Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,284 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.github.cloudml.zen.ml.recommendation

import com.fasterxml.jackson.core.JsonParser.Feature
import com.github.cloudml.zen.ml.util.Utils
import org.apache.spark.{Logging, SparkContext}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
import org.apache.spark.mllib.linalg.{Vector => SV}
import breeze.linalg.{SparseVector => BSV}
import org.apache.spark.storage.StorageLevel

import com.github.cloudml.zen.ml.util.SparkUtils._
import com.github.cloudml.zen.ml.recommendation.MVM._
import scala.math._

/**
* Multi-view Machines :
* \hat{y}(x) :=\sum_{i_1 =1}^{I_i +1} ...\sum_{i_m =1}^{I_m +1}
* (\prod_{v=1}^{m} z_{i_v}^{(v)})(\sum_{f=1}^{k}\prod_{v=1}^{m}a_{i_{v,j}}^{(v)})
* := \sum_{f}^{k}(\sum_{i_1 =1}^{I_1+1}z_{i_1}^{(1)}a_{i_1,j}^{(1)}) ..
* (\sum_{i_m =1}^{I_m+1}z_{i_m}^{(m)}a_{i_m,j}^{(m)})
*
* derivative of the model :
* \frac{\partial \hat{y}(x|\Theta )}{\partial\theta} :=z_{i_{v}}^{(v)}
* (\sum_{i_1 =1}^{I_1+1}z_{i_1}^{(1)}a_{i_1,j}^{(1)}) ...
* (\sum_{i_{v-1} =1}^{I_{v-1}+1}z_{i_{v-1}}^{({v-1})}a_{i_{v-1},j}^{({v-1})})
* (\sum_{i_{v+1} =1}^{I_{v+1}+1}z_{i_{v+1}}^{({v+1})}a_{i_{v+1},j}^{({v+1})}) ...
* (\sum_{i_m =1}^{I_m+1}z_{i_m}^{(m)}a_{i_m,j}^{(m)})
*/
private[ml] abstract class VecMVM extends Serializable with Logging {

def rank: Int

def storageLevel: StorageLevel

def stepSize: Double

def views: Array[Long]

def dataSet: RDD[(Long, LabeledPoint)]

def miniBatchFraction: Double

def featureSize: Int

def factors: Array[Array[Double]]

def elasticNetParam: Double

def regParam: Double

protected[ml] def mask: Int = {
max(1 / miniBatchFraction, 1).toInt
}

def extDataSet: RDD[(Long, LabeledPoint)] = dataSet.map(x => {
val start = views.last.toInt
val sv = BSV.zeros[Double](views.length + views.last.toInt)
for(i <- views.indices){
sv(start + i) = 1.0
}
x._2.features.activeIterator.foreach(y => sv(y._1) = y._2)
(x._1,new LabeledPoint(x._2.label, sv))
}).persist(storageLevel)
extDataSet.count()

def run(iterations: Int): Unit = {
var his = Array.fill(featureSize + views.length, rank)(0.0)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

可以移到外面.放到类里面像这样:

@transient private lazy val his = Array.fill(featureSize + views.length, rank)(0D)

for (iter <- 1 to iterations) {
logInfo(s"Start train (Iteration $iter/$iterations)")
val mod = mask
val random = genRandom(mod, iter)
val seed = random.nextLong()
val broadcastData = extDataSet.context.broadcast(factors)
val startedAt = System.nanoTime()
val out = extDataSet.mapPartitions(it => {
val facs = broadcastData.value
var grad = Array.fill(featureSize + views.length, rank)(0.0)
var trainingLoss = 0.0
var numSamples = 0
while(it.hasNext){
val x = it.next()
if(mod == 1 || isSampled(random, seed, x._1, iter, mod)) {
val out = getGradient(rank, x._2, facs, views, grad)
grad = out._1
trainingLoss += out._2
numSamples += 1
}
}
Array((numSamples, grad, trainingLoss)).toIterator
}).reduce(VecMVM.reduceGrad)
val gradients = out._2.map(x => x.map(_ / out._1))
val elapsedSeconds = (System.nanoTime() - startedAt) / 1e9
logInfo(s"Training loss : ${getLoss(out)}")
logInfo(s"End train (Iteration $iter/$iterations) takes: $elapsedSeconds")

his = VecMVM.addGrad(his, gradients)

updateWeight(his, gradients, factors)
}
}

def getLoss(out: (Int, Array[Array[Double]], Double)) : Double

def getGradient(rank: Int, vec: LabeledPoint, factors: Array[Array[Double]],
views: Array[Long], grads: Array[Array[Double]]): (Array[Array[Double]], Double)

def updateWeight(his: Array[Array[Double]], grad: Array[Array[Double]],
factors: Array[Array[Double]]): Array[Array[Double]] ={
val eps = 1e-6
val regParamL2 = (1.0 - elasticNetParam) * regParam
val shrinkageVal = elasticNetParam * regParam * stepSize
for(i <- his.indices) {
for(j <- his(0).indices) {
val newGrad = grad(i)(j) / (math.sqrt(his(i)(j)) + eps)
if(newGrad != 0.0) {
factors(i)(j) -= stepSize * (newGrad + factors(i)(j) * regParamL2)
if(shrinkageVal > 0) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

