Skip to content

earthdaily/earthdaily-python-client

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

1,022 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

EarthDaily Python Client

PyPI version Documentation Python Versions

The EarthDaily Python Client is a comprehensive library for interacting with the EarthDaily Analytics platform. It provides seamless access to satellite data, STAC item management, and platform APIs through a unified interface.

πŸš€ Key Features

  • Platform API Access: Full integration with EarthDaily platform services
  • STAC Item Management: Complete CRUD operations for STAC items
  • Legacy Support: Backward compatibility with v0 datacube functionality
  • Modern Architecture: Streamlined client design with comprehensive error handling
  • Flexible Installation: Modular installation options for different use cases

πŸ“¦ Installation

Supported Python Versions: 3.10, 3.11, 3.12, 3.13, 3.14

Basic Installation

pip install earthdaily

Recommended Installation (Platform Features)

pip install "earthdaily[platform]"

Legacy Support (v0 Compatibility)

pip install "earthdaily[legacy]"

Full Installation (All Features)

pip install "earthdaily[platform,legacy]"

Full Installation with utils (for .env file and Jupyter notebooks)

pip install "earthdaily[platform,legacy,utils]"

πŸ”§ Environment Setup

The EarthPlatform STAC API is protected by bearer authentication. A bearer token is generated using OAuth Client Credentials Flow. The required client_id, client_secret, and access_token_url values can be found on the Account Management Console.

Getting Your Credentials

  1. Go to the Account Management Console
  2. Click the Provision New API Credentials button to generate your API credentials
  3. Copy the generated client_secret value β€” this will be your EDS_SECRET

For more details, see the API Authentication Guide.

Configure Your Environment

Create a .env file in your project root with your credentials:

# .env
EDS_CLIENT_ID=EARTHDAILY_API_TOKEN
EDS_SECRET=<Go to Account Management Console, click Provision New API Credentials, copy the client_secret>
EDS_AUTH_URL=https://api.earthdaily.com/account_management/v1/authentication/api_tokens/exchange
EDS_API_URL=https://api.earthdaily.com

Note: To use .env files and Jupyter notebooks, install with the utils extra:

pip install "earthdaily[utils]"

πŸƒ Quick Start

from dotenv import load_dotenv
from earthdaily import EDSClient, EDSConfig

# Load environment variables
load_dotenv(".env")

# Initialize client
config = EDSConfig()
client = EDSClient(config)

Alternative Configuration

# Direct configuration (without .env file)
config = EDSConfig(
    client_id="EARTHDAILY_API_TOKEN",
    client_secret="<Go to Account Management Console, click Provision New API Credentials, copy the client_secret>",
    token_url="https://api.earthdaily.com/account_management/v1/authentication/api_tokens/exchange",
    base_url="https://api.earthdaily.com"
)
client = EDSClient(config)

Advanced Configuration Options

The EDSConfig class supports additional configuration options for customizing client behavior:

config = EDSConfig(
    # ... authentication parameters ...
    
    # HTTP retry configuration
    max_retries=5,                    # Maximum retry attempts (default: 3)
    retry_backoff_factor=2.0,         # Exponential backoff factor (default: 1.0)
    
    # Asset access mode
    asset_access_mode="presigned-urls"  # "presigned-urls", "proxy-urls", or "raw"
)

Retry Configuration

  • max_retries: Maximum number of retry attempts
  • retry_backoff_factor: Backoff factor for retry delays

Examples:

  • retry_backoff_factor=1.0: Delays of 1s, 2s, 4s
  • retry_backoff_factor=0.5: Delays of 0.5s, 1s, 2s
  • retry_backoff_factor=2.0: Delays of 2s, 4s, 8s

🌍 Core Features

Platform API Integration

Search for satellite data using STAC:

# Search for Sentinel-2 data
search_result = client.platform.pystac_client.search(
    collections=["sentinel-2-l2a"],
    datetime="2024-06-01T00:00:00Z/2024-08-01T00:00:00Z",
    max_items=10
)
items = list(search_result.items())

STAC Item Management

Create and manage STAC items:

# Create a new STAC item
stac_item = {
    "type": "Feature",
    "stac_version": "1.0.0",
    "id": "example-item-123",
    "collection": "your-collection",
    "geometry": {"type": "Point", "coordinates": [-67.7, -37.8]},
    "properties": {"datetime": "2024-01-01T00:00:00Z"},
    "links": [],
    "assets": {}
}

client.platform.stac_item.create_item("your-collection", stac_item)

Legacy Datacube Support

Access v0 functionality through the legacy interface:

from earthdaily.legacy.datasets import load_pivot

# Load geometry and create datacube
geometry = load_pivot()
datacube = client.legacy.datacube(
    "sentinel-2-l2a",
    assets=["blue", "green", "red", "nir"],
    intersects=geometry,
    datetime=["2022-08-01", "2022-08-09"],
    mask_with="native"
)

πŸ—οΈ Architecture Overview

The client is organized into main modules:

  • client.platform: Modern platform API access

    • pystac_client: STAC catalog search
    • stac_item: STAC item CRUD operations
    • bulk_search: Bulk search operations
    • bulk_insert: Bulk data insertion
    • bulk_delete: Bulk data deletion
  • client.legacy: v0 compatibility layer

    • datacube(): Create analysis-ready datacubes
    • search(): Legacy search functionality
    • Access to existing v0 methods

πŸ”§ Platform API Methods

STAC Item Management (client.platform.stac_item)

