-
Notifications
You must be signed in to change notification settings - Fork 74
Add VecMVM #61
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Add VecMVM #61
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,284 @@ | ||
| /* | ||
| * Licensed to the Apache Software Foundation (ASF) under one or more | ||
| * contributor license agreements. See the NOTICE file distributed with | ||
| * this work for additional information regarding copyright ownership. | ||
| * The ASF licenses this file to You under the Apache License, Version 2.0 | ||
| * (the "License"); you may not use this file except in compliance with | ||
| * the License. You may obtain a copy of the License at | ||
| * | ||
| * http://www.apache.org/licenses/LICENSE-2.0 | ||
| * | ||
| * Unless required by applicable law or agreed to in writing, software | ||
| * distributed under the License is distributed on an "AS IS" BASIS, | ||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| * See the License for the specific language governing permissions and | ||
| * limitations under the License. | ||
| */ | ||
| package com.github.cloudml.zen.ml.recommendation | ||
|
|
||
| import com.fasterxml.jackson.core.JsonParser.Feature | ||
| import com.github.cloudml.zen.ml.util.Utils | ||
| import org.apache.spark.{Logging, SparkContext} | ||
| import org.apache.spark.mllib.regression.LabeledPoint | ||
| import org.apache.spark.rdd.RDD | ||
| import org.apache.spark.mllib.linalg.{Vector => SV} | ||
| import breeze.linalg.{SparseVector => BSV} | ||
| import org.apache.spark.storage.StorageLevel | ||
|
|
||
| import com.github.cloudml.zen.ml.util.SparkUtils._ | ||
| import com.github.cloudml.zen.ml.recommendation.MVM._ | ||
| import scala.math._ | ||
|
|
||
| /** | ||
| * Multi-view Machines : | ||
| * \hat{y}(x) :=\sum_{i_1 =1}^{I_i +1} ...\sum_{i_m =1}^{I_m +1} | ||
| * (\prod_{v=1}^{m} z_{i_v}^{(v)})(\sum_{f=1}^{k}\prod_{v=1}^{m}a_{i_{v,j}}^{(v)}) | ||
| * := \sum_{f}^{k}(\sum_{i_1 =1}^{I_1+1}z_{i_1}^{(1)}a_{i_1,j}^{(1)}) .. | ||
| * (\sum_{i_m =1}^{I_m+1}z_{i_m}^{(m)}a_{i_m,j}^{(m)}) | ||
| * | ||
| * derivative of the model : | ||
| * \frac{\partial \hat{y}(x|\Theta )}{\partial\theta} :=z_{i_{v}}^{(v)} | ||
| * (\sum_{i_1 =1}^{I_1+1}z_{i_1}^{(1)}a_{i_1,j}^{(1)}) ... | ||
| * (\sum_{i_{v-1} =1}^{I_{v-1}+1}z_{i_{v-1}}^{({v-1})}a_{i_{v-1},j}^{({v-1})}) | ||
| * (\sum_{i_{v+1} =1}^{I_{v+1}+1}z_{i_{v+1}}^{({v+1})}a_{i_{v+1},j}^{({v+1})}) ... | ||
| * (\sum_{i_m =1}^{I_m+1}z_{i_m}^{(m)}a_{i_m,j}^{(m)}) | ||
| */ | ||
| private[ml] abstract class VecMVM extends Serializable with Logging { | ||
|
|
||
| def rank: Int | ||
|
|
||
| def storageLevel: StorageLevel | ||
|
|
||
| def stepSize: Double | ||
|
|
||
| def views: Array[Long] | ||
|
|
||
| def dataSet: RDD[(Long, LabeledPoint)] | ||
|
|
||
| def miniBatchFraction: Double | ||
|
|
||
| def featureSize: Int | ||
|
|
||
| def factors: Array[Array[Double]] | ||
|
|
||
| def elasticNetParam: Double | ||
|
|
||
| def regParam: Double | ||
|
|
||
| protected[ml] def mask: Int = { | ||
| max(1 / miniBatchFraction, 1).toInt | ||
| } | ||
|
|
||
| def extDataSet: RDD[(Long, LabeledPoint)] = dataSet.map(x => { | ||
| val start = views.last.toInt | ||
| val sv = BSV.zeros[Double](views.length + views.last.toInt) | ||
| for(i <- views.indices){ | ||
| sv(start + i) = 1.0 | ||
| } | ||
| x._2.features.activeIterator.foreach(y => sv(y._1) = y._2) | ||
| (x._1,new LabeledPoint(x._2.label, sv)) | ||
| }).persist(storageLevel) | ||
| extDataSet.count() | ||
|
|
||
| def run(iterations: Int): Unit = { | ||
| var his = Array.fill(featureSize + views.length, rank)(0.0) | ||
| for (iter <- 1 to iterations) { | ||
| logInfo(s"Start train (Iteration $iter/$iterations)") | ||
