Skip to content

A new package designed to assist users in understanding and resolving errors in program execution. Users can input error messages or descriptions of unexpected program behavior, and the package will u

Notifications You must be signed in to change notification settings

chigwell/debugscribe

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

debugscribe

PyPI version License: MIT Downloads LinkedIn

A small yet powerful helper package that turns error messages or unexpected program behaviour into structured, step‑by‑step troubleshooting guidance.
It sends your problem description to LLM7 (or any other LLM you provide), matches the LLM’s reply against a strict regex pattern using llmatch-messages, and returns a plain list of strings containing the recommended fix steps.

Main functiondebugscribe().
Package namedebugscribe


Features

Feature Details
LLM‑agnostic Uses ChatLLM7 by default, but you can pass any langchain BaseChatModel.
Structured output Output is filtered through a regex; you get clean, consistently formatted text.
Quick installation One pip command.
Easy integration Works in scripts, Jupyter notebooks, or any Python project.

Installation

pip install debugscribe

The package pulls in its dependencies automatically:

  • langchain-core
  • langchain-llm7 – the default LLM7 wrapper
  • llmatch-messages – for regex‑based validation

Quick Start

Simple usage

from debugscribe import debugscribe

error_msg = """
Traceback (most recent call last):
  File "/home/user/app.py", line 5, in <module>
    main()
  File "/home/user/app.py", line 2, in main
    x = 1/0
ZeroDivisionError: division by zero
"""

steps = debugscribe(error_msg)
for i, step in enumerate(steps, 1):
    print(f"{i}. {step}")

Using a custom LLM instead of LLM7

You can hand‑off any langchain model.
Here are a few popular examples.

OpenAI

from langchain_openai import ChatOpenAI
from debugscribe import debugscribe

llm = ChatOpenAI()   # automatically picks up OpenAI API key from env
response = debugscribe(error_msg, llm=llm)

Anthropic

from langchain_anthropic import ChatAnthropic
from debugscribe import debugscribe

llm = ChatAnthropic()   # needs ANTHROPIC_API_KEY
response = debugscribe(error_msg, llm=llm)

Google Gemini

from langchain_google_genai import ChatGoogleGenerativeAI
from debugscribe import debugscribe

llm = ChatGoogleGenerativeAI()   # needs GOOGLE_API_KEY
response = debugscribe(error_msg, llm=llm)

Tip – The default ChatLLM7 is accessed with from langchain_llm7 import ChatLLM7; it will pick up the free‑tier rate limits unless you provide your own api_key or set LLM7_API_KEY in the environment.


Parameters

debugscribe(
    user_input: str,
    api_key: Optional[str] = None,
    llm: Optional[BaseChatModel] = None
) -> List[str]
Parameter Type Description
user_input str The raw error message or behaviour description you want to debug.
llm Optional[BaseChatModel] Any langchain LLM instance. If omitted, a ChatLLM7 instance is created.
api_key Optional[str] API key for LLM7. If omitted, the library checks the LLM7_API_KEY environment variable or falls back to the default free‑tier key.

Behind the scenes

  1. Prompt construction – The function stitches together a system prompt and the user input according to a pattern defined in prompts.py.
  2. LLM callllmatch() from llmatch-messages sends the request via the chosen LLM.
  3. Regex validation – The LLM’s reply is matched against a compiled pattern; only well‑formed replies are surfaced.
  4. Return value – A list of strings, each a distinct step for resolution.

Getting an LLM7 API key

The default free tier offers generous limits suitable for most developers.
If you require higher limits, acquire an API key at https://token.llm7.io/ and either:

export LLM7_API_KEY="my_awesome_key"

or pass it directly:

response = debugscribe(error_msg, api_key="my_awesome_key")

Contributing & Issues

Pull requests are welcome! For bug reports, questions, or suggestions, open an issue in the dedicated GitHub Issues tracker:
https://github.com/chigwell/debugscribe/issues


Contact


License

MIT © Eugene Evstafev

About

A new package designed to assist users in understanding and resolving errors in program execution. Users can input error messages or descriptions of unexpected program behavior, and the package will u

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages