An AI-powered personalized chatbot built using RAG + Gemini API, integrated with FastAPI backend, ChromaDB for vector storage, and a responsive JS frontend. Deployed seamlessly on Render.
- 🧠 Retrieval-Augmented Generation (RAG) for contextual answers from personal/project data
- ⚡ FastAPI Backend for handling chatbot requests
- 📂 ChromaDB as vector database for efficient embeddings & retrieval
- 🤖 Gemini API integration for LLM responses
- 🌐 Frontend with HTML/CSS/JS for chat interface
- ☁️ Deployed on Render with environment-based API key management
- Backend: FastAPI, LangChain
- Vector DB: ChromaDB
- LLM API: Gemini API
- Frontend: HTML, CSS, JavaScript
- Deployment: Render
-
Clone the repo
git clone https://github.com/anikchand461/AkBot.git cd ai-chatbot -
Create virtual environment & install dependencies
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate pip install -r requirements.txt
-
Set up environment variables
Create a.envfile in the project root:GEMINI_API_KEY=your_api_key_here
-
Run the backend
uvicorn main:app --reload
-
Open the frontend
Openindex.htmlin your browser, or serve via any static hosting.
- Push your repo to GitHub.
- Create a Render Web Service → select FastAPI backend.
- Add
GEMINI_API_KEYunder Environment Variables in Render Dashboard. - Deploy 🚀