| val mod = mask | ||
| val random = genRandom(mod, iter) | ||
| val seed = random.nextLong() | ||
| val broadcastData = extDataSet.context.broadcast(factors) | ||
| val startedAt = System.nanoTime() | ||
| val out = extDataSet.mapPartitions(it => { | ||
| val facs = broadcastData.value | ||
| var grad = Array.fill(featureSize + views.length, rank)(0.0) | ||
| var trainingLoss = 0.0 | ||
| var numSamples = 0 | ||
| while(it.hasNext){ | ||
| val x = it.next() | ||
| if(mod == 1 || isSampled(random, seed, x._1, iter, mod)) { | ||
| val out = getGradient(rank, x._2, facs, views, grad) | ||
| grad = out._1 | ||
| trainingLoss += out._2 | ||
| numSamples += 1 | ||
| } | ||
| } | ||
| Array((numSamples, grad, trainingLoss)).toIterator | ||
| }).reduce(VecMVM.reduceGrad) | ||
| val gradients = out._2.map(x => x.map(_ / out._1)) | ||
| val elapsedSeconds = (System.nanoTime() - startedAt) / 1e9 | ||
| logInfo(s"Training loss : ${getLoss(out)}") | ||
| logInfo(s"End train (Iteration $iter/$iterations) takes: $elapsedSeconds") | ||
|
|
||
| his = VecMVM.addGrad(his, gradients) | ||
|
|
||
| updateWeight(his, gradients, factors) | ||
| } | ||
| } | ||
|
|
||
| def getLoss(out: (Int, Array[Array[Double]], Double)) : Double | ||
|
|
||
| def getGradient(rank: Int, vec: LabeledPoint, factors: Array[Array[Double]], | ||
| views: Array[Long], grads: Array[Array[Double]]): (Array[Array[Double]], Double) | ||
|
|
||
| def updateWeight(his: Array[Array[Double]], grad: Array[Array[Double]], | ||
| factors: Array[Array[Double]]): Array[Array[Double]] ={ | ||
| val eps = 1e-6 | ||
| val regParamL2 = (1.0 - elasticNetParam) * regParam | ||
| val shrinkageVal = elasticNetParam * regParam * stepSize | ||
| for(i <- his.indices) { | ||
| for(j <- his(0).indices) { | ||
| val newGrad = grad(i)(j) / (math.sqrt(his(i)(j)) + eps) | ||
| if(newGrad != 0.0) { | ||
| factors(i)(j) -= stepSize * (newGrad + factors(i)(j) * regParamL2) | ||
| if(shrinkageVal > 0) { | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. L1 的参数大于0时,会导致精度下降. 可以试试这里的算法, 在我的测试中效果还不错. |
||
| factors(i)(j) = math.signum(factors(i)(j)) * math.max(0.0, abs(factors(i)(j) - shrinkageVal)) | ||
| } | ||
| } | ||
| } | ||
| } | ||
| factors | ||
| } | ||
|
|
||
| def init(rank: Int, views: Array[Long]): Array[Array[Double]] = { | ||
| val arr = 0.toLong until (views.last + views.length) | ||
| arr.map(x => { | ||
| Array.fill(rank) { | ||
| Utils.random.nextGaussian() * 1e-2 | ||
| } | ||
| }).toArray | ||
| } | ||
|
|
||
| def saveModel(): MVMModel = { | ||
| new MVMModel(rank, views, false, | ||
| dataSet.context.parallelize(factors.zipWithIndex.map(x => (x._2.toLong, x._1)))) | ||
| } | ||
|
|
||
| } | ||
|
|
||
| class VecMVMRegression(val rank: Int, | ||
| val stepSize: Double, | ||
| val regParam: Double, | ||
| val views: Array[Long], | ||
| val dataSet: RDD[(Long, LabeledPoint)], | ||
| val miniBatchFraction: Double, | ||
| val featureSize: Int, | ||
| val elasticNetParam: Double, | ||
| val storageLevel: StorageLevel) extends VecMVM { | ||
| val factors: Array[Array[Double]] = init(rank, views) | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. add |
||
|
|
||
| def getGradient(rank: Int, vec: LabeledPoint, factors: Array[Array[Double]], | ||
| views: Array[Long], grads: Array[Array[Double]]): (Array[Array[Double]], Double) = { | ||
| val vSize = views.length | ||
| val ms = VecMVM.sumInterval(rank, vec.features, factors, views) | ||
| val multi= VecMVM.multiplier(rank, views.length, ms) | ||
| val ybar = multi.sum | ||
| val diff = math.pow(ybar - vec.label, 2) | ||
| vec.features.activeIterator.foreach(x => { | ||
| val index = x._1 | ||
| val value = x._2 | ||
