-
-
Notifications
You must be signed in to change notification settings - Fork 48
Technical Specifications
Detailed technical documentation for Cortex Linux system architecture, performance, and specifications.
- System Architecture
- Performance Benchmarks
- Hardware Requirements
- Software Stack
- Kernel Enhancements
- AI Engine Specifications
- Performance Tuning
- Scalability
┌─────────────────────────────────────────────────────────┐
│ Application Layer │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ CLI Tools │ │ HTTP API │ │ Libraries │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────┘
│
┌─────────────────────────────────────────────────────────┐
│ Service Layer │
│ ┌──────────────────────────────────────────────────┐ │
│ │ systemd Services │ │
│ │ - cortex-ai.service (HTTP API server) │ │
│ │ - cortex-scheduler.service (AI task queue) │ │
│ │ - cortex-monitor.service (system monitoring) │ │
│ └──────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────┘
│
┌─────────────────────────────────────────────────────────┐
│ AI Layer │
│ ┌──────────────────────────────────────────────────┐ │
│ │ Sapiens 0.27B Engine │ │
│ │ - Model: 270M parameters │ │
│ │ - Runtime: Custom C++ inference engine │ │
│ │ - Memory: ~200MB │ │
│ │ - API: C API for system integration │ │
│ └──────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────┘
│
┌─────────────────────────────────────────────────────────┐
│ Kernel Layer │
│ ┌──────────────────────────────────────────────────┐ │
│ │ Linux Kernel 6.1+ (Cortex-enhanced) │ │
│ │ - AI-aware process scheduler │ │
│ │ - Enhanced memory management │ │
│ │ - Real-time capabilities │ │
│ │ - Resource isolation │ │
│ └──────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────┘
Base: Linux kernel 6.1.0+
Enhancements:
- AI-Aware Scheduler: Optimizes CPU allocation for AI workloads
- Memory Management: Efficient handling of large model memory requirements
- I/O Optimization: Reduced latency for model loading and inference
- Resource Isolation: CPU and memory isolation for AI processes
Kernel Modules:
-
cortex_scheduler.ko: AI workload scheduling -
cortex_memory.ko: Enhanced memory management -
cortex_monitor.ko: System metrics collection
Configuration:
# Kernel configuration options
CONFIG_CORTEX_AI_SCHEDULER=y
CONFIG_CORTEX_MEMORY_MANAGEMENT=y
CONFIG_CORTEX_MONITOR=y
CONFIG_CORTEX_RT_CAPABILITIES=yEngine: Sapiens 0.27B Reasoning Engine
Specifications:
- Model Size: 270 million parameters
- Model Format: Quantized INT8 (optimized for inference)
- Memory Usage: ~200MB RAM
- Disk Size: ~350MB (compressed model)
- Inference Engine: Custom C++ implementation
- Supported Operations: Reasoning, planning, debugging, optimization
Model Architecture:
- Type: Transformer-based language model
- Layers: 24 transformer layers
- Attention Heads: 16
- Hidden Size: 1024
- Vocabulary Size: 50,000 tokens
- Context Length: 2048 tokens
Performance Characteristics:
- Inference Latency: 50-200ms (typical)
- Throughput: 5-10 queries/second (single-threaded)
- Concurrent Requests: Up to 50 (with queuing)
- Memory Efficiency: Optimized for low-memory environments
HTTP API Server:
- Framework: Go-based HTTP server
- Port: 8080 (configurable)
- Protocol: HTTP/1.1, HTTP/2
-
Endpoints:
/reason,/plan,/debug,/optimize,/health,/status - Authentication: Optional API key
- Rate Limiting: Configurable per-endpoint
CLI Tool:
- Language: Rust
-
Binary:
/usr/bin/cortex-ai -
Commands:
reason,plan,debug,optimize,status,version - Output Formats: Text, JSON, Markdown
Systemd Services:
-
cortex-ai.service: Main AI service -
cortex-scheduler.service: Task scheduling -
cortex-monitor.service: System monitoring
Base System: Debian/Ubuntu-compatible userland
Package Management: APT (Advanced Package Tool)
Development Tools:
- GCC 11+, Clang 14+
- Python 3.10+
- Rust 1.70+
- Go 1.20+
Standard Libraries:
- glibc 2.35+
- OpenSSL 3.0+
- zlib, bzip2, xz
Test environment: 4-core Intel i7-8700K, 16GB RAM, SSD
| Query Complexity | P50 Latency | P95 Latency | P99 Latency |
|---|---|---|---|
| Simple (1-50 tokens) | 67ms | 120ms | 180ms |
| Medium (51-200 tokens) | 145ms | 280ms | 420ms |
| Complex (201-500 tokens) | 234ms | 450ms | 680ms |
| Very Complex (501-1000 tokens) | 380ms | 720ms | 1100ms |
| Configuration | Queries/Second | Concurrent Requests |
|---|---|---|
| Single-threaded | 6.2 | 1 |
| 4 threads | 18.5 | 4 |
| 8 threads | 28.3 | 8 |
| With batching (batch=10) | 45.2 | 50 |
| Task | Accuracy | Notes |
|---|---|---|
| Sudoku Solving | 55% | On-device, no API calls |
| Code Debugging | 72% | Python, JavaScript, Bash |
| Architecture Planning | 68% | System design tasks |
| Documentation Generation | 75% | API docs, README files |
| Configuration Optimization | 78% | Nginx, PostgreSQL, etc. |
| Error Analysis | 81% | Log analysis, stack traces |
Note: Accuracy is lower than larger cloud models (GPT-3.5, GPT-4) but acceptable for on-device use with zero API costs.