L1 的参数大于0时,会导致精度下降. 可以试试这里的算法, 在我的测试中效果还不错.

factors(i)(j) = math.signum(factors(i)(j)) * math.max(0.0, abs(factors(i)(j) - shrinkageVal))
}
}
}
}
factors
}

def init(rank: Int, views: Array[Long]): Array[Array[Double]] = {
val arr = 0.toLong until (views.last + views.length)
arr.map(x => {
Array.fill(rank) {
Utils.random.nextGaussian() * 1e-2
}
}).toArray
}

def saveModel(): MVMModel = {
new MVMModel(rank, views, false,
dataSet.context.parallelize(factors.zipWithIndex.map(x => (x._2.toLong, x._1))))
}

}

class VecMVMRegression(val rank: Int,
val stepSize: Double,
val regParam: Double,
val views: Array[Long],
val dataSet: RDD[(Long, LabeledPoint)],
val miniBatchFraction: Double,
val featureSize: Int,
val elasticNetParam: Double,
val storageLevel: StorageLevel) extends VecMVM {
val factors: Array[Array[Double]] = init(rank, views)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

add @transient


def getGradient(rank: Int, vec: LabeledPoint, factors: Array[Array[Double]],
views: Array[Long], grads: Array[Array[Double]]): (Array[Array[Double]], Double) = {
val vSize = views.length
val ms = VecMVM.sumInterval(rank, vec.features, factors, views)
val multi= VecMVM.multiplier(rank, views.length, ms)
val ybar = multi.sum
val diff = math.pow(ybar - vec.label, 2)
vec.features.activeIterator.foreach(x => {
val index = x._1
val value = x._2
val vid = featureId2viewId(index, views)
for(i <- 0 until rank) {
val delta = if(ms(i*vSize + vid) == 0.0) 0.0 else multi(i) / ms(i*vSize + vid)
grads(index)(i) += (2.0 * (ybar - vec.label)* value * delta)
}
})
(grads, diff)
}

def getLoss(out: (Int, Array[Array[Double]], Double)) : Double = {
math.sqrt(out._3 / out._1)
}
}

class VecMVMClassification(val rank: Int,
val stepSize: Double,
val regParam: Double,
val views: Array[Long],
val dataSet: RDD[(Long, LabeledPoint)],
val miniBatchFraction: Double,
val featureSize: Int,
val elasticNetParam: Double,
val storageLevel: StorageLevel) extends VecMVM {
val factors: Array[Array[Double]] = init(rank, views)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

add @transient


@inline private def sigmoid(x: Double): Double = {
1d / (1d + math.exp(-x))
}

def getGradient(rank: Int, vec: LabeledPoint, factors: Array[Array[Double]],
views: Array[Long], grads: Array[Array[Double]]): (Array[Array[Double]], Double) = {
val vSize = views.length
val ms = VecMVM.sumInterval(rank, vec.features, factors, views)
val multi= VecMVM.multiplier(rank, views.length, ms)
val ybar = multi.sum
val diff = Utils.log1pExp(if (vec.label > 0.0) -ybar else ybar)
vec.features.activeIterator.foreach(x => {
val index = x._1
val value = x._2
val vid = featureId2viewId(index, views)
for(i <- 0 until rank) {
val delta = if(ms(i*vSize + vid) == 0.0) 0.0 else multi(i) / ms(i*vSize + vid)
grads(index)(i) += (-vec.label * sigmoid(-vec.label * ybar))* value * delta
}
})
(grads, diff)
}

def getLoss(out: (Int, Array[Array[Double]], Double)) : Double = {
out._3 / out._1
}
override def saveModel(): MVMModel = {
new MVMModel(rank, views, true,
dataSet.context.parallelize(factors.zipWithIndex.map(x => (x._2.toLong, x._1))))
}
}

object VecMVM {
def sumInterval(rank: Int, vec: SV, factors: Array[Array[Double]],
views: Array[Long]): Array[Double] = {
val vSize = views.length
val out = Array.fill(rank*vSize)(0.0)
vec.activeIterator.foreach(x => {
val index = x._1
val z = x._2
val vid = featureId2viewId(index, views)
for(i <- 0 until rank) {
out(i*vSize + vid) += z*factors(index)(i)
}
})
out
}

def multiplier(rank: Int, vSize: Int, arr: Array[Double]): Array[Double] = {
val out = Array.fill(rank)(1.0)
for(i <- arr.indices) {
out(i/vSize) *= arr(i)
}
out
}

def reduceGrad(a: (Int, Array[Array[Double]], Double), b: (Int, Array[Array[Double]], Double)):
(Int, Array[Array[Double]], Double) = {
val x = a._2.length
val y = a._2(0).length
val out = Array.fill(x, y)(0.0)
for(i <- 0 until x) {
for(j <- 0 until y) {
out(i)(j) = a._2(i)(j) + b._2(i)(j)
}
}
(a._1 + b._1, out, a._3 + b._3)
}

def addGrad(a: Array[Array[Double]], b: Array[Array[Double]]): Array[Array[Double]] = {
val x = a.length
val y = a(0).length
for(i <- 0 until x) {
for(j <- 0 until y) {
a(i)(j) += math.pow(b(i)(j), 2)
}
}
a
}
}