| val vid = featureId2viewId(index, views) | ||
| for(i <- 0 until rank) { | ||
| val delta = if(ms(i*vSize + vid) == 0.0) 0.0 else multi(i) / ms(i*vSize + vid) | ||
| grads(index)(i) += (2.0 * (ybar - vec.label)* value * delta) | ||
| } | ||
| }) | ||
| (grads, diff) | ||
| } | ||
|
|
||
| def getLoss(out: (Int, Array[Array[Double]], Double)) : Double = { | ||
| math.sqrt(out._3 / out._1) | ||
| } | ||
| } | ||
|
|
||
| class VecMVMClassification(val rank: Int, | ||
| val stepSize: Double, | ||
| val regParam: Double, | ||
| val views: Array[Long], | ||
| val dataSet: RDD[(Long, LabeledPoint)], | ||
| val miniBatchFraction: Double, | ||
| val featureSize: Int, | ||
| val elasticNetParam: Double, | ||
| val storageLevel: StorageLevel) extends VecMVM { | ||
| val factors: Array[Array[Double]] = init(rank, views) | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. add |
||
|
|
||
| @inline private def sigmoid(x: Double): Double = { | ||
| 1d / (1d + math.exp(-x)) | ||
| } | ||
|
|
||
| def getGradient(rank: Int, vec: LabeledPoint, factors: Array[Array[Double]], | ||
| views: Array[Long], grads: Array[Array[Double]]): (Array[Array[Double]], Double) = { | ||
| val vSize = views.length | ||
| val ms = VecMVM.sumInterval(rank, vec.features, factors, views) | ||
| val multi= VecMVM.multiplier(rank, views.length, ms) | ||
| val ybar = multi.sum | ||
| val diff = Utils.log1pExp(if (vec.label > 0.0) -ybar else ybar) | ||
| vec.features.activeIterator.foreach(x => { | ||
| val index = x._1 | ||
| val value = x._2 | ||
| val vid = featureId2viewId(index, views) | ||
| for(i <- 0 until rank) { | ||
| val delta = if(ms(i*vSize + vid) == 0.0) 0.0 else multi(i) / ms(i*vSize + vid) | ||
| grads(index)(i) += (-vec.label * sigmoid(-vec.label * ybar))* value * delta | ||
| } | ||
| }) | ||
| (grads, diff) | ||
| } | ||
|
|
||
| def getLoss(out: (Int, Array[Array[Double]], Double)) : Double = { | ||
| out._3 / out._1 | ||
| } | ||
| override def saveModel(): MVMModel = { | ||
| new MVMModel(rank, views, true, | ||
| dataSet.context.parallelize(factors.zipWithIndex.map(x => (x._2.toLong, x._1)))) | ||
| } | ||
| } | ||
|
|
||
| object VecMVM { | ||
| def sumInterval(rank: Int, vec: SV, factors: Array[Array[Double]], | ||
| views: Array[Long]): Array[Double] = { | ||
| val vSize = views.length | ||
| val out = Array.fill(rank*vSize)(0.0) | ||
| vec.activeIterator.foreach(x => { | ||
| val index = x._1 | ||
| val z = x._2 | ||
| val vid = featureId2viewId(index, views) | ||
| for(i <- 0 until rank) { | ||
| out(i*vSize + vid) += z*factors(index)(i) | ||
| } | ||
| }) | ||
| out | ||
| } | ||
|
|
||
| def multiplier(rank: Int, vSize: Int, arr: Array[Double]): Array[Double] = { | ||
| val out = Array.fill(rank)(1.0) | ||
| for(i <- arr.indices) { | ||
| out(i/vSize) *= arr(i) | ||
| } | ||
| out | ||
| } | ||
|
|
||
| def reduceGrad(a: (Int, Array[Array[Double]], Double), b: (Int, Array[Array[Double]], Double)): | ||
| (Int, Array[Array[Double]], Double) = { | ||
| val x = a._2.length | ||
| val y = a._2(0).length | ||
| val out = Array.fill(x, y)(0.0) | ||
| for(i <- 0 until x) { | ||
| for(j <- 0 until y) { | ||
| out(i)(j) = a._2(i)(j) + b._2(i)(j) | ||
| } | ||
| } | ||
| (a._1 + b._1, out, a._3 + b._3) | ||
| } | ||
|
|
||
| def addGrad(a: Array[Array[Double]], b: Array[Array[Double]]): Array[Array[Double]] = { | ||
| val x = a.length | ||
| val y = a(0).length | ||
| for(i <- 0 until x) { | ||
| for(j <- 0 until y) { | ||
| a(i)(j) += math.pow(b(i)(j), 2) | ||
| } | ||
| } | ||
| a | ||
| } | ||
| } | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
可以移到外面.放到类里面像这样:
@transient private lazy val his = Array.fill(featureSize + views.length, rank)(0D)