Skip to content

AI-powered RFP → proposal automation for FMCG suppliers. Transforms unstructured RFP text into structured, accurately priced, client-ready proposals using hybrid AI

License

Notifications You must be signed in to change notification settings

TarunyaProgrammer/RFP-ResponseBuilder

Repository files navigation

🚀 RFP Velocity

AI-Powered RFP → Proposal Automation for FMCG Suppliers

Transform unstructured RFP documents into structured, priced, ready-to-send proposals — in minutes, not days.


📘 Table of Contents

  1. Overview
  2. Key Features
  3. System Architecture
  4. Tech Stack
  5. Setup & Installation
  6. How It Works
  7. API Endpoints
  8. File Formats
  9. Future Enhancements
  10. Contributors

⭐ Overview

RFP Velocity is a minimal yet high-impact solution that automates the entire RFP response workflow for FMCG suppliers.

💡 What It Does

  • Reads raw RFP text (from PDF extraction or direct paste)
  • Extracts buyer metadata, deadlines, requirements
  • Parses line items & quantities accurately
  • Matches items to SKUs using hybrid AI (keyword + LLM reasoning)
  • Generates pricing using base cost + margin %
  • Produces a professional proposal (HTML / PDF / DOCX)

Built to be lightweight, fast, and hackathon-friendly, while delivering real enterprise value.


🚀 Key Features

🔍 Intelligent RFP Understanding

  • Extracts buyer name, deadlines, summary
  • Detects mandatory requirements & disqualification rules
  • Handles unstructured/messy text

📦 Line Item Extraction

  • Identifies product descriptions
  • Extracts quantities, pack sizes, units, and remarks
  • Works even when RFP tables are poorly formatted

🎯 SKU Matching (Hybrid Model)

  • Token-based lexical matching for high speed
  • LLM-powered reasoning for semantic matching
  • Confidence scoring for transparency
  • Rejects mismatches (ex: beverage ≠ cleaning liquid)

💸 Automated Pricing Engine

  • Reads SKU base cost from CSV
  • Applies configurable margin %
  • Auto-calculates unit & total pricing
  • Ensures consistency across proposals

📄 Proposal Generation

  • Clean corporate HTML layout
  • Industry-standard formatting
  • Supports HTML / PDF / DOCX export
  • Ready for client submission

🏗 System Architecture

┌─────────────────┐
│   Frontend       │  HTML + CSS + JS
│  (PWA-like)      │
└────────┬────────┘
         │
         ▼
┌─────────────────────────┐
│       Backend API        │ Express.js
│ - SKU Upload             │
│ - RFP Analysis           │
│ - Line Item Extraction   │
│ - SKU Matching           │
│ - Pricing Engine         │
│ - Proposal Generation    │
└────────┬────────────────┘
         │
         ▼
┌──────────────────────────┐
│   Groq LLM (Llama 3)     │
│ - JSON-structured outputs│
│ - Strict prompts         │
└──────────────────────────┘

🛠 Tech Stack

Frontend

  • HTML5
  • CSS3
  • Vanilla JavaScript
  • Clean enterprise UI design
  • Zero dependencies

Backend

  • Node.js
  • Express.js
  • Multer (CSV upload)
  • csv-parse (SKU ingestion)

AI Layer

  • Groq API
  • OpenAI-compatible endpoints
  • Llama-3 models for:
    • Metadata extraction
    • Line item extraction
    • SKU semantic matching
    • Proposal formatting

Proposal Export

  • HTML (default)
  • PDF (Puppeteer)
  • DOCX (html-to-docx)

📦 Setup & Installation

1️⃣ Clone the Repository

git clone https://github.com/yourusername/rfp-velocity.git
cd rfp-velocity

2️⃣ Install Dependencies

npm install

3️⃣ Create .env File

GROQ_API_KEY=your_key_here
PORT=3000

4️⃣ Start the Server

npm start

5️⃣ Open in Browser

http://localhost:3000

🔄 How It Works

Step 1 — Upload SKU Catalog (CSV)

System loads:

  • skuCode
  • name
  • description
  • packSize
  • category
  • baseCost

Stored in-memory for matching.

Step 2 — Paste RFP Raw Text

AI extracts:

  • Buyer
  • Deadline
  • Summary
  • Requirements
  • Disqualification conditions
  • Line items

Step 3 — Run AI Matching

  • Hybrid candidate selection
  • LLM-powered decision
  • Confidence scoring
  • Assigns matchedSkuId per line item

Step 4 — Pricing

  • Apply margin %
  • Auto-calc unit + total price

Step 5 — Proposal Generation

  • Clean HTML output
  • Professionally formatted
  • Export options:
    • .html
    • .pdf
    • .docx

🧬 API Endpoints

POST /api/skus/upload-csv

Upload SKU catalog.

POST /api/rfp/analyze

Extract metadata + line items.

POST /api/rfp/:id/match

Runs AI SKU matching with Groq.

POST /api/rfp/:id/generate

Generates proposal + pricing.

POST /api/rfp/:id/download/pdf

Download proposal as PDF.

POST /api/rfp/:id/download/docx

Download proposal as DOCX.


📁 File Formats

SKU CSV Example:

skuCode,name,description,packSize,category,baseCost
LEMON_500,Lemon Soda 500ml PET,Lemon drink,500ml,Beverages,18

RFP Input

Raw text pasted into textarea.

Proposal Output

  • Clean HTML
  • PDF (A4)
  • DOCX (Word format)

🔮 Future Enhancements

Phase 2

  • PDF parsing support
  • Dynamic proposal themes
  • Multi-user accounts
  • Role-based approvals

Phase 3

  • ERP Integration (SAP/Zoho)
  • Vendor portal submission automation
  • Analytics dashboard

Phase 4

  • Fully autonomous RFP agents
  • Competitive pricing prediction
  • Win-rate optimization

👥 Contributors

  • Tarunya Kesharwani — AI Architecture, Backend, UI/UX, Frontend

🙏 Acknowledgements

Thanks to Groq, Node.js, and open-source contributors enabling rapid AI experimentation.


📣 Final Note

RFP Velocity demonstrates how Agentic AI can turn long, error-prone RFP workflows into a streamlined, automated, business-winning pipeline.

Feel free to fork, improve, or integrate into real production workflows!

About

AI-powered RFP → proposal automation for FMCG suppliers. Transforms unstructured RFP text into structured, accurately priced, client-ready proposals using hybrid AI

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published