A Python package for summarizing technical articles and announcements by extracting structured key information from user-provided text.
This package leverages language models to identify and organize important details such as product features, specifications, release dates, and relevant contextual data, providing a concise and structured overview of complex technical content.
pip install techsummarizerfrom techsummarizer import techsummarizer
response = techsummarizer(
user_input="user input text here",
api_key="your_api_key_here" # if not provided, defaults to LLM7 free tier
)You can also pass your own LLM instance (e.g., OpenAI, Anthropic, Google Generative AI) for more control:
from langchain_openai import ChatOpenAI
from techsummarizer import techsummarizer
llm = ChatOpenAI()
response = techsummarizer(
user_input="user input text here",
llm=llm
)Or with Anthropic:
from langchain_anthropic import ChatAnthropic
from techsummarizer import techsummarizer
llm = ChatAnthropic()
response = techsummarizer(
user_input="user input text here",
llm=llm
)Or with Google Generative AI:
from langchain_google_genai import ChatGoogleGenerativeAI
from techsummarizer import techsummarizer
llm = ChatGoogleGenerativeAI()
response = techsummarizer(
user_input="user input text here",
llm=llm
)This package uses the ChatLLM7 from langchain_llm7 by default. You can safely pass your own LLM instance if you want to use another LLM.
The default rate limits for LLM7 free tier are sufficient for most use cases of this package. If you need higher rate limits, you can pass your own API key via environment variable LLM7_API_KEY or directly:
techsummarizer(
user_input="user input text here",
api_key="your_api_key_here"
)You can get a free API key by registering at https://token.llm7.io/
Report any issues or bugs to: https://github.com/chigwell/techsummarizer
Eugene Evstafev hi@euegne.plus