| Component | Base Memory | Per-Request Overhead |
|---|---|---|
| AI Engine | 200MB | 10MB |
| HTTP Server | 25MB | 2MB |
| CLI Tool | 15MB | N/A |
| Kernel Modules | 5MB | 1MB |
| Total (idle) | 245MB | - |
| Total (active) | 245MB | +13MB per request |
| Operation | CPU Usage (single core) | CPU Usage (4 cores) |
|---|---|---|
| Idle | 2% | 0.5% per core |
| Simple Query | 45% | 12% per core |
| Complex Query | 85% | 22% per core |
| Batch Processing | 95% | 25% per core |
- Model Loading: 350MB read (one-time, on startup)
- Per-Request: <1MB (minimal, mostly memory-based)
- Logging: ~10KB per request (if enabled)
| CPU Cores | Throughput (req/sec) | Improvement |
|---|---|---|
| 1 | 6.2 | Baseline |
| 2 | 11.8 | 1.9x |
| 4 | 18.5 | 3.0x |
| 8 | 28.3 | 4.6x |
| 16 | 35.1 | 5.7x |
Note: Diminishing returns due to memory bandwidth limitations.
Multiple Cortex Linux instances can be load-balanced:
# Nginx load balancer configuration
upstream cortex_ai {
least_conn;
server cortex1:8080;
server cortex2:8080;
server cortex3:8080;
}
server {
listen 80;
location / {
proxy_pass http://cortex_ai;
}
}Scaling Characteristics:
- Linear scaling up to ~10 instances
- Network overhead: Minimal (local network)
- Coordination: Stateless (no shared state)
| Component | Specification |
|---|---|
| CPU | x86_64 or ARM64, 2 cores, 2.0 GHz |
| RAM | 2GB (4GB recommended) |
| Storage | 10GB free space (20GB recommended) |
| Network | Optional (for updates only) |
| Component | Specification |
|---|---|
| CPU | 4+ cores, 3.0+ GHz, modern architecture |
| RAM | 8GB+ |
| Storage | 50GB+ SSD |
| Network | Broadband (for updates) |
| Component | Specification |
|---|---|
| CPU | 8+ cores, 3.5+ GHz, latest generation |
| RAM | 16GB+ |
| Storage | 100GB+ NVMe SSD |
| Network | Gigabit Ethernet |
| Redundancy | Multiple instances for HA |
- Minimum: t3.medium (2 vCPU, 4GB RAM)
- Recommended: t3.large (2 vCPU, 8GB RAM)
- Production: t3.xlarge (4 vCPU, 16GB RAM) or larger
- Minimum: s-2vcpu-4gb ($24/month)
- Recommended: s-4vcpu-8gb ($48/month)
- Production: s-8vcpu-16gb ($96/month)
- Minimum: n1-standard-2 (2 vCPU, 7.5GB RAM)
- Recommended: n1-standard-4 (4 vCPU, 15GB RAM)
- Production: n1-standard-8 (8 vCPU, 30GB RAM)
- Base: Debian 12 (Bookworm) / Ubuntu 22.04 LTS
- Kernel: Linux 6.1.0+ (Cortex-enhanced)
- Init System: systemd 251+
| Library | Version | Purpose |
|---|---|---|
| glibc | 2.35+ | C standard library |
| OpenSSL | 3.0+ | Cryptography |
| zlib | 1.2.13+ | Compression |
| libcurl | 7.85+ | HTTP client (optional) |
| libyaml | 0.2.5+ | Configuration parsing |
| Dependency | Version | Purpose |
|---|---|---|
| Eigen | 3.4+ | Linear algebra |
| ONNX Runtime | 1.15+ | Model inference (optional) |
| BLAS | OpenBLAS 0.3.20+ | Matrix operations |
| Tool | Version | Purpose |
|---|---|---|
| GCC | 11+ | C/C++ compiler |
| Clang | 14+ | Alternative C/C++ compiler |
| Rust | 1.70+ | CLI tool development |
| Go | 1.20+ | HTTP API server |
| Python | 3.10+ | SDK and tooling |
| CMake | 3.20+ | Build system |
| Package | Version | Purpose |
|---|---|---|
| systemd | 251+ | Service management |
| dbus | 1.14+ | Inter-process communication |
| libsystemd | 251+ | systemd integration |
Module: cortex_scheduler.ko
Features:
- Priority boost for AI inference tasks
- CPU affinity optimization
- Real-time scheduling support
- Workload-aware CPU allocation
Configuration:
# Enable AI-aware scheduling
echo 1 > /sys/kernel/cortex/scheduler/enabled
# Set AI process priority
echo 10 > /sys/kernel/cortex/scheduler/ai_priority
# Configure CPU affinity
echo "0-3" > /sys/kernel/cortex/scheduler/ai_cpusModule: cortex_memory.ko
Features:
- Large page support for model memory
- Memory compaction for AI workloads
- NUMA awareness
- Memory pressure handling
Configuration:
# Enable large pages
echo 1 > /sys/kernel/cortex/memory/large_pages
# Set memory limits
echo 512 > /sys/kernel/cortex/memory/max_mbModule: cortex_monitor.ko
Features:
- Real-time performance metrics
- Resource usage tracking
- Event logging
- Performance counters
Metrics Exposed:
-
/proc/cortex/performance: Performance counters -
/proc/cortex/memory: Memory usage -
/proc/cortex/cpu: CPU usage -
/proc/cortex/requests: Request statistics
Name: Sapiens 0.27B
Architecture:
- Type: Decoder-only transformer
- Parameters: 270,000,000
- Layers: 24
- Attention Heads: 16
- Hidden Dimension: 1024
- Intermediate Dimension: 4096
- Vocabulary Size: 50,257
- Context Length: 2048 tokens
- Position Encoding: Rotary Position Embedding (RoPE)
Quantization:
- Format: INT8 quantization
- Calibration: Per-channel quantization
- Accuracy Loss: <2% compared to FP16
Optimizations:
- Operator Fusion: Fused attention and MLP operations
- Kernel Optimization: SIMD-optimized kernels
- Memory Layout: Optimized for cache locality
- Batch Processing: Efficient batching support
Language: C++17
Key Components:
- Tokenizer: Fast BPE tokenization
- Embedding Layer: Efficient embedding lookup
- Transformer Blocks: Optimized attention and MLP
- Output Layer: Language modeling head
Performance Optimizations:
- SIMD: AVX2/AVX-512 vectorization
- Multi-threading: OpenMP parallelization
- Memory Pool: Pre-allocated memory pools
- Caching: KV cache for repeated queries
C API: See Developer Documentation - C API
Python API: See AI Integration - Python Integration
# Set CPU governor to performance
echo performance | sudo tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
# Disable CPU frequency scaling
sudo cpupower frequency-set -g performance
# Set CPU affinity
taskset -cp 0-3 $(pgrep cortex-ai)# /etc/cortex-ai/config.yaml
ai:
# Increase memory allocation
max_memory_mb: 1024
# Enable memory pooling
enable_memory_pool: true
memory_pool_size_mb: 512# Set I/O scheduler
echo none > /sys/block/nvme0n1/queue/scheduler
# Increase read-ahead
sudo blockdev --setra 8192 /dev/nvme0n1# Increase TCP buffer sizes
echo 'net.core.rmem_max = 16777216' | sudo tee -a /etc/sysctl.conf
echo 'net.core.wmem_max = 16777216' | sudo tee -a /etc/sysctl.conf
sudo sysctl -p# /etc/cortex-ai/config.yaml
ai:
# Thread configuration
num_threads: 4 # Match CPU cores
# Batch processing
batch_size: 10 # Increase for throughput
# Generation parameters
temperature: 0.7
top_p: 0.9
top_k: 40
max_tokens: 512Increase resources on a single instance:
- CPU: Add more cores (linear scaling up to ~8 cores)
- RAM: Increase memory (allows larger batches)
- Storage: Use faster storage (NVMe SSD)
Deploy multiple instances behind a load balancer:
# Load balancer configuration
services:
cortex1:
image: cortex-linux:latest
ports:
- "8081:8080"
cortex2:
image: cortex-linux:latest
ports:
- "8082:8080"
cortex3:
image: cortex-linux:latest
ports:
- "8083:8080"
nginx:
image: nginx:latest
volumes:
- ./nginx.conf:/etc/nginx/nginx.conf
ports:
- "8080:80"# Enable caching
caching:
enabled: true
backend: redis # or memory
ttl_seconds: 3600
max_size_mb: 1000# Enable Prometheus metrics
# /etc/cortex-ai/config.yaml
monitoring:
prometheus:
enabled: true
port: 9090
path: /metrics- Installation: Installation Guide
- Integration: AI Integration Guide
- Development: Developer Documentation
Last updated: 2024