Skip to content

A new package is designed to interpret and confirm the successful archival of Unix V4 tapes by processing user-provided text inputs. It extracts structured information indicating success or failure an

Notifications You must be signed in to change notification settings

chigwell/unixv4-tape-validator

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

unixv4-tape-validator

PyPI version License: MIT Downloads LinkedIn

A Python package designed to interpret and validate the archival outcome of Unix V4 tapes by processing user-provided text inputs. It extracts structured data indicating success or failure along with detailed operation information, facilitating automated monitoring and validation of backup processes with language models (LLMs). This tool simplifies the verification process, allowing system administrators to quickly confirm operational status without manually parsing unstructured logs or messages.

Installation

Install the package using pip:

pip install unixv4_tape_validator

Usage

Here's an example of how to use the package in Python:

from unixv4_tape_validator import unixv4_tape_validator

response = unixv4_tape_validator(
    user_input="Your tape operation output here",
    api_key="your-llm7-api-key"  # optional if LLM7_API_KEY env var is set
)
print(response)

Parameters

  • user_input (str): The text input from the user to analyze, containing tape operation details.
  • llm (Optional[BaseChatModel]): An optional LangChain LLM instance. If not provided, the default ChatLLM7 will be instantiated.
  • api_key (Optional[str]): Your API key for LLM7. If not provided, it can be set via the LLM7_API_KEY environment variable.

LLM Support

The package uses ChatLLM7 from langchain_llm7 by default, which you can configure or replace with other LLMs supported by LangChain:

from langchain_openai import ChatOpenAI
from unixv4_tape_validator import unixv4_tape_validator

llm = ChatOpenAI()
response = unixv4_tape_validator(user_input, llm=llm)

Similarly, you can use other LLMs like Anthropic or Google Generative AI:

from langchain_anthropic import ChatAnthropic
llm = ChatAnthropic()
response = unixv4_tape_validator(user_input, llm=llm)
from langchain_google_genai import ChatGoogleGenerativeAI
llm = ChatGoogleGenerativeAI()
response = unixv4_tape_validator(user_input, llm=llm)

API Key and Rate Limits

The default setup uses LLM7's free tier, which typically suffices for most use cases. For higher rate limits, you can obtain an API key free of charge by registering at https://token.llm7.io/ and set it via:

  • Environment variable LLM7_API_KEY
  • Or directly in the function call:
response = unixv4_tape_validator(user_input, api_key="your_api_key")

Support and Issues

For bug reports, feature requests, or other assistance, please visit the GitHub Issues page:

https://github.com/yourusername/unixv4-tape-validator/issues

Author

Eugene Evstafev
Email: hi@euegne.plus
GitHub: chigwell

Releases

No releases published

Packages

No packages published

Languages