Extract structured insights from logging system feedback using AI
Logference is a Python package that analyzes user complaints or descriptions about logging systems, extracting structured insights such as common pain points, root causes, or improvement suggestions. It leverages an LLM to process input text and categorize feedback, helping teams quickly identify and address logging inefficiencies without manual review.
Install the package via pip:
pip install logferencefrom logference import logference
user_input = """
The logs are too verbose and clutter the dashboard.
I can't filter logs by severity level efficiently.
The log rotation policy is causing performance issues.
"""
response = logference(user_input)
print(response) # Structured feedback insightsYou can replace the default ChatLLM7 with any LangChain-compatible LLM (e.g., OpenAI, Anthropic, Google Vertex AI):
from langchain_openai import ChatOpenAI
from logference import logference
llm = ChatOpenAI()
response = logference(user_input, llm=llm)from langchain_anthropic import ChatAnthropic
from logference import logference
llm = ChatAnthropic()
response = logference(user_input, llm=llm)from langchain_google_genai import ChatGoogleGenerativeAI
from logference import logference
llm = ChatGoogleGenerativeAI()
response = logference(user_input, llm=llm)| Parameter | Type | Description |
|---|---|---|
user_input |
str |
The raw text describing logging system feedback. |
api_key |
Optional[str] |
Your LLM7 API key (if not using default). Falls back to LLM7_API_KEY env var. |
llm |
Optional[BaseChatModel] |
Custom LangChain LLM instance (default: ChatLLM7). |
- Default LLM: Uses
ChatLLM7fromlangchain_llm7. - Free Tier: Sufficient for most use cases (rate limits apply).
- Custom Key: Pass via
api_keyorLLM7_API_KEYenv var.logference(user_input, api_key="your_api_key_here")
- Get a Key: Register at LLM7 Token.
- Structured Output: Extracts actionable insights from unstructured text.
- Flexible LLM Support: Works with any LangChain-compatible model.
- Regex Validation: Ensures output adheres to predefined patterns.
For input:
"Logs are slow to query, and the retention policy deletes critical data."
Logference returns structured feedback like:
[
{"category": "Performance", "issue": "Slow log queries"},
{"category": "Data Loss", "issue": "Retention policy deletes critical logs"}
]MIT
Report bugs or feature requests at: GitHub Issues
Eugene Evstafev (@chigwell) 📧 hi@euegne.plus