Identification of epigenetic regulators of fibrotic transformation in cardiac fibroblasts through bulk and single-cell CRISPR screens.
This code supplements the upcoming publication by Aguado Alvaro, Garitano, Esser-Skala et al.
(Not all of these folders appear in the git repository.)
data_generated: output files generated by the scripts in this repositorypython_figure_data: data exported from Python scripts for generating source data
data_raw: raw input datadoc: project documentationgeo_upload_scripts: scripts for uploading raw data to Gene Expression Omnibusmetadata: additional required dataplots: generated plotsrenv: R environment datascripts_atacseq: scripts for the ATAC-seq analysisscripts_chipseq: scripts for the ChIP-seq analysisscripts_python: Python scriptsscripts_r: R scriptstables: tables exported from scripts
Create a folder data_raw that will contain raw data in the following subfolders:
rna: DownloadGSE261783_RAW.tarfrom GEO Series GSE261783 and extract all files.rna-seq: DownloadGSE280438_raw_counts.txt.gzfrom GEO Series GSE280438 and extract the file.signatures:Amrute.xlsx: Table S10 from Amrute et al (https://doi.org/10.1038/s44161-023-00260-8)Buechler.xlsx: Table S5 from Buechler et al (https://doi.org/10.1038/s41586-021-03549-5)Chaffin.xlsx: Table S11 from Chaffin et al (https://doi.org/10.1038/s41586-022-04817-8)Forte.xlsx: Table S3 from Forte et al (https://doi.org/10.1016/j.celrep.2020.02.008)Fu.xlsx: Additional File 6 from Fu et al (https://doi.org/10.1186/s12916-023-03232-8)Koenig.xlsx: Table S27 from Koenig et al (https://doi.org/10.1038/s44161-022-00028-6)Kuppe.xlsx: Table S13 from Kuppe et al (https://doi.org/10.1038/s41586-022-05060-x)
Optionally, obtain intermediary data: Extract the contents of data.tgz from Zenodo repository https://doi.org/10.5281/zenodo.14794723 to folder data_generated.
Run Python scripts in order.
Run the following scripts in the folder scripts_r in order to run the R analysis pipeline.
utils.R contains auxiliary functions and definitions required by several other scripts.
create_sce.R: interface to Python scripts; creates a SingleCellObject with the same data and metadata as the AnnData objectprepare_signatures.R: assemble fibroblast signatures and gene sets for enrichment analysisrun_gsea.R: perform gene set enrichment analysisplot_signature_scores.R: fibroblast signature scores as heatmaps (figure 6b, S2d, S2e)plot_signature_enrichments.R: fibroblast enrichments as dotplots (S10a)plot_ko_distribution.R: UMAPs with knockout distribution (2f, S5)plot_ko_enrichment.R: summary of knockout enrichment (2g, S6a)plot_gsea.R: plot GSEA results (S6b)plot_egr2ko_genes.R: Volcano plot of Egr2-KO vs NTC (S8h)plot_bulk_rnaseq.R: bulk RNA-seq analysis of patient-derived fibroblasts (6d, e, S10c, d, e)plot_fap_expression.R: expression of Fab (R15)