Transform unstructured RFP documents into structured, priced, ready-to-send proposals — in minutes, not days.
- Overview
- Key Features
- System Architecture
- Tech Stack
- Setup & Installation
- How It Works
- API Endpoints
- File Formats
- Future Enhancements
- Contributors
RFP Velocity is a minimal yet high-impact solution that automates the entire RFP response workflow for FMCG suppliers.
- Reads raw RFP text (from PDF extraction or direct paste)
- Extracts buyer metadata, deadlines, requirements
- Parses line items & quantities accurately
- Matches items to SKUs using hybrid AI (keyword + LLM reasoning)
- Generates pricing using base cost + margin %
- Produces a professional proposal (HTML / PDF / DOCX)
Built to be lightweight, fast, and hackathon-friendly, while delivering real enterprise value.
- Extracts buyer name, deadlines, summary
- Detects mandatory requirements & disqualification rules
- Handles unstructured/messy text
- Identifies product descriptions
- Extracts quantities, pack sizes, units, and remarks
- Works even when RFP tables are poorly formatted
- Token-based lexical matching for high speed
- LLM-powered reasoning for semantic matching
- Confidence scoring for transparency
- Rejects mismatches (ex: beverage ≠ cleaning liquid)
- Reads SKU base cost from CSV
- Applies configurable margin %
- Auto-calculates unit & total pricing
- Ensures consistency across proposals
- Clean corporate HTML layout
- Industry-standard formatting
- Supports HTML / PDF / DOCX export
- Ready for client submission
┌─────────────────┐
│ Frontend │ HTML + CSS + JS
│ (PWA-like) │
└────────┬────────┘
│
▼
┌─────────────────────────┐
│ Backend API │ Express.js
│ - SKU Upload │
│ - RFP Analysis │
│ - Line Item Extraction │
│ - SKU Matching │
│ - Pricing Engine │
│ - Proposal Generation │
└────────┬────────────────┘
│
▼
┌──────────────────────────┐
│ Groq LLM (Llama 3) │
│ - JSON-structured outputs│
│ - Strict prompts │
└──────────────────────────┘
- HTML5
- CSS3
- Vanilla JavaScript
- Clean enterprise UI design
- Zero dependencies
- Node.js
- Express.js
- Multer (CSV upload)
- csv-parse (SKU ingestion)
- Groq API
- OpenAI-compatible endpoints
- Llama-3 models for:
- Metadata extraction
- Line item extraction
- SKU semantic matching
- Proposal formatting
- HTML (default)
- PDF (Puppeteer)
- DOCX (html-to-docx)
git clone https://github.com/yourusername/rfp-velocity.git
cd rfp-velocitynpm installGROQ_API_KEY=your_key_here
PORT=3000
npm starthttp://localhost:3000
System loads:
- skuCode
- name
- description
- packSize
- category
- baseCost
Stored in-memory for matching.
AI extracts:
- Buyer
- Deadline
- Summary
- Requirements
- Disqualification conditions
- Line items
- Hybrid candidate selection
- LLM-powered decision
- Confidence scoring
- Assigns
matchedSkuIdper line item
- Apply margin %
- Auto-calc unit + total price
- Clean HTML output
- Professionally formatted
- Export options:
.html.pdf.docx
Upload SKU catalog.
Extract metadata + line items.
Runs AI SKU matching with Groq.
Generates proposal + pricing.
Download proposal as PDF.
Download proposal as DOCX.
skuCode,name,description,packSize,category,baseCost
LEMON_500,Lemon Soda 500ml PET,Lemon drink,500ml,Beverages,18
Raw text pasted into textarea.
- Clean HTML
- PDF (A4)
- DOCX (Word format)
- PDF parsing support
- Dynamic proposal themes
- Multi-user accounts
- Role-based approvals
- ERP Integration (SAP/Zoho)
- Vendor portal submission automation
- Analytics dashboard
- Fully autonomous RFP agents
- Competitive pricing prediction
- Win-rate optimization
- Tarunya Kesharwani — AI Architecture, Backend, UI/UX, Frontend
Thanks to Groq, Node.js, and open-source contributors enabling rapid AI experimentation.
RFP Velocity demonstrates how Agentic AI can turn long, error-prone RFP workflows into a streamlined, automated, business-winning pipeline.
Feel free to fork, improve, or integrate into real production workflows!