Skip to content

A new package would process user complaints or descriptions about logging systems, extracting structured insights such as common pain points, root causes, or improvement suggestions. It uses an LLM to

Notifications You must be signed in to change notification settings

chigwell/logference

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

Logference

PyPI version License: MIT Downloads LinkedIn

Extract structured insights from logging system feedback using AI

Logference is a Python package that analyzes user complaints or descriptions about logging systems, extracting structured insights such as common pain points, root causes, or improvement suggestions. It leverages an LLM to process input text and categorize feedback, helping teams quickly identify and address logging inefficiencies without manual review.


📦 Installation

Install the package via pip:

pip install logference

🚀 Usage

Basic Usage (Default LLM: ChatLLM7)

from logference import logference

user_input = """
The logs are too verbose and clutter the dashboard.
I can't filter logs by severity level efficiently.
The log rotation policy is causing performance issues.
"""

response = logference(user_input)
print(response)  # Structured feedback insights

Custom LLM Integration

You can replace the default ChatLLM7 with any LangChain-compatible LLM (e.g., OpenAI, Anthropic, Google Vertex AI):

Using OpenAI

from langchain_openai import ChatOpenAI
from logference import logference

llm = ChatOpenAI()
response = logference(user_input, llm=llm)

Using Anthropic

from langchain_anthropic import ChatAnthropic
from logference import logference

llm = ChatAnthropic()
response = logference(user_input, llm=llm)

Using Google Vertex AI

from langchain_google_genai import ChatGoogleGenerativeAI
from logference import logference

llm = ChatGoogleGenerativeAI()
response = logference(user_input, llm=llm)

🔧 Parameters

Parameter Type Description
user_input str The raw text describing logging system feedback.
api_key Optional[str] Your LLM7 API key (if not using default). Falls back to LLM7_API_KEY env var.
llm Optional[BaseChatModel] Custom LangChain LLM instance (default: ChatLLM7).

🔑 API Key

  • Default LLM: Uses ChatLLM7 from langchain_llm7.
  • Free Tier: Sufficient for most use cases (rate limits apply).
  • Custom Key: Pass via api_key or LLM7_API_KEY env var.
    logference(user_input, api_key="your_api_key_here")
  • Get a Key: Register at LLM7 Token.

📝 Features

  • Structured Output: Extracts actionable insights from unstructured text.
  • Flexible LLM Support: Works with any LangChain-compatible model.
  • Regex Validation: Ensures output adheres to predefined patterns.

📋 Example Output

For input:

"Logs are slow to query, and the retention policy deletes critical data."

Logference returns structured feedback like:

[
    {"category": "Performance", "issue": "Slow log queries"},
    {"category": "Data Loss", "issue": "Retention policy deletes critical logs"}
]

📜 License

MIT


📢 Support & Issues

Report bugs or feature requests at: GitHub Issues


👤 Author

Eugene Evstafev (@chigwell) 📧 hi@euegne.plus


About

A new package would process user complaints or descriptions about logging systems, extracting structured insights such as common pain points, root causes, or improvement suggestions. It uses an LLM to

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages