A Python package that provides a structured summary of key developments in computer science for a given year. Quickly access concise and relevant information about major breakthroughs, notable research papers, technological advancements, and influential events in CS history.
Install the package using pip:
pip install cs_year_explorerfrom cs_year_explorer import cs_year_explorer
# Example: Get CS developments for the year 2023
response = cs_year_explorer("2023")
print(response)You can replace the default LLM (ChatLLM7) with any LangChain-compatible model:
from langchain_openai import ChatOpenAI
from cs_year_explorer import cs_year_explorer
llm = ChatOpenAI()
response = cs_year_explorer("2020", llm=llm)
print(response)from langchain_anthropic import ChatAnthropic
from cs_year_explorer import cs_year_explorer
llm = ChatAnthropic()
response = cs_year_explorer("2019", llm=llm)
print(response)from langchain_google_genai import ChatGoogleGenerativeAI
from cs_year_explorer import cs_year_explorer
llm = ChatGoogleGenerativeAI()
response = cs_year_explorer("2022", llm=llm)
print(response)| Parameter | Type | Description |
|---|---|---|
user_input |
str |
The year (e.g., "2023") or query to analyze (e.g., "major CS events in 2020") |
api_key |
Optional[str] |
LLM7 API key (default: fetched from LLM7_API_KEY environment variable) |
llm |
Optional[BaseChatModel] |
Custom LangChain LLM instance (default: ChatLLM7) |
- Default LLM: Uses
ChatLLM7from langchain_llm7. - Free Tier: Sufficient for most use cases.
- Custom API Key: Pass via environment variable
LLM7_API_KEYor directly:cs_year_explorer("2021", api_key="your_api_key_here")
- Get a Free Key: Register at https://token.llm7.io/.
- Structured summary of major CS breakthroughs for any year.
- Covers research papers, tech advancements, and influential events.
- Works with multiple LLM providers (OpenAI, Anthropic, Google, etc.).
- Regex-validated output for consistency.
For cs_year_explorer("2023"), the response might include:
[
"2023: Foundation Models Breakthroughs",
" - GPT-4 released by OpenAI (March)",
" - Claude 2 by Anthropic (July)",
" - Research papers: 'Scaling Laws' (Kaplan et al.)",
"2023: Quantum Computing Milestones",
" - IBM's 433-qubit Osprey processor",
" - Google's error-corrected logical qubit demo"
]- Python 3.8+
langchain-core,langchain_llm7(default), or any LangChain-compatible LLM.
For bugs or feature requests, open an issue on GitHub.
- Eugene Evstafev (@chigwell)
- Email: hi@euegne.plus
MIT License (see LICENSE).