Skip to content

alhussien-ayman/Denoising_4th_orderPDE

Repository files navigation

Authors

Cairo University - Biomedical Engineering Department

  • Ahmed Loay ElSayed
  • Lyan Ahmed Mohsen
  • Sarah Sameh Mohamed
  • Mariam Sherif Mohamed
  • Alhussien Ayman Hanafy

ACO-RFPDE Biopsy Image Denoising

A novel framework for denoising Poisson-corrupted microscopic biopsy images using Ant Colony Optimization and Fourth-Order Partial Differential Equations.

Overview

Removes Poisson noise from lung cancer biopsy images while preserving diagnostic features. Combines ACO optimization with PDE-based filtering and BM3D enhancement.

Key Features:

  • Poisson noise removal with edge preservation
  • Automated parameter tuning via ACO
  • 95%+ accuracy across noise levels 1-8
  • Works on lung and colon cancer biopsies

🚀 Installation Prerequisites :

  • Python 3.7+
  • NumPy
  • SciPy
  • OpenCV
  • Matplotlib
  • scikit-image

Quick Usage

from aco_rfpde import BiopsyDenoiser
import cv2

# Load and denoise image
denoiser = BiopsyDenoiser()
noisy_image = cv2.imread('noisy_biopsy.jpg')
denoised = denoiser.denoise(noisy_image, noise_level=4)
enhanced = denoiser.enhance_bm3d(denoised)

cv2.imwrite('result.jpg', enhanced)

Results

Visual Results

Benign Lung Tissues

Benign Lung Benign Lung

Performance Metrics

Benign Lung Tissues

Noise Level Stage PSNR SSIM MSE NAE CC UQI
4 Noisy 13.348 0.084 0.046 0.239 0.506 0.440
4 PDE Denoised 21.534 0.306 0.007 0.090 0.847 0.837
4 BM3D Enhanced 31.527 0.901 0.001 0.030 0.988 0.987
6 Noisy 5.296 0.014 0.296 0.630 0.166 0.092
6 PDE Denoised 21.508 0.334 0.007 0.097 0.869 0.859
6 BM3D Enhanced 27.922 0.905 0.002 0.049 0.989 0.988

Lung Adenocarcinomas

Noise Level Stage PSNR SSIM MSE NAE CC UQI
4 Noisy 13.387 0.094 0.046 0.287 0.439 0.355
4 PDE Denoised 21.862 0.365 0.007 0.107 0.799 0.779
4 BM3D Enhanced 31.764 0.859 0.001 0.034 0.975 0.972
6 Noisy 5.663 0.016 0.274 0.782 0.145 0.070
6 PDE Denoised 22.146 0.403 0.006 0.119 0.832 0.816
6 BM3D Enhanced 29.077 0.865 0.001 0.049 0.977 0.976

Lung Squamous Cell Carcinomas

Noise Level Stage PSNR SSIM MSE NAE CC UQI
4 Noisy 13.444 0.062 0.045 0.299 0.397 0.302
4 PDE Denoised 21.710 0.271 0.006 0.115 0.755 0.726
4 BM3D Enhanced 32.926 0.874 0.001 0.031 0.977 0.974
6 Noisy 5.742 0.010 0.269 0.820 0.129 0.055
6 PDE Denoised 21.185 0.270 0.008 0.146 0.765 0.735
6 BM3D Enhanced 28.773 0.871 0.001 0.055 0.978 0.975

Performance Graphs

Performance Metrics Comparison Line plots showing PSNR, SSIM, MSE, NAE, CC, and UQI improvements across processing stages

Key Metrics Explanation

  • PSNR: Peak Signal-to-Noise Ratio (higher = better)
  • SSIM: Structural Similarity Index (closer to 1 = better)
  • MSE: Mean Squared Error (lower = better)
  • NAE: Normalized Absolute Error (lower = better)
  • CC: Correlation Coefficient (closer to 1 = better)
  • UQI: Universal Quality Index (closer to 1 = better)

Dataset

Uses LC25000 dataset with lung and colon cancer histopathological images.

Citation

@article{elsayed2024denoising,
  title={Denoising Of Poisson-Corrupted Biopsy Images},
  author={ElSayed, Ahmed Loay and Mohsen, Lyan Ahmed and Mohamed, Sarah Sameh and Mohamed, Mariam Sherif and Hanafy, Alhussien Ayman},
  journal={Cairo University},
  year={2024}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages