ModdingTextParser is a Python package designed to analyze user-provided text questions about technical modding topics. It identifies key concepts such as mentions of premium checks within Android app modifications using structured pattern matching. This tool enables developers or researchers to automate the understanding of modding practices based on text descriptions, without processing multimedia content.
- Extracts relevant details from user input text.
- Identifies references to premium check mechanisms in Android applications.
- Uses structured pattern matching for accurate analysis.
- Supports custom LLM instances for flexible integration.
pip install moddingtextparserfrom moddingtextparser import moddingtextparser
response = moddingtextparser("How do I bypass premium checks in Android apps?")
print(response)You can use any LLM compatible with LangChain. Here are examples with different LLMs:
from langchain_openai import ChatOpenAI
from moddingtextparser import moddingtextparser
llm = ChatOpenAI()
response = moddingtextparser("How do I bypass premium checks in Android apps?", llm=llm)
print(response)from langchain_anthropic import ChatAnthropic
from moddingtextparser import moddingtextparser
llm = ChatAnthropic()
response = moddingtextparser("How do I bypass premium checks in Android apps?", llm=llm)
print(response)from langchain_google_genai import ChatGoogleGenerativeAI
from moddingtextparser import moddingtextparser
llm = ChatGoogleGenerativeAI()
response = moddingtextparser("How do I bypass premium checks in Android apps?", llm=llm)
print(response)user_input(str): The user input text to process.llm(Optional[BaseChatModel]): The LangChain LLM instance to use. If not provided, the defaultChatLLM7will be used.api_key(Optional[str]): The API key for LLM7. If not provided, the environment variableLLM7_API_KEYwill be used.
By default, ModdingTextParser uses ChatLLM7 from langchain_llm7. You can safely pass your own LLM instance if you want to use another LLM.
The default rate limits for LLM7 free tier are sufficient for most use cases of this package. If you want higher rate limits for LLM7, you can pass your own API key via the environment variable LLM7_API_KEY or directly via the api_key parameter. You can get a free API key by registering at LLM7.
If you encounter any issues, please report them on the GitHub issues page.
- Eugene Evstafev
- Email: hi@eugene.plus
- GitHub: chigwell