Skip to content

VIPL-SLP/XV-SLR_WWW25

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

6 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

Basic Information

This is the fusion stage training and inference of the VIPL-SLP submission for CV-ISLR challenge.

Data Preparation

Download the estimated keypoints, extracted RGB and depth features from Google Drive, and put them under the root of project:

Download the processed information dicts from Google Drive, and put them in the ./data

Feel free to contact us if the link is invalid.

Environment Configuration

conda env create -f environment.yml

Evaluation

Download the pretrained weights from Google Drive and put them in the ./weights

RGB Track

  • For RGB data:
python main.py --config ./configs/test_single_rgb.yaml --load-weights weights/single_rgb.pt

Expected performance: Average Topk-1 : 34.55%

  • For skeleton data:
python main.py --config ./configs/test_single_skeleton.yaml --load-weights weights/sk_phase2.pt

Expected performance: Average Topk-1 : 46.00%

  • For RGB+Skeleton data:
python main.py --config ./configs/test_fusion_rgbd.yaml --load-weights ./weights/fusion_rgbd.pt

Expected performance: Average Topk-1 : 56.87%

RGB-D Track

  • For Depth data:
python main.py --config ./configs/test_single_depth.yaml --load-weights ./weights/single_depth.pt

Expected performance: Average Topk-1 : 28.84%

  • For RGB+Skeleton+Depth data:
python main.py --config ./configs/test_fusion_rgbd.yaml --load-weights ./weights/fusion_rgbd.pt

Expected performance: Average Topk-1 : 57.98%

Training

RGB Track

python main.py --config ./configs/train_fusion_rgb.yaml

RGB-D Track

python main.py --config ./configs/train_fusion_rgbd.yaml

About

๐Ÿ† The 1st Place Solution in the Cross-view ISLR Challenge at WWW 2025

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages