Skip to content

SuYirouCrystal/ml_geospatial

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 

Repository files navigation

ATeX Image Classification — Result Comparison

This README reports our test-set performance using a lightweight timm model (MobileNetV3 Small) and compares it to Table 1 baselines from the ATeX paper.

Our setup (from task1.ipynb)
Backbone: timm/mobilenetv3_small_100.lamb_in1k · Image Size: 224 · Optimizer: Adam (lr=1e-4) · Epochs: 10 · Split: test for evaluation


Our Test Metrics

Metric Value
Accuracy 84.91%
Macro Precision 84.05%
Macro Recall 83.21%
Macro F1 83.14%

Per-Class Metrics (Test)

Class Precision Recall F1-score Support
delta 0.9403 0.9061 0.9228 330
estuary 0.8730 0.8800 0.8765 125
flood 0.8789 0.7951 0.8349 283
glaciers 0.9234 0.9542 0.9385 240
hot_spring 0.7991 0.8507 0.8241 201
lake 0.6442 0.8758 0.7424 153
pool 0.9394 0.7848 0.8552 79
puddle 0.8376 0.5833 0.6877 168
rapids 0.8502 0.8813 0.8655 219
river 0.7547 0.5479 0.6349 73
sea 0.7769 0.8704 0.8210 108
snow 0.7937 0.8944 0.8411 142
swamp 0.9365 0.9415 0.9390 188
waterfall 0.7812 0.7812 0.7812 96
wetland 0.8788 0.9355 0.9062 93

Overall (from classification report)

Metric Precision Recall F1-score Support
accuracy 0.8491 2498
macro avg 0.8405 0.8321 0.8314 2498
weighted avg 0.8545 0.8491 0.8478 2498

Side-by-Side with Paper Baselines (ATeX Table 1)

The paper’s “Accuracy” column is labeled Accuracy (Val). Our accuracy is measured on the test split. Precision/Recall/F1 are macro metrics.

Network Train Time LR Epochs Accuracy Precision Recall F1
Ours — MobileNetV3 Small (timm) 1.00E-04 10 84.91% (test) 84.05% 83.21% 83.14%
Wide ResNet-50-2 0:06:56 2.50E-04 30 91% 77% 75% 75%
VGG-16 0:04:38 2.50E-04 30 90% 75% 72% 72%
SqueezeNet 1.0 0:00:47 7.50E-04 30 82% 81% 81% 81%
ShuffleNet V2 x1.0 0:01:46 1.00E-02 30 90% 90% 90% 90%
ResNeXt-50-32x4d 0:03:15 2.50E-04 30 90% 77% 75% 75%
ResNet-18 0:01:28 2.50E-04 30 87% 74% 72% 72%
MobileNet V2 0:01:35 2.50E-04 30 88% 74% 72% 72%
GoogLeNet 0:01:51 5.00E-03 30 89% 88% 88% 88%
EfficientNet-B7 0:12:42 1.00E-02 30 90% 91% 91% 91%
EfficientNet-B0 0:02:38 7.50E-03 30 91% 90% 90% 90%
DenseNet-161 0:06:15 2.50E-04 30 91% 81% 79% 79%

Summary: Our quick 10-epoch run achieves 84.91% test accuracy with macro P/R/F1 ≈ 83–84%, surpassing several paper baselines on macro metrics (e.g., VGG-16, ResNet-18, MobileNet V2, WRN-50-2, ResNeXt), and trailing the strongest EfficientNet/ShuffleNet/GoogLeNet results by ~4–6 points in accuracy.

About

ATeX Image Classification — Result Comparison

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published