Instance ID Segmentation Mapping (
.json) - Instance Segmentation (
.png) - Instance Segmentation Mapping (
.json) - Instance Segmentation Semantic Mapping (
.json) - Normals (
.png) - Motion Vectors (
.npy) - Occlusions (
.npy) - Point Cloud (
.npy) - Point Cloud Instance (
.npy) - Point Cloud Normals (
.npy) - Point Cloud RGB (
.npy) - Point Cloud Semantic (
.npy) - Semantic Segmenation (
.png) - Semantic Segmentation Labels (
.json) - Distance to Image Plane (
.npy) - Distance to Camera (
.npy) - Camera Params (
.json)
If you want to visualize the pointcloud data with .npy format, use this script for xyz point visualization only:
cd scripts
python3 visualize_pointcloud_xyz.py
Use this script for xyzrgba point visualization only:
cd scripts
python3 visualize_pointcloud_xyzrgba.py
This example demonstrates how to use the BasicWriter for data capture with RGB and bounding box annotators. It sets up a scene with a cube and a dome light, attaches semantic labels to the cube, and saves captured data to disk.
./python.sh standalone_examples/api/isaacsim.replicator.examples/sdg_getting_started_01.pyimport asyncio
import os
import omni.replicator.core as rep
import omni.usd
from isaacsim.core.utils.semantics import add_update_semantics
from pxr import Sdf
async def run_example_async():
# Create a new stage and disable capture on play
omni.usd.get_context().new_stage()
rep.orchestrator.set_capture_on_play(False)
# Setup the stage with a dome light and a cube
stage = omni.usd.get_context().get_stage()
dome_light = stage.DefinePrim("/World/DomeLight", "DomeLight")
dome_light.CreateAttribute("inputs:intensity", Sdf.ValueTypeNames.Float).Set(500.0)
cube = stage.DefinePrim("/World/Cube", "Cube")
add_update_semantics(cube, "MyCube")
# Create a render product using the viewport perspective camera
rp = rep.create.render_product("/OmniverseKit_Persp", (512, 512))
# Write data using the basic writer with the rgb and bounding box annotators
writer = rep.writers.get("BasicWriter")
out_dir = os.getcwd() + "/_out_basic_writer"
print(f"Output directory: {out_dir}")
writer.initialize(output_dir=out_dir, rgb=True, bounding_box_2d_tight=True)
writer.attach(rp)
# Trigger a data capture request (data will be written to disk by the writer)
for i in range(3):
print(f"Step {i}")
await rep.orchestrator.step_async()
# Destroy the render product to release resources by detaching it from the writer first
writer.detach()
rp.destroy()
# Wait for the data to be written to disk
await rep.orchestrator.wait_until_complete_async()
# Run the example
asyncio.ensure_future(run_example_async())The output directory ~/isaacsim/_out_basic_writer will contain:
- RGB (
.png) - 2D Bounding Box Labels (
.npy) - 2D Bounding Box Labels (
.json)
This example demonstrates data capture:
- Creates a custom writer to access annotator data:
- camera parameters
- 3D bounding boxes
- It configures:
- two cameras (custom and viewport perspective),
- uses annotators to access data directly
- writes data to disk using PoseWriter.
