Package to extract structured summaries of technical concepts from text input.
This package uses pattern matching to ensure output consistency and reliability, avoiding unstructured or ambiguous responses. It's useful for developers, educators, or technical writers who need concise, formatted explanations without manual reformatting.
pip install tech_summaryfrom tech_summary import tech_summary
user_input = "Compare garbage collection and move semantics in programming languages."
response = tech_summary(user_input)
print(response)You can also pass a LangChain LLM instance to use:
from langchain_llm7 import ChatLLM7
from tech_summary import tech_summary
llm = ChatLLM7()
response = tech_summary(user_input, llm=llm)
print(response)You can also use another LLM instance (e.g. OpenAI, Anthropic, Google Generative AI) by passing your own instance:
from langchain_openai import ChatOpenAI
from tech_summary import tech_summary
llm = ChatOpenAI()
response = tech_summary(user_input, llm=llm)
print(response)
from langchain_anthropic import ChatAnthropic
from tech_summary import tech_summary
llm = ChatAnthropic()
response = tech_summary(user_input, llm=llm)
print(response)
from langchain_google_genai import ChatGoogleGenerativeAI
from tech_summary import tech_summary
llm = ChatGoogleGenerativeAI()
response = tech_summary(user_input, llm=llm)
print(response)You can configure the LLM7 API key by setting the LLM7_API_KEY environment variable or passing it directly to the tech_summary function:
tech_summary(user_input, api_key="your_api_key")If you haven't registered for an API key, you can get one for free at https://token.llm7.io/.
Raise issues at https://github.tech-summary.
Eugene Evstafev hi@euegne.plus
This package is under development. See GitHub for updates.
This package uses ChatLLM7 (https://pypi.org/project/langchain-llm7/) by default.