Cairo University - Biomedical Engineering Department
- Ahmed Loay ElSayed
- Lyan Ahmed Mohsen
- Sarah Sameh Mohamed
- Mariam Sherif Mohamed
- Alhussien Ayman Hanafy
A novel framework for denoising Poisson-corrupted microscopic biopsy images using Ant Colony Optimization and Fourth-Order Partial Differential Equations.
Removes Poisson noise from lung cancer biopsy images while preserving diagnostic features. Combines ACO optimization with PDE-based filtering and BM3D enhancement.
Key Features:
- Poisson noise removal with edge preservation
- Automated parameter tuning via ACO
- 95%+ accuracy across noise levels 1-8
- Works on lung and colon cancer biopsies
- Python 3.7+
- NumPy
- SciPy
- OpenCV
- Matplotlib
- scikit-image
from aco_rfpde import BiopsyDenoiser
import cv2
# Load and denoise image
denoiser = BiopsyDenoiser()
noisy_image = cv2.imread('noisy_biopsy.jpg')
denoised = denoiser.denoise(noisy_image, noise_level=4)
enhanced = denoiser.enhance_bm3d(denoised)
cv2.imwrite('result.jpg', enhanced)| Noise Level | Stage | PSNR | SSIM | MSE | NAE | CC | UQI |
|---|---|---|---|---|---|---|---|
| 4 | Noisy | 13.348 | 0.084 | 0.046 | 0.239 | 0.506 | 0.440 |
| 4 | PDE Denoised | 21.534 | 0.306 | 0.007 | 0.090 | 0.847 | 0.837 |
| 4 | BM3D Enhanced | 31.527 | 0.901 | 0.001 | 0.030 | 0.988 | 0.987 |
| 6 | Noisy | 5.296 | 0.014 | 0.296 | 0.630 | 0.166 | 0.092 |
| 6 | PDE Denoised | 21.508 | 0.334 | 0.007 | 0.097 | 0.869 | 0.859 |
| 6 | BM3D Enhanced | 27.922 | 0.905 | 0.002 | 0.049 | 0.989 | 0.988 |
| Noise Level | Stage | PSNR | SSIM | MSE | NAE | CC | UQI |
|---|---|---|---|---|---|---|---|
| 4 | Noisy | 13.387 | 0.094 | 0.046 | 0.287 | 0.439 | 0.355 |
| 4 | PDE Denoised | 21.862 | 0.365 | 0.007 | 0.107 | 0.799 | 0.779 |
| 4 | BM3D Enhanced | 31.764 | 0.859 | 0.001 | 0.034 | 0.975 | 0.972 |
| 6 | Noisy | 5.663 | 0.016 | 0.274 | 0.782 | 0.145 | 0.070 |
| 6 | PDE Denoised | 22.146 | 0.403 | 0.006 | 0.119 | 0.832 | 0.816 |
| 6 | BM3D Enhanced | 29.077 | 0.865 | 0.001 | 0.049 | 0.977 | 0.976 |
| Noise Level | Stage | PSNR | SSIM | MSE | NAE | CC | UQI |
|---|---|---|---|---|---|---|---|
| 4 | Noisy | 13.444 | 0.062 | 0.045 | 0.299 | 0.397 | 0.302 |
| 4 | PDE Denoised | 21.710 | 0.271 | 0.006 | 0.115 | 0.755 | 0.726 |
| 4 | BM3D Enhanced | 32.926 | 0.874 | 0.001 | 0.031 | 0.977 | 0.974 |
| 6 | Noisy | 5.742 | 0.010 | 0.269 | 0.820 | 0.129 | 0.055 |
| 6 | PDE Denoised | 21.185 | 0.270 | 0.008 | 0.146 | 0.765 | 0.735 |
| 6 | BM3D Enhanced | 28.773 | 0.871 | 0.001 | 0.055 | 0.978 | 0.975 |
Line plots showing PSNR, SSIM, MSE, NAE, CC, and UQI improvements across processing stages
- PSNR: Peak Signal-to-Noise Ratio (higher = better)
- SSIM: Structural Similarity Index (closer to 1 = better)
- MSE: Mean Squared Error (lower = better)
- NAE: Normalized Absolute Error (lower = better)
- CC: Correlation Coefficient (closer to 1 = better)
- UQI: Universal Quality Index (closer to 1 = better)
Uses LC25000 dataset with lung and colon cancer histopathological images.
@article{elsayed2024denoising,
title={Denoising Of Poisson-Corrupted Biopsy Images},
author={ElSayed, Ahmed Loay and Mohsen, Lyan Ahmed and Mohamed, Sarah Sameh and Mohamed, Mariam Sherif and Hanafy, Alhussien Ayman},
journal={Cairo University},
year={2024}
}
