Version 1.1 — Adds τ_char fitting, γ(τ) inversion, Δ_fail diagnostics, and envelope validation (Lemma C.5).
This update enables direct testing of ODER predictions on experimental entropy data. ODER implements an observer-dependent entropy retrieval model for black hole information recovery. It replaces global Page-curve bookkeeping with a modular retrieval law defined in observer proper time.
This repository accompanies:
Cooper, Evlondo. (2025). Modular entropy retrieval in black-hole information recovery: A proper-time saturation model.
https://doi.org/10.5281/zenodo.15654115
Use this notebook to explore how entropy retrieval evolves across different observers and modular rates.
Notebook: ODER_Black_Hole_Framework_Complete_Simulation_(V2).ipynb
- Run all cells to generate retrieval curves, entropy traces, and modular diagnostics
- View plots saved to the
figures/directory - Reproduce Figures 1–5 from the paper
Use this notebook to extract parameters from retrieval data and validate against theoretical predictions.
Notebook: ODER_Retrieval_Inversion_And_Validation.ipynb
- Extract
τ_charandγ(τ)from retrieval curves - Compute retrieval horizon and failure thresholds
- Validate modular signatures and envelope structure
- Test sensitivity and self-consistency
pip install -r requirements.txtODER models entropy retrieval in black hole spacetimes as an observer-dependent, Lorentzian-causal process. It replaces global Page-curve bookkeeping with a local proper-time recovery law derived from Tomita–Takesaki modular flow.
- No replica wormholes or Euclidean saddles
- No island prescriptions or ensemble averaging
- Retrieval occurs in proper time, not bulk-extremal coordinates
dS_ret/dτ = γ(τ)[S_max - S_ret(τ)]tanh(τ/τ_char)
Parameters:
τ_char: Characteristic retrieval timescaleγ(τ): Observer-dependent retrieval rateS_max: Maximum retrievable entropy
Model Specifications:
- 48-qubit lattice simulation
- Bond dimensions D = 4 and D = 8 for modular resolution depth
- Bounded flow toward
S_maxwithg²correlations - MERA used as geometric anchor (no explicit tensor contractions)
Generated Visualizations:
- Retrieval rate profiles
γ(τ)across observer types - Entropy retrieval curves
S(τ)for stationary, accelerating, and free-falling observers - Bootstrap confidence bands with 200-trace resampling
g²(τ)correlation showing tanh-modulated oscillatory patternsg²(t₁,t₂)heatmaps with diagonal tanh-fringed retrieval envelopes- Bond dimension impact comparisons
| File | Description |
|---|---|
ODER_Black_Hole_Framework_Complete_Simulation_(V2).ipynb |
Main framework simulation |
ODER_Retrieval_Inversion_And_Validation.ipynb |
Parameter fitting and validation tools |
requirements.txt |
Python dependencies |
figures/ |
Output directory for plots and visualizations |
This framework encourages exploration and extension:
- Modify parameters: Bond dimension, qubit count,
τintervals - Add observer classes: New spacetime backgrounds and reference frames
- Extend retrieval law: Include back-reaction effects
- Adapt platforms: BECs, photonic lattices, analog black holes
- Apply fitting tools: Experimental or simulated entropy data
Contributions that improve, stress-test, or generalize the framework are welcome.
Cooper, Evlondo. (2025). Modular entropy retrieval in black-hole information recovery: A proper-time saturation model.
https://doi.org/10.5281/zenodo.15654115
Cooper, Evlondo. (2025). ODER modular entropy simulation (Version 1.0) [Software]. Zenodo.
https://doi.org/10.5281/zenodo.15428312
MIT License - see LICENSE for details.
Evlondo Cooper
Email: evlocoo@pm.me