./python.sh standalone_examples/api/isaacsim.replicator.examples/sdg_getting_started_02.pyimport asyncio
import os
import omni.replicator.core as rep
import omni.usd
from isaacsim.core.utils.semantics import add_update_semantics
from omni.replicator.core import Writer
from pxr import Sdf, UsdGeom
# Create a custom writer to access the annotator data
class MyWriter(Writer):
def __init__(self, camera_params: bool = True, bounding_box_3d: bool = True):
# Organize data from render product perspective (legacy, annotator, renderProduct)
self.data_structure = "renderProduct"
if camera_params:
self.annotators.append(rep.annotators.get("camera_params"))
if bounding_box_3d:
self.annotators.append(rep.annotators.get("bounding_box_3d"))
self._frame_id = 0
def write(self, data):
print(f"[MyWriter][{self._frame_id}] data:{data}")
self._frame_id += 1
# Register the writer for use
rep.writers.register_writer(MyWriter)
async def run_example_async():
# Create a new stage and disable capture on play
omni.usd.get_context().new_stage()
rep.orchestrator.set_capture_on_play(False)
# Setup stage
stage = omni.usd.get_context().get_stage()
dome_light = stage.DefinePrim("/World/DomeLight", "DomeLight")
dome_light.CreateAttribute("inputs:intensity", Sdf.ValueTypeNames.Float).Set(500.0)
cube = stage.DefinePrim("/World/Cube", "Cube")
add_update_semantics(cube, "MyCube")
# Capture from two perspectives, a custom camera and the viewport perspective camera
camera = stage.DefinePrim("/World/Camera", "Camera")
UsdGeom.Xformable(camera).AddTranslateOp().Set((0, 0, 20))
# Create the render products
rp_cam = rep.create.render_product(camera.GetPath(), (400, 400), name="camera_view")
rp_persp = rep.create.render_product("/OmniverseKit_Persp", (512, 512), name="perspective_view")
# Use the annotators to access the data directly, each annotator is attached to a render product
rgb_annotator_cam = rep.annotators.get("rgb")
rgb_annotator_cam.attach(rp_cam)
rgb_annotator_persp = rep.annotators.get("rgb")
rgb_annotator_persp.attach(rp_persp)
# Use the custom writer to access the annotator data
custom_writer = rep.writers.get("MyWriter")
custom_writer.initialize(camera_params=True, bounding_box_3d=True)
custom_writer.attach([rp_cam, rp_persp])
# Use the pose writer to write the data to disk
pose_writer = rep.WriterRegistry.get("PoseWriter")
out_dir = os.getcwd() + "/_out_pose_writer"
print(f"Output directory: {out_dir}")
pose_writer.initialize(output_dir=out_dir, write_debug_images=True)
pose_writer.attach([rp_cam, rp_persp])
# Trigger a data capture request (data will be written to disk by the writer)
for i in range(3):
print(f"Step {i}")
await rep.orchestrator.step_async()
# Get the data from the annotators
rgb_data_cam = rgb_annotator_cam.get_data()
rgb_data_persp = rgb_annotator_persp.get_data()
print(f"[Annotator][Cam][{i}] rgb_data_cam shape: {rgb_data_cam.shape}")
print(f"[Annotator][Persp][{i}] rgb_data_persp shape: {rgb_data_persp.shape}")
# Detach the render products from the annotators and writers and clear them to release resources
pose_writer.detach()
custom_writer.detach()
rgb_annotator_cam.detach()
rgb_annotator_persp.detach()
rp_cam.destroy()
rp_persp.destroy()
# Wait for the data to be written to disk
await rep.orchestrator.wait_until_complete_async()
asyncio.ensure_future(run_example_async())The output directory ~/isaacsim/_out_pose_writer will contain:
- RGB as (
.png) - 3D bounding box annotations (
.png) - 3D bounding box annotations (
.json)
The 3D bounding box annotations are drawn as overlays. The annotator and custom writer data is printed to the terminal.
This example demonstrates creating a custom randomization using Replicator’s graph-based randomizers triggered by custom events and a custom USD API-based randomization. A dome light’s color is randomized through custom events, while a cube’s location is randomized via USD API. Data is captured using the BasicWriter with semantic segmentation.
