EasyGrad is now available via pip and it is the easiest way to use it. To install easyGrad via pip
pip install easyGradTo install it from source, clone this repository and run
python setup.py installThis library aims to provide an easy implementation of doing symbolic operations in python
- exp(x) and log(x)
def testOps():
x = Integer('x')
y = ops.log(x)
z = ops.exp(y)
graph = GradGraph(z)
graph.getOutput({x: 1})
graph.getGradients(wrt=x)
print x.gradient- Sigmoid(x)
def activ_fns():
x = Double('x')
z = ops.sigmoid(x)
graph = GradGraph(z)
graph.getOutput({x: 110.5})
graph.getGradients(wrt=x)
print x.gradient- Tanh(x)
def activ_fns():
x = Double('x')
z = ops.tanh(x)
graph = GradGraph(z)
graph.getOutput({x: 110.5})
graph.getGradients(wrt=x)
print x.gradientdef gradTestSimple():
a = Integer("a")
b = Integer("b")
c = a + b
d = b + 6
e = c * d
graph = GradGraph(e)
graph.getOutput({a: 32,
b: 11})
graph.getGradients(wrt=b)
print a.gradient, b.gradient def gradTest():
x = Integer("Int1x")
y = Integer("Int2y")
z = Integer("Int3z")
p = Integer("Int4p")
k = p * z
t = y * k
m = k + t
n = m * z
graph = GradGraph(n)
graph.getOutput({x: 9,
y: 9,
z: 9,
p: 2})
graph.getGradients(wrt=z)
print x.gradient, y.gradient, z.gradient, p.gradientdef gradTestLong():
x = Integer("Int1x")
y = Integer("Int2y")
z = Integer("Int3z")
p = Integer("Int4p")
k = p * z
n = (k + (y * p * z)) * z
graph = GradGraph(n)
graph.getOutput({x: 9,
y: 9,
z: 9,
p: 2})
graph.getGradients(wrt=z)
print x.gradient, y.gradient, z.gradient, p.gradientTensor Operations
def dotProduct():
x = DoubleTensor("Tensor1")
y = x.dot([3, 4])
z = y.dot([4, 5])
graph = GradGraph(z)
output = graph.getOutput({x: [3, 4]})
graph.getGradients(wrt=x)
assert(np.all(output == [100, 125]))
assert(np.all(x.gradient == [[ 12., 16.], [ 15., 20.]]))
def TensorOp():
x = DoubleTensor("Tensor1")
y = x - [3, 4]
z = ops.log(y * x)
graph = GradGraph(z)
output = graph.getOutput({x: [10]})
assert(np.all(np.isclose(output, np.log(10 * (10 - np.asarray([3, 4]))))))
graph.getGradients(wrt=x)
a = 2 * 10 - np.asarray([3, 4])
b = 1.0/np.exp(np.asarray(output))
assert(np.all(np.isclose(x.gradient, a * b)))