Create Items

# Create a new STAC item
item = client.platform.stac_item.create_item(
    collection_id="your-collection",
    item_data={
        "type": "Feature",
        "stac_version": "1.0.0",
        "id": "item-123",
        "geometry": {"type": "Point", "coordinates": [-67.7, -37.8]},
        "properties": {"datetime": "2024-01-01T00:00:00Z"}
    },
    return_format="dict"  # "dict", "json", or "pystac"
)

Read Items

# Get a specific item
item = client.platform.stac_item.get_item(
    collection_id="your-collection",
    item_id="item-123",
    return_format="pystac"
)

Update Items

# Update an existing item
updated_item = client.platform.stac_item.update_item(
    collection_id="your-collection",
    item_id="item-123",
    item_data={"properties": {"updated": "2024-01-02T00:00:00Z"}},
    return_format="dict"
)

Delete Items

# Delete an item
client.platform.stac_item.delete_item(
    collection_id="your-collection",
    item_id="item-123"
)

Download Assets

# Download item assets
downloads = client.platform.stac_item.download_assets(
    item=item,
    asset_keys=["blue", "green", "red"],
    output_dir="./downloads",
    max_workers=3
)

Bulk Search (client.platform.bulk_search)

Create Bulk Search

# Create a bulk search job
search_job = client.platform.bulk_search.create(
    collections=["sentinel-2-l2a"],
    datetime="2024-01-01T00:00:00Z/2024-02-01T00:00:00Z",
    bbox=[-74.2, 40.6, -73.9, 40.9],  # NYC area
    limit=1000,
    export_format="stacjson"
)
print(f"Job ID: {search_job.job_id}")

Monitor Job Status

# Check job status
job_status = client.platform.bulk_search.fetch(search_job.job_id)
print(f"Status: {job_status.status}")
print(f"Assets: {len(job_status.assets)}")

Download Results

# Download search results when completed
if job_status.status == "COMPLETED":
    job_status.download_assets(save_location=Path("./bulk_results"))

Bulk Insert (client.platform.bulk_insert)

Create Bulk Insert Job

# Create bulk insert job
insert_job = client.platform.bulk_insert.create(
    collection_id="your-collection",
    error_handling_mode="CONTINUE",  # or "STOP"
    conflict_resolution_mode="SKIP"  # or "OVERRIDE"
)

Upload Data

# Prepare STAC items file and upload
items_file = Path("./stac_items.jsonl")  # JSONL format
insert_job.upload(items_file)

# Start the job
insert_job.start()

Monitor Insert Progress

# Check insert job status
job_status = client.platform.bulk_insert.fetch(insert_job.job_id)
print(f"Items written: {job_status.items_written_count}")
print(f"Errors: {job_status.items_error_count}")

Bulk Delete (client.platform.bulk_delete)

Create Bulk Delete Job

# Create bulk delete job
delete_job = client.platform.bulk_delete.create(
    collection_id="your-collection"
)

Upload Item IDs

# Prepare file with item IDs to delete
ids_file = Path("./items_to_delete.txt")
delete_job.upload(ids_file)

# Start the deletion
delete_job.start()

Monitor Deletion Progress

# Check delete job status
job_status = client.platform.bulk_delete.fetch(delete_job.job_id)
print(f"Items deleted: {job_status.items_deleted_count}")
print(f"Errors: {job_status.items_error_count}")

STAC Catalog Search (client.platform.pystac_client)

Standard STAC Search

# Search for items using STAC API
search_results = client.platform.pystac_client.search(
    collections=["sentinel-2-l2a"],
    datetime="2024-01-01T00:00:00Z/2024-02-01T00:00:00Z",
    bbox=[-74.2, 40.6, -73.9, 40.9],
    max_items=50
)

# Process results
items = list(search_results.items())
print(f"Found {len(items)} items")

Get Collections

# List available collections
collections = client.platform.pystac_client.get_collections()
for collection in collections:
    print(f"Collection: {collection.id}")

πŸ”„ Legacy Methods (client.legacy)

Create Datacubes

from earthdaily.legacy.datasets import load_pivot

# Load sample geometry
geometry = load_pivot()

# Create analysis-ready datacube
datacube = client.legacy.datacube(
    collections="sentinel-2-l2a",
    assets=["blue", "green", "red", "nir"],
    intersects=geometry,
    datetime=["2022-08-01", "2022-08-09"],
    mask_with="native",  # Apply cloud masking
    clear_cover=50,      # Minimum 50% clear pixels
    groupby_date="mean"  # Aggregate by date
)

Search Items

# Search for items (legacy interface)
items = client.legacy.search(
    collections="sentinel-2-l2a",
    intersects=geometry,
    datetime=["2022-08-01", "2022-08-09"],
    limit=100
)
print(f"Found {len(items)} items")

Multi-Collection Datacubes

# Create datacube from multiple collections
datacube = client.legacy.datacube(
    collections=["sentinel-2-l2a", "landsat-c2l2-sr"],
    assets=["red", "green", "blue"],
    intersects=geometry,
    datetime="2022-08",
    cross_calibration_collection="landsat-c2l2-sr"
)

πŸ” Usage Examples

Data Discovery

# Find available collections
collections = client.platform.pystac_client.get_collections()
print([c.id for c in collections])

Download Data

# Download assets from search results
for item in items:
    client.platform.stac_item.download_assets(
        item,
        asset_keys=["blue", "green", "red"],
        output_dir="./downloads",
        max_workers=3
    )

πŸ“š Documentation & Examples

🀝 Contributing

We welcome contributions! Please see our Contributing Guide for details on:

  • Development setup
  • Code style guidelines
  • Testing procedures
  • Pull request process

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ†˜ Support

Need help? Here's how to get support:


Ready to get started? Check out our Quick Start Example or explore the API Documentation! πŸš€

Packages

No packages published

Contributors 10

Languages