Releases: csglab/sclsd
Releases · csglab/sclsd
v0.1.0 - Initial Release
sclsd v0.1.0 - Initial Release
Single-cell Latent State Dynamics (sclsd) - A deep learning framework for modeling single-cell differentiation trajectories using Waddington-like potential landscapes.
Installation
pip install sclsdQuick Start
from sclsd import LSD, LSDConfig
# Initialize with your AnnData object
lsd = LSD(adata, LSDConfig(), device=device)
lsd.set_phylogeny(phylogeny, cluster_key="clusters")
lsd.set_prior_transition(prior_time_key="prior_time")
lsd.prepare_walks()
lsd.train(num_epochs=100)
# Get results
result = lsd.get_adata()Features
- Learn Waddington-like potential landscapes from single-cell data
- Trajectory inference with neural ODEs
- Fate prediction via gradient flow dynamics
- Integration with scanpy ecosystem