./python.sh standalone_examples/api/isaacsim.replicator.examples/sdg_getting_started_03.pyimport asyncio
import os
import random
import omni.kit.app
import omni.replicator.core as rep
import omni.usd
from isaacsim.core.utils.semantics import add_update_semantics
from pxr import UsdGeom
# Custom randomizer function using USD API
def randomize_location(prim):
if not prim.GetAttribute("xformOp:translate"):
UsdGeom.Xformable(prim).AddTranslateOp()
translate = prim.GetAttribute("xformOp:translate")
translate.Set((random.uniform(-2, 2), random.uniform(-2, 2), random.uniform(-2, 2)))
async def run_example_async():
# Create a new stage and disable capture on play
omni.usd.get_context().new_stage()
rep.orchestrator.set_capture_on_play(False)
random.seed(42)
rep.set_global_seed(42)
# Setup stage
stage = omni.usd.get_context().get_stage()
cube = stage.DefinePrim("/World/Cube", "Cube")
add_update_semantics(cube, "MyCube")
# Create a replicator randomizer with custom event trigger
with rep.trigger.on_custom_event(event_name="randomize_dome_light_color"):
rep.create.light(light_type="Dome", color=rep.distribution.uniform((0, 0, 0), (1, 1, 1)))
# Create a render product using the viewport perspective camera
rp = rep.create.render_product("/OmniverseKit_Persp", (512, 512))
# Write data using the basic writer with the rgb and bounding box annotators
writer = rep.writers.get("BasicWriter")
out_dir = os.getcwd() + "/_out_basic_writer_rand"
print(f"Output directory: {out_dir}")
writer.initialize(output_dir=out_dir, rgb=True, semantic_segmentation=True, colorize_semantic_segmentation=True)
writer.attach(rp)
# Trigger a data capture request (data will be written to disk by the writer)
for i in range(3):
print(f"Step {i}")
# Trigger the custom event randomizer every other step
if i % 2 == 1:
rep.utils.send_og_event(event_name="randomize_dome_light_color")
# Run the custom USD API location randomizer on the prims
randomize_location(cube)
# Since the replicator randomizer is set to trigger on custom events, step will only trigger the writer
await rep.orchestrator.step_async()
# Destroy the render product to release resources by detaching it from the writer first
writer.detach()
rp.destroy()
# Wait for the data to be written to disk
await rep.orchestrator.wait_until_complete_async()
# Run the example
asyncio.ensure_future(run_example_async())The output directory ~/isaacsim/_out_basic_writer_rand will contain:
- RGB (
.png) - Semantic Segmentation Labels (
.json) - Semantic Segmentation (
.png)
Note that the cube is randomized each capture, while the dome light color is randomized every second capture.
This example shows how to capture simulation data when specific conditions are met:
- A cube and sphere are dropped in a physics simulation, and data is captured at specific intervals based on the cube’s height.
- The timeline is paused during capture to ensure data consistency.
./python.sh standalone_examples/api/isaacsim.replicator.examples/sdg_getting_started_04.pyimport asyncio
import os
import omni.kit.app
import omni.replicator.core as rep
import omni.timeline
import omni.usd
from isaacsim.core.utils.semantics import add_update_semantics
from pxr import Sdf, UsdGeom, UsdPhysics
def add_colliders_and_rigid_body_dynamics(prim):
# Add colliders
if not prim.HasAPI(UsdPhysics.CollisionAPI):
collision_api = UsdPhysics.CollisionAPI.Apply(prim)
else:
collision_api = UsdPhysics.CollisionAPI(prim)
collision_api.CreateCollisionEnabledAttr(True)
# Add rigid body dynamics
if not prim.HasAPI(UsdPhysics.RigidBodyAPI):
rigid_body_api = UsdPhysics.RigidBodyAPI.Apply(prim)
else:
rigid_body_api = UsdPhysics.RigidBodyAPI(prim)
rigid_body_api.CreateRigidBodyEnabledAttr(True)
async def run_example_async():
# Create a new stage and disable capture on play
omni.usd.get_context().new_stage()
rep.orchestrator.set_capture_on_play(False)
# Add a light
stage = omni.usd.get_context().get_stage()
dome_light = stage.DefinePrim("/World/DomeLight", "DomeLight")
dome_light.CreateAttribute("inputs:intensity", Sdf.ValueTypeNames.Float).Set(500.0)
# Create a cube with colliders and rigid body dynamics at a specific location
cube = stage.DefinePrim("/World/Cube", "Cube")
add_colliders_and_rigid_body_dynamics(cube)
