A lightweight package that converts unstructured text descriptions of software performance benchmarks into standardized, comparable metrics.
The library uses the llmatch-messages framework to extract key performance indicators—like speed improvements, latency reductions, and throughput increases—from natural‑language benchmark descriptions.
Once extracted, the results are returned in a consistent format, enabling developers to easily compare different software frameworks or libraries and make informed performance optimization decisions.
pip install perfbenchifyfrom perfbenchify import perfbenchify
user_input = """ Compared to version 2.1, the new algorithm processes fifty thousand transactions per second while reducing the average latency from 12ms to 7ms. The speed improvement is a 15% increase. """
results = perfbenchify(user_input)
print(results)
# Example output:
# ['Speed improvement: 15%']| Parameter | Type | Description |
|---|---|---|
user_input |
str |
The free‑form text containing benchmark information |
llm |
Optional[BaseChatModel] |
A LangChain LLM instance to use. If omitted, the package defaults to ChatLLM7 from langchain_llm7. |
api_key |
Optional[str] |
API key for ChatLLM7. If omitted, the package checks the environment variable LLM7_API_KEY; otherwise it falls back to a placeholder "None" (which triggers the free tier of LLM7). |
perfbenchify can work with any LabChain-compliant LLM. Below are examples for three popular providers.
from langchain_openai import ChatOpenAI
from perfbenchify import perfbenchify
llm = ChatOpenAI()
# Uses your OpenAI API key from environment
response = perfbenchify(user_input, llm=llm)
print(response)from langchain_anthropic import ChatAnthropic
from perfbenchify import perfbenchify
llm = ChatAnthropic()
# Uses your Anthropic API key from environment
response = perfbenchify(user_input, llm=llm)
print(response)from langchain_google_genai import ChatGoogleGenerativeAI
from perfbenchify import perfbenchify
llm = ChatGoogleGenerativeAI()
# Uses your Google API key from environment
response = perfbenchify(user_input, llm=llm)
print(response)- Free tier of LLM7 is sufficient for most use cases.
- To increase rate limits, supply your own key:
export LLM7_API_KEY="your_key_here"or pass it directly:
response = perfbenchify(user_input, api_key="your_key_here")Free keys can be obtained by registering at https://token.llm7.io/.
- LLM-agnostic: Works with any LangChain LLM (OpenAI, Anthropic, Google, etc.) or the default ChatLLM7.
- Pattern-based validation: Uses a compiled regex to guarantee the extracted metrics match a predefined format.
- Automatic retries: Handles unreliable LLM responses by retrying until the output matches the expected pattern.
- Easy integration: Returned data is a simple Python list of strings, ready for downstream processing or visualisation.
MIT License – see LICENSE file for details.
Have questions or encountered a bug? Report them on the GitHub issue tracker: https://github.com/chigwell/perfbenchify
Eugene Evstafev
Email: hi@eugene.plus
GitHub: chigwell