QueryMyPDF is a fully offline AI-powered document assistant.
Upload PDFs → Ask questions → Get intelligent answers —
without cloud APIs, billing, or quotas.
- Ollama (Llama3 Local LLM) - Machine Inference
- LangChain
- FAISS Vector Store
- HuggingFace Embeddings (all-MiniLM-L6-v2)
- PDFPlumber for text extraction
- Streamlit UI
👉 Internet connection not required
👉 No API bills or tokens
👉 Runs entirely on your machine
✔ Upload PDFs
✔ Extract text using PDFPlumber
✔ Local vector embeddings (MiniLM)
✔ RAG search over documents
✔ Query using Llama3 via Ollama
✔ Shows document-referenced answers
📄 PDF → 🔍 Extract Text ↓ 🧩 Chunking → 📌 Embedding → 🎯 FAISS Vector DB ↓ 🔎 Retrieval ↓ 🧠 Local Llama3 → generates response using context
| Component | Technology |
|---|---|
| UI | Streamlit |
| Embeddings | HuggingFace Sentence Transformers |
| Vector DB | FAISS |
| Model Runtime | Ollama |
| Local LLM | Llama3 |
| PDF Parsing | pdfplumber |
| RAG Logic | LangChain community components |
QueryMyPDF/ │── app.py # Streamlit interface │── RAG_backend.py # Core RAG logic using Ollama │── requirements.txt # Dependencies │── README.md # Documentation └── venv (ignore)
1️⃣ Clone repository
git clone https://github.com/chaudhary-pawan/QueryMyPDF.git
cd QueryMyPDF2️⃣ Install Ollama (REQUIRED)
👉 Download from:
Then pull the model:
ollama pull llama3
3️⃣ Create a virtual environment python -m venv venv
4️⃣ Install dependencies pip install -r requirements.txt
✔ Upload PDFs ✔ Ask questions ✔ Get answers offline