if not cube.GetAttribute("xformOp:translate"):
UsdGeom.Xformable(cube).AddTranslateOp()
cube.GetAttribute("xformOp:translate").Set((0, 0, 2))
add_update_semantics(cube, "MyCube")
# Createa a sphere with colliders and rigid body dynamics next to the cube
sphere = stage.DefinePrim("/World/Sphere", "Sphere")
add_colliders_and_rigid_body_dynamics(sphere)
if not sphere.GetAttribute("xformOp:translate"):
UsdGeom.Xformable(sphere).AddTranslateOp()
sphere.GetAttribute("xformOp:translate").Set((-1, -1, 2))
add_update_semantics(sphere, "MySphere")
# Create a render product using the viewport perspective camera
rp = rep.create.render_product("/OmniverseKit_Persp", (512, 512))
# Write data using the basic writer with the rgb and bounding box annotators
writer = rep.writers.get("BasicWriter")
out_dir = os.getcwd() + "/_out_basic_writer_sim"
print(f"Output directory: {out_dir}")
writer.initialize(output_dir=out_dir, rgb=True, semantic_segmentation=True, colorize_semantic_segmentation=True)
writer.attach(rp)
# Start the timeline (will only advance with app update)
timeline = omni.timeline.get_timeline_interface()
timeline.play()
# Update the app and implicitly advance the simulation
drop_delta = 0.5
last_capture_height = cube.GetAttribute("xformOp:translate").Get()[2]
for i in range(100):
# Get the current height of the cube and the distance it dropped since the last capture
await omni.kit.app.get_app().next_update_async()
current_height = cube.GetAttribute("xformOp:translate").Get()[2]
drop_since_last_capture = last_capture_height - current_height
print(f"Step {i}; cube height: {current_height:.3f}; drop since last capture: {drop_since_last_capture:.3f}")
# Stop the simulation if the cube falls below the ground
if current_height < 0:
print(f"\t Cube fell below the ground at height {current_height:.3f}, stopping simulation..")
timeline.pause()
break
# Capture every time the cube drops by the threshold distance
if drop_since_last_capture >= drop_delta:
print(f"\t Capturing at height {current_height:.3f}")
last_capture_height = current_height
# Pause the timeline to capture multiple frames of the same simulation state
timeline.pause()
# Setting delta_time to 0.0 will make sure the step function will not advance the simulation during capture
await rep.orchestrator.step_async(delta_time=0.0)
# Capture again with the cube hidden
UsdGeom.Imageable(cube).MakeInvisible()
await rep.orchestrator.step_async(delta_time=0.0)
UsdGeom.Imageable(cube).MakeVisible()
# Resume the timeline to continue the simulation
timeline.play()
# Destroy the render product to release resources by detaching it from the writer first
writer.detach()
rp.destroy()
# Wait for the data to be written to disk
await rep.orchestrator.wait_until_complete_async()
# Run the example
asyncio.ensure_future(run_example_async())This will generate data like this:
The output directory ~/isaacsim/_out_basic_writer_sim will contain:
- RGB (
.png) - Semantic Segmentation labels (
.json) - Semantic Segmentation (
.png)
Semantic Segmentation has been captured with the captured data at specific simulation times (cube drop height intervals) and the cube hidden during capture. During every second capture with the cube hidden, the timeline will not advance (delta_time=0.0) ensuring the same simulation state can be captured multiple times.
-
Basics and Getting Started
-
SDG Tutorials
- Scene Based Synthetic Dataset Generation
- Object Based Synthetic Dataset Generation
- Environment Based Synthetic Dataset Generation with Infinigen
- Online Generation
- Pose Estimation Synthetic Data Generation
- Training Pose Estimation Model with Synthetic Data
- Randomization in Simulation – AMR Navigation
- Randomization in Simulation – UR10 Palletizing
- Custom Replicator Randomization Nodes
-
Snippets and Features
- Omniverse Replicator Tutorial: Setup Guide for Synthetic Data Generation [video]
- Isaac Sim Installation & Core Functions | "Hello World" of Omniverse Replicator [video]
- Isaac Sim: Replicator - People and Robots [video]
- Isaac Sim: Omniverse Replicator - Synthetic Data Generation (Warehouse with palletjacks) [video]
- NVIDIA Omniverse Replicator - Synthetic Data Generation [video]






























